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• ABSTRACT
The main objective of this research was ta create a finite element model for

detailed three-dimensional stress analysis of an overhead optical ground wire

(oPGw) typical of thœe used in transmission lines. The detailed model considera

al1 possible mechanical effects, such 88 contact, friction, e1angation, torsion, and

bending for different end conditions.

The OPGW under study comprises four components: the extemallayer of fourteen

aluminum a110y wes and ten inner aluminum clad steel wires, which are laid

over an aluminum tube that houses a five-groove aluminum spacer. The optical

fiber units are inserted in the aluminum 8pacer grooves. Three-dimensional solid

elements are used ta model the outer wes, the inner wires, and the aluminum

spacer. The central aluminum tube is modeled with sheD elements with large

strain and defonnation kinematics. AIl possible contacts between the components,

with and without friction, are considered in the model.

The OPGW is assumed fixed at one end and pulled &om the other with a

prescribed displacement equivalent to the experimental elongation of 0.61%

defined for all components. This elongation is based on the results of experiments

carried out at Hydro-Québec's research institute (IREQ) , where the cable 'lias

subjected ta the sustained maximum tension in normal operation (MTNO) of

83.5 kN.

The finite element analysis predicts that the respoDBe8 of the outer and inner

wes are in the linear range, however the aluminum tube and spacer are yie1ded

under the prescribed displacement. Therefore, a multilinear stress-strain law is

used in the model. Three-dimensional contact surfaces are defined for contacts

between the outer wes, the inner wires, between the outer and the iDner wires,

between the inner wes and the central tube, and between the central tube and

the aluminum spacer. The latter 'lias not observed in the analysis as the gap

between the spacer and tube is tao large and considering the end conditions

specified in the model.

Two scenarios of loading were tested ta apply the Edal elongation on the wires;

either only the central node or all the interior nodes of the wire crOIS sections are
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prescribed a maximum axial displacement. In the two scenarios, the aluminum

tube and the spacer cross sections are prescribed the same axial displacement.

Two types of finite element meshes are considered for the outer and inner wes.
The cross sections of the outer and inner wires are modeled with an 8-sided

polygon in the coarser mesh while a 16-sided polygon is used in the liner mesh.

The cross-sectional areas of the coarse and fine mesh models are smaller than the

real cross sections by 10% and 2.6%, respectively.

Results of the finite element model are compared with those of the expeliments

performed at IREQ and with the analytical solutions of Machida and Durelli

(1973) and Phillips and Costello (1973). The calculated axial forces of the cable

in the coarse and fine mesh modela are 61% and 70% of those predicted by the

analytical solutions, respectively. However, the differences in stresses and strains

of the coarse mesh model are in the range of ten percent only from the theoretical

solutioDS. Nevertheless, the stresses and strains in the wires of the fine mesh

model are almost identical with thœe of the analytical solutions. The friction

effects on the wires are found negligible in static analysis, although they are a

non-negligible source of damping in flexural vibratioDS. However, the effect of

contact with friction between the inner wires and the central tube is significant

on the response of the tube.

The effective modulus of elasticity of the tinite element model iDcreases with

tension. For the mayjmum elongation, the effective modulus obtained with the

coarse and fine mesh models is 62% and 70% respectively of the equivalent

modulus of elasticity calculated neg}ecting all three-dimensional effects. As a

result, the elongation of the cable is larger in the finite element model than in the

theoretical calculation under the same tension. The central aluminum tube and

spacer are yielded after only 36% and 62% of the load level correspondïng to the

maximum tension in normal operation, respectively. In a transmission line, the

plastic deformation of the tube and spacer will he accumulated under periodic

loading-unloading cycles, and the optical fibers are inevitably under stress.

Therefore, permanent signal attenuation due to induced stresses in the fiben will
OCCUI.

This study shows the reliability and significance of using finite element mode1ing

in predicting the detailed reepoD8e of a complex cable, for which experïments and

theoretical solutions are unable to yield complete results.

ii
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SOMMAIRE

L'objectif principal de la recherche était de créer un mod~e d'Béments finis fiable pour

l'analyse détaillée des contraintes dans un cible de garde à fibres optiques (CGfO)

typique de ceux utilisés dans les lignes a&iennes de transport d'électricité. ~ mod~e

considère tous les effets mécaniques impottants tels le contact et le frottement entre

les composants, ainsi que l'allongement, la torsion et la flexion pour différentes

conditions frontières.

Le CGFO étudié a un diamètre extérieur nominal de 19 mm et compte quatre

composants. Une couche métallique externe de quatorze fils en alliage d'aluminium

ainsi qu'une couche métallique interne de dix fils en ader enrobés d'aluminium sont

toronnés sur un tube en aluminium, lequel loge une entretoise à cinq cannelures,

également en aluminium. Les torons de fibres optiques sont insérés dans les

cannelures de l'entretoise. Les fils des deux couches métalliques ainsi que l'entretoise

sont modélisés à l'aide d'éléments finis solides. Le tube central est modélisé à l'aide

d'éléments de coques minces pouvant accommoder des grandes déformations et des

grands déplacements. Le modèle considère toutes les forces de contact présentes, avec

ou sans l'influence du frottement.

Pour les fins du modèle, on suppose que le CGFO est parfaitement fixe à une extrémité

et que l'autre extrémité est soumise à un déplacement uniforme iquivalent à un

allongement total de 0.61%, soit la valeur maximale mesurée lors d'essais de traction

pour homologation. Cet allongement a été obtenu sous une charge de tension totale

de 83,5 kN, correspondant à la tension maximale en opération nonnale (TMON) pour

le câble étudié.

L'analyse par éléments finis pmiit que le comportement de l'enveloppe m&allique

(couches de fils externes et internes) se maintient dans le domaine lîn&ire, alors que

le tube central et l'entretoise d'aluminium sont plastifi& au niveau de dHormation

correspondant à la TMON. L'usage d'une loi constitutive non llnWre s'impose donc

Hi
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pour ces deux derniers composants. Des surfaces de contact tri-dimensionne11es sont

définies entre les fils de la couche externe, entre les fils de la couche interne, entre les

fils des couches interne et externe, entre les fils de la couche interne et le tube central,

et finalement entre le tube et l'entretoise d'aluminium. Toutefois, aucun contact ne se

produit dans le modèle entre le tube central et l'espaceur, étant donné la taille de

l'espace vide entre les deux composants et les conditions frontières définies.

Deux scénarios de chargement ont été testés pour imposer le dqJlacement de

l'extrémité libre du modèle. Dans le premier, seuls les noeuds situés au centre de

chaque fil de l'enveloppe métallique se voient imposer le d~lacement, alors que dans

le second, tous les noeuds définis à l'intérieur de la section de chaque fil se voient

imposer le même déplacement. Dans les deux scénarios, le même ~Iacement axial

est prescrit pour le tube central et l'entretoise. Deux types de maillage sont également

considérés pour modéliser les fils de l'enveloppe métallique. Le maillage du modèle de

référence utilise des éléments isoparamétriques solides à 8 noeuds alors que dans le

maillage le plus fin utilise des 6énents à 16 noeuds. n en résulte que la section droite

du premier maillage est inf&ieure à la section réelle des fils d'environ 10% alors cette

différence n'est que de 2,6% dans le modèle plus fin.

Les résultats de l'analyse sont comparés aux mesures expérimentales faites à l'IREQ

(Institut de recherche en électridté du ~bec, Hydro·~bec) et aux solutions

analytiques pour cibles toronnés standards publi&s indipendamment en 1973 par

Machida et Durelli et par Phillips et Costello. La force axiale totale obtenue par

l'analyse par éléments finis est inf&ieure à œlle prédite par les solutions thmriques,

dans une proponion de 61% et 70%, selon qu'on réQre aux r&u1tats obtenus avec le

maillage de référence ou plus fin. Toutefois, les diff&ences enues les contraintes et

déformations de l'enveloppe métallique du mod~e et œlles des solutions analytiques

sont inférieures à 10% pour le maillage de ~&ence et, l toutes fins pratiques, les

résultats du maillage fin et des solutions analytiques sont identiques. Les effets du

frottement entre les fils sont par consâplent jug& nqligeables sur la rEponse statique

des fils eux·mêmes. A noter que le frottement est toutefois une source impottante

iv



• d'amonissement interne du cible en vibrations flexionnelles. Par contre, l'effet du

contact et du frottement enue la couche interne de fils et le tube cenual est ~

significatif sur le comportement du tube.

Le module d'élastidté équivalent du câble. évalué à partir des r&ultats de force et

d'allongement du modèle d'éléments finis, augmente avec la tension axiale dans le

câble. Pour l'allongement maximum spécifié de 0.61%, le module équivalent obtenu

respectivement pour le maillage de référence et le maillage fin, est de 62% et 70% de

la valeur théorique calculée en négligeant les effets tri-dimensionnels de la réponse.

Pour une force de tension donnée, le modèle d'éléments finis prédit donc un

allongement plus grand qu'un calcul théorique. L'analyse par Béments finis pr&lit

également la plastification du tube central et de l'entretoise à des niveaux

d'allongement du câble qui ne correspondent qu'à 36% et 62% respectivement de

l'allongement obtenu en condition TMON. Dans les conditions réelles d'une portée

suspendue, la plastification du tube et de l'entretoise s'accumule sous l'effet des (.j'des

périodiques de chargement et de déchargement, et les fibres optiques sont

inévitablement sous contrainte résiduelle. nen résulte un affaiblissement permanent

et irréversible du signal.

En conclusion générale, l'étude démontre la fiabilité et la peninence de la méthode des

éléments finis pour prédire la rqJonse d&aillée d'un cible de section complexe, ce qui

n'est pas possible actuellement ni par les techniques expérimentales ni par les solutions

théoriques connues.
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A cross-sectional area of a cable

Ah cross-sectional area of a helical wire
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•
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frictional force per unit length on a helical wire in the direction

tangential to the wire axis with no slip between wes
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horizontal tension

subscript to denote helical wire
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h length of a strand

Ih second moment of area of the cross section of a helical wire

Jh polar moment of inertia of the cross section of a helical wire

K stiffness matrix
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Mc twisting moment acting on a core wire
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M: component of internai moment resultant in b (binormal) direction

Mt twisting moment in a wire

M~ component of internaI moment resu1tant in t (tangential) direction

~ total axial twisting moment acting on wires

m number of helical wires in a strand

m, distribution friction torque

N: component of internai force resultant in b (binonnal) direction

N' component of the shearing force on a wire

D unit normal vector

P axialload

Ph axial load acting on a helical wire

P n interwire distributed force in the normal direction

p pitch length of a helical wire

Q contact force per unit length between two adjacent wires

R radius of a cylinder on which the center line of a helical wire lies

R load vector

R' defonned radius of a cylinder on which the center llne of a wire lies

RCONSM reference contact force level

RCTOL contact force convergence tolerance

RESFAC response smoothing factor

rh radius of a helical wire

STOL user-input line search convergence tolerance

SI torsional stiffness of a core wire

S2 axial stiffness of a core wire

S3 bending stiffness of a helical wire

S~ torsional stiffness of a helical wire
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Tb internaI tension in a helical wire

t aluminum tube thiclmess

t tangential contact traction component

U displacements vector

û tangential velocity

v(mj Volume of a body at time t

w weight per unit length

X nodal coordinate

Xe contact force per unit length acting along the line of contact

Xh extemal force components per unit length of a wire in the x direction

Yb external force components pet unit length of a wire in the 1/ direction

Zb extemal force components pet unit length of a wire in the z direction

ÂŒ change in helix angle of a wire

Âq)2 change in twist per unit length of an inner wire

ÂK'2 change in curvature of an inner wire

a helix (lay) angle of a helical wire

OC deformed helix angle, final angle between the tangent to the center line

of a helical wire and the plane normal to the axis of the helix

~ contact angle

~(I) acceleration factor

8Se cable elastic extension

8x cable axial displacement

E normal strain, axial strain of the strand

EE energy tolerance (ETOL)

Eb axial strain of a heücal wire

Es parameter used in constraint function

Er parameter used in frietional constraint function

'C rotation per unit length of a core wire

y normalized rotation of one pitch length of the strand (Â/2fC)

11 nonlinearity parameter

'Ph angle of twist per unit length of a helical wire (in t direction)

~ center line component of curvature of a helical wire in n direction

le'h center line component of curvature of a helical wire in b direction

À. normal contact traction components

J.I. coefficient of static friction

v Poisson's ratio
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V Poisson'8 ratio of a compliant layer

p radius of curvature of the helical wire axis

p' deformed radius of curvature of the helical wire axis

ab bending stress

(Je: normal stress in the wire core

(JPI principal stress

GQ maximum compressive stress due to contact

Gt average normal stress

ao axial stress in outer wires

t shear stress
tt( ml stress matrix at time t
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STRESS ANALYSIS OF AN OPTICAL GROUND WIRE

1

INTRODUCTION

1.1 General
Overhead ground wes with optical libers (oPGw) are being used widely in

transmission lines. They have two functions: their primary function is to protect

the line conductors electrically against lightning, while optica1 fibers incorporated

in the core of the cable serve 88 telecommunication lines for automatic control of

the transmission network. The traditional ground wire is composed of severa!

galvanized steel strands that carry the cable self-weight and environmental loads

(ice, snow, wind, and changes in temperature). On some power lines, the

traditional ground wires have been replaced with ground wires carrying optical

libers that are protected inside the cable core. In most cable constructions, the

optical libers are enclosed in the core of the cable and are designed to he stress

free or to resist only low stresses under normal operation loads.

The structure of optical fiber cables typically coDSists of several liber optics

arranged in ribbons or strands, which are either tightly or loœely iDserted into
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hellcally shaped slots on a spacer. The relative loœeDess of the fibers is created

by the extra length of the fibers compare<! to that of the cable. The large

diameter of the slots with respect to the diameter of the fiber ribbons or strands

pravides space for the additional length of the libers, which is also referred to as

e%CeJI& length or oVe?" length. Due to compatibility of strains and displaœments,

the optical fibers will Dot experience any elongation and axial stresses until the

cable extension exceeds the fiber over length.

The mechanical rellability of optical fibers needs ta he assessed as excessive

strains resulting from axial deformatioDS (and or curvatures) cause signal

degradation or attenuation. Several mechanical studies have been done on

isolated optical fibers but DOt on fibers in cables. The difficulty is to understand

and model the mechanical behavior of these cables of complex construction under

a variety of loads. Experimental work supporting these analytical and numerical

models is also necessary. Due to technological limitations, experimental testing

alone is insufticient to fully characterize the mechanical response of each cable

component. Therefore, rellable numerical modela for stress analysis are needed.

Thr~dimeDSional modeling is necessary because of the complexity of the

interaction between the components of the transverse direction (cross section),

longitudinal direction, and the boundary conditioDS. Contact among the different

components, i.e., between the outer wes, the inner wes, the outer and inner

wes, the inner wes and the tube, and the tube and the aluminum spacer, needs

to be properly accounted for in the stress analysis. In these contact problems, the

effects of friction also have ta be examined.

The proposed research is original since at present there is no rellable stress

analysis model to predict the detailed mechanical response of optical fibers in

optical ground wes. It is a complex problem that requires a thorough

understanding of the interaction between the geometrical effects (fiber over

length, depth and shape of slot of central core, lay angle of various components)

and the friction amongst the different components in contact. It is worth noting

that the present research and development approach used by cable manufacturera

is almost exclusively experimental and limited to specific types of cables. It is

believed that this research will prove directly useful for the mecbanical design of

optica1 ground wires.
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1.2 Problem defiDitioD
As stated in the introduction, the reliability of ground wires with optical fibers

must he properly evaluated. This evaluation relies on two components: 1) the

characteristics of climatic and other loads that affect the transmission lines in

general, and the OPGW in particular and 2) the mechanical response of the OPGW

under the loads, i.e., the stresses and deformatioDS of different components of the

cable (metallic caver, central core, libers) resulting &om the applied forces.

Hydr~Québec has invested considerable resources in the characterization of the

climatic loads on transmission lines for the lut twenty years, and probabilistic

models are known. On contrast, the mechanical respoDSe of OPGW is less

understood and cannot he extrapolated directly &om available data on traditional

cables (conductolS or ground wes). The present approach used by Hydr~

Québec ta characterize the behavior of OPGW is exclusively experimental.

Although experimental studies are necessary, their conclusions are often limited

ta the parameters and types of experiments being carried out and are therefore

difficult ta generalize or extrapolate. NUDlerical modeling is therefore considered

essential to pursue the assessment of the mechanical reliability of OPGW.

The complex cross section of an OPGW with its several different components

(aluminum-clad steel wes, aluminum alloy wes, tube and spacer, and optical

fibers) makes it difficu1t to understand its behavior under various types of

loading. The OPGW investigated in this study is made by Phillips-Fitel and used

widely by Hydro-Québec (see Figure 1.1).

Aluminum allay
wires

Aluminum tube---'--AIl
><III...,

Optical libers
unit

Aluminum
spaœr

Aluminum-clad
steel wires

Fipre 1.1 CroIII-led1oD of the l''mm OPGW ... bJ' RJeIro-Qœbee
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Its external diameter is 18.94 mm and the outer layer is made of 14 aluminum

alloy wires whose function is mainly to dissipate the electrical current generated

by a lightning strike. The inner layer is made of 10 aluminum-clad steel wires

that act as the main structural part. The core is composed of a 6.5 mm diameter

aluminum tube, which encloses the optical Bber strands that are iDserted in the

grooves of an aluminum spacer.

1.3 Research objective and scope
The objective of this research is to model the mechanical behavior of a particular

construction of optical ground wire (oPGw) used in overhead transrnifJrion lines,

using the finite element method, in order ta predict the state of stresses and

defonnatioDS in each component of the cable and ultimately in the optical fibers,
in view of estimating the opto-mechanical reliability of the cable under normal

operation loads. The ADINA (1999) software W8S selected because of its proven

efficiency in solving complex nonlinear contact problems (Bathe et al. 1999,

Roshan Fekr et al. 1999).

1.4 Methodology
The research program is C8llied out mainly in finite element modeling of the

OPGW, in the following stages:

• Three different lengths of cable segment are analyzed to limit the me of the

model and to obtain the minimum/optimum length of the cable for numerical

efficiency and accuracy. One, two, and three pitch lengths of only one inner

wire are modeled with the central tube. A comp8lÎ8OD of the stress and strain

variations alODg the cable axis of the three models allows the appropriate

length selection. It is noted that these models are incapable of represeDting

the responses of the full OPGW, Bince the effects of the neighboring wires are

neglected. However, they can be indicative of pitch length effects.

• Only one layer of the OPGW (all the inner wires and the central tube) is

modeled with and without friction effects. Two different loading cases are

adopted to induce elongation in the cable when only the wes are subjected

ta a prescribed displacement; 1) either at their centraI Dode or 2) at all the

interior nodes of the wire crœs sectioDS. In this case, the tube remained

unloaded in arder to verify the effects of contact between the wires and the

tube. The effects of friction are aIso considered in the mode!. A distributed

l·4
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tensile force on the cross section and a concentrated force at the central nooe

of the wires and tube were also considered, however, due to displacement

compatibility between the components, the displacement-control approach is

finally used.

• The inner-wire-and-tube model is studied where ail components of the cable

(inner wires and the tube) are assigned a prescribed axial displacement with

and without the effects of friction. Both the wires and the tube are subjected

to a compatible axial strain of 0.61%.

• The OPGW model is completed by adding the outer wires and the aluminum

spacer ta the previous model. Once again, two cases are considered; 1) when

aIl the interior nodes of the wires are subjected ta a prescribed displacement

and 2) when only the central wire nodes are subjected to this same

displacement. In both cases the aluminum spaœr and the central tube are

subjected to the same compatible displacement. The effects of friction are also

included. It is worth noting that the initial gap between the aluminum spaœr

and the central tube is tao large ta produce contact when subjected to axial

displacement; therefore, the aluminum spacer can be modeled separately.

• Ta validate the finite element mesh and the type of element selected for the

wes (8-node 3-D solid element), a finer mesh with the same e1ement is used.

Two other types of elements (20.. and 27-node ~D solid) were also used to

verify the accuracy of the 8-node element. The 20-node e1ement model is used

for the complete OPGW. However, the 27-node is only used in the inner-wire­

and-tube model due to limitations in computational resource. Results of 20­

and 27-node modela are DOt presented in details.

• The theoretical solutions by Machida and Durelli (1973), Phillips and Castello

(1973), and Castello (1997) are modified for the OPGW. The modification is

carried out mainly to include the effect of the central tube 88 bath analytical

solutions consider a central wire instead of a central tube. The anaIytical

calculations were carried out based on a 0.61% cable e1ongation. The internal

forces and stresses in the OPGW components were calcu1ated in the absence of

contact and friction effects (see Appendix 1).

• Due to the plastification of the central aluminum tube and spaœr predicted in

the finite element mode1, uniaxial tension tests were performed at McGill

University on the central aluminum tube and spaœr separately to obtain their

nonllnear material law. The experimental stress strain curve of each
component wu then used in the mode1.
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• The finite element model and the two analytical solutions are compared with

the results of 96-hour traction tests, which were performed at IREQ (IREQ

1996). In the experiments, it is unclear whether the internai components of

the OPGW (inner wires, central tube, and the aluminum 8pacer) deform as

much as the external envelope (outer wires).

• The finite element model is unloaded after reacbing its maximum prescribed

clisplacement. Due ta plastification of the aluminum tube and spacer,

permanent deformations remain when no axial forces are induced in thœe

camponents.

1.5 OPGW coDltructiOD
The geometrical characteristics and material properties of the OPGW presented in

Figure 1.1 are snmmarized in Tables 1.1 and 1.2.

Table 1.1 18-mm OPGW eoDltrucdOD

Outside diameter mm 18.94

Outer aluminum alloy wires No./mm 14/3.37

Inner aluminum clad steel wires No./mm 10/2.85

Aluminum tube external radius mm 6.5

Number of spacer grooVe8 5

Weigbt Selfweigbt N/m 8.23

with 35 mm ice N/m 60.52

Breakiq tensile strengtb kN 116.8

Modwus of e1utiClty MPa 97000

Thermal expaDIiOD coef6cient 1re 17.1xlo-e

Source: IREQ (1994)

It is noted that the helix angles of the düJerent layera of wires and components

are in opposite directioDS. The helical shape of the outer wes is a "Z shape"

while the opposite direction is callecl "S-. The outer wires (aluminum alloy) are

of Z shape with a pitch of 202 mm, while the inner wes (aluminum-clad steel,

Ac) are of S shape with a 265.16-mm pitch length. Two of the optical liber unïts

consist of 8 fibers helically twisted (S-shape) around a straight liber acting 88 a

structural liber (i.e., not meant to be used for communication purpœes). The

other three strands have the same structure but comprise only 6 fibers.

1-6



•

•

STRESS ANALYS/S OF AN OPT/CAL GROUND WrRE

T.ble 1.2 Propertiel the OPGW eoDlpGDelltl

Outer Wire8 lJmer WireI Aluminuu: Aluminum Optical
Al. AUoy (Ac) Tube Spacer Fibers

(6201) (6201)
~us (mm) 1.685 1.425 3.25 - -
Area (mm:!) 8.92 6.38 10.28 10.17 0.0123

Thermal expansion coefficient rC 23Xlo-a 13Xlo-a 23xlo-a 23xlo-a O.5xlQ"6

Modulus of ela8ticity (OPa) 63.77 162 61.S0 63.77 72.59

Mus (kg/km) 24.1 41.7 30.0 27.6 2.0

Allowable stress (MPa) - 1250 - - -
Max. stress (MPa) 336 1474 162 280.6 -
Pitch length (mm) 202 (Z) 265.2 (S) - 150 (S) 150

Source: Phillips-Fitel Inc. (cable manufacturer)

The optical tiber units are loosely inserted in the aluminum spacer which is

helically (9) twisted with a 150-mm pitch length and 0.018% over length of the

aluminum 8pacer length. The cladding of aluminum over the steel inner wes is

0.191 mm thick.

1.8 OrpuizatioD of the thesÏ8
The thesis consists of six chapters. The first chapter defines the problem and

states the objective of the study. In the second chapter, a brief literature review

is presented; A more detailed literature review on the subject was also published

by the author in 1998 (Rœban Fekr 1998). The theoretical solutions are

presented in chapter three. The numerical model and finite element procedure

used to solve the mathematical model are covered in details in chapter four,

followed by chapter five, which is devoted to resu1ts with complementary

discussions. Conclusions are snmmarized in chapter six. Two appendices follow on

detailed calculations pertaining ta analytical solutions and experimental

characterization of the OPGW under study.

1.7 StatemeDt of origiDaUty

Ta the best of the author's knowledge, the following original contributions were

carried out in finite element and stress analysis of complex cable structures.
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1. The construction of a three-dimensional finite element mode! of a complex

helical cable to estimate the stress distribution in the different components of

the cable.

2. The contact analysis with and without friction effects of an OPGW cable is

considered for the tirst time. These effects are presently impossible to predict

using analytical solutions.

3. The large kinematics, large displacement with small and large strain in

different components is considered in the state of deformation. Neither any

theoretical solution nor numerical modeling is yet available in the literature

that includes large deformations in the ca1cu1ation of the stresses and

deformations in a standard cable.

4. For the first time, this study shows that the detailed modeling of a complex

strand (oPGw) including the exact geometry, fulllength (based on the longest

pitch length), and all possible mechanical effects is feasible.
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2

LITERATURE REVIEW

2.1 ReUcal Wires
2.1.1 Mec:lumla of wire ropel

Mechanical engïneers have been iDterested in the design and analysis of wire

ropes since the 1930's. One of the earliest investigations on stress analysis in

wires is a study by Hall (1951). He considered a wire rope made of severa!

strands, each strand heing composed of wes as shown in Figure 2.1. The strands

and the wes were helically twisted around each other. Hall determined stresses

on a wire subjected to an axial load using the following three assumptions:

• the applied load wu equally distributed amongst the strands and the wes in

turn,

• there W8S neither friction nor bending in the wes and the strands,

• all strands and wires were tightly in contact with each other, such that only a

static elongation of the rope would result &om the loading.

However, many subsequent studies have revea1ed that these assumptiODS are

unrealistic (Hruska 1951, Machida and Durelli 1973, Phillips and Cœtel10 1973).
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Considering the wire rope 88 a fully coupled cross section and distributing the

load equally amongst its components means neglecting the essential

characteristics of a wire rope. Applying bis theoretical model, Hall predicted that

stresses in the outer wes would he notably higher than those on the iDner wes,
and consequently, that the outer wires would likely break under the applied load

before the inner wes. It is clear that the radial forces applied by the wes on

the strands and by the strands on the core have significant effects on the stresses

in wire ropes. Tangential forces generated from the axial load create a torque

that changes the geometry of the strands and affects the stresses. Nevertheless,

Hall's preliminary study revealed the complexity of stress analysis of wire ropes.

helical wire

Flpre 2.1 Typical win coaflpratioD ID • ItraDd

Six months later, Hruska (1951) claimed that Hall had made a "principle error"

when he assumed that there was no friction in the wire rope. Hruska stated that

the elongation of all wes, under the axial load, was the same due ta the great

friction between the wes. According ta Hru8ka, an axial load on a wire rope

produces three components of forces: axial tension force, radial force, and

tangential force. His analysis of the axial tension showed that the core in a strand

was always more stressed than the other wes, which is in contradiction with

HalI's prediction. He found that the stresses in the wire core, (Jc:, and in the outer

wires (Jot were related as

CJ
(J = 0

c: C062 a

2-2
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where a is the lay (helix) angle of the wes. According to Hruska (1952), the

radial force FR pel unit length of a wire under an axial load P can he found as

F
_ Psin2 a

R -
R

where R is the radius of the cylinder on which the centerlines of the wires lie (see

Figure 2.2).

Fipre 2.2 Radial ad *....*Ial forces OD • win rope CI'OII sectiOD

Hruska (1953) also învestigated tangential forces in wire ropes, and realized that

these forces produced moments about the axis of the strand. He concluded that

these tangential forces and tb.e resulting moments would either cause rotation of

the wires in free-ends boundary conditions, or he the moment reactions at the

fixed supports. The tangential force, FT' and the corresponding twisting moment,

~, were determiDed as

FT =Psin a (2.3)

Mt = FTR. (2.4)

2.1.2 Streu aalyaia of beUcal wireI

One of the first detailed studies carried out on helical wires is the work of

Machida and Durelli (1973). They derived linear expressions to determiDe the

axial load, bending and twisting moments of helica1 wes, and the axial force and

twisting moment of a core subjected to axial and torsional displacements. They

suggested that the analysis of a wire rope made of strands could he considered

analogous ta that of helical wires in a strand.

