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Abstract

A thorough review of selected results on the logical aspects of regular languages in-
cludes the theorem of Biichi on monadic second order logic over strings, a characteriza-
tion of FO[<] and the theorem of I. Simon. With the help of the Ehrenfeucht-Fraissé
Game we show that 3**+!_gentences of FO[<] cannot be expressed as a boolean
combination of 3*)-sentences. Block product of finite monoids is used to analyze
languages defined by the boolean closure of the ¥y-sentences. Positive varieties and
the Mal’cev product are introduced and *,.; N II,,; is shown to be equal to the
unambiguous polynomial closure of the nth level of the Straubing-Thérien hierarchy.
In particular, ¥5 NI, = DA, where DA is the smallest variety of languages closed

under the unambiguous product.



Résumé

Nous proposons un apercu complet de résultats choisis concernant les aspects logiques
des langages réguliers incluant le théoreme de Biichi sur la logique monadique de
second ordre sur les chaines de caracteres, la caractérisation de FO[<] et le théoréme
de I. Simon. Gréce au jeu de Ehrenfeucht-Fraissé, nous démontrons que, dans FO[<],
les énoncés logiques 3*+Y ne peuvent étre exprimés comme une combinaison booléene
d’énoncés 3*). Nous utilisons le produit bloc de monoides finis pour analyser les
langages définis par la fermeture booléene des énoncés ;. Nous présentons également
les variétés positives et le produit de Mal’cev et montrons que ¥, 1 N1Il,.; est égal &
la fermeture polynomiale non-ambigue du ni®Me piveay de la hiérarchie de Straubing-
Thérien. En particulier, 35 NIl = DA, ot DA est la plus petite variété de langages

fermée sous le produit non-ambigu.
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Introduction

The topic of this Thesis lies at the juncture of formal language theory, algebraic

theory of finite automata and model theory in logic.

In 1956 S. C. Kleene showed that the class of languages recognized by finite
automata (regular languages) coincides with that given by the rational expressions
(rational languages). This theorem is usually considered to be the foundation of the
theory of finite automata. The definition of the syntactic monoid was first given
in a paper of M. O. Rabin and D. Scott in 1959, where the notion was credited to
Myhill. It was shown in particular that a language is recognizable if and only if
its syntactic monoid is finite. M. P. Schiitzenberger made a non-trivial use of the
syntactic monoid to characterize an important subclass of the rational languages, the
star-free languages: a language is star-free if and only if its syntactic monoid is finite
and aperiodic.

In the early 1970’s I. Simon proved that a language is piecewise testable if and
only if its syntactic monoid is J-trivial. Other important syntactic characterization
followed, settling the power of the semigroup approach. But it was S. Eilenberg who
formulated the appropriate framework for this type of results. A variety of finite
monoids is a class of monoids closed under taking submonoids, quotients and finite
direct products. Eilenberg’s Theorem states that varieties of finite monoids are in
one-to-one correspondence with certain classes of regular languages, the varieties of

languages.

For these reasons the part of formal language theory concerned with rational

languages is now intimately related to both the theory of finite automata and the
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theory of finite monoids.

The connection between automata and formal logic dates back to 1936 when A.
Turing proved the undecidability of first-order logic by showing how to describe the
behaviour of an abstract computing machine with a formula of this logic. More
contributions into the research on the logical aspects of the automata theory ensued,
with the works of J. R. Biichi on monadic second-order logic and R. McNaughton
and S. Papert on automata admitting first-order behavioral description — among the

more famous ones.

In the mid-1990’s J. E. Pin developed a theory of so-called positive varieties of
languages, which — unlike varieties introduced by S. Eilenberg — do not have to be
closed under complement. Their algebraic counterpart had to be modified too —
they are varieties of finite ordered monoids. The polynomial closure of a variety of
languages is always a positive variety; this property led to establishing some new

connections between regular languages and logic.

The main objective of this study is concentrated on proving necessary (and some-
times also sufficient) conditions for a property of words to be expressible in a par-
ticular logical formalism. We present two general techniques for accomplishing such

results: analysis of logical formulae with methods of the theory of finite monoids and

the model-theoretic method of Ehrenfeucht-Fraissé Games, described in Chapter 7.

Some developments in the field of logical aspects of regular languages — both
classical and relatively new — are echoed in this text.

In Chapter 1 we review the main concepts of formal logic and finite automata.
The mathematical machinery needed to maintain a degree of self sufficiency of the
manuscript includes elements of the theory of finite monoids presented in Chapter 2.

Identities of finite monoids, the notion of variety and its connection with logic are
introduced in Chapter 3.

Our digression into semigroup theory continues in Chapter 4 where we define

transformation semigroups, wreath product and block product. Acquired tools will
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be used in the subsequent chapters to establish some important algebraic characteri-
zation of subclasses of regular languages.

Chapter 5 expounds two topics: the theorem of Biichi on monadic second order
logic over strings and the algebraic characterization of first-order logic in signature
with <.

The subject of Chapter 6 is the theorem of I. Simon and piecewise testable lan-
guages; we give both combinatorial and algebraic description of these.

In Chapter 7 we present an algebraic characterization of the first two levels of
the Straubing-Thérien hierarchy ! and their connection to the logical hierarchy. We
also give a treatment of some special quantification structures and examine the corre-
sponding varieties of languages. The quest for more ties between the two hierarchies
reveals some interesting results as we introduce the notions of ordered finite monoids,

positive varieties and the Mal’cev product in Chapter 8.

Tt should be noted, however, that the “characterization” of level 2 is not effective.



Chapter 1

The Basis

1-1 Introduction

This chapter focuses on some fundamental concepts in the study of formal languages.
We continue by introducing the notion of finite automaton, followed by a digression

into formal logic.

1-II Formal Languages

Let A = {ay,as,...,a;} be a finite set of symbols, called an alphabet and its elements
- letters . A word (or a string ) w = ayas - - - a,, over an alphabet A is a finite sequence
of letters. By |w| we denote the length m of the word w. For some a € A, |w|, denotes
the number of occurrences of a in w. We then have:

> lwle = lwl.

a€A

The empty string , denoted 1, has length 0. By juxtaposition uv, or multiplication

u - v we mean concatenation of two words u and v producing a sequence with |uv| =
|u] +|v| and clearly |uv|, = |u|, + |v]s. For the empty word we have 1-w =w-1 = w.

k

Notation. For a positive integer k£ and a word w, the form w” is a shorthand notation

for ww - - -w,. By convention, w® = 1.

k times
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Given two words u and v:

1. wis a prefix of v if dx € A* : v = uux;

2. visa suffizrof vif 3z € A* : v = zu;

3. uis a factor of v if z,y € A* : v = zuy.

A word u = aiay...a, is a subword of v if there exist words vy, v1,...,v, € A* such

that v = Vpa101A3 . .. ApVy.

The set of all words over the alphabet A is denoted by A*, the set of all nonempty
words - A*. A subset of A* is called a language . Various operations can be defined
over languages. Besides the classical boolean operations (such as finite union, finite
intersection, complement) we shall make use of the ones below.

The product (or concatenation product ) of two languages L and K is the language
LK ={uv e A*lue L,v e K}.

The star of a language L C A*, denoted by L* is the language
L*={1}ULULLULLLU---

If K and L are two languages of A* the left (right) quotient of L by K is the
language K 'L (respectively LK~!). These are defined by:

K'L={ve A*|Kvn L # (0} = {v € A*|Fu € K such that wv € L}
and

LK '={ve A*lvKNL+#0}={ve A*|Fu € K such that vu € L}.



CHAPTER 1. The Basis 9

1-I1T1 Finite Automata

A deterministic finite automaton (or DFA) over a finite alphabet A is a quadruple
T=(Q4F )

where () is a finite set of states of the automaton; 1 € @) is the initial state; F' C Q
is the set of final states and A is the transition function A : @ x A +— () defined

for all ¢ € @ and for all a € A. We shall adopt the shorthand notation ga or ¢ - a for
g, a).

The domain of the transition function A can be extended to the set 2 x A* by

induction on the length of the input word:
g-1=g¢q and q - (wa) = (qw) - a.

The string w is accepted by DFA if i - w € F. The language L recognized by the
DFA is the set of all such words w:

L={weA"|i-weF}

A language is said to be regular if there exists a DFA recognizing it.

1-TI1.1 The minimal automaton

Let T =(Q, 4, F,\) be a DFA and L C A* the language it recognizes. Define the set
Q' C @ of states of the DFA reachable from the initial state 4:

Q ={i-w|we A"}
and the following equivalence relation ~ on Q"
G~ = {weA|qg-weFt={weA|qg- we F}.

q1 ~ @9 implies q1a ~ @qoa for all a € A and therefore the transition function X

Q') x A Q' is well defined for the equivalence classes [¢] of ¢ € Q:

Ma), @) = [qa].
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The DFA
?L = (Q//~7 [Z]v {[Q] | q€ F}a X)

also recognizes L, but its structure depends only on L. 77 is called the minimal
automaton of L. Any automaton A recognizing L has at least as many states as TL

does and if A and 7’; have the same number of states, they are isomorphic.

Example 1-II1.1. Let A = {a,b,c} and L = A*abA*. A DFA recognizing L is

pictured in fig. 1.1. One can easily verify that this is the minimal automaton of L.

b,c a a a,b,c
H——C)
c

Figure 1.1: The minimal automaton of L = A*abA* over A = {a,b, c}.

1-IV  Formal Logic

1-IV.1 Propositional Logic

Define a countable set X = {x1,xs,...} of boolean variables (i.e. variables taking on
values True or False).

A boolean expression consists of:
(a) a boolean variable z;; or

(b) an expression of the form: =@, (¢ A ¥), (¢ V ¢), where ¢, ¢ are themselves

boolean expressions.

The set of boolean variables of an expression ¢, X (¢) C X, is defined inductively

as follows:

(a) if ¢ is a boolean variable z;, then X (¢) = {z;},
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(b) if ¢ = =4, then X(¢) = X (),
(c) if g = (x A9) or (x V¥), then X(¢) = X(x) U X(¢).

A truth assignment T is a mapping from the set of boolean variables X (¢) to the
set of truth values { True, False }. We now define what it means for T to satisfy ¢
(written T = ¢):

(a) if ¢ is a boolean variable z; € X(¢), then T = ¢ if T'(z;) = True,
(b) if ¢ = -, then T = ¢ if it is not the case that T = ¢,

(c) if g = (x Vo) then T = ¢ if either T = x or T' = 9 holds,

(d) if p=(xA9) then T = ¢ if both T = x and T = ¢ hold.

Notation. An expression of the form z; or —x; is termed a literal . We use (¢ = 1)

to mean (—¢ V 9); and (¢ <= ) stands for ((¢p = ¥) A (¥ = ¢)).

It is well known that the relations V and A are commutative, associative, dis-
tributive and idempotent (see for instance [Pap94]). Furthermore, it follows that
every boolean expression ¢ can be rewritten into an equivalent one in conjunctive:
¢ = N,C; or disjunctive: ¢ = Vi, D; normal form, where C; (called a clause ) is the
disjunction of one or more literals and D; (called an ¢mplicant ) is the conjunction of

one or more literals.

1-IV.2 First-Order Logic

The language of first-order logic is capable of expressing a wide range of mathematical

ideas and facts in much more detail than boolean logic.
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1-IV.2-a The Syntax

Let us define three disjoint countable sets: V' — a set of variables (ranging over values
from the domain of a particular expression); ® — a set of function symbols; II — a
set of relation symbols and the arity function: r: ®UIl — Z,. A function f € &
with r(f) = k, £ > 0 is called a k-ary function (similarly for a relation R € II
with r(R) = k, k > 0, k-ary relation). The set II is always assumed to contain the
binary equality relation =. A triplet ¥ = (®,II,r) is called a vocabulary. The set of
used function and relation symbols (® U II) is called the signature of the first-order

language.

A term over the vocabulary ¥ is (a) a variable z € V; or (b) an expression

f(t1,t2,...,tx), where f € ® and ty,ts,. .., are themselves terms. (This definition

allows for a constant when k£ = 0.)

An atomic expression over the vocabulary ¥ is an expression of the form

R(t1,ta,...,t), where R € Il and t1,¢y,.. ., are terms.

A first-order expression (or first-order formula) is
(a) an atomic expression; or

(b) an expression of the form —¢, (¢ V ¢) or (¢ A ), with ¢, ¢ themselves being

first-order expressions; or

(c) an expression of the form (Vx¢), where z € V and ¢ is a first-order expression.

Notation. The form (Jz¢) is used as a shorthand for =(Vz—¢). When there is no

ambiguity we may write Vz,y--- and Jz,y--- to mean respectively VaVy--- and

dxdy - --.

The symbols V and 3 are the universal and existential quantifier respectively. An
appearance of a variable z in the text of an expression ¢ that does not immediately
follow a quantifier is called an occurrence of x in ¢. An occurrence of a variable is

said to be bound if it is referred to by a quantifier; that is, if Vx¢ is an expression, any
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occurrence of x in ¢ is bound ! (variable z is said to be in the scope of a quantifier).
If the occurrence is not bound, it is free. A variable x that has a free occurrence in ¢

is a free variable of ¢. An expression without free variables is called a sentence.

Expressions where a prefix of quantifiers precedes a quantifier-free structure are in
prenex normal form. Any first-order formula can be transformed into one in prenex
normal form. If successive quantifiers of the same type are grouped into n alternating

blocks beginning with existential quantifiers, i.e. a formula ¢ is of the form

where T; are tuples of variables and 1 is quantifier-free, then ¢ is said to be a X,-
formula. In the dual case, when n alternating blocks of quantifiers start with a block
of universal quantifiers, the expression is called a II,,-formula. The negation of a ¥,

formula can be written as a II,, formula.

Remark 1-1V.1. The first block of quantifiers in a ¥,, (or II,) formula may be empty.

1-IV.2-b The Semantics

In first-order logic variables, functions and relations may take on much more complex
values than just True or False. To define the semantics of first-order formulse we
construct an analog of a truth assignment for first-order logic, called a model.

A model appropriate to a given vocabulary ¥ = (®,I1,r) is a pair M = (U,I),
where U is a non-empty set (called the universe of M) and Z:VUQUII— U is
an interpretation function associating each symbol o in V, ®, II with an actual
mathematical object o™ in the universe U. That is, for all € V, T assigns an
actual element ™ € U; to every function symbol f € ®, 7 assigns an actual function
fM . U* — U*, where k is the arity; and to each relation symbol R € II, 7 assigns
an actual relation RM C U.

To define what it means for a model M = (U, Z) to satisfy a first-order expression

¢ (written M = @) we follow the structure of a first-order formula:

! An occurrence of z is also bound in any expression containing V¢ as a subexpression.
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(a) if ¢ is an atomic expression, ¢ = R(ty,1s,..., 1), then

(M E ¢) — (Mt} ... tM) e RM,

(b) if ¢ is an expression of the form —a, (o V ) or (o A §), where «, § are first-order

expressions, satisfaction is defined by induction on the structure of ¢;

(c) if ¢ is an expression of the form (Vz1)), then

(M= ¢) < VueU: My, =), where M,_, is a new model obtained

MI-——’U,

from M by fixing z = u.

Theorem 1-IV.1 (cf. [EFT94]). Let ¢ be an expression and M, M' - two models
appropriate to the vocabulary of ¢. If M, M' agree on everything except for the values

they assign to the variables that are not free in ¢, then
ME¢ < M E¢.

Consequently, for sentences (i.e. expressions with no free variables) satisfaction by
a model does not depend on the values assigned to the variables that are bound (or
do not appear) in the expression. More generally, if ¢ is a formula with free variables,
whether a model satisfies or fails to satisfy ¢ depends both on the interpretation Z
and the set of free variables in ¢. Therefore a “model appropriate to an expression”
shall henceforth refer to the part of the model that deals with the functions, relations

and free variables (if any).

1-IV.3 Words as a Model

We shall now assemble the following vocabulary ¥ = (®,II,7): ® = {0}, i.e. there
will be no functions; the set of relation symbols II = {=,<,S5,Q,} includes the
equality relation =, the precedence order <, the successor relation .S and unary “label”

predicates (), defined below.

1-IV.3-a Biichi sequential calculus

Let A be a finite alphabet and let w = ajas - - - a, be a word over A. Variables z € V

range over the set of letter positions of w, or the domain of w: dom(w) = {1,...,n}.
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Let us now define a word model VW for w appropriate to the vocabulary >
(a) <" is the natural order on dom(w);
(b) S™(i,1+ 1) is the successor relation for 1 <i < n — 1; and

(c) QY are unary predicates collecting for each letter a € A the word positions i

in which the letter a appears: QY = {i € dom(w)|a; = a}.

Remark 1-IV.2. Observe that the successor relation S(z,y) can be expressed in terms

of relation < by the formula (z < y) A ~3z((z < 2) A (2 < y)).

If py,...,p, are positions from dom(w) then

W, p1,...,on) E ¢z, ..., 20)

means that ¢ is satisfied in YW when the signature symbols (i.e. =, <, S, Q,) are inter-
preted by the relations of equality, <", S", QY, respectively and positions py, . .., p,
are interpretation of variables zi,...,x, respectively. The word model W is called

Biichi sequential calculus (cf. [Blic60], [Biic62)).

1-1V.3-b The V-structure model

As noted above, in view of theorem 1-IV.1, let us concentrate on the part of the model
concerned with the free variables of an expression. The following idea of treating the
structures in which we interpret formulee as being words over an extended finite
alphabet emanates from Perrin and Pin (cf. [PP86]).

Let ¢ be a first-order formula such that no variable z in ¢ (and all its subexpres-
sions) has bound occurrences in the scope of two different quantifiers.2 We construct

a finite set V C V of first-order variables of ¢:

x € V <= x has only free occurrences in ¢.

2 Any first-order formula can be written to satisfy this condition by introducing new names for

the bound variables, if needed.
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A V-structure over A is a word w over the extended alphabet A x 2V:
w = (a'lapl)"'(arapr)7
where r = |V|, a; € A and P, satisfy the following:

PNP=0,ifi#j, and |JR=V.
i=1

We now define the meaning of w =z ¢ by induction on the construction of ¢:

(a) w 7 Qu(z) if and only if w contains a letter of the form (a, P) and z € P;

() w Ez R(zy,...,z1) < (p1,...,pr) € RY, where R” is the k-ary relation on
{1,...,|w|} associated to R by Z and ps,...,px are the positions in w where

the variables z1, ..., z,, respectively, occur;

(c) w =z ¢ if and only if w is not a model of ¢ with respect to the interpretation

7,
(d) wrEz(@Ay) <= (W) A(w 1Y)
(e) w =z Jz¢ if and only if there exists 4, 1 <4 < r, such that
w' = (a1, P1) - (@, U {a}) - (ar, B) Pz ¢
The atomic expressions of this first-order language are of the form:
(a) z =y means x and y refer to the same position in w;

(b) S(z,y) says that position x is immediately succeeded by position y;

(c) = <y tells us that position z is to the left of position y in w;

(d) Q.(z) reveals that in w position z is occupied by the letter a.

Notation. The set of first order formulee utilizing the set of relational symbols II =

{=,<,Q.} II={=,5,Q,}) is denoted FO[<] (respectively FOI[S]).
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1-IV.4 Languages defined by first-order expressions

If ¢ is a sentence (i.e. ¢ does not have any free variables), then ¢ can be interpreted

in a word w € A*, in which case the language defined by ¢ is
L(¢) ={w e A" | w =1 ¢}

If ¢ is a formula with free variables in V, then by L(¢) we denote the set of V-
structures that satisfy ¢. This notion depends both on the interpretation function Z
and on the set of free variables V.

Below are some examples of languages defined by first-order sentences.
Example 1-IV.1. An FO[S] sentence
¢ = JrIy3z(S(x,y) A S(y, z) = -IpS(p,z) A ~3¢S(z,q))
defines a set of words with exactly three distinct positions in them:
L(¢) = {w e A" : |w| = 3}.

Example 1-IV.2. Consider an FO[<] sentence ¢ = Jz(Vz(z > z) A Quz). It de-

scribes a language of all words over A* beginning with the letter a, i.e. L(y) = aA*.

Two expressions ¢ and 1 are said to be equivalent if their languages coincide, i.e.
L(¢) = L(¥).
Remark 1-1V.3. The empty word 1 is allowed as member of formal languages and the
empty model 1 is admitted as interpretation of sentences. By convention, 1 satisfies

universal sentences Vz¢(z), but not existential ones Iz¢p(z).

1-IV.5 MSO Logic

In a first-order formula only individual variables can be quantified. Allowing quantifi-
cation over sets of variables as well as individual variables, extends the logical formal-

ism by second-order monadic variables or predicates (usually written as capitalized
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X as opposed to z). With the introduction of corresponding atomic expressions:
e.g. X(z) (meaning z belongs to the set X), the resulting system becomes monadic
second-order logic or MSO-logic (sets are monadic objects).

A second-order formula can also be presented in prenex normal form. A Xl-
formula is an expression with a prefix of n second-order quantifier blocks (beginning
with a block of existential quantifiers) trailing by a formula where at most first-order
quantifiers occur. Xl-formule of MSO-logic are called ezistential monadic second-

order formule or EMSO-formulee.

Example 1-IV.3. Consider a language L over the alphabet A = {a,b} where any
two occurrences of a are separated by an odd number of 0’s. L can be expressed by

the following MSO sentence:

6 = Va¥y(Qu(®) A Quly) A (& < 9) AV2((z < ) A (2 < 9) = ~Qul2))
= 3X(X(2) A X (y) A ¥pYa(S(p,q) = (X(p) & ~X(a)))) )
Here the first part of the formula says that x and y are two positions carrying the
letter a such that no other a appears between them. Then the second part identifies

the set X as containing the position of the first a, then every second position and

finally the position of the next letter a.

1-IV.5-a Interpretation of MSO formula

The following somewhat over-specialized model is justified by our interest in only
interpreting expressions in words; and the fact that we do not deal with second-order
variables of arity more than one renders it sufficient.

Let V; be a finite set of first-order variables, and V, — a finite set of monadic

second order variables. A (Vy, Vy)-structure over A is a word
w = (al, Sl,Tl) s (an, Sn,Tn) S (A x 2Vt x 2V2)*
such that

(a1, 51) -+ (an, Sn)
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is a Vp-structure. No constraints are imposed on the occurrences of the second-order
variables in the structure. The definition of w =z ¢ is the same as for the first-order

expressions, with the addition of two new clauses:

1. if x is a first-order variable and X is a second-order variable then w =z X(z)

if and only if w contains a letter (a;, S;, T;) such that z € S; and X € Tj;

2. if X is a second-order variable, then w =z 3X¢ if and only if there exists
a (possibly empty) set J of positions in w with the following property: the
(V1, Vs)-structure w' formed by replacing each letter (a;, S;,T;), with ¢ € J, by
(a;, S;, T; U { X }) satisfies ¢.

The language L(¢) defined by an MSO expression ¢ is the set of (V;, Vs)-structures
that satisfy ¢.



Chapter 2

Finite Monoids

2-1 Introduction

In this chapter we present a more algebraic approach to languages as recognizable
sets, with monoids replacing finite automata. S. Eilenberg (cf. [Eil76]) showed that

monoids provide a powerful and systematic tool for language classification.

2-I1 The structure of finite monoids

The pair (S, x) where S is a set and X is a (binary) associative operation is a semi-

group. It is customary to write “semigroup S” rather than “semigroup (S, x)”.

Notation.

1. Juxtaposition ab is a shorthand for a x b.

2. If P, P,,..., P, are nonempty subsets of a semigroup S then P,P---P, =
{pip2-- pulpi € P;,1 <t <n}. f P=P =P, =---= P, we write P" instead
of PLPy---P,.

A monoid (M,-,1) is a set M with a binary operation, denoted by -, and a dis-
tinguished element 1, such that (M, -) is a semigroup with an identity 1, i.e. for all

x€M,l-x=2x-1=x. Weusually write “monoid M” instead of “monoid (M,-,1)”.
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An element z of a monoid M is a zero of M if for all s € M, z = zs = sz. We

usually denote such an element z by 0.

Let z1, 2o be two zeros of a monoid M. By definition: 2120 = 21 and 2120 = 25.
Whence, z; = 23, i.e. a monoid can have at most one zero. A similar argument shows

that a monoid contains a single identity element.

We now turn to subsets of a finite monoid (semigroup) exhibiting special proper-

ties.

A subsemagroup T of a semigroup S is a subset of .S such that x; € T and 23 € T
imply z125 € T. This is equivalent to T? C T.
A subset T of a monoid M is a submonoid of M if it is closed under the operation

of M and contains the identity element, i.e.
(a) 1 €T and
(b) T*CT.
Clearly, a submonoid of a monoid is a monoid in its own right.

A monoid M is generated by its subset G if every element of M can be written as

a product of some elements of G.

A nonempty subset T" of a monoid M is a left ideal of M if MT C T'; a right ideal
of M if TM C T a two-sided ideal (or simply an ideal ) if it is both a left and a right
ideal, i.e. MTUTM CT.

The intersection of all ideals of a monoid M is the kernel of M.

A monoid M is simple (left-simple, right-simple ) if no proper subset of M is an
ideal (respectively, left ideal, right ideal) of M.

Lemma 2-I1.1 (cf. [CP67]). The set of all ideals of a finite monoid M is closed
under intersection and arbitrary union. The intersection of a finite number of ideals

15 an tdeal.
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The lemma above holds for the set of all left (right) ideals of M as well.

