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ABSTRACT 

.Communica t ion protocol test i ng can be done 'II i th a 'test 

archi tect ure cons ist i ng of remote Tester and local Responder 

processes. By ignoring interaction primitive parameters and 

addi t iona1 state var iabIes, i t i s poss ibl~ to adapt test 

sequence generation techniques for finite state ma,chines 

(FSM) to, generate sequences for protocols specified as 

incompYete fini te state machines. 

For reai protocols, tests can be designed based on the 

formaI spec if Ica t ion of the protocol wh i ch uses an extended 

FSM mode1 in specifying the transition types. The transition 

types are n:ansformed into a simpler form called normal form 

transitions which can be modelled by a control and a data 

flow graph. Furtl).ermore, the data flow graph is partitiened 

to obta:''1 disjoint blecks representing the different 

fune t ions of the protoeol. Tests are des i gned by consider i ng 

parameter variations of the input primitives of each data 

flow function and deterrnining the expected outputs. This 

methodology gives complete test coverage of a11 data flow 

fune t ions and tests for unspeci f i ed ca ses can be des igned 

us ing the control and da ta f 10'11 graphs. The methedology i s 

appl ied to t'lie real proteco1s: Transport protocols Clas,ses 0 

and 2. 
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RESUME 

Pour tester une implantation de protocole de 

comrrlUnication on peut utiliser une architecture en deux 

parties: Un "testeur" et un "répondeur". Si on ignore les 

parametres des interact i ons et variables' d' ~ta t s 

aaèl i t i onne II es, on peut adapt e r de 5 tee hn i ques de gén é r\i on 

de séquences de test dévéloppées pour les automates d'états 

finis pour. générer des séquences de test pour les protocoles 

spécifiés comme les automates d'états fi!l}s incomplèts. 

La spec if ica t ion formelle du protocole est ut i le pour 

trouver les interactions à appliquer. Les "types de 

transitions" d'une specification peuvent éitre transformés en 

des formes plus simples applelées transitions de forme 

normal. Les transitions de forme normal peuvent être 

modél ifsées avec deux graphes: un pour le contrôle et un pour 
1 

le flux de données. Le graph de flux de données se divise 

en blocs disjoint~:,/'chaque bloc indique une fonction de flux 

de données. La conception des tests pour les fonctions de 

f lux de données se fai t par varia t ions des paramèt res des 

entrée s et la determi na t ion des sort i és at tendues avec 

l'aide de ces deux modèles de graphes. Des tests pour les 

cas inattendus peuven t être aus si ba sé sur les deux 

graphe s. La methodolog ie est appl iquée à deux protocoles: 

Les protocoles de Transport Classes 0 et 2. 
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1.Introduction 

l·l·Motivation 

The idea of testing a protocol may probably be traced 

" back to the 19505 where the rules of communication between a 

central processing unit of a computer and its in~ut/output 

peripheral5 have first been established. However, the idea 

of protocol implementation assessment is quite new. T~ i5 

originated in 1981 with a few reports from the National 

Physical Laboratory in England [Rayner 81J, [HeRa 81J, and 

[Henley 81} and the RHIN project in France [Ansart 81]. Of 

course, this i5 not coincidental sinee the beginning of the 

19805 marks also the beginning of wide range use of public 

Bata networks linking computers and terminaIs. Tt also marks 

the beginning of implementing higher-leve1 protocols in line 

with the Reference Model defined bJ the International 

Standards Organization (ISO), thus the research groups in 

NPL and RHIN project carne up with the idea of establishing a 

national assessment, or even certification center of 

protocol implementations. 

Source listings of implementations 

institutions cannot be assumed to be available 

center. Also, the state of the art of 

by various 

to the test 

the program 

verification is far from providing practical tools to verify 

large concurrent software such as a protocol implementation. 
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Therefore, testing remains the main tool of the assessment 

activity and any implementation of a higher-level protocol 

can be assessed by the test center through a physical 

connection of the public data network, with the application 

of a certain number of tests on the implementation. 

The selection of interaction sequences for testing is 

a major problem. This thesis concentrates on the problem of 

selecting test sequences for pr?tocol testing. We first 

show in the following chapters t~at by ignoring interaction 

parameters, test. sequences can be generated using various 

test methods designed'for finite state machines (FSMs) once 
A 

the FSM modei of the protocol is obtained from the proto~ol 

specification. When parameter variations are considered, it 

becomes important to decompose a given protocol. In this 
" 

thesis, we base the decomposition on the formaI 

specification of the protocol. From a transformed form of 

the specification we obtain a decomposition into severai 

functions and desi§n tests for each function. 

1.2.Test Configuration 

ISO standardization activity centers around a model 
. . \ 

WhlCh structures the design of dlstrlbu~ed systems into a 
! 

number of hierarchical Iayers. Each lay~r consists of a 
f 

number of components, using the service ol the layer below, 
1 

it'proviàes the 
) 

"Ievel N" service to the! layer above. This 

Q 
1 
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model is called tne Reference Model' of Open System 

1 nterconnect ion (OS! ) [Z immermann 80 J • The protocol 

hierarchy of the OS1 reference model is shown in Figure 1.1. 

Protocols up to level 3 in this figure are lower-level, 

above level 3 are higher-level. 

The OS1 reference model serves as a framework for the 

definition of standard protocols which make interconnection 

of heterogeneous computer systems possible. A system whicr 
, 

implements standard protocols of aIl layers will be "open" 

to communicate .with any other syst~m, thus heterogeneous 

systems can be interconnected for the purpose of distributed 

applications such as data base access, file transfer and 

terminal access. 
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Physical Media fOI: Interconnection 

Figure 1.I.Protocol Hierarchy of thè OS! Reference Model 

[Rayner 81] proposes a basic architecture to be used 

in testing protocol Implementations of level N in the OS! 

Reference Aodel. The protocol upper layer interface i5 

assumed to be accessible through a user task which provides 

stimuli to the Implementation. This task is called the Test 

Responder (we shorten it as R). Since the lower layer is not 

directly accessible, access to the interface at the physical 

level is assumed through the underlying data network. At the 

test center, a task called the Active Tester (we shorten it 

as T) takes the responsibilty of most of the testing 
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activity. ,The active te~ter behaves like a general entity at 

level N but may stimulate the implementation with unexpected 

stimulations, 

cases, in 

i.e., it may not follow the protocol in sorne 

order to test the robust~ess of the 

implementation. The basic architecture is given in Figure 

1.2. 

IHenley 81] describes a proposal for the test 

responder. One important design criteria for R is that it 

should be machine independent. A protocol between T and R is 

proposed. Using that protocol, T can dictate how R should 

behave in the next test. The protocol uses state and 

parameter tables that are interpreted during execution. 

Using the same architecture, [BoCeMaSa 831 describes a 

slightly different approach to the designs of the two 

modules T and R. Bech test is assumed to be stored as an 

executable task at the test center site and the res~onder 

site, therefore, only the test name ~eeds to be transfered 

from T to R using a fault tolerant loading protocol. Both 

modules are designed to support the initial connection 

establishment to load the test tasks. Detailed designs of T 

and Rare given in [CeBo 83]. 

In the basic architecture of Figure 1.2., the lower 

layer interface of the implementation is not directly 

accessible, therefore the implementation cannot be tested 

for the cases of errors arising from malfunctioning of the 

lower layer. This is especially important when testing for 
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an implementation of a network service where it is desirable 

to introduce X.25 errors to the implementation. ProposaIs 

[Rayner 81]:: [Ansart Blbl have been made to modify the basic 

architectur~ such that on the im~iementation site, a black 

box (possibly implernented in h6rdware) is introduced between 

the public data network and the equipment of the 

implementation site. Using this black box, it is possible 

to introduce X.25 errors to the implementation, such as 

giving a Reset to the implementation whenever desired. 

The use of this modification i5 minimal when testing 

the implementations of transport or higher-level protocols 

of Figure 1.1. Therefore, in tBoCeMaSa 83] when testÏIlg an 

implementation of a level N protocol, the level N-l service 

is assumed ta be correct. An implication of this assumption 

is that the testing activity progresses from the lowest 

level to the highest level and the basic architecture is 

sufficient for this purpose. 

( ( -
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'-----R ure 1.2.Test ArchItecture for Testlng Protocol - ---
lementations 

1.3.Formal Specifications of the Protocols 

International organizations such as ISO, CCITT provide 

natural language descriptions of the standard protocols. In 

what follows we call them informaI specifications. The need 
for specifications given in a formal manner is appreciated 

by these organizations. A transition based formaI language' 

described in [FDT 84] has been accepted as a tool for formaI 

specifications of protocols and services. 

\ 

\ 
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For a protocol of layer Nf there are two levels of 

specification [Bochmann 83): 

-the service specification which describes the overall 

behavior of the subsystem of level Nf and 

-the protocol specification which defines the behavior of 

each component of a local system- corresponding to the given 

layer. 

The advantages of formally specifying ~he protocols 

are numerous: pr9tocols can be verified for correct 

operation (absence of deadlocks, etc. ) before the 

implementation phase; if verified, an automatic 

implementation can be obtained from the formal 

specification. In this thesis, we show that test design can 

be based on the formaI specification, thus extending the use 

of protocol specifications ta the testing phase • 

. 1.1.1.Structure of a Protocol Entity 

A protocol entity is composed of one or more modules 

and channels connecting the different modules. Figure 1.3. 

shows an example substructure of a protocol entity 

consisting of a mapping module and an arbitrary number of 

abstract protocol modules. 

Channels that connect the entity modules to other 

modules of the same entity or external entities (these 

channels are called service access points (SAPs) represent 
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connections over which interactions are received and sent .. 

In particolar 1 if the protocol entity i5 a protocol of layer 

N in the 051 Reference Model, service access points are used 

to receive/send the interaction primitives from/to the peer 

entities on the same layer (NSAP ln Figure 1.3). These 

primitives ar~ called protocol data units (PDUs). PDUs are 

sent/received using the service of the layer N~l. Over 

other SAP5, the protocol entity provides the layer N 

services to the layer N+1, thus these SAPs are used to 

send/receive user interactions (TSAP in Figure 1.3). 

InternaI communication between entity modules are done 

similarly on channels connecting , them (POU_and_control in 

Figure 1.3). 

In Figure 1.3. the mapping module handles the 

connection establishment with level N-l and decodes and 

checks the parameters of the POUs received for possible 

errors and passes the correct PDUs 10 the proper abstract 

protocol module. The abstract protocol module provides the 

level N protocol services to its users over TSAPs. It passes 

the PDUs to be sent to the peer entities to the mapping 

module, and the mapping module in turn encodes the PDUs and 

sends them over the NSAPs. 

The Subgroup B FOT supports two modes of communication 

between modules [FDT 84]: 

a)via an infinite FIFO queue, ônd 

b)the "rendezvous" communication which suspends the sending 
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proce~s' unt i l the rece i v i ng process ac kno'filedges the 

exchange. We assume that the communication between the 

modules of the same entity (internal communication) is of 

rendezvous type and the external communication can be either 

TSAP .. TSAr .. ______ 111_ 

----- -------------*----------
1 
1 ATP_type 

* 
* 

.. 
,ATP_type * 

1 
1 
1 
1 

1 
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--------~*--------- ------*--' -

1 
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1 
1 
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, , 1 
receive_buffer . f 

1 
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------*--
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'" '" 
'" -----*---------______ 111 ___ -
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1 

----------------*-----------*---" ----------
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Figure 1.3.Subtructure of a Transport Protocol Entity 

1. 3.2. FDT '. - - ---

A formaI description ' technique (FDT) for 

, 
1 
J 
1 
1 
1 
1 , 
1 

the 

specification of communication protocols and services [FDT 

84 J can be used to spec i fy a protocol ent i ty. This language 1 ~ 

called Subgroup B FDT, is based on an extended finite state 
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transition model and the Pascal programming language. 

Subgroup B FDT ~onsiders each interaction of the 

specified module with its environment as an atomic event and 

rdistinguishes between the interactions received by the 

module (inputs), and interactions initiated by the modules 

(outputs). The possible order of interactions of a module 

00r .entity) is described by a formalism which combines 

finite state machines (FSMS) with the power of a programming 

language. The state space of a module is specified by a set 

of ~variables including a variable called ~state" which 

represents the "major state" of the module. 

AlI Pascal data types (records, arrays, enumeration 

types, integers, etc.) are supported in Subgroup B FDT. The 

type of interactions that may occur over the channels are 

defined as part of the type declarations which precedes the 

specification of each module. A module (like a Pascal 

program) is specified by listing type declarations; list of 

variables, definitions of interface predicates, local 

procedures followed by transition types. 

Each transition type is characterized by an enablinq-

condition and an operation. An enabling condition consists 

of a boolean expression depending on sorne of the variables 

defining the module state (the enabling condition is 

expressed using special Subgroup B FDT constructs called 
, 

PROVIDED and FROM clauses) and (possibly) the specification 

of an input (the input is speciried using the WHEN clause). 
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The PROVIDED clause ,may include predicates on variables of 

other modules of the same entity. These predicates are 

ca11ed interface predicates. A transition type without 

input is called a spontaneous transition. 

The operation of a transition type is to be executed 

as part, of the trànsition~ AlI Pascal executable language 

constructs (assignment statement, IF statement, FOR, WHILE, 

"CASE constructs, etc.) 'are allowed, the operation may a1so 

specify the initiation of output interactions with the 

environment as weIl as a next major state, using the TO 

clause. 

The Subgroup B FDT has a special construct called ANY 

clause which i5 used either to introduce variables local to 
\ 

a transition type or in spont~s transitions to introduce 

index variables which makes the sp~~ transi tion 

av~lilable for any val fd value of the i'ldex var iables. The 
. 

index variables are used to identify the connections of the 

module with its environment. More discussion on Subgroup B 

FDT wi Il be 9i ven, in Chapter 4. 

!.!.Survey of Methods, f~r Test Sequence Selection 

Selection of interaction sequences to be applied to a 

protocol implementation is a major problem in protoco~ 

testing. To select test sequences for protocols, we have 

applied the from--th~ areas of finite state machine 
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testing ,----~sof tware 
~ 

testing, 

control system verification. 

.. 

microprocessor testing and 

The existing work in these 

at~as are surveyed in what follows. 
, 
1 

1.4.1.FSM Test Technigues - - - -.,...-. 

There have been three maj?r approaches to test 

sequence selection for FSMs: transi t ion tours [NaTs 81] , 
j 
and checking sequences [Kohavi 78, Gonenc 70] 

characterization sequences [Chow 781. 

The above three ~ethods will be used to select test 
) . ,~ 

/sequenc\es for protoco'ls modeled as FSMs in Chapter 2. 

.!.!.~.Software Testing 

Symbolic execution [King 76 ], an extension of normal 

execution of a program can be used in finding i ndi vidual 

prograrn paths and then selecting test data to exper lence the 

path. Assuming a finite number of paths in a program, global 

syrnbolic evaluation [ClRi 81] generalizes symbolie execution 

to enumerate aIl the paths. In Chapter 4, synlbol ie 

exeeution will be used to transform a protoeol specification 

into a simpler forme 

Functional program testing ,:,hich views a program as an 

integrated collection of functions and bases the selection 

~---~ -- ~-
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of test data on the value spaces (domains) over which the 

functions ~ are defined is shown to be the most reliable 

technique for discovering the errors [Howden 80 J ~ In 

part icular [Howden 80J identif ies two main functions in 

scientific programs: computational and control. Functional 

testing requires that in the test data selection, the domain 

of each program variable be considered and functiona1ly 

important values are used such as extremal values from 

domain boundaries or other special values. 

Selecting .test cases for even a small program is a 

tedious process. To make test case construction automatic, 

[PrSkUr 83] proposes a three step methodology consisting of 

first constructing an English-like test case specification, 

then implementlng this specification via Iogic programming 

[Kowalski 79J, and finally running the prolog specification 

to generate actual test cases. [PrSkUr 83) parametrizes the 

Prolog program to introduce testing strategies in the test 

case selection. 

It is possible to generate test cases for software in 

its earlier phases suçh as intentions, naturai lapguage 

assertions and formaI specification. [PrUr 83] develops a 

methodology to reduce inconsistencies and ambiguities in the 

software development process by continuouSly compa ring and 
r 

evaluating the test case reference sets (TCREFs) obtained 

from intentions, natural language assertions and formaI 

specification. Again, the use of Prolog programs as a high 

'~ 
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level representation to generate test cases is emphasized. 

Application of functlonal program testing and test 

case selection based on formaI specification to protocol 

testing will be discussed in Chapters 5 and 6. 

!.!.~.Microprocessor Testing and Control System Verification 

In [ThAb 78, ThAb 79, ThAb 79b) microprocessors are 

tested with inputs which are valid machine instructions and 

the outputs are compared with the expected responses which 

are also stored in the machine memory or in the memory of an 

external testet;.-

Test sequences are derived based on certain fault 

assumpt lon s called faul t models wh ich are der i ved 

functionally. For instance, there exists fault models for 

functions of a microprocessor such as register decoding/ 

encoding, control and data storage (faults in various 

registers) and data transfer (faults in buses). Allowable 

faults are formalised for each of the above functions and 

instruction sequences are derived to guarantee the detection 

of these faults. 

Fault models are helpful in designing tests for 

primitive decoding/encoding function of the protocol as will 

be discussed in Chapter 7. 

[ThAb 79] introduces a graph model of a 



16 

microproces::;6r. The graph models ~he 
, " data flow during . , 

execution of each instruction. 

[VaDi 78] proposes a model based on a control and data 

graph of a cont ro l sys tem to formally spec i fy and veri f y 

large para llel cont rol systems. Petr i nets are used t 0 

describe the scheduling of events and condit'lons and a data 

graph ta describe the primitives defining the data part of' 

the system. Verification can be done in two levels: the 

control level where the Petri net is analyzed to verify that 

i t i 5 saie t prope r , live and well formed, and the schema 

level where bath the control and data graphs are analyzed 

together to veri fy that the schema is determinist ic and 

determinate _ 

We used these ideas in modelling data flow in a 

protocol specification with a graph ta visualize the effects 

of pararneter variations. This topie will be discussed in 

Chapter 5. 

l.~.survey of existing Work ~ Protoco! Testing 

In this section we descr~be previous and ongoing work 

on protocol assessment. 

Early efforts on test design for protocols were based 

on finite state machine (FSM) models of the protocols. For 

example 1 the ma in part of the tests proposed in [HeRa 81 J, 
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called protocol tests, were designed to test each transition 

in the FSM model as follows: 

- the implementation is driven into the present state of the 

transition, and 

the input (either from T or R) is applied, and 

- the output i5 observed. 

Another approach has been the use of a logic' 

programming language called Prolog f Kowalski 79] to generate 

test sequences for protocols [UrPr :33]. A grammar describing 

the action!:> of -the protocol or ser' .. ice 15 derived from the 

specification 

gramma r. The 

and a Prolog program 

output of the program 

is wntten for the 

is the test seque~ces 

(only transition tours) that involve protocol 'actions and/ 

or user interaction!:> depending or. the grammar used. An 

advantage of thlS method i5 that, using attribute grammars, 

i t i s poss i ble to generate test sequences that i nvolve 

parameter varIations [UrPr 83]. The question of wrltlng a 

Prolog progr am to accept any grammar (1. e., any 

derive the test sequences accordingly needs 

investigated. 

1.~.!.Testing with Reference Implementations 

There is 

4 conf iguratior. 

implemen tat ion 

an alternative approach to 

described in Sec::: ion 1. 2. A 

called reference implementation 

FSM) and 

to be 

the test 

correct 

of the 
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f protocol to be tested replaces the active tester (T) ln 

Figure 1.2. With this configuration, the test programs on 

both tes t cen ter and responder 5 i tes become il set 0 fuser 

interactions [LiNi 83]. Test sequence generation can be 

do ne using t~e service specification of the protocol. An 

example service specification for the transport service with 

Subgro'Cp D FDT reportl'd in [ BoCeLa 81 J • Taking a 

t ran!> i t ion tC:1r of the FSM de sc ribHig the serv i c e 9i ves the 

test sequences for :.he two communlcating lIsers. 

In (LiM2 8.3J a difEerent approach"i!;i taken to generate 

test sequences. A service specification is converted lnto 

two grammars : called user-end ty grammars) for the t'NO peer 

entities. Ther. a composite grammar which gives the sequences 

consisting of one or more 4-tuples (reguests and indications 

of both entitieG) is derived. Since the states of the FSM 

are the nonterrnjnals in the grammar, test sequence is 

generated starting with the lnitial state and terminating 

when the final state is reached. [LiMe 83J describes how 

the composite grammar can be used as a Markov chain by 

a55igni:"9 we i ghts (sta t iona ry prcbabi 1 i t i es) to the 

product ions. These weights are uti:ized for functional 

decompos i t ion of the test sequences (connection 

es tabll shment/ freeing, data transfer, etc.) anè/ or 

generat:ng tes".: sequences for àifferent service classes of a 

9 i ven protocol (for example the transport protocol has 5 

service classes) without a separate generator for each 

serVIce class. 



19 

Test sequences generated from a service specification
l 

may conta in synchronization problems [SaBo 83) sinee i t iJ 
difficult to synchronize the testing sides ooly through thi 
IUT. This i5 due to the fact lhat the protocol service )5 

i 
nondeterministic (a protocel may accept or reject,' a 

connec~ion rcquest by one of its users) and the archltect,Jre 

of [LiMe 83J involves two i mple'1Jeo ta t ion s. [ LiMc/ 83J 
1 

mentions the need for modi fying sorne of the automn t/ica 11y 

obtained sequene es in arder to obtain ' . t!~ synchronlza e test 

sequences. An other prabl em with the test sequence 

generation method of [LiMe 83] i 5 tha t about .r/3 ef the 
/ 

resulting sequences are duplicate sequences. / 

/ 

Protocei errors, l.e., PDUs introduced ln unexpected 

states, cannet be introduced to the implementatiens if the 

tests involve only user interactions. The test configuration 

can be modi f ied to i ne Iude an except i on gene ra tor on the 

Tester SIte which modifies the PDUs generated by the 

reference implementation. The exception genera t or 

interfaces with the test program ( ca 11 e d sc e na rio fil e in 

[LiNi 831) in order to i nt roduce the e r rors requi red by a 

given test. 

1 
1 

USlng a reference implementation at the /test center 

has the disadvantage of the difficulty in tind/ing such an 

implementation. But once a protocol implementation of level 

N i 5 tested and aIl the er rors removed, i t can be used by 

the test center when testing protocol implementatlons of 

! 

/ 
/ 
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!.~.Original Contributions of the Thesis 

J 
The thesis has the fo110wing original contributions to 

the state of the art of protocol testing: 

- Systematic test sequence selection for protocols using the 

three identified methods from finite state machine test 

theory, Le., transition tours, character:ization and 

checking sequences. 

- Treatment of the synchronization problem which occurs for 

certa in test sequences obta i ned us i ng the metbods above, and 

the modifications to the basic algorithms of the above three 

methods such tha t only synchron i zable test 'sequences are 

generated. 

A normalized representation for protocols which is 

obtained from the formaI specification of the protocol by 

enumerating aIl control paths and combining submodules. 

- The con t roI and da ta flow graph mode Iso f normal form 

transitions. 

- Use of the graph models of the normal form transitions in-

protocol design validation, i.e., for detecting certain 

syntactic and semantic errors in the specification. 

-À test de s i gn methodology for pr otocol s • Der i ving cont roI 

and data f low funct ions f rom the f 10"" graphs, the 

methodology can be used to design tests for aIl of these 

funct ions using parameter variations of the input 
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pr imi t ives. "For f unct ions that are not covered in the 

specification, fauit modeis are proposed to obtain test 

sequences. For protocol error cases, tests can be designed 

using the two flow graphs. 

-Test design for two real protocols applying the test 

methodology, namely the transport protocols Classes 0 and 2. 

1.7.0rganization of the Thesis - - [ 

The thesis. is divided into three parts: 

Part 1 establishes the basic theory, in Chapter 2 we 

discuss test sequence generation for protocol specifications 

modeled as finite state machines, and in Chapter 3, the 

software developed to generate test sequences automatically 

from a given FSM model is discussed; Basic algorithms from 

the literature are modified ln order to generate 

synchronizable test sequences. 

Part 2 dfloscribes test design for protocols based on a 

f ô r ma l s pee i fie a t ion in Subgroup B FDT. Chapter 4 

establishes the basis for specification based test design: 

The specification is transformed into single path 

transitions called normal form 
'" 

transitions. Chapter 5 

di SCU5ses graphie represèn ta ti ons of certa i n aspec ts of t,he 

normal forrn transitions: A control graph which models the ~ 

changes in the major state variable (i.e. FSM aspects), and 

a data flow graph which models the flow of other protocol 
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data. Based on these graphs, Chapter 6 defines a methodology 

for test design. 

Part 3 applies the test design methodology to two 

protocols: The transport protocol classes 0 and 2. In 

Chapter 7, the tests for an implementation of the Class 0 TP 

are outlined and Chapter 8 describes a test design for a 

more compli~~~ed protocol, i.e., the Class 2 TP. Finally, 

in Chapter 9 we state our conclusions. 

; 



, 
\ 

23 

2.Test Seguence Generation 

In thi s chapter we assume tha t the protocol to be 

tested (or its specification) can lie modelled as a finite 

state 1JIachine {FSM}. A FSM for a protocol can be defined as 

à quintuple [X:ohavi 78]: 

M=(I,O,S,D,L) where 

i) The input set (I) is the set of the request/ response 

pr imi ti ves f rom the user of the protocol and the set of PDUs 

f rom the peer en t i ty. 

i i ) The output- Set (0) is the union of the set of 

indication/ confirmation primitives to the user and the PDUs 

to be sen t to the peer ent i ty. 

iii) The set of states (5) is usually selected to 

distinguish different phases of a connection such as idIe, 

Le., no connection, waiting for a response from the user or 

open, Le., connection is establï~hed. One of the states in 

S represents the state of the machine before any input is 

app1ied, this state is called initial state. 

iv) D is the state transftion function defined as: 

D: l x S -> S, 

v)L is the output function defined as: 

L: l x S -> O. 

If the specificat;.ion does not define any transition 

for sorne pairs of (input, state}, the resulting FSM model is 

ca11ed incomplete. We assume that a FSM of a protocol 

spec if iça t ion i s st rong 1y connected (i. e., any sta te can be 
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reached starting with the initial state) and reduced <Le., 

there exists no superfl uous states) [Kohavi 78]. 

A FSM model of a, protocol can be obtained from its 

formaI specification in Subgroup B FDT by ignodng 

interaction parameters, pred ica t~s of transi t i ons and the 

effects of parameters on the protocol variables other than 

the major state variable. We will discuss how to obtain a 

FSM model from the transformed specification in Chapter 5. 

Using the .Fsk)mOdel described above, it is possible te 

apply the test tethniques developed for FSMs ta protocols 

[SaBo 82]. These techniques are used for algorithmically 

der i vi ng i nterac t ion sequenc es to be., appl ied to test an 

implementa t ion under test (IUT) • Accord i ng te the 

distributed character of the test architecture de5cribed in 

Chapter l, Le., Tester and Responder', the two sites 

i nvol ved in test i ng a p:-otoco 1 are only synchron i zed through 

the IUT. There f ore sorne of the interactlon sequences 

generated may contain synchronizatian probler.:s. The "test 

sequence generation met::ods and synchronization problems are 

discussed ln more detail in [SaBa 84). A short reviewof 

these issues i5 given in the remaining part of this chapter. 
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2.1.Transition Tour Method 
r 

A sequence' of input symbols which starts wi th the 

initial state and inc l udes 1 at least once, aIl the 

r't rans i t ions defined in the protocol spec if icat ion i s called 

a t~ansit,ion tour. Transition tours can be obtained for any 

connected FSM. Two algorithms that obtain transition tours 

of a FSM using different techniques will be discusSed in 

Chapter 3. 

2 .~.W-Method 

This method selects test sequences f ound from 

concatenation of sequences from the foHowing two sets of 

input sequences: 

- P, the set containing aIl partial paths in the testing 
.~ 

tree. The testing tree has the transitions (each transition 

used exactly once) as its branches and states as i ts nodes. 

W, the characterization set, a set of input sequences 

which contains for every pair of states a sequence that can 

di s,tingui5h them. 

A testing tree exists for every connected FSM qnd 

every reduced, completely def ined FSM possesses a W-set. 

Each ,sequence in the concatenation of P and W , 
(represented as P.W) 15 applied starting with the initial 

sta te, 5 ince the root of the test ing tree i s the in i t ial 
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~tate, and possibly followed by a transfer sequence back to 

the initial staté. This transfer sequence i~"called reset. 

'In Chapt"er 3 we give sorne algorithms 'to obtain 

W-sequences for protocols. 

2.3.D-Method .,.- -
This method· ,,'Spplies to FSMs-that possess a sequence oJ 

... 
inputs called distinguishing sequence (OS). A OS is a w-s~i 

that has_ only one member. A O-sequence' is selected as 

follows: 

- Apply OS followed by DS starting with every state in order 

to recogni~e aIl the states, 
'. 

r 

- Apply OS after every transition of the FSM. 

Only a subset of FSMs possesses a DS, thus the 

·applicability of this method is restricted to those 

machines. 

It is shown in [Chow 78 and Rohavi 78] that if W- and) 
r O-sequences are applicable, they can detect aIl the fauIts, 

in the FSM assuming that the IUT behaves like a FSM with a 

number of states smaller or equal to the specification. A 

transition tour does not have this property. 

Upper bound length formulas for the above three 

methods and their complexities are given in [SaBo '84,]. 

Actual lengths of test sequences applied to various 

" 
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protocols are also given. A comparison with the upper bounds 

shows that actual lengths v~ry between 20 and 68 percent of 

the upper bounds depending on the complexity of the machine. 

(', 

~.!.5ynchronization problem 

50 far we have assumed that any transition of a FSM 

can fol1ow any other if they are in correct state order 

(next s~ate of the previous t~ansition matches with the 

present state oÉ the current transition). This assumption 

is valid only if the test sides T and R of the test 

archi~ect~re can be synchron~zed directly. However, this is 

not desirable even if T and R may be in the same computer 

since it would require that the time taken by a sequence of 

interactions with the implementation involving only T (or R) 

can be known by R (or T). Thus it is desirable to 

synchronize T und R through interactions with the 

Implementation (IUT) by selecting only test sequences thât 

are synchronizable (see below for a definition). 

A transition in a test sequence can be seen as 

composed of an input message to be received by the 

Implementation and zero, one, or two messages sent by IUT to 

be received by T or R or both. Also the test architecture 

can be modelled as three FSMs that communicate with FIFO 

queues. Using these ideas, (SaBo 84] gives the definition of 

a synchronization problem in a test sequence as follows: 



Considering two consecutive basic transitions of the 

rUT, one of the test modules, say T (or R) faces a 

synchronization problem if T (or R) did not take part in the 

first transition and if the second transition requires that 

it sends a message to IUT. 

According to the theorem given in [SaBo 84] any pairs 

of consecutive transitions in a test sequence should be a 

synchronizabl~ pair of transitions in order that the test 

sequence contalns no synchronization problems. This property 

will be used in the algorithms that generate synchronizable 

transition tours and W-sequences in Chapter 3. 

Another basic problem is whether or not a FSM deflning 

the protocol contains intrinsic synchronization problems. 

This is the case if there eXlsts a transitjon that cannat be 

included in any synchronizable test sequence. Such a 

transition is called not synchronlzable. If aIl transitions 

from a state are not synchronizable, this state is a 

nonsynchronizable state. An algorithm for finding intrinsic 

synchronization problems is outlined in [SaBo 841 and 

described in detail in Algorithm 2.1. It has a complexity 

of O(n 2 k) where n is the number of states and k is the 

number of possible inputs. 

The lapguage used ln Algorithm 2.1. and aIl other 

algorithms in this thesis is the Pascal language extended 

with the construct: 

(/ ... /) ; 

". 
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where ••• can be an English staternent or predicate. This 

construct (taken from Subgroup B FDT) i5 used to express 

informally certain aspects of the algorithme 

The algorithm in Algorithm 2.1 assumes that each input 

to the FSM is specified with an indication of a side that 

initiates the input (such as Tester (T) or Responder (R) of 

the test configuration in Chapter 1). Also, each output 

generated by the FSM is assigned te a side to which the 

output i~ sent. Details of internal representation of the 

FSMs will be di9cussed in Chapter 3. 

Using the side information, Algorithm 2.1 finds the 

set of all the sides from which a given state i can be 

reached through the transitions leading to state i and then 

checks if there is any transItion from state i which should 

be initiated by a side that is not in the set found. AlI 

nonsynchronizable transltiens (if any) fram all states are 

found accordingly. 
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nextstate:array[l .. maxproduction] of integer; 
input side,out sidel,out side2:nrray[1 .. 

