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Abstract 

A computer vision system which tracks and analyses living celis and 

their offspring from sequential two-dimensional images is desrribed. The 

ccIls are segmented using a method which combines global thresholding, 

component labeling and noise filtering. The shapcs of the eclls are then 

analyzed using a fast skeleton algorithrn, and the states of the ccUs are 

detelmined as the ceUs change shape and move. This vision system n~c­

ognjzes the occurrence of cell mitosis and then tracks the offspring by 

evaluating the overall cell shape and position to determine the ccli st.at.e. 

Both the ceU shape and ccli state are rcpresented as fuzzy sets. The 

cclI stafe takes into account previous shape and state knowledge as t.he 

mitotic proccss is described by a spcrific series of shape changes. This 

Mitm,,;s Recognition System (MRS) has becn developed for ccli physiol­

ogy research in the study of ceIllocomotory characteristics evolving over 

several generations. 
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Résumé 

Un système de vision par ordinateur pour l'analyse de cellules vi­

vant.es est décrit. Ce système permet, à partir d'une séries d'images 

Cil deux dimensions, d'analyser et de suivre le développement de cel­

lules et de leur progéniture. Une méthode sophistiquée. combinant seuil­

lag(~ global, étiquetage de composantes et filtrage de bruit, est utilisée 

pour la segmentation des cellules. Les formes de cellules sont analysées 

en utilisant un algorithme de squelettisation rapide et leurs états sont 

déterminés à. mesure que les cellules se modifient et se déplacent. Ce 

syst(~mc de vision reconnait l'avènement d'un~ divrsion cellulaire et en­

suite suit la progéniture en évaluant la forme :~énérale et la position 

d'ulI(' cellule afin de déterminer son état. La/orme et l'état d'une cellule 

sont tous deux représentés à l'aide d'ensembles flous. L'état d'une cel­

lule esi. détermillé en t.enant. compte de sa forme précédente ainsi que la 

connaissance du fait qu'une division cellulaire procède par une séries de 

changement.s de forme bien spécifique. Ce système: Mitosis Recognition 

System (MUS) est développé pour la recherche en physiologie cellulaire 

dans l'étude des caractéristiques de locomotion cellulaire, évoluant sur 

plusieurs ghl~rat.ions. 
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Chapter 1 
Introduction 

1.1 Overview 

Cell biology is a field of research that can benefit consioNa.hly hy ad­

vanees in computer vision and artificial intelligence (AI) tcchni<Ju<,s. Prim­

itive methods which require trcmendous human effort are stilliwing used 

by microbiologists for da.ta analysis. Great improvcrncnt.s in data ('011(,('­

tion, statistical analysis, and experimental control can he achieved by 

combining computer vision and AI principles with microscopie imaging 

experiments. An increased number of data and statistics can be gather('d 

with a greater amount of consistency if computer vision and Al principlc8 

are combined with image acquisition, 

Likewise, the field of computer vision can be advanccd by exploring 

the problems of cell segmentation, represcntation, and tracking. lIow 

is it possible that trained microbiologists can so easily distinguish œlls 

from t.heir background environ ment? Dy carefully watching rnoving œlls, 

they can quickly determine which tells are undergoing division and which 

cells are about to collide. Tracking individual eells and t.hcir offspring is 

quite simple for experienced microbiologists, however, it i8 .a. f.cdiolls and 

sometimes difficult ta..'!k for them to track many cells and monitor UwÎr 

behaviour simultaneously. 

Cell research would bcnefit considerably from automatcd techniques 

such as the Mitosis Recognition System (MRS) discllssed in this thesis. 

Tbe MRS is a computer vision tool developed as part of the more g(meral 
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automated ccII tracking system called TRACES (TRacking CEll System) 

[18]. TRACES is a real-timesystem for the automatic tracking and imag­

ing of cells as they move across a microscope's field-of-view. The stage of 

tlJ(' microscope is adjusted automatically in real-time by feedback from 

image proccssing results of the digitized microscopie scenes. After man­

ual initializa,tion, cell tracking proceeds without human input or manual 

adjustment. 

TRACES provides a means to simultaneously study shape and cell 

locomotion. Hence, this tracking system is very suitable for studying 

shape changes of cells during cell division (or mitosis) in conjunction 

with studying the tracks of their offspring. The MRS tracks generations 

of cells (within TRACES) by automatjcally monitoring their states of 

mitosis using computer vision techniques. 

CcII tracking refers to the monitoring of a living cell's position over 

time. Techniques range from using particular mediums in wbich cells 

lea,ye visible tracks [37] to real-time tracking and position recording 

hy computer. The former method has the disadvantage tbat a cell's 

physiological bl'haviour may be unpredictably affected by the unnatural 

medium requirl'd to record its movements. The latter metbod involves 

Uw use of videot.ape for capt.uring the traces of the cells within a single 

fidd-of-view. Because tracking is not automated, there is no adjustment 

of the microscope field when tbe cells move out of view. Tracking of 

individual cells is done later, at the convenience of the researcher by 

rcplaying the vidcotape and manually noting the cell paths. Automatic 

Computer vision systems are also sometimes used to track individual 

œl1s from pre-recorded images (see for ego [14] and [63]). 

Prc-recorded methods of ccli tracking have the disadvantage of being 

limit,('d to the field of view of the stationary camera used during tbe ex-

9 



1. Introduction 

periments. In these methods resf"archers must decide betwœn rccording 

a large number of cells at a very low resolution (or magnification) from 

recording fewer ceUs at a high magnification. High magnification is fine 

for shape analysis of ceUs which do not move very much, but for purposes 

of studying cell locomotion, high magnification (and hencc a small field 

of view) often results in ceUs moving out of the field of view, prcmaturdy 

ending the experiment. Low magnification, however, is appropriat.e for 

cell tracking, but ceU shapes cannot be analyzed because of low resolu­

tion. CeU tracks are typically much longer than the diameters of t,he cclls 

under study. 

The measure of ceU diameter is generaUy shorter than t.he lengt.hs of 

typical ecU tracks. Correlation of ccII shape and ccII locomotion is an 

interesting biological problem that requires magnifications high enough 

to perform proper shape analysis and a field of view wide ellough so t.hat, 

cells cannot locornote out of view. Automatic tracking and real-time 

control of the microscope stage aUow the effective field of view t.o be the 

extent of the ecIl chamber or slide, while affording a high magnification 

window required for high-resolution shape studies. 

The study of changes in cell behaviour, such as membrane shape adiv­

ity and ec1l1ocomotion from generation to generation providcs valuablc 

insight to many important medical questions, such as the me(:hanisms oC 

cancer [23], [48], aging [5], [1], and differentiation [10]. CcII division is 

the central activity of aIl of these important issues. An automatic rneans 

then, of determining and recording when ccli division occurs, and what 

happens to subsequent generations will greatly aid medical rcseardwrs 

in their quest to solve these medical puzzles. 

Present techniques to study cell heterogenity require injccting inert 

tracer dyes which are passed on to offspring [10]. Disadvantages of this 

10 
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1. Introduction 

method include evcntual dispersion of the dye after many gcnerations, 

and the unknown physiological effects the dye may have on the ceUs 

under study. 

TRACES and the MRS are developed for tracking cells in an undyed 

environment developed to simulate in vivo conditions [18]. The in vivo 

environ ment is thrce dimensional, unlike the corn mon two-dimensional 

environment created by microscope slides. TRACES has the ability to 

track cells in the direction perpendicular to the focal plane as weil as in 

th(' usual two-dimensional field. The MRS, in its present form, however, 

is bascd on two-dimensional images, and assumes that the cells being 

tracked do not move out of the depth of field of the microscope. How­

cver, the MRS has built-in mechanisrras to monitor other objects possibly 

appearing or disappcaring in the image plane. Tracking is disabled for 

cells which move completely out of focus. 

Advanced image processing techniques must be used to segment un­

stainell cells from their textured backgrounds. The segmented cells must 

th('n be processed by an appropriate shape representation that is inde­

pendent of cell size and position. Time-dependent state knowledge must 

be used in conjunction with the shape changes to determine the cell 

process state. Living cells are of particular interest to computer vision 

rescarchers who study shape morphology, curvature representations, and 

dynamic shape processes [41)] [40]. The dynamics of a "cell's world" 1 

are intcrcsting as weil from a knowledge engineering perspective. The 

hccll's world" can be defincd by a finite number of rules describing the 

shapes of cclls, their ancestry and their state. This world is particularly 

1 The use of the term "cell's world" is meant to emphasize a confined, limited 
cllvironment, such as that described by the well-known term "blocks world" used for 
cxample by [19]. 
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1. Introduction 

interestin~ in that it is time-dependent: cell states depend Ilot only on 

the present cell shape, but on the previous progression cf st.ates leading 

up to the present image. 

This thesis applies computer vi&ion and AI techniques to thc study 

of proliferating cells. The movements of living cells are automatieally 

tracked and the shapes of the cells are analyzed to detcrmine thcir states 

of mitosis. Once cell division has been detected, the new daughtcr eells 

are then tracked to continue the study of subsequent gcnerations. 

Ce Us are segmented from individual images using a rcgion-bascd 

thfesholding technique [601 enhanced to reducc non-cell artifads (for the 

mitosis application) and to allow segmentation of more than one ccII. Thc 

cell shape and center are computed using a fast multiplc-resolution skele­

ton method based on boundary erosion (13). The skelcton shapt infor­

mation, previous knowledge, and segmentation information arc mapp(!d 

into a fuzzy evidence representation which is thcn analyz<,d to producc a 

final fuzzy state set. CelI division is observed when the post-mltotic state 

has a maximum membership value relative to the other possible states. 

A new cell is then initialized for tracking, and the generation numbers of 

the two daughter cells are updated. 

In summary, this thesis lUAS several contributions. 

An adaptive &f:gmentation method has been applied to accurately 

segment multiple unstained cells. The method is based on the work of 

Wu et al [60], and expanded to suit the cell division problcm. 

A fast skeletoni7.ation algorithm and boundary rcpr(!scntation has 

been developed pé'.rticularly for the MRS application. It is modifi(!d from 

DilI et al's [13] multiple resolution skeleton approach to ernphasize both 

the shape's characteristic of mitosis and the computationp..l cfficiency r(!-

12 
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1. Introduction 

quired for real-time processing. The erosion nature of the skeleton al­

gorithm leads to an alternative definition of cell center for tracking the 

significant body of a cell. Unlike standa.rd center-of-mass definitions, the 

alternative cell center is based on the erosion process of skeletonization. 

This thesis develops a method of converting image data and mis­

cellaneous measurements into a representation of overall cell shape and 

state. The expcrt system uses matrices of rules, fuzzy weights, and time­

dependcnt processes to quickly convert the input dJ.ta into a fuzzy shape 

and statc. 

Finally, t,his thesis integrates the segmentation, skeletonization, and 

fuzzy processing into a single computer vision system which segments, 

analyzes, and tracks cells and their offspring by recognizing the major 

states of mitosis. 

1.2 TRACES: System Fonctions and Hardware 

The entire set of computations and tracking is implemented as a sin­

gle package called the Mitosis Recognition System (MRS) developed 

for a spcc:alized imaging application caHed TRACES (an acronym for 

TRacking CElls System) [18]. TRACES operates in a SUN Station 

cllvironrnent to proccss either previously stored :ma.ge sequences or real­

time images during actual tracking experiments. 

TRACES consists of six main functional components for real-time 

tracking experirnents: the environmental system, the positioning sys­

t('l11, system control, image acquisition, image processing, and image un­

derstanding. These functional components are shown in Figure 1.1. 

The MUS adds the additional Cunctional sub-component of image under­

~tallding or image description to TRACES, apart from the other main 
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Figure 1.1: TRACES Functional Components. The dou,d boxes surround 
the functions necessary for the off-line system and the real-time system as 
indicated. AfroWS indicate flow of data and/or control information. The ccII 
chamber and recorded data modules (enclosed by ellipses) are inputs to the 
real-time tracking functions and off-line analysis funetions respectiv('ly. 

subsystems outlined in [18]. 

The environmental control system is functionally independent from 

the irnaging and positioning cornponents. Hs role is to rnaintain the cclI 

charnber at a constant ternpcl'ature in a humidified and gas-controlled 

atrnosphere [18]. 

The positioning .~ystem has the function of moving the œil chamber 

so that any point along its three axes can be centered and focused within 

the field-of-view of the microscope and irnaging system. More than one 

cell can be studied during an experirnent by constantly rcpositioning UU~ 

stage for each cell before image acquisition. The hardware rcsponsihIe 

for the positioning function is a computer controllcd, Iinear, threc·axis 

positioning system and a Iocating fixture located beneath the rnountcd 

cell cham ber [18]. 
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System control is responsible for the overall high-level control of an 

eXfJcrimcnt, with a functional interface to the image processing, image 

aCCluisition, positioning, and environmental systems. The system con­

troller updates the positioning controller with new information from the 

image proccssing component, controls the image acquisition frame rate, 

and contlOls the gencral sequcnce of events during an experiment. The 

system controlling tasks are performed on a SUN workstation with data 

communication to and from the servo positioning controller, the peri ph­

f!ral controllcr, and the frame grabber (Figure 1.1). 

The im(lge acquisition component is responsible for the delivery of 

digital grey-levcl image data to the image processing function through 

the systcm controller. Hardware includes an inverted light microscope, an 

illumination and shutter controller, a monochrome video camera, a digital 

frame grabber, and an analog time-Iapse video recorder [18] (Figure 1.2). 

Real·time experiments may store image data on videotape, on hard disk, 

or store only the proccssed output data produced by the image processing 

and image understanding systems. Off-line experiments are performed 

with prcviously recorded images from videotape or hard disk without the 

necd of the posit.ioning and en'lironmental systems. 

The image processing function consists of tasks dedicated to the pre­

proccssing: segmentation, boundary extraction, and center of mass com­

putations, as well as the coordination and interface with image under­

standillg activitics. The ccli center positions are fed back to the system 

controllcr so that the updated information can be used for the positioning 

control system. This information, along with the boundary coordinates 

of th(' cclls, is stored on hard disk for processing and analysis outside of 

THACES. Ail image processing tasks are performed on a SUN worksta­

tion. 
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Figure 1.2: TRACES (TRAding CElI System) Hardware Componcnts. 
(adapted frQffi [18]) 

The understanding functions include reasoning about the shape pro­

cesses of the cells being tracked. Both the shape and mitotic statc of 

cells arc dctcrmined using a fuzzy-logic expert system which integrates 

time-dependent data in the analysis of mitosis. If the system determines 

that cell division has occurred, the information about the the daughter 

cells is used to create a new entry for the positioning control system. The 

image understanding functions of TRACES consists only of the Mitosis 

Recognition System (MRS) at present, but future plans includc t.h{! int{!­

gration of additional high-level tasks. These would include, for cxampl(!, 

three-dimensional analysis and classification of living cells. 
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1.3 Related Work 

It is difficult to summarize the related work within the soope of this thesis 

bccause of the many a.reas of research contained within its parts. The 

MilS system explores image segmentation and tracking of cells, biological 

shape analysis, skeletonization, and fuzzy expert systems. 

Other systems have bren developed to image, segment and track cells 

for a variety of applications ([57) [34) (45) [14] (40)). Cell image 

proccssing and shape analysis activities (generally done with previously 

storcd data) are becoming more and more prominf'at both in '~he fields of 

computer vision and in cell biology ([46] [63] [45] [40] [13]). The field 

of ccII imaging and automatic cell processing is becoming increasingly 

popular with the introduction of computer workstations and image pro­

ccssing packages. More specifically, ske/etal methods of shape processing 

and analysis applied to living cells are explored [40] [13] [46]. Tracking 

p;enerations of cells by means of recognizing mitotic states has not been 

developed elsewhere, to our knowledge, however, it has been explored 

to a cert.ain extent by Ferrie [14] and Wheeler [59] (unpubHshed). We 

believe we arc the first to develop a Mitosis Recognition System which 

is able to track and analyze dividing cells automatically in a real-time 

environment. 

Expert system approaches have also been developed for various proh­

lems relatcd to cell tracking or analysis of microscopie images ( [15] 

[36] [58]). Fuzzy logic systems applied to image processing problems 

art' adclrcsscd by [31], however, there are few existing systems applied 

to microscopie ccll shapes. Lee [30] appHes the concepts of fuzzy shape 

classification to three different configurat.ions of chromosome images. Our 

fuzzy shape concepts of ROUND, OBLONG, and COMPLEX applied to 
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cells are similar to the median, submedian, and acrocentric chromosome 

shape classifications of Lee. Lee's application, however, docs not involvc 

the problem of dynamic shape proces~eSj thcy are conccrncd most.ly with 

pattern classification problems. Fuzzy set theory applied to the shapes 

and states of dividing cells is also believed to be an original application 

of this thesis. 

1.4 Thesis Outline 

General biological aspects of the cell cycle and œil locomotion aw ex­

plored as a background to the main thesis (Chapter 2). These ccli hiology 

problems are discussed in terms of computer vision rescarch. Quant.i­

thtive and data measurement issues for biological analysis arc examin('(l 

with a brief discussion of other ccli tracking applications and methods in 

relation to the MRS system. 

The main thesis is divided into two important sections: a sedion on 

the image processmg principles ncedcd to first extract cclls amI hask 

shape inforrr.ation from raw images (Chapter 3), and a section on tilt' 

image understanding methods used to intelligently analyzc the prcpro­

cessed data for deciding cell shape and life cycle state (Chapter 4). 

The principles developed in Chapters 2 and :1 arc thell dcrnollstrat(!d 

in Chapter 5 by means of actual ecll experirnents. The rcsult.s, rncthod­

ology, and limitations are discussed before final conclusions are drawn 

(Chapter 6). 
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Chapter 2 
Background 

2.1 Cell Biology: The Cell Cycle, Cell Locomo­

tion, and Cell Shape 

Ali living cells reproduce by a process called cell mitosis. Although cells 

rnay <Jiffer considerably in size, shape, and behaviour from one type to 

anolher, lhe ba.~ic slages that occur during the cell cycle are corn mon to 

ail living cells, both plant and animal. 

The DNA conlained in the chromosomes of the parent cclI is repli­

eat(~d during mitosis so t,hat the daughter cells contain genetic informa­

tion identical t.o that of the original parent. The extent to which loco­

motory behaviour is inheriled is not known. One of the main purposes 

of the dcvelopmenl of the mitosis recognition and tracking system is to 

study t.hcse locomotory traits over several generations of cells. 

Standard ccll biology texts usually take a functional approach to de­

scribe the physiological changes which take place during the cell cycle. 

Figure 2.1 iIIustrates the processes which occur during a cell's :Ife cy­

de [2]. The stages of mitosis are: prophdSe, metaphase, anaphase, and 

tclophase. Interphase follows ccii division and precedes the oext mitosis 

sequence. These stages are based mainly 00 the internaI changes in the 

('Cil nucleus and the behaviour of the chromosomes. 

Plant c('lIs in gt'neral undergo the same internai processes as animal 

('dis during mitosis, however, certain types of plant cells do not exhibit 

the sam(! type of shape changes as individual free-roaming celIs, such as 
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Figure 2.1: The life cycle of a cell. The life cycle and the sta.g('s of mito­
sis are characterized by internaI changes in the ccli such a.'l changes in t'w 
cell nucleus and the replication and movement of the chromosollws. TlU' 
telophase stage, howevel, is also characterizp.d by the division furJYJu) of th .. 
membrane. (Adapted from [2] and [28].) 

blood cells. This thesis considers only unclusl.ered "frœ-roarning" animal 

and plant cells. 

