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ABSTRACT 

Spectroscopy can predict soil chemical properties; thus, it is complementary to traditional 

laboratory analysis, which is more costly and time-consuming. The objective of this thesis was to 

evaluate the ability of seven spectroscopic instruments to predict nine soil chemical properties: 

available phosphorus (P), exchangeable potassium (K), calcium (Ca), magnesium (Mg) and 

aluminum (Al), buffer pH (BpH), pH, soil organic matter (SOM) and cation exchange capacity 

(CEC). In total, 798 air dried and compressed soil samples, representing different agro-climatic 

conditions across Québec (Canada), were analyzed with these instruments, which have variable 

resolution, spectral range and optics. For instance, visible (Vis) spectra were collected with RGB 

bands from a digital microscope (Vis-1) and a visible spectrometer that scanned wavelengths 

from 425 – 725 nm (Vis-2). The visible and near-infrared (Vis-NIR) spectra was collected from the 

range of 350 – 2200 nm (Vis-NIR-1) with low-resolution field equipment and from 350 – 2500 nm 

(Vis-NIR-2) with a high-resolution laboratory scanner. Mid-infrared (MIR) spectra were collected 

from 5500 – 11,000 nm (MIR-1) with a custom portable diffuse reflectance infrared Fourier-

transform (DRIFT) spectrometer and with a benchtop attenuated total reflectance Fourier-

transform infrared (ATR FTIR) spectrometer covering 2500 – 17,000 nm (MIR-2). Finally, laser-

induced breakdown spectroscopy (LIBS) spectra were acquired with the LaserAg technology 

developed and owned by Logiag (Chateauguay, Quebec, Canada). Performances of instruments, 

spectral ranges and spectral resolutions were compared using partial least squares regression 

(PLSR) with relevant test statistics, such as the root mean squared error of prediction (RMSEP), 

the coefficient of determination (R2) for the linear regression between measured and predicted 

values and the ratio of performance to interquartile distance (RPIQ). The best fit lines between 

measured and predicted values of P, K, Mg, Ca, pH, BpH and SOM were obtained with the LIBS 

spectra, while Vis-NIR-1 gave the best prediction for Al and Vis-NIR-2 gave the best prediction of 

CEC. Overall, the prediction was “excellent” for Ca, “good” for Mg, Al, SOM and CEC, “moderate” 

for P, pH and Bph and “poor” for K. This was due to the fact that spectral range influences the 

accuracy of predicting soil chemical properties. Prediction MAEs of models for K (Vis-NIR-2), Ca 

(Vis-NIR-1, Vis-NIR-2, MIR-2, LIBS), Al (Vis-NIR-1, Vis-NIR-2, LIBS), BpH (all intruments except Vis-

1) and CEC (all intruments) respected soil laboratory analysis standards. 
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RÉSUMÉ 

La spectroscopie peut prédire certaines propriétés physiques et chimiques du sol. C'est donc un 

moyen prometteur de complémenter les analyses de laboratoire traditionnelles, qui peuvent 

être coûteuses en temps et en argent. Dans cette recherche, la performance de sept instruments 

est comparée pour la prédiction de neuf propriétés du sol: phosphore (P), potassium (K), calcium 

(Ca), magnésium (Mg) et aluminium (Al) extractibles, pH tampon (BpH), pH, matière organique 

du sol (MO) et capacité d’échange de cations (CEC). Au total, 798 échantillons de sol séchés à l'air 

et compressés, représentant différentes conditions agro-climatiques du Québec (Canada), ont 

été analysés à l'aide de ces instruments, dont la résolution, le domaine spectral et les techniques 

optiques variaient. Les spectres visibles (Vis) ont été recueillis à l'aide d'un microscope numérique 

– bandes rouge, vert, bleu- (Vis-1) et d'un spectromètre visible couvrant une plage de 425 à 725 

nm (Vis-2). Les spectres visibles et proche infrarouge (Vis-NIR) de tous les échantillons de sol ont 

été recueillis à l'aide d'une installation de laboratoire avec un spectromètre de terrain opérant 

dans la plage de 350 à 2200 nm (Vis-NIR-1) et d'un autre instrument Vis-NIR de résolution 

supérieure allant de 350 à 2500 nm (Vis-NIR-2). Les spectres dans l'infrarouge moyen (MIR) ont 

été recueillis à l'aide d'un spectromètre infrarouge par réflexion diffuse à transformée de Fourier 

(DRIFT) portable avec une plage spectrale de 5500 à 11 000 nm (MIR-1) et d'un spectromètre MIR 

utilisant la réflectance totale atténuée (ATR-FTIR) couvrant une plage de 2500 à 17 000 nm (MIR-

2). Enfin, les spectres de spectroscopie par claquage induit par éclair laser (LIBS) ont été acquis 

avec la technologie LaserAg développée par Logiag (Québec, Canada). Les performances de 

prévision des instruments, des domaines spectraux et des résolutions spectrales ont été 

comparés. Les résultats ont été obtenus par régression partielle des moindres carrés (PLSR) et 

les performances des instruments ont été évaluées en termes d’erreur de prédiction quadratique 

moyenne (RMSEP), du coefficient de détermination (R2) de la régression linéaire entre les valeurs 

mesurées et prédites et du rapport écart interquartile / performance (RPIQ). LIBS a conduit aux 

meilleurs résultats de prédiction pour P, K, Mg, Ca, pH, BpH et MO. Vis-NIR-1 donnait la meilleure 

prédiction pour Al et Vis-NIR-2 donnait la meilleure prédiction de CEC. La prédictibilité globale 

des propriétés du sol étudiées peut être classée comme suit: la prédiction était «excellente» pour 

Ca, «bonne» pour Mg, Al, MO et CEC, «modérée» pour P, pH et Bph et «médiocre» pour K. Dans 
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cette étude, il a été constaté que le domaine spectral avait une influence sur la précision de la 

prédiction. La tendance générale était que LIBS fournissait la meilleure prédiction, suivi de Vis-

NIR, puis de MIR qui était mieux ou comparable à Vis. Il a également été constaté que la 

résolution spectrale avait une influence sur la prédiction. Dans tous les cas autres que Al où Vis-

NIR-1 donnait de meilleurs résultats que Vis-NIR-2, les instruments les plus sophistiqués 

surpassaient leurs homologues à résolution inférieure pour un domaine spectral donné. Les MAE 

de prédiction des modèles pour K (Vis-NIR-2), Ca (Vis-NIR-1, Vis-NIR-2, MIR-2, LIBS), Al (Vis-NIR-

1, Vis-NIR-2, LIBS), BpH (tous les instruments sauf Vis-1) et CEC (tous les instruments) 

respectaient les standards des analyses de sol en laboratoire. 
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CHAPTER 1. INTRODUCTION 

CONTEXTUAL SETTING 

Agriculture production systems have benefited from the transfer of technologies developed for 

other industries: the industrial age brought mechanization and synthesized fertilizer while the 

technology age brought genetic engineering and automation. At the turn of the millennium, entry 

into the information age brought the potential for integrating technological advances into 

precision agriculture (PA) (Whelan et al., 1997; Zhang et al., 2002). PA aims at reorganizing the 

production systems to ensure low-input, high-efficiency and sustainable agriculture (Shibusawa, 

1998).  

Enlargement of fields and intensive mechanization made farming difficult to consider within-field 

variability (Stafford, 2000) before the emergence of certain technologies allowing management 

to adjust to the variability: Global Positioning Systems, geographic information systems, 

automatic control, miniaturized computer components, mobile computing, advanced 

information processing and telecommunications (Zhang et al., 2002).   

Spatial and temporal variability of soil and crop factors are the factual basis of PA. Soil is highly 

variable and extremely complex. Viscarra Rossel & McBratney (1998) stated that “it is imperative 

that we get the best possible understanding of the nature, properties and interactions of our soil, 

if we want to make the most efficient use of it for food and fiber production and simultaneously 

preserve it for future generations”. Viscarra Rossel & McBratney (1998) highlighted how 

traditional soil laboratory analysis are not suitable economically and they are logistically 

challenging for large-scale implementation of PA when fields are variable. They concluded that 

the development of field-deployed sensing systems and scanners are important and should aim 

to overcome the problems of high cost, labour, time and imprecision of soil sampling and 

analysis. Adamchuk et al. (2004) reviewed the sensors that were susceptible to improve the 

quality of soil-related information: electrical and electromagnetic, optical and radiometric, 

mechanical, acoustic, pneumatic, and electrochemical measurement concepts. 

Since then, research has been extensively deployed to uncover soil spectroscopy potential for in-

field applications, but also for rapid and economic laboratory soil characterization. Spectral 
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measurement of soil is a promising avenue because it is fast and at arelatively low cost; it is 

possible to deploy this technology in the field and spectra acquired contain a lot of information 

about physical, chemical and biological properties. Analysis of the spectral data was made 

possible thanks to the advent of robust multivariate calibration and improved computing 

capabilities (Janik & Skjemstad, 1995; McCarty et al., 2002; Viscarra Rossel et al., 2006).  Special 

attention was paid to visible and near-infrared (Vis-NIR, 400-2,500 nm) and mid-infrared (2,500-

25,000 nm) reflectance spectroscopy (Ben-Dor & Banin, 1995; Viscarra-Rossel et al., 2006; 

Mouazen et al., 2007; Gomez et al., 2008; Viscarra-Rossel et al., 2009; Bellon Maurel & 

McBratney, 2011; Nocita et al.,  2013; Shi et al., 2014; Soriano-Disla et al., 2014; Vasques et al., 

2014; Vohland et al., 2014), and X-ray fluorescence (XRF) (Zhu et al., 2011; Weindorf et al., 2012; 

Radu et al., 2013; Weindorf et al., 2013; Sharma et al., 2014; Kaniu & Angeyo, 2015), showing 

that these technologies can lead to accurate in-lab and in-field prediction of soil properties such 

as texture, organic carbon, CEC, pH, and plants nutrients. A smaller number of research studies 

focused on technologies using laser-induced breakdown spectroscopy (LIBS) to predict soil 

properties (Glumac et al., 2010; Bricklemyer et al., 2011; Senesi & Senesi, 2016; Villas-Boas et al., 

2016; Knadel et al., 2017).  

RESEARCH OBJECTIVE 

Logiag (Châteauguay, Québec, Canada) is an innovative agronomic support company providing 

services to growers and agribusinesses across Eastern Canada and Northeastern USA. Through 

cooperation with the National Research Council (NRC, Boucherville, Québec, Canada), they have 

developed LaserAg technology, a novel method to analyze soil properties using air dried and 

compressed soil samples employing (LIBS). It is known that sensor fusion allows for the removal 

of bias for indirect data inference, which is typical in chemometrics methods (Adamchuk et al., 

2011). To this day, there are only a handful reported analysis on the complementarity of LIBS and 

other spectral analytics performed on the same set of soil samples (Bricklemyer, Brown, Turk, & 

Clegg, 2018; Knadel et al., 2017; Xu et al., 2019); thus, it is essential to employ sensor fusion 

concepts and enhance the reliability of soil test results. Before studying how adding less 

challenging spectral measurement techniques to LIBS could increase the accuracy of soil 

properties assessment, it is essential to determine if there are alternative technologies that have 
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compatible analytical capabilities. Hence, the research objective of this study is to assess the 

prediction accuracy obtained with spectral instruments of various resolutions, spectral ranges 

and optical techniques while maintaining consistent calibration and validation techniques.  
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CHAPTER 2. REVIEW OF THE LITERATURE  

SOIL SCIENCE  

It goes without saying that soil is a fundamental determinant in agriculture. Proper soil 

management is an important part of crop production and its goal is to establish and maintain the 

correct combination of all soil factors necessary to optimize production efficiency in a sustainable 

way (Bennet et al., 2008). Producer interventions can involve adjustments and changes in the 

physical, chemical, and biological properties of soil. Physical properties of soil include its mineral 

part, but also its water and air contents: texture, bulk density, structure, porosity, aggregate 

stability (Brady et al., 1990). Tillage, the mechanical manipulation of the soil with the objective 

of promoting good tilth, is an example of a practice influencing soil physical properties. Chemical 

properties include soil reaction (pH), buffering, cation exchange capacity, mineral compounds 

and nutrient levels. Liming and fertilizer applications are two management practices modifying 

soil chemical properties. Finally, biological properties include life forms (bacteria, fungi, insects, 

etc.) colonizing soil as well as organic matter present in it. Applying certain pesticides affects soil 

biology (in a negative and positive way, depending on the viewpoint) and manure spreading also 

influences these properties (Brady et al., 1990).  

Proper soil management requires proper assessment of those properties. Characterization is 

done through standardized tests in accredited laboratories. Numerous sampling parameters 

(area, depth, equipment, frequency, time) can influence test results. Proper collection methods 

are crucial when a 400 g sample is used to represent up to 10 ha (Reid, 2006).  However, soil 

properties often vary greatly within a hectare, making the use of conventional soil analysis costly 

and time consuming when it comes to adjusting management to the actual needs required by 

field variability (Viscarra Rossel & McBratny, 1998; Viscarra Rossel et al., 2011a). This led to the 

desire to develop complementary or alternative soil analysis technologies, such as proximal soil 

sensing, that can be used in PA.  
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PROXIMAL SOIL SENSING 

Better soil information is needed to solve pressing and global issues concerning the effects of 

climate change on soil, sustainability and efficiency of food production, and contaminated land 

assessment and remediation (Viscarra Rossel et al., 2011a). Sensors providing qualitative and 

quantitative results are becoming smaller, faster, more accurate, more energy efficient, wireless, 

and more intelligent. These sensors can be used for proximal soil sensing (PSS). PSS is defined as 

the use of field-based sensors to collect soil information from close by (within 2 m), or within, 

the soil body (Viscarra Rossel & McBratney, 1998; Viscarra Rossel et al., 2010). This is in contrast 

to remote sensing and laboratory analysis using benchtop instruments. PSS can either be done 

“on-the-go”, acquiring data while moving as a scanner, or stationary, selecting key sampling 

points in a field. PSS can be direct, when the measurement of the targeted soil property is based 

on a physical phenomena attributed to that property, or indirect, when the measurement is of a 

proxy and inference is with a pedotransfer function (Viscarra Rossel et al., 2011a). 

Most on-the-go sensors, representing  a large portion of proximal sensors, involve the following 

measurement methods: electrical and electromagnetic sensors measuring 

resistivity/conductivity or capacitance; optical and radiometric sensors using electromagnetic 

waves; mechanical sensors measuring forces; acoustic sensors quantifying sounds; pneumatic 

sensors; and electrochemical sensors using ion-selective elements (Adamchuk & Viscarra Rossel, 

2010). Figure 1.1 classifies these soil sensors according to the corresponding soil properties 

affecting the signal. A vast amount of research includes investigation of the use of frequencies 

across the electromagnetic spectrum to predict soil properties (Viscarra Rossel et al., 2011a). The 

present project belongs to this particular field of research called soil spectroscopy that aims, inter 

alia, to bring spectroscopy technologies to the field to obtain on-the-go measurements.  
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Figure 1.1. General classification of on-the-go soil-sensing systems. 
Reprinted from Adamchuk & Viscarra Rossel (2006). 

SOIL SPECTROSCOPY 

Spectroscopy is the study of the interaction between matter and electromagnetic radiation. 
Etymologically, the word is the contraction of the Latin word spectrum, meaning “appearance” or “image”, 
and the Ancient Greek skopéō, meaning “to see”. The basic principle behind spectroscopy is illustrated 
and explained at Figure 1.2. A light source sends a multi-wavelength light beam to a sample. The sample 
absorbs a portion of the light beam and the rest is reflected and directed to a diffraction grating that splits 
the beam into different wavelengths. The diffracted light is directed to a detector consisting of a 
photodiode array, where each photodiode senses the reflection of a unique wavelength band. 

 

 

Figure 1.2. Simplified illustration of reflectance spectroscopy. 

When continuous radiation passes through a transparent material, a portion of the radiation may 

be absorbed. If that occurs, the residual radiation, when it is passed through a prism, yields a 

spectrum with gaps in it, called an absorption spectrum. In diffuse reflectance spectroscopy, the 

type of spectroscopy applied to soils, we can do the analogy between transmittance and 

reflectance. As a result of energy absorption, atoms or molecules pass from a state of low energy 
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(the initial or ground state) to a state of higher energy (the excited state). This process is 

quantized. The electromagnetic radiation (Figure 1.3) that is absorbed has energy exactly equal 

to the energy difference between the excited and ground states (Pavia et al., 2015). The 

mechanisms by which electromagnetic radiation interacts with condensed matter may be 

classified into four broad categories, going from the lowest to the highest energy: rotational, 

vibrational, electron excitation, and free carrier (Hapke, 2012).   

 

Figure 1.3. Electromagnetic spectrum. Reprinted from Sapling learning (2019). 

ULTRAVIOLET AND VISIBLE SPECTROSCOPY 

In ultraviolet (UV, wavelengths around 10-9-10-7 m) and visible (Vis, wavelengths around 400-

750 nm) spectroscopy, the transitions that result in the absorption of electromagnetic radiation 

are transitions between electronic energy levels. As a molecule absorbs energy, an electron is 

promoted from an occupied orbital to an unoccupied orbital of greater potential energy. For an 

atom that absorbs UV, the absorption spectrum sometimes consists of very sharp lines. For 

molecules, the UV absorption usually occurs over a wide range of wavelengths because 

molecules have many excited modes of vibration and rotation; at room temperature, these 

energy levels are superimposed on the electronic levels. Each electronic transition consists of a 
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vast number of lines spaced so closely that the spectrophotometer cannot resolve them. The 

instrument traces an envelope over the entire pattern, like a broad band centered near the 

wavelength of the major transition (Pavia et al., 2015). Absorptions in organic molecules are 

restricted to certain functional groups – chromophores - that contain valance electrons of low 

excitation energy (Viscarra Rossel et al, 2011a). Many inorganic species, such as iron oxides in 

soil, show charge transfer absorptions (Schwertmann et al., 1989). UV and Vis spectroscopy is 

generally combined with near-infrared spectroscopy (Islam et al., 2003; Pirie et al., 2005; Viscarra 

Rossel et al., 2006; Tola et al., 2018). Soil color, including visible and RGB, have been used in the 

past to predict soil properties such as texture, SOM, CEC, nitrogen and Ca (Aitkenhead et al., 

2012; Liles et al., 2013; Baumann et al., 2016; Wu et al., 2017 & 2018). 

LASER INDUCED BREAKDOWN SPECTROSCOPY 

Laser-induced breakdown spectroscopy (LIBS), also called laser-induced plasma spectroscopy 

(LIPS) or laser spark spectroscopy (LSS) is a type of Atomic Optical Emission Spectrochemistry 

(OES) that generally employs a low-energy pulsed laser and a focusing lens to generate a plasma 

that vaporizes a small amount of the sample. The spectrometer disperses light emitted by exited 

atoms, ions and simple molecules in the plasma, as the plasma cools down, and a detector 

records the emission signals (Cremers & Radziemski, 2013). Emitted spectra, that cover the range 

of 200-900 nm, are used to determine the sample’s elemental constituents. Example of LIBS 

instruments have been developed for in-lab, rover (Bousquet et al., 2008) and portable (Harmon 

et al., 2006) applications. Utilization of LIBS for soil analysis is relatively recent and few papers 

have been published on the subject. It was found to be successful for quantifying soil carbon 

(Yang et al., 2010; Izaurralde et al., 2013), soil organic carbon (Knadel et al., 2017); soil texture 

(Villas-Boas et al., 2016) and heavy metals (Capitelli et al., 2002; Senesi et al., 2009). 

NEAR-INFRARED SPECTROSCOPY 

Molecular spectra result from the periodic motions, or vibrational modes, of atomic nuclei within 

their respective molecules. These nuclei move relative to their center of gravity in many ways: 

they rotate, vibrate, wag and bend. Each of these movements exhibit vibrational spectroscopic 

activity that can be measured with near-infrared (NIR), mid-infrared (MIR) and far-infrared 
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(Terahertz) and Raman spectroscopy (Workman & Weyer, 2008). In soil spectroscopy, NIR range 

is considered to cover wavelengths of 0.7-2.5 µm, while MIR range covers 2.5-25 µm.  

Absorption bands in NIR are due to overtones and combinations of fundamental molecular 

vibrations that absorb in the MIR. Absorption bands in the NIR are broader and less intense (by 

a factor of 10 to 100) than in MIR spectroscopy; chemometrics is required to analyse these 

spectrum (Workman & Weyer, 2008). NIR spectroscopy requires a dipole moment change in the 

vibration and a large mechanical anharmonicity of the vibrating atoms, functional groups such as 

CH, OH and NH dominate the spectrum (Burn & Ciurczak, 2007). NIR has the advantage over MIR 

of requiring less sample preparation and being less expansive, but with less precision.  

Researchers explored the potential of NIR spectroscopy to predict soil texture, organic and total 

carbon (OC & TC), total nitrogen, cation exchange capacity (CEC) and extractable calcium (Ca), 

magnesium(Mg), aluminum (Al), phosphorus (P) and potassium (K) (Ben-Dor et al., 1997; Chang 

et al., 2001; Chang & Laird, 2002; Viscarra Rossel et al., 2006; Gomez et al., 2008; Mouazen et al., 

2010; Stenberg et al., 2010; Viscarra Rossel et al., 2010; Minasny et al., 2011; Vohland & 

Emmerling, 2011; Nocita et al., 2013; Minasny et al., 2019). 

MID-INFRARED SPECTROSCOPY 

MIR contains more information on soil mineral and organic composition than vis-NIR (Viscarra 

Rossel et al., 2006). MIR has the advantage of allowing easy quantitative analysis of molecules 

with certain functional groups. Polar groups leading to the most intense fundamental absorptions 

in the MIR are C-F, Si-O, C=O (Burn & Ciurczak, 2007). Chemical species without vibrations will 

not have an infrared spectrum, and so do individual atoms (noble gases), monoatomic ions and 

homonuclear diatomic molecules (Smith, 2011).  

Fourier transform infrared spectroscopy (FTIR) is the most widely used type MIR spectrometer. 

FTIR use interferometers measuring the interference pattern between two light beams. 

Interferograms measured while scanning the samples are Fourier transformed to yield a 

spectrum (Smith, 2011). 

MIR has shown good results, generally better than the ones obtained with Vis-NIR, in the 

prediction of soil properties such as pH, OC, texture, CEC, carbon stock, extractable P and K and 



10 
 

nitrate (Ehsani et al., 2001; Pirie et al., 2005; Viscarra Rossel et al., 2006; Janik et al., 2007; 

Minasny et al., 2009; Bellon-Maurel & McBratney, 2011; Shao & He, 2011; McDowell et al., 2012; 

Baldock et al., 2014; Vohland et al., 2014; Geet al., 2014; Araujo et al., 2015; Towett et al., 2015; 

Minasny et al., 2019; Ji et al., 2019). 

STATISTICAL METHODS 

PREPROCESSING TECHNIQUES 

There is no substitute for optimal data collection, but preprocessing is an essential step before 

chemometrics analysis. Spectral preprocessing techniques are used to reduce the un-modeled 

variability in the data and to reduce noise and enhance the features sought in the spectra (Rinnan 

et al., 2009; Buddenbaum & Steffens, 2012; Gholizadeh et al., 2015). There is not a single good 

avenue when it comes to preprocessing; it depends on the data set (Stenberg et al., 2010). The 

goal of the preprocessing step is to improve a subsequent exploratory analysis, a bi-linear 

calibration model or a classification model (Rinnan et al., 2009). There is always the danger of 

applying the wrong type, or applying too severe preprocessing, that will remove valuable 

information. The proper choice of preprocessing is difficult to assess prior to model validation, 

but, in general, performing several preprocessing steps is not advisable, and, as a minimum 

requirement, preprocessing should maintain or decrease the effective model complexity. Proper 

data preprocessing can remove non-relevant sources of variations and non-linearities, and 

concentrate the relevant information in the first factors, which results in more parsimonious 

models (de Noord, 1994). Besides transformation from reflectance to absorbance and data 

smoothing methods, the most ubiquitous preprocessing techniques used in UV to MIR 

spectroscopy can be divided in two categories: scatter correction and spectral derivatives. 

