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Abstract

A computer vision system which tracks and analyses living celis and
their offspring from sequential two-dimensional images is described. The
cells are segmented using a method which combines global thresholding,
component labeling and noise filtering. The shapes of the cells are then
analyzed using a fast skeleton algorithm, and the states of the cells are
determined as the cells change shape and move. This vision system rec-
ognizes the occurrence of cell mitosis and then tracks the offspring by
evaluating the overall cell shape and position to determine the cell state.
Both the cell shape and cell state are represented as fuzzy sets. The
cell state takes into account previous shape and state knowledge as the
mitotic process is described by a sperific series of shape changes. This
Mitosis Recognition System (MRS) has been developed for cell physiol-
ogy research in the study of cell locomotory characteristics evolving over

several generations.




Résumé

Un systeme de vision par ordinateur pour l’analyse de cellules vi-
vantes est décrit. Ce systeme permet, a partir d’une séries d’images
en deux dimensions, d’analyser et de suivre le développement de cel-
lules et de leur progéniture. Une méthode sophistiquée, combinant seuil-
lage global, étiquctage de composantes et filtrage de bruit, est utilisée
pour la segmentation des cellules. Les formes de cellules sont analysées
en utilisant un algorithme de squelettisation rapide et leurs états sont
déterminés & mesure que les cellules se modifient et se déplacent. Ce
systtme de vision reconnait I’avénement d’une division cellulaire et en-
suite suit la progéniture en évaluant la forme générale et la position
d’une cellule afin de déterminer son état. La forme et 1’état d’une cellule
sont tous deux représentés a l’aide d’ensembles flous. L’état d’une cel-
lule esi. déterminé en tenant compte de sa forme précédente ainsi que la
connaissance du fait qu'une division cellulaire procéde par une séries de
changements de forme bien spécifique. Ce systeme: Mitosis Recognition
Systerm (MRS) est développé pour la recherche en physiologie cellulaire
dans ’étude des caractéristiques de locomotion cellulaire, évoluant sur

plusicurs générations.
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Chapter 1
Introduction

1.1 Overview

Cell biology is a field of research that can benefit considerably by ad-

vances in computer vision and artificial intelligence (Al) techniques. Prim

itive methods which require tremendous human effort are still being used
by microbiologists for data analysis. Great improvements in data collee-
tion, statistical analysis, and experimental control can be achieved by
combining computer vision and Al principles with microscopic imaging
experiments. An increased number of data and statistics can be gathered
with a greater amount of consistency if computer vision and Al principles
are combined with image acquisition.

Likewise, the field of computer vision can be advanced by exploring
the problems of cell segmentation, representation, and tracking. How
is it possible that trained microbiologists can so easily distinguish cells
from their background environment? By carefully watching moving cells,
they can quickly determine which cells are undergoing division and which
cells are about to collide. Tracking individual cells and their offspring is
quite simple for experienced microbiologists, however, it is a tedious and
sometimes difficult task for them to track many cells and monitor their
behaviour simultaneously.

Cell research would benefit considerably from automated techniques
such as the Mitosis Recognition System (MRS) discussed in this thesis.

The MRS is a computer vision tocl developed as part of the more general




1. Introduction

automated cell tracking system called TRACES (TRacking CEll System)
[18]. TRACES is a real-time system for the automatic tracking and imag-
ing of cells as they move across a microscope’s field-of-view. The stage of
the microscope is adjusted automatically in real-time by feedback from
image processing results of the digitized microscopic scenes. After man-
ual initialization, cell tracking proceeds without human input or manual
adjustment.

TRACES provides a means to simultaneously study shape and cell
locomotion. Hence, this tracking system is very suitable for studying
shape changes of cells during cell division (or mitosis) in conjunction
with studying the tracks of their offspring. The MRS tracks generations
of cells (within TRACES) by automatically monitoring their states of
mitosis using computer vision techniques.

Cell tracking refers to the monitoring of a living cell’s position over
time. Techniques range from using particular mediums in which cells
leave visible tracks [37] to real-time tracking and position recording
by computer. The former method has the disadvantage that a cell’s
physiological behaviour may be unpredictably affected by the unnatural
medium required to record its movements. The latter method involves
the use of videotape for capturing the traces of the cells within a single
field-of-view. Because tracking is not automated, there is no adjustment
of the microscope ficld when the cells move out of view. Tracking of
individual cells is done later, at the convenience of the researcher by
replaying the videotape and manually noting the cell paths. Automatic
Computer vision systems are also sometimes used to track individual
cells from pre-recorded images (see for eg. [14] and [63]).

Pre-recorded methods of cell tracking have the disadvantage of being

limited to the ficld of view of the stationary camera used during the ex-

9




1. Introduction

periments. In these methods researchers must decide between recording
a large number of cells at a very low resolution (or magnification) from
recording fewer cells at a high magnification. High magnification is fine
for shape analysis of cells which do not move very much, but for purposes
of studying cell loccmotion, high magnification (and hence a small field
of view) often results in cells moving out of the field of view, prematurely
ending the experiment. Low magnification, however, is appropriate for
cell tracking, but cell shapes cannot be analyzed because of low resolu-
tion. Cell tracks are typically much longer than the diameters of the cells
under study.

The measure of cell diameter is generally shorter than the lengths of
typical cell tracks. Correlation of cell shape and cell locomotion is an
interesting biological problem that requires magnifications high enough
to perform proper shape analysis and a field of view wide enough so that
cells cannot locomote out of view. Automatic tracking and rcal-time
control of the microscope stage allow the effective field of view to be the
extent of the cell chamber or slide, while affording a high magnification
window required for high-resolution shape studies.

The study of changes in cell behaviour, such as membrane shape activ-
ity and cell locomotion from generation to generation provides valuable
insight to many important medical questions, such as the mechanisms of
cancer [23], [48], aging [5], (1], and differentiation [10]. Cell division is
the central activity of all of these important issues. An automatic means
then, of determining and recording when cell division occurs, and what
happens to subsequent generations will greatly aid medical researchers
in their quest to solve these medical puzzles.

Present techniques to study cell heterogenity require injecting incrt

tracer dyes which are passed on to offspring (10]. Disadvantages of this
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1. Introduction

method include eventual dispersion of the dye after many generations,
and the unknown physiological effects the dye may have on the cells
under study.

TRACES and the MRS are developed for tracking cells in an undyed
environment developed to simulate in vivo conditions [18]. The in vivo
environment is three dimensional, unlike the common two-dimensional
environment created by microscope slides. TRACES has the ability to
track cells in the direction perpendicular to the focal plane as well as in
the usual two-dimensional field. The MRS, in its present form, however,
is based on two-dimensional images, and assumes that the cells being
tracked do not move out of the depth of field of the microscope. How-
ever, the MRS has built-in mechanism.s to monitor other objects possibly
appearing or disappearing in the image plane. Tracking is disabled for
cells which move completely out of focus.

Advanced image processing techniques must be used to segment un-
stained cells from their textured backgrounds. The segmented cells must
then be processed by an appropriate shape representation that is inde-
pendent of cell size and position. Time-dependent state knowledge must
be used in conjunction with the shape changes to determine the cell
process state. Living cells are of particular interest to computer vision
researchers who study shape morphology, curvature representations, and
dynamic shape processes [46] [40]. The dynamics of a “cell’s world” !
arc interesting as well from a knowledge engineering perspective. The
“cell’s world” can be defined by a finite number of rules describing the

shapes of cells, their ancestry and their state. This world is particularly

"The use of the term “cell’s world” is meant to emphasize a confined, limited
environment, such as that described by the well-known term “blocks world” used for
example by [19].
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1. Introduction

interesting in that it is time-dependent: cell states depend not only on
the present cell shape, but on the previous progressior: of states leading
up to the present image.

This thesis applies computer vision and Al techniques to the study
of proliferating cells. The movements of living cells are automatically
tracked and the shapes of the cells are analyzed to determine their states
of mitosis. Once cell division has been detected, the new daughter cells
are then tracked to continue the study of subsequent generations.

Cells are segmented from individual images using a region-based
thresholding technique [60} enhanced to reduce non-cell artifacts (for the
mitosis application) and to allow segmentation of more than one cell. The
cell shape and center are computed using a fast multiple-resolution skele-
ton method based on boundary erosion [13]. The skeleton shape infor-
mation, previous knowledge, and segmentation information are mapped
into a fuzzy evidence representation which is then analyzed to produce a
final fuzzy state set. Cell division is observed when the post-mitotic state
has a maximum membership value relative to the other possible states.
A new cell is then initialized for tracking, and the generation numbers of

the two daughter cells are updated.

In summary, this thesis has several contributions.

An adaptive segmentation method has been applied to accurately
segment multiple unstained cells. The method is based on the work of
Wu et al [60], and expanded to suit the cell division problem.

A fast skeletonization algorithm and boundary representation has
been developed particularly for the MRS application. It is modified from
Dill et al’s [13] multiple resolution skeleton approach to emphasize both

the shape’s characteristic of mitosis and the computationzi efficiency re-
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1. Introduction

quired for real-time processing. The erosion nature of the skeleton al-
gorithm leads to an alternative definition of cell center for tracking the
significant body of a cell. Unlike standard center-of-mass definitions, the
alternative cell center is based on the erosion process of skeletonization.

This thesis develops a method of converting image data and mis-
cellaneous measurements into a representation of overall cell shape and
state. The expert system uses matrices of rules, fuzzy weights, and time-
dependent processes to quickly convert the input data into a fuzzy shape
and state.

Finally, this thesis integrates the segmentation, skeletonization, and
fuzzy processing into a single computer vision system which segments,
analyzes, and tracks cells and their offspring by recognizing the major

states of mitosis.

1.2 TRACES: System Functions and Hardware

The entire set of computations and tracking is implemented as a sin-
gle package called the Mitosis Recognition System (MRS) developed
for a specialized imaging application called TRACES (an acronym for
TRacking CElls System) [18]. TRACES operates in a SUN Station
environment to process either previously stored iinage sequences or real-
time images during actual tracking experiments.

TRACES consists of six main functional components for real-time
tracking experiments: the environmental system, the positioning sys-
tem, system control, image acquisition, image processing, and image un-
derstanding. These functional components are shown in Figure 1.1.
The MRS adds the additional functional sub-component of image under-

standing or image description to TRACES, apart from the other main
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ONf-line System

Real-dme Syshem

Figure 1.1: TRACES Functional Components. The dotted boxes surround
the functions necessary for the off-line system and the real-time system as
indicated. Asrows indicate flow of data and/or control information. The cell
chamber and recorded data modules (enclosed by ellipses) are inputs to the
real-time tracking functions and off-line analysis functions respectively.

subsystems outlined in [18].

The environmental control system is functionally independent from
the imaging and positioning components. Its role is to maintain the cell
chamber at a constant temperature in a humidified and gas-controlled
atmosphere [18].

The positioning system has the function of moving the cell chamber
so that any point along its three axes can be centered and focused within
the field-of-view of the microscope and imaging system. More than one
cell can be studied during an experiment by constantly repositioning the
stage for each cell before image acquisition. The hardware responsible
for the positioning function is a computer controlled, linear, threc-axis
positioning system and a locating fixture located beneath the mounted

cell chamber [18].
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System conlrol is responsible for the overall high-level control of an
experiment, with a functional interface to the image processing, image
acquisition, positioning, and environmental systems. The system con-
troller updates the positioning controller with new information from the
image processing component, controls the image acquisition frame rate,
and contiois the general sequence of events during an experiment. The
system controlling tasks are performed on a SUN workstation with data
communication to and from the servo positioning controller, the periph-
eral controller, and the frame grabber (Figure 1.1).

The image acquisition component is responsible for the delivery of
digital grey-level image data to the image processing function through
the system controller. Hardware includes an inverted light microscope, an
illumination and shutter controller, a monochrome video camera, a digital
frame grabber, and an analog time-lapse video recorder [18] (Figure 1.2).
leal-time experiments may store image data on videotape, on hard disk,
or store only the processed output data produced by the image processing
and image understanding systems. Off-line experiments are performed
with previously recorded images from videotape or hard disk without the
need of the positioning and environmental systems.

The image processing function consists of tasks dedicated to the pre-
processing: segmentation, boundary extraction, and center of mass com-
putations, as well as the coordination and interface with image under-
standing activities. The cell center positions are fed back to the system
controller so that the updated information can be used for the positioning
control system. This information, along with the boundary coordinates
of the cells, is stored on hard disk for processing and analysis outside of
TRACES. All image processing tasks are performed on a SUN worksta-

tion.
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3D PRECISION STAGE
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g ILLUMINATION

INVERTED MICROSCOPE

Figure 1.2: TRACES (TRAcking CEll System) Hardware Components.
(adapted from [18])

The understanding functions include reasoning about the shape pro-

cesses of the cells being tracked. Both the shape and mitotic state of

cells are determined using a fuzzy-logic expert system which integrates

time-dependent data in the analysis of mitosis. If the system determines

that cell division has occurred, the information about the the daughter

cells is used to create a new entry for the positioning control system. The

image understanding functions of TRACES consists only of the Mitosis

Recognition System (MRS) at present, but future plans include the inte-

gration of additional high-level tasks. These would include, for example,

three-dimensional analysis and classification of living cells.
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1.3 Related Work

It is difficult to summarize the related work within the scope of this thesis
because of the many areas of research contained within its parts. The
MRS system explores image segmentation and tracking of cells, biological
shape analysis, skeletonization, and fuzzy expert systems.

Other systems have been developed to image, scgment and track cells
for a variety of applications ( [57] [34] [45] [14] [40]). Cell image
processing and shape analysis activities (generally done with previously
stored data) are becoming more and more promine: both in :he fields of
computer vision and in cell biology ( [46] [63] [45]) [40] [13]). The field
of cell imaging and automatic cell processing is becoming increasingly
popular with the introduction of computer workstations and image pro-
cessing packages. More specifically, skeletal methods of shape processing
and analysis applied to living cells are explored [40] [13] [46]. Tracking
generations of cells by means of recognizing mitotic states has not been
developed elsewhere, to our knowledge, however, it has been explored
to a certain extent by Ferrie [14] and Wheeler [59] (unpublished). We
belicve we are the first to develop a Mitosis Recognition System which
is able to track and analyze dividing cells automatically in a real-time
environment.

Expert system approaches have also been developed for various prob-
lems related to cell tracking or analysis of microscopic images ( [15]
[36] [58]). Fuzzy logic systems applied to image processing problems
are addressed by [31], however, there are few existing systems applied
to microscopic cell shapes. Lee [30] applies the concepts of fuzzy shape
classification to three different configurations of chromosome images. Our

fuzzy shape concepts of ROUND, OBLONG, and COMPLEX applied to
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cells are similar to the median, submedian, and acrocentric chroinosome
shape classifications of Lee. Lee’s application, however, does not involve
the problem of dynamic shape processes; they are concerned mostly with
pattern classification problems. Fuzzy set theory applied to the shapes
and states of dividing cells is also believed to be an original application

of this thesis.

1.4 Thesis Outline

General biological aspects of the cell cycle and cell locomotion are ex-
plored as a background to the main thesis (Chapter 2). Thesc cell biology
problems are discussed in terms of computer vision rescarch. Quanti-
taiive and data measurement issues for biological analysis are examined
with a brief discussion of other cell tracking applications and methods in
relation to the MRS system.

The main thesis is divided into two important sections: a section on
the image processing principles needed to first extract cells and basic
shape inforration from raw images (Chapter 3), and a section on the
image understanding methods used to intelligently analyze the prepro-
cessed data for deciding cell shape and life cycle state (Chapter 4).