The cell tracking system does not use the internaI b(~haviour and 

structure of the cells because the cells arc trackcd at a relat.ivdy low 

magnification and they are not stained, rnaking internai organelles diffi­

cult to st:gment. The ove raIl shape changes of the cclI boundary are used 

to determine the occurrence of cell division. A ccli cycle with a notat.ioll 

based on shape changes during mitosis is used to define the possihle (:ell 

states in the Mitosis Recognition System (MRS), as shown in Figur(! 2.2. 

Unlike the life cycle diagram of Figure 2.1, the shape cycl(! (Figure 

2.2) contains paths which allow backtracking from certain states to pr(!-
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Legend 

PU NUl: 
propnase-metaphase 
mitosis state 

PU KIT2: 
metaphase-anaphase 
mitosis state 

IaTOSIS: 
anaphasc-telophase 
mitosis state 

KIT SEPAR: 
mitosis separation 
(formation of two 
adjoining daughter 
cells) 

POST KIT: 
post-mitosis 
(complete cell 
division and 
separation) 

NORMAL: 
interphase 
normal cell state 

Figure 2.2: The shape cycle of a cell. The liCe cycle of a cell can be described 
by its se<!u('ntial changes in overall shape. The MRS determines the cell 
shape and state and uses the changes in state to predict the occurrence of 
('ell division. Note that not only is the shape important, but also the order in 
whidl th(' shape changes. Certain types of cells often undergo drastic changes 
in shap(' during the "normal" statej shapes which ma.y be characteristic of 
lat,(' stages of rnitosis. Certain state transitions are declared to be forbidden, 
surh as from POSLMIT back to MIT_SEPAR. 
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vious ones. Changes in cell shape may, under sorne situations, lead to an 

ambiguous cell state condition. For example, a cclI in the NORMAL or 

interphase state may exhibit roundish and figure-8 shape changes similar 

to the pre-mitotic states, but then revert back to a more complcx shape. 

It is not possible to distinguish the two conditions sinee the' bchaviour 

of the interna} structures (eg. the nucleus) is not prorcssed. llowever, 

since backtracking is allowed, when the ccli once again exhibits corn­

plex shapes, the system will recognize t.hat the celI i~ still in the normal 

non-mitotie state. 

Once the ceU is determined to be beyond the mitosis state and exhibit.s 

features of the mitosis separation in the MIT_SEPAR st.ate, cell divisioll 

and separation is then expected to occur in the next series of images. A 

ceU in the MIT_SEPAR state has an important shape feature consisting 

of two touching knobs. 

Figure 2.2 is only a simplified description of the shape cycle Ilsed ill 

the Mitosis Recognition System. The system actually uses a fuzzy state 

representation vr state vector rat.her than a single stat.e. The complet.e 

representation is described in Chapt.er 4 which include additional states 

needed to represent cclI collision conditions. 

Celllocomotion takes place only during the non-mitotie, NORMAL 

state. Free-living amoebae such as cellular slime-moulds and other free­

roaming amoeba-like cells such as fibroblasts and leukocytes change shape 

and move about during this stage. An othcrwisc stationary œil may 

produce many appendages which move about wildly white examining its 

Jocal environment. A ecIl will also locomote by extcnding pseudopodia 

to push and by attaching an ch ors to pull itself along a solid substratum. 

A study of these extrusions are crucial in understanding the fJ)echanisTIIs 

of eeU motion. The biological aspects of ccli rnoverncnt and bchaviour 
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are covered very weil in [28] and [12J. 

Cells exhibit characteristic locomotory patterns during the interphase 

period ([45] [12]). Cells of the same type, such as leukocytes, can be sub­

divid(!d into classes whose members exhibit similar track-patterns. The 

track-pattern features such as stationary waiting times, turn angles, and 

directional mernory times are being investigated. Little is known about 

the mechanisrns responsible for these cell classes, but active research is 

underway. Sorne studies have suggested that locornotory characteristics 

may be inherited from parent to daughter [37]. This is one aspect which 

can now be studied using the mitosis recognition and cclI tracking system. 

Thus, this research is expected to provide very valuable information for 

cancer and imrnunological studies [23J, [48]. 

2.2 Computer Vision: Image Segmentation and 

Image U nderstanding 

Living ccUs pose interesting problems for computer vision researchers. A 

ccli ran grow, shrink, translate, rotate, and change shape in any manner. 

lIow can a machine adequately represent such a creature? Even a moving 

pcrson does not undergo the t.ype of radical and unpredictable changes a 

ccli rnay expcriellcc. Most robot.ic vision applications deal with very con­

trolled environments consisting of rigid, well-defined objects. However, 

a ('c\l's world is reasonably confined and a ccll's life cycle changes are 

characterizcd by a limitcd number of functional states. Specialized com­

puter vision procedures can be developed specificaUy for experimental 

('onditions encountered in particular cclI applications. 

There are gellcrally two aspects to any computer vision problem: 

• the image processillg part needed to enhance or preprocess an image 
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and the extraction of data about the objects containf'd in the image . 

• the image understanding part which uses the data obtaincd by im­

age processing, along with expert knowledge or other information 

to produce a higher-level understanding of the image in terms of 

what the objects are1 how they are arranged, or how they arc be­

having. 

The image processing problems encountered in the application of ccII 

tracking are very challenging. Unstained ceUs blend very well with thcir 

background culture, making the membrane of the ccli very difficult to 

segment. The segmentation must also be performcd in real-lime so lhat 

the ccli can be tracked with an adequate frame-rate. 

Apart from these preliminary image processing and single object 

tracking problems, there are three main aspects of ccII behavioural re­

search of interest to the computer vision community: 

• In order to automatically track cells from generation to g(meration, 

a method must be devised to recognize cell division. The melhod 

must be able to distinguish division from other possible situations 

su ch as cell collision and subsequent separation (14]. 

• A meaningful representation of ccli shape must be construded to 

characterize the shape changes of a ccli over time. The repr(!Ren­

tation would help eell biologists study the activity of appendages 

during both the stationary period and the locomotory adivity. The 

relationship between the pseudopods and the direction of cell mo­

tion could then be studied ([33] [63] [13]). 

• The cell-path patterns in space and time are signais which CMI he 

analyzed using computer processing methods of pattern analysis, 
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digital signal processing, and stochastic theory ( [45J [9]). 

The present thesis emphasizes the first issue, but provides a founda­

tion for exploring the other two. The computer vision system in this 

thesis recognizes mitosis and tracks ceUs and their offspring by using 

skcletons (Chapter 3) to analyze the shapes in real-time. The skeleton 

approach can also be used for pseudopod study, as done elsewhere ( [13] 

[40]). The MRS records the skeleton data for further analysis. 

CcII posit.ions are also st.ored for pattern analysis at a later time. 

The location of the cell is marked by an estimat.e of the cell center; two 

definit.ions of the center are used in this thesis and compared. Analysis 

of the ecIl paths is not. done in this thesis. We emphasize that one of 

the main goals of this thesis is to provide a means for the automatic 

collection of these data. 

2.3 Shape Measures and Related Work 

Whatcvcr the mcthod of shape description, the ultimate purpose in object 

classification applications is to use the computed description to produce 

rncasurable data for the characterization of the important features of 

an object. The type of data and the chosen method of shape description 

dcpend upon the goal of the application, since an emphasis may be placed 

on certain fcatures under study. 

Most. shape a.pplications require that the measurements be invariant 

under image size or magnification, object rotation, and object transla­

tion. Living cells, in particular, move about in ail directions and are 

studied under different magnifications. Measurements that are invariant 

for thrsl' crit.eria are crucial for consistent study during different cxper­

irnt'utal condit.ions. Tht>re are various methods of shape representation, 
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for example, polygonal, boundary chain-code, and skelet,al [35]. Once 

an object's shape is clearly represented, important data such as f<'ature 

points and size or length measurements should be extracted l'asily. 

A shape's skeleton is a compact way of representing an object's form, 

combining both region and boundary information into a graph-likc struc­

ture [40]. Biological shapes are represented more appropriatcly by a 

skeleton-ba..c;ed description than methods based on strict goometrical con­

structs ([40] [6]). Civen a skeleton and the erosion time of each point on 

the skeleton, the original object can be reconstructe-J. TRACES docs not 

presently use the skeleton for object reconstruction purposes, but records 

the data for an efficient record of the important ccli shape changes dllring 

experiments. 

The trace of a skeleton is used in many applications for the recog­

nition of ~~jects with well-defined structure. The number of branches, 

lengths of the branches, locatioR of nodes, and angles of the branch(·s 

with respect to one another at a node are used as a graph reprcsentatioll 

for object recognition and classification problems. Blum and Nagel [7) 

used this type of conneded node information from the SAT (Symrnctric 

Axis Transform) to describe a child's face in profile. 

However, in this thesis, the principle motivation for using a skclcton 

representation is that meaningCul data measures can be cxtract(~d very 

easily to ultimately classify objects into shape categories. For example, 

the simi>le measure of end branch count is the numbcr of shape protru­

sions or extruding parts of an object. For a cen, protrusions indicat(~ 

pseudopods, and extruding parts indicate eithcr major pscudopod activ­

ity or the process of mitosis. Thus, a ceH which has very many protru­

'Jions or pseudopods would be categorized as a complex shape, indicating 

a normal cell behavioural state. 
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Only three major shape categories, combined with other knowledge, 

arc used to help dctermine the ccII state. These are ROUND, OBLONG, 

and COMPLEX. The complete shape description is actually a vector or 

fuzzy shape consisting of membership values in each of the three basic 

shape categories. 

Cells with COMPLEX shapes are never undergoing mitosis, so it 

HUmeeS for this application to h .... ve such a broad shape category. Other 

applications, such as motion or pseudopod analysis, would require a fur­

thcr breakdown of the complex shape category. 

The onset of mitosis is characterized by a very round shape which 

lasts for a significant period of time. The ROUND shape category is 

uscd to hclp determine this important state. The next shape category 

describes the elongation that must Collow. The skeleton of this OBLONG 

shape category remains very stable as the cell becomes pinched-in before 

cell division actually occurs. 

ln detcrmining an adequate shape representation for an application, 

it is important that one is chosen carefully in order to maximize the 

amoun! of both biologically interesting data and data needed for further 

system analysis. The sha.pe representation must also be quick to compute 

for real-lime processing during on-li ne cell tracking experiments. 

Many AI rule-based applications and computer vision processing algo­

rithms arc just too time consuming to be practical for real-time tracking. 

'l'he rate of imaging for real-time œil analysis depends upon both the 

fraftn'f's of the ccli to be studied and on the type of cell being used. 

The data requiring the most samples per unit time determines the imag­

ing rate. The measure of ccli position is needed frequently in order to 

monitor the movements of the ccli and to re-adjust the position of the 

tracking window SCJ that the ceU never moves out of view. Slime raoulds, 
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for example, need to be imaged at a rate from 10 to 30 s~conds per fra.m~ 

beeause they move about quite quiekly. B100d cells, howevcr, tend to 

move more slowly, and can be imaged less frequently. 

Relative to cell translations, cell shape changes during mitosis oc­

eur more slowly, and would not require proeessing as orten. Pseudopod 

analysis (when a eell is not undergoing division), would re<luire a fast 

frame rate beeause a cell's local extrusions may occur very quickly evcn 

if the cell's overall position is stable. Thus, as with any dynamic shape 

problem, seale aeross time must be considered in conjunct.ion with s(:alc 

across the spatial dimensions of an image ([26], [27]). 

eeU shape changes as related to pseudopod activity and locomot.ioll 

have been studied extensively by Levine, Noble, and Yousscff ([3:J] [63] 

[45]). eeu shapes are described by theÎr static fcatures which dcfine 

different properties of the cell under the subsets or sha,.,,;, location, struc­

ture, and motion. The set of properties descrlhing shape. include area, 

perimeter, cireularity, average bending energy, circularity and propcrties 

based on a polygonal approximation of the ceIl, such as a.ngle regularity 

and side regularity. This polygonal representation is also uscd to decorn­

pose a cell into its body and pseudopod parts. The quantitative shape 

properties of a ccII are then related to qualitative shape qualifiers. The 

!lhape property average bending energy {or example, has the following 

shape qualifiers assoeiated with it: very jaggy, jaggy, almost .mwoth , 

smooth, and very smooth. The average bending energy is defincd a.'! the 

average rate of change of the tangent along tIlt! oll:mdary [3:1]. Levine 

and Noble use the polygonal decomposition to create a labcled graph to 

represent the cell body and its parts [45]. Th(! graph description, (Iike 

a skeleton graph) is both translation and rotation invariant. 

Ferrie et al combine relevant shape data into feature vectors for (!ach 
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ccII region [15]. A vector contains the following important features: 

1) region centroid, 2) avera,ge intensity, 3) coordinates of the minimum 

bounding rectangle for the region, 4) a shape measure based on the ratio 

of length ovcr width of the minimum bounding rectangle, 5) orientation 

of the major axis of t.he region, 6) area, 7) perimeter, and 8) an overall 

boundary curvature measurement ([15] [14]). A reference vector based 

on the fcatures of a ccII about to divide is created to approximate the 

expected characteristics of a hypothesized daughter eell in order to per­

form the bcst matching of cells after division occurs. For example, the 

intensity of the daughter cells should approximate the parent cell before 

division, and the area should be one-half that of the parent. Problems 

of seale invariance are avoided for state classification sinee the features 

are matched using relalive measures. However, raw feature data (such as 

area and perimeter) are not seale invariant so would not be meaninglul 

under a eomparison of different data sets from different experiments. 

Our mcthod emphasizes skeleton data to deseribe the shape features 

of a cell. Other data, such as area and perimeter, are normalized in order 

to be mappcd consistently into fuzzy representations which are compara­

ble from one f'xperiment. to the next. This additional step of converting 

the raw (normalized) data and skeleton data into fuzzy mcmbership sets 

not only provides us with comparable data sets across experim€nts, but 

it also allows us to integrate different types of data into descriptive mea­

sures of overall shape and state. 
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Chapter 3 
Image Proce5sing of Living Cells 

3.1 Segmentation 

3.1.1 Introduction 

Cell shape processing cannot proceed until the boundaries of the cells are 

correctly identified given the input digitized grey-Ievel image. The pro­

cess of extracting objects or regions of interest from a raw image is called 

segmentation. The segmentation process for living, unstaincd eclls at a 

magnification suitable for tracking is a particularly difficult task ainec the 

cell boundary is difficult to distinguish from the non-uniform background 

texture. It is also desirable to segment ail possible cell candidates withiu 

an image window, and to distinguish cells from other artifads. 

A cell segmentation method specially designed for unstained, divid­

ing cells is being used for the Mitosis Recognition System (MRS). The 

basis of the method is the segmentation procedure proposed by Wu ct 

al [60], which was developed to aceurately find the hounding eontollr of 

a living een within a three-dimensional collagen gel. The image feat.ures 

that characterize cells under these imaging conditions arc thc grey Icvel 

intensity and the local variat.ion of this intensity. They have ov(:rcorrw 

most of the problems normally encountered in this type of segmentation 

problem, and the algorithm is practical for real-time proœssing. 

Their method is applied with the assumption that there is a .'1ingle 

cell within the image window to be segmented. The ccli is deterrnined to 

always be the largest eomponent round aCter thresholding. This s(:gmen-
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(a) (b) (c) 

Figure 3.1: Mitosis segmentation problem. (a) raw grey-Ievel image of cell 
near complete division; (h) preliminary segmentation of two cell parts; (c) 
final segmentation of single cell. 

tation rnethod was easily modified for the more general case required by 

tlw rnitosis traeking experiments. This application requîres the segmen­

t,atior! of ail eells wit,hin a window in order to determine the positions of 

the daughtcr cells after ccll division has occurred. To be robust under 

real experiment.al conditions, the segmentation method must be able to 

different,iate eells of varying sizes from smaller non-cell artifacts. 1'here 

may a1so be a problern dming rnitosis when a cell is in a figure-8 shape 

(Figure 3.1). The image of the ccli along the cleavage furrow tends to be 

lighter than the rest of the ccli due to the absence of internai organelles. 

lJnscruplllous segmentation using Wu et al's standard algorithm results 

in the ccII scgrnented into two halves be/ore the ccll membrane has actu­

ally dividcd. The object is still actually one ccU, even though the area 

arolln<1 t.he cleavage furrow is very li gh t, in contrast. A subsequent image 

may have a slightly darker c1eavage furrow, resulting in the segmenta­

t.ion of a single, figure-8 shape. This characteristic of division results in 

very unstable segmentation during mitosis - at the stage most crucial 

to ollr application. The enhanccd segmentation technique used by the 

MRS provides additional stability in the segmentation of cells undergoing 

division. 
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3.1.2 Segmentation Overview 

Wu et al's algorithm is a multi-stage strategy [60]. The image is first 

partially segmented into approximate regions by the application of a 

global threshold to the local variation of intensity. The variance at cach 

pixel is computed using a square mask centered at each pixel by summing 

th~ difference between the pixel intensity and the mean intcnsity within 

the mask. A minimum arror thresholding method proposcd by Kitt,ler 

and Illingworth [24] is used to segment the regions from the original 

image. This first variance thresholding step is considered to be a global 

method. 

These regions are then filled to obtain single, connect<,d rcgiolls with­

out holes using a component labeling procedure [60]. The rcsulting high­

variance regions may contain one or more objects wherea.~ the non-rcgiolls 

consist only of the background texture. The region of high variance 

provides a more ideal area in which to apply a final global grey-lcvcl 

threshold to extract objects, parts of objects, and other dark artifacts. 

This thresholding is now based on Otsu's optimal thresholding procedure 

[47]. In this application, cells are assumed to be darker than thcir back­

grounds. The segmentation procedure can easily he reversed to cxtract 

light objects rather that dark objects. 

These thresholded components are expanded, contracted and rnerg(~d 

together locally u3ing a component labeling approach [lS] so that objcct 

boundaries and parts become connected and a.ny remaining hoicli a.rc 

filled. Wu ct al's application then considers the largest cohesivc object 

to be the imaged cell. 
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3.1.3 Adaptive Size Thresholds 

The application of Wu et al included the assumption that a single cell 

is being segmentcd from a given image window, so the concern was with 

cxtracting the largest high-variance region and then the largest compo­

nent within this region. In the present implementation of this method 

for the rnitosis system, preprocessing does not assume that the largest 

component. is the desired cell. The Mitosis Recognition System attempts 

to rccover ail possible cclls from a given image. It does not assume a 

priori that there is a single cclI within the image window, however, other 

crit.eria arc lIsed to help filter out extraneous non-ccli particles. 

The image segmentation consists of two main steps: 

1. t.he segmentation of the high variance regions (Figure 3.2(a)(b)), 

and 

2. the segmentation of the dark objects or components within the 

rcgions (Figu re 3. 2( c)). 

Filt,ering is pcrformed during each of these steps. 

Region Filtering 

The image is first segmented into high variance regions, as described 

above. The non-regions are discarded, since they should not contain eells. 

The forgIOns arc examined, however, and sorted according to their total 

ar<'é\ in pixels. Any regions which are sm aller than the minimum region 

SlZC do not rontain cells, and are discarded. The size of a region depends 

upon the mask size used in the variance computation, and the computed 

variance threshold, but nonetheless must al ways be larger than a typical 
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cell if the region actually contains a cell. Figure 3.2(b) iIlustrat(·s th(' 

high-variance regions before size filtering. 

