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SYNOPSIS

This paber discusses the effect of axial flow
on cylindrical structures. It is shown that axial flow
may cause hydroelastic instabilfities at sufficiently high
flow velocities. However, for the range of flow velocities
and othef parameters pertaining to industrial systems, the
effect of purely axial, uniform, steady flow is to damp
free motions. Nevertheless, departures from such ideal
flow conditions induce small amplitude vibration, termed
sub-cndtical vibration. The underlying mechanism of this
vibration is examined, and the various means available for
predicting its ;mplitude are discussed. These latter are
either empirical orlanalytical (generally semi-empirical) ;
the analytical methods are further classified into three
categories accordingly as they postulate the vibration to be
forced, parametrnic or self-excited. The measure of success
achieved in predicting sub-critical vibration amplitude is
discussed, and possible reasons to account for its being gener-
al;y poor. At present, the amplitude may be predicted typically

to within one order of magnitude.
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1. INTRODUCTION

Unlike the case of vibrations of cylindrical
structures induced by fransvense flow, the study of vibra-
tion of such structures induced by axiaf flow is a relatively
new phenomenon, beginning cixca 1958. The reasons for this
are easily understood upon considering that, whereas in the
former case, large amplitudes of transverse vibration may
result in structures of practical interest subjected to moder-
ate flow velocities, in the latter case the resultant transverse
vibrations are generally of very small amplitude, typically
1072 cm.

Accordingly, such vibrations would normally be of
no concern, were it not for the peculiar geometry in certain
applications rendering vibration of even such small amplitude
worrisome; namely (i) in the case of nuclear reactor fuel-
element bundles(for systems where the mean flow is nominally
axial) and (ii)} in the case of heat exchanger tubes, in regions
where the flow is mainly axial. In both these cases, the problem
arises from close spacing, either between the cylindrical elements
and 'spacers' on adjacent elements, or between the cylindrical
elements and intermediate imperfect supports; thus, even small
amplitude vibration results in impact within the cylindrical
structures and, hence, fretting and wear - which,in time, might
cause the rupture of the (tubular) cylindrical elements, with
serious consegquences.

Studies of the subject under consideration were con-

ducted independently in the U.S.A. by Burgreen, Byrnes & Benforado



(1958) , Shields {(1960), Quinn (1962,1965) and Pavlica &
Marshal; {1966) ; in France at SQOGREAH (1962); in Sweden by
Rostrém_& Andersson (1%64a,b,c); andrin Canada by Paidoussis
(1965,1966a). These were the first studies to appear in the
literature and they had one or more of the following aims:

(i) measurement of the amplitude of vibration of particular
cylindrical structure configurations, modelling nuclear re-
actor components and flow conditions; (ii) understanding the
causes of vibration; (iii) development of means for predicting
the vibration amplitudes. Although from the designer's point
‘of view, item (iii) was the most important, it became evident
that the lack of understanding of the underlying mechanism
causing the vibration rendered its prediction, at least with
any degree of confidence, unsatisfacteory. Thus the need fqr
more fundamental and systematic as opposed to ad hoe studies
became evident.

The free motions of a cylinder in axial flow were
studied by Paidoussis (1%966a,b,c) both analytically and exper-
imentally and the equation of motion was derived for the first
time. It was shown that the effect of axial flow was to damp
free osciilations at small and moderate flow velocities and
to reduce the natural frequencies of oscillation. However,
at sufficiently high flow velocities, cylinders in axial flow
become subject to hydroelastic instabilities, namely to buchf.ing
(divergence) and to oscillatorny Ainstabilities (flutter). These

hydroelastic instabilities were shown to be of no practical



concern (Paidoussis 1966a), as the chifical flow velocities
necessary for their inception -—— for cylindrical structures

of normal engineering application — are much too high ({typic-
ally > 100 m/s).

Thus, the vibrations df practical interest occur with
flow velocities smaller than the critical; we term these sub-
erdtical vibrations, to differentiate them from those associated
with oscillatory instabilities. The sub-critical vibrations
are random in characfer,.with the dominant frequency component
corresponding to the first-mode of the cylinders; as mentioned
-earlier, ﬁhe amplitude rarely exceeds lO—3 cm.

Having obtained the equation of motion, at ieast some
of the parameters influencing the vibrations of a cylinder in
axial flow could be identified, thus enabling the formulation
of a semi-empirical expression fqr the prediction of amplitude
of sub-critical vibration (Paidoussis 1966a,1969) which proved
to be perhaps the most successful, at least until very recently
(Den Hartog 1970). This semi~¢mpirical theory for sub-critical
vibration, as well as those of Burgreen ef af, and of Quinn's,
suffered_from a common weakness; namely that, in the course of
their formulation, the forces causing sub-critical vibration
were either incompletely specified, or not at all; accordingly,
some of the forces and parameters influencing vibration could
not have been incorporated properly in £he expressions obtained
for the amplitude. Moreover, the process béing random, the pre-

dicted 'maximum' amplitudes were of questionable interprétation.



Accordingly, it beéame clear that the mechénism of
sub-critical vibration excitation would have to be clarified.
This proved to be a difficult task and one that is still pre-
occupying researchers in this field; First, the question arises
whether sub-critical vibration is forced, in the classical sense
or self-excited. In the fqrmer case, vibration may arise from
departures from steady axial flow, near-field an& far-field
noise, vibration transmittted Ehrough piping and supports, etc;
however, .the characterization of some of these forces is quite
difficult and their prediction questionable. In the latter case,
if the vibration is self-excited, the feedback mechanism involved
would have to be identified. .

Reavis (1967,1969) postuléted that the exciting force
arose from boundary-layer pressure fluctuatigns around the cylin-
drical structures (i.e., from near-~field noise). Using available
correlations of boundary-layer pressure fluctuations in pipe-flow,
he obtained the first stochastic vibration model for the problem
at hand and a theoretical prediction of the vibration amplitude;
alas, the predicted amplitude was, in some casesg, one or two orders
of magnitude smaller than the measured values. Later, this
particular excitation model was refined and the theory extended
by Gorman (1969,1971) — particularly with régard to two-phase

- flow

and by S.S8. Chen & Wambsganss (1970,1972). These
theories will be discussed in § 5.3,

At about the same time, Y.N. Chen (1970a,b) postulated
another mechanism of excitation, where it is supposed that the

cylindrical structure is excited parametrically, in the manner



of a column subjected to a compressive load with a periodic
component. In the case here under consideration, the excita-
tion parameter is the axial flow velocity, which is postulated
to contain periodic perturbations. This theory is further dis-
cussed in § 5.4.

In recent years, the volume of work in the general
area of flow-induced vibration and in the particular topic
discussed here has increased sharply, as evidenced by the number
of special conferences in this area. 1In spite of this, the
problem at hand cannot be considered to have been solved, not
by a long chalk. Indeed, it is questionable whether the ampli-
tude of vibration of cylindrical structures in axial flow may
be predicted today better than within an order of magnitude
with any of the existing theories.

This paper attempts to present a comprehensive review
of the published literature, emphasizing the work that has not
yvet been superseded, and to give the state of the art for the

benefit of the designer as well as the researcher.



2. THE EQUATION OF SMALL LATERAL MOTIONS

2.1 Denivation of the equation of_motions and 0§ the
boundany conditions

Consider the flexible slender cylinder shown in
figure 1l(a) immersed in a steady, axial flow, parallel to
the x-axis. The x- and y- axes lie in a horizontal plane
wherein all motions are supposed to be confined. At its
two ends, the cylinder is tapered over a sufficiently short
length, compared with its overall length, so that in dealing
with its dynamics it may be considered essentially of uni-
form cross-section; yet the tapered sections are presumed to
be sufficiently long so as to admit no discontinuities in
the flow past the cylinder. We denote the cylinder diameter
by D, its cross-sectional area by S, its flexural rigidity by
EI, and its length by L, its mass per unit length by m, the
fluid density by p and the axial flow velocity by U.