The principles developed in Chapters 2 and 3 are then demonstrated
in Chapter 5 by means of actual cell experiments. The results, method-

ology, and limitations are discussed before final conclusions arc drawn

(Chapter 6).
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Chapter 2
Background

2.1 Cell Biology: The Cell Cycle, Cell Locomo-
tion, and Cell Shape

All living cells reproduce by a process called cell mitosis. Although cells
may differ considerably in size, shape, and behaviour from one type to
another, the basic stages that occur during the cell cycle are common to
all living cells, both plant and animal.

The DNA contained in the chromosomes of the parent cell is repli-
cated during mitosis so that the daughter cells contain genetic informa-
tion identical to that of the original parent. The extent to which loco-
motory behaviour is inherited is not known. One of the main purposes
of the development of the mitosis recognition and tracking system is to
study these locomotory traits over several generations of cells.

Standard cell biology texts usually take a functional approach to de-
scribe the physiological changes which take place during the cell cycle.
Figure 2.1 illustrates the processes which occur during a cell’s ife cy-
cle [2]. The stages of mitosis are: prophase, metaphase, anaphase, and
telophase. Interphase follows celil division and precedes the next mitosis
sequence. These stages are based mainly on the internal changes in the
cell nucleus and the behaviour of the chromosomes.

Plant cells in general undergo the same internal processes as animal
cells during mitosis, however, certain types of plant cells do not exhibit

the same type of shape changes as individual free-roaming cells, such as
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The Cell Life Cycle

sataphase

/®
®

anaphase

\ telophase

formation of

® G
two daughter
1ntcrphu:\ it cells

division

Figure 2.1: The life cycle of a cell. The life cycle and the stages of mito-
sis are characterized by internal changes in the cell such as changes in the
cell nucleus and the replication and movement of the chromosomes. The
telophase stage, howevet, is also characterized by the division furrow of the
membrane. (Adapted from [2] and [28].)

blood cells. This thesis considers only unclustered “free-roaming” animal
and plant cells.

The cell tracking system does not use the internal behaviour and
structure of the cells because the cells are tracked at a relatively low
magpnification and they are not stained, making internal organelles diffi-
cult to segment. The overall shape changes of the cell boundary are used
to determine the occurrence of cell division. A cell cycle with a notation
based on shape changes during mitosis is used to define the possible cell
states in the Mitosis Recognition System (MRS), as shown in Figure 2.2,

Unlike the life cycle diagram of Figure 2.1, the shape cycle (Figure

2.2) contains paths which allow backtracking from certain states to pre-

20
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The Cell Shape Cycle
PRE_MIT2

PRE_MIT1

R e

~__— () MIT_SEPAR

POST_MIT

Legend
PRE MIT1:

prophase-metaphase
mitosis state

PRE_MIT2:
metaphase-anaphase
mitosis state

MITOSIS:
anaphase-telophase
mitosis state

MIT SEPAR:
mitosis separation
(formation of two
adjoining daughter
cells)

POST_I(I'.[' :
post-mitosis
{(complete cell
division and
separation)

NORMAL:
interphase
normal cell state

Figure 2.2: The shape cycle of a cell. The life cycle of a cell can be described
by its sequential changes in overall shape. The MRS determines the cell
shape and state and uses the changes in state to predict the occurrence of
cell division. Note that not only is the shape important, but also the order in
which the shape changes. Certain types of cells often undergo drastic changes
in shape during the “normal” state; shapes which may be characteristic of
late stages of mitosis. Certain state transitions are declared to be forbidden,

such as from POST_MIT back to MIT_SEPAR.
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vious ones. Changes in cell shape may, under some situations, lead to an
ambiguous cell state condition. For example, a cell in the NORMAL or
interphase state may exhibit roundish and figure-8 shape changes similar
to the pre-mitotic states, but then revert back to a more complex shape.
It is not possible to distinguish the two conditions since the behaviour
of the internal structures (eg. the nucleus) is not processed. However,
since backtracking is allowed, when the cell once again exhibits com-
plex shapes, the system will recognize that the cell is still in the normal
non-mitotic state.

Once the cell is determined to be beyond the mitosis state and exhibits
features of the mitosis separation in the MIT_SEPAR state, cell division
and separation is then expected to occur in the next series of images. A
cellin the MIT_SEPAR state has an important shape feature consisting
of two touching knobs.

Figure 2.2 is only a simplified description of the shape cycle used in
the Mitosis Recognition System. The system actually uses a fuzzy state
representation or state vector rather than a single state. The complete
representation is described in Chapter 4 which include additional states
needed to represent cell collision conditions.

Cell locomotion takes place only during the non-mitotic, NORMAL
state. Free-living amoebae such as cellular slime-moulds and other free-
roaming amocba-like cells such as fibroblasts and leukocytes change shape
and move about during this stage. An otherwise stationary cell may
produce many appendages which move about wildly while examining its
local environment. A cell will also locomote by extending pscudopodia
to push and by attaching anchors to pull itself along a solid substratum.
A study of these extrusions are crucial in understanding the mechanisms

of cell motion. The biological aspects of cell movement and behaviour
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are covered very well in [28] and [12].

Cells exhibit characteristic locomotory patterns during the interphase
period ( [45] [12]). Cells of the same type, such as leukocytes, can be sub-
divided into classes whose members exhibit similar track-patterns. The
track-pattern features such as stationary waiting times, turn angles, and
directional memory times are being investigated. Little is known about
the mechanisms responsible for these cell classes, but active research is
underway. Some studies have suggested that locomotory characteristics
may be inherited from parent to daughter [37]. This is one aspect which
can now be studied using the mitosis recognition and cell tracking system.
Thus, this research is expected to provide very valuable information for

cancer and immunological studies [23], [48].

2.2 Computer Vision: Image Segmentation and

Image Understanding

Living cells pose interesting problems for computer vision researchers. A
cell can grow, shrink, translate, rotate, and change shape in any manner.
How can a machine adequately represent such a creature? Even a moving
person does not undergo the type of radical and unpredictable changes a
cell may experience. Most robotic vision applications deal with very con-
trolled environments consisting of rigid, well-defined objects. However,
a cell’s world is reasonably confined and a cell’s life cycle changes are
characterized by a limited number of functional states. Specialized com-
puter vision procedures can be developed specifically for experimental
conditions encountered in particular cell applications.

There are generally two aspects to any computer vision problem:

o the image processing part needed to enhance or preprocess an image

23




2. Background

and the extraction of data about the objects contained in the image.

e the image understanding part which uses the data obtained by im-
age processing, along with expert knowledge or other information
to produce a higher-level understanding of the image in terms of
what the objects are, how they are arranged, or how they are be-

having.

The image processing problems encountered in the application of cell
tracking are very challenging. Unstained cells blend very well with their
background culture, making the membraune of the cell very difficult to
segment. The segmentation must also be performed in real-time so that
the cell can be tracked with an adequate frame-rate.

Apart from these preliminary image processing and single object
tracking problems, there are three main aspects of cell behavioural re-

search of interest to the computer vision community:

¢ In order to automatically track cells from generation to generation,
a method must be devised to recognize cell division. The method
must be able to distinguish division from other possible situations

such as cell collision and subsequent separation (14].

e A meaningful representation of cell shape must be constructed to
characterize the shape changes of a cell over time. The represen-
tation would help cell biologists study the activity of appendages
during both the stationary period and the locomotory activity. The
relationship between the pseudopods and the direction of cell mo-

tion could then be studied ( (33] [63] [13]).

o The cell-path patterns in space and time are signals which can be

analyzed using computer processing methods of pattern analysis,
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digital signal processing, and stochastic theory ( [45] [9]).

The present thesis emphasizes the first issue, but provides a founda-
tion for exploring the other two. The computer vision system in this
thesis recognizes mitosis and tracks cells and their offspring by using
skelctons (Chapter 3) to analyze the shapes in real-time. The skeleton
approach can also be used for pseudopod study, as done elsewhere ( [13]
[40]). The MRS records the skeleton data for further analysis.

Cell positions are also stored for pattern analysis at a later time.
The location of the cell is marked by an estimate of the cell center; two
definitions of the center are used in this thesis and compared. Analysis
of the cell paths is not done in this thesis. We emphasize that one of
the main goals of this thesis is to provide a means for the automatic

collection of these data.

2.3 Shape Measures and Related Work

Whatever the method of shape description, the ultimate purpose in object
classification applications is to use the computed description to produce
measurable data for the characterization of the important features of
an object. The type of data and the chosen method of shape description
depend upon the goal of the application, since an emphasis may be placed
on certain features under study.

Most shape applications require that the measurements be invariant
under image size or magnification, object rotation, and object transla-
tion. Living cells, in particular, move about in all directions and are
studied under different magnifications. Measurements that are invariant
for these criteria are crucial for consistent study during different cxper-

imental conditions. There are various methods of shape representation,
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for example, polygonal, boundary chain-code, and skeletal [35]. Once
an object’s shape is clearly represented, important data such as feature
points and size or length measurements should be extracted easily.

A shape’s skeleton is a compact way of representing an object’s form,
combining both region and boundary information into a graph-like struc-
ture [40]. Biological shapes are represented more appropriately by a
skeleton-based description than methods based on strict gcometrical con-
structs ( [40] [6]). Given a skeleton and the erosion time of each point on
the skeleton, the original object can be reconstructed. TRACES does not
presently use the skeleton for object reconstruction purposes, but records
the data for an efficient record of the important cell shape changes during
experiments.

The trace of a skeleton is used in many applications for the recog-
nition of ckjects with well-defined structure. The number of branches,
lengths of the branches, location of nodes, and angles of the branches
with respect to one another at a node are used as a graph representation
for object recognition and classification problems. Blum and Nagel [7]
used this type of connected node information from the SAT (Symmetric
Axis Transform) to describe a child’s face in profile.

However, in this thesis, the principle motivation for using a skeleton
representation is that meaningful data measures can be extracted very
easily to ultimately classify objects into shape categorics. For exampie,
the sim;le measure of end branch count is the number of shape protru-
sions or extruding parts of an object. For a cell, protrusions indicate
pseudopods, and extruding parts indicate either major pseudopod activ-
ity or ihe process of mitosis. Thus, a cell which has very many protru-
sions or pseudopods would be categorized as a complex shape, indicating

a normal cell behavioural state,
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Only three major shape categories, combined with other knowledge,
are used to help determine the cell state. These are ROUND, OBLONG,
and COMPLEX . The complete shape description is actually a vector or
fuzzy shape consisting of membership values in each of the three basic
shape categories.

Cells with COMPLEX shapes are never undergoing mitosis, so it
suffices for this application to have such a broad shape category. Other
applications, such as motion or pseudopod analysis, would require a fur-
ther breakdown of the complex shape category.

The onset of mitosis is characterized by a very round shape which
lasts for a significant period of time. The ROUND shape category is
used to help determine this important state. The next shape category
describes the elongation that must follow. The skeleton of this OBLONG
shape category remains very stable as the cell becomes pinched-in before
cell division actually occurs.

In determining an adequate shape representation for an application,
it is important that one is chosen carefully in order to maximize the
amount of both biologically interesting data and data needed for further
system analysis. The shape representation must also be quick to compute
for real-time processing during on-line cell tracking experiments.

Many Al rule-based applications and computer vision processing algo-
rithms are just too time consuming to be practical for real-time tracking.
The rate of imaging for real-time cell analysis depends upon both the
features of the cell to be studied and on the type of cell being used.
The data requiring the most samples per unit time determines the imag-
ing rate. The measure of cell position is needed frequently in order to
monitor the movements of the cell and to re-adjust the position of the

tracking window so that the cell never moves out of view. Slime rioulds,
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for example, need to be imaged at a rate from 10 to 30 seconds per frame
because they move about quite quickly. Blood cells, however, tend to
move more slowly, and can be imaged less frequently.

Relative to cell translations, cell shape changes during mitosis oc-
cur more slowly, and would not require processing as often. Pscudopod
analysis (when a cell is not undergoing division), would require a fast
frame rate because a cell’s local extrusions may occur very quickly even
if the cell’s overall position is stable. Thus, as with any dynamic shape
problem, scale across time must be considered in conjunction with scale
across the spatial dimensions of an image ( [26], [27]).

Cell shape changes as related to pseudopod activity and locomotion
have been studied extensively by Levine, Noble, and Yousseff ( [33] [63]
[45]). Cell shapes are described by their static features which define
different properties of the cell under the subsets of shapz, location, struc-
ture, and motion. The set of properties describing shape include area,
perimeter, circularity, average bending energy, circularity and properties
based on a polygonal approximation of the cell, such as angle regularity
and side regularity. This polygonal representation is also used to decom-
pose a cell into its body and pseudopod parts. The quantitative shape
properties of a cell are then related to qualitative shape qualifiers. The
thape property average bending energy for example, has the following
shape qualifiers associated with it: very jaggy, jaggy, almost smooth ,
smooth, and very smooth. The average bending energy is defined as the
average rate of change of the tangent along tie buundary [33). Levine
and Noble use the polygonal decomposition to create a labeled graph to
represent the cell body and its parts [45]. The graph description, (like
a skeleton graph) is both translation and rotation invariant.

Ferrie et al combine relevant shape data into feature vectors for cach
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cell region [15). A vector contains the following important features:
1) region centroid, 2) average intensity, 3) coordinates of the minimum
bounding rectangle for the region, 4) a shape measure based on the ratio
of length over width of the minimum bounding rectangle, 5) orientation
of the major axis of the region, 6) area, 7) perimeter, and 8) an overall
boundary curvature measurement ( {15] [14]). A reference vector based
on the features of a cell about to divide is created to approximate the
expected characteristics of a hypothesized daughter cell in order to per-
form the best matching of cells after division occurs. For example, the
intensity of the daughter cells should approximate the parent cell before
division, and the area should be one-half that of the parent. Problems
of scale invariance are avoided for state classification since the features
are matched using relative measures. However, raw feature data (such as
arca and perimeter) are not scale invariant so would not be meaningful
under a comparison of different data sets from different experiments.
Our method emphasizes skeleton data to describe the shape features
of a cell. Other data, such as area and perimeter, are normalized in order
to be mapped consistently into fuzzy representations which are compara-
ble from one experiment to the next. This additional step of converting
the raw (normalized) data and skeleton data into fuzzy racmbership sets
not only provides us with comparable data sets across experiments, but
it also allows us to integrate different types of data into descriptive mea-

sures of overall shape and state.
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Chapter 3
Image Processing of Living Cells

3.1 Segmentation

3.1.1 Introduction

Cell shape processing cannot proceed until the boundaries of the cells are
correctly identified given the input digitized grey-level image. The pro-
cess of extracting objects or regions of intcrest from a raw image is called
segmentation. The segmentation process for living, unstained cells at a
magniﬁcz;tion suitable for tracking is a particularly difficult task since the
cell boundary is difficult to distinguish from the non-uniform background
texture. It is also desirable to segment all possible cell candidates within
an image window, and to distinguish cells from other artifacts.

A cell segmentation method specially designed for unstained, divid-
ing cells is being used for the Mitosis Recognition System (MRS). The
basis of the method is the segmentation procedure proposed by Wu et
al [60], which was developed to accurately find the bounding contour of
a living cell within a three-dimensional collagen gel. The image features
that characterize cells under these imaging conditions are the grey level
intensity and the local variation of this intensity. They have overcome
most of the problems normally encountered in this type of segmentation
problem, and the algorithm is practical for real-time processing.

