
Efficient Octree-based 3D Pathfinding

Quentin Massonnat, School of Computer Science

McGill University, Montreal

December, 2023

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of

Master of Computer Science

© Quentin Massonnat, 2023

Abstract

Three-dimensional virtual environments are commonplace in modern games. Non-

player character (NPC) character movement planning, however, is still largely 2D,

with off-plane or vertical movement modeled through limited, and frequently custom

connections between 2D surfaces. Naive extension of 2D pathfinding methods to 3D by

building a full 3D grid (voxelization) is possible but easily becomes too expensive for

non-trivial 3D spaces. In this thesis we develop an efficient solution to 3D pathfinding

by building a reduced, hierarchical grid representation within which we can extend

traditional 2D navigation mesh (navmesh) pathing.

Our design begins with an octree representation, which already provides more

flexibility than a more traditional voxelization. By merging adjacent cells while

preserving their convexity, we obtain a coarser representation that greatly reduces path

computation costs. We then build a navigation graph from this octree within which we

can search for paths using the popular A* search algorithm. To increase the quality of

the paths we obtain we implemented two forms of path refinement: a visibility-based

path pruning heuristic, and a novel implementation of the classic “funnel” algorithm that

computes minimal homotopic paths, in our case extended to our 3D environment. We

further extend our work to handle dynamic environments with local and efficient updates

to the octree and the movement graph.

Experiments on a variety of scenarios show that our approach remains fast and

efficient even for very large 3D maps and could be used for real-time pathfinding in video

i

games. We implemented our work in Unity, one of the most popular game engines, as an

effort to make pathfinding in 3D environments accessible to game developers.

ii

Abrégé

La plupart des jeux vidéo récents offrent des expériences de jeu dans des environnements

virtuels en 3 dimensions. La planification du mouvement des PNJ (personnages non

joueurs) reste quant à elle majoritairement en 2 dimensions, et le mouvement vertical

est souvent limité ou utilise des connections arbitraires. L’extension naı̈ve de méthodes

de recherche de chemins en 2D à la 3D est possible en construisant une grille en 3D

(voxelisation), mais devient rapidement trop coûteuse pour des espaces 3D non triviaux.

Dans cette thèse nous proposons une solution efficace à la recherche de chemins en 3D

où nous construisons une représentation hiérarchique et réduite de l’environnement, à

laquelle nous étendons des approches de mesh de navigations 2D.

Ce travail utilise des octrees, plus flexible qu’une simple voxelisation. Nous

fusionnons ensuite des nœuds adjacents en préservant leur convexité pour obtenir une

représentation plus efficace de l’environnement qui réduit grandement les temps de

calcul. Nous construisons ensuite un graphe de navigation à partir de cet octree sur lequel

nous cherchons des chemins avec l’algorithme A*. Pour améliorer la qualité des chemins

obtenus, nous implémentons deux formes de raffinement de chemins : une heuristique

basée sur la visibilité qui simplifie un chemin, et une nouvelle implémentation en 3D de

l’algorithme de l’ ”entonnoir”, qui calcule le plus court chemin homotopique, dans notre

cas dans un environnement 3D. Nous étendons notre travail pour prendre en compte des

environnement dynamiques, en mettant à jour localement et efficacement l’octree et le

graphe de navigation.

iii

Des expériences sur divers scénarios montrent que notre approche reste rapide et

efficace même sur de très grandes cartes en 3D, et pourrait être utilisée pour la recherche

de chemins en temps réel dans des jeux vidéo. Nous avons implémenté notre travail

sur Unity, un des moteurs de jeux vidéo les plus populaires, dans l’optique de rendre la

recherche de chemin en 3D accessible à des développeurs de jeux vidéo.

iv

Acknowledgements

First and foremost I want to thank my supervisor, Clark Verbrugge, for his invaluable

help and support throughout these last two years. This thesis would not exist without

him.

I also thank Thomas Nobes for providing his results and code on the 3D JPS algorithm

and his openness to discuss his work.

Thanks to my labmates, Wael al Enezi and Nolwenn Augras, as well as all the great

friends I made at McGill for all the work and mostly non-work discussions that helped

shape this thesis into the great experience it was.

Thanks to my family for their unwavering support and for always being there when I

needed it.

v

Table of Contents

Abstract . i

Abrégé . iii

Acknowledgements . v

List of Figures . ix

List of Tables . x

List of Algorithms . xi

1 Introduction 1

1.1 Contribution . 2

1.2 Outline . 4

2 Background and Related Work 6

2.1 Search Algorithms . 7

2.1.1 The A* Algorithm . 9

2.1.2 The Jump-Point Search Algorithm . 9

2.1.3 Other Navigation Algorithms . 12

2.2 Pathfinding in 2D Environments . 13

2.3 Pathfinding in 3D Environments . 14

2.4 Navigation Meshes . 16

2.5 Quadtrees and Octrees . 17

2.6 Path Refinement . 18

2.7 3D Pathfinding Benchmarks . 19

vi

3 Environment Decomposition 21

3.1 Voxel Baseline . 21

3.2 Octree Decomposition . 22

3.2.1 Definition and Advantages . 22

3.2.2 Implementation Details . 24

3.3 Octree Merging . 27

4 Path Finding and Path Refinement 30

4.1 Path Finding on the Movement Graph . 30

4.2 Path Pruning . 33

4.3 The Funnel Algorithm . 34

4.3.1 Presentation of the Algorithm . 35

4.3.2 Implementation Details . 40

5 Dynamic 3D Path Finding 44

5.1 Updating the Octree . 45

5.2 Updating the Merged Octree . 48

5.3 Updating the Navigation Graph . 49

5.4 Potential Use Cases . 50

6 Experiments and Results 54

6.1 Visualisation of the Results . 55

6.2 Overview of the 3D Benchmarks . 58

6.3 Experiments on the Handmade Dataset . 61

6.4 Large-Scale Experiments . 67

6.5 Experiments on the Dynamic Octree . 72

7 Conclusion and Future Work 78

vii

List of Figures

2.1 Visualization of the octile movement to the 8 possible neighbors of a tile in

2D . 8

2.2 Example of 2 equivalent paths on a 2D grid 10

2.3 Explanation of the JPS neighbor skip . 11

2.4 Example of the grid size leading to bad obstacle conformance 15

3.1 Voxel and octree visualization . 23

3.2 Indexing scheme of the octree . 24

3.3 Example of a valid and invalid octree cell merge 28

3.4 Example of an imperfect quadtree merging 29

4.1 Visualization of the path pruning algorithm 34

4.2 Example of the path pruning algorithm changing the homotopy class of a

path . 35

4.3 Illustration of homotopy classes . 36

4.4 First steps of the 2D funnel algorithm . 37

4.5 Two possible steps of the 3D funnel algorithm 39

4.6 Perspective view (from the anchor point) of the first 5 steps of the funnel

algorithm . 40

4.7 Computation of the intersection of two convex polygons 42

5.1 Example of imperfect dynamic greedy merging 46

5.2 Illustration of ”artifacts” in the octree . 47

viii

6.1 Octree before and after merging . 56

6.2 Comparison of path refinement methods . 57

6.3 Overview of the handmade dataset . 59

6.4 Snapshots of maps from the Warframe dataset 60

6.5 Snapshots of maps from the Descent, Plant, and Sandstone datasets 60

6.6 Compute time comparison of the voxel baseline, the regular, and the

merged octree on all handmade maps. For better readability, the y axis

is a logarithmic scale of the compute time. 63

6.7 Compute time comparison of the octree and merged octree on all maps

using different forms of path refinement. 66

6.8 Evaluation of the impact of granularity on compute times 67

6.9 Evaluation of the impact of path refinement on compute times and length

on large maps . 69

6.10 Average and median compute time of merged octrees and 3D JPS on the

3D benchmarks . 71

6.11 Average path length of merged octrees and 3D JPS on the 3D benchmarks. . 72

6.12 Evolution of the compute time with path length on the BA1 and Full4 maps. 73

6.13 Evolution of the number of cells in a dynamic octree over time with

different merging strategies . 75

ix

List of Tables

6.1 Comparison of the number of valid cells across several maps using either

the voxel baseline, the regular, or merged octree. 56

6.2 Comparison of the path length of the voxel baseline, the regular and

merged octree on all handmade maps. 64

6.3 Average cost of the octree update, graph update, and path recomputing in

milliseconds over 1,000 updates on the Industrial map 74

6.4 Update frequency and average update time with the last-moment update

policy versus updating the octree as soon as it changes. 76

x

List of Algorithms

1 Pseudocode for the A* algorithm . 10

2 Pseudocode for the octree pruning algorithm 28

3 Pseudocode for the path pruning algorithm 34

4 Pseudocode for the funnel algorithm in a 3D environment 39

5 Pseudocode for computing the intersection of 2 convex polygons 41

xi

Abbreviations

2D, 3D: 2-dimension, 3-dimension

AABB: axis-aligned bounding box

FOV: field of view

HPA*: hierarchical pathfinding A*

JPS: jump point search

OBB: oriented bounding box

NP: non-deterministic polynomial time

NPC: non-player character

RRT: rapidly exploring random tree

SSF: stupid simple funnel algorithm

SVO: sparse voxel octtree

xii

Chapter 1

Introduction

Three-dimensional (3D) virtual environments are commonplace in modern games. They

cover a variety of genres, from first-person shooters and role-playing games to adventure

games. Even though most games feature 3D maps, movement in these environments

is mostly 2-dimensional, with more or less emphasis on verticality. If a character can

walk around but only jump or use ladders to change elevation, movement is not fully

3-dimensional.

As games get more complex, both from a graphical and mechanical point of view,

game designers increasingly include complex 3D movement in their games. Any game

featuring full 3D movement can benefit from this: flight or space simulations where the

player can fly, but also games that give great vertical mobility to the player such as the

recent Armored Core 6’s [5] jetpacks or Marvel’s Spider-Man’s [3] web-swinging mechanic.

There needs to be a robust pathfinding system to accompany such environments and

mechanics in a game. Pathfinding can give the player guidance on the way to reach a

destination, and more importantly is used to plan the movement of non-player characters

(NPCs), such as companions following the player or moving towards an objective, or

enemies hunting the player.

Most games, however, ”cheat” when it comes to 3D movement planning. In games

with limited vertical movement, pathfinding is often restricted to the horizontal plane,

1

and off-plane or vertical movement is handled by custom waypoints such as ladders or

climbing points. In space simulations, since most of the environment is empty, the path

to an objective is usually a straight line. In more complex settings, games use different

tricks to simplify movement planning. In Marvel’s Spider Man, flying enemies are in fact

hovering well above obstacles and move mostly horizontally at this height. Elex II [4]

features complex urban, industrial, or post-apocalyptic environments and flying enemies,

but these enemies wander around until they have a line of sight on the player, at which

point they fly straight at it. In Armored Core 6, the player can navigate through very

intricate 3D environments full of narrow paths and holes, but enemies are mostly static

or only attack and follow the player in large open rooms.

Since games have to run in real time and most of the computing resources go towards

graphics and rendering, these simplified pathfinding methods work without breaking the

player’s immersion. With these few examples, we illustrate the fact that motion planning

in full 3D environments remains an open problem for the game industry. Being able to

solve 3D pathfinding in complex environments, where paths weave around obstacles,

would open many opportunities for game design and more realistic movement.

The main problem lies in the fact that pathfinding in 3D is much more expensive

than in 2D. The extra dimension of traditional grid or voxelized models greatly increases

memory and time costs, while techniques for building and exploiting non-grid-like

representations are also more complex than in 2D. On top of that, even though some

tasks can be pre-computed, the active task of pathfinding must be done in real-time while

the game is running, with a fraction of the computing resources available, and therefore

it must be fast and cheap.

1.1 Contribution

In this thesis, we propose a hybrid approach to 3D pathfinding, building a hierarchical

representation of the environment to which we can extend traditional 2D and graph

2

pathing using navigation meshes. We start from an octree representation, which is

significantly more efficient than a voxel grid representation. We then use a Hertel-

Mehlhorn approach [28] to merge adjacent cells and obtain a coarser representation that

greatly reduces path computation costs. From this representation, we create a movement

graph (roadmap) to find short paths between two points, and use path refinement

techniques to further reduce path length. The first one is a visibility-based heuristic

inspired by Yang and Sukkarieh [46]. The second and more involved technique is an

extension of the 2D funnel algorithm [27] that builds a shorter 3D homotopic path.

We also extend our pathfinding to dynamic 3D environments that contain moving

obstacles. With some modifications, it is possible to efficiently update the octree and

the associated roadmap during runtime. This creates new game design possibilities by

allowing movement planning in more diverse scenarios.

We implemented our approach in Unity3D and created a custom set of benchmarks

to evaluate it, including basic test levels as well as more complex game environments

meant to be representative of topologically and navigationally complex environments in

which 3D pathing may be useful. Timing and path length comparisons show that our

octree approach is vastly superior to basic voxelization, and that merging octree cells

significantly reduces the number of cells and path compute times. The visibility-based

path pruning and the homotopic path refinement reduce path length successfully while

being fast in comparison to the pathfinding itself, especially in larger and more complex

environments.

The main contributions of this thesis are as follows:

1. We implemented the traditional octree data structure in Unity, and vastly improved

it with the Hertel-Mehlhorn style merging

2. We describe and define a novel extension of Mononen’s classic 2D funnel

algorithm [35] to a 3D, octree context.

3

3. Our approach is evaluated on a set of (non-voxelized) 3D custom scenes inspired

by modern game environments. This is a useful addition to existing pathfinding

benchmarks which concentrate on 2D models and discretized voxel representations.

4. Experimentation shows that our approach is sufficiently efficient to be useful in

complex game environments, drastically improving over a more naive voxelization.

5. We provide a thorough comparison of our approach and what is to our knowledge

the state-of-the-art 3D pathfinding method by Nobes et al. [37]. We compare their

performance on the large voxel-based maps from the game Warframe [2], converted

into a 3D benchmark by Brewer and Sturtevant [10], as well as a more recent

dataset by Nobes et al. [38] that covers a more diverse range of scenarios. Our

approach provides more flexibility and shorter path lengths while maintaining

feasible compute times.

1.2 Outline

This thesis comprises 6 chapters, and is organized as follows:

• In Chapter 1 we discussed the motivation behind this thesis and provided an

overview of our work.

• We give some necessary background knowledge on graph, 2D, and 3D pathfinding

and explore the related work in this area in Chapter 2.

• We present the voxel baseline, then describe the more efficient octree data structure

and the octree merging process in Chapter 3.

• In Chapter 4 we explain how we use this octree structure to perform fast pathfinding

and describe in detail the path pruning and the funnel algorithm that we use for

path refinement.

4

• We discuss how to update the octree and the movement graph to handle dynamic

environments in Chapter 5.

• We evaluate our approach on a handmade dataset in Chapter 6, and compare it to

Nobes et al.’s approach [37] on the larger-scale Warframe dataset and the dataset

created by Nobes et al. [38].

• Chapter 7 concludes our work and discusses possible directions for future work

based on our observations.

5

Chapter 2

Background and Related Work

Pathfinding techniques are required in many genres of video games. In any non-trivial

environment that contains obstacles, it can provide help to the player or be used to

navigate non-player characters (NPCs).

The problem of pathfinding in a game consists of finding a path between a starting

point and a target point, that should satisfy additional conditions depending on the use

case:

• The path should avoid obstacles in the environment, such as walls, trees, etc.

• In most cases, we want the path to be optimal or close to optimal in length.

• For more realistic movement, especially in the case of moving vehicles, dynamical

constraints such as inertia or a limited turning radius can be imposed.

• When the moving agents have a non-zero size, the path should maintain a safe

distance from obstacles, for example by not grazing corners, to account for the size

of the agent.

• Since our aim is pathfinding in video games, computational efficiency is also a major

concern.

6

In this thesis, we will address the problem of finding obstacle-avoiding shortest paths

in 3D environments.

