
Generating Hard and Realistic Boolean

(Un)Satisfiability Problems.

Joseph Cotnareanu

Department of Electrical & Computer Engineering

McGill University

Montréal, Québec, Canada

August, 2024

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of

Master of Science.

©2024 Joseph Cotnareanu

Abstract

Efficiently determining the satisfiability of a boolean equation — the SAT problem for

brevity — is crucial in industrial problems. Recently, the advent of deep learning methods

has introduced potential for enhancing SAT solving. However, a barrier to the advancement

of this field has been the scarcity of large, realistic datasets. The majority of current public

datasets are either randomly generated or extremely limited, containing only a few examples

from unrelated problem families. These datasets are inadequate for meaningful training of

deep learning methods. In light of this, researchers are exploring generative techniques to

create data that more accurately reflect SAT problems encountered in practical situations.

These methods have so far suffered from either the inability to produce challenging SAT

problems or time-scalability obstacles. In this work we address both by identifying and

manipulating the key contributors to a problem’s “hardness”, known as cores. Although some

previous work has addressed cores, the time costs are unacceptably high due to the expense of

traditional heuristic core detection techniques. We introduce a fast core detection procedure

that uses a graph neural network. Our empirical results demonstrate that we can efficiently

generate problems that remain hard to solve and retain key attributes of the original example

problems. We show via experiment that the generated synthetic SAT problems can be used

in a data augmentation setting to provide improved prediction of solver runtimes.

i

Abrégé

Déterminer efficacement la satisfaisabilité d’une équation booléenne — le problème SAT en bref

— est très important en industrie. Récemment, l’agrandissement du domaine de l’apprentissage

profond (“deep learning”) a introduit une nouvelle famille de méthodes pour adresser le

problème SAT. Cependant, cette famille de méthodes requiert beaucoup de données, lesquelles

sont actuellement manquantes. Les données accessibles au publique sont soit groupées en

familles très petites ou sont synthétiques, générées de façon stochastique. En réponse à

ce manque, les chercheurs explorent comment générer des problèmes SAT qui sont plus

représentatifs de problèmes industriels en volume utilisable par les méthodes d’apprentissage

profond. Ces méthodes génératives existantes sont soit incapables de générer des problèmes

difficiles, ou elles sont trop coûteuses en temps et en ressource computationelle pour être

applicables. Dans cette thèse, nous adressons ces deux incapacités des méthodes précédents

en identifiant et manipulant le sous-ensemble responsable pour la difficulté d’une problème

SAT. La méthode présentée ci-dessous n’est pas la première à adresser ces sous-ensembles,

mais elle est la première à le faire à un prix informatique acceptable pour générer un haut-

volume. Cet objectif est atteint en remplaçant les méthodes traditionnelles par un nouveau

réseau de neurones graphique pour identifier les sous-ensembles difficiles. L’expérimentation

présentée dans cette thèse démontre que nous réussissons à générer des problèmes difficiles qui

ii

ressemblent aux problèmes industrielles. De plus, il est démontré que les problèmes générés

peuvent être utilisés afin d’augmenter les données d’entraînement des réseaux de neurones

qui résolvent le problème SAT, ce qui améliore leur performance.

iii

Acknowledgements
Here I would like to express my gratitude to all those who have supported me through this

Master’s degree and the writing of this work. Firstly, I would like to thank my supervisor

Professor Mark Coates, who’s patience and careful guidance have been indispensable. Even

when I thought there was little to discuss beforehand, our meetings proved to be incredibly

valuable for me as I always left knowing more and feeling more sure of the path ahead. As

his student, I was afforded multiple opportunities to build new connections and explore

new projects. I would also like to thank my co-authors on the paper to which this thesis

corresponds, Zhanguang (Vincent) Zhang and Yingxue Zhang. Vincent’s guidance, suggestions

and brainstorming served greatly in the development of this work. Early collaboration with

Vincent on a related project also allowed me to become familiar with — and develop an

intuition for — the area. Yingxue’s insightful feedback and suggestions guided experimentation

in a very important way, and I always looked forward to our weekly meetings where I might

get some valuable criticism to act upon. I would like to thank Muberra Ozmen (PhD),

who allowed me to participate in her research project early during my Master’s. This was

incredibly valuable to me as it allowed me to become familiar with the research process under

close supervision. Finally, I would like to thank my family. It is by the strength of their

support that I have completed this work.

iv

Contents

1 Introduction 1

1.1 Motivation and Context . 1

1.2 Contributions . 5

1.3 Thesis Organization . 7

2 Background Material and Literature Review 10

2.1 Introduction . 10

2.2 Background . 10

2.2.1 Graph Neural Networks (GNNs) . 14

2.2.2 Training Binary Classifier Neural Networks 14

2.3 Related Work . 15

2.3.1 Random SAT generation . 16

2.3.2 Deep-learned SAT generation . 19

2.3.3 Core Prediction . 22

2.3.4 Various Machine-Learning for SAT methods and settings 24

2.4 Summary . 26

3 Methodology 28

v

3.1 Introduction . 28

3.2 Problem Statement . 28

3.3 HardCore . 30

3.3.1 Generating Hard Instances . 31

3.3.2 Core Prediction . 33

3.4 Experiments and Results . 37

3.4.1 Experimental Setting . 37

3.4.2 Research Questions . 41

3.5 Summary . 60

4 Conclusion 62

4.1 Conclusion . 62

4.2 Limitations . 63

4.3 Future Work . 65

A Further Experimental Details 69

A.1 Data . 69

A.2 Hyper-parameters . 69

A.3 HardCore GNN Core Prediction Implementation Details 71

A.3.1 K-SAT Random Generation . 72

A.4 Supplementary Results . 72

vi

A.4.1 Fine-Grained results on Data Augmentation Experiment 72

vii

List of Figures

1.1 Generated Hardness (relative to original) vs. Time-Cost trade-off: previous

works either provide methods that generate low-hardness problems or operate

at extremely high cost. Our method generates hard problems with relatively

low computational cost. 5

3.1 Core Refinement. The core refinement process comes in two steps: (1) Core

Prediction and (2) De-Coring. 30

3.2 Core Prediction GNN Architecture. We aggregate 3 GNNs at each layer,

with supervision over clause node core labels. 35

3.3 Correlation scatterplot of generated and original runtimes per-instance. . . . 41

3.4 Left: Hardness for problems of varying core sizes. We note a positive correlation

between core size and hardness until core size reaches approximately 5000

clauses in size. Right: hardness of core-refined problems expressed as a

percentage of the same problem’s hardness before refinement. We see that

core refinement recovers the hardness for trivial (hardness-collapsed) problems. 46

3.5 Hardness as Core Refinement Progresses. We run 5 Generations and Core-

Refinements for one: Easy problem (left), Hard problem (right). 47

3.6 HardCore and HardSATGEN per-solver runtime boxplots. 53

viii

3.7 LEC Internal Rank 1 Solvers. We compare the number of times each solver

is the fastest solver for original and synthetic problems. Experiments with

generations by HardCore (left) and HardSATGEN (right). X axis is Solver ID

and y axis is how frequently (%) the solver is ranked first by runtime. 55

3.8 HardCore (top) and HardSATGEN (bottom) Comparison of Solver Rankings

by stacked Histogram for Original and Generated LEC data. 57

A.1 Mean MAE on Runtime Prediction. Boxplot-view of results presented in Table

3.4 for LEC data. 74

ix

List of Tables

3.1 GNN Core Prediction Performance on In and Out-of-Distribution LEC data 45

3.2 Evaluation of generated datasets on LEC data. Hardness, cost 49

3.3 Evaluation of generated datasets on LEC data: MMD 53

3.4 MAE of Runtime Prediction averaged across 7 solvers and 15 trials. 59

3.5 Data augmentation experiment on SC data 60

A.1 Data Statistics . 69

x

Chapter 1

Introduction

1.1 Motivation and Context

Machine Learning and the SAT Problem The boolean satisfiability problem (the SAT

problem) emerges in multiple industrial settings such as circuit design [1], cryptoanalysis [2],

and scheduling [3]. While machine learning is not well suited for directly solving SAT

problems — solvers are typically required to have perfect accuracy and return correct proofs

— there are many ways in which machine learning is currently used in tangent with the SAT

problem. Given machine-learning’s significantly lower time-cost relative to classical SAT

techniques and the rich literature of statistical and graphical metrics for SAT instances (useful

as features for learning), the SAT problem can be a fertile area for the application of learning

techniques.

One of the most prominent examples of successful application of machine learning is SATzilla,

proposed by Xu et al. [4]. This algorithm trains solve-time estimators for a hand-crafted

1

selection of SAT solvers, and for each new SAT problem selects the estimated fastest solver.

This method was insightful because it took advantage of the observation that the competitive

individual SAT solvers tend to perform well on mostly non-overlapping subsets of the

competition benchmark problems. By choosing the best solver per-problem — rather than

averaged over all problems in the benchmark set — SATzilla significantly reduced the average

solve-time. This work led the way for a diverse series of subsequent algorithm selection

techniques, ranging from clustering-related approaches [5, 6], to hyper-parameter selection

[7]. The SATzilla work also introduced an important set of hand-crafted, easily-computed

features for machine-learning on SAT problems, which has been widely used and augmented

over time.

Another fruitful application of machine learning within SAT is accelerated benchmarking.

Fuchs et al. [8] present an active-learning-based method that can provide an accurate ranking

of SAT solvers’ benchmark times at a fraction of the cost of running the full benchmark. In

short, this method selects a sample of instances from the full benchmark and evaluates the

solving times for the solvers on only the subset. The active learning procedure ensures that

the selected subset is suitably representative.

Data driven methods require data A major challenge for SAT-related learning is the

scarcity of high quality, reasonably homogeneous, real-structured data. The most commonly-

used datasets have been compiled via a series of annual International SAT Competitions

2

[9]. The industrial origins of the compiled instances differ substantially, so the datasets are

highly heterogeneous. The datasets provide a good, diverse test for heuristic SAT solvers,

but for data-driven learning methods, this heterogeneous, sparse data is unsuitable. More

complex models are thus forced to use randomly generated data during training [10]. This

is problematic because the hardness-inducing dynamics in industrial data are very different

from those in randomly generated problems. Training or testing on most existing randomly

generated data provides little insight into how a model will perform on real industrial

problems [11]. The clearest demonstration of the difference between real data and random

data, in our view, is the notable difference in solver performance. It is generally accepted in

the literature that some solvers are random-specialized and others are industry-specialized.

For example, the experimental results in [12] are heavily based on this. One can also see

such specialization by noting that the best solver on the SAT Competition random tracks is

not the same as the best solver on the SAT Competition main track. In fact, the existence of

separate tracks itself indicates an acknowledged distinction between the types of data.

Given this distinction between the behaviour of random and industrial data, training an

industrial-facing model on random data leads to an out-of-distribution problem. Inference

must be performed for problems that are very different from the training data. It would be

equivalent to augmenting a real-world image dataset with random patterns. In most cases,

the model will perform poorly. For example, SAT-solver selection is a machine-learning task

3

for SAT in which, given a problem, we aim to rapidly choose the solver which is likely to

solve the problem the fastest [4, 13]. This is a task which greatly benefits industrial settings

in which thousands of SAT problems must be solved each day and computation and time

costs must be minimized. Training such a selection model on random data would result in

the model learning a wholly different runtime distribution than that of the industrial data.

A similar example is low-cost benchmarking, in which a model is trained to predict the

performance of a solver over a benchmark [8]. This task is of interest to solver-designers, as it

can be much cheaper than running a design-iteration of a new solver on the whole benchmark

data. If random data is used to learn to benchmark a solver on industrial problems, the

predictor would likely predict benchmarks as if the industrial data were in fact random.