- maxproduction] of integer; 
(*slde information for input and outputs, and 

maxproduction is a parameter representing 
the maximum number ot transitions accepted*) 

procedure intrinsic(nonsyn,nonsynstate:integer); 
(*nonsyn:no. of nonsynchronizable transition, 
nonsynstate:no. of nonsynchronizable states *) 
arrivlng : array[l .. maxnbside] of sendreceive; 

(*maxnbside is a parameter representing the number of 
distlct sides allowed*) 

ad~,i,j,k,term:integer; 
begin 

non5yn:=0; nonsynstate:=O; (*initialize*) 
for i:=l to maxnbstate do (*for all the states*) 
begin 

for k:=l to maxnbside do (*for aIl the sides*) 
arriving[kJ:=O; (*inltialize arriving*) 

if i=l then j:=2 eise j:~l; (*initialize j*) 
repeat (*for all transitions*) 

(*find nextstate of the transition from statè l 

under the next input*); 
for term:=l to maxnbterm do 
begin 
adr:=i*maxnbterm + term; 
if nextstate{adr! = i then 
begin 

arriving[input side[adrJJ:=input side[adr]; 
if out sidel[adr]<>O then -
arrivIng[out sidel[adr]J:=out sidelladr]; 

if out side2[adr]<>Q then -
arrivIng[out side2Jadr]J:=out side2[adr]; 
if (/state i-can be arrived from aIl the sides/) 

then goto 1;(*no more checks Eor state i*) 
end; (* of nextstateladrj := i*) 

end; (* of for term*) 
j:=j+l; 
if j=i then j:=j+l; 

until j > maxnbstate; 
(*now check the transitions from the same state, 

Le., state i *) 
for term:=l ta maxnbterm do(*for aIl terminals*) 

adr:=l*maxnbterm+term; 
if (arriving[input side[adrJJ = 0) then 
begin -

print('transition from ',i,' on input' ,term, 
, i s not synchron i zabl e ' } ; 

nonsyn:=nonsyn+l; 
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end; 
if (/al1 transitions are not synchronizable/) 

then begin 

end; 

print('state ',i,' is nonsynchronizable'); 
nonsynstate:=nonsynstate+lj 

l:end; (* of aIl states *) 
end; (*of intrinsic *) 

Algorithm ~.l.Algorithm to Detect Intrinsic Synchronization 
problems 

~.~.Specification Enhancements for Testing 

In order to make the W- and D-methods applicable when 

the original protocol specification does not possess a DS 

and/or a W-set, the following two approaches can be taken: 

1.~.l.Special Test Transitions 

The protocol specification may be enhanced by defin~ng 

special test interactions and transitions called "read 

state" and "set state" [Piatkowski 80J. The "read state" 

input becomes a W-set and DS by definition thus these two 

methods can be applied and the resulting sequences have 

minimal lengths since the W-set/DS is of minimal length and 

all the transfer sequences necessary (inclu~ing resets) can 

be implemented as "set states" which are of length one. A 

generalization of the special test transitions will be given 

in Chapter 6. 
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~.~.~.Completing Specifications 

The specification may be completed until a W-set or DS 

i5 obtained by introducing an error 5tate. This approach 

guarantees a W-set but not a DS. Synchronization 

considerations concerning the outputs for the added 

transitions are discussed in [SaBo 84J. 

1.~.Complexity of Test Sequence Generation 

+he D-rnethod has the highest complexity rnostly due to 

the high complexity for obtaining a DS ISaBo 84]. When 

) generating synchronizable test sequences it is assurned that 

the complexity of checking for intrinsic synchronization 

problerns O(n 2 kJ becomes the most important factor, thus by 

the n 2 k to 
/ 

the.complexities of algorithms it i5 

possible to obtain the complexities for finding 

synchronizable test sequences. , 

The complexity of the test sequences obtained from the 

FSM models (ignor1ng patameters, additional state variables, 

etc.) of the real protocols is not.too high (see Table 2 in 

[SaBo 84J). Taking F5M models as "approximations to the real 

protocols, FSM test techniques are useful in deriving test 

sequences. In Chapter 3 we explore the algorithrns to 

implement sorne of thern. 

Complete testing of a protocol requires consideration 
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of parameter variations, additional state variables, etc. 

The resulting model is too complex because of the very high 

number of different inputs introduced by parameter 

variations of interactions and the very high number of 

states introduced by protecel variables used i~ the enabling 

condition of the transition types ef a Subgroup B FDT 

specification. In order to reduce the complexity of 

complete testing, it becomes necessary to decompose the 

protocol into func~ion5 and design tests for these functions 

which are less complex than the complete protocol. This 

topic will be discussed in Part 2 of the thesis. 
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3.Test Sequence Generation Software 

programs written to generate test sequences according 

to the transition tour and W-methods of Chapter 2 will be 

described in this chapter. These programspread the input 

automaton which may' be incomplete f check whether it is 

connected and minimal and whether it has any intrinsic 

synchronlzation problems. Theo they generate a test 

sequence. Two programs have been developed for the 

transition tour method: one u5ing a depth-first-search 

algorithm (DFS) ·[Taqan 72 J f the other using a random input 

selection algorithm [NaTs 81J. One progr:-am has been 
1 

developed for the W-method. These programs have been _ 

written in Pascal and are running under the oper:-ating system 

VMS of VAX 11/780 computer. A user manuai i5 provided in 

[Sarikaya 84b). 

In the following parts of this chapter we discuss the 

input and output formats and the internal representation of 

the test sequences generated by the programs, as weIl as 

modifications made to the basic algorithms [Tarjan 72, NaTs 

81, Chow 78J in arder to generate synchronizable test 

sequences. 
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1.l.Input and Outeut Formats and InternaI Reeresentations 

The three programs share routines for error 

processing, automaton input, test sequence output and checks 

for intrinsic synchronization problems. 

1.l.!.Automaton and Test §§guencé I/O 

depend on The 1/0 formats 

generated will be synchronizable 

<DFS) algorithm depth-first-searCD 

whether 

or 

which 

the sequence 

note For the 

generates a 

transition tour without checking for synchronization, the 

input format is as follows. 8ach line of input represents 

one transition and has the form: 

present state ~ input ~ output ~ next state 

The present state in the first line of the input file 

becomes the initial state. 

An example input machine is shown in Figure 3.1 which 

models the Class 0 Transport protocol. An output of two 

symbols is represented by separating the two symbols by a 

comma, as shown in Figure 3.1. 

If the input machine i5 incomplete, it is completed by 

the programs automatically. An error state is added and aIl 

incomplete transitions are filled as transitions leading to 

this state by gfving the output ERROR. 

The generated test sequence is stored in a double-line 
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format (states and inputs respectively) in an output file to 

be printed after the program terminates. A test sequence 

can be stored using many of these double lines depending on 

its length. In the following sections we include an example 

printout of the output file created by each program. 

The input format changes slightly for the other 

programs, which also consider synchronization. The 1/0 

symbol is replaced by an indication of the initiator, and 

the 1/0 symbol. The initiator indication has the value , A , 

when the output ·is empty, i.e., when no output is generated 

for a given input. No output 15 indicated by "VIDE". 

, 

The input machine of Figure 3.1 is shown ~ in Figure 

3.2. w~th the initiator indicated, where T stands for the 

Tester and R for the Responder in the test architecture of 

Chapter 1. 

Synchronizable test s~quences are stored in the same 

format as described above where the initiator indication is 

given as prefixes to the input and output symbols • 

• 
~.l.~.Internal Representation 

Arrays are used to represent the machine internally. 

AlI four items in a line are converted into integers. Next 

states and outputs are stored in two arrays which are 

accessed by the index: 
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state * maxnbterm + term 

where sta~e is the integer corresponding to the input state, 

maxnbterm is the maximum number of terminaIs, i.e., inputs, 

allowed and term i5 the integer corresponding to the 

terminal. State number one is the initial state, zero is 

the error state (if any). Specified terminaIs and outputs 

are numbered as they appear in the input file. Output number 

zero is the output ERROR (if any). 

A test sequence is represented as two arrays, one for 

terminaIs (inputs) 
:-

and the other for states. When 

outputting the test sequence, the integers in the internaI 

representation are converted into the symbols given by the 

user with the help of the conversion tables created during 

the input phase. 
/ , 

~, 
~.!.~.Synchronization Checks 

programs that generate synchronizable test sequences 

check the machine for any intrinsic synchronization 

problems. These checks are done by the algorithm given in 

Algori thrn 2.1. 

1 l, 
1 



38 

1 CC l 9no1'. 1 
1 DT 19 no1'. 1 

" 1 DR 19 no1'e 1 
1 CR T C1nd 2 
1 T_Cr .. q CR" 3 
;2 T Cr"1Ip CC 4 
2 DR" Err 1 
2 DT Er.,. 1 
2 CC Err 1 
2 CR E.,..,. 1 
2 T D.,.eq DR 1 
3 cC" T Cconf 4 <,' 
3 DT 19nor. 1 'i 3 DR T Dl n d , N Dr e Cl 1 
4 DT T-DT1nd 2J" ", 

4 T_DTreq DT 4 
4 T Dreq N_Dreq 1 
4 CR" Err 1 
4 DR N Dr.~ 1 
4 N Dlnd T-01n 1 
4 N:R lnd T:Dlnd 1 

" 
Fiqure 3.1.An Input Machine Modell ing Class 0 TP - --

• 

~ 

1 T CC '" VIDE ,.. VIDE 1 
1 T DT ..... VIDE "- VIDE 1 
1 T DR ..... VIDE ... VIDE 1 
1 T CR R T Clnd "" VIDE .., .... 
1 R T_Creq T CR ,. VIDE 3 .., 

R T C1'f!lsp T CC ;.. VIDE' 4 c. 
2 T DR" T Err ,. VIDE 1 . ~ , 

2 T DT T Err VIDE 1 . 

2 T CC T Err ,.. VIDE 1 
2 T CR T Err .... VIDE 1 
2 R T 01'.<\ T DR ..... VIDE 1 
3 T CC" R T Cconf ,. VIDE 4 
3 T DT ,... VIDE "- VIDE: ' 1 
3 T DR R T Dlnd T N Dreq 1 li 

4 T DT R T,n 1nd r Ç/IOE 4 
4 R T DTreq T Di ..... VIDE 4 
4 R T-o"eq T N_Dreq .... VIDE 1 
4 1 CR T Err ..... VIDE 1 
4 1 DR T N Dre~ " VIDE 1 
4 T N Olnd R T-oln ,... VIDE , 1 
4 T N:Rlnd R T:Dlnd " VIDE 1 . 

" 

Figure 1.~.The Machine in rig.l.! With Initiator Indication 
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3.2.DFS Tour program 

This program (DFSTOUR) takes the input automaton as a 

connected graph and carries out a DFS of this graph. The 

algorithm is a slightly modified (to generate transfer 

sequences) version of (Tarjan 72]. This algorithm invokes a 

routine called transfer to generate a transfer sequence 

[SaBo 84]. The transfer routine finds a transfer sequence 

from the state in its first parameter to the state ln its 

second parameter. The sequence found (not necessarily of 

minimal length~ is added to the 
1 

tour. The routine is 

outlined in Algorithm 3.1. 

The tour generated by this program and aIl the other 

programs described in this chapter contain only specified 

transitions. unS~ècified transitions are excluded from the 

tour. A DFS tou~generated for the machine of Figure 3.1 is 

listed in Figure 3.3. This tour has a length pf 37, thus it 

contains three more transitions than the minimal tour in 
) 

(SaBo 84J. The DFS tour program does not necessarily 

generate tours of minimal length. 
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f) 

var nextstate : array[l .• maxproduction} of integer; 

procedure transfer(stl,st2:integer); , 
<*generates a transfer sequence from stl to st2*) 
(*and adds the sequence te the transitaon teur*) 
~ar levels,terms,saveterms:array[O .. maxnbstate} of integer; 

,.6 

procedure assignle v el(state,level:integer); 
(*This recursive procedure assigns a "level", i.e.; 
distance from the start state stl to the current 

"state"*) 
var 

cterm, adr , w: integer i 

begin (*find levels,terms, l.e. inputs from state*) 
levels [state] : =level; 
for term: =1 to maxnbterm do 
begin 

adr:=state*maxnbterm+term; 
It<: =nextstate!adr]; 
if levels[w} > level+l then 
begin 
terms[statel:=term;(*store input of the transfer 

sequence in the array terms*) 
if w=st2 then saveterms := terms; (*transfer sequence 

found save i t * ) 
assignlevel(w,level+l); (*find levels of 

other states*) 
end; 

end; (* 0 f a Il t e rm i n i:ll s '* ) 
end; (*of assignlevel*) 

begin (*transfer*) 

assignleveHstl,Ol; (*a55ign level 0 to initlal state*) 
st:=stl; (*initialize*) 
(*add the transf~r sequence in saveterms to the tour*) 
repeat (*until s~=st2*) 

(/add (st,savfterms~s 1) to the tour/); 
. st: =nextstâ te;r st *ma~ Q~erm+5aveterms l,st J Ji 

untll st=st2; 1 è __ 
l'-.... ~ _ 

- ~- - "'- 'v 

endi (*of transfer*) "'-. 

\ 
Algorithrn 3.l.Transfer Seguence Finding Algorith~", 
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3.3.Random Tour program 

It is possible to generate minimal .transition tours by 

including the randomly selected transitions into the tour 

and reducing ~he unneccessary part from tJle last new 

transition once an unvisited transition (called zero-input) 
is added to the tour. The algorithm described in [NaTs 81] 

was programmed. 

There are three procedures of main interest in the 

random tour program (RANTOUR) which implements the above 

algorithm modified to generate synchronizable tours. First 

we describe a function callea "synchronizable" which returns 

.. 
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"true" if the pair (state,input) can be added to the tour 

without any synchroni~ation problems in Algorith~ 3.2. 

type sendreceive~(null, send, receive); 
var 

Iastaction:array(l .. maxnbsidel of sendreceive; 
input side,out ·'-!.uel,u',": side2:array[l. .maxproduction] 

- aL - integer; ~ 
firstransition:boolean; 

(*lastaction is initialized to -oull"s, 
firstransition is initialized t0 "true"*) 

funct i on Synch(ron izable (sta te, input: 111 teger ) : boolean: 
var 

i, adr : integer; 
begin 

(*lastaction contains the sides information 
from the Iast transition added*) 

adr:=state*maxnbterm+input; 
i:=input side[adrl; 
if lastaëtion[i] = null and not firstransition 
then 

synchronizable:=false 
else begin 
firstransition:=falsej 
synchronizable:=true; 

(*update lastaction array*) 
for j:=1 to maxnbside do 

end; 

if j=i then lastact~on[iJ:=send 
eise Iastaction[il:~null; 

if out sidel[adr] <> null then 
lastaction[out sidel[adr]J:=receive; 
if out side2[adrJ <> null then 
lastaction[out_side2[adr]]:=receive; 

end; (*of synchronizable*) 

Aigorithm 1.~.Syn,~ronization Check Algorithm 

Secondly, there ,i s the reduction procedure (see 

_ Algorithm 3.3) which eliminates redundant pairs inçluded in 

the tour between the last new transitions. 



var 

43 

state, test:array[l •. maxnbinput] of integerj 
(*arrays te store the tour, state for states 

and test for inputs, maxnbinput is a 
parameter of the prograrn *) 

procedure reduce(i,j:integer); 
begin (*i is a pointer ta the beginning and j to the 

end of the subsequence to be reduced*) 
r : "" i; (* r and s are i nt e r n a l po i n ter 5 * ) 
while (r < j) do 
begin 

s::::j i 
while (s > r) do 
begin 

if state[r)=state[s] then 
begin (*check for sychronization 

1 

\ 
\ 

by calling Algorithm 3.2 before redUCjin g *) 
if (/(r-l)th transition can be foilowed y 

s th transition without synchronizati i'l \ 
prablems/) then \ 

., (/delet~ the transitions from r th ta (s-1 )th/) '\ 
eise beg'i.n , 

(/find the first transition that precedes s th 
synchroni\aably/) ; 
(/delete transitions up to (s-l)th/)i 

end 
end 
else s:=5-1; 

end; (*of while s > r*) 
if s <= r then r:=r+l; 

end; (*of while r < j*) 

end; (*of reduce*) 

Algorithm 3.3.Reduction Algorithrn 

The main procedure (RANTOUR) (Algori thm 3.4) uses a 

random number generator gi ven in l ChDa 83] to select inputs 

randomly. The pointer T keeps the count of newIy added 

transitions, once T reaches the number of spec if ied 

transitions (nbtrans), the tour i5 completed. 

A tour generated for the machine of Figure 3.2. is 
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listed in Figure 3.4. This sequence has a minimal number of 

trans i t ions. Since the routine which f inds transf e r 

sequences does not necessarily find min i ma l t ra n s fer 

sequences, RANTOUR program may not always give sequences of 

minimal length. 

var 
nextstate :array [1. .maxproduction] of in,teger; 
nbtrans:integeri 

procedure RANTOURi 
var adr f T, u, qO, x, q integer; 

beg in 
T:,= li, 
(/genera te' a random input x which i 5 speci f i ed f rom 

initial state qO/)~ 
if synchronizable(qO,x) then~*update lastaction/l 

(/add (qO,x) to the tour/li 
adr:=qO*maxnbterm+x; 
q:=nextstate(adr); 

while T <= nbtrans do 
beg i n 

u:=T-l; 
repeat (*until x i5 zero-input*) 

qO:=gi 
U:=U+li 
repeat (*until synchronizable*) 

(/generate.a random x specified from gO/)i 
adr:=qO*maxnbterm+x: 
q:=nextstate(adr); 

until synchronizable(qO,x}; 
(/add (gO,x) to the tour/li 

until (qO,x) is zero-input; 

reduce(T,u); (*Algorithm 3.3*) 
T:=T+l; 

end; (*of while T<=nbtrans*) 

end; (*of RANTOUR*) 

Algorithm 1.!.RANTOUR Algorithm 
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". 
1 T DR 4 T. DT 4 T NOl n d 

R T _DTt nd R T:Ih nd 

2 R T Dreq 1 R. T Creq 3 T DR 
T. DR' T. CR" R T Dlnd.T N __ Dreq -

1 R T C l'II! Q. 3 T CC 4 T.DR 1 T. DT 1 T. CC 1 T CR 2 T cR' R. T_Cconf T.N _Dre"G. R. T _Clnd 

1 T. CR 2 T. CR 1 T CR 2 R T Cre.p R T - C Ind T Err R T _C 1 nd T cC' 

4 T N RI nd l T CR 2 T CC 1 T CR 2 T. DT 1 T CR 
R T:plnd R. T_Clnd T Err R T_Clnd T Err R. T_Clnd 

;2 R T Cresp 4 T CR 1 T CR 2 R T Cresp 
T cC" T Err R T_Clnd T cC' 

4 R T DTreq 4 R T_Dreq 1 R T Creq 3 T DT 1 
T. DT T N_Dreq T CR" 

Figure l.!.~ Synchronizable Tour Generated Qy RANTOUR 

1.!.W-Method Program(SWMAIN) 

The prograrn first finds a W-set (guaranteed to ex4st 

since the machine is completed if necessary), and then lists 

aIl the subsequences in the set P.w, where P represents the 

test i ng t ree [Chow 78]. SWMAIN i s based on the program 

called ·CHOW wh'ich is described in (ChLeLeRi 81]. CHOW 

implements the method Of [Chow 78] using the algorithm of 

[Gill 62J in finding a minimal W-set. When a machine 

T. DR 
T.ET'l' 
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possesses a W-set of length one, the ori 9 i nai CHOW program 

was finding a nonminimal W-set for the machine. Thus 'Ile 

added a rout i ne (Algor i thm 3.5) to chec k. if the machine 

possesses a W-set of 1ength one. 1\150 , CHOW "'as not 

generating reset sequences, hence in SWMAIN the transfer 

sequence algor i thm (Algor i thm 3.2) i fi used. 5 i nee a reset 

sequence takes the machi ne to the in i tial state 1 the second 

parameter of the call to the transfer routine is specified 

as 1. 
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type 

var 

pt = ~ syrnbo1; 
syrnbol=record val:integer; 

other f next: pt 
end; 

action:array[l •. maxproduction] of integer; 
(*outputs of' the transitions*") 

W:array[l..rnaxnbstate] of pt; 
function checkforone:booleani 
{:l'checks if the machine posseses a W-set r>f ength 

one and if i t does returns the W-set in "W"*) 
var 

a11different: boolean; , 
adrl,adr2, term,count, i, k: integer; 
currentpt:pt; 

begi n 1 

checkforone:=false; (*initialize*) 
for ter m : :::: l toma x n b ter rn do 
begin 

count::::l; 
for i: =1 to maxnbsta te-l do 
begin 

alldifferent:=true; 
for k: :::i+1 to maxnbstate do 
adr1:=i*maxnbterrn+terrn: 
adr2:=k*maxnbterrn+terrn; 
alld if feren t: =ae t ion (adr l) =ac t ion ( adr2 ) ; 

if a11different then count:=count+lj 
end; (*of i:=l to maxnbstate-l*) 

(*cheek if count equa1s number of states*) 
if count~maxnbstate then 
begip 

new (currentpt) ; 
with currentpt~ do 
begin 

end; 

val :=terrn; 
other:=nil 
next:=nilj 

end; 
w( 1 J : =currentpt; 
chee kforone: =t rue; 

end; (*of term: =1 < to maxnbterm*) 
end eheckforone; 

A1gorithm 3.5.Checkforone Algorithm 
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SWMAIN uses a slightly modified version of the 
. 
transfer rout i ne to generate synchronizable transfer 

sequences. The modif i ed rout ine i s used in two places when 

generat i ng synchron izable W-sequences: 

i)In generating synchronizable reset sequences; 

ii)In synchronizing the subsequences in P.W by generating a 

synchron i zable re set sequence f rom the final state of the 

preceding subsequence to the initial state of the succeeding 

subsequence when necessary. A procedure to chec k a 

subsequence in P. W and add the above sequences if necessary 

is outlined in Algorithm 3.6. 
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type 

var 

transition:~ecord=state/inputfaction,next state:integer; 
first transition,last transition:boolean 

end· - -
1 

sta te, input: array [ 1 .. maxnbi nput 1 of integer; 
FW:array[l •• maxinpwl of transition; 
(*maxnbinput. and ma~inpw are t.he pnrameters of the 

program*) 
i:integer; 

(*initialize*) 
i : = 1 i 
(*state,input and PW are filled in SWMAIN*) 

repeat (*for all the sequences in P.W*) 
w i th PW [ i 1 do 
begin 
if not synchronizable{state,input) then 
if first transition and (i > 1) then 

else 

translerD,l); (*generate synchronizing sequence 
to synchronize two consecut ive subsequences*) 

print('p.w contains nonsynchronizable 
subseque~es ' ) j " 

('-' 

if last transition do 
if next-state <>'1 then 

t ransfe r (next sta te, 1) j (*genera te a 
. synchronizable transfer sequence 

to the inltial state *) 
(/pr i nt the sequence/); 
i:=i+1; 
end; (* of with pW[il*) 

unt i l i < maxinpw; 

Algorithrn 1 . .§..Synchronization Checks of P.W 

À W-sequence f ound by ~WMAIN f or the machine of Figure 

3.2 is listed in Figure 3.5. The length of this sequence is 

69 and i t con ta ins only the spec i f ied' trans i t ions. The W-set 

is DR, as reported in [SaBo 84 J: The sequence in Figure 3 .. 5 

contains no separate reset sequences since the W-set always 
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brings the machine to the initial state. 

We have not implemented the third test sequence 

generation method, namely checking sequences. A discussion 

on the implementation of the algorithms of [Gonenc 70J 

(ignQringtlynchronization problem) can be found in [Guitton 

84] • 
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1 T DR 1 

1 T CC 1 1 DR 

a : 

1 T DT 1 T DR 1 
• fi 

T DR 1 T DR 1 

1 T CR 2 T DR 1 
R T _Clnd T. Err 

1 T CR '"l T CC 1 T DR 1 c;. 

R T _Clnd T. Err 

1 T CR 2 T DT 1 T.DR 1 
'R T _Clnd T, Err 

o 1 T CR 2 T DR 1 T DR 1 
R T _C 1 n d T Err ~ 

1 T CR 2 T CR l T DR 1 
-R T Clnd T El'r -

1 T CR 
,., R T Cresp 4 T DR 1 c:. 
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1 T CR 2 R T Cre,;p 4 T DR 1 T DR 1 
R T _C 1 n d T cC" T N_Dreq 
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1 T CR 
,., R T Cresp 4 T N Dl nd 1 T DR l t.. 

R T _Clnd T Cr R T-Dl nd 

1 T CR 
..., R T Cr e s p 4 T N R 1 nd 1 T DR 1 c:. 

R T Clnd T cC" R Tth nd -
T CR '"l R T Dreq 1 T DR 1 Co. 

R T Clnd T DR" -
1 T CR 2 R T Cresp 4 T N RI nd 1 

R T _C 1 nd T CC" R T:Jh nd 

1 R T Creq 3 T DR 't 
T CFr , R T - Dlnd,T N_Dl'eq 

1 R T _Creq 3 T CC 4 T DR 1 

T CR R. T_Cconf T N_Dreq 

·1 T ÇR 2 R T Cresp 4 T N RI nd 1 
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T CR" 

T DT 1 T DR 1 
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•• -
.,.; 

Fi9ure l·~·~ Synchron i zable W-seguence Generated .Qy SWMAIN 



l 

52 

Part 2 

In Part 2 we develop sorne theory and a methodology for 

test design based on a specification of the protocol given 

in the Subgroup B FDT language. A protocol is assumed to be 

testèd for conformance to its formaI specification. As 

introduced in Chapter l, the Subgroup B FDT supports modular 

protocol specification using an extended state transition 

model. Interaction primitives can have parameters, each 

module of the specif ica tion has i ts own state variables and 
. 

a set of transitions corresponding to external and internal 

events. State variables include a major state variable and 

addi t ional variables used in the specif ication. 

We c lassify the protocol functions as follows: 

Control Related Functions: These functions are related to 

the changes of the major sta te introduced by the 

transitions, and 

Data Flow Related Functions: These functions arise from the 

flow of da ta from input 

the output inte ract ion 

both of the above types 

spec i f icat,i on. 

interaction primi tive parameters to 

primitive parameters. We show how , 

of function~ can be derived fromthe\/ 

In Chapter 4, syntactic transformations are applied to 

the specification r and subrnodules, are combined. The 

resulting specification has transitions with a single 

control path in the action. These transi tions are called 
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normal form transi tion~. 

Chapter 5 uses normql f orm transi t ions to der i ve the 

control and data flow functions. The control !unctions are 

derived from the finite state machine model of the normal 

, ·f orm t rans i t ions. The data f low in the normal form 

transitions is modeled by a data floW {raPh. A partitioning 
-"" 

of this graph gives rise ta the data flow functions in terms 

of the bloeks of the partition. Various dependencies amang 

these blocks are discu5sed: 

Finally, Chapter 6 outlines a test design methodology 

for protocols. Parameter variations for interaction 

primitives are considered as the main tool for generating 

test sequences. This variation is guided by a dependency 

classification and the structure of the blods. The 

object ives 0 f the dit ferent te,st ca tegor i es, and mul t iple 

connec t i on. tests are di scussed. 
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4.Transformations on Protocol ~ecification 

In this chapter, we propose various transformations on 
-

the transition types of a Pfotocol specification in order to 

obtain the transitions in a form which has input primitives 
r' 

(optional) frok external interaction points, an action with 

a single path possibly containing one or more output 

stat~ments to the external interaction points and a 

predicate modi fied te handle path conditions. Each 

transition in this form i6 called a normal form transition. 

The transformations leading to normal form transitions 

can be don-e în two phases: In Phase 1; syntactic 

transformations are applied ta FDT constructs [FDT 84]. 

Symbolic' exè"'cution i s used to enumerate pa ths ana f ind pa th 

conditions in the BEGIN black. In Phase 2, modules are 
, 

combined by combining the transitions with interactions. 
/" 

Finally, we di scuss spontaneous transitions and 

nondeterminism in protocel specifications. 

!.!.Spmpls Transition Types 

The transformations of this chapter will be explained 

using an example protocol specification. This protocol has 

two modules called modulel and module2 and the substructure 

of the protocol is shown in Figure 4.1~ 

Two example transition types of this specification are 
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9iven in Figure 4.2. CONNECT_req over the interaction point 

called chanl in Figure 4.1. is an input primitive, A, Band 

C are expressions involving module variables and the input 

pri~itive parametersr 51 and 52 9re .blocks of assignment 
. ) 

statements, and module2.eventl is an output statement to 

module2. FROM and TC clauses of 5ubgroup B FDT are used to 

specify present and next major state values, respectively. 

The second transition type given in Figure 4.2. has eventl 

which cano be rece i ved f rom the fi r st module as an input 

primitive with parameters called data_unit and length. S3 

represents a block of. stateme~1ts and CONNECT ind i5 an 

output, -to an external e~t i ty aver cha-n2. 

In the first transition type of Figure 4.2, the BEGH, 

block has two paths (because of the "if" statement) and it 

has an inter-module output statement which cannot be 

directly observed.ftom external interaction points. 

4.1.l.Normal Form Transitions - --

The resulting normal form trans~tions obtained by the 

transformations of this chapter to transition types like the 

ones in Figur,:_ 4.2 have the following fotm: 

"'-
) 

s 
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Normal Form Transition Block: 

ANY list 1 
[WHEN ini) 1] 
PROVIDED pred l 
BEGIN -

action 1 

END 

ANY list n­
[WHEN inp n] 
PROVIDED. pred n 
BEGIN -

action n 

END 

end Normal Form Transition Block; 
~" 

,/' " 

where [WHEN inp i]O shows that sorne normal form transi tions , -
(those.corresponding to spontaneous transition types) do not 

have WREN clauses. 

In general, there are more normal fOrm transitions 

than transition types in the original specification since . ,! 
" 

the paths in the ,transition types are enumerated., In order 

to obtain a finlte number of normal form transitions the 

number of paths ,in any BEGIN block ishould be finite. Thus, 

we assume that no BEGIN block in the protocol specification 
1 I~ r'" 

contains loops with variable bcunds. 
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c h an 1 

Module 1 

Module .., 
~ 

chan 2 
Figure !.l.~ Protocol Entity with Two Modules 

(in modulel) 

\. ',-

WHEN chanl.CONNECT req 
FROM idle -
PROVIDED A and (B or C) 
TO connecting 
BEGIN 

if 0 then 51 
else 52;. . 

rnodule2.eventl(CONNECT_req,X+2) 

END; 

(in module2) 

WHEN modulel.eventl(data unit,lengt·h) 
PROVIDED data uni t = CONNECT_req and le,ngth <'" 10 
BEGIN 

S3; 
chan2.CONNECT ind 

END; 

Figure 4.2.Two Sample Transitlon Types in fB! 
J 

J 

( 
.\. 

~'" 

" 

, '\ 

" 

" ) 
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4.2.Transformations on ~DT Constructs (Phase 1) 

In Phase If we apply 
./J ,~ • 

certaIn transformations on 

var ious constructs of tne FDT. Fi rst' . FROM/TO clauses ,are 

el imi na ted, then cond i t"iona l sta temerit..s,·"i l) the BEG! N bloc k 

are removed. These transformat~ons a are done separately on 

al'l trans i t i on types of aIl the modules. 

4.2.1.FROM/TO Clauses 

The FROM clause is removed and an equality relation on 

the major state variable is added to the PROVIDED clause of 

the transition type as a conjuction. As an examRle, the FROM 
\ 

clause in Figure 4.2 transforms to: 

WHEN chanl.CONNECT_req 

PROVIDED state=idle and A and (B or C) 

TO cennecting 

BEGIN 

if D then SI 

The TO clause is removed and replaced by an assignment 

to the major state variable added te the BEGIN block. As, an 

example, the TO clause of Figure 4.2. is removed as 

follows: 
\ 

'. 
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WHEN chanl.CONNECT_req 

PROVIDED state=idle and A and (B or cl 

BEGIN 

~tate:=connecting; 

State expressions in the FROM clause such as 

FROM state <>" cio'sed gene~a tes one or more normal 

form transitions correspording to one transition type for 

every possible present state valùe (state values other than 

"closed" in the above example). 

4.2.2.BEGIN block - - -

To remove conditional statements and local procedure 

calls we adapt the techniques from symbolic execution of 

sequential programs [CIRi 81]. The idea 1S to create a new 

transition for every distinct path in the BEGIN black and to 

modify the PROVIDED clauses ,-to reflect the conditions 

imposed from taking these paths. 

Local procedure calls ln the BEGIN • block are 

translated by symbolically executing the local procedure 

body if the local proc~dure body i5 completely specified. No 

transformation is done on incompletely specified local 

procedures. We assume that the specified procedures are not 

re~ursive and do not contain any loops with variable bounds. 
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As an example, we continue with transforming Figure 

4.2 to remove the IF statement in the first transition type: 

WHEN chanl.CONNECT req 
PROVIDED state=idlë and A and (B or C) and D 
BEGIN 

state:=connecting; 
SI; 

WHEN chanl.CONNECT reg 
PROVIDED state=idlë and A and (B or C) and ~D 
BEGIN 

state:=connecting; 
S2; ',; 

, 

'1 

The WITH ~lau5e~' in the BEGIN block (as in Pascal) is 

eliminated by concatena~ing the record 
Il name with the proper 

variable names. The CASE statement is removed ~n a manner 

similar to the IF statement above, by generating a normal 

form transition for each case. 

