
Using Case-Based Reasoning 
to Learn About Ecological Engineering 

 
Tania R. Lanphere 

 
 
 
 

Bioresource Engineering 
McGill University 
Montreal, Quebec 

 
 

April 2009 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A thesis submitted to McGill University in partial fulfillment of the requirements of the 
degree of Doctor of Philosophy. 

 
© Tania R. Lanphere, 2009 



 iii

Abstract 

Ecological engineering, the practice of designing, creating or manipulating, and 

monitoring ecosystems, is applied for a variety of purposes benefiting both human society 

and the natural environment, often integratively.  While there are basic principles that 

help practitioners in the development and implementation process, at this time there is no 

comprehensive theory that guides the design of ecosystems. In order for such theory to be 

developed, extensive knowledge about the interactions between ecosystem constitution 

and comportment, and ways to analyze and integrate this knowledge, are needed.  

Consequently, the ability to qualitatively and quantitatively evaluate large datasets in a 

multivariate fashion is required.  Thus, the objective of this project was to investigate the 

use of case-based reasoning as a method of gathering and analyzing large sets of 

ecological data not only for prediction but for engineering purposes, a previously untested 

application. 

 

To maximize the number of cases to be analyzed without limiting the inputs to only 

known systems described in the literature, a virtual ecosystem and simulation platform 

was created.  Simulation outputs and values for applied measures were compiled into a 

case base for use with a case-based reasoner to attempt to predict the results of several 

additional randomly created virtual ecosystems.  Actual results were compared to the 

predicted results.  The accuracy of the predictions made by the case-based reasoner 

varied, but they were more than 75% accurate 83.3% of the time.  An initial attempt was 

made to apply this approach to “engineering” ecosystems for specified performance levels 

within the virtual ecosystem framework. While the targeted values of persistence were not 

obtained, the “engineered” virtual ecosystems were more persistent overall than the 



 iv

randomly created systems, with an average ratio of 0.40527 surviving species to initial 

species versus an average persistence of 0.20750 for the random systems.  This is 

indicative of the potential of this novel approach for data analysis in ecological 

engineering. 



 v

Résumé 

Le génie des écosystèmes, soit la pratique de concevoir, créer ou manipuler, et faire la 

suivi des écosystèmes, s'applique, souvent de manière intégrée, au bénéfice de la société 

humaine et de l'environnement naturel. Quoiqu'il y ait des principes de base pouvant 

servir à de tels ingénieurs dans le développement et mise en œuvre de tels écosystèmes, 

présentement il n'existe aucune théorie compréhensive pouvant guider la conception 

d'écosystèmes artificiels. Afin qu'une telle théorie soit énoncée, il nous faut acquérir des 

connaissances approfondies quant aux interactions existant entre les constituants et le 

comportement de l'écosystème, et quant à comment procéder dans l'analyse et 

l'intégration de ces connaissances.  Il devient donc nécessaire de pouvoir faire l'évaluation 

qualitative et quantitative de grands ensembles de données par des méthodes d'analyse 

multivariable. L'objectif de ce projet fut donc d'étudier l'utilisation d'une méthodologie de 

raisonnement par cas pour recueillir et faire l'analyse de grands ensembles de données 

écologiques, autant pour servir à des prédictions qu'à des fins d'ingénierie, une application 

préalablement inévalué. 

 

Afin de maximiser le nombre de cas pouvant être analysés sans limiter les données 

d'entrée à celles décrites dans les ouvrages scientifiques, un écosystème virtuel et une 

plateforme de simulation furent conçus. Les données de sortie des simulations et les 

valeurs pour les mesures mises en œuvre furent compilés dans une base de cas conçue 

pour servir d'intrant à un raisonneur par cas qui servirait à prédire les résultats de 

plusieurs écosystèmes virtuels supplémentaires, chacun créé de façon aléatoire.  Ces 

résultats furent comparés aux valeurs prédites.  L'exactitude des prédictions du raisonneur  

par cas varia, mais, 83.3% du temps, dépassa 75%.  Un essai préliminaire fut entrepris 



 vi

pour mettre en œuvre cette démarche d'ingénierie d'écosystème pour des niveaux de 

performance précis dans le cadre d'un écosystème virtuel. Quoique les niveaux de 

persistance visés ne furent pas atteints, les écosystèmes virtuels "façonnés" furent, dans 

l'ensemble, plus persistants que ceux bâtis de façon aléatoire, avec un rapport moyen des 

espèces ayant survécu aux espèces initiales de 0.40527,  comparé à 0.20750 pour les 

écosystèmes aléatoires.  Cela met en évidence le potentiel de cette nouvelle démarche 

pour l'analyse de données en génie des écosystèmes. 



 vii

Acknowledgements 
 
First, of course, I wish to express my appreciation to my advisors, Robert Kok and Grant 

Clark, for their guidance throughout this project and the writing of this thesis.  I would 

also like to thank my fellow graduate students, both in my research group and the 

department in general.  Of particular help were Dr. Jennifer Karsten, Yung-Chien Sun, 

Marc Abbyad, Michael Muffles, Christina LaFlamme, and Dr. Heidi Webber.  The staff 

members of the Bioresource Engineering department were also very important to my 

experience here, so many thanks to Susan Gregus, Abida Subhan, and Trish Singleton.  

Thank you all for making this a good place to work and study. 

 
I traveled to many conferences during the course of my research and met many people, 

several of whom helped me develop ideas for this research.  Thank you to the various 

members of the American Ecological Engineering Society, the Institute of Biological 

Engineering, the Canadian Society for Bioengineering, and the American Society of 

Agricultural and Biological Engineers who listened and encouraged me along my path.  

In particular, I want to thank the attendees of the Ecological Network Analysis 

Conference in Athens, Georgia in March 2005. 

 
I would also like to thank my friends and family.  To Janielle Guzinski and Élyann and 

Roxane Périard-Fournier: thank you for keeping me from becoming a hermit and only 

venturing out to go to school and the bookstore.  Janielle, I also appreciate your editing 

help; I think I owe you ten dinners for even sending you Chapter 3.  To my parents, Starr 

and Lois Lanphere: I cannot thank you enough for your unwavering love and support 

through my whole life and especially my time here.  You let me believe I could do 

anything and never stopped me when it took me far away.  Finally, I do not know what I 

would do without Dr. Gwen Gross: sister, friend, inspiration, shopping buddy, translator 

of proffesorese, shoulder to cry on, ear to bend, and all around hero. 

 
 
This thesis is dedicated to the memory of Hortense Marie Lanphere (1909 – 2004), who 

gave me my first ecology lesson.  She was a woman and scientist ahead of her time, and I 

will forever be grateful that she helped teach me how to see the world. 



 ix

Table of Contents 
 

Abstract...............................................................................................................................iii 
 

Résumé..................................................................................................................................v 
 

Acknowledgements............................................................................................................vii 
 

Table of Contents.................................................................................................................ix 
 

List of Figures.....................................................................................................................xii 
 

List of Tables.....................................................................................................................xiii 
 

List of Terms......................................................................................................................xiv 
 

1. Introduction......................................................................................................................1 
    1.1 Knowledge and reasoning for engineering theory......................................................4 
    1.2 Research objectives and methodology.......................................................................5 
    1.3 Conceptual framework...............................................................................................6 
    1.4 Summary.....................................................................................................................9 

 
2. Literature Review...........................................................................................................10 
    2.1 Examples of ecological engineering.........................................................................10 
    2.2 Basic ecological engineering principles...................................................................13 
    2.3 Ecology and ecological engineering.........................................................................16 
    2.4 Ecosystem models and virtual ecosystems...............................................................18 
    2.5 Case-based reasoners................................................................................................22 
    2.6 Summary...................................................................................................................24 

 
3. Methodology - Virtual Ecosystem..................................................................................25  
    3.1 Conceptual model.....................................................................................................27 
           3.1.1 Forcing functions............................................................................................33 
    3.2 Representational model............................................................................................36 
    3.3 Computational model...............................................................................................41 
           3.3.1 Basic program structure..................................................................................41 
           3.3.2 Initialization....................................................................................................43 
           3.3.3 Iteration...........................................................................................................44 
           3.3.4 Forcing functions............................................................................................45 
                    3.3.4.1 Radiation subroutine...........................................................................46 
                    3.3.4.2 Temperature subroutine......................................................................47 
    3.4 Program verification.................................................................................................49 
           3.4.1 Isolating processes..........................................................................................50 
           3.4.2 Exploration of simulation output....................................................................53 
    3.5 Validation and virtual ecosystems............................................................................64 
    3.6 Comparing the virtual ecosystem to ecological theory............................................65 
    3.7 Summary...................................................................................................................69 



 x 

4. Data Generation..............................................................................................................71 
    4.1 Creating simulations.................................................................................................71 
           4.1.1 Creating species..............................................................................................72 
           4.1.2 Creating systems.............................................................................................76 
    4.2 Summary...................................................................................................................80 

 
5. Analyzing the Constitution and Comportment of Virtual Ecosystems..........................81 
    5.1 Measuring complexity..............................................................................................83 
           5.1.1 Constitutional complexity...............................................................................83 
                    5.1.1.1 Compositional complexity..................................................................84 
                    5.1.1.2 Structural complexity.........................................................................85 
           5.1.2 Comportmental complexity............................................................................89 
    5.2 Measuring stability...................................................................................................94 
    5.3 Summary...................................................................................................................98 

 
6. Using Case-Based Reasoning to Predict and Engineer Ecosystems............................100 
    6.1 Compiling the case base.........................................................................................101 
    6.2 Using the case-based reasoner................................................................................104 
           6.2.1 Predicting simulation results........................................................................104 
                    6.2.1.1 Analyzing prediction accuracy.........................................................105 
           6.2.2 Engineering systems.....................................................................................108 
                    6.2.2.1 Analyzing engineering success.........................................................110 
    6.3 Summary.................................................................................................................111 

 
7. Results and Discussion.................................................................................................112 
    7.1 Simulation results...................................................................................................112 
    7.2 Discussion of preliminary results for data production phase of the project...........116 
          7.2.1 The virtual ecosystem program.....................................................................116 
          7.2.2 System creation..............................................................................................117 
    7.3 Results for the case-based reasoner........................................................................120 
          7.3.1 Accuracy of predictions.................................................................................120 
          7.3.2 Results for the “engineered” systems............................................................121 
    7.4 Discussion of the case-based reasoner....................................................................124 
          7.4.1 Improving predictions....................................................................................124 
          7.4.2 Discussion of the “engineered” cases............................................................125 
          7.4.3 Comparing the “engineered” systems to the randomly generated systems...126 
    7.5 Recommendations for future work.........................................................................129 
    7.6 Summary.................................................................................................................130 

 
8. General Summary and Conclusions.............................................................................131 
    8.1 Methodology..........................................................................................................131 
           8.1.1 The virtual ecosystem and simulation program............................................132 
           8.1.2 Running simulations and using the case-based reasoner..............................133 
    8.2 Results....................................................................................................................133 
    8.3 Conclusions............................................................................................................134 

 
9. Contributions to Knowledge.........................................................................................135 



 xi

References........................................................................................................................137 
 
Appendix A: Virtual ecosystem and simulation program source code............................151 

 
Appendix B: Sample input files........................................................................................256 
    B.1 File “ecomod****.inp”..........................................................................................256 
    B.2 File “ecosim****.inp”...........................................................................................258 
    B.3 File “ecorad****.inp”............................................................................................259 
    B.4 File “ecotem****.inp”...........................................................................................261 

 
Appendix C: Sample output files......................................................................................263 
    C.1 File “ecosys****.out”............................................................................................263 
    C.2 File “asc****.out”..........................................................................................280 
    C.3 File “eat****.out”..................................................................................................281 

 
Appendix D: Species definitions spreadsheets.................................................................282 
    D.1 Species attributes...................................................................................................282 
           D.1.1 Values of species attributes.........................................................................282 
           D.1.2 Formulas for generating values of species attributes...................................284 
    D.2 Food preferences of consumer species..................................................................288 
           D.2.1 Values for food preferences of consumer species.......................................288 
           D.2.2 Formulas for generating values of consumer food preferences...................290 
    D.3 Health interactions.................................................................................................291 
           D.3.1 Values of health interactions.......................................................................291 
           D.3.2 Formulas for generating values of health interactions.................................296 

 
Appendix E: System creator program source code..........................................................297 
    E.1 Source code of the system creator program...........................................................297 
    E.2 Input files for the system creator program.............................................................312 
          E.2.1 Input file of all species attribute values.........................................................312 
          E.2.2 Input file of consumer food preferences.......................................................314 
          E.2.3 Input file of health interaction values............................................................315 
          E.2.4 Input file of simulation numbers...................................................................318 

 
Appendix F: Simulation results database.........................................................................319 

 
Appendix G: Screenshot of case base...............................................................................323 
 

 



 xii

List of Figures 
 
Figure 3.1 Materially Closed, Energetically Open Virtual Ecosystem..............................27 
Figure 3.2 EcoSpheres........................................................................................................29 
Figure 3.3 Attenuation Factor Curve for α = 4...................................................................33 
Figure 3.4 Virtual Ecosystem and Simulation Program Structure.....................................42 
Figure 3.5 Species Variables vs. Time...............................................................................54 
Figure 3.6 Average Population of Final Year vs. Specific Base Metabolic Rate...............56 
Figure 3.7 Average Population of Final Year vs. Specific Base Metabolic Rates.............56 
Figure 3.8 Average Population of Final Year vs. Specific Base Metabolic Rate...............57 
Figure 3.9 Ratio of Average Populations of Final Year vs. Specific Base Metabolic  

Rate.........................................................................................................................57 
Figure 3.10 Average Population of Final Year vs. Ratio of Specific Base Metabolic 

Rates.......................................................................................................................58 
Figure 3.11 Average Population of Final Year vs. Ratio of Specific Base Metabolic 

Rates.......................................................................................................................58 
Figure 3.12 Average Population of Final Year vs. Ratio of Specific Base Metabolic 

Rates.......................................................................................................................59 
Figure 3.13 Average Population of Final Year vs. Ratio of Specific Base Metabolic 

Rates.......................................................................................................................59 
Figure 3.14 Producer Species 2 Population vs. Producer Species 1 Population................61 
Figure 3.15 Average Population of Final Year vs. Consumer Hunting Ability.................62 
Figure 3.16 Average Population of Final Year vs. Consumer Hunting Ability.................62 
Figure 3.17 Average Population of Final Year vs. Consumer Hunting Ability.................63 
Figure 3.18 Average Population of Final Year vs. Consumer Hunting Ability.................63 
Figure 3.19 Exponential Growth: Individuals vs. Time.....................................................65 
Figure 3.20 Logistic Growth Curves: Population vs. Time................................................67 
Figure 3.21 Lotka-Volterra Density Dependent Predation Cycle......................................68 
Figure 3.22 Cyclical comportment of virtual ecosystem....................................................69 
Figure 5.1 Food Webs........................................................................................................84 
Figure 5.2 Connectance Values..........................................................................................88 
Figure 5.3 Ecosystem Food Web and Corresponding Network.........................................91 
Figure 5.4 Unfiltered Ascendency Vector and Seven Day Moving Average Ascendency  

Vector......................................................................................................................93 
Figure 5.5 Test Lines Used with Fractal Program..............................................................95 
Figure 7.1 Species Survivorship.......................................................................................112 
Figure 7.2 Average Accuracies of Various Schemes.......................................................123 



 xiii

List of Tables 
 
Table 3.1 Individual Level Attributes.................................................................................28 
Table 3.2 Species Level Attributes.....................................................................................28 
Table 3.3 System Level Attributes.....................................................................................28 
Table 3.4 Assumptions for the Virtual Ecosystem.............................................................37 
Table 7.1 System Statistics for the First 100 Systems......................................................115 
Table 7.2 System Statistics for “Engineered” Cases........................................................121 
Table 7.3 Comparison of Average Persistence Values.....................................................127 
Table 7.4 Comparison of Correlation Values...................................................................128 



 xiv 

List of Terms 
 
artificial ecosystem – an ecosystem that has been at least partially constructed by 

human hands 
ascendency – a measure combining the vigor and organization of an ecosystem; can be 

used as an index of ecosystem development (i.e. more developed systems will have 
higher ascendency) 

backward knowledge – descriptive and observational knowledge of the set of causes 
that may result in a given effect 

backward reasoning – prescription of how to achieve a given effect 
case base – a set of known situations and their outcomes 
case-based reasoner – a computational tool used to perform case-based reasoning 
case-based reasoning (CBR) – an approach to prediction and problem solving based on 

previous knowledge 
closed ecosystem – ecosystem that cannot receive material or energy from outside its 

defined boundaries 
comportment – the way the in which the state of the system changes over time 
composition – the types and numbers of components in a system 
connectance – the ratio of actual species interactions to possible species interactions in 

an ecosystem; a measure of structural complexity 
constitution – the combined composition and structure of a system 
consumer – individual in an ecosystem that obtains energy by taking it from another 

individual in the system 
forcing functions – factors that cause changes in an ecosystem such as temperature, 

energy entering the system, rainfall, disturbances, etc. 
forward knowledge – descriptive and observational knowledge of causal relationships 
forward reasoning – prediction of the effect of a given cause 
fractal dimension – a measure of path tortuosity; geometric dimension of paths between 

1 for a straight line and 2 for a path that covers an entire plane 
guided ecosystem – an ecosystem that is monitored and adjusted on a periodic basis, 

either after a larger scale manipulation or as the whole of an ecosystem engineering 
effort 

natural ecosystem – an ecosystem that has developed independently of intentional 
human influences 

open ecosystem – ecosystem that can receive material and / or energy from outside its 
defined boundaries 

persistence – the ratio of surviving species to initial species in an ecosystem; a measure 
of ecosystem stability 

physical ecosystem – an ecosystem that exists on the same physical plane as humanity 
and can be observed through physical means 

Pred(n) – prediction at level n, the percentage of predictions that are within n percent of 
the observed value; a measure for prediction accuracy 

producer – individual in an ecosystem that directly absorbs energy from an outside 
source 

species richness – the number of species in an ecosystem; a measure of compositional 
complexity 



 xv

state – the total set of descriptors for all of the elements in a system at a given time 
(Note: when dealing with ecosystems, state may refer to a small area of the state 
space rather than a single point) 

state space – the multi-dimensional space containing all the possible states of a given 
system 

structure – the relationships and connections between the elements in a system 
validation – the process of comparing model output to an exemplar system 
verification – the process of examining the computational model to ensure that it 

functions as intended 
virtual ecosystem – an ecosystem that exists only in cyberspace; usually constructed for 

a specific purpose though theoretically possible to develop spontaneously 
wild ecosystem – an ecosystem that is allowed to develop without further manipulation; 

generally defined to start after manipulation through an ecological engineering effort 



 1

1. Introduction 

Ecological engineering involves designing and creating or manipulating ecosystems such 

that they may provide specific services to humanity as well as themselves and the 

surrounding environment (Mitsch and Jørgensen 2004).  In practice, the ecological 

engineer uses the self-organizing and regenerative properties of ecosystems to solve 

problems, generally those with some sort of environmental implication, in a sustainable 

fashion.  A well engineered ecosystem will, because of its inherent functions as a living 

system, continue to provide services for many years with little or no human intervention.  

While some systems are designed for periodic adjustment and others, particularly 

systems restored for conservation purposes, are intended to be left to their natural 

process of succession, sustainability is a key feature of engineered ecosystems.  

Ecological engineering has been applied to waste management, pollution control, habitat 

restoration, sustainable harvest enhancement, and many other purposes in a variety of 

ecosystems, both natural and artificially created. 

 

An example of ecological engineering that has made the news is the sinking of derelict 

airplanes to create habitat for fish and strata for sessile marine life.  Another application 

is known as a “living machine”, a contained facility in which a sequence of retention 

tanks, upon which float mats of vegetation, are used to treat wastewater.  Such machines, 

combinations of living and mechanical parts, have seen great success in a variety of 

industrial and community applications (Todd 2005).  One interesting area of ecological 

engineering is the creation of life support systems, or even full ecosystems, for human 

habitats in space (Morowitz 2005, Nitta 2005, Wang et al 2004, Blüm et al 2003, Allen 

and Nelson 1999, Salisbury et al 1997).  While no ecological life support system using a 



 2

large, complex ecosystem has come into common use yet, a few well-known byproducts 

of the search have made their way into mainstream society.  Miniature ecosystems in 

glass terrariums have been used as household decorations for years, and ecological 

engineering research has contributed a new version of that decoration: small aquatic 

ecosystems enclosed in a glass globe. 

  

As awareness of environmental damage and limited resources grows, it is likely that 

ecological engineering will be favored increasingly over traditional ‘hard’ engineering 

solutions.  Unfortunately, the state of the field does not yet allow projects to yield 

consistent results.  Currently, projects are based mostly upon prior experience or 

experimentation.  Some types of ecosystems have been worked with many times, and 

projects in them are more likely to be successful.  Projects in entirely new types of 

systems, however, are hampered by a lack of knowledge.  There are a few basic 

ecological principles that can help improve the design of systems in ecological 

engineering projects, but there is not yet any comprehensive theory to guide all projects 

(Mitsch and Jørgensen 2004). 

 

Ultimately, comprehensive theory for ecological engineering could allow a practitioner 

to design an optimized system for a specific goal and given conditions with minimal to 

no experimental work.  This would even be possible when the parameters of the job have 

never been seen before, such as would occur on an extraterrestrial planet; the species 

available have never been used in combination before; or even if the species have never 

been worked with before and the practitioner only has knowledge of the values of 

particular attributes of those species.  Obviously, if that sort of ability is ever possible it 



 3

is far in the future, but the knowledge found during development of theory that would 

allow practitioners to predict the behavior of an engineered ecosystem under different 

conditions and allow them to choose species for a given goal, again without extensive 

experimentation, would be a start toward that goal and improve the success of projects in 

the present. 

 

In order to develop such theory, more knowledge is required about the patterns and 

connections between the constitution of an ecosystem and its comportment, where 

constitution refers to the composition and structure of the ecosystem and comportment 

refers to the series of changes in values of its attributes through time due to internal 

interactions between elements of the system as well as response to forcing functions, 

such as weather, and disturbances.  Ecosystems are complex systems, made up of many 

intricately connected parts.  Small changes to the system, both from internal and external 

sources, can have a large impact.  The results from such changes are not necessarily 

easily tracked though the system; nor are the causes of any changes always easy to find.  

For ecological engineering, there needs to be more knowledge and greater understanding 

of the effect of local interactions on the global dynamics of the system.  Gathering such 

knowledge in natural systems is a difficult task given the long temporal scale of many 

ecological processes and the multi-scalar nature of ecosystems in general. 

 

Much relevant knowledge already exists in the literature but has not been analyzed for 

ecological engineering applications.  The body of existing knowledge also has not been 

organized and analyzed as whole, which may be one way to find the general patterns that 

apply to all ecosystems and form comprehensive theory for engineering ecosystems.  In 



 4

the meantime, information garnered from traditional ecosystem models and virtual 

ecosystems can be used to form a rough theoretical basis for ecological engineering.  

Computational methods can also provide ways to study and examine data sets larger than 

those used in the past, which may be the key to developing ecological engineering theory 

(Mitsch and Jørgensen 2004). 

 

1.1 Knowledge and reasoning for engineering theory 

One way to map the formation of engineering theory is through a progression of required 

knowledge and the reasoning it enables.  The first type of knowledge required is forward 

knowledge, the descriptive and observational knowledge of causal relationships that is 

often the pervue of scientific research.  For ecological engineering, this knowledge will 

mostly come from the various disciplines of ecology, many studies of which also include 

methods for forward reasoning, predicting the effect of a given cause.  Thus, a sufficient 

amount of forward knowledge of the type 

IF {constitution, forcing functions, disturbances} 

THEN {comportment} 

allows for forward reasoning of the form 

IF {modified constitution, forcing functions, disturbances} 

THEN {modified comportment}. 

When an adequate number of predictive rules are considered together, it is possible that 

patterns and relationships for ecosystems in general can be found from forward 

reasoning. 

 

Backward knowledge, descriptive and observational knowledge of the set of causes that 



 5

may result in a given effect, is a necessary type of knowledge for engineering efforts but 

is more difficult to obtain and analyze because any single effect or outcome may have a 

wide variety of causes or initial conditions.  The difficulty of that analysis transfers to 

performing backward reasoning, prescribing a set of adjustments or an initial system 

state to achieve a desired outcome.  As with forward knowledge and reasoning, though, a 

sufficient quantity of backward knowledge of the type 

IF {sets of ecosystem constitutions, forcing functions, disturbances} 

THEN {desired comportment} 

allows for backward reasoning in the form 

IF {required modifications} 

THEN {desired comportment}. 

The synthesis of a number of prescriptive rules from backward reasoning may lead to 

general rules, and possibly even theory, for engineering ecosystems. 

 

1.2 Research objectives and methodology 

The objective of this research was to test a tool for compiling and analyzing data about 

ecosystems and ecological engineering efforts for its feasibility as a method of 

organizing forward and backward knowledge and performing forward and backward 

reasoning.  This tool, a computational approach from the field of artificial intelligence 

called case-based reasoning, was used to explore the connections between ecosystem 

constitution and comportment as they relate to ecological engineering.  A rudimentary 

body of knowledge, containing initial ecosystem parameters and the resulting 

comportments of those ecosystems when run in simulation with given forcing functions, 

was created with a virtual ecosystem model and simulation program and used with the 



 6

case-based reasoner.  The data from a number of simulations were compiled into a case 

base, several measures were applied, a case-based reasoner was used to try and predict 

the comportments resulting from the simulation of another set of ecosystems, and the 

accuracy of the predictions was evaluated.  The case-based reasoner was also used to try 

and engineer ecosystems with a higher degree of survival among the species present in 

the system than expected in the randomly created systems. 

 

1.3 Conceptual framework 

In order to clearly express the research and findings discussed in this thesis, there are a 

few terms that must be defined.  The simplest term to be used here is ecosystem.  While 

this term may seem simple, there are a number of issues that are important to discuss 

regarding ecosystems that are not as obvious.  An ecosystem is most often considered to 

be a collection of interconnected living organisms and their habitat, generally at the 

landscape-scale, such as a desert or a forest, though there are many ecosystems at the 

microscopic scale as well.  Because of the microorganisms living on and inside them, 

organisms themselves can also be considered ecosystems, but that is neither the common 

usage of the term nor is it the one being used here.  The planet itself can also be 

considered an ecosystem, one in which many landscape-level ecosystems are connected 

together into one larger ecosystem, also known as the biosphere.  The fact that most 

ecosystems on the planet are connected to other ecosystems creates difficulty in defining 

where the boundaries of a particular ecosystem lie.  Ecosystems often gradually change 

from one to another with no distinctive line that can be said to be the boundary between 

the two.  Of course, this is not as much of a problem when the ecosystem in question has 

been artificially created.  For ecological engineering, most projects are performed on 



 7

landscape-level ecosystems with the boundaries defined by the needs of the particular 

project, such as land ownership and artificial boundaries like roads. 

 

There are a number of terms that can be used to classify ecosystems, generally arranged 

upon sets of orthogonal axes with paired terms on each end of an axis (Molenaar 1998).  

Open and closed would be the one such pair of terms important to this project.  This 

refers to whether components are able to move in or out of the ecosystem.  Most 

ecosystems are open to energy, entropy, and materials (in the form of water, soil, 

migrating animals, etc.).  Some systems, like remote islands and “sky islands”, are 

closed to migrating individuals though still open to energy, entropy, and various 

materials.  In geological or evolutionary time frames, the openness of systems often 

changes, so this distinction is mostly of use for the shorter term view seen in human life 

times.  Ecosystems in space habitats would likely be closed to all materials but still open 

to energy and entropy.  Space station ecosystems would also be artificial, meaning that 

they would be entirely planned and constructed by human hands, as opposed to natural 

systems that have originated from ecological processes without interference from 

humans.  As human influence has reached most parts of this planet, there are very few 

ecosystems on Earth that are wholly natural, if human are considered to be outside of the 

natural system.  The inclusion or exclusion of humans in the natural realm often changes 

with the situation, the biases of the observers, and the needs of a given project or issue.  

Thus, most ecosystems exist somewhere on the continuum between the two ends of the 

axis, and the degree of artificiality can be very crucial to planning an ecological 

engineering project.  A set of terms that is usually more important after an ecological 

engineering has been implemented is wild and guided.  Wild systems are allowed to 



 8

develop without interference – after the initial engineering in the case of engineered 

systems, while guided systems are monitored and adjusted to meet certain goals.  For 

example, a forest may be thinned and subjected to controlled burning in order to keep 

down the fire danger. 

 

Another pair of words, of particular importance to this project, is physical and virtual.  It 

is generally considered that all ecosystems are physical, that human beings can see and 

touch them.  However, as computing technology increases, there are a growing number 

of systems that exist only in computers and computer networks.  There is much debate 

about whether computer constructs can be considered living systems.  Many of these 

systems, though, show complex behaviors and interactions similar to physical life.  They 

can self-replicate, and unexpected and un-programmed dynamics have been known to 

emerge, much the same as unexpected dynamics can emerge in physical systems.  Such 

phenomena mean that virtual ecosystems can be treated as if they were alive, even if 

they are not “truly” alive.  Indeed virtual ecosystems are a very useful platform for 

studying the processes and theoretical aspects of ecological engineering because they 

exist in a habitat where it is easy to measure and record all aspects of the system.  They 

are also convenient because experiments can be performed in much less time than is 

often required for experiments in physical systems. 

 

While there are other terms that can be used for classifying ecosystems, those are the 

pairs that are most applicable to the current project.  There are also a few other terms that 

are applicable to all ecosystems and necessary for discussing them and their dynamics.  

As mentioned above, ecosystems can be described in terms of their constitution and 



 9

comportment (Clark 2000).  The constitution of a system is its composition, the types of 

components in the system (i.e. the species, substrate, etc.), and structure, the set of 

relationships between the components.  Individual components have attributes such as 

age and mass, and the total set of those attributes at a given time is the state of the 

system at that moment.  The state of the system changes in response to internal dynamics 

and external influences like temperature and rainfall, known as forcing functions, 

moving through the multi-dimensional space of all possible states, the state space.  The 

path traced by the system during these changes is the comportment of the system.  It is 

important to note that when dealing with living systems, the term “state” has a certain 

degree of flexibility; it is sometimes used to refer to a small area of a state space rather 

than a single point. 

 

1.4  Summary 

Ecological engineering relies upon the inherent properties of ecosystems for the design 

and manipulation of systems in such a way as to provide services to both humanity and 

the environment.  It has application in many industries and ecosystems, even in space.  

Current projects, however, are based upon experience and experimentation, not 

comprehensive guiding theory.  In order to develop comprehensive theory, or even 

facilitate current projects, large quantities of knowledge about the relationships between 

ecosystem constitution and comportment needs to be organized and analyzed holistically.  

It is the purpose of this project to examine case-based reasoning as a method that could 

be used for that organization and analysis. 



 10

2.  Literature Review 

There are many examples of ecological engineering projects with a variety of purposes 

and techniques.  As stated before, these projects are based upon experience and 

experiments that are mostly only applicable to that type of ecosystem.  There are, 

however, some basic principles and methods which are considered to apply to all 

ecosystems.  Presented here are several examples of ecological engineering projects, as 

well as a number of related principles.  The research approaches and methods from 

ecology that are most applicable to ecological engineering are discussed.  Also presented 

will be examples of the computational techniques relevant to this project: models used 

with ecological engineering projects, virtual ecosystems, and case-based reasoners.  Due 

to the interdisciplinary nature of the project and the volume of knowledge across these 

areas of study, it is not feasible to cover all subjects in great depth herein, and thusly a 

brief survey of the most relevant literature is offered below. 

 

2.1 Examples of ecological engineering  

Wetlands are probably the most frequently used ecosystem type in ecological engineering 

projects because they can fulfill a variety of functions.  One such function of wetlands is 

their ability to remove contaminants from water, so wetlands are often constructed or 

restored to treat wastewater or storm water before it enters the watershed (Bruland et al. 

2003, Carleton et al. 2001, Verhoeven and Meuleman 1999).  Aside from general 

pollution control, such treatment wetlands are being used or studied to find sustainable 

methods for purifying water, especially in small communities or areas that do not have 

access to centralized wastewater treatment (Kavanagh and Keller 2007, Mbuligwe 2005).  

The contaminant removal function of wetlands has also been used as part of the process in 



 11

post-mining restoration (Kalin 2001).  That function also makes constructed wetlands 

suitable for use as a biological filter to allow the recirculation of water in sustainable 

shrimp aquaculture (Tilley et al. 2002). 

 

Constructed and restored wetlands have benefits other than water treatment.  They are 

important in preserving the biodiversity of both animals and vegetation (Finlayson et al. 

2006).  They create habitat, both seasonal and resting, for rare or endangered species like 

migratory water birds (Shuwen et al. 2001).  Because wetlands can have both fresh water 

and salt water components, they are also home to a wide variety of vegetation adapted to 

periodic water logging or flooding, as well as fully aquatic conditions (Finlayson et al. 

2006).  There is also now interest in the possibility that properly restored or designed 

coastal wetlands could provide a buffer from rising sea levels and flooding due to weather 

events (Morris 2007).  In a somewhat less ecological motivation, healthy wetlands are 

often considered attractive to live near, thus raising property values, and provide green 

space in urban settings (Nassauer 2004). 

 

Of course, wetlands are not the only type of ecosystem associated with ecological 

engineering; reefs are also common targets of projects.  Reefs provide a variety of 

ecological services, including food production, waste treatment, and disturbance 

regulation (Costanza 1997).  There has been a high occurrence of reef deterioration in the 

past few decades due to both natural disturbance and anthropogenic disturbances like 

over-fishing and pollution, and thus artificial reefs and reef restoration projects have 

become common (Abelson 2006).  Artificial reefs have been constructed for a number of 

purposes: helping in the restoration of natural reefs by providing a source for species and 



 12

individual recruitment, promoting biodiversity, and increasing habitat for commercial fish 

species (Perkol-Finkel and Benayahu 2007, Santos and Monteiro 2007, Abelson 2006, 

Powers et al. 2003).  Ecological engineering is also applied when natural reefs are 

restored to historical or healthier appearance and function (Nestlerode 2007, Abelson 

2006, Rodney and Paynter 2006, Shafir et al. 2006). 

 

While wetlands and reefs are probably the two most common types of ecosystems 

involved in ecological engineering, projects and experiments have been done in a wide 

variety of ecosystems.  For example, damaged ecosystems are left after many mining 

projects, and ecological engineering has been used in the restoration of these ecosystems 

after limestone, sand, peat, coal, topsoil, and other types of mining (Andres and Mateos 

2006, Turner et al. 2006, Rochefort et al. 2003, Zhang et al. 2001, Bell 2001, Hart et al. 

1999).  The application of ecological engineering has also been studied for the 

management of water quality in seas, lakes, and rivers (Stigebrandt and Gustafsson 2007, 

Jørgensen 2006, Marques et al. 2003).  Ecological engineering is considered to have an 

important role in the management and regeneration of forests, particularly tropical and 

harvested forests (Fulé 2002, Kozlowski 2002, Lugo 2002).  Agro-ecological engineering 

is a category of ecological engineering that is committed to improving crop systems, pest 

control, erosion control, and water use in a way that also protects the environment 

(Hengsdijk and Van Ittersum 2003, Li et al. 1998, Zhang et al. 1998). 

 

An interesting category of ecological engineering projects are artificially created, closed 

ecosystems.  The study of energetically open but materially closed ecosystems is also 

known as biospherics (Allen and Nelson 1999).  Some of these projects are intended to 



 13

study how our own biosphere (Earth) functions, while others are experiments regarding 

the creation of ecosystems or habitats in space vehicles or on other planets (Burk 1995). 

Clair Folsome is credited with one of the first major contributions to this field when, in 

1968, he created tiny aquatic ecosystems (complete with sea water, sand, microbes, and 

algae) in sealed flasks that turned out to be viable systems, some for many years (Jones 

1996, Nelson et al. 1993).  Others since have created similar contained environments for 

various reasons, including a decorative version that is commercially available (Folsome 

and Hanson 1986, Maguire 1980, Ecosphere Associates Inc., Tucson, AZ, USA). 

 

Biosphere 2, a 1.27 hectare facility near Oracle, AZ, USA, is probably the best known 

large, closed environment.  Inside the steel and glass structure is a rainforest, a savannah, 

an ocean, a marsh, and a desert along with an area intended for intensive agriculture and a 

human habitat.  The project was intended to explore the ability of such an environment to 

support biodiversity and human in space (Allen and Nelson 1999).  Other closed 

ecosystems include the Closed Ecology Experiment Facility (CEEF, also known as the 

Mini-Earth and “Biosphere-J”) in Rokkasho, Japan, the German Closed Equilibrated 

Biological Aquatic System (C.E.B.A.S.) project and its precursor AQUARACK, the Bios-

3 facility in Siberia, and various Closed Ecological Life Support Systems (CELSS) 

projects developed by NASA as well as the European and Chinese space agencies 

(Morowitz 2005, Nitta 2005, Wang et al. 2004, Blüm et al. 2003, Salisbury et al. 1997). 

 

2.2 Basic ecological engineering theory 

Many of the projects discussed above are a combination of application and experiment 

and concentrate more on the success of specific techniques than general principles of 



 14

ecological engineering.  There have been a few people, however, who have composed 

lists of the ecological and design principles that apply to ecological engineering.  Mitsch 

and Jørgensen (2004) outlined nineteen principles derived primarily from ecology and 

ecosystem theory that were intended as a checklist of things to consider for ecological 

engineering projects and have gained credibility through use (Jørgensen 2006).  Among 

these principles are reminders that ecosystems are self-designing, have interconnected and 

interrelated components, are connected to a variety of other systems and networks (both 

biological and physical), have vulnerable edges, and have their structure and function 

determined by forcing functions.  Also included in Mitsch and Jørgensen’s (2004) 

principles is advice to design for pulsing systems, remember that ecosystem processes 

have characteristic temporal and spatial scales that need to be considered in design and 

management plans, champion biodiversity, and couple ecosystems (e.g. an agricultural 

system to a natural system) whenever possible.  One very important principle outlined is 

that ecological engineering requires a holistic approach because ecosystems are more than 

the sum of their parts and have emergent properties. 

 

Kangas (2004) considered similar ecosystem features and functions but condensed them 

into three, more general, principles to guide projects: energy signature, self-organization, 

and pre-adaptation.  The energy signature of an ecosystem is the set of forcing functions 

that influence the system comportment, including both positive and negative inputs.  

According to Kangas (2004), the ecological engineer must ensure that the ecosystem is 

designed to “match” the energy signature, i.e. the ecosystem can be supported by the 

energy available.  Self-organization, as with Mitsch and Jørgensen’s (2004) concept of 

self-design, is related to the fact that much of the work involved in ecological engineering 



 15

projects comes from the ecosystems instead of the human operators.  This concept, of 

using the ecosystem itself to do some or all of the work, is one of the oldest principles 

elucidated and emphasized in ecological engineering (Odum 1994, 1988).  Kangas’ 

(2004) final principle, pre-adaptation, is a reminder to the practitioner that there are 

probably many species available that are already adapted to the conditions of a given 

project, and the use of those species will facilitate the self-organizational ability of a 

system. 

 

The Chinese have a long participation in the development of ecological engineering, both 

on their own and in collaboration with western scientists (Yan et al. 1993).  Influenced by 

ancient traditions and Chinese philosophy, as well as modern science, the Chinese 

principles of ecological engineering are summarized with four words: ‘holism’, 

‘harmony’, ‘regeneration’, and ‘cycling’.  Again, ‘holism’ relates to the emergent 

properties of ecosystems.  ‘Harmony’ emphasizes that good relationships and balance 

between parts of the system, a system’s structure and function, and man and nature are 

necessary for successful ecological engineering.  For example, the use of symbiotic 

relationships between system components should be used whenever possible and 

competitive relationships avoided.  ‘Regeneration’ and ‘cycling’ both refer to ways to 

minimize resource use and waste production.  Yan et al. (1993) proposed that the 

regenerative properties of ecosystems, used with careful application of technology and 

human intervention, can lead to greater sustainability in ecological engineering projects. 

 

Sometimes, practitioners of the various fields that fall under the umbrella of ecological 

engineering will use their experience on certain projects to share ideas to improve their 



 16

fields.  Weinstein et al. (2001) proposed a number of principles specific to restoration 

ecology, some of which are applicable to ecological engineering in general.  A few of the 

principles are similar to those discussed above, such as reminders that ecosystems exist in 

a greater landscape and are self-organizing.  Others, however, are more specific to the 

human element of ecological engineering.  For example, one of the principles is regarding 

the importance of having realistic and clearly stated goals for a project upon which all the 

stakeholders have agreed.  Advice regarding how to design for monitoring, and how 

involved monitoring should be, is also included in this set of principles. 

 

2.3 Ecology and ecological engineering 

Researchers and practitioners agree that ecological engineering is rooted in ecology and 

can also be a source for new theories in ecology (Kangas 2004, Mitsch and Jørgensen 

2004).  There are many disciplines of ecology, though, with concentrations on different 

hierarchical levels, spatial scales, and time scales and using a wide variety of approaches; 

while the nature of ecological engineering requires a fairly holistic view with information 

from all the hierarchal levels (Krebs 2006, Kangas 2004, Mitsch and Jørgensen 2004, 

Ghilarov 2001, Müller 1997).  Current ecological theory has also been criticized as 

unevenly developed, fractured, and possibly inadequate for current applications in 

management (Krebs 2006, Wallington et al. 2005, Müller 1997).  However, there have 

been some directions suggested for places to start in connecting ecological theory to 

ecological engineering as well as establishing connections between the disciplines. 

 

Mitsch and Jørgensen (2004) proposed modeling and whole-ecosystem experimentation 

as two approaches from ecology that can be most helpful to ecological engineering design 



 17

questions.  Modelling in particular allows researchers and practitioners to integrate 

information from a number of different disciplines, scales, and hierarchical levels, and 

there have been methods proposed for using modelling approaches to develop resource 

management plans and advance ecological engineering (Gattie et al. 2007, Grant 1998, 

Patten 1994).  Exotic species control is another discipline that is closely related to 

ecological engineering, and the lessons and the approaches learned there may be easily 

applicable to ecological engineering (Kangas 2004).  The invasion of exotic species is an 

excellent example of the self-organizational capacity of ecosystems, and studying exotics 

can provide insight into basic ecosystem structure and function.  Other areas of study that 

are pertinent to ecological engineering include island biogeography, complexity-stability 

relationships, ecological economics, hierarchy theory, microcosm and mesocosm studies, 

ecosystem succession, and evolution (Brown et al. 2004, Kangas 2004, Mitsch and 

Jørgensen 2004, Odum and Odum 2003). 

 

Systems ecology, an ecological discipline that emphasizes studying ecosystems 

holistically, may provide an approach and methods that will allow researchers to discover 

and analyze causal relationships in ecosystems that are needed for ecological engineering 

theory (Grant 1998).  The modelling approaches advocated for ecological engineering 

often come from systems ecology (Gattie et al. 2007, Mitsch and Jørgensen 2004).  

Ecological network analysis, a methodology used by systems ecologists for obtaining 

information about ecosystems by examining the transfer of energy or materials through 

the structure of the systems’ food webs, is also becoming a commonly used tool for 

ecological engineering and has been suggested as an integral element in advancing the 

field of ecological engineering (Dame and Christian 2008, Gattie et al. 2007, Gattie et al. 



 18

2006, Fath 2004). 

 

Studying ecosystems through energy and material transfer can also be considered the 

domain of ecosystem ecology, though the divisions between the disciplines are fluid and 

researchers in the area may designate their work as belonging to either discipline.  In the 

last few decades, ecologists have been applying principles from energetics and 

thermodynamics to examine ecosystems holistically, connect ecological observations to 

ecological theory, and investigate principles for ecological engineering (Brown et al. 

2004, Jørgensen and Fath 2004, Odum and Odum 2003, Odum 2002, Svirezhev 2000, 

Patten 1995, Schneider and Kay 1994, Odum 1988, Gallucci 1973).  This approach has 

had some detractors and engendered debate, both about its usefulness and how to improve 

its application, but is a generally accepted method of evaluating ecosystem services, 

function, and health (Jørgensen and Fath 2004, Odum 1995, Månsson and McGlade 1993, 

Patten 1993). 

 

2.4 Ecosystem models and virtual ecosystems 

The computational methods used in this project have already been proven useful in a 

number of fields.  Models, in particular, have been used for many years in ecology to 

study a wide variety of the features and interactions of ecosystems and, as mentioned 

above, are considered one of the main tools for advancing the field of ecological 

engineering.  Indeed there are so many models in existence that presented here are only a 

few recent examples of ecosystem models which are related to ecological engineering, as 

well as some examples of virtual ecosystems. 

 



 19

One use of models in ecological engineering is during the planning stage of projects.  

Before the commencement of closed system experiments in the Closed Ecology 

Experiment Facility in Japan (see section 2.1 above), a simulation model of the facility 

was created to explore different operational schedules (Abe et al. 2005).  To improve the 

design of artificial reefs, Lan and Hsui (2006) proposed the DARCs (deployment of 

artificial reef communities) model.  In DARCs, habitat complexity and budgetary 

constraints are taken into account in order to suggest the best, in terms of highest resulting 

species diversity and biomass, configuration of the reef to be deployed.  A qualitative 

ecosystem model was also used to design an ecological engineering approach to treating 

the eutrophication of an aquatic system in China (Li and Guo 2000). 

 

The use of models in planning is very common for restoration projects.  For example, 

restoration of oyster populations has been suggested as a means of reducing 

phytoplankton biomass in Chesapeake Bay, and an ecosystem model was used to compare 

currently accepted and alternate restoration strategies (Fulford et al. 2007).  Another 

model was used to determine which of two habitats for aquatic species would result in 

larger population size and greater productivity when restored, thus establishing restoration 

priorities (McCay and Rowe 2003).  FIRESUM, an ecological process model originally 

used to study ecosystem change and succession under various fire regimes, was adapted 

to predict the future changes of a number of experimental restoration treatments in 

ponderosa pine forests (Covington et al. 2001).  Models have also been used to study 

factors that affect restoration planning, such as soil properties and disturbance regimes 

(Baker et al. 2007, Laughlin et al. 2007). 

 



 20

Some of the ecosystem properties found important in the design principles discussed 

above (section 2.2) have also been studied with ecosystem models.  Green and Sadedin 

(2005) review the way that various types of ecological models – cellular automata, 

individual-based models, and evolutionary computation – have been used to study 

ecosystem properties like self-organization and emergence.  One such study was a cellular 

automaton used to simulate both the spatial and the temporal self-organization of complex 

landscapes (Bolliger 2005).  Using an individual-based model, Parrott (2005) also studied 

complex spatio-temporal dynamics. 

 

Resource management is a type of ecological engineering where ecosystems are not 

created but undergo periodic to constant manipulation.  Ecosystem models are a very 

common tool for management projects, as they allow practitioners to simulate the results 

of various management scenarios and then choose the best one.  One type of model used 

in resource management is the harvest optimization model.  Such models have been used 

to increase or regulate the harvest of timber, game animals such as moose or deer, and 

oysters (Wam et al. 2005, Müller et al. 2004, Coen and Luckenbach 2000, Jensen 1996).  

Most management plans, however, are departing from straight harvest optimization and 

integrating general biodiversity.  One such model, HARVEST, was used to project the 

impact of various timber harvest schedules (generated with a harvest optimization model) 

on the overall landscape (Gustafson et al. 2005).  ELFSim is a similar model used to 

evaluate fish harvesting and management options in the Great Barrier Reef (Little et al. 

2007).  Other models include the Woody Weed Planner – a tool for managing the 

increasing density of woody shrubs in eastern Australia, FORECAST – a management 

model that includes the effects of disturbance by fires, and EDYS – a generic ecosystem 



 21

model intended for evaluating the large-scale effects of land use and land management 

(Noble and Walker 2006, McIntire et al. 2005, Childress et al. 2002). 

 

Although virtual ecosystems are a fairly recent concept, coinciding with the increased use 

of computers for modeling and the concept of “cyber-space”, the use of models of purely 

theoretical ecosystems for studying ecology was certainly not uncommon before virtual 

ecosystems.  In fact, there is perhaps no difference between virtual ecosystems and 

theoretical models other than the intent of the researchers.  For example, Marín and 

Delgado (2001) created a virtual ecosystem with which to test management scenarios for 

the krill fishery in the South Shetland Islands area.  They considered their model a virtual 

ecosystem instead of a standard management model because they created a spatially 

explicit environment, using a cellular automaton initiated with physical data, but 

otherwise allowed to run without data input, to create possible changes in krill resources.  

Then they coupled that environment to models of other factors affecting the fishery for 

simulation. 

 

Many virtual ecosystems are intended as computational laboratories to explore ecosystem 

features – of both the entire system and of individual parts of the system – without having 

to validate the model to a specific physical system.  Instead, virtual ecosystems are 

created with general ecological processes and configured as needed for a given research 

project.  One such virtual ecosystem was created to study phenotypic plasticity – the way 

species sometimes change behavior and morphology in response to the densities of other 

species – a feature often left out of other models (Peacor et al. 2007).  Other virtual 

ecosystems have been used to explore trophic-level effects of fishing in marine 



 22

ecosystems and to learn about the effect of environmental changes on plant-insect 

interactions and insect movement (Gascuel 2005, Hanan et al. 2002).  In a precursor to the 

current project, Parrot and Kok (2002, 2001) created a virtual ecosystem modeled after an 

artificial, closed ecosystem – such as would be found on a space station – to study the 

engineering and control of ecosystems. 

 

2.5 Case-based reasoners 

Case-based reasoning (CBR) is a type of decision support system that uses knowledge of 

previous instances to propose answers for new situations and is most useful in fields 

where there is not strong theory or where most decisions are based on past experience 

anyway (Juell and Paulson 2003).  From the beginning case-based reasoners were used in 

diverse fields like recipe creation and meal planning, heart failure diagnosis, mediation 

and labor negotiation, robot navigation, and warfare decision making (Dutta et al. 1997).  

The use of CBR systems continues to be prevalent in the medical field.  As well as 

various diagnostic reasoning systems, CBR is applied in many different areas of patient 

care (Schmidt et al. 2001).  Just a few examples include reasoning systems used for 

helping doctors make decisions regarding patients’ needs for occupational therapy, how to 

conduct long term and ongoing treatment, and what antibiotics are best to use as treatment 

for bacterial infections before lab results are obtained (Taylor et al. 2007, Rossille et al. 

2005, Schmidt and Gierl 2005, Gierl et al. 2003).  CBR has also been applied in medical 

education (Schmidt et al. 2001, Frize and Frasson 2000). 

 

Many fields in business and industry have found ways to use CBR.  Systems have been 

created to help in managing supply chains, projecting project costs, and making 



 23

managerial decisions (Kwon et al. 2007, Raphael et al. 2007, Sun et al. 2003).  There are 

also CBR systems for analyzing failure and faults in both the textiles industry and 

metallic mechanical components (Dlodlo 2007, Jacobo 2007).  CBR can also be used to 

help in the design process.   The design of the fixtures in manufacturing, conceptual ship 

design, and architecture have also benefited from CBR (Kang et al. 2007, Delatte and 

Butler 2003, Dutta et al. 1997). 

 

Case-based reasoning has been found useful in a number of applications in the 

environmental sciences as well.    Planning and management, in particular, have benefited 

from the use of CBR systems, which have been applied in water resource management, 

planning and land use management for conservation districts, environmental problem 

solving, minimizing environmental impact in chemical process design, rangeland 

management, and pest control (Chen et al. 2007, Bock at al. 2005, Kaster et al. 2005, 

King et al. 1999, Bosch et al. 1997, Hastings et al. 1996).  In often related endeavors, 

CBR has been used to improve the monitoring of cultivation systems, the classification of 

the condition of environmental systems, and facilitating species and habitat, as well as 

soil, mapping (Li and Yeh 2004, Núñez et al. 2004, Remm 2004, Shi et al. 2004).  The 

predictive capabilities of CBR systems have also found use in the environmental sector.  

They have been used to predict possible crop injury by the application of herbicides, the 

performance of a constructed wetland in filtering contaminants out of water, possible 

risks of pesticide use, and short term air quality (Zhou et al. 2005, Lee et al. 2006, Van 

den Brink et al. 2002, Kalapanidas and Avouris 2001). 

 

 



 24

2.6 Summary 

Reviewed above are a number of examples of ecological engineering projects.  The basic 

principles discussed may or may not have been considered in the planning of these 

projects, but it remains that the designs of the ecosystems for them were based on 

experience and / or experimentation and not any sort of comprehensive theory that can 

guide any ecological engineering project.  There are a number of ecological principles and 

studies that can contribute to forming theory for engineering ecosystems.  It is the goal of 

this project to use some of the computational techniques reviewed above, in particular the 

predictive capabilities of case-based reasoning, to find ways to organize and analyze 

knowledge for the process of building ecological engineering theory. 



 25

3. Methodology - Virtual Ecosystem 
 
Ecosystem models have long been acknowledged as essential tools for studying 

ecosystems and planning ecological engineering projects.  Virtual ecosystems are similar 

to computational ecosystem models; they are conceptualized, designed, and implemented 

in much the same way.  There are, however, important differences.  A traditional 

ecosystem model used in simulation is intended to emulate or predict the comportment of 

an exemplar system.  Such systems may be hypothetical and never actually created, but 

they are generally conceptualized with known agents (species or individuals thereof) 

interacting in known habitats or habitats that could conceivably be created my human 

hands.  A virtual ecosystem has no exemplar system and simulation results are the output 

of the system itself, i.e. the computational model and the system are the same thing.  The 

system is considered to exist as part of cyberspace – in the memory of one or more 

computers or in a communication network like the internet.  Some programmers design a 

virtual “landscape” for the entities in the system to interact in, while other systems do not 

include such a feature and cyberspace itself is the habitat of the virtual ecosystem.  The 

agents in the ecosystem may be designed to be similar to entities (plants, animals, etc.) 

from the physical world or again be purely data constructs.  Similarly, the forcing 

functions of the system may or may not be based upon forcing functions known from 

physical reality. 

 

Leaving debate about what makes life and reality to the philosophers, what makes a 

virtual ecosystem be an ecosystem, and thus usable as a research tool for questions of 

ecology and ecological engineering, is that at its most basic, a virtual ecosystem is still a 

collection of organisms interacting in a habitat.  The organisms compete for resources, 



 26

some of which may be other organisms in the system, and interact in a variety of ways 

that affect the various populations and perhaps the habitat itself much the same as in a 

physical ecosystem.  The resulting local dynamics and global comportment of virtual 

ecosystems, then, can be used to make inferences or highlight areas of study for physical 

ecology and ecosystems.  Using theoretical or randomly created ecosystems for 

ecological research has been used for decades to investigate the complexity and stability 

of ecosystems (May 1972, Pimm and Lawton 1977).  Virtual ecosystems are an updated 

version of that practice, using the increased computational power and simulation 

experience of today, as well as techniques from fields such as artificial intelligence. 

 

As with traditional models, virtual ecosystems are very useful for predicting or studying 

the long term comportment of a system in a short term experiment because simulations 

usually run faster than real time.  Furthermore, virtual ecosystems are ideal for studying 

system interactions in general because they are easily configurable and there is no need to 

validate the result of those interactions with an exemplar system, making it possible to 

study the processes and interactions themselves, the effect of changes to them, and the 

boundaries of those processes and interactions that are not necessarily found in “realistic” 

models. 

 

As mentioned above, the techniques for conceptualizing and creating virtual ecosystems 

are similar to the techniques used for creating traditional models.  Thus, there are a 

variety of different approaches, paired differential equations and cellular automata among 

others, that could have been taken.  The technique chosen for the virtual ecosystem used 

in this project was that of object-based modeling.  More specifically individual-based 



 27

modeling was chosen as a technique 

suitable for creating the interactions in the 

virtual ecosystem. 

 

3.1 Conceptual model 

The virtual ecosystem used for this study 

is materially closed and energetically open 

(Figure 3.1).  It could be, perhaps, 

considered similar to a small island 

isolated far out in the ocean.  Immigration and emigration are impossible, so population 

changes are determined only by the birth and death rates that arise from species activities 

and interactions.  Energy enters the system in the form of radiation (sunlight), moves 

through the system during some system processes, and is lost to “space” through others.  

Almost all processes in the virtual ecosystem are in the form of energy gain, loss, or 

exchange.  Energy is the only resource in the system; thus the rate at which energy enters 

the system is the primary forcing function that drives system comportment (see section 

3.1.1).  In all these exchanges, energy is expressed in generic “energy units” (EU). 

 

The style of the virtual ecosystem is object based; a collection of objects interact 

according to certain processes and parameter values.  The objects in the system are 

instances of various species and generally referred to as individuals.  Species are divided 

into two types: producers, plant-like species that gain energy by absorbing radiation, and 

consumers, animal-like species whose individuals gain energy by ‘eating’ individuals of 

certain, preferred food species.  Components have a few attributes, such as age and size, 

Virtual 
Ecosystem 

Energy 

Immigration 

Emigration 

Figure 3.1  Materially Closed, Energetically 
Open Virtual Ecosystem 



 28

 

 
Variable Description Units 
ENERMIN Minimum energy level (death) EU 
ENERBIR Energy level at birth EU 
ENERREP Reproduction threshold EU 
METAB Specific base metabolic rate EU· EU-1·s-1

MINMAXAGE Low end of max age range s 
MAXMAXAGE Upper end of max age range s 
AFFECT2 Health affectedness - 

ENERQUAN Amount of energy that can be absorbed at a given 
time (producer only) EU 

AFFECT1 Hunting ability (consumers only) - 
FOOD Consumer food preferences - 
INTER Strength of species to species health interaction - 

Table 3.2 Species Level Attributes 

 
Variable Description Units 
ENERTOT Total energy EU 
ENERMAX Maximum total energy EU 
POP Total population indv 
MAXPOP Maximum total population indv 
NTOT Total species spp 
MAXSPEC Maximum number of species spp 
N1 Number of producer species spp 
N2 Number of consumer species spp 
DBLETIMES Minimum time in which the system size can double s 
Δt Time step size for the simulation s 
t Time s 

Table 3.3 System Level Attributes 

Variable Description Units 

AGE Current age s 
ENERGY Energy content EU 
MAXAGE Maximum age s 

Table 3.1 Individual Level Attributes 



 29

which are defined at the individual level (see Table 3.1), but the majority of an object’s 

attributes and attribute values are inherited from the species level.  This includes 

attributes such as the minimum size for each species, size at which they reproduce, and 

which species consumers prefer as food (see Table 3.2 for a complete list).  The species 

level attribute values that an individual inherits determine how it is affected by the 

various processes in the system, which in turn affects the comportment of the species and 

the system as whole (see Table 3.3 for a list of system level attributes). 

  

The virtual ecosystem is not spatially explicit.  As such, there is no habitat differentiation, 

and the system is not given a specific size except in terms of the maximum total energy it 

can contain.  Thus, objects in the system are not placed on a landscape as such.  As a 

result, there is no way for species and individuals to develop niches that would influence 

competition for resources.  In this way, the virtual ecosystem does not resemble many 

physical ecosystems.  Rather it is more like a glass globe where all the objects in the 

globe can easily interact with each other and light penetrates equally to all areas (Figure 

3.2).  Whether an individual of a producer species receives energy from radiation, and 

how much energy it absorbs, is determined 

mostly by the attribute values of the 

individual’s species and, to a small degree, 

by chance.  Each individual within a 

species has the same likelihood of 

receiving energy, but each species receives 

a limited amount of energy to be Figure 3.2  EcoSpheres by Ecosphere Associates 
Inc., Tucson, AZ, USA.  (Photo: http://www.eco-
sphere.com/ 



 30

distributed among the individuals in the species. The likelihood of an individual of a 

consumer species eating an individual of one of its preferred food species is determined 

by the species attribute values of the consumer and the abundance of the food species.  

The consumer individual does not need to find a particular individual of the food species 

through a hunting or seeking method.  Instead, once it has been determined that the 

consumer is going to eat a member of the food species, each individual in that species has 

the same chance of being eaten.  The specific victim is then chosen randomly. 

 

As mentioned above, the amount of energy that is available to be distributed among the 

members of a species is limited.  The amount of energy that a producer species receives 

from radiation is relative to its presence in the system, so species that have already have a 

greater portion of the system total energy will also receive more energy from radiation.  

However, the balance of energy between species can change due the differing abilities of 

the various species to keep the energy and utilize it to reproduce, as determined by the 

species’ attribute values.  Thus, while there is no competition between members of the 

same species, there is competition for resources between the producer species just as is 

physical systems. 

 

The representation of time is a problem somewhat unique to virtual ecosystems.  In an 

ecosystem model, time is obviously measured in seconds, minutes, hours, days, months, 

and years because the system being emulated will be described in those units.  A virtual 

ecosystem, however, can be conceptualized and simulated in generic time units if the 

designer so wishes.  Also, although the variation of certain system functions with time is 

the norm in physical systems and models thereof, daily and yearly patterns are not strictly 



 31

necessary in virtual ecosystems.  Nevertheless, the virtual ecosystem used in this study 

was intended to be as much like typically extant ecosystems in general as practical, and 

its functions are therefore expressed in standard time units.  The passing of days and years 

is also tracked, so that daily and yearly variations can be observed when desired. 

 

Reproduction in the virtual ecosystem is parthenogenetic.  There are also no limitations 

on reproduction related to time of year or age of individuals.  When an individual crosses 

the reproduction threshold for its species (a level of energy above which they reproduce), 

it creates a new instance of the species.  The new individual inherits all the species’ 

attribute values, as well as nearly all of the attribute values of the parent individual.  Thus, 

other than the maximum possible life span for the individual, there is no “genetic” 

difference between the child and the parent, or any other member of the species.  With no 

chance for genetic mutation, there is no evolution in this virtual ecosystem.  Furthermore, 

individuals lack the ability to adapt in any way to the specific conditions of the system. 

 

It is also important to note that there is no age-based differences between individuals.  

Although common in physical ecosystems, an individual’s minimum energy for survival 

in the virtual ecosystem does not change as the individual ages.  This means that the base 

“size” of every individual of a species is the same even though some are newborn and 

thus “smaller” than individuals that have been in the system for a while.  How an 

individual interacts with other individuals and the habitat of the ecosystem also does not 

change with its age.  Every member of a producer species has the same ability to gain 

energy regardless of how long it has been in the system.  A “baby” consumer is just as 

skilled at “hunting” as its parent and has the same probability of eating a member of one 



 32

of its prey species. 

 

The main type of interaction between components in the virtual ecosystem is predation by 

the consumer species.  Predation is not arranged in a strict hierarchy of trophic levels, but 

rather in a food web.  Consumers can be carnivorous, herbivorous, or omnivorous; but 

there are no detritivores in the system.  Each consumer species has preferred food species, 

and individuals will eat an individual from one of those species when conditions are 

favorable.  The rate of victim capture is in part determined by the relative abundances of 

the food species.  There is no partial predation; any individual that is chosen as prey dies, 

even when it is from a producer species.  When a consumer individual does not absorb all 

of a food individual’s energy, the remaining energy is considered to be lost from the 

system.  Also, although it is technically possible through the appropriate setting of values 

in the food web, cannibalism does not occur in the virtual ecosystem at present. 

 

Besides predation, the only other direct inter-species interaction in the system is a health 

interaction based on relative abundances of the various species in the system.  A species 

can have a positive, negative, or neutral effect on any species in the system, itself 

included.  Positive and negative interactions have an impact on the amount of energy in 

excess of the birth size of the “baby” that a parent individual loses during reproduction.  

This type of interaction can mimic the effects of symbiotic relationships such as 

parasitism, mutualism, and commensalism.  It can also be set up to add to the effect of 

crowding and intraspecific competition.  However, the health interaction is fairly weak 

and has the most effect in systems that are not otherwise stable. 

 



 33

3.1.1 Forcing functions 

The comportment of a system is usually driven by the forcing functions to which it is 

exposed.  As mentioned above, energy is the main currency in the virtual ecosystem.  

Accordingly, the radiation of energy into the system is the principal forcing function.  

Energy comes from an outside source and is distributed among the producers in the 

system.  The amount of energy that enters the system during a given time increment is 

controlled by several factors.  The size of the time increment itself will obviously have an 

effect.  For example, given two systems with identical initial states and patterns of 

radiation intensity but different size time increments, the power (energy per unit time) at a 

specific year, day, and time will be the same, but the amounts of energy will vary 

according to the size of the time increments.  Thus, depending on the size of the time 

increment, the same system initial state might evolve differently in the long term. 

 

Time of year and time of day both affect the quantity of energy entering the system 

during a given time step.  As in physical systems, power input into the virtual ecosystem 

is simulated with a period of little or no energy entering the system during part of the 

daily cycle (night), as well as reduced power during part of the yearly cycle (winter).  

However, the radiation forcing function can be configured to fulfill a variety of different 

schemes. For example, it can be set so that a constant amount of energy enters the system 

in each time increment.  In such a case, it would be like an ecosystem in a growth 

chamber with artificial lighting that can be left on all the time. 

 

If the function is not set to deliver a constant amount of energy, radiation is an interactive 

forcing function; meaning that not only does it affect the system, but it responds to the 



 34

characteristics of the system in turn.  When there is only a small portion of the virtual 

ecosystem occupied by producers, then only a small portion of the total available energy 

for that time increment will actually enter the system.  Each producer can only absorb a 

certain amount of energy in a given amount of time, so any energy in excess to the total 

that can be absorbed never enters the system at all and, although available, is lost.  This is 

equivalent to sunlight being ‘lost’ because it falls on bare ground.  As the total energy of 

the producers in the system gets larger, so does the percentage of the total available 

energy that actually gets absorbed into the system.  As the system nears maximum 

capacity, however, the proportion of the total available energy that can be absorbed drops 

again.  Although the producers in the system could technically absorb more energy, the 

system has become crowded which limits the amount of energy that reaches each 

individual and thus how much enters the system as a whole.  This is equivalent to the 

“island” being fully occupied. 

 

An attenuation curve determines how the power for a given day, time, and year is 

adjusted in accordance with the proportion of the system occupied by producers, and thus 

the amount of energy that ultimately enters the system during a time increment.  The 

equation for the attenuation curve is  

F1 = X * (1.0 – e(-α/X) / e-α)    (3.1) 

where F1 is the attenuation factor returned for a given percentage of the upper system 

bound occupied by producers (X), when normalized to yield a maximum of 1.0.  The 

shape of the curve is determined by α, the value of which can be input into the system.  

When the value of α = 1, the resulting curve is symmetrical, with the highest input of 

energy (least attenuation) at X = 0.500.  However, such a curve is not reasonable when 



 35

thinking in terms of system crowding and shading.  After experimentation with different 

values, α = 4 was chosen as resulting in a “reasonable” curve.  With this curve, the 

maximum input occurs at approximately X = 0.673 (Figure 3.3).  

 

Temperature is the second forcing function that acts upon the virtual ecosystem.  As with 

radiation, the temperature of the virtual ecosystem at a given moment can depend on the 

time of day and year.  However, temperature depends only on the parameters of the 

forcing function itself; the condition of the system has no effect on it.  This is not 

generally true in physical systems, but factors like shading and evaporation, which can 

have an impact on temperature, are not taken into account in the virtual ecosystem.  

Although its effect is fairly minor compared to that of radiation, temperature can be very 

important to the survival of producer species, whose metabolic rates slow down as the 

temperature decreases.  This mimics the semi to complete hibernative state of plants 

0

0.2

0.4

0.6

0.8

1

1.2

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

System Energy / Upper Bound

A
tte

nu
at

io
n 

Fa
ct

or

Figure 3.3  Attenuation Factor Curve for α = 4  



 36

during the winter in physical systems.  Note, however, that there are no hibernative 

consumer species and all consumer species keep same metabolic rate regardless of 

temperature.  In general, cold temperatures occur during the same parts of the day and 

year when there is less or no energy coming into the system.  Again, however, the 

temperature forcing function can also be set to a constant to mimic an ecosystem in an 

artificial environment. 

 

A very useful feature of the type of virtual ecosystem being used in this project is that the 

forcing functions can easily be changed.  The same parameter values for the radiation and 

temperature forcing functions above can be used for many simulations, or they can be 

changed for every simulation.  The object-based style of the virtual ecosystem also makes 

it relatively simple to include additional forcing functions.  For example, rainfall could be 

added and the resultant water transport in the system observed.  The movement of other 

resources in the system could also be added.  Another type of forcing function that could 

be included to act upon the virtual ecosystem is disturbances.  Major disasters such as 

forest fires cause significant changes in systems and can easily be enacted in simulations 

of the virtual ecosystem.  Less dramatic but equally important disturbances such as 

disease or invasive species are also possible to simulate.  The study of system 

comportment after disturbances is an important concept for ecological engineering, and 

the virtual ecosystem facilitates and supports the simulation of that. 

 

3.2 Representational model 

Individuals in an object-based system like the virtual ecosystem of this study interact 

according to a set of rule-based expressions that, combined with the attribute values of the  



 37

Assumptions 
• the virtual ecosystem consists of a number of interacting individuals 
• time is represented in standard units 
• the virtual ecosystem is closed to materials – there is no immigration or emigration 
• the individuals in the system are incidents of various species, all individuals of 

which share certain attribute values 
• individuals will have a maximum age and will die when they reach it 
• there are no age-based differences in attribute values for individuals within a 

species 
• individuals will have a minimum energy below which they die – the value of 

which depends on the species of the individual 
• individuals will have an energy level above which they are able to reproduce – the 

value of which depends on the species of the individual 
• reproduction is parthenogenetic 
• individuals will lose energy when they reproduce – both the size of the new 

individual plus an amount determined by their health  
• new individuals will be created with an energy level determined by their species 
• there is no mutation – new individuals have the same species-level attribute values 

as their parent individuals 
• the abundance of each species will affect the health of the other species in the 

system 
• energy will enter from outside the system and be used by the individuals of some 

species (producers) in the system 
• what portion of the entering energy an individual producer will receive is 

determined mostly by the attributes of its species and partially by chance 
• individuals of producer species can absorb only finite amounts of energy at a given 

time 
• individuals of some species (consumers) will gain energy by taking it from other 

individuals, eating 
• consumers will eat approximately once a day 
• individuals of a consumer species will not eat other individuals of the same species 
• individuals of all consumer species have equal access to all other individuals in the  

system – predation success depends only on the ability of the species to capture its 
prey  

• there are no niches within the system 
• there is no partial predation 
• energy entering the system and the temperature in the system will act as forcing 

functions for the virtual ecosystem 
• both forcing function will vary on a daily and yearly basis 
• the abundance of producers in the system will affect the amount of energy 

absorbed by the system 
• the metabolic rates of individuals of producer species will be affected by the 

temperature in the virtual ecosystem 
• individuals of consumer species will not be directly affected by the forcing 

functions 

Table 3.4 Assumptions for the virtual ecosystem 



 38

individuals and the system, define the internal transitions of objects and the relationships 

between them.  The expressions are executed in sequence and repeated for a number of 

time increments to obtain the global dynamics of the system.  The sequence of execution 

can have an impact on the comportment.  For example, if individuals metabolize an 

allotted amount of energy for each increment of time before they gain energy from 

radiation or feeding in that increment, more individuals are likely to die of starvation than 

if they were to gain energy first.  As with most models, the magnitude of the time 

increment also has an impact on the system comportment.  Smaller time increments lead 

to greater “accuracy” but increased computation time when the model is implemented in 

simulation. 

 

The overall sequence of events for each increment of time used in execution of the virtual 

ecosystem starts with obtaining values from the forcing functions: whether or not there is 

energy from radiation entering the system, how much if any energy enters during the time 

increment, and the temperature.  Any special instructions, such as disturbances not related 

to radiation or temperature, would also be obtained at this time.  After the forcing 

function values for the time increment are obtained, all the individuals in the system age.  

For this, the value of the time increment is simply added to each individual’s age 

(Equation 3.2).  

AGEt = AGEt-1 + Δt     (3.2) 

If that age is then greater than the individual’s maximum age, the individual dies from old 

age.  Consequently, the population for that species, as well as the overall population of 

the system, is reduced by one (Equation 3.3). 

If AGEt > MAXAGE then death, POP=POP – 1   (3.3) 



 39

Having aging and death by old age before death by starvation or predation allows for a 

clearer observation of the different types of death in the system and how each affects the 

comportment of the system. 

 

The next process in the sequence is the metabolism of energy by all individuals in the 

system.  Metabolism is performed after obtaining the forcing function values because the 

temperature (TEMPERAT) during any given time increment partially determines the 

metabolic rate of the producers during that increment (Equation 3.4). 

ENERGYt = ENERGYt-1 - ENERGYt-1 * METAB * Δt * e((TEMPERAT-20)/20)  (3.4) 

The metabolic energy consumption of consumers, however, is not affected by the 

temperature and is calculated from the individual’s current energy (Equation 3.5). 

ENERGYt = ENERGYt-1 - ENERGYt-1 * METAB * Δt      (3.5) 

Metabolic rate is a species level attribute, so all members of a species will lose 

proportionally equal amounts of their individual energy during a given time increment.  

Any individual that falls below the minimum energy for its species dies of starvation, and 

the populations are reduced as before (Equation 3.6). 

If ENERGYt < ENERMIN then death, POP=POP – 1  (3.6) 

 

The sequence continues with the allocation of energy to producers and feeding by the 

consumers.  If energy has entered the system during the current time increment, it is then 

divided among the species in proportion to their energy contents relative to the total 

energy of all producer species in the system.  The energy allocated to each species is then 

broken into energy quanta, the size of which are a species level attribute, and distributed 

among the individuals of the species, thus increasing their individual energy levels 



 40

(Equation 3.7). 

ENERGYt = ENERGYt-1 + ENERQUAN   (3.7) 

 

Once all energy has been distributed to the producers (or discarded) for that time 

increment, the consumer species begin feeding.  Each consumer individual is given a 

chance to “hunt” if it obtains a random probability value higher than the probability that 

individuals of its species will not eat at all, based on the availability of the species’ 

various preferred food species and its hunting ability (Equation 3.8). 

If Random # > Probability of Not Feeding then feeds  (3.8) 

If the individual is able to feed during a given time increment, its prey species is 

determined by which of its preferred food species it has the highest chance of “finding” 

based on the relative energy levels of these food species.  The consumer individual then 

eats a random individual of the prey species and gains up to a specified fraction of its 

previous energy, set to 10 percent in the current work (Equations 3.9 and 3.10). 

ENERGYt  = ENERGYt-1 + ENERGYprey     (3.9) 

or 

ENERGYt = ENERGYt-1 + 0.10 * ENERGYt-1   (3.10) 

If the prey individual contains energy in excess of that ten percent, such energy is lost to 

the system.  Finally, the population of the chosen prey species and the total system 

population are both reduced by one. 

 

The final process of the sequence is reproduction.  Individuals that have an energy level 

greater than the threshold to reproduce for their species will “give birth” at this point to a 

new individual of their species (Equation 3.11). 



 41

If ENERGY > ENERREP then reproduces, POP = POP + 1  (3.11) 

The new individual will be created with the birth energy of that species, and the parent 

individual will lose up to two and half times that value, depending on the overall health of 

the species (Equation 3.12) 

ENERGYt = ENERGYt-1 – ENERBIR * (2.0-0.5 * HEALTH)  (3.12) 

the value for HEALTH, between -1 and +1, being determined by the values in the species 

interaction matrix (XINTER) and the relative abundances of the species in the system. 

 

3.3 Computational Model 

In order to elicit the comportment of a virtual ecosystem, the representational model must 

be encoded in a computational model (i.e. computer program) and run in simulation.  

Although the model in this case was object-based, the program for a virtual ecosystem did 

not necessarily need to be written in an object-oriented programming language.  Any 

language can be used, in accordance with the requirements of the virtual ecosystem and 

the experience of the modelers.  For the virtual ecosystem used in this study, the 

computational model was written in FORTRAN 90/95.  That language was chosen for its 

faster execution speed when dealing with large matrices compared to some other 

programming languages like C++.  FORTRAN is also easily portable between different 

platforms and operating systems. 

 

3.3.1 Basic program structure 

The computer program used for this project encompasses both the computational model 

of the virtual ecosystem (i.e. the virtual ecosystem itself) and the platform that controls 

how simulations run (Figure 3.4).  Forcing functions are included as subroutines that can 



 42

be removed or added as needed.  Services routines are interspersed throughout the 

program, and random number generators are included as subroutines.  For each 

simulation, input and output is in the form of text files that can be read both by the 

program and by a human operator.  One input file contains the definition of the 

constitution of each virtual ecosystem: the numerical values for the number of species, 

species attributes, and the interactions between them.  The other input files contain 

parameters for the forcing functions and simulation control parameters such as the 

starting time, the time step magnitude, and the maximum allowed duration of the 

simulation.  Output files can be specified to contain as much data as desired, with the 

main output file containing all numerical data together with textual descriptors.  