Machida and Durel1i investigated three main static external loadinp, namely
axial loading, torsion, and bending. Although they ignored the interwire contact

deformation and Poisson's effect due to axial strain, they considered tensional
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loading and the combination of tensional and torsional loadings. According to

their assumptions, two types of deformatioDS could occur in a strand: a

displacement in the axial direction, a, and a rotation &round the axis of the
strand, 4 (see Figure 2.3). They categorized four types of internai forces or stress

resultants (axial force, bending moment, twisting moment and contact forces)

8SSOCiated with strains and stresses of the helical wire, and expressed them as a

function of aand ~.

z

Fipre 2.3 AmI cUaplacemeDt: aacl rotation 01. beIleal wiN

On the basis of this study, the axial force Ph' the bending moment M, and the
twisting moment M~ acting in a helical wire, and the resultant contact forces Fe

on the wire Can he found from the folloWÎDg equations:

Ph =AhE h {Esin2 a + y008
2 a)

M = 2Eh Ib (E - y) sin' acœ' a
R

M~ = G~h (E-y)sin4a

F =Ph =: Ph
c p' p

2-4
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where;

Ah cross-sectional area of a helical wire,

~ Young's modulus,

Ih second moment of area of the cross section of a he1ical wire,
Jh polar moment of inertia of the cross section of a helical wire,

Gh shear modulus,

E axial strain of the strand,

'1 normalized rotation of one pitch length of the strand (1= 11/21t),

P radius of curvature of the helical wire axis,

p' deformed radius of curvature of the helical wire axis.

Machida and Durelli also derived expressions for the extemal axial force and

torque of a strand made of m helical wes with a central core as follows:

p =Pc + mPh sin a'

Mt =Me + m(M~ sin a' - Mcosa' + PbRc08a')

(2.9)

(2.10)

where indices c and h denote the core and the helical wire, respectively. The

defonned helix angle cL and twisting moment Mc acting on the core can

respectively he found as

a' =tan- t (1 + y tua) (2.11)
l+E

Me = GcJc 2Jry (2.12)
li

As it can he seen, Machida and Durelli presented a rational model that took into

account different possible loadings and the correspondiDg stresses. However, the

effects of friction amongst the wires, Poisson's effect, and the contact pressure

between the core and wires were all neglected in their model. It is noted that in

their experimental work, an oversized epoxy mode! was used for which the effect
of friction was actually negligible. Despite its limitations, their work remains an

important contribution as most subsequent investigations on helical wires have

been based on this study.

Not long after Machida and Dure1li, Phillips and Coete1lo (1973) introduced a

method to determine stresses in twisted wire cables, with fewer limiting
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assumptioDS than previous researchers. They considered a cable 88 consisting of

thin wires subjected to an axial force and a torque with no friction between the

wes. The general non-lïnear equatioDS for the bending and twisting of a thin rod

subjected to line loads were solved using the six non-linear equatioDS of

equilibrium for each wire. In the stress analysis, they neglected the radial force

exerted by the core on the wes because the core was relatively soft in the

example considered. An exact solution was presented to evaluate ail stresses

(axial, bending, shear, and contact) in the wire. Each single wire in a cable W88

assumed to be subjected to an external bending moment and the tension T wu

considered constant along the length. The resultant axial force P and torque ~

on the cable were determined by

P = m(Ph sin a' + N: casa') (2.13)

Mt = m(M~ sin a' + M: cos a' + PhR' cos a' - N:R' sin a') (2.14)

where

N: component of internal force resultant in 6 (binormal) direction (see

Figure 2.4),

M:, M~ components of internai moment resultant in 6 (binormal) and t

(tangential) directions, respectively,

R' defonned radius of a cylinder on which the centerline of a helical wire

lies,

a' defonned angle between the tangent to the centerline of a helical wire

and the plane normal to the axis of the helix.

b
ft

.-.-,8
....---t

F1pre 2.4 NorDIII1 (n), BiDoraW (6), ad T......tiaI (t) cIlndioDI 01. beUeal

win &ad cbaD&es iD the ndilll

The contact angle, P (see Figure 2.5), which locates the line of action of the

contact loads, Q, on a wire due ta its neighbors is given by
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A . -1 (1 sin2a J-1/2... =sm +-~----
tan2(K/2 - K/m)

(2.15)

Phillips and Costello presented 80me numerical results for a few special cases.

Given ct and Ph (obtained using a Newton-Raphson procedure to solve the

nonlinear equations of equilibrium) the wire stresses can be calculated usÎDg

Equations 2.16 to 2.18 (see Figure 2.6). The normal stress of the wire cross

section due to direct tension was given by

a, = ~h (2.16)
h

where Ah is the Cross-sectiona! area of the helical wïre. The maximum bending

stress, Gb, and the maximum shearing stress, t, due to St-Venant torsion were

given by

and

- E (cos2
a' _ cos:! a J

ab - hrb R' R

_ G (Sin a' cos a' sin a' cos a)
t- brh -----R' R

respectively.

(2.17)

(2.18)

Fipve 2.8 Normallt~ (Ot), )lendlnl me. (ab)' ad TonioDal ...........

('t) iD wIns
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The maximum compressive stress due to contact is

a = _~QEb
c 1ER (2.19)

where Q is the contact force per unit length between two adjacent wes, 88

shown in Figure 2.5.

This theoretical analysis is incomplete due ta the omission of &ictional forces

between the wes. The relative movements of the wes due ta tension and
twisting of the cable generate resisting forces that are clœely related ta the

contact forces and stresses in the wïres. Therefore, the friction forces will directly

affect the stresses calculated by Phillips and Costello. Moreover, if there is more

than one layer of wires, which is a common situation, the friction and contact

forces between adjacent and lower wires, and also the friction between the wes
and the core affect the stresses. The approach proposed by Phillips and Castello

does not consider the case of many layers of wires wi+;h a bard core. Despite its

limitations, however, it is recognized that their investigation W88 the 6rst ta

account for the contact forces and their interaction with other forces.

2.1.3 Advuœd UIII1ytlcai and aperimeDtal Rudi. GD cab..

The response of wire rope strands to axial tensile loads W88 more recently

investigated theoretically and experimentally by Uttings and Jones (1987 l, II).

They were the first ta present a mathematical mode! considering the change of

helix angle under load, Poisson's effect in the wires, and the effects of friction and

wire flattening at the contact surfaces.

The resultant axial force and torque were calculated using Equations (2.13) and

(2.14) of the analysis by Phillips and Castello (1973), adding Pc: and Mc: to

include the contribution of the core,

(2.20)

where Pc: is the core tension and Mc: is the torque resisted by the core,

respectively (see Figure 2.7).

The axial strain of the strand is

sina'
E=(I+Eh)-.-­sma-l

2-8
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where ~ is the strain along the helical wire axis, and the rotation pel unit length

cPc is

• = R(I+E) __1_.
e R'tana' tana

(2.22)

Section A-A

P

core

Q

Q

Flpre 2.7 Geometry of a leveD-win ltnDd

Neglecting wire flattening and Poisson's effect, the helix radius R is given by

(2.23)

where de and dh are the core wire and helical wire diameters, respectively. Uttings

and Jones considered several aspects of friction in their theoretical analysis,

inclucling Poisson's effect, zero friction between the wes, friction with zero slip,
and friction with slip. They determined the helix radius of a strand under axial

load considering Poisson's effect and equal moduli of elasticity for the core and

helical wes.

(2.24)

They took the wire tlattening into account by impoeing BQ = /(Q) 88 a flattening

effect on the wire radius, therefore modifying Equation. (2.24) 88 follows:
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(2.25)

The wire flattening effect is determined empirically from experiments and

considered as a function of Q, the contact force per unit length of hellca1 wire

(see Figure 2.7). However, it is not clear how important the effect of the contact

force is on the reduction of the radius.

End effects were neglected in previous analyses by Machida and Durelli (1973),

Phillips and Costello (1973), and Velinsky et al. (1984). Uttings and Jones

assumed that when there was no friction between the wires, any change in the

strand geometry accurs over a transitional length, Lor, at each end of the strand

adjacent to the end grip. They postulated that when friction without slip

between the wires was considered, the frictional resistance from the core wire

prevents some of the rotation and bending of the helical wires about their axis.

Furthermore, the friction force between the helical wires and the core W8S

considered by treating each wire as a thin rod after Phillips and Costello (1973),

and Leve (1944).

A friction force per unit length of helical wire, IF, acts 88 shawn in Figure 2.8

with components IbTF and IbAF which are tangential and parallel to the wire axis

along the line of contact, respectively. The equal and opposite force acting on the

core wire bas two components, !cTF and leM. Considering the core wire as a

helical wire with a=90°, they calculated the total friction force on the core per

unit length of core as

fcF =mJ{/~ + f~ / sin a (2.26)

where,

!cF frictional force on the core per unit length of core with no slip between

wes,
leM frictional force on the core in the direction parallel to the wire axis per

unit length of core with no slip between the wires,

!cTF frictional force in the direction tangential ta the wire axis per unit length

of core with no slip between the wires.

2-10
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JeU

Jtrr
fleure 2.81Dterwire frlcdon wlth DO aIlp-forces

The frictional force acting on the helical wire

opposite ta the force acting on the core wire:

, _ /,'l ,2 _Id sina
JhF - 'V JhAF + JhTF - -------

m

per unit length is equaI and

(2.27)

where,

fbF frictional force on the helical wire per unit length with no slip between the

wires,

IhAF frictional force on the helical wire in the direction parallel ta the wire axis

per unit length with no slip between the wes,
IhTF frictional force on the helical wire in the direction tangential to the wire

axis per unit length with no slip between the wes.

By applying thin rad theory, Uttings and Jones calculated IbAF and ATF 88

fhAF = 2{MbB / S3 -'lM~A / Sol) (2.28)
mdhLT(A - BC)

, _ 2{M~C / Sol - MbA / S3) (2.29)
JhTF - md

h
L

T
(A2 - BC)

where

A =sin a C08 a(l/S2 - 1/St)

B =sin'l a/St +COS 'la/52 + l/mS"

C =cos2 a/St +sin 'la/52 + l/mS3

and,

S1 torsional stiffness of the core wire, SI =Eclc/{r/ sina(l + v)}

2-11
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S2 axial stiffness of the core wire, S2 =EcAcIsin a

S3 bending stiffness of the helical wire, S3 =EhIh/rh
2

S3 torsional stiffness of the helical wire, S" =EhIh/{rh2{1 + v)}

LT transitionallength adjacent ta strand termination,

Utting and Jones (1989 1) also concluded that if the ttiction between the core and

the helical wes were insufficient ta resist rolling contact, slip would occur.

Therefore, slip occurs when the force acting on the core Î8 greater than the

contact force multiplied by the coefficient of static friction between the core and

the helical wes. Uttings and Jones have modified the expression of Q given by

Phillips and Costello (1973) conceming the reduced bending moment and torque

in the helical wires in the presence of the friction. It should be noted that the

theoretical analyses presented by Uttings and Jones do not account for more tban

one layer of helical wïres. Also, the cable behavior will he even more complex if
the core and the helical wes in different layers have different moduli of

elasticity. Moreover, the large displacements of the wires and the core are Dot

considered. In both of the analyses by Phillips and Castello (1973) and Uttings

and Jones (1987), the cable is considered short and straight which is Dot

appropriate in transmission lines and stayed bridges applications where the

catenary configuration of the cable and the large displaœments of the wes have

significant effects on cable stresses.

Utting and Jones (1989 fi) predicted that the strand extension under a given load

is greater for strands with less torsional restriction such that the extension at the

free-end was as much as 70% larger than in the fixed-end tests. AlI the

computations and experiments were performed on seven-WÏle straight strand with

helix angles ranging from 74° ta 81° and with core and helical wire diameters of

3.94 and 3.73 mm. It is Doted that friction effects, wire flattening, and Poisson's

effects, which are all included in the work of Utting and Jones (1989), were

neglected in the work of Machida and Durelli (1973).

Experimental results revealed that the theoretical predictions of the torque

generated at the fixed end overestimatecl the measured torque by up to 5%. In
the free-end loading, however, the wire rotations (UDwinding motion) obtained
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experimentally were sma1ler in all strands (with different pitch lengths) &om 9.0

to 15.7%. They concluded that the difference is due to the effect of plastic

yielding and wire flattening at contact points and migration of the effective line

of contact between the core and the helical wïres. The experiments also revealed

that the load-torque relation wu linear. However, the load-exteDSion behavior

was non-lïnear at low loads in the &ee-end case.

Surface strains revealed uneven load sharing between nominally identical helical

wires, especially near the end grips.

Raoof and Hobbs (1988) have propœed an analytical model for analysis of multi­

layered structural strands. They presented several graphs to determine the inter­

wire and interlayer contact forces. Each layer of wires in a multi-layered strand

was treated as a statically indeterminate orthotropic cylinder with an equivalent

modulus of elasticity. The analysis assumed that the wes in each layer just

touch each other when there is no axial load on the strand and that the strand

was tixed against rotation at its ends. They determined the radial rigid body

motion of the wires, which would occur due to the change in lay angle in the

absence of a central core. The radial force calculated agreed with the force

determined by Hall (1951)(Eq. 2.2).

LeClaire (1991) also extended a linear theory for wire ropes that considered

individual wire geometry and equilibrium including the effects of contact

deformation between the wires. After reviewing the approach of Velinski et al.

(1984) and Costello (1983) for the axial response of a simple strand, LeClaire

extended the method ta include the effect of contact defonnation of a compliant

layer. The cross section of a simple strand illustrated in Figure 2.7 bas a helix

angle a, measured &om the perpendicular axis of the strand and the helix radius,

R = rh+rc' which locates the helical wire œnterline. The components of curvature

~, rh and twist <Ph, can be determined by Equations (2.31-32).

and
cos2 a

1C~ =-­
R

(2.31)

sin a cos a
'h=--R--

2-13
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The length h of the strand and the length 1of a helical wire are related as

h =1sin a (2.33)

The ends of the helical wire of length h make an angle of e with the strand axis

where

RB = 1cos a (2.34)

Under axial load, both the helix angle and the helix radius change by small

amounts &x and 8R. The corresponding variation in lengths h and ~ using

Equation. (2.33) is

ah = al sin a + IC08a&x (2.35)

and the corresponding variation in 9 of Equation. (2.34) is

lie =-!-(8Icosa -lsinaSa - aRe)
R

The corresponding variations in the components of curvature and twist are

~ and ~lC' = 2cos a sin a ~__ C08
2

a ~
ulCh = 0 u h R vu R2 un

(2.36)

(2.37)

and
2 • 2 •

~ =COS a - sm a &x _ smac08Œ 8R
~h R R2 (2.38)

(2.40)

The axial strains of the strand and the helical wire are E = 8h/h and ~ =ôl/l

respectively. Equations (2.33) and (2.35) relate these strains as

au
E =Eh +-- (2.39)

tan a

The strand's twist per unit length is • = 89,11&, and Equations (2.33), (2.34), and

(2.36) are combined to yield

=.!.(...!L_au _ 3R )
, R tana Rtana .

If the strand's axial strain (E) and twist per unit length (,) are DOwn, Equations

(2.39) and (2.40) provide the helical wire axial strain (Eh)' the change in helix

angle (&x), and the change in helix radius (aR). A third equation can be obtained

by relating BR to Poisson's effect in the wires as foUows:

(2.41)
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where V is the Poisson's ratio. By using equatioDS (2.39) ta (2.41), ~, 8a and aR
can he determined. Meanwhile, equatioDS (2.37) and (2.38) are used to find 31Ctl,

(2.42)and

ale'h, and ~- The resulting bending moment components, M:, M~, and torque,

M~ , on a cross section of a helical wire in response ta these changes are

Mh _ tEE hrb" ~ ,
6 - 4 ulCh

(2.43)Mb _ KEhr: &p
t - 4(1 + vb ) h -

The shear force components, N~, N:, the tension, Ph' and the extemal force

components per unit length, Xb, Yb' Zb' maintain the helical wire in equilibrium,

where

2 -
Nh" =0, Nb =MbCOS a_MhSlDacosa and n -E A E

6 r &. ,.c-L - h h hR fi R U

(2.44)

• 2

X - Nh smacosa _ n cos a y -0 d 7.-0
h -" R .c-h R ' h-' an &J}a-. (2.45)

The strand axial force, P, and the torque, ~, required for the specified value of

strand axial strain and twist per unit length, are found by snmmjng the response

of the m helical wes and the center wire, as follows:

(2.46)

Figure 2.9 shows the cross section of a wire lape with a compliant layer of

thickness te- Neglecting contact deformations, this layer also affects the change in

helix radius by its Poisson contraction and Equation. (2.41) can be rewritten 88

(2.48)

where ve is the Poisson'8 ratio of the compliant layer.
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Fipre 2.9 Crau sedioD of. simple atraDd with comp1lllDt layer

In order to consider the contribution of contact forces, LeClaire added to

Equation. (2.48) a term proportional to the contact force pel unit length between

the helical wires and the compliant layer as follows:

(2.49)

•

where Ch is the contact compliance between the helical wes and the compliant

layer, and Fhe is the contact force exerted by the compliant layer on a helical

wïre. If the modulus of elasticity of the compliant layer is significantly less than

the wire modulus, the effect of contact deformation on the change of the helix

radius will he significant. Adding another layer of helical wires to the simple

strand cross section (see Figure 2.10) makes it a complex strand.

ripre 2.10 Crau sedio. of. two-"y. ltnDd witb two complJaDt layen

Contact forces between wes result in deformatioDS that reduœ the helix radius

of the wires in the strand and consequently reduce the equilibrium contact force

per unit length and tension in the wîres. The deformations due to contact
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between wires of multi-layered metallic strands are expected to be sma1l, but

should not he neglected. Moreover, multi-layered cables used for signal

transmission olten consist of several non-metallic components and are subjected

to unavaidable imposed strains. The deformations due ta contact between the

non-metallic components may he significant and possibly beneticial due to the

reduction in contact load and tension.

The results obtained by LeClaire indicate that the presence of a compliant layer

between wire layers reduces the tension experienced by the wires in the strand by

at least one arder of magnitude over the case in which the deformation is

neglected or the compliant layer is absent. This effect is desirable in instrumental

cables such as optical cables to preserve signal quality. Numerical results for

three and ten-layer metallic strands indicate that neglecting contact deformatioDS

predicts greater wire tension and equilibrium contact force by only 3% and 11%
for the three and ten-layer strands, respectively.

2.1.4 FrictioD etred. iD wIres
The effect of dry friction and interwire slip in an axially loaded cable is addressed

in the work of Huang and Vinogradov (1992). They defined the inter-wire slip as

a local displacement of the wire surface with respect to the core or other wïres.

The cable is composed of a core and m wires wound around it in such a way that

each wire, in the first row, interfaces two adjacent wes and the core along the

helix. Huang and Vinogradov asserted that inter-WÏle slippage could occur due to

the twisting and bending of the wires. There were two types of contact between

the wires: parallel contact between the wes of a same layer, and cross contact

between the wires of different layera (see Figure 2.11). They stated that the

distributed friction torque, m" is related to the contact force, F" between the
wires in different layers, as

(2.50)

•
where fJ. is the coefficient of static friction between the surface in contact.
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(a)

(2.54)

(b) (c)
Figure 2.11 (a) IDtenrire contad, (b) CODtact loreee iD c:rcJII touchlDI, ad (c)

Contact forces iD paraI1eI toUehinl

In case of cross contact, Fe W88 calculated from the equilibrium condition, as

shown in Figure 2.11, 88

Fe = -Pn = -L.EhAh sin ~ a (2.51)
RKn

where Pn is the inter-wire distributed force in the normal direction and can be

presented approximate1y, usÎDg Love's (1944) equation of equilibrium, 88

F . 2

Ptt = tt s: a (2.52)

in which Fn is the axial component of the resultant force in a wire cross section

and is found from the geometry of the developecl helix 88,

Fn = ~EhAh sin2 a (2.53)
K n

and ~ is the cable axial rigidity in non slipping parts and is equaI to

K - E A EhAh
n- c c+ m ..

sma
For the parallel type of contact, the contact pressure is
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F =_ Pu =PEhAhsin
4

a (2.55)
c 2sin~ 2RKn C08~

where pis the contact angle as evaluated by Costello and Phillips (1974),

1 1 1 [ 1 ].cosP=-- 1+ 1+ +81D·a
cœŒ tao'<:lsin' Œtao'<:l tao' Œsin'<:{sin' Œ+cotao'<:l]

(2.56)

As expected, the contact forces are proportional ta the axial load for bath types

of contact. Huang and Vinogradov (1994) also examjned a cable as a system of

helical wires and a core with distributed dry friction forces at the interfaces. In

the analysis of the cable under a uniform bending moment, they found that there

was a critical bending curvature when slip occurred between the wire and the

core. They assumed small deformations theory and elastic material, and Poisson's

effect in the wire was also neglected and only friction forces between the wires

and the core were considered. The equations of a rad element derived by Love

(1944) were used for the wes. Huang and Vinogradov claimed that slippage

between wires was unlikely ta occur when the bending deformation of the cable

was small. This means that the inter-wire friction force is sufficient to hold the

wires together and the cable behaves like a solid beam. In such a case, the

corresponding bending rigjdity was calculated using the sum of the second

moments of area of all the individual wires of the cross section of the cable. They

noted that with a large helix angle, the wires wound around the core had a nearly

elliptical cross section. By increasing bending, the inter-WÎre traction force

increases and when it is equal to or larger than the friction force, slippage occurs.

They concluded that with increasing bending, the slip spreads symmetrically

from the neutral plane over the entire area of the cross section of the cable.

2.2 OPGW
2.2.1 IDtrodudioD

Optical libers are widely used in telecommunicatioD network systems. The low­

loss and high-bandwidth transmission characteristics of optical libers make them

ideal for transmitting voice, data and video images. An optical liber is compœed

of two main parts: an inner cylinder of glass, which is called the core, and a

cyÜDdrical shell of glass or plastic of lower re&active index called the cladding

(Cherin, 1983). The core is typically made of a high-8ilica-content or multi-
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component glass. The cladding of the fiber is also made of a high-silica-content,

multi-component glass, or plastic.

2.2.2 Mechuica of optical flben

The study of the mechanical behavior of optical fibers is a specialty of optical

fibers engineering. The number of studies related to the mechanics of fiber optics

is small compared to other areas such as materials and manufacturing, but the

proper modeling of the mechanical behavior of optical fibers is important in order

to design 6bers of optimal mechanical and optical performance. Subir (1993)

showed that the nonlinear stress-strain tensile response of optical fibers is also

valid for compression and bending deformations, provided that the axial strains

are not exceeding 5%. The stress-strain curve in optical fibers subjected to UDÏ-

axial tension (+) or compression (-) C8D he described as

E.s 5% (2.57)

where (J and E are the stress and strain in the fiber, Eo is the initial modulus of

elasticity of the fiber (i.e. in the region of very small strain), and 11 is the

parameter of non-linearity. For most optical tibers the Young's modulus is

Eo=72 GPa and the non-linearity parameter is 11=6 .

2.2.3 Mechuia of OPGW

Russ et al. (1986) investigated the optical and mechanical characteristics of an

OPGW. Several experïments were performed to assess such characteristics as

attenuation changes due to heat cycling at low and bigh temperatures, creep,

tensional behavior, and performance in simulated short-circuit tests. The OPGW

tested was composed of an optical tiber unit surrounded by an aluminum tube

covered with one or more layers of aluminum-clad steel strands (Figure 2.12).

Aluminum clad wire

Aluminum pipe

Optica1 über unit

' ...... 2.12 CrGII leCÜoD of the OPGW *_ecl b, au. et al.
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The fibers are tightened with a filling compound which restraints liber

movements, micr~bending, and local pressure against the fibers under various

loads. Two typical constructions were tested; name1y the loœe tube construction

and the tight tube construction. For the loose construction, Russ et al. verified

that under the uniaxial tension test, no attenuation W88 generated when the

cable extension remained below the initial liber over length. However, the

attenuation increased drastically for extensions exceeding the over length because

the fibers are then unrestrained. As expected, no attenuation 1088 wu measured

in the tight construction before the cable fallure.

2.2.4 Detailed dudy of Q.GW ualyaia

The only detailed three-dimeDSional finite element modeling study of an OPGW

reported in the literature is the work of A~ et al. (1989), which wu restrictt=d to

the study of a grooved aluminum spacer (slotted roci) as illustrated in Figure 2.13

and snmmarized below. The optical fiber unit was a loœe-type and wu compœed

of 600 optical fibers arlanged in a ribbon structure. The forces and bending

moments in the slotted roci were determined using Love's equilibrium equatioDS

(Love, 1944). The deformatioDS of the slotted rad subjected to these forces and

bending moments were then obtained usiDg a three-dimensional finite element

model. The results showed that for the particular cable studied, the deformatioDS

of the slotted rad were very small: it W88 concluded that for an extensiona1 strain

of 0.1% and a bending curvature of 1/1100 mm· l
, the clearance between the fibers

and the lateral wall of the slot W88 sufficient to meet the design criteria. It should

be emphasized that this study was limited to an isolated slotted rad without

considering the other components of the optical fiber cable, i.e., neither the

external metallic envelope nor the optical libers inserted in the slots.

Slotted

Steel Wire

T
8.5 mm

--l
Figure 2.13 Croea sed10D 01 a11111ÜDUID lpIlC8r (l1o&ted rod) .....&ed froID

AWet aL
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A very recent tinite element study on stress analysis of helical wires is the work

of Jiang et al. (1999). Their finite element model (using ANSYS, a commercial

software) was able to take into account the effects of tension, shear, bending,

torsion, and contact. Due to limitations in computer resources, precise boundary

conditions were developed on only a fraction of a simple seven-wïre rope strand

slice (Figure 2.7). This sUce of 1/12 of the strand section called "basic sector", is

modeled with only one element along the axial direction (5% of core wire radius).

Constraint equations were applied on the basic sector ta include the helical

configuration of the wes, rotation and displacement of the strand. Their results

show agreement with the elastic theory of Castello (1997) and with experimental

data of Utting and Jones (1984). The end effects are also discussed in the study

of Jiang and Henshal (1999) for the same model and a 0.2 pitch length of the

strand. The axial force-strain relationship of the wires in the linear range agrees

with that of Castello.

The concise finite element model of Jiang et al. (1999) seems to have its own

limitations. The constraint equations of a more complicated cross section, such 88

the OPGW in this study, with two layers of wes and a central tube, will he very

complicated to apply if not impossible. Rence, considering that there is no direct

symmetry in the cross section, the longitudinal helical effects and the effects of

contact with the neighboring wires make the application of the boundary

conditions tao complex. However, their model seems to he capable of predicting

the stress and strain for a simple strand when no contact occurs between

adjacent wires and for small deformations only.
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3

ANALYTICAL SOLUTIONS

3.1 Introduction
In this chapter, two important analytical solutions predicting the static response

of a general strand are presented for the OPGW: the theoretical solutions of

Machida and Durélli (1973) and Castello (1997) are modified by the author in

order to talce into account the complex geometry of the OPGW. The main

difference between these analytical solutions and the present problem is the

central tube (which is a central wire in the original solutions). This is modified in

both solutions by using the appropriate radius of the central tube and Poisson's

effect.

3.2 Machicla md Durelli
Explicit expressions for the determiDatioD of the axial force, bendiDg and twisting

moments in a helical wire and also in a central core of a seven-wire strand are

given by Machida and Durelli (1973). Although they are limited to only two

layers of.wires (central tube and iDner wires), the analysis is used for the OPGW
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and appropriate changes are carried out taking into account the geometry and

properties of the different components of the OPGW. The axial force FI acting on

the central tube when undergoing an axial strain (e) is

Ft =A1E1e (3.1)

and the corresponding stress is

0'1 = Ete. (3.2)

The axial force and resultant bending and twisting moments of the inner and

outer wires are;

F2
b =A2E2 (e sin2

Œ2 + y cœ2
Œ2 )

F3
b = A3E3 (e sin2 Œ3 + 1 cos2 Œ3 )

M2 =2E~2 (e - 1)sin2 Œ2 C082 Œ2R2

M
3

= 2E313 (e -1)sin2 Œ
3

C082 Œ
3R3

Mt = G2J2 ('V - e)sin 4a
2 4~' 2

M; = ~i3 (y - E)sin4a3
3

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

•

where the subscripts 2 and 3 stand for the inner and outer wires, and ~ and R..J
are the radü of the circles measured &om the center of the OPGW to the center of

an inner and an outer wire respectively, as shown in Figure 3.1.