Thus, new methods must be designed in order to obtain more realistic (less random) SAT

instances.

Recently, deep-learning methods have been introduced to generate more realistic SAT

instances. Early models [14–16] can generate instances that seem structurally similar to

original instances, but the problems are far easier to solve, a phenomenon called hardness

collapse. Preserving hardness is essential, as generating only very easy problems renders the

resultant dataset ineffective for distinguishing the best-performing solver from the worst.

Additionally, such datasets fail to help the model learn to predict real runtimes. A recent

study has succeeded in preserving hardness [17]. Unfortunately, the resultant method is

4

Figure 1.1: Generated Hardness (relative to original) vs. Time-Cost trade-off: previous works
either provide methods that generate low-hardness problems or operate at extremely high
cost. Our method generates hard problems with relatively low computational cost.

prohibitively computationally expensive for synthetic data generation and augmentation for

deep-learning. It can take over a week to generate a limited number of new problem

instances. We summarize the cost/hardness trade-offs in Figure 1.1. In this thesis, we aim to

provide a method for the low-cost generation of hard SAT problems for the purpose of data

augmentation in SAT-related applications of Deep Learning techniques.

1.2 Contributions

In this thesis, we take advantage of the connection between a problem’s core and its hardness.

The core consists of the identifiable minimal subsets of a boolean SAT problem that are

unsatisfiable (UNSAT) [18]. Our strategy is to preserve the core of an original instance

5

while iteratively adding random clauses to construct similar, but sufficiently diverse, problem

instances that can enhance learning. To do this, we need to detect the core after each

iteration. Unfortunately, traditional core detection algorithms are slow and can take hundreds

of seconds, as they often require solving the SAT problem [19]. Clearly, such an algorithm is

impractical for building a fast generator, as core detection needs to be performed hundreds

of times for every instance we generate.

To address this, we rephrase core detection as a binary node classification algorithm (core/not-

core). We train a graph neural network to perform the task. Importantly, we can circumvent

the data starvation issue, because our random data generation procedure generates hundreds

of example instances that can be used for training the core detection algorithm. We can

also take advantage of the fact that while it is important to identify the vast majority of

clauses that belong to the core, we can tolerate a relatively high number of false-alarms by

post-processing with a fast pruning algorithm.

We make the following novel research contributions:

• We propose a novel method for SAT generation that is the first that can both (i) preserve

hardness and (ii) generate instances in a reasonable time frame. We can thus generate

thousands of hard instances to augment a dataset in minutes or hours.

6

• We demonstrate experimentally that our proposed procedure preserves the key aspects of

the original instances that impact solver runtimes. This hardness preservation is crucial

when an augmented dataset is used to learn to predict solver times, a vital task for solver

benchmarking and selection.

• We illustrate the value of our augmentation process for solver runtime prediction. On

an example dataset, our augmentation process reduces mean absolute error by 20-50

percent. In contrast, all other generation algorithms achieve no statistically significant

improvement.

1.3 Thesis Organization

This thesis is organized into several chapters, each describing an element of our investigation of

learned data generation for SAT-related machine learning. The organization is as follows:

• Chapter 2 - Background and Literature Review

In this chapter we summarize some key background theory related to the SAT problem.

Specifically, we describe logical, set-based and graph-based representations of the SAT

problem. We also describe the important notions of Cores and Hardness. We then outline

the previous work in deep-generated SAT problems as well as Core Prediction techniques.

7

• Chapter 3 - Methodology

In this chapter we describe our chosen problem — learned data generation for data

augmentation in SAT-based learning problems. We describe our method HardCore, which

combines low-cost random generation and a carefully designed learned refinement process.

It can produce suitably hard problems at an acceptable computational cost.

We then design a comprehensive set of experiments to measure the generative performance.

We focus on assessing whether the generated instances exhibit similar hardness (in a

distributional sense) to the original data.

Finally, we demonstrate HardCore’s ability to augment data in scarce data settings to

improve predictive performance. To do this, we compare the performance of a SATzilla-

based runtime estimator trained on augmented and un-augmented datasets.

• Chapter 4 - Conclusion

In this chapter, we summarize the major contributions of each chapter, drawing a single

clear image of our work from the contents of the thesis: our work constitutes the first

SAT problem generator of its kind which can generate instances which are both hard

and low-cost and which can be used as data augmentation during training to improve

the performance of machine learning in SAT-related settings. We discuss the strengths

8

and weaknesses of the proposed approach, and identify potential directions for further

exploration and improvement.

• Author Contributions

The work in this thesis was conducted in collaboration with Yingxue Zhang, Vincent

Zhang, and Mark Coates, who acted as supervisors, and provided significant guidance,

particularly during the experimental exploration phase of the project. I conducted a

thorough review of the SAT problem generation literature, identified the specific research

problem, and proposed and implemented the generative method described in this thesis. I

also was primarily responsible for designing and carrying out the experimentation, with

the valuable guidance and feedback of my co-authors.

9

Chapter 2

Background Material and Literature

Review

2.1 Introduction

In this chapter, we provide some background material related to the boolean satisfiability

(SAT) problem and its representations, notations and measurements. Then, we discuss

previous work in the sub-problems of SAT in which we operate: deep-learned generation and

core detection. Finally, we discuss classification for graph problems. This will be important

as our method makes use of graph classification techniques (see section 3.

2.2 Background

Definitions and Notation The Boolean Satisfiability Problem (SAT) is the problem of

determining whether there exists an assignment of variable values that satisfies the given

Boolean formula, rendering it true. Typically, a SAT instance is represented in Conjunctive

10

Normal Form (CNF), which is written as a conjunction (logical AND) of disjunctions (logical

OR), for example f = (¬A ∨ B ∨ C) ∧ (A ∨ ¬C) ∧ (¬B ∨ C). The signed version of each

variable that appears in the formula is known as a literal. For example, A and ¬A are both

literals of the variable A [20, Chapter 2].

Another useful representation of a CNF is as a set of sets, where each set (referred to as

a clause) represents a disjunction in the CNF and contains the literals included in that

disjunction. Denote the i-th clause in the formula f by ci and the j-th literal in clause ci

as lj. If there are nc clauses in f and nli literals in clause ci, we can express the formula as

ci = ⋃nli
j=1 lj, f = ⋃nc

i=1 ci.

Core Definition Given an unsatisfiable (UNSAT) instance U , there is a subset of clauses

called a Minimally Unsatisfiable Subset (MUS) or a Core. This subset is the smallest possible

subset of clauses from U that is UNSAT [20, Chapter 11].

Graph Representation of CNFs There are several common CNF graph representations.

In this work, we use the Literal-Clause Graph (LCG), an undirected and bipartite graph.

Each node in the first set of nodes represents a clause and each node in the second represents a

literal. We construct an edge for each occurrence of a literal in a clause; the set of undirected

edges e is defined as e = ⋃nc
i=1

⋃nli
j=0 (ljci

, ci).

11

Another common graph representation of CNFs is the Literal-Incidence graph (LIG). This

is a homogeneous graph representation in which all nodes represent literals, and edges

are drawn when two literals share a clause. Thus the set of edges can be denoted as

e = ⋃nc
i=1

⋃nli
j=0

⋃nli
k=0(ljci

, lkci
).

These representations each have a major strength and weakness, and one’s strength is the

other’s weakness. The LCG is a lossless representation of the CNF in that we are guaranteed

to be able to recover the CNF that is represented by the LCG, simply by building clauses

based on clause-node neighbourhoods. This is clearly a strength. However, this comes at the

cost of the bipartite nature of the graph. Bipartite graphs are inherently more complex in

structure given the node-type factor, and methods which leverage bipartite graphs structure

require additional design considerations. To focus on methods which are designed specifically

for bipartite graphs will greatly limit the selection of available off-the-shelf methods compared

to homogeneous graphs. The LIG is exactly the inverse. Given only the LIG graph, there

are no guarantees that the recovered CNF is the original. For example, given a triangle

over literals A, B, C, one may draw a single clause (A ∨ B ∨ C) or several small clauses

(A ∨B) ∧ (A ∨ C) ∧ (B ∨ C). This comes with the trade-off that the graph representation is

simpler and more straightforward to manipulate.

Hardness Throughout this thesis, we frequently discuss the “hardness” of a problem. There

is not a unique, universally-accepted mathematical definition of hardness. The hardness of a

12

SAT problem is some measure of the cost of solving the instance. A variety of measures of

hardness have been introduced in the literature. Wu and Ramanujan [14] use the number

of conflicts to measure hardness, where a conflict is an event during solving in which the

current hypothetical solution is invalid. One might consider conflicts to be analogous to the

number of failed attempts during solving. Xu et al. [4] implement a model which is referred

to as an empirical hardness model. The goal of this model is to predict the hardness a solver

will encounter when solving a problem. This model is used to select the solver which will

encounter the least hardness. Practically speaking, this amounts to picking the fastest solver

per instance using a per-instance runtime-prediction model, trained for some hand-selected

SAT solvers. Ansótegui et al. [21] present a method for measuring hardness which involves the

tree-size of the proof-tree of the problem. While interesting, this method is more complicated

than necessary for most use-cases of a hardness metric. In addition, random problems are

typically hard in a different way than industrial instances. This can be seen by the fact that

solver solve-time ranking orderings are different when measured over random or industrial

instances [9]. Thus, when hardness is of interest, we also consider solver speed rankings

[15, 17, 22].

13

2.2.1 Graph Neural Networks (GNNs)

While not the original introduction of graph neural networks (GNNs), Hamilton et al. [23]

introduce a general framework under which we might understand GNNs broadly:

hk
v = σ(W · aggregator(hk−1

u , ∀u ∈ N (v)) , (2.1)

where σ is the sigmoid function: σ(x) = 1
1+e(−x) and aggregator is some aggregator function.

The aggregator should be designed such that its output dimension is invariant to the size of the

neighborhood N (v). Typically, the output is also permutation invariant (for example, MEAN,

MAX, SUM). This framework boils down to each layer of a GNN being composed of a single

multi-layer perceptron (MLP) layer, executed for each node embedding on the aggregation of

the node’s neighborhood. This leads to each node embedding being a representation of that

node’s neighborhood, and therefore such GNNs can be seen as embeddors of local structure

in graphs.

2.2.2 Training Binary Classifier Neural Networks

The foremost training strategy used for training binary classifier neural networks is the

minimization of the classifier and target distribution’s binary cross-entropy:

BCE(p, q) = −
∑

p(x) log q(x), (2.2)

14

where p and q are the target and model prediction distributions respectively. In cases

where the target distribution is not known, as is commonly the case in machine-learning

where a distribution is not given but rather samples (data), we estimate the cross-entropy

accordingly:

BCE(T, q) = −
N∑
i

1
N

log q(xi) , (2.3)

where T is the dataset, N is the size of the dataset, and q(xi) is the probability that the

model will predict the correct answer for datapoint xi. h0 is set as the input features for each

node, and is dependent on the setting.

2.3 Related Work

In this section, we outline several categories of work relating to this thesis. The first two

categories pertain directly to SAT problem generation: random generation and deep-learned

generation. Random methods tend to examine hardness and industrial structure of problems

according to specific statistical measurements and can contribute insight into what makes a

problem hard or industrial, and how we might measure it. Deep-learned generation methods

form the foundation of the generation technique that we propose in this thesis. In the

approach we develop, core prediction/detection is also key, and so we also review related

work addressing this task. Finally, our work is heavily motivated by the general application

15

of machine learning for the boolean satisfiability problem in various settings, so we present

some examples of previous work in various SAT-related settings to illustrate the potential

benefits machine learning methods may bring to addressing the SAT problem.