Secondary output files generally contain only numerical data in order to facilitate further 

analysis and may be direct output from the program or obtained by filtering the main 

output file.  This approach is used for the flexibility it provides in creating virtual 

ecosystems, configuring simulations, and extracting the desired data.  See Appendix A for 

Input Files

Output File(s)

Sim
ulation Platform

Virtual Ecosystem

Forcing Functions

Service Routines
Input Files

Output File(s)

Sim
ulation Platform

Virtual Ecosystem

Forcing Functions

Service Routines
Input Files

Output File(s)

Sim
ulation Platform

Virtual Ecosystem

Forcing Functions

Service Routines

Sim
ulation Platform

Virtual Ecosystem

Forcing Functions

Sim
ulation Platform

Sim
ulation Platform

Virtual EcosystemVirtual Ecosystem

Forcing FunctionsForcing Functions

Service RoutinesService Routines

Figure 3.4 Virtual Ecosystem and Simulation Program Structure



 43

the program source code.  See Appendix A for source code, Appendix B for sample input 

files, and Appendix C for sample output files. 

 

3.3.2 Initialization 

When a simulation of a virtual ecosystem is performed, the first step is to acquire the 

input data and initialize the simulation and ecosystem, starting with the simulation.  In 

this stage, the simulation parameters are read from the appropriate input file.  These 

parameters include the names of any output files, start day and time for the simulation, 

the maximum number of days the simulation can run, the length of the time increment to 

be used, the upper bound on total system energy, and the minimum amount of time in 

which the system is allowed to double in size (corresponding to the maximum growth rate 

possible).  The maximum number of species allowed in the system and the maximum 

total population allowed are hard coded in the program itself.  Counters for time and cycle 

number, as well as various matrices needed for simulation, are also initialized during this 

stage. 

 

Once the simulation itself has been initialized, the virtual ecosystem needs to be 

initialized.  Again, parameter values are read from the appropriate input file.  After all the 

values for species and individual level attributes are acquired, establishing the structure 

and species composition of the system, the state of the system needs to be initialized.  

Using the initial population sizes given in the input file, individuals of each species are 

created with uniformly distributed random values, generated with pseudo-random number 

generator subroutines, for the individuals’ energy, age, and maximum possible age.  An 

individual’s initial energy is calculated using the birth and reproduction threshold energy 



 44

values for its species, and its maximum age is determined using its species’ upper and 

lower boundaries for maximum age.  The same random number is used for initial age and 

energy so that there is a correlation between those values for each individual.  A different 

random number is used for the maximum age calculation, however, to ensure that there is 

no correlation between the initial age of an individual and its maximum age. 

 

At this point, the last few counters are set up and the starting day and time are adjusted so 

that the first time step uses the desired starting day and time and not a time step later.  The 

total energy content of the species is calculated and compared to the total energy content 

of the individuals in the system to ensure that they match.  Whether or not the total is 

below the maximum allowed energy in the system is also checked.  The final step during 

initialization is to initialize the forcing functions.  The total energy of the producer 

species is calculated and used in the initialization call to the weather subroutine.  This is 

because, as mentioned in section 3.1.1, that radiation is an interactive control, and the 

amount of energy that enters the system at a given time is, in part, determined by the total 

energy of the producers in the system at that time.  The main weather subroutine calls the 

radiation and temperature subroutines in turn, each of which sets up any counters required 

as well as initial matrices that contain yearly, daily, or hourly values for temperature and 

radiation. 

 

3.3.3 Iteration 

After a system is initialized, a sequence of events is iterated a number of times in order to 

elicit the system’s comportment.  (The sequence for the virtual ecosystem used in this 

study is described in detail in section 3.2.) In short: the forcing function subroutine is 



 45

called, all individuals age and then possibly die of old age, all individuals metabolize 

some of their stored energy and then possibly die of starvation, energy from radiation is 

parceled out among the producer individuals, consumer individuals get the chance to 

feed, and individuals over the reproduction threshold for their species reproduce.  In the 

computational model, this process is interspersed with routines from the simulation 

framework that clean up matrices, check to make sure that the system has not gone 

outside any of the established boundaries, and do any preparatory calculations that are 

needed for the steps of the process.  Writing to the output file(s) is also performed 

throughout iteration. 

 

The sequence is repeated each time step, although some processes may be skipped, 

depending on the conditions of that time step.  For example, if there is no radiation 

entering the system (i.e. it is “night”), the process by which energy is handed out to 

producer individuals will be skipped.  Iteration continues until the simulation has reached 

the maximum time allowed as set in the input file, the system violates any of the system 

boundaries (maximum population, upper bound on energy, etc.), or all individuals in the 

system have died.  Then a few final system statistics are printed to the main output file 

and all the output files are closed. 

 

3.3.4 Forcing functions 

As mentioned above, the main program calls the forcing function subroutine both during 

initialization and at the beginning of each time increment, and the main forcing function 

subroutine calls the specific forcing function subroutines in turn.  The main subroutine 

also keeps track of errors from the secondary subroutines and reports them to the main 



 46

program.  As mentioned previously (section 3.1.1), the forcing functions for this virtual 

ecosystem are radiation and temperature.  They are included as subroutines in the 

program so that they can be easily changed if so desired.  Early testing of the program 

was done with simplified routines for both radiation and temperature, but routines based 

on real physical weather patterns were chosen for the final version of the virtual 

ecosystem program. 

 

3.3.4.1 Radiation subroutine 

The model for the radiation subroutine was based on physical data from four cities in 

Canada (Sun and Kok 2007).  On-surface, daily overall solar (DOR) energy values for a 

number of years were analyzed and compared to theoretical models for outside the 

atmosphere.  Statistics for daily, weekly, and seasonal trends were examined and modeled 

with three principal sinusoids, a beat sinusoid, and a number of polynomials for the 

residual noise data in the signal.  The averages and standard deviations of the principle 

and beat sinusoids are the first eighteen coefficients for the model, with each city studied 

having different values.  More coefficients describe the polynomials as well as other 

features of the model.  When tested, output from the model is statistically similar to the 

actual data when using the parameter values for the example cities. 

 

As well as the coefficients for describing the polynomials, the computational model for 

radiation uses input values for the latitude of the target location and the descriptors for the 

associated polynomials.  One value required for the model to work properly is the 

minimum DOR allowed.  In essence, this sets how ‘sunny’ the virtual ecosystem being 

simulated will be; a simulation with a high value for the minimum DOR will likely have 



 47

more radiation overall than a simulation with a low value for the minimum DOR.  The 

model creates one year’s worth of DORs at a time.  A vector of hourly attenuation factors 

(the degree to which solar radiation outside the atmosphere is reduced before reaching the 

ground) is also created on a yearly basis.  A day’s worth of radiation intensity values, at 

ten minute intervals, is generated using the hourly attenuation factors that correspond to 

that day (run through a routine to calculate attenuation values with ten minute intervals) 

and the DOR value for the day. 

 

When the radiation subroutine is called, it tests for the present year, day, and time of the 

simulation.  If it is a new year, the next year of DORs is created; if not, that step is 

skipped.  If it is a new day, another day’s worth of radiation intensity values is created.  

Then, the present simulation time is compared to the times for when there are radiation 

intensity values.  If the time matches, that radiation intensity is returned to the main 

forcing function routine.  An interpolated value is returned if there is not an exact time 

match.  In the main forcing function subroutine, the radiation intensity is converted into 

an amount of incoming energy for the time step that will be returned to the main routine.  

The attenuation factor for the “size” of the system, the maximum energy allowed to enter 

the system in a given time step, and the size of the time step are all used in this 

calculation. 

 

3.3.4.2 Temperature subroutine 

As with the radiation subroutine, the model for the temperature subroutine was based on 

physical data (Parrott et al. 1996).  Hourly temperature values for three Canadian cities 

were analyzed for daily, weekly, and monthly average temperature values.  The 



 48

underlying cyclical characteristics of these data were described with sinusoids as in the 

radiation model.  Again, the averages and standard deviations of the sinusoids, as well as 

the averages and standards deviations of the polynomial descriptors, are coefficients used 

when implementing the model.  Synthetic data created with this model produced 

temperature values statistically similar to the physical temperature data of the example 

cities. 

 

Parameters for the computational model of the temperature subroutine include the 

coefficients mentioned above as well as two variables that limit the amplitude of the daily 

temperature variation.  Changing the values for these two variables produces different 

diurnal temperature shifts, resulting in different climates with otherwise identical 

parameters.  For example, a desert and a temperate forest may have the same daily 

average temperature on a given day of the year, but the desert will be hotter during the 

day and colder at night than the forest. 

 

During initialization, the model creates three years worth of daily average temperature 

(DAT) values.  Three years are required because temperature is more continuous than 

radiation and some calculations for the first and last day of the year require data from 

other years.  Similarly, the calculation for the temperature at a given time requires 

information from more than one day.  The temperature subroutine uses a technique, 

located in a tertiary subroutine, to fit a curve called a “spline” through the average, 

minimum, and maximum values for three days and limited by the amplitude boundaries 

mentioned above.  Another tertiary subroutine is used to interpolate a temperature value 

for a given time on the curve from the spline.  Like the radiation subroutine, the  



 49

temperature subroutine tests for the year, day, and time every time it is called by the main 

forcing function subroutine.  If it a new year, a year’s worth of new DATs are created and 

the vector of three years of DATs is adjusted to put the three years in the correct positions 

of previous, current, and next (the one just created).  Then a new spline is created fitting 

through the average, minimum, and maximum of the new three day spread (two days of 

which have already been used but are now in new positions).  A new spline is also created 

when it is a new day though not a new year.  These steps are skipped if it is neither a new 

year nor a new day, but every call finishes by returning a temperature value for the time 

of the call.  Most of the values returned are interpolated, though the few used to calculate 

the spline are not. 

 

Although the models for both the radiation and temperature subroutines were based on 

physical locations, simulations are not necessarily performed with the parameters for 

those locations.  As the constitutions of ecosystems simulated with the virtual ecosystem 

program are not emulations of physical systems, it is not necessary for the forcing 

functions to emulate the weather of particular geographic locations.  Also, the ability to 

represent a large variety of forcing function situations was desirable for this program.  

Thus, parameters for the forcing functions are set either to represent a specific situation 

(e.g. constant radiation level in a growth chamber) or created to be merely ‘reasonable’ 

for any of the many available climates possible on Earth. 

 

3.4 Program verification 

In order to ensure that the virtual ecosystem program operates both as intended and 

reasonably for ecosystems in general, extensive verification was performed.  During this 



 50

procedure, simple ecosystems were run in simulation for a short time and detailed 

information was written to the output file so that the results and intermediate steps of 

every process could be examined.  Such examination made it possible to find errors in the 

program code, and comportment that did not conform to general ecosystem comportment 

(e.g. a large predator eating several times a day).  The process of verification also created 

familiarity with the virtual ecosystem program and a basic idea of how to initialize 

systems. 

 

3.4.1 Isolating processes 

The first stage of verification involved the isolation of various processes and calculations 

for both the simulation framework and the computational model of the virtual ecosystem.  

Parameter and attribute values recorded to the output file were compared to the values 

from the input files, and any errors in data reading / writing were corrected.  One of the 

identical random number generators used during simulation was run separately and the 

results plotted to determine whether the distribution of values was uniform, as desired.  

The process for creating individuals was tested in much the same way; the distribution of 

values for a single attribute of all the individuals in each species were plotted and found 

to be appropriate.  Mathematical processes of the simulation framework were also 

checked with a calculator. 

 

A number of the ecosystem processes were isolated and studied, including metabolism of 

energy by all individuals.  To study metabolism, a small population of individuals was 

created and run in simulation for a few time steps.  The change in energy values from pre- 

to post- metabolism was compared to the value for the change when calculated with a 



 51

hand calculator.  The process of producers gaining energy from the radiation forcing 

function was tested in much the same way.  A small population of a single producer 

species was run in simulation and the total gain in energy by species compared to that of 

the total energy that was added to the system by the forcing function.  The energies of 

individuals before and after energy distribution were compared as well to see if the 

energy quanta were distributed uniformly.  Consumer feeding was checked by comparing 

feeding probabilities to those calculated with a hand calculator. 

 

During this process, there were a number of times when the program was not found to be 

functioning as desired.  For example, the input values for consumer hunting ability 

(AFFECT1) were determined to be too high when the rate of feeding was examined and it 

was discovered that individuals were eating more often than intended.  When re-tested 

after the values were reduced by an order of magnitude, the process worked as desired.  

Another example of undesired program function found during verification was found 

when the reproduction of individuals was isolated and studied.  The reproduction process 

was verified by recording births, as well as parent energy before and after birth, during a 

simulation.  At first, parent individuals were not losing the correct amount of energy 

when they gave birth, and thus being able to reproduce too often.  That was found to be a 

missing bracket in the equation used to calculate parental energy loss and easily corrected. 

 

The forcing functions were also verified, both separately from the main program and with 

it.  The temperature routine was broken into pieces and each section tested as the routine 

was re-built.  First the method for creating daily average temperatures (DATs) was 

examined.  It was used to create fifteen years worth of DATs, which were then put 



 52

through the same analysis process as the original data off which the temperature model 

was based.  During the testing of DAT creation, another error was found.  The section for 

creating the ‘noise’ in the signal did not work properly, so a new scheme for generating 

correlated numbers had to be found.  Once that fix was performed, the temperature 

subroutine was rebuilt and the spline section tested.  There were no other instances of 

undesired program function during the verification of the temperature subroutine.  The 

radiation subroutine was examined in much the same way.  The sections for creating daily 

overall radiation values, hourly attenuation factor values for a year, and daily radiation 

intensity values were all tested in turn.  The test of the latter two sections required the 

section(s) before, so the radiation subroutine was rebuilt as each section was determined 

to work as foreseen. 

 

The forcing function subroutines were then added to the main program individually and 

their output recorded and examined.  During this part of the verification process, another 

fix had to be performed.  The temperature subroutine performed as desired, but it was 

found that the radiation subroutine resulted in more energy entering the system than 

desired.  After examining the changes in units throughout the radiation subroutine, it was 

discovered that the solar constant, the amount of incoming solar radiation for a given area, 

was required in the conversion of radiation intensity to amount of energy entering the 

system.  Once a value for the solar constant was obtained and used in the conversion of 

radiation intensity to energy entering the system, the radiation subroutine performed as 

desired.  At this point, all errors had been found and corrected, and the forcing functions 

worked as desired (Sun and Kok 2007, Parrott et al. 1996). 

 



 53

3.4.2 Exploration of simulation output 

After the individual processes had been tested and verified, a number of simulations were 

run with various ecosystem constitutions.  The purpose of these simulations was to further 

verify the operation of the computational model / simulation program as well as to 

explore the basics of setting up and running ecosystems in simulation.  The output files 

were examined in their raw form but were also filtered to extract various types of data 

which were then graphed (Figure 3.5).  Examining the output graphically resulted in the 

identification of at least one other programming problem.  When the deaths by old age of 

one species were plotted, it was discovered that there were extremely fast decreases in the 

population of the species (Figure 3.5a).  While cohorts dying at approximately the same 

time of year is a common phenomenon in physical ecosystems, it was badly exaggerated 

in this case, with a large portion of the population dying on the same day.  The sudden 

reduction in the population in one species would then affect the other species in the 

system, sometimes resulting in a catastrophic event.  This problem, which was discovered 

through the examination of the graph, was determined to be due to inappropriate choice 

of seeds for the random number generators used to determine new individuals.  The seeds 

being used up to that point were sequential, which causes certain harmonics to occur 

when used with the random number generation subroutines in this program.  Once the 

seeds were adjusted to widely different values, the problem no longer occurred (Figure 

3.5b). 

 

Graphs of output data were also used to examine particular sections of the program, both 

during the isolation of processes discussed above and during a step by step build-up of an 

ecosystem with the same forcing function parameters being used for each simulation.   



 54

(b
) 

0
10

20
30

40
50

60
70

80
90

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

01234
x 

10
7

P
ar

t H
4.

2 
(n

o 
fe

ed
in

g 
by

 c
on

su
m

er
s)

sp
ec

ie
s 

1

bi
rth

s*
10

5

m
et

ab
ol

is
m

*1
03

ag
e 

de
at

hs
*1

05

st
ar

va
tio

ns
*1

05

en
er

gy
po

pu
la

tio
n*

20

x 
10

5
sp

ec
ie

s 
2

D
ay

s 

0
10

20
30

40
50

60
70

80
90

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

0

0.
51

1.
52

2.
5

x 
10

7

bi
rth

s*
10

5

m
et

ab
ol

is
m

*1
03

ag
e 

de
at

hs
*1

05

st
ar

va
tio

ns
*1

05

en
er

gy
po

pu
la

tio
n*

20

2
x 

10
6

do
gs

D
ay

s 

(a
) 

Fi
gu

re
 3

.5
  S

pe
ci

es
 V

ar
ia

bl
es

 v
s. 

T
im

e 

po
pu

la
tio

n 
dr

op
s 



 55

The step by step approach was used to see if the output in each situation would be 

reasonable for that situation.  The first version of the system had a single producer species 

that had no health interactions with itself.  It was run in several simulations with different 

values for the species’ baseline metabolism.  The final populations of the simulations 

were then plotted versus the corresponding base metabolic rate values (Figure 3.6).  As 

expected, there was a point at which the baseline metabolism of the species became so 

high that all the individuals died of either old age or starvation before they could 

reproduce, resulting in extinction for the species and the system overall.  In the next step, 

the species was given various values for health interaction with itself, and then simulated 

in the same manner for each health interaction value.  Though the point where the 

species’ metabolism became critical was approximately the same for all interaction values, 

the graph made it easy to see that, as expected, negative interaction values made the 

population drop faster and positive interaction values bolstered the population for a time 

(Figure 3.7). 

 

The system build-up was continued with the addition of a second, but identical, producer 

species.  The initial population from the previous simulations was split between the two 

species and the system was then run in simulation with a variety of base metabolic rates. 

As anticipated, the populations of the two species stayed approximately the same 

throughout the simulations, indicating that the system was behaving appropriately.  As 

before, the species went extinct when their metabolism reached a certain base rate (Figure 

3.8).  Then another set of simulations were performed with several different health 

interaction matrices and varying base metabolic rates.  Though the two species still 

reached extinction with the same metabolic rates, their populations were no longer the 



 56

 

Specific Base Metabolic Rate (s-1)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10 -7

0

1

2

3

4

5

6

7

8

9

10
x 10 5

Po
pu

la
tio

n 
(In

di
vi

du
al

s)

XINTER = -0.900
XINTER = -0.450
XINTER =  0.000
XINTER =  0.450
XINTER =  0.900

Figure 3.7  Average Population of Final Year vs. Specific Base Metabolic Rate for five interaction 
values 

Specific Base Metabolic Rate (s-1)

Po
pu

la
tio

n 
(In

di
vi

du
al

s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x 10 -6 

0

1

2

3

4

5

6

7

8

9

10 x 10 5 

Figure 3.6  Average Population of Final Year vs. Specific Base Metabolic Rate 



 57

 

Specific Base Metabolic Rate (s-1)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10 -7

0

1

2

3

4

5

6

7

8

9

10 x 10 5

Po
pu

la
tio

n 
(In

di
vi

du
al

s)

Producer 1
Producer 2

Figure 3.8 Average Population of Final Year vs. Specific Base Metabolic Rate 

Specific Base Metabolic Ratio (s-1) 
0.5 1 1.5 2 2.5 3 3. 4 4.5 5

x 10
-7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Po
pu

la
tio

n 
1 

/ P
op

ul
at

io
n 

2

 

 [ -0.750  0.250; 0.750  -0.250] 
[ -0.750  0.250; 0.500  -0.500] 
[ -0.750  0.250; 0.400  -0.900]
[ -0.250  0.750; 0.500  -0.500] 
[ -0.250  0.750; 0.900  -0.400] 
[  0.000  0.000; 0.000    0.000]

Figure3.9 Ratio of Average Populations of Final Year vs. Specific Base Metabolic Rate for different 
interaction matrices 



 58

0.5 1 1.5 2
0

2

4

6

8

10

12
x 105

XMETAB2 / XMETAB1

Po
pu

la
tio

n 
(In

di
vi

du
al

s)

 

 

Population 1 (XMETAB = 0.1e-6)
Population 2

Figure 3.10  Average Population of Final Year vs. Ratio of Specific Base Metabolic Rates 

0.6 0.8 1 1.2 1.4 1.6
0

2

4

6

8

10

12
x 105

XMETAB2 / XMETAB1

Po
pu

la
tio

ns
 (I

nd
iv

id
ua

ls
)

 

 

Population 1 [-0.750  0.250]
Population 2 [ 0.100 -0.900]
Population 1 [-0.750  0.250]
Population 2 [ 0.900 -0.100]
Population 1 [-0.250  0.750]
Population 2 [ 0.900 -0.100]
Population 1 [-0.250  0.750]
Population 2 [ 0.100 -0.900]
Population 1 [ 0.000  0.000]
Population 2 [ 0.000  0.000]

Figure 3.11 Average Population of Final Year vs. Ratio of Specific Base Metabolic Rates for different 
interaction matrices 



 59

0.6 0.8 1 1.2 1.4 1.6
0

1

2

3

4

5

6

7

8

9
x 105

XMETAB2 / XMETAB1

Po
pu

la
tio

ns
 (I

nd
iv

id
ua

ls
)

 

 

Population 1 (XMETAB = 0.1e-6)
Population 2

Figure 3.12  Average Population of Final Year vs. Ratio of Specific Base Metabolic Rates 

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0

1

2

3

4

5

6

7

8

9
x 105

XMETAB2 / XMETAB1

Po
pu

la
tio

n 
(In

di
vi

du
al

s)

 

 

Population 1 [ 0.000  0.000]
Population 2 [ 0.000  0.000]
Population 1 [-0.705  0.250]
Population 2 [ 0.100 -0.900]
Population 1 [-0.750  0.250]
Population 2 [ 0.900 -0.100]
Population 1 [-0.250  0.750]
Population 2 [ 0.900 -0.100]
Population 1 [-0.250  0.750]
Population 2 [ 0.100 -0.900]

Figure 3.13 Average Population of Final Year vs. Ratio of Specific Base Metabolic Rates for different 
interaction matrices 



 60

same for some of the interaction matrices (Figure 3.9). 

 

In the next phase of the system build-up, the two producer species were no longer 

completely identical.  To start, the metabolic rate of one species was set to a constant 

value while the other was varied.  It was expected, when run in simulation, that either one 

species or the other would dominate the system.  Indeed, the results showed only a 

narrow range of base metabolic rates for the second species where both species survived, 

centered around the point where the ratio between base metabolic rates of the two species 

is 1:1 (Figure 3.10).  Again, another set of simulation were then run with various health 

interaction matrices.  From the graphs, it is possible to see that although the effect of the 

health interaction is fairly slight, it is certainly present (Figure 3.11).  The two species 

were then made to be significantly different and simulated again both without and with 

the variety of health interaction matrices and metabolic rates for the second species.  The 

results were very similar to the previous set, but the range where both species survived no 

longer centered around the 1:1 ratio of base metabolic rates (Figure 3.12, Figure 3.13). 

 

As a final exploration of the two-producer system, the second species’ base metabolic rate 

was fixed and a single interaction matrix chosen.  Then a set of simulations was run with 

different combinations of initial populations for the two species.  The results were plotted 

with one species’ population versus the population of the other.  This type of graph shows 

if and how a system cycles over time.  When the cycles for all the simulations in this set 

were plotted together, it was possible to see whether the different versions of the system 

reach the same final point and the differences in the path they take to it.  Although it was 

possible that most of the simulations would reach the same final point but that some 



 61

others might go toward different points, all of the systems simulated ended at 

approximately the same point, meaning that all the initial states were in a range of the 

state space in which the ecosystem could be considered stable (Figure 3.14). 

 

The last step in building-up a system for verification was to add a consumer species.  The 

first set of simulations for this version of the system had no health interaction between the 

species.  Several matrices for the consumer species’ food preferences were created, and 

then simulations were performed with a variety of values for the consumer’s hunting 

ability (AFFECT1) for each food matrix.  The final populations of each simulation were 

plotted against the corresponding AFFECT1 value.  For some food matrices, there were 

no simulations where all three species survived (Figure 3.15).  Others, however, had a 

narrow range of AFFECT1 values in which all three species could survive.  To one side  

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

1

2

3

4

5

6

7
x 10

5

Species 1 Population

Sp
ec

ie
s 

2 
Po

pu
la

tio
n

 

 

 ●  start points 
 ●  end points 

Figure 3.14  Producer Species 2 Population vs. Producer Species 1 Population 



 62

 

Figure 3.15 Average Population (of Producer 1, Producer 2, & Consumer) of Final Year vs. 
Consumer Hunting Ability (AFFECT1) when the consumer has a 75% preference for Producer 2 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9
x 105

AFFECT1 value

Po
pu

la
tio

n 
(in

di
vi

du
al

s)

 

 

P1
P2
C*500

Figure 3.16 Average Population (of Producer 1, Producer 2, & Consumer) of Final Year vs. 
Consumer Hunting Ability (AFFECT1) when the consumer has a 90% preference for Producer 1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7
x 105

AFFECT1 value

Po
pu

la
tio

n 
(in

di
vi

du
al

s)

 

 

P1
P2
C*500



 63

0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

1

2

3

4

5

6
x 105

AFFECT1 value

Po
pu

la
tio

n 
(in

di
vi

du
al

s)

 

 

P1
P2
C*500

Figure 3.17 Average Population (of Producer 1, Producer 2, & Consumer) of Final Year vs. 
Consumer Hunting Ability (AFFECT1) with a given interaction matrix

0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

1

2

3

4

5

6
x 105

AFFECT1 value

Po
pu

la
tio

n 
(in

di
vi

du
al

s)

 

 

P1
P2
C*500

Figure 3.18 Average Population (of Producer 1, Producer 2, and Consumer) of Final Year vs. 
Consumer Hunting Ability with a different interaction matrix than Figure 3.17 



 64

of that range, the consumer was a poor hunter and starved to death; and to the other side, 

it was too efficient, ate its entire food source, and then starved to death (Figure 3.16).  

 

Following the same method as above, the next phase was to add health interaction to the 

system.  A single matrix was chosen for the consumer’s food preferences, and a range of 

values for its hunting ability was used for each health interaction matrix.  The output was 

plotted as before for each health matrix, and the effect of the various matrices is quite 

clear when the graphs are compared (Figure 3.17, Figure 3.18).  The final phase for the 

three-species system was to test the field of initial conditions, as described above with 

only producers.  The results were also similar, with all systems moving towards one area 

on the graph, as seen in Figure 3.14.  

 

3.5 Validation and virtual ecosystems 

When working with a traditional ecosystem model of an extant system, validation is often 

carried out after verification is complete.  In that process, the output from the model is 

compared to the comportment of the exemplar system to see if they are statistically 

similar.  If they are, then the model is considered to be a good representation of the 

exemplar system.  If not, then the model may be adjusted and readjusted until its output 

and the system’s comportment are similar.  It should be noted that when a model is 

created to emulate a system that does not exist yet (e.g. a model to explore a proposed 

ecosystem restoration plan), then validation can only be performed if and when the 

system has been created.  A virtual ecosystem, however, is an entity in its own right, and 

there is not and never will be an exemplar system with which to compare it.  Thus, in 

such a case, the output of a simulation is the comportment of a system in reaction to 



 65

certain forcing functions, rather than an emulation or projection of another system that is 

being modeled.  Hence, validation is not applicable for virtual ecosystems and can only 

be approximated with the verification process. 

 

3.6 Comparing the virtual ecosystem to ecological theory 

The exploration of the computational model and simulation platform through graphs and 

the slow build-up of a system imparted confidence that the program worked as intended.  

It was decided, however, that a comparison of the output from the virtual ecosystem to 

standard ecological theory regarding the comportment of ecosystems would be another 

way to approximate validation and build confidence in the idea that this virtual ecosystem 

does represent ecosystems in general.  As the virtual ecosystem tracks only energy 

0 10 20 30 40 50 60 70 80 90
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

7

In
di

vi
du

al
s

Days
 

 

Figure 3.19 Exponential Growth: Individuals vs. Time 



 66

exchanges and populations, theory from population ecology is the most relevant to this 

situation. 

 

The most basic tenet of population biology is that a population will exhibit exponential 

growth in an environment with unlimited resources (Gotelli 2001).  While there is no way 

to simulate unlimited resources in the virtual ecosystem (the simulation platform requires 

system boundaries), a population started far below the system’s maximum energy limit 

does grow in a roughly exponential fashion (Figure 3.19).  The population growth is not 

exactly exponential because of the interactive nature of radiation in the virtual ecosystem.  

Of course, very few systems with unlimited resources exist.  Most systems have a 

carrying capacity, an approximate maximum population of a given species that a system 

can sustain due to competition for resources such as food and space.  In the virtual 

ecosystems created here, the maximum energy allowed for all producer species combined 

is set at a specific value.  However, the carrying capacity for each producer species – and 

thus the consumer species – within a system is not predetermined and therefore unknown 

until derived by simulation. 

 

The graph of a population under resource constraint will generally be in the style of one 

of two possible curves.  If the initial population of the species is below the carrying 

capacity, the population curve will start with exponential growth, see Figure 3.20a from 

Gotelli (2001).  Then the growth rate will slow down until the curve levels out at 

approximately the carrying capacity, creating an ‘S’ shaped logistic growth curve (Figure 

3.20a).  When the initial population is greater than the carrying capacity, the population 

will decline, rapidly at first then slower until it too levels out at the carrying capacity 



 67

(Figure 3.20a).  These graph standards were developed with continuous growth 

population models and thus produce a smoother curve than is seen in an object-based 

model with non-constant forcing function (i.e. the roughness is due to annual weather 

patterns).  However, one of the two curve types can still be seen in the overall trend of the 

population curve (Figure 3.20b). 

 

0 5 10 15 20 25
0

2

4

6

8

10

12
x 107

In
di

vi
du

al
s

Years

 

 

(a) 

(b) 

Figure 3.20 Logistic Growth Curves, Population vs. Time: (a) Example curves (Gotelli 2001),    
(b) Output curve from virtual ecosystem.



 68

The comportment of the virtual 

ecosystems was also compared to the 

dynamics of previously established 

predator-prey models.  In the Lotka-

Volterra predation model, the dynamics of 

the predator and prey populations follow a 

cycle depending on the density of the two 

populations, see Figure 3.21 from Gotelli 

(2001).  At one point of the cycle (Figure 3.21, upper right quadrant), both populations 

are abundant.  There is enough food for the predator population to increase.  However, the 

predator population becomes too large and causes the prey population to decrease.  As the 

prey population falls, the predator population no longer has the food abundance required 

to increase and begins to decrease as well.  With much of the predatory pressure lifted, 

the prey population begins to increase.  They become abundant again, allowing the 

predator population to start to increase again until the system reaches the beginning of the 

cycle again.  In the virtual ecosystem, however, oscillating populations only occur in the 

presence of forcing functions with oscillations.  Thus, the virtual ecosystem does not 

conform to the Lotka-Volterra density dependent predation model.  There is evidence, 

however, that the Lotka-Volterra model is not really applicable in physical systems either. 

 

A classic example of predator-prey dynamics, the Canada lynx and the snowshoe hare, 

was once thought to be cyclical purely because of density dependent interactions between 

the two species (Trostel et al 1987).  However, newer studies have determined that, 

although the lynx is almost entirely dependent on the hare for food, the hare population is 

Figure 3.21 Lotka-Volterra Density Dependent 
Predation Cycle (Gotelli 2001) 



 69

not solely dependent upon the predation 

of lynx but rather a complex set of 

pressures including the abundance of its 

own food species (Stenseth et al 1997).  

As snowshoe hares are herbivores, those 

food species are primary producers, the 

populations of which are in part 

dependent on forcing functions like 

radiation and temperature, making the 

cyclical dynamics of the lynx and hare also at least in part dependent upon forcing 

functions.  Similarly, when a consumer population from a virtual ecosystem is plotted 

versus the population of its food species, in the case of having a single food species, the 

resulting graph displays the same type of cyclical dynamic when in the presence of 

cyclical forcing functions (Figure 3.22). 

 

3.7 Summary 

The virtual ecosystem for this project is materially closed and energetically open with no 

spatial representation, much like an ecosystem in a well mixed jar.  A number of objects 

interact in the system, each object being an individual of a species that is either a 

producer or a consumer.  Species have a number of attributes, the values of which 

individuals of those species inherit.  Individuals also have a number of attributes whose 

values are defined at the individual level.  The individuals interact according to a set of 

rule based expressions that form a simple process of intra- and inter-specific interactions.  

Two forcing functions, temperature and radiant energy intensity, provide the main 

4 5 6 7 8

x 10
5

2000

3000

4000

Producer Population

C
on

su
m

er
 P

op
ul

at
io

n

Figure 3.22 Cyclical comportment of virtual 
ecosystem: Consumer Population vs. Producer 
Population 



 70

impetus for the comportment of the system. 

 

The object-based modeling method used here is very useful for illustrating the complex 

nature of ecosystems.  From this set of fairly simple rules and equations, the entire 

comportment of the system arises.  Birth and death rates result from the interactions 

within a system, not imposed upon it.  Intricate behaviors and cycles emerge without 

guidance, a hallmark of complex systems.  Object-based models are also well suited to 

situations where the overall system is not fully understood, making it possible to obtain 

system level results from better known local interactions.  The computational model for 

the virtual ecosystem was written in FORTRAN 90/95.  Input and output is handled via 

various text files.  Initialization and iteration routines are contained in the main program, 

while forcing functions are separate subroutines. 

 

A series of tests were performed in order to verify that the computation model works 

properly and results are consistent with ecosystems in general.  Much of the verification 

was done with graphical analysis.  Although the standard practice of validation does not 

usually apply to virtual ecosystems, the output from the virtual ecosystems was compared 

to theory from population ecology as an approximation of the process.  Altogether, the 

virtual ecosystem program was found to be working as desired, comportment of systems 

simulated with it compared favorably to theoretical expectations of ecosystem 

comportment, and thus, the virtual ecosystem program and simulation program is an 

adequate representation of ecosystems for the purposes of this project.  



 71

4. Data Generation 

The desired outcome of this project was to test case-based reasoning as a method for 

compiling and analyzing large data sets of diverse ecological data.  Thus, a large number 

of simulations had to be performed to generate data on differing system constitutions and 

the resulting comportments.  The constitutions of the simulated systems needed to be 

widely varied within the state space in order to represent ecosystems as generally as 

possible, as well as allow the exploration of the boundaries and parts of the state space 

that are not normally investigated with traditional models.  Therefore, a method to 

randomly create a variety of systems was formulated.  Then the systems thus created were 

run in simulation.  The data from those simulations formed the core of the case base to be 

used to test case-based reasoning.  Because of the nature of virtual ecosystems and the 

fact that this project is at such a preliminary stage of the research process, it was not 

required to make the individuals in or the composition of the systems “match” known 

species or systems. 

 

4.1 Creating simulations 

As seen previously, several different system constitutions were used with the virtual 

ecosystem simulation program during the course of verifying the program and testing the 

various quantitative measures.  Most of these systems were created ‘by hand’ or modified 

in small ways with a computer program, e.g. incrementally increasing the value of one 

species attribute.  However, creating each system individually for the large number of 

case base simulations would have taken far too long.  Also the maximum degree of 

randomness was desired so that the systems simulated would represent a fair portion of 

the state space.  Thus, an automated method was needed to create ecosystem constitutions 



 72

to be used with the virtual ecosystem program. 

 

In order to have all simulations be meaningful, the system constitutions could not be 

entirely random.  It would have been a waste of time and computing resources to simulate 

systems which were highly likely to fail completely, e.g. a system with only consumer 

species.  A set of guidelines was needed to create reasonable systems.  This requirement 

applied to both the creation of the species in each system as well as the structure between 

them.  It was further decided that, although new species could be created for each 

constitution, it would facilitate comparison between systems and the analysis of the 

importance of ecosystem structure if there was a set pool of species to draw from when 

defining the structure of each system.  Not all species would be present in every system 

constitution, but all systems would be inside the state space defined by the pool of species.  

This makes the virtual ecosystem project more like a physical ecological engineering 

project where the engineer has certain plants, animals, etc. to choose from. 

 

4.1.1 Creating species 

Twenty each of producer and consumer species were defined.  Species creation was 

performed in Excel spreadsheets (Appendix D), one spreadsheet for the non-interactive 

attributes (minimum energy, birth energy, base metabolic rate, etc.) and one each for the 

two interactive matrices (consumer food preferences and health interaction).  The 

formulas for each species level attribute were entered in the matrix of species number 

(numbers 1-20 for producers and numbers 21-40 for consumers) versus species attribute 

(minimum energy, energy at birth, etc.) in the main sheet and in species versus species 

matrices for the interaction matrices.  Once all the formulas to calculate the attribute 



 73

values for the species had been entered, a copy of the Excel file was saved without 

formulas and only the calculated values.  This file served as the source file of species 

attributes to be used in the creation of ecosystems for simulation. 

 

As stated above, certain guidelines were required to make “reasonable” species.  For 

example, it would be fruitless to create a species whose birth energy was smaller than the 

minimum energy required for an individual of that species to remain alive.  Thus, the 

value for the minimum energy for a species would need to be set first and the value for its 

birth energy calculated based on the minimum energy value.  It was not desired, however, 

to have all species have birth energies that were the exact same multiple of their 

minimum energies.  In physical systems, some species have a greater chance of dying 

shortly after birth than others.  It was desirable to mimic that phenomenon in the virtual 

ecosystems for this project; therefore, the birth energy values were decided to be in a 

range between 1.5 and 3 times the minimum energy values, which were randomly chosen 

in an even distribution between 10 and 150 energy units – values that were deemed 

reasonable after the simulations performed during testing and verification.  The same 

reasoning was applied to the reproduction threshold of each species, and the values for 

that attribute were determined best between 5 and 10 times the value of the birth energy 

for each species. 

 

In a slightly different manner, the absolute maximum age for each species was calculated 

using the already assigned value for the lower end of the maximum age range of the 

species.  It was discovered during the verification process for the virtual ecosystem 

program that having all individuals of a species have the same maximum possible age 



 74

resulted in undesirable, sudden large population decreases.  Though part of this problem 

was fixed by setting the values for the seeds used with the random number generators in a 

specific manner (see chapter 3), it was determined that the individuals within a species 

should have slightly different maximum ages.  Thus, the concept of initializing 

individuals with different maximum possible ages was added to the original aging 

concept in the system.  It was also necessary, therefore, that each species be created with 

a large enough range from which maximum ages for each individual would be calculated.  

Although the values for each of the two attributes – absolute maximum age and minimum 

maximum age – were randomly generated in an even distribution within two different 

ranges, the values for absolute maximum age were set to be at least 30 days larger than 

the values for the lower end of the maximum age range.  The value for the minimum 

maximum age for a species was chosen to be between 60 and 1825 days, and the value for 

absolute maximum was assigned in the range between 120 days or 30 days over the 

minimum value, whichever was larger, and 3650 days. 

 

Other species attribute values were determined randomly within a range but not based 

upon any other species’ attribute value.  The values for the base metabolic rate of 

producer species were generated in a range that was between 5.0e-8 and 2.5e-7 EU / EU·s.  

For consumers, the range for the same attribute was between 3.5e-7 and 6.5e-7 EU / EU·s.  

The food affectedness (hunting ability) values for consumer species were set between 

0.250 and 0.750, where the hunting ability of a species was inversely related to the value 

of its food affectedness (i.e. a smaller value equals a more efficient hunter).  The values 

for health affectedness (how sensitive a species was to the abundance of the various 

species in a system) were set between 5 and 25 for all species.  The health interaction 



 75

values for all species were determined between -1 and 1.  Each species was assigned a 

health interaction value for every other species created, including itself.  Because of the 

way the evenly distributed random number generator in Excel functions, no zero values 

were obtained for health interactions. 

 

The two remaining attributes at the species level were not determined in the same manner 

as the attributes above.  The size of the energy quanta received by individuals of producer 

species during the absorption of energy was set at the species level and could technically 

vary a great deal between species.  However, the effect of this particular attribute had not 

been explored during program testing and verification, and it was decided to use the same 

value for all species.  During testing and verification, the only value for energy quanta 

size used was 0.5 energy quanta, so that value was assigned for all producer species. 

 

As the species being created were to be used in a number of different ecosystems of 

differing compositions, the food preferences of the consumer species could not be given 

specific values.  Though food preferences – what food sources a species was willing to 

consume – were a species level attribute when considered for a single species, the actual 

values for those preferences were set at the system level.  Those values form part of the 

system structure, which was very dependent on the system composition.  In a system, the 

total of the values of a single consumer species’ preferences must equal 1.  It was unlikely 

that a given system created for simulation would include all of the species that a 

consumer species was willing to eat.  Therefore, if the values for food preferences were 

set before the system composition was created, the sum of a species’ food preferences in a 

system were also unlikely to be 1. 



 76

Accordingly, the food preferences were set during species creation without the values that 

would be used in simulation.  Only preferred food sources were determined for each 

consumer.  Evenly distributed random numbers between 0 and 1 were generated for each 

possible consumer relationship.  If the value of the random number was above 0.5, the 

relationship would receive a 1, meaning that that consumer species was willing to eat that 

food source.  Random number values below 0.5 received a 0 score, indicating that the 

consumer species was not willing to eat that food source.  Of the twenty consumer species, 

six were created to be herbivorous, six more were designated carnivorous, and the 

remaining eight were generated to be omnivorous.  As stipulated previously, none were 

allowed to be cannibalistic. 

 

4.1.2 Creating systems 

The ecosystem constitutions used in the simulations for this project were created directly 

as input files for the simulation program using another FORTRAN program, the “system 

creator program” (Appendix E).  The tables of species attribute values and interactions 

created in Excel were converted into text files which could be read by the system creator 

program.  The system creator program then randomly chose which species would be in 

each system, generated the structure of each system, and created the input files containing 

the system constitution and control parameters for the simulation.  As with the creation of 

species, the system constitutions were created following a set of guidelines that would 

make it more likely that these systems would at least partially survive. 

 

After reading in the attribute values for the species, as well as the consumer food 

preferences and the health interaction values for all species, the first task of the system 



 77

creator program was to determine how many species were in the system.  As the 

maximum number of species allowed in the simulation program was set at 30, that value 

was also used for the upper limit of the number of species.  The lower limit was set at two 

so that each system would initially have at least one each of producer and consumer 

species.  A uniformly distributed random number generator was used to determine where 

the total number of species falls in that range. 

 

The value for the total number of species was then used to calculate the values for number 

of producers and number of consumers.  As mentioned previously, it was required that 

each virtual ecosystem be initialized with at least one species of each type.  Thus, if the 

total number of species for a particular system was only two, then there was automatically 

one species of each type.  Otherwise, the number of producer species was randomly 

calculated from the total number of species, with the remainder being the number of 

consumer species. 

 

Two guidelines further affect the calculation of the number of producer species.  As there 

were only twenty species of each type in the pool of species, the upper boundary on the 

number of producer species was twenty in a system where the total number of species 

was greater than twenty.  In systems where the total number of species was twenty or less, 

the upper boundary on the number of producer species was one less than the total number 

of species.  In both cases, the lower boundary on the number of producer species in the 

system was half the total number.  This was decided in order to increase the likelihood of 

the consumer species having adequate food resources in the system. 

 



 78

Which species were to be present in a given system was determined randomly.  Thus, a 

random number generator was used to calculate values between one and twenty to choose 

producer species, and values between twenty-one and forty were calculated for consumer 

species.  The values calculated correspond to species numbers from the pool of species.  

Subroutines were included to make sure that there were no repeated species in a system.  

While the result of repeating a species would merely be that that species would have a 

larger initial presence in the system, it was desired that all the species of a given type (i.e. 

producer, the types of consumers – herbivore, omnivore, carnivore) have the same initial 

presence in the system (see below for initial population values by type).  That way, it 

would be possible to see the dominance of different species, within each type, emerge 

from equal initial presences in the system.  Once the particular species were chosen for a 

system, the vectors of species attributes values (e.g. minimum energy, birth energy, etc.) 

were built using the values for each species as recorded in the pool of species. 

 

The next step in creating a system was to build the matrix of food preference values for 

the consumer species.  For each consumer in the system, the program searched through 

the species present in the system to see if any of them were food sources for the given 

consumer.  Then preference values were determined for each of the consumers’ food 

sources in the system.  The total of the preference values for each consumer species 

needed to equal 1.  A baseline value of 0.005 was given to each food species, and the 

remainder of the total preference value was then randomly distributed among the food 

species for the consumer.  The process was repeated for each consumer, after which the 

health interaction matrix for a system was built using the values already determined 

during the creation of the pool of species. 



 79

At that point, the system was fully created.  However, in order to set up the system for 

simulation, initial population sizes for each species and the seeds for the random number 

generators used during the simulation to set the initial state of individuals as they are 

created were also needed.  Initial populations were set according to type of species.  

Producers all began with a population of 10,000.  Consumer species initial population 

values were set by what type of food preferences they had: herbivores at 1000, omnivores 

at 100, and carnivores at 10.  This was representative of the observed phenomenon of 

decreasing energy being available for increasing levels in a trophic pyramid, commonly 

known as the 10% rule of thumb.  Values for the random number seeds used for the 

system during a simulation were obtained between -1 and -1,000,000 (the random number 

generator subroutines used in the main program require negative integer values as seeds) 

in the system creator program from a uniformly distributed random number generator. 

 

The system creator program also wrote the simulation parameters file.  Most of the values 

for simulation parameters were constant for the simulations being done for the project.  

Only another set of random number seeds needed to be calculated, and the file name for 

simulation output needed to be determined.  Once those two tasks were completed, the 

simulation creator program wrote the input files: one containing all the species attribute 

and interaction values as well as the initial state of the system, the other the simulation 

parameter values.  It is important to note that the input files of forcing function 

parameters for each simulation were not created by the system creator program.  In order 

to highlight the relationship between ecosystem constitution and comportment, it was 

decided to use the same forcing function parameters for all the simulations. 

 



 80

4.2 Summary 

To build the case base of knowledge desired for this project, a large number of reasonable 

systems were needed to be run in simulation with the virtual ecosystem program.  

Random generation was chosen because it was desired that the constitutions of the 

systems cover as much of the state space as possible and more “realistic” representation 

was not required at this stage in the research process.  A pool of species was created using 

an Excel spreadsheet and a set of guidelines to make species that had a chance of 

surviving.  A system creator program was used to generate ecosystems with reasonable 

compositions. 



 81

5.  Analyzing the Constitution and Comportment of Virtual Ecosystems 
 
Ecosystems are complex systems, and it is very difficult to describe complex systems 

without losing information.  Even with relatively simple systems, like those being used in 

this project, there is too much information to meaningfully encode in a knowledge base 

and utilize.  Thus, each ecosystem must be analyzed with quantitative measures so as to 

produce a set of values that represent the constitution of the system.  In this way, the 

systems can be compared to each other much more easily.  The same is true regarding the 

simulation output (comportment) for each ecosystem.  Numerous variables are tracked 

throughout simulation, and it is very difficult to directly compare the large vectors and 

matrices of results.  Hence, more quantitative measures are necessary to generate a value 

or values that characterize the overall comportment of the virtual ecosystems. 

 

There are many aspects of an ecosystem that can be directly measured or analyzed, the 

number and distribution of species being commonly examined system features.  Long 

term studies concerned with succession may concentrate on the changes in the system 

composition (Gent and Morgan 2007, Ward and Jennings 1990).  DNA mapping of 

various species is also becoming common, and as it is supposed that species genetics can 

affect an entire community, so the genetic compositions of systems are also analyzed 

(Whitham et al. 2006).  Population levels, birth and death rates, and immigration and 

emigration rates of one or more species in a given system are also frequently observed.  

Vegetation density, mass, canopy cover, photosynthesis rates, and other plant based 

indicators are also used to indicate ecosystem organization or health (Miller III and 

Dunton 2007, Aoki and Mizushima 2001). 

 



 82

In many studies, the movement of various materials such as nitrogen or water through the 

system is tracked and analyzed to quantify the transport efficiency of the system (Holdo 

et al. 2007,Oguntunde et al. 2007).  The level of pollutants in the soil or water of 

ecosystems is also studied (Friedli et al. 2007).  More general system aspects that are 

often analyzed are the stability of an ecosystem’s comportment through time and the 

complexity of a system’s constitution (Chen and Cohen 2001,Rozdilsky and Stone 2001, 

Pimm 1984, Parrott and Kok 2000). 

 

Some of these methods are only applicable to physical systems or are otherwise unsuited 

for the virtual ecosystems used in this project.  For example, as the virtual ecosystem for 

this project has no spatial or mass reckoning, measures based on vegetative cover or mass 

would be impossible to use.  The methods for studying the transport efficiency could be 

adapted by tracking energy transfer in the system, and then analyzed in much the same 

way as is generally done with materials.  This project is intended to represent and 

examine the connection between the constitution and comportment of ecosystems, 

however, so ecosystem functions like energy transport are not desired aspects to be 

examined.  The long term goal of this project is concerned with developing theory for 

engineering persistent systems, so more general aspects are needed.  Stability and 

complexity seem to be the most relevant; stability because of its relationship to system 

survival and complexity because it can be used to examine and quantify ecosystems 

holistically.  Thus these two ecosystem characteristics have been chosen as appropriate 

for the analysis of the systems in the project. 

 

 



 83

5.1 Measuring complexity 

A complex system is one that is made up of many components which interact to give rise 

to structural and dynamical patterns that are not easily inferred from the system 

description (Parrott and Kok 2000).  The degree to which systems are complex varies 

both between and within types of systems.  The degree of complexity may be indicative 

of other features, such as the stability or other behavior of the system. For example, a 

social system (also known as a social network or social ecosystem) with a very complex 

set of relationships between different units in the system will have different dynamics 

than one in which all units in the social system are equally connected to each other.  In 

ecosystems, complexity can be applied to both system constitution and comportment. 

 

5.1.1 Constitutional complexity 

An agro-ecosystem with only a few species would be considered to have a fairly low 

degree of constitutional complexity, while a rainforest containing thousands of intricately 

interacting species would be considered to have a high degree of constitutional 

complexity.  The number of species is not the only factor that affects the constitutional 

complexity of an ecosystem; the types of species and the structure of the relationships 

between them also have an effect.  For example, a system with five producers would 

probably be less complex than one with three producers and two consumers.  Interspecific 

relationships like predation, competition, and the health interactions (mutualism, 

parasitism, etc.) all increase the complexity of a system.  Also, the organization of the 

structure affects the constitutional complexity.  For example, a system with clearly 

defined trophic levels (Figure 5.1a) is likely to be less complex than a system where some 

species in the food web occupy more than one trophic level (Figure 5.1b). 



 84

 

To simplify the measurement of the constitutional complexity of the ecosystems, this 

aspect has been further split into compositional and structural complexities, where 

compositional complexity is related to the numbers and types of species, and structural 

complexity refers to the interactions between species.  Although not used in this case, 

composite measures do exist.  For example, the U index is a measure of ecosystem 

maturity based on material flows within a system (Perez-Espana and Arreguin-Sanchez 

2001).  In this index, the magnitudes of the flows are used to calculate a value of system 

complexity based on system components, trophic interactions, and detritus recycling. 

 

5.1.1.1 Compositional complexity 

There are two main possibilities for quantifying the compositional complexity of an 

ecosystem: species richness and species diversity.  Species richness is simply a count of 

how many species exist in the system.  Species diversity not only includes the number of 

species but also the types of species, their distribution in the system, and the species 

P1 P2 P3 P4

C1 C2 C3

C4 C5

C6

P1 P2 P3 P4

C1 C2 C3

C4 C5

C6

P1 P2 P3 P4

C1 C2 C3

C4 C5

C6

P1 P2 P3 P4

C1 C2 C3

C4 C5

C6

(a) (b)

Figure 5.1  Food Webs of systems with (a) clearly defined trophic levels and (b) species occupying 
more than one trophic level. 



 85

evenness (how numerically equal the populations are) as well.  One measure of species 

diversity, the Shannon index, is larger when the evenness of species is high or when 

there is a large number of unique species in the system.  Compositional pattern 

diversity, a measure of the relative arrangement of subunits in a system, also includes the 

variation in species richness among communities and the evenness of the species 

(Scheiner 1992). 

 

High species evenness does not, however, necessarily mean that a system is more 

complex.  In fact, it is possible that high species evenness may imply a less complex 

system.  Systems with many trophic levels are likely to have differing populations at the 

various levels (e.g. high level consumers like carnivores rarely have large populations 

while scavengers may).  Thus, species evenness is better not considered when 

determining the compositional complexity of the ecosystems for this project.  

Furthermore, initial species richness is recorded directly in the input files (NTOT) and the 

presence of all species is listed in the output files throughout simulation; thus, it is a 

simple and reasonable measure to use.  For this project, the total species richness was 

measured as well as a breakdown by producer and consumer species richness.  Both 

initial and final values were recorded for comparison purposes. 

 

5.1.1.2 Structural complexity 

The structural complexity of ecosystems is an important consideration in ecological 

theory.  There is considerable debate regarding whether complexity is related to the 

stability and persistence of systems, and many different ways of measuring structural 

complexity have been devised.  A method that comes directly from the realm of 



 86

complexity theory is q-analysis (Casti 1994).  In this technique, species interactions are 

represented by an incidence matrix of predator relations.  Even species that do not have 

direct interactions can be related to each other through intermediate species, the number 

of intermediaries determining the strength of the interaction, the q dimension.  The entire 

system is analyzed at a particular q dimension to find how well connected the system is at 

that level.  However, this multi-dimensional view of structural complexity is not really 

desirable for the purposes of this project. 

 

The field of ecological network analysis provides a measure, ascendency, which 

combines the vigor and organization of the system into a single variable (Ulanowicz 

2000).  Ascendency is based on flows of currency between compartments in the 

ecological network.  Currency can be materials like water, nitrogen, and contaminants 

that move through the system.  Anything else that can be exchanged between different 

parts of a system can also be used as currency in an ecological network.  In this case, the 

currency would be energy and the compartments the various species in a given system.  

As ascendency is based on currency exchange, it requires that at least one time step of 

simulation be performed and is not an indication of the system structure independent of 

the conditions of simulation, but rather how the structure of the system reacts to such 

conditions.  Thus, it is not appropriate for measuring structural complexity. 

 

One common tool to measure the complexity of an ecosystem is connectance, the ratio of 

actual species interactions to the total number of possible species interactions (Chen and 

Cohen 2001, Rozdilsky and Stone 2001).  Vasconcellos et al. (1997) combined 

connectance with how feeding interactions were distributed between the trophic levels of 



 87

the food web.  Either of these methods is suitable to use with the virtual ecosystem.  

However, since trophic levels are not being specifically assigned to consumer species, the 

first version of the measure was chosen. 

 

The only data required to calculate connectance is the number of consumer species, the 

total number of species, and the food preference matrix.  These are all present in the 

simulation input files.  As mentioned in chapter 3, there is also a set of health interactions 

between the species.  These could be included in measuring connectance.  However, the 

effects of health interactions are fairly weak.  Also, due to the system generation 

technique used in the project (see Chapter 6), there are no zero values in the health 

interaction matrix.  This would mean that, of the possible links between species 

contributed by the health interaction, all links would be used for all systems.  The result 

would be a 1:1 ratio for all systems, making the links contributed by the health interaction 

meaningless for system comparison purposes.  Thus, the health interaction has not been 

included in the calculation of connectance, and the number of possible species 

interactions is based on the food web only. 

 

The number of possible interactions for each system is the number of consumers in the 

system multiplied by one less than the total number of species.  Because cannibalism is 

not being allowed in the virtual ecosystem program, the link between each consumer and 

itself is not considered possible.  Predator relationships are also considered to be 

directional, so there are two possible links between two consumer species.  The number 

of actual interactions in the system is the number of non-zero values in the food 



 88

preference matrix.  Connectance is then the second value divided by the first (Equation 

5.1), 

C = L / N2*(NTOT – 1)    (5.1) 

where C is connectance, L is the number of actual interactions (links), and N2 and NTOT 

are respectively the number of consumer species and total number of species in the 

system.  It is important to note that systems with more species may seem to require more 

intricate structures for the same connectance value.  This is because adding even one 

species to a system may add many possible links.  For example, adding one consumer to a 

system that previously had six species adds at least five more possible links.  To 

investigate the measure, it was applied to two sets of systems, the systems within each set 

having identical species compositions but different structures (Figure 5.2).  It was decided 

the results were satisfactory and the measure usable. 

 

Figure 5.2 Connectance Values for ecosystems with different compositions and structures 

C = 0.70  C = 0.50  C = 0.60  

P1 P2 P3 P4

C1 C2

P1 P2 P3 P4

C1 C2

P1 P2 P3 P4

C1 C2

P1 P2 P3 P4

C1 C2

P1 P2 P3 P4

C1 C2

P1 P2 P3 P4

C1 C2

P1 P2 P3 P4

C1 C2

P1 P2 P3 P4

C1 C2

C3

P1 P2 P3 P4

C1 C2

P1 P2 P3 P4

C1 C2

C3

P1 P2 P3 P4

C1 C2

P1 P2 P3 P4

C1 C2

C3

C = 0.39  C = 0.44  C = 0.50  



 89

5.1.2 Comportmental Complexity 

The comportmental complexity of a system indicates how complex the behavior of the 

system is and can be anywhere in the range from “not very complex” to “quite complex”.  

In a system in which the populations remain relatively steady over time, the 

comportmental complexity is fairly low.  A system with regular cycles would be 

somewhat more complex, and a system that is deterministic but has no regular pattern at 

all would be more complex yet.  All of the factors that contribute to constitutional 

complexity, as well as the interactions that take place during the comportment (either by 

simulation or, in physical systems, the passage of time), affect the comportmental 

complexity of a system.  The sampling frequency used when looking at the system 

comportment also has an impact.  Populations sampled on a daily basis are likely to have 

more variation than populations sampled on a yearly basis, given that the yearly sample is 

taken at approximately the same time of year and in the same part of the life cycle of the 

species. 

 

The comportmental complexity of systems is not often analyzed, but there are a few 

examples.  Scheiner (1992) applied pattern diversity analysis to temporal subunit 

arrangement as well as compositional arrangement.  The complexity of species 

abundances patterns have been measured by calculating the fractal dimension of the 

species abundances over time (Mancinelli et al. 2007).  Fractal properties, such as fractal 

dimension, are also often used to analyze the behavior of individual animals and to 

classify habitats such as coast lines (Tanner et al. 2006, McDonald and St. Clair 2004, 

Nams and Bourgeois 2004).  However, while temporal pattern diversity could be used 

with the virtual ecosystem simulations, the fractal analysis methods all deal with a single 



 90

species over time, not the comportment of an entire system. 

 

Despite being otherwise suitable, temporal pattern diversity was not used because the 

high percentage of species that were expected to go extinct during simulations would 

affect pattern diversity too much.  Instead, a measure was needed that could be used on 

the comportment of the system regardless of how many species had gone extinct.  

Because of the difficulty involved in trying to measure the complexity of multiple 

populations and variables at once, it was desirable to find a way to indicate the overall 

state of the system at a given time.  Although it was decided not to be suitable to measure 

structural complexity, ascendency did provide a way to quantify the state of the system at 

a given time.  Thus, the ascendency was calculated at every time step during simulation 

of each virtual ecosystem and recorded in the output files. 

 

In order to use ascendency with the virtual ecosystem, the constitution of the system had 

to also be conceptualized as an ecological network.  Ecological networks consist of a 

number of compartments with paths of currency exchange connecting the compartments.  

These compartments can be organized in a number of ways, such as by trophic levels or 

ecological functional groups such as detritivores, herbivore, etc.  In this case, the network 

is structured with each species having its own compartment.  There are two non-species 

compartments in the network, one for the source of energy that enters the system and the 

other as the sink where energy is lost from the system.  The source compartment connects 

only to the producer species, but all species lose energy to the sink compartment.  

Otherwise, the currency exchange pathways follow the transfer of energy from species to 

species during feeding by the consumer species (Figure 5.3). 



 91

 

During simulation, the flow of energy between compartments was tracked for each time 

step and the ascendency calculated at the end of the time steps.  As mentioned in the 

previous section, ascendency is a combination of the vigor and the organization of the 

system (Ulanowicz 2000).  Vigor, in this instance, is the throughput of currency, the total 

amount of energy that has moved through the system during the time step.  Organization 

is the average mutual constraint of the system, which is in turn the sum of the pairwise 

mutual constraints of each pair of compartments multiplied with the probability of that 

particular pair occurring.  Thus, 

 

Ascendency = Vigor × Organization 

or 

 

         (5.2) 

 

where T is the total system throughput and Tij the flow between compartments i and j. 

P1 P2 P3 P4

C2C1 

IN 

OUT 

P1 P2 P3 P4 

C2 C1 

Figure 5.3 Ecosystem Food Web and Corresponding Network for calculating ascendency 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

∑ ∑∑
k q

iqkj

ij

ji

ij

TT
TT

T
T

TA log
,



 92

It was found that, because the currency in the network was energy, and energy entered the 

system with a diurnal pattern, the ascendency also followed a diurnal pattern.  This 

resulted in a great deal of variation in the ascendency vector (Figure 5.4a), reflecting that, 

in this case, hourly measurement was too fine a granularity for examining comportment.  

Daily overall ascendency and daily average ascendency were also both considered for 

use, having courser granularity.  However, a seven day moving average was found to 

produce a smoother, more easily “read”, line and was used instead.  The resulting line 

represents the ascendency of the system through time with the high frequency noise 

removed but still reflecting the effect of the annual fluctuation of energy input 

(Figure5.4b).  This is a two dimensional representational of the multi-dimensional path of 

a given system’s comportment. 

 

With a single line representing the whole system, it was then possible to use the fractal 

dimension of the line to indicate the comportmental complexity of that system.  The 

fractal dimension was calculated using the freeware Fractal program by Vilis Nams 

(Nams 2006).  The program uses the divider method, by which a pair of dividers is 

walked along the path in question to measure the length of the path.  Larger and larger 

dividers are used, and the slope of the plot for log(path length) vs. log(divider size) is  

1-D, where D is the fractal dimension of the path.  A straight line would have a fractal 

dimension of 1 while a plane would have a fractal dimension of 2, thus D for all 

comportmental paths in this project fall in between 1 and 2.  The FractalMean option in 

the Fractal program, which walks the path once from each end for each divider size, 

results in better accuracy, and was thus used for the systems in this project.  To assure 

that the Fractal program fulfilled the needs of this project, it was tested with a variety of  



 93

0
1

2
3

4
5

0

0.
51

1.
52

2.
5

x 
10

7
As

ce
nd

en
cy

 v
s. 

Ti
m

e

0
1

2
3

4
5

01234
x 

10
6

Ye
ar

s

M
ov

in
g 

Av
er

ag
e 

(7
 d

ay
s) 

As
ce

nd
en

cy
 v

s. 
Ti

m
e

Fi
gu

re
 5

.4
 (a

) U
nf

ilt
er

ed
 A

sc
en

de
nc

y 
V

ec
to

r 
an

d 
(b

) S
ev

en
 D

ay
 M

ov
in

g 
A

ve
ra

ge
 A

sc
en

de
nc

y 
V

ec
to

r 

a)
 

b)
 



 94

lines including straight lines, exponential curves, parabolas, and various spirals as well as 

sample ecosystem comportments (Figure 5.5).  It was determined that the resulting values 

for fractal dimension would be satisfactory for quantifying comportmental complexity. 

 

5.2 Measuring stability 

In general, stability is a system’s ability to remain unchanged.  Ecological stability, 

however, is different from stability in many other complex systems.  Because of the living 

nature of ecosystems, by definition there are going to be elements entering and leaving 

the system.  Individuals die and are born or migrate between ecosystems, and there will 

be some population fluctuation due to those events as well as due to seasonal changes.  

The organisms themselves are constantly changing mass, energy content, and chemical 

composition.  Thus, ecosystems can only conform to the general definition of stability 

within very short spans of time.  However, an ecosystem that remains in the same, 

relatively small, area of its state space over time and is able to return to that area when 

perturbed is considered stable. 

 

Because a stable ecosystem stays roughly in the same area of its state space, the 

comportment of such a system will either show little variation or may cycle, regularly or 

irregularly, around an attractor.  Often such cycles occur in direct response to seasonal 

changes, but multi-year cycles are also common.  Some systems also have multiple steady 

states (note that here the ecological use of the word “state” refers to the general 

constitution of the ecosystem in a stable area of its state space); instead of returning to the 

same region of the state space after every disturbance, such a system may switch back and 

forth between a number of steady states in response to different disturbances.  The  



 95

0 100 200 300 400 500 600 700 800 900 1000
0.5

1

1.5

2

2.5

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10
x 105

-20 -15 -10 -5 0 5 10 15
-20

-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

D = 1.0000 D = 1.0000 

D = 1.0013 D = 1.0001 

D = 1.2134 D = 1.0387 

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5
x 107

Figure 5.5 Test Lines Used with Fractal Program 



 96

stability of such systems can be difficult to identify.  In general, however, ecosystems are 

assumed to have a single steady state, beyond which they become different systems. 

One traditional method for assessing the stability of ecosystems is based upon computing 

the eigenvalues of the community matrices.  This approach has been used for systems that 

are modeled with a set of differential equations (Moore 1993, Pimm and Lawton 1977).  

In this method, systems where the eigenvalues are all negative are considered stable.  As 

the ecosystems are here described in a quite different manner, this method is not suitable 

for use with the virtual ecosystem program of this project.  The stability of ecosystems is 

also often assessed by means of their resilience, the speed at which a system returns to its 

steady state after a disturbance.  Resilience is generally quantified by the time this takes, 

the return time, which can be calculated from the eigenvalues of the community matrix as 

per above (Kinzig et al. 1999).  Again, this method is unsuitable for the virtual ecosystem 

program.  Return time can also be obtained directly from a physical system or model 

(Stone et al. 1996).   

 

The problem with return times and resilience, however, is that they are based on the 

assumption that the system in question has a known stable state to which to return.  None 

of the ecosystems simulated in this project have a known stable state.  Indeed, it was 

unknown whether the systems for this project would survive at all.  Thus, it was not 

possible to consider steady states when assessing the stability of the virtual ecosystems.  

It might have been possible to calculate the stability of the comportment of each 

ecosystem in terms of whether the comportment itself followed a stable path (i.e. was 

constant or had a cyclical nature).  Again, the expected high extinction rates made that not 

really desirable.  It does not matter if a system has a stable comportment after a few years 



 97

if there are only two of the original thirty species left in the system. 

 

Stability is being examined because the desired product of most ecological engineering 

projects is a sustainable system that will fulfill a specific function over time.  Many 

ecological engineering projects rely on the ability of ecosystems to change with 

conditions to continue to provide the desired function, while others are intended to remain 

basically the same because the survival of certain species is part of the desired results for 

the project.  For the first type of project, while it is expected that the composition of the 

system will change, it is still desirous to know how much change will occur under 

different circumstances and the ability of the system to continue providing the desired 

function.  In the latter type of project, it is imperative to know how much of the initial 

system will survive.  In either case, to truly engineer the system, the practitioner should 

know how much of the initial system can be expected to survive, how much the system 

can change, and, of course, whether the system will survive at all. 

 

The virtual ecosystem is more like a project intended to preserve certain species.  Indeed, 

because of its isolated nature, it depends entirely on the ability of at least part of the initial 

composition to persist.  Accordingly, the purpose of the virtual ecosystem simulations 

was to test the ability of many different system compositions to survive.  In this case, all 

that is needed to indicate the stability of the system is a calculation of how well the 

system survives, a comparison of the initial system constitution to the final system 

constitution.  As the structure arises from the composition of the system, and is thus a 

secondary effect, structure does not need to be considered.  Therefore, only the 

persistence of the system composition is significant in regards to system stability in this 



 98

case.  In terms of measures, persistence is the ratio of the number of species surviving at 

the end of the simulation to the number of initial species, the value of which is between 0 

and 1 inclusive.  As species richness was already being measured at both the beginning 

and the end of each simulation, persistence was easily calculated by dividing the initial 

value by the final value.  To allow for observations at different levels of the systems, 

persistence was calculated for producers and consumers, as well as the total of all species 

(denoted PN1, PN2, and P respectively). 

 

To supplement persistence, the mean and standard deviation of the ascendency values 

measured at each time step of a given simulation were also calculated.  As with the fractal 

dimension measure used for compositional complexity, the smoothed seven day moving 

average of the raw data was used to remove the excess noise from the data set.  The mean 

ascendency of the system over the course of the simulation represents the overall health 

of the system, while the standard deviation will illustrate how much the health of the 

system varied.  This variation will serve as another indication of the stability of the 

system. 

 

5.3 Summary 

Quantitative measures are required to compare systems to each other and to form 

hypotheses regarding system relationships and function.  While many aspects of 

ecosystems can be assessed, complexity and stability were determined to be the most 

pertinent for the purpose of this project.  The complexity of the system was broken down 

and measured as compositional, structural, and comportmental complexity.  Species 

richness was chosen to measure compositional complexity, connectance was chosen for 



 99

structural complexity, and the fractal dimension of the system ascendency over time was 

chosen to quantify the comportmental complexity.  System stability was assessed with the 

persistence of the system as well as the mean and standard deviation of the ascendency of 

the system over time. 



 100

6. Using Case-Based Reasoning to Predict and Engineer Ecosystems 

Case-based reasoning (CBR) is modeled after human cognitive function.  This function is 

the human ability to reason or problem solve by analogy, applying lessons learned from 

past experiences to new circumstances.  One of the advantages of CBR is that it can be 

used to propose solutions or make fairly accurate predictions even in domains that are not 

completely understood (Kolodner 1993).  It is also a comfortable method for human being 

to use and understand because of the similarity between CBR and human problem 

solving.  In CBR, a set of already known situations and their outcomes, the case base, are 

used to propose or predict a solution or likely outcome for a new situation or problem.  

This is done by finding the closest matches to the new case among the known cases, then 

calculating the most likely solution from them.  The more cases there are in the case base, 

the more accurate the proposed outcome or solution will usually be.  The general process 

of performing reasoning when a new problem or situation is proposed to a reasoner is as 

follows (Kolodner 1993): 

• Recall previous cases: the reasoner evaluates each case in the case base for 

similarity to the current situation 

• Select best cases: the reasoner selects the cases that score best during the 

similarity matching 

• Propose a solution: the reasoner uses the best cases to propose the desired 

solution or prediction 

In many case-based reasoners, the new situation is added to the case base with the results 

from the performed reasoning.  For some, the proposed solution is evaluated for 

prediction accuracy or whether the proposed solution results in a desired outcome.  That 



 101

evaluation is used to adapt the case-based reasoner, improving the accuracy of the 

reasoner. 

 

Ecological engineering involves many variables and large time frames, so it is difficult to 

extract domain level knowledge from the many projects and models.  Case-based 

reasoning may provide a way to accumulate and evaluate data for ecological engineering 

knowledge at the domain level.  Such knowledge, and the reasoning it enables, is 

necessary for the formulation of ecological engineering theory.  Evaluating CBR for this 

possibility was one of the main purposes of this project, with the virtual ecosystem being 

used as a proof of concept tool.  Thus, the constitutions and simulation results of the 

virtual ecosystems, in the form of final compositions and the values of the applied 

measures for each system, were used to form a case base for this project.  Then a 

commercial case-based reasoner was used to explore the possibility of predicting the 

simulation results of virtual ecosystems.  The case base and case-based reasoner were also 

used to attempt to roughly engineer more successful systems, given the same pool of 

species and forcing functions. 

 

6.1 Compiling the case base 

Of the case-based reasoners commercially available, many are intended for specific 

functions such as menu planning for the restaurant industry or diagnosis assistance for 

medical facilities.  Others do not have the sort of predictive capability which was required 

for this project.  The reasoner chosen for this project, Induce It by Inductive Solutions Inc 

(New York, NY, USA), has prediction capability and was also chosen for ease of use.  

Induce It is available as an add-on function to Excel, so it was possible to use the already 



 102

established Excel database (see Appendix F) of the simulations as the case base.  The 

simulation numbers were used as case names and each case consisted of the initial and 

final numbers of species both by type and total, the presence (yes or no) of each species 

from the pool of species at the beginning and end of simulation, the connectance of the 

system structure, the persistence of the system composition by type and total, and the 

fractal dimension of the system comportment.  The yes or no presence indicator for all 

forty species from the pool of species was the only change from the original database 

(used to record the simulation results and calculate the values for the applied measures – 

see Chapter 6).  In the original database, the species were listed by number in a single data 

cell. 

 

The first step in creating the case base from the original spreadsheet was to format the 

database, using Induce It, by defining which areas contained case names and which ones 

the case data.  An area of parameter definitions was created in which the names of the 

data columns were recorded, as well as the type (numerical, character, etc.) of the data in 

each column.  All of the columns in the case base were defined as “numerical” except for 

the species presence indicators for which “hierarchy” was used.  The hierarchy that was 

installed for these columns was simple; the top level was merely ‘presence’ while the 

second level contained the ‘y’ and ‘n’ values that were used in the data area.  “Hierarchy” 

was used instead of “character” because Induce It can only perform predictions for 

numerical and hierarchical data.  In another area, the importance (weight) of each data 

column was indicated numerically.  Because it was determined that there was no 

correlation between fractal dimension and connectance, fractal dimension and persistence, 

or persistence and connectance, those columns were given low weights while the species 



 103

presence indicator columns were given more weight.  The weight values used were 5 for 

the species presence columns and 1 for all other columns. 

Another area that had to be defined is the space, called the “inductive database”, in which 

the similarity values for each data column of each case are recorded after being calculated 

by Induce It.  The inductive database had the same dimensions as the case base.  The 

values recorded in the inductive database indicate how similar each data column of each 

case is to the corresponding data column of the new case being proposed in the reference 

area.  The reference area is another area and was defined with a dimension of one row by 

the number of data columns.  It is important to note that when a new case is entered in the 

reference area, there does not need to be values in all of the data columns.  Similarity 

values are calculated for any column in which data is present and does not have a zero 

weight.  The values are then recorded in the inductive database.  The overall similarity 

scores for each case are recorded in another area, appropriately called the “scores” region. 

 

The inductive database can only be installed (i.e. calculated) when there are values in the 

reference region, and the case scores can not be calculated until the inductive database has 

been installed.  There are four methods available for calculating case scores: linear 

weight, fuzzy logic, Euclidean, and cosine scores.  The desired method is generally 

chosen during the process of tuning the case base.  In tuning, each method is tried with a 

test case in the reference area.  The cases in the case base are then ranked by similarity 

score and examined to see if the highest ranked cases are those that are desired as the top 

matches.  The method that returns the closest matches to the ones desired is the method 

then used when the case-based reasoner is applied to later reference cases.  For this 

project, linear weight scores returned the closest matches to those desired.  The various 



 104

scoring methods were also tested with the two options for extrapolation method: least 

mean squares and polynomial.  In that test, the results for linear weight scores with least 

mean squares extrapolation were the most reasonable.  That combination of methods most 

consistently resulted in numerical values in the correct ranges for the data columns (e.g. 

between 0 and 1 for persistence) and more ‘y’ and ‘n’ responses for species presence 

instead of the undesired upper level of the hierarchy, ‘present’.  Thus, linear weight scores 

were the chosen scoring method for the rest of the project, and extrapolation was done 

with the least mean squares method.  The case base can be found in Appendix G. 

 

6.2 Using the case-based reasoner 

6.2.1 Predicting simulation results 

A set of cases to test the predictive ability of the case base and case-based reasoner was 

created and run in simulation using the same method as the original set of systems.  The 

pre-simulation data – initial composition (numbers of species by type and total, presence 

of specific species) and structural complexity (connectance) – for each system were 

proposed to the case-based reasoner.  Final system composition, stability (persistence), 

and comportmental complexity (fractal dimension) were then predicted with the case-

based reasoner and compared to the system composition, stability, and comportmental 

complexity obtained through simulation. 

 

The pre-simulation data for each case were entered into the reference area of the case-

based reasoner, and the columns for which predictions were desired marked accordingly.  

Each time the case-based reasoner was used to make a prediction, the inductive database 

was installed anew.  Then the scores were calculated, the cases in the case base ranked, 



 105

and the case-based reasoner used to extrapolate a possible outcome.  The simulation 

results and the measures applied to the results were recorded and calculated as before, 

then compared to the predicted results. 

 

6.2.1.1 Analyzing prediction accuracy 

There are a number of practices frequently used to analyze how accurately a case-based 

reasoner makes predictions including percent error, Magnitude of Relative Error (MRE), 

Mean Magnitude of Relative Error (MMRE), Median Magnitude of Relative Error 

(MdMRE), and Prediction at level n (Pred(n)) (Lee et al. 2006, Mendes 2002, Shepperd 

and Schofield 1997).  The MRE of a prediction is the absolute value of the difference 

between the observed value (Vo) and the predicted value (Vp) divided by the observed 

value (Equation 6.1) (Mendes 2002). 