An element e of a monoid M is idempotent if €2 = e. Let s be an element
of a finite monoid M and let S be the submonoid generated by s. The sequence
s® =1,s,52 53 ... contains only finitely many distinct elements of S, for S is finite
and closed under product. Let p be the smallest positive integer such that there exists

an integer m > 0 satisfying

sP = sPtm,

Let us fix the smallest such m and name it g. Choosing r > 0 such that p+r =

0(modgq) yields for some i > 1:

(sp+r)2 — g2ptr) — g(ptr)tig — J(pta)tr — optr

That is, s?*" is an idempotent element of S.
Furthermore, the elements 1,s,s?,...,sP*% ! are all distinct. For any integer

n>qwehave n=1ig+j (with:>1,0<j<gq) and

SP"f‘n — SP'H(H‘J — SP‘*'J’

whence

S ={1,s,8%s% ... sPt11},

Observe also that the set G = {sP, sP*1 ... sPT771} is a maximal subgroup of M
since the mapping ¢ : G — Z, defined by ¢(sP™*) = p+ (kmod ¢) is an isomorphism.
Since every s € S\ {1} has a power in G, s is the only other idempotent of S
beside 1. The structure of the submonoid S therefore resembles a frying pan with the

dish representing the group G as shown in figure 2.1.

We thus have the following results:

Proposition 2-I1.2. If s is an element of a finite monoid M, then the submonoid S

generated by s contains a unique mazimal subgroup.
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Sp+1 Sp+2

2
1 3 3 o o o gPta—gp

shta-1

Figure 2.1: The structure of the submonoid S.

Corollary 2-I1.3. FEvery non-empty finite semigroup contains an idempotent.

A monoid M is aperiodic if for all x € M there exists an integer n such that

An element a of a monoid M is reqularif a = asa for some s € M. If every element
of M is regular, M is reqular. An element = of M is an nverse of a if a = axa and

x = zazx. In a monoid every regular element has an inverse.

A monoid in which every element has a unique inverse is called a group. A group

is cyclic if it is the set of powers of a single element. A cyclic group is commutative.

A subgroup H of a group G is a subset of G which is itself a group under the
operation of G. Every group has two trivial subgroups: the group itself and the
group consisting of the identity. Any non-cyclic group G has necessarily a non-trivial

subgroup.
For any group G, and any element g € G, one has
Gg={9:9l 9: € G} =G.

Indeed, every g; is obtainable as a product g;g~' - g = g1 and ¢g;¢g7! is equal to some
g; € G.

If G is a group and H is a subgroup of G, then Ha, where a € G, is called a right
coset of H in G. (We have a similar definition for a left coset.) Assume ¢ € HaN Hb.

Then there exists an element A € H such that ¢ = ha, i.e.

a=h"te and Ha=Hh™'¢c= He.
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In the same way Hb = He, i.e. if two right cosets of H in G have a common element,

they coincide, otherwise they are disjoint.

A subgroup H of G is called a normal subgroup if its right cosets coincide with

the left ones, i.e. Ha = aH. In this case one has a 'Ha = H and hence
Ha-Hb= Ha(a 'Ha)b = HHab = Hab,

i.e. the product of two right cosets is a right coset. A group which has only trivial

normal subgroups is called a sitmple group.

Given a group G and a normal subgroup H, one can use the partition of G into
(right) cosets of H to build the factor group G/H, whose elements are the blocks of
the partition, i.e. the cosets of H in G.

The next result presents decomposition of finite left-simple semigroups.

Lemma 2-11.4 (cf. [CP67]). Every finite left-simple semigroup S is isomorphic to

a direct product T x G, where G is a group and T is a left-zero semigroup.

Proof: If s is an element of S, then either Ss C .S (in which case Ss is a proper

left ideal of S), or Ss = S, in which case
T tH— 18
is a permutation of elements of S. We consider the right action of s on S and
o (ms(t)) = msg (1) = ts5'.
Then
G={ms| se S}

is a group of permutations of S acting on S on the right. Let T be the set of orbits
of this action; O denotes the orbit containing s. We then define a multiplication on

T by setting

VO, VO, € T : Oy - O = Os,
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to ensure that T is a left-zero semigroup.

Claim:
¢: s— (O, 7s)

is a bijection between S and T x G.
We first show that ¢ is surjective. Consider (O, 7;) € T x G and t € O. Then for
allz € S

ms(x) = x5 = my(zm; (1))

Since G is a group, there exists u € S such that 7, = m; ' and hence 7, = 7, with
tus € O. Thus (O, ;) = ¢(tus) and ¢ is surjective.

To see that ¢ is injective, assume (O, ) = (Og,7y). Then su = s’ for some
u € S and thus 7, = 7y = my(ms), i.e. m, is the identity permutation. Hence
s’ =su=s.

And finally ¢ is a function preserving multiplication since
ss' € O,
and
¢(55') = (Oss, Ts5r) = (Os, Tsr) = (O, 75) (O, wer) = (5) ().

Q.E.D.

2-1II Homomorphisms and the syntactic congru-
ence

A homomorphism! ¢ from a semigroup (S,-) to a semigroup (S’,%) is a mapping ¢

from the set S into the set S’ such that

p(z - y) = p(z) * p(y)

1The word morphism is also used by some authors.
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for every =,y € S. To denote such a mapping we write ¢ : S — S'. If ¢ is also a
surjective mapping, then ¢ is called a homomorphism from S onto S’, and S’ is called
the homomorphic image of S. In case the mapping ¢ above is injective, it is called a
one-to-one homomorphism. An isomorphism from S to S’ is a homomorphism which
is both surjective and injective.

A homomorphism ¢ from a monoid (M, -, 1) to a monoid (M’, x, 1) is a semigroup

homomorphism ¢ : M — M’ such that

(1) =1"

The terminology for surjective and injective homomorphisms of monoids is the same
as above. It will be clear from the context whether the intended meaning is “monoid
homomorphism” or “semigroup homomorphism”.

We shall say that a monoid N is a quotient of a monoid M if there exists a
surjective homomorphism ¢ : M — N.

A monoid M is said to divide a monoid N (written M < N) if M is a quotient
of a submonoid of N.

The notions of quotient and division are defined similarly for semigroups.

Let A be a finite alphabet and let L C A*. Consider the following equivalence

relation = on A*:
r=py <= {(u,v) € A* x A" :uzv € L} = {(u,v) € A* x A* : uyv € L}.
It is easy to show that if x =p y and a € A, then
ra =1 ya and ar =, ay.

It follows that the equivalence relation =y is a congruence on A*. It is called the
syntactic congruence of L. The quotient of A* by =, denoted M (L), is the syntactic
monoid (or syntactic semigroup for A*) of L and the projection ny : A* — M(L)

is termed the syntactic morphism of L.
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2-1V  Equivalence of automaton and monoid

A monoid M is said to recognize L C A* if there exists a subset X of M and
a homomorphism ¢ : A* — M such that L = ¢ '(X). (We also say that the
homomorphism ¢ recognizes a language L.)

We next show that the two notions of recognizable sets — by finite automata and

by finite monoids — are equivalent.

Theorem 2-IV.1 (cf. [MP71]). A subset L of A* is reqular if and only if it is

recognized by a finite monoid.

Proof: Let L C A* be a regular language and A = (Q, i, F, \) be a deterministic

finite automaton recognizing L. We define an equivalence relation ~ on A* by
r~y <= YgeEQ:q-x=q-y.

The number of equivalence classes of the equivalence relation ~ does not exceed |Q|!9l,

Suppose now = ~ y and uxv € L for some u,v € A*. We then derive:
i (uyv)=((-u)-y) - v=(( -u) -z) -v=1i-(uzv) € F.

Thus uyv € L. A similar derivation will show that uyv € L implies uzv € L.

Therefore,
T~y = T =LY,

which shows that the equivalence relation ~ refines =, and hence |M(L)| < |Q]|!%l.
Conversely, let us assume M (L) is finite. First observe that if x € L and z =L, v,
then y € L, because x = 1 -z -1. We construct a deterministic finite automaton
T =(Q,1, F, \) recognizing L by setting: the set of states @ is the set of elements of
M (L), the initial state 7 is 1, the set of final states F' is the set of classes of words in

L and the transition function A is given for all @ € A by
M[w], a) = [wa],

where [v] denotes the =p-class of a word v. Thus a word w is accepted by T if and

only if 1-w = [w] is the class of a word in L. By the observation above, this is true if
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and only if w € L. Therefore, T recognizes L; and since M (L) is finite, L is regular.
Q.E.D.

Let A = (Q,1, F,)\) be a deterministic finite automaton operating over a finite
alphabet A. For each word w € A* we define a corresponding state-transition function

Ly : Q@ — @, denoted by a two-row matrix

()

,u’”w = )

Mo,

where the first row my; is an (ordered) permutation of ¢; € @ (1 < j < |Q|) and

elements of the second row are mg; = A(gj, w). The set of these maps under the

operation of functional composition

Moy O My = My
forms a monoid, termed the transition monoid of A, denoted by M(A).

Theorem 2-I1V.2 (cf. [MP71]). Let A be the minimal automaton of L. Then
M(A) and M(L), the syntactic monoid of L, are isomorphic.

Theorem 2-IV.3. Let L C A* be a language and np : A* — M(L) - its syntactic

morphism. Let ¢ : A* — M be a homomorphism. Then:

1. ¢ recognizes L if and only if there exists a homomorphism ) : ¢(A*) — M such
that v o ¢ = ny, (i.e. nL factors through ¢ ).

2. A monoid M recognizes L if and only if M(L) < M.

Proof: If ¢ recognizes L then there exists X C M such that L = ¢~ 1(X).
Suppose ¢(w1) = ¢(wq). Then zwy € L implies ¢p(zwyy) € X since ¢(zwiy) € X
and ¢(zury) = ¢(zwqey). Thus zwyy € L. Similarly, zwyy € L = zuny € L.
Therefore, ¢(w;) = ¢(wq) = wy =f wy. Hence 1y factors through ¢, and M (L) is a
homomorphic image of ¢(A*), proving M(L) < M.

Conversely, suppose there exists a homomorphism ¢ : ¢(A*) — M such that
Yoo =mn If p(w) € ¢(L) then n,(w) € ny (L), whence ¢p(w) € ¢(L) < w € L.
That is, ¢ recognizes L. Let M be a monoid and M (L) < M, then there exists a
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submonoid M’ of M and a surjective homomorphism 1 : M’ — M. For every a € A
fix ¢(a) € M’ such that ¥(¢(a)) = nr(a). We then extend the domain of ¢ to A*,
ie. ¢ is a homomorphism ¢ : A* — M such that n; factors through ¢. Then M

recognizes L since ¢ recognizes L. Q.E.D.

The next results apply to operations on languages.

Proposition 2-1V.4 (cf. [Arb68]). Let L, K be two languages of A* recognized
respectively by monotds My and Mg and let M be a monoid. Then

1. if M recognizes L, M recognizes A* \ L;
2. LN L and LU K are recognized by My X Mg;

3. if M recognizes L, M recognizes K~*L and LK™!.

2-V Green’s relations

The equivalence relations we are about to introduce were first formulated by J. A.

Green in 1951 ([Gre51]) and have become fundamental in the theory of semigroups.

Definition 2-V.1. Let M be a monoid. Green’s relations are defined by the following

equivalences:

aRb <+ aM =bM D = RVL
alb << Ma= Mb H = RNL
aJb <+— MaM = MbM

(cf. figure 2.2)

We also introduce reflexive and transitive relations based on the above:
a<gp b<=aM C M
a<pb<= MaC Mb
a<gb<= MaM C MbM

a<yb<—=a<pbanda<,b
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H
Figure 2.2: The inclusion of various Green’s equivalences.

Notation. If a is an element of a monoid M, then by R,, L,, H,, J, and D, we mean

respectively the R-class, L-class, H-class, J-class and D-class containing a.

Lemma 2-V.1 ([Gre5l]). In a finite monoid, the relations R and L commute.

Consequently the relation D = RL = LR is the smallest one containing R and
L.

Proposition 2-V.2 ([Gre51]). In a finite monoid, D = J.

Proposition 2-V.3. Let R be an R-class and L be an L-class of a finite monoid M.
Then RN L # 0 if and only if R and L are within the same [J-class.

Proof: If a € RN L the result is immediate: R = R, and L = L, and therefore
J, must contain both of them.

Conversely, suppose R and L are in the same J class of M. Then for every x € R
and y € L there exists a € M such that zRa and aLly (since zJy and J = RL).
Hence,a €e RNL. Q.E.D.

A D-class (or a J-class) of a finite monoid can thus be viewed as a table where
rows represent R-classes and columns — L-classes. H-classes lie at the intersections

(fig 2.3). The presence of an idempotent in an H-class is indicated by a star (*).

Lemma 2-V.4 (cf. [CP67]). Let m be an element of a finite monoid M. If L, =

Jm and Ly, contains an idempotent, then L, is a subsemigroup of M.
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rﬁ—class
R-class — H
R-class - H
1k—,C—class

Figure 2.3: The D-class structure.

Proof: Let e € L,, be idempotent, so L, = L,, = J,, = J.. Consider two
elements t1, to of L.: t; = ue,ty = ve for some u,v € M. Thus tity, = ueve € Me.
On the other hand, e = zt; = yt, for some z,y € M. Thus e = €?> = zt,yty. Since
xtiy = zuey € MeM and e = xtyyts € Mxt;yM, we conclude that zt,y and e
generate the same two-sided ideal of M: Jy,, = Jo = L. = L;,. Hence there exists
w € M such that zt;y = wt;. Thus e = wt 1ty and e is in the left ideal generated by
t1to and ¢1t5 is in the left ideal generated by e. This implies t1¢5 € L, and therefore
L, = L,, is closed under product. Q).E.D.

(7

a b
La Lb
x ru

L o J

Figure 2.4: Green’s Lemma.

Theorem 2-V.5 (Green’s Lemma, [Gre51]). Let a,b € M be such that aRb.
Then there exist u,v € M satisfying au = b and bv = a. If py, p, are the right
translations defined respectively by py(x) = zu and p,(x) = zv, then py, : Ly — Ly

and py : Ly — L, are inverse bijections preserving the H-classes, i.e.

Ve, y € Ly : tHy <= pu(2)Hpu(y)
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and

Vo,y € Ly : aHy = po()Hpu(y)

Proof: (figure 2.4) Let xLa. By definition, Mz = Ma; therefore Mzu = Mau,
or zulau = b. Hence p, is a function from L, to L. Since there exist ¢t € M such

that ta =  we have
po(pu()) = po(zu) = py(tau) = p,(tb) = thv = ta = =,

i.e. the composition p, o p, is the identity function on L,. A similar argument shows
Py to be a function from L, to L, and p, o p, to be the identity on L.

Since every x € L, is R-equivalent to zu and every z € L; is R-equivalent to zv,

we conclude:
(zHy) = (zuHyu) and (zuHyu) = (v = suvHyuv = 7).
Q.E.D.

The case of two L-equivalent elements is symmetric.

Proposition 2-V.6 ([CM56]). If a,b are two elements of a J-class of a monoid
M, then:
(ab€ RyNLy) < Je€ RyNL,:e*=¢

The situation is summarized in the figure 2.5.

a R, ab
L, Ly
x€ Ry b

Figure 2.5: Proposition 2-V.6.

Proof: Suppose ab € R, N L. By Green’s Lemma p, : L, — L, is a bijection.
Chose an element e € RyN L, such that p,(e) = eb = b. Since e and b are R-equivalent

there exists u € M such that e = bu. Then e? = ebu = bu = e, i.e. ¢ is idempotent.
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Conversely, suppose e is an idempotent element, e € Ry N L,. Then eRb =
Ju : b = eu. Hence, eb = eeu = eu = b. Similarly, eLa = Jv : a = ve whence
ae = vee = ve = a. Also, eRb = a = aeRab and eLa = b = ebLab. That is,
abe R,NL,. Q.E.D.

Lemma 2-V.7 (cf. [CP67]). Let x and m be elements of a finite monoid M. Then
zmJIm = zmlm.

Proof: J-equivalence of xm and m implies the existence of p,q € M such that
m = p-xm - q. Then there exists a positive integer k such that both e = (px)* and

f = ¢"* are idempotent and we have m = (pz)*mq* = emf. Thus
m=em = (px)F'p-zm,

so m belongs to the left ideal generated by am. Hence, L,,,, = L,,. Q.E.D.

Lemma 2-V.8 (cf. [Lal79]). Let H be an H-class of a monoid M. The following

conditions are equivalent:
1.de€e H:et=¢
2. dJa,be H:abe H
3. H 1is a maximal group in M

Proof: 3 = 1. If H is a group, it contains an idempotent.

1=2 H=R,NL,=Ry,N L, and by proposition 2-V.6, ab € H.

2 = 3. By proposition 2-V.6, H must contain an idempotent e. For two arbitrary
elements of H, z and y: e € RN L, = R, N L, implies (by the same proposition)
xy € H. Thus H is a semigroup. Furthermore, eRx means there exists u € H such
that z = eu; then ex = eeu = eu = z. Similarly, from eLx we derive ze = z. That is,
ex =z = ze and H is a monoid. Let p, : H — H be a bijection defined by Green’s

Lemma. Then there exist ' such that

pz(z') =2’z =e,
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which shows that H is a group. Since every element of a group containing e is H-

equivalent to e, H is a maximal group. Q.E.D.

Proposition 2-V.9 (cf. [Lal79]). Two mazimal subgroups of a finite monoid M

contained in the same J-class are isomorphic.

Proof: By Lemma 2-V.8 two maximal subgroups of a finite monoid M are H-
classes H, and H; containing respectively idempotents e, f. Since both H, and H;
are within the same J-class there exists a € H,, where H, = R.NL; (Lemma 2-V.3).
Then:

aRe=>ea=a and alf= (Fd' € M:da=f)and (af =a).

By Green’s Lemma p,(x) = za is a bijection from H, onto H,. Similarly, by the dual
version of Green’s Lemma we have that Ay = az is a bijection from H, onto H;.
Therefore the composition p, o Ay is a bijection mapping every x in H, onto a’za in

H;. Clearly,

pa© Ay(e) =dea=da=f.

To see that p, o Ay is an isomorphism, we first observe that aa’ is an idempotent
of R,:

(aa')? = ad'ad' = afad' = ad.

Hence, for every element x € R, we have aa’x = z. For arbitrary z,y € H,, the

product xy € H,. Their images under p, o Ay exhibit the same property:
(a'za)(a'ya) = d'z(ad'y)a = d'zya.
Q.E.D.

A J-class is called regular if all its elements are regular. (We have similar defi-
nitions for regular R, £ and H-classes). The next proposition further explores the

structure of a regular J-class.
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Proposition 2-V.10. Let J be a J-class of a finite monoid M. The following are

equivalent:

~

. J 1s regular

2. J contains a regular element

co

every L-class contained in J has an idempotent

B

. every R-class contained in J has an idempotent
5. J contains an idempotent
6. x,yeJ:zyeJ

Proof: 1 = 2. By definition.
2 = 3,4. Suppose a is a regular element of J. Then a = asa = aLsa. Note also
that sa is idempotent:

(sa)? = sasa = s(asa) = sa.

Similarly, a = asa = aRas and
(as)* = asas = (asa)s = as.

3,4 = 2. Let e be an idempotent element of M in J. Then aRe = Ju € M :

au = e and ea = a, whence
a = ea = eea = auea = asa.

By the same reasoning aLf (where f is idempotent) implies Jv € M : va = f and

af = a. Therefore,

a=af =aff=afva=ata.

2 = 1. Let a be a regular element of M in J and b - an element in J. Then
aJb <= dc € J:aRcAcLh. Since a is regular, R, = R, contains an idempotent
and therefore c is regular. Also, b must be regular because L. = L; has an idempotent.

3,4 = 5. Obvious.
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5 = 2. Same reasoning as 3,4 = 2 applies.
5 <= 6. By proposition 2-V.6. Q.E.D.

Proposition 2-V.11. Let M and N be two monoids and ¢ : M — N be a surjective
homomorphism. If Jy is a reqular J-class of N, then there exist a reqular J-class

Jy of M such that ¢(Jy) = Jy.

Proof: Consider a J-minimal element s in ¢~!(Jy) (that is an element s such

that Vg € ¢7*(Jy) : s <7 ¢). Then
$(MsM) = ¢(M)¢(s)¢p(M) = Ne(s)N
and
N(N¢(s)N)N C Ng(s)N,

ie. ¢(MsM) is an ideal of N. Since this ideal intersects Jy, it must contain Jy
entirely. If there exists an element ¢ such that t < s, then t ¢ ¢~!(Jy), for s is
J-minimal. Thus if Jy, is the J-class of s then Jy C ¢(Jy). On the other hand,
sJr for some r € Jy implies ¢(s) T ¢(r), whence ¢(Jp) C Jy. Combining the latter
two we obtain ¢(Jy) = Jn. Q.E.D.

A monoid M is R-trivial if for two elements a,b € M we have
aRb = a=0b.

Definitions for L-trivial, H-trivial and J -trivial monoids are similar.

Example 2-V.1 (Computing the syntactic monoid of a language). Let A=
{a,b,c} and L = A*abA*. The minimal automaton of L was presented in example
1-II1.1. Figure 2.6 shows the transitions and relations defining the syntactic monoid
M(L) and its J-class structure. It’s easy to see that M (L) is not J-trivial, since, for

instance, b and ¢ are J-equivalent.
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wll 2 3 ¥
a |b|lcl|abl|ba 1
e |1 2 3 0 ol o
a | a c
al2 2 3 ul e
blba|b|b| O] O
b |1 3 3 o
clalclc| 0|0 ba | b
c |1 1 3
ab! 010(0] 010
ab |3 3 3 Ik
ba| 0 |00 OO 0
ba |2 3 3

Figure 2.6: Transition relations, the syntactic monoid and J-class structure of the

language L = A*abA* over A = {a,b,c}.

While we normally treat monoids in this thesis, certain statements require ma-
nipulating semigroups specifically. If S is a semigroup, we can adjoin a new identity

element I to S and thereby obtain a monoid, denoted S?, by setting
I-I1=1,
and for all s € S
s I=1-s=s.

We then set

ol ST, if S is not a monoid,
S, if S is a monoid.
Lemma 2-V.12.
Let S be a finite semigroup. Then either of the following holds:
1. S is cyclic, i.e. S ={s*| k >0} for some s € S,
2. S 1s left-simple, i.e. no proper subset of S s its left ideal,

3. S=PUT, where P is a proper left ideal of S and T 1is a proper subsemigroup
of S.
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Proof: Let M denote the smallest monoid containing S as a subsemigroup, i.e.

M = S'. We choose an element s € S to maximize the set MsM, i.e.
Vte S [MsM C MtM = MsM = MtM)].
Consider the following cyclic subsemigroup of S:
C = {s*| k > 0}.

If C =S, then S is cyclic. Otherwise, consider the set I = S\ C. If ST C I, then I
is a proper left ideal of S and S =TUC.

We henceforth suppose this is not the case, i.e. I is not a left ideal and therefore
there exists ¢ # s such that s = rt for some r € S. Since s is chosen to ensure the

maximality of MsM, we have t = mysmy for some m;, mo € M. Thus

s =1t = rmismy = rmy(rmysmg)my = - - = (rmy)*s(my)",

s
for all £ > 0. So k can be chosen in order that (rm;)* = e is an idempotent of S. By
the maximality condition, e € MsM and hence e and s are J-equivalent. Thus J
contains an idempotent e and there are several cases to consider.

Case 1. If Ly = J; we have the condition of Lemma 2-V.4 and L, is a subsemigroup

of S.

Case la. If Ly = S then no proper subset of S is its left ideal, i.e. S is

left-simple.

Case 1b. Otherwise, we claim that P = S \ L, is a left ideal. Suppose
the contrary. Then s = zq for some x € S, ¢ € L, and we arrive at a
contradiction since by Lemma 2-V.7, ¢ € J, = L,. Therefore in this case

we take P =S\ L; and T = L;.
Case 2. L, C J,. Consider the set

W=8\Js={w|ls¢g MwuM}.
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We claim that WU L, is a left ideal of S. Here is why. First, forallz € Sandw € W
we have zw € W, i.e. W is a left ideal of S. By Lemma 2-II.1, ideals are closed under
union.

This claim can also be shown without the aforementioned Lemma. If ¢t € L,
then ¢t = ys for some y € S and xt = zys. If zys € J;, then by Lemma 2-V.7,
xt = zys € Ls. If ays € J, then xys € W, by the definition of W. Hence xt € WUL,
forallt € WU L, and W U Ly is a left ideal of S.

In a similar way we can prove that (J;\ Ls) UW is a left ideal of S. Assuming the
contrary means there exists t € J; \ L, such that xt € L,;. Again, by Lemma 2-V.7,
xt and t are L-equivalent, so t € L, which contradicts our assumption.

We thus take P = (J;\ L) UW and T =L, UW. Q.E.D.



Chapter 3

Variety

3-1 Introduction

To each regular language corresponds a finite monoid — its syntactic monoid. Natu-
rally one may attempt classification of regular languages according to the algebraic
properties of their syntactic monoids. In this chapter we introduce the proper frame-

work to formalize this idea.

3-II Identities of finite monoids

A wariety of monoids !

is a class of monoids closed under the operations of taking
submonoids, quotients and finite products. A class V of monoids is a variety if V

satisfies the following:

1. if M € V and N is a submonoid of M, then N € V
2. if M € V and N is a quotient of M, then N € V

3. if (M;)ier is a finite family of elements of V, then [[,., M; € V

i€l
The definition of variety of semigroups is similar, with the word “subsemigroup”

replacing “submonoid”. Varieties of semigroups and monoids will be denoted by

1Varieties of finite monoids are also referred to as pseudovarieties.
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boldface capital letters, like V.

Let u,v € A*. A finite monoid M separates u and v if there exists a monoid
homomorphism ¢ : A* — M such that ¢(u) # ¢(v). We define a distance on A* as

follows. If u, v are two words of A*, let
r(u,v) = min{ |M| |M separates u and v}
and
d(u,v) = 277w,

By convention, min(|(}]) = —oco and 27 = 0.

Below are some properties of d(u,v) for all u,v, w, € A*.

1. d(u,v) =0 <= u =0,

2. d(u,v) =d(v,u),

3. d(u,v) < max(d(u,w), d(v,w)),

4. d(uw,vw) < d(u,v) and d(wu, wv) < d(u,v).

