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ABSTRACT 

Introduction: Marfan syndrome (MFS) is a multi-system connective tissue disorder caused by 

mutations in the FBN1 gene encoding fibrillin-1 (FBN1). MFS is clinically characterized by 

ascending aortic aneurysms, among many other clinical symptoms. With previous data revealing 

a sexual dimorphism in MFS metabolism and ascending aortic aneurysm formation, this thesis 

project addresses the consequence of both high-calorie diet and biological sex in these aspects. 

Methods: Fbn1mgR/mgR (mgR) mice represent an established MFS mouse model with significantly 

reduced production of normal fibrillin-1 (~20-25%), leading to the typical MFS clinical symptoms 

in the thoracic aorta and in other tissues. Both male and female mgR as well as wild type (WT) 

littermate mice were fed with control diet (CD, 10% fat), high-fat diet (HFD, 60% fat) or western 

diet (WD, 45% fat; 30% sucrose) starting from 4 weeks until 12 weeks of age. We determined 

metabolism complications through body mass measurements, insulin tolerance test (ITT) and 

glucose tolerance test (GTT). Aortic complications were determined through Kaplan-Meier 

analyses, as well as by assessment of key parameters including the aortic diameter and thickness 

of the aortic wall, HIF-1α level, elastic fiber fragmentation, Mmp12 gene expression, proteoglycan 

and collagen levels. 

Results: Female mgR mice were resistant to weight gain from HFD or WD but not male mgR 

mice. However, ITT and GTT did not reveal metabolic abnormalities between WT and mgR mice, 

neither in males nor females. Surprisingly, male mgR mice showed a lower aortic-rupture-specific 

survival rate compared to WT mice when fed with CD but not HFD or WD. The aortic-rupture-

specific survival rate was not different between female WT and mgR mice. Interestingly, HFD 

reduced the aortic vessel diameter in female but not male mgR mice. Therefore, our subsequent 

studies focused on the consequences of HFD compared to CD. Importantly, elastic fiber 



iv 
 

fragmentation and proteoglycan deposition correlated with the aortic diameter. Aortic wall 

thickness increased in male mgR compared to male WT mice but not in females fed with either 

CD or HFD. The HIF-1α level was higher in male mgR mice than in male WT mice fed with CD 

or HFD, and in female mgR compared to female WT mice fed with HFD. These data correlated 

well with the analysis of collagen deposition. The Mmp12 gene expression was higher in male 

mgR than in WT mice when fed with CD but not HFD, whereas no difference was detectable in 

females. These results revealed specific sexual dimorphisms in MFS mice responding to HFD. 

Surprisingly, a HFD diet rescued some of the aneurysm phenotypes, especially in females. 

Conclusion: Male and female mice with MFS responded differently to HFD in metabolism and 

ascending aortic aneurysm development. The findings provide a basis to start developing 

nutritional recommendations for patients with MFS. 
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RÉSUMÉ 

Introduction: Le syndrome de Marfan (MFS) est un trouble multisystémique du tissu conjonctif 

causé par des mutations du gène FBN1 codant pour la protéine fibrilline-1 (FBN1). Parmi d’autres 

symptômes cliniques, le MFS est principalement caractérisé cliniquement par des anévrismes de 

l'aorte ascendante. En s’appuyant sur des données antérieures révélant un dimorphisme sexuel dans 

le métabolisme du MFS et le développement d'un anévrisme de l'aorte ascendante, ce projet de 

thèse porte sur les conséquences d'un régime hypercalorique et du sexe biologique dans ces 

aspects. 

Méthodes: Les souris Fbn1mgR/mgR (mgR) représentent un modèle animale MFS bien établi avec 

une production de la fibrilline-1 considérablement réduite par rapport à celle normale (~ 20-25%), 

conduisant aux symptômes cliniques typiques de la MFS dans l'aorte thoracique et dans d'autres 

tissus. Les souris mâles et femelles mgR ainsi que les souris de type sauvage (WT) ont été nourries 

avec un régime témoin (CD, 10% de matières grasses), un régime riche en graisses (HFD, 60% de 

matières grasses) ou un régime occidental (WD, 45% de matières grasses ; 30% de saccharose) et 

cela à partir de 4 semaines jusqu'à l'âge de 12 semaines. Nous avons déterminé les complications 

du métabolisme dans les souris par des mesures de masse corporelle, un test de tolérance à 

l'insuline (ITT) et un test de tolérance au glucose (GTT). Les complications aortiques ont été 

déterminées par des analyses de Kaplan-Meier, ainsi que par l'évaluation de paramètres clés, 

notamment le diamètre de l’aorte et l'épaisseur de la paroi aortique, le niveau de HIF-1α, la 

fragmentation des fibres élastiques, l'expression du gène Mmp12 et les niveaux de protéoglycane 

et de collagène. 

