/

TEST DESIGN FOR COMPUTER NETWORK
PROTOCOLS

by

BEHCET SARIKAYA

. - March 1984

A thesis submitted to the
Faculty of Graduate Studies and Research in partial
fulfillment of the requirement for the degree of
Doctor of Philosophy.

School of Computer Science,
McGill University,
Montreal.

© Behget Sarikaya ‘

s
.
B A

. ABSTRACT

Communicat ion protocol testing can be done with a ‘test
architecture consisting of remote Tester and local Responder
processes. By ignoring interaction primitive parameters and
additional state variables, it is possible to adapt test
seguence deneration technigues for finite state machinéé
(FSMf to , generate sequences for protocols specified as
incomplete finite state machines.

For real protocols, tests can be designed based on the
formal specification of the protoceol which uses an extended
FSM model in speéifying the trqnsition types. The transition
types are transformed into a s{mpler form called normal form
transitions which can be modelled by a control and a data
flow graph. furtbermore, the data flow graph is partitioned
to obtain disjoint blocks representing the different
functions of the protocol. Tests are designed by considering
parameter variations of the input primitives of each data
flow function and determining the expected outputs. This
methodology gives completé test coverage of all data flow
functions and tests for unspegified cases can be designed
using the control and data flow graphs. The methodology is

applied to two real protocols: Transport protocols Classes 0

and 2.

ii

RESUME

Pour tester une implantation de protoéole de
communication on peut utiliser une architecture en deux
parties: Un "testeur" et un "répondeuf". Si on ignore{les
parametres :des interactions et variables’ d'%tats
additionnelles, on peut adapter des techniques de génération
de séquences de'test dévéloppées pour les automates d'états
finis pour générer des séquences de test pour les protocoles
spécifiés éomme les automates d'états finis incompléts.

La specification formelle du protocole est utile pour

trouver les interactions a appliquer. Les "types de

i

transitions™ d'une specification peuvent &tre transformés en
des formes plus simples applelées transitions de forme
normal. Les Otransitions de forme normal peuvent étre
modél%@ées avec deux gréphes: un pour le contrbdle et un pour
le flux de données. Le graph de flux de données se divise
en blocs disjoint&;/éhaque bloc indique une fonction de flux
de données. La conception des tests pour les fonctions de
flux de données se fait par variations des paramétres des
entrées et la determination des sortiés attendues avec
l'aide de ces deux modéles de graphes. Des tests pour les
cas inattendus peuvent étre aussi basé sur les deux
graphes. La methodoloéie est appliquée & deux protocoles:

Les protocoles de Transport Classes 0 et 2.

" ACKNOWLEDGEMENTS

I would like to eXpress my deepéét gratitude and
appreciation to my thesis supervisor, Professor G. v.
Bochann of Université de Montrea% M\ye has provided an
excellent research environment %nd invaluable advice in all

\

stages of fﬂis thesis, I al;o thank him fpr many hours of
illuminating discussions and his JarefulN\reading of the
manuscript and b}oviding excellént cfiticisms\on writing.

I would also like to thank ,Professor E. Cerny of
Université de Montréal for- many pleasant and helpful
discussions and. corrections _on the manuscript. He has
originated the ideas that are explained , in Part 2 of this
thesis. I thank him for letting me report on khe two Class O
TP test brograms that were designed by him. ‘

Many thanks go’ to M. Maksud and J.M. Serre of
Université de Montréal. Michel helped me debug the Class O

8 . . .
test programs and my discussions with Jean Marc on Class 2
i’

A

TP have been very helpful.

I dould like to thank my vife, Nursen for drawing the
flow graphs and for moral support. Without that support I
would never be able to finish this work.

Many people have provided financial support to me, I
would like to thank them all: My late father which I would
like to _pay hommage to his memoryL G.v. Bochmann, R.N.S.
Horspool (formerly of McGill). I would 1like to thank
Professor M. Newborn for providing funds for printing this

thesis by the Computer Center of McGill University.

‘

iv

s

ABSTRACT *® o o e » o e o 5 o » e ¢ ¥ & et e ‘; ¢ e

7

RESUME L N A
ACKNOWLEDGEMENTS v & v &« o ¢ o o o o o 4
TABLE OF CONTENTS h. R T T
LIST OF FIGURES ' TI;BLES AND ALGORITHMS

1.INTRODUCTION . . Ce e e e .
l.1.Motivation . . v & & 4 ¢ v v ¢ o o« o & &
1.2.Test Configuration « . « . .
l1.3.Formal Specifications of the Protocols .

1.3.1.Structure of a PPbtocol Entity . . .

1.3.2.FDT . . ¢« v v v e % o o o o o o @

. \ .
1.4.Survey -of Methods for Test Sequence Selection "~

.1.4.1.FSM Test Techniques .\.

l1.4.2.50ftware Testing . . .}

.

l1.4.3.Microprocessor Testing and Control System Verif,

1.5.Survey of Existing Work on Protocol Testing

-

1.5.1.Testing with Reference Implementations .

1.6.0riginal Contributions of the -Thesis .

1.7.0rganization of the Thesis

2.TEST SEQUENCE GENERATION . . + . v % ¢ « o « &

v
.

.

iii

iv

~N N = e

10
12
13
13
15
16
17
20

21

23

2.1.Transition Tour Method . .
2.2,W~Method
2.3.D-Method».
2.4.5ynchronization Problem .

2.5.5pecification Enhancements

for

2.5.1.Special Test Transitions .

2.5.2.Completing Specifications

3.TEST SEQUENCE GENERATION SOFTWARE

3.1.Input and Output Formats and Internal Representations

3.1.1.Automaton and Test Sequence I/0

3.1.2.Internal Representation

3.1.3.Synchronization Checks
3.2.DFS Tour Program
3.3.Random Tour Program . . .
3.4.W-Method Program(SWMAIN) .

3 . 5 ID_Method - . . L4 . . L] L] .

PART 2 . 3 » [» . - . .

4 .TRANSFORMATIONS ON PROTOCOL SPECIFICATION

4.1.Sample Transition Types

4,1.1.Normal<Form Transitions

4,2.Transformations on FDT Constructs

4.2.1.FROM/TO Clauses . . .

{ 4.2.2.BEGIN block

.

. .

Testing

v

»

°

.

2.6.Complexity of Test Sequence Generation

.

{Phase

.

S

24
25

26

27
31
31
31
32

34
34
35
36
37
38
41
45
50

52

54
54
55
57
58

' 59

vi

4.2.3.ANY Clause and WITH Statement s e .. . 60
4.3.Combining Modules (Phase II) .'. « . « . . . 61
4.4.Spontaneous Transitions . . . « &« ¢« ¢« « ¢« &+ « « » « 65

/4.4.1 .Nondeterminism in Protocol Specifications . . . 65
4.4.2 .Removing Spontaneous Transitions 66
4.4.3.Nondeterminism and Protocol Testing 67

~4.5.Conservation of the Semantics 67

4.6,AReal Example 4 ¢+ o« ¢« o o o + o s+ o« +» o » 68

5.GRAPH REPRESENTATIONS OF NORMAL FORM TRANSITIONS 70
5.1. Cohtroi Graph . . . I LT SRR R 51
5.1.1. Subtours of the Céa Y ¥
§:1.2.Control Functions . . « v v o o v o o o o o« o+ o 13
5.1.3.0rder of Transitions in a Self-loop 174
5.2. Data Flow Graph . . o v v o v o o o s » o o o o o o 17
5.2.1. Formation of the Ares « . « « . + +. . 18
5.3.Partitioning the Data Flow Graph . . . + « +. « + « . 87
5.3.1.Blocks Of+the DFG « « o v e u e e e e e e . BT
5.4.Functional Partitfoning of the DFG « . . . 95
5.4,1.Partitioning a DFG of theClass 0 TP 100
5.4.2.Data Flow Functions + + « « + & + « . 10d
5.4.,3.Control Functions and Data Flow Functions . . . 101
5.4.4.Data Flow Dependencies . . . « + « + « + « « » o 102
5.5.Protocol Design Validation Using Flow Graphs . .’. . 103
5.5.1.Use 0of CG . . v + v v ¢« ¢ v o v v e e e . . 104
5.5.2.Use 0f DFG . . . ¢« « ¢« o o ¢t o ¢« ¢« o o o« o7+ o« o 105

5.5.3.U56 Of CG aNA DFG « ¢ o « v o « « o « s o + » - 106

=

L

vii

5.5.4.Semantic Errors . . . ¢« « ¢« o o &

5.5.5.Self-1oop Spor{taneous Transitions

5.5.6.Normal Form Transitions That are not

/

6 .TEST DESIGN METHODOLOGY &+ + « « « =
6.1.0verview of the Methodology

6.1.1.véategories of Tests

'v

» . » -

Firable

6.1.2.Test Sequence Selection Considerations . . .

6.1.3.0bjectives of the Tests
6.2.Preliminary Test Design fonsiderations
6.2.1.Defir;itions e v e e s e e e e s
6.2.2,PROVIDED clauses . ~. e e s e e s
~ 6.2.3,Predicate Dependencies

6.2.4.Satisfying the Predicates

6.2.5.Types of I-nodes+ o

6.2.5.1.0ptional Parar’neters e v o+ e

6.3.Block TestS . & o« v ¢ ¢ v v o v s
6.3.1.0verview of the Block Tests . . .
6.3.2.Data Flow Dependent Considerations

6.3.3.Dependent/Independent Blocks . .

6\5.\&Test Sequencing and Test Optimizations .

-6.4.1.Test Order%ng e e e e i e e e e
6.4.2.0ptinizations SRR
6.4.3.Number of Connections ip a Test .
6.4.5.Structure .of the Subtours

6.5.Multiple Connection Tests . . + « + .

*

L . . -

- . * -

6.6 .Parameter Variations and FSM Test Technigques . .

106
107
110

112

113

115
116
118
120
120
121
123
124
127

. 130

130
130
132
136
137
137
139
140
141
1‘43
145

N

}
6.6.1.Use of W- and D-Methods . « . ¢ ¢ ¢« o o« « « o« « 146

Y
TLCLASS 0 TESTS .« « + v « v v o o v o v v e e e e oo o .. 148
7.1.Classification of the Tests 149
7.2.8ingle Connection Tests ~. s <« .+« « . 150
7.2.1.Basic TeSts . . <« « ¢« v o« + v « o« 4 s & . « .. 150
7.2,1.1.Fault Model ¢ « ¢ ¢« + .« « o+« 150
7.2.é.Quality of Service(QOS) Tests . . . « + . « . . 153
7.2.3.Call Refuspl TesStsS . « . & ¢« v o o ¢« o « 4o » o+ « 156
7.2.4,Data Transfer Tests ™. . . * e v e e e e e lg;
7.3.Mu1_tiple. Connection Te;ts T 1
7.3.1.Basic Tests . . e+ e s+ 4 e o 4 e s o4 s . . 159
7.3.2,Data Transfer Tests ¢« + ¢« « « 4+ « . . 161 '
7.4.Unexp§ected Stimulation Tests « + « « . « . . 161
7.5.Call and Disconnect Collision Tests 163
7.6. Sequencing of the Tests . . « ., « + v « « . « . . 164
7.7.Relation to the Test Design Methodology 166
7.7.1.Uncovered Blocks . . + v + « + « « ¢ o + 4« « « « 168

7.8.BError Detection by Class O Tests v . « « = &« + « + . 169

8. TEST DESIGN FORTHE CLASS 2 TP . . ¢ &2 « « ¢ s+ « « « « +» + 170
8.1.Normal Form Transitions « . .+ « . . ., 170
8.2.Control Graph and Subtours o« + 171

B.2.1.5UBLOUES + & v w v 4 v e e e e e 173
8.3.Data FIOV GraPh .+ v v v + v o % v o o v v o v v o . 179
8.4.A Partition of the Class 2 TP . . . « « . « . .« . . 191

> .
8.5.Dependencies inthe Class 2TP . . « ¢ + +« « . » » . 203

.
L

ix
‘J

8.6.0ﬁerview of -Test Design for the Class 2 TP . . .

8.6.1.Types of I-ﬁodes e e e e e e
8.7.Block Tests ; e e s e s e e e e e
8.7.1.Connection Establi;hment Tests
é;7.2.Qall Refusal Tests
~5.7.3.Expedi.ted{)ata Transfer Tésts
8.7.4.Data Transfer Tests
8.7.5.Tests for Error Cases

8.8.Multiple Connection Tests

"

B8.9.Some Observations on the Class 2 TP Test

O.CONCLUSIONS . & v v v v e s o o o o o

9,.1.Future Work . . v v &« o o o o o &

3

) *:REFERENCES o'“"‘—t— . ’ . 'Y . » . Y . .

APPENDI x A - * . L - L L d . - - - L] G. . . -

APPENDIX ’B e e 8 ®» e ® e 8 o e s 8 o e s &

APPENDIC € v v o v o o o o e e v e e v
APPENDI x D [3 - » - - - L] - » L] - L] L) [] - -

APPENDI x 'E 3 - . . . 3 L] . L]

T

L] L] L3 [}

w

205
205
207
207
208
209
213

215 .

216
217

219
221

224

227
231

236

241

244

R
Bl

R R FUT LN PRGN .6 B S DU

o ke m

LIST OF FIGURES, TABLES AND ALGORITHMS

31

Fiqure 1,1.Protocol Hierarchy of the OSI Reference Model . . 4
Fiqure 1.2.Test Architecture for Testing Protocol Implemen . 7
Figure 1.3.Subtructure of a Transport Protocol Entity . . . 10
Algorithm 2.1.Algorithm to“Detect Intrinsic Synchronization

Fiqure 3.l.An Input Machine Modelling Class 0 TP 58
Fiqure 3.2.The Input Machine in Figqure 3.1 With Side Inform. 38
Algorithm 3.1.Transfer Sequence Finding Algorithm 40
Figqure 3.3.A DFS Tour Generated by DFSTOUR Program . . . 41
Algorithm 3.2.Synchronization Check Algorithm 42
Algorithm 3.3.Reduction Algorithm 43
Algorithm 3.4.RANTOUR Algorithm ¢« . ..« + ¢« &+ « « « 44
Figure 3.4.A Synchronizable Tour Generated by RANTOUR . . . 45
Algorithm 3.5.Checkforone Algorithm « . . . 47
Algorithm 3.6.Synchronization Checks of P.W . , 49
Figure 3.5.A Synchronizable W-sequence Generated by SWMAIN . 51
Figure 4.1.A Protocol Entity with Two Modules 57
Figure 4.2.Two Sample Transition Types in FDT 57
Figure 4.3.Normal form Transitions of Figure 4.2. 65
‘Table 5,1.Subtours of the Control Graph for Class 0 fP « « . 76
Figure 5.1. Control Graph of Class 0 TP« . . . 177
Figure 5,2.A DFG of the Class 0O TP , . B84
Figure 5.3.A Part of the DFG for Class 2 TP 091
Figure 5.4.Partitions of the DFG for Class 0 TP : 92
Fiqure 6.1.Removing "or"s in the PROVIDED clauses 123
Figure 7.2. Test Sequencing for Class 0 Tests{165
Table 8.1.Labels of the Transitfons in Figure 8.1. 174

‘

X1

Table 8,2.Primitives Corresponding to the Labels in.Tab.

Figure 8.1. A Control Graph of Class 2 TP . « v o . .

Table 8.3.Subtours of Class 2 TP ., . & ¢ v v o o« o & &
Figure 8.2 A DFG of the Class 2 TP DR
Flgure 8.3. A Partition of the Class 2 TP DFG
Flgure 8.4.A State Dlagram for Expedited Data Transfer

" Table 8.4.Test Sequences for Expedited Data Transfer .

175

176

179

182

196 -

212
213

l.Introduction

1.1.Motivation

The idea of testing a protocol may brobably be traced
back to the 1950s where the rules of communication between a
central processing unit of a computer and 1its input/output
peripherals have first been established., However, the idea
of protocol implementation assessment is quite new, It is
Briginated in 1981 with a few reports from the National
Physical Laboratory in England [Rayner 81], [HeRa 81), and
[Henley 81] and the RHIN project in France [Ansart 81]). Of
course, this is not coincidental since the beginning of the
1980s marks also the beginning of wide range use of public
data networks linking computers and terminals. It also marks
the‘beginning of implementing higher-level protocols in line
with the Reference Model defined by the International
Standards Organization (ISO), thus the research groups in
NPL and RHIN project came up with the idea of establishing a
national assessment, or even certification center of

protocol implementations.

Source listings of implementations by various
institutions cannot be assumed to be available to the test
center. Also, the state of the art of the program
verification is far from providing practical tools to verify

large concurrent software such as a protocol implementation.

Therefore, testing remains the main tool of the assessment
activity and any implementation of a higher-level protocol
can be assessed by the test center through a physical
connection of the public\data network, with the application

of a certain number of tests on the implementation.

The selection of interaction sequences for testing is
a major problem. This thesis concentrates on the problem of
selecting test sequences for protocol testing. We first
show in the following chapters that by ignoring interaction
parameters, test. sequences can be generated usﬁng various
test methods designed for finite state machines (FSMs) once
the FSM model of the protocol is obtained from the proto@ol
specification. When parameter variations are considered, it
becomes important to decompose a éiven protocol. Iﬁ this
thesis, we base the decomposition on the formal
specification of the protocol. From a transformed form of
the specification we obtain a decomposition into several

functions and desifin tests for each function.

1.2.Test Configuration

ISO standardization activity centers around a model
which structures the design of distribuﬁed systems 1into a

number of hierarchical layers. Each lay%r consists of a
f

number of components, using the service of the layer below,
]
i

it provides the "level N" service to the/

/

layer above. This

e —— - o

LR R

A

model 1is called the Reference Model of Open System
Interconnection (0SI) [Zimmermann 80]. The protocol
hierarchy of the 0SI reference model is shown in Figure 1.1.
Protocols up to level 3 1in this figure are lower-level,

above level 3 are higher-level,.

The 0SI reference model serves as a framework for the
definition of standard protocols which make interconnection
of heterogeneous computer systems possible. A system which
implements standard ﬁrotocols of all layers will be "open”
to communicate .with any other system, thus heterogeneous
systems can be interconnected for the purpose of distributed
applications such as data base access, file transfer and

terminal access.

4

application
T
presentation
\\ ‘.__J.——_._.—_—,...__—.'..—,.————___—_—é
\
session
e — — —— — - — — —_— e ——— — —_—
transgort
N é___ngt_uo_rﬁ —— = RN
K — —5 ¢ -k < ——
e~ —> . — paysical < — =

Physical HMedia for Interccnnection

Fiqure 1.1.Protocol Hierarchy of thé OSI Reference Model

[Rayner Bl] proposes a basic architecture to be used
in testing protocol implementations of 1level N in the OSI
Reference Model. The protocol upper layer interface is

. assumed to be accessible through a user task which provides
stimuli to the implementation. This task is called the Test
Responder (we shorten it as R). Since the lower layer is not
directly accessible, access to the interface at the physical
level is assumed through the underlying data network. At the
test center, a task called the Active Tester (we shorten it

as T) takes the responsibilty of most of the testing

activity. The active tester behaves like a general entity at
level N but may stimulate the implementation with unexpected
stimulations, i.e., it may not follow the protocol in some
éases, in order to test the robusthess of the
implementation. The basic architecture is given 1in Figure

1.2,

[Henley 81] describes a proposal for the test
responder. One important design criteria for R is that it
should be machine independent. A protocol between T and R is
proposed. Using that protocol, T can dictate how R should
behave in the next test. The protocol us;s state and
parameter tables that are interpreted during execution,

Using the same architecture, [BoCeMaSa 83] describes a
slightly different approach to the designs of the two
modules T and R. Bach test is assumed to be stored as an
executable task at the test center site and the responder
site, therefore, only the test name needs to be transfered
from T to R using a fault tolerant loading protocol. Both
modules are designed to support the initial connection

establishment to load the test tasks. Detailed designs of T

and R are given in [CeBo 83].

In the basic architecture of Figure 1.2., the lowef
layer interface of the implementation 1s not directly
accessible, therefore the implementation cannot be tested
for the cases of errors arising from malfunctioning of the

lower layer. This is especially important when testing for

j
an implementation of a network service where it is desirable
_to introduce X.25 errors to the implementation. Proposals
[Rayner Bl]t [Ansart 81b] have been made to modify the basic
architecture such that on the imﬁiementation site, a black
box (possibly implemented in hé&rdware) is introduced between
the public data network and the equipment of the
implementation site. Using this black box, it is possible
to introduce X.25 errors to the implementation, such as

giving a Reset to the implementation whenever desired.

-

The use of this modification is minimal when testing
the implementations of transport or higher-level protocols
of Figure 1.1, Therefore, in [BoCeMaSa 83] when testing an
implementation of a level N protocol, the level N-1 service
is assumed to be correct. An implication of this assumption
is that the testing activity progresses from the lowest
level to the highest level and the basic architecture is

sufficient for this purpose.

ACTIVE A TEST
TESTER RESECNDER
el
(T) e ¢ '— — — —sinplenertation
, tested prcto
N S \ ‘I)
‘ AN
N-1 3 3 N N-1
. 2 2 \\ .
\,
- \ -
. \
1 1 1 N1
Physical #4edia for Inter&oﬁnectiop
: L w

\

B (\

\~E§Sure 1.2.Test Architecture " for Testing Protocol

Imglementations

(,

-

1.3.Formal Specifications of the Protocols

International organizations such as ISO, CCITT provide
natural language descriptions of the standard protocols. 1In

what follows we call them informal specifications. The need
- for specifications given in a formal manner 1is appreciated

by these organizations. A transition based formal language
described in [FDT 84] has been accepted as a tool for formal

specifications of protocols and services.

34

[

For a protocol of 1layer N, there are two levels of
specif}cation [Bochmann 83]: |
-the service specification which describesr the overall
behavior of the subsystem of level N, and
-the protocol specification which defines the behavior of
each component of a local system corresponding to the given

layer.

The advantages of formally specifying the protocols

are numerous: Prqtocols can be verified for correct
operation (absence of deadlocks, etc.) before the
implementation phase; if verified, an automatic
implementation can be obtained from the formal

specification., In this thesis, we show that test design can
be based on the formal specification, thus extending the use

of protocol specifications to the testing phase.

A protocol entity 1is composed of one or more modules
and channels connecting the different modules. Figure 1.3.
sﬁows an example substructure of a protocel entity
consisting of &a mapping module and an arbitrary number of

abstract protocol modules.

Channels that connect the entity modules to other
modules of the same entity or external entities (these

channels are called service access points (SAPs)) represent

connections over which interactions are received and sent.:
In particular, if the protocol entity is a protocol of layer
N in the 0SI Reference Model, service access points are used
to receive/send the interaction primitives from/to the peer
entities on the same layer (NSAP in Figure 1.3). These
primitives are called protocol data units (PDUs). PDUs are
sent/received wusing the service of the layer N-1. Over
other SAPs, the protocol entity provides the layer N
services to the layer N+1, thus these'SAPs are used to
send/receive user interactions (TSAP in Figure 1.3).
Internal communication between entity modules are done

similarly on channels connecting kB them (PDU_and_control in

Figure 1.3).

In Figure 1.3. the mapping module handles the
connection establishment with level N-1 and decodes and
checks the parameters of the PDUs received for possible
errors and passes the correct PDUs to the proper abstract
protocol module, The abstract protocol module provides the
level N protocol services to its users over TSAPs. It passes
the PDUs to be sent to the peer entities to the mapping

module, and the mapping module in turn encodes the PDUs and

sends them over the NSAPs,

The Subgroup B FDT supports two modes of communication
between modules [FDT B4]:
a)via an infinite FIFO gueue, and

b)the "rendezvous"™ communication which suspends the sending

10

i3

process’ until the receiving process acknoyledges the

exchange. We assume that the communication between the
modules of the same entity (internal communication) is of

rendezvous type and the external communication can be either

TSAP * TSAP »

* 'Y

* . *

ATP_ type % _ATP_type *
['3 *

recelve buffer

recelve_buyffer
send_buffer

send_buffer

".__".
—————
— — —‘*—.
—————

| |
| |
l !
l |
| i
I !
l |
| |
| - . ;
! * * |
l * PDU and control » |
| Mapping * - - * i
| * *]
|1 ATP [TC_1d] |
| | " TC_id = (T_address, EP_id) | }
| | PDU_buffer PDU_buffer } |
I P
[received NSDU received NSDU I
| | NSDU_to_be sent NSDU-to _be_sent i)
- NS[NC_id) NS [NC_1d] | J
l —— * * '
| * * I
— * *
NSAP NSAP

Figure 1.3.Subtructure of a Transport Protocol Entity

;.'_3_'2_'FDT R £

A formal description - technique (FDT) for the
specification of communication protocols and services [FDT
84] can be used to specify a protocol entity. This language, -

called Subgroup B FDT, is based on an extended finite state

11

transition model and the Pascal programming language.

Subgroup B FDT considers each interaction of the
specified module with its environment as an atomic event and
“distinguishes between the interactions received by the
module (inputs), and interactions initiated by the modules
(outputs). The possible order of interactions of a module
tor entity) is described by a formalism which combines
finite étate machines (FSMs) with the power of a programming
language. The state space of a module is specified by a set
of °variables including a variable called "state" which

represents the "major state" of the module.

All Pascal data types (records, arrays, enumeration
types, integers, etc.) are supported 1in Subgroup B FDT. The
type of interactions that may occur over the channels are
defined as part of the type declarations which precedes the
specification of each: module. A module (like a Pascal
program) is specified by listing tyée declarations, list og
variables, definitions of interface predicates, local

procedures followed by transition types.

13

Each transition type is characterized by an enabiipg~
condition and an operation. An enabling condition consists
of a boolean expression depending on some of the va;iables
defining the module state (the enabling condition |is
expressed using special Subgroup B FDT constructs called
PROVIDED and FROM clauses) and (possibly) the specification

of an input (the input is specified using the WHEN clause).

9

—

The PROVIDED clause may include predicates on variables of
other modules of the same entity. These predicates are
called interface predicates. A transition type without

input is called a spbntaneous transition,

The operation of a transition type is to be executed
as part. of the transition., All Pascal executable language

constructs (assignment statement, IF statement, FOR, WHILE,

‘CASE constructs, etc.) "are allowed, the operation may also

specify the initiation of output interactions with the
environment as well as ' a next major state, using the TO

clause.

3

' The Subgroup B FDT has a special construct called ANY
clause which is used either to introduce variables local to
a transition type or in spont&neaus éransitions_;p introduce
index variables which makes the span eous transition
available for any valid value of the index variables. The
index variables are used to identify.the connections of the
module with its environment, More discussion on Subgroup B

FDT will be given in Chapter 4.

-

1.4.Survey of Methods for Test Sequence Selection

—

" Selection of interaction sequences to be applied to a

protocol implementation 1is a major problem in protocoixf

testing., To select test sequences for profocols, ve have

applied the mezfﬁés from the areas of finite state machine

Y.

13
&
- testing,~..software testing, microprocessor testing and
control system verification., The existing work in these

aréas are surveyed in what follows.

j
| ' 4 .

1.4.1.FSM Test Technigues

X

There have been three major approaches to test
sequence selection for FSMs: transition tours [NaTs 81},
checking sequences [Kohavi 78, Gonenc 70] and

characterization sequences [Chow 78].

The above three methods will be used to select test

égquené&s for protocols modeled as FSMs in Chapter 2.

l.4.2.50oftware Testing

Symbolic execution [King 76], an extension of normal
execution of a program can be wused in finding individual
program paths and then selecting test data to experience the
path. Assuming a finite number of paths in a program, global
\symbolic evaluation [ClRi 81] generalizes symbolic execution
to enumerate all the paths. In Chapter 4, synbolic
execution will be used to transfprm a protocol specification

into a simpler form.

Functional program testing which views a program as an

integrated collection of functions and bases the selection

e et . o

~

14-
of test data on the value spaces (domains) over which the
fﬁﬂctionsa are defined is shown to be the most reliable
technique for discovering the errors [Howden 80]. 1In
particular [Howden 80] 1identifies two main functions in
scientific programs: computational and control. Functional
testing requires that in the test data selection, the domain
of each program variable be considered and functionally

important values are used such as extremal values from

domain boundaries or other special values.

Selecting .test cases for even a small program is a
tedious process. To make test case construction automatic,
[PrSkUr 83] proposes a three step methodology consisting of
first constructing an English-like test case specification,
then implementing this specification via logic programming
[Kowalski 79], and finally running the Prolog specification
to generate actual test cases. [PrSkUr 83] parametrizes the
Prolog program to 1introduce testing strategies in the test

case selection.

It is possible to generate test cases for software in
its earlier phases such as intentions, natural language
assertions and formal specification. [PrUr 83] develops a
methodology to reduce inconsistenciles and ambiguities in the
software de&elopment process by continuously compgring and
evaluating the test case reference sets (TCREFs) obtained
from intentions, natural language assertions and formal

specification. Again, the wuse of Prolog programs as a high

15

level representation to generate test cases is emphasized.

Application of functional program testing and test
case selection based on formal specification to protocol

testing will be discussed in Chapters 5 and 6.

l.4.3.Microprocessor Testing and Control System Verification

‘ In [ThAb 78, ThAb 79, ThAb 79b] microprocessors are
tested with inputs which are valid machine instructions and
the outputs are compared with the expected responses which

are also stored in the machine memory or in the memory of an

external testeéW

Test sequences are derived based on certain fault
assumptions called fault models which are derived
functionally. For instance, there exists fault models for
functions of a microprocessor such as register decoding/
éncoding, control and data storage (faults in various
registers) and data transfer (faults in buses). Allowable
faults are formalised for each of the above functions and
instruction sequences are derived to guarantee the detection

of these faults.

Fault models are helpful in designing tests for
primitive decoding/encoding function of the protocol as will

be discussed in Chapter 7.

[Thab 79} introduces a graph model of a

16 :

microprocessor. The graph models the data flow during

execution of each 1instruction.

i
’

[vaDi 78] proposes a model based on a control and data
graph of a control system to formally specify and verify
large parallel control systems. Petri nets are used to
describe the scheduling of events and conditaons and a data"
graph to describe the primitives defining the data part of’
the system. Verification can be done in two levels: the
control level where the Petri net is analyzed to verify that
it is safe, proper, live and well formed, and' the schema
level where both the contreol and data graphs are analyzed

together to verify that the schema 1is deterministic and

determinate .

We used these ideas in modelling data flow in a
protocol specification with a graph tc visualize the effects

of parameter wvariations., This topic will be discussed 1in

Chapter 5.

1.5.Survey of Existing Work on Protocol Testing

In this section we describe previous and ongoing work

on protocol assessment,

Early efforts on test design for protocols were based
on finite state machine (FSM) models of the protocols. For

example, the main part of the tests proposed in [HeRa 81],

17
called protocol tests, were designed to test each transition
in the FSM model as follows:
- the implementation is driven intc the present state of the
transiticn, and
- the input (either from T or R) is applied, and

- the output is observed.

Another approach has been the use of a logic
programming language called Prolog {Kowalski 79] to generate
test sequences for protocols [UrPr 83]. A grammar describing
the actions of <4he protocol or serwvice 15 derived from the
specification and a Prolog program is written for the
grammar, The output of the program 1is the test sequences
(only transition tours) that involwve protocol -actions and/
or user interactions depending on the grammar used. An
advantage of this method is that, using attribute grammars,
it 1is possible to generate test sequences that involve
parameter variations [UrPr 83)]. The question of writing a
Prolog program to accept any grammar (1.e., any FSM) and
derive the test sequences accordingly n%eds to be

investigated.

1.5.1.Testing with Reference Implementations

There 1is an alternative approach to the test
configuration described in Sec+tion 1.2. A correct

implementation called reference implementation of the

18
protocol to be tested replaces the active tester (T) in
Figure 1.2, With this configurat}on, the test programs on
both test center and responder sites become a set of user
interactions [LiNi 83], Test sequence generation can be
done using the service specification of the protocel. An
example service specification for the transport service with
Subgreup B FDT :3 reported in [BoCelLa B81). Taking a
transition tcur of the FSM describing the service gives the

test seguences for the two communicating users.

In [LiMz 83] a different approach”is taken to generate
test seguences., A service specification is converted 1into
two grammars (called user—entity grammars) for the two peer
entities. Then a composite grammar which gives the sequences
consisting of one or more 4-tuples (reguests and indications
of both entities) is derived. Since the states of the FSM
are the nonterminals in the grammar, test sequence is
generated starting with the initial state and terminating
when the final state is reached. [LiMc 83] describes how

the composite grammar can be wused as a Markov chain by

assigning weights (stationary prcbabilities) to the
productions, These weights are utiiized for functional
decomposition of the test seguences {(connection
establishment, freeing, data transfer, etc.) and.” or

generating test sequences for different service classes of a
given protocol (for examplie the transport protocol has 5
service classes) without a separate generator for each

service class.

19

Test sequences generated from a service specification
may contain synchronization problems [SaBo 83] since it i
difficult to synchronize the testing sides only through thé
IUT., This is due to the fact that the protocol service As
nondeterministic (a ‘ protocol may accept or reject/ a
connection request by one of its users) and the architecture
of [LiMc 83] involves two implepentations. [LiM?/ 83]
mentions the need for modifying some c¢f the automay@cally
obtained sequences in order to obtain synchronizabﬁe rest
seguences. Another problem with the test sequence

generation method of [LiMc 83] is that about }73 of the

resulting sequences are duplicate seguences, /

/
/

/

Protocol errors, 1i.e., PDUs introduced 1in unexpected
states, cannot be introduced to the implementations if the
tests involve only user interactions. The test configuration
can be modified to 1include an exception generator on the
Tester site which modifies the PDUs generated by the
reference implementation. The exception generator
interfaces with the test program (called scenario file in
[LiNi 83]) in order to introduce the errors reguired by a

given test.

/
!

/
Using a reference implementation at the /test center

has the disadvantage of the difficulty in finding such an
implementation. But once a protocol implementation of level
N is tested and all the errors removed, it can be used by

the test center when testing protocol implementations of

P

20
&P

level N+1.

1.6.0riginal Contributions of the Thesis

)

The thesis has the following original contributions to
the state of the art of protocol testing:
- Systematic Eest sequence selection for protocols using the
three identified methods from finite state machine test
theory, i.e., transition tours, characterization and
checking sequences.
- Treatment of the synchronization problem which occurs for
certain test sequences obtained using the methods above, and
the modifications to the basic algorithms of the above three
methods such that only synchronizable test ‘'sequences are
generated. .
- A normalized representation for protocols which 1is
obtained from the formal specification of the protocol by
enumerating all control paths and combining submodules.
- The <control and data flow graph models of normal form
transitions.
- Use of the graph models of the normal form transitions in.
protocol design wvalidation, 1i.e., for detecting certain
syntactic and semantic errors in the specification.
-A test design methodology for protocols. Deriving control
and data flow functions from the £low graphs, the
methodology can be used to design tests for all cof these

functions using parameter variations of the input

*

21

primitives, = For functions that are not covered in the
specification, fault models are proposed to obtain test
sequences. For protocol error cases, tests can be designed
using the two flow graphs.

-Test design for two real protocols applying the test

methodology, namely the transport protocols Classes (0 and 2.

1.7.0rganization of the Thesis
The thesis is divided into three parts:

Part 1 establishes the Sasic theory, in Chapter 2 we
discuss test sequence generation for protocol specifications
modeled as finite state machines, and in Chapter 3, the
software developed to generate test seguences automatically
from a given FSM model 1is discussed: Basic algorithms from
the literature are modified in order to generate

synchronizable test sequences.

Part 2 describes test design for protoéols based on a
formal specification in Subgroup B FDT. Chapter 4
establishes the basis for specification‘based test design:
The specification is transformed into single path
transitions called normal form transitions. Chapter 5
discusses graphic representations of certain aspects of the
normal form transitions: A control graph Yhich models the
changes in the major state variable (i.e. FSM aspects), and

a data flow graph which models the flow of other protocol

A%

22

data. Based on these graphs, Chapter 6 defines a methodology

for test design.

Part 3 applies the test design methodology to two
protocols: The transport protocol classes 0 and 2. 1In
Chapter 7, the tests for an implementation of the Class 0 TP
are outlined and Chapter 8 describes a test design for a
more complib%&ed protocol, 1i.e., the Class 2 TP. Finally,

3

in Chapter 9 we state our conclusions.

