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ABSTRACT

Abstract

This thesis focuses on monitoring non-speci�c and unconstrained activities and events

in videos in order to build a complete scene understanding system. The particular

emphasis in this work is based on the spatio-temporal context of the scene. This

thesis proposes a unique solution using a hierarchical framework of video fragments

to create a dynamically changing model of the scene. The model is then used to

simultaneously detect and localize an event of interest, detect abnormal (rare) events,

and track all moving objects in the scene. The approach can be considered as an

extension to the original Bag-of-Video-Words approaches in which a spatio-temporal

scene con�guration comes into play. It does not require prior knowledge about actions

and events, background subtraction, motion estimation or tracking. It is also robust

to spatial and temporal scale changes, as well as some deformations. The hierarchical

algorithm uses a probabilistic framework to code a video as a compact set of local

spatio-temporal visual features, while considering their spatio-temporal compositions

in order to account for the scene context. A signi�cant aspect of the methodology

is the way that we represent scene information while keeping the computational cost

low enough for real-time implementation using the current hardware resources.

Given the adaptive shape- and motion-based model, the events can be described

and localized in the videos. These events are interpreted by a complete scene under-

standing system that uses di�erent inference mechanisms and learning strategies to

describe ongoing events in a video, identify abnormal patterns is space and time, �nd

similar videos to a query based on their contents, and track all moving objects in the
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scene without using any object detection method. We have extensively tested all our

system on popular benchmarks and shown that they are both e�ective and robust

for all of the aforementioned tasks. Moreover, the results are highly competitive with

state-of-the-art methods. However, a major advantage of our approach is that it does

not require any feature analysis, background/foreground segmentation and tracking,

and is susceptible to online real-time analysis.
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Abrégé

Cette thèse porte sur le suivi des activités et des événements non spéci�ques et sans

contraintes dans les vidéos a�n de construire un système de compréhension complète

de scène. Ce travail porte une importance particulière sur le contexte spatio-temporel

de la scène. Cette thèse propose une solution unique qui utilise un cadre hiérar-

chique de fragments de vidéo pour créer un modèle de changement dynamique de la

scène. Le modèle est ensuite utilisé pour détecter et localiser simultanément un événe-

ment d'intérêt, détecter les événements anormaux (rares) et suivre tous les objets en

mouvement dans la scène. L'approche peut être considérée comme une extension de

l'approche originale Bag-of-Video-Words dans laquelle une con�guration de la scène

spatio-temporelle entre en jeu. Elle ne nécessite pas de connaissance préalable sur

les actions et les événements, la soustraction d'image de fond, l'estimation de mou-

vement ou de suivi. Elle est également robuste aux changements d'échelle spatiale

et temporelle ainsi que certaines déformations. L'algorithme hiérarchique utilise un

cadre probabiliste pour coder une vidéo comme un ensemble compact de caracté-

ristiques visuelles spatio-temporelles locales, tout en tenant compte de leurs compo-

sitions spatio-temporelles a�n de tenir compte du contexte de la scène. Un aspect

important de la méthodologie est la façon dont l'information de la scène est représen-

tée tout en gardant un niveau minimal de calcul mais su�sant pour la mise en ÷uvre

en temps réel en utilisant les ressources matérielles actuelles.

Compte tenu du modèle adaptatif basé sur la forme et le mouvement, les événe-

ments peuvent être décrits et localisés dans les vidéos. Ces événements sont interprétés
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par un système de compréhension complète de scène qui utilise di�érents mécanismes

d'inférence et de stratégies d'apprentissage pour décrire les événements en cours dans

une vidéo, identi�e les tendances anormales dans l'espace et le temps, trouve des

vidéos similaires à une requête basée sur leur contenu et fait le suivi de tous les ob-

jets en mouvement dans la scène sans utiliser de procédé de détection d'objet. Nous

avons testé à plusieurs reprises notre système en entier sur des références populaires

et montré qu'il est à la fois e�cace et robuste pour toutes les tâches mentionnées ci-

dessus. De plus, les résultats sont très compétitifs avec les méthodes à la �ne pointe

de la technologie. Cependant, un avantage majeur de notre approche est qu'elle ne

nécessite pas d'analyse de fonction, de segmentation et de suivi d'image de fond ou

de premier plan et o�re l'opportunité à l'analyse en ligne.
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1.1 BACKGROUND

Chapter 1

Introduction

1.1 Background

Given the tremendous number of video data produced every day, there is a great

demand for automated systems that analyze and understand the events in these

videos. In particular, retrieving and identifying human activities in videos has become

more interesting due to its potential applications in real life. These include the follow-

ing practical applications: automated video surveillance systems, human-computer

interaction, assisted living environments and nursing care institutions, sports inter-

pretation, video annotation and indexing, and video summarization. This thesis

focuses on monitoring non-speci�c and unconstrained activities in videos. We pro-

pose a unique solution for visual event understanding using a hierarchical framework

of video fragments to describe objects and their motions. These are employed to

simultaneously detect and localize both dominant (activities that occur on a regular

basis) and rare events (activities which are not observed regularly). Then, the frame-

work is extended to do video-to-video matching and eventually, a model free tracker

is constructed to track multiple moving objects in the scene.

More speci�cally, the overall objectives of this research are:

(i) To detect and localize abnormal (rare) events in videos [90].
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(ii) To detect and localize normal activities in video clips [91]. In this thesis,

the actual label assignment and recognition of these normal events is left

for further research.

(iii) To measure the similarity between two videos and video-to-video matching

[88, 89].

(iv) To track all moving objects in the scene [44].

Those objectives require the ability to measure, online and adaptively, the self-

similarity of a video clip or the similarity between two video clips. Our solution is

based on the bag of space-time features approach in which a prescribed set of spatio-

temporal video volumes is used for measuring similarity. We refer to this as the scene

context. Figure 1.1 represents a block-diagram of the thesis structure and objectives.

The approach presented here for modeling the scene context can be considered

as an extension of the original Bag-of-Video-Words approaches in which a spatio-

temporal scene con�guration comes into play. It imposes spatial and temporal con-

straints on the video fragments so that an inference mechanism can estimate the prob-

ability density functions of their arrangements. A signi�cant aspect of the methodol-

ogy is the way that we represent scene information while keeping the computational

cost low enough for real-time implementation using currently available hardware re-

sources. Moreover, it does not require lengthy training periods, object segmentation,

tracking and background subtraction, with their attendant weaknesses, which form

the basis for previously reported approaches. By observing a scene in real-time,

the system builds a dynamically changing model of the environment. This adaptive

appearance-based model, which is probabilistic in nature, is employed to describe

the ongoing events. Our approach provides probabilistic graphical structures of all

moving objects while simultaneously coding the spatio-temporal context of the scene

in the surrounding regions. The probabilistic graphical structures are then used to

�nd and localize di�erent events in the scene. Therefore, a video is represented by

set of events, localized in space and time, and coded by probabilistic graphical struc-

tures. Such a framework can be considered as the building block for the computer
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Contextual 
Structures

Online Event 
Understanding

Abnormality 
Detection

Simultaneous 
Dominant and 

Rare Event 
Modeling

Offline Event 
Recognition

Video to Video 
Matching  and 

Activity 
Recognition

Long –Term Event 
Understanding

Tracking

Figure 1.1. Thesis structure. The main focus of this thesis is to build a
system for visual event description in videos. First, we introduce a framework
for capturing contextual structures in videos. It uses local and global motion
patterns to construct an adaptive structure of all objects in the scene. Then,
this framework is employed to solve three problems: (1) Online abnormal
event detection in videos and (2) O�ine activity recognition and video-to-
video matching, (3) Tracking multiple objects (such as persons) in the video
without doing any object detection.

vision applications described earlier. For example, based on the produced probabilis-

tic models for all events and objects in the scene, further analysis of their behaviors

and interactions can be performed to produce video semantics and a complete scene

description.

1.2 Event Understanding: Problem Statements And Contribu-

tions

The main problem that this thesis attempts to solve is to build a complete frame-

work for event understanding in videos. We start from the low level image features,

which are the local appearance and motion patterns. Given the thesis structure illus-

trated in Figure 1.1, at �rst a hierarchical structure is introduced to capture the scene

context. Therefore, the main contribution of this thesis is to provide a unique struc-

ture to model contextual information in the conventional BOW paradigm. It uses a

probabilistic framework to capture spatio-temporal con�gurations of video volumes.
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This is achieved by estimating probability density functions of the arrangements of

video volumes. This is explained in Chapter 2.

Then, three frameworks are built to address three of the most challenging prob-

lems in computer vision: I - Normal and abnormal event detection, II - Activity recog-

nition and video to video matching, and III - Multi-object tracking using local motion

patterns.

1.2.1 Terminology. Before continuing, we summarize our terminology be-

cause some of the terms are used in multiple ways in the related literature. Spatio-

temporal video words refer to 3D (in XYT space) pixel level features extracted at

each pixel in a video. An ensemble of video volumes refers to a large spatio-temporal

region consisting of many video volumes. Low-level behaviors refer to those activities

that can be localized in space and time. In this thesis, the term �event� is deemed

to be more general than �activity� as it is not restricted to just humans (animate

objects). To date, in the computer vision community, the term �activity� has largely

been taken to be a human action performed by a single person, lasting for just a few

video frames, taking up to a few seconds, and containing one or more events. Fi-

nally, by using the term �context� or �contextual information�, we are referring to the

relative spatio-temporal location in 3D (in XYT space) obtained by sampling video

observations. In this thesis, the context of a 3D observation is taken to be a larger

3D video volume surrounding it.

1.2.2 Anomaly Detection. In recent years video surveillance systems have

become very popular due to heightened security concerns and low-hardware costs.

At present they are widely used in applications such as law enforcement, building

security, and tra�c analysis. Moreover, in most circumstances, it is necessary for

humans to analyze the videos, which is ine�cient in terms of e�ectiveness, accuracy

and cost [37, 25]. In light of this, together with the tremendous number of such videos

produced on a daily basis, there is a great need for a real-time automated system that

detects and locates suspicious behaviors and alerts security agents.
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Consequently, detecting unusual or suspicious activities, uncommon behaviors, or

irregular events in a scene is the primary objective of an automated video surveil-

lance system. We refer to this activity as anomaly detection because the sought-after

situations are not observed frequently. Although the term anomaly cannot be de�ned

explicitly, all such systems are based on the implicit assumption that events that occur

occasionally are potentially suspicious, and thus may be considered as being anoma-

lous [2, 14, 56, 65, 67, 129, 132, 11, 115, 79, 6]. Therefore, the working de�nition of this

term in this paper is taken to be the spatio-temporal compositions in a video or set of

videos with low probability of occurrence with respect to the previous observations.

This implies that the anomalies are spatial, temporal, or spatio-temporal outliers

that are di�erent from the regularly observed patterns. We de�ne the anomalies with

respect to a pixel's context, meaning that a particular activity in a particular context

would be an anomaly, while in another context it might be normal [115].

Thus the question arises as to how a set of new observations can be classi�ed as

being either normal or abnormal? Perhaps this is the most di�cult challenge in this

research. Among the proposed solutions in the literature, we believe that the most

promising and reliable answer to this question should simultaneously determine both

normal and abnormal compositions. Clearly, the only di�erence between these is that

the likelihood of occurrence of the latter will be much smaller than that of the former.

In light of this de�nition, it is possible to accomplish this task by considering the

problem as one of reconstruction, as was done in [14]. Consequently, possessing a few

video samples of a normal event (�training set�), a new normal observation would have

high likelihood, while an abnormal event would have low likelihood. In either case,

video compositions should be capable of being reconstructed by �nding similar regions

to those already found in these videos. Here we deal only with the abnormal events.

We present a fast online unsupervised method for anomaly detection in videos, based

on spatio-temporal video volume reconstruction, while using both local and global

compositional information regarding the volumes. The main characteristics of the

proposed framework for abnormality detection are as follows:
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• Given the contextual model of the scene, anomalies are de�ned as those

spatio-temporal compositions in a video or set of videos having very low

probability of occurrence.

• It signi�cantly reduces the size of the database for �nding similar exam-

ples to a new observation while retaining summary information, thereby

speeding up the process and making it real-time.

• It uses an online unsupervised incremental method in order to update the

probability distribution functions of the normal events. Thus, our method

can adaptively learn newly observed normal patterns.

1.2.3 Simultaneous Dominant And Rare Event Detection. Normal

events observed in a scene will be referred to as the �dominant� behaviors. These

are events that have a higher probability of occurrence than others in the video and

hence generally do not attract much attention. We can further categorize dominant

behaviors into two classes. In the literature on human attention processes, the �rst

usually deals with foreground activities in [9, 8, 30, 49] while the second describes the

scene background1. Typically, the detection of the latter is more restrictively referred

to as background subtraction, which is the building block of almost all computer

vision algorithms. However, dominant behavior detection is more general and more

complicated than background subtraction, since it includes the scene background

while not being limited to it. Thus the manner in which these two human attention

processes di�er is the way that they use the scene information. Most background

subtraction methods are based on the principle that the photometric properties of

the scene in the video, such as luminance and color, are stationary. In contrast,

dominant behavior understanding can be seen as a generalization of the classical

background subtraction method in which all of the dynamic contents of the video

come into play as well.

1By de�nition, the background consists of pixels in the video frames whose photometric proper-
ties, such as luminance and color, are either static or stationary with respect to time.
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In order to learn both normal and abnormal patterns, a new framework is intro-

duced in this thesis. The main characteristics of our approach are as follows:

• The spatio-temporal contextual information in a scene is decomposed into

separate spatial and temporal contexts, which make the algorithm capable

of detecting purely spatial or temporal activities, as well as spatio-temporal

abnormalities.

• High level activity modeling and low level pixel change detection are per-

formed simultaneously by a single algorithm. Thus the computational cost

is reduced since the need for a separate background subtraction algorithm is

eliminated. This makes the algorithm capable of understanding behaviors

of di�erent complexity.

• The algorithm adaptively learns the behavior patterns in the scene in an

online manner. As such, the approach is a preferable choice for visual

surveillance systems.

• A major bene�t of the algorithm is its extendibility, which is achieved by

hierarchical clustering. This makes the algorithm capable of understanding

dominant behaviors of di�erent complexity.

1.2.4 Activity Recognition. Human activity analysis is required for video

surveillance systems, human-computer interaction, sports interpretation, and video

retrieval for content-based search engines [80, 107]. Moreover, given the tremendous

number of video data available online these days, there is a great demand for auto-

mated systems that analyze and understand the contents of these videos. Recognizing

and localizing human actions in a video is a primary component of such a system, and

also the most important, as it signi�cantly a�ects its performance. Although many

methods exist to determine human actions in highly controlled environments, this task

remains a challenge in real world environments due to camera motion, cluttered back-

grounds, occlusion, and scale/ viewpoint/ perspective variations [74, 95, 113, 114].
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Moreover, the same action performed by two persons can appear to be very di�er-

ent. In addition, clothing, illumination and background changes can increase this

dissimilarity [14, 69, 99].

One of the goals of this thesis is to address the problem of action recognition

and localization in real environments using a hierarchical probabilistic video-to-video

matching framework. This problem is also referred to as action spotting [26]. To

achieve this, we have developed a fast data-driven approach, which �nds similar videos

in a �target� set to a single labelled �query� video. Assuming that the latter contains

an action of interest, e.g., walking, we �nd all videos in the target set that that are

similar to the query, which implies the same activity. This video-to-video comparison

also makes it possible to label activities, the so-called action classi�cation problem.

The major bene�t of our approach is that it does not require long video training

sequences, object segmentation, tracking or background subtraction. The method can

be considered as an extension to the original Bag of Video Words (BOW) approach for

action recognition. The main characteristics of this algorithm and the contributions

are as follows:

• We introduce a hierarchical codebook structure for action detection and

labelling. This is achieved by considering a large volume containing many

Spatio-Temporal Video Volumes (STVs) and constructing a probabilistic

model of this volume to capture the spatio-temporal con�gurations of STVs.

Subsequently, similarity between two videos is calculated by measuring the

similarity between spatio-temporal video volumes and their compositional

structures.

• We select the salient pixels in the video frames by analyzing codewords

obtained at the highest level of the hierarchical codebook's structure. This

depends on both the local spatio-temporal video volumes and their com-

positional structures. This approach di�ers from conventional background

subtraction and salient point detection methods.
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1.2.5 Tracking. Visual tracking is an important task within the �eld of

computer vision. The proliferation of high-end computers, the availability of high

quality video cameras, and the increasing need for automated video analysis have

generated a great deal of interest in visual tracking algorithms. The state of this art

has advanced signi�cantly in the past 30 years [121, 119]. Visual tracking is a process

of continuously inferring the state of a target in a video sequence, which is modeled

within the framework of detection and data association. Usually, it is formulated as a

search problem that aims at �nding the candidate most similar to a target. Tracking

is a relatively solved problem when the objects in a scene are isolated from each other

and easily distinguishable from the background. However, in complex and crowded

scenes of people there are many objects with similar appearance that can occlude

each other. In addition, occlusions can also be the result of static objects in a scene.

Therefore, multiple object tracking remains a challenging problem in computer vision

[22]. Decades of research on this topic have produced a diverse set of approaches and a

rich collection of tracking algorithms. Readers can refer to [121] and [119] for a review

of the state-of-the-art in object tracking and a detailed analysis and comparison of

various representative methods.

In the majority of the traditional approaches, only the object itself and/or its

background are modeled. Hence, signi�cant progress has been made in tracking

speci�cally known objects. For example, many research articles have addressed face,

human body, head, and rigid object tracking, which can be categorized within this

paradigm of detect-then-track. This is usually done by constructing a tracker based

on a pre-trained detection and recognition mechanism for the objects of interest and

is based on appearance modeling of the target [45, 64, 102]. However, suppose that

there is no prior knowledge about the object to be tracked. Its detection cannot

be performed. These tracking methods are referred to as �generic object tracking� or

�model-free tracking�. Since manually annotating su�cient numbers of examples of all

objects in the world is prohibitively expensive and impractical, recently, approaches

for model-free tracking have received increased interest [57, 63]. Model-free tracking
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is a challenging task because there is little information available about the object to

be tracked [63]. Another challenge in multi-target model-free tracking is the presence

of an unknown and ever changing number of targets.

Here we concentrate on creating long-term trajectories for unknown moving ob-

jects by using a model-free tracking algorithm. As opposed to existing �tracking by

detection� algorithms [47, 118], no object detection is involved in our method. There-

fore appearance plays no role. Instead, each individual object is tracked by modeling

the temporal relationship between sequentially occurring local motion patterns. This

is achieved by constructing two separate sets of initial tracks that code local and

global motion patterns in videos. The local motion patterns are obtained by analyz-

ing spatially and temporally varying structures in videos. Our proposed approach is

capable of learning long-term trajectories of any moving object in a video without

using any prior knowledge about the objects (object detection). This is accomplished

by creating local trajectories of regions that have similar motion patterns, while also

considering their neighboring regions (contextual information). Therefore, this al-

gorithm is a complete bottom up tracking method that only employs a hierarchical

codebook structure of local motion patterns as the observations.

1.3 How To Read This Dissertation

This thesis is structured in the same way as illustrated in Figure 1.1. Therefore,

Chapter 2 describes the fundamental aspects of how to code contextual information

in video. This forms the building block of the other solutions for content-based visual

analysis described in this thesis. Each chapter of this thesis focuses on one aspect of

visual event understanding and therefore, it can be read independently from the rest

of the thesis. More speci�cally, a reader who is interested in automated abnormality

detection in videos can read Chapters 2, 3 and 4. Similarly, Chapters 2 and 5 are

the only chapters that are necessary to read for event recognition in videos. Finally,

Chapters 2 and 6 propose a general framework for multi-object tracking based on low

level local motion patterns.
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1.3 HOW TO READ THIS DISSERTATION

In Chapter 7 we conclude this dissertation by providing a through discussion on

what can be achieved by constructing contextual graphs of local motion patterns for

video analysis. The strengths and weaknesses of the current framework are described

and future research ideas are proposed.
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Chapter 2

Visual Event Detection: Context Is

Important

2.1 Introduction

Event understanding in videos is the key element of all computer vision systems

either in the context of visual surveillance or action recognition. Therefore, an event

or activity must be represented in such a way that it retains all of the important visual

information in a compact structure. In the context of human behavior analysis, many

studies have focused on the action recognition problem by invoking human body

models, tracking-based methods, and local descriptors [80]. The early work often

depended on tracking [82, 83, 125, 110], in which humans, body parts, or some interest

points were tracked between consecutive frames to obtain the overall appearance and

motion trajectory. Clearly, the performance of these algorithms is highly dependent

on tracking, which sometimes fails for real world video data [119].

Alternatively, shape template matching has been employed for activity recog-

nition; e.g., 2D shape matching [122] or its 3D extensions, optical �ow matching

[36, 101, 29]. In this case, action templates are constructed to model the actions and

used to locate similar motion patterns. Other studies have combined both shape and

motion features to achieve more robust results [50, 46], claiming that this represen-

tation is somewhat robust to object appearance [50]. In a more recent study, [46],
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shape and motion descriptors are employed to construct a shape-motion prototype for

human activities in a hierarchical tree structure and action recognition is performed

in the joint shape and motion feature space. Although it seems that the previous

approaches are likely well suited to action localization, they do require a priori high-

level representations of the human motion. Moreover, they depend on such image

pre-processing stages as segmentation, object tracking, and background subtraction

[120], which are extremely challenging in real-world unconstrained environments.

In the context of abnormality detection, approaches that focus on local spatio-

temporal abnormal patterns are very popular. These rely mainly on extracting and

analyzing local low-level visual features, such as motion and texture, either by con-

structing a pixel-level background model and behavior template [53, 49, 9, 30] or by

employing spatio-temporal video volumes, STV s, (dense sampling or interest point

selection) [14, 21, 27, 34, 50, 54, 74, 75, 84, 95, 99, 11, 52, 91]. In large part, the for-

mer relies on an analysis of the activity pattern (busy-idle rates) of each pixel in each

frame as a function of time. These are employed to construct a background model,

either by analyzing simple color features at each pixel [53] or more complex motion

descriptors [49, 30]. More advanced approaches also incorporate the spatio-temporal

compositions of the motion-informative regions to build background and behavior

templates [9, 70, 91] that are subtracted from newly observed behaviors in order to

detect an anomaly. In [129], dynamic behaviors are modeled using spatio-temporal

oriented energy �lters to construct an activity pattern for each pixel in a video frame.

Generally, the main drawback associated with these methods is their locality. Since

the activity pattern of a pixel cannot be used for behavioral understanding, their

applicability in surveillance systems is restricted to the detection of local temporal

phenomena [129, 49].

2.2 BOW: An Interesting But Incomplete Representation

In a completely di�erent vein, models based on a bag of local visual features have

recently been studied extensively and shown promising results for action recognition
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[14, 16, 21, 50, 54, 74, 75, 95, 99, 120, 123]. The idea behind the Bag of Visual

Words (BOW) comes from text understanding problems. The understanding of a text

document relies on the interpretation of its words. Therefore, high-level document

understanding requires low-level word interpretation. Analogously, computers can

accomplish the task of visual recognition in a similar way.

In general, visual event understanding approaches based on BOW extract and

quantize the video data to produce a set of video volumes that form a �visual vocab-

ulary�. These are then employed to form a visual dictionary. We refer to this visual

dictionary as a �codebook�. Using the codebook, visual information is converted into

an intermediate representation, upon which sophisticated models can be designed for

recognition. Codebooks are constructed by applying �coding� rules to the extracted

visual vocabularies. The coding rules are essentially clustering algorithms which form

a group of visual words based on their similarity [91]. Each video sequence is then

represented as a histogram of codeword occurrences and the obtained representation

is fed to an inference mechanism, usually a classi�er.

A major advantage of using volumetric representations of videos is that it per-

mits the localization and classi�cation of actions using data-driven nonparametric

approaches instead of requiring the training of sophisticated parametric models. In

the literature, action inference is usually determined by using a wide range of classi�-

cation approaches, ranging from sub-volume matching [101], nearest neighbor classi-

�ers [15] and their extensions [126], support [21] and relevance vector machines [75].

Driven by the success of latent topic models on text understanding, researchers have

also applied topic models to the task of visual scene understanding and action recog-

nition. Using the BOW paradigm, the obtained histograms of visual word occurrence

are employed to form a generative probabilistic model of the activities. For instance,

Bissacco et al. apply the Latent Dirichlet Allocation (LDA) to detect humans and

estimate poses from single images in [13]. In addition, some more complicated in-

ference mechanism have been developed by employing probabilistic Latent Semantic

Analysis (pLSA) [74] for human action categorization. However, Boiman et al. [15]
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have shown that a rather simple nearest-neighbor image classi�er in the space of the

local image descriptors is as e�cient as these more sophisticated classi�ers. This also

implies that the particular classi�cation method chosen is not as important as might

be thought, and that the main challenge for action representation is using appropriate

features.

However, we note that classical BOW approaches su�er from a signi�cant chal-

lenge. That is, the video volumes are grouped (clustered) solely based on their

similarity, in order to reduce the vocabulary size. Unfortunately, this destroys the

compositional information concerning the relationships between volumes [58, 74]. In

addition, although the generative probabilistic frameworks such as PLSA and LDA

can discover di�erent topics corresponding to di�erent actions, they fail to take into

consideration the contextual relationship between features. Thus, the likelihood of

each video volume is calculated as its similarity to the other volumes in the dataset,

without considering the spatio-temporal properties of the neighboring contextual vol-

umes. This makes the classical BOW approach1 excessively dependent on very local

data and unable to capture signi�cant spatio-temporal relationships. In addition, it

has been shown recently that detecting actions using an �order-less� BOW does not

produce acceptable recognition results [14, 16, 54, 56, 58, 62, 130]. We discuss this

issue in section 2.3 in more detail.

2.3 Contextual Information Matters: Hierarchical Structure

What makes the BOW approaches interesting is that they code the video as a

compact set of local visual features and do not require object segmentation, tracking

or background subtraction. Although an initial spatio-temporal volumetric represen-

tation of human activity might eliminate these pre-processing steps, it su�ers from

a major drawback: It ignores the contextual information. In other words, di�erent

1Essentially the probabilistic topic models, such as the Latent Dirichlet Allocation (LDA), can
also be considered as BOW approaches since they ignore the spatio-temporal order of the local
features.
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activities can be represented by the same visual vocabularies, even though they are

completely di�erent [14].