That is, d(u,v) is an ultrametric distance function. For this metric, multiplication in
A* is uniformly continuous. The completion of the metric space (A*, d), denoted A ,
is called the free profinite monoid on A.

We consider each finite monoid M as being equipped with a discrete distance,

defined for all z,y € M by

0, if z=y
1, if z#y.

d(z,y) =

Let M be a finite monoid. Then a map ¢ : A* — M is continuous if and only
if, for every converging sequence (up)n>o of A*, the sequence ¢(uy,)n>o is ultimately
constant, i.e. if there exists an integer ng such that, for all n,m > ng, ¢(u) = ¢(up).

Let z,y € A*. We say that a finite monoid M satisfies the identity x = y if, for

every continuous homomorphism ¢ : A* — M,
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Note that such a continuous homomorphism is entirely determined by the values of
¢(a), for a € A. Any map ¢ : A — M can be extended in a unique way into a
monoid homomorphism ¢ : A* — M. Since M is finite, such a homomorphism is
uniformly continuous: if two elements of A* cannot be separated by M, their images
under ¢ must be the same. Then every monoid homomorphism ¢ : A* — M can be
extended in a unique way into a continuous homomorphism from A* onto M. Since
A is a completion of A*, its elements are words and limits of sequences of words.
The w-power, whose definition relies on the following lemma, is an example of such a
limit.

Lemma 3-I1.1 (cf. [Rei82]). Let A be a finite alphabet and = € A*. The sequence

(z™)u>0 converges in A* to an idempotent, denoted z*.

Given a set F of identities, we denote by [E] the class of all finite monoids which
satisfy all the identities of E. The fundamental theorem below, an extension of an

earlier result due to Birkhoff [Bir35], states that

Theorem 3-I1.2 ([Rei82]).
A class of finite monoids is a variety if and only if it can be defined by a set of

identities of Ar.
Example 3-II.1.

[ =] defines the variety of finite monoids containing only the trivial monoid.
[ = «] defines the variety of all finite monoids.
[xy = yz] defines the variety of finite commutative monoids.

[z2 =z]  defines the variety of finite idempotent monoids.

Example 3-I1.2. We say that a semigroup S is locally trivial if for every idempotent
e of S and for every element s € S, we have ese = e. It is not difficult to see that
locally trivial semigroups are closed under taking subsemigroups, quotients and finite
products and therefore form a variety of semigroups, denoted LI. It follows from the

definition that the variety LI is defined by the identity [z“yz* = z*].
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3-II1 The variety theorem

If V is a variety of finite monoids and A is an alphabet, we denote by A*V the set of
(regular) languages of A* whose syntactic monoid belongs to V or, equivalently, the
set of languages of A* recognized by the monoids of V. The correspondence V — V
associates with each variety of finite monoids a class of regular languages. We have

the following theorem due to Eilenberg.

Theorem 3-II1.1 ([Eil76]). The correspondence V. i— V defines a one-to-one cor-

respondence between the varieties of finite monoids and the varieties of languages.

When a variety V is generated by a single monoid, we have a direct description

of the corresponding languages.

Theorem 3-I11.2 (cf. [Eil76]).

Let V. = (M) be the variety of monoids generated by a monoid M and V - be the
corresponding variety of languages. Then for every alphabet A, A*V 1s the boolean
algebra generated by the languages of the form ¢~'(m) where ¢ : A* — M 1is an

arbitrary homomorphism and m € M.

3-IV Varieties defined by Green’s relations

Recall that a monoid M is aperiodic if for every s € M, there exists an integer n such

that s = s"*!. We begin with various characterizations of aperiodic monoids.

Proposition 3-1V.1. Let S be a finite monoid. The following conditions are equiv-

alent:
1.VzeS(Fne IN : z" = z2™*), i.e. S is aperiodic.
2. 3Ime NNVz € S : 2™ = ™).

3. If G is a group in S, G is trivial.
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4. S is H-trivial.

Proof: 1 = 2. For every element z € S denote by n, the smallest integral

exponent in 2" = z™*! and let
m = maxn,.
zeS

Then for all z € S, 2™ = 2™+
2 = 3. Let x be an element of a group G in S. Then there exist an integer k£ > 0
such that 2% = 1. It follows that

That is, every element of GG is idempotent and G is trivial.

3 = 4. Let H be an H-class of S and z,y € H. Then

Ly < da,be S(ax=yNby =
(zHy) = i ¢ (az=yAby =) < (z = axd)
TRy < Je,d € S(ze=yAyd=1z)

Therefore, Vn > 0 : = a™zd". By Green’s Lemma and Corollary 2-V.6, a regular
‘H-class is in one-to-one correspondence with a group in .S. By assumption the groups
in S are trivial and hence there exist m > 0 such that a™ = a™*'. We thus can
deduce

= azr = aa™zd™ = ™ xd™ = a™xd™ = z.
That is, xHy = = = y and S is H-trivial.

4 = 1. Suppose S is H-trivial and s € S. Let T be the subsemigroup generated
by s. We showed in section 2 that T = {s,s?,...,sP™"1} with s» = sP*? and
G = {sP,sPTL, ... sPT971} is a maximal subgroup in 7. All elements of G are H-
equivalent in T and therefore in S. By assumption, S is H-trivial and hence G is

trivial and ¢ = 1, whence s? = s?*!. Q.E.D.

Notation. R, L and J denote respectively the varieties of R-trivial, L£-trivial and

J-trivial monoids.



- W v W w

-

T ~—

CHAPTER 3. Variety 45

Proposition 3-I1V.2.
1. R = [(zy)“z = (zy)*].
2. L= [y(zy)” = (zy)“].

(

Ty
(l,y)w — (yx)w’ xw — xw-}-l]l'

3. J=[(zy)¥z = (zy)¥ = y(zy)“] and also
J=1

Proof: 1. If a finite monoid M is R-trivial, it is aperiodic. (To see this, let c € M
and let m be an integer such that ¢™ is idempotent. We then have (¢™)R(c™)c, whence
c™ = ¢™*1) Let z, y be two arbitrary elements of M. Then (zy)" = (zy)"*' =
((zy)"x)y, that is (zy)"zR(zy)". Since M is R-trivial, (zy)"z = (xy)™.

Conversely, suppose M is a finite monoid satisfying (zy)*z = (zy)" and let e be

an idempotent element of M and x € M such that eRx. Then:

T = ex from eRx
= xyx from eRx = Jy € M such that zy =e
= (ay)"x e is idempotent of M
= (zy)™ by assumption
= e
Thus eRx implies x = e and M is R-trivial.

2. The proof is similar.

3. Since J = RN L we have
(zy)"z = (zy)" = y(ay)"

Assuming y = 1 leads to 2" = 2™ and to (zy)" = y(zy)" = (yz)"y = (yz)™
Conversely, if a variety is ultimately defined by the equations z® = z"*! and

(zy)" = (yz)" then

n+l __

(zy)" = (zy)" ™ = (ya)"*!

= y(yz)"z = y(zy)"x (3.1)

Continuing in the same manner we obtain: (zy)® = y"(zy)"z", and then y™(zy)"z" =
y" 1 (zy) 2™ = yy™(zy)"2™. Now applying 3.1 from right to left n times, we arrive at

(zy)™ = y(xy)™. A similar derivation yields (zy)" = (2y)"z. Q.E.D.
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We denote by DA the class of aperiodic monoids whose every regular J-class is

an idempotent monoid.

Lemma 3-1V.3. Let M be a submonoid of a monoid N and J — a reqular J-class

of M. The restrictions to J of Green’s relations in M and N coincide.

Proof: Let Rj; and Ry denote Green’s relations R in M and N respectively.
Suppose = and y are elements of J such that 2R yy. Since J is a regular J-class of
M, there exist idempotents e, f such that eRyx and fRyy. Hence, eRysRyyRN f
and therefore ef = f and fe = e. Consequently, eR,,f and 2R py. The proof for

other Green’s relations is similar. Q.F.D.

Lemma 3-1V.4. If a regular J-class is a monoid, it s a simple monoid.

Proof: Let M be a monoid and J — a regular J-class which is a submonoid of
M. Since the restrictions to J of Green’s relations in M and J coincide (by Lemma
3-1V.3), we have in particular, JaJ = JbJ = J for every a,b € J. Thus the only
ideals of J are the empty set and J itself. Q.E.D.

Proposition 3-IV.5. DA is a variety of monoids.

Proof: We need to show that DA is closed under the operations of taking sub-
monoid, quotient and finite product.

Let S € DA be a monoid, let T be a submonoid of S and J — a regular J-class
of T. If a is an element of J, then alre for some idempotent e € T and therefore
alge. Since S € DA, the J-class of e contains only idempotents and hence a is an
idempotent of T

Let S be a monoid, S € DA, and let T be a quotient of S. Then there exists
a surjective homomorphism ¢ : S — T. If Jp is a regular J-class of T then by
proposition 2-V.11 there exists a regular J-class Jg of S such that ¢(Js) = Jr. Since
by assumption Jg only contains idempotents, so does Jr and therefore T' € DA.

Suppose S and T are two monoids, S,T € DA. The J-classes of the product

S x T are of the form Js x Jp. Therefore if Jg, Jr are idempotent monoids of S
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and T respectively, then a J-class of S x T is an idempotent monoid and hence,

Sx T e DA. Q.E.D.

Proposition 3-IV.6.
DA = [(zy) (yz)*(zy)* = (zy)*, z¥ = z*'].

Proof: Let M € DA be a monoid. The two idempotents e = (zy)*, f = (yx)*
are in the same regular J-class J of M (Proposition 2-V.6). Since J is a simple
monoid (by Lemma 3-IV.4), the product efe appears in the same R-class and in
the same L-class as e, that is in a group where e is an idempotent. This group is an
H-class of J and it consists of only one element - e itself (J is an idempotent monoid).
Therefore e = efe, which establishes the first identity. The second equation follows
directly from the fact that J is idempotent.

Conversely, suppose a monoid M satisfies the identities of the proposition. Let
x be an element of a J-class J of M. By hypothesis J contains idempotents. Then
there exists y € J such that zy = e and yx = f, where e and f are idempotent
elements of J. It follows from the first equation that the product zy - yz - zy = zy
is in J, i.e. J is closed under multiplication. By the second equation, 22 = z, which

means J is a union of trivial groups and an idempotent monoid. Q.FE.D.

3-V  Variety and formal logic

In this section we build a connection between boolean operations and varieties of
regular languages defined by formule of formal logic. For an expression ¢ with free
variables in a set V, M(¢) and 7, denote, respectively, the syntactic monoid and the
syntactic morphism of L(¢) C (A x 2¥)*. By 6, we mean the restriction of 7y to A*
and by N(¢) — the image of this restriction.

Proposition 3-V.1. Let L(¢) and L(v) be regular languages over the alphabet Ax 2V
defined by the formule ¢ and . Let V be a variety of finite monoids. Then
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(1.a) M(¢),M(y) e V=M(pA¢)eV.

(1.b) N(¢),N() € V= N(pA)) € V.

(2.a) N(¢) € V= N(—¢) € V.

(2.b) If V contains all the commutative aperiodic monoids, then

M(¢p) e V= M(~¢) V.

Proof: (1.a) We define a homomorphism

(o> 1) + (A x 2Y)" = M(¢) x M ()
given by

Vw € (Ax2Y)": (1, my)(w) = (np(w), ny(w)).

Let u,v € (A x 2¥)* be such that (4, 7y)(u) = (14, Ny)(v). Then, for some z;, 2z, €
(A x 2V)*,

Z1UZ2 }: (QS N ’w) <  21UZ9 }: ((b) and Z1UZ2 }: ('L/))
< Z1V2»2 "—' (¢) and z,v29 t: (’l,[))
= 21V2 }: (¢ AN w)

Therefore,
Ngnw (W) = Ngnp (V)

and hence,

M(pny) < M(¢) x M(¢).

Thus, if M(¢), M(p) € V then M(¢p Ap) € V.
(1.b) The proof is similar to the one above with N substituted for M, 6, for n,
and 6y, for n.

(2.a) Let u,v € A* be such that 6,(u) = 64(v). We embed A into A x 2¥ by
identifying a € A with (a,®). Thus, if zjuz; = —¢ then zjvz; is a V-structure and
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the case 21v2z; = ¢ is excluded as it implies zjuzy = ¢. Therefore, zjvzy | —¢. A

similar argument leads to

21022 [ D¢ = z1uze = .

Hence,

0-(u) = 0-4(v).

Since (——¢) = ¢, we conclude 6, = 6, and if N(¢) € V then N(—¢) € V.
(2.b) Let £ denote the set of all V-structures. Suppose w,w’ € (A x 2V)* are such

that ng(w) = ny(w') and ne(w) = ne(w'). If
2wz = g
then z;w'zy cannot satisfy ¢ and since zyw'zs is a V-structure,
2 w'zy E g
Similarly, we conclude
2w'zy E ¢ = 21wz E .

Hence, 7., factors through (14, nz). By assumption, V contains all commutative
aperiodic monoids. Thus we have: M(¢) € V, M(L) € V and 1., factors through
(g, nc). Therefore, M(—¢) € V. Q.E.D.
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The Krohn-Rhodes Decomposition

4-1 Introduction

In this chapter we define transformation semigroups and two operations on finite
monoids: wreath product and block product. We then present a fundamental theorem
due to Krohn and Rhodes which states that any finite monoid can be decomposed

into “smaller” components.

4-I1 Transformation Semigroups

Given a finite set @, by transformation of () we mean a map s: @ — Q. We write ¢s
or q-s for the image of ¢ € @) under a transformation s. If s and ¢ are transformations,

then for all ¢ € Q

(gs)t = q(st),
i.e. transformations are composed from left to right.

A transformation semigroup (abbreviated ts)
X =(@,5)

consists of a finite set @ and a semigroup S which is a (sub)set of transformations of
Q closed under the operation of composition of transformations. The set @) is called

the set of states of the ts X and S is called the underlying semigroup of the ts X.
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By X! we denote the ts obtained by adjoining to S the identity transformation 1¢
on Q. X denotes the ts obtained by adjoining to S all the constant transformations

on . That is, for each ¢ € () we adjoin the transformation ¢, defined by
p-¢=4q,

for all p € Q. We observe that for all s € S, sc; = ¢, and ¢;8 = ¢y, so the adjunction
of these transformations indeed yields a new ts. Note also that these operations on

transformation semigroups are idempotent:

&l
I
>

XHl=Xx and

for all tss X.
Let X = (P,S) and Y = (Q,T) be tss. We say X divides Y, written X <Y, if
there exists a subset @' of ) and a surjective map v : @' — P, such that for each

s € S there is 5 € T satisfying for all ¢ € Q"

gs€@ and  Y(¢5) = ¥(g)s.

The two notions of division — one for semigroups, the other for transformation

semigroups — are related, as the following lemma attests.

Lemma 4-11.1.
If (P,S) < (Q,T), then S < T.

Proof: We need to show that there exists a surjective homomorphism ¢ from
S onto a subsemigroup of T. Let @' C @ and ¥ : Q' — P be as in the definition
of division of tss. Let 7" be a subsemigroup of T generated by the set {s| s € S}.
Consider a map ¢ : T’ — S given by



CHAPTER 4. The Krohn-Rhodes Decomposition 52

If p is a transformation in P then there exists a transformation ¢ in @' such that

¥(q) = p. Since (P,S) < (Q,T) we have

psi-+-8, = (g5 ---5) from the definition of division of tss

= o(qt,---ty) by assumption

= pty--ty from the definition of division of tss.

Thus
Sl"'ST:tl"'t?’rm

which establishes that ¢ is well defined. It follows immediately that ¢ is a surjective

homomorphism and hence S <7T. Q.E.D.

4-I1IT Wreath Product

Let S and T be semigroups. We shall write the operation on S additively; in partic-
ular, if S is a monoid, its identity will be denoted by 0, and if .S is a group then the
inverse of the element s will be written —s. This is done to provide a more readable
notation, but it is not meant to suggest that S is commutative. A left action of T

on S is a map (t,s) — ts from T' x S into S such that for all s,s’ € S and for all

t,t'eT:
(tt)s = t(t's) (4.1)
t(s+s) = ts+ts (4.2)
ls = s (4.3)

The action is called monoidal if S and T are monoids and for all ¢t € T we have:
t0=0 (4.4)

The right action of T on S is defined dually. The left action and the right action
of T on S are compatible if for all t,¢' € T and for all s € S

(ts)t' = t(st') (4.5)
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The semidirect product of S and T with respect to such a left action is the

semigroup S x T defined on the set S x T by
(s,8)(s',t') = (s + ts', ¢t') (4.6)

Given a pair of compatible (left and right) actions of T on S, the bilateral semidi-
rect product S**T is defined to be the set S x T with the multiplication given
by

(s,8)(s',t") = (st + ¢, tt') (4.7)

Lemma 4-II1.1. The bilateral semidirect product SxxT is a semigroup. If S and T
are monoids, and the underlying left and right actions are monoidal, then SxxT is a

monoid.

Proof: The product is associative:

((s1,t1)(82,82))(s3,t3) = (8189 + t189,t1t2)(S3,t3)
= (s1tats + t1Sats + t1tass, titats)
(s1,1)(s2t3 + tas3, tat3)

(

s1,t1)((s2,t2)(s3,t3)).
For the monoidal actions we have:

(0,1)(s,t) = (0t+1s,1t) by 4.7

= (0+s,1) by 4.3
s1+1t0,t1) by 4.3 and 4.4

(
(
= (s,1) since 0 + s =s
=
= (s)(0,1) by 4.7

That is, S**T is a monoid with (0, 1) as the identity element. Q.E.D.

Lemma 4-II1.2. Let S and T be finite groups and the underlying action of T on S

— monoidal. Then SxxT is a group.
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Proof: By Lemma 4-II1.1, S*«T is a monoid with the identity (0,1). We thus

have:

(s,8)(s',t') =(0,1) <= (st' +ts,tt') =(0,1)

tt = 1
—
st +ts = 0
tl — t—-l
<~
st = —ts

Observe that if ts; = ts, then
sy =t (ts)) =t (tsy) = (t71t)sy = 1sy = 5o,

whence for every t € T the map s — ts is one-to-one and in particular, surjective.
Thus, every element of the bilateral semidirect product S=«7T has a unique right

inverse, which implies that ST is a group. Q.E.D.

Let G be a finite group and H a subgroup of G. Recall that G/H denotes the set
of all right cosets Hg, with g € G.

Lemma 4-II1.3. Let G be a group contained in a bilateral semidirect product SxT of
finite semigroups. Then there is a normal subgroup H of G such that H is isomorphic

to a group contained in S and G/H is isomorphic to a group contained in T.

Proof: Consider the surjective homomorphism 7 : ST +— T'. Its restriction to
G maps G onto a group contained in 7T'. It remains to show that the kernel H of this
restriction is isomorphic to a group in S. Let (f,e) be the identity of G. It follows
from 4.7 that e is idempotent. We have

H={(s,e)| (s,e) € G}.
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Let ¢ : H — S be a function given by (s, e) = ese. Then

V((s,e)(s',e)) = yY(se+es ee) by 4T

= Y(se+ed,e) since e is idempotent

= e(se+es')e by the definition of v
= (ese+es')e by 4.2

= ese+es'e by 4.2 for right action

= (s,e) +¢¥(s',e) by the definition of .

Thus ¢ is a homomorphism. We need to show that v is one-to-one. If (s, €) is in the

kernel K of ¢, then ese = efe and

(s,e) = (fie)(s,e)(fe)  since (s,e) € K

= (fet+ese+ef, e) by4dT7

= (fe+efe+ef, e) since (s,e) € K

= (f,e)(fe)(f,e) Dby 4T

= (f,e) since (f, e) is the identity of G,

which means s = f. Hence K is trivial and ¢ is an isomorphism. Therefore H is

isomorphic to a group contained in S. Q.E.D.

The wreath product S o T is the semidirect product ST T defined by the action

of T on ST" given by
tf(t) = f(tt)
for f: T'+— S and ¢,t' € T. The multiplication in S o T is given by

(f1, 1) (fa, ta) = (f1(t) + fa(tat), trts) (4.8)

forallt € T1.

Wreath product can also be defined in terms of transformation semigroups. Let
X =(P,S) and Y = (@, T) be transformation semigroups. Then the wreath product
of Y and X, Y o X, is a new ts:

its set of states is ) x P and
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the underlying semigroup is the set of transformations of the form (F),s),
where s € S and F': P +— T, whose action is defined for all (¢,p) € @ x P
by

(¢,p)(F,s) = (¢ F(p), ps).

To see that the set of the above transformations of () x P is closed under composition,

consider the application

((g,p)(F1,81))(Fo, 82) = (g F1(p), ps1)(F2, s2)
= (q- Fi(p) - F2(ps1), ps1s2)

= (q,p)(F1(p)F2(ps1), 5152)
G
= (q,p)(G, 5152),

where G(r) is such that for all r € P, G(r) = Fi(r)Fy(rs).
We also observe that wreath product is associative when it comes to transforma-
tion semigroups, since Z o (Y o X) contains exactly the same transformations on the

set, of states Qz X Qy X Qx as (ZoY)o X.

Lemma 4-111.4. Let X = (P,S) and Y = (Q,T) be transformation semigroups.
Then

YoX < YoX,
(YoX) < Ylox

Proof: Since the set of states in each of these four tss: Yo X, Y o X, (Y o X)!
and Y! o X! is Q x P, we need only to show that the underlying semigroups of the
left-hand sides of both formulee are contained in the underlying semigroups of the
corresponding right-hand sides.

If (¢,p) € Q x P then for all p € P, F(p) = ¢, and

Cap) = (g &) = (F) ),
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which proves containment for the first expression. As for the second one, we have
1Q><P - (1Q7 1P) = (G7 1P)a

where G(p) = 1g forallpe P. Q.E.D.

4-1V  Krohn-Rhodes Theorem

The notion of wreath product permits decomposition of semigroups into “smaller
pieces”. In this section we further develop tools necessary for such decomposition.

The proof of the Krohn-Rhodes Theorem is from [Eil76] and [Arb68].
Lemma 4-IV.1. Let G be a finite group and N a normal subgroup of G. Then
(G, G) < (N, N)o(G/N, G/N).

Proof: Recall that in a normal subgroup N of G right and left cosets coincide

and hence the product of two right cosets is a right coset (see Section 2-II):
Ngi-Ngj = NNgig; = Ny,

for some g;, g5, 9i9; = gx € G. If two cosets have a common element, they coincide,

otherwise they are disjoint. Let

R={gl,g2,... 7gr}

be a set of representatives of the cosets of NV in G. We define a product ® on R by
setting ¢g; ® g; to be the representative of g;g;. Thus (R,®) is a group identical to
G/N. Now consider a map

Y:Nx(G/N)—~ G
given by

1/}(”1 gl) = ng;j.
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This map is surjective, because every element of G belongs to one of the right cosets
Ng;. Let g be an element of G and g; — the representative of the right coset Ng in
R. We set

/g\ = (F7 91)7

where
F(g:) = g;99; " with g =g; ® gs.
Observe that g;g9, 1 ¢ N and for some n € N we have
Y(n,9:)g = ngig

= n9i99; 9k

= n-F(g;) - gk

= P(n- F(g), )

= Y(n- Flg), 9; ® %)
= ¥((n, g) - 9),

which shows that 1 is a surjective map satisfying the definition of division of tss.

Q.E.D.

Lemma 4-I1V.2. Let G be a finite group. Then

G, Q) < (G,0) o(G,G).

Proof: Asin the previous Lemma, we have to exhibit a surjective map v, meeting
the criteria set forth in the definition of division for tss. Consider amap ¢ : GXG — G

defined for all g1, g, € G by

770(91,92) = 0192.

This map is obviously surjective. For an element g of G we set

g=(F, g),
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with F'(h) = 1¢ for all h € G. We verify that ¢ satisfies the division condition:
Y(91,92)9 = 91929 = ¥(91, 929) = ¥((91,92) - 9)-
Setting for g € G
¢y = (T, 1¢), with  T'(h) = cgp-1,
for all h € G, yields

(g1, 92)cg = 9192 - (9192) ™ - 9 = 9 = ¥(995 ", 92) = ¥((g1,92) - 9).

Q.E.D.

Lemma 4-IV.3. Let X; = (P, S;), Yi = (Q,T;) fori=1,2. Then
Xi<YINXy <Y, = X50X <Y50Y].

Proof: By the antecedent of the lemma we have well-defined subsets @Q; C @,
surjective maps v¢; : @} — P, and maps s — § = a(s) from S; to T; satisfying the

condition of division for tss. Let us define for all (¢g2,¢1) € @5 X @} a new map:

V(g2 q1) = (V2(@2), ¥1(qn))-

Clearly, 1 is surjective. For a transformation (F, s) in the underlying semigroup of

X5 0 X, we set

(F, s) = (F', afs)), where F' = a(F(¥1(q)))
for all ¢ € Q). Then

Vg, @) (F,s) = (dlg), ¥la)) - (F)s)

= (¥a(@) - F(vr(ar)), ¥1(q1)s)
(Y2(gz - a(F(¢1(q1)))), ¥1(q1e(s)))

= (@ Fa), aals))

= Y((q2, @) - (F, ),

for all (Q2,ql) S QIQ X Qll Q.E.D.
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Lemma 4-IV.4. Let S be a finite semigroup. Then
(87, 8) < [a, B}, 0) o (5", S).
Proof: If S is not a monoid, then S’ = S! and the result is trivial, since

X <YoX

for all tss X and Y. Otherwise, S' = S, i.e. S is a monoid, and we define ¥ :

{a, b} x S — ST in the following way:

w(av 1) = I,
(b, s) = s

for all s € S. Also for all s € S we set
s=(F, s).
We now verify the condition of division for tss for all (g1, ¢2) € {a, b} x S:

v(a, 1)s = I-s

= Y(a-F(1), s)
= (e, 1)(F, ))
= ¥((a, 1)s),

)

V)

and

¥(b, s')s = §'s

Q.E.D.
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Theorem 4-IV.5 (Krohn-Rhodes Theorem, [KR65]).
Let S be a finite semigroup. Then

(51,5)-<Xk0-'-oX1,

where each transformation semigroup X; is

either
X; =(G,Q), where G is a simple group; G < S,
or

—1
I

Xi= (Ra (Z))

where R 1is a finite set.