-

23

- <, 2.Test Sequence Generation

In this chapter we assume that the protocol to be
tested (or its specification) can be modelled as a finite
\ . state machine (FSM). A FSM for a protocol can be defined as
a quintuple [Kohavi 78]:
M=(1,0,S5,D,L) where
R " i) The input set (I) 1is the set of the reguest/ responsg
Oy primitives from the user of the protocol and the set of PDUs
from the peer entity.
E ii) The output- set (0) 1is the wunion of the set of
| indication/ confirmation primitives to the user and the PDUs
to be sent to the peer entity.
iii) The set of states (S) 1is usually selected to
disiinguish different phases of a connection such as idle,
i.e., no connection, waiting for a response from the user or
open, i.e., connection is established. One of the states in
S represents the state of the machine before any 1input is
applied, this state is called initialustate.
iv) D is the state tranigtion function defined as:
D: I x § -> 8§,
v)L is the output function defined as:

L: Tx § -> 0,

If the specification does not define any transition
for some pairs of (input, state), the resulting FSM model is
called incomplete. We assume that a FSM of a protocol

specification is strongly connected (i.e., any state can be

o

T T T T

24 ' .

reached starting with the initial state) and reduced (i.e.,

there exists no superfluous states) [Kohavi 78].

A FSM model of a protocol can be obtained from its
formal specification in Subgroup B FDT by ignoring‘
interaction parameters, predicates of transitions and the
effects of parameters on the prétocol variables other than
the major state wvariable, We will discuss how to obtain a

FSM model from the transformed specification in Chapter 5,

Using the FS& model described above, it is possible to
abply the test Eeéhniques devgloped for FSMs to protocols
[SsaBo 82]. These techniques are wused for algorithmically
deriving interaction sequences to be applied to test an
implementation under test (IUT) . According to the
distributed character of the test architecture described in
Chapter 1, 1i.e., Tester and Responder, the two sites
involved in testing a protocol are only synchronized through
the IUT. Therefore some cf the interaction seguences
generated may contain synchronization problems. The 'test
sequence generation methods and synchronization problems are

discussed 1n more detail in [{SaBo 84]. A short review of

these 1issues is given in the remaining part of this chapter.

1

2.1.Transition Tour Method

~

A seguence of input synbols which starts with the
initial state and includes, at least once, all the
“transitions defined in the protocol specification'is called
a transition tour. Transition tours can be obtained for any

connected FSM. Two algorithms that obtain transition tours

of a FSMusing different techniques will be discussed in

Chapter 3,
This method selects test sequences found from

concatenation of sequences from the following two sets of
input sequences:
- P, the set containing all partial paths in the fisting
tree. The testing tree has the transitions ({each tra.nsition
used exactly once) as its branches and states as its nodes,
- W, the characterization set, a set of input sequences
which contains for every pair of states a sequence that can
distinguish then, 0

A testing tree exists for every connected FSM and

every reduced, completely defined FSM possesses a W-set.

Each 'sequence in the c¢oncatenation of P and W
(represented as P.W) is applied starting with the initial

state, since the root of the testing tree is the initial

o

AR

‘state, and possibly followed by a transfer sequence back to

the initial state. This transfer sequence ié;called reset.

In Chapter 3 we give some algorithms -to obtain

W-sequences for protocols.

2.3.D-Method

This methoduapplies io FSMs--that possess a sequence of
inputs called distinquishing sequence (DS). A DS is a w~sé€
that has. only éne member ., A‘ D-sequence’' is selected as
follows: ~
- Apply DS followed by DS starting with every state in order
to recognize all the states,

- Apply DS after every transition of the FSM.

Only a subset of FSMs possesses a DS, thus the

-applicability of this method 1is restricted to those

machines.

It is shown in [Chow 7B and Kohavi 78] that if W- and/
D-sequeﬁces are applicable, they can detect all the faulté
in the FSM assuming that the IUT behaves like a FSM with a
number of states smaller or eqgual to the specification. A

transition tour does not have this property.

Upper bound length formulas for the above three
methods and their complexities are given in [SaBo 84].

Actual lengths of test sequences applied“ to wvarious

27

protocols are also given. A comparison with the upper bounds

shows that actual lengths vary between 20 and 68 percent of

the upper bounds depending on the complexity of the machine.

N
2.4.Synchronization Problem

8o far we have assumed that any transition of a FSM
can follow any other if they are in correct state order
(next state of the previous transition matches with the

present state of the current transition). This assumption

is wvalid only if the test sides T and R of the test

architecture can be synchronized directly. However, this is

if T and R may be in the same computer

not desirable even

since it would reguire that the time taken by a sequence of

/

interactions with the implementation involving only T (or R)

can be known by R (or T). Thus it 1is desirable to
synchronize T and R through interactions with the
Implementation (IUT) by selecting only test sequences thdt

are synchronizable (see below for a definition).

A transition in a test sequence can be seen as

composed of an input message to be received by the

implementation and zero, one, or twc messages sent by I'UT to

be received by T or R or both. Also the test architecture

can be modelled as three FSMs that communicate with FIFO

gueues. Using these ideas, [SaBo 84] gives the definition of

a synchronization problem in a test sequence as follows:

Considering two consecutive basic transitions of the
IUT, one of the test modules, say T (or R) faces a
synchronization problem if T (or R) did not take part in the
first transition and if the second transition requires that
it sends a message to IUT.

According to the theorem given in [SaBo 84] any pairs
of ;onsecutive transitions in a test sequence should be a
synchronizable pair of transitions in order that the test
sequence contains no synchronization problems. This property

will be used in the algorithms that generate synchronizable

transition tours and W-sequences in Chapter 3.

Another basic problem is whether or not a FSM defining
the protocol contains intrinsic synchronization problems.
This is the case if there exists a transition that cannot be
included 1in_ any synchronizable test sequence. Such a
transition is called not synchronizable. If all transitions
from a state are not synchronizable, this state 1is a
nonsynchronizable state. An algorithm for finding intrinsic
synchronization problems 1is outlined in [SaBo 84] and
described in detail 1in Algorithm 2.1. It has a complexity
of 0(n2k) where n 1is the number of states and k is the

number of possible inputs.

The language used in Algorithm 2.1. and all other
algorithms in this thesis is the Pascal language extended
with the construct:

(/ oo /);

£

L Val

29

where ... can be an English statement or predicate. This

construct (taken from Subgroup B FDT) 1is used to express

informally certain aspects of the algorithm,

The algorithm in Algorithm 2.1 assumes that each input

to the FSM is specified with an indication of a side that

initiates the input (such as Tester (T) or Responder (R) of

the test configuration in Chapter 1). Also, each output

generated by the FSM is assigned to a side to which

output is sent. Details of internal representation of

¢

FSMs will be discussed in Chapter 3.

" -
B

Using the side information, Algorithm 2.1 finds

set of all the sides from which a given state i can

the

the

the

be

reached through the transitions leading to state i and then

checks if there is any transition from state i which should

be initiated by a side that is not in the set found, All

nonéynchronizable transitions (if any) from all states are

found accordingly.

2

30

var
nextstate:array|[l..maxproduction] of integer;
input_side,out_sidel,out_side2:array[l..
maxproduction] of integer;
(*s1de information for input and outputs, and
maxproduction i1s a parameter representing
. the maximum number ot transitions accepted*)

procedure intrinsic(nonsyn,nonsynstate:integer);
(*nonsyn:no. of nonsynchronizable transition,
nonsynstate:no. of nonsynchronizable states ¥*)
arriving : array[l..maxnbside] of sendreceive;
(*maxnbside is a parameter representing the number of
distict sides allowedx)
adr,1,7,k,term:integer;
begin

nonsyn:=0; nonsynstate:=0; (*initializex)

for i:=1 to maxnbstate do (*for all the statesk)

begin .

for k:=1 to maxnbside do (*for all the sides*)
arriving[k]:=0; (*initialize arriving*)

1f 1=1 then j:=2 else j:=1; (*initialize j*)

repeat (*for all transitionsx) ,
(*find nextstate of the transition from state i

under the next input¥*);

for term:=1 to maxnbterm do

begin . .
adr:=i*maxnbterm + term;

if nextstateladr] = i then

begin

arriving[input_sideladr]]:=input_sideladr];
if out sidel|[adr]<>0 then
arriving{out_sidel{adr]]:=out_sidelladr];
if out side2[adr]<>0 then
arrivingout_side2]adr]]:=out_side2[adr];
if (/state 1 can be arrived from all the sides/)
then goto 1;(*no more checks for state ix)

end; (* of nextstateladr] = 1ix) o
end; (* of for term¥))
je=3+1;

if j=i then j:=g+1;
until j > maxnbstate;
(*now check the transitions from the same state,
i.e., state i x)
for term:=1 to maxnbterm do(*for all terminals%)
adr:=1*maxnbterm+term;
if (arrivinglinput_sideadr]] = 0) then
begin .
print('transition from ',1i,' on input ', term,
"is not synchronizable');
nonsyn:=nonsyn+1;

31

end; |
if (/all transitions are not synchronizable/)
then begin
print{'state ',i,' is nonsynchronizable');
nonsynstate:=nonsynstate+l;
end;

l:end; (* of all states x)

end; {(*of intrinsic *)

Algorithm 2.1.Algorithm to Detect Intrinsic Synchronization
Problems

o

2.5.8pecification Enhancements for Testing

In order to make the W- and D-methods applicable when
the original protocol specification does not possess a DS

and/or a W-set, the following two approaches can be taken:

2.5.1.Special Test Transitions

The protocol specification may be enbhanced by defining
special test interactions and transitions <called "read
state” and "set state" [Piatkowski 80]. The "read state”
input becomes é W-set and DS by definition thus these two
methods can be applied and the resulting sequences have
minimal lengths since the W-set/DS is of minimal length and
all the transfer sequences necessary (including resets) can
be implemented as "set states” which are of length one. A
generalization of the special test transitions will be given

in Chapter 6. .

PRl

32

2.5.2.Completing Specifications

The specification may be completed until a W-set or DS
is obtained by introducing an error state. This approach
guarantees a W-set but not a DS. Synchronization
considerations concerning the outputs for the added

transitions are discussed in [SaBo B4],

2.6.Complexity of Test Segquence Generation

v

the D-method has the highest complexity mostly due to

the high complexity for obtaining a DS ([SaBo B4]. When

generating synchronizable test sequences it is assumed that
the complexity of checking for intrinsic synchronization
problems O(n%k) becomes the most important factor, thus by
a&ding the n?k to the complexities of algorithms it is
possible to obtain the complexities for finding

synchronizable test segquences.

The complexity of the test sequences obtained from the
FSM models (ignoring parameters, additional state variables,
etc.) of the real protocols is not too high (see Table 2 in
[SaBo B4]). Taking FSM models as approximations to the real
protocols, FSM test techniques are useful in deriving test
sequences. In Chapter 3 we explore the algorithms to

implement some c¢f them.

Complete testing of a protocol requires consideration

Lew mw g

33
of parameter wvariations, additional state variables, ete.
The resulting model is too complex because of the very high
number of different inputs introduced by parameter
variations of interactions and the very high number of
states introduced by protocol variables used in the enabling
condition of the transition types of a Subgroup B FDT
specification. In order to reduce the complexity of
complete testing, it becomes necessary to decompose the
protocol into func#ions and design tests for these functions
which are less complex than Ehe complete protocol., This

topic will be discussed in Part 2 of the thesis,

34

3.Test Sequence Generation Scftware

Programs written to generate test sequences according
to the transition tour and W-methods of Chapter 2 will be
described in this chapter. These programs‘read the input
automaton which may - be incomplete, check whether it is
connected and minimal and whether it has any intrinsic
synchronization problems. Then they generate a test
sequence. Two programs have been developed for the
transition tour method: one using a depth-first-search
algorithm (DFS) [Tarjan 72], the other using a random input
selection algorithm [NaTs 81]. One program has been
developed for the W-method. These programs have been
written in Pascal and are running under the operating system
VMS of VAX 11/780 écmputer. A user manual is provided in

[Sarikaya B4b].

In the following parts of this chapter we discuss the
input and output formats and the internal representation of
the test seguences generated by the programs, as well as
modifications made to the basic algorithms [Tarjan 72, NaTs
81, Chow 78] 1in order to generate synchronizable test

sequences.

35

3.1.Input and Qutput Formats and Internal Representations

The three programs share routines for error
processing, automaton input, test sequence output and checks

for intrinsic synchronization problems.

B

3.1.1.Automaton and Test Seguence 1/0

The 1/0 formats depend on whether the seguence
generated will be synchronizable or not. For the
depth—first—sear;b (DFS) algorithm which generates a
transition tour without checking for synchronization, the
input format is as follows. Each line of input represents
one transition and has the form:

present state B input ¥ output ¥ next state

The present state in the first line of the input file

becomes the initial state.

An example input machine is shown in Figure 3.1 which
models the Class 0 Transport protocol. An output of two
symbols is represented by separating the two symbols by a

comma, as shown in Figure 3.1.

If the input machine is incomplete, it is completed by
the programs automatically. An error state is added and all
incomplete transitions are filled as transitions leading to

this state by giving the output ERROR.

The generated test sequence is stored in a double-line

36

format (states and inputs respectively) in an output file to
be printed after the program terminates. A test SseqQuence
can be stored using many of these double lines depending on
its length. 1In the following sections we include an example

printout of the output file created by each program.

The input format changes slightly for the other
programs, which alsc consider synchronization. The 1/0
symbol is replaced by an indication of the initiator, and
the 1/0 symbol. The initilator indication has the value '"'
when the output -is empty, i.e., when no output is generated

“

for a given input. No output is indicated by "VIDE".

The input machine of Figure 3.1 1is shown in Figure
3.2. with the initiator indicated, where T stands for the

Tester and R for the Responder in the test architecture of

Chapter 1.

Synchronizable test sequences are stored in the same
format as described above where the initiator indication is

given as prefixes to the input and output symbols.

13

¢t

3.1.2.Internal Representation

Arrays are used to represent the machine internally.
All four items in a line are converted into integers. Next

states and outputs are stored in two arrays which are

accessed by the index:

37
&,

state * maxnbterm + term
where state is the integer corresponding to the input state,
maxnbterm is the maximum number of terminals, i.e., inputs,
allowed and term 1is the integer corresponding to the
terminal. State number one is the initial state, =zero is
the error state (if any). Specified terminals and outputs
are numbered as they appear in the input file. Output number

zero is the output ERROR (if any).

A test sequence is represented as two arrays, one for
terminals (inputs) and the other for states. When
outp;tting the test sequence, the inteéers in the internal
representation are converted into the symbols given by the

user with the help of the conversion tables created during

the input phase. P

¢

\

Programs that generate synchronizable test sequences

3.1.3.8ynchronization Checks

check the machine for any intrinsic synchronization
problems. These checks are done by the algorithm given in

Algorithm 2.1.

38

i CC ignovre 1
1 DT ighore 1
v 1 DR ignore 1
1 CR T Cind 2
1 T_Creq CR 3
2 T Cresp cc 4
"2 DR Err 1
2 DT Err 1
2 CC Err 1
2 CR Err 1
. 2 7T _Dreq DR 1
3 ¢C T Cconf 4
3 DT ignore 1
3 DR T_Dind.N_Dreq 1
4 DT T°DTand &
4 T DTreqg DT 4
4 7T Dreq N_Dregq 1
4 CR Evr 1
4 DR N_Dreq 1
4 N_Dind T Dind 1 y
4 N_Rind T_Dind 1

o

Figure 3.1.An Input Machine Modelling Class 0 TP

1 T CC ~ VIDE ~ VIDE 1
1 T DT -~ VIDE ~ VIDE 1
1 T DR ™ VIDE - VIDE 1
1 T CR R T Cind ~ VIDE 2
1 R T7_Creq T CR “~ VIDE 3
2 R T Cresp T CC -~ VIDE - 4
2 T DR T Err - VIDE 1
2 7T DY T Err ~ VIDE 1
< T CC T Err ~ VIDE 1
2 T CR T Err ~ VIDE 1
2 R 7T Dreq T DR ~ VIDE 1
3 71¢CC R T Cconf - VIDE 4
3 T DT ~ VIDE ~ VIDE -1
3 T DR R T _Dind T N Dreq 1
4 T DT R T"DTind ~ UIDE 4
4 R T _DTreq T DT ~ VIDE 4
4 R T Dreq T N_Dreq ~ VIDE 1
4 T CR T Ere ~ VIDE 1
4 T DR T N_Dreq = VIDE 1
4 T N_Dind R T"Dind ~ VIDE A
4 T N_Rind R ~ VIDE 1

T”Daind

Figure 3.2.The Machine in Fiqg.3.1 With Initiator Indication

T R .

39

3.2.DFS Tour Program : PR

¥

This program (DFSTOUR) takes ﬁhe input automaton as &
connected graph and carries out a DFS of this graph. The
algorithm 1is a slightly modified (to generate transfer
sequences) version of [Tarjan 72]. This algorithm invokes a
routine called transfer to generate a transfer seguence
[SsaBo B4]. The transfer routine finds a transfer seguence
from the state in its first parameter to the state 1in its
second parameter. The sequence found (not necessarily of

minimal length). is added to the tour. The routine is

outlined in Algorithm 3.1.

. The tour generated by this program and all the other
programs described 1in this chapter contain only specified
transitions. Unspe&ified transitions are excluded from the
tour. A DFS tour/ generated for the machine of Figure 3.1 is
listed in Figuré 3.3. This tour has a length of 37, thus it
conéa{ns three more transitions than the minimal tour in
[SaBo 84]. The DFS touf program does not necessarily

generate tours of minimal length.

[#]

40

var nextstate : array[l..maxproduction] of integer;

procedure transfer(stl,st2:integer);

(*generates a transfer sequence from stl to st2%*)

(*and adds the sequence to the transition tourx)

war levels,terms,saveterms:array{0..maxnbstate] of integer;
"

procedure assignlevel(state,level:integer);
(*This recursive procedure assigns a "level", i.e.;
distance from the start state stl to the current
"state"x)
var
;erm,adr,w:integer;

begin (*find levels,terms, i.e. inputs from state*)
levels{state]:=level;
for term:=1 to maxnbterm do
begin
- i adr:=state*maxnbterm+term;
. y:=nextstateladr];
if levels|[w] > level+1l then
begin
terms[state]:=term; (*store input of the transfer
sequence in the array terms*)
if w=st2 then saveterms := terms; (*transfer segquence
found save it*)
assignlevel(w,level+1l); (*find levels of
other statesx)
o end;
end; (*of all terminals*)
end; (*of assignlevelt)

begin (*transfer*)

assignlevel(stl,0); (*assign level 0 to initial statex)
st:=s8tl; (*initializex) :
(*add the transfer sequence in saveterms to the tourx)
repeat {(*until §§=st2*)
(/add (st,saveterms[st#]) to the tour/);
st:=nextstate$st*ma§ bterm+saveterms(st]];
until st=st2; [‘ . '
T ~ . .
. - N v
end; (*of transferx*) - \~\
- ‘ #

i

AN

\
Algorithm 3.l1.Transfer Sequence Finding Algorithm

0

™~

cc 1 DT "1 DR 1 CR 2 CcC 1 CR Z DT 1 CR
i18hore 1g9nore itanore T..Cind Err T.Crnd Err T_Cind
DR 1 CR z CR 1 CR 2 T-Cresr 4 DT

Err T.Cind Err T_.Cind ccC T.DTind

DR 1 FR 2 T.Crespr 4 CR 1 CR 2 1T-Cresrp 4 T_Dre=w
N_.Drea I_Cind Cc Erpe T-Cind (' N.Drvea
CR 2 T_Cresr 4 T_DTres 4 N_Dind 1 CR 2 T-CPQIP'

T.Cind cc , DT T_Dind T-Cind cC
’N-Rxnd i CR 2 T_.Dres« 1 T_Crea' 3 CC 4 DR I T.Cres
T-.Dind T-Cind DR / CR T_Cconf N_Dre«s CR

DT 1 T_Crea 3 DR 1

i8nore CR

T_Dind,N_Dren

1

g

Figure 3.3.A DFS Tour Generated by DFSTOUR Program

3.3.Random Tour Program

It is possible to generate minimal .transition tours by
including the randomly selected transitions into the tour
and reducing Fhe unneccessary part from the last new

transition once an unvisited transition (called zero-input)
is added to the tour. The algorithm described in ([NaTs 81]

was programmed.,

There are three procedures of main interest in the
‘random tour program (RANTOUR) which implements the above
algorithm modified to generéte synchronizable tours. First
we describe a function called "synchronizable" which returns

p:

Iy

42

"true” if the pair (state,input) can be added to the tour

without any synchronization problems in Algorithm 3,2.

type sendreceive=(null, send, receive);
var
lastaction:array({l..maxnbside] of sendreceive;
input_side,out «<:del,o.> _side2:array(l..maxproduction]
ol integer;
firstransition:boolean;
{*lastaction is initialized to "null"s,
firstransiti?n is initialized te¢ "true"x)
4
function synchronizable(state,input:integer):boolean;
var
i, adr : integer;
begin .)
(*lastaction contains the sides information
from the last transition added¥*)
adr:=state*maxnbterm+input;
i:=input_side[adr];
if lastaction[i] = null and not firstransition
then \
synchronizable:=false
else begin ,
- firstransition:=false;
synchronizable:=true;
(*update lastaction arrayt*)
for j:=1 to maxnbside do
if j=1 then lastactjion|i]:=send
else lastaction[i}:=null;
if out sidelfadr] <> null then
lastaction[out_sidel(adr]]:=receive;
if out side2[adr] <> null then
lastaction[out_side2[adr]]:=receive;

A

end; «

end; (*of synchronizablet)

Algorithm 3.2.Synghronization Check Algorithm

Secondly, there .is the reduction procedure {see
~Algorithm 3.3) which eliminates redundant pairs included in -

the tour between the last new transitions.

e

43

var |
state, test:array(l..maxnbinput] of integer; \
(*arrays tc store the tour, state for states
and test for inputs, maxnbinput is a ;
parameter of the program *)
procedure reduce(i,j:integer); .
begin (*i is a pointer to the beginning and j to the
end of the subsequence to be reduced#*)
ri=i; (*r and s are internal pointersx)
vhile (r < j) do
begin
s:=3;
while (s > r) do
begin
if state(r]=state(s] then
begin (*check for sychronization
by calling Algorithm 3.2 before reducingx)
if {(/(r-1)th transition can be followed by
s th transition without synchronization
problems/) then
" (/deleté the tran51txons from r th to (s-1)th/)
else begin
(/find the first tran51tlon that precedes s th
synchronizably/);
(/delete transitions up to (s-1)th/);
end
end
else s:i=g-1;

end; (*of while s > r¥)
if s <= r then r:=r+1;

end; (*of while r < j*x)

end; (*of reducex*)

Algorithm 3.3.Reduction Algorithm

The main procedure (RANTOUR) (Algorithm 3.4) uses a
raﬁdom number generator given in [ChDa 83] to select inputs
randomly. The pointer T keeps the count of newly added
transitions, once T reaches the number of specified

transitions (nbtrans), the tour is completed.

A tour generated for the machine of Figure 3,2. is

44

listed in Figure 3.4. This sequence has a minimal numbe} of
transitions. Since the routine which finds transfer
sequences does not necessarily find minimal transfer
sequences, RANTOUR program may not always give sequences of

minimal length.

var
nextstate:array[l..maxproduction] of integer;
nbtrans:integer;
procedure RANTOUR;
var adr, T, u, q0, x, g : integer;
begin
T:=1;
(/generate a random input x which is specified from
initial state g0/);)
if synchronizable(g0,x) then(*update lastaction/)
(radd (g0,x) to the tour/);
adr:=g0*maxnbterm+x;
g:=nextstate(adr);
while T <= nbtrans do

begin
u:=T-1;
repeat (*until x is zero-input*)
q0:=q;
- u:r=u+l;

repeat (*until synchronizable*)
(/generate .a random x specified from qO/)
adr:=qg0*maxnbterm+x;
g:=nextstate(adr);
until synchronizable(g0,x);
(/add (q0,x) to the tour/);

until (g0,x) is zero-input;

reduce(T,u); (*Algorithm 3.3%*)
T:=T+1;

end; (*of while T<=nbtransx*)

end; (*of RANTOUR*)

Algorithm 3.4.RANTOUR Algorithm

N
x

[™S
~

L]
O~

4 R

T.D

45

DR 1 T CR 2 R T _Cresp 4 T.DT 4 T N Dind

- R T_Cind T CcT R T_DTind R T_j):gd ! ; gRand
T Dreq 1 R.T Creq 3 T DR ;

R R T_Dind. T N_Dregq

T Creq 3 T CC 4 T.DR 1 T.DT

CR R.T_Cconf T.N_Dreg - bT.Ceot g.gRC1nd ° ¥'25r
.CR 2 T.CR 1 T CR e R T

T_Cind T Err R T_Cind T CCCresp

N Rind 1 T CR < T CC 1 7T CR 2 7.DT 1 TCR

T_Dind R.T_Caind T Err R T_Cind T Err R.T_Cind

T Cresp 4 T CR 1 T CR 2 R 7T Cresp

cCT T Err R T_Cind T CT

TTDTreq 4 R T_Dvreq 1

R T Creq 3 TDT 1
T N_Dreq T CR -~

Figure 3.4.A Synchronizable Tour Generated by RANTOUR

3.4.Ww-Method Program(SWMAIN)

The program first finds a W-set (guaranteed to exist
since the machine is completed if necessary), and then lists
all the subseguences in the set P.W, where P represents the
testing tree [Chow 78]. SWMAIN is based on the program
called .CHOW which is described in [ChLeLeRi 81]. CHOW
implements the method of [Chow 78] using the algorithm of

{Gill 62] in finding a minimal W-set, When a machine

-

P S —

46

possesses a W-set of length one, the original CHOW program
was finding a nonminimal W-set for the machine. Thus we
added a routine (Algorithm 3.5) ~to check if the machine
possesses a W-set of length one. Also, CHOW was not
generating reset sequences, hence in SWMAIN the transfer
sequence algorithm (Algorithm 3.2) is wused. Since a reset
sequence takes the machine to the initial state, the second
parameter of the call to the transfer routine is specified

as 1.

47

type
pt = “symbol;
symbol=record val:integer;
other,next :pt
end;
var
action:array|[l..maxproduction] of integer;
(*outputs of the transitionsx*)
W:array!l..maxnbstate] of pt;
function checkforone:boolean;
{*checks if the machine posseses a W-set «f Ytength
one and if it does returns the W-set in YW"x)
var
alldifferent:boolean;
adrl,adr2,term,count,i,k:integer;
currentpt:pt;
begin l
checkforone:=false; (*initializex*)
for term:=1 to maxnbterm do
begin :
count:=1;
for 1:=1 to maxnbstate-1 do
begin
alldifferent:=true;
for k:=i+1l to maxnbstate do
adrl:=i*maxnbterm+term;
adr2:=k*maxnbterm+term;
alldifferent:=action(adrl)=action(adr2);
if alldifferent then count:=count+l;
end; (*of i:=1 to maxnbstate-1x)
(*check if count equals number of states*)
if count=maxnbstate then
begip
new{currentpt);
with currentpt”™ do
begin
val:=term;
other:=nil
next:=nil;
end;
W[l]:=currentpt;
checkforone:=true:;
end;

end; (*of term:=1.to maxnbterm¥*)
end checkforone;

Algorithm 3.5.Checkforone Algorithm

8]

48

SWMAIN uses a slightly modified version of the
transfer routine to generate synchronizable transfer
sequences. The modified routine 1is used in two places when
generating synchronizable W-sequences:
i)In generating synchronizable reset seguences;
ii)In synchronizing the subsequences in P.W by generating a
synchronizable reset seqguence from the final state of the
preceding subsequence to the initial state of the succeeding
subsequence when necessary. A procedure to check a

subsequence in P.W and add the above seguences if necessary

is outlined in Algorithm 3.6.

49

type .
transition:record=state,input,action,next_state:integer;
first_transition,last_transition:boolean
end;
var
state, input:array{l..maxnbinput] of integer;
PW:array([l..maxinpw] of transition;
(*maxnbinput and maxinpw are the parameters of the
program*)

' irinteger;
(*initializex)
i:=1;

(*state, input and PW are filled in SWMAIN%)

repeat (*xfor all the sequences in P.Wx)
with PW[i] do
begin
if not synchronizable(state, input) then
if first_transition and (i > 1) then
transfer (1,1); (*generate synchronizing sequence
to synchronize two consecutive subsequences*)
else
print('P.W contains nonsynchronizable
subsequegges'); i
~
if last_transition do
if next_state <>'1 then
transfer (next_state,l); (*generate a
" synchronizable transfer sequence
to the initial state %)
(/print the sequence/);
i:=1+1;
end; (* of with PW[i]*)

until i < maxinpw;

Algorithm 3.6.Synchronization Checks of P.W

A W-sequence found by SWMAIN for the machine of Figure
ﬁ.z is listed in Figure 3.5. The iength of this seguence is
65 and it contains only the specified transitions. The W-set
is DR, as reported iﬁ [saBo 84]. The sequence in Figure 3.5

contains no separate reset seguences since the W-set always

50

brings the machine to the initial state.

3,5.D-Method

We have not implemented the third test sequence
generation method, namely checking sequences. A discussion
on the implementation of the algorithms of [Gonenc 70}

(ignering gynchronization problem) can be found in [Guitton

[

84].

*

51

1 T CR T DR 1
R T_Cind T.Evrr
1 TCR e T CC 1 TPR 1
R T_Caind T.Err -
1 TCR 2 1T DT 1 T.DR 1
‘"R T _Cind T.Evrr -
=1 T CR 2 T DR 1 TDR 1
R T_Cind T Err -
1 T CR 2 T CR 1 TDR 1t
R T_Cind T Err -
1 T CR 2 R T Cresp 4 T DR
R T_Cind T cT T N_Dreq
1 T CR 2 R T Cresp 4 T DT
R T_Caind T cC R T_DTaxnd
1 T CR 2 R T Cresp 4 T DR
R T_Cind T cCT T N_Dregq
1 T CR 2 R T Cresp 4 T
R T_Cind T cT . T Err
1 T.CR e R 7 Cres 4 R T _Dreq
R T_Cind T cC g T NDreq
1 T CR 2R T Cresp 4 R T DTreq
R T_Cind T cT T DT
1 T CR 2R T Cresp 4 T N _Dind
R T_Caind T cC R T_Dind
1 TCR 2R T Cresp 4 T N_Rind
R T_Cind T cC R T_Dind
1 7T CR 2R T Dreq 1 7T DR 1
R T_Cind T DR -
1 T CR 2R T Cresp 4 T N Rind
R T_Cind T CC R T_Dind
1 R T Creq 3 T DR 4
T . R 7_Dind, T N_Dreq
1 R T Creq 3T CC 4 T DR
T CR R. T_Ccon# T N_Dregq
-1 T CR 2R T Cresp 4 T N Rind
R T_Cind T ¢cT R T_Dind
1 R T Cre 3T DT & T DR &
TcR % - :
1 T CR 2R T Cresp 4 T N Rind
R T_Cind T cT R T Dind
1 RT Creq 27T DR : 1 7T
T R T_Dind., T N_Dregq

! 4

Figure 3.5.A Synchronizable W-seguence

1

4 T DR 1
T N_Dreq

1 TDR 1

CR 1T DR 1 ®

1 TDR 1

4 T.DR 1
T N_Dreg

i1 TDR 1

1 TDR 1

1 ‘ .

1

1

1

DR 1

Generated by SWMAIN

52

Part 2

In Part 2 we develop some theory and a methodology for ‘

test design based on a specification of the protocol given
in the Subgroup B FDT language. A protocol is assumed to be
tested for conformance to its formal specification. As
introduced in Chapter 1, the Subgroup B FDT supports modular
protocol specification using an extended state transition
model. Interaction primitives can have parameters, each
module of the specification has 1its own state variables and
a set of transitions corresponding to external and internal
events. State variables include a major state variabie and

additional variables used in the specification. .

We classify the protocol functions as follows:

Control Related Functions: These functions‘are related to

the changes of the major state introduced by the

transitions, and

Data Flow Related Functions: These functions arise from the

flow of data from input interaction primitive parameters to

the output interaction primitive parameters. We show how

i

both of the above types of functions can be derived from the /’

specification.

In Chapter 4, syntactic transformations are applied to

»

the specification, and submodules. are combined. The

resulting specification has transitions with a single

control path in the action. These transitions are called’

53

normal form transitionms.

Chapter 5 uses normal form transitions to derive the
control and data flow functions. The control functions are

derived from the finite state machine model of the normal

-form transitions. TThe data flow in the normal form

transitions is modeled by a data flow ggaph. A partitioning
«"‘?l

- of this graph gives rise to the data flow functions in terms

of the blocks of the partition. Various dependencies among

these blocks are discussed.

Finally, Clllapter 6 outlines a test design methodo]:ogy
for protocols, Parameter ;.'ariations for interaction
primitives are considered as the main tool for generating
test sequences. This variation 1is guided by a dependency
classification and the structure of the blocks. The

objectives of the different test categories, and multiple

connection _ tests are discussed.

54

4 .Transformations on Protocol Specification

In this chapter, we propose various transformations on
the transition types of a ppotocol specification in order to
obtain the transitions in a form which has input primitives
(optional) fro%’external interaction points, an action with
a single path possibly containing one or more output
staggments to the external interaction points and a

predicate modified to handle path conditioﬁs. Each

transition in this form is called a normal form transition.

The transformations leading to normal form transitions
can be done ‘in two phases: In Phase 1, syntactic
transformations are applied to FDT constructs [FDT B84].

Symbolic execution is used to enumerate paths and find path

conditions in the BEGIN block. In Phase 2, modules are

combined by combining the transitions with interactions.
Iy

Finally, we discuss spontaneous transitions and

nondeterminism in protocol specifications.

4.1.Sample Transition Types

The transformations of this chapter will be explained

using an example protocol specification. This protocol has

. two modules called modulel and module?2 and the substructure

-

of the prétocol is shown in Figufe 4.1,

- Two example transition types of this specification are

—

~

sk VN

'p;imitive parameterﬁ, Sl and S2 are .blocks of assignment

55

t

given in Figure 4,2. CONNECT req over the interaction point

called chanl in Figure 4.1. is an input primitive, A, B and

C are expressions involving module variables and the input

statements, and modtlez.eventl is an output statement to
module2., FROM and TO clauses of Subgroup B FDT are used to
specify present and next major state values, respectively.
The second traAsition type given in Figure 4.2. has eventl
which can. be received from the first module as an input

primitive with parameters called data upit and length. §3

represents a block of . statements and CONNECT_ ind 1is an

-

outpliti'to an external eﬁtity over chan2,.

In the first transition type of Figure 4.2, the BEGik

block has two paths (because of the "if" statement) and it

has an inter-module outbut statement which cannot be’

directly observed .from external interaction points.

4.1.1.Normal Form Transitions

The resulting normal form transjitions obtained by the
transformations of this chapter to transition types like the

ones in Figqu 4,2 have the following form:

~ -

~_

v

56

‘Normal Form Transition Block:

ANY list 1

[WHEN inp 1] ‘
PROVIDED pred_1 ' ¥
BEGIN : o .

action_1l

END o

ANY list n-

[(WHEN inp_n] ,

PROVIDED. pred_n .
BEGIN .

e

action_n
END

——t
end Normal Form Transition Block;

‘/_—/-/.\\\

o

where IWHEN‘inp_i]° shows that some normal form transitions

(those.corresponding to spontaneous transition types) do not

have WHEN clauses.

In general, there are more normal form transitions
than t{ansition types in the original specification since
the pééﬁé in the .transition types are enumerated. In order
to obtain a finite number of normal form transition; the
n;mber of paths -in any BEGIN block should be finite. Thus,

we assume that no BEGIN block in the protocol specification

contains loops with variabie bcunds.

—

57
chan 1

Module 1

Module 2

c¢han 2

Figure 4.1.A Protocol Entity with Two Modules

[
P)
) H

(in modulel)

(in

Fiqure 4.2.Two Sample Transition Types in FDT

WHEN chanl.CONNECT_req

" FROM idle

PROVIDED A and (B or C)
TO connecting
BEGIN

if D then S1
else S2;) .

module2.eventl (CONNECT_reqg,X+2)
END;
module2)
WHEN modulel.eventl(data_unit,length)
PROVIDED data_unit = CONNECT reg and length <= 10
BEGIN »

S3;
chan2,CONNECT_ind

END;

d

/

LY

.

58

- - - 4.2.Transformations on FDT Constructs (Phase 1)

T ‘ In Phase 1, we apply cerfain transformations on
various constructs of the FDT. First -FROM/TO clauses .are
eliminated, then conditiional statemeﬁtgfzp the BEGIN block
are removed. These transformaféons "are done separately on

all transition types of all the modules.