Consider now a small element 8x of the cylinder
undergoing small free lateral motions y(x,t). The cylinder is
subjected to a lateral force due to inviscid flow around it,
FAéx, and to viscous forces FNéx and FLSx, in the lateral and
longitudinal directions respectively. We also assume that it
is subjected to a tension T(x). We consider the cylinder as an
Euler-Bernoculli beam subject to lateral shear forces Q(x) and
to bending moments M(x), as shown in figure 2, Now, taking
force balances in the x- and y- directions and a moment balance,

we obtain,



)T _ | by | .
™ + Foo4+ (FN + FA) e dli o, (1)
39 _p - W4 (p Yy ¥ -
% FN FA + FL % + ax_(T BX) m St 0, . (2)
__ M | '
0=-2 . (3)
Using slender-body, inviscid flow theory, and a
number of other assumptions given in detail elsewhere
(Paidoﬁssis 1966b), it is found that
F,o= M[(3/3t) + U(3/5x)1°% y (4)

A
as shown by Lighthill (1960), where M is the virtual mass
of the fluid per unit length, which is egual to @S5 for a
circular cylinder oscillating in aﬁ infinite fluid medium,
provided that_the wavelength of motion is large in'compar—
ison with the diameter of the cylinder.

The viscous forces acting 6n long inclihed cylinders
have been discussed by Taylor (1952). For rough cylinders and
turbulent boundary layers, Taylor propdsed the following ex-
pressions: |
sini),

12 .2,
F. = 5PDU (CDp sin“i + C

N £

i 2 .
FL = 5pDU Cfcos 1,

where CDp and C,. are the coefficients associated with form and

f
friction drag for a cylinder in cross-flow. Taking i as the

angle of incidence of the moving cylinder, we may write

i =tan"t (3y/ax) + tan T [(3y/at)/U;




moreover, linearizing the above expressions for small 9y/9x

and (3y/3t)/U, we obtain

Py = ch(M/D)U[(a/at) + U(a/ax)}y + %CD(M/D)(ay/at),
(5)
FL = %CT(M/D)UZ,

where c, représents the viscous damping force at zero flow

valocity.

From (4) and (5), it is clear that the third term
in equation (1) is of second order small and hence, may be
neglected., Accordingly, the axial tension may be found by

substituting F. from (5) into (1) and integrating from x to

L
L, yielding

lcTMU2 (L-%) /D .

.T(x) = T(L} + 5

A non-zero value of T(L) can only arise if the downstream end

is free, or at least free to move axially, in which case it is

) t
associated with form drag and may be taken to be T(L) = -]é'-cTMU2
_ 1
- where Crp is the form drag coefficient. Accordingly, in such
cases, we have
- 1 2 it 2
T(x) = ECTMU (L-x) /D + chMU

Where both ends are supported and the distance between supports
is fixed, the tension is given by |

T{x) =T '+ 1

o FC MU (%L—x)/n;

where T is a tension imposed by external means. Combining

the two cases, we may write generally

_ 2
_ 1 MU 1 10 oy 2
T(x) = GTO + 3Crh {(1 - ES)L—X} + 5(1 6)CTMU (6)



where 6§ = 0 corresponds to the case where the downstream end is
free to move axially and § =1 where it is not.
Finally, assuming internal damping within the cylinder

to be of the Kelvin type, we may write

M = EI(3%y/0x%) + ur(3%y/3tdx?) . (7)
Now, substituting equations (4) to (7} into equations
(2) and (3), and making use of equation (1), we obtain the

equation of small lateral motions

Iy 5
EI 3_2'_ + ur 2_..1.... + M(.._.?_+ U—§-)2
ox* atax* 3t 9K
1 o2 1 52 1 12, 32
- e Mt a-Es)nex3 i - { 8T + =(1-8)e MUt =X
2°T D 2 az (o] 2 T )
X Ix
2
f Lo MU 3y | oglyy L, May . 3Y o, (8)

2°N D 2D D

ot X ot ot

This eqguation differs somewhat from that originally
derived (Paidoussis 1966b) in the following respects:
Ka) internal diséipation is taken into account, as well as
flow-independent viscous damping; (b) the term corresponding
to (9T/9x) (3y/9x) is, guite properly, missing from the above
equation haﬁing been cancelled by FL(By/Bx). In the original
derivation of the equation of motion, this was not realized
because of the inconsistent manner in which the frictional
forces were resolved (Paidoussis 1971). Unfortunately, this
error remained undetected by all workers who based their work
on the author's original derivétion. Fortunately, however, the
error is not very important; the numerical values given by
Paidoussis (1966b,c) are only slightly affected, and the general

. conclusions regarding stability are not affected at all.



We next consider the boundary conditions. We use

the following generalized conditions (cf. Chen & Wambsganss

1972)
3 2
EI §~%- + koy = EI ﬁ_%_ - CO%§ =0 at x = 0
X X
and ' (9)
3 2
BT 2Y _xy =pv12¥Y +c & =0 atx-=1,
ax? L %2 Lox

from which all the standard boundary conditions may be obtained

L’ %o and c, are either zero or infinite.

If the downstream end is free, terminating in a tapering end,

accordingly as ko’ k

the cross-sectional area of which varies smoothly from S to zero
in a distance & (<<L}, the following boundary conditions derived
previously (Paidoussis 1966b) should be used

2

3%y W Ly Yy L%y _
EI s + fMU(at + U ax) (m+fM)xe 0

ax3 | at?
(10)
2
and .Q_X. = 0
ax?
1 (b ,
at x=L, where X, = § I S{x)dx. The parameter £ is a measure

L-2

of departures from ideal sleﬁder—body, inviscid flow theory
arising from (i) the lateral flow not being truly two-dimensional
and (ii) boundary layer effects. Thus f=1 represents the ideally
slender case, while normally 0<f<l., It is seen that equations (10)
simplify to the particular form of equations (9) corresponding to
a free downstream end (kL=cL=0), gs £>0: and xe+0, i.e,, for a

blunt free end.



2.2 The equation of moXion Ain dimensionfess form

In order to render the equation of motion and the

boundary conditions dimensionless, we define the following di-

mensionless terms:

£ = x/L, T]=Y/L, T

B = M/ (M+m),
a:

kK =k L3/EI

o o r

X = xe/L.

{EI/ (m+M) }5 t/L%

r = TOLz/EI, € = L/D, u= (M/ED)® UL,

(11)

{1/1EM+m) 112 w/L?, ¢ = o LIWED* |

_ 3 ' 2 ' 2
Ky = kLL /EI, Ko —cOL /EI, Ky = cLL /EI,

Substituting into equations (8), (9) and (10) we obtain the

dimensionless equation of motion

" 5 2
an La3n {uz[l—%ecT(l—%G—E) - %(1—6)c'] _sr} 20
ag" 9E% 3T T 3%
3 32N 1 23N 1.1 an azn _
+ 28 u Srat + zecyu 5T + 58 (ScNu + €c)BT + = 0 {(12)

and the standard

3T
boundary conditions

2 1

%E% + kN = ggg - Ky %% = 0 at £ =0,
(13)
g%g - KN = 2;2 + Ki %% = 0 at £ =1,
with the special boundary conditions for a tapered free end (£=1)
3n +£u?oN 4% w3 - {1 +(£-1)B} xazz - A 0. (14)

aE?

3L 3T 3T ag?



2.3 Equation of forced motions

There are several ways in which the cylinder may
be excited and the equation of motion would have to be modi-
fied to take the excitation forces into account. Thus, if
the tension T varied harmonically, we may have to introduce
F=P0(1+ucosw1) in equation {(12). On the other hand, if the
cylinder is subjected to a lateral force distributed along its

length, Q(£,t) then eqguation (12) takes the form

Lin(g,1}] = Q(&,1) (15)

where L[n(&,t)] stands for the left-hand-side of equation,
(12).
Some forms of these excitation mechanisms will be

discussed in §4 and §5.



3.  THE EFFECT OF AXIAL FLOW ON VIBRATION

Here, we shall discuss the effect of the méan axial
flow on vibration of cylindrical structures, assuming the flow
to be purely axial and steady. Moreover, we shall not concern
ourselves for now, with the forces exciting sub-critical vibra-
tion(e.g. near~field noise). Succinctly, we shall be considering
how §ree motions of cylindrical structures in axial {Low differ
drom those Ain vacuo.