The minimum region size can either be set as a stati<- paramet,t'r 

determined by typical cell sizes for the application, or s('t as a dynamic 

parameter for applications in which cell sizes can change drastically (ic. 

orders of magnitude) for different tracking experimt'nts. '['he mit.osis 

application performs sufficient.ly with a pre-determined value. 

Component Filtering 

Each of the remaining regions is now thresholded and their components 

labeled and filled. The sizes of t.he components are comparcd to a min­

imum component size threshold, and the small, extraneous ohjects are 

discarded . 

The mitosis application computes the minimum componcnt sizc from 

the size of the largest component found within the winclow, which is 

expected to be a cell. In the present implementation, the minimum com­

ponent size is equal to 25 percent of the size of the largest componellt.. 

However, if the largest component is very smaU, and is sm aller than a 

predetermined absolute minimum cell size, we set the minImum C071tlJO­

nent Bize equal to the absolute minimum cell size. In this casc, w(! do 

not expect to find ceUs within the image window. 

The advantage of having a dynamic minimum componcnt. threshold is 

to allow the application to track different cell types of moderately varying 

sizes and magnifications, and during different stages in cell growth. For 

example, a cell just before division will be twicc t.he size of its daughter 

cells. We allow a 75 percent difference betwcen the arca of the largest 

component and the smallest component within an image window. 
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(c) 

(d) (e) 

Figure 3.2: Multi-stage segmentation. (a) a cell image; (b) the approximate 
regiollsj (c) component extraction; (d) final binary image after expansion, 
merging, and contraction; and (e) objects on original image. 
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3.1.4 Component Data 

The Mitosis Recognition Syst.em differentiates neighbouring ceUs which 

have moved together by ce1l10comotion from two neighbouring daughter 

cells. As weIl, the system attempts to recognize the differencc betw(,C'1l 

the figure-8 shape formed by two cells which are in contact and a ccli 

undergoing mitosis. The segmentation of a cell undergoing mitosis may 

also falsely separate the cell into two parts be/ore the ccll has actually 

divided. It is very important, then, for the system to gather as much 

information about the neighbourhood of a cell as possible. Informat.ion 

about very close neighbours can be retrieved from further compoll('nt. 

processing. These condition.', must be carefully monitored and recorded 

as input data to the expert system. This section outlines the ext.raction 

of relevant data during the segmentation proccss, but the analysis of 

these data is reserved for the chapter on image understanding. 

The following data are output from the segmentation proccssing and 

used in subsequent operat.ions: 

• a binary image consisting of black regions corresponding to objccts 

• a list of component sizes 

• a list of cent.ers of gravit y for each component 

The set of steps listed below describes the entire segmentation proce­

dure with the emphasis on the extraction of component dat.a nceded for 

the expert system analysis. 

Preliminary Segmentation and Filtering 

Preliminary segmentation (described by Wu et al [60]) is first performed 

to compute a preliminary binary image of celJs, ccII parts, and artifacts. 
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As discussed at the beginning of Section 3.1.2, rough high variance re­

gions are computed, and any holes in these regions are filled. Regions 

smaller than the minimum region sire are discarded, and Otsu thresh­

olding [47) is performed on each remaining region. 

The thresholded objects are then processed one at a time using a 

component labeling procedure. [18]. The sizes of each component are 

determined, and components with a size greater than the minimum com­

ponent sire (see Section 3.1.3) are expanded, merged, and then contracted 

[18} to fill in holes. 

At this stage each component ;s a solid object whose boundary can 

casily be extracted by tracing its contour (Figure 3.2(c». 

The black objects represent cells or parts of dividing cells. The next 

step expands the ob jccts in their local region 50 that any parts that 

should be connected are merged and any almost touching cells are joined 

together (Figure 3.2(d)). This region-based method of determining local 

neighbours avoids the difficulties of a boundary-based approach which 

would requirc computing and evaluating the nearest Euclidean distance 

betwccn ail boundary points of neighbouring objects. 

This step is accomplished by expanding, merging, and contracting 

the cntire set of components within the image. The contraction is per­

formed at a slightly smaller factor that the expansion, so the components 

cxperience a slight increase in area. 

The segmentation is now complete, and the resultant image is now 

lIscd for further shape analysis. It is important to stress that this output 

binary image may contain touching or merged eomponents. Subsequent 

object extraction (by boundary tracing) from this binary image may not 

match th(' originallist of components sinee two neighbouring components 

may have bœn merged into a single object. A comparison of the com-
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ponent data and the final object data is important for the expert system 

analysis at a later stage. For example, there are four componcnts in 

Figure 3.2(c) and (d) but only three separate objects. 
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3.2 Skeletonization 

3.2.1 Introduction 

The first step in the image processing of cells is to complete the segmen­

tation: the preprocessing required to transform a grey-Ievel microscopie 

image into a binary image consisting of black objects representing cells 

and white background. The next step in the goal of describing the shapes 

and states of the cells is to quantify the position of the cells by exactly 

locating their boundaries. A linked boundary chain representation de­

scribes the location of a boundary point's immediate neighbours along 

the coutour. This chain in itself provides shape and contour informa­

tion about objects, and certain relevant information is retained at this 

stage for the expert system. In particular, the curvature extrema of 

the houndary are evaluated for critical convexities (eg. corresponding to 

sharp protrusions) and concavities (sharp indentations). The boundary 

chain and its set of convex critical points are now used to initiate the 

skclelonization. 

Sever al methods with correspondingly different nomenclatures exist 

to reprcsent what is called skeletonization ([13], [39], [40], [61], [54], 

[44], [43], [8], [4]). Other terms widely used to represent equivalent or 

almost cquivalcnt shape representations are the SAT (SymTr.etric Axis 

Transform) ([7], [49]), and the MAT (Medial Axis Transform) ( [55], 

[29], [22]) as weIl as several others [39]. The skeletonization method 

and shape representation used in the Mitosis Recognition System are de­

riv<'d from the skcleton approach of DilI et al [13]. Other skeleton-based 

rcpr<,sent.at.ions important to a variety of other vision applications are 

d('scrihcd very weil in [40], [39], and [41]. A skeleton consists of thin, 
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one-dimensionallines which retain the connectivity of its original closcd 

boundary shape [13] and are medial between the boundary points [49]. 

These lines can also be defined as the locus of the centers of ail maximal 

disks in the object ([49], [40]). The radius of the maximal disk corre­

sponds to the width of the object at the disk's center. Both the radius 

function and the corresponding skeleton points arc required for accuratc 

reconstruction of an object's boundary from its symmetric axis or skelc­

ton. Alternatively, skeleton points can be defined as the points at which 

propagating wavefronts meet when initialized on the boundary [13]. Ali 

of the above definitions of the skeleton are based on a continuous, two­

dimensional analog space (the natural environment of biological shapes), 

rather than on a discrete rectangular grid. The skeleton rcprcscntation 

was originally developed because of its particular relevance to biologieal 

shapes l7] and processes of growth and change [42]. Practical image 

processing algorithms, however, must redefine these analog reprcsenta­

tions to be suitable for digital computations. Skeleton representations 

have been found to be very useful in the description of the shapes, move­

me,ts, and pseudopod growth of living cells ([13], [40), [39]). Leymarie 

uses dynamic skeletons on sequential cell images to take advantage of tlw 

shape similarities between successive frames ([40), [391). Dili ct al [13] 

use their skeleton approach to represent pseudopods or protrusions of the 

cell membrane over several resolution seales. A skeleton represcntation 

applied to real, digitized, and less than ideal cell images must he 1) ro­

bust in the presence of noise, and 2) guarantee a connected set of pixels 

in order to be useful for further biological analysis. Real-timf! proccssing 

for tracking applications has the additional constraint that it must be 3) 

fast and efficient. 

The Mitosis Recognition System bases its skelet.on approach on the 
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work of Dili et al in order to satisfy these three major requireti!~!!t~ cLnd 

because of its suitability to the description of living eells. However, sorne 

modifications were required to suit the application of mitosis rather than 

the study of pseudopods. Sorne features of DilI et al's multiple resolution 

algorithm were in fact simplified because of the simpler, more roundish 

shapes which evolve during the life cycle of a ceIl. 

This section first overviews our changes to DilI et al's approach and 

outlines the general steps involved in producing skeleton data from a 

binary image. The specifie processing steps are then described in detail. 

3.2.2 Outline 

Dili ct al [13] state that the representation of a pseudopod must be 

flexible in order to capture both locally convex contour segments as weil 

as more globally convex segments. They are not so concerned about 

spuriolls skclcton branches because any branch that would be classified 

as noise would only persist for a short period of time and they do not 

want to miss small perturbations that could eventually form pseudopods. 

Dili el al propose a construction of a skeleton l'epresentation comprising 

several seales; the scales are based upon the evaluation of the contour 

at different resolutions using an n-code computation. Spurious or noisy 

branches that do not persist over time are eventually eliminated. 

A significant contribution of DilI et al's algorithm is its ability to 

combine b01tl1dary centered information at different scales with regional 

information provided by a skeleton approach. This is achieved by first 

prcprorcssing the boundary chain-code to determine significant convex­

itics or critical points, and then initializing the skeleton processing with 

th('sc fcatufc points. The skeleton processing is likened to a thinning or 
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erosion process, but the boundary to be eroded is always rc-(~valuated 

for collapse points at which new skeleton branches may begin. LJnlike 

Arcelli's algorithm [3], significant convexities are only computed for the 

object's original boundary since Dili et al's original motivation was the 

capture and representatioD of prolrusions of the ccli membrane or bound­

ary. 

Our mitosis application, however, is not dedicated t.o finding and ac­

curately representing ail potential pseudopods. We are concerned mainly 

with representing general shape types over the life cycle of a ecll. Thus, 

protrusion extremes, such as either very large protrusions or very small 

protrusions, must be carefully analyzed as follows. Firstly, the figure-8 

shape which is often indicative of mit,osis could be mistakcn for a large 

pseudopod. Sorne means should be established to help different.iate large 

pseudopods from a figure-8 shape. Secondly, small segmentation arti­

facts (or noise) could be mistaken for very small, local pseudopods that 

would make the skeleton unreasonably complex. Unlike t.he pseudopod 

application of Dill's, we are not conccrned with catching the formation of 

pseudopods as soon as they occur; wc are more conccrncd with avoiding 

noisy artifacts. Local protrusions that are not noise will he proœss(!d 

when they become more prominent. 

These two points emphasize the two extrcrnes of scale. W(~ do not. 

want skeleton branches ending on critical points to rcpresent very glohal 

protrusions, Ilor do wc want spurious skeleton branches caused hy a noisy, 

discretized boundary. A significant convexity that is found should have 

its associated critical point, hence skeleton end point, lie on a local con­

vexity if one can be found in the region. Significant convcxities are gen­

erally attributed to protrusions which rcpresent pscudopods. 

The algorithm used for contour processing in this thesis resolvcs thesc 
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two issues, respectively, by eonsidering eonvexities at two seales: 

1. an extremely local seale that evaluates small protrusions or noise 

by examining a boundary point 's local neighbourhood. 

2. a more global seale that is e"aluated using an n-eode on arcs of the 

boundary. 

The local seale would find isolated eritical points (ealled multiple 

points in Section 3.2.3), whereas the n-eode method used for the global 

protrusions would find signifieantly eonvex arcs along the boundary. The 

mid-point of the arc is taken to he the skeleton end-point, unless a local 

protrusion also exists along the arc. If more than one local protrusion is 

found along the eonvex arc, only the center one is ehosen to begin the 

skelet.on braneh. Other local protrusions (ie. ones not also within the 

global arcs) are diseounted as noise. The signifieant critieal points along 

the houndary are now marked as skeleton points, and the erosion of the 

object can begin. 

Large protrusions whieh were not found to have signifieant eonvexities 

will have corrcsponding skeleton branches once the erosion boundary 

collapses in the interior of the ccli. This includes the protrusions whieh 

occur during the figure-8 mitosis state. 

Figure 3.3 illustrates the critical points and skeleton end point results 

for different types of protrusions. The figure-8 shape of mitosis should 

not contain significantly eonvex points beeause of the very smooth, global 

shape of t.he protrusions. Similarly, other large, global protrusions have 

skelctons whirh do not end on a boundary critical point (Figure 3.3 (a)). 

Only protrusions which end with significantly convex boundary points 

arc candidates for having a skeleton which hegins with a critical point 
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(a) (b) (c) (d) 

Figure 3.3: Skeleton end points and protrusions. (a) very large knobby 
protrusions characteristic of mitosis; (b) two significant pseudopods; (c) a 
protrusion en ding in a significantly convex critical point; (d) a com plex skelc­
ton. 

(Figure 3.3 (b),(c)). Multiple pixel noise on the boundary is filtercd so 

that spurious skeleton branches are not created for very local protrusions. 

An input. binary image of a ccII is transformed into data to be used by 

the image understanding processing module (Chapter 4) in the following 

steps, detaited in the following sections in this chapter. 

First, the boundary is preprocessed in order to extract significallt. crit­

ical points. A linked boundary array must be extracted from the binary 

image, the n-code computed, and the significant convexities extracted. 

Secondly, the object is eroded according to certain criteria, leaving 

only its skeleton behind. 

Finally, the skeleton itself is evaluated to extract data pertinent to 

the expert system processing of the MRS. 

3.2.3 Boundary Preprocessing 

Linked Boundary Extraction 

After segmentation, the resulting binary image consists of object rcgions 

and background regions. The first step in the subsequent analysis is to 

extract and represent ail of the individual objects or connected regions 
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in the image. Because our skeletonization procedure first analyzes the 

bOllndary berore erosion, a boundary-bascd representation must be used 

for object extraction. 

The algorithm to extract the objects is straightforward. The binary 

image is scanned pixel by pixel untH an object pixel is found which neigh­

hours a background pixel. This object pixel is recorded as a boundary 

point so that we now have three types of points: object points, back­

ground points, and boundary points. The remaining boundary of the 

object is then traced in a clockwise direction. The search for the next 

boundary pixel is started using the orientation of the previous boundary 

point as an indicator for the next search starting position. The contour 

tradng continues until the original starting position is reached. Boundary 

pixels may he counted in the contour more than once, such as for pro­

t.rusions of a single pixel width (see Figure 3.4). Boundary point.s which 

arc counted more than once are are called multiple boundary points. 

On(Oc t.he bOllndary tracing for a single object is complete, remaining 

objects are found and traced in the image. If an object has holes, its hole 

boundary will also be traced, however, the segmentation and preprocess­

ing procedures in the previous section eliminate ail possibilities of holes. 

This simplifies the algorithmj however, others have explored the issues 

of object holes in this context [401 [611. 

The boundary-finding algorithm concludes when the entire image win­

dow has been scanned, and there are n boundary lists, one for each object 

round. Note that this step only requires a single scan of the image win­

dow plus the traeing of n object boundaries. 

Tht' total Humber of objects found in this step is recorded for later 

('valuation in the expert system. This number will be compared to the to-
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:Il ----4 .... 

1 (3)~f~(1) 
(4) ~ (0) 

(5) (7) 
(6) 

l-Code 

.u1tipl. boundary pointa 

Figure 3.4: Finding the linked boundary chain. The boundary is extracted 
in a clockwise direction, assuming the image is scanned from top to boUom, 
row by r?w. Notice the single pixe)·width boundary protrusioll which results 
in the boundary pixels 10 and Il being reprcscnted again as cntrics 14 and 
13 in the boundary chain. A chain code or 1-code is assigned to each bouml­
ary pixel based on the relative positions of a pixel's immediatc boundary 
neighbours in the chain. This number represcnts a discrete local cllrvatllrc 
at the boundary pixel. 
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tal number of components found in the previous segmentation step. The 

length of cach boundary is also recorded, and objects whose boundaries 

are shorter than a previously set parameter are not processed further. 

The contour tracing algorithm describcrl above is similar to the meth­

ods used by Leymarie in [40] and by Xia in [61]. However, the main 

differencc is the recording of the multiple boundary pixels during the 

tracing. The ncxt steps in the skeletonization process analyze only one 

object at a time. 

Boundary Multiple Points 

Bdorc the boundary is evaluated using an n-code procedure, boundary 

points and thcir immediate neighbours are studied {or very local protru­

sions that could either be noise, or be at the end-point of a potential 

skeleton bran ch . 

A boundary pixel is a candidate for this type of protrusion (termed 

a multiple point) if the pixel [13]: 

1. is travcrsed more than once during contour tracing, 

2. has no ncighbours which are objects, and 

3. has at least one direct neighbour which belongs to the contour but 

is not one of the two direct neighbours along the contour. 

Boundary points which are traced more than once are already marked 

with values indicating their multiple st.atus (see Figure 3.4). 

Th(· second condition is easily checked by examining the local neigh­

bourhood of a boundary pixel for object points. If the point does not 

have an object neighbour its status is recorded as a multiple point. 
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The final condition is also determined easily by checking for boundary 

neighbours directly North, East, South, or West of it which are not imme­

diately before the pixel nor immediately a.fter it in the linked boundary 

Hst. 

Chain-Code and Boundary N -Code 

An advantage of a boundary or contour representation for a shape is 

the conversion of the two-dimensional information into a periodic one­

dimensional signal [51]. There are severa) approaches for analyzing an 

object's shape once the boundary has been obtained [35]. Most corn­

monly, a representation of local curvature is computed in order to classify 

regions of constant or sloping curvatures and to find interesting feature 

points or crifical points which occur at discontinuities in curvat,ure. It 

is important for the application of cclI shape that the method of con­

tour representation be relatively invariant. to translation, rotation, and 

dilation because living cells change size and move about unpredictably. 

It is most important that the contour representation chosen is appropri­

ate for discrete ima.ge data and is easy to compute for real-time imaging 

applications. 

A common method for representing discretc contour data in a onc­

dimensional signal is the chain·code approach, first introduccd by Free­

man in 1961 ([35], [16]). It is a discrete orientation representation in 

that the numbers from 0 to 7 represent orientation angles in H1u/tip/(!s 

of 45 degrees from one boundary pixel to its neighbour (s(~e Figure :1,11). 

This is a very coarse representation, so in order to be a usefu/ rncasur(! 

of curvature, a symmetric, low-pass filter is often used to smooth out ttl(~ 

orientation angle over several pixels, depending upon the d(~sired reso-
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lution. The resulting curvature rneasurement is often referred to as the 

Tt-code ([13], [35], [17}). 

Th(!re are several problerns inherent in the chain-code rnethod which 

are explored in detail by Leyrnarie et al in [401, and [381. These problerns 

indude c1iscrepancies around I-pixel thick depressions and protrusions. 

lIowever, the present application of using the chain code to help deter­

mine signifkant convexities for cell skeletonization is a simple one. Very 

accu rate curvaturc rncasures and sophisticatcd boundary analysis are not 

necded. We also integrat.e multiple boundary point information, (char­

acleristic of single pixel protrusions) with the n-code approach which 

avoids sorne of the difficulties of the chain-code approach discussed by 

Leyrnaric et al. 

A triangular mask fAn(i) is used to perforrn the low-pass filtering. 

The chain code c~ (or l-code as it is commonly called) is correlated with 

t.h(' triangtllar mask fAn(i) to produce the n-code c~ as in [131: 

c~ = fAn(i) xc! 
k=n 

= L fAn(k)c:+ k 
k=-n 

k=n-l 

(3.1) 

(3.2) 

= ne! + L (n - k)(C!_k + e!+k) , n ~ 1 (3.3) 
k=1 

where x dcnotes correlat.ion. Dili et al [131 evaluate the difference be­

t.wc('n using a triangular mask and a Gaussian kernel in the discrete case, 

and find that th~y yield almost equivalent results, though the Gaussian 

ha. .. sonU'what, hettcr low-pass characteristics. 