In this chapter, we will provide the reader with the necessary background elements as

well as an overview of the research related to this topic. We will first provide a summary

of the main search algorithms in Section 2.1. These search algorithms typically work on a

graph and, therefore need to be coupled with some environment decomposition method

that builds a representation of the walkable space called navigation mesh (navmesh).

From this navigation mesh, it is possible to create a graph, or roadmap, that abstracts the

movement in the level. Various approaches have been developed for 2D environments,

which we will explore in Section 2.2, and we will cover the extensions to 3D environments

in Section 2.3. Building an accurate and efficient navigation mesh is essential, as it leads

to a smaller roadmap, and the compute time of search algorithms increases with the size

of the graph. We discuss some attempts at building efficient navmeshes in Section 2.4. In

this thesis, we chose to use a hierarchical representation of the environment, the octree.

In Section 2.5, we will give details about the quadtree data structure, its 3D extension,

the octree, and how they can be used to perform fast pathfinding. After a path is

found on the navmesh using one of these search algorithms, it is desirable to refine it,

reduce its length, or make it more smooth. We discuss different methods to improve

path quality in Section 2.6. Finally, comparing research and the performance of different

approaches on the same benchmark is essential. Even though many benchmarks exist

for 2D pathfinding, the number of 3D benchmarks remains limited. We describe these in

Section 2.7.

2.1 Search Algorithms

Searching for shortest paths is typically done in a graph, as a simplified abstraction of the

walkable space. In a 2D game, such a graph can be a grid of tiles the player can navigate,

and that accommodates movement in 4 directions, or 8 if diagonal movement is allowed.

7

Figure 2.1: Visualization of the octile movement to the 8 possible neighbors of a tile in 2D.

In 3D, it is also possible to access the 9 neighbors above a cell and the 9 below, resulting

in a total of 26 neighbors.

In a 3D game, a similar 3D grid can be used, allowing movement in all 26 directions

(from a given cell, the next move can be any of the 8 neighbors at the same elevation,

the 9 neighbors that are one unit higher and the other 9 one unit lower, as illustrated in

Figure 2.1). But from an abstract perspective, pathfinding can be done on any graph, by

minimizing the sum of the costs of the edges along the path between the start and target

point.

We describe the A* algorithm, a cornerstone of pathfinding search algorithms, in

Section 2.1.1. There exist many variants and improvements to A*, but we will focus our

attention on the jump point search algorithm (JPS) in Section 2.1.2, as it works well in

game environments and its 3D extension is one of the fastest pathfinding methods for 3D

games as of writing this thesis. We will end this section by giving a quick overview of

some of the other important search algorithms in Section 2.1.3.

8

2.1.1 The A* Algorithm

The most well-known search algorithm is the A* algorithm [25], an optimization over

the base Dijkstra’s algorithm [15]. It uses a heuristic function, such as the Euclidean or

Manhattan distance, to evaluate the distance between a node and the target node in the

graph. This allows to guide the search towards nodes that are closer to the target point,

and thus more likely to be on an optimal path.

For the following, if x and y are two nodes in the graph, we write d(x, y) the cost of

the edge connecting x and y. We call the start node s and the target node t. For a node n,

g(n) is the cost of the shortest path from s to n, h(n) a heuristic estimation of the distance

between n and t, and f(n) = g(n)+h(n) the priority function that will determine the order

in which we search nodes. The heuristic h can be the Euclidean distance separating n and

t, the Manhattan distance, or any other distance function. If the heuristic function never

overestimates the actual cost of the path between n and t, the A* algorithm is guaranteed

to find the shortest path from s to t [25].

We give pseudo-code for this algorithm in Algorithm 1. At each iteration, we select

the node n with the lowest f value, we update the g and f values of its neighbors n′ if

there is a new shorter path going from s to n′ going through n. During the execution,

we save and update for each node its predecessor, i.e., its neighbor connecting it on the

shortest path to s, allowing us to reconstruct a path starting from t after the algorithm has

run successfully.

2.1.2 The Jump-Point Search Algorithm

Another popular search algorithm is the jump-point search (JPS) algorithm [24] for video

game spaces. This algorithm is an evolution of the A* algorithm and directly uses the

grid structure of a 2D environment to reduce the number of searched nodes, resulting in

faster searches. The intuition behind this is that, especially in open spaces, many paths

between two points are equivalent in length, as shown in Figure 2.2.

9

Algorithm 1 Pseudocode for the A* algorithm
Input: A starting point s and a target point t
Output: The shortest path from s to t

1: Let openSet = { s }
2: while openSet is not empty do
3: Let n be the node in openSet with the lowest f value
4: if n == t then
5: Reconstruct the path from s to t and end the search
6: end if
7: remove n from openSet
8: for all neighbors n′ of n do
9: if g(n) + d(n, n′) < g(n′) then

10: Let g(n′) = g(n) + d(n, n′), update f(n′) and add n′ to openSet
11: end if
12: end for
13: end while

Figure 2.2: Example of 2 equivalent paths on a 2D grid. Here the two paths p1 (orange)

and p2 (blue) connect the two points s and t with the same (optimal) length.

Since only one path of minimal length must be found, when opening a node and

looking at its neighbor to continue a candidate path, it is possible to ignore most of

its neighbors depending on the direction we are coming from, as they would result in

equivalent paths or paths that would be explored by another candidate path. We give an

10

Figure 2.3: Explanation of the neighbor skips. On the left figure, if the path comes from

(4), there is a shorter or equivalent path that goes to every neighbor of (5) except (6), thus

we can ignore them and keep going straight. If there is an obstacle such as node (2) on

the right figure, more nodes should be added to the queue, nodes (3) and (6) in this case.

example of this in Figure 2.3. In this figure, the green node (5) is opened coming from

the left side (4). If there are no obstacles around the node (left figure), there is no need

to open node (4) again since this is where the path comes from, and nodes (1), (2), (3),

(7), (8) and (9) can all be accessed with a shorter or equivalent path that goes through

the predecessor (4) but not the current node (5). Since (4) was opened, these grayed-out

nodes were either already explored or nodes allowing to reach them were added to the

open set. The only remaining option is to open node (6) and keep going straight. As long

as there are no obstacles, this process will be repeated and the candidate path ”jumps”

ahead in a straight line. If there is an obstacle (drawn in red in the right figure), more

neighbors must be explored. Here, for example, there is no other equivalent path that

leads to (3) since (2) is blocked off, therefore both (3) and (6) must be added to the queue.

This optimization greatly reduces the number of nodes that must be opened, and in

practice, the skipping of nodes results in horizontal, vertical, or diagonal ”jumps” during

the exploration, to jump points located around obstacles, hence the name of the algorithm.

The JPS algorithm maintains the A* optimality and is faster by an order of magnitude

on 2D grids [24]. The same idea can be extended to 3D, even if it results in more switch

cases as a cube has 26 potential neighbors and a square only has 8. The 3D extension

of the JPS algorithm allowed Nobes et al. [37] to perform fast pathfinding in large 3D

11

environments, and is to our knowledge the state-of-the-art method for 3D pathfinding.

We will discuss this approach in more detail in Section 2.3.

2.1.3 Other Navigation Algorithms

There is a variety of other search and navigation algorithms, especially if heuristics are

introduced to perform faster non-optimal (in terms of length) searches.

• The rapidly exploring random tree (RRT) algorithm, first introduced by LaValle [32],

randomly samples points in the environment and connects them to an expanding

tree originating from the start node, until the target can be reached from a leaf

to the tree. Starting from a map with obstacles, a start point, and a target point,

points are sampled randomly. If a sampled point is outside of any obstacles, we try

connecting it to the tree. We compute the nearest tree leaf, and if the straight line

path connecting them is free of obstacles, we add the sampled point to the tree by

connecting it to the leaf.

• Another popular category of approaches, especially for handling the simultaneous

movement of a large number of agents, uses steering forces in an attempt to recreate

the natural behavior of a flock of birds for instance. Reynolds [39] uses a simple

vehicle model that allows agents to dynamically follow targets, flee from them, or

reach target locations.

• Pathfinding using potential fields is mostly used in robotics [30], and associates

attractive forces to the target and repulsive forces to obstacles to compute local

forces on the agent and move in a way that maximizes the potential energy.

These last two methods are heuristic and most importantly work locally. This is an

advantage as it greatly reduces computing times and performance would be similar

regardless of the size of the environment, but by moving locally, there is no global path

planning. This can result in longer paths or even in trajectories that get stuck in local

optima and cannot reach the goal in the case of potential fields.

12

LaValle [31] provides a good, comprehensive review of many pathfinding techniques,

such as A*, RRT, navigation meshes, and road maps that were discussed above.

2.2 Pathfinding in 2D Environments

Most pathfinding research focuses on 2D environments and uses the search algorithm

described above. Abd Algfoor, Sunar, and Kolivand [6] did a comprehensive study of

pathfinding in games, but mostly for 2D environments. Such a review does show the great

variety of approaches that can be used to tackle pathfinding, such as grids, navmeshes,

hierarchical or probabilistic methods to cite a few.

Cui and Shi [14] review A* approaches for 2D pathfinding, underlining the fact that

the quality and efficiency of the underlying data representation are essential. Since A* is

an optimal algorithm, optimizations should be made on other aspects that could facilitate

the search, such as optimizing the underlying search space, exploring different heuristic

functions, or reducing memory costs. In our case, if we perform pathfinding on a graph

and not on a grid, reducing the number of nodes in the graph while maintaining a faithful

representation of the environment will reduce pathfinding compute times.

Botea, Müller, and Schaeffer [8] propose an improvement to the A* algorithm: HPA*

(hierarchical pathfinding A*) that abstracts an environment in local linked clusters. At

a local scale, pathfinding inside a cluster can be done with traditional A*, and at a

global scale, it can be done by navigating from cluster to cluster along pre-computed

routes. Hierarchical methods allow to store and reuse some intermediate results, making

pathfinding faster to compute. This is especially useful when planning on very large

maps. With a global method like A*, as the map and the underlying graph increase in size,

compute times can quickly become too long for a real-time setting. With a hierarchical

method, however, since the map is divided into smaller chunks, path queries can remain

fast even on large maps.

13

Some works have studied the homotopic classes of paths: a simple characterization of

these is that two paths are in the same homotopy class if they share the same start and

end point and they can be continuously deformed to one another without intersecting

any obstacles. There can be multiple classes due to the presence of obstacles. Hernandez,

Carreras, and Ridao [26] introduce homotopic variants of A*, RRT, and the Bug algorithm

(a common pathfinding algorithm in robotics) to find shortest homotopic paths in 2D

scenarios, by restricting the search to a certain homotopy class. In this thesis, we will

approach this problem in a slightly different way, as we will instead find a path, and then

find the shortest homotopic path within its homotopy class.

Sturtevant [42] creates a sparse grid representation of the environment in 2D and 3D

games, although the 3D environments consist only of 2D walking surfaces connected in

a 3D environment and therefore do not allow full 3D movement. Most 3D games use

this ”2.5D” logic, in what is sometimes called Manhattan environments, as they consist of a

plane and vertical obstacles akin to buildings. We are interested in tackling problems

in 3D environments with full freedom of motion, and will describe some interesting

approaches in the next section.

2.3 Pathfinding in 3D Environments

Due to a higher branching factor and higher volumes, 3D pathfinding is a more difficult

problem that in many cases can only be solved approximately. Canny and Reif [11] prove

that finding the exact shortest path between 2 points in a 3D environment with polyhedral

obstacles is NP-hard. All works for pathfinding in 3D then have to incorporate some

heuristics and show a trade-off between path quality and computational cost. Even if A*

can find shortest paths in a graph, a trade-off has to be made at some point in building

that graph. For example, when searching paths in a grid, the grid size might not exactly

conform to the obstacles, and even if paths close to the shortest length can be found,

we may not be able to reach the exact optimal length, as illustrated in Figure 2.4. Usually

14

Figure 2.4: Example of the grid size leading to bad obstacle conformance. Since invalid

(red) tiles can be larger than obstacles (drawn in gray) and also contain walkable space,

the shortest path in a grid (here p1) is not always the optimal path (p2).

compromises in path length optimality are made to allow faster compute times, especially

when considering real-time pathfinding applications such as video games or robotics.

Many improved versions of the A* algorithm exist for 3D. Sislák, Volf, and

Pechoucek [41] explore flight trajectory path planning, but do not incorporate a reduced

representation of the environment such as navigation meshes. Frontera et al. [21] propose

an algorithm with good empirical running time and solution quality, but their work

is restricted to environments where obstacles are protruding vertical polyhedra (for

example buildings in urban environments).

Li et al. [33] give an approach to finding safe paths for drones inside cluttered

buildings, but the proposed approach uses voxels instead of a more efficient data

structure and therefore suffers from high computational cost. The work most similar

to our approach is by Muratov and Zagarskikh [36], who use octrees and a clustering

method similar to HPA*. Instead of creating clusters of a fixed size in a voxel grid, they

15

use the depth level in the octree to create clusters. Each cluster has transitions to adjacent

clusters. By precomputing all paths within any given cluster, they perform a hierarchical

search similar to HPA*. Our proposed approach goes further by reducing the number

of cells in the octree, leading to faster compute times, and incorporating non-trivial path

refinement to increase the path quality and reduce their length. Their clustered octree

search suffers significantly in terms of path length due to the clustering process, with

paths on average 20% longer than optimal solutions.

As mentioned in Section 2.1.2, the best approach to date uses the 3D extension of the

jump point search (JPS) algorithm [37]. They obtain fast compute times in very large and

complex environments. We will show a detailed comparison of this method and our work

in Section 6.4.

2.4 Navigation Meshes

Navigation meshes are a way to meaningfully encode the traversable areas (areas outside

of obstacles) in an environment. Any tiling, or partition of the environment that conforms

to obstacles is a navigation mesh. Having convex tiles is essential in pathfinding

applications since if a tile is convex and free of obstacles, two points in the same tile

can always be connected by a straight line that does not intersect any obstacles.

Since moving between two points inside a free polygon can be done by going in a

straight line, path-finding is reduced to moving from polygon to polygon, along a graph

where each polygon is represented by a node, and neighbor polygons are connected by

edges. The standard method to perform 3D pathfinding in a game environment is to use

a form of navigation mesh. Some tools that automatically create navmeshes, like Recast1,

are widely used in video game pathfinding.

Navigation meshes can have many desirable properties and can be compared in a

variety of ways [44], such as their coverage of the environment or the number of regions

1https://github.com/recastnavigation/recastnavigation

16

https://github.com/recastnavigation/recastnavigation

used. When using axis-aligned bounding boxes for instance, it is not possible to conform

exactly to diagonal obstacles, resulting in some parts of the environment that should be

walkable but end up outside of the navigation mesh.

One interesting approach to improve obstacle conformance is proposed by Hale,

Youngblood, and Dixit [22] for 2D environments, where rectangles expand from seeds

sampled in the level until they encounter an obstacle or another rectangle. This creates an

efficient navigation mesh with convex regions. The same approach could be applied to

3D environments, where cubes would “grow” from seeds, with some level conformance

as well. Building and growing the 3D structures, however, is complex, and we chose to

use octrees, that can also be converted into a navigation mesh.

2.5 Quadtrees and Octrees

Finkel and Bentley [20] first introduced the notion of quadtrees, a hierarchical data

structure. A quadtree is created from a square that is recursively split into 4 smaller

squares while it contains an obstacle. The recursive splitting stops when a cell is obstacle-

free or has reached a smallest allowed size. Quadtrees can be used to perform pathfinding

in 2D environments, such as in the work of Hirt et al. [29].

The equivalent of quadtrees in 3 dimensions is octrees, where cubes are generated

instead of squares. Fichtner et al. [19] use octrees to model the interior of buildings in

the context of indoor navigation in multi-story buildings. A comparison to a point cloud

baseline shows that thanks to their hierarchical structure, octrees have fewer points and

can be leveraged to identify structures like floors, tables, or stairs.