Proof: The proof proceeds by first expounding the cases where (1) S is a group,
and (2) S is a left-simple semigroup and then by presenting the reduction of a general

case to these two special cases.

Case 1: S is a group. We repeatedly apply Lemma 4-IV.1 until the group S/N has

only trivial normal subgroups, i.e. until it is simple.

Let us first analyze the case where S is a cyclic group, i.e.
S ={s, s ..., s"=s"}

If k=1 then (S, S) divides any transformation semigroup with a non-empty semi-
group of transformations.

Claim: If £ > 1 then the following decomposition holds
(51, 8) < [a, B3, 0) o (7", T),
where
T={t t* ...t =t}

The result for S will follow by induction on k once the claim is established. Towards
that end we define a map 9 : {a, b} x T'— S given by

Pla, ) = s, for0<j<k-1,
,(/)(b’ tk—l) — Sk
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and set 5= (F, t), where
F(tj) = Ilqap), for0<j<k-1,
F(tk—l) = Cp.
We now verify that 1(qs) = 1(q)s for all ¢ in the domain of :
¥((a, ¥)8) = ¥((a, ¥)(F, 1))
= yY(a- F(¥), /1)
= Pla-Lapy, 1)
_ 8j+1
= lﬁ(a, tj)sv
and
) = (b, tFT(E 1)
= (b F(*), %)
- w(b " Cp, tk)

k+1

®)

w((b, )

= s
= Sk
= (b, t" s,
Then by setting § = (3)? for 2 < j < k we obtain the division, which completes the
proof of the claim.

Let us now turn to the general case, where S = {s,s%,...,s"} is a group with

k+1

s = s™ for some 1 < m < k. Let T be the cyclic group

T={t ... """ =1},
and let U be the cyclic aperiodic semigroup

U={u,u ... u™=u""}
Claim:

(S, S) < (T, T)o (U, U).
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Once this claim is proved, the theorem (for case 1) then follows from Lemma 4-I1V.3
as well as the associativity of the wreath product and the special cases treated above.

To establish the claim, we define a map

P(l,u) = s, for0<i<m-—1,
Y, um™) = s™H for j >0

Fu') = 1, for0<i<m-—1,
Fu™) = t

Again, we verify that 1(¢s) = ¢(q)s for all ¢ in the domain of :
(1, u")s) = (1, w')(F, u))
= P(1-F(u), v'*)
= (1, u't)

and
Y((, w™)3) = ((t, u™)(F, u))
= Y- Fu™), ™)

= Y, )

—  gmHitl
= Y, u™)s.
The desired division is then obtained by setting 5= (3) for2<j<k.

Case 2: S is a left-simple semigroup. By Lemma 2-I1.4, S is isomorphic to a direct

product T x G, where G is a group and T is a left-zero semigroup. By setting

¥(t,g) = (t,g9) forall (¢, g) €T xG,

(t,9) = (F,g), where F(h)=tforall h € G.
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we have
(S*, S) < (T*, T)o (G, G).
It follows from repeated application of Lemmas 4-IV.1 and 4-IV.3 that
(S',8) < (T*, T) o (Gk, Gx) 0 --- 0 (G1, Gv),

where the groups G; are simple groups that divide S. It will thus suffice to show that
the theorem holds for the left-zero semigroup 7.

(TY, T) < (7%, 0) o ({a, b1,0) .

To prove this claim we set

¥(1,a) = 1,
Y(t, b) = t,
forteT. And also for t € T
?I (F, Cb),

where F(a) = ¢; and F(b) = 111. We then have
Y(Lat=t=91c, a-a)=v((1, a)t),
and
Y(t', bt =tt =t =t 11, b)) = ((t', b)E),
thus establishing the claim.

General case. The proof is by induction on the order of S.

Base case. If |S| = 1, then (S', S) divides any ts with nonempty underlying semi-
group.

Inductive step. We assume |S| > 1 and that the theorem holds for all semigroups S’
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with |S’| < |S|. By Lemma 2-V.12, S is either a cyclic group, or left-simple semigroup,

or
S=PUT, (4.9)

where P is a proper left ideal of S, and T is a proper subsemigroup of S. With
the first two situations dealt with in cases (1) and (2) above, we now claim for the

condition 4.9:
(S, S) < (P!, P)to (T, T). (4.10)

Firstly, we observe that by the inductive hypothesis, the theorem holds for P and
T. Secondly, by Lemma 4-1V.4, (P!, P) and (T?, T) both divide wreath products of
the appropriate form and hence, so do (P!, P)! and (T7, T), by Lemmas 4-II1.4 and
4-IV.2. Thus the theorem will follow with the establishment of division 4.10. Let us

define a surjective map v : Pf x Tt — S by setting

(I, 1) = I

(I, t) = t, forteT;
v(p, I) = p, forpePp;
Y(p,t) = pt, forpe P,teT.

We also set
5 = (G,s), ifseT, where G(t) = 1pr forallt € T!,
5 = (F,c), ifs¢gT, where F(t) =tse Pforallte T’
It remains to verify that ¢(q3) = v(q)s for all ¢ € P! x T? and s € S. We consider

several cases:

(I, t)5) =
w((Iv t)(G, s) = w(IG(t)a ts) = w(I’ ts) = ts Zw(l, t)S,
YL, )(Fycr)) = (I -F@), ter)) = (ts, I) = ts

and

¥((p, I)5) =

W, DG, 5) = ¥(p-GU),s) = v(ps) = ps | _
- w(p7 I)Sv

(o, D(F, ) = $p-F(I), 1)) = Y(ps, I) = ps
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and

Y((p, t)5) =
P, (G, s)) = Y(p-Gt), ts) = oY(p,ts) = pts
w((pv t)(F7 CI)) = 17/}(p F(t)’ tc])) = w(pts, I) = ptS

which completes the proof. Q.E.D.

We denote by U; the monoid {0,1} with the usual multiplication and by U, —
the monoid {1,a,b} defined by a®> = ba = a and ab = b*> = b. Then the following

consequence of the Krohn-Rhodes Theorem holds.

Corollary 4-IV.6. If a monoid M s aperiodic, M divides a wreath product of copies
Of Uz‘

The concept of the semidirect product can be extended to varieties of semigroups
and monoids. If V and W are two varieties of finite semigroups (monoids), let
us denote by V x W the variety of finite semigroups (monoids) generated by the
semidirect products S * T, where S € V and T' € W. Since every semidirect product
SxT is a subsemigroup of SoT', VxW is generated by all wreath products of the form
S oT. Even though the semidirect product of finite semigroups is not associative, it

becomes associative at the level of variety:

Theorem 4-IV.7 (cf. [Eil76]).
Let V1, V5 and V3 be varieties of finite semigroups. Then

(Vi*xVy) %« V3=V % (VyxVj).

4-V Block Product

Let M and N be monoids. Consider the set of all mappings f : N X N — M with
the componentwise product (written additively f = f; + f2) defined by

f(ni,n2) = fi(ny,ng) - fa(ni, no)
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for all ny,ny € N. That is, MY*¥ is isomorphic to the direct product of |N|? copies
of M. This set together with the operation + form a monoid whose identity is the
mapping f such that for all pairs (n,n’) € N x N : f(n,n’) = 1. Let us verify that

the equations

(fn)(ni,n2) = f(m,nny) (4.11)
(nf)(n,n2) = f(nan, ne) (4.12)

define left and right compatible monoidal actions of N on M~*V:

(n-flz,y)-n' = flany) n
= (fr)(zn,y)
= f(an,n'y)
= (nf)(z,ny)
= n- f(z,n'y)
= n-(f(z,y)-n).

Thus, the resulting bilateral semidirect product is called the block product of M and
N, denoted by MON.

We now state a formulation of the Theorem 4-IV.5 in terms of the iterated block

product.

Theorem 4-V.1 (Krohn-Rhodes Theorem, [Str94]). Let M be a finite monoid.
Then there exists a sequence My, ..., My of finite monoids such that My is the trivial
monoid, M < My, and for alli =0,...,k —1,

My, = NOM,,

where N is either a simple group that divides M, or N = Uy. Furthermore, if M is

a group, then we do not need to use any factor of the form N = Uj.

We note in conclusion of this section that unlike wreath product, block product

is not associative even at the variety level.



Chapter 5

Automata and Logic

5-1 Introduction

The connection between automata and formal logic has been a subject of research in
theoretical computer science since even before these three words became a collocation
and considerably before there were any electronic computers to model the theory.

In the beginning of the twentieth century David Hilbert — one of the greatest
mathematicians of the last century — set out on an ambitious program: to find a way
to mechanically verify the consistency of the axiomatic systems in use. In particular,
he was looking for a procedure to determine if an arbitrary expression in the first-
order predicate calculus, applied to integers, was true. Hilbert’s project was a major
intellectual effort which has had a tremendous influence on mathematical thought
and culture; it yielded several important positive results for first-order logic including
not only algorithms for special cases, but also the Completeness Theorem by Hilbert’s
own student, Kurt Gddel.

Ironically, it was Godel who put an abrupt end to Hilbert’s quest by constructing
a formula in the predicate calculus applied to integers whose very definition stated
that it could neither be proved nor disproved within this logical system. As the
original proof of the Incompleteness Theorem published in 1931 was purely logical,
with no recourse to computation, it did not immediately imply the undecidability of

validity in first-order logic, which had to wait for the works of Alonzo Church and
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Allan Turing.

The subsequent clarification and formalization of our intuitive notion of an ef-
fective procedure — one of the great intellectual achievements of the last century —
brought about the understanding that there was no algorithm for computing many
specific functions. Furthermore, some problems and functions with genuine signifi-
cance in mathematics, computer science and other disciplines are noncomputable.!

The Turing machine has become the accepted formalization of an algorithm; it
is equivalent in computing power to the digital computer as we know it today and
also to all the most general mathematical notions of computation. While one cannot
prove that the Turing machine is equivalent to our intuitive notion of a computer,
there are some compelling arguments for this equivalence, which has become known

as Church-Turing Thesis .2

First research on the logical aspects of the theory of finite-state automata, which
is the subject of this chapter, dates back to the early 1960’s when J. R. Biichi [Biic60]
and C. C. Elgot [Elg61] showed that finite automata and monadic second-order logic
(interpreted over finite words) have the same expressive power and that the trans-
formation from formule to automata and vice versa are effective.®> The reduction
of formulee to finite automata was the key to proving the decidability of two other
theories: monadic second-order (MSO) of one successor function and MSO of two
successor functions (denoted respectively, S1S and S$2S)%.

The equivalence between automata and logical formalisms has influenced the re-

search in language theory as well. For example, the classification of formal languages

! An example is the following problem proposed by Hilbert at the World Congress of Mathematics
in Paris in 1900 [Hil02]: “Is there an algorithm to decide if a multivariate polynomial equation such
as 2%y +3yz —y? — 17 = 0 has an integer solution?” This problem, which became known as Hilbert’s
tenth problem, is a special case of the problem of telling whether N = ¢, where N is a model of
number theory and ¢ is a sentence (in particular, ¢ is restricted to have no Boolean connectives, no

exponentiation, no quantifiers, and no inequality). But even this special case is undecidable [Mat70].
2 Although this thesis does not admit of mathematical proof, it is refutable, if false.
3Later, such an equivalence was also shown between finite automata and monadic second-order

logic over infinite words and trees.
4Cf. [Biic62] and [Rab69)
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was deepened by including logical notions and techniques, and the logical approach
helped in generalizing language theoretical results from the domain of words to more

general structures like trees and partial orders.

5-I1 MSO-logic over finite strings

In this section we obtain a characterization of the regular languages in terms of
logic. We shall consider monadic second-order sentences in which the only numerical
predicates are the equality relation (z = y) and the successor relation (S(z,y)).

In the definition of word properties, it is often convenient to allow predicates
first(z) and last(x) which apply only to the first, respectively last position of a
word model. Thus, first(z) is an abbreviation of -3yS(y, ) and last(x) stands for
—3yS(z,y).

We shall use M SO|S] informally to refer to this logical apparatus.

Theorem 5-I1.1 ([Biic60]). Let L C A*. Then L € MSO[S] if and only if L is

reqular.

Proof: Suppose L is regular and let 7 = (Q, go, F, A) be a deterministic finite
automaton. Let us assume without loss of generality that the set of states of the
automaton is @ = {0, 1,...,k} and the initial state is gg = 0. To show that L is
M SO|S]-definable we exhibit a monadic second-order sentence that expresses in any
model w over A that T accepts w. Over a word w = ajas...a, (where a; € A), the
sentence will state the existence of a successful run q,...,q, of T, i.e. with gg = 0,
¢ = M@i-1,0;), for 1 < i < n, and ¢, € F. We may code such a state sequence up
to gn—1 by a tuple (Xo, ..., X) of pairwise disjoint subsets of the set {0,...,n — 1}
such that X; contains those positions of w where state i is assumed by 7.% From the

last state g,_; the automaton should be able to reach a final state via the word’s last

5A more efficient coding would use a correspondence between states and 0-1 vectors of suitable

length, which allows to describe a run over 2™ states by an m-tuple of subsets of the word domain.
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letter a,. Thus 7 accepts the non-empty word w if and only if

A Vz(first(z) = Xo(x))
A YaVy(S(z,y) = \/ (Xi(z) A Qu(x) A X;(y)))

J=A(ia)

A Vz(last(z) = \/ (Xi(z) A Qu(2))) }

JjEFj=(i,a)
(5.1)

The empty word satisfies this sentence with X; = (. Thus, if 7 does not accept ¢, a

corresponding clause, such as Jz(x = z), should be added.

Now suppose L is M SO[S]-definable. We shall prove by induction on the construc-
tion of MSO formule that for any sets V; and V), of first- and second-order variables,
and every expression ¢ with free first-order variables in V; and free second-order
variables in Vs, L(®) is a regular language.b

We first consider base cases, i.e. the atomic formulee. Let £ denote the set of all
(V1, Vs)-structures. A finite automaton over the input alphabet A x 2Y* x 2¥ can verify
that each first-order variable in V; is found exactly once in an input string. Thus,
L itself is a regular language. Whether a particular first-order variable = occurs in a
letter whose first component is a, can also be easily checked by a finite automaton.
Note that the intersection of the set of all such strings with £ is the set of all (Vy, V,)-
structures satisfying Q.. One can determine with a finite automaton whether the
first-order variables x and y happen to be in consecutive letters, or in the same letter,
and whether any letter has x in the second component and X in the third component.
Thus the sets of (Vy, Vs)-structures that satisfy each of the following: S(z,y), z =y
and X (z) are regular languages, and we therefore conclude that the claim is true for
the atomic expressions.

For the inductive step, it suffices to consider the connectives -, A and the exis-
tential (set and variable) quantification, since the other connectives and the universal

(set and variable) quantifier are definable in terms of them. Treatment of = and A

6The theorem is the case V; =V, = 0.
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in turn amounts to the proof that the class of regular languages shares well-known
closure properties, namely closure under complement and under intersection. Indeed,

if the claim is true for the MSO expressions ¢ and ), then it is true for ¢ Ay and —¢:

L@Ay)=L(¢)NL(y)NL

and
L(=¢) = L\L(¢).

Let us elaborate on the case when ¢ has the form 3zt and the claim is true for .
Then the set of (V) U {z}, Vs)-structures that satisfy ¢ is a regular language. Let
A = (Q, q, F, ) be a deterministic finite automaton recognizing this language. We

now define a new automaton

T= (Q X {071}7 (qo,O), F % {1}7 A),

where the new transition function A is defined as follows:

ifz ¢ S,
Al(g,u), (a, 8, T)) = (¢, u);
ifz €8,
A((g,0), (a,S\{z},T)) = (¢, 1).
where

ve{0,1} and ¢ =Xg (a, S, T)).

It is straightforward to verify that w is accepted by 7T if and only if there is a way to
adjoin z to the middle component of a letter of w so as to obtain a word recognized
by A. Thus w is accepted by T if and only if w | Jz1.

A similar construction may be proposed for the case where ¢ is of the form
3X1. We replace the DFA A = (Q,qo, F,\) recognizing L(v)) by a new one,
T = (Q, qo, F, A), whose transition function is

Alg: (a, S, TN\{X})) = Mg, (a, 5, T)).
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Thus, T recognizes L(3Xv). Q.E.D.

The expression 5.1 in the above proof is an EMSO-formula of a special type.
Invoking the second part of the proof, we see that it provides a normal form of

M SO[S]-formule, an automata normal form in Biichi’s terminology.

Corollary 5-11.2.
Any M SO[S]-formula can be written as an EM SO|S]-formula.

5-IIT Algebraic Characterization of FO[<]

In order to tackle the issue of an algebraic characterization of the family of languages
FO[<] we first introduce a connection between existential quantification and the block

product of the form U;0M.

Let ¢ be a formula of F'O[<] in which free variables belong to a finite set V. Recall
(section 1-IV.3-b) that by L(¢) we mean the set of V-structures that satisfy ¢.
Notation. M(¢), ns : (A x 2V)* — M(¢) and ~, denote, respectively, the syntactic
monoid, the homomorphism and the syntactic congruence of L(¢). We embed A into
A x 2V by identifying a € A with (a,0). By 6, and N(¢) we denote, respectively, the

restriction of 14 to A* and the image of this restriction.

Lemma 5-IT1.1 ([Str94]). Let ¢ € FO[<] and = be a free variable in ¢. Let
be the projection homomorphism from UOM (¢p) onto M(¢). Then there exists a
homomorphism ¢ : A* — U;OM (¢) such that mo ¢ = 8,, and 63,4 factors through (.

Proof: Let V be the set of free variables of 3x¢, so that
e (A x 20N s M (9)

is a homomorphism and there exists T C M(¢) such that L(¢) = ;" (T). We define
a function F': M(¢) x M(¢) — U, given by

Flef) — 0,if a-ny(a,SU{z})-B€T;

1, otherwise



CHAPTER 5 Automata and Logic 74

Consider a homomorphism 63,4 : (A X 2V)* — U;0M(¢) such that for every letter
(a, S) over the alphabet A x 2V,

gElx(b(aa S) = (F(aﬁ)a 7’]¢(G, S))

Suppose w = (ay, S1)(az, S2)(as, S3) and let us write ; in lieu of n4(a;, S;) to facilitate
readability. Then

O309(w) = ((F(a 2 nl)(F(a A T]z))(F(a A 173) by assumption
(F{* P iy - B D muaga) (B3P, 1) by 4.7
(Fl>mB) o plemB) - ) (F® P ) by 4.11 and 4.12
= ((F*™) 4 F{T™ D). +n1772F(“’ ﬂ), miens) by 4.7
(B ™y + F{m Ppg 4 iy B9, ny(w)) by 4.2
(Fleonsmeb) 4 plem.nsh) 4 pplemn:, ﬂ’, ne(w)) by 4.11 and 4.12
(

Fy (e n2m3B) F, (@m, nsf) | Fy (@mnz, ), ns(w)) by commutativity of n

If w=(a,S1)(an,Sn) € A x 2Y, n > 3, we have:

Osus(w) = (FY) ny(ar, 1) (FP ) ny(an, Sn))

n

_ (HFi(a%((al,5'1)"'(01‘—1,51'—1)),77¢((ai+1,Si+1)'"(an»5n))l3)’ 1o (w))

]
N /

G(;ﬂ)

Then

G(1,1) =0 <= 3,1 <i<n, such that
F;(w((al,S1)~--(ai~1,Si_1)), 16 ((@i+1,5i+1)(an,5n))) _ 0

< 3Juw',w" such that ng(w'(a,SU{z})w") €T
= w=u'(a,SU{z})w"
= w Iz

Hence the language defined by Jz¢ is

L(3z¢) = 051, (K), where K = {(G, m) € UyOM(¢)| G(1,1) = 0}
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By Theorem 2-IV.3, 13,4 factors through 63,4, and m o 3,4 is the restriction of
ng to (A x 2¥)*. Then by setting ¢ to be the restriction of 63,4 to A*, we have the
desired result. Q.E.D.

Let V be a set of first-order variables that does not include the variable z; let w be
a (VU {x})-structure in which all the variables of V appear to the left of the position
containing x. Denote by w’ the prefix of w consisting of the letters to the left of the

position that contains the variable z.

Lemma 5-1I1.2 ([Str94]). Let ¢ be an FO[<] expression whose free variables are
in V. Then, there exists a formula ¢[< x| with free variables in V U {z} such that,

with w, w' as above,

w ¢[< 1] &= ' = ¢

Proof: The proof proceeds by induction on the structure of the formula ¢. If ¢ is
an atomic expression, we take ¢[< x] to be itself. The desired result also holds for the
following two cases, which are easily verifiable. Take (¢A))[< z] to be ¢[< ] AY[< z]
and (—¢)[< z] to be =(d[< z]).

If ¢ is of the form Jy1) then we set ¢[< x| to be

Fy((y < =) AY[< z]).

Let us assume that w satisfies the stated property, with the variable x occurring in

the k** position. If

w = ¢[< 2,

then by adjoining the variable y to any position to the left of that occupied by x, we

obtain a new structure w such that

@ E ¢[< zl.

By inductive hypothesis, the prefix w’ of w of length k — 1 satisfies

7 .



CHAPTER 5 Automata and Logic 76

Now, by removing the variable y we arrive at
w' = Iy
For the converse, suppose
w' = Iy,

where w' is the prefix of w of length k—1. Variable y can be adjoined to some position

of w' to obtain a structure w’ such that
w' = .
If v is the suffix of w of length |w| — k + 1, then by the inductive hypothesis
w'v = Y[< ).
Removal of the variable y yields
w=w'v = Iy((y < z) AY[<z]).
Q.E.D.

The formula ¢[< z] is called the relativization of ¢. Relativizations of @[> z],

¢[< z] and ¢[> x] can be defined similarly.

Lemma 5-111.3 ([Str94]). Let M be a finite monoid such that every language L C
A* recognized by M is defined by a sentence of FO[<]|. Then every language in A*
recognized by the block product UyOM is in FO[<].

Proof: Suppose M satisfies the hypothesis of the lemma. The block product
U,;0M is isomorphic to a bilateral semidirect product V*xM, where V is idempotent

and commutative. If L C A* is recognized by a homomorphism

v:A* = VExM,
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then there exists T C V*xM such that L = v~ (7). We need to show that for each

(v,m) € VkxM, v~1(v,m) is defined by a sentence ¢, ) of Tg11. Then

L= \/ ¢(v,m)~

(v,m)€T

If a € A, we denote by v, the left-hand co-ordinate of v(a). Let m be a projection

homomorphism from V*+M onto M. Then for w € A*, we have:

moy(w)=m
v(w) = (v, m) =
Zw:wlawu T o ’y(wl) “ Vg T O ,.y(w//) = .

By hypothesis, 7 o y(w) = m if and only if w = d,,, where ¢,, is a sentence of Xj.
Since V is idempotent and commutative, the second equation depends only on the
set of summands that appear, and thus w satisfies the second condition if and only if

it satisfies a boolean combination of the conditions of the form
w = w'aw” (5.2)

where T oy(w') =m’ € M and moy(w”) =m” € M. A condition 5.2 is expressed by

the sentence
32(Quz A Oy [< ] A S [> ]),

where 0, [< z] and 6,»[> z] are the relativized formulee of Lemma 5-1I1.2. Thus L

is defined by the conjunction
BC(32(Quz A Sy [< 2] A 6y [> 2])) \ 6,
where BC stands for boolean combination. Hence L € FO[<]. Q.E.D.
Theorem 5-111.4 ([MP71]). Let L C A* be a language and M (L) a monoid that
recognizes L. Then L € FOI[<] if and only if M(L) is finite and aperiodic.

Proof: Let us first assume that M (L) is finite and aperiodic. By Theorem 4-V.1,

M(L) < U, 0,0 (U,0{1}) -- ) (5.3)
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and by Theorem 2-IV.3, L is recognized by the block product above. Since the only
languages recognized by the trivial monoid {1} are ) and A*, a repeated application
of Lemma 5-II1.3 leads to the desired conclusion: L € FO[<].

Conversely, let ¢ be an FO[<] formula. We shall prove by induction on the con-
struction of ¢ that N(¢) is aperiodic. (We use notation established in the beginning
of this section. If ¢ is a sentence, then M(¢) = N(¢) since V = 0.)

Base case: ¢ is an atomic expression. Then N(¢) is trivial and therefore aperiodic.

For the inductive step, we claim that aperiodicity is invariant under the boolean
operations as well as existential quantification. The former is given by Proposition
3-V.1 and the fact that the aperiodic monoids form a variety. The latter follows from
Lemma 5-I11.1 and the fact that if M is aperiodic, then U;0M is also aperiodic (by
Lemma 4-111.3). Q.E.D.

Corollary 5-111.5. There is an algorithm to decide whether a given reqular language

L is in FO[<].

Proof: The multiplication table of the syntactic monoid of L can be effectively
computed and analyzed for the presence of a non-trivial group. The latter would
indicate that L ¢ FO[<] since an aperiodic monoid contains no non-trivial groups.

Q.E.D.

5-1I11.1 A Hierarchy in FO|[<]

In this section we show that the logical hierarchy ¥ of FO[<] is infinite.

Let A = {a,b} and let By be the family of atomic expressions of FO[<]. For k > 0,

Bi1 denotes the family of boolean combinations of the expressions of the form
S R=r 0

where r > 0 and ¢ € By. We shall also use By to denote the family of languages in
A* defined by the sentences of B.
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Theorem 5-I11.6 ([Tho82]). For all k > 0, By, is strictly contained in FO[<].

Proof: We prove the theorem by exhibiting a language contained in FO[<], but
not in By. The proof is split into Lemmas 5-1I1.7, 5-II1.8 and 5-TI1.9.