To this end, we consider solutions of equation (12)
of the form.

n(g,1) = v(g)elvT

subject to the appropriate boundary conditions. Here w is a
dimensionless frequency related to the circular frequency of
motion,, by |

w = { (M+m)/EIFEaL? | (16)

3.1 Behaviour at zero gLow velociity

The equation of motion of a cylinder .in vaduo reduces
to
: b, 5 2
a'n o 9°N_ 4 37N _ 4 (17a)
ag® dg*st  9t?

where, in the dimensionless terms involved, we understand that
‘M=0. Now, in the absence of internal dissipation, this equation
reduces to the dimensionless form of the Euler-Bernoulli beam
equation, the solution of which yields wholly real eigenfrequen-
cies, Wy which are simply the sgquares of the corresponding

dimensionless eigenvalues(e,g. for a pinned-pinned beam W =m2,



an? , 9n? .,..for r =1, 2, 3 ....). The presence of the
dissipation term (i) renders the frequencies complex ( for
d small) , with a positive real part (i.e., Im(mr)> 0, and
the oscillation is damped), and (ii) decreases the values
of ﬁhe frequehcy from the aforementioned values,.

Now, if the cylinder is immersed in a stationary

fluid, the equation of motion becomes

b 5 2
8N 4 9N 4 o 30, 87 _ g (17b)
aE™ aE*ar 9T 3t 2

In this case, the presence of the viscous dissipation term
will increase the damping and further reduce the real parts

of the W, Re(mr). Moreover, the dimensional frequenéies ﬁr

will be further reduced, as the effective mass of the beam is
now m+M.

This is a convenient place to say a few more words
~about the virtual mass, M. It was mentioned before that M=pS,
provided that the wavelength of motion is long (Niordson 1953)
and provided that the cylinder is immersed in an infinite fluid.
Recently, Chen & Wambsganss (1972) investigated the case where
the fluid is not infinite, but is confined by an outer cylinder
of diameter d, concentric with the vibrating cylinder. Both
the vibrating (inner) cylinder and the outer cylinder are assumed
to be infinitely long and rigid. Writing M;CMpS, they found that
for d/D=10 essentially CM = 1; however, as the fluid becomgs more-
confined, CM takes higher wvalues, as shown in figure 3. (In that

figure, a = QD/2c, where @ is the circular frequency of oscillation



and ¢ is the velocity of sound; Cy is found to be insensitive
to a.) It is evident that taking M=pS is an oversimplification,
in general. In a densely spaced array of cylinders, it is clear

that M>pS, although the exact value of M is difficult to assess

in such a gedmetry.

3.2 Behavioun in a fLowing fLudid

The effect of flow must be assessed by obtaining
solutions to equation (12) in its full form. Some solutions,
obtained by methods detailed elsewhere (Paidoussis 1966b), in
the case where a=c=0, will now be discussed.

Figure 4 shows the freqﬁencies (plotted in an Argand
diagram) associated with the lowest three modes of a pinned-
pinned cylinder (6= 1), as functions of the flow velocity u.
This is a typical case illustrating the behaviour of such a
system. Since we have taken o=c=0, the frequencies at u = 0
are wholly real and they correspond to Re(w) =n?, 4m2, 972 .
As the flow velocity increases, the effect of flow is to dimin-
ish Re(w) and to produce Im(w)>0; i.e., the effect of flow is
to damp free motions of the cylinder. This action of the Fflow

b5

is associated partly with the damping term %ECNB

partly with the Coriolis-type term 2é%

u{3n/at) and
u{dan/dEs1).

As the flow velocity increases further, the situation
changes. The first mode ceases being oscillatory at about u = 3.14,
and at slightly higher flow one branch of this mode becomes
associated with a negative Im(w); thus, the system becomes unstable

by-buckﬂing at that point (u = 3.145). The destabilizing action



is associated with the term u?(3°n/8£%); recognizing that
32n/9E% is proportional to the inverse of the radius of
curvature, we see that this term represents a 'centrifugal'

force. Thus, the buckling instability in this case is not

unlike that of a flat panel subjected to axial flow [cf. Miller
(1960) , Rosenberg & Youngdahl (1962), for instance].

At higher flow velocities, the damping influence of
the flow begins diminishing in the higher modes also, and
eventually the system becomes subject to cscillatorny instability
in its second mode, at u = 5,7, and in its third mode at u = 8.3,
approximately. The destabilizing action is associated with the
frictional terms in this case; in all cases where both ends of
the cylinder are supported, in the absence of frictional terms,
the cylinder has been shown (Paidoussis 1966b) to be exclusively
Subject to buckling instabilities - unless of course, the cylinder
is tubular with very thin walls, in which case flutter in the
shell modes may occur.

The behaviour with increasing flow of a typical can-
tilevered cylinder having a streamlined, tapered downstream end
(f=1) is illustrated in figure 5. It is quite similar to that of
a cylinder supported at both ends. However, the destabilizing
action for both buckling and oscillatory instabilities ih this
case is associated mainly with the u?(32n/3£2) term (Paidoussis
1966b, 1971). It is noteworthly that the stability of canti-
levered cylinders is strongly influenced by the parameter £,
Cylinders with sufficiently small £, i.e., with a blunt down-

stream end, are not subject to hydroelastic instabilities.



The effect of flow on the free vibration
characteristics of cylinders at low u was recently tested
by Chen & Wambsganns(1972) and found to agree with theory

remarkably well. Some of their results are shown in figure 6.



4. SUB-CRITICAL VIBRATIONS

4.1 Genenral Chanracten of Sub-critical Vibaations

Let us consider a typical tubular cylinder which
might be used as a nuclear-reactor fuel element. Let us take
the diameter to be 15 mm and the wall-thickness 0.4 mm, the

> kg/cmz. If the

length 60 cm and Young's modulus E = 7x10
cylinder is immersed in axial water flow with U = 1l0m/s, the
dimensionless flow velocity is u = 0.43, approximately. Indeed

for most realistic applications, u < 1; this, incidentally, was
the reason for using rubber cylinders in the experimental work on
stability Of_such cylinders in axial flow (Paidoussis 1966c), as
the value of E for rubber is quite small.

Therefore, it is obvious that for industrial applications,
of the current type at least, we need not worry about hydroelastic
instabilities, and we are only concerned with sub-critical vibra-
tions. Now, as discussed in §3.2 (figures 4 and 5), the effect
of the steady axial flow for u < 1 is (i)} to damp the motions of
the cylinder, and (ii) to decrease slightly its natural frequen-
cies of escillation, at leést when both ends of the cylinder are
supported. Recently Chen & Wambsganss (1972) have measured this
damping effect of axial flow (figure 6).

Typically, sub-critical vibration amplitudes are of the

4 to 10‘2 cm. They are random, with a fairly narrow

order of 10
frequency spectrum, the predominant frequency corre3ponding to that
of the first mode. The process has been found to be ergodic and
the amplitude distribution approximately Gaussian (Wambsganss &

" Chen 1971).




Measuremént of the vibrations has been performed
by various means, e.g. by internally mounted accelerometers,
proximity gauges, inductive transducers involving internally
mounted magnets, optical methods, etc. 1In this paper we are
not concerned with experimental techniques. - It should be
pointed out, however, that the interpretation of vibration
measurements is no easy task. This is because the vibration
amplitudes are of the same order of magnitude as might be
excited by giving the test-section a hammer-blow or a healthy
kick; accordingly, the separation of the 'signal' from 'back-
ground noise' is problematical.

The predominant frequency of vibration being known*,
the designer is mainly interested in being able to predict its
amplitude; specifically, in being able to predict its r.m.s.
.value, and perhaps the standard deviation and other statistics
that would enable him to predict what is the probability of a
certain amplitude of motion not being exceeded.

Certain features of sub-critical vibration, which
could almost have been supposed a paiohi, are that the ampli-
tude increases with the length of the cylinders and with the
flow velocity, but decreases with the flexural rigidity, etc.
Such observations form the basis for the empirical expressions
for predicting vibration amplitude, which will be discussed in

§5.

* Some cases have been reported (Paidoussis & Sharp 1967) where
the dominant frequency of vibration was quite different than
the first-mode natural frequency.



4.2 Mechanism of Excitation of Sub-critical Vibrations

Of course real flows are not ideally uniform, steady
and pﬁrely axial; accordingly, the damping effect on.vibrations
(for small u)} is but one aspect of the effect of axial flow on
cylindrical structures subjected to it. Thus, axial flow may
be regarded as something of a Trojan horse; although apparently
beneficent, damping free motions, it contains within it the very
forces which excite sub-critical vibration. Substantial depart-
ures from ideally uniform, steady and axial flow conditions, or
even small'perturbations in it, could well cause vibration. 
Remember that the vibration is of small amplitude so that the
forces involved need not be large.