Outer wires

Aluminum tube

Optical fibers unit

:.-;:Il~-"'-- Aluminum spaœr

Inner wires

rlpn 1.1~hl 01 the OPGW c:rGII l8dima
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The contact force per unit length is ca1culated using

F =F; =F2
h

c: p' P

in which the radü of curvature of the undeformed and deformed helix are

p =R2+ (PB J2 _1 ,and p' =R2+ (p; J2 .l.-
21t R2 21t R2

respectively, and Ps and p; are the deformed and undeformed pitcb lengths of the

inner wire (see Figure 2.3). The total axial load and torque acting on the OPGW

are

F =FI + m2F2 + m3F3 (3.11)

Mt =M~ube + Mt2 - Mt3 (3.12)

where ~ and 771:i are the number of inner (second layer) and outer (third layer)

wires, F:u F3' ~2' and ~ are the components of the axial forces and torques

along the OPGW axis for the inner and outer wires respectively. The negative sign

of the resultant torque on the outer wes (Mt2) is due to the opposite direction of
the helix angle of the outer wes (Z shape) with respect ta the inner wes (S
shape).

In the experiments performed by IREQ (1994, see Appendix fi), an 83.5 kN tensile

force induced an e1ongation of 0.61% in the OPGW with fixed ends i.e., the

unwinding rotation was restricted (1=0). The axial force and stress in the central

tube using Equations (3.1) and (3.2) are

FI = 635,388 x 0.0061 =3.88 kN

(JI = 61,803 x 0.0061 = 377 MPa.

The OPGW used in transmission lines is assumed to be under axial lcad only and

bath ends are restricted sucb that no rotation is allowed (y = 0). UsiDg Equations

(3.3) and (3.4), the axialloads acting along the inner and outer wires are

F2
h = 6.38 x 162,000 x (0.0061 x 0.988 + 0) = 6.23 kN

F: =8.92 x 63,765 x (0.0061 x 0.945 + 0) =3.28 kN

and consequently, the axial loads along the OPGW axis in the ÏDDer and outer

wires are
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F2 = F:sina2 = 6.23 x 0.994 = 6.19 kN

F3 =F;sina3 =3.28 x 0.972 = 3.19 kN .

The bending and twisting moments are determined usÎDg Equations (3.5) to

(3.8),

M
2
=2 x 162,000 x 3.24 (0.0061- 0) x 0.012 =16.40 N.mm

4.675

M
3

= 2 x 63,765 x 6.33 (0.0061- 0) x 0.0523 =33.10 N.mm
7.785

Mt = 162,000 x 3.24 (0 _ 0.0061) x 0.427 = ..54.96 N.mm
2 4 x 4.675(1 + 0.33)

Mt = 63,765 x 6.33 (0 _ 0.0061) x 0.814 = ..48.37 N.mm.
3 4 x 7.785(1 + 0.33)

The total bending moments acting on the inner and outer wires are

Mb2 =M2 sina2 + M; COSŒ2 =16.40 x 0.994 .. 54.96 x 0.110 =10.25 N.mm

Mb3 =M3 sina3 + M; c08a3 =3310 x 0.972 .. 48.37 x 0.235 =20.79 N.mm.

The average normal and maximum bending stresses along the helix of the inner

and outer wires are

Fh 6.230; = _2_ = - = 976.48 MPa
A2 6.38

F Fh 319
03 =_3_ =- =357.63 MPa

A3 8.92

b _ M212 _ 16.40 x 1.425 _ ±7 21 MP
02 - - -. a

12 3.24

b _ M313 _ 3310 x 1.685 _ ±8 81 MP
03 - - -. a

13 6.33

and the stresses along their helix axes are:

h F b (983.7
02 = 02 ±02 = 976.48 ±7.21 = MPa

969.3
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h F b ,366.4
03 =03 ± 0a =357.63 ±8.81 = \_ MPa.

348.8

The maximum shear stresses of the inner and outer wes along their helical axis

due to the resisting torque are,

Mtr.
t~ =~ =..12.09 MPa.. J

2

h M~r3 6 MPt 3 =-- =...44 a.
J3

Ta obtain the axial and shear stresses of the wes along the cable axis, the above

stresses (normal and shear stresses along helix) are transformed as follows

0: 0: h • (969
02 =- + -c08282 + t 2Sïn282 = 95 MPa
225

and

Oh -119
t 2 = __2 sin28., + t:cos292 =( MPa

2" -118

where

8., = Jt - Q2 =6.320
•.. 2

The corresponding maximum shear and principal stresses in the inner wes are

calculated using the folloWÎDg formula

(0: J2 (b )2 (492
t 2max = - + t 2 = MPa

2 485

0: (984
°2Pl =2 + t 2max = 969 MPa

and the same calculatioDS for the outer wires (third layer) 88

83 =!! - Q3 =13.61°
2

O~ o~ h • ,343
0 3 ='2+2 C08283 + t 3Sïn283 = \327 MPa

and the correspondîng shear stresses along the cable axis are

Oh -90
ta =__3 sïn283 + t:cœ283 = ( MPa.

2 -86
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The corresponding maximum shear and principal stresses in outer wes are

(0; )2 (h)2 (183
t 3max = - + t 3 = MPa

2 175

ah Â67
a 3Pl = ; + t 3mu =\349 MPa.

The defonned radius of the curvature and contact forces of the inner and outer

wires are

, =4.675 + (265.16 x L0061)2 _1_ =390 mm
P2 21t 4.675

6,228
F2c =--=15.97 N/mm.

390

p; =142 and F3c =3280/142 =23.07 NImm.

The total twisting moments resulting from the axial force and bending in the

plane of the OPGW in the inner and outer wires are determined as follows

Mt2 =~(M; sin Œ2 - M2 cos Œ2 + F2
hR2cos Œ2)

Since the unwinding motion is restricted (1=0), the twisting moment in the tube

(M~ube = 21tGJy 1P =0) is zero and the equilibrium equation of the internai

twisting moments using Equation. (3.2) becomes

Mt =Mt2 -Mt3

where ~ is the reaction torque at the support. Using Equations (3.13) and (3.14)

Mt2 = 10(-54.96 x 0.994 -16.40 x 0110 + 6,228 x 4.675 x 0110) = 3L5 kN.mm

Mt3 =14(-4837 x 0.972 - 3310 x 0.235 + 3,277 x 7.785 x 0.235) =-83.3 kN.mm

and the reaction torque is

Mt = -51.8 kN.mm.

As shown in Figure 3.1, the helical aluminum spacer is inserted in the central

tube to house the optical fiber units. Assuming a stre88-free state for the optical
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fibers and neglecting the helical effects of the aluminum spacel, the axial tension

and stress of the aluminum spacer under a 0.61% elongation are

FAl.spacer = EuAuE = 63,765 x 10.17 x 0.0061 = 3.96 kN (3.15)

<7 Al.apaœr = 63,765 x 0.0061 = 389 MPa

where the stress distribution is considered uniform over the cross section of the

aluminum spacer. As it will be seen later in the discussion of results from the

finite element mode!, the stress distribution is non-uniform at the cross section of

the aluminum spacer due to its geometry.

The total axial force acting on the OPGW using Equations (3.11) and (3.15) is

F = 3.96 + 3.88 + 10 x 6.19 + 14 x 3.19 =114.3 :: 114 kN

The interpretation of this result is that the linearized theory of Machida and

Durelli prediets that an axial load of 114 kN is required to induce a cable

elongation of 0.61%. However, in the laboratory tests only 83.5 kN couId produce

such an elongation measured on the extemal layer of wes.

3.3 Castello
1.1.1 RespoD18 of the OPGW to eeDbic aialload
The geometry of a helical wire with resultant forces is shown in Figure 3.2.

Mt M'
Ntl
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Using the theory of the wire rope presented by Castello for multi-layered strands

(1997), for the inner wires (the second layer of the wires denoted with subscript

2), it can he written;

and

tan 02 = -.!!:L-
2JtR2

R; =ri (1- VEll + ~(1- VE2)

R2 = 1+ v (riEl + r2E2 )

R; R2

~a
El = E2 + 2 = E

tanŒ2

A. R E2 A (riEl + r2E2 )
tJ2 = 'lep. = - Œ2 + v-.......---......00.-'-

tan 02 R2 tan 02

A' 2sinŒ2 COSŒ2 .... (rIEl + r2E2 ) cos2
Œ2r",u1C2 = ,uŒ2 + V~-=----=-..:.;...._---:.

.. R2/r2 R2R2 /r'l

A _ (1- 28in2
Œ2) A (riEl + 12E2) sin Œ2 Cos

2
02

r'l,ucp" - Œ2 + v ~..:---=-..::.;"",.._.....=...._---:.

.. R2/r2 R~2/1'-z

N; M~ cos2
Œ2 M2 sinŒ2 C08Œ2

&; =E~ ~/~ - &; R2/12

'I
E

22 = 1Œ2
r2

X 2 N; sinŒ2 cœa2 T2 cos2
Œ2

Er2 =Er; R2/r2 - Er; R2 /r2

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)
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FI_-.:..- = El =E
(EA)Tube

Ml---=--- = t.
(GJ)Tube

(3.31)

(3.32)

(3.33)

where;

F2

M2

M2b

Mt
2

total axial force in the OPGW acting on ~ = 10 muer wires

component of the bending moment (see Figure 3.2)

bending moment in the plane of cable cross section

twisting moment in inner wire

total twisting moment acting on inner wires

component of the shearing force on inner wire (see Figure 3.2)

initial pitch length of the inner wire

initial helical radius of the inner wire

final helical radius of the inner wire

outside radius of the aluminum tube

radius of the inner (second layer) wire

axial tension in inner wire

component of the extemal line load per unit length of the centerline

of inner wire in the z direction (see Figure 3.2)

change in the helix angle of an inner wire (between undefonned and

deformed geometry)

change in twist per unit length of inner wire

change in curvature of inner wire

initial helix angle of the inner wire

rotational strain of inner wire

axial strain in the central tube (Et = E)

~ axial strain of inner wire

<P. angle of twist per unit length

and the outer (third) layer of the OPGW ;

R3 = rI + 2r2 + ra

3-9
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~Q3
El =Ea+-~tanŒ3

R _ R - E3 A (rIEl + 2r2E2 + raE3 )
JoI3 - a<l), - - uQa + V-o-;....:.-_~-....:.....;:--

tan Œa Ra tan a 3

A' 2sinŒ3 COSŒ3 A (11EI +21122 +raE3 )C06
2

Œalau1Ca =- 'laa + V~..:.-_~-....::-..;~-~
Ra/ra RaRa/ra

A _ (1- 2sin2 aa) A (riEl + 21"2E2 + raEa) sin aa cœ2 aarau<l)3 - uŒ3 + v ~...:...._s....:._.::...::;~_-=--_~

Ra/13 R3Ra/13

M 1t
_3 =-I ~1C'
Er; 4 3 3

T
_3 =1Œ
E 2 3

la

X3 _ N; sin Ua cos Œa Ta 008
2

Œ3

Era - Er; Ra/ra - Er; Ra/la

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

where the subscript 3 indicates the same quantities of the inner wires but for the

outer (third layer) wes.

Now considering the OPGW, ll=3.25 mm, r2=1.425 mm, and 13=1.875 mm,

P2 = 265.16 mm right lay, PJ = 202.16 mm left lay, m..z=10, and ms=14. Equations

(3.16) and (3.34) yield,

R2 = 3.25 +1425 =4.675 mm
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R 3 =3.25 + 2 x 1425 + 1685 =7.785 mm.

The helix angles of the inner and outer wires can he determined by Equation

(3.17),

265.16
tana:z = =9.03

2n: x 4.675

202
tana3 =- =-4.13,

2Jt x 7.785

which correspond ta a:z =83.70 and a 3 =-76.40

• The negative sign is due to the

opposite directions of helix for the inner and outer wes.

H the inner wires are not touching each other in the n~load configuration, the

radius of the inner wire helix should he smaller than rl+r:z 88;

tan2 (Jt / 2 - Jt / ,,1-)
r2 1 + . 2 •• '""l =4.637 mm < 4.675 = rl + 12

sm Q2

and therefore, the internai wires do not touch each other. Ta fiud out if the outer

wires are touching each other, the radius of the outer wire helix should he smaller

than ~;

tan2
(Jt /2- Jt / f7L )

r3 1 + . " .''"J = 7.7805 mm < 7.785 = rI + 212 + r3sm-a3

and therefore, the outer wires do not touch each other either in the undeformed

cable.

Detailed calculations of internai forces and moments acting on the four OPGW

components, using the equations derived above, are presented in Appendix 1. The

final results of these calculatioDS are given here for a cable strain of E = 0.61%.

The total axial load and twisting moment acting on the OPGW when E = 0.61%

are:

FAl.spacer + FTube + F1nDer + FOuler + =3,956 + 3,876 +10 x 6,179 +14 x 3,148 =106 kN

M~ube +M~ +M~ =0 + 31,186 - 81,541 = -50 kN.mm

3-11



•
ANAL YTICAL SOL UTIONS

3.3.2 Stresa detenaiDatioD of the OPGW

ln the previous section, the intemal forces and moments in the OPGW were

calculated under axial loading and the rotation of the OPGW W8S restricted (P =
0). The stress caused by these calculated forces Î8 now investigated in this

section. The axial stress of the central tube due to axialload is

aTube =(F / A)Tube =377 MPa.

It is evident that the stresses in the tube exceed the maximum allowable stress

(162 MPa). In other words, the aluminum tube yields and undergoes some

permanent defonnation that is not considered in the above analysis.

Consequently, one can conclude that the defonnation of the tube is greater than

0.61%, while the stresses are smaller. The shearing stress in the central tube

remains zero, since no twisting moment is induced in the tube. The stresses due

to contact between the tube and the internal wes will be discussed in the next

section.

The inner and outer wes are subjected ta axial, bending and torsional effects in

addition to the shearing resultants N;and N; due ta the axial strain in the

OPGW. The stresses caused by shearing are in general very small compared to the

other stresses and can he neglected. The normal stresses due to axial loads T2 and

T3 are

rra F2 =_2 =975 MPa
m 2

2

T
(JF3 =~ =363 MPa

mi
whereas the maximum normal stresses due to bending moments M2and M3 are

4M
a~ =__2 =±7.64 MPam:

b 4M3 MFa3 =-3- =±9.59 a.
1tI'3

The maximum shearing stresses on the ÎDner and outer wes due to the twisting

moment (torsion) are
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2Mt

th =__2 =-IL98 MPa
2 n 3

2

2Mt

t~ = __3 =-6.24 MPa.
1tr.33

The shearing forces N;and N;are only 0.3 N and 0.7 N. To obtain the axial and

shear stresses of the wires along the cable axis, the above stresses (normal and

shear stresses alODg helix) are transformed such 88

7t
9~ = - - a~ =90 - 83.72 = 6.28°

• 2 •

and

h F b (982.3
02 =O2 ± O2 = 974.61 ± 7.64 = MPa.

967.0

Therefore,

o~ o~ 28' h ïn28' (968O2 = -+-C08 2 + 't2 s 2 = MPa
2 2 953

and the corresponding shear stresses along the cable axis are

Oh -118
t., =__2 sin28

2
+ t

2
hcos29

2
=( MPa.

• 2 -117

The corresponding maximum shear and principal stresses are calculated using the

following formula

( o~ )2 (h)2 (491- + t 2 = MPa
2 483

o~ 982
02Pl = - + t 2 = ( MPa.

2 mu 967

Performing the same calcuIatioDS for the outer wïres:

1ta; ="2 - a; =90 - 76.48 =13.52°

h F b ,372.6
03 =0 3 ± CJ3 = 362.92 ± 9.59 = C MPa

353.4

0: 0: , h. , ,349
03 =- + -c08283 + t 3 sïn283 =~_ _ MPa.

2 2 331

The corresponding shear stresses along the cable axis are
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a;. , Il , {-90.2
t 3 = --sin293 + 't3 C08293 = MPa.

2 -Sa9

The corresponding maximum shear and principal stresses are calculated as

follows

( )

2
ah 2 186t = _3 + (th) =( MPa

3 max 2 3 177

and

It is worth noting that the increase or decrease in axial strain (E) when the

rotation is restricted (<p.=O) will affect the stresses in the tube, and the inner and

outer wires in the same proportion, due to the linearity of the equations.

However, the contact stresses are nonlinear and will be discussed later.

3.3.3 Coat.ct streIIeI

To estimate the contact stresses, the contact force per unit length must be

known. The line of contact between the inner wes and the central tube in the

OPGW is a helix of radius rI (3.25 mm). The approximate equation suggested by

Costello (1997) to determine the resultant force per unit length~ is

(3.46)

where Xe is the contact force per unit leDgth acting along the line of contact.

Figure 3.3 shows a point along the line of contact between the central tube and a

wire, whereas the cross section of the internal wire is shown circular and the

central tube is elliptical. The radius of curvature of the surface of the central

tube at the point of contact is Pl' where

Pl = . 2 a
sm 2

and the maximum contact stress ac: is given by

b
Cf =-­

c C

3-14
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where

and

b=~2X;n .

Fipre 3.3 Contact betWeeD the central tube aDd aD bmer win

Considering the OPGW and applying Equation (3.28),

X2 =-6.98E - 5 x 162,000 x 1425 =-22.97 :: -23 NImm.

and Equation (3.46) yields

X = 23 J(265.16)2 + (2lt x 4.675)2 = 23.0 N/mm
c ~(265.16)2 + (27t x 3.250)2

and Equation (4.47) results in

3.250
Pl =0.988 =3.29 mm.

The maximum contact stress (Je using Equation (3.48) is

(J = _ 2.14 X 10-
2

= -685 MPa
c 312 x 10~

and for the third layer (outer wires)

X 3 =-2.14E - 4 x 63,765 x 1685 =-23.01 =-23 N/mm

X = 23 J(202)2 + {2lt x 7.785)2 = 23.25 N/mm
c ~(202)2 + (2Jt x 61)2

and applying Equations (3.48 ta 3.50)
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a = 3.32 x 10-.1 =-446 MPa.
c 7.43 x 10-6

The above contact stress is calculated 888UlDÏDg linear stress-strain laws for the

central tube and the inner wires.

3.4 SlImmary of the 8D81ytica1 101utioDS
Table 3.1 summarïzes the forces and moments obtained by the two above

solutions and the corresponding stresses are presented in Table 3.2.

Table 3.1 Reaultat forces ad IDOlDfJDtl OD the OPGW compoaeatl

Aluminum tube Inner wires Outer wires OPGW

Fe F2 M:Zb M:!l F3 M3b M3t Ft ~

(kN) (kN) (N.mm) (N.m) (kN) (N.mm) (N.m) (kN) (N.m)

Machida & Durelli 4.04 6.2 10.3 31.5 3.2 20.8 83.3 114 51.8

Cœtello 4.04 6.2 Il.0 31.2 3.2 24.0 81.5 106 50.3

Table 3.2 Strellee GD the OPGW COIDpoDelltl

Aluminum tube Inner wireI Outer wireB

Ge O2 'tz X; 0 3 t 3 X;
(MPa) (MPa) (MPa) (kN/m) (MPa) (MPa) (kN/m)

Machida & Durelli 377 969 119 16 367 90 23

Cœtello 377 968 118 23 349 90 23.25

A comparison between the two analytical solutions shows that there is almost no

difference in the stress predictions of the different components of the OPGW.

However, the contact line forces between the central tube and the inner wes are

smaller in Machida and Durelli's work. The normal and shear stresses are

transformed stresses alODg the cable axis. These analytical solutions will be

compared with the finite element numerical mode!. In general, the differences in

the analytical solutions are due ta the fact that the solution of Machida and

Durelli is based on the undeformed geometry (no Poisson's effect), and Cœtello's

is based on deformed geometry (including Poisson'8 effect).
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NUMERlCAL MODELING

4.1lDtroductioD
A numerical or mathematical model is a simplified and approximated model of a

real physical problem. The physical problem typically involves an actual

structure or a component of it. An aetual problem is almost impossible to model

exactly as it is in reality. However, an ideal mathematical model should retain

the most important characteristics of the actual physical problem. Nevertheless,

it is important to realize that the numerical solution can never give more

information than that contained in the mathematical model.

4.2 FiDite e1ement aDalY8Ï8
The finite element method is a numerical procedure to analyze continua. It is

very useful when the problem is tao complex to he solved satisfactorily by

classical analytical methods. The method is commonly employed to solve physical

problems in engineering analysis and design. In other words, the *alizetl

mathemotical motlel of a ph1J8ÎCal problem is aolvetl b1J /inite element anal1J".

~1
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Certain assumptions are required for the idealization of a physical problem to a

mathematical model, and it is important to choose a mathematical model, which

is reliable and effective. An effective model is one that yields the required

response with a reasonable accuracy and least cost, and is considered reliable if
the predicted response is within the accuracy of the response of a very

comprehensive mathematical model (Bathe 1996). Results are rarely exact,

however, errors are decreased by processing more equations, and accuracy of the

results is obtainable at reasonable cost for engineering purposes (Cook et al.,

1989)

In this study, the finite element analysis software ADINA (1999), AUTOMATIC

DYNAMIC INCREMENTAL NONLINEAR ANALYSIS is utilized, which bas been proved

in ManY previous studies of c(\'llplex mechanical problems (Roshan Fekr et. al.,

1999, Bathe et. al., 1999). Two important features of finite element analysis are

crucial to this study and discussed in the next sectioDS. They are:

• Nonlinear analysis (kinematics and material nonlinearities)

• Contact analysis

4.2.1 NODU...u IUUI1J.

The finite element set of equilibrium equatiODS for Unear static analysis is

KU=R (4.1)

where, K is the structure stiffness matrix, U is a vector of the system global

displacements and R is a vector of loads acting in the direction of these

displacements. In Equation (4.1), the displacement response U is a linear function

of the applied load vector ft. In linear analysis, the displacements must he small

since aIl integratioDS are performed over the ori!ÎD81 volume of the finite elements

in the evaluation of the stiffness matrix K and Joad vector R, and the strain­

displacement matrix B of each element is assumed to he constant and

independent of the element displacements. Besides, the material is considered

linear elastic in the use of a constant stress-strain matrix C, and the boundary

conditions remain unchanged in reflecting of constant constraint relations for the

complete response. When U is not a linear functioD of R, then a Donlinear

analysis is performed. Generally, the nonlinearities arise either from material

behavior, large kinematics and/or change in boundary conditioDS. In materia1ly

nonlinear analysis, the stress-strain relation is nonlinear, and in large kinematics,
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the displacements and rotations are large, however, the axial and rotational

strains can he small, moderate, or large. In the latter, either the Total

Lagrangian or Updated Lagrangian formulation is used. The lecond PiolG­

Kirchho// ItrUI and the Green-Lagrange &train are measured in Total

Lagrangian while the Cauchy ,treu and the Alman.ri &train are calculated in the

Updated Lagrangian formulation. In the Total Lagrangian solution scheme all

static and kinematic variables are referred to the initial configuration but in the

Updated Lagrangian they are referred to the last calculated configuration. Both

formulations include all kinematic nonlinear effects, but whether the large strain

hehavior is modeled appropriately depends on the constitutive relations specified.

In this study, the nonlinearities arise from the material law, kinematics, and the

contact problem. The stress-strain relation is nonlinear for the aluminum tube

and spacer but stays linear for the steel wes. The kinematics are large

(moderately large displacements with small or large &train), while the boundary

conditions change during the motion of the body due to contact between

components of the OPGW.

(4.2)

where ra. is the vector of external nodal loads in the configuration at time t and

T is the nodal point forces that correspond to the element stresses in this

configuration.

4.2.2 NODUnear static IIIUI1yIiI

ln a nonlinear analysis, the problem is to find the state of equilibrium of a body

corresponding to the applied loads. Assuming that the external applied loads are

a function of time, the equilibrium conditions of a system of finite elements

representing the body can he expressed 88

tR_tl =0

t (m)
t (4.3)

•
In Equation (4.3), 1I(m) is the strain-displacement matrix, ~m} is the stress

matrix, which is integrated over the volume ry<m) at time t. The equilibrium

relation in Equation (4.2) must he satisfied and solved throughout the complete

history of load application when the analysis includes path-dependent nonlinear

4-3



(4.6)

(4.7)

•
STRESS ANAL YSIS OF AN OPTICAL GROUND WIRE

geometric or material conditioDS. The analysis is effectively carried out using a

step-by-step incremental solution, which is reduced ta one-step if in a static

solution the total load is applied all at once and only one final configuration is

calculated.

For an incremental step-by-step analysis the solution for discrete time t + 4t is

required while it is known for the discrete time t, where ât is a chosen time

increment. Hence, Equation (4.2) at time t + ât becomes

t+At R_t+~tF = 0 (4.4)

assuming that t+~t R is independent of the deformations, and since the solution is

known at time t,

t+ 4t F=tF + r (4.5)

where F is the increment in nodal forces correspondïng ta the increment in

element displacements and stresses from time t to t + ât. The approximate

solution of F using a tangent stiffness matrix t K at time t is

F=tKU

where U is the incremental nodal point displacement vector and

tK =atr
a'u·

Applying Equations (4.6) and (4.5) into (4.4),

tKU=t+AtR_tr (4.8)

and then solving for U yields an approximation of the displacement at time

t + ~t, as

(4.9)

This is an approximation to nodal point disp1acements since Equation (4.6) is

used. The approximated stresses and corresponding nodal point forces at time

t + ât can now be evaluated before proceeding to the next time step. The errora

may he significant depending on the time or load step me. Therefore, ta obtain a

satisfactory accuracy, an iterative solution is used in solving Equation (4.4).

To solve the incremental nonlinear static equatiODS using the c1asBical Newton­

Raphson iteration technique, the equatioDS are, for i = 1, 2, 3, ...
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HAt K(i-l)4U(i) ='+At R_'+At F(i-l)

t+4t U(i)='+4t U(i-l) + 4UCi)

with the initial conditions

(4.10)

(4.11)

The out-of-balance load vector '+At R_'+AtF(i-l) corresponds ta a load vedor that is

not yet balanced by element stress resultants, and hence an increment in the

nodal point displacements is required. This updating of the nodal point

displacements is continued until the out-of-balance loads and incremental

displacements are small. An additional equation is applied in the full Newton

iteration when the algorithms employ line searches, as

(4.12)

where ~(i}is an acceleration factor obtained from a line search in the direction

ÂU(·l such that

ÂU(i)T (hAt R_'+AtF(i») S STOL ÂU(i)T ('+4t R_t+4t F(i-l») (4.13)

where STOL is the user-input line search convergence tolerance and t+~(.) is

calculated using the total displacement vector t+A'UC'l •

In any incremental solution based on iterative methods, a realistic criterion

should he impœed to terminate the iteration. A suitable predefined tolerance is

used as a check at the end of each iteratioDS ta see whether it bas converged

within that tolerance or it is diverging. Tao loose a tolerance can result in

inaccurate results while a tao stringent one may be cœtly. Different convergence

criteria can he used in ADINA, such as energy, energy and force/moment,

translation/rotation, etc. The internai energy convergence criterion is more

attractive in our problem since it contains bath forces and displacements. In this

criterion, the amount of work done by the out-of-balanœ loads on the

displacement increment is compared to the initial internai energy increment.

Convergence is assumed to he reached when

ÂU(i)r ('+4t R_t+AtF(i-l») S EE(4UC1)T C+At R-tF» (4.14)

where EEÎB a preset energy tolerance .
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In ADINA if the user-predefined time or load steps are possibly too large, the

solution will not converge after a defined number of iterations when Full Newton

iteration is used. The automatic-time-stepping (ATS) method can then be used to

obtain a converged solution. fi no convergence is reached alter the defined

number of iteratioDS, the program automatically subdivides the total load step

increment to reach convergence, while the maximum number of subdivisions can

he controlled by the user.

4.2.3 CODtact aoaIylia

Contact problems can he either &ictionless or with friction. The concept of

contact effects is illustrated schematically in Figure 4.1. The virtual work done

by contact tractions can he written as

f//J dS lJ + Jau;
SJI

f1/1 dBJ
! = Jau:J

SU

(4.15)

where 1 and J denote the two bodies in contact, aU/i and 8uJ
i are the components

of the virtual displacements on the contact surfaces of bodies 1 and J,

respectively, and

au~J =au! - auJ . (4.16), , 1

The two contact surfaces ~J and Bi! are called a contact nrface pair. These

surfaces are not necessarily equal and at time t, the actual area of contact for

bodies 1and J is t Sc of bodies 1 and J. In a contact surface pair, usually the stiffer

surface is called the ttJrget lUr/ace and the other conttJctor lUr/ace.

,~

/
/

1
~ .... _-
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i 'S, of body ;\'

'IJ ' \

sn (target surface)

Fipre 4.1 Coatact betWeeD hro bodl. at lime l

In calculating the right-hand-side of Equation (4.15), the contact traction CfJ

acting on SIJ can he decomposed into normal and tangential components

corresponding to D and s on 8'1

t f (J =ÀD + tI (4.17)

where À. and t are the normal and tangential traction components. Now consider

a generic point x on SIJ and let ,*(x, t) he the point on 8'1 satisfying

(4.18)

the distance (gap) from x to 8'1 is given by

g(x, t) =(x _,.)TD· (4.19)

where a* is the unit normal vector that is used at l*(X,t), and D*, s* are used in

Equation (4.17) corresponding ta point s. The conditioDS for normal contact can

he written as

9 ~ 0; À ~ 0; gÀ. =0 (4.20)

and when 9 > 0 , then À = 0 , and vice versa.