Résultats: Les souris mgR femelles étaient résistantes à la prise de poids due au HFD ou au WD, 

mais pas les souris mgR mâles. Cependant, ITT et GTT n'ont pas révélé d'anomalies métaboliques 
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entre les souris WT et mgR, ni chez les mâles ni chez les femelles. Étonnamment, les souris mgR 

mâles ont montré un taux de survie spécifique à la rupture aortique inférieur à celui des souris WT 

lorsqu'elles étaient nourries dans le régime CD, mais pas avec du HFD ou du WD. Le taux de 

survie spécifique à la rupture aortique n'était pas différent entre les souris femelles WT et mgR. 

Fait intéressant, HFD a conduit à la réduction du diamètre du vaisseau aortique chez les souris 

mgR femelles mais pas les souris mgR mâles. Par conséquent, nos études ultérieures se sont 

concentrées sur les conséquences du HFD par rapport au CD. Il est important de noter qu’il avaient 

une corrélation entre la fragmentation des fibres élastiques et le dépôt de protéoglycanes et le 

diamètre aortique. L'épaisseur de la paroi aortique a augmenté chez les mâles mgR par rapport aux 

souris mâles WT, mais pas chez les femelles nourries sous le régime ou HFD. Le niveau de HIF-

1α était plus élevé chez les souris mâles mgR que chez les souris mâles WT nourries avec le régime 

CD ou HFD, et chez les femelles mgR par rapport aux souris femelles WT nourries avec HFD. 

Ces données étaient bien corrélées avec l'analyse du dépôt de collagène. L'expression du gène 

Mmp12 était plus élevée chez les souris mâles mgR que chez les souris WT lorsqu'elles étaient 

nourries avec du CD mais pas avec du HFD, alors qu'aucune différence n'était détectable chez les 

femelles. Ces résultats ont révélé des dimorphismes sexuels spécifiques chez les souris MFS 

répondant au HFD. Étonnamment, un régime HFD a sauvé certains des phénotypes d'anévrisme, 

notamment chez les femmes. 

Conclusion: Les souris mâles et femelles atteintes de MFS ont répondu différemment au régime 

HFD dans le métabolisme et le développement de l'anévrisme de l'aorte ascendante. Ces résultats 

fournissent une base consistante pour commencer à développer des recommandations 

nutritionnelles pour les patients atteints de MFS. 
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CHAPTER 1: REVIEW OF LITERATURE 

1.1 Overview of aorta 

1.1.1 Anatomy of aorta 

Among the arteries, aorta is the largest where all systemic arteries branch from. The aorta consists 

of 5 anatomical segments: aortic root, ascending aorta, aortic arch, descending aorta and 

subdiaphragmatic abdominal aorta [Dagenais, 2011; Murillo et al., 2012; White et al., 2022]. The 

aortic root extends from the aortic valve in the left ventricle of the heart to the sinotubular junction 

[Murillo et al., 2012]. This region is where coronary arteries are extended from to supply 

oxygenated blood for the myocardium of the heart [Paiocchi et al., 2021; Ogobuiro et al., 2022]. 

Following the aortic root, the ascending aorta extends upwards to the left until it reaches the aortic 

arch, the next aortic segment [Dagenais, 2011; Murillo et al., 2012]. The aortic arch branches to 

the brachiocephalic trunk, left common carotid artery and left subclavian artery for supplying 

blood to the head, neck, left and right upper limb [Cakirer et al., 2002; Szpinda, 2005; Hanneman 

et al., 2017; Kandemirli, 2020; Alhuzaimi et al., 2021]. As the aorta descends from the arch above 

the diaphragm, oxygenated blood is supplied to the pericardium, bronchi of lungs, esophagus, 

intercostal and chest muscles, superior and posterior surfaces of diaphragm [Duckworth, 1869; 

Dagenais, 2011; McKenzie et al., 2016; Riambau et al., 2017]. The aorta that branches into these 

arteries is known as descending thoracic aorta (Figure 1.1). Abdominal aorta locates below the 

diaphragm and supplies blood to any organs or body parts in abdominal cavity including renal, 

digestive and reproductive organs [Lin & Chaikof, 2000; Lech & Swaminathan, 2017].  
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Figure 1.1: Diagram of a thoracic aorta. The thoracic aorta can be conceptually divided into 4 
major segments: the aortic root, the ascending aorta, the aortic arch and the descending aorta. 