To overcome this challenge, contextual information must be included in the orig-

inal BOW framework. One solution is to employ visual phrases instead of visual

words. This has been proposed in [130] where a visual phrase is de�ned as a set

of spatio-temporal video volumes with a speci�c pre-ordained spatial and temporal

structure. The main drawback of this approach is that it cannot localize di�erent

activities in a video frame. Alternatively, the solution presented by Boiman and Irani

[14] is to densely sample the video and store all video volumes for a video frame,

along with their relative locations in space and time. Consequently, the likelihood of

a query in an arbitrary space-time contextual volume can be computed and thereby

used to determine an accurate label for an action using just simple nearest neighbor

classi�ers [15]. However, the main problem with this approach is that it requires

excessive computational time and a considerable amount of memory to store all of

the volumes as well as their spatio-temporal relationships. We present an alternative

to this in the next two chapters which updates the learned structures in an online

manner to adapt to the new observations and scene changes.

In addition to [14], several other methods have been proposed to incorporate

spatio-temporal structure in the context of BOW. These are often based on co-

occurrence matrices that are employed to describe contextual information. For exam-

ple, the well-known correlogram exploits spatio-temporal co-occurrence patterns [95].

However, only the relationship between the two nearest volumes was considered. This

makes the approach too local and unable to capture complex relationships between

di�erent volumes. Another approach is to use a coarse grid and construct a histogram

to subdivide the space-time volumes [38]. Similarly, in [112], contextual information

is added to the BOW by employing a coarse grid at di�erent spatio-temporal scales.

An alternative that does incorporate contextual information within a BOW frame-

work is presented in [62], in which three-dimensional spatio-temporal pyramid match-

ing is employed. While not actually comparing the compositional graphs of image
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fragments, this technique is based on the original two-dimensional spatial pyramid

matching of multi-resolution histograms of patch features [58]. Likewise in [92], tem-

poral relationships between clustered patches are modeled using ordinal criteria (e.g.,

equals, before, overlaps, during, after, etc.) and expressed by a set of histograms for

all patches in the whole video sequence. Similar to [92], in [124] ordinal criteria are

employed to model spatio-temporal compositions of clustered patches in the whole

video frame during very short temporal intervals. The main problem associated with

this is the large size of the spatio-temporal relationship histograms and the many

parameters associated with the spatio-temporal ordinal criteria. In Chapters 3, 4 and

5 the current state of the art for incorporating spatio-temporal contextual informa-

tion for both abnormality detection and activity recognition will be discussed in more

detail.

In this thesis, we present an alternative probabilistic framework for quantifying

the arrangement of the spatio-temporal volumes at a pixel in the video. Our solution

for modeling contextual information in the BOW is a hierarchical probabilistic code-

book structure. This method can be considered as an extension to the original Bag

of Video Words (BOW) approach for visual event modeling.

Given the problems of abnormality detection and activity recognition, our aim is

to measure either the self similarity of a video or the similarity between two videos,

the query and the target videos. Our work is based on the bag of space-time features

approach in that a set of STVs is used for measuring similarity. The task consists of

two main steps: visual scene representation (see Figure 2.1) and using an inference

mechanism for similarity measurement. In this section, we focus on the former and

Chapters 3, 4 and 5 describe the inference mechanisms for abnormality detection and

activity recognition, respectively. We �rst explain the sampling strategy and then

describe the hierarchical codebook structure.

2.3.1 Low-Level Scene Representation: BOW. The �rst stage of the al-

gorithm is to represent a query video by meaningful spatio-temporal descriptors. This

is achieved by dense sampling, thereby producing a large number of spatio-temporal
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Figure 2.1. Overview of the scene representation and hierarchical code-
book structure. First, the query video is densely sampled at di�erent spatio-
temporal scales followed by the construction of a set of overlapping spatio-
temporal video volumes. Subsequently, a two level hierarchical probabilistic
codebook is created for the video volumes. At the lower level of the hier-
archy, similar video volumes are grouped to form a conventional low level
codebook, CL, but while considering the uncertainty in codeword assign-
ment. At the higher level, a much larger spatio-temporal 3D volume around
each pixel, containing many STVs, is considered in order to capture the
spatio-temporal arrangement of the volumes. We refer to this graph as an
ensemble of volumes. Using these graphs, similar ensembles are grouped
based on the similarity between arrangements of their video volumes and yet
another codebook is formed.

video volumes. Then similar video volumes are clustered to form a codebook. Since

this is actually done on-line, frame-by-frame, the codebook is adaptive. The con-

structed codebook at this level is called the low-level codebook, as illustrated in

Figure 2.1.

2.3.1.1 Multi-Scale Dense Sampling. Similar to all BOW approaches, 3D STVs

in a video are constructed at the lowest level of the hierarchy. Although there are

many methods for sampling the video for volume construction, dense sampling has

been shown to be superior to the others in terms of retaining the informative features

of a video [84]. Therefore, performance almost always increases with the number
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of sampled spatio-temporal volumes, making dense sampling the preferable choice

[111, 14].

The 3D spatio-temporal video volumes, vi ∈ Rnx×ny×nt are constructed by as-

suming a volume of size nx × ny × nt around each pixel (in which nx × ny is the

size of the spatial (image) window and nt is the depth of the video volume in time).

Spatio-temporal volume construction is performed at several spatial and temporal

scales of a Gaussian space-time video pyramid. This yields a large number of vol-

umes at each pixel in the video. Figure 2.1 illustrates the process of spatio-temporal

volume construction. These volumes are then characterized by a descriptor, which

is the histogram of the spatio-temporal oriented gradients in the video, expressed in

polar coordinates [11, 97, 91]. Assume that Gx (x, y, t) and Gy (x, y, t) are spatial gra-

dients and Gt (x, y, t) is the temporal gradient for each pixel at (x, y, t). The spatial

gradient used to calculate the 3D gradient magnitude is normalized to reduce the

e�ect of local texture and contrast. Hence, let:

Gs (x, y, t) =

√
Gx (x, y, t)2 +Gy (x, y, t)2 , (x, y, t) ∈ vi

G̃s (x, y, t) =
Gs (x, y, t)∑

(x,y,t)∈vi
Gs (x, y, t) + εmax

(2.1)

where G̃s is the normalized spatial gradient and εmax is a constant, set to 1% of

the maximum spatial gradient magnitude in order to avoid numerical instabilities.

Hence, the 3D normalized gradient is represented in polar coordinates (M (x, y, t),

θ (x, y, t),φ (x, y, t)):

M (x, y, t) =

√
G̃s (x, y, t)2 +Gt (x, y, t)2

θ (x, y, t) = tan−1

(
Gy (x, y, t)

Gx (x, y, t)

)
(2.2)

φ (x, y, t) = tan−1

(
Gt (x, y, t)

G̃s (x, y, t)

)
where M (x, y, t) is the 3D gradient magnitude, and φ (x, y, t) and θ (x, y, t) are the

orientations within
[−π

2
, π

2

]
and [−π, π], respectively. The descriptor vector for each
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video volume, taken as a histogram of oriented gradients (HOG), is constructed using

the quantized θ and φ into nθ and nφ bins, respectively, weighted by the gradient

magnitude,M . The descriptor of each video volume will be referred to as hi ∈ Rnθ+nφ .

This descriptor represents both motion and appearance and possesses some degree

of robustness to unimportant variations in the data, such as illumination changes

[11, 97]. However, it should be noted that our algorithm does not rely on a speci�c

descriptor for the video volumes, and other descriptors might enhance the performance

of the approach. Examples of more complicated descriptors are the ones in [99] and

in [49], the spatio-temporal gradient �lters in [11, 132], the spatio temporal oriented

energy measurements [129, 26] and the popular three-dimensional Scale Invariant

Feature Transform (SIFT) [97].

2.3.1.2 Codebook Of Video Volumes. As the number of these volumes is ex-

tremely large (for example, about 106 in a one minute video) it is advantageous to

group similar STVs to reduce the dimensions of the search space. This is commonly

performed in all BOW approaches [62, 99]. Here, similar video volumes are also

grouped when constructing a codebook. The procedure is straightforward and is de-

scribed in Chapter 3. Thus, a normalized weight wi,j of assigning the codeword cj

to video volume vi is given by (3.3)2. Eventually, each 3D volume, vi, is assigned to

the labels, cj's, with a degree of similarity, wi,j, as shown in Figure 2.2A. We note

that the number of labels (shown in color), ML, is much smaller than the number

of volumes, N . Moreover, codebook construction can be performed using any other

clustering method, such as k-means, online fuzzy c-means [91], or mutual information

[62].

2.3.2 High Level Scene Representations: Ensembles Of Visual Vol-

umes. At the previous step, similar video volumes were grouped in order to

construct the low-level codebook. The outcome of this is a set of similar volumes,

clustered regardless of their positions in space and time. This is the point at which all

other BOW methods in the literature stop. As stated earlier, the main drawback of

2Throughout the rest of the paper, each video volume will be represented by its descriptor vector.
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Figure 2.2. (A) Codeword assignment to spatio-temporal video volumes.
Each codeword is assigned to a volume with a degree of similarity wi,j . (B)
An ensemble of spatio-temporal volumes obtained at one of the computed
scales. A large 3D volume surrounding each pixel, containing many spatio-
temporal volumes, is considered and referred to as an ensemble of volumes.
This large 3D volume will be used both for further analysis and measuring
the likelihood of each pixel. (C) Relative spatio-temporal coordinates of a
particular video volume inside an ensemble of volumes, ∆Ei

vj .

many BOW approaches is that they do not consider the spatio-temporal composition

(context) of the video volumes. Certain methods for capturing such information have

appeared in the literature (see [14, 58, 66]). In this paper, we present a probabilistic

framework for quantifying the arrangement of the spatio-temporal volumes.

2.3.2.1 Ensembles Of Volumes. Suppose a new video is to be analyzed; we refer

to it as the query. The goal is to measure the likelihood of each pixel in the query

video given a set of previously observed video for event description. To accomplish

this, it is necessary to analyze the spatio-temporal arrangement of the volumes in the

clusters that have been determined by the visual codebook. Thus, we next consider a

large 3D volume around each pixel in (x, y, t) space. This large region contains many

volumes with di�erent spatial and temporal sizes as shown in Figure 2.2B. Thus it

captures both the local and more distant information in the video frames. Such a

set is called an ensemble of volumes around the particular pixel in the video. The

ensemble of volumes, E(x, y, t), surrounding each pixel (x, y) in the video at time t,

is de�ned as:

E(x, y, t) =
{
v
E(x,y,t)
j

}J
j=1

,
{
vj : vj ⊂ R(x,y,t)

}J
j=1

(2.3)
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where R(x,y,t) ∈ R3 is a volume with pre-de�ned spatial and temporal dimensions cen-

tered at point (x, y, t) in the video (e.g., rx×ry×rt) and J indicates the total number

of volumes inside the ensemble. These large contextual 3D spaces are employed to

construct higher-level codebooks.

2.3.2.2 Contextual Information And Spatio-Temporal Compositions. To cap-

ture the spatio-temporal compositions of the video volumes, we use the relative

spatio-temporal coordinates of the volume in each ensemble, as shown in Figure 2.2C.

Assume that the ensemble of video volumes at point (xi, yi, ti) is Ei and the central

video volume inside that ensemble is called vo. Assume that vo is located at the point

(xo, yo, to) in absolute coordinates. Therefore, ∆Ei
vj
∈ R3 is the relative position (in

space and time) of the jth video volume, vj, inside the ensemble of volumes:

∆Ei
vj

= (xj − xo, yj − yo, tj − to) (2.4)

Then each ensemble of video volumes at point (xi, yi, ti) is represented by a set

of such video volumes and their relative positions, and hence (2.3) can be rewritten

as:

E(xi, yi, ti) =
{

∆Ei
vj
, vj, vo

}J
j=1

(2.5)

An ensemble of volumes is characterized by a set of video volumes, the central video

volume, and the relative distance of each of the volumes in the ensemble to the

central video volume, as represented in (2.5). This provides a view-based graphical

spatio-temporal multi-scale description at each pixel in every frame of a video.

A common approach for calculating similarity between ensembles of volumes is to

use the star graph model in [14, 75, 11]. This model uses the joint probability between

a database and a query ensemble to decouple the similarity of the topologies of the

ensembles and that of the actual video volumes [75]. To avoid such a decomposition,

we estimate the pdf of the volume composition in an ensemble and then measure the

similarity between these estimated pdf s.

During the codeword assignment process described in section 2.3.1.2, each volume

vj inside each ensemble was assigned to a label cm ∈ CL with some degree of similarity
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wj,m. Given the codewords assigned to the video volumes, each ensemble of volumes

can be represented by a set of codewords and their spatio-temporal relationships. Let

cm ∈ CL be the codeword assigned to the video volume vj and cn ∈ CL, the codeword

assigned to the central video volume vo. Therefore, (2.5) can be rewritten as3:

vj ← cm

vo ← cn

E(xi, yi, ti) =
⋃

m=1:ML

n=1:ML

{∆, cm, cn}j=1:J (2.6)

where ∆ denotes the relative position of the codeword cm inside the ensemble of

volumes. By representing an ensemble as a set of codewords and their spatio-temporal

relationships, the topology of the ensemble, Γ, is de�ned as:

Γ =
⋃

m=1:M
n=1:M

{Γm,n(∆)} (2.7)

where Γ is the topology of an ensemble of video volumes that encodes the spatio-

temporal relationships between codewords inside the ensemble. Γm,n(∆) ∈ Γ is taken

to be the spatio-temporal relationship between two codewords, cm and cn in the

ensemble4. Therefore,

Γm,n(∆) = (∆, cm, cn) (2.8)

Let v denote an observation, which is taken as a video volume inside the ensemble.

Assume that its relative location is represented by ∆v, and vo is the central volume of

the ensemble. The aim is to measure the probability of observing a particular ensem-

ble model . Therefore, given an observation,
(

∆Ei
vj
, vj, vo

)
, the posterior probability

of each topological model, Γm,n, is written as:

P
(

Γm,n|
(

∆Ei
vj
, vj, vo

))
= P

(
∆, cm, cn|∆Ei

vj
, vj, vo

)
(2.9)

3← symbolizes value assignment.
4These topological models, Γm,n(∆), are obtained by assuming that the codeword entries are

independent. Although in the case of overlapping video volumes such an assumption is not true,
this is the standard Markovian assumption made for BOW.
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The posterior probability in (2.9) de�nes the probability of observing the code-

words cm and cn and their relative location, ∆, given the observed video volumes(
∆Ei
vj
, vj, vo

)
in an ensemble of volumes. Equation (2.9) can be rewritten as:

P
(

∆, cm, cn|∆Ei
vj
, vj, vo

)
= P

(
∆, cn|cm,∆Ei

vj
, vj, vo

)
P
(
cm|∆Ei

vj
, vj, vo

)
(2.10)

Since now the unknown video volume, vj, has been replaced by a known inter-

pretation, cm, the �rst factor on the right hand side of (2.10) can be treated as being

independent of vj. Moreover, it is assumed that video volumes are independent. Thus

vo can be removed from the second factor on the right hand side of (2.10) and hence,

it can be rewritten as follows:

P
(

∆, cm, cn|∆Ei
vj
, vj, vo

)
= P

(
∆, cn|cm,∆Ei

vj
, vo

)
P
(
cm|∆Ei

vj
, vj

)
(2.11)

On the other hand, the codeword assigned to the video volume is independent of

its position, ∆Ei
vj
. Therefore (2.11) can be reduced to:

P
(

∆, cm, cn|∆Ei
vj
, vj, vo

)
= P

(
∆, cn|cm,∆Ei

vj
, vo

)
P (cm|vj) (2.12)

Rewriting (2.12) gives:

P
(

∆, cm, cn|∆Ei
vj
, vj, vo

)
= P

(
∆|cm, cn,∆Ei

vj
, vo

)
P
(
cn|cm,∆Ei

vj
, vo

)
P (cm|vj)

(2.13)

Similarly, by assuming independence between codewords and their locations,

(2.13) can be reduced to:

P
(

∆, cm, cn|∆Ei
vj
, vj, vo

)
= P

(
∆|cm, cn,∆Ei

vj

)
P (cn|vo)P (cm|vj) (2.14)

The �rst factor on the right hand side of (2.14) is the probabilistic vote for a

spatio-temporal position, given the codewords assigned to the central video volume

of the ensemble, the codeword assigned to the video volume, and its relative po-

sition. We note that, given a set of ensembles of video volumes, the probability

distribution function (pdf ) in (2.14) can be formed using either a parametric model

25



CHAPTER 2. VISUAL EVENT DETECTION: CONTEXT IS IMPORTANT

or non-parametric estimation. P (cm|vj) and P (cn|vo) in (2.14) are the votes for each

codeword entry and they are obtained in the codeword assignment procedure in sec-

tion 2.3.1.2. Eventually, each ensemble of volumes can be represented by a set of pdf s

as follows:

P (Γ|Ei) =
⋃

m=1:ML

n=1:ML

{P (Γm,n (∆) |Ei)} (2.15)

where P (Γ|Ei) is a set of pdf s modeling topology of the ensemble of volumes. There-

fore, once a video clip has been processed, each ensemble of spatio-temporal volumes

has been represented by a set of pdf s as given in (2.15) and similarity between two

video sequences can be computed simply by matching the pdf s of the ensembles of

volumes at each pixel. In Chapters 3 and 4 we also show how those ensembles of

volumes are employed to detect abnormal patterns in both space and time. Chap-

ter 5 extends these concepts to the video-to-video matching problems and activity

recognition.

2.4 Summary

In this chapter, an alternative approach for describing contextual information was

presented. At �rst, the video is densely sampled and similar to the BOW structure,

the �rst level codebook is formed. In order to improve the BOW structure, the concept

of ensemble of volumes is introduced. Therefore, an ensemble of volumes is a large

region around a particular pixel in the video which contains lots of STVs. To capture

the contextual information, the spatio-temporal structure of the video volumes inside

the ensembles is modeled using a probabilistic framework. The result of the processing

in this chapter permits us to construct a set of local behavior patterns for each pixel

based on the ensembles of volumes. This makes it possible to solve the following

problems:

• Rare Event Detection: The ensembles of STVs are employed to compare

a new observation to the previous observations. This will produce a self-

similarity map of the video and rare events can be identi�ed. In addition,
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ensembles of STVs can be decomposed into two spatial- and temporal-

oriented ensembles. This space/time decomposition makes it possible to

identify pure spatial and temporal dominant/rare events (see Chapters 3

and 4).

• Video to Video Matching: The ensembles of video volumes can be used

for constructing the second level codebook, called the high-level one or the

bag of ensembles of volumes. Following the same inference mechanism in

the traditional BOW, the activity recognition problem is solved which is

described in Chapter 5.

• Tracking Moving Objects: Given the codebook of ensembles of volumes,

the trajectories of moving objects are generated by linking the assigned

codewords in consecutive frames (see Chapter 6).
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Chapter 3

Abnormal Event Detection And Localization

3.1 Introduction

In light of the problem statements in Chapter 1, our goal is to build a fast anomaly

detection framework for surveillance systems that addresses practical requirements,

such as real-time performance and reliable detection and localization of anomalies. In

addition, we seek the ability to learn newly observed events without any o�ine and

supervised training. Perhaps most important, we will achieve this and not require any

object tracking1, background subtraction or other similar processes such as foreground

segmentation methods with their attendant weaknesses, which form the basis for

previously reported approaches.

The approach presented in this chapter focuses on the spatio-temporal abnor-

malities in the videos [90]. This is achieved by considering abnormality detection

as a reconstruction problem. By formulating anomaly detection as a reconstruction

process, anomaly detection is reduced to being de�ned as an outlier detection prob-

lem, i.e., �nding the events that are not similar enough to the previously observed

events in the video. Therefore, given a video sequence V containing a set of events

V = {ei}Ni=1 and a similarity measure S, the concept of an anomaly is de�ned for a

1Recall that at this point in the analysis that there has been no mention of object trajectories
(see 1.2.2).
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Modeling spatio-temporal 
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Step #1 Step #2 Step #3 Step #4

Figure 3.1. The goal is to detect anomalies in video data containing re-
alistic scenarios. First, the video is densely sampled and spatio-temporal
volumes are constructed at di�erent spatial and temporal scales (#1). Then,
similar spatio-temporal volumes are grouped and their spatio-temporal re-
lationships modeled using a probabilistic framework (#2). Thus a video of
salient events is constructed (#3) and the anomalous regions detected (#4)
without the need for background subtraction and tracking.

particular event eq, as follows:

eq ∈ V

sq,i = S (eq, ei) , ei ∈ V − {eq} (3.1)

eq is anomaly iff ∀i, sq,i ≤ γ

where γ is a threshold. This implies that the event eq is not similar enough to any of

the observed events. Given a short video clip containing valid behaviors, the method

reconstructs newly observed behaviors using known examples of just valid ones. This

is achieved by computing the likelihood of each pixel in each frame and eventually

producing a likelihood or saliency map of all pixels in each frame. The likelihood map

identi�es the anomalous patterns which are inferred by selecting video arrangements

with very low likelihood of occurrence. An overview of our approach is sketched in

Figure 3.1.

After initialization of the algorithm using just a few seconds of video2, our method

builds a model of normal behavior in the form of codebooks and detects anomalies

2The number of initialization frames required to construct the ensemble of volumes (contextual
region in the time domain) is related to the temporal size of the ensembles, Rsi,ti , (see (2.3)). We
discuss the number of initialization frames in section 3.4.3.
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while incrementally updating itself in an unsupervised manner when a new normal

pattern is observed. The main characteristics of this approach are as follows:

• It introduces a probabilistic framework to capture spatio-temporal con�gu-

rations of video volumes. This is achieved by estimating probability density

functions of the arrangements of video volumes. Consequently, anomalies

are de�ned as those spatio-temporal compositions in a video or set of videos

having very low probability of occurrence.

• It signi�cantly reduces the size of the database for �nding similar exam-

ples to a new observation while retaining summary information, thereby

speeding up the process and making it real-time.

• It uses an online unsupervised incremental method in order to update the

probability distribution functions of the normal events. Thus, our method

can adaptively learn newly observed normal patterns.

We have conducted extensive experiments to evaluate the capability of our ap-

proach for both anomaly detection and localization on di�erent datasets with di�erent

normal/abnormal behavior patterns: anomalous walking patterns3 [14]; the UCSD

pedestrian dataset, which consists of two datasets4: UCSD Ped1 and UCSD ped2

[65]; subway surveillance videos5 [2]; and an anomaly detection dataset6 [129]. The

results indicate that our approach is comparable to the state-of-the-art, while it can

additionally be extended to more di�cult problems7.

3.2 Related Work

As indicated earlier, the recent trend in anomaly detection is to use spatio-

temporal video volumes in the context of BOW models8. Their popularity is due

3http://www.wisdom.weizmann.ac.il/~vision/Irregularities.html
4http://www.svcl.ucsd.edu/projects/anomaly
5Obtained from the authors of [2]
6http://www.cse.yorku.ca/vision/research/spatiotemporal-anomalous-behavior.

shtml
7All videos and additional results are available at: http://www.cim.mcgill.ca/~javan/index_

files/Abnormal_events.html
8Essentially the probabilistic topic models, such as that of [133], can also be considered as BOW

approaches since they ignore the spatio-temporal order of the local features [60].
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to their low computational cost, as well as their ability to focus on abnormal behav-

ior, even in extremely crowded scenes [56]. However, since classical BOV approaches

group similar volumes, they destroy all compositional information in the process of

grouping visual words [98, 58]. Thus, the likelihood of each video volume is based

on its similarity to the other volumes in the dataset, without considering the spatio-

temporal properties of neighboring ones. For example, in [2], motion patterns in

local regions are estimated using optical �ow and then quantized to construct a his-

togram of optical �ow in local regions. Dissimilar motion patterns are considered to

be anomalies.

It has been shown that anomaly detection by spatio-temporal volumes with-

out considering their composition will produce unacceptable results [14, 34, 52, 54,

56, 58, 62, 75, 95, 116]. Several approaches have been presented to improve this

situation. These are often based on co-occurrence matrices that are employed to

describe contextual information. In large part, these methods are used exclusively

for action recognition, since they require a supervised learning process. For exam-

ple, the well-known correlogram exploits spatio-temporal co-occurrence patterns [95].

An alternative that does incorporate contextual information in a BOV framework

is presented in [62], in which three-dimensional spatio-temporal pyramid matching

is employed. This technique is based on the original two-dimensional spatial pyra-

mid matching of multi-resolution histograms of patch features [58]. Likewise in [92],

temporal relationships between clustered patches are modeled using ordinal criteria

(e.g., equals, before, overlaps, during, after, etc.). In [34] the spatial information is

coded through concatenation of video words detected in di�erent spatial regions and

data mining techniques to �nd frequently occurring combinations of features. Simi-

larly, [66] addresses this issue by using the spatial con�guration of the 2D patches by

incorporating their weighted sum. In summary, most of these approaches are used

for activity recognition rather than anomaly detection, and contextual information is

represented locally and at �xed spatial or temporal scales.
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In spite of the above, some e�orts have recently been made to incorporate contex-

tual information [11]. Here a local test for detecting abnormal video volumes measures

the similarity of a particular video volume to its eight neighbouring volumes; those

that are not similar to all others in this set are marked as being anomalous. In

[56], video volumes are represented using 3D Gaussian distributions of the spatio-

temporal gradient. The temporal relationship between these distributions is modeled

using HMMs.

As indicated in Chapter 2 Boiman and Irani [14] have presented an alternative

approach based on the spatio-temporal composition of a large number of volumes.

Each new observation is reconstructed using only the previously observed spatio-

temporal volumes, which are obtained by densely sampling the video. To consider

the relationship between these volumes, the likelihood of a large contextual region

around each volume is computed using the examples already seen in the video. By

using densely sampled volumes, Boiman and Irani [14] were able to produce a good

approximation to the likelihood, thereby permitting the detection of normal and

abnormal behavior using a star graph model. The primary drawbacks of the work of

Boiman and Irani [14] are the high computational complexity of their method and the

lack of any means of taking into account uncertainty about the BOVs. We deal with

both of these aspects by using a probabilistic framework to determine the likelihood of

the space-time cuboids in a video. However, the main problem with dense sampling is

its excessive computational time. Furthermore, it requires a large amount of memory

to store all of the volumes as well as their spatio-temporal relationships.

Some modi�cations of [14] have been presented, but these are strictly within

the framework of action recognition [88]. For example a modi�ed version of [14]

has been presented in [75], in which a two-level clustering method is employed to

speed-up the search process. At the �rst level, all similar volumes are categorized.