(Rinnan et al., 2009). 

REFLECTANCE TRANSFORMATIONS 

The first preprocessing that can be done is to transform the reflectance to absorbance to put the 

accent on absorption bands. This transformation is done through the transmittance analogy of 

Lambert-Beer’s law (Rinnan et al., 2009). Lambert-Beer’s law is empirical for NIR reflectance and 
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transmittance and suggests a linear relationship between the absorbance of the spectra and the 

concentrations of the constituents:  

𝐴𝜆 = − log10(𝑇) = 𝜀𝜆 × 𝑙 × 𝑐 (1) 

where  𝐴𝜆  is the wavelength-dependent absorbance, 𝑇  is the light transmittance, 𝜀𝜆  is the 

wavelength-dependent molar absorptivity, 𝑙 is the effective path length of the light through the 

sample matrix and 𝑐  is the concentration of the constituent(s) of interest. In the case of 

reflectance spectra (R), the attempt of linearization between absorbance and concentration is 

done using the following equation:  

𝐴𝜆 = − log10(𝑅) ≅ 𝜀𝜆 × 𝑙 × 𝑐 (2) 

Some researchers (Stenberg & Viscarra-Rossel, 2006; Wetterlind et al., 2013), applied another 

transformation to reflectance spectra to deal with non-linearities: the Kubelka-Munk transform 

giving the optical density (OD) (Martens & Neas, 1992): 

𝑂𝐷 =
(1 − 𝑅)2

2𝑅
 

(3) 

SCATTER CORRECTION 

For solid samples, undesired systematic variations are primarily caused by light scattering and 

differences in the effective path length (Rinnan et al., 2009). Light scattering phenomenon is 

particularly present in the infrared range of the electromagnetic spectrum since the wavelengths 

and the soil particles are of the same scale. This phenomenon causes both baseline shifts 

(multiplicative effect) and non-linearities (Rinnan et al., 2009). The first group of scatter-

corrective preprocessing methods includes Multiplicative Scatter Correction (MSC), Inverse MSC, 

Extended MSC (EMSC), Extended Inverse MSC, de-trending, Standard Normal Variate (SNV) and 

normalization.  

Multiplicative Scatter Correction (MSC) was elaborated by Martens et al. in 1983 and Geladi et 

al. in 1985 and consists of two steps: 

𝒙𝑖 = 𝑏0 + 𝑏𝑟𝑒𝑓,1 ∙ 𝒙𝑟𝑒𝑓 + 𝒆 (4) 

𝒙𝑖′ =
𝒙𝑖−𝑏0

𝑏𝑟𝑒𝑓,1
= 𝒙𝑟𝑒𝑓 +

𝒆

𝑏𝑟𝑒𝑓,1
 

(5) 
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𝒙𝑖  is one original sample spectra measured by the NIR instrument, 𝒙𝑟𝑒𝑓  is a reference spectrum 

used for preprocessing of the entire dataset (can be the average of the spectra set), 𝒙𝑛   is the 

un-modeled part of 𝒙𝑖 , 𝒙𝑖′  is the corrected spectra, and 𝑏0and 𝑏𝑟𝑒𝑓,1  are scalar parameters 

estimated by ordinary least squares regression of 𝒙𝑖  on 𝒙𝑟𝑒𝑓 , which differ for each sample 

(Martens & Naes, 1992). Later, an Extended Multiplicative Scatter Correction (EMSC) was 

developed including second order polynomial fitting to the reference spectrum, fitting of a 

baseline on the wavelength axis, and uses of a priori knowledge from the spectra of interest or 

spectral interference. (Martens & Stark, 1991; Martens et al., 2003, Decker et al., 2005; Rinnan 

et al., 2009). 

Normalization and Standard Normal Variate (SNV) modifies the spectrum as follow: 

𝒙𝑖′ =
𝒙𝑖 − 𝒙𝑖̅

𝜎𝒙𝑖

 
(6) 

where 𝒙𝑖̅ is the average value of the sample spectrum to be corrected for SNV – it is set equal to 

zero for normalization- and  𝜎𝒙𝑖
 is the standard deviation of the sample-spectrum (Barnes et al., 

1989). For normalization, various vector-norms such Taxicab or Euclidian norms can be used for 

scaling factor 𝜎𝒙𝑖
. Rather than processing according to a common reference as is the case with 

MSC, SNV and normalization processes each observation on its own, isolated from the remainder 

of the set (Rinnan et al., 2009). Using the average and the standard deviation (parameter 

involving least square fitting) can make the process sensitive to noisy entries in the spectrum. A 

more robust equivalent of SNV, called Robust Normal Variate, was suggested by Guo et al. (1999) 

to compensate for this weakness: the median or the mean of the inner quartile range and the 

standard deviation of the inner quartile are used as estimates for 𝒙𝑖̅ and 𝜎𝒙𝑖
 respectively. De-

trending with SNV is also possible by using a second-order polynomial to standardize the variation 

in curvilinearity (Barnes et al., 1989): a 2nd-order polynomial is fit to the SNV transformed 

spectrum and subtracted from it to correct for wavelength-dependent scattering effects 

(Buddenbaum & Steffens, 2012). 
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SPECTRAL DERIVATIVES 

Spectral derivatives remove both additive (first derivative) and multiplicative (first and second 

derivatives) effects. Norris-Williams (NW) derivatives and Savitzky-Golay (SG) polynomial 

derivative filters both employ smoothing prior to calculating the derivative in order to avoid too 

much reduction in the signal-to-noise ratio (Rinnan et al., 2009). Finite differences to 

approximate the derivatives between two points without smoothing or gapping increases noise 

and should be avoided. NW derivation includes the averaging over a given number of points to 

smooth the spectra (Equation 7) and the first and second derivations mimic finite differences 

(Equations 8 & 9) (Norris & Williams, 1984): 

𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑖 =
∑  𝑥𝑖+𝑗

𝑚
𝑗=−𝑚

2𝑚 + 1
 (7) 

𝑥𝑖
′ = 𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑖+𝑔𝑎𝑝 − 𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑖−𝑔𝑎𝑝 (8) 

𝑥𝑖
′′ = 𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑖−𝑔𝑎𝑝 − 2 ∙ 𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑖 + 𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑖+𝑔𝑎𝑝 (9) 

where 𝑚 is the number of points in the smoothing window centered on the point 𝑖. The user 

decides on the gap distance and number of points to use for the smoothing. 

In the case of SG, the estimate of the derivative of a center point 𝑖 is calculated by, first, fitting a 

polynomial in a symmetric window on the raw data and, once the parameters of this polynomial 

are calculated, the derivative of any order is found analytically (Savitzky & Golay, 1964).  The user 

decides on the window size and the degree of the polynomial. SG filter and derivative effects are 

illustrated at Figure 1.4. 
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a)                                                                                    b) 

 

Figure 1.4. Illustration of SG derivative transformation and spectral correction effects of derivation.a. 
Estimation of the first derivative by SG. A 7-point window and 2nd order polynomial is used for 

smoothing. b. The effect of derivation on additive (green) and additive plus multiplicative (red) effects. 
The blue spectrum is the spectra without any offsets, and the black dotted line is the zero line. 

Reprinted from Rinnan et al (2009). 

 
The first derivative removes the baseline from spectra while stressing absorption features 

(inflection points become minima and maxima). Vasques et al. (2008) found SG derivatives 

among the best preprocessing transformations and Ertlen et al. (2010) stated that more useful 

information can be extracted from near-infrared data when derivatives of the spectra are taken. 

The second derivative gives more noisy results when calculated directly rather than with 

consecutive first derivatives (Kessler, 2007). 

MODEL SELECTION 

Model selection in Partial Least Squares Regression (PLSR) consists in the determination of the 

optimal number of latent variables (LV). If too little LV are selected, too much information 

contained in the data is lost and the regression model will not fit the data very well. On the other 

hand, selecting a too many LV leads to overfitting, which implies that the model will fit the 

calibration data very closely, but will not be very accurate in predicting the response value of new 

samples (Engelen & Hubert, 2005). Among, traditional techniques used to determine the optimal 

number of LV we count Akaike’s Information Criterion (Akaike, 1973; Li et al., 2002; Viscarra 

Rossel et al., 2006; Ludwig et al., 2016), the R2 criterion (Neter et al., 1996), Wold’s R criterion 



15 
 

(Wold, 1978; Li et al., 2002; Vanlaer et al., 2012), Osten’s F criteria using the predictive residual 

error sum of squares (PRESS) (Wold, 1978; Osten, 1988; Haaland et al., 1997; Li et al., 2002) and 

root mean squared error of prediction (RMSEP) (Neter et al., 1996; Ronchetti, 1997; Haaland  & 

Thomas, 1988; Cernuda et al., 2011; Andries et al., 2011).  

Cross-validation (CV) consists in fitting a model on a large part of the data and evaluating it for 

the remaining set, and repeating this procedure multiple times with different partitioning of the 

dataset. Cross-validation was shown to be appropriate for model selection (Wasim & Brereton, 

2004). Most popular CV techniques are the leave-one-out CV (LOOCV), the k-fold CV and Monte 

Carlo CV (MCCV). LOOCV consists in leaving one sample out of the training data set (Baumann, 

2003; Xiabo et al., 2010; Guzman et al., 2011; Deng et al., 2015; Wang et al., 2015; Nawar et al., 

2016; Cipullo et al., 2018; Xu et al., 2018). With k-fold CV, the dataset is separated into k subsets 

of equal number and one group is kept out for the model fitting (Filzmoser et al., 2009; Li et al., 

2009; Deng et al., 2015; Kramer & Braun, 2007; Kramer & Sugiyama, 2011; Lu et al., 2018; Xu et 

al., 2018). In MCCV, given the number of left-out objects as v (1 ≤ v ≤ n), at each step, the original 

training data set is randomly split into (n - v) training objects and v validation objects (Xu et al., 

2018). 

FEATURE SELECTION 

Spectroscopy problems are large p small n type of problem, where the number of variables can 

overcome the number of samples. Reducing the number of variables, or features, can improve 

the model performance, the model interpretation and the understanding of the system studied 

while possibly reducing the measurement costs (Mehmood et al., 2012; Andersen & Bro, 2010). 

Spectra contain numerous irrelevant, noisy or unreliable variables and reducing their number 

normally improves predictions and reduces model complexity (Andersen & Bro, 2010). Even if 

variable selection may improve the model performance, it can eliminate some useful redundancy 

from the model and places a large influence on the selected variables in the final model: the 

selected variables should be consistent (Mehmood et al., 2012). If properties of new samples are 

to be determined, it is necessary to use the full spectrum and apply the same preprocessing as 

during the model building. This is useless when the goal of the variable selection is to reduce 

measurement time and costs (Andersen & Bro, 2010). 



16 
 

Mehmood et al. (2012) distinguished variable selection methods used for PLSR into three distinct 

categories, based on their mode of operation: filter methods, wrapper methods and embedded 

methods (Figure 1.5). Filter methods aim for variable identification using the output from the 

PLSR algorithm such as regression coefficients (β), loading weights (w) or variable importance in 

projection. With wrapper methods, variables identified by filter methods are sent back into a re-

fitting of the PLSR model to give reduced models. These methods are distinguished by the choice 

of the filter method and how the “wrapping” is implemented. Traditional examples of such 

methods are Uninformative Variable Elimination in PLS, Backward Variable Elimination in PLS, 

Interval PLS and Genetic Algorithm with PLS. With embedded methods finally, the variable 

selection is integrated in the PLSR algorithm. Two examples of embedded methods are 

Interactive variable selection and Powered PLS. 

 

Figure 1.5. Illustration for filter, wrapper and embedded methods. 
Reprinted from Mehmood et al. (2012). 

REGRESSION METHODS 

Multivariate calibrations are used in spectroscopy to build prediction models. Partial Least 

Squares Regression is the most common method used in soil spectroscopy. Successful non-linear 

data mining methods include Support Vector Machines, Random Forests, Cubist models, 

Multivariate Adaptive Regression Splines and Neural Networks. In recent years, some authors 

compared the performance of various data mining methods for the prediction of soil properties: 

Viscarra Rossel & Behrens (2010), Yu et al. (2016), Morellos et al. (2016), Xiang et al. (2017), Li 
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(2017), Nawar & Mouazen (2017), Khosravi et al. (2018), Fang et al. (2018), Xu et al. (2018) and 

Liu et al. (2019). 

RANDOM FORESTS 

Random Forests (RF) is a recent improvement in ensemble learning used to predict soil properties 

using Vis-NIR spectroscopy, (Viscarra-Rossel & Berhens, 2010; Nawar & Mouazen, 2017; Santana 

et al., 2017; Cipullo et al., 2018), DRIFT spectroscopy (Heil et al., 2017) and XRF (Silva et al., 2019). 

RF are classification and regression methods based on growing multiple randomized trees. Each 

tree is grown using a randomized tree building scheme (Breiman, 2001, Lin & Jeon, 2006). Bagging 

is used to grow trees on bootstrap samples of the training dataset (Breiman, 2001). 

CUBIST 

The Cubist model is a data mining technique that is similar to Decision Tree Regression models. 

It is based on Quinlan’s M5 algorithm (1992). The Cubist model uses a modified regression tree 

system to create rule-based predictive models from the data. The prediction is based on the 

intermediate linear models at each step (Morellos et al., 2016; Viscarra Rossel & Webster, 2012). 

Its main advantage is its ability to handle non-linear relationships between dependent and 

independent variables as well as using discrete and continuous variables as inputs (Im et al., 

2009). Cubist was used for soil analysis by Viscarra Rossel & Webster (2012), Arachchi et al. 

(2016), Morellos et al. (2016), Somarathna et al. (2018) and Ng et al. (2019). 

SUPPORT VECTOR MACHINES 

Support vector machines are a kernel-based learning method from statistical learning theory 

(Cortes & Vapnik, 1995). These methods use an implicit mapping of the input data into a high 

dimensional feature space defined by a kernel function (Karatzoglou et al., 2004). It is possible to 

derive a linear hyperplane as a decision function for non-linear problems and then apply a back-

transformation in the non-linear space. Multiple authors reported using this method for 

classification or regression analysis of various soil properties in vis-NIR and MIR spectroscopy 

(Foody & Mathur, 2004; Stevens et al., 2010; Viscarra Rossel & Berhens, 2010; Vohland & 

Emmerling , 2011; Gholizadeh et al., 2013; Shi et al., 2013; Peng et al., 2014; Li et al., 2015; 

Morellos et al., 2016). 
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MULTIVARIATE ADAPTIVE REGRESSION SPLINES 

Multivariate Adaptive Regression Splines (MARS) is non-parametric approach for flexible 

modelling of high dimensional data. It is a generalization of a recursive partitioning regression 

approach that generates piece-wise linear models. The MARS analysis uses basis functions to 

model the predictor and response variables (Hastie et al., 2005). To construct these basis 

functions, MARS splits the data into sub-regions (splines) with different interval ending knots 

where the regression coefficients change and then it fits the data in each sub-region by using a 

set of adaptive piecewise linear regressions (Nawar et al., 2016). The number of basis functions 

and the parameters associated with each one are determined by the data (Friedman, 1995). 

MARS is regularly used for soil spectral analysis (Shepherd & Walsh, 2002; Viscarra Rossel & 

Berhens, 2010; Nawar et al., 2016; Ji et al., 2019) 

ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANN) is used more and more in soil spectroscopy since recent 

computing power now allows complex and voluminous models to be created in a decent time. 

ANN are inspired from the neural system of the human brain and consist of parallel inter-

connected mathematical neurons which behave like the biological ones (Heykin, 1999). A 

multilayer perceptron comprises input, hidden and output layers, with nodes connected to every 

node of the following layer with a specific weight. ANNs of different architectures have shown 

good results in the prediction of multiple soil properties (Mouazen et al., 2010; Viscarra Rossel & 

Berhens, 2010; Tian et al., 2013; Kuang et al., 2015; Wijewardane & Moran, 2016; Xu et al., 2017). 

PARTIAL LEAST SQUARES REGRESSION 

Partial Least Squares Regression (PLSR) is a method that relates two data matrices, X of predictors 

and Y of responses, by a linear multivariate model. PLSR is used in spectroscopy because it can 

analyze data with strongly collinear, noisy and numerous X-variables. PLSR is close to Principal 

Component Regression (PCR). Unlike PCR, PLSR models the structure of Y and integrates 

compression and regression steps to select the successive orthogonal factors that maximize the 

covariance between X and Y (Wold et al., 1983; Wold et al., 2001). PLSR have been used to predict 

soil properties by numerous authors: Dunn et al. (2002), Chang et al (2002), Viscarra Rossel et al 

(2006), Brown et al (2006), Janik et al (2007) and Mouazen et al (2010). 
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PLS regression, or PLSR, has the advantage of easing interpretability of results with the loading 

and score values and it offers a low computing cost compared to other data mining methods. 

This method is ubiquitously used in multiple applications of spectroscopy, including soil analysis 

(Janik & Skjemstad, 1995; McCarty et al., 2002; McBratney et al., 2006; Nocita et al., 2011, 

Vohland et al., 2014). Therefore, PLSR was selected to assess and compare the predictive 

potential of the instruments studied in this research. 
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CHAPTER 3. MATERIAL AND METHODS 

EXPERIMENTAL DATA  

SOIL SAMPLES AND REFERENCE DATA 

The 798 soil samples used in this study were collected on various farms throughout the province 

of Quebec, Canada. To eliminate the bias due to moisture content and bulk density, the samples 

were air dried, put in individual plastic cups resistant to high pressure loads (diameter of 4.2 cm) 

and compressed under a force of approximately 20 t (196 kN), resulting in 35 MPa pressure. 

Logiag (Châteauguay, Quebec) acquired the soil spectra with the LIBS method, which left 8 burns 

concentrated in the middle of each sample. 

Each sample was analyzed in one of two different laboratories to provide the reference values of 

extractable phosphorous (P), potassium (K), calcium (Ca), magnesium (Mg) and aluminum (Al), 

pH, buffer pH (B pH), soil organic matter (SOM) as well as cation exchange capacity (CEC): 

EnvironeX Group (Québec, Québec, Canada) and GEOSOL Laboratory (Synagri, Saint-Hyacinthe, 

Québec, Canada). Table 3.1 presents the properties analyzed, the methods employed, and the 

number of samples for each laboratory. 

Table 3.1.  Laboratory methods of soil analyses. 
 

Soil properties 

GEOSOL Laboratory 
401 samples 

 
Environex Group 

397 samples 

Method Units  Method Units 

P Mehlich III with plasma kg/ha  Mehlich III with plasma kg/ha 

K Mehlich III with plasma kg/ha  Mehlich III with plasma kg/ha 

Mg Mehlich III with plasma kg/ha  Mehlich III with plasma kg/ha 

Ca Mehlich III with plasma kg/ha  Mehlich III with plasma kg/ha 

Al Mehlich III with plasma ppm  Mehlich III with plasma ppm 

pH water Aqueous solution, ratio 1 :1   Aqueous solution, ratio 1 :1  

Buffer pH SMP   SMP  

SOM Wackley−Black %  Loss on ignition % 

CEC 
Calculated based on K, Mg 

and Ca values 
meq/100g  

Calculated based on K, Kg, 
Ca and buffer pH values. 

cmolc/kg 

 
As seen in Table 3.1, the units for P, K, Mg, Ca and Al are in kg/ha since these values are used for 

agricultural purposes. Their content in ppm was calculated by dividing the values in kg/ha by 2.24. 
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Table 3.2 shows the distribution parameters of each soil property. The soil properties that had a 

skewness greater than 1 were normalized by applying a natural logarithm to them. It was the 

case for P, K, Mg, SOM and CEC, and the new distributions are shown in Table 3.2. The graphical 

distributions of these samples are presented in Appendix A. 

Table 3.2.  Distribution parameters of the reference soil properties. 

 

P 
(ppm) 

K 
(ppm) 

Ca 
(ppm) 

Mg 
(ppm) 

Al 
(ppm) 

pH BpH 
SOM 
(%) 

CEC 
(meq/100g) 

ln P ln K 
ln 

Mg 
ln SOM ln CEC 

Minimum 5.4 18 127 6.7 188 4.4 5.7 0.6 7.2 1.68 2.88 1.90 -0.51 1.97 

Maximum 741 915 7852 1623 2169 7.8 7.5 54.0 61.3 6.61 6.82 7.39 3.99 4.12 

Mean 95 135 2169 239 1111 6.3 6.8 5.0 19.1 4.16 4.68 5.16 1.45 2.91 

Median 64 116 2119 175 1085 6.2 6.8 4.2 18.1 4.16 4.75 5.16 1.44 2.90 

Standard 
deviation 

100 97 1004 198 293 0.6 0.3 4.2 5.8 0.88 0.69 0.82 0.50 0.28 

Skewness 3.01 2.43 0.72 1.73 0.36 0.25 0.00 7.19 1.40 -0.01 -0.16 -0.23 0.69 0.25 

Number 
of values 

791 797 797 795 798 798 764 798 798 791 797 795 798 798 

 

SPECTRAL SCANNING 

Spectroscopic methods compared in this research can be divided into four main groups: Vis, Vis-

NIR, MIR and LIBS. Except for LIBS, two instruments of different spectral resolutions were used 

for each group. They were selected in order to have both a low and a high resolution instrument 

per group: 

 Vis: Dino-Lite microscope and Hamamatsu spectrometer 

 Vis-NIR: Veris P4000 and ASD FieldSpec4 

 MIR: Portable MIR probe and Varian Excalibur 

 LIBS: LaserAg technology from Logiag 

  



22 
 

DINO-LITE EDGE – VIS-1 

 

Figure 3.1. Dino-Lite Edge 3.0 digital microscope. 

The Dino-Lite Edge 3.0 AM73915MZT (Figure 3.1) is a digital microscope from AnMo Electronics 

Corporation (New Taipei, Taiwan). The microscope is equipped with eight white LEDs and gives 

sharp images of 1280 x 960 resolution with a magnification range of 10x – 220x (Figure 3.2). The 

RGB values of the images were used as three spectral bands.  

 

Figure 3.2. Dino-Lite sample picture. 
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HAMAMATSU MICRO-SPECTROMETER – VIS-2 

 

Figure 3.3. Hamamatsu C12880MA Micro-spectrometer. 

The C12880MA (Hamamatsu Photonics K.K., Hamamatsu City, Shizuoka, Japan) (Figure 3.3) is a 

high-sensitivity, ultra-compact visible spectrometer head with a spectral response range going 

from 340 to 850 nm on 288 pixels with a maximum spectral resolution of 15 nm.  The 

spectrometer is mounted on a board designed by GroupGets LLC (Santa Barbara, California, USA) 

that contains a blue 405 nm laser diode for fluorescence spectroscopy and a super bright white 

LED that has 32 dimming levels. The calibration is done with an 18% reflectance Gray Card for 

photography (NEEWER ®, Shenzhen Xing Ying Da industry Co. Ltd, Shenzhen, Guangdong, China) 

every 10 acquisitions. Every spectrum is the average of 20 scans. The design of this instrument, 

that covers 425 – 725 nm (Figure 3.4), is explained in more details in the Design of a low-cost 

spectrometer for soil analysis (p.28).  
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 Wavelength (nm)  

Figure 3.4. Vis-2 sample spectra of samples no. 102, 303 and 715. 

 



24 
 

VERIS P4000 – VIS-NIR-1 

 
Figure 3.5. Veris P4000 spectrometer boxes (left) and probe (right). 

The Veris® P4000 hydraulic probe (Veris Technologies Inc., Salina, Kansas, USA) has a spectral 

range of 342-2220 nm with 384 spectral bands and an 8 nm resolution (Figure 3.5). This 

spectrophotometer probe is designed for field measurements, but for the present application, it 

was installed indoors for laboratory measurements. The probe is 102 cm long and is equipped 

with a sapphire window and fiber optics. Two detectors acquire the spectrum: Toshiba 

TCD1304AP Linear CCD Array covering 342-1023 nm with 128 bands and InGaAs Linear image 

sensor G9206-02 covering 1070-2220 nm in 256 bands (Figure 3.6). The light source is a halogen 

bulb. To minimize instrument noise, each spectrum recorded was an average of 30 scans and the 

calibration was done every 20 samples using Avian Reflectance Standards (Avian Technologies 

LLC, New London, New Hampshire, USA). 
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 Wavelength (nm)  

Figure 3.6. Vis-NIR-1 sample spectra of samples no. 102, 303 and 715. 
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ASD FIELDSPEC 4 – VIS-NIR-2 

 

Figure 3.7. FieldSpec® 4 spectrometer with Contact Probe and support.  