A highly optimized octree-based navigation is used by Brewer to perform real-time 3D

pathfinding in the video game Warframe [9] using sparse voxel octrees (SVOs), based on

the work of Schwarz and Seidel [40]. In SVOs, the data for each level of the tree is stored

in a very compact way using a Morton Code order, which allows to enumerate octree

cells while keeping neighbor cells close to each other in memory. To capture fine details

17

in the environment without building the octree all the way, they use small 4x4 voxel

grids instead of regular cells as octree leaves when the minimum octree size is reached.

This thesis approaches octree navigation differently: these storage and implementation

optimizations could be compatible with our work, and we propose a merging method to

directly reduce the number of nodes in the octree, leading to faster compute times.

2.6 Path Refinement

After a (non-optimal) path is found, it can then be shortened or smoothed with various

path refinement methods. To reduce a path’s length, Yang and Sukkarieh [46] use path

pruning to skip a subset of points in the path, by greedily skipping points in the path

based on a visibility heuristic. Douglas and Peucker [16] present the recursive Ramer-

Douglas-Peucker algorithm that can simplify a polygonal line (in our case the path), in

a similar way to path pruning. These two methods can simplify a path and reduce its

length, but the resulting path might be in a different homotopic class.

Another form of path refinement is path smoothing, which aims at making the path

more natural and less jagged, allowing a vehicle with dynamic constraints and inertia to

follow it. Yang and Sukkarieh [46] use rapidly exploring random trees (RRT) then path

pruning and Bezier spiral curves to refine the path, mainly to account for turning radius

constraints as they are interested in drone (UAV) navigation.

Cimurs and Suh [13] also use Bezier curves but optimize the control points to respect

obstacle avoidance and kinematic constraints. Chaikin [12] introduces a fast algorithm to

create a smooth curve from a set of points along a polygonal line. This algorithm works

iteratively: for a line defined by a list of points, at each step, we sample two points for

each segment of the line, more precisely at a 1/4 and 3/4 ratio between the two endpoints.

All of these intermediate points form a new and smoother line, and the process can be

repeated as much as needed.

18

When doing path refinement, it can be desirable to stay in the same homotopic

class. This can ensure that a set of paths in the same class stay close to each other

after smoothing, or that the path does not drastically change after being smoothed.

Bhattacharya, Kumar, and Likhachev [7] use the Cauchy Integral Theorem to give a

characterization of homotopy classes. Hershberger and Snoeyink [27] introduce the

funnel algorithm in 2D, used to find the shortest path in the same homotopic class. There

are several implementations of the funnel algorithm, such as the simple stupid funnel

algorithm (SSF) by Mononen [35] which inspired our extension of the funnel algorithm

to 3D scenarios. We describe the funnel algorithm in detail in Section 4.3. Erickson [17]

uses path reduction and the funnel algorithm to compute the shortest homotopic path to

a given path between two points in 2 dimensions.

2.7 3D Pathfinding Benchmarks

To establish a fair comparison between different methods, there is a need for standardized

benchmarks. Many pathfinding benchmarks exist for 2D environments, but to our

knowledge, there are only three for 3D scenarios. Toll et al. [45] created a benchmark

to compare 2D and 3D navigation meshes, but the 3D cases only correspond to 2D

walking areas in a 3D environment, and not to environments where free movement in

all directions is possible. Since our work is aimed at solving full 3D motion, we will not

run experiments on this benchmark, as approaches specially built for this ”2.5D” scenario

would be more relevant to this setting and would likely outperform ours.

Brewer and Sturtevant recreated 3D maps from the video game Warframe [10], where

jetpacks enable full 3D movement. In these very large maps, obstacles are represented

by a list of the coordinates of all the voxels occupied by obstacles. These maps tend to

contain hundreds of thousands to millions of obstacles and fit in a cube 1000 units long,

wide, and high. Due to their very large size, they allow testing pathfinding methods in

difficult scenarios and it is challenging to do real-time pathfinding on them. These maps

19

mostly consist of ships, debris, and asteroids floating in empty space. For a more diverse

set of maps, Nobes et al. [38] followed the same data structure to extend the benchmark

with maps presenting a more diverse range of scenarios, motivated by the real-life use

cases of 3D pathfinding.

20

Chapter 3

Environment Decomposition

In this chapter, we will explain how, given a 3-dimensional (3D) map with obstacles,

we build a meaningful representation of the environment that we can leverage to

perform fast pathfinding. In Section 3.1 we will first introduce the baseline of

environment decomposition in 3D, the voxelization. We describe the more efficient octree

decomposition in Section 3.2. We give necessary definitions and motivate its use in

Section 3.2.1, and give some important details about our implementation in Section 3.2.2.

Finally, we explore octree pruning strategies in Section 3.3, which allow us to drastically

reduce the number of nodes in an octree, resulting in faster pathfinding times.

3.1 Voxel Baseline

In this section, we will describe the simplest 3D decomposition that we used as a baseline,

and introduce several important definitions and concepts that will be useful for this

section as well as our octree approach.

The simplest way to perform environment decomposition is to use a voxel grid, voxels

being the 3D equivalent of 2D pixels. This can be achieved by dividing the map into

evenly sized cubes, called voxels. We define as granularity the size of these cubes. We take

obstacles into account by making every voxel that intersects an obstacle invalid. Invalid

21

voxels cannot be traversed and any path has to go around them, through the remaining

valid voxels. Such paths are therefore guaranteed to avoid all obstacles.

The similar 2D approach has been used extensively, as it is very simple to implement

and it is very fast to create such a grid and remove the invalid pixels. In three dimensions,

however, the number of voxels increases drastically. The main limitation of voxelization

is its inefficiency in representing large open spaces, which are very common in 3D video

game environments, especially ones designed to accommodate full 3D motion. An

obstacle-free space that is n units wide, long, and high requires n3 voxels to represent

it at a granularity of 1, whereas as we will see in the next section such an open space can

be represented by only 1 octree cell.

Voxel decomposition is easy to implement and fast to compute but results in a very

large number of cells. As we will see in Chapter 4, this causes an increase in the number

of nodes in the movement graph and therefore in the pathfinding compute times. The

octree approach aims at representing the environment more efficiently, with a smaller

number of cells, which in turn leads to a smaller graph and faster pathfinding. We give

an example of this in Figure 3.1: the octree does not need as many cells to represent the

environment, and this will be further enhanced by merging cells together as explained in

Section 3.3.

3.2 Octree Decomposition

In this section, we will first give all the necessary definitions for our octree approach and

motivate its use. We will then give more details about our implementation of it and some

optimizations we added.

3.2.1 Definition and Advantages

To avoid the high cost of voxels we use the more efficient octree data structure. This

decomposition is recursive: to build it, we start from a single cubic cell that encompasses

22

Figure 3.1: Example of a voxel and an octree decomposition on a simple map with three

obstacles. Invalid cells are represented as red cubes, and the valid cells as transparent

cubes with a black frame.

the whole level. If an obstacle intersects the cell, we split it into 8 cubes half the size

of the cell in each dimension that will be stored as the children of the main cell. We

recursively continue this process of splitting invalid cells until the cells have reached a

specified granularity. We split cells in a breadth-first order; that is we split all the cells of

the same size that should be split before moving on to the smaller cells.

We call children the set of cells that was obtained from splitting one parent cell. With

this analogy in mind, we call siblings two cells that share the same parent.

A valid cell without any obstacle or one that has reached the minimal size is called

an octree leaf. Increasing this granularity gives a more accurate decomposition of the

environment, but at the cost of more compute time, as in a worst-case scenario, halving

the granularity can multiply the number of octree leaves by 8.

The main advantage of the octree is that it requires many fewer nodes than a voxel-

based approach, as a large obstacle-free space can be represented as a single octree leaf.

23

Figure 3.2: Indexing of the 8 children of the root, labeled ”0”. The indexes range from

”00” to ”07”.

By definition, a leaf is free of obstacles and as a convex space (cube) the shortest path

between two points in a leaf is just a straight line.

3.2.2 Implementation Details

In order to increase the speed of building the octree, several optimizations can be

implemented. First of all, we need an efficient indexing method that assigns a unique

index to each octree cell. This has many benefits, as we will discuss below. We start the

indexing from the root, labeled ”0”, and for every cell we split, we create the index of the

children by adding one digit (corresponding to one of the 8 possible child locations) to

the parent’s index. We represent this indexing scheme in Figure 3.2 as we split the root,

and the same logic is applied to every cell we split.

This indexing scheme offers several advantages. Having a unique index associated

with each cell as well as storing cells in a dictionary with their index as the key allows

fast access to any cell. By definition, the length of the index of a cell corresponds to its

24

depth in the octree, which is useful to determine if two cells are at the same depth or not.

It also allows us to instantly test the adjacency of two cells simply by comparing their

indexes. For instance, cells ”00” and ”01” are adjacent, as shown in Figure 3.2, but cells

”00” and ”07” are not. We give more details about this neighbor check method further

below.

To fully benefit from the hierarchical octree structure, we want to perform local

operations on the octree as much as possible. To do that, we need to have fast access

to the neighbors of a cell, which can be especially useful when building the navigation

mesh or pruning the octree as we will see in the next section. For each octree cell, we

then store two adjacency lists of the valid and invalid neighbors it has in all six directions

(left, right, up, down, forward, and backward). After each operation during the building

phase of the octree, we update the affected cells’ adjacency list accordingly.

• When splitting a cell into 8, the children will inherit from the neighbors of their

parent cell they are still in physical contact with, as well as the other children

adjacent to them. The parent’s neighbors must also have their adjacency lists

updated to reflect the split, which is done by removing the parent and adding the

children adjacent to the neighbor.

• When a cell switches from valid to invalid, we remove it from its neighbors’ valid

adjacency list and add it to the invalid one, and perform similar operations if it

switches from invalid to valid.

• We will explain in the next section what happens when we merge two cells.

With this indexing system, it is possible to instantly check if two cells are neighbors or

not. If they are siblings, they will have the same index except for the last digit which will

be different and indicate their placement in the parent cell. If the last digit of a cell is 1

for instance, it will be a neighbor of the other children with a last digit of 0 or 3, but not

with 6.

25

For a parent index p, two children cells with indexes pi and pj will be neighbors if

i = j ± 1 (neighbors along the x axis), i = j ± 2 (neighbors along the z axis), or i = j ± 4

(neighbors along the y axis).

In some cases, we also have to perform neighbor checks between non-siblings cells.

When we split a cell, we use the parent’s neighbor list to compute the children’s one.

Given a parent with index p and a child with index pi, the child is still a neighbor with

the neighbors of a parent in a given direction (for example to the left) only if the child is

on the same (i.e. left) side of the parent cell. These direction checks can be performed as

follows:

• pi is on the left side if i ≡ 0 mod 2

• pi is on the right side if i ≡ 1 mod 2

• pi is on the bottom side if i < 4

• pi is on the top side if i >= 4

• pi is on the backward side if i mod 4 < 2 (i.e. if i = 0, 1, 4, 5)

• pi is on the forward side if i mod 4 >= 2 (i.e. if i = 2, 3, 6, 7)

This direction check as well as the neighboring check between children of the same

cell allows us to create and update the neighbor lists of every cell at every stage in the

building of the octree.

Although this update process slightly lengthens the octree building time, this does not

affect runtime pathfinding costs, which is the main constraint we face when solving video

game pathfinding. Once the octree is built, we save it and can very quickly load it as the

game starts for subsequent pathfinding requests. We then have to pay an offline cost

during the map generation, but once a level is finished, the octree can simply be loaded

with the map and used as it is to solve individual pathfinding queries.

One last thing to discuss is the way collision detection is implemented. Collision

detection is used to determine if there is at least one obstacle in a given octree cell, and

26

thus if we need to split the cell. Since octree cells are already axis-aligned, we chose

to treat all obstacles and cells as axis-aligned bounding boxes (AABB) for two reasons.

This makes collision testing very fast, as we can just look at the minimum and maximum

coordinates of two objects to check if their intersection has a strictly positive volume,

meaning they collide. The second reason is that although we do not expect all obstacles

to be cubic or rectangular-shaped, it is possible to voxelize any 3D shape to represent it

as a collection of small cubes. This is what allows Brewer and Sturtevant [10] to represent

complex shapes such as spaceships as a series of voxels. That being said, since collision

detection is only used to determine if a cell should be split, it is a modular component

that could be replaced in future work by a more advanced method. Such methods could

allow for instance representing obstacles as oriented bounding boxes (OBB), or other,

more precise bounding volumes, as some of the options explored by Ericson [18].

3.3 Octree Merging

As we will discuss in Chapter 6, the computing time of the pathfinding algorithm is

directly linked to the number of valid octree leaves, so we are interested in lowering this

number. On many occasions, adjacent cells can be merged while maintaining convexity.

We implemented a greedy merging procedure inspired by the Hertel-Mehlhorn algorithm

[28], which triangulates 2D polygons with holes. We check for adjacent cells that would

remain convex after merging, which happens if the transition surface covers the entire

side of both octree leaves. As can be seen in Figure 3.3, a cell can have a side larger than

the transition, and merging would compromise the convexity of the cell. When two cells

are merged, this can create new merging opportunities for neighboring cells, which is

handled by our greedy algorithm.

A more practical and equivalent way to check if merging two cells n1 and n2 maintains

convexity is if n1 only has one valid neighbor n2 and no invalid neighbors in a given

direction, and the same holds for n2 when looking in the opposite direction. Since we

27

Figure 3.3: Two examples of potential cell merges, the right one being invalid as the

convex property is lost.

Algorithm 2 Pseudocode for the octree pruning algorithm

1: Let validStack be a stack of all valid octree leaves
2: while validStack is not empty do
3: Remove the first node n1 from the stack
4: for all 6 cardinal directions dir do
5: if n1 only has 1 valid neighbor n2 and no invalid neighbors in direction dir, and

the same holds for n2 in oppositeDirection(dir) then
6: Merge n1 and n2, updating their scale, position, and adjacency list accordingly
7: Add the merged cell to validStack to check if this merge enabled further merges
8: end if
9: end for

10: end while

store and update a list of valid and invalid neighbors for each cell, we can check this very

easily. We give the pseudocode for our merging procedure in Algorithm 2.

When merging two cells n1 and n2, we need to update their adjacency lists. The

merged cell’s list is simply the union of n1 and n2’s lists, to which we remove any reference

of n1 or n2. We also update their neighbor’s list by removing n1 and n2 if they are present,

and adding the merged cell.

This heuristic we use for merging the octree is not guaranteed to be optimal (in terms

of the total number of cells after merging), because the order in which cells are merged is

random and there might be another order that yields better results. Even in 2D, using a

similar procedure does not guarantee optimality, as shown in Figure 3.4. In this example,

if we start by merging cells 1 and 2 the best merging that can be obtained leaves 3 quadtree

cells, even though a better merging that gives 2 cells exists. In practice, however, this

28

Figure 3.4: An example of imperfect quadtree merging: the original quadtree (dotted

lines) is obtained after detecting the obstacles (red squares). If we start by merging cells 1

and 2, at best we obtain 3 quadtree cells (left side), but a better solution with 2 cells exists

(right side).

approach gives good results and still consistently leads to a significant decrease in the

number of octree cells.

29

Chapter 4

Path Finding and Path Refinement

In this chapter, we will detail how we can leverage the environment decomposition we

built in the last chapter to perform fast pathfinding. If we consider these decompositions

as a set of convex connected cells, the only difference between a voxel grid and an octree is

the shape and number of such cells, so they can be treated in the same way. In Section 4.1,

we explain how we can create a movement graph from the environment decomposition,

and how we use it to find short paths. We then explain two path refinement techniques,

namely path pruning in Section 4.2 and the 3D funnel algorithm in Section 4.3. These

techniques allow us to reduce the length of a path even further while only paying a small

compute time when compared to the pathfinding time.

4.1 Path Finding on the Movement Graph

Regardless of the environment decomposition method used, we obtain a set of cells that

can be traversed freely. Because they are convex cells, the shortest path between two

points within the same cell is just a straight line. With this in mind, we just need to know

how to navigate from cell to cell.

We define as transition surfaces the surfaces connecting two adjacent valid cells. Using

the environment decomposition, we create a graph, where nodes are in the middle of

30

transition surfaces, and two nodes are connected if their associated transition are sides of

the same cell. We connect them with an edge of weight d(t1, t2) where d is the Euclidean

distance and t1 and t2 are the middle of the two transitions.