4.2.1.FROM/TO Clauses

The FROM ciause is removed and an equality relation on
the major state variable 1is added to the PROVIDED clause of
the transition type as a conjuction. As an exaﬁgle, the FROM
clause in Figure 4.2 transforms to:

WHEN chanl .CONNECT_req

PROVIDED state=idle and A and (B or C)
TO connecting

BEGIN

if D then S1

The TO clause is removed and replaced by an assignment
to the major state variable added to the BEGIN block. As an
example, the TO clause of Figure 4.2. is removed as

follows:

\
\l

\\

i \

\ ' o)

59

WHEN chanl.CONNECT_reqg
PROVIDED state=idle and A and (B or C)
BEGIN

state:=connecting;

N4 M

AR

State expressions in éhe FRQM clause such as
FROM state <> closed generates one or more normal
form transitions corresponding to one transition type for
every possible present state vaer“ (state values other than

"closed" in the above example).

4.2.2.BEGIN block

i
\

To remove conditional statements and 1local procedure
calls we 'adapt the ftechniques from symbolic execution of
sequential programs [ClRi 81]. The idea is to create a new
transition for every distinct path in the BEGIN block and to
modify‘ the PROVIDED clauses -to reflect the conditions

imposed from taking these paths.

Local procedure ~ calls in the BEGIN ' block are
_translated by symbolically executing the local procedure
body if the local procedure body is completely specified. No
transformation is done on incompletely specified 1local
_ procedures. We assume that the specified procedures are not

recursive and do not contain any loops with variable bounds.

=

60

As an example, we continue with transforming Figure

4,2 to remove the IF statement in the first transition type:

WHEN chanl.CONNECT_req
PROVIDED state=idle and A and (B or C) and D
BEGIN

state:=connecting;

Sl;

WHEN chanl.CONNECT_req
PROVIDED state=idle and A and (B or C) and -D
BEGIN

state:=connecting;

S2; v

s o e P

4
9

The WITH clause® in the BEGIN block (as in Pascal) is
eliminated by concatenating the record name with the ﬁ%oper
variable names. The CASE statement is removed jin a manner
similar to the IF statement above, by generating a normal

form transition for each case.

The FOR and WHILE loop statementé are el;minated by
repeating the body of the 1loop for evefy index wvariable
value. Iflthe loop indexlvariable refers to the connection
arféys,(see Seéction 4.2.3 below) the loop is-eliminated by
including the index variable in the list of variables of the
ANY claﬁse. In this case no modification is done to the loop

body except possibly for the modifications introduced to

remove the WITH statement.

61

~

4.2.3.ANY Clause and WITH Statement

o

As discussed in Chapter 1, in a transition type, an
ANY clause 6f Subgroup B - FDT either 1introduces local
variables or index variables to the connection arrays (the
array name may appear in the WITH statement which follows

the ANY clause).

‘Local variables introduced by the ANY clause are made
global in Phase 1 and removed from the ANY clause (if the
resulting ANY clause 1is empﬁy,‘ the ANY clause can therefore
-be eliminated). .In some cases, the local variable may be of
enumeration type and remov{ng— ‘it reguires that the
transition type generates ‘one normal _form transition for
each element 1in the enumeration tyée. ~The WITH statement

s

associated with the ANY clause

. @

e

is removed in a manner

similar té the WITgxstétement of'thg BEGIN; block.

As far as the index vgriables to the connection array%
ére concerned, if only a single cbnnection is considered,
the ANY clause can be completely removed. But this 1is not
desirable since removing ANYs also removes the transition
types in which two index variables of the same type are used
(if any). Thus we consider the number of connections ‘as a
test system parameter (see Section 6.2.1) and do not remove
the ANYs wﬁich contain 1index wvariables for connectibn

arrays.

"

5

62 ¢

4.3.Combining Modules (Phase II)

1

The modules within a specification of a protocol may

communicate with other modules in the specification

generating an internal interaction in an ‘output statement of

their BEGIN block. It is assumed that the referred modules
have transition types corresponding to these interactions.

Intermodule communication may involve parameter passing.

Since we are interested in test case generation and
since only the events at the external interaction points can
be observed, ghe interactions . referring to intermcdule
communication should bé rémoved./ Also, we assume
"rendezvous” type communiéation between the modules of the

'

protocol entity.

)

If the transition typé corresponding to an internal
input does not contain any internal output, the transition
type can}simply be removed by substrtdting its BEGIN block
in all the statements that "call" the interac;ion using
symbolic replacements for parameter Qalues (if any). Also,
the PROVIDED clause of' the transition typé is added to the
PROVIDED clauses of the normal form transitions that contain
intermodule "calls" as a conjunction, possibly with suitable

symbolic replacements obtained through symbolic execution.

In general, a normal form transition corresponding to

- z -
an internal input can also «contain internal output

statements to other modules. Thus, a given intermodule’

-

A

N

2«

»

63

communication can be modelled as a treel(called intermodule
comnunication tree or ICT in short) zith nbdes‘being’normal
form transitions involved and arcs being the events referred
in each transition and the root being the normal form
transition initiating the communication. We assume that in
none of the paths from the root to the léavés of the ICT an
event 1is refergedétc’/ﬁgée than once, thus a recursive
algorithm can be found to remove the intermodule

communication. ' "A two step procedure will be given to

combine modules:

Step 1 forms list structures of all the normal form
transitions of a .given event, i.e., it forms for every
module the lists of normal form transitions corresponding to

each input event.

Step 2 processes BEGIN blocks of the normal form

transitions. It removes the intermodule output statements

with textual substitutions as described above. Any

intermodule output statement ‘'encountered during the

!

processing of the BEGIN blocks is removed in the same

.manner, thus pgrforming an inorder traversal of ghe—%CT} If
there exists more than one normal form transition
‘corresponding to a given event, the list formed in Step 1 is
used to generate differen; normal’ form transitfods; one for
each normal form transition in the list, until all the iists
of communicgting modules ére exhausted.

The algorithm of Step 2 is outlined in Algorithm 4.1,

/

1

N

64
listed in Appendix D. The algorithm wuses the following
marking scheme to handle the case where more than one nqrmal
form transition exists for a given. event. A node is marked
when it is completely processed. In particular, a node is
marked whén its normal form transition(s) is processed and
either it Icontains no, output event, or all nodes
«corrésponding to the output event q; the normal form
transition are processed. The marking 1is achieved"by using

the stack called event_headers.

.

In Step 2 we assume that in a giveﬁ transition at most
one intermodule output statement can occur. The al;orithm
works also for more than one intermodule output statement if
there is only one normal form transition for each eQent.
This restriction can be removed by using more complicated

data structures..

As an example, Algorithm 4.1, 1is applied to combine
the two modules of Figure 4.1. The Process_event routine is
called for the two normal form transitions of modulel since
they all contaip intermodule output statements. The first
elementary éxpression in the PROVIDED clause of the normal
form ‘transitions of module2 is removed by the routine
Process_evént since it can be satisfied by a parameter
replacement. The second relation is added to the PROVIDED

clauses as a comjunction after parameter replacements. A

complete - listing of the normal form transitions

- corresponding to Figure 4.2. is given in Figure 4.3.

r

[U

65

i

Normal Form Transitions Block

WHEN chanl.CONNECT req

PROVIDED state=idlé and A and (B or C)
and D and (X<=8)

BEGIN

state := connecting
S1;

$3;
chan2.CONNECT_ind

END

WHEN chanl.CONNECT req
- PROVIDED state=idle and A and (B or C)
‘ and "D and (X<=8)

BEGIN

state := coénnecting;
S$2; '
© §83; ' <
chan2.CONNECT_ind
END

end Normal Form Transition Block;

Fiqure 4.3.Normal form Transitions of Figqure 4.2.

4.4.Spontaneous Transitions

For testing purposes, épontaneous transitions have
similar probléms.as intermodule output statements since they
cannot be controlled by éxternal input primitives, but they

can be observed if they contain an output statement.

T

-~

66

4.4.1.Nondeterminisp in Protocol Specifications

Nondeterminism is expressed using WHEN and PROVIDED
clauses of a protocol specification in Subgroup B FDT. 1In a

given major state of the machine, for a given interaction,

there may be more than one possible WHEN transition, i.e.,

PROVIDED clauses of the same interaction may not be mutually

exclusive. In addition, spontaneous transitions are an

J

important tool to specify nondeterminism since a spontaneous

transition may be executed any time when its PROVIDED clause

is satisfied. Thus the PROVIDED clause of a spontaneous

transition may not be mutually exclusive with the PROVIDED

. clauses of other transitions (WHEN or spontaneous). [JaBo

83] contains a detailed discussion on nondeterminism in

¢

protocol specifications.

4.4.2.Removing Spontaneous Transitions

We have considered the option of removing spontaneous

transitions by combining them with WHEN transitions.This
option has been rejected for the following reasons:
1) Removing spontaneous transitions removesu most of the
g;ndeterminism in a’ protocol specification by making
spontaneous transitions eligible only after external
interactions are received.’

2) Combining spontaneous transitions with WHEN transitions
k4

makes it impossible to express the repeated execution of a’

67 l .

£

spontaneous transition since loops are not allowed in normal

form transitions.

4.4.3.Nondeterminism and Protocol Testing

In a given test in orde} to evaluate the responses of
an implementation correctly, it 1is necessary to apply
deterministic inputs. Nondeterminism in WHEN transitions can
be easily removed by applying to the implementation unigue
inputs in a major state. But this solution 1is no lornger
valid for spontaneous transitions. Thus tests which involve
spontaneous transitionsgshould be designed adaptively to

receive any output from spontaneous transitions and respond

accordingly.

g.§.éonservation of the Semantics

It should be clear that the transformations of this

section preserve the semantics 'of the original transition

types.

Phase 1 transformations remove multiple paths in a

[
&

given transition type by generating a normal form transition

for each path. We have found the assumption of no loops in

a BEGIN block with variable indexes to be satisfied for the

protocol specifications - we considered. Thus Phase 1

transformations preserve the semantics in the specification.

~ ——

68

Incompleteness in the specification is preserved in terms of

local procedure names! corresponding to unspeéified local

procedures.

Phase 2 transformations combine modules by symbolic
replacements:‘éf output statements with their tranﬁ%?ion
types. Since loops are removed in Phase 1, Phase 2\5§gumes
single path normal form transitions. Similar . to Phase 1
above we have .found the assumption of no (indi;ect)
recursive intermodule. "calls" to be satisfied for the
protocol qucifdcations we considered, ‘Thus, Phase 2
transformations conserve the semantics of the specification
by obtainirg a product of the extended finite state machines

of protocol modules.

Normal form transitions obtained from a protocol
specification” can be seen to completely. represent the
Protocol specification hence in the following chapters of
Part 2 we use only normal form transitions for further

discussion.

4.6.A Real Example

Two transition types of a Subgroup B FDT specification -
ofgthe Class 2 TP [1SO 82b) are given in Appendix A. Tﬂéi:\
first transition type is a spontaneous transition for the -
decoding func;?on of" the transpoft protocol. Only the part
related with a particular input primitive (CR) is

f) : \ .

L S N

69
7
considered, the rest of the transition type is ‘ignored. The
second transition type has an input primitive from the
interaction point called TS. Both transitions contain
various intérmodule ocutput staté@ents such as:
ATP.error_indication, ATP.forward and Map.forward.
The transition types corresponding to the ATP.forward and
Map.forward are also given in Appendix A, Also, the first
transition type refers to vérious lécal procedures such as:
determine_éDU—length, implied_PDU length, etc. The
o”

completely specified local procedures are listed in Appendix

A.

The normal form transitions obtained from applying the
two phases of transformations are given in Appendix B.. They
are numbered for identification purposes. More discussion on

the Class 2 TP normal form transitions follows in Chapter 8.
r

Ea—

5.GRAPH REPRESENTATIONS OF NORMAL FORM TRANSITIONS

H

In this chapter we identify two types of flow in a
protocol specification: '
- flow of control ;as the value(s) of the major state

variable(s) (one 'for each module of the protoco% entity)
f

\ v
N

changes, and
- flow of data as the inpput primitive parameters change the
values of the protocol variables and they in turnsdetermine

the output primitive parameters.

We model these flows as graphs and call them Control
Graph (CG) and Data Flow Grapﬁ (DFG), respectively. After
introducing these graphs, we will discuss decomposition of
. each graph, 1i.e., transition tours for CG and blocks for
DFG. For the partitio?ing of the DFG into blocks,
parameters of interaction p{émitives (input and output) and
protocol variables are considered as distinct nodes, and the
flow over each variable determines the most refined
partition. Such a partition is found algorithmically for any
given DFG. A heuristic _procedure which requires user
interaction is given to obtain less refined partitions of

the DFG by combining the blacks.

(=

The CG and DFG of a protocol specification are helpful
in validating the design of the protocol as will be

discussed last in this chapter.

-

\ -
Due to its refative simplicity, the Class 0 Transport

¥

.

71

Protocol (TP) is used as an example in discussing these two
graphs. A specification of*CIass 0 KTP can be found in {150
82]. Normal form transitions obtained by applying the
procedure in Chapter.4 to Class 0 TP specifiéation are givep
in Appendix C. The normal form transitions in Appendix C are

identified ‘as Pl,PZ,.{.,P19 to be referred later in the

graphs.

In the discussion on protocol design validation, Class
2 TP gpecification [ISO 82b] is wused as an example. The
normal form transitions of the Class 2 TP are documented in

[Sarikaya B84].

5.1. Control Graph

The CG (also known as Finite State Machine model of
the protocol) can be constructed from the normal form

transitions as follows:

Thé nodes represent the wvalues (tuples) the major
state variable(s) can take. Each normal form transition is
represented as an arc in this graph. The arc is drawn from
the state in the provided clause to the next state‘specified
in the begin block, and labelled with the identifier of the
normal form transition, A CG for the Class 0 TP is given in

Figure 5.1.

The labels in the CG are short-hand notations for

72

input / output

as used 1in the FSMs of [SaBo 84]. In here, "input" stands

for the WHEN clause (if any) and the PROVIDED claus€e (with
/ Ay

the expression on. major state variable(s) removed) and
"output” stands for any output statements to the external

entities in the BEGIN block of the normal form transition.

For some protocols, a normal form transition is

represented by more than_ one arc in the CG. This happens

when the present and next state values of the normal form

transition are -specified only for one of the module state

variable, making the normal form transition eligible for all

values of other module's state variables,

The control graph models the part of the normal form

"
transitions that are related to the state changes of a given
connection for 2ach module of the protocol entity. Normal
form transitions referring to more than one connection
cannot be represented in the CG. This happens when normal
form transﬁtioné contain ANY cl;ﬁses with more than one

index variable of the same type, as discussed in Chapter 4.

Therefore the CG ignores ANY clauses in the normal form

AN

transitions,

5.1.1. Subtours of the CG

Taking the identifiers of the transitions in the CG as

inputs _to the FSM, it is possible to generate transition

|

!

73

tours for any control grbph'sinc;~the transition tour method
does not require any special property of the machine as
discussed in Chapter 2. In what follows we assume that the
initial state of the Cd is also the final sgaie. This
assumption is realistic since, for a protocol, the initial
state represeﬁts the idle state of a connection. “Thus, a
transition tour of the CG can be divided into smaller tours,
each, starting- and ending in the initial state. 'These

subdivisions of a transition tour will be called subtours.

It is possible to use a notation which has been used
for regular expressions [Kohawi 78] to represent subtours.
In this notation, a transition which is labelled by a list
Pl,P2,...Pn of identifiers is represented as '

Pl + P2 + ... + Pn
instead of repeating the subtour for each of the choices

above. Also,-a transition labelled as Pl,P2,...Pn which is

a self-loop [Kohavi 78] is represented as:

"

*
(Pl + P2 + ..., Pn)

Note that in a CG, there can be loops around more than one
state not involving the 1initial state, these 1loops are

represented similarly as the self-loops.

Subtours of Figure 5.1 are listed in Table 5.1. In

Table 5.1, there are self-loops around one state but no

¥

loops.

— i’

74

5.1.2.Control Functions

In communication protocols, a sequenqé of norm;} form
transitions occurring in the subtours represent digtinct
control phases, i.e., major state variable changes, such as
connection establishment, data transfer, connection freeing,
etc. Each subtour é%htginsfa number of control phases. More

than one subtour mSy\ have the same pattern of control

phases. N\

We define a control function of a protocol as a

control phase of the protoceol.” A subtour may contain a

sequence of control functions‘ ;hd the same sequence of
control phases may occur in two different subtours. If all
the normal form tran;ﬁtions are ' covered, this guarantees
complete coverage \éf the control functions but not
necessarily all the subtours. More discussion ‘on test
coverage follows in Section 6.1.3, /

From Table 5.1, we 1identify the following control
functions for the Class 0 TP, for each of the five subtours

in top-to-bottom order:

- User-initiated connection establishment, data transfer,

PRI s

freeing , S
- Peer-initiated connection estabFishment, data transfer,
freeing]
- Call refusal by peer
- Call refusal by user

- Call refusal by protocol

Q

ev X Eewnwr

' depénds on:

75

4

8.1.3.0rder of Transitions in a Self-loop

Normal form transitions which' do not modify major

e

\ N f
state variable(s) are repreiented as self-loops in the CG.

— ﬂ‘l 3
If there exists more than one normal form transition as a
self-loop in a given state of the CG, the order of execution

of these normal form transitions may become important. The

«\"3“

~"%*" notation used to represent self-loops above suggests

that the nbrpal form transitions in the list may be executed

\

any number of times,;in any order. This is not necessarily\ﬁo

"since the order- of execution of normal form transitions

1

¥) \ |
a) the fact that the input primitive mentioned in 2the WH%N
clause of a transition is received, and V

b) the predicate, i.e., PROVIDED clause (which may contaln
expressions on protocol variables other than major staté

variable(s)) is satisfied for, any spontaneous or WHE

transition. \

Since a CG does not show the effects of protocol\\
variables other than hajor state variable(s), the order of
normal form trans?tions in a self-loop can not be determined
from the CG. The data flow graph which will be disgussed

next should be consulted for this purpose.

{

Table 5.1.Subtours of the Control Graph for Class 0 TP

76

N x
(P13+P14+P15+P16) (P17+P18+P19)
*

P1(P6+P7)
(P3+P4)P10\(P13+P14+P15+P16) (Pl7+P18+P19)
P1 (P8+P9)
(P3+P4) (Pll#&}Z) ‘ o 3

P2+P5S . . e

. ———————— —

= L+
- s
f\i

t

77

" P2,P5

P11,P12

wait_for T . ' P17,P18,P19

CONNECT _resp

4]

data_transfer

P13,P14,P15,P16

Figure 5.1. Gontrol Graph of Class 0 TP

-

wait_for tC

£

SRt

78

5.2, Data Flow Graph

A data’ flow graph models the flow. of information in a
protocol specifiéation, excluding major state changes. A
DFG cont;ins four types of nodes: I-node; to represent input
primitiveé, D-nodes to represent protocol variables and
constants, O-nodes to represent output primitives and
F-nodes to gepfesent certain functions' on data. I-and
O-nodes are shown in oval, D-nodes in rectangular and
F-nodes in crossed-circular shapes to identify each of them.
In each node, the name referred in the specification is

written. The I- or O-nodes take the following form: :

‘. [{ name of the primiﬁive jx

-~

parlfpar?|par3|...|parN

where parl,par2,...parN are the parameters of the primitive.
To represent fields of records (i.e., Pascal records) in the

I- or O-nodes or in D-nodes, the notation used is:

name of the record

fieldl]l field2} ... [fieldN

where fieldi (i=l,...,n) are the fields of the record.

In protocol specifications that contain connection

e Bden 5

B

79

“

arrays, the D-nodes are prefixed with the array name which

~is indexed by ghe inde; variable in the ANY. clause., If the

i

ANY clause conzhins more than one index variable of the 'same
type, data fl7 in these normal form transitions can easily
be represent#d by replicating the D-nodes with different

index varia?&e names.-
/

SRR

1

5.2.1. Formation of the Arcs

Arcs in the DFG are used tb represent "the flow as

derived from the action (BEGIN block) of the normal form

transitions, The effect -of the predicates, i.e., the
PROVIDED clausé will be 'coénsidered ‘when we discuss
dependencies in Chapter 6. Simple assignment statements in
the BEGIN block are sﬁown;by arcs directed from the source
nodes . to the destination nodes.% The output primitive
parameter values directly carried out from input primitive

parameter values ..are modelled as simple assignment

statements.

Each arc in the DFG is labelled with the identifier of
the normal form transition. These identifiers represent the

pre-condition (WHEN aad PROVIDED clauses) of the normal form

_transitions and the actions are modeled by the DFG (the

state after execution of the action is called post-condition
). Since a given BEGIN block can contain many statements

there can exist more .than one arc labelled with the sanme

4

80 .
. o
identifier. Also, the same assignment used in more than one
normal form transition can be represented as a single arc

carrying more than one label.

If the BEGIN block of a normal form transition
contains no assignment statements, an arc is created from

the input primitive to the output primitive,

Three types of F-nodes are created:
Type _1_5 These nodes represent function calls which return z-;
value and whose body is not :s.pécified, i.e., the value
returned to be 'determined by‘ the implementation. In the
transformations phase, body rep;lacement can not be done for
these procedures, thus they are treated like assignment
statements. In the F-node, parameters of the procedure or
function call become the incoming arcs and. .an~ outgoing arc
to the variable iassigned is created. The F-node carries the
name of the procedure. -A DFG contains a F-node with the
same name for each procedure call with different pafameter

v

list.

For example, an assignment statement like:
remote_T_addr:=determine_T_addr(remote_N_addr,
_CR.calling_addr)

is represented as:

Fas

81

|

... jcalling addr}... /

[a

remote_N_addr remote_T_addr

4

i]

Type 2) These nodes represent assignment statements vhose
ri;ht hand side 1is not sbécified. A F-node which becones a
value source 1is introduced and an outgoing arc from this
node to the destination variable -mentioned in the statemerit
is created. Tge F-node is labelled with "assign_name" where .

"name” is the destination variable name. For example, the.

assignment statement

local_reference := ...;

4

is represented in the DFG as :) . -

T

e
4

Fd

variable initialized by the same procedure.

representations of the incompleteness in the specification.

7

local_reference
) «

A F-node of the same type can be created for some

C C .
local procedures whose input parameters are implicit in its
name, e.g., a variable initialization procegure. As for

F-nodes of Type 1, these nodes: can-be replicéted for each

|
‘The F-nodes of Type 1 and 2 are abstracted
It should be noted that the test designer should know the

range of values these nodes can assign’ to the D-nodes,

- possibly by consulting the informal specification of the

protocol. Y

Type 3) These nodes - represent assignment statements
containing an arithmetic or Boolean expressio?. A F-node is
represented with incoming arcs from the operands of the
expression and withv an outgoing °~ arc to the assigned

variable. The F-node*ccntaiﬂs labels associated with the

incoming .afcs’ indicating the operators applied to the

variables. For instance, the assignment statement:

-

2B

83

TR = TR + 1

is represented as:
L]

-

57

Similar to F-nodes of types 1 and 2, constant D-nodes
(created for constants occuring in the actions of the normal
form transitions) can be feplicated wvhen the same constant

I

is assigned to more than one node. .

Wheh constructing a DFG, the assignment statements to
the major state variable(s) are ignored. The labels on the
arcs of the DFG can be used to referA to t-he subtours that
include the - nQoxjmal form transitions. Also, the labels
rep'resent the pXefcondifibns, ’i.e., _the PROVIDE’D‘» clauses of
the normal form transitions.-A DFG for the Class 0 TP is

givén in Figure 5.2.

.

e .
> 84 \
Y . a
[T CONNECT reg \ [Toowectresp |
\rcers | to 1 aiar Jcrom 1 sior doms sebpeiof e | ars.ree | opion |
[(R A
;
L¢3
\s::zce_ lasfope “éf:ﬁ_‘_‘l‘W, Tl ST .
’ * lis ——
i
P3.P3
. p3.r4 s
ssign_ assagn_
ocal_re TCEP .
’ ssign_
) called
P1,P10 P1,P3,P4
’ assign
’ : Trou_ .
P L
s
126
P10 '3, 07
Focul__refer. TCEP remote_refer, cmote addr T TS
’ . — estimaty
R
e
P! ' ‘
P10 p1 0 b |
0 lass,

~

horma) A
5, 10 Pl Po, 5 PR3, pd
P11,P12 P7 > ‘ s

' N\

Cht 1 FaOUrCL, vary

fh“

\

P3,Pd N
' ‘Vr g
- \
" i—
[swrce_reflclns<l;pnon l'nruhl? {j

) g Ylasxjoption] par

cR / L -

Figure 5.2.A DFG of the Class 0 7P -

«{ TCEPlloTs req Joption

\ roomecr et

.

[T-DISCOMNECT.req
\ TCEPT R_ user.reason

Network veset)
 westeli—————
reset_reason

A e —

[‘l_mSCONNECI'.md ‘

R
AYTISTE. AT
dest | seurce E—-————l—»"bh L den source. P <comce § - . J
. | eof. E{psspoti XTI g rof. ':r: x: ormechidd. clear. ' disconnect. reaso
]
R
) , P6 P8, P9 P8
e J !
. ’
- - -
v - ’ -
/]
Pi1,r12,P5
R .
0. b)) . un.b]c_(o-provme-tlnc.’]
5 Ridadity

rv)ccted-
Jiny

calltd‘f [m_rr-nu NN I..dd clear_reaso
Varipbig Ert;h_nml s

PRI,
3]

P2,P11

dizc_reason user_reason

P8, P9, P18,P19

‘

2.}

TS.user-initisted.

connection_negotiation_
failed

P5,P11 -

P2,P8, 10,011
FELPIS,PTe

I disconnect_reison
\ N.DISCONNECT rey

.u"ﬂ' S = -15.. -
m 1 nn u’r

\ TDISCOMNICT_1nd

. Figure 5.2, ... (continued) .

set_max
get.siz

P6,P7,910
Q .

@

> P6,P7,P10 P6,P7,

out buffer

P14

/ user_data

P6,P7,P10

an_buffer

Pls

get_pext
ragmen

‘P16

]

TCLPY lTSm-fngmm \

\ 7omtaing]

. Figure 5.2. .., (continued) ...

LY

[

"]

&y

87

"

5.3.Partitioning the Data Flow Graph : ,

In this section, we consider each parameter (or field
of the parameter) of the input and output primitives as
sepérate‘l-fand O-nodes respectively. The name} of the node
is obtained by prefixing the parameter name with the
primitive name. Similafly, fields of protocol variablés of

type record are considered as separate D-nodes,

Splitting of I-, O-, and D-nodes into their component
fields facilitates partitioning of the complex data flow in
the DFG. 1In thé remaining part of this section we introduce
the concept of a block of the DFG (the blocks 'of a DFG
represent different functions), and then give an algorithm’

* .to .find disjoint blocks for a given DFG.

&

— e wv | —————— —— ———

A block is a collection of nodes of types I1I-, F-, D-.
and 0. Thus a block Bi of a DFG can be defined by the
following four sets: the set of I-nodes, SIN; the set of
F-nodes, SPN, the set of D-nodes, SDN, and the set of
*Q-nodes,.sog that it contains. We partitign the DFG into
disjoint blocks Bl, B2, ..., Bﬁ. Note tggt SFN and SDN of
some blocks may contain F- and (constany) D-nodes carrying
the same names because of the replication of some F- and D-
» *nodes during the construction of the DFG, as explaiﬁeé in

Secf@on 5.2.1. We assume that these F- and D- nodes are

88

»

distinguished as different nodes. i

All the 1incoming arcs to D-, "F- and G-nodes and all

the outgoing arcs from I-nodes belong to the block which

/
contains the mnode. Some of the outgoing arcs from D- or

F-nodes may be shared among blocks. The nodes associated
with the incomingb arcs to a D-nodé belong to the block
containing the D-nddqu"lf the value of the D-nodé flows to
the O-nodes, they are included in the block. If the value is
needed by an F-node of Typg'l or 3 and the F-node has

v

incoming arcs .from other D-nodes, a separate block is

" created for “the’F-node. Different - blocks are created for

each .0-node assigned directly by I-nodes or by F-nodes which
in turn have incoming arcs from the I-nodes.wb Using these
ideas, an algorithm to partition a DFG into (relatively
smalli disjoint blocks is.given in Algorithm 5.1 listed in

*ry

Appendix E. The algorithm uses the following sets in
finding the blacks: ’

Definition 1. wﬁqr each node in the DFG we define:

Set of Input I-Nodes (SIIN im- short) is the set of I-nodes
having outgoing arcs to_the node under consideration.

Set of Input F_Nodes (SIFN) is the set of F-nodes having

outgoing arcs to the node. . \
Set of Input D-Nodes (SIDN)'is the set of Dﬁnode;\hagjng
outgoing arcs to the node. T N

p

Note that for I-nodes and constant D-nddes these séts are

empty. Similarly, SODN, SOPN and SOON are defined to be the

~

" Eét§ of ~output D-,F-, and O-nbdes that have dncoﬁing arcs

e

N N
_OLigina;ing\}ngp the node under consideration. For O-nodes -
1 N

t ~ N
these ser are enmpty. The above sets of nodes define the'\\\

1y
~

A
\

G ol o W et F e Em

‘ T AN
\ 89 N

structure of the DFG, but not the labels of the arcs.

Definition 2. Set of Input Labels (SIL) is the set of
labels i.e., identifiers of normal form transitions of the
incoming arcs to the node in con51deratiqn,

Set of Output Labels (SOL) is the set of labels of the
outgoing arcs from the node.

Y

The above definitions can be extended to apply to more

.than one node:

SIIN(Dl,D2,...,Dn) = SIIN(D1) u SIIN(D2) u...u SIIN(Dn)

Similarly for SIFN(D1,D2,...,Dn), SIDN(D1,D2,...,Dn), etc..

~ Algorithm 5.1 . processes all variable D-nodes in the
DFG by first cr;ating a.blqck‘for éach unprocessed D-node.
For any D-node in the SDN éf the block, the algorithm
includes all the nodes in SIIN, SIFN, SIDN and SOON into 1ts~
sets SIN, SFN, SDN, and SON, respeétively."\\For any O-node
in the SON of‘ the block, the algorithm includes all the
nodés in SIIN, SXFN and SIDN into its sets SIN, SFN and SDN,
respect1vely. For\any F-node in the SFN of the blpck, the
algorithm includes\the constant D-nodes in SIDN and all
nodes in SIIN into its sets ‘SDN and SIN, reséectively. The

above procedure is repeated for the newly added D-nodes to

the block.

Since there can be many-levels of F-nodes before a
D-node_is assigned to an O-node, and since F-nodes can have
more. than one D-node in their SIDN, the nodes in SOFN of
each D-node in the block receive special attention in
Algorithm 5.1. If SIDN of each F-node in SOFN includes only

variable D-nodes of the block, the F-node is added to SFN,

*

. e e e o

90

épd SOON of the F-node is added to SON of the block. A

RS

similar process is applied to the F-nodes in the SFN of the

(block whose SIDN is ‘empty and the SIFN contains the nodes

that are already included in the SFN of the block.

Finally Algorithm (/5.1 continues - to form blocks
containing no D-nodes. Tﬁese blocks may céntqin only I- and
Oz nodes when input primit}§e parameters are directly
assigned to uo tput primitive. parameters. The Slocksl
contaiﬁidg“ only F~ and 0- nodes and (possibly) constant
D-nodes are created " by constant assignments to the O-nodes

or through F-nodes which are. not included in any of éﬁhe

blocks created above.

As an exaﬁng, we apply this algorithm to the data
flow grabh“in Fiéuré\ﬁ:3 vhich represents a part of the DFG
for Class 2 TP [1SO 82#?\“uhich will be discussed in Chapter
8. Algorithm 5.1 generates th{ee blocks (Bl, B2, B3) for
the DFG ;n Figure 5.3, two for ghe twvo P—nodes and one for

the F-node of "determine_add_addr?> These blocks are

described by éhé following sets:
A LR

SIN(Bl)={N_CONNECT ind.from N addr}
SDN(Bl1)={remote_N_addr}

« SFN(Bl)={assign_remote_N_addr} .
SON(B1)={N_CONNECT req.to_N_addr} N

SIN(B2)={CR.calling_addr,T_CONNECT req. to T addr}
SDN(B2)={remote T_addr} |
SFN(B2)={determine_T_addr}
SON(B2)=g «

‘SIN(B3)=g
SDN(B3) =0
SFN(B3)={determine_. add _addr}

SON(B3)={CR.called addr, CC.called addr}

N_CONNECTY.in ' , / CR. T_CONNECT .reh
from_N_addr | calling_addr to_T_addr

assign_ -
remote_N " s
addr , deter-
‘ ‘ mine_T- _
‘ addr
o a
remote_N.addr \ remote.T_addr .

N_CONNECT _Ted
to_N_addr

Figure 5.3.A Part of the DFG for Class 2 TP

Applying the afﬁﬁ?ithm to the DFG qf the entire Class
0 TP given in\Fi§Ute 5.2 produces the blocks shoﬁn in dotted

.lines in Figure 5.4,

[N

— e e . — — —— St

Q0s

’ N] | CR.max.TPDU_ ST TN, TR TN
- . : » . sizé ’\ class }(optggﬁ II
\ - . : 1 l [—-— - ——- N ek o w- ’
d . . « pP3 I pm——— T -
- (cc mix TFQU.) . cc \
(CC. s _rot): . . }\ ‘("Cgt?ﬁr'rc") size ‘_Q(l:_g*; ,)'\. mu.;‘l-"l
. . | l P& L I .
’ ') P1) I
T, r -' . . ' c e s b e o @ I
. : |) . ‘
. 3 ' l * » '
: . ' :::;ﬂn_ : asSIgn_ . l
) . I IS .
: ‘ X ¢ stama " I
- . -
»
¢ ’ l I " - nu
__— : : s I '
~ . . ‘ ' ’ l
’ .] . .
. . l l . v
. R P I . I
L] . l L N
- . , ‘ " . v '
N - L] —
. | PI.P3,I't l . .
* - .) -
. l ‘)
i, |
» . '
: : I H i
* ' Pi,p” . P10,P1 ,
remote ot . [Ql}j : L lccad_rot ‘l LTCEI‘ ' TPDU_s12¢ 4. [vanable_par;fvglaxxgue '
L] [
. A rll Lo T° .
in . . ; \ '
1 . PSP, ' - [
. . P1) - bt . .
ll ’ - " ‘
. .
. ' P6,P7 .]
y . P |
L
| G}
g T_COM\ CT.conf.TCLPI , \CR.max_TPDU.size l
1 'Q
- . - e - L] - - []
' 4 PLra . Lre-P? :]
Q‘,C..h <t). ((u suvirce, rof, j "i(T_CONMCT_and .TCEP!) 1 LT-CONNECT-LDHf-WS-m){ I
el ¥ N .
. 4° P8, P9, 019,012,118 WPl e '
T
Qv dont_rof)1,_.((‘.“7““ ref)I -'(1_mscow,cr_md.rcrm. . ::(cc.naLTPnu_slze.J“‘ '
B P -1 " r1s .]"'Fx..m' R) |
L ? - » il 2 2 .
._(Dk,wuru-,rcf 3 ' '-(T.DATA-md TCHPI j ol E(‘O‘JNECT.ind.QTS_req) },
. ERLSE -t R X - v - c e o . e
. / -] J YU A]
., . ‘ CR class)'(CR.option) T. CT.con
. .] — o0 —3 p3,n 4

I
. l(“,,)

Fiqure 5.4.Partitions of tlie DFG for Class 0 TP

{_cc.option) (T.CONNECT ind)
: » - -

ADDRESSING . .
e mem o mme

’ { T-CONNECT - req] {1 CONNECT_re
Srord e YrLaedi o

Qs

P3.F4

/

h

tvlname_ artl taruble, rt
O LI E d. ‘l”ed.T-g:‘UY

renote I
addre. -

Pl P

. CRe (R
cailing T.as wiled T add

P
1,011 s *
c M ca]luggf_add -
L4 - . L] b
- . .
. P3, M ‘.
. P3, P4

T.CONL(T_am) &
¢ trom T.addr .
¢ ..
£
ofT.CONNICT g
NI gddy

Figure 5.4. ...(cpntinued)...

L]

5—_—-—.“-—-—————-

DATA TRANSFER
, ' "
o (T PATA req. TOM frepme I-Q:G _astf ddg s)l

o, P71

¥

in_buffer

ol _butter

P14

°

Wore v cwtmn e e e —— —

/

N
: /
P14 rio

/ .
.