Then clustering is performed on randomly selected groups of spatio-temporal volumes

while considering the relationships in space and time between the �ve nearest spatio-

temporal volumes. However, the small number of spatio-temporal volumes involved
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makes this method local in nature. Another hierarchical approach is presented in

[54], which attempts to capture the compositional information of a subset of the

most discriminative video volumes. We note that both of these approaches exploit

supervised learning and hence cannot really be used for anomaly detection.

In order to avoid a computational bottleneck, we sort video volumes based on

their spatio-temporal similarity, while considering the uncertainty in the grouping

procedure. Although the method for clustering of similar video volumes may at �rst

glance appear to be analogous to the Implicit Shape Model (IMS) in Leibe et al.

for class-based object recognition [59], it actually di�ers in three respects. First, we

examine the information in a large spatio-temporal context. Second, there is no need

to create a prede�ned set of known object classes with prede�ned object centers.

Our method adaptively determines these on its own. Third, we apply our method

to videos, not just to images. By employing a probabilistic framework, the system

we describe in this chapter signi�cantly reduces the computational time required for

determining the similarity of the compositions of the many video volumes that need

to be examined [14]. Moreover, our approach also dramatically reduces the amount

of memory required for storing previously observed video arrangements.

Thus the aim of this chapter is to demonstrate how videos can be processed for

anomalies in real-time while summarizing the important information in the video.

Ultimately, this will provide the ability to characterize and label all, not just anoma-

lous, events. This is achieved by constructing a hierarchical BOW algorithm that

learns both dominant and abnormal events in a uni�ed framework. More closely re-

lated to our proposed approach are those methods that construct a spatio-temporal

behavioral model of the scene [49, 8, 48, 30]. To date, these have focused on detecting

low-level local anomalies in a video by analyzing the activity pattern of each pixel as a

function of time. This activity pattern, also known as the busy/idle sequence of each

pixel, is a binary sequence for each pixel in which 0s and 1s denote the foreground

and background pixel in each frame, respectively. In [49], each pixel is processed in-

dependently and the relationships between the pixels in space and time are ignored,
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thereby making such methods too local. In an improved version of [49], the spatial

dependencies between pixels are taken as a function of pixel location by constructing a

co-occurrence frequency matrix [8]. Although the latter has achieved good results for

abnormality detection, the method requires that the activity pattern of each pixel be

constructed by employing a conventional method for background subtraction. These

are known to be de�cient for non-stationary situations.

In contrast to the aforementioned approaches that attempt to model either local

spatio-temporal activity patterns of a pixel or trajectories of moving objects, our goal

is to construct a hierarchical model for all of the activities in a scene. We present a

novel method for inference of motion patterns, which overcomes the drawbacks and

limitations of the current methods, while employing simple yet powerful hierarchical

methodologies.

3.3 Abnormal Event Detection

Figure 3.1 shows the steps of the proposed anomalous activity recognition al-

gorithm, STC (Spatio-Temporal Compositions). At �rst, a codebook model is con-

structed to group similar spatio-temporal video volumes and remove redundant data;

for example, in one minute of typical video, we have found experimentally that there

are about 106 video volumes, while the number of codewords is around 20. Then, a

large contextual region (in space and time) around each video volume is examined

and the compositional relationships between video volumes are approximated using

a mixture of Gaussians. To construct such a probabilistic model, a small number of

video frames containing normal behaviors is necessary to initiate the on-line learning

process. The minimum number of such frames is governed by the extent of the size

of the temporal context9. Thus it is unnecessary to employ large numbers of training

videos, containing valid behaviors, as is usually the case in the current literature.

The problem is transformed to a reconstruction problem using the previous formu-

lation for anomaly detection (3.1). This equation implies that the similarity between

9We discuss the number of initialization frames in section 3.4.3.
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a newly observed video frame and all previous observations is calculated according to

(3.1). In order to make a decision about new observations in a reasonable amount of

time, information regarding the spatio-temporal volumes and their relative arrange-

ment in the regions of interest must be e�ciently stored in the database. Here we

focus on two issues, the reconstruction process, and a fast inference mechanism for

anomaly detection. Therefore, the goal of the algorithm is to reduce the number of

spatio-temporal volumes stored in the dataset in order to limit the search time, while

still retaining a compact and accurate representation of the spatio-temporal arrange-

ment of all volumes. As illustrated in Figure 3.1, the algorithm consists of two main

steps: (1) sampling and coding the video to construct spatio-temporal volumes and

probabilistic models of relative compositions of the spatio-temporal volumes, and (2)

an inference mechanism to make decisions about newly observed videos. To con-

struct such a probabilistic model for an arrangement of the spatio-temporal volumes

of �normal� actions, it is necessary to use a few sample video frames containing such

behaviors. These examples must be observed in order to initialize (or train) the al-

gorithm. In the rest of this chapter, we refer to these video frames as the �training

set�. Although, currently, this probabilistic model is created during initialization, any

other valid action that has not actually been observed during initialization can also

be used.

3.3.1 Scene Modeling And Local Self-Similarity Maps. The essence

of the method described in this section is to measure the similarity between various

spatio-temporal volumes in the observation set and the incoming video data in order

to examine whether the actions are anomalous. Thus, newly observed data must

be re-constructed using historical data. In this section, we �rst explain the sampling

strategy, followed by codebook construction for grouping similar video volumes. Then

we describe the mechanism to capture spatio-temporal contextual information.

3.3.1.1 The First Level Codebook. Our work is based on the bag of features ap-

proach, i.e., a set of spatio-temporal volumes obtained using dense, random, or salient

points. Although there are many methods for selecting the latter, dense sampling has
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Input Sequence Space-Time Pyramids 

Dense Sampling at 

Different Scales

Figure 3.2. Dense sampling is performed at di�erent spatial and temporal
scales, producing a set of spatio-temporal volumes.

been shown to be superior to the others in terms of retaining the informative features

of a video [84]. Therefore, performance almost always increases with the number

of sampled spatio-temporal volumes, making dense sampling the preferable choice

[111, 14].

Similar to the BOW structure described in the Chapter 2, the 3D spatio-temporal

volumes in a video, vi ∈ Rnx×ny×nt , are constructed by assuming a small volume of size

of nx×ny×nt around each pixel in the video, in which nx×ny is the size of the spatial

(image) window and nt is the depth of the video volume in time. Spatio-temporal

volume construction is performed at various spatial and temporal scales, producing

a sort of video pyramid. Figure 3.2 illustrates the process of spatio-temporal volume

construction.

Instead of using the HOG descriptor of Chapter 2, each spatio-temporal volume in

the video is characterized by a set of simple descriptors as in [14, 27]. The descriptors

are de�ned by the absolute value of the temporal derivatives of all pixels in each

volume, vi

∀vi, gi = abs (∆t (vi)) (3.2)

Their values are then stacked in a vector and normalized to a unit length to form

a �compact� feature descriptor for each video volume at various scales, hi ∈ Rnxnynt .

The procedure in (3.2) is actually performed at several spatial and temporal scales of
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a Gaussian space-time video pyramid of the original data. In other words, the spatio-

temporal volumes are smoothed at di�erent scales before computing the gradients.

An interesting property of this descriptor is that it is largely invariant to roughly

static backgrounds, which makes it possible to detect abnormal actions regardless

of the background, although only in surveillance systems in which the background

does not change quickly. Notwithstanding its simplicity, the results obtained are very

promising. Obviously the simple gradient descriptor de�ned in (3.2) could be replaced

by others, and perhaps, thereby enhance the performance.

Here, similar spatio-temporal volumes are grouped by constructing a codebook, as

detailed in Figure 3.3. This is a straightforward procedure. The �rst codeword is made

equivalent to the �rst observed spatio-temporal volume. After that, by measuring the

similarity between each observed volume and the codewords already in the codebook,

either the codewords are updated or a new one is formed. Then, each codeword is

updated with weight of wi,j, which is based on the similarity between the volume and

the existing codewords10. Here, we utilize the Euclidean distance for this purpose.

Thus, the normalized weight of assigning codeword cj to video volume vi is given

by11:

wi,j =
1∑

j

1
distance(vi,cj)

× 1

distance (vi, cj)
(3.3)

Another important parameter is the number of times that a codeword has been

observed (fj). The codebook is continuously being pruned to eliminate those that are

either infrequent or very similar to the others, which ultimately generatesM di�erent

codewords that are taken as the labels for the video volumes, C = {ci}Mi=1. Since the

goal of the algorithm is to measure similarity of a new observation to a subset of

previously observed normal actions, the codebook is formed using videos that contain

valid actions.

10Later it will be seen that this facilitates the handling of uncertainty in codeword assignment.
11Throughout the rest of this chapter, each video volume will be represented by its vector de-

scriptor.
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Consider that there are N video volumes in the dataset, represented by their descriptor vectors:
V = {vi}Ni=1

Initialization

The �rst codeword is de�ned as:
• c1 ← v1
• f1 ← 1
• Pl1 ← 1
Codebook Construction

• Construct a codeword using the Euclidean distance as the similarity measure between the volumes
and codewords

• For all volumes (vi) in the dataset,
� If min

j
distance (vi, cj) > ε construct a new codeword

∗ cj+1 ← vi
� Else

∗ Calculate wi,j using (3.3)
∗ Update the codeword: cj ← fj×cj+wi,j×vi

fj+wicj

∗ Update the frequency: fj ← fj + wicj

∗ Prior probability of the codeword: P (cj) =
fj
N

Pruning the Codebook

For all codewords, {cm}Mm=1

• If {distance (ci, cj) < α× ε, (0 < α < 1)} and
{
fj < 0.1× N

M

}
� Merge the two codewords

∗ Remove codewords ci and cj from the codebook
∗ De�ne the new codeword as: cM+1 ← fi×ci+fj×cj

fi+fj

∗ The corresponding frequency of the new codeword: fM+1 ← fi + fj

Figure 3.3. Codebook construction and pruning procedure

After the initial codebook formation12, each 3D volume, vi, can be assigned to all

labels, cj's, with a degree of similarity, wi,j, as shown in Figure 2.2A. The codebook

construction can be performed using any other clustering method, such as k-means or

mutual information [62]. In section 4.3 we replace this codebook formation method

by an online version of fuzzy c-means clustering algorithm.

3.3.1.2 Capturing The Topology Of The Ensembles of STVs. As discussed in

Chapter 2, the main drawback of most BOW approaches is that they do not consider

the spatio-temporal context of each volume. Thus the outcome is a set of similar

volumes, clustered regardless of their positions in space and time. Several methods

for capturing such information have appeared in the literature (see [14, 58, 66]). Here,

12Recall that initialization requires a minimum of one video frame.
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we present an alternative probabilistic framework for quantifying the arrangement of

the spatio-temporal volumes at a pixel in the video.

Consider a new visual observation, the query. The goal is to estimate the like-

lihood of each pixel in the query being normal. To accomplish this, a large region

R around each pixel is considered and the likelihood is calculated by measuring the

similarity between the volume arrangement in the query and the dataset as described

by (3.1). Given the representation of an ensemble of volumes in (2.3), abnormality

detection is reduced to constructing a similarity map of new observations with re-

spect to all of the previous ones. In doing this, the similarity between many di�erent

topologies of ensembles of volumes will be taken into account in order to capture

the speci�c context of each pixel. The use of the spatio-temporal context surround-

ing a pixel will tend to in�uence the ultimate choice of code word associated with a

particular pixel.

Let us consider how we represent an ensemble of video volumes, Ei, at (xi, yi, ti)

containing K spatio-temporal volumes. Thus the ensemble, Ei, is centered at a video

volume vi located at the point (xi, yi, ti) in absolute coordinates. Here we use the

relative spatio-temporal coordinates of the volume in an ensemble to account for its

position, as shown in Figure 3.4A. Consider the kth volume in Ei. De�ne ∆Ei
vk
∈ R3

as the relative position (in space and time) of the kth video volume, vk, located at

the point (xk, yk, tk), inside the ensemble of volumes. ∆Ei
vk

is de�ned by(3.4):

∆Ei
vk = (xk − xi, yk − yi, tk − ti) (3.4)

Then each ensemble of video volumes at location (xi, yi, ti) is represented by a set

of such video volumes and their relative positions with respect to the central video

volume. Hence (2.3) can be rewritten as:

Ei =
{

∆Ei
vk
, vk, vi

}K
k=1

(3.5)

where K is the total number of video volumes inside the ensemble.
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Figure 3.4. (A) Relative spatio-temporal coordinates of a particular video
volume inside an ensemble of volumes. (B) Codeword assignment to the video
volumes inside the ensemble Ei, and their relative distance in the codeword
space. c ∈ C represents the codeword assigned to the kth video volume inside
the ensemble, vk. c

′ ∈ C denotes the codeword assigned to the central video
volume of the ensemble, vi. The random variable δ represents the relative
position of these codewords in the codeword space (see text).

During the codeword assignment process described in the section 3.3.1.1, a code-

word c ∈ C was assigned to each video volume, vk, inside each ensemble with an

associated degree of similarity using (3.3). Given the codewords assigned to the video

volumes, each ensemble of volumes can be represented by a set of codewords and

their spatio-temporal relationships. Assume that V ⊂ Rnxnynt is the space of the

descriptors for a video volume, and C is the codebook constructed in section 3.3.1.1.

Let c : V → C be a random variable, which assigns a codeword to a video volume.

Assume that c′ : V → C is a random variable denoting the assigned codeword to

the central video volume of an ensemble. Therefore, δ : R3 → R3 is a random vari-

able denoting the relative position of a codeword c to the codeword assigned to the

central video volume of the ensemble, c′. Given the above assumptions, an ensemble

of volumes can be represented as a graph of codewords and their spatio-temporal

relationship, as shown in Figure 3.4B.

Having de�ned the representation of an ensemble of volumes in (3.5), and given

the assigned codewords to the video volumes as described above, a set of hypotheses

describing the topology of each ensembles can be de�ned. Those hypotheses are then

used for constructing a similarity map between the topologies of the ensembles in
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a new observation with respect to all of the previous ones. Let us consider each

hypothesis, h, as a tuple h = (c, c′, δ). Therefore, the set of hypotheses, H13, which

describe the topology of each ensemble is de�ned as follows:

H =
⋃
h

{h} =
⋃
c∈C
c′∈C

{(c, c′, δ)} (3.6)

Suppose we now consider sampling the video frame-by-frame and pixel-by-pixel in

each frame. Let O = (vk, vi,∆
Ei
vk

) signify a single observation, where vk denotes any

observed video volume inside an ensemble, Ei; vi denotes the observed video volume

at the center of the ensemble; and ∆Ei
vk

is the relative location of the observed video

volume, vk, with respect to the vi inside Ei. The aim is to measure the probability

of each hypothesis given the observation. Therefore, given an observation, O, the

posterior probability of each hypothesis, h, is written as:

P (h | O) = P (c, c′, δ | vk, vi,∆Ei
vk

) (3.7)

The posterior probability in (3.7) de�nes the probability of observing the codewords

c, c′, and their relative position, δ, given the observed video volumes,
(
vk, vi,∆

Ei
vk

)
.

Then (3.7) can be rewritten as:

P (c, c′, δ | vk, vi,∆Ei
vk

) = P (c′, δ | c, vk, vi,∆Ei
vk

)P (c | vk, vi,∆Ei
vk

) (3.8)

Since an observed video volume, vk, has been replaced by a postulated interpretation,

c, the �rst factor on the right hand side of (3.8) can be treated as being independent

of vk. Moreover, it is assumed that video volumes vk and vi are independent
14. Hence,

vi can be removed from the second factor on the right hand side of (3.8). Therefore

(3.8) can be rewritten as:

P (c, c′, δ | vk, vi,∆Ei
vk

) = P (c′, δ | c, vi,∆Ei
vk

)P (c | vk,∆Ei
vk

) (3.9)

13These hypotheses, H, are obtained by assuming that the codeword entries are independent.
14Although in the case of overlapping video volumes such an assumption is not true, this is the

standard Markovian assumption made for BOV.
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On the other hand, the codeword assigned to a video volume is independent of its

position, ∆Ei
vk
. Therefore (3.9) can be reduced to:

P (c, c′, δ | vk, vi,∆Ei
vk

) = P (c′, δ | c, vi,∆Ei
vk

)P (c | vk) (3.10)

so that rewriting (3.10) gives:

P (c, c′, δ | vk, vi,∆Ei
vk

) = P (c′, δ | c, vi,∆Ei
vk

)P (c | vk)

= P (δ | c, c′, vi,∆Ei
vk

)P (c′ | c, vi,∆Ei
vk

)P (c | vk)
(3.11)

Similarly, by assuming independence between codewords and their locations, (3.11)

can be reduced to:

P (c, c′, δ | vk, vi,∆Ei
vk

) = P (δ | c, c′,∆Ei
vk

)P (c′ | vi)P (c | vk) (3.12)

Knowing the codeword assigned to the video volume, c, and the codeword assigned

to the central video volume of the ensemble, c′, the �rst factor on the right hand side

of (3.12), P (δ | c, c′,∆Ei
vk

), is the probabilistic vote for a spatio-temporal position,

δ. Thus, given a set of ensembles of video volumes, it can be formed using either

a parametric model or non-parametric estimation. Here, we approximate this pdf

using a mixture of Gaussians. The maximum number of Gaussians is set to three and

the parameters of the Gaussians are optimized using an expectation-maximization

procedure [28]. The second and third terms in the right hand side of (3.12), P (c′ | vi)

and P (c | vk), are the votes for each codeword entry and are obtained as a result of

the codeword assignment procedure15.

Thus, given an ensemble of spatio-temporal video volumes, the likelihood of its

composition can be computed simply by using the pdf s instead of laboriously com-

paring all other video volumes compositions in the dataset. As discussed in the next

section, anomalous events are determined from these pdf s by selecting those compo-

sitions with very low likelihood of occurrence. Comparing this with [14], in which

an exhaustive search was employed to determine the optimal ensemble, our approach

15Codewords are assigned to the video volumes regardless of their location in space and time.
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is capable of retaining adequate information about the spatio-temporal arrangement

of the volumes while reducing the memory requirements. It also greatly reduces the

dimension of the search space for �nding similar regions in the dataset for a new

observation.

3.3.2 Detecting Anomalous Patterns: Inference Mechanism. Next,

consider the scenario of a continuously operating surveillance system. At each tempo-

ral sample t, a single image is added to the already observed frames and the resulting

video sequence, the query, Q, is formed. In order to detect anomalous patterns, the

posterior probability of each pixel in the query video is calculated using the ensemble

of the spatio-temporal volumes around it to determine whether the point is related

to the normal events or is suspicious.

Given (3.6) which details the ensemble topology hypotheses, H obtained from

the previous section, the posterior probability of an ensemble of volumes in the query

is calculated as: P
(
H | EQi

)
. Here EQi is an ensemble of video volumes in the query

centered at point (xi, yi, ti).

Thus given EQi , we wish to search for previously observed ensembles that are

most similar to the newly observed ensemble in terms of both their video volumes

and topologies. In other words, the posterior probability should be maximized:

max
h

P
(
H | EQi

)
= max

c∈C
c′∈C

P
(
c, c′, δ | EQi

)
(3.13)

Since we represent each ensemble by its spatio-temporal video volumes, relative po-

sition and the central volume, and assuming that the observed video volumes are

independent16, the right side of the above equation can be written as the product of

the posterior probability of every video volume inside the ensemble:

P
(
c, c′, δ | EQi

)
=

K∏
k

P
(
c, c′, δ | qk, qi,∆

EQi
qk

)
(3.14)

16This is the Markov assumption (see [14, 75]).

44



3.3 ABNORMAL EVENT DETECTION

Inference mechanism for a new query video, Q
Sampling and Coding

• Construct space-time pyramids for Q
• Densely sample the video at all scales and construct spatio-temporal volumes: {q1, q2, ..., qK}
• Codeword assignment:

� Assign each qk in the query to the obtained codewords {c1, c2, ..., cM} with a similarity wk,m

using the same distance function used during the training process as described in Figure 3.3
• Construct ensembles of spatio-temporal volumes, EQi
Similarity Map Construction

For each ensemble of volumes, EQi containing K spatio-temporal volumes:

• For each volume qk inside EQi , compute the relative position using (3.4) ∆
EQ

i
qk k = 1 : K

• Calculate the probability of the ensemble EQi being normal: SEQ
i

= max
c∈C
c′∈C

P
(
c, c′, δ | EQi

)
Decision-making regarding the observation

Given the calculated similarity of each ensemble of volumes, SEQ
i

EQi is anomaly if SEQ
i
≤ γ

Figure 3.5. Anomalous action detection (Inference mechanism).

where qk is the video volume inside EQi , qi is the central volume of EQi , ∆
EQi
qk is the

relative position of the qk, andK is the total number of spatio-temporal video volumes

inside the ensemble. Referring to (3.12), it is obvious that P
(
c, c′, δ | qk, qi,∆

EQi
qk

)
in

(3.14) can be rewritten as follows:

P (c, c′, δ | EQi ) =
K∏
k

P (δ | c, c′,∆EQi
qk )P (c | qk)P (c′ | qi) (3.15)

Thus the maximum posterior probability in (3.13) can be rewritten as:

max
c∈C
c′∈C

P
(
c, c′, δ | EQi

)
= max

c∈C
c′∈C

K∏
k

P (δ | c, c′,∆EQi
qk )P (c | qk)P (c′ | qo) (3.16)

This is a straightforward computation because the prior probability of each spatio-

temporal volume in the query has been calculated during codeword assignment (de-

scribed in section 3.3.1.1). The posterior probability is calculated using the estimated

probability distribution functions in section 3.3.1.2. Figure 3.5 shows the pseudo-code

for the inference process.
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Figure 3.6. Likelihood map construction for each pixel in the video frame.
The query video is densely sampled and the likelihood of each pixel at dif-
ferent spatial and temporal scales is computed within a large region around
it. EQi contains many spatio-temporal volumes. This data structure facili-
tates the computation of the similarity between all volumes and their local
context. The computation involves both new and previously observed data.
The likelihood of each point is calculated using the probabilistic model of
the volume arrangements and a likelihood map of the whole frame is con-
structed. Inferring the location of the anomalous regions is accomplished by
thresholding the likelihood map.

In summary, at �rst, the query, Q is densely sampled at di�erent spatio-temporal

scales in order to construct the video volumes. Each volume qk is assigned to a code-

word c ∈ C with similarity obtained from (3.3). The probability of being normal of

every pixel in a video frame is then calculated using the spatio-temporal arrangement

of the volumes inside each ensemble, EQi . Ultimately, the likelihoods of each pixel in

the video frame will yield a similarity map of the whole frame. As a result, the likeli-

hood of every pixel in each frame is approximated (see Figure 3.6). Clearly, the regions

in a frame of the video containing suspicious behaviors will have less similarity to the

examples already existing in the dataset. Thus, decisions about anomalous actions

can be made using the calculated similarity map, which is based on a threshold. In

the experiments described in section 3.4, a single threshold for all test sequences was

applied to the similarity map. The similarity map was processed before thresholding

by a spatio-temporal median �lter to reduce noise e�ects and outliers.

We also note that the proposed statistical model of codeword assignment and

the arrangement of the spatio-temporal volumes permit small local misalignments in
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the relative geometric arrangement of the composition. This property, in addition

to the multi-scale volume construction in each ensemble, enables the algorithm to

handle certain non-rigid deformations in space and time. This, of course, is necessary

since human actions are not exactly reproducible, even for the same person. We

conclude this section by examining computational complexity. Suppose there are K

video volumes available in each ensemble and the number of codewords is M . For

each ensemble, the time complexity of the codeword assignment is O (K ×M) and for

the maximum posterior probability in (3.16) is O (K ×M ×M). Thus, the inference

mechanism for each ensemble of video volumes in the query has the time complexity

of O (K ×M × (M + 1)). On the other hand, the method proposed by Boiman and

Irani [14], which is the exact solution to anomaly detection by reconstruction, has

a time complexity of O (K ×N), in which N is the total number of video volumes

previously observed. Moreover, in [14] N video volumes are required to be stored

in memory as previous observations, while in our approach the total number video

volumes stored is M . Noting that usually M << N , the approach proposed here

requires much fewer computations as well as a smaller amount of memory space.

3.3.3 Algorithm Initialization. Before continuing with the experimental

results, we describe how the algorithm is initialized. The scenario we have considered

here implies on-line and continuous surveillance of a particular scene in order to detect

anomalous patterns. Therefore, we require only that the �rst N frames of the video

stream initiate the process. Furthermore, N should be taken at least equal to the

temporal size of the ensembles in order to construct a successful model of the previous

observations. These N frames must contain only normal events, and we have referred

to them as the training or initialization sequence. The actual number of initialization

frames (N) required and its e�ect on the detection results is discussed in the next

section. To initiate the codebook during the �rst N frames, each video volume is

assigned to a codeword with a similarity weight using the procedure explained in

section 3.3.1.1. In addition, probability distribution functions of spatio-temporal

arrangements of the codewords are also estimated. This can be accomplished either
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online or o�ine. When the next frame, (N + 1)th frame, arrives it is densely sampled

to construct spatio-temporal video volumes and the ensembles of these video volumes.

Their similarity to the volumes that have already been obtained is computed using

the codebook constructed during the initialization procedure and inference mechanism

described in section 3.3.2. In this way, the algorithm constantly learns newly observed

normal events in an unsupervised manner (see experimental results). Similar to [2,

14], dominant events are assumed to be normal while rarely observed activities are

considered as anomalies.

3.4 Experiments

The algorithm was tested on crowded and non-crowded scenes (one or two per-

sons in the scene) in order to measure the capabilities of the proposed method for

anomalous activity recognition. Four publicly available datasets of anomalous events

were used: the anomalous walking patterns of a person17 [14]; the UCSD pedestrian

dataset, which has recently been published and actually consists of two datasets18

[65]; the subway surveillance videos19 [2]; and the anomaly detection dataset20 [129],

the last containing videos captured under variable illumination conditions. Except for

the �rst dataset, the others were gathered in realistic environments. To evaluate per-

formance, we also compared the results with other pixel-level approaches of current

interest, such as Inference by Composition (IBC) [14], Mixture of Dynamic Textures

(MDT) [65], Space-Time Markov Random Fields (ST-MRF) [52], Local Optical Flows

[2], and spatio-temporal oriented energy �lters [129]21. The IBC method is currently

considered to be one of the most accurate for pixel level saliency detection22 and was

17http://www.wisdom.weizmann.ac.il/~vision/Irregularities.html
18http://www.svcl.ucsd.edu/projects/anomaly
19Obtained from the authors of [2].
20http://www.cse.yorku.ca/vision/research/spatiotemporal-anomalous-behavior.

shtml
21Note computer code for these methods is not available publicly and had to be programmed

using just the original papers as references.
22Our experimental results also support this claim.
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tested to demonstrate that our proposed method (Spatio-Temporal Compositions,

STC) produced similar results.