Their method is applied with the assumption that there is a single
cell within the image window to be segmented. The cell is determined to

always be the largest component found after thresholding. This segmen-
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(b) (©)

Figure 3.1: Mitosis segmentation problem. (a) raw grey-level image of cell
near complete division; (b) preliminary segmentation of two cell parts; (c)
final segmentation of single cell.

tation method was casily modified for the more general case required by
the mitosis tracking experiments. This application requires the segmen-
tation of all cells within a window in order to determine the positions of
the daughter cells after cell division has occurred. To be robust under
real experimental conditions, the segmentation method must be able to
differentiate cells of varying sizes from smaller non-cell artifacts. There
may also be a problem during mitosis when a cell is in a figure-8 shape
(Figure 3.1). The image of the cell along the cleavage furrow tends to be
lighter than the rest of the cell due to the absence of internal organelles.
Unscrupulous segmentation using Wu et al’s standard algorithm results
in the cell segmented into two halves before the cell membrane has actu-
ally divided. The object is still actually one cell, even though the area
around the cleavage furrow is very light in contrast. A subsequent image
may have a slightly darker cleavage furrow, resulting in the segmenta-
tion of a single, figure-8 shape. This characteristic of division results in
very unstable segmentation during mitosis - at the stage most crucial
to our application. The enhanced segmentation technique used by the
MRS provides additional stability in the segmentation of cells undergoing

division.
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3.1.2 Segmentation Overview

Wu et al’s algorithm is a mulli-stage strategy [60]. The image is first
partially segmented into approximate regions by the application of a
global threshold to the local variation of intensity. The variance at cach
pixel is computed using a square mask centered at each pixel by summing
the difference between the pixel intensity and the mean intensity within
the mask. A minimum =rror thresholding method proposed by Kittler
and Illingworth [24] is used to segment the regions from the original
image. This first variance thresholding step is considered to be a global
method.

These regions are then filled to obtain single, connected regions with-
out holes using a component labeling procedure [60]. The resulting high-
variance regions may contain one or more objects whereas the non-regions
consist only of the background texture. The region of high variance
provides a more ideal area in which to apply a final global grey-lcvel
threshold to extract objects, parts of objects, and other dark artifacts.
This thresholding is now based on Otsu’s optimal thresholding procedure
[47]. In this application, cells are assumed to be darker than their back-
grounds. The segmentation procedure can easily be reversed to extract
light objects rather that dark objects.

These thresholded components are expanded, contracted and merged
together locally using a component labeling approach [18] so that object
boundaries and parts become connected and any remaining holes are
filled. Wu et al’s application then considers the largest cohesive object

to be the imaged cell.
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3.1.3 Adaptive Size Thresholds

The application of Wu et al included the assumption that a single cell
is being segmented from a given image window, so the concern was with
extracting the largest high-variance region and then the largest compo-
nent within this region. In the present implementation of this method
for the mitosis system, preprocessing does not assurne that the largest
component is the desired cell. The Mitosis Recognition System attempts
to recover all possible cells from a given image. It does not assume a
priori that there is a single cell within the image window, however, other
criteria are used to help filter out extraneous non-cell particles.

The image scgmentation consists of two main steps:

[. the segmentation of the high variance regions (Figure 3.2(a)(b)),

and

2. the segmentation of the dark objects or components within the

regions (Figure 3.2(c)).

Filtering is performed during each of these steps.

Region Filtering

The image is first segmented into high variance regions, as described
above. The non-regions are discarded, since they should not contain cells.
The regions are examined, however, and sorted according to their total
arca in pixels. Any regions which are smaller than the minimum region
size do not contain cells, and are discarded. The size of a region depends
upon the mask size used in the variance computation, and the computed

variance threshold, but nonetheless must always be larger than a typical
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cell if the region actually contains a cell. Figure 3.2(b) ilustrates the
high-variance regions before size filtering.

The minimum region size can either be set as a static parameter
determined by typical cell sizes for the application, or set as a dynamic
parameter for applications in which cell sizes can change drastically (ie.
orders of magnitude) for different tracking experiments. The mitosis

application performs sufficiently with a pre-determined value.

Component Filtering

Each of the remaining regions is now thresholded and their components
labeled and filled. The sizes of the components are compared to a min-
imum component size threshold, and the small, extraneous objects are
discarded.

The mitosis application computes the minimum component size from
the size of the largest component found within the window, which is
expected to be a cell. In the present implementation, the minimum com-
ponent size is equal to 25 percent of the size of the largest component.
However, if the largest component is very small, and is smaller than a
predetermined absolute minimum cell size, we set the minimum compo-
nent size equal to the absolute minimum cell size. In this case, we do
not expect to find cells within the image window.

The advantage of having a dynamic minimumn component threshold is
to allow the application to track different cell types of moderately varying
sizes and magnifications, and during different stages in cell growth. For
example, a cell just before division will be 1wice the size of its daughter
cells. We allow a 75 percent difference between the area of the largest

component and the smallest component within an image window.
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o O -

(d)

Figure 3.2: Multi-stage segmentation. (a) a cell image; (b) the approximate
regions; (c¢) component extraction; (d) final binary image after expansion,
merging, and contraction; and (e) objects on original image.
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3.1.4 Component Data

The Mitosis Recognition System differentiates neighbouring cells which
have moved together by cell locomotion from two neighbouring daughter
cells. As well, the system attempts to recognize the difference between
the figure-8 shape formed by two cells which are in contact and a cell
undergoing mitosis. The segmentation of a cell undergoing mitosis may
also falsely separate the cell into two parts before the cell has actually
divided. It is very important, then, for the system to gather as much
information about the neighbourhood of a cell as possible. Information
about very close neighbours can be retrieved from further component
processing. These conditions must be carefully monitored and recorded
as input data to the expert system. This section outlines the extraction
of relevant data during the segmentation process, but the analysis of
these data is reserved for the chapter on image understanding.

The following data are output from the segmentation processing and

used in subsequent operations:
¢ a binary image consisting of black regions corresponding to objects
e a list of component sizes

o a list of centers of gravity for each component

The set of steps listed below describes the entire segmentation proce-
dure with the emphasis on the extraction of component data needed for

the expert system analysis.

Preliminary Segmentation and Filtering

Preliminary segmentation (described by Wu et al [60]) is first performed

to compute a preliminary binary image of cells, cell parts, and artifacts.
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As discussed at the beginning of Section 3.1.2, rough high variance re-
gions are computed, and any holes in these regions are filled. Regions
smaller than the minimum region size are discarded, and Otsu thresh-
olding [47] is performed on each remaining region.

The thresholded objects are then processed one at a time using a
component labeling procedure. [18]. The sizes of each component are
determined, and components with a size greater than the minimum com-
ponent size (see Section 3.1.3) are ezpanded, merged, and then contracted
[18] to fill in holes.

At this stage each component is a solid object whose boundary can
casily be extracted by tracing its contour (Figure 3.2(c)).

The black objects represent cells or parts of dividing cells. The next
step expands the objects in their local region so that any parts that
should be connected are merged and any almost touching cells are joined
together (Figure 3.2(d)). This region-based method of determining local
neighbours avoids the difficulties of a boundary-based approach which
would require computing and evaluating the nearest Euclidean distance
between all boundary points of neighbouring objects.

This step is accomplished by ezpanding, merging, and contracting
the entire set of components within the image. The contraction is per-
formed at a slightly smaller factor that the expansion, so the components
experience a slight increase in area.

The segmentation is now complete, and the resultant image is now
used for further shape analysis. It is important to stress that this output
binary image may contain touching or merged components. Subsequent
object extraction (by boundary tracing) from this binary image may not
match the original list of components since two neighbouring components

may have been merged into a single object. A comparison of the com-
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ponent data and the final object data is important for the expert system
analysis at a later stage. For example, there are four components in

Figure 3.2(c) and (d) but only three separate objects.
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3.2 Skeletonization

3.2.1 Introduction

The first step in the image processing of cells is to complete the segmen-
tation: the preprocessing required to transform a grey-level microscopic
image into a binary image consisting of black objects representing cells
and white background. The next step in the goal of describing the shapes
and states of the cells is to quantify the position of the cells by exactly
locating their boundaries. A linked boundary chain representation de-
scribes the location of a boundary point’s immediate neighbours along
the contour. This chain in itself provides shape and contour informa-
tion about objects, and certain relevant information is retained at this
stage for the expert system. In particular, the curvature extrema of
the boundary are evaluated for critical convexities (eg. corresponding to
sharp protrusions) and concavities (sharp indentations). The boundary
chain and its set of convex critical points are now used to initiate the
skeletonization.

Several methods with correspondingly different nomenclatures exist
to represent what is called skeletonization ( [13], [39], [40], [61], [54],
(44], [43], [8], [4]). Other terms widely used to represent equivalent or
almost equivalent shape representations are the SAT (Symmctric Axis
Transform) ( 7], [49]), and the MAT (Medial Axis Transform) ( [55],
[29], [22]) as well as several others [39]. The skeletonization method
and shape representation used in the Mitosis Recognition System are de-
rived from the skeleton approach of Dill et al [13]. Other skeleton-based
representations important to a variety of other vision applications are

described very well in [40), [39], and [41). A skeleton consists of thin,
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one-dimensional lines which retain the connectivity of its original closed
boundary shape [13) and are medial between the boundary points [49].
These lines can also be defined as the locus of the centers of all maximal
disks in the object ( {49], [40]). The radius of the maximal disk corre-
sponds to the width of the object at the disk’s center. Both the radius
function and the corresponding skeleton points are required for accurate
reconstruction of an object’s boundary from its symmetric axis or skele-
ton. Alternatively, skeleton points can be defined as the points at which
propagating wavefronts meet when initialized on the boundary {13]. All
of the above definitions of the skeleton are based on a continuous, two-
dimensional analog space (the natural environment of biological shapes),
rather than on a discrete rectangular grid. The skeleton representation
was originally developed because of its particular relevance to biological
shapes |7] and processes of growth and change [42]. Practical image
processing algorithms, however, must redefine these analog representa-
tions to be suitable for digital computations. Skeleton representations
have been found to be very useful in the description of the shapes, move-
ments, and pseudopod growth of living cells ( [13], {40], [39]). Leymarie
uses dynamic skeletons on sequential cell images to take advantage of the
shape similarities between successive frames ( [40], [39]). Dill et al [13]
use their skeleton approach to represent pseudopods or protrusions of the
cell membrane over several resolution scales. A skeleton representation
applied to real, digitized, and less than ideal cell images must be 1) ro-
bust in the presence of noise, and 2) guarantee a connected sct of pixels
in order to be useful for further biological analysis. Real-time processing
for tracking applications has the additional constraint that it must be 3)
fast and efficient.

The Mitosis Recognition System bases its skeleton approach on the
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work of Dill et al in order to satisfy these three major requirement- and
because of its suitability to the description of living cells. However, some
modifications were required to suit the application of mitosis rather than
the study of pseudopods. Some features of Dill et al’s multiple resolution
algorithm were in fact simplified because of the simpler, more roundish

shapes which evolve during the life cycle of a cell.

This section first overviews our changes to Dill et al’s approach and
outlines the general steps involved in producing skeleton data from a

binary image. The specific processing steps are then described in detail.

3.2.2 Outline

Dill et al [13] state that the representation of a pseudopod must be
flexible in order to capture both locally convex contour segments as well
as more globally convex segments. They are not so concerned about
spurious skeleton branches because any branch that would be classified
as noisc would only persist for a short period of time and they do not
want to miss small perturbations that could eventually form pseudopods.
Dill et al propose a construction of a skeleton representation comprising
several scales; the scales are based upon the evaluation of the contour
at different resolutions using an n-code computation. Spurious or noisy
branches that do not persist over time are eventually eliminated.

A significant contribution of Dill et al’s algorithm is its ability to
combine boundary centered information at different scales with regional
information provided by a skeleton approach. This is achieved by first
preprocessing the boundary chain-code to determine significant convex-
ities or critical points, and then initializing the skeleton processing with

these feature points. The skeleton processing is likened to a thinning or
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erosion process, but the boundary to be eroded is always re-evaluated
for collapse points at which new skeleton branches may begin. Unlike
Arcelli’s algorithm (3], significant convexities are only computed for the
object’s original boundary since Dill et al’s original motivation was the
capture and representation of protrusions of the cell membrane or bound-
ary.

Our mitosis application, however, is not dedicated to finding and ac-
curately representing all potential pseudopods. We are concerned mainly
with representing general shape types over the life cycle of a cell. Thus,
protrusion extremes, such as either very large protrusions or very small
protrusions, must be carefully analyzed as follows. Firstly, the figure-8
shape which is often indicative of mitosis could be mistaken for a large
pseudopod. Some means should be established to help diflerentiate large
pseudopods from a figure-8 shape. Secondly, small segmentation arti-
facts (or noise) could be mistaken for very small, local pseudopods that
would make the skeleton unreasonably complex. Unlike the pscudopod
application of Dill’s, we are not concerned with catching the formation of
pseudopods as soon as they occur; we are more concerned with avoiding
noisy artifacts. Local protrusions that are not noise will be processed
when they become more prominent.

These two points emphasize the two extremes of scale. We do not
want skeleton branches ending on critical points to represent very global
protrusions, nor do we want spurious skeleton branches caused by a noisy,
discretized boundary. A significant convexity that is found should have
its associated critical point, hence skeleton end point, lic on a local con-
vexity if one can be found in the region. Significant convexitics are gen-
erally attributed to protrusions which represent pscudopods.

The algorithm used for contour processing in this thesis resolves these
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two issues, respectively, by considering convexities at two scales:

1. an extremely local scale that evaluates small protrusions or noise

by examining a boundary point’s local neighbourhood.

2. a more global scale that is e aluated using an n-code on arcs of the

boundary.

The local scale would find isolated critical points (called multiple
points in Section 3.2.3), whereas the n-code method used for the global
protrusions would find significantly convex arcs along the boundary. The
mid-point of the arc is taken to be the skeleton end-point, unless a local
protrusion also exists along the arc. If more than one local protrusion is
found along the convex arc, only the center one is chosen to begin the
skeleton branch. Other local protrusions (ie. ones not also within the
global arcs) are discounted as noise. The significant critical points along
the boundary are now marked as skeleton points, and the erosion of the
object can begin.

Large protrusions which were not found to have significant convexities
will have corresponding skeleton branches once the erosion boundary
collapses in the interior of the cell. This includes the protrusions which
occur during the figure-8 mitosis state.

Figure 3.3 illustrates the critical points and skeleton end point results
for different types of protrusions. The figure-8 shape of mitosis should
not contain significantly convex points because of the very smooth, global
shape of the protrusions. Similarly, other large, global protrusions have
skelctons which do not end on a boundary critical point (Figure 3.3 (a)).
Only protrusions which end with significantly convex boundary points

are candidates for having a skeleton which begins with a critical point
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Figure 3.3: Skeleton end points and protrusions. (a) very large knobby
protrusions characteristic of mitosis; (b) two significant pseudopods; (c) a
protrusion ending in a significantly convex critical point; (d) a complex skele-
ton.

(Figure 3.3 (b),(c)). Multiple pixel noise on the boundary is filtered so

that spurious skeleton branches are not created for very local protrusions.

An input binary image of a cell is transformed into data to be used by
the image understanding processing module (Chapter 4) in the following
steps, detailed in the following sections in this chapter.

First, the boundary is preprocessed in order to extract significant crit-
ical points. A linked boundary array must be extracted from the binary
image, the n-code computed, and the significant convexities extracted.

Secondly, the object is eroded according to certain criteria, leaving
only its skeleton behind.

Finally, the skeleton itself is evaluated to extract data pertinent to

the expert system processing of the MRS.

3.2.3 Boundary Preprocessing
Linked Boundary Extraction

After segmentation, the resulting binary image consists of object regions
and background regions. The first step in the subsequent analysis is to

extract and represent all of the individual objects or connected regions
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in the image. Because our skeletonization procedure first analyzes the
boundary before erosion, a boundary-based representation must be used
for object extraction.