W<' hav(' d('cided to adopt the triangular rnask because of its simple, 

int,('gral formulation. The algorithm we have developed never needs to 
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compute a non-integral number. 

Normalization is necessary to maintain a consistent Cllfvaturc reprc­

sentation over changes in scale so that scale-independent features can he 

compared. The normalized n-code is computed by first realb'.Ïng that 

n-code values of an arc with constant curvature should he the saille for 

ail values of n. In the case of the arc of constant curvaturc [13J: 

e = c; j = 1 - n, .. " n, .. " i + n . 

The n-code is evaluated as [13]: 

k=n-l 

ci = nc: + L (n - k)(cLk + C!+k) 
1.=1 

k=n-l 

= ne + L (n - k) 2c 
k==1 

k=n-l 

= e( n + 2 E (n - k)) 
k=l 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

Since the normalized n-code of an arc of constant curvature must always 

equal unit y, the computation for a normalizcd n-code bccornes [1;J]: 

The value of n for the computation of the n-code was chosen to b(! a 

constant percent age of the bOllndary length so that cells of varying rnag­

nifications are processcd with n-codes representing the sarne strelchcs of 

arc along their boundaries. This resolution n would be choscn for the par­

ticular application, or in the case of Oill's multi-rcsolution approach [13], 
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severa) different values of n are chosen for a hierarchical shape analysis. 

We determincd an appropria,te value of n by experimentally computing 

hundrf!(ls of skdetons of cell shapes exhi~iting a variety of mitotic states. 

We varicd both the n-code and the value of the convex filter (discussed 

below) to obtain skeletons of va.rying numbers of branches and branch 

lengths. The present version of the Mitosis Recognition system uses an 

n equal to 7 percent of the boundary length of a given shape (rounded 

t,o the nearcst integral pixel), but values from 4 to 12 percent would also 

produ("(' good rcsults for the mitosis application. A minimum value of n 

is set t,o 2 pixels to avoid possible aliasing effects [13]. CeU houndaries, 

however, are expected to he much longer than 30 pixels, so the minimum 

n-code of 2 would rarely be used. 

A Itlrgc value of the normalized n-code ë:' corresponds to a point 

of rdativdy 10111 curvature. Very large values correspond to significant 

rOllrof/;lit Il which may indicate necks of protrusions or the cusps of the 

mitotic figure-8 shape. Low values of the n-code signal significant con­

vexities, representative of sharp protrusions or pseudopods. 

Critical Point Extraction 

Convcxity and concavity thresholds or filters are defined to find points 

ami conJ1('ct('d points of arcs which would he significantly convex or con­

rave for the mitosis application. Significant concavities are not used for 

th(' skdeton processing, but the data provide sorne information to the fi­

nal ('(~ll shape and state evaluations. Significant convexities, however, are 

<:rudal t.o t.h(' initialization of the skeleton algorithm. The processing for 

bot.h arC' tilt' saille, exccpt for the threshold evaluation described below. 

:?lS~ Many applications, including DilI et al [13], use the normalized 
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n-code result (Equation ( 3.9)) compared with convexity and concavity 

constants to determine critical points for any given size of shape. We, 

instead, define dynamic thresholds which depend on n2 , rathcr than cml­

stant thresholds and use the unnormalized n-code computation (Equa­

tion ( 3.8)) in our algorithm. The final critical points arc the only data of 

interest to uSi we do not use the n-codes for any further proccssing. The 

Dormalization, however, is still important, and this is actually pcrformed 

implicitly during the filtering since our filter parameters vary as n2 • 

The advantage of this approach is the avoidance of using real numbc .... ~ 

by eliminating the n2 division of Equation ( 3.9) during norrna!ization. 

Renee, the convex labeling procedure completes very quickly, while re­

taining the advantages of normalization. 

The dynamic convex tconvez and dynarnic concave tconcat.e thrcsholds 

are computed as follows: 

(3.10) 

(3.11) 

The constants kconvez and kconcave are pararneters of the system and O(!cd 

Dot be changed. 1 

Boundary points are marked as significantly convez if the C(luation 

(:1.12) 

is satisfied. For concave processing, significantly concave. points arc 

1 Appropriate values of keonvez and A:concCllle are 840 and 910 rr.spectively. 
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marked if the equation 

ci x " ~ tconcGve (3.13) 

is satisfied. The multiplication constant K. is used to ir.c!"f"a.Cit'. the value 

and the precision of the threshold required, 50 that a large integer number 

is used instead of a real number. 2 

The Ilcxt step in the boundary evaluation is to determine the final 

critical points from both the set of significant convexities and the previ­

ously d"termin('d multiple points. 

'J'lU! lisl of significantly convex points is traversed, and any convex 

tU'l'S an' r('duel'd to isolated critical points, If no multiple points exist 

along the arc, and no multiple points exist within n of the arc midpoint, 

the arc midpoint. is chosen to be a critical point. 

Othcrwise, if one or more multiple points exist within the significantly 

COIIVCX arc, or within n of t.he arc's midpoint, the closest multiple point 

is re-Iabeled as a critical point. If two multiple points are equally close 

t.o t.he are's rnidpoint, the midpoint is chosen as the critical point. 

[solal,('d COIIVCX points are considered as arcs of length one (1) and un­

d(~rgo tlw same processing as thp :"ïl:S llbove, Multiple points, then, which 

ar(' quit.e close to convex points will be chosen as the critical points rather 

t.hall tlll~ ('onv('x point. itsclf, This is donc in order to more accurately 

lora!.,' ~lohi\1 prol.rusions within the local protrusion it encompasses. 

2'1'1 ... valut' of K. prcscntly used is 225, This number is arbitrary, but should be 
high t'Ilough t,o allow a significant integral range between the chosen convex threshold 
kro .. ",.r and tht' concave threshold kconc/Jve' Note that the choice of kconvez and 
k ro .. rc ..... (Icpt'nds upon the valut' of le. 
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3.2.4 Boundary (Grassftre) Erosion 

The object '8 boundary is now initialized with a list of of critical points. 

Any remaining points which are marked as multiple are removcd for this 

first iteration only. Note that this means that multiple point.s whirh do 

not lie on significant convexities are discarded. For the first iteration, aIl 

boundary points except the critical points are removed from t.he objcd. 

The boundary is now traversed again to produce a new linkcd-chain of 

boundary coordinates. Multiple points are also marked and evaluated a.. .. 

was explained in the previous section ( 3.2.3). The critical points (carried 

over from the previous iteration) are marked again on the boundary 

so that they are not accidentally removed during subsequent iterations. 

Now ail boundary points, except multiple points and critical points, are 

removed from the object. Boundary extraction, multiple points marking, 

and erosion, continue untit no more pixels can be crodcd . 

This preceding crosion procedure thins the object down to a OJ1(~ or 

two pixel thick skeleton. It is important to perform post-processing to 

thin the object to a single pixel width so that the length and area of the 

final skeleton can be compared to skeletons of other cells. Any fast, thin­

ning algorithm can be used as long as a single pixel width is glJarantccd 

and the skeleton remains connccted along any pixel's cight ncighholJrs 

(for instance, see [56], [53], [64], or [65]). Our algorithm is loosely 

based on that of Zhang and Wang et al [65] and Zhang and Sucn [M]. 

3.2.5 Skeleton Analysis 

Our boundary extraction algorithm (Scction 3.2.3) is also uBed to tra­

verse the final skeleton. The boundary of the skcleton, however, will have 

ail of its points (except end-points) traversed more than once b(!cau!ol(! Hlt! 
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Rkclcton ha.'i a single pixel width. The resulting skeleton is analyzed to 

provide pertinent data to the expert system evaluation of an object's 

shape. 

l''irst.ly, t.he number of exterior skeleton branches is computed. This 

is usually different from the number of original critical points because 

Rorrw Nkeleton branches bf"gin where the erosion collapses in the interior 

of the object. This is very easy to compute because of the nature of the 

thin skeleton: skeleton end-points are simply determined as boundary 

point.s which are not traversed more than once. Interior branches are 

determined after external branches are removed. 

In addition to evall1ating the size and number of skeleton branches, an 

appr()xirnat(~ orientation is computed for each branch by approximating 

individual branches as straight segments. This approximation is valid in 

1II0st cases. Ilowever, situations where this approximation is not good 

occur for cells with cOlnplex shapes. These complex cells have other 

featurcs which are more significant than the orientation of the skeleton 

brandu's (S(OC Chapter 4), so a poor orientation measurement has little 

oVNali eff(·ct on the final computation of state. 

Adjoi ning exterior bral!ches are added together as if they were force 

vectors exhibiting a magnitude and a direction pointing away from the 

cent.er of the cell (Figure 3.5). In this manner, the whole skeleton is re­

duccd to a single line segment of a particular magnitude and orientation. 

The skcleton vecto,- provides valuable information about the nature of 

th" ft'll's shap('. 

If t.h{> ('(,II is <luite round, or very circularly symmetric, the skeleton 

V('('tor I('ugt.h will be very short. 

If the cdl ha..o; several significant pseudopods pointing in sorne general 

dircdion. tht' resultant skeleton vector will be quite long, and oriented 

55 



1 

(a) (b) 

3. Image Processing of Living CcUs 

resultant 
skeleton vector 

Figure 3.6: Skeleton Branches as Force Vectors. A stationary ccli would 
have a net zero force, but the skeleton bran ch of a mitotic shape (a) demon­
strates the opposing forces between the two parts. A cell undergoing motion 
has pseudopods charactcristic of its direction. In fact, if the approximated 
skeleton branches are summcd âS vectors, a net force is computed, pointing 
in the direction of possible motion (b). 

in the general direction of expected cell motion (Figure 3.5 (b)). 

During mitosis, the simple elongated shapes naturally produce vec­

tors which indicate the splitting forces of the two halves (Figure 3.5 (a)). 

The end-points of a resultant vectors during mitosis could also be used 

to predict the positions of the centers of the potential daughtcr cells. 

However, there is no means as yet to define a consistent method of deter­

mining the origin of the force vector for an object like the ccli iIlustrated 

in Figure 3.5 (a). More complex shapes, 8uch as in Figure 3.5 (b) arc 

processed such that the origin is round at the intersectit,il the skeleton 

branches. 

The analogy between skeleton branches and force vectors nccds to 

be explored further, but for the application of cells, the analogy could 

be very useful. Pseudopod behaviour is used by cell biologists to visu­

ally indicate the direction of cell motion. These are also indications of 

physical forces between the cell membrane and its cnvironrncnt, so the 

representation of skeleton branches as force shape vectors may be a valid 

one. Force vectors which are balanced (ie. the vector surns are zero) 
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indicat.e an ohject which is stationary. Unbalanced forces require that 

therc is an acccleration or movement in a direction to balance the sum of 

the applied forces. The movement may he hampered by frictional forces 

external to the cell. Certainly in the case of ccli division, there exists 

opposing forces in the effort to 8eparate the two parts as the cell remains 

stationary. This thesis, however, only uses the skeleton information to 

providc data for the representation of cell shape. 

3.2.6 Centroid and the Tracking Center 

Cell physiologists who study the paths of moving cells must represent the 

center of cells under study in order to track thcir movements. The stan­

dard rcprcst'nt,ation is the ceIl's center of gravit y based on the segmented 

arf'a of the cf'1I being tracked [45]. This method produces very good 

rcsults, except when the ccli has very large or very many pseudopods 

c1ustered away from the main body of the cell. The large area taken up 

by the protrusions shifts the center of gravit y away from what would be 

the ccli nucleus. 

An alternative definition would be a center equal to the certer of the 

largf'st disc which fits inside the boundary of the ccII. This definition 

would then capture a more appropriate center if a ccII had several unbal­

a.n(·cd ps('udo(>ods, but still had a reasonably-sized eell body. However, 

if the ccli '8 pseudopods are more significant than the body of the ceU, 

the t.rut' center would be displaced. 

Th(, skc'l<'l.on of a ccII is a set of ail discs which are maximal in the 

ohjt'ct, (s('{' S(,ft.ion 3,2.1). The point or set of points which are the last 

Olle'li to he' ('rodc·d during our skelctonizat.ion process is equivalent to the 

rentcr of the Ia.rgest dise tbat could he cOlltaincd in the ce)). 
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Ca) Cb) 

resultant 
skeleton vector 

Figure 3.6: Two CeU Center Results. (a) Center of gravit y for figure-8 
ceU shape is in the neck. (b) Erosion Center for figure-8 cell shape is in the 
middle of one of the knobs. The dottcd contour reprcsents an intermediate 
stage in the erosion process. 

The Mitosis Recognition System uses this alternative dcflnition of t.tw 

cell center during tracking. Howcvcr, both mcthods arc cornputcd and t.he 

centers stored for later comparison. An interesting rCllult is that during 

cell division, the erosÎon algorithm finds the center to be in thc middlc 

of the large5t figure-8 knob (Figure 3.6 (b», whercas a center' of gmvity 

measure would put the center on the c1eavage furrow 3.6 (a)), (Figum 

3.6 is an approximation of actual rcsults). 

3.2.7 Data Summary 

The output of the skeletonization procedure provides the following input, 

data to the understanding module of the Mitosis Recognition System: 

• number of significant concavities 

• lIumb('r of significant convexities 

• number of skeleton branches 

• skeleton resultant vector length 

• t,rue tot.al skelcton length 
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3. Image Processing of Living Cells 

• cell radius. 

The cell's mdius is taken to he the actual radius of a circle if the cell's 

pcrirnctcr wcre that of a perfect circle: 

d
o bour..daryJength 

ra lUS = 211" • (3.14) 

This number is (luite large for cells with many boundary protrusions, 

HO should not he used as a very accu rate measurcrnent of a cell's tinear 

dirnf'nsion. It is us('d in further computations to help norrnalize tbe data 

to provide sorne consistency across cells of varying sizes. For example, 

a measurement called the normalized skeleton length is computed by 

dividing the true skeleton length hy the cell radius. 

The skelcton coordinates, the houndary coordinates, and the cell cen­

ters arc also recorded aCter each cell frame is processed. These data are 

used fOI" off-line analysiso 
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Chapter 4 
Cell Image U nderstanding 

4.1 Introduction 

4.1.1 Overview 

Image understanding in the context of this thesis consists of determin­

ing the mitotic state of a segmented cell given a "significant" number of 

image frames in sequence taken over "short" time intervals. The fuzzy 

words "signific-ant" and "short" depcnd upon the expcrimcntal cont«~xt 

for quantification but already we begin to see the benefit of Juzzy Inn­

guage to hclp describe gelleral processes which are dimcult to rerres«mt 

precisely. 

An expert system approach to solving problcms first involves the ,le­

scription of human knowledge and experience towards the accomplish­

ment of sorne task. This subjective expertise is put in the form of COIl­

ditions and consequences in an attempt to automat(~ similar tasks hy 

computer. Certain expert system approa.chcs, su ch as those employillg 

fuzzy logic, tise heuristic weights or rneasures of possibility or probability 

for the possible consequences, rather than Boolean iJ-then logic. What­

ever the method, the attempt is to rnimic th(~ deviccs and knowledge used 

by experts to solve a particula.r prohlern or set of problems. 

In our problem domain, cell biologists observe cclls as they rnov(~ aud 

change shape over time. A cell's life cycle state can be (~asily iuferff!d 

{rom general rules of shape changes and processcs known by the cdl biol­

ogist. Cell state inference is the prirnary task of the Mitosis Recognition 
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System (MRS). An accurate determination of cell state then provides the 

nccessary information for the automatic ~racking of a newly created cell 

once division has becn recognized. 

The image understanding section of the MRS consists of the steps 

n~qllir(!d to transform the data rctricved from the skeleton and image pro­

cessing of the ccli images into general descriptions of the shape and pro­

cess state of the cells being tracked. The data computed from the initial 

image processing and skelctonization (eg. number of skeleton branches) 

are first t,ransformed into fuzzy data to linguistically describe the mag­

nitlld(' of the data in a consistent form. A fuzzy numbcr in the context 

of this the~i~ is defined as a number defined from 0 to 1 which represents 

ail npproximat,e degree of belief in an associated predicatc. For example, 

the predicate numbcr of skeleton branches is HICH would have the fuzzy 

Humber 1 associated with it if dozens of skeleton branches were computed 

for th<, cdl \Hul('r study. 

Vahl(~~ for fllzzy shape are then computed by combining the evidence 

8upplif'd by the fuzzy data. Fuzzy shape refers to the set of three fuzzy 

numbers associatcd with t.he predicates shape is ROUND, shape is OB­

LONG, and shape is COMPLEX. 

Similarly, the fuzzy stale consists of the set of fuzzy numbers and 

their predicates describing every possible cell state defilled in the system. 

First" a preliminary fuzzy state is computed solcly on the results of the 

fllzzy shap(' ('omputation and other data measured for the ceU under 

st.udy. A final fuzzy state is then determined aCter considering the shape 

cyd(' proœss rules, the previous fuzzy state, and the new preliminary 

fllzzy state vetilles. 
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4. Cell Image II ndl'fstanding 

4.1.2 Baseline Data and If-Then Rules 

Rules describing the process of mitosis and cell rnoverncnt in if-then for­

mat have bren described previously by both Fcrrie [14] and and Whccll'r 

[59]. 

Ferrie ([14] [15]) uses a combination of strategy ru/cs providing tempo­

ral descriptions and hypothetical models to represent tlU' best. ('stimat(~ 

oC potential daughter cells. The models, consist.ing of featurc descrip­

tions, are cornpared to the featur('s of the objects in the image until an 

optimal match is found. The rules used in this rnethod include t.oleranœ 

comparisons directly in the antecedents to allow a flexible range of data 

to trigger conclusions. The rules, however, are not adaptable to changillg 

experimental conditions. In the MRS, rules are at a levcl oC abst.ract,ion 

separate frorn the measured dat.a. Flexible data ranges are uscd in t.lw 

MRS hy mapping the measured data into fuzzy bclief values for each 

evidence predicate. 

In Wheeler's previously unpublished exploration of a ccll's life cyclf~ 

processes, [59], an interesting Coundation to the present thesis is COII­

structed. A hierarchy of rules is used, with the baseline data (slIch as 

total number of segments) integrated at. the lowest Icvcl. These basclinr; 

data are translatcd into more linguistically appealillg sentellces if t1wy 

trigger a truc condition. Basclmc data is defincd here as the data from 

which ail other inferenccs are derived; uSlially reprcscnting physical arul 

measurable characteristics of the system. 

For example, the Collowing condition is cvaluatcd: 

Rule 4.1.1 If the cell' s data total nurnbcr oC segments is TRUE 

then the ceU has lew .'IcgTnf;nts. 

The featurcs computcd from the baseline data are then used to det.(!rrnirU! 
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4. Cell Image U nderstanding 

the shape of the ccII, as in the following condition: 

Rule 4.1.2 If the cell is radial symmetric 

and the cell has few segments 

then the cell is rO'IJnd. 

Addit.ional rulcR, consisting of rigid if-then conditions describing the al­

lowahlc mitotic statc transitions similar to those depicted in Figure 2.2, 

art' IIs('d in ronjunction with the shape results to determine a final ceU 

stat.e. 

A downfall of this method is that a final conclusion cannot be reached, 

lIor ('W'II (,fif,illlat,('(i if t,hcre arc any missing input data or unresolved facts. 

Ba(1 or v('ry ('rron«.,'Ous input data n'sult in a cithcr a wrong conclusion, 

or 110 ('ollclIlSioTl for that particular image frame. 