With this movement graph, the task of finding the shortest path in a 3D environment

is reduced to finding the shortest path on this weighted graph. We use the A* algorithm

to perform this task. The A* algorithm is good at solving a point-to-point shortest path

problem [47], and many state-of-the-art algorithms are extensions of it.

By using the Euclidean distance as the A* heuristic, we guarantee path optimality

within the graph. Note that as the graph is an abstraction of the environment, a shortest

path in the graph does not necessarily correspond to a shortest path in the 3D map.

Heuristics such as the placement of nodes in the middle of transitions, or the strictly

positive granularity make the path sub-optimal. Having a finer granularity or more

transition points for each transition surface could decrease slightly the length of paths

but at the expense of more compute time. Since our goal is to solve real-time pathfinding

in games, this tradeoff is not beneficial; we will explore other ways to reduce path length

in Sections 4.2 and 4.3.

One key factor to consider is that the number of nodes in the graph is proportional

to the number of cells in the environment decomposition, and the pathfinding cost (in

our case the cost of the A* algorithm) increases with the graph size. Because of that, if

we want to solve real-time pathfinding in a video game setting, we want to minimize the

number of nodes in the environment decomposition.

To find a path from a start point to a target point, we first have to insert them in the

graph. To insert a point, we find which octree cell it belongs in, then we add the node

to the graph and connect it to all transitions starting from the cell it is in. Once the path

is found and we want to connect a new pair of points, it is important to delete the old

start and target points and the edges pointing to them in the graph. Inserting a point

would require going down the octree: starting from the root, we would have to check for

every child if it contains the point, then go one level deeper in this child and repeat the

31

process until a valid cell is found. Thanks to the hierarchical indexing system detailed in

Section 3.2.2, it is instead possible to know directly in which children of a cell the point is,

which makes node insertion faster.

One last thing to discuss is the size of the NPC agent. The octree decomposition and

pathfinding presented earlier assume the agent is a zero-size dot or an object of small size

compared to the obstacles. In many use cases, however, agents can have a non-zero size

and should not partially clip through walls. One way to address this problem is during

the environment decomposition phase, by virtually expanding all obstacles to account for

the size of the agent, following the work of Lozano-Pérez and Wesley [34]. For two sets S

and S ′, the Minkowski difference of S and S ′ is

S ⊖ S ′ = {x− y|x ∈ S, y ∈ S ′}

Let O be the subset of R3 covered by obstacles and A the subset covered by the agent

when it is centered at the origin. The problem of detecting collisions between the agent

of non-zero size and O is equivalent to the one of detecting collisions between an agent of

size 0 and O ⊖ A. To prove this, let z ∈ R3.

z ∈ O⊖A ⇐⇒ ∃x ∈ O, y ∈ A, z = x−y ⇐⇒ ∃x ∈ O, y ∈ A, z+y = x ⇐⇒ (z+A)∩O ̸= ∅

In other words, z is in the expended set of obstacles O ⊖ A if and only if the agent

intersects O when it is centered in z. During the octree decomposition phase, expanding

all obstacles this way then reduces the pathfinding problem to the one with a zero-size

agent.

A more advanced way to handle non-zero sized agents is presented by Harabor and

Botea [23]. In this octree-based approach, every cell is labeled with its obstacle clearance,

defined as the cell’s minimal distance to an obstacle. These labels allow handling agents

of various sizes without additional computation, as only cells with an obstacle clearance

larger than the agent size can be considered valid.

32

4.2 Path Pruning

As explained in the last section, paths found by the A* algorithm are optimal in length in

the movement graph, but can be sub-optimal if we allow free movement in the 3D map

itself. A first approach to reduce path length is based on the triangle inequality. For three

points u, v and w, d(u,w) ≤ d(u, v)+d(v, w) where d is the Euclidean distance. This means

that the path going from u to w is always shorter than the one going first from u to v, then

from v to w. From this inequality, we gather that if we can skip intermediate waypoints

in a path while still avoiding obstacles, the path length will be shortened.

Following the idea of Yang and Sukkarieh [46], we implement a visibility-based

heuristic to prune paths. The goal is that given a set of waypoints describing a path,

we find a subset of points that gives a shorter path that still avoids obstacles.

We say that two points are visible from each other if the segment connecting them does

not intersect any obstacles. Starting from the target, we add the last node visible from it

and restart the process from this node, as described in Algorithm 3. We illustrate the

process (in a 2D environment for better readability but the same principles hold for 3D)

and describe the main steps of the algorithm in Figure 4.1. Starting from the original path

in step (a), since the second point is visible but the third one is not, we add the former to

the pruned path and restart the process with it as the new anchor in step (b). We repeat

this process in step (c) and obtain the pruned path in step (d).

We recall that two paths are in the same homotopic class if one can be smoothly

deformed to the other without touching any obstacles. One important characteristic of

this algorithm is that unlike the method we will discuss in the next section, the pruned

path can be in a different homotopic class. In Figure 4.2, the original path and the pruned

path belong in different homotopy classes. If there is a game design motivation to go

in between these obstacles, for example staying behind cover in a stealth game, the path

pruning can create a very different path and compromise certain qualities of the path.

33

Algorithm 3 Pseudocode for the path pruning algorithm
Input: A path between two points s and t (s = x0, x1, ..., xk−1, xk = t)
Output: The pruned path

Let anchor = t and prunedPath = [t]
for i decreasing from k − 1 to 0 do

if xi is visible from anchor then
Discard the node xi

else
Add the node xi+1 to prunedPath and let it be the new anchor

end if
end for
Add s to prunedPath
return prunedPath in reverse order

Figure 4.1: An example of path pruning, with the existing path in yellow and the pruned

path in green. The original path is shown in step (a). Starting from the target point t,

the second point is visible from t but the third is not, so we add the second point to the

pruned path in step b. From this new point, the next two points are visible but s is not, so

we add the point before s in step c. The resulting pruned path visible in step d skipped a

node compared to the original path and is therefore shorter.

4.3 The Funnel Algorithm

We now describe another, more involved form of path refinement, which is a 3D extension

of the funnel algorithm, a homotopic 2D path refinement algorithm. In this section, we

present one implementation of the base 2D algorithm and explain how this work can be

34

Figure 4.2: Example of the path pruning algorithm changing the homotopy class of a

path. The original path (full line) goes in between the obstacles, but the pruned path

(dotted line) goes under the obstacles.

extended to a 3D setting. We then give details about some important implementation

details.

4.3.1 Presentation of the Algorithm

The funnel algorithm, first introduced by Hershberger and Snoeyink [27], is a 2D path

refinement algorithm, which given a path in a 2D environment with obstacles and a

triangulation of the environment, finds the shortest homotopic path. In this section, we

will explain how this idea can be extended to 3 dimensions.

We recall that the homotopy class of a path P is the set of paths that can be obtained

by deforming P without intersecting any obstacles. Thus two paths are in the same

homotopy class if and only if one can be continuously deformed to the other without

intersecting any obstacles. As illustrated in Figure 4.3, the blue and green paths are in

the same class as one can be deformed into the other. The yellow path, however, is in a

different class: as it goes on the other side of the obstacle (drawn in red), there is no way

to deform it into the blue or green path without going through the obstacle.

In pathfinding applications, there are some advantages to staying in the same

homotopic class while doing path refinement. It ensures that the refined path is not

drastically different from the original path. For instance, if the original path goes a

35

Figure 4.3: Illustration of homotopy classes: the blue and green paths are in the same

homotopy class, but the yellow one is in a different class as it goes on the other side of the

obstacle.

certain way to stay close to a beneficial resource or avoid an enemy, staying in the same

homotopy class ensures this property is maintained. Being able to compute the different

homotopic classes is also relevant for visualization purposes, to illustrate the different

general routes that connect two points.

The SSF (simple stupid funnel) algorithm [35] is a simple implementation of the funnel

algorithm in 2D. It takes a path between two points in a 2D environment as input and

returns the shortest path in the same homotopic class. It uses a navigation mesh (e.g.,

triangulation) and works on the portals (edges) between adjacent partitions (triangles)

along the input path. Figure 4.4 illustrates the way the algorithm works. The intuition is

that, for a path that goes through a series of portals (edges in the 2D case), there will be 2

funnel “arms” going from the starting (anchor) point.

The funnel arms are incrementally moved to each vertex of the next portal. For each

portal, if the funnel shrinks (as in step b), the arms’ angles are updated. If a funnel arm

would broaden the funnel by going to the new portal, it is not updated. If there is a bend

that forces one funnel arm to cross the other one (such as the orange arm in step d crossing

the blue arm), we add the corner of the previous portal (the extremity of the other funnel

arm) to the refined path and restart the process from this new anchor point.

36

Figure 4.4: Illustration of the first steps of the 2D funnel algorithm. The funnel arms (the

blue and orange lines) are initialized to the first transition (dashed gray line) in step (a).

The funnel shrinks as we go through the next transition in step (b). In step (c) the arms

cross each other, making us restart from a new point in step (d). We complete the refined

path in step (e), as we reach the triangle the target is in.

To extend this algorithm to 3 dimensions, we need to shift perspective. Another way

to think of this algorithm is to see the funnel as a 2D triangle originating from the anchor

point. For each transition, we intersect the triangle formed by the edge and the anchor

point with the existing funnel. The funnel can only shrink, and if there is an edge so that

the triangle associated with it does not intersect the funnel, we restart the process from

the point of the previous edge closest to the current edge.

This idea can be extended to 3D, where the portals are the rectangular surfaces

between adjacent octree cells, and the funnel is a polyhedral cone volume (instead of

a triangle) originating from the anchor point. This cone can be seen as the field of view

(FOV) of available space for the path when viewing it from the anchor point.

37

We recall that points in the path correspond to the center of transitions (portals)

between 2 adjacent cells. For a rectangular transition T defined by the list of its vertices

x1, x2, x3, x4, we write C(anchor, T) the infinite cone starting from the anchor point and

intersecting said vertices. This forms a pyramidal cone, but in general the FOV can be a

cone formed by the anchor point and any polygonal shape.

The funnel algorithm is described in Algorithm 4. We iterate over the successive

transitions the path goes through, and narrow the FOV progressively until it no longer

intersects the cone formed by the anchor and a transition, at which point we restart the

process from a new anchor point. The target point t can also be seen as the last transition

of the path, with the exception that it has an area of 0.

This ”ideal” behavior of the algorithm is illustrated in Figure 4.5. As we will see later,

numerous corner cases can arise and must be treated separately. If the intersection is

empty, we must select a new anchor point within the intersection of the FOV and the

previous transition. To do so, we use the heuristic that it should minimize d(old anchor,

new anchor) + d(new anchor, next transition), where d is the Euclidean distance, and the

distance from a point to the next transition is defined as the distance between that point

and the closest point to it in the transition: d(x, T) = min
y∈T

d(x, y). This heuristic minimizes

the length of the sub-path (old anchor, new anchor, next transition), and provides good

results in practice.

To better understand how the funnel algorithm works, we illustrate the first steps

of the algorithm viewed from the starting point in a simple case in Figure 4.6. In this

Unity3D scene we are looking up (the white dot near the center is the sun), and the path,

represented as a red line, has to bend over a wall in the bottom right corner. This path

was computed using an octree, as explained in Section 4.1. The path crosses the yellow

transition in Step 1, and the FOV is initialized. In Steps 2, 3, and 4, we intersect the FOV

with the cyan, blue, and grey transitions, and the FOV (represented in black) shrinks at

every step. In Step 5, the path crosses the white transition, but the cone delimited by this

transition and the anchor does not intersect the FOV. The algorithm then restarts at a new

38

Algorithm 4 Pseudocode for the funnel algorithm in a 3D environment
Input: A path between two points s and t and the associated transitions T0, T1, ..., Tk = t
Output: The refined path

Let anchor = s, FOV = C(s, T0), and refinedPath = s
for 1 ≤ i ≤ k do

Compute the intersection of the current FOV and C(anchor, Ti)
if the intersection is empty then

Let anchor be the point x in FOV∩Ti−1 that minimizes the distance D(anchor, x)+
D(x, Ti), and FOV = C(x, Ti)
Add the new anchor to refinedPath

else
Let FOV be the computed intersection

end if
end for
Add t to refinedPath
return refinedPath

Figure 4.5: Two possible steps of the 3D funnel algorithm. The anchor point is the blue dot

A, and the black squares are transitions. On the left side, the FOV (dotted lines) intersects

the next transition and shrinks. On the right side, there is no intersection, so we restart

the process from a new anchor point, A’, that minimizes path distance.

anchor point (the green dot on the figure), which will be on the previous transition (the

gray one). We choose the point x to restart from in the intersection of the FOV and Tgray

so that it minimizes the distance D(anchor, x) +D(x, Twhite).

With this algorithm, we can find the shortest path within the series of octree cells

the original path goes through, even if sometimes a faster path going through another

set of cells might exist in the same homotopy class. This method thus does not strictly

39

Figure 4.6: Perspective view (from the anchor point) of the first 5 steps of the funnel

algorithm. The original path is in red, the successive transitions are represented as colored

squares and the FOV as a black polygon.

guarantee path optimality within the homotopic class, but we will see in Chapter 6 that it

still noticeably decreases path length.

Although the funnel algorithm attempts to find the shortest homotopic path, the

overall optimality of that path is limited by both how well the octree fits the terrain as

well as the relative optimality of the sequence of octree cells given by the A* search of

the movement graph (the A* search is based on portal-center to portal-center distances).

Path pruning can thus still be applied after the funnel algorithm to further improve the

path, as pruning takes a subset of the path positions and the funnel algorithm improves

the overall quality of these positions.

4.3.2 Implementation Details

In this section we will first discuss how we efficiently compute the intersection of two 3D

cones at each step of the funnel algorithm, then illustrate some of the corner cases that

can arise and how we treat them.

The FOV and the transitions can be represented as a list of 3-dimensional vectors,

which is the list of the corners of the polygon. This list and the anchor point generate a 3D

40

Algorithm 5 Pseudocode for computing the intersection of 2 convex polygons
Input: Two convex polygons P and P ′

Output: The intersection P ′′ of the two polygons
1: Let P ′′ = {}
2: for all edges (u, v) in P do
3: Let H be the half plane delimited by (u, v) where P is in
4: for all edges (u′, v′) in P ′ do
5: Let x be the intersection (if it exists) of the segment [u′, v′] and the line (u, v)
6: if u′ ∈ H and v′ ∈ H then
7: Add u′ to P ′′

8: else if u′ ∈ H and v′ /∈ H then
9: Add u′ and x to P ′′

10: else if u′ /∈ H and v′ ∈ H then
11: Add x to P ′′

12: else if u′ /∈ H and v′ /∈ H then
13: Do not add anything to P ′′

14: end if
15: end for
16: end for
17: return P ′′

cone extending from the anchor. For computing intersections we also store ”normalized”

versions of the FOV and transitions: for a point x and the anchor a, the normalized point

x̄ is

x̄ =
x− a

∥x− a∥
− a ∈ S(0, 1).

These normalized points all belong on S(0, 1) (the surface of the sphere of center 0 and

radius 1). If we consider the anchor as the origin, they correspond to the angle at which

we see the points from the anchor, which justifies our use of the term ”field of view”.

By normalizing the FOV and transitions, we essentially simplify 3D volume

computations to computations on the surface of a sphere, which allows us to use 2D

methods. We explain the computation of the intersection of 2 convex polygons in

Algorithm 5. We iterate over all edges of the first polygon P and intersect the second

polygon P ′ with the half-plane delimited by the edge and that P belongs in (this is done

in the inner loop). By successively doing this for all edges of P , we obtain the intersection

of P and P ′.

41

Figure 4.7: Computing the intersection of P = (a, b, c, d, e) and P ′ = (A1, B1, C1, D1)

(drawn in grey). We start by intersecting P ′ with the half-plane delimited by (a, b)

containing P (drawn in black) in steps (a) and (b), and repeat the process with the over

edges of P in steps (c) to (f).