IBC calculates the likelihood of every point in each frame. This is achieved

by examining the spatio-temporal volumes and their arrangements in a large region

surrounding the pixels in a query video. ST-MRF models the normal activity us-

ing multiple probabilistic PCA models of local optical �ow [52], while MDT can be

considered as an extension of the dynamic texture-based model and is capable of de-

tecting both spatial and temporal abnormalities [65]. Although the latter requires a

large training dataset, it was used here for comparing results because of its superior

performance on the UCSD pedestrian dataset.

3.4.1 Datasets For Anomaly Detection. The �rst dataset we discuss

illustrates the situation with one or two persons in the scene. The training23 video

is short (24 seconds) and contains normal acted behaviors representing two di�erent

actions, walking and jogging by a single person. Figure 3.7 shows some sample images

from this training set. The query is a long video clip which contains both acted normal

and abnormal behaviors of one or two persons in the scene. In some sequences one

of them performs a normal and the other, a suspicious action. The existence of

the simultaneous occurrence of both normal and suspicious activities in the video

provides an opportunity to evaluate the localization ability of the proposed method.

The suspicious behaviors in the dataset are abnormal walking patterns, crawling,

jumping over objects, falling down, etc. We show some frames in which the proposed

algorithm detected suspicious behaviors in Figure 3.724.

The second dataset used for performance evaluation of the proposed approach is

the UCSD pedestrian dataset. It contains video sequences from two pedestrian walk-

ways where abnormal events occur. The dataset contains di�erent crowd densities,

23Although our method does not actually require any speci�c number of training images, the
training sequences speci�ed for each dataset in the literature description of the experiments were
used as the initialization frames.

24The videos showing results of our algorithm for abnormality detection are available at: http:
//www.cim.mcgill.ca/~javan/index_files/Abnormal_events.html
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(A) (B) (C)

Figure 3.7. Detecting suspicious behavior in a scenario in which walking
and jogging are the normal behaviors. (A) Valid example of walking. (B),
(C) Abnormality detection in the query video by our proposed algorithm.
New valid behaviors are automatically inferred from the dataset (e.g., two
di�erent persons walking and jogging). The anomalous regions are those that
cannot be reconstructed using the example in (A) and these regions have been
highlighted in green. In (B), the man holding a gun at the right and the one
holding his hands up at the left are showing suspicious behaviors. In (C),
the person at the left is crawling while the other is walking in an abnormal
fashion.

and the anomalous patterns are the presence of non-pedestrians on a walkway (bicy-

clists, skaters, small carts, and people in wheelchairs). The UCSD pedestrian dataset

contains 34 normal video clips for the �rst scene (UCSD Ped 1) and 36 video clips

containing one or more anomalies for testing; and 16 normal video clips for the second

scene (UCSD Ped 2), together with 14 test video clips. Figure 3.8 shows samples of

these two scenes with the suspicious regions labeled by the proposed method.

The third dataset contains two actual surveillance videos of a subway station [2]

recorded by a camera at the entrance and exit gates. The entrance gate surveillance

video is 96 minutes long. It shows normal events such as going down through the

turnstiles and entering the platform. There are also scenes containing 66 anomalous

events, mainly walking in the wrong direction, irregular interactions between people

and some other events, including sudden stopping, running fast, etc. [2]. The second

one, the exit gate surveillance video, is 43 minutes long and contains 19 anomalous

events, mainly walking in the wrong direction and loitering near the exit [2]. Neither

the surveillance videos nor groups of frames within them are labelled as training or
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(A) (B) (C) (D)

(E) (F) (G) (H)

Figure 3.8. Detecting abnormalities using the UCSD pedestrian datasets.
(A), (E) Sample frames of normal actions for the two scenes, containing only
walking pedestrians. (B), (C), (D); (F), (G), (H) Abnormality detection in
the query videos are highlighted in green. The bikers and the skater are the
detected anomalous patterns.

testing videos. Figure 3.9 shows some frames from this dataset together with the

detected anomalies using our approach.

The fourth dataset contains real-world videos with more complicated dynamic

backgrounds plus variable illumination conditions. Notwithstanding the signi�cant

environmental changes in this dataset, the abnormalities are actually simplistic mo-

tions (e.g., motion in the scene or di�erent motion direction). We used three videos

from this dataset, which have variable illumination and dynamic backgrounds: the

Train, the Belleview, and the Boat-Sea video sequences. The Train sequence is the

most challenging one in this dataset [129] due to drastically varying illumination and

camera jitter. In this sequence, the abnormalities relate to the movement of people.

The other sequence is a tra�c scene in which the lighting conditions change grad-

ually during di�erent times of the day and the abnormalities are cars entering the

intersection from the left or right. In the last video sequence the abnormalities are

the passing boats in the sea. Similar to the subway surveillance video dataset, there
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(A) (B) (C) (D)

(E) (F) (G) (H)

Figure 3.9. Anomaly detection at subway entrance and exit gates. The
top row shows the entrance and the bottom shows the exit gate. Anomalous
regions are highlighted in green. (A), (E) Show sample frames of two scenes.
The anomalies are shown as follows: (B), (C) a person is exiting through the
entrance gate; (F), (G), (H) a person is entering through the exit gate; (D)
Two persons are trying to pass through the entrance gate without payment.

are no separate training and testing sequences. Figure 3.10 shows some frames of this

dataset together with the detected anomalies using our approach.

3.4.2 Performance Evaluation: Abnormality Detection And Localiza-

tion. Performance evaluation of any anomaly detection method can be conducted

either at the frame or pixel level. Frame level detection implies that a frame is

marked as suspicious if it contains any abnormal pixel, regardless of its location. On

the other hand, pixel level detection attempts to measure the localization ability of

an algorithm. This requires the detected pixels in each video frame to be compared

to a pixel level ground truth map. Clearly, such abnormality localization is more

important than marking the whole frame as suspicious.

We �rst consider a quantitative comparison of di�erent approaches for anomaly

detection at the frame level. Figure 3.11 shows the receiver operating characteristic

(ROC) for the �rst dataset (containing anomalous walking patterns), plotted as a

function of the detection threshold for di�erent anomaly detection methods. Following
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(A)

(B) (C)

(D)

(E) (F)

Figure 3.10. Anomaly detection in challenging datasets. The top row
shows the sample frames from three datasets: (A) Train, (B) Belleview,
and (C) Boat-Sea video sequence. The bottom row shows anomalous regions
highlighted in green. Detected anomalous regions: (D) moving person, (E)
Van detected moving to the right, (F) Boat fading out under a bridge.

the evaluation procedure of [2] and [14], each frame is marked as abnormal if it

contains at least one pixel detected as an anomaly. Similarly we performed frame

level detection on the UCSD pedestrian dataset and the ROC curves are illustrated

in Figure 3.12A and 3.12B. It is clear from Figures 3.11 and 3.12 that IBC and

STC produce more accurate results than the others, particularly MDT on the UCSD
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Figure 3.11. A comparison of the ROCs for the following methods: the
proposed STC, IBC, MDT, local optical �ow, and spatio-temporal oriented
energy �lters computed for the �rst dataset, which deals with anomalous
walking patterns. ROC curves were obtained by varying the detection thresh-
old, γ, for STC, the threshold on the overall abnormality map in MDT, and
the saliency map in IBC.

pedestrian dataset. We note that MDT had been reported to have achieved the

highest recognition rate for the UCSD dataset [11]). We observe that the similar

performance of STC and IBC was probably predictable, because STC summarizes

the spatio-temporal relationships between the video patches, while IBC maintains

these by storing all spatio-temporal arrangements of all volumes in the dataset. This

indicates that there was no performance loss, notwithstanding the fact that STC is

based on probabilities and performs in real-time. Thus while the two methods may

achieve similar results for anomalous event detection, our approach has two main

advantages over IBC. First it is considerably faster (see Table 3.1) and, second, it

requires much less memory to store the learned data. These issues would also be

important if our approach were to be used to describe and summarize normal rather

than just anomalous behaviors.

The second approach for performance evaluation is to measure the localization

performance by evaluating it at the pixel level. To date, pixel level localization can

25Although there are very fast methods for local abnormality detection, such as [129], we compare
the computational time of the algorithms for non-local and complicated behavior understanding that
accounts for contextual information as well.

26This is the approximate computational time obtained on a PC with an Intel Q9550 CPU and
4GB of RAM.
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Figure 3.12. Comparing ROC of the proposed STC, IBC, MDT and the
local optical �ow method over two datasets. (A), (B) Performance based on
the UCSD pedestrian datasets (UCSD ped 1 and USCD ped 2). Among all
of these approaches, the proposed STC method shows similar results to IBC
[14] and outperforms the others. However, compared to IBC, our method is
much faster and requires much less memory.

Table 3.1. Required computational time for the tested methods for non-
local abnormality detection using di�erent datasets25.

Processing time per frame (sec)26

Dataset Algorithm used for anomaly detection

STC Method MDT Method IBC Method
Ped1 0.19 21 69
Ped2 0.22 29 83

Subway Surveillance Videos 0.24 38 113
Walking Patterns 0.23 32 74

only be measured for a small number of datasets among existing public databases,

since it requires ground truth maps. USCD pedestrian datasets [65], and the anomaly

detection dataset [129] are the two datasets that include ground truth maps in which

each region containing an anomalous event is marked manually. Thus the detected

pixels in each video frame are compared to the ground truth map at the pixel level.

For UCSD pedestrian datasets, anomaly detection is deemed to have occurred when

at least 40% of the actual anomalous pixels have been detected27. Otherwise it is

27We used a single threshold for all videos in this study to mark suspicious regions. However,
these are usually larger or smaller than the actual ground truth region. A degree of overlap of 40%
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Table 3.2. Quantitative comparison of the proposed method (STC) and the
state-of-the-art for anomaly detection using the UCSD pedestrians dataset.
(* indicates that the method is claimed to have real time performance).

Algorithm used for anomaly detection Dataset EER for frame
level detection

EER for pixel
level detection

Number of
frames contain-
ing valid exam-
ples (training
sequences)

*STC
UCSD Ped1 15% 27% 200
UCSD Ped2 13% 26% 180

MDT (Mahadevan et. al, 2010, [65])
UCSD Ped1 25% 58% 6800
UCSD Ped2 24% 54% 2880

IBC (Boiman and Irani, 2007, [14])
UCSD Ped1 14% 26% 6800
UCSD Ped2 13% 26% 2880

*Zaharescu and Wildes, 2010, [129]
UCSD Ped1 29 % 41% 6800
UCSD Ped2 27% 36% 2880

*Bertini et. al, 2012, [11]
UCSD Ped1 31% 70% 6800
UCSD Ped2 30% - 2880

*Reddy et.al, 2011, [85]
UCSD Ped1 22.5% 32% 6800
UCSD Ped2 20% - 2880

Antic and Ommer, 2011, [5]
UCSD Ped1 18% - 6800
UCSD Ped2 14% - 2880

ST-MRF (Kim and Grauman, 2009 [52])
UCSD Ped1 40% 82% 6800
UCSD Ped2 30% - 2880

*Local optical �ow (Adam et. al, 2008 [2])
UCSD Ped1 38% 76% 6800
UCSD Ped2 42% - 2880

considered to be a false alarm. The equal error rate (EER), the percentage of mis-

classi�ed frames when the false positive rate is equal to the miss rate, is calculated

for both pixel and frame level analyses and presented in Table 3.2.

The results in Table 3.2 demonstrate that the proposed method (and, of course,

IBC) outperformed other approaches both at the frame and pixel levels. Furthermore,

it can detect anomalous patterns without signi�cant performance degradation when

there is perspective distortion and changes in spatial scale (UCSD Ped 1 dataset).

This is in distinction to optical �ow approaches that cannot handle this issue eas-

ily [65]. Moreover the computational time required by the method described in this

chapter is signi�cantly lower than other non local-approaches in the literature. In

order to make a fair comparison of di�erent approaches, the STC algorithm must

is a typical overlapping ratio suggested as the standard protocol for UCSD pedestrian dataset [65]
and also used in [11, 85, 5] for measuring the localization ability of the algorithms.
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be judged against other real-time algorithms as indicated in Table 3.2. Thus, we ob-

serve that the STC algorithm outperforms all other real-time algorithms and achieves

the best results for the UCSD pedestrian dataset at both frame level detection and

pixel level localization. It should also be noted that the results reported in Table

3.2 for all other methods were obtained using 50 video sequences for training (6800

video frames), while our approach used just one short video sequence consisting of 200

frames. This is a major advantage of our algorithm, which does not require long video

sequences for initialization. It is also interesting to note that among other approaches

that do not account for spatio-temporal contextual information, spatio-temporal ori-

ented energy �lters [129] is the fastest and outperforms other local approaches with

real-time performance.

We also carried out experiments on another real-world video dataset, the sub-

way surveillance dataset. The training strategy for the subway surveillance video is

di�erent from the UCSD pedestrian dataset, since no training set containing only

normal events is available. Therefore, we used two approaches for initialization. The

�rst one exploited a �xed number of frames, which is similar to previously reported

approaches. Analogous to [52] and [131], we picked the �rst 5 minutes of the entrance

gate video and the �rst 15 minutes of the exit gate video for initialization. The sec-

ond approach was to continue learning newly observed events while still detecting

the anomalies. The results are presented in Table 3.3. Compared with the other ap-

proaches for abnormality detection, the STC algorithm produces comparable results

to the state of the art. We also observe that that performance of our algorithm is

independent of the initialization strategy, although continuous learning does provide

slightly better results.

We also evaluated the localization performance of our algorithm using pixel

ground truth. Abnormality detection was performed for the subway exit gate video

using the same initialization strategy as the frame level detection. The ground truth

28Used a reduced number of abnormalities, as their method was unable to detect all kinds of
abnormalities in the dataset.

29Ibid.
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Table 3.3. Comparison of di�erent methods and learning approaches for the
subway videos. In the fourth column, the �rst number denotes the detected
anomalous events; the second is the actual number of anomalous events. (*
indicates that the method is claimed to have real time performance)

Algorithm used for anomaly detection Dataset Training pe-
riod

Number of
anomalous
events

False alarm

*STC
Entrance gate 5 min. 60/66 4
Exit gate 15 min. 19/19 2

*STC
Entrance gate Continuous 61/66 4
Exit gate Continuous 19/19 2

ST-MRF(Kim and Grauman, 2009 [52])
Entrance gate 5 min. 57/66 6
Exit gate 15 min. 19/19 3

*Dynamic Sparse Coding (Zhao et. al, 2011 [131])
Entrance gate Continuous 60/66 5
Exit gate Continuous 19/19 2

Sparse reconstruction (Cong et. al, 2011 [24]28)
Entrance gate 10 min. 27/31 4
Exit gate 10 min. 9/9 0

*Local optical �ow (Adam et. al, 2008 [2]29)
Entrance gate 5 min. 17/21 4
Exit gate 15 min. 9/9 2

map for this video was produced manually by the authors of [129] for wrong way

motion abnormalities. Figure 3.13 illustrates the precision-recall curves of the pro-

posed algorithm and that of the spatio-temporal oriented energies method [129]. The

method presented in this chapter shows superior performance. We attribute this to

the fact that it accounts for contextual information in the scene and hence, it is

capable of learning complicated behaviors. Although adding contextual information

increases the computational complexity of the STC algorithm when compared to local

approaches, it is still fast enough for real-time abnormality detection and localization.

Although the experiments described above indicate that our method can detect

complicated abnormal behaviors in realistic scenes (UCSD pedestrian dataset and

subway surveillance videos), we also conducted experiments for the fourth dataset.

Although this dataset contains relatively simple abnormal events, we tested it to

evaluate the e�ect of continuous learning under variable and di�cult illumination

conditions. We followed the same strategy for initialization of the algorithm as in

[129], in which the �rst 800 frames of the Train video and the �rst 200 frames of
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Figure 3.13. Comparing precision/recall curves for abnormality localiza-
tion in the subway exit gate video surveillance sequence.
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Figure 3.14. Comparing precision/recall curves for two videos of a chal-
lenging dataset: (A) Train video sequence, in which the illumination condi-
tions change drastically in a short period of time, (B) the Belleview tra�c
scene, in which the lighting conditions change gradually from daylight to
night, and (C) the Boat-Sea video sequence in which the background shows
quasi-periodic patterns.

the Belleview and Boat-Sea video sequences were considered to be the initializa-

tion frames (these contain a total of 19218, 2918, and 2207 frames, respectively).

We compared the results with two alternative pixel-level anomaly detection meth-

ods: spatio-temporal oriented energies [129] and local optical �ow [2]. Although the

abnormalities in this dataset are actually low level motions, we exclude pixel-level

background models and behavior template approaches [49] from our comparisons as

they do not achieve acceptable results [129]. The precision-recall curve of the STC

method and two alternatives are presented in Figure 3.14.
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Comparing �rst the performance in Figure 3.14 of the two strategies (red and

blue curves) employed by STC, it is obvious that using simultaneous and continuous

learning and detection of abnormalities (red curve) is superior to employing only an

initial training set (blue curve). On the other hand, we observe that simple local

optical �ow features, combined with online learning [2] (black curve), do not yield

acceptable results in the former case. Notwithstanding this, we also note that [2] was

actually fairly capable of detecting abnormalities in other realistic datasets (Tables

3.2 and 3.3). Therefore, it appears that the optical �ow approach (black curve)

has di�culty capturing temporal �icker and dynamic textures. In the case of rapid

changes in illumination, using a more complex feature descriptor, such as oriented

energies (green curve) in [129], produces slightly better results than STC (the Train

sequence) with faster execution time. On the other hand, we stress that this method

cannot be used for more complex behaviors for two reasons: it is too local and does not

consider contextual information30. Figure 3.15 illustrates two examples of abnormal

behaviors in which this method fails.

3.4.3 Performance Evaluation: E�ect of codebook size and number of

initialization frames. As STC creates a codebook to group similar video volumes,

it is necessary to analyze the e�ect of di�erent codebook sizes on the performance of

the algorithm. This is achieved by changing the threshold, ε, during codeword forma-

tion (see section 3.3.1.1). Various threshold values were used and the EER calculated.

In Figure 3.16A, the EER value for frame level detection is plotted as a function of

the codebook size (number of codewords) for the UCSD pedestrian dataset. We ob-

serve that large threshold values produce small codebooks, resulting in inadvertent

merges of video volumes. This means that some local information may be lost, and

furthermore, anomalous events may be grouped with the normal ones. On the other

hand, as the number of the codewords increases, the algorithm stores more volumes,

and in the extreme case, would be similar to the original IBC method. Using larger

codebooks demands more memory and dramatically increases computational time, so

30Experimental results presented in Table 3.2 and Figure 3.13 also supports this claim.
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(A) (B)

(C) (D)

Figure 3.15. Comparing STC and spatio-temporal oriented energy meth-
ods on two datasets with more complicated abnormal behaviors: (A), (B)
Results of STC for the Walking pattern and UCSD ped2 datasets. (C), (D)
results of spatio-temporal oriented energy on these datasets.

that online implementation would become impossible. Although there is a trade-o�

between codeword size and the performance of the algorithm, it can be inferred from

our experiments that using relatively small codebooks (e.g., 20 codewords) achieves

acceptable results for anomaly detection.

Another major concern for learning algorithms in videos surveillance systems is

the size of the training set, that is, how many valid examples are necessary for anomaly

detection in a new video. We have tested this for STC using videos containing valid

behaviors. The video size ranged from short sequences of 50 frames to longer ones

containing 400 frames. Figure 3.16B shows the learning curve for UCSD Ped 1 and

Ped 2 based on the EER. We observe that convergence is very fast. Therefore the

proposed method is capable of detecting suspicious actions by observing just a few

valid behaviors (∼ 150 frames). Since, as indicated in Table 3.1, the present version
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Figure 3.16. E�ect of codebook size and number of initialization frames
on the STC algorithm for anomaly detection. The EER is calculated for
frame level detection using UCSD Ped 1 and Ped 2 datasets. (A) E�ect of
codebook size on anomaly detection. (B) Learning curve of the STC method
for anomalous action detection.

of the program runs at about 4-5 frames per second, we can infer that initialization

requires about 20 seconds for this dataset.

3.5 Summary

The results presented in section 3.4 indicate that the STC method has a com-

petitive performance (in terms of accuracy and computational cost) compared to the

other approaches for anomaly detection for four challenging datasets. Moreover, it is

fast enough for online applications and requires fewer initialization frames. When a

separate training set is not available, the algorithm is capable of continuously learn-

ing the dominant behavior in an unsupervised manner while simultaneously detecting

anomalous patterns. Clearly, this is the preferred behavior for any potential visual

surveillance system operating in an unconstrained environment.

Overall, the STC algorithm produces similar results to the state-of-the-art for

complicated abnormality patterns, while the computational cost is much lower. On

the other hand, for local abnormalities, such as changes in background and temporal

�icker in a scene with a complicated background, the method presented in [129]

appears to be faster than STC, but weaker at dealing with the non-local patterns

created by anomalous behaviors.
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The main advantage of STC is that it takes into account the compositional infor-

mation of the video volumes in a large region. Notwithstanding the simple temporal

di�erence feature used here to describe the video volumes in STC, the algorithm is

still capable of handling signi�cant illumination variations. Thus using more com-

plicated ones, most likely would further enhance the outcome. Although our results

indicate that the STC method has competitive performance compared to other ap-

proaches, it still yields some errors. Analyzing these indicates that occlusion is the

major source of error in crowded scenes. This was predictable as the video data were

obtained using a single camera. Based on the experiments, we can summarize the

results of our study as follows:

(i) In the case of complicated abnormal behaviors without drastic changes in

illumination or dynamic backgrounds (in Walking patterns, UCSD pedes-

trian and Subway surveillance datasets):

(a) STC outperforms all other realtime and non-realtime methods (except

IBC) in terms of abnormality detection and localization.

(b) STC produces similar results to IBC with vastly fewer computations.

(ii) In the case of simple abnormal events (motion/direction detection in the

fourth dataset) with dynamic backgrounds and variable illumination con-

ditions:

(a) Continuous learning makes STC capable of handling environmental

changes. Moreover, it is more robust to gradual changes, as it requires

updating the pdf s to learn newly observed behaviors.

(b) For drastically changing background and illumination, spatio-temporal

oriented energy �lters [129], which is dedicated to pixel level motion

and direction detection, achieved better results than STC.
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Chapter 4

Online Dominant And Anomalous Event

Modeling

4.1 Introduction

In light of the problem statements in Chapter 1, our goal is to build a fast system

that recognizes abnormal patters. In Chapter 3 we have described an automated

system for abnormality detection. The proposed approach was based on constructing

a self-similarity map of the video to identify spatio-temporal abnormal events. In this

chapter, we address the problem of simultaneously learning dominant and rare events

in space and time. This problem is a generalized problem of abnormality detection,

in which a model is learned for dominant events. In addition, spatio-temporal events

are decomposed into spatial and temporal events to capture abnormalities in both

space and time.

Here we seek to simultaneously parse an entire video into local spatio-temporal

regions in order to detect all activities, anomalies and objects using unsupervised

learning. In addition, we will show that this can be achieved using a single uni�ed

formalism without possessing any models of the contents beforehand[91]. Figure 4.1

illustrates an example of video parsing. Normal events observed in a scene will be

referred to as the �dominant� behavior. These are events that have a higher proba-

bility of occurrence than others in the video and hence generally do not attract much
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Figure 4.1. Video parsing. The input video is parsed into three meaning-
ful components: background, dominant activities (walking pedestrians), and
rare activities (the bicyclist).

attention. We can further categorize the dominant behavior into two classes. In the

literature on attention, the �rst one usually deals with foreground activities in space

and time [9, 8, 30, 49, 48] while the other describes the scene background1. Typically,

the latter is more restrictively referred to as background subtraction, which is the

building block of almost all computer vision algorithms. However, dominant behavior

detection is more general and more complicated than background subtraction, since

it includes the scene background while not being limited to it. The manner in which

these two di�er is the way that they use the scene information. Most background

subtraction methods are based on the principle that the photometric properties of the

scene in the video, such as luminance and color, are stationary. In contrast, dominant

behavior understanding can be seen as a generalization of the classical background

subtraction method in which all of the dynamic content (background and foreground)

of the video come into play. Thus, we de�ne these terms in a di�erent manner from

the current literature in that the background is taken as being spatial or temporal

aspects that are normally occurring in the scene.

1By de�nition, the background consists of pixels in the video frames whose photometric proper-
ties, such as luminance and color, are either static or stationary with respect to time.
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The main challenge is to learn both dominant and anomalous behaviors in videos

of di�erent spatio-temporal complexity. For example, these could range from non-

stationary scene backgrounds to abnormal human activities. By achieving this, it

becomes possible to construct a hierarchical layered model of the scene to under-

stand the di�erent behaviors. Thus, the algorithm can simultaneously model high

level behaviors and detect abnormalities by considering both spatial and temporal

contextual information while also performing temporal pixel level change detection

and background subtraction. This characteristic makes our algorithm more general

than both abnormality detection and background subtraction methods on their own.

More precisely, the main characteristic of our approach are as follows: I - The spatio-

temporal contextual information in a scene is decomposed into separate spatial and

temporal contexts, which make the algorithm capable of detecting purely spatial or

temporal activities, as well as spatio-temporal abnormalities. II - High level activity

modeling and low level pixel change detection are performed simultaneously by a sin-

gle algorithm. Thus the computational cost is reduced since the need for a separate

background subtraction algorithm is eliminated. This makes the algorithm capable

of understanding behaviors of di�erent complexity. III - The algorithm adaptively

learns the behavior patterns in the scene in an online manner. As such, the approach

is a preferable choice for visual surveillance systems. IV - The major bene�t of the

algorithm is its extendibility, which is achieved by hierarchical clustering. This makes

the algorithm capable of understanding dominant behaviors of di�erent complexity.