In order ta add the frictional conditioDS, the nondimensiona! variable t can be

given as

t
t=-

JlÂ.
(4.21)

where J1 is the coefficient of static friction and J.IÀ is the jrictionGl re.riItGnce. The

magnitude of the relative tangential velocity is

ù(x,t) =(liJI. _aIl ).s· (4.22)
'1 (a.t) (z,t)
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(4.23)

while

and

corresponding to the unit tangential vectors 1 at .,e(z, t). Consequently, û(z, t)a· is

the tangential velocity at time t of the material point at .,e relative to the

material point at z. Bence, the Coulomb'slaw of friction states

I~ S 1

I~ < 1 implies ü =0

I~ = 1 implies sign (fi) = sign ('t)

•

Assuming w and v are two fonctions such that the solutions of w(g,A) = 0 and

v(ü, t) =0 satisfy the conditions (4.20) and (4.23), the contact conditions are

w(g, Â.) = 0 (4.24)

v(ü, t) =0 (4.25)

These two conditions can he impœed on the principle of virtual work equation

using either a penalty approach or the Lagrange multiplier method (Bathe, 1996).

The variables Â. and 't ean be eonsidered Lagrange multipliera, therefore

multiplying (4.24) by 8À. and (4.25) by ôt and integrating over gJ, the constraint

equation becomes

f[81w(g,A.) + &tv(ü,t)] clS lJ = 0
SU

(4.26)

The finite element solution for the governing continuum mechanics equations is

DOW obtained by discretizing the contact condition along with the discretization

procedures for the principle of virtual work. ADINA offers two contact solution

algorithms; 1) constraint function and 2) segment method. The latter uses

Lagrange multipliera to eDioree the contact conditions in which the kinematie

conditions are enforeed at the contactor nodes, and the frictional conditions are

enforced over the contact segments (ADINA, 1999).

The following constraint function is used in ADINA for the constraint fonction

algorithm:

9 + ). ~(9 _ A)2w(g,Â.)=-2-- -2- +EN (4.27)
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where eN is a very small positive parameter. The frictional constraint function is

an out-of-plane extension of the relationship

't = !arctan(~) (4.28)
1t ET

where eT is a small numerical parameter that can provide some "elastieity" ta the

Coulomb friction law.

4.3 ModeliDl
In the ADINA system of finite element analysis programs (ADINA ft & D, IDe., 1999),

the model is defined using the pre-processor ADINA-IN, and analyzed using the

structural analysis program ADINA (for stresses and displacements), and finally

the results are displayed using the post-processor ADINA-PLOT.

In ADINA-IN, it is necessary to completely descrihe the model including its

geometry, material properties, boundary conditions and loads. By defining the

geometry of the model and using an appropriate mesh the model is discretized

into finite elements. When the finite element model is constructed, data files

containîng the model definition are created by ADINA-IN and are used as input to

ADINA ta he run for the stress and displacement analysis. The solution program

runs in the background and produces "porthole" files containîng all details of the

model definition and response. The porthole file is loaded in ADINA-PLOT where

the results can he displayed and examined. In the next sections, only the

particular features of finite element analysis, which are used in the analysis of the

OPGW will he presented.

4.1.1 Geometl'J of OPGW

The geometry of the OPGW is shown in Figure 4.2. It is seen that the outer wes

are helically twisted over the inner wes, which are also helically twisted around

the central aluminum tube but in the opposite direction of the outer wires. The

pitch lengths of the outer and inner wires are 202.0 and 265.2 mm, corresponding

to 76.4 and 83.7 degree helix angles, respectively.

A cyÜDdrical coordinate system is used to define the geometry of the helical

wïres. The shape of a helical wire cau be generated by extruding a circular
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surface along a helix. However, extruding cannot he done along a curvillnear line

in ADINA-IN (1999).

Fleure 4.2 Geometry of OPGW

The volume generated by revolving a rectangular surface around its side is a

cylinder, but revolving a surface delimited by two curvillnear lines and two

straight lines around its curvilinear axis does not generate a helical shape. To

obtain the correct helical shape, a circular surface must be explicitly defined

along the axis of the helix. To this end, four quarters of a circular surface normal

to the longitudinal axis of the strand (X-axis) were created at every quarter of

pitch length. One quarter of a helical wire wu formed by defining a volume with

these surfaces and the curvilinear lines connecting the vertices of each quarter of

the circie as shawn in Figure 4.3. The result is a quarter of a helical wire where

both end surfaces are circular and normal to the x-axis. This is not exactly the

cross section of a helical wire when a plane with normal in the x-direction cuts

the wire: the exact crœs-section is elliptical. The other three-quarters of the

helical wire are generated the same way and are combined. Consequently, only

the cross sections of the wire ends are slightly approxjmated.. Binee the results of

both ends are affected by end effects, it is assumed. that this approximation bas

no influence on the results in the middle of the wire (Rosban Fekr et al. 1999).
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z
i-v

Figure 4.3 Def1DlDl 01 the pometry 01 be1Iml wires UIiDa cunilIDeu lbIea and

circular crOII aediolll

The total length of the OPGW model is based on the longest pitch length of the

different components. As the pitch length of the inner wires is greater than that

of the outer wes (265.2 mm vs. 202.0 mm), the geometry of the model is

generated for a length of 265.16 mm, which is almost 1.31 tilDes the pitch length

of the outer wires and 1.77 times the pitch length of the aluminum spacer.

Different pitch lengths were also modeled to find out the effect of pitch length

and to determine the best length of the OPGW. Qnly two and three pitch lengths

of the inner wes were modeled due to high computational cœt and limitations of

the platform.

The geometry of the central tube is simply created by translating a circle along

the x-axis. The radius of the circle is 2.975 mm corresponding to mid surface

radius of the central aluminum tube. It is worth noting that in ADINA-IN, the

contact problem of 8 thin sheU element is formulated on mid surface of the shell

whereas in reality the contact occurs on its extemal andjor internaI surfaces.

The geometry of the aluminum spacer is based on its exact cross section. Once

the exact cross-sectional area of the aluminum spacer is created at ODe end, it is

rotated by 90° at a quarter of its pitch length and the vertices of the two cross

sections are connected by curvilinear lines to form a volume of helical shape

which is twisted about its helix angle.
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The full.length geometry of the OPGW (265.2 mm) is shown in Figure 4.4. The

overall ratio of the length (265.2 mm) to diameter (19 mm) of the model is 14.

ADINA z

X~y

Fipre 4.4 FuIlleqth pometry of the OPGW mode!

4.3.2 Fbûte e1emeDt model

",.3. R.l Outer and inner helical wiru

The helical wires are modeled either with 8- or 20-node three-dimensional salid

elements. The 2o-node element is the most efficient among ail available 3-D salid

elements in ADINA, however its use C8D be extremely costly. On the other hand,

the 8-node element is efficient for the contact analysis and when bending effects

are not significant (ADINA 1999, Bathe 1996). The 20-node 3-D solid elements

were only used to check the resu1ts obtained with the 8-node elements, but the

additional running time seemed not justified since the increase in 8CCU1'&ey W88

not significant. The Gauss integration orders are 2x2X2 for the 8-node and 3X3X3

for the 20-node solid elements.

Each wire finally consists of a total of 384 3-D 8-node salid elements. As it is seen

in Figure 4.5, the mesh is tiner at both ends 88 128 elements are used in the &nt

and the last quarten, and 64 elements for the second and third quarter lengths.

The large deformation/small main formulation is used such that the outputs are
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Cauchy stresses and Green-Lagrange strains. The material is 888UD1ed Unear

elastic bath for the inner and outer wes. The modulus of elasticity of the inner

aluminum-clad steel wires is 162 GPa, with a tensile strength of 1474 MPa and

an allowable tensile stress of 1250 MPa. The modulus of elasticity for the outer

aluminum alloy wes is 64 GPa and the maximum tensile strength is limited ta

336 MPa. The finite element model of the inner and outer wires is shawn in

Figure 4.5.

ADINA

Outer wires

•

Flpre 4.5 FlDlte element moclel 01 the limer md outer wireI

4-.S.!.! Central aluminum tube

The central aluminum tube is modeled with 256 4-node shell elements (16

circumferential by 16 longitudinal) with 0.55 mm thickness. In a liner mesh, 512

elements corresponding to 32 longitudinal and 16 circumferential segments are

used. The former mesh can be considered a coarse mesh for contact analysis but

the gain in accuracy obtained with the latter wu almost negligible considering

the extra computational effort of the finer mesh. The tube material is first

assumed Hookean with a Young's modulus of 61.8 GPa and a Poisson's ratio of

0.33. The maximum tensile stress is 168 MPa. In the initial stage of the research,

yielding of the tube wu predicted due to the large displacements induced in the

cable for an equivalent tensi1e load. Therefore, axial tension tests were performed
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ta obtain a more exact stress-strain curve for the aluminum tube. The results of

these characterization tests are presented in Appendix D.

The material nonlinearity of the aluminum tube is modeled as a multilinear

stress-strain behavior in ADINA. This stress-strain curve is plotted in Figure 4.6,

where for the linear part, the modulus of elasticity of the tube of 61.8 CPa is

used.

Figure 4.8 MultiJinear plutlc material bebavior of the alumiDum tube

,4.9.S.9 Aluminum çocer
The geometry of the aluminum spacer is shawn in Figure 4.7. It is made of

Aluminum 6201, with modulus of elasticity of 64 GPa. The spacer (slotted rad) is

helically twisted (8 pattern) with a 150 mm pitch length (helix angle of 84°). The

maximum and allowable stresses are 218 and 200 MPa, respectively. As it is

shown in Figure 4.7, the outside diameter of the aluminum spacer is 5.15 mm,

which is slightly smaller than the inside diameter of the aluminum tube (5.40

mm), and therefore, it is not touching the tube in the initial configuration. Since

bath the tube and the spacer are made of aluminum, it seems unlike1y that they

become in contact when analyzed for equal elongation. Consequently, the

aluminum spacer can be analyzed separately 88 there is no interaction with the

other components of the OPGW, provided that the maximum applied load or

elongation remains equal or smaller than the load uaed in the analysis. For other

types of loading, such 88 tr8DSVersal loading, bending, and thermal effects, the

aluminum spacer may be in contact with the central tube. In thœe cases, the

outer surfaces of the aluminum spacer must be defined 88 contact surfaces while
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the tube is defined 88 a double sided contact surface since it will he in contact

from inside with aluminum spacer and from outside with the inner wes. For the

prescribed displacement loading in this study, the double-sided contact surface
for the tube is modeled, however, the tube and spacer surfaces had no contact

during the analysis.

Although, including the aluminum spacer in the model increases the number of

elements and equations in the model, however, it is modeled with no contact

surface since during the analysis no contact occurred with other components of

the OPGW. It is subjected to the compatible axial elongation of 1.62 mm (like the

outer and inner wes and the aluminum tube) at its free surface while the other

end is fixed.

1.5 mm

Fipre 4.'1 Geometry of the alumlDum spacer

The materiallaw of the aluminum spacer is modeled 88 a multiliDear stress-strain

behavior in ADINA. The stress-strain curve of aluminum spacer (Figure 4.8) is

obtained by uniaxial test (see Appendix 1), where for the linear part, the modulus

of elasticity of the spacer is 63.8 GPa.
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Figure 4.8 Multllinear platie materlal behaYior 01 the alumiDum spacer

4.S.S.4 Bountlary conditiofU and loading

The exact details of the attachment of the OPGW to the transmission line tower

may vary with the tower type. Inasmuch 88 possible, continuity of the cable is

assured and the OPGW is gripped in a suspension clamp. The stress-state in the

cable is very complex in the vicinity of these attachment points and would

require an analysis that is beyond the scope of this project. Far from the end!,

however, the cable can be assumed under uniform tension. To model these

conditions, one end of the cable is fixed in all translational and rotational degrees

of freedom, while only the translational degrees of freedom of the loading end are

free along the loading axis, letting the wires elongate freely. The other two ÏD­

plane translational degrees of freedom are fixed ta prevent unwinding of the

wïres. For a free-end loading, these DOFs C8D be released. AIl six degrees of

freedom are free for all the other nOOes of the mesh. ADINA automatically

restrains those degrees of freedom that are redundant.

For a length of one pitch, the stress-state is found almost invariant in a cross­

section located at half pitch of the cable. End effects are discussed in more details

in chapter 5. The end effects are essentially due to the fact that full contact of ail

the components is prevented at the fixed end where the undeformed geometry of

the cross-section is prescribed. At bath tixed and loadiDg ends, spurious stresses

are due ta the shape of the solid mode! generated for the he1ical win, which
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forces a circular cross section for all the wires along the cable axis, whereas a

cutting plane in a rea1 cable would revea1 elliptical sections.

Considering compatibility between the different components of a short segment of

straight cable, it is assumed that all components (the outer, inner helical wires,

the tube, and the aluminum spacer) stretch equally along the cable axis. Different

types of loadings were investigated in arder to achieve this condition. The load­

control approach, with a uniform distributed load on each wire or a concentrated

load at the center of each wire cannot achieve the compatible equal e1ongation in

the outer and inner wires due to the effects of contact, material differences, and

the helical geometry. In other words, the object of the study is to find the exact

axial force applied to each component of the OPGW that is necessary to induce

equal stretch. The load-control approach also resu1ted in convergence problems in

the contact analysis, and it W88 found that the problem W88 better behaved

whenever a prescribed displacement approach wu used.

There are different ways ta prescribe the displacements at the &ee end: the

control can he done only at the central node of each helical wire or at all the

interior nodes of the wire cross section. Prescribed displacements are Dot allowed

on the nodes located at the perimeter of the wire cr088 section, since thœe nedes

belong ta contact surfaces that must be UDlestricted in all degrees of fteedom.

Applying an axial displacement only at the central node of the wires lets the

wires defonn more freely along the cable axis, and consequently less stresses are

induced compared to the second method where equal disp1acements are

prescribed at all the internaI nodes. Both types of loading were tested and

compared with analytical and experimental solutions. Results are discussed in

details in Chapter 5.

The longitudinal cable axis in the model is the global x-axis and consequently the

in-plane axes are Y and z. The equivalent elongation due ta 0.61% main of the

cable is 1.617 mm (âl =El =0.61% x 26516 =1.62 mm), which is applied to all the

inner and outer wires, central aluminum tube, and the aluminum spaœr. As
mentioned earlier, no prescribed deformations can he applied to the contact

surfaces if considered contactor iD defining the contact pair surfaces. For this

reason, the aluminum tube is coDSidered as target surface in contact pairs with

the inner wire surfaces. Therefore, 1.62 mm elongation is applied on the
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circumference of the tube and the free end surface of the aluminum spaœr. This

prescribed displacement will be applied to all interior nodes of the aluminum

spacer.

~.9.!.5 Contact 8tJrfaceJl and pair,

Contact surfaces of a body are defined as surfaces that are either initially in

contact or are anticipated to come into contact during the analysis. Three­
dimensional contact surfaces formed of 4-node quadrilateral segments are used in

the contact analysis of the OPGW. The inner and outer wires and the aluminum

tube are separate entities, which are not initially in contact, but are expected to

come into contact during the response solution. In general, contact between the

different components of the OPGW is 88 following:

• contact between outer wires

• contact between inner wires

• contact between outer and inner wires

• contact between inner wes and the central tube

• contact between the central tube and the aluminum spacer.

The lut contact is Dot observed during the response solution, 88 the gap between

the inside diameter of the central tube and the aluminum spacer is large enough

to keep bath surfaces separated. The contact between the outer wires can be

prescribed as self-contact, and consequently all the circumferential surfaces of the

3-D solid elements describing the outer wires is modeled as one contact surface.
The same applies to the inner wes. Therefore, three 3-D contact surfaces are

defined in ADINA 88;

contact ,urface 1: surface of the central aluminum tube,

contact aurface !: all the circumferential surfaces of the inner wires, and

contact aurface 3: aIl the circumferential surfaces of the outer wes.

The contact surfaces that are expected to come into contact during analysis must

he defined as contact 6rJrface pair., where one surface is defined as the contactor
6rJrface and the other as the ttJrget aurface. It is preferable to define the stiffer

surface as the target surface (ADINA JW) 1999). As a resu1t, the contact surface
pairs are;
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Table 4.1 Contact mrfaas aad pain

Contact Contactor Target
surface pair, 31Jrface aurfo,ce

1 2 1
2- 2 2
3- 3 3

4 3 2

* self contact

Contact analysis is solved for frictionless contact (J.1 = 0) and with Coulomb

friction (J.1 > 0). The static friction coefficient of 0.33 is used between all the

contact surfaces (Davis 1994, Rabinowicz 1995). This value is based on the

contact between aluminum surfaces. The inner wires are made of aluminum-clad

steel, i.e. they are coated with a very thin layer of aluminum (0.191 mm).

Therefore, the contact between the inner wes, and between the inner wires and

the aluminum tube, and between the outer wires is essentially contact between

aluminum surfaces. The thickness of the aluminum coating of the inner wes is

too small to be modeled and its effect is only considered for the coefficient of the

friction. The purposes of the cladding are to protect the steel wires against

corrosion and to maximize the cable conductivity.

In general, a better mesh is obtained when the segment length on the contactor

and the target surfaces are approximately equal. This is a1so considered in the

mesh of the contact surfaces, as there are multiple contact surface pairs.

-4.3.!.6 Model information
The information of the complete OPGW model (coarse mesh) including the

aluminum spacer is;

Number of elements: 12,672 three-D saUd and 256 shell e1ements

Number nodes: 15,087

Number of equatiODS including contact: 59,128

Number of contact equations: 15,744
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4.4 Stress aDa1ysÏ8

4.4.1 St.tic dJsp1aeemeut 8Dd Itre18 aualylla

The sparse matrix solver algorithms are used to solve the equilibrium equatioD of
the system. ADINA 7.3 (1999) features sparse 801vers in addition ta direct and

iterative solvers. However, the sparse solvers have been proven to yield drastic

reduction in solution times, heing almost twice 88 fast 88 direct solver, and with
the least overall memory. The stiffn@S8 updates are based on a Full..Newton

scheme with and without line search, with a set limit of ten iteratioDS per Joad

increment. It was found that using the Full..Newton iteratioD method without line

search was less costly. An energy..based convergence toJerance (Eq. 4.14) is used

(ETOL=O.OOl). The convergence line search tolerance (STOL) of 0.1 is also
considered (Eq. 4.13) whenever applicable. The total number of steps necessary

for convergence varied between 35 and 50 steps, depending on the model and

loading conditions. Automatic-Time-Stepping (ATS) is used to obtain a converged

solution whenever the predefined time steps are tao large. Using this method, the

program automatically subdivides the total load step increment sa as to reach

convergence. The maximum number of subdivisions is set to 512. The number of

time steps is selected in such a way that ATS is only used for one or two steps.

As mentioned previously, the contact analysis is based on constraint functions

(Algorithm 1 in ADINA, 1999). In Algorithm l, only the contact states at the

contactor nodes are considered, while in Algorithm 2 (Lagrange multipliers), the

actions on the contactor segments are used to determine the states of the

contactor nodes. Algorithm 1 is used in contact analysis since the convergence

rate is usually better for &ictionless contact compared to Algorithm 2, as

recommended in ADINA (1999). The parameters Es (Eq.4.27) and Er (Eq.4.28)

are set to lo-a and 0.1, respectively, when friction is included. The convergence

tolerance for the contact forces is RCTOL = 0.1 (Eq.4.29) and NSUPPRESS which

indicates the number of iterations for target segments in order to suppress

oscillation between adjacent segments is set to 5 (Bathe 1996). Such oscillation

can occur when a contactor node approaches the junction between two adjacent

target segment. Using NSUPPRESS allows for such oscillation to he detected and
eUminated (ADINA 1999).

lia(i-l) - R(i-2)11
eTOL> CFORCE = e c: 2 (429)

ft - max(CFNORM,RCONSM) max~B.~i-t,RCONSM) •
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where the parameter CFoaCE is the norm of the contact force increment between

two iterations (R~i-l) is the contact force vector), CFNORM is the nonn of contact

force vector, and RCONSM is a pre-set reference contact force level (0.01) used to

prevent possible division by zero.

4.4.2 Pitch leqth etreet OD the wireI

The finite element model of the OPGW needs to be reliable and accurate. In finite

element analysis, it is very efficient and economical to use symmetry of the

structure wherever possible. Generally, using geometrical symmetry and limiting

the size of the model significantly reduce the analysis time, and yields goocl

accuracy provided appropriate boundary conditions are applied. The helical shape

and the composite cross section of the OPGW make it impossible to apply any

symmetry in order to reduce the Bize of the mode!. However, along the cable axis,

the mode! can be restricted to one, two, or three pitch lengths. In order to verify

the effect of pitch length on the response, a mode! was studied that consisted of

the central tube and only one inner wire for the three different pitch lengths (one,

two and three) as discussed in chapter 5.

The above model is incapable of predicting the real behavior of the cable as the

inner wire is Dot restricted by the other inner and outer wes. However, it can be

used to verify the influence of the pitch length on the response. It is worth noting

that the pitch length effect was impossible to verify with ail the components of

the OPGW or even with the inner wires alone as the computational facilities

available to conduct this research were insufficient. To this end, the above one­

wire-and-tube model is analyzed by ADINA, where the boundary conditions of the

loading end are fixed for in-plane degrees of freedom. The results are discussed in

the neA-t chapter.

4.4.3 limer wireI aDd the alumiDum tube

The modeling of the OPGW is very complex and requîtes a great computational

effort. As a first step of any finite element analysis, it is better to analyze seme

parts of the model and then improve it untü a more complete mode! is obtained.

Therefore, the first step ta model the whole cable wu ta model the aluminum

tube with the inner wires only. The results of this one-pitch mode! with different

boundary conditions and !()8,UngB are compared with analytical solutioDS. This

mode! can be considered 88 a bencbmark for the OPGW modeling. Two boundary
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conditions at the free (loading) ends are modeled; the in-plane translations are

fixed to prevent any unwinding rotation, and the end is &ee to allow the wires to

unwind. The former boundary conditions is more realistic of transmission lines

applicatioDS, however, the latter is modeled to verify results and compare the

unwinding motion calculated with the analytical solutions by Machida and

Durelli (1973) and Phillips and Castello (1973). The finite element model of the

inner wires and the aluminum tube for one pitch length (265.16 mm) is shown in

Figure 4.9. A detailed discussion of the results is presented in the next chapter.

Fipre 4.8 Fluite e1ement mesb of the iDDer winI ucl the œut:ra1 tube

(cme-pltch leaph)

4.4.40PGW

The OPGW model consista of aJl the components of the cable excluding the optical

libers unit. The response of the optical liber units is considered 88 being identical

88 that of the aluminum spacer plus the excess length. The optical fiber units are

impossible to include in the model since their cross section is too small (0.0123

mm2
) to he efficiently modeled in 3-D contact with the aluminum spacer. The

outer wires are modeled like the ÎDDer wires with finer mesh at the ends; sinœ

their pitch length (202 mm) is smaller than that of the inner wes (265.2 mm),

an additional length is modeled in order to reach the same length 88 the inner

wes. The opposite helix directions of the outer wires and the inner wires are also

considered. The finite element model of the inner and outer wires is shown in

Figure 4.5. The finite element mesh of the aluminum spacer is shown in Figure

4.10. Its pitch length is 150 mm (8 pattern).
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Figure 4.10 FbUte elemat meah of the lIlumiDum epacer

4.5 Post-proce88ÎD1 of results

Results of the finite element stress analysis are stored in a porthole file that can

he accessed by ADINA-PLOT. Detailed results and discussions of the different

models are presented in the next chapter. It is necessary to describe some of the

special features that are used in ADINA-PLOT ta present the results of the

numerical model.

The results computed by ADINA are stresses, forces, reaction forces/moments, and

segment tractions or forces for contact surfaces. Results can be obtained at nodes,

element sections or layers, and on contact segments. There are different

approaches ta evaluate the results. If an element/layer variable such 88 a stress is

requested within an element at a point; the variable is interpolated 88 folloW8;

• RST interpolation : the variable is interpolated using the nearest integration

points and bilinear interpolation.

• Face interpolation: the results at the nearest element face are used.

• Centroid interpolation : the results at the element centroid are used.

• Integration point intefJJolation : the results at the Dearest integratioD point

are used.

Besides different interpolation schemes, the element section results can be

smoothed, i.e. made continuous between adjacent e1ements. Bence, the

contributions of each e1ement are combined into a single result, 88 specified by

the type of smoothing. In this study, the tJveraged smoothed results are obtained.
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5

RESULTS AND DISCUSSION

5.1 Pitch leqth etfects
Detailed state-of-the-art finite element modeling of the OPGW demands very high

capacity and powerful computing facilities. In order to rninjmize the size of the

model and its computational cast, the optimum length of the cable mode! needs

to he assessed. The optimum ratio of the diameter to the length of the cable

(called aspect ratio) is undefined in the literatore and the theoretical aspect ratio

for beams or shells is inapplicable for the OPGW due to its helical shape and

composition. To study this parameter, three lengths of one, two, and three pitch

lengths for a model comprising only one iDner wire and the tube are studied. In

the absence of the other inner wes, the single wire rotates around the tube as

there is no restriction itom contact with adjacent wires, which results in

asymmetric response in the central tube. It is noteworthy that the actual

behavior of the OPGW is completely different from that of these one-wïre-and-tube

models, however, the optimum length of the mode! can he 888essed with this

simplification. AlI degrees of freedom of the alumiDum tube and the wire cross
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sections are fixed at one end, while only the in-plane translational degrees of

freedom (v and z) are fixed for the tube at the loading end. This fixity is applied

to retlect the overall symmetric behavior of the tube in the presence of all the

wes.

5.1.1 O. hmer win • oD.pitcb leqth

Figure 5.1 shows the model of one inner wire for one-pitch length (265.16 mm).

The aluminum tube and the wire (ail interior nodes) are subjected ta an axial

elongation of 1.62 mm, equivalent to a 0.61% cable axial strain, assuming

linearity between the strain and the stretch, and neglecting three-dimensional

effects.

PAElCf'ED
DIIPUCEMENT
lIE 10.a0

1.117

z
~y

Figure 5.1 ODe-piteb ...... wiN ad the al1lllÛDum tube model

The axial stress (au), strain (eu), and displacement (au) distributions over the

cross section located at half pitch length, i.e., at 132.58 mm from the fixed end,

are presented in Figure 5.2, together with the x-displacements of the complete

model.

The results indicate that the normal stress in the x-direction varies within the

wire cross-section, which results from combined axial tension and bendiDg due ta

the helical geometry. The stresses and strains plotted are smoothed values

(average values with linear interpolation). The extreme values of stresses are

766 MPa and 353 MFa, respectively, correspondîDg to an average teDSile stress of

560 MPa and maximum bending stresses of ±206 MPa. The average main at the

center of the wire is 0.34%, corresponding to a 0.8 mm e1ongation.
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Figure 5.2 StreueI, draiDl, ad dilp1acemeDt. of. win at bail pltch leDph

(o..pltch model)

If a linear straïn-displacement relation (e=âl/0 is assumed, then the strain is

0.6% (0.8/132.58). The results confirm the nonlinear behavior of strain vs.
displacement. As a result, for a maximum strain of 0.45%, which is 14% of the

prescribed cable strain (0.61%), the maximum normal stress (166 MPa) is 19% of

the stress (970 MPa) predicted by Machida and Dure11i (1973), and Phillips and

Castello (1913).

•
Figure 5.3 illustrates the nonliDearity of the longitudinal strain versus

displacement for the center of the wire at half-pitch length. The calculated &train

(0.34%) is about 56% of the assumed linear strain of 0.61%.
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Figure 5.3 NoDliDear reIpOlII8 of a win at luIIf-pitch leaph (oae-pltch model)

The end effects on the calculated stresses are illustrated in Figure 5.4. The stress

along the wire axis is plotted for the center node. It is seen that the end effects

are limited to only a few end elements, and the stress is almost constant along

the wïre.

Figure 5.4 EDd etrea aad atreII distribution alOllla win (...pltch model)

The stress graphs plotted in Figure 5.4 are calculated using different schemes in

ADINA-PLOT as discussed in section 5.4. It is observed that the calculated normal

stresses (Gu) are identical at half pitch length usiDg all evaluation techniques

(RST, face, centroid, and integration point interpolation). The results also indicate
that the end effects are minimal when using the results at the element centroid

(centroid interpolation). In general the RST interpolation scheme Î8 used in which
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the variable is interpolated or extrapolated using the nearest integration points

and bilinear interpolation.