MRE = │Vo - Vp│/ Vo     (6.1) 

Percent error is the same calculation turned into a percentage (Lee et al. 2006).  The 

MMRE is the mean of the MREs for all the predictions, and the MdMRE is the median of 

the MREs for all the predictions (Mendes 2002).  Prediction at level n is the percentage of 

predictions that are within n percent of the observed value.  The most commonly used 

value for n is 25%, and it has been suggested that a good prediction system should meet 

that level of accuracy at least 75% of the time (Mendes 2002, Shepperd and Schofield 

1997).  One other method of prediction accuracy that has been used is to compare the 

predicted and observed values using a Pearson’s correlation coefficient (Aqil et al. 2007). 

 

While each of these methods was considered, the nature of the project made several of 

them undesirable.  Because part of the project was to explore a large area of the state 



 106

space, including the boundary zones and areas where systems may not necessarily have 

any surviving species, values of zero for many types of data were expected to be obtained 

from the simulations.  Observed values of zero are problematical for percent error and 

MRE, and thus MMRE and MdMRE, because the observed value is in the denominator of 

the equation.  Using the statistical “trick” of using a very small value like 1E-11 in place 

of zero in the equation caused the percent error or MRE of a particular prediction to be 

very large even when the absolute error was relatively small (e.g. given an observed value 

of 0 and a predicted value of 0.1, the absolute error is only 0.1, but the MRE is 

10,000,000,000). 

 

As Pred(n) relies on a percentage as well, it too was undesirable in its standard form.  

However, the idea of calculating how often the predictions fell within a certain range of 

the observed value seemed to be a practical way of assessing the accuracy of the 

predictions made by the case-based reasoner.  Thus a method was devised were 

predictions that fell within such a range, ‘good’ predictions, would score a 1, and 

predictions that fell outside the range, ‘bad’ predictions, would score 0.  To set that range, 

the standard deviation was calculated for each column of out put numerical data (final 

numbers of producer, consumer, and total species; persistence of producer, consumer, and 

total species; and the complexity of the system comportment) in the case base.  The 

twenty-five cases used for prediction were included in this calculation.  Thus, a predicted 

value within one standard deviation of the observed value was given a score of 1, and 

predicted values outside that range were given a score of 0.  Negative predictions were 

automatically given a score of 0 because negative values were not possible for any of the 

numerical values in the case base. 



 107

The accuracy of the presence indicators were calculated slightly differently since the 

data values for those columns were textual and had only two values in the cases.  Direct 

matches, ‘y’ to ‘y’ and ‘n’ to ‘n’, were ranked with 1.  Predicted values that were the 

opposite of the simulation results received a rank of 0.  Although those were the only two 

values present in the cases, the predicted values also included ‘present’, the upper level of 

the hierarchy for the presence indicator columns in the case base.  It was observed that the 

case-based reasoner returned this value for predictions when the top ranked cases were 

evenly split between ‘y’ and ‘n’ for the given column.  Thus, instead of ranking 

predictions of ‘present’ as completely inaccurate, they were instead given a ranking of 

0.5.  The overall prediction accuracy of each case was calculated by taking the average of 

all the scores, and expressing it as a percent  Then it was possible to calculate the 

Pred(25) of all the prediction cases and whether the case-based reasoner met that level of 

accuracy at least 75% of the time. 

 

It was also possible to use the Pearson’s correlation coefficient between the observed 

values and the values predicted by the case-based reasoner as a method of assessing 

prediction accuracy.  The textual descriptors indicating the presence or absence of a given 

species were changed to numerical values; ‘y’ was changed to 1, and ‘n’ was changed to 

0.  As mentioned above, the case-based reasoner also returned ‘present’ in its predictions.  

Again, because of the circumstances that caused that descriptor to be predicted, the 

‘present’ indicator was given a value of 0.5.  With all the data being numerical, it was 

then possible to calculate the Pearson’s correlation coefficient using the function native to 

Microsoft Excel. 

 



 108

6.2.2 Engineering systems 

The case-based reasoner was also used to roughly engineer several systems.  The initial 

values and results for the twenty-four simulations used for predicting simulation results 

were added to the case base, bringing the total number of cases to one hundred twenty-

four.  Then, various values for persistence were entered in the reference area of the case-

based reasoner and used to extrapolate possible ecosystem compositions that would have 

those values for persistence when run in simulation.  Most of the proposed persistence 

values were producer (PN1) and consumer persistence (PN2) values in three different 

combinations: 1 and 1, 1 and 0.5, and 0.5 and 0.5.  Two different weight schemes were 

used as well.  Ecosystem compositions were extrapolated with equal weight placed on the 

two persistence values and with more weight placed on the consumer persistence values.  

The second scheme was used because of the class imbalance, a common problem for 

machine learning and artificial intelligence applications in complex domains: so few of 

the cases in the case base had surviving consumers, which could result in those cases not 

being ranked highly enough to be considered in the extrapolation process (Charest et al. 

2008, Japkowicz 2002).  An overall persistence (P) of 1 was also proposed to the case-

based reasoner. 

 

For each combination of persistence values and weights, two sets of initial species were 

obtained.  One set was based upon the columns for initial species presence in the top 

ranked cases, and the other set was extrapolated from the final species presence columns 

in the top ranked cases.  While, in theory, it should have been possible to obtain accurate 

results using only the initial species presence columns, so few of the simulations in the 

case base had high persistences that it was reasoned that testing the final species presence 



 109

columns could be useful as well.  It was expected that the systems based upon the final 

species columns would have better results when the desired persistence was 1, and the 

systems based upon the initial species would have better results when the desired 

persistence was 0.5.  Although seven different combinations of persistence values and 

weights were proposed to the case-based reasoner with two sets of species obtained from 

each of those, only ten different systems resulted from extrapolation.  In both the initial 

species and in the final species extrapolations, there were system compositions that 

resulted from multiple combinations of persistence values and weights. 

 

Using the species compositions resulting from the case-based reasoner, ten sets of input 

files were created with a variation of the previous system creator program.  The numbers 

of producer and consumer species, as well as the specific species numbers, were entered  

by hand.  The program then found the species parameter values for those species from the 

pool of species.  Food matrices and initial populations were determined in the same 

manner as the original one hundred runs and the twenty-four runs used for the prediction 

simulations.  For comparison purposes, an eleventh system was also created without using 

the case-based reasoner.  Instead, the system composition for this ecosystem was based 

upon the survival statistics of the species for the one hundred and twenty-four previous 

runs.  Any producers that had a higher than 50% survival rate were used, and any 

consumers that had survived at all were used.  Fortunately, the system as such had food 

sources for all of those consumers.  The rest of the system constitution and the initial 

populations of the species were then determined in the same manner as the other ten 

‘engineered’ systems. 

 



 110

6.2.2.1 Analyzing engineering success 

The effectiveness of using the case-based reasoner to propose systems was tested in the 

same manner as the accuracy of using the case-based reasoner to predict simulation 

results.  The persistence values obtained by simulation were compared to the proposed 

persistence values.  Some simulation results were compared to more than one of the 

persistence value schemes, because the some of the schemes proposed to the case-based 

reasoner resulted in the same system constitutions.  Thus, although there were only ten 

systems simulated (eleven if the system not obtained from the case-based reasoner is 

taken into consideration), accuracies were calculated for the fourteen persistence schemes 

proposed to the case-based reasoner, as well as the system based upon species survival 

statistics.  Persistence values within one standard deviation for the given type of 

persistence were ranked 1 and those outside a standard deviation were ranked 0.  Overall 

percent accuracy for each scheme was calculated from the average of the three values. 

 

Although some systems were engineered using PN1 and PN2 and others using only P, 

accuracy analysis was based upon all three values so that the analysis would not be 

skewed by differing amounts of data being used for the various cases.  Therefore, the 

values not used with the case-based reasoner had to be calculated.  This was only possible 

because, in the cases where only P was used, a value of 1 was used each time, thus 

making the values of PN1 and PN2 automatically equal to 1 as well.  For the cases where 

PN1 and PN2 were used, the value of P was calculated using PN1, PN2, N1, N2, and NTOT.  

The expected overall persistence of the system equals the sum of the proposed producer 

persistence multiplied by the number of producers obtained from the case-based reasoner 

and the proposed consumer persistence multiplied by the obtained number of consumers, 



 111

divided by the total number of species in the system, as obtained from the case-based 

reasoner (Equation 7.1). 

P = (PN1 * N1 + PN2 * N2) / NTOT    (7.1) 

For the single case engineered using species survival statistics, values of 1 were assumed 

for all types of persistence. 

 

6.3 Summary 

Case-based reasoning was used to further examine any patterns that might be found 

between system constitution and comportment in virtual ecosystems.  System and 

simulation data was compiled into a case base.  Then a commercial case-based reasoner 

was used to predict the simulation outcomes of a number of new systems and the 

accuracy of those predictions analyzed.  The case-based reasoner was also used to roughly 

engineer a number of cases based on desired values of persistence.  A number of schemes 

were used to propose possible system compositions.  Simulation results were analyzed in 

the same manner as the original one hundred simulations, and the accuracy of the case-

based reasoner in proposing systems was also analyzed. 



 112

7. Results and Discussion 

One hundred ecosystems were created with the system creator program to be run in 

simulation to form the core of the case base for this project.  The computers available to 

run the simulations were a SunFire 880 with eight processors and a SunBlade 1000 with a 

single processor, which made it possible to run nine simulations concurrently.  Batch files 

were created so that when one simulation finished, another started, and all processors 

were kept running at all times.  The Solaris operating system used on the two machines 

allowed the progress of the simulations to be monitored both through a process manager 

and by the ability to open a snapshot of an output file even while the simulation program 

was still writing data to it.  The total time required to simulate the one hundred 

ecosystems was approximately four months. 

 

7.1 Simulation results 

Once the simulations were completed, results were compiled in a spreadsheet (Appendix 

F) and analyzed with the measures for complexity and stability decided upon earlier (see 

chapter 4).  Of the one hundred runs, six had all species go extinct before the end of the 

allotted simulation time.  Only two simulations had even one consumer species survive to 

the end.  Eight simulations had all initial producer species still present at the end of the 

simulation time.  The majority of the ecosystems completed the simulation time as 

producer-only systems, although three of these ecosystems resulted in simulations that 

ended early because the population in the system went over the maximum value allowed 

by the simulation program. 

 

The populations in these systems grew over the maximum because the energy contents of 



 113

the individuals of one of the species in the systems (in two cases the only species left in 

the system) were small enough that the number of individuals could become larger than 

the maximum allowed population, even though the total energy of the species and system 

were still below the allowed maximum.  The virtual ecosystem feature that slows 

population growth when the system energy becomes large did not affect the populations 

in these cases.  This problem could have been avoided if, during the creation of the pool 

of species, the minimum energy level in every species was calculated to be larger than the 

maximum energy allowed in the system divided by the maximum population in the 

system. 

 

Calculating the measures for these three systems presented a problem.  They were not 

failed systems in that all the species went extinct, so the species present at the time that 

the simulations ended were considered to be the final compositions of the ecosystems, 

even though the simulations did not run to completion.  Thus, the persistences of these 

systems were not considered zero.  The fractal dimensions of the comportments for these 

three systems were calculated in the same way as for the rest of the systems run in 

simulation.  However, the results may not reflect the true comportment of the three 

simulations because the ascendancy values after the simulations stopped were all zero, 

resulting in a straight line and a different fractal dimension after that point.  Fortunately, 

these are the only three cases where there was such a problem, so the results should not 

have a significant impact on the overall statistics and patterns of the case base. 

 

During the gathering of the results, it was possible to see a few basic patterns in the data.  

Certain producer species survived in most of the systems in which they were present, 



 114

although only one species survived in every system in which it was initially present 

(Figure 7.1).  Some producer species only survived when those species mention above 

were not present, and some only survived when they were in combination with other 

species.  There were also some producer species that did not survive in any simulation for 

which they were present in the ecosystem.  The same consumer species survived in both 

of the ecosystems that had a consumer present at the end of the simulation, and two of the 

same producer species were present in both systems and survived until the end of the 

simulations as well. 

 

There were, however, no obvious patterns in the measures applied to the simulation 

results (Table 7.1).  The minimum species richness was 2 and the maximum 30, just as 

limited by the system creator program.  The average species richness was 14.  Overall  

Figure 7.1  Species Survivorship for producers (1-20) and consumers (21-40). 

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Species

Sp
ec

ie
s 

Pr
es

en
t /

 S
ur

vi
ve

d

Present
Survived



 115

persistence for the systems varied between 0.00000 and 0.66667 with an average of 

0.20750.  The persistence for producer species had a minimum of 0.00000 and a 

maximum of 1.00000 with an average of 0.34656.  For consumer species, the persistence  

had a minimum of 0.00000 and a maximum of 0.12500 with an average of 0.00236.  

Ecosystem connectances for the simulated systems varied between 0.00000 and 0.83333 

with an average of 0.36110.  The fractal dimension of the moving average of the system 

ascendancy during simulation had a narrow range of 1.03180 to 1.15670 with an average 

of 1.13976.  The lower values for fractal dimension were mostly found for the systems 

where all species went extinct before the end of the simulation. 

 

To see if there were any relationships between the constitution and comportment of each 

system, as well as between some of the comportmental phenomena, correlations were 

performed between the sets of values calculated for a number of the measures applied to 

both constitution and comportment.  Correlations of intermediate strength were found 

between species richness and persistence, connectance and persistence, connectance and 

fractal dimension, average ascendency and connectance, and average ascendency and 

fractal dimension (Pearson’s Correlation Coefficient, ρx,y = -0.31872, -0.37027, -0.38847, 

-0.49974, and 0.41452 respectively).  A relatively small correlation was found between 

fractal dimension and persistence (ρx,y = 0.11039).  Nearly no correlation was found 

between species richness and average ascendency (ρx,y = 0.09686) while a stronger 

 NTOT C PN1 PN2 P D A 
min: 2 0.00000 0.00000 0.00000 0.00000 1.03180 116.74 
max: 30 0.83333 1.00000 0.12500 0.66667 1.15670 3900308.20 
ave: 14 0.36110 0.34656 0.00236 0.20750 1.13976 1836287.96 

Table 7.1 System Statistics for the First 100 Systems - minimum, maximum, and average values for 
species richness (NTOT), connectance (C), producer, consumer, and total persistence (PN1, PN2, and 
P), fractal dimension (D), and the average ascendency (A). 



 116

correlation was found between average ascendency and persistence (ρx,y = 0.54973). 

 

7.2 Discussion of preliminary results for data production phase of the project 

7.2.1 The virtual ecosystem program 

In order to facilitate running simulations, the virtual ecosystem program used is a fairly 

simplified version of what an ecosystem would normally consist of.  This creates 

conditions that actually only apply to a few physical systems.  For example, because there 

is no landscape and the system is well-mixed, prey is available to consumers at all times.  

There are no places for prey to hide and no way for it to run away.  The attribute values 

and interaction rules for consumers and prey are structured to recreate the effects of 

hunting ability and prey availability on how often consumers eat, but there is nothing 

included for escape ability of prey, from which could emerge some interesting dynamics 

between the various food species of even a single consumer, as well as changes in the 

survival of the consumer species.  In many systems, such competition between prey 

species creates specialized niches where certain species find greater success at surviving.  

A system of niches can also develop from standard competition for resources. 

 

Without a landscape, however, there is no way for species to develop such niches.  Of 

course, there is no adaptation or inheritance in the virtual ecosystem either, so the 

individuals in the system are capable of neither creating niches – or other survival 

strategies – for themselves nor passing those niches down to the next generation.  It is 

quite possible that systems would stabilize more readily if the individuals and species 

were able to develop survival strategies.  For example, the producer species that could not 

survive when combined with other species in the simulations run with this virtual 



 117

ecosystem program might be able to establish themselves despite the “stronger” species in 

a virtual ecosytem program that included a variety of habitat types. 

 

During verification of the virtual ecosystem program, systems were stabilized by 

manipulating the attribute values of the species.  Such action is equal to genetically 

modifying a species instead of choosing a different one.  At this time, there are various 

reasons that that strategy is not entirely viable for engineering physical ecosystems on 

Earth.  For one, there are likely to be species available that are already adapted to the 

conditions of the ecosystem, and pre-adaptation is one of the basic principles Kangas 

(2004) proposed for ecological engineering (Chapter 2).  Also, genetically modifying 

organisms is still in the early stages of development.  However, when the time comes for 

humans to create new ecosystems in space habitats or on other planets, genetic 

manipulation may be an excellent method for stabilizing ecosystems in conditions not 

present on Earth. 

 

7.2.2 System creation 

The methods used for creating species and systems were chosen to make it possible to 

create a large number of systems in a reasonable amount of time.  However, these 

methods may not necessarily have resulted in systems with the best chance for high 

persistence of species.  The species were created somewhat randomly and not tested for 

individual viability, so it is reasonable that a number of the species created would not be 

able to survive under any simulation conditions.  Two of the producer species and most of 

the consumer species did not survive in any of the systems in which they were present.  

While it is always more difficult for consumers to survive in the virtual ecosystem 



 118

program, making it difficult to know if it was the species “designs” of the consumers or 

system conditions which caused them to go extinct, those two producer species may 

represent species “designs” that just cannot survive in the virtual ecosystem.  For the 

consumer species, it is also possible that their species “designs” would not necessarily 

cause them to fail if the prey interactions were structured differently.  Food interaction 

matrices were randomly generated, which may have resulted in food preferences that were 

not “realistic” for a given species.  However, it was not unexpected that many of the 

consumers would go extinct from the systems.  Complexity-stability researchers as far 

back as May (1972) and Pimm and Lawton (1977) have noted that with theoretical 

systems, increased complexity or trophic levels make systems more likely to be unstable.  

There were also values that were held constant between the species which could affect the 

comportment of the systems (e.g. the size of the energy packets distributed to the 

individuals of producer species), but were treated so for simplicity of use at this very early 

stage research. 

 

Generating systems randomly not only made it easier to create a large number of cases, it 

also made it more likely that the initial states of the systems would be better distributed in 

the state space, which was desired to maximize the knowledge gathered.  However, even 

with only forty species and relatively few species and individual attributes, the state space 

is still vast, and most of it was not explored.  There are 6.18479E+11 combinations of 

species possible under the current restraints in constructing the virtual ecosystems for this 

project.  Even without changing the values for any other attributes, many more systems 

and simulations would be required to explore the state space fully.  It is possible that there 

would be areas where the systems would show more persistence than seen in the systems 



 119

simulated to date. 

 

7.2.3 Measures and correlations 

Although the virtual ecosystem simulation program was mostly intended to provide a 

quick means of generating data to test case-based reasoning as a method for finding 

patterns and relationships in ecosystems that may be useful for forming ecological 

engineering theory, there were a few relationships that are suggested for investigation 

from the data in its preliminary form.  The strongest correlation, however, between 

average ascendency and persistence, does not necessarily carry great import.  While 

ascendency and persistence could be used one as an indicator for the other, which has 

possible uses for predictive efforts, there is no causation between the two and there is 

likely no way to use the correlation in the design portion of engineering pursuits. 

 

The moderate correlations between species richness and persistence, connectance and 

persistence, average ascendency and connectance, and average ascendency and fractal 

dimension, on the other hand, are of interest for the continuing debate in ecology 

regarding the relationship between complexity and stability in ecosystems.  As mentioned 

above, theoretical research often suggests that greater complexity leads to less stability 

(May 1972, Pimm and Lawton 1977).  However, observation of natural systems show the 

exact opposite, and there have been numerous studies attempting to reconcile the 

contradiction (Christianou and Kokkoris 2008, Kondoh 2007, Neutel et al. 2007, Uchida 

and Drossel 2007, Chen and Cohen 2001, Pérez-España and Arreguín-Sánchez 2001, 

Rozdilsky and Stone 2001, Manne and Pimm 1996, Pimm 1984).  Many of these studies 

have been aimed at finding the features in natural systems that allow stability and 



 120

complexity to coexist.  The correlations found in this project between the constitutional 

complexity and stability measures were all negative, supporting the theoretical side of the 

debate.  However, the object based approach used with the virtual ecosystem makes the 

difference between theoretical and empirical models more obvious than some of the 

approaches used before.  As mentioned above, the set of systems simulated here is a very 

small fraction of the systems that could be created from the pool of species.  It is possible 

that, as with the persistence of systems in general, there may be areas where the 

relationship between complexity and stability is different than the average for the entire 

state space and successful physical systems, with the aforementioned features developed 

through millennia of evolution, happen to fall into those areas.  Again, more simulations 

to find areas in the state space of greater persistence would be required to test this 

hypothesis. 

 

7.3 Results for the case-based reasoner 

7.3.1 Accuracy of predictions 

After the initial set of simulations was completed, the initial and final compositions of the 

systems, the species presences at the beginning and end of simulation, and the values 

obtained for the measures were compiled into the case base as previously described (see 

chapter 6).  Then the initial composition and species presences of twenty-five systems 

created in the same way as the initial one hundred were proposed to the case-based 

reasoner to obtain predictions for final composition, final species presences, and the 

values of the measures.  One simulation stopped in the middle with species still present in 

the system, so that system was removed from the analysis.  The remaining predictions 

were then compared to observed values for the variables as obtained from simulating the 



 121

systems with the virtual ecosystem program.  The average accuracy for the twenty-four 

sets of predictions was 79.7% accurate.  The minimum accuracy was 14.9% and the 

maximum was 100%.  Only four of the predictions were less than 75% accurate, meaning 

Pred(n) was 83.3% with n set at 25.  The Pearson’s correlation coefficient was calculated 

between the observed and predicted values for each case.  The average correlation 

coefficient was 0.43083, the minimum was -0.82145, and the maximum was 0.99726. 

 

 
7.3.2 Results for the “engineered” systems 

None of the eleven systems had all species go extinct, although no system finished 

simulation with all species present either.  Three simulations ended early when the total 

population of the system went over the amount allowed by the program, but as with the 

original data runs, those were not counted as failed systems.  Only one system had any 

consumer species survive.  There were, however, two systems that had all producer  

species survive: one of the systems whose compositions were generated with the case-

based reasoner and the system created “by hand” based upon species survival rates. 

 

The same set of measures as before was applied to the system constitutions and 

simulation results, although connectance and fractal dimension were not considered as 

important as persistence in this part of the experiment (Table 7.2).  The overall 

 NTOT C PN1 PN2 P D A 
min: 4 0.33333 0.25000 0.00000 0.18182 1.05480 253313.33 
max: 15 0.50000 1.00000 0.50000 0.75000 1.15300 2468320.93 
ave: 8.5 0.42046 0.58898 0.04545 0.40527 1.11280 1512728.69 

Table 7.2 System Statistics for “Engineered” Cases - minimum, maximum, and average values for species 
richness (NTOT), connectance (C), producer, consumer, and total persistence (PN1, PN2, and P), fractal dimension 
(D), and average ascendency (A). 



 122

persistence for the systems varied between 0.18182 and 0.75000 with an average of  

0.40527. Producer persistence ranged between 0.25000 and 1.00000 with an average of 

0.58898.  The persistence of consumer species was 0.00000 in all cases except for one, 

which had a persistence of 0.50000, making the average consumer persistence 0.04545.  

The system connectances were between 0.33333 and 0.50000 with an average of 0.42046.  

Fractal dimension values ranged between 1.05480 and 1.15300 with an average of 

1.11280. 

 

As with the original one hundred runs, correlations were performed between the sets of 

values for the measures applied to the constitution and comportment of the engineered 

systems.  Fairly strong correlations were found between species richness and persistence, 

connectance and fractal dimension, average ascendency and species richness, average 

ascendency and connectance, and average ascendency and fractal dimension (Pearson’s 

Correlation Coefficient, ρx,y = -0.56049, 0.78658, 0.50203, 0.87740, and 0.91804 

respectively).  Only small correlations were found between connectance and persistence, 

fractal dimension and persistence, and average ascendency and persistence (ρx,y =                

-0.22647, -0.28404, -0.39131). 

 

The average accuracy obtained for the simulation results versus the proposed values of 

persistence for all the engineered systems, both the fourteen “engineered” with the case-

based reasoner and the one “engineered” based upon species survival statistics, was 

26.7% accurate.  Minimum and maximum accuracy values were 0% and 100%, 

respectively.  The average accuracy of the fourteen case-based engineered schemes, 

without the hand engineered system, was 26.2%.  The minimum and maximum values 



 123

remained the same.  Thirteen of the fourteen schemes were less than 75% accurate; 

meaning that Pred(n), with n set at 25, for the case-based reasoners ability to be used to 

“engineer” a system for a specific persistence was 7.1%.  The results of the simulation of 

the system based on species survival statistics were 33.3% accurate. 

 

Average accuracies were also calculated for the various schemes used with the case-based 

reasoner to propose possible system compositions.  The average accuracy of the 

simulation results for all systems based upon initial species columns in the case base was 

14.3% while the average accuracy for systems based upon final species columns was 

38.1%.  Systems generated with equally weighted producer and consumer persistences 

were, on average, 33.3% accurate.  For systems generated with more heavily weighted 

consumer persistences, the accuracy of the simulation results were, on average, 22.2%.  In 

a full break down: systems generated with equally weighted persistences using the initial 

species columns were, on average, 22.2% accurate; systems generated with equally 

weighted persistences using the final 

species present columns were, on 

average, 44.4% accurate; systems 

generated with unequally weighted 

persistences using the initial species 

columns were, on average, 11.1% 

accurate; and systems generated with 

unequally weighted persistences using the 

final species present columns were, on 

Equal Unequal

Persistence Weights

In
iti

al
Fi

na
l

Sp
ec

ie
s 

Pr
es

en
ce

 C
ol

um
ns

Equal Unequal

Persistence Weights

Equal Unequal

Persistence Weights

In
iti

al
Fi

na
l

Sp
ec

ie
s 

Pr
es

en
ce

 C
ol

um
ns

Figure 7.2 Average Accuracies of Various Schemes 
used to engineer systems with the case-based 
reasoner. 

22.2%

44.4% 33.3%

11.1%



 124

average, 33.3% accurate (Figure 7.2).  Although it was expected that systems where the 

desired persistence was 1 would be more accurate when based upon final species columns 

and systems with a desired persistence of 0.5 would be more accurate when based upon 

the initial species columns, both persistences had better accuracy when used with final 

species columns, but systems with a desired persistence of 0.5 were more significantly 

improved. 

 

7.4 Discussion of the case-based reasoner 

7.4.1 Improving predictions 

The ability of the case-based reasoner to predict simulation results from initial ecosystem 

constitution was within accepted levels, which conforms to the findings of other 

experiments showing that relatively small case bases can be sufficient for making 

predictions (Mendes 2002, Lee et al. 2006).  Although there were already a few systems 

for which the simulation results were very close to the predicted results, the case-based 

reasoner could still be improved as a prediction tool by having more cases available.  The 

more accurate predictions occurred when the top ranked cases had higher similarity scores 

to the reference case than happened for the other systems.  With more cases in the case 

base, there would be more times when the top ranked case matches would have high 

similarity scores.  Of course, prediction accuracy could also be improved if a case-based 

reasoner with a feedback function (a routine where predicted results are compared to 

actual results and the analysis used to tune the prediction function) were used.  Induce It 

does not have a feedback function, but for the framework of this project, such a function 

was not really required. 

 



 125

When considering future use or improved functionality, it is important to note that the 

case based is only suitable for use with systems based on the pool of species created for 

this project, although different simulation programs might be used.  The case base would 

have to be adapted if someone wanted to use it with an entirely different model or to add 

cases based on different species.  It would be possible to add more species presence 

indicator columns, but the case base could quickly become difficult to manage with a 

larger number of columns.  With more experience in using the case base and case-based 

reasoner, it could be possible to no longer use species presence columns.  Instead a 

hierarchy with species “names” could be used, to which it would be easy to add more 

species.  Of course, a different case base reasoner could also be used if so desired by the 

practitioner. 

 

7.4.2 Discussion of the “engineered” cases 

Using the case-based reasoner to “engineer” systems to have specific persistences did not 

result in actual persistence values very similar to the proposed persistence values.  The 

value of Pred(n) for this use was far below the acceptable level.  There were a couple of 

cases, however, that did come very close to meeting the targeted values for persistence, 

which implies that a case-based reasoner could be used to engineer systems.  The 

knowledge requirements for engineering are greater than for prediction, so it is likely that 

if there were more cases in the case base, the actual results of the engineered cases would 

be closer to the targeted results. 

 

It was also possible with the case-based reasoner to find patterns in which species would 

be likely to survive in a system that could not be found with basic statistical analysis.  The 



 126

system “engineered” on the basis of species survival statistics was only slight more 

successful than the average for the systems “engineered” with the case-based reasoner; its 

overall persistence was 0.50000 and the average of the other systems was 0.39580, and it 

did not have the highest persistence of all the engineered systems.  The accuracy of the 

simulation results for the system based upon species statistics, compared to its desired 

persistence, was only a little higher than the average accuracy of the other systems: 33.3% 

versus 26.2%.  It was, however, higher than the average accuracy for systems 

“engineered” with a desired persistence of 1, which was 16.7%, but that was again 

probably because there were so few systems with high persistence in the case base.  One 

other interesting point is highlighted by the system “engineered” on the basis of species 

survival statistics.  It was one of two engineered systems that had all of the initial 

producer species survive the entire simulation.  The two systems had different 

constitutions, with only two producer species (out of 5 and 4) and one consumer species 

(out of 2 and 4) in common between the two systems.  This clearly demonstrates that the 

case-based reasoner able to find a workable system constitution, at least in terms of 

producer survival, not discernable through normal methods like survival statistics. 

 

7.4.3 Comparing the “engineered” systems to the randomly generated systems 

A number of interesting discussion points arose from comparing the engineered systems 

to the original set of randomly generated systems used to form the case base.  The 

engineered systems were more successful than the initial set of simulations in that the 

average persistence values of the engineered systems were higher than the average 

persistence values of the initial set of simulations.  The average overall persistence in the 

original systems was 0.20750 while the average overall persistence for the engineered 



 127

systems was 0.40527.  The average 

persistence values for producers and 

consumers were also higher for the 

engineered systems: 0.58898 versus 0.34957 

and 0.04545 versus 0.00236 respectively 

(Table 7.3).  Thus, it seems that the case-based reasoner was able to find some patterns in 

what makes a persistent system under the constraints applied in this project. 

 

It is also interesting to note that, although there was no significant correlation found 

between connectance and persistence in either the randomly created systems or the 

engineered systems, the range of connectance values was much narrower for the more 

persistent, engineered systems (0.33333 to 0.50000 instead of 0.00000 to 0.83333), 

implying that some underlying pattern may have surfaced with the use of the case-based 

reasoner.  Also, a stronger correlation was found between the connectance of the system 

structure and the fractal dimension of the system comportment in the engineered, and the 

correlation changed from being negative to positive.  Unlike with connectance, the ranges 

and averages for fractal dimension do not differ much between the two sets of systems, so 

this correlation may be a coincidence, or it may point to a difficult to define pattern only 

found by the case-based reasoner.  Further testing would be required to determine if the 

correlation is of any significance. 

 

There are a number of other differences in the results of the correlations performed on the 

engineered cases (Table 7.4).  The correlations between species richness and persistence, 

average ascendency and connectance, and average ascendency and fractal dimension all  

 PN1 PN2 P 
Random 
systems 0.34957 0.00236 0.20750

“Engineered” 
systems 0.58898 0.04545 0.40527

Table 7.3 Comparison of Average Persistence 
Values between randomly created and 
“engineered” systems 



 128

had greater magnitude with the engineered 

cases, and the correlation between average 

ascendency and connectance changed from 

negative to positive.  The magnitude of the 

correlation was found between fractal 

dimension and persistence remained small 

with the engineered cases, but it changed from a positive to negative correlation.  In the 

original set of runs, very little correlation was found between species richness and average 

ascendency; however, in the engineered cases, a relatively strong correlation was found.  

Conversely, the correlation between average ascendency and persistence changed from a 

strong correlation to a weak one, as well as changing from positive to negative. 

 

The stronger, and still negative, correlation between species richness and persistence 

found in the engineered systems would seem to put this research even more firmly on the 

theoretical side of the complexity-stability debate mentioned above.  However, the strong 

positive correlation between average ascendency and connection is consistent with the 

idea that systems with more complex structures may be more persistent once they have 

had a chance to organize in the conditions to which they are exposed.  The changes 

occurring in both magnitude and direction between some of the other measures applied to 

the systems may indicate that the results from the virtual ecosystem do not lie entirely on 

one side or the other of the debate.  Particularly in the cases where the system was based 

upon the final species presence columns, the engineered systems were defined based upon 

system compositions that had been allowed to develop and go through some self-

organization, while the randomly generated systems involved a wide variety of systems 

 Random 
systems 

“Engineered
” systems

P vs. NTOT -0.31872 -0.56049
P vs. C -0.37027 -0.22547
P vs. D 0.11039 -0.28404
D vs. C -0.38847 0.78658
A vs. NTOT 0.09686 0.50203
A vs. C -0.49974 0.87740
A vs. D 0.41452 0.91804
A vs. P 0.54973 -0.39131

Table 7.4 Comparison of Correlation Values 
between randomly created and “engineered” 
systems 



 129

composed of not necessarily co-adapted species.  It is possible that the changes in the 

correlation values do not actually reveal any sort of diversity-stability rule but are rather 

evidence of the self-organizational properties of the virtual ecosystem.  Further, this 

implies that relationships between ecosystem constitution and comportment may vary in 

the different areas of the state space.  There may not be universal rules that cover the 

small areas where persistent ecosystems, such as those we can observe in nature, can be 

found and the outlying and boundary areas.  Such possibilities are why it is important to 

include such a large number of system constitutions, including those that are not 

“successful” in any knowledge gathering intended to further the development of 

comprehensive theory for engineering ecosystems. 

 

7.5 Recommendations for future work 

The work to this point does not, and was not intended to, lead directly to ecological 

engineering theory.  However, the results of this project can be used for further 

exploration and also suggest some future projects.  For example, it might be possible to 

find more patterns in the constitution – comportment relationship simply by enlarging the 

case base with more simulations created and run with the same method as used in this 

project.  This would be particularly useful for further testing of the feasibility of using 

case-based reasoning to “engineer” ecosystems.  The case base could also be enlarged 

with simulation results from other models.  One such model could be used with the same 

pool of species but have adaptation and inheritance to allow for further study of 

emergence and self-organization in predator-prey interactions (see section 7.2.1).  Further 

possibilities include other virtual ecosystems, models based on physical species, and 

models incorporating functional types instead of species.  A case base could also be 



 130

created with data from physical systems, much of which already exists in the literature.  

The results of performing case-based reasoning with any of these case bases could be 

further analyzed with other computational techniques, such as artificial neural networks, 

for example, to find rules that would be usable for ecological engineering theory.  All of 

these approaches would be further steps in learning how to organize and analyze the 

knowledge that is necessary to form comprehensive ecological engineering theory.  

Further investigation could also be performed into the possibilities regarding the 

complexity-stability relationship in ecosystems implied by the differences between the 

randomly created and the “engineered” virtual ecosystems.  Results from such 

investigation could be important to both the state of ecology and ecological engineering. 

 

7.6 Summary 

One hundred system constitutions were created with the system creator program.  The 

systems were then run in simulation to obtain their comportments in the presence of a 

specific set of forcing functions.  The results of these simulations were collected and the 

decided upon measures applied.  A few general patterns were discernable, though they 

were fairly simple phenomena.  The database was then converted into a case base, which 

was used with a case-based reasoner to test the possibility of using case-based reasoning 

as a tool for not only predicting ecosystem comportment from initial system constitution, 

but “engineering” ecosystem constitutions for specific target results.  The case-based 

reasoner performed well as a prediction tool and also showed the potential of case-based 

reasoning for organizing and analyzing the knowledge required to form comprehensive 

theory for designing ecosystems for ecological engineering projects. 

 



 131

8. General Summary and Conclusions 

Ecological engineering, the act of designing and manipulating or creating ecosystems, has 

been applied for many reasons in a number of situations, involving various different types 

of ecosystems.  None of these projects, however, have been carried out based on any sort 

of comprehensive ecological engineering theory.  Instead, they were mostly based upon 

experience, experimentation, trial and error, and a few related principles.  Forming theory 

that would allow practitioners to easily engineer ecosystems for any conditions using any 

species, even those that have not been used before, will require a large body of knowledge 

regarding the relationships between ecosystem constitution and comportment, as well as 

ways to organize and analyze that knowledge.  This project was intended to test case-

based reasoning as a method of gathering and analyzing or using a large quantity of 

ecological knowledge for use with ecological engineering. 

 

8.1 Methodology 

To produce data to be used with the case-based reasoner, a virtual ecosystem simulation 

program was created.  A pool of species was generated and combined into a number of 

systems that were then run in simulation with the virtual ecosystem program.  Various 

measures quantifying the constitution and comportment of the systems were applied so 

that the virtual ecosystems could be compared to each other, and the simulation results 

and values for the measures compiled into a case base.  The case-based reasoner was used 

to predict the comportment of virtual ecosystems, and the accuracy of those predictions 

assessed.  The feasibility of using case-based reasoning for more than prediction was also 

examined by attempting to “engineer” several virtual ecosystems for targeted levels of 

persistence using the case-based reasoner 



 132

8.1.1 The virtual ecosystem and simulation program 

The representational model of the virtual ecosystem is object-based, allowing self-

organization and emergence to occur just as in physical systems.  Conceptually, the 

virtual ecosystem is a well mixed, materially closed, and energetically open system.  In it, 

a number of individuals interact according to a set of rule-based expressions.  These 

individuals are members of various species, which are either plant-like producers or 

animal-like consumers, and have various attributes.  The values of these attribute describe 

either the parameters of the individual which are inherited from the species level (e.g. 

energy at birth or minimum energy required for life), or the current state of the individual 

(e.g. current energy or age).  Two forcing functions, radiation of energy and temperature, 

act upon the virtual ecosystem. 

 

The computational model of the virtual ecosystem, which is integrated with the 

simulation platform, was programmed in FORTRAN 90/95.  Simple text files are used for 

both input (such as species attribute values and simulation parameters) and output (such 

as population levels, forcing function values, etc) throughout the simulation.  The forcing 

functions are contained in subroutines so that they may be easily changed if desired.  For 

verification, a number of tests were performed upon the program, and program results 

were analyzed, in order to ensure that the program works properly and conforms to what 

would be expected of general ecosystem function.  The output from the program was also 

compared to population ecology theory to approximate the process of validation, which 

does not normally apply to virtual ecosystems, to ensure that the general functions of the 

virtual ecosystems were consistent with physical ecosystems. 

 



 133

8.1.2 Running simulations and using the case-based reasoner 

A large number of simulations were needed to create enough data for the case base.  To 

create reasonable systems, a pool of species was created from which systems were 

randomly assembled with a system creator program.  Initially, one hundred different 

system constitutions were defined for use with the virtual ecosystem program.  These one 

hundred systems were run in simulation, and then the initial conditions, final conditions, 

and the results of the various measures were compiled into a database.  Some basic 

patterns and statistics were mined from the database before it was reformatted for use 

with the case-based reasoning program. 

 

Another set of systems was then created, and the case-based reasoner was used to make 

predictions regarding the final conditions and results of the measures for those systems.  

The new systems were run in simulation and the actual results compared to the 

predictions.  With the second set of systems added to the case base, the case-based 

reasoner was next used to attempt to “engineer” several systems to have specific 

persistence values.  A number of different schemes were used to generate the 

constitutions of those systems, and then the systems were run in simulation.  Finally, the 

actual persistence values were compared to the desired values and the accuracy of the 

“engineering” was analyzed for the different schemes. 

 

8.2 Results 

The predictions made using the case-based reasoner were more than 75% accurate 83% of 

the time, meaning that the case-based reasoner performed within acceptable levels as a 

prediction tool.  The effort to “engineer” virtual ecosystems with the case-based reasoner 



 134

was only more than 75% accurate 7.1% of the time.  However, there were cases where the 

engineered systems performed fairly close to the targeted levels.  Comparing the 

engineered systems to the randomly created systems also showed that some patterns were 

found with the case-based reasoner that were not obvious through standard analysis. 

 

8.3 Conclusions 

The viability of case-based reasoning as a way to organize and analyze a large body of 

ecological data for investigating the relationships between ecosystem constitution and 

comportment, as would be needed for formulating ecological engineering theory, was 

investigated to fulfill the objectives of this research.  The use of a case-based reasoner 

showed potential in finding patterns not obvious through normal methods, as well as 

predicting ecosystem comportment.  Further testing by enlarging the current case base or 

creating different case bases will allow more patterns to be found and determine how 

case-based reasoning can fit into the effort to formulate ecological engineering theory, as 

well as be a helpful tool for current projects.  The attempt to use the case-based reasoner 

to roughly “engineer” some virtual ecosystems was less successful, and while it showed 

potential, further research will be required before the capability of case-based reasoning 

as a method for finding engineering type knowledge can be determined. 



 135

9.  Contributions to Knowledge 

The main impetus for this project was to find ways to organize and analyze large datasets 

regarding the relationships between ecosystem constitution and comportment for 

application as a tool in support of the formation of ecological engineering theory.  The 

following contributions to knowledge occurred over the course of the project: 

 

• Case-based reasoning can be utilized as a method to organize and analyze large bodies 

of knowledge.  This tool is applicable to guiding individual projects but also as a way 

to help discover patterns and relationships that could contribute to ecological 

engineering theory. 

o The results of this project confirmed the predictive capability of case-based 

reasoning even when used with a case base of more varied data than is 

typical for a single project. (Chapter 7) 

o Preliminary exploration of the use of case-based reasoning to propose 

initial ecosystem constitutions for targeted performance goals, to 

“engineer” systems. (Chapters 6 & 7) 

o Differences seen in the comparison of the randomly generated systems and 

the “engineered” systems are indicative that case-based reasoning may 

provide a way to elucidate interactions between ecosystem constitution and 

comportment not necessarily discernible with traditional analysis methods. 

(Chapter 7) 

 

•  Verification and validation of a virtual ecosystem model incorporating a simulation 

program utilizing random system creation methodology in order to explore ecosystem 



 136

relationships in a large area of a state space, including outlying and boundary areas 

which would not typically be included in traditional approaches.  (Chapters 3 & 4) 

 

• A novel approach to quantifying the complexity of ecosystem comportment, the 

fractal dimension of the moving average of the ascendency over time, as a 

complement to methods commonly employed to measure the complexity of ecosystem 

constitution.  (Chapter 5) 

 

• Correlations between the randomly created systems and the “engineered” ecosystems 

were significantly different for certain pairs of measures (persistence and fractal 

dimension, average ascendency and species richness, average ascendency and 

connectance, average ascendency and fractal dimension) that can be related to the 

complexity-stability debate within the ecological research community.  The 

methodology of including boundary and outlying areas of the state space in ecosystem 

study, such as utilized within this project, may prove beneficial within the context of 

this debate. (Chapter 7) 



 137

References 
 
Abe, K., Y. Ishikawa, S. Kibe and K. Nitta.  2005.  Simulation model for the closed plant 
experiment facility of CEEF.  Advances in Space Research 35: 1597-1608. 
 
Abelson, A.  2006.  Artificial reefs vs. coral transplantation as restoration tools for 
mitigating coral reef deterioration: Benefits, concerns, and proposed guidelines.  Bulletin of 
Marine Science 78: 151-159. 
 
Allen, J. and M. Nelson.  1999.  Biospherics and Biosphere 2, mission one (1991–1993).  
Ecological Engineering 13: 15-29. 
 
Andrés, P. and E. Mateos.  2006.  Soil mesofaunal responses to post-mining restoration 
treatments.  Applied Soil Ecology 33: 67-78. 
 
Aoki, I. and T. Mizushima.  2001.  Biomass diversity and stability of food webs in aquatic 
ecosystems.  Ecological Research 16: 65-71. 
 
Aqil, M., I. Kita, A. Yano and S. Nishiyama.  2007.  Analysis and prediction of flow from 
local source in a river basin using a Neuro-fuzzy modeling tool.  Journal of Environmental 
Management 85: 215–223. 
 
Baker, W.L., T.T. Veblen and R.L. Sherriff.  2007.  Fire, fuels and restoration of ponderosa 
pine–Douglas fir forests in the Rocky Mountains, USA.  Journal of Biogeography 34: 
251-269. 
 
Bell, L.C.  2001.  Establishment of native ecosystems after mining-Australian experience 
across diverse biogeographic zones.  Ecological Engineering 17: 179-186. 
 
Blüm, V., M. Andriske, C.L. Paaen and D. Voeste.  2003.  The "C.E.B.A.S. 
MINI-MODULE": a self-sustaining closed aquatic ecosystem for spaceflight 
experimentation.  Advances in Space Research 31: 201-210. 
 
Bock, M., G. Rossner, M. Wissen, K. Remm, T. Langanke, S. Lang, H. Klug, T. Blaschke 
and B. Vršča.  2005.  Spatial indicators for nature conservation from European to local 
scale.  Ecological Indicators 5: 322-338. 
 
Bolliger, J.  2005.  Simulating complex landscapes with a generic model: Sensitivity to 
qualitative and quantitative classifications.  Ecological Complexity 2: 131-149. 
 
Bosch, O.J.H., R.S. Gibson, K. Kellner and W.J. Allen.  1997.  Using case-based reasoning 
methodology to maximize the use of knowledge to solve specific rangeland problems.  
Journal of Arid Environments 35: 549-557. 
 
Brown, M.T., H.T. Odum, and S.E. Jørgensen.  2004.  Energy hierarchy and transformity in 
the universe.  Ecological Modelling 178: 17–28. 
 



 138

Bruland, G.L., M.F. Hanchey and C.J. Richardson.  2003.  Effects of agriculture and 
wetland restoration on hydrology, soils, and water quality of a Carolina bay complex.  
Wetlands Ecology and Management 11: 141-156. 
 
Burk, N.M.  1995.  Replicating earth: Cracking the secrets to creating a closed ecosystem.  
IEEE Potentials 14: 32-33. 
 
Carleton, J.N., T.J. Grizzard, A.N. Godrej and H.E. Post.  2001.  Factors affecting the 
performance of stormwater treatment wetlands.  Water Research 35: 1552-1562. 
 
Casti, J.L.  1994.  Complexification: explaining a paradoxical world through the science of 
surprise.  HarperCollins Publishers.  New York. 
 
Charest, M., S. Delisle, O. Cervantes and Y. Shen.  2008.  Bridging the gap between data 
mining and decision support: A case-based reasoning and ontology approach.  Intelligent 
Data Analysis 12: 211–236. 
 
Chen, X. and J.E. Cohen.  2001.  Global stability, local stability and permanence in model 
food webs.  Journal of Theoretical Biology 212: 223-235. 
 
Chen, Y., K.W. Hipel and D.M. Kilgour.  2007.  Multiple-criteria sorting using case-based 
distance models with an application in water resources management.  IEEE Transactions 
on Systems, Man, and Cybernetics—Part A: Systems and Humans 37: 680 -691. 
 
Childress, W.M., C.L. Coldren and T. McLendon.  2002.  Applying a complex, general 
ecosystem model (EDYS) in large-scale land management.  Ecological Modelling 153: 
97-108. 
 
Christianou, M. and G.D. Kokkoris.  2008.  Complexity does not affect stability in feasible 
model communities.  Journal of Theoretical Biology 253: 162– 169. 
 
Clark, O.G.  1999.  Characterization of Cyborged Ecosystems.  PhD Thesis, McGill 
University – Department of Agricultural and Biosystems Engineering.  Montreal. 
 
Coen, L.D. and M.W. Luckenbach.  2000.  Developing success criteria and goals for 
evaluating oyster reef restoration: Ecological function or resource exploitation?  Ecological 
Engineering 15: 323-343. 
 
Costanza, R., R. d'Arge, R.D. Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. 
Naeem, R.V. O'Neill, J. Paruelo, R.G. Raskin, P. Sutton and M.V.D. Belt.  1997.  The value 
of the world's ecosystem services and natural capital.  Nature 387: 253-260. 
 
Covington, W.W., P.Z. Fulé, S.C. Hart and R.P. Weaver.  2001.  Modeling ecological 
restoration effects on ponderosa pine forest structure.  Restoration Ecology 9: 421-431. 
 
Dame, J.K. and R.R. Christian.  2008.  Evaluation of ecological network analysis: 
Validation of output.  Ecological Modelling 210: 327–338. 



 139

Delatte, B. and A. Butler.  2003.  An object-oriented model for conceptual ship design 
supporting case-based design.  Marine Technology 40: 158-167. 
 
Dlodlo, N., L. Hunter, C. Cele, R. Metelerkamp and A.F. Botha.  2007.  A hybrid expert 
systems architecture for yarn fault diagnosis.  FIBRES & TEXTILES in Eastern Europe 15: 
43-49. 
 
Dutta, S., B. Wierenga and A. Dalebout.  1997.  Case-based reasoning systems: From 
automation to decision-aiding and stimulation.  IEEE Transactions on Knowledge and 
Data Engineering 9: 911-922. 
 
Fath, B.D.  2004.  Network analysis applied to large-scale cyber-ecosystems.  Ecological 
Modelling 171: 329–337. 
 
Finlayson, C.M., J. Lowry, M.G. Bellio, S. Nou, R. Pidgeon, D. Walden, C. Humphrey and 
G. Fox.  2006.  Biodiversity of the wetlands of the Kakadu Region, northern Australia.  
Aquatic Sciences 68: 374-399. 
 
Folsome, C.E. and J.A. Hanson.  1986.  The emergence of materially closed system ecology.  
In: N. Polunin, Editor, Ecosystem Theory and Application, Environmental Monographs 
and Symposia,  pp. 269–288. Wiley, New York. 
 
Friedli, H.R., L.F. Radke, N.J. Payne, D.J. McRae, T.J. Lynham and T.W. Blake.  2007.  
Mercury in vegetation and organic soil at an upland boreal forest site in Prince Albert 
National Park, Saskatchewan, Canada.  Journal of Geophysical Research (G, 
Biogeosciences) 112: G01004, doi:10.1029/2005JG000061. 
 
Frize, M. and C. Frasson.  2000.  Decision-support and intelligent tutoring systems in 
medical education.  Clinical and Investigative Medicine 23: 266-269. 
 
Fulé, P.Z., W.W. Covington, H.B. Smith, J.D. Springer, T.A. Heinlein, K.D. Huisinga and 
M.M. Moore.  2002.  Comparing ecological restoration alternatives: Grand Canyon, 
Arizona.  Forest Ecology and Management 170: 19-41. 
 
Fulford, R.S., D.L. Breitburg, R.I.E. Newell, W.M. Kemp and M. Luckenbach.  2007.  
Effects of oyster population restoration strategies on phytoplankton biomass in Chesapeake 
Bay: A flexible modeling approach.  Marine Ecology Progress Series 336: 43-61. 
 
Gallucci, V.F.  1973.  On the principles of thermodynamics in ecology.  Annual Review of 
Ecology and Systematics 4: 329-357. 
 
Gascuel, D.  2005.  The trophic-level based model: A theoretical approach of fishing effects 
on marine ecosystems.  Ecological Modelling 189: 315-332. 
 
Gattie, D.K., J.R. Schramski, S.A. Bata.  2006.  Analysis of microdynamic environ flows in 
an ecological network.  Ecological Engineering 28: 187–204. 
 



 140

Gattie, D.K., N.N. Kellam, H.J. Turk.  2007.  Informing ecological engineering through 
ecological network analysis, ecological modelling, and concepts of systems and 
engineering ecology.  Ecological Modelling 208: 25–40. 
 
Gent, M.L. and J.W. Morgan.  2007.  Changes in the stand structure (1975–2000) of coastal 
Banksia forest in the long absence of fire.  Austral Ecology 32: 239-244. 
 
Ghilarov, A.M.  2001.  The changing place of theory in 20th century ecology: from 
universal laws to array of methodologies.  Oikos 92: 357-362. 
 
Gierl, L., D. Steffen, D. Ihracky and R. Schmidt.  2003.  Methods, architecture, evaluation 
and usability of a case-based antibiotics advisor.  Computer Methods and Programs in 
Biomedicine 72: 139-154. 
 
Gotelli, N.J.  2001.  A Primer of Ecology.  Sinauer Associates, Inc.  Sunderland, MA. 
 
Grant, W.E.  1998.  Ecology and natural resource management: reflections from a systems 
perspective.  Ecological Modelling 108: 67–76. 
 
Green, D.G. and S. Sadedin.  2005.  Interactions matter—complexity in landscapes and 
ecosystems.  Ecological Complexity 2: 117-130. 
 
Gustafson, E.J., L.J. Roberts and L.A. Leefers.  2005.  Linking linear programming and 
spatial simulation models to predict landscape effects of forest management alternatives.  
Journal of Environmental Management 81: 339-350. 
 
Hanan, J., P. Prusinkiewicz, M. Zalucki and D. Skirvin.  2002.  Simulation of insect 
movement with respect to plant architecture and morphogenesis.  Computers and 
Electronics in Agriculture 35: 255-269. 
 
Hart, P.B.S., A.W. West, J.A. Kings, H.M. Watts and J.C. Howe.  1999.  Land restoration 
management after topsoil mining and implications for restoration policy guidelines in New 
Zealand.  Land Degradation and Development 10: 435-453. 
 
Hastings, J.D., L.K. Branting and J.A. Lockwood.  1996.  A multiple-paradigm system for 
rangeland pest management.  Computers and Electronics in Agriculture 16: 47-67. 
 
Hengsdijk, H. and M.K. von Ittersum.  2003.  Formalizing agro-ecological engineering for 
future-oriented land use studies.  European Journal of Agronomy 19: 549-562. 
 
Holdo, R.M., R.D. Holt, M.B. Coughenour and M.E. Ritchie.  2007.  Plant productivity and 
soil nitrogen as a function of grazing, migration and fire in an African savanna.  Journal of 
Ecology 95: 115–128. 
 
Jacobo, V.H., A. Ortiz, Y. Cerrud and R. Schouwenaars.  2007.  Hybrid expert system for 
the failure analysis of mechanical elements.  Engineering Failure Analysis 14: 1435-1443. 
 



 141

Japkowicz, N. and S. Stephen.  2002.  The class imbalance problem: A systematic study.  
Intelligent Data Analysis 6: 429–449. 
 
Jensen, A.L.  1996.  Density-dependent matrix yield equation for optimal harvest of 
age-structured wildlife populations.  Ecological Modelling 88: 125-132. 
 
Jones, T.H.  1996.  Biospherics, closed systems and life support.  Tree 11: 448-450. 
 
Jørgensen, S.E.  2006.  Application of ecological engineering principles in lake 
management.  Lakes & Reservoirs: Research and Management 11: 103-109. 
 
Jørgensen, S.E. and B.D. Fath.  2004.  Application of thermodynamic principles in ecology.  
Ecological Complexity 1: 267–280. 
 
Juell, P. and P. Paulson.  2003.  Using reinforcement learning for similarity assessment in 
case-based systems.  IEEE Intelligent Systems 18: 60-67. 
 
Kalapanidas, E. and N. Avouris.  2001.  Short-term air quality prediction using a case-based 
classifier.  Environmental Modelling & Software 16: 263-272. 
 
Kalin, M.  2001.  Biogeochemical and ecological considerations in designing wetland 
treatment systems in post-mining landscapes.  Waste Management 21: 191-196. 
 
Kang, Y.G., Z. Wang, R. Li and C. Jiang.  2007.  A fixture design system for networked 
manufacturing.  International Journal of Computer Integrated Manufacturing 20: 143-159. 
 
Kangas, P.C.  2004.  Ecological Engineering: Principles and Practice.  CRC Press LLC.  
Boca Raton, FL. 
 
Kaster, D.S., C.B. Medeiros and H.V. Rocha.  2005.  Supporting modeling and problem 
solving from precedent experiences: the role of workflows and case-based reasoning.  
Environmental Modelling & Software 20: 689-704. 
 
Kavanagh, L.J. and J. Keller.  2007.  Engineered ecosystem for sustainable on-site 
wastewater treatment.  Water Research 41: 1823-1831. 
 
King, J.M.P., R. Bañares-Alcántara and Z.A. Manan.  1999.  Minimizing environmental 
impact using CBR: an azeotropic distillation case study.  Environmental Modelling & 
Software 14: 359-366. 
 
Kinzig, A.P., S.A. Levin, J. Dushoff and S. Pacala.  1999.  Limiting similarity, species 
packing, and system stability for hierarchical competition-colonization models.  The 
American Naturalist 153: 371-383. 
 
Kolodner, J.  1993. Case-Based Reasoning.  Morgan Kaufmann Publishers, Inc.  San 
Mateo. 
 



 142

Kondoh, M.  2008.  Anti-predator defence and the complexity–stability relationship of food 
webs.  Proceedings of the Royal Society B 274: 1617–1624. 
 
Kozlowski, T.T.  2002.  Physiological ecology of natural regeneration of harvested and 
disturbed forest stands: implications for forest management.  Forest Ecology and 
Management 158: 195-221. 
 
Krebs, C.J.  2006.  Ecology after 100 years: Progress and pseudo-progress.  New Zealand 
Journal of Ecology 30: 3-11. 
 
Kwon, O., G.P. Im, and K.C. Lee.  2007.  MACE-SCM: A multi-agent and case-based 
reasoning collaboration mechanism for supply chain management under supply and 
demand uncertainties.  Expert Systems with Applications 33: 690-705. 
 
Lan, C.-H. and C.-Y. Hsui.  2006.  Insight from complexity: A new approach to designing 
the deployment of artificial reef communities.  Bulletin of Marine Science 78: 21-28. 
 
Laughlin, D.C., S.R. Abella, W.W. Covington and J.B. Grace.  2007.  Species richness and 
soil properties in Pinus ponderosa forests: A structural equation modeling analysis.  
Journal of Vegetation Science 18: 231-242. 
 
Lee, B.-H., M. Scholz, A. Horn and A.M. Furber.  2006.  Constructed wetlands: prediction 
of performance with case-based reasoning (Part B).  Environmental Engineering Science 
23: 332-340. 
 
Li, D. and Z. Guo.  2000.  Some aspects of ecological modeling developments in China.  
Ecological Modelling 132: 3-10. 
 
Li, X. and A.G. Yeh.  2004.  Multitemporal SAR images for monitoring cultivation systems 
using case-based reasoning.  Remote Sensing of Environment 90: 524-534. 
 
Li, Z., Z. Shen, M. Yang, J. Zheng and J. Li.  1998.  Computer-aided technology for 
regional pest management: Towards agricultural sustainability.  Ecological Engineering 
11: 37-43. 
 
Little, L.R., A.E. Punta, B.D. Mapstone, F. Pantuse, A.D.M. Smith, C.R. Davies and A.D. 
McDonaldf.  2007.  ELFSim—A model for evaluating management options for spatially 
structured reef fish populations: An illustration of the “larval subsidy” effect.  Ecological 
Modelling 205: 381-396. 
 
Lugo, A.E.  2002.  Can we manage tropical landscapes? – an answer from the Caribbean 
perspective.  Landscape Ecology 17: 601-615. 
 
Maguire, B. 1980.  Some patterns in post-closure ecosystem dynamics (failure).  In: J.P. 
Giesy, Jr., Editor, Microcosms in Ecological Research, pp. 319-332. Technical Information 
Center, Oak Ridge, TN. 
 



 143

Mancinelli, G., L. Sabetta and A. Basset.  2007.  Colonization of ephemeral detrital patches 
by vagile macroinvertabrates in a brackish lake: a body size-related process?  Oecologia 
151: 292-302. 
 
Manne, L. and S.L. Pimm.  1996.  Ecology: Engineered food webs.  Current Biology 6: 
29-31. 
 
Månsson, B.Å. and J.M. McGlade.  1993.  Ecology, thermodynamics and H. T. Odum's 
conjectures.  Oecologia 93: 582-596. 
 
Marín, V.H. and L.E. Delgado.  2001.  A spatially explicit model of the Antarctic krill 
fishery off the South Shetland Islands.  Ecological Applications 11: 1235-1248. 
 
Marques, J.C., S.N. Nielsen, M.A. Pardal and S.E. Jørgensen.  2003.  Impact of 
eutrophication and river management within a framework of ecosystem theories.  
Ecological Modelling 166: 147-168. 
 
May, R.M.  1972.  Will a large complex system be stable?  Nature 238: 413-414. 
 
Mbuligwe, S.E.  2005.  Applicability of a septic tank/engineered wetland coupled system in 
the treatment and recycling of wastewater from a small community.  Environmental 
Management 35: 99-108. 
 
McCay, D.P.F. and J.J. Rowe.  2003.  Habitat restoration as mitigation for lost production at 
multiple trophic levels.  Marine Ecology Progress Series 264: 233-247. 
 
McDonald, W.R. and C.C. St. Clair.  2004.  The effects of artificial and natural barriers on 
the movement of small mammals in Banff National Park, Canada.  Oikos 105: 397-407. 
 
McIntire, E.J.B., R. Duchesneau and J.P.H. Kimmins.  2005.  Seed and bud legacies 
interact with varying fire regimes to drive long-term dynamics of boreal forest communities.  
Canadian Journal of Forest Research 35: 2765-2773. 
 
Mendes, E., I. Watson, C. Triggs, N. Mosley, and S. Counsell.  2002.  A comparison of 
development effort estimation techniques for web hypermedia applications.  Proceedings 
of the Eighth IEEE Symposium on Software Metrics (METRICS ‘02). 
 
Miller III, H.L. and K.H. Dunton.  2007.  Stable isotope (13C) and O2 micro-optode 
alternatives for measuring photosynthesis in seaweeds.  Marine Ecology Progress Series 
329: 85-97. 
 
Mitsch, W.J. and S.E. Jørgensen.  2004.  Ecological Engineering and Ecological 
Restoration.  John Wiley & Sons, Inc.  Hoboken, NJ. 
 
Molenaar, R.  1998.  Design and Implementation of Biosystem Control and Tools for 
Biosystem Simulation.  PhD Thesis, McGill University - Department of Agricultural and 
Biosystems Engineering.  Ste. Anne de Bellevue, QC. 



 144

Moore, J.C., P.C. de Ruiter and H.W. Hunt.  1993.  Influence of productivity on the stability 
of real and model ecosystems.  Science 261: 906-908. 
 
Morowitz, H., J.P. Allen, M. Nelson and A. Alling.  2005.  Closure as a scientific concept 
and its application to ecosystem ecology and the science of the biosphere.  Advances in 
Space Research 36: 1305-1311. 
 
Morris, J.T.  2007.  Ecological engineering in intertidal saltmarshes.  Hydrobiologia 577: 
161-198. 
 
Müller, D.B., H.-P. Bader and P. Baccini.  2004.  Long-term coordination of timber 
production and consumption using a dynamic material and energy flow analysis.  Journal 
of Industrial Ecology 8: 65-87. 
 
Müller, F.  1997.  State-of-the-art in ecosystem theory.  Ecological Modelling 100: 
135-161. 
 
Nams, V.O.  2006.  Improving accuracy and precision in estimating fractal dimension of 
animal movement paths.  Acta Biotheoretica 54: 1-11. 
 
Nams, V.O. and M. Bourgeois.  2004.  Fractal analysis measures habitat use at different 
spatial scales: an example with American marten.  Canadian Journal of Zoology 82: 
1738-1747. 
 
Nassauer, J.I.  2004.  Monitoring the success of metropolitan wetland restorations: Cultural 
sustainability and ecological function.  Wetlands 24: 756-765. 
 
Nelson, M., T.L. Burgess, A. Alling, N. Alvarez-Romo, W.F. Dempster, R.L. Walford and 
J.P. Allen.  1993.  Using a closed ecological system to study Earth's biosphere.  BioScience 
43: 225-236. 
 
Nestlerode, J.A., M.W. Luckenbach and F.X. O’Beirn.  2007.  Settlement and survival of 
the oyster Crassostrea virginica on created oyster reef habitats in Chesapeake Bay.  
Restoration Ecology 15: 273-283. 
 
Neutel, A.M, J.A.P. Heesterbeek, J. van de Koppel, G. Hoenderboom, A. Vos, 
C. Kaldeway, F. Berendse and P.C. de Ruiter.  2007.  Reconciling complexity with stability 
in naturally assembling food webs.  Nature 449: 599-602. 
 
Nitta, K.  2005.  The Mini-Earth facility and present status of habitation experiment 
program.  Advances in Space Research 35: 1531-1538. 
 
Noble, J.C. and P. Walker.  2006.  Integrated shrub management in semi-arid woodlands of 
eastern Australia: A systems-based decision support model.  Agricultural Systems 88: 
332-359. 
 
 



 145

Núñez, H., M. Sànchez-Marrè, U. Cortés, J. Comas, M. Martínez, I. Rodríguez-Roda and 
M. Poch.  2004.  A comparative study on the use of similarity measures in case-based 
reasoning to improve the classification of environmental system situations.  Environmental 
Modelling & Software 19: 809-819. 
 
Odum, H.T.  1988.  Self-Organization, transformity, and information.  Science 242: 
1132-1139. 
 
Odum, H.T.  1994.  Ecological engineering: The necessary use of ecological self-design.  
Ecological Engineering 3: 107-119. 
 
Odum, H.T.  1995.  Energy systems concepts and self-organization: A rebuttal.  Oecologia 
4: 518-522. 
 
Odum, H.T.  2002.  Explanations of ecological relationships with energy systems concepts.  
Ecological Modelling 158: 201-211. 
 
Odum, H.T. and B. Odum.  2003.  Concepts and methods of ecological engineering.  
Ecological Engineering 20: 339–361. 
 
Oguntunde, P.G., N. van de Giesen and H.H.G. Savenije.  2007.  Measurement and 
modelling of transpiration of a rain-fed citrus orchard under subhumid tropical conditions.  
Agricultural Water Management 87: 200-208. 
 
Parrott, L.  2005.  Quantifying the complexity of simulated spatiotemporal population 
dynamics.  Ecological Complexity 2: 175-184. 
 
Parrott, L. and R. Kok.  2000.  Incorporating complexity in ecosystem modelling.  
Complexity International 7: Paper ID: lparro01. 
 
Parrott, L. and R. Kok.  2001.  A generic primary producer model for use in ecosystem 
simulation.  Ecological Modelling 139: 75-99. 
 
Parrott, L. and R. Kok.  2002.  A generic, individual-based approach to modelling higher 
trophic levels in simulation of terrestrial ecosystems.  Ecological Modelling 154: 151-178. 
 
Parrott, L., R. Kok and R. Lacroix.  1996.  Daily average temperatures: modeling and 
generation with a Fourier transform approach.  Transactions of the ASAE 39: 1911-1922. 
 
Patten, B.C.  1993.  Toward a more holistic ecology, and science: The contribution of H. T. 
Odum.  Oecologia 93: 597-602. 
 
Patten, B.C.  1994.  Ecological systems engineering: toward integrated management of 
natural and human complexity in the ecosphere.  Ecological Modelling 75/76: 653-665. 
 
Patten, B.C.  1995.  Network integration of ecological extremal principles: exergy, emergy, 
power, ascendency, and indirect effects.  Ecological Modelling 79: 75-84. 



 146

Peacor, S.D., S. Allesina, R.L. Riolo and T.S. Hunter.  2007.  A new computational system, 
DOVE (Digital Organisms in a Virtual Ecosystem), to study phenotypic plasticity and its 
effects in food webs.  Ecological Modelling 205: 13-28. 
 
Pérez-España, H. and F. Arreguín-Sánchez.  2001.  An inverse relationship between 
stability and maturity in models of aquatic ecosystems.  Ecological Modelling 145: 
189-196. 
 
Perkol-Finkel, S. and Y. Benayahu.  2007.  Differential recruitment of benthic communities 
on neighboring artificial and natural reefs.  Journal of Experimental Marine Biology and 
Ecology 340: 25-39. 
 
Pimm, S.L.  1984.  The complexity and stability of ecosystems.  Nature 207: 321-326. 
 
Pimm, S.L. and J.H. Lawton.  1977.  Number of trophic levels in ecological communities.  
Nature 268: 329-331. 
 
Powers, S.P., J.H. Grabowski, C.H. Peterson and W.J. Lindberg.  2003.  Estimating 
enhancement of fish production by offshore artificial reefs: uncertainty exhibited by 
divergent scenarios.  Marine Ecology Progress Series 264: 265-277. 
 
Raphael, B., B. Domer, S. Saitta and I.F.C. Smith.  2007.  Incremental development of CBR 
strategies for computing project cost probabilities.  Advanced Engineering Informatics 21: 
311-321. 
 
Remm, K.  2004.  Case-based predictions for species and habitat mapping.  Ecological 
Modelling 177: 259-281. 
 
Rochefort, L., F. Quinty, S. Campeau, K. Johnson and T. Malterer.  2003.  North American 
approach to the restoration of Sphagnum dominated peatlands.  Wetlands Ecology and 
Management 11: 3-20. 
 
Rodney, W.S. and K.T. Paynter.  2006.  Comparisons of macrofaunal assemblages on 
restored and non-restored oyster reefs in mesohaline regions of Chesapeake Bay in 
Maryland.  Journal of Experimental Marine Biology and Ecology 335: 39-51. 
 
Rossille, D., J.-F. Laurent and A. Burguna.  2005.  Modelling a decision-support system for 
oncology using rule-based and case-based reasoning methodologies.  International Journal 
of Medical Informatics 74: 299-306. 
 
Rozdilsky, I.D. and L. Stone.  2001.  Complexity can enhance stability in competitive 
systems.  Ecology Letters 4: 397-400. 
 
Salisbury, F.B., J.I. Gitelson and G.M. Lisovsky.  1997.  Bios-3: Siberian experiments in 
bioregenerative life support.  BioScience 47: 575-585. 
 
 



 147

Santos, M.N. and C.C. Monteiro.  2007.  A fourteen-year overview of the fish assemblages 
and yield of the two oldest Algarve artificial reefs (southern Portugal).  Hydrobiologia 580: 
225-231. 
 
Scheiner, S.M.  1992.  Measuring pattern diversity.  Ecology 73: 1860-1867. 
 
Schmidt, R. and L. Gierl.  2005.  A prognostic model for temporal courses that combines 
temporal abstraction and case-based reasoning.  International Journal of Medical 
Informatics 74: 307-315. 
 
Schmidt, R., S. Montani, R. Bellazzi, L. Portinale and L. Gierl.  2001.  Cased-based 
reasoning for medical knowledge-based systems.  International Journal of Medical 
Informatics 64: 355-367. 
 
Schneider, E.D. and J.J. Kay.  1994.  Complexity and thermodynamics: Towards a new 
ecology.  Futures 26: 626-647. 
 
Shafir, S., J.V. Rijn and B. Rinkevich.  2006.  Steps in the construction of underwater coral 
nursery, an essential component in reef restoration acts.  Marine Biology 149: 679-687. 
 
Shepperd, M. and C. Schofield.  1997.  Estimating software project effort using analogies.  
IEEE Transactions on Software Engineering 23: 736-743. 
 
Shi, X., A.-X. Zhu, J.E. Burt, F. Qi and D. Simonson.  2004.  A case-based reasoning 
approach to fuzzy soil mapping.  Soil Science Society of America Journal 68: 885-894. 
 
Shuwen, W., Q. Pei, L. Yang and L. Xi-Ping.  2001.  Wetland creation for rare waterfowl 
conservation: A project designed according to the principles of ecological succession.  
Ecological Engineering 18: 115-120. 
 
Stenseth, N.C., W. Falck, O.N. Bjørnstad and C.J. Krebs.  1997.  Population regulation in 
snowshoe hare and Canadian lynx: Asymmetric food web configurations between hare and 
lynx.  Proceedings of the National Academy of Science 94: 5147-5152. 
 
Stigebrandt, A. and B.G. Gustafsson.  2007.  Improvement of Baltic proper water quality 
using large-scale ecological engineering.  Ambio 36: 280-286. 
 
Stone, L., A. Gabric and T. Berman.  1996.  Ecosystem resilience, stability, and 
productivity: seeking a relationship.  The American Naturalist 148: 892-903. 
 
Sun, B., L.D. Xu, X. Pei and H. Li.  2003.  Scenario-based knowledge representation in 
case-based reasoning systems.  Expert Systems 20: 92-99. 
 
Sun, Y.C. and R. Kok.  2007.  A solar radiation model with a Fourier transform approach.  
Canadian Biosystems Engineering 49: 7.17-7.24. 
 
 



 148

Svirezhev, Y.M.  2000.  Thermodynamics and ecology.  Ecological Modelling 132: 11–22. 
 
Tanner, B.R., E. Perfect and J.T. Kelley.  2006.  Fractal analysis of Maine's glaciated 
shoreline tests established coastal classification scheme.  Journal of Coastal Research 22: 
1300-1304. 
 
Taylor, B., D. Robertson, N. Wiratunga, S. Crawd, D. Mitchell and E. Stewart.  2007.  
Using computer aided case based reasoning to support clinical reasoning in community 
occupational therapy.  Computer Methods and Programs in Biomedicine 87: 170-179. 
 
Tilley, D.R., H. Badrinarayanan, R. Rosati and J. Son.  2002.  Constructed wetlands as 
recirculation filters in large-scale shrimp aquaculture.  Aquacultural Engineering 26: 
81-109. 
 
Todd, N.J.  2005.  A Safe and Sustainable World: The Promise of Ecological Design.  
Island Press.  Washington, DC. 
 
Trostel, K., A.R.E. Sinclair, C.J. Waiters and C.J. Krebs.  1987.  Can predation cause the 
10-year hare cycle?  Oecologia 74: 185-192. 
 
Turner, S.R., B. Pearce, D.P. Rokich, R.R. Dunn, D.J. Merritt, J.D. Majer and K.W. Dixon.  
2006.  Influence of polymer seed coatings, soil raking, and time of sowing on seedling 
performance in post-mining restoration.  Restoration Ecology 14: 267-277. 
 
Uchida, S. and B. Drossel.  2007.  Relation between complexity and stability in food webs 
with adaptive behavior.  Journal of Theoretical Biology 247: 713-722. 
 
Ulanowicz, R.E.  2000.  Toward the measurement of ecological integrity.  In: D. Pimental, 
L. Westra, and R.F. Noss (Editor).  Ecological Integrity: Integrating Environment, 
Conservation, and Health, pp.  99-113.  Island Press, Washington, D.C. 
 
Van den Brink, P.J., J. Roelsma, E.H.V. Nes, M. Scheffer and T.C.M. Brock.  2002.  
PERPEST model, a case-based reasoning approach to predict ecological risks of pesticides.  
Environmental Toxicology and Chemistry 21: 2500-2506. 
 
Vasconcellos, M., S. Mackinson, K. Sloman and D. Pauly.  1997.  The stability of trophic 
mass-balance models of marine ecosystems: a comparative analysis.  Ecological Modelling 
100: 125-134. 
 
Verhoeven, J.T.A. and A.F.M. Meuleman.  1999.  Wetlands for wastewater treatment: 
Opportunities and limitations.  Ecological Engineering 12: 5-12. 
 
Wallington, T.J., R.J. Hobbs, and S.A. Moore.  2005.  Implications of current ecological 
thinking for biodiversity conservation: a review of the salient issues.  Ecology and Society 
10: 15. 
 
 



 149

Wam, H.K., O. Hofstad, E. Nævdal and P. Sankhayan.  2005.  A bio-economic model for 
optimal harvest of timber and moose.  Forest Ecology and Management 206: 207-219. 
 
Wang, G.H., G.B. Li, C.X. Hu, Y.D. Liu, L.R. Song, G.H. Tong, X.M. Liu and E.T. Cheng.  
2004.  Performance of a simple closed aquatic ecosystem (CAES) in space.  Advances in 
Space Research 34: 1455-1460. 
 
Ward, Lena K. and R. D. Jennings.  1990.  Succession of disturbed and undisturbed chalk 
grassland at Aston Rowant National Nature Reserve: Details of changes in species.  The 
Journal of Applied Ecology 27: 913-923. 
 
Weinstein, M.P., J.M. Teal, J.H. Balletto and K.A. Strait.  2001.  Restoration principles 
emerging from one of the world’s largest tidal marsh restoration projects.  Wetlands 
Ecology and Management 9: 387-407. 
 
Whitham, T.G., J.K. Bailey, J.A. Schweitzer, S.M. Shuster, R.K. Bangert, C.J. LeRoy, E.V. 
Lonsdorf, G.J. Allan, S.P. DiFazio, B.M. Potts, D.G. Fischer, C.A. Gehring, R.L. Lindroth, 
J.C. Marks, S.C. Hart, G.M. Wimp and S.C. Wooley.  2006.  A framework for community 
and ecosystem genetics: from genes to ecosystems.  Nature Reviews Genetics 7: 510-523. 
 
Yan, J., Y. Zhang and X. Wu.  1993.  Advances of ecological engineering in China.  
Ecological Engineering 2: 193-215. 
 
Zhang, R., W. Ji and B. Lu.  1998.  Emergence and development of agro-ecological 
engineering in China.  Ecological Engineering 11: 17 -26. 
 
Zhang, X.-X., B. Kosier and U.B. Priefer.  2001.  Genetic diversity of indigenous 
Rhizobium leguminosarum bv. viciae isolates modulating two different host plants during 
soil restoration with alfalfa.  Molecular Ecology 10: 2297-2305. 
 