In order to evaluate capabilities of our approach for dominant behavior under-

standing and abnormality detection, we have conducted experiments using di�erent

datasets with di�erent dominant behavior patterns. The results indicate that our ap-

proach is comparable to the state-of-the-art, while it can be extended to more di�cult

problems2.

2All videos and additional results are available at: http://www.cim.mcgill.ca/~javan/index_
files/Dominant_behavior.html
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4.2 Related Work

The problem of dominant behavior detection addressed in this paper can be

considered either as a generalization of background subtraction [53, 134], scene un-

derstanding [108] or the inverse problem of abnormality detection [2, 14, 11, 129]. We

limit the discussion of the literature to methods that are not based on a priori models

but rather learn the dominant and abnormal behaviors.

To date, most of the reported approaches for behavior understanding that are not

based on a priori models are grounded on trajectory analysis of the objects, which

requires precise tracking methods [72, 76]. This remains a challenge, particularly in

complex situations. On the other hand, techniques that do not require object de-

tection followed by tracking focus on local spatio-temporal behaviors in videos and

have recently gained increased popularity [8, 41]. Most of these methods rely mainly

on extracting and analyzing low-level visual features, such as color, motion and tex-

ture in local regions in space and time. This is achieved either by constructing a

pixel-level background model and behavior template [53, 49, 9, 30, 70] or by em-

ploying spatio-temporal video volumes [14, 11, 52, 133]. In large part, the former

relies on an analysis of the activity pattern of each pixel in each frame as a func-

tion of time, i.e. the background subtraction process. These are used to construct a

background model by mainly analyzing the photometric features at each pixel over

time. More advanced approaches also incorporate the spatio-temporal compositions

of the motion-informative regions to build background and behavior templates [9, 70]

that are subtracted from newly observed behaviors in order to detect an anomaly. A

review of the background subtraction method can be found in [78] and more recent

work is presented in [7].

As indicated in previous chapters, the recent trend in video analysis (including

dominant behavior understanding, scene understanding, abnormality detection and

also human action recognition) is to use spatio-temporal video volumes in the con-

text of BOW models. The classical BOW and probabilistic topic models often ignore

the spatio-temporal relationships between video volumes. However, this is crucial
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for accurate scene understanding [88, 86]. Although there have been some e�orts

to incorporate either spatial or temporal compositions of the video volumes into the

probabilistic topic models, they su�er from high computational complexity. There-

fore, they cannot be employed for online behavior understanding and real-time scene

monitoring [42].

More closely related to our proposed approach are those methods that construct

a spatio-temporal behavioral model of the scene [49, 8, 48, 30]. To date, these have

focussed on detecting low-level local anomalies in a video by analyzing the activity

pattern of each pixel as a function of time. This activity pattern, also known as

the busy/idle sequence of each pixel, is a binary sequence for each pixel in which 0s

and 1s denote the foreground and background pixel in each frame, respectively. In

[49], each pixel is processed independently and the relationships between the pixels in

space and time are ignored, thereby making such methods too local. In an improved

version of [49], the spatial dependencies between pixels are taken as a function of

pixel location by constructing a co-occurrence frequency matrix [8]. Although the

latter has achieved good results for abnormality detection, the method requires that

the activity pattern of each pixel be constructed by employing a conventional method

for background subtraction. These are known to be de�cient for non-stationary situ-

ations.

In contrast to the aforementioned approaches that attempt to model either local

spatio-temporal activity patterns of a pixel or trajectories of moving objects, our goal

is to construct a hierarchical model for all of the activities in a scene. We present a

novel method for inference of motion patterns, which overcomes the drawbacks and

limitations of the current methods, while employing simple yet powerful hierarchical

methodologies.

4.3 Simultaneous Dominant and Rare Event Modeling

Here we concentrate on detecting two of the elements in Figure 4.1, that is,

dominant spatio-temporal activities and abnormal behavior in a video. We focus on
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low-level visual features, and begin by proposing a set of large contextual regions

containing many of these features as well as their compositional information. There-

fore, a simple and e�ective method for learning dominant behaviors as well as the

low-level events in a dynamic scene is constructed. To accomplish this, we create a

framework, which considers both the hierarchical nature of dominant behaviors, as

well as their spatio-temporal context. As opposed to trajectory-based methods for

behavior understanding [72, 76], our approach is grounded on a pixel-by-pixel anal-

ysis. Using densely sampled spatio-temporal video volumes (STVs), we create both

local and global compositional graphs of volumes at each pixel. Although employing

STVs in the context of bag of video words (BOV) has been extensively studied for the

well-known problem of activity recognition, generally it involves supervised training.

Here we do not use any training sets at all but continuously update time-varying

BOV lookup tables. Therefore, our approach has the ability to learn newly observed

behaviors without any o�ine or supervised training. After initializing the algorithm,

typically using one or two seconds of video, the system builds an adaptive model of

the dominant behavior while simultaneously detecting anomalies.

Consider the structure of the algorithm in Figure 4.2. Initially, the video is

densely sampled, STVs are constructed, and similar ones are grouped to reduce the

dimensions of the search space. Codebook construction of STVs is performed in an

online manner while considering uncertainties in the codeword assignment. Then, a

large contextual region containing many STVs (in space and time) around each pixel is

examined and the compositional relationships between STVs are approximated using

a probabilistic framework. We are interested in detecting di�erent kinds of behavior

in the spatial and temporal domains. To achieve this, we cluster all of the STVs

that constitute all of the compositional graphs obtained during a time period in the

near past. We use a modi�ed version of online fuzzy clustering and thereby track

the dominant spatio-temporal activities (clusters). These clusters of STVs provide

concurrent distinctive spatial and temporal models of the scene. For example, we
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Figure 4.2. Algorithm overview: behavior understanding. Behaviors are
learnt from local low-level visual information, which is achieved by con-
structing a hierarchical codebook of the STVs. To capture spatio-temporal
con�gurations of video volumes, a probabilistic framework is employed by
estimating probability density functions of the arrangements of video vol-
umes. The uncertainty in the codeword construction of STVs and contextual
regions is considered, which makes the �nal decision more reliable. The high-
level output can be employed to simultaneously model normal and abnormal
behaviors.

can determine all of the abnormal (�anomalous�) spatial and temporal behaviors in a

video.

4.3.1 Dynamic Scene Modeling. Considering the structure presented in

Figure 4.2, our goal is to the learn dominant behaviors in the scene and from these

determine abnormalities. We use densely sampled videos and construct a hierarchy

of spatio-temporal regions in the video to model dominant local activity patterns.

This hierarchical codebook structure has two important characteristics: it codes the

compositional information of the video volumes and analyzes the spatial and tempo-

ral information independently, thereby making it capable of detecting purely spatial

or temporal abnormalities. Moreover, the uncertainty in the codebook construction

process is considered in the hierarchical structure. As illustrated, the algorithm for

dominant behavior learning consists of two hierarchical levels: low level scene repre-

sentation, and contextual information of the low level features and clusters of ensemble

of volumes.
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4.3.1.1 Low-Level Scene Representation. The �rst stage of the algorithm is

to represent a surveillance video by meaningful spatio-temporal descriptors. This

is achieved by dense sampling, thereby producing STVs, and then clustering sim-

ilar video volumes. The constructed codebook at this level is called the low-level

codebook, CLL, as illustrated in Figure 4.2.

As described in Chapter 2, the 3D STVs, vi ∈ Rnx×ny×nt are constructed by

densely sampling the videos. These volumes are then characterized by the histogram

of the spatio-temporal gradient (HOG) of the video in polar coordinates(see sec-

tion 2.3.1). This descriptor represents both motion and appearance and possesses

some degree of robustness to unimportant variations in the data, such as illumina-

tion changes [11, 97]. Notwithstanding its simplicity, the results obtained are very

promising. However, it should be noted that our algorithm does not rely on a spe-

ci�c descriptor for the video volumes, so that other more complex descriptors might

enhance the performance of the approach.

In the previous step, a set of spatio-temporal volumes, vi, was constructed using

dense sampling and represented by a descriptor vector, hi. Following the paradigm of

the �bag of video words� approaches, those video volumes should be grouped based

on their similarities. To be capable of handling large amounts of data, and also

considering the sequential nature of the video frames, the clustering strategy needs to

be capable of limiting the amount of memory used for data storage and computations.

Thus, we adopt an online fuzzy clustering approach for very large datasets, which is

capable of incrementally updating the cluster centers as new data are observed [39].

The basic idea is to consider a chunk of data, cluster it, and then construct another

chunk of data using the new observations. The clusters are then updated [39]. Here

we adopt the online single-pass fuzzy clustering algorithm of [40].

Let Nd denote the number of feature vectors in the dth chunk of data and NC the

number of cluster centroids (codewords). These are represented by a set of vectors,

C = {cn}NCn=1. We modify the objective function (J) [40] for fuzzy probabilistic
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clustering as follows:

J =

NC∑
i=1

Nd∑
j=1

umi,jwjdij (hj, ci) (4.1)

where the parameter wj is the weight of the jth sample. Note that in the original

version, wj = 1,∀j [40]. Using the Euclidean distance as the similarity measurement

between STVs descriptors, we de�ne the update rule for the cluster center, similarity

matrix and the weights wi as follows:

un,j =

(
NC∑
i=1

(
‖hj − cn‖
‖hj − ci‖

) 2
m−1

)−1

(4.2)

cn =

Nd∑
j=1

wju
m
n,jhj

Nd∑
j=1

wjumn,j

, wi =

Nd+NC∑
j=1

ui,jwj (4.3)

Employing this clustering procedure, a set of clusters is formed for the STVs.

These are used to produce is a codebook of STVs and sets of similarity values for

every STV. Ultimately, each STV, hi, will be represented by a set of similarity values:

{uj,i}NCj=1.

4.3.1.2 Contextual Information: Ensembles Of Volumes. As indicated ear-

lier, in order to understand the scene background and make the correct decision

regarding normal and suspicious (foreground) events, it is necessary to analyze the

spatio-temporal arrangements of volumes [14, 88] in the clusters determined in sec-

tion 4.3.1.1. The main drawback of many previously reported approaches is that they

do not consider the context (spatio-temporal composition of the STVs) at each pixel

in the video. Here, we employ the concept of the ensembles of video volumes, as

described in section 2.3.2.1. Therefore instead of a single video volume, we consider

a large region R around each pixel. R contains many video volumes and thereby

captures both local and more distant information in the video frames. Such a set is

called an ensemble of volumes around the particular pixel in the video (Figure 4.3).
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Figure 4.3. Ensembles of video volumes. (A) An ensemble of STVs. (B)
Spatio-temporal contextual information. (C) Spatial and temporal oriented
ensembles.

The ensemble of volumes (Es,t) surrounding each pixel s in the video at time t,

is de�ned as:

Es,t =
{
v
Es,t
i

}I
i=1

, {vi : vi ∈ Rs,t}Ii=1 (4.4)

where Rs,t is a region with pre-de�ned spatial and temporal radii centered at point

(s, t) in the video (e.g., rx×ry×rt), and I indicates the total number of volumes in the

ensemble. To capture the spatio-temporal compositions of the video volumes, we use

the relative spatio-temporal coordinates of the volume in each ensemble [88]. Thus,

x
Es,t
vi ∈ R3 is the relative position of the ith video volume, vi(in space and time),

inside the ensemble of volumes, Es,t, for a given point (s, t) in the video (Figure

4.3B). During the codeword assignment process described in the previous section,

each volume vi inside each ensemble was assigned to all labels cj with weights of uj,i

using (4.2). Let the central volume of Es,t be given by vc. Therefore, the ensemble is

characterized by a set of volume position vectors, codewords and their related weights:

Es,t =

{
x
v
Es,t
i

, uji

}
i=1:I,j=1:NC

(4.5)

A common approach for calculating similarity between ensembles of volumes is to

use the star graph model [14, 75, 11]. This model uses the joint probability between

a database and a query ensemble to decouple the similarity of the topologies of the
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ensembles and that of the actual video volumes [75]. To avoid such a decomposition,

we estimate the pdf of the volume composition in an ensemble. Thus, the probability

of a particular arrangement of volumes v inside the ensemble of Es,t is given by:

P
Es,t

(v) = P (xv, c1, c2, ..., cn) =
n∑
i=1

P (xv|v = ci)P (v = ci) (4.6)

The �rst term in the summation in (4.6), P (xv|v = ci), expresses the topology of

the ensembles, while the second,P (v = ci), expresses the similarity of their descrip-

tors (i.e. the weights for the codeword assignments at the �rst level). We would like

to represent each ensemble of volumes by its pdf, P
Es,t

(v). Therefore, given the set of

volume positions and their assigned codewords, the probability density function (pdf )

of each ensemble can be formed using either a parametric model or non-parametric

estimation. Here, we approximate the pdf s describing each ensemble using (nonpara-

metric) histograms.

4.3.1.3 Space/Time decomposition of ensembles. As stated previously, we are

interested in detecting normal spatial and temporal activities to ultimately distin-

guish them from both spatial (shape and texture changes) and temporal abnormal-

ities. These are typically foreground regions, and so our approach can also be con-

sidered as performing a focus of attention task. In order to individually characterize

the di�erent behaviors in the video, two sets of ensembles of spatio-temporal volumes

are formed, one for the spatially oriented ensembles of volumes and the other, for the

temporally oriented ones.

DS = {Es,t|rt � min {rx, ry}}

DT = {Es,t|rt � max {rx, ry}} (4.7)

where DS and DT represent the sets of spatially- and temporally-oriented ensem-

bles, respectively, and (rx × ry × rt) is the size of the ensembles in (4.4). The spatial

and temporal decomposition of ensembles of STVs is illustrated in Figure 4.3C.
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4.3.1.4 Clustering ensembles of STVs. Once a video clip has been processed by

the �rst level of BOV clustering in section 4.3.1.1, each ensemble of spatio-temporal

volumes has been represented by a pdf of its spatio-temporal volume distribution,

as described in 4.3.1.2. Note that such an ensemble pdf represents a moving fore-

ground object in the video. The histogram of each ensemble, as obtained from (4.6),

is employed as the feature vector to cluster the ensembles. This will then permit us

to construct a behavioral model for the video as well as infer the dominant behav-

ior. Using the pdf to represent each ensemble of volumes makes it possible to use a

divergence function from statistics and information theory as the dissimilarity mea-

sure. Here we use the symmetric Kullback-Leibler (KL) divergence to measure the

di�erence between the two pdf s [12]. Therefore the distance between two ensembles

of volumes, Esi,ti and Esj ,tj , is de�ned as:

d
(
PEsi,ti , PEsj ,tj

)
=KL

(
PEsi ,ti ||PEsj ,tj

)
+KL

(
PEsj ,tj ||PEsi,ti

)
(4.8)

where PEsi,ti and PEsj ,tj are the pdf s of the ensembles Esi,ti and Esj ,tj , respectively,

and d is the symmetric KL divergence between the two pdf s in (4.8). The next step

is to apply online fuzzy single-pass clustering, as described in section 4.3.1.1, thereby,

producing a set of membership values for each pixel. The clustering is performed

independently for the two sets of ensembles, DS and DT , obtained from (4.7). The re-

sulting two codebooks are then represented by CS =
{
cSkS
}NS
kS=1

and CT =
{
cTkT
}NT
kT=1

,

respectively.

4.3.2 Behavior Analysis. The result of the processing in section 4.3.1 per-

mits us to construct a set of behavior patterns for each pixel. As stated previously,

we are interested in detecting dominant spatial and temporal activities as an ulti-

mate means of determining both spatial (shape and texture changes) and temporal

abnormalities (foreground regions). Next, we consider the scenario of a continuously

operating surveillance system. At each temporal sample t, a single image is added to

the already observed frames and a new video sequence, the query, Q, is formed. The
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query is densely sampled in order to construct the video volumes and thereby, the

ensembles of STVs, as described in section 4.3.1.

Given the already existing codebooks of ensembles constructed in 4.3.1.4, each

pixel in the query, qi is characterized by a set of similarity matrices, US
qi

=
{
uSkS ,i

}NS
kS=1

and UT
qi

=
{
uTkT ,i

}NT
kT=1

. We note that uSkS ,i and u
T
kT ,i

, respectively, are the similarity

of the observation to the kS spatial and kT temporal cluster of ensembles. Then the

description that best describes a new observation is given by:

(k∗S, k
∗
T ) = arg

(
max
kS

{
uSkS ,i

}
,max
kT

{
uTkT ,i

})
(4.9)

To infer normality or abnormality of the query, qi, two similarity thresholds, ΘkS and

ΘkT , are employed: (
αuSk∗S ,i + βuTk∗T ,i

)
dominant

>
<
rare

(
αΘk∗T

+ βΘk∗S

)
(4.10)

where α and β are preselected weights for the spatial and temporal codebooks, re-

spectively and ΘkS and ΘkT are the learnt likelihood thresholds for the kth codeword

of the spatial and temporal codebooks, respectively. To determine these, we employ

the set of previously observed pixels, D = {pi}, as represented by the two cluster sim-

ilarity matrices obtained in section 4.3.1.4, US
pi

=
{
uSkS ,i

}NS
kS=1

and UT
pi

=
{
uTkT ,i

}NT
kT=1

.

Thus, the previous observations can be divided into N
S
and N

T
disjoint subsets:

DkS =
{
pi|uSkS ,i > ε

}
pi∈D

,

NS⋃
kS=1

DkS = D

DkT =
{
pi|uTkT ,i > ε

}
pi∈D

,

NT⋃
kT=1

DkT = D (4.11)

where DkS and DkT contain only the most representative examples of each cluster,

kS and kT respectively. Clearly, representativeness is governed by the parameter ε.

77



CHAPTER 4. ONLINE DOMINANT AND ANOMALOUS EVENT MODELING

Then, similar to [72], we construct the likelihood thresholds as follows:

ΘkS =
γ

|DkS |
∑
i∈DkS

log uSkS ,i +
1− γ

|D| − |DkS |
∑
i/∈DkS

log uSkS ,i

ΘkT =
γ

|DkT |
∑
i∈DkT

log uTkT ,i +
1− γ

|D| − |DkT |
∑
i/∈DkT

log uTkT ,i (4.12)

where the parameter γ ∈ [0, 1] controls the abnormality/normality detection rate and

|D| indicates the number of members of D. Returning to (4.10), the parameters α

and β are seen to control the balance between spatial and temporal abnormalities

based on the ultimate objective of the abnormality detection. As an example, if the

objective is to detect the temporal abnormality in the scene (background/foreground

segmentation), then one can assume that α = 0.

4.3.3 Online Model Updating. In this section we describe how the al-

gorithm is updated in an online manner. The scenario we have considered implies

on-line and continuous surveillance of a particular scene in order to simultaneously

detect dominant and anomalous patterns. As described in section 4.3.1, the algo-

rithm only requires the �rst N frames of the video stream to initiate the process.

This is achieved by constructing the codebook of STVs (section 4.3.1.1), ensembles

of volumes (section 4.3.1.2) and �nally the codebook of ensembles (section 4.3.1.3).

When new data are observed, the past Nd frames are always employed to update

the learnt codebooks, i.e. the clusters of both STVs and ensembles of STVs. This

process is performed continuously and the detection thresholds, ΘkS and ΘkT are

updated in an ongoing manner as described in (4.12) based on the previously learnt

codebooks.
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(A) (B) (C)

Figure 4.4. Dominant behavior understanding on data captured by a cam-
era during di�erent times of the day. The lighting conditions change grad-
ually from daylight to night. (A) A sample frame. (B) The dominant be-
haviors are produced by the cars passing through the lanes running from top
to bottom and vise versa. (C) The abnormalities are those cars entering the
intersection from the left.

4.4 Experiments

The algorithm has been tested using the same dataset as of section 3.4: the

dominant behavior understanding dataset in [129]3, UCSD pedestrian dataset [65]4,

and subway surveillance videos [2]5. In all cases, we have assumed that local video

volumes are of size 5 × 5 × 5 and the HOG is calculated assuming nθ = 16, nφ = 8

and Nd = 50 frames. Parameters α and β were selected depending on the desired

goal of the abnormality detection. These were set empirically to 0.1 and 0.9 for

motion detection and to 0.5 for abnormal activity detection. Quantitative evaluation

and comparison of di�erent approaches are presented in terms of precision-recall and

ROC curves, obtained by varying the parameter γ in (4.12)6.

The �rst dataset consists of three videos sequences. The �rst one, Belleview, is

a tra�c scene in which lighting conditions gradually change during di�erent times of

the day. The dominant behaviors are either the static background or the dynamic

cars passing through the lanes running from top to bottom. Thus, the rare events

3http://www.cse.yorku.ca/vision/research/spatiotemporal-anomalous-behavior.

shtml
4http://www.svcl.ucsd.edu/projects/anomaly
5Obtained from the authors of [2]
6To make a quantitative comparison possible, the algorithm is evaluated for abnormality detec-

tion and compared to the state-of-the-art.
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(�abnormalities�) are the cars entering the intersection from the left. Figure 4.4 (a),

(b), and (c) illustrate a sample frame, and the dominant and abnormal behavior maps,

respectively. In the Boat-Sea video sequence, the dominant behavior is the waves

while the abnormalities are the passing boats since they are newly observed objects

in the scene. The Train sequence, is one of the most challenging videos available [129]

due to drastically varying illumination and camera jitter. The background changes

rapidly as the train passes through tunnels. In this sequence the abnormality relates

to people movement. Figure 4.5 shows a sample video frame of each video sequence,

the detected abnormal regions and the precision/recall curves. We followed the same

initialization strategy as [129] and compared the results with two alternative pixel-

level anomaly detection methods: spatio-temporal oriented energies in [129] and local

optical �ow in [2]. As the abnormalities in this dataset are low level motions, we also

include the pixel-level background models (Gaussians Mixture Models [134]) and the

behavior template approaches in [49] for comparison.

Comparing the performance of the di�erent approaches in Figure 4.5C, we observe

that, in general, our method was comparable or superior to the others shown. In

particular, the method based on spatio-temporal oriented energy �lters [129] produced

results comparable to ours, but might not be useful for more complex behaviors for

two reasons: it is too local and does not consider contextual information.

It is also clear that conventional methods for background subtraction (GMM)

fail to detect dominant behaviors in scenes containing complicated behaviors, such

as the Train and Belleview video sequences. However, they still do produce good

results for background subtraction in a scene with a stationary background (Boat-Sea

video sequences). In the latter case, the so-called abnormality (the appearance of

the boat)is su�ciently di�erent from the scene model. Thus, GMM seems promising

for this video. On the other hand, we observe that simple local optical �ow fea-

tures, combined with online learning [2], do not yield acceptable results in the scenes

with dynamic backgrounds. It appears that the optical �ow approach has di�culty

capturing temporal �icker and dynamic textures.
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Figure 4.5. Dominant behavior understanding and abnormality detection.
Experiments with three videos are illustrated from top to bottom in the
�gure: Belleview, Boat-Sea and Train. The �rst experiment (�rst row) is
concerned with detecting dominant and abnormal behavior in a busy tra�c
scene. The second and third experiments were conducted on videos in which
the abnormalities were de�ned as being rare but nevertheless acceptable fore-
ground motions. The anomalous regions are highlighted in green. Column
(A) Sample frames from the three videos. Column (B) The detected anoma-
lous regions are cars moving from right to left (top), a boat moving to the
right (middle), and a moving person (bottom). Column (C) Precision/recall
curves.
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Figure 4.6. Frame level abnormality detection using the UCSD pedestrian
datasets. Top: Ped1 dataset, Bottom: Ped2 dataset. (A) Sample frames.
(B) Detected anomalous regions: bicyclist (top), a car (bottom). (C) ROC
curves for the proposed approach and alternatives (MDT [65], Local optical
�ow [2]).

We also conducted experiments with the UCSD pedestrian dataset7. It contains

video sequences from two pedestrian walkways where abnormal events occur. The

dataset exhibits di�erent crowd densities, and the anomalous patterns are the pres-

ence of non-pedestrians on a walkway (bikers, skaters, small carts, and people in

wheelchairs). Figure 4.6 contains samples of two videos with the detected suspicious

regions as well as the ROC curves for di�erent methods (Figure 4.6C). In order to

7This dataset was employed as it includes pixel level ground truth showing the exact location of
the abnormal regions in each frame.
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Table 4.1. Quantitative comparison of the proposed method and the state-
of-the-art for anomaly detection using the Ped1 dataset. (* indicates that
the method is claimed to have real time performance).

Algorithm EER (frame-
level)

EER (pixel-
level)

*Proposed algorithm 15% 29%
MDT (Mahadevan et al., 2010, [65]) 25% 58%
Sparse Reconstruction (Cong et al. 2011 [24]) 19% -
*Bertini et al., 2012, [11] 31% 70%
*Reddy et al., 2011, [85] 22.5% 32%
ST-MRF (Kim and Grauman, 2009, [52]) 40% 82%
*Local optical �ow, (Adam et al. 2008 [2]) 38% 76%
Saligrama and Chen, 2012, [94] 16% -

make a quantitative comparison the equal error rate (EER) was also calculated for

both pixel and frame level detection as suggested by [65]8.

The results in Table 4.1 indicate that the proposed algorithm outperformed all

other real-time algorithms and achieved the best results for the UCSD pedestrian

dataset at both frame level detection and pixel level localization. Furthermore, the

number of initialization frames required by the proposed algorithm is signi�cantly

lower than the alternatives (200 frames compared to 6400 frames). This is a major

advantage of the proposed method that can also learn dominant and abnormal behav-

iors on the �y. Moreover the computational time required by the method described

in this chapter is signi�cantly lower than others in the literature. In summary, our

experiments signify that our approach is capable of reasonably handling drastically

and gradually changing backgrounds and illumination conditions, as well as detect-

ing abnormal events with di�erent spatial and temporal complexities, ranging from

the scene background to human activities. Furthermore, the algorithm is adaptive.

It does not require a long training video and updates itself after observing a small

number of initialization frames.

8Frame level detection implies that a frame is marked as suspicious if it contains any abnormal
pixel, regardless of its location. On the other hand, pixel level detection attempts to measure the
localization ability of an algorithm. This requires that the detected pixels in each video frame be
compared to a pixel level ground truth map.
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4.5 Summary

This chapter presents a novel approach for simultaneously learning dominant be-

haviors and detecting anomalous patterns in videos. This algorithm is centered on

three main ideas: hierarchical analysis of multi-scalar visual features; accounting for

their spatio-temporal compositional information of the low level features; and spa-

tial and temporal decomposition of the behaviors in order to learn dominant spatial

and temporal activities. First, spatio temporal video volumes are constructed for

densely sampled videos and then, dominant behaviors are learnt based on a hierar-

chical analysis of spatio-temporal video volumes and their compositional information.