The strain versus displacement of the center of the wire is platted in Figure 5.5.

It is seen that the strain is varying between 0.3% and 0.4%, neglecting the end

effects. This range is far from the one-dimensional cable strain of 0.61%, which

means that the three-dimensional effects (Poisson's effects and helica1 geometry)

are significant and should Dot he ignored.

I·~

figure 5.5Str_t relatloa 1110lIl the eenter of the win

The aluminum tube is also subjected to a prescribed axial elongation of 1.62 mm.

The surface of the tube is considered the target surface here, and the outer

surface of the wire is the contactor sinœ only its interior nodes are subjected to

the prescribed displacements.

It is observed that the aluminum tube yie1ds under such a deformatioD.

Consequently, the nonlinear stress-strain curve obtained from a uniaxial tensi1e

test is used to define the material properties of the aluminum tube (see Figure

n.l, Appendix D).

The total reaction force at the loading end of the tube needed to induœ a

1.62 mm e1ongation is 2162 N.

5-5



RESULTS AND DISCUSSION

5.1.2 ODe iDDer win • hro-pit:ch 1eDph

The model of one inner wire for a two-pitch length (530.32 mm) is shown in

Figure 5.6.The aluminum tube and the wire (all interior nodes) are subjected to

an axial elongation of 3.24 mm, equivalent to a 0.61% cable axial strain.

figure 5.8 Two-pitch liDIIe win lUId al1lllÜDum tube mode!

The axial stress (ou), strain (Eu), and disp1acement (Su) distributions are

presented in Figure 5.7 over the cross sections located at half-pitch and at one-­

pitch, Le., at distances of 132.58 mm, 265.16 mm, and 397.74 mm from the fixed

end. These cross-sectiODS are selected for comparison with the results of the one­

and three-pitch length models.

As expected, the maximum normal stress in the x-direction at different pitch

lengths is almost the same. The extreme values for half and one-and-half pitch

lengths are 715 MPa and 317 MPa, corresponding to the average tensile stress of

516 MPa and maximum bending stresses of ±199 MPa. At one--pitch length, these

values are almost the same as the average tensile stress is 514 MPa and the

maximum bending stress ±t98 MPa. In f&Ct, no significant variations are

observed in the stresses at different cross sections located far from the ends. The

average strain (0.31%) is exactly the same at the different cross sections

considered.
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rlpre 5.7 StreueI, mlÛlll, uacl dllplacemeDtl iD hr~pltch oœ-wIre model at

baIl-, 0De-, ud oae-ad·baIl pitch leDIt..

The consistent contact force and normal stress in the aluminum tube is presented

in Figure 5.8, where the asymmetric defonnation of the tube is due to the

presence of only one wire.

The viewpoint in Figure 5.8 exaggerates the deformed shape. Ignoring the end

effects, the normal stress in the tube varies from 130 MPa to 155 MPa. The

maximum contact force is 30 N, and is acting along the contact line between the

wire and the tube. In the presence of ail the wires, the contact force reduces the

normal tensile stress in the tube.
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rlpre 5.8 Normal streu aDd contact force iD the tube (hro-pitch model)

5.1.3 One iDDer win - three-pitch leqth

The three-pitch length of a helical wire and the central tube model is illustrated

in Figure 5.9.

rlpre 5.1 Three-pitch aIDII. wire ad alumiDam tube model

It is noted that the aspect ratio of the wire in this model is about 280 and the

tube is more than 120. The aluminum tube and the wire are subjected to an axial

stretch of 4.85 mm, corresponding to a 0.61% axial cable strain (4.85/795.78). AlI

properties of the model remained the same 88 for the one- and twc>pitch length

models. The response of the wire at different crœs sections along the three-pitch­

length model is presented in Figures 5.10 and 5.11.
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The stress and strain distributions are practically the same at ail cross sections of

the wire with negligible variations far from the ends. The maximum and

minimum normal stresses are 697 MPa and 278 MPa, respectively, corresponding

to an average tensile stress of 492 MPa, and maximum bending stresses of

±205 MPa. The average axial strain is of only 0.3%.

z
x---- y
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F!pre 5.10 Amal reIpOlUI8 of the tbree pitch leaph model of aD limer win

Figure S.II shows the contact force acting along the wire axis. The maximum

concentrated contact force is 28 N, and the maximum stress in the aluminum

tube exceeds the maximum aIlowable stress (146 MPa).
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The axial stress at the contact surface between the wire surface and the tube is

reduced to about 140 MPa. It is noted that the above series of analyses

(including those for one- and two..pitch models) were carried out for frictionless

contact (J.1 = 0), which allowed the wire ta slide over the tube surface

5.1.4 CompariloD of the relUite of the tbne modela

The stresses and strains at the center of the wire along the cable axis are plotted

in Figure 5.12, excluding the end effects that are limited to only one element
length at each end.

(a)

(b)

Flpre 5.12 (a) au, uacl (b) Eu of the thne clUrenDt plteb leDpb modela

The results of the above three modela are summarized in Table 5.1.
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Table 5.1 8"m ....., of ltnIa-u UId ltraiD-u of thne mocIeIa

Min. and Max. of au (MPa)

Model half-pitch full-pitch 1 1/2-pitch tw(>pitch 2 1/2-pitch

o...pltcb 353-766 - - - -
Tw~pitcb 318-711 316-713 317-715 - -

Three-pltcb 289-692 287-692 290-687 287-693 288-697

Min. and Max. of tu (%)

Model half-pitch full-pitch 1 1/2-pitch tw(>pitcb 2 1/2-pitch

ODe-pitc:h 2.2-4.5 - - - -
Tw~pitcb 2.0-4.2 2.0-4.2 2.0--4.2 - -

nr--pltch 1.9-4.1 1.8-4.1 1.9-4.1 1.8-4.1 1.9-4.1

As it can be seen, the maximum and minimum normal stress and strain along the

cable axis decrease when the pitch length increases. However, the maximum

difference in the results is less than 10%. For the longer models, the influence of

the stiff boundary conditions at the fixed end is less and overall strain energy

dissipation is greater than for the shorter models. Despite the larger stresses and

strains of the on~pitch model, the comparison shows that the on~pitch model is

sufficiently accurate and reliable for the OPGW Modele The accuracy obtained by

increasing the model length is not significant if compared to the computational

effort. As a result, the minimum and optimum length of the model is coDSidered

to he the one-pitch length.

5.2 hmer 1rÏres and alumÎDum tube model
The next step in modeling the OPGW is to consider ail the inner wes around the

central tube. The finite element mesh of this model is presented in Figure 5.13,

for a full-pitch length (265.16 mm). Ten aluminum-clad steel wires of 2.85 mm in

diameter are helically twisted (83.7° helix angle) around the aluminum tube. The

steel wires are subjected to a prescribed axial displacement of 1.62 mm, either at

all the internai nodes of their free cross section, or only at their central Dode. The

latter is an alternative to impose the stretch OD the wires with less restriction on

the deformed crœs-sectional shape of the wires than with the former loading

procedure. In general, these two different loadiDg procedures produce the same

overall response of the cable. The in-plane degrees of &eedom of the wires and

the tube at the loading end are either fixed or free. The free-end boundary
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conditions let the wires unwind due to the effect of the helical shape, therefore,

the reaction torque at the free end is zero. Conversely, when the in-plane degrees

of freedom are fixed, theoretically no unwinding occurs due to the resistant

torque. It is noted on Figure 5.13 that the finite elements mesh of the inner wires

is finer near the ends.

PRESCRIBED
./'-y DISPlACEMENT

TlME 10.00

1.817

z

l'ipre 5.13 Ten-wIre ud a1umIDum tube mode!

5.2.1 limer winlaDd a1U11Û1lum tube· oal, winI are 10000ed
ln the analysis of the cable, the inner wires are elongated under the applied loads.

However, the actual behavior of the central tube is UDcertain when the OPGW is

subjected to a given tensile load either in a suspension catenary or in the

laboratory experiments performed at IBEQ (see Appendix D). Nevertheless, the

elongation of the optical libers in the helical aluminum spacer is observed. Sïnce

the aluminum spacer and the optical fibers are located inside the tube, it C8D be

postulated that the tube also elongates in compatibility with the wires. This

assumption needs to be verified numerical1y, and it is important to understand

how the inner wires can affect the elongation of the tube, with or without friction

effects. Consequently, in the inner wires and tube model, only the wires are

loaded (1.62 mm prescribed elongation) and no load is applied to the tube. The

results for the contact with friction (J1-0.33) and frictionless contact (p=O) are

presented in Figures 5.14 and 5.15, respectively. It should he noted that the

results of the wires are not reported along their axis of symmetry (helix) but

along the cable axis (or tube), therefore non-symmetric results are expected.

Numerical inaccuracies inherent to nonlinear analysis are also inevitable, which

may add to the slight non-symmetry of the results.
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The presence of friction in contact between the cable components is inevitable

and its effect seems to be significant as the aluminum tube elongates by as much

as 0.32 mm, while the elongation is negligible (0.05 mm) without friction. The

maximum stress in the tube is 163 MPa in the presence of friction corresponding

ta a 0.2% axial strain, which indicates that the tube is yielded even without

being subjected to any direct tensile load. The tinite element effective stress at

the integration poÏilts of the tube is 134 MPa, and it is seen that the tube is

plastified.
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l'Ipre 5.14 lDDer winI ad catnl tube nIpODI_ (with fr1dloD J1=o.aa)
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The average strain in the cable is only 0.1%, which means that the plastic

elongation of the tube exceeds the excess length (0.018%) of the optical fibers.

The maximum normal stress in the wire cross sections located at half pitch

length (132.6 mm) is 890 MPa, which corresponds to an 855 MPa average tensile

stress and ±35 MPa bending stresses. The bending stress is as high 88 50 MPa in

the other wïres.

In the frictionless analysis, the maximum values of Gu and Eu in the aluminum

tube are 91 MPa and 0.03%, respectively (see Figure 5.15). The effect of friction

between the wires and the tube are therefore significant and cannot be ignored.

To verify the sensitivity of the analysis to the coefficient of friction, different

coefficients (0.25, 0.3, and 0.4) were considered but the differences in the resu1ts

were found negligible.

.......
6 Q.OI75I......
)If o.aDD
X~

~10.a0

......
~1"......
)1( z.-.
lIIOO1MD
~
EFFKTIVE
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Fipre 5.15 CeDtnl tube nIpOIIIe iD fridiaDl_ CODtad (J1=O)

(oaly bmer wireI ... lœded)
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There is almost no difference in axial stress in the wires in a &ictionless and a

friction contact analysis. The maximum normal stress in the cable (not shown

here) is 885 MPa, equivalent to an 845 MPa average stress and ±40 MPa in

bencling stresses. As a resu1t, the friction between the inner wire surfaces is

negligible compared to the friction between the tube and the wes. These

analyses were a1so carried out for the loading (prescribed disp1aœment) applied

only at the center of the inner wires, and the behavior of the tube W8S found to

he the same. Therefore, the results are not presented here.

5.2.2 limer wireI aDd alumiDum tube mode! • compatible dllplacemeDt.

As mentioned before, the optical ground wires used in transmission lines are

either clamped to towers at both ends of a span, and/or continuous over the

tower suspension joint. In either case, the rotation of the OPGW is restricted

against unwinding. In the model, the in...plane degrees of freedom (v and z) are

fixed at the loading end cross section of all the wes and stretching of the cable

is allowed along the x-axis. Two loading cases are analyzed: prescribed

displacement at the center of each wire, and prescribed displacement at all the

interior nodes of each wire cross section. These cases are a1so considered in

frictionless and with friction analysis.

The displacement...control approach is used for both the tube and the wires, in

which the exterior surface of the tube is considered 88 a target surface in contact

pair with the wires 88 contactor surfaces. A prescribed displacement of 1.62 mm

is applied to both the iDner wires and the central tube. AIl degrees of freedom at

the loading end of the central tube are free. The results of the case when ail

interior nodes are prescribed an equal displacement in a friction analysis are

presented in the next section. The numerical results of the other cases are

Sl1mmarized in Table 5.2.

It can he assumed that the tube elongates 88 mucb as the inner wes due to

displacement compatibility. The experïments have also revea1ed that after the

fiber excess length bas been stretched some elongation is induced in the optical

fibers inside the central tube.
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5.2.f.l StreMU and diaplacemenu

Figure 5.16 shows the loading end cross section and x-displacement of the inner

wires at half pitch length. The displacements of the wes along the cable axis are

practically constant over the cross section. The average displacement is 0.8 mm

which is exactly half of the prescribed displacement at the full pitch length.

Therefore, the displacement of the wes along the cable axis is lînear.

PRESCAIBED
OISPLACEMENT
liME 10.00

1.817
MAXIMUM
6 0.8114
MINMJM
)(0.,.

X.QISPlACEMENT
TlME 10.00

~0"11O

~0"123

1
0...
O.?­
0.7120

Figure &.18 LoadiDa sectiOD aDcl dilplacemeDta of the wiree a10111 the cable uia

(coDtact lUUI1yaia with friction, J,1=O.as)

The averaged smoothed stress and strain of the inner wires are presented in

Figure 5.17.
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The extreme values are located on one wire, while the response of al1 wires is

similar. The normal stresses in the wires vary between 798 and 912 MPa,

corresponding to an 855 MPa average normal stress and ±57 MPa of bending

stresses. The average strain is 0.52%, which is less than the prescribed strain

(0.61%), and consequently indicates a nonlinear behavior with the displacement.

The interior edges of the wires are more strained, and as a resu1t, more stress is

induced towards the center of the cable.

The axial strain and displacement distributions in the central tube are shown in

Figure 5.18. The maYimum strain in the tube bas reached 0.88%, which is 44%

higher than the ÜDear prescribed strain of 0.61%. This behavior is expected due

to the material nonlinearity of the tube. It is worth noting that the minimum

strain in the tube is 0.37%, at the fixed end, and the maximum strain is found

almost at the middle length of the tube where plastification starts.
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~ 0.0DI7I1
MINIMUM
:tE 0.0031&2

SMOOTHED
STRAIN-XX
RSTCALC
SHEU. T. 1.00
TlUE 10.00

~O.oœII7
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,
0.001II7
0.001II7
0.0CMII7
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6 1.811
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)E 0.000

X-DISPLACEMENT
nUE 10.00

~ 1••
,,_ 1.320

,
0.-
O.eoo
0.240

FIpre S.18 AzialnraiD aDd dllp1acemeDt of the central tube

The smoothed axial stress of the tube using RST interpolation with finite element

effective stresses at the integration points is presented in Figure 5.19. The

maximum stress of the tube in defining the stress-strain curve is limited to

145 MFa. The finite element effective stress is the effective stress directly taken

from the solution program and obtained from the following formula.
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The maximum value of the effective finite element stress is limited to the

maximum stress defined in the multilinear inelastic material law. However, the

axial stress (GD) is the stress along the cable axis and sinee the RST interpolation

bas been used, îts maximum value can he found larger than the maximum stress

of the cable defined in the stress-strain curve. However, in reality, the maximum

stress is limited to 145 MPa 88 shown on the right portion of Figure 5.19. The

effects of the contact forces on the tube ftom the inner wires are more evident in

the axial stress of the tube, decreasing the stress down to 98 MPa. It is noted

that all the results of the central tube are calculated at the top surface of the

shell, to include the direct effects of the contact force.
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;.;: 17.12
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SHaL T. 1.00
nUE 10.00

l1U.0
,_ 150.0

,

1315.0
120.0
105.0

MAXIMUM
~ 141.2
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,
1••0
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Flpre 5.19 8moothed m.I RreII (asT calcuJaUOD) ad fIDIte element etrectlve

stresa (iDt••UOD pobat. caleuJatiOD) of the central tube

The consistent contact forces directIy exerted on the tube by the inner wes and

the smoothed plastic strains are shown in Figure 5.20.

It can he seen that the contact forces are concentrated within the half middle

length of the tube, and no contact force is generated from the inner wires at the

ends. This is due to the in-plane fixity of the wires at the ends, which prevents

the wires to be in contact with the tube. The maximum concentrated contact

force is 203 N, and decreases the axial stress of the tube at that point. In general,

the overall effects of the contact forces are to decrease the axial stresa of the
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tube. Due to large axial elongation of the tube, no net compression is induced in

any part of the central tube.•

Fipre &.20 ColllÏlteut CODtad lorcesllllCl plutic straÎDI iD the tube

The plastic strain in the tube varies between 0.15% and 0.66%. The maximum

plastic defonnation occurs only for about 1/8 length of the tube, and mœt of the

tube has an average of 0.4% plastic deformation. Sucb a plastic deformation of

the tube was expected but it seems very large as it is exceeding the excess length

of the optical fibers inserted in the spacer. More discussion of this observation is

presented in the OPGW mode! section (5.3).

5.S.S.S Reaction forcea at loading end

The results of the two loading cases with friction effects are summarized in Table

5.2. Comparisons of the results with and without friction (not shawn in Table

5.2) show that the friction effects are significant on the axial strain and reaction

of the tube but negligjble on the response of the wes. The interaction of the

tube and the wires is most affected by friction. When friction is inc1uded, a total

axial tension of 1357 N (or 1340 N) is required ta induce an elongation of

1.62 mm in the tube whereas this tension is reduced ta 1306 N when friction

effects are neglected.

5.S.S.S CompGrUon with GnoJyticoJ lolutioM
The inner wire and tube mode! is analyzed for four load combinations, with

prescribed displacement at either all the interior nodes of the wires or only at the

central node, and with or without friction.
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Only the results of contact analysis with friction and all interior nodes loaded are

presented in section 5.2.2. However, the results of the other cases with the

analytical solutions of Machida and Durelli (1973) and Phillips and Costello
(1973), are &Iso snmmarized in Table 5.2. In the analytical solutions, the axial

load and stresses on the tube and the wires are calculated based on a 0.61% cable
axial strain.

Table 5.2 Su... and dlsplacemeDt. of iJmer·wire-aDd·tube model

Total axial load Max. Strea-xx Max. Str&in-xx
(kN) (MPa) (%)

Model J.l=o J.l=0.33 J.l=o ~=O.33 J.l=o J.l=0.33

Wires (aD iD&erlor ..... are .....) 48.12 46.12 903 912 0.549 0.554

Central tube 1.31 1.38 ln 167 0.984 0.879

Wires (o. ceatral aade Il ......) 45.28 45.24 897 904 0.545 0.549

Central tube 1.31 1.34 171 170 0.976 o.no

Machida & Durelli Inner wires 61.89 969 0.61

(1973) Tube 3.88 377 0.61

Phillips & COIItello Inner wires 61.80 971 0.61

(1973) Tube 3.88 377 0.61

The total axial load of the model is calculated by adding the reaction force

induced at the loading end due to the prescribed displacements. It is recalled that

friction effects are neglected in the analytical solutions of Machida and Durelli
(1973) and Phillips and Cœtello (1973).

The total axial stress resultant of the wires is 62 kN in both analytical solutioDS.

The values obtained by the model are of 45-46 kN, for the different loading

scenarios, which is 74% of the theoretical value. However, due to the nonlinear

behavior of the model, less strain is induced in the cable (0.55%), compared to

the linear strain of 0.61% used in the analytical solutions.

The axial stresses and straiDs of the aluminum tube cannot be compared since a
linear material law is used in the analytical solutions and the numerical model

uses a nonlinear law. It is further noted that the aluminum tube is yielding under
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all the scenarios studied. In conclusion, the ca1cu1ated total axial force needed to

elongate the cable by 1.62 mm, is 66 kN and 47 kN, using theoretica1 and finite

element analysîs, respectively. Consequently, the analytical solutions overestimate

the stiffness of the cable.

5.!. H.", Loading efJects - di&plac ement approach

As mentioned before, two types of loading were applied to the ÎDDer WÎleS. The

prescribed displacement was applied to either all the interior nodes of the wire

cross section or only to the central node. The results indicate that slightly more

stresses (903 and 912 MPa) are induœd when all interior nodes have a prescribed

displacement than when only the central wire node is constrained (897 and 904

MPa). However, the diHerences in stresses and straiDs are insignificant (less than

1%). The effect of these two loading conditions is &Iso minimal on the aluminum

tube stresses.

However, the maximum axial strain of the tube is more affected when friction is

considered. This is explained by the fact that when only the central wire node is

constrained the exterior surface of the wire is alIowed to deform and produce

more contact with tube compared to the other loading scenario (displacement

prescribed at all interior nodes). This increases the wire strain in the no friction

case (0.976% ta 0.984%) and decreases it in the contact with friction case (from

0.88% to 0.71%). The loading effects on axial reaction forces are discussed in

section 5.2.2.6.

5.B. S. 5 Friction effects

The results indicate that friction has negligible effects on the wire response. Since

the aluminum tube is yielded in all analyses, no changes occur in its maximum

stress. However, the effect of friction is considerable on the axial strain of the

tube. The maximum effective stress of the tube (at integratioD points) is limited

to 145.6. However, in the ca1culation of the stresses using different interpolation

schemes and smoothing, the maximum stress in the tube is more than 145.6 MPa

(167 MPa). As mentioned in the previous section, the maximum axial &train of

the tube decreases when friction is coDSidered between the wires and the tube,

especially when only the central nodes of the wires are loaded.
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5.!.1.6 Reaction /orceA at loatling end

A prescribed displacement approach is used in modeling the tube for a 0.61%

elongation. Whenever a nodal point is constraiDed, a reaction force is obtained at

the same point, which is required ta induce the prescribed displacement. The
reaction force shawn in Table 5.2 is the 811mmation of all the nodal reaction

forces either on the wire cross section or on the circumference of the &1uminum

tube. These reaction forces versus prescribed displacement are plotted is Figures

5.21 and 5.22, for the aluminum tube and the inner wires, respectively.

Flpre 5.21 AmI reaetiOD forc:e adIq GD the tube (~O.U)

The axial stress resultant at the ]oadjng end of the tube that induces a 1.62 mm

elongation is slightly affected by friction. This reaction force varies fram 1306 N

ta 1357 N, in contact analysis with and without friction, lespectively.
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5.2.3 limer wIres UId alUIIIiDum tube model - he loecI.... ead
In this model (inner-wires-and-tube), all the interior nodes of the wires are

subjected to a prescribed displacement and the loading end is free to rotate. The
analysis is considered with friction effects. The inner wires are expected to
unwind (rotate against their helix direction) when subjected to an elongation
along the cable axis. The purpoee of this analysis is to verify if the model is

adequate under free end conditions and also to compare its results with analytical

solutions. The detailed results are 8nmmarized in Table 5.3.

lnitially there is a small gap between the wires and between the tube and the

wires. Upon loading, the wes 6.rst wind until touching each other and then
unwinding occurs due to the helical configuration. The maximum and minimum

stresses along the cable axis (au) are 788 MPa and 562 MPa, corresponding ta an

average normal stress of 675 MPa and ±I13 MPa of bending stresses (Figure

5.23), at the half-length cross section.
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0.003120 140.0

O.Q037S) ".0

0.003I0O 578.0

Fipre 5.23 Sh'eII uad RraiD dlltrihatioa OB limer winI (uawtadlnl aDowecl)

It is seen that the stress and strain distributions have a symmetric response in all

the wires. This is due to the free ends of both the wires and the tube which allow
them to deform freely and to expand because of UDwindîng. Therefore, individual

wes are less restricted by each other, and behave more independently. The

5-23



RESULTS AND DISCUSSION

maximum stress and strain in the wes occur toward the center and the bending

directions in the individual wires (perpendicular to the bending axes) are aligned

toward the center. Consequently, the individual wires are not twisted.

The average strain is about 0.41%, which is 67% of the prescribed linear strain

(0.61%). Therefore, less axial force is expected compared to that obtaiDed by the

analytical solutions based on the 0.61% axial strain.

The maximum principal stresses in the wes vary from 568 MPa to 867 MPa,

and the maximum shear stresses are 297 MPa to 448 MPa. The maximum

effective stress in the wires is 870 MPa (see Equation 5.1).

The total axial reactions of the wires and the tube are 35.8 kN, and 1.37 kN,

respectively. Therefore, the total re8Ction is 37.2 1eN, which is 78% of the value

obtained by Machida and Durelli (47.5 kN) and 80% of that using Phillips and

Costello's (46.4 kN). The results are 8ummarized in Table 5.3.

Deformed UDdeformed

flpre 5.24 UDwhMlJuI dilplacemai of bmer win croa lediOD ai he ead

The deformed section of the wires at the loading end is shown in Figure 5.24. As

indicated, the total UDwinding rotation is 45.2 degrees at the free end and is

about 17.4 degrees at half-pitch length (not shown here). This result iDdicates

that the unwinding motion is not linear along the wire axis, contrary ta what is
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88SUJDed in the analytical solutioDS. The UDwinding rotations at the loading end

calculated using the analytical solutions by Machida and Durelli (1973) and

Phillips and Costello (1973) are 52.9 and 48.1 degrees, respectively.

The maximum stress of the wire along the cable axis (788 MFa) is practica1ly the

same as the value obtained by the analytical solution of Machida and Durelli,

and is 96% of that of Phillips and Castello. The bending stress (113 MPa) is less

than 10% different from those predicted by Machida and Durelli, and Phillips

and Costello.

Table 5.S Imaer wira ltreIIeI uad forces (unwJnd1nl aIIowed)

Unwinding Max. Strell-xx Stram-xx Bendiqltn!ll Total axial
rotation (MPa) (%) (MFa) force (kN)

l'tDIte elemeDt 45.2 788 0.46 ±l13 37.2
mode1

M.chlcl- It Durelli 54.6 786 0.61 ±117 46.9
(1IT3)

PbiIIIpIltCoaeUa 49.6 821 0.61 ±lO3 49.9
(1IT3)

The total axial force of the finite element model is 75% to 80% of that predicted

by the analytical solutions. This is expected, 88 the axial strain in the wires is

also 57% to 75% of that of Machida and Durelli (1973) and Phillips and Castello

(1973). In snmmary, the axial stiffness of the model is smaller than that of the

analytical solutions. Therefore, the cable finite element mode! is likely to simulate

more elongation than the analytical modela if being subjected to the same axial

force. Meanwhile, the UDwinding rotations of the wes differ by 9.7% and 20.8%

with those of Phillips and Cœtello (1973) and Machida and Durelli (1973),

respectively. In the experiments performed by Utting and Jones (1989 ll),

differences in unwinding rotations predicted by the analytical solutions of Phillips

and Castello (1973) were of 9.0% ta 15.7%. In fact, the UDwinding rotation

predicted by the finite element model (45.2°) is claser to wbat can he expected

from experiments.
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5.3 OPGW model
5.S.1 Central DOCIes of the wlre. are Joaded

The next step in modeling the OPGW is to add the outer wires and the aluminum
spacer to the previous model. It has been mentioned earlier that the gap between

the aluminum spacer and the central tube is tao large for contact to develop for

equal elongation. Therefore, no contact surfaces are defined for the aluminum
spacer, which implies that the aluminum spacer can also be modeled separately.

However, for completeness, it is included here along with the outer wires, the
inner wes, and the aluminum tube. The outer wires are modeled like the inner

wires with their specificatioDS. Results obtained for the different components are

presented in details in the next sectioDS. The results for the 3-D solid elements
(the outer and inner wes, and the aluminum spacer) are for the cross section

located at half..length of the cable model (132.58 mm). To he precise, the exact

half..length of the deformed shape is 133.39 mm, where half of the axial

elongation of the cable is added to the half..length of the undeformed shape. The

finite element mesh and the prescribed displacement at the center of each wire

and in the aluminum tube and spacer are shown in Figure 5.25.

PAESCAlBED
DISPLACEMENT
TlME 10.00

1.818

•

z

•
5.S.1.1 OPGW re.tponae

The overall deformed shape of the OPGW at the Joadiug end is presented in

Figure 5.26. Since the in-plane displacements of the wires are fixed, the
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unwinding rotation is restricted and the wires deform towards the center of the

OPGW. However, the central tube is free to twist and the aluminum spacer does

UDwind ~ shown in the figure.

Figure 5.28 Deformecl (C)'ua) ad UDdefonaed (blue) pometry of the OPGW

(ceDtral DOel. are loaded ad J.L=O.33)

The x-displacement distribution in Figure 5.27 is for the cross section located at

half-length of the cable. Although the axial displacements of the different

components are very close, it is seen that the components on the periphery have

larger axial displacements than the components near the core.
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Fipn 5.21 AD.I dilp1aœmeDt (X-DISPLAClMBNT) of the OPGW COmpoamtl
al bail Ieaph (X=112.lmm)
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Figure 5.28 shows the axial stresses and &trains in the cable. The maximum axial

stress occurs in the steel inner wires, which are considered the main load-bearing

part of the cable. Due to nonlinear stress-strain behavior of the aluminum spacer

and the tube, their stress level cannot be compared with that of the other

components. The maximum stress in the cable occurs in the inner wes
(920 MPa) and the minimum in the outer aluminum wires (3S MPa).
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The axial strain (Eu) distribution in the OPGW is clearly non-uniform and

indicates that the farther the component &om the center of the cable, the less

strain is induced in the component. The maximum strain occurs in the center of

the cable where it is exactly equal to prescribed strain (0.61%) when the linear

relationship of displacem2nt versus strain is assumed. It is noted that the strain

decreases as low as 0.08% at the external fibers.

