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Abstract 

Reinforcement learning is a general computational framework for learning sequential 

decision strategies from the interaction of an agent with a dynamic environment. In 

this thesis, we focus on value-based learning methods, which rely on computing utility 

values for different behavior strategies. Value-based reinforcement learning methods 

have a solid theoretical foundation and a growing history of successful applications 

to real-world problems. However, most existing theoretically-sound algorithms work 

for small problems only. For complex real-world decision tasks, approximate methods 

have to be used; in this case there is a significant gap between the existing theoretical 

results and the methodologies applied in practice. This thesis is devoted to the 

analysis of various factors that contribute to the difficulty of learning with popular 

reinforcement learning algorithms, as well as to developing new methods that facilitate 

the practical application of reinforcement learning techniques. 

In the first part of this thesis, we investigate properties of reinforcement learn­

ing tasks that influence the performance of value-based algorithms. We present five 

domain-independent quantitative attributes that can be used to measure various task 

characteristics. We study the effect of these characteristics on learning and how they 

can be used for improving the efficiency of existing algorithms. In particular, we 

develop one application that uses measurements of the proposed attributes for im­

proving exploration (the pro cess by which the agent gathers experience for learning 

good behavior strategies). 

In large realistic domains, function approximation methods have to be incorpo­

rated into reinforcement learning algorithms. The second part of this thesis is devoted 

to the use of a function approximation model based on Sparse Distributed Memories 
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(SDMs) in approximate value-based methods. Like for all other function approxima­

tors, the success of using SDMs in reinforcement learning depends, to a large extent, 

on a good choice of the structure of the approximator. We propose a new technique 

for automatically selecting certain structural parameters of the SDM model on-line 

based on training data. Our algorithm takes into account the interaction of function 

approximation with reinforcement learning algorithms and avoids sorne of the diffi­

culties faced by other methods from the existing literature. In our experiments, this 

method provides very good performance and is computationally efficient. 

v 



Résumé 

L'apprentissage par renforcement est une approche computationnelle générale pour 

l'apprentissage de stratégies de décision séquentielles à partir de l'interaction de 

l'agent avec un environnement dynamique. Dans cette thèse, on se concentre sur les 

méthodes d'apprentissage basées sur les valeurs qui dépendent du calcul des valeurs 

d'utilité pour différentes stratégies de comportement. Les méthodes d'apprentissage 

par renforcement basées sur les valeurs ont une fondation théorique solide et un his­

torique croissant d'applications à des problèmes réels. Cependant, la plupart des 

resultats théoriques sont basés sur des suppositions restrictives qui ne sont satisfaites 

que par des problèmes simples. Pour des problèmes de décision réels plus complexes, 

des méthodes d'approximation doivent être utilisées. Dans ce cas-là, il existe une 

grande différence entre les résultats théoriques existants et les méthodologies ap­

pliquées en pratique. Cette thèse est consacrée à l'analyse des divers facteurs con­

tribuant à la difficulté de l'apprentissage par des algorithmes bien connus d'apprenti­

ssage par renforcement ainsi qu'au développement de nouvelles méthodes facilitant 

l'application pratique de ces techniques. 

Dans la première partie de cette thèse, on recherche les propriétés des problèmes 

d'apprentissage par renforcement qui influencent la performance des algorithmes basés 

sur les valeurs. On présente cinq attributs quantitatifs indépendants du domaine qui 

peuvent être utilisés dans le but de mesurer plusieurs caractéristiques du problème. 

On étudie l'effet de ces caractéristiques sur l'apprentissage et la manière dont ils peu­

vent être utilisés pour améliorer l'efficacité de ce dernier. En particulier, on développe 
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une application qui utilise des mesures des attributs proposés pour améliorer l'explora­

tion (la procédure par laquelle l'agent accumule de l'expérience pour l'apprentissage 

de bonnes stratégies de comportement). 

Dans des domaines réalistes de grande taille, les méthodes d'approximation de 

fonctions doivent être incoporées dans les algorithmes d'apprentissage par renforce­

ment. La seconde partie de cette thèse est consacrée à l'utilisation d'un modèle 

d'approximation de fonctions basé sur" Sparse Distributed Memories" (SDM) dans les 

méthodes approximatives basées sur les valeurs. Comme c'est le cas pour tous les ap­

proximateurs de fonctions, le succès de l'usage des SDM en apprentissage par renforce­

ment dépend, pour une grande partie, du bon choix de la structure de l'approximateur. 

On propose une nouvelle technique pour le choix automatique de certains parmètres 

structuraux du modéle SDM en-ligne basé sur un ensemble d'apprentissage. Notre 

algorithme prend en considération l'interaction particulière de l'approximation de 

fonction avec les algorithmes d'apprentissage par renforcement et évite certaines des 

difficultés envisagées par d'autres méthodes semblables qui existent dans la litérature. 

On démontre empiriquement que notre méthode fournit une très bonne performance 

et qu'elle est efficace du point de vue calcul. 

Vll 
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CHAPTER 1 

Introduction 

Reinforcement learning [Sutton and Barto, 1998] is a computational approach that 

allows a software agent to learn how to behave by interacting with its environment. 

For example, imagine an office-helper robot that needs to learn how to optimally 

schedule and manage tasks such as delivering mail and coffee to the employees as weIl 

as tidying up their offices. The learning agent is situated in a dynamic environment, 

which is characterized by a particular state at any given time. In the previous example, 

the state description could include the current location of the robot in the office space, 

its current engagement in the execution of any task and outstanding requests from 

the employees. The agent interacts with the environment at discrete time steps 

by observing the corresponding states of the environment and performing certain 

actions. For instance, the helper robot's actions could include picking up mail at the 

mail boxes, delivering mail or coffee to a particular employee, tidying up an office. 

The dynamics of the environment is infiuenced by the agent 's actions as well as 

factors external to the agent (out of its control). For example, when the helper robot 

completes an outstanding task, this task will not be part of the state description on 

the next time step (effect of the agent's action) but, at the same time, employees can 

make new requests (these are external factors, not under the agent's control). 



CHAPTER 1. INTRODUCTION 

One of the distinguishing features of reinforcement learning is that neither the 

designer of the learning system nor the environment provide examples of "correct" ac­

tions. The only feedback that the agent receives is in the form of numerical immediate 

rewards. For example, the helper robot can receive negative rewards (penalties) pro­

portional to the number and duration of the outstanding requests from the employees. 

In general, both the rewards and the environment's dynamics (state transitions) can 

be stochastic. 

The goal of the agent is to learn a way of choosing actions, called a policy which 

optimizes sorne long-term performance criterion. Typically, this criterion is related to 

the total reward accumulated by the agent over time. The agent's policy must take 

into account the uncertainty (stochasticity) pertaining to the environment's state 

dynamics and rewards. 

In the absence of a "teacher", the agent needs to actively explore its environment 

by trying out different actions in different states and observing the corresponding out­

cornes. Thus, the agent can learn without any prior knowledge about its environment 

and without any supervision. The ability of the agent to learn in this manner is very 

valu able in domains, in which it is easier to design a reasonable immediate reward 

function than to find a good (optimal) long-term decision strategy analytically. 

Reinforcement learning has been applied successfully in various domains. Promi­

nent examples include Samuel's checkers player [Samuel, 1959; 1967], robot navigation 

control [Lin, 1992], Tesauro's backgammon player, TD-Gammon, [Tesauro, 1994], 

packet routing in dynamically changing networks [Boyan and Littman, 1994], job­

shop scheduling strategies (in the context of NASA space shuttle missions) [Zhang 

and Dietterich, 1995], elevator dispatch control [erites and Barto, 1996], maintenance 

and repair strategies [Bertsekas and Tsitsiklis, 1996], dynamic channel allocation in 

cellular telephone networks [Singh and Bertsekas, 1997], call admission control and 

routing in communication networks [Marbach et al., 1998; Brown et al., 1998], switch 

packet arbitration [Brown, 2001], computing investment strategies for multi-market 
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1.1 VALUE-BASED REINFORCEMENT LEARNING 

commodity trading [Hauskrecht et al., 2001], helicopter control [Bagnell and Schnei­

der, 2001; Ng et al., 2004], irrigation network regulation [Guestrin et al., 2004] and 

robotic soccer (see e.g., [Fidelman and Stone, 2004; Riedmiller and Merke, 2001; 

Riedmiller et al., 2000; Stone and Sutton, 2001; Wiering et al., 1999]). 

This list illustrates the generality of the reinforcement learning framework and 

the fact that it can be applied to diverse real-world problems. However, current state­

of-the-art reinforcement learning techniques for large-scale real-world problems can 

be hard to tune and their theoretical properties are not well-understood. Practical 

applications are often built by employing techniques that are well-studied and known 

to work well in other contexts. Often, common-sense heuristics and background 

knowledge of the domain are used to tailor such techniques for a particular task. Un­

fortunately, the design and implementation process is typically very time-consuming 

and involves a lot of trial-and-error steps. Despite the generality of the reinforce­

ment learning approach, the pro cess of selection and fine-tuning of the individu al 

components of the learning system often seems to be very problem-specific. One of 

the goals of this thesis is to investigate how various domain characteristics affect the 

performance of popular reinforcement learning techniques and how the knowledge of 

such characteristics can be used to improve the efficiency of learning. The other goal 

of this the sis is to develop and test certain techniques that allow us to automate (at 

least partially) the design of reinforcement learning systems. 

1.1. Value-Based Reinforcement Learning 

In this thesis, we focus on reinforcement learning techniques that are based on 

computing value junctions. Value functions map states of the environment or state­

action pairs to their utilities. Utilities reflect the long-term desirability of states 

and actions and accommodate any stochasticity that may be present in the system. 

Typically, such utilities are defined as expected values of sorne additive function of the 

rewards received by the agent over time. Algorithms that compute a value function 

and then implicitly derive a policy from it are called as value-based methods. 
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Value-based reinforcement learning algorithms have been analyzed thoroughly for 

problems, in which the state space is finite and small. It is also usually assumed that 

the actions available to the agent come from a discrete set, which is small relative to 

the state space. In this case, value functions can be represented by look-up tables, 

with one value (utility) assigned to each state or state-action pair. Methods using such 

a representation are often called tabular methods. However, if the state space is very 

large or continuo us , this approach is infeasible. In this case, function approximation 

techniques [Friedman, 1994] are used to represent the value functions approximately. 

We will refer to such techniques as approximate value-based methods. 

Tabular value-based methods are well understood. In this case, most of the exist­

ing algorithms have provable convergence [Bertsekas and Tsitsiklis, 1996] in the limit 

(with an infinite amount of experience), under the assumption that the agent encoun­

ters all states and tries all actions infinitely often. Some results on computational 

complexity and convergence rates are also available, e.g., [Blondel and Tsitsiklis, 2000; 

Kakade, 2003; Littman et al., 1995; Szepesvari, 1997] (see Chapter 2 for more details), 

but few of the algorithms that are most popular in practice are well studied in this 

respect. 

When approximate representations of the value functions are used, even conver­

gence results are much harder to establish. Although function approximation tech­

niques can be incorporated into reinforcement learning methods quite naturally, the 

theoretical analysis of the combined systems becomes very difficult. This is due to 

the fact that many of the fun dament al assumptions, on which the theoretical analysis 

is typically based when studying just one class of algorithms in isolation, are violated 

in the combined setting. At present, theoretical results are available only for some 

reinforcement learning algorithms, and mostly for a restricted class of value func­

tion representations (see Chapters 2 and 5 for more details). However, approximate 

methods are indispensable for the practical use of reinforcement learning. In fact, 

approximate algorithms were successfully used in most of the applications mentioned 

above, even though their theoretical properties are not fully understood. Thus, there 
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is still a big gap between the available theoretical results and the methodologies that 

are applied in practice. 

1.2. Problem Statement and Objectives 

In this thesis, we rely on a standard framework of Markov Decision Processes 

(MDPs) [Bellman, 1957], which is commonly used in reinforcement learning to define 

formally the interactions between the agent and its environment, as well as the agent's 

long-term performance goals. An MDP is defined by a tuple (S, A, P, R), where S 

is the environment's state space, A is the agent's action space, P is the probability 

distribution for state transitions (also called a transition function), and R is the 

function that represents expected immediate rewards (see Chapter 2 for more details). 

However, the availability of the transition and reward functions, P and R, in an 

explicit analytical form is not required as long as the agent can observe samples of 

state transitions and rewards produced according to these functions. 

In this thesis, we focus primarily on value-based reinforcement learning algorithms 

that learn on-line, by obtaining samples of state transitions and rewards from the 

direct interaction of the agent with its environment and by processing these samples 

one at a time. This is in contrast with off-line planning algorithms, that rely on 

a complete and explicit knowledge of the transition and reward functions and use 

dynamic programming algorithms to compute optimal policies (see Chapter 2). In 

on-line learning, there is a close interplay between the agent's state of knowledge 

about its environment and the experience obtained from the environment (see Figure 

1.1). The agent's knowledge is refiected in the values of states or state-action pairs, 

which, in turn, can determine the policy used by the agent to act in the environment 

while learning. This policy then affects what experience is obtained by the agent for 

further learning. Of course, the experience is also determined by the en virorunellt, as 

it responds to the agent's actions according to its dynamical model. 

In reinforcement learning, most research has focused so far on the interactions 

between the agent's policy, the experience it generates and the values that are learned 
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FIGURE 1.1. Main components of on-li ne value-based learning and direct 
relationships between them. 

from it. The influence of the environment and its properties on the generated expe­

rience and subsequently on learning has been studied very little so far. One part of 

this thesis is devoted to investigating this issue. The other part is focused on the link 

between the experience and the representation of the value function. In particular, 

we investigate how to automatically build good approximate representations of values 

functions. 

1.3. Contributions 

1.3.1. MDP Characteristics and Their Effect on Learning 

In the current reinforcement learning literature, theoretical studies considered 

mainly a very general definition of Markov Decision Processes. This is in contrast 

to other related disciplines, e.g., combinatorial optimization [Roos and Stutzle, 2000; 

Lagoudakis and Littman, 2000] and supervised learning [Kopf et al., 2000; Linder 

and Studer, 1999; Peng et al., 2002], where several studies investigated how prob­

lem characteristics influence the complexity and behavior of various algorithmti (tiee 

Chapter 3 for more details). A few existing results in reinforcement learning also 

provide an indication that not aH reinforcement learning tasks are equally easy ta 

solve [Blondel and Tsitsiklis, 2000; Dean et al., 1995; Kakade, 2003; Kirman, 1995; 
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Littman et al., 1995]. In particular, stochasticity in the environmental responses ap­

pears to be one of the key factors influencing the complexity of finding good policies. 

One part of this thesis is devoted to defining and analyzing certain properties of 

Markov Decision Pro cesses that influence the performance of incremental value-based 

reinforcement learning algorithms. We build on the prior work of Kirman (1995), who 

proposed several attributes for MDP characterization in order to construct numerical 

statistical models for predicting the performance of planning algorithms used off-line 

to solve MDPs with known transition and reward functions. We extend this work 

to on-line reinforcement learning, both for tabular and approximate methods. We 

refine the definitions of certain attributes introduced in [Kirman, 1995] and propose 

sorne new attributes. The attributes that we investigate are quantitative; most of 

them measure the amount of stochasticity that cornes from different sources and the 

amount of control that the agent can exercise over its environment. We provide 

a detailed discussion of the effect that such MDP properties have on the learning 

pro cess. We formulate specific hypotheses concerning the nature of these effects 

and experimentally validate sorne of these hypotheses. For instance, we show how 

the stochasticity of the state dynamics affects the quality of policies learned by on­

line learning techniques in a limited amount of time, as well as how it relates to 

the agent's ability to explore its environment efficiently. Our analysis opens a new 

perspective on the difficulties encountered by incremental value-based algorithms and 

better explains variations in their performance in different domains. This work is 

presented in Chapter 3 of this thesis. A part of it has been previously published in 

[Ratitch and Precup, 2002]. 

1.3.2. Using Knowledge of MDP Properties for Improving Exploration 

The insights obtained through the analysis of the MDP characteristics can be used 

to adjust various parameters of the learning algorithms to better suit the problem at 

hand. In this thesis, we develop one specific method that relies on two of the proposed 

MDP attributes to guide the process by which the agent explores its environment 
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during learning. Exploration is essential for reinforcement learning, as it is the only 

means by which the agent gathers the information that is necessary to compute good 

behavior strategies. Efficient exploration methods are of great practical importance 

and have been studied by many researchers (see Chapter 4 for a review of the research 

in this area). Our analysis of MDP characteristics led to the design of a new technique 

that can be used to improve the performance of existing exploration strategies. The 

agent uses measurements of the MDP attributes in order to focus its exploration 

effort where it is particularly beneficial. More specifically, the agent gathers more 

experience for the state-action pairs, whose consequences exhibit high variability; 

such state-action pairs need more training data in order to obtain good estimates 

of their values. AIso, the agent gives priority to learning about those states, in 

which its choice of action is expected to have most impact on performance. Our 

experimental results demonstrate that this technique can improve the quality of the 

learned policies and the speed of learning. This material is presented in Chapter 4 of 

this thesis. Parts of this work have also been published in [Ratitch and Precup, 2003b; 

2003a]. 

1.3.3. On-Line Structure Selection for Sparse Distributed Memories III 

Reinforcement Learning 

The second part of this thesis is devoted to approximate value-based reinforce­

ment learning methods. We investigate the use of a function approximation model 

based on Sparse Distributed Memories (SDMs) [Kanerva, 1993] for representing value 

functions. A Sparse Distributed Memory can be viewed as a general purpose memory, 

where states or state-action pairs serve as addresses of memory locations and their 

values (utilities) represent the contents of locations. When the state space is very 

large or infinite, memory locations are created only for a small subset of state-action 

pairs. In this case, like other function approximators, the SDM generalizes the val­

ues across "nearby" states. The structure of the SDM is defined by the subset of 

states, for which memory locations are created (locations' addresses) , as weIl as by 
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the radii of activation of each location, which determine how values are generalized 

across different states (see Chapter 5 for more details). We present a new approach for 

configuring on-li ne the structure of SDMs by automatically choosing the addresses of 

the memory locations based on the training data obtained by the agent. Our method 

has emerged as a result of prior experimentation with other related methods from the 

existing literature. It avoids some of the difficulties faced by other methods when used 

in the context of on-line value-based reinforcement learning. Our method provides 

good performance empirically, is simple to implement and is very efficient in terms of 

computational time and space requirements. This work is presented in Chapter 5 of 

this thesis. A part of it has been previously published in [Ratitch and Precup, 2004; 

Ratitch et al., 2004]. 

1.4. Statement of Originality 

Portions of this thesis have been previously published in peer-reviewed conference 

proceedings [Ratitch and Precup, 2002; 2003b; 2004] and presented at workshops 

[Ratitch and Precup, 2003a; Ratitch et al., 2004]. The material presented in this 

thesis contains more extensive discussions of the proposed techniques compared to 

the content of the published papers. The thesis also contains a significantly more 

extensive literature review and in-depth discussions of the relationships between the 

methods proposed and existing approaches. The experimental studies presented in 

chapt ers 3 and 4 contain additional results not included in [Ratitch and Precup, 2002; 

2003b]. 

1.5. Thesis Outline 

The rest of the the sis is structured as follows. 

Chapter 2 contains background material on reinforcement learning and function 

approximation. First, we give an overview of tabular value-based methods. Then we 

briefly discuss the problem of function approximation from a supervised learning 

perspective and introduce the approximate value-based methods discussed in this 
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thesis. We then give an overview of the state of knowledge in reinforcement learning 

combined with function approximation. Finally, we briefly discuss existing results on 

the complexity of reinforcement learning. 

In Chapter 3, we define five attributes that can be used to characterize Markov 

Decision Processes. We propose hypotheses concerning their effect on learning and 

provide suggestions for their potential use in practical applications. We discuss ways 

to compute or approximately estimate these attributes. We then present the results 

of an empirical study illustrating the presence and nature of the effect of two of the 

proposed MDP attributes on both tabular and approximate value-based methods. 

Chapter 4 presents a practical application of the two MDP attributes studied 

in depth in Chapter 3. We introduce a new exploration strategy, which encourages 

the agent to gather experience in those regions of the state-action space, where the 

training samples are either expected to be very noisy, or where learning a good policy 

will have most impact on the agent's performance. Our empirical results demonstrate 

that this technique can improve the performance of existing exploration strategies at 

low additional computation cost. 

Chapter 5 is devoted to the use of Sparse Distributed Memories for approxi­

mately representing value functions. In this chapter, we discuss how the SDM model 

relates to the existing theoretical results on approximate value-based methods and 

how it can be used with several existing approaches. Then, we present the main 

contribution of this chapter - a new method for configuring the structure of the 

memory semi-automatically, based on training data obtained on-line. We provide 

experimental results on two different domains and compare our technique to other 

existing approaches. The results show that our method performs well in practice and 

is computationally efficient. 

Chapter 6 summarizes the contributions in this thesis and provides directions 

for future work. 

Appendices provide details on sorne technical issues discussed in this thesis. 
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CHAPTER 2 

Background 

Chapter Outline 

In this chapter, we provide background information on reinforcement learning. 

We present definitions of the key concepts needed to formulate and solve re­

inforcement learning problems and discuss several standard algorithms. Then 

we introduce the issue of using function approximation to solve large reinforce­

ment learning tasks. We present various ways in which approximate reinforce­

ment learning algorithms can be designed and give an overview of the related 

theoretical results from the current literature. 

2.1. Reinforcement Learning Problem 

Reinforcement learning [Sutton and Barto, 1998; Puterman, 1994; Bertsekas and 

Tsitsiklis, 1996] is a framework for computationallearning agents that use experience 

from their interaction with an environment to improve performance over time. There 

is no explicit teacher to guide the agent. Instead the agent interacts directly with the 

dynamic environment in which it operates. The agent uses its sensors to perceive the 

current state of the environment and is able to perform actions that cause the envi­

ronment to change its state. The agent also receives a numerical reward signal [rom 

the environment, which represents feedback on the agent's immediate performance. 

But maximizing the immediate reward is not the ultimate goal of the learning agent. 

Based on this signal, the agent forms a performance criterion, which refiects what is 



2.1 REINFORCEMENT LEARNING PROBLEM 

good in the long term. This criterion incorporates any uncertainty due to the system 

dynamics and future course of events. 

We will consider reinforcement learning problems where time is discrete. We will 

sometimes refer to the time steps as stages. At each stage t, the environment is in 

some state St E S, where S is a set of aIl states. The state space S may be finite or 

infinite. The action at performed by the agent at the stage t is selected from a finite 1 

set of actions A(st) available from state St. In Section 2.2, we review reinforcement 

learning methods that assume dis crete , finite state and action spaces. In Section 2.4, 

we discuss methods for continuous state spaces. 

As a result of performing action at in state St, on the next time step, the agent 

receives a numerical reward signal rt+l and the environment makes a transition to 

a new state St+l. The numerical reward signal that the environment provides is the 

primary means for the agent to evaluate its own performance. In general, this signal is 

stochastic. It is the means by which the designer of the reinforcement learning system 

can tell the agent what it is supposed to achieve, but not how. This constitutes a 

major difference from supervised learning systems where examples of the desired 

response are always provided by a teacher. The goal of the agent is to maximize the 

cumulative reward - the long-term return - which is an additive function of the reward 

sequence. Since the environment is stochastic, the agent is supposed to maximize 

the expected return, taking into account any uncertainty pertaining to the system. 

The agent strives to find a policy, a way of behaving, which maximizes this return. 

Mathematically, a policy is described by a probability distribution 1f : S x A ---+ [0, 1], 

where 1f(s, a) denotes the probability of taking action a in state s. 

One can distinguish two main types of reinforcement learning tasks: episodic and 

continuing tasks. In episodic (finite horizon) tasks, there exists at least one terminal 

state, in which an episode ends. The system then can be reinitialized to some starting 

1 In the current literature, there is sorne research devoted to MDPs with continuo us action spaces, 
e.g., [Williams, 1992; Baird and Klopf, 1993; Ravindran, 1996; Stréisslin and Gerstner, 2003]. We do 
not consider continuous actions in this thesis. 
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state and a new episode begins. Continuing tasks or infinite horizon problems, on the 

other hand, consist of just one infinite sequence of states, actions and rewards. 

In general, a return represents a cumulative (additive) function of the reward 

sequence. For an episodic task, for example, the return is usually defined as the sum 

of aH rewards received from the beginning of an episode until its end: 

T-l 

R(so) = L rk+l 
k=O 

(2.1) 

where T is the number of stages in the episode and So is a starting state. In the 

case of continuing tasks, there are many problems where one values rewards obtained 

in the near future more than those received later. In this case, future rewards are 

discounted by a factor 'Y E (0,1] and the return is defined as: 

00 

Rt(s) = L 'Ykrt+k+l , where St = S 

k=O 

(2.2) 

Discounting with 0 < 'Y < 1 ensures that the returns from all states are finite. When 

'Y = 1 (i.e., in the undiscounted case), in order to ensure that the returns are finite, 

some additional assumptions about the problem need to be satisfied. In particular, 

there has to exist a set of absorbing states (from which there is a zero probability 

of exiting), which are reached with probability 1 on any trajectory through the state 

space, and immediate rewards in these states have to be zero. Undiscounted problems 

can be considered episodic tasks, for which the number of stages in an episode is not 

known in advance and is stochastic. An episode ends when the system enters an 

absorbing state. 

There are problems for which discounting future rewards is not appropriate, but 

there is no absorbing set of states either. In this case, a performance criterion often 

used is the average cast per stage: 

(2.3) 
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In order to optimize this eriterion, the limit must exist and be finite. The algorithms 

for optimizing the average eost per stage eriterion are, in general, different from 

methods designed for diseounted and episodie tasks [Mahadevan, 1996; Bertsekas 

and Tsitsiklis, 1996; Kearns and Singh, 1998]. In this thesis, we foeus on episodic 

and discounted problems. 

Reinforcement learning relies on the assumption that the system dynamics has 

the Markov property: 

(2.4) 

The Markov property means that the next state and immediate reward depend only 

on the current state and action. Systems that have the Markov property are called 

Markov Decision Processes (MDPs). In reality, most systems are not strictly Markov, 

but a lot of them are quite close to MDPs. Reinforcement learning algorithms relying 

on the Markov property are easier to analyze theoretically and are very useful in 

practice even when the Markov property does not strictly hold in aU states. 

An MDP can be eharacterized by the transition probabilities: 

P:Sf = Pr{St+l = s'Ist = S,at = a} Vs,s' E S,a E A(s) , (2.5) 

and the expected value of the immediate reward 

R~Sf = E{rt+llst = S,at = a,St+l = s'} Vs, s' E S,a E A(s) (2.6) , 

Together these form the model of the MD? 

2.2. Reinforcernent Learning Algorithrns 

The goal of a reinforcement learning algorithm is either to evaluate the perfor­

mance of a given policy (prediction problem) or to find an optimal poliey (control 

problem). Many reinforcement learning algorithms are based on estimating value 
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functions. Value functions are defined with respect to policies and refiect their good­

ness (evaluations). They represent the desirability of different states or state-action 

pairs with respect to the performance goals of the agent. The state-value function for 

policy 7r for the discounted infinite horizon problem is defined as the expected return: 

(Xl 

VI1'(s) = E11'{Rtlst = s} = E11'{~= 'lrt+k+llst = s}, Vs E S (2.7) 
k=O 

Another value function that is often useful is the action-value function: 

(Xl 

k=O 
(2.8) 

It represents the expected return starting from state s, taking action a in sand then 

following policy 7r thereafter. 

The state-value function satisfies a recursive equation that, for the discounted 

case, has the following form: 

V11'(s) = E11'{Rtlst = s} = L7r(s,a) LP:SI[R~,sl +ryV11'(s')] ,Vs E S (2.9) 
a Si 

This is the Bellman equation for state values and represents the relationship between 

the value of a state and the values of its successors [Bell man , 1957]. This system 

of equations has a unique solution, which is the state-value function for policy 7r 

[Puterman, 1994]. A similar equation is satisfied by the action-value function: 

Q11'(s,a) = E11'{Rtlst = S,at = a} = LP:sl[R~,sl +ryV11'(s')] ,Vs E S (2.10) 
Si 

Value functions are useful because they define a partial ordering over policies. A 

policy 7r is considered to be better than another policy 7r' if and only if V11' (s) 2: V11'1 (s), 

Vs E S. The optimal policy is a policy corresponding to the maximum state-value 

function V*, which is called the optimal state-value function2
. The optimal state-value 

2The optimal policy can also be defined as the policy corresponding to the minimum state-value 
function, in which case the return can be viewed as a function of immediate costs or penalties. 
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function satisfies the Bellman optimality equation: 

V*(s) = max " P:sl[R~ s' + 1'V*(s')] ,Vs E S 
aEA(s) 6, , 

s' 

(2.11 ) 

For any finite MDP, there exists a unique solution V* to this system of equations, 

whieh is aehievable by a deterministic optimal poliey 11"* (see e.g., [Puterman, 1994]). 

AU algorithms diseussed in this seetion assume that the value functions are repre­

sented by look up tables, in whieh there is an entry for the value of eaeh state (or 

state-aetion pair). 

The optimal poliey ean be obtained from the optimal state-value funetion by 

one-step look-ahead seareh. For eaeh state, there will be at least one aetion at whieh 

the maximum is attained in the BeUman optimality equation. A poliey that assigns 

non-zero probabilities to sueh actions and zero probability to aU others will be an 

optimal poliey. This poliey is greedy with respect to V* as weU as optimal in the long 

run. 

2.2.1. Dynamic Programming 

Dynamie programming methods [Puterman, 1994] ean eompute optimal polieies 

for MDPs, given a model of the environment (2.5)-(2.6), by using the value fune­

tions and Bellman equations to guide the seareh for optimal polieies. Rather than 

solving the Bellman equations direetly, dynamie programming methods treat them 

as reeursive update rules. Dynamie programming algorithms are bootstrapping - they 

update the estimates of state values based on the estimates of the values for the sue­

cessor states. We present a brief overview of the most popular dynamie programming 

algorithms. 

The policy evaluation task is eoncerned with estimating the values of states when 

the agent aets aeeording to sorne fixed poliey 11". We diseuss the ease of deterministic 

polieies, but aU results extend easily to the general ease of stoehastie policies. Assume 

that the agent has adopted a deterministic poliey 11" : S ----1- A, where 11"(s) = a E A(s) 

and is interested in eomputing the state-value function V1T assoeiated with this poliey. 
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The agent starts with some arbitrary initial estimate of the state-value function, Vrr, 
and uses the BeUman equation for the state-value function as a recursive update rule 

to improve the estimates: 

Vic11"+1 (s) f- L P:'s' [R~,s' + ,V; (s')], Vs E S, a = n(s), k = 0,1,2, ... (2.12) 
s' 

This is an iterative algorithm for policy evaluation, where one iteration consists of 

the updates being made to aU states. Policy evaluation can be shown to converge 

in the limit with probability 1 to the correct state-value function V11", which is the 

unique solution to the Bellman equation. This can be shown based on the fact that 

the operator (T11"V;)(s) = 2:s' P:'s,[R~,s' + ,V;(S')J is a contraction mappinl (see 

e.g., [Bertsekas and Tsitsiklis, 1996J for details). A similar algorithm can be used to 

estimate the action-value function Q11". 

Estimating value functions is particularly useful for fin ding better policies. The 

policy improvement algorithm uses the action-value function to improve the current 

policy. If Q11"(s, a) 2': V11"(s) for sorne a -=J n(s), then it is better to select action a in 

state s rather than to select n (s ). This follows from the policy improvement theorem 

[Bellman, 1957], which states that for any pair of deterministic policies n and n', such 

that Vs E S, Q11" (s, n' (s)) 2': V11" (s), policy n' must be as good as or better than n. In 

this manner one can construct a new improved policy n', which is greedy with respect 

to V11": 

n/(s) = arg max Q11"(s, a) = arg max L P:s,[R~ s' + ,V11"(S')J 
aEA(s) aEA(s)" 

s' 

(2.13) 

Policy evaluation and policy improvement can be interleaved to construct a sequence 

of successively improving policies. This algorithm, known as Policy Iteration, con­

structs a sequence: no ---+ V11"Q ---+ nI ---+ V11"l ---+ ... ---+ n* ---+ V11"*. Policy Iteration 

3We say that the operator T'Ir is a contraction mapping if there exists a vector ç = (6, ... , çn), such 
that each Çi > 0 and there exists a scalar f3 < 1 su ch that Il T'Ir V - T'Ir Vîlç :::; f311V - Vllç, where 

1IVllç = maxi=l, ... ,n 1~~i)l. If the operator T'Ir is a contraction mapping than it is guaranteed to have 

a fixed point Vfp, that is a vector that satisfies T'Ir Vfp = Vfp (see e.g., [Bertsekas and Tsitsiklis, 
1989]). 
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converges to the optimal policy, because there is a finite number of policies in a finite 

MDP (i.e., an MDP with the finite state and action spaces) and each new policy 

improves on the previous one. 

One difficulty with the Policy Iteration algorithm is the fact that the policy 

evaluation step converges only in the limit. However, policy evaluation can be stopped 

before convergence occurs. The Value Iteration algorithm performs just one policy 

evaluation iteration (one sweep over the state space) followed by a policy improvement 

step: 

(2.14) 
s' 

Value Iteration estimates the value of the optimal policy directly and can be seen 

as turning the Bellman optimality equation into an update rule, similarly to policy 

evaluation. Value Iteration converges in the limit to the optimal value function V* 

due to the contraction property ofthe operator (2.14) [Bertsekas and Tsitsiklis, 1996]. 

Policy Iteration relies on the full convergence of policy evaluation while Value 

Iteration performs just one policy evaluation step between successive policy improve­

ment steps. An intermediate solution is to perform sorne fixed number (k > 1) of 

policy evaluation steps before the policy improvement step. This variation, called 

Optimistic Policy Iteration, also converges under certain conditions [Tsitsiklis, 2002], 

and it can be more efficient than Value Iteration because policy evaluation iterations 

are less expensive than Value Iteration ones wh en the number of actions is large. 

One drawback of the above algorithms is that they require an update of the 

value function over the entire state space on each iteration. In domains with large 

state spaces, one spends a long time on one iteration before any improvements in 

performance are made. Asynchronous dynamic programming algorithms are iterative 

dynamic programming algorithms that allow updating states in an arbitrary order. 

In fact, sorne of the states may be updated several times before the others get thcir 

turn. To converge correctly, these algorithms require that all states continue to be 

updated infinitely often in the limit. Asynchronous dynamic programming does not 

guarantee that an optimal policy is reached with less computation, but it obtains 
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policy improvements earlier. This approach allows running dynamic programming 

algorithms on-line (although the MDP model is still required). In this case, the 

states actually observed by the agent during the interaction with the environment are 

selected for updates. 

2.2.2. Monte Carlo Methods 

Dynamic programming methods can only be used when a model of the system, i.e. 

transition probabilities and expected rewards as defined in Equations (2.5)-(2.6), is 

available. Of course, an agent can learn a model and then use it in dynamic program­

ming methods. However, learning a value function directly from interaction with the 

environment is also possible. Monte Carlo methods estimate value functions directly 

based on the experience of the agent. By experience we mean sample sequences of 

states, actions and rewards obtained from interaction with the environment. The idea 

underlying Monte Carlo methods in general is to use samples of a random variable 

to estimate its expected value as the sample mean. Recall that value functions are 

actually expected values of long-term returns, which are random variables. Monte 

Carlo methods estimate state or state-action values based on averaging sample re­

turns observed during the interaction of the agent with its environment. Monte Carlo 

methods are well-defined for episodic tasks, since samples of complete returns can 

be obtained for finite-horizon tasks. For each state (or state-action pair) a sample 

return is the sum of the discounted rewards received starting from the occurrence 

of the state (or state-action pair) until the end of an episode. As more samples are 

observed, their average converges to the true expected value of the return under a 

fixed policy used by the agent for generating the sample sequences. 

One can design a Policy Iteration algorithm, in which the policy evaluation step 

estimates the value function using Monte Carlo methods. There is one complication, 

however, that does not arise in synchronous dynamic programming. If the agent 

adopts a deterministic policy 1T, then the experience generated by its interaction with 

the environment contains samples only for actions suggested by policy 1T. The values 
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for other actions will not be estimated and there will be no information on which ta 

base the policy improvement step. Therefore, maintaining sufficient exploration is key 

for the success of Policy Iteration using Monte Carlo methods. One solution is for the 

agent to adopt a stochastic policy with non-zero probabilities of selecting aIl actions 

from aU states: a soft stochastic policy, such that 7r(s, a) > 0, Vs E S, Va E A(s). 

There are different ways to implement this approach. 

In the case of on-policy methods, the agent uses a soft stochastic policy when it 

interacts with the environment to generate experience, and evaluates its performance 

under this policy. In order to benefit from the currently available knowledge and to 

do sufficient exploration at the same time, the agent can bias its policy ta take greedy 

actions more often. For instance, the agent can use an E-greedy policy, which selects 

with probability (1 - E) the action that is greedy with respect to the current estimate 

of the action-value function and with probability E any action uniformly randomly 

(where E has a small positive value). Another popular choice of soft policy relies on 

the Boltzman distribution: 

7r(s, a) = e Q(~,a) / L e Q(~,b) 

bEA(s) 

where T is a positive temperature parameter. In this case, an action with a higher 

value will have a higher probability of being selected. However, the differences be­

tween the action selection probabilities are typically much smoother than in the case 

of the E-greedy policy: two actions with similar values would have similar probabilities 

of being selected. Both the parameter E in the E-greedy strategy and the temperature 

T in the Boltzman distribution can decrease to zero in the limit, in order to gradually 

approach a greedy policy. 

Another approach is off-policy learning: the agent uses one policy to interact with 

the environment and gcneratc experiencc (behavior policy) , but estimatcs the value 

function for a different policy (estimation policy). This can be done by weighting the 

samples of returns by their relative probabilities under the estimation and behavior 

policies [Sutton and Barto, 1998]. Such weights can be computed based only on the 
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knowledge of the action selection probabilities of the estimation and behavior policies, 

without the need to know transition probabilities. An immediate advantage of this 

approach is that the estimation policy can be deterministic while the behavior policy 

is stochastic and fixed, ensuring sufficient exploration. In particular, an agent can try 

to learn the value of the optimal policy while following an arbitrary stochastic policy, 

as we will discuss later. 

Policy Iteration with Monte Carlo based policy evaluation converges in the limit 

to the optimal policy (both for on-policy and off-policy learning) as long as every 

state-action pair is visited infinitely often [Bertsekas and Tsitsiklis, 1996]. But in 

practice, one encounters the same problem as for dynamic programming methods: 

one cannot wait forever until the policy evaluation step converges. 

Variants of Optimistic Policy Iteration with Monte Carlo based policy evalua­

tion were recently analyzed in [Tsitsiklis, 2002]. In this case a policy evaluation 

step consists in updating the values of all states (a synchronous algorithm) using an 

incremental Monte Carlo update: 

(2.15) 

where V71'k (s) is a sample return observed from state s while following a policy that 

is greedy with respect to the value function Vk . The step-size parameter Œk has to 

satisfy the following stochastic approximation conditions: 

Œk 2: 0 for all k and with probability 1: 

(2.16) 

This synchronous Optimistic Policy Iteration was shown to converge to the optimal 

policy with probability 1. A similar algorithm for state-action values Qk(S, a) was 

also shown to converge. 

Practical implementations of the methods based on Monte Carlo sampling are 

feasible mostly for episodic tasks, where it is possible to obtain sample returns on 
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complete trajectories. For continuing tasks, as discussed in [Tsitsiklis, 2002], one 

possibility is to generate each trajectory for sorne large number of steps K, such that 

,K is very close to zero and the contribution of the tail of the trajectory is negligible. 

2.2.3. Temporal Difference Learning 

A combinat ion of the ideas from dynamic programming and Monte Carlo meth­

ods yields temporal difference (TD) learning [Sutton, 1988]. Similarly to the Monte 

Carlo method, this approach allows learning directly from experience without any 

prior knowledge of the system's model. The feature shared by TD learning and dy­

namic programming methods is that they both use bootstrapping for estimating value 

functions. 

Policy Evaluation 

Let us first discuss TD learning in the context of policy evaluation. TD algorithms 

make updates of the estimated values based on each observed state transition and on 

the immediate reward received from the environment on this transition: (St, at) ~ 

SHI. One-step TD performs the following update on every time step: 

(2.17) 

This method bootstraps, but it uses sample updates instead of full updates as in 

the case of dynamic programming. Only one successor state, observed during the 

interaction with the environment, is used to update V instead of using values of 

all the possible successors and weighting them according to their probabilities as in 

Equation (2.12). 

The major difference between TD learning and Monte Carlo methods is that 

Monte Carlo methods perform updates based on the entire sequence of observed 

rewards until the end of an episode, while TD methods use the samples of immediate 

rewards and next states for the updates. An intermediate approach is to use the 

n-step truncated return, I4n), obtained from a sequence of n > 1 transitions and 
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rewards: 

R(n) 2 nv;() 
t = T"HI + '"YT"t+2 + '"Y T"t+3 + ... + '"Y t SHn+l (2.18) 

To go one step further, one can compute the updates to the value function estimate 

based on several n-step returns. The family of methods TD(À), with 0::; À::; 1, 

combine n-step returns weighted proportionally to Àn-l: 

R; = (1 - À) l:~=l Àn-l R~n), 0::; À < 1 

R;=R~oo), À=1 
(2.19) 

Weights decay by À with each additional time step. It is easy to see that we obtain 

Monte Carlo updates by setting À = 1, whereas by setting À = 0 we obtain the one­

step TD method in Equation (2.17). The above algori thm is known as the forwaT"d 

view of the TD(À) algorithm, where the updates to the value function estimates are 

calculated as: 

(2.20) 

Obviously, to implement this algorithm directly, we still need to wait indefinitely in 

order to compute R;. This method is rarely used in practice, but it is useful for the 

theoretical analysis of TD methods. 

The backward view of the TD(À) algorithm is a way to implement incrementally 

the forward view algorithm described ab ove. This variant introduces the use of el­

igibility traces, which establish the eligibility of a particular event for participating 

in updates of the value function. Eligibility traces are variables et (s) associated with 

each state sES. These variables are initialized to 0 at the beginning of learning and 

are updated at each stage t as follows: 

if S #- St 

if S = St 

(2.21) 

where À is the trace decay parameter. The trace for astate is increased every time the 

state is visited and decreases exponentially otherwise. We denote by <St the temporal 
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difference or TD error at stage t: 

(2.22) 

The TD error is the difference between the value estimate that can be formed for 

state St based on the currently observed transition, [rt+l +1'V(St+dJ, and the current 

value estimate, V(St). On every time step, all states are updated proportionally to 

their eligibility traces: 

(2.23) 

As a result, all states receive credit (or blame) for the current TD error, but states 

visited in the distant past are given less credit (or blame), since their eligibility traces 

have decreased. 

There are two ways of performing updates. In on-line (intra-sequence) updating, 

changes to the value function are made as soon as the appropriate increment Œ)tet(S) 

is computed. In off-line (after-sequence) updating, the updates are accumulated and 

the estimates are changed to new values only at the end of an episode. Like Monte 

Carlo methods, off-Hne updating is well-defined for finite-horizon tasks. 

TD(l) with off-line updating is the Monte Carlo method. TD(l) with on-line 

updating yields an approximation of Monte Carlo estimation [Sutton, 1988]. This 

incremental implementation of Monte Carlo methods is much more general: it can be 

directly applied to discounted continuing tasks, not just to episodic ones. 

The TD(À) method for policy evaluation was introduced in the work of Sutton 

(1988). There, two convergence results were presented: (i) The tabular after-sequence 

TD(O) algorithm for evaluating a proper policy4 converges in the limit in expected 

value to the true value function of the policy. (ii) The off-Hne TD(O) method con­

verges in the limit to the optimal predictions when it is repeatedly presented with a 

finite training set. Optimal predictions in this case are expected values of the states 

4 As defined in [Bertsekas and Tsitsiklis, 1996], a stationary policy 7r is called proper if, when using 
this policy, there is a positive probability that the termination state will be reached after at most n 
stages, regardless of the initial state. 
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under the maximum-likelihood estimates of the true process parameters (transition 

probabilities and rewards) obtained from the data. Optimality is ensured for the 

states that appear in the training set only. Under the same conditions, TD(l) con­

verges to the estimates that minimize the error on the training set (in general, these 

are different from the optimal predictions in the above sense). 

In [Sutton, 1988], the equivalence offorward (intra-sequence) updating and back­

ward (after-sequence) updating for general À was shown in the context ofundiscounted 

episodic tasks. In [Watkins, 1989], this result was extended to discounted continuing 

tasks based on the n-step and À returns, as explained ab ove. The terms "forward" 

and "backward" views were first introduced in [Sutton and Barto, 1998]. 

The proof of convergence in the me an of the tabular TD(À) algorithm for general 

À was presented in [Dayan, 1992] based on the ideas involving n-step returns and 

À-returns introduced in [Watkins, 1989]. Dayan (1992) also showed convergence with 

probability 1 of the tabular TD(O) algorithm. 

In [Jaakkola et al., 1994], convergence with probability 1 was shown for TD(À) for 

general À both under off-line and on.:.line training. Their proof relies on techniques 

from stochastic approximation theory, which were extended to cover asynchronous 

pro cesses having a contraction property with respect to sorne maximum norm. The 

step-size parameter Œt has to satisfy the stochastic approximation conditions, given 

in Equation (2.16). 

Control Problem 

The temporal difference approach can be used for the policy evaluation step of 

the (generalized) Policy Iteration algorithm. As with Monte Carlo methods, sufficient 

exploration must be ensured in order to find the optimal policy. Again, one can use 

either on-policy or off-policy approaches to ensure adequate exploration. 

An example of TD-based on-policy learning is the Sarsa algorithm, first intro­

duced in [Rummery and Niranjan, 1994], which performs the following update on 
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every time step: 

(2.24) 

The algorithm estimates the action value function for the current behavior policy, 

which is near-greedy (e.g., E-greedy) with respect to the last estimate of the action­

value function Q. This algorithm converges in the limit with probability 1 to an 

optimal near-greedy policy if all state-action pairs are visited infinitely often. Conver­

gence to the optimal greedy policy occurs if the amount of exploration (as controlled, 

for example, by E) diminishes appropriately over time [Singh et al., 2000]. 

Eligibility traces can also be used with the Sarsa algorithm. The resulting method 

is known as Sarsa(À), where the parameter À plays the same role as in TD(À). In this 

case, one trace et(s, a) is associated with each state-action pair. On each time step t, 

the value update is then performed as follows: 

Q(s, a) f- Q(s, a) + Œtet(S, a) [rt+l + Î'Q(St+l, at+t} - Q(St, at)], Vs E S, Va E A(s) 

(2.25) 

The traces e(s, a) accumulate visitation counts for each state-action pair. On each 

time step, the value update can be propagated to the state-action pairs that were 

visited earlier on the current trajectory. This can speed up learning, as illustrated in 

Figure 2.1. 

There are two ways in which the traces are usually updated: replacing traces and 

accumulating traces methods. For the accumulating traces method, the eligibilities 

are updated similarly to the TD(À) algorithm: 

Ct(S, a) :~ À'Yet(s, a) + { ~ if s = St and a = at 

otherwise 
(2.26) 

With this method, similar to the case of policy evaluation, traces fade away gradually 

(by the trace-decay factor À) when the state-action pair is not visited and are incre­

mented otherwise. In practice, in the control setting, it was noticed that there can 

potentially be a problem with the accumulating trace method. Consider a situation in 
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Path taken 
Action values increased 

by one-step Sarsa 
Action values increased 
by Sarsa(À) with 1.=0.9 
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FIGURE 2.1. Effect of using the eligibility traces. One-step Sarsa corre­
sponds to the Sarsa(O) algorithm. In this task, there is one goal state, 
marked by an asterisk. The rewards are zero everywhere except in the goal 
state. This picture is taken from [Sutton and Barto, 1998], Figure 7.11, page 
181. 

t 
+ ... 

which, for a given state, a good action was taken more recently but a bad action was 

taken more frequently before. In this case, the trace for the bad action is larger than 

the trace for the good action. When a high reward is finally received, it is thanks to 

the good action. However, the value of the bad action will go up more than the value 

of the good action, due to the eligibility traces. Learning can thus be significantly 

slower. The replace trace method was introduced to remedy this problem. With this 

method, the traces are updated as follows: 

1 

o 
for s = St, a = at 

S = St and \la #- at 

,Vyet(S, a) SES, S #- St and \la 

(2.27) 

With this method, the trace of the action that was taken is reset to one, and the 

traces of the actions that were not taken in the visited state are cleared (replaced by 

zero). 

The theoretical convergence properties of the tabular Sarsa( À) algorithm for À > 1 

are still poorly understood (see [Gordon, 2000J for sorne related results). However, 

this method is widely used in practice and using values of À > 0 is known to provide 

a significant speedup during learning. 
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A very popular representative of the off-policy approach is the Q-Ieaming algo­

rithm, introduced in [Watkins, 1989]. This algorithm performs the following updates 

to the action-value function on every time step: 

(2.28) 

Note that this algorithm can be viewed as a variant of the Value Iteration algorithm, 

presented in Equation (2.14), where updates to the value function are performed 

based on transition samples instead of the MDP model. 

This Q-Iearning algorithm estimates the optimal action-value function Q*, re­

gardless of what behavior policy is followed, since the action value estimate in the 

update is selected according to the greedy policy from each successor state (max­

imization at St+l). If aH state-action pairs continue to be updated infinitely often 

and the step-size parameter satisfies the stochastic approximation conditions (2.16), 

the algorithm converges in the limit to the optimal action-value function Q* with 

probability 1. The first to prove this fact was Watkins (1989) based on n-step and 

À returns for discounted continuing tasks using the contraction property argument. 

More convergence results for the Q-learning algorithm can be found in [Jaakkola et 

al., 1994] and [Tsitsiklis, 1994]. 

Two variants of the Q-Iearning algorithm using eligibility traces were proposed 

in [Watkins, 1989] and [Peng and Williams, 1996]. Special care must be taken when 

introducing eligibility traces into Q-Iearning, since it is an off-policy method. In this 

case, when an off-policy action is taken, the current TD error should not be used to 

update the values of the on-policy actions taken on previous steps. The algorithm of 

Watkins (1989) clears all the traces when an off-policy action is taken. Peng's Q(À) 

algorithm is actually a mixture of on-policy and off-policy updates (see [Peng and 

Williams, 1996] for details). The convergence of these algorithms has not yet been 

established. 
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2.2.4. Summary of Reinforcement Learning Algorithms 

We will briefly summarize the main dimensions along which the methods were 

distinguished in this section. The first distinction is between model-based and direct 

methods. Model-based methods rel y on the avail ab ilit y of an explicit system model 

(either given or estimated from experience) and are represented by the dynamic pro­

gramming algorithms. Direct methods learn optimal behavior on-line, from the inter­

action of the agent with the environment without explicitly building a model of the 

system's dynamics. Monte Carlo and TD methods belong to this class. With these 

methods, it is extremely important to have good exploration strategies that provide 

a rich experience for the agent to learn from, but at the same time allow it to reap 

the benefits of the currently available knowledge (exploration-exploitation trade-off). 

The exploration issue is also important for asynchronous dynamic programming al­

gorithms that determine which states (or state-action pairs) to update based on the 

agent's experience. 

Another important distinction is between bootstrapping methods (e.g., dynamic 

programming and temporal difference) and non-bootstrapping (Monte Carlo). Monte 

Carlo methods can suffer from high variance in the return samples when the envi­

ronment is stochastic and the episodes are long. TD methods reduce this variance 

by truncating the returns based on the bootstrapping mechanism. However, the lat­

ter can introduce bias into sampled value estimates. A formaI theoretical analysis 

[Kearns and Singh, 2000] of the bias-variance trade-off of the TD(>\) method con­

firmed that in the tabular case, larger values of À lead to faster convergence but to 

higher asymptotic error. 

Finally, reinforcement learning includes on-policy and off-policy algorithms: on­

policy methods require the behavior and estimation policies to be the same, while 

off-policy methods allow them ta be diffcrent. 
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2.3. Function Approximation 

The methods discussed so far were designed and analyzed for the case, in which 

value functions are represented as tables, with a separate entry holding the value 

of each state or state-action pair. Such a representation is impractical for large 

problems. First, the memory requirements cannot always be satisfied. In addition, it 

is practically impossible to explore exhaustively very large (continuous) state spaces. 

The application of reinforcement learning algorithms to large problems requires using 

generalization techniques to approximately represent either value functions or policies. 

The idea of using function approximation in reinforcement learning can be traced 

back to the 1950s. Farley and Clark (1955) represented policies using linear threshold 

functions and adjusted their parameters by reinforcement learning. Samuel (1959, 

1967) was the first to use function approximation methods to learn value functions 

for his famous reinforcement learning application to the game of checkers. At about 

the same time, Bellman and Dreyfus (1959) proposed using function approximation 

methods with dynamic programming. 

Today, reinforcement learning with function approximation is an are a of very 

active research. Later in this chapter, we will discuss some of the mainstream ap­

proaches in this domain. Chapter 5 of this thesis is devoted to an application of a 

particular function approximation model, the Sparse Distributed Memory, to on-line 

value-based reinforcement learning. In that chapter, we will provide more discussion 

of approximate reinforcement learning methods. 