It must be notcd that both Ferrie's and Wheeler's previous methods 

of d(·tcrrnining ccII state are hard, binary rules, typical of many prac­

t.ical rulc-bascd approaches. It is Cound that this Boolean method is 

not adc<luate for our application for thc following reasons. Firstly, thcre 

is no notion oC having a cell in an intermediate state (for cxample be­

t,WC'C'1I anaphase and telophase). Sccondly, estimation of the possibility 

or prohahilit.y of diffcrcnt states with undear or ambiguous data is not 

addl'essed. 

Without thesc abilities a binary method becomes extremcly brittle 

wlH'1I IIs(,(1 wit.h l('ss than ideal data. Ad hoc methods must be used to 

overcomt' prulll('ms of poor or ambiguous data. This makes sueh systems 

hot.h oVC'rly rornplcx and confincd to limitcd cxperimental environments, 

charad.(·ristics which wcrc ostcnsibly to be avoided by adopting a rule­

has('d approach. 

The algorithm prcsented in this thesis is extremely powerful in that 
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it resolves both of these issues using concepts of muiti-valllcd and fuzzy 

logic within a simple method of evidencc combination. Unlike Fcrric's 

method and Whcelf.'r's original rulc-based approach, timc-consuming f('a­

ture searching [15] and forward chaining [59] is avoided. Tlwse prcviolls 

methods, however, were intended for off-Une analysis of previously stored 

image data and are not used in conjunction with a real-time tracking sys­

tem. 

4.1.3 Fuzzy Cell Shapes and States 

Instead of dctermining a single ccli state, the Mitosis Recognition Sys­

tem comput.es astate vector r('ferred to as a fuzzy statc consisting of 

membership values from each previously defined state typc. The state 

type having the largest membership value for the cell in question (ltt a 

particlllar inst.a,nf, in time) would correspond approximat.c1y to the sin­

gle ceU stat,(' produccd by the hinary rllle-bascd systems of Fcrrie a.nd 

Whrel(~r [15] [59]. However, the fllzzy state represcntation in the MRS 

provides intermediate state representations by allowing mcmbershipR in 

more than one state for any given instant. Changes in ccli statc occur 

gradually in nature; this continuous type of process is more natllrally 

represented using multiple values in the form of fuzzy sets. 

The Mitosis Recognition System actually consists of tlnee main rule­

bases of <:andit.ions and weights uscd in the det.ermination of the ccll's 

fllZZy statt'. These arc: 

1. A shape rule-base to deterrnine a cell's fuzzy shape from skclcton 

and other measurements. 

2. A state rule-base to dcterminc a cell's preliminary fuzzy stat(~ from 

the ccll's shape and othcr rncasurcrncnts. 
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3. A process rule-base to determine a cel:'s predicted fuzzy state from 

pwviolls state knowledge using only the shape cycle rules. 

Shapes 

A fuzzy shape is also computed in our thesis and is computed using the 

S/UIP" rlllc'-hasp.. The fuzzy shape or shape vector assigned to a ccli is a 

sd of t.lln'C' lIumh(~rs which indicate the membership values in each of the 

t.hr('(' id('al sllap(~ cat.egories we have defined: ROUND, OBLONG, and 

COM PU,,'X. The cat.egories of shape are based on the number of skeleton 

hranches and the features of the skeletons. The skeleton proccssing of a 

ccII (a solid endosed object with no holes) cCJmputes a skeleton having 

from zero branches (in the case of a perfect circle) to an infinite number 

of hrarH"hes. The shape categories ROUND, OBLONG and COAfPLEX 

('lIcompass ail possibl(' skc\cton variations, so we say that a ceU's shape 

is (·olllpl(,t.c'Iy ddillcd under our fuzzy shape set. Because a cell's shape is 

d('fÎlu'd cOlJlplf'tely in our fuzzy shape set, the SUffi of membership values 

of t.1U' thre'(' cat.egories must eqllal lInity. 

For c'xélmplc', Figure 4.1 shows thrcc examples of ecUs, one is very 

round, t1 ... S('('oIHI is pcanut-shaped, and the third has several protrusions. 

TI ... shape' Vl'dor assigue(1 to the roundish ecU (a) consists of the following 

vahlC's: 0.9 1l0UNfJ, 0.1 OBLONG, and 0.0 COMPLEX. Note that the 

('(,II is ,wl p('rfectly round, but is slightly oval, so has a smaU membership 

in t.lu OIlIJONG shape type. Likewise, cell (b) is mostly OBLONG and 

('(·11 (<') Îs ",O!~tly r.OM PL EX . 
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COIIPLEX 
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FUZZY SHAPES 

(b) (c) 

Fuzzy Shape Membership Values 

0.9 

0.1 

0.0 

0.1 

0.8 

0.1 

0.1 

0.1 

0.8 

Figure 4.1: Examplcs of Fuzzy Shapcs. Threc ccII examplcs: (a) roulldish, 
(h) peanut-shaped, and (c) with protrusions. Each ccli has memb«!rship 
values in each of the 3 fuzzy shape categories: ROUND, OB/.ONG, and 
COMPLEX . 
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States 

Tlw fllzzy st,atf' or statc vector is analogous to the fuzzy shape in that 

t.lw statf: v(·d,or contains a, set of values e(IUal to the number of possible 

state types d(!fined in the system, and the sum of these values equals one 

(1) for a processed ccII object. The state rule-base is used to compute a 

prelirninary fuzzy state in the same manner as the fuzzy shape. 

The valid state types are Iisted in Figure 4.2. The time-dependent 

rclationships of the major state types over the ccII cycle process are de­

pic·tf·ct in Vigil 1'(' 2.2. The additioual states of CONTACT, OVER­

LAP, and SEPARATION dcpicted in Figure 4.2 arc necessary for the 

possible ()(;currcnce of ccns moving so close together as to form a single 

segrnented object. This may occur when two ceâls collide or pass byeach 

other at slight.ly differc:llt depths. Segmented objects in these situations 

off,c'n (·xhit,it. figllre-8 shape (catllrcs similar to that of mitosis. Hence the 

truc' stat.e III Il st. I){' distinguishcd from a mitotic state. 

A edl's stat(· is automatically initialized with a high membership in 

t.lw UNDETERMINED statc at the beginning of a tracking experi­

ment. This vaille will decreasc and other states will become significant 

whf'n evidenf(~ over several frames has becn evaluated. 

The EXTINGUISHED state may become significant if the accu­

IIltllat.(·d C'rror or uncertainty of a ccII bccomes high. If the EX TIN­

GUISHED sti\l(' value becomcs higher than the other state categories, 

t.ritcking of t.hc ('Cil discontinues. 

Evidence Predicates 

Bot.h Hu' S/HlI't' and the slalf rule-bases in this system actually con­

sist. of il lIIilll'ix of f'v,drnce prfdicates versus ail possible shape or state 
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FUZZY STATES 

PRE_MIT1 [!] CONTACT [1] 
PRE_MIT2 [j] OVERLAP [!] 
MITOSIS [I] SEPARATION [!] 
MIT_SEPAR []] 

D POST_MIT []] EXTINGUISHED 

[i] NORMAL L!I UNDETERMINED 

Figure 4.2: Fuzzy State Types. The fuzzy stat(' type categories ar(' listed, 
with examples depicting possible ccli configurations assoriatcd with thcsc 
categories. 

types. Every piece of evidence is related to each shape or state type, in 

terms of how and to wha,t degrf'C the belief value of the evidellœ pwd­

icat.e affects t.he givcn type. For example, the evid(mce prcdieate t1tt~ 

ccII shape IS round provides different information for the st.a1<! out<:ornes 

of NORMAL and PRE_MIT!. A ccll's roundness would provide ev­

idence againllt a NORMAL st.at.e outcome, whereas il would providc 

stroJlg evidenc:e J01' a stat,e out.come of PRE_MIT!. 

l'hl' adual rdationships bct,w{'cn t.he evidcnce pn~dicat.cs alld t.he 

stat.,· t.ypm~ arc dctcrmincd b(!forchalld llsillg lillguistic w(!ights (sllch as 

important or very important), and arc stored in a statie databasc to be 

used for the mitosis experiments. The values of thc evidellcc predicates, 

however, are determined dynamically by the system as data is gathered, 

In normal Boolean logie, the values of the evidenee predi<:at.e woul(J 

be either true or Jalse (1 or 0). In this system wc allow the predicat(! 

to takc 011 a range of values betwœn 0 and 1 to indicate how weil the 
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data actually fit thf~ evidencc prf!dicate. Most likely the cell data for a 

roundish ccli do not indicate that the predicate ccII shape is round is 

truc as a certainty, but also indicate that the cell shape is slightly ob­

long. In this case, the value of the evidence predicate the cell shape :s 

round will be close but not equal to l, and the value of the evidence 

pr«·dinlt.(~ t.IU· rdl ,'l'tap(! is oblong will be slightly greater than O. These 

pr«'dicat,(~ valuf'!! arc multiplied by the predicate weights corresponding 

to the PRE_MITl and PRE_MIT2 states so that strong evidence is 

acculnulated for the state type PRE_MITl and wtak ('vidence is ac­

nllllulat,(·d for t.lu· st,at,e type PRE_MIT2. The preliminary fuzzy state 

01' prc'Iilllinary st,at,(· v<,ctor out,come would contain a large PRE_MITl 

nlC'lIIl)('rship and a small PRE_MIT2 m(~mbership. Wc would then, as 

a prcliminary estimat,e, consider thal. the ccII be somewhere in between 

t,11(~se two id<>al states. 

After a preliminary estimate of the fuzzy state, a final fuzzy state 

is comput,ed by considering the fuzzy state of the cell from its previous 

image frame. Certain information collected from previous image frames 

is infOrpol'at,f'd within sorne of t.he' stat.c cvidence predicates (cg. previous 

('(,11 siJ.w), hut. t,he mformation contributed by the timc-dependent. shape 

('1Idf' pro('c'SS rul«'s is used in a separate, final computation. 

Thc shape cycle process rules, Iik(~ the state rule-base, take the form 

of a matrix wit.h a list of evidence predicates versus the list of state types. 

lIowc·vc·r. t he' f'viclc'lIœ predira t.C·S i fi this case are a list of the previous 

st.at,(· possihilit,ic·s. The pr('s{'nt, implcment,ation of t.his process matrix 

is likc' a truth-table in that it is an al'ray of ail possible and impossible 

transitions from a previous ideal state to the next possible state. The 

final fuzzy state of a cell for a given frame is computed by using this 

shape.' cycle matrix, t.he cell's previous fuzzy state, and the cell's present 
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preliminary fuzzy state. 

In summary, the image understarJding scction oC the Mitosis Recog­

nition System consists of the Collowing stcps: 

1. Convert the image processÎng dat.a illto fuzzy data for ('ach shape­

related evidence predicate. 

2. Compute fuzzy shape values by summing the product. oC ttw cvi­

dence values weight factors for each shape typc. 

a. Cottt'ct, t.ht' slale-related cvidt'nce (inrluding fuzzy shape) and cOln­

put(! the valuc for each statc-relatcd cvidence predicat.c. 

4. Compute preliminary fuzzy state values by summing the produd 

of the evidence values and weight factors for ca.ch statc tyP(·. 

5. Computt' the final fuzzy stak by considering the shap(' eyc\e pro­

('css mies, tht' prcvious fuzzy stat.e, and t.1It' IWW prcliminary fuzzy 

state values. 

6. Determine if eell division has occurred by exarnining the rncrnhcr­

ship value corresponding to the POST _MIT state tyP(!. 

These steps are discussed in detail later in the chapt.(·r (Sections 4.:1, 

4.4, and 4.5). Wc first explore th(~ knowl(·dg(! and inCormatioll r('pr(!s(mted 

by the shape and state rule-bases, and thc rncthod Ilsed to wmbillc th(! 

evidcnce for a fuzzy statc and shape solution. 
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4.2 Knowledge Representation, Uncertainty, and 

Fuzzy Sets 

4.2.1 Background 

Th~ t~rms "fllzzy sets" and "fuzzy logie" have only been in use sinee 

t.h~ lat., 1960'8 to d('al with data lIncertainty and inexact reasoning ([11], 

1:4 1]), hOWf'Vf'r, mathcmaticians had becn studying measures of informa­

t.ion and IInccrtaint.y for many years prior to the theory of fuzzy sets 

[:l5] . 

'l'wo principle rneasures of uncertainty were recognized beCore the 

thcory of fuzzy sets became popular. Hartley proposed a method in 

1928 bascd on classical set theory which measures an important aspect 

of f\.rnhigllit.y [2.r;]. Shannon, in 1948, crcatcd a mcasurement pertaining 

t.u n)J\flirt. or dissonance in evidcnce, which is forrnulated in terrns of 

prohahilit.y t.heory [25]. The purpose of both measures is to evaluate 

information in terms oC uncertaint.Yi they are generally referred to as 

mensures of information. Spccifically, these two classical measllres are 

ntllc'd I/tu'llq/ information and Shannon entropy, rcspcctivcly. 

Shannon f'ntropy <:an be jllst.ifif'd as a signifieant measure of uneer­

t.aillt.y anc! illformation Oll intuitive grollncls. An event which has a very 

high probabilit.y of occurrence is expeded to occur very often, so when 

it does occur, it is not generally noticed as providing any information. 

Il OW('ver , whcn it does not occur, the event is noticed, and secms to 

provide very important information. The information content, then, of 

an CVf'nt r should he descrihed hy a decreasing function of the proba­

hi lit y 1'{ r). 'l'lu' higher the probability of the occurrence of x, the less 

illforlllétt.iVf' 1.11(' observation. 
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The Dempster-Shafer theory oC evidence ([32], [52]) describes a 

method of decomposing a set of evidence into unrelated pieces so that 

separate probabilities can be assigned to compute a final belief fundion, 

or a measurement of degree of belief. The resulting belieC Cunction be­

cornes very complex with even a rnoderate number oC evidencc sets. The 

Bayesian approach, often rnentioned in the literature, can be consid­

ered as a special case of the Dempster-Shafer tbcory [52]. With severa.l 

assumptions, such as data independence, the Dempster-ShaCer method 

becomes a practical tool. 1 

Uncertainty in evidence and m'es (·an also be \'(~pr(~sent.ed by (;c1·tainty 

factors, such as in the MYCIN syst.em [32] [19J. Uncertain rcasoning in 

expert syst.ems is usually accomplished by rndhods similar to proba­

bilistic reasoning. Subjective probabilities are provided by exp(~rts to 

estimate the relationship between pieces of evidence, in the fonn oC sen­

tences, and conclusions that can be reached from these sentences. An 

expert system then computes solutions with estimates of certaint.y based 

upon these subjective factors. An inference net approach [19] is ort.cn 

used to propagate uncertainty or probability values throllgh a trcc-lik(' 

network of hierarchical rules. 

The Mitosis Recognition System uses this type oC subjective rf!ason­

ing in part, but, because of its very different types of evidencc and their 

iutricat.e )"(·Ia.tionships, certaint.y factors ajonc arc insuffid(ml. Il is aJso 

difficult to Cormlliate the f.Îm(!-flcpendent st.ates aud shape dat.a into rulcs 

whirh form t.ht' trec-like network of an inCcwncc flct. lIow(!v(!r, an anaJ­

ogous result is accomplished by the integration of our matrix-Jik(! rule-

1 In [19] (p. 205) it is noted tbat Gr080r ([21], [20]) gencralizC8 probabilistie logie 
t.o encompass Dempster-Sbarer tbeory, Bayesian updating in inrercnec networks, and 
certainty ractor methods. 
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hiI.Hes. 

A disadvantage of the standard probabilistic approach is its inability 

t,o rf'prCsmlt the concept of ignorance [52]. Lack of belief and disbelief 

cannot he distinguished by this mcthodj they are both represented by 

the negation of the proposition. There are pract.ical situations which 

rnay occur in which there is not enough evidence to make either a true or 

false daim, or the evidence gathered may not even be very relevant to the 

particular problem. The Mitosis Recognition System avoids this difficulty 

i Il pa rt. hy ha.ving st.rong ncgat.ivf' weights to rcpresent disbclief, large 

posit.ive W('ights to rcpresent be/icf and near-zero weights to represent 

'9'W1'a1lt·c or irre/c ria nce . 

ln the limitcd domain covered by the Mitosis Recognition System, 

one must determine what types of evidence or clues can be measured, 

t.llC' rf'liahilit.y of t.hesc measurf'm(mts, and how these can be used and 

('()llIbined t.o dctcrmine a ccll's shape or state. For practical reasons, 

I1llu;li"c dcfinit.ions of information components arc described and then 

tatcr uscd to build a method of evidence combination. The method is 

not justificd on rigid theoretical grounds at present, but like many ûther 

systcms which employ fuzzy techniques, is justified by producing valid 

and lIscful rcsults under real experimental conditions [19]. Theoreti­

('alln<~thods rf'quire a dt>tailed mathernatical understanding of the faets, 

the-ir (·rf(·r1.s and rdationships to each oUler, and the relationship of the 

f.uts 011 t.ilt> final bt>licf rneasurernent. These rnathematical relationships 

would he extremcly dimcult to establish thoroughly for a real imaging 

and biological shape problern such as the one posed in this thesis. 

TtU' lIu-t.hod of ('vidt>nrc cornhination and cvaluation of fuzzy sub­

st-t.s ran he t.t'fIIlt'd decisio71 making [62J. Using linguistic terms in the 

formulat.ion of elt>risioll funetions ran ht' an effective way of simplifying 
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complicatf'd rt>lationships of dat.a towards imprecise objectives. Fuzzy 

sets with linguistic grades of mernbcrship are reCcrrcd to as fllzzy sels of 

type Il (62). Linguistic terrns are used to develop appropriate weights 

to describe the information content and the effect a piece of data has on 

a part,kular outcome. Ramakrishnan and Rao have developl'd a fuzzy 

weighted additive rule spf'cifically for fu1.zy sets of tYI>c Il to approxirnatf' 

expert opinion [50). 

The relevant factors and Iinguistic descriptions associated with thc 

information content of the input data and the data's relationship to Ut(! 

final state and shape classifications are described in the next section. 

4.2.2 Information Content of the Evidence 

Each piece of data is a measurf'rncnt with sorne uncert.ainty associatcd 

wit.h il. Likf'wise, each piece of l'vidence May be more important for one 

statc 2 than for another so will have a differcnt information content for 

each state. The piece of data May provide supporting evidcncc or conclll­

!live cvidcnce, relative to each statc. Anot.hcr fador considcrs thc type of 

evidence in a more global contt'xt. A partkular cvidence pr(!dicate may 

have morc significance than anot.her pieœ of cvidcnce in the evaluat.ion 

of the overall statc of the ccII. Data from the more significant. predkatc 

should be valued higher and so be givcn a strongcr weight. 

Four important factors are involved in describing the information con­

tent from a piece of evidence applied to a particular st,at(~. 'l'h(! first 

factor represents accuracy of the computed data, while th(! rest d(!scribe 

the rclat.ionships of the cvidcnce t.o t.he ideal state tyP(! c:onclusions. The 

2The procedure for evaluating the evidence is the sarne for both the !llale and the 
shape. For simplicity, this section reCers only to the slale. 
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4. Cell Image Understanding 

numerical values of the evidence factors are established before the system 

is used. 

Data Confidence 

Th«! fi",'11 factor is due to uncertainties in data measurements. Imaging 

lIois«!, artifa(·ts, and other data problcms, result in measurements with 

crror. 'l'he measllre of cell arca, for example, is not the true area of 

the ccII, since the boundary ext~ action process is not perfectly accurate. 