5.9.1.1 Outer WÎres
Fourteen aluminum wires with a 3.37 mm diameter are helically twisted around

the layer of inner wes with a pitch length of 202 mm. Their helix angle (76.4°)

is in opposite direction to that of the inner wires 80 as to reduce the internal

axial twisting moment of the cable. The displacement-control approach is used

for the two cases in which either the central nodes or ail the interior nodes are

subjected to an axial elongation of 1.62 mm, equivalent to a 0.61% axial cable

str8ÏD. The friction effects in contact are also verified, where friction is assumed

between all the outer wires and between the outer and the inner wes. The

results of the different loadings, with and without friction are presented below.

The averaged smoothed axial stress in the outer wes is shown in Figure 5.29,

and is interpolated using the nearest integration points and bilinear interpolation

(RST CALC).
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The outer wire stresses alODg the cable axis are varying almost linearly within the

cross section and are increasing towards the center of the cable.

The maximum and minimum values are 255 MPa and 38 MPa, which are

equivalent to superimposing a 146 MPa average normal stress and a ±109 MPa

bending stress. As it cau he seeD, the extreme values occur at one particular cross
section of the outer wes. The maximum stress is less than the allowable value in

the aluminum wires (336 MPa), which are still in the linear range. Therefore, the

Hookean material law is valid for the applied load.

As expected, the axial strain variation is identical to that of the axial stress. The

average normal strain is about 0.23%; the maximum strain occurs on the inner

side of the strand and the minimum at external fibers. The average displacement

(see Figure 5.30) is 0.823 mm, corresponding ta a 0.62% (0.823/132.58) axial

strain, assuming a linear strain-displacement relationship. It is slightly more than

half of the total elongation of the wires (0.81 mm), and is linear along the cable

axis.
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It is seen that the three-dimensional effects (Poisson'8 effects, contact, and helical

geometry) significantly affect the axial strains of the outer wires, and

consequently the axial stresses. The axial displacement in the cable is not

therefore a good indicator of the &train in the wîres. It may he used to specify the

overall strain of the cable but it does Dot correspond to the strain level in the
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individual components. Consequently, the stress in the wires cannot be calculated

directly hom the global strain using the axial displacement. More discussion on

this important topic is presented in section 5.3.5.

It is seen in Figure 5.30 tbat the x-displacement of the individual wire cross

section is increasing counterclockwise, i.e. opposite to the helix direction.

Although the change in displacement is relatively small, it shows the nOD­

symmetric behavior of the response due to the helical configuration of the wes.

Figure 5.31 shows the maximum principal stress (OPI) in the outer wes. Its

distribution is similar to that of the axial stress (Figure 5.29), with a maximum

stress of 280 MPa, which is stilliess than the allowable stress (336 MPa).

MAXIMUM
..:. 141.1
MINIMUM
:-: ~..
SMOOTHED
MAX
SHEAR
STRESS
RSTCAlC
nME 10.00

ll~
.... 120.0

105.0

80.0

75.0

80.0

45.0

MAXIMUM
~ 271.8
MINIMUM
~ 41.41

SMOOTHED
SIGMA-P1
RSTCALC
nME10.00

laa7
'" 233.3:'1-

200.0

1••7

133.3

100.0

••7

The maximum shear stress (tma) is one-half the difference between the maximum

and minimum principal stresses. Its distribution is identical to the maximum

principal stresses, which indicates that the maximum values occur towards the

center of the cable.

The in-plane displacements (v and z) of the inner wires (not shawn here) confirm

that the wires tend to maye towards the center of the cable (see Figure 5.24).
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The in..plane displacements are anti..symmetric in pairs located on the same

diameter inwards the center of the cable. The maximum displaœment is 0.7 mm,

which corresponds ta a decrease of 1.4 mm in the cable diameter.

5.9.1.9 lnner wires

The inner wire responses are calcu1ated when only the central nodes of the wes
are subjected to a prescribed axial displacement with friction in contact analysis.

The axial stress in Figure 5.32 indicates that the maximum and minimum

stresses induced in the wires are 920 MPa and 772 MPa. These extreme values

occur in two different wires for which the average normal stresses are 855 and

826 MPa, and the maximum bending stresses of ±65 and ±54 MPa, respective1y.

It is noted that the maximum normal stress is less than the allowable stress in

the inner wire (1250 MPa).
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The axial strain distribution in the inner wes is simiJar to the stress

distribution. The maximum strain (0.56%) is slightly less than the prescribed

axial strain of the cable (0.61%), and the average strain is 0.52%, which is 85% of

the prescribed strain.
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The maximum shear stress (tm.x) in the inner wes is 466 MPa and occurs on the

interior side of the wïre. The variation of the maximum shear stress over the

cross section is small (in the order of 10%), which indicates that the differences

between the maximum and minimum principal stresses (OPI and 0P3) are small.

The distribution of the maximum principal stresses is simiJar to that of the

maximum shear stresses (Figure 5.33). The extreme value is 935 MPa, which is

slightly larger than the normal axial stress and is 75% of the maximum allowable

stress in the wes.
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The variation of the displacements of the inner wires along the cable axis is

presented in Figure 5.34. The maximum displacement (0.81) corresponds exactly

ta the applied strain (0.61%) at full pitch length.

The variation of the displacement over a wire cross section is very small and

corresponds ta the direction of the helix (increase in clockwise direction). The

displacement should be uniform at the cross sections normal ta the helical axis of

the wïres. It is noted that when only the central nodes of the wes are

constrained, the cross sections deform more freely than when aU the interior

nOOes are constrained.
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5.3.2 AlI iDterior DOel. of the wires 111"8 loaded

In the next sections, the results of the OPGW analysis are presented for the case

when aU the interior nodes of the wires and the central tube are prescribed a

1.62 mm elongation along the cable axis.

PRESCRIBED
DISPlACEMENT
nME 10.00
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...
'. ~ ~ '.'

. .

..

z

X--y

Fipre 5.35 FlDite e1emeat JDeIb of OPGW • aIllDterior DOel. are 10IIded

This loading case is analyzed with and without friction effects. However, only the

results of the mode! with friction are illustrated, and the results of all the other
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cases being only 811mmarized in Tables 5.3 and 5.4. The overall behavior of the

wires (inner and outer) and the central tube is expected to show only moderate

variations compared. to the central node loading case.

5.S.S.1 OPGW re.spOMe

The defonned. configuration of the OPGW cross section at mid length is shawn in

Figure 5.36.

The wires are restricted to any in-plane displacement, sueh that unwinding of the

wires is prevented. Nevertheless, the aluminum spacer is allawed to UDwind as its

loading end is free ta rotate.

Deformed. --..l Undefonned

•

Figure 5.38 Deformed (C)'Ul) aad UDdeformed (blue) ccmtIpratiOll8 of OPGW

(wlth friction J,1=O.U)

As expected and observed in the previous case (Figure 5.24), the wes displace

towards the center of the cable where the ÎDDer wires are restricted by the central

tube. The stress and strain distributions along the cable axis of the OPGW crœs

section at mid length are shown in Figures 5.37(a) and (b).
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The axial stress and strain response of the cable is simiJar to the other loading

case (Figure 5.27). However, the minimum stress and strain in the outer wires are

slightly higher than in the previous loacUng case (50)38 MPa, and 1xl~x1o-').

The maximum effective stress (calculated using Equation 5.1) in the OPGW

(Figure 5.38) is 938 MPa, and occurs in the inner wires. This is the largest stress

induced in the wires, but is stilliess than the allowable stress (1250 MPa).
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5.9.2.8 (Juter M'ires
The stress and strain distributions of the outer wes are shown in Figure 5.39.

The maximum and minimum stresses are 258 MPa and 50 MPa, corresponding to

0.38% and 0.1% axial strains, respectively, which occur on different wes.
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The average tensile and bending stresses are about 150 and ±100 MPa, for the

wire where the minimum stress occurs, and they are 180 and ±78 MPa, for the

wire where the maximum stress is induced. AIl other wire stresses are in that
range. The maximum stress (258 MPa) is 77% of the strength of the outer wires

(336 MPa). The maximum stresses calculated using the analytical solutions are

349 MPa and 367 MPa, which are about 35% Jarger than the stresses obtained by

the mode!. The maximum strain (0.38%) is only 62% of the prescribed linear

strain of the cable (0.61%). As it is seen in Figure 5.39 the larger strains are

induced close to the center of the cable.

The maximum principal and shear stresses are presented in Figure 5.40 and 5.40.

The extreme values of the normal and shear stress are 292 and 157 MPa,

respectively. The maximum principal stress is 87% of the wire strength.
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The maximum shear stresses obtained by the analytical solutions are 183 MPa

and 186 MPa, which are about 85% of the maximum sbear stress in the wîre. The

maximum in-plane shear stresses (txr and 'tu) are 73 (-86) and 66 (-103) MPa

(oot shown here). It is worth ooting that the design of a wire is based on its

maximum tensile strength only, 88 it fails in tension.
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Reactions of outer wires

The total reaction force induced at all the nodes along the cable axis is 17.0 kN.

This reaction force versus the applied load (prescribed displacement) is platted in

Figure 5.42. The behavîor of the reaction force is nonlinear with respect to the

prescribed displacement when the latter is small. However, it is linear after a 0.8

mm displacement (half of the load). This Donlinearity is due to the increase in

contact surfaces and 3-D helical effects. This behavior is also observed in the

experimental work of Utting and Jones (1989), where for a small axialload, the

elongation was nonlinear with respect to tension.

l'Ipn 1.42 Reaction lora 01 end.. wires
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In the analytical solutions of Machida and Durelli (1973) and Phillips and

Castello (1973), the axial force in the inner wires necessary to induce a 0.61%

strain is 44.6 and 44.0 kN, respectively. However, the finite element results show

that only 17.0 kN is required to induce an average strain of 0.25% (maximum of

0.38%) in the outer wes. In all cases, the elongation of the cable is prescribed at

1.62 mm. As a result, the axial displacement cannat he used ta predict the true

strain in the wires and the linear displacement-strain relation (E=L\I/~, valid for

uniaxial 10ading, is invalid here because the three-dimensional effects are

significant in the behavior of the outer wes.

The total twisting moment reaction of the outer wes is 17.04 kN.mm at the

loading end. Its response versus loading (prescribed displacement) is platted in

Figure 5.43.

.................-..-...........::::.-:1

FIpre 1.43 RudIOD torque of ou*- wireI

Using the analytica1 solutions, the axial twisting moment acting on the outer

wires is 83.3 kN.mm according ta Machida and Durelli (1973), and 81.5 kN.mm

according ta Phillips and Costello (1973). The reaction torque obtained by finite

element analysis is significantly smaller than thœe of theoretical values. The

results are snmmarized in Table 5.4 and more discussion is presented in the Dext

sectioDS.
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5.S.R.3 Inner wires

The axial stress of the inner wires along the cable axis is presented in Figure

5.44. The average normal and bending stresses are 850 and ±70 MPa,

respectively. The minimum stress generally occurs on the exterior Bide of the wire

cross section, but due to the rotation of the individual wes, the maximum

stresses accur at the interior side but slightly rotated from the center of the

cable. This is mostly due to the contact between the wes and to the presence of

the outer wires, which have a helical direction opposite to that of the inner wes.
In the analysis of the inner wires only (inner wires-and..tube model) , this

phenomenon is not observed.
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The strain distribution in the inner wires along the cable axis is similar the

corresponding stress. The extreme values are 0.56% and 0.48%, corresponding to

an average strain of 0.52%. The maximum &train is 92% of the linear applied

axial cable strain (0.61%).

The maximum axial displacement (Figure 5.45) in the inner wires is 0.81 mm. It

is also seen on the figure that the maximum displacement on the Cl'088 section

occurs in the helical axis direction.
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The in-plane (y and z) displacement distributions of the inDer wires (Dot shown

here) indicate almost a symmetric movement of the inner wires towards the

center. The diameter of the cylinder on which the centerlines of the inner wires

lie is shortened by about 1.0 mm.
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The smoothed effective stresses of the inner wes are illustrated in Figure 5.46.

The effective stress is the maximum stress induced in the wes. For the inner

wires, the extreme value is 938 MFa, which corresponds to 75% of the allowable

stress (1250 MPa) and 64% of the wire strength (1474 MPa).

The maximum shear stress (one-half the difference between the maximum and

minimum principal stress) is 473 MPa. Its distribution is shown in Figure 5.47

and is somewhat similar ta that of the effective stress.
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5.3.1.4, Central o,luminum tube
The stresses and displacements of the aluminum central tube are presented in the

following sections. The axial displacement is linear along the tube axis and its

maximum is 1.62 mm (prescribed displacement).

The finite element effective stress calculated at the integration points is limited
to 145.6 MFa (Figure 5.48), the maximum value in the stress-strain curve. This

maximum stress is reached in an important portion of the tube length.
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The maximum axial stress in the tube is 203 MPa (smoothed value OD Figure

5.49). This value is larger than the maximum allowable stress in the tube

(145.6 MPa), and is based on RST calculation (using Dearest integration points

and bilinear interpolation).
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The contact forces exerted &om the inner wes on the tube locally decrease the

axial tension; there are consistent contact forces on the portions of the tube with

smaller stress. AlI the values are calculated st the top surface of the tube. As
expected, stresses st mid-surface of the tube are less affected by the contact

forces.

The corresponding axial strain in the tube is shown in Figure 5.50. Its extreme

values vary from 0.33% at the ends to 0.87% at the middle. It is completely in

the plastic range as the minimum strain exceeds the strain st the proportionality

limit (0.2%). Figure 5.51 shows the smoothed plastic strain generated in the tube.
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Since the tube is fully piastified, the effect of the contact forces from the inner

wires on the stress and strain distributions cannot be observed. It means that the

1.62 mm prescribed displacement is large enough to induce permanent

deformations in the tube.

The distribution of smoothed yield stress (not shown) indicates that the tube is

yielded and the maximum value (145.6 MPa) is equal to the ultimate strength of

the tube used in the stress-strain curve. Since no failure criterion for the tube is

defined in the madel, the calculated strains can be very large without the tube

heing failed. However, in reality (such as in the IREQ and McGill University
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experiments) the tube is failed after reaching a maximum plastic deformation (of

about 1 to 1.5%). In fact, the design criterion is based on the linear range of the

stress-strain curve (maximum strain of 0.2%) and tube is considered failed
beyond that.
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5.S.S AlumlDum spacer

The s.groove aluminum spacer is at the core of the OPGW that houses the optical

liber units. The cross-sectional area at the loading end is subjected to a 1.62 mm

elongation at all the interior nodes. Due to the 8pacer's cross-sectional and helical

configurations, a non-uniform stress distribution is expected. Furthermore, there

is no interaction with the other components of the OPGW and the stress and

strain distributions are expected to be symmetric. Figure 5.52 shows the axial

stress distribution on a cross section located at hall of the cable length

(132.58 mm). The maximum stress of 254.4 MPa occurs exactly at the center of

the aluminum spacer and decreases gradually ta its Bides where the minimum of

238.3 MPa OCCUlS. This small variation of the stress will diminjsb using a finer

mesh, as the prescribed displacement will he more uniform over the cross section.

Since no significant bending stresses are induced in the spacer, the average stress

can he taken as 246 MPa, which is 88% of the ultimate teDSile strength of the

aluminum spacer (280.6 MPa) and is also in the ine1astic range. The ultimate
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strength of the aluminum spacer found in the experiments is 275 MPa (see

Appendix D).
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MINIMUM
:oE 231.3
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ASTCALC
TlME 10.00

~25U
. 250.1,,-

241.4

2••0

243.1

241.2

231.1

F!pre 5.52 Normal streII «Ja) of the a1umiDum spacer at X=112.1 mm

The effective stress distribution is shown in Figure 5.53. The maximum effective

stress (Equation S.l) of the aluminum 8pacer is 258 MPa and its distribution is

also considered uniforme
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EFFECTIVE
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The axial strain distribution in the spacer (Figure 5.54) is different than that of

the normal stresses due to the non-linearity of the material law. The maximum

strains occur in the grooves and are equal to the prescribed strain (0.61%). The

mjnimum strain (0.54%) occurs at the outer edges of the 8pacer, which are
plastified.

MAXIMUM
.6 0.0011.
MINIMUM
'JI: 0.005351

SMOOTHED
STRAIN-XX
RSTCALC
TlUE 10.00

lo.Gll8120
'. 0.00lO0O
"'-

0.005lIO

0.006780

0.005140

0.0G55I0

0.Q05400

Fipre 5.54 ADalliraba (Eu) ID the 8l1lllÜD1IID spacer

The distribution of the smoothed plastic strain-xx of the aluminum spacer is

shown in Figure 5.55. The maximum is 0.24% which is significantly more than

the excess length (0.018%) of the optical fibers iDserted in the grooves.

Considering an overall average plastic strain of 0.20%, it is expected that stresses

are induced in the optical fibers, assuming the spacer elongates as much as the

cable.

Experimental results (IREQ 1994) indicate that the measured maximum

elongation of optical fibers are 0.52% and 0.48% for the 6--fiber and the 8-fiber
groups, respectively. It is seen that these maximum elongatioDl are less than the

measured elongation of the external envelope of 0.61%, which is expected.

However the difference is of 0.09% and 0.13% and exceed by the nominal fiber

excess length of 0.018%. This is an important observation and it is discussed in

details in the next sectioDS.
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MAXIMUM
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ripre 5.55 8moothecl plutlc draiD of the alumiDum spacer

The maximum principal and shear stresses of the aluminum spacer are presented

in Figures 5.56 and 5.57. The maximum values are 258.3 MPa and 132.5 MPa,

respectively. It is seen that the variation of the distribution on the cross section is

very small.
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The maximum axial displacement of the aluminum spacer at half-length of the

cable is 0.75 mm (see Figure 5.58). Ita distribution is practically uniform with an

average of 0.74 mm, which is less than hall of the prescribed displacement at the

loading end (0.81 mm). This is consistent with the nonlinear material behavior.

As mentioned in Chapter 4, the loading end of the aluminum spacer is free te

rotate. Therefore, no reaction torque is induced at the free end.
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Due to its helical geometry, the aluminum spacer tends to UDwind when
stretched. The UDwinding rotation shown in Figure 5.59 is 42 degrees at the free
end (full length of the cable) corresponding to 1.77 times of the spacer's pitch

length (150 mm). Assuming a linear variation of this rotation, it amounts to 24
degrees per pitch length of the 8pacer.

Deformed

Undeformed

5.3.4 OPGW reIpOllle

5.3.~.1 Torque and force reactions

In the finite element model, the torque reaction (MOMENT-REACTION-X) is

calculated by snmmation of the multiplication of the Z- and Y.·REACTION of each

constraint node by its corresponding Y- and Z-LEVER.

The torque reaction at the loading (free) and the support (fixed) ends of the

outer and inner wes and the tube versus load increments are shown in

Figure 5.60. The central tube is free ta rotate at the Joading end, therefore no

torque is generated at free end and only the fixed end torque reactioD is plotted.
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-&-lnDer wir. (DdiDg end) -4-lnDer wn (lUpport)
-'-Outer wir. (JoadiDI end) ~Outer ft. (IUPport)
~Tube (support)

Figure 5.80 Torque readiOD of the OPGW compoaeDta

The directions of the torque reaction at the free end of the outer wires and inner

wires are opposite with respect ta each other. The torque reactioDS at the loading

end of the inner and outer wires are ...15.6 and 16.7 kN.mm, respectively. These

values are smaller than the torque reactioDS at the support (19.0 and -20.3

kN.mm). The history of the loading shows that up ta 50% of the load the

response is non-linear but then becomes almost linear up ta the fullioad for bath

the outer and inner wes. The results indicate that the opposite heUx of the

outer and inner wires significantly reduces the resultant torque at bath ends. The

contribution of the central tube in torque resistance is negligible eompared ta

that of the wes.

The reaction force in the x-direction at ends (fixed and &ee) is presented in

Figure 5.61. The aluminum spacer reaction is not shown here Binee its response is

independent of the tube and wes.

The loading history of the re8Ction force shows that the inner wire contribution is

the most important one. The reaction forces of the ÎDDer wires at the free end

and at the support are 45.85 and --45.69 1eN, respectively. The difference (160 N)

is the resultant friction force exerted by the outer wires and the central tube. The

reaction forces of the outer wires at the loadiug end and at the support are 17.04
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and -17.17 kN, respectively. Therefore, the resultant friction force between the

outer wires and inner wires is 130 N. It can be concluded that the effect of the

friction force is negligible on the response in axialload. The results for the other

loading case when only the central node is loaded is similar to the above and is

presented in Tables 5.4 ta 5.6.

Figure 1.11 Cable uIal reaetlOD force of tbe OPGW COlDpoDeDtl

5.3..4.B Streaes and ltrait18

The strain and displacement (along the cable axis) of a central node of the inner

and outer wires at the free end are plotted in Figure 5.62 with the results

obtained by the analytical solution of Phillips and Castello (1973). This solution

is based on the one.dimensional linear strain-displacement relation (E =~l/O. The

numerical response of the inner wes for small displacements is close to that

obtained from the analytical solution, however, the difference is increasing for

larger displacements. Nevertheless, the strain-displacement relation is almost

linear.
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-'-Inner wire (Dode 617) -'-Outer wile (Dode 4935) ---ADalyticailOlut"

Figure &.12 LoadiDI end respoDle of the wireI (ail iDterior DOdeI lire loaded)

The central nodes of the inner and outer wires (Nodes 518 and 4770 selected

here) are located almost at the mid-Iength of the cable. The strain versus
displacement relation of thœe nodes is plotted in Figure 5.63. The linear

analytical solution predicts the same response for the inner wires for small

displacements (up to 0.26 mm) but underestimates the strains for large

displacements.

~ limer wire(aode 518) ~Outer win (Dode 47'70) ---ADaIyticallOlutiDal

fipre &.13 Mld-1eDpb respoue 01 the wIree (ail batGiar DOd. an loMed)

The numerical response of the outer wires is smaller than that predicted by the

analytical solutions and is nonlinear throughout the loading history. The

numerical strains plotted are a smoothed average using bilinear interpolation

between integration points.
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5.9.4.9 End elfects

Figure 5.64 shows an inner wire's stresses along the cable axis for the two cases

studied. There is almœt no variation in stress far nom the ends. It is seen that

end effects are limited to few e1ements and the stress is very high at the loading

end when the displacement is prescribed only at the central node. As mentioned

earlier, the end effects vanish when using the centroid interpolation scheme. The

results in Figure 5.64 are extrapolated using the results at the nearest integration

points and bilinear interpolation (RBT) for a floating-point. The stresses vary

between 820 ta 890 MPa, neglecting the end effects.

Î -.-AD iDterior nad. are loader!••'J.~ _

F!pre 5.14 Stresa eDd etredl ID aD bmer win

The stresses and strains of an outer wire versus its position (final coordinate) are

plotted in Figures 5.65 and 5.66, respectively.
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The overaU response is sirniJar to that of the inner wire, however, the differenœ

between the two the loading cases is more evident for the outer wires. The

stresses vary between 150 ta 190 MPa when the end effects are neglected.

The strain variation along the cable axis in an outer wire is almoet periodic. Its

period is almost a quarter of pitch length (202 mm) which consists of five cycles

for the fulllength of the mode! (265.16 mm). The strain varies between 2.3 and

3.0%, and it is larger when aU the interior nodes of the loading cross section are

loaded.

FIgare 5.11 SuaiD eud etreds iD ua outer win

5.9.~.4 DùpÙJcement.

The displacements of the central node of an inner and an outer wire are plotted

in Figures 5.67 and 5.68 along the cable axis.
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The solid lines represent the linear &train (0.61%).

The graph shows the elongation of an outer wire along the cable length

(Figure 5.68) and the linear theoretical displacement (solid line) indicates that

the behavior of the outer wires are slightly nonlinear for some part of the cable.

It is noted that in a region where the displacement is prescribed (free end), the

relation is linear.

Figure 5.88 Outer wIreI clIIplaeemeDt a10aI cable aU

As it is seen, the axial displacement of the wires along the cable length ÎS, in

general, linear with respect to the cable length. However, the true strain in the

wires cannot be extrapolated usmg the linear strain-displacement relation.

5.4 SlImmary of the results
The results of the OPGW finite element model for the two cases presented in the

sections 5.2 and 5.3 are snmmarized in Tables 5.4 to 5.6.

These results are compared with thœe of the two analytical solutions by Machida

and Durelli (1973), and Phillips and Coste1lo (1973). Results listed for the inner

and outer wires and the aluminum spacer are at the cross section located at mid

length of the cable model. The central aluminum tube results are thœe calculated

over its entire length.
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Table 1.4 B.eIpoDlel of OPGW - l'IDite e1emeDt made1I ad aulJtiw lO1utiOll8

~
Total uialload Stre8l-XX StraiD-xx

(kN) (MFa) (%)
Outer wires Fixed-end Free-end

(aU iDterior DDdeI G'e 1oIIded) -17.17 17.04
50 - 258 0.097 - 0.378

Inner wires
-45.69 45.85

(.0 iDterior ..... an ......)
775 - 919 0.480 - 0.564

Tube -1.34 1.30 4 - 193 0.311 • 0.940

Outer wires
-16.75 16.70

(0D11 ceatral aode .........)
38 - 255 0.079 - 0.373

Inner wires
-45.10 45.12

(0D11 ceatral aode ... Jo.ded)
772 - 920 0.475 - 0.556

Tube -1.35 1.27 Il - 203 0.303 - 1.024

Aluminum spacer (FE model) 2.5 238 - 254 0.538 - 0.615

M..bIù " DunIII (l'fI)
Outer wires 44.7 349 - 367 0.560

Inner wires 61.9 955 - 969 0.599

Tube 3.9 377 0.610

Pldlliplic CodeDo (l'fS)

Outer wires 44.1 331 - 349 0.569

Inner wires 61.8 953 - 968 0.602

Tube 3.9 377 0.610

Aluminum spaœr (Analytical) 4.0 389 0.610

1.4.1 COmpariloD of two loadiq cueI iD the IDite elemeat aalJ.
The two finite element models only differ in the application of the loading, with

either the displacement prescribed at the central nodes or at all the interior nodes

of the wes. The results indicate that the two models are similar and the

differences in the calculated responses in the outer and inner wires are neg1igible.

However, in general, the overall responses of the mode! with more restrictions

(when all interior nodes are loaded) show slightly higher stresses and &trains. The

axial strain and stress of the central aluminum tube is mostly affected. The

maximum axial strain in the tube increases by about 9% when the central nodes

are loaded. This is due to the increased contact of the inner wes with the tube

since the wes have more &eedom ta move compared to the other Joading eue.

Therefore, the axial stress is slightly higher tao. In rea1ity, the applied axial load
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on the OPGW is almost uniform and the deformation of the wes at the loading

end are expected to lie in between thœe obtained in the above two loading cases.

The study reveals that the effect of the two loading modes are insignificant on

the overall response of the OPGW, and only the by using displacement-control

approach allows that compatible displacements be induced in the OPGW

components.

5.4.2 CompariJoD with 8II81yticallOluti0Dl

The analytical solutions of Machida and Durelli (1973) and Phillips and Castello

(1973) are calculated based on a 0.61% axial elongation of the cable (oPGw)

without friction effects. It is recalled that the calculatioDS of the finite element

model are based on a prescribed displacement of 1.62 mm subjected to all
components of the OPGW (inner and outer wires, aluminum tube and spaœr),

which is equivalent to a 0.61% elongation, assuming a linear strain-displacement

relationship. An axial loacl of 114 kN or 106 kN is required to induce an

elongation of 0.61% using the analytical solutions of Machida and Durelli or

Castello. However only 67 kN is needed to stretch a 265.2 mm length cable

segment as much as 1.62 mm. The exact displacement is used here as a reference,

since the axial strain induced in the model differs from 0.61%, and varies in

components.

The equivalent secant modulus of elasticity of the finite element OPGW model

based on the 0.61% elongation is 57.5 GPa. A theoretical calculation considering

full compatibility of all the cable components elongation yields an initial tangent

modulus of 93 GPa. This comparison reveals that the finite element OPGW model

is more flexible than that of the analytical solutioDS. More discussion is presented

in the next section in the transmission line application of the OPGW.