The FOR and WHILE loop 5tatements are eliminated by 

repeating the body of the loop for every i~dex variable 

value. If the loop index variable refers ta the conne~tion 
" 

arrays (5ee Séction 4.2.3 below} the loop is'eliminated by 

including the index variable in the list of variables of the 

ANY clause. In this case no modification i5 done to the loop 

body except possibly for the modifications introduced ta 

remove the WITH statement. 
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!.~.1.ANY Clause and WITH Statement --.-

As discussed' in Chapter l, ln a transition type, an 

ANY clause of Subgroup B· FDT either introduces local 

variables or index variables to the connection arrays (the 

array name may appear in the WITH statement which fbllows 

the ANY clause). 

Local variables introduced by the ANY clause are made 

global in Phase land removed from the ANY clause (if the 

resulting ANY clause is emp~y, the ANY clause can therefore 

. be elimi na ted) . 1 n sorne cases f, the local var iable may be of 

enumeration type and removing- 'i t requires that the 

transition type generates one normal form transition for 

each element in the, enumera t ion type. The WITH statement 

associated with 
r 

the ANY' clause "i5 removed in a manner 

similar to the WITH statement of'the BEGIN~ block. 

'! 
As far as the index variables to the connection arrays 

are concerned, if only a single connection is considered, 

the ANY clause can be completely removed. But this is not 

desirable since removing ANYS also removes the tran~ition 

types in which two index variables of the same type are used 

(if any). Thus we consider the number of connections ,as a 

test system pararneter (see Section 6.2.1) arid do not remove 

the ANYs which contain index variables for connection 

arrays. 

.. 

, . 
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!.l.Combining Modules (Phase Il) 

The modules within a specification of a protocol ~ay 

communicate with other modules in the spec if lca t'ion 

generating an internaI interaction in an 'output statement of 

their BEGIN block. It is assumed that the referred modules 

have transition types corresponding to these interactions. 

Intermodule communication may involve parameter passing. 

Since we are in~erested in test case g~neration and 

since only the events at the external interaction points can 

be obser~ed, the interactions, referring to intermodule 

communication should be removed. Also, we apsume 

"rendezvous" type communi~ation between the modules of the , 

protocol enti ty. 

If the transition type corresponding to an inte~nal 

input does not cont~in any internaI output, the transition 

type can simply be removed by substituting its BEGIN block 

in all the statements that "calI" the interaction uSlng 

symbolic replacements for parameter values (if anY). Also, 

the PROVIDED clause of, the transition type is added to the 

PROVIDED clauses of the normal form transitions that 'contain 

intermodule "calls" as a conjunction, possibly with suitable 

symbolic replacements,obtained through symbolic execution. 

In general, a normal form transition corresponding to , 
an internaI input can also contaiii internaI output 

statements to other modules • ., Thus, a gi~en lntermodule' 

" 
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communication can be modelled as a tree (called intermodule 

" communication tree or IeT in short) with nodes beingnormal 

farm transitions involved a~d arcs being the eventi referred 

in each transition and the root being the normal form 

transition initiating the' communication. We assume that in 

none of the paths from the root ta the leaves of the TeT an 

event i 5 
, ~~, 

refen;:,ed--t~ more than once, thus a recursi ve 

algori thm can be found to remove the intermodule 

communication. '-A two step procedure will be given to 

combine modules: 

Step 1 forms list structures of a11 the normal form 

transitions of a ,given event, Le., it forms for every 

module the lists of normal form transitions corresponding to 

each input event. 

Step 2 processes BEGIN blacks of the normal form 

transitions. Tt removes the intermodule output statements 

with textual 

intermodule 

substitutions as described above. 

output statement 'encountered dur,ing 

Any 

the 

processing of the BEGIN blacks is removed in the same , 
~ 

,manner, thus p~rforming an inorder traversaI of the -rcT. If 
~ . 

there exists more than .one normal form transition 

corresponding to a given event, the list formed in Step l is 

used to generate different normal form transitIons, one for 
, 

each normal form transition in the list, until aIl the lists 

of communicating modules are exhausted. 

Tpe algorithm of Step 2 ls outlined in Algorithm 4.1, 

/ 
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listed in Appendix D. The algorithm uses the foll~wing 

marking scheme to handle the case where more than one normal 

form transition exists for a given. event. Anode i5 marked 

when it is com~letely processed. In particular, anode is 
; 

marked whèn its normal form transition(s) is processed and 

either it contains no , output event, or aIl node~ 

corresponding to the output event of the normal form 
-: 

transition are processed. The marking is achieved by using 

the stack called event headers. -

'1 n Step 2 :Ii1e assume tha,t in a given transition at most 

one intermodule output stateÏnent can occur. The algorithm 

works also for more than one intermodu~e output statement if 

there is only one normal form transition for each event. 

This restriction can be removed by using more complicated 

data structures •. 

As an example, Algorithm 4.1. is applied to combine 

the two modules of Figure 4.1. The Process event routine is 

called for the two normal iorm transitions of module1 since 

~\ they aIl contain intermodule output state~ents. The first 

elementary expression in the PROVIDED clause of the normal 

form ; tr/insi tion~ of module2 is removed by the' routine 
'" 

Process event since it can 'be satisfied by a parameter 

replacement. The second relation is added to the PROVIDED 

clauses as a _ corrjunction aftet parameter replacements. A 

complete .- 1 i st ing of the normal form transitions 

corresponding to Figure 4.2. is given in Figure 4.3. 

. . 
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Normal Form Transitions Block 

WHEN chanl.CONNECT req 
PROVIDED state=idlé and A and (B or C) 

and D and (X<=8) 
BEGIN 

END 

state := connecting 
51; 
53; 
chan2.CONNECT ind 

WHEN chanl.CONNECT req 
PROVIDED state=idle and A and (B or C) 

and ~D and (X<=8) 
BEGIN 

state := connecting; 
52.; 
53 ; 
chan2.CONNECT ind 

end Normal Fo~m Transition Block; 

Figure 4.3.Normal form ~ransitions of Figure 4.2. 

!.!.5pontaneous Transitions 

For testing purposes, spontaneous transitions have 
. , 

similar problems.as intermodule output statements since they 

cannot be controlled by external input pri~itives, but they 

can be observed if they contain an output statement. 

--~ • '"'f 
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!.!.l.Nondetermini§~ in Protocol Specifications 

Nondeterminism'is expressed using WHEN and PROVIDED 

clauses of a protocol specification in Subgroup B FDT. In a 

given major state of the machine, for a given interaction, 

there may be more than one possible WHEN transition, i.e.', 

PROVIDED clauses of the same interaction may not be mutually 

exclusive. In addition, spontaneous transitions are an 
1 

important tool te specify nondeterminism since a spontaneous 

transition may be executed any time when its PROVIDED clause 

is satisfied. ~hus the PROVIDED clause of a spontaneous 

transition may not be mutually exclusive with the PROVIDED 

clauses of other transitions (WHEN or spontaneous). [JaBo 

83} contains a detailed discussion on nondeterminism in 

protocol specifications. 

!.!.~.Removing Spontaneous Transitions 

We have considered the option of removing spontaneous 

transitions by, combining them with WHEN transitions.This 

option has been r~jected foi the following reasons: 

1) Removing spontaneous transitions removes most of the 

~1ndeterminism in a' protocol specification by making 

~spontaneous transitions eligible only after external 

interactions are received.' 

2) Combining spontaneeus transitions with WHEN transitions 
<f 

~. makes it impossible te express the repeated execution of a . 

, , 

1, 
1 
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spon taneous tr'ans i t ion si nce loops aie not allowed in normal 

form transitions. 

!.!.l.Nondeterminism and Protocol Testing 

In a 9iven test in order to evaluate the responses of 

an impleme~tation correctly, it is necessary ta apply 

deterministic inputs. Nondeterminism in WHEN transitions can 

be easily remaved by applying ta the implementation unique 

inputs in a majDr state. But this sol~tion is no longer 

valid for spontaneous transitions. Thus tests which invalve 

spontaneous transitions should be designed adaptively to 

receive any output fram spantaneaus transitions and respand 

according'"ly. 

6 • \ 

4.5.Conservatlon of the Semantics 

It should be clear that the transformations of this 

section preserve the semantics 'of the original transition 

types. 

Phase 1 transformations remove multiple paths in a 
r~'r 

given transition type by generating a normal form transition 

for each,path. We have found the assumption of no loops in 

a BEGIN black with variable indexes to be satisfied for the 

protocol spec i f ica t ions 'we cons idered. Thus Phase 1 

transformations preserve the semantics in the specifica~ion./ 
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Incompleteness in the specification is preserved in terms of 

local procedure names\ corresponding to unspecified local 

procedures. 

Phase 2 transformatibns combine modules by symbolic 

replacements ~'af output statements with their tran~tion 
~\>'I 

types. Since loopé are removed in Phase l, Phase 2 assumes 

single path normal form transitions. Similar ,to Phase 1 

above we have Jound the assumption of no (indirect) 

recursrve intermodule. "calls" to be satisfied for the 

protocol specifJcations we considered. • 
Phase 2 'Thus, 

transformatio'ns conserve the semantics of the specification 

by obtainirig'a product of the extended finite state machines 

of protocol modules. 

Normal form transitions obtained from a protocol 

specification' can be ,seen to completely. represent the 

protocol specification hence in the following chapters of 
a 

Part 2 we use only normal form transitions for further 

discussion. 

Two trans i tion types of éY Subgro\,lp B FDT spec i ficat ion 

of the Class 2 TP [ISO 82b) are given in Appendix A. Th~'<~ 

first transition type is a spontaneous transition for the 

decoding function of' the transport pr~tocol. Only the part 

related vith a particular input primi;i ve (CR) is 



69 

1 
" 

considered, the rest of the transition type is 'ignore~:L The 

second transition type has an input·primitive from the 

interaction point called TS. Both transitions contain 

various intermodule output state~ents such as: 

ATP.erro~_indication, ATP.forward and Map.forward: 

The transition types corresponding to the ATP.forward and 

Map.forward are also given in Appendix A. Also, the first 

transition type refers to various local procedures such as: 

etc. The 

completely specifie? local procedures are listed in Appendix 
,>1' 

A. 

The normal form transitions obtained from applying the 

two phases of transformations are given in Appendix B. ' They 

are numbered for identification purposes. More discussion on 

the Class 2 TP normal form transitions follows in Chapter 8 • . 
r 
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5.GRAPH REPRESENTATIONS OF NORMAL FORM TRANSITIONS 

In th i s chapter we ident Hy two types of flow in a 

protocol specification: 

flo,", of control ,as 
" 

the value (s) of the major. state 

variable (5) (one \ for each module of the protocQ~ entity) 

f changes, and 

- flo,", of data as the input primitive parameters change the 

val'ues of the protocol variables and they in turn1-àetermine 

the output primitive parameters. 

We model these flows as graphs and calI them Control 

Graph (CG) and Data Flow Graph (DFG), respectively. After 

introducing these graphs, we will discuss decomposition of 

each graph, Le., transition tours for CG and blocks for 

DFG. For the partitioning of 
f 

parameters of interaction ~mitives 
the DFG into blocks, 

(input and output) and 

protocol variables are considered as distinct nodes, and the 

flow over each variable determines the most ref ined 

partition. Such a partition is found algorithmically for any 

given DFG. A heuristic procedure which requîres user 

interaction is given to obtain less refined partitions of 

the DFG by combinirig the blacks. 

D 
The CG and DFG of a protocol specification are helpful 

in validating the design of the protocol as will be 

discussed last in ~is chapter. 

\ 
Due to ils r~ve simplicity, the Class 0 Transport' 

1 
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Protoc01 (TP) is used as an example in discussing these two 

graphs. A specification of Class 0 TP can be found in (ISO 

82 ] ~ Normal form transi t ions obtained by applying the 

procedure in Chapter 4 to Class 0 "TP specification are given 

in Appendix C. The normal form transitions in Appendix C are 

identified (:as P1 io PZ, ••• ,P19 to be referred later in the 

graphs. 

1 n the di scuss ion on protocol des i gn valida t ~on, Class 

2 TP specification [ISO 82b] is u$ed as an example. The 

normal for~ tranôitions of the Class' 2 TP are documented in 
." 

[Sarikaya 84J. 

5.1. Control Graph 

The CG (also known as Finite State Machine model of 

the protocol) can be constructed from' the normal ferm 

transi tions as follews: 

The nodes represent the values (tuples) the major 

sta te var iable (s) can take.. Each normal form transition is 

represented as an arc in this graph. The arc is draw~ from 

the state in the provided ~lause to the next state specified 

in the begin bloc k, _and labelled with the ident i fier of the 

normal form transition. A CG for ·the Class 0 TP is given in 

Figure 5.1. 

The labels in the CG are short-hand notations for 
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input / output 

as used in the FSMs of [SaBo 84]. In here, "input" stands 

for the WHEN clause (if any) and the &ROVIDED claùsé (with 
,/ 

the expression on· major state variable (5) removed.)" and 

"output" stands for any output statements to the external ' 

entities in the BEGIN block of the normal form transition. 

For sorne protocols, a normal form transition is 

represented by more than on'e arc in the CG. This happens 

when the present and oex~ state values of the normal form 

transition are ~ ·specified only for one of the module state 

variable, making the normal form transition eligible for aIl 

values of other module's state variables. 
\ 

The control graph models the part of the no;mal form ( 

transitions that are related to the state changes of a given 1 
connection for èach module of the protocol entity. Normal 

form transitions referring to more than one connection 

cannot be represented in the CG. This happens when normal 

form transitions contain ANY clauses with more than one 

index variable of the same type, as discussed in Chapter 4. 

Therefore the CG ignores ANY clauses in the normal form 
~ .. 
traflsltlons. 

~.!.!. Subtours 2! ~ fQ 

Taking the identifiers of the transitions in the CG as 

inputs~~o the FSM, it is possible to generate transition 

:. 
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tours for any control grapK 'since'the transition tour method 

does not requi re any spec ial property of the machine as 

discussed in Chapter 2. In what follows we assume that the 

initial state of the CG is also the final states This 

assumpti.on is realistic since, for a protocol, the initial 

state represents the idle state of a connections ·Thus, a 

transition tour of the CG can be divided into smaller tour~, 

each, start i ng and ending in the ini t ial state. "These 

subdivisions of a transition tour will be called subtours. 

It is possible to use a notation which has been used 

for regular expressions [Koha~i 78J to represent subtours. 

In this notation, a transition which is labelled by a list 

PI,P2, ••• Pn of identifiers is represented as 

Pl + P2 + ••• +- Pn 

instead of repeating the subtour for each of the choices 

above. Also,- a transition labelled as PI,P2, •.. Pn which is 

a self-loop [Kohavi 78} i5 represented as: 

(Pl +- ~2 + ... * pn) 

Note that in a CG, there can be loops around more than one 

state not involving the initial state, these loops are 

represented similarly as the self-loops. 

Table 

loops. 

Subtours of 

5.1, there 

Figure 5.1 are listed in Table 5.1. In 

are self-loops around one state but no 

" 
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~.l.~.Control Functions 

In communica t i on protocols, a sequençe of normal form 

transitions occurring in the subtours represent distinct 

control phases, i.e., major ,state variable changes, such as 

connection establishment, data transfer, connection freeing, 
{ 

etc. Each subtour 10i'Jt~ins- a number of cont rol phases. More 

than one subtour ~<~ have the same pat ter:n of control 
\ 

phases. _\ 
\ 

\ 

We def ine a control function of a protocol as a 

control phase of the protocol." A subtour may conta in a 

sequence of control functions and the same sequence of 

control phases may occur in two di f f erent subtours. If a11 

the normal fo~m tranii t ions are' covered, this guaranteès 
1 

1 

complete coverage cif the control functions but not 

necessar i ly a11 the subtours. More di scussi on on test 

coverage fo11ows in Section 6.1.3. 

From Table 5.1, we identify the following control 

functions for the C1ass 0 TP, for each of the fi ve subtours 

in top-to-bottom order: 

- User-initiated' connection establishment, data transfer, 

freeing -"".;::.~:::-_.----~ 
---~ ..... -

- Peer-initiated connection estab~i shment, data transfer, 
1 

freeing 

- CalI refusaI by peer 

- CalI .refusal by user 

- CalI refusaI br protocol 

\ 
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5.1.3.0rder of Transitions in _a Selt-Ioop 
- - - 1 -

Normal form transitions which' do not .modify major 
\ -

state_~_~iable (s) are",. repre~ented as self-loops in the CG. 
l ' 

If there exi st s more than on~ normal farm transi t ion as a 
. 

self-Ioop in a' 9iven state of the CG, the o:rder of exeèutiol'l 

o( these normal form trans i tiens may become important. The 
.,~~ \ 

C." If*" notation used to represent self-loops above suggests 

that the nb~iIIal form transi tions in the list may be execù{ed 

any number of timeS1in any order. This is not'necessari1Y~,~ 
'sinee the order· of execut ion of norma~ f orm transi tians . \ , 
depends on: 

~ 1 

1 

a) the faet that the input primi t ive mentioned in ,the 
'1 

WH'EN 

1 'clause of a transition is received, and 

b) the predicate, l.e., PROVIDED clause (which may contain 

expressions on protoeol variables other than major sta e 
variable(s» is satisfied for~ any spontaneous or WHE 

transition. \ 

Since a CG does not show the effeets of protocol 
. 
variables 'other than major state variable(s), the order of 

... 
normal f orm transi ti ons in a sel f -loop can not be dete~rmi ned 

from the CG. The data flow graph which 'Ii Il be disfussed 

next should be, consul ted for thi s purpese. 

r •• 

\ 
\ 

\ 

( "f 

\ 
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* 
Pl( P6+P7) (P13+P14+Pl5+P16) {P17+P18+P19} 

* 
(P3 +P4 ) PlO (P13+P14+P15+Pl6) (Pl7 +P18+P19) 

Pl (P8+P9) 

( P 3 + P 4) ( PlI +~;J. 2 ) 

P2+P5 . ' . 
~ 

Table ~ .1.. Subtours of the Control Graph for Class 0 TP , ::;-- ..,.. -. 

\ 
\ 

\ 
\ 

t' ' ù 
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l, 

1 
( 

f' 



\ 

;. 

( 

\ 
\ 

.1' 

Pll,P12 
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P2, PS 

P17,P18,P19 

P13.P14.P15.P16 

Figure ~.l. Control Graph .2! Class Q !f 

r 
- ....... r 

P6, P7 
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5.2. Data Flow Graph 

A data' flow graph models the f low. of information in a 

protocol specification, excluding major state changes. A 

DFG con tains four types of nodes: I-nodes to repr~sent input 

primitives, D-nodes te> represent protôcol variables and 

constants, O-noQes to represent output primi tives and 

F-nodes to represent certain functions 
, 

on data. I-and 

O-nodes are shown in oval, D-nodes in rectangular and 

F-nodes in crossed-circular shapes to identify each of them. 

1(1 each node, the name referred in the specification is 

written. The 1- or Q-nodes take the following form: 

r . name of the primi ti ve 

..; 

, 

\ 
par! par2 par3 ... parN 

where parl,par2, ••• parN are the paramete'rs of the primitive. 

To represent fields of 'recordS (i.e., Pascal records) in the 

1- or O-nodes or in D-nodes, the notation used i5: 

name of the record 

f ieldl field2 ... fieldN 

where fi eldi (i-l, ... , n) are the fields of the record. 

In protocol specifications that contain connection' 
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arrays, the D-nodes are prefixed 'wi th the array name which . , 
i$ index~d by ~he index variable in the ANY, clause. If the 

,.j • ' 
ANY clause contfins more than one index var iable of the 'same 

type, data fl/~ in these normal form transitions can easily 

be , representrd by replic;.ilting the D-nodes with different 
, . , 

index variat;âe names.' 

1 

/ 

2.~.!. Formation of'the Arcs 

Arcs in the DFG are used to represent the flow as 

.der,i ved f rom the ac t ion (BEGI N bloc k ) of the normal form 

transitions. The effec t . of the predica tes, ,i. e., the 

PROVIDED clausè will he 
1 )' • 

considered 'when we di scuss 

dependencies in Chapter 6. Simple assignment statements in 

the BEGIN block are shown' by arcs directed from the source 

nodes . to the destination nodes. The outpu't primitive 

parameter values directly carried out from input primitive 

parameter val ues -.a ré modelled as simple assignment 

statements. 

Each arc in the DFG i s labelled wi th the identifier of 

the normal form transition. These identifiers represent the 

pre-condi tian (WHEN ahd PROVIDED clauses) of the normal form 

transi t ions and the actions are modeled by the DFG (the 

state after execution of the action i5 called post-condition 

). Since a given BEGIN block can contain many 5tatements 

there can exist more - than one arc labelled v~th the same 

{J 
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~1 

iden tif ie r. Also, the same assignij\ent used in more than one 

normal forrn transi t ion can be represen ted a sas ingle arc 

carrying more than one label. 

If the BEGIN black of a normal form transition 
1 

contains no assignment staternents, an arc is created from 

the input primitive to the output primitive. . \ 

Three types of F-nodes are created: 

~ .!.) These n<;,des represent. function c~lls which return a 

value and whose body is not spècified, i.e., the value 

ret urned to be determined by the implementation. In the 

transformations phase, body replacement can not be done for 

the se procedures, thus they are trea ted li ke a ssignment 

sta tement s. 1 n the F-node, parameters of the procedure or 

function call bec orne the incoming arcs and an ou~goin9 arc 
" 1 

to the va r iable oassigned i s crea ted. The F-node ca rries the 

name of the procedure. . A DFG contains a F-node wi th the 
, 

same name for each procedure calI with different pararneter 
." 

list. 

For example, an assignment statement li ke: 

remote T addr: =determine_T_addr{ remote_N_addr • 

. CR.calling_addr) 

is represented as: 
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) 

CR' 

... 

remote N'addr remote T addr 

~ 2) These nodes represent ass i<jnment sta'b!!"ments whose 
o 

wh ich becomes 'a right han'd side is not spècified. Ji... F-node 
1 

value source is introduced and an outgoing arc from this' 

node to the destination variable ,men'tioned in the statemerlt 

i 5 created. 
. , 

The ,F-node ~s labelled wi-th "assi gn_l)a,me" where 
, 

"name" is the destination variable name. For example: t'he, 

assignment statement 

local reference 

i5 represented in the DFG as 

:= . . . . , 

, 
\ 
~ 

1 
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local_re ference 

A F-·node of the same type ean be created for some 
( 

local procedures whose input parameters ~re implicit in its 
. , 

name, e.g., a v.ariable initialization As for procedure. 
b 
, 

F-nodes of Type l, th,ese nodes: can - be replicated for each 

variable ini tialized by the .same procedure. 

The F-nodes of Type land 2 are abstracted 

representations of the incompleteness in tl;le specification. 

rt should be noted that the test designer should know the 

range of values these 
• c; 

asslgn to the D-nodes, nodes can 

possibly by consulting the informaI specification of the 

protocol. :1 
These oodes ~ represent assignment statements 

containing an arithmetic or Boolèan expression. A F-node is , 
represented with i ncoming arcs from the oper;-ands of the 

expression and with an outgo,ing . 
arc to the assigned 

-
viiria51e. The F-node . contains labels associated with the 

~ 

incoming .a.res indicating the operators applied to the 

variables. For instance, the assignment statement: 



1 
1 

, 
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i s represented as: 
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TR fIC TR + 1 

.. 

1 

S imilar to F-node9 of types 1 and 2, constant D-nodes 

'( created' for constants occuring in the actions of the normal 

form transi-t-i-oî'iS)ëan' be replicated when the same constant 

is assigned to more _than one node. 

, Whetl constructing a DFG, the assignment statements to 

the ma j or sta te var iable (5) are ignored. The labels on the 

arcs of the DFG can be used to refer to the subtours that 
-

include the normal f'orm transitions. Also, the labels 
! -

represent the pi\e~condifions, 'i.e., ,the PROVIDED, clauses of 

the normal form transitions.- A DFG for the Class 0 TP is 

given in Figure 5.2. 

o 
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5.3.Partitioni'ng the ~ .E.!2!! Graph 
--; -

, . 
1 

, 1 

, \ •. t<; 

In this section, we consider 
. ~ 

each parameter (or fleld 

of the parameter) of the input and. output prim~tives as 

separate 1-· and 
1 

O-nodes respectively. The name of the node 

is obtained by prefixing the parameter name with the 

pr imi t i ve name. Similarly, fields of protoeol variables of 

type record are considered as separate D~nodes. 

Spli t t i ng of 1 -, 0-, and D-nodes into' the i r component 

fields facilitates partitioning of the complex data flow in 

the DFG. In the rema~ning part of thi s sect ion we introduce 

the concept of a block of the DFG (the blocks 'of a DFG 

represent different functions), and then give an algorithlJ1/ 

~ ·to ,find disjoint blocks for a given DFG. 

" 

A block is a collection of nodes of types 1-, F-, D-, 

and o. Thus a block Bi of a DFG can be detined by the 

fOllowing, four sets: the set of I-nodes, SI~, the set of 

F-nodes, SPN, the set of D-nodes, SDN, and the set of 
/ 

"O-nodes, ,SON that it contains. We partit~on the DFG into 

di ~joint blocks BI, B2, ••• , Bn. 
! 

Note that SFN 
/ 

and SDN of 

some blocks may contain F- and (constan,) D-nodes carrying 

replicatlon of some F- ànd D-the same names because of the . - ' 

~ nodes during the construction. of the DFG, as explairied in 
, 

Sect.,ion 5.2.1. We assume that thesé F- and D- nodes are 

-- --~---- -----------------------

.. 
-------~ 
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1 

di st inguished as di f f erent nodes. ) 

AlI the ineoming arcs to D-, . F'- and C-nodes and aIl 

tge outgolng arcs f rom l -nodes} belong to the block whieh 
/ 
contains the node. Sorne of the outgoin9 arcs from D- 0; 

F-nodes may be shared among blocks. The nodes associated 

wi th the incolI\ing" arcs to a D-nodë belong to the bloek 

èonta in i ng the D-no'd~. '. If the value of the' D-node flows to 

tne O-nodes, they are included in the block. If the value is 

needed 
... 

Typé 1 or F-node of by an 3 and the F-node has 

incoming arcs .from other D-nodes, a separate block is 

created for' the F-node. Di fferent ~ blocks are created for 

each ,Q-node assigned directly by I.-nodes or by F-nodes which 

in turn have incoming arcs from the l -nodes., U,sing these 

ideas, an algorithm to' part,ition a DFG into (relatively 

small) disjoint blocks i5.given in Algorithm 5.1 listed in 
~ .,. ""'r"'( 

Appendix E. The algor i thm uses the following sets in 

finding the blorkS: 

Definition 1. - .tror each node in, the DFG we define: 
Set of Input l -Nod~ ( SIIN i-B- s-hort) i s the set of l -nodes 
having outgoing arcs'to,the node'under consideration. 
Set of Input F Nodes (SIlI'N) i s' the set of F-nodes having 
outgoing arès to the node. ''-... _, ~ ___ ! . 

Set of Input D-Nodes (SION) -'is the set of D-nodes J1~n9 
outgoing arcs to the node. , 

Note that for l -nodes and constant, D-nodes these sêts are 
. 

empty. Similarly, SOON, SOFN and SOON are defined to be the -.. 
, 1 

sèt,s of ,_~utput D-,F-, and O-n1:>des that have .... ncomin9, ar-cs 

, 

..... ~ " " 
_o.r_igi~a't,ing f-r~ the no'de under ~onsideration. For Q-node~ -

\ '" 
these sets are e ty.. The above s,ets of nodes def ine the' "" 

\ -.. 
\ 
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structurf! of the DFG, but not the labels of the arcs. 

Definition 2. Set of In.put 
labels Le., identifiers of 
incoming arcs to the node in 
Set of Output Labels ( SOL 
outgoing arcs from the node. 

) 

Labels ( SIL ) is the 
normal form transi tions 
considerat içn, 
) is the set of labels 

set of 
of the 

of the 

The above definitions can be extended to apply to more 

,than one node: 
\ , 

SIIN(Ol,D2, ••• ,Dn) • SIIN(Dl) u SIIN(D2) u ••• u SIIN(Dn) 

Similarly for S~FN(Dl,D2/ ••• ,Dn), SIDN(D1,02, ••• ,Dn), etc •• 

Algor i thm 5.1 . processes al1 var iable D-nodes in the 

DFG by first creating a bl~ck for each unprocessed D-node. 

For any D-node in the SON of the, ,bloSk, the algori thm 

includes all the nodes in SIIN, SIFN, SIDN and SOON into its . 
sets SIN, SFN;" SDij, and SON, respeetive1y. ''-For any O-node 

in the SON of the block, the a1goti thm includes all the 
\ 

nodès in SIIN, S\FN , and SION into its sets SIN, SFN and SDN, 
\ , \ 

respectively. For, any F-node in the SFN of the block, the 
\ 
\ 

SIDN a'nd algori thm includes 'the constant D-nodes in all 
,. 

nodes in SIIN into its, sets SDN and SIN, respectively. The 

above procedure i s repeated for the newly added D-nodes to 

the block. 

Since there can be many'levels of p-nodes before a 

D-node_~)s assi,gned oto an O-node, and since F-nodes' can have 

more. than on.e D-node in their SIDN, the nodes in SOFN of 

each D-node in the block receive special attention in 

Algori thm 5.1. If SIDN of each F-node iri SOFN includes on1y, 

variable D-nodes of the block, the p-node is added to SFN, • 

/ 



. \ 

.. 

, t, 

( 

90 

aJ1d SOON of the F-node is added to SON of the block. A 

simiiàr process is applied to the p-nodes in the SFN of the - ' -
block whose 

\.' . 
SION lS 'empty and ~he SIFN conta i ns the nodes 

that a~e already included in -the SFN of the block • 

, 
Final1y A1gorithm /5.1 continues - to 

l 
form blocks 

containing no D-nodes. These blocks may conta,in only I- and 

O~<- nodes when input primi ti ve parameters are di rectly 

assigned 
, 

contairiing 

to o~tPut primiti~e~ 

only F,- and 0- nodes 

parameters. The blocks 

and (possibly) constant 

~-nodes are created,- by constant assignments to the O-nodes 

or thro~gh F-r'lodes which are. not included in any of ~he 

blocks created,above. 

AS an exa~~1 we apply this algorithm to 

flow graph 'ln Figure"....6~ 3 which represents a part of 
~ 

for Class 2 TP [ISO 82b) "which will be discussed in 

8. Algorithm 5.1 

th~ 'DFG ~n Figure 

generates three blocks (BI, B2, 
"- . 
" 

5.3, two for the two g-nodes and 
, 

the data 

the DPG 

Cha.pter 

B3) for 

one for 

the F-nQde of "determine add addr""> These bl'ocks are -
de'scribed by thè following s'ets: 

'\. ' ~ 

SIN(B1)={N CONNECT ind.from_N~addr} 
SDN (BI) = {rëmote N iddr} 

~SFN(Bl).{assi9n-rëmote N add.r} 
SON(Bl)={N_CONNËCT_req7to_N_addr} 

! 
j 

.,. 

'::' 
-- ----- - --~---- -------- -- - -- - -

., 
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SIN(B2).{CR.callin9_addr,T_CONNECT_req.to_T_addrJ 
-SDN (B2 ). { rem9'te or' T _ addr }. , 
SFN(B2)-{determlne T addrJ 
SON ( B 2 ) -(6 - -. ' 

1 

'SIN(B3 )-" 
SDN(B3)-0 , 
SFN(B3)-{determine add aQdr) , ' 
SON (B3) .{CR,. called:=adqr, C~,..callect_addr} 

N_CONNEct_in 
from_N_addr 

, 

, 

Figure ~.1~è ~ of the DFG i2!: Class ~ !!! 

Applying the algtfri,thm to the DFG ~f the entire Class 

o TP given in'Figure 5.2 produces the blocks shown in dotted 

. lines in Figure 5.4. 

/ 

" 

. ' 
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S.4.Functional Pgrtitioning 2f the ~ 

The partition obtained by Algorithm 5.1 is - purely 
...; 

based on the structure of the DFG, i.e., interconnection of 

the various nodes determines the resu~tin~ blocks. The level 

of refinement of the blocks(~btained from Algorithm 5.1 is 
t 

not appropriate for testing purposes Bince a very, high 

number of blocks can be obtained. A less refined part~tion 

of the DFG can be obtained by combining Isome of the blocks. 

We give in the following a heuristic procedure for such a 

combinat ion. Th i s procedure c'ons iders the sèmant ics of 1-

D- and 0- nodes and SIL (DefinLtion 2) of the blocks. In 

sorne cases, the user can specify the blocks to be combined •. 
. -

lt should be noted that the following procedure is 

based on our experience with OSI protocols of layers up to 

4; for hi gher layers or other ,types of protocols the 

procedure may need sorne modifications • 

. 
Block Merging Procedure 

The procedure contains 6 steps. We start with the 

blocks obtained from J!.lgori thm 5.1. 1(} Each round of 
~ ç; .... 

application of the 6 steps results in a less' r~fined 

partition of the DFGA The process is stopped when a 

partition is obtained suéh that no blocks can be combined in 
--:. - .. ;. 