By employing di�erent analyses in the spatial and temporal domains, the algorithm

is capable of learning di�erent behaviors and detecting pure spatial and temporal ab-

normalities. This hierarchical property makes the algorithm extendible, which means

higher levels of analysis can be performed with the results. A major advantage of the

algorithm is that it can simultaneously model high-level behaviors and detect abnor-

malities by considering both spatial and temporal contextual information, while also

performing temporal pixel level change detection and background subtraction. This

characteristic makes our algorithm more general than both abnormality detection and

background subtraction methods on their own. A limitation of the current approach

is that it does not account for trajectories and hence, long term behaviors are not

learnt. Future research will extend the approach by adding another level of analysis

in the hierarchical structure to model the spatial and temporal connectivity of the

learnt behaviors.

We have tested the algorithm on four popular benchmarks and shown that the

algorithm is both e�ective and robust for both anomaly detection and localization

tasks. Moreover, the results are highly competitive with state-of-the-art methods.

However, a major advantage of our approach is that it does not require any feature

analysis, background/foreground segmentation and tracking, and is susceptible to

on-line real-time analysis.
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Chapter 5

Video To Video Matching And Activity

Recognition

5.1 Introduction

Given the tremendous number of potential practical video applications, there is

a great demand for automated systems that analyze and understand the contents of

these videos. Obviously, recognizing and localizing human actions in a video are of

primary importance to such a system. Although there exist many methods for accom-

plishing this in highly controlled environments, this task still remains a challenge in

real world environments, which are subject to camera motion, cluttered backgrounds,

occlusion, and scale/ viewpoint/ perspective variations [74, 95]. Moreover, the same

action performed by two di�erent persons can appear to be very di�erent, and cloth-

ing, illumination and background can substantially increase this dissimilarity and

make the problem extremely di�cult [14, 99].

In this chapter, our main goal is to address the problem of action recognition

and localization in real environments using a hierarchical probabilistic video-to-video

matching framework. This problem is also referred to as action spotting [26]. To

achieve this, we have developed a fast data-driven approach, which �nds similar

videos in a �target� set to a single labelled �query� video. Assuming that the latter

contains an action of interest, e.g., walking, we �nd all videos in the target set that
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that are similar to the query, which implies the same activity. This video-to-video

comparison also makes it possible to label activities, the so-called action classi�cation

problem. An overview of the algorithm is presented in Figure 5.1. The major bene�t

of our approach is that it does not require long video training sequences, object

segmentation, tracking or background subtraction. The method can be considered as

an extension to the original Bag of Video Words approach for action recognition.

Although an initial spatio-temporal volumetric representation of human activity

may eliminate some pre-processing steps, for example background subtraction and

tracking, it su�ers from some major drawbacks. For example, in general, BOW-based

approaches for activity recognition in the literature involve salient point detection.

They usually ignore the geometrical and temporal structure of these visual volumes,

as they store STVs in an unordered manner. Also they are unable to handle scale

variations (spatial, temporal, or spatio-temporal) because they are too local, in the

sense that they consider just a few neighboring video volumes (e.g., �ve nearest neigh-

bors in [75] or just one neighbor in [95]). To overcome these issues, we have developed

a multi-scale, hierarchical codebook of BOWs for densely sampled videos, which in-

corporates spatio-temporal compositions and their uncertainties. This permits the

use of statistical inference to recognize the activities. We also note that, in order

to measure similarity between a query and a target dataset, it is necessary to use

information regarding the most informative spatio-temporal video volumes (STVs) in

the video, i.e., the salient foreground objects. To select these space-time regions, we

use the information obtained from our hierarchical BOV method, which in a sense,

can be viewed as being a context-based spatio-temporal segmentation method.

As shown in Figure 5.1, the proposed algorithm consists of two main components,

hierarchical codebook construction of salient STVs and an inference mechanism for

measuring the similarity between salient STVs of the query and target videos. Hier-

archical codebook construction consists of four steps: coding the video to construct

STVs and low-level probabilistic codebook formation while considering the uncertain-

ties in the STVs; constructing ensembles of video volumes for each pixel in a video
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Figure 5.1. Overview. The goal is to �nd similar videos to the query video
in the target set. This is achieved by constructing an activity model for
the query video and then measuring the similarity between it and the target
videos.

frame containing a large number of STVs and probabilistic models of their spatio-

temporal compositions; high-level codebook construction of the ensembles; and �nally,

analyzing codewords as a function of time in order to construct a codebook of salient

regions. The inference mechanism is based on a set of hierarchical codewords con-

structed for each query video. It determines the most similar compositions of STVs

in the target videos that match the query video. There are two important di�erences

between our proposed hierarchical approach and previously reported ones. First, the

latter are unable to handle both local and global compositional information. Second,

they always select the informative regions at the lowest level of the hierarchy.

The main characteristics of this algorithm are as follows:

• We introduce a hierarchical codebook structure for action detection and

labelling. This is achieved by considering a large volume containing many

STVs and constructing a probabilistic model of this volume to capture the

spatio-temporal con�gurations of STVs. Consequently, similarity between

two videos is calculated by measuring the similarity both between spatio-

temporal video volumes and their compositional structures.
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• We select the salient pixels in the video frames by analyzing codewords

obtained at the highest level of the hierarchical codebook's structure. This

di�ers from conventional background subtraction and salient point detec-

tion methods.

In order to evaluate the capability of our approach for action matching and clas-

si�cation we have conducted experiments using three datasets: KTH [96], Weizmann

[36] and MSR II [127]1. Three types of experiments were performed: action matching

and retrieval, single dataset video classi�cation, and cross-dataset action recognition.

5.2 Related Work

Many studies have focused on the action recognition problem by invoking hu-

man body models, tracking-based methods, and local descriptors [80]. The early

work often depended on tracking [82, 83, 125, 110], in which humans, body parts, or

some interest points were tracked between consecutive frames to obtain the overall

appearance and motion trajectory. Clearly, the performance of these algorithms is

highly dependent on tracking, which sometimes fails for real world video data [119].

Recently, tracking a �xed number of interest point between video frames has be-

come more popular than other tracking-based approaches since they are capable of

coding some contextual information regarding local spatio-temporal features. This

method functions by tracking the interest point features between consecutive frames

and thereby obtaining a set of trajectories [68, 104, 110]. The contextual information

is then computed as the spatial relationship between trajectories [68] or temporal

associations between interest points on a single trajectory [104]. In addition to the

normal issues associated with tracking, these approaches are based on an implicit

assumption of a static background, since moving objects in the background might

produce trajectories similar to an object in the region of interest.

Alternatively, shape template matching has been employed for activity recogni-

tion which have been described in section 2.1. Although it seems that they are likely

1http://research.microsoft.com/en-us/um/people/zliu/ActionRecoRsrc/
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well suited to action localization, they do require a priori high-level representations

of the human motion. Moreover, they depend on such image pre-processing stages as

segmentation, object tracking, and background subtraction [120], which are extremely

challenging in real-world unconstrained environments.

In order to eliminate such pre-processing, Derpanis et. al. [26] have proposed

so-called �action templates�. These are calculated as oriented local spatio-temporal

energy features that are computed as the response of a set of tuned 3D Gaussian third

order derivative �lters. Sadanand et. al. [93] introduced action banks to make these

template-based recognition approaches more robust to viewpoint and scale variations.

Recently, tracking and template-based approaches have been combined to improve the

action detection accuracy [125, 51].

As indicated in section 2.2, models based on a bag of local visual features have

recently been studied extensively and shown promising results for action recognition

[14, 16, 21, 50, 54, 74, 75, 95, 99, 120, 123]. These approaches extract and quantize

the video data to produce a set of video volumes that form a �visual vocabulary�.

In general, the potential real-time performance of these methods is related to the

number of video volume samples and their associated features [50]. Usually, these

features are gradients (spatial, temporal, or spatio-temporal), body landmarks, or

color information. Combining them makes it possible to capture motion and the

scene context simultaneously without requiring reliable trajectories of the objects of

interest [38]. The video volumes are constructed either by extracting a limited set of

interest points or densely sampling the video. In the former, due to the sparse nature

of the space-time interest points, the method becomes computationally e�cient and

hence is popular in the action recognition literature [74, 96, 112, 123, 126]. On the

other hand, the selection of appropriate interest points that are guaranteed to contain

a salient and discriminative motion pattern in their local context is a di�cult challenge

[56]. In addition, it has been shown recently that densely sampling the video always

achieves better results than a sparse set of interest points [111].
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As described previously, a major advantage of using volumetric representations

of videos is that it permits the localization and classi�cation of actions using data-

driven nonparametric approaches instead of requiring the training of sophisticated

parametric models. However, we note that classical BOV approaches su�er from a

signi�cant challenge. That is, the video volumes are grouped solely based on their

similarity, in order to reduce the vocabulary size. To overcome this challenge, con-

textual information must be included in the original BOV framework. One solution

is to employ visual phrases instead of visual words. This has proposed in [130] where

a visual phrase is de�ned as a set of spatio-temporal video volumes with a speci�c

pre-ordained spatial and temporal structure. The main drawback of this approach is

that it cannot localize di�erent activities in a video frame. Alternatively, the solution

presented by Boiman and Irani [14] is to densely sample the video and store all video

volumes for a video frame, along with their relative locations in space and time. How-

ever, the main problem with this approach is that it requires excessive computational

time and a considerable amount of memory to store all of the volumes as well as their

spatio-temporal relationships. We present a competent alternative to this in the next

section.

In addition to [14], several other methods have been proposed to incorporate

spatio-temporal structure in the context of BOV. These are often based on co-

occurrence matrices that are employed to describe contextual information. For exam-

ple, the well-known correlogram exploits spatio-temporal co-occurrence patterns [95].

In [34] the spatial information is coded through the concatenation of video words de-

tected in di�erent spatial regions as well as data mining techniques, which are used to

�nd frequently occurring combinations of features. Similarly, [66] addresses this issue

by using the spatial con�guration of the 2D patches by incorporating their weighted

sum. In the same way, in [33] coding of spatial information is achieved through

the concatenation of video words detected in di�erent spatial regions. Data mining

is used to �nd frequently occurring combinations of features. In [56], these patches

were represented using 3D Gaussian distributions of the spatio-temporal gradient and
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the temporal relationship between these Gaussian distributions was modeled using

HMMs. An interesting alternative is to incorporate mutual contextual information of

objects and human body parts by using a random tree structure [120, 123] to partition

the input space. The likelihood of each spatio-temporal region in the video is then

calculated. The primary issue with this approach [123] is that it requires background

subtraction, interest point tracking and detection of regions of interest.

Hierarchical clustering seems to be an attractive way of incorporating the con-

textual structure of video volumes, as well as preserving their compactness of their

description [54, 75]. Thus a modi�ed version of [14] was presented in [75]. It uses

a hierarchical approach, in which a two-level clustering method is employed. At the

�rst level, all similar volumes are categorized. Then clustering is performed on ran-

domly selected groups of spatio-temporal volumes while considering the relationships

in space and time between the �ve nearest spatio-temporal volumes. However, the

small number of spatio-temporal volumes involved again makes this method local in

nature. Another hierarchical approach is presented in [54], which attempts to capture

the compositional information of a subset of the most discriminative video volumes.

In all of these proposed solutions to date, although a higher level of quantization in the

action space produces a compact subset of video volumes, it also signi�cantly reduces

the discriminative power of the descriptors, an issue addressed in [15]. Generally, all

of the earlier work described above for modeling the mutual relationships between

the video volumes have one or more limitations such as: considering relationships

between only a pair of local video volumes [62, 95]; being too local and unable to

capture interactions of di�erent body parts [54, 32]; and considering either spatial or

temporal order of volumes [95].

In this chapter we present a hierarchical probabilistic codebook method for action

recognition and localization in videos. The proposed codebook structure has two

important characteristics: it codes the compositional information of the 3D video

volumes and selects the most informative ones in the video.
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5.3 Multi Scale Hierarchical Codebooks

Considering the structure presented in Figure 5.1, our aim is to �nd the similarity

between the query and all of the target videos. Our work is based on the bag of space-

time features approach in that a set of STVs is used for measuring similarity. The

proposed recognition algorithm in Figure 5.1 consists of two main steps: densely

sampling videos from which hierarchical codebooks are constructed (see Figure 5.2)

and using an inference mechanism for �nding the appropriate action in the target

videos. Although the main idea of the former part is introduced in Chapter 2, in this

section, we brie�y describe hierarchical codebook structure and section 5.4 describes

the inference mechanism.

5.3.1 Low-Level Scene Representation. The �rst stage of the algorithm is

to represent a query video by meaningful spatio-temporal descriptors. This is achieved

by dense sampling, thereby producing a large number of spatio-temporal video vol-

umes. Then similar video volumes are clustered to from a codebook. Since this is

actually done on-line, frame-by-frame, the codebook is adaptive. The constructed

codebook at this level is called the low-level codebook, as illustrated in Figure 5.2.

This is achieved by following the procedure of codebook construction in section2.3.1.

Similar to all BOV approaches, 3D STVs in a video are constructed at the low-

est level of the hierarchy. The descriptor vector for each video volume, taken as a

histogram of oriented gradients (HOG), is constructed using (2.2).

Following the procedure explained in section 3.3.1.1, similar video volumes are

grouped to construct a codebook. The codebook is continuously being pruned to

eliminate codewords that are either infrequent or very similar to the others, which

ultimately generatesML di�erent codewords that are taken as the labels for the video

volumes, CL = {ci}M
L

i=1 .

After the initial codebook formation, 2, each new 3D volume, vi, can be assigned

to all labels, cj's, with a degree of similarity, wi,j, as shown in Figure 2.2A. We note

2Recall that initialization requires a minimum of one video frame.
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Figure 5.2. Overview of the scene representation and hierarchical code-
book structure. First, the query video is densely sampled at di�erent spatio-
temporal scales followed by the construction of a set of overlapping spatio-
temporal video volumes. Subsequently, a two level hierarchical probabilistic
codebook is created for the video volumes. At the lower level of the hierarchy,
similar video volumes are grouped to form a conventional low level codebook,
CL, but while considering the uncertainty in codeword assignment. At the
higher level, a much larger spatio-temporal 3D volume around each pixel,
containing many STVs, is considered in order to capture the spatio-temporal
arrangement of the volumes. We refer to this graph as an ensemble of vol-
umes. Using these graphs, similar ensembles are grouped based on the simi-
larity between arrangements of their video volumes and yet another codebook
is formed. The most informative codewords are then selected by examining
the temporal correspondence between codewords. Note: This is a copy of
the Figure 2.1 for reader's convenience.

that the number of labels (shown in color), ML, is much less than the number of

volumes, N .

5.3.2 High-Level Scene Representations. At the previous step, similar

video volumes were grouped in order to construct the low level codebook. The out-

come of this is a set of similar volumes, clustered regardless of their positions in space

and time. This is the point at which all other BOV methods stop. As stated in

Chapter 2, the main drawback of many BOV approaches is that they do not consider

the spatio-temporal composition (context) of the video volumes. Certain methods for
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capturing such information have appeared in the literature (see [14, 58, 66]). Here

we employ the probabilistic framework introduced in section 2.3.2 for quantifying the

arrangement of the spatio-temporal volumes.

Suppose a new video is to be analyzed; we refer to it as the query. The goal

is to measure the likelihood of each pixel in the target videos given the query. To

accomplish this, it is necessary to analyze the spatio-temporal arrangement of the

volumes in the clusters that have been determined in section 5.3.1. Thus, we next

consider a large 3D volume around each pixel in (x, y, t) space. This large region

contains many volumes with di�erent spatial and temporal sizes as shown in Figure

2.2B. Thus it captures both the local and more distant information in the video

frames. Such a set is called an ensemble of volumes around the particular pixel in

the video and de�ned by (2.3).

To capture the spatio-temporal compositions of the video volumes, we use the

relative spatio-temporal coordinates of the volume in each ensemble, as shown in Fig-

ure 2.2C. Therefore, each ensemble of video volumes at point (xi, yi, ti) is represented

by a set of such video volumes and their relative positions, and hence (2.3) can be

rewritten as:

E(xi, yi, ti) =
{

∆Ei
vj
, vj, vo

}J
j=1

(5.1)

An ensemble of volumes, E (xi, yi, ti) is characterized by a set of video volumes,

the central video volume, vo, and the relative distance of each of the volumes in the

ensemble, vj, to the central video volume, ∆Ei
vj
∈ R3, as represented in (5.1). This

provides a view-based graphical spatio-temporal multi-scale description at each pixel

in every frame of a video. Following the procedure of section 2.3.2.2, each ensemble

of volumes can be represented by a set of pdf s as follows:

P (Γ|Ei) =
⋃

m=1:ML

n=1:ML

{P (Γm,n (∆) |Ei)} (5.2)

where P (Γ|Ei) is s set of pdf s modeling topology of the ensemble of volumes. Here,

the probabilistic vote for a spatio-temporal position (the �rst factor on the right hand
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side of (2.14)), P
(

∆|cm, cn,∆Ei
vj

)
, is approximated using (nonparametric) histograms.

Given the representation of an ensemble of volumes in (5.2), similarity between two

video sequences can be computed simply by matching the pdf s of the ensembles of

volumes at each pixel.

Once a video clip has been processed, each ensemble of spatio-temporal volumes

has been represented by a set of pdf s as given in (5.2). Having performed the �rst level

of clustering in section 5.3.1, and given the representation of each ensemble obtained

in (5.2), the aim now is to cluster the ensembles. This will then permit us to construct

a behavioral model for the query video. Although clustering can be performed using

many di�erent approaches [117, 71], spectral clustering methods are currently in

vogue due to their superior performance to traditional methods. Moreover, they can

be computed e�ciently. Spectral clustering constructs a similarity matrix of feature

vectors and seeks an optimal partition of the graph representing the similarity matrix

using eigen-decomposition [109]. Usually, this is followed by either k-means or fuzzy

c-means clustering. We utilize the normalized decomposition method of [73].

Employing the overall pdf P (Γ|Ei) in (5.2) to represent each ensemble of volumes

makes it possible to use divergence functions from statistics and information theory as

the appropriate dissimilarity measure. Here we use the symmetric Kullback-Leibler

(KL) divergence to measure the di�erence between the two pdf s, f and g [12]:

d (f, g) = KL (f ||g) +KL (g||f) (5.3)

where KL (f ||g) is the Kullback-Leibler (KL) divergence of f and g. Therefore, given

the pdf of each ensemble of volumes in (5.2) the similarity between two ensembles of

volumes, E (xi, yi, ti) and E (xj, yj, tj), is de�ned as:

sEi,Ej = e−
d2(P(Γ|Ei),P(Γ|Ej))

2σ2 (5.4)
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where P (Γ|E (xi, yi, ti)) and P (Γ|E (xj, yj, tj)) are the pdf s of the ensemblesE (xi, yi, ti)

and E (xj, yj, tj), respectively, obtained in section 5.3.2. d is the symmetric KL di-

vergence between the two pdf s in (5.3) and σ is the variance of the KL divergence

over all of the observed ensembles of STVs in the query.

Given the similarity measurement of the ensembles in (5.4), the similarity matrix,

SN , for a set of ensembles of volumes is formed and the Laplacian calculated as follows:

L = D−
1
2 SND

1
2 (5.5)

where D is a diagonal matrix whose ith diagonal element is the sum of all elements in

the ith row of SN . Subsequently, an eigenvalue decomposition is applied to L and the

eigenvectors corresponding to the largest eigenvalues are normalized and form a new

representation of the data to be clustered [73]. This is followed by online fuzzy single-

pass clustering [40] to produce MH di�erent codewords for the high-level codebook

of ensembles of STVs, CH = {ci}M
H

i=1 , for each pixel.

5.3.3 Informative Codeword Selection. In order to select a particular

video in a target set that contains a similar activity to the one in the query video,

the uninformative regions (e.g., background) must obviously be excluded from the

matching procedure. This is conventionally performed in all activity recognition al-

gorithms. Generally, for shape-template and tracking based approaches this is done

at the pre-processing stages using such methods as background subtraction and ROI

selection. These have their inherent problems discussed in section 5.2. On the other

hand, selecting informative rather than uninformative regions is a normal aspect of

almost every BOV-based approach that constructs STVs at interest points. Clearly,

these are intrinsically related to the most informative regions in the video. When we

consider the framework for activity recognition proposed in this chapter, the high-

level codebook of ensembles of STVs is used to generate codes for all pixels in each

video frame. Therefore it is crucial to select only the most informative codewords

and their related pixels. Given the high-level codebook, CH, constructed in section

5.3.2, we saw that a codeword is assigned to each pixel p(x, y) at time (t) in the
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video. Therefore, in a video sequence of temporal length T , a particular pixel p(x, y)

is represented as a sequence of assigned codewords at di�erent times:

p (x, y) =
{
p(x, y)← ci : ∀t ∈ T , ci ∈ CH

}
(5.6)

A sample video frame and the assigned codewords are illustrated In Figure 5.3.

In order to remove non-informative codewords (e.g., codewords which represent the

scene background), each pixel and its assigned codewords are analyzed as a function

of time. As an example, Figure 5.3 plots the assigned codewords to the sampled

pixels in the video over time. It is observed that the pixels related to the background

or static objects show stationary behavior. Therefore the associated codewords can

be removed by employing a simple temporal �lter at each pixel. This method was

inspired by the pixel-based background model presented in [53], where a time series

of each of the three quantized color features was created at each pixel. A more

compact model of the background is then determined by temporal �ltering, based on

the idea of the Maximum Negative Run-Length (MNRL). The MNRL is de�ned as

the maximum amount of time between observing two samples of a speci�c codeword

at a particular pixel [53]. The larger the MNRL, the more likely the codeword is

not the background. The main di�erence from [53] is that we employ the assigned

codewords as the representative features for every pixel, as obtained from the high

level codebook CH (see (5.6)).

The major advantage of selecting informative codewords at the highest level of

the coding hierarchy is that compositional scene information comes into play3. Hence

the computational cost is greatly reduced and the need for a separate background

subtraction algorithm is eliminated.

In summary, at �rst, the query video is densely sampled at di�erent spatio-

temporal scales in order to construct the video volumes. Then a low level codebook

is formed and each volume vj is assigned to a codeword ci, ci ∈ CL, with similarity

3Some advanced approaches for background modeling also incorporate spatio-temporal compo-
sitions of the motion-informative regions to build a background model [70, 91].
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(A) A sample video frame 

from the KTH dataset.

(B) Codeword assignment 

to each pixel.

(C) Plots of the assigned codewords to 

two sample pixels at different times.
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Figure 5.3. Informative codeword selection. (A) A sample video frame
from KTH dataset in which the person is running. (B) High-level codewords
assigned to every pixel in the video frame. (C) Temporal correspondence of
the codewords at each pixel. A time series of the assigned codewords from
the high level codebook is ascribed to each pixel in the video. Pixels related
to the background or static objects show a stationary behavior over time,
and hence, they are assumed to be uninformative.

wj,i. Then a larger 3D volume around each pixel, containing many STVs, the so-

called ensemble of STVs, is considered. The spatio-temporal arrangement of the

volumes inside each ensemble is model based on a set of pdf s. At the next level of

the hierarchical structure, another codebook is formed for these ensembles of STVs,

CH. The two codebooks are then employed for �nding similar videos to the query.

Two main features characterize the constructed probabilistic model of the ensem-

bles. First the spatio-temporal probability distribution is de�ned independently for

each codebook entry. Second, the probability distribution for each codebook entry is

estimated using (non-parametric) histograms. The former renders the approach ca-

pable of handling certain deformations of an object's parts while the latter makes it

possible to model the true distribution instead of making an oversimplifying Gaussian

assumption.

5.4 Similarity map construction and video matching

The overall goal is to �nd similar videos to a query video in a target set and

consequently label them according to the labelled query video using the hierarchical

codebook presented in section 5.3. Figure 5.4 summarizes the process of determining

the hierarchical codebooks and how the similarity maps are constructed.
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Hierarchical codebook construction for the query video

For a query video, Q, containing a particular action,
• Densely sample the video at all scales and construct spatio-temporal video volumes

and their descriptors: Q = {vj}
NQ
j=1

• Construct the low level codebook of video volumes for the query: CL

• Construct ensembles of spatio-temporal volumes: E (x, y, t)
• Construct the topological models of the ensembles of volumes as described in sec-

tion 3.2.2.
• Construct the high level codebook, CH, to cluster similar ensembles of volumes.
• Remove non-informative codewords from CH.

This procedure results in two codewords for a query video containing a particular activity:
{CL,CH}
Similarity map construction for a target video

For each video, V, in the target dataset,
• Densely sample the video at all scales and construct spatio-temporal volumes:

V = {vj}NVj=1

• Assign each video volume in the target video to the low level codewords of each
subset of query videos: vj ← ck, ck ∈ CL

• Construct an ensemble of volumes at each particular pixel, E (x, y, t)
• Construct the topological models of the ensembles of volumes
• Measure similarity between ensembles of STVs in the target video to the high level

codebook and assign the most similar codeword to the ensemble:
E (x, y, t)←ck∗
k∗ = argmax

k
sE(x,y,t),ck

, ck ∈ CH

• The similarity map between the query and target at each point is then constructed
as: SQ,V (x, y, t) = sE(x,y,t),ck∗

Figure 5.4. The complete algorithm for similarity measurement between
query and target videos. The query video is densely sampled and two code-
books are formed. The similarity between a target video and query at each
pixel is measured based on these and then employed to construct a similarity
map.

The inference mechanism is the procedure for calculating similarity between par-

ticular spatio-temporal volume arrangements in the query and the target videos. More

precisely, given a query video containing a particular activity, Q, we are interested in

constructing a dense similarity map for every pixel in the target video, V , by utilizing

pdf s of the volume arrangements in the video. At �rst, the query video is densely

sampled and a low level codebook is constructed for local spatio-temporal video vol-

umes. Then the ensemble of video volumes is formed. These data are used to create

a high level codebook, CH, for coding spatio-temporal compositional information of

the video volumes, as described in section 5.3. Finally, the query video is represented
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by its associated codebooks4. In order to construct the similarity map for the target

video, V , it is densely sampled at di�erent spatio-temporal scales and the codewords

from CL are assigned to the video volumes. Then the ensembles of video volumes are

formed at every pixel and the similarity between the ensembles in V and the code-

words in CH is measured using (5.4). In this way, a similarity map is constructed at

every pixel in the target video, SQ,V (x, y, t). The procedure for similarity map con-

struction has been described in detail in Figure 5.4. Note again that no background

and foreground segmentation and no explicit motion estimation are required in the

proposed method.