The ASD FieldSpec® 4 Standard-Res Spectroradiometer (Malvern Panalytical Ltd, Malvern, United 

Kingdom) is a portable field spectrometer with a spectral range of 350-2500 nm that has a 

spectral resolution of 3 nm (700 nm) and 10 nm (1400 and 2100 nm) (Figure 3.7). Three detector 

elements are used to complete the spectrum of 2151 narrow bands: 512 pixels silicon array (350-

1000 nm) with a spectral sampling (bandwidth) of 1.4 nm and two Graded Index InGaAs 

Photodiode for 1001-1800 nm and 1801-2500 nm with a spectral sampling of 1.1 nm (Figure 3.8). 

The FieldSpec Contact Probe was used to acquire the spectra. It is equipped with a halogen light 

bulb, a sapphire window and optical fiber to transfer the signal to the spectrometer. The scanning 

rate is 10 spectra/s, each spectrum recorded was the average of 50 scans and a calibration was 

done every 7 min with a Spectralon® panel (Labsphere Inc., North Sutton, New Hampshire, USA).  
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Figure 3.8. Vis-NIR-2 sample spectra of samples no. 102, 303 and 715. 
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PORTABLE MIR PROBE – MIR-1 

 

 
Figure 3.9. Portable MIR Probe. 

The Portable MIR Probe is a portable mid-IR variable-filter-array (VFA) diffuse reflectance Fourier 

transform (DRIFT) spectrometer with a spectral range of 5500 – 11,000 nm (1811 – 898 cm-1). 

This prototype has eight electronically modulated IR light sources and the detector is made of a 

128 linear pyroelectric detector array coupled with linearly variable filter (LVF) made of ZnSe 

(Dhawale et al., 2014). The calibration is done with a copper plate. Every spectrum acquired is an 

average of 100 scans (Figure 3.10). 
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 Wavenumber (cm-1)  

 Figure 3.10. MIR-1 sample spectra of samples no. 102, 303 and 715.  

EXCALIBUR 3100 – MIR-2 

 

Figure 3.11. Excalibur 3100 spectrometer. 

Excalibur HE FTS 3100 (Varian, Melbourne, Australia) is a mid-infrared Fourier transform Infrared 

Spectrometer (FTIR) with Attenuated Total Reflectance (ATR) and Transmission Accessories 

covering a spectral range from 2500 – 17,000 nm (4000 – 600 cm-1) with a potassium bromide 

beam splitter and DTGS detector operating at 4 cm-1 (Figure 3.11). Every spectrum has 883 pixels 

and is an average of 64 spectra. These are spectra recorded by ATR-FTIR using a diamond. The 

diamond absorbs at 1900-2300 cm-1 so we do not want to use this region. The region of 1500-
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1900 has some residual bands from water vapour and also from 3600-4000 cm-1. The useful 

regions are 1500-700 cm-1 and 3100-2700 cm-1 (Figure 3.12). The intensity difference of the 

replicates of a single spectrum is due to the variation of the force applied to press the soil against 

ATR surface. This affects the path length of the light, and thus, the intensity of the signal detected. 
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 Wavenumber (cm-1)  

Figure 3.12. MIR-2 sample spectra (in two parts) of samples no. 102, 303 and 715. 

LASERAG – LIBS 

Details about LaserAg technology and LIBS spectrum acquisitions were not disclosed by Logiag. 

Samples spectra are presented at Figure 3.13. 
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Figure 3.13. MIR-2 sample spectra (in two parts) of samples no. 102, 303 and 715. 
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DESIGN OF A LOW-COST SPECTROMETER FOR SOIL ANALYSIS 

A device and a software were designed in order to acquire the spectra with a mini-spectrometer 

C12880MA from Hamamatsu Photonics (Hamamatsu City, Shizuoka, Japan) introduced in the 

previous section.  

HARDWARE 

The spectrometer was designed specifically to acquire spectra of samples prepared for the 

LaserAg technology: compressed soil samples in a plastic cup. The structure was 3D printed in 

black ABS to limit contamination of the spectrum when light is reflected on it.  Figure 3.14 

illustrates and enumerates the principal components of the system. 

 

Figure 3.14. Assembly of the spectrometer using C12880MA. All grey parts were 3D printed: 1) 
GroupGets spectrometer board, 2) 3D printed cage with a sapphire window and a rubber ring containing 
the spectrometer, 3) moving bloc allowing height adjustment of the sample, 4) Arduino Uno board and 

cover, 5) thumb screw for sample height adjustment, and 6) device base.  
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C12880MA SPECTROMETER AND GROUPGETS BREAKOUT BOARD 

The C12880MA is part of the Hamamatsu mini-spectrometer micro series. The C12880MA is small 

(20.1 x 12.5 x 10.1 mm), weights 5 g, is hermetic and has no moving parts. These specifications 

make it an interesting sensor for agricultural applications such as proximal or on-the-go sensing. 

The C12880MA spectral response range goes from 340 to 850 nm. The C12880MA structure is 

presented on Figure 3.15 a: a slit lets in a ray of incident light, this light hits a reflective concave 

blazed grating and is divided in different wavelengths before reaching a High-sensitivity CMOS 

linear image sensor. The spectrum has 288 bands and every sensor is calibrated to adjust the 

pixel position to the wavelength it refers to.  

A board designed by GroupGets (Reno, Nevada, USA) facilitated the prototyping (Figure 3.15 b). 

The board has two light sources: a violet/blue (405 nm) 20 mW Laser Diode from Sony and a 

super Bright White LED. The laser was not used for the prototype. The super Bright White LED 

has 32 dimming levels and it was dimmed in order to avoid saturation of the signal. Because 

C12880MA has a high sensitivity, the dimming option of the LED allowed for the adjustment of 

the light intensity to avoid saturation of the detector. The board has 11 pins: two grounds (GND); 

two voltage inputs (3.3 V and 5 V) (3V3, 5V); a laser (LASER) and an LED (LED) inputs for the light 

controls; a video (VIDEO) output communicating the spectrometer photodiode array signal; an 

end of scan output (EOS); a trigger (TRG) output pulse for capturing the video output; and a start 

(STRAT) and clock (CLK) pulse inputs. 

a) b) 

  
Figure 3.15. a) Mini-spectrometer C12880MA diagram. Reprinted from Hamamatsu (2019) b) 

Breakout board with mounted C12880MA. Reprinted from GroupGets (2019). 
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ARDUINO UNO 

The open-source microcontroller board used for the system was an Arduino UNO. The Arduino 

UNO has a Microchip ATmega328P. The board and the pin connections are presented at 

Figure 3.16. 

 

Figure 3.16. Arduino board (b) and pin connections to the spectrometer board (a). 

SPECTROMETER ASSEMBLY  

A round sapphire window of a diameter of 2.54 cm was used to protect the electronics from the 

dust of the soil samples. Sapphire was selected because of its hardness that is higher than quartz 

and because it has high transmittance in the Vis and NIR ranges. A ring of black rubber was 

installed around the sapphire window to ensure good contact between the soil sample surface 

and the window and to prevent external light from contaminating the acquired spectra. Figure 

3.17 shows the final aspect of the assembled prototype. 

 

 

 

 

 

Arduino Uno 
pins 

GroupGets 
pins 

3.3V 3V3 

5V 5V 

GND GND 

GND GND 

A0 TRG 

A1 START 

A2 CLK 

A3 VIDEO 

A4 LED 

A5 LASER 
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a) b) 

  

Figure 3.17. Real (a) and transparent (b) models of the spectrometer assembly. 

SOFTWARE 

The software for the device involves the code for the Arduino board (Appendix B-1) and the 

graphical user interface (GUI) allowing easier data acquisition (Appendix B-2). 

SPECTRAL MANIPULATIONS WORKFLOW 

Two types of spectra are needed to obtain a reflectance or an absorbance spectrum: a reference 

and a sample spectrum. 

The reference spectrum of a material with a known reflectance has to be acquired first. For the 

reference spectra, a photography grey card (Neewer, Shenzhen, China) was used because they 

are commercially available. This middle grey reference color has 18% reflectance across the 

visible spectrum, and it was preferred to the white card (90% reflectance) because the latter 

saturates the signal. The number (i = 1, 2, …, n) of scans to average is first decided. 10 scans of 

the background b (dark current at every pixel) are averaged first with the light source turned off 

(spectrum BR in Equation 10). Then, the light source is turned on for the acquisition of n scans (r) 

of the noisy reference spectrum that are also averaged (spectrum Rnoise in Equation 11). The 
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averaged background spectrum is subtracted from the averaged noisy reference spectrum to 

obtain the final reference spectrum taking into account the dark (spectrum R in Equation 12).   

Reference spectrum Sample spectrum  

𝑩𝑅 =
1

10
× ∑ 𝒃𝑗

10

𝑗=1

 𝑩𝑆 =
1

𝑛
× ∑ 𝒃𝑗

10

𝑗=1

 (10) 

𝑹𝑛𝑜𝑖𝑠𝑒 =
1

𝑛
× ∑ 𝒓𝑖

𝑛

𝑖=1

 𝑺𝑛𝑜𝑖𝑠𝑒 =
1

𝑛
× ∑ 𝒔𝑖

𝑛

𝑖=1

 (11) 

𝑹 = 𝑹𝑛𝑜𝑖𝑠𝑒 − 𝑩𝑅  𝑺 = 𝑺𝑛𝑜𝑖𝑠𝑒 − 𝑩𝑆 (12) 

The sample spectrum is acquired respecting the same approach than the reference spectrum, 

but with a soil sample in the spectrometer. Considering that the grey card has 18% reflectance, 

the reflectance (Ref) and absorbance (Abs) spectra are obtained following the Equations 13 and 

14.  

Reflectance and absorbance spectra  

𝑹𝒆𝒇 = 0.18
𝑺

𝑹
 

(13) 

𝑨𝒃𝒔 = − log10 𝑹𝒆𝒇 (14) 

The workflow of the spectral acquisition is presented in the Figure 3.18. To scan a sample, the 

user goes through some steps shown on Figure 3.19. 
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Figure 3.18. Workflow of spectral acquisition.  
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GRAPHICAL USER INTERFACE 

 

Figure 3.19. GUI of the spectral acquisition with steps numbered.  

Step 1.  The user selects the proper communication port that is connected to the spectrometer. 

This port number connected to the Arduino Uno can be found in the Device Manager window 

under Ports (COM &LPT). Once the port number is selected, the user clicks the Connect Device 

button.  

Step 2. The Port Status indicates if the communication port with the Arduino is open or closed. 

The user has to press openPORT to open the communication.  

Step 3. The user selects a directory where the text files of the spectra will be saved.  

Step 4. The user selects the number of scans averaged per spectra, enters the name of the sample 

and selects the replicate to be acquired.  
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Step 5. The grey reference is placed in the spectrometer vessel and a reference spectrum is 

acquired when the button Reference is pressed. A reference is taken before acquiring a sample 

spectrum. 

Step 6. A sample is placed in the spectrometer vessel and a sample spectrum is acquired when 

the button Sample is pressed. 

The Signal tab displays the signal output according to the wavelength of the raw spectrum and 

the Reflectance tab displays the reflectance spectrum of a sample calculated from the reference 

spectrum. When a new file is created, it is saved under the format SampleName_rep_#_dd-

MMM-yyyy_hh-mm-ss.txt as shown in the Last File Saved tab. Every file save contains two 

reference spectra (reference background spectrum BR and reference signal spectrum Rnoise) and 

two sample spectra (sample background spectrum BS and sample signal spectrum Snoise), 

manipulations to obtain reflectance and absorbance were done with R.  

MULTIVARIATE CALIBRATION 

All of the statistical analysis was performed using RStudio version 1.1.463 (Boston, 

Massachusetts, USA), using R version 3.5.3 (R Foundation for Statistical Computing, Vienna, 

Austria). 

SPECTRA PREPROCESSING 

Spectral preprocessing techniques are used to reduce the un-modeled variability in the data and 

to reduce noise and enhance the features sought in the spectra (Buddenbaum & Steffens, 2012; 

Rinnan et al., 2009; Gholizadeh et al., 2015). There is no single good avenue when it comes to 

preprocessing, the latter depends on the data set (Stenberg et al., 2010). Since applying the 

wrong type of preprocessing or applying too severe ones can remove important and valuable 

information, multiple methods were applied to the data set using the prospectr package and the 

one giving the best results was selected for each soil property and spectrometer combination.  

The spectral preprocessing performed on the data depended on the spectral range and resolution 

of the instruments: RGB (Vis-1), Vis-NIR (Vis-2, Vis-NIR-1, Vis-NIR-2), MIR (MIR-1, MIR-2) and LIBS.  
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RGB 

The bitmap images taken with the Dino-Lite had three replicates per sample. The images were 

imported in R using the bmp library and the RGB values of each pixel were extracted using the 

pixmap. All images (1280 x 960 pixels) were divided into 12 sub frames (320 x 320 pixels), 4 

horizontally and 3 vertically. The average values of red, blue and green (RGB) were extracted for 

each of the 12 sub frames.  

Conversion of RGB values to other color spaces was done with the R package colorscience. RGB 

coordinates (8-bits format) were first converted to HSV (hue, saturation, value), HSL (hue, 

saturation lightness), CMY (cyan, magenta, yellow), YUV (luma and two chrominance 

components) and CIE XYZ. Then, CIE XYZ were used to obtain CIE LAB CIE LUV and CIE Yxy. All 

values were then scaled using the method explained later (p. 38). 

Color values were either ordered by frame (named pixel) or averaged to keep only the pooled 

mean of each value for the entire photo (pool): 

𝑝𝑖𝑥𝑒𝑙 = [𝑅1, 𝐺1, 𝐵1, 𝐻𝑢𝑒1, … , 𝑅2, 𝐺2, 𝐵2, 𝐻𝑢𝑒2, … , 𝐶𝐼𝐸𝑌12, 𝐶𝐼𝐸𝑥12, 𝐶𝐼𝐸𝑦12] 

𝑝𝑜𝑜𝑙 = [𝑅,̅ 𝐺,̅ 𝐵,̅ … , 𝐶𝐼𝐸𝑌,̅̅ ̅̅ ̅̅ ̅̅ 𝐶𝐼𝐸𝑥,̅̅ ̅̅ ̅̅ ̅ 𝐶𝐼𝐸𝑦̅̅ ̅̅ ̅̅ ̅] 

VIS-NIR 

The spectrum of three instruments – Vis-2, Vis-NIR-1 and Vis-NIR-2- were transformed using the 

following preprocessing techniques: 

- No preprocessing (raw) 

- Mean centered (mc) 

- Savitzky-Golay filter with 1st derivative (sg1) 

- Mean centered followed by a Savitzky-Golay filter with 1st derivative (mc_sg1) 

- Savitzky-Golay filter with 2nd derivative (sg2) 

- Mean centered followed by a Savitzky-Golay filter with 2nd derivative (mc_sg2) 

- Savitzky-Golay filter, no derivative (sg) 

- Standard normal variate correction (snv) 
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SAVITZKY-GOLAY FILTERS 

The Savitzky-Golay (sg) (Savitzky & Golay, 1964) filter is an ubiquitous smoothing method 

allowing noise reduction (Rinnan et al., 2009) that fits a least squares polynomial to a series of 

consecutive data points. Using more data points in the filter window increases the smoothing 

whereas using higher-degree polynomial as the fitting function decreases the smoothing. A 

window of 11 bands and a second-order polynomial were used for each preprocessing method 

since it those settings showed good results for Gholizadeh et al. (2015), Hong et al. (2017) and 

Rinnan et al. (2009).  Three types of sg filters were applied: no derivative, the first derivative (sg1) 

and the second derivative (sg2). 

MEAN CENTERING 

Mean centering (mc) was done using the function scale in R, without the scaling option. The 

values were centered according to  

𝒙𝑓 = [𝑥11 − 𝑥1̅̅̅    𝑥12 − 𝑥2̅̅ ̅     …    𝑥𝑖𝑗 − 𝑥̅𝑗  ] (15) 

where xf is the corrected spectra, xij is the jth value (wavelength or band) of the ith spectrum that 

is being corrected and  𝑥̅𝑗 is the average of the jth value of all spectra. 

STANDARD NORMAL VARIATE 

SNV is a scatter correction method that aims to reduce the physical variability between samples 

due to multiplicative interferences of light scatter and particle size by centering and scaling each 

spectrum individually: 

 
𝒙𝑓 =

𝒙𝑖 − 𝑥̅𝑖  

𝑠𝑑𝑖
 (16) 

where xi and xf are the original and the corrected spectra, 𝑥̅𝑖  is the average value of the ith 

spectrum to be corrected and sdi is its standard deviation. 

 

 

 

 



39 
 

MIR 

The spectrum of the two MIR instruments were transformed using the following preprocessing 

techniques: 

- Area under the curve (auc) 

- Area under the curve and mean centered (auc_mc) 

- Area under the curve and Savitzky-Golay filter with 1st derivative (auc_sg1) 

- Area under the curve, mean centered and Savitzky-Golay filter with 1st derivative 

(auc_mc_sg1) 

- Area under the curve and Savitzky-Golay filter with 2nd derivative (auc_sg2) 

- Area under the curve, mean centered and Savitzky-Golay filter with 2nd derivative 

(auc_mc_sg2) 

- Area under the curve and Savitzky-Golay filter, no derivative (auc_sg) 

In the case of the benchtop MIR-2, only sections of the spectrum that do not interact with water 

vapor or the diamond were selected before preprocessing the data.  

AREA UNDER THE CURVE 

This technique consists of dividing the spectral region of interest by its area under the curve 

(AUC).  The function AUC from the DescTools package is used to calculate the AUC using the 

"trapezoid" method: the curve is formed by connecting all points by a direct line. Then all 

absorbance values of the spectrum, or the region, are divided by this AUC. With the Portable MIR 

probe, the entire spectrum was divided by its AUC. With the Varian benchtop, the AUC of the 

two regions of interest were calculated and used for the division of their respective region.  

LIBS 

The LIBS spectra were transformed using the following preprocessing techniques: 

- Resolution reduction from 41228 points to 6999 by averaging every 6 points (lowres) 

- Scaling (scale) 

LIBS spectra resolution had to be reduced for because of computational limitations.  
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SCALING 

Every column of the spectrum is first centered by subtracting the column means and than scaled 

by division by the column standard deviation. 

OUTLIER DETECTION 

Principal component analysis on the first derivative preprocessing was used to detect potential 

outliers: Savitzky Golay filter of a third order polynomial on a window width of 11 points. The two 

first components were used to visualize potential outliers and an ellipse containing 95% of the 

data was drawn on a graph to help identify them using dataEllipse function from the car R 

package. Outlier spectra were carefully removed making sure that it was not due to intrinsic 

variability of the sample set. For example, Figure 3.20 presents two cases where potential outliers 

were discarded or kept. Figure 3.20 a shows the two first components for Vis-NIR-2; we can see 

that points out of the 95% ellipse are in blue and we can see a group of red points that are mainly 

out of this ellipse. These red points are in fact all the spectra associated with a SOM value higher 

than 20%. They were not discarded because they are explained by the variability of the sample 

set. Figure 3.20 b shows the two first components for Vis-NIR-1; however, the group of outliers 

in red is not an indicator of variability and they were all acquired during the same session, which 

may indicate a problem with the calibration for this data acquisition session. These outliers were 

discarded from the model.   
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a) b) 
P

C
2

 

 

P
C

2
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Figure 3.20 Outlier detection using PCA. a) Two first components for outlier detection of Vis-NIR-2. 
Points outside of 95% ellipse are in blue, samples with high SOM are in red, not real outliers. b) Two 

first components for outlier detection of Vis-NIR-1. Group in red are real outliers. 

PARTIAL LEAST SQUARES REGRESSION 

Principal component regression (PCR) and PLSR are the methods that are used in spectroscopy 

because they can analyze data with strongly collinear, noisy and numerous 𝑿 -variables. PLSR 

relates two data matrices, 𝑿 of predictors (k variables x n observations) and 𝒀 of responses (m 

variables x n observations), by a linear multivariate model. Unlike PCR, PLSR models the structure 

of 𝒀 and integrates compression and regression steps to select the successive orthogonal factors 

that maximize the covariance between 𝑿 and 𝒀 (Wold et al., 1983; Wold et al., 2001, Naes et al., 

2002). PLSR decomposes 𝑿 and 𝒀 into scores (𝑻 and 𝑼) and loadings (𝑷 and 𝑸) 

𝑿 = 𝑻𝑷𝑇 + 𝑬 

𝒀 = 𝑼𝑸𝑇 + 𝑭 

where 𝑬 and 𝑭 are the error terms. Decomposition of 𝑿 and 𝒀 are made to maximize covariance 

between 𝑻 and 𝑼. The estimates are obtained with the following regression equation: 

𝒀 = 𝑿𝑩̃ + 𝑏̃0 

where 𝑏̃0 is the intercept regression coefficient and 𝑩̃ is the vector of regression coefficients for 

all 𝑿 variables (bands, wavelengths or wavenumber).  
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The model was built thanks to the caret R package. The dataset was divided into a training (70%) 

and a testing (30%) set by applying the Kennard-Stone algorithm (Kennard & Stone, 1968) to the 

matrix of soil properties using the kenStone function from the prospectr R package.  

As a rule of thumb, a 10-fold cross-validation with sampling repeated 10 times is practiced 

calibrating the model; this method was used in this research. Increasing the number of 

repetitions marginally increases the CV performance while increasing the computational cost 

(Bora & Di Ciaccio, 2010). The training sample set was randomly divided into 10 groups. One 

group was excluded and a PLSR model was built using the 9 remaining groups. The model 

obtained was then fitted to the excluded group and the RMSE and R2 were calculated to assess 

the performance of the model. This was repeated a total of 10 times, randomly splitting the 

sample set into 10 different groups each time. This CV methods yielded a total of 100 values (10 

folds times 10 repeats) of the various validation metrics. A maximum 20 LV were used while 

building the models. 

MODEL SELECTION 

SELECTING THE NUMBER OF LATENT VARIABLES 

To compare model performances and select the best one, we used the cross-validation root mean 

square error (RMSECV) obtained for each number of LV (Viscarra et al., 2006; Vohland et al., 

2011; Kodaira & Shibusawa, 2013; Nawar et al., 2016; Hong et al., 2017):  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦̂𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (17) 

Where 𝑦 and 𝑦̂ are respectively the real and the estimated values of the ith =1, 2, …, n sample. 

CV metrics are obtained by averaging results for all the 100 folds and repetitions. Figure 3.21 

shows the PLSR cross-validations RMSE and R2 results when training on lnMg data with Vis-NIR-

2 using mc_sg1 as a preprocessing. We can see that the model is improved as more LV are used 

until the minimum RMSECV is reached at 11 LV.  
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Figure 3.21 Selection of the number of latent variables (LV). Example of lnMg with Vis-NIR-2, mc_sg1. 

 

SELECTING PREPROCESSING METHODS 

The best preprocessing method for each combination of a soil property and an instrument was 

also selected using the RMSE. A paired t-test was used to select the preprocessing method that 

uses the lowest number of latent variables, while still having a mean RMSE not significantly 

greater than the minimum one; a lower-tailed hypothesis, testing if the mean difference is less 

than zero. An alpha value of α=0.05 was used to practice a restrictive selection. The preprocessing 

method selected was the one for which the mean of all 100 RMSECV values was the lowest. 