The intersection process for two polygons P and P ′ is illustrated in Figure 4.7. We first

compute the intersection of P ′ and the half-plane defined by (A,B) in steps (a) and (b).

Starting from (A′, B′), since A′ /∈ H and B′ ∈ H , we add the intersection of (A,B) and

[A′, B′], A′′, to P ′′. For the next edge, since B′ ∈ H and C ′ ∈ H , we add B′. Next, C ′ ∈ H

and D′ /∈ H so we add both C ′ and D′′ to P ′′. For the last edge, since neither D′ nor A′ are

in H , we do nothing. Repeating the same process for all the half-planes defined by the

edges of P in steps (c) to (f), we obtain the intersection of P and P ′.

This algorithm for 2D convex intersection is useful since all switch cases are based on

points being inside or outside hyperplanes. As explained earlier, we deal with convex

polygons on the surface of a sphere, so even though points are constrained to a 2D space

they reside in the 3D space. Hyperplane tests still work in this scenario, and allow us to

simplify the problem of intersecting two 3D cones originating from the anchor to the one

of intersecting their polygonal bases in a 2D setting.

42

Due to the grid structure of the octree, corner cases arrive often. We recall that the FOV

as well as the cone defined by a transition are usually defined by the anchor point and 4

points forming a rectangular base, but we can account for more complex polygonal bases

with more than 4 points, or on the opposite have the ”cone” base collapse to a segment

with 2 points, or even a single point, in which case the cone is reduced to a line. We will

now detail the most common corner cases that can happen and how they are handled:

• If the anchor point is in the same plane as a rectangular transition, from the point of

view of the anchor the transition will be seen from the side and appear as a line

instead of a rectangle. In this case, the cone defined by the transition collapses

to a triangle, and we compute its intersection with the FOV by performing a

polygon/segment intersection of the two bases.

• After several steps and intersections, the base of the FOV can be reduced to a line or

even a single point. If it is a line, we compute a line/polygon intersection with the

next transition, as explained in the point above. If it is a point, the FOV is reduced

to a straight line. In this case, the next transition intersects the FOV if the FOV line

goes through it, and we simply check if the point appears inside of the transition

when viewed from the anchor (point/polygon intersection).

• The last transition in our implementation of the funnel algorithm is the target, which

we see as a transition defined by only one point, hence the cone associated with it is

a line. We handle this as explained above by doing a point/polygon intersection.

To summarize, even though various corner cases can happen, they can all be handled

by not doing the usual polygon/polygon intersection but doing segment/polygon,

point/polygon, or even segment/segment or segment/point intersection tests if multiple

corner cases happen at the same time.

43

Chapter 5

Dynamic 3D Path Finding

In this chapter, we will describe how the environment decomposition and pathfinding

techniques can be adapted to handle dynamic environments. The two main components

we use for pathfinding are the octree and the associated movement graph. One of the

main advantages of this technique is that the octree can be pre-computed, and loaded

quickly during run-time, which makes real-time pathfinding feasible. While this works

well for static environments, if the map is slightly updated or if obstacles move during

the execution the octree no longer reflects the environment faithfully. Many games can

benefit from dynamic environments, with changes as diverse as:

• Relatively small obstacles may be moving in the otherwise static level, such as

asteroids floating in space.

• Enemies or guards patrolling through the level, that can be modeled as obstacles

with a certain sphere of influence (their range) corresponding to the obstacle size.

• Drastic changes in the level layout, such as an explosion creating holes in a wall that

allow new paths.

We will now describe in detail how we can dynamically update the octree that we built

earlier to reflect these changes. In Section 5.1, we will explain the general update process

for the octree. Updating a merged octree is more challenging, as in merged octrees cells

44

no longer always have 8 children, and the hierarchy starts to lose its meaning. Although

we have to view the merged octree in a different way to update it dynamically, it is still

possible to do so as we will show in Section 5.2. We tackle the second part of the update

process, the graph update, in Section 5.3, and discuss some potential use cases of dynamic

octrees in Section 5.4.

5.1 Updating the Octree

In the entirety of this chapter, we assume that the octree and associated graph were pre-

computed, and we will describe how we can update them dynamically. Since the octree

is a hierarchical structure, most of the time a change in the environment will only affect a

small part of the octree. Because of that, we want to update the octree with local methods

as much as possible. To do so, we keep track of the position and scale of dynamic obstacles

in the level. Changes in the environment can only lead to 2 update scenarios:

• If an obstacle moves into a cell that was previously free (valid), this cell becomes

invalid. If this cell is larger than the octree granularity, we have to split the

cell further. This can potentially cause several sequential splits until the octree

granularity is reached.

• If obstacles move out of an invalid cell and it no longer contains any obstacle, it

becomes valid. In this case, it may be possible to merge octree cells that were

previously split.

One very important problem to address is pruning the octree as we update it. If a small

obstacle enters a large cell, thus making it invalid, we want to split the large cell as only

a fraction of it is actually invalid, and splitting it allows most of the cell to remain valid

and traversable. Because of that, the number of nodes quickly increases in a dynamic

environment, as large cells are repeatedly split. After a long time, the octree would lose

its edge against the voxel baseline, as all the larger cells would be split.

45

Figure 5.1: 3D drawing of an imperfect dynamic merging caused by an obstacle (red cube)

enters the cell in (x = 1, y = 0, z = 1). The cell must be split, and one possible result of

greedy merging is the three rectangular-shaped cells (blue, yellow, and green cells). The

last cell in (0, 1, 0) cannot be merged. In this scenario, cells cannot be merged anymore

without losing convexity, and this remains true even if the obstacle leaves the cell. The

parent cell thus remains split in 5 even after the obstacle is gone.

To counteract this splitting, we must implement a procedure that merges cells that

become valid back together. We first experimented with reusing the greedy merging

procedure detailed in Section 3.3. When an obstacle moves out of a cell and it becomes

valid, it can often be merged with its valid neighbors to form a larger cell. Unfortunately,

even after trying various heuristics for the greedy merging, this did not give satisfactory

results. Because the merging does not follow a specific rule, greedy merging was unable

to restore cells to their original structure. We give an example of this in Figure 5.1: as

an obstacle causes a split in the octree, siblings can be merged together imperfectly in

the split cell. Even if the obstacle leaves the cell, it may not be able to be merged back

to its original state, as in this instance there is no way to merge cells two by two while

maintaining convexity.

If an obstacle goes through a large cell, causing it to be split, and then exits it, greedy

merging would reduce the number of nodes after the obstacle exited the cell but be unable

to restore the one large cell. There remain some ”artifacts” of the passage of the obstacle.

When looking at the octree as a whole, as obstacles move around, the number of valid cells

46

Figure 5.2: Illustration of ”artifacts” appearing in the octree. After the initial computation

(left side), if the octree is updated dynamically after a while cells are inefficiently merged,

and their total number increases.

should remain approximately constant, but because of these artifacts not all splits can be

repaired and this number keeps increasing as time passes. As illustrated in Figure 5.2,

where an obstacle was moving freely through the level for some time, the original octree

structure including the very large open cell at the top of the level is quickly lost, resulting

in a larger number of cells and a less efficient octree.

A second approach that yielded much better results was repairing cells. As a cell is

updated and becomes valid, if all of its ”siblings” (the children of the cell’s parent) are

valid, it is possible to repair the split parent by merging the 8 valid children together. If

the parent’s siblings are also all valid, we can in turn repair its parent, and so on, going as

high as possible in the hierarchy. This solves the previous problem of one small obstacle

entering and then leaving a large cell: no matter how much it was split, after the obstacle

has exited the cell, all of the split cells can be repaired until the large cell is restored.

The scenario presented in Figure 5.1 can no longer happen: instead in this example the

obstacle would cause the split and the 7 valid cells would not be merged, but as soon as

the obstacle leaves the cell the parent cell is restored.

47

During all the dynamic operations, we also update the adjacency lists of all the affected

cells in the same way that we did during the building of the octree. For example, when

restoring a parent by merging its 8 children, the parent’s list is the set union of all the

children’s lists.

We will compare these two update policies in Section 6.5, and Figure 6.13 will confirm

experimentally a gradual increase in the number of valid cells in the octree when using

the greedy merging update method. On the other hand, repairing parent cells when all of

their children are valid leads to a stable number of cells in the octree. We therefore choose

this repair policy to update dynamically the octree.

5.2 Updating the Merged Octree

In this section, we will explain in greater detail the differences between a regular and a

merged octree and why updating it dynamically requires more attention. First of all, as

we will see in Chapter 6, a merged octree contains significantly fewer cells and enables

faster pathfinding than a regular one. Because of this, in a real-time game setting, we

recommend the use of merged octrees. It is therefore important to describe the subtle

differences in the update procedure. Note that the general update idea still holds -

keeping track of the position of dynamic obstacles, changing cells from valid to invalid or

vice-versa, splitting them, and merging them.

The main differences that merging an octree as detailed in Section 3.3 makes is that the

octree hierarchy loses meaning and that cells are not cubic anymore. As cells are merged,

parents no longer necessarily have 8 children, and we lose the relationship between the

depth of a cell and its size. If a small cell is merged multiple times with its neighbors

for instance, it will end up being a large cell even though it can be deep in the tree. On

top of that, cells may not be cubic and can end up being rectangular. For these reasons,

we can no longer use the hierarchical indexing described in Section 3.2.2, and can no

longer assume the fact that a parent has exactly 8 children. We can thus no longer test the

48

adjacency of two cells simply by looking at their hierarchical index, we instead have to

test if the two cells share a contact surface of strictly positive area (as in the case where

they share just an edge or a corner they are not considered neighbors).

In this setting, it makes more sense to view the finalized octree (after building but

before any dynamical updates) as a set of convex cells covering the space rather than a

hierarchical structure. To update it dynamically, we can then split these cells or restore

them, as we did in the last section, although the splitting procedure is slightly different.

Because we save the original octree and split/repair cells according to this original

structure, the octree remains stable with updates, and its general shape does not change

too drastically even after many changes have occurred.

Merged octree cells are not necessarily cubic, but thanks to the minimum cell size

(granularity), they can be decomposed into cubes of the smallest size. In other words,

if we assume that the granularity is 1, cells in a merged octree can be rectangular, but

their length, width, and height will be integers (multiples of 1). With this in mind,

when dynamical updates cause a split in elongated cells, splitting them in 8 could create

increasingly elongated cells and odd shapes. Instead, if a rectangular cell must be split, we

split it into evenly-sized cubes, of size the greatest common divisor (GCD) of the parent

cell’s length, height, and width. This minimizes the number of cubes created by splitting

the cell. For example, with that granularity of 1, if a rectangular cell of size 4x1x1 must be

split, this allows us to split it into 4 1x1x1 cubes instead of 8 2x0.5x0.5 rectangles, and not

have children with one of their dimensions smaller than the granularity.

5.3 Updating the Navigation Graph

After the octree is updated, we must reflect these changes in the movement graph to

finalize the update process. One very simple way to do this would be to delete the old

graph and recompute the new graph from scratch. This approach, however, especially

on larger maps with a large number of octree cells, quickly becomes inefficient and slow.

49

Because updates in the octree are very localized (an obstacle moving will only affect a few

cells at a time for instance), the number of octree cells that are updated at one moment

in time is actually much smaller than the total number of cells in the octree. To be more

efficient, we instead devise local graph update methods, that update only the nodes in

the graph affected by changes in the octree.

The two types of graph updates needed are the creation and deletion of transition

points. When creating a transition point between two cells, we also have to connect it

to all of the other transition points starting from one of the two cells. Likewise, when

deleting a transition point, it is important to delete all the edges pointing to it. With these

two types of updates in mind, after each update in the octree, we update the surrounding

transitions accordingly:

• If a cell becomes invalid, we delete all transitions that started from this cell.

• If a cell was invalid and becomes valid, we create transition points between this cell

and all of its valid neighbors.

• When splitting a cell, we delete all transitions that started from this cell and create

the necessary transitions between the children and the neighbors, and between the

children themselves.

• When restoring a parent, we delete all the transitions involving its children and add

connections with all of the parent’s neighbors.

With these rules in mind, we successfully reduce the number of operations on graph

nodes and edges required for a given octree update, making the graph update process

faster, as we will show in Section 6.5.

5.4 Potential Use Cases

We explained in detail the dynamic update process in the last three sections, let us now

discuss some of its potential applications. After giving some context, we will discuss

50

a variety of settings where dynamic pathfinding would be interesting and link them

to potential game scenarios. We then explain how dynamic octrees can be used for

path replanning, and propose compromises that can be made to improve performance

at runtime.

While this method can work in any dynamic setting, the frequency and compute time

of updates will increase with the number of moving obstacles, as well as the time needed

to track the movement of all the obstacles and detect changes that they would cause in

the octree. This limitation on the number of dynamic obstacles that can be tracked can be

interpreted in two ways:

• If we aim at modeling a full 3D dynamic environment where every part of the

environment can move, there must be a compromise between the number of

obstacles and the compute time and frequency desired for dynamical updates.

• On the other hand, this compromise can be exploited by creating a large

environment where most of the obstacles are static, and only a fraction of them are

moving. By only considering a reduced number of obstacles for dynamical updates,

such scenarios would allow for dynamic elements even in large-scale maps.

Following this second idea, having a small number of moving obstacles in a mostly static

level makes sense from a game design perspective. These moving obstacles could be

physical obstacles moving around, or enemies that the agent should keep away from.

These moving obstacles can behave in many ways, in this paragraph we will give a few

examples. These examples will be useful for designing test cases to evaluate the behavior

and performance of our work, and linking them to potential game applications helps

provide more context. Obstacles can have a linear motion with a random but constant

velocity, mimicking asteroids floating in space for instance, and can disappear as they

exit the map or bounce on its edges.

Although our current implementation does not allow to easily separate static and

dynamic obstacles, in the future we aim at clearly differentiating them. This would allow

51

us to scale our approach to very large maps with a few moving obstacles. A prime setting

to do so would be adding obstacles with a constant velocity to the Warframe maps to

simulate floating ship debris and asteroids, as these maps take place in space and involve

flying.

To imitate flying enemies, such as the flying enemies present in Elex 2, we can also have

obstacles behave with erratic movement by going to a random position in the level and

orbiting for a while around it before going to another position. This creates unpredictable

movement for the player where enemies patrol by going to a zone, searching around this

zone and moving on. In order to recreate more realistic movement in the level, it is also

possible for enemies to move by following the octree’s navigation graph and the path it

gives between two locations. This creates more interesting enemy movement, where they

move through the parts of the level a player would go through.

Dynamic octrees can also be used for path replanning. From the perspective of the

moving agent (that can be an NPC companion or a help to the player that shows him the

recommended path), dynamical pathfinding can be used to maintain a path between two

fixed points in a dynamic environment, which can be useful if traveling along this path

is instantaneous or the environment does not change often. A more useful application is

that of computing a path, moving along it, and rerouting if an obstacle gets in the way.

Before the agent starts moving on the path, we compute the list of cells that the path goes

through and their distance along the path. As the agent starts moving along the path,

if an obstacle intersects a cell ahead of the agent, we update the octree and movement

graph, and recompute the path with the new starting point being the present position of

the agent. In doing so, the agent will deviate from its initial path and successfully avoid

the obstacle. This ”just-in-time” approach is commonly used as a replanning method in

game contexts to handle dynamic changes in agent planning.

To conclude this chapter, we propose a few compromises that can be made to this

approach to improve performance. In order to improve the performance at runtime, we

want to reduce the number of updates that are made. This can be achieved in a variety of

52

ways. First of all, since it is a safe assumption that obstacles should move continuously

at a slow or medium speed, any given obstacle will only move slightly between two

frames. For this reason, keeping track of the obstacles’ movement and updating the

octree accordingly can be made only once every few frames instead of every frame. This

naturally creates a compromise between the update time cost (averaged over time) and

the ”reactivity” to changes to the environment.