For instance, unsteady separated flow upstream of the
cylindrical structure may give rise to unsteady lateral forces
on the cylinders. Boiling, or changes in flow régime in two-
phase flows, unless they occur in an axially symmetric fashion
about each cylinder, may equally produce lateral forces acting
on the cylinders; Swirl, as well as guasi-steady transverse
flow components, as may be generated at the entrance of a flow
Lchannel, could also_give rise to lateral forces.

Small-scale turbulence within the boundary layer around
the cylinders generates random pressure perturbaﬁions around the
cylinders; the pressure perturbations are not spatially uniform
at any given instant, and when integrated around the circumference
of a cylinder give rise to a random lateral load.

All the above may be considered to be sources of energy



in the flow which could excite and sustain sub-critical vibration
as a classical forced vibration. Another possibility is

that the observed motions are a parametfric csciflation.
Parametric oscillations are defined as those which are
dependent for their excitation upon the time-dependence

of one or more of the parameters of the oscillatory system.

For instance, if the flow velocity is not quite steady it

may be written in the form u = u (1 + Zancoswﬂt), where the

a are small. It mav be shown that thig gives rise to a time-~
dependent 'compressive' force, the term uz(azn/azz) in eguation
(12) being equivalent to a force —T(an/agz). By analogy to

a column subjected to a harmonically time-dependent compressive
force, the cylinders may be subject to parametric oscillations
when the ratio Of,wn to one of the natural frequencies of the
eylinders, W is mn/cur =2, 1, 2/3 ...... {(Bolotin 1964).

Yet another possibility is that the vibration* is
self-exeifed. The characteristic feature of self-excited
‘vibrations is that there is a source of energy available upon
which the system may draw in synchronism to its own natural
vibrations (Magnus 1965). The energy source, in this case, is
of course the flowing fluid. Suppose, for instance, that the
axial flow exaggerates a natural bow in the cylinder; then,
if the increased bowing causes an increased pressure drop in
the flow and a reduction in the flow velocity, the bow would

diminish under the action of flexural restoring forces; this

* the term sub-cenitical vibration will henceforth be simplified
to vibration. '



completes the feedback and a self-excited vibration would be
possible.

Thus the cbserved vibration may be forced, parametric
or self-excited. 1In all the above, the sources of excitation
lie within the fluid flow. In addition we have vibrations
transmitted mechanically through the apparatus and via the
supports of the cylindrical structures.

One interesting aspect of the problem that becomes
clear from the above discussion is that, whatever the source
of excitation, there is very little one can do to control the
excitation mechanism. As Den Hartog (1970) put it, rather
succinctly - he usually does - "The only recourse we have is
to limit the flow velocity or to make the tube so stiff that
the stresses caused by the random turbulent forces are within

tolerable limits".



5. PREDICTION OF SUB-CRITICAL VIBRATION AMPLITUDE

We have seen that the observed vibration may be
forced, parametric, or self-excited - or a combination of
these. A number of analytical models have been proposed
based on one or the other of these excitation mechanisms.
All these models have certain common features which should
be mentioned at the outset. Firstly, vibration transmitted
through supports, piping, etc., i.e. mechanically transmitted
vibration is not taken into account. Secondly, far-field
noise, such as disturbances in the flow originating from
pumps, valves and such, are not taken into account analytically
but only empirically, or not at all. It is virtually impossible
to do otherwise; these are 'system' charactendistics, where by
'system' we understand the whole flow system of which the cylin-
drical structures are only a small part. At present, there is
no way of chafacterizing such disturbances a priord.

In this section we shall discuss the various means
available forpredicting the vibration characteristics, first
by empirical means and then with the aid of analytical models
as classified above. The dominant frequency of vibration is
taken to be equal to essentially that of the first-mode frequency
of the cylinders in stationary fluid; accordingly, we shall
concentrate on describing the means available for predicting

vibration amplitude.



5.1 Empirical Expressionsd

Most of the means forpredicting vibration amplitude
are to a greater or lesser extent semi-empirical. However,
in ﬁhis classification we consider only Burgreen's et af. (1958)
and Paidoussis' (1969) expressions to fall into this category.
Quinn's semi-empirical expression is based on an analytical
self~excitation model and will be dealt with separately.

The basis for using empirical expressions for predict-
ing the vibration amplitude is no different, in principle, than
the analogous case in heat transfer where, for instance, knowing
that the Nusselt number may depend on the Reynolds and Prandtl
numbers we may construct an empirical expression from which the
heat transfer coefficient may be calculated. In the case of
vibration induced by axial flow, knowing that the amplitude
depends on u, B, £, and the frictional coefficients (and, hence,
the Reynolds number), etc., one may proceed in the same way.

Here we give the more recent and apparently more
successful of the empirical expressions, namely that of Paidoussis'

which is the following:

1.6 1.8.0.25 0273
8§ _ -4 u € N h 0.4
2
1l +u

where,
§ is the 'maximum' amplitude,

o, is the dimensionless first-mode eigenvalue of the
cylinder



N, is the Reynolds number based on the hydraulic
diameter

D. is the hydraulic diameter,
K 1is a parameter

un, €, B and D were defined in §2.

Here K represents a measure of departures from axial, steady
and uniform flow conditions and of mechanically transmitted
vibration. K = 1 corresponds to conditions that may exist

if care has been exercised in producing disturbance-free flow
conditions upstream of the cylindrical structure and low
mechanically~transmitted vibration level. ¢€n the other hand,
for realistic, industrial environments, K = 5.

As mentioned, earlier, the 'forcing function' was not
specified in deriving this empiricai expression, and this cannot
but have a deleterious effect on its success.

The empiriéal expression is compared with the experi-
mental data of Paidoussis and Sharp {(1967), Burgreen et af. (1958),
~ Quinn (1962)}'86GREAH (1962) and Rostrém & Andersson (1964a.,b,c).
As shown in figure 7 the agreement is reasonable, but leaves a
great deal to be desired. Every set of experimental results
shows a large discrepancy at low flow velocities. This may be
éxplained as being due to mechdnically transmitted vibration
and to other 'system' characteristics, which are overshadowed
at higher flow velocities. If this ‘'background' noise were
subtracted, then agreement between the empirical expression and
the experimental points would improve greatly; however, this

device, used by some authors in the field represents inadmissible



cosmetic surgery from the designer's point of view.

This last point is important in this respect: it
forces us to examine what we mean by flow-induced vibration.

Is it the total vibration which arises when a cylinder is
placed in circulating flow system, or is it that component

of vibration which is due to flow over the cylinders pex se?
In the above expression the former view was adopted with the
éim of producing something immediatelj usable by the designer;
others take the latter view, but do not always make it clear
that they do.

In this empirical expression the question arises as
to.whét does the 'maximum' amplitude of vibration represent,
recalling that the vibration is random. An answer to this was
~given by Reavis (13%69) who said that it is "..f.. the maximum
displacement fromeguilibrium to be expected if one were to scan
through an oscillograph record of rod vibration about five feet'
in length. This length of record corresponds to the author's
experience that a data sample is about two arms’' lengths long.
The author conjectures that the experimenters discussed in this
paper*, too, scanned vibkation-oscillograph records of comparable
length." Although from the theoretical point of view this is an
unsatisfactory answer, it is a reasonable one from the practical

point of view.

* Burgreen et af., Quinn, SoGREAH and Pavlica & Marshall.
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5.2 Quinn's Self-excited Vibration Model

Quinn (1962) states his fundamental postulate of
self-excited vibration as follows: "If the rod is not in
motion, the action of the flow on the rod in the transverse
direction is centrifuga1+, owing to what curvature the rod
may have. If the rod is in motion, the centrifugal force
will vary with rod velocity, because the radial flow distri-
bution is a function of rod position. Of course, the curvature
is very small and therefore the centrifugal force is also small.
However, fluid turbulence is three dimensional and the resulting
gquadratic damping acts in a weak manner for small transverse rod
velocities ....."

Quinn proposed a 'tentative' analytical model based on

this postulate, involving the following two equations: an equa¥

tion of motion of the c¢ylinder

* *
e1 (3% (ax*) + mu? (2%y/0x®) " + mu? (@Py_sax?)