The algorithm to extract the objects is straightforward. The binary
image is scanned pixel by pixel until an object pixel is found which neigh-
bours a background pixel. This object pixel is recorded as a boundary
point so that we now have three types of points: object points, back-
ground points, and boundary points. The remaining boundary of the
object is then traced in a clockwise direction. The search for the next
boundary pixel is started using the orientation of the previous boundary
point as an indicator for the next search starting position. The contour
tracing continues until the original starting position is reached. Boundary
pixels may be counted in the contour more than once, such as for pro-
trusions of a single pixel width (see Figure 3.4). Boundary points which

arc counted more than once are are called multiple boundary points.

Once the boundary tracing for a single object is complete, remaining
objects are found and traced in the image. If an object has holes, its hole
boundary will also be traced, however, the segmentation and preprocess-
ing procedures in the previous section eliminate all possibilities of holes.
This simplifies the algorithm; however, others have explored the issues
of object holes in this context [40] [61].

The boundary-finding algorithm concludes when the entire image win-
dow has been scanned, and there are n boundary lists, one for each object
found. Note that this step only requires a single scan of the image win-

dow plus the tracing of n object boundaries.

The total number of objects found in this step is recorded for later

evaluation in the expert systern. This number will be compared to the to-
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multiple boundary points

Figure 3.4: Finding the linked boundary chain. The boundary is extracted
in a clockwise direction, assuming the image is scanned from top to bottom,
row by row. Notice the single pixel-width boundary protrusion which results
in the boundary pixels 10 and 11 being represented again as entries 14 and
13 in the boundary chair. A chain code or 1-code is assigned to each bound-
ary pixel based on the relative positions of a pixel’s immediate boundary
neighbours in the chain. This number represents a discrete local curvature

at the boundary pixel.
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tal number of components found in the previous segmentation step. The
length of each boundary is also recorded, and objects whose boundaries
are shorter than a previously set parameter are not processed further.
The contour tracing algorithm describcd above is similar to the meth-
ods used by Leymarie in [40] and by Xia in [61]. However, the main
difference is the recording of the multiple boundary pixels during the
tracing. The next steps in the skeletonization process analyze only one

object at a time.

Boundary Multiple Points

Before the boundary is evaluated using an n-code procedure, boundary
points and their immediate neighbours are studied for very local protru-
sions that could either be noise, or be at the end-point of a potential

skeleton branch.

Felog

A boundary pixel is a candidate for this type of protrusion (termed

a multiple point) if the pixel [13]:
1. is traversed more than once during contour tracing,
2. has no neighbours which are objects, and

3. has at least one direct neighbour which belongs to the contour but

is not one of the two direct neighbours along the contour.

Boundary points which are traced more than once are already marked
with values indicating their multiple status (see Figure 3.4).

The second condition is easily checked by examining the local neigh-
bourhood of a boundary pixel for object points. If the point does not

have an object neighbour its status is recorded as a multiple point.
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The final condition is also determined easily by checking for boundary
neighbours directly North, East, South, or West of it which are not imme-

diately before the pixel nor immediately after it in the linked boundary

list.

Chain-Code and Boundary N-Code

An advantage of a boundary or contour representation for a shape is
the conversion of the two-dimensional information into a periodic onc-
dimensional signal {51]. There are several approaches for analyzing an
object’s shape once the boundary has been obtained [35]. Most com-
monly, a representation of local curvature is computed in order to classify
regions of constant or sloping curvatures and to find interesting feature
points or critical points which occur at discontinuities in curvature. It
is important for the application of cell shape that the method of con-
tour representation be relatively invariant to translation, rotation, and
dilation because living cells change size and move about unpredictably.
It is most important that the contour representation chosen is appropri-
ate for discrete image data and is easy to compute for real-time imaging
applications.

A common method for representing discrete contour data in a one-
dimensional signal is the chain-code approach, first introduced by Free-
man in 1961 ([35], [16]). It is a discrete orientalion representation in
that the numbers from 0 to 7 represent orientation angles in multiples
of 45 degrees from one boundary pixel to its neighbour (see Figure 3.4).
This is a very coarse representation, so in order to be a useful measure
of curvature, a symmetric, low-pass filter is often used to smooth out the

orientation angle over several pixels, depending upon the desired reso-
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lution. The resulting curvature measurement is often referred to as the
n-code ([13], [35], [17]).

There are several problems inherent in the chain-code method which
are explored in detail by Leymarie et al in [40], and [38]. These problems
include discrepancies around 1-pixel thick depressions and protrusions.
However, the present application of using the chain code to help deter-
mine significant convexities for cell skeletonization is a simple one. Very
accurate curvature measures and sophisticated boundary analysis are not
nceded. We also integrate maultiple boundary point information, (char-
acteristic of single pixel protrusions) with the n-code approach which
avoids some of the difficulties of the chain-code approach discussed by
Leymarie et al.

A triangular mask fan(2) is used to perform the low-pass filtering.
The chain code ¢! (or 1-code as it is commonly called) is correlated with

the triangular mask fa,(2) to produce the n-code ¢ as in [13]:

¢ = fan(i) x ¢ (3.1)
k=n
= 3 fanlb)l (3.2)
k=n-1
=nci+ Y (n—k)(c g +ei), n21 (3.3)
k=1

where x denotes correlation. Dill et al [13] evaluate the difference be-
tween using a triangular mask and a Gaussian kernel in the discrete case,
and find that they yield almost equivalent results, though the Gaussian
has somewhat better low-pass characteristics.

We have decided to adopt the triangular mask because of its simple,

integral formulation. The algorithm we have developed never needs to
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compute a non-integral number.

Normalization is necessary to maintain a consistent curvature repre-
sentation over changes in scale so that scale-independent features can be
compared. The normalized n-code is computed by first realizing that
n-code values of an arc with constant curvature should be the same for

all values of n. In the case of the arc of constant curvature [13]:

c=c j=l-n,-yn--ritn . (3.4)

The n-code is evaluated as [13]:

k=n-1
¢} = ne, + kZ (n —k)(ci_y + cyp) (3.5)
=1
=nc+ k-_-}'fl(n — k) 2¢ (3.6)
k=1
k=n-1
=c(n+2 Y (n-k)) (3.7)
=1
= cn’. (3.8)

Since the normalized n-code of an arc of constant curvature must always

equal unity, the computation for a normalized n-code becomes [13):

&=L, (3.9)

The value of n for the computation of the n-code was chosen to be a
constant percentage of the boundary length so that cells of varying mag-
nifications are processed with n-codes representing the same stretches of
arc along their boundaries. This resolution n would be chosen for the par-

ticular application, or in the case of Dill’s multi-resolution approach [13],
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several different values of n are chosen for a hierarchical shape analysis.
We determined an appropriate value of n by experimentally computing
hundreds of skelctons of cell shapes exhibiting a variety of mitotic states.
We varied both the n-code and the value of the convex filter (discussed
below) to obtain skeletons of varying numbers of branches and branch
lengths. The present version of the Mitosis Recognition system uses an
n equal to 7 percent of the boundary length of a given shape (rounded
to the nearest integral pixel), but values from 4 to 12 percent would also
produce good results for the mitosis application. A minimum value of n
is set 1o 2 pixels to avoid possible aliasing effects [13]. Celi boundaries,
however, are expected to be much longer than 30 pixels, so the minimum
n-code of 2 would rarely be used.

A large value of the normalized n-code ¢

corresponds to a point
of relatively low curvature. Very large values correspond to significant
concavilies which may indicate necks of protrusions or the cusps of the
mitotic figure-8 shape. Low values of the n-code signal significant con-

vexities, representative of sharp protrusions or pseudopods.

Critical Point Extraction

Convexily and concavity thresholds or filters are defined to find points
and connected points of arcs which would be significantly convex or con-
cave for the mitosis application. Significant concavities are not used for
the skeleton processing, but the data provide some information to the fi-
nal cell shape and state evaluations. Significant convexities, however, are
crucial to the initialization of the skeleton algorithm. The processing for
both are the same, except for the threshold evaluation described below.

2182 Many applications, including Dill et al [13), use the normalized
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n-code result (Equation ( 3.9)) compared with convexity and concavity
constants to determine critical points for any given size of shape. We,
instead, define dynamic thresholds which depend on n? , rather than con-
stant thresholds and use the unnormalized n-code computation (Equa-
tion ( 3.8)) in our algorithm. The final critical points are the only data of
interest to us; we do not use the n-codes for any further processing. The
normalization, however, is still important, and this is actually performed
implicitly during the filtering since our filter parameters vary as n?.

The advantage of this approach is the avoidance of using real numbers
by eliminating the n? division of Equation ( 3.9) during normalization.
Hence, the convex labeling procedure completes very quickly, while re-
taining the advantages of normalization.

The dynamic convex tconver and dynamic concave teopcase thresholds

are computed as follows:

Loomves = Koonves X 17 (3.10)

teoncave = kconcuve x n?. (311)

The constants kconyez and Kconcave are parameters of the system and need

not be changed. !

Boundary points are marked as significantly convez if the equation
¢ X & < leonver (3.12)

is satisfied. For concave processing, significantly concave points are

1 Appropriate values of k.onver and kconcave are 840 and 910 respectively.
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marked if the equation

c? XK 2 tconcaue (3-13)

is satisfied. The multiplication constant & is used to ircrease the value
and the precision of the threshold required, so that a large integer number

is used instead of a real number. 2

The next step in the boundary evaluation is to determine the final
critical points from both the set of significant convexities and the previ-
ously determined multiple points.

The list of significantly convex points is traversed, and any convex
arcs are reduced to isolated critical points. If no multiple points exist
along the arc, and no multiple points exist within n of the arc midpoint,
the arc midpoint is chosen to be a critical point.

Otherwise, if one or more multiple points exist within the significantly
convex arc, or within n of the arc’s midpoint, the closest multiple point
is re-labeled as a critical point. If two multiple points are equally close
to the arc’s midpoint, the midpoint is chosen as the critical point.

[solated convex points are considered as arcs of length one (1) and un-
dergo the same processing as the zics above. Multiple points, then, which
are quite close to convex points will be chosen as the critical points rather
than the convex point itself. This is done in order to more accurately

locate global protrusions within the local protrusion it encompasses.

*The value of & presently used is 225. This number is arbitrary, but should be
high enough to allow a significant integral range between the chosen convex threshold
keonver and the concave threshold keoncave. Note that the choice of kconver and
keoncave depends upon the value of x.
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3.2.4 Boundary (Grassfire) Erosion

The object’s boundary is now initialized with a list of of critical points.
Any remaining points which are marked as multiple are removed for this
first iteration only. Note that this means that multiple points which do
not lie on significant convexities are discarded. For the first iteration, all

boundary points except the critical points are removed from the object.

The boundary is now traversed again to produce a new linked-chain of
boundary coordinates. Multiple points are also marked and evaluated as
was explained in the previous section ( 3.2.3). The critical points (carricd
over from the previous iteration) are marked again on the boundary
so that they are not accidentally removed during subsequent iterations.
Now all boundary points, except multiple points and critical points, are
removed from the object. Boundary extraction, multiple points marking,
and erosion, continue until no more pixels can be eroded.

This preceding erosion procedure thins the object down to a one or
two pixel thick skeleton. It is important to perform post-processing to
thin the object to a single pixel width so that the length and area of the
final skeleton can be compared to skeletons of other cells. Any fast, thin-
ning algorithm can be used as long as a single pixel width is guaranteed
and the skeleton remains connected along any pixel’s eight neighbours
(for instance, see [56), (53], [64], or [65)). Our algorithm is loosely
based on that of Zhang and Wang et al [65] and Zhang and Suen [64).

3.2.5 Skeleton Analysis

Our boundary extraction algorithm (Section 3.2.3) is also used to tra-
verse the final skeleton. The boundary of the skeleton, however, will have

all of its points (except end-points) traversed more than once because the
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skeleton has a single pixel width. The resulting skeleton is analyzed to
provide pertinent data to the expert system evaluation of an object’s
shape.

Firstly, the number of exterior skeleton branches is computed. This
is usually different from the number of original critical points because
some skeleton branches begin where the erosion collapses in the interior
of the object. This is very easy to compute because of the nature of the
thin skeleton: skeleton end-points are simply determined as boundary
points which are not traversed more than once. Interior branches are
determined after external branches are removed.

In addition to evalnating the size and number of skeleton branches, an
approximate orienlalion is computed for each branch by approximating
individual branches as straight segments. This approximation is valid in
most cases. However, situations where this approximation is not good
occur for cells with co.nplex shapes. These complex cells have other
features which are more significant than the orientation of the skeleton
branches (see Chapter 4), so a poor orientation measurement has little
overall effect on the final computation of state.

Adjoining exterior branches are added together as if they were force
vectors exhibiting a magnitude and a direction pointing away from the
center of the cell (Figure 3.5). In this manner, the whole skeleton is re-
duced to a single line segment of a particular magnitude and orientation.
The skeleton vector provides valuable information about the nature of
the cell’s shape.

If the cell is quite round, or very circularly symmetric, the skeleton
vector length will be very short.

If the cell has several significant pseudopods pointing in some general

direction, the resultant skeleton vector will be quite long, and oriented
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resultant
skeleton vector

(a) (b)

Figure 3.5: Skeleton Branches as Force Vectors. A stationary cell would
have a net zero force, but the skeleton branch of a mitotic shape (a) demon-
strates the opposing forces between the two parts. A cell undergoing motion
has pseudopods characteristic of its direction. In fact, if the approximated
skeleton branches are summed as vectors, a net force is computed, pointing
in the direction of possible motion (b).

in the general direction of expected cell motion (Figure 3.5 (b)).

During mitosis, the simple elongated shapes naturally produce vee-
tors which indicate the splitting forces of the two halves (Figure 3.5 (a)).
The end-points of a resultant vectors during mitosis could also be used
to predict the positions of the centers of the potential daughter cells.
However, there is no means as yet to define a consistent method of deter-
mining the origin of the force vector for an object like the cell illustrated
in Figure 3.5 (a). More complex shapes, such as in Figure 3.5 (b) are
processed such that the origin is found at the intersection the skeleton
branches.

The analogy between skeleton branches and force vectors needs to
be explored further, but for the application of cells, the analogy could
be very useful. Pseudopod behaviour is used by cell biologists to visu-
ally indicate the direction of cell motion. These are also indications of
physical forces between the cell membrane and its environment, so the
representation of skeleton branches as force shape vectors may be a valid

one. Force vectors which are balanced (ie. the vector sums are zero)
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indicate an ohject which is stationary. Unbalanced forces require that
there is an acceleration or movement in a direction to balance the sum of
the applied forces. The movement may be hampered by frictional forces
external to the cell. Certainly in the case of cell division, there exists
opposing forces in the effort to separate the two parts as the cell remains
stationary. This thesis, however, only uses the skeleton information to

provide data for the representation of cell shape.

3.2.6 Centroid and the Tracking Center

Cell physiologists who study the paths of moving cells must represent the
center of cells under study in order to track their movements. The stan-
dard representation is the cell’s center of gravity based on the segmented
area of the cell being tracked [45]. This method produces very good
results, except when the cell has very large or very many pseudopods
clustered away from the main body of the cell. The large area taken up
by the protrusions shifts the center of gravity away from what would be
the cell nucleus.

An alternative definition would be a center equal to the certer of the
largest disc which fits inside the boundary of the cell. This definition
would then capture a more appropriate center if a cell had several unbal-
anced pseudopods, but still had a reasonably-sized cell body. However,
if the cell’s pseudopods are more significant than the body of the cell,
the true center would be displaced.