Here we will give a brief overview of the classical function approximation problem, 

as addressed in supervised learning. In the next section, we discuss the use of function 

approximation with reinforcement learning. 

2.3.1. Function Approximation Problem 

Function approximation has been addressed in many disciplines in the pasto We 

will focus on methods for function approximation in the context of predictive learning 
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[Friedman, 1994]. In this context, knowledge about the system is given by sorne num­

ber of measurable quantities, called variables. The goal is to develop a computational 

relationship between the input and output variables based on a training set of known 

input-output samples. Once such a mapping is inferred from the training data, it 

can be used for predicting the output values of previously unseen data given only the 

values of the input variables. The inputs and outputs can be continuous and/or cate­

gorical variables. When the outputs are continuous variables, the problem is known as 

regression or function approximation; when the outputs are categorical, the problem 

is known as classification. Here we will consider only the regression problem with a 

single output, i.e., we seek to approximate a function f of n input variables, denoted 

by vector x = (Xl, ... , X n ), from a given set of L training samples (Xi, Yi), (i = 1, ... , L), 

where Yi = f(xi). The distribution of the training data Xi can be arbitrary and is 

usually unknown. 

The problem of function approximation is easy to formulate but difficult to solve. 

The main source of difficulty is the finite size of the training set in all practical 

applications. In the case of a training set of size L, the goal is to find an approximation 

that minimizes sorne error function on the training set, with the hope that it will be a 

good predictor for unseen examples too. One possibility is to find an approximation 

function J that minimizes the Mean Squared Error (MSE): 

L 

MSE = L P(xi) [Yi - J(Xi)]2 (2.29) 
i=l 

where P(xi ) is the probability of sample Xi. 

The solution to the minimization problem is not unique. There are, in fact, an 

infinite number of functions that can interpolate L data points yielding the minimum 

value for the MSE. Thus, one must restrict the search to sorne set of eligible solutions. 

This restriction is imposed by a designer, o[ten based on consideratiolls outsicle the 

training data. 

The distribution of inputs P in (2.29) weighs the error for different training 

samples. This is very important, because usually it is not possible to reduce the 
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error to zero for aIl training samples due to the limited expressive power of the 

approximation architecture. A better approximation at sorne points can be obtained 

only at the expense of a worse approximation at other points. The distribution P 

specifies how this trade-off should be made. Usually, Pis the distribution from which 

the training samples are drawn. 

Function approximation has two degrees of freedom: the choice of an approxima­

tion architecture and the choice of a training (learning) method. These choices are 

often (but not always) coupled, since sorne learning methods are either specificaIly 

designed or are guaranteed to work properly only with certain architectures. We will 

now briefly review sorne of the popular architectures and learning methods. This 

overview is not meant to be exhaustive or to provide a lot of details; we will focus 

mainly on methods related to the research developed in this thesis. 

2.3.2. Approximation Architectures 

Many of the existing approximation approaches belong to the class of dictionary 

methods [Cherkassky and Mulier, 1996]. These methods restrict their solution space 

to a particular class of parameterized functions: 

M 

!w,q(x) = L wmqr(x, qm) (2.30) 
m=l 

The functions cjJm are often referred to as basis functions. A particular set of basis 

functions constitutes a dictionary. These methods can be further subdivided into 

non-adaptive and adaptive methods. Non-adaptive methods use fixed basis functions 

cjJm (with the parameters qm preset before any learning takes place) and estimate only 

the coefficients W m of the linear combination of the basis functions. Adaptive methods 

also fit the parameters of the basis functions qm to the training data. Non-adaptive 

and adaptive methods are also referred to as linear and non-linear architectures re­

spectively, although in general, non-linear methods also include architectures that 

combine fixed basis functions in a non-linear manner. 
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Approximation methods can be further classified as global and local. Global 

methods use basis functions defined (or with nonzero values) on the entire domain of 

the input variables (or a large portion of it). Local methods use locally defined basis 

functions. Artificial neural networks [Haykin, 1994] are an example of global non­

linear methods. Radial Basis Function Networks are an example of local methods. 

(See more details below). A mixture of local and global architectures is also possible 

[Bertsekas and Tsitsiklis, 1996], in which case local approximations can be used to 

enhance the quality of approximation in parts of the space where the target function 

has special characteristics. 

We will now briefiy describe several examples of function approximation archi­

tectures related to this thesis. 

CMACs Approximators 

The CMAC architecture [Albus, 1981] is a linear local function approximator, 

quite popul~r in the reinforcement learning community (see e.g., [Santamaria et al., 

1998; Sutton and Barto, 1998; Tham, 1995]). The architecture consists of a number 

of superimposed tilings, which are discretization grids (see Figure 2.2). Each tiling 

is displaced by a small (usually random) amount with respect to all others. Each 

tiling consists of tiles, which are the grid cells. Each input activates one tile in each 

tiling. Each tile is considered to be a binary feature of the input and corresponds to 

one basis function in the dictionary methods representation (2.30). Thus, when the 

input activates certain tiles, it is mapped to a set of corresponding active features. 

This model is sometimes called tile coding architecture in the literature for obvious 

reasons. Each tile has an associated parameter (weight). The approximate function 

represented by this architecture is computed as follows: 

Tilings Tilesi 

fw(x) = L L Wijtij(X) (2.31) 
i=l j=l 

where Wij are the parameters associated with each tile and tij (x) = 1 if the input x 

activates tile j in tiling i and 0 otherwise. Since the tilings are shifted with respect to 
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FIGURE 2.2. CM AC architecture for a two-dimensional space. This pi ct ure 
is taken from [Sutton and Barto, 1998], Figure 8.5, page 206. 

each other, two inputs that activate the same tile in one tiling can activate different 

tiles in another tiling. Thus, the values of such inputs will be different. The number of 

tiles per tiling and the number of tilings determine the resolution of the architecture. 

In general, the tiles do not have to be hyper-rectangular; they can be, for ex­

ample, diagonal stripes, or even have irregular shapes. However, in such cases, an 

efficient mechanism for identifying active tiles has to be designed. In most practical 

applications, regular discretization grids are used to form tilings. In this case, the 

size of the CMAC architecture scales exponentially with the dimensionality of the 

input space. This factor can be limiting for the applicability of the model to highly 

dimensional problems. One implementation that is sometimes used to remedy this 

problem is based on hashing [Sutton and Barto, 1998], where multiple tiles are col­

lapsed into one in a consistent pseudo-random manner. In this case, the model is no 

longer local, since tiles corresponding to distant regions of the input space correspond 

to one feature. 

Radial Basis Function Networks 

Radial Basis Function Networks (RBFNs) (see e.g., [Haykin, 1994; Sutton and 

Barto, 1998; Blanzieri, 2003]) can be seen as a generalization of tile coding to a model 
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Gaussian Radial Basis Functions 

FIGURE 2.3. Radial Basis Functions in one-dimensional input space. 

that consists of continuous features instead of binary ones5
. A Radial Basis Function 

epm is a smooth differentiable function that is associated with sorne center cm (a point 

in the input space) and an activation width (J'm. Probably the most popular type of 

RBFs is Gaussian (bell-shaped): 

(2.32) 

where Il . Il is sorne distance metric (most often, the (weighted) Euclidean distance). 

The shape of the function is such that it gradually diminishes to zero as the input 

gets farther away from its center, cm, depending on the value of the RBF's width, 

(J'm. The cent ers and widths of different RBFs in the network are chosen such that 

sorne of them overlap (see Figure 2.3). Thus, input x typically activates several basis 

functions, similar to the case of the CMAC model. However, the activation is not 

binary, but continuous in the interval [0,1]. 

Each RBF has a parameter wm associated with it, which is sometimes referred 

to as its height. The approximate function is then represented as follows: 

M 

!W,C,C7 = L Wmepm(X, cm, (J'm) 
m=l 

(2.33) 

5Some implementations of the CMAC architecture are available for non-binary tile activation func­
tions. See, for example, http://www.ece.unh.edu/robots/cmac.htm). 
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FIGURE 2.4. Radial Basis Functions Networks. Top row: standard RBFNs; 
bottom row: normalized RBFNs. Weight vectors w are the same in aH four 
graphs. 

Two examples of functions represented by a network of three RBFs are shown in the 

top row of Figure 2.4. One can see that the smoothness of the approximated function 

decreases as the overlap between the RBFs decreases. 

The RBFN model is local due to the nature of its radial basis functions. When the 

centers and widths of the radial basis functions are tuned during learning to minimize 

the objective error function, the model is non-linear, otherwise, it is linear. 

A variation on the above RBFN model is the Normalized RBFNs (NRBFNs), in 

which the approximate function is represented as follows: 

~ q;m(x, cm, O'm) 
!w,c,(J = ~ Wm",M "'-k( k ) 

m=l L.Jk=l'f' X, C ,O'k 

(2.34) 

U sing normalization increases the smoothness in the regiOllti of the illput tipace 

where the basis functions overlap only a little (see Figure 2.4, bottom row). Note that 

it also affects the way in which the network extrapolates. In RBFNs, the activations 

of RBFs drop off rapidly towards zero for data points that are far from the cent ers of 
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FIGURE 2.5. Sigmoid function in one-dimensional input space. For each 
sigmoid function, ql = 1. 

the RBFs. Thus, RBFNs are not inclined to extrapolate. However, in an NRBFN, 

one RBF can dominate the output and hence, extrapolate more significantly. 

Sigmoid Neural Networks 

A one-layer feed-forward sigmoid neural network (see e.g., [Haykin, 1994]) has the 

same overall structure as the dictionary models in (2.30). Each basis (or activation) 

function cpm has a set of associated parameters qi, ... , q:;, where n is the dimensionality 

of the input space, and q~, which is often referred to as a threshold. The standard 

sigmoid function is defined as follows: 

qr(x, qm) = cpm(y) = l+ex~(-y) ,where 

This function has the following properties (see Figure 2.5): 

qr(y)y~--::.oo 0 

rjJm(y ) y =;00 1 

qr(O) = ~ 

(2.35) 

(2.36) 

A sigmoid basis function is global, i.e., it has values significantly larger than zero on 

a potentially unbounded region of the input space. The parameters qm of the sig-
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Input units Layers of hidden units 

FIGURE 2.6. Feed-forward neural network architecture. 

moid functions are typicaUy tuned during learning by a gradient des cent method (see 

Section 2.3.3). Sigmoid neural networks are non-linear, however, when the elements 

of qm are close to zero, the network is close to linear. 

There are architectures of sigmoid neural networks which consist of multiple layers 

of such sigmoid units (see Figure 2.6), which are often caUed hidden layers or layers 

of hidden units. In this case, the units are not combined with each other in a linear 

manner, as in dictionary methods. Every unit in a layer is connected with aU the 

units in the previous layer. These connections are not an equal, each connection may 

have a different strength or weight. Data enters at the input layer and passes through 

the network, layer by layer, until it arrives at the output(s). 

Classification and Regression Trees 

Classification and regression tree (CART) [Breiman et al., 1984] is a model that 

amounts to partitioning the input space into variable size rectangular regions. Classi­

fication trees are used for target functions with a finite discrete set of possible values 

(e.g., binary), while regression trees are used for continuous target functions. Each 

internaI node of the tree is associated with a test that splits the range of sorne input 

variable in two. For example, a real valued variable Xl can be compared to sorne real 

value WI (see Figure 2.7). 
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FIGURE 2.7. Classification tree in a two-dimensional input space. 

In the case of classification trees, the leaves of the tree contain the classification 

labels; in the case of regression trees, the leaves contain real constant values (in the 

simplest case). In order to find a predicted value for sorne input x = (Xl, ... ,xn ), 

the tree is traversed from the root down to the leaves. At each internaI node, the 

associated test is performed for the corresponding input variable and depending on 

the outcome of the test, either the left or right edge is taken to a lower level node. 

When a leaf node is reached, the predicted value is obtained as a classification label or 

a constant value associated with this leaf. Such a model provides a local architecture. 

For regression trees, the leaves may contain a linear function instead of a constant. 

In this case, the function at the leaf node reached for a specific input is evaluated 

for the input variables' values, in order to determine the predicted value. This allows 

to have multiple approximators, each associated with a different local region. The 

resulting approximate function is then either piecewise constant or piecewise linear. 

Manifold Representations 

Manifold representations [Boothby, 1986; Grimm and Hughes, 1995J are another 

example of local models. In mathematics, a manifold is a topological space that looks 

locally like the" ordinary" Euclidean space ~n and is a Hausdorff spacé. An example 

6 X is a Hausdorff space, or separated space, iff, given any distinct points x and y, there exists a 
neighborhood Ux of x and a neighborhood Uy of y that are disjoint. 

39 



2.3 FUNCTION APPROXIMATION 

is the surface of a sphere, which globally is not a plane, however its small patches 

are topologically equivalent to patches of the Euclidean plane. To make precise the 

notion of" looks locally like" , a manifold representation uses local coordinate systems 

or charts. An atlas of the manifold describes how a complicated space is patched 

together from simpler pieces (charts) that partially overlap at the edges. This is 

exactly analogous to the common meaning of atlas, where each individual map in 

an atlas of the world gives a neighborhood of each point on the globe. While each 

individual map does not exactly line up with other maps that it overlaps with (because 

of the Earth's curvature), the overlap of two maps can still be compared (by using 

latitude and longitude lines, for example). 

It is possible to embed a function F : M ------ ~ on a manifold M. Assume that we 

have D charts 'ljJd : Ud ______ Rn on a manifold M, where Ud is a subset of M. For each 

chart 'ljJd, we define two functions: fd : M ______ ~ and bd : M ------ [0,1]. Every bd is a 

blend function, which is smooth with derivatives equal 0 at the boundary of Ud . The 

functions fd are sorne (parametric) approximation functions defined on Ud. Then the 

approximate function is defined as follows: 

(2.37) 

2.3.3. Training Methods for Function Approximation 

Gradient Methods 

Training methods for function approximation are the algorithms used to find an 

appropriate setting of the model parameters, W m and possibly qm. Let us denote by 

a vector w = (Wl' ... , W K) all the parameters that have to be tuned. One can design 

a training method by defining a path through the multi-dimensional parameter space 

of the approximation architecture, and picking the parameter setting along the path 

that minimizes sorne cost function 9 : RK ------ R, e.g., MSE as in Equation (2.29). 

Many algorithms specify the path using a des cent direction: w(t + 1) = w(t) + Œtd(t) 

where t = 0, l, ... are the iteration indexes and Œt is a positive learning rate (also 
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often called a step size). The vector w(O) corresponds to an initial guess and d(t) 

is a direction of the parameter update, such that Vwg(w(t))'d(t) < O. I.e., d(t) is 

close to the direction of the negative gradient of the error function with respect to 

the model parameters. One of the most widely used algorithms is the steepest descent 

method (see e.g., [Bertsekas and Tsitsiklis, 1996]), which defines the descent direction 

as d(t) = -Vwg(w(t)). When the steepest descent is performed on the MSE func­

tion, the approach is known as Least Mean Squares training and is due to [Widrow 

and Hoff, 1960]. Other gradient methods use second order derivatives to define d(t), 

which significantly improves the convergence rate. Among such methods are New­

ton's method, Quasi-Newton method and Gauss-Newton method (see e.g.,[Haykin, 

1994]). In general, these algorithms are more complex and have very time-consuming 

computations on each iteration. For that reason, they are rarely used in practice, de­

spite the advantage of increased convergence speed (in terms of the required number 

of iterations). 

The step size Œt can be either constant or diminishing to zero over time. A 

constant step size yields a simple algorithm, but it is not easy to select the right 

value for it. If the step size is too large, divergence can occur, and if the step size is 

too small, the rate of convergence may be very slow. For sorne versions of the gradient 

descent algorithm, in order to guarantee convergence, it is necessary to ensure that 

the stochastic approximation conditions (2.16) are satisfied. The diminishing step 

size rule has good theoretical convergence properties, but the associated convergence 

rates tend to be slow. It is used primarily in situations in which convergence with a 

constant step size cannot be achieved. 

The steepest des cent method, which minimizes the cost function 

L 

MSEw = L[Yi - !w(Xi)]2 (2.38) 
'i=l 
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and pro cesses all available data samples before updating the parameter vector, lS 

called a batch method. Its update equation is the following: 

L 

w(t + 1) = w(t) - Œt L[Yi - !w(Xi)]"Vw!w(Xi) (2.39) 
i=l 

Note that the cost function in Equation (2.38) does not contain explicit weighting 

with probabilities P(xi ) as in Equation (2.29), because they are typically unknown. 

However, training samples are assumed to be drawn independently from the distri­

bution P(x). 

When the training set is large, each iteration takes a long time, and progress is 

delayed. In this case, one can use an incremental gradient des cent method that cycles 

through the data and updates the estimates of the parameters w after each datum is 

processed (one data point per iteration): 

w(t + 1) = w(t) + Œt[y(t) - !w(x(t))]"Vw!w(x(t)) (2.40) 

Here the error is determined by the training sample (x(t), y(t)) processed at time t. 

A cycle of the incremental gradient method through the entire data set difiers 

from the pure steepest des cent iteration only in that the gradient is evaluated at 

the corresponding current estimates of the parameters rather than at the estimates 

available at the start of the cycle. For very large data sets, the incremental method 

may converge faster than the batch version. The choice of the step-size Œt plays an 

important role in the performance of the incremental gradient method. In theory, a 

diminishing step-size that satisfies conditions (2.16) is essential for convergence to a 

stationary point of the cost function. The incremental gradient method is particu­

larly suitable for reinforcement learning, because it can be applied on-line, processing 

training samples one at a time as they become available during the interaction of the 

agent with the environment. 
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Memory-Based Learning 

Another approach to learning an unknown function is a class of learning methods 

known as memory-based learning or instance-based learning [Atkeson et al., 1997a]. 

They are also often referred to as lazy learning. These methods store all training 

data samples without processing them in any way. Then, when a query is made, the 

estimated value is determined by combining the stored data points close to the query 

in sorne way. This is why the approach is called lazy learning: no learning takes 

place until a prediction has to be made. Lazy learning is often used in combination 

with local approximation architectures and uses locally weighted training to average, 

interpolate between or otherwise combine the training data. Weighting the data can 

be viewed as replicating relevant instances and discarding irrelevant instances. Rele­

vance is measured by calculating the distance between the query point and each data 

point stored in memory. The structure of the function approximator is automatically 

determined by the data instances that are stored in the memory. 

One of the most popular examples of instance-based methods is the k-nearest 

neighbor. With this method, when a prediction has to be made for sorne query 

input point x, the distances from this point to all samples stored in the memory are 

calculated, Dm = Ilx - xmll, m = 1, ... , M (e.g., in terms of the Euclidean distance). 

Then k sample points from the memory are selected such that their distance to the 

query point is smallest 7 . The approximate value is then obtained as follows: 

k 

J(x) = L cjJi(Di)Yi (2.41) 
i=l 

where cjJi is a weighting kernel function (e.g., Gaussian) and Yi is a target value stored 

in the memory for the sample input Xi. 

This approach to function approximation is non-parame tric, since the approxi­

mate function does not depend on any tunable parameters and is directly determined 

only by the previously seen training samples. 

7More efficient implementations exist to quickly identify k nearest samples. 
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Locally weighted regression uses the same paradigm of lazy learning, but instead 

of computing the approximate value as in (2.41), it fits a local surface (e.g., quadratic) 

to the selected nearby points. These points are still weighted by some kernel function 

proportionally to their distance to the query point (see [Atkeson et al., 1997a] for an 

excellent introduction to this subject). 

2.4. Reinforcement Learning with Function Approximation 

In most cases, the incorporation of generalization techniques into reinforcement 

learning is achieved by applying the algorithms developed for the tabular case to 

approxirnate representations of the value functions. If the approximate value function 

V' is a good approximation of the optimal value function. V* then a greedy policy 

based on V' is close to optimal [Singh and Yee, 1994; Bertsekas and Tsitsiklis, 1996]. 

An alternative approach that has become popular in recent research is to search 

directly for a policy, without relying on an approximation of the value function (see, 

e.g., [Baxter and Bartlett, 1999; Bartlett and Baxter, 2000; Sutton et al., 2000]). In 

this case, a function approximator is needed to represent the policy. In this thesis, 

we do not consider this approach. 

The function approximation task in the context of reinforcement learning is quite 

different from the classical, supervised learning setting. In supervised learning, the 

training data contains values of the unknown target function at sorne sample points. 

Many learning techniques assume a static training set over which multiple passes are 

performed to find an appropriate setting of the parameters of the function approxi­

mation. In value-based reinforcement learning, the objective is to approximate value 

functions, either optimal or for a particular policy, for which the desired target val­

ues are not known in advance. Training examples are generated by a reinforcement 

learning method, which changes the estimates of the value functions as the learning 

progresses. Because of this, the target function appears to be non-stationary from the 

function approximator's point of view. AIso, the sampling strategy (behavior policy) 
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can change during learning if an on-policy near-greedy control algorithm is used. In 

this case, even the distribution of the training inputs in non-stationary. 

While studying the implications of combining function approximation with re­

inforcement learning algorithms, one has to consider a particular type of architec­

ture and an associated training algorithm. When approximation is introduced into 

value-based reinforcement learning methods, one should not expect convergence to 

the optimal solutions. It can simply be impossible to represent the corresponding 

value functions exactly with a given architecture. Theoretical questions can be asked 

mainly about convergence in general. Does the algorithm converge? If it does, what 

are the properties of the limit and how close is the resulting solution to the optimal 

one? If the algorithm does not converge, does it oscillate in sorne bounded region 

or does it diverge? We now give a brief overview of reinforcement learning methods 

combined with function approximation and of the related theoretical results. 

2.4.1. Reinforcement Learning with Least Mean Squares Training 

As previously mentioned, Least Mean Squares training aims at minimizing the 

Mean Squared Error criterion, as in (2.29). The minimization pro cess is performed 

by the steepest des cent algorithm, as described above. For example, in the case 

of a value-based reinforcement learning algorithm that estimates the action-value 

function, training samples have the form of ((St, at), Q(St, at)). The inputs (state­

action pairs) are sampled according to the agent's behavior policy. The target values 

Q(St, at) can be formed in various ways. For example, target values can be sample 

returns obtained by Monte Carlo methods. When such a method is used for the 

policy evaluation problem, it converges to a locally optimal set of parameters for the 

function approximation. 

Temporal difference methods can also form targets by using their bootstrapping 

mechanism. For example, in the case of the Sarsa(O) control algorithm, after observing 

a transition (St, at) ~ (s~, aD, the agent can provide the following target for the 

45 



2.4 REINFORCEMENT LEARNING WITH FUNCTION APPROXIMATION 

function approximation algorithm : 

(2.42) 

where Qw is the current approximation of the action-value function, which depends on 

sorne parameter vector w. In this case, the parameters of the function approximator 

will be updated in the following way: 

(2.43) 

LMS training is a standard technique in supervised learning. However, in the 

context of reinforcement learning, various difficulties can arise with the application 

of this approach to value-function approximation, as we explain next. 

The MSE function (2.29) is defined based on the distribution of training inputs, 

P(x), which serves as the means to balance approximation errors. Thus, inputs that 

are less Frequent in the training data can have greater errors, since their contribution 

to the overall error function is small based on their occurrence probabilities. When the 

parameters of an approximator are updated using the incremental gradient des cent 

method as in (2.40) the error at sorne input x is reduced. But it is possible that the 

parameter update, at the same time, increases the errors for sorne other inputs. In 

the case of supervised learning, when the distribution of the training samples is fixed, 

this fact does not hinder the convergence of gradient based algorithms. As learning 

progresses, the function approximator eventually reaches sorne local optimum at a 

parameter setting that balances the errors according to the underlying fixed sampling 

distribution P(x). 

With reinforcement learning, however, the fact that the error can increase for 

sorne states after a parameter update can be a problem due to the bootstrapping 

mechanism through which training target values are formed, e.g., as in Equation 

(2.42). The state-action pair (s~) a~) is sometimes referred to as a bootstrapped pair 

and its value Qw(s~, aD - as a bootstrapped value. If the error for the bootstrapped 

state-action pair (s~, a~) increased on previous steps, such an increased error can now 
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be incorporated back into the training data through the bootstrapped target. If 

the state-action pairs, which provide bootstrapped target value estimates, do not 

appear as training inputs themselves often enough throughout learning, the error is 

not sufficiently minimized for them, and the parameters of the function approximator 

may get tuned to minimize the error for unrelated state-action pairs instead. In this 

case, the errors will propagate through the function approximator, which can even 

result in divergence. If training data is drawn from an on-policy distribution (i.e., the 

distribution of the evaluated policy), such a phenomenon can be prevented. In this 

case, the state-action pairs that provide bootstrapped target values relevant to the 

evaluated policy are naturally updated with appropriate frequencies8
. 

Despite the challenges involved in using LMS training with reinforcement learn­

ing, as discussed ab ove , the current literature contains both theoretical analyses and 

empirical evidence of successful applications of the LMS training in certain contexts. 

We will give a brief overview of the related theoretical results next. 

Theoretical Results on LMS Training with Reinforcement Learning 

The TD(À) method for policy evaluation, combined with the LMS rule and based 

on a linear function approximator, has been proven to converge with probability one 

provided that the updates are made according to the on-policy distribution [Tsitsiklis 

and Van Roy, 1997]. The error bound (in the weighted maximum norm) of the 

resulting approximation of the value function is derived in terms of the error of the 

best possible approximation given the chosen architecture and depends on À. The 

most favorable bound is obtained for À = 1 and the bound deteriorates when À 

decreases. But empirically, for many problems, bootstrapping methods (i.e., À < 1) 

converge faster and sometimes lead to better policies when used in conjunction with 

the policy iteration algorithm [Sutton and Barto, 1998]. A similar (but more general) 

result was presented in [Tadic, 2001]. 

8This is true mainly for the case of the policy evaluation problem. In the case of the control 
problem, in which the policy can change during learning, it is necessary that these changes are not 
too drastic and frequent, so that the approximator has sufficient time to learn with the current 
sample distribution. 
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For the control problem, Optimistic Policy Iteration can be used with function 

approximation. The motivation and the idea of Optimistic Policy Iteration in this case 

are the same as in the tabular representation: perform a policy update early, before 

approximate policy evaluation converges. This method is widely used in practice, 

even though its convergence behavior is not fully understood. Intuitively, Optimistic 

Policy Iteration can have an additional advantage over the classical Policy Iteration 

method in the case of function approximation. In approximate Policy Iteration, the 

policy may become much worse after the policy update step. Since policy evaluation 

is performed "fully", the new value vector will be very far away from the optimal one 

at the end of the policy evaluation step. With Optimistic Policy Iteration, once a 

bad policy is adopted, the new value vector also moves away from the optimal one, 

but only gradually. There is hope that while this happens, a new, better policy will 

be adopted. With Optimistic Policy Iteration, the selection of a bad policy may be 

corrected much faster and the size of the oscillation in the approximate value function 

will usually be smaller. However, it is unclear if this self-correcting mechanism always 

works. 

As indicated in [Munos, 2003], in Policy Iteration, empirically, a rapid improve­

ment is observed during the first few iterations, but then oscillations tend to occur. 

After obtaining sorne policy that is relatively close to the optimal one, the errors in the 

value function approximation prevent significant improvements and then oscillatory 

behavior begins. 

In Optimistic Policy Iteration, the oscillations are more complex than in classical 

Policy Iteration. A phenomenon called chattering often occurs, in which oscillation 

in the policy space occurs simultaneously with convergence in the parameter space 

of the approximation architecture. The limit to which the parameters converge need 

not correspond to any policy for the problem. It may be a boundary point that 

separates policies in parameter space and cannot always be used to construct an 

approximation of the value function of any policy. Optimistic Policy Iteration may 
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have multiple stable and unstable equilibriums in the parameter space of the value 

function, depending on the initial setting of the parameter vector. 

The bounds on the loss resulting from using the policy greedy with respect to 

the approximated value function are presented in terms of the maximum norm in 

[Bertsekas and Tsitsiklis, 1996]. The work in [Munos, 2003] provides similar bounds 

in terms of value approximation errors according to a weighted quadratic norm, which 

is usually used by function approximation algorithms. Experiments suggest that error 

bounds are often comparable for Optimistic Policy Iteration and classical Policy Iter­

ation. However, convergence, as opposed to oscillation, happens rarely. Theoretical 

results are known only for the case of linear function approximation, as we outline 

below. 

The result in [Gordon, 2000] proves the non-divergence of the Sarsa(>.) algorithm 

with linear function approximation and LMS training for the case of finite state spaces. 

Sorne of the key requirements in this result are the on-policy distribution of the 

training samples and the fact that the policy does not change during the trajectories 

(episodes) but only between them. That is, during the entire episode, the agent uses 

a semi-greedy policy based on the approximation of the value function available at 

the beginning of the episode. It is only at the end of the episode that updates to the 

parameters of the function approximator are committed and the new approximation 

is used to obtain a new semi-greedy policy for the next episode. In this case, the 

policy, and thus the distribution of states in the training data, does not change too 

frequently, which allows approximation errors to be better balanced across different 

states. In essence, on every trajectory, the method behaves as on-policy TD(>') and 

the whole learning pro cess converges to sorne region in the parameter space of the 

value function. The pro of applies to finite MDPs only, as it relies on the fact that 

there are only a finite number of policies for a given MDP. 

This result does not provide much reassurance for practical applications, smce 

learning can either converge to a value function far from the optimal one or oscillate 

between different policies. Nevertheless, it is an important theoretical result, which 
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sheds light on the behavior of the Sarsa control algorithm and emphasizes important 

requirements for a guaranteed non-divergent behavior. In practical on-line appli­

cations, however, most often parameter updates are committed after each observed 

transition and thus the policy can change on every time step. 

A related result was obtained in [de Farias and Van Roy, 2000], where it was 

shown that the update operator corresponding to the Sarsa(O) algorithm with linear 

function approximation has at least one fixed point wh en using on-policy exploration 

based on Boltzman distribution. However, the question of convergence to these fixed 

points still remains open. 

In [Perkins and Precup, 2002], a model-free variant of approximate Policy It­

eration, which uses Sarsa updates with linear action-value function approximation 

for policy evaluation steps, was shown to converge to a unique solution. This result 

pointed out that divergence in approximate reinforcement learning algorithms for 

control can be caused by the use of f-greedy behavior policies in the policy improve­

ment step. The f-greedy strategy can make the agent's behavior discontinuous in the 

value estimates: small changes in the value estimates may result in large changes in 

the agent's behavior. This can dramatically change the distribution of state-action 

pairs experienced under subsequent policies and, as explained before, can cause value 

estimates to be learned under dramatically different weightings of errors on subse­

quent policy evaluation steps. This makes it difficult to ensure an actual improvement 

on policy improvement steps. A solution to this problem, suggested in [Perkins and 

Precup, 2002], was to make the agent's semi-greedy behavior policy be a continuous 

function of state-action values, e.g., based on the Boltzman distribution. This allows 

only small changes in the agent's behavior if there are only small changes in the value 

function. Then, if the behavior policy is Lipschitz continuous9 in the action values 

with a constant that is not too large, then the sequence of policies is guaranteed to 

converge. A suit able magnitude of the Lipschitz constant depends on the environment 

and on properties of the linear function approximator. However, if the MDP model 

9 A function f : ~ _____ ~ is Lipschitz if there exists a constant c E ~ such that for aU x, y E ~, 
lJ(x) - f(y)1 ::::; clx - yi· 
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is not known, then an appropriate choice of the policy representation is not obvious. 

If the choice is made on the safe side, by taking a very small constant, th en the agent 

may have a limited ability to exploit its current knowledge, i.e., take greedy actions 

often enough. In anecdotal evidence, exploration approaches based on the Boltzman 

distribution often exhibit slower learning and converge to worse policies, compared 

to t-greedy exploration, when the latter provides stable behavior. 

For reinforcement learning methods with off-policy LMS training, examples of 

divergence exist in the current literature even for linear function approximators, 

for instance, the divergence of the off-policy TD(..\) [Tsitsiklis and Van Roy, 1996; 

1997J and of the Q-Iearning algorithm [Baird, 1995; Thrun and Schwartz, 1993J with 

a fixed stochastic exploration policy. Importance sampling can be used to weight 

the parameter updates by the relative probabilities of the observed training sam­

pIes un der the behavior policy and the evaluated policy. A convergence result for 

policy evaluation with TD(..\) and importance sampling was presented in [Precup et 

al., 2001J for episodic tasks and linear function approximators. Q-Iearning has never 

been reported to diverge in practice with linear architectures when a soft near-greedy 

behavior policy is used, but no theoretical analysis exists for this case. 

Different attempts were made in the past to deal with the difficulties presented by 

standard LMS training in the reinforcement learning context. In the following section, 

we discuss sorne alternative training methods from the current literature, which have 

better theoretical guarantees for the control problem. Most of them require linear 

approximators. More discussion on this subject will also be provided in Chapter 5. 

2.4.2. Alternatives to the Least Mean Squares in Reinforcement Learning 

Residual Gradient Algorithms 

The LMS method for value function approximation, as described before, treats 

each target value, e.g., [r + "(Qw(S', a')], as a scalar and ignores the fact that, in 

reinforcement learning, this target depends on the current approximation of the value 

function. The LMS updates simply attempt to make the value of each state-action 
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pair (s, a) to match the values of its successors, without taking into account the 

effect that such updates can have on the corresponding matches for values of their 

successors and predecessors. Residual gradient algorithms in [Baird, 1995] address 

this issue directly. These methods explicitly optimize the Mean Squared Bellman 

Error (MSBE) that can be derived from the Bellman equations corresponding to 

either the policy evaluation, as in (2.9), or the control problem, as in (2.11). For 

example, in the case of the control problem, the MSBE measure is as follows: 

MSBEw = ~ L [r+')'m~xQw(s',b) -Qw(s,a)f 

sample (s, a) 

(2.44) 

In this case, incremental updates of the parameters Wi of a parametric function ap­

proximator would be performed in the direction of the negative gradient of the MSBE 

function as follows: 

w(t + 1) := w(t) - at [r + ')'maxb Qw(S'l' b) - Qw(St, at)] 

[')'Y'w maxbQw(S;, b) - Y'wQw(st,at)] 
(2.45) 

Here, we take the gradient with respect to the parameters w of the target estimate 

[r + ')'maxb Qw(S'l' b)] as weIl as at the current prediction of the state-action value 

Qw(St, at). Note that here, two independent samples of the next state, S'l and s;, 

have to be used to ensure an unbiased estimate of the product of two random factors. 

Generating two independent samples of the next state requires either a model of the 

MDP or storing a set of state-successor pairs (s, s'), observed during learning, and 

sampling from this set. 

The algorithm described ab ove , with the update rule (2.45), is the residual gra­

dient variant of Q-Iearning. Residual gradient variants were also proposed in [Baird, 

1995] for other methods, including TD(O) and Value Iteration. Each of these resid­

ual gradient algorithms is guaranteed to converge to a local minimum of the Mean 

Squared Bellman Error. However, terms like [')'Y' w mF Qw(s;, b) - Y' wQw(St, at)] 

in Equation (2.45) can be very small, especially with ')' values close to 1, in which 

case learning can be very slow. In [Baird, 1995], another approach was proposed 
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which combines a residual gradient update and the "traditional" LMS update, so 

that convergence properties are preserved and sorne speedup is achieved. 

Grow Support and Related Methods 

Another way to prevent propagating approximation errors through the bootstrap­

ping LMS updates was proposed in [Boyan and Moore, 1995] and [Boyan and Moore, 

1996]. The two algorithms, known as Grow Support and ROUT respectively, pro­

vide a safe (converging) approach to value-function approximation in reinforcement 

learning. However, they are intended for episodic tasks only and for off-line training 

scenarios, where a model of the MDP is available or when transitions from any state 

can be generated at will by a simulator. These algorithms alternate between the 

following two phases. 

During the exploration phase, trajectories are generated in an attempt to find 

fragments of the optimal policy. The algorithm constructs a set of states, called 

a Support Set, El, for which the approximate optimal values Vw(s) are known with 

high accuracy. This pro cess starts from terminal states and then the Support Set is 

extended "backwards" to other states. In other words, a new state scan only be 

added to the Support Set El if its optimal value can be reliably estimated from an 

accurate approximation of the optimal values of its successor states. 

During the function approximation phase, a function approximator is trained 

using the LMS rule in batch mode on the training samples represented by the Support 

Set, (s, Vw(s)), s E El. Then the Support Set is augmented again in an Iterative 

manner. 

The BFBP algorithm in [Wang and Dietterich, 2001] is a modification to the 

GrowSupport and ROUT methods. It is a provably convergent algorithm, intended 

for deterministic MDPs only and is to be applied in an off-line manner. It modifies the 

Grow Support and ROUT algorithms by applying a different exploration pro cess to 

search for new states to be included into the Support Set and by including additional 

error terms into the the overall objective function for value function approximation. 
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Another approach, which has the same flavor as the Grow Support algorithm, was 

proposed in [Atkeson and Morimoto, 2002]. It builds a non-parametric representation 

of the value function based on points in the state-action space that lie close to the 

optimal trajectories (which is conceptually similar to the Support Set). The Grow 

Support method is conservative, as it only allows points to be included in the training 

set when an accurate estimation of the optimal value function is available for them. 

The method in [Atkeson and Morimoto, 2002] starts with points lying on sorne initially 

chosen trajectories, then several techniques are applied to improve these trajectories 

(make them closer to optimal). When improved trajectories are found, old ones are 

discarded. In other words, the old non-parametric value function representation is 

abandoned, and a new improved one is adopted. Unlike the Grow Support and BFBP 

algorithms, this approach is applicable to continuing stochastic tasks. Like BFBP, it 

is appropriate mostly for off-line learning with access to either an MDP model or a 

generative simulator model. 

TD and Q-Iearning with Soft State Aggregation 

Convergence of TD(O) and Q-learning was proven for value-function approxima­

tion based on soft state aggregation [Singh et al., 1995]. In this case, the state space is 

divided into a number of soft clusters so that each state s belongs to a cluster x with 

sorne probability P(xls). The value function is defined only at the level of clusters 

and the value of each cluster generalizes to all states in proportion to the probabilities 

P(xls). Convergence was shown for the case, in which TD(O) or Q-learning are used 

to update the values of the clusters. The error bound on the resulting value function 

depends on the particular clustering of the state space. Good clustering is thus es­

sential for achieving good performance with this method. The fact that the clusters 

are soft allows one to define a parameterization of the cluster probabilities and po­

tentially learn a good clustering using gradient descent. Despite its good theoretical 

properties, this algorithm is not widely used in practice. 
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LSTD-based methods 

Approximate TD learning performs updates of the approximator's weights iter­

atively, proportionally to sorne learning step. An alternative approach, the Least 

Squares TD (LSTD) method, was introduced in [Bradtke and Barto, 1996] and ex­

tended for use with eligibility traces in [Boyan, 1999]. This method eliminates the use 

of a step size and instead accumulates the information contained in the training sam­

pIes in a matrix and a vector, which can be viewed as an approximation model. Then 

an appropriate setting of the approximator's parameters is computed as a solution 

of a system of linear equations by matrix inversion. Thus, no divergence is possi­

ble in this case, no matter what the distribution of the training samples is lO
. The 

LSTD method has also been used in the policy evaluation step of Policy Iteration in 

[Lagoudakis and Parr, 2003b]. More discussion of this method will be provided in 

Chapter 5. 

Approximate Value iteration 

The Value Iteration method generally assumes the availability of a model of the 

MDP, as given by (2.5)-(2.6). If such a model is available or can be learned, the Value 

Iteration algorithm can be applied in combination with value-function approximation. 

In this case, a subset of prototype states S = {SI, ... , SM} is chosen, and their values 

are arbitrarily initialized to sorne values Vo(sm), m = 1, ... , M. On every iteration 

t, a training set, consisting of samples (sm, Vt(sm)), m = 1, ... , M, is presented to a 

function approximator, which learns by an appropriate training method to generalize 

the values of the states in S to the entire state space. Then, one iteration of the Value 

Iteration method is performed synchronously for the states in S only, and the next 

estimate of the value function, Vt+l' is obtained as follows: 

vt+l(Sm) ;= m;x L P;~,s' [R~7n,s' + rvt(s')] ,nt = 1, ... , M (2.46) 
s' 

lOSpecial care has to be taken to ensure that the formed matrix is not singular. 
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Note that the successor states s' may be outside of the set S of prototype states, in 

which case the current approximation is used to estimate their values vt (s'). This 

method is practical only if the set of possible successors is reasonably smaIl so that 

the summation in Equation (2.46) can be efficiently computed. 

In the tabular case, the convergence of the Value Iteration algorithm can be 

established based on the contraction property of its update operator. However, not 

aIl function approximation architectures preserve this property when the method is 

used as described before. Convergence of the approximate Value Iteration and the 

corresponding error bounds in the weighted maximum norm were established for 

function approximators known as averagers in [Gordon, 1995] and for linear function 

approximators satisfying certain conditions in [Tsitsiklis and Van Roy, 1996]. We 

will discuss these methods in detail in Chapter 5. Recently, error bounds for the 

approximate Value Iteration algorithm, applied to a restricted class of MDPs, were 

analyzed in [Munos, 2004] in terms of weighted LI and L 2 norms ll , which are usually 

used by function approximation training methods. 

Q-learning with Averager Updates 

Q-Iearning can be combined with interpolative function approximators while us­

ing an update mechanism slightly different from LMS training [Szepesvàri, 2001; 

Reynolds, 2002; Szepesvari and Smart, 2004], in which case, a convergent algorithm 

can be obtained. We discuss this approach in detail in Chapter 5. 

Direct Policy Learning 

So far we have discussed methods that approximate the optimal value function 

and define the optimal policy as a greedy policy with respect to this approxima­

tion. An alternative is to learn an approximate parameterized representation of a 

stochastic policy by using the gradient of the expected return with respect to the 

policy parameters. This method is, in fact, much easier to analyze theoreticaIly, sin ce 

llLet V : S --4 1R, where S is a finite state space such that ISI = n. Let p,(s) be a distribution on S. , 
Then, IIVIIL, = LSES p,(s)lV(s)1 and 1IVIIL2 = (LSES p,(s)IV(s)1 2

) 2. The result in [Munos, 2004] 
extends to infinite state spaces as weil. 
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small incremental changes of the policy architecture's parameters can cause only small 

changes in the policy itself and in the state visitation probabilities. This idea serves 

as a basis for two recently proposed algorithms, the Policy Gradient Method [Sutton 

et al., 2000] and the Value and Policy Search algorithm [Baird and Moore, 1998], 

which are provably convergent. In practice, however, methods based on the policy 

gradient search tend to be much slower than pure value-based algorithms. 
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Current theoretical results for RL with FA 

Prediction Problem 

RL method Linear Approximations Non-linear Approximations 

Monte Carlo Sampling Converges to the minimum solu- Converges to a local optimum. 

tion of the MSE cost function. 

TD(À) Converges to a near-minimum Possibility of divergence demon-

solution of the MSE cost func- strated for TD(O). 

tion. 

Bellman error methods Converges to a local optimum. 

Control Problem 

RL method Various Approximations 

Value Iteration Divergence is possible. Converges with averagers and linear archi-

tectures under certain conditions. 

Policy Iteration Convergence with linear architectures if policy improvement step 

generates a policy that is smooth in state-action values. 

Optimistic Policy Iter- Oscillation: chattering phenomenon. Non-divergence of Sarsa(À) 

ation proved with linear approximators. 

Q-Iearning Divergence is possible with LMS training. Converges with averagers 

and soft state aggregation. Converges with interpolative approxi-

mators and with averager update rule. 

Bellman error methods Converges to a local optimum of the approximator's parameters. 

Chattering may occur. 

Grow-Support Method Stable learning. Terminates with a solution that is optimal for the 

states in the support set and near-optimal for the original state 

space. 

Policy Gradient Converges to a locally optimal policy for average return per stage 

Method problems. 

Value and Policy Converges to a locally optimal policy; value approximation errors 

Search are weighted by the state visitation probabilities. Result applies to 

episodic tasks and discounted problems with sorne conditions. 
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2.5. Complexity Analysis in Reinforcement Learning 

Most theoretical studies in the reinforcement learning literature focus on conver­

gence issues, whereas fewer results exist on the complexity of reinforcement learning 

and convergence rates. 

One of the results providing polynomial time exact solutions for MDPs relies on 

formulating an MDP as a linear program (see e.g., [Bertsekas and Tsitsiklis, 1996]) 

and solving it by linear programming methods [Chvatal, 1983] in time polynomial in 

the number of states n, the number of actions m, and the size of the representation 

of the state transition probability matrix and the reward function 12 [Puterman, 1994; 

Bertsekas, 1995]. However, in the past, this approach to solving MDPs has been 

considered to be inefficient in practice [Litt man et al., 1995]. Only recently, the 

results in [de Farias, 2002; Guestrin, 2003; Hauskrecht and Kveton, 2004; Guestrin et 

al., 2004] provided evidence that linear programming approaches can be practical for 

solving large MDPs. 

The sample and computational complexity of "traditional" MDP-specific al go­

rithms has been studied to some extent [Papadimitriou and Tsitsiklis, 1987; Littman 

et al., 1995; Fiechter, 1997; Szepesvâri, 1997; Kearns and Singh, 1998; 1999; Papadim­

itriou and Tsitsiklis, 1999; Kearns and Singh, 2000; Blondel and Tsitsiklis, 2000; 

Brafman and Tennenhotlz, 2002; Kakade, 2003]. For example, the Value Iteration 

algorithm was shown to solve exactly continuing discounted finite state MDPs in 

time polynomial in n, m, the maximum number of bits necessary to represent any 

component of the state transition probability matrix and the reward function, and 

the factor 1~'Y (where 'Y is the discount factor) [Littman et al., 1995]. On the other 

hand, no bounds exist on the number of iterations required by the Policy Iteration al­

gorithm on general MDPs. Most approaches analyze tabular methods and guarantee 

approximate solutions in polynomial time. However, thcy cither assume a constrained 

sampling method or additional knowledge about the MDP (e.g., accurate bounds on 

12Note, that the actual time needed to find an exact solution, in general, depends on the numerical 
values of the input data. No linear programming algorithm is known to run in time polynomial in 
n and m. 
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the oprimal values [Kearns and Singh, 1998]), which typically is not available in prac­

tice. There are still few results for non-restrictive on-line sampling scenarios [Kakade, 

2003]. 

The convergence rate of Q-Iearning has been analyzed by Szepesvari (1997) and 

Even-Dar and Mansour (2003). In both cases, the bounds depend on the particular 

schedule by which the learning rate is decreased, as well as on certain characteristics 

of the underlying MDP. For instance, Even-Dar and Mansour (2003) introduce the 

notion of covering time, which is the number of time steps necessary to try out all 

state-action pairs, regardless of the start state. They show that if the learning rate 

is decreased according to a linear schedule, the convergence rate depends exp onen­

tially on 1~'Y' If, on the other hand, the schedule is polynomial, the dependence on 

1~'Y is also polynomial. Szepesvari establishes the convergence rate assuming that 

the actions are sampled according to a fixed policy (independent of the action value 

estimates). His bounds depend on the ratio between the minimum and maximum 

state-action occupation frequencies. If it is easy to visit all state-action pairs, then 

obviously fewer time steps would be necessary to achieve a prescribed degree of ac-

curacy. 

For the case of continuous state spaces, computational time complexity analysis 

was performed for MDPs that satisfy certain Lipschitz continuity assumptions (i.e., 

with sufficiently smooth transition probabilities and reward functions). For example, 

it was shown in [Chow and Tsitsiklis, 1989; 1991] that when an MDP is discretized 

with a multigrid algorithm, O(7)2n1+rn) arithmetic operations are necessary and suffi­

dent in order to approximate the optimal state-value function uniformly with accu­

racy Tl on a state and action spaces contained in the hypercubes [0, l]n and [0, l]m 

respectively, where Tl is the step of the discretization grid. Rust (1997) extended 

this approach by using a randomized variant of the Value Iteration algorithm. This 

randomized algorithm has been shown to require only polynomial time, where the 

complexity estimate depends on the Lipschitz constants of the MDP transition and 

reward functions. Unfortunately, as indicated in [Blondel and Tsitsiklis, 2000], this 
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constant tends to increase exponentially for practical problems of increasing dimen­

sion. The approach of Rust (1997) was further analyzed in [Szepesvàri, 2001]. 
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CHAPTER 3 

Characteristics of Markov Decision 

Processes 

Chapter Outline 

In this chapter, we present five quantitative attributes, which can be used to 

measure certain properties of Markov Decision Pro cesses that affect perfor­

mance of on-line value-based reinforcement learning algorithms. The consid­

ered properties are related to the amount of stochasticity in the MDPs, the 

required amount and ease of exploration, the amount of control that the agent 

has over its environment as well as risk tolerance constraints. We formulate 

hypotheses regarding the effects that the MDP properties, captured by the pro­

posed attributes, have on learning and present results of an empirical study 

aimed at verifying these hypotheses. We discuss how the MDP attributes can 

be used in practice and how they can be computed. 

3.1. Motivation 

Reinforcement learning has already proved to be quite successful in solving inter­

esting control and sequential decision-making problems and in handling large, real­

istic do mains e.g., [Crites and Barto, 1996; Tesauro, 1994; Samuel, 1967; Singh and 

Bertsekas, 1997; Ng et al., 2004; Stone and Sutton, 2001] (see Chapter 1 for more 

examples). However, even though reinforcement learning algorithms have a solid 

theoretical foundation, as discussed in Chapter 2, available theoretical results do not 
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always provide an adequate guidance for practical applications of reinforcement learn­

ing methods. For instance, even for tabular algorithms, in most cases, convergence 

is guaranteed only in the limit. As we discussed in Chapter 2, there are few results 

in the existing literature providing polynomial-time solutions for MDPs (either exact 

or approximate), and most of them rely on assumptions that can be restrictive for 

practical applications. In general, it is difficult to predict the quality of the policies 

obtained by various popular reinforcement learning methods after a limited amount 

of on-line training. 

Most efforts for analyzing reinforcement learning techniques assume that the 

problem to be solved is a general stochastic Markov Decision Process, while very 

little research has been devoted to defining or studying sub-classes of MDPs. This is 

in contrast with the prior research in other related disciplines. For example, in com­

binatorial optimization [Papadimitriou and Steiglitz, 1982; Rogg et al., 1996], it has 

been shown that the performance of approximate optimization algorithms can be dras­

tically affected by characteristics of the problem at hand. The performance of local 

search algorithms is affected by characteristics of the search space for a given problem 

instance, such as the number of local optima, the sizes of the regions of attraction, 

and the diameter of the search space1
. Recent research (e.g., [Roos and Stutzle, 2000; 

Lagoudakis and Littman, 2000]) has shown that such problem characteristics can 

be used to predict the behavior of local search algorithms, and improve algorithm 

selection. 

In supervised learning (mainly in classification), there is also a growing research 

area, known as Meta-Learning [Kapf et al., 2000; Linder and Studer, 1999; Peng et 

al., 2002], devoted to identifying thecharacteristics of datasets that can be used in 

order to select the most appropriate learning algorithms for the data at hand. The 

considered attributes range from those characterizing the dataset size, the number 

of attributes, the number of missing values to statistical and information-theoretical 

measures, such as the entropy of classes, mutual information between data attributes 

lThe diameter of the search space is defined as the maximal distance between any two points in a 
given instance of the se arch space. 
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and classes, noise-to-signal ratio, etc. (see, e.g., [Henery, 1994; Peng et al., 2002]). 

Based on the performance profiles of different classification algorithms, regression 

models are built which predict the performance of these algorithms on new data sets 

based on dataset characteristics2 . 

In the MDP literature, prior theoretical and empirical results also suggest that 

certain MDP characteristics can influence the complexity of fin ding an optimal policy. 

For example, it has been shown [Papadimitriou and Tsitsiklis, 1987] that determinis­

tic MDPs can be solved efficiently in parallel with a number of arithmetic operations 

that depends only on the number of states n and the number of actions m (i.e., the 

problem is in the complexity class NC)3. However, un der the general conditions of 

stochastic state transitions, the problem is P-completé. AIso, the work in [Papadim­

itriou and Tsitsiklis, 1999] analyzed a problem of routing and scheduling in closed 

queuing networks. It was shown that, in a general setting, the problem is EXP­

complete (has a provably exponential complexity). However deterministic instances 

of this problem are PSPACE-complete. This suggests that stochasticity is one of the 

major factors responsible for the complexity of solving MDPs. Previous empirical 

studies [Dean et al., 1995; Kirman, 1995] uncovered the existence of various MDP 

properties affecting the performance of dynamic programming methods under time 

constraints. Stochasticity of state transitions was conjectured and empirically shown 

to be amongst such influential factors. 