2.3.1 Random SAT generation

There exist two random SAT generation algorithms which attempt to generate instances that

are similar to industrial SAT instances. Both methods target preservation of specific features

that are commonly found in industrial problems.

The first method is named Community Attachment (CA), proposed by Cru and Levy [24]

in 2016. The major claim of the paper is that the modularity of the problems, when

represented as graphs, as described in Section 2.2, is linked to the common structure of

industrial problems, and that by generating problems of similar modularity, one might

generate industrially structured problems.

Community Attachment operates by initializing a set N of n boolean variables. Variables

from the set N are selected to form clauses according to the following scheme. First, the set

of variables is randomly partitioned into c pairwise disjoint communities of the same size.

Then, with probability p a clause is formed by randomly selecting k variables from a single

community, and with probability 1− p a clause is formed by randomly selecting k variables

16

from all communities. With this method, it can be shown that the average modularity of

the graphs of generated problems has a lower bound, which is dependent on the selected

hyper-parameters, p and c. It is shown empirically that industrially-specialized solvers tend to

perform better on the generated data than random-specialized solvers, indicating that at least

an element of the structure of industrial problems, which is leveraged by specialized solvers, is

also present in the generated problems. This is supported by experimental results showing that

industrially-specialized solvers tend to solve the generated problems in a community-observant

way: variables within a single community are usually tested by the solver consecutively. This

seems to support the hypothesis that industrially-specialized solvers leverage the community

structure that can be observed in graphical representations of problems. However, this logic is

somewhat strained, and lacking evidence of a causal connection between community structure

and “industrial-ness”, it is highly likely that modularity is only a small element or side-effect

of the true underlying nature of industrial instances.

The next method is named Popularity-Similarity (PS) and was proposed in 2017 by the

same authors, Cru and Levy [12]. Seemingly based on the previous work’s findings that

industrial solvers tend to visit variables in some local fashion, the target feature in this

method is called “locality”. Although locality is never precisely defined in the paper, it seems

to refer to clustering and modularity. As the name of the method suggests, there is in fact a

second targeted factor: popularity. Popularity, or power-law, or scale-free structure, is the

17

notion that networks often contain several “popular nodes”, which have much greater degree

relative to the rest of the graph. This means that the node-degree histogram of the network

follows a heavy-tailed curve. Cru and Levy [12] propose a random generation model such

that the graph representation of the SAT problem demonstrates scale-free structure. The

method also enforces a power law over clause length. Industrial-specialized solvers are shown

to out-perform random-specialized solvers on PS-generated problems, which the authors

interpret as demonstrating the industrial structure of PS-generated problems.

More recently, a method has been proposed by Zhao et al. [25] for specifically generating

hard satisfiable problem which have multiple solutions. This method operates by pre-defining

the solutions for the to-be-generated problem and then randomly generating a corresponding

problem. Then, hardness is directly measured by solving the problem and the problem is

modified if necessary to be harder. Three strategies are offered. The first is to randomly flip

literals in the randomly generated clauses until the problem meets some hardness threshold.

The second is to initially generate problems which satisfy the chosen hardness criteria by

expressing the satisfaction of the hardness criteria as a linear programming problem and

solving it. The third is to greedily generate clauses which are each as hard as possible

according to the hardness criteria. While this work provides significant insight into both

iterative hardness-aware generation as well as the measurement of hardness itself, it applies

very specifically to satisfiable problems which have multiple solutions. Also, while the method

18

does generate hard problems, these hard problems are not necessarily industrially-structured.

For example, there is no demonstration (or stated intent) that industrially-specialized solvers

perform better on the generated instances than random-specialized solvers.

Random SAT-generation methods such as these, which aim to generate hard or industrial-

structured data, demonstrate some very significant advantages and disadvantages. These

methods are low-cost relative to trained methods both in that they incur no training costs

and that inference cost is generally low. These methods are also straightforward and

understandable. However, these advantages come at the cost that the methods are highly

dependent on multiple hyper-parameters, such as cluster-size and p for CA, and the power-law

constant and temperature for PS. Little information is provided in the papers regarding how

to set these parameters. Additionally, it is highly likely that industrial data from a specific

application is different in structure than data from another application. While these works

demonstrate empirically some element of general “industrial-ness” of the generated data,

there is no demonstration of an ability to emulate specific example data.

2.3.2 Deep-learned SAT generation

The problem of learned generation for SAT problems was first established by Wu and

Ramanujan in 2019 with SATGEN [14], motivated by a lack of access to industrial SAT

problems. SATGEN uses a graph generative adversarial network (GAN), trained using

19

random walks on the LIG representation. Wu and Ramanujan [14] explain that the LIG was

chosen because it was found that learning the bi-partiteness of the LCG was difficult, and

that the training time on the chosen bipartite methods was too expensive. To address the

LIG-to-CNF decoding obstacle discussed above, a lazy hill-climbing algorithm is used to find

the minimal clique edge cover of the graph, where each cover forms one clause. This choice

does not lead to recovery of the original CNF, but results in a CNF with the minimal number

of clauses. While this work served to introduce the problem to the generative deep-learning

community, the work fell short in its evaluation. Only one hardness metric was evaluated,

and for this metric the method under-performed some random generation methods while

operating at much higher computational cost. Only general graph statistics were provided to

demonstrate the “industrial” nature of the generated instances.

G2SAT [15] represents problems as LCGs. The graphs are progressively split into small

trees, and a graph neural network (GNN) is trained to discern whether two trees should

be merged to restore the original graph. While innovative, the method is slow due to its

need to sample many tree pairs to form a SAT problem of sufficient size. Additionally, the

method is unable to generate hard instances, with generated instances that typically show

nearly 0% solve-time compared to the original problems. This work introduced the solver

ranking ordering experiment, which compares the ordering of ranked solvers on original and

generated problems as a method of gauging similarity.

20

The most recent improvement on the G2SAT framework, HardSATGEN [17], includes

some domain-inspired considerations in its design, such as graph communities and cores.

HardSATGEN uses the same split-merge framework that was introduced in G2SAT, with

some modifications and some additions. First, the core of the original problem is sustained

and remains untouched throughout the generation pipeline. Then the split-merge algorithm is

applied to nodes and trees which are within the same community. This process is repeated at

an inter-community level. Finally, an algorithm is applied which iteratively renders the core

of the generated problem satisfiable. This iterative process gradually increases the size of the

core with the goal of obtaining a core that is harder to solve. This is an insightful approach

based on the intuition that the core of an UNSAT problem is the proverbial weakest link in

the chain, in that by solving only the core one may determine the problem to be UNSAT.

HardSATGEN is the first deep-learned SAT generation method that can generate problems

which are not trivial to solve for solvers: often the generated problems take nearly as long

or even longer for a solver to solve than the corresponding seed problem. Unfortunately,

however, the core awareness aspects of the design cause HardSATGEN to be extremely slow,

making it challenging to use in any setting that needs many new instances.

W2SAT [22] follows an approach more similar to the original SATGEN, in that it uses LIG

representations followed by a minimal clique edge cover algorithm to decode the generated

LIG. A major distinction, however, is that a weighted LIG is used in which the edges of the

21

LIG are weighted according to the number of times the two literals share a clause. The method

employs a low-cost general graph generation model, and obtains new SAT problems via graph

decoding. W2SAT is extremely efficient, but like G2SAT, it is incapable of generating hard

problems.

G2MILP [26] is designed to generate Mixed Integer Linear Programs (MILPs), which are

the general case of SAT. A naive modification allows us to use G2MILP to generate SAT

problems. The method is nearly as efficient as W2SAT, but also struggles to generate hard

instances.

2.3.3 Core Prediction

Core Detection can be a helpful tool for understanding UNSAT problems. Cores are often

seen as a strong indicator of the hardness of an UNSAT problem [21]. There are multiple

classical, verifiable methods for Core Detection.

The most straightforward method for determining the core of a problem is by removing

clauses one at a time and checking if the resulting problem remains UNSAT. If the problem

does indeed remain UNSAT then the removed clause is not a part of the core. If the problem

becomes SAT, then the clause is integral to the unsatisfiability of the problem and is therefore

part of the core, and must be returned to the problem. When there are no more clauses which

22

can be removed without rendering the problem satisfiable, what is left is the core. While this

method is simple to implement, it requires nc calls to a SAT solver. Modern SAT solvers may

often take minutes to solve an instance, and if a small industrial SAT problem has nc = 1000

then this means that this core detection algorithm will take hours to complete [27].

A more recent advance in Core Detection is the Drat-Trim algorithm [19]. Drat-Trim requires

that the problem be solved once by a SAT solver, and leverages the proof that is provided by all

contemporary SAT solvers to discover the core. While significantly faster than the previously

described method (Drat-Trim requires 1 call to a SAT solver whereas the previous requires

thousands), SAT solvers are still considered slow (the underlying problem is NP-Complete),

and so even a single call means the algorithm is slow. In response to this, Neurocore [10]

was designed to predict the core of a SAT problem. Neurocore converts the input problem

to a graph and uses a GNN to predict cores. Strangely, however, Neurocore does this on

variables rather than clauses. Cores are defined to be subsets of clauses, rather than variables,

and so this choice seems unnatural. Neurocore strives to be a machine-learning based

variable-selection heuristic for SAT solvers, which motivates the focus on variables.

23

2.3.4 Various Machine-Learning for SAT methods and settings

Algorithm Selection

One of the original applications of Machine-Learning for SAT was in algorithm selection: the

task of selecting the fastest solver for a specific SAT problem. The motivation of this problem

is that it is generally accepted that different solvers exploit different types of SAT structure.

Most notably, random structured SAT problems and industrial-structured problems show very

distinct performance on the same solvers. Thus, in theory (and demonstrably), selecting the

best solver per-instance should significantly reduce over-all time-cost compared to selecting

the best on-average solver. The first method of note to employ machine-learning for this task

is the SATzilla entry to the 2007 SAT competition from authors Xu et al. [4]. The method

leveraged a small machine-learning model trained on a set of hand-chosen features specific

to SAT problems such as the number of variables, clauses, and clause size to predict the

runtimes of a selection of competitive and complementary already-established solvers for

each problem. With the help of some well-made design choices, SATzilla earned medals at

the SAT competitions for several years after its introduction. Following SATzilla, several

algorithm selection methods were released, most notably clustering methods ISAC and 3S

[5, 6], hyper-parameter selection methods SATenstein and Hydra [7, 28] and graph-based

method GraSS [13].

24

Low-cost SAT-Solver benchmarking

A crucial phase in the iterative design cycle of many types of algorithms is benchmarking,

where the designer tests the newest version of the developing algorithm against a series of

baselines and previous versions of the algorithm. In SAT solver design this phase can be costly,

as each SAT problem might take minutes to solve and parallelization can be difficult due to

the CPU-requiring (rather than GPU) sequential nature of SAT-solving. To address this,

Fuchs et al. [8] put forward a method based on an active-learning framework for obtaining

a highly accurate benchmarking of solvers with only a small fraction of the required test

problems, lowering benchmarking costs considerably.

Machine Learning for Solving SAT problems

One can also find in the literature machine-learning based methods that either directly

augment solvers or replace solvers entirely. Selsam et al. [29] present a graph neural network

(GNN) based method for predicting the satisfiability of a problem represented as a graph.