The skeleton of a cell is a set of all discs which are maximal in the
object (see Section 3.2.1). The point or set of points which are the last
ones to be eroded during our skeletonization process is equivalent to the

center of the largest disc that could be contained in the cell.
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resultant
skeleton vector

(a) (db)

Figure 3.6: Two Cell Center Results. (a) Center of gravity for figure-8
cell shape is in the neck. (b) Erosion Center for figure-8 cell shape is in the
middle of one of the knobs. The dotted contour represents an intermediate
stage in the erosion process.

The Mitosis Recognition System uses this alternative definition of the
cell center during tracking. However, both methods are computed and the
centers stored for later comparison. An interesting result is that during
cell division, the erosion algorithm finds the center to be in the middle
of the largest figure-8 knob (Figure 3.6 (b)), whereas a center of gravity
measure would put the center on the cleavage furrow 3.6 (a)). (Figure

3.6 is an approximation of actual results).

3.2.7 Data Summary

The output of the skeletonization procedure provides the foliowing input

data to the understanding module of the Mitosis Recognition System:
¢ number of significant concavities
¢ number of significant convexities
o number of skeleton branches
o skeleton resultant vector length

o true total skelcton length
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o cell radius.

The cell’s radius is taken to be the actual radius of a circle if the cell’s

perimeter were that of a perfect circle:

bourdary.length

. (3.14)

radius =

This number is quite large for cells with many boundary protrusions,
so should not be used as a very accurate measurement of a cell’s linear
dimension. It is used in further computations to help normalize the data
to provide some consistency across cells of varying sizes. For example,
a measurement called the normalized skeleton length is computed by
dividing the true skeleton length by the cell radius.

The skeleton coordinates, the boundary coordinates, and the cell cen-
ters are also recorded after each cell frame is processed. These data are

used for off-line analysis.
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Chapter 4
Cell Image Understanding

4.1 Introduction

4.1.1 Overview

Image understanding in the context of this thesis consists of determin-
ing the mitotic state of a segmented cell given a “significant” number of
image frames in sequence taken over “short” time intervals. The fuzzy
words “significant” and “short” depend upon the experimental context
for quantification but already we begin to see the benefit of fuzzy lan-
guage to help describe general processes which are difficult to represent
precisely.

An expert system approach to solving problems first involves the de-
scription of human knowledge and experience towards the accomplish-
ment of some task. This subjective expertise is put in the form of con-
ditions and consequences in an attempt to automate similar tasks by
computer. Certain expert system approaches, such as those employing
fuzzy logic, use heuristic weights or measures of possibility or probability
for the possible consequences, rather than Boolean if-then logic. What-
ever the method, the attempt is to mimic the devices and knowledge used
by experts to solve a particular problem or sct of problems.

In our problem domain, cell biologists observe cells as they move and
change shape over time. A cell’s life cycle state can be easily inferred
from general rules of shape changes and processes known by the cell biol-

ogist. Cell state inference is the primary task of the Mitosis Recognition
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System (MRS). An accurate determination of cell state then provides the
necessary information for the automatic .racking of a newly created cell
once division has been recognized.

The image understanding section of the MRS consists of the steps
required to transform the data retricved from the skeleton and image pro-
cessing of the cell images into general descriptions of the shape and pro-
cess state of the cells being tracked. The data computed from the initial
image processing and skeletonization (eg. number of skeleton branches)
are first transformed into fuzzy data to linguistically describe the mag-
nitude of the data in a consistent form. A fuzzy number in the context
of this thesis is defined as a number defined from 0 to 1 which represents
an approximate degree of belief in an associated predicate. For example,
the predicate number of skeleton branches is HIGH would have the fuzzy
number 1 associated with it if dozens of skeleton branches were computed
for the cell under study.

Values for fuzzy shape are then computed by combining the evidence
supplied by the fuzzy data. Fuzzy shape refers to the set of three fuzzy
numbers associated with the predicates shape is ROUND, shape is OB-
LONG, and shape is COMPLEX .

Similarly, the fuzzy state consists of the set of fuzzy numbers and
their predicates describing every possible cell state defined in the system.
First, a preliminary fuzzy state is computed solely on the results of the
fuzzy shape computation and other data measured for the cell under
study. A final fuzzy state is then determined after considering the shape
cycle process rules, the previous fuzzy state, and the new preliminary

fuzzy state values.
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4.1.2 Baseline Data and If-Then Rules

Rules describing the process of mitosis and cell movement in if-then for-
mat have been described previously by both Ferrie [14] and and Wheeler
[59].

Ferrie ([14] [15)) uses a combination of strategy rules providing tempo-
ral descriptions and hypothetical models to represent, the best estimate
of potential daughter cells. The models, consisting of feature descrip-
tions, are compared to the features of the objects in the image until an
optimal match is found. The rules used in this method include tolerance
comparisons directly in the antecedents to allow a flexible range of data
to trigger conclusions. The rules, however, are not adaptable to changing
experimental conditions. In the MRS, rules are at a level of abstraction
separate from the measured data. Flexible data ranges are used in the
MRS by mapping the measured data into fuzzy belief values for cach
evidence predicate.

In Wheeler’s previously unpublished exploration of a cell’s life cycle
processes, [59], an interesting foundation to the present thesis is con-
structed. A hierarchy of rules is used, with the baseline data (such as
tolal number of segments) integrated at the lowest level. These baseline
data are translated into more linguistically appcaling sentences if they
trigger a true condition. Baseline data is dcfined here as the data from
which all other inferences are derived; usually representing physical and
measurable characteristics of the system.

For example, the following condition is evaluated:

Rule 4.1.1 If the cell’s data total number of segments is TRUE

then the cell has few scgments.

The features computed from the baseline data are then used to determine
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the shape of the cell, as in the following condition:

Rule 4.1.2 If the cell is radial symmetric
and the cell has few segments

then the cell is round.

Additional rules, consisting of rigid if-then conditions describing the al-
lowable mitotic state transitions similar to those depicted in Figure 2.2,
are used in conjunction with the shape results to determine a final cell
state.

A downfall of this method is that a final conclusion cannot be reached,
nor even estimated if there are any missing input data or unresolved facts.
Bad or very erroncous input data result in a either a wrong conclusion,
or no conclusion for that particular image frame.

It must be noted that both Ferrie’s and Wheeler’s previous methods
of determining cell state are hard, binary rules, typical of many prac-
tical rule-based approaches. It is found that this Boolean method is
not adequate for our application for the following reasons. Firstly, there
is no notion of having a cell in an intermediate state (for example be-
tween anaphase and telophase). Secondly, estimation of the possibility
or probability of different states with unclear or ambiguous data is not
addressed.

Without these abilities a binary method becomes extremely brittle
when used with less than ideal data. Ad hoc methods must be used to
overcome problems of poor or ambiguous data. This makes such systems
both overly complex and confined to limited experimental environments,
characteristics which were ostensibly to be avoided by adopting a rule-
based approach.

The algorithm presented in this thesis is extremely powerful in that

63




T

4. Cell Image Understanding

it resolves both of these issues using concepts of multi-valued and fuzzy
logic within a simple method of evidence combination. Unlike Ferric's
method and Wheeler’s original rule-based approach, time-consuming fea-
ture searching [15] and forward chaining [59] is avoided. These previous
methods, however, were intended for off-line analysis of previously stored
image data and are not used in conjunction with a real-time tracking sys-

tem.

4.1.3 Fuzzy Cell Shapes and States

Instead of determining a single cell state, the Mitosis Recognition Sys-
tem computes a state vector referred to as a fuzzy stale consisting of
membership values from each previously defined state type. The state
type having the largest membership value for the cell in question (at a
particular instant in time) would correspond approximately to the sin-
gle cell state produced by the binary rule-based systems of Ferrie and
Wheeler [15] [59]. However, the fuzzy state representation in the MRS
provides intermediate state representations by ailowing memberships in
more than one state for any given instant. Changes in ccll state occur
gradually in nature; this continuous type of process is more naturally
represented using multiple values in the form of fuzzy sets.

The Mitosis Recognition System actually consists of threc main rule-
bases of conditions and weights used in the determination of the cell’s

fuzzy state. These arc:

1. A shape rule-base to determine a cell’s fuzzy shape from skeleton

and other measurements.

2. A state rule-base to determine a cell’s preliminary fuzzy state from

the cell’s shape and other mecasurements.
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3. A process rule-base to determine a celi’s predicted fuzzy state from

previous state knowledge using only tne shape cycle rules.

Shapes

A fuzzy shape is also computed in our thesis and is computed using the
shape rule-base. The fuzzy shape or shape vector assigned to a cell is a
sct of three numbers which indicate the membership values in each of the
three ideal shape categories we have defined: ROUND, OBLONG, and
COMPLEX . 'The categories of shape are based on the number of skeleton
branches and the features of the skeletons. The skeleton processing of a
cell (a solid enclosed object with no holes) cumputes a skeleton having
from zero branches (in the case of a perfect circle) to an infinite number
of branches. The shape categories ROUND, OBLONG and COMPLEX
encompass all possible skeleton variations, so we say that a cell’s shape
is completely defined under our fuzzy shape set. Because a cell’s shape is
defined completely in our fuzzy shape set, the sum of membership values
of the three categories must equal unity.

For example, Figure 4.1 shows three examples of cells, one is very
round, the second is peanut-shaped, and the third has several protrusions.
The shape vector assigned to the roundish cell (a) consists of the following
values: 0.9 ROUND, 0.1 OBLONG, and 0.0 COMPLEX . Note that the
cellis not perfectly round, but is slightly oval, so has a small membership
in thc OBLONG shape type. Likewise, cell (b) is mostly OBLONG and
cell (¢) is mostly COMPLEX .
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Shape Types

ROUND
OBLONG
COMPLEX

FUZZY SHAPES

{a) (b) (c)

Fuzzy Shape Membership Values
09 0.1 0.1
0.1 038 0.1
0.0 0.1 03

Figure 4.1: Examples of Fuzzy Shapes. Three cell examples: (a) roundish,

(b) peanut-shaped,

and (c) with protrusions. Each cell has membership

values in each of the 3 fuzzy shape categories: ROUND, OBLONG, and

COMPLEX.
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States

The fuzzy state or state vector is analogous to the fuzzy shape in that
the state vector contains a set of values equal to the number of possible
state types defined in the system, and the sum of these values equals one
(1) for a processed cell object. The state rule-base is used to compute a
preliminary fuzzy state in the same manner as the fuzzy shape.

The valid state types are listed in Figure 4.2. The time-dependent
relationships of the major state types over the cell cycle process are de-
picted in Figure 2.2, The additional states of CONTACT, OVER-
LAP, and SEPARATION dcpicted in Figure 4.2 are necessary for the
possible occurrence of cells moving so close together as to form a single
segmented object. This may occur when two ceils collide or pass by each
other at slightly different depths. Segmented objects in these situations
often exhibit figure-8 shape features similar to that of mitosis. Hence the
true state must be distinguished from a mitotic state.

A cell’s state is automatically initialized with a high membership in
the UNDETERMINED state at the beginning of a tracking experi-
ment. This value will decrease and other states will become significant
when evidence over several frames has been evaluated.

The EXTINGUISHED state may become significant if the accu-
mulated error or uncertainty of a cell becomes high. If the EXTIN-
GUISHED state value becomes higher than the other state categories,

tracking of the cell discontinues.

Evidence Predicates

Both the shape and the state rule-bases in this system actually con-

sist. of a matrix of evidence predicales versus all possible shape or state
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FUZZY STATES

PREMITI  |®] contacT ]
PREMT2 (0]  ovenLar T3
MITOSIS _‘_ SePARATION  [#]
MIT_SEPAR [§

posT MT [§] EXTINGUISHED
NORMAL  [m] UNDETERMINED |2

Figure 4.2: Fuzzy State Types. The fuzzy state type categories are listed,

with examples depicting possible cell configurations associated with these
categories.

types. Every piece of evidence is related to cach shape or state type, in
terms of how and to what degree the belief value of the evidence pred-
icate affects the given type. For example, the evidence predicate the
cell shape 1s round provides diflerent information for the statc outcomes
of NORMAL and PRE_MIT1. A cell’s roundness would provide ev-
idence against a NORMAL state outcome, whereas it would provide
strong evidence for a state outcome of PRE_MIT1.

The actual relationships between the evidence predicates and the
state types are determined beforchand using linguistic weights (such as
tmportant or very important), and are stored in a static database to be
used for the mitosis experiments. The values of the evidence predicates,
however, are determined dynamically by the system as data is gathered.

In normal Boolean logic, the values of the evidence predicate would
be either true or false (1 or 0). In this system we allow the predicate

to take on a range of values between 0 and 1 to indicate how well the
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data actually fit the evidence predicate. Most likely the cell data for a
roundish cell do not indicate that the predicate cell shape is round is
true as a certainty, but also indicate that the cell shape is slightly ob-
long. In this case, the value of the evidence predicate the cell shape is
round will be close but not equal to 1, and the value of the evidence
predicate the cell shape is oblong will be slightly greater than 0. These
predicate values are multiplied by the predicate weights corresponding
to the PRE_MIT1 and PRE_MIT?2 states so that strong evidence is
accumnulated for the state type PRE_MIT1 and week evidence is ac-
cumulated for the state type PRE_MIT2. The preliminary fuzzy state
or preliminary state vector outcome would contain a large PRE_MIT1
membership and a small PRE_MIT2 membership. We would then, as
a preliminary estimate, consider that the cell be somewhere in between
these two ideal states.

After a preliminary estimate of the fuzzy state, a final fuzzy state
is computed by considering the fuzzy state of the cell from its previous
image frame. Certain information collected from previous image frames
is incorporated within some of the state evidence predicates (eg. previous
cell size), but the information contributed by the time-dependent shape
cyele process rules is used in a separate, final computation.

The shape cycle process rules, like: the state rule-base, take the form
of a matrix with a list of evidence predicates versus the list of state types.
However, the evidence predicates in this case are a list of the previous
state possibilities. The present implementation of this process matrix
is like a truth-table in that it is an array of all possible and impossible
transitions from a previous ideal state to the next possible state. The
final fuzzy state of a cell for a given frame is computed by using this

shape cycle matrix, the cell’s previous fuzzy state, and the cell’s present
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preliminary fuzzy state.

In summary, the image understanding section of the Mitosis Recog-

nition System consists of the following steps:

1. Convert the image processing data into fuzzy data for cach shape-

related evidence predicate.

2. Compute fuzzy shape values by summing the product of the evi-

dence values weight factors for each shape type.

3. Collect the state-related evidence (including fuzzy shape) and com-

pute the value for each state-related evidence predicate.

4. Compute preliminary fuzzy state values by summing the product

of the evidence values and weight factors for each state type.

5. Compute the final fuzzy state by considering the shape cycle pro-
cess rules, the previous fuzzy state, and the new preliminary fuzzy

state values.

6. Determine if cell division has occurred by examining the member-

ship value corresponding to the POST_MIT state type.

These steps are discussed in detail later in the chapter (Sections 4.3,
4.4, and 4.5). We first cxplore the knowledge and information represented
by the shape and state rule-bases, and the method used to combine the

evidence for a fuzzy state and shape solution.
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4.2 Knowledge Representation, Uncertainty, and

Fuzzy Sets

4.2.1 Background

The terms “fuzzy sets” and “fuzzy logic” have only been in use since
the late 1960°s to deal with data uncertainty and inexact reasoning ([11],
[31]), however, mathematicians had been studying measures of informa-
tion and uncertainty for many yecars prior to the theory of fuzzy sets
[25).

Two principle measures of uncertainty were recognized before the
theory of fuzzy sets became popular. Hartley proposed a method in
1928 based on classical set theory which measures an important aspect
of ambiguity [25]. Shannon, in 1948, created a measurement pertaining
to conflict or dissonance in evidence, which is formulated in terms of
probability theory [25]. The purpose of both measures is to evaluate
information in terms of uncertainty; they are generally referred to as
measures of information. Specifically, these two classical measures are
called lartley information and Shannon entropy, respectively.