One of the goals of this thesis is to investigate a similar conjecture but in the 

context of on-line value-based reinforcement learning and in a more general context 

than previously addressed in the literature. Our work builds on the doctoral dis­

sertation of Kirman (1995). He studied the performance of dynamic programming 

2METAL: Data Mining Advisor, http:j jwww.metal-kdd.orgj 
3In complexity theory, the class NC (" Nick's Class") is the set of problems decidable in polylog­
arithmic time on a parallel computer with a polynomial number of processors. In other words, a 
problem is in NC if there are constants c and k such that it can be solved in time O((1ogn)C) using 
O(nk) parallel processors. 
4The class P consists of ail those problems that can be solved on a deterministic sequential machine 
in an amount of time that is polynomial in the size of the input. If an efficient (logarithmic time) 
parallel algorithm were available, then ail problems in P would be solvable efficiently in parallel, 
which is considered unlikely by the researchers in complexity theory. 
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algorithms (planners) on three classes of discrete-state MDPs. Kirman proposed a 

number of domain-specifie parameters as weIl as sorne domain-independent attributes 

to measure certain properties of the MDPs. His goal was to build statistical models, 

based on the proposed MDP characteristics, for direct quantitative prediction of the 

performance of specifie dynamic programming algorithms on instances of the studied 

classes of MDPs. He found sorne of the proposed domain-independent attributes to be 

statistically significant predictors of performance. However, the obtained quantitative 

statistical models did not appear to directly transfer to other types of domains. 

In our work, we do not build numerical predictive models of performance. We 

start with analyzing value-based on-line reinforcement learning algorithms, such as 

Sarsa and Q-Iearning [Sutton and Barto, 1998], both tabular and approximate. In the 

context of such algorithms, we investigate the effect of certain attributes proposed by 

Kirman (1995) as well as suggest new attributes. We formulate hypotheses about the 

effect of these attributes on learning which can be verified empiricaIly. We validate 

experimentally our hypotheses concerning two of the proposed attributes. In Chapter 

4, we present an approach to using these two attributes in a domain-independent 

context for improving the exploration efficiency of on-line reinforcement learning. We 

discuss other potential applications of the proposed attributes in this chapter. 

The rest of this chapter is organized as follows. In Section 3.2, we discuss certain 

properties of MDPs related to the performance of on-line value-based algorithms and 

motivate the use of the proposed attributes. In Section 3.3, we present definitions 

of the MDP attributes, explain which MDP properties they capture and how they 

relate to the algorithms' performance. We also give our suggestions as to the poten­

tial practical usage of these attributes. In Section 3.4, we discuss how to compute 

the values of the proposed attributes. In Section 3.5, we present the results of an 

empirical study investigating the effects of two of the proposed attributes on tabular 

and approximate reinforcement learning methods. We end with a summary of this 

chapter in Section 3.6. 
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3.2. Sorne Challenges in On-Line Reinforcernent Learning 

3.2.1. Mean Estimation and Sample Variability 

Recall from Chapter 2 that value-based reinforcement learning methods incre­

mentally estimate expected values of the (discounted) returns, i.e., value functions 

(see e.g., the Value Iteration algorithm in Equation (2.14)). Model-free algorithms, 

such as Sarsa and Q-Iearning, estimate these expected values using samples as op­

posed to using MDP models (transition probabilities and expectations of immediate 

rewards). Rence, in certain aspects, such algorithms can be related to incremental 

estimation of the me an of a random variable. 

Consider a general incremental mean estimator: 

(3.1 ) 

where Xk is the estimated sample mean of a random variable X after receiving a new 

sample Xk of this random variable. The parameters ak E [0,1] are the learning steps 

that control the rate of convergence of the estimated me an to the true expectation of 

the random variable X: 

lim Xk = E{X} 
k-->(X) 

(3.2) 

The standard Robbins-Monro conditions [Robbins and Monro, 1951] on the choice of 

the learning steps ak ensure that such convergence is guaranteed: 

(1) L:~=l ak = 00 

(2) L:~=l az < 00 
(3.3) 

The first condition ensures that, if the current estimate is biased in any way, the 

bias will be eliminated in the limit, since the sum of the future learning steps is 

infinite (and thus the contribution of the future samples is always non-zero). The 

second condition is concerned with overcoming the variance of samples by reducing the 

learning steps eventually to a sufficiently small value. These conditions are required 

for convergence of many stochastic approximation algorithms (recall, for ex ample , 
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Temporal Difference learning and the incremental gradient des cent method discussed 

in Chapter 2). 

In practice, with a limited number of samples available and a finite numerical 

precision, it is not always easy to find an optimal decreasing schedule for the learning 

steps Ctk, satisfying conditions (3.3), so that the trade-off between lowering the bias 

and overcomming the variance is resolved. Intuitively, the higher the variance of the 

considered random variable, the more samples are necessary to increase the confidence 

in the accuracy of the sample me an estimate and the smaller the values of the learning 

steps should be. However, if the learning steps are reduced too quickly, the estimation 

process may converge to a biased value (different from the true expectation E{X}). 

In practical applications, a recency weighted average estimatoris often used, where 

the learning step Ct is constant for the entire estimation time: 

(3.4) 

This approach is well suited for the case, where the distribution of the considered 

random variable is non-stationary. A constant setting of Ct allows to continue tracking 

changes in the sample distribution without premature convergence. Unfortunately, 

constant settings are particularly sensitive to the variance of samples. Ideally, we 

would like to use a decreasing schedule for Ctk withing each of the stationary periods 

and then reset to a new schedule (starting with a larger setting of Ctk) when the 

distribution of the random variable changes significantly. However, in practice, it is 

not always possible to determine when such changes occur. 

Value Non-Stationarity 

Recall from Chapter 2 that in the case of value-based reinforcement learning 

algorithms, we are, in fact, dealing with samples that come from non-stationary 

distributions. Consider learning optimal state-action values, Q(s, a), which are the 

means of the random variables R(s, a) (i.e., returns). In the case of on-line learning, 

these values are usually estimated from samples of one-step-truncated discounted 
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returns, i.e., bootstrapped estimates (see Equation (2.18)). Abusing the notation, we 

will call them state-action value samples. These samples are obtained by observing 

the state transitions and immediate rewards and by using bootstrapping to estimate 

the values of the successor state-action pairs. For example, recall that at each time 

step t, the Sarsa algorithm forms and learns a new sample of the value for the current 

state-action pair (St, at) based on the observed reward rHl and the next state-action 

pair (SHI, at+l) as follows: 

Q(St, at) 
"-v-" 

Estimated mean 

(1 - a)Q(St, at) + a[z't+l + ,Q(St+l' at+l)) 
v 

(3.5) 

where the action at+l is chosen from a probability distribution defined by the agent's 

current estimation policy. Consider time steps t l and t 2 , where two subsequent sam­

pIes for the state-action value Q(s, a) are obtained, such that (Stl> atJ = (St2' at2) = 

(s, a). These samples are based on the bootstrapped estimates of the successor state­

action values, Q(Stl+l' atl +1) and Q(St2+l, at2+d. These estimates may, in general, be 

different even if the same successor state-action pair is considered at both times, i.e., 

(Stl+l,atl+l) = (St2+l,at2+d = (sl,al). This is because the action-value estimates are 

updated whenever the corresponding state-action pairs are experienced by the agent. 

Hence, the value of Q(SI, al) could have changed between the times t l and h This 

kind of non-stationarity can pro duce sudden and significant changes in the observed 

samples. This is why small values of the learning step parameter are usually necessary 

to avoid instability in the estimation process. 

Sample distribution non-stationarity is also caused by changes in the estima­

tion policy. Consider, for example, an off-policy learning algorithm, such as Q­

learning. A sample of the state-action value Q(Stl> atl) at time t l is formed as 

[rtl+l +,maxaEAQ(Stl+l,a)]. As the estimated state-action values are updated dur­

ing learning, sorne time after t l , the agent can learn that a different action is better 

in the state Stl + 1. Thus, the action that maximizes the value in the successor state 

Stl +1 can change before the time step t 2 when the value of the state-action pair 
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FIGURE 3.1. Value-based on-line learning. 

(s,a) = (Stllatl) = (St2,at2) is updated again. Thus, the value ofmaxQ(Stl+l,a) can 
aEA 

be different at time t 2 as compared to time t l . The situation is the same with the 

on-policy Sarsa method, which uses policies that are nearly greedy, e.g., the E-greedy 

policy. 

Thus, an on-line tabular reinforcement learning algorithm can be viewed as a 

general estimator of the mean of a random variable that operates on top of the pro­

cess that supplies value samples with non-stationary distribution. Of course, the 

overall pro cess is much more sophisticated, since there is a circular dependency be­

tween the me an estimators and the sampling mechanism through bootstrapping (see 

Figure 3.1). As discussed in Chapter 2, convergence of tabular reinforcement learn­

ing algorithms can be analyzed using stochastic approximation theory based on the 

the contraction property of the iterative updates derived from the Bellman equations 

(see e.g., [Jaakkola et al., 1994] for a proof of convergence of the Q-learning algorithm 

and [Singh et al., 2000] for convergence of Sarsa(O)). However, looking at a (crude) 

interpretation of the value function estimation as the general mean estimation helps 

to isolate certain important issues that are not explicitly addressed in the existing 

theoretical analysis. In particular, we will now focus on the relationship between the 

environment, the value samples and the estimators (see Figure 3.1) and investigate 

how various MDP properties can affect the sampling and estimation process. 
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As already mentioned, convergence of a general mean estimator, e.g., as in Equa­

tion (3.1), is affected by the variance of obtained samples, even in the case of a 

stationary sample distribution. Let us examine samples obtained in the course of 

on-line value-based reinforcement learning and whether they are associated with any 

variance. 

Stochasticity of the Environment 

Consider the Sarsa update in Equation (3.5) and let us identify some factors that 

can create variability in the corresponding state-action value samples. First of all, 

the stochasticity of the environment can be responsible for the variance. Suppose 

that the same state-action pair (s, a) is encountered at time steps t l and t 2 during 

learning, and the corresponding value samples are obtained as follows: 

Sample on time step tl: [rtl+l +,Q(Stl+l,atl+I)] 

Sample on time step t 2 : h2+1 + ,Q(St2+1, at2+1)] 
(3.6) 

Table 3.1 summarizes three factors that can contribute to the variance of these 

samples. The stochasticity of the state transitions and rewards is responsible for the 

two components of the sample variance: the variance in immediate rewards and the 

variance in long-term rewards, estimated by the values of the successor state-action 

pairs. More specifically, if the environment provides stochastic rewards, the reward 

component of the state-action value sample will contribute to the sample variance 

(Factor 1, Table 3.1) . If state transitions are stochastic, both the rewards and the 

values of the successor states associated with transitions to different states can vary 

at times t l and t 2 (factors 2 and 3 in Table 3.1) and hence, introduce variance into 

the value samples. In Section 3.3, we will present two attributes, the State Transition 

Entropy and the Variance of Immediate Rewards, which quantify the amount of 

stochasticity in the environment that contributes to these factors. Notf~ that the 

magnitude of the variance in long-term rewards depends in the end on the actual 

shape of the action-value function, that is on the differences in the state-action values 

of the successor states Stl+l and St2+1. 
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TABLE 3.1. Factors contributing to the variance of state-action value sam­
pIes due to the stochasticity of the environment. 

ftl+1 =1= ft2+1 

f h + 1 =1= f t2 + 1 

Factor 1: Stochastic immediate rewards ~ 
Factor 2: Stochastic transitions: sh + 1 =1= St2+ 1 ~ 
Factor 3: Stochastic transitions: sh + 1 =1= St2+ 1 ~ Q(Sh +1, atl +1) =1= Q(St2+1' at2+1) 

Variance Due to Exploration 

When an on-policy algorithm is used, such as Sarsa, samples are formed as in 

Equation (3.6), where the action atd1, selected in the successor state Stl +1, is chosen 

according to the current behavior policy. The behavior policy must ensure sufficient 

exploration and thus must be stochastic, such that it assigns a non-zero probability 

of selecting every action in every state. Because of this, the choice of atl+l and at2+1 

is randomized and can be different at times t l and t 2 even if the successor state 

St2+1 = Stl +1 and its state-action values have not changed between t1 and t2 . Thus, 

the values of the successor state-action pairs can be different due to different actions 

chosen at times t l and t 2 for exploration purposes: 

Two of the attributes, the Controllability and the Reward Information Content, 

presented in Section 3.3, will allow us to assess whether significant differences in the 

values of different actions could be expected. 

Function Approximation: Bias and Variance 

In the case of using function approximation for representing value functions, the 

general mean estimators, discussed before, are replaced by a learning algorithm asso­

ciated with the function approximator employed (see Chapter 2). Different function 

approximators have different tolerance to the variance (noise) in training samples, 

but, in general, learning and tuning the learning step parameters is more difficult in 

the presence of a significant variance. 

On the other hand, the function approximator can itself affect the variance of 

value samples during on-line reinforcement learning. Let us illustrate this point in 
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FIGURE 3.2. State aggregation: bias and variance 

the case of a local function approximator, for instance, state aggregation. In this 

case, the state space is partitioned into a number of non-overlapping partitions (see 

Figure 3.2). States s'and Sil that belong to the same partition, say Sk, share common 

state-action values, Q(s', a) = Q(s", a) = Q(Sk, a). Partitioning or grouping states 

together in such a manner introduces a bias into the action-value function, so that its 

shape is in part restricted by the chosen grouping of states. The situation is similar 

with any kind of function approximation that generalizes the values across different 

states in sorne manner5
. Bias introduced by the function approximator can influence 

the variance of value samples in several ways. 

As before, consider two samples of Q(s, a) at different times during learning, t l 

and t 2 . Now assume that the successor state-action pairs are identical at both times: 

(Stl+l' atl+l) = (St2+1' at2+1) = (s', a'). Let astate s" belong to the same partition 

Sk as the state s'. If the state-action pair (s",a') has been encountered between t l 

and t 2 , an update of the aggregate value Q(Sk, a') of the states s'and Sil has been 

performed. Hence, the value of Q(s', a') might have significantly changed during the 

period of tilIle Letween steps tl and t2 because of the total accumulated updates 

5This is sometimes called the inductive or representational bias [Mitchel, 1 997J. A different type of 
bias that is often considered in supervised learning is the statistical bias (see e.g., [Geman et al., 
1992]), which is the difference between the expected value of an estimator (taken over ail possible 
datasets) and the correct values. 
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caused by other states in the same aggregate. In this case, the resulting difference 

between the estimates Q(s', a') at times t l and t2 can be significant. Thus, the bias 

of the function approximator can increase the variance of value samples associated 

with the non-stationarity of the value estimates. 

At the same time, the function approximation bias can decrease the variance 

associated with the stochasticity of state transitions discussed earlier. This will be 

the case if states s'and s", which are both possible successors of the state-action pair 

(s, a), belong to the same aggregate and thus share the same values (see Figure 3.2). 

In this case, no variance of the samples for Q(s, a) will be introduced due to Factor 

3 in Table 3.1, that is, due to differences in the values of successor states s'and s". 

Finally, the bias introduced by the choice of the structure of the function approx­

imator can increase the variance of value samples because of the following reason. If 

the states s'and s" that belong to the same partition are very different in terms of 

their true values, such states can provide very different (high variance) samples for 

their common aggregate values Q(Sk, .). This makes the estimation pro cesses more 

difficult and complicates convergence of the estimation process. Grouping together 

the states with different values can also prevent learning the action-value function with 

an accuracy sufficient for fin ding a good policy. Several studies can be found in the lit­

erature that attempt to assess the differences between the states with respect to their 

values in order to find an appropriate state aggregation, see e.g., [Givan et al., 2003; 

Ferns et al., 2004; Munos and Moore, 2001; Reynolds, 2002J. 

Discussion 

As already mentioned, the magnitude of the variance of value samples depends 

on immediate rewards and the actual shape of the value function. It should be noted, 

however, that in stochastic environments or when using function approximation, it 

il:) ulllikely not to encounter any significant variance throughout the training pro cess 

because of the following facto During on-line learning, the agent performs a form of 

Generalized Policy Iteration [Sutton and Barto, 1998], that is, it partially estimates 
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the values of many different intermediate policies before it reaches the optimal be­

havior. It is quite likely that at least un der sorne of those intermediate policies, there 

will be a significant variance of value samples due to the factors discussed ab ove. 

This variance can render learning more difficult, lead to a higher sample complexity 

and hence result in a longer convergence time. In general, it is hard to avoid or re­

duce this variance, but the ability to assess this variance can be useful for (dynamic) 

tuning of various parameters of learning algorithms (e.g., the learning step and the 

exploration rate) in order to mitigate the effect of the high variance and improve 

performance. Several attributes that we discuss later in this chapter help to make 

such an assessment. 

In the current literature, there are sorne approaches that attempted to measure 

and use the information about the stochasticity of the environment or the variance 

of value samples. The work in [Kirman, 1995; Dean et al., 1995], to the best of our 

knowledge, was the only one that used measurements ofthe environment's stochastic­

ity based on the MDP model only and independently of the estimated value functions. 

As we already mentioned, these measurements were used for building numerical (re­

gression) models of the performance of specifie dynamic programming algorithms on 

several classes of MDPs. We will point out the relation between the attributes pre­

sented in this chapter to the work of Kirman in the next section where we will present 

the definitions of the MDP attributes. 

The methods in [Kaelbling, 1993; Meuleau and Bourgine, 1999] used the estimates 

of the variance of state-action value samples for improving exploration efficiency (see 

Section 4.2 for more details). The variance estimates were computed in parallel 

with the value functions during learning. Since during on-line learning the state­

action value estimates constantly change, a form of a forgetting mechanism has to be 

employed to track these changes and to get an appropriate (up-to-date) estimate of 

the variance. Such a forgetting mechanism was implemented by maintaining a sliding 

window of a batch of previously observed samples for each state-action pair and 

calculating the sample variance based on these batches. Thus, this approach requires 
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a considerable amount of additional memory. In addition, it is not obvious what the 

size of the sliding windows should be to capture the non-stationarity properly. 

Another (cheaper) heuristic for assessing and accounting for the value sample 

variance was used in [Meule au and Bourgine, 1999]. It relied on an assumption about 

the maximum bound on the variance of value samples. Suppose that the initial state­

action values (at the onset of learning) satisfy the following condition: 

Rmin () Rmax () --:::; Q s,a:::; --, for all s,a 
1-, 1-, 

(3.8) 

where Rmax and Rmin are the maximum and minimum rewards over all (s, a, s') triples. 

Then, the variance of state-action values satisfies the following bound: 

Var[Q(s, a)] :::; (R~(; -=- ~)in ) 2 , for all (s, a), at all times (3.9) 

This estimate assumes a uniform variance across all the state-action pairs. 

An approach for exact computation of the variance of returns associated with 

a fixed policy 7r was developed in [Munos and Moore, 2001]. It was used to assess 

the variance (error) introduced by approximating a deterministic continuous state 

and time MDP with another stochastic discrete MDP. The variance of the return, 

(j2(S) = E{[R(s) - V(s)]2}, where R(s) is the discounted return and V(s) is the value 

function (expected value of the return) for policy 7r, was proved to be a solution to 

the following Bellman equation: 

(j2(S) = ,2 2:s'ES p;Y)(j2(S') + e(s) , Vs E S 

e(s) = 2:s'ESP:~s) [,V(s') - V(s) +r;;,S)f 
(3.10) 

The proof of this fact from [Munos and Moore, 2001] is provided in Appendix A.1. 

Based on this Bellman equation, it is possible to compute the variance of returns using 

a dynamic programming algorithm, since Equation (3.10) is a fixed-point equation 

of a contractant operator (in max norm, with a contraction factor ,2). The variance 

(j2(S) takes into account the variation in the values of the subsequent states (s and its 

successors s') as well as the discounted expected variance (j2(S') of these successors. 
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Thus, this approach provides a way to compute the variance of the return for a fixed 

policy accurately, however, such computation is as costly as computing the value 

function. In fact, the value function has to be already computed in order to use 

Equation (3.10). Such computation can be justified in the contexts similar to the 

one in [Mun os and Moore, 2001], where it was used in order to assess the goodness 

of a value function approximation and iteratively improve it. An approximate value 

function and the variance of the return were computed using dynamic programming 

assuming the availability of the MDP model. 

We will now mention several other challenging issues in on-line reinforcement 

learning, which are related to MDP properties captured by our attributes. 

3.2.2. Exploration 

As discussed in Chapter 2, the reinforcement learning agent needs to learn by 

actively exploring its environment. The difficulty of exploration can be associated 

with several factors. For example, the ease of movement around the state space will 

affect the speed, with which the agent can discover new, previously unvisited parts 

of the state space or revisit states again, and hence, learn their values. AIso, the 

agent often faces the problem of delayed rewards, that is long delays in the resolution 

of the action consequences (e.g., MDPs with zero rewards everywhere except at a 

goal state). If the immediate rewards provide little information about the (relative) 

desirability of different actions, the speed of learning and the duration of the initial 

exploration phase will be affected. 

Once again, knowledge of such properties of the MDP at hand can be helpful 

for making an informed choice of the learning and exploration algorithms and for 

taking advantage of the underlying MDP characteristics in order to facilitate the 

exploration pro cess. The question of the ease of movement through the state space 

can be related to the notion of conductance studied in the context of Markov chains 

[Jerrum and Sinclair, 1988], which measures the rate at which the process can flow 

around the state space. Such a measure would be most useful in the case when a 
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fixed behavior policy (that defines a specifie Markov chain) is applied for a long time. 

Hence it would be relevant for off-policy algorithms mainly and not so much for the 

on-policy algorithms where the behavior policy can typically change quickly as the 

value estimates get updated. Computing conductance associated with a particular 

Markov chain would require applying complex off-line methods [Jerrum and Sinclair, 

1988]. 

In the next section, we discuss how several MDP attributes considered in this 

thesis, namely, the State Transition Entropy, the Controllability and the Reward In­

formation Content, can provide sorne indication about the MDP properties discussed 

above at a low computational cost. In Chapter 4, we show how to use two of these 

attributes for the design of an efficient exploration strategy. 

3.2.3. Amount of Control 

The success of the agent's learning effort depends on the way the control system is 

designed and the way the interaction between the agent and the environment occurs. 

In particular, the performance of the agent depends on the amount of control that 

it can exercise over the environment: if the environment simply ignores the agent's 

actions so that the state transitions and rewards are independent of what the agent 

does, then, of course, the performance of the learning agent will not be different from 

the performance of an agent acting randomly. In the next section we will present 

two MDP attributes, the Controllability and the Reward Information Content, that 

measure the amount of the agent's influence on the environment's responses. In 

general, such characteristics may be non-uniform across the MDP's state space. The 

ability to assess such properties can help to evaluate the agent's limitations as weIl 

as prioritize the agent's learning effort on the states and actions that can have the 

largest impact on its performance. The controllability also has other implications on 

the variance of value samples as weIl as on the exploration pro cess , as we will explain 

in detail after we will have defined the corresponding attributes in the next section. 
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3.2.4. Risk Management 

Another issue that the agent, learning on-line, may need to take into consideration 

is related to risk tolerance during learning. Recently, sorne work, mostly in the domain 

of decision theory, has been do ne for addressing the question of risk management in 

MDPs. Below, we will briefiy highlight sorne existing approaches to risk management 

and in Section 3.3, we will discuss another MDP attribute, the Risk Factor, that allows 

to refiect the agent's risk tolerance with respect to the properties of the MDP's reward 

function. 

In reinforcement learning, the focus is on computing and acting according to the 

expected values of returns. Decision theory offers alternative decision-making criteria 

[Taha, 1987] arguing that expected values are not always appropriate in practice 

because of the following considerations. Criteria based on expected values assume 

that the decision process is repeated a sufficiently large number of times from the 

same state. In practice, however, it might not always be the case and acting in 

such a manner may not be best when possible consequences or their probabilities 

have extreme values. The agent may also need to adhere to certain constraints, 

safety issues and performance expectations in addition to best-on-average criteria. 

Examples include tasks, where the agent is required to get to a goal within a certain 

time with probability one, or where the agent has to minimize the probability of 

entering fatal states. 

For such tasks, sorne approaches aim at minimizing a-value criterion. The agent 

using this criterion secures that with probability 1- a, its return will not be less than 

sorne threshold ma, where the optimal policy maximizes ma [Reger, 1994a]. A special 

case of this approach is when a = 0, where the agent is optimizing the worst-case 

total discounted reward (also known as mini-max criterion). A counterpart of the 

Q-learning algorithm for this criterion is prcscnted in [Heger, 1994b]. Thit:; approach 

was further developed and generalized in [Coraluppi and Markus, 1999]. 

78 



3.2 SOME CHALLENGES IN ON-LINE REINFORCEMENT LEARNING 

Optimization of the worst-case criterion, however, is considered to be too con­

servative and pessimistic for certain tasks. For example, in [Gaskell, 2003], the ex­

periments were conducted on a goal-directed task where the agent had to walk in 

astate space containing a deadly cliff. On this task, the minimax algorithm learns 

to jump from the cliff from the start to avoid a possibility of occasionally getting 

a slightly lower return later (associated with per-step delay penalties). It was also 

pointed in [Neuneier and Mihatsch, 1999J that minimax learner for an investment 

management problem learns to never make investments. The approach in [Gaskell, 

2003J proposes a ,6-pessimistic learning, which is a compromise between standard 

(optimistic) Q-Iearning and extreme pessimistic minimax methods. In this case, the 

resulting policy chooses an action with the highest return with probability 1 - ,6 and 

an action with the lowest return with probability,6. A Q-Iearning-type algorithm was 

proposed in order to learn the corresponding value functions and was experimentally 

demonstrated to pro duce relatively safe solutions. 

A different approach was proposed in [Geibel, 2001], where the optimization 

problem is formulated as a constrained MDP with two criteria: a standard discounted 

return and a non-discounted criterion that reflects a probability that a trajectory 

from sorne state s un der a policy 1f eventually ends up in a fatal state. A heuristic 

algorithm is designed to find policies that balance the two criteria by means of a 

weight parameter. This weight is optimized by slowly shifting the focus from risk 

avoidance to value optimization until the constraints on risk tolerance are violated. 

3.2.5. Summary 

In this section, we discussed sorne of the challenges of value-based on-line rein­

forcement learning algorithms, which can be summarized as follows: 

(1) Dealing with the non-stationarity of the sampling distribution. Theoretically, 

this is the question of convergence of on-line reinforcement learning algorithms for 

control, see e.g., [Watkins and Dayan, 1992; Jaakkola et al., 1994; Singh et al., 1995; 

Bertsekas and Tsitsiklis, 1996; Singh et al., 2000J. In practice, this issue relates to the 
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selection of learning and exploration parameters as well as function approximation 

representations for value functions in a manner that allows successful tracking of 

the non-stationary value samples provided by the underlying reinforcement learning 

algorithm. 

(2) Dealing with the variance of value samples that is caused by the stochasticity 

of the environment and the exploration process. Once again, this issue is in practice 

related to the selection of learning parameters and improving efficiency of the sampling 

process (see e.g., [Kaelbling, 1993; Kirman, 1995; Meuleau and Bourgine, 1999J for 

existing work). 

(3) Providing good exploration for efficiently uncovering new information while 

satisfying risk constraints (see Chapter 4 for a literature review on exploration meth­

ods as well as e.g., [Heger, 1994b; Geibel, 2001; Hauskrecht et al., 2001; Gaskell, 2003J 

for some studies on risk management). 

In the following section, we present five quantitative attributes that capture cer­

tain properties of MDPs related to the challenges (2) and (3). Our goal is to identify 

relevant MDP characteristics that can be assessed without relying on the state-action 

values, but only based on the information captured in the standard MDP model (the 

state transition probabilities and the immediate rewards). Our attributes are in­

tended mainly for measuring MDP properties prior to learning or during learning but 

in a manner that is independent of the value function estimates. As we mentioned 

before and as pointed out in [Wyatt, 2001], it is easier to evaluate such properties 

during on-line learning, because they are stationary, whereas the heuristics based on 

the state-action values need to track the dynamically changing value estimates. 

3.3. Quantitative Attributes ta Measure MDP Praperties 

In this section, we present five domain-independent attributes that can be used to 

quantitatively describe certain characteristics of an MDP relevant to the performance 

of on-line value-based reinforcement learning algorithms. All attributes are defined 

based on the information contained in the MDP model only. For simplicity, we 
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first assume discrete and finite state and action spaces and an availability of the 

MDP model (state transition probabilities and the expected values of immediate 

rewards). Nevertheless, the definitions naturally extend to the continuous case and 

all the attributes can be approximately estimated from samples of state transitions 

and rewards obtained from the interaction with the environment, as we discuss in 

Section 3.4. 

3.3.1. State Transition Entropy 

The State Transition Entropy measures the amount of stochasticity due to the 

environment's state dynamics. Let Os,a E S denote a random variable representing 

the out come (next state) of the transition from state s when the agent performs 

action a. We use the standard information-theoretic definition of entropy (see, e.g., 

[MacKay, 2003]) to measure the State Transition Entropy for a state-action pair (s, a) 

(note, that the same definition was used in [Kirman, 1995]): 

STE(s,a) = H(Os,a) = - LP~s,logP~s, (3.11) 
s'ES 

A high value of ST E(s, a) means that there are many possible next states s' (with 

P~s' =J. 0). The entropy is maximized for the uniform distribution. The agent is more 

likely to encounter many different states by performing the same action a in some 

state s if ST E(s, a) is high. This can have several implications on learning. First, in 

this case, the variance in the samples of the state-action value Q(s, a) may be high, 

as discussed in the previous section and summarized in Table 3.1 (see Factors 2 and 

3), which makes learning more difficult. Of course, the actual variance depends on 

the immediate rewards and the values of different successor states. 

Second, in environments that have many states with high State Transition En­

tropy, state space exploration happens naturally to some extent, and state-space cov­

erage is facilitated. Since extensive and fast exploration is essential for reinforcement 

learning algorithms, the presence of state-action pairs with high State Transition 

Entropy can result in faster learning. In some cases, however, exploration is not 
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improved in states with high State Transition Entropy. For instance, a robot may 

bounce against a wall and non-deterministically end-up in the nearby states. If, sorne 

of the time it bounces back to the same state, then state-space exploration is actually 

somewhat impeded. If desired, this case can be identified by considering the value of 

(1 - P:s ), the probability of making a transition to astate, different from the cur­

rent one6
. Kirman (1995) also suggested using the M-Step State Transition Entropy 

(entropy of state transitions after M time steps) as a measure of ease of movement 

through the state space. In this case, the rate of increase of this entropy with M can 

be considered. 

We hypothesize that MDPs with high average values of the State Transition 

Entropy will exhibit a trade-off between a positive effect on state-space exploration 

and a negative effect of the increased sample variance during learning. 

We envisage the following practical uses of the State Transition Entropy attribute. 

First, it can be used to improve the efficiency of exploration by giving a higher priority 

to actions with high State Transition Entropy values. Such a strategy can facilitate 

state-space exploration and gather more samples for value estimates with a potentially 

high variance of value samples (see Chapter 4 for an implementation). 

Second, the State Transition Entropy can be used for tuning the learning step 

parameter. As discussed in the previous section, the state-action pairs with high 

variances of value samples (which can be indicated by high ST E(s, a) values) should 

use lower settings of the learning step. If an MDP has high values of this attribute 

throughout the state-action space, the learning steps in general should be set to 

small values, especially when using high values of the eligibility trace parameter >. 

(see Chapter 2). This is because using high values of >. by itself increases the variance 

of value samples, sin ce the variance accumulates as the samples are back-propagated 

along long trajectories (see Chapter 2 as well as [Kearns and Singh, 2000] for the 

analysis of the bias-variance trade-off of the TD(>') method). 

6In this thesis, we do not further investigate the use of sueh an indieator. 
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FinaIly, when using local function approximators to represent value functions, the 

State Transition Entropy can be useful for choosing a structure of the approximator. 

For example, as pointed out in [Menache et al., 2004], when Radial Basis Function 

Networks are trained so that the centers and widths of the basis functions are adjusted 

with the gradient descent learning (see Chapter 2), it is possible that the agent 

will learn a policy that avoids states, which often provide a high instantaneous (per 

sample) error. If the error is associated with a high sample variance (noise), it cannot 

be removed by learning a better value function approximation so the agent can simply 

learn to not visit such states even if they have good values. The State Transition 

Entropy attribute can help to determine whether the error is due to the stochasticity 

of the environment, and hence to avoid such undesirable learning outcomes. On 

the other hand, there are a number of heuristic methods (see e.g., [Anderson, 1993; 

Fritzke, 1997; Wiering, 1999; Millan et al., 2002] as weIl as Chapter 5 for more details) 

that allocate units (basis functions) for local function approximators so that the 

regions of high approximation errors get more units. Allocating more units in the 

areas of the state space, which show errors due to the stochasticity of the environment 

as opposed to poor approximation, can result in overfitting, i.e., the situation where 

the architecture that is too complex learns to fit the noise and not just the true 

underlying signal. Again, the State Transition Entropy attribute can help to identify 

and avoid such situations. 

As pointed out before, the stochasticity-related variance of value samples cornes 

from two components: the variance of immediate rewards and the variability in the 

values of successor state-action pairs. The two attributes presented next aim at 

providing additional information in this respect, which is not captured by the State 

Transition Entropy. 

3.3.2. Variance of hnm.ediate Rewards 

The Variance of Immediate Rewards, measured for state-action pairs, accounts 

for the variability in the immediate rewards due to both the variability of the next 
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states and the environmental responses to fixed (s, a, s') triples. Let r~ E ~ denote 

a random variable that represents the rewards observed after taking an action a in a 

state s. The Variance of Immediate Rewards is defined as follows: 

VIR(s,a) = E{(r~?} - (E{r~}? (3.12) 

where the expectation is over the distribution of the next states, P:S" and the distri­

bution of rewards for each (s, a, s') triple, which we denote PT~::/')' 

This attribute can be estimated from the experience (see Section 3.4), or com­

puted analytically if the reward variances (J"~s' of the (s, a, s') triples are known. In 

the latter case, it can be computed as follows. The first term in Equation (3.12) can 

be expressed as follows: 

E{(r~)2} = L P:S,Ep~:;:,.'){(r~s,)2} (3.13) 
s'ES 

where r~s' E ~ denotes a random variable that represents the rewards observed after 

taking action a in state sand making a transition to state s'. The variance of r~s" 

that is (J"~s" is defined as: 

(3.14) 

If (J"~s' is known, we can find: 

(3.15) 

Thus, from Equations (3.13)-(3.15), we obtain: 

VIR(s,a) = L P:s' [(J"~s' + (R~s,)2] - (2:: P:s,R~s,)2 
s'ES s'ES 

(3.16) 

The state-action pairs with high values of the Variance of Immediate Rewards 

should be sampled more extensively in order to obtain accurate estimates of their 

values Q(s, a). 
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This attribute can be used for the purposes similar to the State Transition En­

tropy discussed earlier. It can be used in combination with the State Transition 

Entropy, as it provides an additional information, which is not explicitly contained 

in the latter attribute. 

3.3.3. Controllability 

The Controllability of astate s is a normalized measure of the information gain 

when predicting the next state based on the knowledge of the action taken, as opposed 

to making the prediction before an action is identified. A similar, but not identical, 

attribute was used by Kirman (1995). Let Os E S denote a random variable repre­

senting the outcome of a uniformly random action in state s. Let As denote a random 

variable representing the action taken in state s. We consider As to be chosen from 

a uniform distribution. Now, given the value of As, the corresponding information 

gain is the reduction in the entropy of Os: 

(3.17) 

The first term, H(Os), is the entropy of state transitions assuming no knowledge of 

the performed action. It can be computed as follows: 

- L PS,Sl log Ps,Sl 
s'ES 

Ps si , (3.18) 

Thus, from the above, 

"pa "pa 
H(O ) = _ """' (L..JaEA S,SI) l (L..JaEA S,SI) 

s ~ lAI og lAI 
s'ES 

(3.19) 

The second term in Equation (3.17) is the conditional entropy of state transitions 

provided that it is known which action has been performed. To compute this term 
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we use the standard definition of the conditional entropy which, in our case, repre­

sents the entropies H(Os,a) averaged over all actions a E A assuming uniform action 

selection probabilities: 

H(OsIAs) = - L I~I L P~s' log(P~s') 
aEA s'ES 

(3.20) 

Finally, the Controllability in the state s is defined as: 

(3.21 ) 

If all actions are deterministic, then H ( Os 1 As) = 0 and C (s) = 1. If H ( 0 s) = 0 (all 

actions deterministically lead to the same state), then C (s) is defined to be O. 

The Controllability refiects the difference in the state transition distributions of 

different actions in the state s. High controllability (e.g., greater than 0.5) means 

that the outcomes of different actions are quite different in terms of successor states. 

Consider, for example, the cases in Figure 3.3. The Controllability of a state on the 

left is the lowest, as two actions make a transition to the same state with a relatively 

high probability. The transition probability distributions of the two actions are very 

similar as weIl. A state on the middle picture has a higher Controllability, because the 

transition to the common successor state S2 is performed with different probabilities 

with actions al and a2. Finally, a state on the right has the highest Controllability, 

because the sets of possible successor states are disjoint for the two actions. The 

Controllability is stillless than 1 in this case, since each action has a relatively high 

entropy by itself, and hence, it is not possible to eliminate entirely the uncertainty 

about state transitions by the knowledge of the performed action. 

In a highly controllable environment, the agent can exercise a lot of control over 

which trajectories (sequences of states) it goes through, by choosing appropriate ac-

tians. This enables the agent ta rcap higher returns in enviranments where small 

differences in the trajectories lead to significant differences in the expected returns. 

In such cases, the agent operating in a highly controllable environment could be ex­

pected to significantly outperform an untrained agent with a random behavior. States 
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FIGURE 3.3. Examples of states with different Controllability values. 

with high Controllability are very important, because in these states the agent can 

potentially impact most its performance. 

Similar to the State Transition Entropy, the level of Controllability in an MDP 

also influences exploration of the state space. Because in a highly controllable state 

s the outcomes of different actions are quite different, the agent can choose what 

areas to explore. This can be advantageous for reinforcement learning, because it 

can facilitate directing exploration to desired areas through an appropriate choice of 

actions. 

States with high Controllability also require more training. In such states, the 

agent has to learn about the distinct outcomes of different actions and thus it has 

to explore well distinct parts of the state space in order to properly estimate relative 

values of different actions. In other words, assume that a state s'on Figure 3.4 is 

highly controllable. This indicates that the sets of possible successor states, Si, are 

fairly different for different actions ai, i = 1, ... , k. The values of successor states 

in the set, say 51, are used to estimate the value of the state-action pair (s', ad. 

Unfortunately, most values from the set 51 cannot be reused to estimate the value of 

the state-action pair (s', a2), if the the sets 51 and 52 are quite different. 

When the agent is learning with an on-policy method, such as Sarsa, a state s' 

with a high value C(s') can increase the variance of value samples of its predecessor 
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Highly controllable 
successor state 

A set of possible 
successors 

FIGURE 3.4. Effects of the Controllability. 

state-action pairs (s, a) (see Figure 3.4 and Equation (3.7)). This happens if differ­

ent actions ai, i = 1, ... , k are selected for exploration from the state s'and if the 

values Q(s', ai) of different actions ai differ significantly. This is more likely if the 

state s' is highly controllable, because, as explained before, the actions' outcomes are 

significantly different. 

In summary, knowing the Controllability can be helpful for identifying impor­

tant states in the MDP. The ability to anticipate the Controllability of the successor 

states can be useful for assessing the potential variance introduced by these states 

into the value samples of their predecessors, as well as the exploration requirements 

for these states (see Chapter 4 for an application of these ideas). Thus, we also mea­

sure the Forward Controllability of a state-action pair (s, a), which is the expected 

Controllability of the successor state: 

FC(s, a) = L P~s,C(s') (3.22) 
s'ES 

This attribute indicates whether the state-action pairs have, on average, highly con­

trollable successors. 

The values of the Controllability and the Forward Controllability attributes can 

be used in the following ways. First, these attributes can be used for improving 

efficiency of exploration (see Chapter 4). In this case, states with high Controllability 
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(or state-action pairs with high Forward Controllability) should be given a priority 

of visitation because they are very important and potentially require more training. 

The Controllability values can be also used to tune the learning rate parameter for 

on-policy reinforcement learning methods, so that lower settings are used for the 

state-action pairs with high Forward Controllability in order to mitigate the effect of 

a potentially high variance of value samples. 

3.3.4. Reward Information Content 

As explained ab ove , the Controllability refiects the difference in the distribution 

of the next states for different actions, and thus indicates whether the outcomes of 

different actions are potentially different in terms of their long-term values. From a 

similar perspective, we can consider whether different actions in a particular state have 

different immediate rewards. This way, we would also me as ure how informative the 

immediate rewards are for differentiating between the values of different actions. For 

example, in goal-oriented tasks, it is typical to have zero-valued rewards everywhere 

except at the goal state. In this case, the immediate rewards contain little information 

for most of the state space. Learning and exploration in such MDPs is very difficult, 

since the agent usually has to revisit states many times until the reward information 

from the goal state propagates back across the entire state space. Such tasks are 

good candidates for using more sophisticated exploration techniques (see Section 4.2) 

as weIl as eligibility traces. However, these methods require extra computational 

overhead on every iteration. Thus, it is important to make an informed decision 

regarding the fact whether they can significantly affect performance. 

The Reward Information Content estimates how different the mean rewards of 

different actions are in sorne state s. Let R~ be the average reward obtained after 

performing an action a in astate s: 

R~ = L P:s' R~s, (3.23) 
s'ES 
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Let Rs be the average reward obtained when performing a uniformly random action 

in the state s: 

(3.24) 

Then the Reward Information Content is defined as the variance of the average 

immediate rewards R~ across different actions: 

RIC(s) = I~I L(Rs - R~)2 
aEA 

(3.25) 

If RIC(s) = 0, then aU actions have the same short-term value, and thus rewards 

by themselves do not help to determine relative advantages of different actions in the 

state s. 

Note that we could estimate the Reward Information Content in several other 

ways. For example, we could use mutual information (see e.g., [MacKay, 2003]) 

between the actions and immediate rewards. This measure would indicate whether 

the actions have different short-term effects based on the difference of the distributions 

of their rewards, even if their means are similar. But since the state-action values 

are the estimates of the mean returns and action selection is based on these mean 

values, the definition that compares the means of rewards is more relevant. AIso, we 

could consider only the maximum difference between values R~ of any pair of actions, 

namely, max 1 R~l - R~21. However, in this case, we would capture the distinction 
al,a2EA 

only between two actions that differ most. We would not be able to assess how the 

immediate rewards help to differentiate between the consequences of all actions in 

the considered state s. 

The states that have a high value of the Reward Information Content attribute as 

well as a high value of the Controllability attribute have, in general, a high information 

content required to be learned7
. In such states, the agent may need to learn a trade-off 

between short-term versus long-term benefits of actions, which potentially requires a 

lot of training experience. Thus, learning can benefit from prioritizing visitations of 

7By information content we do not mean the technical Shannon's measure of the compressibility of 
the information description, but rather the associated complexity. 
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such states. On the other hand, states with very low values of the Reward Information 

Content and low Controllability values are of the lesser importance to the learning 

agent, since the state-action values of different policies willlikely be similar. 

Nevertheless, states with low Reward Information Content and low Controllability 

should not always be deemphasized, because accurate estimates of action-values in 

these states may be necessary to compute good value estimates in other states. This 

can be related to the notion of influence introduced in [Munos and Moore, 2001]. The 

influence of a state SIon another state S2 under policy 1r is defined as a measure of the 

extent to which the state SI contributes to the value of the state S2. It was shown in 

[Munos and Moore, 2001] that it can be computed exactly by an iterative procedure, 

which is as costly as computing the value function of the corresponding poli cl. If 

such a measure of influence can be computed (either exactly or approximately), it 

would be useful to assess whether astate S with a low Reward Information Content 

and a low Controllability has a significant influence on other important states, in 

which case the value of s should be learned weIl. 

Similar to the Controllability attribute, the Reward Information Content of a 

state s' can give an indication about the variance of value samples introduced for the 

predecessor state-action pairs if an on-policy algorithm, such as Sarsa, is used. 

The Reward Information Content attribute can potentially be used in the follow­

ing ways. Assessing the values of the Reward Information Content throughout the 

state space can help to improve exploration: MDPs with large areas of low Reward 

Information Content are good candidates for directed exploration methods as weIl 

as high values of the eligibility traces. This attribute can also be used for tuning 

the learning step parameter, similar to as it was already discussed in the case of the 

Controllability attribute. The Reward Information Content should be considered in 

8In sorne cases, high computational cost of this method is justified, e.g., for improving the design of a 
function approximator. In [Munos and Moore, 2001], states with the high return variance (computed 
in the way mentioned in the previous section) were checked for whether they significantly influence 
other states considered important. If this was the case, an attempt was made to approximate more 
accurately the values of the high-variance states. 
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combination with other attributes discussed above in order to identify important and 

difficult states. 

3.3.5. Risk Factor 

As discussed in Section 3.2, the learning agent has to perform exploration during 

on-line learning while sometimes being constrained by a certain risk tolerance level. 

In Section 3.2, we mentioned several reinforcement learning approaches that treat 

risk considerations explicitly. Alternatively, risk tolerance can be taken into account 

during learning in the following way. We define the Risk Factor attribute, which 

measures the likelihood of getting a low reward after the agent performs a uniformly 

random action. 

Let r s E !Ji denote a reward observed on a transition from astate s after per­

forming a uniformly random action. The Risk Factor in the state s is defined as 

follows: 

RF(s) = Pr[rs < Rs - e(s)], (3.26) 

where Rs is the average reward observed after taking a uniformly randomly chosen ac­

tion in state s (see Equation (3.24)), and e(s) is a positive number, possibly dependent 

on the state, which quantifies the tolerance to lower-than-usual rewards. 

This definition is similar in spirit to the a-value criterion discussed in the pre­

vious section. However, the Risk Factor provides only a myopie assessment of the 

risk, sinee low immediate rewards do not necessarily mean low long-term returns and 

vice versa. But this attribute is easy to estimate and it can be helpful for minimizing 

losses, especially during the early stages of learning. A similar (myopic) definition of 

risk was used in [Hauskrecht et al., 2001] for the problem of computing risk-sensitive 

investment strategies for multi-market commodity trading. In [Hauskrecht et al., 

2001], this problem, formulated as an MDP, was solved by linear optimization tech­

niques taking advantage of a particular problem structure. In future work, we plan to 

investigate whether a myopie definition of risk, such as the Risk Factor attribute, can 
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be successfully used with standard reinforcement learning algorithms for computing 

(long-term) optimal value functions. 

The Risk Factor attribute can also be useful in environments, where the rewards 

are not strictly Markovian. For instance, a person interacting with the learning agent 

gets irritated by the agent's frequent non-sense (exploratory) actions and starts to 

give bigger penalties. If the Risk Factor is estimated high in sorne state s, the agent 

can lower the exploration rate in this state. 

3.4. Computing the Attributes 

The attributes discussed in the previous section, can be measured locally, for each 

state or state-action pair, or globally, as an average over aU states or state-action pairs 

of the MDP. Local measures are most useful for fine-tuning parameters of reinforce­

ment learning algorithms for individu al states or state-action pairs. For example, 

in Chapter 4, we present an exploration strategy that uses local attribute values to 

decide on the action selection probabilities for exploration. On the other hand, in the 

empirical study presented in Section 3.5, we use global measures to study an impact of 

the overall MDP characteristics on the performance of learning algorithms. To obtain 

the global me as ures , we can use sample averages of the attribute values over multiple 

state-action pairs. One possibility is to assume that all states and actions are equally 

probable or to use a distribution corresponding to following a uniformly random pol­

icy. This choice of the sampling distribution allows to characterize the MDPs before 

any learning takes place without having to fix any particular (non-uniform) policy. 

However, under some circumstances, weighted averages might be of more interest, 

e.g., the attribute estimates computed based on a behavior generated by a restricted 

class of policies. If the sample averages are estimated on-line, during learning, they 

naturally refiect the state distribution that the agent is actually experiencing. 

So far we presented the definitions of the attributes for discrete finite state spaces. 

AU the definitions extend naturally to the continuous state spaces by integrating over 

the domains of the state variables instead of using summations. In practice, in the 
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case of a continuous state space, it is also possible to approximate the attributes by 

discretizing the state space and using a histogram approximation of the transition 

probability distribution and a piece-wise constant approximation of the immediate 

reward function. However, using a discretization may not always be possible, for in­

stance, when the state space is high- dimensional. AIso, it can fail to provide the most 

useful information in the case, where a different kind of a function approximator is 

used to represent the value function. If a local architecture is used to approximate the 

value function, the attributes can be associated with local units (e.g., basis functions) 

as opposed to states (similar to the way in which the eligibility traces are used in this 

case, see e.g., [Santamaria et al., 1998]). The attributes will then refiect the MDP 

properties with respect to the chosen approximate representation over the state space 

and can indicate relative characteristics of different representations. We present more 

discussion about this option at the end of this section. 

In the presentation of the attributes ab ove , we also assumed that the transition 

probabilities and means of the immediate rewards were known. If this is not the 

case, the attributes can be estimated from observed samples of state transitions and 

rewards, both for discrete and continuous state spaces. In the following section, we 

describe these estimators. AlI the incremental estimators discussed below allow the 

computation of the attributes on-line, either prior to or in parallei with learning the 

value functions. Thus we can use the attributes to adjust certain learning parameters, 

as we do for the attribute-based exploration strategy presented in Chapter 4. 

3.4.1. Transition Probabilities 

Estimates of the transition probabilities can be used in order to compute sorne 

of the attributes, in particular the State Transition Entropy and the Controllability. 

These estimates can be updated incrementally as follows. 

In the case of a discrete finite state space, for each state-action pair (8, a), we 

need to keep a counter N: for the number of state transitions observed from the 

state-action pair (8, a). This counter is incremented every time the corresponding 
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state-action pair is visited and no termination condition is satisfied. For each state­

action pair (s, a), we also need to keep a set of counters N:s' , one for each possible 

next state Si, of the number of observed transitions ta the corresponding next state 

Si. Each counter is incremented by one every time a transition to the corresponding 

next state is observed from the state-action pair (s, a). The approximate transition 

probabilities are then calculated as follows: 

Pa N:s' \.J 1 S d A 
ss' = Na ,v s, sEan a E 

s 

(3.27) 

In the case of a continuous state space, the state space can be discretized into 

a set of disjoint bins (hypercubes), bi, i = 1, ... , B. Then we maintain a counter Nt 

for each bin-action pair which corresponds to the number of state transition samples 

observed when performing the action a from any state that belongs to the bin bi. 

Then, for each bin-action pair (i, a), we also maintain a set of counters Nt j' for each 

bin j = 1, ... , B corresponding to the next state. Each counter is incremented by 

one every time a transition to any state in the bin bj is observed after performing 

the action a from a state in the bin bi. We can then calculate bin-ta-bin transition 

probabilities as 
N'!'. 

Ptj = ;~ , Vi, j = 1, ... , B and a E A 
t 

(3.28) 

3.4.2. Mean of a Random Variable 

We need to estimate the mean of a random variable for several attributes. First 

of all, we need the means of immediate rewards: R~s' for the (s, a, Si) triples, if they 

are not known a priori; R~ for the state-action pairs (s, a), as defined in Equation 

(3.23); and finally Rs for the states s, as defined in Equation (3.24). We need these 

estimates in order to compute the Reward Information Content and the Risk Fac­

tor attributes. As discussed in Section 3.2, the mean of a random variable can be 

estimated incrementally as in Equation (3.1). Since the rewards have a stationary 

probability distribution, we can use the running average me an estimator. For exam­

pie, assuming a discrete state space, in order to estimate R~s" we use the following 
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update after observing a reward r~s' on a transition from state s to state s' with action 

a: 

Ra .= N~s,R~s' + r~s' (3.29) 
ss' . Na + 1 

ss' 
where N~s' is the number of reward samples observed so far for the corresponding 

triple (s, a, s') not counting the last sample r~s'. 

We can estimate R~ in a similar manner by using all the reward samples observed 

after performing the action a in state s, regardless of the next state. 

Finally, in order to estimate Rs, the mean rewards in the state s under the 

uniform action selection probability distribution, we can use Equation (3.24) and the 

estimates of the means R~ for all actions. 

The estimation of the me an is also required for the computation of the For­

ward Controllability, as in Equation (3.22), which is the me an of the Controllability 

in the successor states with respect to the state transition probability distribution. 

To estimate this attribute for each state-action pair, FC(s, a), we would first need to 

estimate the values C(s') for every state s'and then to estimate the Forward Control­

lability itself for the state-action pairs (s, a). It is possible to update the estimates of 

C(s) and FC(s, a) in parallel (see below for a discussion of an incremental entropy es­

timator involved in computation of C(s) values). In this case, the values FC(s, a) can 

be computed using the mean estimator for a random variable with a non-stationary 

probability distribution in order to account for the changing estimates of C(s') in the 

successor states. The incremental recency weighted average estimator, as in Equa­

tion (3.4) can be used for this purpose. After every observation of a state transition 

from state s with action a to state s', the estimate of the Forward Controllability is 

updated as follows: 

FC(s, a) := (1 - a)FC(s, a) + aC(s') (3.30) 

We can choose either a constant step-size a or use a decreasing schedule, for instance, 

(3.31) 
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where (3 E (0,1) and N~ is the number of samples received so far for the estimation 

of FC(s, a). This rule corresponds to starting with a = 1 (the first sample is the 

estimate of the mean) and then decreasing the learning step a every time a new 

sample is received until eventually the asymptote value of a = (1 - (3) is reached, 

behaving as an estimator with a constant a thereafter. It is appropriate to start with 

high values, because the values of C(s') are expected to change most during the initial 

period and this change should be tracked quickly. 

In the case of a continuous state space, pie ce-wise constant sample mean estimates 

can be obtained by discretizing the state space as discussed above. Alternatively, as 

pointed out before, each sample mean estimator can be associated with a local feature 

of a local function approximator and updated every time the local unit is activated. 