Zhou, J., C.G. Messersmith and J.D. Harrington.  2005.  HIDES: A computer-based 
herbicide injury diagnostic expert system.  Weed Technology 19: 486-491. 



 151

Appendix A 
Source code of the virtual ecosystem model and simulation program.  See Chapter 3, 
Section 3.3 for more information about the program. 
 
 
!LATEST UPDATE BY TRL: November 8, 2006 
 
!##################################################
################################################## 
!####                                    START OF MAIN PROGRAM                                      #### 
!##################################################
################################################## 
 
PROGRAM ECOSYS 
 
 
!##################################################
################################################## 
!####                                  START OF DECLARATION PHASE                              #### 
!##################################################
################################################## 
 
!declare implicit rules 
IMPLICIT NONE 
 
!declare character arrays 
CHARACTER (LEN=15):: FILENAME   !name of output file 
CHARACTER (LEN=29):: OUTFILE   !name of output file with folder 
destination 
CHARACTER (LEN=14):: TEMFILE    !name of temperature forcing 
function input file 
CHARACTER (LEN=14):: RADFILE   !name of radiation forcing function 
input file 
CHARACTER (LEN=14):: MODFILE    !name of model input file 
CHARACTER (LEN=14):: SIMFILE    !name of simulation input file 
CHARACTER (LEN=11):: EATFILE   !name of who eats who output file 
CHARACTER (LEN=11):: ASCFILE   !name of ascendency output file 
character (len=9):: rfile 
CHARACTER (LEN=4):: SIM     !simulation number (text form) 
CHARACTER (LEN=5):: FOLDER   !folder output file will be written to 
CHARACTER (LEN=10):: TEXTLINE   !dummy input line variable 
 
!declare integer parameters 
INTEGER*4, PARAMETER:: MAXPOP=100000000 !maximum total population allowed 
INTEGER*4, PARAMETER:: MAXSPEC=30  !maximum total numer of species 
allowed 



 152

 
 
!declare 2-D integer arrays 
INTEGER*4, DIMENSION (MAXSPEC,2):: IWHERE  !species location beginning 
and end in population INDEX matrix 
 
!declare 1-D integer arrays 
INTEGER*4, DIMENSION (MAXPOP):: INDEX  !index matrix to individuals in 
the WHAT and IWHAT matrices 
INTEGER*4, DIMENSION (MAXSPEC):: IPOPS  !population sizes 
INTEGER*4, DIMENSION (MAXPOP):: IWHAT  !integer part of the 
population matrix: species number 
INTEGER*4, DIMENSION (MAXSPEC):: IWHO  !flags for which species are 
actually present 
INTEGER*4, DIMENSION (MAXSPEC):: MINMAXAGE !low end of maximum possible 
age for each species - days 
INTEGER*4, DIMENSION (MAXSPEC):: MAXMAXAGE !absolute maximum possible 
age for each species - days  
 
!declare simple integer variables 
INTEGER*4:: IARGC 
INTEGER*4:: I, J, K, L, M     !dummy variables 
INTEGER*4:: ICYCLE      !daily cycle counter 
INTEGER*4:: IDAY      !the day during the year (in 
days - 1 <= DAY <= 365 ) 
INTEGER*4:: IECOCYCLE     !overall interation cycle 
counter 
INTEGER*4:: IPOP1      !total # of presently living 
individuals (within IPOP2; for these IWHAT(I) > 0)  
INTEGER*4:: IPOP2      !length of the matrix 
INTEGER*4:: IRAD      !flag for radiation presence 
(0=nighttime-no radiation at all; 1=daytime) 
INTEGER*4:: ISEED1, ISEED2, ISEED3   !random number seeds for 
the simulation 
INTEGER*4:: ISEED4, ISEED5    !random number seed for the 
model - used in initialization only 
INTEGER*4:: ISTARTDAY     !start day of the simulation 
(in days - 1 <= STARTDAY <= 365 ) 
INTEGER*4:: ITEMP1, ITEMP2, ITEMP3, ITEMP4  !temporary variables 
INTEGER*4:: ITEMP5, ITEMP6, ITEMP7   !temporary variables (added 
for use with FLOWS) 
INTEGER*4:: IYEAR      !year of the simulation 
INTEGER*4:: MAXDAYS     !maximum total number of 
days possible in the simulation, after the start day (days) 
INTEGER*4:: MAXECOCYLES     !maximum total number of 
iteration cycles allowed for the simulation 



 153

INTEGER*4:: N1      !number of producer species 
INTEGER*4:: N2      !number of consumer species 
INTEGER*4:: NCYCLES     !number of ecocycles per day 
INTEGER*4:: NTOT      !total number of species in 
system 
 
!declare 2-D floating-point arrays 
REAL*4, DIMENSION (MAXSPEC,MAXSPEC):: FEEDPROB !species-species feed 
probability matrix 
REAL*4, DIMENSION (MAXSPEC,MAXSPEC):: FOOD !species-species food matrix 
REAL*4, DIMENSION (MAXSPEC,MAXSPEC):: XINTER !species-species interaction 
matrix - relates to species health - how species i is affected by j 
REAL*4, DIMENSION (MAXPOP,3):: WHAT   !real part of the population 
matrix: 1=age, 2=energy content, 3=maximum age for individual 
 
!declare 1-D floating-point arrays 
REAL*4, DIMENSION (MAXSPEC):: AFFECT1  !food affectedness of 
consumer species 
REAL*4, DIMENSION (MAXSPEC):: AFFECT2  !health affectedness of 
species - used together with the INTER matrix 
REAL*4, DIMENSION (MAXSPEC):: ENER   !total energy in a species 
(energy units) 
REAL*4, DIMENSION (MAXSPEC):: ENERALLO  !energy allocated to species 
during DELTIME (energy units) 
REAL*4, DIMENSION (MAXSPEC):: ENERBIR  !energy level at birth for 
each species (energy units) 
REAL*4, DIMENSION (MAXSPEC):: ENERMIN  !minimum allowable energy 
level for each species (energy units) 
REAL*4, DIMENSION (MAXSPEC):: ENERQUAN  !size of energy "quantum" for 
each species (energy units) 
REAL*4, DIMENSION (MAXSPEC):: ENERREL  !relative energy level of a 
species in the system (no units) 
REAL*4, DIMENSION (MAXSPEC):: ENERREP  !energy threshold at which 
species can reproduce (energy units) 
REAL*4, DIMENSION (MAXSPEC):: FEEDNOTPROB  !probability of members of a 
consumer species not feeding at all 
REAL*4, DIMENSION (MAXSPEC):: HEALTH   !species health status 
REAL*4, DIMENSION (MAXSPEC):: XMINMAXAGE  !low end of maximum possible 
age for species (seconds) 
REAL*4, DIMENSION (MAXSPEC):: XMAXMAXAGE  !absolute maximum possible 
age for species (seconds) 
REAL*4, DIMENSION (MAXSPEC):: XMETAB  !specific base metabolic rate 
for species (energy_units/total_energy_units.time) 
 
 
 



 154

!declare simple floating-point variables 
REAL*4:: ALPHA      !variable used in the 
calculation of the attenuation factor for energy input (no units) 
REAL*4:: DELTIME      !the time increment used for 
the simulation (s) (should be integer fraction of 86400) 
REAL*4:: DBLETIME      !minimum doubling time for 
the system (year) 
REAL*4:: DBLETIMES      !minimum doubling time for 
the system (seconds) 
REAL*4:: ENERIN      !amount of energy coming into 
the system during time increment 
REAL*4:: ENERMAX      !maximum total energy for 
system (energy units) 
REAL*4:: ENERTOT      !total energy present in the 
system (all species, energy units) 
REAL*4:: ENERTOTP      !total energy present in 
producer species (energy units) 
REAL*4:: POWRMAX      !maximum possible power into 
the system (energy units/second) 
REAL*4:: RELRATE      !relative rate for inherent 
metabolism (dependent on temperature) 
REAL*4:: STARTTIME      !start time during the day of 
the simulation (in seconds, <86400, should be integer multiple of DELTIME) 
REAL*4:: SUM1, SUM2     !temporary variables 
REAL*4:: TEMP1, TEMP2, TEMP3, TEMP4   !temporary variables 
REAL*4:: TEMPERAT      !temperature during the time 
increment (deg. C) 
REAL*4:: TIME      !the time during the day at 
the end of the present time increment (s) 
REAL*4:: TTIME      !total time since the 
beginning of the simulation (s) 
REAL*4:: TOTALTIME      !time since the very beginning 
of the year in which the simulation started (s) 
REAL*4:: RTIME, S, E, C     !run time, start, end, and call 
variables for timing the program 
 
!declare real functions 
REAL*4:: RANDOM1, RANDOM2, RANDOM3   !random number generator 
functions for simulation 
REAL*4:: RANDOM4, RANDOM5    !random number generator 
functions for model - used only during initialization 
 
!declare 1-D integer, allocatable arrays 
INTEGER*4, DIMENSION (:), ALLOCATABLE:: AGED !deaths due to old age by 
species 



 155

INTEGER*4, DIMENSION (:), ALLOCATABLE:: STARVED !deaths due to starvation by 
species 
INTEGER*4, DIMENSION (:), ALLOCATABLE:: BIRTHS !births by species 
 
!declare 2-D integer, allocatable arrays 
INTEGER*4, DIMENSION (:,:), ALLOCATABLE:: EAT !numbers of who eats who 
 
!declare 1-D real, allocatable arrays 
REAL*4, DIMENSION (:), ALLOCATABLE:: SPMETAB !energy metabolized by all 
members of a species 
 
!declare 2-D real array ascendency calc 
REAL*4, DIMENSION (MAXSPEC+2,MAXSPEC+2):: FLOWS !energy flow matrix for the 
ecosystem network 
 
!declare flouting point-variable for ascendancy calculation 
REAL*4:: A       !ascendency of ecosystem at 
a given time step 
 
 
!temporary variable for verif 
REAL*4:: NRG 
 
!/////////////////////////////////////////////////////////////////////////////////// 
!####                                   END OF DECLARATION PHASE                                  #### 
!/////////////////////////////////////////////////////////////////////////////////// 
 
CALL CPU_TIME(C) 
S=C 
 
!M=IARGC() 
!CALL GETARG (1,FOLDER) 
!CALL GETARG (M,SIM) 
 
print *, 'sim?' 
 
read (*,707) SIM 
707 format (a4) 
 
write (SIMFILE,700) SIM 
700 format ('ecosim',a4,'.inp') 
 
write (MODFILE,701) SIM 
701 format ('ecomod',a4,'.inp') 
 
write (TEMFILE,702) SIM 



 156

702 format ('ecotem',a4,'.inp') 
 
write (RADFILE,703) SIM 
703 format ('ecorad',a4,'.inp') 
 
WRITE (EATFILE,704) FOLDER,SIM 
!704 FORMAT ('/export/',A5,'/eat',A4,'.dat') 
704 format ('eat',a4,'.dat') 
 
WRITE (ASCFILE,706) FOLDER,SIM 
!706 FORMAT ('/export/',A5,'/asc',A4,'.dat') 
706 format ('asc',a4,'.dat') 
 
!##################################################
################################################## 
!####                           START OF INITIALIZATION PHASE                               #### 
!##################################################
################################################## 
 
!##################################################
################################################## 
!####                                INTIALIZATION PHASE PART 1                                  #### 
!####                    DATA INPUT AND OUTPUT INTO "PAPER" FILE                     #### 
!##################################################
################################################## 
 
!####                                INTIALIZATION PHASE PART 1.1                                #### 
!####                          SIMULATION DATA INPUT AND OUTPUT                        #### 
 
!open input file to read simulation information and parameter values 
OPEN (UNIT=1, FILE=SIMFILE) 
READ (1,1001) TEXTLINE 
1001 FORMAT (10A1) 
 
!read the output file name 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,4001) FILENAME 
4001 FORMAT (A15) 
 
WRITE (OUTFILE,705) FOLDER,FILENAME 
705 FORMAT ('/export/',A5,'/',A15) 
 
!open the output "paper" file: FILENAME if in same folder OUTFILE if in different folder 
OPEN (UNIT=2, FILE=OUTFILE) 
 



 157

!open (unit=9,file='weather_sub.out') 
!open (unit=10,file='weather.out') 
!open (unit=11,file=rfile) 
!open (unit=12,file='theo.out') 
!open (unit=13,file='dris.out') 
!open (unit=14,file='dors.out') 
!OPEN (UNIT=15,FILE='atten.out') 
!OPEN (UNIT=16,FILE='theodors2.out') 
 
OPEN (UNIT=3, FILE=EATFILE) 
 
!write the headings etc. into the output file 
 
WRITE(2,2000) 
2000 FORMAT('******************************** START OF OUTPUT FROM 
INITIALIZATION PHASE *******************************',/) 
 
WRITE(2,3007) FILENAME 
3007 FORMAT('THE OUTPUT FILE NAME FOR THIS EXPERIMENT IS (THIS FILE): 
',A25,/) 
 
!fill all the major matrices to make sure memory is available etc. - part 1 - arrays of length 
MAXPOP 
DO I=1,MAXPOP 
  INDEX(I)=0 
  IWHAT(I)=0 
  DO J=1,3 
    WHAT(I,J)=0.0 
  END DO 
END DO 
 
!fill all the major matrices to make sure memory is available etc. - part 1 - arrays of length 
MAXSPEC 
DO I=1,MAXSPEC 
  IPOPS(I)=0 
  IWHO(I)=0 
  MINMAXAGE(I)=0 
  MAXMAXAGE(I)=0 
  AFFECT1(I)=0.0 
  AFFECT2(I)=0.0 
  ENER(I)=0.0 
  ENERALLO(I)=0.0 
  ENERBIR(I)=0.0 
  ENERMIN(I)=0.0 
  ENERQUAN(I)=0.0 
  ENERREP(I)=0.0 



 158

  FEEDNOTPROB(I)=0.0 
  HEALTH(I)=0.0 
  XMINMAXAGE(I)=0.0 
  XMAXMAXAGE(I)=0.0 
  XMETAB(I)=0.0 
  DO J=1,MAXSPEC   
    FEEDPROB(I,J)=0.0 
    FOOD(I,J)=0.0 
    XINTER(I,J)=0.0 
  END DO 
END DO 
 
WRITE(2,3008) 
3008 FORMAT('ALL MATRICES SUCCESSFULLY FILLED AT INITIALIZATION',/) 
 
WRITE(2,2001) 
2001 FORMAT('********** OUTPUT FROM INITIALIZATION PHASE PART 1 - DATA 
INPUT AND OUTPUT INTO "PAPER" FILE *************') 
 
WRITE(2,2002) 
2002 FORMAT(/,'PARAMETER VALUES FOR THE SIMULATION:') 
 
!parameter values from the program file itself 
WRITE(2,3001) MAXPOP 
3001 FORMAT('MAXIMUM POPULATION SIZE ALLOWED FOR THIS SIMULATION 
RUN: ',I10) 
WRITE(2,3002) MAXSPEC 
3002 FORMAT('MAXIMUM NUMBER OF SPECIES ALLOWED FOR THIS SIMULATION 
RUN: ',I5) 
 
!read random number seed from simulation parameter file 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1002) ISEED1, ISEED2, ISEED3         
1002 FORMAT (3I10) 
WRITE(2,2003) ISEED1, ISEED2, ISEED3 
2003 FORMAT('SEEDS FOR RANDOM NUMBER GENERATOR FOR THE SIMULATION: ', 
3I10)  
 
!read start day for the simulation 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1003) ISTARTDAY               
1003 FORMAT (I10) 
WRITE(2,2004) ISTARTDAY 
2004 FORMAT('START DAY FOR THE SIMULATION: ', I5) 



 159

 
!read start time for the simulation 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1004) STARTTIME               
1004 FORMAT (F10.1) 
WRITE(2,2005) STARTTIME 
2005 FORMAT('START TIME FOR THE SIMULATION: ', F10.1, ' SECONDS') 
 
!read maximum days allowed for simulation 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1005) MAXDAYS               
1005 FORMAT (I10) 
WRITE(2,2006) MAXDAYS 
2006 FORMAT('MAXIMUM NO. DAYS FOR THE SIMULATION: ', I5, ' DAYS') 
 
!read time increment 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1006) DELTIME               
1006 FORMAT (F10.1) 
WRITE(2,2007) DELTIME 
2007 FORMAT('TIME INCREMENT FOR THE SIMULATION: ', F10.1, ' SECONDS') 
 
!read upper bound on total system energy 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1007) ENERMAX               
1007 FORMAT (E10.2) 
WRITE(2,2008) ENERMAX 
2008 FORMAT('UPPER BOUND ON TOTAL SYSTEM ENERGY: ', E10.2, ' ENERGY 
UNITS') 
 
!read minimum doubling time for the system 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1008) DBLETIME               
1008 FORMAT (F10.2) 
WRITE(2,2009) DBLETIME 
2009 FORMAT('MINIMUM DOUBLING TIME FOR THE SYSTEM: ', F10.2, ' YEAR') 
 
!read the variable "alpha" for the attenuation factor calculation 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1009) ALPHA               



 160

1009 FORMAT (F10.1) 
WRITE(2,2010) ALPHA 
2010 FORMAT('ALPHA VALUE FOR ATTENUATION FACTOR CALCULATION: ', F10.1) 
 
!close the input file 
CLOSE (UNIT=1) 
 
!////                END OF INTIALIZATION PHASE PART 1.1 - SIMULATION DATA INPUT 
AND OUTPUT           //// 
 
!####                    INTIALIZATION PHASE PART 1.2 - MODEL DATA INPUT AND 
OUTPUT              #### 
!open input file to read model parameter values 
OPEN (UNIT=1, FILE=MODFILE) 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
WRITE(2,2011) 
2011 FORMAT(/, 'PARAMETER VALUES FOR THE MODEL:') 
 
!Part 1 of the model parameter values - random number seed 
 
!read random number seed from model parameter file 
READ (1,1001) TEXTLINE 
READ (1,1010) ISEED4, ISEED5         
1010 FORMAT (2I10) 
WRITE(2,2012) ISEED4, ISEED5 
2012 FORMAT('SEEDS FOR RANDOM NUMBER GENERATOR FOR THE MODEL: ', 2I10)  
 
!Part 2 of the model parameter values - ecosystem composition 
 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
 
!read number of producer species (N1) and number of consumer species (N2) 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1011) N1, N2               
1011 FORMAT (2I10) 
WRITE(2,2013) N1 
2013 FORMAT('NUMBER OF PRODUCER SPECIES: ',I5) 
WRITE(2,2014) N2 
2014 FORMAT('NUMBER OF CONSUMER SPECIES: ',I5) 
 
!calculate total number of species in ecosystem and validate: not too large 
NTOT=N1+N2 
IF (NTOT > MAXSPEC) THEN 



 161

  PRINT * 
  PRINT * 
  PRINT *, "Total number of species larger than allowed maximum" 
  PRINT * 
  PRINT * 
  STOP 
ENDIF 
WRITE(2,2015) NTOT 
2015 FORMAT('TOTAL NUMBER OF SPECIES IN SYSTEM: ', I5, '   ***** NOTE: 
CALCULATED')   
 
!read the minimum energy levels to continue to exist - energy units 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1012) (ENERMIN(I),I=1,NTOT) 
1012 FORMAT (10F10.1) 
WRITE(2,2016) 
2016 FORMAT('THE ENERGY MINIMA FOR THE SPECIES ARE:') 
WRITE(2,2017) (ENERMIN(I),I=1,NTOT) 
2017 FORMAT (10F10.1) 
 
!read energy levels at birth - energy units 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1013) (ENERBIR(I),I=1,NTOT) 
1013 FORMAT(10F10.1) 
WRITE(2,2018) 
2018 FORMAT('THE BIRTH ENERGIES FOR THE SPECIES ARE:') 
WRITE(2,2019) (ENERBIR(I),I=1,NTOT) 
2019 FORMAT (10F10.1) 
 
!read energy threshold for reproduction - energy units 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1014) (ENERREP(I),I=1,NTOT) 
1014 FORMAT(10F10.1) 
WRITE(2,2020) 
2020 FORMAT('THE REPRODUCTION THRESHOLD ENERGIES FOR THE SPECIES 
ARE:') 
WRITE(2,2021) (ENERREP(I),I=1,NTOT) 
2021 FORMAT(10F10.1) 
 
!read values of the energy quanta for the producers - energy units 



 162

READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1015) (ENERQUAN(I),I=1,N1) 
1015 FORMAT(10F10.2) 
WRITE(2,2022) 
2022 FORMAT('THE ENERGY QUANTUM MAGNITUDES FOR THE PRODUCER SPECIES 
ARE:') 
WRITE(2,2023)(ENERQUAN(I),I=1,N1) 
2023 FORMAT(10F10.2) 
 
!read specific base metabolic rate of each species - energy unit/(total energy units x 
second) 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1016) (XMETAB(I),I=1,NTOT) 
1016 FORMAT(10E10.3) 
WRITE(2,2024) 
2024 FORMAT('THE SPECIFIC METABOLIC RATES FOR THE SPECIES ARE:') 
WRITE(2,2025) (XMETAB(I),I=1,NTOT) 
2025 FORMAT(10E10.3) 
 
!read low end of maximum age of each species in days 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1017) (MINMAXAGE(I),I=1,NTOT) 
1017 FORMAT(10I10) 
WRITE(2,2026) 
2026 FORMAT('THE LOW END OF MAXIMUM AGES FOR THE SPECIES (IN DAYS) 
ARE:') 
WRITE(2,2027) (MINMAXAGE(I),I=1,NTOT) 
2027 FORMAT(10I10) 
 
!read absoute maximum age of each species in days 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,6001) (MAXMAXAGE(I),I=1,NTOT) 
6001 FORMAT(10I10) 
WRITE(2,6002) 
6002 FORMAT('THE ABSOLUTE MAXIMUM AGES FOR THE SPECIES (IN DAYS) ARE:') 
WRITE(2, 6003) (MAXMAXAGE(I),I=1,NTOT) 
6003 FORMAT(10I10) 
 



 163

!calculate low end maximum age of species in seconds 
DO I=1,NTOT 
   XMINMAXAGE(I)=FLOAT(MINMAXAGE(I))*86400.0 
END DO 
WRITE(2,2028) 
2028 FORMAT('THE LOW END OF MAXIMUM AGES FOR THE SPECIES (IN SECONDS) 
ARE:   ****** NOTE: CALCULATED') 
WRITE(2,2029) (XMINMAXAGE(I),I=1,NTOT) 
2029 FORMAT(15E15.5) 
 
!calculate absolute maximum age of species in seconds 
DO I=1,NTOT 
   XMAXMAXAGE(I)=FLOAT(MAXMAXAGE(I))*86400.0 
END DO 
WRITE(2,6004) 
6004 FORMAT('THE ABSOLUTE MAXIMUM AGES FOR THE SPECIES (IN SECONDS) 
ARE:   ****** NOTE: CALCULATED') 
WRITE(2,6005) (XMAXMAXAGE(I),I=1,NTOT) 
6005 FORMAT(15E15.5) 
 
!read food affectedness of consumer species 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1018) (AFFECT1(N1+I),I=1,N2) 
1018 FORMAT (10F10.3) 
WRITE(2,2030) 
2030 FORMAT('THE FOOD AFFECTEDNESS VALUES FOR THE CONSUMER SPECIES 
ARE:') 
WRITE (2,2031) (AFFECT1(N1+I),I=1,N2) 
2031 FORMAT (10F10.3) 
 
!read health affectedness of all species - used together with the INTER matrix 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1019) (AFFECT2(I),I=1,NTOT) 
1019 FORMAT(10F10.1) 
WRITE(2,2032) 
2032 FORMAT('THE HEALTH AFFECTEDNESS VALUES FOR THE SPECIES ARE:') 
WRITE (2,2033) (AFFECT2(I),I=1,NTOT) 
2033 FORMAT(10F10.1) 
 
!Part 3 of the model parameter values - ecosystem structure 
 
READ (1,1001) TEXTLINE 



 164

READ (1,1001) TEXTLINE 
 
!read food matrix -  preference values of each consumer for other species - all values 
between 0.0 and +1.0 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
DO I=N1+1,NTOT 
   READ (1,1001) TEXTLINE 
   READ (1,1020) (FOOD(I,J),J=1,NTOT)       
END DO 
1020 FORMAT(10F8.3) 
WRITE(2,2034) 
2034 FORMAT('THE FOOD PREFERENCE VALUES FOR THE CONSUMERS ARE:') 
DO I=N1+1,NTOT 
   WRITE (2,2035) (FOOD(I,J),J=1,NTOT)    
END DO 
2035 FORMAT(10F10.3) 
 
!read interaction matrix - values between -1.0 and +1.0 - how species I is affected by 
species J 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
DO I=1,NTOT 
   READ (1,1001) TEXTLINE 
   READ (1,1021) (XINTER(I,J),J=1,NTOT) 
END DO 
1021 FORMAT(10F8.3) 
WRITE(2,2036) 
2036 FORMAT('HOW SPECIES I (ROW) IS AFFECTED BY SPECIES J (COLUMN) - THE 
INTERACTION VALUES ARE:') 
DO I=1,NTOT 
   WRITE (2,2037) (XINTER(I,J),J=1,NTOT) 
END DO 
2037 FORMAT(10F10.3) 
 
!Part 4 of the model parameter values - initial state of system 
 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
 
!read the initial population sizes 



 165

READ (1,1001) TEXTLINE 
READ (1,1001) TEXTLINE 
READ (1,1022) (IPOPS(I),I=1,NTOT)          
1022 FORMAT (10I10) 
WRITE(2,2038) 
2038 FORMAT('THE INITIAL POPULATION SIZES ARE:') 
WRITE(2,2039) (IPOPS(I),I=1,NTOT)  
2039 FORMAT (10I10) 
 
!close the input file 
CLOSE (UNIT=1) 
 
!////                   END OF INTIALIZATION PHASE PART 1.2 - MODEL DATA INPUT AND 
OUTPUT             //// 
 
WRITE(2,2042) 
2042 FORMAT(/,'*********************** END OF OUTPUT FROM INITIALIZATION 
PHASE PART 1 *****************************')  
 
!allocate death, birth, metabolization, and eat vectors/matrix 
ALLOCATE (AGED(1:NTOT)) 
ALLOCATE (STARVED(1:NTOT)) 
ALLOCATE (BIRTHS(1:NTOT)) 
ALLOCATE (SPMETAB(1:NTOT)) 
ALLOCATE (EAT(1:N2,1:NTOT)) 
 
!fill death, birth, and metabolization vectors 
DO I=1,NTOT 
   AGED(I)=0 
   STARVED(I)=0 
   BIRTHS(I)=0 
   SPMETAB(I)=0 
END DO 
 
!fill eat matrix 
DO I=1,N2 
   DO J=1,NTOT 
      EAT(I,J)=0 
   END DO 
END DO 
 
!fill flow matrix 
ITEMP5=NTOT+2 
DO I=1,ITEMP5 
   DO J=1,ITEMP5 
      FLOWS(I,J)=0.0 



 166

   END DO 
END DO 
 
 
!/////////////////////////////////////////////////////////////////////////////////// 
!####                          END OF INTIALIZATION PHASE PART 1                          #### 
!####                    DATA INPUT AND OUTPUT INTO "PAPER" FILE                     #### 
!/////////////////////////////////////////////////////////////////////////////////// 
 
 
!##################################################
################################################## 
!####                                 INTIALIZATION PHASE PART 2                                 #### 
!####    RANDOM INITIALIZATION PART OF THE SYSTEM COMPOSITION    #### 
!##################################################
################################################## 
 
WRITE(2,2043) 
2043 FORMAT(//, '**** OUTPUT FROM INITIALIZATION PHASE PART 2 - RANDOM 
INITIALIZATION PART OF THE SYSTEM COMPOSITION ****',/) 
 
!initialize random number generator for random initialization of system composition - use 
ISEED4 & ISEED5 from file ECOMOD.INP 
TEMP1=RANDOM4(ISEED4) 
TEMP2=RANDOM5(ISEED5) 
WRITE(2,2044) TEMP1, TEMP2 
2044 FORMAT('VALUES OBTAINED FROM INITIALIZATION CALLS TO RANDOM 
NUMBER GENERATORS FOR MODEL (ISEED4,ISEED5) ARE: ', 2F10.6) 
 
!check the population sizes, set the population presence Y/N indicators, and calculate the 
total initial population size  
IPOP1=0 
DO I=1,NTOT 
  IF (IPOPS(I) < 0) THEN 
    PRINT * 
    PRINT * 
    PRINT *, "A species initial population was negative, program was stopped" 
    PRINT * 
    PRINT *   
    WRITE(2,2045) 
    CLOSE (UNIT=2)   
    STOP            
  END IF    
  IF (IPOPS(I)==0) THEN    
    IWHO(I)=0    
  ELSE       



 167

    IWHO(I)=1                                                !switch on population presence indicator 
    IPOP1=IPOP1+IPOPS(I) 
    IF (IPOP1 > MAXPOP) THEN 
      PRINT * 
      PRINT * 
      PRINT *, "Total initial population larger than allowed maximum, program was stopped" 
      PRINT * 
      PRINT * 
      WRITE(2,2046) 
      CLOSE (UNIT=2)   
      STOP 
    ENDIF 
  ENDIF     
END DO 
2045 FORMAT(//, 'AN INITIAL POPULATION WAS NEGATIVE, PROGRAM WAS 
STOPPED')  
2046 FORMAT(//, 'TOTAL INITIAL POPULATION LARGER THAN ALLOWED 
MAXIMUM, PROGRAM WAS STOPPED') 
WRITE(2,2047) IPOP1 
2047 FORMAT('THE TOTAL INITIAL POPULATION SIZE IS (IPOP1): ', I7) 
 
!fill the location (IWHERE) and index (INDEX) matrices and initialize the age and energy 
level of individuals for each species 
K=0                                                           ! dummy counter variable 
DO I=1,NTOT 
  IF (IWHO(I)==1) THEN 
    ITEMP1=IPOPS(I) 
    IWHERE (I,1)=K+1  
    IWHERE (I,2)=K+ITEMP1 
    DO J=1,ITEMP1 
      K=K+1 
      INDEX(K)=K                                              !set the index value to the individual's 
location in WHAT and IWHAT 
      IWHAT(K)=I                                              !set the species number in the population 
matrix         
      TEMP1=RANDOM4(1)                                        !get random number, uniformly 
distributed 
        WHAT(K,3)=XMINMAXAGE(I)+TEMP1*(XMAXMAXAGE(I)-XMINMAXAGE(I)) !set 
maximum age of individual (distributed between XMINMAXAGE and XMAXMAXAGE) 
      TEMP1=RANDOM5(1)           !get another random 
number, uniformly distributed 
        WHAT(K,1)=TEMP1*WHAT(K,3)                             !set initial age for individual 
(uniformly distributed)        
        WHAT(K,2)=ENERBIR(I)+TEMP1*(ENERREP(I)-ENERBIR(I))    !set initial energy for 
individual at creation 
    END DO 



 168

  ELSE 
    IWHERE(I,1)=0 
    IWHERE(I,2)=0 
  END IF 
END DO 
 
!write details of the populations at initialization time 
WRITE(2,2048) 
2048 FORMAT(/,'-------------------- STATS OF THE POPULATIONS AT 
INITIALIZATION TIME ---------------------') 
WRITE(2,2049) 
2049 FORMAT('SPECIES PRESENT(0/1) POPULATION    START         STOP') 
DO I=1,NTOT 
  WRITE(2,2050) I, IWHO(I), IPOPS(I), IWHERE(I,1), IWHERE(I,2) 
END DO 
2050 FORMAT(I5,I9,I13,I13,I13) 
 
!write details of the individuals at initialization time 
!WRITE(2,2051) 
!2051 FORMAT(/,'-------------------- STATS OF THE INDIVIDUALS AT 
INITIALIZATION TIME ---------------------------') 
!DO I=1,NTOT 
!   WRITE(2,2052) I, IWHO(I), IPOPS(I), IWHERE(I,1), IWHERE(I,2) 
!   WRITE(2,2053) 
!   IF (IWHO(I)==1) THEN                                  !check if the species exists 
!      DO J=IWHERE(I,1),IWHERE(I,2)                       !cycle through the individuals of the 
species 
!         ITEMP1=INDEX(J)                                 !find the individual's location in the 
population matrix 
!         WRITE(2,2054) I, J, ITEMP1, IWHAT(ITEMP1), WHAT(ITEMP1,1), 
WHAT(ITEMP1,2), WHAT(ITEMP1,3)          
!      END DO 
!   END IF 
!END DO 
!2052 FORMAT('SPECIES, PRESENT, POPULATION, START, END: ',2I3,3I7) 
!2053 FORMAT('SPECIES  COUNTER    INDEX  SPECIES#        AGE        ENERGY     
MAXAGE') 
!2054 FORMAT(I5,I11,I9,I8,E17.5,F10.1,E17.5) 
 
WRITE(2,2055) 
2055 FORMAT(/,'******************** END OF OUTPUT FROM INITIALIZATION 
PHASE PART 2 ************************')  
 
 
 
 



 169

!/////////////////////////////////////////////////////////////////////////////////// 
!####                          END OF INTIALIZATION PHASE PART 2                          #### 
!####   RANDOM INITIALIZATION PART OF THE SYSTEM COMPOSITION    #### 
!/////////////////////////////////////////////////////////////////////////////////// 
 
!##################################################
################################################## 
!####                                 INTIALIZATION PHASE PART 3                                 #### 
!####                          SETTING UP, SETTING COUNTERS, ETC.                          #### 
!##################################################
################################################## 
 
WRITE(2,2056) 
2056 FORMAT(//, '****** OUTPUT FROM INITIALIZATION PHASE PART 3 - 
SETTING UP, SETTING COUNTERS, ETC. ******',/) 
 
!set the initial length of the contents of the WHAT and IWHAT matrices (IPOP2) to the 
total living population 
IPOP2=IPOP1 
WRITE(2,2057) IPOP2 
2057 FORMAT('THE LENGTH OF THE WHAT MATRIX CONTENTS (IPOP2) WAS SET 
AT (IPOP1 = TOTAL LIVING POPULATION): ', I7) 
 
!calculate the number of ecocycles per day (NCYCLES) and then re-calculate DELTIME 
NCYCLES=INT(86400.0/DELTIME+0.001) 
WRITE(2,2058) NCYCLES 
2058 FORMAT('THE NUMBER OF ECOCYCLES PER DAY IS: ',I5) 
DELTIME=86400.0/FLOAT(NCYCLES) 
WRITE(2,2059) DELTIME 
2059 FORMAT('THE NEW VALUE OF DELTIME WAS SET AT (IN SECONDS): ', F10.2) 
 
!calculate the maximum total number of cycles for the simulation 
MAXECOCYLES=INT(FLOAT(MAXDAYS)/DELTIME*86400) 
WRITE(2,2060) MAXECOCYLES 
2060 FORMAT('THE MAXUMUM POSSIBLE NUMBER OF ECOCYCLES IS: ', I7) 
 
!calculate the initial values of the daily ecocycle counter, starting time, and starting day 
ICYCLE=INT(STARTTIME/DELTIME+0.001) 
!correcting for "illegal" start time specification during first delta-time of the day - roll 
back one 
IF (ICYCLE==0) THEN 
  ISTARTDAY=ISTARTDAY-1 
  ICYCLE=NCYCLES 
  WRITE(2,2061)     
END IF 



 170

2061 FORMAT('NOTE: START DATA CORRECTED FOR "ILLEGAL" START TIME 
SPECIFICATION DURING FIRST DELTA-TIME OF THE DAY') 
STARTTIME=FLOAT(ICYCLE)*DELTIME 
WRITE(2,2062) ISTARTDAY 
2062 FORMAT('THE STARTING DAY WAS SET AT (STARTDAY, BEFORE FIRST 
ITERATION INCREMENTATION): ',I5) 
WRITE(2,2063) STARTTIME 
2063 FORMAT('THE STARTING TIME WAS SET AT (STARTTIME, BEFORE FIRST 
ITERATION INCREMENTATION, IN SECONDS): ',F10.0) 
WRITE(2,2064) ICYCLE 
2064 FORMAT('THE STARTING DAY CYCLE NUMBER IS (ICYCLE, BEFORE FIRST 
ITERATION INCREMENTATION): ',I5) 
 
!initialize iteration counters and time variables 
IECOCYCLE=0                                             !is the current ecocycle number 
IDAY=ISTARTDAY                                          !is the current day number 
IYEAR=1                                                 !is the current year number 
WRITE(2,2065) IECOCYCLE 
2065 FORMAT('THE STARTING ECOCYCLE NUMBER IS (IECOCYCLE, BEFORE FIRST 
ITERATION INCREMENTATION): ',I5) 
WRITE(2,2066) IDAY 
2066 FORMAT('THE STARTING DAY NUMBER IS (IDAY, BEFORE FIRST ITERATION 
INCREMENTATION): ',I5) 
WRITE(2,2067) IYEAR 
2067 FORMAT('THE STARTING YEAR NUMBER IS (IYEAR, BEFORE FIRST ITERATION 
INCREMENTATION): ',I5) 
 
!set the time variables to their initial values 
TIME=STARTTIME                                          !present time of the day (s) 
TTIME=0.0                                               !set initial value of total time since start of 
simulation 
TOTALTIME=FLOAT(IDAY-1)*86400.0+TIME                    !calculate value of time since 
very beginning of year of simulation start 
WRITE(2,2068) TIME 
2068 FORMAT('INITIAL TIME-OF-DAY VALUE AT END OF TIME INCREMENT (TIME, 
BEFORE FIRST INCREMENTATION): ', F10.0) 
WRITE(2,2069) TTIME 
2069 FORMAT('TOTAL SIMULATION TIME ELAPSED (TTIME, BEFORE FIRST 
INCREMENTATION): ', F10.0) 
WRITE(2,2070) TOTALTIME 
2070 FORMAT('TOTAL TIME ELAPSED SINCE START OF FIRST YEAR OF 
SIMULATION (TOTALTIME, BEFORE FIRST INCREMENTATION): ', F10.0) 
 
!calculate the total initial energy content of the system by going straight through the 
WHAT matrix 
ENERTOT=0.0 



 171

DO I=1,IPOP1 
  ENERTOT=ENERTOT+WHAT(I,2) 
END DO 
WRITE(2,2071) ENERTOT 
2071 FORMAT('TOTAL INITIAL ENERGY IN THE SYSTEM FROM SUMMING VALUES 
IN THE "WHAT" MATRIX: ', E15.5) 
 
!calculate the total energy content of each species at very start of simulation 
DO I=1,NTOT 
   ENER(I)=0.0                                           !set initial value for species total energy 
   IF (IWHO(I)==1) THEN                                  !check if the species exists 
      DO J=IWHERE(I,1),IWHERE(I,2)                       !cycle through the individuals of the 
species 
         ITEMP1=INDEX(J)                                 !find the individual's location in the 
population matrix 
         ENER(I)=ENER(I)+WHAT(ITEMP1,2)                  !sum the energy for the species 
      END DO 
   END IF 
END DO 
WRITE(2,2072) 
2072 FORMAT('ENERGY CONTENTS OF THE SPECIES AT VERY START OF 
SIMULATION:',/,'-----------------------------------------------') 
WRITE(2,2073) (I,ENER(I),I=1,NTOT) 
2073 FORMAT(I5,E15.5) 
 
!calculate the total energy content of the system by summing the species' energies 
TEMP1=0.0 
DO I=1,NTOT 
  TEMP1=TEMP1+ENER(I) 
END DO 
WRITE(2,2074) TEMP1 
2074 FORMAT('TOTAL ENERGY IN SYSTEM FROM SUMMING SPECIES ENERGIES: ', 
E15.5) 
WRITE(2,2075) ENERTOT 
2075 FORMAT('THE VALUE OBTAINED FROM SUMMING INDIVIDUAL ENERGIES 
WAS: ', E15.5) 
 
!calculate the minimum double time in seconds 
DBLETIMES=DBLETIME*3.1536E7 
WRITE(2,2076) DBLETIMES  
2076 FORMAT('MINIMUM DOUBLING TIME FOR THE SYSTEM: ', E12.5, ' SECONDS') 
 
!calculate maximum possible power into the system 
POWRMAX=ENERMAX/DBLETIMES 
WRITE(2,2077) POWRMAX  



 172

2077 FORMAT('MAXIMUM POSSIBLE POWER INTO THE SYSTEM: ', E12.5, ' ENERGY 
UNITS/SECOND') 
 
!initialize random number generators for the simulation - use ISEED1, ISEED2, & ISEED3 
from file ECOSIM.DAT 
TEMP1=RANDOM1(ISEED1) 
TEMP2=RANDOM2(ISEED2) 
TEMP3=RANDOM3(ISEED3) 
WRITE(2,2078) TEMP1, TEMP2, TEMP3 
2078 FORMAT('VALUES OBTAINED FROM INIT CALLS TO RANDOM NUMBER 
GENERATORS FOR SIMULATION (ISEED1,ISEED2,ISEED3) ARE: ',3F10.6) 
 
!calculate total energy in producer species - for weather generator 
!energy in each species calculated above 
ENERTOTP=0.0                                                 !set initial value of total energy for 
producer species 
DO I=1,N1 
   IF (IWHO(I)==1) THEN 
      ENERTOTP=ENERTOTP+ENER(I)                              !increment total energy of all 
producers 
   END IF 
END DO 
 
!print energy content of producers to output file 
WRITE(2,5001) ENERTOTP 
5001 FORMAT ('TOTAL ENERGY IN PRODUCER SPECIES:',E15.5) 
 
!initialize the weather generator (1=initialize, 2=routine use) 
CALL 
WEATHER(1,IYEAR,IDAY,TIME,DELTIME,ENERMAX,POWRMAX,ALPHA,ENERTOTP,TEM
PERAT,IRAD,ENERIN,TEMFILE,RADFILE) 
!write (10,10001) TEMPERAT, ENERIN 
!10001 format (f10.5,E15.5) 
 
 
WRITE(2,2079) 
2079 FORMAT(/,'*********************** END OF OUTPUT FROM INITIALIZATION 
PHASE PART 3 *****************************')  
 
!/////////////////////////////////////////////////////////////////////////////////// 
!####              END OF INTIALIZATION PHASE PART 3 - SETTING UP              #### 
!/////////////////////////////////////////////////////////////////////////////////// 
 
WRITE(2,2080) 
2080 FORMAT(/,'*************************** END OF OUTPUT FROM 
INITIALIZATION PHASE *********************************')  



 173

 
!/////////////////////////////////////////////////////////////////////////////////// 
!####                               END OF INITIALIZATION PHASE                                #### 
!/////////////////////////////////////////////////////////////////////////////////// 
 
!##################################################
################################################## 
!####                                   START OF ITERATION PHASE                                  #### 
!##################################################
################################################## 
 
WRITE(2,2081) 
2081 FORMAT(////,'******************************** START OF OUTPUT FROM 
ITERATION PHASE *******************************',/) 
 
OPEN (UNIT=4, FILE=ASCFILE) 
!OPEN (UNIT=5, FILE='flows.out') 
 
!increment the ecocycle counter 
9000 IECOCYCLE=IECOCYCLE+1 
 
!check if maximum number of iteration cycles has been exceeded 
IF (IECOCYCLE > MAXECOCYLES) THEN  
  GOTO 9001 
END IF 
 
!increment the daily ecocycle counter, check, and calculate the time at the end of the 
increment 
!NOTE: all things are calculated at the end of the time increment, except weather which is 
done at the centre 
ICYCLE=ICYCLE+1 
TIME=TIME+DELTIME 
IF (ICYCLE>NCYCLES) THEN 
  ICYCLE=1 
  TIME=DELTIME 
  IDAY=IDAY+1 
  IF (IDAY>365) THEN 
    IDAY=1 
    IYEAR=IYEAR+1 
  END IF 
END IF 
 
!calculate the total time (at end of time increment) since the start of the simulation 
TTIME=FLOAT(IECOCYCLE)*DELTIME 
!calculate time since start of year of simulation 
TOTALTIME=FLOAT((IYEAR-1)*365+(IDAY-1))*86400.0+TIME 



 174

 
!output the ecocycle number and the time values onto screen 
!PRINT *, IECOCYCLE, ICYCLE, IYEAR, IDAY, TIME, TTIME, TOTALTIME 
 
!kill off everyone but producers after 1 ecocycle 
!IF (IECOCYCLE==1) THEN 
!   DO I=N1+1,NTOT     !for all consumer species 
!      IF (IWHO(I)==1) THEN    !if the species still exists 
!         DO J=IWHERE(I,1),IWHERE(I,2)   !for all individuals of the 
species 
!            ITEMP1=INDEX(J) 
!            WHAT(ITEMP1,1)=WHAT(ITEMP1,3)  !age of individual equals max age for 
individual 
!         END DO 
!      END IF 
!   END DO 
!END IF 
 
!print the ecocycle etc. into the output file 
WRITE(2,2082) IECOCYCLE 
2082 FORMAT(/, '*************** START OF OUTPUT FROM ECOCYCLE',I8,'  
*************') 
WRITE(2,2083) IECOCYCLE, ICYCLE, IYEAR, IDAY 
2083 FORMAT('IECOCYCLE, ICYCLE, IYEAR, IDAY: ',4I10) 
WRITE(2,2084) TIME, TTIME, TOTALTIME 
2084 FORMAT('AT END OF THIS ECOCYCLE: TIME, TTIME, TOTALTIME WILL BE: 
',3F12.1) 
WRITE(2,2085) ENERTOT 
2085 FORMAT('TOTAL ENERGY AT START OF THIS ECOCYLE: ',E15.5) 
WRITE(2,2086) 
2086 FORMAT('SPECIES, POPULATION, AND SPECIES ENERGY AT START OF THIS 
ECOCYCLE:') 
WRITE(2,2087) (I,IPOPS(I),ENER(I),I=1,NTOT) 
2087 FORMAT(I5,I10,E15.5) 
 
!calculate energy content of producers 
!energy in each species calculated at the end of previous ecocycle (or initialization for 
ecocycle 1) 
ENERTOTP=0.0                                                 !set initial value of total energy for 
producer species 
DO I=1,N1 
   IF (IWHO(I)==1) THEN 
      ENERTOTP=ENERTOTP+ENER(I)                              !increment total energy of all 
producers 
   END IF 
END DO 



 175

 
!print energy content of producers to output file 
WRITE(2,5002) ENERTOTP 
5002 FORMAT ('TOTAL ENERGY IN PRODUCER SPECIES AT START OF THIS 
ECOCYCLE IS:',E15.5) 
 
!call the weather generator (1=initialize, 2=routine use) 
CALL 
WEATHER(2,IYEAR,IDAY,TIME,DELTIME,ENERMAX,POWRMAX,ALPHA,ENERTOTP,TE
MPERAT,IRAD,ENERIN,TEMFILE,RADFILE) 
 
!write (9,90001) TEMPERAT, ENERIN 
!90001 FORMAT (F10.5,E15.5) 
IF (ENERTOTP+ENERIN > ENERMAX) THEN 
  ENERIN = ENERMAX - ENERTOTP 
END IF 
!write (10,10001) TEMPERAT, ENERIN 
 
!print the temperature, day/night radiation flag, and the input energy (during delta-t) into 
the output file 
WRITE(2,2088) TEMPERAT, IRAD, ENERIN 
2088 FORMAT('FROM WEATHER: TEMPERAT, IRAD, ENERIN: ',F7.1,I4,E15.5) 
 
!kill off consumers after 1 ecocycle 
!IF (IECOCYCLE==1) THEN 
!   DO I=N1+1,NTOT     !for all consumer species 
!      IF (IWHO(I)==1) THEN    !if the species still exists 
!         DO J=IWHERE(I,1),IWHERE(I,2)   !for all individuals of the 
species 
!            ITEMP1=INDEX(J) 
!            WHAT(ITEMP1,1)=WHAT(ITEMP1,3)  !age of individual equals max age for 
individual 
!         END DO 
!      END IF 
!   END DO 
!END IF 
 
!'zero' flow matrix 
ITEMP5=NTOT+2 
DO I=1,ITEMP5 
   DO J=1,ITEMP5 
      FLOWS(I,J)=0.0 
   END DO 
END DO 
 
!increment ages - by individual 



 176

DO I=1,IPOP1 
   WHAT(I,1)=WHAT(I,1)+DELTIME 
END DO 
 
!see who dies of old age - by species 
DO I=1,NTOT 
  AGED(I)=0         !set death counter to 0 
END DO 
 
DO I=1,NTOT 
  IF (IWHO(I)==1) THEN 
    DO J=IWHERE(I,1),IWHERE(I,2)       
      ITEMP1=INDEX(J) 
      IF (WHAT(ITEMP1,1) > WHAT(ITEMP1,3)) THEN 
        IWHAT(ITEMP1)=0                            !this individual dies of old age 
        IPOP1=IPOP1-1                              !the total population is reduced by one 
        IPOPS(I)=IPOPS(I)-1                        !the species population is reduced by one 
        AGED(I)=AGED(I)+1      !advance death counter 
        ITEMP5=I+1                                 !calculate the species position in FLOWS matrix 
        ITEMP6=NTOT+2                              !calculate position of OUT compartment in 
FLOWS 
        FLOWS(ITEMP5,ITEMP6)=FLOWS(ITEMP5,ITEMP6)+WHAT(ITEMP1,2)  !add energy 
of dead indv to flow for ItoOUT 
        IF (IPOPS(I) <= 0) THEN 
          IWHO(I)=0                                !if no members of the species are left 
        END IF                         
      END IF 
    END DO 
  END IF 
END DO 
 
!print populations into the output file, after death from old age  
WRITE(2,2089) 
2089 FORMAT('POPULATIONS AFTER DEATH FROM OLD AGE:') 
WRITE(2,2090) (I,IPOPS(I),I=1,NTOT) 
2090 FORMAT(I5,I10) 
 
!print death counter to file 
WRITE (2,7000) 
7000 FORMAT ('DEATHS DUE TO OLD AGE:') 
WRITE(2,5003) (I,AGED(I),I=1,NTOT) 
5003 FORMAT (I5,I7) 
 
!check if there are any living individuals remaining at all after old age death 
IF (IPOP1==0) THEN                          
  WRITE(2,3009)                                   !if all species are dead, interrupt ecocycle and quit 



 177

  GO TO 9001 
END IF 
3009 FORMAT(//,'************** ECOCYCLE INTERRRUPTED SINCE NO-ONE 
REMAINS AFTER OLD AGE DYING; PROGRAM STOPPED',//)    
 
!inherent metabolism consuming energy reserves in all individuals, and death due to 
starvation 
RELRATE=EXP((TEMPERAT-20)/20) 
WRITE(2,2091) RELRATE 
2091 FORMAT('RELATIVE RATE FOR INHERENT METABOLISM (PRODUCERS ONLY, 
DEPENDENT ON TEMPERATURE): ',F10.5) 
 
DO I=1,NTOT 
  SPMETAB(I)=0      !set energy metabolized by 
each species (this time step) to 0 
END DO 
 
DO I=1,NTOT 
  STARVED(I)=0      !set death counter to 0 
END DO 
 
DO I=1,NTOT 
  IF (IWHO(I)==1) THEN 
    DO J=IWHERE(I,1),IWHERE(I,2) 
      ITEMP1=INDEX(J) 
      IF (IWHAT(ITEMP1)/=0) THEN 
        TEMP1=XMETAB(I)*WHAT(ITEMP1,2)*DELTIME           !energy loss due to 
metabolism          
        IF (I<=N1) THEN                                  !for producer species only 
          TEMP1=TEMP1*RELRATE                            !adjust metabolic rate of producers for 
temperature effect 
        END IF 
        WHAT(ITEMP1 ,2)=WHAT(ITEMP1,2)-TEMP1 
        SPMETAB(I)=SPMETAB(I)+TEMP1    !add metabolized energy to 
species' metabolized energy             
        IF (WHAT(ITEMP1,2)<ENERMIN(I)) THEN              !check if individual dies of hunger 
          IWHAT(ITEMP1)=0 
          IPOP1=IPOP1-1 
          IPOPS(I)=IPOPS(I)-1 
          STARVED(I)=STARVED(I)+1    !advance death counter for the 
species 
          ITEMP5=I+1                                     !calculate the species position in FLOWS matrix 
          ITEMP6=NTOT+2                                  !calculate position of OUT compartment in 
FLOWS 
          FLOWS(ITEMP5,ITEMP6)=FLOWS(ITEMP5,ITEMP6)+WHAT(ITEMP1,2)  !add 
energy of dead indv to flow for ItoOUT in FLOWS 



 178

          IF (IPOPS(I)<=0) THEN 
            IWHO(I)=0 
          END IF         
        END IF 
      END IF 
    END DO 
  END IF 
END DO 
 
!print death counter and total metabolized energy per species to file 
WRITE(2,5004) 
5004 FORMAT ('DEATHS DUE TO STARVATION:') 
WRITE(2,7001) (I,STARVED(I),I=1,NTOT) 
7001 FORMAT (I5,I7) 
WRITE(2,5005)  
5005 FORMAT ('TOTAL METABOLIZED ENERGY PER SPECIES:') 
WRITE(2,7002) (I,SPMETAB(I),I=1,NTOT) 
7002 FORMAT (I5,E15.5) 
 
!add metabolized energy to FLOWS for each species to OUT 
DO I=1,NTOT 
  ITEMP5=I+1                    !species I's position in FLOWS matrix 
  ITEMP6=NTOT+2                 !position of OUT compartment in FLOWS matrix 
  FLOWS(ITEMP5,ITEMP6)=FLOWS(ITEMP5,ITEMP6)+SPMETAB(I) 
END DO 
 
!check if there are any living individuals remaining after metabolism death 
IF (IPOP1==0) THEN                          
  WRITE(2,3010)                                           !if all species are dead, interrupt ecocycle and 
quit 
  GO TO 9001 
END IF    
3010 FORMAT(//,'************** ECOCYCLE INTERRRUPTED SINCE NO-ONE 
REMAINS AFTER METABOLISM; PROGRAM STOPPED',//) 
 
!calculate the total energy content of each species for the feed probability calculations 
etc. 
DO I=1,NTOT 
  ENER(I)=0.0                                         !set initial value for species total energy 
  IF (IWHO(I)==1) THEN                                !check if the species exists 
    DO J=IWHERE(I,1),IWHERE(I,2)                      !cycle through the individuals of the 
species 
      ITEMP1=INDEX(J)                                 !find the individual's location in the population 
matrix 
      IF (IWHAT(ITEMP1)/=0) THEN                      !check to see if individual is dead; if so, 
do not use in calculation 



 179

        ENER(I)=ENER(I)+WHAT(ITEMP1,2)                !sum the energy for the species 
      END IF 
    END DO 
  END IF 
END DO 
 
!calculate the total energy content of the system by summing the species' energies - for 
printout purposes only 
ENERTOT=0.0 
DO I=1,NTOT 
  ENERTOT=ENERTOT+ENER(I) 
END DO 
 
!print total energy into the output file 
WRITE(2,2094) ENERTOT 
2094 FORMAT('TOTAL ENERGY IN SYSTEM AFTER DEATH FROM OLD AGE AND FROM 
INHERENT METABOLISM: ', E15.5) 
 
!calculate the relative energy levels of each species for the feed probability calculations 
etc. 
DO I=1,NTOT 
  IF (IWHO(I)==1) THEN                                !check if the species exists 
    ENERREL(I)=ENER(I)/ENERTOT 
  ELSE 
    ENERREL(I)=0.0 
  END IF 
END DO 
 
!print populations, energies, and relative energies into the output file, after inherent 
metabolism and death from starvation 
WRITE(2,2092) 
2092 FORMAT('POPULATIONS, ENERGIES, AND RELATIVE ENERGIES AFTER 
INHERENT METABOLISM AND DEATH FROM STARVATION:') 
WRITE(2,2093) (I,IPOPS(I),ENER(I),ENERREL(I),I=1,NTOT) 
2093 FORMAT(I5,I10,E15.5,F10.5) 
 
!calculate the feed-not and feed-probability matrices for the consumer species 
!based on the food preference matrix and the relative energies of the food species 
DO I=N1+1,NTOT 
  SUM1=0.0 
  SUM2=0.0 
  DO J=1,NTOT 
    SUM1=SUM1+FOOD(I,J)*ENERREL(J) 
    SUM2=SUM2+FOOD(I,J)*ENERREL(J)*ENERREL(J) 
  END DO 
  IF (SUM1<=0.0) THEN                   !if there is no food at all for this species 



 180

    FEEDNOTPROB(I)=1.0                  !the probability of not eating is 1.0 
    DO J=1,NTOT       
      FEEDPROB(I,J)=0.0                 !and the feed probabilities are all zero 
    END DO                        
  ELSE                                  !else, if there IS food for this species 
    TEMP1=1.0-TANH(SUM1/AFFECT1(I))     !TEMP1 = probability of this species not eating 
at all for a DELTIME of 86400  
    FEEDNOTPROB(I)=TEMP1+(86400.0-DELTIME)/86400.0*(1-TEMP1)  !this is the 
probability of not eating at all during DELTIME used     
    DO J=1,NTOT 
      FEEDPROB(I,J)=(1.0-
FEEDNOTPROB(I))*(ENERREL(J)*ENERREL(J)*FOOD(I,J))/SUM2  !this is the probability 
of it feeding on this species 
    END DO 
  END IF 
END DO 
 
!print the feed-not probabilities into the output file 
WRITE(2,2095) 
2095 FORMAT('THE FEEDNOT PROBABILITIES ARE (CONSUMER SPECIES ONLY):') 
WRITE(2,2096) (FEEDNOTPROB(I),I=N1+1,NTOT) 
2096 FORMAT(10F10.5) 
 
!print the feed probabilities (matrix) into the output file 
WRITE(2,2097) 
2097 FORMAT('THE FEED PROBABILITIES ARE:') 
DO I=N1+1,NTOT 
  WRITE(2,2098) (FEEDPROB(I,J),J=1,NTOT)   
END DO 
2098 FORMAT(10F10.5) 
 
!calculate the HEALTH vector, based on the species interaction  
DO I=1,NTOT 
  IF (IWHO(I)==1) THEN 
    SUM1=0.0 
    DO J=1,NTOT 
      SUM1=SUM1+ENERREL(J)*XINTER(I,J) 
    END DO 
    HEALTH(I)=TANH(SUM1/AFFECT2(I)) 
  ELSE 
    HEALTH(I)=0 
  END IF 
END DO 
 
!print the health vector into the output file 
WRITE(2,2099) 



 181

2099 FORMAT('THE HEALTH VECTOR IS:') 
WRITE(2,2100) (HEALTH(I),I=1,NTOT) 
2100 FORMAT(10F10.5) 
 
!energy allocation to producer species - from radiation 
IF (IRAD==1) THEN                                             !go ahead if there is radiation 
  ENERTOTP=0.0                                                !set initial value of total energy for 
producer species 
  DO I=1,N1 
    IF (IWHO(I)==1) THEN 
       ENERTOTP=ENERTOTP+ENER(I)                              !increment total energy of all 
producers 
    END IF 
  END DO 
!print the total energy in the producer species to the output file   
!  WRITE(2,2101) ENERTOTP 
  DO I=1,N1 
    IF (IWHO(I)==1) THEN   
      ENERALLO(I)=ENER(I)/ENERTOTP*ENERIN                     !allocate total energy to 
each producer species 
    ELSE                                                               
      ENERALLO(I)=0.0     
    END IF 
  END DO 
!print the energy allocations to the producer species into the output file 
!  WRITE(2,2102) 
!  WRITE(2,2103) (I,ENERALLO(I),I=1,N1) 
 
!add energy allocated to each producer species to FLOWS matrix 
DO I=1,N1 
  ITEMP5=I+1                          !species I's position in FLOWS matrix 
  FLOWS(1,ITEMP5)=ENERALLO(I)         !was ABS(ENERALLO(I)) 
END DO 
    
!energy allocation to individuals in each producer species    
  DO I=1,N1                                                   !process for producers only 
!print energy allocation information into the output file 
!    WRITE(2,2104) I,I,IWHO(I)   
    IF (IWHO(I)==1) THEN                                      !check if species exists 
      ITEMP1=INT((ENERALLO(I)/ENERQUAN(I))+0.5)               !how many quanta to be 
allocated to this species 
!      WRITE(2,2105) ENERQUAN(I),ITEMP1 
      ITEMP2=IWHERE(I,1) 
      ITEMP3=IWHERE(I,2)-IWHERE(I,1) 
!      WRITE(2,2106) ITEMP2, ITEMP3       
      DO J=1,ITEMP1                                           !hand out the quanta to individuals 



 182

        K=0 
        DO WHILE (K==0) 
          L=INT(ITEMP2+ITEMP3*RANDOM1(1)+0.5) 
          ITEMP4=INDEX(L) 
          IF (IWHAT(ITEMP4)/=0) THEN 
            WHAT(ITEMP4,2)=WHAT(ITEMP4,2)+ENERQUAN(I) 
!            WRITE(2,2107) J, L, ITEMP4 
            K=1 
          END IF 
        END DO 
      END DO          
    END IF 
  END DO 
ELSE 
!  WRITE(2,2108)   
END IF 
!2101 FORMAT('THE TOTAL ENERGY IN THE PRODUCER SPECIES IS: ', E15.5) 
!2102 FORMAT('THE ENERGY ALLOCATIONS TO THE PRODUCER SPECIES, BY 
SPECIES, ARE:') 
!2103 FORMAT(I5,E15.5) 
!2104 FORMAT('ENERGY ALLOCATION INFORMATION FOR PRODUCER SPECIES: 
',I4,';   IWHO(',I4,') IS: ',I2,';    INFORMATION FOLLOWING:') 
!2105 FORMAT('    ENERGY QUANTUM SIZE: ',F10.3,'; NUMBER OF QUANTA 
ALLOCATED: ', I7) 
!2106 FORMAT('    START OF THIS SPECIES IN THE MATRIX IWHERE: ', I8,' VALUE 
OF ITEMP3 IS: ',I8) 
!2107 FORMAT('    QUANTUM # ',I8,'     GIVEN TO SPECIES MEMBER # ',I8,' (IN 
IWHERE)      AT POSITION # ',I8,' (IN WHAT AND IWHAT)') 
!2108 FORMAT('THERE WAS NO ENERGY ALLOCATION TO PRODUCER SPECIES SINCE 
THE RADIATION LEVEL WAS ZERO') 
 
!zero eat matrix 
DO I=1,N2 
   DO J=1,NTOT 
      EAT(I,J)=0 
   END DO 
END DO 
 
!feeding by consumer species 
!WRITE(2,2109) 
!2109 FORMAT('INFORMATION ABOUT FEEDING BY CONSUMER SPECIES:') 
DO I=N1+1,NTOT 
!  WRITE(2,2110) I, I, IWHO(I), I, IPOPS(I) 
  IF (IWHO(I)==1) THEN                                                  !continue only if there are 
individuals for this species 
!  WRITE(2,2111) I, IWHERE(I,1), IWHERE(I,2) 



 183

    DO J=IWHERE(I,1),IWHERE(I,2)                                        !cycle through individuals of 
this species        
      ITEMP1=INDEX(J)                                                   !find location in IWHAT and WHAT 
matrices 
!      WRITE(2,2112) J, ITEMP1, IWHAT(ITEMP1)       
      IF (IWHAT(ITEMP1)/=0) THEN                                        !if not dead, maybe look for 
food 
        TEMP2=RANDOM2(1)                                                !obtain random probability 
between 0 and 1 
        TEMP3=FEEDNOTPROB(I)                                            !probability it won't feed at all  
        IF (TEMP2>TEMP3) THEN                                           !if probability high enough, it 
will attempt to feed         
          DO K=1,NTOT                                                   !choose a prey species 
            TEMP3=TEMP3+FEEDPROB(I,K) 
            IF (TEMP2<=TEMP3) EXIT 
          END DO                                                        !K is now the target species 
!          WRITE(2,2113) FEEDNOTPROB(I), TEMP2, K                
          IF (IWHO(K)==1) THEN                                          !if no members of target species 
left, then not eat 
            ITEMP2=IWHERE(K,1)                                          !first member of target range 
            ITEMP3=IWHERE(K,2)-ITEMP2                                   !rest of target range 
            L=0                                                         !set flag that no food has yet been found 
            DO WHILE (L==0)                                             !continue to hunt while the flag L==1 
              M=INT(ITEMP2+ITEMP3*RANDOM2(1)+0.5)                       !randomly pick a 
target index value inside the range 
              ITEMP4=INDEX(M)                                           !this is the target organism 
!              WRITE(2,2114) IWHERE(K,1),IWHERE(K,2),M,ITEMP4 
              IF (IWHAT(ITEMP4)/=0) THEN                                !check to see if target 
organism really exists 
                IF (I /= J .OR. ITEMP4 /= ITEMP1) THEN                  !prevent organism from 
eating itself 
                  TEMP4=0.1*WHAT(ITEMP1,2)                              !find 10% of the energy 
content of the feeding individual 
                  IF (WHAT(ITEMP4,2)>TEMP4) THEN                        !if food individual has 
more energy content than 10% of feeder 
!                    WRITE(2,2115) WHAT(ITEMP1,2),TEMP4,WHAT(ITEMP1,2)+TEMP4                   
                    WHAT(ITEMP1,2)=WHAT(ITEMP1,2)+TEMP4                 !then the feeding 
individual only gets 10% of its energy 
                    ITEMP5=K+1                                          !position of food species in FLOWS 
matrix 
                    ITEMP6=I+1                                          !position of consumer in FLOWS matrix 
                    ITEMP7=NTOT+2                                       !position of OUT in FLOWS matrix 
                    FLOWS(ITEMP5,ITEMP6)=FLOWS(ITEMP5,ITEMP6)+TEMP4     !add energy 
consumed to flow from food spp to consumer spp 
                    FLOWS(ITEMP5,ITEMP7)=FLOWS(ITEMP5,ITEMP7)+(WHAT(ITEMP4,2)-
TEMP4)  !add energy 'lost' to flow from food spp to out 



 184

                  ELSE 
!                   WRITE(2,2116) 
WHAT(ITEMP1,2),WHAT(ITEMP4,2),WHAT(ITEMP1,2)+WHAT(ITEMP4,2)                  
                    WHAT(ITEMP1,2)=WHAT(ITEMP1,2)+WHAT(ITEMP4,2)        !else it gets the 
entire energy content of the food individual 
                    ITEMP5=K+1                                          !position of food species in FLOWS 
matrix 
                    ITEMP6=I+1                                          !position of consumer in FLOWS matrix 
                    FLOWS(ITEMP5,ITEMP6)=FLOWS(ITEMP5,ITEMP6)+WHAT(ITEMP4,2)  
!add energy of indv to flow from food spp to consumer spp 
                  END IF 
                  L=1                                                   !set the flag that food has been found and 
to stop eating                        
                  IWHAT(ITEMP4)=0                                       !remove the individual just eaten 
from the system 
                  IPOPS(K)=IPOPS(K)-1                                   !decrement the food species 
population by one 
                  EAT(I-N1,K)=EAT(I-N1,K)+1                             !increase number of k's eaten by 
i's in eat matrix by 1                     
                  IF (IPOPS(K)==0)  THEN                                !check to see if the population still 
has any members 
                    IWHO(K)=0                                           !if no members left, set population 
indicator flag to zero 
                  END IF 
                  IPOP1=IPOP1-1                                         !decrement the entire population by 
one                
!                  WRITE(2,2117)IPOPS(K),IWHO(K),IPOP1 
                ELSE 
!                  WRITE(2,2118) 
                  !NOTE: this situation will only occur for a cannibalistic species, when a 
consumer just tried to eat himself; this is not 
                  !allowed, but it is now possible there are no other members of this species left; 
in that case, the feeding attempt should 
                  !be abandoned 
                  IF (IPOPS(I)==1) EXIT                                 !exit from the feeding loop for this 
individual consumer                                  
                END IF 
              ELSE 
!                WRITE(2,2119) IWHAT(ITEMP4)  
              END IF 
            END DO 
          ELSE 
!            WRITE(2,2120) 
          END IF 
        ELSE 
!          WRITE(2,2121) TEMP2, TEMP3 



 185

        END IF 
      ELSE 
!       WRITE(2,2122) 
      END IF 
    END DO 
  ELSE 
!    WRITE(2,2123) 
  END IF 
END DO 
!2110 FORMAT('  FEEDING INFORMATION FOR CONSUMER SPECIES: ',I4,';     
IWHO(',I4,') IS: ',I2,';    POPULATION(',I4,') IS: ',I7) 
!2111 FORMAT('    LOCATION OF CONSUMER SPECIES ',I4,' IN INDEX MATRIX - 
START: ',I7,';    END: ',I7) 
!2112 FORMAT('      LOCATION OF INDIVIDUAL IN INDEX MATRIX IS: ',I7,';   
LOCATION IN IWHAT MATRIX: ',I7,';   VALUE OF IWHAT:',I5) 
!2113 FORMAT('        FEED_NOT PROBABILITY WAS: ',F7.4,';  RANDOM PROBABILITY 
WAS: ', F7.4,'; THE CHOSEN TARGET SPECIES WAS: ',I5) 
!2114 FORMAT('        START AND END OF FEED RANGE IN WHAT MATRICES: ',2I7,';    
NUMBER PICKED WAS: ',I7,';    IN INDEX:',I7) 
!2115 FORMAT('        INITIAL ENERGY CONTENT OF CONSUMER: ',E12.5,'   IT GETS 
10% OF ITS ENERGY: ',E12.5,'   FINAL ENERGY: ',E12.5) 
!2116 FORMAT('        INITIAL ENERGY CONTENT OF CONSUMER: ',E12.5,'   IT GETS 
FROM FEEDING: ',E12.5,'   FINAL ENERGY: ',E12.5) 
!2117 FORMAT('        TARGET POPULATION NOW: ',I7,';    IWHO VALUE OF TARGET: 
',I2,';    TOTAL LIVING POPULATION NOW: ',I7) 
!2118 FORMAT('        OOPS! THIS IS A CANNIBALISTIC SPECIES AND THIS GUY 
JUST TRIED TO EAT HIMSELF - NOT ALLOWED - TRY AGAIN')   
!2119 FORMAT('        OOPS! THE IWHAT VALUE FOR THIS GUY IS NOW',I2,'; THAT 
MEANS IT''S DEAD - TRY FOR ANOTHER ONE OF THIS SPECIES') 
!2120 FORMAT('        NO FEEDING BY THIS GUY BECAUSE THERE IS NO POPULATION 
LEFT FOR THE TARGET SPECIES') 
!2121 FORMAT('        RANDOM PROBABILITY WAS: ',F7.4,';  LESS THAN FEED_NOT 
PROBABILITY: ',F7.4,'  THUS, NO FEEDING BY THIS GUY') 
!2122 FORMAT('        THIS INDIVIDUAL IS DEAD - NO FEEDING BEHAVIOR') 
!2123 FORMAT('    NO FEEDING BY THIS SPECIES SINCE THERE IS NO 
POPULATION') 
 
!write eat matrix to output file 
DO I=1,N2 
  WRITE (3,30) (EAT(I,J),J=1,NTOT) 
  30 FORMAT (30I7) 
END DO 
 
!matrix cleanup - Part 1 - filter out the dead ones 
!WRITE(2,2124) 



 186

!2124 FORMAT('INFORMATION ABOUT MATRIX CLEANUP PART 1 - FILTERING OUT 
THE DEAD ONES:') 
ITEMP1=IPOP2-IPOP1                           !ITEMP1 is now the number of dead ones to filter 
out every ecocycle 
ITEMP2=0                                     !ITEMP2 is the number of dead ones found so far 
!WRITE(2,2125) IPOP2, IPOP1,ITEMP1 
!2125 FORMAT('  LIVING POPULATION AT START OF ECOCYCLE: ',I7,';    AT END: 
',I7,'    DEAD ONES TO FILTER OUT: ',I7) 
IF (ITEMP1 /= 0) THEN                        !only do this if there are dead individuals present 
  K=IPOP2                                    !set K - pointer at bottom of WAHT and IWHAT matrices 
- it will move up gradually 
  DO I=1,IPOP2                               !maximally, search through the entire matrix 
    IF (IWHAT(I)==0) THEN                    !if dead, try to exchange with the one on the 
bottom, after checking if OK 
      ITEMP2=ITEMP2+1                        !increment the number of dead ones found 
!      WRITE(2,2126) I, ITEMP2       
      IF (I>=K) THEN                         !check to see if it no longer makes sense to find more - 
if YES, exit from loop 
!        WRITE(2,2127) I,K 
        EXIT       
      END IF             
      DO WHILE (IWHAT(K)==0)                 !bottom one is dead - pop up one place 
        K=K-1                                !move pointer up one place 
        ITEMP2=ITEMP2+1                      !increment the number of dead ones found 
!        WRITE(2,2128) ITEMP2                 
      END DO                
      IF (I>=K) THEN                         !check to see if it no longer makes sense to find more - 
if YES, exit from loop  
!        WRITE(2,2127) I,K 
        EXIT       
      END IF       
      IWHAT(I)=IWHAT(K)                      !move the next live one (from the bottom) into the 
position of the dead one 
      WHAT(I,1)=WHAT(K,1) 
      WHAT(I,2)=WHAT(K,2) 
      WHAT(I,3)=WHAT(K,3)     
      K=K-1                                  !move pointer up one place 
!      WRITE(2,2129) K+1,I,K        
!      WRITE(2,2130) IWHAT(I),WHAT(I,1),WHAT(I,2),WHAT(I,3)                                                     
      IF (ITEMP2>=ITEMP1) THEN               !all the dead ones were found - quit the loop 
!        WRITE(2,2131) ITEMP2 
        EXIT 
      END IF 
    END IF 
  END DO 
!  WRITE(2,2132) 



 187

ELSE 
!  WRITE(2,2133)  
END IF 
!2126 FORMAT('  DEAD ONE FOUND AT LOCATION',I7,' IN THE IWHAT MATRIX;    
TOTAL DEAD ONES FOUND SO FAR: ',I7) 
!2127 FORMAT('  IN FINDING DEAD ONES I IS NOW PAST THE K POINTER, DON''T 
BOTHER FINDING THE REST;  I AND K ARE: ',2I7) 
!2128 FORMAT('  WHOA! FOUND ANOTHER DEAD ONE WHILE TRYING TO EXCHANGE 
POSITIONS;    TOTAL DEAD FOUND SO FAR: ',I7) 
!2129 FORMAT('  INDIVIDUAL MOVED UP FROM BOTTOM OF MATRIX 
(POSITION',I7,') TO POSITION',I7,'    K POINTER NOW AT: ',I7) 
!2130 FORMAT('    INDIVIDUAL MOVED WAS SPECIES: ',I4,';    AGE: ',E12.5,';    
ENERGY: ',E12.5,';    MAXAGE:',E12.5) 
!2131 FORMAT('ALL ',I7,' DEAD ONES WERE FOUND AND DEALT WITH - EXITING 
FROM LOOP') 
!2132 FORMAT('END OF MATRIX CLEANUP PART 1 - FILTERING OUT THE DEAD 
ONES')  
!2133 FORMAT('  NO DEAD ONES TO FILTER OUT - CARRY ON') 
 
!check to see if the populations still make sense etc. 
!re-calculate energy in each species 
DO I=1,NTOT 
  ENER(I)=0.0                                           !set initial value for species total energy 
  IF (IWHO(I)==1) THEN                                  !check if the species exists 
    DO J=IWHERE(I,1),IWHERE(I,2)                        !cycle through the individuals of the 
species 
      ITEMP1=INDEX(J)                                   !find the individual's location in the population 
matrix 
      ENER(I)=ENER(I)+WHAT(ITEMP1,2)                    !sum the energy for the species 
    END DO 
  END IF 
END DO 
WRITE(2,2134) 
2134 FORMAT('CHECKING UP ON THE POPULATIONS TO SEE IF THEY STILL MAKE 
SENSE:') 
WRITE(2,2135) 
2135 FORMAT('SPECIES#   PRESENCE   POPULATION   TOTAL SPECIES ENERGY') 
WRITE(2,2136) 
2136 FORMAT('--------   --------   ----------   --------------------') 
WRITE(2,2137) (I,IWHO(I),IPOPS(I),ENER(I),I=1,NTOT) 
2137 FORMAT(I6,I11,I13,E23.5) 
ITEMP1=0.0 
DO I=1,NTOT 
  ITEMP1=ITEMP1+IPOPS(I) 
END DO 
WRITE(2,2138)ITEMP1,IPOP1,K 



 188

2138 FORMAT('TOTAL # INDIVIDUALS FROM SUMMING: ',I10,'    IPOP1: ',I10,'    
INDEX K AT: ',I10) 
 
!reproduction - all species - process individuals in sequence in the WHAT matrix 
!WRITE(2,2139) 
!2139 FORMAT('REPORT FROM REPRODUCTION SECTION:') 
 