Figure 3.22 presents the distribution of the 100 RMSECV values obtained during the cross-

validation of the model predicting Al with Vis-NIR-2. The preprocessing with the lowest mean 

RMSECV is in italics (mc_sg1, 20), while the selected one is in bold (snv_sg1, 19). Preprocessing 

methods that were not significantly different from the one giving the lowest RMSECV were marked 

by an asterisk.  
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Figure 3.22. RMSECV boxplot of Al with the Vis-NIR-2. Model in italic has the lowest mean RMSE 

(represented by a horizontal grey line) and model in bold is the one selected for the inter-

instrument comparison. Preprocessing methods that are not significantly different from the 

best one are identified by a black star. 

COMPARATIVE ANALYSIS 

The performance of the instruments studied in this project was assessed and compared using the 

RMSECV. Tukey’s test with a confidence coefficient of 1 − 𝛼 = 0.95 was used on the RMSECV 

results to practice multiple comparisons of all of instrument’s performance. Other metrics were 

also used to assess the quality of the model, being the coefficient of determination (R2) and the 

ratio of performance to the inter-quartile distance (RPIQ): 

𝑆𝑆𝐸 = ∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 (18) 
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𝑆𝑆𝑦𝑦 = ∑(𝑦𝑖 − 𝑦̅)2

𝑛

𝑖=1

 (19) 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑦𝑦
 (20) 

𝑅𝑃𝐼𝑄 =
𝑄3 − 𝑄1

𝑅𝑀𝑆𝐸
 (21) 

 
where 𝑦̅ is the mean of 𝑦, SSE is the sum of squared error, SSyy is the sum of squared regression, 

and Q1 and Q3 are the first and third quartiles of 𝑦. In addition to the RMSECV, the calibration 

(RMSEC) and prediction (RMSEP) RMSEs were also calculated after fitting the model on the 

training and testing datasets. To have an overview of the instrument performance CVs, 

calibration and prediction metrics were all computed, but the best performing model chosen is 

the one with the lowest RMSEP. Figure 3.23 shows an example of a comparison graph displaying 

RMSECV, RMSEC, RMSEP as well as the standard deviation (SD) of the soil property distribution. 

In this particular case, Vis-NIR-2 has the lowest RMSEP and gave the best performance. 
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Figure 3.23. Example of a comparison of instrument’s performance for a single soil property (lnCEC). 

The accuracy of the models was evaluated in terms of R2. Inspired by interpretation criteria 

established in the past (Askari et al. 2015; Chang et al., 2001; Viscarra Rossel et al., 2007; 

Mouazen et al., 2010; Kinoshite et al., 2012), the prediction models were categorized as follow: 

-  “excellent” for R2 ≥ 0.8 

- “good” for 0.7 ≤ R2 < 0.8 

- “moderate” for 0.6 ≤ R2 < 0.7  

- “poor” for R2 < 0.6 
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CHAPTER 4. RESULTS AND DISCUSSION 

PREPROCESSING OPTIMIZATION 

All graphs comparing preprocessing techniques for each instrument are presented in Appendix 

D. Every graph presents the RMSE of CV of the optimal model for all preprocessing techniques 

that were used on the instrument spectrum. Figure 4.1 presents an example of these graphs. In 

those graphs, the preprocessing in italics represents the one that obtained the lowest mean 

RMSECV and the one in bold is the selected one, i.e. it is the model with the lowest number of 

LV that is not significantly different from the model that has the lowest mean RMSECV. 

 

Figure 4.1. Example of the CV results of different preprocessing methods for the prediction of lnSOM 
using Vis-NIR-2 instrument. 

 

It is possible to draw the following observations from these graphs: 

Vis-1: Except in the case of Al, the model using the color attribute values from 12 frames was 

never significantly better than averaging for the picture. However, the number of LV for the 
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models using 12 frames was lower than the ones selected using average of attributes for the 

entire picture. 

Vis-2: No preprocessing was remarkably better than any of the others. Interesting observation: 

second derivatives, which were never selected for the final model, always led to a lower number 

of latent variables. 

Vis-NIR-1: sg is the only one that was not significantly different than the best model for all soil 

properties studied. Besides this, no preprocessing is clearly better or worse. 

Vis-NIR-2: mc_sg1, sg1 and sg were particularly notable. Preprocessing employing sg2 were 

always significantly worst than the best option.  

MIR-1: raw, mc and auc generally gave the best results. Preprocessing methods involving sg2 

were never among the best models. 

 MIR-2: auc, auc_mc and auc_sg notably gave the best results. Preprocessing methods involving 

sg1 or sg2 were never among the best models.  

LIBS: In all cases, scaling the spectrum led to the best RMSE obtained at a lower LV.  

INSTRUMENTS PERFORMANCE 

DINO-LITE EDGE – VIS-1 

Vis-1 performed poorly for all soil properties using the method presented in this research. As 

presented in Table 4.1, R2
 adj P values obtained were between 0.02 and 0.28 for the cross-

validation and between 0.09 and 0.30 for the prediction. The number of LV selected for the 

models was equal or below 3 for all soil properties except for Al (LV=16), lnSOM (LV=8) and lnCEC 

(LV=7). The highest R2
 adj C = 0.36 was obtained for lnSOM. However, the prediction accuracy for 

the same property was very poor: R2
 adj P = 0.05. This was surprising since color properties have 

been used to predict soil organic matter using methods diverging from the one used in the 

present research with better results: R2 = 0.83 (Sudarsan et al., 2016), R2 = 0.72 (Wu et al., 2017) 

and R2 = 0.85 (Wu et al., 2018). No preprocessing was found to be better than the others, thus, 

only averaging to one value per color attribute for the whole picture could simplify the method. 

Calculating soil color indexes from RGB (Madeira et al., 1997; Mathieu et al., 1998) in addition to 
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the color space’s variables and using simple regression methods such as Multiple Linear 

Regression could improve the prediction results.  

Table 4.1. Prediction results for Vis-1. 

Property Preprocessing LV RMSECV R2
CV RMSEC R2

 adj C   RMSEP R2
 adj P   RPIQP 

lnP pool 3 0.86 0.13 0.86 0.12 0.76 0.08 1.14 

lnK pixel 3 0.67 0.09 0.67 0.09 0.61 0.11 1.45 

lnMg pixel 3 0.73 0.26 0.73 0.26 0.64 0.28 1.52 

Ca pixel 2 919.5 0.25 916.9 0.25 761.1 0.21 1.72 

Al pool 16 260.7 0.30 254.1 0.32 224.5 0.21 1.26 

BpH pixel 2 0.33 0.14 0.33 0.14 0.25 0.13 1.20 

pH pool 2 0.62 0.09 0.62 0.08 0.51 0.02 0.98 

lnSOM pixel 8 0.46 0.25 0.43 0.36 0.39 0.05 1.58 

lnCEC pixel 7 0.26 0.27 0.25 0.34 0.20 0.24 1.69 

 

a) b) 

  
Figure 4.2. Observed vs Predicted results for calibration (a) and prediction (b) with Vis-1. 
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HAMAMATSU MICRO-SPECTROMETER – VIS-2 

Vis-2 spectrometer performance was average, obtaining R2
 adj C values between 0.27 and 0.69 and 

R2
 adj P between 0.21 and 0.56 (Table 4.2). No preprocessing method provided better models 

across all soil properties.  The number of LV selected was between 5 and 8 except for Al (LV=11) 

and lnSOM (LV=13). There is potential for the prediction of Ca, Al, Mg, SOM and CEC (Figure 4.3). 

The results obtained with this particular Hamamatsu spectrometer are better than the ones 

previously obtained in Vis spectroscopy  for Al (R2
 adj P = 0.01), CEC (R2

 adj P = 0.16),  BpH (R2
 adj P = 

0.24), Ca (R2
 adj P = 0.31),  P (R2

 adj P = 0.06),  comparable for pH (R2
 adj P = 0.22) and  K (R2

 adj P = 0.29), 

and inferior for SOM ( organic carbon predicted with R2
 adj P = 0.60) (Viscarra Rossel et al., 2006). 

Table 4.2. Prediction results for Vis-2. 

Property Preprocessing LV RMSECV R2
CV RMSEC R2

 adj C   RMSEP R2
 adj P   RPIQP 

lnP sg2 5 0.82 0.23 0.78 0.29 0.72 0.21 1.23 

lnK sg2 5 0.64 0.20 0.60 0.27 0.56 0.28 1.60 

Ca snv_sg1 5 783 0.47 750 0.50 566 0.56 2.32 

lnMg mc_sg2 6 0.63 0.45 0.59 0.51 0.53 0.53 1.77 

Al sg 11 217 0.52 205 0.57 183 0.50 1.59 

BpH snv 6 0.30 0.31 0.29 0.34 0.21 0.42 1.44 

pH snv 6 0.56 0.27 0.54 0.30 0.45 0.22 1.33 

lnSOM sg 13 0.32 0.63 0.30 0.69 0.29 0.48 2.14 

lnCEC snv_sg1 8 0.24 0.41 0.21 0.51 0.16 0.48 2.03 

a) b) 

  
Figure 4.3. Observed vs Predicted results for calibration (a) and prediction (b) with Vis-2. 
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a) b) 

  

  
 

Figure 4.3. Continued. 
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a) b) 

  

  
Figure 4.3. Continued. 
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VERIS P4000 – VIS-NIR-1 

Vis-NIR-1 performed well for Ca, Al, Mg, lnSOM and lnCEC, R2
 adj C between 0.69 and 0.81 and R2

P 

between 0.62 and 0.76 (Figure 4.4), having an average performance for the rest of the soil 

properties (Table 4.3). Mean centering of SNV followed by a first or second derivative (lnMg, Al, 

BpH, pH, lnSOM) are the preprocessing methods that led most often to the best model. The 

number of LV selected were all between 15 and 20, which is high for PLSR models. Performance 

of Vis-NIR-1 is inferior or comparable to precedent results obtained with similar methods for pH 

(R2 of 0.29 - 0.71), K (R2 of 038 - 0.72), Ca (R2 of 0.67 - 0.75), CEC (R2 of 0.64 - 0.81), Al (R2 of 0.63), 

P (R2 of 0.11)  and SOM (R2 of 0.75-0.89), and superior for Mg (R2 of 0.55 – 0.68) (Chang et al., 

2001; Islam et al., 2003; Viscarra Rossel et al., 2010; Volkan et al., 2010; Pinheiro et al., 2017; Xu 

et al., 2017). 

Table 4.3. Prediction results for Vis-NIR-1. 

Property Preprocessing LV RMSECV R2
CV RMSEC R2

 adj C   RMSEP R2
 adj P   RPIQP 

lnP sg 20 0.69 0.44 0.63 0.52 0.59 0.44 1.47 
lnK raw 19 0.55 0.39 0.50 0.49 0.50 0.42 1.79 
Ca raw 19 645.2 0.63 589.4 0.69 527.3 0.63 2.48 

lnMg mc_sg2 17 0.47 0.70 0.42 0.75 0.42 0.70 2.34 
Al mc_sg1 15 172.2 0.69 158.3 0.74 127.7 0.76 2.22 

BpH mc_sg2 15 0.26 0.50 0.23 0.58 0.20 0.44 1.49 
pH snv_sg1 17 0.50 0.42 0.44 0.53 0.47 0.23 1.06 

lnSOM mc_sg1 17 0.26 0.76 0.23 0.81 0.24 0.62 2.59 
lnCEC sg 19 0.17 0.70 0.16 0.74 0.13 0.68 2.57 

a) b) 

  
Figure 4.4. Observed vs Predicted results for calibration (a) and prediction (b) with Vis-NIR-1.  
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a) b) 

  

  
Figure 4.4. Continued. 
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a) b) 

  
 

 
 

Figure 4.4. Continued. 
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ASD FIELDSPEC 4 – VIS-NIR-2 

Vis-NIR-2 performed well for Ca, Al, pH, Mg, lnSOM and lnCEC: R2
adj C between 0.71 and 0.84 and 

R2
adj P between 0.50 and 0.79 (Figure 4.5), having an average performance for the rest (Table 4.4). 

No preprocessing method  led to the best model most often. The number of LV selected were all 

between 11 and 20, which is high for PLSR models. Performance of Vis-NIR-1 is inferior or 

comparable to precedent results obtained with similar methods for pH (R2 of 0.29 - 0.71), K (R2 

of 038 - 0.72), CEC (R2 of 0.64 - 0.81) and SOM (R2 of 0.75-0.89), and superior for Mg (R2 of 0.33 

– 0.68), Al (R2 of 0.59-0.63), P (R2 of 0.11) and Ca (R2 of 0.67 - 0.75), (Chang et al., 2001; Islam et 

al., 2003; Viscarra Rossel et al.,  2010; Volkan et al., 2010; Pinheiro et al.,  2017; Xu et al.,  2017). 

Table 4.4. Prediction results for Vis-NIR-2. 

Property Preprocessing LV RMSECV R2
CV RMSEC R2

 adj C RMSEP R2
 adj P RPIQP 

lnP mc_sg1 18 0.69 0.45 0.58 0.60 0.56 0.50 1.56 

lnK raw 15 0.53 0.44 0.49 0.51 0.45 0.51 1.98 

Ca sg 20 559.5 0.72 518.1 0.76 412.7 0.76 3.17 

lnMg sg1 11 0.45 0.72 0.41 0.76 0.39 0.74 2.51 

Al snv_sg1 19 161.2 0.73 132.6 0.82 129.7 0.79 2.18 

BpH sg 20 0.23 0.58 0.21 0.65 0.19 0.52 1.60 

pH mc_sg1 20 0.42 0.58 0.35 0.71 0.36 0.50 1.40 

lnSOM mc 17 0.24 0.80 0.22 0.84 0.22 0.67 2.82 

lnCEC raw 13 0.16 0.71 0.16 0.74 0.11 0.76 3.01 

 

a) b) 

  
Figure 4.5. Observed vs Predicted results for calibration (a) and prediction (b) with Vis-NIR-2. 
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a) b) 

  

  
Figure 4.5. Continued. 
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a) b) 

  

  
Figure 4.5. Continued. 
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a) b) 

  
Figure 4.5 . Continued. 
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PORTABLE MIR PROBE – MIR-1 

MIR-1 spectrometer performance was poor, obtaining R2
 adj C values between 0.13 and 0.53 for 

and R2
 adj P between 0.11 and 0.47 (Table 4.5). The preprocessing method consisting of dividing 

the spectrum by its area under the curve was selected for 5 of the 9 properties.  The number of 

LV selected was equal or below 5. There is potential for the prediction of CEC and Mg (Figure 4.6). 

A MIR-1 prototype with earlier firmware gave acceptable results with SOM, Ca, Mg and CEC in 

the past (Ji, 2016) while not performing this time. It is for these properties that MIR-1 obtained 

the best R2
CV. The difference in the prediction accuracy between these two very similar 

instruments is hard to explain, but it may be due to weakness of the design of difference in the 

data acquisition parameters’ tuning, such as the modulation frequency. Besides CEC where it 

obtained comparable results to the ones found in the literature (R2 of 0.34-0.88), MIR-1 

performance was inferior to previous results obtained for Al (R2 of 0.43-0.85), Ca (R2 of 0.73-

0.89), Mg (R2 of 0.76-0.77), SOM (R2 of 0.73-0.92), P (R2 of 0.07-0.27), pH (R2 of  0.72) and K (R2 

of 0.33-0.54) (Janik et al., 1998; Masserschmidt et al., 1999; Stenberg & Viscarra Rossel, 2010). 

Table 4.5. Prediction results for MIR-1. 

Property Preprocessing LV RMSECV R2
CV RMSEC R2

 adj C RMSEP R2
 adj P RPIQP 

lnP auc 3 0.86 0.12 0.85 0.13 0.79 0.03 1.09 

lnK mc_sg1 1 0.62 0.24 0.61 0.24 0.56 0.23 1.58 

Ca sg 4 868 0.33 858 0.34 696 0.34 1.88 

lnMg sg1 1 0.64 0.44 0.63 0.44 0.57 0.44 1.71 

Al auc 4 267 0.26 255 0.31 238 0.14 1.19 

BpH auc 4 0.31 0.25 0.30 0.30 0.25 0.21 1.21 

pH auc 4 0.58 0.21 0.55 0.26 0.50 0.11 1.01 

lnSOM auc 5 0.43 0.37 0.38 0.49 0.39 0.15 1.59 

lnCEC auc_sg1 1 0.21 0.53 0.21 0.53 0.17 0.47 2.04 
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a) b) 

  

  
Figure 4.6. Observed vs Predicted results for calibration (a) and prediction (b) with MIR-1. 

EXCALIBUR 3100 – MIR-2 

MIR-2 performance was good for lnMg (R2
adj C = 0.74 and R2

P = 0.67) and lnSOM (R2
adj C = 0.77 and 

R2
P = 0.52) (Figure 4.7), average for Ca, Al, BpH and lnCEC (R2

 adj C between 0.51 and 0.67 and R2
P 

between 0.33 and 0.64), and poor for the rest (Table 4.6). ATR-FTIR instruments gave good results 

in the past in the prediction of soil carbon and organic carbon (Sisouane et al., 2017), which are 

related to SOM, so the good results obtained for SOM are not surprising. Dividing the spectrum 

by its area under the curve alone and followed by mean centering of a SG filter were the best 

preprocessing methods. The number of LV selected were all between 10 and 19.  
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MIR-2 obtained comparable results to the ones found in the literature for CEC (R2 of 0.34-0.88), 

Al (R2 of 0.43-0.85), P (R2 of 0.07-0.27) and K (R2 of 0.33-0.54). Its performance was inferior to 

previous results obtained for Ca (R2 of 0.73-0.89), Mg (R2 of 0.76-0.77), SOM (R2 of 0.73-0.92) and 

pH (R2 of 0.72) (Janik et al., 1998; Masserschmidt et al., 1999; Stenberg & Viscarra Rossel, 2010). 

Table 4.6. Prediction results for MIR-2. 

Property Preprocessing LV RMSECV R2
CV RMSEC R2

 adj C RMSEP R2
 adj P RPIQP 

lnP auc_mc 14 0.78 0.30 0.72 0.38 0.68 0.27 1.28 

lnK auc_mc 15 0.59 0.32 0.54 0.41 0.52 0.38 1.71 

Ca auc_sg 19 691 0.59 603 0.67 509 0.64 2.57 

lnMg auc 17 0.49 0.67 0.43 0.74 0.45 0.67 2.17 

Al auc_sg 16 237 0.42 217 0.51 190 0.41 1.49 

BpH auc 18 0.29 0.37 0.24 0.53 0.22 0.33 1.37 

pH auc 15 0.52 0.37 0.47 0.47 0.44 0.27 1.14 

lnSOM auc 18 0.30 0.69 0.26 0.77 0.27 0.52 2.33 

lnCEC auc_mc 10 0.19 0.61 0.18 0.64 0.14 0.63 2.47 

a) b) 

  
Figure 4.7. Observed vs Predicted results for calibration (a) and prediction (b) with MIR-2. 
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a) b) 

  
Figure 4.7. Continued. 
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LASERAG – LIBS 

LIBS performed well for all soil properties, R2
 adj C  between 0.70 and 0.98 and R2

 adj P between 0.63 

and 0.81 (Figure 4.8), except for lnK that resulted in average performance R2
 adj C = 0.59 and R2

P = 

0.53 (Table 4.7). It is not possible to conclude that a preprocessing method was better than the 

others, but the resolution reduction followed by scaling generally led to a lower number of LV. 

The number of LV selected varied between 8 and 19. Literature about LIBS and soil properties 

studied in this research is limited, only prediction of soil organic carbon was done (Knadel et al., 

2019) obtaining R2
 P between 0.67 and 0.89, which is comparable to the present results.  

Table 4.7. Prediction results for LIBS. 

Property Preprocessing LV RMSECV R2
CV RMSEC R2

 adj C RMSEP R2
 adj P RPIQP 

lnP lowres_scale 14 0.50 0.70 0.19 0.96 0.47 0.64 1.85 

lnK lowres_scale 8 0.53 0.45 0.45 0.59 0.44 0.53 2.00 

Ca lowres_scale 9 486.3 0.79 426.3 0.84 379.5 0.81 3.45 

lnMg lowres 14 0.45 0.73 0.41 0.77 0.37 0.78 2.61 

Al lowres 19 177.2 0.68 147.3 0.77 139.7 0.74 2.03 

BpH lowres 14 0.21 0.65 0.20 0.70 0.16 0.63 1.85 

pH lowres 14 0.37 0.68 0.34 0.71 0.31 0.63 1.64 

lnSOM lowres_scale 15 0.23 0.81 0.07 0.98 0.21 0.70 2.95 

lnCEC lowres 17 0.16 0.71 0.14 0.78 0.12 0.70 2.72 

a) b) 

  
Figure 4.8. Observed vs Predicted results for calibration (a) and prediction (b) with LIBS. 
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a) b) 
 

 
 

  

  
Figure 4.8. Continued. 
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a) b) 

  

  
Figure 4.8. Continued. 
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a) b) 

  
 

 
 

Figure 4.8. Continued. 
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COMPARATIVE ANALYSIS  

EXTRACTABLE PHOSPHORUS (P) 

Figure 4.9 and Table 4.8 present the results obtained for P. Using our method, P cannot be 

predicted with confidence. LIBS outperformed all other instruments with a moderate prediction 

accuracy (R2
adj P = 0.64). Other instruments poorly predicted lnP with an R2

adj P of 0.51 at most. 

Vis-NIR gave better results than Vis and MIR that performed comparably. Instruments with higher 

resolution performed significantly better for Vis and MIR, but there no significant difference 

between both Vis-NIR instruments. 

Table 4.8. Results of all instruments for P. 

Property Instrument Preprocessing LV RMSECV R2
CV RMSEC R2

 adj C   RMSEP R2
 adj P   RPIQP 

 Vis-1 pool 3 0.86 0.13 0.86 0.12 0.76 0.08 1.14 

 Vis-2 sg2 5 0.82 0.23 0.78 0.29 0.72 0.21 1.23 

 Vis-NIR-1 sg 20 0.69 0.44 0.63 0.52 0.59 0.44 1.47 

lnP Vis-NIR-2 mc_sg1 18 0.69 0.45 0.58 0.60 0.56 0.50 1.56 

 MIR-1 auc 3 0.86 0.12 0.85 0.13 0.79 0.03 1.09 

 MIR-2 auc_mc 14 0.78 0.30 0.72 0.38 0.68 0.27 1.28 

 LIBS lowres_scale 14 0.50 0.70 0.19 0.96 0.47 0.64 1.85 

  

a)                                                                               b)  

  

Figure 4.9. Comparison analysis of P. a) RMSEs compared and b) RMSEP against R2
P.
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EXTRACTABLE POTASSIUM (K)  

Figure 4.10 and Table 4.9 present the results obtained for K. All instruments performed poorly in 

the prediction of lnK (R2
adj P between 0.11 and 0.53). Vis-NIR-2 and LIBS performance the best 

with no significant difference between them. Performance of spectral methods are ranked as 

follow: Vis < MIR < Vis-NIR. In all three spectral ranges, the instrument with the highest resolution 

outperformed its low-resolution counter part.   

Table 4.9. Results of all instruments for K. 

Property Instrument Preprocessing LV RMSECV R2
CV RMSEC R2

 adj C   RMSEP R2
 adj P   RPIQP 

 Vis-1 pixel 3 0.67 0.09 0.67 0.09 0.61 0.11 1.45 

 Vis-2 sg2 5 0.64 0.20 0.60 0.27 0.56 0.28 1.60 

 Vis-NIR-1 raw 19 0.55 0.39 0.50 0.49 0.50 0.42 1.79 

lnK Vis-NIR-2 raw 15 0.53 0.44 0.49 0.51 0.45 0.51 1.98 

 MIR-1 mc_sg1 1 0.62 0.24 0.61 0.24 0.56 0.23 1.58 

 MIR-2 auc_mc 15 0.59 0.32 0.54 0.41 0.52 0.38 1.71 

 LIBS lowres_scale 8 0.53 0.45 0.45 0.59 0.44 0.53 2.00 

 

a)                                                                                 b) 

  

Figure 4.10. Comparison analysis of K. a) RMSEs compared and b) RMSEP against R2
P. 
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CALCIUM (CA) 

Figure 4.11 and Table 4.10 present the results obtained for Ca. Ca predictions gave better results 

than P and K. Vis-NIR-2 (R2
adj P = 0.76) and LIBS (R2

adj P = 0.81) performed well. MIR-2 (R2
adj P = 0.64) 

and Vis-NIR-1 (R2
adj P = 0.63) performed with a moderate accuracy and other instruments 

performed poorly. Vis-2 (R2
adj P = 0.56) performance has some potential. In all three spectral 

ranges, the instrument with the highest resolution outperformed its low-resolution counter part.   