Let £ > 1 and let L be the set of all w € A* such that for every prefix v of w,
0 < |v|e —|v]o < k.

Ly, is a regular language. It’s minimal automaton for the case £ = 3 is pictured in

the fig. 5.1.

o

Figure 5.1: The minimal automaton of L3 over A = {a, b}.

Lemma 5-II1.7. L; € FO[<].

Proof: By Theorem 5-1I1.4, establishing the aperiodicity of M (L) will show that

L, € FO[<]. Suppose v € A* is a word such that |v|, # |v]s. Then v**! maps all
states of the minimal automaton to the unique nonaccepting state. If, on the other
hand, |v|, = |v|p, then v and v? induce the same transition of the set of states of the
k+1 —

minimal automaton of Lj. Thus we have that for every word v € A*, v"" =, v

and hence, M(Ly) is aperiodic. Q.E.D.

k42

To show that Ly & B, we define for each m > 1, a sequence of triples of words in

A*:

{(Um,ra Um,ry wm,r) }1"20»
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where
um,O - 1) Um,0 = a, wm,O - ba
— 2m — —
Um,1 - (ab) ) Um,1 = Um,10Um,1, W1 - um,lbum,la

— 2m _ —
Um,r+1 —(vm,rwm,r) ) Um,r+1 —Um,r+1aum,r+la wm,r+1 —um,r+lbum,r+l-

Lemma 5-II1.8. For ¢ € By let 6, : A* — M($) be the restriction of the syntactic

morphism of ¢ to A*. Then there exists n > 1 such that for all m > n,

0 (Umk) = Op(Vmi) = O(Win )-

The proof is by induction on k.
Case k = 0: ¢ is an atomic expression and every word in A* is mapped to the identity
of M(¢).

Inductive step: Suppose the proposition is true for some k£ > 0. Then let ¢ € By,

and

¢ = dzy,-- -z,
where ¢ € By,. By the inductive hypothesis, there exists n > 1 such that for allm > n
Oy (tmk) = Oy (Vm) = Oy (Wn,r)-
By Theorem 5-II1.4, there exists s > 1 such that for all w € A*,
Op(w?) = Oy (w ™).

Let n' = max(n,s) and m > n’. Observe that since up, = z™ for some word z,

04(um) is idempotent:

O (umpr) = 0y
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Now suppose
21Um, k+122 ): ¢.
Substituting U g+10Um k+1 0T U k41,
21U 10U k4122 = O,
and (Vp W )2 fOT Uy o1,
z1(vm,kwm,k)wa(vm,kwm‘k)w22 E é.

Yet another substitution and the idempotence of Oy (un, k) gives

21 (U k QUi ;DU ) QU2 T (U O DU i) 22 = .

To obtain a structure that satisfies ¥, we first adjoin the variables z1,...,z, to po-

sitions of the structure displayed above. Observe, that at least one of the factors of

2r+1
m,k

U, in the block u will not be affected. Since by the inducﬁive hypothesis,

Op (Um k) = Op(Wm k) = Op (Um kbUm k),

the non-affected factor u,,; can be replaced by u, xbum  and thereby another struc-

ture satisfying v is obtained. Now, removal of variables x4, ..., z, yields:

21 (um,kaum,kbum,k)2maufn,kbufn,k(um,kaum,kbumyk)zm 2z = ¢
for some t,t' > 1. We use the idempotence of 04(un, x) again to obtain

m+1
21 (VWi i)® 'z = @
And since 6y (um k+1) is idempotent as well,
2m+1
21Umk+122 = 21 (Um,kwm,k) 22 |= 03

Thus we have shown the implication:

ANUmki172 E @ = 21Umpt122 E 6.
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For the converse, let us suppose
Z1Um k+122 ': .
By the idempotence of 04(um k+1) we first arrive at

21U k+1Um k4122 F O,

and then
2r+1
21 U k1 Uy o1 Um 122 = @
We adjoin the variables xy, ..., z, to positions in the structure above and thus obtain

a structure that satisfies 1. Since one of the 27 41 consecutive occurrences of U, k41
is unaffected, by the inductive hypothesis we can replace it by um k+10Up k41 and
obtain another structure satisfying ¥. Once the adjoined variables are removed, we

have
21Um,k+1ufn,k+1auf;z,k+1“m,k+1zz = ¢,
for some t,t' > 1. It follows from the idempotence of 0 (wm k+1) that
21Um k4122 = 21U k4 1Glm k1122 = O
Therefore, we have z1um x+122 = ¢ = 21Umi+122 = ¢ and hence,
Umk+1 =¢ Umk+1-
A similar argument will lead to the conclusion that
Umk+1 =¢ Wmk+1-

To complete the proof of the lemma, suffice it to show that the stated property
of formule in By, is preserved under boolean operations. Let ¢, 1 be expressions of

FO[<] such that the following equations hold, respectively, for m > n, and m > ny.

9¢(un¢,k+l) = 9¢(Un¢,k+1) = 9¢(w"¢»k+1)

Op(tny h41) = Op(vng k1) = Op(Wnypr1)-
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If we choose n = max(ng, ny), then for m > n:

Umk+1 Zpay Umk+l Zgay Wmk+1,
which proves that the property is preserved under conjunction. Since 64 = 6.4 (see
proof of Proposition 3-V.1 on page 47), it is also preserved under negation and we
have the desired result. Q.E.D.
Lemma 5-111.9. L; € B;.
Proof: One can show by induction on k£ that for all £ > 1,
|Um,k|a = |Um,k\b,
and for all prefixes v of uy, k,
0< |v|a—|v]p < k.

Therefore for all m,k > 1, up,x € Lg. By Lemma 5-1I1.8, w,, k is also in Ly, but from
the definition of wy,, it contains a prefix in which there are more occurrences of b

than a. So, clearly, wp, , & Ly for any m, k. A contradiction. Therefore Ly & Bj and
Ly € FO[<] \ By.

Q.E.D.
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Piecewise Testable Languages

6-1 Introduction

Our presentation of piecewise testable languages hinges upon one of the fundamental
results in the theory of formal languages: the theorem of I. Simon [Sim75]. Its proof
relies on another remarkable combinatorial result involving words whose importance
itself warrants attention.

Simon’s theorem enables us to describe the variety of languages corresponding to
the variety of monoids J. These languages also occupy a special place in the logical

hierarchy of languages, as we shall see in the next chapter.

6-11 Simon’s Theorem

Let A be an alphabet. Recall that a word a;...a; € A* is a subword of a word v
of A* if there exist words vg,v1,...,vx € A* such that v = voayv; ... agvk. Let R(v)
denote the set of subwords of v and R<,(v) denote the set of subwords of length less
than or equal to n of the word v. For each integer n > 0, we define an equivalence

relation ~, on A* given by

U~ v = Rep(v) = Rep(u).
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One can easily verify that ~, is a congruence of finite index with the number of
equivalence classes bounded by 2V, where N = [{w € A*| |w| < n}|.

A language is piecewise testable if it is the union of classes modulo ~,,, for some
n € IN. In other words, L is piecewise testable if there exists an integer n such that
one can test whether a word w belongs to L by simple inspection of its subwords of

length at most n.

Proposition 6-11.1.
A language L C A* is piecewise testable if and only if it is in the boolean algebra

generated by the languages of the form A*a;A*as ... A*a, A*, wheren > 0 and a; € A.

Proof: Let u be a word of A*. We then observe

{ve A" v~y u} =

N A*alA*ag...A*amA*)\( U A*alA*ag...A*amA*).

(al ----- am) (‘11 ----- am)
0<m<n 0<m<n
ay-amER(u) ayamER(u)

From this it follows that if L is a union of classes modulo ~,, L is in the boolean
algebra generated by the languages of the form A*a;A*ay ... A*a, A*.

For the converse, suppose L = A*a;A*ay ... A*a,A* and u € L. Then a;...a, €
R(u). Therefore if u ~, v, then a;...a, € N(v) and hence v € L. This shows that

L is saturated by the relation ~,, and thus L is a finite union of classes modulo ~,,.

Q.E.D.

We shall now turn to establishing the properties of the congruence ~, which

provide a basis for the syntactic characterization of piecewise testable languages.
Proposition 6-11.2. Let u,v € A* anda € A. Then
UAY ~op—1 UV = UG ~p UV QU ~py V.

Proof: Let us prove the stated property by showing the validity of its negation,

i.e. we will show

U@ Ly UA QU by U = uav o1 UL, (6.1)
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Assume the antecedent in 6.1. Then there exist a word z in A*, |z| < n, such that z
is a subword of ua, but z is not a subword of u. Note also, the following factorization
holds: = = 2'a.

Likewise, there exist a word y in A*, such that y € R(av) Ay & R(v) and y = ay/’.
Therefore the word z’ay’, whose length is |z'ay’| < 2n — 1, is a subword of uav but

not of uv, as was to be shown. Q.E.D.

Let u be a word over the alphabet A. Then by a(u) we denote the set of all letters

appearing in u:

a(u) ={a € A| |u|, > 0}.

Theorem 6-11.3. Let u,v € A*. Then

U vu <= Jug, .. uy €A (u=upcuy)
Aa(v) € au) € -+ C alun)) |
Proof: The result is trivial if u = € and therefore we can proceed with the
assumption that u € AT,
We prove the theorem in both direction by induction on n. First, we show that

the condition is necessary.

Base case: If n = 1, we have
u e~ vu = Reg(u) = Reg(vu) = a(u) = alvy) = alv) C alu).

Inductive step. We assume the condition is necessary for some n > 1, i.e.

Uy Uy ~op VU Uy, = (V) Ca(uy) - C aluy)

and show that it is the case for n + 1.
Suppose the congruence u ~,+; vu holds and let u,,; be the shortest right factor
of u such that a(u,y1) = a(u). Since u € AT, a(u) is non-empty and therefore

Ungy1 € AT, Thus, we can assume u,,; = au' for some a € A and v’ € A*. Then
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U = Wuny, = wau'. By definition, u,4; is the shortest right factor of u containing the
same set of letters as u. Therefore the letter a cannot appear in v, since otherwise
u’ would be the shortest such.

We now show that w ~,, vw. Let z be a word in A* such that z € R<,(vw). Then
za € Reppr(vwa) = za € Repp(vu).

Since by induction hypothesis u ~,1 vu, xa is a subword of © = wau’ and, since a
is not a letter of v/, za is a subword of wa. Thus z is a subword of w.

For the converse, we first note that every subword of w is a subword of vw, and
therefore w ~,, vw, as stated. By the inductive hypothesis, there exist uy, ..., u, € A*
such that w = u;---u, and a(v) C alu;) C -+ C au,). Since u = wu,4; and
a(uy,) C a(u) = a(upy1), we have the desired result.

Let us now prove that the condition is sufficient.

Base case: n =1, then u; = u and a(v) C a(u) implies a(u) = a(vu), i.e. u ~1 vu.

Inductive step. Assuming the condition is sufficient for some n > 1, i.e.

a(v) Cafuy) €+ Ca(up) = Up- Uy ~p VUL Uy,

we shall prove it holds for n + 1.

Suppose u = uy - -Upy1 and a(v) C a(u;) C -+ C a(upyr). Then avu) =
a(u) = a(uny1), i.e. the set of letters appearing in the factor u,,; is identical to that
of vu. Let z € AT be such that z € Repy1(vu) and let 2’ be the longest right factor
of x such that 2’ is a subword of u,,;. Then x admits the factorization z = z"a’,
where z” is a subword of vu; - - - u,. Since u,; contains all the letters of vu, it must
contain all the letters of x at least once. Therefore, 2’ is non-empty. By definition,

|z| <n+1 and since |z'| > 1, we have |2”| < n. Thus
2" € Ny (vug -+ up).

Since uy - - Uy, ~p VU - - U, by the inductive hypothesis, we conclude that z” is in

fact a subword of u; - - - u,. Hence, x = 2”2’ is a subword of u = u; - - - Up41, SO

Vo[ (z € Repy1(vug - tUnp1) AT F €) = & € Repyq(ug - Uppr) |-
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Conversely, every subword of u is clearly a subword of vu and therefore v ~, 41 vu.
Q.E.D.
Corollary 6-I1.4.
Vu,v € A*[ (uwv)™u ~y, (uv)™ ~p v(uv)™ |

Proof: The congruence (uv)® ~, v(uv)" follows immediately from Theorem 6-

I1.3. The derivation of the expression (uv)™ ~, (uv)™u is similar. Q.E.D.

The following is a remarkable combinatorial property of the congruence ~,,.

Theorem 6-I1.5 ([Sim75]).
zepy = Jh[zeRM)AYyERM) AT~y b~y y

Proof: By induction on k = |z| + |y| — 2|z & y|, where |z @ y| is the largest left
factor common to both x and y.
Base case: k = 0, then z = y and we can take h = z = y. The cases € X(y) or
y € N(z) are trivial and therefore excluded from further consideration.

Inductive step. Let

T = uav and y = ubw,

where u,v,w € A* and a and b are two distinct letters of A. We shall show that
ubw ~,, ubav or uav ~, uabw.

Suppose neither of the above assertions is true. Since ubw = y ~,, x and uwav =
z € N(ubav), there exists a word r such that r € N, (ubav) and r ¢ N(ubw). Similarly,

there exists a word s such that s € R<,(uabw) and s € R(uav). Let

r =ribry, wherer; € X(u) and 75 € N(av)

s =s1as2, where s; € R(u) and sp € N(bw).

From this we deduce that 76 ¢ R(u) (otherwise r = ribry € N(uav), and since

uav = x ~y, y, r would be a subword of y). Similarly, sja & R(u).
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Since 5 € R(av), 2 admits factorization o = r§ry with rj = € or r5 = a and

ry € R(v). And likewise, since sy € R(bw) we have so = shs), where s =€ or sy =b

and s, € X(w). Thus
|r1bsy| + [s1ary| < |riass| + |s1brs
= Jrf+ 1
< 2n,
whence

|r1bsy| < m or |s1ary| < n.

Suppose for example |r1bsy| < n, then r1bsy € Rep,(ubw) and since ubw =y ~, & =
uav, we have r1bsy € Rep(uav). But r1b & R(u). Therefore bsy € R(v), which in turn
forces s, to be a subword of v. Thus s = sjass is a subword of uav = z, contradicting
our assumption. Therefore one of the assertions ubw ~, ubav or uav ~, uabw must

be true. Suppose for instance, r = uav ~, uabw. Then

luav| + Juabw| — 2|uav ® uabw| < |z|+ |y| + 1 — 2|ual

< lzl+lyl+1-Q2lzdy|+2)
< o[+ yl -2z y|-1

e
< k.

By the inductive hypothesis, there exist h such that z = uav is a subword of h; uabw

is a subword of h and = ~, h ~, uabw. Since y is a subword of uabw, we conclude

T~ h~py QED.
Theorem 6-I1.6 ([Sim75]).
A language L C A* is piecewise testable if and only if its syntactic monoid is [J -trivial.

Proof: By definition L is the union of classes modulo ~,, for some positive integer

n. Thus L is recognized by the quotient A*/~,, which by Corollary 6-I1.4 satisfies

(pq)"p = (pg)" = q(pq)"
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and therefore is [J-trivial (Proposition 3-IV.2). Since M (L) divides A*/~,, M(L) is
also J-trivial.

For the converse, let M be a J-trivial monoid and let L C A* be a language
recognized by homomorphism p : A* — M that we shall denote by v — u. We shall
show that L is the union of classes modulo ~5, ;, where n is the maximal length of

chains of elements of M for the ordering <;. In other words, n is such that if
My <g My g -0 Sg My

is a chain of n + 1 elements of M, at least two of them are equal. Suffice it to verify

the implication
I~ 1Yy = T=1.

On the basis of Theorem 6-II.5 we may take x € N(y). Note further that if
z € N(h) and h € N(y) we also have x ~y,_; h. This enables us to assume that
x = wv and y = wav, in which case ua ~, u or av ~, v (by Proposition 6-11.2).
Suppose av ~, v. Then by Theorem 6-I1.3, there exist v;,...,v, € A* such that

v=u;---v, and {a} C a(v;) C -+ C a(v,). Consider the chain
U1~ Un <7 .. <7 Up_1Us <7 Up <g L

From the choice of n there exist 1+ < 7 such that

Let b € a(v,). Then v, = v)bv]' and we have

Ty <y bl vn <g U vy <g TR

and since M is J-trivial

Therefore
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for all b € a(v,) and consequently

U=V Uy =0QU1 Uy = Q.

From this we conclude that

Q.E.D.

Corollary 6-11.7. For every alphabet A, A*J is the boolean algebra generated by the
languages of the form A*a A*as A* - - - A*a, A*, where a; are letters of A.

We will have more to say about piecewise testable languages in the next chapter.



Chapter 7

Quantifier Complexity of the
Straubing-Thérien Hierarchy

7-1 Introduction

A language L C A* is called star-free if it can be constructed from finite languages by
applications of boolean operations and concatenation only. Star-free expressions over
a given alphabet A are built up from constants §}, ¢ and a € A (denoting the empty
set, the singleton with the empty word and the set {a}, respectively) by means of the
operations U, N, 7 (for complement with respect to A*) and concatenation dot -.! For

example, L = (ab)* over A = {a,b} is star-free since
(ab)* = ((aA* N A™b) \ (A%aaA* U A*bbA™)) U {e}.

The aforementioned operations naturally correspond to the logical connectives V, A,
= and 3, which makes it easy to transform a star-free expression into a first-order
formula. For example, over A = {a,b,c} the expression A*ab(A*aA*) defines the

same language as

JzTy(S(z,y) A Quz A Quy A —T2(y < 2 A Q,2)),

1We note that (a) the expression A* is admitted as abbreviation of § and (b) the concatenation

dot - is commonly omitted when the context is clear.
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where S(z,y) is an abbreviation of x < y A 73z(z < 2 A z < y). A famous theorem

due to R. McNaughton and S. Papert [MP71] shows also the converse translation:
Theorem 7-1.1. A language is star-free if and only if it is definable in FO[<].

Within the class of star-free languages, a number of hierarchies have been con-
sidered in the literature. Below we define one of them, called the Straubing-Thérien
hierarchy, whose levels measure the concatenation depth of defining star-free expres-
sions. It was first implicitly suggested by D. Thérien in [Thé81] and later proposed
by H. Straubing in [Str85].

For a given alphabet A we set:

AV = {04},
A* Vi1 = {L C A*| L is a boolean combination of languages
of the form LyayLiay - --anLy, (n > 0)
L; e A*Vy and a; € A,n > i > 0}.
Let
AV =] AV,
k>0
A language L C A* is star-free if and only if there exists a non-negative integer k
such that L € A*Vy. The dot-depth of L is then the smallest such k. The levels of the

Straubing-Thérien hierarchy have been characterized in terms of quantifier-prefixes

of formulee in FO[<] (cf. [PP86]):

Theorem 7-1.2. A star-free language belongs to A*Vy, if and only if it is definable

by a boolean combination of ¥y sentences in FO[<].

For k > 1, let us define subhierarchies of A*V as follows: for all m > 1, let

AVem = {L C A* L isa boolean combination of languages
of the form LoaiLias - - apLy, (m > n > 0)
Lie A*Vy_y and a; € A,n> 1> 0}.
We have:
AV = AV ,

m>1
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A*Vk’m g A*Vk_f.l,m and A*Vk,m g A*Vk,m—i—l-

In this chapter we analyze the first two levels of the Straubing-Thérien hierarchy.
Level A*)); is the class of piecewise testable languages ([Sim75]) whose algebraic

description was presented in the previous chapter.

7-I1 A subhierarchy in A*V,

This section examines a logical characterization of a natural subhierarchy in A*V,
based on the length of a quantifier block. By 3*) we denote the set of languages

L C A* expressible by a sentence
¢ = 31’1355’2 v Elka,

where 1) is a boolean combination of atomic formula of first-order logic in the signa-
ture with < (but not S), i.e. x =y, z < y and Q,z (see section 1-IV.3). BC(I*)) de-
notes the set of languages corresponding to the boolean combinations of 3%*)-formulze.

We begin with the case of BC(3).

7-11.1 Case of BC(3)

Let J; denote the variety of idempotent and commutative monoids (or semilattices).
We denote by U; the monoid with two elements {0, 1} under the usual multiplication

(1-0=0-1=0-0=0and 1-1=1). We next prove the following result.
Theorem 7-I1.1. The variety Jq s generated by the monoid U;.

Proof: Let V be the variety generated by U;: V = (U;). By Theorem 3-11.2 V is
defined by a sequence of equations. Since U; € J1, V is contained in J; and therefore

satisfies the identities
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If V # Jq, we can find an equation u = v satisfied by V which cannot be derived from
7.1 and 7.2. Let us choose such an equation with the minimal total length of v and v.
Observe that in this case v and v must contain at most one occurrence of each letter
since otherwise we could use identities 7.1 and 7.2 to obtain an equation equivalent
to u = v but shorter. Let x be a letter of u. If we take y = 1 for every y # x in u = v,
then z = z/"l> and (as z = 1 is not an equation of U;) we have |v|, > 0. There is
therefore an occurrence of x in v and the same argument shows that that every letter
of v has an occurrence in u; consequently v and v contain exactly the same letters.
It follows from this that u = v can be easily deduced from 7.1, which contradicts the

hypothesis. Therefore V =J;. Q.E.D.

We denote by J; the variety of languages corresponding to Jj.

Theorem 7-11.2.
For every alphabet A, A*J: is the boolean algebra generated by the languages of the
form A*aA* where a is a letter. Equivalently, A*J, is the boolean algebra generated

by the languages of the form B* where B is a subset of A.

Proof: The equality of the two boolean algebras in the statement results from
the formulee

B*=A"\ |J Aad" and ATaA"=A"\(4A\a)".
a€A\B

Since J; = (U;), we apply Theorem 3-I11.2 to describe A*J;. Let ¢ : A* — U, be an
arbitrary homomorphism and let B = {a € A| ¢(a) = 1}. Then clearly, ¢~1(1) = B*
and ¢~1(0) = A* \ B*, which establishes the theorem. Q.E.D.

Corollary 7-I1.3. BC(3) = J;.

Proof: Languages in A* defined by the sentences of FO[<] of the form 3z,
where 1 is a boolean combination of the atomic formule, are of the form A*aA*

where a is a letter. Q.E.D.



CHAPTER 7. Quantifier Complezity 96

7-11.2 The Ehrenfeucht-Fraissé Game

We investigate the question of 3*)-definability employing an interesting model-theoretic
technique: the Ehrenfeucht-Fraissé game. It is perhaps the most versatile method in
proving non-definability in systems of first-order logic.?

Let ¢ be an FO[<]-sentence. If ¢ is a boolean combination of the ¥j-sentences
®1, - .., On, we define the quantifier rank qr(¢) to be the maximum number of quan-
tifiers occurring in the leading block of one of the formulee ¢;.

Let m = (my, ..., my), where £ > 0, be a sequence of positive integers. We define
the set of m-formulee of FFO[<] by induction on k: if k = 0, it is the set of the boolean
combinations of the atomic formule, and for m = (m,my, ..., my), an m-formula is

a boolean combination of formule

dzy - T,
where ¢ is an (my,...,my)-formula. We write u =5 v if v and v satisfy the same
m-sentences of FO[<]. For m = (my,...,my), the m-formulee of FO[<] are the set

of boolean combinations of formule ¢ such that ¢ € ¥y and gr(¢) < m;.

Let us now describe how to play the Ehrenfeucht-Fraissé game (short: EFG). For
a sequence m = (mq, ..., my) of positive integers, where k > 0, the game Gz, (u, v) is
played between two players called Spoiler and Duplicator (as suggested in [FSV95]) on
the structures u and v. Spoiler will attempt to prove that the structures differ while
Duplicator will try to show them equal. There are k rounds carried out as follows.
At the 7** round Spoiler chooses, in u or in v, a sequence of m; distinct positions;
Duplicator, in turn, picks m; positions in the other structure. After k£ rounds they
concatenate positions chosen in u into a sequence p = py, ..., p,, where n < ¥ m;,
and similarly positions picked in v are assembled into a sequence § = ¢i,...,qn.
Duplicator has won the game if the map p; — ¢; respects the relation < and predicates

Qq, a € A, ie. if

pi<'p; <= ¢<"¢; and WP = Q.4
2The reader is referred to [EFT94] or [EF95] for more background.
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where a € A and 1 < 4,5 < n. In other words, Duplicator wins if the two subwords
— one in u given by position sequence p and the other in v given by § - coincide.
Otherwise Spoiler wins.

For a given number of rounds &, an initial configuration (u, v) can be represented
by the tree of height 2k of all possible sequences of play. Since a game cannot end in
a tie, we mark the leaves of this tree according to the winner: 'S’ or 'D’. The interior
nodes are then labelled recursively (beginning at the leaves) in the following manner.
A node corresponding to a play by Spoiler is labelled 'S’ if and only if it has a child
marked ’S’; it is labelled 'D’ otherwise. A node corresponding to the Duplicator’s
move is labelled ’D’ if and only if at least one of its children is labelled 'D’; otherwise
it is marked ’S’. A label at the root thus determines who has a winning strategy. The
fact that Duplicator possesses a winning strategy in G (u, v) is denoted u ~gz v.
Naturally, u ~;; v defines a congruence on A* which we denote also by u ~; v.

The above version of the Ehrenfeucht-Fraissé game was proposed by W. Thomas
in [Tho84]. The original EFG is the special case of Gy (u, v) with m = (1,...,1).
Fraissé showed in the 1950’s that for a non-negative integer r the relations =, and ~,
coincide on relational structures of finite signature; later Ehrenfeucht introduced the
game theoretical formulation of ~,. J. G. Rosenstein [Ros82] and R. Fraissé [Fra72]
contain a more detailed discussion of model-theoretic games.

For our version of the game we have the following result which will be used as a

tool in the next section.

Theorem 7-11.4 (Ehrenfeucht-Fraissé Theorem, [Ehr61]).

For allm = (mq,...,mg) withk >1 and m; > 1, (1 <1i < k), we have:

U =m0 < U ~m V.