While results appear promising in the paper, the empirical results are on simple and very

small random SAT problems. The authors comment that performance degrades notably as

the size of the problem is increased. Practically, machine-learning seems poorly positioned to

replace logical solvers entirely for SAT solving because machine-learning models are inherently

approximate and can rarely be relied upon to be correct every time. The traditional SAT

setting — for example at SAT competition — is not to measure accuracy of solvers, however,

25

but to measure their speed. Industrially, SAT solvers are employed as the final validation

step because solvers will never incorrectly solve a SAT problem, and so machine-learning

approaches are unlikely to ever be accepted as a total replacement of traditional solvers.

Despite this, some work has shown potential in augmenting SAT solvers with learned heuristics.

SAT solvers operate by selecting a variable from the problem, assigning it a value, and checking

if the assigned value satisfies the problem. Traditionally the variable is picked according to

some heuristic, but Selsam and Bjørner [10] present a learned heuristic in which a GNN is

trained to predict variables based on their association with the minimal unsatisfiable subset

of the problem. This is motivated by the notion that finding the core of the problem is the

fastest way to prove a problem as UNSAT. The design-choice of a core-based heuristic seems

strange, as cores are defined as sets of clauses whereas the heuristic must select variables.

Despite this, results show significant improvements in solve-time when replacing a chosen

solver’s heuristic with the trained GNN, even though the GNN’s inference time is slower than

the heuristic’s computation time.

2.4 Summary

In this chapter we discussed the set-wise and graph-wise representations of SAT problems

and their trade-offs. We reviewed some key attributes of SAT problems, most importantly

their cores and their hardness (and measurements thereof). We then presented the foremost

26

work in the fields of deep-learned graph-based problem generation and core detection, noting

that up until very recently both fields have been relatively unsuccessful: most generative

methods are high-cost and/or generate problems that are trivial to solve. Until recently, core

detection algorithms required thousands of calls to a solver.

27

Chapter 3

Methodology

3.1 Introduction

In this chapter, we define the problem of augmenting datasets of industrial SAT problems

for Deep-Learning applications and present our approach to the problem, which is a novel

multi-step generation procedure that leverages the graph structure of SAT problems. We also

demonstrate empirically the method’s ability to generate realistic synthetic data (which can

be added to existing datasets in order to augment them). Our experiments indicate that the

data augmentation for the common Empirical Hardness prediction (solve-time prediction)

problem [4] results in meaningful performance improvements.

3.2 Problem Statement

Given a training set of UNSAT CNFs, S = {f1, f2, ..., fmS
}, and a corresponding set of label

vectors, R = {r1, r2, ..., rmS
}, we wish to train a generative model G that can construct new

examples. The label vector r ∈ Rd represents the hardness of the SAT problem and we model

28

it as a deterministic mapping, i.e., r1 = g(f1). In our experiments, the vector is derived by

recording the SAT solving times for a pre-specified set of SAT solvers.

We assume that the mS CNFs in the training set are i.i.d. examples from an underlying

distribution D. We denote the generative model distribution by DG(S), highlighting that it is

dependent on the random training set S. We can obtain a new dataset of mG i.i.d. samples

SG using the generative model. The total number of samples in the augmented set S̃ is then

mS + mG.

Our primary goal is to derive a generative procedure that produces sufficiently representative

but also diverse samples such that the error obtained by training a model on the augmented

dataset S̃ is less than that obtained by training on the original dataset S. As an example task,

we consider the prediction of runtime for a candidate solver. In this case, the appropriate

loss function is the absolute error between the predicted time and the true time.

Beyond this, we are also interested in the distance between the distributions D and DG. We

examine this through the lens of hardness label vectors. The application of g to the CNF

descriptors generated according to D or DG induces distributions in Rd. To evaluate the

similarity of the original and generated instances, we calculate the empirical maximum mean

discrepancy (MMD) distance between these induced distributions.

29

3.3 HardCore

Our generation strategy can be broken into three steps: (1) extraction of the core from a

seed instance; (2) addition of random new clauses, generated with low cost; and (3) iterative

core refinement. Figure 3.1 provides an overview of the key core refinement procedure. It

consists of a two-step cycle of (a) high-speed core extraction using our novel GNN-based

method; and (b) unconflicted literal addition to break any undesirably easy core.

Core Prediction GNNs

Easy Input Core Clauses

De-Coring
Added Var iable

A A B B C C

No

Stop?
A A B B C C

Hard Output
Yes

Repeat

1st IterationVariables

Clauses

A A B B

A A A B B A A B B

A A A B B A A B B

A A A B B A A B B

Figure 3.1: Core Refinement. The core refinement process comes in two steps: (1) Core
Prediction, in which we use a GNN-based architecture to identify the core of the generated
instance; and (2) De-Coring, in which we add a non-conflicted literal to a clause in the core,
rendering the core satisfiable and giving rise to a new, larger minimal unsatisfiable subset
(core). As steps (1) and (2) are repeated, the core gradually becomes harder (as will be shown
in results further on.)

30

3.3.1 Generating Hard Instances

Trivial Cores Cores are the primary underlying hardness providers in UNSAT instances,

because a solver must only determine that a subset of a CNF is UNSAT for the whole

CNF to be UNSAT, and a core is an irreducible subset of clauses of a SAT problem that

is UNSAT. Small cores with few clauses are generally easier to solve due to less variable

assignment combinations. An example of a trivial core is (A ∨B)∧ (¬A ∨B)∧ (A ∨ ¬B)∧

(¬A ∨ ¬B).

Whenever we add a new random clause to an UNSAT instance, there is the danger of creating

a trivial core. For example, consider an UNSAT instance which includes three of the clauses

from the example above: (A∨B)∧ (¬A∨B)∧ (A∨¬B). If during generation we unknowingly

add the clause (¬A ∨ ¬B), the UNSAT instance’s large (hard) core will be replaced by a

trivial one, leading to hardness collapse. Maintaining awareness of cores and potential cores

in a CNF as we perform modifications is challenging. We take a different approach, which we

refer to as Core Refinement.

Core Refinement The Core Refinement process is made up of two steps that are repeated

n times, where n is the number of generated clauses. The procedure is depicted in Figure 3.1.

The first step of the process is to identify the core of the generated instance. The addition of

random new clauses during generation is very likely to create a core that is trivially easy to

31

solve and it may not be the same as the core of the original instance. Once we have detected

this easy core, we make it satisfiable by adding a new literal to a clause in the core. The

addition of a single, flexible literal eliminates the constraints of the core and makes it possible

to satisfy.

Returning to the previous example, the UNSAT CNF (A ∨ B)∧ (¬A ∨ B)∧ (A ∨ ¬B)∧

(¬A∨¬B) can be made satisfiable by modifying any of the clauses in this fashion: (A∨B∨C)∧

(¬A ∨ B)∧ (A ∨ ¬B)∧ (¬A ∨ ¬B). The introduction of literal C in the first clause means

that (A = 0, B = 0, C = 1) is now a satisfying solution.

As these two steps are repeated, the core of the instance gradually becomes harder. The

process ends after a fixed number of iterations. In our experiments, we choose this to be the

number of generated clauses. Since the hardness of the core is the hardness of the instance

[21], the refinement process can be seen as progressively raising the hardness of the problem.

After the final iteration, we expect to have a hard problem which we might use for training

models.

Underlying Hard Core Guarantee The Core Refinement process is designed to

repeatedly eliminate easy cores, so after each iteration, the core becomes harder. Finally,

after many iterations, we hope that the remaining core is as hard as the original instance.

This process can only be guaranteed to lead to a hard core if an underlying hard core exists

32

in the instance at the start of the refinement process. Refinement then whittles away easy

cores until only the hard one remains.

There is a possibility of creating a hard core through the random generation of clauses, but

we cannot rely on this. We must introduce an element to our design to ensure there is a hard

core. To achieve this we identify cores from the original instances and include them in the

generated instances.

3.3.2 Core Prediction

We have two critical objectives for our method: low cost and hard outputs. While the

Core Refinement process serves us well in generating hard instances, a naive implementation

using existing core detection algorithms is unacceptably expensive in terms of computation

requirements. Core detection fundamentally requires the solving of a subset of a SAT problem

(which is itself a SAT problem), therefore making the Core Detection problem NP-Complete

[19].

We adopt the strategy of approximating the Core Detection algorithm. Since an instance

can be naturally represented using a bipartite graph, and the goal of core detection is

binary classification of each clause, we expect that a graph neural network is a promising

approach.

33

Graph Construction We represent each instance as a graph as outlined in Section 2.2.

We make two changes: (a) we add message-passing edges to connect matching positive and

negative literals (e.g, ¬A and A); (b) we replace each undirected edge with two directed

edges. These changes are designed to facilitate the diffusion of information in the GNN.

We denote the set of literal-literal message passing edges by Ell = ⋃nv
i=1(li+, li−), where nv

is the number of variables in the instance. We denote the set of literal-to-clause directed

edges by Elc = ⋃nc
i=1

⋃nlci
j=0(ljci

, ci). We denote the set of clause-to-literal directed edges by

Ecl = ⋃nc
i=1

⋃nlci
j=0 (ci, ljci

).

34

Figure 3.2: Core Prediction GNN Architecture. We construct our GNN using three
parallel message passing neural networks (MPNN) whose calculated node embeddings are
aggregated at each layer to form the layer’s node embeddings. Readout is done by taking the
sigmoid of a fully-connected layer on clause node embeddings and thresholding. Training is
supervised by taking a binary classification loss between the true core labels and the clause
nodes’ core prediction probabilities.

GNN Architecture Given the heterogeneous nature of our graph, arising from different

node and edge types, we use three Graph Message Passing models (one for each edge type)

as illustrated in Figure 3.2. We couple these models by averaging their embeddings after each

layer. Finally, we obtain a core membership probability for each clause node by passing the

35

embeddings through a fully connected linear readout layer followed by a sigmoid function

to the clause node embeddings. We threshold the values to obtain positive and negative

classifications of core membership. A single layer of the GNN is defined as follows, where σ

is a non-linear activation function:

hl+1 = σ(1
3(GNN(V , Ecl, hl) + GNN(V , Elc, hl) + GNN(V , Ell, hl))) , (3.1)

out = 1>0.5(σ(xhL
c + b)) . (3.2)

Training Our augmentation process is motivated by a scarcity of data. We must therefore

address this when training the core detection GNN. We achieve augmentation of the available

data by executing the generation pipeline described above for a small number of instances,

using a slow, traditional but proof-providing tool for Core Detection in the Core Refinement

process. By saving the instance-core pair after each iteration of the core refinement process,

we can construct sufficient supervision data for training the Core Prediction GNN model.

Although the instance-core pairs we construct this way are correlated, there is sufficient

variability for the GNN model to generalize well to other instances. We train the model using

the standard binary cross-entropy loss function.

36

3.4 Experiments and Results

3.4.1 Experimental Setting

Proprietary Circuit Data (LEC Internal) This LEC Internal data is a set of UNSAT

instances which are created and solved during the Logic Equivalence Checking (LEC) step

of circuit design. LEC needs to be performed after certain circuit optimization steps to

ensure that the optimization process has not corrupted the logic of the circuit. If the logic is

uncorrupted, the created SAT problem will be UNSAT. Since it is extremely rare that these

optimizations in fact corrupt the circuit, more than 99% of LEC instances are UNSAT.

Synthetic Data (K-SAT Random) Acknowledging the importance of reproducibility,

we also provide results on synthetic data. This data is generated by randomly sampling a

CNF with m clauses of k literals over n variables. Clauses are sampled without replacement.

We have previously argued that random instances differ from real instances in important

ways that make them unsuitable for machine learning applied to real problems. Holding

to this view, we use this data primarily to provide a surrogate to the internal data for

experimental reproduction purposes, rather than to present results on a second dataset.