 

1.1.2 Structure of aorta 

Aorta contains 3 layers: tunica intima, tunica media and tunica adventitia (Figure 1.2). The 

innermost layer, tunica intima, consists of a layer of simple squamous epithelium known as 

endothelium. The endothelial lining composes of endothelial cells not only contributes to the 

formation of the internal elastic lamina that separates the tunica media from the tunica intima but 

also provides frictionless pathway for the movement of blood [Tucker et al., 2022]. The 

endothelium is continuous throughout the entire cardiovascular system and the closest layer to the 

lumen where the blood flows. The next layer away from the lumen is tunica media which is the 

thickest layer in the aorta. This layer consists of vascular smooth muscle cells (VSMCs) and 
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multiple elastic lamellae alternating proteoglycans or collagen over 50 layers in humans or 7 layers 

in mice [Karimi & Milewicz, 2016; Cocciolone et al., 2018]. As the arteries branch out, the number 

of lamellar units decreases [Wolinsky, 1970]. The external elastic lamina separates the tunica media 

and tunica adventitia layer which is the outermost layer. The tunica adventitia consists of 

fibroblasts, fibrocytes and collagen-rich matrix. Since the cells in the tunica adventitia are too far 

away from the arterial lumen for oxygen and nutrients, the vasa vasorum exists in the tunica 

adventitia to supply blood to the cells in the tunica adventitia [Cocciolone et al., 2018]. 

 

 

Figure 1.2: Layers of aortic wall. The figure schematically shows the 3 typical tissue layers 
surrounding the lumen of the aortic wall. Note that the dimensions are not drawn to scale. 
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1.2 Elastogenesis and aorta 

1.2.1 Role of elastin in aorta 

Aorta is the first segment of arterial tree branched from the left ventricle of the heart to receive 

blood, so a constantly pulsating supply of blood is required to be distributed ultimately to each 

organ. The primary function of the elastic lamellae allows aortae to store blood during the systole 

and recoil to its original structure during the diastole to send the blood to entire body [Safar et al., 

2003; Shin & Yanagisawa, 2019]. This physiological process is known as the “Windkessel” effect 

to reduce the fluctuation of blood pressure, minimize the systolic flow and maximize the diastolic 

flow in arterioles [Dobrin, 1978].  

Elastic laminae are essential in aortae. Elastogenesis is the process from mid-embryogenesis to 

early postnatal life to form elastic fibers and laminae which have a half-life of 74 years [Fukuda 

et al., 1984; Shapiro et al., 1991]. This involves complex multistep events of different extracellular 

matrix (ECM) molecules, including fibronectin (FN), fibrillin-1 (FBN1), fibulin-4 (FBLN4), 

fibulin-5 (FBLN5) and latent transforming growth factor-beta binding protein 4 (LTBP4) 

[Reinhardt et al., 1996a; Lin et al., 2002; Wagenseil & Mecham, 2007; Sabatier et al., 2009; 

Yanagisawa & Davis, 2010; Sabatier et al., 2013; Hubmacher et al., 2014; Kumra et al., 2019]. 

Each of these ECM molecules has its unique domain organization and function to form a template 

for tropoelastin to be deposited eventually forming elastic fibers and lamellae. More details for the 

role of each of these components are explained in the following paragraphs. 

 

1.2.2 Fibronectin 

FN is secreted from cells as a dimer with a molecular mass around 250 kDa for each subunit. 

Depending on alternative splicing, FN adopts various sizes [Norton & Hynes, 1990]. It consists of 
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two forms: cellular FN (cFN), which is secreted by numerous types of cells in connective tissues 

forming an insoluble network, and plasma FN (pFN), which is soluble circulating in the 

bloodstream and is secreted by hepatocytes in the liver [Morrison et al., 1948; Kuusela et al., 

1975]. pFN consists principally of three types of domains: I, II and III, whereas cFN has additional 

domains either EIIIA, EIIIB or both domains. Although both EIIIA and EIIIB are not required for 

FN assembly, both domains affect the FN level in the matrix [Singh et al., 2010]. Since dimers are 

connected by a disulfide bond, activation of FN is required to acquire proper conformation for 

assembly [Mao & Schwarzbauer, 2005]. 

The assembly of FN begins with the arginine-glycine-aspartate (RGD) sequence in FN interacting 

with integrins on the cell surface [Sottile et al., 2000]. Through Rho and actin-myosin pathways, 

cells contract and thus change the FN conformation [Zhang et al., 1994; Singh et al., 2010]. 