3.4.3. Sample Variance 

We can also estimate the Variance of Immediate Rewards from samples as weIl. 

Since we are computing the sample variance of a stationary random variable, the 

estimation can be done incrementally as follows. Suppose we have a set of samples 

of immediate rewards, r~(i), i = 1, ... , N~, received after taking action a in state s. 

Then the Variance of Immediate Rewards can be computed as the sample variance: 

. Na 

VIR(s,a) = Na
1
_l t [R~ - r~(i)]2 

s i=l 

(3.32) 

where R~ = Ja I:,;::a1 r~(i) is the sample mean, obtained after observing N~ samples. 
8 

We can compute the sample variance incrementally, that is by updating the esti-

mate of VIR(s, a) each time we receive a new sample r~(i) and then discarding this 

sample. This can be do ne using the following transformation of Equation (3.32): 

VI R(s, a) = 1 ""N~ [Ra a( .)] 2 Nf'-l L..ii=l s - rs 1, 

NL1 I:~a1 ([R~]2 + [r~(i)12 - 2R~r~(i)) 

_8
1_ (Na[Ra]2 + ""Ni: [ra(i)]2 _ 2Na[Ra]2) 

N'f-1 s s L..i~=1 s s s 

N/-1 (I:::1[r~(i)]2 - N~[R~]2) 

(3.33) 
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We can maintain the incremental estimates of the sum of squares, ~~1[r~(i)]2, 

and the sample mean, R~, and use them to compute the sample variance on any step 

by employing the formula in the last row of Equation (3.33). The sample mean R~ 

can be computed by the running average estimator and is equivalent to the estimate 

of R~ discussed earlier. 

Once again, in the case of a continuous state space, we can either use a discretiza­

tion of the state space or associate the estimates with the units of a local function 

approximator to compute the attributes, as discussed above. 

3.4.4. Entropy of a Random Variable 

In order to estimate the State Transition Entropy and the Controllability at­

tributes, it is necessary to estimate the entropies of random variables. One possibility 

would be to first estimate the corresponding transition probabilities, as discussed ear­

lier, and then compute all the entropies. Alternatively, we can estimate the entropies 

directly in an incremental manner using the algorithm from [Vignat and Bercher, 

1999]. For example, to estimate the value of STE(s, a) in the case of a discrete state 

space, we can proceed as follows. 

We keep the counters N~ and N~SI as described in Section 3.4.1. Every time we 

receive a new (N~ + l)th transition sample (s, a, Si), we update the entropy estimator 

using the following formula (see [Vignat and Bercher, 1999] for the derivation of this 

update rule:) 

STE(s, a) := :;~l STE(s, a) + N/+l [g(N~) - g(N~sl)] ,for N~ > 1 

g(x) = (x + 1) log(x + 1) - x logx 
(3.34) 

After that the counters N~ and N~SI are also updated. In general, entropies are 

initialized to 0 for N~ = 1. 

It is also possible to estimate illcremelltally the elltropy of a ralldolIl variable 

with a non-stationary probability distribution. In this case, we only need to change 

the weights used to combine the previous estimate and the contribution of the new 

sample, just like in the case of the incremental mean estimator, discussed in Section 
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3.4.2. The update rule then is as follows: 

where {J is a parameter implementing the decreasing schedule. When N~ approaches 

infinity, the term (JN':+l approaches zero. In this case, current estimates ST E(s, a) 

will be weighted with a limiting factor {J and new samples will be weighted with a 

factor of 1 - {J. Usually {J is selected to be greater than 0.5 in order to eventually 

make the contribution of new samples smaller than that of the current estimate. If 

the distribution is expected to become stationary with time, the value of {J can be 

chosen very close to 1, e.g., (J = 0.997. We use this variant of the entropy estimator 

when we want to initialize the estimator of ST E(s, a) to a value different from zero, 

for example an over-estimate of the entropy, which is desirable in sorne situations (see 

Chapter 4). Then gradually the estimate will approach the true value of STE(s, a). 

The entropy can be estimated in the same manner for continuous random vari­

ables, which we need to do for a continuous state space. Just like before, we can 

discretize the state space into a set of disjoint bins and keep the corresponding coun­

ters for the bins, Nia and Nt;, as explained before. Then the estimator of the State 

Transition Entropy is piece-wise constant over the state space, with constant values 

inside the discretization bins. The fOllowing update rule, equivalent to the rule in 

Equation (3.34), can be used upon observing a sample of a transition from the state 

s E bi to the state s' E bj after performing the action a: 

STE(bi , a) := :'L STE(s, a) + m\l [g(Nt) - g(Uij) + log hj] ,for Nt > 1 . . 
where hj is the volume of the bin bj . 

(3.36) 

An update rule, equivalent to Equation (3.35) can be obtained by substituting the 

same weighting factors as in (3.35). 

In order to estimate the Controllability, we need to compute the entropies H(Os) 

and H(OsIAs), as defined in Equation (3.21). The entropy H(OsIAs) can be computed 

as the average of the State Transition Entropies ST E(s, a) over aIl actions in the state 
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s (see Equation (3.20)). The entropy H(Os) can be computed incrementally just like 

the State Transition Entropy in Equations (3.34)-(3.36). In this case we need to 

keep the following counters in each state s: N s (instead of N~) for the number of 

observed transitions from the state s and a set of counters NSS' (instead of N~SI), 

one for each successor state s', for the number of observed transitions to the state s' 

from the state s. Recall, however, that H(Os) is the entropy of the random variable 

Os that corresponds to the outcomes of the state transitions under the uniformly 

random action selection. If the agent's behavior policy is not uniformly random, we 

can proceed in one of two ways as follows. If the behavior policy is E-greedy, then we 

would collect samples for this entropy estimate only on exploration steps when actions 

are chosen uniformly randomly. Alternatively, regardless of the behavior policy, we 

can have a "pigeon-hole" holder, where we would try to collect exactly one sample 

for every action in the state s, then process all these samples and discard them. 

3.4.5. Estimating with Local Function Approximators 

As already pointed out, in the case of a continuous state space, the attributes 

can be associated with units of a local function approximator (e.g., basis functions 

of a RBFN) instead of discretization bins. Below we provide a discussion about how 

this can be do ne in the case when all actions have the same structure of the function 

approximator. For example, if RBFNs are used to represent the action-value function 

of each action, the sets of centers and widths of the RBFs used for different actions 

should be the same. 

We can use the incremental estimators discussed above, updating them on-li ne 

upon the activation of the local units. For many approximators, multiple (overlap­

ping) units can be activated at the same time by each state (recall, e.g., tiles in the 

CMAC architecture discussed in Chapter 2). In this case, estimators associated with 

all activated units have to be updated upon observing a transition for astate-action 

pair (s, a). 
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AIso, in this case, we will need to keep the following counters for the estimation of 

entropies as well as for the estimation of R~SI in Equation (3.29). Let cPi, i = 1, ... , N be 

a set ofunits of the function approximator, e.g., all the tiles in the CMAC architecture. 

For each pair of a unit cPi and action a, we keep a counter Nia for the number of times 

this unit was activated and the action a was performed. Then, let 'li be a set of aH 

possible subsets of units, where the sizes of these subsets depend on the minimum 

and maximum number of units that can be active at the same time. For instance, in 

the CAMC architecture, exactly T tiles are always active, where T is the number of 

tilings. In this case, the size of each subset of units, Wj E 'li, would be T. 

For each unit-action pair (cPi, a) we then keep a set of counters Nt; for the number 

of times that a subset of units Wj was activated by a successor state s'of any state­

action pair (s, a) such that cPi was activated by the state s. Of course, the total 

number of all possible subsets Wj can be large, but it is only necessary to keep the 

record for those subsets that have non-zero counters. Typically, there are few of them 

in practice. 

An approach that would require less counters to be maintained for each unit could 

be used with function approximators, in which activations are continuous as opposed 

to binary, e.g. RBFNs or Sparse Distributed Memories (see Chapter 5) as opposed 

to CMACs. In this case, for each unit cPi' we can keep a set of counters Nt;, where 

j = 1, ... , N (N is the number of units and not subsets of units as before). Each 

counter Nt; will be incremented on every transition (s, a) ----* s', such that the state s 

activates cPi and cPj has the largest activation value among aH units activated by the 

state s'. In this case, we would account for units that contribute most to the values 

of the successor states. We could also use (continuous) amounts of activation instead 

of mere activation counts. 
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3.5. Effect of MDP Attributes on Learning: Empirical Study 

In Section 3.3, we introduced a number of attributes to quantitatively measure 

certain properties of Markov Decision Processes. These attributes reflect mainly the 

amount and the nature of the environment's stochasticity, as weIl as the amount of 

control that the agent has over its environment. We hypothesized that MDP char­

acteristics measured by the proposed attributes have an effect on the quality of poli­

cies obtained after some limited training time with on-hne value-based reinforcement 

learning methods. 

In this section, we focus on empirically verifying this hypothesis with respect to 

two attributes: the State Transition Entropy and the Controllability. In the work of 

Kirman (1995) these attributes appeared to influence the performance of off-hne dy­

namic programming algorithms significantly more than other attributes considered in 

his work. This fact was one of the motivations for starting our empirical investigation 

with these two attributes. AIso, these attributes give the most general characteri­

zation of the domain's stochasticity. Thus, we wanted to investigate whether it is 

possible to detect the effects of these two attributes on the performance of the learn­

ing agent without using more detailed measurements of the reward and value-function 

structure. 

As previously indicated, it is not our objective to build accurate performance pre­

diction models based on attribute values, as it was do ne in [Kirman, 1995]. The work 

of Kirman indicated that such models do not seem to be generally useful for domains 

not involved in the model construction. Here, the objective is to verify our hypoth­

esis concerning the existence of a statistically significant relationship between the 

attribute values and the empirical performance of on-line value-based reinforcement 

learning algorithms, both tabular and approximate. Effects of the MDP properties 

measured by these attributes were not studied for such algorithms in the cxisting 

literature. 

102 



3.5 EFFECT OF MDP ATTRIBUTES ON LEARNING: EMPIRICAL STUDY 

3.5.1. Experimental Methodology 

This section presents a number of experiments aimed at evaluating performance 

of reinforcement learning algorithms on different MDPs. We will first describe the 

type of data and performance measures, which we use to analyze our experimental 

results. 

Experimental Data and Performance Measures 

Because of the stochasticity of MDPs and the randomized nature of reinforcement 

learning algorithms, multiple learning runs are performed for each task, algorithm and 

parameter setting. Each learning run consists either of an unbroken chain of state 

transitions or a number of trials. In the case of episodic MDPs, trials represent 

episodes, and in the case of continuing MDPs, they represent a limited, sufficiently 

large number of simulated steps, after which the system is reset to a new starting 

state. 

One popular way of visualizing experimental results is by plotting average learning 

curves. Learning curves represent a performance measure of interest (for example, 

returns accumulated during learning) as a function of the number of learning trials 

performed on a given MDP. Each point on the learning curve usually represents an 

average of performance measurements over multiple learning runs. 

In the case of on-line reinforcement learning methods, the following performance 

characteristics are usually of interest: 

(i) Solution quality that can be measured by the returns obtained using the policy 

that is greedy with respect to the value function learned. 

(ii) Speed and stability of learning, i.e., how quickly the solution improves and 

how much the performance deviates from its me an or maximum throughout learning. 

(iii) Performance during learning, which is refiected by the rewards accumulated 

by the agent during the entire learning pro cess. 

In the empirical studies presented in this thesis, we focus mainly on the solution 

quality and the evolution of the solution during learning. Performance during learning 
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is usually of interest if the agent has to minimize its loss while learning in a real-world 

setting. 

In order to obtain measurements of the solution quality, we empirically evaluate 

the policies that are greedy with respect to action-value functions obtained at different 

stages of learning. We select a set of test states, from which we start the evaluation 

trials. Such starting test states are usually sampled from the same distribution as 

the starting states for the learning trials. A set of test states is fixed beforehand and 

then used for all evaluations in order to minimize unexplained variance in the data. 

For each start state in the test set, Stest, we estimate the average return of the 

greedy policy, Rt,k (s), s E Stest, where t is the number of elapsed learning trials on the 

kth learning run. Usually, evaluation of greedy policies is performed with a certain 

frequency, so that tE {a, G, 2G, ... , lG} where lG is the total number of learning trials 

on each run. In order to estimate the average return Rt,k (s) for each test state, we 

simulate a certain number of trajectories from the corresponding state and average 

the returns observed. Then we take the average over all test states to obtain greedy 

returns: 

1 
Rt,k = 1 Ste st 1 L Rt,k(S) , t E {a, G, 2G, ... , lG} , k E {1, ... , K} 

SE S te8t 

(3.37) 

The estimated greedy returns Rt,k are then averaged over alllearning runs executed: 

1 K 

Rt = K L Rt,k , t E {a, G, 2G, ... , lG} (3.38) 
k=l 

These average measurements are used to plot learning curves (of Rt as a function of 

t) . 

For the experimental studies that involve many MDPs or algorithms, it can be 

difficult to visualize and compare many learning curves. In this case, other more 

succinct performance measures can be used. 

As previously discussed, convergence cannot always be achieved in practice in 

reinforcement learning (e.g., due to the use of function approximation, limited training 
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time, sub-optimal settings of user-tunable parameters, etc.). TypicalIy, the agent's 

behavior does not improve monotonically with every learning trial and thus certain 

variations in performance may occur throughout learning. Because of this, the agent 

would usually keep a record of the best greedy policy found in the course of a learning 

run and consider it to be a solution instead of the policy obtained at the end of a 

designated learning period. Rence, one possibility is to measure the solution quality 

using the average returns of the best greedy policies obtained in the course of each 

learning run. We calI this measure the average Best Greedy Return: 

1 K ( ) BGR= - L max Rtk K tE{O,G,2G, ... ,lG}' 
k=l 

(3.39) 

This measure is used as an indicator of the overall solution quality achieved, on 

average, by the algorithm on a given task. 

We are also interested in analyzing the evolution of the solution quality over the 

learning period. One possibility is to compute the sum of greedy returns over aIl 

trials on each learning run and average it over aIl runs. We calI this measure the 

Cumulative Greedy Return: 

K 

CGR= ~ L L Rt,k 
k=l tE{O,G,2G, ... ,IG} 

(3.40) 

Although learning speed and stability are very important performance character­

istics, to the best of our knowledge, there is no standard measure to evaluate them 

accurately. The Cumulative Greedy Return measure would fail to capture perfor­

mance differences if, for example, one learning curve is steeper than another learning 

curve at the beginning but then exhibits asymptotic performance that is lower or 

has more variance. 80 we use a variant of the Cumulative Greedy Return measure 

that helps, to sorne extent, in highlighting differences in such situations. It is usually 

possible to estimate an upper bound, Rmax, on the return of an optimal policy for 

a given task. For instance, we can obtain such an estimate by assuming that the 

maximum possible reward can be obtained on each step. We can assign penalties 
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for not reaching the Rmax bound at different stages of learning and then accumulate 

such penalties on a given run. More specifically, we use the following performance 

measure, which we call the Cumulative Weighted Penalty: 

cWP = ~ ~ ~ !:.-.(Rmax - R ) K [ 1 K ~ ~ lG t,k 
k==l tE{O,G,2G, ... ,IG} 

(3.41) 

Because of the weights l~' failure to come close to the upper bound Rmax is penalized 

more as the number of learning trials increases, because we expect the performance to 

get (and stay) better with learning. Hence, this measure gives lower penalties to those 

learning methods that achieve better asymptotic performance and do not deviate 

much from their best solutions. Figure 3.5 shows an example of two curves. Neither 

the Best Greedy Return measure nor the Cumulative Greedy Return measure find 

much difference in the performance they represent, whereas the Cumulative Weighted 

Penalty me as ure indicates that the performance represented by Curve 1 is better (it 

has a lower penalty). 

10,-----,-----.--------,--------.----, 

2 .. 

- Curve 1: BGR=9.20; CGR=815.09; CWP=S5.92 
- Curve 2: BGR=9.20; CGR=816.12; CWP=79.31 

2000 4000 6000 BOOO 10000 

Trial 

FIGURE 3.5. Example of different performance measures. BGR stands for 
the Best Greedy Return measure, CGR - for the Cumulative Greedy Return 
measure and CWP - for the Cumulative Weighted Penalty. 

In this section, we want to study the performance of reinforcement learning al­

gorithms on classes of MDPs, such that MDPs in a given class are characterized by 

particular values of the studied MDP attributes. To draw general conclusions about 

the performance of an algorithm on a class of MDPs, the experiments should be 
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performed on multiple MDPs belonging to that class. For different MDPs, optimal 

policies may have different returns, hence upper bounds on the performance measures 

are different. This is why it is not always meaningful to aggregate directly (e.g., aver­

age) performance measurements, such as discussed above, for different MDPs in the 

class. In this case, it is necessary to normalize performance measurements for each 

MDP in order to obtain a common baseline. 

It would be best to normalize with respect to the expected returns of the optimal 

policy of the corresponding MDP, if it can be obtained by independent means, for 

example, by applying a dynamic programming algorithm. In this case, it is also 

desirable to account for a difference in returns attainable by the optimal policy and by 

the uniformly random policy (behavior of an untrained agent9
). We use the following 

normalization for greedy returns: 

R R rand 
A tk-

Rt,k = R~ _ Rrand ,t E {O, C, 2C, ... , lC} , k E {1, ... , K} (3.42) 

where ROP represents the average return of the optimal policy on the starting test 

states and Rrand represents the average return of the uniformly random policy on the 

same set of start states. Greedy returns Rt,k are computed as explained above. In 

Equation (3.42), the denominator represents the advantage of the optimal policy over 

the random one (i.e., the amount to be learned), and the numerator represents the 

advantage of the learned policy over the random one. Rence, the ratio represents how 

much of the required performance gain the agent achieved through learning. 

Normalized greedy returns can be used to compute other performance measures, 

such as the Best Greedy Return measure and the Cumulative Weighted Penalty mea­

sure. Such measures can then be averaged over aH tested MDPs that belong to a 

particular class. 

Unfortunately, optimal policies cannot always be obtained by independent means. 

In some experiments, we use MDPs with continuous state spaces, for which only 

9Note that the agent's behavior is usually initialized to the uniformly random poliey at the beginning 
of learning. 
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simulation models are available, but not explicit MDP models. In this case, an 

obvious performance baseline is the performance of the uniformly random policy. As 

we will show later, it can also provide an acceptable normalization factor and yield 

results that are qualitatively similar to those obtained by using normalization with 

respect to the optimal performance. 

3.5.2. Benchrnark Dornains 

In this empirical study, our objective is to consider both tabular and approximate 

reinforcement learning algorithms. Thus, we conduct our experiments on domains 

with discrete (small) state spaces as well as on MDPs with continuous state spaces. 

In order to study empirically the effect of the State Transition Entropy and the 

Controllability attributes on learning, it is desirable to consider a range of values of 

these attributes and to vary them independently. Unfortunately, the main collection 

of experimental tasks available from the "Reinforcement Learning Repository" at the 

University of Massachusetts, Amherst 10 , that are currently used in the reinforcement 

learning community, contains only a handful of domains, and the continuous tasks 

are mostly deterministic. So our experiments were performed on artificial, randomly 

generated MD Ps (both discrete and continuous) as well as on randomized versions 

of a well-studied Mountain-Car task [Sutton and Barto, 1998]. We will now describe 

these domains. 

Random MDPs 

Random discrete MDPs have already been used in the literature for experimental 

studies with tabular reinforcement learning algorithms. We use as a starting point 

a design suggested by Sutton and Kautz for discrete, enumerated state spaces ll , but 

we extend it in order to allow feature-vector representations of the states, where the 

features can be either discrete or continuous. Figure 3.6 shows how transitions a.rp 

performed in a random MDP. The left panel shows the case of a discrete, enumerated 

10www-anw.cs.umass.edujrlr 
llwww.cs.umass.edujcvrichjRandomMDPs.html 
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state space, as used by Sutton and Kautz. For each state-action pair (s, a) the next 

state s' is selected from a set of b possible next states, according to the probability 

distribution P(s, a, sj),j = 1, ... , b. The reward is then sampled from a normal distri­

bution with mean R(s, a, s') and variance V(s, a, s'). Such random MDPs are easy to 

generate automatically. 

s' 
vl-.N(Mjl (s,a), Vjl (s,a)) ... vn-.N(Mjn(s,a). Vjn(s,a)) 

'-- ) V-
s' r-.N(R(s,a,s'), V(s,a,s')) 

r - .N(R(s, a,s'), V (s,a,s')) 

FIGURE 3.6. Random MDPs. Left: enumerated states; right: feature-vector states. 

Our random MD Ps are a straightforward extension of this design. Astate is 

described by a feature vector: s = (Xl, ... , X n ), with Xi E [0,1], i E {l, ... , n}. State 

transitions are governed by a mixture of b multivariate normal distributions N (/1j, O"j), 

with means /1j = (/1J,···/17) and variances O"j = (O"], ... O"j), j = l, ... ,b (Gaussians 

with diagonal covariance matrices). The parameter b is called the branching fac­

tor. The means /1; = MJ (s, a) and variances 0"; = Vji (s, a) are functions of the 

current state-action pair (s, a). Sampling from this mixture is performed hierarchi­

cally: first, one of the b Gaussian components is selected according to probabilities 

Pj(s, a),j = 1, ... b, then the next state s' is sampled from the selected component, 

N (/1j, O"j). Sampling from such a component can be done independently for each 

state variable, since we use diagonal covariance matrices. Note, that even though this 

assumes independence of state variables on the sarne Lime ::>Lep, each sLaLe variable 

depends on values of all state variables on the previous time step through functions 

/1; = MJ (s, a), 0"; = Vji (s, a) and Pj (s, a). We can always recover a discrete model 

from this case by setting the variances 0"; to zero and using discrete feature values. 

109 



3.5 EFFECT OF MDP ATTRIBUTES ON LEARNING: EMPIRICAL STUDY 

Mixtures of Gaussians are a natural and non-restrictive choice for modeling multi­

variate distributions. Of course, one can use other basis distributions as weIl. Once 

the next state s' is determined, the reward for the transition is sampled from a nor­

mal distribution with mean R(s, a, s') and variance V(s, a, s'). Episodic tasks can be 

modeled by using a termination probability distribution P(s') over states. 

We designed a generator for random MDPs of this form, which uses as input a 

textual specification of various parameters, for instance, the number of state variables, 

actions, a branching factor (number of Gaussian components) for each action, lower 

and upper bounds for the variance of Gaussian components, etc. The branching 

factor can be either uniform across the entire state space or vary randomly across 

state-action pairs within a specified range. 

In our experiments we used piecewise constant functions to represent Pj ( s, a) , 

MJ(s, a), "'7(s, a), R(s, a, s') and V(s, a, s'). For each such piecewise constant func­

tion, the origin of the discretization grid is displaced randomly in a small neighbor­

hood of the zero feature vector12 . In this way, the states that, for example, share the 

same state transition mean, do not necessarily have the same transition variances, 

transition probabilities and rewards. In order to obtain random MDPs, the parame­

ters of these functions (constants for discrete partitions) are randomly generated. 

Mountain-Car Domain 

The Mountain-Car domain [Sutton and Barto, 1998] is a very well-studied min­

imum time-to-goal task. The agent has to drive a car up a steep hill by using three 

actions: full throttle forward, full throttle reverse, or no throttle. The engine is not 

sufficiently strong to drive up the hill directly, so the agent has to build up sufficient 

energy first, by accelerating away from the goal. The state is described by two con­

tinuous state variables: the current position and velo city of the car. We use the state 

dynamics exactly as described in [Sutton and Barto, 1998]. The rewards are -1 for 

every time step, until the goal is reached. If the goal has not been reached after 1000 

12It is similar to the CMAC architecture (see Chapter 2), where tilings are displaced with respect 
to one another by a small random amount. 
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tirne steps, the episode is terrninated. This task is usually rnodeled in a deterrninistic 

setting. For our experirnents, we introduced sorne noise into the classical version. 

More specifically, we perturbed the car position on every time step (after applying 

the original state transition function) by a zero-mean Gaussian noise. The corre­

sponding Gaussian variance was selected so that the resulting task does not become 

trivial (that is, the agent should not end up in the goal state by chance with a very 

high probability). 

3.5.3. Experimental Results 

This section presents results of our experiments with the on-line value-based 

reinforcement learning algorithm Sarsa (see Chapter 2) on several sets of MDPs, 

characterized by different values of the State Transition Entropy and Controllabil­

ity attributes. We consider tabular Sarsa(O) as well as approximate Sarsa(À) using 

CMACs to represent action-value functions. 

3.5.3.1. Results for Discrete Random MDPs 

Test MDPs 

This experiment was performed on a set of 65 discrete random MDPs. All of them 

have two state variables and two actions. Each state variable can take 25 discrete 

values (625 states total). 

For each test MDP, we computed the value of the State Transition Entropy (STE) 

for each state-action pair and averaged them over aU pairs in order to obtain a global 

attribute value. Similarly, we averaged the values of the Controllability over aU states 

to obtain the global attribute value for each task. 

We formed 13 groups of discrete random MDPs with different global values of 

the State Transition Entropy and the ControUability attributes. Each group contains 

5 MDPs. For the purpose of these experiments, we chose MDPs with the attribute 

values distributed in such a way that we could study the effect of one attribute 

while keeping the other attribute fixed. The global values of the attributes in the 

groups of random MDPs tested are shown in Figure 3.7. It is not possible to obtain a 
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FIGURE 3.7. Global values of the State Transition Entropy and the Con­
trollability attributes for discrete random MDPs in the test set. Each circle 
corresponds to a combination of attribute values for one MDP. 

complete two-way factorial experimental design (where aH fixed levels of one attribute 

are completely crossed with aH fixed levels of the other attribute), because the upper 

bound on the ControUability values is dependent on the values of the State Transition 

Entropy. Note that each group of random MDPs contains tasks that have similar 

attribute values, but which were obtained with different parameter settings for the 

random MDP generator, for example, different bounds on the branching factor. Thus, 

MDPs within each group are in fact quite different in terms of their state transition 

structure and rewards. AU MDPs are continuing tasks with a discount factor of 0.95. 

Experimental Results 

The experimental settings are summarized in Table 3.2. In order to evaluate the 

performance of the Sarsa(O) algorithm, we used two performance measures discussed 

earlier in this section: the Best Greedy Return measure (BGR, see Equation (3.39)) 

and the Cumulative Weighted Penalty measure (CWP, see Equation (3.41)). To 

compute these measures, we used normalized greedy returns, because we aggregated 

measurements for all MDPs in each group, as will be explained below. Figure 3.8 

shows results for the case, in which greedy returns were normalized with respect to 

the returns of the optimal policy on the test states, as in Equation (3.42). Optimal 

policies were computed by the Value Iteration algorithm (see Chapter 2) using exact 
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RL algori thm Sarsa(O) 
Value-function representation Table 
Exploration strategy E-greedy, constant E 
Exploration parameter settings tested E E {0.01,O.l,O.3,O.5} 
Learning rate schedule Decreasing: ŒN = {3:+~1 
Learning rate settings tested {3 E {O. 75,0.9,0.95, 0.98} 
Number of learning trials per run 10000 
Number of runs 15 
Frequency of greedy policy evaluation Every 100 trials 
Number of simulated trajectories for 30 
greedy policy evaluation 
Start state distribution Uniform over the whole state space 
Number of test states 100 

TABLE 3.2. Experimental settings for discrete random MDPs. 

MDP models. In order to obtain the returns of the optimal policy on the test states, 

the optimal policy was simulated for 30 trials (1000 time steps each) from each test 

state and the returns observed were averaged over all trials and test states. Thus, the 

returns of the optimal policy were estimated in the same way as the returns of the 

greedy policies obtained during learning with Sarsa(O). The returns of the uniformly 

random policy, which are used in Equation (3.42), were estimated in the same way. 

Experiments on each task were performed using a number of settings for the 

exploration and learning rate parameters13
, as specified in Table 3.2. Performance 

measures were first obtained for each task and each combination of the exploration 

parameter and the learning rate parameter setting tested. We then identified param­

eter settings that produced best results for each task14 and used the corresponding 

performance measurements to pro duce the graphs in Figure 3.8. Measurements on the 

graphs represent averages over the 5 tasks in each MDP group and over 15 learning 

runs for each task. 

13The ranges of the parameter values tested were selected based on prior experiments. We selected 
those values, with which the agent was making a reasonable progress. 
141n these experiments, bath the Best Greedy Return measure and the Cumulative Weighted Penalty 
measure attained best values for the same parameter settings. 
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Discrele Random MDPs Discrele R"ndom MDPs 

FIGURE 3.8. Discrete random MDPs. Performance me as ures are computed 
based on greedy returns normalized with respect to the returns of the optimal 
policy. Performance measurements represent averages over 5 MDPs in each 
group and over 15 learning runs for each MDP. Each bar is topped with the 
standard deviation. Low STE corresponds to values rv 0.5, medium STE 
corresponds to values rv 1.5 and high STE corresponds to values rv 2.5. 

From Figure 3.8, we can see that for each level of the State Transition Entropy 

tested, the Controllability has an effect on performance. As the Controllability in­

creases, the performance improves, both in terms of the Best Greedy Return measure 

(see the left panel) and the Cumulative Weighted Penalty measure (see the right 

panel, where the lower the bars, the smaller the penalties and hence, the better the 

performance). As discussed in Section 3.3, in MDPs with high Controllability values, 

the agent has better control over the outcomes of its actions. For highly controllable 

MDPs, action outcomes differ significantly in terms of their state transitions and po­

tentially in terms of the values of their successor states. Thus, it may be easier for 

the agent to differentiate between the values of different actions, which can facilitate 

learning. Also, as previously discussed, exploration can be more efficient in highly 

controllable MDPs, since taking different exploratory actions leads to different parts 

of the state space. This can also affect performance in a positive way. 

We can also see from Figure 3.8 that an increase in the State Transition Entropy 

can have a negative effect on performance. As discussed in Section 3.3, high values 

of the State Transition Entropy can be associated with an increased variance of value 

samples and thus can make learning more difficult. 
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From Figure 3.8, we can also observe sorne interaction effect between the two 

attributes. In particular, the positive effect of high Controllability on performance 

appears to be more pronounced as the State Transition Entropy increases. From a dif­

ferent perspective, the negative effect of high State Transition Entropy diminishes as 

the Controllability increases. High State Transition Entropy makes it even harder for 

the agent to determine relative goodness of different actions when the Controllability 

is low. Hence, its negative effect is more pronounced across the low Controllability 

groups. On the other hand, with high Controllability, the distinctions between dif­

ferent actions are clearer, even if each action is highly stochastic. In this case, high 

State Transition Entropy can exhibit a positive effect through improved exploration, 

as we explained in Section 3.3. This, as discussed in Section 3.3, may be particularly 

beneficial for highly controllable MDPs, where many states should be explored as 

soon as possible to be able to tease apart differences in the values of different actions. 

In Figure 3.9, we provide examples of selected learning curves, where error bars 

represent standard deviations computed over 15 learning runs. We selected one MDP 

from three groups of random MDPs with low State Transition Entropy values (see the 

left panel) and one MDP from the groups with high State Transition Entropy values 

(see the right panel). We show learning curves for one MDP only in each group (as 

opposed to averaging over aIl MDPs in each group) in order to clearly illustrate the 

learning progress and variance on any given MDP. The graphs are quite similar for 

different selections of MDPs. On these graphs, we can see the same trends as those 

reflected on the bar-graphs in Figure 3.8. Note that the variance in the performance 

decreases as the Controllability increases, whereas the variance increases as the State 

Transition Entropy increases, as would be expected. 

We performed statistical tests to determine statistical significance of the empirical 

results obtained. In particular, we performed classical two-way analysis of variance 

(ANOVA) (see, e.g., [Cohen, 1995]). Two-way-ANOVA estimates the statistical sig­

nificance of the effects of two independent factors on a dependent variable. In our 

115 



3.5 EFFECT OF MDP ATTRIBUTES ON LEARNING: EMPIRICAL STUDY 

[§' 
::l ;;, 
cr: 
-@'04 . 
~ 
Cl" 

Trial Trial 

FIGURE 3.9. Selected learning curves, based on greedy returns normalized 
with respect to the returns of the optimal policy, for discrete random MDPs. 

case, the two independent factors are the State Transition Entropy and the Con­

t roll ab ilit y attributes, and the dependent variable is the algorithm's performance. 

Two-way-ANOVA evaluates the independent effects of the two factors as well as the 

interactions among the factors that help to explain the variance in the dependent 

variable. 

Classical two-way-ANOVA relies on a two-way factorial design, where all tested 

levels of one factor are crossed with all tested levels of the other factor (i.e., all 

combinat ions are tested). However, recall that we could not create a complete two­

way factorial experimental design, because it is impossible to generate MDPs with 

certain combinations of values of the State Transition Entropy and the Controllability 

(see Figure 3.7). So we performed two-way-ANOVA on two subsets of MDP groups 

separately, such that each subset represents a complete factorial experiment. One 

test was performed for the MDP groups with the attribute values STE E {0.5, 1.5} x 

C E {0.05, 0.2, 0.4, 0.6, 0.8}. The second test was performed for the groups with the 

attribute values STE E {0.5, 1.5,2.5} x C E {0.05,0.2,0.4} (see figures 3.10 and 

3.11). 

We analyzed the results with respect to the two performance measures com;id­

ered. Data analyzed by the two-way-ANOVA test has a form of a two-dimensional 

table, where each cell corresponds to an experimental condition defined by a par­

ticular combination of factor values. Each cell contains a number of samples of the 
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dependent variable in the corresponding experimental condition. In our case, each 

sample represents an average performance measurement (the Best Greedy Return or 

the Cumulative Weighted Penalty) for Sarsa(O) on one MDP. Thus, the number of 

samples in each cell is equal to 5, i.e., the number of MDPs in each group. Our 

experiment does not contain repeated measures, as each MDP is tested only in one 

experimental condition. Hence, we perform two-way-ANOVA without repeated me a­

sures. The results are summarized in figures 3.10 and 3.11, for two factorial designs 

respecti vely. 

w 
t-
Ul 

1.5 

0.5 

" 0 

"" 90 o·~ 0 
.. _~:o. 

0 , '0 " i> 

.. ~ .. .o~ .... ~o .. 0 

H~O .°0 
,0 

g 80 

0.06 0.2 0.4 0.6 0.8 
Controllability 

ST E E {0.5, 1.5} x C E {0.05, 0.2, 0.4, 0.6, 0.8}; ddf=40 
1 BGR 1 CWP 

FSTE (ndf=l) 44.08 4.09 
1 - PSTE 0.99 0.95 
Fc (ndf=4) 15.05 2.54 
1- Pc 0.99 0.95 
Fint (ndf=4) 2.04 2.19 
1 - Pint 0.89 0.91 

FIGURE 3.10. Two-way-ANOVA for subset 1 of discrete random MDPs. 
Performance measures are normalized W.r.t. the optimal policy. Values of 
F and 1 - p represent F -statistic and confidence level respectively. Values of 
"ndf' and "ddf' represent numerator and denominator degrees of freedom. 
Subscripts STE and C refer to the effects of the State Transition Entropy 
and the Controllability. Subscript int refers ta the interaction effect between 
the two factors. 

We can see from Figure 3.10 that both the State Transition Entropy and the Con­

trollability have independent effects, which are statistically significant at confidence 

levels of 0.95 or higher for both performance measures considered. This test does 

not reveal that the interaction effect between the two attributes is significant. The 
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second test, summarized in Figure 3.11, also shows significant independent effects of 

the two attri butes (confidence levels are 0.98 and higher). In this test, the effect of the 

Controllability is even larger, as can be seen from higher values of the corresponding 

F statistic. We can also see from Figure 3.8 that the effect of the Controllability is 

the strongest for the highest level of the State Transition Entropy, which is included 

in this test. This test also shows a significant interaction between the two attributes. 

Indeed, we could perceive some interaction effect by visually inspecting Figure 3.8, 

as already discussed. 
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0.4 0.6 0.8 
Controllability 

ST E E {0.5, 1.5, 2.5} x CE {0.05, 0.2, 0.4}; ddf=36 
1 BOR 1 CWP 

FSTE (ndf=2) 38.76 5.03 
1- PSTE 0.99 0.98 
Fc (ndf=2) 25.49 9.73 
1-pc 0.99 0.99 
Fint (ndf=4) 7.85 4.16 
1 - Pint 0.99 0.99 

FIGURE 3.11. Two-way-ANOVA for subset 2 of discrete random MDPs. 
Performance measures are normalized W.r.t. the optimal policy. Values of 
F and 1 - p represent F -statistic and confidence level respectively. Values of 
"ndf" and "ddf" represent numerator and denominator degrees of freedom. 
Subscripts STE and C refer to the effects of the State Transition Entropy 
and the Controllability. Subscript int refers to the interaction effect between 
the two factors. 

We also computed the Hays' statistic (see e.g., [Cohen, 1995]) for our experimell­

tal results, which measures the amount of predictive power of an independent factor 

under investigation. Although we are not trying to build predictive models of per­

formance based on the attribute values, this statistic gives another assessment of the 
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BGR CWP 
STE 10% 7% 
C 13% 9% 
Group 18% 20% 

FIGURE 3.12. Predictive power of the attribute values (Hays statistic) for 
dis crete random MDPs. Performance measures are normalized W.r.t. the 
optimal policy. 

strength of the statistical relationship between the independent and dependent vari­

ables. As discussed in [Cohen, 1995], values of this statistic that are greater than 10 

indicate practical usability of the considered independent factors for building predic­

tive models. In our case, we measured the predictive power of the MDP group, which 

corresponds to a particular combinat ion of the two attribute values. As in the case of 

two-way-ANOVA, each data sample represents an average performance measurement 

on one MDP in the considered group. We also measured the predictive power of the 

State Transition Entropy and the Controllability attributes separately. The results 

are summarized in Figure 3.12. We can see that the combination of the two attribute 

values (predictive power ofthe MD P group) indicates potential practical usefulness of 

the attribute values. The predictive power of each attribute in isolation appears to be 

lower, which is consistent with the fact that two-way-ANOVA detected a significant 

interaction effect between the two attributes. 

We also performed a similar analysis for the performance measures obtained based 

on greedy returns normalized with respect to the performance of the uniformly ran­

dom policy. The objective was to verify whether performance measures based on 

such a normalization would lead to similar conclusions. If the results are similar for 

the normalizations with respect to the random and optimal policies, then we can use 

random policy normalization in our further experiments with continuous state space 

MDPs, for which we cannot compute optimal policies by independent means, such as 

dynamic programming. 

The returns of the uniformly random policy on the test start states were estimated 

in the same manner as described earlier. Each performance measurement (the Best 
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Greedy Return and the Cumulative Weighted Penalty) was then computed using 

ratios of greedy returns Rt,k (see Equation (3.37)) to the estimated returns of the 

uniformly random policy on the corresponding task: 

- Rtk 
Rt,k = Rr~nd ' k E {l, ... , K}, t E {O, G, 2G, ... , IG} 

Discrele Random MDPs Discrele Random MDPs 

FIGURE 3.13. Discrete random MDPs. Performance measures are computed 
based on greedy returns normalized with respect to returns of the uniformly 
random policy. Performance measurements represent averages over 5 MDPs 
in each group and over 15 learning runs for each MDP. Each bar is topped 
with the standard deviation. 

(3.43) 

Figure 3.13 shows experimental results based on this normalization. The graphs 

were produced using performance measurements for the same optimal settings of the 

exploration and the learning rate parameters as before. We can see that the results are 

very similar qualitatively. Most trends that were previously observed are preserved 

in these results: performance improves as the Controllability increases and degrades 

as the State Thansition Entropy increases. As before, a negative effect of the State 

Thansition Entropy diminishes as the Controllability increases. 

We performed statistical tests in the same manner as before. They are summa­

rized in figures 3.14 and 3.15. The results show that the independent effects ofthe two 

attrilmtes are statistically significant. The effect of the Controllability appears more 

significant with this analysis. This can be expected, because the Controllability mea­

sures differences in the state transitions of different actions compared to the uniform 

action selection (which is a baseline policy in this analysis). The interaction effect 
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ST E E {0.5, 1.5} x C E {0.05, 0.2, 0.4, 0.6, 0.8}; ddf=40 
1 BGR 1 CWP 

F STE (ndf=l) 11.74 12.18 
1 - PSTE 0.99 0.99 
Fc (ndf=4) 15.78 18.62 
1- Pc 0.99 0.99 
F int (ndf=4) 0.96 1.02 
1 - Pint 0.56 0.59 

FIGURE 3.14. Two-way-ANOVA for subset 1 of discrete random MDPs. 
Performance measures are normalized W.r. t. the uniformly random policy. 
Values of F and 1 - p represent F-statistic and confidence level respectively. 
Values of "ndf" and" ddf" represent numerator and denominator degrees of 
freedom. Subscripts STE and C refer to the effects of the State Transition 
Entropy and the Controllability. Subscript int refers to the interaction effect 
between the two factors. 

between the two attributes is not as pronounced with these measurements compared 

to the case of normalization with respect to the performance of optimal policies. 

We also estimated the predictive power of the attribute values in this case, similar 

as explained ab ove. The results are summarized in Figure 3.16. We see similar trends 

here as well: the MDP group (combination of the two attribute values) has the most 

predictive power and each attribute has less predictive power in isolation. 
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ST E E {0.5, 1.5, 2.5} x C E {0.05, 0.2, 0.4}; ddf=36 
1 BGR 1 CWP 

FSTE (ndf=2) 16.30 19.11 
1 - PSTE 0.99 0.99 
Fe (ndf=2) 20.31 25.78 
1-Pe 0.99 0.99 
Fint (ndf=4) 0.77 0.98 
1 - Pint 0.44 0.56 

FIGURE 3.15. Two-way-ANOVA for subset 2 of discrete random MDPs. 
Performance me as ures are normalized w.r.t. the uniformly random policy. 
Values of F and 1 - p represent F -statistic and confidence level respectively. 
Values of "ndf" and" ddf" represent numerator and denominator degrees of 
freedom. Subscripts STE and C refer to the effects of the State Transition 
Entropy and the Controllability. Subscript int refers to the interaction effect 
between the two factors. 

BGR CWP 
STE 6% 7% 
C 10% 10% 
Group 24% 25% 

FIGURE 3.16. Predictive power of the attribute values (Hays statistic) for 
discrete random MDPs. Performance measures are normalized w.r.t. the 
uniformly random policy. 
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3.5.3.2. Results on Continuous Random MDPs 

In this set of experiments, our objective was to investigate whether the effects 

of the State Transition Entropy and the ControHability attributes would be similar 

in the case of the approximate Sarsa algorithm compared to tabular Sarsa, which we 

studied in our experiments with discrete random MDPs. So in these experiments, we 

use MDPs with continuous state spaces and we use CMAC function approximators 

(see Chapter 2) to represent action-value functions. 

Test MDPs 

We tested 45 continuous random MDPs. AH of them have two state variables 

and two actions. Each state variable takes values from the interval [0, 1]. The piece­

wise constant functions Pj(s,a), Mj(s,a), Vji(S, a), R(s,a,s') and V(s,a,s'), used 

to specify the dynamics of random MDPs as discussed ab ove , were generated using 

discretizations of size 25 x 25, where the grid origin for each function was displaced 

by a random amount L\ < 0.03 in each state dimension. For each state variable, we 

imposed an upper bound of 0.1 on the absolute difference between the value of the 

corresponding state variable in the current state and its value in the next state, in 

order to prevent big erratic jumps across the state space. 

For each task, attribute values were estimated using a 10 x 10 discretization of 

the state space, as described in Section 3.4. We sampled uniformly randomly 100 

states (independently of the discretization), and for each of the sampled states, we 

collected 500 samples of state transitions, which provided counts of transitions to each 

of the discrete bins. Values of the State Transition Entropy and the Controllability 

were estimated for each of the sample states (and each action, in the case of the 

State Transition Entropy) and then averaged to obtain global attribute values for 

each MDp15 . 

15 Attribute values were also estimated for a sample of states obtained using the state distribution 
generated by following a uniformly random poliey instead of the uniform state sampling. For our 
random MDPs, global attribute values were very similar under the two distributions. 
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FIGURE 3.17. Global values of the attributes for continuous random MDPs 
in the test set. Each circle represents a combinat ion of the attribute values 
of one MDP. 

We studied 9 groups of continuous random MDPs, where each group contained 

5 tasks. Global values of the attributes in the considered MDP groups are shown 

in Figure 3.17. As in the case of the experiments with discrete random MDPs, it is 

not possible to obtain a complete two-way factorial experimental design. Like in the 

case of discrete random MDPs, continuous random MDPs in each group have similar 

attribute values but are quite different in terms of their state transitions and rewards. 

This could be achieved by using different settings for the random MD P generator, 

such as different combinations of bounds on the state transition and reward variance 

and the branching factor. AH MDPs are continuing tasks with a discount factor of 

0.95. 

Experimental Results 

The experimental settings are summarized in Table 3.3. The performance mea­

surements that are shown on the figures below were obtained based on greedy returns 

normalized by the returns of the uniformly random policy. Normalization was done 

in the same manner as in the case of discrete random MDPt-i. For the cOlltillUOUt-i 

random MDPs, we are not able to obtain independent estimates of the optimal pol­

icy, and hence we are not able to do normalization with respect to the returns of the 

optimal policy. As in the previous experiments, we tested a number of settings of 
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RL algori thm Sarsa(O) 
Value-function representation CMACs of size 500 
Exploration strategy E-greedy, constant E 
Exploration parameter settings tested E E {0.01, 0.1,0.3, 0.5} 
Learning rate schedule Constant 
Learning rate settings tested (3 E {0.025,0.05,0.1,0.15} 
Number of learning trials per run 10000 
Number of runs 15 
Frequency of greedy policy evaluations Every 100 trials 
Number of simulated trajectories for 30 
greedy policy evaluation 
Start state distribution Uniform over the whole state space 
Number of test states 100 

TABLE 3.3. Experimental settings for continuous random MDPs. 

the exploration and learning rate parameters for each task. The figures below were 

produced using the best parameter settings for each task, as described earlier in the 

case of discrete random MDPs. 

Figure 3.18 shows the results for the experiments with continuous random MDPs. 

The graphs show the same performance trends with respect to the attribute values 

as in the case of discrete random MDPs. Thus the results appear to be consistent for 

both tabular and approximate Sarsa using linear function approximation architecture 

CMAC. We experimented with different sizes of function approximators and obtained 

qualitatively similar results in aIl cases. The only differences observed were that the 

coarser the function approximator, the less of a positive effect is observed with an 

increase of the ControIlability values, especially for small values of this attribute. 

This would be expected, because a coarse function approximator (that aggregates 

large areas of neighboring states) is not capable of discriminating small differences in 

state transitions. 

For the results obtained in these experiments, we performed statistical tests in 

a similar manner as for the dis crete random MDPs. As before, we performed two 

separate two-way-ANOVA tests for two subsets of MDP groups: one test for STE E 
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Continuous Random MDPs; CMAC of size 500 
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FIGURE 3.18. Performance of the Sarsa(O) algorithm for continuous ran­
dom MDPs. The action-value functions are represented by CMACs of size 
500. Performance measures are computed based on greedy returns normal­
ized with respect to returns of the uniformly random policy. Performance 
measurements represent averages over 5 MDPs in each group and over 15 
learning runs for each MDP. Each bar is topped with the standard deviation. 

{0.5, 1.5} X C E {0.05, 0.25, 0.5} and the other test for STE E {0.5, 1.5, 2.5} x C E 

{0.05,0.25}. The results are summarized in figures 3.19 and 3.20. The statistical 

results are similar to those for discrete random MDPs with performance measures 

normalized with respect to returns of the uniformly random policy. The tests show 

statistically significant independent effects of the two attributes but no interaction 

effect. 

We also estimated the predictive power of the attribute values, as explained 

before. The results are shown in Figure 3.21, indicating a significant statistical re­

lationship between the combination of the attribute values and the performance of 

approximate Sarsa. 
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2.5 .. 

0.05 025 0.5 0.75 
Controllability 

ST E E {0.5, 1.5} x C E {0.05, 0.25, 0.5}; ddf=24 
1 BGR 1 CWP 

FSTE (ndf=1) 41.01 40.65 
1 - PSTE 0.99 0.99 
Fo (ndf=4) 22.37 9.53 
1- Po 0.99 0.99 
Fint (ndf=4) 0.06 0.05 
1 - Pint 0.05 0.04 

FIGURE 3.19. Two-way-ANOVA for subset 1 of continuous random MDPs. 
Performance measures are normalized w.r.t. the uniformly random policy. 
Values of F and 1 - p represent F -statistic and confidence level respectively. 
Values of "ndf" and" ddf" represent numerator and denominator degrees of 
freedom. Subscripts STE and C refer to the effects of the State Transition 
Entropy and the Controllability. Subscript int refers to the interaction effect 
between the two factors. 
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0.05 025 0.5 0.75 
Controllability 

ST E E {0.5, 1.5, 2.5} x C E {0.05, 0.25}; ddf=24 
1 BGR 1 CWP 

FSTE (ndf=2) 31.41 31.97 
1- PSTE 0.99 0.99 
Fe (ndf=2) 7.79 4.91 
1- Pc 0.99 0.99 
Fint (ndf=4) 0.08 0.07 
1 - Pint 0.08 0.06 

FIGURE 3.20. Two-way-ANOVA for subset 2 of continuous random MDPs. 
Performance measures are normalized w.r.t. the uniformly random policy. 
Values of F and 1 - p represent F -statistic and confidence level respectively. 
Values of "ndf' and "ddf' represent numerator and denominator degrees of 
freedom. Subscripts STE and C refer to the effects of the State Transition 
Entropy and the Controllability. Subscript int refers to the interaction effect 
between the two factors. 

BGR CWP 
STE 8% 7% 
C 12% 10% 
Group 20% 21% 

FIGURE 3.21. Predictive power of the attribute values (Hays statistic) for 
continuous random MDPs. 
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3.5.3.3. Results on the Mountain Car Domain 

The objective of this set of experiments was to verify the presence of the effects of 

the attribute values in a domain that is well understood and widely used in the rein­

forcement learning community. The Mountain-Car domain, as previously mentioned, 

is a classical reinforcement learning benchmark. 

Test MDPs 

As explained before, stochastic variants of the Mountain-Car task have sorne 

variance in the state transition function for the state variable corresponding to the 

car position. We considered four tasks characterized by the following values of the 

position variance: {O, 0.00009, 0.00038, 0.0008} (the first variant is the classical deter­

ministic task). Global values of the State Transition Entropy and Controllability for 

these tasks are shown in Figure 3.22. Note that for stochastic Mountain-Car tasks, 

values of the two attributes are anti-correlated. The attribute values were computed 

in a similar manner as in the case of continuous random MDPs, as described above. 

Note that the range of values of the State Transition Entropy is much smaller in 

this experiment, since ad ding more stochasticity to state transitions made the task 

virtually uncontrollable but trivial (the agent ended up in the goal state with a very 

high probability simply by chance). 

0.5 ... 

0.45····· 

0.4 ........ ···~···p~~iu·~~·~·rl~~·~·(i:(x;·08·· .. · .. . 
0.35 . 

02 

0.15 

0.1 

0.05 

PI" 

0.23 0.45 0.7 
Conlrollabilily 

FIGURE 3.22. Global values of the attributes for stochastic Mountain-Car 
tasks. Each circle corresponds to the attribute values for one variant tested. 
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Experimental Results 

The experimental settings are summarized in Table 3.4. Note that in this experi­

ment, we also tested several settings of the eligibility trace parameter À (see Chapter 

2). 

RL algorithm Sarsa(À) 
Eligibility trace parameter settings À E {O, 0.3, 0.5, 0.7, 0.9, 0.99} 
Value-function representation CMACs of size 500. 
Exploration strategy f-greedy, constant f 
Exploration parameter settings tested é E {0.01, 0.1, 0.3} 
Learning rate schedule Constant 
Learning rate settings tested f3 E {0.05,0.1,0.15,0.2} 
Number of learning trials per mn 10000 
Number of mns 20 
Frequency of greedy policy evaluations Every 100 trials 
Number of simulated trajectories for 30 
greedy policy evaluation 
Start state distribution Uniform over the entire state space. 
Number of test states 50 

TABLE 3.4. Experimental settings for the Mountain-Car domain. 

The experimental results for the Sarsa(O) algorithm are shown on Figure 3.23. 

Performance measurements were obtained by normalizing greedy returns with respect 

to the performance of the uniformly random policy on the corresponding variant and 

on the set of starting test states. Since aU rewards in this domain are negative, 

normalization was performed in the following way: 

- Rrand { } { } Rt,k=~,kE 1, ... 20 ,tE 0,G,2G, ... ,lG 
t,k 

(3.44) 

As before, graphs were obtained with the performance measurements correspond­

ing to the best settings of the exploration parameter and the learning rate parallleter. 