For details concerning both the LEC Internal and K-SAT data, see Table A.1 in Appendix

A.1.

37

Data Split and Training Details There are three separate groupings of the dataset:

(i) Core Prediction training data, (ii) generation seeding data, and (iii) evaluation data for

the runtime-prediction model trained in the data augmentation experiment. This split is

chosen randomly. Core Prediction training data can be very small (we used 15 problems),

because we use each problem as a seed instance 5 times and this is followed by core-refinement

using a traditional core detection algorithm in which the core and problem pair are saved

at each step. Each seed results in a separate input-problem to the refinement process due

to the randomness in the random generation algorithm we employ. Given 200 refinement

steps and the 5 generations per training problem, we obtain 15,000 problem-core pairs with

which to train the core-detection GNN model. The generation seeding data are used to seed

HardCore once the core predictor is trained in order to obtain generations to evaluate. These

generations are then compared against the seed data for runtime similarity. Finally, these

generations (and their seeds) are combined to form an augmented training dataset for a

runtime-predictor model, which is evaluated on the evaluation data. The evaluation data

consists of all the data which are not used for core prediction training or generation seeding.

Each named dataset (LEC, k-SAT) is taken separately for each experiment.

The core prediction model is trained with a binary cross-entropy loss. We train on a single

epoch with a learning-rate of 0.003 over the prepared training data, which is composed of

problem-core pairs for 200 steps of the core-refinement process on 5 generations per training-

38

problem seed. Thus, from 15 dedicated training problems we obtain 15× 200× 5 = 15000

training examples. Node embeddings in the model are initialized as 1’s.

SAT Solvers We select 7 solvers for hardness analysis: Kissat3 [30], Bulky [31], UCB [32],

ESA [32], MABGB [32], moss [32] and hywalk [33]. These solvers exhibit complementary

performance characteristics: when some of these solvers perform well on certain instances,

some perform very poorly. This results in diverse runtime distributions in our analysis. We

run our experiments on an Intel® Xeon® Platinum 8276 CPU @ 2.20GHz cpu and 3 Nvidia

Tesla V100 GPUs.

We compare to the following baselines:

• HardSATGEN [17]: A high-cost split-merge generator with community structure and

core detection that is capable of generating hard instances at very high computational

cost. Given this cost, we generate only 50 instances per dataset, using 10 seed instances

and 5 generations per seed.

• W2SAT [22]: A low-cost generative method that utilizes a less common SAT graph

representation. It tends to generate very easy problems. Given the low cost, we generate

using every instance in the entire training dataset as a seed, with 5 generations per seed.

39

• G2MILP [26]: A low-cost VAE-based generative model designed for the general case of

SAT: MILPs. Given the low cost, we generate using every instance in the entire training

dataset as a seed, with 5 generations per seed.

A note on seed-generation correlation During our investigation of the method, we

examined the correlation between seed hardness and generated hardness on a per-seed level.

The goal of this examination was to check if the generation process constructs diverse samples

by constructing an instance that is significantly different from the seed. Ideally, the generative

mechanism produces diverse problem instances, but maintains a hardness distribution similar

to the original data. Our finding was that the hardness of a generated instance is almost

completely uncorrelated with the hardness of the associated seed instance for HardCore.

In Figure 3.3, we present a scatter-plot showing a generation’s runtime on the x-axis and

that generation’s corresponding seed runtime on the y-axis. There is no visible correlation

in the form of a concentration along the diagonal (the dotted red line that can be seen in

Figure 3.3). Upon attempting a least-squares linear regression to fit these points, we find a

Pearson correlation score of 0.0297, supporting our conclusion that the generated and original

runtimes are uncorrelated.

40

Figure 3.3: Internal LEC Scatter plot showing correlation of generated runtimes and
corresponding original runtime. We note no visible correlation (concentration along the
red-dashed diagonal).

3.4.2 Research Questions

Our work is motivated by the goal of fast generation of hard and realistic UNSAT datasets

for data augmentation. Given these goals, we now establish our strategy for evaluating

41

our model, identifying the key research questions that our experiments explore.

A note on datasets

In the following section for research questions 1-3, we focus on the Internal LEC data. This

is because these experimental results are presented primarily to show that the hardness

distribution can be maintained for industrial problems, making the random K-SAT data less

meaningful. For research question 4, which investigates the value of data augmentation, we

report results for both datasets.

Core Prediction Model Performance

Experimental validation of the Core Prediction model, reported in row “LEC” in Table 3.1,

shows approximately 94% accuracy and more importantly, 96% recall (% of the core which is

recovered by the predictor, also referred to as “Core Recovery” in the results below). We also

report results on Core Size discrepancy, which is the difference in size of predicted and true

cores. We report this because during experimentation we found that the model was prone to

over-predicting cores when the training-data was made up of problems which had relatively

large cores (e.g. core size is 90% of whole problem size)). Our priority is high recall because a

clause that is incorrectly identified as part of the core (a false positive) can be removed during

the core refinement process. On the other hand, the core refinement process cannot remove

clauses that are not identified as part of the core (false negatives). Consider, for example, the

42

case where we have generated a problem containing an easy core that is made up of clauses

from the original core (which cannot be modified for the HardCore guarantee to hold) and

one non-original clause. If this single non-original clause is incorrectly classified as non-core (a

false negative), the trivial core will go unrefined and the problem will remain trivial to solve.

On the other hand, if we incorrectly include an additional clause, the refinement process

can remove both clauses, resulting in a hard core. With this said, it is still important to

maintain adequate accuracy and core-size discrepancy performance. For example, predicting

the full problem as a core each time may lead to high recall if the majority of the clauses in a

problem are core clauses. However, this would certainly result in the failure of our method as

it would amount to randomly changing one clause each iteration.

We view 96% recall as a very promising result, and confirm this in further experiments

showing our method’s ability to augment datasets and generate faithfully hard problems.

Table 3.1 summarizes the results of experiments that assess the GNN’s core prediction

performance.

Core Prediction Model Performance on Out-of-Distribution problems

In order to measure GNN generalization to new data without re-training, we create a new

split of the LEC data. Each problem in the LEC data can be traced back to one of 29 circuits.

By randomly splitting circuits into training circuits and test circuits (and then building

43

training and evaluation sets with their respective problems), we can measure generalizability.

Note that we would not expect the model to generalize to problems derived from a completely

different application domain (although fine-tuning a previously model in a domain adaptation

strategy might be interesting to explore).

In Table 3.1 we report the GNN performance on this experiment. We discussed above that

Core recovery is the priority, because if we falsely classify true-positives then we may be

unable to de-core the current core (since the necessary clause may be undetected), whereas if

we misclassify true-negatives then we will simply de-core a non-core clause. Given enough

iterations of core-refinement, a true-positive clause will eventually be selected for de-coring

(since the clause for de-coring is randomly selected from among the detected clauses). With

this in mind, the threshold hyper-parameter which is used on the sigmoid outputs at model

readout becomes a useful parameter in cases where classification performance is weakened:

we can boost Core Recovery (recall) by lowering the threshold. Tuning this threshold is

very low-cost: testing a thousand problems takes 500 seconds on a GPU. We find that by

testing values [0.1, 0.3, 0.5, 0.7, 0.9] — which takes 25 minutes — we can tune the threshold

to provide similar recall to the in-distribution model, at the cost of accuracy and core-size

difference.

44

Table 3.1: GNN Core Prediction Performance on In and Out-of-Distribution LEC data

↑ Core Recovery Ratio (Recall) ↓ Core Size Diff. ↑ Acc.
Circuit-Split LEC 0.97 0.05 0.65

LEC 0.960 0.009 0.940

Hardness changes over the progression of Core Refinement and Core Size

For our proposed technique to work, our key assumption is that if a problem is easy then

core prediction can identify the easiest core, and then by removing that core the problem

is made harder. This does not necessarily mean that the core is larger. The experimental

results demonstrate that we generate challenging problem instances, providing support that

our assumption is correct.

First, we evaluate the hardness of the original problems (in terms of Kissat solver time) in the

LEC dataset. Note that this is a real-world dataset derived during industrial circuit design.

Figure 3.4 (left) shows that there is a general trend of the hardness increasing as the core

size increases, up to a threshold of 4000-5000 clauses.

45

0-1000
1000-2000

2000-3000

3000-4000

4000-5000

5000-6000

6000-7000

7000-8000
Raw Core Size

0

200

400

600

800

1000

1200

Ki
ss

at
 R

un
tim

e
(s

)

0-100
100-600

600-1500
1500-3500

3500-5000

Pre-Refinement Generation Solver Runtime (s)

5

50

400

3000

20000

Re
fin

em
en

t H
ar

dn
es

s R
at

io
 (%

)

Figure 3.4: Left: Hardness for problems of varying core sizes. We note a positive correlation
between core size and hardness until core size reaches approximately 5000 clauses in size.
Right: hardness of core-refined problems expressed as a percentage of the same problem’s
hardness before refinement. We see that core refinement recovers the hardness for trivial
(hardness-collapsed) problems.

As discussed above, although we observe this trend (correlation), it is not essential for our

method. Much more important are the results shown in Figure 3.4 (right), where we show

how the hardness changes as a result of our refinement process. The figure shows boxplots

of the percentage change in hardness for different bins of initial hardness, and shows that

for easy problems we increase the hardness sometimes by a factor of over 200. These large

hardening factors for initially easy problems are indicative of successful recoveries of the

hardness of previously hardness-collapsed problems.

46

0 20 40 60 80 100
Number of GNN Core-Refinement Iterations

0

20

40

60

80

100

120

Ki
ss

at
 R

un
tim

e
(s

)

0 50 100 150 200 250
Number of GNN Core-Refinement Iterations

1500

2000

2500

3000

3500

Ki
ss

at
 R

un
tim

e
(s

)
Figure 3.5: Hardness as Core Refinement Progresses. We run 5 Generations and Core-
Refinements for one: Easy problem (left), Hard problem (right).

To further examine the effect of core refinement specifically on collapsed (easy) problems

compared with hard problems, we present two examples in Figure 3.5. The plot on the left

shows an example of 5 generations from one seed. Initially, after the addition of random

clauses, all 5 generated problems are easy to solve (requiring under 20 seconds). The plot

indicates a progressive hardening as refinement progresses, with a relatively rapid increase

for the first 40 refinement steps, followed by a more gradual increase. After 100 iterations

of refinement, the solve time has been increased by a factor of at least 4 for each generated

problem.

The right plot in Figure 3.5 shows core refinement for a problem that is already difficult at

the start of the process (solve time > 1500 seconds). In this case, the core refinement process

47

increases the hardness of some of the problems and decreases the hardness of others. All of

the problems remain hard after core refinement.

Question 1: Is the method able to generate hard instances?

In order to quantify ‘hardness’, we choose the wall-clock solving time for each solver as a

metric. We deem a generated instance ‘hard’ if the average runtime of selected solvers on

the instance is at minimum 80% of the average solver runtime for the original seed instance.

An entire generated dataset is considered ‘hard’ if the average ratio (average solver time

on generated instance to average solver time on seed instance) exceeds 80%. If the average

ratio for the set of generated instances is below 5%, we consider that hardness collapse has

occurred.

In Table 3.2 we compare generated with original hardness. W2SAT and G2MILP both suffer

hardness collapse, whereas HardSATGEN and HardCore generate hard instances. While

achieving hard problems has been a focus because of existing methods’ tendency towards

collapse, the primary goal is in fact to mimic the original problems’ hardness rather than

to achieve problems which are as hard as possible. For this reason, the desired hardness

performance is 100%. HardSATGEN produces problems which are on average more than

twice as hard as the original problems. While HardCore also produces problems that are too

hard, it does so to a lesser degree than HardSATGEN (average ratio of 176% versus 267%).