1

+ 2opc | ay/at] (3y/at) + (M) (2%y/3t%) = 0 (17)

and a momentum equation for one-dimensional axial flow

p (dU/dt) + %prz{Dh[HBe (eﬂro‘i-y)]}":L = -3P/3x, (18)

+ Cf. term uz(azn/agz) in equation (12).
* Qouinn, unaccountably, used a negative gsign for these terms.



where Yo represents the permanent rod bow, £ the friction
coefficient of channel flow, Dh is the hydraulic diameterxr
of the rod, Be ig a coefficient of eccentricity, e is the
hydraulic ecceﬁtricity of rod supports and P is the pressure.

8ince the damping term is retained in nonlinear form,
it is clear that amplitude information may be obtained by
approximaﬁe solution of these equations. Quinn reduces the
system to an equivalent one of one-degree-of-freedom, assuming
a first—ﬁode deflection, and obtains a criterion for existence
of self~excited vibration depending entirely on the eccentri-
city of the supports, the permanent bow and the time-dependent
bow. He similarly obtains an expression for the amplitude of
vibration which depends on the same parameters. In fact, the
amplitude obtained is linearly proportional to the permanent
bow of the cylinder. Herein lies the main difficulty in usihg
Quinn's theory for estimating vibration amplitude, since thé
permanent bow in the cylinders is not known ahead of time.

Quinn tested his model mainly by comparing trends in
experimehtal data with trends indicated by his approximate
solutions; on this basis the model was found to be in agree-
ment with experiments. He also atteﬁpted a comparison in
absolute terms between theory and experiment and he states
that "this comparison may be said to not refute the model”.

It may be concluded that Quinn's model is difficult
to apply. Work along similar lines was not pursued until

very recently, by Avanzini (1971); the author, however, has



nbt yvet had time to evaluate this last model. Whether there

is sufficient hard evidence to support the postulate of self-
excited vibration is difficult to assess. Qﬁinn's contention
that there is a ‘ecritical' flow velocity for the onset of self-
excited oscillation may be explained, equally plausiBly, by the
argument in ﬁhe last paragraph but two of §5.1. Also, if vibra-
tion is indeed random, this would contradict the possibility

of self-excited vibration which implies some sort of guasi-stable

limit-cycle motion.




5.3 Fomced—uibﬁation Modetas

A complete forced-vibration model would take into
consideration all the forces which could directly excite
lateral mqtion of the chinder. However, since most of
these forces cannot be characterized easily, and hence can-
not be known a piicai for a given system, the forced-vibration
models invariably take into account only those forces which
are known. This amounts to taking into account only the
forces arising from pressure perturbations in the turbulent
boundary layer surrounding the cylindrical structures. Statis-
tical correlations of wall-pressure fluctuations of turbulent
boundary layers are available, and these have been utilized
to obtain estimates of vibration amplitude.

Theories of this type have been developed by several
workers, e.g. Reavis (1967, 1969}, Gorman (1969, 1971), Chen
& Wambsganss (1970, 1972), and Kanazawa & Boresi (1970). The
basis of all these methods is the following. It is assﬁmed
that motion in any one (x,y)-plane is representative of motion
as a whole. Accordingly, the random pressure field, p(x,0,t),
on the surface of a cylinder is translated to an eqguivalent |
lateral force field, f(x,t), by integrating around cross-sections

of the cylinder, as shown in figure 8{(a); thus

f2Tr p(x,e,t)cosegde (19)

fix,t) = 5
o

The cylinder is now subject to a random distributed lateral

force f(x,t}, shown in.figure 8(b), and the motion of the




cylinder may be analyzed by standard means.

Some of the assumptions usually made in these theories

are as follows:

a)

b}

c)

d)

e)

all far-field pressure fluctuation coﬁponents are
neglected, as well as pressure components arising
from turbulence induced by supports, grids, etc.,
and from boiling and flow-régime changes;

no correlation is assumed between the pressure
fields on adjacent cylinders (in the case of multi-
cylinder structures);

the motion of a cylinder is assumed to have no
effect on the pressure field, nor on the motion
of adjacent cylinders;

the process is assumed to be ergodic and the
pressure field homogeneous;

the cylinder is lightly damped, and response in
the first-mode of the cylinder is considered to

be dominant.

The first study of this type was by Reavis (1967, 1969).

At the time there was no available information on turbulent wall-

pressure fluctuations on a cylinder, and Reavis used Bakewell's

(1962) ,measurenents for turbulent wall-pressure fluctuations in

'anipe. Gorman (1969, 1971) extended Reavis' work, concentrating

mainly on two-phase flows; he made his own measurements of wall-

pressure fluctuations, once again on the flow tube. Chen &

" Wambsganss (1970), on the other hand, used more recent measure-



ments by Bakewell (1968) on wail—pressure fluctuations on a

body of rewvolution, as well as measurements by Clinch (1969)
and others.

Here we shall outline the theory, essentially as
proposed by Chen & Wambsganss (1970, 1972}, which may be
considered to be the most up-to-date, and then discuss the
differences betWeen this and Reavis' work; subsequently,
we shall discuss Gorman's work as it pertains to two-phase
flows.

The equation of motion used is essentially equation
(15); note, however, that Chen & Wambsganss used the uncorrected
form of this equation (§2.1). The displacement n(f,T) is expanded é

in terms of eigenfunctions ¢n(i) as follows:

n(&,t) =1 ¢n(€) qn(T) (20)
n

Since classical normal modes do not exist in this case, the

eigenfunctions of the following system are used:

oYV + {uP[1-becy (1-38) - 3(1-8)cpl ~ STH"-A¢ =-0,

with o™ + Kk ¢ = ¢" - Ki¢' =0 at E=0, (21)

it
(]

and o"' - Ky

o" 4+ K¢ at £ =1,

where A is the eigenvalue to be determined, and the primes
denote differentiation with respect to £. 1In general this
eigenvalue problem is non-self~adjoint. Accordingly, to be

able to decouple the equations of motion we must also define




the adjoint eigenvalue problem, which of course will yield
the same eigenﬁalues but a different set of eigenfunctions
wn(g). The ¢n(E) and wn(i) form a bi-orthogonal set; i.e.
each of the eigenfunctions ¢n is orthogonal to all eigen-
functions wn’ except where they both correspond to the same
eigenvalue. (It should be mentioned here that for some of
the 'standard; boundary conditions, e.g. clamped-clamped,
pinned-pinned, the eigenvalue problem is indeed self-adjoint,
and the eigenfunctions ¢n are orthogonal; in such cases the
analysis is slightly simplified).

Substituting now equation (20) into (15) while making
use of (21), multiplying by wm and integrating from £=0 to 1,

we obtain:

i

- . 2 . 1 3 .
q, + ola  q. + Zﬁuib. q, + 38 (ecutec)dy
+ dec u’sb_q. + lec,u®td_q + Ag. =0 (22)
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1 1
Qp(T) = J Q(e,r)wmda/j 6 v ac.
) 0
As may be seen, equation (22) is not decoupled. Making the
usual assumptions for small damping, the off—diagonal terms
associated with internal and Coriolis-type damping are neglected;

similarly, for the fifth and sixth terms in the equation.

Accord-

ingly, we obtain the following decoupled set of equations:

o 5 % b 3 i .