DO I=1,NTOT 
  BIRTHS(I)=0       !set birth counter to 0 
END DO 
 
DO I=1,IPOP1                                             !cycle through the entire population, living and 
dead 
   J=IWHAT(I)                                            !J is now the species number 
   IF (WHAT(I,2)>ENERREP(J)) THEN                        !this one is reproducing 
      IPOP1=IPOP1+1                                      !update total living population 
      BIRTHS(J)=BIRTHS(J)+1     !increase species birth counter 
      IF (IPOP1 > MAXPOP) THEN                           !test the size of the new total population 
        WRITE(2,3003) 
        WRITE(2,3004) 
        WRITE(2,3005) IPOP1, MAXPOP 
        WRITE(2,3006) 
        STOP       
      END IF       
      IPOPS(J)=IPOPS(J)+1                                !update species population 
      WHAT(I,2)=WHAT(I,2)-(2.0-0.5*HEALTH(J))*ENERBIR(J) !"mother" individual loses 
energy in accordance with HEALTH of species 
      ITEMP5=J+1                                         !postion of reproducing spp in FLOWS matrix 
      ITEMP6=NTOT+2                                      !position of OUT in FLOWS matrix 
      FLOWS(ITEMP5,ITEMP6)=FLOWS(ITEMP5,ITEMP6)+(2.0-
0.5*HEALTH(J))*ENERBIR(J)-ENERBIR(J)  !add nrg mother loses minus energy of baby to 
flow 
      IWHAT(IPOP1)=J                                     !baby inherits species 
      WHAT(IPOP1,1)=0.0                                  !baby born at age zero       
      WHAT(IPOP1,2)=ENERBIR(J)                           !allocate newborn energy at birth 
      TEMP1=RANDOM3(1)      !get random number 
      WHAT(IPOP1,3)=XMINMAXAGE(J)+TEMP1*(XMAXMAXAGE(J)-XMINMAXAGE(J))
  !allocate maximum age between XMAXMAXAGE and XMINMAXAGE 
!      WRITE(2,2141)IPOP1,IPOP1,IPOPS(J) 
   END IF 
END DO 
!2140 FORMAT('  LOCATION IN WHAT:',I7,';    SPECIES:',I5,';    ENERGY OF THIS 
INDIVIDUAL NOW: ',E15.5)   
!2141 FORMAT('    NEW INDIVIDUAL CREATED AT LOCATION:',I7,'    TOTAL 
POPULATION NOW:',I7,'    SPECIES POPULATION NOW:',I7) 



 189

3003 FORMAT(///,'***************************** PROBLEM REPORT 
*******************************') 
3004 FORMAT('DURING REPRODUCTION PHASE, TOTAL POPULATION BECOMES 
LARGER THAN MAXIMUM ALLOWED') 
3005 FORMAT('TOTAL POPULATION IS: ',I15,';    MAXIMUM ALLOWED IS: ',I15) 
3006 FORMAT('PROGRAM STOPPED BEFORE FATAL CRASH OCCURRED') 
 
!print number of births to file 
WRITE(2,5006) 
5006 FORMAT ('BIRTHS THIS CYCLE:') 
WRITE(2,7003) (I,BIRTHS(I),I=1,NTOT) 
7003 FORMAT (I5,I7) 
 
!set total matrix length again to total living population 
IPOP2=IPOP1 
!WRITE(2,2142) IPOP1,IPOP2 
!2142 FORMAT('TOTAL LIVING POPULATION (IPOP1) NOW: ',I10,';    MATRIX LENGTH 
(IPOP2) NOW SET AT: ',I10) 
 
!matrix cleanup - Part 2 - rebuild INDEX and WHERE matrices 
K=0                                      !set the index counter to zero 
!WRITE(2,2143) 
!2143 FORMAT('INFORMATION FROM INDEX AND WHERE MATRIX REBUILDING 
SECTION') 
DO I=1,NTOT                              !do this for each species 
  IF (IWHO(I)==0) THEN                   !if there are no members of this species present 
    IWHERE(I,1)=0                        !set the locations in the INDEX matrix to zero 
    IWHERE(I,2)=0 
!    WRITE(2,2144)I 
!    WRITE(2,2145)I,IWHO(I),IWHERE(I,1),IWHERE(I,2)   
  ELSE                                   !else, set the locations 
    IWHERE(I,1)=K+1 
    IWHERE(I,2)=K+IPOPS(I) 
!    WRITE(2,2146)I 
!    WRITE(2,2147)I,IWHO(I),IWHERE(I,1),IWHERE(I,2)          
    L=0                                  !set the hit counter for the species to zero 
    DO J=1,IPOP1                         !go find IPOPS(I) members of this species 
      IF (IWHAT(J)==I) THEN              !found one 
        K=K+1                            !increment the index counter 
        INDEX(K)=J                       !record the occurrence in INDEX 
        L=L+1                            !increment the hit counter for the species 
      END IF 
      IF (L>=IPOPS(I)) EXIT              !test to see if all have been found; if YES, exit the loop 
for the species 
    END DO 
!    WRITE(2,2148)I,IPOPS(I),L 



 190

  END IF 
END DO 
!2144 FORMAT('FOR SPECIES (',I5,'): NO POPULATION LEFT ---') 
!2145 FORMAT('  SPECIES= ',I5,'    IWHO= ',I2,'    IWHERE(I,1)= ',I7,'    IWHERE(I,2)= 
',I7) 
!2146 FORMAT('FOR SPECIES (',I5,'): THERE STILL IS A LIVING POPULATION') 
!2147 FORMAT('  SPECIES= ',I5,'    IWHO= ',I2,'    IWHERE(I,1)= ',I7,'    IWHERE(I,2)= 
',I7) 
!2148 FORMAT('  SPECIES= ',I5,'    SPECIES POPULATION= ',I10,'    INDIVIDUALS 
FOUND= ',I10) 
 
!total population check 
ITEMP1=0 
DO I=1,NTOT 
  ITEMP1=ITEMP1+IPOPS(I) 
END DO 
WRITE(2,2149)IPOP1,ITEMP1 
2149 FORMAT('POPULATION CHECK: TOTAL LIVING POPULATION (IPOP1)= ',I10,';    
SUM OF SPECIES POPULATIONS= ',I10) 
IF (IPOP1 /= ITEMP1) THEN 
  WRITE(2,2150) 
  STOP 
END IF 
2150 FORMAT(///,' ************************* POPULATION CHECK ERROR!!!!! ---- 
PROGRAM STOPPED',///) 
 
!calculate the total energy content of each species at the end of this ecocyle 
WRITE(2,2151) IECOCYCLE 
2151 FORMAT('FINAL REPORT AT END OF ECOCYCLE',I8,':',/,'    I   IWHO   IPOPS         
ENERGY') 
WRITE(2,2152) 
2152 FORMAT('----------------------------------------------------------------------') 
DO I=1,NTOT 
  ENER(I)=0.0                                           !set initial value for species total energy 
  IF (IWHO(I)==1) THEN                                  !check if the species exists 
    DO J=IWHERE(I,1),IWHERE(I,2)                        !cycle through the individuals of the 
species 
      ITEMP1=INDEX(J)                                   !find the individual's location in the population 
matrix 
      ENER(I)=ENER(I)+WHAT(ITEMP1,2)                    !sum the energy for the species 
    END DO 
  END IF 
END DO 
WRITE(2,2153)(I,IWHO(I),IPOPS(I),ENER(I),I=1,NTOT) 
2153 FORMAT(I5,I7,I10,E15.5) 
 



 191

!calculate the total energy content of the system at the end of this ecocyle 
ENERTOT=0.0 
DO I=1,NTOT 
  ENERTOT=ENERTOT+ENER(I) 
END DO 
WRITE(2,2154) IECOCYCLE, ENERTOT 
2154 FORMAT('THE TOTAL ENERGY CONTENT OF THE SYSTEM AT THE END OF 
ECOCYCLE',I8,' IS: ',E15.5) 
 
!print flows to file 
!DO I=1,NTOT+2 
!  WRITE (5,501) (FLOWS(I,J),J=1,NTOT+2) 
!  501 FORMAT (8F15.5) 
!END DO 
 
!WRITE (5,502) TEXTLINE 
!502 FORMAT (A1) 
 
!calculate ascendency for this time step and write to file 
CALL ASCEND(FLOWS,A) 
!print *, A 
WRITE(4,401) A 
401 FORMAT (F15.5) 
WRITE(2,2161) A 
2161 FORMAT ('ASCENDENCY FOR ECOCYCLE:',F15.5) 
 
WRITE(2,2155)IECOCYCLE 
2155 FORMAT('************************* END OF OUTPUT FROM ECOCYCLE',I8,' 
***********************') 
 
!return to the top for the next iteration cycle 
GOTO 9000 
 
9001 CONTINUE 
 
WRITE(2,2156) 
2156 FORMAT(/,'***************************** END OF OUTPUT FROM ITERATION 
PHASE ***********************************')  
 
!/////////////////////////////////////////////////////////////////////////////////// 
!####                                     END OF ITERATION PHASE                                    #### 
!/////////////////////////////////////////////////////////////////////////////////// 
 
CALL CPU_TIME(C) 
E=C 
RTIME=E-S 



 192

WRITE(2,2160) RTIME 
2160 FORMAT ('TIME TO RUN SIMULATION:',F10.2,'SECONDS') 
 
!##################################################
################################################## 
!####                                     START OF ENDING PHASE                                      #### 
!##################################################
################################################## 
 
!write ending message and close the output file 
WRITE(2,2157) 
2157 FORMAT(////, 
'********************************************************************************
****') 
WRITE(2,2158) 
2158 
FORMAT('***********************************************************************
*************') 
WRITE(2,2159) 
2159 FORMAT('********************************* END OF OUTPUT 
************************************') 
WRITE(2,2158) 
WRITE(2,2158) 
 
CLOSE (UNIT=2)  
CLOSE (UNIT=3)  
CLOSE (UNIT=4)  
!CLOSE (UNIT=5) 
!close (unit=9) 
!close (unit=10) 
!close (unit=11) 
!close (unit=12) 
!close (unit=13) 
!close (unit=14) 
!CLOSE (UNIT=15) 
!CLOSE (UNIT=16) 
 
END PROGRAM ECOSYS 
 
!/////////////////////////////////////////////////////////////////////////////////// 
!####                                     END OF ENDING PHASE                                           #### 
!/////////////////////////////////////////////////////////////////////////////////// 
 
!/////////////////////////////////////////////////////////////////////////////////// 
!####                                       END OF MAIN PROGRAM                                       #### 
!/////////////////////////////////////////////////////////////////////////////////// 



 193

 
 
!##################################################
################################################## 
!####                                           SUBROUTINES                                                  #### 
!##################################################
################################################## 
 
!******************************************************************************** 
!******************************************************************************** 
 
!####                              START OF SUBROUTINE WEATHER                              #### 
SUBROUTINE 
WEATHER(ICASE,IYEAR,IDAY,TIMEOFDAY,DELTIME,ENERMAX,POWRMAX,ALPHA,EN
ERTOTP,T,IRAD,ENERGY,TEMFILE,RADFILE) 
 
!declarations 
IMPLICIT NONE 
INTEGER*4,INTENT(IN):: ICASE    !weather case being dealt 
with; 1=initialization, 2=routine operation 
INTEGER*4,INTENT(IN):: IDAY    !day for which data is needed 
(days) 
INTEGER*4,INTENT(OUT):: IRAD    !radiation flag (0=nighttime-
no radiation at all; 1=daytime) 
INTEGER*4,INTENT(IN):: IYEAR    !year for which data is 
needed (years) 
INTEGER*4:: IERROR1     !error code from temperature 
subroutine 
INTEGER*4:: IERROR2     !error code from radiation 
subroutine 
REAL*4,INTENT(IN):: ALPHA     !variable used in the 
calculation of the attenuation factor for energy input (no units) 
REAL*4,INTENT(IN):: DELTIME    !time increment (seconds) 
REAL*4:: DELX       !delta used in x for solving 
REAL*4,INTENT(OUT):: ENERGY    !energy into system during 
delta-t 
REAL*4,INTENT(IN):: ENERMAX    !maximum total energy for 
system (energy units) 
REAL*4,INTENT(IN):: ENERTOTP    !total energy present in the 
producer species only (energy units) 
REAL*4:: F1       !first function value 
REAL*4:: F2       !second function value 
REAL*4,PARAMETER:: PI=3.1415926536   !value of pi 
REAL*4,INTENT(IN):: POWRMAX    !maximum total power input 
for the system (energy units/second) 



 194

REAL*4:: R       !the relative radiation 
intensity (0.0 <= R <= 1.0) 
REAL*4,INTENT(OUT):: T     !the temperature (deg. C) 
REAL*4:: TEMP1      !temporary variable to hold 
random value 
REAL*4,INTENT(IN):: TIMEOFDAY    !the time of day for which 
data is needed (seconds) 
REAL*4:: X       !independent variable for 
attenuation curve (no units) 
REAL*4:: XNORM      !normalization value for the 
attenuation factor  
CHARACTER (LEN=14):: TEMFILE    !input file name for 
temperature subroutine 
CHARACTER (LEN=14):: RADFILE    !input file name for radiation 
subroutine 
 
SELECT CASE (ICASE) 
 
  CASE(1) 
    WRITE(2,101) 
101 FORMAT(/,'****** MESSAGES FROM SUBROUTINE WEATHER DURING 
INITIALIZATION ******') 
!iniitialize temperature subroutine 
    CALL TEMPERAT(0,IYEAR,IDAY,TIMEOFDAY,T,IERROR1,TEMFILE) 
 IF (IERROR1 /= 0) THEN 
   WRITE (2,102) 
   102 FORMAT (/,'ERROR DURING TEMPERATURE SUBROUTINE 
INITIALIZATION') 
   STOP 
 ELSE 
   WRITE (2,103) 
   103 FORMAT (/,'TEMPERATURE SUBROUTINE INITIALIZED') 
 END IF 
!initialize radiation subroutine 
    CALL RADIAT(0,IYEAR,IDAY,TIMEOFDAY,IRAD,R,IERROR2,RADFILE) 
 IF (IERROR2 /= 0) THEN 
   WRITE (2,104) 
   104 FORMAT (/,'ERROR DURING RADIATION SUBROUTINE 
INITIALIZATION') 
   STOP 
 ELSE 
   WRITE (2,105) 
   105 FORMAT (/,'RADIATION SUBROUTINE INITIALIZED') 
 END IF 
  
    DELX=0.01 



 195

    X=0.5   
    F1=EXP(-ALPHA/X)*(1+ALPHA/X)-EXP(-ALPHA) 
1   X=X+DELX 
    F2=EXP(-ALPHA/X)*(1+ALPHA/X)-EXP(-ALPHA) 
    IF (ABS(F2-F1)<0.000001) THEN 
      GO TO 2 
    ENDIF         
    IF (ABS(F2) < ABS(F1)) THEN 
      F1=F2 
      GO TO 1     
    ELSE     
      DELX=-DELX/2.0 
      F1=F2 
      GO TO 1                 
    END IF                 
 
2   WRITE(2,106) ALPHA 
106 FORMAT('THE VALUE OF ALPHA FOR THE ATTENUATION FACTOR CURVE IS: 
',F10.5) 
    WRITE(2,107) X 
107 FORMAT('THE CORRESPONDING VALUE OF X FOUND FOR THE ATTENUATION 
FACTOR CURVE IS: ',F10.5) 
    XNORM=X*(1.0-EXP(-ALPHA/X)/EXP(-ALPHA)) 
    WRITE(2,108) XNORM 
108 FORMAT('THE NORMALIZATION VALUE FOR THE ATTENUATION FACTOR 
CURVE IS: ',F10.5) 
    WRITE(2,109) 
109 FORMAT('****** END OF MESSAGES FROM SUBROUTINE WEATHER DURING 
INITIALIZATION ******') 
    RETURN 
   
  CASE(2) 
    !check inputs 
    IF (IYEAR <= 0) THEN 
      PRINT * 
      PRINT * 
      PRINT *, "MESSAGE FROM SUBROUTINE WEATHER" 
      PRINT *, "VALUE OF IYEAR OUTSIDE ALLOWABLE LIMITS" 
      PRINT *, "VALUE OF IYEAR WAS: ",IYEAR 
      PRINT *, "PROGRAM WAS STOPPED" 
      STOP 
    ENDIF 
    IF ((IDAY < 1) .OR. (IDAY > 365)) THEN 
      PRINT * 
      PRINT * 
      PRINT *, "MESSAGE FROM SUBROUTINE WEATHER" 



 196

      PRINT *, "VALUE OF IDAY OUTSIDE ALLOWABLE LIMITS" 
      PRINT *, "VALUE OF IDAY WAS: ",IDAY 
      PRINT *, "PROGRAM WAS STOPPED" 
      STOP 
    ENDIF 
    IF ((TIMEOFDAY < 0.0) .OR. (TIMEOFDAY > 86400.0)) THEN 
      PRINT * 
      PRINT * 
      PRINT *, "MESSAGE FROM SUBROUTINE WEATHER" 
      PRINT *, "TIMEOFDAY VALUE OUTSIDE ALLOWABLE LIMITS" 
      PRINT *, "TIMEOFDAY VALUE WAS: ",TIMEOFDAY 
      PRINT *, "PROGRAM WAS STOPPED" 
      STOP 
    ENDIF 
 
!call temperature subroutine 
    CALL TEMPERAT(1,IYEAR,IDAY,TIMEOFDAY,T,IERROR1,TEMFILE) 
 IF (IERROR1 /= 0) THEN 
   PRINT * 
   PRINT * 
   PRINT *, "MESSAGE FROM SUBROUTINE WEATHER" 
   PRINT *, "ERROR FROM SUBROUTINE TEMPERAT" 
   PRINT *, "ERROR CODE WAS: ", IERROR1 
   PRINT *, "PROGRAM WAS STOPPED" 
   STOP 
 END IF 
 
!call radiation subroutine 
    CALL RADIAT(1,IYEAR,IDAY,TIMEOFDAY,IRAD,R,IERROR2,RADFILE) 
 IF (IERROR2 /= 0) THEN 
   PRINT * 
   PRINT * 
   PRINT *, "MESSAGE FROM SUBROUTINE WEATHER" 
   PRINT *, "ERROR FROM SUBROUTINE RADIAT" 
   PRINT *, "ERROR CODE WAS: ", IERROR2 
   PRINT *, "PROGRAM WAS STOPPED" 
   STOP 
 END IF 
 !write (11,1101) R 
 !1101 format (E15.5) 
    IF(IRAD==0) THEN 
      ENERGY=0.0 
      RETURN 
    ELSEIF (ENERTOTP==0) THEN 
      ENERGY=0.0 
      RETURN 



 197

    ELSE       
      X=ENERTOTP/ENERMAX 
      F1=X*(1.0-EXP(-ALPHA/X)/EXP(-ALPHA))/XNORM 
      ENERGY=POWRMAX*DELTIME*(R/1200)*F1             
    END IF 
 
!write (9,901) T, ENERGY 
!901 FORMAT (f10.5,E15.5) 
 
 RETURN 
       
END SELECT 
 
END SUBROUTINE WEATHER 
!####                                END OF SUBROUTINE WEATHER                                #### 
 
!******************************************************************************** 
 
!#####                           START OF SUBTROUTINE TEMPERAT                           #### 
SUBROUTINE TEMPERAT(ICASE,IYEAR,IDAY,TIME,RESULT1,IERROR,TEMFILE) 
!Subroutine to obtain a temperature in deg. C (RESULT1) for a given year (IYEAR), day 
(IDAY), and 
!time in seconds (TIME).  Also included as an input is a case switch (ICASE) to determine 
whether 
!it is an initialization call or normal operation.  Outputs are the temperature value and an 
error 
!code (IERROR). 
 
IMPLICIT NONE 
!declare dimensioned REAL*4 variables 
REAL*4, DIMENSION(1095):: DATS    !vector of three years of 
DATs 
REAL*4, DIMENSION(365):: DATVECT   !vector of a single year of 
DATs - from DATGEN 
REAL*4, DIMENSION(365):: DATTIME   !vector of days in fractions of 
a year (DATGEN) 
REAL*4, DIMENSION(180):: MAGAVPL   !magnitude averages 
polynomial (DATGEN) 
REAL*4, DIMENSION(180):: MAGSDPL   !magnitude standard deviation 
polynomial (DATGEN) 
REAL*4, DIMENSION(13):: XA    !time array for SPLINE and 
SPLINT 
REAL*4, DIMENSION(13):: YA    !temperature array for 
SPLINE and SPLINT 
REAL*4, DIMENSION(13):: Y2     !spline array 
 



 198

!declare REAL*4 variables 
REAL*4:: TIME      !time of day in seconds 
REAL*4:: RESULT1      !temperature in deg. C - value 
returned to main 
REAL*4:: A0AV, A1AV, A2AV, A3AV, A4AV   !ave. param. values for DAT 
frequency sinusoids 
REAL*4:: A0SD, A1SD, A2SD, A3SD, A4SD   !stdev. param values for DAT 
frequency sinusoids 
REAL*4:: B0AV, B1AV, B2AV     !ave. param. values for DAT 
beat sinusoid 
REAL*4:: B0SD, B1SD, B2SD     !stdev. param. values for DAT 
beat sinusoid 
REAL*4:: D0AV, D1AV, D2AV, D3AV, D4AV, D5AV  !ave. param. values for DAT 
noise 
REAL*4:: D0SD, D1SD, D2SD, D3SD, D4SD, D5SD  !stdev. param. values for DAT 
noise 
REAL*4:: RHO       !correlation coefficient 
between A0 and A1 
REAL*4:: AMPUP, AMPDOWN     !amplitude parameters for 
SPLINE 
REAL*4:: OLDVALUE      !the temp. at 'midnight' for 
IDAY-1 - for SPLINE 
REAL*4:: RESULT2      !temperature in deg. C - 
returned from SPLINT 
REAL*4:: FREQ      !working variable for 
frequency calculations (DATGEN) 
REAL*4:: TEMP      !temporary variable 
 
!declare INTEGER*4 variables 
INTEGER*4:: ICASE      !0=initialization, 1=normal 
operation 
INTEGER*4:: IYEAR      !year input from the call 
INTEGER*4:: IDAY      !day input from call 
INTEGER*4:: IERROR      !error code: 0=no error 
detected, 1=ICASE out of range, 2=IYEAR out of range, 3=IDAY out of range, 4=TIME out 
of range, 5=error from DATGEN, 6=error from SPLINE, 7=error from SPLINT 
INTEGER*4:: IYEARC      !'current' year from last call 
(normal operation) 
INTEGER*4:: IDAYC      !'current' day from last call 
(normal operation) 
INTEGER*4:: IERROR1     !error code from DATGEN: 
0=none detected 
INTEGER*4:: IERROR2     !error code from SPLINE: 
0=none detected 
INTEGER*4:: IERROR3     !error code from SPLINT: 
0=none detected 



 199

INTEGER*4:: ISEED      !random number seed (for 
DATGEN) 
INTEGER*4:: ISTART      !working variable for use with 
DATS 
INTEGER*4:: I, J      !working variables 
 
!declare CHARACTER variables 
CHARACTER (LEN=14):: TEMFILE    !symbolic name of the file 
that contains input data 
CHARACTER (LEN=10):: TEXTLINE    !dummy input line 
 
!declare functions 
REAL*4:: RANDTEM      !random number generator 
 
!common blocks 
!weather parameters and variables used by DATGEN 
COMMON /BLOCK01/    
A0AV,A0SD,A1AV,A1SD,A2AV,A2SD,A3AV,A3SD,A4AV,A4SD,B0AV,B0SD,B1AV,B1SD,B2
AV,B2SD,D0AV,D1AV,D2AV,D3AV,D4AV,D5AV,D0SD,D1SD,D2SD,D3SD,D4SD,D5SD,RHO 
 
COMMON /BLOCK02/    DATTIME, MAGAVPL, MAGSDPL 
 
!parameters and variables used by SPLINE and SPLINT 
COMMON /BLOCK03/    AMPUP,AMPDOWN 
 
COMMON /BLOCK04/    XA,YA,Y2    !XA used by TEMPERAT, 
SPLINE, SPLINT; YA,Y2 used by SPLINE, SPLINT 
 
 
!set initial value of IERROR to 0 
IERROR = 0          
   
 
!check ICASE value 
IF (ICASE /= 0 .AND. ICASE /= 1) THEN 
  IERROR = 1 
  RETURN 
END IF 
 
!determine initialization or normal operation 
IF (ICASE == 1) THEN 
  GOTO 2000 
END IF 
 
!initialization routine 
!initialization part 1 - read in data 



 200

OPEN (UNIT=1, FILE=TEMFILE) 
 
100 FORMAT (1A10) 
101 FORMAT (I10) 
102 FORMAT (5F10.5) 
103 FORMAT (3F10.5) 
104 FORMAT (E15.5) 
105 FORMAT (F10.5) 
106 FORMAT (2F10.3) 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,101) ISEED 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,102) A0AV, A1AV, A2AV, A3AV, A4AV 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,102) A0SD, A1SD, A2SD, A3SD, A4SD 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,103) B0AV, B1AV, B2AV 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,103) B0SD, B1SD, B2SD 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,104) D0AV 
READ (1,104) D1AV 
READ (1,104) D2AV 
READ (1,104) D3AV 
READ (1,104) D4AV 
READ (1,104) D5AV 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,104) D0SD 
READ (1,104) D1SD 
READ (1,104) D2SD 
READ (1,104) D3SD 



 201

READ (1,104) D4SD 
READ (1,104) D5SD 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,105) RHO 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,106) AMPUP, AMPDOWN 
 
CLOSE (UNIT=1) 
 
!WRITE (2,101) ISEED 
!WRITE (2,102) A0AV, A1AV, A2AV, A3AV, A4AV 
!WRITE (2,102) A0SD, A1SD, A2SD, A3SD, A4SD 
!WRITE (2,103) B0AV, B1AV, B2AV 
!WRITE (2,103) B0SD, B1SD, B2SD 
!WRITE (2,104) D0AV 
!WRITE (2,104) D1AV 
!WRITE (2,104) D2AV 
!WRITE (2,104) D3AV 
!WRITE (2,104) D4AV 
!WRITE (2,104) D5AV 
!WRITE (2,104) D0SD 
!WRITE (2,104) D1SD 
!WRITE (2,104) D2SD 
!WRITE (2,104) D3SD 
!WRITE (2,104) D4SD 
!WRITE (2,104) D5SD 
!WRITE (2,105) RHO 
!WRITE (2,106) AMPUP, AMPDOWN 
 
!initialization part 2 - initialization of variables for DATGEN 
!initialize random number generator 
TEMP = RANDTEM(ISEED) 
 
!fill DATTIME vector 
DO I=1,365 
  DATTIME(I) = FLOAT(I)/365 
END DO 
 
!calculate polynomials for noise magnitude: average and standard deviation 
DO I=1,180 
  FREQ = I + 2 



 202

  MAGAVPL(I) = D0AV + D1AV*FREQ + D2AV*FREQ**2 + D3AV*FREQ**3 + 
D4AV*FREQ**4 + D5AV*FREQ**5 
  MAGSDPL(I) = D0SD + D1SD*FREQ + D2SD*FREQ**2 + D3SD*FREQ**3 + 
D4SD*FREQ**4 + D5SD*FREQ**5 
END DO 
 
!initialization part 3 - initialize variables for SPLINE 
!set XA vector - time since midnight yesterday 
XA(1) = 18000.0      !yesterday 05:00 
XA(2) = 28800.0      !yesterday 08:00  
XA(3) = 50400.0      !yesterday 14:00 
XA(4) = 79200.0      !yesterday 22:00 
XA(5) = 86400.0      !yesterdy 24:00 
XA(6) = 104400.0      !today 05:00 
XA(7) = 115200.0      !today 08:00 
XA(8) = 136800.0      !today 14:00 
XA(9)  = 165600.0      !today 22:00 
XA(10) = 190800.0      !tomorrow 05:00 
XA(11) = 201600.0      !tomorrow 08:00 
XA(12) = 223200.0      !tomorrow 14:00 
XA(13) = 252000.0      !tomorrow 22:00 
 
!initialization part 4 - set initial values for main variables 
IYEARC = IYEAR - 1 
IDAYC = IDAY - 1 
 
!fill up DAT vector - DATS 
ISTART = 0 
 
DO I=1,3 
  CALL DATGEN(DATVECT,IERROR1) 
  IF (IERROR1 /= 0) THEN 
    IERROR = 5 
 RETURN 
  END IF 
  DO J=1,365 
    DATS(ISTART+J) = DATVECT(J) 
  END DO 
  ISTART = ISTART + 365 
END DO 
 
!calculate spline for the current day 
OLDVALUE = (DATS(IDAYC+365) + DATS(IDAYC+364))/2 
 
CALL SPLINE(DATS,IDAYC,OLDVALUE,IERROR2) 
 



 203

IF (IERROR2 /= 0) THEN 
  IERROR = 6 
  RETURN 
END IF 
 
!trial call of SPLINT 
CALL SPLINT(TIME,RESULT2,IERROR3) 
 
IF (IERROR3 /= 0) THEN 
  IERROR = 7 
END IF 
 
IF (IDAYC == 0) THEN 
  IDAYC = 365 
END IF 
 
RETURN 
 
!normal operation 
2000 CONTINUE 
 
!test range of IYEAR 
IF (IYEAR<0 .OR. IYEAR>10000) THEN 
  IERROR=2 
  RETURN 
END IF 
 
!test range of IDAY 
IF (IDAY<1 .OR. IDAY>365) THEN 
  IERROR=3 
  RETURN 
END IF 
 
!test range of TIME 
IF (TIME<0.0 .OR. TIME>86400.0) THEN 
  IERROR=4 
  RETURN 
END IF 
 
!compare IYEAR to IYEARC 
IF (IYEAR==IYEARC) THEN 
  GOTO 6000       !same year 
ELSEIF (IYEAR==IYEARC+1) THEN 
  GOTO 4000       !next year 
END IF 
 



 204

!for completely different year 
!fill the DAT vector, DATS 
ISTART = 0 
 
DO I=1,3 
  CALL DATGEN(DATVECT,IERROR1) 
  IF (IERROR1 /= 0) THEN 
    IERROR = 5 
 RETURN 
  END IF 
  DO J=1,365 
    DATS(ISTART+J) = DATVECT(J) 
  END DO 
  ISTART = ISTART + 365 
END DO 
 
!calculate spline for IDAY-1 
OLDVALUE=(DATS((IDAY-1)+365) + DATS((IDAY-1)+364))/2 
 
CALL SPLINE(DATS,IDAY-1,OLDVALUE,IERROR2) 
 
IF (IERROR2 /= 0) THEN 
  IERROR = 6 
  RETURN 
END IF 
 
!call splint to obtain value for OLDVALUE 
CALL SPLINT(172800.0,RESULT2,IERROR3) 
 
IF (IERROR3 /= 0) THEN 
  IERROR = 7 
  RETURN 
END IF 
 
OLDVALUE = RESULT2 
 
!calculate spline for IDAY 
CALL SPLINE(DATS,IDAY,OLDVALUE,IERROR2) 
 
IF (IERROR2 /= 0) THEN 
  IERROR = 6 
  RETURN 
END IF 
 
!call SPLINT for TIME 
CALL SPLINT(TIME+86400.0,RESULT2,IERROR3) 



 205

 
IF (IERROR3 /= 0) THEN 
  IERROR = 7 
  RETURN 
END IF 
 
!set value for RESULT1 
RESULT1 = RESULT2 
 
!set IYEARC and IDAYC 
IYEARC = IYEAR 
IDAYC = IDAY 
 
RETURN 
 
!next year 
4000 CONTINUE 
 
!generate a new set of DATs 
CALL DATGEN(DATVECT,IERROR1) 
 
IF (IERROR1 /= 0) THEN 
  IERROR = 5 
  RETURN 
END IF 
 
DO I=1,365 
  DATS(I) = DATS(I+365) 
  DATS(I+365) = DATS(I+730) 
  DATS(I+730) = DATVECT(I) 
END DO 
 
!check if it's the next day 
IF (IDAY==1 .AND. IDAYC==365) THEN 
  GOTO 5000       !next day 
END IF 
 
!totally different day 
!calculate spline for IDAY-1 
OLDVALUE=(DATS((IDAY-1)+365) + DATS((IDAY-1)+364))/2 
 
CALL SPLINE(DATS,IDAY-1,OLDVALUE,IERROR2) 
 
IF (IERROR2 /= 0) THEN 
  IERROR = 6 
  RETURN 



 206

END IF 
 
!call SPLINT to obtain value for OLDVALUE 
CALL SPLINT(172800.0,RESULT2,IERROR3) 
 
IF (IERROR3 /= 0) THEN 
  IERROR = 7 
  RETURN 
END IF 
 
OLDVALUE = RESULT2 
 
!calculate spline for IDAY 
CALL SPLINE(DATS,IDAY,OLDVALUE,IERROR2) 
 
IF (IERROR2 /= 0) THEN 
  IERROR = 6 
  RETURN 
END IF 
 
!call SPLINT for TIME 
CALL SPLINT(TIME+86400.0,RESULT2,IERROR3) 
 
IF (IERROR3 /= 0) THEN 
  IERROR = 7 
  RETURN 
END IF 
 
!set value for RESULT1 
RESULT1 = RESULT2 
 
!set IYEARC and IDAYC 
IYEARC = IYEAR 
IDAYC = IDAY 
 
RETURN 
 
!next day 
5000 CONTINUE 
 
!call  SPLINT to obtain value for OLDVALUE 
CALL SPLINT(172800.0,RESULT2,IERROR3) 
 
IF (IERROR3 /= 0) THEN 
  IERROR = 7 
  RETURN 



 207

END IF 
 
OLDVALUE = RESULT2 
 
!calculate spline for IDAY 
CALL SPLINE(DATS,IDAY,OLDVALUE,IERROR2) 
 
IF (IERROR2 /= 0) THEN 
  IERROR = 6 
  RETURN 
END IF 
 
!call SPLINT for TIME 
CALL SPLINT(TIME+86400.0,RESULT2,IERROR3) 
 
IF (IERROR3 /= 0) THEN 
  IERROR = 7 
  RETURN 
END IF 
 
!set value for RESULT1 
RESULT1 = RESULT2 
 
!set IYEARC and IDAYC 
IYEARC = IYEAR 
IDAYC = IDAY 
 
RETURN 
 
!same year 
6000 CONTINUE 
 
!compare IDAY to IDAYC 
IF (IDAY == IDAYC) THEN 
  GOTO 8000       !same day 
ELSEIF (IDAY == IDAYC+1) THEN 
  GOTO 7000       !next day 
END IF 
 
!totally different day 
!calculate spline for day before IDAY 
OLDVALUE=(DATS((IDAY-1)+365) + DATS((IDAY-1)+364))/2 
 
CALL SPLINE(DATS,IDAY-1,OLDVALUE,IERROR2) 
 
IF (IERROR2 /= 0) THEN 



 208

  IERROR = 6 
  RETURN 
END IF 
 
!call SPLINT to obtain value for OLDVALUE 
CALL SPLINT(172800.0,RESULT2,IERROR3) 
 
IF (IERROR3 /= 0) THEN 
  IERROR = 7 
  RETURN 
END IF 
 
OLDVALUE = RESULT2 
 
!calculate spline for IDAY 
CALL SPLINE(DATS,IDAY,OLDVALUE,IERROR2) 
 
IF (IERROR2 /= 0) THEN 
  IERROR = 6 
  RETURN 
END IF 
 
!call SPLINT for TIME 
CALL SPLINT(TIME+86400.0,RESULT2,IERROR3) 
 
IF (IERROR3 /= 0) THEN 
  IERROR = 7 
  RETURN 
END IF 
 
!set value for RESULT1 
RESULT1 = RESULT2 
 
!set IYEARC and IDAYC 
IYEARC = IYEAR 
IDAYC = IDAY 
 
RETURN 
 
!next day 
7000 CONTINUE 
 
!call  SPLINT to obtain value for OLDVALUE 
CALL SPLINT(172800.0,RESULT2,IERROR3) 
 
IF (IERROR3 /= 0) THEN 



 209

  IERROR = 7 
  RETURN 
END IF 
 
OLDVALUE = RESULT2 
 
!calculate spline for IDAY 
CALL SPLINE(DATS,IDAY,OLDVALUE,IERROR2) 
 
IF (IERROR2 /= 0) THEN 
  IERROR = 6 
  RETURN 
END IF 
 
!call SPLINT for TIME 
CALL SPLINT(TIME+86400.0,RESULT2,IERROR3) 
 
IF (IERROR3 /= 0) THEN 
  IERROR = 7 
  RETURN 
END IF 
 
!set value for RESULT1 
RESULT1 = RESULT2 
 
!set IYEARC and IDAYC 
IYEARC = IYEAR 
IDAYC = IDAY 
 
RETURN 
 
!same day 
8000 CONTINUE 
 
!call SPLINT for TIME 
CALL SPLINT(TIME+86400.0,RESULT2,IERROR3) 
 
IF (IERROR3 /= 0) THEN 
  IERROR = 7 
  RETURN 
END IF 
 
!set value for RESULT1 
RESULT1 = RESULT2 
 
!set IYEARC and IDAYC 



 210

IYEARC = IYEAR 
IDAYC = IDAY 
 
RETURN 
 
END SUBROUTINE TEMPERAT 
!####                               END OF SUBTROUTINE TEMPERAT                              #### 
 
!####                              START OF SUBTROUTINE DATGEN                              #### 
SUBROUTINE DATGEN(DATVECT,IERROR1) 
!suberoutine to generate a vector of 365 Daily Average Temperatures 
 
!REAL*4 variables - input parameters 
REAL*4:: A0AV, A1AV, A2AV, A3AV, A4AV               !ave. param. values for DAT frequency 
sinusoids 
REAL*4:: A0SD, A1SD, A2SD, A3SD, A4SD               !stdev. param values for DAT 
frequency sinusoids 
REAL*4:: B0AV, B1AV, B2AV                           !ave. param. values for DAT beat sinusoid 
REAL*4:: B0SD, B1SD, B2SD                           !stdev. param. values for DAT beat sinusoid 
REAL*4:: D0AV, D1AV, D2AV, D3AV, D4AV, D5AV         !ave. param. values for DAT noise 
REAL*4:: D0SD, D1SD, D2SD, D3SD, D4SD, D5SD         !stdev. param. values for DAT 
noise 
REAL*4:: RHO                                        !correlation coefficient between A0 and A1 
 
!dimension REAL*4 variables 
REAL*4, DIMENSION(365):: DATVECT                    !vector of 365 DATs - 1 year 
REAL*4, DIMENSION(365):: DATTIME                    !vector of days in fractions of a year 
REAL*4, DIMENSION(180):: MAGAVPL                    !magnitude averages polynomial 
REAL*4, DIMENSION(180):: MAGSDPL                    !magnitude standard deviation 
polynomial 
REAL*4, DIMENSION(180):: MAG                        !magnitude of the noise term (uses 
MAGAVPL and MAGSDPL) 
REAL*4, DIMENSION(180):: ANGLE                      !phase angle of the noise term 
 
!REAL*4 variables - non input 
REAL*4:: A0,A1,A2,A3,A4 
REAL*4:: B0,B1,B2 
REAL*4:: FREQ0, FREQ1, FREQ2                        !freq=0, freq=1, and freq=2 parts of DAT 
signal 
REAL*4:: BEAT                                       !the beat sinusoid part of the DAT signal 
REAL*4:: NOISE                                      !noise portion of DAT signal (uses MAG and 
ANGLE, DATTIME and FREQ) 
REAL*4:: RANDTEM, MAGSDEVTEM, ANGLETEM              !functions 
REAL*4:: FREQ                                       !working variable for frequency calculations 
REAL*4:: TEMP1, TEMP2                               !working variables 
 



 211

REAL*4, PARAMETER:: PI = 3.14159265358979 
 
!INTEGER*4 variables 
INTEGER*4:: IERROR1                                 !error code 0=none detected 
INTEGER*4:: I,J 
 
!common blicks 
COMMON /BLOCK01/    
A0AV,A0SD,A1AV,A1SD,A2AV,A2SD,A3AV,A3SD,A4AV,A4SD,B0AV,B0SD,B1AV,B1SD,B2
AV,B2SD, & 
                    
D0AV,D1AV,D2AV,D3AV,D4AV,D5AV,D0SD,D1SD,D2SD,D3SD,D4SD,D5SD,RHO 
 
COMMON /BLOCK02/    DATTIME, MAGAVPL, MAGSDPL 
 
IERROR1=0 
 
DO J=1,180 
  MAG(J) = ABS(MAGAVPL(J) + MAGSDEVTEM(1,2.5)*MAGSDPL(J)) 
  ANGLE(J) = (RANDTEM(1)-0.5) * 2*PI 
END DO 
 
B0 = B0AV + MAGSDEVTEM(1,2.5)*B0SD 
B1 = B1AV + MAGSDEVTEM(1,2.5)*B1SD 
B2 = B2AV + MAGSDEVTEM(1,2.5)*B2SD 
B2 = ANGLETEM(B2) 
 
TEMP1=MAGSDEVTEM(1,2.5) 
TEMP2=MAGSDEVTEM(1,2.5) 
 
A0 = A0AV + TEMP1*A0SD 
 
A1 = A1AV + (TEMP1*RHO + TEMP2*(1-RHO**2)**0.5)*A1SD 
A2 = A2AV + MAGSDEVTEM(1,2.5)*A2SD 
A2 = ANGLETEM(A2) 
 
A3 = A3AV + MAGSDEVTEM(1,2.5)*A3SD 
A4 = A4AV + MAGSDEVTEM(1,2.5)*A4SD 
A4 = ANGLETEM(A4) 
 
DO I=1,365 
  NOISE = 0.0 
  DO J=1,180 
    FREQ = J + 2 
    NOISE = NOISE + MAG(J)*SIN(FREQ * DATTIME(I)*2*PI + ANGLE(J)) 
  END DO 



 212

   
 
  BEAT = B0 + B1*SIN(DATTIME(I)*2*PI + B2) 
 
  FREQ0 = A0 
 
  FREQ1 = A1*SIN(DATTIME(I)*2*PI + A2) 
 
  FREQ2 = A3*SIN(2*DATTIME(I)*2*PI + A4) 
 
  DATVECT(I) = FREQ0 + FREQ1 + FREQ2 + BEAT*NOISE 
END DO 
 
RETURN 
 
END SUBROUTINE DATGEN 
!####                                 END OF SUBTROUTINE DATGEN                                #### 
 
!####                                   START FUNCTION ANGLETEM                                  #### 
!# It calculates the condition angle based on THETA - used by temperature subroutine 
!# Inputs : THETA 
REAL*4 FUNCTION ANGLETEM(THETA) 
 
IMPLICIT NONE 
 
REAL*4:: THETA 
REAL*4, PARAMETER:: PI = 3.14159265358979 
 
 DO WHILE (ABS(THETA) > PI) 
  THETA = THETA * (1 - ABS(THETA)**(-1)*2.0*PI) 
END DO 
ANGLETEM = THETA 
 
END FUNCTION ANGLETEM 
!####                             END FUNCTION CONDITIONANGLE                              #### 
 
!####                             START OF MAGSDEVTEM FUNCTION                             #### 
REAL*4 FUNCTION MAGSDEVTEM(MIDUM,BOUND) 
! Function returns normally distributed numbers but removes outliers (i.e. values +/- 
2.5stds).  This function is based on mrand.m written by L. Parrott and R. Kok; its main 
purpose is for use in daily average temperature modeling. 
 
! Modified so that the bounds with which to identify outliers are given as an argument. YC 
Sun Mar 26 04 
! copy used by temperature subroutines 
 



 213

INTEGER*4:: MIDUM 
REAL*4::BOUND 
REAL*4:: GASDEVTEM 
 
MAGSDEVTEM = BOUND+1.0 
 DO WHILE(ABS(MAGSDEVTEM) > BOUND) 
  MAGSDEVTEM = GASDEVTEM(MIDUM) 
END DO 
 
!MAGSDEV = 6.0 
! DO WHILE(ABS(MAGSDEV) > 5.0) 
!  MAGSDEV = GASDEV(MIDUM) 
!END DO 
 
END FUNCTION MAGSDEVTEM 
!####                               END OF MAGSDEVTEM FUNCTION                               #### 
 
!#####                                START FUNCTION GASDEVTEM                                #### 
!# Returns a normally distributed deviate with zero mean and unit variance, using ran(idum) 
as the source of uniform  
!# deviates.  Reprinted by Lael from Numerical Recipes in C 2 Ed., p. 289  
! copy used by temperature subroutines 
!# Inputs : GIDUM 
REAL*4 FUNCTION GASDEVTEM(GIDUM) 
 
INTEGER*4:: GIDUM 
 
INTEGER*4:: ISET 
 
REAL*4:: GSET,FAC,RSQ,V1,V2 
 
REAL*4:: RANDTEM 
SAVE ISET,GSET 
 DATA ISET/0/ 
 
IF (ISET == 0) THEN 
  RSQ = 1. 
  DO WHILE(RSQ >= 1. .OR. RSQ == 0.) 
    V1 = 2. * RANDTEM(GIDUM) - 1 
    V2 = 2. * RANDTEM(GIDUM) - 1 
    RSQ = V1**2 + V2**2 
  END DO  
  FAC = SQRT(-2.*LOG(RSQ)/RSQ) 
  GSET = V1 * FAC 
  GASDEVTEM = V2 * FAC 
  ISET = 1 



 214

ELSE 
  GASDEVTEM = GSET 
  ISET = 0 
END IF 
 
END FUNCTION GASDEVTEM 
!####                                       END FUNCTION GASDEV                                       #### 
 
!####                        START OF FUNCTION PROGRAM RANDTEM                        #### 
REAL*4 FUNCTION RANDTEM(ISEED) 
! From Numerical Recipes in Fortran, po.272-273. Long period ( > 2x10^18 ) random-number 
generator of L'Ecuyer with 
! Bays-Durham shuffle and added safeguards. Returns a uniform random deviate between 
0.0 and 1.0 (exlusive of the 
! endpoint values). Call with idum a negative integer to initialize; thereafter, do not alter 
idum between successive 
! deviates in sequence. RNMX should approximate the largest floating value that is less 
than 1. 
 
IMPLICIT NONE 
 
INTEGER*4,PARAMETER:: IA1=40014 
INTEGER*4,PARAMETER:: IA2=40692 
INTEGER*4:: IDUM 
INTEGER*4,SAVE:: IDUM2 = 123456789 
INTEGER*4,PARAMETER:: IM1=2147483563 
INTEGER*4,PARAMETER:: IM2=2147483399 
INTEGER*4,PARAMETER:: IMM1=IM1-1 
INTEGER*4,PARAMETER:: IQ1=53668 
INTEGER*4,PARAMETER:: IQ2=52774 
INTEGER*4,PARAMETER:: IR1=12211 
INTEGER*4,PARAMETER:: IR2=3791 
INTEGER*4,INTENT(IN):: ISEED 
INTEGER*4,SAVE:: IY = 0 
INTEGER*4:: J 
INTEGER*4:: K 
 
INTEGER*4,PARAMETER:: NTAB=32 
INTEGER*4,PARAMETER:: NDIV=1+IMM1/NTAB 
INTEGER*4,DIMENSION(NTAB),SAVE:: IV = (NTAB*0) 
 
REAL*4,PARAMETER:: AM=1.0/IM1 
REAL*4,PARAMETER:: EPS=1.2E-7 
REAL*4,PARAMETER:: RNMX=1.0-EPS 
 
IDUM=ISEED 



 215

IF (IDUM <= 0) THEN                           !initialize 
  IDUM=MAX(-IDUM,1)                           !be sure to prevent IDUM=0 
  IDUM2=IDUM 
  DO J=NTAB+8,1,-1                            !load the shuffle table (after 8 warm-ups) 
    K=IDUM/IQ1 
    IDUM=IA1*(IDUM-K*IQ1)-K*IR1 
    IF (IDUM < 0) IDUM=IDUM+IM1 
    IF (J <= NTAB) IV(J)=IDUM   
  END DO 
  IY=IV(1) 
END IF 
 
K=IDUM/IQ1                                    !start here when not initializing 
IDUM=IA1*(IDUM-K*IQ1)-K*IR1                   !compute IDUM=MOD(IA1*IDUM,IM1) 
without overflows 
IF ( IDUM < 0 ) IDUM=IDUM+IM1 
K=IDUM2/IQ2 
IDUM2=IA2*(IDUM2-K*IQ2)-K*IR2                 !compute IDUM2=MOD(IA2*IDUM2,IM2), 
likewise 
IF ( IDUM2 < 0 ) IDUM2=IDUM2+IM2 
J=1+IY/NDIV                                   !will be in the range 1:NTAB 
IY=IV(J)-IDUM2                                !here IDUM is shuffled, IDUM and IDUM2 are 
combined 
IV(J)=IDUM 
IF ( IY < 1 ) IY=IY+IMM1 
RANDTEM=MIN(AM*IY,RNMX)                          !because users don't expect endpoint 
values 
RETURN 
 
END FUNCTION RANDTEM 
!####                          END OF FUNCTION PROGRAM RANDTEM                          #### 
 
!####                                    START SUBROUTINE SPLINE                                   #### 
SUBROUTINE SPLINE(DATS,IDAY,OLDVALUE,IERROR2) 
!From Numerical Recipes in Fortran, 2nd Edition. p. 109 
!Given arrays x(1:n) and y(1:n) containing a tabulated function, i.e. y_i=f(x_i), with 
!x_1 < x_2 < ... <x_n, and given points yp1 and ypn for the first derivative of the 
interpolating 
!function at points 1 and n, respectively, this routine returns an array y2(1:n) of length n 
!which contains the second derivatives fo the interpolating function at the tabulated points 
x_i. 
!If yp1 and ypn are equal to 1X10^30 or larger, the routine is signaled to set the 
corresponding 
!boundary condition for a natural spline, with zero second derivative on that boundary. 
!Parameter: NMAX is the largest anticipated value of n. - REMOVED - EDITED BY TRL 
! 



 216

!INPUTS: DATS,IDAY,OLDVALUE 
!OUTPUTS: YA, Y2, IERROR2 
 
!integer parameter 
INTEGER*4, PARAMETER:: N=13 
 
!dimension real variables 
REAL*4, DIMENSION(1095):: DATS    !vector of three years of 
DATs 
REAL*4, DIMENSION(13):: XA, YA, Y2   !time array, temp array, 
spline array 
REAL*4, DIMENSION(13):: U     !working variable 
 
!real variables 
REAL*4:: OLDVALUE      !the temp. at 'midnight' for 
IDAY-1 
REAL*4:: AMPUP, AMPDOWN     !amplitude parameters for 
SPLINE 
REAL*4:: YP1, YPN      !boundary conditions 
REAL*4:: P, QN, SIG, UN     !working variables 
REAL*8:: DAT_YESTERDAY, DAT_TODAY, DAT_TOMORROW !daily average temps: 
IDAY-1,IDAY,IDAY+1 
REAL*8:: MIN_YESTERDAY, MIN_TODAY, MIN_TOMORROW !temps at 5h: IDAY-
1,IDAY,IDAY+1 
REAL*8:: MAX_YESTERDAY, MAX_TODAY, MAX_TOMORROW !temps at 14h: IDAY-
1,IDAY,IDAY+1 
REAL*8:: DAT_DAY1, DAT_DAY5    !daily average temps: IDAY-
2,IDAY+2 
 
!integer variables 
INTEGER*4:: IDAY      !day input from call 
INTEGER*4:: IERROR2     !error code, 0=none detected 
INTEGER*4:: I, K      !working variables 
 
COMMON /BLOCK03/    AMPUP,AMPDOWN 
 
COMMON /BLOCK04/    XA,YA,Y2    !XA used by TEMPERAT, 
SPLINE, SPLINT 

!YA,Y2 used by SPLINE, 
SPLINT 

 
IERROR2=0 
 
!calculate values for YP1 and YPN 
YP1 = 0.0 
YPN = 0.0 



 217

 
!set DATS for the five days 
DAT_DAY1 = DATS(IDAY+363) 
DAT_YESTERDAY = DATS(IDAY+364) 
DAT_TODAY = DATS(IDAY+365) 
DAT_TOMORROW = DATS(IDAY+366) 
DAT_DAY5 = DATS(IDAY+367) 
 
!calculate temps at 05:00 for IDAY-1, IDAY, and IDAY+1 
MIN_YESTERDAY = ((DAT_DAY1 + DAT_YESTERDAY)/2 + 273)*AMPDOWN - 273 
MIN_TODAY = ((DAT_YESTERDAY + DAT_TODAY)/2 + 273)*AMPDOWN - 273 
MIN_TOMORROW = ((DAT_TODAY + DAT_TOMORROW)/2 + 273)*AMPDOWN - 273 
 
!calculate temps at 14:00 for IDAY-1, IDAY, and IDAY+1 
MAX_YESTERDAY = (DAT_YESTERDAY + 273)*AMPUP - 273 
MAX_TODAY = (DAT_TODAY + 273)*AMPUP - 273 
MAX_TOMORROW = (DAT_TOMORROW + 273)*AMPUP - 273 
 
!place those temperatures in YA vector 
YA(1) = MIN_YESTERDAY 
YA(2) = DAT_YESTERDAY 
YA(3) = MAX_YESTERDAY 
YA(4) = DAT_YESTERDAY 
YA(5) = OLDVALUE 
YA(6) = MIN_TODAY 
YA(7) = DAT_TODAY 
YA(8) = MAX_TODAY 
YA(9) = DAT_TODAY 
YA(10) = MIN_TOMORROW 
YA(11) = DAT_TOMORROW 
YA(12) = MAX_TOMORROW 
YA(13) = DAT_TOMORROW 
 
 
IF (YP1 > 99E30) THEN     !The lower boundary condition 
is set either to be "natural" 
  Y2(1) = 0.0 
  U(1) = 0.0 
ELSE        !or else to have a specified 
first derivative. 
  Y2(1) = -0.5 
  U(1) = (3./(XA(2) - XA(1))) * ((YA(2) - YA(1))/(XA(2) - XA(1)) - YP1) 
END IF 
 
DO I=2,N-1       !This is the decomposition 
loop of the tridiagonal 



 218

  SIG = (XA(I) - XA(I-1)) / (XA(I+1) - XA(I-1))  !algorithm.  Y2 and U are used 
for temporary 
  P = SIG*Y2(I-1) + 2      !storage of the decomposed 
factors. 
  Y2(I) = (SIG - 1.)/P 
  U(I) = (6.*((YA(I+1) - YA(I))/(XA(I+1) - XA(I)) - (YA(I) - YA(I-1))/(XA(I) - XA(I-1))) / 
(XA(I+1) - XA(I-1)) - SIG*U(I-1))/P 
END DO 
 
IF (YPN > 99E30) THEN     !The upper boundary 
condition is set either to be "natural" 
  QN = 0.0 
  UN = 0.0 
ELSE        !or else to have a specified 
first derivative. 
  QN = 0.5 
  UN = (3./(XA(N) - XA(N-1))) * (YPN - (YA(N) - YA(N-1))/(XA(N) - XA(N-1))) 
END IF 
 
Y2(N) = (UN - QN*U(N-1)) / (QN*Y2(N-1) + 1.) 
 
DO K=N-1,1,-1       !This is the backsubstitution 
loop of the tridiagonal algorithm. 
  Y2(K) = Y2(K) * Y2(K+1) + U(K) 
END DO 
 
RETURN 
 
END SUBROUTINE SPLINE 
!####                                     END SUBROUTINE SPLINE                                      #### 
 
!####                                   START SUBROUTINE SPLINT                                   #### 
SUBROUTINE SPLINT(TIME,RESULT2,IERROR3) 
!From Numerical Recipes in Fortran, 2nd Edition.  p. 110 
!Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a function (the the xa_i's in 
order), and given the array y2a(1:n),m which is the output from SPLINE above, and given a 
valueof x, this routine returns a cubic spline interpolated value y. 
! 
!INPUTS: TIME, YA, Y2 
!OUTPUTS: RESULT2, IERROR3 
 
!integer parameter 
INTEGER, PARAMETER:: N=13 
 
 
 



 219

!dimensioned real variables 
REAL*4, DIMENSION(N):: XA, YA, Y2   !time array, temp array, 
spline array 
 
!real variables 
REAL*4:: TIME      !time of day in seconds + 
86400.0 
REAL*4:: RESULT2      !temperature in deg. C - 
returned to TEMPERAT 
REAL*4:: A, B, H 
 
!integer variables 
INTEGER*4:: IERROR3     !error code - 0=none 
detected 
INTEGER*4:: K, KHI, KLO     !working variables 
 
!common block 
COMMON /BLOCK04/    XA,YA,Y2    !XA used by TEMPERAT, 
SPLINE, SPLINT      !YA,Y2 used by SPLINE, 
SPLINT 
 
IERROR3=0 
 
 
KLO = 1        !We will find the right place 
in the table by means of bisection 
KHI = N       !This is optimal if sequential 
calls to this routine are at random values of x.  If sequential calls in order, and closely 
spaced, one would do better to store previous values of  KLO and KHI and test if they 
remain appropriate on the next call. 
 
 
1 IF (KHI-KLO > 1) THEN 
  K = (KHI + KLO)/2 
  IF (XA(K) > TIME) THEN 
    KHI = K 
  ELSE 
    KLO = K 
  END IF 
GOTO 1 
END IF        !KLO and KHI now bracket 
the input value of x. 
 
H = XA(KHI) - XA(KLO) 
 
IF (H == 0) THEN      !The XA's must be distinct 



 220

  PRINT * 
  PRINT *, "Message from subroutine SPLINT" 
  PRINT *, "Bad XA input in SPLINT" 
  IERROR3=1 
  RETURN 
END IF 
 
A = (XA(KHI) - TIME) / H 
B = (TIME - XA(KLO)) / H 
RESULT2 = A*YA(KLO) + B*YA(KHI) + ((A**3 - A)*Y2(KLO) + (B**3 - 
B)*Y2(KHI))*(H**2)/6 
 
 
RETURN 
 
END SUBROUTINE SPLINT 
!####                                     END SUBROUTINE SPLINT                                      #### 
 
!******************************************************************************** 
 
!####                                   START SUBROUTINE RADIAT                                   #### 
SUBROUTINE RADIAT(ICASE,IYEAR,IDAY,TIME,IRAD,RI,IERROR,RADFILE) 
!Subroutine to obtain values for  a flag for whether it is daytime IRAD and radiation 
intensity (watt per sq. meter) RI for a given IYEAR, IDAY, and TIME.  Also included as an 
input is a case switch (ICASE) to determine whether it is an initialization call or normal 
operation and the name (or an indicator) for which file contains the parameter values for 
the subroutine.  Outputs also include an error code (IERROR). 
 
IMPLICIT NONE 
!declare dimensioned REAL*4 variables 
REAL*4, DIMENSION(365):: DORTIME   !time array used for sinusoids 
(1/365 - 365/365) 
REAL*4, DIMENSION(183):: MAGAVPL   !residual magnitude averages 
array 
REAL*4, DIMENSION(183):: MAGSDPL   !residual magnitude standards 
deviation array 
REAL*4, DIMENSION(365):: DPNAVPL   !daily positive noise averages 
array 
REAL*4, DIMENSION(365):: DPNSDPL   !daily positive noise standard 
deviations array 
REAL*4, DIMENSION(365):: DNNAVPL   !daily negative noise averages 
array 
REAL*4, DIMENSION(365):: DNNSDPL   !daily negative noise standard 
deviations array 
REAL*4, DIMENSION(365):: DORS    !vector of Daily Overall 
Radiation values for  a year 



 221

REAL*4, DIMENSION(8760):: YATTN   !hourly attenuation factors 
for a year 
REAL*4, DIMENSION(24*6+1):: DRIARRAY   !radiation intensities for a 
day at ten minute intervals 
 
!declare REAL*4 variables 
REAL*4, PARAMETER:: PI = 3.14159265358979  !needed to treat LAT 
REAL*4, PARAMETER:: EPS = 1E-6    !needed to treat LAT 
REAL*4:: LAT       !the latitude of ecosystem 
location 
REAL*4:: MINDOR      !minimum DOR for the 
location 
REAL*4:: A0AV, A1AV, A2AV, A3AV, A4AV   !ave. param. values for DOR 
frequency sinusoids (0,1,2 freqs) 
REAL*4:: A0SD, A1SD, A2SD, A3SD, A4SD   !stdev. param values for DOR 
frequency sinusoids (0,1,2 freqs) 
REAL*4:: B0AV, B1AV, B2AV     !ave. param. values for DOR 
beat sinusoid 
REAL*4:: B0SD, B1SD, B2SD     !stdev. param. values for DOR 
beat sinusoid 
REAL*4:: D0AV, D1AV, D2AV, D3AV, D4AV, D5AV  !ave. param. values for DOR 
noise - residual 
REAL*4:: D0SD, D1SD, D2SD, D3SD, D4SD, D5SD  !stdev. param. values for DOR 
noise - residual 
REAL*4:: E0AV, E1AV, E2AV, E3AV, E4AV, E5AV  !ave. param. values for DOR 
noise - postive 
REAL*4:: E0SD, E1SD, E2SD, E3SD, E4SD, E5SD  !stdev. param. values for DOR 
noise - positive 
REAL*4:: F0AV, F1AV, F2AV, F3AV, F4AV, F5AV  !ave. param. values for DOR 
noise - negative 
REAL*4:: F0SD, F1SD, F2SD, F3SD, F4SD, F5SD  !stdev. param. values for DOR 
noise - negative 
REAL*4:: RHO, RHO2      !correlation coefficient: A0 
and A1, B0 and B1 
REAL*4:: PNAV, PNSD      !positive noise occurence 
percentage ave. and s.dev. 
 
REAL*4:: SIGN      !sign of input latitude (north 
or south hemisphere) 
REAL*4:: TIME      !time of day, values 
0.0~86400.0 
REAL*4:: RI       !radiation intensity at a given 
time (returned to weather subroutine) 
REAL*4:: DARRAYDT      !delta time in DRIARRAY (?) 
REAL*4:: DPTTIME      !the array element on which 
TIME falls 



 222

REAL*4:: TEMP      !temporary variable 
 
!declare INTEGER*4 variables 
INTEGER*4, DIMENSION(24*6+1):: DAYTIME  !half daytime, used to see if 
TIME is in daylight hours 
INTEGER*4:: ICASE      !operation indicator: 
0=initialization, 1=normal operation 
INTEGER*4:: IYEAR      !year of call from simulation, 
values 1~10,000 
INTEGER*4:: IDAY      !day of call from simulation, 
values 1~365 
INTEGER*4:: IRAD      !indicates day or night: 
0=night, 1=daylight 
INTEGER*4:: IERROR      !error code: 0=no error 
detected, 1=ICASE out of range, 2=IYEAR out of range, 3=IDAY out of range, 4=TIME out 
of range, 5=error from DORGEN ... 
INTEGER*4:: IERROR1     !error code from DORGEN 
INTEGER*4:: IERROR2     !error code from ATTNYEAR 
INTEGER*4:: IERROR3     !error code from DRIGEN 
INTEGER*4:: ISEED      !seed for the random number 
generator 
INTEGER*4:: IYEARC      !'current' year (year of last 
call) 
INTEGER*4:: IDAYC      !'current' day (day of last 
call) 
INTEGER*4:: I       !counter 
INTEGER*4:: FREQ      !temporary variable used for 
frequency calculations 
INTEGER*4:: DPT      !day array index (?) 
 
!declare CHARACTER variables 
CHARACTER (LEN=14):: RADFILE    !name of the input file for 
the radiation parameters 
CHARACTER (LEN=10):: TEXTLINE    !dummy input line 
 
!declare functions 
REAL*4:: RANDRAD      !random number generator 
for radiation 
 
!common blocks 
!radiation parameters and variables used by DORGEN 
COMMON /BLOCK05/    
A0AV,A0SD,A1AV,A1SD,A2AV,A2SD,A3AV,A3SD,A4AV,A4SD,B0AV,B0SD,B1AV,B1SD,B2
AV,B2SD, MINDOR,PNAV,PNSD 
 



 223

COMMON /BLOCK06/    
DORTIME,MAGAVPL,MAGSDPL,DPNAVPL,DPNSDPL,DNNAVPL,DNNSDPL 
 
!parameters used by subroutines associated with DRIGEN subroutine 
COMMON /BLOCK07/    DORS, YATTN, LAT 
 
COMMON /BLOCK08/    DAYTIME 
 
COMMON /BLOCK11/    DRIARRAY 
 
!set initial value of IERROR 
IERROR = 0 
 
!check ICASE value 
IF (ICASE /= 0 .AND. ICASE /= 1) THEN 
  IERROR = 1 
  RETURN 
END IF 
 
!decide initialization or normal operation 
IF (ICASE == 1) THEN 
  GOTO 1000       !normal operation 
END IF 
 
!initialization routine 
!initialization part 1 - read in data 
OPEN (UNIT=1,FILE=RADFILE) 
 
100 FORMAT (1A10) 
101 FORMAT (I10) 
102 FORMAT (F10.2) 
103 FORMAT (5F15.5) 
104 FORMAT (3F15.5) 
105 FORMAT (E15.5) 
106 FORMAT (F10.5) 
107 FORMAT (2F10.5) 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,101) ISEED 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,102) LAT 
 



 224

READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,102) MINDOR 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,103) A0AV, A1AV, A2AV, A3AV, A4AV 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,103) A0SD, A1SD, A2SD, A3SD, A4SD 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,104) B0AV, B1AV, B2AV 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,104) B0SD, B1SD, B2SD 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,105) D0AV 
READ (1,105) D1AV 
READ (1,105) D2AV 
READ (1,105) D3AV 
READ (1,105) D4AV 
READ (1,105) D5AV 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,105) D0SD 
READ (1,105) D1SD 
READ (1,105) D2SD 
READ (1,105) D3SD 
READ (1,105) D4SD 
READ (1,105) D5SD 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,106) RHO 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,106) RHO2 
 



 225

READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,107) PNAV, PNSD 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,105) E0AV 
READ (1,105) E1AV 
READ (1,105) E2AV 
READ (1,105) E3AV 
READ (1,105) E4AV 
READ (1,105) E5AV 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,105) E0SD 
READ (1,105) E1SD 
READ (1,105) E2SD 
READ (1,105) E3SD 
READ (1,105) E4SD 
READ (1,105) E5SD 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,105) F0AV 
READ (1,105) F1AV 
READ (1,105) F2AV 
READ (1,105) F3AV 
READ (1,105) F4AV 
READ (1,105) F5AV 
 
READ (1,100) TEXTLINE 
READ (1,100) TEXTLINE 
READ (1,105) F0SD 
READ (1,105) F1SD 
READ (1,105) F2SD 
READ (1,105) F3SD 
READ (1,105) F4SD 
READ (1,105) F5SD 
 
CLOSE (UNIT=1) 
 
 
!initialization part 2 - initialization of variables for DORGEN 
!initialize random number generator 
TEMP = RANDRAD(ISEED) 



 226

 
!fill DORTIME vector 
DO I=1,365 
  DORTIME(I) = FLOAT(I)/365 
END DO 
 
!calculate polynomials for residual noise magnitude: average and standard deviation 
DO I=1,183 
  FREQ = I - 1 
  MAGAVPL(I) = D0AV + D1AV*FREQ + D2AV*FREQ**2 + D3AV*FREQ**3 + 
D4AV*FREQ**4 + D5AV*FREQ**5 
  MAGSDPL(I) = D0SD + D1SD*FREQ + D2SD*FREQ**2 + D3SD*FREQ**3 + 
D4SD*FREQ**4 + D5SD*FREQ**5 
END DO 
 
!calculate polynomials for daily positive & negative noise magnitudes: average and standard 
deviation 
DO I=1,365 
  DPNAVPL(I) = E0AV + E1AV*I + E2AV*I**2 + E3AV*I**3 + E4AV*I**4 + E5AV*I**5 
  DPNSDPL(I) = E0SD + E1SD*I + E2SD*I**2 + E3SD*I**3 + E4SD*I**4 + E5SD*I**5 
  DNNAVPL(I) = F0AV + F1AV*I + F2AV*I**2 + F3AV*I**3 + F4AV*I**4 + F5AV*I**5 
  DNNSDPL(I) = F0SD + F1SD*I + F2SD*I**2 + F3SD*I**3 + F4SD*I**4 + F5SD*I**5 
END DO 
 
!initialization part 3 - adjust LAT to get rid of the invalid TAN(PI/2) 
LAT=(LAT*PI/180.0)      !translate LAT value from 
degrees to radians 
SIGN=LAT/ABS(LAT) 
LAT=SIGN*MIN(ABS(LAT),PI/2.0-EPS)   !adjusted latitude, to avoid 
infinite values for LAT = 90 or -90 degree 
 
!initialization part 4 - set initial values for main variables 
IF (IDAY == 1) THEN 
  IYEARC = IYEAR - 1 
  IDAYC = 365 
ELSE 
  IYEARC = IYEAR 
  IDAYC = IDAY - 1 
END IF 
 
!fill up Daily Overall Radiation vector - DORS 
CALL DORGEN(DORS,IERROR1) 
IF (IERROR1 /= 0) THEN 
  IERROR = 5 
  RETURN 
END IF 



 227

 
!fill attenuation stream variable - YATTN 
!CALL ATTNYEAR(YATTN,IERROR2) 
!IF (IERROR2 /= 0) THEN 
!  IERROR = 6 
!  RETURN 
!END IF 
 
!fill day variables 
CALL DRIGEN(IDAYC,IERROR3) 
IF (IERROR3 /= 0) THEN 
  IERROR = 7 
  RETURN 
END IF 
 
RETURN 
 
!normal operation 
1000 CONTINUE 
 
!test range of IYEAR 
IF (IYEAR<0 .OR. IYEAR>10000) THEN 
  IERROR=2 
  RETURN 
END IF 
 
!test range of IDAY 
IF (IDAY<1 .OR. IDAY>365) THEN 
  IERROR=3 
  RETURN 
END IF 
 
!test range of TIME 
IF (TIME<0.0 .OR. TIME>86400.0) THEN 
  IERROR=4 
  RETURN 
END IF 
 
!compare IYEAR to IYEARC 
IF (IYEAR==IYEARC) THEN 
  GOTO 2000       !same year 
END IF 
 
!for different year 
!fill up Daily Overall Radiation vector - DORS 
CALL DORGEN(DORS,IERROR1) 



 228

IF (IERROR1 /= 0) THEN 
  IERROR = 5 
  RETURN 
END IF 
 
!fill attenuation stream variable - YATTN 
!CALL ATTNYEAR(YATTN,IERROR2) 
!IF (IERROR2 /= 0) THEN 
!  IERROR = 6 
!  RETURN 
!END IF 
 
!fill day variables 
CALL DRIGEN(IDAY,IERROR3) 
IF (IERROR3 /= 0) THEN 
  IERROR = 7 
  RETURN 
END IF 
 
!calculate return value 
!adjust time to test against spacing of given values in RI array - currently 10 minutes. 
DARRAYDT = 600.0      !10 minutes 
DPTTIME = 1.0 + TIME/DARRAYDT 
DPT = FLOOR(DPTTIME) 
 
!check if there's any sunlight, return RI, do interpolation if requires 
IF (DAYTIME(DPT) == 0.0) THEN 
  IRAD = 0 
  RI = 0.0 
ELSE 
  IF (DPTTIME-DPT == 0.0) THEN    !no need to interpolate 
    RI = DRIARRAY(DPT) 
  ELSE 
    RI = DRIARRAY(DPT) + (DPTTIME-DPT)*(DRIARRAY(DPT+1) - DRIARRAY(DPT)) 
  END IF 
  IRAD = 1 
END IF 
 
!reset IYEARC and IDAYC 
IYEARC = IYEAR 
IDAYC = IDAY 
 
RETURN 
 
!same year 
2000 CONTINUE 



 229

 
!compare IDAY to IDAYC 
IF (IDAY == IDAYC) THEN 
  GOTO 3000       !same day 
END IF 
 
!different day 
!fill day variables 
CALL DRIGEN(IDAY,IERROR3) 
IF (IERROR3 /= 0) THEN 
  IERROR = 7 
  RETURN 
END IF 
 
!calculate return value 
!adjust time to test against spacing of given values in DRI array - currently 10 minutes. 
DARRAYDT = 600.0      !10 minutes 
DPTTIME = 1.0 + TIME/DARRAYDT 
DPT = FLOOR(DPTTIME) 
 
!check if there's any sunlight, return DRI, do interpolation if requires 
IF (DAYTIME(DPT) == 0.0) THEN 
  IRAD = 0 
  RI = 0.0 
ELSE 
  IF (DPTTIME-DPT == 0.0) THEN    !no need to interpolate 
    RI = DRIARRAY(DPT) 
  ELSE 
    RI = DRIARRAY(DPT) + (DPTTIME-DPT)*(DRIARRAY(DPT+1) - DRIARRAY(DPT)) 
  END IF 
  IRAD = 1 
END IF 
 
!reset IDAYC 
IDAYC = IDAY 
 
RETURN 
 
!same day 
3000 CONTINUE 
 
!calculate return value 
!adjust time to test against spacing of given values in RI array - currently 10 minutes. 
DARRAYDT = 600.0      !10 minutes 
DPTTIME = 1.0 + TIME/DARRAYDT 
DPT = FLOOR(DPTTIME) 



 230

 
!check if there's any sunlight, return RI, do interpolation if requires 
IF (DAYTIME(DPT) == 0.0) THEN 
  IRAD = 0 
  RI = 0.0 
ELSE 
  IF (DPTTIME-DPT == 0.0) THEN    !no need to interpolate 
    RI = DRIARRAY(DPT) 
  ELSE 
    RI = DRIARRAY(DPT) + (DPTTIME-DPT)*(DRIARRAY(DPT+1) - DRIARRAY(DPT)) 
  END IF 
  IRAD = 1 
END IF 
 
RETURN 
 
END SUBROUTINE RADIAT 
!####                                     END SUBROUTINE RADIAT                                     #### 
 
!####                               START OF SUBTROUTINE DORGEN                              #### 
SUBROUTINE DORGEN(DORS,IERROR1) 
!Subroutine to generate one year's worth of Daily Overall Radiation values. 
!Written by YCS, adapted by TRL June 1, 2005. 
 
IMPLICIT NONE 
!REAL*4 variables - input parameters (common block) 
REAL*4:: MINDOR      !minimum DOR for the 
location 
REAL*4:: A0AV, A1AV, A2AV, A3AV, A4AV   !ave. param. values for DOR 
frequency sinusoids (0,1,2 freqs) 
REAL*4:: A0SD, A1SD, A2SD, A3SD, A4SD   !stdev. param values for DOR 
frequency sinusoids (0,1,2 freqs) 
REAL*4:: B0AV, B1AV, B2AV     !ave. param. values for DOR 
beat sinusoid 
REAL*4:: B0SD, B1SD, B2SD     !stdev. param. values for DOR 
beat sinusoid 
REAL*4:: D0AV, D1AV, D2AV, D3AV, D4AV, D5AV  !ave. param. values for DOR 
noise - residual 
REAL*4:: D0SD, D1SD, D2SD, D3SD, D4SD, D5SD  !stdev. param. values for DOR 
noise - residual 
REAL*4:: E0AV, E1AV, E2AV, E3AV, E4AV, E5AV  !ave. param. values for DOR 
noise - postive 
REAL*4:: E0SD, E1SD, E2SD, E3SD, E4SD, E5SD  !stdev. param. values for DOR 
noise - positive 
REAL*4:: F0AV, F1AV, F2AV, F3AV, F4AV, F5AV  !ave. param. values for DOR 
noise - negative 



 231

REAL*4:: F0SD, F1SD, F2SD, F3SD, F4SD, F5SD  !stdev. param. values for DOR 
noise - negative 
REAL*4:: RHO, RHO2      !correlation coefficient: A0 
and A1, B0 and B1 
REAL*4:: PNAV, PNSD      !positive noise occurence 
percentage ave. and s.dev. 
 