Table 4.10. Results of all instruments for Ca. 

Property Instrument Preprocessing LV RMSECV R2
CV RMSEC R2

 adj C   RMSEP R2
 adj P   RPIQP 

 Vis-1 pixel 2 919.5 0.25 916.9 0.25 761.1 0.21 1.72 

 Vis-2 snv_sg1 5 783.0 0.47 750.8 0.50 565.9 0.56 2.32 

 Vis-NIR-1 raw 19 645.2 0.63 589.4 0.69 527.3 0.63 2.48 

Ca Vis-NIR-2 sg 20 559.5 0.72 518.1 0.76 412.7 0.76 3.17 

 MIR-1 sg 4 868.8 0.33 858.5 0.34 696.6 0.34 1.88 

 MIR-2 auc_sg 19 691.4 0.59 603.3 0.67 509.7 0.64 2.57 

 LIBS lowres_scale 9 486.3 0.79 426.3 0.84 379.5 0.81 3.45 

 

a)                                                                               b) 

 

Figure 4.11. Comparison analysis of Ca. a) RMSEs compared and b) RMSEP against R2
P.
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MAGNESIUM (MG) 

Figure 4.12 and Table 4.11 present the results obtained for Mg. lnMg prediction results resemble 

those of Ca. Vis-NIR-2 (R2
adj P =0.74), Vis-NIR-1 (R2

adj P =0.70) and LIBS (R2
adj P =0.78) performed well 

and MIR-2 (R2
adj P =0.67) had a moderate accuracy. Vis-2 has some potential (R2

adj P of 0.53). Again, 

LIBS was not significantly better than Vis-NIR-2.   

Table 4.11. Results of all instruments for Mg. 

Property Instrument Preprocessing LV RMSECV R2
CV RMSEC R2

 adj C   RMSEP R2
 adj P   RPIQP 

 Vis-1 pixel 3 0.73 0.26 0.73 0.26 0.64 0.28 1.52 

 Vis-2 mc_sg2 6 0.63 0.45 0.59 0.51 0.53 0.53 1.77 

 Vis-NIR-1 mc_sg2 17 0.47 0.70 0.42 0.75 0.42 0.70 2.34 

lnMg Vis-NIR-2 sg1 11 0.45 0.72 0.41 0.76 0.39 0.74 2.51 

 MIR-1 sg1 1 0.64 0.44 0.63 0.44 0.57 0.44 1.71 

 MIR-2 auc 17 0.49 0.67 0.43 0.74 0.45 0.67 2.17 

 LIBS lowres 14 0.45 0.73 0.41 0.77 0.37 0.78 2.61 

 

a)                                                                              b) 

 

Figure 4.12. Comparison analysis of Mg. a) RMSEs compared and b) RMSEP against R2
P.
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ALUMINUM (AL) 

Figure 4.13 and Table 4.12 present the results obtained for Al. Al is another property that was 

well predicted by some instruments: LIBS (R2
adj P = 0.74), Vis-NIR-2 (R2

adj P = 0.79) and Vis-NIR-1 

(R2
adj P = 0.76). The lowest RMSEP was obtained with Vis-NIR-1. All other instruments performed 

poorly.   

Table 4.12. Results of all instruments for Al. 

Property Instrument Preprocessing LV RMSECV R2
CV RMSEC R2

 adj C   RMSEP R2
 adj P   RPIQP 

 Vis-1 pool 16 260.7 0.30 254.1 0.32 224.5 0.21 1.26 

 Vis-2 sg 11 216.8 0.52 204.5 0.57 183.4 0.50 1.59 

 Vis-NIR-1 mc_sg1 15 172.2 0.69 158.3 0.74 127.7 0.76 2.22 

Al Vis-NIR-2 snv_sg1 19 161.2 0.73 132.6 0.82 129.7 0.79 2.18 

 MIR-1 auc 4 267.6 0.26 255.8 0.31 238.3 0.14 1.19 

 MIR-2 auc_sg 16 237.8 0.42 217.1 0.51 190.3 0.41 1.49 

 LIBS lowres 19 177.2 0.68 147.3 0.77 139.7 0.74 2.03 

 

a)                                                                                 b) 

  

Figure 4.13. Comparison analysis of Al. a) RMSEs compared and b) RMSEP against R2
P. 
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BUFFER PH (BPH) 

Figure 4.14 and Table 4.13 present the results obtained for BpH. With buffer pH, all intrsuments 

performed poorly except for LIBS that performed with moderate accuracy (R2
adj P= 0.63). For all 

spectral ranges, high resolution instruments performed better. Vis-NIR-2 (R2
adj C = 0.65) has 

potential if the method is improved. 

Table 4.13. Results of all instruments for BpH. 

Property Instrument Preprocessing LV RMSECV R2
CV RMSEC R2

 adj C   RMSEP R2
 adj P   RPIQP 

 Vis-1 pixel 2 0.33 0.14 0.33 0.14 0.25 0.13 1.20 

 Vis-2 snv 6 0.30 0.31 0.29 0.34 0.21 0.42 1.44 

 Vis-NIR-1 mc_sg2 15 0.26 0.50 0.23 0.58 0.20 0.44 1.49 

BpH Vis-NIR-2 sg 20 0.23 0.58 0.21 0.65 0.19 0.52 1.60 

 MIR-1 auc 4 0.31 0.25 0.30 0.30 0.25 0.21 1.21 

 MIR-2 auc 18 0.29 0.37 0.24 0.53 0.22 0.33 1.37 

 LIBS lowres 14 0.21 0.65 0.20 0.70 0.16 0.63 1.85 

 

a)                                                                               b) 

  

Figure 4.14. Comparison analysis of BpH. a) RMSEs compared and b) RMSEP against R2
P. 
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PH 

Figure 4.15 and Table 4.14 present the results obtained for pH. Performance in the prediction of 

pH resembles the one of buffer pH. This is not surprising considering how closely related they 

are. LIBS (R2
adj P = 0.63) is the only instrument that did not perform poorly. Vis-NIR-1 and Vis-NIR-

2 showed good prediction potential during the calibration (R2
adj C = 0.53 and R2

adj C = 0.71 

respectively), but performed poorly at the prediction step. 

Table 4.14. Results of all instruments for pH. 

Property Instrument Preprocessing LV RMSECV R2
CV RMSEC R2

 adj C   RMSEP R2
 adj P   RPIQP 

 Vis-1 pool 2 0.62 0.09 0.62 0.08 0.51 0.02 0.98 

 Vis-2 snv 6 0.56 0.27 0.54 0.30 0.45 0.22 1.33 

 Vis-NIR-1 snv_sg1 17 0.50 0.42 0.44 0.53 0.47 0.23 1.06 

pH Vis-NIR-2 mc_sg1 20 0.42 0.58 0.35 0.71 0.36 0.50 1.40 

 MIR-1 auc 4 0.58 0.21 0.55 0.26 0.50 0.11 1.01 

 MIR-2 auc 15 0.52 0.37 0.47 0.47 0.44 0.27 1.14 

 LIBS lowres 14 0.37 0.68 0.34 0.71 0.31 0.63 1.64 

 

a)                                                                               b) 

  

Figure 4.15. Comparison analysis of pH. a) RMSEs compared and b) RMSEP against R2
P.
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SOIL ORGANIC MATTER (SOM) 

Figure 4.16 and Table 4.15 present the results obtained for SOM. Vis-NIR-2 (R2
adj P = 0.67), Vis-

NIR-1 (R2
adj P = 0.62) and especially LIBS (R2

adj P = 0.70) predicted lnSOM well. Vis-2 (R2
 adj C = 0.69) 

and MIR-2 (R2
 adj C = 0.77) showed potential at the calibration step. Again, more sophisticated 

instruments performed better in all spectral ranges.   

Table 4.15. Results of all instruments for SOM. 

Property Instrument Preprocessing LV RMSECV R2
CV RMSEC R2

 adj C   RMSEP R2
 adj P   RPIQP 

 Vis-1 pixel 8 0.46 0.25 0.43 0.36 0.39 0.05 1.58 

 Vis-2 sg 13 0.32 0.63 0.30 0.69 0.29 0.48 2.14 

 Vis-NIR-1 mc_sg1 17 0.26 0.76 0.23 0.81 0.24 0.62 2.59 

lnSOM Vis-NIR-2 mc 17 0.24 0.80 0.22 0.84 0.22 0.67 2.82 

 MIR-1 auc 5 0.43 0.37 0.38 0.49 0.39 0.15 1.59 

 MIR-2 auc 18 0.30 0.69 0.26 0.77 0.27 0.52 2.33 

 LIBS lowres_scale 15 0.23 0.81 0.07 0.98 0.21 0.70 2.95 

 

a)                                                                             b) 

  

Figure 4.16. Comparison analysis of SOM. a) RMSEs compared and b) RMSEP against R2
P.
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CATION EXCHANGE CAPACITY (CEC)  

Figure 4.17 and Table 4.16 present the results obtained for CEC. LIBS (R2
adj P = 0.70), MIR-2 (R2

adj 

P = 0.63), Vis-NIR-1 (R2
adj P = 0.68) and Vis-NIR-2 (R2

adj P = 0.76) performed well for the prediction 

of lnCEC. MIR-1 (R2
adj C= 0.53) and Vis-2 (R2

adj C = 0.51) showed predictive potential. Vis-NIR-2 gave 

the lowest RMSEP. Instruments with higher resolutions performed better. 

Table 4.16. Results of all instruments for CEC. 

Property Instrument Preprocessing LV RMSECV R2
CV RMSEC R2

 adj CV   RMSEP R2
 adj P   RPIQP 

 Vis-1 pixel 7 0.26 0.27 0.25 0.34 0.20 0.24 1.69 

 Vis-2 snv_sg1 8 0.24 0.41 0.21 0.51 0.16 0.48 2.03 

 Vis-NIR-1 sg 19 0.17 0.70 0.16 0.74 0.13 0.68 2.57 

lnCEC Vis-NIR-2 raw 13 0.16 0.71 0.16 0.74 0.11 0.76 3.01 

 MIR-1 auc_sg1 1 0.21 0.53 0.21 0.53 0.17 0.47 2.04 

 MIR-2 auc_mc 10 0.19 0.61 0.18 0.64 0.14 0.63 2.47 

 LIBS lowres 17 0.16 0.71 0.14 0.78 0.12 0.70 2.72 

 

a)                                                                                b) 

  

Figure 4.17. Comparison analysis of CEC: a) RMSEs compared and b) RMSEP against R2
P.
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DISCUSSION 

EFFECT OF SPECTRAL RESOLUTION ON PREDICTION  

For all spectral ranges, the instrument having a higher resolution, the more sophisticated one, 

outperformed its lower resolution counterpart. It would be important to verify if better 

performance is really due to the resolution and not other factors related to the instrument itself 

such as technology used (ATR-FTIR vs. DRIFT), type of light source (LED vs. halogen), type of 

acquisition probe (fiber optic vs. photodiode array close to the samples), calibration procedure, 

etc. Hence, further work should focus on how reducing the resolution of the best instruments to 

the resolution of other instruments affects the quality of the prediction: reduce the spectra of 

Vis-NIR-2 and MIR-2 to the resolution and range of Vis-NIR-1 and MIR-1, respectively; reduce 

spectra of Vis-NIR-1 and Vis-NIR-2 to the resolution and range of Vis-2; extract red (600-690 nm), 

green (520-600 nm) and blue (450-520 nm) bands from Vis-NIR-1,  Vis-NIR-2 and Vis-2 to compare 

with the results from Vis-1 (Viscarra-Rossel et al., 2009; Wu et al., 2017). This would help clarify 

if resolution is solely responsible for better accuracy in the instruments studied, or if quality of 

the instrument itself plays a bigger role. 

EFFECT OF SPECTRAL RANGE ON PREDICTION 

The general trend in this research is that the LIBS instrument provided better results, followed 

by Vis-NIR, MIR and finally, the color instruments. In the case of organic matter, the results are 

surprising considering that MIR generally gives better results when predicting organic carbon 

(Viscarra Rossel et al., 2006; Canasveras Sanchez et al., 2012; Vohland et al., 2014; Arachchi et 

al., 2016; Ng et al., 2019). The good performance of Vis-NIR instruments could be due to the fact 

that the visible part of the spectrum helped to separate the soil samples of our dataset into 

different types that have similar fertility. Indeed, Vis-NIR spectrum was found to be a useful tool 

in soil classification in Australia (Fajardo et al., 2017; Teng et al., 2018), China (Chen et al., 2018) 

and Brazil (Vasques et al., 2014) because this region of the spectrum contains rich information 

about soil colour, abundance of iron oxides, clay minerals and carbonates, the amount of organic 

matter and its particle size (Viscarra Rossel et al., 2011a). Further work should be done to 

compare the prediction accuracy of Vis-NIR spectroscopy at two different ranges, i.e. the Vis and 

NIR separately. It would also be interesting to explore the potential of sensor fusion, combining 
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multiple spectrum together (i.e. Vis-2 with MIR-2, Vis-NIR-1 or -2 with MIR-1 or -2), a procedure 

that has shown good results in the past (Viscarra Rossel et al., 2006; Canasveras et al., 2012; Ng 

et al., 2019). 

EFFECT OF CALIBRATION METHOD ON PREDICTION 

It was impossible to conclude if one preprocessing technique was better then the others. The 

preprocessing technique selected varied within a soil property prediction and within each 

instrument. The second derivative gave RMSECV significantly higher than the best preprocessing 

method most of the time for our data set.  

The method employed in this research was not selected because it is sophisticated and known to 

give the best results, but because it is, and has been, widely used in soil spectroscopy and allows 

for a comparison of prediction potentials of the various instruments. This prediction potential 

was only partially uncovered in this research project; more exploration is needed. The calibration 

can vary on many more aspects than the preprocessing method used in this study. In order to 

make clear conclusions about the performance of the instruments, many modifications could be 

done to the calibration method. 

First, it would be interesting to study the effect of separation between the training and testing 

set. The Kennard-Stone algorithm can partition a dataset based on the response matrix (soil 

properties) like we did, but also on the predictor matrix (spectra). Also, newly developed 

sampling methods have demonstrated better results than Kennard-Stone and could be used and 

compared: similarity analysis (Nawar and Mouazen, 2018), sample set partitioning based on joint 

x-y-z distances (Li et al, 2018), k-means clustering or conditioned Latin Hypercube (Minasny, 

2006).  

Furthermore, cross-validation plays a critical role in model selection. Xu et al. (2018) tried 

different types of cross validation and they compared a 16-fold cross validation based on a 

representative splitting (RSCV) to the more widespread leave-one-out, 10-fold and Monte Carlo 

CVs. They found that RSCV is a useful and stable method to select PLS LVs and can obtain simpler 

models with an acceptable computational burden. This CV method should be compared to the 

one used in this project. One weakness in this research is that we know some soil samples were 
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collected at the same farm, in the same field and sometimes in the same location, as replicates. 

However, since we do not have the georeferencing information, we have no way of knowing with 

certainty how close the samples were taken. This is an issue when it comes to ensuring complete 

independence between the training and testing datasets, data should be split at the highest 

hierarchy level during cross-validation (Guo et al., 2017). Such information would be helpful to 

ensure a better splitting of the data into training and testing sets. This would also allow a better 

cross-validation by keeping potential replicates in the same fold. 

Another aspect that should be studied in further research is the potential of feature selection. 

Feature selection can have multiple advantages such as improved performance, model 

simplification, data reduction and improvement of the model interpretability (Saeys et al., 2007; 

Chong & Jun, 2005; Roy & Roy, 2008; Xiabo et al., 2010; Balabin et al., 2011; Mehmood et al., 

2011; Bodur et al., 2019). Feature selection could improve considerably predictions done with 

MIR instruments. It would also be interesting to see if using a classification method – e.g. 

categorizing soil samples according to SOM or CEC levels, or texture – prior to the regression 

method could improve predictions. Classification could also be done through sensor fusion with 

sensors using different measurement principles, such as apparent electrical conductivity that is 

related to clay, water and organic matter content (Corwin & Lesch, 2005; Vitharana et al., 2008). 

Finally, it would also be interesting to compare PLSR with other data mining algorithms presented 

in the literature review such as MARS, RF, SVM, Cubist regression or ANN (Viscarra Rossel & 

Behrens, 2010; Morellos et al., 2016; Yu et al., 2016; Li et al., 2017; Nawar et al., 2017; Xiang et 

al., 2017; Fang et al., 2018; Khosravi et al., 2018; Xie et al., 2018; Xu et al., 2018; Liu, 2019). In the 

case of RGB, it would be pertinent to test different soil color indices in addition to see if multiple 

linear regression works better (Madeira et al., 1997; Mathieu et al., 1998; Sudarsan et al., 2016; 

Wu et al., 2017; Wu et al., 2018).  

COMPARISON WITH COMMERCIAL LABORATORY ACCURACY 

Besides assessing how spectral resolution, spectral range and calibration methods affect the 

prediction, it is important to know if the technologies studied in this research can predict soil 

properties with an accuracy respecting laboratory standards. To do so, the prediction results for 

P, K, Mg, SOM and CEC had to be converted back to a linear scale and the mean absolute error 
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(MAE) of the prediction was calculated. The reference data comes from the summaries of the 

laboratory results from the quarterly exchanges of the North American Proficiency Testing 

Program (NAPT; http://www.naptprogram.org/), a program administrated by the Soil Science 

Society of America. Data were retrieved from archived reports from 2009 to 2019. These files 

contain the median and median absolute deviation (MAD) of the laboratory chemical analysis of 

agronomic soil sample replicates. Mehlich-3 properties with P quantified by inductively coupled 

plasma, Walkley-Black and loss on ignition SOM, estimated CEC, pH (1:1) water ans SMP buffer 

pH were selected because soil samples involved in the present research were analyzed using 

these methods. The Table 4.17 presents the distribution parameters of the replicated medians 

obtained for all samples.  

Table 4.17.  Distribution parameters of the medians of laboratory chemical analysis results for 
the NAPT Program. 

 

P 
(ppm) 

K 
(ppm) 

Ca 
(ppm) 

Mg 
(ppm) 

Al 
(ppm) 

BpH pH 
SOM 
(%) 

CEC 
(meq/100g) 

Minimum 9 31 123 17 45.9 5.69 4.7 0.5 3.6 

Maximum 930 2220 8020 1010 1850 7.6 8.16 12.2 65 

Mean 97 231 2394 288 6537 7.1 6.7 3.0 17.7 

Median 67.2 166 1890 256 601 7.1 6.6 2.6 14.5 
Standard 
deviation 109 230 1564 188 360 0.40 0.92 1.8 10.4 

Skewness 3.71 4.5 0.87 1.2 0.96 -0.94 -0.20 1.8 1.3 
Number of 

values 205 205 205 205 205 205 205 400 200 

 

Prediction models leading to a MAE lower than 2.5 times the average of reference MADs were 

considered “acceptable” considering laboratory standards (Russ et al., 2015). Average MAD and 

instruments prediction MAE for each property are presented in Table 4.18 and in Figure 4.18.  

 

 

 

 

 

http://www.naptprogram.org/
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Table 4.18. Prediction MAE compared with averaged reference MAD obtained with laboratory 

standards. 

Property MAD MAD x 2.5 
   MAE    

Vis-1 Vis-2 Vis-NIR-1 Vis-NIR-2 MIR-1 MIR-2 LIBS 

P (ppm) 7.2 18.0 46.1 43.4 37.3 34.9 47.9 41.9 25.9 

K (ppm) 14.7 36.7 52.1 48.3 41.3 36.4 47.3 46.0 39.4 

Ca (ppm) 169 421 613 451 410 313 538 375 282 

Mg (ppm) 16.9 42.2 93.7 85.9 62.3 57.9 80.4 66.5 54.2 

Al (ppm) 53 133 161.3 147.7 101.1 96.6 172.5 143.3 98.4 

pH 0.076 0.191 0.392 0.353 0.372 0.281 0.393 0.356 0.246 

BpH 0.075 0.186 0.192 0.164 0.152 0.140 0.180 0.162 0.127 

SOM (%) 0.207 0.518 1.33 0.98 0.73 0.64 1.35 0.84 0.67 

CEC 
(meq/100g) 

2.14 5.38 2.99 2.42 1.88 1.58 2.37 1.98 1.76 

 

Acceptable prediction models were obtained for K (Vis-NIR-2), Ca (Vis-NIR-1, Vis-NIR-2, MIR-2, 

LIBS), Al (Vis-NIR-1, Vis-NIR-2, LIBS), BpH (all intruments except Vis-1) and CEC (all intruments).  

This means that some field management practices, such as liming of K fertilizer application, could 

be prescribed based on spectroscopy respecting the method presented in this thesis. Agro-

economic studies has to be done in order to conclude on the efficiency of using these methods 

in the field. For instance, some research can be done with Vis-NIR-2 instruments, that obtained 

MAEs lower than reference MADs for K, Ca, Al, BpH and CEC, to see if prescription based on the 

models developped in the present study lead to good results in the field. Vis-NIR-2 could even 

easily be mounted on a vehicle for on-the-go soil sensing, as shown by Christy (2008), Maleki et 

al. (2008), Munoz & Kravchenko (2011), Rodionov et al (2015), Nawar & Mouazen (2019) and 

Tabatabai et al. (2019). However, humidity and bulk density are important biases that were 

controlled in the present study, thus new models would have to be developed to consider these 

parameters. Finally, it might be necessary to recalibrate the model when a sample from a new 

farm or a new field has to be analyzed, especially if the new soil sample is really different from 

the ones that were used to build the model. 
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Figure 4.18.  Prediction MAEs (points) compared with average reference MAD x 2.5 (dotted line) obtained with laboratory standards.
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CHAPTER 5. CONCLUSIONS 

The performances of seven spectrometers of different spectral ranges, resolutions and 

technologies were compared in this study for the prediction of nine soil properties: P, K, Ca, Mg, 

Al, BpH, pH, SOM and CEC. The seven instruments studied are a digital microscopy (Vis-1), a 

visible spectrometer (Vis-2), a field Vis-NIR spectrometer (Vis-Nir-1), another Vis-NIR instrument 

with a higher resolution (Vis-NIR-2), a portable DRIFT spectrometer (MIR-1), a benchtop ATR-FTIR 

spectrometer (MIR-2) and LIBS instrument (LIBS). Depending on the instruments, spectra were 

preprocessed using standard normal variate, mean centering, scaling, Savitzky-Golay filters alone 

or with first or second derivatives and division by the area under the curve. The sample set of 

798 soil samples was first partitioned into a training (or calibration) set and a testing (or 

validation) set. Partial least squares regression with a 10-fold cross-validation repeated 10 times 

was used to compare the instrument’s performance. The performance of the seven instruments 

was compared in terms of RMSEP for each soil property.  

LIBS led to the best prediction results for the majority of the soil properties: lnP (RMSEP = 0.47, 

R2
adj P = 0.64, RPIQP = 1.85), lnK (RMSEP = 0.44, R2

adj P = 0.53, RPIQP = 2),  lnMg (RMSEP = 0.37, 

R2
adj P = 0.78, RPIQP = 2.61), Ca (RMSEP = 380 ppm, R2

adj P = 0.81, RPIQP = 3.45),  pH (RMSEP = 0.31, 

R2
adj P = 0.63, RPIQP = 1.64),  BpH (RMSEP = 0.16, R2

adj P = 0.63, RPIQP = 1.85) and lnSOM (RMSEP 

= 0.21, R2
adj P = 0.70, RPIQP = 2.95). Vis-NIR-1 gave the best prediction for Al (RMSEP = 128 ppm, 

R2
adj P = 0.76, RPIQP = 2.22) and Vis-NIR-2 gave the best prediction of lnCEC (RMSEP = 0.11, R2

adj P 

= 0.76, RPIQP = 3.01).  The overall predictability of the soil properties studied can be categorized 

as follows: prediction was “excellent” for Ca, “good” for Mg, Al, SOM and CEC, “moderate” for P, 

pH and Bph and “poor” for K. 