48

With that being said, the primary purpose of this experiment is not to compare how close to

100% each method’s hardness is, but to check which methods are even capable of generating

hard instances. Therefore, the answer to the first research question is that only HardCore

and HardSATGEN are able to generate hard instances.

Table 3.2: Evaluation of generated datasets on LEC data. Hardness level (%): runtimes of
selected solvers averaged over all instances and solvers, as an average of the percentage of the
original data’s solver-wise average. Closer to 100% is better. Speed (s): average time cost to
generate one instance, lower is better.

W2SAT HardSATGEN G2MILP HardCore
Hardness (%) ∼0 267 ∼0 176
Time per instance (s) 1.2 6441 3.3 4.3

Question 2: Is the method fast?

We measure generation speed by the time required to generate an instance (in seconds). We

evaluate this by measuring the wall-clock time of each model during inference and dividing by

the number of generated instances. Generally, a method should be able to generate hundreds

of instances per hour so that we can augment a dataset in a reasonable time frame.

In Table 3.2, the division between fast and slow procedures is very clear: W2SAT, G2MILP,

and HardCore all exhibit similar instance generation times, with W2SAT being the fastest. In

contrast, HardSATGEN takes close to 2 hours to generate a single instance. To generate 1000

LEC instances at this speed we would need 75 days. HardSATGEN is so slow because it solves

49

an NP-Complete problem hundreds of times within its pipeline. HardSATGEN iteratively

identifies the core via a traditional Core Detection technique [19] which requires that the

problem be solved. Considering it would take months to generate a deep-learning-scale

dataset using HardSATGEN, we determine that HardSATGEN is not fast, whereas the other

methods are fast.

Question 3: Is the method able to generate datasets that are representative of the

original datasets in terms of hardness distribution, while remaining diverse?

Although past work, including [15, 17, 22], has examined graph statistics such as modularity

and clustering coefficients, we find little evidence that these are indicative of the hardness of

generated instances. Instead, we focus on the similarity of the distributions of the hardness

vectors because hardness is of primary importance when working with SAT problems.

As G2MILP and W2SAT exhibit hardness collapse, we only compare HardSATGEN and

HardCore for runtime distribution analysis. Note that due to HardSATGEN’s high cost, we

can only generate 50 LEC instances and 50 K-SAT instances (using 10 seed-instances) within

3 days. For HardCore, we use 1445 LEC and 1321 K-SAT seed instances, again generating 5

times per seed. In the following experiments, we compare “original” and “generated” data.

Here, “original” refers to only those instances used as seeds during inference for each model;

“generated” refers to the outputs. Hence, the “original” sets for HardSATGEN and HardCore

50

are different because the number of seed instances is different (due to time constraints we

are limited in how many HardSATGEN instances we can generate). In order to compare

the original and generated SAT problems, we (1) employ a distribution distance metric,

Maximum Mean Discrepancy (MMD), to perform a quantitative comparison; (2) construct

visualizations of the runtime distributions; and (3) examine visualizations of the runtime

orderings distributions.

Maximum Mean Discrepancy is a non-parametric measurement of the distance between

two distributions. For a selected kernel k, with k(X, Y) = ⟨ϕ(X), ϕ(Y)⟩, it is defined as

follows:

MMD(P, Q) = ||EX∼P [ϕ(X)]− EY ∼Q[ϕ(Y)]||H . (3.3)

By applying the kernel trick to MMD2(P, Q), we get the following:

MMD2(P, Q) = ||||EX∼P [ϕ(X)]− EY ∼Q[ϕ(Y)]||2F (3.4)

= EP [k(X, X)]− 2EP , Q[k(X, Y)] + EQ[k(Y, Y)] . (3.5)

51

We can form empirical approximations of the expectations as follows:

EP [k(X, X)] ≈ 1
m(m− 1)

∑
i

∑
j ̸=i

k(xi, xj) , (3.6)

2EP , Q[k(X, Y)] ≈ 2
m ·m

∑
i

∑
j

k(xi, yj) (3.7)

EQ[k(Y, Y)] ≈ 1
m(m− 1)

∑
i

∑
j ̸=i

k(yi, yj) . (3.8)

In practice, we adopt the radial basis function kernel, and use samples from the hardness

vector distributions X ∼ P (original data samples) and Y ∼ P (generated data samples) to

estimate the expectations.

Runtime distributions are compiled empirically by measuring the real-world (wall-clock) time

required to solve the SAT problems in the source data. To ensure reliable measurements, we

collect this data by running the SAT solvers one at a time, and all on the same computer,

which is reserved only for this experiment. Thus, while there is certainly some small noise

introduced due to background tasks, it is effectively negligible — especially when compared to

variation in runtimes which arises from random permutation of variable and clause ordering

in SAT problems [13].

As shown in Table 3.3, HardCore achieves runtime distributions far closer to the original

distributions compared to HardSATGEN with respect to the MMD metric. We calculate

52

Table 3.3: Evaluation of generated datasets on LEC data. Maximum Mean Discrepancy
(MMD) distance between distributions of generated and original datasets; lower is better.

W2SAT HardSATGEN G2MILP HardCore
Similarity (MMD) — 0.492 — 0.004

these values by taking the MMD between the set of instances used as seeds during generation

(a subset of the training set) and the corresponding set of generated instances. We note that

while HardCore achieves low MMD, the solving time of individual instances is considerably

different from that of their associated seeds. This implies that the low MMD of HardCore

is not achieved by replicating or barely modifying seed instances. Our later experiments

investigating augmentation suggest that there is sufficient diversity being injected in the

generated instances.

Figure 3.6: HardCore (Left) and HardSATGEN (Right). Boxplots of runtimes per solver for
Original (Green) and Generated (Blue) instances on LEC data. HardCore appears to produce
per-solver distributions which are much closer to the original than HardSATGEN, which
tends to produce high-variance and on-average much harder problems than the original.

53

In Figure 3.6, we compare the visualizations of the collected samples from the original and

generated single-solver runtime distributions. HardCore produces per-solver distributions

whose visualizations are much more similar to the original’s than HardSATGEN. In particular,

we note that HardSATGEN experiences greater variation in generated hardness compared to

both HardCore and the original hardnesses.

From the figure, both methods generally produce instances that are harder than the original.

Given the hard core guarantees employed, problems should rarely be easier than the original’s.

However, if a harder potential core than the original is introduced during generation, then the

potential hardness of the problem increases, and this potential can be realized via sufficient

core refinement. This would explain why we both methods generate harder problems, on

average, than those in the original data. From the figures and results shown above, we can

conclude that our method is in fact representative of the original data. Since generations are

initially random by our methodological use of random generators to produce pre-refinement

problems, we know without experimentation that our generations are diverse, thus achieving

the goal of representativity and diversity of our generations described in the problem statement

in subsection 3.2.

54

Figure 3.7: LEC Internal Rank 1 Solvers. We compare the number of times each solver is the
fastest solver for original and synthetic problems. Experiments with generations by HardCore
(left) and HardSATGEN (right). X axis is Solver ID and y axis is how frequently (%) the
solver is ranked first by runtime.

In Figure 3.7, we see a striking similarity between the histogram for HardCore’s best-

performing solvers and the original’s, indicating that the HardCore synthetic instances are

solved most efficiently by the same solvers as the original instances. Meanwhile, a greater

discrepancy can be seen between original and HardSATGEN-generated data, particularly

for solvers 5 and 6. Given the notion previously discussed that solver performance rankings

are heavily dependent on the underlying nature of the instances (e.g., random, industrial), a

notable disparity between performance rankings of original and synthetic data — especially for

first-place — might imply a difference in the underlying nature of generated and original data.

Given HardSATGEN’s visible disparity, we claim that while HardSATGEN may generate

hard problems it fails to faithfully reproduce the nature of the problems. If the goal is not

55

to preserve critical structure, then random generators are a reasonable alternative, because

they can successfully generate hard problems, given the appropriate hyper-parameters, and

usually have much lower computational cost.

Figure 3.8 shows stacked histograms of the rankings for each solver, following up on the rank-1

histogram shown in Figure 3.7. The top row compares the ranking distribution of original

LEC instances and HardCore’s generations. The bottom row depicts the same comparison

for HardSATGEN. Note that the original distributions are different for HardSATGEN and

HardCore because the methods are provided with different quantities of seed data. Given

HardSATGEN’s cost, only 10 seed instances are used for generation (to generate 50 instances),

whereas HardCore is given 1445 instances and generates 5780. On inspection of the figure,

we note the similarity of the original and HardCore ranking distribution visualizations. For

example in HardCore, solver 1’s distribution of rankings shows a very similar proportion of

ranks 2-6, with perhaps slightly higher rank 1 (and lower rank 7) than the original. In contrast,

HardSATGEN has a very different distribution compared to the seed data. For example,

rank 1 is common for solver 1 in the generated data, but solver 1 was never ranked first for

the original data given to HardSATGEN. Solver 2 is never ranked first for HardSATGEN’s

generated data, but is first occasionally in the original data. These results suggest that there

are important discrepancies between the generated and original data.

56

Figure 3.8: HardCore (top) and HardSATGEN (bottom) Comparison of Solver Rankings by
stacked Histogram for Original and Generated LEC data. X axis indicates the solver, color
represents the ranking of that solver. For example, the first column in each figure shows how
frequently Solver 1 is ranked first, second, third, et cetera. By comparing the original and
generated histograms (left/right) for both HardCore and HardSATGEN (top/bottom), we
see that HardCore generates highly similar rankings to original data whereas HardSATGEN
is not consistent with the original ranking histogram.

57

Question 4: Can we successfully augment training data with the method’s

generated data for machine learning?

We address the task of runtime prediction and compare the performance of two models: one

trained on only original data and the other trained on a dataset augmented with generated

instances. We train the SATzilla model (an architecture which uses 30 hand-picked SAT

problem features, e.g., number of clauses/literals) to predict the solver runtime of one specific

solver on a given instance. We repeat this for each of the 7 solvers. We calculate the

Mean Absolute Error (MAE) of the predicted total runtime for each solver and average

over the solvers. We compare HardCore, W2SAT and two versions of HardSATGEN: (i)

HardSATGEN-Strict and (ii) HardSATGEN-N . For HardSATGEN-Strict, we only generate

as many instances as possible in the time it takes HardCore to generate the desired number

of instances. For HardSATGEN-N , we generated N instances, where N was selected as the

number that could be generated in approximately 3 days of computation. The result was

N = 50. We also compare to the un-augmented training sets and refer to it as original.

In order to observe performance over varying sizes of training data, we conduct this experiment

for several quantities of original training instances, which is denoted Data Size. Three

augmentation instances are provided per original instance, and augmentation is only allowed

by using the original instances which are in the training set. Validation sets are selected from

the original data only, with an 80/20 train/validation split. For LEC, the test-set is made

58

up of 10000 randomly selected problems that are not in the training or validation sets. For

K-SAT, the test-set is made up of the problems from the 1351 original instances that are not

included in the training or validation sets.

Table 3.4 shows that for both K-SAT random data and LEC Internal dataset, training on

data augmented using HardCore leads to a 20-50 percent reduction in MAE. The gain of

data augmentation increases with larger data size. In contrast, no other data generation

method leads to a comparable improvement.

Table 3.4: MAE of Runtime Prediction averaged across 7 solvers and 15 trials. Asterisks
are placed at the best result which passes the Wilcoxon pairwise ranking test against the
second-best for p < 0.05. For a boxplot visualization of the trial outcomes, see Figure A.1 in
Appendix A.4.