: n

I A

(Wi u»r;ncu‘_) [(T..DAU-!W)

e

-

—— e e — G— S—

— — m— ar—

/

/

%

B

] " \.
re . :
’ L]
. pg,po S ., P8
. f
N a
. ‘
L4
“
L]
R o
- Fi7,78,r19 P5,P11,P12
. .
_‘\ N
N -~
[]
- [}
) unghic_to_provade_the. [*
l quaal 1ty -4
P.zlr”- . . « o 0= .oy, .
. V- ui_rnitiated, - . vhriable_part.addrtional,
. teemanaliop . dise reason . cledr. reasor user_reason
. N N
'l P2~ . P8,Po.PIR, | I8,P9,P17 P5,P1L,P12 P8
’ P *
LORNL, TYOM _neeot) st rou B . [
v b Ll .
R -
\ L)
. I's, Pl . . .
. * . *
L]
. '
L]
. e - " - s
.- \‘ . . - .
. ik dyiscounett roason N.DISCONKEC] . req . [P
\,). disconnect, _reason e s
2 «
.. - . 0 - 0 » . . Y 'Y
5 LE% . -
T.DISCOMECT.. ind. . s (T_DISCONKECT _ind.)
\ . .
. ° Q
- L]
° Q . L N) L]
%9] "
|
: DR, variable.pert 0
. additional-clesr. g

- b e wa

°
PR URRNUNIA WY

s

95

. 5.4.Functional Partitioning of the DFG

The partition obtaiﬁed by Algorithm 5.1 is - purely
based on the structure of the DFG, i.e., interconnection 6{
the various nodes determines\the resulting blocks. The level
of refinement of the blocks obtained from Algorithm 5.1 is
not appropriate for testing purposes since a very. ﬁigh
number of blocks can be abtained. A less refined partition
of the DFG can bé obtained by combining :some of the blocks.
We give in the following a heuristic procedure for such a
combination. This procedureﬂcbnsiders the semantics of I-

D~ and O- nodes and SIL (Definition 2) of the blocks. In

~ some cases, the user can specify the blocks to be combined.’

It should be noted that the following procedure is

based on our experience with OSI protocols of layers up to

4; for higher layers or other types of protocols the
procedure may need some modi fications.

>

Blo;k Merging Procedure

The procedure contains 6 steps. We start with the
blocks obtained from (}Igorithm 5.1. @ Each round of
appiication of the 6 ~stepsfesults in a less refined
partition of the DFG. The process is stopped yhen a
partition is obtained such that no blocks can be combined in

,;aﬁy of the steps of the procedure.. Each step below will be

B

followed by an explaination of its appliéaiion to the DFG

for the Class 0 TP (if any).

e 0¥ e

Wit M ondd e o e

96
Step 1. Two blocks Bi and Bj are combined if SON(Bi) and

SON(Bj) contain the parameter(s) of the same type.

This step combines the blocks in which corresponding

parameters of different output primitives are assigned.

As an example, in Figure 5.4 the block contaiﬁing
"source_ref” of DR is combined with the block containing
"local_ref" since the latter block contains "source_ref"
parameters of CR and CC and all three parameters are of the
same éype. Step 1 also combines the block containing

oo J
» s 2 » . N
"disc_reason'! with the block containing "disconnect_reason”

of DR in order to combine all the blocks containing O-nodes,

of disconnect_reason type. Also the block of
"called_address" is combined with the block of

"calling_addr® since their O-nodes are of the same type.

Step 2; Independent blocks (blocks with no incoming arcs
from other Blpcks) Bi and Bj are combined if the types of
all the nodes in SIN(Bi) are the same as some of the nodes
in SON(B3).) "
fhis step combines two iﬁdependenb blocks if one block
contains all I-nodes of the other block in its O-nodes
provided that they are of thq\same type. The ne£ effect of
Step 2 together with Step 1 ‘iésto combine’the blocks having

a given type of parameter in various primitives as their I-

and O-nodes.

When applied to Figure 5.4, ‘Step 2 combines the block ~

Wt i > 20

97

of "local_fgf" (Bi) with the block of "remote_ref" (Bj)
since the O-nodes of Bi are of Fhe same tfpe as the I—noées
of Bj. Similarly, the block of "additiohal_c;ear_reason" is
comsined with the block 6f "usef_reason". The blocks of
"out_buffer" and "in_buffer” are not combined since the

former is not an independent block.

Step 3. Lef Bi and Bj be independent blocks.\Bi and Bj are
combined if SON(Bi) and SON(Bj) coAtain 'different but
related parameters of the same primitive and
SIL(Bi) 22 SIL(Bj) holds.
Which parameters of a primitive are related is determined by

the test designer.

Step 3 may beé used to combine the blocks that assign
similar parameters (or parameters of the same . nature) of a

given primitive in the same normal form transitions.

It 1is wusually straightforward to 1identify related
parameters of a primitive. In particular in Class O‘TP, ve
identify, "additional_clear;reasbn”‘ and "disconnect_reason”
parameters of DR. The b;écks coptaininé the above O-nodes
are combined since SIL of tﬂe TVblock containing
"additional_clear_reason" 1is a subset of the SIL of the

block containing "disconnect 'reason”.

Step 4. The blocks that contain only O- and F- nodes with
F-nodes having 1incoming arcs from D-nodes of different

blocks are combined with one of the blocks that contain the

W,

ERTE PR 2 il
N

- -~

98

D-nodes. The choice of the block depends on the
relationship of the '0- node and the ‘D-néde which is
determined by the test designer.

®

Step 4 can be used to combife the biocks of some of

the data transfer primitive parameters (O-nodes) with the

blocks of the input and output buffers (D-nodes), since thé.

- buffers contain the data that flows to the O-nodes.

‘ Step 4 does not apply to Figure'5.4 since the:Frnode
"get_next-fragment; which assig;s the O-node "Df.user_dama"
has only one {ncoming arc ffom‘ the D-node "out_buffer",
hence the F- and O-nodes are ;lready_included in the block

~of "out_buffer” by Algorithm 5.1. Similarly for
"get_next_fragment”, f"T_DATA_ind.TSDU_fragmenf; and

"in_buffer”.

For the Class 2 TP, Step ' 4 can ;é used to combine
blocks of "DT.userﬁgata"\and "DT.end_of_ TSDU" with the block
of "send_buffer”, Siﬁilarly; the blocks of
"T_DATA_ind.Ts_usér_data" and "T_DATA_ind.isdlaSt_fragment;
are combined with the block of "receiQe_buffer" (see Chapter

8).

Step 5. The blocks Bi and Bj are combined if éDN(Bi) and
"SDN(Bj) contain related D-nodes (variable or constant) thét
are used to specify different features of a 'relatively
complex concept (such as quality of service, addressing,

etc.), and

!

99

SIL(Bi) D SIL(Bj) holds.

Which D-nodes are related is determined by ‘the test

designer, ‘

Step 5 is a generalization of Step 3 to D-nodes. It
may be used to combine.the blocks‘that contain different
parameters (O-nodes) that are assigned in the same normal
form transitions by related D-nodes (as identified by the

_ test deéigner). 1t can be seen that ;n the Class 0 TP, the’
concept of quality of service (QOS in short) is sbecified
Yusing the wvariables "TPDU_size", ”QOTS_estimate",
;max~TPDU_size", "class_O" —{(constant)w and "normal"”
(constant).. Similarly addressing.is specified using the
"variables ° ,"calling;T_addr", ‘ "called_T_addr",
"remote_addfeésé, "calling_address"” ané "calleé_address;.
Thus, Step 5 combines the blocks containing the above nodes
creating only two blocks, one for qgos and one for

pddfessing.

: 4 ;
Step 6. Let Di be a D-node with SOL(Di) being empty, i.e.,

Di does not assign any other node (used in the predicates),

these D-nodes are called internal D-nodes. The independent
block Bi containing Di can be combined with some Bj if

SIL(Di)C= SIL(Bj).
If there exist;“ more than one such Bj, Bi will be combined
with the Bj chosen by the test designer. It should be noted
that only the labels on the arcs that assién a value other

than the initial valué of the Di is considered in SIL(Di).

100

.

& Step 6 combines internai D-nodes with one of the
existing blocks. The block-is chosen such that the D-nodes
" of the block aﬁd the- internal D-node are assigned 1in the
same normal form transitions exceét pogsibly for the
initialization of the internal D-node. The Class 0 TP

specification contains no internal D-nédes. The application

of Step 6 to the' Class 2 TP is discussed in Chapter 8.

.) {

5.4.1.Partitioning a DFG of the Class 0 TP

The partition resulting:from the ‘application’ of ﬁhe
above proéqdﬁre (to Figure 5.4 is also shown in Figure 5,4
with dashed lines among blocks. The application of the
procedure to the blocks obtained -from Algorithm 5.1 is
stopped after combining the final bloci; in Step 5 (the
blocks of Qosﬂand addressing as eiplaided previously)*since
no further merging is possible. The resulting partition in

Figure 5.4 has 7 blocks.

5.4.2.Data Flow Functions”

We define eath block of the partition obtained by the
merging procedure as a data flow function. For
communication protocols, data flow functions can . be

considered as specific refinements of different control

phases (connection establishment, data transfer, connection ’

P

‘

»

s
S~y

101

freeing, etc;). In particular, in the Class 0 TP
specification, we identify the following four data flow
functions for the connection establishment phase (in
left-to-rigth order in Figure 5.4): |

- connection referencing (remote and local references),

- trarnsport user end point identification,

- quality of service,

- addressing.

The data transfer phase contains two data flow
functions for the Class 0 TP specification:
- ﬁser to peer data transfer,

- peer to user data transfer.

Finally, the connection f}eeing phase has odly one
data flow function:

- disconnection.

The data flow functions for the data transfer alse

reveal the order of execution of the normal form transitions
that are self-loops in the CG of the Class 0 TP. In Figure
5.4, from’' the block of user-to-peer data transfer we see
that the spontaneous normal form transition labelled P£4
must follow the normal form transition (a WHEN transition)

labelled P13. Depending on the length of the data placed in

"out_buffer", Pl4 may be executed one or more times, If the

‘buffer is empty, Pl4 can no 1longer be executed. A similar

execution order-applies to Pl5 and Plé.

b e o e

102

5.4.3.Control Functions and Data Flow Functions

»e -
)

The normal form transitions in a data flow function

({DFF in short) as determined from the labels of the arcs can.

\A:ka

be used to ‘wélafe\the data flow functions with the control

functions.

\
A DFF may contain normal form transitions that occur

in more than one subtour, 1i.e., one:.or more control
functions. This is expected since a protocol variable .in a
data flow function is used for a given burpose which may be
needed in more than one subtour. In particular, "remote_ref”
of the Class 0 TP is assigned‘by "sourcg_ref" of CR in one

subtour and by "source_ref" of CC in another subtour (see

Fiéure 5.4 and Table 5.1).

A

Since a subtour may contain more than one control
phase normal form transitions of a subtour may occur in more
than one data flow function. -For example, the first subtour
in Table 5.1 occurs 1in all of the 7 data flow functions in

Figure 5.4.

Implications on brotocol testing of the above two
properties of the control and data flow functions will be

investigated in Chapter 6.

AR S 1 o oy e 1

&

103 N

> N\
5.4.4.Data Flow Dependencies

Data flow dependencies between the blocks arise from

-

the arcs shared. More formally, let Bi and Bj be two blocks
in a partition which is obtained by the procedure above.
There is a data flow dependency when Bi and Bj share one or
more arcs. A node Ni of Bi is called a dependent node if one-
oflthe incoming arcs of '"Ni is originated in Bj. Thus a block

can have dependent F- and D-nodes. If a F-node is dependent

all D nodes assigned by this node also become dependent.

The data flow dependencies in a partition of the DFG
can be found by an algorithm which finds cuts in a graph

[Even 79].

In Figure 5.4 we identify the following dependent
nodes:

The D-node "out_buffer", F-node "set_max_get_size",

The impact of data flow dependencies on protocol

testing will be discussed in Chapter 6.

a3

d

5.5.Protocol Design Validation Using Flow Graphs

The control and data flow graphs discussed in ‘' this
chapter can be wused for protocol design wvalidation. We
assume in the following that the protocol is specified using
a formalism such as Subgroup B FDT. Thus, transformations of

Chapter 4 can be applied, and from the normal form

104

transitions obtained, a CG and a DFG can be constructed.
These graphs are useful for protocol design validation as

explained below. The DFG also visualises the flow of data

over each protocol variable, as defined in the

specification,

In this.sectjon we will classify different validation
aspects thaf involve tbe use of the flow graphs and point
‘out the errors found in the protocjol specifications of the

i

Class 0 and Class 2 TP.

— w e m—— efa—

>

The CG can . be uséd for-detecting missing assignments
to the major state variables iﬁ the normal form transitions.
In compl;x protoéol sbecifications where local procedures
and functidné are used intensively and many modules are
employed to spedify thg protocol entity, assignments to some
of the méjor state variables may be missed. Errors of this
type are detected when constructing the CG where assignments

. . L)
to the major state variable(s) are modeled.

In the Class 2 TP specification, one of the major’

state variables, 1i.e,, NC_state of the Mapping module 1is’

assigﬁéd to the value "closed" in none of the normal form

transitions although some normal form transitions do close

the network connection. Consequently,'a statement assigning

"closed" to NC_state should be added to the BEGIN blocks of

o Lt e i BT

e
=

= 105

all normal form transitions where the network connection is

closed. >

— tm. w— an—e——— S—

9

The DFG.can be used for*'detecting missﬁng Assignments
to the protocol variables other than mé}cr state
variable(s). In protocol specifications, errors.of this
type occur usually by having one O&r more unassigned
variables in the ﬁarameter list of a statement generating an

output primitive.

After a DFG -is constructed, some of the variable
D-nodes may have no incoming arcs, i.e., the SIL of the
D-node may be empty. Some of these nodes have to be
initialized during the initialization of the system, and
afterwards they can be considered as constant D-nodes. In
all ,casés, variable D-nodes with empty SILs représent

missing assignments.

In the Class 0 TP.specification, the D-node "TCEP" had
no 1incoming arcs, thus - an 'F-node of type 2 called

"assign_TCEP" was added to assign the D-node "TCEP".

Since variables used in a normal form transition need
not be assigned in the same normal form transition,
detecting missing assignments may not always be

straighgforward. In some cases, both the CG and DFG should’

106

K

.be consulted as discussed below (Section 5.5.3).

— i — — — ——— ——

5.5.3.Use of CG and DFG

’

Subtours of a CG indicate the state order of the
normal‘ form transitions. Thus a variable ggajgned in a
norﬁél form transition of a subtour may be used in a normal
form ﬁransition which follows the assigning normal form
transition in the same subtour. The flow over each variable
of a DFG can be checked using the subtours to detect
possible missing assignments. If such an error is detecteé,
agsigning statements should be added- to the proper normél

form transitions that precede the use of the variable.

. Using this approach on the Class 2 TP (see Chapter 8)
wve have detected that the variable called "local_T_addr" was
assigned for peer initiated connections but left unassigned
for user initiated connections. Thus an F-node of type 2 was
added to assign "local T _addr" in the normal form

transitions labelled PEl and PE2. - s

\]

5.5.4.Semantic Errors

Errors in the specification such as missing
assignments, as discussed above, require no knowledge of the
particular protocol; therefore, they may.,be classified as

‘syntactic errors.

» 107

Errors that requfre a’ knowledge of the protocol
(semantic errors) are more difficult to detect using the
flow graphs. We discuss briefly a semantic error found in

the Class 2 TP specification:

&

In one of the normal form transitions the
"credit_value" parameter of the CR PDU is assigned to the
protocol variable "R_credit”. Unfortunately, ‘ however,
"R_credit” is used for credits (number of data packets that
can be sent before acknowledged) given to the peer entity,
thus its value should not be determined by the peer entity.
This error in the Class 2 TP was corrected by changing the
assignment statement to assign "credit_value" of CR to the

variable called "S_credit"” instead of "R_credit".

5.5.5.8elf-1loop Spontaneous Transitions

@

As discu;sed in Section 5.1.3, the order of normal
form transitions in self-loops may berdetermined with the
help of the DFG. In some cases, though, an eiamination of
the DFG and the preconditions may reveal that a self-loop
normal form transition can be executed ;s many times as
desired provided that the protocol stays in the same major
state. For example, th% PROVIﬁED clause of a self-loop"

normal form transition labelled Pi may have expressions on

protocol variables whose values are not modified in the

~.BEGIN blocks of none of the self-loop normal form’

L)

Pl ot €

L

R

.y 108

!

/

transitions in the same major state. &hus, once the protocol
enters into“ the major state and the preconditi;n of Pi is
satisfied, Pi can be executed nondeterministically unti} the
protocol changes 1its major state (see chapter ¢ for a
discussion on nondeterminism in protocol specifications).
We call a normal form éransition like Pi an indefinitely
executable normal form transitions (IENT in short). IENTs
‘require special attention for both implementation and
validafion purpoées. In the remainihg part of this section

we classify IENTs 1into two classes and® discuss their

conseguences.

IENTs can be divided into two clgsses: th§;e that
produce an output and those that do not produce aﬁy output.
The former class allows the protocol to produce more than
one consecutive PDUs carrying exactly the same information,
i.e., parameter values. Similarly, %he latter casela%lows
the protocol to execute the BEGIN block of the spontaﬁéous
transitionomore than . once assigning the same‘ values to the
same variables., If it can be assumed that the spontaneous
transétions of the abbye types will be implemented so -that
they will be “executed only when they produce different
outputs (the former case: abo§e)' or when they assign

different values to the ~variables' in the BEGIN block (the

latter case above) then there is no design error; otherwise

the existence of such spontaneous transitions may represent

@

a design error. . ..

el i me [Ba .

e e Mg .

bk Ak s R . amits P e R et

(o

e —— 1 g7 AT

T g NS

-
P

109

P -
- %

I1f the protocol 1is alloved to send PDU to the peer
entity any time in a\%:ven major state, there should exist a

WHEN transition to reckive and process the same PDU any time

‘in the same major state. Arguing as aboVve, many consecutive

PDUs received may contain the same values in the -,

parameter (s) of the PDU and this results in the execution of
the BEGIN block several times unnecessarily since each
execution generates the same result, which again may be

considered a protocol design error.

We have found two spontaneous normal form transitions
in the Class 2 TP Vthat_arp "IENTs, one that produces 3n
outphEI(AK PDU) 'and the other that does not produce any
outfut. The latter normal form trangition assigns a value
(repfeseﬁting available space in V;ng“receive_bufferf) to

the variable called "R_credit” and the former . that outputs

an AK primitive with "R_credit" and "TR"_iESEh’LR>Cfedit"

.and "fR" are modified in a , WHEN transitiom receiving a DT
from the peer entify). These normal form transitions can.
repeatedky assign R_credit with the same value and send AK

\ . .
. PDUs carrying the same parameter values. %hannel congestion

due to tonsecutive AK PDUs is avoided by flow control as

" discussed in Chapter 8.

v

a

The Class 2 TP contains a WHEN normal form transition

- whith processes the AK primitives. received from the peer.

Thus, the protocol allows consecutive AK - PDUs to be sent

-with possibly the same parameters as discussed above.

B e

o ——————

q

Only spontaneous: IENTs that produce oﬁtput are
important as far as testing is concerned. Spontanedus IENTs
that produce ng\outbut have effects that can not be observed
directly. Thus the tests that involve spontaneous IENTs
producing output should be able to handle ;his
nondeterministic behaviour of the protocol entity by being

ready to receive the output and respond accordingly.

5.5.6.Normal Form Transitions That are not Firable

Some of the normal form ‘transitions obtained from the
procedure of Chapter 4 may never be-eligible for execution.
A normal form transition cannot be executed if its

precondition (WHEN and PROVIDED clauses). is never satisfied.

Normal form transitions with unsatisfyable preconditions’

(especially PROVIDED clause) may be obtained "when modules
are combined since only symbolic replacements are .done (see

Chapier'4).

To detect normal form .transitions which are not

firable, a reachability tree can be constructed considering

all possible pre- and post-conditions (BEGIN blocks) of the

normal form transitions. This method is expensive since the.

reachability tree maj blow up. Instead, we propose a
simpler method which, howéQer, does not guarantee detection

of all unfirable normal form transitions. The CG, DFG and

preconditions are considered together to détect = any

R L AR W A =

B

> e

3

111

unsatisfyable expressions in the PROVIDED clauses. Using
this method, it can be determined that in some major states
of the protocol some protocol variables cannot have certain

values. For example, in the Class 2 TP specification, it.is

easy to see that the internal ‘ D-node called

"TC{TC_id].in_use” has the wvalue true 1in all transport
states other than "closed". Thus any precondition requiring
that "TC[TC_id].in7u5e" be false in transport states other
than "closed" cannot be satisfied. We have detected that 12
of the nopﬂﬁi’mfbgy transitions of the Clasg 2 TP

specificatiog cannot-be fired because of conflicts of this

R

type.

» vy

Soms s

g

P

wmw O e pmn

. RIS v N

"
g

112

6. TEST DESIGN METHODOLOGY

This chapter presents a test design methodology, which
is a generalization of the test sequence selection discusged
in Chapter 2. This mgthodology should be applicable to the
real protocols such as standard protocols in the context of
the OSI Reference Model, An implementation of the protocol
is considered as a black box‘ andﬂ;;;?I;gility of a formal
specification of the protocol in FDT is assumed. The formal
speciffcation is usually written basea on a genefal
description of . the protocol in natural language called
pratocol standard. From the specification, its normal form
transitions are obtained and CG and bFG of the protocol are

constructed using these normal form transitions.

In the first part of this chapter,. a number of
categoriés of tests are listed, and methods for selectiﬁg
interaction sequences are discussed. The test§ in each
category h;be certain objectives to meet,. thesé-ébjectives

are discussed next.

Specification based tests, i.e. tests for the various
blocks of the DFG are done -by varying irput primitive
parameters. Parameter variations are based on a
classification of the input primitive parameters, A summary
of how each block is tgsfed 'is given, and the * data flow
éepmndent test characteristics* and intér-block dependencies

are examined.

113

The sequencing of tests is discussed next, including

optimizations regarding simultaneous execution of block

tests. This is followed by a description of tests for

. . ‘
multiple connections. The chapter concludes with an
examination of the relationship between the FSM test

1

technigques and parameter variations.

<

The methodology is illustrated by examples drawn from
the Class 0 TP. The application of this méthodoldgy to the

Class 2 TP is described in Chapter 8.

-

6.1.0verview of the Methodology

An implementation *of a protocol, i.e., the
implementation under test, or IUT .in short, is tested. for
gonformance to the protocol specificaéion, i.e., the
protocol standard. The IUT is-assumed to be a sinélé "black

box" entity stimulated and observed :from two service access

<

BN
‘boundaries, one which should provide the (N)-service and the

other 'which uses the (N-1)-service [Rayner 82]. Stimulation/
observation of the (N-1)-service is indirect as discussed in

Chapter 1.

In Chapter 2, the test sequence selection was based on

an FSM model which ' ignored many aspects of the protocel,

such as primitive parameters, and pre- _and post-conditions

- , ’ T . ¥ el . o,
of the transitions. If additional protecol variables- are

included as state variables, the resulting number of states

.~ .

MR e o w4y L

114

-

may increase without bound. Parameter values of the input

primitives increase the number of transitions of the

ptotocol machine in a pure FSM model. If parahetgr values

were varied exhaustively, the resulting machine would have a
very large number of transitions (especially due to data
variations). Thus it is impossible to drive the IUT into

ail of the states and apply all possible inputs. This result

is to be expected since even a small program with two-

2
integer inputs can not be tested exhaustively. 1In order to

cope with this complexity, we will base the test design
methodology on the formal specification of the protocol in
the extended FSM model of the FDT and its decomposition as

discussed in Chapters 4 and 5.

We assume that, in addition to the informal
specification of the protocol, a formal specification of the
protocol defines the issues of:

a) ptotocol,conformance considering only the interactions of
the IUT through (N-1)-service (PDUs and control

information), and)

b) service conformance considering in addition the

interactions ¢f the IUT with its user through (N)-service

5BoCeMaSa 83]..

~ .
. Usually the formal specification is incomplete, that

is, Bgme of the protocol functions may not be formally

speciffed. These functions are called "informal functions”.

LY

Note that some of the informal functions may be related to.’

R

115

the‘protocol/service,conformance such as:encoding/ decoding,
flow control, etc., or to the additional characteristics of
the IUT such as options supported, error processing
performed, etc. We assume that the informal specification
contains all the possible options ana a list of possible

-

implementation behavior in error cases.

6.1.1.Categories'of Tests

In view of the above discussion, we divide the tests
of the IUT for conformance into the following categoriesf
a)Protocol/ service Conformance Tests which test the
formally specified functions .of the protocol. The test
design is based on the graph models of the specification.
The set of tests'in this group will be called block tests. o
Block tests include the tests for determining the parameters
of the IUT (see Section 6.2.1. for a definition), and the
tests for determining the options supported.
b) Informal Function Tests include the tésts for the

protocol/ service functions that are not formally specified.

fxn orwKmman

e

c) Robustness Tests include the tests about the handling of

Protocol/ service conformance tests can be obtained’

k-

protocol errors (i.e,, PDUs arriving 1in a major state for :
]
4
which it 1is not specified what to do with them, or PDUs !
'carrying inmvalid parameter values), and service errors k
{i.e., unexpected user behavior). %
¥

1 ' ' . . '

N
mrfim - . e o - e e I ERATRSNCCE N LI

" 116

from the graph models, i.e., congéél and data flow graphs of
the formal specification. The partitioning into blocké,
i.e., the data flow functions of the DFG, decrease the
complexity of protocol testing since each block .can be
tested separately. We assume that the IUT fespecté the
independence among the blocks in order that they may be
tested independently, in other words, efrors in one block
are assumed not to influence the Lehaviour of other blocks.
There are two excep£ions to this independence: data
dependencies introduced in Section 5.4.4 and predicate
dependencies ipt}oduced in Section 6.2.3. We also assume
that if the IUT were going to malfunction it would do so

during the tests [Rayner 82].
)

-

6.1.2.Test Sequence Selection Considerations

Test sequences for all the tests except the informal
funékion tests can be obtained from the graph models of the
specification. Graph models are not completely helpful for
informal functiqn tests since no structural information on

the function is available In the informal specification,

except for a verbal description of the function.

For each of the above three categories of the tests,

different test sequence selection methods can be used:

«

i) Parameter Variations. When a model of a data flow"

function is obtained from the specification, such as a block

b b et T8 BN e

- 117

N

of the DFG, a test sequence can be selected from the control

graph. A subtour whicﬁ-includes one or more of the labels of

"the block is wused, I-nodes of the block are varied and

expected résp?nses of the IUT are found from the O- nodes of

the block. Either the subtour 1is repeatedly applied in

consecutive connections one f:Z each parameter variation, or

in an inner loop (self loop)

L3

the parameter variation is do

of the subtour reguiring only a single connection. We

"assume that the subtour selected has no observability

problems, 1i.e., all the D-nodes set by the normal form

transitions of the subtour can be observed by the O-nodes in
the same subtour. Such block tests will be elaborated in

Sections 6.3 through 6.5.

ii) Pault Models. This method is used for informal function
tests., Assumed fault classes 1in an implementation of an
informal functien are used to derive a test seguence for

them.

Functional fault modefs were .used in;microprocessor
testing to derive instruction seguences for testﬁné a
functional block of a microprocessor [TpAb 79b]. For
protocolé, it 1is difficult to find fault models to derive
complete test sequences since the faults are not due to
aging of components, but rather design errors. In general,
we try to enumerate the possible observable effects of

design errors and then, wusing the control graph, we

construct a test sequence which attempts to verify if the’

2

.

TR 2V B

Lol g e L

- 118

effects og the assumed errors can be observed. 'An example
of test selection based on a fault modey for the informal
"encoding/ decoding” function of the Class O TP will be

given in Chapter 7.

iii) Unexpected Inputs. Robustness tests can be obtained
from the CG and DFG. For this purpose the CG is completed
(see Chapter ' 2), (the responses will be determined by the
tests) to include every primitive received in every state.
It is then possible to select test sequences for unexpected
PDUs and wunexpected user interactions. The me t hod éonsists
of driving the IUT to a given state, applying the unexpected
primitive, Sbserving the response of the*{{?T and then
disconnecting! An example of test sequence selection using

this method will be-given in Chapter 7.

R

The data flow functions are also helpful in robustness
tests. PDUs carrying invalid parameter values can be
selected by inspection from the DFG, i.e., the 1I-nodes in
each block are searched for invalid values and the

determined values are tried in the tests,

6,.,1.3.0bjectives of the Tests

It is desirable to design tests that will guarantee

the detection of all the - errors in an implementation. Using
[

the formal models of the hardware faults, the mf&roprocessor.

tests of [ThAb 79b] are designed to guarantee detection of

Al

119
the assumed faults. However, it is difficult té give fault
models for software errors, in particular design errors. Iﬁ
addition, it 1is impossible to test for all possible’input
parameter values and all possible interaction sequences.
Therefore, test sequences for software, and protocol
implementations in particular, cannot guarantee detection of
all errors, i.es, one can not expect to obtain 100% test
effectiveness, We suégest that ghe effectiveness of the

proposed test sequences be verified by experience.

The tests .developed using our methodology will attempt

to satisfy the following objectives:

a)All the «control paths in the speEifiqation must be
experienced. This corresponds to tﬁe "branch coverage"
criteri9n in software testing [Prather 83]. This criterion
can be met by ‘passing' through all the normal form
transitions at least once, following at the same tipe the
control graph. Note that the "branch coverage” crizzzgon is
weaker than the "path coverage" criterion which would
require experiencing all the subtours of-the CG. For simple
cases such as the Class 0 TP, the two criteria are
equivalent, but for more complex protocols, such as the
Class 2 TP (see Chapter 8), a subset of the subtours may be
sufficient for "branch coverage". ~ :

b) The data flow graph, 1i.e., the specif;éd\ data flow

functions, should be verified. Each function should be

verif}ed independently of the other functions (see the

120

assumption in Section 6.1.1) by setting all of its D-nodes
. and observing the D-nodes through all the arcs. Setting
D-nodes 1is achieved by parameter variations, i.e., value

instantiations to the I-nodes.

c) Every informal function should be verified using a fault

model.

d) Robustness of the implemention should be verified.
Robustness tests should verify the responses of the IUT to
all the unexpected PDUs/ user interaptiong for all the major
states. Some a;sumptions may be made concerning invalid
parameters: only a single invalid parameter is selected for
each primitive. PDUs with invalid PDU code ‘'should also be

applied in all the major states.

6.2.Preliminary Test Design Considerations

6.2.1.Definitions

We define here the "parameters of the IUT", the
"subtours of a block", the concept of a "flow" and a

"transition". .

The parameters of the IUT include the following
information: .

- the (N-1) service access point address(es),

121

- the level of guality of service (QO0S) provided by the IUT,

- the number of multiple connections supported.

Some of these parameters are assumed to be known

without testing (e.g., addresses), while others are

determined by the block tests.

The subtours of a block are those subtours of the
control graphlwhich include normal form transitions that
assign the D-node(s) {(or O-nodes if the block contains no
D-nodes) of the block. These subtours are used in the block
tests assuming-that they have no observabilit} probléms,
i.e., the assigned .values can be verified by'observihg,the

value from the O-node{s) in the same subtour.

The flow covered by a subtour 1is the set of arcs in

the block containing the labels that occur in the subtour.

A normal form transition becomes a transition if
specific values are assigned to all of its input primitive
G,
. C s 5
parameters, thus more than one transition can corregpond to

a given normal form transition,

6.2.2.PROVIDED clauses

The logical expression in the PROVIDED clause of a

normal form transition obtained from the transformations
/ 2

described in Chapter 4 can be arbitrarily complex, making it

difficult to select the test data satisfying the PROVIDED

L4

Jd22

clause. Therefore we propose here a method to simplify the
PROVIDED clauses of normal form transitions, in order to

facilitate the parameter variation process.

Th;: Boolean expression in the PROVIDED clause is
composed of one or more elementary expressions, where- an
elementavry expression is either a Boolean variable or input
primitive parameter of type Boolean or a rela}ional
expression on protocol variables or input ©primitive
parameters. The PROVIDED clause 1is converted into a
disjunctive normal form '(DNF) such that every product
contains all the elementfry expressions exactly once., We
call this form of rthe DNF a disjunctive canonical form
(DCF). Since the products in the DCF are muti;;lly excliusive
sy definition, the sums can be, removed by genéz\'ating a
normal form transition for each such product. The resulting
PROVIDED clauses contain only "and" and "‘mf)t" logical

-

connectives. No modification 1is necessary within “the BEGIN

blocks.

As an examp}e we apply this transformation to the
normal form transition given in“Figure ¢.3 (the first normal
form transition in the figure)'. The corresponding DCF
expression of the original PROVIDED clause and the resulting

normal form transitions are listed in Fiéﬁre 6.1.

7

o

Note that if the two operands of an "or®” are mutually
e’:‘(clusive (i.e., "B and C" in “Figure 6.1 can never be true)

only two normal form transitions instead of three are

- vt - a—

123

generated.

DCF expression: k

(state idle and A and B and C anq/D and X <=z B) or
(state = idle and A and B and ~C and D and X <= 8) or
(state idle and A and ~B and €C and D and X <= 8)

L]

. Normal Form Transitions: .

WHEN chanl.CONNECT_req
PROVIDED state=idle and A and B and C
“and D and X <= 8
BEGIN ,
state:=connecting;
Sl; e
S3; T
chan2,CONNECT_ind;
END; .

WHEN chanl.CONNECT _reqg .

PROVIDED state = idle and A and B and -C
and D and X <= 8B

BEGIN

...(*same as abovet*)
END;
WHEN chanl.CONNECT_reqg
PROVIDED state = idle and A and "~B.and C
and D and X <= 8§
BEGIN
...(*same as above*) ~ . .

END; c ‘ - .

T

s-F
Figure 6.1.Removing "or"s in the PROVIDED clauses

The transformation:onf the PROVIDED clause does not

modify the arcs in the control and data flow graphs.

However, the label of each normal form transition whose

PROVIDED clause is transformed should be replaced by”anlist

of’ labels in both, graphs and also in the subtours.

[S

N2l MG 5 ST,

124

6.2.3.Predicate Dependencies

\ .

In this section we explore the relationship between

the predicates and the blocks of the DFG, while ignoring any

expressions on the major state variables.

a9

< "We'consider all normal form transitions of a block.

The predicates of these normal form transitions may contain
express%ons on variables, parameters of the input primitive
and/or local _function calls and/or natural language

expressions, The parameters of local functions may include

input primitive parameters, variables and/or constants.

_Predicate dependencies are introduced when a predicate

&

of a normal form transition contains expressions on protocol

variables (including the variables used as parameters of’

1]

, | _
local function calls) that belong to.other blocks.

4

¢ o

. Since the predicates’of the normal form transitions

for tﬁe Class 0 TP (see Appendix' C) do not contain any

expressions on protocol variables, the blocks of Figure 5.4
are not involved in any predicate dependenéy.”mhe'}mpact of

predicate dependencies will be discussed in Section 6.3.
i .

{ v .
6.2.4.Satisfying the Predicates

Assigning values to the input primitives, i.e.,

I-nodes of the DFG is done to satisfy’the prediqates“ofrthe'

normal form transitions.

3

A ol i xd & R R O o

3
[T

.

]

puwng

- 125

~

The transformation of Section 6.2.2, i.e., the removal

of "or"s, facilitates parameter variations by simplifying

%

the predicates. = The predicates show the elementary

expressions to be satisfied simultaneously. The following
considerations apply to satisfying individual elementary

expreséions of protocol predicates:

Elementary expressions including only input primitive
parameters and constants are easily satisfied by parameter

variations, while. . those which refer to wvariables can be

satisfied by an. earlier transition in the subtour setting:

proper values to these variables.

Sometﬁmes, it is possible to obtain a pure FSM model
of a biock. This happeﬁs when the éredicétes of allvthe
normal form transitions of the block cam be satisfied by
considering the D-nodes of the block as major state
variéb}es arnmd obtaining a product state space. This method
can beauseé when the predicateg include’ protocol variables
that are internal D-nodes of tfgf Boolean-and/ or D-nodes of
enumefation type, jn addition to inpﬁt primitive pa}amé;efs
and constants. An exampleaof~this(technique will be given
in Chapter 8. More discussion on internal D-podes follows in

Section 6.3.,2. (\ ‘ - h

Elementary expressions including local function calls

-

- can be grouped paséd\oh the typé; of the local functions:

.~ The values returned by a 'locél function can be éontrolled;

by an input primitive| for example, if it‘returns'the length

*

>

s

PR N T

VIURPEAE waey
.

AL L

126
of a primitive parameter or if it decides whether the
primitive is "valid".
- The value returned by a local function can be determined
only from the history of the transitions in the subtour. The
L 3

value may depend on previous value assignments to certain

D-nodes as discussed above.