In this study, it was found that spectral range has an influence on prediction accuracy. The general 

trend was that LIBS gives the best prediction, followed by Vis-NIR, then MIR performed better or 

comparably to Vis. It was also found that spectral resolution had an influence on prediction. In 

all cases except Al where Vis-NIR-1 performed better than Vis-NIR-2, the most sophisticated 

instruments outperformed their lower resolution counterparts for a given spectral range.  
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To conclude, to clearly understand the effect of resolution and range on prediction, some 

avenues for further research were proposed. The first one consists in reducing the resolution and 

range of certain instruments so they are comparable to the lower priced instruments and see if 

those parameters affect prediction more than the general quality of the instruments. Exploring 

the sensor fusion potential would also be an interesting avenue with such a dataset. Above all, 

comparing the present method with others that vary in terms of cross-validation, feature 

selection and regression methods would certainly improve our understanding of the real 

limitations and potential of each instrument.  

Regarding the pertinence of using soil spectroscopy as a complement to traditional wet chemistry 

soil analysis, MAEs respecting laboratory standards were obtained for K (Vis-NIR-2), Ca (Vis-NIR-

1, Vis-NIR-2, MIR-2, LIBS), Al (Vis-NIR-1, Vis-NIR-2, LIBS), BpH (all intruments except Vis-1) and 

CEC (all intruments). This being said, soil spectroscopy, especially Vis-NIR and LIBS, can be used 

as agronomic decisions tools. More field research on crop yield response to management based 

on soil spectroscopy technologies should be done to confirm, or invalidate, their profitability, 

practicabilty and logistical advantages. 
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APPENDIX B: LOW-COST SPECTROMETER CODES 

B-1 ARDUINO CODE 

/* 

 * Macro Definitions 

 */ 

#define SPEC_TRG         A0 

#define SPEC_ST          A1 

#define SPEC_CLK         A2 

#define SPEC_VIDEO       A3 

#define WHITE_LED        A4 

#define LASER_404        A5 

int HALO_RELAY = 7 ; 

#define SPEC_CHANNELS    288 // New Spec Channel 

uint16_t data[SPEC_CHANNELS]; 

int cmd=0; 

//char buff[288*4 

void setup(){ 

  //Set desired pins to OUTPUT 

  pinMode(SPEC_CLK, OUTPUT); 

  pinMode(SPEC_ST, OUTPUT); 

  pinMode(LASER_404, OUTPUT); 

  pinMode(WHITE_LED, OUTPUT); 

  pinMode(HALO_RELAY, OUTPUT); 

  digitalWrite(SPEC_CLK, HIGH); // Set SPEC_CLK High 

  digitalWrite(SPEC_ST, LOW); // Set SPEC_ST Low 

  digitalWrite(HALO_RELAY, HIGH); 

  Serial.begin(115200); // Baud Rate set to 115200 

//  digitalWrite(WHITE_LED, HIGH); 

} 

/* 

 * This functions reads spectrometer data from SPEC_VIDEO 

 * Look at the Timing Chart in the Datasheet for more info 

 */ 

void readSpectrometer(){ 

  int delayTime = 1; // delay time 

  // Start clock cycle and set start pulse to signal start 

  digitalWrite(SPEC_CLK, LOW); 

  delayMicroseconds(delayTime); 

  digitalWrite(SPEC_CLK, HIGH); 

  delayMicroseconds(delayTime); 

  digitalWrite(SPEC_CLK, LOW); 

  digitalWrite(SPEC_ST, HIGH); 

  delayMicroseconds(delayTime); 

  //Sample for a period of time 

  for(int i = 0; i < 15; i++){ 

      digitalWrite(SPEC_CLK, HIGH); 

      delayMicroseconds(delayTime); 

      digitalWrite(SPEC_CLK, LOW); 

      delayMicroseconds(delayTime);  

  } 

  //Set SPEC_ST to low 

  digitalWrite(SPEC_ST, LOW); 

  //Sample for a period of time 

  for(int i = 0; i < 85; i++){ 

      digitalWrite(SPEC_CLK, HIGH); 

      delayMicroseconds(delayTime); 

      digitalWrite(SPEC_CLK, LOW); 

      delayMicroseconds(delayTime);        
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  } 

  //One more clock pulse before the actual read 

  digitalWrite(SPEC_CLK, HIGH); 

  delayMicroseconds(delayTime); 

  digitalWrite(SPEC_CLK, LOW); 

  delayMicroseconds(delayTime); 

  //Read from SPEC_VIDEO 

  for(int i = 0; i < SPEC_CHANNELS; i++){ 

      data[i] = analogRead(SPEC_VIDEO);      

      digitalWrite(SPEC_CLK, HIGH); 

      delayMicroseconds(delayTime); 

      digitalWrite(SPEC_CLK, LOW); 

      delayMicroseconds(delayTime);         

  } 

  //Set SPEC_ST to high 

  digitalWrite(SPEC_ST, HIGH); 

  //Sample for a small amount of time 

  for(int i = 0; i < 7; i++){ 

      digitalWrite(SPEC_CLK, HIGH); 

      delayMicroseconds(delayTime); 

      digitalWrite(SPEC_CLK, LOW); 

      delayMicroseconds(delayTime); 

  } 

  digitalWrite(SPEC_CLK, HIGH); 

  delayMicroseconds(delayTime); 

} 

/* 

 * The function below prints out data to the terminal or  

 * processing plot 

 */ 

void printData(){   

  for (int i = 0; i < SPEC_CHANNELS; i++){ 

    Serial.print(data[i]); 

    Serial.print(',');         

  } 

  Serial.print("\n"); 

  } 

   

void loop(){ 

  

  

  if (Serial.available()) 

  {cmd = Serial.read();  

  

  

//Background spectra acquisition 

     if (cmd=='0') {    

      while (cmd!='9') {            

        delay(5); 

        readSpectrometer(); 

        printData(); 

        delay(10); 

        cmd = Serial.read();   

        }            

    } 

  

  //LED spectra acquisition 

     if (cmd=='1') { 

      

      for(int j=0 ; j < 23; j++){  

        analogWrite(WHITE_LED, 255); 

        delayMicroseconds(10); 

        analogWrite(WHITE_LED, 0); 
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        delayMicroseconds(10); 

      } 

      analogWrite(WHITE_LED, 255); 

      while (cmd!='9') { 

         

        delay(5); 

        readSpectrometer(); 

        printData(); 

        delay(10); 

        cmd = Serial.read();  

      } 

      analogWrite(WHITE_LED, 0); 

       

    } 

 } 

 

 

B-2 MATLAB CODE 

classdef HamaAcqui_Final < matlab.apps.AppBase 

    % Properties that correspond to app components 

    properties (Access = public) 

        VisibleSpectrometer          matlab.ui.Figure 

        HamamatsuSpectrometer        matlab.ui.container.Panel 

        SampleButton                 matlab.ui.control.Button 

        BackgroundButton             matlab.ui.control.Button 

        NumberofScansEditFieldLabel  matlab.ui.control.Label 

        NumberofScansEditField       matlab.ui.control.NumericEditField 

        SampleNameEditFieldLabel     matlab.ui.control.Label 

        SampleNameEditField          matlab.ui.control.EditField 

        ConnectDeviceButton          matlab.ui.control.Button 

        ReplicateSpinnerLabel        matlab.ui.control.Label 

        ReplicateSpinner             matlab.ui.control.Spinner 

        OpenPORTButton               matlab.ui.control.Button 

        ClosePORTButton              matlab.ui.control.Button 

        TextAreaLabel                matlab.ui.control.Label 

        PathSaving                   matlab.ui.control.TextArea 

        SelectDirectoryButton        matlab.ui.control.Button 

        LastFilesavedTextAreaLabel   matlab.ui.control.Label 

        LastFilesavedTextArea        matlab.ui.control.TextArea 

        TabGroup                     matlab.ui.container.TabGroup 

        SignalTab                    matlab.ui.container.Tab 

        SignalUIAxes                 matlab.ui.control.UIAxes 

        ReflectanceTab               matlab.ui.container.Tab 

        ReflectUIAxes                matlab.ui.control.UIAxes 

        PortStatusTextAreaLabel      matlab.ui.control.Label 

        PortStatusTextArea           matlab.ui.control.TextArea 

        SerialPortDropDownLabel      matlab.ui.control.Label 

        SerialPortDropDown           matlab.ui.control.DropDown 

    end 

    properties (Access = public) 

        WL %Wavelength vector 
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         s % Serial Device 

        Count % Count of the samples tacken to keep track of the RefSpec 

        RefSpec %Last RefSpec values 

        SavingPath %Folder location to save spectra files 

        RefName %RefSpec name 

        RefBackSpec %Last reference background spectra 

            end 

    methods (Access = private) 

        function [S]=ConnectDevice(app, COM)   

            delete(instrfindall); 

            S=serial(COM); 

            set(S, 'BaudRate', 115200); 

            S.InputBufferSize=2000; 

         end 

     

        function [Spectra] = specAcqui(app, code, NumScan,SerialObject) 

            fprintf(SerialObject, code); 

          

            C={}; 

            for i=1:NumScan+1         

                D=fscanf(SerialObject); 

                C{i}=D; 

            end 

            C(1)=[]; 

            F=[]; 

            for i=1:NumScan 

                E=str2num(C{i}); 

                if length(E)==288 

                    dimenF=size(F); 

                    a=dimenF(1); 

                    F(a+1,:)=E; 

                end 

            end 

            %Mean of all the scans 

            Spectra=mean(F); 

            pause(0.5);   

             

            fprintf(SerialObject, '9'); 

            pause(0.5);              

        end     

        function [Spectra] = fluoAcqui(app, NumScan,SerialObject) 

            fprintf(SerialObject, '8'); 

     

            C={}; 

            for i=1:NumScan+1         

                D=fscanf(SerialObject); 

                C{i}=D; 

            end 

            C(1)=[]; 

            F=[]; 
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            for i=1:NumScan 

                E=str2num(C{i}); 

                if length(E)==288 

                    dimenF=size(F); 

                    a=dimenF(1); 

                    F(a+1,:)=E; 

                end 

            end             

            %Mean of all the scans 

            Spectra=mean(F); 

            pause(0.5);   

            fprintf(SerialObject, '9'); 

            pause(0.5);   

        end   

        function CountDown(app, count) 

             

            if count >=10  

                app.Count =0 ; 

                uialert(app.VisibleSpectrometer,'MAX!!! It is time to do a RefSpec scan! ;) :) 

\n Siouplait','RefSpec Scanning'); 

            end  

             

        end 

         

    end 

    methods (Access = private) 

        % Code that executes after component creation 

        function startupFcn(app) 

            xrange=1:288; 

            %Wavelengths calibration coefficients 

            A0 = 3.073843007*10^2; 

            B1 = 2.700288754; 

            B2 = -1.321583483*10^-3; 

            B3 = -5.614427573*10^-6; 

            B4 = 6.321924182*10^-10; 

            B5 = 1.745980368*10^-11; 

            %Resolution: 9.9 nm 

             app.WL=[]; 

            for i =1:288 

                

app.WL(i)=A0+B1*xrange(i)+B2*xrange(i)^2+B3*xrange(i)^3+B4*xrange(i)^4+B5*xrange(i)^5; 

            end              

            delete(instrfindall); 

            X=linspace(300,900,10); 

            Y=linspace(0,1000, 10);             

            plot(app.SignalUIAxes, X, Y); 

            xlim(app.SignalUIAxes, [300 900]); 

            ylim(app.SignalUIAxes, [0 1100]); 

            app.Count = 0; 

            pause('on');             
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        end 

        % Button pushed function: SampleButton 

        function SampleButtonPushed(app, event) 

            d = uiprogressdlg(app.VisibleSpectrometer ,'Title','Sample scanning in 

progress...',... 

                'Indeterminate','on'); 

            if app.s.Status(1) == 'c' 

                fopen(app.s); 

                app.PortStatusTextArea.Value=app.s.Status; 

            end 

            flushinput(app.s);             

            scans=app.NumberofScansEditField.Value ; 

            SampleName=app.SampleNameEditField.Value; 

            rep=app.ReplicateSpinner.Value; 

            BackSpec = specAcqui(app, '0', 10 ,app.s); 

            pause(0.01);   

            flushinput(app.s); 

            SampleSpec = specAcqui(app, '1', scans,app.s);  

            SampleRatio = SampleSpec-app.RefSpec; 

            % Plot spectrum 

            plot(app.SignalUIAxes, app.WL, SampleSpec); 

            xlim(app.SignalUIAxes, [300 900]); 

            ylim(app.SignalUIAxes, [0 1100]); 

            plot(app.ReflectUIAxes, app.WL, SampleRatio); 

            xlim(app.ReflectUIAxes, [300 900]); 

            ylim(app.ReflectUIAxes, [0 2]); 

            path=strcat(app.SavingPath,'\'); 

            fileName=strcat(SampleName, '_' , 'rep_',num2str(rep),'_', 

strrep(strrep(datestr(datetime),':','-'),' ','_'), '.txt'); 

            file=strcat(path, fileName) 

            fileID = fopen(file,'w'); 

             fprintf(fileID, '%s \n', SampleName); 

            fprintf(fileID, '%f \n', SampleSpec); 

             fprintf(fileID, '%s \n', 'Sample_Background_Spectrum'); 

            fprintf(fileID, '%f \n', BackSpec); 

             fprintf(fileID, '%s \n', app.RefName); 

            fprintf(fileID, '%f \n', app.RefSpec); 

             fprintf(fileID, '%s \n', 'Reference_Background_Spectrum'); 

            fprintf(fileID, '%f \n', app.RefBackSpec); 

            fclose(fileID); 

            app.PortStatusTextArea.Value=app.s.Status; 

            app.LastFilesavedTextArea.Value = fileName; 

             

            close(d); 

            app.Count = app.Count + 1; 

            CountDown(app, app.Count);  

        end 

        % Button pushed function: ConnectDeviceButton 

        function ConnectDeviceButtonPushed(app, event) 

            d = uiprogressdlg(app.VisibleSpectrometer ,'Title','Connecting to device',... 
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                'Indeterminate','on'); 

            COMport=app.SerialPortDropDown.Value; 

            app.s=ConnectDevice(app, COMport); 

            app.s.Terminator = 'LF'; 

            pause(0.3); 

            app.PortStatusTextArea.Value=app.s.Status; 

            pause(5); 

            close(d); 

        end 

        % Button pushed function: ClosePORTButton 

        function ClosePORTButtonPushed(app, event) 

              

             if app.s.Status(1) == 'o' 

                 fclose(app.s);   

             end    

             app.PortStatusTextArea.Value=app.s.Status; 

              

        end 

        % Button pushed function: OpenPORTButton 

        function OpenPORTButtonPushed(app, event) 

              

             if app.s.Status(1) == 'c' 

                 fopen(app.s);   

                 app.PortStatusTextArea.Value=app.s.Status; 

                 flushinput(app.s); 

             end                

             app.PortStatusTextArea.Value=app.s.Status; 

              

        end 

        % Button pushed function: SelectDirectoryButton 

        function SelectDirectoryButtonPushed(app, event) 

            app.SavingPath = uigetdir('C:\'); 

            app.VisibleSpectrometer.Visible = 'off'; 

            app.VisibleSpectrometer.Visible = 'on'; 

            app.PathSaving.Value = app.SavingPath; 

        end 

        % Button pushed function: BackgroundButton 

        function BackgroundButtonPushed(app, event) 

            d = uiprogressdlg(app.VisibleSpectrometer ,'Title','RefSpec scanning in 

progress...',... 

                'Indeterminate','on'); 

            if app.s.Status(1) == 'c' 

                fopen(app.s); 

                app.PortStatusTextArea.Value=app.s.Status; 

            end 

%             fprintf(app.s, '2'); 

            flushinput(app.s); 

            scans=app.NumberofScansEditField.Value ; 

            SampleName=app.SampleNameEditField.Value; 

            rep=app.ReplicateSpinner.Value; 
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            app.RefBackSpec = specAcqui(app, '0', 10 ,app.s); 

            pause(0.01);   

            flushinput(app.s); 

            app.RefSpec = specAcqui(app, '1', scans,app.s);   

             

            plot(app.SignalUIAxes, app.WL, app.RefSpec); 

            xlim(app.SignalUIAxes, [300 900]); 

            ylim(app.SignalUIAxes, [0 1100]); 

            path=strcat(app.SavingPath,'\'); 

            app.RefName=strcat('RefSpec_', strrep(strrep(datestr(datetime),':','-'),' ','_'), 

'.txt'); 

            file=strcat(path, app.RefName) 

            fileID = fopen(file,'w'); 

             fprintf(fileID, '%s \n', app.RefName); 

            fprintf(fileID, '%f \n', app.RefSpec); 

             fprintf(fileID, '%s \n', 'Reference_Background_Spectrum'); 

            fprintf(fileID, '%f \n', app.RefBackSpec); 

            fclose(fileID); 

            app.PortStatusTextArea.Value=app.s.Status; 

            app.LastFilesavedTextArea.Value=app.RefName; 

            close(d); 

             

        end 

    end 

    % App initialization and construction 

    methods (Access = private) 

        % Create UIFigure and components 

        function createComponents(app) 

            % Create VisibleSpectrometer 

            app.VisibleSpectrometer = uifigure; 

            app.VisibleSpectrometer.Position = [100 100 726 534]; 

            app.VisibleSpectrometer.Name = 'UI Figure'; 

            % Create HamamatsuSpectrometer 

            app.HamamatsuSpectrometer = uipanel(app.VisibleSpectrometer); 

            app.HamamatsuSpectrometer.TitlePosition = 'centertop'; 

            app.HamamatsuSpectrometer.Title = 'Hamamatsu Spectrometer Data Acquisition'; 

            app.HamamatsuSpectrometer.FontName = 'Arial Black'; 

            app.HamamatsuSpectrometer.FontSize = 16; 

            app.HamamatsuSpectrometer.Position = [13 10 709 513]; 

            % Create SampleButton 

            app.SampleButton = uibutton(app.HamamatsuSpectrometer, 'push'); 

            app.SampleButton.ButtonPushedFcn = createCallbackFcn(app, @SampleButtonPushed, 

true); 

            app.SampleButton.BackgroundColor = [0.302 0.749 0.9294]; 

            app.SampleButton.FontSize = 14; 

            app.SampleButton.Position = [80 6 102 56]; 

            app.SampleButton.Text = 'Sample'; 

            % Create BackgroundButton 

            app.BackgroundButton = uibutton(app.HamamatsuSpectrometer, 'push'); 
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            app.BackgroundButton.ButtonPushedFcn = createCallbackFcn(app, 

@BackgroundButtonPushed, true); 

            app.BackgroundButton.BackgroundColor = [0 0 0]; 

            app.BackgroundButton.FontSize = 14; 

            app.BackgroundButton.FontColor = [1 1 1]; 

            app.BackgroundButton.Position = [82 78 100 55]; 

            app.BackgroundButton.Text = 'Background'; 

            % Create NumberofScansEditFieldLabel 

            app.NumberofScansEditFieldLabel = uilabel(app.HamamatsuSpectrometer); 

            app.NumberofScansEditFieldLabel.VerticalAlignment = 'top'; 

            app.NumberofScansEditFieldLabel.FontSize = 14; 

            app.NumberofScansEditFieldLabel.Position = [26 245 114 22]; 

            app.NumberofScansEditFieldLabel.Text = 'Number of Scans'; 

            % Create NumberofScansEditField 

            app.NumberofScansEditField = uieditfield(app.HamamatsuSpectrometer, 'numeric'); 

            app.NumberofScansEditField.Limits = [1 200]; 

            app.NumberofScansEditField.FontSize = 14; 

            app.NumberofScansEditField.Position = [139 248 100 22]; 

            app.NumberofScansEditField.Value = 20; 

            % Create SampleNameEditFieldLabel 

            app.SampleNameEditFieldLabel = uilabel(app.HamamatsuSpectrometer); 

            app.SampleNameEditFieldLabel.VerticalAlignment = 'top'; 

            app.SampleNameEditFieldLabel.FontSize = 14; 

            app.SampleNameEditFieldLabel.Position = [26 213 94 22]; 

            app.SampleNameEditFieldLabel.Text = 'Sample Name'; 

            % Create SampleNameEditField 

            app.SampleNameEditField = uieditfield(app.HamamatsuSpectrometer, 'text'); 

            app.SampleNameEditField.FontSize = 14; 

            app.SampleNameEditField.Position = [139 216 100 22]; 

            % Create ConnectDeviceButton 

            app.ConnectDeviceButton = uibutton(app.HamamatsuSpectrometer, 'push'); 

            app.ConnectDeviceButton.ButtonPushedFcn = createCallbackFcn(app, 

@ConnectDeviceButtonPushed, true); 

            app.ConnectDeviceButton.FontSize = 14; 

            app.ConnectDeviceButton.Position = [74 374 114 24]; 

            app.ConnectDeviceButton.Text = 'Connect Device'; 

            % Create ReplicateSpinnerLabel 

            app.ReplicateSpinnerLabel = uilabel(app.HamamatsuSpectrometer); 

            app.ReplicateSpinnerLabel.VerticalAlignment = 'top'; 

            app.ReplicateSpinnerLabel.FontSize = 14; 

            app.ReplicateSpinnerLabel.Position = [25 181 64 22]; 

            app.ReplicateSpinnerLabel.Text = 'Replicate'; 

            % Create ReplicateSpinner 

            app.ReplicateSpinner = uispinner(app.HamamatsuSpectrometer); 

            app.ReplicateSpinner.Limits = [1 10]; 

            app.ReplicateSpinner.FontSize = 14; 

            app.ReplicateSpinner.Position = [138 184 101 22]; 

            app.ReplicateSpinner.Value = 1; 

            % Create OpenPORTButton 

            app.OpenPORTButton = uibutton(app.HamamatsuSpectrometer, 'push'); 
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            app.OpenPORTButton.ButtonPushedFcn = createCallbackFcn(app, @OpenPORTButtonPushed, 

true); 

            app.OpenPORTButton.BackgroundColor = [0 1 0]; 

            app.OpenPORTButton.Position = [22 308 98 22]; 

            app.OpenPORTButton.Text = 'OpenPORT'; 

            % Create ClosePORTButton 

            app.ClosePORTButton = uibutton(app.HamamatsuSpectrometer, 'push'); 

            app.ClosePORTButton.ButtonPushedFcn = createCallbackFcn(app, 

@ClosePORTButtonPushed, true); 

            app.ClosePORTButton.BackgroundColor = [1 0 0]; 

            app.ClosePORTButton.FontSize = 14; 

            app.ClosePORTButton.Position = [149 306 98 24]; 

            app.ClosePORTButton.Text = 'ClosePORT'; 

            % Create TextAreaLabel 

            app.TextAreaLabel = uilabel(app.HamamatsuSpectrometer); 

            app.TextAreaLabel.Position = [394 439 210 22]; 

            app.TextAreaLabel.Text = ''; 

            % Create PathSaving 

            app.PathSaving = uitextarea(app.HamamatsuSpectrometer); 

            app.PathSaving.Position = [394 439 297 22]; 

            % Create SelectDirectoryButton 

            app.SelectDirectoryButton = uibutton(app.HamamatsuSpectrometer, 'push'); 

            app.SelectDirectoryButton.ButtonPushedFcn = createCallbackFcn(app, 

@SelectDirectoryButtonPushed, true); 

            app.SelectDirectoryButton.HorizontalAlignment = 'left'; 

            app.SelectDirectoryButton.FontSize = 14; 

            app.SelectDirectoryButton.Position = [269 437 114 24]; 

            app.SelectDirectoryButton.Text = 'Select Directory'; 

            % Create LastFilesavedTextAreaLabel 

            app.LastFilesavedTextAreaLabel = uilabel(app.HamamatsuSpectrometer); 

            app.LastFilesavedTextAreaLabel.FontSize = 14; 

            app.LastFilesavedTextAreaLabel.Position = [268 23 100 22]; 

            app.LastFilesavedTextAreaLabel.Text = 'Last File saved'; 