Iy T [aamm+ g-u — B (EcNu+ec)}qm

+ [A_+hec u’b +hecu’d_lq. = Q | (23)

m N mm “ T mm? Im m ’ _

which may be re-written into the standard form:

q. + 27 _w g + w2 =0 (24)

L m¥m%m m%m m*

We define the correlation function of the generalized

force field by:

R {(t ) = lim -‘;‘T J ! Q (T)Qm(‘l'+'l' ydrt
Qan o o0 - n Q
1 1
-1
= I J wn(£)wm(€+EO)RQQ(§,£+£O,ro)dgdxg+goh(25)
o 0

. T -
_1lim 1
where RQQ(E,E+€O,TO) = oo >5 J Q(E,T)Q(E+EO,T+TO)dT
-T



1
and Moo= J ¢ ¥ 48 .
0
Note that Q(£,T) is the force field and Qm(T) is the gene-
ralized force field, as defined in equation (22). ©Now, the
cross-correlation spectral density is the Fourier transform

of the correlation function. Hence,

_1 (" iwt
QQQ(‘ZIE'I'EO:(”) - ?T- I RQQ(grg'l'gorTo)e OdTOr

(26)

' _ 1 * iwt, .
and @Q 0 {w) = T J RQan(TO)e ar,;

nm

- OO

and the Fourier transform of equation (25) may be written in

the form

1 1

% o @) = §i I j b (E)Y, (E+E )
) 0

{27)

xQQQ(£,€+€O;w)dEd(E+€O)-

We may similarly write down expressions for the cross-
correlation function and cross—-correlation spectral density of

the displacement from equation (20), namely

Ryn (E/E+E To) = T 2 Ry o (1000, (8)0y (E4E,),



¢ {E,E+f ,0) = I I ¢ ()¢ _(E)0_(E+E ), (28)
nn 0 n m qnqm n m o}
iim 1 (T
where R {t_ } = = J g (t)g {(t+T _)dT,
4,9, © oo 27T n m 0
-
and 9 (w) is the Fourier transform of R (t.).
qnqm 90 °

But from linear random vibration theory we know that

°g q @ lHn(w)Hm(w)|¢Qan(w), | (29)

- 2 2 .yl oy
whe;e Hn(w) = [(mn w™) + 2cnwnw1] . Hence, substituting
equation (29) into (28) and using equation (27) we obtain the

cross—-correlation spectral density of the displadement

¢, (E) b (E¥E )
|H_ (0} () |2

® (£ ,E+E ,w) = I E
nn ° n m M M
nm
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Now we presume that we can write

I 1

J B (ErEFE )b () (E+E HAEA(EHE ).
0

(DQQ(ErE'i'gorw) = AQQ(w)‘PQQ(grE'}'EOrw)

which will be justified a posteniori by equation (33). AQQ(w)

is the power spectral density of the force field and WQQ is a



spatial correlation function. Substituting this into the
eguation above and letting 50:0 we obtain the power spectral

density of the displacement

2 (BrEyw) = By (w) 2 L|H (@) H_(w) ]

Q0 nm
¢, (E)o (E)
x J J TQQ(ErE‘FEOrw)
m (o]
x b (E)Y_(E+E,)AEQ(E+E ). (30)

Finally, the mean-square displacement is given by

2 B 00
n"{g) = J n (88 w)dw. _ (31)
0

The solution, as given by eéuatiOns {30) and (31) may
be simplified by assuming that damping is sufficiently smail
for coupling between the modes to be negligible; the double
summation in equation (30) may then be reduced to a single
summation. Moreover, if we assume that the response is pre-
dominantly in the first mode, we can consider only the leading
‘term in the series. Hence |

¥ €+Eorw)
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x Y (E) (E+E )AEA(E+E ). - (32)



This equation is quite similar to that first proposed by

Reavis (1967}).

Now we have to correlate the pressure field to the
force field. Since the-pressﬁre field is assumed to be homo- i
‘geneous, préssure correlations will depend on the separation
between measurement points rather than absolute positions.

Thus the cross-correlation spectral density will in general

be @pp(go,eo,m) where EO=|£1—£2| and 8 = |8,-82|. Using

Corcos' (1963) model, one may write

e i o e o ey o e et e e

'GPP(EO.BO,w) = App(w)W1(wEO/Uc)Wz(weo/Uc), (33)

Ty

where App(w) is the power spectral density of the wall-pressure i
fluctuations, ¥, and ¥, are spatial correlation functions in @
the axial and circumferential directions, respectively, and

Uc is the convection velocity. These functions will not be
reproduced here for the sake of brevity. The translation from
the pressure field to the force field is accomplished by using:
equation (19), in dimensionless form.

Wambsganss & Chen (1971) developed a simplified expres-

sion for the amplitude, based on their theory, applicabfe to

systems within a Limited nange o4 parameterns; this is given

below
O.OlBKDl'SDi'5U2¢1(x)
—5 3
[y71° = © (34)
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2.5 5.5

where K = 2.56 x 10 °1b x sec® > /£t>'>;

B, = 0.101 for pinned-pinned cylinder and ¢l(x) =
Y2 sin (mx/L): B,= 0.0246 for a clamped-clamped
cylinder, with the corresponding form for the

eigenfunction ¢, (x);

r = ;O+alU+a2U2, with o being the damping factor
in stationary fluid, a; = 2.4 x 10“4 sec/ft,
and a, = 3.4 x ZLO-6 secz/ftz;

fo = fundamental frequency in stationary fluid, in Hz;
the other quantities being as elsewhere in this paper.

As mentioned earlier, Reavis (1967, 1969) developed a
closely similar theory. By the time the various simplications,
necessary to render Chen & Wambsganss' theory tractable, are
intro&ﬁced, these differences become less important, in practice.

Reavis (1967, 1969) obtained a simplified expression

for the amplitude, as follows:

—— 0.5

2 3 _ DLN"* 0.5
[Y (t)] = CnannL W Upv (35)

where C is as given in figure 11, Ngr Npr Ny, are funcﬁions of
the Strouhal numbers based on the diameter, hydraulic diameter
and the length, respectively, N is the number of cylinders, £
the first-mode natural frequency in Hz and ¢ the corresponding
damping factor, and v is the kinematic viscosity; dther symbols
are as elsewhere in this paper. |

So far Chen & Wambsganss' theory has been applied to

only one or two cases, and agreement between theory and experiment




as shown here in figure 9 is fairly good. The experimental
points are their own, obtained in a well-designed circulation
system with minimum 'system' disturbances. On the other hand,
when Reavis (1969) applied his theory, which is closely similar
to Chen & Wambsganss', to some of the available data, he cobtained
very 1a£ge disqrepancies as shown in figure 10. After intro—.
ducing a correction factor which is a function of Dh/L - presuming
the r.m.s. pressure fluctuations to decrease with decreasing Dh/L
- as shown in figure 11, agreement is vastly improved (figure 12);
but then, so it should, as figure 11, although qualitatively sound,
‘quantitatively is no less than a procrustean couch.

Now the main differences between Chen & Wambsganss'
theory and Reavis' are as follows. In the latter theory (i)
wall-pressure correlations on the pipe, rather than on the
cylinder, are used; (ii) effects arising from the mean axial
flow, such as flow-induced damping, are neglected; (iii) only
pinned-pinned cylinders are considered. Point (i) is not as
serious as might be supposed as will become evident in the
discussion of Gorman's work below. Point (ii) represents o£
course a Serious omission, but for small u the main effect of
the mean axial flow is to damp motions; this, if taken into
account, would clearly make agreement between theory and expe-
riment even worse. Point (iii), probably, has also a minor
effect, as the acfuaf first-mode natural frequency of the
cylinder is used in Reavis' equation and the error (forAcylin-
ders that are not pinned-pinned) arises from departures of the

actual eigenfunctions from the half-sinusoidal shape pertaining



to pinned~pinned end conditions; once again use of the
correct eigenfunctions would probably result in lower
theoretical values. Accordingly, at the time of writing,
there is no reason to suppose that Chen & Wambsganss's theory,
albeit moré elegant and rigorous, would give substantially
different agreement with experiment than Reavis' in its pris-
tine form - i.e. similar to figure 10.

We next consider Gorman's work (1967, 1969). Gorman's
analysis follows Reavis' fairly closely and as such reguires
no further elaboration here. His work differs from that of
Reavisg' and Chen & Waﬁbsganss' in that he obtained his own
pressure correlations experimentally, first in water (Gorman
1967) and then in 'two-phase' flows simulated by air-water
mixtures. In all cases he measured the near-field pressure
correlations on the wall.of the flow channel, reasoning that
the pressure field must be closely similar to that which would
be acting on a cylindrical structure within. His correlation
measurements in water suffered from lack of resolution because
of the large size of his pressure transducers; in any case
some may be in doubt, according to Chen é Wambsganss (1970),
as "the lateral cross-correlation of pressure does not agree
with that given in other reports".

Gorman's (1969) measurements with air-water mixtures
were much more refined. Some results_of vibration amplitudes:
are reproduced as figure 13, where agreement between théory

and experiment is truly very good. (For the first time we see



a Linean scafe fér plotting vibration amplitude.) The
experimental points in figure 13'are from Gorman}s own
measurements with air-water mixtures. In figure 14 we see

some measurements by Pettigrew in sﬁeam—water mixtures, in
another ciiculation system, whiéh exhibit a similar amplitude
peak at about 12% quality as in Gorman's results of figure 13.
It should be stressed that no correction'factors are introduced
by Gorman in his theqretiéal expression for predicting ampli-

tude. This expression is given below

by
2

s 1
. LDy b Ip, 2 (£) 12 (nE))

[y2(£)12 = (36)

2 .3
mdy (4z)

where LN and Y, are equivalent to Reavis' Ng and Ny Py, (t)

is power-spectral density of the pressure field in the vicinity
of the first-mode natural frequency of the cylinder, and Ql =

2mf. is the first-mode circular frequency of vibration of the

1
cylinder.