Another consideration that can be made is that, in any large level, if we compute and

want to update a path between two points, most of the changes to the environment will

occur in regions that are very far from the path, and will not affect the path in any way

thanks to the hierarchical nature of the octree. A second compromise that can be made is

that of updating the octree only when it is necessary, meaning when an obstacle moves

in the way of the previously computed path. To do so, we keep track of the potential

changes that should be made, such as the cells that should become valid or invalid, and

only when one of the cells the path goes through is affected, we apply all of these changes.

The advantage of this method is that most changes will cancel each other out over time:

for example, if an obstacle enters a cell far from the path, the cell should become invalid,

but after the obstacle has exited the cell, this change is not necessary anymore. With this

”last moment” update method, even if the octree has not been updated for a long time,

the number of changes that will actually be made when we update it remains reasonable.

This makes updates a little bit more expensive than updating the octree as soon as any

part of it changes, but since updates occur far less frequently the update cost smoothed

over time is greatly reduced.

53

Chapter 6

Experiments and Results

In this chapter, we will evaluate our work in a variety of scenarios and assess the impact of

every refinement we made to the basic octree algorithm. The general approach we used

to evaluate 3D pathfinding algorithms is the same throughout this chapter. We follow

the same idea as existing 3D pathfinding benchmarks ([10], [38]): we create several 3D

environments, and for each one of these maps generate a large number of ”test scenarios”

by randomly sampling pairs of points in the walkable space of the level. These scenarios

consist of a start and a target point, and the task is finding the shortest path between

them. By testing different algorithms on the same scenarios, it is possible to compare

their performance.

We are mainly interested in 2 factors in our experiments. Of course, the length of the

path connecting two given points is important, as finding exact shortest paths in 3D is

NP-hard [11] and although some compromises can be made, it is desirable to find a path

with a length close to the optimal one. The other deciding factor, potentially even more

important, is the compute time. Because we are interested in 3D pathfinding in video

games, queries will be made in real-time and it is essential for a smooth player experience

that finding a path is as fast as possible. Games can ”cheat” and hide some compute time

in start-up animations for example, but pathfinding costs should not exceed a second,

and ideally should remain in the hundreds or tens of milliseconds.

54

We will first give visualizations of some important aspects of our work in Section 6.1.

We include a brief presentation of the different scenarios we will test our work on in

Section 6.2. In Section 6.3, we will compare the voxel baseline, the regular octree, and

the merged octree on a variety of small, handmade maps. This comparison will establish

that merged octrees are by far the fastest pathfinding method of the three. To provide

results on more difficult scenarios, we use the more challenging Warframe dataset [10]

and its extension [38], and report our findings in Section 6.4. These datasets feature much

larger maps and complex obstacles in a variety of settings that can be linked to real-

world applications. We also include a comparison of our work and what we believe is the

state-of-the-art 3D pathfinding method by Nobes et al. [37]. Finally, we will evaluate the

performance of our dynamic octree update method in Section 6.5.

All experiments were done using Unity3D v.2021.3.13f1 on a medium-range laptop

(Intel Core i7-12700H with a 2.30 GHz clock speed and 16 GB of RAM). This setting

is interesting as it corresponds to the real use case for our work. Unity is one of the

largest game engines in the world, and since people tend to play games on a personal

machine rather than a supercomputer, our results show what the expected performance

in an actual video game would look like.

6.1 Visualisation of the Results

To illustrate the octree decomposition and how merging affects the structure of the octree,

a visualization of a finished octree in its regular and merged version on a small handmade

map can be found in Figure 6.1. It is clear that pruning the octree greatly reduces the

number of cells.

The number of valid cells in the environment decomposition is crucial, as it is

proportional to the number of nodes in the movement graph and therefore is the main

cost of the pathfinding using A*. To assess in greater detail the impact of merging on the

number of cells and compare it with the voxel baseline, we report the number of valid

55

Figure 6.1: Example of an Octree decomposition before (left side) and after (right side)

merging. Invalid cells are represented in red, and the black frames indicate the location

of valid octree leaves.

Table 6.1: Comparison of the number of valid cells across several maps using either the

voxel baseline, the regular, or merged octree.

Map name Voxel Unmerged octree Merged octree
Building 1 28,190 4,226 303
Building 2 28,628 3,975 147
Building 3 29,816 4,243 182

Cave 29,510 8,190 316
Industrial 31,833 1,671 157

Zigzag 31,488 2,130 52
Complex (Warframe) 8.3M 41,385 10,552

cells on several maps in Table 6.1. On the small hand-made maps (namely the variants of

Building, Cave, Industrial, and Zigzag), we can see that even the unmerged octree is able

to represent the environment using far fewer nodes than the voxel baseline, since it only

needs a few cells to represent large open spaces. Our merging strategy further reduces the

number of valid cells in the octree. We also included the theoretical number of voxels in

the smallest map from the Warframe dataset, the Complex map. It would require more than

8 million voxels, resulting in a huge graph and impractical pathfinding compute times.

The octree and especially the merged version on the other hand only need a relatively

small number of cells. For this reason, for all of our experiments on larger maps, we only

use merged octrees.

56

Figure 6.2: Shortest path between two points found using the octree structure (red), after

applying the funnel algorithm (yellow), and after funnel and path pruning (green).

We illustrate how path refinement works in Figure 6.2. In this example, we use an

octree to find a path between the start (green sphere) and the target point (blue point) that

avoids stalactites in a cave-like environment. The red path is the ”default” path found by

executing the A* algorithm on the movement graph, but because nodes are always at the

center of the transitions between cells, there can be some superfluous movement. The

yellow path shows the result of the funnel algorithm, which makes the path more direct.

Path pruning can then be applied to make the path even shorter, as shown with the green

path.

57

6.2 Overview of the 3D Benchmarks

For the rest of this chapter we perform experiments on three datasets: a handmade dataset

comprising smaller maps representing diverse scenarios, the Warframe dataset published

by Brewer and Sturtevant [10], and the newer 3D benchmark by Nobes et al. [38].

We started by designing different test scenarios to test our pathfinding algorithms, we

provide snapshots of these maps in Figure 6.3. The map Zigzag consists of 3 obstacles that

test the ability to weave between obstacles. Building 1, Building 2, and Building 3 are

multi-story buildings with holes in the walls and floors that create interesting traversal

possibilities. Cave and Industrial are maps that have complex structures that a game

with full 3-dimensional movement could have, namely a cave interior with protruding

rock formations and an industrial complex with buildings, a bridge, and other complex

structures. All of these maps are much smaller than the other datasets, but allow us to

compare the voxel baseline and the unmerged and merged octree in simple scenarios.

For each of these maps, we sampled pairs of start/target points to test our pathfinding

algorithm on. After discarding pairs of points that could not be connected by any path

(this can happen if a point is inside an obstacle or if the two points are unreachable from

each other), we obtain 10,000 pairs of points. Because results, especially compute time,

tend to vary drastically with path length, we bucketed these points according to path

length, splitting them into 10 evenly-sized buckets.

The Warframe dataset [10] is a recreation of maps from the space combat game

Warframe, published by Digital Extremes. Each map is represented as a list of occupied

voxels (obstacles) in a 3D grid. These maps are much larger, ranging from a few hundred

to more than a thousand units long, high, and wide, and can contain hundreds of

thousands or millions of occupied voxels. These maps are designed by a series of letters

(e.g., A, BA, BB, etc.) and a number. Maps with the same letter and different numbers are

very similar to each other, and therefore due to the long compute times to run experiments

on a single map, we will only perform experiments on one map of each series, resulting

58

Figure 6.3: Snapshot of the different scenarios, from top left to bottom right: Zigzag,

Building 1, Building 2, Building 3, Cave, Industrial.

in a total of 19 maps and 190,000 pathfinding instances. We provide a snapshot of some

of these maps in Figure 6.4. Most maps consist of asteroids and debris scattered over

a large open space, with two notable exceptions. The Complex map is one large and

hollow broken spaceship, and is therefore interesting thanks to its different structure, but

is smaller than the other maps, resulting in faster compute times. The C named maps on

the other hand are much larger than other maps, and are always omitted in other work

due to their size and unpractical compute times.

Each map comes with 10,000 pairs of points. These points are sampled to be very

close to obstacles (their distance to the nearest obstacle is always less than 5). This forces

interesting paths, because if they were sampled randomly, considering maps contain very

large empty spaces, in most cases they could be connected by a straight line, resulting in

trivial solutions.

Following the same methodology as for the Warframe dataset, Nobes et al. created

another 3D dataset [38], motivated by potential pathfinding applications. The Descent

59

Figure 6.4: Snapshot of some Warframe maps. Some, like Complex (left side), feature

broken, hollow spaceships, while others like Full4 (right side) consist of many asteroids

and debris floating in space.

Figure 6.5: Snapshots of one map of the Descent (left), Plant (middle), and Sandstone (right,

snapshot provided by Nobes et al. [38]) datasets.

maps are a recreation of levels from the FPS game Descent [1] developed by Parallax

Software, featuring rooms and hallways twisting in a 3D space. The Plant dataset is

inspired by real-life industrial plants. They feature complex structures and tasks such

as optimal pipe routing deal with similar environments. The Sandstone dataset is inspired

by porosity scans of real-life sandstone samples and consists of large cubes filled with

small holes and crevasses. We give an example for each of these datasets in Figure 6.5

(with the snapshot of the Sandstone dataset provided by Nobes et al., for computational

reasons we were not able to provide our own visualization).

All maps in the Plant and Descent datasets are mostly similar in structure and size.

The Sandstone dataset maps however, even if they are small (they are 400x400x400 cubes,

60

while some Warframe maps reach 1000 units), have an extremely high concentration of

obstacles. To put it in perspective, the map C1 from the Warframe dataset requires 2.5M

voxels to represent all its obstacles, and maps in the Sandstone dataset require more than

12M voxels. Storing all these voxels in memory and iterating over them for all operations

in the building of the octree is not feasible, and this shows a limit in this type of voxel

representation for benchmarks. Future work could improve the efficiency of obstacle

description; for example, our work handles axis-aligned bounding boxes of arbitrary

size, and a much smaller number of AABBs would be required to describe the obstacles.

We thus exclude Sandstone maps from our experiments. The Descent and Plant datasets

respectively contain 31 and 5 maps, and each map in this benchmark comes with 2,000

test points.

6.3 Experiments on the Handmade Dataset

We first compare the different approaches we presented in the previous chapters on our

smaller, handmade maps. As explained earlier, for each map we generate 10,000 pairs

of points and test different pathfinding algorithm variants on the same set of points.

Because results, especially compute time, vary significantly with the path length, to better

understand the impact of path length on performance, we split these 10,000 pairs of points

into evenly-sized buckets according to the path length. For each pair of points, we ran

a fast merged octree pathfinding to obtain an approximation of the shortest path length

between these two points, and assign the pair to the corresponding interval.

To start, we compare the compute times of the voxel baseline, the regular octree, and

the merged octree. To ensure a fair comparison, the voxel grid size corresponds to the

octree granularity (minimum cell size). All maps have been created to have the same

size (20x20x20 units), and we used a granularity of 0.625 for these experiments, which

corresponds to an octree depth of 6. We will discuss the impact of granularity more later

in this chapter.

61

We report the results across all maps in Figure 6.6. The same trends appear across all

maps: the voxel baseline is consistently much more expensive than both the regular and

merged octree. Even on these small maps, voxel compute times can reach several dozens

of milliseconds, except for the Industrial map, where compute times reach hundreds of

milliseconds. The regular octree, however, is viable: compute time increases with path

length, but on average stays below 10 milliseconds. The merged octree is significantly

faster than both alternatives, with average costs never exceeding a few milliseconds.

These results show that the addition of merging the regular octree significantly reduces

compute times. One last thing to discuss is the increase in compute times with the voxel

baseline that can be seen for paths between 10 and 15 units long. We attribute this to

the level geometry: short paths are of course easier to compute as the A* algorithm will

explore fewer cells, and long paths tend to be in large open parts of the maps. The

characteristic length in between (about half of the map size) could correspond to the

typical length of more challenging paths that weave in between obstacles.

The other important metric of pathfinding algorithms is the path length. We compare

the average path length of the voxel baseline, the regular and merged octree, as well as

with the addition of the path refinement algorithms, namely the path pruning algorithm

presented in Section 4.2 and the 3D funnel algorithm presented in Section 4.3. All of

these results can be found in Table 6.2, and several conclusions can be drawn. Across

most maps, the average path length using a voxel grid is higher, because in this baseline

we only allow movement in cardinal and diagonal directions, whereas especially with

path refinement more precise movement in all directions is possible. Without any form

of path refinement, merged octrees lead to slightly longer paths than regular octrees, as

cells are larger and the reduced navigation graph contains fewer nodes, forcing paths to

take some detours to travel along the graph. This difference can be offset by using path

refinement. The funnel algorithm slightly reduces average path length, while maintaining

the homotopy class of a path. Path pruning reduces path length even more, and the best

results are obtained by combining both algorithms (i.e., first running the funnel algorithm

62

Figure 6.6: Compute time comparison of the voxel baseline, the regular, and the merged

octree on all handmade maps. For better readability, the y axis is a logarithmic scale of

the compute time.

and then applying path pruning to the obtained path), leading to a 5 to 10% decrease in

the average path length.

63

Table 6.2: Comparison of the path length of the voxel baseline, the regular and merged

octree on all handmade maps.

Pathfinding
method

Building 1 Building 2 Building 3 Cave Industrial Zigzag

Voxel 11.82 13.76 14.06 13.52 13.38 14.70
Octree 12.58 13.42 13.70 12.82 12.30 13.79
Octree + pruning 11.68 12.32 12.33 11.84 11.28 12.65
Octree + funnel 11.77 12.45 12.48 12.02 11.42 12.80
Octree + pruning
+ funnel

11.61 12.30 12.29 11.85 11.27 12.64

Merged octree 12.51 13.09 14.04 13.71 12.23 16.61
Merged octree +
pruning

11.97 12.56 12.55 12.20 11.33 13.88

Merged octree +
funnel

11.79 12.43 12.64 12.31 11.43 13.63

Merged octree +
pruning + funnel

11.73 12.37 12.41 12.06 11.30 13.42

Let us now discuss the variance of the results obtained. For all the experiments in this

section and in Section 6.4, the observed variance is similar. By sampling a large number of

pairs of points and especially by bucketing these points according to path length, we aim

to reduce the variance. Within a single bucket, the variance in path length is very small.

When it comes to compute time, the variance is larger. The first and third quartiles for a

given bucket are generally 30% lower and higher than the median. Even if computing the

same path over and over would give nearly identical compute times, with a single bucket,

paths of similar length can be of varying complexity, with some paths being straight lines

in large open spaces and others weaving between obstacles.

To fully assess the performance of our path refinement algorithms, it is also important

to look at how costly they are. We give detailed results of the total pathfinding time of the

regular and merged octrees on all maps in Figure 6.7, using one of: no refinement, path

pruning, the funnel algorithm, or a combination of funnel and pruning.

Once again, similar trends appear on most maps. As expected, the compute time

increases with the path length, as longer and more complex paths will result in more

64

nodes explored by the A* algorithm and more involved path refinement. As previously

observed, using merged octrees is consistently faster than using regular octrees. This

mostly affects the A* cost, however, and using path refinements adds a similar cost for

both approaches. We observe that this cost is lowest for the funnel refinement, and

increases if we use a combination of pruning and funnel refinement, with path pruning

alone being the most expensive. While this may seem surprising, path pruning is simple

but expensive, as the visibility checks used in the algorithm are more costly than the

geometric operations of the funnel algorithm. The cost of path pruning scales with the

number of transitions (points) in the path, and since the funnel algorithm significantly

reduces this number (only ”anchor” points are kept), pruning the path obtained after

running the funnel algorithm is cheaper.

In general, on these small maps, path refinement is a significant part of the total

pathfinding cost. On larger maps, however, such as the ones in the Warframe benchmark,

the fraction of pathfinding cost due to path refinement decreases, going to less than

10% of the total cost on average. One possible explanation for this tendency is that

the A* algorithm’s cost increases with the graph size, but both the pruning and funnel

algorithm iterate over the transitions along the path. We expect their cost to increase

with the number of intermediate points in the path, and even in very large maps, this

number does not increase too much. As we will show in Figure 6.9, on a larger map (the

map Complex from the Warframe dataset), path refinement, especially using the funnel

approach, represents a mall fraction of the total pathfinding cost.