Having constructed a similarity map, it remains to �nd the best match to the

query video5. Generally two scenarios are considered in activity recognition and video

matching: (1) Detecting and localizing an activity of interest and (2) Classifying

a target video given more than one query, which is usually referred to as action

classi�cation. For both of these, the region in the target video that contains a similar

activity to the query must be selected at an appropriate scale. We perform multi-

scale activity localization, so that ensembles of volumes are generated at each scale

independently. Hence, we produce a set of independent similarity maps for each scale.

Therefore, for a given ensemble of volumes, E (x, y, t) in the target video, a likelihood

function is formed at each scale:

p (SQ,V (x, y, t) | scale) (5.7)

where SQ,V (x, y, t) is the similarity between the ensemble of volumes in the target

video, E(x, y, t), and the most similar codeword in the high-level codebook, ck∗ ∈ CH,

and scale represents the scale at which the similarity is measured. In order to localize

the activity of interest, i.e., �nding the most similar ensemble of volumes in the

target video to the query, the maximum likelihood estimate of the scale at each pixel

4The query is represented by two codebooks: the low level codebook of spatio-temporal video
volumes, CL, and the high level codebook of the ensembles of video volumes, CH.

5The inference mechanism is relatively simple as our aim is to introduce and formulate a hier-
archical structure for constructing a similarity map between videos based on densely sampled STVs
and their spatio-temporal compositions. However, it could be replaced by a more sophisticated one.
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is employed. Therefore, the most appropriate scale at each pixel is the one that

maximizes the following likelihood estimate:

scale∗ = arg max
scale

p (SQ,V (x, y, t) | scale) (5.8)

In order to �nd the most similar ensemble to the query, a detection threshold

was employed. Hence, an ensemble of volumes is said to be similar to the query and

contains the activity of interest if SQ,V (x, y, t) ≥ γ at scale∗. In this way, the region

in the target video that matches the query is detected6.

For action classi�cation problem, we consider a set of queries, Q =
⋃
{Qi},

each containing a particular activity7. Then the target video is labeled according to

the most similar video in the query. For each query video, Qi, two codebooks are

formed and then the similarity maps are constructed as described in Figure 5.4. This

produces a set of similarity maps for all activities of interest. Therefore, the target

video contains a particular activity, i∗, that maximizes the accumulated similarity

between all ensembles of volumes in the target video as follows:

i∗ = arg max
i

 ∑
E(x,y,t)∈V

SQi,V (x, y, t)

 , Qi ∈ Q (5.9)

Despite the simple inference mechanism employed here for action recognition and

localization, the obtained experimental results show the strength of our approach

for similarity map construction between two videos. We also note that the proposed

statistical model of codeword assignment and the arrangement of the spatio-temporal

volumes permit small local misalignments in the relative geometric arrangement of the

composition. This property, in addition to the multi-scale volume construction in each

ensemble, enables the algorithm to handle certain non-rigid deformations in space and

time. This, of course, is necessary since human actions are not exactly reproducible,

even for the same person. Obviously, activity recognition from a single example

6The threshold, γ was set empirically to 0.7 of the maximum similarity value for every query
video in all experiments.

7In most of the reported approaches for activity recognition it is implicitly assumed that the
query contains a single activity.
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eliminates the need for a large number of training videos for model construction

and signi�cantly reduces computational costs. On the other hand, it imposes some

limitations by its nature. It appears that learning from a single example is not as

general as the models constructed using many training examples, and therefore our

approach may not be as general as the model-based approaches. However, it should

be emphasized that constructing a generic viewpoint and scale invariant model for

an activity requires a large amount of labeled training data, which do not currently

exist. Moreover, imposing strong priors by assuming particular types of activities

reduces the search space of possible poses considered, which limits their application

to action recognition.

We conclude this section by examining the computational complexity of our algo-

rithm. Suppose there are K video volumes available in each ensemble and the number

of codewords in the low- and high- level codebooks are ML and MH, respectively.

For each ensemble, the time complexity of the low level and high level codeword as-

signment are O
(
K ×ML), and O (MH), respectively. Therefore the complexity of

calculating each point in a similarity map is O
(
K ×ML ×MH).

5.5 Experimental Results

The algorithm was tested on three di�erent datasets: KTH [96], Weizmann [36]

and MSR II [127] to determine its capabilities for action recognition. The Weizmann

and KTH datasets are the standard benchmarks in the literature used for action

recognition. The Weizmann dataset consists of ten di�erent actions performed by

nine actors, and the KTH action data set contains six di�erent actions, performed

by twenty-�ve di�erent persons in four di�erent scenarios (indoor, outdoor, outdoor

at di�erent scales, outdoor with di�erent clothes). The MSR II consists of 54 video

sequences, recorded in di�erent environments with cluttered backgrounds in crowded

scenes, and contains three types of actions similar to the KTH: boxing, hand clapping,

and hand waving. We evaluated our approach for three di�erent scenarios. The �rst

one is �action matching and retrieval using a single example�, in which both target and
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query videos are selected from the same dataset. This task measures the capability

of the proposed approach for video matching. The second scenario is the �single

dataset action classi�cation� task in which more than one query video is employed to

construct the model of a speci�c activity. Here, single dataset classi�cation implies

that both query and target videos are selected from the same dataset. Finally, in order

to measure the generalization capability of our algorithm to �nd similar activities

in videos recorded in di�erent environments, �cross-dataset action detection� was

performed. This scenario implies that that the query and target videos could be

selected from di�erent datasets.

Video matching and classi�cation were performed using KTH and Weizmann,

which are single-person, single-activity videos. We used them to compare with the

current state-of-the-art even though they were collected in controlled environments.

For cross-dataset action recognition, we used the KTH dataset as the query set, while

the target videos were selected from the more challenging MSR II dataset. Our

experiments demonstrate the e�ectiveness of our hierarchical codebook method for

action recognition in these various categories. In all cases, we have assumed that local

video volumes are of size nx = ny = nt = 5, and the HOG is calculated assuming

nθ = 16, nφ = 8. The ensemble size was set to rx = ry = rt = 50. The number of

codewords in the low- and high-level codebooks were set to 55 and 120, respectively8.

Later in this section we will thoroughly examine the e�ect of di�erent parameters on

the performance of the algorithm.

5.5.1 Action Matching And Retrieval Using A Single Example. Since

our proposed method is a video-to-video matching framework, it is not necessary to

have a training sequence. This means that we can select one labelled query video

for each action, and �nd the most similar one to it in order to perform the labelling.

For the Weizmann dataset, we used one person for each action as a query video and

the rest (eight other persons) as the target sets. This was done for all persons in

the dataset and the results were averaged. The confusion matrix for the Weizmann

8These parameters are similar to the ones in a similar study [88]
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Bend 0.96 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.02 

Jack 0.00 0.91 0.00 0.01 0.03 0.01 0.03 0.01 0.00 0.00 

Jump 0.00 0.00 0.87 0.03 0.02 0.00 0.07 0.00 0.01 0.00 

Pjump 0.01 0.00 0.04 0.90 0.02 0.02 0.01 0.00 0.00 0.00 

Run  0.00 0.01 0.00 0.01 0.92 0.00 0.02 0.03 0.00 0.01 

Side 0.00 0.02 0.00 0.04 0.00 0.93 0.00 0.00 0.01 0.00 

Skip 0.00 0.02 0.07 0.01 0.01 0.00 0.87 0.02 0.00 0.00 

Walk 0.00 0.01 0.00 0.00 0.03 0.00 0.02 0.93 0.01 0.00 

Wave1 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.94 0.03 

Wave2 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.96 
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(A) Weizmann dataset

Boxing 0.86 0.04 0.07 0.02 0.00 0.01 

Clapping 0.05 0.84 0.07 0.02 0.02 0.00 

Waving 0.06 0.11 0.81 0.01 0.00 0.01 

Jogging 0.03 0.01 0.00 0.79 0.11 0.06 

Running 0.02 0.03 0.00 0.12 0.75 0.08 

Walking 0.03 0.00 0.02 0.07 0.06 0.82 
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(B) KTH dataset

Figure 5.5. Confusion matrices for single video action matching, (A) Weiz-
mann dataset, (B) KTH dataset. A single video is used as a query to which
the other videos in the dataset were matched.

Table 5.1. Action recognition comparison with the state-of-the-art for sin-
gle video action matching (percentage of the average recognition rate).

Method
Dataset

KTH Weizmann
Proposed method 81.2 91.9
Thi et.al. [105] 77.17 88.6
Seo et.al. [99] 69 78

dataset is shown in Figure 5.5A, achieving an average recognition rate of 91.9% over

all 10 actions. The columns of the confusion matrix represent the instances to be

classi�ed, while each row indicates the corresponding classi�cation results.

We carried out the same experiment on the KTH dataset. The confusion matrix is

shown in Figure 5.5B. The average recognition rate was 81.2% over all 6 actions. The

results indicate that the method proposed in this chapter outperforms state-of-the-art

approaches, even though the former requires no background/foreground segmentation

and tracking. The average accuracy of the other methods is presented in Table 5.1.

The overall results on the Weizmann dataset are better than those on the KTH

dataset. This is predictable, since the Weizmann dataset contains videos with more

static backgrounds and more stable and discriminative actions than the KTH dataset.
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5.5 EXPERIMENTAL RESULTS

Table 5.2. Single video action matching in the KTH dataset when target
videos are limited to four subsets, each obtained under di�erent recording
conditions. The query video is selected from one of the four subsets of videos
with a di�erent recording condition. Then the most similar video from each
target is found and used as the label applied to the query (percentage of the
average recognition rate).

Target
s1 s2 s3 s4

Query

s1 88.5 71.4 82.1 83.6
s2 72.1 74.2 69.7 71.6
s3 81.9 70.5 77.1 80.6
s4 82.3 73.6 81.1 84.8

In order to measure the capabilities of our approach in dealing with scale and

illumination variations, we reported the average recognition rate for di�erent record-

ing scenarios in the KTH dataset. According to [96], KTH contains four di�erent

recording conditions are: s1) outdoors; s2) outdoors with scale variations; s3) out-

doors with di�erent clothes; and s4) indoors. The evaluation procedure employed

here is to construct four sets of target videos, each having been obtained under the

same recording condition. Then, a query is selected from one of these four scenarios

and the most similar video to the query is found in each target dataset in order to

perform the labelling. The average recognition rates are reported in Table 5.2. When

the target and query videos are selected from the same subset of videos with the same

recording conditions, the average recognition rate is higher than when they are taken

under di�erent recording conditions. Moreover, although we have claimed that our

method is scale- and illumination-invariant, it appears that, in these experiments, the

recognition rate decreases when the query and target videos have been taken under

di�erent recording conditions. This is particularly evident when the target videos

are recorded at di�erent scales (see the second column in Table 5.2). Thus scale and

clothing variations degrade the performance of our algorithm more than changes in

illumination. Therefore, as we might have expected, an activity model constructed

using just a single example cannot adequately account for all scale/illumination vari-

ations in a scene.
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5.5.2 Single Dataset Action Classi�cation. In order to make an addi-

tional quantitative comparison of our algorithm with the state-of-the-art, we have

extended it to the action classi�cation problem. This refers to the more classical sit-

uation in which we use a set of query videos instead of just a single one, as discussed

previously. We have evaluated our algorithm's ability to apply the correct label to

a given video sequence, when both the training9 and target datasets are obtained

from the same dataset. We tested the Weizmann and KTH datasets, and applied the

standard experimental procedures in the literature. For the Weizmann dataset, the

common approach for classi�cation is to use leave-one-out cross-validation, i.e., eight

persons are used for training and the videos of the remaining person are matched to

one of the ten possible action labels. Consistent with other methods in the literature,

we mixed the four scenarios for each action in the KTH dataset. We followed the

standard experimental procedure for this dataset [96], in which 16 persons are used

for training and nine for testing. This is done 100 times and after which the average

performance over these random splits is calculated [96]. The confusion matrix for the

Weizmann dataset is reported in Figure 5.6A and the average recognition rate is 98.7%

over all 10 actions in the leave-one-out setting. As expected from earlier experiments

reported in the literature, our results indicate that the �skip� and �jump� actions are

easily confused, as they appear visually similar. For the KTH dataset, we achieved an

average recognition rate of 95% for the six actions as shown in the confusion matrix

in Figure 5.6. As observed from Figure 5.6B, the primary confusion occurs between

jogging and running, which was also problematical for the other approaches. Obvi-

ously, this is due to the inherent similarity between the two actions. The recognition

rate was also compared to other approaches (see Table 5.3). Comparing our results

with those of the state-of-the-art, we observe that they are similar, though again we

do not require any background/foreground segmentation and tracking.

9Although our method does not actually require any speci�c training sequences, we refer to the
query videos as the training set for consistency with the literature.
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Bend 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Jack 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Jump 0.00 0.00 0.96 0.00 0.01 0.00 0.03 0.00 0.00 0.00 

Pjump 0.00 0.00 0.01 0.99 0.00 0.00 0.00 0.00 0.00 0.00 

Run  0.00 0.00 0.01 0.00 0.98 0.00 0.01 0.00 0.00 0.00 

Side 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

Skip 0.00 0.00 0.03 0.01 0.01 0.00 0.95 0.00 0.00 0.00 

Walk 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.99 0.00 0.00 

Wave1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

Wave2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
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(A) Weizmann dataset

Boxing 0.97 0.01 0.02 0.00 0.00 0.00 

Clapping 0.01 0.96 0.03 0.00 0.00 0.00 

Waving 0.01 0.01 0.98 0.00 0.00 0.00 

Jogging 0.00 0.00 0.00 0.89 0.07 0.04 

Running 0.00 0.00 0.00 0.08 0.91 0.01 

Walking 0.00 0.00 0.00 0.01 0.00 0.99 

 

B
o

x
in

g
 

C
la

p
p

in
g

 

W
av

in
g

 

Jo
g

g
in

g
 

R
u

n
n

in
g

 

W
al

k
in

g
 

 

(B) KTH dataset

Figure 5.6. Confusion matrices for action classi�cation, (A) Weizmann
dataset, (B) KTH dataset.

Table 5.3. Comparison of action recognition with the state-of-the-art (per-
centage of the average recognition rate). For the KTH dataset, the evaluation
is made using either leave-one-out or data-split as described in the original
paper [96].

Method Evaluation approach
Dataset

KTH Weizmann
Proposed method split 95.0 98.7
Seo et. al. [99] split 95.1 97.5
Thi et. al. [105] split 94.67 98.9
Tian et. al. [106] split 94.5 -
Liu et. al. [62] leave one out 94.2 -
Zhang et. al. [130] split 94.0 -
Wang et. al. [112] split 93.8 -
Yao et. al. [120] split 93.5 97.8
Bregonzio et. al. [16] leave one out 93.17 96.6
Ryoo et. al. [92] split 91.1 -
Yu et. al. [124] leave one out 95.67 -
Mikolajczyk et. al. [69] split 95.3 -
Jiang et. al. [46] leave one out 95.77 -

5.5.3 Cross-Dataset Action Matching And Retrieval. Similar to other

approaches for action recognition [106], we use cross-dataset recognition to measure

the robustness and generalization capabilities of our algorithm. In this paradigm, the

query videos are selected from one dataset (the KTH dataset in our experiments)

and the targets from another (MSR II dataset), so that we compare similar actions

performed by di�erent persons in di�erent environments. We selected three classes of

actions from the KTH dataset as the query videos: boxing, hand waving, and hand
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Table 5.4. Percentage of the average correct recognition rate for cross
dataset action recognition over three di�erent activities. The query and the
target videos are selected from the KTH and MSR II datasets, respectively.

Method Accuracy (%)
Proposed method 79.8
Tian et al. [106] 78.8
Yuan et al. [126] 59.6
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Figure 5.7. The precision-recall curves for cross-dataset action recognition.
The query videos are selected from the KTH dataset and the targets from
the MSR II dataset. Three activities were selected for classi�cation: boxing,
hand waving, and hand clapping,

clapping, including 25 persons performing each action. A hierarchical codebook was

created for each action category and the query was matched to the target videos. We

varied the detection threshold, γ, to obtain the precision/recall curves for each action

type, as shown in Figure 5.7. This achieved an overall recognition rate of 79.8%,

which is comparable to the state-of-the-art (see Table 5.4).

5.5.4 E�ect Of Parameter Variation. As our proposed method creates

two codebooks to group similar video volumes and ensembles of video volumes, it

is necessary to analyze the e�ect of di�erent codebook sizes on the performance of

the algorithm. Therefore, the overall recognition rate for di�erent codebook sizes

was determined as described previously using the KTH dataset,. Various codebook

sizes (MH and ML) were employed and the average recognition rate calculated. In

Figure 5.8, the average recognition rate is plotted as a function of the both low-
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Figure 5.8. E�ect of di�erent codebook sizes for both low- and high-level
codebooks. The average recognition rate is calculated for di�erent codebook
sizes for KTH dataset.

and high-level codebook sizes (number of codewords). We observe that small low

level codebooks will not produce acceptable results, even with a large number of high

level codewords. Therefore preserving information at the lowest level is necessary to

achieve acceptable results. Recall that we have shown in the previous section how

the number of codewords a�ects the computational cost of our algorithm.

Similarly, using larger high level codebooks demands more memory and dramati-

cally increases computational time. Therefore the number of codewords must be kept

as small as possible. Although there is a trade-o� between codeword size and the

performance of the algorithm, it can be inferred from our experiments that using rel-

atively small codebooks at both low and high levels, (e.g., ML = 55 and MH = 120)

achieves acceptable results for action recognition.

5.6 Summary

In this chapter we have presented a new hierarchical approach based on spatio-

temporal volumes for the challenging problem of video-to-video matching and tested

for the problem of human action recognition in videos. At the lowest level in the data

hierarchy, our approach is an extension of conventional BOW approaches. However,

this is only at the bottom level of a more descriptive data hierarchy that is based

109



CHAPTER 5. VIDEO TO VIDEO MATCHING AND ACTIVITY RECOGNITION

on representing a video by compositional contextual data. The hierarchical structure

consists of three main levels:

• Densely sampling and coding a video using spatio-temporal volumes to pro-

duce a low-level codebook. This codebook is similar to the one constructed

in conventional BOW approaches.

• Constructing an ensemble of video volumes and representing their structure

using probabilistic modeling of the compositions of the spatio-temporal vol-

umes. This is followed by the construction of a high-level codebook for the

volume ensembles.

• Analyzing the codewords assigned to each pixel as a function of time in

order to determine salient regions.

Given a single query video (an example of a particular activity), the method com-

putes the similarity of each pixel in each frame of the target videos to the query, and

�nds the subset of target videos that are similar to that query. This is accomplished by

analyzing a relatively large contextual region around the pixel, while considering the

compositional structure using a probabilistic framework. The algorithm was tested

on three popular benchmarks, KTH, Weizmann, and MSR II. We showed that it is ef-

fective and robust for both action-matching and cross-dataset recognition. Moreover,

the results are highly competitive with state-of-the-art methods. However, a major

advantage of our approach is that it does not require background and foreground seg-

mentation and tracking, and is susceptible to on-line real-time analysis. The proposed

video method can easily be extended to multi-action retrieval and action localization

by modifying the inference mechanism. Since the proposed method codes the video

using spatio-temporal video volumes and their compositional information, it does not

impose any constraints on the video contents and therefore, it can be extended to

unconstrained video matching and content-based search engines. One of the major

advantages of the proposed algorithm for event recognition in videos is that it does

not require a model of the event. However, it does have some drawbacks that need

to be addressed in future work. Clearly, such a video representation of activities in
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a scene cannot be applied for long-term behavior understanding, e.g., behaviors that

consist of numbers of activities that occur sequentially. Some form of event segmen-

tation might deal with this issue. Future research will extend the approach by adding

another level of analysis to the hierarchical structure, which models the spatial and

temporal connectivity of the learnt activities.
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Chapter 6

Multi-Object Tracking

6.1 Introduction

Object tracking is, perhaps, the most fundamental task for any high-level video

content analysis system. Generally speaking, the use of visual tracking is pertinent

in long-term tasks such as activity recognition, automated surveillance systems and

abnormality detection, sport analysis and content-based video retrieval. It has been

massively studied in the last three decades and a diverse set of approaches and a rich

collection of tracking algorithms have been produced. Visual tracking, in general, is

a very challenging problem due to the loss of information caused by the projection

of the 3D world onto a 2D image, noise in images, cluttered backgrounds, complex

object motion, partial or full occlusions, changes in illumination, real-time processing

requirements, etc. In the early years, almost all visual tracking methods assumed that

the object could be easily discriminated from the background and then recognized.

As a result, these approaches were limited to scenes with relatively few constituents,

simple motion patterns and smooth object appearance changes. However, tremendous

progress has been made in recent years. For example, some algorithms can deal with

abrupt appearance changes, object disappearance from scenes, and drifting.

Tracking is a more or less solved problem when objects in a scene are isolated and

easily distinguishable from the background. However, in complex and crowded scenes

of people there are many objects with similar appearance that can occlude each other.
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In addition, occlusions can also be the result of static objects in the scene. Therefore,

multiple object tracking remains a challenging problem in computer vision [22].

Decades of research on this topic have produced a diverse set of approaches and a

rich collection of tracking algorithms. Readers can refer to [121] and [119] for a review

of the state-of-the-art in object tracking and a detailed analysis and comparison of

various representative methods.

In the majority of the traditional approaches, only the object itself and/or its

background are modeled. Thus we observe that signi�cant progress has been made in

this case. For example, many research articles have addressed face, human body, head,

and rigid object tracking, which can be categorized within a paradigm of detect-then-

track. This is usually done by construing a tracker based on a pre-trained detection

and recognition mechanism for the objects of interest, based on appearance modeling

of the target [45, 64, 102]. This class of tracking methods are referred to as �object-

centric� approaches [57].

On the other hand, detection cannot be performed when there is no prior knowl-

edge about the speci�c objects being tracked. These methods are referred to as

�generic object tracking� or �model-free tracking�. Since manually annotating suf-

�cient numbers of examples of all objects in the world is prohibitively expensive

and impractical, recently, approaches for model-free tracking have received increased

interest [57, 63]. Model-free tracking is a challenging task because there is a lit-

tle information available about the object to be tracked [63]. Another challenge in

multiple-target model-free tracking is the presence of an unknown and ever changing

number of targets.

Here we concentrate on creating long-term trajectories for unknown moving ob-

jects by using a model-free tracking algorithm. As opposed to the tracking-by-

detection algorithms [47, 118], no object detection is involved. Each individual object

is tracked only by modeling the temporal relationship between sequentially occurring

local motion patterns. This is achieved by constructing two sets of initial tracks that
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code local and global motion patterns in videos. These local motion patterns are ob-

tained by analyzing spatially and temporally varying structures in videos. Initially,

the video is densely sampled, spatio-temporal video volumes (STVs) are constructed,

and similar ones are grouped to reduce the dimension of the search space. This is

called the low-level codebook. Then, a large contextual region containing many STVs

(in space and time) around each pixel is examined and their compositional relation-

ships are approximated using a probabilistic framework. They are then employed to

form yet another codebook, called the high-level codebook. Therefore, two codewords

are assigned to each pixel, one from the low level and the other from the high level

codebook. By examining pairs of sequential video frames, the matching codewords

for each video pixel are transitively linked into distinct tracks, whose total number is

unknown a priori and which we will refer to as linklets. The linking process is sepa-

rately performed for both codebooks. This is done under the hard constraint that no

two linklets may share the same pixel at the same time, i.e. the assigned codewords.

The end result at this step is two sets of independent linklets obtained from the low-

and high-level codebooks. Subsequently, a set of sparse tracks, referred to as tracklets

in the literature, are produced by grouping the linklets that indicate similar motion

patterns (see Figure 6.1). This produces two sets of independent tracklets, referred

to as low- and high-level tracklets. We adopt Markov Chain Monte Carlo Data As-

sociation (MCMCDA) to estimate an initially unspeci�ed number of trajectories. To

this end, we formulate the tracklet association problem as a Maximum A Posteriori

(MAP) problem to produce a chain of tracklets. The �nal output of the data associ-

ation algorithm is a partition of the set of tracklets such that those belonging to each

individual object have been grouped together.

The main contribution is an approach capable of learning long-term trajectories

of any moving object in a video without using any prior knowledge about the objects

(object detection). This is achieved by creating local trajectories of regions that have

similar motion patterns, while also considering their neighboring regions (contextual

information). Therefore, this algorithm is a complete bottom up tracking method
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Linklets Obtained From 

High-Level Codebook

Linklets Obtained From 

Low-Level Codebook

Sparse Tracklets Obtained 

From High-Level Linklets

Sparse Tracklets Obtained 

From Low-Level Linklets

Data Association And 
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Final Tracking Result

Low-Level 

Tracklets
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Rejected 

Tracklets
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Results

Legend

Figure 6.1. Overview of the algorithm. The goal is to estimate the trajec-
tory of the moving objects in the video without invoking object detection.
Initially two sets of linklets are constructed by chaining; the low-level con-
siders small window fragments, while the high-level analyzes a larger region
in order to impose a contextual in�uence. They are obtained by exploiting
an activity understanding system. The resultant tracks (chains) are �ltered
and replaced by a set of sparse representative tracks, the so-called tracklets.
Longer trajectories are then generated by using the Markov Chain Monte
Carlo Data Association (MCMCDA) algorithm to solve the Maximum A
Posteriori (MAP) problem using tracklet a�nities. Thus this procedure uses
low-level tracklets to connect high-level tracklets when there is a discontinuity
in motion or time.

that only employs hierarchical codebooks to characterize local motion patterns as the

observations. These hierarchical codebooks are obtained as described by the authors

in [91]. In addition, by considering tracklets at two hierarchical levels, the data asso-

ciation algorithm is capable of easily handling missing information. Data association

is accomplished by considering temporal continuity and motion consistency of both

the low- and high-level tracklets, with the additional option of rejecting irrelevant

tracklets.