The Subgoup B FDT gilows the use of natural language
expressions (NLE in sho}t) in the predicates. NLﬁs are used
in cases where the specification remains informal such as

"fot the description of quality of service, add&essing, etc.
'Typical exprn%sions that may occur in the PROYIDED clausdes
are: | |

(/able to provide/) referring to qoé, and

{/check * Saddreésing/) referring to addressiﬁg, aléot
negations of the above.. The 'NLEs of the above type can
usually be related to certain parameters of the input

primitive. *

v

Othér NLEs depend usually on informal protocol/

~

service functions such as:
(/flow control from the user is readx/)~felated to flow
control. For this case in particular, a fault model will be

hY

used to generate its tests, as-will be seen in Chapter 7..

-

v - , .
In Appendix C (normal form transitions of the Class 0 -

TP), for example, the quality of service predicates can be
related to the class, options} TPDU_size, and QTS _req

parameters of the T_CONNECT_req, CR, T_CONNECT resp and CC

B B RN e

————— T L Nt

. e e

127 . '

interactions. The transitions P13 through Plé have

predicates related to flow control.

6.2.5.Types of I-nodes

Different types of I-nodes are considered in the block
tests for parameter variations. We classify the I-nodes of a

DFG and-explain how the vqlues may be varied for each type.

An I-node may ' be of . enumeration type (Pascal

enumeration 'type) or have a continuous domain (integer,

array of octets, etc.). Some continuous domain ' I-nodes may

'be considered -of enumeration type if their set of possible

values is sufficiently sméll‘.

1

I-node€s of enumeration type ' can be enumerated

-

exhaustively, 1i.e., transitions are generated from the

normal form transitions for each possible value while for

"

other nodes only a certain number of diffierent values can be

considered, in order to limit the length of the resulting

test sequence. If the block contains more than.one. l~-npde

,,,,,,

of enumeration type, the test designer may try to limit the

number of different values to be considered by not including

all possible combinations of the values.

The I-nodes of enumeration type in the DFG of Figure'

5.4 are:

options of T_CONNECT_req and T_CdNNECT_resp, i

2

oo 4 Y

128

class,options,variable_part.max;TPDU_size of CR and CC,

~disconnect_reason of DR.

The I-nodes of‘ continuous domain can be divided into

the following five groups (this list may change depending on

1
)

the protocol considered):

Parametric I-nodes: The values of these I-nodes re

determined by the implementation and they are considered\as
w \

parameters of the 1IUT, their values are fixed. The I—nodeg

corresponding to the addresses of the user and peer entities

13

belong to this group.

A N ,
The parametric I-nodes of Figure 5.4 are:

*

calling_T_addr of CR and CC, -)
hY

called T addr of CR and CC,
L} ! .
to_T_addr and from_T_addr of T_CONNECT_req.

Reference - Value I~-nodes: The I-nodes used as source and

connections can be

destination reference values for the

arbitrarily selected, but must be nonzero. The methods of

4

test data selection for software testing [Howden 80] can be

applied. for these I-nodes. Usually, three specific values

are selected, namely, the two end points and some interior

point of the domain.

The following I-nodes of Figure 5.4 are in this group:

et el

s of one or more

source_ref,dest_ref of CR , CC and DR,

Largé integers: The I-nodes that are integer

actets are in this‘group. The methods of test data selection
for software Eesting [Howéen 80]' may be adopted for these

]

» N
odror e R

=

.
o Keadote x AB AIORGIAS oo T

e 5 R 3 0

129

v
S

nodes, as in the case of reference value I-nodes.
Figure 5.4 contains the following 1I-nodes .in this
V¥

A
[

group: ' '
. QTS: req of T_CONNECT req .and T_CONNECT_resp.

We assume here that the QTS_req parameter represénts, the

maximum TSDU fragment size which is an implementation

dependent integer. .
User data: I-nodes in this group incruée the length and--
content fields of the exchanged aata. .Although test data
selection of [Howden 80] ﬁah be applied, due to. %he-
importance of the user data for protocols we suggéstythat
all values for the length of\\the dafé be enumerated whilé
the contenk of the data is varied systeﬁatically to verify
the cdfrect delivery of every oc;e;iin the dqta.
The ;ollowing I-nodes of F>§ure 5.4 arp in this group:
TSDU_f;agment.length, and \ TSDU_fragpment.data of

}
N

T _DATA_req, l . . -
user_data.length,' and user_data.?ata of DTL

\

End point identifiers (EPI):The interactioh with “the user

takes place over an (N)-service access point. These
interactions contain a par%ge&er to identify the connection
.. end point to which the interaction refers. This parameéer is
called EPI énd its value 1is 1locally deciéed. EPIs are
important in multiple conneétion tests since different

values are used for different parallel connections. The

[;/)multiple connection tests therefore achieve the necessary -

H

S s s

H
? « et e T ey Saerrp g o e e it -

130

1

parameter variations for these nodes. .

The following I-nodes of Figure 5.4 are in this group:

TCEPI of T_CONNECT_req and T_CONNECT_resp.

6.2.5.1.0ptional Parameters

The informal specification of a protocol defines the
mandatory and optional parameters for each PDU. If a PDU
does not contain any -value for an optional" parameter its
value is cdngidered undefined and/ or a default value is

assumed as given in the informal specification.

For example in Figure 5.4, the max_PDU_size parameter

‘of CR and CC is an optional parameter. If it is missing, the

-

default value of 128 is assumed.

The reaction of the IUT to missing optional parameters

should be verified in the tests.

e

6.3.Block Tests

Designing block tests c¢an be considered to be the
process of finding subtours (sequences of transitions) that

effectively test each block of the DFG. Therefore for the

deéign ‘'of block tests one considers the DFG, (G, the
Y . .

pred{éﬁtes and parameter variations at the same time., We

firé@ outline this process in Section 6,3.1 and then give

the details in the subsequent sections. -

rd

131

-

Q.Q.Q.Ovetview’gg the Block Tests

In this section we give a summary of how each block is .

tested.

A subtour of the CG is selected (see the definition in
Section 6.2.1).‘From the I-nodes of the subtour, i.e., the
parameters of the inbut'primitives, the ones that belong to
the block ‘(I-nodes in -thé partitioned DFG with SOLS’
nonempty) are determined. The values of the I-nodes of the
block aée enumerated as diécussed in Section 6.2.5 and all
other I-npdes ;re’ fixed to certain vglues (default or

. parametric). Sometimes, the F-nodes lof the block may
increase the number of I-nodes .to be' consideréd for the
'block; as discussed 1in Section 6.3.2: Natural language
expressions (NLEs) in the PROVIDED clauses may also
introduce I-nodes to the block. For example, the expression

(/?ble to provide/) o
refers to all QOS5 parameters of the inpht‘b{imitives, soie
of which may not be used in the block, thus creating I-nodes
with SOLs empty. Therefore the I-nodes iﬁtroduced by NLEs
must be added to the I-nodes of the block (see for example
the dashed lines in the DFG of Figure 5.4), and their

enumeration is done depending on their type.

The next steb- is the .determination of the output
primitives and parameters (O-nodes) corresponding to the
. subtour selected, The O-nodes of: the block associated with

\ _ ,
these primitives are the only way of observing the effects

-
”~

LR B N PR G o ¥

132

of I-node parameter variations. The expected values of the
remaining O-nodes Kbelonging to other blocks) are detgrmined
from the fixed wvalues assigned to the I-nodes of the other
blocks. The test (applicatioh of the subtour to the IUT)
has to validate the values observed at the O-nodés of the
block in relation with the values assigned to the enumerated
I-nodes and the flow covered by the subtour (see the

definition in Section 6.2.1).

The predicates of the normal form transitions 1in the
subtour selected must be satisfied in order to be able to
execute the subtour. Predicate dependencies discussed in
Section 6.2.3 indicate the influence of other blocks (i.e.,
their internal nodes). The flo% covered by the subtour in
these other blocks (possiﬁiy not yet tested) has to be

considered to satisfy the.predicates.

The steps above are repeated for a number of subtours
of the block, since eéch subtour may test thé block only
partially. 1In this way new subtours are added until all the
assigning arcs of the D-n4é;s (0-nodes for the blocks with
ﬁo D-nodes) have been covered. At the end, all the outgoing
arcs ffom the D-nodes will have been tested, since the tests

will eventually .consist of a complete tour of the normal

form transitions,

¢

-

133

6.3.2.Data Flow Dependent Considerations -

Some Qetails of the flow related to the I-, D-, F- and
O-nodes of- the block are considered in the ‘test design. In

wvhat follows we discuss . considerations applying to each

'

_particular node type. .

4

Since the flow over all variable D-nodes of the block,
(i.e., the ‘assigning arés) should be tested by the subtours,
variable D-nodes assigned in different subtours increase the
number of tests for a block. Each test may be diffe?ent in

nature because the flow covered by each subtour may ' be

.different. For example, a D-node may be assigned by both I-

and F-nodes, and one of the tests involves parameter
variations for the I-nodes and, the other ‘tests the

3
variation of the values assigned by the F-node.

Internal D-nodes (not dire;tly observable through
O-nodes) are tested by identifying those transitions that
assign the nodes, in,such a way as to satisfy the relations
on them in the predicates of the subtour. The value‘assigned
to the internal D-node by the IUT can be verified from the
O-node values that inaibaée the outcome of the evaluation of

the predicates. The I-node values must be sSelected

‘carefully so as to be able to differentiate the various

outcomes through the observation of O-nodes only. The
internal D-nodes -can also be helpful in finding the order of
execution of the transitions if the subtour contains a_

self-loop. .

134
F-nodes of a block are treated depending on their

types:

F-nodes of Type 1: The test designer should be able to
-determine the values returned depending on the inputs given.
These values are usually found by consulting the informal

specification.

In Figure 5.4, the F-nodes "append” and
"get_next_ fragment” require special attention because they
represent the operations on the va{iables of an abstract
data type, nam;ly "in_buffer” and "out_buffer"”. These
opeéations can be observed froﬁ the O-nodes that they assign

directly (for "get_next_fragment") or indirectly (for

"append”).

F-nodes of izgg 2: They can be classified into three cases:
~ F-nodes which are implicitely associated with I-nodes
increase the number of I-nodes in a given Dblock, they must
be considered when enumerating the I-nodes of the block. As
an example, the F-nodes "assign_calling_T_addr" and
"assign_called T addr" are respectively ‘associated with the
"to_T_addr” and "from T_addr" parameters of T_CONNECT_req.
These new nodes and arcs are represented by dashed lines in
Figure 5.4.

- F-nodes which assign implementation dependent values to ‘D-

or O-nodes are observed through the O-nodes. Sometimes, the

observed values may be needed in assigning the I-nodes later

in the same subtour. In Figure 5.4, the F-node

et L o

R L o Save S

135

"assign_local ref" assigns implementation dependent values
to the D-node "local_ref".

- F-nodes which represent local procedures that initialize a
variable are tested 1indirectly, i.e., by testing the block
with normal form transitions that occur after the
initializing normal form transition. The assumption,here is
that if the implementation does a wrong initialization of
the D-node, the . error can be observed later in the subtour
by correctly setting up the 1I-node values. The same
considerations apply to the initializations done by éonstant
D-nodes. 1In Fighre 5.4, the F-node "clear” initializes the

D-nodes, "in_buffer"” and "out_buffer”.

F-nodes of Type 3: The values returned by type 3 F-nodes

related with Boolean expressions are easily determined from

o

the incoming arcs to the F—nodegb,siﬁée these usually assign

o

Boolean type O-nodes. .-~

Type 3 F-nodes related to arithmetic expressions are

fﬁéée difficult to deal with, because all possible values of

all the D-nodes of a block assigned by tyﬁe 3 F-nodes should
be considered as different state values. Therefore, driving
the impfementation into all of these states may not be
practical. Test design for blotks containing type 3 F-nodes
should be based’ on the types of the D-nodes assigned and on -
the set of arcs relating these D—nédes. The deggiled test
design for the Class 2 TP (see Chapter 8) pontains such a

case.

— T W e o RIS

136
’ Blocks with no variable D-nodes usually contain R
I-nodes flowing directly to , the O-nodes, or O-nges e
assigned by a collection of I-, F- and (constant)(D~n6&é§.
Each such flow should be tested (possibly//gn different

subtours). ’ L

g.;.g.Dependfgt/fgéependent Blocks 3
f////fge blocks that have incoming arc(s) from other blocks
T /;re cailed degendént blocks, because they are involQed in
e data flow dependencies (see Section 5.4.4). All other 3 g
blocks are independent.‘ Independent blocks "as well as z
dependent blocks may be involved in pfedicate depéndencies ’ %
(see Section 6.2.3). 1
The flow in independené_blocks can be tested by ;

parameter variations of its I-nodes ind;pemﬁently of other
blocks (except for predicate dependencies), assuming that
the same independence is’bbsefved by the implementation.
Once thé independent block has been tested, fixed v?lues for‘
. , its I-nodes can be wused in testing other bl9cks having

I-nodes of the same primitive(s). Sometimes such blocks can

be tested simultaneously. ¢

9

°In ’Figur%‘ 5.4, all blocks except the block of
"out_buffer” are independent, without any predicate

dependencies.

s e n i 7 R et P T = i TP AR 0 Tk i W e DR

ot e
- i

(1P R PSR P - p P © . e eeawm ey
v

137

Data dependent blocks are tsually created when’ D-nodes

assigned in one control phase (dependentcy causing D-nodes) ~

are used in the BEGIN blocks of the normal form transitions

in other <control phases.” " The tésts for dependent blocks

first setfthe dependency causing D-nodes to a specific value

N

(possibly in , a préceeding control phase) and then do
parameter vafiations of the I-nodes of the dependent block.
Dependent D-nodes as.well as dependency causing D-nodes may

be assigned in the same control phase.

Predicate.dependencies are similar to the data flow
dependencies, the only. d%fference ‘is that the D-nodes
}nvolvéd in predicate dependencies do not take part 'in the
flow of the block.

(s

6.4.Test Sequencing and Test Optimizations - =

wfr

In this section we discuss the considerations . that

i)
t

apply to the sequencing (i.e., rder)‘ofxthe“tests for the

f different blocks

blocks, combining parameter var atioﬁ%

sts), the number of

T
Fé“wsgggitq;e of

the subtours (the "+" operatorbin particular). . \\\

in one test (optimizing the number of

+

connections required to test a block

N .
.
~

A e

B
’
S Eabad et s 7 W

¢ o G,

AN A By B e B -

1)
e Aog:
N -

&

—

138

6.4.1.Test Ordering

The following rules should be followed in sequencing

the tests for the bloéks:;

!

Tests for the_Blocks whose D-nodes (O-nodes for the
blocks with no D-nodes) are assigned in earlier . control
phases are done before the tests for the blocks whose

D-nodes are assigned in later control phases. If there ar

more than one block to test in a given control phase,

independent blocks are tested first lébnsiderations‘related
to testipg them simultaneously)afe given in Section 6.4.2f.
IRdependent blocks that are in;olved in a minimum npmber of
predicaté dependencies (measured as the numbe} of variables
borrowed from othér blocks)‘ ¢can be giéen priohity in the

test ordering, since they can be considered more independent
' . .

than the othenﬁblocks.

i

The ordering of the tests for the blocks 6f:Figurg-5;4

will be given in Chapter 7. . e

f

Tests that determine tpe p;rameters of the IUT _are
done befére the tests that use these parameters. As an
example, the tests for the b;oéks whose normal form
transitions include predicates such as

(/able to provide/)) o .

determine the gos parameters of the implementation. The

level of QOS provided can be determined by varying the

I1-nodes related with the Q0S (see Section 6.2.4) adaptively'

s oo

B T]

L

until ° the dnacdeptable level is found. Later, these
parameter -values are used for testing the call refusal

blocks. .) /

- . - /

6.4.2.0ptimizations

The following rules apply to combining parameter

variations of different blocks in one test: -

The blocks whose D-nodes are assigned in the same
control phase éan be tested Jusing the same subtour. The
blocks whose D-nodes or O—nodés are assigned in different
contrgl‘phgsés can be considered as containing more than one
subblockl(not_ ﬁecessarily disjoint), one for -each control
phase. Tests for each subblock are done in 'a subtour,
possibly . combining parameter variations with the blocks
whose D-nodes are assigned in\ other control phases of the’
same subtour. For instance,. the "disconnection” data-flow
function of“Figure 5.4 can be diiided' intol4 subblocks
involving the normal form ‘transitions (pd7,P18,P19),
(Pé,PSk, (P;l,PlZ) and (P2,P5) respectively. The flon
correspondiﬁg to each of fﬁese subblocks can be determined
from Figure 5.4. Ske subblock containing 4P17,P18,P19) can
be tested with one of the blocks of the "connection
establishment™ phase and all the other subblocks are tested
separately, .because Figure 5.4 cdﬁiains no other blocks with .

D-nodes assigned by*Ehe norma’l form transitions of these

SehBecah, er

-

S

(U

4
£
$
§

y
:
;
A
4
:
=

:

RN 'i%f ﬁ:ﬁﬂm”? hwfmlw Wm e R

140

- subblocks.
|

.
\

The Dblocks containing only continuous domain
paramerric I-nodes (see Section 6.2.5) need not be tested
separately, these blocks may be tested with any other block

whose D-nodes are assigned in the same.subtour(s). ' As an

-

example, in Figure-:5.4, the addressing block may be tested

with the connection referencing, or quality of service

»

blocks. ' -

Independent blocks may be tested with any owher block

Al * .
vhose D-nodes are assigned ip/ the same subtour(s). ' In the

exahple of Figqure 5.4, e addressing, QOS, TCEP and

connection referencing blocks are such bloqks: thereby they

may be tested simultaneously.

6.4.3.Number of Connections in a Test

- The number of consecutive ceonnections required to test
) .. ! .
a block depends on the normal form transitions of the block.

I1f the normal form transitions assigning the D-nodes occur

.in the self-loop, a single connection is sufficient to test

the block by parameter variatiénébdone in the self-loop.

Othervise, a new connection is established for each

variation of input parameters. Nevertheless, even blocks

tested in a self-loop may reguire consecutive connections if -
N)

théy are dependent.

. »
Bt DI L

L

. -
o SR e e A K

o~

141

Usuélly, there exists more than one block that can be
4

tested in a self-loop.- .If the parameter variations are

combined, it'fé:important to add another test phase in which

the I-nodes of all the blocks are varied simultaneously (see

Chapters 7 and 8 for data transfer testé). In Figure 5.4,

the b%oéks of "in_buffer"” and "out_buffer” can be tested ip
a se%f—loop using one of the subtours containing the
self-loop. Parameter variations of the two blocks can be
combined, giving two tést‘ phases - for. -data trapsfers.
Another phase should be added 'to vary their I-nodes
simultaneously. "since the block of "out;bufferf,is data
gependent, the tests are repeéted for different‘ TPDY sizes

in consecutive connections. -

6.4.5.Structure of the Subtours
* ¢

A list of normal form’transitions containing the "+"
operators (see Section 5.1.1) such as P1+P2+...+Pn
represented as a single transition in a control graph may be
created by‘ « .

a) Normal form transitions with the same primitive., .They
result from various paths in the transition type of the
Subgroup B FDT specification, and/or from the

transformations on the PRéVIDED clauses to remove the "or"s

(égé Section 6.2.3).

b) Normal form transitions’ with different input primitives.

~These normal form transitionsz%re ‘éreated- by different

.
. N) . .
O L O T R

142

transition types having the same present and next states.

c)Spontaneous transitions.

-

Note that a given list of normal form transitions may
have normal form transitions from a combination of the above
cases. In Table 5.1, the 1lists (P3+P4), (P6+P7) and (P8+P9)
belong to the first case, the list§ ° (P11+Pl2) and

(P17+P18+P19) to the second case, and (Pl4+P15+P163 to the

z

v‘first and last cases above.

[
!
;

/// If the subtour used to test a block includes a list
@elonging to thé case a) above, the I-nodes to be varied and
the I-nodes to be fixed-deterﬁine the ghdice of the normal
form transitions from the listlu Either the complete list is
selected, since the I-nodes to be varied require inclusion
-of all the normal form transitions, or only some of the
normal form transitions in the 1list can be selected since
the I-nodes to be fixed do not allow the rest of the normal
form transitions to be included. For example, -in Figure 5.4,
when testing the block of connéction referenéﬁs using the
second sﬁbtodr in Taﬁle 5.1, only P3 is selected since both

P3 and P4 have predicates on an I-node (max_TPDU_size) which

is fixed because it belongs to the QOS block.

If the subtour used to test a block includes a list
belonging to the case b) above, the ‘test designer has to

select one of-the primitives to be used in the test. The

choice uéﬁél%y depends oﬁgthe s}nchroni;ation of the test

sequence in the subtour (see Chapter 2). The tests with the

- e "

.
0 R

bt

v
L
3
3
4
,;3
)
A
%
4

143

first/ segond subtour (user/ peer initiated connection
establishment) in Table 5.1 selects P17/ 'Pl8 from the list
(P17+P18+P19) because P17/ P18 frees the connection from the

user/ peer side.

|

Sometimes, one of the inputs in the 1list is
: |
uncontrollable, i.e., it cannot be applied determinjstically

by one of the testing sides. These inputs are generated by

!

the (N-1)-l@yer and applied to the (N-l)-service bojndary of
~the 1IUT. The specificatiﬁn usually‘ includes transition
types relatéé\‘ﬁo the inputs of yhis type, because any
implementation of the protocol should be ready to handle
such cases. In the case of subtours including uncontrollable
inputs, it is assumed that the ’same ihput is abplied to all
communicating entities, thus the Tester siée and also the

Responder side have to be readj to handle any such input.

J
In Table 5.1, P19 has an input called "network_reset”

which is not controllable unless a special test device is
used {(see Chapter 1). This input 1is initiated by layer 3 in

the case of a transmission error (nondeterministically).

The subtours containing "+" operators in places othér
than self-loops ‘require consecutive connections to repéat
the subtour for every choice introduced by the "+" operator.

/ /

/

T)

144

6.5.Multiple Connection Tests

&

Handling multiple parallel connections ie an important
aspect of a protocol implementation. fhe protocol
specification specifies (sometimes implicitly) \QPe mapping
of the multiple connections onto lower level coﬁQ?ctions.
For example, in the Class 0 TP, the mapping of the t?ansport
connections to the network connections is done \Qn a

one-to-one fashion. This fact is implicit 1in the Class 6\TP

specification [150 82] which does not include any- arrays aﬁd

ANY statements. :-All the variables of the Class 0 TP except\

TCEP can be thought of as belonging to an array indexed by

TCEP.

In the Class 2 TP, a diven network connection may be
used for more than one transport connection. The Class 2 TP
specification . defines two arrays of variables indexed by
"NC_id" for network connections and "TC_id" for transport

connections (see Chapter 8).

D;nodes representing the connection array sizes may be
treated as being of enumeration types. The enumeration of
these D-nodes requires establishment of parallel
connections, The number of parallel cénneétions supported by
the implementation is one of its parameters. The value of
this parameter can be determined by trying .to éstablish as

many parallel connections as possible in a test. The

subtour(s) to be applied is ‘selected from the block

containing tﬁe array size. Once the number of parallel

-

iy

[4

145
connections supported is determined, ‘the other blqgks'can
then be tested using parallel connection;. Test ing all the
blocks wusing multiple parallel connections may not be
practical due to the increased number of tests. Instead,
only the blocks and informal functions which may be shared
by multiple connections are tested. The block containing the
data bﬁffers and some informal functions, such as flow

control, may be considered here.

-t

Multiple connection test design for protocols having

-

two array variables will be detailed in Chapter 8.

oy

3

6.6.Parameter Variations and FSM Test Technigues

In this section we discuss the relationship between
test selection methods for FSMs discussed in Chapters 2 and
3 and parameter variations, and generalize the definitions

of special test inputs (see Section 2.5.1).

The subtours of the CG are parts of a transition tour
of the FSM representing the protococl. Performing parameter
variations implies application of the seguence in the
subtour és:many times as necessary. Combining parameter
;ériations means that the number of I-nodes to be varied is

} R
increased by the I-nodes of the blocks considered together,

but thesg I-nodes are not varied exhaustively.

As discussed in Chapter 2, a transition tour does not

146

necessarily have full fault detection, but some measures can
be taken to increase the fault detection capability of a
tour: A subsequence can be added to the tour in order to
verify the state of the machine. For example, a subsequence
accomplishing two-way data transfer can be added t; the
tests of one of the connection establisfiment blocks to

verify that the 1IUT really enters the data transfer state.

An example of this process will be given 1Y Chapter 7.

As discussed in Sectign 6.1, parameter variations,
pre- and post-—conditions, nondeterminism and spontaneous

transitions make it impossible-to use FSM test technigues to

generate test sequences for real¥ Protocols automatically, |

using programs such aé those described in Chapter 3. This
fact remains true even when a sihé%e\§ubtour of the CG is
considéred in isolation. In some cases, copsidering only the
normal form transitions of a‘'single. block, -it may be
possible to obtain a FSM modelling the sequence of normél

form transitions. This is done by considering the variables

of the block that occur in the predicates as state.

variables., Based on the resulting FSM, test sequences for
the block may be obtained. An example of these techniques

will be given in Chapter 8.

-

However, the programs that -generate transitions %%urs

(see Chapter 3) may be used to obtain Bubtours for any given

control graph.

L

it oA o

A b 0 L5

[——

147

6.6.1.Use 0of W- and D-Methods

— g — g cm— -

The FSM for a test of a block usually does not possess

-

a W-set or a DS. A W-set or *a DS can be obtained by

(partially) completing the machine. The completion process

has the,g;oblem of assuming responses for unspecified inputs
that méy not match with the responses of a given
implementation. Also, the resulting W* or D-sequgnces can
have synchronization problems. Thus a practical use of the

W-. and/or D-methods for protocols is only possible if

primitives for state recognition/ setting such as "read

I
state”™ and "set state™ [SaBo 84] are included in the

specification.

When the PROVIDED clauses are considered, the state
space !d? a givén test is effectively determined by the
vargabfgs that occur " in all the predicates. Therefore the
definitions of the read state and set state primitives may
be generalized as follows: Instead of "reading" only the
major state values, "read state™ returns the valués of all
state variables, similarly for "set state". This set may

then be wused in the tests for each block of the DFG as a

W-set (or a DS).

Piel

=3

T e kel

Kot BN et e ik B 1

148

; 7.Class 0 Tests

This chapter describes the tests designed for testing
implementations of Class 0 TP. These tests were applied to
the TP imblementations described in [Leveille 84] and [Serre
84] using the test system described in [Maksud 83)] which

implements the test architecture described in Chapter 1.

»

These Class 0 tests were designed before the theory
introduced in Chapters 4, 5 and 6 was developed. An adhoc
functional division and a dependency structure among the
functions were .the major cogsiderations for structuring
these tests as described in [ﬁoCeMaSa 83]. In this chapter
we give a detailed description of each of the tests and
discuss the foilowing points:

(a) Test sequence selection using a fault model,

(b) -Solutions to certain synchronization problems. These
problems arise in tests which establish consecutive
connections (called ‘ single-connection synchronization
problem) or simultaneous multiple connections (called
- multi-connection synchronization problem).

(c) Ti;e—outs used in some tests, i.e., unexpected
stimulation tests.,

(d) Relation of these tests with the test design methodology

of Chapter 6.

First these tests were formally described in the

Subgroup B FDT. [Each test deécription consists of ‘two

parts: one that describes the actions of the Tester (called

T

7. o 1
© i Msghlalags
::%,%M‘

- "%ﬁ‘r{—‘tq“k o

E

-

149

Tester(T) part), and one that describes the actions of the

Responder (called Responder (R) part). The test descrip}:ions

vere then translated manually into Pascal programs with

proper interfaces to the Tester and Responder system

routines.

In discussing test sequences for each side we use the
5
notation:

S or R
kind kind

vhere kind indicates the interaction primitive involved,) and

S and R stand for send and receive, respectively.

o

7.1.Classification of the Tests

A complete testing sequence consists of 15 tests. They.

may be classified into four groups:
i) Single Connection Tests: This group contains the basic
tests (TTBASO,'F'%CFR), quality of service tests (TQTC, TQCI),'

call refusal tests (TCRT, TCRR) and data transfer test

(TDTSC).
ii) Multiple Connection Tests: This group consists of the
basic tésts (TMCl, TMC2, TMC3), and the data transfer test
(TDTMC) .

iii) Unexpected Stimulation Tests: This group may further be
subdivided into peer unexpected stimulation tests (TUSI,

TUSé), and{user unexpécted stimulation test (TYS3).

iv) Call and Disconnect Collision Tests: There is a single

E

i

[U

150

‘ test in-this-group called TCDC.
7.2.Single Connection Tests - -
~ .
. E:

7.2.1.Bagic Tests

3

The tests (’PTBAS}VJ“and TCFR) were designed to check if
the implementation is able to encode/ decode th'ebPDU's, te
address its user. and pee/r,enfft/j’// and to establish and free
.a connection, J!he/gt sequence selection is based on a

fault model for encoding/ decoding and a FSM model (i.e.,

T

—similar to the control graph of Chapter 4) which gives the

sequencing of the interactions.

7.2.1.1.Fault Model

-

We assume 'Jiindependence of encoding from decoding and
also a correct network layer in the following discussion.
‘, . BEncoding/ decoding of “the primitives can be model»;ed by
defining the functions Fe and Fd respective’lz./.l,mgi&_
) functions are mappings from I (the set,of/prlmﬁles) toI u
{#] where @ denotes null or 1nva11d pr1m1t1ve [ThAb 79b].
Decodings An input primitive Ii 1n_trodqcegi by 'the network
o .

layer is decoded with Fd into zero, one or more primitives.

Pd(Ii) = {Ii} if there is no fault-=1n decoding. A

(: Encoding: An output primitive, Oi to be mtroduceﬁ ‘to the .

network layer is encoded with Fe,

g S 47

NI WA

e 4 N

I gy

P R e]
B I T e,)

PR e

[N UURRAS. SRS

- AL el

PR S S

€

3

4
¢

~

1

* }7 ,:'l;' ’

ol

fewn s A
B T T gt . . G AL L R

\‘ -
E N o <
2% g gt Ao

s
R L
PRI Y PR
P . ~ fae

i 151

Fe(0i) = {0Oi}l if there is no fault in%éﬁﬁéﬁing.
. ; N

To introduce faults, we consider each primitive with

-3

its parameters:
- 4
I1i(PO,P1,P2,...,Pn) for an 1i with PO being the field
o
which identifies Ii and Pl,...,Pn being the fields

corresponding to its n parameter values. Similarly,

%

Oi(PO,P;,PZ,...,Pn) for an-0Oi. ‘

h:

/" We allow tHe following faults:

»

.

, Dbcodlng- Fd(I1) = {g} where the implehentation either

cannot decode 11 or 1gnores it.

a
RS «®

Fd(1i) ={Ij} where 1Ii is decoded as 1j with

.

Ii<>Ij, or

’

Fd(1i(PO,P1,P2,...,Pn)) = {Ii} but one.or more Pis

get vwrong values.

*

Encoding. Fe(0Oi) = {@} where the implementation cannot
fh;roduce'Oi to the network due to the network interface
pEoblems or any other fault that is not observable.

Fe(0i) = {0j} where 0i is introduced as -0j with

. - . . v o

0i<>0j, or Lo
Fe(qi(PO,Pl,Pz,...Pn)) = {0i} but one .Gt more Pis

LY

are introduced to the network layer vith wrong values.

Note that the above fault quel assumes only "fitst

order"taults, i.e., higher order faults vhere IL/ 0i' would

' be decoded/encoded int® more than one .primitive are not

P

allowed. If hxgher ‘order £au1ts occﬁr thcx vould appear as . |

first order fauIts whe:e one or nore of -the parameters. are’

. LN , . - ’. I . -

o - P >

%

o

.
e

152

- R
<)

decoded> encéded with wrong values, thus we assume that a
. test sequence which detects all first order faults; wouia‘
also detect higher order faults. It should be noted that in
the Class 0 TP "concatehey%on“ is not allowed, i.e., a giveno
NSDU can contain ;niy one TPDU. This fact makes the first

order fault assumption above more realistic.

v

In order to introduce/ receive a maximum number. of
primitives to/ from the implementation, the sequences which
involve connection establishment, data transfer, and

connection freeirng from two sides (one from T (TTBASP), and
¥

one from R (TCFR)) are selected as test sequences using the

FSM model of Class 0 TP. Parameters of all the'priﬁitives
.are fixed to their-default (or arbitrary, for exchanged
data) values and addressing parameters are used to test for

a basic addressing capability.

The test that sﬁarts‘the connection from the Tester
side can detect all the decoding faults for €R and DT, and
all tﬁe encoding faults for CC and DT primitives. The other
test .can detect all the decoding faults for CC and DT, an§
ali the engsaing faults for CR and DT primitives, To prov;
this we consider for example the decoding faults in the
first test: - C_ . ,
a) if the implembnﬁation ignored the received CR (as maffbe
detected by timer interrupt), the Responder.part would not
have received a T_CONﬁECT‘iné (:;ailarly for DT); then it

would not have received a T_DATA_ind.

Mo o o b P 3 et o

153

b) The CR and DT were not decoded into other primitives,
sinéq}if they were they would become unexpected stimulations
and the Tester would have rec:ived an "Err" PDU and
terminated the test. It .is assumed that there is no

additional error in the implementation for handling

unexpected situations. The other possibility is that the

“IUT may have ignored the un&kpected stimulation which would

be detected by timer interrupt and the Tester would
terminate the test in this case.

c) The parameters ‘'of the CR were decoded correctly since the
parametefs of ghe cC recei#ed in resﬁonse to the éR vere
verified for correctness, anéa since the user (Responder
part) received a T_CONNECT_ind ané verified its parameters.
The parameters of the DT can be verified by the ﬁ;;Eonder to
be_ equal to the data sent by generating the data with the

same procedure as the Tester.
oy

Similar proofs can be made for the)encoding faults and

also for both faults of the second basic test.

It should be noted that the original test programs
(TTBASO and TCFR) contained no time-out mechanism, thus
according to thé fault model timer should have been used in

4 .

the places mentioned above.

- W iea g P A I e I
R, AP o RIS e TR

154

7.2.2.Quality of Service(QOS) Tests

..There are two tests corresponding to the QOS
‘negotiation for connections initiated from the Tester and
the Responder sides, respectively. These tests enumerate the

possible values of the max_TPDU_size parameter of the CR and

vary . ~ the QTS_req parameter of the T_CONNECT_req,.

respectively. QO0Ss tests are done with consecutive
connections, one- per QO0S value applied. Although there is
in gener&l no direct relation _between the max_TPDU_size
parameter of the CR and the QTS_req parameter of the
T _CONNECT req, in TQCI for -simplicity, we have enuméréted

QTS_req in the same~manner as max_TPDU_size. !

The test initiated by T (TQTC) can be described as:

~

T: S | R S .-
CR : CC N_DISCONNECT_req
/
R: R S R
T_CONNECT_ind T_CONNECT_ conf T_DISC_ind

: »
T#Z above sequence is repeated 'each time increasing the

TPDU_size parameter of sthe CR starting with the default

value, i.e., 128, up to the maximum of 1024, The enume}ation
is stopped when a TPDU size not supported by the
implementation is ;eached; i.e., when tﬁe implemenféé}on
either: - .

F 4
a) refuses the CR by sending a DR, or

b) accepts the CR and decreases th QO0S, value in the |

respondiﬁg primitive CC,

"

Lot e’ o Y

1 Rar

e

i

3w o ——— g

PN © T TR e o YT B

!

155

If case (a) happens, the Responder part receives no

response and will still be expecting a T_CONNECT_ind when
9

the Tester part terminates the test. Thus the following

subsequence has been added to synchronizzﬂigjh parfs and to

terminate the test in a synchronized manneér:

A connection/ disconnection with default TPDU_size

initiated by the Tester.

Note that this termination works also for case (b)

although it introduces an extra connection to the test

sequence.
o

-

The test sequence for the test initiated by R (TQCI)

is: ,ﬁt
R: S R S
T _CONNECT_req T_CONNECT _conf ' T_DISCONNECT_req
T: R S . R
CR cc N_DISC_ind

The above sequence 1is repeated - each time increasing the
QTS_req parameter of the T_CONNECT_req which stands for the

TSDU_fragment_size supported, in the same manner as for CR

above. The implementation's response to the unsupported .

fragment sizes depends on the user interface. In the tested

implementation [Leveille 84], such a request was rejected,

thus causing a synchronization problem similar to the case

3

above, A solution can be given in a way similar to above, .

L}

-

default QOS parameter value. T

i.e., the Réspohde; initiates one extra connection with a

B LA

&
;

V3 s AT e et e e e

o szt

R dSioding,

b,

PR

W rrm— e o e

- o
- N

e Ve e P . . . n e ar oy

156 ‘ .