We can see from Figure 3.23 that performance deteriorates as the stochasticity 

of the task inereases. The performance change is monotonie with respect to the 

Best Greedy Return measure. For the Cumulative Weighted Penalty measure, a 
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0.00009 0.00038 
Position Variance 

0.0008 0.00009 0.00038 
Position Variance 

0.0008 

FIGURE 3.23. Performance of the Sarsa(O) algorithm on deterministic and 
stochastic variants of the Mountain-Car domain. Larger values of the posi­
tion variance correspond to lower Controllability and higher State Transition 
Entropy. 

slight increase in the task stochasticity does not lead to an immediate increase of the 

penalties, possibly because of an improved learning speed, as suggested by the learning 

curves in Figure 3.24. However, as the stochasticity increases further, the performance 

deteriorates with respect to both measures. Thus, the experiments on the Mountain­

Car do main also provide evidence for the existence of an effect of domain stochasticity 

on the performance of the Sarsa algorithm. 
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FIGURE 3.24. Learning curves of the Sarsa(O) algorithm on deterministic 
and stochastic variants of the Mountain-Car domain. 

We performed classical one-way-ANOVA (see e.g., [Cohen, 1995]) for the results 

of these experiments. This test estimates statistical significance of the effect of one 

independent factor on a dependent variable. In our case, the independent factor 
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BGR CWP 
F (ndf=3, ddf=76) 5.7313 3.1898 
1-p 0.99 0.97 
Pred. power 12% 9.5% 

FIGURE 3.25. One-way ANOVA and predictive power of the stochasticity 
level for the Mountain-Car domain. 

is the amount of stochasticity of the task, for which four levels were tested. Each 

cell in a one-dimensional data table analyzed by this test contains samples of the 

performance measurements for the Sarsa(O) algorithm. Each sample corresponds to 

a measurement for one run of the algorithm on the corresponding variant of the task. 

Thus, there were 20 samples for each level of the independent factor. The results 

of this test are presented in Figure 3.25. We can see that the observed effects are 

statistically significant at the confidence levels of 0.99 and 0.97 for the Best Greedy 

Return and the Cumulative Weighted Penalty measures respectively. The predictive 

power of the stochasticity level of the task also indicates a statistical relationship 

between the stochasticity level and the algorithm's performance. 

Experimental results for the performance of the Sarsa(À) algorithm (using eli­

gibility traces) are shown on Figure 3.26. With respect to the Best Greedy Return 

measure, higher values of À lead to better solutions for all stochastic variants. How­

ever, the Cumulative Weighted Penalty measure increases with À = 0.99 for two 

variants with higher stochasticity, which indicates a decrease in performance. As 

suggested by the learning curves in Figure 3.27, for variants with high stochasticity, 

the variance in the performance measure increases when À in creas es (see the right 

panel). On the other hand, we do not observe such a phenomenon for the deter­

ministic version of the do main , as can be seen from the left panel of Figure 3.27. 

This trend is consistent with the theoretical findings [Kearns and Singh, 2000], which 

demonstrated that learning with higher values of À is associated with a lower bias 

but a higher variance 16 . In the case of highly stochastic domains, the variance can be 

even more significant, as we see from these experiments. 

16This results was obtained for TD(>,). 
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FIGURE 3.26. Performance of the Sarsa(,x) algorithm on deterministic and 
stochastic variants of the Mountain-Car domain. 
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FIGURE 3.27. Selected learning curves for the Sarsa(,x) algorithm on the 
Mountain-Car domain. The left panel shows the performance on the deter­
ministic variant of the domain and the right panel shows the performance 
on the stochastic variant with the position variance equal to 0.0008. 

We also performed similar experiments with the approximate Q-learning algo­

rithm (see Chapter 2) on the stochastic Mountain Car domain. The results obtained 

were very similar to those of the Sarsa algorithm. 
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3.6. Summary 

In this chapter, we discussed the potential usefulness of studying certain proper­

ties of Markov Decision Processes. We presented five quantitative MDP attributes: 

the State Transition Entropy, Variance of Immediate Rewards, Controllability, Re­

ward Information Content and Risk Factor. These attributes measure MDP proper­

ties related mostly to the amount of stochasticity in the environment and the amount 

of control that the agent has over the environment. We discussed how they can affect 

the difficulty of learning with on-line value-based algorithms, mainly with respect 

to the sample variance and exploration. We also discussed the implications of such 

MDP characteristics as the amount of control and the risk tolerance. We suggested 

various ways, in which knowledge of the MDP attributes can be used for improving 

learning efficiency. The attributes complement each other and thus could be most 

helpful when used in combinations. 

Our goal was to identify attributes that rel y on information pertaining only to the 

model of the underlying MD P and not to the value estimates. This way, the estimation 

of attribute values is easier, since we need to estimate stationary properties only. 

They can be computed either prior to learning or during learning, but without being 

affected by dynamic changes in the value estimates. Such attributes can provide useful 

information, which is independent of the value estimation process. We discussed how 

the attributes can be computed, both off-Hne and on-line. 

We presented results of an experimental study that provided empirical evidence 

for our hypotheses regarding the effects of the State Transition Entropy and Control­

lability attributes on the performance of on-line value-based reinforcement learning. 

The results obtained showed a consistent pattern across tabular and approximate 

reinforcement learning algorithms. These experimental results warranted our further 

research aimed at devcloping a practical application of these two attributes for im­

proving exploration, which will be presented in the next chapter. A further study 

and practical application of the other attributes will be done in future work. 
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CHAPTER 4 

Using MDP Attributes for Exploration in 

Reinforcement Learning 

Chapter Outline 

In this chapter, we present a new approach for efficient exploration in reinforce­

ment learning. Our technique relies on information about certain properties of 

MDPs as computed by two attributes studied in the previous chapters, namely 

the State Transition Entropy and the Forward Controllability. Our approach 

can be used in combination with other existing exploration techniques, and we 

experimentally demonstrate that it can improve their performance. In contrast 

to most other existing methods, the exploration-relevant information used by 

our approach can be precomputed beforehand and then used during learning 

without addition al computation cost as well as transferred between similar 

tasks. 

4.1. Introduction 

As previously discussed, one of the key features of reinforcement learning is that 

a learning agent is not instructed what actions it should perform. This creates a 

need for the agent to actively explore its environment in order to discover good 

behavior strategies. Ensuring an efficient exploration pro cess and balancing the risk 

of taking exploratory actions with the benefit of information gathering are of great 

practical importance for reinforcement learning agents, and have been the topic of 
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much recent research, e.g., [Thrun, 1992; Kaelbling, 1993; Meuleau and Bourgine, 

1999; Dearden et al., 1999; Kearns and Singh, 1998; Sutton, 1990; Wiering, 1999; 

Wyatt, 2001]. 

In general, exploration research addresses two main issues: (1) balancing the 

exploration-exploitation trade-off, i.e., maximizing the agent's performance during 

learning; (2) exploring the environment in a way that allows fin ding a good policy 

given a limited amount of training time. This chapter is devoted to the second issue. 

Existing exploration strategies can be divided into two broad classes: undirected 

and directed methods. Undirected methods are concerned only with ensuring suffi­

cient exploration, by selecting aIl actions infinitely often. The é-greedy and Boltzman 

exploration strategies are notable examples of such methods (see Chapter 2). Undi­

rected strategies are concerned only with action selection frequencies and do not 

address the issue of efficient state space exploration. These techniques are attrac­

tive because of their simplicity and because they have no additional requirements 

of st orage or computation. In fact, they are the most commonly used in prac­

tice. However, the potential inefficiency of the undirected approaches is intuitive 

and can be proved for certain types of tasks. For example, in [Whitehead, 1991; 

Thrun, 1992], it is shown that in a class of deterministic goal-directed tasks with 

a positive reward received only upon entering a goal state, undirected learning is 

exponential in the number of steps that the agent with an optimal policy requires 

in order to reach a goal state. On the other hand, with a simple form of directed 

exploration (using some information about the course of learning), the same deter­

ministic tasks can be learned in time polynomial in the number of states and the 

maximum number of actions available at each state. The impact is believed to be 

very important for stochastic tasks as weIl [Thrun, 1992; Kearns and Singh, 1998; 

Fiechter, 1997]. 

Directed exploration strategies, on the other hand, attempt not only to ensure 

a sufficient amount of exploration, but also to make exploration efficient. These 

techniques often aim to achieve a more uniform exploration of the state space, or to 
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balance the relative profit of discovering new information versus exploiting current 

knowledge. Typically, directed approaches keep track of certain information about 

the course of the learning process. Often, they also rely on the use of an MDP 

model, which can be estimated during learning if not known a priori. This typically 

requires extra computation and storage in addition to the resources needed by general 

reinforcement learning algorithms. However, these additional requirements can be 

well justified by the benefits of faster learning, better solutions found and a better 

balancing of the exploration-exploitation trade-off. 

The main contribution of this chapter is a new directed exploration approach, 

which takes into account certain properties of the Markov Decision Process being 

solved. In Chapter 3, we introduced several attributes that can be used to provide 

a quantitative characterization of MDPs. Our approach to exploration is based on 

the use of two attributes: the State Transition Entropy and Forward Controllability. 

Recall from the previous chapters that the State Transition Entropy measures the 

amount of stochasticity in the environment while the Forward Controllability reflects 

how much the agent's actions impact the trajectories that the agent follows. Exper­

imental results presented in the previous chapter showed that these attributes can 

significantly affect the quality of learning with on-line reinforcement learning al go­

rithms. In this chapter, we show how to use these MDP attributes to guide exploration 

in order to improve the chances of fin ding a good policy as quickly as possible. Here, 

we focus on a design of the attribute-based exploration strategies for finite MDPs and 

tabular representations of the action-value functions. Possibilities for extending our 

approach to approximate representations of the action-value functions are discussed 

in the future work section. Our approach can be combined with existing exploration 

methods, both undirected and directed, and we empirically demonstrate that it can 

boost their performance. 

Using MDP attributes can improve the exploration pro cess in three ways. First, it 

encourages a more homogeneous visitation of the state space, similar to other existing 

directed methods. Second, it encourages more frequent sampling for actions with 
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potentially high variance in their action-value estimates. Finally, it encourages the 

learning agent to focus more on the states in which its actions have more impact on the 

course of events. One important differenee between our exploration strategy and other 

directed techniques is that the exploration-related information we use refiects only 

properties of the task at hand, and does not depend on the history of learning. Renee, 

this information does not carry the bias of previous, possibly unfortunate exploration 

decisions. Additionally, in some cases, the MDP attributes can be pre-computed 

beforehand and then used during learning without any additional computational cost. 

The attributes' values can also be transferred between tasks if the agent is faeed with 

solving multiple related tasks in an environment in which the dynamics does not 

change much. As discussed in Chapter 3, the attributes can also be estimated during 

learning, which requires only a small constant amount of additional resourees. This 

is in contrast to most other directed methods, which typically tend to involve a 

significant amount of extra computation and memory. 

The rest of the chapter is organized as follows. In Section 4.2, we provide an 

overview of the existing exploration approaches. The details of the proposed attribute­

based exploration method are presented in Section 4.3. Empirical results are discussed 

in Section 4.4. Conclusions and directions for future work are presented in Section 

4.5. 

4.2. Overview of Exploration Approaches 

As previously mentioned, the ultimate goal of an exploration policy is to allow 

the reinforeement learning agent to gather experienee with the environment in such a 

way as to find an optimal policy as quickly as possible, while also gathering as much 

reward as possible during learning. This goal can be itself cast as a learning problem, 

often called optimal learning [Kumar, 1985]. Solving this problem would require the 

agent to have a probabilistic model of the uneertainty about its own knowledge of the 

environment, and to update this model as learning progresses. Solving the optimal 

learning problem then becomes equivalent to solving a partially observable MDP 
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(POMDP) defined by this model of uncertainty, which is generally intractable [Sondik, 

1971; Littman, 1996]. However, various heuristics can be used to obtain a good 

exploration policy based only on estimates of certain aspects of the uncertainty about 

the agent's knowledge of the environment. As explained above, existing exploration 

strategies can be divided into two broad classes: undirected and directed. We will 

discuss them next. 

4.2.1. Undirected Methods 

In undirected methods, exploration is driven only by randomness, which is incor­

porated into the agent's behavior policy to ensure that each action will be selected 

with non-zero probability in each visited state. An example of undirected techniques is 

the E-greedy exploration st rat egy. As discussed in Chapter 2, in every state, the agent 

selects a greedy action with probability (1- E) (performs exploitation) and uniformly 

randomly selects any action with probability E (performs exploration). Another rep­

resentative of undirected exploration methods relies on the Boltzman distribution and 

is more value-driven. With this strategy, the probability 11"(s, a) of taking action a in 

state S is computed as follows: 

Q(s,a) 
e-"'-

11"(s,a) = ~ ~ 
~ e .,. 

bEA(s) 

( 4.1) 

where Q(s, a) are action-values and T is a positive temperature parameter that de­

creases the amount of randomness as it approaches zero. 

The behavior of these undirected methods was analyzed theoretically in [Singh 

et al., 2000], where it was shown that the on-policy reinforcement learning algorithm 

Sarsa(O) with tabular action-value function representation asymptotically converges 

to an optimal deterministic policy when the exploration rate (E in the E-greedy policy 

and T in the Boltzman policy) decreases with time to zero in an appropriate manner. 

In [Thrun, 1992], a comparison between the E-greedy, uniform (E = 1) and Boltz­

man strategies was performed on a robot navigation goal-directed task. The results 
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showed that the best policies were found with the uniform exploration, demonstrat­

ing the necessity of a very extensive exploration for reinforcement learning. However 

E-greedy strategies (E < 1) reduced significantly learning costs (i.e., reward loss due to 

the selection of suboptimal actions), allowing for exploitation of the acquired knowl­

edge during learning. The Boltzman strategy demonstrated the worst performance 

both in terms of the found solution policies and learning costs 1 . Since action selection 

probabilities based on the Boltzman distribution depend on the actual values of all 

actions and not only on which action is best relative to others (as is the case with the 

E-greedy strategy), inaccurate estimates of the action-value function bias the behavior 

towards wrong exploration and exploitation decisions much stronger than in the case 

of the E-greedy strategy. On the other hand, the much coarser information about the 

value functions used by the E-greedy method seems to be sufficient for fin ding good 

policies. 

4.2.2. Directed Methods 

Directed techniques attempt to render exploration more efficient. To do that, 

they use additional information about the learning process. These techniques are 

often concerned with a more uniform exploration of the state space and/or balancing 

the relative profits of discovering new information as opposed to exploiting current 

knowledge. Most directed techniques assume the availability of an MDP model or 

learn this model in parallel with the underlying reinforcement learning algorithm. 

Typically, they use an evaluation function that combines action-values and sorne 

kind of exploration bonuses in an additive manner: 

(4.2) 

where each 6i($, a), i = 1, ... , k, is an exploration bonus that can be defined in vari­

ous ways. Usually the action selection rule is deterministic: the action that attains 

the maximum of the evaluation function (4.2) is chosen on every step. In this case, 

1 Our own past experiments with the E-greedy and Boltzman strategies, performed on random discrete 
MDPs with the Sarsa(O) algorithm produced similar results. 
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exploration is driven by the exploration bonuses that change over time with learning. 

The positive parameter Ka indicates the desired balance of exploitation and explo­

ration. The contribution of each of the exploration bonuses may also be weighted by 

parameters Ki, i = 1, ... ,k. The evaluation function (4.2) is sensitive to the relative 

magnitudes of the action-values Q(s, a) and the exploration bonuses. Thus, the cor­

responding weighting parameters Ka and Ki have to be tuned to a particular tasks 

at hand. There are a number of techniques that define exploration bonuses in various 

ways, as will be discussed in the rest of this section. 

In the counter-based exploration strategy [Sato et al., 1990; Barto and Singh, 

1990], the exploration bonus is based on the number of visitations to each state, n(s), 

and is defined as 15(s, a) = E~I?,aJ' where E[nls, a] = 2..:s/ES P:sln(s') , i.e., the expected 

number of visits performed in the past to the successor states of the action a and the 

current state s. This strategy favors actions that lead to the least visited states, thus 

encouraging a more homogeneous state space exploration. 

Recall that reinforcement learning methods are iterative in nature and gradually 

improve the estimates of the value functions. A heuristic based on the recency of state 

visitations accounts for the fact that value estimates may become outdated if not 

updated regularly. The recency information can be combined with the counter-based 

method by decaying counters on each time step with sorne fixed factor (3 < 1 [Thrun, 

1992]. Iftwo states have equal visitation counts, the one that was visited a longer time 

ago will be favored. Another way of using the recency information was introduced 

by Sutton in [Sutton, 1990], where the exploration bonus was defined as 15(s, a) = 

vE[pls, a], where p(s) is the number of actions performed since the last occurrence 

of the state sand E[pls, a] = 2..:s/ES P:SIP(S') is the expected value of the recency 

of the successor states of the action a and the state s. Recency-based exploration 

bonuses will refiect the accuracy or "up-to-date" status of the corresponding values in 

the states. This strategy also aims at a homogeneous exploration of the state space. 

The error-based exploration strategy (or otherwise known as Prioritized Sweeping 

in the context of asynchronous dynamic programming) [Schmidhuber, 1991; Moore 
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and Atkeson, 1993] memorizes the change of the value estimates on the last value 

update in each state: ~(s) = IQ(s, a) - [r~s' + '"'(Q(s', a')]I. The action with the 

largest expected change of the value in the next state can induce the largest change in 

the value of the current state. Thus, the exploration bonus is defined as the expected 

value of the last change for the next states: 5(s, a) = E[~ls, a] = .Es/ES P:s/~(s'). 

Experiments in [Thrun, 1992] with the robot navigation goal-directed task demon­

strated a big advantage of directed techniques over undirected ones2
. The best perfor­

mance, both in terms of the solution quality and the learning costs, was demonstrated 

by the recency-based method, closely followed by the counter-based method with de­

cayo The experiments showed that both of these methods were the slowest in obtaining 

accurate action-values, but still the fastest in finding good solutions and reducing the 

cost of learning. The sluggishness of the recency-based methods in improving the 

accuracy of the value functions can be due to the fact that values are updated using 

the most outdated value estimates in the next states. 

Another approach for directed exploration is based on reasoning about the un­

certainty of the values that are being learned, be it action-values, the model of the 

MDP or both. As previously mentioned, maintaining and using exact models of 

such uncertainty is computationally intractable, but there were several attempts to 

use approximations to such models or heuristics based on partial estimates of such 

uncertainty. 

The method of lnterval Estimation (lE) [Kaelbling, 1993] is a representative of 

such approaches. This strategy always chooses the action that maximizes the upper 

bound of the 100(1 - e)% confidence intervals of action-values, Q(s, a), for sorne 

confidence coefficient e E (0,1). It is based on the assumption that the random 

variables Q(s, a), samples of which we obtain from the agent's interaction with the 

environment, follow normal distributions with unknown means Q(s, a) and variances 

2The experiments in [Thrun, 1992] were performed on one maze-type goal directed task, which is 
a type of MDPs that is expected to benefit most from the directed techniques discussed above. 
It would be interesting to have the comparisons of exploration techniques on a more versatile set 
of MDPs, however, most of the existing empirical work in exploration research concentrated on 
maze-like tasks. 
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O'~(s,a)' Then the upper bound of the confidence interval is 

ZO/2 
UQ(s,a) = Q(s, a) + O'Q(s,a) yi ( ) 

n s,a 
( 4.3) 

where n(s, a) is the number of visitis (samples) to the state-action pair (s, a) and ZO/2 

is the value of Z statistic at {)/2 confidence level (see, e.g., [Cohen, 1995]). In this case, 

action values Q(s, a) are updated as usual by a chosen reinforcement learning algo­

rithm, while at the same time, sample values of targets, e.g., [r~sl +,Q(s', a')] with the 

Sarsa algorithm, are also used to compute the sample means Q(s, a). If the variances 

O"~(s,a) are not known (which is typically the case), the sample standard deviation is 

also calculated from sample targets and the interval bounds are obtained with the 

values of the Student's t-function at the confidence level {)/2 and with (n(s, a) - 1) 

degrees of freedom. The value O'Q(s a)~ can be regarded as an exploration bonus 
, (n(s,a) 

used in the evaluation function (4.2). It represents a local measure of uncertainty 

about the estimated action-values. It can also be interpreted as an optimistic action 

selection, where the agent selects an action that still looks very promising with respect 

to the current upper bound on its value. The distribution of Q(s, a) values changes as 

they get updated, so it is necessary to use a forgetting mechanism in calculating the 

involved statistics (Le., the means Q (s, a) and the standard deviations). Typically, 

transition samples are stored in sliding windows for each state-action pair in order to 

implement such a forgetting mechanism, which is rather expensive. 

ln summary, this technique can be viewed as a variance-based technique: when 

two actions have been tried the same number of times and have the same estimated 

mean value, the one that delivers the most random samples will be chosen. It should 

be noted that the lE exploration strategy is concerned with action exploration and 

exploration-exploitation balancing but not with state space exploration, as it is the 

case with the counter- or recency-based methods. 

lE and other previously discussed directed techniques are sometimes called lo­

cal exploration policies, because they do not use exploration information related to 
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states and actions other than the current ones. The strategies that do use informa­

tion about other states and actions are called global. Meuleau and Bourgine (1999) 

extended the lE method to perform global exploration. In their algorithm, the ex­

ploration bonuses 5(s, a) = (J"Q(s a) ~, as in (4.3), are back-propagated through 
, n(s,a) 

states together with action-values. The Q-Iearning-like updates are then performed 

on the unified evaluation function3 : 

N(s, a) = (1 - a)N(s, a) + a[r~sl + (1 - 'Y)5(s, a) + 'l'max N(s', b)] 
b 

( 4.4) 

The back-propagation of the exploration bonuses was previously suggested by 

Sutton (1990) and is known as Dyna-Q+ algorithm: 

Q(s,a) = (l-a)Q(s,a)+a[r~sl+,6Jp(s,a)+'YmaxQ(s',b)] ,where,6 E [0,1) (4.5) 
b 

The only difference between algorithms (4.4) and (4.5) is in the form of the propagated 

exploration bonus, where in the former case, it is the Interval Estimation bonus and 

in the latter case, it is the recency value. The empirical evaluation of the algorithm 

(4.4) showed an advantage of the global exploration over the undirected and local 

lE techniques. This algorithm was also used for comparison purposes in the study 

of Dearden et.al (1998), which found that on certain domains, the performance of 

this algorithm was worse than the performance of other techniques, including the 

local lE method and the Boltzman distribution. Thus, as is often the case with 

various learning and optimization methods, different domains may require different 

exploration approaches to improve the efficiency of learning. 

ln [Wiering and Schmidhuber, 1998; Wiering, 1999], the idea of variance- and 

optimism-based heuristic behind the lE algorithm of Kaelbling (1993) was used for 

the estimates of the transition probability function. In this approach, called model­

based interval estimation (MElE), for each state-action pair, the upper bound of the 

100(1- (1)% confidence interval is calculated for the transition probability of a succes­

sor state with the highest estimate of its state value. This upper bound (an optimistic 

3This algorithm is heuristic and not theoretically founded as the original Q-learning. 
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probability estimate) is used for this successor state while all other transition prob­

abilities are renormalized. Then asynchronous real-time dynamic programming (see 

Chapter 2) is applied to the MDP with such an optimistic model. Since dynamic 

programming is performed on the MDP model that reflects exploration preferences, 

the algorithm is also global, similar to the approach in [Meuleau and Bourgine, 1999]. 

Similar to the lE algorithm of Kaelbling (1993), the algorithm relies on the assumption 

of the normal (Gaussian) distribution to model the uncertainty about the estimated 

transition probabilities. In order to be able to use the Gaussian model, a sufficiently 

large number of samples need to be gathered for each state-action-successor triple 

first. Because of this, on the initial stages of learning, a counter-based exploration 

method is used to obtain a good estimated model, and only then the MBIE is em­

ployed. This prevents the agent from taking advantage of the MBIE approach early 

during learning. 

The difficulty of the MBIE algorithm with using the Gaussian density, as ex­

plained ab ove , was addressed in [Wyatt, 2001], where the Dirichlet distribution was 

used instead. This allowed incorporation of prior knowledge and taking advantage of 

the underlying idea from the outset of learning4 . This algorithm was shown to pro­

duce good results both with respect to resolving the exploration-exploitation trade-off 

and fin ding good poli des in a given amount of learning time. The algorithm com­

pared favorably to the approach of [Meule au and Bourgine, 1999] and [Wiering and 

Schmidhuber, 1998] on several test tasks. As remarked in [Wyatt, 2001], reasoning 

about the uncertainty in the model rather than in the value function can be advan­

tageous in the case of knowledge transfer between similar tasks. It can also be easier, 

since parameters of the MDP model are stationary during learning while the value 

functions are not. 

Another example of algorithms, which explicitly deal with the exploration-exploitation 

trade-off and the state space exploration, is a method known as E 3 (Explicit Exploita­

tion and Exploration) [Kearns and Singh, 1998]. It reasons about the accuracy of the 

4The algorithm requires an off-line calculation of a look-up table of values necessary to compute the 
estimates of the upper bounds of the confidence intervals. 

145 



4.2 OVERVIEW OF EXPLORATION APPROACHES 

learned model parameters based on the number of collected samples, with the state 

space divided into "known" and "unknown" parts. On every time step, the decision 

is taken on whether enough reward can be collected in the "known" part of the state 

space, or whether the "unknown" part should and can be efficiently explored to in­

crease the chances of higher returns. This algorithm requires some prior knowledge 

about the MDP, for example, maximum attainable returns from each state, which 

constitutes one of the difficulties in its practical implementation5
. This was the first 

general near-optimal tabular reinforcement learning algorithm with provably polyno­

mial computational time. 

The work in [Fiechter, 1994; 1997J also introduced a probably approximately cor­

rect model of reinforcement learning, where off- and on-line model-based algorithms 

were proposed, such that they guaranteed, with probability 1-6, to pro duce E-optimal 

policies in polynomial time. In this case, the polynomial time bounds were expressed 

in terms of a size parameter n that roughly measured the complexity of the environ­

ment. Among other things, for example, it was assumed that the complexity of the 

environment is such that the value of any policy is bounded by a polynomial in n, 

and no sequence of m trials takes time greater than some polynomial in m and n. 

However, in [Thrun, 1992], it was shown that for any size of the state space, there 

exists an MDP, in which an optimal policy takes an exponential expected number of 

steps to get to a goal state. Thus, in general, computational times can be exponential 

in the size of the MDP's state space with the algorithms of Fiechter (1994,1997) and 

Kearns and Singh (1998). It is not clear, however, whether real-world tasks could 

have such a "malicious" structure as in the result of Thrun (1992). 

Another approach that relies on the assessment of the agent's uncertainty about 

the environment was developed by Dearden et.al. (1998,1999), both for the model-free 

Q-Iearning method and for model-based reinforcement learning. In these algorithms, 

the benefit of exploration is evaluated using a notion of Value of Information (Vol): 

an expected gain in the value of the best action, assuming that perfect information 

5 A slightly different and a more general variant of this algorithm, which is also easier for practical 
implementations, was introduced in [Brafman and Tennenhotlz, 2002]. 
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about an exploratory action can be obtained. Since such perfect information cannot 

be obtained with on-line sampling, a myopie approximation to the Vol is computed. 

Sorne analogies can be drawn between the model-based method using the Vol and the 

E 3 algorithm, with one important conceptual difference: in E 3
, states are classified 

into "known" and "unknown" in a binary manner, whereas the algorithm in [Dearden 

et al., 1999] has a "smooth" model of the uncertainty about the parameters of the 

MDP model that is being learned. This allows exploitation even before the dynamics 

in "promising" parts of the state space is learned with high confidence. The disadvan­

tage of these methods is that they are fairly complex and much more computationally 

expensive than the previously discussed heuristics. Empirical comparison in [Dearden 

et al., 1998] showed that the Vol-based Q-learning performed better than Boltzman 

exploration, the lE technique and global lE algorithms of [Meule au and Bourgine, 

1999] on maze-like and loop-like domains, and was comparable to other techniques 

on chain-like tasks. Model-based learning with Vol exploration was compared to 

an error-based exploration on maze-like MDPs and showed superior performance in 

terms of learning speed and learning costs, but not in terms of the quality of the 

greedy solution strategy. 

Another exploration method, suit able for maze-like tasks, was proposed in [Dayan 

and Sejnowski, 1996]. This algorithm performs model-based learning on the estimated 

means of the transition probabilities, while the posterior probabilities of the estimated 

MDP model are updated in a Bayesian manner after each observed transition. This 

approach implicitly favors actions that have been tried a long time ago, while also 

encouraging actions that have a potential of improving the solution that currently 

looks best. 

AU techniques discussed in this section were designed for finite MDPs and tabular 

reinforcement learning methods. To the best of our knowledge, only the error-based 

method was applied with reinforcement learning using function approximation in 

[Thrun and Moller, 1991]. 
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4.3. Attribute-Based Exploration Strategy 

Similarly to other directed exploration methods, the goal of our approach is to 

facilitate a more uniform visitation of the state space during learning, while also 

gathering quickly the samples most needed to estimate well the value functions. As 

the analysis in Chapters 3 suggested, several MDP attributes studied therein can be 

used in order to achieve this goal. In this chapter, we focus on using two attributes: 

the State Transition Entropy and the Forward Controllability. Both attributes can be 

computed for each state-action pair (s, a) based on the MDP model (if it is known) 

or they can be estimated based on sample transitions as discussed in Chapter 3. The 

basic idea of our strategy is to favor exploratory actions which exhibit high values of 

the State Transition Entropy, the Forward Controllability or both of these attributes. 

We will now explain the details of our approach. 

4.3.1. Motivation for the Use of the State Transition Entropy 

Recall that the State Transition Entropy measures the amount of stochasticity 

due to the environment's state dynamics. It can be computed using the definition 

in Equation (3.11). As discussed in Chapter 3, in environments with high State 

Transition Entropy values, the quality of the solutions obtained by on-line value­

based algorithms can be affected by a trade-off between the positive effect of" natural" 

exploration and the negative effect of high variance in the value samples used by the 

algorithm. 

A high value of ST E(s, a) me ans that there are many possible next states s' (with 

P: s' =1= 0) which occur with similar probabilities. If in sorne state s, actions al and a2 , 

are such that STE(s,al) > STE(s,a2), the agent is more likely to encounter more 

different states by taking action al than by taking action a2' This means that giving 

preference to actions with higher State Transition Entropy values could achieve a more 

homogeneous exploration of the state space. Current literature contains several indi­

cations that this can be beneficial. Empirical evidence suggests that a homogeneous 

visitation of the state space can be helpful for different on-line reinforcement learning 
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algorithms. For instance, in [Sutton and Barto, 1998], the performance of Q-Iearning 

with the E-greedy behavior policy was compared with the performance of Q-Iearning 

applied while picking states uniformly randomly. The experiments were performed 

on discrete random MDPs with different branching factors. Note that large branch­

ing factors mean high State Transition Entropy values. In these tasks, the E-greedy 

updates resulted in better solutions and faster learning mainly for deterministic tasks 

(i.e., with branching factor 1). As the branching factor (and thus the State Transi­

tion Entropy) increased, performing action-value updates uniformly across the state 

space led to better solutions in a long run, and to a better learning speed. AIso, 

as discussed in the previous section, the counter-based and recency-based directed 

approaches, which are intended for a similar purpose, demonstrated good empirical 

performance in the past (see e.g., [Thrun, 1992]). Similar indications can be found 

for approximate reinforcement learning methods (using non-tabular representations 

of the value functions). For example, in a theoretical analysis of the Approximate 

Policy Iteration in [Munos, 2003], the convergence result relies on a uniform state­

space sampling. As indicated in [Munos, 2003], with the Policy Iteration algorithm, 

it is important to use a sample distribution that is sufficiently "close" to a uniform 

one, in or der to ensure certain reli ab ilit y of approximate value estimates uniformly 

over the state space. This is necessary for the correctness and efficiency of the policy 

improvement step. 

Another potential consequence of a high value of ST E(s, a) is a large variance of 

the action-value estimates for (s, a). Recall that in on-line learning methods, such as 

Sarsa, the action-value of a state-action pair (s, a) is updated toward a target estimate 

obtained after taking action a: 

Q(s, a) := (1 - Œ)Q(S, a) + Œ[r~sl + ryQ(s', a') J, Œ E (0,1) 
\. J 

V 

Target for (s, a) 

These target estimates are drawn according to the probability distribution of the next 

states. If ST E(s, a) is high, there willbe many possible next states, and consequently 
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the variance in the target estimates could be high. In order to get a good estimate of 

the value Q(s, a) when it has a high variance, more samples are needed. By encour­

aging exploration of actions with high State Transition Entropy values, our strategy 

faciliates the agent's effort to collect enough samples. This idea is reminiscent of the 

lE directed exploration method [Kaelbling, 1993], as discussed in the previous section, 

but we do not rely on explicitly estimating the variance of the action-value samples, 

which would be much more expensive in terms of both st orage and computation. 

4.3.2. Motivation for the Use of the Forward Controllability 

As defined in Chapter 3, the Controllability of astate s, C (s), is a normalized 

measure of the information gain when predicting the next state based on knowledge of 

the action taken, as opposed to making the prediction before the action is chosen. It 

can be computed as in Equation (3.21). The Forward Controllability of astate-action 

pair is the expected Controllability of the next state: FC(s, a) = L P:s,C(S/). 
s'ES 

Favoring actions with high Forward Controllability values will direct the reinforee-

ment learning agent toward states in which its actions determine to a large extent the 

outcomes of state transitions. Having such control over the state dynamics enables 

the agent to reap higher returns in environments where sorne trajectories are more 

profitable than others. Correct decisions in highly controllable states are likely to 

have a greater impact on the agent's overall performance and thus are most beneficial 

if learned as quickly as possible. 

At the same time, actions with high Forward Controllability values lead to suc­

eessor states Si, in which different actions al have very different outcomes. Henee, 

from such states, the agent can experience richer exploration patterns by choosing 

different actions. 

Finally, consider learning with the on-policy reinforcement learning algorithm 

Sarsa. Since different actions al, available in a highly controllable successor state Si, 

lead to very different next states, one can expect a significant variation in the values 

of Q(SI, al) for different actions al. Because of this, sample targets for Q(s, a), that 
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is values [r~ s' + ')'Q(S', a')], obtained with different exploration actions a', can have , 

high variance. Thus, gathering more samples for state-action pairs with high values 

of FC(s, a) can facilitate estimation of potentially high variance values. 

4.3.3. Implementation of Attribùte-Based Exploration 

The idea of gui ding exploration based on the values of the State Transition En­

tropy and Forward Controllability attributes can be incorporated easily into both 

undirected and directed exploration techniques. For instance, we can design an 

attribute-based E-greedy exploration strategy in the following way. The greedy action 

is chosen with probability (1 - E), as in the standard method. When a choice to ex­

plore is made (with probability E), the exploratory action can be selected according to 

a probability distribution that depends on the values of the attributes. For instance, 

in our implementation, we use the following Boltzman distribution: 

KI STE(s,a)+K2FC(s,a) 
e T 

'Tf (s a) = ----;:;-:::;;;-O:-;-;-~--;;-;:;c,....-;'7" 
, "'" K] STE(s,b)+K2FC(s,b) 

~e T 

(4.6) 

bEA 

where T is the temperature parameter. The non-negative constants KI and K 2 can 

be used to adjust the relative contribution of each term. 

An alternative to the Boltzman distribution would be a multinomial distribution 

that assigns action-selection probabilities proportionally to the values of the MDP 

attributes: 

1Î'(s, a) = max{[KIST E(s, a) + K 2FC(s, a)] ,Emin} , Va E A 
1Î'(s,a) (4.7) 

'Tf(s, a) = L A ( b)' Va E A 
bEA'Tf s, 

Parameter Emin E (0,1) represents a minimum probability of selecting each action 

regardless of the attribute values. 

The State Transition Entropy and Forward Controllability attributes can be used 

as exploration bonuses in directed exploration, and hence can be easily combined with 

many existing methods. In this case, the behavior policy deterministically picks the 
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action maximizing the evaluation function: 

k 

N(s, a) = KQ(s, a) + K1STE(s, a) + K 2FC(s, a) + L Ki6i(S, a) (4.8) 
i=3 

where each 6i (s, a), i = 1, ... , k, can be any exploration bonus based on data about 

the learning pro cess , e.g., the counter-based, recency-based, error-based or IE-based 

bonus. In this case, the trade-off between exploitation and exploration can be con­

trolled by tuning the parameters K and Ki, i = 1, ... , k, associated wi th each term. 

Note that our exploration approach uses only characteristics of the environment, 

which are independent of the learning process. Thus, the information needed can be 

gathered prior to learning. This can be done if the transition model is known, or if the 

agent has an access to a simulator, with which it can interact to estimate the attributes 

from sampled state transitions. Note that even if the MDP model is known, it is often 

not feasible to apply standard synchronous dynamic programming methods and the 

issue of efficient exploration is stiU important. As suggested in [Wiatt, 1997; Fiechter, 

1997], model-based exploration methods are in fact superior to model-free methods in 

many cases. AIso, the values of the attributes can be carried over if the task changes 

slightly (e.g., in the case of goal-directed tasks, in which the goal location changes). 

Alternatively, the attributes can be estimated during learning based on observed 

state transitions. This can be done efficiently by incremental methods, as discussed 

in Chapter 3. In this case, only a small constant amount of extra computation per 

time step is needed. This is in contrast to most other directed exploration methods, 

which not only rel y on estimation of the transition probabilities, but also require 

more computation to re-evaluate their exploration bonuses on every time step (see 

e.g., [Thrun, 1992; Kearns and Singh, 1998; Sutton, 1990; Kaelbling, 1993; Wiering 

and Schmidhuber, 1998; Dearden et al., 1999]). In the case of incremental estimation 

of the attributes during learning, they should be initialized to high values to encourage 

good initial estimation of their true values for aU state-action pairs. 
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We also note that the exploration-relevant information based on the learning his­

tory used in other directed techniques can carry the bias of previous (possibly unsuc­

cessful) exploration decisions and value estimates. Our attribute-based exploration 

bonuses are less affected in this respect and provide a more independent criterion. 

4.4. Empirical Evaluation of Attribute-Based Exploration 

4.4.1. Exploration Strategies Tested 

In order to assess empirically the me rit of using the State Transition Entropy 

and the Forward Controllability as heuristics for guiding exploration, we incorporated 

these attributes into the E-greedy exploration strategy (as a representative of un di­

rected methods) and into the recency-based exploration strategy (as a representative 

of directed methods). We chose the recency-based method among directed exploration 

techniques because in previous experimental studies [Thrun, 1992], it compared favor­

ably to other directed methods, while being less sensitive to variations in user-defined 

parameters. We used both exploration strategies with the Sarsa(O) algorithm. 

We experimented with two ways of incorporating the attributes into the E-greedy 

strategy: using the Boltzman distribution, as shown in Equation (4.6), and using the 

multinomial distribution, as shown in Equation (4.7). The recency-based technique 

was combined with the MDP attributes based on the idea of additive exploration 

bonuses, as shown in Equation (4.8), where we used the recency-based exploration 

bonus, 63(8, a), as detailed in Section 4.2, and the corresponding constant K3 = l. 

Bath in the case of E-greedy and recency-based exploration, we used parameter set­

tings KI, K 2 E {O, 1}, which corresponded to either not using or using the attribute(s). 

The settings of other parameters involved are specified in the description of each ex­

periment below. 
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4.4.2. Experimental Results 

Results on Random MDPs 

First, we studied the performance of attribute-based exploration in a very general 

setting using discrete random MDPs as presented in Chapter 3. All random MDPs 

tested have two state variables, each with 25 possible values. There are three ac­

tions available in every state. The branching factor for these MDPs varies randomly 

between 1 and 20 across state-action pairs, which generates state-action pairs with 

different values of the State Transition Entropy and states with varying Controllabil­

ity. These test MDPs are modeled as episodic with termination probability of 0.01 in 

each state. 

The random MDPs were divided into two groups of five MDPs each. One group 

contained MDPs with "low" global values of the State Transition Entropy, that is in 

the interval [0.9,1.7), and the other group contained MDPs with "high" global State 

Transition Entropy values, that is in the interval [1. 7,2.7]. In the remainder of this 

section, we will call them low-STE and high-STE MDPs respectively. In low-STE 

MDPs, the values of the State Transition Entropy for state-action pairs are lower 

overall compared to high-STE MDPs. AIso, low-STE environments have a smaller 

proportion of actions with relatively high State Transition Entropy values. The ob­

jective of considering two groups was to investigate whether the overall amount of 

stochasticity in the environment influences the effect of the attributes on exploration. 

The attribute values were precomputed prior to learning. We simulated 500 state 

transitions for each state-action pair in order to estimate transition probabilities. 

Then, the attribute values were estimated using the definitions presented in Section 

3.3. 

We averaged performance measurements over the five MDPs in each group. In 

order to do this, we normalized the greedy returns with respect to the performance 

of the optimal policies of the corresponding MDPs on the test set of start states. 

Optimal policies were obtained through the Value Iteration algorithm using exact 
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RL algorithm Sarsa(O) 
Value-function representation Table 
Exploration strategy e-greedy, constant e 
Exploration parameter settings e E {0.1,0.4,0.9} 
Learning rate schedule Decreasing: ŒN = (3.J1~I~l 
Learning rate settings {3 E {O. 75,0.9,0.95, 0.98} 
Number of learning trials per run 10000 
N umber of runs 20 
Frequency of greedy policy evaluation Every 50 trials 
Number of simulated trajectories for 30 
greedy policy evaluation 
Start state distribution Uniform over the whole state space 
Number of test states 50 

TABLE 4.1. Experimental settings for E-greedy exploration on discrete ran­
dom MDPs. 

MDP models. The normalization was performed in the same way as in the previous 

experiments described in Section 3.5. 

The figures below present learning curves averaged over 20 learning runs and 

5 tasks in each group, as weIl as bar-graphs for the Cumulative Weighted Penalty 

measure (introduced in Section 3.5). 

Results for the E-Greedy Strategy 

Experimental settings for the experiments with e-greedy exploration are summa­

rized in Table 4.1. The attributes were incorporated into the e-greedy strategy using 

the Boltzman distribution, as in Equation (4.6) with T = 1. The results of these 

experiments are presented in Figure 4.1 for the group of low-STE MDPs, and in Fig­

ure 4.2 for the group of high-STE MDPs. To produce these graphs, we selected the 

best setting of the learning rate parameter for each MDP, each setting of e and each 

variant (using or not using the attributes). 

As can be seen from figures 4.1 and 4.2, incorporating the MDP attributes into 

the e-greedy strategy has a positive effect for both low-STE and high-STE MDPs, in 

aIl cases except e = 0.1 in high-STE environments. 
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The Forward Controllability exhibits a greater impact for high-STE MDPs (we 

can see larger differences between the performance of the Forward Controllability 

based variant and the attribute-free variant on Figure 4.2 than on Figure 4.1). High­

STE environments tend to be less controllable, in general. In this case, it is important 

to identify those few states, where the agent can control the course of state transitions 

weIl and to focus exploration on these states. 

On the other hand, the use of the State Transition Entropy has a greater impact 

for low-STE MDPs than for high-STE MDPs. As previously mentioned, our low­

STE environments have a lower proportion of actions with high State Transition 

Entropy values compared to high-STE MDPs. For low-STE environments, using the 

State Transition Entropy attribute in the exploration strategy helps to identify these 

actions and to increase their selection probabilities significantly compared to other 

actions. Since the levels of the State Transition Entropy are lower in low-STE MDPs 

in general, increasing the frequency of exploring with actions that have high State 

Transition Entropy improves uniform visitation of the state space more significantly. 

Hence, the effect of using this attribute is more pronounced for low-STE MDPs. 

As can be seen from figures 4.1 and 4.2, for both MDP groups, the quality of the 

greedy policies learned increases as the value of the exploration parameter f increases, 

regardless of whether the attributes are used or not. Note also that the effect of using 

the attributes increases as the value of f increases. Higher values of f allow to exercise 

the attribute effect more frequently, hence, the effect is more pronounced. The only 

case in these experiments, where we see a degradation of performance with the use 

of the attributes is for the high-STE MDPs and with f = 0.1. In this case, using 

the State Transition Entropy pro duces a negative effect. As previously mentioned, 

high-STE environments have greater State Transition Entropy values overall and thus 

can have a large variance in the value samples. The agent using the State Transition 

Entropy attribute provokes most the variance for exploratory actions, but in order to 

deal with this variance successfuIly, more samples may be needed for these actions 
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overall. Thus, the performance of the strategy using the State Transition Entropy is 

not good for the low value of the exploration rate, but it improves as E increases. 

Group 01 Low-STE MDPs 

epsilon=O.1 epsilon=O.4 Ipsilon=0.9 

FIGURE 4.1. Performance of E-greedy exploration (with and without the use 
of the MDP attributes) for low-STE discrete random MDPs. 

Fe 
10000 

We can see from figures 4.1 and 4.2 that using the two attributes together usually 

does not bring any performance improvement over using one of the attributes in 

isolation. The main reason is likely due to the fact that values of the State Transition 

Entropy are usually higher than values of the Forward Controllability and will tend 

to have a dominating influence. AIso, the values of the two attributes can sometimes 

push exploration in different directions: when the State Transition Entropy is high 

and the Forward Controllability is low for some action relative to attribute values of 

other actions in a given state, their effects will be canceled out. Even if both attributes 

have relatively high values compared to other actions, when we take an action with 

a high Forward Controllability, it is likely that the next highly controllable state has 

low State Transition Entropies overall, and thus we reduce the chances for the State 
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Group of High-STE MDPs 

epsilon=O.l epsilon=O.4 epsUon=O.9 

FIGURE 4.2. Performance of E-greedy exploration (with and without the use 
of MDP attributes) for high-STE discrete random MDPs. 

Transition Entropy to exercise its effect. It would be interesting to use weighting of 

the individual contribution of the two attributes when they are used together. We 

leave such experiments for future work. 

We performed statistical tests to estimate the significance of differences in the 

performance of c-greedy exploration with and without the MDP attributes. We per­

formed two-way ANOVA for measurements of the Cumulative Weighted Penalty. In 

this analysis, one factor was the parameter c and the other factor was the strat­

egy variant (one variant without attributes, two variants using one of the attributes 

and one variant using both attributes together). This analysis was performed sepa­

rately for the group of law-STE MDPs and the group of high-STE MDPs. Similar 

ta the experiments presented in Section 3.5, each data point in this analysis repre­

sented the Cumulative Weighted Penalty measurement for one MDP. In this case, 

however, we have an experiment with repeated measures (see e.g., [Cohen, 1995; 
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Howell, 2002]), since each MDP is tested in aIl experimental conditions. The results 

of the tests are summarized in Figure 4.3. These tests show that the effect of using the 

attributes is statistically significant both for the low-STE and the high-STE groups at 

confidence level greater or equal than 0.98. The test for the high STE group showed a 

significant interaction effect, which is mainly due to the different performance pattern 

for f = 0.1 in this group. 

1 Low-STE MDPs 1 High-STE MDPs 

ndfE = 2; ddfE = 8 
FE 8.64 23.54 
1 -PE 0.99 0.99 
ndfatt = 3; ddfatt = 12 
Fatt 4.81 13.23 
1 - Patt 0.98 0.99 
ndfint = 6; ddfint = 6 
Fint 1.02 8.46 
1 - Pint 0.51 0.99 

FIGURE 4.3. Two-way-ANOVA with repeated measures for E-greedy explo­
ration. Values of F and 1 - p represent F-statistic and the confidence level 
respectively. Values of "ndf" and "ddf" represent numerator and denomi­
nator degrees of freedom. Subscripts E and att refer to the effects of the 
exploration parameter E and the effect of using the attributes respectively. 
Subscript int refers to the interaction effect between the two factors. 

Results for the Recency-Based Strategy 

Experimental settings for recency-based exploration are summarized in Table 4.2. 

The results of these experiments are presented in Figure 4.4 for the group of low-STE 

MDPs, and in Figure 4.5 for the group of high-STE MDPs. As before, for each MDP, 

each setting of K and each variant (using or not using the attributes), we selected 

the best setting of the learning rate parameter tested and used the corresponding 

performance measurements to pro duce the graphs. 

As can be seen from figures 4.4 and 4.5, the recency-based method is signifi­

cantly more robust with respect to the settings of the parameter K than the f-greedy 

strategy is with respect to the settings of f. With all considered settings of K, the 

performance of this strategy was very good. Nevertheless, using the MDP attributes 
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RL algori thm Sarsa(O) 
Value-function representation Table 
Exploration strategy Recency-based 
Exploration parameter settings K E {l, 10, 50 } 
Learning rate schedule Decreasing: ŒN = (3-:~Ll 
Learning rate settings {3 E {O. 75,0.9,0.95, 0.98} 
Number of learning trials per run 10000 
Number of runs 20 
Frequency of greedy policy evaluation Every 50 trials 
Number of simulated trajectories for 30 
greedy policy evaluation 
Start state distribution Uniform over the whole state space 
Number of test states 50 

TABLE 4.2. Experimental settings for recency-based exploration on discrete 
random MDPs. 

further improved the performance of the recency-based method, although the effects 

appear to be smaller than in the case of the E-greedy method. The recency-based 

strategy itself, to a large extent, generates a more uniform state-space exploration. 

The attributes also contribute in this respect but they also help to sample actions 

with more action-value variance and they focus learning on more controllable states. 

In these experiments, we did not tune relative contributions of the recency-based ex­

ploration bonus and the attributes, which can also be responsible for a smaller effect. 

Similar to the case of E-greedy exploration, the State Transition Entropy exhibits a 

stronger effect in the case of low-STE MDPs, whereas the Forward Controllability 

shows a st ronger effect on high-STE MDPs. AIso, as observed before, the use of the 

two attributes together does not lead to further performance improvements, compared 

to the case of their individual use. 

We performed two-way ANOVA on the experimental results with recency-based 

exploration in the same manner as in the case of E-greedy exploration. The results 

are summarized in Figure 4.6. This test shows that the effect of using the attributes 

is statistically significant both for the low-STE and the high-STE groups at the con­

fidence level of 0.95. 
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FIGURE 4.4. Performance of recency-based exploration (with and without 
the use of the MDP attributes) for low-STE discrete random MDPs. 

We also performed experiments with two groups of MDPs which have similar 

global State Transition Entropy values as in the two groups discussed above. In this 

case, however, MDPs have similar values of the attributes across aU states-action 

pairs. Here we would expect to see no effect of using the attributes, because ex­

ploration decisions in aU states should be mostly unaffected by the attribute values. 

We performed these experiments to test the possibility of observing any effect "by 

chance" . The results of these experiments did not reveal any effect of using the 

attributes with either é-greedy or recency-based exploration. This reinforces our con­

clusion that the effects observed in the previous experiments are not spurious. 

The experiments on random MD Ps served as the first assessment of the potential 

of our strategy. It should be noted that the experiments were performed with uni­

formly randomly sampled st art states, which already helps exploration significantly. 
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FIGURE 4.5. Performance of recency-based exploration (with and without 
the use of the MDP attributes) for high-STE discrete random MDPs. 

However, even in this case, the recency-based strategy improves over f-greedy ex­

ploration by ensuring more uniform state visitation on trajectories. Our approach 

improves the performance even further. Next, we present the results of similar exper­

iments on a more structured grid-world domain. 
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1 Low-STE MDPs 1 High-STE MDPs 

ndfK = 2; ddfK = 8 
FK 2.94 1.06 
I-PK 0.89 0.61 
ndfatt = 3; ddfatt = 12 
Fatt 3.79 3.49 
1 - Patt 0.96 0.95 
ndfint = 6; ddfint = 6 
Fint 0.32 2.90 
1 - Pint 0.10 0.89 

FIGURE 4.6. Two-way-ANOVA with repeated measures for recency-based 
exploration. Values of F and 1 - p represent F-statistic and confidence level 
respectively. Values of "ndf" and "ddf" represent numerator and denomi­
nator degrees of freedom. Subscripts K and att refer to the effects of the 
parameter K and the effect of using the attributes respectively. Subscript 
int refers to the interaction effect between the two factors. 
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4.4.2.1. Results on Gridworld Tasks 

In the second set of experiments, we examined the performance of attribute-based 

exploration on goal-directed tasks in grid-world environments with various obstacles. 

The structure of these MDPs is as follows. 

The environment is a rectangular grid-world, where the agent has to reach a goal 

state. The agent has two kinds of actions: move one cell in one of the four directions 

(OneNorth, One West, OneEast, OneSouth) or move two cells in one of the four di­

rections (TwoNorth, Two West, TwoEast, TwoSouth). We will call the first kind of 

actions one-cell movement actions and the second kind of actions - two-cell movement 

actions. The actions have the fo11owing outcomes. With the one-ce11 movement ac­

tions, the agent moves in the intended direction with probability 0.9 and stays in place 

with probability 0.1 (see the left panel of Figure 4.7). With the two-cell movement 

actions, the agent moves two cells in the intended direction with probability 0.7 and 

moves to one of the three adjacent cells in the intended direction with probabilities 

0.1 respecti vely (see the right panel of Figure 4.7). The two-cell movement actions 

have a higher State Transition Entropy: the State Transition Entropy is equal to 0.46 

for one-cell movement actions and is equal to 1.35 for two-cell movement actions. 

1 ---t- 1 1 ---------t------------r-------- ------------- ---
1 1 
1 1 
, 1 

1 

0.9 1 

_________ --------------------'---(1------------ __ _ o.r:[-
Ac:tIo OD.No~ 

1 

FIGURE 4.7. Selected transition probabilities in the grid-world domain. 

Some of the states (cells on the grid) have obstacles along one or more of their 

sides (walls). Obstacles are always located around the perimeter of the grid-world, 

as we11 as at some internaI cells. When the agent attempts to move into such an 

obstacle, it bounces back either to the same ce 11 , with probability 0.5, or to the rear 
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cell, with probability 0.5, provided that there is no obstacle behind. The agent gets 

a penalty of -3 when it bounces. 