            % Create LastFilesavedTextArea 

            app.LastFilesavedTextArea = uitextarea(app.HamamatsuSpectrometer); 

            app.LastFilesavedTextArea.FontSize = 14; 

            app.LastFilesavedTextArea.Position = [375 23 315 22]; 

            % Create TabGroup 

            app.TabGroup = uitabgroup(app.HamamatsuSpectrometer); 

            app.TabGroup.Position = [268 65 423 354]; 

            % Create SignalTab 

            app.SignalTab = uitab(app.TabGroup); 

            app.SignalTab.Title = 'Signal'; 

            % Create SignalUIAxes 

            app.SignalUIAxes = uiaxes(app.SignalTab); 

            title(app.SignalUIAxes, 'Sample Signal') 

            xlabel(app.SignalUIAxes, 'Wavelength (nm)') 

            ylabel(app.SignalUIAxes, 'ADC Signal') 

            app.SignalUIAxes.PlotBoxAspectRatio = [1 0.831509846827133 0.831509846827133]; 

            app.SignalUIAxes.Position = [1 13 406 317]; 
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            % Create ReflectanceTab 

            app.ReflectanceTab = uitab(app.TabGroup); 

            app.ReflectanceTab.Title = 'Reflectance'; 

            % Create ReflectUIAxes 

            app.ReflectUIAxes = uiaxes(app.ReflectanceTab); 

            title(app.ReflectUIAxes, 'Sample Reflectance') 

            xlabel(app.ReflectUIAxes, 'Wavelength (nm)') 

            ylabel(app.ReflectUIAxes, 'Reflectance') 

            app.ReflectUIAxes.PlotBoxAspectRatio = [1 0.829694323144105 0.829694323144105]; 

            app.ReflectUIAxes.Position = [0 19 356 311]; 

            % Create PortStatusTextAreaLabel 

            app.PortStatusTextAreaLabel = uilabel(app.HamamatsuSpectrometer); 

            app.PortStatusTextAreaLabel.FontSize = 14; 

            app.PortStatusTextAreaLabel.Position = [26 340 98 22]; 

            app.PortStatusTextAreaLabel.Text = 'Port Status'; 

            % Create PortStatusTextArea 

            app.PortStatusTextArea = uitextarea(app.HamamatsuSpectrometer); 

            app.PortStatusTextArea.FontSize = 14; 

            app.PortStatusTextArea.Position = [139 340 100 22]; 

            % Create SerialPortDropDownLabel 

            app.SerialPortDropDownLabel = uilabel(app.HamamatsuSpectrometer); 

            app.SerialPortDropDownLabel.HorizontalAlignment = 'right'; 

            app.SerialPortDropDownLabel.FontSize = 14; 

            app.SerialPortDropDownLabel.Position = [21 409 71 22]; 

            app.SerialPortDropDownLabel.Text = 'Serial Port'; 

            % Create SerialPortDropDown 

            app.SerialPortDropDown = uidropdown(app.HamamatsuSpectrometer); 

            app.SerialPortDropDown.Items = {'COM1', 'COM2', 'COM3', 'COM4', 'COM5', 'COM6', 

'COM7', 'COM8', 'COM9', 'COM10', 'COM11'}; 

            app.SerialPortDropDown.FontSize = 14; 

            app.SerialPortDropDown.Position = [138 409 101 22]; 

            app.SerialPortDropDown.Value = 'COM1'; 

        end 

    end 

    methods (Access = public) 

        % Construct app 

        function app = HamaAcqui_Final 

            % Create and configure components 

            createComponents(app) 

            % Register the app with App Designer 

            registerApp(app, app.VisibleSpectrometer) 

            % Execute the startup function 

            runStartupFcn(app, @startupFcn) 

            if nargout == 0 

                clear app 

            end 

        end 

        % Code that executes before app deletion 

        function delete(app) 

            % Delete UIFigure when app is deleted 
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            delete(app.VisibleSpectrometer) 

        end 

    end 

end 
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APPENDIX C: R SCRIPS 

C-1 MODELING 

library(caret) 
library(stringr) 
library(pls) 
library(kernlab) 
library(stringr) 
library(prospectr) 
library(doParallel) 
library(devtools) 
library(plsVarSel) 
soilprop_ppm <- read.csv("D:/Marie-Christine Marmette/Data 
Analysis/R/soilprop_ppm_ln.csv") 
pp_path <- "D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/data" 
pp_list <- list.files(path=pp_path) 
instruments <- c("ezorgb","dinolite","hamamatsu","p4000","fieldspec","mars","varian", 
"logiag") 
set.seed(123) 
TC = trainControl(method = "repeatedcv",  
                  number = 10,  
                  repeats=10) 
 
for (instr in 1:7){ 
  dir.create(file.path("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10", instruments[instr+1]), showWarnings = 
FALSE) 
  print(paste("instr=",instr)) 
  pp_file <- get(load(paste(pp_path,pp_list[instr],sep="/"))) 
  ppnames <- names(pp_file) 
  for (prop in 2:15){  
    dir.create(file.path(paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10",instruments[instr+1], sep="/"), 
colnames(soilprop_ppm)[prop]), showWarnings = FALSE) 
    print(paste("prop=",prop)) 
    for (pre in 1:length(ppnames)){       
      if (instr==2 | instr==3 | instr==4) if (pre==10) next       
      if (instr==6 & pre<=7) next 
      if (instr==7 & pre<3) next 
      if (instr==1 & pre>2) next 
      dir.create(file.path(paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10",instruments[instr+1],colnames(soilprop
_ppm)[prop], sep="/"), ppnames[pre]), showWarnings = FALSE) 
      dir.create(file.path(paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10",instruments[instr+1],colnames(soilprop
_ppm)[prop],ppnames[pre], sep="/"), "training_model"), showWarnings = FALSE) 
      folder_path <- paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10", 
                           instruments[instr+1], 
                           colnames(soilprop_ppm)[prop], 
                           ppnames[pre], 
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                           sep="/") 
      print(paste("pre=",pre)) 
      #build data frame 
      rownames(pp_file[[pre]]) <- as.numeric(rownames(pp_file[[pre]])) 
      wavelengths <- colnames(pp_file[[pre]])[-1] 
      x1 <- na.omit(merge(pp_file[[pre]], soilprop_ppm[,c(1,prop)], by.x=0, by.y=1)) 
      row.names(x1) <- x1[,1] 
      x1 <- x1[,-1] 
      x <- as.matrix(x1[,-ncol(x1), drop=FALSE])       
      if (instr==3){ 
        junction <- which(str_detect(wavelengths,"1023")) 
        discard <- c((junction-5):(junction+5)) 
        x <- x[,-discard] 
      } 
      if (instr==4){ 
        junction1 <- which(str_detect(wavelengths,"1000")) 
        junction2 <- which(str_detect(wavelengths,"1800")) 
        discard <- c((junction1-5):(junction1+5),(junction2-5):(junction2+5)) 
        x <- x[,-discard] 
      } 
      if (instr==6 & pre>7){ 
        junction <- which(str_detect(wavelengths,"1500.61")) 
        discard <- c((junction-5):(junction+5)) 
        x <- x[,-discard] 
      } 
      y <- as.numeric(unlist(x1[,ncol(x1), drop=FALSE] ))       
      train_index <- vector(length=length(train_sampleid)) 
      for (l in 1:length(train_sampleid)){ 
        if(length(which(rownames(x)==train_sampleid[l]))==0) next 
        train_index[l] <- which(rownames(x)==train_sampleid[l]) 
      } 
      train_index <- train_index[!train_index %in% 0]       
      save(x,y,train_index, file= paste(folder_path,"training_parameters.Rdata", 
sep="/")) 
      #training model   
      plsmodel <- caret::train(x[train_index,], 
                               y[train_index], 
                               tuneLength = 20, 
                               method='pls', 
                               trControl = TC, 
                               metric = "RMSE") 
      save(plsmodel,file = paste(folder_path,"plsmodel.Rdata", sep="/"))  
    } 
  } 
} 
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C-2 TABLE GENERATION AND STATISTICAL TESTS  

library(chillR) 
library(PairedData)  
dir.create(file.path("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10", 
                     "results"), showWarnings = FALSE) 
for (prop in 2:15){ 
  dir.create(file.path("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results", 
                       colnames(soilprop_ppm)[prop]), showWarnings = FALSE) 
  property_resample_500results <- data.frame() 
  for (instr in 1:7){ 
    instru_resample_500results <- data.frame()  
    dir.create(file.path(paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results",colnames(soilprop_ppm)[prop], 
sep="/"), instruments[instr+1]), showWarnings = FALSE)  
    pp_file <- get(load(paste(pp_path,pp_list[instr],sep="/"))) 
    ppnames <- names(pp_file)  
    for (pre in 1:length(ppnames)){ 
      if (instr==6) if (pre<=7) next 
      if (instr==7 & pre<3) next 
      if (instr==1 & pre==3) next 
      dir.create(file.path(paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results",colnames(soilprop_ppm)[prop], 
instruments[instr+1], sep="/"), ppnames[pre]), showWarnings = FALSE)  
      #skip the mc_snv iteration form hamamatsu, p4000 and fieldspec 
      if (instr==2 | instr==3 | instr==4) if (pre==10) next  
      dir.create(file.path(paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results" 
                                 ,colnames(soilprop_ppm)[prop],instruments[instr+1], 
sep="/"), ppnames[pre]), showWarnings = FALSE) 
      dir.create(file.path(paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results"                                 
,colnames(soilprop_ppm)[prop],instruments[instr+1],ppnames[pre], sep="/"), 
"testing_model" ), showWarnings = FALSE) 
      dir.create(file.path(paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results"                            
,colnames(soilprop_ppm)[prop],instruments[instr+1],ppnames[pre], sep="/"), 
"training_model" ), showWarnings = FALSE)  
      train_path <- paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results", 
                          colnames(soilprop_ppm)[prop], 
                          instruments[instr+1], 
                          ppnames[pre], 
                          "training_model", sep="/") 
      test_path <- paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results", 
                         colnames(soilprop_ppm)[prop], 
                         instruments[instr+1], 
                         ppnames[pre], 
                          "testing_model", sep="/") 
      preproc_path <- paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10", 
                           instruments[instr+1], 
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                           colnames(soilprop_ppm)[prop], 
                           ppnames[pre], 
                           sep="/") 
      results_path <- paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results", 
                            colnames(soilprop_ppm)[prop], 
                            instruments[instr+1], 
                            ppnames[pre], 
                            sep="/") 
      #load traning parameters 
      load(file= paste(preproc_path,"training_parameters.Rdata", sep="/")) 
      preproc_resample_500results <- data.frame() 
      preproc_cross_validation_results <- data.frame()  
      #for (meth in 1:4){ 
        #plsmodel <- get(load(paste(preproc_path,"/", plsmodels[meth],".Rdata", 
sep=""))) 
        plsmodel <- get(load(paste(preproc_path,"/","plsmodel.Rdata", sep="")))  
      nlv_min <- which.min(plsmodel$results$RMSE)  
      #prop, instr, pp, nlv, aic, rmse, 
      property500 <- rep(colnames(soilprop_ppm)[prop], times=500) 
      instrument500 <- rep(instruments[instr+1], times=500) 
      pp500 <- rep(ppnames[pre], times=500) 
      nLV500 <- rep(nlv_min, times=500) 
      nFS500 <- rep(ncol(plsmodel$trainingData), times=500) 
      iter500  <- rep(1:500, times=1) 
      pls_method500 <- rep("pls", times=500) 
      #Save the prediction results in test folder 
      plstest <- stats::predict(plsmodel, x[-train_index,], ncomp = nlv_min)  
      yref <- y[-train_index] 
write.csv(data.frame("predicted"=plstest,"observed"=yref),paste(test_path,"predicted_
observed_test.csv", sep="/")) 
      #save(plstest, file=paste(test_path,"/",plsmodels[meth], "_test_results.Rdata", 
sep="")) 
      save(plstest, file=paste(test_path,"/","plsmodel_test_results.Rdata", sep=""))  
      rmse_p <- rep(chillR::RMSEP(plstest, yref), times=500) 
      r2_p <- rep(summary(lm(plstest~yref))$r.squared , times=500) 
      r2adj_p <- rep(summary(lm(plstest~yref))$adj.r.squared , times=500) 
      rpd_p <- rep(RPD(plstest, yref), times=500) 
      rpiq_p <- rep(RPIQ(plstest, yref), times=500) 
      n_samples500 <- rep(length(yref), times=500)  
      property <- rep(colnames(soilprop_ppm)[prop], times=nlv_min) 
      instrument <- rep(instruments[instr+1], times=nlv_min) 
      pp <- rep(ppnames[pre], times=nlv_min) 
      nFS <- rep(ncol(plsmodel$trainingData), times=nlv_min) 
      pls_method <- rep("pls", times=nlv_min) 
      nLV <- c(1:nlv_min) 
      rmse_c <- vector(length=nlv_min) 
      r2_c <- vector(length=nlv_min) 
      r2adj_c <- vector(length=nlv_min) 
      rpd_c <- vector(length=nlv_min) 
      rpiq_c <- vector(length=nlv_min) 
      predicted <- plsmodel[["finalModel"]][["fitted.values"]] 
      obs <- as.vector(plsmodel[["trainingData"]]$.outcome) 
      n_samples <- rep(length(obs), times=nlv_min) 
      for (l in 1:nlv_min){ 
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        pred <- as.vector(predicted[,,l]) 
        rmse_c[l] <- chillR::RMSEP(pred, obs) 
        r2_c[l] <- summary(lm(pred~obs))$r.squared  
        r2adj_c[l] <- summary(lm(pred~obs))$adj.r.squared  
        rpd_c[l] <- RPD(pred, obs) 
        rpiq_c[l] <- RPIQ(pred, obs) 
      }  
      preproc_cross_validation_results = rbind(preproc_cross_validation_results, 
                                               data.frame("property" = property, 
                                            "instrument" = instrument, 
                                            "preprocessing" = pp,  
                                            "method" = pls_method, 
                                            "nFS" = nFS,  
                                            "nSamples"=n_samples, 
                                           "nlv" = nLV, 
                                           "RMSECV" = 
plsmodel$results$RMSE[1:nlv_min], 
                                           "R2CV" = 
plsmodel[["results"]][["Rsquared"]][1:nlv_min], 
                                           "RMSEC" = rmse_c, 
                                           "R2C" = r2_c, 
                                           "adjR2C" = r2adj_c, 
                                           "RPDC" = rpd_c, 
                                           "RPIQC" = rpiq_c, 
                                           stringsAsFactors = FALSE))  
      #Add test (prediction) results to preproc_resample_500results 
      rmse_c <- rep(rmse_c[nlv_min], times=500) 
      r2_c <- rep(r2_c[nlv_min] , times=500) 
      r2adj_c <- rep(r2adj_c[nlv_min] , times=500) 
      rpd_c <- rep(rpd_c[nlv_min], times=500) 
      rpiq_c <- rep(rpiq_c[nlv_min], times=500)  
      preproc_resample_500results <- rbind(preproc_resample_500results, 
                                           data.frame("property" = property500, 
                                                      "instrument" = instrument500, 
                                                      "preprocessing" = pp500,  
                                                      "method" = pls_method500, 
                                                      "nFS" = nFS500,  
                                                      "nSamples"=n_samples500, 
                                                      "nlv" = nLV500, 
                                                      "iteration" = iter500,  
                                                      "RMSECV" = 
plsmodel[["resample"]][["RMSE"]], 
                                                      "R2CV" = 
plsmodel[["resample"]][["Rsquared"]], 
                                                      "RMSEC" = rmse_c, 
                                                      "R2C" = r2_c, 
                                                      "adjR2C" = r2adj_c, 
                                                      "RPDC" = rpd_c, 
                                                      "RPIQC" = rpiq_c, 
                                                      "RMSEP" = rmse_p, 
                                                      "R2P" = r2_p, 
                                                      "adjR2P" = r2adj_p, 
                                                      "RPDP" = rpd_p, 
                                                      "RPIQP" = rpiq_p, 
                                                      stringsAsFactors = FALSE)) 
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      #write.csv(data.frame("predicted"=predicted[,,nlv_min],"observed"=obs), 
       #         
paste(train_path,"/",plsmodels[meth],"_predicted_observed_train.csv", sep=""))  
      write.csv(data.frame("predicted"=predicted[,,nlv_min],"observed"=obs), 
paste(train_path,"/","plsmodel_predicted_observed_train.csv", sep=""))  
      write.csv(preproc_resample_500results,paste(results_path, 
"preproc_resample_500results.csv", sep="/")) 
      
#write.csv(preproc_cross_validation_results,paste(results_path,"/",plsmodels[meth], 
"_cross_validation_results.csv", sep="")) 
      write.csv(preproc_cross_validation_results,paste(results_path,"/", 
"plsmodel_cross_validation_results.csv", sep="")) 
      instru_resample_500results <- rbind(instru_resample_500results, 
                                          preproc_resample_500results) 
    }     
    instru_path <- paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results" 
                         ,colnames(soilprop_ppm)[prop],instruments[instr+1], sep="/")     
    write.csv(instru_resample_500results, 
paste(instru_path,"instru_resample_500results.csv", sep="/")) 
    property_resample_500results <- rbind(property_resample_500results, 
                                          instru_resample_500results) 
  } 
  property_path <- paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results" 
                       ,colnames(soilprop_ppm)[prop], sep="/")   
  write.csv(property_resample_500results, 
paste(property_path,"property_resample_500results.csv", sep="/")) 
  }     
   
#test for significant difference following http://www.sthda.com/english/wiki/paired-
samples-t-test-in-r 
 
#order from smaller RMSE to bigger 
#loop, compare lowest RMSE with the next lowest that has an nlv smaller than the one 
with  
all_best_model_subset <- data.frame() 
for (prop in 2:15){ 
  results_path <- paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results", 
                       colnames(soilprop_ppm)[prop], sep="/") 
  property_cross_validation_results <- data.frame() 
  property_best_model_subset <- data.frame()   
  for (instr in 1:7){     
    dir.create(file.path(paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results" 
                               ,colnames(soilprop_ppm)[prop],instruments[instr+1], 
sep="/"), "BestModel"), showWarnings = FALSE) 
     instru_path <- paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results" 
                         ,colnames(soilprop_ppm)[prop],instruments[instr+1], sep="/") 
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    instru_resample_500results<-  
read.csv(paste(instru_path,"instru_resample_500results.csv", sep="/"), row.names = 1)     
    pp_file <- get(load(paste(pp_path,pp_list[instr],sep="/"))) 
    ppnames <- names(pp_file) 
    if (instr==6 ) ppnames <- ppnames[8:14] 
    if (instr==7 ) ppnames <- ppnames[3:4] 
    if (instr==1 ) ppnames <- ppnames[1:2] 
    if (instr==2 | instr==3 | instr==4 ) if (length(ppnames)==10) ppnames <- 
ppnames[-10] 
    best_pre_method <- data.frame() 
    instru_resample_500results$preprocessing <- 
factor(instru_resample_500results$preprocessing, levels = ppnames) 
    #if (instr!=7){ 
    #Get the mean value of the RMSE for each preprocessing 
    RMSE_mean <- by(instru_resample_500results$RMSECV, 
instru_resample_500results$preprocessing, mean) 
    #Get the number of latent variables selected for each preprocessings 
    RMSE_lv <- by(instru_resample_500results$nlv, 
instru_resample_500results$preprocessing, mean) 
    #Get the order of the smallest RMSE to the highest 
    RMSE_order <- order(RMSE_mean) 
    #Order the RMSE from the lowest to the highest 
    RMSE_mean_order <- RMSE_mean[RMSE_order] 
    #Order the number of latent variables according to the order of RMSE 
    RMSE_lv_order <- RMSE_lv [RMSE_order] 
    #Get the names of the pp according to the order of the RMSE 
    RMSE_names <- names(RMSE_mean_order) 
    #Subset to get the 500 values of the model with the lowest RMSE 
    RMSE_min <- subset(instru_resample_500results$RMSECV, 
instru_resample_500results$preprocessing == RMSE_names[1]) 
    #Delete the name containing mc_snv 
    ppnames <- ppnames[1:length(RMSE_names)] 
    #Use t.test to test if the other models are significantly different from the best 
model, with an alpha of 1% 
    n=2 
    p_value=10 
    repeat { 
      RMSE_other <- subset(instru_resample_500results$RMSECV, 
instru_resample_500results$preprocessing == RMSE_names[n]) 
      p_value <- t.test(RMSE_min , RMSE_other, paired = TRUE, 
alt="less")[["p.value"]] #tests if RMSE min is significanlty smaller than the next 
one 
      if (p_value <= 0.01) {break} 
      if (n == length(ppnames)) { 
        n=n+1 
        break 
      } 
      n=n+1 
    }       
      #Among the models that are not significantly different, select the one that 
uses the least latent variables. 
      best_model <- which.min(RMSE_lv_order[1:(n-1)]) 
      #number of latent variables in the selected model 
      selected_nlv <- RMSE_lv_order[best_model] 
      #Name of the preprocessing of the selected model 
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      selected_pp_name <- names(selected_nlv) 
       
      write.csv(RMSE_lv_order[1:(n-1)], paste(instru_path,"nss_preprocessings.csv", 
sep="/"))    
       
      best_model_subset <- subset(instru_resample_500results, 
instru_resample_500results$preprocessing == selected_pp_name) 
    #} 
    #else   best_model_subset <- instru_resample_500results     
      best_model_combination <- best_model_subset[1,] 
      best_model_combination$iteration=NA 
      best_model_combination$RMSECV=mean(best_model_subset$RMSECV) 
      best_model_combination$R2CV=mean(best_model_subset$R2CV) 
      write.csv(best_model_combination, 
paste(instru_path,"best_model_combination.csv", sep="/")) 
      write.csv(best_model_subset, paste(instru_path,"best_model_subset.csv", 
sep="/"))       
      property_best_model_subset <- rbind(property_best_model_subset, 
                                          best_model_subset) 
} 
   
  all_best_model_subset <- rbind(all_best_model_subset, 
                                 property_best_model_subset) 
#Save  RMSE data frame for the property 
write.csv(property_best_model_subset, 
          paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/Results", 
                colnames(soilprop_ppm)[prop], 
                "property_best_model_subset.csv", sep="/")) 
} 
#Save cross validation results for all properties 
write.csv(all_best_model_subset, 
          paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/Results", 
                "all_best_model_subset.csv", sep="/")) 
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C-3 GRAPHS 