Similarly good agreement between theory and experiment
was recently reported by Cedolin ef af. (1971), ﬁsing Gorman's
theory but their own measured pressure correlation functions:

the fluid used was a nitrogen-water mixture. Theory and expe-
riment are compared in figure 15. |

The question arises as to why such good agreement was
obtained by Gorman and by Cedolin ei-aﬂ.in two-phase flows, and
by Gorman even in water—-flows (figure 16), while Reavis' work

showed large discrepancies between his own theory and others'



experiments. The answer is fairly clear. Two-phase flows
have notoriously short memory; i.e. the internal damping
in two-phase flows is gquite high. Accordingly, pressure
fluctuations arising upstream of the cylindrical structure
simply do not survive to be felt there - except (plane)
pressure waves which, in any case, were electronically sup-
pressed in Gorman's measurements of pressure correlations,
‘as is normal for near-field pressure correlation measurements.
Accordingly, it is the locally generated pressure disturbances,
i.e. those generated in the immediate vicinity, that matter.
In other words, in two-phase flows, the near-field pressure
field essentially represents the total pressure field so far
as vibration of cylinders is concerned.

What remains to be explained is the good agreement
between theory and experiment obtained by Gorman in the case
of single-phase {water) flow. Here we may invoke the "peculiarity"
of his measured correlations to suggest that they did not corres-
pond solely to boundary-layer preséure fluctuations, but also
contained components of 'system' distrubances - other than those
which are axially symmetric. Of course, this may be true, to
a certain extent, for Gorman's two-phase flow pressure-correlation
measurements, but we have ndthing to compare them against. (Unfor-
tunately, Gorman did not apply his theory to others’ experimental
results, presumably because they are all associated with steam-
water flows rather than air-water flbws).

Now, presuming that 'system' peculiarities are inherent

in Gorman's pressure correlations, and accepting the validity of



the forced-vibration excitation mechanism, then (in the
context of linear vibration theory) agreement between theory
and experiment simﬁly becomes a test of the validity of
Gorman's analytical model; alternatively,.accepting the
various approximations, sim?lifications, etc., inherent in
Gorman's analytical model, the observed agreement supports

the validity of the forced-vibration excitation model. Never-
theless, from the point of view of vibration amplitude predic-
fion, we are no further ahead - at least in single-phase flows -
for, if one has to measure the pressure field characteristics
of his flow system before one can predict vibration amplitude
of cylinders in it, one might as well measure the vibration

amplitude directly 4in s4itu.



5.4 Y.N. Chen's Panrametnic Vibration Model

Y¥.N. Chen (1970a,b) used a simplified form of
equation (8) by considering (i) the Coriolis acceleration
term to be small, (ii) U(dy/9x} to be small compared to
(8y/8t), and (iii) the axiél drag force to be acting at
the mid-point of the cyliﬁder. With these and other minor
simplifications, he obtained the following approximate

equation of motion:
r1 (3%y/8xY) + (MU2+%chU2LD)(82y/8x2)
+ BogpD (3y/dt) + (meM) (3%y/9t%) = 0. (37)

Assuming pinned boundary conditions, he considered solutions

of the form

y(x,t) = I sin(nmx/L) q (%) (38)
n

which substituted into equation (37) yield

w1 . nw, 4. nm.2 , 2 =
(m) & +3eoDd, + [ED “EI-(F1) © (ho oDL+M) U Tq = 0.(39)
Next, Chen argues as follows: "The natural frequency
of the fuel rods usually used is very low, so they can only be
excited to vibration in resonance by the large eddies, the size
of which is comparable with the path width of the flow along

the rod assembly. The diameter of the rod will be small compared



with this eddy size, so that the phase shift of the dynamic
eddy force along the periphery of the circular cross section

of the fod will be small too. ©No significant resultant dynamic
force perpendicular to the rod axis can therefore be exerted
by the eddy. This force will be neglected in further consider~
ations."

Elsewhere, Chen states the following: "No significant
resultant dynamic force perpendicular to the rod axis can there-
fore be exerted. According to the calculation of Reavis this
dynamic force is about 3.5 to 240 times less than would be
necessary to maintain the intensities of the vibrations which
actually occured on a number of fuel rods. The results obtained
by several authors, Yield such as 3.5 to 20 times less by Quinn,
15 by Pavlica, 50 by SoGREAH and 50 to 240 by Burgreen. However,
- this small excitation may possess a special‘effect on the initia-
tion of the instability postulated by Chen. This will be shown
later.”

'It is postulated next that the observed vibration is
paremetric and arises through the effect of velocity fluctua-
tions which in turn affect the effective 'centrifugal', or
compressive, force represented by the second term in equation

(37). Accordingly, we set

(]

U = + u' =0T + uécosﬁt, (40)

and changing variables by introducing T={t, equation (39) may

be re-written in the form



d qn ' dqn
+ 2 g—— + [8' -e _costlg. = 0 (41)
de dr n n n
where
2¢ = kogen/[ (Mm) Q] ;
Q0 (c. pDL +M)ﬁ2
. n, 2 LP
6! = (DL - =1,
(nm/L) “EIX
Qn being the nth natural frequency : (42)
szfl = (am) BT/ (mem) Lt ;
Q 2 (4c. pDL +M)
and E, = (ﬁﬂ 2 [ L 3 } Eué.
(nm/L) “EI

In these expressions (nﬂ/L)zEI is the nth Euler buckling load,
while (éeLpDL'+M)52 represents the effective steady-state
'"centrifugal' or compressive load, and 2(%chDL+M) Uué repre-
sents the effective fluctuating component of that load. Clearly,
if the steady-state compression equals the Euler buckling load,
the cylinder would buckle; +this defines a critical buckling

velocity

02 = [ (A7) 2E11/ [he pDL+M] . (43)

with this notation the expressions for € and 65 may be consi-

derably simplified to



) —_
st = P - (%
(44)
and & = 2(§£ 2 ﬁﬁé/ﬁz .

Of course ué is unknown generally: based on some

measurements by Motzfeld and by himself, Chen proposes

u

pr -
é = of°80 ,
where S = th/ﬁ is the Strouhal number, £ is the initial turbu-
lence level at the entrance of the cylindrical structure, and
o is a proportionality factor. Substituting this expression
for ué into equation (44) we obtain

Y

e = z(ﬁﬁ)z(éﬂ)zas. (45)

C

With these definitions equation (41l) may be written

in a more easily recognizable from by letting

2

_ =TT - v -
| q, (1) = e B (1) and § =&/ - 7T° , (46)
which yields
a®s_
- + (8 - e cosT)B =0 . (47)

This is a Mathieu-Hill type equation. It admits
solutions which are stable or unstable according to the combi-

nation of wvalues of Gn and en (Bolotin 1964). Now for small



damping Gnﬂﬁﬁ and hence Gn is the square of the ratio of the

natural frequency in flow to the frequency 2, i.e.

_ 2
8y = 19,6/21% (48)
2 o 2.2 .
where an = [1 - (U/Uc) ]Qn, in the absence of damping.

It is known from the solution of equations such as (47) that
the regions of parametric oscillations (instabilities) occur,
in the case of €n+0, at Q/Rnf = 2, 1, 2/3, ..... For €n>0
there are alternate regions of stability and instability
depending on the values of Gn; the unstable regions are
wider, the larger the value of €h" Normally the unstable
region associated with Q/an = 2 is the most important
(primary region). The secondary instability region, corres-
ponding to Q/an = 1 is normally truly secondary, especially
if damping is present. .However, here Chen reasons as follows:
"The turbulence force component, which acts perpendicularly
to the rod axis has been neglected in the derivation of the
differential equation due to its small strength. But this
force wiil cause a resonance of the rod, however weak it might
be ..... The excitation of the perpendicular force will there-
fore reinforce the trend of the (parametric) instability."
Accordingly, it is presumed that the secondary instability
region is the 'primary' one in this case, and Q=an.
Furthermore, Chen reasons that thé amplitude of vibration

would be proportional to € and, fairly arbitrarily, sets




fy/0 = ke (49)

where y here represents the amplitude of vibration and k is a
proportionality constant. Using the definition of € in equation
{(45) we have
- %h.2 20, 2
fY/U = 2k (ﬁ'—) (:-—') as.