§

Each connection establishment with a new QO0S value in

both of the above tests is followed by a two-way data
transfer with the maximum negatlated PDU size, This data)
transfer has been added to increase fault detectlon since it
verifies that the implementation really goes in to the data

transfer state and supports the negotiated PDU size,

+7.2.3.Call Refusal Tests L~
¥ \ ~ b

.-

There are .two tests in this group, one injitiates calls
¥

onder (TCRR).

>}

a from the Tester (TCRT), the other:from the Re

They test the cases where the implementati or the called

¥ n

L R

user refuses the call.

TS R S s , R s , L

CR DR N _DISC_req CR DR _. N_DISC_req By
R: R S) .
peo T_CONN_ind T_DISC_req
The first CR carries a QOS parameter value (class = class_é)

wvhich is expected to be rejected by the implementation. The

second CR carries only default'pgrameters.‘

The test sequence for TCRR is:

7

Ry .
S T T T

[

o
>

L

" from the Tester for correct data delivery, simultaneous data

7.2.4.Data Transfer Tests

- - g 12, 3 s
N evpvy - TRALS b dfe o 3fe il o it e ,‘?mrg AU I -t 55{:4.; RE
v

$
&

57

R a P

T_CONN_req T_NOT_ind T_CONN_req T_DISC_ind
R s ‘R

CR DR N_DISC_ind

T:

The first T_CONN_reqg containes a Q0S parameter value

(an unsupported TSDU_fragment_size) which should be rejected

ESS

by the implementation, and the second contalns\ default

\
\

parameters,

4

. This group consists of a single test (TDTSC) initiated

r~

transfer and flow control.

TDTSC contains three phases and these ﬁhases are
repeated for each \ TPDU_size supported (128 and 256 for the
implementation tesied) in consecutive connections. -
Phase ; tests the data transfer from the peer to the user.
The user_data pa;améﬁer of the DT primitive is varied for
length and conteqﬁu Over all,'each byte pgsition in thehdata
parameter of thfﬂ DT PDU gets all possiyle values from 0 to

255. Correct deélivery is checked by acknowledgements sent by

the Respcnaer/ in a B-bfte DT PDU which carries an error
repott of thé data received after rece:vxng a complete TSDU.
Phasgse 2 tésts data transfe: froj the user: to the peer. : ”A

Parameter varxntioos for the T _DATA_req primitive are done

Ve S Ty s 0T

158

ff ‘i for length and content. Correct delivery of a unit of data
’ (last PDU 1is indicated by setting the end_of TSDU bit)'is
checked by the Tester.

Phase 3 includes the actions of Phases 1 and 2

simultaneously.

An adhoc fault model is used in TDTSC to test flow
control. In Phase 1, where flow control from the peer to

the user is tested, the Tester sends DT PDUs to the

implementation endently of the responses received

(error reports).- The Responder can chee

the data delivered
~» for correctness since it knows the conten“% of the data to

be received and sends the error report at the end of a TSDU.
\ Thus if there is an -error in flow control, it is assumed

that the implementation will either be unable to stop the

‘ ! ~ “ Tester and crash or it w}ll deliver the data to the
\\ ,/ Respond;r in wrong order or with losses. Similar remarks
) \ //(~_§—\\\;BEﬂy to Phase 2 where data flows frém the Responder to the
\\\\ ‘ Tes;en. Simultaneous flow control from both user and peer

to peer and user, respectively, - and buffer management are

[

tested in Phase 3.

3
%
H
A
%
B
¥
R
3

R AR T

e e LSS TR O SRS R S M S K S e P IR B R

s s o W
IR AD R) L

«

159

7.3.Multiple Connection Tests

Parallel multiple connection tests are done to

determine the~maximﬁq number of connections supported by an

6n and ¢t

implementati observe the effects of multiple

Y .
connections on data delivery. There are two groups of

multiple connection tests) basic and data transfer tests.

7.3.1.Basic Tests

This grodp includes tpree tests: _one” to create
simultaneous connections by ﬁultiple CRs (TMCl), oﬁe to
create simultaneous connections by multiple T_CONNECT_regs
(TMC2) and one to create simultaneous connections in both
directions, xuﬁ

-

The TMC1 test sequence is obtained from the single
connection basic test TTBASO by simultaneously applying it
for more than one connection. Since an implementation may

not be able to support all of the connections initiated by

the Tester part, the Responder part may be waiting for the '

T_CONNECT_inds for some of the cpnnections. Thus when the
test terminates for’the conneéti ns supported, the Tester
part wiil terminate}_bué the Responder part will not. This
situation is similar t; the synchronization problem for a

»

single connection. We call it the uulti-cpmneétioé

: synchron;ia;ién problem. We preséné two possible solutions: .

(a) if the test sequence for each connection includes data

.
1

- . %r—- ;o

- 3

)
#
3

;

s

160

transfer from the 1initiating side then all the established
connections can be synchronized delaying t;e data transfer
until all of the ‘possible connections are established. When
the Responder receives the first data, it knows that no
further connection is to be expected.

(b) One of the connections (with lowest source_ref/ TCEP
value) takes the responsability of synchronizing the
connections. This connection after all others ' are
disconnected, sends data, receives its echo and then
disconnects. At the moment the ReSponder receives the data

it ‘knows that no further connection is to be expected.

-

Both of the above solutions were used in TMC1,
connections are synchronized at the beginning of the data

transfer and an additional data transfer by one of the

connections was included in .the test sequence.

TMCl determines the number of connections to be used
in all the other multiple connection tests, thus the other
multiple connection tests do not ﬁave the multi-connection
synchronization probleml In here, we assume that the

parameter (number of connections éupported):remaiﬁs constant

regardless of the initiating side of the calls._

<

The Tﬁcz test sequence is ggnqrateé from the single
connection test TCFR by simultaneously applying it for ald

connections. .

TMC3 tries both of the sequeﬁces in the basic tests,

-

e
g, *

B N S

¥ e ek b

LN

A

© e e weme

e

16l

half of the number of connections supported is initiated by
the Tester, the other half by the Responder. \

{4
(N
7.3.2.Data Transfer Tests

This group 1includes a single test (TDTMC) initiated
from the Tester. The sequence is the same as the Phase 3 of
g%he TDTSC test applied simultaneously on all connections but
only for maximum TPDU_size supported. TDTMC tests buffer
management and f£low control in the presence _of multiple

parallel connections.

7.4.Unexpected Stimulation Tests

These tests are designed to determine the behavior of
the "implementation in situations which the protocol
specification does not def&ne. They are divided into two
groups: |
(a) peer unexpected stimulation tests (TUS1 and TUS2) and

(b) user\ unexpected stimulations tests (TUS3).

The égquence of TUS]1 may be represented as follows:

162

repeat
establish network connection;
send a primitive other than CR;
receive the response (if any);
clear the network connection;
until all primitives_tried;

repeat
establish network connection;
send the CR;
send any primitive;
receive the response (if any);
clear the network connection;
until all_pr1m1t1ves tried; g

repeat
establish network connection;
send the. CR

feceive the CC;

send a primitive other ‘than DT (or an erroneous—- DT)

receive the response (if any);

clear the network connection;
until all primitives_tried;

b

;éince each of the three phases (repeat-until 1loops
above) require a different response from the Responder and
the number of stimulations in each phase are not necessarily
known by the Responder, the end of each phase is indicated
by the Testef to the Responder by establishing a connection,
sending data and then disconnecting. Once th1s 1s done after

» stimulations: in the data transfer state, she test
terminates. This mechanism partly synchronizes the sequence
.of TUergbowever, a time-out mechanism is necessary in cases

where a primitive sent generates no response from the

implementationy as discussed below.

. ' TUS2 tests the “peer unexpécted stimulations in the

case vwhere all of the cohsecusixg\gggggisigfs are initiated

| T ¢
TTT——
s f - \\-\\

’

b «4«‘-‘:"‘«\.‘.- L

A Ak

Moo kA2 O L FL e gde M

oty SOPR P

163 ' ;

jerd
from the Responder.

/ F
* TUS3 tests the user unexpected stimulations. ~All
unexpected service primitives are tried in different states
and the responses of the implementation are sent to the

Tester at the end of each phase.

A time-out mechanism is necessary in . the unexpected

e

o

stimulation tests because-an implementation magrignofé some

¢

¥ PP '
of the peer or user interactions, -When waiting for the

response from the implementation, a timer is started. If no

response is received before the expiry of the timer, it is
' z b

assumed that the implementation has ignored the interaction.

The connection is cleared to allow for the next stimulation

b

to proceed.

Bl

1.§.Call~and‘Di§cbﬁnect Collision Tests

ki

I
create a call and a disconnect collision.

t +

soon as the test starts for the purbose of creSting[é call
collision. Since there is a. one-to-one. corresﬁén&ehce
between a transport and a négwofk connection in-the-Class 0
TP, the two calls initiated should create :two simultaneous

-

connections, After the- cofnections are established, both

sides send data and after récgiving\the data both sides

» «

This group includes only one test which _tries to

Both Responder and - Tester initiate,°a connection as

A

R T O T R T O U Ty o LA T

I PUTIN AP T IR S

N / -
» , // -
initiate a disconnection on both qggpeéiions for the purpose

- T
of greating a disconnecg/;ekif;ion. Whether the collision

e - .
« will wocéur or ng;/ééﬁg;g; on the delay in the network. Thus

—

/ © np
this/fggueﬁEe does not. guarantee a disconnect collision.
/ ’

o

/‘»

[
&

-7-'_6_c Sequenciﬂg 9_£ th% TeStS yly.ﬂ-i"’,_

. !
Test sequencing for the £four groups - of the Class 0

tests is shown 1in Figure 7.2. The seguencing in each group

is represented as a tree by taking thg basic tests as the
roots. A given test should only be applied after all the

tests in the paths from the root to the node corresponding
~ . ‘,:.;‘

Eo this test are applied.

<

] v
The global ordering of the test phases is also

Y

-indicated in .Figure 7.2, First basic tests are applied,

fo}lowed by thestests for specified functions. The testing
of functions not formally specified is either performed by
"specified function tests" (for the case of flow coﬁegol) or.

covered separately-after all other tests are done.

164 -

A

e

A
-

y T 4 165 .

A - °)
- < ' .
¢ ‘ bl
,‘ * Q‘F A%
\) A
L ‘ -
[3
° .
: :
3 . . b
4] 1 o
. . ' . T - .
, .4 TDTMC T , '
% - - v
: - : “ : X - S
: b)Multiple Connection Tests - . c
v S . . T .
5 - : - TTBASQ :
» b * »
X £ . -
. [~) - N - -t } “
) B ,0(\ e m .) ‘. < -
: . L. . - - g
. o TUS2 TUS3 o,
a el o - # i :

) SRR '}:_)Uﬁegzpected Stimulation Tests ‘
: . S~ .

. g i : ' TTBASO. ,

- N

: S, = .
o2 ;o P ~ ' v\ ’ ’ . * ° 3 Al
< i - i c LN ‘) - 5 X PR - h (. .) ')
- @ - ’ " - - - B . - - ' -
.) s oo . i) . b ’)
. e ’ a = .
Lo , . - TCDC : .. T
. :.’ R) . P - _‘ . - " ' N L - T . “
* - - . . - 5 - D ER ' N
_— » 4)Call and Disconnect Collision” Test: ‘ .o v
oo " 2) < - P < ‘ . s -7
il - - . N .
- - o s .~ i - -
A : J " o ﬁ:;{ g’ T R . R 3 -4'\”’ - \ \ , - .) % T
Z1.2. Test Si ncing for Class U Tests - ERLISDET
- e ’: R " T T > . o ‘_‘ - t ‘: - -

P ve: % ool T L " RN .

o

o
b ot [B s s PRl
AT, «mgﬁmryﬁwgmw’@;w‘qmm@@m%”. TP £ AT, AR AT] o AT ﬁsy‘f»yw&t.:q,,, AR S R f’@ﬁ“{‘, NG A s 7 b
[l - - i

166 ’ ’
. “ l.7.Relation to the Test Design Methodology - L
The relation of the Class 0 tests described above to . =~

the test design methodology developed in Chapter 6- is
considered in this section. Possibgle modifications to the
~ test. sequences are discussed in. view of making them conform

to the methodology described in Chapter 6. '

The single connection basic tests (TTBASC and TCFR)
PSS . ‘ .
{ i . . A
correspond to the first part of the test design process,
thus no mod‘ificatiqn is necessary for these tests (eg;cebt

for the addition of a time-out mechanism , See Section

7.2.1). ‘ 7 e
The Q0§ tests (TQTC and TQCI) are associated with the
"quality of service" block (seé section 5.4.2)'c£ the DFG in
Fig 5.4. The I-nodes max_PDU size of 'CR (of enumération
type) and QTS_req of T _CONNECT’req (of large integ-et; type)
’ 'a'u-e enumerafed in the two tests for the two subtours of the
V block. Some modifications to thgse tests are proposed below‘

——

- in telatzon with. other blocks. =
Ve ’ ;
ot ' : ’ The call refusal ' tests

»

arq assocxated snth the

"da.sconnectlon" block ‘of the brG. . ,Enumeranon of the, I-node :

) (. ,'dzsconnect reaaon" of DR should have been done, and the
- CJ\«\
L »!'~node "asgign add clear reason' - :hould hava heen observed
M by p:s;sxbly agyinq :tha "usin rumﬁ" pi:auterﬁ, of - :h: :
N \ﬁx;u,~ e o : T

‘;the zw tmu;; %hwﬁﬁip ihmm he

5 é
v

e
%
3
3

§

. correct delivery (see Chapter 6 for a discussion on

- - TN G v AL oy, ARt G 4{2""?‘%{{ SHTRS L
- 4"5*5{1?,’}'({‘&3“?__}‘:{’#/% 'Wq’ “'Q%wﬁgﬁa' ‘.”‘Jﬁ)%{" R A %W: ;.&v., ?:g%«r&? ::egratl‘?’n,z ' SO Y Ebk e 3

167 ¢ %

s

D
el
K
i%"
7

(a) TCRR using the subtour P“I(PB+P9) by enumerating

disconnect_reason of DR, (b) TCRT using the subtour
(P3+P4)(P11+P12) by varying user_reason of T_DISCONNECT req.

These tests may. include the subtour (P2+P5) in one test

since the subtour contains single interactions, i.e., it is
{

not worth designing @ separate test for P2+P5.. In the Zhock

for disconnection, there are three predicafes (P17, P1§ and

1

labels - P~node calleq’ ‘

P19) which are the of the

assign_disc__reason. These labels occur in the subtours of :
the QOS tests, thus the F-node can be observed for different"
evalues in the dxfferent ccnsecut}/ﬁre connectlons of the QOS

tests. These cases should be 1)'(c1uded in the QO0S tests.

./

Data transfer tests are associated with the user to
peer and peer-to-user data trgnsfer bloc‘ks of the DFG. Since
"out_buffer" is a deﬁenéent D-node, the QO0S tests (whic}i 'lj.‘
test the dependency causing -:no&e 'TPDU__sizej')“are done '

b «
before data transfer tests. The initializing F-node "clear"

* ~

for both of the above blocks is teste@ by observation of.--

initi;/iiziﬁg nodes in the DFG). ' o
/ : [
/ Since the SILs of these tyo block;s occua; in the same

self/lloop, these two blqcks .can be t sted w1th one test.
’rhu' Phase 1 of 'rm-sc corxesponds to peer-to-user data
trén%fer, | and Phase 2 correspon&s :;Jx mr-—to-pnr data

tfnnsf\;r. " Phase 3- tests .the 'fwo mcu umu}mmly. o

nou enntml il tnt:é. using afa

l r
. .
. . . S .
o * - - ~ *
. . .
A £ ® o B T n D

TM ladrl as” dﬁ@lmﬂ in

.
T

'

Yy WY fefie i ey
S S PN G R R e e T e S TR R wwmwm P VY AR e R
—

o 168

Section 7,2.1, Therefore the data transfer test regquires no

modification.

The multiple connection’ tests have the effect of
enumerating the D-node called TCEP of the DFG. The basic
tests called TMCl, TMC2, TMC3 require no modificai:ion since
they SIL of °"TCEP" occurs in two subtours. The multiple
connection data transfer test (TDTMC) is necéssary for

testing the flow control over simultaneous connections.

4

The unexpected stimulation tests correspond to part 4

of the test design process, no modification is necessary.
) : ”

s

N

7.7.1.0ncovered Blocks \ .

The Class 0 tests described above contained no tests
for the blocks of connection referencing and addressing (see
Figure 5.4). For the latter block, any variation of its

1-nodes becomes an unexpected stimulation. This block is

. tested with correct address values in the tests for other

blocks and may be tested \nth random address values in the

.
e 4

unexpected stimulation tests.

s o

- séparate fe:t(s) may be deéigﬁad for ‘.tlré b’lack of

connectiﬁn referencmg, or. its parmtc: nrinimt can be
combined. witl’: the- Qos tut: ﬁem Eiltir hb&h mu: ia the

sase tnbtonrs Tests with inmm (ﬂifi?wﬂ m".]

mitranca M Are

- ";&I‘«’M o s

-
s

N
é
o

'
P

S B , mg“MM_*wnmwwmmmwgﬁﬁﬂﬁw?wﬁ&“wwwww* .
169 i
stimulation tests called TUSl and TUS2. ;7’
\ 7.8.Error Detection by Class 0 Tests 3

7

Errors detected in two implementations of the Class 0
TP with the above tests are reported in [CeBoMaLeSeSa 84].
In general, unexpected stimulation tests detected most of

the errors. Also, Phase 3 of the data transfer test TDTSC

proved to be very effective in detecting errors related with

flow control, buffer management, etc.. , .

-
-

8.1.Normal Form Transitions

©

e s MRS TR 2R imt e AR PNt age s

5

170

8.Test Design for the Class 2 TP

In this chapter ve apply the test design methodolgy to .

a considerably complex ' protocol, i.e., the Class 2 TP [1S0
82b]. The main bfeatures of the Class 2 TP are the support of
multiple transport connections over a single network
connection, and normal and expedited ‘data transfer. Flow

control for the normal data transfer is achieved using an

acknovledgement scheme with x;’eceive/send credits (vindows)

for the two directions of transfer. Flov control for the

. * ! al

expedited data is simply done by receiving/sending the next
f

data Onl'y after the acknovled'gmeng for the previous data.

i
We discuss the test design for the Class 2 TP in the
following order: First the normal form transitions are
explained. Then the control graph, its subtours, and the

data flow graph are discussed. Next a partition of the DFG

is obtained, and the dependencies between the blocks of this

partition are discussed. Pinally the tests for the blocks of t

the partg.txon are described.

— b Y

(Y

By apblying-the transfcin‘ations« of Chapﬁer 4, 134

normal form t:ansitmns are ébuined for the.Class .2 TP, ~

thcy are documented in lsa:iktya 841. Some of the normal -
form :ranlitions are gim in Appondix n.. thcy cuéttnpond te .

the transition t:ypu gim in w: A a8 a#um in

=
H -
§ .

Mooty FLRR R SR g, (0T SR WOLEARIE, VSRS e A

.

(SN
-~

i

o e ey T AAS 3V e
=R %

!

s R BT A R T T WMWWM wmmmwx% e A A R A

171

Chapter 4,

For obtaining the normal form transitions we made the

%

following assumptions: | -y

i) The transport service interface function called
'rs.user__readj vhich returns the length of the data that can

be received b} ‘the user is modelled by introducing a

variable called

"length"™ vhich is assigned by a F-node of
all the normal form transitions corresponding,/to-

type 2 in
tl;e transition type where TS.user_ready is used.

ii) To handie the case where an AK primitive isra received and
the negotiated value of the class is class 0, a major state
vﬁlne called T Err_sent is introduced.\'i“lge protocol enters

¢

into this sta‘te vhen. AK is received and aB\Err PDU is sent

4 N
to the peer in order to wait for a N_DISCONNECT_ind. When
the N_DISCONNECT_ ind

The

is received the network connection is

is made to all specified

cleared. same modification

error cases.
s

L 4

g.g.Cohtrol Graph and'Subtours

»

.
. - \ . .

There are two major state variable,s, "state”™ and

corresponding to the two 'médules ATP Evpe‘ and
mappmg, respectxvely, of the Class 2 '!'P specification. '
After these nodulet are combin&d, the mm block "ot the
norsal form tumitions contaim m nuimt sutmnt tor

m corrnpondinq ceutm ﬁfll* ’

». "NC_state”

each -jor state u:inbh.

O

A KR M SR i, i oy

172
/ v ' -

is shown in Figure 8.1. From this CG we observe that the

B

state space of the proiocol is not equal to the cross
product of the state spaces of its modules. This is
expected since most of the "state" values can exist only

\
\ when the "NC_state™ is “"open",

S

\\ In order.to keep‘Figure 8.1 réadable, we represent the
tr\ﬁgitions by single letters A thru Z and a thru f, each ,
lettex, representmg a list of labels of normal form oo
transztl\qns. Table 8.1 contains the 1list of . labels'
'corresponding to. eac‘b letter used in Figure 8. 1.‘ In }w\ble

8.1 arid the data flow graphs of,the following sections,’ X
list of labels corré\sponding 'to consecutively numbered \\
normal form transitions iAs written in an abbreviated form.

For example, the consecutive qormai“ . form' transitions
numbered 81 thru B4 are written as PBl ... 84. A normal’ -
form transition labellled Pij is dei'ive% '\from the i-th

. transition type of ttixe original §péci£ication [1s0 82b].
The associated input primitives for the labels of Table 8.1

are listed in Table 8.2, -For spontaneous transitions either

‘the output g\eﬂerated is listed, or the gupctiénality (the

variables set, primitives encoded/ dgcbdeé, etc.) is given. -

_ Unlike the Class Q TP ‘specification, ‘primitives fro;;nu'
"the peer éntiﬁy (TPDUs) do not appear in -the wmm clpuéefs
nor direcé y- in ti‘m output statements. 'ﬂr‘is is so bccausb
the TPDUs pre nanipulated in the buffcn which cn mcd or
filled tT from NSDUs in mnzmm ‘transitions -mch ’

@l]

k3 ' A

P J . T + N =~

s
orre—— . e

/ . 173
handle the encoding/ decoding and cqncatenat;ionafﬁncgions of
4 9, N u)

the Class 2"TP. .
“a

8.2.1.Subtours

{
f

-

The initial state of the C6 in Pigure B8.1. is the
state which contains the initial majo'r state values of the
k{ro modules i.e.,
{NC_state=closed, state=closed].

There is another, state for which loops are obtained:
{NC_state=open, state=closed}.

The loops correspond to - successive transport | connections

using the same network connection. Six states, including

the data transfer state {NC_state=open, statemopen} have
gelf-loops. | [|
/ 1
/ !
/' ! |
/ : e
{ “
/ - v
/ 2
o
k \-_“ i
- \\\\[
‘ 1 . s
:\ . 3 Ol -

s
.

iy

[

o wing, gadeen WA Cfes iR SERY

2

LN
g

mwOWOZZFNQHIQ'@NQP

MO LOTNdMESC

Wy FRER N R TN T - -

£

- O
o

5
gy
f

e O S MR I PR R ORI, S TR R O R R s

Table 8.1.L

© T SR P T

- ' 174

PL1
PJ1

PD1, PN1

PH1

PD2, PD3

PI1

P502,PD2, PD3; PFO2,PG02, PGO6, PG12, PN2
P507,P508 , P510, P601...604 PD1,PF06, PN1
P509,P510

PN3 é)
P101,P102,P117,P2,P3, PE1, PE2,PR2
P505,PG09, PG15

P605,PFO9

P2,P3 . .

PF04,PG04’, PGOB, PG14, PN6

P607...610, pr04

PN7

P91

P103,104,110,112,113,115,116,118,P2,P3, P61...684,

P92 93 Eal...AB PBl P32 PFM PGQ& PGOB PGIG)\

PN6, PO1,PP1, PP2,PQ1, PR4 , 951 PT1,PU1
P612
PG18,PG19 :
P116,P2,P3
P606,P71,PF10
P506,PG10, PG16
PM1, PM2
PFO7, PN4.
P2, P3,PFO3,PG03, PGO7, PG13, PR3

Pale "

PG17,PKl " .

PL1

P106,P109,P116,P2,P3,P407,P413, P611
P2, P3 P108)

abels g_{ the Transitions _1_:_; F,ig'q:e 8.1.

30 AT R ey

&

Fosew

. .
o P -
W&%L&mﬁ&mﬁm*& Mokt 2 Al lala

i ok

A

175

P101...118 Spontaneous transitions which

\ encode TDPUs to be sent, in part:cular
P101,102,117:CR :
P103,104,118:CC

9105..108. DR
P109: DC
P110,111: DT\\\\
‘P112: AK \
P113,114: EDT-
Pl115: EAK ’
P116: ERR
P2 - §pontaneous transition which outputs
N_DATA req
P3 N DATA Ind ’
P40l1...415 ‘Spontaneous transitions which
decode N_DATA_ind into CR,
P501...513 idem, into CC,
P601...612 . idem, into DR,
- P71...72 idem, into DC,
P8l...84 idem, into DT,
P91...93 idem, into AK,
PAl...PA3 idem, into EDT, A
PBl...PB2 ™ idem, into EAK,
PC1 idem, i ERR.
PD1...PD3 Spontaneous ransition that
’ outputs T DISCONNECT ind -
PEl, PE2 Spontaneous Qran31t10n that,
sets class and max_PDU_ size
PF01...10 N_RESET_ ind ! .
PGOl...18 N~ DISCONNECT 'ind v
PH1 Spontaneous Transition that
outputs N_CONNECT req
P11l N_CONNECT conf
PJ1 N_CONNECT_ind
PK1 Spontaneous Transition that
outputs N. DISCONNECT_req
PL1 T_CONNECT_reg
PM1, PM2 T CONNECT rasp :
PN1...N7 T_DISCONNECT_req) ‘
POl T _DATA_req .
PP1,PP2 $pontaneous Transition that outputs DT
PQl Spontaneous Transition that .
outputs T DATA_ind v
PR1...R4 'Spontaneous |Transitions that |
. update R_credit i
;gl Spontaneous Trans:tion ‘that outputs AK
1. :
PUL

PO R T

5w e

-

o

BRI P § e

e

F L T S

R -

£
;

176

N _statezopen,
statezopen in_
progress called

NC_stateZopen,
stateSclusing

. statexclosed,

statezcloged

_statezclosed,
stateTopen_in
rogress calling

NC_strat :V:npc‘n,
satezwalt
R before closing

3

w3

W

Subtours of the CG are listed in Table 8.3. This table

contains a relatively high humber of subtours (115), This

is due to the fact that the (G of this specification‘

includes network and .(transport .connectio'n management for
Class 0 and Class 2, thereby increasing the number of major
states. One of the objectives set by the test design

metﬂhodolfbgy (see Chapter 6) requires that all the normal

' form transitions are covered in the subtours to be used in

the tests. This 'criterion decreases the number of subtours
Vs

for the Class 2 TP to 25, i.e., the subtours numbered 1 thru

25 are the subto'urs to be used in the Class 2 tests. It is

easy to see from Figure 8.1 that the discarded subtours are

derived from the state {NC_statesopen, state=open} ' and’

involve more than one control function such as "call

\ 3

refusal” followed by “connection establishment,. data
transfer, disconnection" -over one network cor'.mection and

these control functions are already covered by the above 25

“
subtours. *

The control functions corresponding to some of the

subtours of Table 8.3 are listed in the Table (for the

? .. . : 1
transport connections initiated by the peer/ user. entity)..

All the self-loops . in the CG contain “the normal form"
transitions labelled P2 and P3 ' which receive/ send NSDUS, -

Since these .' two normal form transitions are mi."dad in all

control functions, tt_mr nlt-—iogp: are repeated in thi .
subtours, (see for exsmple the self-loop labelled *a* above).

= . - i o

. a
F Ien S s

R T

T Y e

e

Lk omsder SR B T
-

-t

g

P A I

o o e A
N

U S NPHU SO

‘(&H) c '

. :.-n.,

] 3 ‘6 ~ ’ i
178 - . ’ . {
7 ’ }g') ’ i
1 AcC L J .
2 ADE S ’
X ’ = . }
3 AD-F G : , P "
X % . oot ;
4 AD F KJINL’ A ~ , A :
% . . . 2
5 AD F KISO ’ ' ’
X % * ‘) o
6 ADFKISRVU - N
. . X * * T ’
7 ADF KIS QEX y - S s
8-25 B LOOP o S ‘, "
. * : . . S) ,
26-43 A DEK HLOP 3 ’ '
* * . o T
44-61 ADFK JNM Loop S -
R * \ x L - - >
62-79 ADFRKIGSN Loop / o o
* x ’ . ° .
80-97 ADFKI&RVTLOOPw L .
) . ” L 2N * 5 ,
98-115 - A DFK I $Q fWLOOP , .
with LOOP containing: - e -
* Fi) \ ‘ ’ - :
e C Protocol errors in "closed" state "
x x X . .) L. . .
{e ba Z) c. Call refusal by the user C e
x x x - L ' - y .
e ba ¥YSs O Connection establishment data transfer
. freeing by peer/user (Class 0) - - -~ .
' *. * x % . ; X B) . . i Lt .
(e ba ¥S P) ¢ idem, by peeT {Class 2) o .
x k% o PR "
e ba s Qf X~ 1dem, by user (Class 0) . ATy
® 2 % % . T
(e ba zs Qf W) ‘e idem, by user (Class 2} e

pa !S RV q " Connection. establuhﬂent, disconnectitn _ .

. due to prctocol error. m aaa!;a tta,ps.!;gr_
N S (Class 0) - : . 5 R T
* % - ® * N oo 4 o f P

(e ba s nv'n ¢ 1dom, (cma z) ,é‘f. B IR &

le
*

_ﬁt

D -
7 ,’u s T
- - oy

.
N 0 P DRI L Gl i A

. T e RIS AR g [PRI TR I
Y ‘ . 179
¥ ’ -«

-~

L1 . * x . %
. . (dK JN M) c idem, by the peer
® * P
dk 1S O Peer initiated Connection establishment
s p freeing by the peer/ user (Class 0)
, * * *
//(dK IS P) c idém, by peer (Class 2) - ¢/
* ® *
‘ .dK IS RV U Peer initiated connection establishment
o . disconnection due to protocol errors

in data transfer (Class 0)
x %X x x
(dK IS RV T) c Peer initiated connection establishment
. data transfer freeing by the user
(Class 2) L

~

* % % ‘
dKk IS Qf X idem, (Class 0)

* * "k, % .
(AR 1S Qf W) ¢ idem, by the peer (Class 2) -

J .

Table 8.3.Subtours of Class 2 TP v -,

8.3.Data Flow Grdph

IS

e A DFG of the Class 2 TP is shown in Figure 8.2 (each
page in the figure is numbered from 1 thru 10). Page 1
belongs to the encoding/ decoding, pages 2 thru 4 belong to
the connection establishment, pages 5 thru 7 to the data

- trahsfer (in¢luding error cases) followed by pages 8 and 9
for‘the disconnection phase, and page 10 to the error cases
related to duplicate connections. D-nodes that are used in
more than one of these parts are replicated in the figure
and idicated by an T"off-page" connector (see the D—node§
NC_id, TC_id, max_PDU_size, etc.). In the specification,
the TPDUs received/ sent are stored in an array called

PDU_buffer. In Figure 8.2, the TPDUs decoded from a °

[

] o

PRI Fs vy

N_DATA_ind are represented anywhere except. in Page 1 as

I-nodeg, and the TPDUs encoded ihto N_DATA_req as 0-nodes.

More discussion on this point follows in Section 8.4.

-

One of the aspects of the DFG is the presence;of many

~
-~

internal D-nodes, namely:

.

(a) in_use of boolean type, indicates if the transport

connection is being used.

(b) this_side of enumeration type, indicates the initiating

side'of the network connection.

(c) supports_class_0 of boolean type, indicates if the class
negotiated is Class 0,

(d) S-credit of enumer;tion type, . is used‘as credit value
for the outgoing data, .

(£) EX_D_sent of boolean type, indicates whether expedited

‘data from the user has been sent to the peer,

A

(g) EX_D_received of boolean type, indicates whethet

expedited data from the peer \has been received.

The D-node called local_N_addr is assigned by none of
thé normal form transitions, thus we assume that it |is

correctly initialized.

The F-node of type 1 called determine_TC is assumed to
have the effect of checking the validity of the "dest_ref"
parameter of the primitive received, thus in what follows we

4
ignore this node and all of its replications and add a

relation about the dest_ref to all of the involved

predicates.

-

" The D-node called "assigned_NC" is set by the "NC_id"

-

which is a record containing "id" and "local_N_addr" as its

‘fields. We assume that a transport entity has jonly a single

local network address. Then the NCEP value assigned/%o the

transport connection aloné is sufficient to associate the
Fransport connection with a networgléonnection, therefore in
vhat follows "assigned NC" is assuﬁed to be assigned by the
value of "NC_id.id". The D_node called "corresponding_TC_id"
is- ignored since it is not used anywhere else in the

specification.

v -
.
hd « 0 -

[3
182 , ~
. * W,
[N_DATA _ind —\ :
i " contents | length] Is_last. .) ,
1S_user_data t ragment . N “ /,
. PS ’ -
J I received Nolt
\ date user_data_| *
length L contents prescnt
PF02...PFO4,
PF06...PFl10, * :
PGO2...04, PAOZ.. 307,P413,414, N
_/ PGO6, . .10, P502...512,P601...611,P71,P8).. .84,
PG12...19, P91 ..93,PAl A3, PB1,PB.
PK1
» P402. 407,413,414,502...512,601...612,71,81.,.84,91...93,A)...A3,
| recexyed_PDU 1 B2
- .

it

A '
CR . cc ‘PR . nc DT AN EDT EAN
. .
* P&02...407, PSQ2...512 P601, ..612 P71 ’ P81. B84 P91 .93 PAl . .A3 PB1,PB2
" P413,414 » ”
B : . P101...103, P103,104, P106,108 P109 P110 P112 P113 P115 Pile
; P117 P118 -
‘ - POU_buffer PDU buffer PDU_buffer PDU_buffer POU_buffer PDU_buffer PDU_buffer PDu_buffer PpU buffer
{cr) g oR) () Oy (AN (+o7) ray ¥ RK)
/
P101 . 104,106,108 .110, iigé{g‘fng*
P112,113,115...118 Ploo 108, .
,108, -
P109,
rilc, ,
P117,P113 .
P2 . . .
PF02...04, PL13, Pl
PF06...10, NSDU_to be sert P101,103,110,113
PGO2...04,
PG06. .10, dara user data
o ;‘K;:""lg' lengt!] contents present
. N " l T l
P2 .
- Is_last_
(PC!;P data frapment ‘\
\ N_DATA._ req / '
. »
Fiqure 8.2 A

DFG of the Class 2 TP

-

i

T - Eaial I - s . H ‘4 - - i .
§ ,LP‘N
; [CR 1\ T-CONNFCY - ppop \
: . _ S classloptions kalliugjcajled TPDU wroposed .
’ © k‘jﬁ% d;g s?‘e’fce‘ 3;3 lggle’;s:a qxrnd llnj n}ng 1 aéér k ﬂ&r nzv_xm} TCEP ! n!;‘; € proposed_options duty }
\ \ \ I 5
Pald ’

$1Z¢

assign.
max_PDU._

-

Pals

i
PMl,
. miz, assipn_ deter-
PE1, remote._
. PL2 addr'# mine.T.
- Pl
2
ps09. . / -
512
Pald, P414
PL1,PE2 M, 509,512
f P509,
i PR, PR2, P [esio Pald
, PR3 PR3 Pa1a il PL: ' .
|
M ! qr%di‘t rgrz)?te_ local _ref clase le'T(iTEL l :Dggé;j ITrgrélgEm.
PMI,PM2,
Psoy 512

<\ S
4§‘§
R

P414 0
’
Ml P103, 11103, P103,
. 04,
Pan4 P10, Pz | Ploa ;?g’ i?g' ;18
. 103 M2 M1,
P414 P414 P414 PMe
P4l14 P103 103 PMi, 18
p1ea g 18 PM.
PL18 . .
to 1. [from.T_ roposed_ r creditldest_| sturce] user. el P Q15 las "
» (CEdadar deressl gpt[xon} lPTOPOSCd.QT< ld‘":\ b;’? plue [r Tref] d dd Q : opw u“l" efirin
T.CONNECT ind 1 FTj cc

rigure o.<

.. {(continued)...