Shannon entropy can be justified as a significant measure of uncer-
tainty and information on intuitive grounds. An event which has a very
high probability of occurrence is ezpected to occur very often, so when
it does occur, it is not generally noticed as providing any information.
However, when it does not occur, the event is noticed, and seems to
provide very important information. The information content, then, of
an cvent r should be described by a decreasing function of the proba-
bility p(r). 'The higher the probability of the occurrence of z, the less

informative the observation.
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The Dempster-Shafer theory of evidence ([32], [52]) describes a
method of decomposing a set of evidence into unrelated pieces so that
separate probabilities can be assigned to compute a final belief function,
or a measurement of degree of belief. The resulting belief function be-
comes very complex with even a moderate number of evidence sets. The
Bayesian approach, often mentioned in the literature, can be consid-
ered as a special case of the Dempster-Shafer theory [52]. With several
assumptions, such as data independence, the Dempster-Shafer method
becomes a practical tool. !

Uncertainty in evidence and rules can also be represented by certainty
factors, such as in the MYCIN system [32] [19]. Uncertain reasoning in
expert systems is usually accomplished by methods similar to proba-
bilistic reasoning. Subjective probabilities are provided by cxperts to
estimate the relationship between pieces of evidence, in the form of sen-
tences, and conclusions that can be reached from these sentences. An
expert system then computes solutions with estimates of certainty based
upon these subjective factors. An inference net approach {19} is often
used to propagate uncertainty or probability values through a tree-like
network of hierarchical rules.

The Mitosis Recognition System uses this type of subjective reason-
ing in part, but, because of its very different types of evidence and their
intricate relationships, certainty factors alone are insufficient. It is also
difficult to formulate the time-dependent states and shape data into rules
which form the tree-like network of an inference net. However, an anal-

ogous result is accomplished by the integration of our matrix-like rule-

In [19) (p. 205) it is noted that Grosof ([21], [20]) generalizes probabilistic logic
Lo encompass Dempster-Shafer theory, Bayesian updating in infetence networks, and
certainty factor methods.
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bases.

A disadvantage of the standard probabilistic approach is its inability
to represent the concept of ignorance [52). Lack of belief and disbelief
cannot be distinguished by this method; they are both represented by
the negation of the proposition. There are practical situations which
may occur in which there is not enough evidence to make either a true or
false claim, or the evidence gathered may not even be very relevant to the
particular problem. The Mitosis Recognition System avoids this difficulty
in part by having strong negative weights to represent disbelief , large
positive weights to represent belicf and near-zero weights to represent
tgnorance or irrelevance.

In the limited domain covered by the Mitosis Recognition System,
one must determine what types of evidence or clues can be measured,
the reliability of these measurements, and how these can be used and
combined to determine a cell’s shape or state. For practical reasons,
inluitive definitions of information components are described and then
later used to build a method of evidence combination. The method is
not justified on rigid theoretical grounds at present, but like many other
systems which employ fuzzy techniques, is justified by producing valid
and uscful results under real experimental conditions [19]. Theoreti-
cal methods require a detailed mathematical understanding of the facts,
their effects and relationships to each other, and the relationship of the
facts on the final belief measurement. These mathematical relationships
would be extremely difficult to establish thoroughly for a real imaging
and biological shape problem such as the one posed in this thesis.

‘The method of evidence combination and evaluation of fuzzy sub-
sets can be termed decision making [62]. Using linguistic terms in the

formulation of decision functions can be an cffective way of simplifying
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complicated relationships of data towards imprecise objectives. Fuzzy
sets with linguistic grades of membership are referred to as fuzzy sets of
type Il [62]. Linguistic terms are used to develop appropriate weights
to describe the information content and the effect a piece of data has on
a particular outcome. Ramakrishnan and Rao have developed a fuzzy
weighted additive rule specifically for fuzzy sets of type Il to approximate
expert opinion [50).

The relevant factors and linguistic descriptions associated with the
information content of the input data and the data’s relationship to the

final state and shape classifications are described in the next section.

4.2.2 Information Content of the Evidence

Each piece of data is a measurement with soine uncertainty associated
with it. Likewise, each piece of cvidence may be more important for one
state 2 than for another so will have a different information content for
each state. The piece of data may provide supporting evidence or conclu-
sive evidence, relative to each state. Another factor considers the type of
evidence in a more global context. A particular evidence predicate may
have more significance than another picce of evidence in the evaluation
of the overall state of the cell. Data from the more significant predicate
should be valued higher and so be given a stronger weight.

Four important factors are involved in describing the information con-
tent from a piece of evidence applied to a particular state. The first
factor represents accuracy of the computed data, while the rest describe

the relationships of the evidence to the ideal state type conclusions. The

2The procedure for evaluating the evidence is the same for both the state and the
shape. For simplicity, this section refers only to the state.
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numerical values of the evidence factors are established before the system

is used.

Data Confidence

'The first factor is due to uncertainties in data measurements. Imaging
noise, artifacts, and other data problems, result in measurements with
error. The measure of cell area, for example, is not the true area of
the cell, since the boundary ext-action process is not perfectly accurate.
Either a confidence factor, or an uncertainty measure can be associated
with the area which may be based on certain heuristics, or on past per-
formance, such as the expected stability or expected area growth over
a period of time. As well, statistics could be gathered comparing the
arca measurement achieved by the Mitosis Recognition System with a
more accurate area measurement made by a cell physiologist, though
this would be impractical. An area measure with a low confidence factor
should not be emphasized in a determination of cell state: it would have

low information content for all states.

Evidence Certainty

The second factor considers how an evidence predicate influences the
outcome of each state type. To what degree does this evidence (if con-
sidered to be true) support or prove an outcome of the ideal state s?
This factor, dealing with certainty or proof is illustrated as follows. In

standard logic, the following rule would be acceptable as a true sentence:

Rule 4.2.1 If the cell shape is COMPLEX
then the state is NORMAL.

What about for the other shapes?
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Rule 4.2.2 If the cell shape is OBLONG
then the state is NORMAL.

This statement (Rule 4.2.2) would usually not be true.

Rule 4.2.3 If the cell shape is ROUND
then the state is NORMAL.

This statement (Rule 4.2.3) would almost never be true.

What is needed is a measurement or qualificr of truth to answer the
following question: If the antecedent is truec, how does this affect the
consequence! The three sentences above are modified to reflect a more

realistic world:

Rule 4.2.4 If the cell shape is COMPLEX

then we are very cerlain that the state 1s NORMAL.

Rule 4.2.5 If the cell shape is OBLONG
then we are quite certain that the state 1s notl NORMAL.

Rule 4.2.6 If the cell shape is ROUND
then we are very cerlain that the state is not NORMAL.

The modifiers are converted into weighls or certainly factors which
mark the degree of truth or belief of the consequence if the antecedent is
true. A negative factor indicates the degree to which the consequence is
believed not to occur if the antecedent is true. A factor of “don’t know”
or zero indicates that a relevant conclusion cannot be drawn from the

belief of the antecedent.
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Certainty Factors Value Importancy Factors

very certain 8 crucial
almost certain 6 very important
quite certain 4 important

somewhat certain 2 somewhat important
don’t know 0 doesn’t matter

somewhat certain it’s not -2 somewhat important it’s not
quite certain it'’s not -4 important it's not

almost certain it’s not -6 very important it’s not

very certain it’s not -8 crucial it’s not

Table 4.1: Certainty and Importancy Factors. Linguistic weights are
mapped into numerical values for computing information content of evi-
dence,

The translations between the modifiers and the certainty factors are
shown in Table 4.1. Conclusive evidence ® is given if the modifier is
cither very certain or very certain it’s NOT, assuming that the first data

confidence factor is negligible.

Evidence Importancy

The third factor can be considered as measuring supporting or perhaps
circumstantial evidence, rather than measuring degrees of conclusive ev-
idence.

Consider the reverse implication of Rule 4.2.1:

Rule 4.2.7 If the state 1s NORMAL
then the cell shape is COMPLEX.

3We say “conclusive evidence” meaning that given an 1deal system, we would ex-
pect that this evidence would really be conclusive. In practice, “conclusive evidence”
ineans as conclusive as possible considering the single, isolated piece of evidence.

(4



4. Cell Image Understanding

We understand that it is important that the state have the feature
the cell shape is COMPLEX but it does not in any way prove that the
state is NORMAL under these conditions. However, the Modus Tolens
of Rule 4.2.4 provides a way of proving that the statc is not NORMAL:

Rule 4.2.8 If the cell shape is not COMPLEX
then the state is not NORMAL.

Using a qualifier, Rules 4.2.7 and 4.2.8 can be restated to emphasize

this type of supporting evidence:

Rule 4.2.9 It is very important that the cell shape is COMPLEX
for the state to be NORMAL.

Similarly, for the other shapes:

Rule 4.2.10 It is very important that the cell shape is nol OBLONG

for the state to be NORMAL.

Rule 4.2.11 It is crucial that the cell shape is not ROUND
for the state to be NORMAL.

The translations between these linguistic qualifiers (cg. erucial and very
important) and the importancy factors are listed in Table 4.1.

The importancy factor also represents the relevance of evidence to
the final determination of cell state. For example, an area measure is not,
relevant when considering its influence on determining a NORMAL cell
state (when the cell is not undergoing mitosis) and does not provide much
information for this state. The importancy factor would then be 0 for
“doesn’t matter” so as not to have an effect on the NORMAL state
computation. However, the area of the cell may be important evidence

for determining the states of cell CONTACT and ccll MITOSIS.
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Note the diflerence between a negative importancy factor and a neg-
ative certainty factor. A negative imporlancy factor indicates that it is
important that the evidence predicate is not true for a particular state or
shape outcome to be true, whereas a ncgative certainty factor indicates
the degree to which a particular state or shape outcome is believed not

to occur if the the antecedent is true.

Evidence Significance

‘The fourth Tactor represents the significance of an evidence predicate rel-
ative to other evidence predicates, independent of the measured data and
the type of state. For example, the fuzzy evidence predicate: previous
seze equals present size is not as significant as the fuzzy evidence predi-
cate: shape s round,; thus it should have a smaller weight factor. Certain
picces of information are more significant, in terms of information con-
tent, to the final fuzzy state outcome than other pieces of information.
The evidence significance factor differs from the importancy factor in
that its weight is defined with respect to other pieces of evidence and is
not evaluated for cach individual state type. Furthermore, it is also used
to adjust the effect of very similar contributing {ie. not independent)

picces of evidenee,

The problem of deciding how a picce of evidene or Zata helps support
or confirm a hypothesis is a difficult one. The four influencing factors
described above are meant as guidelines in establishing the effect of the
evidenee on the possible conclusions. These factors are summarized as

follows:

e Data Confidence: the relative confidence in the data itself, when

considering measurement errors.
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e Evidence Certainty: the factor representing how cerfamn a partic-

ular conclusion is given that the individual piece of evidence is

TRUE.

o Evidence Importancy: the factor representing how important a

piece of evidence be TRUE given an expected conclusion.

e Evidence Significance: the factor representing the significance of a
piece of evidence to the final determination of a conclusion, with
respect to other pieces of evidence available and irrespective of the

final conclusion.

4.3 Shape and State: Method of Evidence Combi-

nation

4.3.1 Definition of Variables

The method of evidence combination for the fuzzy shape and preliminary
fuzzy state are identical. The method used is described in a mathematical
context independent of the application in this section; the term state is
used to represent either the fuzzy shape or the preliminary fuzzy state.
The variables and constants used in the evaluation of evidence in this

section are described below.

Data Dimensions

e n,: The total number of different bascline measurements.

e n,: The number of evidence predicates (rule antecedents) to be
used in the determination of state.

R~
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e n,: The total number of defined or allowable state types in the

system.

Weighting Factors

‘I'he data confidence measurement factors may or may not be determined
before an experiment. The method of setting these factors depends upon

the nature of the individual piece of data.

e m,: the data confidence factors, where i is a corresponding baseline

data measurement (from 1 to ny).

The following three types of factors, described previously, are de-
termined by an expert prior to an experiment and can be considered
as constants during an experiment. In general, once these factors are
determined, they never have to be changed unless the application or ex-

perimental conditions change considerably.

¢k the evidence certainty factors, where k is the eviden edica
o i tl { tainty factors, where k is tl dence predicate

number (from 1 to num,) and j is the state type (from 1 to num,).

e 7, the evidence importancy factors, where k is the evidence pred-
icate number (from 1 to n,) and j is the state type (from 1 to

N,).

o gi: the evidence significance factors, where £ is the evidence pred-

icate number (from 1 to n,).

Positive and negative sums of the importancy and certainty factors

for each state are also computed for the normalization function.
® Fimar),: the sum of the positive certainty factors for each state j.
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o Fe(min);: the sum of the negative certainty factors for each state j.
® F.(maz);: the sum of the positive importancy factors for cach state
J.
® Fr(min);: the sum of the negative importancy factors for cach state
J.
Dynamic Variables

The following variables are computed dynamically by the system during
an experiment. They depend upon the values of the baseline data and
the input weight factors described above, and are defined in the next

sections.

e y,.: the baseline data elements, with a total of n,.

o pi: the predicate belief value clements with values from 0 to I com-
puted from the baseline data y,, where k is the evidence predicate

number (from 1 to n,).
o C,: the total evidence certainty for each state type j.
o R,: the total evidence importancy for cach state type j.

¢ M,,;: the modified toial belief for cach state type j (including

both certainty and importancy totals).
o Aot the modified total certainty belief for each state type .
® M,y the modified total importancy belief for cach state type ;.

o M, the sum of all modified total belicfs over all states.
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¢ s,: the normalized state value for each state type j, with a total

sum of 1 for all s,’s (over all j’s).

4.3.2 Mapping Data to Evidence Predicate Values

The mapping of the data to the evidence predicates is not one-to-one.
'There exists a function F(y,,px) for cach predicate k which retrieves the
appropriate baseline data element y, and maps the measurement into a

number from 0 to I onto the predicate value py:
h— P 0<pe <1 (4.1)

A value of 0 indicates zero belief in the evidence predicate, whereas a
value of 1 indicates total belief.

The data confidence factor m, is applied after the mapping to reduce
the belief in the evidence if the data measurement is not accurate. Alter-
natively, the m, factors could be saved to compute an overall confidence
measurement, of the combined evidence and final state result. For sim-
plicity, we assume lolal confidence in our data, setting all of the m;’s
to 1. In practice this works reasonably well because we are concerned
mainly with a general maximum cell state but not with the accuracy of

the state values.

Computing the Total Evidence

We lirst compute importancy evidence sum R,, and certainty evidence

sum C, for each state j:

np
Ry =D Pk XThy X G (4.2)
k=1
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iy
CJ = Zm X Ckj X Gk (4.3)
k=1

It is at this point that we also take into account the effect of the signifi-
cance factor gy, so as to weigh picces of evidence with greater significance
more heavily.

Note that formal methods of combining evidence take into account
joint probabilities and measures ( [25], [52]). This is not done here since
it is difficult to determine all the dependencies with each picce of cell data.
Many practical applications use intuitive, ad hoc methods to evaluate the
total evidence, supporting their practices by experimentation {19]. In
the MRS, joint probabilities are not considered which result in some data
to be “counted twice” during the evaluation. It is reasoned that when
this occurs, more significance is then placed on these particular data and
the particular pieces of evidence which they influence; in effect, there
are hidden evidence significance factors gi. Since an attempt is made
to normalize the summed data, and the evidence significince factors are
determined through experimentation, the cffect of hidden joint measures
is not significant on the overall conclusion.