!dimension REAL*4 variables - input (common block) 
REAL*4,DIMENSION(365):: DORTIME   !time array used for sinusoids 
(1/365 - 365/365) 
REAL*4,DIMENSION(183):: MAGAVPL   !residual magnitude averages 
array 
REAL*4,DIMENSION(183):: MAGSDPL   !residual magnitude standards 
deviation array 
REAL*4,DIMENSION(365):: DPNAVPL   !daily positive noise averages 
array 
REAL*4,DIMENSION(365):: DPNSDPL   !daily positive noise standard 
deviations array 
REAL*4,DIMENSION(365):: DNNAVPL   !daily negative noise averages 
array 
REAL*4,DIMENSION(365):: DNNSDPL   !daily negative noise standard 
deviations array 
 
!REAL*4 variables - non input 
REAL*4, PARAMETER:: PI=3.14159265358979 
 
REAL*4:: PNOISEPER      !positive noice occurence 
percentage for the year 
REAL*4:: A0,A1,A2,A3,A4 
REAL*4:: B0,B1,B2 
REAL*4:: FREQ0, FREQ1, FREQ2    !freq=0, freq=1, and freq=2 
parts of DOR signal 
REAL*4:: BEAT      !the beat sinusoid part of the 
DOR signal 
REAL*4:: NOISE      !noise portion of DOR signal 
(uses MAG and ANGLE, DATTIME and FREQ) 
REAL*4:: FREQ      !working variable for 
frequency calculations 
REAL*4:: TEMP1, TEMP2     !working variables 
REAL*4:: RANDRAD, MAGSDEVRAD, ANGLERAD  !functions 
 
!dimension REAL*4 variables - non input 
REAL*4,DIMENSION(183):: MAG    !magnitude array rebuilt from 
ave. and s.dev. polynomials 
REAL*4,DIMENSION(183):: ANGLE    !phase angle array 



 232

REAL*4,DIMENSION(365):: NOISESIGN   !the sign (pos/neg) of noise 
for each day in year 
REAL*4,DIMENSION(365):: DORS    !one year's worth of DORs 
 
!INTEGER*4 variables 
INTEGER*4:: IERROR1     !error code 0=none detected 
INTEGER*4:: I,J 
 
!common blocks 
COMMON /BLOCK05/    
A0AV,A0SD,A1AV,A1SD,A2AV,A2SD,A3AV,A3SD,A4AV,A4SD,B0AV,B0SD,B1AV,B1SD,B2
AV,B2SD,MINDOR,PNAV,PNSD,RHO,RHO2 
 
COMMON /BLOCK06/    
DORTIME,MAGAVPL,MAGSDPL,DPNAVPL,DPNSDPL,DNNAVPL,DNNSDPL 
 
IERROR1 = 0 
 
!empty signal to prepare for new DORs 
DO I=1,365 
  DORS(I) = 0.0 
END DO 
 
!Generate residual portion of noise 
DO I=1,183 
  MAG(I) = ABS(MAGAVPL(I) + MAGSDEVRAD(1,2.5)*MAGSDPL(I)) 
  ANGLE(I) = (RANDRAD(1)-0.5) * 2*PI 
END DO 
 
!Calculate postive noise occurence percentage and NOISESIGN vector 
PNOISEPER = PNAV + MAGSDEVRAD(1,1.0)*PNSD 
 
DO I=1,365 
  NOISESIGN(I) = PNOISEPER - RANDRAD(1) 
END DO 
 
!set up frequency 0, 1, and 2 parameters 
TEMP1=MAGSDEVRAD(1,5.0)     !notice different bounds in 
random # generation 
TEMP2=MAGSDEVRAD(1,1.5) 
 
A0 = A0AV + TEMP1*A0SD 
 
A1 = A1AV + (TEMP1*RHO + TEMP2*(1-RHO**2)**0.5)*A1SD 
A2 = A2AV + MAGSDEVRAD(1,1.5)*A2SD 
A2 = ANGLERAD(A2) 



 233

 
A3 = A3AV + MAGSDEVRAD(1,2.0)*A3SD 
A4 = A4AV + MAGSDEVRAD(1,2.0)*A4SD 
A4 = ANGLERAD(A4) 
 
!set up beat frequency parameters 
TEMP1 = MAGSDEVRAD(1,2.0) 
TEMP2 = MAGSDEVRAD(1,2.0) 
 
B0 = B0AV + TEMP1*B0SD 
B1 = B1AV + (TEMP1*RHO2 + TEMP2*(1-RHO2**2)**0.5)*B1SD 
B2 = B2AV + MAGSDEVRAD(1,5.0)*B2SD 
B2 = ANGLERAD(B2) 
 
!generate signal 
DO I=1,365 
  NOISE = 0.0 
  DO J=1,183 
    FREQ = J - 1 
    NOISE = NOISE + MAG(J)*SIN(FREQ * DORTIME(I)*2*PI + ANGLE(J)) 
  END DO 
   
 
  BEAT = B0 + B1*SIN(DORTIME(I)*2*PI + B2) 
 
  FREQ0 = A0 
 
  FREQ1 = A1*SIN(DORTIME(I)*2*PI + A2) 
 
  FREQ2 = A3*SIN(2*DORTIME(I)*2*PI + A4) 
 
  DORS(I) = FREQ0 + FREQ1 + FREQ2 + BEAT*NOISE 
  DORS(I) = MAX(DORS(I), MINDOR) 
END DO 
 
!write (14,14001) (DORS(I),I=1,365) 
!14001 format (f15.5) 
 
RETURN 
 
END SUBROUTINE DORGEN 
!####                                 END OF SUBTROUTINE DORGEN                                #### 
 
!####                                   START FUNCTION ANGLERAD                                  #### 
!# It calculates the condition angle based on THETA - used by radiation subroutines 
!# Inputs : THETA 



 234

REAL*4 FUNCTION ANGLERAD(THETA) 
 
IMPLICIT NONE 
 
REAL*4:: THETA 
REAL*4, PARAMETER:: PI = 3.14159265358979 
 
 DO WHILE (ABS(THETA) > PI) 
  THETA = THETA * (1 - ABS(THETA)**(-1)*2.0*PI) 
END DO 
ANGLERAD = THETA 
 
END FUNCTION ANGLERAD 
!####                             END FUNCTION CONDITIONANGLE                              #### 
 
!####                             START OF MAGSDEVRAD FUNCTION                             #### 
REAL*4 FUNCTION MAGSDEVRAD(MIDUM,BOUND) 
! Function returns normally distributed numbers but removes outliers (i.e. values +/- 
2.5stds).  This function is based on mrand.m written by L. Parrott and R. Kok; its main 
purpose is for use in daily average temperature modeling. 
! Modified so that the bounds with which to identify outliers are given as an argument. YC 
Sun Mar 26 04 
! copy used by radiation subroutines 
 
INTEGER*4:: MIDUM 
REAL*4::BOUND 
REAL*4:: GASDEVRAD 
 
MAGSDEVRAD = BOUND+1.0 
 DO WHILE(ABS(MAGSDEVRAD) > BOUND) 
  MAGSDEVRAD = GASDEVRAD(MIDUM) 
END DO 
 
!MAGSDEV = 6.0 
! DO WHILE(ABS(MAGSDEV) > 5.0) 
!  MAGSDEV = GASDEV(MIDUM) 
!END DO 
 
END FUNCTION MAGSDEVRAD 
!####                               END OF MAGSDEVRAD FUNCTION                               #### 
 
!####                                  START FUNCTION GASDEVRAD                                 #### 
!# Returns a normally distributed deviate with zero mean and unit variance, using ran(idum) 
as the source of uniform deviates.  Reprinted by Lael from Numerical Recipes in C 2 Ed., p. 
289  
! copy used by radiation subroutines 



 235

!# Inputs : GIDUM 
REAL*4 FUNCTION GASDEVRAD(GIDUM) 
 
INTEGER*4:: GIDUM 
 
INTEGER*4:: ISET 
 
REAL*4:: GSET,FAC,RSQ,V1,V2 
 
REAL*4:: RANDRAD 
SAVE ISET,GSET 
 DATA ISET/0/ 
 
IF (ISET == 0) THEN 
  RSQ = 1. 
  DO WHILE(RSQ >= 1. .OR. RSQ == 0.) 
    V1 = 2. * RANDRAD(GIDUM) - 1 
    V2 = 2. * RANDRAD(GIDUM) - 1 
    RSQ = V1**2 + V2**2 
  END DO  
  FAC = SQRT(-2.*LOG(RSQ)/RSQ) 
  GSET = V1 * FAC 
  GASDEVRAD = V2 * FAC 
  ISET = 1 
ELSE 
  GASDEVRAD = GSET 
  ISET = 0 
END IF 
 
END FUNCTION GASDEVRAD 
!####                                       END FUNCTION GASDEV                                       #### 
 
!####                                 START OF FUNCTION RANDRAD                                #### 
FUNCTION RANDRAD(ISEED) 
! From Numerical Recipes in Fortran, po.272-273. Long period ( > 2x10^18 ) random-number 
generator of L'Ecuyer with Bays-Durham shuffle and added safeguards. Returns a uniform 
random deviate between 0.0 and 1.0 (exlusive of the endpoint values). Call with idum a 
negative integer to initialize; thereafter, do not alter idum between successive deviates in 
sequence. RNMX should approximate the largest floating value that is less than 1. 
 
IMPLICIT NONE 
 
INTEGER*4,PARAMETER:: IA1=40014 
INTEGER*4,PARAMETER:: IA2=40692 
INTEGER*4:: IDUM 
INTEGER*4,SAVE:: IDUM2 = 123456789 



 236

INTEGER*4,PARAMETER:: IM1=2147483563 
INTEGER*4,PARAMETER:: IM2=2147483399 
INTEGER*4,PARAMETER:: IMM1=IM1-1 
INTEGER*4,PARAMETER:: IQ1=53668 
INTEGER*4,PARAMETER:: IQ2=52774 
INTEGER*4,PARAMETER:: IR1=12211 
INTEGER*4,PARAMETER:: IR2=3791 
INTEGER*4,INTENT(IN):: ISEED 
INTEGER*4,SAVE:: IY = 0 
INTEGER*4:: J 
INTEGER*4:: K 
 
INTEGER*4,PARAMETER:: NTAB=32 
INTEGER*4,PARAMETER:: NDIV=1+IMM1/NTAB 
INTEGER*4,DIMENSION(NTAB),SAVE:: IV = (NTAB*0) 
 
REAL*4,PARAMETER:: AM=1.0/IM1 
REAL*4,PARAMETER:: EPS=1.2E-7 
REAL*4:: RANDRAD 
REAL*4,PARAMETER:: RNMX=1.0-EPS 
 
IDUM=ISEED 
IF (IDUM <= 0) THEN      !initialize 
  IDUM=MAX(-IDUM,1)     !be sure to prevent IDUM=0 
  IDUM2=IDUM 
  DO J=NTAB+8,1,-1      !load the shuffle table (after 
8 warm-ups) 
    K=IDUM/IQ1 
    IDUM=IA1*(IDUM-K*IQ1)-K*IR1 
    IF (IDUM < 0) IDUM=IDUM+IM1 
    IF (J <= NTAB) IV(J)=IDUM   
  END DO 
  IY=IV(1) 
END IF 
 
K=IDUM/IQ1       !start here when not 
initializing 
IDUM=IA1*(IDUM-K*IQ1)-K*IR1    !compute 
IDUM=MOD(IA1*IDUM,IM1) without overflows 
IF ( IDUM < 0 ) IDUM=IDUM+IM1 
K=IDUM2/IQ2 
IDUM2=IA2*(IDUM2-K*IQ2)-K*IR2    !compute 
IDUM2=MOD(IA2*IDUM2,IM2), likewise 
IF ( IDUM2 < 0 ) IDUM2=IDUM2+IM2 
J=1+IY/NDIV       !will be in the range 1:NTAB 



 237

IY=IV(J)-IDUM2      !here IDUM is shuffled, 
IDUM and IDUM2 are combined 
IV(J)=IDUM 
IF ( IY < 1 ) IY=IY+IMM1 
RANDRAD=MIN(AM*IY,RNMX)    !because users don't expect 
endpoint values 
RETURN 
 
END FUNCTION RANDRAD 
!####                          END OF FUNCTION PROGRAM RANDRAD                          #### 
 
!####                      END OF FUNCTION SUBROUTINE ATTNYEAR                      #### 
SUBROUTINE ATTNYEAR(YATTN,IERROR2) 
!subroutine to generate hourly attenuation factors for one year 
!written by YCS, edited by TRL: May 30, 2005 
 
IMPLICIT NONE 
 
INTEGER*4:: I       !counter 
INTEGER*4:: IERROR2     !error code 
REAL*4:: RANNSE      !random noise 
REAL*4:: RDUMMY1, RDUMMY2    !dummy variables 
REAL*4:: RANDRAD      !random number generator 
function 
REAL*4, DIMENSION(8760):: YATTN   !array of hourly attenuation 
factors for one year 
 
IERROR2 = 0 
 
!an attenuation stream is made with an autocorrelation series (for all 8760 hours in one 
year) 
RDUMMY1 = (RANDRAD(1) + 1.0) / 2.0 
 
YATTN(1) = RDUMMY1 
 
DO I=2,8760 
  RANNSE = RANDRAD(1) - 0.5 
  RDUMMY2 = RDUMMY1 + RANNSE 
  RDUMMY2 = (RDUMMY2 + 1.0) / 2.5 
  RDUMMY1 = RDUMMY2 
  YATTN(I) = RDUMMY2 
END DO 
 
END SUBROUTINE ATTNYEAR 
 
!******************************************************************************** 



 238

 
!####                               START OF SUBTROUTINE DRIGEN                               #### 
SUBROUTINE DRIGEN(IDAY,IERROR3) 
!subroutine to make daily radiation intensity array 
!Creates one day's worth of radiation intensity values with an interval of 10 minutes. 
!Information considered includes "real" radiation from FFT approach, the theoretical value, 
and anattenuation stream generated with an autocorrelation series, as described in Lael's C 
code. 
!Each day's array consists of 24*6+1 values (from 0 sec to 86400 sec inclusive) 
!written by YCS, edited by TRL June 1, 2005. 
 
IMPLICIT NONE 
!declare dimensioned REAL*4 variables 
REAL*4, DIMENSION(24,6):: D10MATN   !in a day, the attenuation 
factor from the prelim ones, every 10 min 
REAL*4, DIMENSION(24,6):: TENTHERAD   !every 10-min theoretical rad 
energy (kJ/m^2), hours(1-24) 
REAL*4, DIMENSION(24):: HOURTHERAD   !hourly theoretical rad energy 
(kJ/m^2), hours (1-24) 
REAL*4, DIMENSION(365):: DORS    !array of DORs 
REAL*4, DIMENSION(8760):: YATTN   !years worth of hourly 
attenuation values 
REAL*4, DIMENSION(24*6+1):: DRIARRAY   !array of day's worth of 
radiation intensities 
 
!declare REAL*4 variables 
REAL*4:: ADJUSTFAC      !adjustment factor for solar 
attenuation 
REAL*4:: DOR       !daily overall radiation 
(kJ/m^2) 
REAL*4:: HALFDAY      !half daytime length in sec 
REAL*4:: HOURATTFAC     !adjusted attenuation factor 
for the hour 
REAL*4:: LAT       !latitude 
REAL*4:: THEORSUM, THEORSUM2    !sum of theoretical rad 
intensity (1-TENTHERAD, 2-prelim DRIARRAY) 
REAL*4:: TEMP 
 
!declare INTEGER*4 variables 
INTEGER*4, DIMENSION(24*6+1):: DAYTIME  !half daytime, used to see if 
ITIME is in daylight hours 
INTEGER*4:: IDAY      !day of year 
INTEGER*4:: IERROR3 
INTEGER*4:: I,J 
 
 



 239

!common blocks 
COMMON /BLOCK07/    DORS, YATTN, LAT 
 
COMMON /BLOCK08/    DAYTIME 
 
COMMON /BLOCK09/    TENTHERAD 
 
COMMON /BLOCK10/    D10MATN 
 
COMMON /BLOCK11/    DRIARRAY 
 
IERROR3 = 0 
 
!fill in arrays with 0 
DO I=1,24*6+1 
  DAYTIME(I) = 0 
  DRIARRAY(I) = 0.0 
END DO 
 
!Calculate theoretical hourly solar energy; D10MATN is calculated from the hourly 
attenuation factor from YATNARRAY. 
!Then theoretical values are attenuated by the 10-min attenuation factor for preliminary 
attenuation. 
!Compare the sum of attenuated solar energy from that "real" one (DOR) obtained from the 
FFT approach, which is store in YDORARRAY, an adjust factor can be calculated. This 
adjust factor and the pliminary ones together represent the "final" attenuation factor and 
is multiplied to the theoretical solar intensity, the results are kept in DRIARRAY, ready to 
be read in the RADIATION subroutine 
 
!call subroutine to generate theoretical solar energy for the day, every 10 mins 
CALL THEORET(IDAY,LAT) 
 
!call subroutine to generate preliminary attenutation factors for the day, every 10 mins 
!CALL DAYATTN(IDAY,YATTN) 
 
 
 
!retrieve "real" solar energy for the day from DORs array 
DOR = DORS(IDAY) 
 
!calculate the sum of theoretical values, after each is attenuated by a preliminary 
attenuation factor 
THEORSUM = 0.0 
THEORSUM2 = 0.0 
DO I=1,24 
  DO J=1,6 



 240

!    THEORSUM = THEORSUM + TENTHERAD(I,J)*D10MATN(I,J) 
    THEORSUM2 = THEORSUM2 + DRIARRAY((I-1)*6+J)*600   !*D10MATN(I,J) 
  END DO 
END DO 
 
!write (15,15001) THEORSUM 
!15001 format (F15.5) 
 
!write (16,16001) THEORSUM2 
!16001 format (F15.5) 
 
TEMP = 0.99 * THEORSUM2 
 
!calculate the adjust factor 
IF (DOR > TEMP) THEN 
  ADJUSTFAC = 0.99 
ELSE 
  ADJUSTFAC = DOR / THEORSUM2 
END IF 
 
!calculate the final radiation intensities and store in DRIARRAY 
DO I=1,24 
  DO J=1,6 
     DRIARRAY((I-1)*6+J) = DRIARRAY((I-1)*6+J) * ADJUSTFAC * 1000 ! * 
D10MATN(I,J) !convert units from J/s/m^2 to kJ/s/m^2 (W/m^2) 
  END DO 
END DO 
DRIARRAY(6*24+1) = DRIARRAY(6*24+1) * ADJUSTFAC  * 1000   ! * D10MATN(24,6)         
!last one in array 
 
!write (13,13001) (DRIARRAY(I),I=1,24*6+1) 
!13001 FORMAT (E15.5) 
 
RETURN 
 
END SUBROUTINE DRIGEN 
!####                                 END OF SUBTROUTINE DRIGEN                                 #### 
 
!####                             START OF SUBTROUTINE THEORET                              #### 
SUBROUTINE THEORET(IDAY,LAT) 
!- total solar energy for every 10 mins  (kJ/m^2) is calculated for a given day, as well 
DRIARRAY is filled with theoretical values.(intensity kJ/sec/m^2) 
!- total solar energy every 10 mins is integrated with a simple Euler method 
!- also fill into DAYTIME, DRIARRAY with calculated theoretical intensity, along the way 
of integration 
!- LAT is already treated in INITRADIATION, to get rid of the invalid TAN(PI/2) 



 241

!- last updated by YC Sun 11:30 041604 
!- adjusted by TRL June 1, 2005 
 
IMPLICIT NONE 
!declare dimensioned REAL*4 variables 
 
REAL*4,DIMENSION(24*6+1)::DRIARRAY   !array of daily radiation 
intensity values 
REAL*4,DIMENSION(24)::HOURTHERAD   !hourly theoretical rad engr 
(kJ/m^2), hours(1~24) 
REAL*4,DIMENSION(24,6)::TENTHERAD   !every 10-min theoretical rad 
engr (kJ/m^2), hours(1~24) 
 
!declare REAL*4 variables 
REAL*4,PARAMETER:: PI = 3.14159265358979 
REAL*4,PARAMETER:: SOLCONST=1.37   !solar constant (kJ/sec/M^2) 
REAL*4:: COSTEMP      !fixed part in the radiation 
calculation 
REAL*4:: DOR       !daily overall radiation  
REAL*4:: ENDSUM       !used in integration 
REAL*4:: HALFDAY      !half daytime length in sec 
REAL*4:: LAT       !latitude 
REAL*4:: LOWER      !lower bound in sec 
REAL*4:: MIDDLESUM     !used in integration 
REAL*4:: RTEMP, RTEMP1     !temporary variable 
REAL*4:: SINTEMP      !fixed part in the radiation 
calculation 
REAL*4:: SUNDECL      !sun declination factor 
REAL*4:: SUNDIST      !sun earth distance factor 
REAL*4:: UPPER      !upper bound in sec 
 
!declare INTEGER*4 variables 
INTEGER*4, DIMENSION(24*6+1)::DAYTIME  !half daytime (in sec) to 
check given time in daytime or not 
INTEGER*4:: IDAY      !day of year 
INTEGER*4:: DELTA      !deltatime in sec 
INTEGER*4:: I,J,K      !counters 
INTEGER*4:: ITEMP      !temporary variable 
INTEGER*4:: PIECES      !# of pieces an integration 
span is divided into 
INTEGER*4:: SUNLIGHTHOUR    !number of hours with 
sunlight 
 
!common blocks 
COMMON /BLOCK08/    DAYTIME 
 



 242

COMMON /BLOCK09/    TENTHERAD 
 
COMMON /BLOCK11/    DRIARRAY 
 
!calculate sunrise / sunset time, and sun-earth distance factor on radiation intensity 
SUNDECL = 0.4093*SIN(2.0*PI*(IDAY + 9.0)/365.0 - PI/2.0) 
SUNDIST = 1.0 + 0.033*COS(2.0*PI*IDAY/365.0) 
 
!check daytime length 
RTEMP = TAN(SUNDECL)*TAN(LAT)    !interim value in calculating 
HALFDAY 
 
IF (RTEMP > 1.0) THEN     !24 hour daytime 
  HALFDAY = 43200.0 
ELSEIF (RTEMP < -1.0) THEN     !24 hour nighttime 
  HALFDAY = 0.0 
ELSE 
  HALFDAY = 43200.0*ACOS(-RTEMP)/PI 
END IF 
 
SUNLIGHTHOUR = CEILING(HALFDAY/3600.0)  !the hour from noon that still 
has sunlight 
 
!calculate hourly radiation intensity (deltatime = 1 min) 
SINTEMP = SIN(SUNDECL) * SIN(LAT)   !fixed part in the radiation 
calculation 
COSTEMP = COS(SUNDECL) * COS(LAT)   !fixed part in the radiation 
calculation 
 
!update the values for noon 
IF (HALFDAY > 0.0) THEN     !not in 24 dark area 
  DAYTIME(73) = 1      !the element right in the 
middle 
  RTEMP = 0.0 
  DRIARRAY(73) = MAX(0.0,SOLCONST*SUNDIST*(COSTEMP*COS(RTEMP*PI/43200.0) 
+ SINTEMP)) 
END IF 
 
PIECES = 10 
DELTA = 60 
DO I=1,12       !counted from noon 
  IF (I > SUNLIGHTHOUR) THEN 
    DO J=1,6 
      TENTHERAD(13-I,7-J) = 0.0    !update TENTHERAD, indices 
show actual order in array 
      TENTHERAD(12+I,J) = 0.0     !the symmetric one 



 243

 
      ITEMP = 73 - ((I-1)*6 + J)     !index of DAYTIME and 
DRIARRAY 
      DAYTIME(ITEMP) = 0 
      DRIARRAY(ITEMP) = 0.0 
      ITEMP = 73 + ((I-1)*6 + J)     !index of the symmetric 
element 
      DAYTIME(ITEMP) = 0 
      DRIARRAY(ITEMP) = 0.0 
    END DO 
  ELSE 
    DO J=1,6 
      LOWER = (I-1)*3600.0 + (J-1)*600.0 
      UPPER = LOWER + PIECES*DELTA 
      ENDSUM = MAX(0.0,SOLCONST*SUNDIST*(COSTEMP*COS(LOWER*PI/43200.0) + 
SINTEMP)) 
 
      RTEMP = MAX(0.0,SOLCONST*SUNDIST*(COSTEMP*COS(UPPER*PI/43200.0) + 
SINTEMP)) 
 
      ENDSUM = ENDSUM + RTEMP 
 
      IF (UPPER < HALFDAY) THEN    !the whole 10 min with 
sunlight 
        !update THEDAYARR for UPPER, and also for the one on the other side of noon 
        DAYTIME(73-((I-1)*6 + J)) = 1 
        DRIARRAY(73-((I-1)*6 + J)) = RTEMP 
        DAYTIME(73+((I-1)*6 + J)) = 1 
        DRIARRAY(73+((I-1)*6 + J)) = RTEMP 
         
        !sum MIDDLESUM for every min in this 10 min period (only 9 of them) 
        MIDDLESUM = 0.0 
         
        DO K=1,PIECES-1      !deltatime = 1 min 
          RTEMP = LOWER + DELTA*K 
          RTEMP1 = MAX(0.0,SOLCONST*SUNDIST*(COSTEMP*COS(RTEMP*PI/43200.0) + 
SINTEMP)) 
          MIDDLESUM = MIDDLESUM + RTEMP1    
        END DO 
  
      ELSE       !have to check if within 
daytime    
        !update THEDAYARR for UPPER, and also for the one on the other side of noon 
        DAYTIME(73-((I-1)*6 + J)) = 0 
        DRIARRAY(73-((I-1)*6 + J)) = 0.0 
        DAYTIME(73+((I-1)*6 + J)) = 0 



 244

        DRIARRAY(73+((I-1)*6 + J)) = 0.0 
         
 !sum MIDDLESUM for every min in this 10 min (only 9 of them) 
 MIDDLESUM = 0.0 
 DO K=1,PIECES-1      !deltatime = 1 min 
   RTEMP = LOWER + DELTA*K 
 
   IF (RTEMP < HALFDAY) THEN    !has sunlight 
       RTEMP1 = 
MAX(0.0,SOLCONST*SUNDIST*(COSTEMP*COS(RTEMP*PI/43200.0) + SINTEMP)) 
     MIDDLESUM = MIDDLESUM + RTEMP1 
          END IF   
        END DO 
      END IF !(UPPER < HALFDAY) 
 
      TENTHERAD(13-I,7-J) = (ENDSUM + 2*MIDDLESUM)*DELTA/2.0 
 !update TENTHERAD, indices show the actual order in array 
      TENTHERAD(12+I,J) = TENTHERAD(13-I,7-J) 
 
    END DO !J=1,6 
  END IF !(I>SUNLIGHTHOUR) 
END DO 
 
!write (12,12001) (DRIARRAY(I),I=1,24*6+1) 
!12001 FORMAT (E15.5) 
 
RETURN 
 
END SUBROUTINE THEORET 
!####                                END OF SUBTROUTINE THEORET                               #### 
 
!####                             START OF SUBTROUTINE DAYATTN                             #### 
SUBROUTINE DAYATTN(IDAY,YATTN) 
!Create smoothed attenduation factors for every 10 min in a day.  Values dervied from the 
hourly factory stored in YATTN. 
!Written by YCS.  Adapted by TRL June 2, 2005 
 
IMPLICIT NONE 
!declare REAL*4 variables 
REAL*4, DIMENSION(24,6):: D10MATN   !attenuation factor from the 
prelim ones, every 10 min 
REAL*4, DIMENSION(24*6):: RARRTEMP   !temporary array 
REAL*4, DIMENSION(8760):: YATTN   !year of hourly attenuation 
factor 
REAL*4:: RTEMP      !temporary variable 
 



 245

!declare INTEGER*4 variables 
INTEGER*4:: IDAY      !day of year 
INTEGER*4:: I, J      !counters 
 
!common blocks 
COMMON /BLOCK10/    D10MATN 
 
DO I=1,24 
  !retrieve this hourly attenduation factor from the yearly attenuation factor array 
  RTEMP = YATTN((IDAY-1)*24+1) 
  !fill it as this hour's every 10 min attenuation factor 
  DO J=1,6 
    RARRTEMP((I - 1)*6 + J) = RTEMP 
  END DO 
END DO 
 
!smooth along the whole day, except the last hour, which doesn't need it 
DO I=1,23 
  !7-point moving average 
  DO J=1,6 
    D10MATN(I,J) = (RARRTEMP((I-1)*6 + J) + RARRTEMP((I-1)*6 + J + 1) + RARRTEMP((I-
1)*6 + J + 2) + & 
                RARRTEMP((I-1)*6 + J + 3) + RARRTEMP((I-1)*6 + J + 4) + & 
       RARRTEMP((I-1)*6 + J + 5) + RARRTEMP((I-1)*6 + J + 6)) 
/ 7.0 
  END DO 
END DO 
 
DO J=1,6 
  D10MATN(24,J) = RARRTEMP(138 + J) 
END DO 
 
!do j=1,24 
!  write (15,15001) (D10MATN(J,I),I=1,6) 
!  15001 FORMAT (F8.5) 
!END DO 
 
RETURN 
 
END SUBROUTINE DAYATTN 
!####                                END OF SUBTROUTINE DAYATTN                               #### 
 
!******************************************************************************** 
!******************************************************************************** 
 
 



 246

!####                        START OF FUNCTION PROGRAM RANDOM1                        #### 
FUNCTION RANDOM1(ISEED) 
! From Numerical Recipes in Fortran, po.272-273. Long period ( > 2x10^18 ) random-number 
generator of L'Ecuyer with Bays-Durham shuffle and added safeguards. Returns a uniform 
random deviate between 0.0 and 1.0 (exlusive of the endpoint values). Call with idum a 
negative integer to initialize; thereafter, do not alter idum between successive deviates in 
sequence. RNMX should approximate the largest floating value that is less than 1. 
 
IMPLICIT NONE 
 
INTEGER*4,PARAMETER:: IA1=40014 
INTEGER*4,PARAMETER:: IA2=40692 
INTEGER*4:: IDUM 
INTEGER*4,SAVE:: IDUM2 = 123456789 
INTEGER*4,PARAMETER:: IM1=2147483563 
INTEGER*4,PARAMETER:: IM2=2147483399 
INTEGER*4,PARAMETER:: IMM1=IM1-1 
INTEGER*4,PARAMETER:: IQ1=53668 
INTEGER*4,PARAMETER:: IQ2=52774 
INTEGER*4,PARAMETER:: IR1=12211 
INTEGER*4,PARAMETER:: IR2=3791 
INTEGER*4,INTENT(IN):: ISEED 
INTEGER*4,SAVE:: IY = 0 
INTEGER*4:: J 
INTEGER*4:: K 
 
INTEGER*4,PARAMETER:: NTAB=32 
INTEGER*4,PARAMETER:: NDIV=1+IMM1/NTAB 
INTEGER*4,DIMENSION(NTAB),SAVE:: IV = (NTAB*0) 
 
REAL*4,PARAMETER:: AM=1.0/IM1 
REAL*4,PARAMETER:: EPS=1.2E-7 
REAL*4:: RANDOM1 
REAL*4,PARAMETER:: RNMX=1.0-EPS 
 
IDUM=ISEED 
IF (IDUM <= 0) THEN      !initialize 
  IDUM=MAX(-IDUM,1)     !be sure to prevent IDUM=0 
  IDUM2=IDUM 
  DO J=NTAB+8,1,-1      !load the shuffle table (after 
8 warm-ups) 
    K=IDUM/IQ1 
    IDUM=IA1*(IDUM-K*IQ1)-K*IR1 
    IF (IDUM < 0) IDUM=IDUM+IM1 
    IF (J <= NTAB) IV(J)=IDUM   
  END DO 



 247

  IY=IV(1) 
END IF 
 
K=IDUM/IQ1       !start here when not 
initializing 
IDUM=IA1*(IDUM-K*IQ1)-K*IR1    !compute 
IDUM=MOD(IA1*IDUM,IM1) without overflows 
IF ( IDUM < 0 ) IDUM=IDUM+IM1 
K=IDUM2/IQ2 
IDUM2=IA2*(IDUM2-K*IQ2)-K*IR2    !compute 
IDUM2=MOD(IA2*IDUM2,IM2), likewise 
IF ( IDUM2 < 0 ) IDUM2=IDUM2+IM2 
J=1+IY/NDIV       !will be in the range 1:NTAB 
IY=IV(J)-IDUM2      !here IDUM is shuffled, 
IDUM and IDUM2 are combined 
IV(J)=IDUM 
IF ( IY < 1 ) IY=IY+IMM1 
RANDOM1=MIN(AM*IY,RNMX)    !because users don't expect 
endpoint values 
RETURN 
 
END FUNCTION RANDOM1 
!####                           END OF FUNCTION PROGRAM RANDOM1                         #### 
 
 
!####                        START OF FUNCTION PROGRAM RANDOM2                       #### 
FUNCTION RANDOM2(ISEED) 
! From Numerical Recipes in Fortran, po.272-273. Long period ( > 2x10^18 ) random-number 
generator of L'Ecuyer with Bays-Durham shuffle and added safeguards. Returns a uniform 
random deviate between 0.0 and 1.0 (exlusive of the endpoint values). Call with idum a 
negative integer to initialize; thereafter, do not alter idum between successive deviates in 
sequence. RNMX should approximate the largest floating value that is less than 1. 
 
IMPLICIT NONE 
 
INTEGER*4,PARAMETER:: IA1=40014 
INTEGER*4,PARAMETER:: IA2=40692 
INTEGER*4:: IDUM 
INTEGER*4,SAVE:: IDUM2 = 123456789 
INTEGER*4,PARAMETER:: IM1=2147483563 
INTEGER*4,PARAMETER:: IM2=2147483399 
INTEGER*4,PARAMETER:: IMM1=IM1-1 
INTEGER*4,PARAMETER:: IQ1=53668 
INTEGER*4,PARAMETER:: IQ2=52774 
INTEGER*4,PARAMETER:: IR1=12211 
INTEGER*4,PARAMETER:: IR2=3791 



 248

INTEGER*4,INTENT(IN):: ISEED 
INTEGER*4,SAVE:: IY = 0 
INTEGER*4:: J 
INTEGER*4:: K 
 
INTEGER*4,PARAMETER:: NTAB=32 
INTEGER*4,PARAMETER:: NDIV=1+IMM1/NTAB 
INTEGER*4,DIMENSION(NTAB),SAVE:: IV = (NTAB*0) 
 
REAL*4,PARAMETER:: AM=1.0/IM1 
REAL*4,PARAMETER:: EPS=1.2E-7 
REAL*4:: RANDOM2 
REAL*4,PARAMETER:: RNMX=1.0-EPS 
 
IDUM=ISEED 
IF (IDUM <= 0) THEN      !initialize 
  IDUM=MAX(-IDUM,1)     !be sure to prevent IDUM=0 
  IDUM2=IDUM 
  DO J=NTAB+8,1,-1      !load the shuffle table (after 
8 warm-ups) 
    K=IDUM/IQ1 
    IDUM=IA1*(IDUM-K*IQ1)-K*IR1 
    IF (IDUM < 0) IDUM=IDUM+IM1 
    IF (J <= NTAB) IV(J)=IDUM   
  END DO 
  IY=IV(1) 
END IF 
 
K=IDUM/IQ1       !start here when not 
initializing 
IDUM=IA1*(IDUM-K*IQ1)-K*IR1    !compute 
IDUM=MOD(IA1*IDUM,IM1) without overflows 
IF ( IDUM < 0 ) IDUM=IDUM+IM1 
K=IDUM2/IQ2 
IDUM2=IA2*(IDUM2-K*IQ2)-K*IR2    !compute 
IDUM2=MOD(IA2*IDUM2,IM2), likewise 
IF ( IDUM2 < 0 ) IDUM2=IDUM2+IM2 
J=1+IY/NDIV       !will be in the range 1:NTAB 
IY=IV(J)-IDUM2      !here IDUM is shuffled, 
IDUM and IDUM2 are combined 
IV(J)=IDUM 
IF ( IY < 1 ) IY=IY+IMM1 
RANDOM2=MIN(AM*IY,RNMX)    !because users don't expect 
endpoint values 
RETURN 
 



 249

END FUNCTION RANDOM2 
!####                         END OF FUNCTION PROGRAM RANDOM2                          #### 
 
 
!####                        START OF FUNCTION PROGRAM RANDOM3                       #### 
FUNCTION RANDOM3(ISEED) 
! From Numerical Recipes in Fortran, po.272-273. Long period ( > 2x10^18 ) random-number 
generator of L'Ecuyer with Bays-Durham shuffle and added safeguards. Returns a uniform 
random deviate between 0.0 and 1.0 (exlusive of the endpoint values). Call with idum a 
negative integer to initialize; thereafter, do not alter idum between successive deviates in 
sequence. RNMX should approximate the largest floating value that is less than 1. 
 
IMPLICIT NONE 
 
INTEGER*4,PARAMETER:: IA1=40014 
INTEGER*4,PARAMETER:: IA2=40692 
INTEGER*4:: IDUM 
INTEGER*4,SAVE:: IDUM2 = 123456789 
INTEGER*4,PARAMETER:: IM1=2147483563 
INTEGER*4,PARAMETER:: IM2=2147483399 
INTEGER*4,PARAMETER:: IMM1=IM1-1 
INTEGER*4,PARAMETER:: IQ1=53668 
INTEGER*4,PARAMETER:: IQ2=52774 
INTEGER*4,PARAMETER:: IR1=12211 
INTEGER*4,PARAMETER:: IR2=3791 
INTEGER*4,INTENT(IN):: ISEED 
INTEGER*4,SAVE:: IY = 0 
INTEGER*4:: J 
INTEGER*4:: K 
 
INTEGER*4,PARAMETER:: NTAB=32 
INTEGER*4,PARAMETER:: NDIV=1+IMM1/NTAB 
INTEGER*4,DIMENSION(NTAB),SAVE:: IV = (NTAB*0) 
 
REAL*4,PARAMETER:: AM=1.0/IM1 
REAL*4,PARAMETER:: EPS=1.2E-7 
REAL*4:: RANDOM3 
REAL*4,PARAMETER:: RNMX=1.0-EPS 
 
IDUM=ISEED 
IF (IDUM <= 0) THEN      !initialize 
  IDUM=MAX(-IDUM,1)     !be sure to prevent IDUM=0 
  IDUM2=IDUM 
  DO J=NTAB+8,1,-1      !load the shuffle table (after 
8 warm-ups) 
    K=IDUM/IQ1 



 250

    IDUM=IA1*(IDUM-K*IQ1)-K*IR1 
    IF (IDUM < 0) IDUM=IDUM+IM1 
    IF (J <= NTAB) IV(J)=IDUM   
  END DO 
  IY=IV(1) 
END IF 
 
K=IDUM/IQ1       !start here when not 
initializing 
IDUM=IA1*(IDUM-K*IQ1)-K*IR1    !compute 
IDUM=MOD(IA1*IDUM,IM1) without overflows 
IF ( IDUM < 0 ) IDUM=IDUM+IM1 
K=IDUM2/IQ2 
IDUM2=IA2*(IDUM2-K*IQ2)-K*IR2    !compute 
IDUM2=MOD(IA2*IDUM2,IM2), likewise 
IF ( IDUM2 < 0 ) IDUM2=IDUM2+IM2 
J=1+IY/NDIV       !will be in the range 1:NTAB 
IY=IV(J)-IDUM2      !here IDUM is shuffled, 
IDUM and IDUM2 are combined 
IV(J)=IDUM 
IF ( IY < 1 ) IY=IY+IMM1 
RANDOM3=MIN(AM*IY,RNMX)    !because users don't expect 
endpoint values 
RETURN 
 
END FUNCTION RANDOM3 
!####                          END OF FUNCTION PROGRAM RANDOM3                         #### 
 
 
!####                        START OF FUNCTION PROGRAM RANDOM4                       #### 
FUNCTION RANDOM4(ISEED) 
! From Numerical Recipes in Fortran, po.272-273. Long period ( > 2x10^18 ) random-number 
generator of L'Ecuyer with Bays-Durham shuffle and added safeguards. Returns a uniform 
random deviate between 0.0 and 1.0 (exlusive of the endpoint values). Call with idum a 
negative integer to initialize; thereafter, do not alter idum between successive deviates in 
sequence. RNMX should approximate the largest floating value that is less than 1. 
 
IMPLICIT NONE 
 
INTEGER*4,PARAMETER:: IA1=40014 
INTEGER*4,PARAMETER:: IA2=40692 
INTEGER*4:: IDUM 
INTEGER*4,SAVE:: IDUM2 = 123456789 
INTEGER*4,PARAMETER:: IM1=2147483563 
INTEGER*4,PARAMETER:: IM2=2147483399 
INTEGER*4,PARAMETER:: IMM1=IM1-1 



 251

INTEGER*4,PARAMETER:: IQ1=53668 
INTEGER*4,PARAMETER:: IQ2=52774 
INTEGER*4,PARAMETER:: IR1=12211 
INTEGER*4,PARAMETER:: IR2=3791 
INTEGER*4,INTENT(IN):: ISEED 
INTEGER*4,SAVE:: IY = 0 
INTEGER*4:: J 
INTEGER*4:: K 
 
INTEGER*4,PARAMETER:: NTAB=32 
INTEGER*4,PARAMETER:: NDIV=1+IMM1/NTAB 
INTEGER*4,DIMENSION(NTAB),SAVE:: IV = (NTAB*0) 
 
REAL*4,PARAMETER:: AM=1.0/IM1 
REAL*4,PARAMETER:: EPS=1.2E-7 
REAL*4:: RANDOM4 
REAL*4,PARAMETER:: RNMX=1.0-EPS 
 
IDUM=ISEED 
IF (IDUM <= 0) THEN      !initialize 
  IDUM=MAX(-IDUM,1)     !be sure to prevent IDUM=0 
  IDUM2=IDUM 
  DO J=NTAB+8,1,-1      !load the shuffle table (after 
8 warm-ups) 
    K=IDUM/IQ1 
    IDUM=IA1*(IDUM-K*IQ1)-K*IR1 
    IF (IDUM < 0) IDUM=IDUM+IM1 
    IF (J <= NTAB) IV(J)=IDUM   
  END DO 
  IY=IV(1) 
END IF 
 
K=IDUM/IQ1       !start here when not 
initializing 
IDUM=IA1*(IDUM-K*IQ1)-K*IR1    !compute 
IDUM=MOD(IA1*IDUM,IM1) without overflows 
IF ( IDUM < 0 ) IDUM=IDUM+IM1 
K=IDUM2/IQ2 
IDUM2=IA2*(IDUM2-K*IQ2)-K*IR2    !compute 
IDUM2=MOD(IA2*IDUM2,IM2), likewise 
IF ( IDUM2 < 0 ) IDUM2=IDUM2+IM2 
J=1+IY/NDIV       !will be in the range 1:NTAB 
IY=IV(J)-IDUM2      !here IDUM is shuffled, 
IDUM and IDUM2 are combined 
IV(J)=IDUM 
IF ( IY < 1 ) IY=IY+IMM1 



 252

RANDOM4=MIN(AM*IY,RNMX)     !because users don't 
expect endpoint values 
RETURN 
 
END FUNCTION RANDOM4 
!####                          END OF FUNCTION PROGRAM RANDOM4                         #### 
 
 
!####                        START OF FUNCTION PROGRAM RANDOM5                       #### 
FUNCTION RANDOM5(ISEED) 
! From Numerical Recipes in Fortran, po.272-273. Long period ( > 2x10^18 ) random-number 
generator of L'Ecuyer with Bays-Durham shuffle and added safeguards. Returns a uniform 
random deviate between 0.0 and 1.0 (exlusive of the endpoint values). Call with idum a 
negative integer to initialize; thereafter, do not alter idum between successive deviates in 
sequence. RNMX should approximate the largest floating value that is less than 1. 
 
IMPLICIT NONE 
 
INTEGER*4,PARAMETER:: IA1=40014 
INTEGER*4,PARAMETER:: IA2=40692 
INTEGER*4:: IDUM 
INTEGER*4,SAVE:: IDUM2 = 123456789 
INTEGER*4,PARAMETER:: IM1=2147483563 
INTEGER*4,PARAMETER:: IM2=2147483399 
INTEGER*4,PARAMETER:: IMM1=IM1-1 
INTEGER*4,PARAMETER:: IQ1=53668 
INTEGER*4,PARAMETER:: IQ2=52774 
INTEGER*4,PARAMETER:: IR1=12211 
INTEGER*4,PARAMETER:: IR2=3791 
INTEGER*4,INTENT(IN):: ISEED 
INTEGER*4,SAVE:: IY = 0 
INTEGER*4:: J 
INTEGER*4:: K 
 
INTEGER*4,PARAMETER:: NTAB=32 
INTEGER*4,PARAMETER:: NDIV=1+IMM1/NTAB 
INTEGER*4,DIMENSION(NTAB),SAVE:: IV = (NTAB*0) 
 
REAL*4,PARAMETER:: AM=1.0/IM1 
REAL*4,PARAMETER:: EPS=1.2E-7 
REAL*4:: RANDOM5 
REAL*4,PARAMETER:: RNMX=1.0-EPS 
 
IDUM=ISEED 
IF (IDUM <= 0) THEN      !initialize 
  IDUM=MAX(-IDUM,1)     !be sure to prevent IDUM=0 



 253

  IDUM2=IDUM 
  DO J=NTAB+8,1,-1     !load the shuffle table (after 8 
warm-ups) 
    K=IDUM/IQ1 
    IDUM=IA1*(IDUM-K*IQ1)-K*IR1 
    IF (IDUM < 0) IDUM=IDUM+IM1 
    IF (J <= NTAB) IV(J)=IDUM   
  END DO 
  IY=IV(1) 
END IF 
 
K=IDUM/IQ1      !start here when not initializing 
IDUM=IA1*(IDUM-K*IQ1)-K*IR1   !compute 
IDUM=MOD(IA1*IDUM,IM1) without overflows 
IF ( IDUM < 0 ) IDUM=IDUM+IM1 
K=IDUM2/IQ2 
IDUM2=IA2*(IDUM2-K*IQ2)-K*IR2   !compute 
IDUM2=MOD(IA2*IDUM2,IM2), likewise 
IF ( IDUM2 < 0 ) IDUM2=IDUM2+IM2 
J=1+IY/NDIV      !will be in the range 1:NTAB 
IY=IV(J)-IDUM2     !here IDUM is shuffled, IDUM and 
IDUM2 are combined 
IV(J)=IDUM 
IF ( IY < 1 ) IY=IY+IMM1 
RANDOM5=MIN(AM*IY,RNMX)   !because users don't expect endpoint 
values 
RETURN 
 
END FUNCTION RANDOM5 
!####                          END OF FUNCTION PROGRAM RANDOM5                         #### 
 
!******************************************************************************** 
 
!####                               START OF SUBROUTINE ASCEND                                #### 
 
SUBROUTINE ASCEND(FLOWS,A) 
 
!################################################## 
!####          Subroutine to calculate the system ascendency at each ecocycle         #### 
!################################################## 
 
INTEGER*4, PARAMETER:: MAXSPEC=30   !maximum total numer of 
species allowed 
 
REAL*4, DIMENSION (MAXSPEC+2,MAXSPEC+2):: FLOWS 
REAL*4:: VIGOR      !sum of all flows in matrix 



 254

REAL*4:: ORGANIZ      !(organization) average mutual 
information - degree of constraint 
REAL*4:: ROW       !sum of all flows from source 
compartment 
REAL*4:: COLUMN      !sum of all flows to sink 
compartment 
REAL*4:: TEMP1, TEMP2 
REAL*4:: A       !system ascendency 
INTEGER*4:: I, J, K 
 
!calculate VIGOR 
VIGOR=0.0 
 
DO I=1,MAXSPEC+2 
  DO J=1,MAXSPEC+2 
    VIGOR=VIGOR+FLOWS(I,J) 
  END DO 
END DO 
 
!WRITE (*,*) VIGOR 
 
!calculate ORGANIZ 
ORGANIZ=0.0 
 
DO I=1,MAXSPEC+2 
  ROW=0.0 
  DO K=1,MAXSPEC+2 
    ROW=ROW+FLOWS(I,K) 
  END DO 
  DO J=1,MAXSPEC+2 
    IF (FLOWS(I,J) /= 0) THEN 
      COLUMN=0.0 
   DO K=1,MAXSPEC+2 
     COLUMN=COLUMN+FLOWS(K,J) 
   END DO 
      TEMP1=(FLOWS(I,J)*VIGOR) / (ROW*COLUMN) 
   TEMP2=(FLOWS(I,J)/VIGOR)*(LOG(TEMP1)) 
   ORGANIZ=ORGANIZ+TEMP2 
 END IF 
  END DO 
END DO 
 
 
!calculate ascendency A 
A = VIGOR * ORGANIZ 
 



 255

RETURN 
 
END SUBROUTINE ASCEND 
 
!####                                  END OF SUBROUTINE ASCEND                                  #### 
 
!******************************************************************************** 
 
!/////////////////////////////////////////////////////////////////////////////////// 
!####                                        END OF SUBROUTINES                                        #### 
!/////////////////////////////////////////////////////////////////////////////////// 
 



 256

Appendix B 
 
Sample input files for the virtual ecosystem model and simulation program.  See Chapter 
3, Section 3.3.1 for more information. 
 
 
B.1 File “ecomod****.inp” - Values for the model parameters 
! this is datafile ecomod****.inp which contains values for the model parameters 
! 
! Part 1 - random number seeds 
   -209149   -898560 
! 
! Part 2 - ecosystem composition - Species:  20  1 17 11 12  2  6 19  7  4 31 32 
 
! number of producer species (n1) and consumer species (n2) 
        10         2 
! 
! minimum energy levels for species (1 x ntot) 
!        1         2         3         4         5         6         7         8         9        10 
     133.0      17.7      84.0     108.0     142.7     125.2      76.7      13.9     147.5     122.9 
      48.8      84.6 
! 
! energy levels at birth for species (1 x ntot) 
!        1         2         3         4         5         6         7         8         9        10 
     213.5      32.1     146.3     313.6     248.4     198.6     214.5      25.1     232.2     333.5 
     139.1     209.2 
! 
! energy threshold at which species can reproduce (1 x ntot) 
!        1         2         3         4         5         6         7         8         9        10 
    1580.4     261.5    1336.0    2448.1    1999.3    1747.5    1227.5     152.7    1552.8    1709.5 
    1237.0    1811.9 
! 
! values of the energy quanta of the producers (1 x n1) 
!        1         2         3         4         5         6         7         8         9        10 
      0.50      0.50      0.50      0.50      0.50      0.50      0.50      0.50      0.50      0.50 
! 
! specific base metabolic rate for species (1 x ntot) 
!        1         2         3         4         5         6         7         8         9        10 
   0.8E-07   0.2E-06   0.6E-07   0.2E-06   0.2E-06   0.1E-06   0.1E-06   0.1E-06   0.2E-06   
0.2E-06 
   0.6E-06   0.4E-06 
! 
! low end of maximum age for species (1 x ntot) (units= day) 
!        1         2         3         4         5         6         7         8         9        10 
      1611       158       993      1295      1733      1512       901       109      1794      1484 
       549      1001 



 257

! 
! absolute maximum age for species (1 x ntot) (units= day) 
!        1         2         3         4         5         6         7         8         9        10 
      2167      2266      1628      1721      3206      2256      3481      2272      3618      2187 
      3171      1831 
! 
! affect1: food affectedness of consumer species (1 x n2) 
!     N1+1      N1+2      N1+3      N1+4      N1+5      N1+6      N1+7      N1+8      N1+9     N1+10 
     0.621     0.501 
! 
!affect2: health affectedness of all species (1 x ntot) - used together with the INTER 
matrix 
!        1         2         3         4         5         6         7         8         9        10 
      22.9      11.0      11.0      13.8      10.2       5.1       6.1       7.2      10.8      10.3 
      14.0      12.0 
! 
! Part 3 - ecosystem structure 
! 
!food matrix (n2 x ntot) 
!row 1 contains food preference values of species N1+1 for species 1, 2, 3, etc 
!      1       2       3       4       5       6       7       8       9      10 
! 
   0.631   0.145   0.000   0.000   0.017   0.000   0.061   0.000   0.000   0.101 
   0.000   0.044 
! 
   0.897   0.000   0.000   0.000   0.028   0.033   0.024   0.007   0.000   0.006 
   0.006   0.000 
! 
!interaction matrix (refers to species healthness) (ntot x ntot) 
!row 1 contains values for how species 1 is affected by species 1, 2, 3, etc. 
!      1       2       3       4       5       6       7       8       9      10 
! 
   0.379  -0.986   0.767   0.130   0.414   0.365  -0.060   0.523  -0.021  -0.512 
   0.210  -0.607 
! 
   0.626   0.977  -0.090  -0.404  -0.162   0.687  -0.427  -0.956  -0.997  -0.379 
   0.260   0.928 
! 
   0.499   0.688  -0.674  -0.851   0.502  -0.888  -0.816  -0.675   0.392   0.571 
   0.214   0.475 
! 
  -0.354  -0.242   0.792   0.755   0.346  -0.202  -0.704  -0.583  -0.910  -0.635 
   0.283  -0.422 
! 
   0.816   0.315  -0.709  -0.190   0.839  -0.345  -0.728   0.328   0.882  -0.270 
  -0.292  -0.026 



 258

! 
  -0.968   0.254  -0.208  -0.660   0.567   0.238  -0.713  -0.905  -0.329   0.276 
  -0.679   0.282 
! 
   0.812  -0.852   0.165  -0.382  -0.627  -0.558   0.750   0.982  -0.939  -0.560 
  -0.287   0.040 
! 
   0.308  -0.039   0.575   0.138   0.271   0.981   0.928   0.068   0.877  -0.223 
  -0.771  -0.811 
! 
   0.666   0.842   0.638  -0.847  -0.208   0.851  -0.441   0.758  -0.138   0.709 
   0.038   0.191 
! 
   0.271  -0.900  -0.324  -0.009   0.609  -0.177  -0.550   0.260   0.195   0.522 
   0.759   0.574 
! 
  -0.190  -0.085  -0.630   0.695  -0.693   0.740  -0.989  -0.362   0.183  -0.900 
   0.421   0.002 
! 
  -0.599  -0.956  -0.739   0.303   0.454  -0.665   0.333  -0.728   0.509  -0.179 
  -0.114   0.080 
! 
! Part 4 - initial state of system 
! 
! initial population sizes (1 x ntot) 
!        1         2         3         4         5         6         7         8         9        10 
     10000     10000     10000     10000     10000     10000     10000     10000     10000     
10000 
        10        10 
! 
! end of file 
 
 
B.2 File “ecosim****.inp” - Values for the simulation parameters 
! this is datafile ecosim.inp which contains values for the simulation parameters 
  
! name of the output file for this experiment 
ecosys_0001.out 
  
! random number seeds (units= no units) 
   -646541  -2789863   -379834 
  
! start day for the simulation (units= day) 
       100 
  



 259

! start time for the simulation (units= sec)(must be < (86400-DELTIME); should be integer 
multiple of DELTIME) 
       0.0 
  
! maximum number of days allowed for the simulation (units= day) 
      1825  
  
! time increment for the simulation (units= sec)(should be integer fraction of 86400) 
    3600.0 
  
! upper bound on total system energy (units= energy units) 
  0.10E+09 
  
! minimum time in which the system is allowed to double in size (units= year) 
      0.02 
  
! attenuation factor variable "alpha" 
       4.0 
  
! end of file 
 
 
B.3 File “ecorad****.inp” - Values for the radiation subroutine parameters 
!file 'ecorad****.inp' - parameters for the RADIAT subroutine - (Montreal) 
 
!    ISEED 
    -44561 
 
! latitude (degree) 
     45.47 
 
!   MINDOR 
    433.00 
 
!          A0AV           A1AV           A2AV           A3AV           A4AV 
    13120.27800     8829.81016       -1.34716     1037.22761        0.02965 
 
!          A0SD           A1SD           A2SD           A3SD           A4SD 
      456.60124      632.27509        0.05915      382.06399        0.85617 
 
!          B0AV           B1AV           B2AV 
     4447.52876     2295.43612       -1.14244 
 
!          B0SD           B1SD           B2SD 
      185.07364      208.38921        0.10119 
 



 260

! magav (D0AV through D5AV) 
    9.92396E-02 
   -5.21604E-04 
    5.67420E-06 
    2.07822E-08 
   -5.60990E-10 
    1.91221E-12 
 
! magsd (D0SD through D5SD) 
    5.73754E-02 
   -9.11941E-04 
    1.84082E-05 
   -1.52860E-07 
    5.41825E-10 
   -6.77494E-13 
 
!      RHO (A0 to A1) 
   0.55174 
 
!     RHO2 (B0 to B1) 
   0.35574 
 
!     PNAV      PNSD 
   0.54977   0.01391 
 
! dpnav (E0AV through E5AV) 
    6.73317E-01 
    2.58597E-03 
    7.49953E-05 
   -1.12215E-06 
    4.73178E-09 
   -6.22206E-12 
 
! dpnsd (E0SD through E5SD) 
    3.93449E-01 
   -1.86361E-03 
    8.29983E-05 
   -8.67030E-07 
    3.34443E-09 
   -4.26600E-12 
 
! dnnav (F0AV through F5AV) 
   -7.03378E-01 
   -1.74981E-02 
    2.44556E-04 
   -1.50007E-06 



 261

    4.00604E-09 
   -3.75995E-12 
 
! dnnsd (F0SD through F5SD) 
    3.95866E-01 
    1.01834E-02 
   -1.64697E-04 
    1.23122E-06 
   -3.91411E-09 
    4.30624E-12 
 
 
B.4 File “ecotem****.inp” - Values for the temperature subroutine parameters 
!file 'ecotem****.inp' - parameters for TEMPERAT subroutine - Vancouver A0AV+10 
 
!    ISEED 
    -48927 
 
!     A0AV      A1AV      A2AV      A3AV      A4AV 
  19.68582   7.06066  -1.87590   1.09537  -0.14956 
 
!     A0SD      A1SD      A2SD      A3SD      A4SD 
   0.40035   0.49859   0.08062   0.39782   0.33524 
 
!     B0AV      B1AV      B2AV 
   1.81692   0.66674   1.70905 
 
!     B0SD      B1SD      B2SD 
   0.15905   0.24835   0.21634 
 
! MAGAV (D0AV through D5AV) 
    3.37923E-01 
   -7.97406E-03 
    1.12432E-04 
   -9.49622E-07 
    4.21953E-09 
   -7.39887E-12 
 
! MAGSD (D0SD through D5SD) 
    1.79879E-01 
   -5.13337E-03 
    9.59917E-05 
   -1.01137E-06 
    5.18424E-09 
   -1.00021E-11 
 



 262

!      RHO (not actual rho for vancouver) 
  -0.50000 
 
!    AMPUP,  AMPDOWN 
     0.975     1.020 



 263

Appendix C 
Sample output files.  See Chapter 3, Section 3.3.1 for more information. 
 
C.1 File “ecosys****.out” – Main output file 

 

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

 S
TA

RT
 O

F 
O

U
TP

U
T 

FR
O

M
 I

N
IT

IA
LI

ZA
TI

O
N

 P
H

A
SE

 
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

* 
 TH

E 
O

U
TP

U
T 

FI
LE

 N
A

M
E 

FO
R 

TH
IS

 E
X

PE
RI

M
EN

T 
IS

 (T
H

IS
 F

IL
E)

:  
   

   
   

ec
os

ys
00

01
.o

ut
  

 A
LL

 M
A

TR
IC

ES
 S

U
CC

ES
SF

U
LL

Y 
FI

LL
ED

 A
T 

IN
IT

IA
LI

ZA
TI

O
N

 
 **

**
**

**
**

 O
U

TP
U

T 
FR

O
M

 I
N

IT
IA

LI
ZA

TI
O

N
 P

H
A

SE
 P

A
RT

 1
 -

 D
A

TA
 I

N
PU

T 
A

N
D

 O
U

TP
U

T 
IN

TO
 "

PA
PE

R"
 F

IL
E 

**
**

**
**

**
**

* 
 PA

RA
M

ET
ER

 V
A

LU
ES

 F
O

R 
TH

E 
SI

M
U

LA
TI

O
N

: 
M

A
X

IM
U

M
 P

O
PU

LA
TI

O
N

 S
IZ

E 
A

LL
O

W
ED

 F
O

R 
TH

IS
 S

IM
U

LA
TI

O
N

 R
U

N
:  

10
00

00
00

0 
M

A
X

IM
U

M
 N

U
M

BE
R 

O
F 

SP
EC

IE
S 

A
LL

O
W

ED
 F

O
R 

TH
IS

 S
IM

U
LA

TI
O

N
 R

U
N

:  
  3

0 
SE

ED
S 

FO
R 

RA
N

D
O

M
 N

U
M

BE
R 

GE
N

ER
A

TO
R 

FO
R 

TH
E 

SI
M

U
LA

TI
O

N
:  

   
-3

40
38

   
-8

96
42

8 
  -

73
55

07
 

ST
A

RT
 D

A
Y 

FO
R 

TH
E 

SI
M

U
LA

TI
O

N
:  

 1
00

 
ST

A
RT

 T
IM

E 
FO

R 
TH

E 
SI

M
U

LA
TI

O
N

:  
   

   
0.

0 
SE

CO
N

D
S 

M
A

X
IM

U
M

 N
O

. D
A

YS
 F

O
R 

TH
E 

SI
M

U
LA

TI
O

N
:  

18
25

 D
A

YS
 

TI
M

E 
IN

CR
EM

EN
T 

FO
R 

TH
E 

SI
M

U
LA

TI
O

N
:  

   
36

00
.0

 S
EC

O
N

D
S 

U
PP

ER
 B

O
U

N
D

 O
N

 T
O

TA
L 

SY
ST

EM
 E

N
ER

GY
:  

 0
.10

E+
11

 E
N

ER
GY

 U
N

IT
S 

M
IN

IM
U

M
 D

O
U

BL
IN

G 
TI

M
E 

FO
R 

TH
E 

SY
ST

EM
:  

   
  0

.0
2 

YE
A

R 
A

LP
H

A
 V

A
LU

E 
FO

R 
A

T T
EN

U
A

TI
O

N
 F

A
CT

O
R 

CA
LC

U
LA

TI
O

N
:  

   
   

4.
0 

 PA
RA

M
ET

ER
 V

A
LU

ES
 F

O
R 

TH
E 

M
O

D
EL

: 
SE

ED
S 

FO
R 

RA
N

D
O

M
 N

U
M

BE
R 

GE
N

ER
A

TO
R 

FO
R 

TH
E 

M
O

D
EL

:  
  -

20
91

49
   

-8
98

56
0 

N
U

M
BE

R 
O

F 
PR

O
D

U
CE

R 
SP

EC
IE

S:
   

 1
0 

N
U

M
BE

R 
O

F 
CO

N
SU

M
ER

 S
PE

CI
ES

:  
   

2 
TO

TA
L 

N
U

M
BE

R 
O

F 
SP

EC
IE

S 
IN

 S
YS

TE
M

:  
  1

2 
  *

**
**

 N
O

TE
: C

A
LC

U
LA

TE
D

 
TH

E 
EN

ER
GY

 M
IN

IM
A

 F
O

R 
TH

E 
SP

EC
IE

S 
A

RE
: 

   
  1

33
.0

   
   

17
.7

   
   

84
.0

   
  1

08
.0

   
  1

42
.7

   
  1

25
.2

   
   

76
.7

   
   

13
.9

   
  1

47
.5

   
  1

22
.9

 



 264

   
   

48
.8

   
   

84
.6

 
TH

E 
BI

RT
H

 E
N

ER
GI

ES
 F

O
R 

TH
E 

SP
EC

IE
S 

A
RE

: 
   

  2
13

.5
   

   
32

.1 
   

 1
46

.3
   

  3
13

.6
   

  2
48

.4
   

  1
98

.6
   

  2
14

.5
   

   
25

.1 
   

 2
32

.2
   

  3
33

.5
 

   
  1

39
.1 

   
 2

09
.2

 
TH

E 
RE

PR
O

D
U

CT
IO

N
 T

H
RE

SH
O

LD
 E

N
ER

GI
ES

 F
O

R 
TH

E 
SP

EC
IE

S 
A

RE
: 

   
 1

58
0.

4 
   

 2
61

.5
   

 1
33

6.
0 

   
24

48
.1 

   
19

99
.3

   
 1

74
7.

5 
   

12
27

.5
   

  1
52

.7
   

 1
55

2.
8 

   
17

09
.5

 
   

 1
23

7.
0 

   
18

11
.9

 
TH

E 
EN

ER
GY

 Q
U

A
N

TU
M

 M
A

GN
IT

U
D

ES
 F

O
R 

TH
E 

PR
O

D
U

CE
R 

SP
EC

IE
S 

A
RE

: 
   

   
0.

50
   

   
0.

50
   

   
0.

50
   

   
0.

50
   

   
0.

50
   

   
0.

50
   

   
0.

50
   

   
0.

50
   

   
0.

50
   

   
0.

50
 

TH
E 

SP
EC

IF
IC

 M
ET

A
BO

LI
C 

RA
TE

S 
FO

R 
TH

E 
SP

EC
IE

S 
A

RE
: 

 0
.8

00
E-

07
 0

.2
00

E-
06

 0
.6

00
E-

07
 0

.2
00

E-
06

 0
.2

00
E-

06
 0

.10
0E

-0
6 

0.
10

0E
-0

6 
0.

10
0E

-0
6 

0.
20

0E
-0

6 
0.

20
0E

-0
6 

 0
.6

00
E-

06
 0

.4
00

E-
06

 
TH

E 
LO

W
 E

N
D

 O
F 

M
A

X
IM

U
M

 A
GE

S 
FO

R 
TH

E 
SP

EC
IE

S 
(I

N
 D

A
YS

) A
RE

: 
   

   
16

11
   

   
 1

58
   

   
 9

93
   

   
12

95
   

   
17

33
   

   
15

12
   

   
 9

01
   

   
 1

09
   

   
17

94
   

   
14

84
 

   
   

 5
49

   
   

10
01

 
TH

E 
A

BS
O

LU
TE

 M
A

X
IM

U
M

 A
GE

S 
FO

R 
TH

E 
SP

EC
IE

S 
(I

N
 D

A
YS

) A
RE

: 
   

   
21

67
   

   
22

66
   

   
16

28
   

   
17

21
   

   
32

06
   

   
22

56
   

   
34

81
   

   
22

72
   

   
36

18
   

   
21

87
 

   
   

31
71

   
   

18
31

 
TH

E 
LO

W
 E

N
D

 O
F 

M
A

X
IM

U
M

 A
GE

S 
FO

R 
TH

E 
SP

EC
IE

S 
(I

N
 S

EC
O

N
D

S)
 A

RE
:  

 *
**

**
* 

N
O

TE
: C

A
LC

U
LA

TE
D

 
   

 0
.13

91
9E

+0
9 

   
0.

13
65

1E
+0

8 
   

0.
85

79
5E

+0
8 

   
0.

11
18

9E
+0

9 
   

0.
14

97
3E

+0
9 

   
0.

13
06

4E
+0

9 
   

0.
77

84
6E

+0
8 

   
0.

94
17

6E
+0

7 
   

0.
15

50
0E

+0
9 

   
0.

12
82

2E
+0

9 
   

0.
47

43
4E

+0
8 

   
0.

86
48

6E
+0

8 
TH

E 
A

BS
O

LU
TE

 M
A

X
IM

U
M

 A
GE

S 
FO

R 
TH

E 
SP

EC
IE

S 
(I

N
 S

EC
O

N
D

S)
 A

RE
:  

 *
**

**
* 

N
O

TE
: C

A
LC

U
LA

TE
D

 
   

 0
.18

72
3E

+0
9 

   
0.

19
57

8E
+0

9 
   

0.
14

06
6E

+0
9 

   
0.

14
86

9E
+0

9 
   

0.
27

70
0E

+0
9 

   
0.

19
49

2E
+0

9 
   

0.
30

07
6E

+0
9 

   
0.

19
63

0E
+0

9 
   

0.
31

26
0E

+0
9 

   
0.

18
89

6E
+0

9 
   

0.
27

39
7E

+0
9 

   
0.

15
82

0E
+0

9 
TH

E 
FO

O
D

 A
FF

EC
TE

D
N

ES
S 

VA
LU

ES
 F

O
R 

TH
E 

CO
N

SU
M

ER
 S

PE
CI

ES
 A

RE
: 

   
  0

.6
21

   
  0

.5
01

 
TH

E 
H

EA
LT

H
 A

FF
EC

TE
D

N
ES

S 
VA

LU
ES

 F
O

R 
TH

E 
SP

EC
IE

S 
A

RE
: 

   
   

22
.9

   
   

11
.0

   
   

11
.0

   
   

13
.8

   
   

10
.2

   
   

 5
.1 

   
   

6.
1 

   
   

7.
2 

   
  1

0.
8 

   
  1

0.
3 

   
   

14
.0

   
   

12
.0

 



 265

TH
E 

FO
O

D
 P

RE
FE

RE
N

CE
 V

A
LU

ES
 F

O
R 

TH
E 

CO
N

SU
M

ER
S 

A
RE

: 
   

  0
.6

31
   

  0
.14

5 
   

 0
.0

00
   

  0
.0

00
   

  0
.0

17
   

  0
.0

00
   

  0
.0

61
   

  0
.0

00
   

  0
.0

00
   

  0
.10

1 
   

  0
.0

00
   

  0
.0

44
 

   
  0

.8
97

   
  0

.0
00

   
  0

.0
00

   
  0

.0
00

   
  0

.0
28

   
  0

.0
33

   
  0

.0
24

   
  0

.0
07

   
  0

.0
00

   
  0

.0
06

 
   

  0
.0

06
   

  0
.0

00
 

H
O

W
 S

PE
CI

ES
 I

 (R
O

W
) I

S 
A

FF
EC

TE
D

 B
Y 

SP
EC

IE
S 

J 
(C

O
LU

M
N

) -
 T

H
E 

IN
TE

RA
CT

IO
N

 V
A

LU
ES

 A
RE

: 
   

  0
.3

79
   

 -
0.

98
6 

   
 0

.7
67

   
  0

.13
0 

   
 0

.4
14

   
  0

.3
65

   
 -

0.
06

0 
   

 0
.5

23
   

 -
0.

02
1 

   
-0

.5
12

 
   

  0
.2

10
   

 -
0.

60
7 

   
  0

.6
26

   
  0

.9
77

   
 -

0.
09

0 
   

-0
.4

04
   

 -
0.

16
2 

   
 0

.6
87

   
 -

0.
42

7 
   

-0
.9

56
   

 -
0.

99
7 

   
-0

.3
79

 
   

  0
.2

60
   

  0
.9

28
 

   
  0

.4
99

   
  0

.6
88

   
 -

0.
67

4 
   

-0
.8

51
   

  0
.5

02
   

 -
0.

88
8 

   
-0

.8
16

   
 -

0.
67

5 
   

 0
.3

92
   

  0
.5

71
 

   
  0

.2
14

   
  0

.4
75

 
   

 -
0.

35
4 

   
-0

.2
42

   
  0

.7
92

   
  0

.7
55

   
  0

.3
46

   
 -

0.
20

2 
   

-0
.7

04
   

 -
0.

58
3 

   
-0

.9
10

   
 -

0.
63

5 
   

  0
.2

83
   

 -
0.

42
2 

   
  0

.8
16

   
  0

.3
15

   
 -

0.
70

9 
   

-0
.19

0 
   

 0
.8

39
   

 -
0.

34
5 

   
-0

.7
28

   
  0

.3
28

   
  0

.8
82

   
 -

0.
27

0 
   

 -
0.

29
2 

   
-0

.0
26

 
   

 -
0.

96
8 

   
 0

.2
54

   
 -

0.
20

8 
   

-0
.6

60
   

  0
.5

67
   

  0
.2

38
   

 -
0.

71
3 

   
-0

.9
05

   
 -

0.
32

9 
   

 0
.2

76
 

   
 -

0.
67

9 
   

 0
.2

82
 

   
  0

.8
12

   
 -

0.
85

2 
   

 0
.16

5 
   

-0
.3

82
   

 -
0.

62
7 

   
-0

.5
58

   
  0

.7
50

   
  0

.9
82

   
 -

0.
93

9 
   

-0
.5

60
 

   
 -

0.
28

7 
   

 0
.0

40
 

   
  0

.3
08

   
 -

0.
03

9 
   

 0
.5

75
   

  0
.13

8 
   

 0
.2

71
   

  0
.9

81
   

  0
.9

28
   

  0
.0

68
   

  0
.8

77
   

 -
0.

22
3 

   
 -

0.
77

1 
   

-0
.8

11
 

   
  0

.6
66

   
  0

.8
42

   
  0

.6
38

   
 -

0.
84

7 
   

-0
.2

08
   

  0
.8

51
   

 -
0.

44
1 

   
 0

.7
58

   
 -

0.
13

8 
   

 0
.7

09
 

   
  0

.0
38

   
  0

.19
1 

   
  0

.2
71

   
 -

0.
90

0 
   

-0
.3

24
   

 -
0.

00
9 

   
 0

.6
09

   
 -

0.
17

7 
   

-0
.5

50
   

  0
.2

60
   

  0
.19

5 
   

 0
.5

22
 

   
  0

.7
59

   
  0

.5
74

 
   

 -
0.

19
0 

   
-0

.0
85

   
 -

0.
63

0 
   

 0
.6

95
   

 -
0.

69
3 

   
 0

.7
40

   
 -

0.
98

9 
   

-0
.3

62
   

  0
.18

3 
   

-0
.9

00
 

   
  0

.4
21

   
  0

.0
02

 
   

 -
0.

59
9 

   
-0

.9
56

   
 -

0.
73

9 
   

 0
.3

03
   

  0
.4

54
   

 -
0.

66
5 

   
 0

.3
33

   
 -

0.
72

8 
   

 0
.5

09
   

 -
0.

17
9 



 266

   
 -

0.
11

4 
   

 0
.0

80
 

TH
E 

IN
IT

IA
L 

PO
PU

LA
TI

O
N

 S
IZ

ES
 A

RE
: 

   
  1

00
00

   
  1

00
00

   
  1

00
00

   
  1

00
00

   
  1

00
00

   
  1

00
00

   
  1

00
00

   
  1

00
00

   
  1

00
00

   
  1

00
00

 
   

   
  1

0 
   

   
 1

0 
 **

**
**

**
**

**
**

**
**

**
**

* 
EN

D
 O

F 
O

U
TP

U
T 

FR
O

M
 I

N
IT

IA
LI

ZA
TI

O
N

 P
H

A
SE

 P
A

RT
 1

 *
**

**
**

**
**

**
**

**
**

**
**

**
**

**
 

  **
**

 O
U

TP
U

T 
FR

O
M

 I
N

IT
IA

LI
ZA

TI
O

N
 P

H
A

SE
 P

A
RT

 2
 -

 R
A

N
D

O
M

 I
N

IT
IA

LI
ZA

TI
O

N
 P

A
RT

 O
F 

TH
E 

SY
ST

EM
 C

O
M

PO
SI

TI
O

N
 *

**
* 

 VA
LU

ES
 O

BT
A

IN
ED

 F
RO

M
 I

N
IT

IA
LI

ZA
TI

O
N

 C
A

LL
S 

TO
 R

A
N

D
O

M
 N

U
M

BE
R 

GE
N

ER
A

TO
RS

 F
O

R 
M

O
D

EL
 (I

SE
ED

4,
IS

EE
D

5)
 A

RE
:  

 
0.

76
88

91
  0

.3
03

14
2 

TH
E 

TO
TA

L 
IN

IT
IA

L 
PO

PU
LA

TI
O

N
 S

IZ
E 

IS
 (I

PO
P1

): 
 1

00
02

0 
 --

--
--

--
--

--
--

--
--

--
 S

TA
TS

 O
F 

TH
E 

PO
PU

LA
TI

O
N

S 
A

T 
IN

IT
IA

LI
ZA

TI
O

N
 T

IM
E 

--
--

--
--

--
--

--
--

--
--

- 
SP

EC
IE

S 
PR

ES
EN

T(
0/

1)
 P

O
PU

LA
TI

O
N

   
 S

TA
RT

   
   

   
ST

O
P 

   
 1

   
   

  1
   

   
  1

00
00

   
   

   
   

1 
   

   
 1

00
00

 
   

 2
   

   
  1

   
   

  1
00

00
   

   
  1

00
01

   
   

  2
00

00
 

   
 3

   
   

  1
   

   
  1

00
00

   
   

  2
00

01
   

   
  3

00
00

 
   

 4
   

   
  1

   
   

  1
00

00
   

   
  3

00
01

   
   

  4
00

00
 

   
 5

   
   

  1
   

   
  1

00
00

   
   

  4
00

01
   

   
  5

00
00

 
   

 6
   

   
  1

   
   

  1
00

00
   

   
  5

00
01

   
   

  6
00

00
 

   
 7

   
   

  1
   

   
  1

00
00

   
   

  6
00

01
   

   
  7

00
00

 
   

 8
   

   
  1

   
   

  1
00

00
   

   
  7

00
01

   
   

  8
00

00
 

   
 9

   
   

  1
   

   
  1

00
00

   
   

  8
00

01
   

   
  9

00
00

 
   

10
   

   
  1

   
   

  1
00

00
   

   
  9

00
01

   
   

 1
00

00
0 

   
11

   
   

  1
   

   
   

  1
0 

   
   

10
00

01
   

   
 1

00
01

0 
   

12
   

   
  1

   
   

   
  1

0 
   

   
10

00
11

   
   

 1
00

02
0 

 



 267

**
**

**
**

**
**

**
**

**
**

 E
N

D
 O

F 
O

U
TP

U
T 

FR
O

M
 I

N
IT

IA
LI

ZA
TI

O
N

 P
H

A
SE

 P
A

RT
 2

 *
**

**
**

**
**

**
**

**
**

**
**

* 
  **

**
**

 O
U

TP
U

T 
FR

O
M

 I
N

IT
IA

LI
ZA

TI
O

N
 P

H
A

SE
 P

A
RT

 3
 -

 S
ET

TI
N

G 
U

P,
 S

ET
TI

N
G 

CO
U

N
TE

RS
, E

TC
. *

**
**

* 
 TH

E 
LE

N
GT

H
 O

F 
TH

E 
W

H
A

T 
M

A
TR

IX
 C

O
N

TE
N

TS
 (I

PO
P2

) W
A

S 
SE

T 
A

T 
(I

PO
P1

 =
 T

O
TA

L 
LI

VI
N

G 
PO

PU
LA

TI
O

N
): 

 1
00

02
0 

TH
E 

N
U

M
BE

R 
O

F 
EC

O
CY

CL
ES

 P
ER

 D
A

Y 
IS

:  
  2

4 
TH

E 
N

EW
 V

A
LU

E 
O

F 
D

EL
TI

M
E 

W
A

S 
SE

T 
A

T 
(I

N
 S

EC
O

N
D

S)
:  

  3
60

0.
00

 
TH

E 
M

A
X

U
M

U
M

 P
O

SS
IB

LE
 N

U
M

BE
R 

O
F 

EC
O

CY
CL

ES
 I

S:
   

43
80

0 
N

O
TE

: S
TA

RT
 D

A
TA

 C
O

RR
EC

TE
D

 F
O

R 
"I

LL
EG

A
L"

 S
TA

RT
 T

IM
E 

SP
EC

IF
IC

A
TI

O
N

 D
U

RI
N

G 
FI

RS
T 

D
EL

TA
-T

IM
E 

O
F 

TH
E 

D
A

Y 
TH

E 
ST

A
RT

IN
G 

D
A

Y 
W

A
S 

SE
T 

A
T 

(S
TA

RT
D

A
Y,

 B
EF

O
RE

 F
IR

ST
 I

TE
RA

TI
O

N
 I

N
CR

EM
EN

TA
TI

O
N

): 
   

99
 

TH
E 

ST
A

RT
IN

G 
TI

M
E 

W
A

S 
SE

T 
A

T 
(S

TA
RT

TI
M

E,
 B

EF
O

RE
 F

IR
ST

 I
TE

RA
TI

O
N

 I
N

CR
EM

EN
TA

TI
O

N
, I

N
 S

EC
O

N
D

S)
:  

   
86

40
0.