7-11.3 Application of EFG to BC(3()

The following is a very trivial application of the powerful EFG idea.
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Theorem 7-I1.5.

Proof: Let A = {a,b}. Consider the language L = A*(aA*)™*'. L € 3(™+Y since
m m+1

L=3z--- HCL'm_H /\(CL‘, < l’i+1) /\ ani-
=1

=1

We claim that L ¢ BC(3™). Suppose the claim is false, i.e. there exists a sentence
¢ € BC(3™) that defines L. Then u = ¢ if and only if |u|, > m + 1. Since a one-
round game G, (a™t!, a™) is easily won by Duplicator who just picks m positions

in the available structure, we have for all m > 0,

u = g™t ~my @™ =V

and thus v | ¢. But |v|, = m, a contradiction. Q.E.D.

7-11.4 Connection with matrices

We denote by M,, n > 1, the set of all n X n matrices over the boolean semiring
B = {0,1} (where 1+1=1) and by K, — the set of all upper triangular matrices in

M, all of whose diagonal entries equal 1. That is,

my; = 0 forl<j<i<n
K,=<{meM,
my; = 1 forl<i<n

Since K, is closed under multiplication of matrices, it is a submonoid of the multi-
plicative monoid M,,. We set U to be the set of all finite monoids that are divisors

of K, for certain n:
U={M|dne N : M < K,}.

It’s easy to see that U is closed under division. It is also closed under direct product.

To establish this, consider an injective homomorphism ¢ : M, X M,, — M., given
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by
(
0 ifi:<m andj>m,
0 ift>m andj<m,
¢ii(p, @) = < - ‘
Dij iti<m andj<m,
| Gi-mj-m ifi>m andj>m.

Observe that ¢ embeds K, x K, into K, n:

Since
N1 < Mi ANy < My = Ny X Ny < M; x M,y

we conclude that U contains the direct product of any two of its members. Thus we

have:
Lemma 7-I1.6. U is a variety of finite monouds.

If V is a variety of finite monoids and A is a finite alphabet, then we denote by
A*V the family of all recognizable languages in A* whose syntactic monoid belongs
to V. It is well known that every variety of finite monoids is generated by the
syntactic monoids it contains (cf. [Eil76], Ch. VII). Thus if Vi, V, are varieties
of finite monoids, V; C V, if and only if A*V; C A*V, for every finite alphabet
A. This enables us to demonstrate that two varieties are equal by showing that the
corresponding families of recognizable languages are equal. In case of the variety U

we have the following theorem.

Theorem 7-I1.7 (Straubing, [Str80]).
A*U 1is the boolean closure of the family of languages of the form A*a;A*---a,A*,

where a; € A, 1 <i<n.

Theorem 6-I11.6 (The Theorem of Simon) and Corollary 6-I1.7 assert that this is

precisely the family of languages whose syntactic monoids belong to the variety J,



CHAPTER 7. Quantifier Complezity 100

yielding the equality:
Uu=1J.
This class of languages is also defined by

| Bc@@™)

n>0
The next theorem summarizes our analysis of the first level of the Straubing-

Thérien hierarchy.

Theorem 7-11.8. The following conditions are equivalent:
1. L e A"V,
2. L € BC(3®) for some k > 0
3. M(L) is J-trivial

4. M(L) < K,, for somen >1

7-II1 Characterization of A*);

The polynomial closure of a class of languages £ of A* is the set of languages that are

finite unions of languages of the form
LoayLy - - ap Ly,

where the a;’s are the letters and the L;’s are elements of £. By extension, if V is a
x-variety, we denote by PolV the class of languages such that, for every alphabet A,
A*PolV is the polynomial closure of A*)V. We also denote by Co-PolV the class of
languages such that, for every alphabet A, A*Co-PolV is the set of languages L whose
complement is in A*Pol}V. Finally, we denote by BPol) the class of languages such
that, for every alphabet A, A*BPolV is the closure of A*Pol} under finite boolean

operations (finite union and complement).



CHAPTER 7. Quantifier Complezity 101

Example 7-II1.1. Let B be a class of languages defined, for every alphabet A, by
A*B = {B*|B C A}. Then Pol(A*B) is a finite union of languages of the form

Ajar AT -+ a, Ay, (7.3)

where n is a non-negative integer, A;’s are subsets of A for i € {0,...,n} and a;’s are

letters for ¢ € {1,...,n}.

The marked product L = LgaiL; ...a,L, of n languages Ly, Ly,..., L, of A*
is unambiguous if every word u of L admits a unique factorization of the form
UG UL - - * AUy With ug € Lo, uy € Ly, ... ,u, € L,.

The unambiguous polynomial closure of a class of languages £ of A* is the set
of languages that are finite disjoint unions of unambiguous products of the form
LoaiLy ...a,Ly,, where a;’s are letters and L;’s are elements of £. Again, by extension,
if V is a variety of languages, we denote by UPol)V the class of languages such that,
for every alphabet A, A*UPolV is the unambiguous polynomial closure of A*V.

Recall (section 3-IV) that DA is the variety of finite aperiodic monoids whose
regular J-classes are idempotent semigroups (or rectangular bands). We denote by
DA the corresponding variety of languages. By Proposition 3-IV.6, DA is defined by
the identities

(zy)*(yz)*(ey)” = (zy)*  and  2¥ =" (7.4)

We next prove the following result.
Lemma 7-II1.1. J;0J; C DA

Proof: Let N, M € J; be two arbitrary monoids. The block product NOM
is isomorphic to a bilateral semidirect product V x*M, where V is idempotent and

commutative. Let x = (vy, my) and y = (vy, m2) be elements of V*xM. Then using
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additive notation for V we obtain:

Ty (Ulmg + mivy, mlmg)
Ty (U1m1m2 + myUamy + MyMmevy, mlmg)
(zy)? (vimymg + myvamymsy + mymav;my + MyMavy, M1Ms)
(zy)?z (vymyma + Mmyvemyma + MM mymy
+m1m2v2m1 + mimeuy, mlmg)
(a:y)3 (vymimg + mivamamsg + mimevimymy
+mymauamims + mimauims + mimava, MiMs)
(xy)“ (vymyma + myvemyma + Mmymavymyms
+M MoV MMy + MM UMy + MMV, mlmg).
Similarly,
Yy (’Ug?’ﬂl + Moy, m1m2)
yxy (vamimg + mavimg + MiMavs, MyiMmy)
(yz)? (vamymy 4+ Mmauymyimg + MmiMauemy + Mymaevy, MyMmy)
(yx)” (vamama + Mavimimy + Mmimovamymy
+mymavimyms + MyMmaUamy + Mmymauvy, M1My).
And finally,
(xy)“(yx)® = (vimima + myvamims + mymavymymy
+mimavamimy + mimavamy + mymavy, MiMy)
(zy)?(yx)”(zy)” = (vimimg + mivemimg + mimavimymy

+m1mgvgm1m2 + M1MaU1 M2 + mimeovs, mlmz)

= (zy)*.

Clearly, (zy)* = (zy)“*!. Thus

J107J; C [¢¥ = 2¥" and (zy)“(yz)“(zy)* = (zy)*]

and therefore by Proposition 3-1V.6, J;0J; C DA. Q.E.D.

102
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Theorem 7-111.2.
BC(3V) C DA.

Proof: Let L be a language in BC(3Y). Since L € FO[<], M(L) is aperiodic
(Theorem 5-111.4) and by Theorem 4-V.1 M (L) < U;0M’, where M’ again contains
no non-trivial subgroups. U;OM' is isomorphic to V*xM' where V is idempotent

and commutative. Let
v A VaasM'

be a homomorphism such that L = y~1(T) for some T'C V*xM. Then

Let w € A*. By hypothesis L is defined by a boolean combination of the sentences

¢ = aVyy,

where 1) is a boolean combination of the atomic formulee. Suppose % is in conjunctive
normal form. If ¢ contains a clause Q),x, where a is a letter, then w |= ¢ if and only

if w admits a factorization w'aw” with

v E VYy((y < z) AY),
w' E Yy((y > x) A). (7.5)

If ¢ does not contain a clause Q,x, then a position z may be occupied by any letter
s of the alphabet and hence, w = ¢ if and only if w = w’sw” and the condition above
holds.

Therefore w € L if and only if it satisfies a boolean combination of the conditions

of the form
w=wbw",

where b € A and w', w" satisfy 7.5.
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Let 7 be a projection homomorphism from Vs« M’ onto M’. Then moy(w') =m' €
M' and 7o y(w") =m" € M'. Since w' and w” are in BC(3), languages recognized
by M’ belong to A*J; (by Corollary 7-11.3) and hence M’ € J;. Applying Lemma
7-I11.1 we have the desired result. Q.E.D.

Let M, and K, be the sets of matrices defined in section 7-II.4. Consider the
family T,, of all upper triangular n X n matrices over the semiring B = {0,1}. T, is

a submonoid of M,, which contains K,. We set
W={M|IneN: M <T,}.

Evidently W is closed under division. Observe also that the homomorphism ¢ :
M,, x M, — M, defined in section 7-I1.4 maps T, x T, into T;,., and therefore
W is closed under product. Thus W is a variety of finite monoids.

The next theorem describes the family of recognizable languages corresponding to

W.

Theorem 7-I11.3 ([PS81]).
A*W s the boolean closure of the family of languages of the form Aja; A - - - arAj,
where k > 0 and for 1 <i < k: a; € A and A; are (possibly empty) subsets of A. If
A; =0, then A} = {1}.

Proof: Let F denote the boolean closure of the family of languages of the form
specified in the theorem. We first show that F C A*W.

Since A*V is closed under boolean operations for any variety V it suffices to show

that the syntactic monoid of any language of the form
L = Aja AT - - - ap A,

is in W. We shall show that L is recognized by the monoid T;4; by exhibiting a
homomorphism 9 : A* — Ty and a set X C Ty such that ¥~ }(X) = L:

1 if 4 = j and a € A;_q,
Yijla)=¢ 1 if §j = i+1 and a=a,

0 otherwise
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forallae€ A, i,5€{1,...,k+1}. It is easy to verify that if w € A* then ¢;;(w) =1
if and only if there is a path labelled w from state ¢ to state 7 in the nondeterministic

automaton pictured in the figure 7.1.

Ao A Ag
! (3 (3

a ay ax

Figure 7.1: An automaton recognizing L = Aja1 A7 - - - apAj.

In particular,
wl,k+1(w) =1 << we Aja Al ---ap Ay, = L.

Thus L = ¢~1(X), where X = {m € Tyy1| mi 41 = 1}.

To prove the inclusion A*WW C F let us suppose that L € A*W. Then M(L) € W
and there exists n > 1 such that L is recognized by T,,. This in turn means there exist
a homomorphism 7 : A* — T, and a subset X of T,, with the property L = n~!(X).
We need to show that n~'(X) € F. Since

T (X) = J (@)
zeX
and since F is closed under boolean operations, it suffices to prove that n='(x) € F

for each z € T,,.

Nz = ) {wlng(w) = 2y}

1<i,j<n
= N {wlng@) =13\ |J {wlnw) =1}
{(%])' il)i]‘Z].} {(Z)])| :131‘_7"—'0}

Thus it suffices to show that each set of the form {w| n;;(w) = 1} belongs to F. Let
Apy = {a € A| nu(a) =1} and let Q;; be the set of all strictly increasing sequences
(9, ... ,4) such that 79 = ¢ and i; = 5.> Then

{wl g (w) - 1} = U A:OioAioilA;il U A"k—lzkA:klk

(G0, 1) €EQ4;5
31f ¢ > j then Q;; is empty. If ¢ = j then Q;; consists of the single sequence (3).
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A A7 ;. 1s a finite union of the form

-~ ap AL, it follows that {w| n;j(w) =1} € F. Q.E.D.

ik

Since each language A7 ; A, Al

10%0 11191
* *
A’ioioa’lAilil

Th—1%k

Let £ and R be the varieties of languages corresponding to the varieties of £-trivial
and R-trivial monoids respectively; and let B be the family of languages defined in

Example 7-II1.1.
Theorem 7-I11.4 ([Arf91]).
Pol(J1) = Pol(J) = Pol(R) = Pol(L) = Pol(D.A) = Pol(B).

Proof: From the definitions of the corresponding varieties of monoids we have

two series of inclusions:
JJCJCRCDA and J;CJCLCDA. (7.6)

Since A*J is the boolean algebra generated by A*B (Theorem 7-11.2), we have the

inclusion
Pol(A*B) C Pol(A* 7). (7.7)

Schiitzenberger showed (cf. [Sch76]) that every language of A*DA is a finite disjoint

union of languages of the form
Ajar1 AT .. an A, (7.8)

wheren > 0, Ao,... ,An C A, a1,...,a, € A and where the product Aja; A} ...a, A%
is unambiguous. The form 7.8 is the same as 7.3 with an added restriction. From

this result we conclude that
A*DA C Pol(A*B) (7.9)
and therefore
Pol(A*DA) C Pol(A*B). (7.10)

The theorem then follows from the inclusions 7.6, 7.7 and 7.10. Q.E.D.
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Theorem 7-II1.5 ([Tho82], [PP86]).

1. A language is in BC(Xy) if and only if it is in V.
2. A language is in Xyy1 if and only if it is in PolVy.

3. A language is in I if and only if it 1s in Co-PolVy.

Theorem 7-111.6. The following conditions are equivalent:
1. L e A*V,
2. L € BC(%,)
3. M(L) < T, for somen >1

Proof: (1 <= 3). By definition A*V, is the boolean-polynomial closure of
A*Vy, that is of the family of piecewise testable languages. Applying Theorem 6-11.6
(The Theorem of Simon) and Corollary 6-I1.7 we obtain A*V, = BPol(J). It follows
from Theorem 7-II1.4 that a language L belongs to A*); if and only if L is a boolean

combination of the languages of the form
Aja1 AT -+ - an A,

where 7 is a non-negative integer, A;’s are subsets of A for ¢ € {0,...,n} and a;’s are
letters for ¢ € {1,...,n}. By Theorem 7-II1.3, this family of languages corresponds
to the variety of monoids W. Therefore a language L € A*V;, if and only if there
exists n € IN such that M (L) < T,.

(1 <= 2) is a particular case of the first condition of Theorem 7-II1.5. Q.E.D.

Corollary 7-I11.7. For any non-negative integer k,

Bc(3%®v) = Be(3®vr).
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Proof: The set of 3*)¥*-sentences consists of I*)v+-sentences (which are in
%) and 3*)-sentences (which are in ;). Let ¢ = I*)y be a sentence of FO[<]
and y — a variable that does not appear in ¢. We then construct a new sentence

¢' = 3By (y A (y = y)). By Theorem 1-IV.1, we have for all w € A*

wE¢ = wgkd.

Thus every Xi;-sentence can be transformed into an equivalent Y,-sentence. So we

need to show
Be(A®Y) = Bc(3WvH). (7.11)

It follows from Theorems 7-IIL.6 and 7-III.3 that languages in BC(I*)V*) are rec-
ognized by the monoid Ty.;. By Theorem 3-II1.1, there is a bijection between the
variety of monoids W, generated by 7T, and the corresponding variety of languages

W. Therefore for a fixed integer k¥ and any positive integer m, all sentences of the form

BC(3®)y(™)) define the same subset of A*, which proves the equality 7.11. Q.E.D.
Theorem 7-111.8.

DAC Y, NI,

Proof: By Theorem 7-111.5 ¥ = PolV;, and by Theorem 7-11.8 V; = 7, finally
by Theorem 7-I11.4, DA C Pol(J). Therefore,

DA CE,.

By Theorem 7-1I1.5, [T, = Co-PolV;. Since DA is a variety of languages, it is closed

under complementation and hence
DA CII,.
Thus DA is contained in both ¥y and II,. Q.E.D.

We prove the opposite inclusion in the next chapter, where we extend the “stan-
dard” notions of finite monoids, homomorphisms and variety and introduce a new

operation on varieties — the Mal’cev product.
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Chapter 8

Ordered monoids and positive

varieties

8-1 Introduction

The most important tool for classifying the regular languages is Eilenberg’s variety
theorem (Theorem 3-1I1.1), which gives a one-to-one correspondence between varieties
of finite monoids and varieties of regular languages.

Certain families of regular languages, which are not varieties of languages, also
admit a syntactic characterization. J. E. Pin ([Pin95]) showed that such results are
not isolated, but are as general as Eilenberg’s theorem.

This chapter introduces positive varieties of languages, which have the same prop-
erties as varieties of languages, but need not be closed under complement. Positive
varieties are in bijection with varieties of finite ordered monoids. We shall show that
the polynomial closure of a variety of languages is a positive variety. This property
will be exploited to find new connections between classes of languages and the logical

hierarchy X5 and in particular, to prove the opposite direction of Theorem 7-III.8.
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8-I1 Ordered monoids

An ordered monoid (M, <) is a monoid M equipped with an order relation < such

that, for every u,v,z € M,
u<v = ur <vrAzu < TV
The ordered monoid (M, >) is called the dual of (M, <).

An order ideal of (M, <) is a subset I of M such that, if x < y and y € I, then
xel.

A homomorphism of ordered monoids ¢ : (M, <) — (N, <) is a monoid homomor-

phism from M to N such that, for every z,y € M,
z<y = ¢(z)<4(y) and  P(1)=1.
A monoid M can be regarded as an ordered monoid with = as order relation.

Order ideals are closed under union, intersection, inverse homomorphisms and

residual (cf. [Pin95]).

An ordered monoid (M, <) is an ordered submonoid of (N, <) if M is a submonoid

of N and the order on M is the restriction to M of the order on N.

An ordered monoid (N, <) is an ordered quotient of (M,<) if there exists a
surjective homomorphism of ordered monoids ¢ : (M, <) — (N, <). For example,
any ordered monoid (M, <) is a quotient of (M,=). An ordered monoid (M, <)
divides an ordered monoid (N, <) if (M,<) is an ordered quotient of an ordered

submonoid of (N, <).

Given a family (M;, <)ie; of ordered monoids, the product [[,.;(M;, <) is the
ordered monoid defined on the set [[,.; M; by the law

(50)ier(si)ier = (5i5})ier
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and the order given by

(80)ier < (8h)ier <= Viel:s; <s..

Let A be a finite set and let A* be the free monoid on A. Then (A* =) is an
ordered monoid. As the following lemma shows, it is in fact the free ordered monoid

on A.

Lemma 8-II.1 ([Pin95]). Let ¢ : A — M be a function from A into an ordered

monoid (M, <). Then there exists a unique homomorphism of ordered monoids

¢: (A*, =) — (M, <) such that for all a € A, ¢(a) = ¢(a).

Proof: Since A* is the free monoid on A, there exists a unique homomorphism
¢ : A* — M, such that ¢(a) = ¢(a) for every a € A. Hence, if u = v, then ¢(u) = ¢(v)
and thus ¢(u) < ¢(v). Therefore ¢ is a homomorphism of ordered monoids. Q.E.D.

A variety of finite ordered monoids is a class of finite ordered monoids closed under

the operations of taking ordered submonoids, ordered quotients and finite products.

If V is a variety of finite monoids, the class of all ordered monoids of the form
(M, <), where M € V, is a variety of ordered monoids, called the variety of ordered
monoids generated by V and also denoted V. It will be clear from the context whether

V is a variety of finite monoids or a variety of finite ordered monoids.

Given a variety of finite ordered monoids, the class of all duals of members of V

form a variety of finite ordered monoids, called the dual of V, denoted \2

Recall (section 3-II) that a finite monoid M satisfies the identity x = y, where
z,y € :4\*, if, for every continuous homomorphism ¢ : AT M , ¢(x) = ¢(y). Simi-
larly, a finite ordered monoid (M, <) satisfies the identity x < y if, for every contin-
uous homomorphism ¢ : A* — M , &(z) < ¢(y). Again, it should be clear from the

context which sense of “identity” is intended.
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8-II1 Relational homomorphisms and Mal’cev prod-
ucts

A relational homomorphism between monoids M and N is a relation 7 : M — N

such that

1. 7(s)7(t) C 7(st) for all s,t € M,
2. 7(s) is non-empty for all s € M,

3. 1er(1).

Let V be a variety of monoids and W be a variety of semigroups. The Mal’cev
product WM V is the class of all monoids M such that there exists a relational
homomorphism 7 : M — V with V € V and 77%(e) € W for each idempotent e of
V. It’s easy to see that WM V is a variety of monoids.

In a more general sense, if V is a variety of monoids and W is a variety of ordered
semigroups, the Mal’cev product W®) V is the class of all ordered monoids (M, <)
such that there exists a relational homomorphism 7 : M — V with V € V and

77 1(e) € W for each idempotent e of V. Then we have:
Theorem 8-I11.1. WMV is a variety of ordered monoids.

Proof: We have to show that WM V is closed under taking ordered submonoids,
ordered quotients and finite products. If (/V, <) is an ordered submonoid of (M, <) €
WM V, then N is a submonoid of M and hence the restriction of 7 to N satisfies
the required condition.

If (N, <) is an ordered quotient of (M, <) € WM V, then there exists a surjective
homomorphism of ordered monoids ¢ : (M, <) +— (N,<). Then M = ¢~1(N) and
there exists a relational homomorphism 7/ = 7 o ¢! with the stated property.

Finally, let (M;, <);es be a finite family of ordered monoids such that for all ¢ € I,
(M;,<) € WM V. By definition of the relational homomorphism,

[Tr00) < (] M)

el el
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and therefore, 7 : [[..; M; — V is a relational morphism with V € V and 771(e) € W

i€l
for each idempotent e of V. Q.E.D.

We now describe the defining set of identities for a Mal’cev product.

Theorem 8-I11.2 ([PW95]). Let V be a variety of monoids and W - a variety of
ordered semigroups. Let E be the set of identities such that W = [E]. Then W@ V
is defined by the identities of the form o(z) < o(y), where x < y is an identity
of E with x,y € B for some finite alphabet B and o : B* — A* is a continuous

homomorphism such that, for all b,b' € B, V satisfies o(b) = o(V') = o(b?).

Recall (Example 3-I1.2 on page 42) that LI = [z¥ya¥ = z¥] is the variety of

locally trivial semigroups.

Corollary 8-I11.3. Let 'V be a variety of monoids. Then LIM V s defined by the
identities of the form z¥yz¥ = z¥, where z,y € A for some finite set A and V

satisfies x = y = x°.

Proof: follows from Theorem 8-1II1.2.

Corollary 8-II1.4. Let V be a variety of monoids. Then [z¥yz* < a2¥]|@ V is
defined by the identities of the form x“yx* < a%, where x,y € A for some finite set

A and V satisfies x = y = 22.

Proof: follows immediately from Theorem 8-III1.2.

8-IV  Syntactic ordered monoids

Let (M, <) be an ordered monoid and let  : (M,<) — (N,<) be a surjective
homomorphism of ordered monoids. An order ideal @) of M is said to be recognized
by n if there exists an order ideal P of N such that @ = n~!(P). Observe that this
condition implies 7(Q) = n(n~!(P)) = P. By extension, the order ideal @ of M is

said to be recognized by (N, <) if there exists a surjective homomorphism of ordered
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monoids from (M, <) onto (NN, <) that recognizes ). This definition can be applied
in particular to languages. A language L of A* is recognized by an ordered monoid
(M, <) if there exists a surjective homomorphism of ordered monoids n : (A%, =) —
(N,<) and an order ideal P of N such that L = n~'(P). A language is regular if
there exists a finite ordered monoid that recognizes it. This definition is equivalent
to the one given in section 2-IV, page 27. To see this, consider 1 as a homomorphism
of ordered monoids from (A*,=) onto (N,=). The condition on order is trivially
satisfied in this case (since x = y implies n(z) = n(y)) and any subset of (M, =) is an

order ideal.

Let (N, <) be an ordered monoid and let P be an order ideal of N. The syntactic

quasiordering of P is the relation <p defined by setting
u=pv < Vr,ye N:zvy€ P = zuy € P.
The associated equivalence relation ~p, defined by
U~pU = UuXpUVAV3puU

is a congruence! termed the syntactic congruence of P. The quotient monoid M (P) =
N/~p is called the syntactic monoid of P. The ordered monoid (M (P), <p), where
<p is the order induced by =<p, is called the syntactic ordered monoid of P. The
natural homomorphism np : (N,=) — (M(P), <p) is called the syntactic homo-
morphism of P. Note that here again we have a situation where definitions given
previously are subsumed within these new ones.

The next proposition shows that to obtain the syntactic ordered monoid of the

complement of an order ideal, one simply reverses the order.

Proposition 8-IV.1 ([PW97]). Let P be an order ideal of (N, <). Then N\ P is
an order ideal of (N, >) and the syntactic ordered monoid of N \ P is the dual of the

syntactic ordered monoid of P.

Tt can be shown that the quasiorder <p is reflexive, transitive and stable.
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Proof: By definition, u 2\ p v if and only if for all z,y € N,
zwy € M\ P = zuy e M\ P,
which is equivalent to the statement
zuv € P = xvy € P.
Thus,
USp\PU < UZpU
Q.E.D.

Corollary 8-IV.2. Let L € A* and let (M (L), <) be its syntactic ordered monoid.
Then the syntactic ordered monoid of A*\ L is (M (L), >1).

Eilenberg’s original variety theorem (Theorem 3-111.1) deals with varieties of finite
monoids. To obtain a similar statement for varieties of ordered monoids, we define

the notion of positive variety, introduced by J. E. Pin in [Pin95].
A positive variety is a class of recognizable languages V such that
1. for every alphabet A, A*V is closed under finite union and finite intersection,
2. if ¢ : A* — B* is a monoid homomorphism, then

Le BV = ¢ (L) € A*V,

3.if L€ A*V and a € A, then a™'L and La™! are in A*V.

Thus, unlike variety, a positive variety is not required to be closed under complement.
To each variety of ordered monoids V, we associate the class V such that, for each
alphabet A, A*V is the set of regular languages of A* whose ordered syntactic monoid

belongs to V. The class V is a positive variety:
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Theorem 8-IV.3 ([Pin95]). The mapping V +— V defines a bijective correspon-

dence between the varieties of finite ordered monoids and the positive varieties.