#Generating graphs 
library(ggpmisc) 
library(ggplot2) 
library(RColorBrewer) 
library(ggrepel) 
library(ggpubr) 
library(plotrix) 
library(chillR) 
library(stringr) 
library(multcompView) 
library(dplyr) 
pred_obs_axis <- list(c("P (predicted), ppm", "P (observed), ppm"), 
                        c("instr (predicted), ppm", "instr (observed), ppm"), 
                        c("Ca (predicted), ppm", "Ca (observed), ppm"), 
                        c("Mg (predicted), ppm", "Mg (observed), ppm"), 
                        c("Al (predicted), ppm", "Al (observed), ppm"), 
                        c("pH (predicted)", "pH (observed)"), 
                        c("Buffer pH (predicted)", "Buffer pH (observed)"), 
                        c("SOM (predicted), %", "SOM (observed), %"), 
                        c("CEC (predicted), meq/100g", "CEC (observed), meq/100g"), 
                        c("lnP (predicted)", "lnP (observed)"), 
                        c("lnK (predicted)", "lnK (observed)"), 
                        c("lnMg (predicted)", "lnMg (observed)"), 
                        c("lnSOM (predicted)", "lnSOM (observed)"), 
                        c("lnCEC (predicted)", "lnCEC (observed)")) 
pred_obs_axis <- matrix(unlist(pred_obs_axis), ncol = 2, byrow = TRUE) 
all_test_results <- data.frame() 
all_train_results <- data.frame() 
instru_names <- c("Vis-1","Vis-2","Vis-NIR-1","Vis-NIR-2","MIR-1","MIR-2","LIBS") 
instruments_df <- data.frame("instrument" = as.vector(instruments[2:8]), "technology" 
=  as.vector(instru_names)) 
instruments_df$technology <- factor(instruments_df$technology, levels = 
unique(instruments_df$technology)) 
instruments_df$instrument <- factor(instruments_df$instrument, levels = 
unique(instruments_df$instrument)) 
properties_sd <- apply(soilprop_ppm,2, sd,na.rm=TRUE) 
for (prop in 2:15){ 
  property_test_results <- data.frame() 
  property_train_results <- data.frame()  
  for (instr in 1:7){ 
    instrument_test_results <- data.frame() 
    instrument_train_results <- data.frame()  
    pp_file <- get(load(paste(pp_path,pp_list[instr],sep="/"))) 
    ppnames <- names(pp_file)  
    if (instr==2 | instr==3 | instr==4 ) if (length(ppnames)==10) ppnames <- 
ppnames[-10] 
    #Upload data frame containing the 500 results of each preprocessings for 
Property, Instrument 
    property_instrument_path <- paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results",colnames(soilprop_ppm)[prop],i
nstruments[instr+1], sep="/") 
    instru_resample_500results_csvfile <- paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results"                           
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,colnames(soilprop_ppm)[prop],instruments[instr+1], "instru_resample_500results.csv", 
sep="/") 
    instru_resample_500results <- 
read.csv(instru_resample_500results_csvfile,row.names = 1) 
    #Remove results associated to PP mc_snv iff there is any 
    if (length(which(instru_resample_500results$preprocessing=="mc_snv"))!= 0) { 
      toBeRemoved<-which(instru_resample_500results$preprocessing=="mc_snv") 
      instru_resample_500results<-instru_resample_500results[-toBeRemoved,] 
    }     
    instru_resample_500results$pp_nlv <- 
paste(instru_resample_500results$preprocessing,instru_resample_500results$nlv, sep=", 
")   
    nfactors <- length(unique(instru_resample_500results$preprocessing)) 
    best_model_combination_csvfile <- paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results",                                                          
colnames(soilprop_ppm)[prop],                                                          
instruments[instr+1],                                                         
"best_model_combination.csv", sep="/") 
    best_model_combinations <- read.csv(best_model_combination_csvfile,row.names = 1) 
    nss_preprocessings_csvfile <- paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results", 
                                            colnames(soilprop_ppm)[prop], 
                                            instruments[instr+1], 
                                            "nss_preprocessings.csv", sep="/") 
    nss_preprocessings <- read.csv(nss_preprocessings_csvfile,row.names = 1) 
    preprocess_nlv <- paste(rownames(nss_preprocessings),", ", t(nss_preprocessings), 
sep="") 
    nss_label_rmse <- data.frame(pp_nlv = preprocess_nlv, 
                           Value = rep(max(instru_resample_500results$RMSECV)*1.05, 
times=nrow(nss_preprocessings))) 
    nss_label_r2 <- data.frame(pp_nlv = preprocess_nlv, 
                               Value = rep(max(instru_resample_500results$R2CV)*1.2, 
times=nrow(nss_preprocessings))) 
    nss_label_r2$pp_nlv <- str_remove(nss_label_r2$pp_nlv, "sub_") 
    nss_label_rmse$pp_nlv <- str_remove(nss_label_rmse$pp_nlv, "sub_")  
    instru_resample_500results$pp_nlv <- 
str_remove(instru_resample_500results$pp_nlv, "sub_")   
    level_order <- unique(as.character(instru_resample_500results$pp_nlv)) 
    c1 <- rep(rainbow(nfactors), each=500) 
    c1_9 <- rainbow(nfactors) 
    c2 <- rep(rainbow(nfactors, alpha=0.2), each=500) 
    c2_9 <- rainbow(nfactors, alpha=0.1) 
    #get the means 
    instru_resample_500results$preprocessing <- 
as.factor(instru_resample_500results$preprocessing) 
    means <- aggregate(instru_resample_500results$RMSECV, 
list(instru_resample_500results$pp_nlv), FUN=mean) 
    min_mean_pos <- which(level_order==means$Group.1[which.min(means$x)]) 
    best_model <- as.character(best_model_combinations$preprocessing) 
    best_model_pos <- 
which(unique(as.character(instru_resample_500results$preprocessing))==best_model) 
    x_axis_style <- rep("plain", each=nfactors) 
    x_axis_style[min_mean_pos] <- "italic" 
    x_axis_style[best_model_pos] <- "bold" 
    if (best_model_pos==min_mean_pos) x_axis_style[best_model_pos] <- "bold.italic" 
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      for (pre in 1:length(ppnames)){ 
        if (instr==6 & pre<=7) next 
        if (instr==7 & pre<3) next 
        if (instr==1 & pre>2) next 
        #skip the mc_snv iteration form hamamatsu, p4000 and fieldspec 
        if (instr==2 | instr==3 | instr==4) if (pre==10) next 
        sub_instru_resample_500results <-  subset(instru_resample_500results, 
preprocessing == ppnames[pre]) 
        results_property_instrument_preprocess_path <- paste("D:/Marie-Christine 
Marmette/Data Analysis/R/10fold50repAIC_70train30test_10x10/results",                                                             
colnames(soilprop_ppm)[prop],                                                             
instruments[instr+1],  ppnames[pre],  sep="/") 
        train_path <- paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results", 
                            colnames(soilprop_ppm)[prop], 
                            instruments[instr+1], 
                            ppnames[pre], 
                            "training_model", sep="/") 
        test_path <- paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results", 
                           colnames(soilprop_ppm)[prop], 
                           instruments[instr+1], 
                           ppnames[pre], 
                           "testing_model", sep="/") 
        #Observed against predicted TEST 
        predicted_observed <- read.csv(paste(test_path,"predicted_observed_test.csv", 
sep="/"),row.names = 1) 
             
        Linear_fit <- summary(lm(predicted_observed$predicted 
~predicted_observed$observed)) 
        intercept <- Linear_fit[["coefficients"]][1] 
        if (grepl("e", format(format(intercept, digits=2), scientific = TRUE))){ 
          intercept <- format(format(intercept, digits=3), scientific = TRUE) 
#Transforms the number into scientific notation even if small 
          intercept <- sub("e", "%*%10^", intercept) #Replace e with 10^ 
          intercept <- sub("\\+0?", "", intercept) #Remove + symbol and leading zeros 
on expoent, if > 1 
          intercept <- sub("-0?", "-", intercept) #Leaves - symbol but removes 
leading zeros on expoent, if < 1 
        } 
        else intercept <- format(intercept, digits=3)         
        slope <- Linear_fit[["coefficients"]][2] 
        slope <- format(slope, digits=2)         
        eqn1 <- paste0("italic(y) ==", intercept) 
        eqn2 <- paste0(" + ", slope, "~ italic(x)" ) 
        eqn <- paste0(eqn1,eqn2) 
        rr <- Linear_fit$r.squared 
        rr_adj <- Linear_fit$adj.r.squared         
        rmse <- chillR::RMSEP(predicted_observed$predicted, 
predicted_observed$observed) 
        rpd <- RPD(predicted_observed$predicted, predicted_observed$observed) 
        rpiq <- RPIQ(predicted_observed$predicted, predicted_observed$observed) 
        n_samples <- nrow(predicted_observed) 
        nlv <- sub_instru_resample_500results$nlv[1] 
        preproc <- sub_instru_resample_500results$preprocessing[1] 
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        instru <- sub_instru_resample_500results$instrument[1  
        test_results <- data.frame("property"=colnames(soilprop_ppm)[prop], 
                                   "instrument"=instruments[instr+1], 
                                   "technology"=instru_names[instr],                                   
"preprocessing"=sub_instru_resample_500results$preprocessing[1], 
                                   "nLV"=nlv, 
                                   "Nsamples"=n_samples, 
                                   "intercept"=Linear_fit[["coefficients"]][1], 
                                   "slope"=Linear_fit[["coefficients"]][2], 
                                   "RMSEP"=rmse, 
                                   "R2P"=rr, 
                                   "R2adjP"=rr_adj, 
                                   "RPDP"=rpd, 
                                   "RPIQP"=rpiq) 
        write.csv(test_results,file=paste(test_path,"test_results.csv", sep="/"))  
        instrument_test_results <- rbind(instrument_test_results, test_results) 
        nonmetric_label = c(str_remove(as.character(preproc), "sub_"), 
                            paste0(nlv, "~~LV"), 
                            paste0("n==",n_samples), 
                            eqn, 
                            paste0("italic(R)^2 ==", format(rr, digits=3)), 
                            paste0("italic(R)[adj]^2 ==", format(rr_adj, digits=3)), 
                            paste0("RMSE ==", format(rmse, digits=3)), 
                            paste0("RPIQ ==", format(rpiq, digits=3)), 
                            paste0("RPD ==", format(rpd, digits=3))) 
        Minimum <- min(predicted_observed) 
        Maximum <- max(predicted_observed) 
        xmax <- max(predicted_observed$observed)  
        legend_positions <- seq(Maximum-(Maximum-Minimum)*0.35, Maximum, len=9  
        #Observed against predicted TRAIN         
        predicted_observed <- 
read.csv(paste(train_path,"plsmodel_predicted_observed_train.csv", sep="/"),row.names 
= 1)  
        Linear_fit <- 
summary(lm(predicted_observed$predicted~predicted_observed$observed)) 
        intercept <- Linear_fit[["coefficients"]][1] 
        if (grepl("e", format(format(intercept, digits=2), scientific = TRUE))){ 
          intercept <- format(format(intercept, digits=3), scientific = TRUE) 
#Transforms the number into scientific notation even if small 
          intercept <- sub("e", "%*%10^", intercept) #Replace e with 10^ 
          intercept <- sub("\\+0?", "", intercept) #Remove + symbol and leading zeros 
on expoent, if > 1 
          intercept <- sub("-0?", "-", intercept) #Leaves - symbol but removes 
leading zeros on expoent, if < 1 
        } 
        else intercept <- format(intercept, digits=3)         
        slope <- Linear_fit[["coefficients"]][2] 
        slope <- format(slope, digits=2)         
        eqn1 <- paste0("italic(y) ==", intercept) 
        eqn2 <- paste0(" + ", slope, "~ italic(x)" ) 
        eqn <- paste0(eqn1,eqn2) 
        rr <- Linear_fit$r.squared 
        rr_adj <- Linear_fit$adj.r.squared 
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        rmse <- chillR::RMSEP(predicted_observed$predicted, 
predicted_observed$observed)         
        rpd <- RPD(predicted_observed$predicted, predicted_observed$observed) 
        rpiq <- RPIQ(predicted_observed$predicted, predicted_observed$observed)  
        n_samples <- nrow(predicted_observed) 
        nlv <- sub_instru_resample_500results$nlv[1] 
        preproc <- sub_instru_resample_500results$preprocessing[1] 
        instru <- sub_instru_resample_500results$instrument[1]  
        train_results <- data.frame("property"=colnames(soilprop_ppm)[prop], 
                                   "instrument"=instruments[instr+1], 
                                   "technology"=instru_names[instr],                                   
"preprocessing"=sub_instru_resample_500results$preprocessing[1], 
                                   "nLV"=nlv, 
                                   "Nsamples"=n_samples, 
                                   "intercept"=Linear_fit[["coefficients"]][1], 
                                   "slope"=Linear_fit[["coefficients"]][2], 
                                   "RMSE"=rmse, 
                                   "R2"=rr, 
                                   "R2adj"=rr_adj, 
                                   "RPD"=rpd, 
                                   "RPIQ"=rpiq) 
        write.csv(train_results,file=paste(train_path,"train_results.csv", sep="/"))         
        instrument_train_results <- rbind(instrument_train_results, train_results)         
        nonmetric_label = c(str_remove(as.character(preproc), "sub_"), 
                            paste0(nlv, "~~LV"), 
                            paste0("n==",n_samples), 
                            eqn, 
                            paste0("italic(R)^2 ==", format(rr, digits=3)), 
                            paste0("italic(R)[adj]^2 ==", format(rr_adj, digits=3)), 
                            paste0("RMSE ==", format(rmse, digits=3)), 
                            paste0("RPIQ ==", format(rpiq, digits=3)), 
                            paste0("RPD ==", format(rpd, digits=3))) 
        Minimum <- min(predicted_observed) 
        Maximum <- max(predicted_observed) 
        xmax <- max(predicted_observed$observed) 
        legend_positions <- seq(Maximum-(Maximum-Minimum)*0.35, Maximum, len=9)  
      }      
write.csv(instrument_test_results,file=paste(property_instrument_path,"instrument_tes
t_results.csv", sep="/"))      
write.csv(instrument_train_results,file=paste(property_instrument_path,"instrument_tr
ain_results.csv", sep="/")) 
      property_test_results <- rbind(property_test_results,instrument_test_results) 
      property_train_results <- 
rbind(property_train_results,instrument_train_results) 
  }   
  property_path <- paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results" 
                         ,colnames(soilprop_ppm)[prop], sep="/") 
  all_test_results <- rbind(all_test_results,property_test_results)  
write.csv(property_test_results,file=paste(property_path,"property_test_results.csv", 
sep="/"))   
  all_train_results <- rbind(all_train_results,property_train_results)  
write.csv(property_train_results,file=paste(property_path,"property_train_results.csv
", sep="/")) 
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  property_500_bestmodel_results_csvfile <- paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results"                                                       
,colnames(soilprop_ppm)[prop],"property_best_model_subset.csv", sep="/") 
  property_500_bestmodel_results <- 
read.csv(property_500_bestmodel_results_csvfile,row.names = 1) 
  #order factors 
  property_500_bestmodel_results$instrument <- 
factor(property_500_bestmodel_results$instrument, levels = 
unique(property_500_bestmodel_results$instrument))   
  property_500_bestmodel_results <- 
merge(property_500_bestmodel_results,instruments_df, by="instrument") 
  property_500_bestmodel_results$instru_pp_nlv <- 
paste(property_500_bestmodel_results$technology,                                                            
property_500_bestmodel_results$preprocessing,                                                           
property_500_bestmodel_results$nlv, sep=", ")   
  property_500_bestmodel_results$instru_pp_nlv <- 
str_remove(property_500_bestmodel_results$instru_pp_nlv, "sub_") 
  property_500_bestmodel_results <- arrange(property_500_bestmodel_results, 
technology) 
  ninstru <- length(unique(property_500_bestmodel_results$instrument)) 
  instru_order <- unique(as.character(property_500_bestmodel_results$instru_pp_nlv)) 
  property_500_bestmodel_results$instru_pp_nlv <- 
factor(property_500_bestmodel_results$instru_pp_nlv, levels = 
unique(property_500_bestmodel_results$instru_pp_nlv)) 
  property_500_bestmodel_results_nologiag <- 
data.frame(subset(property_500_bestmodel_results,!(instrument %in% "logiag"))) 
  logiag_rmse <- aggregate(property_500_bestmodel_results$RMSECV, 
list(property_500_bestmodel_results$instrument=="logiag"), mean)$x[2] 
  logiag_r2 <- aggregate(property_500_bestmodel_results$R2CV, 
list(property_500_bestmodel_results$instrument=="logiag"), mean)$x[2]   
  logiag_rmse_test <- aggregate(property_500_bestmodel_results$RMSEP, 
list(property_500_bestmodel_results$instrument=="logiag"), mean)$x[2] 
  logiag_r2_test <- aggregate(property_500_bestmodel_results$R2P, 
list(property_500_bestmodel_results$instrument=="logiag"), mean)$x[2]   
  rmsep_points <- aggregate(property_500_bestmodel_results$RMSEP, 
list(property_500_bestmodel_results$instru_pp_nlv), mean) 
  r2p_points <- aggregate(property_500_bestmodel_results$R2P, 
list(property_500_bestmodel_results$instru_pp_nlv), mean) 
  rmsep_points$instru_pp_nlv <- rmsep_points$Group.1 
  r2p_points$instru_pp_nlv <- r2p_points$Group.1   
  rmsec_points <- aggregate(property_500_bestmodel_results$RMSEC, 
list(property_500_bestmodel_results$instru_pp_nlv), mean) 
  r2c_points <- aggregate(property_500_bestmodel_results$R2C, 
list(property_500_bestmodel_results$instru_pp_nlv), mean) 
  rmsec_points$instru_pp_nlv <- rmsec_points$Group.1 
  r2c_points$instru_pp_nlv <- r2c_points$Group.1   
  c1_5 <- rainbow(ninstru) 
  c2_5 <- rainbow(ninstru, alpha=0.1)   
  {#Tukey test to letters: 
 
 
    # Create data 
     treatment=str_replace_all(property_500_bestmodel_results$instru_pp_nlv,"-","xx") 
     value=property_500_bestmodel_results$RMSECV 
   data=data.frame(treatment,value) 
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   data$treatment <- factor(data$treatment,levels=unique(data$treatment)[c(7,1:6)]) 
 # What is the effect of the treatment on the value ? 
   model=lm( data$value ~ data$treatment ) 
    ANOVA=aov(model) 
 
    # Tukey test to study each pair of treatment : 
   TUKEY <- TukeyHSD(x=ANOVA, 'data$treatment', conf.level=0.95) 
# Tuckey test representation : 
  #plot(TUKEY , las=1 , col="brown" ) 
# I need to group the treatments that are not different each other together. 
    generate_label_df <- function(TUKEY, variable){ 
       # Extract labels and factor levels from Tukey post-hoc 
       Tukey.levels <- TUKEY[[variable]][,4] 
       Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters']) 
  
       #I need to put the labels in the same order as in the boxplot : 
       Tukey.labels$treatment=rownames(Tukey.labels) 
       Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ] 
       return(Tukey.labels) 
     } 
  
     # Apply the function on my dataset 
     LABELS=generate_label_df(TUKEY , "data$treatment") 
  
   } 
     #With test results 
     LABELS$treatment <- str_replace_all(LABELS$treatment,"xx","-") 
  
     y.letters= aggregate(property_500_bestmodel_results$RMSECV, 
                          list(property_500_bestmodel_results$instru_pp_nlv), 
                          max) 
     y.letters$x <- y.letters$x + max(y.letters$x)*0.05 
     LABELS <- merge(LABELS, y.letters , by.x="treatment", by.y="Group.1") 
     ytop <- max(property_500_bestmodel_results$RMSECV) + max(y.letters$x)*0.2 
     ylow <- min(property_500_bestmodel_results$RMSECV)+ 0.80*(ytop-
min(property_500_bestmodel_results$RMSECV)) 
     ysd <- ylow + (ytop-ylow)*(5/6) 
     yc <- ylow + (ytop-ylow)*(3/6) 
     yp <- ylow + (ytop-ylow)*(1/6) 
#rmse 
    ggplot(property_500_bestmodel_results, aes(x=factor(instru_pp_nlv, 
level=instru_order), y=RMSECV))  + 
      theme_bw()+ 
       geom_hline(yintercept=properties_sd[prop] , linetype="dashed", color = "grey", 
size=1) + 
       geom_boxplot(color=c1_5, fill=c2_5,  show.legend = FALSE) + 
       stat_summary(fun.y = mean,geom="point",colour=c1_5, shape=4, size=4) + 
       theme(plot.title = element_text(size=16,hjust = 0.5), 
             axis.text.x = element_text(size=12,  angle=45, vjust = 1, hjust = 1), 
             axis.text.y = element_text(size=12), 
             axis.title.x = element_text(size=14), 
             axis.title.y = element_text(size=14)) + 
       labs(title=colnames(soilprop_ppm)[prop], 
            x = "Instrument, Preprocessing, number of Latent Variables")  + 
       geom_point(data = rmsep_points, aes(instru_pp_nlv, x), shape=18, size=3) + 
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       geom_point(data = rmsec_points, aes(instru_pp_nlv, x), shape=19, size=3) + 
       geom_text(data = LABELS, aes(x = treatment, y = x , label = Letters)) + 
       annotate("rect", xmin = 5.9, xmax = 7.55, ymin = ylow, ymax = ytop, 
                color="black", fill="white") + 
      annotate("point", x = 6.5, y = yp, shape=19, size = 3) + 
       annotate("point", x = 6.5, y = yc, shape=18, size = 3) + 
       annotate("segment", x = 6, y = ysd, xend=6.5, yend=ysd, 
                linetype="dashed", color = "grey", size=1) + 
       annotate("text", x = 6.6, y = c(ysd, yc, yp), 
                label = c("SD","RMSEC", "RMSEP"), 
                hjust = 0, vjust="center") 
     #Save plot 
     ggsave(paste(property_path,"instru_pp_RMSE_test_compared5_3.png", sep="/"), 
width = 5, height = 5  
  #Means:  
  rmse_mean <- aggregate(property_500_bestmodel_results$RMSEP, 
                         list(property_500_bestmodel_results[,1], 
                              property_500_bestmodel_results[,2], 
                              property_500_bestmodel_results[,3], 
                              property_500_bestmodel_results[,5], 
                              property_500_bestmodel_results[,6], 
                              property_500_bestmodel_results[,7], 
                              property_500_bestmodel_results[,21], 
                              property_500_bestmodel_results[,22]), 
                         FUN=mean) 
  r2_mean <- aggregate(property_500_bestmodel_results$R2P, 
                                 list(property_500_bestmodel_results[,1]), 
                                 FUN=mean) 
  results <- merge(rmse_mean, r2_mean, by.x="Group.1", by.y="Group.1", sort = TRUE) 
 
  results_mean <- data.frame("property"=results$Group.2, 
                             "instrument"=results$Group.1, 
                             "technology"=results$Group.7, 
                             "preprocessing"=results$Group.3, 
                             "LatenVariables"=results$Group.6, 
                             "combination" =results$Group.8, 
                             "RMSE"=results$x.x, 
                             "R2"=results$x.y) 
  results_mean$technology <- factor(unique(results_mean$technology))   
} 
all_results <- data.frame(all_train_results,all_test_results[,6:13]) 
all_train_colnames <- paste(colnames(all_train_results), ".c", sep="")  
all_test_colnames <- paste(colnames(all_test_results), ".p", sep="")  
colnames(all_results)[6:ncol(all_results)] <- 
c(all_train_colnames[6:13],all_test_colnames[6:13]) 
results_path <- "D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results" 
write.csv(all_test_results,file=paste(results_path,"all_test_results.csv", sep="/")) 
write.csv(all_train_results,file=paste(results_path,"all_train_results.csv", 
sep="/")) 
write.csv(all_results,file=paste(results_path,"all_results.csv", sep="/")) 
Combination <- data.frame() 
for (prop in 2:15){ 
  for (instr in 1:7){ 
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    best_model_combination_csvfile <- paste("D:/Marie-Christine Marmette/Data 
Analysis/R/10fold50repAIC_70train30test_10x10/results", 
                                            colnames(soilprop_ppm)[prop], 
                                            instruments[instr+1], 
                                            "best_model_combination.csv", sep="/") 
    best_model_combinations <- read.csv(best_model_combination_csvfile,row.names = 1) 
    Combination <- rbind(Combination, data.frame(best_model_combinations[,1:3])) 
  } 
} 
Combination$preprocessing <- factor(Combination$preprocessing, levels= 
levels(all_results$preprocessing)) 
best_model <- data.frame() 
for (i in 1:nrow(Combination)){ 
  row_best_model <- subset(all_results,  all_results$property == 
Combination$property[i] &                             all_results$instrument == 
Combination$instrument[i] &  
                            all_results$preprocessing ==  
Combination$preprocessing[i]) 
  best_model <- rbind(best_model,row_best_model) 
} 
write.csv(best_model,file=paste(results_path,"best_models.csv", sep="/")) 
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APPENDIX D: PROCESSING OPTIMIZATION 
DINO-LITE EDGE– VIS-1  
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HAMAMATSU– VIS-1  
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VERIS P4000– VIS-NIR-1  
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FIELDSPED4 – VIS-NIR-2  

   

   

   



143 
 

PORTABLE MIR PROBE – MIR-1  
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EXCALIBUR FROM VARIAN – MIR-2  
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LASERAG – LIBS  
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