1 -_ 

~6ny of the steps of the proèedure.- Each step below will be 

followed by an explaination of jts appliç~ti~ to the DFG 

for the Class 0 TP (if any). 

'" -
1 --------

-----------~--~------ -- ---
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Step 1. Two blocks Bi and Bj are combined if SON(Bi) and 

SON(Bj) contain the parameter(s) of the sa me type. 

This step combines the block~ in which corresponding 

parameters of different output primitives are assigned. 

As an exam'ple, in Figure 5.4 the block containing 

"source ref" of DR i5 comb~ned with the black containing 

"local ref" since the latter block contains "source ref" 

parameters of CR and CC and aIl three parameters are of the 

same type. Step l also combines the block containing 
• 1 

"dise reason~ with the black containing "di~connect reason" 

of DR in order to combine aIl the blacks containing' O-nodes, 

of disconnect reason type. ,Also the block of 

"called address" is combined with the block of 

"calling addr~ sinee their O-nodes are of the sa me type. 

Step 2. Independent blocks (blocks with no incoming arcs 

from other b19cks) Bi and Bj are combined if the types of 
" aIl the nodes in SIN(Bi) are the same as sorne of the nodes 

in SON(Bj). 

This step combines two independent blocks if one black 

contains aIl l-nodes of the other block in its O-nodes 

provided that they are of t~ same type. The net effect of 

Step 2 together with Step l ~~to combine 'the blocks having 

a given type of parameter in various primitives as their l­

and O-nodes. 

When applied to Figure 5.4, ·Step 2 combines the block ~ 
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of "local ref" (Bi) with the block of "remote ref" (Bj) 

s~nce the O-nodes of Bi are of the same type as the l-nodes 

of Bj. Similarly, the block of "additional clear reason" is - -
combined with the black of "user_.rea-son". The blacks of 

"out_buffer" and "in buffer" are not ~ombined since the 

former i5 not an independent block. 

Step 3. Let Bi and Bj be independent blocks. Bi and Bj are 

combined if SON(Bi) and SON(Bj) contain different but 

related parameters of "the same primitive and 

. SIL( Bi):2 SILJ sj) holds. 

Which p~rameters of a primitive are reiated is determined by 

the test designer. 

Step 3 may be uSed to combine the blocks that assign 

similar parameters (or parameters of the same, nature) of a 

given primitive _ in the same normal fo'rm transitions. 

It is usually straightforwarQ to identify related 

parameters of a primitive. ln partlcular in Class 0 TF, we 

ident i fy, "addi tional_clear_reas'on" and "di sconne~t_reasÇ)n" 

parameters of DR. The blacks cont~ining the above O-nodes , 

are combined since S,IL of the block containing 

"additional clear reason" is a subset of the SIL of the - -
block containing "disconnect 'reason". - , 

Step 4. The bloc~s that contain only 0- and F- nodes with 

F-nodes having incoming arcs f~om D-nodes of different 

blocks are combined vith one of the blocks that contain the 

----- ---~ 
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D-nodes. The choice of the block depends on the . 
relationship of the 0- node and the D-node which is 

determ-ined by the test designer. 

Step 4 can be used to combine the blocks of sorne of 

the data transfe;r primitive parameters o(O-nodes) with the 

blocks of the input and output -buffers (D.-nodes), sinee the 

buf'fers contain the data that flows to the' O-nodes. 

Step 4 does not apply to Figure 5.4 since the,F-node . \ 

"get_next_fragment" which assigns the O-nod~ "DT.user_da~a" 

has only one incoming arc from' the D-node "out_buffer", 

hence the F- and O-nodes are already.included in th~ blcick 

of "out buffer" 

"get_next_fragment", 

"in buffer". 

Algorithm 5.1. Similarly for 

and 

For the Class 2 TB, Step , 4 'can bé used to combiJle 

blocks of "DT. user data" and ~DT.end of TSDU" with the block 
~ \ -,-

of "send buffer". - ' 
Similarly, the bloc ks of 

"T DATA ind.TS user data" and "T DATA ind.is last fragment" - - --
are combined with the block. of "receive buffer" (see Chapter 

8) • 

Step 5. The blocks Bi and Bj are combined if SDN(Bi) and 

'SDN(Bj) contain related D-nodes (variable or constant) that 

àre used to specify different features of a relatively 

complex concept (such as quality of service, addressing, 

etc.), and 
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SIL(Bi) =:J SI'L(Bj) holds. 

Which D-nodes are related is determined by 'the test 

designer. 

Step 5 is a generalization of Step 3 to D-nodes. It 

may be used to combine.~the blocks that contain di fferent 

parameters (Q-nodes) that are assigned in-the same normal 

form transi tions by related D-nodes (as identified by .. the 
., 

test de!? i gner) • It can' be seen that in the Class 0 TP, the' 

concept of quality of service (QOS in short) is specified 

1using' the ,vqt i.:lbles "QOTS estimate" -- , 
. 

"class 0" ~ (constant) and "no.rmal" 

(constant)., Similarly addressing ,is specified using the 

variables "calling T addr", . --
"remote_addr'ess", "call-ing address" and "cal1ed_address". 

Thus~ 'Step 5 c,ombines the bloCKS containing the above nodes 

creatlng only two 

addressing. 

~ 

blocks, one for qos and one for 

Step 6. Let Di be a O-node with SOL(Di) being empty, i~e., 

Di d6es not assign any other node (used in the predicates~, 

these D-nodes are called internal D-nodes. The independent 
block Bi cont~ining Di Can be combined with some Bj if 

SIL{DUÇ;; SIL(Bj). 
Q 

If there exists more than one such ~j, Bi will be combined 

with the Bj chosen by the test designer. It should be noted 

that only the labels on the arcs that assign a value other 

than the initial valué at-the Di is considered in SIL(Di). 
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Step 6 combines internaI D-nodes 'wi th one of the 

existing blocks. The block"is chosen su~h thai the D-nodes 

of the block and the- internaI D-n.ode are assigned in the 

same normal 10rm transitions except poss~bly for the 

initialization of the internaI O-node. The Class 0 TP 

specification contains no internaI D-n6des.' The application 

of Step 6 to the'Class 2 TP is discussed in Chapter 8. 

1 

5~4.1.Partitioning a DFG of the Class 0 TP ---, ( -------

Thé parti,tion resulting:from the 'application' of the 

above proC:~d{ire {to Figure 5.4 is iilso shown in F,igure 5.4 

with dashed lines among blocks. The application of the 

procedure to the blocks obtainec:i -from Algorithm 5.1 i-s 
cr 

stopped after combining the final -blocks in Step ,5 (the 

blocks of QOS and addressing as explained previously) since 

no further merging is possible. The resulting partition in 

Figure 5.4 has 7 blocks. 

~.!.~.Data Flow Functions' 

We define each block of the partition obtained by the 

merging procedure as a data flov furiction. For 

communication protocols, data f.low functions can . be 

considered as specifie refinements of different control 

phases {connection establishment, data transfer, conn.eetion • , . 
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freeing, etc.). In particular, in the Class o TP 

specification, we identify the following four data flow 

functions for the connection establishment phase (in 

left-to-rigth order in Figure 5.4 ): 

- connection referencing (remote and local references), 

- transport user end point identification, 

- quality of ~ervice, 

- addressing. 

The data transfer phase contains two data flow 

functions for the Class 0 TP specification: 

- user to peer data transfer, 

- pee~ to user data transfer. 

Finally, the èonnection 

data flow functio~: 

: disconnection. 

freeing phase 
, 

has of\ly one 

The data f10w functions for the data transfer als~ 

reveal the order of execution of the normal form transitions 

that are self-loops in the CG of the Class 0 TP. In Figure 

5.4, from l the block of user-to-peer data transfer we see 

that the spontaneous normal form transition lahelled P14 

must fol1ow the normal form transition ( a WHEN transition) 

labelled P13. Depending on the length of th~ data -placed in 

"out_butfer", Pl4 may be executed one or more times. If the 

'buffer 1S empty, P14 can no longer he executed. A similar 

execution order-applies to PIS and P16. 

l 

---

) 
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~.4.1.Control Functions and_~ Flow Functions . 
The normal form transitions fn a data flow function 

(DFF in short) as determined from the labels of the arcs cano 

be used ta '''l'e'late\ the data flow funct io~s wi th the control 

functions. 

A DFF may contain normal form transitions that occur 

in more than one subtour, i • e. , one ~ .or more control 

functions. This is expected since a protocol variable ,in a 

data flow function is used for a given purpose which may be 

needed in more than one subtour. In particular, "remote ref" 

of the Class 0 TP i s assigned by "source._re f" of CR in one 

subtour and by "source_ref" of CC in another subtour (see 

Figure 5.4 and Table S.l). 

Since a subtour may contain more than one control 

phase normal form transitions of a subtour may occur in more 

than one data flow function. For example, the first subtour 

in Table 5.1 occurs in aIl of the 7 data flow functions in 

Figure 5.4. 

Implications on protocol testing of the above two 

properties of the control and data flow functions will be 

investigated in Chapter 6. 

-_.---

i 
t 
1 
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~o!o!o~ Flow Dependencies 

Data flow dependenGies between the blocks arise from 

the arcs share'd • More formally, lét Bi and Bj be two blocks, 

in a part i tion which is obtained by the procedure above. 
• 

There i5 a data flo" dependency when Bi and Bj share one or 

more arcs. A node Ni of Bi is called a de~ndent node if one" 

of the incoming arcs of ~1 is originated in Bj. Thus a block 

can have dependent F- and D-nodes. If a F,-node is dependent 
, , 
aIl D nodes assigned by this node also become dependent. 

The data f10w dependencies in a partition of-the DFG 

can be found by an algorithm which finds cuts in a graph 

[Even 79]. 

In Figure 5.4 we identify the following dependent 
, 

nodes: 

The impact of data flow dependencies on protocol 

testing will be discussed in Chapter 6. 

~J 
202.protocol Design Va1idation_Using!!2! Graphs 

The control and data flow graphs -discussed in . this 

chapter- can be used for protocol design validation. We 

assume in the following that the protocol i5 specified using 

a formalism such as Subgroup B FDT. Thus, transformations of 

Chapter 4 can be applied, and from the normal form 
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transitions obtained, a CG and a DFG can be constructed. 

These graphs are useful for ~otocol design validation as 

explained below. The DFG also visualises the flow of data 

over each protocol va"riable ,. as defined in the 
"'-

specification. 

In this~~ection we will classify different validation 

a~pects that j;lvolve the use of the flow graphs and point 

'out the errors found in the protocfol spec ificat ions of the 
1 
1 

Class 0 and C)ass 2 TP. 

S.S.l.Use of CG - - ---
~ 

The CG can . be used for'--detecting missing assignm.ents 
1 - ~r 

to the major state var-iables in the normal form transitions. 

In complex prQtocol specifications where local procedures 

and functions are used intensi vely and many modules, are 

emp~oyed to specify the protocol entity, assignments to some 

of the major state variablès may be missed. Errors of this 

type are detected when constructing the CG where assignments 

to the major state variable(s) are modeled. 
\ 

In the Class 2 TP specification, one of the major 

state variables, i.e., NÇ_state of the Mapping module is 

assigned to the value "closed" in none of the normal form 

transitions al~hough some normal form transitions do close 

the network connection. Consequently,'a statement assigning, 0 

"closed" to NC_state should be added to the BEGIN blocks of 
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all normal form transitipns where the network connection is 

closed. 

5.5.2.Use of DFG --- .. 
The DFG. can be used for'l.·detecting missing "assignments 

to the protocol variables other than maJor state 

variable(s). In protocol specifications, errors·of this 

type occur usually by having • one or more unassigned 

variables in the parameter list of a statement generating an 

output primitive. 

After a DFG is constructed, sorne of the variable 

D-nodes may have no incoming arcs, i.e., the SIL of the 

D-node may be empty. Some of these nodes have to be 

initialized during the initialization of the system, and 

afterwards they can be considered~ as constant D-nodes. In 

aIl .cases, variable D-nodes wi th empty SILs represent 

:.. mis'sing assi.gnments. 

In the Class 0 TP,:sj>ecification,_ the D-node "TCEP" had 
, ' 

no incoming arcs, thus' an 'F-node of type 2 called 

"assign_TCEP" was added to assign the D-node "TCEP". 

Since variables used in a normal form transition need 

not be assigned in the same normal form transition, 

deteating missing assignments may not always be 

straightforward. In some cases, both the CG and DFG should 
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,be consulted as discussed be:l:Qw (Section 5.5.3). 

5~5.3.Use of CG and DFG 
-----~-, , 

Subtours oJ a CG 

normal form transitions. 

indicate the state order of the 

Thus a variable a~g~ed in a 

normal form transition of a subtour may be used in a normal 

form transition whith fbllows the assigning normal form 

transition in the same subtour. The flow over each variable 

of a DFG can ~e checked using the 5ubtouts to detect 
, 

possible missing'assignments. II such an error is detected, 
, , 

a~signing statements should be added- to the proper normal 

fo~m transitions that precede the use of the variable. 

, Using this approach on the Class 2 TP (see Chapter 8) 

we have detected that the va~iab1e cal1ed "local T addr" was 

assigned for peer initiated connections but left unassigned 

for user initiated connections. Thus an F-node of type 2 was 

added to assign the normal form 

transitions labelled~EI and PE2. 

5.5.4.Semantic Errors _ _ _ r 

Errors in the specification such as ,missing 

assignments, as discussed above, require no knowledge of -the 

particular protocol; therefore, they may,be classified as 

'syntactiç errors. 

j 
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Errors that require a~ knowledge of the protocol 

(semant ie errors), are more di f f icult to de.tect U's ing the 

flow graphs. We discuss briefly a semantic error found in 

the Class 2 TP specification: 

In one of the normal form transit ions the 

"credit value" parameter of the CR PDU is assigned to the 

protocol variable "R credit". llnfort_unately, however, 

"R credit" i5 used for credits (number of data packets that 

can be sent before acknowledged) given to the peer entity, 

thus- i ts value s.hould not be determined by the peer en'ti ty. 

This error in the Class 2 TP was corrected by changing the 

assignment statement to assign "credit_value" of CR to the 

variable called "S credit" instead of "R credit". 

~.~.~.Self-loop Spontaneous Transitions 

As discussed in Section 5.1.3, the order of normal 

form trans i t ions in sel f-loops may beJ"de.termi ned w ith the 

help of the DFG. In sorne cases, though, an examinatlon of 

the DFG and the preconditions may reveal that a self-loop 

normal form transition can be executed as many times as 

desired PFovided that the protocol stays in the.same major 

state. For example, t~ PROVIDED clause of a self-loop' 

normal form transition labelled Pi may have expressions ~ 

protocol variables whose values are not modified in the 

-.13EGIN blocks of none of the self-Ioop normal form' 
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, 
1 

transitions in the same major state. ~hus, once the protocol 

enters into the major state and the precondition of Pi is 

satisfied, Pi can be executed nondeterministically until the 

protocol changes its major state (see chapter 4 for a 

discussion on nondeterminism in protocol specifications). 

We calI a normal fo~m transition like Pi an indefinitely 

executable normal form transitions (lENT in short). lENTs 

require special attention for both implementation and . , 
validation purposes. In the remaining part of this section 

we classify lENTs into two classes and~ discuss their 

consequences. 
-

u 

lENTs can be di v,ided into two classes: those tha t 

produce an output and those tha·t do not produce any outPJ:lt. 

The' former class allows the protocol to produce more than 

one consecutive PDUs carrying exactly the same information, 
G 

i.e., parameter values. Similarly, the latter case allows 

the protocol to execute the BEGIN block of t~ spontaneous 

transition more than, once assigning the same values to t,he • 
same variables. If it can be assumed that the spontaneous 

transitions of the abo~e types will be 

they will be "executed ~nly when they 

implemented so,that 

produce different 

outputs (the former case' above) or when they assig~ 

different values to the ,variables' in the BEGIN block' (the 

latter case above) then there is no design error; otherwise 

the existence of such spontaneous transitions may represent· 

a design error. 

J 
l 
L 
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If the protoco1 is allowed to send a":pnu to the peer 

entity any time in ~iven major state, there shouid exist a 

WHEN transition to recleive and process the sarne POU any time 
\ 

"in the sarne maj or sta te. Arguing as above, rnany consecut ive 

PDUs rece i ved may conta in the sarne values in the J. 

parameter(s) of the PDU and this results in the execution of 

the BEGI N block several t irnes unnecessar i Iy s ince each 

exec'ution gen,erates the same result, which again may be 

considered a protocol design error. 

We have found two spontaneous normal form transitions 

in the Class 2 TP that a r.e . lENTs, one tha t produces ~n . 
output (AR PDU)' and the other that does ~ot produce any 

output. The la t ter normal form transi t ion assigns a value , 

(representing available spape in ~ "receive_buffer.") to 

~he "variable called "R credit" and the former. that outputs 

an AR primitive with "R_credit" and "TR." ~ciedit" 

.' and "tR" are modified in a WHEN transitiolA receiving a Dr 
from the péer entit'y). 'These normal form transitions cal'l~ 

repeatedl-y assign R credit with the same value and send AK 
\ 

; PDOs carrying the sarne pa~a)peter values. ~hannel congest ion 

due to t:onsecutive AR POUs is avoided by flow control as 

discussed in Chapter 8. 

The Class 2 TP contains a ~EN normal form transi tion 

whl-ch ,processes the AR primitives - received from the peer. 
-' ' 

~hus, the protocol allows conseçutive AR" PDUs to "be sent 

. wi th poss i-bly the sarne parameter s as di scussed above. 

, 

r 
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Only spontaneous' lENTs that produce output are 

impor tan tas far a's te st i ng i s cone e rned • Span tane~ 1 ENTs 

that produce no output have effects that can not be observed 

directly. 

producing 

Thus the tests that involve spontaneaus lENTs 

output should be able to handle this 

nondeterministic behaviour of the protocol entity by being 

ready to receive the output and respond accordingly. 

J 
5.5.6.Normal Form Transitions That are not Firable --- ----

Sorne of the normal form ~trans i tians obtaï ned f rom the 

procedure of Chapter 4 may never be·,'eligible for executio.n. 

A normal form transition cannot be executed if i ts 
precondition (WHEN and PROVlDED clal\ses), i5 never satisfied. 

Normal form transitions with unsatisfyable preconditions· 

(especially P~OVIDED clause) may be obtained wh~n modules 

are eombined since only symbo1ic replacements aredone (see 

Chapter' 4') • 

To detect normal form .transitions which are not 

fi rable, a reachabi li.ty tree 'can be constructed cons ideri ng 

aIl possible pre- and post-condi tiens (BEGIN blacks) of the 

normal form trans~tions. This method is--~pensi,ve sinee the, 

reachabili ty tree may blow up. Instead, w~ propose â 

simpler method which, howéver, does not guarantee detection 

of all unf i rable normal form transi tians.. The- CG,' DFG and 

precondi tions are eonsidered togethe'l" to àètect any 
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unsatisfyable expressions in the PROVIDED clauses. Using 

this method, it can be determined that in sorne major states 
, , 

of the protocol sorne protocol variabl,es cannot have certain 

values. For e,xample, in the Class 2 TP specification, it .is 
.... -

èasy to see that, the internal D-node called' 

"TC[TC_idl.in_use" has trhe value true in ,al1 transport 

states other than "closed". Thus any precondition requiring 

that "TC [TC id J. in use" he false in -transport states other 
- ïi 

than "closed" cannot be satisfied. We have detected that 12 

of the nof11Œr-~m -t rans i t lons of the Class 2 TP - \ 
, ~ ~ 1 

specificatio~ cannot-be fired because of conflicts of this 

type. 

40. _- ~ 
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,~6. TEST DESIGt\ METHODOLOGY 

This chapter presents a test design methodology, which 

is a generalization of the test sequence selection discussed 

in ChaRter ~.. Thi s methodology sh'ould be applicable to the 

real protocols such as standard protocols in the context of 

the OSI Reference Model. An 

is considered as a black box . . 

implèmentation 'of the protocol 
~ 

and availability of a formaI 

specification of the protocol in FDT is a~sumed. The formal 
, 

specification is usually written base8 on a general 

descript ion of. the protocol in natural language called 

protocol standard. From the spec i fica t ion, i ts normal form 

transi t ions are obta ined and éG and DFG of the protocol are 

constructed using these normal form transitions. 

In the first part of this chapter" a number of 

categories of tests are listed, and methods for selecting 

interaction sequences are discussed. The tests in each 

category have certain objectives to meet,. thes~ -obj~ctives 

are di scussed next. 

Specification based tests, i.e. tests' for the various 

blacks of the DFG are done -by varying irtput primi tive 

parameters. Paraméter variations are based on a 

classification of the input primitive parameters. A summary 

of how each black is t~sted 'is given, and- the >t. data flow 

dependent test characteristics' and inter-black dependencies 

are examined. 

l 

'. > , 

,.., 
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The .sequencing of tests is discussed nex~, including 

optimizations regarding simultaneous execution of block 

tests. ' This is fo11owed by a description o.f tests for 
, 

rnùltiple connections. The chapter conc ludes wi th an 

examination of the relationship 
, , 

techniques and paramete-r variations. 

The methodology is illust~ated 

between the FSM test 

by examples drawn from 

the Class 0 TP. The application of thi 5 methodology to the 

Class 2 TP is described in Chapter 8. 

~.l.Overview of ~ Methodology 

An implementa t ion ~ of , , a pr01;.ocol, i . e. , the 

implementation under test, or IUT ,in short, is tested,for 

conformance to the protocol specification, i . e., the 

protocol standard. The IUT is-assumed to be a singlè "black 

box" entity stimula~ed anQ observed ~from two service access 
~ ~ 

,boundaries, one which should provide the (N)-service and the 

other 'which ù,ses the' (N':"'l)":service [Rayner 82). Stimulation/ 

observation of the (N-l}-service is indirect as di~cussed in 

Chapter 1. 

In Chapter 2, the test sequence selection was based on 

an ~SM model ,whh:h . ignored many aspects of thè\ protocs>l, 

such as primi;t:ive parameters, and pre- . and post-conditions' 

of the transi!tions. If addiÙonal prot'oco'l-variables' are, 

i~cluqed as state variables, the resulting number of statès 
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may increase without bound. Parameter values of the input 

primitives increase the number of transitions of the 

protocol machine in a pure FSM model. If parameter values 
i 

were varied exhaustive)y, the resulting machine would have a 

very large number of transitions (especially due to data 

variations). 'l'hus it is impossible to drive the IUT into 

aIl of the stateS and apply aIl possible inputs. This,result 

is to be expected since even a sma!l program vith two" 
v 

i nteger inputs can not be tested exhaust i vely. In order to 

cope with this complexity, we will base the test desi~n 
. 

methodology on the formaI specification of the protoc01 in 

the extended FSM model of the FDT and its decomposi~ion'as 

discussed in Chapters 4 and 5. 

We assume that, in addition to the informaI 

specification of the protocol, a formaI specification of the 

protoco! deTines the issues of: 

a) protocol.conformance considering only the interactions of 

the IUT through (N-l) -service (PDUs and control 

informat i on) , and 

~'d . 
-: 

b) service conformance in adèli tion the conSl erlng 

interactions of the IUT wl'th its user through (N)-service 

yaE>CeMaSa 83]., 

'-, Uaually the formaI spec ifica t fon i5 incomplete, that '-
'~ .. 

i s, s,ome of the protocol , functions may not be formally 
\ 

1 

5pec i fled. These functions are c~11ed "informal functions-. 

Note that some of the informaI. funetions may be related to,' 
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the protocol/service.conformance such asùencoding/ decoding, 

flow control, etc., or to the additional characteristics of 

the IUT such as options supported, error processing 

performed, etc. We assume that the informal specification 

contains aIl the possible opt;ons and a list of possible 

implementat i on behavior in error cases. 

§'.'!.l.Categories 'of Tests 

In view of. the above discussion, we divide the tests 

of the IUT for conformance into the following categori.es: 

a)Protocol/ service Conformance Tests which test the 

f ormally speci f ied. funct ions . of the protocol. The test 

design is based on the graph models of the specification,. 
; . 

The set of tests in this group will be called ~lock tests. 

Block tests include the tests for determining the parameters 

of the IUT (see Sec'tion 6.2.1. for a Qefinition), and the 

tests for determining the opt ions supported. 

b) InformaI P'unction !'ests include the tésts for the 

protocol/. service funct ions tha tare not formally spec i f ied. 

c) Robustness Tests include the tests about the handling of 

protocol errors ( i . e., POUs arri ving in a major sta te for 

which it i5 not 5pecified what to do with them, or PDUs 

'carrying i'nvalid parameter values), and service errors 

~i.e., unexpected user behavior). 

Protocol/ service conformançe tests can be obtained' 

-r--~ - - -.- - . 
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f rom the graph model s,i.e., control and data f low graphs of 

the formal specification. The partitioning into blocks, 

i.e., thè data flow functions of the DFG, decrease the 

complexity of protocel testing since each block .can be 

tested separately. We assume that the IUT respects the 
-

independence among the blocks in order that they may be 

tested independently, in other words, etrors in one block 
u 

are assumed not to influence the behaviour of other blocks. 

There are two exceptions to this independence: data 

dependencies introduced in Section 5.4.4 and predicate 

dependencies i~troduced in Section 6.2.3. We also assume 

that if the IUT were goin9 to malfunction it would do sa 

during the test.s IRayner 82 J. 
) 

~.!.~.~ Sequence Selection Considerations 

Test sequences for aIl the tests except the informal 

function tests can bè obtained from the graph models of the 

specification. Graph models are not completely helpful for 

informaI function tests since no structural information on 

the function is availabl~ {n the informaI specification, 

except for a verbal description of the function. 

For each of the above three categories ef the tests, 

different test sequence selection methods can be used: 

i} Parameter Variations. When a model of a data 
,III-

flow -. 

function is obta'iried from th!! specification, such as a block 

" 
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. 
of the DFG, a test sequence can be selected f rom the con trol 

graph. A subtour which' includes one or more of the labels of 

. the block is used, l -nodes of the block are varied and 

expeeted résp~~ses of the IUT a~re found from the 0::- nodes of 

the block. Ei~her the subtour is repeatedly applied in 

consecut ive connections one f01 e'ach parameter var iation, or 

the parameter variation is do~ in an inner loop (self loop) 
.. 

of the subtour requiring only a single connection. We 

'assume that the subtour selected has no observability 

problems, i.e. 1 a11 the D-nodes set by the normal f orm 

trans'itions of the subtour can be observed by the O-nodes in 

the same subtour. Such black tests will be elaborated in 

Sections 6.3 through 6.5. 

ii) l'ault Modela. This method is used for informaI function 

tests. Assumed fault classes in an implementation of an 

informaI function are used to derive 'a test sequence for 

them. 

ç 

Functional fault models were·used in microprocessor 

testing to derive i nstruct ion - . sequences for testing a 

functional block of a microproces-sor [ThAb 7gb J. For 

protocols, it is difficult to find' fault models to derive 

complete test sequenc~s sinee the faults are not due to 

aging of components, but rather design errors. In general, 

we try to enumerate the possible observable effects of 

design errQrs and then, using. the control graph, we 

construct a test sequence which attempts ta verify if the 
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effects of the assumed errofS can be observed. 'An eltample 
o 

of test selection based on a fault mode~ for the informaI 

"encoding/ decoding" function of the Class 0 
~ 

TP vi Il be 

given in Chapter 7. 

iii) Onezpected Inputs. Robustness tests can be'obtained 

from the CG and DFG. For this purpose the CG i5 completed 

(see Chapter 2),' (the responses will be determined by the 

tests) to include e~ery pr imi t ive rece i ved in every sta te. 

I t ,is then possible to select test sequences for unexpected 

POUs and unexpecteq user interactions. The method consists 

of driving the IUT to a given state, applying the unexpected 

primitive, observing the response of the-!., .. ~OT and then 

disconnecting~ An example of test sequence selection using 

this method will be:given in Chapter 7. 

The data flov functions are also helpful ln robustness 

tests. PDUs carry ing i nval id parameter values can be 

selected by inspection from the DFG, i.e., the I-nodes in 

each bloc k are searched for inval~d values and the 

determined values are tried in the tests. 

6~1.1.0bjectives of the Tests 

It i5 desirable to design tests that will guarantee 

the dete~tion of 'a11 the - errors in an implementation. Using 
1 

the formaI models of the hardware faults, the miéroprocessor . 

tests of [ThAb 79b 1 are designed to guarantee detection of 
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the assumed fau1ts. However, it is difficult to give fault 

models for software errors, in partic~lar design errors. In 

addition, it is impossible to test for aIl possible input 

parameter values and aIl possible interaction sequences. 

Therefore, test sequences for software, and protocol 

implementations in particular, cannot guarantee detection of 

aIl errors, i.~;, one can not expect to obtain 100% test 

effectiveness. We suggest that the effectiveness of the 

proposed test sequences be v~rified by experience. 

The tests .developed using our methodology will attempt 

ta satisfy the following objectives: 

a)AIl the control paths in the specifi~ation must be 
~ 

experienced. This corresponds to the "branch caverage" 

criterion in software testing [Prather 831. This criterion 

can be met by passing through aIl the normal form 
J 

transitions at least once, follawing at the same. ~re the 

control graphe Note that the "branch coverage" crlte~on is 

weaker than the "path caverage" criterian which would 

require experiencing aIl the subtours of'the CG. Far simple 

cases such as the Class 0 TF, the two criteria are 

equivalent, but for more complex protocols, such as the 

Class 2 TP (see Chapter 8), a subset of the subtours may be 

sufficient for "branch covera9~". 

b) The data flow graph, 
~" 

i.e., the specifièd~ data flow 

functions, should be verified. Each function should be 
.;.> 

verified independently of ~he other functions (see the 

-----------~~---------- -----
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assumption in Section 6.1.1) by setting aIl of its D-nodes 

and observing the D-nodes through aIl the arcs. Setting 

D-nodes is achieved by parameter variations, i.e., value 

instantiations to the I-nodes. 

c) Every informaI function should be verified using a tault 

model. 

d) Robustness of the implemention should be verified. 

Robustness tests should verity the responses of the IUT to 

aIl the unexpected PDùs/ user interactions for aIl the major 

states. '~e assumptions may be made concerning inval,ip 

parameters: only a single invalid parameter i5 selected for 

each primitive. PDU!3 with invalid PDU code '5hoùld also be 

applied in aIl the major states. 

~.~.Preliminary Test Design Considerations 

6.2.l.Definition5 - --

We def ine here the "parameters of the IUT" , the 

"subtours of a block", the concept of a "flow" and a 

"transition". 

The parameters of the IUT include the following 
-

information: 

- the (N-l)' service access point address (és) , 
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the level of quali ty of service (Q05) provided by the IUT, 

- the nùmber of multiple connections supported. 

Some of these parameters are assumed to be known 

wi thout test i/19 (e. g. 1 addresses) 1 while others are 

determined by the block tests. 

, 
The 8ubtours of 8 block are those subtours of the 

control graph which inc1ude normal form traQsitions that 

a5S i gn the D-node (s) (or O-nodes if the bloc k contains no 

D-nodes) of the block. These subtours are used in the block 

te"sts assuming that they have no observabil-ity problems, 

i . e ., the assigned . val ues can be ver if i ed by observ ing. the 

val ue f rom the O-node ( s) in the same subtour. 

The flov covered by a subtour is the set of arcs in 

the block containing the labels that occur in the subtour. 