The resultant torque at the fixed end is almost zero, which means that the

induced torques in the outer and inner wes are almost equal but in opposite

directions. The net torque reaction is about 50 kN.mm using the analytica1

solutions. The outer wes reactioD torque (-82 kN.mm) is significantly larger

than that of the 6nite element mode! (-20 kN.mm). In f&Ct, the opposite direction

and the angle of the helix of the outer and inner wires are optimal.
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Table 5.5 Respolllel oloPGW moclell .ct aulytlcal aolutlODl

~
Torque Max. Principal Stre18 Max. Shear StrMI

(kN.mm) (MPa) (MPa)

Outer wires Fixed end Free end

(aU interior nOOes are loaded) -20.3 16.7
54 - 292 39 - 157

Inner wireB
19.0 -15.7

(aU interior nOOes are loaded)
790 - 932 406 - 473

Tube 0.29 0.0 5 -194 65-98

Outer wires
-19.5 17.8

(only central node are loaded)
47 - 280 38 - 141

Inner wires
18.2 -16.7

(anly central Dode are laaded)
787 - 935 402 - 466

Tube 0.17 0.0 12 - 205 64 -104

Aluminum spaœr 0.0 245 - 258 123 - 133

Machida & Durelli (1973)

Outer wires -83.3 349 - 367 175 - 183

Inner wires 31.5 969 - 984 48S - 492

Tube 0.0 - -

Phillips & CœteUo (1973)

Outer wires -81.5 353 - 373 177 - 186

Inner wires 31.2 967 - 982 483 - 491

Tube 0.0 - -

5.4.3 Compariaon with experimmtal remit.
In the experiments performed by IREQ (see APPENDIX n), an 83.5 kN axial force

induces an elongation of 0.61%, including the creep effects. The reaction force

obtained by the 6nite element mode! (67 kN) is only 80% of that obtained in the

experiments. It is worth noting that the elongatioD measured in the experiment is

of the extemal envelope of the cable (outer wes) and the behavior of the other

components (inner wires, aluminum spacer and the tube) cannot be observed.

The elongation of the optical fibers inserted in the a1uminum spacer grooves is

0.52%, considering the excess length of the fibers (0.018%). Assuming compatible

displacements for all the OPGW components, the optical fibers must extend up to

0.59%. Therefore, it can be inferred that the elongation of the optical libers unit

and consequently the aluminum spacer is incompatible with the measured
elongation of the extemal wes (0.61%). As an approximation, one would predict

that the elongatioD of the aluminum spacer is equal to the measured fiber
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elongation (0.52%) plus the actual fiber excess length (nominal value of 0.018%),

which amounts to only 0.54%.

5.4.4 UDloNIIDI cycle

In order to verify the final configuration and stresses of the OPGW, the cable

model is unloaded. In the process of unloading, the prescribed displacement

(1.62 mm) is gradually decreased (in 40 steps) to zero displacement. It is noted

that due to the presence of plastic deformations in the aluminum tube and

spacer, the zero displacement state will Dot correspond to a stress-free state.

Figure 5.69 shows the loading history of the free end of the central tube. The

tube is unloaded alter reaching a 1.62 mm displacement. The figure shows that at

1.07 mm the reaction force is zero and the free end of the tube is in a stress-free

state. In other words, a permanent displacement of 1.07 mm, equivalent to 0.4%

axial strain, is induced in the tube. This permanent deformation is at the free end

of the tube, and it varies along the cable.

l'ipre 5.11 Load cycle ID the ceDU" tube

Figure 5.70 shows the history of loading in the aluminum spacer. Due to the non­

linear material behavior of the spacer, the spacer yields alter an elongation of

almost 0.9 mm. The total reaction force reaches 2.5 kN. The response indicates

that during unloading to zero displacement, the reaction force becomes zero for a

0.55 mm deformation. As a result, the permanent plastic deformation of the

aluminum spacer is 0.55 mm. The graph also shows a linear response in the

unloaC:UDg cycle.

5-61



RESULTS AND DISCUSSION

Flpre 5.70 Load cycle ID the alumlDum spacer

The permanent deformation of the aluminum spaœr (0.55 mm) is about half of

that of the central tube (1.07 mm). Since the optical fiber units are housed in the

spacer's grooves, compatible deformatioDS can be assumed between the fibe1-s and

the spacer, excluding the excess length of the fibers. For the length of the model

(265.16 mm), the excess length of the fibers is 0.05 mm (0.018%), therefore, the

optical fiber units are expected to undergo a 0.5 mm elongation (0.19%) after the

cable is unloaded. This defonnation can he the cause of the permanent signal

attenuation observed in the IREQ experiment (IREQ 1994), although the report is

Dot specific about it.

Due to the linear material law of the inner and outer wires, no permanent

deformatioDS are left after the wes are unloaded. In a typical transmission line

span which the total cable length is large (300 m-450 ml, the effect of the

accumulated plastic deformatioDS of the aluminum tube and spaœr will he

redistributed in the inner and outer wes.

5.4.5 btreme JoadlDI eue

As mentioned before, the response of the inner and outer wires in the finite

element model is linear. In order to verify the strength of the cable prior to wire

yielding, an extreme Joading scenario is considered. The prescribed displacement

in the OPGW mode! is increased by 20% to 1.94 mm, which is equivalent to a

0.73% axial elongation. It is applied to a1l the interior nOOes of the wes and

friction effects are iDcluded. The results indicate that this threshold is a1mœt the

maximum loadiDg for which the wes remain linear. The responses of the wes
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and the tube are similar to that obtained for the 1.62 mm prescribed

displacement, and therefore only the numerical results are presented here.

The maximum stress (ou) in the outer and inner wes are 319 and 1126 MPa,

corresponding to 214 and 1061 MPa average stresses and ±105 and ±65 MPa

bending stresses, respectively. Resulta indicate a large bendiDg stress in the outer

wes compared to the inner wires. The maximum strains are 0.47% and 0.68% in

outer and inner wires, respectively. However, the average strains in the outer

wires are 0.35% and 0.63% in inner wes. AlI the results are obtained at the crees

section located at half-length of the model.

The axial reaction forces induced at the loading end are 24 and 56 kN in the

outer and inner wires, respectively. Adding the aluminum spacer and tube

reaction forces ta th08e of the wes, the total axial reaction of the cable is 84 kN.

This is almost equal to the axial tension force used in the experiment

(83.5 kN)(IREQ 1996). Despite the loading (prescribed displacement) is increased

by 20%, the total axial force is increased by 27%. This confirma the nonlinear

relation of the axial deformation and the tensile force of the cable

The reaction torque at the fixed and the loading ends of the outer wires are -31

and 28 kN.mm. These values for the inner wires are -21 and 23 kN.mm,

respectively. The resultant torque of the inner and outer wires is about 7 kN.mm.

This indicates that increasing the axial displacement increases the resultant

torque. The reaction torque in the wires shows an increase of 23% to 50%,

compared to the reference loading case. The response of the aluminum tube and

spacer remains almost the same as in the reference loading case, but the plastic

deformations are increased due to the additionalloading.

5.5 Melh refiDement

In order to verify the accuracy of the finite element model, a finer mesh is

generated for the outer and inner wes. Figure 5.71 shows the cross section of the

OPGW with a finer mesh compared to the previous mode!. In this fine mesh

model, the number of elements in the wire cr0fJ8 sections is doubled of that the

previous mesh, while the number of longitudinal elements is the same. The finer

mesh of the cross section is selected ta simulate more contact with neighboring

wes and the tube in comparison with the previous coarser mesh.
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In order to compare the two models, the prescribed displacement is applied to the

same nodes as in the previous model, and not to aIl the interior nodes of the

wires cross section. AIl other characteristics of the model are kept the same 88

those of the previous mode!. Due to the increased number of elements and the

limitations of the computing platform, the aluminum spacer is excluded &om the

model.

PRE8CRfBED
DISPLACEMENT
TlME 10.00

1.817

l'ipre 5.Tl l'IDe meah of the OPGW

z
x---y

Contrary to the coarse mesh where the wires touch each other only in the third

load step, the wires are in contact &om the first Joad step since the gaps between

the wires are small. Selected results of this model are presented in the Dext

section for comparison with the previous mode!.

5.S.1 Outer win respcmae - fine meah

The strains and stresses of the outer wires crœs-section at mid-length of the cable

are presented in Figure 5.72. Comparison of the results with the same loading

scenario of the coarser mesh reveals that the strains and consequently stresses are

higher using a tiner mesh. The maximum stress (294 MPa) is a1mœt 12% larger

than that of the coarser mesh (258 MPa). In general the bending effect is more

evident in the coarse mesh and is smaller in the &ne mesh. The overall trends of

the stresses and strains are simiJar to the previous mode! and CODtrary to the

inner wire response, no local contact stresses are observed.
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Fipre 5.72 Strea ad ItraID clIJtrlbutlOD ID outer wireI • 8De mah mode!

The maximum principal and shear stresses are 319 and 162 MPa, respectively.

These values are only 8% and 3% larger than thœe of the previous mode!. The

distribution of the shear and principal stresses are the same in the fine mesh 88

the bending effects are minimal compared to the previous model.
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5.5.2 Imaer wireI relpODl8 • flDe meù
The smoothed principal and xx-stresses of the inner wes along the cable axis

are illustrated in Figure 5.74. The compression due ta the contact forces between

neighboring wes decreases the stresses along the cable axis. Although this effect
is globally insignificant, however, the local effects can be seen clearly.
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flpre 5.14 PrIDcipaI ad DOnDa1 8treIMI of bmer wireI alolll cable uia

The maximum stress (959 MPa) is only 4% larger than the value found in the

previous model and the minimum (698 MPa) is 1% smaller. The changes in

normal stresses are very small and using a finer mesh does not seem to be

efficient. However, the distribution of the stresses is very affected by the use of a

fine mesh. It is observed that after applying half of the load, due to excess

contact between the adjacent inner wes, the stress distribution changed

gradually such that, at the end the maximum stresses occur at the outer fibers in

four wes, whereas the maximum stresses occurred at the inner fibers in the

coarse mesh mode!. The stress distribution is no longer uniform, but the extreme

values are not much affected.

The maximum shear stress distribution is presented in Figure 5.75. The

maximum value (525 MPa) is about 10% larger than that of the coarser mesh

(473 MFa). However, this maximum is limited to the contact point of the wires,

which is Dot a good indicator for compariaon. The average shear stress is only
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about 5% more than that of the previous model. In general, the distribution of

the stresses is more uniform using the finer mesh, neglecting the concentrated

contact force effects.

MAXIMUM
~ 525.0
MINIMUM
)E a.'
SMOOTHED
MAX
SHEAR
STRESS
ASTCALC
'"ME 10.00

~512.0
~ ....0
iL

410.0

*.0
448.0

...0

.11.0

Fipre 5.15 Muimum shur lireIa of limer wireI alolll cable uis

The stress distributions are affected by the contact forces but the strain is not,

such that the strain distribution (Figure 5.76) heing different than the stress

distribution.

MAXIMUM
~ 0.005170
MINIMUM
)E 0.0CMI52

SMOOTHED
STRAIN-XX
ASTCALC
TlME 10.00

~aam
1- 0.005125

0.005475

0.00l5325

0.005171

O.OOIG2I

o.acMI75

Fipre 1.'1 8traiD cIImIbatioa of limer wireI .. IDe lIIeIh 1IIOcIe1
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Agam, here the maximum strain occurs at the outer fibers where the stress is

maximal. The maximum strain (0.59%) is only about 4% larger than that of the

coarse mesh (0.56%)

Using a finer mesh for the inner wires increases the contact between the wires

and the tube. Figure 5.77 shows the axial stress distribution in the central tube

using the fine mesh mode!. Stresses and strains (Figure 5.78) in the tube are

slightly larger than those of the previous mode!. However, since the tube in bath

model yields, the overall effects are not significant. Due to more contact from the

inner wires, the stress distribution is more uniform in the tube compared ta the

previous model where concentrated contact forces decreased the axial stress

locally.

MAXIMUM
~ 181.2

MINIMUM
)( 71.35

SMOOTHED
S'TlŒ8S-XX
RSTCALC
SHELL T. 1.00
TlME 10.00

~l'oU
" 1••0
:1-

152.0

131.0

120.0

104.0

••0

Flaure 5.TT Streu diatrlbutloa ID ceDual tube

The maximum axial stress (191 MPa) is about 6% lower than that obtained in

the coarse mesh mode! (203 MPa), while the minimum (78 MFa) is 86% larger

due ta localized contact effects. The changes in the average stress and strain

values are insignificant.

The maximum and minimum axial strains in the tube (0.91% and 0.41%) are

about 6 and 19% Jarger using a finer mesh. Again, the locaUzed contact forces

explain the reason of larger difference in minimum &train. However, the changes
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in average strain are insignificant. The average smoothed plastic strain in the

tube (0.44%) is about 6.7% smaller using the finer mesh mode!.

MAXIMUM
2 0.00lI01
MINIMUM
~ 0.001915

SMOOTHED
PLASTIC
STRAIN-XX
RSTCALC
SHELL T. 1.00
TlUE 10.00

l 0.0IllI333
0.005II7

.- O.oœooo
0.0CM333

0.003Ie7

0.003000

0.002333

MAXIMUM
~ 0.001057
MINIMUM
)lE 0.OCM143

SMOOTHED
ST'RAIN-XX
ASTCALC
SHaLT. 1.00
nue 10.00

lo.OGIII7
.- 0.00lO0O
;04..

0.007333

O.ooeeI7

0.00lO0O

0.00&333

0.0CMII7

figure 5.78 StraïD dùinoutlOD iD alumiDum tube • flDe mesh mode!

5.8 Behavior of the OPGW iD treDIJDj88ioD Unes

The OPGW analyzed in this study is used in Hydr(>Qu~bec's transmission Unes.
The cable elastic extension, 8Se, due to horizontal tension, H, in the catenary

configuration can be obtained by

(5.2)

where;

w : weight per unit length (uniform)

A : cable cross-sectional area

E : Young's modulus of cable (effective)

X : nodal coordinate of the cable with respect to the absolute origin

The lowest point of the cable in a leve1 suspension span is usually controlled by

the horizontal tension. In practical cable striDging operations, the maximum sag

is controlled which corresponds to a calculated tension.
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figure 1.'1' CaieJUII'Y coaBpratloD of a cable

Equation (5.2) is based on the effective axial rigidity, EA, of the cable. When an

additional gravity load is applied to the cable (such as accumulated ice), the

cable elongates due to the increase in horizontal tension. The elongation of an

elastic catenary cable when horizontal tension changes ftom Hl to H2 is

where W1 and w! are the loads per unit length in the initial and final states. In

equatioDS (5.2) and (5.3), A and E are nominal values of the cross-sectional area

and effective modulus of elasticity of the cable. The theoretical values of A and E

calcu1ated for the OPGW of this study are 209 mm2 and 93 GPa, respectively,

based on the total cross-sectional area and compatibility of strains and

displacements of all components.
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The total reaction force of the OPGW versus elongation is plotted in Figure 5.80.

An axial force of 67 kN is required to induce a 1.62 mm elongation in the OPGW.

The effective modulus of elasticity of the cable can he calculated 88 follows,

(5.4)

where, Pt is the total reactiOD force (variable), ~ is the total crœs-sectional area

of the cable model (190 mm2
), 8x is the cable axial disp1acement (variable) and l

is the cable model length (265.16 mm). Since the ratio of the axial force over

displacement is variable (Figure 5.80), the effective modulus of elasticity also

varies with reaction force or displacement. Figure 5.81 shows the effective

modulus of elasticity of the OPGW with respect to the axial displaœment. As it

can he seen the modulus of elasticity is increasing with displacement, and the

maximum modulus is 57.5 GPa. This behavior is due to materiallinearity of the

iDDer wires, which dominates the overall modulus of elasticity of the cable.

However, the moduli of elasticity of the aluminum tube and 8pacer are constant

in the linear range and then decreasing when plastification OCCUlS.

Fipre 5.81 Efl'edi~e mocIulUi of elasdclty 01 the QPGW

Considering the effective modulus of elasticity (Figure 5.81) of the OPGW and

using the reaction force (Figure 5.80) 88 the horizontal teDSioD in Equation (5.2),

the elastic elongation of a 200 m span of cable versus the horizontal tension is

plotted in Figure 5.82. For comparison purpœes, the theoretical modulus of
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elasticity (93 GPa), calculated based on compatible elongation of aIl the cable

components, is also used 88 shown in the figure. It is worth noting that this

modulus of elasticity is kept constant for varying teDSioDS.

-FE mode! -+-Tbeoretical constant value (E=93 GPa)

Fipre 5.82 E)0UPÜOD of cateDIIrJ cable UDder horisoDtai leDl10D

The graph shows that for a span of 200 M, the cable elongation is larger usÎDg

the effective modulus of elasticity obtained from the finite element model. For

example, for a horizontal tension of 67 kN, the finite element cable model is

stretched by 670 mm, compared to a prediction of ooly 342 mm using the

theoretical value. This means that under the same horizontal teD8Îon, the

maximum sag predicted using the cable effective properties obtained from the

finite element model is larger than that using the constant theoretical value of

the modulus of elasticity. It is noted that in practice, sag and tension calculations

take into account the nonlinear variation of the cable axial rigidity.
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6

CONCLUSIONS

8.1 OPGW fiDite element model
The constructed finite element model is proven to he capable of predicting

stresses and displacements in the OPGW components. The following are the main

conclusions of the research.

1.1.1 Three-dlmemlmutl mocIellDl
The detailed analysis of the OPGW is pœsible only with a three-dimeDSional

model due to its complex cross section, helical configuration of the wires in

different directions, and their contact effects. Three-dimensional solid elements

were used in madeling the wires and aluminum spaœr, and shell elements for the

central aluminum tube. Bath types of elements are designed to take the tJ1ree..

dimensional contact effects.
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1.1.2 Optimum leqth for computatioDa

The optimum length of the model is one-pitch corresponding to the longest pitch

length of all the OPGW components. This is aIso the minjmum length of a

helically shaped member that is feasible ta Modele The shorter the length of the

model, the less reliable the results are in terms of inducing contact forces with

other parts of the cable, especially near the ends. However, the longer models can

he used for added accuracy but it drastically inCleases the computational cost

(time and capabilities of computing facilities).

1.1.3 ~d efrectl

AIl degrees of &eedom of the OPGW model are fixed at one end (fixed-end

support). At the loading end, however, only the axial translational degree of

freedom of the wes is free, while all degrees of freedom of the central tube are

free. At bath ends of the helical wes, due to the nature of the loading or 6xity,

very large stresses are induced. This behavior is only limited to one length of

elements at each end. It is observed that end effects are minimized using different

schemes of interpolation in stress calculatioDS. Negligible end effects are induced

using the centroid interpolation calculation. However, the effects are maximum

using RST interpolation. Consequently, average stresses and displacements are

calculated at the cross section located at half-pitch length of the cable, which is

deemed more representative of reality, and using UT intet'polation.

1.1.4 Loadml mod.

The displacement-control approaches perform better than the load-control in the

finite element mode!. For compatible displacements of the different components,

the prescribed elongation approach is the only one that can he used. Applying

direct tensile forces is possible, however compatibility in the extensions of the

components cannot be achieved due to the helical configurations of the outer and

inner wires and the nonlinear behavior of the aluminum tube and spaœr. In

general, due to the helical shape of the wires and the contact forces between

them, the load-control approaches create difficulties in convergence.

1.1.5 FridioD efI'ed.
The friction effects between the outer wires, the inner wires and the two layera of

wires are însignificant. The changes in stresses and displaœments of the outer

and iDner wires with and without friction effects are neg1igible (less than 1%).
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However, friction effects are substantial on the displacements and stresses of the

central tube. In the inner-wire.and-tube model, when only the wes are loaded,

the displacement of the tube is more than 6 times Jarger with friction than

without friction (0.32 mm vs. 0.047 mm). The stresses and strains are also 2.8

and 4.3 times larger with friction than thœe obtained without friction. In reality,

the presence of the friction is inevitable, and its effects are significant in the

response of the tube. Inter-wire friction is also an important source of damping in

Dexural vibration.

1.1.1 NODIi-ar reIpODIe

The axial strain along the cable axis in the wires is nonlinear with respect ta the

corresponding displacements. In other words, the uniaxial strain-displacement

relation (E = &1/~ is no longer valid in predicting the strain in the three-­

dimensional model (axial strain in the wes and in the tube). However, it C8D be

used ta predict the strain in the aluminum spacer, which is located at the center

of the cable and bas little interaction with the other cable components.

Consequently, the overall elongation of the cable can he considered 0.61%, but

not the strain in individual components of the cable.

1.1.T The difI8reD.ceI iD ItreIlel and atraiDI

The axial stresses of the inner and outer wes of the coarse mesh are in the range

of ±10% different than those obtained by the analytical solutions (Machida and

Durelli and Phillips and Costello). However, the axial strains are smaller in the

finite element model. Using a &ner mesh, the strains and stresses of the inner

wires are almost identical to those of the analytical solutions (1%), although the

responses of the outer wes are smaller (9%). The responses of the aluminum

tube and spacer cannot be compared with the materially linear analytical

solutions due ta plastification.

1.1.8 ReactiODI

The reaction force obtained at the loading end is equivalent to the axial tension

that can he induced by the prescribed displacement in the components. The axial

forces induced in the outer and inner wires are 17 and 45 kN, which are 27% and

73% of thœe obtained using the analytical solutions of Machida and Durelli

(1973) and Phillips and Castello (1973). These reactions are 49 and 63 kN if the
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wires are considered straight. The comparison reveals that the fiDite element

model is significantly more flexible than the theoretical models. It also seems that

the analytical solutions are less accurate ta prediet the response of the outer

wires than that of the inner wires, mainly due ta the fact that the analytical

solutions neglect the mechanical interaction between the different layers. The

total axial reaction force of the OPGW coarse mesh is 67 kN, and it is increased to

77 kN using the finer mesh. These reaction forces are 80% and 92% of the axial

force (83.5 kN) used in the experîment at IREQ (IREQ 1994) to induce the 0.61%

elongation. The difference in the forces is due to the smaller cross-sectional uea
of the coarse and fine mesh models, which is lees than 10% and 2.6% of the

actual cross-sectional area of the cable, respectively. The 0.61% elongation

measured in the experïment is the extension of the externaI envelope (outer

wires); it is noted that strains or displacements of the internaI components of the

OPGW are not measured.

The axial reaction forces of the finite element coarse and fine meshes are 80% and

92% of the maximum tensile force used in the experîments, respectively. It is

noted that the improved accuracy of the finer mesh model is essentially due to its

better approximation of the actual cross sectional area of the wires, as explained

above.

The effective modulus of elasticity of the finite element coarse and fine mesh

models at maximum elongation are 58 and 65 GPa, respectively, while the

theoretical value, considering a composite cross section, is 93 GPa, neglecting all

three-dimensional effects. The smaller effective modulus of the finite element

model results in a larger elongation in the cable than that of the theoretical one

under the same axial tension.

1.1.8 Load cyde

The aluminum spacer and the tube are yielded under the prescribed

displacement. In the unloading cycle, it is observed that the permanent plastic

deformatioDS of the aluminum tube and spaœr are 1.07 and 0.55 mm,

respectively. Assuming compatible elongation of the spacer and the optica1 fiber
units (which are inserted in the spaœr's grooves) , and taking into account the

libers' excess length of 0.018% with respect to the spacer, a 0.5 mm (0.19%)

elongation remainA in the optical fibers after the removal of the load. This
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elongation will cause permanent signal attenuation. This is a very important

finding since no long-term attenuation is permissible according to the design

criteria. In case of repeated cycles of loading, the permanent deformation of the

aluminum tube and the spacer will accumulate in each cycle. Periodic ice

shedding from transmission lines are examples of repeated load cycles.

1.1.10 Enreme JoadlDI C8Ie

The inner and outer wire responses stay in the linear range up ta a 20% increase

above the maximum tension in normal operation (0.73% elongation). In sueb a

case, the total axial force of the cable is increased by 27%, and the torque

reaction in the outer and inner wes increase by 23 to 50%, respectively. The

outer and inner wire stresses are almost equal to their maximum tensile strength

in this extreme loading case. Beyond this extreme loading, the responses of the

outer and inner wires are becoming nonlinear.

8.1.11 TrenlJDluIollliDe behavior

Due to the smaller effective modulus of e!asticity of the finite element mode!

compared to the nominal values, the elongation of the cable will be larger and

consequently the maximum sag of a suspended cable span is larger for a given

horizontal tensioD.

8.2 SlImmary of cODc1118ioDS
The study shows that the finite element madeling of the OPGW is reliable and

efficient in predicting the detailed response of its different components. The

central aluminum tube and spacer are yielded after ooly 36% and 62% of the load

level corresponding to the maximum tension in normal operation, respectively. In

a transmissiOD line, the plastic deformatioDS of the tube and spaœr will be

accumulated under periodic loading...unloading cycles, and the optical fibers are

eventually under stress. The response of the optical fibers is even more

complicated since the tube plastification occurs prior to that of the spacer.

Therefore, permanent signal attenuation due to induced stresses in the fibers will
OCCUl.

The friction effects between the outer wires, the inner wires and the two layers of

wires are iDsignificant. However, friction effects are substantial between the

central tube and the aluminum spacer.
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The effective modulus of elasticity of the finite element model is smaller than

that of the analytical solutions and its effect induces a Jarger elongation and sag

in a suspended cable than that of the theoretical prediction under the same

horizontal tension.

In general, the results of the finite element model agree with the experiments and

the analytical solutions. However, neither the experiments nor the analytical

solutions can predict the detailed respoDSe of the OPGW resulting &om the

complex interactions between the components.

8.3 RecommendatioDS for future work
Following are recommendations for future research on the numerical modeling of

helical wires:

• Compatible prescribed displacement is considered as the loading condition for

the OPGW components in this study. Combinations of prescribed

displacements or forces acting on the various components of the OPGW can be

stuclied such that represent more realistic behavior of the cable in

transmission llnes. In reality, only the external envelope is usually clamped at

the ends and the axial tension is distributed among the cable components due

to contact and friction.

• Investigation of load cycling effects;

• Verification of pitch length effects on the accuracy of the full model;

• Optimization of cable design, considering other types of cables with extra

layers, different materials, helix angles and directions;

• Detailed stress analysis of the attached ends of OPGW in clamps or special

sleeves;

• Analysis of cable subjected to extemal torque, bending moments, and complex

loadings.
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DETAILED ANALYTICAL SOLUTIONS

The detailed theoretical solutions by Machida and Durelli (1973), and Castello

(1997) are presented in the following sections. The subscripts 1, 2, and 3 refer to
the central aluminum tube (first layer), the inner wires (second layer) and the

outer wires (third layer), respectively. The solutions are carried out for two cases:

1) when the in-plane degrees of &eedom of the loading end are fixed (unwinding

of the wires is prevented), and 2) when the loading end is &ee, which means the

wires are unwinding. The geometrical properties of the OPGW are as follows:

~ 10 number of inner wires

fn.J 14 number of outer wires

P2 265.16 mm initial pitch length of inner wire, right lay

1'3 202.00 mm initial pitch length of outer wire, left lay

ri 3.25 mm outside radius of the aluminum tube

r';! 1.425 mm radius of the inner (second layer) wire

r3 1.685 mm radius of the outer (third layer) wire

~ 0.55 mm central aluminum tube thickness

Arube 10.28 mm2 cross sectional area of central tube

AA1. SpKer' 10.17 mm2 cr088 section of the aluminum spacer

~ 4.675 mm initial radius of the helix of the inner wire

~ 7.785 mm initial radius of the helix of the outer wire

a.z 83.68° helix angle of the inner wires

~ -76.39° helix angle of outer wires

El 0.61% axial strain in the central tube (El=E)

where a.z, and ~ are calculated as follows:

tan Œ2 = 265.16 =9.027 ~ Œ2 =83.68° (lI)
2K x 4.675
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tan Œ3 =- 202 =-4.1296 ~ Œ3 =-76.39° .
2Jt x 7.785

The geometry of the OPGW cross section is illustrated in Figure 1.1.