(2)

lPIOS. 104,118

~

’ l 184
L PSQ9 . 812
[- e) L T_CONNICI reeg \
redrt_| dest Jsource Juser. | peer. MS. {clas<joptionfcall falled TP * proposed proposud.
k_v;ll ¢ Lrof. Y rof Jdars laddress | ind aind | and bng afddr bize gn JCIF|to 1_uddress opt1ons ‘01 Y dita
P5US 512

35S51gn
Qrs
. PLL,
Pa14 P414 P414
/ M2, f P509, PLI,PE2,
"114 510 Pa1e

A /
IC_JTC.1d loca i LQH]

id T.addr /

[opt 1ons

AN

orie d
] tr_lr;.‘spun ”u'l' Iasszgued,NC

l

.
L
/: y
S——
\ : /
rion,
iyl 16., \
’ 117
Y .
N
/ P101,102,
117
deter_
mine_add deter _
eddr mine_add
addr
P\
P102 pLr frLl {PLl ,
/ piol, |riol, Plul, {rLl 101,102, fPid
102,117 | 102, 11 10 1z roz,
PS09 P509 512 [P50 51 < - - 117
sl
512 ’
y L L i
1CcEpropose proposed._ data it S 3 - .
f Qo] provosed. | \ stot [T -TFer T gaedgsere | 0. Fia Totmom - [l e Fabiel v
\ T.CONNECT _conf } \ LR)
/

b101.102,117

Figure 8.2, ...(continued)... (3)

s

185

[N_CONNECT _conf)) N_CONNLCT .1nd, —\

\ proposed QNS MLP ’ \MH‘ to N_addr
{v-

™

from N_addr proposcd_Qhs }

, rT] [-calhngllc_allcd]lﬂl lol } . !FI
g:;; PHI PJl PL1,P414 PL1.PA14

PSI1, PM1, PL1.M414
512 P509,510)

PL1,P414

/
t
1n_use] this_side l TR L TS ,] Suppor e s.-

12550 L r{D.send

EX_D_received

~

o

NCFP [proposcd ONS

_
\ N_CONNECT .resp. —7

\ N_CONNECT.req.

Figure 8.2. ...(continued)... (4)

-

user.
data

' ’ \dcsz_rcf

seénd_

sequcn(‘c M

end_of_
1S

18I..83

P82,84

enough_

PR4

space
P84
append
<+
Y
22 P84
‘ PQ1
P81, .8
loc]l
H N_addr
J remote. vef lenuth teceive huffer R-credat TR
“C.ad / i
,) /// ,
PQl
PQl e
PQi PQ
got_ . »
next_
ragment [anvalid I'DU .] [mvahd,paramcte;l
P81, X
PQ1 PAL, /
YA
. pi) /
PQ1
PLof o N
Q1 ' A -\<
’ PQl
Pg1,01,
PAL,A2, 116 PS1
3:31 P11 Pl12
PSS! 4
4 Pou. reject PLU_[credit | expected.send.
[TCH ITS.uscr-data ln_last_fragmem\ b ffor (dcst-‘ref c:':use \ lifs.r value | dest.ref <equence
Jt vy A
X T-DATA-1nd. ful \ IR j €u11\ AK]
F1l6 # Pllzl

Figure 8.2. ...(continued)... (5)

AX

. cred:t_] . ox
Lalue dest.ref

pected _send | }
scquence

187

T.-PATA.TEy

- \

\'PCTI TS user _duta

I

1> du~t_frigment J

roi1

POl

L’

B

ATP
max_PLU s1ze

S.e

redit TS

send_bufter

assapal

pP1,.P2

‘as
TS

PP,

PP,

S1gn.
_user

PP1,P2

PP}, P2

“;i‘ll"l PPL, P2

3d , Tocal T udus

1d] tocs) N_addr

TC_1d

M _ad ‘

P81,43,
91,92,
AlLAZ,
Bl /-—-/
/

P110

Ta.disconnect.
reason

“TS_user_
Teason

dest _ref

user_data send _sequence

end_of_TSDy \”“U-b"ffﬂf

k T_.DISCONNECT 1nd.

€

s

T
full

P10 ¥

Figure /8.2. ...{continued)... (6)

-

% . _
L .

. . ot

. . s stug g s, P b e v .
VEE A e, sy v g A R R W s g 2y SRRyt W e R O e S e e - i »
. ~
P
b .
[
. .

l PAL.. A3 ,l PBI B2

LDT \ f : FAK

\ [T LA_D_RLADY. ros}.l_\ I T EX_DATA rey \

T. \dcst ref ' uscr_dataJ \

; e
dest_ref 1t] | \ TSuscr_daty Tcrrg
PAL...A3 *
. P

. o .

. * .
¥ - .

AN
i : 2
0
h v
T F
PT1 PB2
N EX_D_received EX.D_sent® ‘ b .
3

PA3 PAZ X’

P11s

. PDU- e
{ TCEP [TS_user.data \ TCEP uffc[dest.ref | [destref.] user_data
N A
. \ T_EX_DATA. 1nd / \ T_EX_D.READY conf }\m TAL]\ EDT

Figure 8.2. ...(continued)... (7)

PIISL PHSL

BT wrradeid oo il et i nBlwnedh ads e 2 wel ot w

oai Sk

LONECI

-
"

D o e v s |

' ' 189 !

407,413 2 507 SO8
[cr [—k \ [

‘ cr
s | disconnect. }
dest ref dest_ref kource_ref dest_ref] source_ref

Jrso, 012
DR

Source_re

reason

PSuL 500

Ps07. 508 P60L. 612 o
~ , , .
i N * «
07,413 . i
-]
ass1gn_ deter.’ deter.
’ local. ine_TC mine.TC
P502 P40
. P4an7, Pa07, Ps02 506, 7,
® P41} Pals 506, f pso-, 413
PSO2 506 pso7, 508
7
PS07,508 508 P:?-'
- bl
P601,.612
%
N N NMoald, il .
remote_ref. local_ref - [1d - T
! ey
({
4 e
7
. r T
, assign
- reject. invalad. N
cause
) 4 ot TS_U_ -)
! Tor PS08 UNKNOWN
piti
TS_U_NRM
PN5, P5uZ. .508,
P407, PR7 506,507 Pr60l1..604,607..
© 507 508 reoz, 610,
Plo6, 608, PD1..PD3,
108 pPGOZ . JPFOZ. .04,06..10
Pil6 04 PGo2, .64,06, 10,
- > Ploe, PO1L. .16
NS/
Z reool.
Ly
[Tlcst_rcf 1“1 cn“cau\(\ DU _ "Uul‘ﬂ'“hﬂ‘f{ 5??{““] di;echosrg;‘cct_ 15.-dasconnect T;ﬁ’fﬁg“ TP
\ buffer |fbuf
. I RR 7 LRR nn‘ DR ’ L { _DISCONNICT. ind j
Plie rive, 108

Figure 8.2. ...(continued)... (8)

[,

o S AT wras R e bk T f T

VE o e E

o

b £y

Sl s T P LRSS SRS - N

s o m o me e o . - ¢

190

t f , b

R

N_DISCONNI CT-ind

1

r
\

Y

T _DISCONNITT rey

\ (e

[
(=

\ dest_ref source_ref } NCFP Jnsconmu_rca;onj p 15 _user_rcason’ J \ NCLP }
[] 3 1
) P71 - -
< y 4) .
o) | /
. ‘ ‘ : -
- - y e P ° - - N
’ ’ “a N
/ ‘ . %
- PNL,PN2,PN6,
PFO2 .FO4, ,
PFO06..10, .
PGO2 04, . .
- PGO6. .10 P41s3,
. PG12 .16,18,19 p607., 612,
' PN4,
- h <
1s_last.PDU) . ° '
v * A
4 -
N
’ i &
‘/‘
.
PFO2..FO4
: PS02...506, o bE0G . 10
PFQ2,..FN4, | .t
Pi1,PNI, PNZ, PG
‘ . 612
rd
X W 2

Wy

/NC!:P

disconnect_reason \ [

NCEP \

source.ref,

\PDU-buffe

\

N.DISCONNFCT-req. / \ N-RESLT.resp

/

nC

/ dest_ref. l

] g

Figure B.2. ./..(continued)... (9)

lnw)

PR

PRI

olic:

s

S LA L NN A . T St T

e

i,

"

FRIT I

T4 e g

s ol SN PG WRRET
3

P o P

'

TR BT P T e e R S

_. I

g 2 v e
VR IR RN M IR, ST LS ¢

>

o e T S ORI

T.DTSCONNECT.. ind .

/

Figure 8.2. ...(continued)... (10)

s

L4
- , JLmo.' .. 400
l/ s
_ [cx \
Y) dest. | soyrced
ref ref.
’ /
i U . P402.,.406
-Jpa0z. . . 406 P402, 406
. TC-1d T 1d” |
remote_ref. local_ref
#
»
\ pa
t
1
o S
¥ 0
&
-
P402.. 406 Fo407...406
¢ 3
*
y
TS_disconnect_] TS_user.
I TCEP reason reason -

L

R

L LT T

R R

" e aimd A Py bar
TP - . R . . KT
RS O T PO v (R PV LT < Y L s [o e} ey b AR BTG S SR, AN Seooiu s
p

Vv

@

—

192

8.4.A Partition of the Class 2 TP S

. !
In order to obtain the initial block’ of Figure 8.2 we .

apply Algorithm 5.1 in two phases:

Phase 1 treats the ,variable "received_PDU" and thﬂb array
"PDU_buffer" (page 1 in Figure 8.2) as D-nodes and 4 blocks
are obtained from page 1 of Figure 8.2. These blocks
contain the F-nodes "decode" and "encode", the D-node
'NSDU_to_be?sent.user_dafa_present" v and the O-node
"is_last_fragment" of N_DATA req, respectively.

Phase 2 considers the rest of the DFG in Figure 8.2, i.e.,
pages 2 thru 10. Décoded TPDUs .become I-nodes and each entry
in the array "PDU_buffer" containing TPDUs becomes an
O-node. The resulting DFG is similar to the DFG of the Class

0 TP (see Figure 5.2), but more complicated.

In order to obtain the data flow functions of the
Class 2 TP we apply the block merging procedure of Sectionrn
5.4 to the blocks obtained by Aiéqrithm 5.1. petails of how
these blocks (data flow functions) are obtained are given
below, considering the blocks in a left-to-right order (the
resulting bloc; boundaries are shown with dashed lin;; in
Figure 8.3):
Encoding/ Decoding Block (page 1 in Figure 8.3): Step 3
combines the block*idSntaining "is_last_fragment"” of
N_DATA_req with the block containing the F-node "encode”.
The block ~af the internal D-nodes

"NSDU_to_be_sent.user_data_present", . "is_last_PDU",

e oy o s am

et . 3. ol a
PR TSR

SR gy s oA o bt e i o 7551 A PR
4 M“*{Mwﬁfﬁwﬁﬂ UM NP AL 1 v T R A ST e PR AR Y |

-~

: ©T 193 v J

. n "?DU)_bufft.er[CR]‘.full" thru ";’DU_buffef[ERR].full" aré
combined with the resulting block in Step 6. The resulting
block :is combined with the block containing the F-node
"decode” in Step 2 obtaining a single block for the ¢
encoding/ decoding data flow function.
Connection Referencing ;iock (page 2 in Figure 8.3): The
block containing "remote_ref"” is combined with the - block
containing "local_ref" in Step 2.
TCEP Block (page 2 in Figure 8.5): To the block containing
"TC_id.id" the block of the internal D-node "in_use™ is
added ip.Step 6: o
, User Data Block (page 2 in Figure B.3): Step 1 combines the
blocks conéaining "user_data" parameters of CR and CC and
"data" parameters of T_CONNECT_ind and T_CONNECT_conf,
qgspectively. The re5u1£ing two blocks are combined in Step
i, obtaining a single block répresenting the data exchange
during connection establishment.
Addressing Block (Page 3 in Figure 8.3): The block
containing "calling_addr" of CR (and some other O-nodes) is
combined with the block containing the D-node "local T addr"
in Step 2. Step 2 also combines the block containing
"called_addr" of CR (and some other O-nodes) with the block
containing "remote_T_addr". The resulting blocks are
combined in Step 2 to obtain a single block for transport
addressing. ‘
network Connection Establishment Block (page 3 in Figure

8.3): In Step 5, the blocks representing network addresses

S oretlih e
SRR, £ T
Rt

-

AR 24
e e iy SR RBA TR e TR

-,
B N Tt i o L I N R e S AP E L i Ll i RS e

194
‘(containing the D-nodes "local_N_addr” and "remote_N_addr")
and NCEP (containing "NC_id.id") and network Quality of
Service (containing "QNS") are combined obtaining a single
block representing network connection establishment. The
block of the iﬁternal D-node "this_side" 1is added to the
resulting block in Step 6.
QOS block (page 4 in Figure 8.3): The Steps 1 and 2 combine
the blocks containing ';QTS_ind“ parameter of CR and CC and
proposed_QTS paraméler of T_CONNECT_ind and T_CONNECT_conf. x
The resulting block 1is combined with the blocks containing
the D-nodes "claés", "options" gnd "max_PDU_size in Step 5.
The block of the interﬁal D-node "supports_class_0" is added
to the resulting block in Step 6.
Brror Block (page 4 in Figure B8.3): The block containing
"reject_cause” parameter of ERR does not combine with any
other block.
Disconnection Block (page 5 in Figure 8.3): The block
«;ontaining "disconnect_reason" parameter of Dﬁ is combined
with "TS_DISCONNECT_ reason" of T_DISCONNECT ind in Step 1.
Peer-to-user Data Transfer Block (page 6 in Fiqure 8.3): The
block containing "receive_buffer” is combined with the block
containing "TS_user_data"” and "is_last_fragment” parameters
of T DATA_ind in Step 4 obfaining a single block for data
transfer from the peer to the user.
User—to-peer Data Transfer Block (page 6 in Figure 8.3): The

block containing "send_ _buffer"” is combined with the block

containing "user_data"” and "end_of_TSDU" parameters of DT in

R 0 I C T IO AP TRV RN S A PSSl v O o e N
A s
@&

195
‘i ' Step 4. e -

‘ Flow Control Block (page 6 in Figure 8.3): The blocks
containing the‘D-ﬁodes "R_credit", “fR", "S_credit", and
rrs” ére combined in Step 5 since they repfesent ctedi%.and‘j
sequencing aspects of the flow control.

Expedited Data Transfer Block (page 7 in Figure<8.,3): Step 2
= combines the blocks containing "user_data" parameter of EDT

and ;Ts_user_data" of T EX DATA_ind. The blocks of the

internal D-nodes "EX_D_received" ~and ”Ex_D*;ent",.

respectively are combined to the resulting block in Step 6.
. . . T,

o

.

. N
ot ¢ RO S TR,

- 4 b amases G e 2O W& e i Rl "n“‘" *

s S TG b, . - ¥ . . . E .

. o
: _ 196 :
-* n_pATA.and N_DATA, ind. ENCODING/ DECODING ..
TS _user_duty S.user_data f
° ta.] ront '
P3 3 . : . o~
N 3

L
a={Pa0z..407,413,414, R101. 102 P103
> "I‘ *r
Yeobto o 502, 512, P106.109. } PLI 108,
PUnnai P601,,612, 117 P106. 109 P106, 10
P6vg. 40 m, pre P09
Pz s P81 84,
oKe P91 93, , (
PAL. A3,
re1,sJ
4 ! ‘
recelved.NSDU Tecelved _NSDU . n PDU_buffer DU butt iUl _bufter
| gata coprents user_data.presnt rececavad PhU R tull [1ull hi] ‘
i P01, 100, PID3,104, P0G, 10p
117 ns |
: T IIII | T F 1 1
’ : f |

N P10,

612 P106 PI0GN\ P rro6, \'V!
: P109 POY, .0, 109, ‘
P110 P13 P115
PUU. POU. RN PO 1s_last] I
full tull ful full {ulj
e f b b POU
buyffer o fod N sty Wl ¥
. . qug‘ ri1o P112 Pils P15 P1i6 l
L] - , 1
s i - N T
. P101,103,110,113 l
» P10l 104, i -
p : 106, !
L112,113,
FigE 118 _
44417 NSDU_to.be_sent NSDU_to_be_sent. NSDU_to_be_sent l
P2,PF0O2 ..04, gata length - datd.conienta, + deta orescent
PHOG.. 10, - .
PGOZ...04,
PGD6...10, .
PG12...19,
PK1
P2 P2

N.DALA_Teqy
ata content

N_DATA rey
is-Jast.
fragment

N_DATA_req.
data.lenpth
L

Figqure 8.3. A Partition of the Class 2 TP DFG

s

&

CONNECTION
REFERENCING

CR
source_ref

‘ source_rct)

1PS09 ..512

197

P40z,
P413,
P414

r
USER DATA
l (R T_CONNICI) I) 1_CUNNI
Ust s _gdoita re podita uyscr_dita

l
o
|

assign.
TC_1d.
id

P402,407, ‘
413,414
:E}:‘El ' Pald
' I rLi \
0 I] 1 l .
e t{0£ 409,502 $e& \
PLL,E2 P41y piar 606 P,
Pl PRI .03 PFO2 0y
PFob 10, Pcer ok,
] PCobt 10, 2613 46,0l
FNT, PN 2, P NE "
remote_ref local ret] 1n_use TL_IJIIJ Te.1d 1d l
P112 ‘
1Dt
- 406
;)AJ: \
EAr
dect _ref
- \ P314 ‘
PrOT, 102,117 T_CONNEC]
ind TOEP

P103,104,118

]

Pl116

dest_ref

E

P106, 108

DK.
dest _ref

P109

dest_ref

'

Pi12

Ak,
dest_rgf

CR l
source_ref

PJ01.102,117

P103,104,118

cc
ource_ref

P106,108

DR
source_ref

dest _ref.

Figure 8.3.

.
ource.ref,

P109 I

T_LONNE T I
conf T(ID

...{continued)...

PQ1 l

P3CL S0k 50T 691 40 bo% M
PRL I3 Y, 92 AL A2 B{,04 D3,

PEOL O%,fpé, /0,PCca 0

tes2 4 9
FolSCUN ‘
md TP

P414

,

PA3 l

_EX_DATAL
ynd 1CFP I

PR2

T_EX_D_RLARD
conf TCH+P

(2)

| T_DATA.1nd T.LONNFCT .
ind data

cc

PM2

yser data

data

Psli,
512

-CONNLC1 _co

l
l
1
|
|
|
|
I
l
l
|

. l

—

PL}

CR
user Jdata

|
|
|
'l

/

— — S——

198

ADDRESSING NETWORK CONNECTION ESTABLISHMENT

R
»‘AHM;W

N_CONNL T ane

‘\ from N dds
N_CONNICI an
- rroposed _(8S
[Z31) 183
Pa14 \
assxgn_\
local T, .
addr
deter_ ‘ Jsy1gn
mine T. l V- B
addr , \\ assipn.
N QNS
‘ I
PE1,PE2 314
}9414
Te_ ad NC_1d this_s)de

remote T _addr

local _T_addr

local _N_addr

b cmote N addr

117,118

CR
ecr addres

P101,102,117

CR
called addr

Lpr41 T_CONNLCT . and
from_ T addt

P101,102,103,104,

rigl,lo.,
103,104,

Piol
P17

deter

T_CONNLCT _a
to_T_addr

P101,10.,117

»

CR
calling.addr

P103, 164,118
’ Ci
calling_addr

104,
118

Pii}

Figure 8.3. ...{continued)... (3)

——"‘—”"”’7

PHI

JGONNI T _re
to N addr

!aq\)gnud hq

Mo_3d 3d QNS

Paiy
TR

PH1

FHi

N_tunNN CTore
NCLP 11

] N_COMICI_rc
rom_N_addr

N_LONNLC L
resp MEP

PFOZ,

03,Ph1 PN_ NG

N_DISCOINMCT]
req NMEP

P502 506,
PFOZ 0%, Ptoo
PhI,PNI,PRZ,PNo

LCONNLCT .Teq
L roposed QN

10

P2

.DATA_req
NCEP

P11

Prmm—" gmAS cm— oyma—

‘ 199

ERROR

ol \ .
[IETT S U !

CR CR
class_ind optigns_ind

(49
options_1ip

P414

T.LONNTCT _resp
' oposed _ontions

T_CONNECLoTey l
Topostd _optaont ‘
u P509,512
PMI,PM2 assign, assign. l
Q15 ax_PDU-
P509 512 s12e
P41 l
k“w
class. D las..2 l
]
rLl
PM., i } : l
Prl 414 511,512
511,
pP512 MY, .‘ .
P509,510 [
class options QTS max. PhU.s12e supports_class. 0 / .

/
/ e
/

invalid_PDu

P83,
P414 Paz,
ZCONNLCT _1nd 4 pPs0s
roposed _opti g P44
M1, PM .
cC. - assign)
opti1ons_1nd PM1, PML reject.
£509 cause
#T_CONNICT.1nd 5]‘ i
proposed.optioy
PSoe 512
_CONM Gl _con
m P101,102,117 '
P103,104,118 l Q
PL1
P1oi, 107,117

CR
c (i)

P103,104,118 ’

- r

Figure 8.3, ...(continued)... (4)

+ 200

DISCONNECTION
& * .
* " 9
; 4
/ . . %I N
. - .
s
. o
‘ , .
- . .
l“* :) * AT
128 A] [TS_QUAL_FAIL] [‘ TS_CONG] [TS_FAIL] T_U_NRM AJ UNKNOWN 133
’ PFO2 04, P601, P602,608, 603, 402
PD3,PFO6 .10, P607," PGO2 04 P609,
PG12 16 PD2, . D1
I P604 PGoS 10
. . P6LICP
. DR.d1sconne ON C
. Teason 4 -
Figure 8.3. ...(continued)... (5) L

.406

- . T o« PR R o+ B T N [N ¢
P I _— . [T Y . * ? B
" K *

3

: - 201 ,
' *

/\ ;

PEER"TO‘USE‘;R USER-TO-PEER DATA TRANSFER FLOW CONTROL)

L oo o E | !
-~ R

82,84 P82,84 | vod POl

C
I 15 user_dat ‘\\\ P511

T_DATA Teq 1

PR.2 R4 '
o fenough_
PR2
[:;] v B4 z ! Ol 1 l

3
1
[poi Po{ I
l : *f P84 I
\ TR - x
1CH(C |
append \ + I
’ P93 LI,
assign_ P44 l
g re PRzl \
F82,84 length \ Fr: PR
R4 84
PPz
P01 \ o1 ’I
J P84
‘\ . [\\ K. ;[
’ receive_buffer lenpth I max_PDOU_size send_buffery \\ S_credit TS R_crufit TR

l"Pl,\
rp. '

length.

get_
next _
ragment

P81

CR
red1t _valuc

F103,118

ce
redit value

ri2 ps) l

Ak Ah.expected,
credit_val Send_sequen [

PP1,
PQl PP2

. 9
DAJA_n T_DAIA_ind.: ' T
S.uscr.data last_fragmer ' usct _dnta

Figure 8.3, ...(continued)... (6)

A

€1

., .
T e s P T Gt v e v ek et e P - e

' 202
! ®
L EXPEDITED DATA TRANSFER
‘ » .
' ’ EDT _IX.DAIA. rog)
! user_duta TS.user _dats
" T
Y 9
&
- PA3 PT1
h PL1,P414 PL1,
. FA3 PUl PT P14,
. PB2
Iy e
. o
e * ’ |
EX_D.received LX_D.sent
1
1 /
=
.EX_DATA_in EDT.
(. . TS_user_dat user_dsta

Figure 8.3. ...(continued)...

3

.
I . N D R e Rk e At N
«

“

oA e

. 203 .) é?ﬁ:é

<8.5.Dependencies in the Class 2 TP

i m—— ——— o ho—
™ r)/

). s e . . 5 ’
The partition in Figure 8.3 gives rise to many data

and predicate dependenciés. There are 3 dependent blocks in
Figure 8.3, namely, addressing, user-to-peer’ data transfér
and flow control blocks. In éhe addressing block, the
D-nodes "remote’T_addr" —~and "local _T_addr" and the F-nodes
“agtermine_T_addr" and "determine_add_addr" are dependent D-
and F-nodes, respéctively. These dependencies are caused by
the D-nodes "local_N_addr" and "remote_N_addr". The
user—-to-peer data transfer block has the F-nodes
"get_next_fragment" and "length_available" as dependent
nodes, all caused by the D-node "max_PDU_size". Finally,
the flow control block has the dependent D-node "R _credit"

and F-node "enough_space" caused by the D-nodes

"max_PDU_size" and "receive_buffer".

The predicate dependencies for the different blocks
are listed below. For each given block the D~nodes of other
bloéks which are used in a predicate of at least one of the
ﬁormal form transitions of the block are listed.

Encoding/ Decoding: assigned NC, in_use, class, this_side,

local T addr, 1local N_addr, remote T_addr, remote_N_addr,
max_PDU_size, supports_class_0, receive_buffer, R-credit,
TR, TS, S_credit, options, EX D recieved.

Connection Referencing: this_side, options, QTS,

local T addr, local N_addr, remote_T_addr, remote_N_addr,

"

in_use, max_PDU_size, _ assigned_NC, °

« rapdeg
)

o

) : s
*, 'ﬁ&"fﬁ"ﬁg’rr - v g - e b 4T ARS i |, LT L e
e e e e B s b KR
T 3 i o X W W
r~

F 3

)

, 204
received_NSDU.data.length,
TCEP: received NSDU.data.length, |[this_side

User data: received NSDU.data.length, this_side, in_use,

class, local_T_addr, localLN_addr, remote_T_addr,
|
remote N _addr, max_PDU_size, options.

Addressing: received NSDU.data.length, in_use, . this_side,

QTS, options. . - \
Network Connection Establishmeht:/PDU buffer[CR].full.
¥ .

Q0S: in_use, received_NSDU.dataJgength, in_use, this_side,
remote_T addr, local_T_addr, local_N_addr, remote_N_addr.
Error: received_ﬁSDU.data.legtﬁ, in_use, this_side, class,
supports_class_0, receive“buffer, max_PDU_size, R_credit,
TR, S_credit, options, EX_D received. |

Disconnection: receivéd NSDU.data.length, in_use, this_sidef

class, assigned NC, supports_class_0, receive_buffer,
max_PDU_size, . R_credit, TR, S_credit, EXiD_received,

PDU_buffer[CR].full. ke

Peer-to-user data transfer: received_NSDU.data.length,,

in_use, supports_class_0, max_PDU size, class, R_credit, TR.

User-to-peer data tramsfer: max_PDU_size,

PDU_buffer[DT].full, class, S_credit.

Flow control:) receive_buffer, : hax_PDU_size,
received NSDU.data- length, in_use, supports.class_0,

send_buffer, PDU_buffer[DT].full.

Expedited data transfer: 'in_use, received_NSDU.data.length,

options. .7 N v
7 B

.
////The above predicate dependencies show that every data

EAR

N e e
-~ L gL s s L <
M

,
Y SR T N R T P R T PR RS SRR e~ - e T
(%
- ’ ’
' KoY
205:
! ~ N
w

]

flow function has a predicate dependency caused by a
variable in the encoding/ decoding block. This fact supports
the idea of.testing encoding/ decoding data flow function

v

before all the other blocks.

: The initializations in Figure 8.3 can be listed as

-

follows: . ,
I-node "credit_value" of CR and CC for "S_credit",
" Constant D-node 0 for. "TR", "TS", and "R_credit",
Constant D-node F(false) .for “Ex_D;receivEd”, and

"EX_D_sent".

.
s
o

"8.6.0verview of Test Désign for the Class 2 TP

In this section we give an overview of the application -
of the test design methodology of Chapter 6 to the Class 2
TP. The detailed design of the block tests is discussed in

the next section.

®

The first block to consider is the block of (encoding/
decoding) in Figure 8.3 (see Section 8.5). The tests are
similar to the Class 0 TP basic tests with the additional
tests Eor concatenation., The concatenation feature can be
tested in the data transfer phase by sending NSDUs
containing more than one TPDUs (DT with AK and EAK or EDT

with EAK and AK, etc.). An inherent restriction in these

(tests is_that the Responder has no way of forcing the IUT to '

send NSDUs containing concatenated PDUs.

4 : 206 |, -
o |

. | ' 8.6.1.Types of I-nodes

In the following we list the types of the I-nodes of .
the Class' 2 TP, as shown in Figure 8.3. Thisv list is used
“ for determining the input parameter variations as explained

in Section 6.5.5.

.I-nodes 25 enumeration types
rcredié}éalue,c1ass,options_ind of CR and CC, =
proposed_options of T_CONNECT req and T_pONNECT_respK
disconnect_reason of DR,

- TS_disconnect_sreason of T_DISCONNECT_req,

reject_reason of ERR, . o
credit_value,expected_send_sequence of AK,
- ‘ send_sequence of DT.

- D-nodes of enumeration type set by F-nodes of Type 3:
R_credit, TR, ©
§_credit, TS,

Also the array sizes of o .)

’ TC_id.id and NC_id.id are enumeration types. \-M//,/”“\

Parametric I-nodes are: -

from_N_addr of N_CONNECT_ind,
called_addr, calling_addr, peer_addr of CR and CC,
qﬁo_T_addr of T~ CONNECT_reg and T:hONNECT_resp:_

Reference value I-nodes:

Source_ref of CR.

Large integer I-nodes:

] TPDU_size_ind of CR and CC, ‘ . , -
v proposed_QTS of T_CONNECT req and T_CONNECT resp,
. .W-\

\ ’ - A
. - N . U . - N - . - o et e e A L ammgeo.
’ LT
L N I3 '

EFIEEEET e

~ PRI ORI e

#

s

= - S . - A T ampTy T
B e e I it daat Attt S S ‘ ‘ R

207

proposed QNS of N_CONNECT_ ind and N_CONNECT_conf.
I-nodes that are related with exchanged data:
user_data of CR and CC,
data of T_CONNECT req and T CONNECT resp,
user_data and end_of_TSDU of DT,
TS_user_data and is_last_fragment of T_DATA;req and
N_DATA_ind, - -
user_data of EDT,
TS_user_data of T_EX_DATA req.
End Point Identifiers:)
NCEP of N_CONNECT_ind, -)

TCEP of T_CONNECT_req._

8.7.Block Tests

In the tests for each block, parameter variations for
each I-node of the block are done 'and the data flow in each
block is considered as discussed in Chapter 6. We briefly

discuss the tests for each block of Figure 8.3.

8.7.1.Connection Establishment Tests \

Connection establishment tests can be divided into two
sets of tests. The first set combines parameter variations
for the blocks of "connection referencing”, "TCEP",

"user_data", "addressing” and "network connection

Loty d
W

v 208

establishment”. éarameter variations of these blocks are
done similarly as in the Class 0 tests (see Chapter 7). The
"user data" block which does not exist in the Class 0 TP can
be tested by varying the I—nodes.and verifying the correct
data delivery from the 0-nodes using a subsequent transport

connection over the sape network connection.

The second set of connection establishment tests toes

. ‘ parameter variations for the "QOS" block. The "class" and
"options" parameters of CR, cc, f_CONNECT_req and

T_CONNECT resp are enumerated, and the "QTS" and "PDU_size"

paramete?s of CR, CC, T_CONNECT_req and T_CONNECT_resp are

varied (possibly trying boundary and middle values of their

domains). The tests 1in this set are adaptive since the QOS

parameters of the implementation must be determined.

Connection establishment tests are done using the
subtours numbered 11, 13, 21, and 25 for peer initiated
connection establishment and 7 for user initiated connection

. establishment.

8.7.2.Call Refusal Tests

The disconnection block in Figure B.3 can be divided
into subblocks as discussed in Section 6.4. The subblocks
uthat represent call refusal by the user, the peer and the
‘protocol are tested similarly as in the Class 0 TP. The

protocol call refusal tests require that the QOS parameters.

208

¢

of the implementation are determined by the QOS tests.

The tests for call refusal by the user and the peer
entity involve enumerations of the "TS_disconnect_reason" of
T_DISCONNECT req and the "disconnect_reason" of DR,

respectively.

The subblock of the disconnection block which
represents connection freeing can be tested with connection
establishment tests. This may be done by simply observing
the values assiﬁned to the O-nodes "disconnect_reason" and
"Tsﬂdisconnect_geason" by the type 2 F-nodes
“assign”disconnect_réason" : l and

"assign_TS_disconnect_reason", respectively,

Call refusal tests can be. done using the subtours 16,

18, 19, 1 thru 4, and 9.

8.7.3.Expedited Data Transfer Tests -

The expedited data transfer block in Figure 8.3 is an
independent block and its normal form transitions occur in a
self-loop (except for the iAitializations) of the major
state "open". This block is involved in the predicate
dependencies from the "TCEP", "Q0S" and "encoding/ decoding”
blocks. Ignoring the predicate dependency on the encoding/

decoding function, we describe in the following a method for

satisfying the expressions'on the internal D-nodes. This

210

method models the normal form transitions of the block as a
pure. FSM from which test sequences may be obtained, as

M

described in Chapter 2.

The predicates of the expedited data transfer block
contain three internal D-nodes "in_use", "EX_D received”,
"EX_D_sent". By inspection of Figure 8.3, we see that
"in_u;e" is always "true” in the major state "open", thereby
satisfying the expressions containing "in_use” in the normal
form transitions of the block. The other internal D-nodes
belong to the .block, thus they are considered as state
\;ariables. Predicates of the ‘block contain expressions on
fhe D-node "options" which is set to a certain value before
the major state becomes "open". Once "options" is set to
"expedited_data", all the normal form transtions of the
block can be modelled as a FSM which defines the order of
the normal form transitions. This FSM 1is shown in Figure‘
8.4. The transitions in Figure 8.4 are labelled with the
labels of the corresponding normal form transitions. The
initial state of the machine in Figure 8.4 is

EX D received=F, EX D_sent=F, NC_state=open, state=open
since the initializing normal form transitions P414 and PL1
of the block initialize the internal D-nodes to these

values.

]

Subtours of Figure 8.4, as listed in Table 8.4, give
the order of the normal form transitions. Parameter

variations of the 1I-nodes and encoding/ decoding should be

“"W

PRI,

oehesm -

211

considered for obtaining complete tests for

data transfer block.

Expedited data tests can be done using

subtours numbered 11, 13, 21, or 25.

the expedited

/
any of e

/

¢
/

.) . 212

any sequence of transitions which establish
connection with expedited_data in options

l

state=open
C_state=open PB2
X D received= ’

EX D _sent=F

PA3

PT1

PB2
PUl

state=open
NC_state=open
EX D_received=T
EX D sent=F

PB2

PT1

wf

state=open
NC_state=open
EX D received=F
EX D sent=T

state=open
NC_state=open
EX D_received=T
-EX_D_sent=T

Figure B8.4.A State Diagram for Expedited Data TransfeXx

N
<

4

B e T P

-~y

213 ' i

*

PA3 PB2 PU1
* *

PA3 PB2 PT1 PB2 PUl

PA3 PT1 PUl PB2
*

PA3 PT1 PUl PA3 PB2 PUl
PT1 PB2 w

PT1 PA3 PUl PB2 J
*

PT1 PA3 PB2 PUl
* *

PT1 PA3 PB2 PT1 PUl PB2

Table 8.4.Test Sequences for Expedited Data Transfer

8.7.4.Data Transfer Tests

In this section we discuss the data transfer tests for
the Class 2 TP. Data transfer contains three data flow
functions, the user-to-peer and peer-to-user data transfer,
and the flow control Dblocks of Figure 8.3. These blocks
contain various E-nodés of all ‘types. Test design
considerations related with F-nodes were discussed in
Section 6.4. Some considerations on arithmetic type 3

F-nodes are given below.

The parameter variations of the above three blocks of
normal data transfer can be combined since their normal form

transitions occur in the same self-loop.

Since "R-credit" in the flow control block is

internally assigne8, there is no dirgct way of enumerating

TV

214 (

its values, but the values decided by the implementation can.

be observed in AK PDUs. Therefore a test sequence can be
selected s0 that the number of unacknowledged data packets
sent by the Tester is equal to the received credit value, At
the same time, variations of the I-nodes of the peer-to-user
data trangfer block can be done, also testing the type 3

F-node which decrements R_credit. R_credit is a dependent

~D-node (see Section B.5), 1i.e., its value depends on the

negotiated max_PDU_size and the receive_buffer. Thus it is
important to repeat the tests for peer-to-user data transfer
for a number wof different max_PDU_size values which ‘are

tested in the QOS tests.

"TR"” in the flow control block is also internally

assigned and the value receive@ 1in AK PDU is used as the

-seguence number of the next DT to be sent by the Tester.

Verification of correct data delivery from the peer to
the user (and also from wuser to peer) can be done with a
mechanism similar to the one used in the data transfer tegts
for the Class 0 TP. This will also be the test for the
F-nodes called "append" and "get_next_fragment"™. The latter
takes the length parameter from the user interface function

TS.user_ready, as discussed in Section 8.1l.