In states with obstacles, the State Transition Entropy is almost the same for 

one-cell and two-cell movement actions that attempt to move into the obstacle (equal 

to 0.99 and 1 respectively). States with obstacles are less controllable. For example, 

astate with no obstacles has the Controllability equal to 0.73, whereas astate with 

one obstacle has the Controllability equal to 0.67. 

There are parts of the grid-world with a slippery fioor. When performing a two­

cell movement action in a slippery state, the agent may "slip", with probability 0.2, 

and end up in any of the eight neighboring cells with equal probabilities. If the slippery 

state has obstacles along sorne of its sides, then the agent can slip only to those 

neighboring states that are accessible or stay in the same state. There is a -2 penalty 

for slipping. Slippery states are much less controllable. The two-cell movement 

actions in slippery states have, in general, a higher variance of value samples. It is 

introduced by the variance in the rewards as well as by the fact that a state transition 

may end up in any of the neighboring states. If a slippery state has different kinds of 

neighbors, e.g., both slippery and dry, with and without obstacles, then the variance 

is highest. On the other hand, a slip facilitates state space exploration. In addition to 

the penalties described above, the agent gets a penalty of -1 for every state transition 

until it reaches the goal state, at which time the episode terminates. Thus, the agent 

tries to minimize the time necessary to reach the goal. 

Information about obstacles and slippery conditions is not part of a state de­

scription available to the agent. The agent 's state representation consists of the 

two-dimensional coordinates of the state only. 

For our experiments, we randomly generated a set of such grid-world MDPs by 

randomly placing obstacles and slippery parts. Our random generator attempts to 

arrange slippery states in groups and to put obstacles such that they resemble walls. 

An example of a grid-world MDP is shown in Figure 4.8. 

165 



4.4 EMPIRICAL EVALUATION OF ATTRIBUTE-BASED EXPLORATION 

Il 111 1 1 1 1 111 111 1 1 1 1 1 1 1 1 1 1 1 SI 

Il 1 0 0 0 0 0 010 01 1 1 1 1 1 1 0 0 0 0 1 1 1 01 

110000 a 0 010 0 0 111 1 100000000101 

111001000000001110000000001011 

Il 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 11 

111 1 0 010 0 0 0 0 0 0 0 0 01 1 1 1 10001 11 

111000000000000011111100111 

Il 000 0 010 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 11 

11000100011000110001111111111 

110110011111111100110111111 

Il 0 0 1 1 0 1 1 1 1 1 1 1 110 0 1 010 1 1 1 1 1 11 

1111101000101 1 11111 1101 1 1 1 111 

101 1 1 1 0000001 1 1101 1 11001 1 1 1 11 

FIGURE 4.8. Exarnple of a grid-world MDP. l's represent slippery states 
and O's represent dry states. Sorne states have walls on one or more of their 
sides. The goal state is rnarked with the letter G and the start state is 
rnarked with the let ter S. 

Group Number Fixed Obstacles % Slippery States 
1 50 15 
2 250 15 
3 50 45 
4 250 45 
5 50 65 
6 250 65 

TABLE 4.3. Characteristics of the grid-world MDPs. 

The goal state was always located at the lower left corner of the grid and the agent 

always started the episodes from the top right corner. This start state distribution is 

more difficult for exploration compared to the one used in the previous experiments, 

in which case start states were distributed uniformly randomly across the entire state 

space. Thus, directed exploration is even more important in this case. 

We conducted our experiments on six groups of randomly generated grid-world 

MDPs (each defined over a 25 x 25 grid). Each group contained 5 MDPs with cer­

tain characteristics. In particular, we varied the number of fixed obstacles and the 

percentage of slippery states. These settings are summarized in Table 4.3. 

As in the previous experiments, we normalized greedy returns with respect to the 

performance of the optimal policies of the corresponding MDPs from the start state. 

The optimal policies were obtained by the Value Iteration algorithm using exact MDP 
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RL algorithm Sarsa(O) 
Value-fun ct ion representation Table 
Exploration strategy E-greedy, constant E 
Exploration parameter settings tested E E {0.01, 0.1,0.4, 0.9} 
Learning rate schedule Decreasing: ŒN = !3.Jj-+i~l 
Learning rate settings tested f3 E {0.75, 0.9, 0.95, 0.98} 
Number of learning trials per run 10000 
N umber of runs 20 
Frequency of greedy policy evaluation Every 50 trials 
Number of simulated trajectories for 30 
greedy policy evaluation 

TABLE 4.4. Experimental settings for E-greedy exploration on random grid­
world MDPs. 

models. The graphs below are based on performance measurements averaged over 20 

learning runs and 5 MDPs in each group. 

Results for the E-Greedy Strategy 

Experimental settings for E-greedy exploration are summarized in Table 4.4. At­

tributes were incorporated into the E-greedy strategy using the multinomial distribu­

tion in Equation (4.7). The corresponding results are presented in Figure 4.9. We 

selected the best settings for the exploration parameter E and the learning rate pa­

rameter for each variant (with or without attributes) on each MDP and used the 

corresponding results to pro duce the graphs on Figure 4.9. This figure shows the 

results for the case, in which the attribute values were precomputed before learning, 

in the same way as described before for discrete random MDPs. 

Figure 4.9 shows that using the MDP attributes improves the performance of the 

E-greedy strategy for an groups of MDPs tested. By examining learning curves, we 

can see that the performance approaches asymptotically the optimal for aIl variants, 

but the variants using the attribute(s) exhibit faster learning. As can be observed 

from the bar-graphs showing the Cumulative Weighted Penalty measure, the vari­

ance is also smaller when using the MDP attributes. OveraIl, the performance of 

an three attribute-based variants is very similar. In the groups with 50 obstacles, 
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there is sorne tendency for an increased effect of the Forward Controllability as the 

percentage of slippery states increases, that is as the overall stochasticity increases. 

This trend is sirnilar to the one observed for discrete randorn MDPs, although it is 

not as pronounced here. 
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FIGURE 4.9. Performance of E-greedy exploration with and without the use 
of the MDP attributes on grid-world MDPs. Attribute values were precom­
puted before the onset of learning. 
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We did not perform statistical tests for these experiments, sinee the learning 

curves and the bar-graphs clearly indicate differenees in performance when using and 

not using the MDP attributes. 

Figure 4.10 presents the results of similar experiments, however, in this case, at­

tribute values were estimated during learning. Attribute values were initialized to 

high values at the beginning of learning (to the value of 3 for the State Transition 

Entropy and to the value of 1 for the Forward Controllability). Then incremental 

methods for attribute estimation, discussed in Section 3.4, were used to update at­

tribute values after every state transition observed. Initializing attributes to high 

values results in encouraging equal exploration of aIl actions initially until attributes 

for sorne actions are estimated at lower values. 

Figure 4.10 shows the same positive effect of using the attributes as in the previous 

experiments. Learning with the attributes is slightly slower in this case compared to 

the case where the attributes were precomputed before learning. We can see, for 

example, that in the beginning of learning (while the attribute values are estimated) 

the curves of the attribute-based variants are closer to the curves for learning without 

the attributes. Later on during learning, when the attribute estimates are better, 

performance trends are the same as in the previous experiments. 

Results for the Recency-Based Strategy 

Experimental settings for recency-based exploration on grid-world MDPs are sum­

marized in Table 4.5. The results of these experiments are presented in Figure 4.11. 

The graphs were produced using the best combinat ion of settings for the exploration 

parameter K and the learning rate parameter for each variant and each MDP. This 

figure shows the results for the case, in which the attribute values were precomputed 

before learning in the same way as described before. 

As in the experiments with random MDPs, the performance of recency-based 

exploration is better overall than the performance of the c-greedy strategy. Similar to 

the previous experiments, we can see from Figure 4.11 that using the MDP attributes 
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FIGURE 4.10. Performance of E-greedy exploration with and without the use 
of the MDP attributes on grid-world MDPs. Attribute values were estimated 
during learning. 

improves the performance of the recency-based method. In this case, for most groups, 

the greatest performance improvement is achieved by using the Forward Controlla­

lJility. The effect of the State Transition Entropy de creas es as the number of slippery 

states increases. This is consistent with the results on dis crete random MDPs, where 

the strategy using the State Transition Entropy showed a greater impact on low-STE 

MDPs. 
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RL algorithm Sarsa(O) 
Value-function representation Table 
Exploration strategy Recency-based 
Exploration parameter settings tested K E {l, 10, 50} 
Learning rate schedule Decreasing: ŒN = {3.J!+I~l 
Learning rate settings tested f3 E {O. 75,0.9,0.95, 0.98} 
Number of learning trials per run 10000 
N umber of runs 20 
Frequency of greedy policy evaluation Every 50 trials 
Number of simulated trajectories for 30 
greedy policy evaluation 

TABLE 4.5. Experimental settings for recency-based exploration on random 
grid-world MDPs. 

In summary, the experiments on dis crete random MD Ps and on gridworld do­

mains showed similar trends in the effect of using the MDP attributes for exploration. 

First of aIl, in both cases, incorporation of the attributes into the exploration strate­

gies (both undirected and directed) had a positive effect on learning. We observed 

that the Forward ControIlability has a greater impact in highly stochastic environ­

ments with fewer states that are weIl controIlable. The State Transition Entropy 

exhibits a stronger effect in MDPs, in which state-action pairs with high values of 

this attribute are less numerous. Using the two attributes together, in the way that 

it is currently done, does not provide a significant advantage over using one of the at­

tributes alone; future work will address the issue of fin ding better ways of combining 

the attributes. Comparing the results on random and gridworld MDPs, we can see 

that the effect of using the attributes is more pronounced in the latter case: the more 

structure there is in the environment (which would be expected in real applications) 

the more beneficial the use of the MDP attributes is. 
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FIGURE 4.11. Performance of recency-based exploration with and without 
the the use of MDP attribut es on grid-world MDPs. Attribute values were 
precomputed before the onset of learning. 
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4.5. Summary 

In this chapter, we introduced a novel exploration approach, which relies on the 

State Transition Entropy and the Forward Controllability of state-action pairs in or­

der to decide which states and actions to emphasize. We experimentally demonstrated 

the feasibility of our approach for improving the performance of both undirected (é­

greedy) and directed (recency-based) exploration. This result validates even further 

our hypothesis, tested in the experimental study presented in Chapter 3, that the 

State Transition Entropy and the Controllability have a statistically significant effect 

on learning performance. We conjectured that the use of the two attributes studied 

facilitates a more homogeneous exploration of the state space, a more extensive sam­

pling of actions which potentially have a high variance of their value samples, and 

encourages the agent to focus on states where it has most control over the outcomes 

of its actions. However, more experiments will be performed in the future in order 

to investigate which of these three factors are responsible most for the improvement 

in performance and in what circumstances. This will allow us to understand even 

better how to leverage knowledge of the MDP properties most efficiently and how 

to combine the two attributes studied together as weIl as with other MDP related 

information, e.g., with other MDP attributes presented in Chapter 3, and with the 

influence of states on one another, as was studied in [Munos and Moore, 1999]. In 

this case, it will be important to evaluate the trade-off between additional computa­

tional requirements, necessary to estimate other properties, and benefits in terms of 

performance improvement. 

Unlike other existing techniques for directed exploration, our method makes ex­

ploration decisions independently of the course of learning, based only on properties 

of the environment. Attribute values can be precomputed before the learning starts, 

or they can be estimated during learning. In the latter case, the amount of addi­

tional storage and computation is lesser compared to other directed techniques. It is 

also possible to reuse the attribute values for MDPs that differ only in terms of the 

rewards and not in terms of the state space and the state transition function. 
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Note that the fact that the MDP attributes are derived from the MDP model 

should not lead to a conclusion that using model-based methods (i.e., dynamic pro­

gramming methods based on a known or estimated MDP model) would be preferable. 

As was discussed in Chapter 2, asynchronous dynamic programming is often used even 

in the case of complete knowledge of the MDP model in order to focus computational 

resources on states that are actually observed during the interaction with the environ­

ment. In this case, the choice of efficient behavior (exploration) policy is still relevant 

and important, and thus the use of the attributes can be still beneficial. 

In the experiments presented in this chapter, we studied relatively small discrete 

MDPs. In the future, it would be very interesting to investigate how accurately the 

MDP attributes can be estimated from data during learning in large and continuous 

MDPs and what accuracy is necessary for them to be useful. Several results in 

the current literature (see e.g., [Kearns and Singh, 1999; Kakade, 2003]) indicate 

that the MDP model does not have to be estimated very accurately in order to be 

successfully used with model-based methods. We think that a similar conjecture 

can be made with respect to the MDP attributes and this would be an interesting 

avenue for future research. In particular, we think that it would be easier to estimate 

and use the attributes rather than model-based methods for continuous state spaces, 

especially if the attributes are estimated with respect to the features of a local function 

approximator used to represent the value function, as discussed in Chapter 3. In this 

case, it should be possible to extend directed exploration techniques to approximate 

reinforcement learning methods in a similar way as the use of eligibility traces is 

successfully extended to function approximation. 

Finally, in the future, we would also like to compare the performance of our 

strategy with other methods, including methods that explicitly estimate the variance 

of the action-value estimates, for instance, Interval Estimation [Kaelbling, 1993] and 

its global variant [Meuleau and Bourgine, 1999]. 
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CHAPTER 5 

Sparse Distributed Memories for On-Line 

Value-Based Reinforcement Learning 

Chapter Outline 

This chapter presents a function approximation model based on Sparse Dis­

tributed Memories (SDMs) for use in on-line value-based reinforcement learn­

ing. The main contribution of this chapter is a new approach for allocation 

of the memory resources, which automatically adjusts the memory size and 

configuration. 

5.1. Introduction 

In this chapter, once again we focus on on-line value-based reinforcement learning 

algorithms. As already discussed, in do mains with large or continuous state spaces, 

value functions can be represented by function approximators. The use of function 

approximators with value-based reinforcement learning algorithms is the subject of 

much recent research and presents important theoretical and practical challenges. 

Recall from the discussions in chapters 2 and 3 that reinforcement learning becomes 

more difficult when values of states or state-action pairs are approximated and gen­

eralized across the states. At the same time, the problem of function approximation 

also becomes more difficult in the context of reinforcement learning. One of the main 

reasons is in the fact that samples of the target function values do not come from the 

true optimal value function. They are "guesses" based on the current approximate 
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value estimates. Since these estimates evolve during learning, the target function is 

not stationary. AIso, in on-line reinforcement learning, the agent typically follows a 

semi-greedy exploration policy. Its action choices and thus the states that it visits 

depend on the current value estimates, which change over time. Rence, the input dis­

tribution is also non-stationary. Moreover, during on-line learning, training samples 

are presented to the fun ct ion approximator as they are encountered on trajectories 

and thus are not independent of each other. They are also correlated with the approx­

imated values in the case of semi-greedy exploration strategies. The non-stationary 

nature of the data and the correlated sampling make the function approximation task 

particularly difficult for theoretical analysis and challenging for practical applications. 

Linear, local function approximators are often preferred in value-based reinforce­

ment learning. As was discussed in Chapter 2, convergence properties are best un­

derstood for linear approximators, which compute a state (or state-action) value as 

a linear combination of some features. Relevant results include the convergence of 

policy evaluation [Tsitsiklis and Van Roy, 1997], the convergence of approximate dy­

namic programming [Gordon, 1995; Tsitsiklis and Van Roy, 1996], and non-divergence 

of SARSA(À) [Gordon, 2000] (see Section 5.3.2 for more details). The behavior of 

non-linear approximators is still poorly understood in theory, while practical evidence 

is inconsistent. 

Some researchers (see, e.g., [Atkeson et al., 1997a; Platt, 1991; Tham, 1995; 

Gorivensky and Connolly, 1994]) argue that local approximators are more suit able 

for reinforcement learning than global approximators. As discussed in Chapter 2, 

local approximation architectures allow only a few local parameters to be updated 

on every step, based on a distance from the current input. This is in contrast with 

global models (e.g., sigmoid neural networks), in which an parameters are updated 

on every step. Global function approximators, such as neural networks, are known 

to suffer from catastrophic forgetting (or interference) [McCloskey and Cohen, 1989; 

Weaver et al., 1998]: the approximator "forgets" previously learned values of input 

patterns that are less common or that have not been revisited recently. This happens 
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because ail of the architecture parameters get tuned to more recent and frequent 

training samples. However, in reinforcement learning (and in control in general), sorne 

rarely visited states may often be crucial for propagating and maintaining accurate 

estimates of the value function in other parts of the state space. It has been shown in 

[Narendra and Parthasarathy, 1991] that using neural networks in control requires a 

great care in the presentation of training samples, so that persistent excitation l of the 

system is ensured and catastrophic forgetting is prevented. Special measures, such 

as rehearsal, are often taken to avoid catastrophic forgetting (see, e.g., [Robins, 1995; 

Meeter, 2003]). 

Local approximators do not suffer from catastrophic forgetting as much, since 

most parameters learned on previous distant samples are not influenced by the new 

training data due to the local nature of the parameter updates. At the same time, 

local approximators quickly incorporate new data, thus adjusting faster to the non­

stationarity. In global architectures, on the other hand, a unit with a non-local 

response needs to undergo gradient descent on many samples for many iterations 

before a reasonable performance can be expected. 

Many reinforcement learning applications have been built around local linear 

approximators, e.g., CMACs [Santamaria et al., 1998; Sutton and Barto, 1998], soft 

state aggregation [Singh et al., 1995], variable-resolution discretizations and regression 

trees [Munos and Moore, 2001; McCallum, 1996; Reynolds, 2000; Uther and Veloso, 

1998; Wang and Dietterich, 1999] and memory-based methods [Atkeson et al., 1997a; 

Forbes, 2002; McCaIlum, 1996; Santamaria et al., 1998; Smart and Kaelbling, 2000]. 

Radial Basis Function Networks (RBFNs) with fixed cent ers and widths have been 

used much less [Anderson, 1993; Gordon, 1995; Sutton and Barto, 1998; Kretchmar 

and Anderson, 1997], the main difficulty being in the choice of parameters for the 

basis functions. Most of these methods, however, still face important difficulties 

when applied to on-li ne learning in large domains. For example, CMACs, soft state 

aggregation and variable-resolution discretization approaches do not scale weIl to 

1 Persistent excitation means that the set of training samples should regularly reveal ail modes of the 
system behavior. 
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state spaces with high dimensionality; the methods in [Munos and Moore, 2001; 

Uther and Veloso, 1998; Wang and Dietterich, 1999J are intended for off-line learning; 

memory-based methods in [Atkeson et al., 1997a; Smart and Kaelbling, 2000J do not 

address the issue of limiting the memory size, which can grow very big during on-line 

reinforcement learning. 

Global and/or non-linear approximators, e.g., neural networks and Support Vec­

tor Machines (SVMs) scale better, in principle, with input dimensionality. However, 

as mentioned earlier, with on-line reinforcement learning, they have no convergence 

guarantees and are subject to sorne other practical problems. For example, as dis­

cussed above, neural networks suffer from catastrophic forgetting and are notoriously 

hard to tune in reinforcement learning. SVMs usually rely on batches of previously 

seen data [Dietterich and Wang, 2001; Engel et al., 2002; Lagoudakis and Parr, 2003a; 

Martin, 2002; Ralaivola and d'Alche Buc, 2001J which can be problematic with on­

line reinforcement learning due to the non-stationary data distribution. Only recently 

there was the first attempt to use a sparse in cre ment al SVM method for value-function 

approximation [Jung and Uthmann, 2004J. 

In this chapter, we advocate the use of Sparse Distributed Memories (SDMs) 

[Kanerva, 1993J for action-value function approximation in on-line reinforcement 

learning. SDMs were originally designed for the case, in which a very large input 

(address) space has to be mapped into a much smaller physical memory. SDMs pro­

vide a linear, local architecture, which, due to the reasons discussed ab ove , should be 

a good choice for on-line reinforcement learning. 

In general, local architectures, SDMs included, can be subject to the curse of 

dimensionality, as an exponential number of local units may be required in order to 

approximate sorne target functions accurately across the entire input space. However, 

many researchers believe (see, e.g., [Atkeson et al., 1997b]) that most decision-making 

systems need high accuracy only around low-dimensional manifolds of the state space 

or important state "highways". The SDM model and sorne related architectures, 

e.g., Radial Basis Function Networks, are flexible enough to take advantage of this 

178 



5.1 INTRODUCTION 

facto Their local components can be positioned and shaped according to the needs 

of the application at hand. Related techniques have already been used in reinforce­

ment learning (e.g., [Anderson, 1993; McCallum, 1996; Wiering, 1999; Smart, 2002; 

Glaubius and Smart, 2004]), and, in fact, are becoming a hot topic in the current 

literature. 

There are no restrictions in the generic SDM model as to how the physical memory 

locations should be distributed in the input space. However, the performance of SDMs 

depends crucially on a good memory layout, which is determined by the distribution 

of the samples of the target function and its complexity. A number of methods have 

been developed for the automatic selection of the structure of SDMs and other local 

models, both in supervised and reinforcement learning. We review in detail such 

existing approaches in Section 5.4. We then propose a new approach for configuring 

SDMs, which attempts to avoid sorne of the pitfaIls encountered by existing methods 

when used in the context of reinforcement learning. 

In order to address the issue of finding appropriate memory structure, we turn 

to ideas underlying instance-based techniques [Atkeson et al., 1997aJ. In particular, 

similar to the instance-based methods, our approach does not require choosing the 

size or the structure of the approximator in advance, but shapes it on-line based on 

the distribution of observed data. In practice, our method exhibits robust behavior 

when used with on-line reinforcement learning, providing good performance as weIl 

as being quite efficient both in terms of the resulting memory size and computational 

time. It also remains close to the scope of existing theoretical convergence guarantees 

for linear approximators, as we will point out throughout the chapter. 

The rest of the chapter is organized as follows. In Section 5.2, we summarize 

the standard SDM model as introduced in [Kanerva, 1993J. Then we present our 

implementation of the SDM model for the case of reinforcement learning in continuous 

state spaces with Least Mean Sqaures (LMS) training. We also discuss approximate 

reinforcement learning methods that do not use LMS training but with which the SDM 

model can be used. In Section 5.4, we review methods from the current literature for 
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automatic selection of structural parameters in SDMs and related models. In Section 

5.5, we present the main contribution of this chapter, our approach for dynamic 

allocation and adjustment of resources in SDMs. Experimental results are presented 

in Section 5.6. Section 5.7 discusses the directions for future work. We end with 

conclusions in Section 5.8. 

5.2. Sparse Distributed Memory 

The Sparse Distributed Memory architecture was originally proposed in [Kan­

erva, 1988] for learning input-output associations between data drawn from a highly­

dimensional binary space. The input can be viewed as a memory "address" and the 

output is the desired content to be stored at that address. The physical memory 

available is typically much smaller than the virtual space of aIl possible inputs, so 

the physical memory locations have to be distributed sparsely in the virtual address 

space. 

In SDMs, a sample of addresses is chosen (in any suitable manner) and physical 

memory locations are associated only with these addresses. When sorne address x = 

(Xl, ... ,Xn ) (where n is the dimensionality of the input space) has to be accessed, a 

set of nearby locations is activated (see Figure 5.1), as determined by sorne similarity 

measure. For instance, if addresses are binary, the similarity can be determined 

using the Hamming distance2
. The original SDM model assumes that the data to be 

memorized, f(x), consists of bit vectors (with Os substituted by -ls). When such a 

vector f(x) needs to be stored for input (address) x, it is distributed between aIl the 

locations activated by x, by performing bitwise addition to the existing content of 

the activated memory locations. This is in contrast to conventional memories, where 

addresses have to match exactly and the previous content of a memory location is 

simply replaced by the new one. When the value for input x is retrieved, the content of 

all active locations is combined by bitwise addition and thresholding. In the simplest 

2The Hamming distance between two binary vectors (Xl, ... , xn ) and (YI, ... , Yn) is defined as 
H D(x, y) = 2:~=1 I(Xi, Yi), where I(Xi, Yi) = 1 if Xi i- Yi and 0 otherwise. 
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ddress (input) space 

Active location 

ctivation neighborhood 

FIGURE 5.1. Sparse Distributed Memory: Generic Design 

case, a fixed threshold is used across the entire address space, but more elaborate 

rnechanisrns have also been proposed, e.g., [Sjodin, 1995]. 

A vector Î (x), retrieved sorne tirne after a vector f (x) had been stored for address 

x in a distributed rnanner, should be very close to the original vector. Intuitively, 

w hen a vector f (x) is stored, each of the acti vated locations recei ves a copy of the data. 

Subsequently, these active locations rnay be activated by other inputs x', and receive 

copies of other data vectors, but only if x and x' are relatively close. So, when we 

want to retrieve data corresponding to address x, the surn of the contents of activated 

locations contains aIl the copies of the vector f (x), originally stored for x, plus copies 

of other vectors. However, if the rnernory locations are properly distributed in the 

input space, these extraneous copies are rnuch fewer than the nurnber of copies of the 

vector f(x). This biases the surn vector in the direction of the vector f(x) with high 

probability. This property of distributed storage has been rigorously studied based 

on signal-to-noise ratio analysis in [Kanerva, 1993]. 

In this chapter, we focus on the case where inputs are vectors of real values and 

the target values stored in rnernory are also real nurnbers. In other words, we are 

interested to approxirnate functions f(x) : ~n ----+ ~ with SDMs. In the rernainder of 

this section, we present different aspects of the irnplernentation of SDMs for this case. 
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5.2.1. Activation Mechanism 

As mentioned above, the SDM activation mechanism relies on the similarity mea­

sure between the input address and the addresses of memory locations. In general, 

the choice of a similarity function depends on the input space and the application 

at hand. For example, the original SDM design for binary memories used a similar­

ity mechanism based on thresholding the Ramming distance (RD) between binary 

vectors: a memory location h = (hl, ... , hn ) was considered activated by an input ad­

dress x = (Xl, ... , xn ) if H D(h, x) > Tl, where Tl is an integer threshold. The activation 

status of the memory locations is binary in this case. 

A continuous activation mechanism was proposed for binary SDMs in [Rely et al., 

1997], which was modeled as if the input address would broadcast a signal in a radial 

manner. This signal loses strength by a certain percentage every time a new location 

is encountered. The activation status of each location is equal to the strength of the 

received signal. With this activation mechanism, the similarity is not directly related 

to the distance between inputs in sorne metric space, but is dependent on the local 

density and distribution of locations. 

For presentation purposes and for our experiments, we chose a similarity measure 

based on symmetric triangular functions. This similarity between input vector x = 

(Xl, ... , xn ) and location h = (hl, ... , hn ) is computed as follows: 

J-l(h, x) = . min J-li(h, x) 
~=l, ... ,n 

{ 

1 _ IXi-hil 

J-li(h,x)= 0 (3i 
if lx, - h·1 < g ~ ~ _ fJ~ 

(5.1) 

otherwise 

Rere, (hl, ... , hn ) represents the location address and {Ji are the activation radii in 

each dimension (see Figure 5.2). This similarity measure directly translates into the 

location's degree of activation, which, in this case, is continuous in the interval [0,1]. 

This definition of the similarity function is factored, in the sense that the similarities 

in each dimension are combined in a "product", by the min operator in this case. 

This gives an immediate symbolic interpretation of the memory locations' semantics 
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FIGURE 5.2. Similarity function for two dimentional space based on trian­
gular symmetric uni-dimensional functions. 

and, if needed, allows to extract and refine knowledge in terms of interpretable rules. 

From this point of view, our model resembles Factorized RBFNs [Tresp et al., 1992]. 

It should be noted that taking the minimum similarity over al! dimensions may be 

too de man ding in highly dimensional input spaces with very sparse data. In this case, 

a non-zero similarity fLi can be required only for a certain number of dimensions3
. 

Of course, the similarity measure can be defined in many different ways; see, e.g., 

[Atkeson et al., 1997a; Scholkopf, 2000] for different choices. For instance, popular 

Gaussian functions can be used instead of (5.1). Our choice ofthe similarity measure 

based on the triangular functions presented in Equation (5.1) was motivated mainly by 

the fact that a similarity function with a bounded support facilitates implementation 

of an efficient activation mechanism, as will be discussed below. 

In the original SDM model, on every memory access, the similarity of the input 

address to aIl existing locations is computed in order to find which locations are 

activated. The same is usually true for the implementations of RBFNs. This step 

can be very computationally expensive for large architectures. A similar problem 

arises for instance-based learning methods, which also have to retrieve previously 

stored data samples that are close to the query point. 

It is possible to implement SDMs and other related models efficiently flO that 

isolating active locations does not require computing the similarity of a data point to 

aIl locations. For example, for the binary SDM model, a more efficient mechanism was 

3We do not use such a definition in this thesis. 
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proposed in [Karlsson, 1995]. In this mechanism, memory locations are divided into a 

fixed number of blocks, equal to sorne predefined number of desired active locations. 

Each block has an associated filter, a subset of k address bits that are required to 

match, and each block consists of 2k hard locations that have aU combinations of Os 

and ls in the k specified address bits. On a memory access, the input values of the 

bits specified in the filters are used as indeces to the corresponding blocks of hard 

locations, thus speeding up the computation. The disadvantage of this approach is 

that the positions of hard locations are predetermined by the selection of filters, which 

may be problematic for many distributions of the data. 

In the instance-based learning framework, kd-trees are often used [Freidman et 

al., 1977; Deng and Moore, 1995; Smart and Kaelbling, 2000] to retrieve efficiently 

from a database the samples close to a query. A kd-tree can be used to divide the 

input space into hyper-rectangles corresponding to the leaves. Then the leaves of the 

tree contain pointers to the memory locations whose activation neighborhoods overlap 

with the corresponding hyper-rectangles. Another similar data structure, balltrees, 

can also be used in this context [Omohundro, 1989]. Voronoi diagrams, commonly 

used in computational geometry [Okabe et al., 1992], can provide an efficient search 

mechanism. However, the size of the corresponding data structure is exponential in 

the dimensionality of the input space. 

5.2.2. Reading from Memory: Prediction 

Let fl(x) = I-L(hk
, x) be the similarity between input x and the kth location h k

, 

as in Equation (5.1). We denote by M the total number of memory locations in the 

SDM. To predict the value of the input x, we first find the set of active locations, Hx: 

(5.2) 
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Let w = (Wl) ... ) W M) be the values stored at the corresponding memory locations 

h l
, ... , hM. Then, the predicted value of x is computed as follows: 

L jl(X)Wk 

!w(x) = _kE_H_x --­L fJ,k(X) 
kEHx 

(5.3) 

The normalized activations of the memory locations, L Il'ffi (x)k ( )' can be viewed as 
kEHx Il x 

features of the input x. Henee, the prediction is computed as a linear combination of 

local features. 

The representation (5.3) of the approximate function, which we use for contin­

uous input spaees, is equivalent to Normalized RBFNs (NRBFNs), which we briefiy 

introdueed in Chapter 2. The addresses of the SDM locations correspond to the een­

ters of the RBFs and the activation radii - to the widths of the RBFs. The similarity 

measures of the SDMs correspond to the basis functions. The parameters of NRBFNs 

used to combine RBFs in a linear manner correspond to the values W m stored in the 

memory locations. 

Other linear local architectures can be related to this model as weIl. For example, 

recall from Chapter 2 the CMAC approximator. In CMACs, tiles correspond to the 

memory locations. As in the SDM model, several tiles get activated on every memory 

aceess, one tile in each tiling. The activation mechanism is, however, binary in the 

CMAC case. This is equivalent to having a rectangular-shaped similarity function, 

which is equal to one over an entire activation neighborhood (a region covered by the 

corresponding tile) and which drops to zero at the tile's borders. The parameters 

associated with each tile correspond to the values stored in the SDM locations. 

Analogies can also be drawn with the manifold representation for function ap­

proximation, described in Chapter 2. In this case, memory locations correspond to 

the charts in the manifold atlas. The similarity measures correspond to the blend 

functions and the values stored at the memory locations are equivalent to using a 

constant approximating function within each chart. 
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An extensive reVlew of various RBFN architectures and their relationships to 

various other models, including, among others, support vector machines, fuzzy sys­

tems, wavelet networks and instance-based learning, can be found in [Blanzieri, 2003]. 

The most important differences between such related models appear in the learning 

algorithms associated with them. 

5.2.3. Storing in Memory: Least Mean Squares Learning for Continuous 

SDMs 

Upon receiving a training sample (x, f(x)), the values stored in aIl active locations 

are updated. We perform the updates based on the standard in cre ment al gradient 

descent algorithm for linear Least Mean Squares approximation [Widrow and Hoff, 

1960]. As already discussed in Chapter 2, in this case, the goal is to minimize the 

Mean Squared Error: 

1 ~ 2 MSEw = 2 ~ P(x) [f(x) - fw(x)] (5.4) 
x 

where fw(x) is the prediction for input x, P(x) is the probability or weight of sample 

x and the summation runs over the training samples received during learning. 

During on-line learning, training samples are considered to be drawn from the 

distribution of interest, P(x), and are processed one at a time. In this case, we 

consider the estimates of the MSE function at each training sample. In order to find 

the approximation fw(x) that minimizes the MSE function, the parameters of the 

function approximator w = (Wl, ... , W M) are updated in the direction of the negati ve 

gradient of the MSE estimate for the current sample (x, f(x)): 

W m := W m - a 8~ S Ew l ,m = 1, ... , M 
Wm x 

(5.5) 
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where a E (0,1) is the learning rate (which can vary from one iteration to the next). 

The partial derivatives of the MSE function with respect to the approximator's pa­

rameters W m are computed as follows: 

&MSEw 1 

&Wm x = - [J(x) - !w(x)] %~: lx 
= - [J(x) - !w(x)] Lk:;~;k(x) 

(5.6) 

Thus, from (5.5) and (5.6), the values stored in the SDM locations are updated as 

follows: 
p,m(x) 

W m := W m + a [J(x) - !w(x)] 2: k( )' Vm E Hx 
kEHx P, x 

(5.7) 

In Section 5.5.5, we will discuss how the addresses of the memory locations can 

be selected and updated. The memory allocation pro cess will then proceed in parallel 

with learning the memory content. 

5.3. SDMs in Reinforcement Learning 

5.3.1. Least Mean Squares Training for SDMs in Reinforcernent Learning 

SDMs with the standard incremental LMS training, as explained above, can be 

incorporated into value-based reinforcement learning algorithms in a straightforward 

way. For instance, in order to combine SDMs with SARSA(>'), we can use a separate 

approximator to represent the action-value function Qw(s, a) for each action a, as 

is typically do ne with other approximators [Sutton and Barto, 1998]. Let wm(a), 

m = 1, ... , Ma, denote the values stored in the locations of the SDM for action a. These 

values are updated after every observed transition (s, a) ~ (s', a'). The current state­

action pair (s, a) serves as the training input and the target value is obtained from 

the bootstrapped estimate [r + ,QW(S', a')], Le., a sample of a "one-step-lookahead" 

based on the observed reward r, the next state s', the selected next action a' and 

the current prediction for the value of the next state-action pair (s', a'). The update 

rule, corresponding to the standard LMS update in Equation (5.7) for the case when 
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À = 0 can be obtained as: 

If eligibility traces are used, i.e., À > 0, the training update will be as follows: 

Here, em(a) are the eligibility traces associated with each location, similar to the 

tabular representation of action-value functions. In the tabular case, they accumulate 

the visitation counts for each state-action pair, whereas with function approximation, 

they accumulate gradients of the approximate function Qw(s, a) with respect to the 

parameters. In our case, these gradients correspond to the terms Lk:;:~~~s,a) from 

equation (5.8). Similar to the tabular version of the Sarsa(À) algorithm, these gra­

dients represent how much the corresponding parameter values contributed to the 

approximation error [r + ,Qw(S', a') - Qw(s, a)]. Recall from Chapter 2 that eligi­

bility traces can be updated using either the replacing traces or accumulating traces 

method. For replacing traces, the trace update is as follows: 

m = 1, ... , Ma and Va 

(5.10) 

Vm E Hs,a and Va =J. a 

For accumulating traces, the eligibilities are updated as follows: 

{ 

p,ffi(s,a) if m E H - and a = a 
em(a) := À,em(a) + LkEH.,ii p,k(s,a) s,a 

o otherwise 
(5.11) 

If the memory is big, a list of locations with traces greater than sorne threshold 

can be maintained in order to perform this update efficiently. 

5.3.2. Alternatives to LMS Training with Non-Expansive Approxirnators 

The convergence ofreinforcement learning algorithms in the tabular case [Jaakkola 

et al., 1994; Singh et al., 2000] can be shown based on the contraction property of 
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the corresponding value update operators, (recall Equations (2.14), (2.17) and (2.28) 

from Chapter 2). This property cannot be guaranteed, in general, when reinforcement 

learning is used with arbitrary function approximators, both in the case of using LMS 

training and approximate dynamic programming. However, there are several studies 

in the current literature for various special cases. We will review sorne of them next. 

Approximate Value Iteration with Averagers 

The work in [Gordon, 1995] addressed the question of which function approxima­

tors can preserve the contraction property when combined with approximate dynamic 

programming. He analyzed a class of methods that became known as averagers in the 

reinforcement learning community. These methods have a non-expansion property, 

which means that the approximator cannot extrapolate off the range of the training 

target valueé. A function represented by an averager is entirely contained within the 

vertical bounds of the target function. This property cannot be ensured when using 

the LMS rule, which can minimize the MSE while predicting values out of the range 

of the observed target values for sorne inputs. 

Consider an approximation 17(s) of the state-value function. As defined in [Gor­

don, 1995], a real-valued function approximation scheme is an averager if every ap­

proximated value 17(s) is a weighted average of zero or more target values V(sm) and 

possibly sorne predetermined constant c: 

M 

17(s) = ccjJ°(s) + L cjJm(s)V(sm) 
m=l (5.12) M 

cjJ°(s) + L cjJm(s) = 1 
m=l 

where (sm, V(sm)), m = 1, ... , M, are the training samples. The weights cjJm(s) in­

volved in calculating the approximate value may depend on the input vector s but 

may not depend on the target values V(sm). For instance, these weights cannot be 

4This notion of non-expansion is not to be confused with the notion of extrapolation off the range 
of training inputs. 

189 



5.3 SDMS IN REINFORCEMENT LEARNING 

determined by the LMS training rule. Usually these weights are determined by dis­

tances between the query input s and the training inputs sm and are unaffected by 

the training target values. 

One well-known method that operates in this way is the k-nearest neighbor, where 

weights qr(s) are often determined by a Gaussian kernel: 

)...m() (-Ils-smll~) 
'f' s = exp 2 

(J 
(5.13) 

based on a weighted Euclidean distance Ils - smll~ = 2:~=1 çi(sf - Si)2, The weights 

Çi allow appropriate rescaling of the input dimensions and are usually specified by 

the user. The parameter (J is the kernel width, which determines how fast the weight 

q;m(s) decreases with the increase in the Euclidean distance. In the k-nearest neigh­

bor algorithm, the k training samples with the largest values of the weights q;m(s) 

appear in the summation in Equation (5.12)5. Other methods that have been used 

in this context are bilinear interpolation [Gordon, 1995], interpolation based on mul­

tidimensional triangulations [Davies, 1996] and barycentric interpolation [Munos and 

Moore, 1999]. 

Note, that sorne analogies can be drawn between the averager and the SDM 

models. The weights q;m(s) of the averager play the same role as the normalized 

similarity functions L tr(s)k() in the SDM model. In the averager model, training 
kEH. J.L S 

targets V(sm) play the same role as the values W m stored in the SDM locations. If 

the SDMs were to be used in the averager framework, the addresses of the memory 

locations would be chosen exactly at the training inputs, i.e., hm = sm, m = 1, ... , M. 

AIso, memory content parameters W m would be directly determined by the training 

targets: W m = V(sm), m = 1, ... , M. No adaptive learning algorithm, like LMS 

iterative updates (5.7), would be performed to estimate the parameters W m . 

In [Gordon, 1995], averagers were used in combination with the Value Iteration 

algorithm as discussed in Chapter 2. This is possible when the model of the pro cess 

is available or when transition samples can be generated at will from any state. 

5Kernels of the nearest neighbors can be normalized so that they sum to one. 
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Recall that with approximate dynamic programming, a subset of prototype states 

El = {sI, ... , sM} is selected, and their values are arbitrarily initialized to sorne values 

vl(sm), m = l, ... , M. On every iteration t, the training set, consisting of samples 

(sm, vt(sm)), m = l, ... , M, is presented to an averager which generalizes the values 

of the states in El to the entire state space, as in Equation (5.12). Then, one iteration 

of the Value Iteration method is performed for the states in El only, and the next 

estimate of the value function, vt+1(sm), is obtained as follows: 

vt+1(sm) := m~x L P:rn,s' [R~rn,s' + "(Vt(s')] ,m = l, ... , M (5.14) 
s' 

Note that the successors s' may be outside of the set El of prototype states, in which 

case the current approximation, as given by Equation (5.12), is used to estimate their 

values. This method is practical only if the set of possible successors is reasonably 

small so that the summation in Equation (5.14) can be computed efficiently. Approx­

imate Value Iteration combined with an averager for approximation of the state-value 

fucntion converges with probability one to a value function V OO
, such that 

max 1 v oo 
( s) - V* ( s ) 1 :S 1

2
,,(T/ 

sES - "( 
(5.15) 

where T/ = max IVA(s) - V*(s)I, and VA is the best possible approximation to the 
sES 

optimal value function for the given averager scheme and the given set of prototype 

states El. 

Approximate Value Iteration with Linear Architectures 

Another related result was obtained in [Tsitsiklis and Van Roy, 1996]. It proved 

convergence of the Value Iteration method, applied in the same manner as in [Gor­

don, 1995] (discussed above) with a general feature-based class of linear function 

approximators used to represent the optimal state-value function: 

M 

Vw(s) = L wmqr(s) (5.16) 
m=l 
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where cjJm(s) are some features or basis functionso In this case, the Value Iteration 

algorithm operates on a set of preselected prototype states {SI, 000' sM} as presented 

in Equation (5014), similar to the approach of [Gordon, 1995]0 The features have to 

satisfy the following conditions6
: 

(i) The feature vectors F(sm) = (cjJl(sm), 000' cjJM (sm)), m = 1, 000' M 

are linearly independent; 

(ii) The feature space is contained in the convex hull of 

the vectors ±F(SI), 000' ±F(SM), possibly with a small 

amount of slack to extend it slightly beyond that hull. 

(5017) 

These conditions ensure that the extrema of the approximate value function, 

represented by the linear model (5016) within a convex polyhedron, must be located 

at the corners: 
1 

max IVw(s)1 < l max IVw(sm)1 
sES '"'( m=l,ooo,M 

(5018) 

where the factor '"'(' E ['"'(,1) allows for a small amount of slack III the boundso 

Feature-based linear function approximators that satisfy the above conditions are 

non-expansions and preserve the contraction property of the Value Iteration methodo 

They ensure convergence with error bounds comparable to those derived by Gordon 

(1995) (see Equation (5015))0 

Tsitsiklis and Van Roy (1996) analyzed a special case of linear approximators 

(5016), in which features cjJm(s) are localized basis functions, eogo, Gaussians or tri­

angular similarity functions (501) presented earlier for our SDM model. These basis 

functions are associated with particular prototype states that represent their centerso 

Under certain conditions, such approximators satisfy the non-expansion property with 

the Value Iteration methodo More specifically, assume that we have basis functions 

cjJl (s), 000' cjJM (s) centered at some prototype states SI, 000' sM 0 The required conditions 

6See [Tsitsiklis and Van Roy, 1996] for exact technical definitiono 
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are then as follows: 

(i) For aU mE {l, ... , M}, 4r(sm) = 1; 
M 

(ii) For aU mE {l, ... , M}, L l4>i(sm)1 < 1; 

(iii) 

i=l 
iofm 

M 

With <5 defined by <5 = max L l4>i(sm)l, 
mE{l, ... ,M} . 

1.=1 
iofm 

there exists a constant '"'(' E ['"'(, 1), such that for all SES, 
M , 

L l4>m(s)1 :::; l(1- <5) 
m=l '"'( 

(5.19) 

Intuitively, condition (ii) bounds the influence of other basis functions on the value 

at the center of a particular basis function. Condition (iii) is necessary to ensure that 

the feature space defined by the basis functions is contained within a convex hull and 

that the approximate value function is always bounded as in Equation (5.18). Often 

a basis function centered at a prototype state sm can be interpreted as providing 

a similarity between other states and the prototype state sm (as is the case with 

the SDM model). In this case, given the maximum contribution <5 of other basis 

functions at the center of any basis function, condition (iii) will establish a maximum 

contribution of all basis functions to the value at any state s. 

Unfortunately, no constructive algorithm was ever suggested for choosing the 

cent ers and the widths of the basis functions so that these conditions are satisfied 

and the obtained approximator structure is suitable for the do main at hand7
. 

As previously noted, the SDM architecture provides a linear local approximator, 

where the similarity functions can be viewed as basis functions. Thus, the SDM ar­

chitecture can be configured to satisfy the conditions (5.19) so that the non-expansion 

property, required to guarantee convergence of the approximate Value Iteration, is 

7Goodness of the obtained architecture for a particular task will be determined by the bounding 
factor TJ = maxsES IVw* (s) - V* (s) 1 where Vw * (s) is the best possible approximation of the optimal 
state-value function, given the chosen architecture. This factor determines the error bound for the 
approximate value function estimate obtained by the approximate Value Iteration, similar as in 
Equation (5.15). 
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not violated. In Section 5.2.2, we suggested to use an SDM representation of the ap­

proximate function based on the normalized similarity measures L Ji-'m(s)k( ). In this 
kEH. Ji- S 

case, conditions (i) and (ii) in (5.19) can be satisfied only if the address of any location 

is never covered by the activation neighborhood of any other location. In this case cS, 

as defined in (5.19), is equal to zero and the condition (iii) can always be satisfied. 

Thus, when building an SDM, we would have to ensure that a new location is added 

only if its address does not activate any other existing location. Rence, with such an 

architecture, there are points in the input space, whose values are determined by a 

single memory location. A set of such points will always contain points corresponding 

to addresses of the memory locations, plus possibly some nearby points, depending 

on the exact layout of aU the activation neighborhoods. To some extent, this defies 

the idea of distributing the values stored in the memory over a nurnber of locations, 

which is supposed to improve its robustness and noise tolerance. 

Suppose that we would like to aUow activation neighborhoods to cover the ad­

dresses of other locations, in order to better ensure the distribution of the rnernory 

content, while still trying to satisfy the rest of the conditions (5.19). In this case, we 

could use un-norrnalized similarities in the representation of the approxirnate func­

tion. In the case of the state-value function, the representation would be as foUows: 

Vw(S) = z= J-lm(s)wm (5.20) 
mEH. 

Condition (i) in (5.19) would be satisfied with any sirnilarity function J-l with the range 

of [0,1]. Then, we would need to find an appropriate threshold J-l* for the sirnilarities 

(closeness) between any two memory locations, in order to satisfy other conditions in 

Equation (5.19). 

It would be difficult to find analyticaUy the design parameters so that condi­

tions (5.19) are guaranteed to be satisfied. We can try to satisfy them approximately 

instead. For instance, we could sarnple the state space in sorne rnanner and incrernen­

taUy add a new location with the address equal to the current input S whenever the 

total activation of the existing locations, 2.::=1 J-lm(S) , m = 1, ... , M, does not exceed 
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some threshold 5 < 1. This would ensure satisfaction of condition (ii). To satisfy 

condition (iii) for aU states s would be more difficult, though. As a rough approx­

imation, we could check this condition for every sample state and, if it is violated, 

remove some of the existing locations. Effectively, condition (iii) will impose a limit 

on the number of memory locations that could be active in any given region of the 

state space. 

The above raises a natural question of the choice of the sampling distribution 

that should be followed during the memory allocation process. The results in [Gor­

don, 1995] and [Tsitsiklis and Van Roy, 1996] discussed above were given for the 

Value Iteration algorithm, which is applied off-line by performing updates (5.14) syn­

chronously to all preselected representative states {Sl, ... , sM} (in our case, they would 

correspond to the SDM locations). Thus, the architecture of the function approxima­

tor has to be fixed prior to learning. Ideally, we would be interested to allocate the 

memory un der the distribution of an optimal policy, which, however, is not known. 

An obvious feasible alternative would be a uniformly random policy. In this case, we 

could aim at simply covering the entire state space with activation neighborhoods. 

However, it would not be possible to guarantee that the resulting memory layout is 

actually well suited for the target state-value function. Moreover, in very large, high­

dimensional domains, it may not be possible to coyer the entire state space. In this 

case, as mentioned previously, when using local function approximators, the hope is 

that it is not necessary to coyer the entire state space, but only important regions. 

Unfortunately, it is not obvious how to identify such regions prior to learning, unless 

sorne domain knowledge is available. Alternatively, they could be identified while 

following on-policy exploration during learning. 

On-line Algorithms with Non-Expansive Approximators 

Gordon (1995) discussed the possibility of using an incremental version of the 

Value Iteration, as well as an algorithm analogous to the Value Iteration but based 

on the Bellman equation for the action-value function Q(s, a). However, even these 
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incremental variants rely on the availability of the MDP model. When the MDP 

model is not known, the agent can use the on-line model-free Q-Iearning to update 

the values of prototype state-action pairs: 

(5.21) 

while representing the action-value function with an averager: 

M 

Qw(s, a) = cq;O(s, a) + L q;m(s, a)Qw(sm, a) (5.22) 
m=l 

The convergence result of Gordon (1995) would still hold, if the updates to the values 

of prototype states sm were performed conservatively only when these states are 

actually observed, that is when sm = sand s is the currently observed state. However, 

this may happen very rarely, especially in large stochastic environments, and thus 

learning will be very slow. The idea that was proposed in [Gordon, 1995] for this 

case is to pretend that the observed transition from some state s is actually from the 

"closest" prototype state sm. Then, the update (5.21) is performed for the value of 

such state-action pair (sm, a), where a is the current action. 

A similar idea was used in [Ribeiro and Szepesvâri, 1996; Szepesvâri and Littman, 

1999] in order to speedup tabular Q-Iearning in Eucledian state spaces, where after 

a state transition from some state s, an update was performed to multiple states S, 

considered "close" to the observed state s. Closeness was determined according to 

some smoothening factor z(s, a, s), such that z(s, a, s) ::; z(s, a, s) and such that it 

decays to zero as Ils - sil ---* 00. So, after observing a transition (s, a) ~ s', the 

update was be performed as follows: 

Q(s, a) = Q(s, a) + ŒZ(S, a, s) [r + "(mF Q(s', b) - Q(s, a)] ,for aIl sES (5.23) 

In [Szepesvàri, 2001], the algorithm with such an update rule was analyzed with 

interpolative function approximation used to represent the action-value function. In­

terpolative function approximators can be seen as a special case of the feature-based 
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methods considered in [Tsitsiklis and Van Roy, 1996]. An interpolative function ap­

proximator for the action-value function Qw(s, a), has a set of parameters wm(a), 

m = 1, ... , M, associated with a set of prototype states {sI, ... , sM} (we assume that 

there is a separate approximator for each action a). The interpolative approximator 

satisfies the following property: 

Qw(s, a) = { Wm~a) 
L:m=1 wm(a)qr(s, a) 

(i) 
otherwise 

(5.24) 
(ii) qr(s, a) ~ 0, m = 1, ... , M 

(iii) L:~=1 qr(s, a) = 1 

Note that the SDM architecture can be structured to satisfy the above interpola­

tive property. In this case, the addresses of memory locations hm would correspond 

to the prototype states sm. Using normalized similarities in the representation of the 

approximate function, as in Equation (5.3), assures that condition (iii) in (5.24) is 

satisfied. In or der to satisfy condition (i), it is necessary to ensure that the address 

of any memory location is not covered by an activation neighborhood of any other 

location, that is fl/(hm
) = 0, i i= m, i, mE {1, ... , M}. 

Consider using the same update rule as in Equation (5.23) in order to update 

the values of the prototype states SI, ... , sM after every transition (s, a) ~ Si observed 

on-line. In that case, taking into account that Q(sm, a) = wm(a), the update rule for 

the function approximation parameters wm(a) is easily obtained as follows: 

That is, the values of several prototype states are updated depending on their simi­

larity to the observed state, as defined by the factor z(sm, a, s). In the sequel, we will 

refer to this update rule as the averager updatff3. 

Note that here, the smoothening factor z( sm, a, s) does not necessarily have any 

relation to the features qr(s, a) used for interpolation. A similar approach was used 

8This term was suggested in [Reynolds, 2002]. 
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ln [McCallum, 1996] with the k-nearest neighbor instance-based method. In that 

work, a binary factor was used in place of the smoothening factor z( sm, a, s), which 

indicated whether the corresponding prototype state sm was used in the k-nearest 

neighbor calculation of the predicted action-value Qw(s, a). The same approach was 

used in [Smart and Kaelbling, 2000] with instance-based learning and locally weighted 

regression. 

The same update rule but with z(sm, a, s) = qr(s, a) was also studied in [Reynolds, 

2002]. It was shown that a linear interpolative function approximator, which is trained 

according to the rule (5.25) and with an arbitrary training distribution, cannot diverge 

with any one-step reinforcement learning algorithm (i.e., without eligibility traces). 