 
TH

E 
ST

A
RT

IN
G 

D
A

Y 
CY

CL
E 

N
U

M
BE

R 
IS

 (I
CY

CL
E,

 B
EF

O
RE

 F
IR

ST
 I

TE
RA

TI
O

N
 I

N
CR

EM
EN

TA
TI

O
N

): 
   

24
 

TH
E 

ST
A

RT
IN

G 
EC

O
CY

CL
E 

N
U

M
BE

R 
IS

 (I
EC

O
CY

CL
E,

 B
EF

O
RE

 F
IR

ST
 I

TE
RA

TI
O

N
 I

N
CR

EM
EN

TA
TI

O
N

): 
   

 0
 

TH
E 

ST
A

RT
IN

G 
D

A
Y 

N
U

M
BE

R 
IS

 (I
D

A
Y,

 B
EF

O
RE

 F
IR

ST
 I

TE
RA

TI
O

N
 I

N
CR

EM
EN

TA
TI

O
N

): 
   

99
 

TH
E 

ST
A

RT
IN

G 
YE

A
R 

N
U

M
BE

R 
IS

 (I
YE

A
R,

 B
EF

O
RE

 F
IR

ST
 I

TE
RA

TI
O

N
 I

N
CR

EM
EN

TA
TI

O
N

): 
   

 1
 

IN
IT

IA
L 

TI
M

E-
O

F-
D

A
Y 

VA
LU

E 
A

T 
EN

D
 O

F 
TI

M
E 

IN
CR

EM
EN

T 
(T

IM
E,

 B
EF

O
RE

 F
IR

ST
 I

N
CR

EM
EN

TA
TI

O
N

): 
   

 8
64

00
. 

TO
TA

L 
SI

M
U

LA
TI

O
N

 T
IM

E 
EL

A
PS

ED
 (T

TI
M

E,
 B

EF
O

RE
 F

IR
ST

 I
N

CR
EM

EN
TA

TI
O

N
): 

   
   

  0
. 

TO
TA

L 
TI

M
E 

EL
A

PS
ED

 S
IN

CE
 S

TA
RT

 O
F 

FI
RS

T 
YE

A
R 

O
F 

SI
M

U
LA

TI
O

N
 (T

O
TA

LT
IM

E,
 B

EF
O

RE
 F

IR
ST

 I
N

CR
EM

EN
TA

TI
O

N
): 

  
85

53
60

0.
 

TO
TA

L 
IN

IT
IA

L 
EN

ER
GY

 I
N

 T
H

E 
SY

ST
EM

 F
RO

M
 S

U
M

M
IN

G 
VA

LU
ES

 I
N

 T
H

E 
"W

H
A

T"
 M

A
TR

IX
:  

   
0.

79
96

5E
+0

8 
EN

ER
GY

 C
O

N
TE

N
TS

 O
F 

TH
E 

SP
EC

IE
S 

A
T 

VE
RY

 S
TA

RT
 O

F 
SI

M
U

LA
TI

O
N

: 
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

- 
   

 1
   

 0
.8

94
14

E+
07

 
   

 2
   

 0
.14

78
0E

+0
7 

   
 3

   
 0

.7
41

82
E+

07
 

   
 4

   
 0

.13
85

2E
+0

8 
   

 5
   

 0
.11

17
0E

+0
8 

   
 6

   
 0

.9
73

76
E+

07
 



 268

   
 7

   
 0

.7
26

26
E+

07
 

   
 8

   
 0

.8
87

18
E+

06
 

   
 9

   
 0

.8
98

74
E+

07
 

   
10

   
 0

.10
21

5E
+0

8 
   

11
   

 0
.7

17
92

E+
04

 
   

12
   

 0
.8

52
48

E+
04

 
TO

TA
L 

EN
ER

GY
 I

N
 S

YS
TE

M
 F

RO
M

 S
U

M
M

IN
G 

SP
EC

IE
S 

EN
ER

GI
ES

:  
   

0.
79

96
5E

+0
8 

TH
E 

VA
LU

E 
O

BT
A

IN
ED

 F
RO

M
 S

U
M

M
IN

G 
IN

D
IV

ID
U

A
L 

EN
ER

GI
ES

 W
A

S:
   

  0
.7

99
65

E+
08

 
M

IN
IM

U
M

 D
O

U
BL

IN
G 

TI
M

E 
FO

R 
TH

E 
SY

ST
EM

:  
0.

63
07

2E
+0

6 
SE

CO
N

D
S 

M
A

X
IM

U
M

 P
O

SS
IB

LE
 P

O
W

ER
 I

N
TO

 T
H

E 
SY

ST
EM

:  
0.

15
85

5E
+0

5 
EN

ER
GY

 U
N

IT
S/

SE
CO

N
D

 
VA

LU
ES

 O
BT

A
IN

ED
 F

RO
M

 I
N

IT
 C

A
LL

S 
TO

 R
A

N
D

O
M

 N
U

M
BE

R 
GE

N
ER

A
TO

RS
 F

O
R 

SI
M

U
LA

TI
O

N
 (I

SE
ED

1,
IS

EE
D

2,
IS

EE
D

3)
 A

RE
:  

 
0.

58
32

90
  0

.5
07

91
1 

 0
.0

67
78

9 
TO

TA
L 

EN
ER

GY
 I

N
 P

RO
D

U
CE

R 
SP

EC
IE

S:
   

 0
.7

99
49

E+
08

 
 **

**
**

 M
ES

SA
GE

S 
FR

O
M

 S
U

BR
O

U
TI

N
E 

W
EA

TH
ER

 D
U

RI
N

G 
IN

IT
IA

LI
ZA

TI
O

N
 *

**
**

* 
 TE

M
PE

RA
TU

RE
 S

U
BR

O
U

TI
N

E 
IN

IT
IA

LI
ZE

D
 

 RA
D

IA
TI

O
N

 S
U

BR
O

U
TI

N
E 

IN
IT

IA
LI

ZE
D

 
TH

E 
VA

LU
E 

O
F 

A
LP

H
A

 F
O

R 
TH

E 
A

TT
EN

U
A

TI
O

N
 F

A
CT

O
R 

CU
RV

E 
IS

:  
  4

.0
00

00
 

TH
E 

CO
RR

ES
PO

N
D

IN
G 

VA
LU

E 
O

F 
X

 F
O

U
N

D
 F

O
R 

TH
E 

A
TT

EN
U

A
TI

O
N

 F
A

CT
O

R 
CU

RV
E 

IS
:  

  0
.6

73
76

 
TH

E 
N

O
RM

A
LI

ZA
TI

O
N

 V
A

LU
E 

FO
R 

TH
E 

A
TT

EN
U

A
TI

O
N

 F
A

CT
O

R 
CU

RV
E 

IS
:  

  0
.5

76
63

 
**

**
**

 E
N

D
 O

F 
M

ES
SA

GE
S 

FR
O

M
 S

U
BR

O
U

TI
N

E 
W

EA
TH

ER
 D

U
RI

N
G 

IN
IT

IA
LI

ZA
TI

O
N

 *
**

**
* 

 **
**

**
**

**
**

**
**

**
**

**
* 

EN
D

 O
F 

O
U

TP
U

T 
FR

O
M

 I
N

IT
IA

LI
ZA

TI
O

N
 P

H
A

SE
 P

A
RT

 3
 *

**
**

**
**

**
**

**
**

**
**

**
**

**
**

 
 **

**
**

**
**

**
**

**
**

**
**

**
**

* 
EN

D
 O

F 
O

U
TP

U
T 

FR
O

M
 I

N
IT

IA
LI

ZA
TI

O
N

 P
H

A
SE

 *
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
 

  



 269

  **
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

 S
TA

RT
 O

F 
O

U
TP

U
T 

FR
O

M
 I

TE
RA

TI
O

N
 P

H
A

SE
 *

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
 

  **
**

**
**

**
**

**
* 

ST
A

RT
 O

F 
O

U
TP

U
T 

FR
O

M
 E

CO
CY

CL
E 

   
   

1 
 *

**
**

**
**

**
**

 
IE

CO
CY

CL
E,

 I
CY

CL
E,

 I
YE

A
R,

 I
D

A
Y:

   
   

   
 1

   
   

   
1 

   
   

  1
   

   
 1

00
 

A
T 

EN
D

 O
F 

TH
IS

 E
CO

CY
CL

E:
 T

IM
E,

 T
TI

M
E,

 T
O

TA
LT

IM
E 

W
IL

L 
BE

:  
   

  3
60

0.
0 

   
  3

60
0.

0 
  8

55
72

00
.0

 
TO

TA
L 

EN
ER

GY
 A

T 
ST

A
RT

 O
F 

TH
IS

 E
CO

CY
LE

:  
   

0.
79

96
5E

+0
8 

SP
EC

IE
S,

 P
O

PU
LA

TI
O

N
, A

N
D

 S
PE

CI
ES

 E
N

ER
GY

 A
T 

ST
A

RT
 O

F 
TH

IS
 E

CO
CY

CL
E:

 
   

 1
   

  1
00

00
   

 0
.8

94
14

E+
07

 
   

 2
   

  1
00

00
   

 0
.14

78
0E

+0
7 

   
 3

   
  1

00
00

   
 0

.7
41

82
E+

07
 

   
 4

   
  1

00
00

   
 0

.13
85

2E
+0

8 
   

 5
   

  1
00

00
   

 0
.11

17
0E

+0
8 

   
 6

   
  1

00
00

   
 0

.9
73

76
E+

07
 

   
 7

   
  1

00
00

   
 0

.7
26

26
E+

07
 

   
 8

   
  1

00
00

   
 0

.8
87

18
E+

06
 

   
 9

   
  1

00
00

   
 0

.8
98

74
E+

07
 

   
10

   
  1

00
00

   
 0

.10
21

5E
+0

8 
   

11
   

   
  1

0 
   

0.
71

79
2E

+0
4 

   
12

   
   

  1
0 

   
0.

85
24

8E
+0

4 
TO

TA
L 

EN
ER

GY
 I

N
 P

RO
D

U
CE

R 
SP

EC
IE

S 
A

T 
ST

A
RT

 O
F 

TH
IS

 E
CO

CY
CL

E 
IS

:  
  0

.7
99

49
E+

08
 

FR
O

M
 W

EA
TH

ER
: T

EM
PE

RA
T,

 I
RA

D
, E

N
ER

IN
:  

  2
6.

0 
  0

   
 0

.0
00

00
E+

00
 

PO
PU

LA
TI

O
N

S 
A

FT
ER

 D
EA

TH
 F

RO
M

 O
LD

 A
GE

: 
   

 1
   

   
99

99
 

   
 2

   
  1

00
00

 
   

 3
   

  1
00

00
 

   
 4

   
  1

00
00

 



 270

   
 5

   
  1

00
00

 
   

 6
   

  1
00

00
 

   
 7

   
  1

00
00

 
   

 8
   

   
99

99
 

   
 9

   
  1

00
00

 
   

10
   

  1
00

00
 

   
11

   
   

  1
0 

   
12

   
   

  1
0 

D
EA

TH
S 

D
U

E 
TO

 O
LD

 A
GE

: 
   

 1
   

   
1 

   
 2

   
   

0 
   

 3
   

   
0 

   
 4

   
   

0 
   

 5
   

   
0 

   
 6

   
   

0 
   

 7
   

   
0 

   
 8

   
   

1 
   

 9
   

   
0 

   
10

   
   

0 
   

11
   

   
0 

   
12

   
   

0 
RE

LA
TI

VE
 R

A
TE

 F
O

R 
IN

H
ER

EN
T 

M
ET

A
BO

LI
SM

 (P
RO

D
U

CE
RS

 O
N

LY
, D

EP
EN

D
EN

T 
O

N
 T

EM
PE

RA
TU

RE
): 

   
1.3

47
04

 
D

EA
TH

S 
D

U
E 

TO
 S

TA
RV

A
TI

O
N

: 
   

 1
   

   
0 

   
 2

   
   

0 
   

 3
   

   
0 

   
 4

   
   

0 
   

 5
   

   
0 

   
 6

   
   

0 



 271

   
 7

   
   

0 
   

 8
   

   
0 

   
 9

   
   

0 
   

10
   

   
0 

   
11

   
   

0 
   

12
   

   
0 

TO
TA

L 
M

ET
A

BO
LI

ZE
D

 E
N

ER
GY

 P
ER

 S
PE

CI
ES

: 
   

 1
   

 0
.3

46
82

E+
04

 
   

 2
   

 0
.14

33
5E

+0
4 

   
 3

   
 0

.2
15

84
E+

04
 

   
 4

   
 0

.13
43

5E
+0

5 
   

 5
   

 0
.10

83
4E

+0
5 

   
 6

   
 0

.4
72

21
E+

04
 

   
 7

   
 0

.3
52

19
E+

04
 

   
 8

   
 0

.4
30

15
E+

03
 

   
 9

   
 0

.8
71

65
E+

04
 

   
10

   
 0

.9
90

69
E+

04
 

   
11

   
 0

.15
50

7E
+0

2 
   

12
   

 0
.12

27
6E

+0
2 

TO
TA

L 
EN

ER
GY

 I
N

 S
YS

TE
M

 A
FT

ER
 D

EA
TH

 F
RO

M
 O

LD
 A

GE
 A

N
D

 F
RO

M
 I

N
H

ER
EN

T 
M

ET
A

BO
LI

SM
:  

   
0.

79
90

5E
+0

8 
PO

PU
LA

TI
O

N
S,

 E
N

ER
GI

ES
, A

N
D

 R
EL

A
TI

VE
 E

N
ER

GI
ES

 A
FT

ER
 I

N
H

ER
EN

T 
M

ET
A

BO
LI

SM
 A

N
D

 D
EA

TH
 F

RO
M

 S
TA

RV
A

TI
O

N
: 

   
 1

   
   

99
99

   
 0

.8
93

63
E+

07
   

0.
11

18
4 

   
 2

   
  1

00
00

   
 0

.14
76

6E
+0

7 
  0

.0
18

48
 

   
 3

   
  1

00
00

   
 0

.7
41

61
E+

07
   

0.
09

28
1 

   
 4

   
  1

00
00

   
 0

.13
83

9E
+0

8 
  0

.17
31

9 
   

 5
   

  1
00

00
   

 0
.11

15
9E

+0
8 

  0
.13

96
6 

   
 6

   
  1

00
00

   
 0

.9
73

29
E+

07
   

0.
12

18
1 

   
 7

   
  1

00
00

   
 0

.7
25

91
E+

07
   

0.
09

08
5 

   
 8

   
   

99
99

   
 0

.8
86

60
E+

06
   

0.
01

11
0 



 272

   
 9

   
  1

00
00

   
 0

.8
97

86
E+

07
   

0.
11

23
7 

   
10

   
  1

00
00

   
 0

.10
20

5E
+0

8 
  0

.12
77

1 
   

11
   

   
  1

0 
   

0.
71

63
7E

+0
4 

  0
.0

00
09

 
   

12
   

   
  1

0 
   

0.
85

12
6E

+0
4 

  0
.0

00
11

 
TH

E 
FE

ED
N

O
T 

PR
O

BA
BI

LI
TI

ES
 A

RE
 (C

O
N

SU
M

ER
 S

PE
CI

ES
 O

N
LY

): 
   

0.
99

37
4 

  0
.9

90
89

 
TH

E 
FE

ED
 P

RO
BA

BI
LI

TI
ES

 A
RE

: 
   

0.
00

47
4 

  0
.0

00
03

   
0.

00
00

0 
  0

.0
00

00
   

0.
00

02
0 

  0
.0

00
00

   
0.

00
03

0 
  0

.0
00

00
   

0.
00

00
0 

  0
.0

00
99

 
   

0.
00

00
0 

  0
.0

00
00

 
   

0.
00

81
4 

  0
.0

00
00

   
0.

00
00

0 
  0

.0
00

00
   

0.
00

04
0 

  0
.0

00
36

   
0.

00
01

4 
  0

.0
00

00
   

0.
00

00
0 

  0
.0

00
07

 
   

0.
00

00
0 

  0
.0

00
00

 
TH

E 
H

EA
LT

H
 V

EC
TO

R 
IS

: 
   

0.
00

66
7 

 -
0.

01
26

3 
 -

0.
01

30
9 

 -
0.

00
50

6 
  0

.0
07

41
  -

0.
04

02
8 

 -
0.

03
75

8 
  0

.0
58

72
   

0.
01

11
6 

  0
.0

08
46

 
  -

0.
01

11
3 

 -
0.

00
51

5 
CH

EC
KI

N
G 

U
P 

O
N

 T
H

E 
PO

PU
LA

TI
O

N
S 

TO
 S

EE
 I

F 
TH

EY
 S

TI
LL

 M
A

KE
 S

EN
SE

: 
SP

EC
IE

S#
   

PR
ES

EN
CE

   
PO

PU
LA

TI
O

N
   

TO
TA

L 
SP

EC
IE

S 
EN

ER
GY

 
--

--
--

--
   

--
--

--
--

   
--

--
--

--
--

   
--

--
--

--
--

--
--

--
--

--
 

   
  1

   
   

   
 1

   
   

   
99

99
   

   
   

   
0.

89
37

1E
+0

7 
   

  2
   

   
   

 1
   

   
  1

00
00

   
   

   
   

0.
14

76
6E

+0
7 

   
  3

   
   

   
 1

   
   

  1
00

00
   

   
   

   
0.

74
16

1E
+0

7 
   

  4
   

   
   

 1
   

   
  1

00
00

   
   

   
   

0.
13

83
9E

+0
8 

   
  5

   
   

   
 1

   
   

  1
00

00
   

   
   

   
0.

11
15

9E
+0

8 
   

  6
   

   
   

 1
   

   
  1

00
00

   
   

   
   

0.
97

32
9E

+0
7 

   
  7

   
   

   
 1

   
   

  1
00

00
   

   
   

   
0.

72
59

1E
+0

7 
   

  8
   

   
   

 1
   

   
   

99
99

   
   

   
   

0.
88

72
7E

+0
6 

   
  9

   
   

   
 1

   
   

  1
00

00
   

   
   

   
0.

89
78

7E
+0

7 
   

 1
0 

   
   

   
1 

   
   

 1
00

00
   

   
   

   
0.

10
20

5E
+0

8 
   

 1
1 

   
   

   
1 

   
   

   
 1

0 
   

   
   

  0
.7

16
37

E+
04

 
   

 1
2 

   
   

   
1 

   
   

   
 1

0 
   

   
   

  0
.8

51
26

E+
04

 



 273

TO
TA

L 
#

 I
N

D
IV

ID
U

A
LS

 F
RO

M
 S

U
M

M
IN

G:
   

  1
00

01
8 

   
IP

O
P1

:  
   

10
00

18
   

 I
N

D
EX

 K
 A

T:
   

  1
00

01
8 

BI
RT

H
S 

TH
IS

 C
YC

LE
: 

   
 1

   
   

0 
   

 2
   

   
0 

   
 3

   
   

0 
   

 4
   

   
0 

   
 5

   
   

0 
   

 6
   

   
0 

   
 7

   
   

0 
   

 8
   

   
0 

   
 9

   
   

0 
   

10
   

   
0 

   
11

   
   

0 
   

12
   

   
0 

PO
PU

LA
TI

O
N

 C
H

EC
K:

 T
O

TA
L 

LI
VI

N
G 

PO
PU

LA
TI

O
N

 (I
PO

P1
)=

   
  1

00
01

8;
   

 S
U

M
 O

F 
SP

EC
IE

S 
PO

PU
LA

TI
O

N
S=

   
  1

00
01

8 
FI

N
A

L 
RE

PO
RT

 A
T 

EN
D

 O
F 

EC
O

CY
CL

E 
   

   
1:

 
   

 I
   

IW
H

O
   

IP
O

PS
   

   
   

EN
ER

GY
 

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
 

   
 1

   
   

1 
   

  9
99

9 
   

0.
89

36
3E

+0
7 

   
 2

   
   

1 
   

 1
00

00
   

 0
.14

76
6E

+0
7 

   
 3

   
   

1 
   

 1
00

00
   

 0
.7

41
61

E+
07

 
   

 4
   

   
1 

   
 1

00
00

   
 0

.13
83

9E
+0

8 
   

 5
   

   
1 

   
 1

00
00

   
 0

.11
15

9E
+0

8 
   

 6
   

   
1 

   
 1

00
00

   
 0

.9
73

29
E+

07
 

   
 7

   
   

1 
   

 1
00

00
   

 0
.7

25
91

E+
07

 
   

 8
   

   
1 

   
  9

99
9 

   
0.

88
66

0E
+0

6 
   

 9
   

   
1 

   
 1

00
00

   
 0

.8
97

87
E+

07
 

   
10

   
   

1 
   

 1
00

00
   

 0
.10

20
5E

+0
8 

   
11

   
   

1 
   

   
 1

0 
   

0.
71

63
7E

+0
4 



 274

   
12

   
   

1 
   

   
 1

0 
   

0.
85

12
6E

+0
4 

TH
E 

TO
TA

L 
EN

ER
GY

 C
O

N
TE

N
T 

O
F 

TH
E 

SY
ST

EM
 A

T 
TH

E 
EN

D
 O

F 
EC

O
CY

CL
E 

   
   

1 
IS

:  
   

0.
79

90
5E

+0
8 

A
SC

EN
D

EN
CY

 F
O

R 
EC

O
CY

CL
E:

   
   

  0
.0

00
00

 
**

**
**

**
**

**
**

**
**

**
**

**
* 

EN
D

 O
F 

O
U

TP
U

T 
FR

O
M

 E
CO

CY
CL

E 
   

   
1 

 *
**

**
**

**
**

**
**

**
**

**
**

 
 ...

 
 **

**
**

**
**

**
**

* 
ST

A
RT

 O
F 

O
U

TP
U

T 
FR

O
M

 E
CO

CY
CL

E 
  4

38
00

  *
**

**
**

**
**

**
 

IE
CO

CY
CL

E,
 I

CY
CL

E,
 I

YE
A

R,
 I

D
A

Y:
   

   
43

80
0 

   
   

 2
4 

   
   

  6
   

   
  9

9 
A

T 
EN

D
 O

F 
TH

IS
 E

CO
CY

CL
E:

 T
IM

E,
 T

TI
M

E,
 T

O
TA

LT
IM

E 
W

IL
L 

BE
:  

   
 8

64
00

.0
 1

57
68

00
00

.0
 1

66
23

36
00

.0
 

TO
TA

L 
EN

ER
GY

 A
T 

ST
A

RT
 O

F 
TH

IS
 E

CO
CY

LE
:  

   
0.

95
89

5E
+1

0 
SP

EC
IE

S,
 P

O
PU

LA
TI

O
N

, A
N

D
 S

PE
CI

ES
 E

N
ER

GY
 A

T 
ST

A
RT

 O
F 

TH
IS

 E
CO

CY
CL

E:
 

   
 1

   
19

74
01

8 
   

0.
10

73
3E

+1
0 

   
 2

   
   

   
0 

   
0.

00
00

0E
+0

0 
   

 3
   

87
08

18
9 

   
0.

85
16

2E
+1

0 
   

 4
   

   
   

0 
   

0.
00

00
0E

+0
0 

   
 5

   
   

   
0 

   
0.

00
00

0E
+0

0 
   

 6
   

   
   

0 
   

0.
00

00
0E

+0
0 

   
 7

   
   

   
0 

   
0.

00
00

0E
+0

0 
   

 8
   

   
   

0 
   

0.
00

00
0E

+0
0 

   
 9

   
   

   
0 

   
0.

00
00

0E
+0

0 
   

10
   

   
   

0 
   

0.
00

00
0E

+0
0 

   
11

   
   

   
0 

   
0.

00
00

0E
+0

0 
   

12
   

   
   

0 
   

0.
00

00
0E

+0
0 

TO
TA

L 
EN

ER
GY

 I
N

 P
RO

D
U

CE
R 

SP
EC

IE
S 

A
T 

ST
A

RT
 O

F 
TH

IS
 E

CO
CY

CL
E 

IS
:  

  0
.9

58
95

E+
10

 
FR

O
M

 W
EA

TH
ER

: T
EM

PE
RA

T,
 I

RA
D

, E
N

ER
IN

:  
  1

7.
8 

  0
   

 0
.0

00
00

E+
00

 
PO

PU
LA

TI
O

N
S 

A
FT

ER
 D

EA
TH

 F
RO

M
 O

LD
 A

GE
: 

   
 1

   
19

73
92

2 
   

 2
   

   
   

0 



 275

 

   
 3

   
87

07
92

6 
   

 4
   

   
   

0 
   

 5
   

   
   

0 
   

 6
   

   
   

0 
   

 7
   

   
   

0 
   

 8
   

   
   

0 
   

 9
   

   
   

0 
   

10
   

   
   

0 
   

11
   

   
   

0 
   

12
   

   
   

0 
D

EA
TH

S 
D

U
E 

TO
 O

LD
 A

GE
: 

   
 1

   
  9

6 
   

 2
   

   
0 

   
 3

   
 2

63
 

   
 4

   
   

0 
   

 5
   

   
0 

   
 6

   
   

0 
   

 7
   

   
0 

   
 8

   
   

0 
   

 9
   

   
0 

   
10

   
   

0 
   

11
   

   
0 

   
12

   
   

0 
RE

LA
TI

VE
 R

A
TE

 F
O

R 
IN

H
ER

EN
T 

M
ET

A
BO

LI
SM

 (P
RO

D
U

CE
RS

 O
N

LY
, D

EP
EN

D
EN

T 
O

N
 T

EM
PE

RA
TU

RE
): 

   
0.

89
75

2 
D

EA
TH

S 
D

U
E 

TO
 S

TA
RV

A
TI

O
N

: 
   

 1
   

   
0 

   
 2

   
   

0 
   

 3
   

   
0 

   
 4

   
   

0 



 276

   
 5

   
   

0 
   

 6
   

   
0 

   
 7

   
   

0 
   

 8
   

   
0 

   
 9

   
   

0 
   

10
   

   
0 

   
11

   
   

0 
   

12
   

   
0 

TO
TA

L 
M

ET
A

BO
LI

ZE
D

 E
N

ER
GY

 P
ER

 S
PE

CI
ES

: 
   

 1
   

 0
.2

77
47

E+
06

 
   

 2
   

 0
.0

00
00

E+
00

 
   

 3
   

 0
.17

17
1E

+0
7 

   
 4

   
 0

.0
00

00
E+

00
 

   
 5

   
 0

.0
00

00
E+

00
 

   
 6

   
 0

.0
00

00
E+

00
 

   
 7

   
 0

.0
00

00
E+

00
 

   
 8

   
 0

.0
00

00
E+

00
 

   
 9

   
 0

.0
00

00
E+

00
 

   
10

   
 0

.0
00

00
E+

00
 

   
11

   
 0

.0
00

00
E+

00
 

   
12

   
 0

.0
00

00
E+

00
 

TO
TA

L 
EN

ER
GY

 I
N

 S
YS

TE
M

 A
FT

ER
 D

EA
TH

 F
RO

M
 O

LD
 A

GE
 A

N
D

 F
RO

M
 I

N
H

ER
EN

T 
M

ET
A

BO
LI

SM
:  

   
0.

91
69

8E
+1

0 
PO

PU
LA

TI
O

N
S,

 E
N

ER
GI

ES
, A

N
D

 R
EL

A
TI

VE
 E

N
ER

GI
ES

 A
FT

ER
 I

N
H

ER
EN

T 
M

ET
A

BO
LI

SM
 A

N
D

 D
EA

TH
 F

RO
M

 S
TA

RV
A

TI
O

N
: 

   
 1

   
19

73
92

2 
   

0.
10

72
3E

+1
0 

  0
.11

69
4 

   
 2

   
   

   
0 

   
0.

00
00

0E
+0

0 
  0

.0
00

00
 

   
 3

   
87

07
92

6 
   

0.
80

97
5E

+1
0 

  0
.8

83
06

 
   

 4
   

   
   

0 
   

0.
00

00
0E

+0
0 

  0
.0

00
00

 
   

 5
   

   
   

0 
   

0.
00

00
0E

+0
0 

  0
.0

00
00

 
   

 6
   

   
   

0 
   

0.
00

00
0E

+0
0 

  0
.0

00
00

 



 277

   
 7

   
   

   
0 

   
0.

00
00

0E
+0

0 
  0

.0
00

00
 

   
 8

   
   

   
0 

   
0.

00
00

0E
+0

0 
  0

.0
00

00
 

   
 9

   
   

   
0 

   
0.

00
00

0E
+0

0 
  0

.0
00

00
 

   
10

   
   

   
0 

   
0.

00
00

0E
+0

0 
  0

.0
00

00
 

   
11

   
   

   
0 

   
0.

00
00

0E
+0

0 
  0

.0
00

00
 

   
12

   
   

   
0 

   
0.

00
00

0E
+0

0 
  0

.0
00

00
 

TH
E 

FE
ED

N
O

T 
PR

O
BA

BI
LI

TI
ES

 A
RE

 (C
O

N
SU

M
ER

 S
PE

CI
ES

 O
N

LY
): 

   
0.

99
50

7 
  0

.9
91

40
 

TH
E 

FE
ED

 P
RO

BA
BI

LI
TI

ES
 A

RE
: 

   
0.

00
49

3 
  0

.0
00

00
   

0.
00

00
0 

  0
.0

00
00

   
0.

00
00

0 
  0

.0
00

00
   

0.
00

00
0 

  0
.0

00
00

   
0.

00
00

0 
  0

.0
00

00
 

   
0.

00
00

0 
  0

.0
00

00
 

   
0.

00
86

0 
  0

.0
00

00
   

0.
00

00
0 

  0
.0

00
00

   
0.

00
00

0 
  0

.0
00

00
   

0.
00

00
0 

  0
.0

00
00

   
0.

00
00

0 
  0

.0
00

00
 

   
0.

00
00

0 
  0

.0
00

00
 

TH
E 

H
EA

LT
H

 V
EC

TO
R 

IS
: 

   
0.

03
15

0 
  0

.0
00

00
  -

0.
04

87
6 

  0
.0

00
00

   
0.

00
00

0 
  0

.0
00

00
   

0.
00

00
0 

  0
.0

00
00

   
0.

00
00

0 
  0

.0
00

00
 

   
0.

00
00

0 
  0

.0
00

00
 

CH
EC

KI
N

G 
U

P 
O

N
 T

H
E 

PO
PU

LA
TI

O
N

S 
TO

 S
EE

 I
F 

TH
EY

 S
TI

LL
 M

A
KE

 S
EN

SE
: 

SP
EC

IE
S#

   
PR

ES
EN

CE
   

PO
PU

LA
TI

O
N

   
TO

TA
L 

SP
EC

IE
S 

EN
ER

GY
 

--
--

--
--

   
--

--
--

--
   

--
--

--
--

--
   

--
--

--
--

--
--

--
--

--
--

 
   

  1
   

   
   

 1
   

   
19

73
92

2 
   

   
   

  0
.10

73
0E

+1
0 

   
  2

   
   

   
 0

   
   

   
   

0 
   

   
   

  0
.0

00
00

E+
00

 
   

  3
   

   
   

 1
   

   
87

07
92

6 
   

   
   

  0
.8

51
47

E+
10

 
   

  4
   

   
   

 0
   

   
   

   
0 

   
   

   
  0

.0
00

00
E+

00
 

   
  5

   
   

   
 0

   
   

   
   

0 
   

   
   

  0
.0

00
00

E+
00

 
   

  6
   

   
   

 0
   

   
   

   
0 

   
   

   
  0

.0
00

00
E+

00
 

   
  7

   
   

   
 0

   
   

   
   

0 
   

   
   

  0
.0

00
00

E+
00

 
   

  8
   

   
   

 0
   

   
   

   
0 

   
   

   
  0

.0
00

00
E+

00
 

   
  9

   
   

   
 0

   
   

   
   

0 
   

   
   

  0
.0

00
00

E+
00

 
   

 1
0 

   
   

   
0 

   
   

   
  0

   
   

   
   

0.
00

00
0E

+0
0 



 278

   
 1

1 
   

   
   

0 
   

   
   

  0
   

   
   

   
0.

00
00

0E
+0

0 
   

 12
   

   
   

 0
   

   
   

   
0 

   
   

   
  0

.0
00

00
E+

00
 

TO
TA

L 
#

 I
N

D
IV

ID
U

A
LS

 F
RO

M
 S

U
M

M
IN

G:
   

10
68

18
48

   
 I

PO
P1

:  
 1

06
81

84
8 

   
IN

D
EX

 K
 A

T:
   

10
68

18
48

 
BI

RT
H

S 
TH

IS
 C

YC
LE

: 
   

 1
   

   
0 

   
 2

   
   

0 
   

 3
   

   
0 

   
 4

   
   

0 
   

 5
   

   
0 

   
 6

   
   

0 
   

 7
   

   
0 

   
 8

   
   

0 
   

 9
   

   
0 

   
10

   
   

0 
   

11
   

   
0 

   
12

   
   

0 
PO

PU
LA

TI
O

N
 C

H
EC

K:
 T

O
TA

L 
LI

VI
N

G 
PO

PU
LA

TI
O

N
 (I

PO
P1

)=
   

10
68

18
48

;  
  S

U
M

 O
F 

SP
EC

IE
S 

PO
PU

LA
TI

O
N

S=
   

10
68

18
48

 
FI

N
A

L 
RE

PO
RT

 A
T 

EN
D

 O
F 

EC
O

CY
CL

E 
  4

38
00

: 
   

 I
   

IW
H

O
   

IP
O

PS
   

   
   

EN
ER

GY
 

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
 

   
 1

   
   

1 
  1

97
39

22
   

 0
.10

73
0E

+1
0 

   
 2

   
   

0 
   

   
  0

   
 0

.0
00

00
E+

00
 

   
 3

   
   

1 
  8

70
79

26
   

 0
.8

51
46

E+
10

 
   

 4
   

   
0 

   
   

  0
   

 0
.0

00
00

E+
00

 
   

 5
   

   
0 

   
   

  0
   

 0
.0

00
00

E+
00

 
   

 6
   

   
0 

   
   

  0
   

 0
.0

00
00

E+
00

 
   

 7
   

   
0 

   
   

  0
   

 0
.0

00
00

E+
00

 
   

 8
   

   
0 

   
   

  0
   

 0
.0

00
00

E+
00

 
   

 9
   

   
0 

   
   

  0
   

 0
.0

00
00

E+
00

 



 279

   
10

   
   

0 
   

   
  0

   
 0

.0
00

00
E+

00
 

   
11

   
   

0 
   

   
  0

   
 0

.0
00

00
E+

00
 

   
12

   
   

0 
   

   
  0

   
 0

.0
00

00
E+

00
 

TH
E 

TO
TA

L 
EN

ER
GY

 C
O

N
TE

N
T 

O
F 

TH
E 

SY
ST

EM
 A

T 
TH

E 
EN

D
 O

F 
EC

O
CY

CL
E 

  4
38

00
 I

S:
   

  0
.9

58
76

E+
10

 
A

SC
EN

D
EN

CY
 F

O
R 

EC
O

CY
CL

E:
   

   
  0

.0
00

00
 

**
**

**
**

**
**

**
**

**
**

**
**

* 
EN

D
 O

F 
O

U
TP

U
T 

FR
O

M
 E

CO
CY

CL
E 

  4
38

00
 *

**
**

**
**

**
**

**
**

**
**

**
 

   **
**

**
**

**
**

**
**

**
**

**
**

**
**

* 
EN

D
 O

F 
O

U
TP

U
T 

FR
O

M
 I

TE
RA

TI
O

N
 P

H
A

SE
 *

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
 

TI
M

E 
TO

 R
U

N
 S

IM
U

LA
TI

O
N

: 6
47

11
7.

12
SE

CO
N

D
S 

    **
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

 
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
 

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

* 
EN

D
 O

F 
O

U
TP

U
T 

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

 
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
 

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

 



 280

C.2 File “asc****.out” – Ascendency output file 
System ascendency for each ecocycle 
 
        0.00000 
        0.00000 
        0.00000 
        0.00000 
        0.00000 
     5445.94629 
    13176.31055 
    17462.06836 
    20667.47070 
    22841.69336 
    24982.68164 
    23831.88477 
    23972.79688 
    22203.57422 
    19092.16211 
    16056.94043 
    11192.81250 
     4909.95557 
      193.23129 
      120.30851 
      209.11815 
      144.45876 
        0.00000 
      578.46271 
      251.09726 
        0.00000 
        0.00000 
        0.00000 
        0.00000 
    73142.46875 
   118685.96094 
   129234.27344 
   133324.26562 
   132698.18750 
   148617.79688 
   154286.14062 
   184753.89062 
   164802.75000 
   157112.57812 
   135201.79688 
   105257.75000 
 
etc. 



 281

C.3 File “eat****.out” – Who eats who output file 
Quantity eaten of each species in the ecosystem (column) by a given consumer (row) for 
each ecocycle of iteration.  Note:  Breaks between ecocycles added manually. 
 
      0      0      0      0      0      0      0      0      0      0      0      0 
      0      0      0      0      0      0      0      0      0      0      0      0 
 
      0      0      0      0      0      0      0      0      0      0      0      0 
      0      0      0      0      0      0      0      0      0      0      0      0 
 
      0      0      0      0      0      0      0      0      0      0      0      0 
      0      0      0      0      0      0      0      0      0      0      0      0 
 
      0      0      0      0      0      0      0      0      0      0      0      0 
      0      0      0      0      0      0      0      0      0      0      0      0 
 
      0      0      0      0      0      0      0      0      0      0      0      0 
      0      0      0      0      0      0      0      0      0      0      0      0 
 
      0      0      0      0      0      0      0      0      0      0      0      0 
      0      0      0      0      0      0      0      0      0      0      0      0 
 
      0      0      0      0      0      0      0      0      0      0      0      0 
      0      0      0      0      0      0      1      0      0      0      0      0 
 
      0      0      0      0      0      0      0      0      0      0      0      0 
      0      0      0      0      0      0      0      0      0      0      0      0 
 
      0      0      0      0      0      0      0      0      0      0      0      0 
      0      0      0      0      0      0      0      0      0      0      0      0 
 
      0      0      0      0      0      0      0      0      0      0      0      0 
      0      0      0      0      0      0      0      0      0      0      0      0 
 
      0      0      0      0      0      0      0      0      0      0      0      0 
      0      0      0      0      0      0      0      0      0      0      0      0 
 
      0      0      0      0      0      0      0      0      0      0      0      0 
      0      0      0      0      0      0      0      0      0      0      0      0 
 
      0      0      0      0      0      0      0      0      0      0      0      0 
      1      0      0      0      0      0      0      0      0      0      0      0 
 
etc. 
 



 282

Appendix D 
Species definitions spreadsheets.  See Chapter 4 for how these spreadsheets were used. 
 
D.1 Species attributes 
D.1.1 Values of species attributes 
See Table 3.2 (p. 28) for definitions of attribute variable names. 
 

  ENERMIN ENERBIR ENERREP ENERQUAN XMETAB 
P1 17.7 32.1 261.5 0.50 2.18E-07 
P2 125.2 198.6 1747.5 0.50 1.17E-07 
P3 121.6 316.0 2843.5 0.50 1.66E-07 
P4 122.9 333.5 1709.5 0.50 1.54E-07 
P5 45.9 136.5 745.2 0.50 2.43E-07 
P6 76.7 214.5 1227.5 0.50 1.06E-07 
P7 147.5 232.2 1552.8 0.50 2.13E-07 
P8 99.4 262.7 2153.7 0.50 9.63E-08 
P9 61.3 96.4 754.3 0.50 2.44E-07 
P10 137.8 395.1 3859.1 0.50 6.44E-08 
P11 108.0 313.6 2448.1 0.50 1.87E-07 
P12 142.7 248.4 1999.3 0.50 2.04E-07 
P13 148.2 421.9 2736.3 0.50 1.61E-07 
P14 14.3 31.0 172.5 0.50 6.15E-08 
P15 132.1 361.7 2022.0 0.50 1.75E-07 
P16 25.2 48.7 394.5 0.50 2.20E-07 
P17 84.0 146.3 1336.0 0.50 6.34E-08 
P18 45.3 107.2 840.7 0.50 8.23E-08 
P19 13.9 25.1 152.7 0.50 1.22E-07 
P20 133.0 213.5 1580.4 0.50 7.71E-08 
C1 19.3 34.4 250.0 - 5.31E-07 
C2 38.2 109.4 763.1 - 3.61E-07 
C3 24.7 37.5 204.5 - 3.89E-07 
C4 70.9 133.2 971.3 - 5.89E-07 
C5 61.3 109.4 559.0 - 5.19E-07 
C6 13.7 34.5 280.1 - 4.44E-07 
C7 125.9 279.4 2322.0 - 4.39E-07 
C8 17.1 38.2 357.9 - 3.75E-07 
C9 139.0 226.3 1653.6 - 5.65E-07 

C10 149.5 289.4 1476.6 - 4.17E-07 
C11 48.8 139.1 1237.0 - 6.10E-07 
C12 84.6 209.2 1811.9 - 3.86E-07 
C13 28.7 59.7 584.4 - 4.74E-07 
C14 75.1 163.6 929.5 - 4.41E-07 
C15 113.6 183.8 1439.7 - 4.95E-07 
C16 123.1 307.2 2473.8 - 5.85E-07 
C17 126.3 210.1 1896.2 - 4.26E-07 
C18 145.3 390.2 2225.8 - 5.32E-07 
C19 125.3 350.4 3043.5 - 6.06E-07 
C20 135.0 324.8 2694.6 - 5.90E-07 

 



 283

 
MINMAXAGE MAXMAXAGE AFFECT1 AFFECT2 

158 2266 - 11.0 
1512 2256 - 5.1 
1467 2275 - 17.4 
1484 2187 - 10.3 
513 3034 - 9.5 
901 3481 - 6.1 

1794 3618 - 10.8 
1187 2669 - 15.9 
707 2425 - 14.3 

1671 3379 - 5.2 
1295 1721 - 13.8 
1733 3206 - 10.2 
1802 2808 - 16.6 
114 1663 - 8.0 

1599 2667 - 24.1 
252 3272 - 14.2 
993 1628 - 11.0 
505 875 - 8.7 
109 2272 - 7.2 

1611 2167 - 22.9 
177 1744 0.708 23.2 
415 2519 0.285 6.2 
245 723 0.545 11.3 
827 1913 0.507 16.7 
707 2460 0.475 13.9 
107 2183 0.401 21.3 

1521 2021 0.444 19.1 
150 2436 0.700 10.9 

1686 1938 0.546 5.1 
1819 2396 0.643 20.9 
549 3171 0.621 14.0 

1001 1831 0.501 12.0 
295 1057 0.600 21.7 
880 2604 0.323 17.6 

1366 3396 0.365 6.8 
1486 2956 0.665 21.8 
1526 3315 0.747 18.3 
1766 2427 0.605 14.9 
1513 1815 0.373 14.4 
1635 3178 0.402 5.7 

 



 284

D.1.2 Formulas for generating values of species attributes 
 

    ENERMIN ENERBIR 
P1 =RAND() =B2*(150-10)+10 =C2*(RAND()*(3-1.5)+1.5) 
P2 =RAND() =B3*(150-10)+10 =C3*(RAND()*(3-1.5)+1.5) 
P3 =RAND() =B4*(150-10)+10 =C4*(RAND()*(3-1.5)+1.5) 
P4 =RAND() =B5*(150-10)+10 =C5*(RAND()*(3-1.5)+1.5) 
P5 =RAND() =B6*(150-10)+10 =C6*(RAND()*(3-1.5)+1.5) 
P6 =RAND() =B7*(150-10)+10 =C7*(RAND()*(3-1.5)+1.5) 
P7 =RAND() =B8*(150-10)+10 =C8*(RAND()*(3-1.5)+1.5) 
P8 =RAND() =B9*(150-10)+10 =C9*(RAND()*(3-1.5)+1.5) 
P9 =RAND() =B10*(150-10)+10 =C10*(RAND()*(3-1.5)+1.5) 
P10 =RAND() =B11*(150-10)+10 =C11*(RAND()*(3-1.5)+1.5) 
P11 =RAND() =B12*(150-10)+10 =C12*(RAND()*(3-1.5)+1.5) 
P12 =RAND() =B13*(150-10)+10 =C13*(RAND()*(3-1.5)+1.5) 
P13 =RAND() =B14*(150-10)+10 =C14*(RAND()*(3-1.5)+1.5) 
P14 =RAND() =B15*(150-10)+10 =C15*(RAND()*(3-1.5)+1.5) 
P15 =RAND() =B16*(150-10)+10 =C16*(RAND()*(3-1.5)+1.5) 
P16 =RAND() =B17*(150-10)+10 =C17*(RAND()*(3-1.5)+1.5) 
P17 =RAND() =B18*(150-10)+10 =C18*(RAND()*(3-1.5)+1.5) 
P18 =RAND() =B19*(150-10)+10 =C19*(RAND()*(3-1.5)+1.5) 
P19 =RAND() =B20*(150-10)+10 =C20*(RAND()*(3-1.5)+1.5) 
P20 =RAND() =B21*(150-10)+10 =C21*(RAND()*(3-1.5)+1.5) 
C1 =RAND() =B22*(150-10)+10 =C22*(RAND()*(3-1.5)+1.5) 
C2 =RAND() =B23*(150-10)+10 =C23*(RAND()*(3-1.5)+1.5) 
C3 =RAND() =B24*(150-10)+10 =C24*(RAND()*(3-1.5)+1.5) 
C4 =RAND() =B25*(150-10)+10 =C25*(RAND()*(3-1.5)+1.5) 
C5 =RAND() =B26*(150-10)+10 =C26*(RAND()*(3-1.5)+1.5) 
C6 =RAND() =B27*(150-10)+10 =C27*(RAND()*(3-1.5)+1.5) 
C7 =RAND() =B28*(150-10)+10 =C28*(RAND()*(3-1.5)+1.5) 
C8 =RAND() =B29*(150-10)+10 =C29*(RAND()*(3-1.5)+1.5) 
C9 =RAND() =B30*(150-10)+10 =C30*(RAND()*(3-1.5)+1.5) 

C10 =RAND() =B31*(150-10)+10 =C31*(RAND()*(3-1.5)+1.5) 
C11 =RAND() =B32*(150-10)+10 =C32*(RAND()*(3-1.5)+1.5) 
C12 =RAND() =B33*(150-10)+10 =C33*(RAND()*(3-1.5)+1.5) 
C13 =RAND() =B34*(150-10)+10 =C34*(RAND()*(3-1.5)+1.5) 
C14 =RAND() =B35*(150-10)+10 =C35*(RAND()*(3-1.5)+1.5) 
C15 =RAND() =B36*(150-10)+10 =C36*(RAND()*(3-1.5)+1.5) 
C16 =RAND() =B37*(150-10)+10 =C37*(RAND()*(3-1.5)+1.5) 
C17 =RAND() =B38*(150-10)+10 =C38*(RAND()*(3-1.5)+1.5) 
C18 =RAND() =B39*(150-10)+10 =C39*(RAND()*(3-1.5)+1.5) 
C19 =RAND() =B40*(150-10)+10 =C40*(RAND()*(3-1.5)+1.5) 
C20 =RAND() =B41*(150-10)+10 =C41*(RAND()*(3-1.5)+1.5) 

 



 285

 
ENERREP ENERQUAN XMETAB 

=D2*(RAND()*(10-5)+5) 0.5 =RAND()*(0.00000025-0.00000005)+0.00000005
=D3*(RAND()*(10-5)+5) 0.5 =RAND()*(0.00000025-0.00000005)+0.00000005
=D4*(RAND()*(10-5)+5) 0.5 =RAND()*(0.00000025-0.00000005)+0.00000005
=D5*(RAND()*(10-5)+5) 0.5 =RAND()*(0.00000025-0.00000005)+0.00000005
=D6*(RAND()*(10-5)+5) 0.5 =RAND()*(0.00000025-0.00000005)+0.00000005
=D7*(RAND()*(10-5)+5) 0.5 =RAND()*(0.00000025-0.00000005)+0.00000005
=D8*(RAND()*(10-5)+5) 0.5 =RAND()*(0.00000025-0.00000005)+0.00000005
=D9*(RAND()*(10-5)+5) 0.5 =RAND()*(0.00000025-0.00000005)+0.00000005
=D10*(RAND()*(10-5)+5) 0.5 =RAND()*(0.00000025-0.00000005)+0.00000005
=D11*(RAND()*(10-5)+5) 0.5 =RAND()*(0.00000025-0.00000005)+0.00000005
=D12*(RAND()*(10-5)+5) 0.5 =RAND()*(0.00000025-0.00000005)+0.00000005
=D13*(RAND()*(10-5)+5) 0.5 =RAND()*(0.00000025-0.00000005)+0.00000005
=D14*(RAND()*(10-5)+5) 0.5 =RAND()*(0.00000025-0.00000005)+0.00000005
=D15*(RAND()*(10-5)+5) 0.5 =RAND()*(0.00000025-0.00000005)+0.00000005
=D16*(RAND()*(10-5)+5) 0.5 =RAND()*(0.00000025-0.00000005)+0.00000005
=D17*(RAND()*(10-5)+5) 0.5 =RAND()*(0.00000025-0.00000005)+0.00000005
=D18*(RAND()*(10-5)+5) 0.5 =RAND()*(0.00000025-0.00000005)+0.00000005
=D19*(RAND()*(10-5)+5) 0.5 =RAND()*(0.00000025-0.00000005)+0.00000005
=D20*(RAND()*(10-5)+5) 0.5 =RAND()*(0.00000025-0.00000005)+0.00000005
=D21*(RAND()*(10-5)+5) 0.5 =RAND()*(0.00000025-0.00000005)+0.00000005
=D22*(RAND()*(10-5)+5) - =RAND()*(0.00000065-0.00000035)+0.00000035
=D23*(RAND()*(10-5)+5) - =RAND()*(0.00000065-0.00000035)+0.00000035
=D24*(RAND()*(10-5)+5) - =RAND()*(0.00000065-0.00000035)+0.00000035
=D25*(RAND()*(10-5)+5) - =RAND()*(0.00000065-0.00000035)+0.00000035
=D26*(RAND()*(10-5)+5) - =RAND()*(0.00000065-0.00000035)+0.00000035
=D27*(RAND()*(10-5)+5) - =RAND()*(0.00000065-0.00000035)+0.00000035
=D28*(RAND()*(10-5)+5) - =RAND()*(0.00000065-0.00000035)+0.00000035
=D29*(RAND()*(10-5)+5) - =RAND()*(0.00000065-0.00000035)+0.00000035
=D30*(RAND()*(10-5)+5) - =RAND()*(0.00000065-0.00000035)+0.00000035
=D31*(RAND()*(10-5)+5) - =RAND()*(0.00000065-0.00000035)+0.00000035
=D32*(RAND()*(10-5)+5) - =RAND()*(0.00000065-0.00000035)+0.00000035
=D33*(RAND()*(10-5)+5) - =RAND()*(0.00000065-0.00000035)+0.00000035
=D34*(RAND()*(10-5)+5) - =RAND()*(0.00000065-0.00000035)+0.00000035
=D35*(RAND()*(10-5)+5) - =RAND()*(0.00000065-0.00000035)+0.00000035
=D36*(RAND()*(10-5)+5) - =RAND()*(0.00000065-0.00000035)+0.00000035
=D37*(RAND()*(10-5)+5) - =RAND()*(0.00000065-0.00000035)+0.00000035
=D38*(RAND()*(10-5)+5) - =RAND()*(0.00000065-0.00000035)+0.00000035
=D39*(RAND()*(10-5)+5) - =RAND()*(0.00000065-0.00000035)+0.00000035
=D40*(RAND()*(10-5)+5) - =RAND()*(0.00000065-0.00000035)+0.00000035
=D41*(RAND()*(10-5)+5) - =RAND()*(0.00000065-0.00000035)+0.00000035

 



 286

 
MINMAXAGE MAXMAXAGE AFFECT1 

=B2*(1825-60)+60 =RAND()*(3650-(H2+30))+(H2+30) - 
=B3*(1825-60)+60 =RAND()*(3650-(H3+30))+(H3+30) - 
=B4*(1825-60)+60 =RAND()*(3650-(H4+30))+(H4+30) - 
=B5*(1825-60)+60 =RAND()*(3650-(H5+30))+(H5+30) - 
=B6*(1825-60)+60 =RAND()*(3650-(H6+30))+(H6+30) - 
=B7*(1825-60)+60 =RAND()*(3650-(H7+30))+(H7+30) - 
=B8*(1825-60)+60 =RAND()*(3650-(H8+30))+(H8+30) - 
=B9*(1825-60)+60 =RAND()*(3650-(H9+30))+(H9+30) - 
=B10*(1825-60)+60 =RAND()*(3650-(H10+30))+(H10+30) - 
=B11*(1825-60)+60 =RAND()*(3650-(H11+30))+(H11+30) - 
=B12*(1825-60)+60 =RAND()*(3650-(H12+30))+(H12+30) - 
=B13*(1825-60)+60 =RAND()*(3650-(H13+30))+(H13+30) - 
=B14*(1825-60)+60 =RAND()*(3650-(H14+30))+(H14+30) - 
=B15*(1825-60)+60 =RAND()*(3650-(H15+30))+(H15+30) - 
=B16*(1825-60)+60 =RAND()*(3650-(H16+30))+(H16+30) - 
=B17*(1825-60)+60 =RAND()*(3650-(H17+30))+(H17+30) - 
=B18*(1825-60)+60 =RAND()*(3650-(H18+30))+(H18+30) - 
=B19*(1825-60)+60 =RAND()*(3650-(H19+30))+(H19+30) - 
=B20*(1825-60)+60 =RAND()*(3650-(H20+30))+(H20+30) - 
=B21*(1825-60)+60 =RAND()*(3650-(H21+30))+(H21+30) - 
=B22*(1825-60)+60 =RAND()*(3650-(H22+30))+(H22+30) =RAND()*(0.75-0.25)+0.25 
=B23*(1825-60)+60 =RAND()*(3650-(H23+30))+(H23+30) =RAND()*(0.75-0.25)+0.25 
=B24*(1825-60)+60 =RAND()*(3650-(H24+30))+(H24+30) =RAND()*(0.75-0.25)+0.25 
=B25*(1825-60)+60 =RAND()*(3650-(H25+30))+(H25+30) =RAND()*(0.75-0.25)+0.25 
=B26*(1825-60)+60 =RAND()*(3650-(H26+30))+(H26+30) =RAND()*(0.75-0.25)+0.25 
=B27*(1825-60)+60 =RAND()*(3650-(H27+30))+(H27+30) =RAND()*(0.75-0.25)+0.25 
=B28*(1825-60)+60 =RAND()*(3650-(H28+30))+(H28+30) =RAND()*(0.75-0.25)+0.25 
=B29*(1825-60)+60 =RAND()*(3650-(H29+30))+(H29+30) =RAND()*(0.75-0.25)+0.25 
=B30*(1825-60)+60 =RAND()*(3650-(H30+30))+(H30+30) =RAND()*(0.75-0.25)+0.25 
=B31*(1825-60)+60 =RAND()*(3650-(H31+30))+(H31+30) =RAND()*(0.75-0.25)+0.25 
=B32*(1825-60)+60 =RAND()*(3650-(H32+30))+(H32+30) =RAND()*(0.75-0.25)+0.25 
=B33*(1825-60)+60 =RAND()*(3650-(H33+30))+(H33+30) =RAND()*(0.75-0.25)+0.25 
=B34*(1825-60)+60 =RAND()*(3650-(H34+30))+(H34+30) =RAND()*(0.75-0.25)+0.25 
=B35*(1825-60)+60 =RAND()*(3650-(H35+30))+(H35+30) =RAND()*(0.75-0.25)+0.25 
=B36*(1825-60)+60 =RAND()*(3650-(H36+30))+(H36+30) =RAND()*(0.75-0.25)+0.25 
=B37*(1825-60)+60 =RAND()*(3650-(H37+30))+(H37+30) =RAND()*(0.75-0.25)+0.25 
=B38*(1825-60)+60 =RAND()*(3650-(H38+30))+(H38+30) =RAND()*(0.75-0.25)+0.25 
=B39*(1825-60)+60 =RAND()*(3650-(H39+30))+(H39+30) =RAND()*(0.75-0.25)+0.25 
=B40*(1825-60)+60 =RAND()*(3650-(H40+30))+(H40+30) =RAND()*(0.75-0.25)+0.25 
=B41*(1825-60)+60 =RAND()*(3650-(H41+30))+(H41+30) =RAND()*(0.75-0.25)+0.25 

 



 287

 
AFFECT2 

=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 
=RAND()*(25-5)+5 

 



 288

D.2 Food preferences of consumer species 
D.2.1 Values for food preferences of consumer species 
Species preferred (rows) by a given consumer (columns) have a value of 1.  Species that 
the consumer will not eat have a value of 0.  See Chapter 3 for more information on 
consumer food preferences.  
 

  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 
P1 0 0 0 1 1 0 1 1 1 0 1 0 1 1 
P2 0 0 0 1 1 0 0 0 1 0 0 1 1 1 
P3 1 0 0 0 0 1 0 0 1 0 0 0 0 1 
P4 0 0 0 1 0 1 1 0 1 0 1 1 1 1 
P5 0 1 1 0 0 1 0 1 0 0 1 1 1 0 
P6 0 0 1 0 1 1 0 1 0 0 1 1 1 1 
P7 1 1 1 1 0 0 0 1 1 1 0 0 1 1 
P8 1 0 1 1 1 0 0 1 1 0 1 1 0 1 
P9 0 1 0 0 1 0 1 1 1 1 1 1 1 1 

P10 0 0 0 0 1 1 0 0 0 0 1 1 0 0 
P11 1 1 1 1 0 0 0 1 1 1 0 0 0 1 
P12 1 1 0 0 1 0 1 1 0 0 1 1 0 0 
P13 0 1 0 0 1 1 1 1 1 1 1 0 0 1 
P14 1 0 0 1 0 1 1 1 1 0 1 1 1 0 
P15 1 0 1 0 1 1 1 1 1 1 0 0 1 1 
P16 0 0 0 1 0 1 0 1 0 0 1 0 0 0 
P17 1 0 0 0 1 0 1 0 0 0 0 0 1 0 
P18 1 0 1 0 0 1 0 0 1 1 1 1 0 1 
P19 1 0 0 1 0 0 1 0 1 0 0 1 0 1 
P20 1 1 0 0 1 0 0 1 1 0 1 1 0 1 
C1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 
C2 0 0 0 0 0 0 0 1 0 0 1 1 0 1 
C3 0 0 0 0 0 0 1 0 0 1 1 1 1 1 
C4 0 0 0 0 0 0 1 1 0 1 0 0 0 0 
C5 0 0 0 0 0 0 0 1 0 1 0 1 0 1 
C6 0 0 0 0 0 0 0 0 1 1 1 1 1 0 
C7 0 0 0 0 0 0 0 0 1 0 1 0 0 0 
C8 0 0 0 0 0 0 1 0 1 1 1 0 0 0 
C9 0 0 0 0 0 0 0 1 0 1 0 0 0 1 
C10 0 0 0 0 0 0 0 1 1 0 1 0 1 0 
C11 0 0 0 0 0 0 0 1 0 0 0 1 1 0 
C12 0 0 0 0 0 0 1 1 1 0 1 0 0 1 
C13 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
C14 0 0 0 0 0 0 1 0 1 0 1 0 0 0 
C15 0 0 0 0 0 0 0 0 0 1 0 1 1 0 
C16 0 0 0 0 0 0 0 1 1 0 1 1 1 0 
C17 0 0 0 0 0 0 1 1 1 1 1 0 0 0 
C18 0 0 0 0 0 0 0 1 1 0 1 1 0 0 
C19 0 0 0 0 0 0 0 1 0 1 0 0 0 1 
C20 0 0 0 0 0 0 0 0 0 1 1 0 1 0 

 



 289

 
C15 C16 C17 C18 C19 C20  Legend of special cells 

0 0 0 0 0 0     
0 0 0 0 0 0    avoid cannibalism 
0 0 0 0 0 0    herbivores avoid consumers 
0 0 0 0 0 0    carnivores avoid producers 
0 0 0 0 0 0     
0 0 0 0 0 0     
0 0 0 0 0 0     
0 0 0 0 0 0     
0 0 0 0 0 0     
0 0 0 0 0 0     
0 0 0 0 0 0     
0 0 0 0 0 0     
0 0 0 0 0 0     
0 0 0 0 0 0     
0 0 0 0 0 0     
0 0 0 0 0 0     
0 0 0 0 0 0     
0 0 0 0 0 0     
0 0 0 0 0 0     
0 0 0 0 0 0     
0 0 0 0 0 1     
1 1 1 0 1 1     
1 1 0 0 0 0     
0 1 1 1 1 0     
1 0 1 1 0 0     
0 1 1 0 0 1     
1 0 1 1 0 0     
0 0 1 1 0 0     
0 1 1 1 1 1     
1 1 0 0 0 1     
1 0 1 0 1 1     
1 0 0 1 1 1     
1 1 1 1 1 0     
1 1 1 0 1 1     
0 1 0 1 0 0     
1 0 1 1 1 0     
0 1 0 0 0 0     
1 0 0 0 1 1     
1 0 0 1 0 1     
1 0 0 0 1 0     

 



 290

D.2.2 Formulas for generating values of consumer food preferences 
Note: Columns of repeated formulas redacted for space; cells coded as 0 to avoid 
cannibalism (yellow cells above) change rows to match to the consumer in the column. 
 

  C1 through C6 C7 through C14 C15 through C20 
P1 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 0 
P2 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 0 
P3 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 0 
P4 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 0 
P5 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 0 
P6 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 0 
P7 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 0 
P8 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 0 
P9 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 0 

P10 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 0 
P11 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 0 
P12 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 0 
P13 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 0 
P14 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 0 
P15 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 0 
P16 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 0 
P17 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 0 
P18 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 0 
P19 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 0 
P20 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 0 
C1 0 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 
C2 0 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 
C3 0 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 
C4 0 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 
C5 0 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 
C6 0 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 
C7 0 0 =IF(RAND()>0.5,1,0) 
C8 0 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 
C9 0 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 
C10 0 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 
C11 0 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 
C12 0 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 
C13 0 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 
C14 0 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 
C15 0 =IF(RAND()>0.5,1,0) 0 
C16 0 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 
C17 0 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 
C18 0 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 
C19 0 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 
C20 0 =IF(RAND()>0.5,1,0) =IF(RAND()>0.5,1,0) 

 



 291

D.3 Health interactions 
D.3.1 Values of health interactions 
How – negatively, positively, or neutrally – and how strongly a given species (row) is 
affected by each species in the ecosystem (column).  See Chapter 3 for more information 
on health interactions with the ecosystem. 
  

  P1 P2 P3 P4 P5 P6 P7 P8 
P1 0.977 0.687 -0.311 -0.379 0.378 -0.427 -0.997 0.502 
P2 0.254 0.238 -0.864 0.276 -0.853 -0.713 -0.329 -0.047 
P3 0.749 0.762 0.162 -0.213 0.193 -0.334 0.211 -0.221 
P4 -0.900 -0.177 0.130 0.522 -0.024 -0.550 0.195 -0.446 
P5 -0.412 0.933 -0.118 -0.840 0.923 -0.782 0.011 0.766 
P6 -0.852 -0.558 0.719 -0.560 -0.061 0.750 -0.939 -0.509 
P7 0.842 0.851 -0.663 0.709 0.192 -0.441 -0.138 -0.048 
P8 0.494 -0.181 0.031 -0.286 0.273 0.695 0.245 0.041 
P9 0.004 0.076 -0.485 -0.486 -0.099 0.626 0.772 -0.285 
P10 -0.841 -0.436 -0.481 -0.832 -0.516 0.201 -0.639 -0.832 
P11 -0.242 -0.202 0.238 -0.635 -0.138 -0.704 -0.910 0.841 
P12 0.315 -0.345 0.883 -0.270 -0.003 -0.728 0.882 -0.669 
P13 -0.131 0.392 0.097 0.394 -0.465 0.026 -0.458 0.039 
P14 0.691 0.176 0.085 -0.552 -0.526 0.921 0.301 -0.293 
P15 0.509 -0.838 0.468 0.096 -0.105 -0.761 -0.407 0.460 
P16 0.539 0.484 -0.148 -0.027 0.767 0.311 0.414 0.913 
P17 0.688 -0.888 -0.406 0.571 0.843 -0.816 0.392 0.278 
P18 0.832 -0.032 -0.976 -0.930 -0.969 0.882 -0.700 -0.194 
P19 -0.039 0.981 0.216 -0.223 0.839 0.928 0.877 -0.678 
P20 -0.986 0.365 -0.659 -0.512 0.860 -0.060 -0.021 -0.389 
C1 0.864 -0.426 0.438 -0.433 -0.117 0.997 -0.183 -0.452 
C2 -0.015 0.747 0.269 0.436 0.613 0.232 -0.664 -0.984 
C3 0.875 -0.127 -0.186 -0.482 0.854 0.371 -0.353 -0.418 
C4 0.541 -0.424 -0.268 -0.723 -0.856 -0.024 0.267 0.801 
C5 -0.425 -0.723 0.435 -0.296 0.103 0.780 0.670 0.730 
C6 -0.768 0.344 0.474 0.067 -0.566 0.327 -0.234 0.258 
C7 0.850 -0.736 0.117 -0.452 0.885 0.070 0.526 -0.577 
C8 0.115 -0.387 0.075 -0.804 -0.030 0.287 -0.432 0.549 
C9 0.652 -0.742 0.456 -0.215 -0.138 0.382 0.638 -0.863 

C10 -0.146 0.914 -0.900 -0.778 -0.575 0.322 -0.939 0.153 
C11 -0.085 0.740 0.332 -0.900 0.841 -0.989 0.183 0.440 
C12 -0.956 -0.665 -0.772 -0.179 0.535 0.333 0.509 0.033 
C13 0.694 -0.692 0.726 0.594 -0.972 -0.031 0.461 -0.114 
C14 -0.071 -0.859 0.508 -0.303 0.329 0.769 -0.642 -0.330 
C15 -0.806 0.843 -0.327 0.452 0.750 0.541 0.937 0.290 
C16 0.095 -0.803 -0.348 -0.391 -0.670 0.748 -0.288 -0.825 
C17 0.539 -0.331 -0.133 -0.689 0.820 -0.456 -0.869 0.123 
C18 0.538 0.068 -0.308 -0.822 0.778 -0.511 0.070 -0.529 
C19 -0.831 -0.082 -0.492 -0.107 0.678 0.881 -0.679 0.444 
C20 0.180 0.027 0.130 -0.112 -0.122 -0.922 0.817 0.026 



 292

 
P9 P10 P11 P12 P13 P14 P15 P16 P17 

-0.264 0.947 -0.404 -0.162 -0.879 0.260 0.223 -0.315 -0.090 
-0.488 0.442 -0.660 0.567 -0.251 0.696 0.931 0.051 -0.208 
0.211 0.737 0.195 -0.155 0.586 -0.866 -0.240 0.215 0.016 
0.548 -0.189 -0.009 0.609 0.849 0.643 -0.449 0.503 -0.324 
-0.449 -0.015 -0.556 -0.569 -0.333 -0.551 -0.999 0.173 0.579 
0.522 0.152 -0.382 -0.627 0.047 0.167 -0.905 0.976 0.165 
0.229 -0.493 -0.847 -0.208 -0.958 -0.524 0.102 0.893 0.638 
-0.015 0.266 -0.634 -0.650 -0.583 0.147 -0.309 0.179 -0.055 
0.380 0.436 0.970 -0.819 -0.734 -0.101 0.217 0.110 0.171 
-0.976 -0.195 -0.562 -0.173 0.588 -0.251 -0.572 0.885 -0.625 
-0.011 0.920 0.755 0.346 -0.564 0.658 -0.739 0.641 0.792 
-0.732 -0.438 -0.190 0.839 -0.138 0.834 -0.432 0.670 -0.709 
-0.310 -0.558 -0.265 -0.613 0.683 -0.377 0.348 0.721 -0.211 
0.729 0.037 -0.555 -0.569 0.842 -0.991 -0.522 0.469 0.786 
-0.652 0.393 -0.277 -0.027 0.733 -0.324 -0.383 0.509 0.250 
0.641 -0.114 -0.684 -0.985 0.469 0.474 -0.745 0.268 0.342 
-0.740 -0.451 -0.851 0.502 -0.675 -0.241 -0.863 0.601 -0.674 
0.251 -0.834 0.874 -0.789 -0.106 0.028 -0.607 -0.641 0.465 
0.850 -0.517 0.138 0.271 -0.177 0.771 0.634 0.586 0.575 
0.914 -0.945 0.130 0.414 0.393 -0.271 0.198 -0.514 0.767 
-0.558 -0.076 -0.853 0.408 -0.193 -0.985 0.768 0.981 0.349 
-0.206 0.072 -0.546 0.741 -0.085 0.370 -0.357 0.558 -0.066 
-0.473 -0.510 -0.363 0.730 0.823 -0.826 0.586 0.547 0.601 
-0.762 -0.555 0.348 0.692 -0.728 0.781 0.545 -0.982 0.693 
-0.701 0.396 -0.355 0.304 -0.332 -0.036 -0.031 -0.917 0.313 
-0.769 -0.187 0.521 -0.552 0.147 0.464 0.409 0.216 -0.095 
0.251 0.332 -0.535 0.300 0.576 0.101 0.418 0.106 -0.297 
0.609 -0.034 -0.692 -0.451 0.912 -0.726 -0.276 0.570 0.359 
0.723 -0.330 -0.075 0.959 0.063 -0.333 0.961 0.745 0.233 
-0.208 0.423 -0.522 -0.553 0.273 0.168 0.023 0.433 0.373 
-0.129 -0.670 0.695 -0.693 -0.180 0.811 -0.054 0.444 -0.630 
-0.454 -0.925 0.303 0.454 0.309 0.293 -0.299 -0.360 -0.739 
-0.606 0.022 0.694 -0.378 -0.989 0.557 0.054 0.247 0.674 
-0.776 0.915 -0.904 -0.444 0.981 -0.854 -0.875 0.610 0.165 
0.332 0.785 -0.818 0.320 -0.581 0.877 -0.266 -0.409 0.375 
-0.388 -0.488 0.899 0.415 -0.048 -0.480 -0.117 -0.057 -0.200 
0.942 -0.631 -0.967 -0.537 0.386 0.699 0.813 -0.441 0.517 
-0.026 -0.132 -0.545 0.517 -0.239 -0.738 0.975 0.286 -0.273 
-0.479 -0.269 -0.710 0.570 0.938 0.616 -0.679 0.204 0.144 
0.940 -0.772 0.643 0.521 0.752 -0.185 -0.553 -0.806 -0.944 



 293

 
P18 P19 P20 C1 C2 C3 C4 C5 C6 

0.871 -0.956 0.626 0.337 -0.609 0.448 0.458 -0.220 -0.418 
0.144 -0.905 -0.968 -0.701 0.009 -0.717 -0.071 0.543 -0.525 
0.259 0.742 0.145 0.794 0.018 -0.880 -0.453 0.973 0.316 
0.138 0.260 0.271 0.446 -0.430 -0.915 -0.275 -0.609 0.041 
-0.715 -0.201 0.834 0.845 -0.431 0.484 -0.612 0.349 0.104 
-0.199 0.982 0.812 -0.980 0.237 -0.572 0.653 -0.362 0.159 
0.819 0.758 0.666 0.576 0.623 0.278 -0.704 -0.487 -0.928 
-0.297 -0.618 -0.518 -0.670 -0.460 0.032 -0.454 -0.047 0.257 
0.022 -0.745 0.779 -0.879 0.516 -0.267 -0.089 -0.310 -0.077 
0.792 -0.663 -0.136 -0.972 -0.827 -0.130 0.385 0.876 -0.353 
-0.699 -0.583 -0.354 0.648 0.835 0.303 0.626 0.042 -0.238 
0.846 0.328 0.816 0.745 0.863 0.406 0.959 0.920 0.779 
0.875 0.389 -0.761 0.048 -0.783 0.235 -0.941 0.379 0.838 
0.520 0.593 -0.954 0.076 -0.016 -0.196 0.065 -0.723 -0.426 
-0.918 0.027 -0.455 0.781 0.809 -0.203 -0.039 -0.087 -0.756 
-0.488 -0.653 0.892 -0.836 0.477 -0.323 0.065 -0.022 -0.381 
0.389 -0.675 0.499 0.305 -0.693 -0.307 0.460 -0.775 -0.440 
0.083 0.610 0.576 -0.620 0.626 0.299 -0.727 0.551 -0.117 
-0.414 0.068 0.308 0.485 -0.344 -0.071 -0.867 -0.589 0.225 
-0.458 0.523 0.379 -0.035 -0.764 -0.745 0.793 -0.918 -0.980 
0.555 -0.630 -0.670 -0.708 -0.934 0.152 0.731 0.604 -0.885 
-0.647 -0.218 -0.218 0.288 0.881 -0.676 0.655 0.148 -0.977 
-0.922 0.822 0.204 0.878 0.638 0.015 0.351 0.326 0.125 
-0.424 0.882 -0.318 -0.967 0.322 0.911 -0.834 -0.721 0.381 
-0.534 -0.983 0.839 -0.822 -0.163 0.778 -0.514 0.970 0.693 
-0.030 0.081 -0.210 0.029 0.335 -0.746 -0.297 0.358 0.694 
-0.497 0.462 0.029 -0.074 -0.934 -0.336 0.055 0.976 0.215 
0.729 -0.106 -0.353 0.239 -0.957 -0.436 -0.731 -0.896 -0.561 
-0.378 -0.423 -0.621 -0.520 -0.462 -0.209 0.711 -0.627 0.344 
0.673 -0.635 0.672 0.929 -0.112 -0.669 0.008 -0.156 0.008 
-0.783 -0.362 -0.190 0.773 -0.061 -0.642 -0.191 0.629 0.413 
0.532 -0.728 -0.599 0.655 -0.101 -0.953 0.794 -0.819 -0.395 
-0.091 -0.015 -0.721 -0.955 0.085 0.936 0.030 0.453 0.293 
-0.178 -0.417 -0.401 0.363 -0.144 -0.738 0.180 -0.255 -0.515 
-0.977 -0.546 -0.588 -0.936 0.879 -0.223 0.600 -0.020 0.195 
-0.216 -0.716 0.745 -0.587 -0.620 -0.903 0.040 -0.878 -0.140 
-0.052 -0.414 0.280 -0.603 -0.945 0.777 -0.513 -0.449 0.903 
0.409 -0.432 -0.415 0.633 -0.250 0.306 0.585 0.145 0.214 
-0.673 0.113 0.444 -0.377 -0.959 0.344 -0.159 0.227 -0.252 
0.861 -0.889 0.983 -0.935 0.511 0.997 -0.035 0.410 0.220 



 294

 
C7 C8 C9 C10 C11 C12 C13 C14 C15 

-0.906 -0.427 0.046 0.940 0.260 0.928 0.222 -0.566 0.624 
0.282 0.812 0.727 -0.993 -0.679 0.282 0.551 0.489 0.833 
-0.043 -0.746 -0.322 0.004 -0.140 0.366 0.122 0.735 -0.479 
-0.414 -0.292 0.018 0.448 0.759 0.574 0.845 -0.683 0.644 
0.326 0.372 0.873 0.869 0.449 -0.607 -0.737 0.536 -0.456 
-0.618 -0.872 0.799 0.318 -0.287 0.040 -0.677 -0.391 0.124 
-0.657 -0.484 -0.835 -0.094 0.038 0.191 0.479 -0.310 0.347 
-0.373 0.564 0.997 -0.552 0.451 0.838 0.252 -0.184 -0.678 
-0.970 -0.787 0.815 0.694 0.923 0.188 -0.370 0.758 0.242 
0.157 0.424 0.791 -0.874 -0.733 0.282 0.297 -0.505 0.385 
0.913 -0.887 -0.161 0.568 0.283 -0.422 -0.734 -0.808 -0.299 
-0.642 0.886 0.367 -0.522 -0.292 -0.026 -0.318 -0.099 -0.205 
-0.032 0.293 -0.755 -0.658 0.979 -0.645 -0.878 -0.870 0.387 
-0.351 -0.634 0.183 -0.362 0.361 -0.474 -0.432 0.642 0.841 
-0.795 -0.047 -0.721 -0.291 -0.858 -0.130 0.568 -0.425 0.449 
0.773 -0.267 0.573 -0.762 -0.806 -0.325 0.247 -0.084 0.924 
-0.642 0.169 -0.407 0.928 0.214 0.475 0.210 -0.983 -0.368 
0.757 -0.710 0.146 0.729 -0.084 -0.170 -0.201 -0.653 0.628 
0.832 0.672 -0.805 -0.356 -0.771 -0.811 -0.655 0.853 -0.242 
0.122 -0.795 -0.763 -0.039 0.210 -0.607 -0.422 -0.723 -0.270 
-0.960 -0.084 0.801 -0.067 0.464 0.549 -0.122 -0.649 -0.960 
0.012 -0.171 -0.065 0.276 -0.608 0.384 0.865 -0.584 -0.529 
-0.030 -0.858 0.137 -0.922 -0.480 -0.338 0.788 0.745 -0.745 
-0.257 0.724 0.270 0.258 -0.467 0.499 -0.846 0.812 -0.452 
0.396 0.431 0.103 0.577 0.283 0.779 0.915 0.431 -0.635 
-0.576 -0.310 -0.959 0.287 0.081 0.669 -0.593 -0.965 -0.939 
0.556 -0.095 0.361 0.348 -0.622 -0.775 0.485 0.924 -0.858 
-0.203 0.243 0.229 -0.047 -0.678 -0.498 0.633 -0.308 0.999 
-0.647 0.141 0.328 -0.262 -0.675 0.972 -0.723 0.958 0.308 
0.143 0.815 0.931 0.329 0.708 0.803 0.911 0.023 -0.750 
-0.242 0.597 0.653 -0.357 0.421 0.002 -0.379 0.715 0.161 
0.105 -0.356 0.910 0.633 -0.114 0.080 0.039 0.977 0.516 
0.263 -0.194 -0.137 -0.102 -0.585 -0.439 -0.599 -0.945 0.432 
0.945 0.851 0.803 -0.273 -0.276 -0.615 -0.994 0.216 0.877 
0.860 0.498 -0.575 -0.242 -0.589 0.259 0.901 0.746 0.165 
-0.276 -0.387 0.938 0.786 -0.748 0.008 0.262 0.220 0.277 
-0.497 0.101 0.670 -0.261 -0.426 -0.605 -0.786 0.999 0.891 
-0.693 -0.816 0.288 -0.517 0.962 0.991 0.212 -0.962 0.449 
-0.619 0.944 -0.580 -0.002 -0.530 -0.479 0.702 -0.304 0.294 
0.357 0.982 0.195 -0.138 0.393 0.196 0.266 -0.098 0.925 



 295

 
C16 C17 C18 C19 C20 

0.824 0.790 0.099 -0.426 -0.422 
0.550 0.160 0.881 0.187 0.405 
-0.662 0.753 -0.382 -0.479 -0.684 
-0.442 0.394 0.180 -0.889 -0.345 
-0.585 -0.415 -0.088 0.121 0.725 
0.398 -0.052 -0.725 0.778 -0.071 
0.690 -0.564 0.707 -0.849 0.814 
0.942 -0.721 0.084 0.449 0.504 
-0.372 -0.177 0.540 0.355 -0.584 
0.459 0.320 0.663 0.916 -0.803 
0.266 0.906 -0.943 -0.941 -0.293 
0.276 -0.053 0.368 -0.821 0.013 
0.399 -0.742 -0.945 0.305 0.544 
-0.929 0.008 0.255 -0.436 0.085 
-0.800 -0.094 -0.616 0.971 0.679 
0.154 -0.825 -0.183 0.928 -0.859 
0.832 -0.741 -0.453 -0.243 -0.863 
0.222 0.386 -0.108 -0.698 0.847 
-0.379 0.046 0.831 -0.048 0.464 
0.545 -0.438 0.402 0.065 0.805 
0.852 0.999 0.664 -0.277 0.631 
0.429 0.389 0.525 -0.278 0.817 
0.436 0.028 0.940 -0.659 -0.254 
-0.229 -0.904 -0.886 -0.338 0.859 
-0.412 0.122 0.870 -0.471 0.368 
0.492 0.866 -0.308 0.701 -0.201 
-0.376 0.967 -0.633 -0.272 0.287 
0.134 0.857 -0.534 -0.873 -0.541 
0.280 -0.127 0.055 -0.176 0.427 
0.614 0.794 0.938 0.833 -0.558 
0.950 0.115 -0.150 -0.588 0.729 
0.222 0.230 0.158 -0.256 -0.060 
-0.333 0.270 -0.581 0.706 0.125 
-0.013 0.075 0.466 0.685 0.263 
0.869 -0.767 0.198 0.036 0.582 
-0.050 -0.877 0.451 -0.925 0.177 
0.241 0.043 0.747 -0.397 0.194 
0.870 0.318 0.206 0.352 0.226 
-0.287 -0.609 0.165 0.517 0.695 
-0.027 0.068 0.520 0.540 -0.060 



 296

D.3.2 Formulas for generating values of health interactions 
Formula for generating values between -1 and 1 is the same for all cells in the active area 
of the spreadsheet. 
 