Ye

But since an=Q, the definition of an in equation (48) implies
2 2 o 2171 _ = -

that (Qn/Q) = (an/ﬂ) [1 (U/Uc) ] 7. Also, 8 = th/U. Com

bining o and k into a new constant K = 2ka the above equation

may how be written as

Y - g1 - (292171 EY 2, (50)

D
h Uc Uc

Chen subsequently lets £ = BEO where EO is the turbulencé level
at the entrance to the cylindrical structure for a normal tech-
nical case, such that 8 = % represents ideally quiet flow condi-
tions (e.g. the experiments at SoGREAH), B = 1 represents the
normal, and B = 2 for particularly poor flow conditions. Theﬁ
EozK is evaluated empirically, fiﬁally yielding the foliowing

expression for predicting vibration amplitude.

%— = [1 - (gszl*l(gg)z. (51)
h

Uc Uc



Chen tested this theory by comparing the ?fedicted
amplitudes, given by egquation (51), to most available experi-
mental amplitudes of vibrations.(obtained by Burgreen et al.,
Pavlica & Marshall, Quinn, Rostrém & Andersson; SOGREAH, Basile
el af. and Reavis). Agreement is quite good, being alWays
better than within an order of magnitude, as shown in figure
17.

It must be stressed that, by the time the various
assumptions are made [particularly that of equation (49)]

this becomes a semi-empirical theory.



6. CONCLUSTON

In this paper, we have considered a number of
aspects of vibration of cylindrical structures in axial flow.

We have shown that cylinders immersed in axial flow
are subject to hydroelastic instabilities. However, these
instabilities occur at sufficiently high flow velocities to
be of no concern for industrial applications. The mean axial
flow velocity has mainly two effects on the free motions of
industrially feasible cylindrical structures: (i) it slightly
lowers their natural frequencies {(in the case of cylinders with
both ends supported) and (ii)} it introduces additional damping
to their mbtions (flow-induced damping).

However, axial flow - not being purely axial, uniform
and steady -~ has an additional effect on cylindrical structures;
it induces random‘Vibration of very small amplitude ('sub-critical’
vibration) which {4 of concern in certain industrial applications.
The amplitude of these vibrations is generally so small that
instrumented experimental assemblies for its study ".... could
act as a fairly sensitive seismograph", as suggested by éorman.
The frequency_of vibration is essentially the first-mode natural

‘frequency of the cylinders.

Means of predicting sub-crnitical vibration amplitude

Originally, it was attempted to predict vibration

amplitude.by the use of empirical expressions. This proved



to have only limited success and discrepancies between pre-
dicted and measured amplitudes of one order of magnitude were
not too uncommon. Accordingly, it was sought to understand
the underlying mechanism of vibration so as to achieve better
success. Three types of mechanism were proposed'cor:esponding
to whether the vibration was postulated to be self-excited,
forced or parametric.

Quinn's Aeﬂﬁ-excized vibration model is difficult
to use for predicting vibratién amplitude and has not been
adequately tested. A more recent and not entirely analytical
model by Avanzini was not reviewed here; preliminary review
indicated discrepancies between prediction and measurement no
smaller than those attainable by the empirical expressions.

Forced vibration models were proposed by Reavis,
Gorman, Chen & Wambsganss and others. Here it is postulated
that vibration is caused by random pressure fluctuations on
the surface of the cylinders which, integrated around the cir-
cumference,give rise to random transverse forces. Since the
only pressure fluctuations which have been characterized, i.e.,
which can be predicted independently of the particularities of
the system,are the wall-pressure fluctuations in turbulent
boundary layers, these theories perforée take only these (neaxn-
4ield) pressure fluctuations into account. Reavis applied this
theoretical model to others' available experimental data and fouﬁd
the theory to underestimate vibration amplitude by as much as

two and one-half orders of magnitude. Chen & Wambsganss' theory,



which is more elegant and refined, but quite similar to
Reavis' has not been adequately tested but should not be
significantly more successful. Reavis empirically modified
his theoretical model and obtained much improved prediction.

Gorman,using a slightly modified model in the case
of flows of air-water mixtures, achieved remarkable success,
Agreement between theory and experiment of the order of 30% or
better was attained. In two-phase flows, far-field pressure
fluctuations (excepting plane pressure waves) are guickly damped,
and hence,'the near-field pressure fluctuations represent the
total excitation field. This explains the success of the theory
in two-phase flows and the lack of it in single-phase flows.

It also lends strong support to the forced-vibration model.
Unfortunately, Gorman's theory has not been applied to any
experiments performed in a circulation system other than that

in which the pressure correlations were measured. As his measured
correlations may contain perculiarities of his own system, it

is possible that such good agreement may not be attained when
applied to another system. Moreover, the above experiments of
Gorman's were all with a single cylinder.

Finally, a parameiric excifation model bf Y.N. Chen
was discussed. It supposes that turbulehce—induced changes in
the axial flow Qelocity excite flexural vibration, in the same
way that periodic changes in the compressive load on a column
may cause parametric instabilities. This theory is semi-empirical

and gives agreement with experiment within one order of magnitude.



We may conclude the following:.

(i} prediction of vibration amplitude in single~phase
and two-phase flows.is possible by Paidoussis', Reavis'
and Y.N. Chen's semi-empirical expressions (all other
théories being considered inadequately tested to be able
to say), within one order of magnitude.

(ii) it may be possible to achieve better agreement in two-
phasé flows,e.9., by Gorman's theory, if pressure correla-
tions for two-phase flows (as opposed to flows of air—ﬁater

mixtures) become available.

Concluding Remarks

The sad aspect of the situation may be viewed as
follows. If one excludes Paidoussis' own experimental data
for bundles of cylinders (which have not been used by any other
workers ﬁo test their theories), then it may be said that his
empirical expression achieves prediction to within one order of
magnitude. Reavis' semi~empirical expression improves on this
slightly and Y.N. Chen's hardly at all (although it must be said
that a great deal of newer data are used to test the latter).
This point is being made solely to indicate that, in terms of
ability to predict vibration amplitude, we have not progressed
very far, despite the considerable analytical effort expended.

It must be admitted that without empirical correction,
all purely analytical theories have failed in their ability of

predicting vibration amplitude in single-phase flows. (This



phraseology is here used advisedly, to remind the reader of

the difference between the fruly fLow-induced components of
vibration and the fotal vibration in axial §Low, including
mechanically transmitted vibration arising from pumps, etc.

The designer would clearly like to know the latter) The
situation in two-phase flows may be considerably better, but

we shall not know definitely until Gorman's theory, for instance,
is applied to experimental results obtained in an experimental
rig other than his own and to bundles of cylinders.

Nevertheless Gorman's success with flows of air-water
mixtures suggests that the forced vibration model is sound. Let
us presume that his theory,when applied to other experimental
data,proves eqgually successful. Then we would conclude that,
if only we could characterize adequately the pressure field in
single-phase flows, we might be more successful in this case also.
What is needed is such information as the power spectral densi-

ties of pressure fluctuations induced by valves, supports, bends,

etc,, and their decay characteristics with distance; we need
wall-pressure correlations on closely spaced bundles and how they
vary with spacing, etc. This, of course, implies a long and tedious
research program. Even so, all this, assuming that it eventuallyr
becomes available, may not be enough, as it will still be difficult
to know a pricii what mechanically transmitted vibration may

be present. It may well be that prediction of vibration to better

than 100% or 200% is unattainable and that it will remain so.




In contrast to the pessimistic note struck above,
our basic qualitative understanding of the effects of axial
flow on cylindrical structures has improved greatly. 'Stafting
with Reavis' original proposal, the remarkable work by Chen &
Wambsganss and Y.N. Chen's interesting parametric excitation
postulate have added enormously to the'understanding of this

interesting subject.
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FIG. 13 Agreement between Gorman's theoretical and experi-
mental values of the amplitude of vibration for
flows of air-water mixtures [from Gorman (1969)1].
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FIG. 17 Agreement between measured and pre-
dicted amplitudes of vibration according
to Y.N. Chen's (1970b) model.