Eit.l!('r a mnfidcJI(,(' fador, or an tJJ1('(!rt,ainty measure can he associated 

wit.h t.11t! arca which may he based on Cf.'rtain heuristics, or on past per­

fOrJJlitllrf!, Hu('h a.'1 t.he expcctf'rl stahilit.y or expected area growth over 

a pcriod of time. As weil, statistics could be gathered comparing the 

area rneasur1!ment achieved by the Mitosis Recognition System with a 

more accurate area rncasurement made hy a cell physiologist, though 

this would be impractical. An area measure with a low confidence factor 

should Ilot be emphasized in a determination of cell state: it would have 

lom informat.io" mnt(ml for ail st.at.es. 

Evidence Certainty 

The second factor considers how an evidence predicate influences the 

(lut.(·onU' of (la('h slalc type. To what degrcc docs this evidence (if con­

sicl.'I'c·d 1.0 1)(' t.ruf') Stillport or prove an outcorne of the ideal state 8? 

This filftor. <\c'aling with ccrlaillly or IJ1'OO! is ilIustrated as follows. In 

standard logir. t.he following ru le would he acceptable as a truc sentence: 

Rule 4.2.1 If the cell shape is COMPLEX 

then the state is NORMAL. 

\Vhat. about for the other shapes? 
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Rule 4.2.2 If the cell shape is OBLONG 

then the state is NORMAL. 

This staternent (Rule 4.2.2) would usually not he true. 

Rule 4.2.3 If the cell shape is ROUND 

then the state is NORMAL. 

This staternent (Rule 4.2.3) would almost never be true. 

What is necded is a rneasurement or qualifier of truth to answer the 

fol1owing question: If the anteccdent is truc, how does t.his affect t.he 

consequence? The three sentences above are modificd to rcOcct a more 

realistic world: 

Rule 4.2.4 If the cell shape is COAJP/~EX 

then ve are very err/ain that the state lS NORMAL. 

Rule 4.2.5 If the cell shape is OBLONG 

then ve are quite cerlain that the state lS nol NORMAl ... 

Rule 4.2.6 If the cell shape is ROUND 

then ve are very cerlain that the state is nol NORMAL. 

The rnodifiers are converted into weighls or cC1'lainly ftlclm's which 

mark t.he degree of truth or belicf of the consequence if the anteœdent is 

true. A negative factor indicates the degree to which the conseqllfmœ is 

believed nol to occur if the antecedent is truc. A factor of "don 't know" 

or zero indirat.cs that a relevant conclllsioll canuot be drawn from tlw 

belief of the antecedent. 
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Certainty Factors Value Importancy Factors 

very certain 8 crucial 
al most ccrtai n 6 very important 
(lU i t.e eNt.ai n 4 important 
f'lomewhat ("f'rtain 2 somewhat important 
dOIl 't kllow 0 doesn 't matter 
sornewhat. <,crtain it's not -2 somcwhat important it's not 
(Jllit{~ œrlain it's not -4 important it '8 not 
almost certain it's not -6 very important it's not 
very cert.ain it 's not -8 crucial it 's not 

Table 4.1: Ccrtainty and Importancy Factors. Linguistic weights are 
mapped into Ilumerical values for computing information content of evi­
denn!. 

The t.ranslations bctwcen the modifiers and the certainty factors are 

showlI in Tlihlc 4.1. Conclusive evidencc 3 is given if the modifier is 

either very certain or very certain it 's NOT, assuming that the first data 

('ollfid('IlCC factor is ncgligible. 

Evidl"nce Importancy 

The t.hint fador can hc considercd as measuring supporting or perhaps 

('iI'rumslanlial cvidencc, rather than measuring degrees of conclusive ev­

id('nc('. 

Consid(~r the reverse implication of Rule 4.2.1: 

Rule 4.2.7 If the state 18 NORMAL 

then the cell shape is COAfPLEX. 

:lW.' Nay "ronduSlvt' cvidence" meaning that given an Ideal system, we would ex­
()t'ct that t hls t'videnct' would rtally be conclusive. In practice, "conclusive evidence" 
lIlf'ans as cOllrlusive as possible considering the single, i801ated piece of evidence. 
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We under~tand that it is important that the state have the feature 

the cell shape is COMPLEX hut it does not in any way pml'f that. the 

state is NORMAL under these conditions. lIowever, the Modus Tolens 

of Rule 4.2.4 providcs a way of proving that the state is nol NORMAL: 

Rule 4.2.8 If the cell shape is not COMPLEX 

then the state is not NORMAL. 

Using a qualifier, Rnles 4.2.7 and 4.2.8 can he rcstated to emphasiz(~ 

this typ(' of snpport.ing evidmcc: 

Rule 4.2.9 It is very important that the cell shape is COMPI,I'J'X 

for the state to be NORMAL. 

Similarly, for the other shapes: 

Rule 4.2.10 It is very important that the cell shape is not OIJ/JONG 

for the state to be NORMAL. 

Rule 4.2.11 It is crucial that the cell shape is nol UOUND 

for the state to be NORMAL. 

The translations betwecn these Iinguistic qualifiers (cg. crucial and 1,cry 

important) and the importanc'!} fact.ors are listed in Tahle tI.1. 

The illlport.ancy factor also .. ('present.s the ff·I(!vanœ of evidf'llc(' 1.0 

the final d('t('rmination of cdl st,at,e. For cxampl(', an ar('a rneasuw is ilOt. 

l'devallt when considering its inflllenœ 011 dd(!rmining a NORMAL œil 

state (when the cell is not undergoing mitosis) and does not provid(! J11l1ch 

information for this state. The importancy factor would then be 0 for 

"doesn't matter" 80 as not. to have an effect on the NORMAL stat(! 

computation. However, the area of the œil rnay be important evidcnœ 

for determining the states of ccli CONTACT and œil MITOSIS. 
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Nut.e t.11f' dirr,'n~nce bctwœn a negativc imllo1'lancy factor and a neg­

at.iw· ('(:1'I"i'''11 fador. A negat.ive impo,,'allcy factor indicates that it is 

important that tlu! evidcnce predicatc is not truc for a particular state or 

:;hap(' out<:orrw to be truc, whereas a negative certainty factor indicates 

th(~ dt'grec to which a particular state or shape outcome is believed not 

to on'ur if tJw the ant(~cedent is true. 

Evidence Significance 

TI ... jou",h fMtor f('prescllt.s t.he sifJnifiC(lncc of an evidence predicate rel­

dt.iw 1.0 ot.IH'r ('vid('nc(' prt'dicatcs, indcpendcnt of the measured data and 

tl)(' t.yp" of stalt', For cxample, the fuzzy cvidcnce predicate: p"evious 

,'/1::" (,(/liflis l'''(·''lf'''' , .. iz(' is Ilot. a.<; sigllificant as the fuzzy cvid('nc~ predi­

(·alt·: ,,,"flll(' 1." mtHu/; t.hus il. should haV(' a small .. r wcight. factor. Certain 

pi.·n·s of infflflllat.ioll aH' mort· signifi<-allt, in tcrrns of illformation con­

t.(·nt., tu t.1U' filial fu;r,zy stat.c outcomc than other pieces of information. 

TIIf' t'vid"II(,(' ',ignificance factor diffcrs from the importancy fador in 

t.hat. it.s w,·ight. is d(·fincd with respect to other pieces of evidence and is 

Ilot (·vahlat.,·d for each individual state type. Furthermore, it is also uscd 

1.0 afljust. tllf' (·ff(>ct. of vcry similar contributing (je. not independent) 

pic>('('s of ('vitl.·I1(,(·. 

TIlt' prohlt'IJI of dcciding how él piece of evident.- or ::.:lta helps support 

or nlllfirm a hypot.h('sis is a difficult one. The four influencing factors 

d,'srrib('d ab()\'(' are Ilwant as guidelines in establishing the effect of the 

('\'idf'II(,(' 011 t II(' possi bIc conclusiolls. Thesc factors are summarizcd as 

folJows: 

• /}altl ('ollfitle1ur: th(' r('lat.ive cOl/1itlcnee in the data itself, when 

considering measurement. crrors. 
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• Evidence Certainty: the factor r<"prcsenting how c('I'lmll R part,k­

ular conclusion is given that the individual piecc of ('vid(~llfC is 

TRVE. 

• EVÎflenrc Importancy: the factor representing how ;ml'07'lanl a 

piece of cvidence be TRUE givcn an expeclcd conclusion. 

• Evidence Significance: the factor represcnting th(~ sigllificmu;r of il. 

piece of evidence to the final determination of a conclusion, with 

respect to other pieces of evidence availablc and irrespect.ive of tI)(' 

final conclusion. 

4.3 Shape and State: Method of Evidence Combi­

nation 

4.3.1 Definition of Variables 

The uU'thod of evi(lencc comhinat,ioll for t.he fuzzy shapf' an(1 prdirnillary 

fuzzy stat,e arc idf·nt.ical. The m(~th{)d us('d is dcscribcd in a mathclltati<:al 

cOlltext. indepcndent of tht' appli(·at.ion in t.his sc'Ct.ion; the t.enll sltd,' is 

used to rcvresent either the fuzzy sha/Jc or the prelirninary fuz;t,y slttlr', 

The variables and constants uscd in the cvaluation of (~vid('nœ in t.his 

section are described bclow, 

Data Dimensions 

• Ub: 'l'Il(! total lIumber of diffc~rent haselinc measurcmellts . 

• TI,,: The numbcr of evidence prcdicatcs (rule ant<!ccdellts) to h(! 

used in the determination of state. 
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• Tt,: Thc tolal number of defined or allowable state lypes in the 

system. 

Weighting Factors 

The data ("()JIfidf~nCe mcasurement factors may or may not be determined 

he fore an experirnent. The mcthod of setting these factors depends upon 

t,h(~ nature of the individual piece of data, 

• 1/1,: t.!J(' data ('ollfidf'nn' fad.ors, wlU'r<' i is a corresponding baseline 

(11lt,a IIWaSIII'('IT\('II1. (from 1 to Ub). 

'1'1)(' following tlncc t.ypf'S of factors, descrihed previously, are de­

termirwd by an expert prwr to an experiment and can be considered 

as ('Ollstants 01lril1g an experirncnt. In general, once these factors are 

dd,('rrnined, t,hey never have to he changcd unlcss the application or ex­

p('rillwllf.al ("ollditiol\s changl' considerably, 

• Cie;: t.1)(' evidcnce ('ertainty radors, whcrc k is the evidence predicate 

Il Il III b('r (frorII 1 to 7ltlmp ) and j is the statc type (from 1 to mlm,). 

• 7'Ie]: t.he ('vid('lIc(, importancy factors, where k is the evidence pred­

iC'i\k lIullIb('r (from 1 to 1Ip) and j is the state type (from 1 to 

1/ 8)' 

• !II.: tht' evid<'II<=C significance factors, wherc k is the evidence pred­

Îratc numbl'r (from 1 to np )' 

Posit.ive and Ilegative sums of the importancy and certainty factors 

for cRcll stat,c art' also comput.ed for the normalization function. 

• .1:'(11111.1'»): t.1H' sum of t,he positive cCl'tainty factors for each state j. 
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• r c(min)l: the sum of the nt'gat.iv(' C<'rtainty factors for cach statc j. 

• rr(mllz)J: the sum of the positive importancy Cactors Cor ('ach st,att~ 

J. 

• rr(min)): the sum of the negative importancy Cactors Cor carh st,att' 

J. 

Dynamic Variables 

The Collowing variables are computcd dynamically by the system <Iurillg 

an experirncnt. They depend upon the valu<~s of the baselilu' data ami 

the input weight factors dcscribcd ahovc, and ar<~ ddined in tllC' IU'Xt. 

scctiolls. 

• 1/.: tht' hasclinf' data dem('nts, wit.h a total oC 7th. 

• Pk: the predicatc belicC value dcmcnts with values frolll 0 to 1 eOlIl­

puted Crom the baseline data y., whcrc k is the evidellce pf(~dicat,e 

numbcr (from 1 to n p ). 

• CJ : the total evidcnce ccrtainty for each statc type j. 

• 'TlJ : the total evidenœ irnportan('y for ('ach stat.c type j. 

• MbelJ: the modificd total bf'lid for each st.ate tyP(! J (induding 

both certainty and importancy totals). 

• J\ t -"T1: t.114' mmlificd tot.al œrt.aillt.y h .. lier for (~ach st.at.(~ t.ypc~ j. 

• M nnp;: t.he modificd tot.al import.allcy belief for cadi stat(~ type j. 

• Mtot: the sum of all modified t.otal belicfs ovcr ail statcs. 
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• ,'1): th(! normalized state value for each state type j, with a total 

surn of 1 for ail SJ 's (over ail j's). 

4.3.2 Mapping Data to Evidence Predicate Values 

Thf~ mapping of th(~ data to th€' evidence predicates is not one-to-one. 

There exists a function .1'(y.,PIt) for each predicate k which retrieves the 

appropriatc bascline data clement YI and maps the measurement into a 

lIumher from 0 to 1 onto the predicate value Pk: 

YI --+ Pk : 0 ::; Pit ::; 1 (4.1) 

/\ val lit' uf () i (Hlicat.cs zero hclid in the cvidence predicate, whereas a 

valllf' of 1 indicat.cs total belicf. 

'l'lU' dat.a confidcnce factor m. is applied after tht; m ... pping to reduce 

1,11f' Idi('f in the t'vidcnce if the data measurement is not accurate. Alter-

lIat.iVf'ly, t ht' m. f,U't.OfS cOlllel hf> sav('d t.o comput.e an ovcrall confidence 

II\f'aSllrf'lI\C'lIt of t.l1f' ('OInhined (!vid('II('(' and final state result. For sim­

plicity, wc' aSSUII1(' 10h11 fOnfid€'lIfC in our ,tata, setting ail of the m/s 

t.u 1. III prat"t,Ïç(' tlais works f€'asonably weil because we are concerned 

lIlaillly with a gCII('ral maximum ccII state but not with the accuracy of 

tIlt' sta!.t' values. 

Computing the Total Evidf'nce 

Wc' tirst (,()lI1put.(' importancy evidencc SUlU 'R), and certainty evidence 

811111 CJ for c'ach sta!.c j: 

n,. 
'R) = L Pk x rit) x 91. (4.2) 

It=! 
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n, 
CJ = E Pk X Ckj X 91; (4.a) 

k=1 

It is at !,his point that we also take into arcount tI\(' cff('d. of ttw signifi-

cance factor 91c, .'10 as to weigh pi('ccs of cvid(!ncc with gr(~ater si~nificallcc 

more heavily. 

Note that formai methods of combining evidcnce take into at:('ount 

joint probabilit,if'fi and mf'aSUff'S ([25], [,1)2]). This ifi flot dont' hCf(' sill<'C 

it is difficult to determine ail the dep('ndf'lu'ics wi!,h cach piec(' of ccII dat.a. 

Many pract.iral applications lISf' in!\lit.iw·, iHI hO(, methods t.o ('vahlat(! t.tU' 

total evidencc, supporting their pl'adi('cs hy <,xpcrillwntat.ioll (W). In 

the MRS, joint probabilities are not cOllsidcred whkh r('sult in SOIl\(' dat.n 

to be "counted twice" during the cvaluation. Il is rcasoll(·d t.haL wlU'1l 

this occurs, more signjficance is tht>n placcd on thes(' partiwlar data and 

the particular pieces of evidcnce which they influencc; in (·ff(·(:t. the'rc' 

arf' Mdden ('vid('nc{' signifkann' faft.ors fIA" Sillre ail at.te!llIpt is made' 

t,o normalize the sUl1lmed data, and tlU' evidence sigIlWf:LIl('e fadors ar .. 

det.errnined through experirnentation, the (·If(·ct of hidd(!11 joint I1wa .. mn·s 

is not significant on the ove rail conclusion. 

The influence of extra evidence, which depcnds on data aln!a(ly e'ov­

cn'd by f'xist.ing pf('dkat(·s. can hl' df'llIonst.rat,cfl hy adding a repeat.ed 

predicate in the total list of predicat.(~s, or hy slight.Jy incrcasÎng t.lw fwi­

denœ signifkancc factor Yk of an ('vid('IH:c pf(~dieéLte k, If the normaliza­

tion procedure (described below) is followcd, then the duplint.e pi(!f:(! of 

evidence does not have a large effect unless the total sum of the pn!di<:at(· 

certainty factors and the importancy factors for a particular conclusion 

is sm ail and the piece of data YI providing the evidencc is muet. worse 

than the predicted data confidenœ factor mi, 
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4.3.3 Computing and Normalizing the Fuzzy 

States 

The total cvidence surns for each state j should not he compared directly 

with cach othcr before an attempt is made to normalize these values. An 

intuitive r('ason can be givf'n by considcring the following example. 

'l'IIC' ~I,at.(· PRE_MIT2 has the shape feature of being partly round 

alH! partly ohlong, but no other major attributc, apart from occurring 

bdwcf'n PRE_MIT} and MITOSIS. Since this ~tate has many charac­

kristics in commoll with these two neighbouring states, the PRE_MIT2 

sl,al,(' f!OPS Ilot lIilVf' st.rong w('ight factors associatcd wHh ils evidence 

prt'dit'ah's, 1 .. otllf'l' words, no dat.a is ('1'IlCitll and no piecc of evidence 

c1f'fnlIIi/lC's t his stat.f' wit.h Cf'l't.aint.y, So cven if ail the evidence con­

t.rihllt.(!s sOIllf'what. t.o this statf', th(' total could easily be out-weighed 

by Ul(' (~vid(~nc(~ sllms of PRE_MITl or MITOSIS. Sorne states rnay 

also h~v(' more negative factors associated than positive, relyiog on the 

fals('Il<'sS of the oUler states to be established as truc, This makes the 

('vid!'II('e SUIIl of a st.ate very difficult to compare with the evidence sum 

of a IlC'igllhollring Ilt.at.e which may Ilat.urally have more positive factors 

t.llilll lU'gaf.i VI' , 

'1'0 !)('gin t.h" normalizat.ioll, we compute, for cach state j, the largest 

possiblf' positi"e evidcncc ccrtainty sum .1'c(mo.r)), the smallest possible 

Il f!I(I t Il'(' c'vicle'lu'f' (·c·rt.ainty slIm .1;'("""))' the largest possible positive 

('vidPIH'(' illl port allcy sum .1'r(mtl:r)J' and .. he sl1lallcst possiblc negative 

('vitIPlw(' ÎllIportéHu'y sum .1'r(mnl}J, giv('n only the evidcnce factors CkJ' 

"k), and 9k: 

85 



--

n,. 
.rc(mru:)j = L Cp"} X 9/c 

"=1 

n,. 
.r,.(mll~)j = L r,lc} X 91c 

k=l 

n,. 
.rc(m'fI)) = L Cp/c} X 9k 

1e=1 

n,. 
.r,.(min)J = L rpk} X 9k 

1e=1 

... Ccli Image Ulld('rstanding 

if Cie} ~ 0 

othcrwis(' 

if rie} ~ 0 

otherwisc 

if Cie) ~ 0 

ot.lwrwis(· 

if rleJ ~ 0 

otla('rwis(' 

(4.4) 

(4.5) 

(4.fi) 

(4.7) 

A clttoff or zero point is ddill .. d for t.11C' mrulit.ioll in which w(~ have 

no significant belief in the state. If ('ither th~ importanry sUIn ur th(' 

certainty sum is very negative (defined herc as less than lia of t1w total 

possible negative importancy or certainty) we set the (modified) total 

beHef of the statc to O. 