A normal form transition becomes a transition if 

specifie values are assigned to aIl of its input primitive 
~~~ 

paramefers, thus more than one transi tion can corre~ond to 

agi ven normal f orm transi t i on. 

, 
6.2. -2. PROVIDED clauses - - -

The logical expression in the PROVIDED clause of a 

normal form transition obtained from the transformations 
r 

f 
descr"ibed in Chapter 4 can be arbitrarily complex, making it 

difficult to select the test data satisfying the PROVIDED 
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clause. 'Therefore we propose here a method to simpl Hy the 

PROVIDED clauses of normal form transi tions, in order to 

facilitate the parameter variation process. 

The -Boolean expression in the PROVIDED clause is 

composed of one or more ~lementary expressions, where~ an 
, 

elementary expression is either a Boolean variable or input 

primi t ive parameter of type Boolean or a relational 
.> 

expression on protocol variables or input primitive 

parameters. The PROVIDED clause is converted into a 

disjunctive normal form '(DNF) such that every product 

contains aIl the elementary expressions exactly once. We 

call this form of the DNF a disjunctive canonical form 
- '" 

(DeF). Since the products in the DCF are mutually exclusive 

by defJnition, the sums can be, removed by generating a 

normal form transition for each such product. The resulting 

PROVIDED clauses contain only "and" and "not" logical 

connectives. No modification is necessary within '-the BEGIN 
,- . . 

blocks. 

AS an example we apply this transformation to the 
, 0 

normal form transition given in"Figure 4.3 (the first nçrmal 

form trans i t ion in the figure). The correspondi ng DeF 

expression of the original PROVIDED c~ause and the resu"lting 

normal form transitions are listed fn Fig-ùre 6.1. 

Note that if the two operands of an "or' are mutually 
, 

exclusive (i .e., "B and Cft in Figure 6.1 can never be true) 

only two normal form trans i tions instead of three are 
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-generated. 

DCF expression: 
(state = idle and A and Band C an~ and X <~ B) or 
(state = idle and A and B and ~C and D and X <= B) or 
(state = idle and A and .... B and C and D and X <= 8)~ 

Normal Form Transitions: 

WHEN chanl.CONNECT. req 
PROVIDED state=idlë and A and Band C 

~and D and X <= 8 
BEGIN' 

state:=connecting; 
Sli 

END; 

53; 
chan2.CONNECT_ind; 

WHEN chanl.CONNECT req ,..~ 

PROVIDED state = i'dIe and .A and Band "C 
, ànd D and X <= 8 
BEGIN 

••• (*same as above*) 

END; 

WHEN chanl.CONNECT req 
PROVIDED state = idle and A ,and -'B, and C. 

and D and X <= 8 
BEGIN 

••• (*same as above*) 

END; 

•• J! • 

Figure §..!.Removing Il~"! in ~,jsROVIDED clauses 
-, 

The transformation. on' the PROVIDED clause does not 

modify the arcs in the control and data -flow graphs. 

However, the label Qf each normal form transition whose 

PROVIDEn clause is transformeà should be repl~ced by a list 
j 

of' labels in both" graphs a'nd a150 in the subtou'rs. 
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§.l.l.predicate Dependencies 

\ 
In this section we explore the relationship between 

the predicates,and the blocks of the DFG, while ignoring any 

expressions on the major state variables. 

. '1 
We'consider aIl normal form transitions of a block. 

The predicates of these normal form transitions May contain 

expressions on variables, parameters of the input primitive 

and/or local _ function calls and/or natural language 

expressions. The paramete~s of local functions m?y include 
. 

input primi t i v.e parameters, var iables and/or constant s. 

predicate dependenties are introduced when a predicate 

of a, normal form transi tion contaf-ns expressions on protocol 
, -l 

variables (inclu~ing the_ v~.riables used as parameters of' 
1 \ 

local function calls) that belong to,other blocks. 

slnce the predica~es-of the normal form transitions 

for tbe Class 0 TP (see Appendix· C) do not contain any' 

expressions on protocol variables, the, blocks of Figure 5.4 
, , . 

are ~ot in~olved in' any PFedicate ~ependency. 'Th~'jmpact of 

predicate dependencies will l'le dis;cussed in Section 6:3.' 
*:; 

( 

~.l.!.Satisfyin9 the predicares 

Assigning values to the input primitiv.es, Le., 

I-nodes of the DFG is done to satisfy the predicates of the 

normal form transitions. 

o' 
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The transformation of Section 6.2.2, i.e., the removal 

of "or"s" facilitates parameter variations by simplifying 

the predicates. r:The predicates show the elementary 
'.' 

expressions to be satisfied simultaneously. The following 

considerations apply to satisfying individual elementary 

expressions of protocol predicates: 

Elementary expressions including only input primitive 

parameters and constants are easily satisfied by parameter 

variations, while, those which refer to variables can be 

satisfied by a~ earlier transition in the subtour setting 

proper values ta these variables. 

Sometimes, it is possible to obtain a pure FSM model 
-

of a black. This happens when the predicàtes of aIl the 

normal form transitions of the block carr be satisfied by 

considering the D-nodes 

variab,les and obtaining 

of the block as 

a product state space. 

major state 

This method 

can be~used when the predicates include protocol variables 
,~ 

that are internaI P~nodes of type Bool~an-and/ or D-nodes of 

eQume'ra tion type, .in addi tion to input pr imitiv~ parame,ter's 

and ·constants. An example of ,thïs technique will be given 

in Chapter 8. More discu~~ion on internaI D-nodes follows in 

Section 6. 3a. 

~lementàry expressions înëludîng local function calls 
, , 

- can be grouped basedlon the types of th~ local functions: 
, \ .... ... 

- The values ret'urne' br.·8 loc~l function can be controlled', 

by an input for example, if it returns the length 

.. 
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of a primitive par~meter or if it decides whether the 
, 

primitive is "valid". 

- The value returned by a local function can be determined 

only from the history of the transitions in the subtour. The 
• 

value may depend on previous value assignments to certain 

O-nodes as discussed above. 

The Subgoup B FOT a1lows the use of natural language 

expressions (NLE in short) in the predicates. NLEs are used 

in cases where the specification, remains informaI such as 

-'for the description of quality of service, add~essing, etc. 

-\,-t Typical expr.tësions that ~ay OCCUl' in the PROVIOED clauSes 

are: 

(/able io provide/) referring to qos, and 

. (/check' 'addrëssing/)' r:eferring to addressing, also' 
, 

negations of the above •. The NLEs of the above type can 

usu~lly Be related to certai~ parameters of the input 

primitive. ' . 
. 

Other NLEs depend usually on informaI protocol/ 

service functions such as: 

(/flow control from the user is readY/)- related to flow 

control. For this case in particular, a tault model will be 
used to generate its tests, as'will be s~en in Chapter 7 •. 

In Appendix C (no~mal form transitions of the ~lass 0 

T~), for' exam~le, the quality ôf service predicates can be 

related tO' the class, options,. T?DU_size, and QTS_req. 

paramet"ers of and CC 

-- - -~~-~- - ~~--"---~~~-

, " 

J 
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interactions. The transitions Pl3 through. Pl6 have 

predicates related to flow control. 

§.~.~.Types of I-nodes 

Different types of I-nodes are considered in the block 

tests for p&rameter v~riations. ~e classify the I-nodes of a 

DFG and ·explain ho~ tl')e v~lues ~a'y be varÎ'ed for each type. 

An l-node may 'be of . enumeration type (Pascal 

enume'ra,tic;>n . type) or have a continuous domain '( integer,' 

array of octets,' etc.). Sorne çontinuous !lomain " I-n?d~s' ~ay 

, be considered-'of enumeration type if -thEdr set of possiblè 

val'ues is suf f ie iently SafI!", 

I-nodés of ....- enumeration ~ 
\ 

cart 'be' enùmerated 

exhaustively, i.e., transitions are gener~ted from the 

normal form transrtions for each possible,va1~e while for 

other node,s o,n,ly a certain number of difnerent values can be 

,considered, in order to limit the 1ength ~f the resulting 

test sequence,. If the biock contains more 

of enumeration type, the'test designer may try to limit the 

number of different values to be' eonsidered by not ~nel~ding 

aIl possible eombinations pf the values. 

Tne !-nodes of enumeration type in the DFG of Figure 

5.4 are: 

options of T_CON~ECT..,..req ànd T_CONNECT_resp, 

" . 
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class,options,variable-part.max_TPDU_size of CR and CC, 

disconnect_reason of DR. 

The I-nodes of continuous domain cah be divided into 
, 

the following five groups (this list may change depending on 

the p~otocol considered): 

Parametric l-nodes: The values o'f these l-nodes \re 

determined by the implementation and they are cons idered \~s 
\ 

parameters of the IUT, their values are fixed. The I-nodè.s 
\ , 

corresponding to the addresses of the user and peer entities 

belong to this group. 

~ 

The parametric I~nodes of Figure 5.4 are: 

calling_T_addr'of CR anq CC, 

called_T_addr o,f CR and CC, 

to_T_addr and from_T_addr of T_CONNECT_req. 

\ 

Refe"rence - Val ue 1 -nodes: The 1 -node,s used as source and . 
destination reference values for the co~nection$ can be 

---~-

arbitrarily selected, but must be non~ero. The methods of 

test data selection for software testing [Howden 80] can be 

applied,for these I-nodes. Usually, three specific values 

are selected, namely, the two end points and some interior 

point of the domaine 

The following I-nodes of Figure 5.4 are in this group: 

source_ref ,dest~ref of CR ,_ CC and DR, 
. , --Large lntegers: The l-nodes that are integers of one or more 

octets are in this group. The methods of test data selection 

for software testing [Howden 80] may be adopted for these 

" 

.,. 

\ 
, 
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" 
nOdes" as in :the case 'of reference value l -nodes. 

~ \. ft ' 

Eigure 5.4 cantains the following 'I-nodes ,in this 
, . 

" 
group: 

QTS~req of T_ÇONNECT_req ,and T_CONNECT_resp. 
, . 

We assume' hère that the QTS_r~q parameter 'represents, tpe 

maximum TSDU fragment size which is an impleme~tation 

.. dependent integer. ' 

User data: I-nodes in this . '" group ,lncl'ude the length and 

content fields of 'the exchanged data. .Although test data 

sel~ction of [Howden aD} can be applied; due to ihe 

importance of the user data tor protocols we suggest that 
, , 

aIl, values for the length Of\ the data be enumerat~q while 

the content of the data is vari~d sy~tematically to verify 
~ 

the correct delivery of every oc\tet ,in the data. 
\ ' ' . 

\ 

The following l-nodes of Fi9ure 5.4 ar in this group: 

TSDU_fragment.length, 

T_DATA_req, 

and 

l, 

, 
user_data.length,' and user_data.~ata of DT 

ente data of 

End point identifiers (EPI) :The ~nteractio with l"the user 

takes place over an (N)-service access point. These 

inte'ractions contain a paràmeter to identif the connection 
'Il.. ~t 

end point to ~hich the interaction" refers. This parameter is 

called' EPI and its value is locally decided. EPIs are 

importan~ in ,multiple connection tests since different 

values are used for different ,paraiiei connections. The 

~ultiPle connection tests therefore achieve the n,cessary 
f . 

--
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parameter variations for these nodes. 

The following 1-nodes of Figure 5.4 are in this group: . 

§r~.~.l.Optional Parameters 

The informaI specification of a protocoi defines the 

mandatoryand optional pararneters ,for each PDU. If a PDU 

does not contain any value for an option~l parameter its 

value is considered undefined and/ or a default value is 

assumed as given in the informaI specification. 

For example in Figure 5.4, the max_PDU_size pa~ameter 

of CR and CC is an optional parameter. If it is missing, the 

default value of 128 is assurned. 

The reaction of the IUT to missing optio,nal parameters 

shouid be veri fied in the tests. 

" 
.,,.'" , 

~ 

§·l·Block Tests 

. Designing block tests can be considered to be the 

process of finding subtours (sequences of transitions) that 

effectively test each blo~k of the DFG. Therefore for the 
.6 

design of b1.ock tests one considers the DFG,' CG, the 
\, 

pre,ri5a~es and parameter variations at the sarne time. We 

fir(f outline tbis process in S,ction 6,3.1 and then give 

the details in the subsequent sections. 
.,. '" 
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&.1.l.0verview of the Block Tests 

In this section we give a summary of how each block is 

tested. 

A subtour of the CG is selected (see the definition in 

Section 6.2.1). From the I-nodes of the subtour, i.e., the 

parameters of the input 'primitives, the ones that belong to 

the bloc~ , (1 -nodes in ·thé partitioned DFG ~ith SOLs 

honemp\y) are determined. The values of the I-nodes of the 

block are enumerated as discussed in Section 6.2.5 and all 

other I-nodes are fixed to certain values (default or 

parametric). Sometimes, the F-nodes of the block may 

increas~ the number of I-nodes .to be considered for the 
, 

block, as discussed in Section 6.3.2. Natural language 

expressions (NLEs) in the PROVIDED clauses may, also 

introduce l-nodes to the block. For example, the expression 

(/able to provide/) __ 
" 

ref ers to aIl QGS- parameters of .the input -P'~ imî t ives, sorne 

of which may nct be used in the block, thus creating I-nodes 

with SOLs empty. Therefore the I-nodes introduced by NLEs 

must be added to the l-nodes of the block (see for example 

the dashed lines in the DFG of Figure 5.4), and their 
, . 

en\lmeration is done depending ,On th'eir type •. 

The next step' is the .determination of the output 

pr imi t ives and parameters (O-nodes) co.rresponding to the 

subtour selec~ed. The O-nodes of: the block associated with 
\ 

these primitives are the only vay of bbservin~~he effécts 

• - _____ ...... A':;":"~." 4 .., ..... ,.,,#- ... .J\à&>.,...;e;me'''''',..Ic ........ ~ê* r t rt'Hsi'SâCi"'ft!?:.. ., nst ... » ,:, .. ,.. ... n~'~>P"_.~~~~_._.....-. ,\ ....... ~~ .!JO ~ 
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of I-node parameter variations. The ,expected values of the 
, , 

remaining O-nodes l~elonging to other blocks) are determined 

from the fixed values assigned to the l-nodes of the other 

blocks. The test (application of the, subtour to the IUT) 

has to validate the values observed at the O-nodes of the 

black in ~elation with the values assigned to the enumerated 

I-nodes and the flow covered by the subtour (see the 

definition- in Section 6.2.1). 

The predica"tes of the" normal form transi tions in the 

subtour selected must be satisfied in order to be able to 

exeeute ~he subtour. predicate dependencies discussed . in 

Section 6.2.3 indicate the influence of other blocks (i.e., 

their internaI nodes). The flO~ covered by the subtour in 

these other blocks (possibly not yet tested) has to be 

considered to satisfy the.predicates. 

The steps above are repeated for a number of subtours 

of the block, since each subtour may test the block only 

partially. In this way new subtours are added until aIl th~ 

assignin9 arcs of the D-n~des (O-nodes fo~ 
no D-nodes) have been cover~. At the end, 

the blocks with 

aIl the outgoing 

arcs from the D-nodes will have been tested, since the tests 

will eventually .consist of a complete tour of the normal 

form transitions. 

-~--~-- --------- ------------ --------~---

>. ' 
" : 
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&.l.~.~ ~ Dependent Considerations 

, 
Sorne details of the flow related to the 1-, D-, ~- ~nd 

O-nodes of- the bloc~ are considered in the 'test design. Jn 

what follows we discuss considerations applying to each 

particular node type. , 

Since the flow over all variable D-nodes of ~he block, 

(i.e., the ~ssi9ning arc~) ~hould be tested by the subtours, 

variable D-nodes assigned in differ~nt subtours increase the 

number of tèsts for a blocK. Each test may be different in 

nature because the flow covered by each subtour may . be 

.different. For example, a D-node May be assigned.by bot~ l­

and F-nodes, and one of the tests involves parameter 

variations for the I-nodes and, the other 'tests the 
'i 

variation of the values assigned by the F-node. 

Internal D-nodes (not directly observable through 

O-nodes) are tested by identifying those tr~nsitions that 

assign the nodes, in,such a way as to satisfy the relations 

on them in the predicates of the subtour. The value assigned 

to the internal D-node by the IUT can be verified from the 
.. - . 

O-node values that indicate the outcome of the evaluation of 

the predicates. The I-node values must be s~lected 

'carefully 50 as to be able to differentiate the various 

outcomes through the observation of O-nodes on~y. The 

internaI D-nodes'can also be helpful in finding the order of 

execution of the transitions if the subtouc contains a 

self-Ioop • 
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F-nodes of a block are treated depending on their 

types: 

F-nodes of ~ 1: The test designer should be able to 

-determine the values returned depending on the inputs given. 

These values are usually found by' consulting the informaI 

specification. 

In Figure 5.4, the F-nodes "append" and 

"get_next_fragment" require special attention because they 

represent the operations on the variables of an abstrac~ 
~ 

data type, namely "in_buffer" and "out buffer". These 

operations can be observed from the O-nodes that they assign 

directly (for indirectly (for 

"append") • 

F-nodes of ~ ~: They c~n be c~assified into three cases: 

F-nodes which are implicitely associated with I-nodes 

increase the number of I-nodes_in a given block, they must 

be considered when enumerating the I-nodes of the block. As 

an example, the F-nodes "as5i9n cal1ing T addr" - -- and 

"assign_called_T_addr" ·are respectively ~ssociated with the 

"to T addr" and "from_T_addr" parameters of T_CONNECT_req. 

Jhese ne~ nodes and arcs are represented by dashed lines in 

Figure 5.4. 
1 

- F-nodes which assign imp1ementation dependent values to D-

or O-nodes are obseived through the O-nodes. Sometimes, the 

observed values may be needed in assigning the I-nodes later 

the same subtour. In Figure 5.4, the F-node 

\ 
L-\ 
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"assign_local_ref" assigns implementation dependent values 

to the D-node "local_ref". 

- F-nodes which represent local procedures that initialize a 

variable are tested indirectly, i.e., by testing the block 

with normal form transitions that occur at ter the 

initializing normal form transition. The assumption here 1S 

Ehat if the Implementation does a wrong initialization of 

the D-node, the. error can be observed later in the subtour 

by correctly setting up the I-node values. The same 

considerations apply to the initializations done by constant 

D-nodes. In Figure 5.4, the F-node "clear" initializes the 

D-nodes."in buffer" and "out buffer". 

F-nodes of ~ l: The values returned by type 3 F-nQrles' 

related with Boolean exp;essions are easily determined from 

---the incoming arcs to the F-node~,_~1~ée these usually assign 

Boolean type O-nodes • 

. Type 3 F-nodes related to arithmetic expressions are 

./ /more difficult to deal with, because aIl possible values of 

aIl the D-nodes of a block assigned by type 3 F-nodes should 

be considered as differen~ state values. Therefore, driving 

the Implementation into aIl of these states may not be 

practical. Test design for blotks containing type 3 F-nodes 

should be based"on the types of the D-nodes ~ssigned and ~n 

the set of arcs relating these D-nodes. Th,e detailed test 

design for the Class 2 TP (see Chapter 8) contains suc~ a 

case. 
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Blocks with n~ variable 

I-nodes flowing directly to 

D-nodes usua~ly contain 

the Q-nodes, or o-nedes_ 

assigned by a collection of 1-, F- and (constant) D-rtôdes. 

Each such flow should be tested (possi~ in different 

subtours) . 

/~ 
/ 

/ 

É.l.l.DependeQt7!ndependent Blocks 
/" 

/./"'~T 

~//The blocks that have incomiryg arc (~) from other blocks 

are called dependent blôcks, because they are involved in 

data flow dependencies (see Section 5.4.4). AIl other 

blocks are independent. Independent blocks as well as 

dependent blocks may be involved in predicate dependencies 

(see Section 6~2.3). 

The flow in independent,blocks can be tested by 

parameter variations of its I-nodes ind~maently of other 

blo&ks lexcept for predicate dependencies), assumiryg that .. 
the same independence is observed by the implementation:~ 

Once thé independent block has been ,tested, fixed values for 

its I-nodes can be used in testing, other blocks h~ving 
r 

I-nodes of the same primitive(s). Sometimes such blocks can 

be tested simultaneously. 

"In Figure 5.4, aIl blocks 
rJ 

except the block of 

are independent, without any predicate 

dependenc .... ies. 

\ 

": 
é 
,; 

1.')': 

,~ 

~ 
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, 
l 
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Data dependent bloc'ks are ûs.ua1'ly created wh~n' O-nodes 

assigned, in one control phase (dependenty causing D-nodes) 
. ~ 

are used in the BEGIN blocks of the normal form transitions 

in other control phases. ~ " ,The tésts for dependent blocks 

fi rst set<'the dependency causing D-nodes to a spec i fic value 
, 

(possibly in, a preceeding control phase) and then do 

parameter var'iations of the I-nodes ,of the dependent block. 

Dependent D-nodes as, weIl as dependency causing D-nodes may 

be assigned in _the sa me control phase. 

predicate .dependencies are similar to the data flow 

dependencies, the only. difference is that the D-nodes 

involved in ~redicate depen~encies do not take part 'in the 
, 

flow of the block~ 

!.4.!!!i Sequencing a~d Test Optimizations 
'. 

In tl)is section we aiscuss the considerations - that 
'J 

apply to th~. sequencing (io_eo, frder> .o~.-tl:le_ ~ests for the: 

blocks-, combini-ng parameter var)atiOr(;l-' ,~f> .different bl:CkS 

in one test (optimizing the number of sts), the number of 
--~ 

.cçnnecHons requicêd to test: bloc' "~tUJ'e of 

the s~btours (the "." operator in particular).. .' \ 

1.,. 
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~.!.l.~ Ordering 

The following rul~s should he followed in sequeneing 

the tests for the blocks: . 

Te~t~ for the b~ocks whose D-nodes (O-nodes for the 

bloeks with no D-~odes) are assign~d in earlier . control 

phases are done before the testé for the blocks whose 

D-nodes are assigned in later control phases. If there ar 

more than one block tç test in a glven control ph~se, 

indepen~ent blocks are tested 'fir~t (considerations related 

to testing them simultaneously are 
"'\. -

, . 1 
Indepen~ent ~loc'ks tha't are lnvo ved 

predicaté dependenclés (measured as 

given in Section 6.4.2). 

in a minimum npmber of 

the number cf variables 

borrowed from other blocks) çan be given priorjty in j:he 
-test ordering, since they can be eonsidered mor.e independent 

than the 9ther,') blocks. 

The ordering of the tests for the bloc.Jts of. Figure. !:?:4 

will be glven in Chapter 7. 

/ 
Tests that determine the parameters of the IUT are 

done before the tests that use these paTameters. As an 

example, the tests for the blocks whose normal form 

transi tions include prediea-tes sueh as 

(/able to provide/) 

determine the qos parameters of tne implementation. The 

levei of QOS provided ean he determined by varying the 
. 

l-nodes related with tne QOS (see Section 6.2.4) adaptively 

• 1 
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un t il' the unacceptable leve l is found. La ter, these 

parameter 'values are used, for testing the call refusaI 

blocks. / 

6·i·~·Optimizations 

1 
l, 

/ 

/ 

The following rules apply to combining parameter 

variat ions of different blocks' in one test: 

The blocks whose D-nodes are assigned in the same 

control phase can' be tested llsing the same subtour. The 

blocks whose D-nodes or O-nodes ar"e assigned in different 

control' phasés can be considered as containing more than one , 
subblock (not necessarily disjoint), one for 'each control 

phase. Tests for each subblock are done in a subtour, 

possibly, combining parameter variations with the blocks 

whose D-nodes are assigned in \ other control p~ases of the' 

same subtour-. For instance,. the "di sconnect ion" data f low 

function of'" Figure 5.4 can be divided' into ,4 subblocks 

involving the normal form 'transi tions' (P-~7,P18,P19), 
If 

(PB, P9 )., (Pll,P12) and (P2,P5) respecti vely. , The f lows 

corresponding to each of these subblocks can be determined 

from Figure 5.4.)l;e subblock containing '(P17,P18,P19) can 

be tested with one of the blocks of the "connection 

establishment ft phase and aIl the other subblocks are tested 
" , 

separately, ,because Figure 5.4 contains no other .blocks_ ~ith 

D-nodes assigned by\ the norma.l form transitions of these 

J' "" 
·r 

,'::, 

. " 



140 

',subblockS. 

.. 
The ~locks condlining only continuous domain 

~arame~ric I-n6des (see'Section 6.2.5) need not be tested 

s~parately, these bloc ks may be testéd wi th any other block 

whose D-nodes are pss igned ,in the same, subtour (s).' As an 

example, in Figure" 5.4, the addressing block may be"tested 
. - . 

with the connecttion referencing, or quality of service 

blocks. 

Independent blocks may be tested ~ith any o~r block 

whose,p-nodes are assigned i?,\~e sa me subtour(s).' In the 

example of Figure 5:4, tfe -= addressing, QOS, TCEP and 

connection referencing bloc~s are such blo~ks, ther~by they 

may be tested simult'neously~ 

6"'!.1..Number of connec>49ns- in a ~ 
j5> -

" The number of consecutive connect ions required to test 
1 

a block depends on the normal form transitions of the block. 

If the normal form transitions assigning the D-nodes occur 

. in the self-loop, a single connection i5 sufficient to test 

the block by parameter variat ions: ,done 
~~ 

in the 

Otherwise, a new connection is established 

self:"'lo~p. 

for each 

variation of input parameter5.. Neverthele,s, even blocks 

tested in a self-loop may require consecutive connections if, 

théy are d~pendent. 

\ 

j 

<1 
~ 

.~ 

, 
" .; 

~ 

'~ 
.~ 
~~ 

'j 

.~ 

~ 
. 
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Usually, there exists more than one block that can be 

tested in a self-loop.-. If the parameter variations are 

combined, i t' i's : important to add another test phase in which 

the I-nodes of aIl the blocks ~re varied simultaneously (see 

Chapters 7 and 8 for data transfer, tests). In Figure 5.4'1 

the blocks of "in buffer" and "out buffer" can be tested ip 
1 ..... 

1 • 

a se1f-loop usirig one of the subtours containing the 

self-toop. Parameter variations of the two blocks can be 
1 

combined, giving two test phases ,for - ·data -transfers. 

Another phase should be added 'to vary their, I-nodes 

simultaneously. Since the block of "out buffer" is data - -
dependent, the tests are repeated for different TPDq Sizes 
• 
in consecutive connections. ' 

&.!.~.Structure of the Subtours 

" 
A list of normal form transitions containing the "+" 

operators (see Section 5.1.1) such as Pl+P2+ ••• +Pn 

represented as a single transition in a control graph may be 

created by 

a) Normal form transitions vith the same primitive. ,Thèy 

result from various pat}ls in the transition. type 'Of the 

Subgroup ,B fDT speci Heation, and/or from the 

tran"sformations on the PROVIDED clauses to remove the "or"s 

('S~e S~ct ion 6.2.3). 

b) Normal form transitions' vith ditferent input primitives. 

These normal form transi tions ·.are .çreated br different 
1 
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transition types havin~ the same present and next states. 

c)Spontaneous transitions. 

Note that a given list of normal form transitions may 

have normal form transitions from a combination of the abov'e 

cases. In Table 5.1, the lists (P3+P4), (P6+P7) and (P8+P9) 

belong to the first case, the li sts (Pll+P12) and 
, 

(P17+P18+P19) to the second case, and (P14+Pl.~+Pl6) to the 

, fi rst and last cases above. 

1 f the subtour used to test a block includes a list 

belonging to the case a) above, the-I-nodes to be varied and 

the l-nodes to be fixed determine the choice of the normal 

form transitions from the list. Either the complete list is 

selected, since the I-nodes to be varied require inclusion ' ~ 

~of a11 the normal fo~m transitions, or only some of the 

normal form transitions in the list can be selected s'ince 

the I-nodes to be fixed do not allow the rest of the normal 

form transitions to be included. For example,.in Figure 5.4, 

when testing the block of connection references using the 

second subtour in Table 5.1, only P3 is selected since both 

P3 and P4 have predicates'on an l-node (max_TPDU_size) which 

is fixed because it be10ngs to the QOS block. 

If the subtour used to test a block includes a list 

belonging to the case b)' above, the test designer has to 

select one ~t~he primitives to be used in the test. The 
~;. 

// 

choice usUa11y depends o~~the synchroni~ation of the tést 
4 ~. 

sequence in the subtour (see Chapter 2). The tests vith the 

" . 

P" • 
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" 
first/ seçond subtour (user/ peer initiated connection 

establishment) in Table 5.1 selects P17/ 'PIS from the list 

(P17+P1S+PI9) because P17/ PIS frees, the connection from the 

user/ peer side. 

~ometimes, one of the inputs in the li st i 5 
1 

uncontrollable, i.e., _ i t cannot be applied determini1stically 

by one of the testing sides. These inputs are gen~rated by 

the (N-l)-l,ià'yer and applied to the (N-l)-service boYnda~Y.~f 
the IUT. The specification usually includes tdanSltlOn 

. types relaté'tf - to the inputs of this type, 
~ 

because any 

implementa~ion of the protocol should be ready to handle 

such cases. In the case of subt?urs including uncontrollable 

inputs, i t, i 5 assumed that the seme input lS applied to aIl 

communicating entiti'es, thus the Tester side and also the 

Responder side have to be ready to handle any such input. 
! 

1 

In Table 5.1, P19 has ari input called "network reset" 

which is not contro11able a special test devicè is 

used (see Chapter 1). This is initiated by layer 3 in 

the casé of a transmission erro (nondeterministically) • 

The subtours containing " ~ operators in places oth~r 

than self-loops 'req~ire consec tive connections to repèat 

the subtour for choice .< roduced by the "+"" operator,. every ln 
/ 1 . ~ 

'Ct .. 
{-; 

," 

1 
1 

,l" l ' 
'r 
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&.2.Multiple Connection Tests 

Handling multiple paralle1 connections is an important 
\ 

aspect of a protocol imp1ementat.ion. ~e protocol 
\ 

specification specifies (sometimes impli.citly) \he mapping 

of the multiple connections onto lower level corlnections. 
\ 

For example, in the Class 0 TP, the mapping of the tr'i(lnsport 

connections to the network connections , 

one-to-one fashion. This fact is implicit 

is 
\, 

done '~n a 
\ 

\ 

in the Class O\TP 
~. \ 

specificatio~ (ISO 82] which does not include any~ arrays an~ 

ANY statements. ·AII the variables of the Class 0 TP except 

TCEP can be thought of as belonging to àn array indexed by 