The influence of extra evidence, which depends on data alrcady cov-
ered by existing predicates, can be demonstrated by adding a repeated
predicate in the total list of predicates, or by slightly increasing the evi-
dence significance factor gi of an evidence predicate k. If the normaliza-
tion procedure (described below) is followed, then the duplicite piece of
evidence does not have a large effect unless the total sum of the predicate
certainty factors and the importancy factors for a particular conclusion
is small and the piece of data y, providing the evidence is much worse

than the predicted data confidence factor m;.
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4.3.3 Computing and Normalizing the Fuzzy
States

The total evidence sums for each state j should not be compared directly
with each other before an attempt is made to normalize these values. An
intuitive reason can be given by considering the following example.

The state PRE_MIT2 has the shape feature of being partly round
and partly oblong, but no other major attribute, apart from occurring
between PRE_MIT1 and MITOSIS. Since this state has many charac-
teristics in common with these two neighbouring states, the PRE_MIT?2
state does not have strong weight factors associated with its evidence
predicates. In other words, no data is erucial and no piece of evidence
determines this state with certainty. So even if all the evidence con-
tributes somewhat to this state, the total could easily be out-weighed
by the evidence sums of PRE_MIT1 or MITOSIS. Some states may
also have more negative factors associated than positive, relying on the
falseness of the other states to be established as true. This makes the
evidence sum of a state very difficult to compare with the evidence sum
of a neighbouring state which may naturally have more positive factors
than negative.

To begin the normalization, we compute, for each state j, the largest
possible positive evidence certainty sum Fmqz);, the smallest possible
negative evidence certainly sum Fo,n),, the largest possible positive
evidence importancy sum Frgmar),, and the smallest possible negative
evidence importancy sum Fognum),, given only the evidence factors c,,

'kys and gi:
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r(mnt))

r(m in)) =

r(mm)_y

E Cpky X Gk

Z Tpky X Gk

k=1

Z Cpky X Gk

Z Tpky X Gk

where

where

where

where
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Cpkj =

i‘k_,
Tok; = 0

f'k)
Cnky =

0

Tk,
Tnk; =

0

if ek, 20

otherwise

if rp, 20

otherwise

if cx, <0

otherwise

if Tk, S 0

otherwise

(4.4)

(4.5)

(4.6)

(4.7)

A cutoff or zero point is defined for the condition in which we have

no significant belief in the state.

If either the importancy sum or the

certainty sum is very negative (defined here as less than 1/3 of the total

possible negative importancy or certainty) we set the (modificd) total

belief of the state to 0.

or

I R, < Frminy, /3 then Mo, =0

If C < fc(mm),/3 then Mgy, =0

(4.8)

(4.9)

Otherwise, the modified total beliefs for the importancy (M,y;) and

the certainty (M.,,,) are computed individually for each state, and then
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combined using an Euclidean metric for the total modified belief M,y,:

Mbc‘] = Mgcr) + Ml?mm (410)
R, = Frmm;/3
Mipy = gt ZLenl (4.11)
P -Fr(mu-)J - r(mm)g/3
Mcer] = RJ ~ fc(mm)}/s (4'12)

Ftmaz)y = Fetmin) [3

The modified total certainty and modified total importancy values
are squared before they are suinmed in order to emphasize relatively high
values which are found in cither category. Some states, for example, may
rely more heavily on the computation of importancy than certainty, and
a simple sum of the two totals would tend to negate the effect of a very
high importancy against a low or mediocre certainty. Hence, importancy
or certainty totals which come very close to the ideal total for a state

contribute significantly to the modified total belief M.y, value.

The sum of the modified total beliefs for each state is computed for

the final normalization of the fuzzy state clements.

"y

Mlol = ZMbelJ (413)
=1

The preliminary fuzzy state values are now normalized:

. M bely

s, = M, (4.14)

We now have a set of states 3, whose sum is | and whose individual

values represent the degrees of membership the measured object has in
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4. Cell Image Understanding

each state.

4.4 MRS Computation of Shape and Preliminary
State

4.4.1 Fuzzy Shape Computation

Computer vision researchers strive to describe objects in a way that is
independent of their orientation, position, or motion. The Mitosis Recog-
nition System must do the same so that the description of a changing
cell can be analyzed over many different image sequences.

Chapters 2 and 3 discuss shape-related data obtained from various
computations, such as from the skeleton processing. The antegration of
all these data to produce a single fuzzy shape set is not a trivial task.
The first step in this integration is to convert the data measurements
into belief values for the set of shape-related evidence predicates, or iu
other words, to perform the mapping indicated by Equation ( 4.1).

The shape-related evidence predicates pick out the relevant features
of the measurements for the three shape categories. The left column of
Table 4.2 is the complete list of the shape-related evidence predicates
presently used in the system. Additional evidence predicates can casily
be added as long as a corresponding mapping function F(y,, px) is also

added in the code.

The list of baseline data measurements y, is shown in Table 4.3. Note
that this array of baseline data is used for both the shape and the state
computations since some of the data is shared. The mapping functions,
however, would be different for the shape and state applications. Not all

of the data in the array y; are used for computing the values of the shape
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Evidence Predicates p, Shape Types s,

ROUND OBLONG COMPLEX

Tk Ckiy T2 Ck2 Tk3 Ck3
num of branches 1s LOW 8 6 8 4 -8 -8
num of branches is MED -6 -6 00 6 6
num of branches is HIG -8 -8 -8 -8 8 8
nurmahzed skeleton fength s LOW 6 8 4 .8 -8 -8
normalized skeleton leagth is MED 2 0 6 8 00
normalized skeleton length is HIG -8 -6 -2 -6 2 8
skeleton vector measure is LOW 0 0 -8 -8 0 0
skeleton vector measure s MED 22 0 4 0 0o 0
skeleton vector measure is HIG -8 -8 8 8 6 -6
ave branch length 18 LOW 8 8 -8 -8 -4 -4
ave branch length s MED -4 -2 -1 -4 4 4
ave branch length is HIG -8 -8 8 0 00
num crit convex pts s LOW 8 6 8 2 -6 -6
num cnit convex pis is MED -4 -4 -4 -4 4 4
num crit convex pts is HIG -8 .8 -8 -8 8 8
num crit concave pts is LOW 8 2 0 0 0 0
num (nt concave pts is MED -8 .8 8 8 00
num ent concave pts is HIG -8 .8 -8 -8 0 8

Table 4.2: Shape Rule-Base Matrix. Importancy factors rx, and certainty
factors ¢k, used by the MRS for the cell division experiments presented in
this thesis are listed for each evidence predicate pi and each shape type s,,
respectively. The variables k& and j represent the row number and column
number, respectively.
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Data Element Number Base-Line Data Description
1 cell radius
2 number of skeleton branches
3 true skeleton length
4 skeleton resultant vector length
5 existence of two “touching” components
6 sum of two touching component sizes
7 round shape belief
8 oblong shape belief
) complex shape belief
10 previous size (in pixels)
11 object - neighbour distance
12 present object size (in pixels)
13 number of objects in window
14 number of mignificant convexities
15 number of sigmficant concavities
16 closest neighbour size (in pixels)
17 previous average round shape belief
18 previous average oblong shape belief
19 previous average complex shape belief
20 tracking uncertainty factor

Table 4.3: Base-Line Data Elements y,.

evidence predicates. For example, the entries for cell shape are used only
by the fuzzy state computation which are updated after the fuzzy shape
computation.

The mapping functions F(y,, pi), used to determine the evidence be-
lief values for each evideiuce predicate from the baseline data array y,, are
coded as individual C functions for each evidence predicate group. An
evidence predicate group can be considered as a fuzzy subset of the total
set of evidence predicates. For example, the evidence predicates num
of branches is LOW, num of branches is MED, and num of branches is
HIG are considered as members of the fuzzy subset number of branches.
Therefore, a description of the number of a cell’s skeleton branches would
consist of the set of these three belief numbers. Different evidence pred-
icate groups are separated hy a horizontal space in Table 4.2.

Once the array of shape evidence predicate values py are determined
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4. Cell Image Understanding

from a data set for a particular image frame, the importancy R, and
certainty C, evidence sums are computed for each shape j as in Equa-
tions ( 4.2) and ( 4.3). The importancy and certainty factors for each
shape rule-base element are shown in Table 4.2, The linguistic trans-
lations of these weights are listed in Table 4.1. These weights were
originally determined by intuitively applying the linguistic weights to
cach evidence predicate and their expected relationship to the shape
ty pe outcome. Some of the factors were tuned experimentally after some
of these relationships and their effect on the final shape outcome were
better understood under real experimental conditions.

It was found to be sufficient to set the evidence significance factors
gr 10 1 for the fuzzy shape computation. Note, however, that a value of
I for ¢gi is not always appropriate for the computation of fuzzy state.

The evidence importancy and certainty minimum and maximumsums
are determined directly from the shape rule-base (Table 4.2) upon initial-
ization using Fquations ( 4.4), ( 4.5), ( 4.6), and ( 4.7). These constants
arc used to help filter the importancy and certainty evidence totals for
cach shape type (Equations ( 4.8), ( 4.9), ( 4.11), and ( 4.12)) before
finally combining the two types of inforimation (Equation ( 4.10)) for a
modified total beliefl number for each shape.

Normalization of the fuzzy shape values is achieved by computing the
sum of the modified total belief numbers for all three shapes (Equation
( 1.13)) and finding the fraction of belief for cach shape type (Equation
( 4.14)). Bach shape value s, is a number from 0 to 1 representing
the degree to which an object is ROUND, OBLONG, and COMPLEX.
Examples of three different objects and their corresponding fuzzy shape

values are shown in Figure 4.1.
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4, Cell Image Understanding

4.4.2 Fuzzy State Computation

The computation of the fuzzy state follows the same procedure as the
fuzzy shape. Baseline data measurements y, (Table 4.3) are used to
compute the belief values of the state evidence predicates listed in Table
4.4. There are considerably more evidence predicates or rules used for
computing the cell’s state than for the cell’s shape. There are a total of
eleven state types as compared to only three shape types. Some of the
state types are very similar, and additional rules are needed to distinguish
them. Many of the rules are required to specifically handle neighbouring
cell problems of close contact, collision, and separation. As in the shape
computations, the functions used to compute the predicate values py
are coded as C programming functions for each state evidence predicate

group.

The evidence importancy rg; and significance g factors are multiplied
by the evidence predicate values py and sumined for each shape type for
an importancy total R, (Equation ( 4.2)). The :vidence certainty cx, and
significance g, factors are multiplied by the evidence predicate values py
and summed for each shape type for a certainty total C, (Equation ( 4.3)).
The importancy and certainty factors for each state rule-base element are
shown in Table 4.5. These weights, like those for the shape rule-base,
were originally determined by intuitively deciding the importance of each
piece of evidence to the individual state outcomes, and to what degree a
piece of evidence would support or prove a particular state type.

The evidence significance factors, shown in Table 4.4, were deter-
mined experimentally after learning the relative impact of cach evidence
predicate on the final state outcome. The factor of 3 in the case of the

shape related predicates was used to place more emphasis on the evi-
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State Rule No. State Evidence Predicate Description  Evidence Significance Factor gx

1 shape is ROUND 3
2 shape is OBLONG 3
3 shape is COMPLEX 3
4 cells are near contact 1
5 two components in obj 3
6 sum of component sizes < prev obj size 1
7 sum of component sizes > prev obj size 1
8 sum of component sizes = prev obj size 1
9 prev size + neighbour's prev size < present obj size 1
10 prev size + neighbour’s prev size > present obj size 1
1 prev size + neighbour's prev size = present obj size 1
12 contact size < present size 1
13 contact size > present size 1
14 contact size = present size 1
15 prev size < present size 1
16 prev size > present size 1
17 prev size = present size 1
18 invalid number of objs |
19 tracking is uncertain 1
20 prev shape average is ROUND 3
21 prev shape average is OBLONG 3
22 prev shape average is COMPLEX 3
23 num crit convex pts is LOW i
24 num crit convex pts is MiiD 1
25 num «rit convex pts is HIG 1
26 num crit concave pts is LOW 1
27 num crit concave pts is ME:D |
28 num crit concave pts is HIG 1
29 neighbour size + present size < prev size 1
30 neighbour size 4 present size > prev size 1
k)| neighbour size 4+ present size = prev size 1
32 neighbour size < present size 1
33 neighbour size > present size 1
34 neighbour size = present size |

Table 4.4: State Evidence Predicate List and Evidence Significance Factors.
Evidence predicate groups are separated by blank lines.
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EVIDENCE PRE. PRE. MIT. MIT. POST. CON. OVER. SEPAR. NORM. EXTING- UNDETER-
PHEDICATE MIT1 MIT2 OSIS SEPAR MIT TACT LAP ATION AL UISHED MINED

1 8 83 -4 .4 8.3 8.8 4 8 .8 -8 0 0 -8 .8 -4 O [ -1 -1

2 -4 ) 8 4 LI | 2 0 o o o o 0 0 0o 0 0 o o 0 1 1

3 -8 .4 .8 .5 .8 .8 o 0 o 0 [ [ o 0 s 8 o 0 [ 2]

4 6 .6 -8 .83 8.3 .8 -8 a8 s -8 -8 s -8 8 4 [ ) 00 [ I ]

5 4.4 .8 .3 .8 .8 8 8 -8 -8 2 4 8 -8 8 4 -8 .8 0 0 0o 0

[ 0 0 o 0o 0 0 -8 .8 o o -8 -8 [ -8 .8 0 o0 0 o o0

? o 0 o 0 0 0 -t -8 0o o 8 8 o0 .8 -8 o 0 [ 0o 0

L} 00 o 0o 0 0 8 8 o o -8 -8 [ s 8 o o 0o ¢ o 0

9 0o 0 6 o o0 0 9 0 -1 -1 -6 -8 s 8 -8 -8 -2 -2 00 [ I ]
10 0 o0 o 0 00 00 -1 1 6 .6 .8 .8 s 8 8 8 0 0 0o 0
1 o 0 o 0o 0 o o0 -1 -1 8 &8 .8 -8 -8 -8 8 -8 00 00
12 00 0 0 0O [ o 0 0 o 8 -8 4 4 -8 .8 o 0 o 0
13 9 0 o o 00 o0 o o -2 -2 s 8 s 8 8 8 [ 0 0
14 [ o 0 00O 0 0 o o e & .t .8 o o .8 .8 o0 00
1% 1 0 2 0 0 0 .22 -8 -8 8 8 .3 .8 11 .2 -2 o0 11
16 10 3 0 2 0 -2 -2 8 ¢ -8 -8 4 4 -1 -1 -2 -2 00 1 1
17 (L] o 0o 0 O 3 0 -8 .8 -8 -8 4 -4 0o 0 T 2 0 0 -1 -1
18 -8 -8 -8 -8 .8 -8 -8 -8 -8 -8 -8 -8 8 -8 -8 -8 -8 -8 4 4 < 0
19 -4 .8 -8 .8 8.8 .8 .8 -8 -8 -8 -8 s -8 -8 8 .8 .8 8 8 o0
20 4 6 3 2 6 -6 -8 .8 -8 -8 6o o 0 0 o 0 -1 -1 [ -1 -1
21 [ I 5 2 8 2 6 2 e 2 o o 00 2 0 -1 4 [ -1 -1
3 R I | 8 .8 .88 -1 0 -1 0 o 90 1 0 1 0 6 6 [ 0 0
41 8 2 s 2 8 0 [ ] o ¢ o o o 0 o 0o -8 -4 00 o 0
24 8 4 -8 .4 -4 -2 00 o o 0o o 00 o o 4 6 0 0 [+ I
2% -4 .4 -8 .8 8.8 .2 .2 -2 -2 a o 0 0 G 0 4 8 o 0 o 0
26 8 0 2 0 0 0 -2 -2 2 0 o o [ o 0 0o o 0 0 o 0
27 -8 -8 -4 .2 2 4 8 ¢ -2 -2 0 4 [} 0o 0 0 1 0 0 o 0
28 -8 -8 -8 .8 -4 -4 -2 -2 -4 -4 o o o 0 o o 0o 8 0 o o o
28 o 0 o o 0 O 0 0 -8 -8 o 0 0 0 -2 -8 .8 -8 11 1 1
30 0 0 0 0o 0 O 00 -8 .8 o 0 0 0 -8 -8 4 0 00 0 0
k)| 0 0 0 ¢ 0 O 00 8 4 o 0 00 8 ¢« -8 .8 (] o0
32 0o 0 0 0 0 0 00 -8 -8 0o o0 o 0 o 0 1 1 [ 00
" LI ] 0o o0 0 0 o o -8 -8 o o o 0 ¢ 0 11 o 0 [ ]
Bl 0 0 0o 0 [ I ] ¢ 0 8 4 o o 0 0 2 2 0 ©0 o 0 0 0

Table 4.5: States Rule-Base Matrix. Importancy factors ri, and certainty
factors ¢k, used by the MRS for the cell division experiments presented in
this thesis are listed for each evidence predicate px and each state type p,,
respectively. The variables k and j represent the row number and column
number, respectively.

dence directly related to shape. Other evidence types are considered less

significant and given a lower value of g;.