  P1 through C20 
P1 =RAND()*(1-(-1))+(-1) 
P2 =RAND()*(1-(-1))+(-1) 
P3 =RAND()*(1-(-1))+(-1) 
P4 =RAND()*(1-(-1))+(-1) 
P5 =RAND()*(1-(-1))+(-1) 
P6 =RAND()*(1-(-1))+(-1) 
P7 =RAND()*(1-(-1))+(-1) 
P8 =RAND()*(1-(-1))+(-1) 
P9 =RAND()*(1-(-1))+(-1) 
P10 =RAND()*(1-(-1))+(-1) 
P11 =RAND()*(1-(-1))+(-1) 
P12 =RAND()*(1-(-1))+(-1) 
P13 =RAND()*(1-(-1))+(-1) 
P14 =RAND()*(1-(-1))+(-1) 
P15 =RAND()*(1-(-1))+(-1) 
P16 =RAND()*(1-(-1))+(-1) 
P17 =RAND()*(1-(-1))+(-1) 
P18 =RAND()*(1-(-1))+(-1) 
P19 =RAND()*(1-(-1))+(-1) 
P20 =RAND()*(1-(-1))+(-1) 
C1 =RAND()*(1-(-1))+(-1) 
C2 =RAND()*(1-(-1))+(-1) 
C3 =RAND()*(1-(-1))+(-1) 
C4 =RAND()*(1-(-1))+(-1) 
C5 =RAND()*(1-(-1))+(-1) 
C6 =RAND()*(1-(-1))+(-1) 
C7 =RAND()*(1-(-1))+(-1) 
C8 =RAND()*(1-(-1))+(-1) 
C9 =RAND()*(1-(-1))+(-1) 

C10 =RAND()*(1-(-1))+(-1) 
C11 =RAND()*(1-(-1))+(-1) 
C12 =RAND()*(1-(-1))+(-1) 
C13 =RAND()*(1-(-1))+(-1) 
C14 =RAND()*(1-(-1))+(-1) 
C15 =RAND()*(1-(-1))+(-1) 
C16 =RAND()*(1-(-1))+(-1) 
C17 =RAND()*(1-(-1))+(-1) 
C18 =RAND()*(1-(-1))+(-1) 
C19 =RAND()*(1-(-1))+(-1) 
C20 =RAND()*(1-(-1))+(-1) 

 



 297

Appendix E 
Source code and input files of the system creator program.  See Chapter 4, Section 4.1.2 
for more information on the program. 
 
E.1 Source code of the system creator program 
PROGRAM SYSTEMS 
! 
! program to create systems for use with the virtual ecosystem program (input files) 
! 
IMPLICIT NONE 
!integers 
INTEGER:: I, J 
INTEGER:: ITEMP1, ITEMP2 
INTEGER:: NTOT, N1, N2     !total species, producer, & 
consumers in system 
INTEGER:: PREY      !number of prey species for a 
given consumer 
INTEGER:: PREF_COUNT     !counter for number of 
preferences assigned 
INTEGER:: ISEED1,ISEED2,ISEED3    !random number seeds for 
the simulation 
INTEGER:: ISEED4,ISEED5     !random number seeds for 
the model 
INTEGER:: ISTARTDAY     !start day of the simulation 
(in days + 1 <= STARTDAY <= 365 ) 
INTEGER:: MAXDAYS      !maximum total number of 
days possible in the simulation, after the start day (days) 
INTEGER, DIMENSION(40):: MINMAXAGE_IN, MAXMAXAGE_IN  !age range 
values (input) 
INTEGER, DIMENSION(20,40):: FOOD_IN   !food preferences for 
CONSUMERS (input) 
INTEGER, DIMENSION(:), ALLOCATABLE:: MINMAXAGE_OUT, MAXMAXAGE_OUT
 !age range values (output) 
INTEGER, DIMENSION(:), ALLOCATABLE:: PROD, CONS !producer and consumer 
species numbers 
INTEGER, DIMENSION(:), ALLOCATABLE:: POPS  !initial populations 
INTEGER, DIMENSION(:,:), ALLOCATABLE:: FOOD_POINT  !array container 0 or 1 
pointers for food preferences 
 
 
!reals 
REAL:: RANDOM 
REAL:: TEMP1, TEMP2 
REAL:: PREF       !'amount' of preference left 
to be doled out 



 298 

REAL:: ALPHA       !variable used in the 
calculation of the attenuation factor for energy input (no units) 
REAL:: DELTIME      !the time increment used for 
the simulation (s) (should be integer fraction of 86400) 
REAL:: DBLETIME      !minimum doubling time for 
the system (year) 
REAL:: ENERMAX      !maximum possible power into 
the system (energy units/second) 
REAL:: STARTTIME      !start time during the day of 
the simulation (in seconds, <86400, should be integer multiple of DELTIME) 
REAL, DIMENSION(40):: ENERMIN_IN, ENERBIR_IN, ENERREP_IN !energy values 
(input) 
REAL, DIMENSION(20):: ENERQUAN_IN   !PRODUCER energy quanta 
size (input) 
REAL, DIMENSION(40):: XMETAB_IN    !specific base 
metablic rate (input) 
REAL, DIMENSION(20):: AFFECT1_IN    !CONSUMER hunting 
ability (input) 
REAL, DIMENSION(40):: AFFECT2_IN    !health sensitivity 
(input) 
REAL, DIMENSION(40,40):: INTER_IN   !health interaction values 
(input) 
REAL, DIMENSION(:), ALLOCATABLE:: ENERMIN_OUT, ENERBIR_OUT, ENERREP_OUT
 !energy values (output) 
REAL, DIMENSION(:), ALLOCATABLE:: ENERQUAN_OUT !PRODUCER energy quanta 
size (output) 
REAL, DIMENSION(:), ALLOCATABLE:: XMETAB_OUT  !specific base 
metablic rate (output) 
REAL, DIMENSION(:), ALLOCATABLE:: AFFECT1_OUT  !CONSUMER hunting 
ability (output) 
REAL, DIMENSION(:), ALLOCATABLE:: AFFECT2_OUT  !health sensitivity 
(output) 
REAL, DIMENSION(:,:), ALLOCATABLE:: FOOD_OUT  !food preferences for 
CONSUMERS (output) 
REAL, DIMENSION(:,:), ALLOCATABLE:: INTER_OUT  !health interaction 
values (output) 
 
!character arrays 
CHARACTER (LEN=14):: MODFILE    !name of model input file 
CHARACTER (LEN=14):: SIMFILE    !name of simulation input file 
CHARACTER (LEN=14):: FILENAME    !name of output file 
CHARACTER (LEN=4):: SIM     !simulation number (text 
form) 
CHARACTER (LEN=130):: TEXTLINE    !dummy text lines 
 
!read in species, food, and health interaction data input files 



 299

OPEN (UNIT=1, FILE='species.txt') 
 
READ(1,100) TEXTLINE 
100 FORMAT (A1) 
READ(1,100) TEXTLINE 
READ(1,101) (ENERMIN_IN(I),I=1,40) 
101 FORMAT (10F10.1) 
 
READ(1,100) TEXTLINE 
READ(1,100) TEXTLINE 
READ(1,101) (ENERBIR_IN(I),I=1,40) 
 
READ(1,100) TEXTLINE 
READ(1,100) TEXTLINE 
READ(1,101) (ENERREP_IN(I),I=1,40) 
 
READ(1,100) TEXTLINE 
READ(1,100) TEXTLINE 
READ(1,102) (ENERQUAN_IN(I),I=1,20) 
102 FORMAT (10F10.2) 
 
READ(1,100) TEXTLINE 
READ(1,100) TEXTLINE 
READ(1,103) (XMETAB_IN(I),I=1,40) 
103 FORMAT (10E10.3) 
 
READ(1,100) TEXTLINE 
READ(1,100) TEXTLINE 
READ(1,104) (MINMAXAGE_IN(I),I=1,40) 
104 FORMAT (10I10) 
 
READ(1,100) TEXTLINE 
READ(1,100) TEXTLINE 
READ(1,104) (MAXMAXAGE_IN(I),I=1,40) 
 
READ(1,100) TEXTLINE 
READ(1,100) TEXTLINE 
READ(1,105) (AFFECT1_IN(I),I=1,20) 
105 FORMAT (10F10.3) 
 
READ(1,100) TEXTLINE 
READ(1,100) TEXTLINE 
READ(1,101) (AFFECT2_IN(I),I=1,40) 
 
CLOSE(UNIT=1) 
OPEN(UNIT=1, FILE='food.txt') 



 300 

 
READ(1,100) TEXTLINE 
DO I=1,20 
  READ(1,106) (FOOD_IN(I,J),J=1,40) 
  106 FORMAT (40I5.0) 
END DO 
 
CLOSE(UNIT=1) 
OPEN(UNIT=1, FILE='health.txt') 
 
READ(1,100) TEXTLINE 
DO I=1,40 
  READ(1,107) (INTER_IN(I,J),J=1,40) 
  107 FORMAT(40F10.3) 
END DO 
 
CLOSE(UNIT=1) 
 
!initialize random number generator 
TEMP1=RANDOM(-32747) 
 
 
!!write sets of input files 
!open simulation number file 
OPEN (UNIT=2, FILE='sims.txt') 
 
READ(1,100) TEXTLINE 
1000 READ (2,200, END=1001) SIM 
200 FORMAT (A4) 
 
PRINT *, SIM 
 
WRITE (SIMFILE,700) SIM 
700 FORMAT ('ecosim',A4,'.inp') 
 
WRITE (MODFILE,701) SIM 
701 FORMAT ('ecomod',A4,'.inp') 
 
!open set of input files to be written 
OPEN (UNIT=3, FILE=SIMFILE) 
OPEN (UNIT=4, FILE=MODFILE) 
 
!choose number of species between 2 and 30 and number of producers and consumers 
TEMP1=RANDOM(1) 
 



 301

NTOT=TEMP1*(31-2)+2      !real number 
truncated to integer 
IF (NTOT>30) THEN      !should never be used, but 
just in case 
  NTOT=TEMP1*(30-2)+2 
END IF 
 
IF (NTOT==2) THEN 
  N1=1 
  N2=1 
ELSE IF (NTOT<21) THEN 
  TEMP1=RANDOM(1) 
  N1=TEMP1*((NTOT-1)-(NTOT/2))+(NTOT/2)   !real number 
truncated 
  N2=NTOT-N1 
ELSE 
  TEMP1=RANDOM(1) 
  N1=TEMP1*(20-(NTOT/2))+(NTOT/2)    !real number 
truncated 
  N2=NTOT-N1 
END IF 
 
PRINT *, NTOT, N1, N2 
 
!allocate vectors and matrices 
ALLOCATE (PROD(1:N1)) 
ALLOCATE (CONS(1:N2)) 
ALLOCATE (ENERMIN_OUT(1:NTOT)) 
ALLOCATE (ENERBIR_OUT(1:NTOT)) 
ALLOCATE (ENERREP_OUT(1:NTOT)) 
ALLOCATE (ENERQUAN_OUT(1:N1)) 
ALLOCATE (XMETAB_OUT(1:NTOT)) 
ALLOCATE (MINMAXAGE_OUT(1:NTOT)) 
ALLOCATE (MAXMAXAGE_OUT(1:NTOT)) 
ALLOCATE (AFFECT1_OUT(1:N2)) 
ALLOCATE (AFFECT2_OUT(1:NTOT)) 
ALLOCATE (FOOD_POINT(1:N2,1:NTOT)) 
ALLOCATE (FOOD_OUT(1:N2,1:NTOT)) 
ALLOCATE (INTER_OUT(1:NTOT,1:NTOT)) 
ALLOCATE (POPS(1:NTOT)) 
 
!choose producer species 
DO I=1,N1 
  2000  TEMP1=RANDOM(1) 
  PROD(I)=TEMP1*(21-1)+1     !real number truncated 
  IF (PROD(I)>20) THEN     !just in case 



 302 

    PROD(I)=TEMP1*(20-1)+1 
  END IF 
  IF (I>1) THEN 
    DO J=1,I-1 
   IF (PROD(J)==PROD(I)) THEN    !check whether 
species has already been chosen 
     GOTO 2000 
   ELSE 
     CONTINUE 
   END IF 
 END DO 
  END IF 
END DO 
 
PRINT *, (PROD(I),I=1,N1) 
 
!choose consumer species 
DO I=1,N2 
  2001  TEMP1=RANDOM(1) 
  CONS(I)=TEMP1*(41-21)+21     !real number truncated 
  IF (CONS(I)>40) THEN     !just in case 
    CONS(I)=TEMP1*(40-21)+21 
  END IF 
  IF (I>1) THEN 
    DO J=1,I-1 
   IF (CONS(J)==CONS(I)) THEN   !check whether species has 
already been chosen 
     GOTO 2001 
   ELSE 
     CONTINUE 
   END IF 
 END DO 
  END IF 
END DO 
 
PRINT *, (CONS(I),I=1,N2) 
 
!build output vectors 
DO I=1,N1       !values for producers 
  ITEMP1=PROD(I)      !producer in question (spp# 1-
20) 
  ENERMIN_OUT(I)=ENERMIN_IN(ITEMP1) 
  ENERBIR_OUT(I)=ENERBIR_IN(ITEMP1) 
  ENERREP_OUT(I)=ENERREP_IN(ITEMP1) 
  ENERQUAN_OUT(I)=ENERQUAN_IN(ITEMP1) 
  XMETAB_OUT(I)=XMETAB_IN(ITEMP1) 



 303

  MINMAXAGE_OUT(I)=MINMAXAGE_IN(ITEMP1) 
  MAXMAXAGE_OUT(I)=MAXMAXAGE_IN(ITEMP1) 
  AFFECT2_OUT(I)=AFFECT2_IN(ITEMP1) 
END DO 
 
DO I=N1+1,NTOT      !values for consumers 
  ITEMP1=CONS(I-N1)      !consumer in question (spp# 
21-40) 
  ENERMIN_OUT(I)=ENERMIN_IN(ITEMP1) 
  ENERBIR_OUT(I)=ENERBIR_IN(ITEMP1) 
  ENERREP_OUT(I)=ENERREP_IN(ITEMP1) 
  XMETAB_OUT(I)=XMETAB_IN(ITEMP1) 
  MINMAXAGE_OUT(I)=MINMAXAGE_IN(ITEMP1) 
  MAXMAXAGE_OUT(I)=MAXMAXAGE_IN(ITEMP1) 
  AFFECT1_OUT(I-N1)=AFFECT1_IN(ITEMP1-20) 
  AFFECT2_OUT(I)=AFFECT2_IN(ITEMP1) 
END DO 
 
PRINT *, 'VECTORS DONE' 
 
!build food preference matrix - NOTE: there is no guarantee a consumer will have ANY 
prey spp 
DO I=1,N2 
  ITEMP1=CONS(I)      !this is the consumer in 
question 
  DO J=1,N1 
    ITEMP2=PROD(J)      !this is the possible prey 
species(producer) 
    FOOD_POINT(I,J)=FOOD_IN(ITEMP1-20,ITEMP2) !set poniter to 0 or 1    
  END DO 
  DO J=1,N2 
    ITEMP2=CONS(J)      !this is the possible prey 
species(consumer) 
 FOOD_POINT(I,J+N1)=FOOD_IN(ITEMP1-20,ITEMP2) !set pointer to 0 or 1 
  END DO 
  PREY=0       !zero counter for number of 
prey 
  DO J=1,NTOT 
 IF (FOOD_POINT(I,J)==1) THEN 
   PREY=PREY+1      !increment prey counter 
   FOOD_OUT(I,J)=0.005    !give baseline amount of 
preference 
 END IF 
  END DO 
  PREF=1-0.005*PREY      !set 'amount' of preference 
left to be distributed 



 304 

  PREF_COUNT=0      !set counter for number of 
preferences assigned to 0 
  DO J=1,NTOT 
    IF (FOOD_POINT(I,J)==1) THEN 
   PREF_COUNT=PREF_COUNT+1   !increment preference 
counter 
   IF (PREF>0) THEN 
        IF (PREF_COUNT<PREY) THEN 
       TEMP1=RANDOM(1) 
    FOOD_OUT(I,J)=FOOD_OUT(I,J)+TEMP1*PREF !assign preference 
value between 0.005 and PREF 
    PREF=PREF-TEMP1*PREF   !subtract assigned pref value 
for PREF 
     ELSE 
       FOOD_OUT(I,J)=FOOD_OUT(I,J)+PREF  !last value equals remaining 
PREF + 0.005 
     END IF 
   ELSE 
     FOOD_OUT(I,J)=0.005 
   END IF 
 ELSE 
   FOOD_OUT(I,J)=0.000 
 END IF 
  END DO 
END DO 
 
PRINT *, 'FOOD MATRIX DONE' 
 
!build health interaction matrix 
DO I=1,N1       !values for producers 
  ITEMP1=PROD(I)      !producer in question (spp# 1-
20) 
  DO J=1,N1 
    ITEMP2=PROD(J)      !interaction species 
(producer) 
 INTER_OUT(I,J)=INTER_IN(ITEMP1,ITEMP2) 
  END DO 
  DO J=1,N2 
    ITEMP2=CONS(J)      !interaction species 
(consumer) 
 INTER_OUT(I,J+N1)=INTER_IN(ITEMP1,ITEMP2) 
  END DO 
END DO 
DO I=N1+1,NTOT      !values for consumers 
  ITEMP1=CONS(I-N1)      !consumer in question (spp# 
21-40) 



 305

  DO J=1,N1 
    ITEMP2=PROD(J)      !interaction species 
(producer) 
 INTER_OUT(I,J)=INTER_IN(ITEMP1,ITEMP2) 
  END DO 
  DO J=1,N2 
    ITEMP2=CONS(J)      !interaction species 
(consumer) 
 INTER_OUT(I,J+N1)=INTER_IN(ITEMP1,ITEMP2) 
  END DO 
END DO 
 
PRINT *, 'INTER MATRIX DONE' 
 
!determine initial populations 
DO I=1,N1 
  POPS(I)=10000      !all producers start at 10,000 
END DO 
DO I=N1+1,NTOT 
  ITEMP1=CONS(I-N1)      !consumer in question (spp# 
21-40) 
  IF (ITEMP1<27) THEN 
    POPS(I)=1000      !herbivores start at 1000 
  ELSE IF (ITEMP1>27 .AND. ITEMP1>34) THEN 
    POPS(I)=100       !omnivores start at 100 
  ELSE 
    POPS(I)=10       !carnivores start at 10 
  END IF 
END DO 
 
!calculate random number seeds for ecomod file 
TEMP1=RANDOM(1) 
ISEED4=TEMP1*(1-1000000) 
TEMP1=RANDOM(1) 
ISEED5=TEMP1*(1-1000000) 
 
!set variables for ecosim file 
TEMP1=RANDOM(1) 
ISEED1=TEMP1*(1-1000000) 
TEMP1=RANDOM(1) 
ISEED2=TEMP1*(1-1000000) 
TEMP1=RANDOM(1) 
ISEED3=TEMP1*(1-1000000) 
ISTARTDAY=100 
STARTTIME=0.0 
MAXDAYS=1825 



 306 

DELTIME=3600.0 
ENERMAX=0.10E+11 
DBLETIME=0.02 
ALPHA=4.0 
 
!write files 
!write ecosim file 
WRITE (3,300) 
300 FORMAT ('! this is datafile ecosim.inp which contains values for the simulation 
parameters') 
WRITE (3,301) TEXTLINE 
301 FORMAT (A1) 
WRITE (3,302) 
302 FORMAT ('! name of the output file for this experiment') 
WRITE (3,303) SIM 
303 FORMAT ('ecosys',A4,'.out') 
WRITE (3,301) TEXTLINE 
WRITE (3,304) 
304 FORMAT ('! random number seeds (units= no units)') 
WRITE (3,305) ISEED1,ISEED2,ISEED3 
305 FORMAT (3I10) 
WRITE (3,301) TEXTLINE 
WRITE (3,306) 
306 FORMAT ('! start day for the simulation (units= day)') 
WRITE (3,307) ISTARTDAY 
307 FORMAT (I10) 
WRITE (3,301) TEXTLINE 
WRITE (3,308) 
308 FORMAT ('! start time for the simulation (units= sec)(must be < (86400-DELTIME); 
should be integer multiple of DELTIME)') 
WRITE (3,309) STARTTIME 
309 FORMAT (F10.1) 
WRITE (3,301) TEXTLINE 
WRITE (3,310) 
310 FORMAT ('! maximum number of days allowed for the simulation (units= day)') 
WRITE (3,311) MAXDAYS 
311 FORMAT (I10) 
WRITE (3,301) TEXTLINE 
WRITE (3,312) 
312 FORMAT ('! time increment for the simulation (units= sec)(should be integer fraction 
of 86400)') 
WRITE (3,313) DELTIME 
313 FORMAT (F10.2) 
WRITE (3,301) TEXTLINE 
WRITE (3,314) 
314 FORMAT ('! upper bound on total system energy (units= energy units)') 



 307

WRITE (3,315) ENERMAX 
315 FORMAT (E10.2) 
WRITE (3,301) TEXTLINE 
WRITE (3,316) 
316 FORMAT ('! minimum time in which the system is allowed to double in size (units= 
year)') 
WRITE (3,317) DBLETIME 
317 FORMAT (F10.2) 
WRITE (3,301) TEXTLINE 
WRITE (3,318) 
318 FORMAT ('! attenuation factor variable "alpha"') 
WRITE (3,319) ALPHA 
319 FORMAT (F10.1) 
WRITE (3,301) TEXTLINE 
WRITE (3,320) 
320 FORMAT ('! end of file') 
 
!write model input file 
WRITE (4,400) 
400 FORMAT ('! this is datafile ecomod.inp which contains values for the model 
parameters') 
WRITE (4,401) TEXTLINE 
401 FORMAT (A1) 
WRITE (4,402) 
402 FORMAT ('! Part 1 - random number seeds') 
WRITE (4,403) ISEED4,ISEED5 
403 FORMAT (2I10) 
WRITE (4,401) TEXTLINE 
WRITE (4,404) (PROD(I),I=1,N1),(CONS(I),I=1,N2) 
404 FORMAT ('! Part 2 - ecosystem composition - Species: ',30I3) 
WRITE (4,401)  
WRITE (4,405) 
405 FORMAT ('! number of producer species (n1) and consumer species (n2)') 
WRITE (4,406) N1,N2 
406 FORMAT (2I10) 
WRITE (4,401) TEXTLINE 
WRITE (4,407) 
407 FORMAT ('! minimum energy levels for species (1 x ntot)') 
WRITE (4,408) 
408 FORMAT ('!        1         2         3         4         5         6         7         8         9        10') 
WRITE (4,409) (ENERMIN_OUT(I),I=1,NTOT) 
409 FORMAT (10F10.1) 
WRITE (4,401) TEXTLINE 
WRITE (4,410) 
410 FORMAT ('! energy levels at birth for species (1 x ntot)') 
WRITE (4,411) 



 308 

411 FORMAT ('!        1         2         3         4         5         6         7         8         9        10') 
WRITE (4,412) (ENERBIR_OUT(I),I=1,NTOT) 
412 FORMAT (10F10.1) 
WRITE (4,401) TEXTLINE 
WRITE (4,413) 
413 FORMAT ('! energy threshold at which species can reproduce (1 x ntot)') 
WRITE (4,414) 
414 FORMAT ('!        1         2         3         4         5         6         7         8         9        10') 
WRITE (4,415) (ENERREP_OUT(I),I=1,NTOT) 
415 FORMAT (10F10.1) 
WRITE (4,401) TEXTLINE 
WRITE (4,416) 
416 FORMAT ('! values of the energy quanta of the producers (1 x n1)') 
WRITE (4,417) 
417 FORMAT ('!        1         2         3         4         5         6         7         8         9        10') 
WRITE (4,418) (ENERQUAN_OUT(I),I=1,N1) 
418 FORMAT (10F10.2) 
WRITE (4,401) TEXTLINE 
WRITE (4,419) 
419 FORMAT ('! specific base metabolic rate for species (1 x ntot)') 
WRITE (4,420) 
420 FORMAT ('!        1         2         3         4         5         6         7         8         9        10') 
WRITE (4,421) (XMETAB_OUT(I),I=1,NTOT) 
421 FORMAT (10E10.1) 
WRITE (4,401) TEXTLINE 
WRITE (4,422) 
422 FORMAT ('! low end of maximum age for species (1 x ntot) (units= day)') 
WRITE (4,423) 
423 FORMAT ('!        1         2         3         4         5         6         7         8         9        10') 
WRITE (4,424) (MINMAXAGE_OUT(I),I=1,NTOT) 
424 FORMAT (10I10) 
WRITE (4,401) TEXTLINE 
WRITE (4,425) 
425 FORMAT ('! absolute maximum age for species (1 x ntot) (units= day)') 
WRITE (4,426) 
426 FORMAT ('!        1         2         3         4         5         6         7         8         9        10') 
WRITE (4,427) (MAXMAXAGE_OUT(I),I=1,NTOT) 
427 FORMAT (10I10) 
WRITE (4,401) TEXTLINE 
WRITE (4,428) 
428 FORMAT ('! affect1: food affectedness of consumer species (1 x n2)') 
WRITE (4,429) 
429 FORMAT ('!     N1+1      N1+2      N1+3      N1+4      N1+5      N1+6      N1+7      N1+8      
N1+9     N1+10') 
WRITE (4,430) (AFFECT1_OUT(I),I=1,N2) 
430 FORMAT (10F10.3) 



 309

WRITE (4,401) TEXTLINE 
WRITE (4,431) 
431 FORMAT ('!affect2: health affectedness of all species (1 x ntot) - used together with 
the INTER matrix') 
WRITE (4,432) 
432 FORMAT ('!        1         2         3         4         5         6         7         8         9        10') 
WRITE (4,433) (AFFECT2_OUT(I),I=1,NTOT) 
433 FORMAT (10F10.1) 
WRITE (4,401) TEXTLINE 
WRITE (4,434) 
434 FORMAT ('! Part 3 - ecosystem structure') 
WRITE (4,401) TEXTLINE 
WRITE (4,435) 
435 FORMAT ('!food matrix (n2 x ntot)') 
WRITE (4,436) 
436 FORMAT ('!row 1 contains food preference values of species N1+1 for species 1, 2, 3, 
etc') 
WRITE (4,437) 
437 FORMAT ('!      1       2       3       4       5       6       7       8       9      10') 
DO I=1,N2 
  WRITE (4,401) TEXTLINE 
  WRITE (4,438) (FOOD_OUT(I,J),J=1,NTOT) 
END DO 
438 FORMAT (10F8.3) 
WRITE (4,401) TEXTLINE 
WRITE (4,439) 
439 FORMAT ('!interaction matrix (refers to species healthness) (ntot x ntot)') 
WRITE (4,440) 
440 FORMAT ('!row 1 contains values for how species 1 is affected by species 1, 2, 3, etc.') 
WRITE (4,441) 
441 FORMAT ('!      1       2       3       4       5       6       7       8       9      10') 
DO I=1,NTOT 
  WRITE (4,401) TEXTLINE 
  WRITE (4,442) (INTER_OUT(I,J),J=1,NTOT) 
END DO 
442 FORMAT (10F8.3) 
WRITE (4,401) TEXTLINE 
WRITE (4,443) 
443 FORMAT ('! Part 4 - initial state of system') 
WRITE (4,401) TEXTLINE 
WRITE (4,444) 
444 FORMAT ('! initial population sizes (1 x ntot)') 
WRITE (4,445) 
445 FORMAT ('!        1         2         3         4         5         6         7         8         9        10') 
WRITE (4,446) (POPS(I),I=1,NTOT) 
446 FORMAT (10I10) 



 310 

WRITE (4,401) TEXTLINE 
WRITE (4,447) 
447 FORMAT ('! end of file') 
 
!close files 
CLOSE (UNIT=3) 
CLOSE (UNIT=4) 
 
!deallocate allocatable arrays 
DEALLOCATE (PROD) 
DEALLOCATE (CONS) 
DEALLOCATE (ENERMIN_OUT) 
DEALLOCATE (ENERBIR_OUT) 
DEALLOCATE (ENERREP_OUT) 
DEALLOCATE (ENERQUAN_OUT) 
DEALLOCATE (XMETAB_OUT) 
DEALLOCATE (MINMAXAGE_OUT) 
DEALLOCATE (MAXMAXAGE_OUT) 
DEALLOCATE (AFFECT1_OUT) 
DEALLOCATE (AFFECT2_OUT) 
DEALLOCATE (FOOD_POINT) 
DEALLOCATE (FOOD_OUT) 
DEALLOCATE (INTER_OUT) 
DEALLOCATE (POPS) 
 
!return for next sim number 
GOTO 1000 
 
!ending phase 
1001 CONTINUE 
 
CLOSE (UNIT=2) 
 
END PROGRAM SYSTEMS 
 
FUNCTION RANDOM(ISEED) 
! From Numerical Recipes in Fortran, po.272-273. Long period ( > 2x10^18 ) random-number 
generator of L'Ecuyer with Bays-Durham shuffle and added safeguards. Returns a uniform 
random deviate between 0.0 and 1.0 (exlusive of the endpoint values). Call with idum a 
negative integer to initialize; thereafter, do not alter idum between successive deviates in 
sequence. RNMX should approximate the largest floating value that is less than 1. 
 
IMPLICIT NONE 
 
INTEGER*4,PARAMETER:: IA1=40014 
INTEGER*4,PARAMETER:: IA2=40692 



 311

INTEGER*4:: IDUM 
INTEGER*4,SAVE:: IDUM2 = 123456789 
INTEGER*4,PARAMETER:: IM1=2147483563 
INTEGER*4,PARAMETER:: IM2=2147483399 
INTEGER*4,PARAMETER:: IMM1=IM1-1 
INTEGER*4,PARAMETER:: IQ1=53668 
INTEGER*4,PARAMETER:: IQ2=52774 
INTEGER*4,PARAMETER:: IR1=12211 
INTEGER*4,PARAMETER:: IR2=3791 
INTEGER*4,INTENT(IN):: ISEED 
INTEGER*4,SAVE:: IY = 0 
INTEGER*4:: J 
INTEGER*4:: K 
 
INTEGER*4,PARAMETER:: NTAB=32 
INTEGER*4,PARAMETER:: NDIV=1+IMM1/NTAB 
INTEGER*4,DIMENSION(NTAB),SAVE:: IV = (NTAB*0) 
 
REAL*4,PARAMETER:: AM=1.0/IM1 
REAL*4,PARAMETER:: EPS=1.2E-7 
REAL*4:: RANDOM 
REAL*4,PARAMETER:: RNMX=1.0-EPS 
 
IDUM=ISEED 
IF (IDUM <= 0) THEN      !initialize 
  IDUM=MAX(-IDUM,1)      !be sure to prevent 
IDUM=0 
  IDUM2=IDUM 
  DO J=NTAB+8,1,-1      !load the shuffle table (after 
8 warm-ups) 
    K=IDUM/IQ1 
    IDUM=IA1*(IDUM-K*IQ1)-K*IR1 
    IF (IDUM < 0) IDUM=IDUM+IM1 
    IF (J <= NTAB) IV(J)=IDUM   
  END DO 
  IY=IV(1) 
END IF 
 
K=IDUM/IQ1       !start here when not 
initializing 
IDUM=IA1*(IDUM-K*IQ1)-K*IR1    !compute 
IDUM=MOD(IA1*IDUM,IM1) without overflows 
IF ( IDUM < 0 ) IDUM=IDUM+IM1 
K=IDUM2/IQ2 
IDUM2=IA2*(IDUM2-K*IQ2)-K*IR2    !compute 
IDUM2=MOD(IA2*IDUM2,IM2), likewise 



 312 

IF ( IDUM2 < 0 ) IDUM2=IDUM2+IM2 
J=1+IY/NDIV       !will be in the range 1:NTAB 
IY=IV(J)-IDUM2      !here IDUM is shuffled, 
IDUM and IDUM2 are combined 
IV(J)=IDUM 
IF ( IY < 1 ) IY=IY+IMM1 
RANDOM=MIN(AM*IY,RNMX)     !because users don't 
expect endpoint values 
RETURN 
 
END FUNCTION RANDOM 
 
 
E.2 Input files for the system creator program 
E.2.1 Input file of all species attribute values 
!species attribute values for all possible species 
!ENERMIN 
      17.7     125.2     121.6     122.9      45.9      76.7     147.5      99.4      61.3     137.8  
     108.0     142.7     148.2      14.3     132.1      25.2      84.0      45.3      13.9     133.0  
      19.3      38.2      24.7      70.9      61.3      13.7     125.9      17.1     139.0     149.5  
      48.8      84.6      28.7      75.1     113.6     123.1     126.3     145.3     125.3     135.0 
 
!ENERBIR 
      32.1     198.6     316.0     333.5     136.5     214.5     232.2     262.7      96.4     395.1  
     313.6     248.4     421.9      31.0     361.7      48.7     146.3     107.2      25.1     213.5  
      34.4     109.4      37.5     133.2     109.4      34.5     279.4      38.2     226.3     289.4  
     139.1     209.2      59.7     163.6     183.8     307.2     210.1     390.2     350.4     324.8 
 
!ENERREP 
     261.5    1747.5    2843.5    1709.5     745.2    1227.5    1552.8    2153.7     754.3    
3859.1  
    2448.1    1999.3    2736.3     172.5    2022.0     394.5    1336.0     840.7     152.7    1580.4  
     250.0     763.1     204.5     971.3     559.0     280.1    2322.0     357.9    1653.6    1476.6  
    1237.0    1811.9     584.4     929.5    1439.7    2473.8    1896.2    2225.8    3043.5    
2694.6 
 
!ENERQUAN (PRODUCERS ONLY) 
      0.50      0.50      0.50      0.50      0.50      0.50      0.50      0.50      0.50      0.50  
      0.50      0.50      0.50      0.50      0.50      0.50      0.50      0.50      0.50      0.50  
 
!XMETAB 
  2.18E-07  1.17E-07  1.66E-07  1.54E-07  2.43E-07  1.06E-07  2.13E-07  9.63E-08  2.44E-
07  6.44E-08  
  1.87E-07  2.04E-07  1.61E-07  6.15E-08  1.75E-07  2.20E-07  6.34E-08  8.23E-08  1.22E-
07  7.71E-08  



 313

  5.31E-07  3.61E-07  3.89E-07  5.89E-07  5.19E-07  4.44E-07  4.39E-07  3.75E-07  5.65E-
07  4.17E-07  
  6.10E-07  3.86E-07  4.74E-07  4.41E-07  4.95E-07  5.85E-07  4.26E-07  5.32E-07  
6.06E-07  5.90E-07 
 
!MINMAXAGE 
       158      1512      1467      1484       513       901      1794      1187       707      1671  
      1295      1733      1802       114      1599       252       993       505       109      1611  
       177       415       245       827       707       107      1521       150      1686      1819  
       549      1001       295       880      1366      1486      1526      1766      1513      1635 
 
!MAXMAXAGE 
      2266      2256      2275      2187      3034      3481      3618      2669      2425      3379  
      1721      3206      2808      1663      2667      3272      1628       875      2272      2167  
      1744      2519       723      1913      2460      2183      2021      2436      1938      2396  
      3171      1831      1057      2604      3396      2956      3315      2427      1815      3178 
 
!AFFECT1 (CONSUMERS ONLY) 
     0.708     0.285     0.545     0.507     0.475     0.401     0.444     0.700     0.546     0.643  
     0.621     0.501     0.600     0.323     0.365     0.665     0.747     0.605     0.373     0.402 
 
!AFFECT2 
      11.0       5.1      17.4      10.3       9.5       6.1      10.8      15.9      14.3       5.2  
      13.8      10.2      16.6       8.0      24.1      14.2      11.0       8.7       7.2      22.9  
      23.2       6.2      11.3      16.7      13.9      21.3      19.1      10.9       5.1      20.9  
      14.0      12.0      21.7      17.6       6.8      21.8      18.3      14.9      14.4       5.7 



 314 

E.2.2 Input file of consumer food preferences 
! p

re
fe

re
nc

es
 o

f  
a 

gi
ve

n 
co

ns
um

er
 (r

ow
) f

or
 e

ac
h 

sp
ec

ie
s 

   
 0

   
 0

   
 1

   
 0

   
 0

   
 0

   
 1

   
 1

   
 0

   
 0

   
 1

   
 1

   
 0

   
 1

   
 1

   
 0

   
 1

   
 1

   
 1

   
 1

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

 
   

 0
   

 0
   

 0
   

 0
   

 1
   

 0
   

 1
   

 0
   

 1
   

 0
   

 1
   

 1
   

 1
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 1
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
 

   
 0

   
 0

   
 0

   
 0

   
 1

   
 1

   
 1

   
 1

   
 0

   
 0

   
 1

   
 0

   
 0

   
 0

   
 1

   
 0

   
 0

   
 1

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

 
   

 1
   

 1
   

 0
   

 1
   

 0
   

 0
   

 1
   

 1
   

 0
   

 0
   

 1
   

 0
   

 0
   

 1
   

 0
   

 1
   

 0
   

 0
   

 1
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
 

   
 1

   
 1

   
 0

   
 0

   
 0

   
 1

   
 0

   
 1

   
 1

   
 1

   
 0

   
 1

   
 1

   
 0

   
 1

   
 0

   
 1

   
 0

   
 0

   
 1

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

 
   

 0
   

 0
   

 1
   

 1
   

 1
   

 1
   

 0
   

 0
   

 0
   

 1
   

 0
   

 0
   

 1
   

 1
   

 1
   

 1
   

 0
   

 1
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
 

   
 1

   
 0

   
 0

   
 1

   
 0

   
 0

   
 0

   
 0

   
 1

   
 0

   
 0

   
 1

   
 1

   
 1

   
 1

   
 0

   
 1

   
 0

   
 1

   
 0

   
 0

   
 0

   
 1

   
 1

   
 0

   
 0

   
 0

   
 1

   
 0

   
 0

   
 0

   
 1

   
 0

   
 1

   
 0

   
 0

   
 1

   
 0

   
 0

   
 0

 
   

 1
   

 0
   

 0
   

 0
   

 1
   

 1
   

 1
   

 1
   

 1
   

 0
   

 1
   

 1
   

 1
   

 1
   

 1
   

 1
   

 0
   

 0
   

 0
   

 1
   

 0
   

 1
   

 0
   

 1
   

 1
   

 0
   

 0
   

 0
   

 1
   

 1
   

 1
   

 1
   

 1
   

 0
   

 0
   

 1
   

 1
   

 1
   

 1
   

 0
 

   
 1

   
 1

   
 1

   
 1

   
 0

   
 0

   
 1

   
 1

   
 1

   
 0

   
 1

   
 0

   
 1

   
 1

   
 1

   
 0

   
 0

   
 1

   
 1

   
 1

   
 1

   
 0

   
 0

   
 0

   
 0

   
 1

   
 1

   
 1

   
 0

   
 1

   
 0

   
 1

   
 0

   
 1

   
 0

   
 1

   
 1

   
 1

   
 0

   
 0

 
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 1
   

 0
   

 1
   

 0
   

 1
   

 0
   

 1
   

 0
   

 1
   

 0
   

 0
   

 1
   

 0
   

 0
   

 1
   

 0
   

 1
   

 1
   

 1
   

 1
   

 0
   

 1
   

 1
   

 0
   

 0
   

 0
   

 0
   

 0
   

 1
   

 0
   

 1
   

 0
   

 1
   

 1
 

   
 1

   
 0

   
 0

   
 1

   
 1

   
 1

   
 0

   
 1

   
 1

   
 1

   
 0

   
 1

   
 1

   
 1

   
 0

   
 1

   
 0

   
 1

   
 0

   
 1

   
 1

   
 1

   
 1

   
 0

   
 0

   
 1

   
 1

   
 1

   
 0

   
 1

   
 0

   
 1

   
 0

   
 1

   
 0

   
 1

   
 1

   
 1

   
 0

   
 1

 
   

 0
   

 1
   

 0
   

 1
   

 1
   

 1
   

 0
   

 1
   

 1
   

 1
   

 0
   

 1
   

 0
   

 1
   

 0
   

 0
   

 0
   

 1
   

 1
   

 1
   

 0
   

 1
   

 1
   

 0
   

 1
   

 1
   

 0
   

 0
   

 0
   

 0
   

 1
   

 0
   

 0
   

 0
   

 1
   

 1
   

 0
   

 1
   

 0
   

 0
 

   
 1

   
 1

   
 0

   
 1

   
 1

   
 1

   
 1

   
 0

   
 1

   
 0

   
 0

   
 0

   
 0

   
 1

   
 1

   
 0

   
 1

   
 0

   
 0

   
 0

   
 1

   
 0

   
 1

   
 0

   
 0

   
 1

   
 0

   
 0

   
 0

   
 1

   
 1

   
 0

   
 0

   
 0

   
 1

   
 1

   
 0

   
 0

   
 0

   
 1

 
   

 1
   

 1
   

 1
   

 1
   

 0
   

 1
   

 1
   

 1
   

 1
   

 0
   

 1
   

 0
   

 1
   

 0
   

 1
   

 0
   

 0
   

 1
   

 1
   

 1
   

 1
   

 1
   

 1
   

 0
   

 1
   

 0
   

 0
   

 0
   

 1
   

 0
   

 0
   

 1
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 1
   

 0
 

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 1

   
 1

   
 0

   
 1

   
 0

   
 1

   
 0

   
 0

   
 1

   
 1

   
 1

   
 1

   
 1

   
 0

   
 1

   
 0

   
 1

   
 1

   
 1

 
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 1
   

 1
   

 1
   

 0
   

 1
   

 0
   

 0
   

 1
   

 1
   

 0
   

 0
   

 1
   

 1
   

 1
   

 0
   

 1
   

 0
   

 0
   

 0
 

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 1

   
 0

   
 1

   
 1

   
 1

   
 1

   
 1

   
 1

   
 0

   
 1

   
 0

   
 1

   
 1

   
 0

   
 1

   
 0

   
 0

   
 0

   
 0

 
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 1
   

 1
   

 0
   

 1
   

 1
   

 1
   

 0
   

 0
   

 1
   

 1
   

 0
   

 1
   

 1
   

 0
   

 0
   

 1
   

 0
 

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 0

   
 1

   
 0

   
 1

   
 0

   
 0

   
 0

   
 0

   
 1

   
 0

   
 1

   
 1

   
 1

   
 1

   
 0

   
 1

   
 0

   
 1

   
 0

   
 1

 
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 0
   

 1
   

 1
   

 0
   

 0
   

 0
   

 1
   

 0
   

 0
   

 1
   

 1
   

 1
   

 1
   

 0
   

 1
   

 0
   

 0
   

 0
   

 1
   

 1
   

 0
 



 315

E.2.3 Input file of health interaction values 
! file of health interaction values how a given species (row) is affected by each species in 
the ecosystem (column) 
     0.977     0.687    -0.311    -0.379     0.378    -0.427    -0.997     0.502    -0.264     0.947    
-0.404    -0.162    -0.879     0.260     0.223    -0.315    -0.090     0.871    -0.956     0.626     
0.337    -0.609     0.448     0.458    -0.220    -0.418    -0.906    -0.427     0.046     0.940     
0.260     0.928     0.222    -0.566     0.624     0.824     0.790     0.099    -0.426    -0.422 
     0.254     0.238    -0.864     0.276    -0.853    -0.713    -0.329    -0.047    -0.488     0.442    
-0.660     0.567    -0.251     0.696     0.931     0.051    -0.208     0.144    -0.905    -0.968    -
0.701     0.009    -0.717    -0.071     0.543    -0.525     0.282     0.812     0.727    -0.993    -
0.679     0.282     0.551     0.489     0.833     0.550     0.160     0.881     0.187     0.405 
     0.749     0.762     0.162    -0.213     0.193    -0.334     0.211    -0.221     0.211     0.737     
0.195    -0.155     0.586    -0.866    -0.240     0.215     0.016     0.259     0.742     0.145     
0.794     0.018    -0.880    -0.453     0.973     0.316    -0.043    -0.746    -0.322     0.004    -
0.140     0.366     0.122     0.735    -0.479    -0.662     0.753    -0.382    -0.479    -0.684 
    -0.900    -0.177     0.130     0.522    -0.024    -0.550     0.195    -0.446     0.548    -0.189    
-0.009     0.609     0.849     0.643    -0.449     0.503    -0.324     0.138     0.260     0.271     
0.446    -0.430    -0.915    -0.275    -0.609     0.041    -0.414    -0.292     0.018     0.448     
0.759     0.574     0.845    -0.683     0.644    -0.442     0.394     0.180    -0.889    -0.345 
    -0.412     0.933    -0.118    -0.840     0.923    -0.782     0.011     0.766    -0.449    -0.015    
-0.556    -0.569    -0.333    -0.551    -0.999     0.173     0.579    -0.715    -0.201     0.834     
0.845    -0.431     0.484    -0.612     0.349     0.104     0.326     0.372     0.873     0.869     
0.449    -0.607    -0.737     0.536    -0.456    -0.585    -0.415    -0.088     0.121     0.725 
    -0.852    -0.558     0.719    -0.560    -0.061     0.750    -0.939    -0.509     0.522     0.152    
-0.382    -0.627     0.047     0.167    -0.905     0.976     0.165    -0.199     0.982     0.812    -
0.980     0.237    -0.572     0.653    -0.362     0.159    -0.618    -0.872     0.799     0.318    -
0.287     0.040    -0.677    -0.391     0.124     0.398    -0.052    -0.725     0.778    -0.071 
     0.842     0.851    -0.663     0.709     0.192    -0.441    -0.138    -0.048     0.229    -0.493    
-0.847    -0.208    -0.958    -0.524     0.102     0.893     0.638     0.819     0.758     0.666     
0.576     0.623     0.278    -0.704    -0.487    -0.928    -0.657    -0.484    -0.835    -0.094     
0.038     0.191     0.479    -0.310     0.347     0.690    -0.564     0.707    -0.849     0.814 
     0.494    -0.181     0.031    -0.286     0.273     0.695     0.245     0.041    -0.015     0.266    
-0.634    -0.650    -0.583     0.147    -0.309     0.179    -0.055    -0.297    -0.618    -0.518    -
0.670    -0.460     0.032    -0.454    -0.047     0.257    -0.373     0.564     0.997    -0.552     
0.451     0.838     0.252    -0.184    -0.678     0.942    -0.721     0.084     0.449     0.504 
     0.004     0.076    -0.485    -0.486    -0.099     0.626     0.772    -0.285     0.380     0.436     
0.970    -0.819    -0.734    -0.101     0.217     0.110     0.171     0.022    -0.745     0.779    -
0.879     0.516    -0.267    -0.089    -0.310    -0.077    -0.970    -0.787     0.815     0.694     
0.923     0.188    -0.370     0.758     0.242    -0.372    -0.177     0.540     0.355    -0.584 
    -0.841    -0.436    -0.481    -0.832    -0.516     0.201    -0.639    -0.832    -0.976    -0.195    
-0.562    -0.173     0.588    -0.251    -0.572     0.885    -0.625     0.792    -0.663    -0.136    -
0.972    -0.827    -0.130     0.385     0.876    -0.353     0.157     0.424     0.791    -0.874    -
0.733     0.282     0.297    -0.505     0.385     0.459     0.320     0.663     0.916    -0.803 
    -0.242    -0.202     0.238    -0.635    -0.138    -0.704    -0.910     0.841    -0.011     0.920     
0.755     0.346    -0.564     0.658    -0.739     0.641     0.792    -0.699    -0.583    -0.354     



 316 

0.648     0.835     0.303     0.626     0.042    -0.238     0.913    -0.887    -0.161     0.568     
0.283    -0.422    -0.734    -0.808    -0.299     0.266     0.906    -0.943    -0.941    -0.293 
     0.315    -0.345     0.883    -0.270    -0.003    -0.728     0.882    -0.669    -0.732    -0.438    
-0.190     0.839    -0.138     0.834    -0.432     0.670    -0.709     0.846     0.328     0.816     
0.745     0.863     0.406     0.959     0.920     0.779    -0.642     0.886     0.367    -0.522    -
0.292    -0.026    -0.318    -0.099    -0.205     0.276    -0.053     0.368    -0.821     0.013 
    -0.131     0.392     0.097     0.394    -0.465     0.026    -0.458     0.039    -0.310    -0.558    
-0.265    -0.613     0.683    -0.377     0.348     0.721    -0.211     0.875     0.389    -0.761     
0.048    -0.783     0.235    -0.941     0.379     0.838    -0.032     0.293    -0.755    -0.658     
0.979    -0.645    -0.878    -0.870     0.387     0.399    -0.742    -0.945     0.305     0.544 
     0.691     0.176     0.085    -0.552    -0.526     0.921     0.301    -0.293     0.729     0.037    
-0.555    -0.569     0.842    -0.991    -0.522     0.469     0.786     0.520     0.593    -0.954     
0.076    -0.016    -0.196     0.065    -0.723    -0.426    -0.351    -0.634     0.183    -0.362     
0.361    -0.474    -0.432     0.642     0.841    -0.929     0.008     0.255    -0.436     0.085 
     0.509    -0.838     0.468     0.096    -0.105    -0.761    -0.407     0.460    -0.652     0.393    
-0.277    -0.027     0.733    -0.324    -0.383     0.509     0.250    -0.918     0.027    -0.455     
0.781     0.809    -0.203    -0.039    -0.087    -0.756    -0.795    -0.047    -0.721    -0.291    -
0.858    -0.130     0.568    -0.425     0.449    -0.800    -0.094    -0.616     0.971     0.679 
     0.539     0.484    -0.148    -0.027     0.767     0.311     0.414     0.913     0.641    -0.114    -
0.684    -0.985     0.469     0.474    -0.745     0.268     0.342    -0.488    -0.653     0.892    -
0.836     0.477    -0.323     0.065    -0.022    -0.381     0.773    -0.267     0.573    -0.762    -
0.806    -0.325     0.247    -0.084     0.924     0.154    -0.825    -0.183     0.928    -0.859 
     0.688    -0.888    -0.406     0.571     0.843    -0.816     0.392     0.278    -0.740    -0.451    
-0.851     0.502    -0.675    -0.241    -0.863     0.601    -0.674     0.389    -0.675     0.499     
0.305    -0.693    -0.307     0.460    -0.775    -0.440    -0.642     0.169    -0.407     0.928     
0.214     0.475     0.210    -0.983    -0.368     0.832    -0.741    -0.453    -0.243    -0.863 
     0.832    -0.032    -0.976    -0.930    -0.969     0.882    -0.700    -0.194     0.251    -0.834     
0.874    -0.789    -0.106     0.028    -0.607    -0.641     0.465     0.083     0.610     0.576    -
0.620     0.626     0.299    -0.727     0.551    -0.117     0.757    -0.710     0.146     0.729    -
0.084    -0.170    -0.201    -0.653     0.628     0.222     0.386    -0.108    -0.698     0.847 
    -0.039     0.981     0.216    -0.223     0.839     0.928     0.877    -0.678     0.850    -0.517     
0.138     0.271    -0.177     0.771     0.634     0.586     0.575    -0.414     0.068     0.308     
0.485    -0.344    -0.071    -0.867    -0.589     0.225     0.832     0.672    -0.805    -0.356    -
0.771    -0.811    -0.655     0.853    -0.242    -0.379     0.046     0.831    -0.048     0.464 
    -0.986     0.365    -0.659    -0.512     0.860    -0.060    -0.021    -0.389     0.914    -0.945     
0.130     0.414     0.393    -0.271     0.198    -0.514     0.767    -0.458     0.523     0.379    -
0.035    -0.764    -0.745     0.793    -0.918    -0.980     0.122    -0.795    -0.763    -0.039     
0.210    -0.607    -0.422    -0.723    -0.270     0.545    -0.438     0.402     0.065     0.805 
     0.864    -0.426     0.438    -0.433    -0.117     0.997    -0.183    -0.452    -0.558    -0.076    
-0.853     0.408    -0.193    -0.985     0.768     0.981     0.349     0.555    -0.630    -0.670    -
0.708    -0.934     0.152     0.731     0.604    -0.885    -0.960    -0.084     0.801    -0.067     
0.464     0.549    -0.122    -0.649    -0.960     0.852     0.999     0.664    -0.277     0.631 
    -0.015     0.747     0.269     0.436     0.613     0.232    -0.664    -0.984    -0.206     0.072    
-0.546     0.741    -0.085     0.370    -0.357     0.558    -0.066    -0.647    -0.218    -0.218     
0.288     0.881    -0.676     0.655     0.148    -0.977     0.012    -0.171    -0.065     0.276    -
0.608     0.384     0.865    -0.584    -0.529     0.429     0.389     0.525    -0.278     0.817 



 317

     0.875    -0.127    -0.186    -0.482     0.854     0.371    -0.353    -0.418    -0.473    -0.510    
-0.363     0.730     0.823    -0.826     0.586     0.547     0.601    -0.922     0.822     0.204     
0.878     0.638     0.015     0.351     0.326     0.125    -0.030    -0.858     0.137    -0.922    -
0.480    -0.338     0.788     0.745    -0.745     0.436     0.028     0.940    -0.659    -0.254 
     0.541    -0.424    -0.268    -0.723    -0.856    -0.024     0.267     0.801    -0.762    -0.555     
0.348     0.692    -0.728     0.781     0.545    -0.982     0.693    -0.424     0.882    -0.318    -
0.967     0.322     0.911    -0.834    -0.721     0.381    -0.257     0.724     0.270     0.258    -
0.467     0.499    -0.846     0.812    -0.452    -0.229    -0.904    -0.886    -0.338     0.859 
    -0.425    -0.723     0.435    -0.296     0.103     0.780     0.670     0.730    -0.701     0.396    
-0.355     0.304    -0.332    -0.036    -0.031    -0.917     0.313    -0.534    -0.983     0.839    -
0.822    -0.163     0.778    -0.514     0.970     0.693     0.396     0.431     0.103     0.577     
0.283     0.779     0.915     0.431    -0.635    -0.412     0.122     0.870    -0.471     0.368 
    -0.768     0.344     0.474     0.067    -0.566     0.327    -0.234     0.258    -0.769    -0.187     
0.521    -0.552     0.147     0.464     0.409     0.216    -0.095    -0.030     0.081    -0.210     
0.029     0.335    -0.746    -0.297     0.358     0.694    -0.576    -0.310    -0.959     0.287     
0.081     0.669    -0.593    -0.965    -0.939     0.492     0.866    -0.308     0.701    -0.201 
     0.850    -0.736     0.117    -0.452     0.885     0.070     0.526    -0.577     0.251     0.332    
-0.535     0.300     0.576     0.101     0.418     0.106    -0.297    -0.497     0.462     0.029    -
0.074    -0.934    -0.336     0.055     0.976     0.215     0.556    -0.095     0.361     0.348    -
0.622    -0.775     0.485     0.924    -0.858    -0.376     0.967    -0.633    -0.272     0.287 
     0.115    -0.387     0.075    -0.804    -0.030     0.287    -0.432     0.549     0.609    -0.034    
-0.692    -0.451     0.912    -0.726    -0.276     0.570     0.359     0.729    -0.106    -0.353     
0.239    -0.957    -0.436    -0.731    -0.896    -0.561    -0.203     0.243     0.229    -0.047    -
0.678    -0.498     0.633    -0.308     0.999     0.134     0.857    -0.534    -0.873    -0.541 
     0.652    -0.742     0.456    -0.215    -0.138     0.382     0.638    -0.863     0.723    -0.330    
-0.075     0.959     0.063    -0.333     0.961     0.745     0.233    -0.378    -0.423    -0.621    -
0.520    -0.462    -0.209     0.711    -0.627     0.344    -0.647     0.141     0.328    -0.262    -
0.675     0.972    -0.723     0.958     0.308     0.280    -0.127     0.055    -0.176     0.427 
    -0.146     0.914    -0.900    -0.778    -0.575     0.322    -0.939     0.153    -0.208     0.423    
-0.522    -0.553     0.273     0.168     0.023     0.433     0.373     0.673    -0.635     0.672     
0.929    -0.112    -0.669     0.008    -0.156     0.008     0.143     0.815     0.931     0.329     
0.708     0.803     0.911     0.023    -0.750     0.614     0.794     0.938     0.833    -0.558 
    -0.085     0.740     0.332    -0.900     0.841    -0.989     0.183     0.440    -0.129    -0.670     
0.695    -0.693    -0.180     0.811    -0.054     0.444    -0.630    -0.783    -0.362    -0.190     
0.773    -0.061    -0.642    -0.191     0.629     0.413    -0.242     0.597     0.653    -0.357     
0.421     0.002    -0.379     0.715     0.161     0.950     0.115    -0.150    -0.588     0.729 
    -0.956    -0.665    -0.772    -0.179     0.535     0.333     0.509     0.033    -0.454    -0.925     
0.303     0.454     0.309     0.293    -0.299    -0.360    -0.739     0.532    -0.728    -0.599     
0.655    -0.101    -0.953     0.794    -0.819    -0.395     0.105    -0.356     0.910     0.633    -
0.114     0.080     0.039     0.977     0.516     0.222     0.230     0.158    -0.256    -0.060 
     0.694    -0.692     0.726     0.594    -0.972    -0.031     0.461    -0.114    -0.606     0.022     
0.694    -0.378    -0.989     0.557     0.054     0.247     0.674    -0.091    -0.015    -0.721    -
0.955     0.085     0.936     0.030     0.453     0.293     0.263    -0.194    -0.137    -0.102    -
0.585    -0.439    -0.599    -0.945     0.432    -0.333     0.270    -0.581     0.706     0.125 
    -0.071    -0.859     0.508    -0.303     0.329     0.769    -0.642    -0.330    -0.776     0.915    
-0.904    -0.444     0.981    -0.854    -0.875     0.610     0.165    -0.178    -0.417    -0.401     



 318 

0.363    -0.144    -0.738     0.180    -0.255    -0.515     0.945     0.851     0.803    -0.273    -
0.276    -0.615    -0.994     0.216     0.877    -0.013     0.075     0.466     0.685     0.263 
    -0.806     0.843    -0.327     0.452     0.750     0.541     0.937     0.290     0.332     0.785    
-0.818     0.320    -0.581     0.877    -0.266    -0.409     0.375    -0.977    -0.546    -0.588    -
0.936     0.879    -0.223     0.600    -0.020     0.195     0.860     0.498    -0.575    -0.242    -
0.589     0.259     0.901     0.746     0.165     0.869    -0.767     0.198     0.036     0.582 
     0.095    -0.803    -0.348    -0.391    -0.670     0.748    -0.288    -0.825    -0.388    -0.488     
0.899     0.415    -0.048    -0.480    -0.117    -0.057    -0.200    -0.216    -0.716     0.745    -
0.587    -0.620    -0.903     0.040    -0.878    -0.140    -0.276    -0.387     0.938     0.786    -
0.748     0.008     0.262     0.220     0.277    -0.050    -0.877     0.451    -0.925     0.177 
     0.539    -0.331    -0.133    -0.689     0.820    -0.456    -0.869     0.123     0.942    -0.631    
-0.967    -0.537     0.386     0.699     0.813    -0.441     0.517    -0.052    -0.414     0.280    -
0.603    -0.945     0.777    -0.513    -0.449     0.903    -0.497     0.101     0.670    -0.261    -
0.426    -0.605    -0.786     0.999     0.891     0.241     0.043     0.747    -0.397     0.194 
     0.538     0.068    -0.308    -0.822     0.778    -0.511     0.070    -0.529    -0.026    -0.132    
-0.545     0.517    -0.239    -0.738     0.975     0.286    -0.273     0.409    -0.432    -0.415     
0.633    -0.250     0.306     0.585     0.145     0.214    -0.693    -0.816     0.288    -0.517     
0.962     0.991     0.212    -0.962     0.449     0.870     0.318     0.206     0.352     0.226 
    -0.831    -0.082    -0.492    -0.107     0.678     0.881    -0.679     0.444    -0.479    -0.269    
-0.710     0.570     0.938     0.616    -0.679     0.204     0.144    -0.673     0.113     0.444    -
0.377    -0.959     0.344    -0.159     0.227    -0.252    -0.619     0.944    -0.580    -0.002    -
0.530    -0.479     0.702    -0.304     0.294    -0.287    -0.609     0.165     0.517     0.695 
     0.180     0.027     0.130    -0.112    -0.122    -0.922     0.817     0.026     0.940    -0.772     
0.643     0.521     0.752    -0.185    -0.553    -0.806    -0.944     0.861    -0.889     0.983    -
0.935     0.511     0.997    -0.035     0.410     0.220     0.357     0.982     0.195    -0.138     
0.393     0.196     0.266    -0.098     0.925    -0.027     0.068     0.520     0.540    -0.060 
 
 
E.2.4 Input file of simulation numbers 
Numbers to be added to each set of files created by the system creator program. 
 
! simulation numbers 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
 
etc. 



 319

Appendix F 
Sample from database of simulation results – ecosystem initial state, ecosystem final 
state, and values for applied measures.  See Chapter 6 for more information. 
 

Sim # N10 N20 NTOT0

1 10 2 12
2 2 2 4
3 19 5 24
4 8 5 13
5 11 8 19
6 1 2 3
7 15 2 17
8 18 3 21
9 4 4 8

10 18 7 25
11 11 3 14
12 18 8 26
13 17 3 20
14 2 2 4
15 11 12 23
16 7 8 15
17 2 2 4
18 15 11 26
19 13 3 16
20 19 6 25
21 14 2 16
22 1 2 3
23 16 7 23
24 3 2 5
25 9 3 12
26 14 3 17
27 7 3 10
28 1 2 3
29 10 5 15
30 8 3 11
31 11 5 16
32 5 6 11
33 12 6 18
34 15 9 24
35 9 2 11
36 6 4 10
37 12 5 17
38 2 2 4
39 13 11 24
40 17 13 30

... ... ... ... 
minimum: 1 1 2
maximum: 19 15 30

average: 9 5 14
   



 320

SPP0 
20, 1, 17, 11, 12, 2, 6, 19, 7, 4, 31, 32 

16,  5, 30, 22 
8,  9, 20,  1,  4, 16, 11, 13, 10,  3, 12,  7,  6, 17, 14, 18, 15,  5, 19, 24, 35, 33, 40, 30 

4, 10, 13, 18, 15, 14, 17,  9, 33, 32, 40, 34, 22 
15, 10,  6,  1, 17,  8,  7, 11,  2, 13,  9, 27, 21, 23, 36, 38, 33, 34, 28 

10, 26, 32 
8, 19,  5, 18, 10, 20,  9, 15, 13, 12, 14, 17,  2,  1,  7, 23, 28 

4, 20, 16, 11,  8,  2,  3,  6, 10,  9, 15, 12, 14,  5,  7,  1, 18, 19, 22, 21, 31 
13, 10,  4,  9, 27, 28, 21, 39 

9,  8, 16, 11,  2, 12,  6,  5,  1, 14, 15,  4, 17, 10, 18,  7, 13, 20, 40, 23, 34, 28, 37, 39, 21 
4,  3,  6, 12,  8, 20, 19, 15, 13,  2, 11, 31, 33, 40 

8,  5, 15,  4,  6, 12,  1, 16, 19, 13,  2,  7, 18, 14,  9,  3, 11, 17, 38, 21, 24, 35, 28, 33, 22, 31 
9, 19, 15,  8,  5, 16,  6, 11, 18, 10,  1, 14, 13, 12, 20,  7,  3, 26, 22, 28 

20, 11, 34, 21 
5, 14, 18, 16,  6, 19, 17, 10, 13, 11,  2, 25, 23, 33, 22, 36, 30, 32, 28, 37, 31, 39, 38 

18, 19, 14, 20, 15, 16,  4, 28, 29, 31, 23, 34, 30, 40, 36 
8, 20, 23, 37 

11, 19, 14,  4,  9,  6, 13, 15,  5,  7,  3,  1,  8, 10, 20, 32, 39, 28, 38, 40, 26, 21, 35, 31, 27, 24 
6, 15,  1,  7,  8, 14, 10,  2,  5, 20,  4, 17, 13, 33, 25, 28 

17, 19,  2, 15,  7, 14,  8,  5,  4, 16,  6, 20,  1, 10, 18,  3, 12, 11, 13, 34, 28, 23, 35, 37, 24 
12, 20,  1, 16, 18,  6, 14, 11,  5,  4, 19, 15, 10,  3, 30, 35 

10, 21, 22 
10, 14,  2, 20,  6, 12,  8, 15,  7, 19, 13,  4, 18, 17, 11,  1, 32, 34, 30, 39, 29, 40, 38 

13,  6,  4, 21, 29 
4,  8, 11,  7, 13, 20,  3, 15, 19, 29, 21, 33 

11, 14,  1,  5, 13,  9, 12, 15, 20,  6,  7,  2,  8, 18, 32, 25, 26 
2,  4, 17,  1,  3, 13,  8, 37, 24, 25 

13, 21, 31 
6, 15,  8, 14,  5, 20,  1, 13, 17, 10, 32, 39, 40, 30, 36 

2,  4, 11, 19, 14,  6, 12, 15, 25, 23, 40 
7, 11, 12, 14, 15,  1, 10,  2,  5, 17,  4, 39, 28, 30, 34, 26 

4, 14, 17, 13, 18, 40, 28, 29, 30, 38, 23 
10,  6,  3,  7, 15,  5, 11, 16,  4, 18, 19,  1, 31, 32, 33, 22, 36, 29 

15,  9,  4,  2, 19, 20,  8, 11,  7,  6, 12, 14, 13,  5, 16, 33, 30, 36, 25, 34, 27, 26, 28, 40 
20,  9,  3, 17, 15,  7, 19, 13, 12, 28, 39 

3,  8,  9,  5,  7, 10, 33, 21, 34, 32 
15,  3,  1,  2,  5,  9, 18, 12,  4, 11, 20, 16, 40, 38, 28, 33, 34 

8, 16, 23, 24 
6,  4, 10,  5, 18,  2,  8, 15, 12, 11,  9, 19, 17, 30, 40, 29, 32, 39, 36, 28, 26, 38, 25, 22 

4,  1, 10,  9, 18,  3,  8, 20, 17,  2, 13, 19, 16, 11,  5, 14,  6, 25, 39, 40, 23, 29, 33, 37, 32, 21, 
31, 36, 22, 27 

... 
 
 
 
 

 



 321

 
N1n N2n NTOTn SPPn PN1 PN2 P 

2 0 2 20, 17 0.20000 0.00000 0.16667
1 0 1 16 0.50000 0.00000 0.25000
4 0 4 20, 10,17,14 0.21053 0.00000 0.16667
3 0 3 10, 14,17 0.37500 0.00000 0.23077
2 0 2 10, 15 0.18182 0.00000 0.10526
0 0 0 none 0.00000 0.00000 0.00000
4 0 4 10, 20, 14, 17 0.26667 0.00000 0.23529
3 0 3 20, 10, 14 0.16667 0.00000 0.14286
1 0 1 10 0.25000 0.00000 0.12500
4 0 4 14, 17, 10, 20 0.22222 0.00000 0.16000
5 0 5 6, 8, 20, 19, 2 0.45455 0.00000 0.35714
2 0 2 14, 17 0.11111 0.00000 0.07692
3 0 3 10, 14, 20 0.17647 0.00000 0.15000
0 0 0 none 0.00000 0.00000 0.00000
3 0 3 14, 17, 10 0.27273 0.00000 0.13043
3 0 3 19, 14, 20 0.42857 0.00000 0.20000
2 0 2 8, 20 1.00000 0.00000 0.50000
3 0 3 14, 10, 20 0.20000 0.00000 0.11538
4 0 4 14, 10, 20, 17 0.30769 0.00000 0.25000
4 0 4 17, 14, 20, 10 0.21053 0.00000 0.16000
3 0 3 20, 14, 10 0.21429 0.00000 0.18750
1 0 1 10 1.00000 0.00000 0.33333
7 0 7 10, 14, 20, 6, 8, 19, 17 0.43750 0.00000 0.30435
1 0 1 6 0.33333 0.00000 0.20000
3 0 3 8, 20, 19 0.33333 0.00000 0.25000
6 0 6 14, 20, 6, 2, 8, 18 0.42857 0.00000 0.35294
1 0 1 17 0.14286 0.00000 0.10000
0 0 0 none 0.00000 0.00000 0.00000
4 0 4 14, 20, 17,10 0.40000 0.00000 0.26667
4 0 4 2, 19, 14, 6 0.50000 0.00000 0.36364
3 0 3 14, 10, 17 0.27273 0.00000 0.18750
2 0 2 14, 17 0.40000 0.00000 0.18182
4 0 4 10, 6, 18, 19 0.33333 0.00000 0.22222
6 0 6 2, 19, 20, 8, 6, 14 0.40000 0.00000 0.25000
2 0 2 20, 17 0.22222 0.00000 0.18182
1 0 1 10 0.16667 0.00000 0.10000
3 0 3 2, 18, 20 0.25000 0.00000 0.17647
0 0 0 none 0.00000 0.00000 0.00000
2 0 2 10, 17 0.15385 0.00000 0.08333

... ... ... ... ... ... ... 
94 2 94 survived minimum: 0.00000 0.00000 0.00000
6 98 6 failed maximum: 1.00000 0.12500 0.66667

   average: 0.34957 0.00236 0.20750
   full successes: 8 0 0

 



 322

 
 

 Conn Frac Dim 
 0.5909 1.1451 
 0.1667 1.1132 
 0.2870 1.1567 
 0.4000 1.1544 
 0.3958 1.1459 
 0.7500 1.0459 
 0.4688 1.1494 
 0.5000 1.1550 
 0.2500 1.1505 
 0.3155 1.1495 
 0.3590 1.1426 
 0.3900 1.1421 
 0.5263 1.1514 
 0.8333 1.0658 
 0.3636 1.1491 
 0.4643 1.1506 
 0.1667 1.1472 
 0.3709 1.1479 
 0.6444 1.1491 
 0.3403 1.1506 
 0.1667 1.1457 
 0.0000 1.1507 
 0.4156 1.1419 
 0.3750 1.1405 
 0.6364 1.1453 
 0.5417 1.1460 
 0.4074 1.1457 
 0.5000 1.1349 
 0.2571 1.1449 
 0.2333 1.1501 
 0.3733 1.1503 
 0.4000 1.1471 
 0.4216 1.1506 
 0.3865 1.1461 
 0.3500 1.1472 
 0.4722 1.1556 
 0.3750 1.1411 
 0.5000 1.0484 
 0.3755 1.1434 

 ... ... 
minimum: 0.00000 1.03180 
maximum: 0.83333 1.15670 

average: 0.36110 1.13976 
   



 323

Appendix G 
Screenshot of case base with the Induce-It program active in Excel.  See Chapter 6 for 
more information about the case base and Induce-It. 


	Title Page
	Abstract
	Resume
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Terms
	1 Introduction
	2 Lit Review
	3 Virtual Ecosystem part 1
	3 Virtual Ecosystem part 2
	4 Data Generation
	5 Measures
	6 Case-Based Reasoner
	7 Results & Discussion
	8 Summary & Conclusions
	9 Contributions to Knowledge
	References
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G