(4.8) 

or 

(4.9) 

Otherwisf>, t.h .. modificd tot.al h .. liefs for the importancy (Mun"j) and 

the certainty (M .. t'rJ) a.re computed indjvidually for each state, and then 
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4. CeU Image Undcrstanding 

comhined using an Euclidean metric Cor the total modified belief Milet,: 

(4.10) 

M 
- 'R, - F,(mm)j/3 

Imp, - "C' 'f:' 13 
J'",(mllz}J - J'",(mmlJ 

(4.11) 

M - 'R, - Fc(mmb/3 
ce" - "C' 'f:' 1 

J"""(mllrl1 - J""c(min)J 3 
(4.12) 

'l'II(' llIodifi('d total œrtainty and rnodified total importancy values 

ar(' sqllared h(·fore they arc summed in order to emphasize relatively high 

vahU's which are Cound in eithcr category. Sorne states, for example, may 

rdy 1II0rt· hl'avily on the computation oC irnportancy than certainty, and 

il silllpl(' sum of the two t,otals would tend to negate the effect oC a very 

high illlport..HJ(")' against. a low or lIU'diofJ"(' rertaillt.y. Heure, importancy 

01' ('(·rl.aillt y t,ot ais whkh corn.' very clos.' to the ideal total for astate 

('(mtrihut.e significantly to the modified total belicC Mbet, value. 

TIIf' .'lUt1l of the modified total beliefs Cor each state Îs computed for 

t,11f' lilial lI()nllali~at.i()1I of t.he fll~zy st.at..· d(·m(mts. 

Il, 

MM = L MbelJ 
J=1 

Th(' prclirnillary fuzzy st.att' values are now normalized: 

(4.13) 

(4.14) 

Wt' 1I0W ha"t· a set. of st.at,(·s , .. , whose SUffi is 1 and whose individual 

villtlf'S f('pr('S('lIt, t.he degrces of rncmbcrship the rneasured object has in 

87 



, 
; 

• 

'-

". CcII Image U ndl'rstanding 

each state. 

4.4 MRS Computation of Shape and Preliminary 

State 

4.4.1 Fuzzy Shape Computation 

Computer vision rcsearchers strive to describe ohjcct.s in a way that is 

independent of thcir orientation, posit.ion, or motion. The Mitosis Hecog­

nition System must do the same so that the dcscription of a dlanging 

('('II can be analY1.ed ()ver many "Hf('l'cnt image! se<lu('lIfeS. 

Chapters 2 ami :\ llise\lss shap('-rf'lalt'd data obtaim'd frotH various 

('()mpllt.ations, suell as from the sk('leton pJ'()C(·ssing. TI\(' "'If'!}1'(ltùm of 

ail these data to produce a single fuzzy shap(! set is Ilot. a. t.rivial t.a.sk. 

The first step in this intcgration is to con vert the data meiI.Sllr(!IJICnl.s 

into belief values for the set of shape-relatcd evidencc pwdirates, or ill 

other words, to perforrn the mapping indicated hy Equat.ion ( 4.1). 

The shape-related evidencc predicates pick out the relevant f('aturt'Ii 

of t.he rneasnrf'ments for the t.hre·c shape ntt.(!gories. 'l'lU! Ic·ft. ('()IUIIIII of 

Table 4.2 is the eomplet.e list of the shape-n'Iated (~vid('II('(' pJ'edicates 

presenUy used in t.he syst.em. Additional evidmlcc pf(~(Ii<:at(·s ('an (·a. ... ily 

be added as long as a corresponding mapping f\lndion :F(y" "k) is also 

add('(t in thf' coct('. 

The list of basclilU! dat.a meaSllrem(~llts YI is shown ill Table 4.:1. Nok 

that this array of hascline data is IIs(~c1 for both t.he shape and the stat(! 

computations sinee sorne of the data is shared. The mapping functions, 

however, would be different for the shape and statc applications. Not ail 

of the data in the array Yi are used for computing the values of the shape 
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4. Ccli Image Understanding 

E"id'lD"(> Prcdicatee "Ie Sllape Types Il, 
ROUND OBLONG COMPLEX 
riel Ciel rle7 Cu rle3 C"3 

/111111 flf hr8/1dl"" III LOW 8 6 8 4 -8 -8 
1111111 of lmu\( h .. 11 il MEU -6 -6 0 0 6 6 
/11111\ flf br8m'h .... il! I/IG -8 -8 -8 -8 8 8 

/lunll"hu.lllllrl .. lllll 1""Ath lit LOW Il 8 -4 -8 -8 -8 
1I01111"li" .... IIkl"lo·tfl" 1""Ath il MEl) ·2 0 6 8 0 0 
IIl1rlllali,,. .. IIk.,I,.lllll Ir"Ath III IIIG -8 -6 -2 -6 2 8 

IIkl"lrtulI v",'lor lII"UllfI' il LOW 0 0 -8 -8 0 0 
"k .. l"tflll "" .. tor lIIeUlIre Il MED -2 0 -4 0 0 0 
IIk .. lrtflll v .... tor lII"UlIr" il HIG -8 -8 8 8 -6 -6 

avr hr"" .. h 1""Ath Il LOW 8 8 -8 -8 -4 -4 
a".' Iora ... h I .. ""th .11 MEl> -4 -2 -4 -4 4 4 
av.' t,ra ... h "'/I"th i" Il J(: -8 -8 8 0 0 0 

111111\ • rit '_Cl/I"o'lI ptll III I.OW 8 6 8 2 -6 -6 

1111111 • rit """""11 l.lH ill MED --, -4 -4 -4 4 4 
1111111 • ril rull"O'1I plll ill 111<: -8 -8 -8 -8 8 8 

1111111 , rit COIICAV .. ptll ill LO\V 8 2 0 0 0 0 
1111111 , rll , Oll'-AVf' pb il MED -8 -8 8 8 0 0 
1111111 ,'nt ,mil' A"" pli is IIIG ·8 -8 -8 .8 0 8 

Table 4.2: Shape Rule-Base Matrix. Importancy factors TkJ and certainty 
radors ('k) uSt'd by the MRS for the cell division experiments presented in 
this tlll'sis an' Iisted for cach ('vid('nce prt'dirat(' Pk and each shape type SJ! 

rt'SllI'fti\'(·ly. The variahl('s k and j rt'prt'St'llt the row number and column 
1I111l11lt'r, f«'SPf'ftiVl'ly, 
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DAta Element Number 1 

1 
2 
3 .. 
5 
6 
7 
8 
il 
10 
Il 
12 
1:1 
14 
Ir. 
16 
17 
18 
19 
20 

4. CcU Image U ndt'rstandin,; 

B_ .... Liaal! Data Dt'II(:ription 

cell radiua 
number of IIkeleton "rAllchra 
lnae IIkeleton length 
IIkeleton reauhant vedor length 
exiltence of &wo "louching" componrntR 
lIum of &wo touching component lIizf'tl 
round ahape belief 
oblonl( IIhape brlier 
romplrx IIhApr behrr 
I,rrvlllulllli,.r (in pinl .. ) 
object - nrighhemr d'!ltaUlr 
pr ... rnt ubJrl't IIi zr (in l,ixrlR) 
nUllIbrr of "".il,t III III wind .. w 
lIulllbrr "r IIlsnifkAnl eonvrllili ... 
1II1I1I1,..r uf .. iglllfil Ant 1 onl avili.'" 
clollest nrighb"ur Il.ze (m ')lxr".) 
I,revioull averAle round .hape helief 
previollll averAse obl""1 IIhapr belit,r 
previoull averasr complu Nhape bdirf 
trackins uncerlAÎnty faclor 

Table 4.3: Base-Line Data. Elem('nls Y" 

evidence pl'edi('atcs. For ('xarnpl(', the c'lIt.ri(·s for ccII s/mll" iLI'(~ used only 

by the fuzzy stat<, computat.ion which are updat('d aflrl' t1)(' fuzzy shap(' 

corn pu tation. 

The mapping functions F(y" Pk), uscd to dctcrrninc the cvidenœ 1)('­

H(,r values roI' ('ach ('vidcilc(' pr('dkat(' from the bas('lill(' data al'l'ay !I" arc' 

coded as illdividual C functions for cafh ('vidcnce predkat(~ 91'O1l11. An 

<,vidence pr('rlicate group can hl' C'ollsidc'rl'ci as a fuzzy SlIhsct of t.he t.otal 

set of evidence prcdicates. For cxample, the cviocnC(' pf(~di<:ates rtU7ft 

of branches is LOW, num of branches is MED, and 1l1lfTt of b7'tlTlchcs is 

HIC are considered as members of the fuzzy slJbset number of b,'anches. 

Therefore, a description of the number of a cell's skclcton branches would 

consist of the set of these thrcc belicf Ilumbers. Differ(mt eviclencc prcd­

icate groups arc separated hy a horizontal spa.œ in Tabl(! 1.2. 

Once the array of shape evidenrc predicate values Pk arc dctermined 
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4. Ccli Image Undcrstanding 

frorn a data S(~t for a particular image frame, the importancy n) and 

wrtainty C} (~vidcncc sums are computed for each shape j as in Equa­

t.ions ( 1.2) and ( 1.3). Thr- importancy and certainty factors for each 

shalw rule-hase clement are shown in Table 4.2. The linguistic trans­

lat.iolls of ttwS(' weights arc listcd in Tahlc 4.1. These weights were 

origillillly clf'lf'rmilU'd by intuitivcly applying the linguistic weights to 

(';teh f'vid('II('(' predicate alld t.h(·ir expected relationship to the shape 

t.YP(· OUt.COIlH'. Sorne of th(' factors were tuned experimentally after sorne 

of tlWS(' f(·lat.iollslllps and t.hr-ir ('rrt'cl on the final shape outcome were 

Il«'t I.c·" III1c1c'rstood \IIU('[ n'al f'xperimelltal condit.ions. 

ft wa:; rOllnd to he sllrficir-nt 1.0 sd t!U' cvid('nce significance factors 

!II. 10 1 for t.!H' rll1.zy shapf' computat.ion. Note, however, that a value of 

fo:- !Jk is Ilot always appropriate for the computation of fuzzy state. 

'l'tU' f'vidt'Il('f' import.ancy and ccrtainty minimum and maximum surns 

(ln> d('krmill('d dir\'ctly from Hw shape rule-base (Table 4.2) upon initial­

i:f.at.ioll lIsing Equat.ions ( 4.4), ( 4.5), ( 4.6), and ( 4.7). These constants 

art' lIst·d t.o t\('lp filter the import.ancy and ccrtainty evidence totals for 

(',,('h shape' type' (Equatiolls ( 4.8), ( 4.9), ( 4.11), and ( 4.12» before 

lillally C"OJIlhillillg t,hr- t,wo t,ypf'S of information (Equation ( 4.10)) for a 

Illodifie'cl tot.al b('licf Humher for cach shape. 

Normalizat,jon of the fuzzy shape values is achieved by computing the 

!llllll of tilt· lIIodiH(·d t.ot.al bt'Iid IIl1ml)('rs for ail t.hrce shapcs (Equation 

( ·l.la)) allfl Hilding t.hC' frad.ioll of bdj .. f for cadi shape type (Equation 

(·1.1,1)). Earh shape value SJ is a Il\llllbcr from 0 to 1 representing 

t.h(> dcgree 1.0 which an object is ROUND, OBLONG, and COAIPLEX. 

Examplcs of thrce differcnt objects and their corresponding fuzzy shape 

val ues are shown in Figure 4.1. 
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4. Ccli Image U ndcrstanding 

4.4.2 FllZZy State Computation 

The computation or the ruzzy slatr rollowtI the S.lll\(· proc('dlll'(' as tllt' 

f1lzzy shapf. Ilaseline data ITlCélsurf'lllf'nts YI ('l'abl(' 4.:1) ar(' IIscd to 

compute the helief values of the statc l'videnrc prcdicatcs list(·d in Tahle 

4.4. There arc considerably more cvidence prcdicatcs or rul('s IIs('cl for 

computing the ceU's state than for the ceU's shape. Thcrc arc a t.otal of 

eleven state types as compared to only tlu'cc shape types. Somc of t.he 

state types arc very similar, and additional rlll('s arc nccdcd to distillguish 

t.lll'Ill. Ma.IlY of t.he rules an' r('qllin'd to sp('cilirally 111\11<11(· neighhollrillg 

<:ell problems of dose contact, collision, and separation. As in Uw shape 

computations, the functions used to compute the prcdicate values l'k 

are coded as C programming functions for each state evidcnce predicate 

group. 

The evidence importancy rkJ al1<1 sigllificanœ gk fadors an' Illultipli(·d 

hy tlw eviden('p prcdicate va!tws 1),.. ancl slIlllHled for cach shap(' typt' for 

an imporlancy total nJ (Equation ( 4.2)}. Th(, ~videnœ ccrtainty CkJ and 

significancc gk factors are multiplied by the evidencc predicate values l'k 

and summed for each shape type for a ce7'lainty total CJ (Equation ( 4.3)}. 

The importancy and certainty factors for each state rule-hase c1mncnt are 

shown in Table 4.5. Thcse weights, like those for the shape rulc-ba. ... e, 

wcre originally d{·tcl'mined by int.uit.iVl'ly Jedding tl\(~ l1l/.1j()'Ül.TW~ of cadI 

piecc of cvidcnre to the individual st,ate outCOlllcS, and to what degree il 

piece of evidence would support or prove a particular statc type. 

The evidence significance factors, shown in Table 4.4, were deter­

min~d exp<,rimpnt.ally after Iparning tllP relative impact of each f!viden<:e 

prt'dicat.e on the final stat.e oulroJTw. TI}(' factor of a in t.he case of t.he 

shape related prcdirates was IJscd to pla<:c more emphasis on the (!vi-
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State Rnle No. 

1 
2 
3 

.. 
5 

6 
7 
8 

9 
10 
11 

12 
13 
14 

15 
t6 
17 

18 

19 

20 
21 
22 

23 
24 
25 

26 
27 
28 

29 
30 
31 

32 
33 
34 

4. Cell Image Understanding 

State Evidence Predicalc DClIcriptioD Evidence SigDi'il'aDcc F""lor g" 

shape i. ROUND 3 
shape is OBLONG 3 
shape i. COMPL"~X 3 

ceUI are near contact 

two componenta in obj 

s"m 01 component sizes < prf'V obj size 
lIum of component sizes > I,rev obj lize 
sum of component sizell = prev obj size 

prey lize + neishbour'lI prey lIize < present obj size 
preY .ize + neillhbour's prey lIizf' > present obj .ize 
preY aize + neishbour's prey size = present obj size 

contact lize < present size 
contact lIize > present size 
contact size = prelent lize 

preY lize < prelent size 
preY .i7 ... > prf'lII'nt sizf' 
preY lize = prf'srnt lIize 

invalid number 01 objs 

trackins is uncertain 

prey Ihape averase ia ROUND 
preY shape "verase is OBLONG 
prey shape averase ill COMPLEX 

nllm crit convex pts i. LOW 
num c:rit convex ptll i. MgO 
nllm c rit convex ptll ill IIIG 

num crit conCAvr pts ill I,OW 
num crit concave pta is Mr·;O 
num crit concave pts is IIIG 

nei,hbour sizf' + present size < prt'v size 
neishbour size + prellent liz" > preY size 
nei,hbour lIize + present size = preY size 

neishbour size < present size 
neishbour size > present size 
neishbour size = present size 

1 
1 
1 

3 
3 
3 

Tablé! 4.4: Sta,te Evidence Predicate Iiist and Evidence SignificaJlce f'adors. 
Evjdence predicat.e groups are scparatcd by hlank lines. 



4. Cell Image U nderstanding 

( 

EVIOENC.: PRE_ PRE_ MIT· MIT_ POST_ CON. OVER. SEPAR- NORM- EXTIN'G- UN'DETER-
PItE[)[CATE MITI MITl 051S SEPAR MIT TACT LAP ATION AL UI5HED MINED 

1 8 8 -. -. -8 -II -8 -8 .. 8 -8 -8 0 0 -8 -8 -. 0 0 0 -1 -1 
~ -. 1 8 • 8 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
3 ., ·8 -, ., -, ., 0 0 0 0 0 0 0 0 0 0 , , 0 0 0 0 

• -8 ·8 -II -II .8 -8 -8 -8 8 8 -8 -8 -II -8 8 • 0 0 0 0 0 0 
& -8 -8 -8 -8 -8 -8 8 8 -8 -8 2 • -8 -8 8 4 -8 -II 0 0 0 0 
Il 0 0 0 0 0 0 -8 ·8 0 0 -8 -II 0 0 -II -8 0 0 0 0 0 0 
7 0 0 0 0 0 0 -8 -, 0 0 8 1 0 0 -1 -, 0 0 0 0 0 0 
1 0 0 0 0 0 0 8 a 0 0 -II -II 0 0 8 • 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 0 -1 -1 -8 -II 8 Il -1 -s -2 -2 0 0 0 0 

10 0 0 0 0 0 0 0 0 -1 -1 -II -II -8 -II 1 S 8 Il 0 0 0 0 
Il 0 0 0 0 0 0 0 0 -1 -1 Il 1 -8 -II -II -s -8 -II 0 0 0 0 
u 0 0 0 0 0 0 0 0 0 0 0 0 -8 -8 4 • -, -, 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 -2 -2 8 8 Il 8 8 Il 0 0 0 0 
lt 0 0 0 0 0 0 0 0 0 0 Il 1 -1: -8 0 0 -8 -8 0 0 0 0 
15 1 0 2 Il 0 0 -2 -~ -8 -8 Il 8 -8 -II 1 1 -2 -2 0 0 1 1 
lfi -/ 0 -3 0 -~ 0 -~ ·2 8 • -, -, • • -1 -) -~ -2 0 0 1 1 
17 0 0 0 0 0 0 3 0 -8 -, -, -II -. -. 0 0 1 2 0 0 -1 -) 

18 -1 -8 -II -8 -8 -II -II ·8 -II -II .8 -8 -, .8 -II -. -8 -II 4 4 il 0 
Ig -II ·8 -8 -II .8 -II -. -1 -II -8 .8 -II -II -8 -8 -8 -8 -8 8 8 0 0 
11l 4 fi J ~ e -6 -8 -II -II -8 0 0 0 0 0 0 ·1 -1 0 0 -1 -) 

21 1 1 1> 2 8 2 Il :1 l' ~ 0 0 0 0 2 0 -1 -1 0 0 -1 -1 
l1 ·1 ·1 Il -8 .8 -8 -1 0 -1 0 0 0 1 0 1 0 Il Il 0 0 0 0 
J1 1 2 8 2 8 0 0 0 0 0 0 0 0 0 0 0 -8 -f 0 0 0 0 
24 1 4 -II ·4 ·4 -2 0 0 0 0 0 0 0 0 0 0 4 6 0 0 0 0 
~!J .8 ·8 ·11 -II ·8 -II -2 -2 -2 -2 0 0 0 0 0 0 • 8 0 0 0 0 
26 Il 0 2 0 0 0 -2 -2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
27 .11 ·8 -. -2 2 • Il 8 -2 -2 0 • 0 0 0 0 0 1 0 0 0 0 
28 -, -8 -II -8 -4 -f -2 -2 -f -f 0 0 0 0 0 0 0 Il 0 0 0 0 
~9 0 0 0 0 0 0 0 0 -II -, 0 0 0 0 -II -, -II -II 1 1 1 1 
30 0 0 0 0 0 0 0 0 -II -, 0 0 0 0 -1 -s 4 0 0 0 0 0 
.11 0 0 0 0 0 0 0 0 8 4 0 0 0 0 1 4 -8 -1 0 0 0 0 
32 0 0 0 0 0 0 0 0 -II -8 0 0 0 0 ., 0 1 1 0 0 0 0 
11 0 0 0 0 0 0 0 0 -(1 -8 0 0 0 0 0 0 1 1 0 0 0 0 
.14 0 0 0 0 0 0 0 0 " 4 0 0 0 0 2 2 0 0 0 0 0 0 

{ 
Tnble 4.5: St,at('s Ilul('-Bas(' Mat.rix. Importancy factors TkJ and certainty 
factors Ck1 used by the MRS for the cell division experiments presented in 
this th('sis are listcd for each evidence prcdicate Pk and each statp type P1' 

respectively. The variables k and j represent the row number and column 
nllrnber, respectivcly. 

dcncc dircctly related to shape. Other evidence types are considered less 

significant and givcn a lower value of 9k. 