Theorem 8-1V.4. For each alphabet A, A*V is the class of all complements in A*
of the languages of A*V.

Proof: Follows from Corollary 8-IV.2.

Let, for 0 < i < n, L; be recognizable languages of A*, let n; : A* — M(L;) be

their syntactic homomorphism and let
n: A" — M(Ly) X M(Ly) X -+ x M(Ly,)
be the homomorphism defined by

77(“) = (nO(u)anl(u)a s ﬂ?n(“))‘

Let ay,as, ... ,a, be letters of A and let L = Loa;Ly---a,Ly,. Let pn: A* — M(L) be

the syntactic homomorphism of L. We now consider the relational homomorphism
T=n(p™) : M(L) = M(Ly) x M(Ly) x -+ x M(Ly,).

Proposition 8-IV.5 ([PW97]). For every idempotent e of M(Lg) X M(Ly) x - - - x

M(L,), 77'(e) is an ordered semigroup that satisfies the inequality x*yz* < z¢.

Proof: Let e be an idempotent of M (Lg) X M(Ly) X --- x M(L,), and let z and
y be words in A* such that n(z) = n(y) = e. Let £ > n be an integer such that u(z*)
is idempotent. Suffice it to show that for all u,v € A*

uzfv € L = uzfyz®v € L.
Since uzkv € L, there exists a factorization of the form

U.’I,'k’U = Woa1W1 * * * ApWp,
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where w; € L; for 0 < i < n. By the choice of k, there exist integers ¢ and j such
that 0 <t<n,0<j<k—-1and

/ "
wy = wzw,
ur? = weay - We—apWY,
k—j—1 _ "
"I = wyagy - apWy,

for some wj, w; € A*. Now since

m(z) = m(y) = m(z?),

the condition wizw! € L; implies wijz*Iyxi*w! € L;. Therefore, uzfyaz*v € L.

Q.E.D.

Corollary 8-1V.6. Let V be a variety of finite monoids and let ¥V be the correspond-
ing variety. If L € A*PolV, then M (L) belongs to the variety of finite ordered monoids
[z¥yx® < 2¥]® V.

Proof: Let W = [z¥yz* < 2¥]® V and let W be the positive variety corre-
sponding to W. By Theorem 8-1V.3, it suffices to show that L € A*W. Being a
positive variety, A*W is closed under finite union, so we only need to show that the
theorem holds when L is of the form Lga;Ls - - -a,L,, where n > 0 and, for 0 < t < n,
a; € A and L; € A*V. But in this case Proposition 8-IV.5 shows that M (L) € W.
Q.E.D.

The following result was established in [Pin80] and [PST88] as a generalization of
an earlier theorem due to M. P. Schiitzenberger, [Sch76].

Theorem 8-IV.7. Let 'V be a variety of monoids and let V be the corresponding
variety. Then UPolV is a variety of languages, and the associated variety of monoids

s LIM V.
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Theorem 8-IV.8 ([PW97]). Let V be a variety of languages. Then
Poly N Co-PolY = UPolV.

Proof: By definition, A*UPolV is contained in A*PolV. Since A*UPolV is a
variety of languages (Theorem 8-IV.7), it is closed under complement. Therefore,

A*UPolV is also contained in A*Co-PolV, which proves the inclusion
A*UPolVY C A*PolV N A*Co-PolV.

For the converse, suppose L € A*PolY N A*Co-PolV. The ordered syntactic monoid
M(L) of L belongs to the variety of finite ordered monoids [z¥yz* < z*]® V (Corol-
lary 8-IV.6). By Corollary 8-II1.4, the identities defining this variety are of the form
¥yx? < z¥, where z,y € A* for some finite set A and V satisfies = = y = 2.
Let B be a finite alphabet and let z,y € B* be such that V satisfies z = y = a¥.
Then M(L) satisfies [z“yz¥ < z*]. Since L € A*Co-PolV, the complement of L
belongs to A*PolV and thus by Corollary 8-IV.2 and Theorem 8-1V.4, M (L) satisfies
[z¥ < z¥yz¥]. Then necessarily M (L) satisfies [z“yz¥ = 2*]. Thus, by Corollary
8-111.3, M (L) € LI® V and by Theorem 8-1V.7, L € A*UPolV. Q.E.D.

8-V Application to the logical hierarchy

Theorem 8-V.1.
DA - EQ N HQ.

Proof: A*DA is the smallest class of languages of A* containing languages of the
form B*, with B C A, and closed under disjoint union and unambiguous product (cf.

[Sch76]). Thus
A*DA = A*UPol(B).

By Theorems 7-II1.5 and 7-11.8 ¥ = Pol(J), and by Theorem 7-I11.4, Pol(J) =
Pol(B), so ¥y = Pol(B). By the same theorems, II, = Co-Pol(B). Now applying
Theorem 8-1V.8, we have the stated property. Q.E.D.
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We can also derive a more general statement. Let A, = ¥, NII, for all non-

negative integers n.

Theorem 8-V.2 ([PW97]). Let L be a language of A*. Then
Le A,y <= L€ UPolV,.
Proof: By Theorems 7-II1.5 and 8-IV.8 we obtain:
Apt1 = Zpgp1 NI, = PolV, N Co-PolV,, = UPolV),.

Q.E.D.



Conclusion

Theorem 7-II1.5 shows that the Straubing-Thérien hierarchy V is in one-to-one corre-
spondence with a well known hierarchy of first-order logic, the 3, hierarchy. Theorems
7-11.8 and 7-II1.6 assert that both the boolean closure of ¥; and the boolean closure
of ¥, define varieties of languages; they correspond, respectively, to levels 1 and 2 of
the Straubing-Thérien hierarchy. Level V, is precisely the class of piecewise testable
languages, i.e. languages recognized by [J-trivial monoids. Level V, is recognized by

the monoids of upper-triangular matrices over the semiring {0, 1}.

We defined the level V;;; of the Straubing-Thérien hierarchy as the boolean-
polynomial closure of the level V;. An alternative definition may be stated in the
following way: the level n+ 1/2 is the polynomial closure of the level n and the level
n + 1 is the boolean closure of the level n 4+ 1/2.

The main problems associated with any hierarchy are the finiteness and the de-

cidability of each level.

The Straubing-Thérien hierarchy is infinite. This result follows from the fact that
the logical hierarchy Xy is infinite (Theorem 5-111.6).

Levels 0, 1/2 and 1 are known to be decidable in polynomial time. The level
3/2 has also been shown decidable, in time polynomial in 2Mln, where A is the
alphabet and n is the number of states of the deterministic automaton (cf. [PW97]).
Decidability of level 2 is still an open question, as is the problem of identities for the

variety of monoids corresponding to languages of level 2.
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Abstract

A thorough review of selected results on the logical aspects of regular languages in-
cludes the theorem of Biichi on monadic second order logic over strings, a characteriza-
tion of FO[<] and the theorem of I. Simon. With the help of the Ehrenfeucht-Fraissé
Game we show that 3**!_sentences of FO[<] cannot be expressed as a boolean
combination of 3*)-sentences. Block product of finite monoids is used to analyze
languages defined by the boolean closure of the ¥,-sentences. Positive varieties and
the Mal'cev product are introduced and ¥,,; N Il,4; is shown to be equal to the
unambiguous polynomial closure of the nth level of the Straubing-Thérien hierarchy.
In particular, £, N Il = DA, where DA is the smallest variety of languages closed

under the unambiguous product.



Résumé

Nous proposons un apercu complet de résultats choisis concernant les aspects logiques
des langages réguliers incluant le théoréme de Biichi sur la logique monadique de
second ordre sur les chaines de caracteéres, la caractérisation de FO[<] et le théoreme
de I. Simon. Gréace au jeu de Ehrenfeucht-Fraissé, nous démontrons que, dans FO[<],
les énoncés logiques 3*+1) ne peuvent étre exprimés comme une combinaison booléene
d’énoncés 3*). Nous utilisons le produit bloc de monoides finis pour analyser les
langages définis par la fermeture booléene des énoncés ¥5. Nous présentons également
les variétés positives et le produit de Mal'cev et montrons que ¥,,.; NII,4; est égal a
la fermeture polynomiale non-ambigue du nl®Me niveau de la hiérarchie de Straubing-
Thérien. En particulier. ¥, NII, = DA, ou DA est la plus petite variété de langages

fermée sous le produit non-ambigu.
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Introduction

The topic of this Thesis lies at the juncture of formal language theory, algebraic

theory of finite automata and model theory in logic.

In 1956 S. C. Kleene showed that the class of languages recognized by finite
automata (regular languages) coincides with that given by the rational expressions
(rational languages). This theorem is usually considered to be the foundation of the
theory of finite automata. The definition of the syntactic monoid was first given
in a paper of M. O. Rabin and D. Scott in 1959, where the notion was credited to
Myhill. It was shown in particular that a language is recognizable if and only if
its syntactic monoid is finite. M. P. Schiitzenberger made a non-trivial use of the
syntactic monoid to characterize an important subclass of the rational languages, the
star-free languages: a language is star-free if and only if its syntactic monoid is finite
and aperiodic.

In the early 1970’s I. Simon proved that a language is piecewise testable if and
only if its syntactic monoid is J-trivial. Other important syntactic characterization
followed, settling the power of the semigroup approach. But it was S. Eilenberg who
formulated the appropriate framework for this type of results. A variety of finite
monoids is a class of monoids closed under taking submonoids, quotients and finite
direct products. Eilenberg’s Theorem states that varieties of finite monoids are in
one-to-one correspondence with certain classes of regular languages, the varieties of

languages.

For these reasons the part of formal language theory concerned with rational

languages is now intimately related to both the theory of finite automata and the
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theory of finite monoids.

The connection between automata and formal logic dates back to 1936 when A.
Turing proved the undecidability of first-order logic by showing how to describe the
behaviour of an abstract computing machine with a formula of this logic. More
contributions into the research on the logical aspects of the automata theory ensued,
with the wérks of J. R. Biichi on monadic second-ﬂbrder logic and R. McNaughton
and S. Papert on automata admitting first-order behavioral description — among the

more famous ones.

In the mid-1990’s J. E. Pin developed a theory of so-called positive varieties of
languages, which — unlike varieties introduced by S. Eilenberg — do not have to be
closed under complement. Their algebraic counterpart had to be modified too -
they are varieties of finite ordered monoids. The polynomial closure of a variety of
languages is always a positive variety; this property led to establishing some new

connections between regular languages and logic.

The main objective of this study is concentrated on proving necessary (and some-
times also sufficient) conditions for a property of words to be expressible in a par-
ticular logical formalism. We present two general techniques for accomplishing such
results: analysis of logical formule with methods of the theory of finite monoids and

the model-theoretic method of Ehrenfeucht-Fraissé Games, described in Chapter 7.

Some developments in the field of logical aspects of regular languages — both
classical and relatively new — are echoed in this text.

In Chapter 1 we review the main concepts of formal logic and finite automata.
The mathematical machinery needed to maintain a degree of self sufficiency of the
manuscript includes elements of the theory of finite monoids presented in Chapter 2.

Identities of finite monoids, the notion of variety and its connection with logic are
introduced in Chapter 3.

Our digression into semigroup theory continues in Chapter 4 where we define

transformation semigroups, wreath product and block product. Acquired tools will



Introduction 6

be used in the subsequent chapters to establish some important algebraic characteri-
zation of subclasses of regular languages.

Chapter 5 expounds two topics: the theorem of Biichi on monadic second order
logic over strings and the algebraic characterization of first-order logic in signature
with <.

The subject of Chapter 6 is the theorem of I. Simon and piecewise testable lan-
guages; we give both éombinatorial and algebraic description of thesé.

In Chapter 7 we present an algebraic characterization of the first two levels of
the Straubing-Thérien hierarchy ! and their connection to the logical hierarchy. We
also give a treatment of some special quantification structures and examine the corre-
sponding varieties of languages. The quest for more ties between the two hierarchies
reveals some interesting results as we introduce the notions of ordered finite monoids,

positive varieties and the Mal'cev product in Chapter 8.

1Tt should be noted, however, that the “characterization” of level 2 is not effective.



Chapter 1

The Basis

1-1 Introduction

This chapter focuses on some fundamental concepts in the study of formal languages.
We continue by introducing the notion of finite automaton, followed by a digression

into formal logic.

1-II Formal Languages

Let A = {a;,as,...,a;} be a finite set of symbols, called an alphabet and its elements
- letters . A word (or a string ) w = a,as - - - a, over an alphabet A is a finite sequence
of letters. By |w| we denote the length m of the word w. For some a € A, |w|, denotes
the number of occurrences of a in w. We then have:

Z lwle = |w].

a€A

The empty string , denoted 1, has length 0. By juxtaposition uv, or multiplication

u - v we mean concatenation of two words u and v producing a sequence with |uv| =

|u| + |v| and clearly |uv|, = |u|s + |v|q. For the empty word we have 1w =w-1 = w.

Notation. For a positive integer k and a word w, the form w* is a shorthand notation

for ww - --w. By convention, w® = 1.
N — y ’

k times
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Given two words u and v:

1. uis aprefizrof v if doz € A* : v = uz;

2. uisasuffizof vif 3z € A* : v = zv;

3. uis a factorof v if Az, y € A* : v = zuy.

A word u = a,ay...a, is a subword of v if there exist words vg,vy,...,v, € A* such

that v = vgav1as . . . apU,.

The set of all words over the alphabet A is denoted by A*, the set of all nonempty
words - A*. A subset of A* is called a language . Various operations can be defined
over languages. Besides the classical boolean operations (such as finite union, finite
intersection, complement) we shall make use of the ones below.

The product (or concatenation product ) of two languages L and A’ is the language
LK ={uve A*lue L,ve K}

The star of a language L C A*, denoted by L* is the language
L*={1}ULULLULLLU---

If K and L are two languages of A*, the left (right) quotient of L by K is the
language K ~'L (respectively LK ~!). These are defined by:

K'L={ve A*|Kvn L # 0} ={ve A*|3u € K such that uv € L}
and

LK ' ={ve AlvKNL#0}={ve A*|Fu € K such that vu € L}.
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1-ITT Finite Automata
A deterministic finite automaton (or DFA) over a finite alphabet A is a quadruple
T=(Q1,FN)

where @) is a finite set of states of the automaton; ¢ € @ is the initial state; FF C Q)
is the set of final states and \ is the transition function A: Q x A +— Q defined

for all ¢ € Q and for all a € A. We shall adopt the shorthand notation ga or ¢ - a for
g, a).

The domain of the transition function A can be extended to the set Q x A* by

induction on the length of the input word:
g-l=gq and q - (wa) = (qu) - a.

The string w is accepted by DFA if - w € F. The language L recognized by the
DFA is the set of all such words w:

L={weA"|i-we F}

A language is said to be regular if there exists a DFA recognizing it.

1-I11.1 The minimal automaton

Let T =(Q,1, F,\) be a DFA and L C A* the language it recognizes. Define the set
Q' C Q of states of the DFA reachable from the initial state

Q={i-w|we 4%}
and the following equivalence relation ~ on Q'
a~qp = {(weA |- weF}={weA|qp -weF}

q1 ~ ¢y implies qa ~ ¢oa for all @ € A and therefore the transition function X

@R/~ x A~ @/~ is well defined for the equivalence classes [q] of ¢ € Q:

Xlg), @) = [qa]-
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The DFA
To =@/~ [i], {ld | a € F}, \)

also recognizes L, but its structure depends only on L. ﬁ is called the minimal
automaton of L. Any automaton A recognizing L has at least as many states as ;l:;

does and if A and ?L have the same number of states, they are isomorphic.

Example 1-III.1. Let A = {a,b,c} and L = A*abA*. A DFA recognizing L is

pictured in fig. 1.1. One can easily verify that this is the minimal automaton of L.

a,b,c

G BB

Figure 1.1: The minimal automaton of L = A*abA* over A = {a.b.c}.

1-IV  Formal Logic

1-IV.1 Propositional Logic

Define a countable set X = {z,z3,...} of boolean variables (i.e. variables taking on
values True or False).

A boolean expression consists of:
(a) a boolean variable z;; or

(b) an expression of the form: —¢, (¢ A ), (¢ V ¥), where ¢, 1 are themselves

boolean expressions.

The set of boolean variables of an expression ¢, X(¢) C X, is defined inductively

as follows:

(a) if ¢ is a boolean variable z;, then X(¢) = {z:},
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(b) if ¢ = ~, then X(6) = X (1),
(©) it 6 = (x Aw) or (x V), then X(6) = X (x) UX ().

A truth assignment T is a mapping from the set of boolean variables X (¢) to the
set of truth values { True, False }. We now define what it means for T to satisfy ¢
(written T = ¢):

(a) if ¢ is a boolean variable z; € X(¢), then T = ¢ if T(z;) = True,
(b) if ¢ = —, then T k= ¢ if it is not the case that T = v,
(c) f = (x V) thenT ¢ if either T = x or T = ¥ holds,
(d) if o= (xA¥) thenT = ¢ if both T = x and T | ¥ hold.
Notation. An expression of the form z; or —z; is termed a literal . We use (& = ¢)

to mean (—¢ V ¥); and (¢ < %) stands for ((¢ = ¥) A (v = 9)).

It is well known that the relations V and A are commutative, associative, dis-
tributive and idempotent (see for instance [Pap94]). Furthermore, it follows that
every boolean expression ¢ can be rewritten into an equivalent one in conjunctive:
o = N, C; or disjunctive: ¢ = Vi— D; normal form, where C; (called a clause ) is the
disjunction of one or more literals and D; (called an implicant ) is the conjunction of

one or more literals.

1-IV.2 First-Order Logic

The language of first-order logic is capable of expressing a wide range of mathematical

ideas and facts in much more detail than boolean logic.
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1-IV.2-a The Syntax

Let us define three disjoint countable sets: V — a set of variables (ranging over values
from the domain of a particular expression); ® — a set of function symbols; IT - a
set of relation symbols and the arity function: r: dUIl — Z,. A function f € &
with r(f) = k, £ > 0 is called a k-ary function (similarly for a relation R € II
with 7(R) = k. k > 0, k-ary relation). The set IT is always assumed to contain the
binary equality relation =. A triplet ¥ = (®,II,r) is called a vocabulary. The set of
used function and relation symbols (® UTI) is called the signature of the first-order

language.

A term over the vocabulary ¥ is (a) a variable £ € V; or (b) an expression

f(t1,ta, ..., tx). where f € ® and ¢),1t,,...,t are themselves terms. (This definition

allows for a constant when &£ = 0.)

An atomic expression over the vocabulary ¥ is an expression of the form

R(ty,ta,....t;), where R € IT and ¢,¢,, ..., are terms.

A first-order expression (or first-order formula) is
(a) an atomic expression; or

(b) an expression of the form —@, (¢ V ¢) or (¢ A ), with @, 1 themselves being

first-order expressions; or

- (c) an-expression of the form (Vzo), where z € V and ¢ is a first-order expression.

Notation. The form (3z@) is used as a shorthand for —~(Vz—¢). When there is no

ambiguity we may write Vz,y--- and dx,y--- to mean respectively VazVy--- and

dx3Jy---.

The symbols V and 3 are the universal and ezistential quantifier respectively. An
appearance of a variable z in the text of an expression ¢ that does not immediately
follow a quantifier is called an occurrence of x in ¢. An occurrence of a variable is

said to be bound if it is referred to by a quantifier; that is, if V¢ is an expression, any
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occurrence of z in ¢ is bound ! (variable z is said to be in the scope of a quantifier).
If the occurrence is not bound, it is free. A variable z that has a free occurrence in ¢

is a free variable of ¢. An expression without free variables is called a sentence.

Expressions where a prefix of quantifiers precedes a quantifier-free structure are in
prenez normal form. Any first-order formula can be transformed into one in prenex
normal form. If successive quantifiers of the same type are grouped into n alternating

blocks beginning with existential quantifiers, i.e. a formula ¢ is of the form

where I; are tuples of variables and ¥ is quantifier-free, then ¢ is said to be a ¥,-
formula. In the dual case, when n alternating blocks of quantifiers start with a block
of universal quantifiers, the expression is called a II,-formula. The negation of a ¥,

formula can be written as a I, formula.

Remark 1-1V.1. The first block of quantifiers in a ¥, (or II,) formula may be empty.

1-IV.2-b The Semantics

In first-order logic variables, functions and relations may take on much more complex
values than just True or False. To define the semantics of first-order formule we
construct an analog of a truth assignment for first-order logic, called a model.

A model appropriate to a given vocabulary ¥ = (®,I1,r) is a pair M = (U, I),
where U is a non-empty set (called the universe of M) and Z: VU®UIl— U is
an interpretation function associating each symbol « in V, &, Il with an actual
mathematical object o™ in the universe U. That is, for all z € V, T assigns an
actual element z¥ € U; to every function symbol f € ®, T assigns an actual function
fM . UF — U*, where k is the arity; and to each relation symbol R € II, T assigns
an actual relation RM C U.

To define what it means for a model M = (U, Z) to satisfy a first-order expression

¢ (written M E ¢) we follow the structure of a first-order formula:

! An occurrence of z is also bound in any expression containing V¢ as a subexpression.
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(a) if ¢ is an atomic expression, ¢ = R(t1,ts,...,t), then

(M E¢) = @M, M .. .tM) e RM,

(b) if ¢ is an expression of the form —¢, (o V 8) or (a A B), where ¢, § are first-order

expressions, satisfaction is defined by induction on the structure of ¢;

(c) if ¢ is an expression of the form (Vzy), then

(M =¢) — (VueU: M;—y 1), where M,—, is a new model obtained
M.

= = q.

from M by fixing

Theorem 1-IV.1 (cf. [EFT94]). Let ¢ be an expression and M., M' - two models
appropriate to the vocabulary of ¢. If M, M' agree on everything except for the values

they assign to the variables that are not free in ¢, then
ME¢ < M Eo.

Consequently, for sentences (i.e. expressions with no free variables) satisfaction by
a model does not depend on the values assigned to the variables that are bound (or
do not appear) in the expression. More generally, if ¢ is a formula with free variables,
whether a model satisfies or fails to satisfy ¢ depends both on the interpretation Z
and the set of free variables in ¢. Therefore a “model appropriate to an expression”
shall henceforth refer to the part of the model that deals with the functions. relations

and free variables (if any).

1-IV.3 Words as a Model

We shall now assemble the following vocabulary ¥ = (®,II,7): ® = {0}, i.e. there
will be no functions; the set of relation symbols II = {=,<,S,Q,} includes the
equality relation =, the precedence order <, the successor relation S and unary “label”

predicates @, defined below.

1-IV.3-a Biichi sequential calculus

Let A be a finite alphabet and let w = aya5 - - - a,, be a word over A. Variables z € V

range over the set of letter positions of w, or the domain of w: dom(w) = {1,...,n}.
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Let us now define a word model W for w appropriate to the vocabulary %:
(a) <" is the natural order on dom(w);
(b) S™(i,1+ 1) is the successor relation for 1 <7 < n —1; and

(c) QY are unary predicates collecting for each letter a € A the word positions 1

in which the letter a appears: QY = {i € dom(w)|a; = a}.

Remark 1-IV.2. Observe that the successor relation S(z,y) can be expressed in terms

of relation < by the formula (z < y) A =3z((z < 2) A (2 < y)).

If p1,....pn are positions from dom(w) then

(W.p1,...,pa) E 0(z1, .- Ta)

means that o is satisfied in VW when the signature symbols (i.e. =, <. S, Q,) are inter-
preted by the relations of equality, <", S", QY, respectively and positions py, ..., p,
are interpretation of variables zi,...,z, respectively. The word model W is called

Biichi sequential calculus (cf. [Biic60], [Biic62]).

1-IV.3-b The V-structure model

As noted above, in view of theorem 1-IV.1, let us concentrate on the part of the model
concerned with the free variables of an expression. The following idea of treating the
structures in which we interpret formulee as being words over an extended finite
alphabet emanates from Perrin and Pin (cf. [PP86]).

Let ¢ be a first-order formula such that no variable z in ¢ (and all its subexpres-
sions) has bound occurrences in the scope of two different quantifiers.? We construct

a finite set V C V of first-order variables of ¢:

z € V <= 1 has only free occurrences in ¢.

2Any first-order formula can be written to satisfy this condition by introducing new names for

the bound variables, if needed.
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A V-structure over A is a word w over the extended alphabet A x 2V:
w= (al)Pl) "'(a'T)PT)v
where 7 = |V|, a; € A and P; satisfy the following:

PNP=0,ifi#j ad [|JR=V
=1

We now define the meaning of w =7 ¢ by induction on the construction of o:

(a) w Er Qq(x) if and only if w contains a letter of the form (a, P) and z € P;

(b) w Er R(zy,..., 1) < (p1,...,pr) € RE, where R7 is the k-ary relation on
{1,...,|w|} associated to R by Z and py,...,pr are the positions in w where

the variables z,,...,z,, respectively, occur;

(c) w7 —oif and only if w is not a model of ¢ with respect to the interpretation

7,
(d) wEr (0AY) = (wiFz ) A (w Iz ¥);
(e) w =z Jro if and only if there exists ¢, 1 <7 < r, such that
w' = (a, P)--(a;, bUu{z}) - (ar, Pr) E1 0.
The atomic expressions of this first-order language are of the form:
(a) z =y means z and y refer to the same position in w;
(b) S(z,y) says that position z is immediately succeeded by position y;
(c) z <y tells us that position z is to the left of position y in w;

(d) Q.(z) reveals that in w position z is occupied by the letter a.

Notation. The set of first order formulae utilizing the set of relational symbols II =

{=,<,Q.} (I={=,5,Q,}) is denoted FO[<] (respectively FO[S]).
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1-IV.4 Languages defined by first-order expressions

If ¢ is a sentence (i.e. ¢ does not have any free variables), then ¢ can be interpreted

in a word w € A*, in which case the language defined by ¢ is

L(9) = {w € A" | w =1 8}.