The evidence importancy and certainty sums, computed with the
Fquations ( 4.4), ( 4.5), ( 4.6), and ( 4.7) upon initialization, are used to
filter the importancy and certainty evidence totals for each state type as
was done with the shape type totals (Equations ( 4.8), (4.11), (4.9), and
( 4.12)). The two types of information are combined (Equation ( 4.10))
to produce a modified total belief number for each state.

Iinally, normalization of the fuzzy state values is achieved by sum-
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4. Cell Image Understanding

ming the modified total belief numbers for all elever state types (Equa-
tion ( 4.13)) and computing the fractions of helief (Equation ( 4.14}). As
with the fuzzy shape, the sum of the state values is 1, anc each individual
state value is a number from 0 to 1 representing the degree to which an
object, belongs to that particular state.

At this point the computed fuzzy state is only a preliminary one; the
celi shape cycle process information (eg. of Figure 2.2) has not yet been
introduced.

Most of the data used for the preliminary fuzzy state computation are
from the present image frame. However, some data which depend upon
previous image frames have also been incorporated into the rules. These
data include a running weighted average of the previous shape. This is to
add some additional stability in the preliminary state computation if an
aberrant shape computation occurs due to imaging artifacts or segmen-
tation errors. In effect, the computation provides a small amount of data
smoothing over time. Smoothing across previous image frames is justified
practically by realizing that changes in a cell’s shape occur continuously.
The fuzzy shape values should not change drastically from one frame to
the next, given a frame rate suitable te catch general changes in pseu-
dopod behaviour and ideal image scgmentation. Additional advantages
of integrating an object’s shape features into a fuzzy shape representa-
tion are that a shape average computation is possible, it is quantitatively
meaningful, and it can actually be used in further mathematical analysis;
namely the cornputation of the fuzzy state.

The smoothing function used for shape averaging over time is:

m(n) = (sk(n) +3 x mp(n - 1))/4 (4.15)
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where m; is the time-averaged shape at image sequence n, and s; is the
value of one of the fuzzy shape types (ROUND, OBLONG cr COM-
PLEX). Note that the shape value from the image frame n is added with
a weight of 1/4, to the previous average with a weight of 3/4. This fuzzy
shape average is then used in the nezt image frame (n + 1) during the
preliminary state evaluation.

Other data used from previous image frames include the data repre-
senting obhject pixel size, average neighbour size, and collided object size.
These data are used to help monitor changes in cell area for possible
growth and for determining drastic changes such as during cell division,

cell collision, and segmentation problems.

4.5 Integration of Process Information

The preceding section describes the method used for combining the evi-
dence, at a particular instant in time, to produce a fuzzy measurement
set. In practice, this method is first used to produce a fuzzy shape
and then applied to compute a preliminary fuzzy state based solely on
the measured evidence. Intuitively, this preliminary fuzzy state is like a
“guess” of the state, using image processing information from the present
frame along with some hints from the previous frames, but with no knowl-
cdge or biological expertise about how a cell’s states should progress
through its life cycle. A final fuzzy state is computed from both the
preliminary fuzzy state and the time-dependent process rules.

The process rules consist of the possible transitions from one ideal
state to another in a matrix representation similar to the state and shape
rule-bases (Tables 4.5 and 4.2). The evidence predicate list of the pro-

cess rule-base (Table 4.6) consists of the previous state type possibilities
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PREVIOUS STATE PRE. PRE. MIT. MIT. POST. CON- OVER- SEPAR. NORM. EXTING. UNDETER.

MIT1 MIT2 OSIS SEPAR MIT TACT LAP ATION AL UISHED MINED
PRE.MIT1 1 1 0 0 ] 1 0 0 t 1 o
PRE.MIT2 1 1 1 0 0 1 o ] 1 1 0
MITOSIS 0 1 1 1 1 0 0 0 1 1 0
MIT_SEPAR 0 o 1 1 1 o 1] 0 0 1 0
POST.MIT ) 0 ] o [+] 1 ] 0 1 1 0
CONTACT 0 [ [ 0 (] 1 1 1 0 1 0
OVERLAP 0o 0 0 0 ] 1 1 1 0 1 0
SEPARATION ] [} 0 0 ] 1 0 1 1 1 0
NORMAL 1 0 0 0 o 1 0 o 1 1 0
EXTINGUISHED 0 o 0 [ ] o [+] 0 0 1 4]
UNDETERMINED 1 1 0 0 0 0 0 0 1 1 1

Table 4.8: Process Rule-Base Matrix.

for each row k, for example: previous cell state is PRE_MIT1.

The columns in Table 4.6 are the same state types used in the pre-
liminary state rule-base. One could use the methodology of the previ-
ous scctions in the representation of importancy and certainty factors,
but these factors cannot be accurately estimated until more data are
gathered. The Mitosis Recognition System itself could be used in the
gathering of these data, vo that we can more accurately apply reasonable

information factors to the process rules in a future implementation.

In the present implementation, the process rule-base consists of true-
false binary factors (Table 4.6). We know for certain which state tran-
sitions may occur after particular states, but we cannot at present judge
the frequency or the probability of these occurrences. The value of 1 (or
true) in Table 4.6 represents the possibility that given the previous state
sk(n — 1) is believed, the present state s,(n) may follow. The value of
0 indicates that it is not possible for a cell to make the transition from
sk(n — 1) to s,(n). The variable n indicates the image frame sequence
number, increasing in time. Some states allow several different transi-
tions, but others are more limited. All states except POST_MIT allow

re-occurrence of the same state.
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The combination of the process rules, previous fuzzy state, and pre-
liminary fuzzy state is a simple procedure with only a few operations,
hence the resulting final fuzzy state is computed rapidly.

The first step is to compute process transition weights by combining
the previous fuzzy state data with the process rule-base. Elements py,
of cach row k of the process rule-base are multiplied by the previous
fuzzy state values sy(n — 1) for each k to produce new weighted process

clements wy, for all rows k and columns j:

wiy, = Se(n— 1) X pij . (4.16)

A process state vector is then computed for each column j by con-
sidering the values of the weighted previous state evidence elements wy;,
within the column j. In this step we simply take the mazimum value of all
wy, elements within the column to be the unnormalized total predicted

belief value, Ty, over all rows k:

Thety = MAX (wy,) (4.17)

This result is analogous to the modified total belief variable Myer;
during the preliminary state computation of the previous section. Nor-
malization is left for a later step.

The total predicted belief vectcr consisting of elements Ty, can be
considered as a present state probahility prediction. Given only the pre-
vious state information and the process rules, it specifies what state is
expected for the tracked cell during the present image frame.

The final step simply combines this present state prediction Tper, with
the preliminary fuzzy state s, computed in the previous section from the

image data. The two arrays are mulliplied because of their probabilistic
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form. For instance, the probability of the occurrence of state j would be

computed from the chance that:
1. thestate is predicted with the belief (or quasi-probahility) 74, and

2. the state couid occur from the preliminary state belicf s,.

The joint belief is computed as follows:

®, = Ty, X 3 (4.18)

for all columns j.
The result vector @, is the final unnormalized fuzzy state. Normal-
ization is required to produce the final fuzzy state Ppnorn,,:

.

normy — —2_:-:_:1—3; (4]9)

We now have a set of values representing a cell’s fuzzy state. This
fuzzy state can now be evaluated for control decisions, such as the auto-

matic tracking of a second cell after cell division has occurred.

4.6 Cell Division and the Decision Function

Once a final fuzzy state has been computed, it must be analyzed to
determine the occurrence of cell division. At what point <an we believe,
with a high degree of certainty, that a cell has completed mitosis and two
daughter cells should be tracked?

Multiobjective tasks can themselves be formulated in fuzzy logic
terms [62). We could also us+ fuzzy conditions to determine the degree
of certainty of cell division. However, since we only have two possible be-

haviours from any decision (to track or not to track an additional cell) a
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single condition is sufficient. This single condition is as follows: when the
membership or belief value corresponding to the state type POST_MIT
is larger than all other state type values in a cell’s fuzzy state set and is
non-zcro, we helieve that cell division has occurred.

Such a precise condition can only be used for the post mitotic process
state; the same rule could not be used with great confidence for other
states, such as the NORMAL or PRE_MIT1 states. This is because
there remains a certain amount of ambiguity in the outcomes of these
overlapping states. It can be shown that a precise goal can be obtained
using fuzzy descriptions as long as the fuzzy observations become more
and more precise when the goal is approached [31]. Our control goal is
to detect. cell division. Cell division is believed to occur when the precise

fuzzy observation indicates a POST _MIT maximum state value.

An additional decision function is also required for the EXTIN-
GUISHED state. This state is only used if the accurnulated data
uncertainty is very high or if an unacceptable processing condition has
occurred. An unacceptable processing condition could be an invalid num-
ber of objects within the window (eg. no objects) or a high, unexpected
change in the number of objects. Data uncertainty is accumulated during
cell collision and overlap condition. Presently, we do not have a mech-
anism to guarantee that the cell being tracked is the same one being
tracked after collision and separation has occurred. The best we can do
is predict that after collision, the tracked cell will retain its general char-
acteristics and position from before collision. A degree of uncertainty
is estimated and accumulated each time a tracked cell interferes with
another cell in the image. When the value for the EXTINGUISHED

state becomes higher than the other states, tracking and subsequent pro-
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cessing of the cell ceases.

101




Ly

sy

Ml ™

Chapter 5
Experiments and Results

5.1 Description of Method

The Mitosis Recognition System (MRS) was tested using cell images
previously recorded on computer hard disk. Image sequences were read
and processed in real-time to simulate the environment of TRACES, the
automatcd TRAcking CEll System. Secveral different types of dividing
cells were examined: slime moulds, fibroblasts, and cancerous blood cells.

A typical experiment proceeds as follows. The first image of an ex-
perimental sequence is displayed using the MRS environment on a colour
or grey-level SUN workstation monitor. Individual cells are selected for
tracking by enclosing each cell in their own window. For optimal perfor-
mance, these user-defined windows should be large enough to contain the
entire cell after expected growth, but small enough as to not permit too
many adjacent cells to be processed. For example, see the first frame in
Figure 5.1. Once cell selection is complete, the tracking is initiated, and
the next image frame in the experimental sequence is displayed. The
MRS procecds automatically from this point: the cells are segmented,
the boundaries are determined, skeletons are computed, the cell center is
found, and finally, the fuzzy shapes and states of each cell are resolved.
The MRS program environment displays the results of the shape and
state computation adjacent to each cell, and the position of the cell’s
window is adjusted to account for the change in the cell’s central posi-

tion. If the cells do not divide, but simply change shape and move about,
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the MRS program automatically tracks the cells across the screen.

The MRS program constantly monitors the changes in cell state for
each image frame. If cell division is detected by the expert system, a new
cell window is automatically created on one of the newly forined daughter
cells (Figure 5.2). The changes in shape, state, and cell position are
recorded in output data files for ofl-linc analysis. The cell’s skeleton is
also recorded for each frame, and can be used for more detailed shape

analysis.

5.2 Results

Figures 5.1 and 5.3 are cell sequence examples of a dividing slime
mould and dividing fibroblast, respectively. The slime mould frames are
displayed in these figures at approximately 30 second intervals, whereas
the fibroblast frames are shown at approximately 15 second intervals.
The data was actually recorded using a faster frame rate; intermediate
frames were removed for illustration purposes.

The segmentation of the cells proceeded very consistently. Occasion-
ally, however, fading of the cell body would result in poor segmentation.
For example, Figure 5.3 shows poor results in frame 11, Fortunately,
because of the use of previous knowledge in the si ape and state analysis,
the expert system is able to recover from an isolated poor segimentation.

Skeletonization proceeded quickly and produced consistent results in
most cases. Figure 5.1 shows that short, single branched skeletons were
computed lor roundish cells, but became elongated as mitosis proceeded.
Cells with more complex shapes produced multi-branched skeletons.

Cell shapes and cell states were computed automatically for cach cell

image, and by monitoring the state values for cell separation and post
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mitosis, the expert system was able to determine accurately that cell
division occurred. Figure 5.1, Figure 5.2, Figure 5.3 and Figure 5.4
are examples of dividing cells and the subsequent tracking of daughter

cells.
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19 90

Figure 5.1: Dividing slime mould. Cells are filled in black wichin their grey-
level backgrounds. Skeletons are represented in white. After ceil separation
(frame 14), a daughter cell is subsequently tracked (frames 15 through 20).

15 16 17

Figure 5.2: Tracking of new cell after division. A new tracking window is
created after frame 14 to track the additional daughter cell.
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14 15 16 17 18

Figure 5.3: Dividing fibroblast. Cells are filled in black within their grey-
level backgrounds. Skeletons are represented in white. After cell separation
(frame 14), a daughter cell is subsequently tracked (frames 13 through 18).

o,

14 15 16 17

Figure 5.4: Tracking of new cell after division. A new tracking window is
created after f-ame 12 to track the additional daughter cell.

e
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Chapter 6
Conclusions

The application of computer vision techniques to the field of cell biol-
ogy has tremendous potential. Present experimental methods used by
cell biologists to track and monitor microscopic shape changes in cells
involve labour-intensive work. Digital image recording, processing, and
automatic tracking of cells has obvious benefits in the acquisition of ex-
perimental cell data.

In particular, the study of cell proliferation and the inheritance of
traits associated with changes in membrane shape and cell locomotion
can benefit considerably by a computer vision system that can recognize
cell division and automatically monitor changes in cell shape and posi-
tion. These capabilities were successfully developed and applied in the
Mitosis Recognition System (MRS).

Apart from the biological benefits, this thesis explores issues inherent
to a complete computer vision system, from image segmentation through
a final expert system control decision. Special segmentation techniques
are developed specifically for microscopic unstained cell images. Shape
analysis is performed using a combination of boundary and region-based
analysis methods. In particular, a method of skeletonization is applied to
the problem of cells undergoing shape changes characteristic of mitosis.
The data retrieved from the segmentation and shape analysis are com-
bined and analyzed to produce fuzzy descriptions of cell shape. Finally,
through a method of fuzzy evidence combination, the system integrates

past cell state knowledge, present cell state, and cell process rules into
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a final fuzzy cell state. The final cell state is monitored for changes in

the post-mitosis and cell separation conditions to determine the actual

occurrence of cell division.
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