K-SAT Random LEC Internal

Data Size 10 20 30 40 100 200 300 400 500

HardSATGEN-N 2416 2306 2172 2182 666 797 605 617 463

HardSATGEN-Strict 2179 2578 2488 2456 627 742 565 638 513

W2SAT 2606 2046 1807 1377 724 704 634 611 535

Original 2750 2743 2109 1449 707 795 557 606 526

HardCore 2156 1796* 1615 930* 514 481* 369* 282* 338*

59

Table 3.5: We repeat the data augmentation experiment on two sub-families of SAT
Competition data (FDMUS and Tseitin) on our method of augmentation.

FDMUS Tseitin
Data Size 100 200 300 400 500 10 20 30 40 50
HardCore 0.220 0.197 0.162 0.142 0.142 3618.9 3410.0 3311.4 3417.7 3419.4
Original 0.246 0.213 0.184 0.173 0.145 3369.6 3581.9 3576.1 3544.7 3608.5

A note on SAT Competition Data SAT Competition data is an aggregation of thousands

of families of problems and is therefore highly heterogeneous. As discussed briefly in the

introduction, this heterogeneity is highly unfavourable for machine learning algorithms and

tasks. Thus, machine-learning papers are often required to find creative ways to provide

large-scale experimental data (and this may not conform to real-world data).

In order to demonstrate that our method can generalize to other datasets, we now provide

results on the data augmentation experiment conducted above, on all UNSAT problems from

the SAT Competition data coming from the “Tseitin” family, and separately on all UNSAT

problems from the SAT Competition “FDMUS” family, in table 3.5. We see that while the

improvement is reduced compared to that achieved on the k-SAT and LEC data, our method

still provides improvement.

3.5 Summary

In this chapter we presented our method, HardCore, which generates realistic SAT problems

by randomly generating clauses and subsequently refining the core to enhance hardness via a

60

low-cost (relative to classical methods) graph neural network. We demonstrate the low-cost

nature of our method via wall-clock runtime comparisons with existing methods which either

perform competitively with our method or significantly underperform our method. We

evaluate the degree to which our method generates realistic problems by comparing (visually

or numerically) various measurements of Hardness distributions, including per-solver runtime

distributions, ranking distributions and over-all runtime distributions. On comparisons

between our method and the only other method which could produce problems with non-zero

solve times (HardSATGEN), our method produced more faithful generations while operating

at a thousandth of the cost. Finally, we found that our method — in particular on the real

internal data — outperformed existing augmentation techniques. In fact, our method was

the only method to consistently offer performance improvements over the non-augmented

training-set.

61

Chapter 4

Conclusion

4.1 Conclusion

We have presented a method for generating UNSAT problems that preserves hardness without

imposing an unreasonable computational cost. Most existing deep-learned SAT generation

algorithms consistently suffer from hardness collapse, generating instances that require tenths

of a second to solve, while the original problems used to seed the algorithms require several

minutes. Recently a method was presented by Li et al. [17] which produces problems that are

considerably harder than the original seed instances. This method is not practical, however,

as even with powerful computational resources, it can take months to generate the amount of

data needed for training. The algorithm relies on traditional, computationally-demanding

SAT-solving techniques for post-hoc refinement of generated instances.

Our proposed method leverages some innate characteristics of UNSAT problems as well as

their graphical structure. It targets the core of the SAT problem, and iteratively performs

62

refinement using a GNN-based core detection procedure. This has dramatically lower cost

than traditional SAT-solving based core detection methods. Our method also leverages low-

cost random generation, relying on the post-hoc refinement process to convert the problems’

hardness profiles from random to faithful. Experimentally, we demonstrate that the method

produces instances that are similar to the original instances in hardness profile, in terms

of (1) individual solver hardness distributions; (2) multi-solver hardness distributions; and

(3) multi-solver ranking distributions. We also show experimentally that we achieve these

results at much lower cost than the only previous work capable of producing hard problems.

Finally, we confirm that the data we generate is indeed useful for augmentation by training a

well-known hardness-estimator model. We show that the predictive performance improves

considerably when we augment the training set using data generated using our method.

4.2 Limitations

The primary limitation of our work is that it is restricted to UNSAT problems. While some

SAT applications are almost entirely UNSAT (e.g., circuit design), many are not. With our

proposed approach, this limitation is unavoidable because cores are only present in UNSAT

problems. While previous algorithms such as G2SAT [15] and W2SAT [22] do not share this

limitation, these models do not produce hard problems and so suffer from far more significant

limitations. HardSATGEN [17], which is able to produce hard problems, is also limited to

UNSAT problems because of its dependence on core structure.

63

Another limitation is that our work relies solely upon empirical results to demonstrate its

efficacy, and these results are only presented on two datasets, one of which is synthetic.

The primary motivation of this work was to address the data scarcity problem which makes

developing deep-learning-based methods for SAT difficult. Designing a deep-learning-based

method for SAT ourselves, we of course suffered from this problem as well. To partially

address this concern, we conducted several trials and statistical significance testing to ensure

the reliability of our empirical analysis.

Scalability to very large problems must be considered in the limitations section. Given the

graph-structure of our method, memory and computation requirements of the method scale

quadratically with the size of the problem. In the public SAT database [11], problems can

be found with millions of variables. These problems are out of reach for our method at the

moment. For our experimental hardware (32GB GPU) and our implementation of the graph

building/storage (O(nm) for a problem with n clauses and m variables), a problem with

256,000 variables and 1,000,000 clauses would require 256, 000× 1, 000, 000× 1 = 256× 109

bits, or 32 gigabytes. Given a GPU with 32GB of memory, this would be a breaking point

for the method. Of course this is the worst case, which only occurs for a completely dense

graph representation. In practice, clauses in the LEC data, for example, tend to have on

average 3 or 4 variables. Since in the LCG clause nodes are only connected to the variables

of which they consist, each clause node would then only have degree of 3 or 4, meaning the

64

graph is very sparse. Thus, in practice the primary memory cost of our model scales more so

according to O(dn), assuming average number of variables in a clause is d, and assuming the

implementation is adapted to leverage the sparse structure (using an edge-list instead of a

dense adjacency matrix, for example).

A final limitation of the method presented in this work is its dependence on a random

generation module. This choice was made primarily in the interest of keeping inference

cost low, and the focus of this work was in developing a fast refinement strategy. However,

random pseudo-industrial methods have been criticized as being too narrow in their generative

diversity due to the focus on one or two specific statistics in each method [15, 22]. While

our empirical results did show that the refinement strategy successfully produced hardness

profiles similar to industrial problems, perhaps performance might have been improved with

a learned generation procedure. Seeing as the primary contribution of the method is the

refinement process, which can be interpreted as a post-processing procedure, any generation

process could in principle be used to provide the refinement process with inputs.

4.3 Future Work

As discussed, a primary limitation of this work is that it can only be used to generate UNSAT

problems because of its focus on the cores of problems, which are only found in UNSAT

problems (cores are minimal UNSAT subsets of a problem, and if a subset is UNSAT then the

65

whole problem is UNSAT). There is, however, a concept analogous to cores for SAT problems.

The backbone of a SAT problem is the set of literals which are found in all satisfying solutions

to the problem [34]. Literals in the backbone can be interpreted as the fixed variables of the

problem, constrained to the point that they must be set but not over-constrained such that

the problem becomes UNSAT. For example, given the problem (¬A)∧ (A ∨B)∧ (¬A ∨ C),

¬A must be part of the backbone as it is alone in the first clause and therefore must always

be set. As a result, B is a part of the backbone as in the second clause A is always false.

C, however, is not a member of the backbone because C only appears in a clause with ¬A,

which must always be true, meaning that whether C or ¬C is true, the third clause will

be satisfied. Thus, one might solve a SAT problem only by determining the assignments of

the backbone (similarly to how one might solve an UNSAT problem only by detecting the

core). Given this, there is likely the potential for a similar algorithm to HardCore which uses

backbone-refinement (literals can be added to the backbone by introducing a clause with

only that literal, and can be removed by introducing new satisfied literals to that literal’s

clauses) and backbone detection using a GNN node-classifier on literal nodes.

Early in the development of the method presented in this thesis, there was discussion of

publishing an anonymized version of the internal dataset used. While this would be significant

for the field (no cohesive large-scale public industrial dataset exists currently), it proved to

be challenging. Given the core guarantee used in our method, a fraction of the original core

66

persists, tainting the anonymity of the generated dataset. Anonymizing the data, whether by

developing the method such that the core guarantee is no longer required, or showing that

no meaningful information can be extracted from the generated data, could be a promising

and impactful avenue for future work.

Another limitation discussed previously is the random component to our method. While

off-the-shelf bi-partite graph-generation methods (e.g. the split-merge framework presented

by You et al. [15], the bipartite graph diffusion model presented by Chopin et al. [35]) are

scarcer than their homogeneous counterparts, they exist and perhaps could be used to replace

the random generation element of the method. At minimum, a more in-depth study of the

impact of the use of different random methods within HardCore and the setting of their

hyper-parameters would be valuable.

Two connected and very interesting directions for future work are a focus on specific, highly

structured problem families (e.g. graph-coloring problems, planning problems) and more

sophisticated de-coring mechanisms. For highly structured problems, the generation

mechanism would have to be designed such that a formula adheres to the required structure.

Structured problems such as the graph-coloring are often easy to generate. For example, a

graph coloring problem can be generated by generating a graph in any random way, and

then applying the coloring problem. A pigeonhole problem can be generated simply by

67

selecting some parameters for the problem. Core Prediction itself would likely remain

un-changed. In fact, if the training data (and test-data) are focused on one structured class

of formulas, we would expect high performance from the prediction model. Special care,

however, would be required to ensure that the de-coring operation does not corrupt the

required structure of the problem. Under the current framework of adding a new variable to

de-coring target clauses, the structure of the problem may be changed in such a way that it

no longer conforms to the strict structure of the family. De-coring operations would therefore

have to be specially designed for each family type. This brings us to the second of the pair of

directions mentioned, which is more sophisticated core-refinement methods. In this work, we

chose to use the established de-coring paradigm from the HardSATGEN method, considering

it to be highly interpretable due to its simplicity. More complicated strategies, which might

add or remove existing variables from the clauses (instead of adding new ones), have the

potential to introduce unforeseen conflicts, and possibly a new core that is easier than the

current de-coring target. The current strategy guarantees the removal of the current core,

without constructing a new one, which is desirable. Since the approach proved

experimentally effective, we did not explore other strategies. However, a major weakness of

the current mechanism is that it effectively removes the target clause from the problem by

making it trivially satisfiable to the solver.

68

Appendix A

Further Experimental Details

A.1 Data
Table A.1: Data Statistics. Note that LEC is a much larger dataset than Tseitin in every
regard: average variable and clause counts, average hardness on Kissat solver and dataset
size.

var. clause runtimes (s) count
LEC 1328 5167 388 78730

K-SAT 398 1751 2700 1351

A.2 Hyper-parameters

In our design process, given the cost of running experiments — in particular measuring

runtime of generated instances — we did not conduct exhaustive hyper-parameter searches.

Hyper-parameters were set following design considerations and rationales, which will be

discussed here.

69

• The random generation method we use is Popularity-Similarity. This has several

hyper-parameters: average clause size, βc, βv and T . Average clause size determines the

average number of literals per generated clause, βc and βv are constants in the probability

distribution for clause and variable selection, respectively, and T is a constant in the

exponent of the probability of an edge existing between clause and variable. Conducting

an exhaustive search over these hyper-parameters is expensive because the evaluation of

each configuration is via runtime-measurement, which requires the solving of a large

number of SAT problems by multiple solvers. We communicated with the authors of the

paper which presented HardSATGEN, and were able to obtain their hyper-parameter

configuration for Popularity-Similarity (PS), which was included among their reported

baselines. For continuity with previous work and in the interest of reducing the

computational budget, we used the provided configuration.