The D-node "S-credit” of the flow control block can be
enumerated (probably not exhaustively) since it can be
initialized by either "credit_valﬁe" of CR or CC (depending

on the initiating side of the transport connection) and

R IR P

215

Y

‘modified later in the data transfer phase by the

"credbt_value" of AK. After it is set to a certain value,
the Responder part can createqéata flow in order to test the
correct handling of S credit, 1i.e., the F-node of type 3

assigning S-credit.

"TS" of the flow control block can'easily be observed
from the data, sent by the Responder, which 1is supposed to
be delivered to the Tester in DT PDUs.

The F-nodes "get _next_fragment"” and "length_available”
in the block of. user-to-peer data transf;i are dependent
F-nodes. The value of the negotiated max_PDU_size determines
the maximum lendth of the DT PDUs to be sent, thus data

transfer tests should be repeated in consecutive connections’

with different max_PDU _size values. L

The F-node "is_end_of _TSDU" of the two data transfer
blocks is tested by varying the parameters of DT.end_of TSDU

and T_DATA_req.is_last_fragment, respectively.

Since the normal form transitions of the data transfer’
blocks occur in the same subtour as the transitions of the
expedited data transfer block, they should also be tested

simultaneously.

Data transfer blocks can be tested with one of the

P

subtours 11, 13, 21, or 25.

a "

LR N AP S

7

216

8.7.5.Tests for Error -Cases

The 1last uncovered block, called error block, can
easily be tested by the normal form transitions which assign
the O-node '"reject_cause" of ERR. The error cases are
divided into two parts, the errors during connection
establishment and the errors during data transfer. These two

parts can be tested in two separate tests.

The error block is tested using the subtours 6, 8, 14,

15, 17, 22, and 23.

8.8.Multiple Connection Tests

Tests for enumerating array sizes for the Class 2 TP
should be different from the multiple connection tests of
the Class 0O TP because of the existence of two D-nodes for

L]

array sizes.

Exhaustive enumerations of these two variables should
be done in both of th: following ways:
i) By fixing "NC_id.id", tests are designed to enumerate
"TC_id.id". The number of tests are determined from the

number of subtours of the block containing "TC_id.id".

These tests are performed to determine the number of
transport connections that can be multiplexed over a single
network connection. Also, data ‘transfer blocks should be

tested, in order to observe possible reductions in the

«
e

217
| :
number of credits given to the parallel transport

connections.

The tests in this group should test duplicate
connection cases as specified in the specification. The
corresponding data flow 1is found from one of the subblocks
of the disconnection block (see Figure 8.3).

ii) "NC_id,id" is enumerated simultaneously as "rC_id.id" is
enumerated. These tests are done to determine the number of
network connectiéns that the implementation supports under
ﬁiatiple transport connections. The data transfer block,
should also be tested under multiple network and transport
connections, ‘ . .

Note that the third enumeration possibility which

establishes multipie network connections with a single

transport connection each, corresponds to the multiplé

connection tests for the Class 0 TP, described in Chapter 7.

Multiple <connection tests can be done wusing the
subtours of the connection establishment tests of Section

8.7.1..

[

=

. G < s “ulopgd Rt DAY T W
. o e hak s AR BN S %ﬁ@" G % 7
e bﬂ:‘iﬁwﬁwwﬁr g‘w*wm%m‘}mmygwﬁgnw P L T Gn S A L R ‘*?‘5&?’%’*‘? il ,ﬂf@?ﬂe_, Frany AT TR ik e . i Yan
= »" e a” Ak R UL - - 7 - -

-

218

. » - 8.9.Some Observations on the Class 2 TP Test Design ‘ '
. .

The test design® discussed above gives rise to the

following observations:

(a) From the Control Graph of a complex protocol, a
considerably ‘large number of shbtours may be obtained. .
'Considering only the subtours that represent single control
functions, i.e., discarding those that are concatenations of
more than.one control function, it is possible to‘decrease
the number of tests and yet cover alla the normal form
transitions,

(b) If we assume that any Class 2 fP impIementation would
also support the Class 0 TP, it 1is possible to apbly the
Class O tests (see Chapter 7) to the Clasg 2 TP
implementations (slight modifications in the user iﬁterface
‘may be necessary). This further decreases the number of
additional subtours necessary. For example, the subtours 5,
10, 12, 20, and 24 can be covered by the Class 0 tests.

(c) The form in which the encoding/ decoding of PDUs is
described in the specification makes it difficult to apply
Algorithm 5.1 to the DFG since only a single wlarge block
would be generated. The problem can be solved by
considering some of the D-nodes as I- or O-nodes, as
discussed in Section 8.3. The test designer can easily
identify these ‘nodes by determining the D-nodes that

represent the PDUs in the DFG.

TRt

i ’“W’Wiﬁ%*ﬂﬂ&%@%%w%m>m@%%w._,v,m Dt g e A AN T S e 0 RS ol

219

. 9.Conglusions

We have developed a methodology for designing tests of
communication protocols, The methodology i;. based on
decomposing the pfotbcol into i;s control and data flow
functions. These functions can be derived from a ‘formal

specification of the protocol which 1is assumed to be

available. In the following paragraphs‘\jj‘jjfggriée the
results of each chapter. '

In Chapter 1, the problem of protocol testing is
introduced. The work in several related areas 1is surveyed
including an introduction to the test architecture proposed
for the testiﬁg of protocol implementations for conformance
to the standard natural 1language specifications. We have
adapted ideas from various fields: finite state machine and
microprocessor test technigues, control system verification,
symbolic execution and specification based software

validation. : A\

Chapters 2 and 3 apply finit; state machin% test
techniques to the protocols to obtain test sequencééc The
three major approaches (transition tours, characterizgtion
and checking seguences) are used to generate kest seguences
for protocols modelled as inébmpletely specified finite
state machines. A synchronization problem which may arise
in the application of some of these test sequences with the

architecture of Chapter 1 1is defined, Avoiding the
' 3

synchronization problem may be impossible for certain

~

220

protocols which are defined .in such a way that they have
intrinsic synchronizétion problems. In Chapter 3, we modify
the basic algorithms thatwgenerate tests sequences for the
transition tour and characterization sequences to obtain

only synchronizable segquences.

In order to account for parameters of the “protocol
primitives and the effects of the protocol variables other
than the major state variable, a different ‘test de#ign
approach is proposed. Chapter 4 introduces the first step
of the test design: normal form transitions. From the
formal specification of the protocol, a simpler
specification is obtained by applying syntactic
transformations based on symbolic execution. Modules of the
protocol are combined by removing any inter module
communication. The resulting transitions are called normal

&

form transitions.

Chapter 5 models various asﬁects of normal form
transitions by graphs: the changes in the major state
variable are modelled by a control graph, and the efher
aspects by a data flow graph. The transition tours of the
control graph are divided iinto several subtours, each
representing a sequence of control functions of the
protocel. An algorithm to partition the data flow graph
into disjoint blocks is developed. The resulting blocks are
partly combined by & merging procedure whigh requires

inﬁeraction with the test designer. The blocks obtained by

I

221

the merging ' procedure are defined to be the data flow
functions of the protocol. Tﬁe flow graphs (control and
gata flow) a7e used to validate the protocol design.
Syntactic and semantic errors in a specification can also be

detected using these gréphs.

Using the céntrol and data flow functions, Chapter 6
develops a test design methodology. The various steps of the
test design are identified, and test sequence selection
’guidelines are detailed for each step. Fault models for

functions of the protocol ‘that are not formally specified

can be used for test sequence selection. Tests for data
flow functions are based on parameter variations of the
input p;imitives of the block. The structure of the block,
its data and predicate dependencies, the types of the input
parameters and the subtours have to be considered 1in the

tests. The test design for multiple connection and

unexpected stimulations are also based on the flow graphs.

Chapters 7 and B apply the test design methodology to

the Transport protocols Class 0 and Class 2, respectively.

9.1.Future Work

None of the steps of the test design methodology
presented in Chapters 4, 5, and 6 was implemented.
Applications to the two protocols were developed manually.

However, it 1is desirable to generate tests for protocols

222

automatically.

We divide the future work into three categories:
implementations, theoretical investigations, and
applications. Considering first implementation, different
steps of the test design methodology developed in this
thesis could be automated:

- To obtain normal form transitions from any Subgroup B FDT
specification.

- To obtain the flow graphs automatically from the normal
form transitions, Sometimes, user interaction may be
necessary, as in the case of merging the blocks.

- A graphics package could be developed for displaying and
manipulating the data flow graph.)

- After obtaining the data and predicate dependencies, test
seguences could be automatically derived. Tesi sequences
could be expressed using a test specification language
(Subgroup B FDT, for example).

- Obtaining test programs (one for the Tester and one for
the Responder) from the test specification will be the last

step of automatic test generation for protocols.

Theoretical investigations would be wuseful in the
following areas, which are not covered in this thesis:
- Complexity analysis of the method, in particular the
complexities of the algorithms given in Chapter 4 and 5,
i.e., the algorithm that partitions a DFG, and the algorithm

that combines the modules.

TN

223

- Further work on the use of the flow graphs in protocol
design validation.

- An expert system which 1is capable of deducing the
considerations introduced in Chapter 6 from the control and
data flow graphs would be a breakthrough for the automation

of the protocol test design process.

Concerning applications of the test design methodology
developed in this thesis; we may distinguish the following
areas:

- Sttaightforward application of the methodology, for
instahce to other classes of the IS0/ CC&TT transport
protocol, 8% protocols of link, network and session layers.

- Application in areas where the methodology may have to be
adjusted in order to take into account certain
characteristics of the system specification which were not
encountered in the areas of application considergd in this
thesis. For instance, the testing .of application 1layer
protocols may require a methodology with certain
modification. It could also be investigated whether the
developed methodologqy 1is applicable 1in other areas of
software development, including the testing of executable

specifications. g

224

REFERENCES !

-4

[Ansart 81] J.P. Ansart, "Test and Certification of
Standardized Protocols™, 1in Protocol Testing-
Towards Proof? D.Rayner and R.W.S. Hale (eds.),
Vol.2, NPL, 1981, pp.119-126.

[Ansart B1lb] J.P. Ansart,"Tools for the Certification of
Standardized Protocols: Cerbere and Genepi”", 1in
Protocol Testing- Towards Proof? D.Rayner and

' R.W.S. Hale (eds.), Vol.2, NPL, 1981, pp.127-130,

[BoCeMaSa 83] G.v. Bochmann, E. Cerny, M. Maksud, B.
Sarikaya, "Testing Transport Protocol
Implementations™, Proc. of CIPS'83, May 1983,

[BoCeLa 81] G.v. Bochmann, E, Cerny, C. Lacaille, "Formal
Specification of a Transport Service", document
WASH 9 of 1SO/TC97/SC16/WGl ad hoc group on FDT,
September 1981.

[Bochmann 83] G.v. Bochmann, "Concepts for Distributed System
Design", Springer-Verlag, 1983. .

[CeBo B3] E. Cerny, G.v. Bochmann,"An Experimental Protocol
Implementation Testing System"”, Report prepared
for DOC of Canada, 1983.

[CeBoMaLeSeSa 84] E. Cerny, G.v. Bochmann, M. Maksud, A.
Leveille, J.M. Serre, B. Sarikaya, "Experiments in
Testing Communication Protocol Implementations”,
Proc. of 14.th Symp. on Fault Tolerant Comp.,
Orlando, June 1984.

[ChDa 83] A. Champeville, K. Daher, "Systeme de Generation
Automatigue de Sequences de Test", MSc. Thesis,
Univ. of Bordeaux I, June 19B83.

[ChLeLeRi 81] H. Chaigne, M. Leport, M. Lety, O. Ridoux, "Un
Generateur de Test pour Systemes Modelises par
Automates d'Etats Finis", BIGRE of IRISA,
pp.19-24, December 1981.

[Chow 78] T.S. Chow, "Testing Designs Modelled by
Finite-State Machines", IEEE Trans. on SE, 4-3,
1978.

[CIRi B1] L.A. Clarke, D.J. Richardson, "Symbolic Evaluation
Methods for Program Analysis”, in Program Flow
Analysis by §.S. Muchnick, N.,D. Jones(Eds.),
Prentice Hall, 1981. ’

[Even 79} S. Even, "Graph Algorithms", Computer Science
Press, 1879,

[FDT 84] "A FDT based onh an Extended State Transition
Model”™, Subgroup B of ISO TC 97/SCl16/WGl ad hoc
group on FDT, March 1984,

[Gerber 83] G. Gerber, "Une Methode d'Implantation
Automatisee de Systemes Specifies Formellement",
M.Sc. Thesis, Univ. de Montreal, 1983.

[Gill 62] A. Gill, "Introduction- to the Theory of Finite
State Machines", McGraw Hill, 1962.

[Gonenc 70] G. Gonenc, "A Method for the Design of Fault

s

\ 225

Detection Experiments", IEEE Trans. on Computers,
19-6, 1970.

[Gu1tton 84] P. Guitton, "Description, Validation et Test de
Conformite de Protocole de Communication” PhD
Thesis (3eme Cycle), Univ. of Bordeaux I, January

. 1984.

[Henley 81) RFL Henley(Ed.), "Implementation Assessment of
Transport and Network Services: The Test Responder

) Specification”, NPL Report DNACS 46,81, July 1981.

[HeRa 81] RFL Henley, D. Rayner, "Implementation Assessment
of Transport and Network Services: An Informal
Description of Tests for Public Comment”, NPL
Report DNACS TM 5,81, July 1981.

[Howden 80)] W.E. Howden, "Functional Program Testing", IEEE

* Trans. on SE, Vol., SE-6, No.2, March 1980.

[INWG 83] Several papers 1in the proceedings of 3.Int.
Workshop on Protocol Spec., Testing and
Verification, North-Holland, 1983.

[1SO 82) G.v. Bochmann, "Examples of Transport Protocol
Specifications”, 1SO TCS7/SC16/WGl Subgroup B,
April 1982.

[1sO 82b] G.v. Bochmann, "Example of a Transport Protocol
Specification™, ISO TC97/8Cl6/WGl Subgroup B, Nowv.
1982 (Doc. de Travail No.1l46, Univ. of Montreal).

[JaBo 83) C. Jard, G.v. Bochmann, "An Approach to Testing
Specifications”, Proc. of the ACM SIGSOFT/SIGPLAN
Software Eng. Symposium on High-Level Debugging,

, ’ March 1983, pp.53-59.

[king 76] J.C. King, "Symbolic Execution and Program
Testing", CACM Vol.10, No.4, 1976.

[Kohavi 78] z. Kohavi, ™"Switching and Finite Automata
Theory", McGraw Hill, 1878,

\[Kowalski 79] R. [Kowalski, "Logic for Problem Solving”

Elsevier North Holland, New. York, 1979.

[Leveille 84] A. Leveille, T"Implantation et Certification
d'un Protocole de Transport", M.Sc. Thesis, Univ.
of Montreal, 1984. (to appear)

[LiMc 83] R.J. Linn, W.H. McCoy, "Procducing Tests for
Implementations of OSI Protocols™, in INWG 83,

[LiNa 83] R.J. Linn, S§.J. Nightingale, "Some Experience with
Testing Tools for OSI Protocol Implementations"”,
in INWG 83.

[Maksud 83] M. Maksud, "Un Systeme de Test de Protocoles de
Communications", M.Sc. Thesis, Univ. de Montreal,
1983.

[NaTs 81] S. Naito, M. Tsunoyama, - "Fault Detection for
Sequential Machines by Transition Tours", Proc. of
FTCS, pp.238-243, 1981.

[Piatkowski 80] T.F. Piatkowski, "On the Feasibility of
Validating and Testing ADCCP Implementations", NBS
Trends and Applications, May 1980.

[Prather 83] R.E. Prather, "Theory.of Program Testing - An
Overview", The Bell System Technical Journal, Vol.
62, No. 10, pp. 3073-3105, December 1983. '

226

[PrskuUr 83} R.L. Probert, D.R. Skuce, H. Ural,
."Specification of Representative Test Cases Using
Logic Programming”, Proc. of 16th Hawaii Int.
Conf. on System Sciences, 19%0-196, 1983,

[PrUr 83) R.L. Probert, H. Ural, "High Level Testing and
Example-Directed Development of Software™, SRRG
Report, Dept. of CS, Univ. of Ottawa, 1983,

[Rayner 81] D. Rayner (Ed.), "Protocol Implementation
Assessment: Philosophy and Architecture”, NPL
Report DNACS 44/81, April 1881.

[Rayner 82] D. Rayner, "A System f{for Testing Protocol
Implementations”, Computer Networks 6,6, Dec.
1982.

[saBo 82] B. Sarikaya, G.v. Bochmann, "Some Experience with

Test Seguence Generation for Protocols", Proc. 2nd

Int. Workshop on Protocel Specification, Testing

and Verification, North-Hollang, 1882, ' pp.

555-567.

[saBo 83) B. Sarikaya, G.v. Bochmann, "Synchronization
Issues in Protocol Testing", Proc. of SIGCOMM' 83,
March 1983, pp. 121-128.

[saBq 84]) B. Sarikaya, G.v. Bochmann, "Synchronization and

3 Specification Issues 1in Protocol Testing", To
appear in IEEE Trans. on Communications.

[Sarikaya B84] B. Sarikaya, "Normal Form Transitions of Class
2 Transport Protocol", Doc. de Travail, Computer
Science Dept., Univ. of Montreal, 1984.

[Sarikaya B84b] B. Sarikaya, "Manuel d'Utilisation du
Logiciel Servant a Generer des Sequences de
Tests", Doc. de Travail, Computer Science Dept.,
Univ. of Montreal, 1984.

[Serre 84] J.M. Serre, "Une Implantation de Protocole de
Transport Classes 0 et 2", M.Sc. Thesis, Univ. of
Montreal, 1984. (to appear)

[Tarjan 72] R. Tarjan, "Depth-First Search and Linear Graph
Algorithms”, SIAM J. Computing, Vol.l, No.2, 1972,

[Thab 78] S.M. Thatte, J.A. Abraham, "A Methodology ! for
Functional Level Testing of Microprocéssbrs”,

’ Proc. 8th FTCS pp.S0-95, 1978. e

[ThAb 79] S.M. Thatte, J.A. Abraham, "Test Generatilpn for
General Microprocessor Architectures”, Prog. 9th
FTCS, pp.203-210, 1979. -

[ThAb 79b] S.M. Thatte, J.A. Abraham, "User Testing of
Microprocessors”™, Proc. of COMPCON Spring 1979,
pp.108-114,

[vaDi 78] R. Valette, M, Diaz, "Top-Down Formal
Specification and Verification of Parallel Control
Systems", Digital Processes, 4, 181-199, 1978.

[UrPr 83] H. Ural, R.L. Probert, "User-guided Test Sequence
Generation™, in INWG 83.

[Zimmermann 80] H. Zimmermann, "OSI Reference Model- The ISO
Model of Architecture for Open Systems
Interconnection”, IEEE Trans. on Communication,
Vol. Com-28, No.4, April 1980. '

227

APPENDIX A

EXTRACT FROM CLASS 2 TP SPECIFICATION

const
... (*see [ISO 82b]*)

type
... (*see [ISO B2b}l*)

TPDU_and_control_information = record

-

CR(credit value:credit_type;
dest_ref,source_ref:reference_type;
user data string_of_octets;
peer__ “address:T address _type;

QTS Tnd:quality of TS type;

class ind:class type, v

optlons ind: opt1on type:;

calling_addr, called addr:
add1t1onal_address_information;

TPDU_size *ind:PDU_size_type) ;

end;

channel PDU_and_control(protocol,mapping);

by protocol,mapping:
forward(PDU:TPDU_and_control_information);

L

end PDU_and_control;

module Mapping(ATP:array[TC_id_type] of
PDU_and_control (mapping); .
NS:array[NC_id type] of NCEP prlmltlves(user))

function implied_PDU length(51ze. optional PDU_size_type):
PDU_size_type; .

begin if size = undefined
then implied PDU_length := 128
else implied_PDU_length := size'end;

procedure close_and_clear_buffers (TC_id : TC_id_type);
begin with TC[TC_id] do begin -7
in _use := false;
ATP [TC_id]. 1dle-
for kind := CR to ERR do PDU_buffer [kind]. full := false;

end end;

| pin

e

228

when ATP[TCEP id]).forward

begin with TCTTCEP id] do begin

PDU_buffer [PDU. kind].full := true;

PDU buffer [PDU.kind].PDU := PDU;

with PDU_buffer [PDU. kind].PDU do begin
case kind of

DR, DC, DT, EDT, EAK, ERR:;
end;
end end;

when ATP[TCEP id].implicit_ termination
begin with TCTTCEP id] do begin
if assigned NC = undefined
then (*wait for NC state; no actionx)
else NS [assigned NC].N DI SCONNECT _regq;
close_and_clear _buffers(TCEP_id);
end; end

any NC_id : NC_id tyge do with NC [NC_id] do
provided received NSDU.data.length <> 0
and not ((/PDU_kind(received NSDU.data) /) = DT
and supports_class_0 and ATP[corresponding_TC_id].
ready for receiving)
var received PDU : TPDU _type;
TC id : TC id _type;
function determine_TC(NC_id : NC_id_type; ref : reference_type):
TC id type;
begin (/ determine_TC(NC_id, ref) =
if exists TC id such that with TC[TC_id] holds
in_use and assigned NC = NC_id and local_ref = ref
then TC_ id
else TC_id' such that not TC[TC_id].in_use;
i.e., find the TC associated with the reference
"ref" over the NC
or assign some TC_id not inuse;
if "ref" = 0 then such a new TC is assigned. /)

i

begin
(/decode(received_NSDU, received_PDU/)
with received_PDU “do beg1n
TC id:=determine _TC(NC_id,dest_ref);
with TC[TC_id] do
case kind of
CR:if not in_use then begin
remote_ref:=source_ref;
local_ref:=...;
if dest_ref <> 0
then ... (*errorx)
else if (/exists TC id' <> TC-id
such that with TCTTC_id'] holds
in_use and assigned NC = NC_id
and remote ref = source ref;
i.e., this is a duplicated CR/)
then ATP[TC_id'].close_indication(131)

229

else if determine_PDU_length(received PDU) >
implied PDU_length(TPDU_size_ind)
or class_ind = class0 and this s1de=call1ng
then ATP]TC_id].error_indication(...)
else if (/not able to provide service
or destination address unknown/)

~ then begin
PDU_buffer[DR]}.full := true; '
with PDU_buffer[DR]}.PDU do begin
kind:=DR;

disconnect_reason:=...;
is_last_PDU:=true;
end;
end;
else begin
TC_id.T_addr:=determine_T_ addr (-
NC_id.local_N_addr,called_addr);
TC_ id.id:=...;
remote T addr:=determine T _addr (
NC[NC_id].remote N addr,calling_addr);
received_PDU.peer_address:=remoteé_T_addr;
QTS:=...:;
“received_PDU.QTS_ind:=QTS; .
remote ref:=source ref;
a551gned NC:=NC id;
ATP[TC_id]. forward(recelved PDU);
end;

module ATP_type(TS:TCEP_primitives(provider);.
Map:PDU_and_control pr1m1t1ves(protocol))
(*definition of interface predicates®.)
Map.ready for_receiving :=
enough _ space(receive _buffer, max_PDU_size -
(/ DT header length /));

when Map.forward (PDU) provided PDU.kind = CR
from closed to open in_progress_called
begln
in_use := true;
options := option_ind;
TR := 0;
TS := 0;
S_credit := credit_value;
EX D sent := false;
EX D recexved := false;
TS.T_CONNECT_ingd (local _T_addr, PDU.peer_address,
options, PDU.QTS_1nd, PDU.user_data);
end;

when TS.T_DISCONNECT_ req
from open_in_progress_called

230

to closed

begin

end;

with PDU do begin
kind:=DR;
is_last_PDU := true; .
if class = class0 then
disconnect_reason := (/1 or 2/);
else .
disconnect_reason:=128; -
end;
Map.forward(PDU);

/

P

57O AT

s

']

APPEND1X A

[- Yo o w he v s [P A R st

231

&

APPENDIX B

NORMAL FORM TRANSITIONS FOR THE TRANSITIONS DEFINED 1IN -

P40l:any NC id : NC_id_type, TC_id : TC_id type;

provided NC[NC_id].received_NSDU.data.length <> 0
and NC[NC_id].received_PDU.kind = CR
and not TC[TC_id].in_use and ATP[TC_id].state = closed
and NC[NC_id].received PDU.dest ref <> 0

begin
(/decode (NC[NC_id].received_NSDU,NC[NC_id].received_PDU)/);
TC_id:=determine_TC(NC_id,NC[NC_1d].received_PDU.dest_ref);
TCITC_id].remote_ref:=NC[NC_id).received PDU.source ref;
TC[TC_id].local_ref:= ...;
(/error/);

end;

P402:any NC_id:NC_id_type;TC_id,TC_ id':TC_id_type;
provided NC[NC_id].received NSDU.data.length <> 0
and NC[NC_idT.received_PDU.kind = CR
and not TC[TC_id].in_use
and NC[NC_id].received_PDU.dest_ref <> 0
and (/exists TC_id' <> TC_id such that TC[TC_id'].in_use
and TC[TC_id'].assigned_NC = NC_id and
TC[TC_id'T.remote_ref=NC[NC_id].received_PDU.source_ref/)
and ATP[TC_id'].state = open_in_progress_calling
begin
(/decode(NC[NC_id].received_NSDU,NC[NC_id].received_PDU)/);
TC_id:=determine_TC(NC_id,NC[NC_id].received_PDU.dest_ref);
TC[TC_id].remote ref:=NC[NC_id].received PDU.source ref;
TC[TC_id].local_ref:= ...;
TS[TC_id'].T_DISCONNECT_ ind(131,...);
ATP[TC_id'].state:=closed;
end;

P403:any NC_id:NC_id_type;TC_id,TC_id':TC_id_type
provided NC[NC_idT.received NSDU.data.length <> 0
and NC[NC_id].received_PDU.kind = CR and not TC[TC_id].in_use
and NC[NC_id].received PDU.dest_ref = 0
and (/exists TC_id' <> TC_id such that TC[TC_id'].in_use
and TC[TC_id'].assigned_NC = NC_id and
TC[TC_id].remote_ref=NC[NC_id].received_PDU.source_ref/)
and ATP[TC_1id'].state = open_in_progress _called
begin

... Same as above ... ;

end;
{

v Trudind 1

[

BN P I L TR0 e r o - ctme rdr e . ety a4t N e

232

. P404:any NC_id:NC_id_type,TC_id,TC_id':TC_id_type;
(l provided ... same as above except”
ATP[TC_id'].state=open

begin

...5ame as above...

end;

P405:any NC_id:NC_id_type,TC_id,TC_id':TC_id_type;
provided ... same as above except
ATP[TC_id'].state=wait_before_closing

begin
...S5ame as above...
end;

P406:any NC_id:NC_id_type,TC_id,TC_id':TC_id_type;

provided ... same as above except
ATP[TC_id'].state=closing

begin

..+Same as above...

end;

P407:any NC id:NC id _type,TC_id_type;

provided NCINC_idJ.received_NSDU.data.length <> 0
and NC[NC_idJ.received PDU.kind=CR
and not TC[TC_id].in_use

' and NC[NC_id].received PDU.dest _ref=0
and not (/exists TC_id"<>TC_id such that TC[TC_id'].in_use
and TC{TC_id'].assigned_NC=NC_id and TC[TC_id'T.
remote_ref=NC[NC_id].received PDU.source ref/)

and (determine PDU length(NC[NC id].received_PDU) >
implied_PDU_length(NC[NC_id].received_PDU.TPDU_size_ind))
or NC[NC_id].received PDU.class_ind = class_0
and NC[NC_id].this_side = calling)
and ATP[TC_id].state=closed

begin
(/decode(NC[NC_id].received_NSDU,NC[NC_id].received_PDU)/};
TC id:=determine _TC(NC_id, NC[NC 1d] recelved PDU.dest _ref);
TCTTC_id].remote ref: =NC[NC id].received_PDU.source_ref;
TC[TC_id].local ref:
ATP[TC_id).state: -closed
ATP[TC id).PDU. klnd'=ERR-
ATP[TC id].PDU.reject_cause:=,..;
TC[TC_1d].PDU_buffer[PDU.kind].full:=true;
TC[TC id].PDU buffer[PDU kind] .PDU; =ATP[TC id]. PDU;

- end

Cogpan N et ea . S e e s v o,

233

N

P408:any NC_id:NC_id_type,TC_id:TC_id_type;
provided . ..same as above except

ATP[TC_id].state=open_in_progress_called
begin

...same as above with the following added
TS[TC_id].T_DISCONNECT_ ind(...);

end;

P40%9:any NC_id:NC_id_type,TC:TC_id_type;
provided ...s5ame as above except

ATP[TC_id].state=open_in_progress_calling
begin

...5ame as above...
end;
P4l0:any NC_id:NC_id_type,TC_id:TC_id_type;
provided ... same as above except

and ATP[TC_id].state=open
begin

... Same as above ...
end;
P4ll:any NC_id:NC_id_type,TC_id:TC_id_type;

provided ... same as above except
and ATP[{TC_id].state=wait_before_closing

begin
... Same as above

end;

°

P412:any NC_id:NC_id_type3TC_ id:TC_id_type;
provided ... same as above ...

and ATP[TC_id].state=closing
begin

... Same as above ...
end;

P413:any NC_id:NC_id_type,TC_id:TC_id type'

h Lt e By e M ST, Y W s

&
to the end...

provided NCTNC_id].received NSDU.data.length <> 0
and NC[NC_id]).received_PDU.kind=CR and not TC[TC_id].in_use

and NC[NC id].received PDU.dest ref=0

and not (/exists TC_id" <> TC_id such that ...(*see above*)/) .

and not (determine PDU length(NC[NC id].received _PDYU)>
implied_PDU_length(NC[NC_id].received _PDU.TPDU_size_ 1nd)

or NC[NC_id].received_PDU.class_ind=class_0

and

m—h b et e e s

JEy——

R

B kL P

Tw
.8

g

g SOOI L
y

B ke L S

-
234
Cn NC[NC_id]).this_side= calling) and
(: ' (/not able to provide service or destination address unknown/)
begin
(/decode (NC[NC_id].received_NSDU,NC[NC_id].received_PDU)/);
TC id:=determine_TC(NC_id, NC[NC_ 1d] rece1ved PDU,.dest _ref);
TCTTC_id].remote ref: -NC[NC id].received PDU.source_ref;
' TC[TC_id].local ref:=...;
TC|TC_id).PDU_buffer|[DR].full:=true;
. TC[TC_id].PDU_buffer[DR].PDU.kind: DR
TC[TC_id].PDU “buffer{DR].PDU. dlsconnect reason:=,..;
‘ TC[TC_id].PDU_buffer|[DR].PDU.is_last_PDU: =true;
’ end; ! d

P4l4:any NC_id:NC_id_type,TC_id:TC_id_type;
provided NCTNC_idJ.received NSDU.data.length<>0
and NC[NC_id].received_PDU.kind=CR and not TC[TC_id].in_use
and NC[NC_id]. received PDU.dest_ref=0 “
and not (7exists TC_id'<>TC_id s.t. (* see above *)¥) L&
» and not (determine PDU length(NC[NC_id].received _ppu) >
implied PDU.length{NC[NC_id].received_PDU.TPDU_size or
NC[NC_id}.received_PDU.class_ind= class_0
and NC[NC_id].this_side= calling)
and (/able to provide and destination address known/)
‘and ATP[TC_id].state=closed
begin

(/decode(NC[NC_id].received_NSDU,NC[NC_id].received_PDU)/);

TC id.T addr:=determine T addr(NC id.local N addr,

received_PDU.called_addr); '

TC id.id:=...;

TC{TC_id].remote T addr:=determine T addr(NC[NC id]).
remote N addr,

received PDU.calling addr);

received PDU. peer_ address~—TC[TC id].remote_T addr;

TC[TC_id].QTS:=.."; X

received PDU. QTS _ind:=QTS;

TC[TC id].remote ref: :=spurce_ref;

TC[TC_id].local ref:=...;

TCITC_id].assigned NC:=NC_id;

ATP[TC_id].state:=open_in_progress _calledy

. ATP[TC_id}.in_use:=true;

) ATP[TC id]. optlons-—rece1ved PDU.option_ind;
ATP[TC_id].class:=received _PDU.class_ind;
ATP[TC_id]. TR--O-

ATP[TC_id].TS:=0;

ATP[TC_id]. R cred1t:-0

ATP[TC_id].S cred1t-~rece1ued PDU.credit_value;

ATP[TC_id].EX_D_sent:=false;

ATP[TC id].EX D_ recezved'=false-

TS[TC_1d).T_CONNECT_ind(TC.local T addr, receaved PDU.
peer_ address,ATP[TC_id].options]);, recexved PDU.QTS_ind,
recelved PDU.user data)

(end;

S A RPN ORI M efivmt o 5 8 Aiorpes e s 1o o L4 e . , el e e R A

-

- 235
P415:any NC_id:NC_id_type, TC id:TC_id_type;
(i ' provided received NSDU.data.length <> 0
and received_PDU.kind=CR and TC[TC_id].in_use
begin
TC_id:=determine_TC(NC_id, received_PDU.dest_ref);
(/error/);
engd;

PN4:any TC_.id:TC_id_type .
when TS[TC_id].T_DISCONNECT_ req .
pravided ATP[TC_1d].state=open_in_progress_called
and ATP[TC_id]).class=class_0
begin p
ATP[TC_id].state:=closed;
- ATP[TC id].PDU.kind:=DR; .
g : ATP[TC id].PDU.is last PDU:=true;
ATP[TC id).ppDU.disconnect reason-—(/l or 2/);
TC[TC_1d).PDU buffer|[PDU.DR}.full:=true;
TC[TC id].PDU buffer[PDU DR]. PDU'=ATP[TC_id].PDU;
end; N

PN5:any TC_id:TC_id_type;

when TS[TC_id].T_DISCONNECT_regq

provided ATP[TC_1id).state=open_in_progress_ called
and ATP[TC_id].class<>class_0

begin N
...S5ame as above except
ATP[TC_id].PDU.disconnect_reason:=128; :

\ .
end; &, 3
VS ‘
?
/

PUp——

-

236

APPENDIC C

NORMAL FORM fRANSITIONS FOR THE CLASS 0 TP

(Based on [ISO 82])

when TSAP.T_CONNECT_req

Pl:provided state = idle and .
(/Transport entity able to provide the quality \

of service asked for /)
begin
state:=wait_for_CC;
local . reference:=...;
TPDU size:=...;
variable_part_to_send:=...;
CR(0,local reference,class_0,normal,
Varlable _part_to_send);

end;

when TSAP.T_CONNECT_reg
P2:provided state = idle and
(/Transport entity not able to provide the
quality of service asked for /)
begin
state:=idle;
T_DISCONNECT ind(TCEPI,
inability_to_provide_the_quality);
end;

when mapping.CR \
P3:provided state = idle
<> undefined and

(/able to provide the quality of service/)

and varlable _part.max_TPDU_size

begin
state:=wait_for_T_ CONNECT_resp;
remote_ reference'-source reference;
TPDU_ size:= varlablegpart max_TPDU_size;
remote address-—varlable part calllng T _address;
TCEP'=...; .
called_address:=...;
calling_address:=...;
QOTS_estimate:=...;
T_CONNECT_in&(TCEP,called_address, calling_address,
QOTS estimate, normal) ‘
end;

237

vhen mapping.CR

B TN

P4:provided state = idle and variable_part.max_TPDU_size

= undefined and
(/ able to provide the guality of service/)

begin
state:=wait for T CONNECT resp;
remote reference--source reference- \

TPDU_size:=128;

remote address-—varlable _part.calling_T_address;

TCEP:=...;

called_address:=...;

calling _address:=...;

QOTS_estimate:=...;

T CONNECT_ind(TCEP,called_address,
calling_address,QOTS_estimate,normal);

end;
when mapping.CR
PS5:provided state = idle and
(/ not able to provide the Q0S/)
begin
state:=idle; P
variable part_to_send. ,/
additional clear reason:= 4. .;
DR(source reference,0,connection _negotiation_
failed,variable part to_send); .

end;

when mapping.CC
P6:provided state = wait_for _CC and
variable_part.max_TPDU_silze<>undefined
begin
state:=data transfer;
remote reference:=source _reference;
TPDU_ size:=variable part max_TPDU_size;
QOTS estimate:=,..;
T CONNECT _conf (TCEP,QOTS_estimate,normal);
in _buffer. Lclear;
out _buffer. clear
out_buffer.set_max_get_size(TPDU size);

end;

¢