A stronger result for the interpolative approximation was obtained in [Szepesvàri, 

2001], where the algorithm based on the update (5.25) was proved to converge with 

probability one provided that the set of prototype states {sI, ... , sM} is fixed ahead 

of time and that the agent follows a fixed stochastic exploration strategy. This result 

was extended in [Szepesvari and Smart, 2004] to the case when the set of prototype 

states is adapted during learning under the same assumption of a fixed stochastic 

exploration policy. We will discuss this result in more detail in Section 5.5. 

Although the averager update rule has been shown to have st ronger theoretical 

convergence properties than LMS training for the on-line control problem, there is 

currently little empirical evidence for the practical performance of this method and 

how it compares to LMS training when the latter is stable. The experiments with 

the averager learning rule applied with memory-based learning in [Smart and Kael­

bling, 2000] showed that using this rule without extra measures resulted in a very 

poor performance (e.g., learned strategies were only slightly better than the uniformly 

random policy on the Mountain Car domain). Good performance in [Smart and Kael­

bling, 2000] was obtained only when on every prediction, two additional things were 

performed. First, it was checked whether the state for which the value had to be pre­

dicted was weIl covered by training samples stored in the memory (these samples were 

198 



5.3 SDMS IN REINFORCEMENT LEARNING 

required to form a convex hull around the query state). Second, in addition to updat­

ing the values of stored instances using the averager rule in Equation (5.25), locally 

weighted regression was performed for every prediction. The latter is actually quite 

expensive computationally: the number of predictions that have to be made during 

reinforcement learning is very high due to the fact that the values of al! actions have 

to be computed on every time step to identify a greedy action. Essentially, it seemed 

that the averager rule ensured only that values stored in the memory for the training 

instances are kept relatively up-to-date in the face of non-stationarity of the target 

function. However, this rule did not provide an approximation of the action-value 

function that was ready-to-use at the time of prediction. As indicated in [Reynolds, 

2002], the averager update in Equation (5.25) has a tendency to over-smooth the 

target function, which could be one of the reasons for the poor performance. 

In summary, there is not enough evidence at present to prefer the averager update 

to the LMS update in practice, even though the former has theoretical convergence 

guarantees, while the latter does not have such guarantees. 

Least-Squares Policy Iteration 

Yet another alternative to standard incremental LMS training in reinforcement 

learning was introduced in [Lagoudakis and Parr, 2003b]. It is known as the Least 

Squares Policy Iteration (LSPI) method and is an extension of the Least Squares 

Temporal Difference method (LSTD) [Bradtke and Barto, 1996; Boyan, 1999] to the 

control problem. Being a variant of Policy Iteration, the LSPI algorithm alternates 

between two steps: policy evaluation and policy improvement. The approach used for 

performing the policy evaluation step relies on the fact that the action-value function 

Q7r is a fixed point of the Bellman operator: 

T7rQ7r = Q7r, 

where T7rQ7r(s,a) = 'LP:sl [R~sl +'Ymg-xQ7r(s', b)] 
(5.26) 

s' 
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One way of finding a good approximation to Q7r is to find an approximate value 

function Q!, which is a fixed point un der the corresponding Bellman operator: 

T7rQ! ~ Q!. This is possible if the fixed point lies in the space of approximate 

value functions determined by the chosen structure of the function approximator. 

Even when sorne Q! lies in this space, the same is not guaranteed, however, for 

T7rQ!, and hence, T7rQ! has to be projected back onto this space. Assuming that 

sorne orthogonal projection is used, the goal is to find an approximate value function 

Q! that is invariant un der the application of the Bellman operator T7r followed by 

the orthogonal projection. 

In the LSPI approach, the entire learning pro cess can be performed with a fixed 
1 

batch of transition samples D = {(sl,a1)':'" ql; l = 1, ... ,L}, where sl,ql E S, and 

which can be collected un der an arbitrary distribution. The action-value function is 

assumed to be approximated by a linear combination of sorne basis functions, similar 

as in other approaches discussed above: 

M 

Qw(s, a) = L wm</r(s, a) (5.27) 
m=l 

The policies evaluated on policy evaluation steps are greedy with respect to the cur­

rent approximation Qw. The details of the LSTDQ algorithm used for policy evalu­

ation may be found in [Boyan, 1999; Lagoudakis and Parr, 2003b]. In summary, this 

algorithm computes the following matrix A and vector h: 

L 

A ij = L</i(sl,a1) [<j>j(sl,a1) _'Y<j>j(ql,7r(ql))] , i,j = 1, ... ,M 
1=1 
L 

hi = L <j>i(SI, a1)r1 , i = 1, ... , M 
1=1 

(5.28) 
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The parameters w = (Wl, ... , W M) of the function approximator presented in Equation 

(5.27) are calculated as follows 9 : 

(5.29) 

Then on the policy improvement step, a new policy is adopted which is greedy with 

respect to the approximation of the action-value function corresponding to the new 

parameters w. The policy evaluation and policy improvement steps are repeated until 

the parameter vector w does not change significantly in subsequent iterations. 

In the limit, the LSPI algorithm is guaranteed either to converge or to oscillate 

between policies whose action-value functions are bounded away from the action-value 

function of the optimal policy by at most (l'?!j) 2 , where 'ri is the largest approximation 

error for the action-value function of any policy evaluated during Policy Iteration. 

The two factors that influence the approximation error 'ri are the choice of the basis 

functions qr(s, a) and the distribution of the sample data set D. 

The implementation of the LSPI algorithm sketched above is intended for off-hne 

learning, in which case the algorithm can learn from a single data set that is reused 

for every policy evaluation step. An on-line version of the LSPI algorithm can also be 

obtained by performing the update in Equation (5.28) and computing the parameters 

as in Equation (5.29) for every sample. However, it would be quite computationally 

expensive to perform matrix invertion on every step. Another possibility would be 

to maintain a window of the most recent experiences and compute (5.28) and (5.29) 

onlyat sorne regular intervals. However, such approaches have not yet been explored 

in practice. 

The LSPI algorithm has an interesting property that distinguishes it from other 

incremental algorithms: there is no learning rate involved in computing the approx­

imator's parameters and hence, less tuning is required from the user. Most on-line 

9In order to perform matrix inversion, it is necessary that the mattrix A be full rank. However, this 
cannot always be guaranteed in practice. See [Lagoudakis and Parr, 2003b] for sorne modifications to 
the way the matrix Ais computed in Equation (5.28) to de al with the possibility that the resulting 
matrix A is singular. 
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methods discussed earlier in this section, such as LMS training presented in Equation 

(5.8), the residual gradient method in Equation (2.45) and the averager update in 

Equation (5.25), are stochastic approximation algorithms. Given that learning steps 

used for these algorithms are usually quite small, each sample causes only a very 

small parameter change before it is discarded. Renee, sample requirements of such 

algorithms can be very high. In contrast, the LSTDQ algorithm makes full use of all 

samples and is not sensitive to the order in which they are presented. 

The LSPI algorithm does not require the set of the basis functions qr(s, a) used 

by the linear approximator as in Equation (5.27) to remain the same on every itera­

tion. In fact, different representations may be best for policies evaluated on different 

policy evaluation steps. Recall that the error bound for the LSPI method relies on a 

good choiee of basis functions. Rowever, the issue of how such basis functions should 

be chosen is not addressed in [Lagoudakis and Parr, 2003b], while this question is 

identified as an important area for future research. In the experiments on the in­

verted pendulum problem presented in [Lagoudakis and Parr, 2003b], Gaussian basis 

functions were used and configured to cover uniformly the entire state spaee. The 

experiments on the bicycle balancing and ri ding problem presented in the same paper 

used polynomial features designed based on do main knowledge. 

Since the SDM model is linear, it can be used in the framework of the LSPI 

approach. It should be noted that the cost of matrix inversion performed by the 

LSTDQ algorithm increases with the number of basis functions. Thus the architecture 

should contain the smallest number of basis functions possible, while ensuring that 

they cover appropriately the state spaee. 

Self-Approximating Random Bellman Operator 

All of the approaches discussed above use function approximation to represent 

value functions. Rust (1997) considered a randomized algorithm based on a self­

approximating Bellman update (derived from the Value Iteration algorithm). This 

algorithm was analyzed for MDPs with continuous n-dimensional state spaees and 
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discrete finite sets of actions. In this case, explicit values are estimated only for a 

sample of states {sI, ... , sM} by applying the following iterative algorithm: 

M 

V(sm) := m:x L P':m,sk [R~m,sk + ')'V(sk)] ,m = 1, ... , M (5.30) 
k=1 

Note that contrary to the update in Equation (5.14) for approximate Value Iteration, 

only the states that belong to the preselected sample {SI, ... , sM} are used as sucees sor 

states in the summation. Thus, no approximate representation of the value function is 

used and the update operator (5.30) is said to be self-approximating. This approach 

was motivated by the fact that multivariate function approximation, including inter­

polation, is intractable (not computable in polynomial time) even with randomized 

algorithms [Traub et al., 1988]. Renee, the use of any function approximation was 

renouneed in an attempt to find a polynomial-time approximate algorithm. 

The iterative method in (5.30) aims at computing an 1]-close approximation to the 

true value function. It was proved to have a worst-case running time that is only poly­

nomial in the number of state dimensions, thus "breaking the curse of dimensionality" 

in terms of computational time. The approximation error 1] scales proportionally to *, where M is the number of sample states. The sample states need to be drawn 

independently and uniformly randomly from the entire state spaee. The reward and 

transition probability functions need to satisfy Lipschitz continuity conditions. When 

the values of the sample states, V(sm), are computed to a desired accuracy using the 

update rule in Equation (5.30), an optimal action in any state scan be obtained as 

follows: 
M 

1T'(s) = argm:x L P~sk [R~,sk + ')'V(Sk)] (5.31) 
k=l 

For this approach to be practically applicable, the model of the MDP needs to be 

known. The approach that we discuss next is similar, but removes this last assump­

tion. 
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Kernel-Based Reinforcement Learning 

In the kernel-based approach for reinforcement learning introduced in [Ormoneit 

and Sen, 2002], it is assumed that there is a fixed set of training samples D(a) = 

{( Sl, a) ~ ql ; l = 1, ... , L} for every action a. The states ql that appear as successor 

states in the transition samples of the data sets D(a) are designated as prototype 

states. A smooth non-negative "mother-kernel" 1jJ is chosen (e.g., Gaussian), such 

that 1jJ(s, a, q) = 1jJ( IIs~qll), where b is the width of the kernel. Then, an iterative 

algorithm in the style of Rust (1997) is applied in order to update the values of the 

prototype states: 

L 

V(qm) := m:x 2.:= f'i,(Sl, a, qm) [rz + l'V(ql)] ,for aU m = 1, ... , L 
l=1 

f'i,(sl,a,qm) = L1jJ(sl,a,qm) 
(5.32) 

L 1jJ(sk, a, qm) 
k=1 

Just like in the algorithm of Rust (1997), the operator (5.32) is self-approximating. 

Here the MDP model is not required, but learning is still performed off-line, based on 

a batch of data D(a), Va E A, such that the values of aU prototype states are updated 

synchronously. 

The terms f'i,(Sl, a, qm) can be seen as replacing the transition probabilities in the 

algorithm of Rust (1997), Equation (5.30), by similarity kernels. 

This algorithm may seem somewhat counterintuitive at first. It is estimating 

the values of the successor states qm, that is the states ta which the transitions are 

sampled. At the same time, the kernels f'i,(Sl, a, qm) in Equation (5.32) measure the 

similarity of these successor states qm to the" start" states Sl of the transition samples. 

However, the algorithm operates under the assumption that the starting states sl in 

the data sets D(a) are sampled independently and uniformly randomly across the 

entire state space, in which case aU prototype states qm should be reasonably covered. 
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An optimal (greedy) action can be computed in any state s as follows: 

L 

1l'(s) = argm:x L K;(sl, a, s) [ri + ,/"V(ql)] (5.33) 
1=1 

This approach is reminiscent of the case-based learning, in which case one would 

store a set of cases {(Si, a, ql, ri, V(ql)), l = 1, ... , L, Va E A} in a memory and combine 

them using Equation (5.33) based on the similarity of the query state s to the starting 

states si of the cases, whenever an action has to be chosen in some state s. 

Contrary to most methods discussed ab ove , the approach of Ormoneit and Sen 

(2002) provides a specifie way in whieh prototype states should be selected based on 

the training data. Unfortunately, the assumption about the uniform training data 

distribution is quite restrictive for many practical applications. AIso, an elegant 

extension of this method to on-line learning is not obvious. 

As already indicated, the approaches in [Rust, 1997] and [Ormoneit and Sen, 

2002] do not rel y on any function approximation at aIl. We discussed them here 

mainly because the approach of Ormoneit and Sen (2002) may seem superficially 

similar to the approach in [Szepesvâri and Smart, 2004] and to our SDM model, due 

to the use of the similarity kernel. Rence, we wanted to highlight the differences. 

Summary 

As previously indicated, the SDM architecture provides a linear approximator 

based on local basis functions. Basis functions <pm(s, a) = p,m(s, a) can be defined 

either by similarity measures, associated with memory locations, or by the normalized 

similarity measures: 

m() p,m(s, a) 
<p s, a = "" k() ,m = 1, ... , Ma 

L.JkEHs p, s, a 
(5.34) 

We discussed above that under certain eonstraints imposed on the SDM layout, the 

SDM model ean be configured to satisfy conditions in Equation (5.19) (or a special 

case of interpolative conditions in Equation (5.24)). In this case, the SDM approxi­

mator has the non-expansion property and can be used safely with such methods as 
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off-line approximate Value Iteration presented in Equation (5.14), LSPI presented in 

Equations (5.28)-(5.29) and the on-line averager update in Equation (5.25). 

With the LMS training rule (5.8), unfortunately, there are no convergence guar­

antees for the control problem in the current literature. However, it does not require 

the model of the MDP, is not computationally costly and can be applied naturally 

on-line. It is most often used with on-policy exploration, which can be very important 

when trying to concentrate the available resources on important parts of the state 

space. Practical experiences with LMS training combined with linear local function 

approximators in value-based reinforcement learning are mostly positive (see, e.g., 

[Santamaria et al., 1998]). Extensive comparative experimental studies would be 

useful to assess the relative performance of the methods discussed in this section. 

Unfortunately, little practical evidence of this kind exist in the current literature. 

All of the methods discussed in this section rely on the selection of either pro­

totype states, on which the algorithms focus their updates, or local basis functions 

centered around sorne states. The issue of how to choose such states and how to con­

figure the structure of the fun ct ion approximator has been gaining a lot of attention 

over the last few years in the reinforcement learning community. In the following sec­

tion, we present an overview of existing approaches for this problem. Then in Section 

5.5, we propose a new method for dynamic allocation of SDMs based on observed 

data. 

5.4. Overview of the Resource Allocation Methods 

In this section, we review different existing approaches for choosing parameters 

of the basis functions for local function approximators. In the rest of this chapter, 

we will sometimes refer to various building blocks of such architectures as local units, 

be it SDM memory locations, RBFs, instances in memory-based methods or discrete 

partitions of the input space. 

In the current supervised and reinforcement learning literature, approaches for 

configuring local function approximators can be divided roughly into two categories. 
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One class of methods assumes that the number of local units is fixed ahead of time 

and that initiaIly, aIl of them are either distributed uniformly randomly across the 

input space, or positioned by an unsupervised learning method, such as clustering. 

In the latter case, a batch of training data is assumed to exist from the beginning. 

Then during learning, these methods usually slowly tune the parameters of the local 

units based on data. 

With the second class of methods, learning starts with no preallocated units or 

with just a few very coarse units. Then these methods dynamically add new units 

and refine existing units based on training data. Various (mostly heuristic) criteria 

are used to decide where the additional units are needed. When a maximum allowed 

number of local units is allocated, sorne methods remove previously added units (again 

based on various heuristics) and add new units elsewhere. 

We will now review existing methods, belonging to both of the described cat­

egories. We focus on the methods that were developed for architectures based on 

the linear combination of local units. There is a big body of research addressing 

similar issues in multilayer Nural Networks (see, e.g., [Fahlman and Lebiere, 1989; 

Reed, 1993; Rivest and Precup, 2003; Thivierge et al., 2003]), but it is beyond the 

scope of this thesis. 

In our initial attempts to dynamically allocate and tune SDM locations in the 

context of on-line reinforcement learning, we explored sorne ideas from the current 

literature. We will mention these undertakings throughout this section. We will 

discuss the difficulties that we encountered, which led us to develop more robust 

heuristics, as will be presented in Section 5.5. 

5.4.1. Methods for Tuning Local Units 

In supervised learning, parameters of local units, such as their positions and 

widths, are often adjusted in an incremental manner based on training data. There are 

two main approaches used in this case: gradient descent learning and self-organizing 

learning in the style of Kohonen networks (see, e.g., [Haykin, 1994; Kohonen, 1984]). 
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Gradient-Based Tuning of Local Units 

Parameters of local units can be optimized with LMS training, i.e., by gradient 

descent on sorne objective error function, e.g., the Mean Squared Error in Equation 

(5.4). 

For instance, to optimize addresses of the SDM locations in this way, the MSE 

function would be considered to depend on the address parameters L = {( h"{', ... , h;:), 

m = 1, ... , M}. In this case, the function approximation architecture is no longer linear 

in tunable parameters. Upon observing a training sample (x, f(x)), the addresses 

would be updated in the direction of the negative gradient of the MSE function with 

respect to the address parameters: 

h",11·= hm _ 8MSEw ,L 1 

~. ~ Œ 8hm 
~ w,x,L 

,i E {l, ... ,n}; mE Hx (5.35) 

A similar update can be performed for tuning the activation widths B = {(Br', ... ,13;;'), 

m = 1, ... , M} of the SDM locations. With this approach, local units are positioned 

and configured in a way that minimizes the approximation error. 

Gradient-descent learning on the MSE criterion was used in [Flachs and Flynn, 

1992] to tune the addresses of the memory locations in a binary SDM model. Intu­

itively, for a binary classification model, the memory locations that classify correctly 

the current training input, are moved closer to this input, while the locations that 

classify the current input incorrectly, are moved farther away. In [Flachs and Flynn, 

1992], both the content parameters w and the address parameters Lare updated for 

every training sample. 

Gradient des cent is also widely used for tuning parameters of basis functions in 

RBFNs in supervised learning (see, e.g., [Platt, 1991; Haykin, 1994; Schwenker et 

al., 2001]). NRBFNs trained in this manner were applied in reinforcement learning 

in [Kretchmar and Anderson, 1997; Ster and Dobnikar, 2003]. However, using this 

method for learning a representation of the value function can be difficult. When 

the LMS training rule is applied with reinforcement learning, the error term takes 

the form of [r + 'YQw,L,B(S', a') - Qw,L,B(S, a)]. In this case, one implicitly minimizes 
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temporal difference (TD) errors over a set of representative state-action pairs (s, a) 

that appear as training inputs. It has been noted by many researchers in the past 

(see e.g., [Sutton and Barto, 1998; Baird, 1995; Kretchmar and Anderson, 1997] that 

minimizing the TD error for a subset of states can sidestep the ultimate goal of fin ding 

the optimal policy in the case of the control problem. The success of this approach 

depends, to a large extent, on the selection of the subset of state-action pairs for 

which TD errors are minimized (i.e., the distribution of the training inputs) as weIl 

as on the choice of the structure of the function approximator. In the case of on­

policy semi-greedy exploration, the distribution of state-action pairs depends on the 

action-value estimates Qw,L,B. In this case, LMS value estimation may mislead the 

learning process: the agent can find a particular parameter setting, such that the 

corresponding policy visits mainly the states, for which it is easy to achieve small TD 

errors, while this policy fails to lead to truly rewarding states. Such behavior was 

observed, for instance, in [Kretchmar and Anderson, 1997] with NRBFNs. In their 

experiments, basis functions tended to migrate to the regions with small TD errors, 

while leaving other important parts of the state space underrepresented. 

FinaIly, note that the TD errors observed during on-line learning may result from 

the environment's stochasticity and not only from the value approximation error. In 

a stochastic environment, where a state-action pair (s, a) can have many different 

successor states Si, or in which immediate rewards are stochastic, the variance of 

the estimates [r + "(Qw,L,B(S', a')] can be large and thus, observed TD errors can 

be large. In order to prevent state-action pairs with a high variance of their value 

samples from being unjustly abandoned as a result of LMS learning, information 

about the environment's stochasticity can potentially be used. Such information can 

be obtained, for example, by measuring the MDP attributes presented in Chapter 3, 

e.g., the State Transition Entropy and the Variance of Immediate Rewards. 
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Self-Organizing Tuning of Local U nits 

Function approximation architectures can also be adjusted using on-line, self­

organizing learning methods. In [Rao and Fuentes, 1998], the SDMs were used for 

learning a fixed navigational behavior of a robot. The addresses of the SDM locations 

were trained with a soft competitive learning rule: 

(5.36) 

where pm(x) is defined as a Gaussian kernel, based on the Eucledian distance between 

the address of the location hm and the input address x. Thus, the addresses of memory 

locations are iteratively updated to match the distribution of training inputs. This 

rule is called competitive, because local units compete for getting doser to training 

inputs lO
. It should be noted that in this application, supervised training (training 

from demonstration) was performed in order to learn an appropriate navigational 

strategy. The agent was not operating in the setting of the standard control problem, 

but was learning the value of a fixed policy. Hence, the training data distribution 

was fixed and learning could slowly converge to an SDM configuration representative 

of the fixed distribution of the training inputs. 

A very similar self-organizing update rule was used in [Wiering, 1999] for tuning 

the centers of basis functions in NRBFNs, as weIl as in [Millan et al., 2002] for 

positioning localized receptive fields of an IncrementaI Topology Preserving Map (a 

linear local function approximator). In both cases, it was used in combination with 

other heuristics for dynamic addition of new local units, which we will discuss later 

in this section. 

The approach introduced in [Sutton and Whitehead, 1993] for supervised learning 

with binary SDMs, also slowly moves existing memory locations toward the observed 

data. Their algorithm works as follows. If the number of active locations for a given 

training sample is too small (relative to sorne threshold specified by the user), an 

lOThe Gaussian kernels used in [Rao and Fuentes, 1998J have a width parameter that decreased 
with time, so that the number of locations competing for each data point decreased over time. This, 
together with a decreasing learning step a, allowed the architecture to stabilize in the limit. 
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inactive location is selected at random and moved towards the current input in one 

address dimension, selected randomly. A symmetric adjustment is made if too many 

locations are active. 

We implemented a version of this algorithm, where a pre-specified number of 

address dimensions (between 1 and n) can be adjusted towards or away from the 

current input proportionally to some learning rate a'. We tested this approach with 

on-line reinforcement learning using the Sarsa(O) algorithm and E-greedy exploration 

on the Mountain Car domain. Unfortunately, this approach did not allow us to 

achieve any stable learning, despite a significant amount of tuning of all the user­

defined parameters involved. We came to a conclusion that this algorithm was unable 

to track quickly the non-stationary data distribution produced by policies that can 

change abruptly with the on-line E-greedy Sarsa(O) algorithm. 

Other Optimization Approaches 

In [Menache et al., 2004], a global optimization approach was considered for 

tuning parameters of the basis functions in the RBFNs in the context of the policy 

evaluation problem. In this work, estimation of the linear weights of the RBFN and 

adjusting parameters of the basis functions were separated into two distinct phases, 

which were interleaved during learning. In one phase, linear parameters of the network 

(with the RBF parameters held fixed) were computed using the LSTD(À) algorithm 

[Boyan, 1999]. Then, in the second phase, the RBF parameters were optimized in 

a batch mode. A novel approach that this work explored was based on the Cross 

Entropy (CE) method. It is a global optimization technique that iteratively improves 

the estimates of meta-parameters, which are the parameters of the probability density 

function assumed to generate parameters of the RBFs. This method was found to 

outperform the gradient des cent approach for the policy evaluation task. The overall 

approach is, however, quite computationally expensive, as, on every iteration, it eval­

uates goodness of a set of RBF parameters in order to update the meta-parameters. 

For each such evaluation, the LSTD(À) method is invoked on a batch of training data 
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(which involves matrix inversion) in order to re-estimate the setting for the linear 

network weights. 

In [Sato and Ishii, 1998], a Normalized Gaussian Network (NGnet) was built 

with an on-line version of the EM algorithm, which is a stochastic approximation 

of the batch EM algorithm proposed for the NGnets in [Xu et al., 1995]. In this 

approach, the NGnet is interpreted as a stochastic model (a mixture of experts) with 

hidden variables. In general, the EM algorithm alternates two steps: Estimation (E­

step) and Maximization (M-step). In this algorithm, on the E-steps, the posterior 

probabilities of each unit being activated by a training sample is calculated according 

to the Bayes rule, given the current setting of the local units' parameters. On the 

M-step, network parameters are re-estimated to maximize the expected log-likelihood 

of the observed data, which uses the posterior probabilities estimated on the E-step. 

A general version of the algorithm proposed in [Sato and Ishii, 1998] assumes that a 

certain number of local units are preallocated from the onset of learning. However, 

it was observed in [Sato and Ishii, 1998] that, when the initial distribution of the 

local units was significantly different from the the distribution of the training data, 

the EM algorithm learned very slowly and could converge to a local optimum far 

from the desired solution. To overcome this difficulty, additional mechanisms for 

unit manipulations were used, which allowed unit additions, deletions and divisions 

conducted on-line, after observing each training sample. A new unit was added if 

the current input was too distant from the units of the current model. The distance 

criterion was evaluated based on the joint probabilities of seeing the current input 

and activating each of the existing units. These probabilities were obtained as a 

result of the E-steps of the EM algorithm. The deletion of a unit was based on the 

amount of activation enjoyed by the corresponding unit in the pasto Unit division was 

performed based on the observed approximation error. In this case, when the error 

exceeded a certain threshold, the unit was substituted with two new units, each with 

the width half as large as the width of the original unit. Similar unit manipulation 

methods were used in many other approaches, as will be discussed below. In [Sato 
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and Ishii, 1998], a probabilistic interpretation of these heuristics was presented. The 

approach was tested with a non-stationary data distribution, which was gradually 

changing over time. To de al with the non-stationarity, the algorithm had a specifie 

parameter, which controlled the rate, in which the on-line EM was forgetting past 

training samples and was giving more weight to the new ones. The approach was also 

applied to the data from a simulation of robotic arm movement, but in the context 

of a prediction problem, where the learning system was trained to predict certailn 

aspects of the system's dynamics. 

5.4.2. Methods for Allocating Local Units 

In the above discussion, most methods assumed that the total number of local 

units in the function approximation architecture remained fixed throughout learning 

while their positions and widths were adapted. Now, we will discuss techniques that 

also determine the size of the architecture during learning, by dynamically adding 

and possibly removing some units. 

Perhaps, the most prominent example of methods that dynamically add local 

units to the function approximator are memory-based or instance-based approaches. 

As previously mentioned, they have already been used in reinforcement learning (see, 

e.g., [Atkeson et al., 1997a; Forbes, 2002; McCallum, 1996; Santamaria et al., 1998; 

Smart and Kaelbling, 2000]). The approaches in [Atkeson et al., 1997a; Smart and 

Kaelbling, 2000] did not address the issue of a limited st orage capacity, and there was 

no attempt to control the number of stored instances. In this case, the datasets of 

stored instances can get very large. For example, in [Smart and Kaelbling, 2000], for 

the two-dimensional Mountain Car domain, the datasets got as large as 300,000. 

Various tree-based approaches, e.g., regression trees, the size of which is al ways 

determined by training data, were used in reinforcement learning to pro duce variable 

resolution discretizations of the input space (see, e.g., [McCallum, 1996; Uther and 

Veloso, 1998; Munos and Moore, 2001]. Techniques for dynamically growing function 

approximation architectures were also studied in the context of RBFNs. Well-known 
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approaches include Neural Gas [Martinetz and Schulten, 1991; Fritzke, 1994; Wiering, 

1999] and Resource Allocating RBFNs [Blanzieri and Katenkamp, 1996; Platt, 1991; 

Anderson, 1993]. 

There are many heuristics to assess which parts of the input space need additional 

local units. Such heuristics can be roughly divided into three classes. First of aIl, 

sorne methods rel y on certain distance measures between local units to control their 

density. Other methods rel y on the prediction error in the local neighborhoods of the 

input space and add more local units in the regions of large approximation errors. 

Finally, the third class of methods make an assessment of the shape of the target 

function, in order to best match the topology of the target function with the shapes 

of the local units, e.g., piecewise constant or piecewise linear. We will now discuss 

such methods from the current supervised and reinforcement learning literature. 

Input Similarity Based Local Unit Addition 

In the applications of instance-based methods to reinforcement learning [Santa­

maria et al., 1998; Forbes, 2002], training instances were only selectively added to 

memory in order to control the memory size. A heuristic approach used in these 

cases was formulated in the classical instance-based learning framework [Atkeson et 

al., 1997al, which is based on the definition of two functions: a distance metric in the 

input space, e.g., the Euclidean distance, and a weighting function, or kernel, e.g., 

Gaussian. Kernel functions transform the distances into weights used in the locally 

weighted learning performed for predictions. They are related to the local basis func­

tions in the linear architectures that we discussed so far. In [Santamaria et al., 1998] 

and [Forbes, 2002], new instances were added to the memory if they were farther away 

from the existing instances than a specified threshold. Such threshold was defined in 

terms of the distance metric and was not related to the width of the kernel function. 

If this correspondence is not explicitly addressed, the obtained memory can be too 

sparse for the employed kernel functions. While it is easy to prevent this in the case of 
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a uniform and fixed width of the weighting functions, such formulation does not pro­

vide a robust generalization to varying widths. Adaptive kernel widths were claimed 

to be used in [Forbes, 2002], where the width update was performed based on the 

approximation error of the activated instances. Thus, such a width selection method 

would not properly correct for too large of a sparseness if no instances are activated. 

Unfortunately, no discussion was provided in [Forbes, 2002] for the practical behavior 

of this approach and its parameter settings. 

The same distance-based addition heuristic was also used in [Platt, 1991], in com­

bination with an error-based heuristic (discussed below), for the Resource-Allocating 

RBFNs. This approach also used variable widths of the local units, which were cho­

sen to be proportional to the distance between the newly added unit and the closest 

existing one. Thus, this way of width selection did, indeed, reconcile the distances 

between the units' cent ers and their widths. 

Another obvious way to measure similarity between local units is based on their 

activations. For instance, in the case of the SDM model, the activations are similarity 

measures, as in Equation (5.1); in the case of RBFNs, they are the values of the the 

RBFs; and in the case of the instance-based learning - kernel values. The distance 

of a unit Ul to a unit U2 would thus be the activation of the unit U2 incurred by 

the center of the unit Ul' Note, that such distances are not necessarily symmetric, 

depending on the widths of the corresponding units. Several approaches in the current 

literature relied on this notion of the activation-based similarity to decide whether 

to add a new unit to the architecture, e.g., [Kondo and Ito, 2002; Anderson, 1993; 

Millan et al., 2002]. In these cases, the new unit is added if the activations of all the 

existing units by the current input are below certain user-defined threshold. The new 

unit is then centered at the current input. 

The method in [Kretchmar and Anderson, 1999] for configuring basis functions of 

a linear local function approximator (for state-value function representation) shaped 

each local unit so that it covered states based on their temporal proximity. More specif­

ically, "temporal" activation neighborhoods of the local units grouped the states, 
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which experienced frequent intra-group transitions during on-line sampling. The 

method was suggested for the class of problems, where the immediate rewards on 

each step are small, in which case, the difference in the values of any two tempo­

rally adjacent states will also be small. The values within each such local unit were 

approximated by a constant. The algorithm interleaved the periods of tuning the 

weights of the linear combination of the local units with the periods of re-configuring 

the neighborhoods of the basis functions. In the case of discrete state spaces, each 

local unit had a vector indicating to which degree it could be activated by the states 

of the MDP. Thus, local units could potentially have irregular, non-convex shapes. 

A similar idea was recently explored in [Glaubius and Smart, 2004] for the state­

value function approximation with the manifold representations. A motivation behind 

the method developed in this work was the fact that most function approximation 

architectures rel y on the assumption that the similarity between the states can always 

be related to their Eucledian distance. However, it is often not true. For example, 

consider an environment with obstacles, such as internaI walls. In this case, imagine 

sorne state 81 on one side of the wall and two other states 82 and S3 that are at the 

same Eucledian distance from 81, but the state 82 is on the opposite side of the wall, 

while the state 83 is on the same side. The time that is needed to reach the state 

83 from the state 81 can be much smaller than the time needed to reach the state 

82, since it is necessary to go around the wall. Thus the Euclidean distance cannot 

be used everywhere across the state space, while it can be meaningfully used within 

certain smaller regions of the state space. Thus, the approach attempted to cover the 

state space with charts, hyper-rectangular regions, within which Euclidean distance is 

a good indication of the distance between states. Within each chart, it was considered 

to be safe to use function approximators that rel y on the Euclidean proximity between 

the states. The algorithm was then allocating charts in the state space, so that they 

established boundaries between the states that have different relative magnitudes of 

state transitions ll . 

11 Note, that contrary to the approach of [Kretchmar and Anderson, 1999], here, local units have a 
regular form, where it is easy to identify which of them are activated by any given state. 
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It should also be noted, that generalizing across states with different temporal 

transition distances is not al ways harmful. It may take longer to get from the state 31 

to state the 32 than to the state 33, but it may take the same amount of time to get 

to the goal from both 81 and 82, while it takes longer to get to the goal from the state 

83. In this case, these two states will be similar in terms of their values and, in fact, 

this is what ultimately matters. So, ideally, the similarity between states should be 

related to the similarities in their values, however, we cannot measure this precisely 

since the values are not known in the first place. 

Nevertheless, there exist approaches in the current reinforcement learning lit­

erature that attempt to reason about the topology of target value-functions and to 

construct function approximators accordingly. We will discuss these approaches next. 

Local Unit Addition Based on Target Topology 

The choice of function approximation architecture imposes certain properties on 

the resulting approximate function, for example, its piece-wise constant or piece­

wise linear nature. Thus, it would be desirable to determine whether the target 

function also possesses similar properties, so that it can be appropriately modeled 

by the chosen function approximator. A number of approaches attempt to assess 

the topology of the target function based on the training data and to adjust the 

approximator's structure accordingly. For example, if the target function appears 

to be non-constant within a particular region, while the approximation architecture 

is trying to fit a constant surface in that region, the approximator's constant piece 

can be broken into smaller surfaces in order to better explain the variation in the 

observed target values. In general, when using local function approximators, it would 

be useful to assess whether the target function has local properties similar to those 

implied by the existing local units. If this is not the case, more units should be added 

in order to be able to match a complex target topology with small simple building 

blocks. The differences in the topology of the target function across adjacent regions 

can be inferred from various indicators, such as the differences in the distributions of 
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the target values in those regions or a significant change of the gradient of the target 

function. Some methods in the current literature make an attempt to exploit such 

indicators while dynamically building approximation architectures. We will discuss 

some of them next. 

Several approaches were studied in the reinforcement learning context that con­

struct variable resolution discretizations for the action-value function approxima­

tion. An algorithm from [Chapman and Kaelbling, 1991], known as G-algorithm, 

was designed to build variable-resolution discretizations for the value-function repre­

sentations in MDPs with discrete (binary) state spaces. The action-value functions 

were represented by decision trees. In this case, the leaves of the tree correspond 

to partitions of the state space. Then, throughout learning, partitions, induced 

by the decision tree, were considered for splitting. To assess whether a particu­

lar partition needed to be split, the method estimated a future reward distribution 

D(s,a,r) = L~o"(kP(rk+l = rls,a), where possible rewards r were considered to 

be drawn from a small discrete set R. The distributions D within new candidate 

partitions were tested for significant difference with a statistical test. If the difference 

was significant, the split was performed. 

In the work of [Uther and Veloso, 1998], regression trees were also used to repre­

sent non-overlapping partitions of the state space12 . Within each partition, the value 

function was approximated by a constant. Similar to the G-algorithm, this approach 

repeatedly considered whether the current partitions should be split. Learning was 

performed in an off-line manner by interleaving two phases. During one phase, the 

Value Iteration method was used to find the optimal action-value function Q(s, a) 

of the approximate discretized MDP, defined on the partitions induced by the cur­

rent regression tree. Then, during the second phase, a batch of transition samples 

(s, a) ~ s' was collected by sampling with the policy, greedy with respect to the cur­

rent approximation Q of the action-value function. For each sample state-action pair 

(s, a), its value was estimated by a one-step lookahead Q(s, a) = r + "(maxb Q(s', b). 

12 As usual, a separate tree was used for each action. 
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One of the criteria used in [Uther and Veloso, 1998] for splitting partitions, induced 

by the regression tree, was based on the Kolmogorov-Smirnov statistical test mea­

suring the difference between probability distributions. In this case, a split of an 

existing partition was performed if the distributions of the values of the state-action 

samples falling into two new candidate partitions were significantly different based on 

the performed test. Performing the Kolmogorov-Smirnov test takes time quadratic 

in the number of value samples. 

The approach in [Munos and Moore, 2001] was devoted to building variable­

resolution discretizations of the MDP state space, similar to the ones produced by 

the regression trees in the approach of [Uther and Veloso, 1998]. In this case, the 

approximate discretized MDP was defined on the vertices of the resulting partitions. 

Then, the state-value function of the original MDP was approximated, so that the 

values of the states within partitions were computed by barycentric interpolation on 

the corners of the hypercubes corresponding to the partitions. Similar to the ap­

proach of [Uther and Veloso, 1998] described ab ove , the optimal state-value functions 

were computed for the discretized MDPs by the Value Iteration algorithm, and then 

each partition was considered for splitting. The work in [Munos and Moore, 2001], 

developed a number of different splitting criteria intended to assess the properties of 

the target function. The corner-value difference heuristic computes the average of the 

absolute differences of the state-values at the corners of the partition along each side 

of the corresponding hypercube. According to this criterion, the splits are performed 

for those partitions where the value function is least constant. The value non-linearity 

heuristic computes the variance of the absolute differences of the values at the cor­

ners on an the edges of the partition. Thus, according to this criterion, the partitions, 

within which the value function is least linear, are split. The policy-disagreement cri­

terion attempts to determine the boundaries between the states where the optimal 

action changes. Such an estimate is based on a comparison between optimal actions, 

derived from the value function of the discretized MDP, and actions, derived from an 
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optimal feed-back control policy computed from the Hamiiton-Jacobi-Bellman equa­

tion 13 based on the local gradient of the value function. 

The approach in [Reynolds, 2002] also creates a variable resolution discretization, 

while it is designed for on-line training. It was based on the decision boundary heuris­

tic, which, similar to the policy-disagreement criterion in [Munos and Moore, 2001], 

attempts to find boundaries in the state space that separate regions with different 

optimal actions. In order to detect such possible boundaries, the algorithm inspects 

aIl pairs of the adjacent partitions. Suppose, i and j are neighboring partitions, their 

corresponding action-values are Qi(a) and Qj(a), and the corresponding greedy ac­

tions are ai and aj' Then, ~i = IQi(ai) -Qi(aj)1 estimates a potentialloss from taking 

the action aj in the partition j, when hypothesizing that its values should be doser 

to those of partition i and thus have the greedy action ai instead of aj' Or, in other 

words, ~i estimates the loss of not extending the value of partition i farther into par­

tition j. A similar loss value ~j is estimated symmetrically as ~j = IQj(aj) - Qj(ai)l. 

Both partitions are then considered for a split if at least one of the values, ~i or ~j, 

exceed a predefined loss threshold. The splits are actually performed if the action 

values of the considered partitions have been updated a sufficient number of times 

since their creation. 

The approach in [Boutilier et al., 2000] represents value functions as decision trees 

and seeks to increase the resolution of the state representation where there is evidence 

that the value is not constant withing the state partition. The value functions are 

computed with a modified (structured) policy iteration algorithm, where a Bayesian 

network is used to compactly represent a transition probability function. 

As can be observed from the discussion of the topology-based approaches, sorne 

of them are rather computationally expensive and require batches of training samples 

to be accumulated many times over the course of learning. The heuristics, which 

seem to be the simplest in terms of the computational and memory requirements and 

which can potentially be used on-line, are the corner-value difference and the value 

13Hamilton-Jacobi-Bellman equation is an equivalent of the Bellman equation for continuous state 
spaces and continuous time. 
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non-linearity heuristics from [Munos and Moore, 2001] and the decision boundary 

heuristic from [Reynolds, 2002]. 

The inability of a function approximation architecture to model a target function 

topology will also be directly reflected in high approximation errors. The approaches 

that we discuss next, rely precisely on this type of information. 

Error-Based Local Unit Addition 

The approaches to action-value function approximation based on decision and 

regression trees in [McCallum, 1996] and [Uther and Veloso, 1998] used an error­

based heuristic for splitting the partitions induced by the trees. It was based on 

the estimated variance of the Q-values for the state-action samples that fall into the 

partition considered for a split. In the case of [McCallum, 1996], the data samples, 

needed to estimate this heuristic, were collected on-line in a continuing manner, while 

using the instance-based learning method combined with the averager training rule 

(5.25) to update the action-values of the stored instances. In the case of [Uther 

and Veloso, 1998], such samples were collected off-line, as described above for the 

method using the topology-based heuristic based on the Kolmogorov-Smirnov test. 

Then the variance of the action-values for the samples collected in every partition 

was computed. If it exceeded a predefined threshold in sorne partition, this partition 

was split. Evaluating such a heuristic takes time linear in the size of the sample 

data. The size of the data batch and the threshold for the variance-based splitting 

criterion are the parameters that the user has to tune for this algorithm. In the 

experiments performed in [Uther and Veloso, 1998], this heuristic and the one based 

on the Kolmogorov-Smirnov test, described earlier, performed equally well, while the 

latter is more computationally expensive. 

In [Kondo and Ito, 2002], an approach for dynamically building NRBFNs (with 

Gaussian basis functions) was used in the context of reinforcement learning (with 

the Actor-Critic algorithm) for mobile robots applications. In this case, learning 

started with a network that had no basis functions. New RBFs were added using 
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a combination of the activation-based heuristic, as described above, and an error­

based heuristic. According to the error-based criterion, a new basis function was 

added when the TD error for the current state-action pair exceeded a user-defined 

threshold, and provided that the activation-based criterion was also satisfied. After a 

unit had been added, it could also compete for survival based on an approach derived 

from evolutionary computation. The evolutionary fitness function was based on the 

error criterion as weIl. 

A similar approach was used in several studies with the Resource Allocating 

RBFNs [Platt, 1991; Anderson, 1993; Blanzieri and Katenkamp, 1996]. There, new 

units were added when "novel" training samples were encountered. Novelty was 

determined based on two conditions: the Euclidean distance from the current sample 

to the center of the close st existing unit, and the error on the prediction for this 

sample. The prediction error was compared against a fixed, user-defined threshold 

parameteI. If the current sam pIe was found to be novel, based on these two criteria, 

a new unit was added and centered at the current input value. 

The approach in [Milhin et al., 2002], developed for building a function approx­

imator based on overlapping localized receptive fields, also used a form of the error­

based criterion (in combinat ion with the activation-based heuristic) in order to de­

termine whether a new unit had to be added to the approximator. An unacceptable 

error was considered to be encountered when the agent experienced a serious failure 

(e.g., a robot collided with an obstacle), in which case, a new unit could be added. 

In the later studies with similar approaches, it was suggested, that instantaneous 

errors may not be good indicators of the function approximator's inability to learn 

the observed target value with the existing resources. Instead, sorne time should be 

allowed for the current units to be trained, and only if this fails, a new unit should be 

added. For instance, the approach in [Fritzke, 1994; 1997], based on the prior research 

with RBFNs known as Neural Gas, accumulated errors in each unit over time and 

then a new unit was inserted near the unit with the maximum accumulated erroI. 
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In the work of Anderson (1993), a similar approach, involving NRBFNs, was ap­

plied to reinforcement learning, in particular, with the Q-Iearning algorithm. In this 

case, a fixed number of local units were used, but some of them were allowed to be re­

allocated to new positions (a procedure referred to as a "restart" in [Anderson, 1993]). 

The reallocation could be triggered by an unusually large approximation error. In 

order to detect such an event, the mean and standard deviation of the approxima­

tion errors were incrementally estimated. Then, if the error on the current input was 

larger than the estimated average error plus some factor proportional to the standard 

deviation, some unit was considered for reallocation to a position corresponding to 

the current input. The reallocation actually happened if the activation-based crite­

rion, as described above, was satisfied for the current input with the threshold value 

of 0.5. The choice of the unit to be reallocated from its current position was based 

on its utility, which was related to the amount of its previous activations. 

Another approach from the same framework was also used in [Wiering, 1999]. In 

this case, the NRBFNs (referred to as Neural Gas in [Wiering, 1999]) were used with 

the Q(>.) algorithm. During learning, each unit accumulated a Responsibility variable, 

which was the sum of its activations, for aU previous training samples. A new unit 

was added when an instantaneous prediction error exceeded a predefined threshold, 

provided that the Responsibility of the closest unit also exceeded another threshold. 

The latter condition indicated whether the close-by units already had a chance to be 

trained after they had been added to the network. 

In the approach introduced in [Samejima and Omori, 1999], dynamic allocation 

of NRBFNs was also considered and applied in the context of reinforcement learning. 

In this case, learning started with a single basis function covering the entire state 

space. Then, throughout learning, existing RBFs were divided, that is substituted 

with smaUer ones, based on the distribution of the TD errors in the state space. A 

basis function was divided when the ratio of the variance and the mean of the local 

TD error became too large, where the local TD error refers to the TD error weighted 

by the activation of the corresponding basis function. For each unit, the local mean 
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error em was estimated by a running average. The variance estimate was substituted 

by the running average of the squared local TD errors, (em )2. When both the ratio 

(e",)2 and (em )2 exceeded certain thresholds, the corresponding basis function was e", 

deemed unfit and was divided into two new basis functions. The division direction 

(centers of the new basis functions) was determined by a direction of positive local 

TD errors. Thus, more resolution was added where it seemed possible to improve cur­

rently underestimated state-action values. The widths and the initiallinear weights 

associated with the new basis functions were selected so that to minimize the stress 

to the overall approximation caused by the division of the unfit basis function. A 

specifie optimization criterion was introduced for this purpose. This approach was 

applied to a robot collision avoidance and a robot navigation domains in combination 

with the Actor-Critic architecture. 

Another variation of the error-based unit addition heuristic was presented in [Ster 

and Dobnikar, 2003]. It extended the approach of [Samejima and Omori, 1999] for 

the NRBFNs, as discussed ab ove , in that it used additional ways to decide when 

and how to allocate new basis functions. Contrary to the approach of [Samejima 

and Omori, 1999], learning started with empty networks. Similar to other previously 

discussed approaches, a new unit was added when the current TD error exceeded a 

pre-specified threshold and when the activations of the present units were lower than 

another threshold. Then, the method of [Samejima and Omori, 1999] was used to 

determine which of the existing RBFs were un fit and needed to be substituted with 

several other basis functions of smaller widths. However, the method of substitution 

was difIerent in this case. When sorne RBF was established to be unfit, a two-class 

Learning Vector Quantization (LVQ) procedure [Kohonen, 1984] was initiated. In this 

case, 2X representative vectors were scattered in the input space and associated with 

the unfit RBF. The number X had to be specified by a user. Half of the representative 

vectors were designated to represent a spatial distribution of the positive TD errors 

and the other half - of the negative TD errors. Then, for a certain period of time, these 

vectors were allowed to adapt to the distribution of the corresponding errors, so that 
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they were located mainly in the areas of larger errors. At the end of this process, each 

unfit RBF was replaced with 2X smaller RBFs, centered at the associated representa­

tive vectors. The width of each new unit was set to half the distance from the nearest 

existing unit. In addition to the above dynamic addition/replacement pro cesses , the 

cent ers and the widths of the existing units were also updated by the gradient des cent 

procedure. This approach was applied in the reinforcement learning context to the 

problem of learning collision avoidance strategies for a simulated mobile robot. The 

experiments were performed with the Q-Iearning algorithm, using uniformly random 

action selection in one set of experiments and using Boltzman-based exploration in 

another set. In both cases, thus, the distribution of the training samples did not 

change drastically, as would usually be the case with the E-greedy learning. Interest­

ingly, when compared to the method that uses only the simpler addition heuristics, 

based on thresholding current TD errors and activations of the existing units, the 

approach, using the Learning Vector Qauntization based unit replacements, provided 

a rather modest improvement in the testing returns while providing a comparable 

number of local units. The LVQ-based approach is, at the same time, much more 

computationally demanding. 

The approach in [Munos and Moore, 2001] for state-value function approximation 

with variable-resolution discretizations introduced two global criteria, the influence 

and the variance. They assess a long-distance influence of the state-value function 

accuracy at certain states on the accuracy of other states. The variance is defined as 

<72(s) = E [(R(s) - V(S))2], where R(s) is the return in the state sand V(s) is the 

value of state s, i.e., the expected return. As shown in [Munos and Moore, 2001], this 

variance is the solution to a Bellman-like equation, which can be solved with dynamic 

programming based on the MDP model. The influence of the state sIon the state 

S2 is defined as 1(s2Is1) = 2:~=oPk(S2, sd, where Pk(S2, SI) is the k-step discounted 

probability of reaching state SI after k steps starting from state S2 and following a 

policy greedy with respect to the current value function approximation. Intuitively, 

the influence measures the amount ofchange in the value of state S2 that would result 
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from a unit change of the value of state Sl, located down a possible trajectory. Note, 

that if the states with high influence values already have accurate value estimates, 

splitting the corresponding partitions is not necessary. Hence, the influence-based 

criterion is used in combination with the variance-based criterion and the policy­

disagreement criterion (discussed above), so that a partition is split if the influence of 

its states on the states at the decision boundary is high and the variance of this par­

tition is also high. The influence and the variance criteria are very principled ways of 

estimating the need for an increased resolution of the function approximator, as they 

are based on global effects of approximation accuracy. However, their computation is 

quite expensive: it is as costly as evaluating a policy with dynamic programming. 

In general, it is a good idea to insert additional resources where the current 

layout cannot approximate the target function well enough. However, with on-line 

reinforcement learning, this approach may not work as well as in supervised learning 

applications. lndeed, such concerns were raised, for instance, in [Wiering, 1999], 

where the method described above for the Neural Gas architecture was applied with 

Q(>')-learning to the Soccer domain. 

When on-line incremental algorithms are used, such as Q-learning or Sarsa, the 

target function is constantly changing. Thus, the observed errors will often be due 

to the fact that the training distribution and the target function has just changed 

rather than due to the approximator's inability to learn this function given enough 

training. Methods that rel y on instantaneous errors would be very likely to insert 

many new units wastefully. Even in the approach of [Wiering, 1999], where the 

Responsibility variables are used for each unit, it seems that after a certain time, all 

units will have big Responsibility values and thus additions will always be allowed. 

Some form of temporal discounting, similar to the one used for eligibility traces, could 

help to account for non-stationarity. The method in [Fritzke, 1994], for example, is 

doing a form of temporal smoothening. However, such an approach is likely to be 

sensitive to a temporal smoothening parameter, as the amount and rate of change in 

the target function is not uniform throughout learning and very much task dependent. 
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Given that the error-based heuristics, in general, rely on several other user-defined 

parameters, such as the error threshold and the distance threshold, this approach 

may be very hard to tune overall. 

As was already mentioned, in the case of reinforcement learning, large errors may 

result from the environment's stochastidty. Thus, with error-based methods, more 

units are likely to be allocated in regions with high variance of the value-function 

sample estimates. This may result in an undesirable effect of overfitting the noise. 

In general, in reinforcement learning, it is not clear whether it is crucial to main­

tain high approximation accuracy all the time throughout the learning process, while 

polides keep changing. Often, just rough estimates of the relative magnitudes of the 

action values are suffi dent for fin ding good polides. Allocating new units frequently 

in order to match sudden drops in the accuracy can create unnecessary large archi­

tectures and may even become a destabilizing factor for the entire policy learning 

process, as was observed, for example, in [Wiering, 1999]. 

Discussion 

Given the fact that the target function is non-stationary in the reinforcement 

learning context, it can happen that sorne intermediate target functions will require 

more resources than others. Since such high resource requirements can be only tran­

sient, periodic pruning of the architecture may be benefidal to free up wasteful re­

sources. Sorne algorithms, in fact, do this. For example, sorne methods start to 

operate with all available resources from the beginning of learning and then redis­

tribute them later on. Next, we discuss different heuristics from the current literature 

used for determining which units can be removed/reallocated. 

Activation-Based Removals of Local Units 

In the instance-based approach used in [McCallum, 1996], the issue of limited 

storage capacity was addressed by keeping the instances in a sliding window over 

time. Once the window was filled, the oldest instance was removed and a new one 
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added. This approach results in a function approximator whose structure does not 

stabilize but keeps changing constantly throughout learning. 

In [Rely et al., 1997], an approach for dynamic allocation of SDMs was pro­

posed, which dynamically added and removed memory locations. At the beginning 

of learning, the SDM was empty, and new locations were added to the memory as 

new training samples arrived until the memory capacity limit was reached. The lo­

cation contents were not learned until all the locations were set up. At that point, 

content learning started, while also memory locations were competing for" survival" 

based on their activation frequency. After some period of time, those locations that 

were activated rarely got terminated and some memory space was thus made avail­

able for allocation elsewhere. Then, the memory was filled with some new locations 

again. Learning, thus, proceeded in two interleaving phases: location setup followed 

by content learning and prunning. 