TCEP. 

In the Class 2 TP, a q.i ven network connect ion May be 

used for more th~n one transport connection. The Class 2 TP 

specification, defines two arrays of variables indexed by 

"Ne id" for network connections and "TC id" for transport 

connect ions (see Chapter 8). 

O-nodes representing the connection array sizes May he 

treated as being of enumeration types. The enumeration of 

these D-nodes requires establ i shment of parallel 

connections. The number of parallel connections supported by 

the implementation is ~ne of its parameters. The value of 

this parameter can be determined by trying ,to establish as 

Many parallel _ connections as possible in a test. The 

subj:.our(s) to be applied ls selected from the block 

containing the array size: Once the number of parallel 
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connections supported is deter~ined, 'the other blocks can ," 

then be tested using para11el connection~. Testing aii the 

blocks using multiple parallel connections may not be 

pract ical due to the increased number of tests. . Instead, 

only the àlocks and informa! functions which may be shared 

by multiple connections are tested. The block containing the 

data buffers and some informa! functions, such as Uow 

control, may be considered here. 

Multiple connection test ,design for protocols having 

two array variables will be detailed in Chapter 8. 

1 .1 

6.6.Parameter variations !n2 ~ ~ Technigues 

ln this section we discuss the relationship between 

test selection methods for FSMs discussed in Chapters 2 and 

3 and parameter variations, and generalize the definitions 

of special test inputs (see Section 2.5.1). 

The subtours of the CG are parts of a transition tour 

of the FSM representing the protocol. Performing pàrameter 

variations implies application of the sequence in the 

subtour 
< 
as: many times as necessary. Combining parameter 

variations means that the number of l-nodes to be varied i5 
~ 

increased by the I-nodes of the bloeks considerec;1 together, 

but thes-., r-nodes are not varied exhaustively. 

As discussed in Chapter 2, a transition tour does nct' 
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necessarily have full fault detection, but sorne measures can 

be taken to increase the fault detection capability of a 

tour: A subsequence can be added to the tour in order to 

verify the state of the machine. For example, a subsequence 
~ 

accomplishing two-way data transfer can be added to the 

tests of one of the connection establ~' s nt blocks to 

verify that the IUT really enters the dat transfer state. 

An example of this process will be given l Chapter 7. 

As discussed in Sectiqn 6.1, parameter variations, 

pre- and post~ondition~, nondeterminism and spontaneous 

transitions make it impossible-to use FSM test techniques to 
'1·'; 

generate test sequences for rea~rotocols automatically, 
\ 

using programs such as those descr i:bed in Chapter 3. Thi s 

fact ,~emains true even when a si~e' subtour of the CG is 

considered in isolation. In sorne cases, considering only the 

normal form transi tions of a' single~ black, - i t may be ,. 

possible to Qbtain a FS~ modelling the sequence of, normal 

form transitions. This is done by considering the variables 
, 

of the block tnat occur in the predicates as sta\e, 

variables. Based on tne resulting FSM, test sequences for 

the block may be obtained. An example of these techniques 

will be given in Chapter 8. 

• However, the programs that _~nerate transi tions l'burs 

(see Chapter 3) may 'be used to obtain "Subtours for Any given 

control graphe 

1 
1 

1 

f 

1 
1 

-1 
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6.&.!.Use 2! ~ and O-Methods 
4t 

The FSM for a test of a b10ck usua1ly does not possess 

a W-set or a DS. A W-set or' a DS can be obtained by 

(partial1y) completing the machine. The completion process 

has the. Qrob1em of assuming responses for unspecified inputs 

that may not match wi th the responses of a given 

implementation. Also, the resulting w~ or D-s~qu~nces can 

have synch!onization problems. Thus a practical.use of the 

W- '. and/o~ D-methods for protocols is only possible if 

primitives fqr state recognition/ setting such as "read 

state" and "set' state" [SaBo 84] are included in the 

spec i ficat ion. 

When the PROVIDED clauses are considered, the state 

space ~# a given test is effectively determined by the 

var'iabl~s tha t occur" in a1l the predicates. Therefore the 

definitions of the read state and set state primitives may 

be genera1ized as fo11ows: Inst~~ of "reading" on1y the 

major state·values, "read state" returns the values of aIl 

state variables, similarly for "set state". This set may 

then be used in the tests for each blqck of th~ DFG as a 

W-set (or a DS). 

'. 
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1 7.Class 0 Tests 

\ 
Th\S chapter describes the tests designed for test5ng 

imPlementftions of Class 0 TP. These tests were applied to 

the TP impleme~tations described in [Leveille 841 and [Serre 

84 J u5in9 the test system described in [Maksud 83J which 

implements the test architecture described in Chapter 1. 

These C1ass 0 tests were designed before the theory 

introduced in Chapters 4, 5 and 6 was developed. An adhoc 

functional division and a dependency structure among the 

functions were the major considerat ions for structur ing 

these tests as described in [BoCeMaSa 83]. In this chapter 

we give a detailed description of each of the tests and 

diseuss the fo1lowing points: 

(a) Test sequence selection using a fauIt model, 

(b) 'Solutions to certain synchronization problems. These 

problems arise in tests which establish consecut ive 

connections (called si ng le-connec t ion synchronization 

problem) or simu1taneous multiple connections (called 

multi-connection synchronization prob1em). 

(c) Time-outs used in sorne tests, i.e., unexpected 

st imulat i on tests. 

(d) Relation of these tests with the test design methodo1ogy 

of Chapter 6. 

First these tests were forma11y described in the 

Sub9rouP B FDT. Each test description consists of ~two 

partsl one that describes the actions of the Tester (cal~t!d 

,'. 

.~ 
• 
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Tester (T) part) 1 and one that describes the act ions of the . 
Responder (called Responder (R) part). The test descriptions 

were then translated manually into Pascal programs wi th 

proper interfaces to the Tester and Responder, system 

rout ines. 

In discussing test sequences for each side we use the 

notation: 

5 or R 
kind kind 

where kind indicates the interaction primitive involved, and 

Sand R stand for sen'd and receive, respectively. 

7.1.Classification of lli Tests 

A complete test ing sequence consi sts of 15 test.s'. Th~y:, 

may be classi f ied into four groups: 

i) Single Connection Tests: This group,contains the basic 

'" tests (TTBASO, -TcFR), quality of service tests (TQTC, TQCI), 
1 .., 

calI refusal tests (TCRT, TCRR) and data transfer test 

(TDTSC) • 

H) Multiple Connection Tests: This group 'consists of the 

basic tésts (TMC1, TMC2, TMC3) , and the data transfer test 

(TDTMC) • 

Hi) Unexpected Stimulation Tests: This group may further be 

subdivided into peer unexpected stimulation tests (TUSl, . 
TUS 2 ), and'( user un\eXpected stimulat'ion test (TUS3). 

iv) Call ~~d Diséonnect Collision Tests, 'l'here ls a single 
) 

" 

" 
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test in ·this;group called TCDC. 
, -' 

2..~.Sin91e Connection Tests 

\ 

1.!.1.Basic Tests 
l 

The tests (TTBASO and TCFR) were designed to check if 

the implementation is able to encodel decode the PDU' s, to 

address its user. and peer ~rfy, and to establish and free 

----,a connection. ~~fut sequence seléction is based on a 

faul t rnodé~ encoding/ decoding and a FSM model (i.e., 
-~ 

-----,.,~----s1mi lar to the control graph of Chapter 4) which 9i ves the 

sequencing of the interactions. 

1.!.1.1.Fault Model 

<J ... J,....... 
We assume -_lnqependence of encoding from decoding and 

also a correct network layer in the following discussion. 

Encoding.l decoding of ~the primi t ives can be mode1fd by 

defining the functions Fe and Fd respectively.. These 
, ---------functions are mappings from l (the set~hfimitives) to 1 u 

- ------------:. 

{0} where' 0 denotes nu11 or invalicl primitive [ThAb 79b]. 

Decoding. An input primitive Ii i~troduce~ by 'the network 

layer is decoded with Fd into zero, one or more primitives. 

Fd(Ii) ,. {Ii} if there is no faulto in decoding. 

Bncodingl An output primitive'i, Oi to be introduèia"-"to the 

network layer is encoded with Fe, 

" 
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• ................ t - ~ • 

Fe(Oi) • fOi) if there i5 no fault ln enc9dlng. 
.... ... ~ ~ ",' 

~ 
.rt~';;1't), ~Wr~""'I;,' ..!.,~ .,' 

To intr"oduce faults, we consid~r each primitive vith 

i ts parameters: 

" Ii(PO,Pl,P2, •• ~,Pn) for an Ii with PO being the field 
0-

which identifies Ii and Pl, ••• ,Pn being the fields 

corresponding to its n parameter values. Similarly, 

Oi (PO,PLP2, ••• ,pn) for .an -Oi. 

We allow tHe followi~g faults: 
0, 

" / 
" 

, D~coding: ~d(Ii) 
,.t, t 

III {~} where the implementat ion ei ther' 

cannat decode Ii or ignores it. 

Fd(Ii) -{Ij} where Ii i5 decoded as Ij with 

Ii<>Ij, or 

Fd(I,UPO,Pl,P2,' ••• ,Pn» III {Ii} but on~. or more pis 

get wrong values. 

Encoding. Fe (Oi ) III {~} where the, i~mp*ementati on cannot_r 

fntroduce- Oi to the networx due to the network interface 

problems or any other fauit tVhat, i~ not observable .c' 

Fe(Oi)'· {Oj} where Oi i5 4ntroduced as ,Oj wlth 
~~. <"';" :- \. 

Oi<>Oj, or -~ 

Fe(C?iCPO,Pl,P2, ••• Pn» III fOi} _but one.~ more pis 
. . ~ . ~ ,. ,,- . 

are lntroduced to the network ~ayer wlth wrong values. 

Note tbat the above fault mode l , assum~s C?n~y "fU'st 

order'" fauIts, L~., hiClher order 

he décocledleneodeâ int"-'~ IIlOre than , 

fau~t~ where Ii~ Oi\would 

one ,prim1t;ive are t'tot .. 

allowld. 1 f . higher '1oorder' faul ta, oc:~ûf :tht!l\ ~ voule! awear as .. 

fi rat ·order f"u1"t1s where one or JDqre of . the ~r •• eters, are' 
. , , 

~' 

'\,. ~..: 

.. 

l ' 
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- f\'" ... ç 
< 1 

.b 

decoded/ end;ded wi th wrong values, thus we ass,ume that a 
< 

, test sequence which detects aIl first order faults would~ 

a1so detect higher order faults. It should be noted that in 

the Class 0 TP "concateoëiiOn" is not allowed, i~e., a given 

NSDU can contain only one TPDU. This fact makes the first 

order fault assumption above more réalistic. 

In order to introduce/ receive a maximum number. of 
o 

primitives to/ from the implementation, the sequences which 

involve connection establishment, data transfer, and .. 
" 

connection free~ng from two sides (one from T (TTBASf), and 
.\ 

one from R (TCFR) ) are selected as test sequences using the 
o 

FSM model of C1ass 0 TP. Parameters of aIl the' primitives 

,are fixed to their'default (or arbitrary, for exchanged 

data) values and addres~ing parameters are used to test for , 

a basic addressing capability. 

The test that s~arts the connection from the Tester 

side can detect ail the decoding faults for CR and DT, and 

aIl the encod}n~ faults for CC and DT primitives. The other 

test -can detect aIl the decoding faul ts for CC and DT t and 
" 

ali the en~9 taults for CR and DT primitives. To prove 

this Wè consider for example the decoding faults in the 

fir~t: test: 

a) if the implementation ignored the received CR (as may be 

detected by timer interrupt), t~ Responder.part 

have re_~~"!ve.d a T_CO~~CT_ind (si~ilarly for DT); 

would not have reeeived a T DATA_ind. 

would not 

then it 

.0 

. , 

J 

j 

1 

i 
l 
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b) The CR and DT were not decoded into other primitives, 

sinè~ if they were th~y would become unexpected stimulations 

and the Te'ster vould have rece i ved an "Err" PDU and 
1 

terminated the test. l t Js assumed that there is no 

additional error in the implementation for handling 

unexpected situations. The other possi~ility is that the 

"'IUT may have ignored the "unê'kpected stimulation 'which would 

be detected by timer interrupt 

terminate the test in this case. 

and the Tester would 

c) The parameters -of the CR were decoded correctly since the 

parameters of the CC received in respense te the CR were 

verified for correctness, and since the user (Responder 

part) received a T_CONNECT_ind and verified its parame~ers • 
.... ~--
~-

The parameters of the DT can be verified by the Responder to 

" be~, equal to the data sent by, generating the data vi th the 

sa me procedure as the Tester • .. 
Similar proofs can ,be made for the encoding faults and 

also for both faults of the second basic test. 

It should be noted that the original test programs 

(TTB~SO and TCFR) contained no time-out mechanism, thus 

accerding'to the fauit model timer should have been used in 

the places mentioned abov,e. 

j 
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1.~.~.Qua1ity of Service(2Q§) Tests 

,There are .. : ... two tests corresponding to the QOS 

'negotiation for connections initiated from the Tester and 

\ the Responder sides, respective1y. These t~sts enumerate the 

possible values of the max_TPDU_size parameter of the CR and 

vary. r. the parameter of the T_CONNECT_reqr' 

respectively. QOS tests are done with consecut ive 

connections,one·per QOS value applied. Although there is 

in geher:'à'l no direct relation. betW'een the max TPDU size 

parameter of the CR and the QTS_req parameter of the 
. 

T_CONNECT_req, in' TQCI for .simplicity, we have enumerated 

OTS req in the sam~manner as max TPDU size. , -r 

T: 

R: 

The test initiated by T (TQTC) can be described as: 

S 
CR 

R 5 

R S _ 
CC N_DISCONNECT_req 

T_CONNECT_ind T_CONNECT_conf 

~ 
above sequence i.s repeated 'each time increasing the 

TPDU size parameter of ~the CR starting vith the defau1t - . 
value, ,i.e., 128, up to the maximum of 1024. The enumeration 

i9 stopped when a TPDU size not supported by the 
. 

implementation is reached, i.e., when the limplementa~}on 

either: 
.c 

a) refuses the CR by sending a DJ, or 

b) accepts the CR and decreases 

responding primitive CC. 

QOS,value in the , <> 

! 
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If case (a) happens, the Responder part receives no 

response and will still be expecting a T_CONNECT_ind when 
Il 

the Tester part termina tes the test. Thus ~he following 
- ... 

subsequence has been added to SynChrOniz~h parts ~nd to 

terminate the test in a synchronized manner: 

A connection/ disconnection with default TPDU size 

initiated by the Tester. 

Note ~hat this termination works a1so for case (bJ 

although it introduces an extra connection to the test 

sequence. 

is: 

The test sequence for the test initiated by R (TQCI) 
~ 

R: S 
T CONNECT reg 

T: -R -S 
CR CC 

S 
-T_DISCONNECT_req 

R 
N_DISC_ind 

The above sequence is repeated . each time increasing the 

QTS req parameter of the T_CONNECT_req which stands for the 

TSDU_fragment_size supported, in the same manner as for CR 

above. The implementation's response to the unsupported 

fragment sizes depends on the user interface. In the tested 

implemèntation [Leveille 84), such a request wes rejeèted, 

thus causing a synchronization problem similar to the case 
• 

above. A solution can be .given in a vey- similar to above, ' 
-

i.e., the Respo'nde.r initiates one extra eonneetion wkh a 

default QOS parameter value. 

, 

(.1: 

1 
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Bach connection establishment with a new QOS value in 

both of the above tests is followed by a two-vay data 

trans'fer with the maximum nego.t;iated PDU size. This data 

transfer has been added to increase fsult àètection since it 

verifies that the implementation really goes in to the data 

transfer state and suppo~ts the negotiated PDU size. 

" 

2.~.1.f!!l Refusal Tests 
, . 

/' 
There are .two tests in this group, one 

J . 

" 

from the Tester (TCRT), the other, from the Re onder (TCRR) • 

The~ test the. cases where the 

user refuses the calI. 

The test sequence is' as foll 

T: S R SAS 
CR DR N_D1SC_req CR " 

R S 'R: 

• or the called 

For TCRT, 

R 
DR 

S , 
_( N_DISC_req . 

" 

, . T_CONN_ind T_DISC_req 

The first CR carries a QOS parameter value Cclass • class_2) 

which is expected to be rejected by the implementation. The 

second CR carries only default' p~rameters. 

The test sequence for TCRR is: 

. , 

" 

" , 

.. , 
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\ 
R: S R S R 

T_CONN_req T NOT i d T CONN req TOISe ind 
R s- R- -T: 

CR DR N_DISC_ind 

The first T_CONN_req containes a QOS parameter value 

(an unsupported TSDU_fragment_size) which should be rejected 

by the implementation, 

parameters. 

l.~.!.~ Transfer Tests 

, \ 

and the second contains,"default 
\ 
\ 

~,- This group consists of a single test (TDTSC) initiated 
r< 

• t • 

from the Tester for correct data delivery, simultaneous data 

transfer and flow control. 

TDTSC c~nt,ains three phases and these phases are 

repea ted for each \ TPDU_s i ze supported (128 and 256 for the 
\ 

implement~tion tested) in consecutive co~pections_ 

Phase l tests the data t,ransfer from the peer to the user. 

parameter of the DT primitive is 
, , 

varied 'for 

length and conter-,t"_ Ov\er a11, each byte position in the data 
, 

parameter of thi DT PDU gets all possible values from 0 to 

255. CO,rrect delivery is checked by acknowledgements sent by 
,1 , 

the Responàer: in a a-byte DT PDO ,Which carries an error 
1 \ • ' 

report of th' 'data reeeived after receiving a complete TSDU. 

Phase 2'. ~b~ts data tranafe~. fr~ t~~ ua.r· ti> the Peer., 

Parameter variatio~s for ~~e T_DA1A_req primitive are don. 

J 

. '. 

• t 
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t for length and content. Correct delivery of a unit of data 

(last PDU 15 indicated by setting the end_of_TSDU bit)' is 

checked by the Tester. 

\ 

\ 

C 

Phase 3 includes the actions of Phases 1 and 2 

simul taneously. 1 
An adhoc fau~t model is used in TDTSC to test flow 1 

control. In Phase 1, where flow control from the peer to 

the user lS tested, the Tester sends DT PDUs to the 

of the responses received 

(error r.eports)., The Responder can che' ~he data. delivered 

IJ for correctness ~;'nce it knows the conten' 1; of the data to 

be received a'nd sends the error report at the end of a TSDU. 

Thus if tnere is an . err.or in flow control, it is assumed 

that the implementation will either be unable to stop t"he 

Tester and crash" oi it will deliver the data to the , 
Responder in wrong order or 
~ 

a~y to Phase 2 where data 

wiçb losses. Similar remarks 

\" 
~ 

flows from the Responder to the 

Simultaneous flow control from both user and peer 

to peer and user, respectively; " and butfer management are 

tested in Phase 3. 

, . 

\ 

: 

.i 
~ 

~ 
~ 
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1.1.Multiple Connection Tests 

Parallel multiple cbnnection tests are done to 
, , 

determine the -maximu~ numbe-r of connections supported by an 
l ' 

implement~tj~n and t observe the effects of multiple 
1 

'" connections on data d ivery. There are two groups of 

multiple connection tests. basic and data transfer tests. 

1.1.!.Basic Tests \ 

.' 
This group includes three tests: ...-,.one to create 

simultaneous connections b~ multiple CRs (TMC1), one to 

create simultaneous multiple T CONNECT reqs - -connections by 

(TMC2) and one ta create simultaneous connections in both 

directions. " '-,'1 , 

)-

Tl'1e TMCl test sequence is obtained from the single 

connection basic test TTBASO by simultaneously applying it 

for more than one connection. 

not be able to support aIl of th 

the Tester part, the Responder 

Implementation may 

cOQnections initiated by 

the 

T_CONNEÇT_inds for some of the c nnections. Thus when the 

test terminates for the connecti ns supported, the Tester 

part will terminate', -but the Responder part will note This 
o 

situation is similar to the synchronization problem for a 

single connection. We 
- . 

calI it' the 8Ulti-c9nnectio~ 

We presenf tvo pos'sible solutionsi . 
, 

.ynchron,:l •• ~:lon probl ... 

(a) if the test sequence 'for each connection includes àata 
1 

\. 
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transfer from the initiating side then aIl the established 

connections can be synchronized delaying the data transfer 

until aIl of the 'possible connections are,established. When 

the Responder receives the first data, it knows that no 

further connection is to be expected. 

(b) On~ of the connections (with lowest source_ref/ TCEP 

value) takes the responsability of synchronizing the 

connections. This connection after aIl others ' are 

di.connected, sends data, receives its echo and then 

disconnects. At the moment the Responder receives the data 

it 'knows that no further connection iS,to be expected. 

Both of the above solutions were used in THCl, 

connections are synchronized at the beginning of the data 

transter and an additional data transfer by one of tne 

connections was included in othe test sequence. 

TMCl determines the number of connections to be used 

in aIl the other multiple conneètion tests, thus the other 
, 

multiple connection tests do not have the multi-connection 

~ synchronization problem. In here, we assume that the 

par~meter (n~mber of connections supported),remains constant 

regardless of the initiating side of the calls. 
::- -

Thé ~C2 test sequence is gen~rated from the single 

connectiGn test TCFR by simultaneously applying it for al{ 

connections .. 

THe3 tries both of the sequences in the basic tests, 

1 

'1 

'\ 

" 
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.:. 

half of the number of connections supported is initiated by 

the Tester, the other half by the Responder. 

{j 

l.~.~.~ Transfer Tests 

This group includes a single test (TDTMC) initiated 

trom the Tester. The sequence is the same as the Phase 3 of 

~he TDTSC test applied simultaneously on aIl connections but 
. 

only for maximum TPDU_size supported. TDTMC tests buffer 

management and ~low control in the presence~of multiple 

parallel connections. 

1.!.Unexpected Stimulation Tests 

These tests are designed to' determine the behavior of 

the ~implementation 

sbecification does 

groups: 

(a) pe~r unexpected 

(b) use~unexpected 
\ 

\ 

The ~quence 

\ 
\ 
\, 

\ 

in situations which the protocol 

not def ine. They are di vided into' two 

stimulation tests (TUSl and TUS2) and 

stimulations tests (TUS3). 

of TUSl may be represented as follows: 

, 
. " 

• j 
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.. 

repeat . 
establish·network con~eètion; 
send a primitive other than CR; 
receive the response (if any); 
clear the network connection; 

until all-primitives_tried; 

repeat 
establish network connection; , 
send the CR; 
send any primitive; 
receive the response (if any); 
clear the network connection; 

until all-primitives_tried; 

repeat 
establish network connection; 
send the· CR 
~eceive the CC; 
send a primitive other =than DT (or an erroneoûs-DT) 
receive the response (if any); 
clear the network connectioni 

until all-primitives_tried; 

each of the three phases (repeat-until loops 

above) reguire a different respons~ from th~ Responder and 

the number of stimulations in each phase are not necessarily 

known by the Responder, the end of each phase is indicated 
, 

by ~he Tester to the Responder by establishing a connection, 
( 

sending data and then disconnecting. Once thi~ is done after 
f 

~ stimulations' in the data transfer 
1 

sta'te, the test 

terminates. This mechanism par.tIy synchronizes the sequence 

,of TU~owever, a time-out mechanism is necessary in cases 

where a primitiv~ sent generates no response from the 

implementationf as discussed below. 

. 
TOS2 tests the ~peer unexpected stimulations in the 

,( 

. 
/' 

. , 

< 
! 
,l 
1 
1 
1 

j 

1 
1 
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/ 

the user unexpected stimuljltions. -All 
-~""­,.-'1 ...... , 

unexpec~ed service primitives are tried in different states 

and the responses of the Implementation are sent ta the 

Tester at the end of each phase. 

A t ime-out mechanism is necessary in the unexpected _--- ~ ~-
-' -

stimulation tests because ·an implementation may iqnof-e some-
~ -' 

of the peer or user interactions!_ --When waiting for the 

response from the Implementation, a timer is started. If no - \ 
--

response is_received before the expiry of the timer, it is 
~ -

assuméd that the Implementation has ignored the interaction. 

The'connection is clear,ed to allow for the nex't stimulation 

to pror:eed. 

Q • 

" 
l.~.fê.ll .and Di'scbr1nect Collision Tests 

'l 

ç' This g,roup includes only one test which. tries ta ' 

create a calI and' a disconnect collision. 

,Bath ~esponder and, Tèste,r ini t iate , 0 a connect ion as 

~oon as the 

collision. 

o 
• r 

test s·tarts for the purpose of creating a call 

Sirice 'there i s a~, one.-to-one, corresppndence 

between ô~tr,ansp~rt and a ne~work c~nnectlon in. ,the C-la-ss 0 

TP, ~he two cialls initiated should create two simulianeous 
, , / 

connections~ After the':' cp6ne~.tions are estab.~ished,. bath 

si~~s send data and after receiving the data both sides 
.. 

.. 
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/~~~~ 
~-

~~; 

~ 
~~;--~ 

initiate a disconnection on both c~ions for the purpose 
~ ~-

of ~reatin9 , a disconnect~rrr;ion. Whether the collision 

~ .. wi'll ~c~ur or n~ on the delay in the network. Thus 
~ -, 

this ~~e does nota guarantee a disconnect collision. 
~~ 

~~, 

1.&. Seguencing 2! ~ Tests 

Test sequencing for the four groups -of the Class 0 

tests is shawn in Figure 7.2. The seguen.cing in each group 

is represented as a tree by taking the basic tests as the 
et .. 

roots. A given test should orily be applied after aIl the 

tests ,in the ,paths from the root to 

to this test are applied. 

~ 

the node correspondi !t9, 

Thè ~~obal orQerin9 of the test phases is also 
)i 

,.indicated in ~Figure 7.2. First b~sic tests are appliad, 

fOt~owed by th~tests for specified functions. The testing 

of fûnc;tions not formally speci~ied- is. either perfo'rmed by 
ri 

"specified function tests" (for the çase of flow co~ol) or. 

covered separately~after aIl other tests are done. 

JI -- - ; 

'0 

; . . 
'* /.' 

" 
,.. 

/ . , . 
.. 

;JP , 

" 

r 

1 
t 
1 

1 
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Connec:tion 
IJ 

Tests 

" 

... \ 

'l'DTMC 
" 

b)Multiple Connection Tests 

" 

-. 

'c)UrieXpècted Stimulation Tests 
- . 

" 

r • 
Q , 

·S.' · d )call and lliscénnec. 
, : . '" ~ ~ _ ~ _~. l' ~ ... 1", ' 

>, • 

" 
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;' 
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l·l·Relation !.2 lli !!!1 De'sign Methodology . 

• 
The relation of the Class 0 tests desc~ibed above to ~ 

the te'st design methodolo9Y developed, in Chapter _ 6_. is 

consiâered in this section. Possib~e modifications to the' 

test, sequences are discussed in' view of making them conform 

to th,e methodology described in Chapter 6. 

The single c6nnection .basic tests (TTBASa and TCFR) 
,'\',,,1 

correspbnd to t~e tirst part of 
, 

the test 
" 

clesign ~rocesà, 
. 

thus no modification ia neceasary for these tests (elÇcept 
,', 

for the addition of 
0, 

B time-out 
1 

, see Section _..,." IDèc ha ni SII1 
" "0 

7.2.1). 

The QOS tests (TQTe and TQCI) are assoeiateà with the 

flquality of service" block (see section 5.4.2) of othe DP"G in 

Fig 5.4'. The I-nodes max_PDO_size of' CR (of ,en~eration 

type) 'and QTS_req of T_CONN~CT!,r-~q (of l~rge integer type) 

are enumerated in the two tests for the two'subtours of t~e . 
block. Some modifications, to these tests are proposed below 

in relation with.other bloèks. = 

\ 'o. _ i 
.arfl. assqc iatecf vi th the 

"disconnectjon" block '-of ·the bPG ... '}:n~er,ti~n ~Of the ,i-node . ~ , ) 

" The calI ref\;lsal
O

• tests' . 

~~, -~ r... \ _ 
,~ - ,"disconne~tt_r'.~9n" _of, D~ shoultt ha~e been done" and' thé.' 
~: :',' - .-. - ,-. " . , ; ,:'~~od.-~ lIas.t9n_.dd .. c,lear:"t'êa~onlf :- .~oula._ hav."bQn observee! . 

r ~ "" ~ F .. ~ ... - 1 J ". , ~ j ... .' ~-" n , • ~ ~ ~ ".. .. '0 ~ ~ ,. (_ _ ., ~<i --:. ~ _ -._ ~ , Do _ ~ , 

, -'~ . __ ~.~~l~,\~~,'ii~g.:>~h.~ -.!l!~~ ... ~~~~~~~~~. ~~-:-. _Of:.~:~.the, 
" \ .. ~ -~;-"::'""f ~ L"'~'- .>'. ~ ;:-,- .. ,~" • - _,,,,:r ""t~"'~YI ~.!~_ ",:":".~ ~~ .. ~ 

. ,-~ "-Drs~ ~~: ~·'tbe::tiv~~,t"'~JIt.}th~~_'.o1dr4':_. 
. -,-"~---:::'-' . , .... ,:-.~.~:( .. ~. -. ,~.::~;: '" ., ,,:;,-,~,:.- ",-,;:~;, '{i:~- ·-~-~.i,~ ~:~(';':-;':" 

JIOd1:, ••. :U' . ,.,,', ,,- ><O'~~. "", _.. ( ., 

. , .•... -. ~ ~'.: ··;~~'l%:J:7i:ii:"u~~:.t;~~,;~,~ltn;{Jt~~ . 
. <, >~"~.;., _ ;~~,i~~:< ~~j.: ~ ~:;: 

~ ~- ~-,-,--c ":.-;#. ,~",;"'4~':;:' 
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(1) TCRR using the subtour Pl (PB+P9) br enumerati n9 

d.isconneet_reason of DR, (b)A TCRT using thè subtour 

(P3+P4) (Pll+P12) by varyir'lg user reason of T DISCONNECT req. - -
These tests may" inelude the subtour (P2+P5) in one test 

sinee the subtour contains single interactions, i.e., it is 
\ 

not worth designing '8 separate test for P2+P5., In th'e tOCk 
for di seonnect ion, there are three predicat~s (Pl', Pl and 

, 

P19) vhich are the labels of the . p-node calle~' 

assign_disc_relson. These labels occur in the subtours of 

the QOS tests, thus the '-node cln be observed for different' , 

i ' 0 values in the 

tests. These 

different conse~utjVe conne~tions of t~e QOS 

cases, shouict De lficiuded -in the gas tests. 
/ 

( 

Data transfer tests are ISSOC iated vi th the user to 

peer and peer-tc-user data transfer bloeks of the OrG. Since 

"out_buffer"- is a. dependent D"'node, the QOS tests (which 

test the ,dependency causing (node "TPDU_size~) ',are done 

" before data transfer tests. 'The ini tializing F-node "cleer" 

for both of the above blocks i5 tested by observàtion of---
h 

'correc_~ delive~y (see Chapter 6 for a discussion' on 

initiJiziri9 nod~s iq the- DFG) -1 i.' • 

, I/Since tlÎ~ SILs. of these t)fO blOC~ occ\!('; i~ the, Ulle 

seIff1ooP, these tvo blQ-Cks,. -c;an be t,~t~~ .. fth one te.t. 

ThUr Phas,e. i of TM'SC. cor;J'espônds +. peer-to:user data' 

·tr~n'fer/~; .~4.. Pba~.e 2- èorresponds è_~t~·- use~"':~o-9:Mr data 
• / ~ 14~ ~ l .. At - .. - "1 ' ~" _ { .. - J 

:tfans,r. P.ha~._ ~ .. t,.~et ... ~~. t~ ~lOck. ~~~~ll~.' . tow 
control 1. t~té4 .ift!i

a
# ft:r~."1~-7\!T,ln· 

. , 
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Section 7.2.1. Therefore the data transfer test regui res no 

modi f ication. 

The multiple connection" tests have the effect of 

en'umerating the O-node called TCEP of the DFG. The basic 

t~sts call~d THel, TMC2, TMC3 require no modification since 

the SIL of "TCEP" occurs in tvo subtours. The multiple 

connect ion data transfer test (TD'l'MC) 18 necéssary fo,\ 

testing the flow control oyer simultaneous connections. , 

The unexpected stimulation tests correspond to part ft 
< 

of the test design process, no modification i'8 neces .. ry_ 

7.7.1. Uncoyered Blocks _ .. - ; 

" 
The Class 0 tests described aboye contained no tests 

for the bloc~s of connection r~ferencing and addressing (see 
, 

Figure 5.4). For the latter block, any variation of its 