Finally, we analyze the impact of granularity (or the voxel grid size for the baseline) in

Figure 6.8. We compare the baseline, the regular and the merged octree on the Cave map

(that fits in a 20x20x20 cube) using a granularity of 0.3125 (fine-grained), 0.625 (normal), or

1.25 (coarse). The voxel approach quickly becomes infeasible, as average compute times

exceed 200 milliseconds when using the fine-grained grid size. The compute time increase

with a regular octree is much more manageable, and once again merged octrees give us

the best results. Compute time only slightly increases with the granularity in merged

65

Figure 6.7: Compute time comparison of the octree and merged octree on all maps using

different forms of path refinement.

octrees. Even if the potential level of detail of the octree gets higher, merging cells will

greatly reduce their number, and this reduction is mostly limited by the complexity of the

66

Figure 6.8: Average compute time for the voxel (left), regular (middle), and merged octree

(right) on the Cave map, using a coarse (1.25), regular (0.625) and fine-grained (0.3125)

granularity.

map (i.e., how detailed the obstacles are for a map of the same size, or how large a map

is for obstacles typically of the same size).

To summarize our findings in this section, studying the baseline shows that naive

voxel grids are not suitable for 3D pathfinding. Octrees allow for faster pathfinding,

and our merging algorithm vastly improves performance, at the cost of a small increase

in path length. This increase can be offset for the most part by using path refinement

methods. If there is a special motivation to respect homotopy classes, the funnel

algorithm is relatively cheap and reduces path length, and if the main concern is path

length, combining path pruning and the funnel algorithm gives the best results. On larger

maps especially, path pruning only represents a fraction of the total pathfinding cost, with

the main cost originating from the A* algorithm. From these results, we gather that using

merged octrees along with both path pruning and the funnel algorithm gives the best

results, and it is this approach that we will evaluate on larger maps in the rest of this

chapter.

6.4 Large-Scale Experiments

To test our approach in more realistic settings, we will now run experiments on the

Warframe dataset and the analogous datasets created by Nobes et al. Because of the long

67

runtime of each scenario, we limit our experiments to one map in each category of the

Warframe dataset, since some maps are just variants of other ones. As explained in

Section 6.2, we also exclude the C-named maps in the Warframe dataset as well as maps

from the Sandstone dataset. To improve readability and because maps from the same

dataset share similar structures, we report experiments mainly on the Warframe dataset,

because this benchmark is the most explored in other works, as well as a few maps from

the Descent and Plant dataset [38]. With this in mind, we obtain 22 maps: 19 for the

Warframe dataset, 1 for the Descent dataset, and 2 for the Plant dataset. Each of these maps

comes with 10,000 pairs of test points for the Warframe dataset and 2,000 for the other two.

Because obstacles (voxels) are described as integer coordinates and have a size of

1x1x1, and that test points are sampled to be close to obstacles, the octree must be created

with a granularity of 1 to exactly match the obstacles and avoid scenarios where a test

point would be in an invalid cell even if it is not in an obstacle. For this reason, the octree

size must be a power of 2 and large enough to include all obstacles. For most maps it is

either 512x512x512 or 1024x1024x1024.

We will first examine the impact of using path refinement on the total compute time

to justify the previous claim that, on larger maps, path refinement only adds a small

cost compared to the A* compute time. The results for three maps - a small and a large

one from the Warframe dataset, as well as one from the Plant dataset - can be found in

Figure 6.9. The results on path length are similar to the ones on the handmade dataset:

the average path length is reduced for all paths regardless of their length. Unlike on

small maps, path refinement is now much cheaper compared to the A* cost. Using path

pruning alone adds a significant cost, but that is because our implementation of visibility

checks is not well optimized when there is a very large number of obstacles. In general,

the combination of path pruning and the funnel algorithm once again gives the best path

length with a small compute time cost.

We now compare our best-performing approach (merged octree, path pruning and

the funnel algorithm) to the 3D JPS algorithm [37] on the 22 maps described above. The

68

Figure 6.9: Evolution of the pathfinding times (left side) and path length (right side) using

merged octrees and different forms of path refinement on the Complex, plant02 and BA1

maps.

median and average compute times on all maps can be found in Figure 6.11. The results

obtained vary with the maps, mainly because of their size and the number of obstacles

they contain. On most maps, the average compute time remains under 150 milliseconds,

which remains feasible for real-time applications. On the level01 map from the Descent

dataset, compute times are much larger and reach almost half a second. This is because

paths are much longer than on other maps (more than 700 on average compared to less

69

than 300 for other maps), and the environments in this dataset consist of rooms and

twisting hallways that require many octree cells to represent. The A* algorithm opens

on average 90,000 nodes on the level01 map while this average is closer to 10,000 on other

maps. An approach based on sparser representations such as medial skeletons [43] would

be much more adapted to this kind of environment.

The JPS algorithm is faster on most maps. We can compare these average times in

terms of speed-up factor of JPS over our work, and the geometric mean over all 22 maps

is 2.29 for average and 2.71 for median times. We will now give more details about these

results to gain more insight into the behavior of these two algorithms.

The median times are much lower than the average times, meaning that the compute

time distribution is skewed to the right. Certain path instances are very long or complex

and can cause very high compute times. If we look at maximum compute times, certain

instances can take over a second to solve with octrees, and up to 10 seconds with JPS. We

will investigate in greater detail the impact of path length on compute times in Figure 6.12,

and establish that our work is faster on longer instances.

The comparison of the average path length obtained by JPS and the octree can be

found in Figure 6.11. Our work consistently computes shorter paths, with the path length

over all maps being 5% lower.

As we saw on the handmade dataset, the pathfinding time can vary significantly with

path length. We order the data points by path length and report the average path length

for each 10-percentile on two maps from the Warframe dataset in Figure 6.12. The octree is

on average two times faster than JPS on the BA1 map and two times slower on the Full4

map, but both maps show the same trend. As expected, pathfinding times increase with

path length, and this increase is much less noticeable with merged octrees than with JPS.

On the longest instances especially (paths in the last quartile), compute times significantly

increase with JPS, which is not the case with octrees.

To conclude, our work produces very consistent results, regardless of the path length

or the environment, and finds paths in a few hundred or milliseconds, which is viable

70

Figure 6.10: Average and median compute time of merged octrees and 3D JPS on the 3D

benchmarks Warframe, Plant, and Descent.

for real-time video game applications. While the 3D JPS algorithm is faster on average,

merged octrees and the addition of path refinement produce shorter paths and are faster

in certain scenarios, mainly for finding longer paths.

71

Figure 6.11: Average path length of merged octrees and 3D JPS on the 3D benchmarks.

6.5 Experiments on the Dynamic Octree

To conclude our experiments, we will now analyze the performance of the dynamic

update methods presented in Chapter 5. Whenever changes occur in the environment,

the cost of updating the path to take these changes into account can be split into three

parts: updating the octree, updating the navigation graph, and recomputing the path on

the updated graph.

To analyze the distribution of cost between these three categories, we introduce

randomly moving obstacles in maps from our handmade dataset, and average the

compute times over 1,000 updates. We present our results on the Industrial map, using

an octree granularity of 0.625, in Table 6.3. We try to maintain a path between two static

points in the level while an obstacle moves randomly. The obstacle goes to a random

location in the level by following a path in the octree, and then moves to a new location

and so on, to roughly imitate the behavior of an enemy patrolling through the level. The

first thing to notice is that the average update time is a few milliseconds, which is the

same order of magnitude as the pathfinding time. With this result and the fact that the

72

Figure 6.12: Evolution of the compute time with path length on the BA1 and Full4 maps.

octree does not need to be updated every frame in mind, we gather that real-time updates

to the octree in order to achieve pathfinding in dynamic environments are feasible.

The cost distribution between the different aspects of the updates is also interesting. If

we update the navigation graph by deleting the old one and recomputing it anew, it adds

a cost similar to the one of updating the octree. Unlike the cost of local updates, the cost of

recomputing the entire graph will also increase with the map size and prevent scalability.

Moreover, recomputing the graph at every update implies allocating and de-allocating a

73

Table 6.3: Average cost of the octree update, graph update, and path recomputing in

milliseconds over 1,000 updates on the Industrial map, using either regular or merged

octrees, and locally updating or recomputing the whole navigation graph.

Update method Octree
update

time

Graph
update

time

Path
recomputing

time

Total time

Octree + graph
building

1.36 0.92 1.82 4.10

Octree + local graph
update

0.22 0.03 1.26 1.51

Merged octree +
graph building

0.44 0.34 0.72 1.50

Merged octree + local
graph update

0.39 0.03 0.55 0.97

lot of memory, and after some time has passed this causes severe lag in the simulation.

Locally updating the graph eliminates all of these problems.

If we compare updating a regular or a merged octree, as expected the path

recomputing time decreases when using merged octrees. Updating the octree is slightly

more expensive, because as we mentioned in Section 5.2 the process is a bit more complex,

but overall the total update cost remains cheaper when using merged octrees. The

non-merged octree update cost while recomputing the graph is more expensive but

that is because of the memory allocation issue previously mentioned severely affecting

performance.

In Section 5.1, we presented two heuristics for pruning the octree as we dynamically

update it: greedily merging cells like when building the octree for the first time, or

repairing parent cells if all of their children have become valid. We compare those two

heuristics for updating the octree in Figure 6.13. As time passes, with the greedy merging

heuristic, more and more cells are split and unable to be merged back together, leading to

a total number of cells even higher than an unmerged octree and comparable to the voxel

baseline. The cell-repairing approach on the other hand leads to a stable number of valid

cells and can be used sustainably.

74

Figure 6.13: Evolution of the number of valid cells as the octree is updated with the

greedy merge strategy (orange) and the repairing cells strategy (blue). The number of

valid cells in the unmerged octree prior to any updates and the number of nodes in the

voxel baseline are also indicated for comparison.

Finally, we described compromises that could be made to update the octree less often

in Section 5.4. The first compromise that can be made is updating the octree every n

frames instead of every frame. This naturally will reduce the update cost averaged over

time, but by doing so some important changes in the environment could be detected late.

The choice of update frequency will then depend on the type of game, how frequent

changes in the environment are, and how responsive to changes the pathfinding must be.

The other compromise that can be made is only updating the octree when changes

occur that would affect the computed path, and only then updating the octree and

replanning the path. With this ”last moment” update method, we can ignore changes

75

Table 6.4: Update frequency and average update time with the last-moment update

policy versus updating the octree as soon as it changes.

Always update Last-moment update
Update frequency 56 updates/second 0.6 updates/second
Octree update time
(ms)

0.47 4.81

Graph update time
(ms)

0.03 0.03

Path recomputing
time (ms)

0.56 0.6

Total update time
(ms)

1.17 5.44

Amortized update
cost per second (ms)

65.5 3.26

that happen far away from the computed path and only update the path when necessary.

To evaluate the impact of this update policy, we add three randomly moving obstacles to

the Industrial map and keep track of the frequency and cost of updates over one minute

in Table 6.4. Similar to the previous experiment, they move from one random location in

the level to another following a path in the octree, and the movement of the obstacles

interferes with the path roughly once per second. With three moving obstacles, the

environment constantly changes and the octree is updated 56 times per second, and this

frequency is cut down to less than one update per second with the last-moment policy.

The updates are more expensive, mainly because of the octree update cost. Since updates

are less frequent, more changes happen in the environment in between updates, resulting

in more expensive updates. When looking at the amortized cost over time however, the

last-moment update policy is far superior, with an amortized cost per second 20 times

lower than the default update policy.

In this section, we saw that dynamically updating the octree in real-time game

environments is feasible, and that performance can be greatly improved by locally

updating the navigation graph instead of recomputing it, and updating the path at the

last moment only when required. An interesting extension of this work would be to apply

76

it to larger maps, namely maps from the Warframe dataset, by having a small number of

moving asteroids and ship debris floating around the otherwise static map. While this

would be possible, our current implementation is not well optimized and does not allow

us to differentiate static and dynamic obstacles. Future work could be made to have

the octree built around static obstacles, and then only update the octree based on the

movement of a reduced amount of dynamic obstacles.

77

Chapter 7

Conclusion and Future Work

Pathfinding is an essential component of many games for NPC path planning, and even

if most 3D games restrict movement in some way or use a ”2.5D” representation planning

with full 3D motion is highly desirable and would open many new possibilities in game

development. Compared to 2D pathfinding, the problem of 3D pathfinding is much

more computationally expensive and remains an open question. Representing a 3D

environment with a naive voxel grid is too expensive, and thus producing an efficient

and sparse representation of the environment is essential.

Following this idea, we developed an extension of the hierarchical octree approach in

this thesis. Starting from an octree structure, we implemented a Hertel-Mehlhorn-style

merging by merging adjacent cells in the octree as long as their merge would remain

convex. This greedy merging approach proved very effective, reducing the number of

valid cells in the octree by up to an order of magnitude.

We then created a navigation graph by connecting the centers of transition surfaces

between adjacent cells together and used the A* algorithm to perform pathfinding on this

graph. Since the octree and the graph can be computed and saved offline and loaded at

run-time we achieve very fast compute times. On smaller maps paths can be found in just

a few milliseconds, and even on very large maps such as maps from the Warframe dataset

compute times typically range only in the hundreds of milliseconds.

78

To improve the path quality and reduce their length we implemented a visibility-

based path pruning approach and developed a 3D extension to the 2D funnel algorithm.

These path refinement methods lower the path length by 5 to 10% on average while being

cheap to compute compared to the A* algorithm, and in the case of the funnel algorithm

also maintain the homotopy class of a path.

A detailed comparison with the state-of-the-art 3D JPS algorithm [37] shows that, even

if our approach is slower on average, our compute times remain in the same order of

magnitude and are faster for longer paths. Our path refinement methods also produce

shorter paths and provide more flexibility.

We extended all of this work to dynamic environments by locally updating the octree

and the graph as changes in the environment are detected. By changing the dynamic

octree method to a cell-repairing approach instead of the greedy merging we ensure a

stable representation and number of octree cells even after many updates. Thanks to its

locality the update process remains fast, with average costs of less than a millisecond. To

limit the frequency of updates we propose several compromises that greatly reduce the

amortized update cost over time.

We identified several interesting directions that future work on this subject could take.

First of all, certain aspects of our code could be optimized further. The visibility checks

used by the path pruning algorithm are expensive, and more efficient visibility checks or

a different heuristic for path pruning could speed up the process. Our implementation

currently does not allow us to easily distinguish static and dynamic obstacles, which

limits performance on large maps with many obstacles. By separating the two kinds of

obstacles, pathfinding in larger dynamic environments with a limited amount of moving

obstacles could be achieved.

We used an axis-aligned bounding box representation for obstacles, especially because

it suited the existing voxel benchmarks, but other, more involved forms of obstacle

representation could be added. In some benchmarks such as the Sandstone dataset [38],

maps require extremely large numbers of voxels to be represented, and further work

79

could be made on describing these maps more efficiently, for example with rectangular

obstacles of arbitrary size instead of cubes of identical size.

Some maps in the Warframe dataset were very elongated, and in general, game

environments may not easily fit in a large octree cube. One way to address this would

be to start the octree building process with a rectangular cell instead of a cube, and use

the splitting procedure introduced in Section 5.2 for the first split. This would split the

first rectangular cell into evenly-sized cubes, which can then be individually built like a

regular octree. This method would also add another form of hierarchy, in which different

octrees can be built for different regions, and in very large game environments one could

only load the local octree relevant to the region the player is in.

While we focused on the shortest path problem, in many games other constraints

should be taken into account. If the moving agent is a spaceship for example, paths

should incorporate dynamic constraints such as inertia or a limited turning radius and

smoother changes of direction to allow vehicle movement. Extensive research has already

been conducted on the subject, and an approach such as using Bezier curves to obtain

smoother paths [46] could be used, although additional work would be needed to ensure

that smoothed paths do not collide with obstacles.