'l'11f' ('vif/pnce importancy and cert.ainty sums, computcd with the 

E(!uat.iolls ( ItA), ( 4.5), ( 4.6), and ( 4.7) upon initialization, are used to 

filt.(·r the irnportancy and certainty evidence totals for each state type as 

was donc with the shape type totals (Equations ( 4.M), ( 4.11), ( 4.9), and 

( -1.12)). 'l'II(' t,wo types of information arc combined (Equation ( 4.10)) 

t.o prodm'(' fi modifi('d tot.al ht>lief numbe .. for each state. 

fo'inally, Ilormalization of the fuzzy st.ate values is achieved by sum-

f 
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4. Ccli Ima.ge Understantiing 

ming the modified total ht'lief numbers for ait e\ever st.d.t.{' t.ypes (Equa­

tion ( 4.13)) and computing the fractions of hclicC (E'luation ( 4.14). As 

with the fuzzy shape, the sum of the state values is 1, am! ~ach individual 

state value is a number from 0 to 1 representing the dcgrcc t.o which an 

objec1. bclongs to that particular statc. 

At this point the computed fuzzy stat.e is only a prelimina,.y one; t,h<.' 

celi shape cycle process information (cg. of Figur{' 2.2) has Ilot, yet hecn 

introduced. 

Most of the data used for the preliminary fuzzy statc computation af{~ 

from the present image frame. However, sorne data which dcpl'nd llpon 

previous image frames have also becn incorporated into the mIes. These 

data. include a. running weight,f'd a.Vf>rag{' of the pr(!vious shape. This is to 

add sorne additional stability in the prcliminary statc computation if an 

;\.berrant sha.pe computation occurs due to imaging artifacls or segmcn­

tation errors. In effect, the computation providcs a small am on nt of data 

~moothing over time. Smoothing acro~s previous image frames is justificd 

practirally by realizing that chang()s in a ccll's shape oeeur contiJllJously. 

The fuzzy shape values sho1\ld not chang(! drastically from one fram(! to 

the next, given a frame rate suit,able te cat.ch gencral rhaugml in pseu­

dopod hehaviour and ideal image segmentation. Additional advantagcs 

of integrating an object's sha.pe features int.o a fuzzy "Ihape J'eprcsŒt.a.­

tion are that a shape average computation is possible, il. is <Iuantitativdy 

meaningful, and it can actually be used in further mathcmatical analysiRj 

namely the computation of the fuzzy state. 

The smoothing function used for shape averaging over tint(; is: 

(4.15) 
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4. Cell Image Understanding 

where mir is the time-av-eraged shape at image sequence n, and Sir is the 

value of one of the fuzzy shape types (ROUND, OBLONG cr COM­

PLEX). Note that the shape value from the image frame n is added with 

a weighi of 1/4, to the previous a.verage with a weight of 3/4. This fuzzy 

!lhap(~ avcrage is then used in the ncxt image frame (n + 1) during the 

preliminary state evaluation. 

Other data used from previous image frames include the data repre­

scnting ohjf'ct pixel size, average neighhonr size, and collided object size. 

These data iH'(~ used to he1p monitor changes in ccli area for possible 

growl.tr and for dctermining drasf,ic duwgcs such as during eell division, 

œil eollision, and segmentation problems. 

4.5 Integration of Process Information 

The preceding section describes the method used for combining the evi­

dencc, at, a particu)ar instant in time, to produce a fuzzy measurement 

H('t. III prad.ice, t.his mcthod is first used to pl'oduce a fuzzy shape 

élnd t.JH'1I applicd t.o comput.e a prcliminary fuzzy state based solely on 

the mea."Iured evidence. Intuitively, this preliminary fuzzy state is like a 

"gucss" of t.he state, using image processing information from the present 

l'ra nU' along wit.lr sOl11e hint.s from t1w pn~vious frames, but wit.h no knowl­

('dgl' 01' bio)ogical l'xpcrti~e about. ho\\' a cell's states shou)d progress 

t."rollglt it.s lire cycle. A final fuzzy st.ate is computed from both the 

prdiminary fuzzy st.ate and the time-dependent process rules. 

The proccss rules consist of the possible transitions from one ideal 

stat.e to anothcr in a matrix representation similar to the state and shape 

rule-bases (Tab)es 4.5 and 4.2). The evidence predicate list of the pro­

cess rule-base (Table 4.6) consists of the previous state type possibilities 
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4. CcII Image U ndcrstar.ding 

PREVIOUS STATE PRE. PRE. MIT. MIT. POST. CON· OVER· SEt'AIt· NOItM· EXTING. lINIH:Ttm. 
MITI MIT2 OSIS SEPAR MIT TACT LAP ATION AI. IIISIIED 

PRE.MITI 1 1 0 0 0 1 0 0 t t 
PRE.MIT2 1 1 1 0 0 1 0 0 t t 
MITOSIS 0 1 1 1 1 0 0 0 1 1 
MIT.5EPAR 0 0 1 1 1 0 0 0 0 1 
POST.MIT 0 0 0 0 0 1 0 0 1 1 
CONTACT 0 0 0 0 0 1 t 1 0 1 
OVERLAP 0 0 0 0 0 1 1 1 0 1 
SEPARATION 0 0 0 0 0 1 0 1 1 1 
NORMAL 1 0 0 0 0 1 0 0 1 1 
EXTINGUISHED 0 0 0 0 0 0 0 0 0 1 
UNDETERMINED 1 1 0 0 0 0 0 0 t t 

Table 4.6: Process Rule·Base Matrix. 

for each row k, for example: previous ccII statc is PRE_MITI. 

The columns in Table 4.6 are the same state types used in the pr('­

Iiminary stat,p' rule-hase. One co\J1d us(' t.he m('thodology oC t.he previ­

ous sections in the representation oC importancy and ccrtaillty Cactors, 

but these factors cannot be accurat.ely e'stimated until more data are 

gathered. The Mitosis Recognition System itself could he used ill t.he 

~ct.thering of these data, ~o that we can more accuratcly apply reasonahle 

information factors to the process rules in a future implement.at.ioll. 

In the present implementation, the process rule-base consists of h'uc­

false binary factors (Table 4.6). We know for certain which st.ate tran­

sitions may OC(:ur after particular states, but. we cannot. at. present. judge 

t.he fr.!qu{·ncy or the probability of thesc occurrences. The value of 1 (or 

true) in Table 4.6 represents the possibilit.y that given the previous state 

sk(n - 1) is believed, the present state s,(n) may Collow. The value of 

o indicat.es t.ha." it. is not possihl(' for a œil t.o make t.he t.ransition from 

Sk( Tt - 1) to '1) (n). The variahle n i ndicales the image frame sequence 

number, inrreasing in time. Sorne' states allow several different transi­

tions, but others are more Iimited. Ail st.at.es cxccpt POST_MIT allow 

re-occurrence of the same state. 
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4. Cell Image Understanding 

The combi nation of the process rules, previous fuzzy state, and pre­

liminary fuzzy state is a simple procedure with only a few operations, 

"criee t.hl! r('sulting final fuzzy state is computed rapidty. 

The first step is to compute process transition weights by combining 

t.he prcvious fuzzy state data with the process rule-base. Elements PkJ 

of each row k of the process rule-base are multiplied by the previous 

fuzzy state values sk(n - 1) for each k to produce new weighted process 

clements Wk] for ail rows k and columns j: 

(4.16) 

A proeess stat,e ve<:tor is then comput.ed for each co]umn j by con­

sid(~ring the values of the weighted previous state evidence elements Wk, 

within the column j. In this step we simply take the maximum value of all 

Wk) clements within the column to be the unnormalized total predicted 

hl'! j"f value, Tb,.I}! ovcr ail rows k: 

ThelJ = III AX ( Wk]) ( 4.17) 

This result is analogons to the modified total bdief variable Mbelj 

during the preliminary state computation of the previous section. Nor­

malization is left for a tater step. 

The total predicted bclief vectct' consisting of clements Thel, can be 

consid('f('cI ilS il pr('sent st.at." prohilhility prediction. Given only the pre­

vjous st.at(· information and the process rules, it specifies what state is 

(·XI)(·ct.(·d for the tracked œil during the present image frame. 

Tht"' final st.cp simply combines this present state prediction Thel, with 

the preliminary fuzzy state SJ computed in the previous section from the 

illlagt' data. TIlt' t.wo arrays are 11111lhplie(1 beca.use of their probabilistic 
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4. Ccli Image Undl'rstalHting 

form. For instance, the prohability oC the occurrence \If statc j would bt> 

computed from the chance that.: 

1. the st.at.e is prcdicled wit.h t.he belicf (or quasi-probahilit.y) 7belJ and 

2. the state couid occur Crom the preliminary st,ate bclicf .'1)" 

The joint helieC is computed as Co\!ows: 

(tt.18) 

for aIl co\umns j. 

The result vector ()J is the final tmnormalizcd fuzzy st,ale. Normal­

ization is required to produce the final fuzzy stat.e cJ>normJ: 

() {)J 
normJ = ",n, ~. 

L...k=l 'l'k 
(4.W) 

We now have a set of values rcpr<'senting a ccll's fuzzy st.at.('. This 

fuzzy state can now he evaluat.ed for control decisions, sud. as t.he iluto­

matie tracking oC a second cell after ccli division has oC('lIrrccl. 

4.6 Cell Division and the Decision Function 

Once a final fuzzy state has heell compul.ed, it must. 1)(' analY1.cd 1.0 

determine the occurrence of cell division. At what point <:an we hdieve, 

with a high dcgree of certainty, that a ccli has complctcd rnitosis ancl two 

daughter cells should be trackcd? 

Multiohjective tasks can themsclvcs he formulated in fu1.1.y logi<: 

terms [62]. We could also m." fuzzy conditions to dctermine the d(!gree 

of ccrt.ainty of ccli division. I1owever, sillc:c' wc only haV(~ two possihle be­

haviours from any decision (to trac:k or not to track an acldit.ional cdl) a 
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4. Ccli Image Understanding 

singl(· condition is suflicient. This single condition is as follows: when the 

membcrship or bclicf value corresponding to the state type POST_MIT 

is largcr than ail other state type values in a cell's fuzzy state set and is 

nOJl-z(!ro, wc bdieve that cell division has occurred. 

Such a precise condition can only be used for the post mitotic process 

sti1tf'; Hw samf' rule could no' be used with grcat confidence for other 

stal.(·s, such as the NORMAL or PRE_MIT! states. This is because 

t.herl! rI'mains a œrtain amount of ambiguity in the outcomes of these 

overlapping st.at.(·s. ft can be shown t.hat a precise goal can be obtained 

IJsing fuzzy drsrriptions a.., long a.s the fuzzy observations become more 

ftllIl 1II()1'(' pr('('is(' wh('n t.he goal is appl'Oached [:11]. Our control goal is 

1.0 d(·I,(·(·1. ("(·lJ division. Crll division is hdi('ved to oceur when the precise 

rllll,zy ohsf'fvation indicates a POST_MIT maximum state value. 

An addit.ional dccision fllnct.ion is also required for the EXTIN­

GUISHED state. This state is only used if the accurnulated data 

lUuwtaint.y is very high or if an unacceptable proccssing condition has 

ocnlrrrd. An unacceptable processing condit.ion could be an invalid num­

l)f'r of ohj('('1s wit.llin 1.11(, willdow ('g. 110 objects) or a high, t1uexpected 

('hallg(' in t.lU' nurnlwr of ohjccts. Dataull<:ert.ainty is accumulated during 

('(·11 rollisioll and ov('rlap condition. Pl'eselltly, we do not have a mech­

éUlislll t.o guaranl.ee that the ccli being tracked is the same one being 

trark('d aH('" collision and separat.ion has occurred. The best we can do 

is pn'dict 1 hat. "ft('r follision, the tra<:k('ù cclI will retain its general char­

ad('ristics illltl posit.ion from bf/m'f follision. A degree of lIncertainty 

is ('st.il1lat.t'd and arcumulal<.'d eadl time a trackcd ccII interferes with 

anot h('r c<'ll in the image. When the value for the EXTINGUISHED 

st.att' 1>('("0111<'8 higher than the other states, tracking and subsequent pro-
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cessing of the cell ceases. 
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Chapter 5 
Experiments and Results 

5.1 Description of Method 

The Mitosis Uecognition System (MRS) was testcd using ecU images 

prf'viollsly rf'corded on comput{'r hard disk. Image sequences were read 

and process('d in real-time to simulate the environrncnt of TRACES, the 

automatcd TRAcking CEII System. Several different types of dividing 

cells were examined: slime mou Ids, fibroblasts, and cancerous blood ceUs. 

A typical expe."irnent procceds as follows. The first image of an ex­

perimental sequence is displayed using the MRS environ ment on a colour 

(lI' gf'('y-I('V(" SUN workstation monitor. ImJividual cells are selected for 

t.rarkillg hy ('ndosing cach ccII in their own window. For optimal perfor­

malKC, t,h('se IIser-defined windows should be large enough to contain the 

mtire ccli arter expected growth, but small enough as to not permit too 

lTIitny adjit('(·nt. ('('Ils to hf' proCf'SSf'cl. For cxampte, see the first frame in 

Figllrt· 5.1. Onn' n·1I self'ct.ion is complet.e, the tracking is init.iated, and 

t.11f' lu'xt imag(' frame in t.h .. eXpf'rillHmt.al sequence is displayed. The 

MUS proC('C'ds autornatically from this point: the eells are segmented, 

ttw hOlludari('s arc dctermincd, skeletons are computed, the cell center is 

round, and finaIly, the fuzzy shapes and states of each cell are resolved. 

The MHS program cnvironment displays the results of the shape and 

8tat<' computation adjacent to each ccII, and the position of the ceU's 

window is fulj1\stC'cl 1.0 accoun" for t.tlf' change in the cell's central posi­

t.ioll. If tll<' ('(,Ils do not divid(', but simply change shape and move about, 
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the MRS program automatically tracks the cells aeros:; tilt' S(Te('ll. 

The MRS program constantly monitors the challg<'s in cdl st.at(' for 

each image frame. If cel) division is detected by the expert system, a new 

cell window is automatically created on one of the newly fomwd daught.t'r 

cells (Figure 5.2). The changes in shape, state, and ("(~ll position are 

recorded in output data files for ofr~1in(' i\llalysis. 'l'hl' cdl's skt·ld.on is 

a1so ft'cordt'd for ea,ch frame, and can be uscd for more d('t.ail(·d shape 

analysis. 

5.2 ResuUs 

Figures 5.1 and 5.3 are cell s('qm'Il<'(, eXiUnplcs of a dividing slime 

mould and dividing fibroblast, respcet.iwly. 'l'Il(> slime mould frallles aff' 

displayed in these figures at approximatcly 30 second inl('rvals, wh('ff'as 

the fibrohlast frames are shown at approximatcly 15 second illt.ervals. 

The data was actually recordcd using a faster frame rat,('j int,erlll('(Jiat,(· 

frames were removed for illust.ration purposes. 

Tht> s{'gmf'ntation of the ('(·lIs pro('('('(lc'd very eOllsist,cllt.\y. O('C'asion­

ally, howcvcr, fading of the ccli hody would result in poor s(·gnlC'lIt.atioll. 

Fol' examplc, Figure 5.3 shows poor results in franw Il. Fortullat.(·ly, 

hecause of the use of previous knowledge in the si apc and st.at.e analysis, 

the expert system is able to rccover from an isolated poor s(·gHH'nt.ation. 

Skdctonization proccf'ded (juickly all<l produn!d ('onsisf.(·1I1, reslJlts in 

mosl. cases. Figure .5.1 shows t.hal. short., single hranched skddons W('re 

computed for roundish cells, bul. h('CélllH' (·lolIgat.ed as milof.is proc(·edf·d. 

Cells with more complex shapes produccd multi-hranched skdd.()n~. 

Cell shapes and cell states werc computed autornalically for (!ach œil 

image, and by monitoring the state values for ccII separation and post. 
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5. Experiments and Results 

mitosis, the expert system was able to determine accurately that cclI 

c1iviHion o("C'urred. Figure 5.1, Figure 5.2, Figure 5.3 and Figure 504 

ar(> (~xamr>l(>s of dividing cclls and the subsequent tracking of daughter 

ct·lls. 
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1 2 

13 14 15 16 17 18 

19 20 

}'igure 5.1: Dividing slime mould. Cells are fillcd in black within thcir grey­
level backgrounds. Skeletons are rcpresented in white. After cc.l separation 
(frame 14), a daughter cell is subsequently tracked (frames 15 through 20). 

15 16 17 18 19 20 

Figure 5.2: Tracking of new ccli after division. A new tracking window is 
created after frame 14 to track the additional daughtcr ecll. 
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13 14 15 16 17 18 

Figure 5.3: Dividing fibroblast. CeUs are filled in black within their grey­
lev(!1 backgrounds. Skeletons are represented in white. After eell separation 
(frame 14), a daughter eell is subsequently tracked (frames 13 through 18). 

13 14 15 16 17 18 

Figure 5.4: Tracking of new eell aCter division. A new tracking window is 
rreatcd arter f"~,me 12 to track the additional daughter eell. 
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Chapter 6 
Conclusions 

The application of computer vision techniques to the field of œil biol­

ogy has tremendous potential. Present experimental methods uscd by 

cell biologists to track and monitor microscopic shape changes in cells 

involve labour-intensive work. Digital image recording, processing, and 

automatic tracking of cens has obvions benefits in the acquisition of cx­

periment al ceU data. 

In particuJar, the study of cell proliferation and the inheritance of 

traits associated with changes in membrane shape and cc)) locomot.ion 

can benefit considerably by a computer vision system that can rerognizc 

cell division and automaticd.lIy monitor changes in ccli shape and posi­

tion. These capabilities were successfully developed and applicd in the 

Mitosis Recognition System (MRS). 

Apart from the biological benefits, this thesis explores issues inherent 

to a complete computer vision system, from image segmentation through 

a final expert system control decision. Special segmentation t.echniques 

are developed specifically for microscopie unstained cell imag(~s. Shape 

analysis is performed using a combination of boundary and region-ba.'icd 

analysis methods. In partirular, a method of skeletonization is applicd to 

the problem of cells undergoing shape changes characteristic of mitosis. 

The data retrieved from the segmentation and shaI~e analysis arc corn­

bined and analyzed to produce fuzzy descriptions of ccli shape. Finally, 

through a method of fuzzy evidence combination, the system intcgratcs 

past cell state knowledge, present cell state, and ceU process rules into 
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6. Conclusions 

a final fuzzy ccII ~tate. The final ceJl state is monitored for changes in 

the post-mitosis and ceJl separation conditions to determine the actual 

occurrence of ccII division. 
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