• The GCN backbone within our core prediction module has two hyper-parameters, namely

the number of hidden dimensions and the number of layers. Three potential values were

chosen for initial exploration of layer size: [3, 4, 15]. In many applications, GCN networks

are configured to have only 3 or 4 layers. This is because GNN networks in general are

prone to over-smoothing as the number of layers increases. 15 layers was added to validate

this behaviour within our context. For hidden dimension size we chose two potential values:

[32, 64]. Our findings were that as the model size increased via additional layers and

70

hidden feature size, there was minimal improvement in performance. Thus, we selected

the smallest defined configuration of 3 layers and hidden dimension of 32.

• Finally, there is the Core-Refinement hyper-parameter that specifies the number of

iterations. This value can be set in terms of the number of generated clauses, since one

clause is modified at each iteration. The safest setting is to set the number of iterations

to be equal to the number of generated clauses, such that, if necessary, the method is

allowed to modify every generated clause. In practice, this was the setting we used.

A.3 HardCore GNN Core Prediction Implementation

Details

We implement HardCore in DGL using 3 Graph Convolutional Network layers combined into a

hetero-GNN, where outputs of each layer are aggregated with a mean using the hererograph

package in DGL. We train using 15 problems from the dataset, and we obtain training cnf-core

pairs using Drat-Trim in the Core Refinement step for 200 iterations per instance. We train

for 1 epoch using Binary Cross Entropy loss.

71

Algorithm 1 Algorithm for generating 1 K-SAT Random instance.
m ∼ N(µm, σm)
c ∼ N(µc, σc)
n← int(mc)
cnf← randkcnf(3, m, n)

▷ where randkcnf(k, m, n) returns cnf m with k-var clauses from n variables.

A.3.1 K-SAT Random Generation

Algorithm 1 shows the process by which we generated K-SAT Random instances as discussed

in section 3.4.1. We randomly sample hyper-parameters (number of clauses, number of

variables) from a small window in order to introduce some additional variety into the dataset,

and generate by randomly sampling sets of 3 variables without replacement. In our work we

chose m ∼ N(400, 100), c ∼ N(4.4, 0.05).

A.4 Supplementary Results

A.4.1 Fine-Grained results on Data Augmentation Experiment

In section 3.4.2 we compare the performance of two runtime prediction models: one trained

on only original data and the other trained on a dataset augmented with generated

instances.

To observe performance over differing levels of data availability, we conduct this experiment

72

for several quantities of original training instances — denoted Data Size. 3 Augmentation

instances are allowed per original, and augmentation is only allowed by using the original

instances in the training set. Validation sets are selected from the original data only, with an

80/20 split train/validation split.

In Figure A.1 we can that while there is considerable overlap with whiskers of the other

methods, HardCore outperforms all other methods on all data sizes by at least one quartile of

results. In addition to increased prediction accuracy (lower MAE), HardCore demonstrates a

tendency to reduce variance in performance, which we note by the lower whisker-to-whisker

spread of the boxplots. This effect is especially notable in data-size 200, but can also be seen

relative to other augmentation methods for data size 300.

73

Figure A.1: Mean MAE on Runtime Prediction. Boxplot-view of results presented in Table
3.4 for LEC data.

74

Bibliography

[1] E. Goldberg, M. R. Prasad, and R. K. Brayton, “Using SAT for combinational equivalence

checking,” in Proc. Conf. Design, Automation and Test in Europe, 2001.

[2] A. Ramamoorthy and P. Jayagowri, “The state-of-the-art boolean satisfiability based

cryptanalysis,” in Proc. Materials Today, vol. 80, 2023, pp. 2539–2545.

[3] P. Habiby, S. Huhn, and R. Drechsler, “Optimization-based test scheduling for IEEE 1687 multi-

power domain networks using boolean satisfiability,” in Proc. Int. Conf. Design & Technology

of Integrated Systems in Nanoscale Era (DTIS), 2021, pp. 1–4.

[4] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “SATzilla: Portfolio-based algorithm

selection for SAT,” in Journal Artificial Intelligence Research, June 2008, pp. 565–606.

[5] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney, “ISAC – instance-specific algorithm

configuration,” in Proc. European Conf. Artificial Intell., 2010, p. 751–756.

[6] Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellman, “Satisfiability solver selector (3S),”

in Proc. SAT Challenge, 2012, pp. 565–606.

75

[7] A. R. KhudaBukhsh, L. Xu, H. H. Hoos, and K. Leyton-Brown, “SATenstein: Automatically

building local search SAT solvers from components,” in Proc. Int. Joint Conf. Artificial Intell.,

2009, pp. 517–524.

[8] T. Fuchs, J. Bach, and M. Iser, “Active learning for SAT solver benchmarking,” in Proc. Int.

Conf. Tools and Algorithms for the Construction and Analysis of Systems. Springer, 2023, pp.

407–425.

[9] M. Heule, M. Järvisalo, and M. Suda, “SAT Competition 2018,” in Journal Satisfiability,

Boolean Modeling and Computation, vol. 11, 09 2019, pp. 133–154.

[10] D. Selsam and N. Bjørner, “Guiding high-performance SAT solvers with UNSAT-core

predictions,” in Proc. Int Conf. Theory and Applications of Satisfiability Testing, 2019, pp.

336–353.

[11] T. Balyo, M. J. Heule, M. Iser, M. Järvisalo, and M. S. (Eds.), “Solver and benchmark

descriptions,” in Proc. SAT Competition, 2022.

[12] J. G. Cru and J. Levy, “Locality in random SAT instances,” in Proc Int. Joint Conf. on

Artificial Intelligence, 2017, pp. 638–644.

[13] Z. Zhang, D. Chetelat, J. Cotnareanu, A. Ghose, W. Xiao, H.-L. Zhen, Y. Zhang, J. Hao,

76

M. Coates, and M. Yuan, “GraSS: Combining graph neural networks with expert knowledge for

SAT solver selection,” in Proc. ACM SIGKDD Conf. Knowledge Discovery and Data Mining,

2024.

[14] H. Wu and R. Ramanujan, “Learning to generate industrial SAT instances,” in Proc. Int. Symp.

Combinatorial Search, vol. 10, no. 1, 2019, pp. 206–207.

[15] J. You, H. Wu, C. Barrett, R. Ramanujan, and J. Leskovec, “G2SAT: Learning to generate

SAT formulas,” in Proc. Adv. Neural Inf. Process. Syst., 2019.

[16] I. Garzón, P. Mesejo, and J. Giráldez-Cru, “On the performance of deep generative models of

realistic SAT instances,” in Proc. Int. Conf. Theory and Applications of Satisfiability Testing,

2022, pp. 3:1–3:19.

[17] Y. Li, X. Chen, W. Guo, X. Li, J. Huang, H.-L. Zhen, M. Yuan, and J. Yan, “HardSATGEN:

Understanding the difficulty of hard SAT formula generation and a strong structure-hardness-

aware baseline,” in Proc. of ACM SIGKDD Conf. Knowledge Discovery and Data Mining,

2023.

[18] N. Dershowitz, Z. Hanna, and A. Nadel, “A scalable algorithm for minimal unsatisfiable core

extraction,” in Proc. Int. Conf. Theory and Applications of Satisfiability Testing, 2006, pp.

36–41.

77

[19] N. Wetzler, M. J. Heule, and W. A. Hunt, “DRAT-trim: Efficient checking and trimming using

expressive clausal proofs,” in Proc. Int. Conf. Theory and Applications of Satisfiability Testing,

2014, pp. 422–429.

[20] A. Biere, M. Heule, H. von Maaren, and T. Walsh, Handbook of Satisfiability. IOS Press, 2009.

[21] C. Ansótegui, M. L. Bonet, J. Levy, and F. Manya, “Meauring the hardness of SAT instances,”

in Proc. AAAI Int. Conf. Artificial Intell., 2008.

[22] W. Wen and T. Yu, “W2SAT: Learning to generate SAT instances from weighted literal

incidence graphs,” 2023, arXiv preprint arXiv:2302.00272.

[23] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,”

in Proc. Adv. Neural Inf. Process. Syst., I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30, 2017.

[24] J. G. Cru and J. Levy, “Generating SAT instances with community structure,” in Artificial

Intelligence, 2016, p. 119–134.

[25] D. Zhao, L. Liao, W. Luo, J. Xiang, H. Jiang, and X. Hu, “Generating random SAT instances:

multiple solutions could be predefined and deeply hidden,” Journal of Artificial Intelligence

Research, vol. 76, pp. 435–470, 2023.

78

[26] Z. Geng, X. Li, J. Wang, X. Li, Y. Zhang, and F. Wu, “A deep instance generative framework

for MILP solvers under limited data availability,” in Proc. Adv. Neural Inf. Process. Syst., Dec

2023.

[27] A. Belov, I. Lynce, and J. Marques-Silva, “Towards efficient MUS extraction,” AI Commun.,

vol. 25, no. 2, p. 97–116, apr 2012.

[28] L. Xu, H. H. Hoos, and K. Leyton-Brown, “Hydra: Automatically configuring algorithms for

portfolio-based selection,” in Proc. AAAI Conf. Artificial Intell., 2010, pp. 210–216.

[29] D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill, “Learning a SAT solver

from single-bit supervision,” in Proc. Int. Conf. Learning Representations, 2019.

[30] A. Biere, K. Fazekas, M. Fleury, and M. Hessinger, “Cadical, kissat, paracooba, plingeling and

treengeling entering the SAT competition,” in Proc. SAT Competition, 2020, p. 50.

[31] M. Fleury and A. Biere, “GIMSATUL, ISASAT, KISSAT,” in Proc. SAT Competition, 2022,

p. 10.

[32] M. S. Cherif, D. Habet, and C. Terrioux, “Kissat MAB: Upper confidence bound strategies to

combine VSIDS and CHB,” in Proc. SAT Competition, 2022, p. 14.

79

[33] M. S. Chowdhury, “kissat-hywalk-gb, kissat-hywalk-exp, kissat-hywalk-exp-gb, and malloblin

entering the SAT competition,” in Proc. SAT Competition, 2023, p. 28.

[34] P. Kilby, J. Slaney, S. Thiébaux, T. Walsh et al., “Backbones and backdoors in satisfiability,”

in Proc. AAAI Conf. Artificial Intelligence, 2005, pp. 1368–1373.

[35] B. Chopin, H. Tang, and M. Daoudi, “Bipartite graph diffusion model for human interaction

generation,” in Proc. IEEE/CVF Winter Conf. Applications of Computer Vision (WACV),

January 2024, pp. 5333–5342.

80

	Introduction
	Motivation and Context
	Contributions
	Thesis Organization

	Background Material and Literature Review
	Introduction
	Background
	 Graph Neural Networks (GNNs)
	Training Binary Classifier Neural Networks

	Related Work
	Random SAT generation
	Deep-learned SAT generation
	Core Prediction
	Various Machine-Learning for SAT methods and settings

	Summary

	Methodology
	Introduction
	Problem Statement
	HardCore
	Generating Hard Instances
	Core Prediction

	Experiments and Results
	Experimental Setting
	Research Questions

	Summary

	Conclusion
	Conclusion
	Limitations
	Future Work

	Further Experimental Details
	Data
	Hyper-parameters
	HardCore GNN Core Prediction Implementation Details
	K-SAT Random Generation

	Supplementary Results
	Fine-Grained results on Data Augmentation Experiment