80

Bibliography

[1] Descent, developed by Parallax Software. 1995.

[2] Warframe, developed by Digital Extremes. 2013. URL: https://www.warframe.

com.

[3] Marvel’s Spider-Man, developed by Insomniac Games. 2018. URL: https : / /

insomniac.games/game/spider-man-ps4.

[4] Elex II, developed by Piranha Bytes. 2022. URL: https://www.elexgame.com.

[5] Armored Core 6: Fires of Rubicon, developed by From Software. 2023. URL: https:

//en.bandainamcoent.eu/armored-core/armored-core-vi-fires-

of-rubicon.

[6] Zeyad Abd Algfoor, Mohd Shahrizal Sunar, and Hoshang Kolivand. “A

Comprehensive Study on Pathfinding Techniques for Robotics and Video Games”.

In: International Journal of Computer Games Technology 2015 (Apr. 2015), pp. 1–11. DOI:

10.1155/2015/736138.

[7] Subhrajit Bhattacharya, Vijay Kumar, and Maxim Likhachev. “Search-Based Path

Planning with Homotopy Class Constraints”. In: Proceedings of the Twenty-Fourth

AAAI Conference on Artificial Intelligence. AAAI’10. Atlanta, Georgia: AAAI Press,

2010, pp. 1230–1237.

[8] Adi Botea, Martin Müller, and Jonathan Schaeffer. “Near optimal hierarchical path-

finding.” In: J. Game Dev. 1.1 (2004), pp. 1–30.

81

https://www.warframe.com
https://www.warframe.com
https://insomniac.games/game/spider-man-ps4
https://insomniac.games/game/spider-man-ps4
https://www.elexgame.com
https://en.bandainamcoent.eu/armored-core/armored-core-vi-fires-of-rubicon
https://en.bandainamcoent.eu/armored-core/armored-core-vi-fires-of-rubicon
https://en.bandainamcoent.eu/armored-core/armored-core-vi-fires-of-rubicon
https://doi.org/10.1155/2015/736138

[9] Daniel Brewer. “3D Flight Navigation Using Sparse Voxel Octrees”. 2017. URL:

http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter21_

3D_Flight_Navigation_Using_Sparse_Voxel_Octrees.pdf.

[10] Daniel Brewer and Nathan R. Sturtevant. “Benchmarks for Pathfinding in 3D Voxel

Space”. In: Symposium on Combinatorial Search (SoCS) (2018), pp. 143–147.

[11] John Canny and John Reif. “New lower bound techniques for robot motion

planning problems”. In: 28th Annual Symposium on Foundations of Computer Science

(sfcs 1987). 1987, pp. 49–60. DOI: 10.1109/SFCS.1987.42.

[12] George Merrill Chaikin. “An algorithm for high-speed curve generation”. In:

Computer Graphics and Image Processing 3.4 (1974), pp. 346–349. ISSN: 0146-664X. DOI:

https://doi.org/10.1016/0146-664X(74)90028-8.

[13] Reinis Cimurs and Il Hong Suh. “Time-optimized 3D Path Smoothing with

Kinematic Constraints”. In: International Journal of Control, Automation and Systems

18 (Jan. 2020), pp. 1277–1287. DOI: 10.1007/s12555-019-0420-x.

[14] Xiao Cui and Hao Shi. “A*-based Pathfinding in Modern Computer Games”. In:

International Journal of Computer Science and Network Security 11 (Nov. 2010), pp. 125–

130.

[15] Edsger W Dijkstra. “A note on two problems in connexion with graphs”. In:

Numerische mathematik 1.1 (1959), pp. 269–271.

[16] David H. Douglas and Thomas K. Peucker. “Algorithms for the reduction of

the number of points required to represent a digitized line or its caricature”. In:

Cartographica: The International Journal for Geographic Information and Geovisualization

10 (1973), pp. 112–122.

[17] Jeff Erickson. Shortest Homotopic Paths. Lecture notes from CS 598 at University of

Illinois. 2009.

[18] Christer Ericson. Real-time collision detection. CRC Press, 2004.

82

http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter21_3D_Flight_Navigation_Using_Sparse_Voxel_Octrees.pdf
http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter21_3D_Flight_Navigation_Using_Sparse_Voxel_Octrees.pdf
https://doi.org/10.1109/SFCS.1987.42
https://doi.org/https://doi.org/10.1016/0146-664X(74)90028-8
https://doi.org/10.1007/s12555-019-0420-x

[19] Florian Fichtner, Abdoulaye Diakité, Sisi Zlatanova, and Robert Voûte. “Semantic

enrichment of octree structured point clouds for multi-story 3D pathfinding”. In:

Transactions in GIS 22 (Jan. 2018), pp. 233–248. DOI: 10.1111/tgis.12308.

[20] Raphael Finkel and Jon Bentley. “Quad Trees: A Data Structure for Retrieval on

Composite Keys.” In: Acta Inf. 4 (Mar. 1974), pp. 1–9. DOI: 10.1007/BF00288933.

[21] Guillermo Frontera, David Martı́n, Juan Portas, and Da-Wei Gu. “Approximate

3D Euclidean Shortest Paths for Unmanned Aircraft in Urban Environments”. In:

Journal of Intelligent & Robotic Systems 85 (Feb. 2017), pp. 353–368. DOI: 10.1007/

s10846-016-0409-1.

[22] D. Hale, G. Youngblood, and Priyesh Dixit. “Automatically-generated Convex

Region Decomposition for Real-time Spatial Agent Navigation in Virtual Worlds.”

In: Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment

Conference, Jan. 2008.

[23] Daniel Harabor and Adi Botea. “Hierarchical Path Planning for Multi-Size Agents

in Heterogeneous Environments”. In: Dec. 2008, pp. 258–265. DOI: 10.1109/CIG.

2008.5035648.

[24] Daniel Harabor and Alban Grastien. “Online Graph Pruning for Pathfinding

on Grid Maps”. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial

Intelligence. AAAI’11. San Francisco, California: AAAI Press, 2011, pp. 1114–1119.

[25] Peter Hart, Nils Nilsson, and Bertram Raphael. “A Formal Basis for the Heuristic

Determination of Minimum Cost Paths”. In: IEEE Transactions on Systems Science and

Cybernetics 4.2 (1968), pp. 100–107. DOI: 10.1109/tssc.1968.300136.

[26] Emili Hernandez, Marc Carreras, and Pere Ridao. “A comparison of homotopic

path planning algorithms for robotic applications”. In: Robotics and Autonomous

Systems 64 (2015), pp. 44–58. ISSN: 0921-8890. DOI: https://doi.org/10.1016/

j.robot.2014.10.021.

83

https://doi.org/10.1111/tgis.12308
https://doi.org/10.1007/BF00288933
https://doi.org/10.1007/s10846-016-0409-1
https://doi.org/10.1007/s10846-016-0409-1
https://doi.org/10.1109/CIG.2008.5035648
https://doi.org/10.1109/CIG.2008.5035648
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/https://doi.org/10.1016/j.robot.2014.10.021
https://doi.org/https://doi.org/10.1016/j.robot.2014.10.021

[27] John Hershberger and Jack Snoeyink. “Computing minimum length paths of a

given homotopy class”. In: Computational Geometry 4.2 (1994), pp. 63–97. ISSN: 0925-

7721. DOI: https://doi.org/10.1016/0925-7721(94)90010-8.

[28] Stefan Hertel and Kurt Mehlhorn. “Fast triangulation of simple polygons”.

In: Foundations of Computation Theory: Proceedings of the 1983 International FCT-

Conference Borgholm, Sweden, August 21–27, 1983 4. Springer. 1983, pp. 207–218.

[29] Julian Hirt, Dominik Gauggel, Jens Hensler, Michael Blaich, and Oliver Bittel.

“Using Quadtrees for Realtime Pathfinding in Indoor Environments”. In: Research

and Education in Robotics - EUROBOT. May 2010, pp. 14–29. ISBN: 978-3-642-27271-4.

DOI: 10.1007/978-3-642-27272-1_6.

[30] Y.K. Hwang and N. Ahuja. “A potential field approach to path planning”. In: IEEE

Transactions on Robotics and Automation 8.1 (1992), pp. 23–32. DOI: 10.1109/70.

127236.

[31] S. M. LaValle. Planning Algorithms. Available at http://planning.cs.uiuc.edu/.

Cambridge, U.K.: Cambridge University Press, 2006.

[32] Steven M. LaValle. Rapidly-exploring random trees : a new tool for path planning. Tech.

rep. 98-11. Iowa State University, 1998.

[33] Fangyu Li, Sisi Zlatanova, Martijn Koopman, Xueying Bai, and Abdoulaye Diakité.

“Universal path planning for an indoor drone”. In: Automation in Construction 95

(2018), pp. 275–283. ISSN: 0926-5805. DOI: https://doi.org/10.1016/j.

autcon.2018.07.025.

[34] Tomás Lozano-Pérez and Michael A. Wesley. “An algorithm for planning collision-

free paths among polyhedral obstacles”. In: Commun. ACM 22.10 (1979), pp. 560–

570. ISSN: 0001-0782. DOI: 10.1145/359156.359164. URL: https://doi.org/

10.1145/359156.359164.

84

https://doi.org/https://doi.org/10.1016/0925-7721(94)90010-8
https://doi.org/10.1007/978-3-642-27272-1_6
https://doi.org/10.1109/70.127236
https://doi.org/10.1109/70.127236
https://doi.org/https://doi.org/10.1016/j.autcon.2018.07.025
https://doi.org/https://doi.org/10.1016/j.autcon.2018.07.025
https://doi.org/10.1145/359156.359164
https://doi.org/10.1145/359156.359164
https://doi.org/10.1145/359156.359164

[35] Mikko Mononen. Digesting Duck: Simple Stupid Funnel Algorithm. http : / /

digestingduck . blogspot . com / 2010 / 03 / simple - stupid - funnel -

algorithm.html. Mar. 2010.

[36] Timur Muratov and Aleksandr Zagarskikh. “Octree-Based Hierarchical 3D

Pathfinding Optimization of Three-Dimensional Pathfinding”. In: Proceedings of the

2019 3rd International Symposium on Computer Science and Intelligent Control. ISCSIC

2019. Amsterdam, Netherlands: Association for Computing Machinery, 2020, pp. 1–

6. ISBN: 9781450376617. DOI: 10.1145/3386164.3386181.

[37] Thomas K. Nobes, Daniel Harabor, Michael Wybrow, and Stuart D. C. Walsh. “The

JPS pathfinding system in 3D”. In: Proceedings of the International Symposium on

Combinatorial Search. Fifteenth InternationalSymposium on Combinatorial Search

1 (2022). Ed. by Lukás Chrpa and Alessandro Saetti, pp. 145–152. URL: https:

//sites.google.com/unibs.it/socs2022.

[38] Thomas K. Nobes, Daniel Harabor, Michael Wybrow, and Stuart D.C. Walsh. “Voxel

Benchmarks for 3D Pathfinding: Sandstone, Descent, and Industrial Plants”. In:

Proceedings of the Sixteenth International Symposium on Combinatorial Search. AAAI

Press, 2023, pp. 56–64.

[39] Craig Reynolds. “Steering Behaviors For Autonomous Characters”. In: Proceedings

of the Game Developers Conference (1999), pp. 763–782.

[40] Michael Schwarz and Hans-Peter Seidel. “Fast Parallel Surface and Solid

Voxelization on GPUs”. In: ACM SIGGRAPH Asia 2010 Papers. SIGGRAPH ASIA

’10. Seoul, South Korea: Association for Computing Machinery, 2010, pp. 1–10.

ISBN: 9781450304399. DOI: 10.1145/1866158.1866201.

[41] David Sislák, Premysl Volf, and Michal Pechoucek. “Flight Trajectory Path

Planning”. In: Proceedings of the 19th International Conference on Automated Planning

& Scheduling (ICAPS). 2009, pp. 76–83. URL: https://api.semanticscholar.

org/CorpusID:15841913.

85

http://digestingduck.blogspot.com/2010/03/simple-stupid-funnel-algorithm.html
http://digestingduck.blogspot.com/2010/03/simple-stupid-funnel-algorithm.html
http://digestingduck.blogspot.com/2010/03/simple-stupid-funnel-algorithm.html
https://doi.org/10.1145/3386164.3386181
https://sites.google.com/unibs.it/socs2022
https://sites.google.com/unibs.it/socs2022
https://doi.org/10.1145/1866158.1866201
https://api.semanticscholar.org/CorpusID:15841913
https://api.semanticscholar.org/CorpusID:15841913

[42] Nathan Sturtevant. “A Sparse Grid Representation for Dynamic Three-Dimensional

Worlds”. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment 7.1 (2011), pp. 73–78. DOI: 10.1609/aiide.v7i1.12438.

[43] W.G. van Toll, A.F. Cook IV, M.J. van Kreveld, and R. Geraerts. “The Explicit

Corridor Map: Using the Medial Axis for Real-Time Path Planning and Crowd

Simulation”. In: International Computational Geometry Multimedia Exposition. 2016,

70:1–70:5.

[44] Wouter van Toll, Roy Triesscheijn, Marcelo Kallmann, Ramon Oliva, Nuria

Pelechano, Julien Pettré, and Roland Geraerts. “A Comparative Study of

Navigation Meshes”. In: Proceedings of the 9th International Conference on Motion in

Games. MIG ’16. Burlingame, California: Association for Computing Machinery,

2016, pp. 91–100. ISBN: 9781450345927. DOI: 10.1145/2994258.2994262.

[45] Wouter van Toll, Roy Triesscheijn, Marcelo Kallmann, Ramon Oliva, Nuria

Pelechano, Julien Pettré, and Roland Geraerts. “Comparing navigation meshes:

Theoretical analysis and practical metrics”. In: Computers & Graphics 91 (2020),

pp. 52–82. ISSN: 0097-8493. DOI: https://doi.org/10.1016/j.cag.2020.

06.006.

[46] Kwangjin Yang and Salah Sukkarieh. “3D smooth path planning for a UAV

in cluttered natural environments”. In: 2008 IEEE/RSJ International Conference on

Intelligent Robots and Systems. 2008, pp. 794–800. DOI: 10.1109/IROS.2008.

4650637.

[47] W. Zeng and R. L. Church. “Finding shortest paths on real road networks: the case

for A*”. In: International Journal of Geographical Information Science (2009), pp. 531–

543. DOI: 10.1080/13658810801949850.

86

https://doi.org/10.1609/aiide.v7i1.12438
https://doi.org/10.1145/2994258.2994262
https://doi.org/https://doi.org/10.1016/j.cag.2020.06.006
https://doi.org/https://doi.org/10.1016/j.cag.2020.06.006
https://doi.org/10.1109/IROS.2008.4650637
https://doi.org/10.1109/IROS.2008.4650637
https://doi.org/10.1080/13658810801949850

	Abstract
	Abrégé
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Contribution
	Outline

	Background and Related Work
	Search Algorithms
	The A* Algorithm
	The Jump-Point Search Algorithm
	Other Navigation Algorithms

	Pathfinding in 2D Environments
	Pathfinding in 3D Environments
	Navigation Meshes
	Quadtrees and Octrees
	Path Refinement
	3D Pathfinding Benchmarks

	Environment Decomposition
	Voxel Baseline
	Octree Decomposition
	Definition and Advantages
	Implementation Details

	Octree Merging

	Path Finding and Path Refinement
	Path Finding on the Movement Graph
	Path Pruning
	The Funnel Algorithm
	Presentation of the Algorithm
	Implementation Details

	Dynamic 3D Path Finding
	Updating the Octree
	Updating the Merged Octree
	Updating the Navigation Graph
	Potential Use Cases

	Experiments and Results
	Visualisation of the Results
	Overview of the 3D Benchmarks
	Experiments on the Handmade Dataset
	Large-Scale Experiments
	Experiments on the Dynamic Octree

	Conclusion and Future Work