l-nodes becomes. an '':!nexpected stimulation. This block is 

tested vi th correct address values in the ~ests , for other .. 
blocks and mal' he testèèi vi th rando1D address v41ues in the 
. " 

unexpect~ stimulat-ion tell'ts. 

Seperate t.at(a) .. y be deÎig,..d for ·,tbe oloc;k of 
• , ~I 

conneètlo. t~ferencing, or: it.·. par~t'r, qr-lUiOA' can, be 

coabined. vit. t~e" cioS t .. t~ ~: - '~tliiei:i '~iiïj·'.=-.""" ' t~ 
_, ~.' 'fe.t. ~ith i~W . ~~.t~...., / ~t~~ ;: 

.. .~~ __ .: ~ ~-").l'f; ~~è.~ .. rI~J:~~_ '~" .• ' 

.. fer.nea ' ,.-: ••• ~;:,;~", ~ ~l"",,'::iy(~ tM:-, . 

• 

',;.: ..•..••• ~.:,'"'_' ,,,::.;.,:.,,,~_:..:,.,, •.•..• :.,~.: .• ?,.-,,:.;',,,':',""','.~:.',.-_'_";::'~.-_~ ; .• ,:"'~~ ~_·_-"'.é-'-:o.~4 :;"!' ,~~'.. ~,,' ,'~~ ,':. ,';5}'L 'C' , ::" {:, ' .,~ti{\~r.~:.", ,:' : 
. :,~': ~~;_,-.~ '.~'" ~<:;.~:.:_~-:'. :~' " ' .. : "~: . ~:' ";:: ;-,~,.\~~:~~~::~~' .' ~{!:~" ,;i~~~~:·.·., ,~~~r, -~.,~~., 

t 

" 

, " 
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stimulation tests called TUSl and 1052. 

\,_ 7 • .@..Brror Detection ~ Class .Q. Tests 

Errors detected in tvo implementations of the ClaIs 0 

TP vi th the above tests are reported in (.ÇeBoMaLeSeSa 84 J. 

In general, unexpected. stimulation tests detectec1 most of 

the errors. A1IOl Phase 3 of the data tranafer test TnTSC 
-

proved to bê'" very eflective in detectinc; 'errora related vith 

f lov control, buffer management, etc •• 
t , 

.' . 

f, 

.. " 
, .. Î"f 
1 • '. " . , .' , . 

• > 

: 
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8. Test Design' for the C1ess 2 TP 

In this chapter we apply the test design, methodolgy to'. 

a eonsiderably" eomplez' protocol~ i.e., the Class 2 'l'P {ISO 

" 
82b]. The main feat\lres of the Class 2 TP are the support of 

multiple transport connections over a single net"ork 

connection, and normal and espedited 'data transfer. 1'10'1 

control for the normal data transfer is achieved using an 

,ac knov1ed9f.!ment scheme vith r'eceive/send credits (windo"s) 
1 

for the tW9 di rec~ions of transfer. Flow control for the 
"\ 

.". 

expedited dita i.s si.ply done by receiving/sending the nest 
/ , 

data only after the aetno"ledge.ent for the previous data. 
, " 

1 

We discuss the test design for the Cless 2 ft in the 

following order: rirst the normal form transition. are , 

explained. Then the 'control graph, i ts subtours, and the 

data flov"graph are discussed. Nest a parti tion of the DFG 

is obtained, and the dependencies bet"een the blocks of this 

partition are discussed. rina11y the tests for the blocks of 

the partition are described. ... 

l.l.Normal ~ Tr,nsitions 

, ~' 

,B1 applyi~9' the, tran.~or~tions of Chapte~ 4, 13' 
cO 

normal foo tr-ana,itions'.re oOb~in.à f~r ,the.QI., •• -.2 '!'P, ~-' 
• J:'\ 

the:t 81'8 cJoê:~hted ln ("l'l'ka,., 84). '; SOM of, 'ltM: nOr.i . 
f~" ~r ... ~itiOft. a,l'. gi~ 'la··Appè_~i·.~ the; CO~~'P>n4~ t~; 

-;, ..."" , ... ~ \ ~ - t • 

t~ tranâitS.. t:"..~ .1..., II) --'À.,ridJ.a A," '.IIC ...... 1ft 
• , • - t" 

1--
r , 

, , ~ -- " 

'. 
.' 
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Chapter 4. 

, 
For obtaining the normal form 

following assumpt ions: 

transitions we made the 

i) The tr_ansport service interface function called 

'l'S.usèr_ready ~hich returns the length ,of the data that can 

he received by 'th~ user is modelled by introducing a 

variable called Wlength- which il assigned by a F-node of 

type 2 in aIl ,the normal ,form transitions correeponding to· 
, 

the transition type wbere rS.user_ready is used. 

ii) To handle the case where an AK primitive is receiVed and 
, ,.' 

the negotiàted value of the class . i5 "class 0, a major statt! 
\ 

~alue called', T_Err_sent is introduced. 'The pratocol enters , ~ 

into this state when. AK i8 received and a~,Err PDU is sent 

to the peer i\~ order to 
\ 

wait for a N_DISCONNECT_ind. When 

the N DISCONNECT ind ia received the netvork connection la - ,-

cleared. The same modification is made ~o aIl s~cified 

error cases • 
....s 

r 

. :----
!.~.control Graph !n2~Subtours 

, 
'l'here afe tvo ~jol," stClte variables, Wstate" and 

WNC_state" corr.spo~ding to'. t~e tvo 'mOdules A!P_~ype' ànd 

lllapping, ~e.pectivèlYI' ,of t,be,' CI •• s 2 :"P speéifi'ca~\lo~.·' 
Aft.er the.. Itodu~ ••. are· ,cOllbinJa. the _hl bl~t ~&f the . , • '0 _ • _, 

nor_l t'or. tranaltiqna cOllt.ln~ ' .. -••• I .... Dt .tai ..... ~ for 
~ ti - • ,.' ~ r" ~ ~ 

Mch _:jol" .tat ..... ,!_l.! ..... ,coCt'-npoadJ.ftJ 'COftt'Col. ..... 
• ; ~ 1 fi , -

\ 

1 • 
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! \ 

is shown in Pigure 8.1. Prom this CG ve observe that ,the 

state space of the protocol i5 not -equal to the cross 

product of the state spaces of i ts modules. This is 

expected sinee most of the "state" values can exist only 

\ when the "NC_state" is ·open". 

\\ 
In order ta keep Figure 8.1 readable, ve represent the 

\ 
tra,,\i tians by single letters A th ru Z and ~ thru f, each \ 

letter.\ representing a list of labels o.f normal forpl 
\ 1~ 

transit~s. Table 8.1 contains the list of "labels'! 

. c:orrespon~n9 to. ea~'b l'letter use~ in Figure 8.1. i In--~le 
B.l and the data flov graphs of, the fallowing sections, '\ 

li st of labels corr~\sponding' to consecutively numbered \\ 

normal farm transi tions·. i8 vri tten in an abbreviated forme 

l'or example, the consecuti vè normal" form transi tians 
\ 

numbered 81 thru 84 are vri tten as P81 ~\ •. 84. A normal' 

form transition labelled Pij is derive~ >from the i-th 
1 

i -
. transi tian type of the original specification (Iso B2b] •• 

The associated input primitives far the labels of Table 8\.1 \ 
, 

are listed in Table 8 .• 2 •. Por ~pontaneous transitions either 
, 

"the output ~iterated i8 listed, or the ~u~ctionality (t~e 
, D 

variables set, primitives encode.dI dec:oded, etc'. f 15 given •. 

. 
Pnlike the Class 0. TP specification, priai tives fro. 

1 
1 

'the pee.~ entit1 ('1'PD:Os) do not appur in -the" WHBIi el~u8e~ 
" l ~, j ! 

~or direc~tf'. in . .the out~t_ .• tat."llt.~ ,fil!. i., 10 tNte,usr 
t"he TPDOI . ~ ... nipulate4 i.r tlW :,btaff.,. "icti are lIOVecJ QI' - \.'- - ~ , .. 

\ ,~ . . " . ' .~ 

fi11ed }:r* t,l' •. 11100. in "nt~~ t~.tloU .-:~~ 
\. . .' r 

. ... . 1 . ~" -- ---- ;.... ,".' 
. . . ,~. _"'--._, - , . 

, , 
'\ 

, l 
r 

. 1 
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l ' ~ 

handle th""en(!~din9/ decoding and co.ncatena~ion \fûnc~ions o~ 
'" '\, 

\ 

the Class 2\TP. 

8. 2 .1.Subt~urs - --, 
" \ 

\ 

The initial state of the CG in Figure 8.1. is the 

state vhich contains the initial major state values' of the 

~o modu~es i.e., 

{NC_state-closed, state-closed}. 

There is another.state for which loops 

{NC_state-open, state-closed}. 

The loops correspond to' .ucc~ul~i~~ transport connections 
~ r 1.. .1 

using the' same netwott connecl;ion,.'· Six , including 

the data tr.nsfer st.te {NC_etate-open, 

self·loops. 

/ 
1 

, , 

. , 

, " 

.. 

open} have 

1 

{ 
: 

" 
~ ~ J r ~ . ~. 

~ , '_: KI i. ~ ~ ,,~_ 
, ." 

\ 

\ 

, ' 

, " 

\ ~', . 
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PLl -' " 
PJl 
PDl,PNl 
PHl 
PD2,PD3 
PIl 
P502,PD2,PD3;PF02,~02,PG06,PG12,PN2 
P507,P508,P510,P60l ••• 604,PD1,PF06,PNl 
P509,P510 - Z 
PH3 
PIOl ,PI02, Pll7, P2, P3, PEl,PE2, PR2 
P505,PG09,PG15 
P605,pr09 
P2, P3 ..... 
PlO', poo,', PGoe, PG14, PN6 
P607.:. 610, pral 
PH7 . 
P91 • 
PI03, 104,11,0,112,113,115,116,118, P2, P3, PB1 ••• 84, 

. P92, 93t.~ea-i ~ •• A3, PB1, PB2, pro" PGQ4, PG08, PG.l' ~ 
PN6, ~1,PP1, PP2,PQl, PR' ,PSI, PTl,PUI '. 

P'12 ( . 
PG18,PG19 ~ 
Pl16,P2,P3 
P606, P71, PPIO 
P5,06, PGIO, PG16 
PM1,PM2 
PF07,PN', _, 
P2~P3,PP03,PG03,PG07,PG13,PR3 

.P41' . 
PGi 7, PK:!: 1$ 

PLl 
PI06,PI09,Pl16,P2,P3,P407,P'13,P611 
P2,PJ,PIO.8 ' 

, ,. 
Table ';';:;::;.;.;;::0. ~~!.r..abels 2!. !h! 'rransition, !!l F,i9~re le!. 

) 
" J 

. , 

-.., 
> ~ - <. -

, 
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J 
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PIOI ••• 118 Spontaneous transitions which 
\ encode TOPUs to be sent, in particular 

PI01, 102,11 i",CR 
PI03,10t,118:CC 
PIOS •• 108: D~ 
PI09: OC 
PlIa, 111: DT 

,Pl12: AK 
P113,114: BOT· 
PlIS: EAK 
Pl16: ERR 

P2 ~pontaneous transition vhich outputs 
N DATA req 

N DATA Ind P3 
P401 ••• 415 

P501 ••• 5l3 
P601 ••• 612 
P71 ••• 72 
P81 ••• 84 
P91 .... 93 
PAl .... PA3 
PB1 ••• PB2 
PCI 
PD1 ••• PD3 

PEl,PE2 

PFOl ••• 10 
PGO~ ••• 18 
PHl 

PIl 
PJl 
PlU 

PL1 
PMl,PM2 
PHI ••• N7 
POl , 
PPl"PP'2 
PQl 

PRl ••• R' 

• e 

'Spontaneous transitions which 
decode N DATA ind lnto CR, 

idem,:O-into-CC, 
idem, into DR, 
idem, into DC, 
idem, into DT, 
idem, into AK, 
idem, into EDT, 
idem, into BAK" 
idem, intp ERR. 

Spontaneous 'r!r~nsition that 
outputs T_DI,SCONNECT_ind 0 • 

Spontaneous ~ransition that} 
sets class .and max POU size 

N RESET ind 1 - -.1'4 
N-DISCONNEC'l'iind 
Spontaneous Tr~nsition that 
outputs N_CQNNECT_reg 

N COHNECT c o ria f 
H-CONNECT-ind 
Spontaneous Transition that 
outputs ~~D~SCONNECT_req 

T_CONNECT_reR . 
T CONN&CT rest> . 
T-DISCONNiC~~req 

J 

T DATA req. . . ~ 
SPQntaneous·Transition ~t outputs DT' , ' 
Spontanèous 'l',ransi tion tut 
outputs T TA ind' . 

'SpontaneOU$ Tl,"ai.i.tiotla that ! 
. upc1ate R c edit . , r' 
S~t.I\eOü. Tranai ti~ .. tbat oUtputs Al 
T_Bl_DATA l' • '. 

- T_&&_D.:,. , _Tet 

" " . 
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, 
Subtours of the CG ar,e list,ed in Table 8.3. This table_ 

contains a rel~tively high number of subtours (115). This 

is due to the fact that the CG of thi~ specification 

includes netwerk and .transport: ,connection management for 

Class 0 and Class 2, thereby increasing the number of. major 

states. On,e of the objectives set by'the test" design 

methodol~gy (see Chapter 6) 
, 

aU the normal requires' that 
\ 

. form transitions are covered in the subtours to be used in 

the tests. This' criterion decreases the number of siJbtours 
,J 

for the Cla~s 2 TP ta 25, i.e .. , the subtours numbered l thru . 
25 are the subtours to be used in the Class 2 tests •. 1 t i5 

easy to see from Figure 8.1 that the discarded subtours are 

derived from the· state {Nc_state-open, state-open} , and , 

involve more than one con~rol function such as "ca11 
,. 

refusaI" followed by "connection eatablis~nt, 0 data 

transfer, disconnection" over one networlt connection and 

these control functions are already covered by the above 25 

subtours. 

The control functions c;or responding to some of- the 

subtours 9f 'l'.able 8.3 are listed in the 'l'able (for the , ... 

transIx>rt connections initiated by the Reer/ user, entity) ., 

All: the .elf-l:oopa ' in the CG contain -'th.- Dc)1"IIUll for.' 

transitions l~bellèd P2 and P3 . which reëe.ive/ send àDUa:.· i 
, " . j , 

• ô "" ' '" - 1 

Sine. th... tvo no~l fore tranaltlonà .are rae.a.d in. all . " 

control ~unction.~ 

Ittbtour •. < ... for e! •• r1.,: ~ .. lf-1-. ~J.W •••. ~}~ :' 
,f . ' 

'f 

, , 
J: , 



, 
( 

1.' , 

j 

\ 
i 
1 
r 
t 
f 

.1 , . 

1 
2 

3 

4 

5 

6 

7 

8-25 

26-43 

'4-61 

62-79 

80-97 

98-115 

A C~ 
ADE 

* 
A D·F ~ G ' 

-* * 
ADFKJNL , , /." * * 
ADF K 1 S 0 

t * 

... 
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* ADF K 1 S RVO 

.' * * II 

A D F K- 1 S Q f X 

B LOOP 
* 

A D F. K H tOOP,' 
* * 

0 

,A D r K/~ LOO!> 

A D F KI' LOOP 

* * * 

, . 

/ , 

~'1~ 
" -:) 

A D F K 1 g' R V 'r. LOOP 

* * * 
A~ D F K 1 ~ Q' f W LOOP 

vi th LOOP con.taiJling: , 
-, 

, . 

~ 

~ 
\, 

" 

r 
) 

- , 

.,' , .~ 

, .. 

* e c Protocol erro-rs in "closed" state 
* * * (e ba Z) c, 

* * * " 
e ba YS 0 

o .. 

'CaU refusal bl th. 'user . . 

J-

..,. .. 
<1 

.. 

) 
o 0 

• , , 
i • 

• E . t 
i' 

i 
! 

, A 

.. . 
,0 

1 

" 
, JI>. 

CI 

.J.. , 
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* * - * 
(dK JN M) c idem, by the peer 

* * r', 

dK I5 0 Peer iniflateŒ éonnection establishment 
, . freeing by the peer/ user (C~àss 0) 
, * * * 

) (dK 15- p) c ~de'm, by peer (Class 2) 

* * * .dK IS' RV U Peer initiated connection estàblishment 
disconnection ?ue to protocol errors 
in data transfer (Class 0) 

* * * * 

) 

(dK 15 RV T) c Peer initiated connection establishment 
data transfer freeing by the user 
(Class 2) 

* * *' dK 15 Qf X idem, (Class 0) 
* * -*. * 

(dK 15 Qf W) c idem, 'by the peer (Class 2) 
j 

\' 
Table !.1.5ubtours of Class l TP 

--
!·l·~ .E!.2!: Graph 

') 

A DFG of the Class 2 TP 
. 
lS 

page in the figure is numbered 

'. 

H 

shown in Figure 

from 1 thru 10). 

8.2 (each 

Page 1 

bélongs to the encodn'i·gTOecoding, pages 2 thru 4 belong to 

the connection establishment, pages 5 thru 7 to the data 

transfer (including error cases) followed by page~ 8 and 9 
"\ 

for the disconnection phase, and page 10 to the error cases 

related to duplicate connections. D-nodes that are used in 

more than one of these parts are replicated in the figure 

and idicated by an "off-page" connector (see the D-nodes 

In the specification, 

the TPDUs received/ sent are stored in an array called 

PDU butfer. In Figure 8.2, the TPDUs decoded from a 

. " 
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N_DATA_ind are represented anywhere except, in Page l aS 

I-node. , and the TPDUs encoded into N_DATA_req as O-nodes. 

More discussion on this point follows in Section 8.4 • 
.. 

One of the aspects of the DFG is the presencejof many 
. J 

internaI D~nodes, namely: 

(a) in use of boolean type, indicatee if the transport 

connection is being used. 

(b) this_side of enumeration type, indicates the initiating 

side of the netwotk connection. 

(c) supports_claps_O of boolean type, indicates if the class 

negotiated i5 C1aS5 0, 

(d) S-credit of enumeration type, . i5 used as credit value 

f6r the outgoing data, 0 

, 

(~) EX D sent of boofean type, indicates whether expedit~d ~.-

data from the~u~er has been sent to the peer, , 

(g) EX D received of boolean type, indicates wheth~ 

expedited data from the peer\has been received. 

The D-node caIIed local N addr i5 assigned by none of 

thé normal form transitions, thus we assume that it is 

correctly initialized. 

The F~node of type I called determine_TC i5 assumed to 

have the effect of checking the validity of the "dest ref" 

parameter of the (pr imi t ive recei ved, thus in what follows we 

ignore this node and aIl of its replications and add a 

relation about the dest ref to aIl of the involved 

predicates. 

\ 
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'.' 

The O-node called Wassigned_NC w is set by the "NC~idW 

wh~ch is a record conta'ining "id" and "local_N_addr" as its 

-fields. We assume that a transport entity has/only a single 

local network address. Then the NCEP value assigne~to the 

transport connect ion alone i s suf f,fc i,e'nt to assoe iate the 

transport connection with~ network"êonnection, therefore in 
~ ! 

what follows "assigned_NC" is assumed to be assigned by the 

value of "NC id. id w
• The D node called "correspondin9_TC_ id" -

is 'r ignoreq 
... 

it is not used anywhere else in the Slnce 

specification. 
1 

~ 
/ ~: j .) 1 
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.) 

N.OATA in..! 
, 

contents 1 length 1 h. h~t. J 
lS.uuf.dau Jtr.".ent J 

• 
" 1 

/ 

o r--------..J P3 - ~ 

, 
- . 

• 

j 
• ----_____ ~_..J~:;;:_;:1rd:.:.~t~ .. =::;:_-__1lusn _data. 

...., len~th 1 contrnts Ipresent 

PF02 ••• PF04, 
PF06 ... PfIO •• 

I PGOZ ... 04 , 
./ 1'(;06 ••• 10, 

PGI2 ••• 19. 
P-I:I é 

P40~ •• 40ï.P413.414, ~ 
P50~ ••• 51",P~OI ..• 611.P71.P81 ••• a4. J 

d CId P91 .. 93. l'AI A3.PIII.PB': 

ec ~ P402. 407,413,414.502 ••. SI2.MI. •• 612.71,81 ... 114.111 ... 93.Al. •. Al. 
c. J---J'-f'C-e-l-y.Je~d.-p-DU---", BI.B: 

,-

CR cc 
P402 •• • 407, 
P413,414 

• PSO:!.,.512 

, OR 

P601 ••• 612 

l'lOI .•• 103. 
pll7 
POU_buffer 

(çR1 

1'2, 
PF02 .•• 04. 
l'fOI) • .. 10, 
PG02 ••• 04, 
PC06 •• 10. 
PGl~ ••• 19. 
l'KI 

Pl03,104, 
PliS 
PDU}buffer 
. lr J 

PI06,108 1'109 

POU. buffeT pOU.buffer 
~R) [ ) 

1'101 , 104,106,108 .llO, 
P1l2,IB,115 ... llS 

oc 
P71 

1'110 

DT 
P8l. 114 

P112 

Ak 

1'91 .93 

1'111 PllS 

~ 

EOT 
PAl •. A3 

P116 

POU.buffef PDU.buffer l'DU buffer PDU_ltuHo:r l'pU buffer 
(Il J lA ) l~ 11) [rA") l RH) 

1'101 ,101,117~ 
1'103.104,118, 
plOo,lOB, 
PI09, 
pIlC. 
1'112 ,1'113. 
p)l~rlJb 

1'101,103,110. J 13 

N.O.l,TA.re 

Figure !.2 ~ DFG of the Class 2 TP 
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P414 

.. . (continued) ..• 
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1'103, 
104, 
118 

['103, 
1 O~ , 
Ils 

/ 
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n .. 

0, 

Figure 8.2. . .. (continued) 

( 

PS09 SI! 

( 3) 

PL! PLI 

101,102,117 

rII7, 
rlUl, 

ID .. 
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PU, 
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Fi gure 8.2. . . . (continued) 
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rLl. P414 rSll. 
51 è 

. .. (4) 

T 

pm, 
P509.510 

F 

PLl.'414 
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,/ 

PLl ,1'414 
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P8l. 84 

f'R4 

PBI. .84 

IJ 

1C.1Ù 

~nvalld.I'IJU 

PQI 

l'QI 

PQI 

PSI 

TS.user .data 

P112 

Figure 8.2. ••• (cont inued) . .. (5 ) 
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Pl~O 

(continued) ... ( 6 ) 
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PAl •• 1.3 PBI Il 

( T~ USlT _t1 •• t./ 

o 

( 
~ 
1 
j , 
~ 
~ • , 
~ 
.:; 

PA3 PA3 

J 
TCEP '1 

J 

" T.EX.IlATA_1M LEX.D.READY conf 

1 
l 

0 1 ." 

Figure 8.2 .•.. (continued). .. (7) 
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r lu&,108 

Figure 8.2 .... (continued) ... (8) 

PbOl. 612 -

dlSconnect_ 
re.son 

P60:. 
608. 

PG02 
04 

'u 

1'5U:: •• 508, 
r601 •• 604,607 .. 

&10, 
POI .• r03, 

PFO;: •• 04.06 .. 10 
PC!)l •• 04,06. 10, 
PL!.! •• 16 
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PNt. PN2. PN6, 

PFO: .F04, 
l'F06 .. 10. 

PGOZ 04, 
1'(,06 •• 10 
l'GU .lb.18,l9 , 

, 
. 

PSQ2 ... 506. 
pFOZ ... PIl4 •• 
pl..l,PNI.rN:!.PH6 

tiCl:P 1 disconne.ct. rauon 

N.OIscoNNrcr. rea. 
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NerI' 1 J l.conn~cL rea,oll J 

612. 

,-/--- PfOl •• F04, 
PFI\6 .• 10 

, 
.-

\ 

j 
N(:rP 1 

N. RESr.T • res!, \ 

Figure 8.2 •.•• (continued) ••• (9) 
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N02 ••. 406 

• 
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Figure 8.2. (10) 
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!.!.A Partition of the Class 2 TP 
" --

In order to obtain the initial block\ of Figure 8.2 we , 

.app1y Algorithm 5.1 in two phases: 

Pha'se l treats the yariable "received_PDU" and th .. a.~ray 

wPDU_buffer" (page l in Figure 8.2) as D-nodes and 4 blocks 

are obtaîned from page l of Figure 8.2. These biocks 
.,) 

contain the F-nodes "decode" and "encode", the D-node 
. 

"NSDU_to_be ~sent.user_data~resent" , and the Q-node 

"is_last_fragment" of N_DATA_req, respectively. 

Phase 2 considers the rest of the DFG in 'Figure 8.2, i.e., 

pages 2 thru 10. Decoded TPDUs.become J-nodes and each' entry 

in the array "PDU_buffer" containing TPDUs becomes an 

O-node. The resulting,DFG is similar to the pFG of the Class 

o TP (see Figure 5.2), but more complicated. 

In order to obtain the data flow functions of the 

Class 2 TP we a'pply the block merging procedure of Section 

5.4 to the blocks obtained by Algorithm 5.1. Details of how 

these blocks (data fl'ow functions) are obtained are given 

below, considering the blocks in a left-to-right order (the 
h , 

resulting block boundaries are shown with dashed lines in 

Figure 8.3): 

Bncoding/ Decoding Black 
~l 

(page '1 in Figure 8.3)':- Step 3 
-

combines the block -"- containing "is last fragment" - - of 

N_DATA_req with the block containing the F-node "encode". 

The block the internaI D-nodes 

"NSDU to be sent.user data present", - - - --

c_' 

.. 

... 
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J 

"PD~_buffer[CR] ,. full" thru "PDU_buffer{ERR].full" arè 

combined with the resulting block in Step 6. The resulting 

~lock is combined with the block containing the F-node 

"decode-" in Step 2 obt~inin9 a single block for the .. 
encoding/ decoding data flow function. 

"-
Connection Referencing Block (page 2 in Figure 8.3) : The 

block containing ~remote ref" is combined with the - block 

containing "local -ref" in Step 2. 

'l'CBP Block ,(page 2 in Figure 8.3): To the block containing 

"TC_id. id" the block of the inter~al D-node "in_use~ is 

added in '5tep 6 • ., 

Oser Data Block (page 2 in Figure 8.3): Step 1 combines the 

blocks containing "user_data" parameters of CR and CC and 

"data" parameters of 
1 

~espectively. The resulting two blocks are combined ~n Step 
, 
2, obtaining a single block representing the data exchange 

during connection establishment. 

Addressing Block (Page 3 in Figure 8.3): The block 

containing "calling_addr" of CR (and sorne other Q-nodes) is 

combined with the block containing the D-node "local_T_addr" 

in Step 2. Step 2 also combines the block containing 

"called addr" of CR (and sorne other Q-nedes) with the block 

containing "remote T addr". The resulting blocks are 

combined in Step 2 te obtain a single block for transport 

addressing. 

net.ork Connection Establishment Block (page 3 in Figure 

8.~): In Step 5, the blocks representing network addresses 

-( 
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(containing the D-nodes "local_N_addr" and "remote N addr") 

and NCEP (containing "NC_id.id") and network Quality of 

Service (containing "QNS") are combined obtaining a single 

block representing network connection establishment. Thé 

block of the internaI D-node "this_side" is added to the 

resulting block in Step 6. 

QOS block (page 4 in Figure 8.3): The Steps land 2 combine 
. , 

the blocks containing "QTS_ind" parameter of CR and CC and 

proposed~QTS parameter of T_CONNECT_ind and T_CONNECT_conf. ~ 

The resulting block is combined with the blocks containing 

the D-nodes "class", "options" and "max_PDU_size in Step 5. 

The block of the internaI D-node "supports_class_O" is added 

t6 the resulting block in Step 6. 

Brror'Block (page 4 i~ Figure 8.3): The block containing '; 

"reject cause" pa~ameter of ERR does not combine with any 

other block. 

Disconnection Block (page 5 in Figure 8.3),: The block 

containing "disconnect_reason" parameter of DR is cembined 

w'ith'"TS_DISCONNECT_reason" of T_DISCONNECT_ind in Step 1. 

Peer-to-user Data Transfer Block (page 6 in Figure 8.3): The 

block containing "receive_buffer" i5 combined with the block 

containing "TS_user_data" and "is_last_fragment" parameters 

of T DATA ind in Step 4 obtaining a single block for data 

transfer from the peer to the user. 

Oser-to-pee~ Data Transfer Block (page 6 in Figure 8.3): The 

block containing "send buffer" is combined with the block ..... 

containing "user_data" and "end of TSDU" parameters of DT in 

, .. 
1 
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$tep 4. 

Plow Co~tro1 Block (page 6" in Figure 8.3): The blocks 

containing th~ o-rodes "R_credit", "TR", "S_credit", and 

·"TS" are combined in Step 5 since they rep~esent credit.and"o 

sequencing aspects of the flow coqtrol. 

Bzpedited Data Tranafer Block (page 7 in Figure~8.3): Step 2 

combin~5 the blocks containing "user_data" parameter of EDT 

internal D-nodes and "EX 0 sent" -..... , 
respectively are combined to the resulting block in Step 6 • 

, " 

,. 

/ 

., 
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ENCODING/ DECODING.-

A::(P402 .. 407,413,414, 
»502. 512, 
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P8I 

P2 PZ 

Figure 8.3. A Partition of ~ C1as5 ~ TP ~ 
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(} 
,:!.~.Dependencies in the Class .! ~ 
~ D / 

The partition in Figure 8.3 " gives rise to many data 
, 

and predicate dependencies. There are 3 dependent blocks in 

Figure 8.3, namely, a~dressing, _~~~r-to-peer' data transfer 

and flow control blocks. In the addressing block, the 

D-nodes "remote~T_addr" /and "local_T_addr" and the F-nodes 

"d~termine_T_addr" and "determine add_addr" are dependent D­

and F-nodes, respectively. These dependencies are caused by 

the D-nodes "local N addr" and "remote N addr". The 

user-to-peer data transfer block has the F-nodes 

"get_next_fragment" and "length available" as dependent 

nodes, aIl caused by the D-riode "max PDU size". Finally, 

the flow control block has the dependent D-node"R credit" 

and F-node "enough_space" caused by t'he D-nodes 

"max PDU size" and "receive buffer". 

The predicate dependencies for the different blocks 

are listed below. For each given block the D-nodes of other 

blocks which are used in a predicate of at least one of the 

normal form transitions of the block are listed. 

Encoding/ Decoding: assigned NC, in use, - - class, this_side, 

local_T_addr, local_N_addr, remote_T_addr, remote_N_addr, 

max_PDU_size, supports_class_O, receive_buffer, R-credit, 

TR, TS, S_credit, options, EX D recieved. 

Connection Referencing: 

remote T addr, 
, --

max PDU size, - -

options, QTS, 

remote_N_addr, 

assigned_NC, 

/' 
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received_NSDU.datà.length. 

~: received NSDU.data.length, t~is_side 

User data: received_NSDU.data.length, this side, in use, 

class, local_T_addr, local~N_addr, 
1 

remote_N_addr, max_PDU_size, options. 

Addressing: received_NSDU.data.length, in_use, this_side, 

QTS, options. 

Network Connection Establishmeht:/PDU bUffer[CR).full. 
v !,-

QOS: in_use, received_NSDU.data.!length, in_use, this..-side, 

remote_T_addr, local_T_addr, local_N_addr, remote_~_addr. 

Error: received_NSDU.data.legth, in_use, this_side, class, 

TR, S credit, options, EX D received. - - - \ 

Disconnection: receivêd_NSDU.data.length, in_use, this side/ 

class, 

max PDU size, ,R_credit, 

PPU_buffer[CR].full. 

receive_buffer, 

Et_D_rece'i ved, 

Peer-to-user data transfer: recei ved_NSDU. data .length" 

User-to-peer data t ra f1'S fer: 

PDU_buffer[DTJ.full, class, S credit. 

Flow control: receive_buffer, 

received_NSDU.data~length, 

send_Duffer, PDU_buffer[DT].full. 

max_PDU_size, 

supporis~class_O, 

Expedited data transfer: in_use, received_NSDU.data.lengtb, 

options. ~ 

/'-./ 

~ 

/r/The above predicate dependencies show that every data 

• 1 

.. .. 
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flow function has a predicate depe'ndency' caused by a 

variable in the encoding/ decoding block. Tpis fact supports 

the idea of.testing encoding/ decoding data flow function 

before ali the oth~r blocks. 

The initiali~ations in Figure 8.3 can be listed as 

follows: 

I-node "credit value" of CR and CC for "S_credit", 

Constant D-node 0 for, "TR", "TS" and"R credit" , - , 
~ 

Constant D-node F(false) • for " EX_D_received"_ and 

, ~.~.Overview of Test Désign for the C!ass 2 TP 

In this section we give an overview of the appli~ation 

of the test design methodology of Chapter 6 to the Class 2 

T~. The detailed design of the block tests is discussed in 

the next section. 

The first block to consider i5 the block of (encoding/ 

decoding) in Figure 8.3 (see Section 8.S). The tests are 

similar to the Clas5 0 TP basic tests with the additional 

tests for concatenation. The concatenation feature can be 

tested in the data transfer phase by sending NSDUs 

containing more than one TPDUs (DT with AR and BAR or EDT 

with EAR and AK, etc.). An Inherent restriction in these 

tests iS,that the Responder has no way of forcing the IUT to , 
~ 

send NSDUs containing concatenated PDUs. 
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1 8.!.1.Type~ of l-nodes 

" In the following we 1 ist the types of the l-nodes of , 
"10 

the Class' 2 TP, as shown in Figure 8.3. This list i5 used 

for determining the input parametet variations as explained 

in Section 6.2.5. 

,I-nodes of enumeration type~ 
,......1\t.' 

/:, j' 

credit~~aIue,class,options_ind of CR and CC, 

proposed_options of T_CONNECT_req and T_CONNECT_resp, 

disconnect reason of DR, 

TS_disconnect_~eason of T_DISCONNECT_req, 

reject_reason of ERR, 

credit_value,expected_send_sequence of AK, 

send sequence of DT. 

D-nodes of enumeration type set by F-nodes of Type 3: 

R_credi t, TR, 

S_credit, TS. 

Also the array sizes of 

TC id. id and NC id. id are e-numeration types. 

parametric I-nodes are: 

from_N_addr of N_CONNECT_ind, 

caIled_addr, calling_addr, peer_addr,of CR and CC, 
~ a 
to_T_addr of T~CONNECT_req and T_CONNECT_resp~ 

Reference value I-nodes: 

Source ref of CR. 

Large integer I~nodes: 

TPDU_size_ind of CR and CC, 

proposed_QTS of T_CONNECT_req and T_CONNECT_resp, 

,. 
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proposed_ONS of N_CONNECT_ind and N_CONNECT_conf. 

I-nodes that are related with exchanged data: 

user_data of CR and CC, 

data of T_CONNECT~req and T4 CONNECT_resp, 

user data and end of TSDU of DT, 

TS_user_data and is_last_fragment of T_DATA_req and 

N_DATA_ind, 

user_data of EDT, 

TS user data of T_EX_DATA_req. 

End Point Identifiers: 

NCEP of N_CONNECT_ind, 

TCEP of T_CONNECT_req •• 

! . .z..Block Tests 

Co 

.r 

In the tests for each block, parameter variations for 

each I-node of the block are done and the data flow in each 

block is considered as discussed in Chapter 6. We briefly 

discuss the tests for each block of Figure 8.3. 

8 • .z..!.Connection Establishment Tests 

Connection establishment tests can be divided into two 

sets of tests. The first set combines parameter variations 

for the -blocks of "connection referencing", "TCEP", 

"user_data", "addressing" and "network connection 

'- ~ 
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establishment". Parameter variations of these blocks are 

done similarly as in the Class 0 tests (see Chapter 7). The 

"user data" block which does not exist in the Class 0 TP cao 

be tested by varying the I-nodes and verifying the correct 

data delivery from the O-nodes using a, subsequent transport 

connection over ~he sa~e network connection. 

The second set of connection establishment tests Hoes 

parameter variations 
\; 

for the "QOS" block. The "class" and 

"options" parameters of CR, CC, T _ CONNECT _ r eq and 

T~CONNEC~_resp a4e enumerated, and the "QTS" and "PDU_size" 

parame~ers of CR, CC, T_CONNECT_req and T_CONNECT_resp are 

varied (possibly trying boundary and middle values of their 

domains). The tests in this set are adaptive since the QOS 

parameters of the implementation must be deterrnined. 

Connection establishment tests are done using the 

subtours numbered Il, 13, 21, and 25 for peer initiated 

connection establishment and 7 for user initiated connection 

" establ i shment • 

~.7.~.Call RefusaI Tests 

The disconnection block in Flgure 8.3 can be divided 

, into subblocks as discussed in Section 6.4. The subblocks 

that represent calI refusaI by the user, the peer and the 

pro'tocol are tested sim,ilarly as in the Class 0 TP. The 

protocol calI refusaI tests requi re that the QOS parameters, 

f 
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of the implementation are determined by the QOS tests. 

The tests for calI refusaI by the user and the peer 

entity involve enumerations of the "TS_diseonnect_reason" of 

T DISCONNECT req 
- 1 -

and of DR, 

respeetively. 

The subblock of the disconnection block which 

represents connection freeing can be tested with connection 

es~ablishment tests. This may be done by simply observing 
.-

the values assigned to the O-nodes "disconnect rèàson" and 

"TS di seonneet reason" by the type 