(1.2)

Figure 1.1 OPGW Cl"OII sectioD

1.1 Machida and Durelli (1873)

Fi = A 1E1e

0'1 = E1E

F2
h = A2E2(e sin2 Œ2 + y cos2 Œ2 )

F3
h =A 3E 3 (esin2 Œ3 + yCOS

2 Œ3 )

M., = 2E2I2 (e - y) sin2 Œ., cos2 Œ.,. R
2

••

M3 = 2E3I3 (e - y)sin2 Œ3 cos2 Œ3R3

M; =~~ (y-e)sin4a2

M; =G3J3 (y - e)sin4a34R3

M t2 =~(M~ sin a 2 - M2 cos a 2 + F:R2 cos Œ2 )

Mt3 =~(M; sinŒJ - Ma c08a3 + F:RJ COSŒ3 )

M~ube =2JtGJy / p

Outer wes

Aluminum tube

Optical fibers unit

Aluminum spacer

Inner wires

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)
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, 1+ E
P =p-­

l+y

F =Fi + ~F211 sin a 2 + fn:JF; sin a 3

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

1.1.1 UnwindiDllDOtiOD il Nltrided (y =0)

When the in-plane degrees of freedom of the loading end are fixed, the wires are

not allowed to UDwind and consequently the motion is resisted by twisting

moments M'lt, M3t' and M~ube =2JtGJy / p = o. Using the equations (1.3) to

(1.6),

Fi =635,388 x 0.0061 = 3.88 kN

al = 61,803 x 0.0061 = 377 MPa

F2
11 = 6.38 x 162,000 x (0.0061 x 0.988 + 0) = 6.23 kN

F3
11 = 8.92 x 63,765 x (0.0061 x 0.945 + 0) = 3.28 kN

and the axial forces along the cable axis are

F2 = F2
hsina2 = 6.23 x 0.994 = 6.19 kN

F3 = F:sina3 = 3.28 x 0.972 = 3.19 kN .

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)

The bending and twisting moments are determined using Equations (1.7) ta

(1.10),

M
2

= 2 x 162,000 x 3.24 (0.0061 _ 0) x 0.012 = 16.40 N. mm (1.26)
4.675

M
3

= 2 x 63,765 x 6.33 (0.D061- 0) x 0.0523 = 33.10 N.mm (1.27)
7.785
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Mt = 162,000 x 3.24 (0 _ 0.0061) x 0.427 = -54.96 N.mm
2 4 x 4.675(1 + 033)

Mt = 63,765 x 633 (0 _ 0.0061) x 0.814 = -48.37 N. mm.
3 4 x 7.785(1 + 0.33)

(1.28)

(1.29)

The total bending moments acting on the inner are outer wes in the plane of

the cable are:

Mb2 =M2 sin Œ2 + M~ cos Œ2 =16.40 x 0.994 - 54.96 x 0.110 =10.25 N.mm (1.30)

Mb3 =M3 sinŒ3 + M;COSŒ3 = 3310 x 0.972- 48.37 x 0.235 =20.79 N.mm. (1.31)

The average normal and bending stresses along the helix of the inner and outer

wes are

a~ = F2
b

= 6.23 = 976.48 MPa
.. A

2
6.38

F Fil 319a3 = _3 =- =357.63 MPa
A3 8.92

b _ M:z12 _ 16.40 x 1.425 - ±7 21 MPa., - - -. a
.. 12 3.24

b _ M313 _ 3310 x 1.685 - t8 81 MFa3 - - -. a
13 6.33

and the stresses along their helix axis are:

b F b (983.7
a 2 = 02 ± 0'2 = 976.48 ± 7.21 = 969.3 MPa

b F b ,366.4
a3 =03 ±(J3 = 357.63 ±8.81 = \_ MPa.

348.8

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)

The maximum shear stresses of the inner and outer wires along their helical axis

due to the resisting torque are,

Mtr.
t~ = _2_2 = -12.09 MPa

.. J
2
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To obtain the axial and shear stresses of the wires along the cable axis, the above

stresses (normal and shear stresses along helix) are transformed as follows

o~ o~ h • (969
O2 = - + -c08292 + 't2S~2 = MPa (1.40)

2 2 955

and

where

O~ • h (-119
t" = --sm282 + t 2cos282 = MPa
. 2 -118

9" = 1t - a" = 6.320
•·2·

(1.41)

(1.42)

The corresponding maximum shear and principal stresses are calcu1ated using the

following formula

(
a~ J2 (h )2 (492

't"max = - + t 2 = MPa. 2 485

o~ (984
O"Pl = - + t 2max = MPa.• 2 969

Performing the same calculatioDS for the outer wires:

83 =.! - a 3 = 13.61°
2

a~ a~ h • (343
0 3 = - + -c08283 + t 3 Sïn283 = MPa

2 2 ~7

and the corresponding shear stresses along the cable axis are

ah -90
t 3 = - ; sin283 + t~c08283 = (-86 MPa.

(1.43)

(1.44)

(1.45)

(1.46)

(1.47)

The corresponding maximum shear and principal stresses are calculated using the

following formula

( a~ J2 (h)2 (183t 3mu = - + t 3 = MPa
2 175

The deformed radius of the curvature of the inner wires
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, =4.675 + (265.16 x 10061)2 _1_ =390 mm
P2 2ft 4.675

and the contact force

6228
F2c = 390 = 15.97 N/mm.

And for the outer wires

p; =142 and F3c =3280/142 =23.07 N/mm.

(1.50)

(1.51)

(1.52)

The total twisting moment resisted by the inner and outer wires at the loading

ends are

Mt2 =10(-54.96 x 0.994 -16.40 x 0110 + 6,228 x 4.675 x 0110) =315 kN.mm (1.53)

Mt3 =14(-48.37 x 0.972 - 3310 x 0.235 + 3,277 x 7.785 x 0.235) =83.3 kN.mm (1.54)

and the resultant twisting moment on the cable

Mt =-51.8 kN.mm. (1.55)

The total applied load and normal stress in the aluminum spacer are,

FAl.IJ*=C =EuAuE = 63,765 x 10.17 x 0.0061 = 3.96 kN (1.56)

crAl.spacer =63,765 x 0.0061 = 389 MPa (1.57)

and the total load applied to the OPGW to induce 0.61% strain is

F =3.96 + 3.88 + 10 x 6.19 + 14 x 319 =114.3 :: 114 kN (1.58)

1.1.2 UDwiDdiDlmotiOD ÏI allowed (y ~ 0 uuI ~2 =0)

ln this section, the calculatioDS are carried on the cable with only the inner wires

and the central tube. In this case, the loading ends of the wires UDwind and no

torque is generated in the cable. Therefore, the total twisting moment is zero,

Mt =M~ube + Mt2 =a (1.59)

Mt = 2JtG
J
l + fl'L.!{M; sina2 - M2 cosa2 + F2

hR2 cosa2 ) = a (1.60)
p

Applying Equation (1.60), the rotational strain is obtained as

l =-0.152 (1.61)

and the unwinding rotation is

~ =2Jt'y =0.954 radian = 54.63°. (1.62)
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The axial force of the inner wire is

F2
h = 6.38 x 162000 x (0.0061 x 0.988 - 0.152 x 0.0121) = 4.33 kN (1.63)

F2 = F;sina2 = 4.33 x 0.994 = 4.30 kN. (1.64)

The bending and twisting moments are determined using Equations (1.7) to

(1.10),

M" = 2 x 162000 x 3.239 (0.0061 + 0152) x 0.012 = 424.30 N.mm
• 4.675

M~ = 162000 x 3.239 (-0152 _ 0.0061) x 0.427 = -1422.23 N.mm.
• 4 x 4.675(1 + 0.33)

The normal and bending stresses along the helix are

Ftl 4.330; = _2_ = - = 678.2 MPa
A'}. 6.38

o~ = M212 = 424.30 x 1.425 = ±186.7 MPa
.. 1

2
3.24

and the maximum and minimum normal and shear stresses are:

tl F b ~65.3
0" = O2 ± <1., = 678.7 ±186.6 = ( . MPa... 492.1

and

t~ =M~~ = -312.9 MPa.. J
2

(1.65)

(1.66)

(1.67)

(1.68)

(1.69)

(1.70)

(1.71)

To obtain the axial and shear stresses of the wires along the cable axis, the above

stresses (normal and shear stresses along helix) are transformed as follows

o~ 0: h • (786
02 =- + -c06282 + t 2sïn282 = MFa.

2 2 417

The corresponding shear stresses along the cable axis are

(1.72)

The corresponding maximum shear and principal stresses are calculated using the

following formula

1·8
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( J~)2 (h)2 (534 MF- + t 2 = a
2 398

(1.73)

G~ 966
G2P1 =- + t max :! =( MPa.

2 644
(1.74)

The total bending moment acting on the inner wires along the cable axis ÎS,

Mb2 =M2 sina2 + M~ COSŒ2 =424.30 x 0.994 -1422.23 x 0.110 =265 N.mm (1.75)

The twisting moment in the tube is

M~ube =21tGJ'Y / p = 21t x 2.41E6 x 0.152/ 265.16 =7667 N. mm (1.76)

and the total applied load on the inner wires and the tube to induce 0.61%

elongation is

F =3.88 + 10 x 4.30 =46.88 :: 47 kN.

1.2 CosteOo (199'1)

1.2.1 UnWÏllcliDl motion is restricted (~ = 0)

tanŒ =.J!L
2 2JtR

2

R; =ri (1 - VE l ) + r2 (1 - \lE2 )

R2 =1 + v (rlEl + r2E2)
R; R2

E (tE + 1"-E )
~2 = ~<P. = 2 - 4~ + v 1 1 , 2

tanŒ:z R2 tanŒ:z

A.' 2sin Œ2 COSŒ2 A. (rlEl + I1E2) 0082
Q2

r2~1C2 = ~a2 + v .........----...........,;;;;",;"".-~
R2 /r2 ~R2/r2

4 - (l- 28m
2

Œ2) 4a + v (rlEI + 12E2) sin Œ2cos2
Œ2

12 <P2 - R2/12 2 R:zR2/12

1·9

(1.77)

(1.78)

(1.79)

(1.80)

(1.81)

(1.82)

(1.83)

(1.84)

(1.85)
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M~ _ 1t r. ~
Er; - 4(1 + v) 2 <P2

(1.86)

(1.87)

(1.88)

(1.89)

(1.90)

(1.91)

(1.93)

(1.94)

(1.95)

where

F2 total axial force in the OPGW acting on (m! =10) inner wires

M2 bending moment in the inner wire

Mb2 bending moment in the plane of cable cross section

M~ twisting moment in an inner wire

~2 total axial twisting moment acting on inner wires

N; component of the shearing force on an inner wire

~ initial radius of the helix of the inner wire

R; final helical radius of the inner wire

T2 axial tension in an inner wire

~ component of the external line load per unit length of the centerline of

an inner wire in the z direction
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changes in the helix angle of an inner wire (between undeformed and

defonned geometry)

change in curvature of an inner wire

change in twist per unit length of an inner wire

axial strain in the central tube (El=E)

axial strain in an inner wire

rotational strain of an inner wire

angle of twist per unit length

and the outer (third) layer of the OPGW ;

R3 =rI + 2r:z + r 3

âa3
El =E3 +--=--

tanŒ3

A R E3 A (riEl + ~E2 + r323)
1-13 = 3<Ps = - uŒ3 + v....;..;.....:-_~_.-.......:--

tan Œ3 R3 tan Œ3

A' 2sinŒ3 COSŒ3 A (riEl + 2r2E2 + r3E3 ) cos2
Œ3r

3
u1C

3
= uŒ

3
+ v--=-...:-_~_.-.......:;",;"",..-~

R3 /r3 R3R3 /r3

A (1 - 2sin:l Œ3 ) A (riEl + 2r:zE2 + r3E3 ) sin Œ3 cos:! Œ3r3'.1'P3 = QŒ3 + v....;..;.....:-_~-------------~

R3 /r3 R3R3 /r3

M3 Jt ,
-=-râlC
Er,3 4 3 3

3

X3 N; sin Œ3 COSŒ3 T3 cos:! Œ3

Er3 =Er; R3 /r3 - Er; R3 /r3

1-11
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(1.99)

(1.100)

(1.101)

(1.102)

(1.103)

(1.104)

(1.105)
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tan2(1t/2 -1t/m....)
~ 1+ . ., ..~ = 4.637 < 4.675 mm = r1 +12

sm-a2

tan2(1t/2 -1t/m._)
r3 1+ . ., "-;1 = 7.7805 < 7.785 mm =r1 + 2J2 + 13

sm-a3

El = E = 0.61%, ~ = a

0.0061 =E., + ~a2
.. 9.03

O=.-!L _ ~a., + 0.33 (0.55 x 0.0061 + L425e2 )

9.03" 4.675 x 9.03

.1a0.0061 = E
3

+__3

-4.13

o=~ _~a + 0.33 (0.55 x 0.0061 + 1425E2 + 1685E3 )

-4.13 3 7.785 x -4.13

~ = 6.016E-3

~~ = 7.597E-4

E:J = 5.691E-3

~Œ:l = 1.687E-3

A' 2 x 0.994 x 0.110 x 7.6E - 4
r')~1C., =.. .. 3.28

+ 0.33(0.55 x 0.0061 + L425 x 6.0E - 3) x 0.0121 =-47.57
3.28 x L425 I.l

.1 _ (1 - 2 x 0.988) x 7.6E - 4
~ q)2 - 3.28

+ 0.33 x (0.55 x 0.0061 + L425 x 6.016E - 3) x 0.109 = -197.86
3.28 x L425 JI.

r. ~1C' = _ 2 x -0.972 x 0.235 x - L687E - 3
3 3 4.620
0.33(0.55 x 0.0061 + 2 x L425 x 6.016E - 3 + L685 x 5.691E - 3) x 0.0554+--.;....----------------------4.620 x L685

= -15L76J1.
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(1.109)

(1.110)

(1.111)

(1.112)

(1.113)

(1.114)

(1.115)

(1.116)

(1.117)

(1.118)

(1.119)

(1.120)

(1.121)
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A (1- 2 x 0.945) x -L687E - 3
IQm - +
3 T3 - 4.620

0.33(0.55 x 0.0061 + 2 x L425 x 6.016E - 3 + L685 x 5.691E - 3) x -0.972 x 0.0554 (1.122)
4.620 x L685

= -26L55

M 2 =-37.4).1 (1.123)Er;
M~-- =-116.841J.
Er;

N'-4- =0.815).1
Et;

T22 =0.019
Er2

X2 =-69.811l
Er2

F2
" =0.188

Er;

M2
; =0.067

Er2

FI =0.0061
(EA)Tube

M~ube =0
(GJ)Tube

and for the outer wires (third layer),

M~ =-119.21J.
Er3

N'
_3 = 4.0SJl
Er.2

3

T32 =0.0179
Er3
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(1.124)

(1.125

(1.126)

(1.127)

(1.128)

(1.129)

(1.130)

(1.131)

(1.132)

(1.133)

(1.134)

(1.135)



X3- =-21416J.1.
Er3

F3 =0.243
Er,2

3

M 3t =0.269
Er,3

3
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(lI36)

(lI37)

(lI38)

FAl.spacer + FTube + Fhmer + FOuter =3,956 + 3,876 + 10 x 6,179 + 14 x 3,148 = 106 kN(lI39)

M~ube +M~ + M~ter = 0 + 31,186 - 81,541 = -50 kN.mm (1.140)

The total bending moments acting on the inner and outer wires in the plane of

the cable are:

Mb2 = M2 sina~ + M; cosa~ =17.35 x 0.994 - 54.46 x 0.109 = 11.30 N.mm (1.141)

Mb3 = M3 sin a; + M; cos a; = 36.05 x 0.972 - 46.90 x 0.234 = 24.09 N.mm. (lI42)

1.2.2 Stress determiDatioD of the OPGW

0Tube = (F / A)Tube = 377 MPa

a~ = T2
" = 974.61 MPa

-7tti

Tai =_3 = 362.92MPa
1tr.23

b 4M2 MPa:z =-3- = ±7.64 a
1tr:z

(1.143)

(1.144)

(1.145)

(1.146)

(1.147)

(1.148)

(1.149)

As previously mentioned, to obtain the axial and shear stresses of the wires along

the cable axis, the above stresses (normal and shear stresses along helix) are

transformed along the cable axis where
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a~ =~ - a~ =90 - 83.72 = 6.28°- 2 4

and

h F b (982.3
(J"l =(72 ±0'2 = 974.61 ±7.64 = MPa

- 967.0

therefore,

O'~ <7; 29' h in28' (968 MP
(J2 =2+'TCOS 2 + t 2s 2 = 953 a

and the corresponding shear stresses along the cable axis are

Ob -118
t"l =__2 sin29" + t~c0829"l =( MPa.

.. 2 4 4 - -117

(1.150)

(1.151)

(1.152)

(1.153)

The corresponding maximum shear and principal stresses are calculated using the

folloWÎDg formula

"l

( O'~ J- (h)2 (491t 2max = -- + t"l = MPa
2 .. 483

0; 982
O'2P1 = - + t 2 m.ax = ( MPa.

2 967

and same calculation for the outer wes (third layer) as

a; =~ - a; =90 - 76.48 =13.52°
2

h F b ~72.6
0 3 = (J3 ± 0'3 =362.92 ± 9.59 =C MPa

353.4

a: a: , h. , Mga3 = - + -c08283 + t 3sm2&3 = \_ _ MPa.
2 2 331

(1.154)

(1.155)

(1.156)

(1.157)

(1.158)

(1.159)

The corresponding shear stresses along the cable axis are

a: . 28' h 29' (-90.2 MP
t 3 =-- sm 3 + t 3cos 3 = &.

2 -Sa9

The corresponding maximum shear and principal stresses are calculated using the

folloWÎDg formula

and

(0: J2 (h)2 (186t 3 m.ax = - + t 3 = MPa
2 177

1-15
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(1.161)

1.2.3 CODtact streues

The approximate equations suggested by Costello (1997) to determine the

resultant force per unit length ~ is

(1.162)

where Xc is the contact force per unit length acting along the line of contact. The

radius of curvature of the surface of the central tube at the point of contact is Pl'

where

and the maximum contact stress Oc is given by

b
(7 =-­

c n

(1.163)

(1.164)

where

and

(1.165)

(1.166)

Considering the OPGW

X2 =-6.98E - 5 x 162,000 x L425 =-22.97 == -23 N/mm

X = 23 ~(265.16)2 + (2lt x 4.675)2 = 23.0 N/mm
c ~{265J6)2 + (21t x 3.250)2

and 3.250 3 29
Pl =0.988 =. mm.

The maximum contact stress in the second layer (inner wires) Oc: is

1-16
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=_2.14 X 10-
2 =-685 MPa

Oc 3.12 x 10-s

and for the third layer (outer wires)

X3 = -2.14E - 4 x 63,765 x 1685 = -23.01 == -23 N/mm

X = 23 ~(202)' + (211: x 7.785)' =23.25 N/mm
c ~(202)2 + (21t x 6.1)2

o =_3.32 X 10-3 =-446 MPa.
c 7.43 x 10-s

(1.170)

(1.171)

(1.172)

(1.173)

1.2.4 UnwiDdiul motion is Cree (~ ~ 0 and Mu =0)

As mentioned earlier, the analytical solution when the loading end is &ee is only

demonstrated for the inner wires and the tube model. The total twisting moment

acting on the strand is zero, Le.,

(1.174)

Using Equations (1.92), (1.94), and (1.174), the unwinding rotation is li = 0.867

radian, corresponding to 49.61°. The following results are obtained:

M~ube =6957.72 N.mm :: 6.96 kN.mm

and the normal and bending stresses along the helix are

o~ = T2 = 724.74 MPa-xr;
b 4M., MP

O2 =---J =t157.78 a
1tr.i

and the maximum and minimum normal and shear stresses are:

h F b (882.5
O2 =02 ±O2 = 724.74 ±157.78 = 567.0 MPa

h 2M; MFt 2 =-3 =-284.74 8.
1tr.i
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To obtain the axial and shear stresses of the wires along the cable axis, the above

stresses (normal and shear stresses along helix) are transformed 88 follows

(J~ ~ 821
0'2 = _. + _2cos292 + t~Sin292 = ( MPa (1.180)

2 2 sœ
and the corresponding shear stresses along the cable axis are

Ob -363
tl) =__2 sin29'1 + t

2
bcos29

2
=( MPa.

- 2 - -333
(1.181)

The corresponding maximum shear and principal stresses are calculated using the

following formula

(
O'~ J2 (b )2 (525

t'l_•• = -- + t'l = MPa•...- 2 . 402

O~ (966
O'2P1 =- + t 2 = MPa.

2 max 685

(1.182)

(1.183)

The total bending moment acting on the inner wes along the cable axis ÎB,

Mb2 =M2 sin a; + M~ cos a; = 358.59 x 0.996 -1294.24 x 0.094 = 235 N.mm (1.184)

and the total applied load on the inner wires and the tube to induce 0.61%

elongation is

FTube + FInner = 3.88 + 10 x 4.60 = 49.90 :: 50 kN

1-18
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1.3 Sl1mmary of the reluIts
The stresses that are given in the tables are transformed stresses &long the cable

axis. The stresses and forces using the analytical solutions of Machida and Durelli

(1973) are snmmarized in the following tables.

Table 1.1 Forees and DIOmeDt. UI1DI the solutioD of Machida ud Durelli

(unwindml rotation il reàricted)

Axial force Bending Torque Contact force

(kN) (N.mm) (kN.mm) (N/mm)

Outer wires 3.2 20.8 83 23

Inner wires 6.2 10.3 32 16

Table 1.2 Stre8Ies of the wires UI1DI the solutloD of Machiel. ad Durelli

(unwindiDI rotatioD il redricted)

Normal Shear Principal Maximum shear

stress (0) stress (t) stress (apI) stress (tmu)

(MPa) (MPa) (MPa) (MPa)

Outer wires 349-367 86-90 349-367 175-183

Inner wires 955-969 117-119 969-984 485-492

When the loading end is free, the wires UDwind and the stress resultants are

snmmarized below.

Table 1.3 Strelles of the wires 1IIiDI the solutiOD 01 Machida uad Durelll

(QDwindlnl rotatiOD Il aIlowecl)

Normal Shear Principal Maximum Unwinding

stress (cs) stress(t) stress (OPl) shear stress rotation

(MPa) (MPa) (MPa) ('tm.J (MPa) (Degree)

Inner wires 417·786 359-400 780-966 398-538 54.63
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The stresses and forces in the inner and outer wires using the analytical solution

by Costello (1997) are 8nmmarized in the following tables.

Table 1.4 Forces and moments iD the wires 1IIiD8 the solution of Costello

(UDwiDdiDI rotatioD il restricted)

Axial force Bending Torque Contact force

(kN) (N.mm) (kN.mm) (N)

Outer wes 3.2 24 82 23.25

Inner wires 6.2 Il 31 23

Table 1.5Normal and shear Itrelle8111Û11 the IOlutloD 01 Costello
(UDwiDdiDI rotatloD il restrided)

Normal Shear Principal Maximum shear

stress (eJ) stress (t) stress (OPl) stress (tmu)

(MPa) (MPa) (MPa) (MPa)

Outer wes 331-349 86-90 353-373 177-186

Innerwires 953-968 117-118 967-982 483-491

Table 1.8Normal and sheu lItreIIeI 1IIÜII the IOludOD 01 Costello
(UDwiDd1nl rotatioD la aDowecl)

Normal Shear Principal Maximum Unwinding

stress (eJ) stress(t) stress (OPl) shear stress rotation

(MPa) (MPa) (MPa) (tmu) (MPa) (Degree)

Inner wires 379-821 333-363 685-966 402..525 49.61
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APPENDIX II
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D.I Experiments at McGill University
In the finite element analysis, plastification of the central aluminum tube and the

spacer is predicted for the displacement prescribed. Therefore, the linear Hookean

material law is inadequate to predict their behavior. Consequently, uniaxial

tension tests were performed on the aluminum tube and spacer separately to

obtain their nonlinear materiallaw. The stress-strain curve of each component is

required as input in ADINA to defiDe the material properties.

Uniaxial tension tests on aluminum tube segments were performed at McGill

University (Jamieson Structures Laboratory) using a uniaxial tension machine

(Instron) with ±1.5% error. The speed of loading wu 0.02 in/min elongation. Ten

specimens of about 10 inch long were tested for the aluminum spacer and the

tube. Both the central aluminum tube and spacer are tested exactly as they are

in the OPGW, i.e., a hollow tube, and a helically twisted spacer.

Out of the ten tests, 8 specimens failed at the center of the specimen whme the

extensiometer was installed. The other two were failed at the end gripped to the

tension machine.

The properties (area and modulus of elasticity) of the tube and spacer are as

follows:

Table 0.1 AlumiDum tube uad apaC8r propertiee

A11111ÜDum &1Ibe AhaadDaaa ......

Ana (mIDI) 10.28 10.17

E (MPa) 61,803 63,765

The test results of the aluminum tube and spacer are plotted in Figure Il.1 and

ll.2, respectively. The modulus of elasticity obtained from the experiments is

slightly higher than the nominal modulus of e1asticity provided by the

manufacturer (62 GPa). In the OPGW model, the linear portion of the material

law used in ADINA is based on the nominal modulus of elasticity and a multilinear

plastic behavior is calculated using the experimental results. The black solid line

in the Figure D.1 is the material law used in the OPGW model. The ultimate
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strength obtained in the test (146 MPa) is smaller than that specified by the

manufacturer (162 MPa).

_~~.-_~=..~ -~ :D- :':~::::::::: _:
. ~.1 - --- - - . -- -- ---- --- --- - ----- ------ - --- .- - ----!l

Fipre D.I AlumiDum tube Dcm1ine.v materiallaw (ltreu-straiD cunel

Fipre D.2 AlumiDum apacer DOulb... materlallaw (ltreu-lItraiD cunel

The aluminum spacer response is similar to that of the central tube. The actual

modulus of elasticity is also larger than that of the experiments. Therefore, like

the tube, a linear streg.strain behavior based on the nominal modulus of

e1asticity is used in the model up to the yielding point of the aluminum spaœr,

and for the plastic part, a multilinear plastic materiallaw is obtained using the

average of the experimental results. The black solid line in Figure D.2 is the

stre.strain curve used in the OPGW mode! in ADINA. The ultimate strength of
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the aluminum spacer (272 MPa) is slightly smaller than that specified the

manufacturer (280 MPa).

D.2 IREQ Experîments

Institut de recherche d'Hydr()oQu~bec (IREQ) bas performed a 96-hour traction

test on the 19 mm OPGW at maximum tension in normal operation (MTNO), i.e.,

83.5 kN. The specimen was fahricated out of 60 m of OPGW. The cable length

subjected to tension was 27.5 m. Dead-end assemblies at each end were prevented

from twisting during the test. The reference length was 15 m after calibration

and positioning of tbe displacement transducers. The cable was loaded to a 5 kN

tension where all initial optical and physical measurements of the sample were

taken. Then, the position of the rods and wedges were marked to evaluate the

relative movement of one ta the other, which followed by pulling at a rate of 5%

MTNO (Maximum Tension in Normal operation) per minute (3.73 kN/min).

Figure D.3 schematically shows the experimental set-up at IREQ (IREQ 1994).

28.37 m --------...

~------27.458m------~

Bydrau1ic jacb
Preto ed .

Fixed diIc rm snpe Load œll
OPGW connecter

Two optical 6ber groups of six and eight fibers were used in the experiments. The

cable and optical fibers elongation (group of 8 tibers) versus the applied tension

has been obtained and is plotted in Figure D.4. The elongation of the cable at the

initial value of 5 kN W88 estimated at 0.028%. The total elongation of the cable

reached 0.61%, where creep duriDg 96 hours was 0.09% and permanent

deformation W8S measurecl 8S 0.12%.
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The elongation of the group of 6 and 8 optical fibers was evaluated at 0.52% and

0.48%. The elongation begins at the starting load of 5 kN and 15 kN for the 6

and 8 fiber group, respectively. The fiber elongation for the 19 mm OPGW was

0.48% and 0.52% for the 8 and 6 fiber groups, respectively. The fiber elongation

of the 6 fiber group has exceeded the design requirement (0.5%). It is concluded

that the difference between the two groups implies that the group blocking

mechanism (loops at both ends) can &et differently even on the same cable.

Figu,.-, 0.4 Cable aDd optical flben e1cmptiOD venus teDliOD

The maximum measured attenuatioDS were 0.21 and 0.18 dB/km on the 8 and 6

fiber units, respectively. Meanwhile, permanent attenuatioDS of 0.1 and 0.11

dB/lan were measured for the 8 and 6 fiber groups, respective1y. Permissible

long-term attenuation is stated to he 0.0 dB/km. Although the permanent

attenuation obtained is small, however the "zero" criterion is not met.

The smaller elongation of the Bbers with respect to that of the cable is due to the

excess length of the Bbers (0.018%). The experiments indicate an overall linear

load-displacement behavior for the cable and the Bbers. The experiments were

incapable of evaluating the hehavior of the individual cable components, which

are the inner and the outer wires, the central tube and the aluminum spacer. It is

not evident if any of these components reaches their yielding point. However, the

overall behavior of the cable seems to he in the linear range.

As it is reported, the permanent deformation of the cable is 0.12%; This plastic

deformation is about 20% of the total elongation.
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