6.2 Related Work

To date, most of the reported approaches for tracking rely on either robust mo-

tion or appearance models of each individual object or on object detection, i.e., they

are object-centric. Thus a key assumption is that a reliable object detection algo-

rithm exists [87, 63, 47, 22, 118]. This remains a challenge, particularly in complex
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and crowded situations. These methods use the detection response to construct an

object trajectory. This is accomplished by using data association based on either

the detection responses or a set of short tracks called tracklets that are associated

with each detected object [22, 102, 63]. Tracklets are mid-level features that provide

more spatial and temporal context than raw sensor data during the process of cre-

ating consistent object trajectories. This is then followed by data association stage

to link the tracklets into multi-frame trajectories. The issue of associating tracklets

across time, the so-called data association, is usually formulated as a MAP prob-

lem and has been solved using di�erent methods. For example, network �ow graphs

and cost-�ow networks are employed for data association in [61, 20, 47] to determine

globally optimal solutions for an entire sequence of tracklets. Other data associa-

tion approaches include the Hungarian algorithm [77], maximum weight independent

sets [17], the Markov Chain Monte Carlo [81, 10, 102], and the iterative hierarchical

tracklet linking methods [22].

On the other hand, there are other tracking algorithms, which are based on local

spatio-temporal motion patterns in the scene. More closely related to our approach

are those that construct motion models for the moving objects without performing any

detection [57, 43, 18, 103, 102]. For example, in [55, 57], Hidden Markov Models are

employed to learn local motion patterns that are subsequently used as prior statistics

for a particle �lter. Alternatively, other methods, such as those in [43] and [3],

employ the global motion patterns of a crowd to learn local motion patterns of the

neighboring local regions. Individual moving entities are detected by associating

similar trajectories based on their features in [18] and [103]. These authors assume

that subjects move in distinct directions, and thus disregard possible and very likely

local motion inconsistencies between di�erent body parts. Thus a single pedestrian

could be detected as a multiple target or multiple individuals as the same target. In

order to overcome these di�culties, we analyze trajectories at two hierarchical levels,

in which the second level accounts for the inconsistency between local motions of a

single object.
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Our proposed algorithm provides an alternative to such methods by using local

motion patterns and contextual information within a data association framework. In

contrast to the aforementioned approaches that attempt to track objects either by

detection or learning an appearance model of the objects, our goal is to construct a

hierarchical model for all moving objects in a scene. The tracking algorithm described

here is based on a MAP data association in which the number of targets and the

algorithm parameters are automatically learned. The inputs for the data association

framework are two sets of tracklets, the low- and high-level tracklets. The low level

tracklets take into account local motion patterns, while those at high-level re�ect the

contextual information existing in neighboring regions.

6.3 Hierarchical Data Association And Tracking

6.3.1 Observations: Low- And High-Level Codebooks Of Local Mo-

tions. Consider the overview in Figure 6.1 and assume that a system capable of

producing the linklets (on the left) is available for event description. Our aim is to use

the information produced by such a system to detect and track all moving objects in

the scene. Here we adopt the hierarchical bag of video words framework developed in

[91, 90] for short-term event description. In general, this on-line framework produces

two sets of codebooks in real-time and assigns labels to local spatio-temporal video

volumes (STVs) based on their similarity, while also considering their spatio-temporal

relationships. The hierarchical algorithm dynamically codes a video as both a com-

pact set of individual and ensembles of spatio-temporal volumes. These latter are

used to construct a probabilistic model of video volumes and their spatio-temporal

compositions (see Figure 6.2).

The �rst step is to represent a video by a meaningful low-level codebook. Using

the framework developed in [91], we determine STVs using dense sampling and then

cluster them at each frame based on similarity. We refer to the constructed low-level

codebook at this level as CL, as illustrated in Figure 6.2. The 3D STVs, vi ∈ Rnx×ny×nt

are constructed by assuming a volume of size nx × ny × nt around each pixel. Each
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Figure 6.2. Observations are represented by low- and high-level codebooks.
First, the video is densely sampled scales to produce a set of overlapping
STVs and subsequently, a two-level hierarchical codebook is created. (A)
At the lower level of the hierarchy, similar video volumes are dynamically
grouped to form a conventional �xed-size low-level codebook, CL. (B) At
the higher level, a much larger spatio-temporal 3D volume is created. It
contains many STVs at and captures the spatio-temporal arrangement of
the volumes, called an ensemble of volumes. Similar ensembles are grouped
based on the similarity between arrangements of their video volumes and yet
another codebook is formed, CH [90, 91].

STV volume is then characterized by a descriptor vector, taken as a histogram of

oriented gradients (HOG3D) within the STV. The HOG is constructed using the

quantized spatial and temporal gradients converted to polar coordinates and weighted

by the gradient magnitude [11, 91, 89]. The codebook is then created using online

fuzzy clustering, which is capable of incrementally updating the cluster centers as

new data are observed [39]. The clusters are used to produce a codebook of STVs

and ultimately assign a label to each STV. Once a video clip has been processed by

the �rst level of clustering as described in the previous section, we examine a large

region, R, around each pixel. R contains many video volumes and thereby captures

both local and more distant information in the video frames. Such a set is called an

ensemble of volumes around the particular pixel (Figure 6.2). The relative spatio-

temporal coordinates of the volume in each ensemble capture the spatio-temporal

compositions of the video volumes, [88]. Each ensemble of STVs is represented by a

probability density function of its spatio-temporal volume distribution, as described

in [91]. This histogram becomes the descriptor for each ensemble and forms the
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(A) (B) (C)

Figure 6.3. Codeword assignment for each pixel. (A) A sample video frame
from the CAVIAR dataset [1]; (B) Color-coded low-level codewords assigned
to every pixel in the video frame. In this case, there is a large number of low-
level codewords; (C) High-level codewords, which represent compositions, are
also assigned to every pixel in the video frame. This would generally produce
a small number of codewords since it deals with objects in the scene. Each
object might be represented by a large number of low-level codewords, while
the high-level codebook assigns a few number of codewords to an objects, in
most cases one or two.

second level codebook, called the high-level codebook of ensembles of volumes, CH,

as described in [91]. A sample video frame and the assigned codewords are illustrated

in Figure 6.3.

6.3.2 Linklets And Tracklets. As mentioned earlier, we use the low- and

high-level codebooks to identify the tracklets from the initial observations. In order

to do this, we �rst obtain dense trajectories from these data and then extract a set of

sparse trajectories that represents the object motions. We refer to these short-term

object motion trajectories as tracklets.

Tracklets are obtained from both the low- and high-level codebooks, CL and

CH, constructed in 6.3.1. Two codewords are assigned to each pixel p(x, y) at time

(t) in the video. Therefore, in a video sequence of temporal length T , a particular

pixel p(x, y) is represented by two sequences of assigned codewords called linklets at
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Figure 6.4. Linklet and tracklet construction. (A) A set of linklets (short
tracks) constructed using observations obtained from the low-level codebook,
XL. (B) A set of linklets constructed using observations obtained from the
high-level codebook, XH. (C) Low-level tracklets, TL, obtained by grouping
similar linklets in XL. (D) High-level tracklets, TH, obtained by grouping
similar linklets in XH. The black rectangle indicates the area in XYT-space
occupied by a single person. It seems that a single person may produce
more than a single trajectory. We expect this because our algorithm does
not involve any person or object detection. We deal with this issue in the
next section, which describes a data association process that rejects certain
tracklets as false positives.

di�erent times1:

p (x, y) =
{
p(x, y)← ci : ∀t ∈ T, ci ∈ CL

}
p (x, y) =

{
p(x, y)← ci : ∀t ∈ T, ci ∈ CH

}
(6.1)

Given the assigned codewords (labels) for each pixel, we obtain an over-segmented

representation of the video (see Figure 6.3). In this over-segmented representation,

each segment represents a set of pixels that are similar in terms of local motion

patterns. Therefore, it is a simple task to create a short trajectory for each pixel

by examining the temporal coherence of its assigned codewords. This is comparable

to the concept of so-called �particles� [100]. Here we conservatively associate two

responses only if they are in consecutive frames and are close enough in space and

similar enough according to their assigned codewords. Thus we obtain, two sets of

trajectories, called X L and XH (see Figure 6.4).

1← symbolizes value assignment.
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Figure 6.4 illustrates the obtained trajectories. It is obvious that the number of

linklets is generally more than the number of objects in the scene and that many

trajectories might belong to a single object. In addition, we note that the number

of linklets created by a single object is much smaller in XH than the ones in X L.

Ideally we are interested in obtaining a single trajectory for an object. Thus the

linklets belonging to the same object must be merged in order to create a single

representative track that describes the motion of the object. Here we follow the idea

of clustering trajectories to create a representative object trajectory [100, 19].

Obviously non-informative linklets are removed before constructing clusters of

trajectories. These are taken to be relatively motionless or those that carry little

information about the motion. They are mainly related to the background or static

objects. Similar to [100], we analyze the linklets within a temporal window of the

length of T . Then, those trajectories with a small variance are removed2:

XL =
{
x ∈ X L, var {x} ≥ εL

}
XH =

{
x ∈ XH, var {x} ≥ εH

}
(6.2)

where εL and εH are two thresholds. Clearly, trajectories are not of the same tem-

poral length. Therefore, in order to measure dissimilarity between two trajectories,

we adopt the pairwise a�nities between all trajectories as introduced in [19]. The

distance between two trajectories x and y, D (x,y), is de�ned as follows:

D2 (x,y) = max
t

{
d2
t (x,y)

}
(6.3)

where d2
t (x,y) is distance between two trajectories x and y at the time t and de�ned

as follows:

d2 (x,y) = ‖(x− y)‖2 ‖∇t (x− y)‖2

5σ2
t

(6.4)

The �rst factor on the right-hand-side of (6.4) is the average spatial Euclidean distance

between the two trajectories. The second factor characterizes the motion of a point

2Other methods can be used to remove uninformative codewords, such as the one presented in
[89].
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aggregated over 5 frames at time t. The normalization term, σt, accounts for the

local variation in the motion [19]. Given the above distance measurement between

two trajectories, clustering is performed using the k-means algorithm. Here we have

invoked iterative clustering to determine the optimal number of clusters. In order to

perform the merging, we use the Jensen-Shannon divergence measure to compute the

actual di�erence between the resulting clusters. As reported in [100], this method

achieves better results than others for trajectory clustering. Clustering produces two

sets of low-level tracklets, which we refer to as TL and TH.

As illustrated in Figure 6.4, the tracklets obtained after clustering are not quite

reliable for long term object tracking, but do a relatively good job of encoding the

moving object motions in the short term. The main advantage of constructing the

tracklets based on the two codebooks is that no object detection is required. Although

a set of representative trajectories is created for all moving objects in the video, there

is no guarantee that an object would be represented by a single trajectory. Moreover,

in crowded scenes, the representative trajectories may correspond to more than one

object. However, if the motion pattern changes, then the trajectories would separate.

6.3.3 Data Association and High-Level Trajectory Construction. Given

the resulting tracklets, high-level trajectories can be generated by linking them in

space and time. We achieve this by formulating the data association required as a

maximum a posteriori (MAP) problem and solve it with the Markov Chain Monte

Carlo Data Association (MCMCDA) algorithm.

The observations are taken to be the constructed tracklets in section 6.3.2:

O =
{
TL,TH

}
(6.5)

Let Γ be a tracklet association result, which is a set of trajectories, Γk ∈ Γ. Γk is

de�ned as a set of the connected observations which is a subset of all observations:

Γk =
{
TLi , T

H
j

}
⊆ O (6.6)
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The goal is to �nd the most probable set of objects trajectories, Γ, which is formulated

as a MAP problem:

Γ∗ = arg max
Γ

P (Γ|O) = arg max
Γ

P (O|Γ)P (Γ) (6.7)

The likelihood, P (O|Γ) indicates how well a set of trajectories matches the observa-

tions and the prior, P (Γ) indicates how correct the data association is. By assuming

that the likelihood of the tracklets are conditionally independent, we can rewrite the

likelihood, P (O|Γ), in (6.7) as follows:

P (O|Γ) =
∏

TLi ∈TL

THj ∈TH

P
(
TLi , T

H
j |Γ

) ∏
Γk∈Γ

P (Γk) (6.8)

First we consider the encoding of the likelihood of tracklets in (6.8). The observations,

that is, the tracklets, can be either true or false trajectories of the object. Therefore,

the likelihood of a tracklet, given the set of trajectories, S, can be modeled by a

Bernoulli distribution:

P (T |Γ) ∼ Bern(p) =

 p|T | : T ∈ Γk, Γk ∈ Γ

(1− p)|T | : T /∈ Γk, Γk ∈ Γ
(6.9)

where |T | denotes how good a tracklet is. Since the tracklets are taken to be clusters

of small trajectories constructed in section 6.3.2, |T | is de�ned as the size of the

cluster. Here we assume that the two sets of tracklets, TL and TH, are independent3.

Therefore, we can write the likelihood in (6.8) as follows:

P
(
TLi , T

H
j |Γ

)
= P

(
TLi |Γ

)
P
(
THj |Γ

)
(6.10)

where P
(
TLi |Γ

)
∼ Bern(pL) and P

(
THj |Γ

)
∼ Bern(pH) as described in (6.9). This

formulation makes it possible to exclude some tracklets from the �nal data association

by assuming that any tracklet can belong to at most one trajectory in the data

association process. This is achieved simply by rejecting them as false object tracklets.

3The independence assumption is valid here because the consistency between tracklets and obser-
vations, i.e., the suitability of the tracklets, is independent of the relationship between trajectories.
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Next we consider the encoding of the prior of tracklets in (6.8), P (Γk). Similar

to [22], we model these priors as a Markov chain:

P (Γk) =
∏

Γtk∈Γk

P
(
Γtk|Γt−1

k

)
= Pi

(
Γ0
k

)
Pl
(
Γ1
k|Γ0

k

)
. . . Pl

(
Γnk |Γn−1

k

)
Pt (Γnk) (6.11)

where Γtk is the trajectory of the object at a time instant t. The chain consists of

an initialization term, Pi, a probability to link the tracklets, Pl, and a termination

probability, Pt, to terminate the trajectory. It is assumed that a trajectory can

only be initialized or terminated using the tracklets obtained from the high-level

codebook, TH. Therefore, the probabilities of initializing and terminating a trajectory

are written as follows:

Pi
(
Γ0
k

)
= Pi

(
THj
)

Pt (Γnk) = Pi
(
THj
)

(6.12)

The probability of linking two tracklets can be written as:

Pl
(
Γtk|Γt−1

k

)
= Pl

(
THjt , T

L
it |T

H
jt−1

, TLit−1

)
= Pl

(
THjt |T

L
it , T

H
jt−1

, TLit−1

)
Pl
(
TLit |T

H
jt−1

, TLit−1

)
(6.13)

Two tracklets are linked if they are consistent in the time domain and show similar

motion patterns. We assume independence and decompose the probability of linking

the tracklets into two probabilities. Therefore (6.13) is rewritten as:

Pl
(
Γtk|Γt−1

k

)
=PT

(
THjt |T

L
it , T

H
jt−1

, TLit−1

)
PM

(
THjt |T

L
it , T

H
jt−1

, TLit−1

)
PT
(
TLit |T

H
jt−1

, TLit−1

)
PM

(
TLit |T

H
jt−1

, TLit−1

)
(6.14)
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where the temporal consistency probability, PT , is taken to be the hyper-exponential

distribution of the temporal gap between the tracklets:

PT
(
THjt |T

L
it , T

H
jt−1

, TLit−1

)
=
∑
n

αnPn (τn)

Pn (τn) ∼ Exp (λn) =

 λne
(λnτn) : τn ≥ 0

0 : τn < 0
(6.15)

where τn is the temporal distance between the end of a tracklet and the start of

its immediate successor. The motion consistency probability, PM, is modeled by

assuming that the trajectories follow a constant velocity model and obey a Gaussian

distribution.

6.3.4 Markov Chain Monte-Carlo Data Association (MCMCDA) And

Parameter Estimation. The combinatorial solution space of Γ in (6.7) is ex-

tremely large and �nding good tracklet associations is extremely challenging. Here

we follow the MCMCDA sampling approach similar to [31, 10] and simultaneously

estimate the parameters and Γ∗. Figure 6.5 shows how the low- and high-level track-

lets can be used for constructing long trajectories in a data association framework.

MCMC is a general method for generating samples from a distribution, p, by

constructing a Markov chain in which the states are Γ. At any state Γ, a new

proposal is introduced using the distribution, q (Γ|Γ′). Following [10], we consider

three types of association as a result of the sampling process. The �rst randomly

selects one tracklet and one trajectory. This a�ects the current state of the tracklet

by associating it to the selected trajectory. The second, called swapping, postulates

that, all tracklets constructing the two trajectories be swapped at a randomly chosen

time. Finally, the third proposes a change of trajectory type. We decide which of

the three Γ′ should be accepted by employing the Metropolis-Hastings acceptance
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Figure 6.5. Data association and tracklet rejection. Formulating the like-
lihood as described in (6.10) makes it possible to reject some trajectories by
considering them as false positives. Here, T2 is a rejected tracklet. A low-
level tracklet, T4 is used to connect T1 and T3 based on motion consistency
and temporal continuity.

function [35] which de�nes the likelihood by:

A (Γ,Γ′) = min

{
p (Γ′) q (Γ|Γ′)
p (Γ) q (Γ′|Γ)

, 1

}
(6.16)

In addition, in order to estimate the model parameters described in section 6.3.3,

we follow the approach presented in [31]. The latter uses MCMCDA sampling followed

by an additional Metropolis-Hastings update for the parameters.

In summary, we have described a method to construct tracklets, given online

observations. Then the probability of a tracklet being part of an actual track has

been calculated by formulating the data association problem as a MAP estimation.

Initial observations are taken to be the low- and high-level codebooks obtained by

an event detection system. The low-level codebook codes the local motion patterns,

while the high-level codebook codes global motion patterns in videos while considering

the scene context. They are then tracked in consecutive frames, which produces two

sets of dense tracks of small temporal length, called linklets. These dense linklets

are then grouped to produce a small number of representative object tracklets. The

representative tracklets are then linked to form long-term object trajectories. The

data association framework we have adopted has two main advantages: 1) It can
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reject certain tracklets by considering them as parts of false trajectories, and 2) It

uses low-level tracklets as supportive information for �lling the gaps between high-

level tracklets, thereby producing smooth trajectories.

6.4 Experimental Results

The algorithm has been tested using the following publicly available datasets for

multiple pedestrian tracking: TUD [4] and CAVIAR datasets [1]. They are taken

from static cameras and vary with respect to viewpoint, type of movement, and

amount of occlusion. We only use 2D information in all sequences and do not assume

any scene knowledge (e.g., ground plane calibration). All parameters have been set

experimentally, but most have remained identical for all sequences. In all cases, we

have used the suggested parameters in [91] for codebook construction. We show

quantitative comparisons with state-of-art methods, as well as visual results of our

approach4.

We follow the same evaluation metrics as those in [118, 102, 61, 128]. These

are Mostly Tracked (MT), which is the percentage of the trajectories covered by the

tracker output more than 80% of the time; Mostly Lost (ML) which is the percentage

of the trajectories covered by the tracker output less than 20% of the time; ID Switch

(ID) which is the number of times that a trajectory changes its matched ground

truth identity; fragments (FRAG), which is the number of times that a ground truth

trajectory is interrupted (i.e., each time it is lost by the current hypothesis); and

average False Alarms per Frame (FAF). The results are presented in Table 6.1.

The results indicate that although the correct detections with our algorithm are

comparable to the state of the art, they contain more false positives (see Table 6.1).

Perhaps one can expect this, since no object detection is employed in our algorithm.

Recall that the scene observations that we use are motion descriptors and do not

incorporate object appearance, as do object-centric trackers.

4See supplemental videos: http://www.cim.mcgill.ca/~javan/index_files/Tracking.html
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Table 6.1. Comparison of di�erent tracking methods for the CAVIAR [1]
and TUD dataset [4].

Dataset Method MT ML ID FRAG FAF

CAVIAR

Hao et al. [23] 84.6 0.7 11 18 0.085
Yuan et al. [128] 84.6 1.4 11 17 0.157
Li et al. [61] 85.7 35.7 15 20 -
Song et al. [102] 84 4 8 6 -
Ours 84.3 6.4 18 16 0.237

TUD
Yang et al. [118] 70 0 0 1 0.184
Hao et al. [23] 60 0 0 3 0.014
Ours 60 10 1 4 0.281

6.5 Summary

In this chapter, we have introduced the use of motion descriptors obtained by

an event detection algorithm for multiple object tracking. We have shown how pure

motion descriptors for event detection could be employed to build a tracker without

requiring an object model. Thus, each individual object is tracked by modeling only

the temporal relationships between sequentially occurring local motion patterns. The

algorithm is based on the descriptors of moving objects, obtained at two hierarchical

levels. By considering both local and global motion patterns, two sets of initial tracks,

called linklets, are obtained. Then, a set of sparse tracks, referred to as tracklets, was

created by grouping linklets showing similar motion patterns. We then developed

associations between them in order to produce longer trajectories.

Although our algorithm possesses no information regarding either an object's

color pattern or a human body model, it achieves promising results on challenging

data sets. As stated previously, the major drawback of our algorithm is the number of

false positives and some problems in maintaining the trajectory identity when objects

have similar shape and motion. Further improvements would include incorporating

color information to reduce the number of ID switches.
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Chapter 7

Closing Remarks

7.1 Summary

In this thesis we started with low level visual features in local spatio-temporal re-

gions as the observations required to build a scene understanding system. This scene

understanding system uses motion descriptors to describe and track events involving

multiple objects in a scene. In order to achieve these objectives, �rst, we proposed a

new approach for describing contextual information. Scene context is de�ned as the

spatio-temporal relationship between local visual volumes in a large region is space

and time, called ensembles of video volumes. To capture the contextual informa-

tion, the spatio-temporal structures of ensembles are modeled using a hierarchical

probabilistic framework. At the lowest level in the data hierarchy, our hierarchical

probabilistic structure can be considered as an extension of conventional bag of video

words approaches.

Given the hierarchical representation of the scene context, a fully automated

abnormality detection algorithm was built. The proposed algorithm uses only the

video itself as the training set for the dominant (normal) activities and detects and

localizes abnormal regions, while continuously updating the learnt models of visual

events. We have shown that this algorithm can e�ectively localize spatial, temporal,

and spatio-temporal abnormal patterns in videos. Experimental results indicates that

this method has a competitive performance (in terms of accuracy and computational
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cost) compared to the other approaches for anomaly detection. Moreover, it is fast

enough for online applications and requires fewer initialization frames. When a sep-

arate training set is not available, the algorithm is capable of continuously learning

the dominant behavior in an unsupervised manner while simultaneously detecting

anomalous patterns. Clearly, this is the preferred behavior for any potential visual

surveillance system operating in an unconstrained environment.

As a further analysis, we have shown that the contextual graphs obtained can

e�ectively be used for video-to-video matching and activity recognition. This is

achieved by adding another level of processing for obtaining the most informative

regions in the scene. Given a single query video (an example of a particular activity),

the method computes the similarity of each pixel in each frame of the target videos

to the query, and �nds the subset of target videos that are most similar to that

query. Experimental results are highly competitive with state-of-the-art methods.

However, a major advantage of our approach is that it does not require background

and foreground segmentation and tracking, and is susceptible to on-line real-time

analysis. The proposed video method can easily be extended to multi-action retrieval

and action localization by modifying the inference mechanism.

Finally, we have shown how pure motion descriptors for event detection could

be employed to build a tracker without even requiring an object model. Thus, each

individual object is tracked by modeling only the temporal relationships between

sequentially occurring local motion patterns.

7.2 Future Work And Improvements

The proposed algorithms in Chapter 3, 4, and 5 can be considered as similar

algorithms with di�erent focuses. One of the major advantages of the proposed

algorithm for event recognition in videos is that it does not require a model of the

event. However, it does have some drawbacks that need to be addressed in future

work. Clearly, such a video representation of activities in a scene is insu�cient for

directly monitoring long-term and multi-faceted events. This is because, in this thesis,
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we made no e�ort to annotate behaviours that consisted of a number of activities

occurring sequentially. Some form of event segmentation would be required to deal

with this issue. Future research will extend our approach by adding another level

of analysis to the existing hierarchical structure in order to model the spatial and

temporal connectivity of the learnt activities.

Although the object tracking method presented in Chapter 6 possesses no infor-

mation regarding either an object's color pattern or a human body model, it achieves

promising results on challenging data sets. As stated previously, the major drawback

of our algorithm is the number of false positives and some problems in maintaining

the trajectory identity when objects have similar shape and motion. Further im-

provements would include incorporating color information to reduce the number of

ID switches.

In particular, future work can be investigated in several ways as follows:

• Di�erent combinations of feature descriptors for local spatio-temporal video

volumes can be employed within the proposed framework. Experimental

evaluation of di�erent combinations of feature descriptors is an immediate

direction for future work. More speci�cally, the color information will be

considered to improve the tracking algorithm.

• The scene description method presented here does not involve any kind of

object detection and recognition. Rather, an assumption has been made

about the kind of moving objects in the scene. Therefore, it would be useful

to integrate an object recognition method to focus on, for example, only

human activities. The current scene description mechanism can be easily

extended in this way.

• In order to have an inference mechanism for explaining and annotating

more complicated behaviors, object tracking and activity recognition must

be performed simultaneously. To achieve this, a particular event could be

tracked in the time domain in order to produce a sequence of activities.
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These trajectories could then be considered in a generative graphical model

to describe the behaviors.

• The current framework can be extended to build a complete scene descrip-

tion algorithm. This could be achieved by creating a su�ciently detailed

context of the scene. For example, containing the following information:

position of all objects in the scene; the activity of each individual in the

scene; the interactions between two individuals, an individual and objects,

and a group of people; and the temporal order of the activities. Toward

this goal, the �rst step would be to recognize and analyze all events in a

scene, which would be accomplished by using the scene description frame-

work developed in this thesis. The video would then be represented by set

of events, localized in space and time, and coded by probabilistic graphical

structures. By also including a person detection algorithm, a generative

probabilistic graphical structure could be adopted to model the person-

event relationship. This would produce a rather concise description of all

events and person-event interactions in the scene su�ciently informative for

scene analysis and behavior understanding. In order to consider both local

and global contextual information, the spatial and temporal relationships

between di�erent events and their temporal correspondence would need to

be modeled. Although the temporal order of these events can be modeled

using Hidden (Semi) Markov Models, the inclusion of spatial relationships

would require a more �exible and general structure. A possible solution

to this problem is to extend the current generative graphical models (e.g.,

Probabilistic Latent Semantic Allocation,PLSA) to account for both spatial

and temporal context to model the event/event interactions.
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