"assign_disconnect_reason" 

"assign_TS_discannect_reason", respeetively. 

2 F-nodes 

and 

CalI refusal tests can be· done using the subtours 16, 

18, 19, 1 thru 4, and 9. 

~.1.3.Expedited ~ Transfèr Tests 

The expedited data transfer block in Fi9ure 8.3 is an 

independ~nt black and its normal form transitions oecur in a 

self-Ioop (except for the initializations) of the major 

state "open". This bloek 15 involved in the predicate 

dependeneies from the "TCEP", "Q05" and "eneoding/ decoding" 

bloeks. Ignoring the predieate dependency on the encoding/ 

decoding funetion, we deseribe in the following a method for 

satisfying the expressions'on the internaI O-nodes. This 
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method models the normal fcrm transitions of the block as a 

pure· FSM from which test sequences may be obtained, as 

described in Chapter 2. 

The predicates of the expedited data transfer block 

contain three internaI D-nodes "in use" - , 
"EX_D_sent". By inspection of Figure 8.3, we see that 

"in_use" is always "true" in the major state "open", thereby 

satisfying the expressions containing "in_use" in the normal 

forrn transi tions of the block. The other internaI D-nodes 

belong to the -block, thus they are considered as state 

variables. Predicates of the :block contain expressions on 

the D-node "options" which is set to a certain value before 

the major st~te becomes "open". Once "options" is set to 

"expedited_data", a11 the normal form transtions of the 

block can be modelled as a FSM which def ines the order of 

the normal form transitions. This FSM is shown in Figure 

8.4. The transitions in Figure 8.4 are labelled with the 

labels of the corresponding normal form transitions. The 

ini tial state of the machine in Figure 8.4 i's 

EX_D_received=F, EX_D_sent=F, NC_state=open, state=open 

since the initializing normal form transitions P414 and PL1 

of the block initialize the internaI D-nodes ta these 

values. 

Subtours of Figure 8.4, as Iisted in Table 8';4, give 

the order of the normal form transitions. Parameter 

variations of the l-nodes and encoding/ decoding should be 
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considered for obtaining complete 

data transfer block. 

Expedi ted data tests can be 

subtours numbered 11, 13, 21, or 25. 

• 

tests for' 

done using 

~ .. '''. -, Il~.t. 1 

the eXpeditej 

( , 
( 

any oile 

/ 
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,/ 
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any sequence of tralsitionS which establish 
connection wi th expedi ted_data in opt ions 

,.ê..!.~ State 

, 
< 

(J 

state=open 
C state=open 
X-D received= 

ËX-D sent=F 

PA3 

state=open 
Ne s ta te=open 

EX i5 recei ved=T 
·ËX-D sent=T 

Diagram !.21. Expedited 

PB2 

Data Transf1 
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* PA3 PB2 PUl 

* * 
PA3 PB2 PTl PB2 PUl 

PA3 PTl PUI PB2 

* 
PA3 PTI PUl -PA3 PB2 PUl 

PTl PB2 
" 

PTl PA3 PUl PB2 
* 

PTl PA3 PB2 PUl 
* * ~ 

PTl PA3 PB2 PTl PUl PB2 

Table !!.!.~ Seguences for EXEedi ted ~ Transfer 

~.1.4.~ Transfer Tests 

In this section we discuss the data transfer tests for 

the Class 2 TP. Data transfer contains three data flow 

functions, the user-to-peer and peer-to-user data transfer, 

and the flow control blocks of Figure 8.3. These blocks 

contain various F-nodes of , aIl types. Test design 

considerat ions related wi th F-nodes were discussed in 

Section 6.4. Sorne considerations on arithmetic type 3 

F-nodes are gi ven below. 

The parameter variations of the above three blocks of 

normal data transfer can be combined since their normal form 

transitions occur in the same self-!oop. 

Since "R-credit" in the f low control block i5 .. 
internally assi9neà, there is no dir.,ct way of enumerating 

Jo 

... _- ~"''''.-<'' 



( 

214 ( 

its values, but the values decided Py the implementation canr 

be observed in AR POUs. Therefore a test sequence can be 

selected so that the number of unacknowledged data packets 

sent by the Tester is equal to the received credit value. At 
. 

the same time, variations of the I-nodes of the peer-to-user 

data transfer block can be done, also te~ting the type 3 

F-node which decrements R_credit. R credit is a dependent 

D-node (see Section 8.5), Le., its value depends on the 

negotiated max_PDU_size and the receive butter. Thus it is 

imP9rtant to repeat the tests for peer-to-use.r data transfer 

for a number ~of different max PDU size values which 'are 

tested in the QOS tests. 

"TR" in the flow control block 1S also internally 

assigned and the value received in AR PDU is used as the 

-sequence number of the next DT to be sent by the Tester. 

Verification of correct data delivery from the peer to 

the user (and also from user to peer) can be done witQ a 

mechanism similar to the one used in the data transfer tests 

for the Class 0 TP. Th 1 s wi Il also be the test for the 

F-nodes called "append" and "get_next_fragment". The latter 

take5 the length parameter from the user interface function 

TS.user_ready, as discussed ln Section 8.1. 

The D-node "S-credit" of the flow control block can be 

enumerated (probably not exhaustively) since it cap be 

initialized by either "credit_value" of CR or CC (dependin9 

on the initiating side of the transport connection) and 
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\modi fied later in the data transfer phase by the 

"credbt value" of AK. After it is set to a certain value, 

the Res;onder part can create~ata flow in order to test the 

correct hand1ing of S_credit, i.e., the F-node of type 3 

assigning S-credit. 

"TS" of the flow control block can easi1y be observed 

from the data, sent by the Responder, which is supposed to 

se deI ivered to the Tester in DT PDUs. 

The F-nodes "get_next_fragment" and "length available" t ,-
in the block of user-to-peer data transfer are dependent 

F-nodes. The value of the negotiated max PDU size determines 

the maximum 1ength of the DT FDUs to be sent, thus data 

trans?er tests should be repeated in consecutive connections 

with different max_PDU_size values. 

The F-node "is end_of_TSDU" of the two data transfer 

blocks is tested by varying the parameters of DT.end_of_TSDU 

and T_DATA_req.~s_last_fragment, respectively. 

Since the normal form transitions, of the data transfer e 

blocks occur in the sarne subtour as the transitions of the 

expedited data transfer block, they shou1d a1so be tested 

simul taneously. 

Data transfer blocks can be tested with one of the 

subtours Il, 13, 21, or 25. 
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~.I.~.Tests for Error -Cases 

The last uncovered block, called error block, can 

easily be tested by the normal form transitions which assign 

the Q-node "reject cause" of ERR. The error cases are 

divided into two parts, the errors during connection 

establishment and the errors during data transfert These two 

parts can be testèd in two separate tests. 

The error b10ck is tested using the subtours 6, B, 14, 

15, 17, 22, and 23. 

~.~.Mu1tip1e Conn~ction Tests 

Tests for enumerating array sizes for the' C1ass 2 TP 

shou1d be different trom the multiple connection tests of 

the Class 0 TP because of the existence of two D-nodes for 

array sizes. 

Exhaustive enumerations of these two variables should 
.,. 

be done in bath of the following ways: 

i) By fixing "NC id.id", tests are designed to enumerate 

"TC id.id". The number of tests are determined from the 

number of subtours of the block containing "TC id.id". 

These tests are perfarmed to determine the number of 

transport connectiops that can be multiplexed over a single 
1 

network connection. Also, data transfer blacks should be 

tested, in order to observe' possible reductions in the 
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/ 

number of credits giveA to the, parallel transport 

connections,. 

The tests in this group should test duplicate 

connection cases as specified in the specificat~n. The 

corresponding data flow is found from one of the subblock~ 

of the disconnection block (see Figure 8.3). 
\ 

ii) "Ne_id. id" is enumerated simultaneously as "TC_id. id" is 

- enumerated. These tests are done to determine the number of 

network connections th~t the implementation supports under 
J 

multiple transport connections. The data transfer bloc~, 

should also be tested under multiple network and transport 

connections. 

Note that the third enumeration possibility which 

establishes multiple network connections with a single 
, 

transport connection each, corresponds to the multiple 

connection tests for the Class 0 TP, described in Chapter 7. 

Multiple connection tests can be done using the 

subtours of the connection establishment tests of Section 

8.7.1 •. 

.. 
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~.2.So~e Observations on the Class 2 TP ~ Design 

The test design° discussed above gives rise to the 

follow i ng observat ionS': 

Ca) From the, Control Graph of a complex protocol, a 

considera~ly large number of subtours may be obtained •. 

'Considering only the subtours tpat represent single control 

functions, i.e., discarding those that are concatenations of 

more than one control function, it is possible to decrease 

the number of tests and yet cover aIl the normal form , 

transitions. 

(b) If we assume that any Class 2 TP implementation would 

also support the Class 0 TP, i t i s possible to apply the 

Class 0 tests (see Chapter 7) to the Class 2 TP 

implementations (slight modifications ~n the user interface 

may be necessary). Thi s further dec reases the number of 

addi t ional subtours necessary. For example, the subtours 5, 

10, 12, 20, and 24 can be covered by the C1ass 0 tests. 

(c) The form in which the encoding/ decoding of PDUs is 

described in the specification makes it diffic'fllt to app1y 

Algorithm 5.1 to the DFG sinee only a single large block 

'would be generated. The problem can be solved by 

considering sorne of the D-nodes as 1- or O-nodes, as 

discussed in Section 8.3. The test designer can easi1y 

identify these 'nodes by determining the D-nodes that 

represen t the PDUs in the DFG. 
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We have developed a methodology for designing tests of .. 
communication protocols. The methodology is.. based on 

Il 

decomposin9 the protbcol into its control and data flow 

functions. These fune t ions can he der i ved from a 'formaI 

specification of the protocol which is assumed to be 

avaiUlble. In thé f0110wing 

resu1ts of each chapter. 

paragra,Phs ~ri.e the 

In Chapter l, the problem of protocol testing is 

introduced. The work in several related areas is surveyed 

inc1uding an introduction "to the test architecture proposed 

for the testing o~ protocol implementations for confol7mance l 

to the standard natural language spec if ica t ions. We have 

adapted ideas f rom va ri ous fields: fin i te sta te machine and 

microprocessor test techniques, control system verification, 

symbolic execution and specification based software 

validation. 

\ 

Chaptera 2 and 3 apply finite state machin~\ test 

techniques to the protocols to obtain test sequenc~~ The 
\ 

three major approaches (transition tours, characteriz~tion 

and checking sequences) are used to generate test sequences 

for protocols modelled as incbmpletely spec i fied fin i te 

sta te mach i nes. A synchron izat i on problem which mayarise 

in the appl ica t i on of sorne of these test sequences with tpe 

archi tecture of Chapter 1 is def ined. Avoiding the 
J 

synchronization prob1em mal' be impossible for certain 
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protocols which are defined ~in such a way that they have 

intrinsic synchronization problems~ In Chapter 3, we modify 

the basic algorithms 
"'~ that '~enerate tests sequences for the 

transition tour and characterization seque~ces to obtain 

on1y synchronizable sequences. 

In order to account for parameters of the °protocol 

primitives and the effects of the protocol variables other 

than the major state variable, a different -test de~ign 

approach i s pr oposed • Chapter 4 introduces the first step 

of the test design: normal form transitions. From the 

formaI spec i f icat ion of the protocol, a simpler 

specification is obtained by applying syntactic 

transformations based on symbolic execution. Modules of the 

protocol are combined by removing any inter module 

communication. The resulting transitions are called normal 

forro transitions. 

Chapter 5 models various aspects of normal form 

transitions by graphs: the changes in the major state , 

variable are modelled by a control graph, and the other 
):.Il 

aspects by a data flow graphe The transition tours of the 

control graph are divided into several subtours, each 

representing a sequence of control functions of the 

protocol. An algorithm to partition the data flow graph 

into disjoint blocks is developed. The resulting blocks are 

partly combined by ~ merging procedure whiçh requires 

interaction with the test designer. The blocks obtained by 
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the merging' p,rocedure are defined to be the data flow 

functions of the protocol. The flow graphs (control and 

~ata flow) aie used to validate the protocol design. 

Syntactic and semantic errors in a specification can also be 

detected using these graphs. 

Using the control and data flow functions, Chapter 6 

develops a test design methodology. The variovs steps of the 

test design are identified, and test sequence selection 

guidelines are detailed for each step. Fault models fbr 

functions of the protocol "that are not formally specified 

can be used for test sequence selection. Tests for data 

flow functions are, based on parameter variations of the 

input primitives of the block. The structure of the block, 

~ its data and predicate dependencies, the types of the input 

parameters and the subtours have to be considered in the 

tests. The test design for multiple connection and 

unexpected stimulations are also basad on the flow graphs. 

Chapters 7 and 8 apply the test design methodology to 

the Transport protocols Class 0 and Class 2, respectively • 

2,.!.Future Work ., . 

None of the steps of the test design methodology 

presented in Chapters 4, 5, and 6 was implemented. 

Applications to the two protocols were developed manually. 

However, it is desirable to generate tests for protocols 
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automatically. 

We divide the future work into three categories: 

implementations, theoretical investigations, and 

applications. Considerlng first implementation, different 

steps of the test design methodology developed in this 

thesis could be automated: 

- To obtain normal form transitions from any Subgroup B FDT 

specification. 

- To obtain the flow graphs automatically from the normal 

form transitions. Sometimes, user interaction may be 

necessary, as in the case of merging the blocks. 

- A graphies package eould be developed for displaying and 

manipulating the data flow graphe 

- After obtaining the data and predicate dependencies, test 

sequences could be automatically derived. Test sequences 

could be expressed using a test specification language 

(Subgroup B FDT, for example). 

- Obtaining test programs (one for the Tester and one for 

the Responder) from the test specification will be the last 

step of automatic test generation for protocols. 

Theoretical investigations would be useful in the 

following areas, which are not covered in this thesis: 

Complexity analysis of the method, in particular the 

complexltiEs of the algorithms given in Chapter 4 and 5, 

i.e., the algorithm that partitions a DFG, and the algorithm 

that combines the modules. 

• 
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- Further work on the use of the flow graphs in protocol 

design validation. 

An 'expert system which is capable of deducing the 

considerations introduced in Chapter 6 from the control and 

data flow graphs would be a breakthrough for the automation 

of the protocol test design process. 

Concerning applications of the test design methodology 

developed in this thesis, we may distinguish the following 

areas: 

Straightforward application of the methodology, for 

inst~~ce to other classes of the ISO/ CCITT transport 
1 

protocol, ~ protocols of link, network and session layers. 

- Application in' areas where the methodology may have to be 

adjusted in order to take into account certain 

characteristics of the system specification which were not 

encounterèd in the areas of application considered in this 

thesis. For instance, the testing .of application layer 

protocols may require a methodology with certain 

modification. It could also be investigated whether the 

developedl methodology is applicable in other areas of ' 

software development, includin'g the testing of execu"table 

specifications. 

. -. . . 
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APPENDIX A 

EXTRACT FROM CLASS 2 TP SPECIFICATION 

const 

type 

(*see (ISO 82b]*) 

(*see [ISO 82b)*) 
TPDU and control information = record 

CR(credit value:credit type: 
dest ref,source ref:reference type; 
user-data:string of octets; -
peer:address:T_addrëss_type; 

end; 

QTS lnd:quality of TS type; 
class ind:class-typej­
options_ind:optTon_type: 
calling addrtcalled addr: 

additional address information; 
TPDU_size~ind:PDU_size_type) ; 

channel PDU and control(protocol,mapping); 
by protocol;mapping: 

fQrward(PDU:TPDU_and_control_lnformation); 

end PDU_and_control; 

module Mapping(ATP:array[TC_id_type] of 
PDU_and_control(mapping); 

NS:array[NC_id_type] of NCEP_primitives(user)}; 

... 

, 

function implied PDU length(size: optional PDU_size_type): 
PDU size typë; -

begin if size = undefined 
then implied PDU length := 128 
else implied:PDU:length :e size'end; 

procedure close and clear buffers (TC id 
begin with TC[Të idT do begin -

in use := faIse; , 

TC id type); 

ATP [TC idJ.idle; 
for kind := CR to ERR do PDU buffer [kind]. full := 
end end; 

false; 
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when ATP[TCEP id).forward 
begin with TcTTCEP id] do begin 
POU buffer [POU.kind].full := true; 
POU-buffer [POU.kind].POU := POU; 
with POU buffer [PDU.kind).PDU do begin 

case-kind of 

OR, OC, DT, EDT, EAR, ERR:; 
end; 

end end; 

when ATP[TCEP id].implicit_termination 
begin with TcTTCEP_id] do begin 

if assigned NC = undefined 
then (*wait-for NC state; no action*) 
else NS [assigned_NCJ.N_DISCONNECT_req; 
close and clear buffers(TCEP id); 
end· end·- - -

, 1 

any NC_id : Ne_id_type do with NC [NC_id) do 
provided received_NSbU.data.length <> 0 

and not ( (/PDU kind (recei ved NSDU'.data) /) = DT 
and supports class 0 and ATP[ëorresponding TC id]. 
ready_for_reëeiving) - -

var received PDU : TPDU type; 
TC id : Te id type;-

functÎon determinë TC(NC id : Ne_id_type; ref : reference_type): 
Te id type; -

begin (/ determine TC(NC id, ret) = 
if exists TC id such-that with TC[TC id) holds 

begin 

in use and assigned ~C = NC id and local ref E ref 
then TC id - - -
else TC-id' such that not TC[TC id].in use; 

i.e., find-the TC associated with the reference 
"ref" over the NC ' 

or assign sorne TC id not inuse; 
if "ret" = 0 then-such a new TC is assigned. /) 

(/decode(received NSDU, received PDU/) 
with received_PDU-do begin -

TC id:=determine TC{NC id,dest ret}; 
with TC[TC id] do - -
case kind of 
CR:if not in_use then begin 

remote ref:=source ref; 
local ref:= ••• ; -
if dest ref <> 0 
then .. : (*error*) 
else if (/exists TC id' <> TC-id 

such that with TcTTC id' J holds 
in_use and assigned:NC = NC_id 
and remote ref & source ref; 
i.e., this-is a duplicated CR/) 

then ATP[TC_id' J.close_indication(131) 
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else if determine PDU len"gth(rec,eived PDU) > 
implied PDU length(TPDU size ind) -
or class ind = classO and thTs_side~calling 
then ATPTTC id].error indication( ••• ) 
else if (/not able to-provide service 

or destination address unknown/) 
then begin 

POU buffer[DR).full := truei 
with POU buffer[OR).PDU do begin 

kind:=OR; 
disconnect reason:= ..• ; 
is last POU:=true; 
end· -, 

end; 
else begin 
TC id.T addr:=determine T addr(­

NC id:local N addr,caIled addr); 
TC id. id: = ••• -; - -
remote T addr:=determine T addr( 

NC[NC IdJ.remote N addr,calling addr); 
received PDU.peer address:=remote-T addr; 
QTS : -= ••• ; - - -

'received PDU.QTS ind:=QTS; 
remote rëf:=source ref; 
assigned NC:=NC id; 
ATP[TC idJ.forward(received POU); 
end- - ' -, 

module ATP_type(TS:TCEP_primitives(provider); .. 
Map:POU_and_control_primitives(protocol»; 

(*definition of interface predicates*.) , 1 

Map.ready for receiving := 
enough space(receive buffer, max POU size 

- (/ DT header~len9th /»; -
when Map.forward (POU) provided PDU.kind • CR 
fro~ closed to open_in_progress_called 
begln ' 

in_use := true; 
options := option ind; 
TR :~ o· -, 
TS := 0; 
S_credit := credit_value; 
EX D sent := false; 
EX=O=received := faIse; 
TS.T CONNECT ind (local T addr, PDU.p&er address, 

- options, POu.QTS_Ind, PDU.user_data); 
end; 

when TS.T DISCONNECT reg 
from open=in~r09resi_called 
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to closed 
begin 

vith POU do begin 
kind:=OR; 
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is last POU :F true; 
if-class - classO then 

disconnect reason :- (/1 or 2/); 
else -, 

disconnect_reason:-12B; 
end; 
Map.forward{PDU); 

end; , 

~ 

" 

Î 
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APPENDIX B 

NORMAL ~ TRANSITIONS FOR THE TRANSITIONS 

APPEN01x A 

P401:any NC id : NC_id_type, TC_id: TC_id_type; 
provided NcTNC id].received_NSDU.data.length <> 0 

and NC[NC idT.received PDU.kind = CR 

DEFINEO 

and not TC(TC idJ.in use and ATP[TC idJ.state = closed 
and NC(NC id]:received PDU.dest ref-<> 0 

begin - - -

IN ' 

(/decode(NC[NC idl.received NSDU,NC[NC id].received PDU)/); 
TC id:=determine TC(NC id,NC(NC Id].received PDU.dest ref); 
TcTTC id).remote-ref:=NC[NC id]:received PDU:source ref; 
TC[TC-id].local ref:= ••. i - - -
(/ërror/) i -

end; 

P402:any NC id:NC id typeiTC id,TC-id' :TC id type; 
provided NcTNC idT.received_NSDU.data.length-<> 0 

and NC(NC idT.received PDU.kind = CR 
and not TC[TC id].in use 
and NC[NC id):received PDU.dest ref <> 0 

" < 

and (/exists TC id' <>-TC id such that TC[TC id' ].in use 
and TC[TC-id' ].assigned NC = NC id and-
TCtTC id'T.remote ref=NC[NC id):received PDU.source ref/) 

and 
begin 

ATP[TC_Id' ].state =-open_in_progress_calling -

(/decode(NC[NC id].received NSDU,NC(NC id).received PDU)/); 
TC id:=determine TC(NC id,NC[NC id]'.received PDU.dest ref); 
TcTTC id).remote-ref:=NC[NC idJ:received PDU:source ref; 
TC[TC-id).local ref:~ ••. ; - - -
TS[TC-id' J.T DISCONNECT ind(131, ... ); 
ATP[TC id' ].state:=closed; 

end; -

P403:any Ne id:NC id type;TC id,TC id' :TC id type 
provided NcTNC idT.received NSDU.data.length-<> 0 

and NC[NC idT.received PDU.kind = CR and not TC[TC idJ.in_use 
and NC[NC-id].received-PDU.dest ref = 0 -
and (/exists TC id' <>-TC id such that TC[TC id' l.in use 

and TC[TC-id' 1.assigned NC = NC id and- -
TC[TC id]:remote ref=NCTNC idJ.received PDU.source ref/) 

and ATP[TC_Id' J.state ~ open_in_progress_called -
begin 

. . . same as above ••• 

end; 
1 
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P404:any NC_id:NC_id_type,TC_id, TC_id' :TC_id_type; 
provided ••• same as above except 

ATP[TC id' ].state=open 
begin -

••• same as above ••• 

end; 

P405:any NC_id:NC_id_type,TC_id, TC_id' :TC_id_typei 
provided ... sa me as above except 

ATP[TC id' J.state=wait before closing 
begin - --

•.• same as above ••• 

end; 

P406:any NC id:NC id type,TC id,TC id' :TC id type; 
provided - same as above-except --

ATP[TC id' ].state=closing 
begin -

••• same as above ••• 
'0 

end; 

P407:any NC id:NC id type,TC id type; 
provided NcTNC idT.received NSOU.data.length <> 0 

and NC[NC idT.received POU.kind=CR 
and not TC[TC id].in use 
and NC[NC id]:received POU.dest ref=O 
and not (/exists TC idT<>TC id such that TC[TC id' l.in use 
and TC[TC id' J.assigned NC=NC id and TC[TC id'T. 

remote ref=NC[NC idJ.received PDU.source-ref/) 
and (determine POU-length(NC[NC-id).received POU) > 
implied PDU lengthTNC[NC idJ.reëeived PDU.TPDU size ind» 
or NC[NC idl.received POU.class ind =-class 0 - -
and NC[NC_id).this_side = calling) -
and ATP[TC id).state=closed 

begin -
(/decode(NC[NC id].received NSDU,NC[NC id] .received PDU)/)i 
TC id:=determine TC(NC id,NC[NC idJ.reëeived POU.dest ref); 
TcTTC id].remote-ref:=NC[NC idJ:received POU:source ref; 
TC[TC-id] .local ref := ••• : - - -
ATP[TC idl-.state:=closed; 
ATP[TC-id).PDU.kind:=ERR; 
ATP[TC-id).PDU.reject cause:= ••. ; 
TC[TC Id].PDU buffer[PDU.kind].fullt=true; 
TC[TC-id].POU-buffer[PDU.kind].PDU:=ATP[TC id).PDU; 

end· - - -, 

..... 



( 

233 

P408:any NC id:NC id type,TC id:TC'id type; 
provided : .. same as above except- -

ATP[TC id].state=open in progress called 
begin - - - -

.. 

... same as above with the following added te the end ••. 
TS[TC_id].T_DISCONNECT_ind( ..• ); 

end; 

P409:any NC id:NC id type,TC:TC id type; 
provided : .• same as above except-

ATP[TC id).atate=open in progress calling 
begin - - - -

••• same as above .•• 

end; 

P410:any NC id:NC id type,TC id:TC id type; 
provided .. ~ same-as-above except - -

and ATP[TC id].state=open 
begin -

... same as above 

end; 
c 

P411:any NC_id:NC_id_type,TC_id:TC_id_type; 
provided ... same as above except 

and ATP[TC id].state=wait before closing 
begin - --

same as above ..• 
o 

end; 

P412:any NC_id:NC_id_type,TC~id:TC_id_type; 
provided ... same as above ••• 

and ATP[TC_id].state=closing 
begin . 

same as above .•• 

end; 

• a 

-. 

P413~any NC id:NC id type,TC id:TC id ,type; 
provided NcTNC_idT.rëceived_NSDU.data:length <> 0 
and NC(NC idJ.reGeived PDU.kind=CR and not TC[TC id].in use 
and NC[NC-id].received-PDU.dest ref~O - -, 
and nct <7exists TC id' <> TC id such that ••• (*see above*)/) 
and not (determine PDU lengthTNC[NC id).received PDU» . 
implied PDU lengthTNC[NC .id].received PDU.TPDU sIze ind) 
or NclNë idT.received POÜ.class ind=class 0 and -- - - ..... 

.' 

,r"'" 
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NC(NC idJ.this side=c~lling) and 
(/not-able to provide service or destination address unknown/) 
begln 

(/decode(NC[NC id].received_NSDU,NC[NC_id].receiv~d_PDU)/)t 
TC id:=determine TC(NC id,NC[NC id].received PDU.dest ref); 
TcTTC id].remote-ref:=NC[NC id]~received PDU~source ref; 

, TC [ TC - id] • l oc aIr e f : = ••• ; - - -
TC{TC-id].PDU bufferIDR).full:=true; 

, TC[TC-id].PDU-bufferIDR).POU.kind:=DR; 
TC[TC-id].PDU-buffer[DR].POU.disconnect reason:~ ••. ; 
TC[TC-id] .PDU-buffer[DR) .POU. is last POU:=true; 

- - - - .J end; 

P414:any NC id:NC id type,TC id:TC id type; 
provided NCTNC_idT.received_NSDU.data~length<>O 
and NC[NC idJ.received PDU.kind=CR and not TC[TC id].in use 
and NC[NC-id].received-.pDU.dest ref=O" - -
and not (7exists TC idT<>TC id i.t. (* see above *)Y) 
and not (determine PDU length(NC[NC id).received PDU) > 
implied PDU.lengthTNC[NC id].received PDU.TPDU sIze or 
NC{NC idJ.received PDU.cIass ind=clasi 0 -
and Në[NC_id).this=side=callTng) -
and (/able to provide and destination address known/) 

'and ATP[TC id).state=closed 
begin -

, ~, 

(/decode(NC[NC id).received NSDU,NC[NC idJ.received PDU}/); 
TC id.T addr:=determine T addr(NC id.local N addr, -

received PDU.called addr); - - - , 
TC id. id: = :- . . : - " 
TcTTC idl.remote T addr:=determine T addr(NC[NC id]. 

remote N addr,- - - -
received=PDU.calling_addr)i 

received PDU.peer address:=TCITC id).remote T addr; 
TC[TC idT.QTS:= .• ~: - --
received PDU.QTS ind:=QTS; 
TC[TC idT.remote-ref:=spurce ref; 
TC(TC-id).local ref:= ... ; - \ 
TC[TC=id].assigned_NC:=NC_id; ~ 
ATP[TC_idJ.state:=open_in_progress_called; 
ATP[TC id).in use:=true; 
ATP[TC=id].options:=received_PDU.option_ind; 
ATP[TC idJ.class:=received PDU.class ind; 
ATP[TC-id).TR:=O: - -
ATP[TC-id].TS:=Oi 
ATP[TC-id].R credit:=Oi 
ATP[TC-id].S-credit:=received PDU.credit value; 
ATP[TC-id].EX D sent:=false; - -
ATP[TC-id].EX-D-received:=false: v 

TS[TC Id].T CONNECT ind(TC.local T addr,received PDU. 
peer address,ATPITC id].optioni)~received PDU.QTS ind, 
recelved_PDU.user_data); --

end; 

.. -
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P415:any NC_id:NC_id_type,TC_id:TC_id_type; 
provided received_NSDU.data.length <> 0 
and received PDU.kind=CR and TC[TC id].in use 
begin - --

TC id:=determine TC(NC id,received PDU.dest ref); 
(/ërror/); - - - -

end; 

PN4:any TC~id:TC_id_type 
when TS[TC id].T DISCONNECT reg 
p~~vided ATP[TC_Id).state=open_in_progres5_called 
and ,ATP[TC id).class=class 0 
begïn - -

ATP[TC id).state:=closed; 
ATP[TC-id).PDu.kind:=DR; 
ATP[TC-id].PDU.is last PDU:=truej 
ATP[TC-idj.PDU.disconnect reason:=(/l or 2/); 
TC[TC IdJ.PDU bUffer[PDu.DR).full:=true; 
TC[TC-id].PDU-buffer[PDU.DR).PDU:=ATP[TC id].PDU; 

end; - - - ~ 

PN5:any TC_id:TC_id_~ype; 
when TS[TC idJ.T DISCONNECT reg 
provided ATP[TC_Idl.state=open_in_progress_called 
and ATP[TC id).class<>class 0 
begin - -

..• same as above except 
ATP[TC id].PDU.disconnect reason:=12B; - '\ - , 

end; '~ 
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APPENDrc C 

NORMAL ~ TRANSITIONS FOR THE CL~SS 0 TP 

(Based on [ISO 82]) 
1 

when TSAP.T CONNECT req 
Pl:provided-state =-idle and 

(/Transport ent i ty able to provide the quali ty " 
of service asked for /) 

begin 
state:=wait for CC; 
locaT_reference -: = ... ; 
TPDU size:= ... ; 
variible_part_to_send:=~ .. ; 
CR(O,local reference,class O,normal, 

variable part to send); - --end; 

when TSAP.T CONNECT reg 
P2:provided-state =-idle and 

(/Transport entity not able to provide the 
quality of service asked for /) 

begin 
state:=idle; 

end; 

T DISCONNECT ind(TCEPI, 
- inability_to_provide_the_quality); 

when mapping.CR 
P3:provided state = idlel and variable_part.max_TPDU_size 

<> undefined and 
(/able to provide the quality of service/) 

begin 

end; 

state:=wait for T CONNECT resp; 
remote referencë:~source reference; 
TPDU slze:=variable,part:max TPDU size; 

- C.<f- --, remote address:=varlable part.calllng T address; 
TCEP:=: .. ; - --
called address:= ••• ; 
calling address:= •.. ; 
QOTS estimate:= ••• ; 
T CONNECT i~(TCEP,called address,calling address, 

- QOTS_estimate,normal); - , 
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when mappi n9. CR 
p4:provided state = idle and variable part.max TPDU size 

'"' undef ined and - --
(/ able to provide the quali ty of service/) 

begin 
stite:=wait for T CONNECT resp; 
remote reference:~source reference; 
TPDU 51 z e : = 128 ; -
remote_address:=variable_part.calling_T_address; 
TCEP: = •.. i 
called address: = ••• i 
calling address:= ••. ; 
QOTS estimate:= ... ; 
T CONNECT ind(TCEP,called address, 

- calling address,QOTS ëstimate,normal); - -end; 

when mapping.CR 
P5:provided state = idle and 

(/ not able to provide the QOS/) 
begin 

state:=idle; /i 
variable part to send. ~ 

addi tionaI_clear _reason: = { •. ; 
DR(source reference,O,connectlon negotiation 

failed,variable_part_to_sendT; - _ -
end; 

when mapping.CC 
P6:provided state = wait for CC and 

variable part.max TPDU slze<>undefined 
begin - --

state:=data transferi 
remote reference:=source reference; 
TPDU slze:=variable part:max TPDU size; 
QOTS-estimate:= ..• i- --

T CONNECT conf(TCEP,QOTS estimate,normal); 
in buffer-:-c1eari -
out buffer.clear; 
out-buffer.set max get size(TPDU size); 

end; - - - - -

" 