Other approaches that we discussed ab ove , for instance, [Anderson, 1993; Sato 

and Ishii, 1998] also used the amount of activation as an indication of the utility of 

a local unit. We experimented with such ideas in the past, where each memory loca­

tion accumulated its activations (e.g., the similarity measures as in Equation (5.1)), 

discounted over time in order to account for the non-stationarity. We observed that 

the activation-based approach for unit removals was not reliable with reinforcement 

learning. The reason is that it often results in the removal of locations associated 

with very important states, such as goal states and catastrophic states, which may 

have relatively low activation frequencies for some time after they have been initially 

discovered. If they are removed and if the value information has not propagated back 

sufficiently, good partial strategies may be lost. A similar remark was given in [Millan 

et al., 2002]. 

Error-Based Rernovals of Local Uuits 

Another natural criterion for unit removals could be based on the approximation 

error, similar to the one used for unit additions. The heuristic in [Forbes, 2002], used 
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with the memory-based learning for removing instances in the case, when the memory 

capacity limit is reached, was based on an error criterion. It suggested to discard the 

instances whose removal introduced the least error in the prediction of the values of 

their neighbors. 

Another method in a similar spirit was presented in [Fritzke, 1997] for RBFNs. 

In this case, two measures were incrementally estimated throughout learning for each 

unit: an average of the prediction error and an average utility. The utility estimate of 

a unit was computed on every step as the increase in the approximation error caused 

by the removal of this unit. Then, if the ratio of the largest error (over alliocai units) 

to the smallest utility exceeded some threshold, the unit with the smallest utility 

was removed and a new one was inserted near the unit with the highest error. This 

heuristic, thus, attempted to weight a loss of accuracy in one region relative to a 

potential gain in another. 

Discussion 

Some of the approaches discussed above used heuristics for both the dynamic 

additions and removals of local units. Often, however, the criteria used for removing 

units were different from the ones used for ad ding units (see, e.g., [Anderson, 1993; 

Forbes, 2002]). For instance, units were removed based on the amount of their previ­

ous activation, while added based on some error heuristic. Our experimental results, 

which will be presented in Section 5.6, will show how such discrepancies in the ad­

dition/removal decisions can lead to undesirable effects and can prevent the function 

approximator from stabilizing its structure. 

5.5. Resource Allocation for SDMs: Our Approach 

In the previous section, we reviewed different methods from the current literature, 

with which local units of the function approximators can be tuned, added or real­

located. We pointed out various difficulties that can be encountered when applying 

such methods in the reinforcement learning setting. In this section, we address the 
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question of choosing locations for SDMs in the context of on-line action-value function 

approximation. As previously mentioned, in our preliminary investigations, we ex­

perimented with a variant of the self-organizing approach of [Sutton and Whitehead, 

1993] and with variants of the activation-based heuristics for reallocation of SDM 

locations. Unfortunately, we did not find these attempts successful in our empirical 

studies. 

We designed a new approach, which is computationally cheap, robust in the 

face of the inherent non-stationarity with on-line reinforcement learning and allows 

coherent extensions and incorporation of new structure building criteria in the future. 

As the first step, we focused on the LMS learning with the Sarsa algorithm, although 

our approach can be used with other learning methods, as will be discussed later in 

Section 5.7. 

In the remainder of this section, we describe our approach for determining auto­

matically the SDM size and addresses of the memory locations based on the observed 

data. In this thesis, we assume that the activation radii of the memory locations are 

uniform and fixed by a user. The extensions of our approach for dynamically choosing 

these parameters are left for future work while some ideas are outlined in Section 5.7. 

First of aU, our algorithm presents a way to decide when and how to add new 

locations to the memory. This method is based on the ideas of the activation-based 

addition heuristic discussed earlier in the previous section. We also provide a method 

to decide which locations can be removed from their current positions and added 

elsewhere, in the case where the memory capacity limit is reached. This method 

resulted from our preliminary experiments, analysis and modifications of the self­

organizing approach from [Sutton and Whitehead, 1993]. 

5.5.1. Algorithm for Adding SDM Locations 

Our algorithm, which we will refer to as the dynamic allocation method, starts 

with an empty memory, and locations are added based on the observed data. Since 

the samples obtained during on-line reinforcement learning are highly correlated, 

230 



5.5 RESOURCE ALLOCATION FOR SDMS: OUR APPROACH 

memorizing aU samples until the memory is filled can create unnecessary densely 

populated areas, while leaving other parts of the state space uncovered. Hence, our 

goal is to add locations only if the memory is too sparse around the observed training 

samples. 

Our algorithm relies on a user-defined parameter, denoted N, which is the min­

imum number of locations that we would like to see activated for a data sample. It 

is important to ensure that these locations are "evenly distributed" across their local 

regions, so that their activation neighborhoods do not overlap redundantly. Hence, 

we do not allow locations to be too close. More specificaUy, for any pair of locations 

hi, h j
, we enforce the following condition on the similarity between them: 

(5.37) 

This condition implies that the fewer locations are required in a local neighborhood 

(the smaller N), the farther apart these locations should be. 

A new location can be added upon observing any training sample ((s, a), Q(s, a)), 

where s = (SI, ... , Sn) serves as input to the SDM for the action-value function of 

action a, and Q(s, a) represents the target for the currently observed state-action 

pair (s, a). For example, Q(s, a) = r + 1'Qw(SI, al) in the case of the Sarsa algorithm. 

The following heuristic is aimed at ensuring a minimum of N active locations in the 

vicinity of s: 

Rule 1: If fewer than N locations are activated by the input s, add a new 

location centered at s, if its addition does not violate condition (5.37) with respect to 

the existing locations. Store the current target value, Q (s, a), in this new location. 

We also experimented with an option of storing in the newly added location the 

value currently predicted by the SDM, Qw(s, a), instead of the training target Q(s, a). 

However, in our experiments, this variant performed slightly worse. Given that with 
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our heuristic, new locations are added in very sparse regions, their addition directly 

with the target values does not seem to disturb the approximation very much. 

A pseudocode of the implementation of Rule 1 is provided as Algorithm 1 III 

Appendix B.l. 

In our experiments with various training scenarious, we noticed that if, during 

learning, there is not enough exploration to ensure a good spread of the visited states, 

the allocation using only the above heuristic rule proceeds very slowly. We observed 

situations, where, due to a small number of locations in sorne region of the state 

space (a small isolated group), successive updates of the action-value function would 

result in a chattering phenomenon, where the agent starts to oscillate between several 

policies that keep it trapped in the coresponding region. With a small exploration 

rate, the agent has a difficulty to break this cycle and to start exploring other parts of 

the state space. In this case, no new locations are added to the SDM and learning can 

be stalled for a long time. This can happen, for example, in domains, where distances 

between consecutive states are relatively small with respect to the activation widths 

of the memory locations, and where sorne actions are symmetric (e.g., "move left" and 

"move right"). To counteract this problem, we extended the above heuristic in the 

way that facilitates the agent's progress by setting up the memory resources faster. 

New locations are positioned slightly off the observed trajectory, but still relatively 

close to the actual training data samples. The new rule is formulated as follows: 

Rule 2: If after applying Rule 1, the number of active locations is N' (including 

a location added by Rule l, if any) , and N' < N, then (N - N') locations are 

randomly placed in the neighborhood of the current sample state s. The addresses 

of new locations are sampled uniformly randomly from the intervals [Si - (Ji, Si + (Ji] 

in each dimension, while ensuring that they satisfy the condition (5.37). The value 

currently predicted by the memory for the corresponding address is stored in each 

such location. 
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A pseudocode of the implementation of the Rule 2 is provided as Aigorithm 2 in 

Appendix B.1. 

The parameter N (minimum desired number of activated locations) in the above 

heuristics is reminiscent of the parameter k in the k-nearest-neighbor methods, which 

determines the number of instances that are used for locally weighted learning. Con­

trary to the classical instance-based approach, our method provides a way to selec­

tively store training samples to obtain a good space coverage with respect to this 

parameter while controlling the memory size. 

As previously mentioned, our method for ad ding new locations to the SDM archi­

tecture is activation-based (similar as those in [Kondo and Ito, 2002; Anderson, 1993; 

Ster and Dobnikar, 2003]), that is, it is directly related to the similarity measures 

used by the memory locations. It ensures that the memory locations are spread ap­

propriately with respect to the radii of the employed similarity function and can easily 

accommodate the case of variable widths. 

In our approach, the similarity (activation) threshold is implicitly derived from 

the condition (5.37) based on the parameter N. It should be noted that, in general, 

more than N training samples can satisfy the derived similarity threshold. Using the 

parameter N in combinat ion with the corresponding similarity threshold, as it is done 

in Rule 1 and Rule 2, provides a more conservative way to control the size of the 

memory, as will be illustrated by our experiments in Section 5.6. In the sequel, we 

will refer to our dynamic allocation method based on Rules 1 and 2 as the N -based 

heuristic, to distinguish it from the approach that employs the similarity (activation) 

threshold alone. 

5.5.2. Algorithm for Reallocating SDM Locations 

If the memory size limit is reached but we still encounter a data sample for 

which the number of active locations NI is smaller then the minimum desired number 

N, we also allow existing locations to move around. Unlike the approach described 

in [Sutton and Whitehead, 1993], we do not adjust the existing addresses slowly. 
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Instead, we apply the following rule. Suppose that L locations need to be added to 

the neighborhood of the current input state s based on Rule 1 and Rule 2. Then we 

proceed as follows: 

Rule 3: Pick at random and remove L inactive locations. When removing sorne 

location h, find, among locations in the active set Hh (a), a location h' that is closest 

to h. Then, replace h and h' by another location, hl!, placed midway between them. 

The value of hl! is set to the average of the values of h and h'. After removing L 

inactive locations in this manner, add the corresponding number of new locations to 

the neighborhood of the current state s using Rule 1 (and optionally Rule 2). 

The approach described above, which we calI randomized reallocation, alIows the 

memory to react quickly to the lack of resources in the regions visited under the 

current behavior policy. At the same time, because of the fact that there are sufficient 

locations in most of the previously visited regions, and because the choice of the 

location to be removed is random, removals do not dramatically affect any particular 

area of the input space. The method is cheap, both in terms of computation and space, 

since the choice of the locations to be removed is not based on any extra information, 

like in other algorithms, e.g., [Fritzke, 1997; Rely et al., 1997; Kondo and Ito, 2002; 

Forbes, 2002J. 

A pseudocode of the implementation of Rule 3 is provided as Algorithm 3 in 

Appendix B.l. 

5.5.3. Putting It AlI Together 

Resource allocation proceeds in parallel with learning the memory content. On 

each learning step, i.e., after observing the training sample ((s,a),Q(s,a)), new 10-

cations are added or moved, if necessary, then the values stored in the memory are 

updated according to the LMS training rule as presented in Section 5.3. A pseudocode 

implementation of the entire learning step is provided in Algorithm 4 in Appendix 

B.1, assuming reinforcement learning without eligibility traces, e.g., Sarsa(O). 
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5.5.4. Adjusting the SDM Architecture on Prediction Steps 

Another feature that we experimented with is to perform SDM structure adjust­

ments (additions and reallocations) on prediction accesses to the memory in addition 

to the learning accesses. Recall that during reinforcement learning with a semi-greedy 

exploration strategy, on every step, predictions of values are performed for aU actions 

in order to determine a greedy action, whereas a learning update is performed only for 

the performed action. In our experiments, allowing resourse adjustments on predic­

tions proved to be very beneficial. It allows the SDMs for aIl actions to consistently 

adapt their layouts to the current state distribution, as opposed to adapting them 

only when the corresponding action is performed. The values of aIl actions are im­

portant for the current state distribution to properly determine greedy actions. This 

approach is particularly important with our randomized reallocation method. It pre­

vents removing too many locations (so that there remain less than N of them) from 

the architecture of some action a even if the states in some region are not visited 

with that particular action, but their values are accessed to choose the greedy action. 

In other words, this ensures that the neighborhoods of important but not actually 

visited state-action pairs are not emptied. If a new location is added on a prediction 

access to the SDM, the value currently predicted for the corresponding input address 

is stored in it. 

5.6. Experimental Results 

In this section, we present the results of our experiments, where the SDMs were 

used for action-value function approximation. We used the Sarsa(O) algorithm with 

the E-greedy exploration st rat egy. First of aU, we provide our experimental results on 

the standard Mountain-Car benchmark, which, as previously mentioned, is commonly 

used in the reinforcement learning community. Then we also present the results on a 

variant of the hunter-prey domain. We experimented with instances of this domain 

with varying numbers of state dimensions, up to Il state variables. 
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5.6.1. Mountain-Car Domain 

Recall from the previous chapters that the Mountain-Car is an episodic goal­

directed task with a two-dimensional continuous state space, where the agent has to 

learn to drive up the hill from a valley (see [Sutton and Barto, 1998] for exact specifi­

cation of the environment's dynamics). In our experiments, episodes were terminated 

when the goal was reached, or after 1000 steps. 

To obtain a baseline performance, with which we could compare performance of 

the SDMs, we used the popular CMAC (tile coding) approximator (see Chapter 2). 

This approximation model is known to be particularly successful on the Mountain­

Car domain. Recall that CMACs are related to SDMs, but the CMAC layout is fixed 

a priori, with the locations (tiles) arranged in several superimposed tilings, which 

are regular discretization grids. Each input activates one tile in each tiling, and the 

activation mechanism is binary. Since CMACs rel y on the discretization of the input 

space, their size scales exponentially with the input dimensionality. 

In our experiments, we used CMACs and SDMs with the following correspondence 

in their resolutions: If a CMAC had T tilings (thus T tiles were activated on each 

input), we set the parameter N for our dynamic memory allocation with the N-based 

heuristic as N = T. The activation radii of the SDMs were set equal to the size of 

the CMAC tiles. 

In addition to testing our dynamic allocation approach, we also tested a method, 

where the decision on whether to add a new location was based only on the similarity 

threshold, without checking whether the number of active locations already exceeds 

N. This approach is in the style of other activation-based methods from the current 

literature, e.g., [Kondo and Ito, 2002; Anderson, 1993; Millân et al., 2002] (see Section 

5.4). In other words, a new location was added whenever the similarity of the current 

data sarnple to aU existing locations was below sorne threshold p,*. We will refer to this 

method as the threshold-based heuristic in the sequel. In this case, we experimented 

with the similarity thresholds p,* set to the values that would be derived from the 

condition in Equation (5.37) for the values of N and the activation radii used in 
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FIGURE 5.3. Dynamic allocation method. Returns of the greedy policies 
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architecture. Graphs (g) and (h) are for SDMs with radii (0.34,0.028), and 
N = 5 and f.l* = 0.5 respectively. 

the corresponding experiments with the N-based heuristic. The objective was to 

investigate the differences in the resulting memory sizes, layouts and the performance 

based on the two approaches. 
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We conducted two sets of experiments to investigate the performance under dif­

ferent exploration scenarios and under different training sample distributions. In 

the first set, the start state of each episode was chosen uniformly randomly across 

the entire state space. This is the most popular experimental setting. 1 t presents 

an "easier" training scenario, because the starting distribution ensures, to a large 

extend, good (sufficient) exploration regardless of the exploration strategy followed 

during learning. 

Graphs in the upper row of Figure 5.3 show the results in this training setting. 

The graphs ( a), (b) and (c) present the returns of the greedy policies learned by 

CMACs, dynamically allocated SDMs with the N-based and the threshold-based 

heuristics respectively. In these experiments, the memory size limit was set sufficiently 

high to ensure that it would not be reached and we could test the dynamic allocation 

method alone. 

As can be seen from these graphs, the performance of the SDMs is either the same 

or (in most cases) much better than that of CMACs. It degrades more gracefully 

with the decrease of resolution. Moreover, SDMs with the N-based heuristic (in this 

case using Rule 1 only) always consume fewer resources, as shown in the legends 

of the graphs. The asymptotic performance of the SDMs with the threshold-based 

heuristic is similar to that of the N-based heuristic, however the learning is slower. 

The resulting memories are between 2 and 4 times larger with the threshold-based 

heuristic. This can slow down learning, because more training is required for larger 

architectures. As we anticipated, the N-based heuristic enables a better control over 

the amount of allocated resources. As the experiments show, it results in faster 

learning, while preserving the quality of the learned policies. 

In the second set of experiments, we used a single start state for each episode. 

In this case, the car always starts at the bottom of the hill with zero velo city. In 

this setting, exploration is much more difficult, as it is always constrained by the 

behavior policy. Thus, there is a closed cycle where the exploration depends on 
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the learned action-value function, which, in turn, depends on the exploration pol­

icy. We specificaUy wanted to test the performance of SDMs in this setting, where 

the training samples are highly correlated and distributed non-uniformly. The corre­

sponding results are shown in the middle row of Figure 5.3. In this case, SDMs were 

built with the N-based heuristic using both Rule 1 and Rule 2. Without Rule 2, 

which allows adding locations close to but not exactly on trajectories, we observed 

the policy oscillation phenomenon, discussed in Section 5.5, due to poor exploration. 

SDMs generaUy learn better policies than CMACs and take advantage of the fact 

that not aU the states are visited. The resulting memory sizes for SDMs (graph (e)) 

are roughly 30% smaller than in the previous experiment (graph (b)). SDMs with the 

threshold-based heuristic, however, were much slower and exhibited a much higher 

variance with this single start-state training, even though they had a large number of 

locations placed exactly along the foUowed trajectories. This demonstrates that, with 

the restricted exploration, Rule 2 of our approach helps to build quickly a compact 

model with good generalization capabilities. AIso, under limited exploration, smaller 

architectures (as obtained with the N-based heuristic) should be expected to learn 

better as they suffer less from overfitting14 . 

Graphs (g) and (h) of Figure 5.3 show examples of SDM layouts obtained with 

the N-based and the threshold-based heuristics for these experiments. The SDMs 

obtained with the N-based heuristic are less dense and span the state space better. 

Finally, graph (i) of Figure 5.3 shows the performance improvement achieved 

by allowing adjustments to the memory layout during predictions as weU as during 

reinforcement learning updates. As can be seen from the graph, learning curves attain 

high levels of performance much faster with this feature enabled. Note that aU the 

experiments with the SDMs (for both the N-based and the threshold-based heuristics) 

discussed above were performed with this option enabled. 

140verfitting happens when a model, that has a lot of parameters (large capacity) memorizes the 
training samples too much and does not generalize well to new samples. 
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Car pooltlon 

Most of the resourse allocation happens early in the learning process. In our ex­

periments, both with the N-based and the threshold-based heuristics, '"'-' 85% memory 

locations where added in the first 200 trials. 

Graph (a) of Figure 5.4 shows the performance of the adaptive reallocation 

method, which allows moving the existing locations when the memory size limit is 

reached. The experiments were performed for the single start-state training scenario 

on the Mountain-Car domain using the N-based heuristic for location additions. We 

tested two removal approaches: the randomized reallocation method, introduced in 

this thesis, and an error-based method suggested in [Forbes, 2002]. For each local 

unit, this method measures an average error in the prediction of the values at the 

centers of the neighboring units, introduced by the removal of this unit. Using our 

SDM notation, such an error can be computed as follows: 

errorm 
= IH~ntl L IQ(h

k
, a) - Q-m(hk, a)1 

kEHhnt 

(5.38) 

where Q-m(hk, a) is the prediction for input h k (and action a) without the location 

Graph (a) shows experiments with memory parameters N = 5,(3 = (0.17,0.014). 

The memory size limits were chosen to be equal to 230 and 175 which is 100% and 

75% of the size obtained for the same memory resolution with the dynamic allocation 
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method and the N-based heuristic in the previous experiments. The SDMs were 

initialized with all locations distributed uniformly randomly across the state space 

and then allowed to be reallocated according to the heuristics used. Note that the 

static memories of the same sizes were not able to learn a good policy. 

As can be seen from graph (a), both removal heuristics succeed in building SDMs 

that provide good performance. However, as shown on graph (b), the behavior of 

the two heuristics is quite different. This graph depicts the number of reallocations 

throughout learning. Each point on the curves represents the average number of 

reallocation over the last 100 learning trials. With the randomized heuristic, most 

reallocations happen at the beginning of learning and then their number decreases 

almost to zero. With the error-based heuristic the number of reallocations stays much 

higher until the end of the learning runs. Close examination of the logs of the learn­

ing runs provided us with an insight into a cause of such behavior. Our conclusion 

was that a high reallocation rate was maintained by the error-based removal heuris­

tic because the objectives of the criteria for additions and removals of the memory 

locations were not "in agreement": addition heuristic was density-based and the re­

moval heuristic was error-based. Graph (c) depicts 3000 location moves at the end 

of one training run, where removed locations are plotted with black dots and added 

locations - with white dots. A mixed black-and-white cloud in one region of the state 

space shows that most error-based removals happen in a particular region where the 

value function is relatively fiat, but the same region is then visited and found to be 

too sparsely represented by the density-based addition heuristic. Thus, locations are 

added back. Apparently such a cycle repeats itself. As mentioned earlier, with the 

randomized reallocation heuristic, no specific are a of the input space is affected by 

removals more than others, thus cyclic behavior is minimized. 

It should also be noted that the error-based heuristic is more expensive computa­

tionally: it requires either to perform a complete memory sweep when reallocation is 

necessary, or to perform (IHh17l1-1) additional predictions on every memory access in 

241 



5.6 EXPERIMENTAL RESULTS 

order to maintain (approximate) error estimates. The cost of the randomized heuris­

tic, on the other hand, is that of generating a random number and applies only when 

a new location actually has to be added in an underrepresented region of the input 

space. Thus, the randomized reallocation method is computationally much cheaper 

while showing more stable behavior and providing good policies. The error-based 

removal heuristic can still be an interesting choice, provided that it is in tune with 

the addition heuristic. 

5.6.2. Hunter-Prey Domain 

The second task we used in our experiments is a variant of a hunter-prey domain 

often used for testing multi-agent systems. In this domain, H hunters team up with 

an objective to capture a prey. In our setting, reinforcement learning was used to 

learn how to control the prey, while the hunters behave according to fixed, heuristic 

strategies. We chose this task because we wanted to study the effect of increasing the 

dimensionality of the state space on the quality and speed of learning with SDMs, 

without increasing the number of actions available. 

In this task, the state is described by 2H continuous variables, representing the 

position of each hunter relative to a polar coordinate system centered on the prey, 

and one integer variable, representing the number of hunters still alive. In order to 

capture the prey, C hunters have to approach it within a circle of radius equal to 

5, and the angle between adjacent hunters has to be less than (~ + 0.6) radians. 

However, if fewer than K hunters are within 5 units of the prey, the prey kills the 

closest one. The hunters start each episode at random positions inside a circle of 

radius 50 around the prey. A stochastic controller moves the hunters individually 

as follows: with probability 0.3, a hunter moves clockwise or counterclockwise 0.2 

radians; with probability 0.7, the hunter moves in the radial direction, either towards 

the prey, if there is no danger to be killed, or otherwise away from the prey by 5 units. 

The episode ends when the prey is captured or when fewer than C hunters are alive 

(the minimum number of hunters necessary to capture the prey). The prey can move 
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north, south, east or west, 5 units per time step. The reward scheme is the following: 

the prey receives a reward of 1 if it kills a hunter, -200 if it is captured, and -1 per 

time step otherwise, thus encouraging the prey to learn an aggressive strategy and 

kill hunters as soon as possible. 

Figure 5.5 presents the results of experiments with 2-, 3- and 5-hunter tasks (5, 

7 and 11 state dimensions respectively). In each case, we used C = H and K = 2. 

Thus, the complexity of the prey's task does not increase: it still has to kill one hunter 

to win the episode. However, the dimensionality of the state space increases with the 

increase of the number of hunters. Graph (a) shows the performance of the SDM and 

CMAC architectures on the 2-hunter task. The SDMs were trained with the dynamic 

allocation method using Rule 1 only (as the start state distribution provides a good 

coverage of the state space). As shown in the graph, CMACs were not able to learn 

the task even with considerable memory sizes. Consequently, we experimented with 

the SDMs only on the task instances with 3 and 5 hunters. In these cases, the SDMs 

were empty at the beginning of learning. Locations were added then with the dynamic 

allocation method (using Rule 1 only). Then, when the memory limit was reached, 

the randomized reallocation method was used. 

Graph (b) shows the results on the 3-hunter task, illustrating the effect of chang­

ing the activation radii and the value of N. The choice of the activation radii seems 

to have a stronger impact on the overall performance compared to the N parame­

ter. For large radii, smaller values of N seem to work better15
. Graph (c) shows the 

average learning curve for the 5-hunter task, using the SDM resolution that seemed 

best in the 2- and 3-hunter tasks. Despite the higher dimensionality of the task, the 

performance achieved is the same as in the 2 and 3-hunter case, while the memory 

size was not allowed to increase significantly compared to the 3-hunter problem. 

15The same trend appeared in the Mountain Car domain. 
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FIGURE 5.5. Hunter-prey domain. Returns are averaged over 20 runs and 
100 fixed starting test states, sampled uniformly randomly. The exploration 
parameter E = 0.05 and the learning step Ct was optimized for each architec­
ture and task. 

5.7. Discussion and Future Work 

Alternatives to LMS Learning 

In our experiments, we performed on-line LMS training based on the Sarsa(O) 

algorithm with the é-greedy exploration strategy. Recall from Chapter 2 and Section 

5.3.2 that there are other ways in which approximate reinforcement learning can 

be performed. For instance, in Section 5.2.3, we discussed a number of approaches 

with st ronger theoretical guarantees, which relied on the use of linear (in some cases 

local) function approximators. Thus, SDMs and the proposed approach for allocating 

memory resources can potentially be applied with these methods, as we will discuss 

next. 

Recall the approaches in [Gordon, 1995J and [Tsitsiklis and Van Roy, 1996J, which 

use the approximate Value Iteration algorithm with averagers in the former case and 

linear approximators in the latter case. In both cases, the function approximator's 

architecture has to be configured prior to learning. In Section 5.2.3, we already 

mentioned the possibility of doing this dynamically, while following some sampling 

strategy, e.g., a uniformly random policy, a policy based on the domain knowledge or 

simply using a set of previously collected samples. We sketched a possible procedure 
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for allocating SDMs so that the conditions (5.19), required for the algorithm's con­

vergence, are satisfied. This procedure can be related to the approach we introduced 

in Section 5.5 for resourse allocation with SDMs. 

Suppose, we would use unnormalized similarity measures in the representation of 

the approximate function, as in Equation (5.20), in order to allow activation neigh­

borhoods of the memory locations to overlap with the centers of other locations (see 

discussion in Section 5.3.2). In order to satisfy the conditions (5.19), we could pro­

ceed with the allocation of new memory locations in a way similar to the Rule 1 of 

our dynamic allocation approach. We would choose a setting of the parameter N, 

but then set the similarity threshold to sorne value IL* < h. According to Rule 1, 

we would add a new memory location at sorne address S only if less than N existing 

locations are activated by this address and the similarity with the closest location 

is less than IL*. In this case, the condition (ii) in (5.19) is satisfied, since for every 

memory location hm, we have: 

M . N-1 L ,l(hm
):::; (N - 1)1L* < N < 1 

i=l,i;im 

The value of cS used in (5.19) can then be found as cS = (N - 1)1L*. As previously 

suggested, in order to satisfy condition (iii) in (5.19), we could check whether it 

is violated for every sample state, and if it is the case, remove sorne of the active 

locations. This would limit the maximum number of active locations in any given 

region of the input space. Note, that this method is likely to pro duce memories that 

are sparser than the ones resulting from our allocation approach introduced in Section 

5.5. This is due to the choice of a smaller similarity threshold, IL* < iv instead of 

by Equation (5.37), and also due the attempts to satisfy the condition (iii), in which 

case sorne previously added location may be removed. 

As previously noted, when we use normalized similarities in the representation 

of the approximate function and do not allow any memory location to activate other 
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M 

locations, that is 2::J1i (hm
) = 0, m = 1, ... , M, the architecture satisfies the interpo-

i=1 
#m 

lator property (5.24) and thus can be used with the averager update as in Equation 

(5.25). The convergence pro of for this learning update extends to the case when a 

set of basis points (on which interpolator is defined) is dynamically adapted, as was 

shown in [Szepesv3xi and Smart, 2004]. The SDM locations can be viewed as such 

basis points. It is assumed in this case that updates to the set of basis points are 

performed in parallel with the updates (5.25) (similar as we conduct the resource allo­

cation in parallel with the LMS learning). According to [Szepesvari and Smart, 2004], 

the updates to the set of basis points have to satisfy the following conditions: (i) the 

updates are performed based on the past observations; (ii) on any step, the maximum 

number of points added is bounded by sorne constant; (iii) the set of basis points cease 

to change after a finite amount of time. Moreover, if the target value function Q* is 

Lipschitz 16 , and the density of the set of basis points is bounded from below by sorne 

constant do, then the algorithm converges with probability 1 to the parameter vector 

w* of the interpolative function approximator fw, such that Ilfw* - Q*II ::; O(l~",)' 
where Q* is the optimal action-value function. The work in [Szepesvari and Smart, 

2004], however, does not provide any constructive algorithm for adaptively choosing 

the basis points. 

Our algorithm for dynamically ad ding and reallocating memory locations can 

potentially be used in that framework. It satisfies conditions (i) and (ii). The con­

dition (iii) will be satisfied automatically if the memory size is chosen large enough 

to cover the entire state space with respect to the radii of the similarity measure. 

In this case, our addition rules will stop ad ding new locations to the memory. How­

ever, memory size would scale exponentially with the input dimensionality in this 

case. The assumption of a fixed stochastic exploration strategy used in [Szepesvari 

16 A Lipschitz function is a function f : a:? -+ C, for which there exists a constant c E a:? such that for 
aU x, y E a:?, If(x) - f(y)1 :<::; clx - yi. 
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and Smart, 2004]17, is quite restrictive: as aIl of the state space will be repeatedly 

revisited throughout learning, a local function approximation architecture may need 

to cover the entire state space and not only a subset important to the learned policy. 

It would be interesting in the future to compare the performance of the LMS train­

ing with the convergent approach of [Szepesvari and Smart, 2004], since at present, 

there is relatively little practical evidence for the performance of the latter. 

Automatic Selection of the Activation Radii 

One of the issues that we will address in the future is the automatic selection 

of the activation radii for the SDM locations while allowing them to vary across the 

state space. We believe that this is crucial in order to be able to further reduce the 

memory requirements and to optimize the memory layout. Several ideas from the 

current literature can be taken as a starting point in this case. 

For instance, the work of Weaver at. al. (1998) presents a notion of interference 

of learning on two training samples. The interference is defined as a normalized dot 

product of the corresponding gradient vectors used in the gradient des cent learning. 

This dot product can, thus, indicate whether two training samples cause parameter 

updates in opposing directions. In our case a similar idea can be used, where gradient 

vectors would be accumulated in each memory location. Then a dot product of these 

vectors can be considered for each pair of locations whose activation neighborhoods 

significantly overlap. If the dot product indicates that these two locations are often 

updated in very different directions, the overlap between them should be reduced by 

adjusting their activation widths. 

The ideas of temporal neighborhoods, as were explored in [Kretchmar and An­

derson, 1999] and [Glaubius and Smart, 2004] can also be further explored for the 

purpose of selecting the activation radii. In this case, memory locations can be al­

lowed to dynamically stretch and shrink their activation neighborhoods based on the 

observed patterns of the state transitions. 

17With an absence of any prior domain knowledge, a uniformly random exploration strategy would 
need to be used. 
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Incorporation of Other Allocation Criteria 

Our current resource allocation mechanism is based only on the distribution of 

the inputs and is concerned with the density of the allocated memories. In the 

future, we also plan to explore other criteria that use information about the function 

topology, e.g., function linearity and decision boundaries, as in [Munos and Moore, 

2001; Reynolds, 2002]. We would like to investigate how such criteria perform in 

an on-line setting and how they can be paired with the criteria for removal of the 

memory locations. 

Learning with Progressive Refinement 

Another idea that seems to be promising for obtaining better performance while 

minimizing the increase in the computational time, is that of a progressive memory 

refinement. In this case, a coarser memory resolution can be used at the beginning 

of learning (corresponding to large activation radii) and later a finer memory can be 

introduced. A small memory would first learn a coarse representation of the action­

value function and then it would be refined where necessary. The fine-grained SDM 

can inherit locations from the coarse SDM, with their already reasonable values; 

hence, learning can proceed faster. AIso, as certain parts of the state space would be 

visited less with a reasonable coarse policy, hopefully fewer new locations would be 

added to the finer SDM. In contrast to other approximators, e.g., neural networks, 

SDMs allow to change structural parameters, without loosing everything that have 

been previously learned. 

The idea of the progressive refinement is reminiscent of the approach suggested in 

[Rust, 1997] for the random self-approximating Bellman operator (see Section 5.3.2), 

in which case sets of sample states of increasing size are used for successive runs of the 

corresponding approximate Value Iteration method. In this case, each run starts with 

initial values for the sampled states estimated by the value function computed on the 

previous run. This method allowed a significant reduction in the computational time 

in the theoretical analysis of Rust (1997). 
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A similar idea was used in [Platt, 1991], where the distance threshold for the 

distance-based addition heuristic was reduced over time. In this way, the architec­

ture first allocated features, which were very broad and widely spread, and then 

progressively refined them. 

Another related approach was developed in [VoUbrecht, 1999], where a kd-tree 

was used to fully partition the state space with respect to a given depth of the tree. 

Then action-values (and their confidence levels) were estimated by the Q-Iearning 

algorithm simultaneously at aU levels of the tree (i.e., for different granularities of 

the state space representation). ComputationaUy, this approach leveraged the fact 

that most of the finest-resolution levels were rarely visited. The algorithm decided at 

which level of the tree it had most confidence in the corresponding value estimates and 

used these values to determine a policy and values for the bootstrapped targets. This 

method can be applied only to MDPs with the state space dimensionality that allows 

to construct a full tree of the required depth, as the number of leaves (partitions) 

scales exponentially with the number of state dimensions. 

Theoretical Analysis 

Finally, we will investigate formaI theoretical properties of the SDM model and 

the dynamic allocation approaches, for instance, in connection with the results in 

[Tsitsiklis and Van Roy, 1996] and [Szepesvari and Smart, 2004]. 

5.8. Summary 

In this chapter, we investigated the use of the Sparse Distributed Memory model 

for action-value function approximation in on-line reinforcement learning. This model 

is local and linear, which is often preferred in reinforcement learning. It is also flexible 

enough to scale weIl with large and highly dimensional input spaces, if the underlying 

domain has properties that do not necessitate aU ofthe state space to be (weU) covered 

by the memory locations. 
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The main contribution of this chapter is a new approach for dynamic allocation 

and adaptation of the SDM resources. As can be seen from the literature review and 

various discussions presented in this chapter, the problem of automatic structure selec­

tion for local function approximators is very important for the practical applicability 

and scalability of reinforcement learning techniques and is being actively researched 

in the reinforcement learning community. 

Our algorithm (as presented in Section 5.5) provides the ways to decide where 

new memory locations are necessary and which locations can be reallocated if the 

resources are limited. It provides a disciplined way to control the growth of the SDM 

size and its density based on the distribution of the training inputs. We empirically 

demonstrated that our approach is suited for on-li ne value-based reinforcement learn­

ing, where other related supervised learning techniques can become unreliable. We 

showed the importance of the agreement between the criteria used for adding and 

removing memory locations which have to be used in tandem when the memory limit 

is reached. 

Our approach is very efficient computationally and does not introduce any ad­

ditional st orage requirements, contrary to many other related approaches from the 

current literature. Our method facilitates learning un der constrained exploration con­

ditions, which are likely in practical applications. We also proposed a new idea of 

adjusting memory resources on the prediction accesses and experimentally showed its 

positive effect on performance. 

While we demonstrated a successful application of the proposed approach with the 

LMS training and on-policy exploration, we also discussed the possibility of using this 

approach with other approximate reinforcement learning methods, which opens new 

interesting directions for future research. The algorithm developed and the lessons 

learned here can be applied to other local function approximators. In this chapter, 

we discussed the relationships of sorne of them to the SDM model. 
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CHAPTER 6 

Conclusions and Future "Work 

6.1. Contributions 

This thesis is composed of two parts. One part addressed the issues of identi­

fying, analyzing and measuring MDP characteristics that influence the performance 

of incremental value-based reinforcement learning algorithms, as weIl as using the 

corresponding measurements in practice to improve the efficiency of learning. The 

second part was devoted to the use of Sparse Distributed Memories as a function ap­

proximation model for representing value functions. In summary, this thesis contains 

the following contributions. 

MDP Attributes. Most results for reinforcement learning techniques in the 

current literature are based on very general assumptions about the underlying MDPs. 

Very litt le research was devoted in the past to the analysis of specifie properties of 

MDPs that can influence performance of reinforcement learning algorithms. One such 

study [Kirman, 1995] was devoted to dynamic programming algorithms for planning 

in MDPs and, indeed, demonstrated that MDP characteristics affect the performance 

of such algorithms under time constraints. To the best of our knowledge, no such 

analysis was performed in the past for incremental value-based reinforcement learning 

algorithms. 

In this thesis, we discussed various challenges faced by on-line value based meth­

ods and analyzed how particular MDP properties relate to these challenges and how 
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they can influence the performance. We provided several hypotheses about the na­

ture of the effects that these MDP characteristics can have on learning, which are 

related mainly to the sample variance, ease of exploration and the ability of the agent 

to influence its environment. Based on this analysis, we introduced five quantitative 

attributes for characterizing and measuring certain properties of MDPs: the State 

Transition Entropy, Variance of Immediate Rewards, ControIlability, Reward Infor­

mation Content and Risk Factor. They reflect mostly the amount and sources of 

stochasticity in an MDP as weIl as the amount of control that the agent can exer­

cise over its environment. We presented ways in which these MDP attributes can be 

computed, either exactly if the MDP model is available, or estimated approximately 

based on experience (either before or during learning). For the case in which the 

attributes have to be estimated during learning, we discussed efficient incremental 

methods. 

While analyzing the relationships between the MDP properties and the dynamics 

of on-line value-based reinforcement learning algorithms, we discussed how one can 

take advantage of knowledge about these properties to facilitate learning by (dynam­

ically) tuning various parameters that typically need to be chosen by the user. 

We presented the results of an empirical study, involving the two most important 

attributes, the State Transition Entropy and the Controllability. The study shows the 

existence of a statisticaIly significant relationship between the measured properties 

and the performance of incremental value-based algorithms. We performed experi­

ments both for tabular and for approximate methods and showed that the effect of 

the MDP characteristics is present in both cases. 

In summary, this part of the the sis advances current understanding of what prob­

lem properties affect the difficulty of learning with incremental value-based algorithms 

and contributes new ideas as to how MDP characteristics can be defined precisely and 

used to improve the efficiency of learning. 
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Attribute-Based Exploration Strategy. Efficient exploration is one of the 

key factors in the success of reinforcement learning for practical applications. Consid­

erable research in the current literature is devoted to developing exploration methods 

that direct the agent 's experience gathering effort in a way that can speed up learning 

or optimize the agent's performance during learning. 

We presented a new exploration strategy, developed based on the insights gained 

through the study of MDP characteristics. Our strategy directly uses measurements 

oftwo of the proposed MDP attributes, the State Transition Entropy and the Control­

lability, in order to improve the efficiency of exploration. It facilitates a homogeneous 

exploration of the state space, helps to provide sufficient sampling for actions with 

a potentially high variance in their value samples and focuses the agent's effort on 

states, in which the agent can influence most its environment. Our strategy differs 

from existing exploration techniques in that it is based exclusively on properties of 

the environment. Hence, it provides the means of guiding exploration based on infor­

mation independent of the course of learning or current value estimates. This can be 

beneficial for reducing the influence of previous (possibly unsuccessful) exploration 

decisions on the decisions made on subsequent steps. 

Our attribute-based approach can be used in combination with a variety of other 

existing exploration techniques. We provided an implementation and experimental 

results for combining our strategy with two existing methods, E-greedy and recency­

based exploration, belonging to the undirected and directed classes of exploration 

approaches respectively. We experimentally demonstrated that our method improves 

performance in both cases. 

In summary, this work demonstrated feasibility of using the proposed MDP at­

tributes in practice and the real benefits of doing so. Second, our strategy provides a 

simple yet effective way to boost the performance of existing exploration techniques, 

which is of great practical importance for the efficiency of learning. It equips the 

agent with the means of identifying the regions of the state and action spaces that 
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reqmre extra exploration effort or that can potentially lead to most performance 

improvements. 

Resource Allocation Method for Sparse Distributed Memories. The use 

of function approximation with value-based algorithms is essential for the applicabil­

ity of reinforcement learning to large realistic domains. While this is currently an 

active are a of research, there is still a considerable gap between the theoretical results 

available and state-of-the-art in practical applications of reinforcement learning. 

In this thesis, we made progress on the idea of using Sparse Distributed Memories 

as a linear local function approximation model for value-function representation in 

reinforcement learning. The idea of using SDMs in value-based reinforcement learning 

was proposed several years ago with a conjecture that this model could be used to 

circumvent the curse of dimensionality in large do mains [Sutton and Barto, 1998]. 

However, no formaI study of its theoretical properties in the context of reinforcement 

learning has been performed, to the best of our knowledge. Equally, sorne important 

issues regarding the practical application of SDMs and related models with value­

based methods have not been resolved in a satisfactory way in the pasto 

In this thesis, we discuss properties of SDMs that aUow them to satisfy the 

assumptions of several existing theoretical results, which provide convergence guar­

antees for some approximate reinforcement learning methods [Tsitsiklis and Van Roy, 

1996; 1997; Gordon, 1995; Szepesvari and Smart, 2004; Lagoudakis and Parr, 2003b]. 

We discuss how the SDM model can be used with these methods as weIl as with other 

popular reinforcement learning algorithms for which convergence properties are still 

not known, but which are nevertheless successfuUy applied in practice. The quality of 

the solutions obtained by aU these techniques depends heavily on a good choice of the 

function approximator's structure. In this thesis, we developed a new approach for 

automatically choosing certain structural parameters of SDMs (namely, the addresses 

of the memory locations) based on training data. Related methods for structuring 

function approximators were developed for supervised learning in the past, and sorne 

of them have been used (with varying success) in reinforcement learning. We analyzed 
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the advantages and drawbacks of these methods in the context of on-Hne value-based 

reinforcement learning. Our approach succeeded at avoiding sorne of the difficul­

ties encountered by other related methods. We empirically demonstrated that our 

approach provides good performance and is very efficient computationally. 

In summary, this work advances state-of-the-art in the practical applicability of 

SDM function approximators in value-based reinforcement learning. The new tech­

nique for automatically choosing the structure of SDMs makes the use of this ap­

proximator much easier and opens up very interesting avenus for thoretical work, as 

discussed below. 

6.2. Future Work 

As already discussed in chapters 3, 4 and 5, this thesis opens new research avenues 

for the future, both in the line of research concerning MDP characteristics and that 

of value function approximation with SDMs. We highlight here a few main directions 

that would be interesting to pursue. 

We investigated in detail the effect of two of the proposed MDP attributes on on­

Hne value-based reinforcement learning, focusing on the attributes that we considered 

the most informative. In the future, we plan to conduct studies concerning the other 

attributes discussed in this thesis in order to verify our hypotheses about the effect 

of the corresponding MDP properties on learning. We would like to evaluate the 

practical benefits of using the information provided by these attributes for improving 

efficiency of learning, similarly to what we did with the exploration strategy based 

on State Transition Entropy and Controllability. We plan to work on using the MDP 

attributes for tuning other parameters of reinforcement learning algorithms, such as 

the eligibility trace decay parameter and the learning rate parameter. 

We would like to further develop our attribute-based exploration strategy by 

incorporating other MDP attributes presented in this thesis. We also plan to work 

on improving the ways of combining several attributes and other exploration bonuses 

together. 
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The work related to the Sparse Distributed Memories in value-based reinforce­

ment learning has many directions for future research. First, we plan to extend the 

approach presented in this thesis so that the activation radii of the memory loca­

tions are selected automatically along with the locations' addresses. This will fully 

automate the pro cess of structure selection for SDMs during on-line learning. One of 

the ideas that can be explored is that of the progressive refinement of the memory 

resolution, as discussed in Chapter 5. We also plan to study and improve on existing 

heuristics developed for this purpose in the past, e.g., methods that attempt to assess 

the target function's topology [Munos and Moore, 2001], and ideas of avoiding pa­

rameter update interference from neural networks [Weaver et al., 1998]. We are also 

currently investigating the theoretical properties of several reinforcement learning al­

gorithms using SDMs. For instance, by analyzing the properties of SDMs obtained 

by various resource allocation methods based on sampling from the underlying MDP, 

we hope to obtain a model-based approximate method that has provable convergence 

based on the results in [Tsitsiklis and Van Roy, 1996], as well as a concrete way of 

configuring the function approximator's structure for the MDP at hand. With respect 

to model-free algorithms, one could study the SDM model and different dynamic al­

location approaches in the context of the convergent averaging learning algorithm 

presented in [Szepeswiri and Smart, 2004]. 
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APPENDICES 

APPENDIX A 

A.1. Bellman Equation for the Variance of the Return 

We provide here the result from [Munos and Moore, 2001], whieh proves that the 

variance of the returns R7r (s) for a particular poliey 7r is solution to a Bellman-type 

equation. 

The variance of the returns is defined as follows: 

(A.1) 

where V7r(s) is the state-value funetion, that is the expected return for the poliey 7r. 

This variance is solution to the following Bellman equation: 

(j2(S) = "(2 L p:~S)(j2(S') + e(s) (A.2) 
s'ES 

where the term e (s) is defined as follows: 

e( s) = L p:~s) ["(V7r (Si) - V7r (s) + r;;,s) r (A.3) 
s'ES 

Proof: The return obtained on a sequence of states starting from the state s 

saLisfies: R7r(s) = r;;,s) + "(R7r(s'). Thu:::;, the variance i:::;: 

(A.4) 



A.1 BELLMAN EQUATION FOR THE VARIANCE OF THE RETURN 

From the definition of the state-value function, V1l"(s) - r;;,s) = 'YE{R7l"(s')}. Thus, 

(A.5) 

We can decompose this expectation using average for aU possible successor states s' 

weighted by their transition probabilities. 

(T2(S) = L p;Y) E {bR7l"(s'))2 - (V1r (s) - r;;,S)r} 
s'ES 

= L p;Y) E {bR1r (s'))2 - b V1r (S'))2} (A.6) 
s'ES 

+ L p:~s) E {bV1r (S'))2 _ (V1r (s) _ r;;,S)) 2} 
s'ES 

From the BeUman equation V 1r (s) = r;;,s) + L p:~s)'YV1r(s'), we deduce that: 
s'ES 

L p:~s) E {bV1r(S'))2 - (V1r (s) - r;;,S)r} = e(s) 
s'ES 

(A.7) 

with e(s) defined as in Equation (A.3). We also have: 

which combined with equations (A.6) and (A.7) gives Equation (A.2). 
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B.l RESOURCE ALLOCATION FOR SDMS: PSEUDOCODES 

APPENDIX B 

B.l. Resource Allocation for SDMs: Pseudocodes 

Algorithm 1 add_Rule1(State s, Action a, Target Q) 

Assumes: 
Predefined parameters: 
N: minimum desired number of active locations 
p,*: similarity threshold, computed by (5.37) 
Notation: 
S DM (a): locations in memory for action a 
Ma: size of the SDM(a) 
w(hm, a): value stored at the location hm of the SDM(a) 
M: maximum memory capacity 

Returns : 
boolean Added : indicates whether a new location has been added 

Added:= false; 
Hs(a) := {hm: hm E SDM(a); p,m(s, a) > O}; { Find a set of active locations for 
s} 
N' := size[Hs(a)] {Number of locations activated by s} 
p,':= max p,m(s, a); { Similarity of s with the closest location} 

hm EH8 (a) 

if (N' < N) and (p,' :s; p,*) and (Ma < M) then 
Ma:= Ma + 1; 
hMa := s; { Place new location at s} 
w(hMa , a) := Q; {Store target value at the new location} 
SDM(a) := SDM(a) U hMa ; 

Added := true; 
end if 
return Added; 
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B.l RESOURCE ALLOCATION FOR SDMS: PSEUDOCODES 

Algorithm 2 add-.Rule2(State s, Action a, int ToAdd) 

Assumes: 
Predefined parameters: 
N: minimum desired number of active locations 
JL*: similarity threshold, computed by (5.37) 
M axTry: a maximum number of times a random position is sampled 
Notation: 
S DM (a): locations in memory for action a 
w(hm, a): value stored at the location hm of the SDM(a) 
Ma: size of the SDM(a); M: maximum memory capacity 

while ((ToAdd > 0) and (Ma < M)) do 
AddAttempt := M axTry 
while (AddAttempt > 0) do 

{Sample a potential new location h = (hl, ... , hn )} 

for i = 1 to n do 
hi := random(si - {Ji, Si + {Ji); {Random number in the specified interval} 

end for 
Hh(a) := {hm: hm E SDM(a); JLm(h, a) > O}; {Find a set of active locations 
for h} 
I-i:= max JLm(h, a); {Similarity of h with the closest location} 

hTnEHh(a) 

if (/1/ > JL*) { Sampled state h is too close to the existing locations} then 
AddAttempt := AddAttempt - l;{Try to sample again} 

else 
Ma:= Ma + 1; 
hMa := h; {Place a new location at the sampled state} 
{Store the value predicted by the memory in the new location} 

W(hMa,a) := L w(hm, a) x JLm(h,a)j L JLm(h, a); 
hTnEHh(a) 

SDM(a) := SDM(a) U hMa; 
AddAttempt := 0; 

end if 
end while 
ToAdd := ToAdd - 1; 

end while 
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Bol RESOURCE ALLOCATION FOR SDMS: PSEUDOCODES 

AlgorithIll 3 reallocate_Rule3(State s, Action a, Target Q, int ToAdd, boolean 
useRule2) 

ASSUIlles : 
Predefined parameters: 
N: minimum desired number of active locations 
J.L*: similarity threshold, computed by (5037) 
M axTry: a maximum number of times a random position is sampled 
ToAdd 21 
Notation: 
S DM (a): locations in memory for action a 
Ma: size of the SDM(a); M: maximum memory capacity 
w(hm,a): value stored at the location hm of the SDM(a) 
lnvoked when: Ma + ToAdd > M 

Hs(a) := {hm: hm E SDM(a); J.Lm(s, a) > O}; {Find a set of active locations for s} 
while ( (Ma + ToAdd) > M ) do 

Removed := false; 
while (Removed == false) do 

k l := random_int(l, Ma); {Random integer} 
if (hk1 t/:. Hs(a)) then 

{Remove this location} 
Hhkl (a) := {hm: hm E SDM(a); J.Lm(hkl, a) > O}; {Find a set of active lo­
cations} 
k2 := arg max J.Lk(hkI,a); {Find the closest active location} 

ki'klihkEHhkl (a) 

if (k2 -1- 0) then 
{Create a new location h = (hl, 000' hn ) midway between h k1 and hk2} 
for i = 1 to n do 

h. 0= (h k1 + hk2 )/2 o 

t 0 t t , 

end for 
w(h,a):= (w(hkl,a) +w(hk2,a))/2; 
SDM(a) := SDM(a) - {hk1 , hk2}; 
SDM(a) := SDM(a) U h; 
Removed:= true; 
Ma:= Ma -1; 

end if 
end if 

end while 
end while 
Added = add_Rule1(s, a, Q); 
if (Added == true) then 

ToAdd := ToAdd - 1; 
end if 
if (useRule2 == true) then 

add-Rule2(s, a, ToAdd); 
end if 
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B.l RESOURCE ALLOCATION FOR SDMS: PSEUDOCODES 

Aigorithm 4 SDMJearning_step(State s, Action a, Target Q) 
Assumes: 

Predefined parameters: 
N: minimum desired number of active locations 
useRule2: indicates whether Rule 2 is to be used 
a: learning step parameter 
Notation: 
S DM (a): locations in memory for action a 
Ma: size of SDM(a); M: maximum memory capacity 
w(hm, a): value stored at the location hm of the SDM(a) 

Hs(a) := {hm: hm E SDM(a); p,m(s, a) > O}; {Find a set of active locations for s} 
N' = size[Hs(a)]; {Number of active locations} 
{Add new locations if necessary} 
if (N' < N) then 

if (useRule2 == true) then 
ToAdd := N - N'; 

else 
ToAdd:= 1; 

end if 
if (Afa + ToAdd) > M then 

reallocate_Rule3(s, a, Q, ToAdd, useRule2) 
else 

Added := add-Rule1(s, a, Q); 
if (Added == true) then 

ToAdd:= ToAdd -1; 
end if 
add-Rule2(s, a, ToAdd); 

end if 
Hs(a) := {hm: hm E SD M(a); p,m(s, a) > O}; {Update the set of active loca­
tions} 

end if 
{Update the stored values} 

Q LhmEH ( ) w(hm,a)xJlm(s,a) {C d' . C h' .. . } 
:= L: s a m() ; ompute current pre lctlOn lor t lS trammg mput 

hmEHs(a) Jl s,a 
for aIl (hm E Hs(a)) do 

w(hm, a) := w(hm, a) + a[Q - Q1L: Jlm(s,a)k( ); {Gradient des cent update} 
hkEH., (a) Jl s,a 

end for 
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