If ¢ is a formula with free variables in V, then by L(¢) we denote the‘sréit of V-
structures that satisfy ¢. This notion depends both on the interpretation function Z
and on the set of free variables V.

Below are some examples of languages defined by first-order sentences.

Example 1-IV.1. An FO[S] sentence
o =323y3:(S(z,y) A S(y, =) = ~3IpS(p,x) A =3¢S(z.q))
defines a set of words with exactly three distinct positions in them:
L(¢) ={we A" : |uw| = 3}.

Example 1-IV.2. Consider an FO[<] sentence ¥ = 3z(Vz(z > z) A Q,x). It de-

scribes a language of all words over A* beginning with the letter a, i.e. L(¢) = aA*.

Two expressions ¢ and ¥ are said to be equivalent if their languages coincide, i.e.
L(¢) = L(y).
Remark 1-1V.3. The empty word 1 is allowed as member of formal languages and the

empty model 1 is admitted as interpretation of sentences. By convention, 1 satisfies

universal sentences Vz¢(z), but not existential ones Izp(x).

1-IV.5 MSO Logic

In a first-order formula only individual variables can be quantified. Allowing quantifi-
cation over sets of variables as well as individual variables, extends the logical formal-

ism by second-order monadic variables or predicates (usually written as capitalized
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X as opposed to z). With the introduction of corresponding atomic expressions:
e.g. X(z) (meaning z belongs to the set X), the resulting system becomes monadic
second-order logic or MSO-logic (sets are monadic objects).

A second-order formula can also be presented in prenex normal form. A T!-
formula is an expression with a prefix of n second-order quantifier blocks (beginning
with a block of existential quantifiers) trailing by a formula where at most first-order
quantifiers occur. Z!-formule of MSO-logic are called ezistential monadic second-

order formule or EMSO-formule.

Example 1-IV.3. Consider a language L over the alphabet A = {a.b} where any
two occurrences of a are separated by an odd number of b’s. L can be expressed by

the following MSO sentence:

6 = Vry(Qu(a) AQuly) Az < y) AV:((x < 2) A (5 < y) = ~Qu())
= 3X (X(2) A X(y) A ¥PYa(S(p,0) = (X(p) & ~X(0)))))
Here the first part of the formula says that x and y are two positions carrying the
letter a such that no other a appears between them. Then the second part identifies

the set X as containing the position of the first a, then every second position and

finally the position of the next letter a.

1-IV.5-a Interpretation of MSO formulse

The following somewhat over-specialized model is justiﬁed by our interest in only
interpreting expressions in words; and the fact that we do not deal with second-order
variables of arity more than one renders it sufficient.

Let V; be a finite set of first-order variables, and V, — a finite set of monadic

second order variables. A (V1, V1)-structure over A is a word
w = (a1> SI)TI) T (aTn San‘n) € (A X ZVI X 2V2)*
such that

(01,51)"'(%,571)
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is a V-structure. No constraints are imposed on the occurrences of the second-order
variables in the structure. The definition of w =7 ¢ is the same as for the first-order

expressions, with the addition of two new clauses:

1. if z is a first-order variable and X is a second-order variable then w 7 X(z)

if and only if w contains a letter (a;, S;,T;) such that z € S; and X € Tj;

2.if X is a second-brdér variable, then w =z 3X¢ if and only if there exists
a (possibly empty) set J of positions in w with the following property: the
(V1, Vo)-structure w' formed by replacing each letter (a;, S;, T;), with ¢ € J, by
(a;, S;, T; U {X}) satisfies ¢.

The language L(o) defined by an MSO expression ¢ is the set of (V1, Vs)-structures

that satisfy o.
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Chapter 2

Finite Monoids

2-1 Introduction

In this chapter we present a more algebraic approach to languages as recognizable
sets, with monoids replacing finite automata. S. Eilenberg (cf. [Eil76]) showed that

monoids provide a powerful and systematic tool for language classification.

2-I1 The structure of finite monoids

The pair (S, x) where S is a set and X is a (binary) associative operation is a semi-

group. It is customary to write “semigroup S” rather than “semigroup (S, x)”.

Notation.

1. Juxtaposition ab is a shorthand for a x b.

2.'If P, P,,..., P, are nonempty subsets of a semigroup S then P,P,---P, =
{pip2- palpi € P,1<i<n}. If P=P = P,=---= P, we write P" instead
of PP;---P,.

A monoid (M,-,1) is a set M with a binary operation, denoted by -, and a dis-

tinguished element 1, such that (M, -) is a semigroup with an identity 1, i.e. for all

re€M,1l-z=2z-1=z Weusually write “monoid M” instead of “monoid (M, -,1)".
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An element z of a monoid M is a zero of M if forall s € M, 2 = zs = sz. We

usually denote such an element z by 0.

Let z1, 20 be two zeros of a monoid M. By definition: z;z5 = 21 and z129 = 2.
Whence, 2z; = 25, i.e. a monoid can have at most one zero. A similar argument shows

that a monoid contains a single identity element.

We now turn to subsets of é ﬁnité monoid (semigroup) exhibiting special proper;
ties.

A subsemigroup T of a semigroup S is a subset of S such that z; € T and zo € T
imply r,z, € T. This is equivalent to 7% C T.

A subset T of a monoid M is a submonotd of M if it is closed under the operation

of M and contains the identity element, i.e.
(a) 1 €T and
(b) T*CT.
Clearly. a submonoid of a monoid is a monoid in its own right.

A monoid M is generated by its subset G if every element of M can be written as

a product of some elements of G.

A nonempty subset 7" of a monoid M is a left ideal of M if MT C T; a right ideal
of M if TM C T, a two-sided ideal (or simply an ideal ) if it is both a left and a right
ideal, i.e. MTUTM CT.

The intersection of all ideals of a monoid M is the kernel of M.

A monoid M is simple (left-simple, right-simple ) if no proper subset of M is an

ideal (respectively, left ideal, right ideal) of M.

Lemma 2-I1.1 (cf. [CP67]). The set of all ideals of a finite monoid M is closed

under intersection and arbitrary union. The intersection of a finite number of ideals

18 an ideal.
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The lemma above holds for the set of all left (right) ideals of M as well.

An element e of a monoid M is idempotent if e = e. Let s be an element

of a finite monoid M and let S be the submonoid generated by s. The sequence

0 =1,s,s% 5% ... contains only finitely many distinct elements of S, for S is finite

and closed under product. Let p be the smallest positive integer such that there exists
an integerrm >0 s'z;tisfying 7 '

sP = P,
Let us fix the smallest such m and name it ¢. Choosing r > 0 such that p+r =

0(modgq) yields for some ¢ > 1:

4r\2 2 ;
(sP*7)? = g2ptr) — (pHr)tig — S(pra)tr — optr

That is, sP*" is an idempotent element of S.
Furthermore, the elements 1,s,s?,...,s?PT"! are all distinct. For any integer

n > q we have n=1ig+j (withi>1,0<j < q) and

SPHR = gPHia] — g+

whence

S=1{1,sss% ... sPti71}

Observe also that the set G = {s?,s**',... s"*971} is a maximal subgroup of M
since the mapping ¢ : G — Z, defined by ¢(sP**) =p+ (A mod q) is an isofnorphisrh.
Since every s € S\ {1} has a power in G, s?*" is the only other idempotent of S
beside 1. The structure of the submonoid S therefore resembles a frying pan with the

dish representing the group G as shown in figure 2.1.

We thus have the following results:

Proposition 2-11.2. If s is an element of a finite monoid M, then the submonoid S

generated by s contains a unique mazimal subgroup.
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sp+1 5p+'2

e o o SP+q=sP

Sp+q_ 1

Figure 2.1: The structure of the submonoid S.

Corollary 2-11.3. Every non-empty finite semz'grouprcontains an idempotent.

A monoid M is aperiodic if for all z € M there exists an integer n such that

An element a of a monoid M is reqularif a = asa for some s € M. If every element
of M is regular. M is regular. An element z of M is an inverse of a if a = aza and

r = zaz. In a monoid every regular element has an inverse.

A monoid in which every element has a unique inverse is called a group. A group
is cyclic if it is the set of powers of a single element. A cyclic group is commutative.

A subgroup H of a group G is a subset of G which is itself a group under the
operation of G. Every group has two trivial subgroups: the group itself and the

group consisting of the identity. Any non-cyclic group G has necessarily a non-trivial

subgroup.
For any group G, and any element g € GG, one has

Gg ={gig9| 9: € G} =G.

l.g=g, and g1¢97! is equal to some

Indeed, every g; is obtainable as a product g;9~
g; € G.

If G is a group and H is a subgroup of G, then Ha, where a € G, is called a right
coset of H in G. (We have a similar definition for a left coset.) Assume ¢ € Han Hb.

Then there exists an element A € H such that ¢ = ha, i.e.

a=h"'c and Ha=Hh 'c= Hc.
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In the same way Hb = Hc, i.e. if two right cosets of H in G have a common element,

they coincide, otherwise they are disjoint.

A subgroup H of G is called a normal subgroup if its right cosets coincide with

the left ones, i.e. Ha = aH. In this case one has a"*Ha = H and hence
Ha-Hb= Ha(a *Ha)b= HHab = Hab,

i.e. the product of two right cosets is a right coset. A group which has only trivial

normal subgroups is called a simple group.

Given a group G and a normal subgroup H, one can use the partition of G into
(right) cosets of H to build the factor group G/H, whose elements are the blocks of

the partition, i.e. the cosets of H in G.

The next result presents decomposition of finite left-simple semigroups.

Lemma 2-11.4 (cf. [CP67]). Every finite left-simple semigroup S is isomorphic to

a direct product T x G, where G ts a group and T 1s a left-zero semigroup.

Proof: If s is an element of S, then either Ss C S (in which case Ss is a proper

left ideal of S). or Ss = §, in which case
mTg : t—1s
is a permutation of elements of S. We consider the right action of s on S and
To (Ts(t)) = Tour (t) = tss’.
Then
G ={ms|s€ S}

is a group of permutations of S acting on S on the right. Let T be the set of orbits
of this action; O, denotes the orbit containing s. We then define a multiplication on

T by setting

YO,NO, €T : 0,0, =0,
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to ensure that T is a left-zero semigroup.

Claim:
¢: s (Os,ms)

is a bijection between S and T x G.
- We first show that ¢ is surjective. Consider (O, n;) € T x G and t € . Then for
allze S "

ms(z) = 25 = ms(zm; 1 (t)).

Since G is a group, there exists u € S such that 7, = 7! and hence 7, = 7., with
tus € Q. Thus (O, my) = ¢(tus) and ¢ is surjective.
To see that o is injective, assume (O;, ;) = (Og,7y). Then su = s’ for some

u € S and thus 7, = my = mw,(m), i.e. m, is the identity permutation. Hence

s’ = su=s.

And finally o is a function preserving multiplication since
ss' € O,
and
¢(s5') = (Ossr, Moer) = (05, M) = (05, m5) (O, 7r) = 0(s)8(5').

Q.E.D.

2-1II Homomorphisms and the syntactic congru-
ence

A homomorphism! ¢ from a semigroup (S,-) to a semigroup (S’,*) is a mapping ¢

from the set S into the set S’ such that

p(z-y) = o(z) x p(y)

1The word morphism is also used by some authors.
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for every z,y € S. To denote such a mapping we write ¢ : S — S'. If p is also a
surjective mapping, then ¢ is called a homomorphism from S onto S’, and S’ is called
the homomorphic 1mage of S. In case the mapping ¢ above is injective, it is called a
one-to-one homomorphism. An isomorphism from S to S’ is a homomorphism which
is both surjective and injective.

A homomorphism ¢ from a monoid (M, -, 1) to a monoid (M’, x,1’) is a semigroup

homomorphism ¢ : M — M’ such that

The terminology for surjective and injective homomorphisms of monoids is the same
as above. It will be clear from the context whether the intended meaning is “monoid
homomorphism™ or “semigroup homomorphism”.

We shall say that a monoid NV is a quotient of a monoid M if there exists a
surjective homomorphism ¢ : M — V.

A monoid M is said to divide a monoid N (written M < N) if M is a quotient
of a submonoid of V.

The notions of quotient and division are defined similarly for semigroups.

Let A be a finite alphabet and let L C A*. Consider the following equivalence

relation =, on A*:
r=ry <= {(u,v) € A" x A" tuzv e L} = {(u,v) € A" x A" 1 uyv € L}.
It is easy to show that if x =, y and a € A, then
xa =g ya and ar =y, ay.

It follows that the equivalence relation = is a congruence on A*. It is called the
syntactic congruence of L. The quotient of A* by =, denoted M (L), is the syntactic
monoid (or syntactic semigroup for A*) of L and the projection n; : A* — M(L)

is termed the syntactic morphism of L.
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2-IV  Equivalence of automaton and monoid

A monoid M is said to recognize L C A* if there exists a subset X of M and
a homomorphism ¢ : A* — M such that L = ¢~ !(X). (We also say that the
homomorphism ¢ recognizes a language L.)

We next show that the two notions of recognizable sets — by finite automata and

by finite monoids — are equivalent.

Theorem 2-IV.1 (cf. [MP71]). A subset L of A* is regular if and only if it is

recognized by a finite monoid.

Proof: Let L C A* be a regular language and A = (Q, ¢, F, A) be a deterministic

finite automaton recognizing L. We define an equivalence relation ~ on A* by
T~y = YgEQRQ:qg-T=q"V.

The number of equivalence classes of the equivalence relation ~ does not exceed ]QUQ'.

Suppose now r ~ y and uzv € L for some u,v € A*. We then derive:
Pe(uyv)=((@-u)-y)-v=((-u) z)-v=1-(uzv) € F.

Thus uyv € L. A similar derivation will show that uyv € L implies uzv € L.

Therefore,
T~y = I =y Yy,

which shows that the equivalence relation ~ refines =;, and hence |M(L)| < |Q|'9.
Conversely, let us assume M (L) is finite. First observe that if z € L and =z =L, v,
then y € L, because x = 1 -z -1. We construct a deterministic finite automaton
T = (Q,1, F, A) recognizing L by setting: the set of states @ is the set of elements of
M(L), the initial state ¢ is 1, the set of final states F' is the set of classes of words in

L and the transition function A is given for all a € A by
Alw}, @) = [wa],

where [v] denotes the =;-class of a word v. Thus a word w is accepted by 7 if and

only if 1-w = [w] is the class of a word in L. By the observation above, this is true if
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and only if w € L. Therefore, T recognizes L; and since M (L) is finite, L is regular.
Q.E.D.

Let A = (Q,1, F, ) be a deterministic finite automaton operating over a finite
alphabet A. For each word w € A* we define a corresponding state-transition function

Ly : @ — @, denoted by a two-row matrix

: - <m1j>
/-Lw - )
mgj
where the first row m,; is an (ordered) permutation of ¢; € @ (1 < j < |Q|) and

elements of the second row are my; = A(g;,w). The set of these maps under the

operation of functional composition

Lo O Uy = Huyy
forms a monoid. termed the transition monoid of A, denoted by M (A).

Theorem 2-IV.2 (cf. [MP71]). Let A be the minimal automaton of L. Then
M(A) and M(L), the syntactic monoid of L, are isomorphic.

Theorem 2-1V.3. Let L C A* be a language and 1y : A* — M (L) - its syntactic

morphism. Let ¢ : A* — M be a homomorphism. Then:

1. ¢ recognizes L if and only f there exists a homomorphism v : ¢(A*) — M such
that o @ = (i.e. np factors through ¢).

2. A monoid M recognizes L if and only if M (L) < M.

Proof: If ¢ recognizes L then there exists X C M such that L = o~ X).
Suppose ¢(w;) = ¢(ws). Then zwy € L implies ¢p(zwyy) € X since p(zwiy) € X
and ¢(zw1y) = ¢(zwqey). Thus zwey € L. Similarly, zwyy € L = zwy € L.
Therefore, ¢(w;) = ¢(wy) = w; =p we. Hence 7, factors through ¢, and M (L) is a
homomorphic image of ¢(A*), proving M (L) < M.

Conversely, suppose there exists a homomorphism ¥ : ¢(A*) — M such that
Yoo =mnp If p(w) € ¢(L) then ny(w) € (L), whence ¢(w) € ¢(L) < w € L.
That is, ¢ recognizes L. Let M be a monoid and M(L) < M, then there exists a
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submonoid M’ of M and a surjective homomorphism ¢ : M’ — M. For every a € A
fix ¢(a) € M’ such that ¥(4(a)) = nr(a). We then extend the domain of ¢ to A*,
i.e. ¢ is a homomorphism ¢ : A* — M such that n; factors through ¢. Then M

recognizes L since ¢ recognizes L. Q.FE.D.

The next results apply to operations on languages.

Proposition 2-IV.4 (cf. [Arb68]). Let L, K be two languages of A* recognized
respectively by monoids My and My and let M be a monoid. Then

1. if M recognizes L, M recognizes A*\ L;
2. LN L and LUK are recognized by My x My ;

3. if M recognizes L, M recognizes K~'L and LK~!.

2-V  Green’s relations

The equivalence relations we are about to introduce were first formulated by J. A.

Green in 1951 ([Gre51)) and have become fundamental in the theory of semigroups.

Definition 2-V.1. Let M be a monoid. Green’s relations are defined by the following

equivalences:

I

b
<
o

aRb <= aM =bM D
alb <= Ma= Mb - H = RNL
aJb <<= MaM = MbM

(cf. figure 2.2)

We also introduce reflexive and transitive relations based on the above:

a<pb<= aM C M
a<gb<= MaC Mb
a<7b<= MaM C MbM

a<yb<=a<gbanda<.b
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H
Figure 2.2: The inclusion of various Green’s equivalences.

Notation. If a is an element of a monoid M, then bv R,, L., H,,J, and D, we mean

respectively the R-class, £-class, H-class, J-class and D-class containing a.

Lemma 2-V.1 ([Gre51]). In a finite monoid, the relations R and L commute.

Consequently the relation D = RL = LR s the smallest one containing R and

L.
Proposition 2-V.2 ([Gre51]). In a finite monoid. D = J.

Proposition 2-V.3. Let R be an R-class and L be an L-class of a finite monotd M.
Then RN L # O if and only if R and L are within the same J -class.

Proof: If a € RN L the result is immediate: R = R, and L = L, and therefore

J, must contain both of them.

Conversely, suppose R and L are in the same J class of M. Then for every z € R

and y € L there exists a € M such that 2Ra and aLly (since zJy and J = RL).
Hence,a € RNL. Q.E.D. '

A D-class (or a J-class) of a finite monoid can thus be viewed as a table where
rows represent R-classes and columns — L-classes. H-classes lie at the intersections

(fig 2.3). The presence of an idempotent in an H-class is indicated by a star (*).

Lemma 2-V.4 (cf. [CP67]). Let m be an element of a finite monoid M. If L, =

Jm and Lp, contains an idempotent, then L, is a subsemigroup of M.
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r L-class
R-class H
R-class — H
T— L-class

Figure 2.3: The D-class structure.

Proof: Let e € L,, be idempotent, so L, = L,, = J, = J.. Consider two
elements t;, to of L.: t, = ue,ty = ve for some u,v € M. Thus tit, = ueve € Me.
On the other hand, e = zt, = yt, for some z,y € M. Thus e = €? = zt,yt,. Since
rtiy = zuey € MeM and e = zt \yty € MxtyyM, we conclude that xt;y and e
generate the same two-sided ideal of M: Jy;,, = J. = L. = L;,. Hence there exists
w € M such that xt;y = wt;. Thus e = wt;t; and e is in the left ideal generated by
tito and £ty is in the left ideal generated by e. This implies t;t5 € L, and therefore

L. = L,, is closed under product. Q.E.D.

{ - 1

a b
L, Ly
T TU

L oy J

Figure 2.4: Green’s Lemma.

Theorem 2-V.5 (Green’s Lemma, [Gre51]). Let a,b € M be such that aRb.
Then there exist u,v € M satisfying au = b and bv = a. If p,,p, are the right
translations defined respectively by p,(z) = zu and p,(z) = zv, then p, : L, — Ly

and p, : Ly — L, are inverse bijections preserving the H-classes, i.e.

Vz,y € Lo : 2Hy <= pu(z)Hpu(y)
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and

Vz,y € Ly : sHy < p,(z)Hps(y)

Proof: (figure 2.4) Let zLa. By definition, Mz = Ma; therefore Mzu = Mau,
or zulau = b. Hence p, is a function from L, to L. Since there exist ¢ € M such

that ta = z we have
pu(pu(x)) = py(zu) = py(tau) = p,(tb) = thv = ta =z,

i.e. the composition p, o p, is the identity function on L,. A similar argument shows
p» to be a function from L, to L, and p, o p, to be the identity on Ls.
Since every xr € L, is R-equivalent to zu and every = € L, is R-equivalent to zv,

we conclude:
(zHy) = (zuHyu) and (zuHyu) = (r = zuvHyuv = y).
Q.E.D.

The case of two L-equivalent elements is symmetric.

Proposition 2-V.6 ([CM56]). If a,b are two elements of a J-class of a monoid
M, then:
(abe R,NL,) < JeeRyNL,:e*=¢

The situation is summarized in the figure 2.5.

a R, ab
L, Ly
*€ Rb b

Figure 2.5: Proposition 2-V.6.

Proof: Suppose ab € R, N L,. By Green’s Lemma p, : L, — L is a bijection.
Chose an element e € R,NL, such that p,(e) = eb = b. Since e and b are R-equivalent

there exists u € M such that e = bu. Then e? = ebu = bu = ¢, i.e. e is idempotent.
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Conversely, suppose e is an idempotent element, e € R, N L,. Then eRb =
Ju : b = eu. Hence, eb = eeu = eu = b. Similarly, eLa = Jv : a = ve whence
ae = vee = ve = a. Also, eRb = a = aeRab and eLa = b = ebLab. That is,
abe R,NLy, Q.E.D.

Lemma 2-V.7 (cf. [CP67]). Let z and m be elements of a finite monoid M. Then
zmJIm = zmLlm.

Proof: J-equivalence of zm and m implies the existence of p,q € M such that
m = p-zm-q. Then there exists a positive integer & such that both e = (pz)* and

f = ¢* are idempotent and we have m = (pz)*mq* = emf. Thus
S — (=1,
m=em = (pz)* 'p-xm,.

so m belongs to the left ideal generated by zm. Hence. L,,, = L,,. Q.E.D.

Lemma 2-V.8 (cf. [Lal79]). Let H be an H-class of a monoid M. The following

conditions are equivalent:
1. 3eeH:e*=¢
2. Ja,be H:abe H
3. H is a mazimal group in M

Proof: 3 = 1. If H is a group, it contains an idempotent.

1=2 H=R,NLy=Ry,N L, and by proposition 2-V.6, ab € H.

2 = 3. By proposition 2-V.6, H must contain an idempotent e. For two arbitrary
elements of H, z and y: e € R, N L, = R, N L, implies (by the same proposition)
zy € H. Thus H is a semigroup. Furthermore, eRx means there exists u € H such
that z = eu; then ex = eeu = eu = x. Similarly, from eLzx we derive ze = z. That is,
er =z = ze and H is a monoid. Let p, : H — H be a bijection defined by Green’s

Lemma. Then there exist z’ such that

pz(z') =2'z =e,



CHAPTER 2. Finite Monoids 34

which shows that H is a group. Since every element of a group containing e is H-

equivalent to e, H is a maximal group. Q.E.D.

Proposition 2-V.9 (cf. [Lal79]). Two mazimal subgroups of a finite monoid M

contained in the same J-class are isomorphic.

Proof: By Lemma 2-V.8 two maximal subgroups of a finite monoid M are H-
classes H, and Hy containing respectively idempotents e, f. Since both H, and Hy
are within the same J-class there exists a € H,, where H, = R.N Ly (Lemma 2-V.3).
Then:

aRe = ea=a and alf = (3a' € M :d'a= f) and (af = a).

By Green’s Lemma p,(z) = za is a bijection from H, onto H,. Similarly, by the dual
version of Green’s Lemma we have that Ay = a'z is a bijection from H, onto Hj.
Therefore the composition p, o Ay is a bijection mapping every x in H, onto a'za in
Hy. Clearly,

pa o As(e) =d'ea=da=f.

To see that p, o Ay is an isomorphism, we first observe that aa’ is an idempotent
of R,:

(ad')* = ad'ad’ = afd = ad'.

Hence, for every element z € R, we have ad’r = z. For arbitrary r,y € H,, the

product zy € H,. Their images under p, o Ay exhibit the same property:
(a'za)(a'ya) = d'z(ad'y)a = d'rya.
Q.E.D.

A J-class is called regular if all its elements are regular. (We have similar defi-
nitions for regular R, £ and H-classes). The next proposition further explores the

structure of a regular J-class.
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Proposition 2-V.10. Let J be a J-class of a finite monoid M. The following are

equivalent:
1. J s regular
2. J contains a regular element
3. every L-class contained in J has an idempotent
4. every R-class contained in J has an idempotent
5. J contains an idempotent
6. 3xr,yeJ:ayeJ

Proof: 1 = 2. By definition.
2 = 3,4. Suppose a is a regular element of J. Then ¢ = asa = aLsa. Note also
that sa is idempotent:

(sa)? = sasa = s(asa) = sa.

Similarly, a = asa = aRas and
(as)® = asas = (asa)s = as.

3,4 = 2. Let e be an idempotent element of M in J. Then aRe = Ju € M :

au = e and ea = a, whence
a = ea = eea = auea = asa.

By the same reasoning aLf (where f is idempotent) implies Jv € M : va = f and
af = a. Therefore,

a=af =aff =afva = ata.

2 = 1. Let a be a regular element of M in J and b - an element in J. Then
aJb < 3c € J:aRc A cLbh. Since a is regular, R, = R, contains an idempotent
and therefore c is regular. Also, b must be regular because L. = L, has an idempotent.

3,4 = 5. Obvious.