Integrin clustering promotes FN-FN interactions [Pankov et al., 2000; Mao & Schwarzbauer, 

2005; Tomasini-Johansson et al., 2006]. This process exposes cryptic sites in FN and further 

allows FN to assemble [Ugarova et al., 1995; Ensenberger et al., 2004]. The cryptic regions 

including III2, III4-5 and III12 domains interact with the 70 kDa fragment (N-terminal region of 

FN), suggesting a role in FN assembly [Aguirre et al., 1994; Bultmann et al., 1998; Maqueda et 

al., 2007]. These hierarchical multistep molecular processes form the insoluble and stable FN fibril 

matrix. 

 

1.2.3 Fibrillin-1 

The fibrillin family consists of fibrillin-1 (FBN1), -2 (FBN2) and -3 (FBN3) encoded by FBN1, 

FBN2 and FBN3 genes, respectively, which are expressed in humans and most mammals, but 

FBN3 is not active in rodents [Zhang et al., 1995; Corson et al., 2004; Piha-Gossack et al., 2012]. 
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Both FBN2 and FBN3 are expressed during development, but the main form present in microfibrils 

in postnatal life is FBN1 [Zhang et al., 1995; Corson et al., 2004; Sabatier et al., 2011]. FBN1 is 

a large extracellular glycoprotein ubiquitously deposited in multiple tissues in the body [Sakai et 

al., 1986; Milewicz et al., 1992; Milewicz et al., 1995]. Both N- and C-terminal prodomains of 

profibrillin-1 (350 kDa) are cleaved by endoprotease furin forming mature FBN1 (~320 kDa) 

[Milewicz et al., 1995; Reinhardt et al., 1996b; Lönnqvist et al., 1998]. Asprosin, the C-terminal 

propeptide of FBN1, is released and circulates in the bloodstream as a hunger hormone, ultimately 

leading to the insulin production [Lönnqvist et al., 1998; Wallis et al., 2003; Romere et al., 2016; 

Petersen & Shulman, 2018]. The mature FBN1 is characterized by its multiple tandem arrays of 

calcium-binding epidermal growth factor-like (cbEGF) domains and transforming growth factor 

(TGF)-β binding-like (TB) domains [Handford et al., 1991; Robertson et al., 2015]. The structure 

in these domains is stabilized by interacting with calcium and by characteristic intradomain 

disulfide bonds. In a cell-dependent manner, the C-terminus of FBN1 forms globular beads with 

8-12 peripheral arms through multimerization, which increases its affinity to the FBN1 N-

terminus, heparan sulfate and fibronectin [Hubmacher et al., 2008]. With the higher affinity of 

FBN1 to heparan sulfate than to fibronectin, the multimerized fibrillin beads are suggested to bind 

to heparan sulfate located on cell surface before interacting with the FN matrix. With the densely 

assembled C-terminus of FBN1, heparan sulfate interacts with C-terminus more likely than with 

the N-terminus [Yadin et al., 2013]. This interaction promotes focal adhesions mediated by actin 

filaments to position the FBN1 beads for N-to-C terminal interactions. Elongation of the FBN1 

occurs to form the characteristic bead-on-the-string structure. The N-terminal half of FN 

eventually interacts with C-terminal half of FBN1 to stabilize or allow further interactions with 



7 
 

other molecules [Reinhardt et al., 1996a; Lin et al., 2002; Sabatier et al., 2009; Sabatier et al., 

2013; Hubmacher et al., 2014]. 

 

1.2.4 Fibulin-4 

FBLN4 (~48 kDa) is another microfibril-associated protein contributing to elastogenesis [Kumra 

et al., 2019]. It is one of the members of the fibulin family composed of cbEGF and C-terminal 

fibulin domain [Papke & Yanagisawa, 2014]. Both cbEGF-like motif with insertion and the 

subsequent four cbEGF-like motifs interact with FBN1, whereas the C-terminal fibulin domain 

can interact with tropoelastin for elastin coacervation at the later stage of elastogenesis [Choudhury 

et al., 2009; Kumra et al., 2019]. FBLN4 multimerizes through the interactions of its central and 

C-terminal domains forming a disk-shaped particle with around 10 molecules which recruits 

tropoelastin and interacts with LTBP4 as explained in later paragraphs [Djokic et al., 2013; Kumra 

et al., 2019]. Furthermore, the N-terminal extended cbEGF-like motif interacts with the propeptide 

of lysyl oxidase (LOX) and activates it for cross-linking in elastogenesis [Horiguchi et al., 2009; 

Noda et al., 2020]. Although FBN1 interacts with FBLN4, FBN1 does not mediate FBLN4 

assembly, but both pFN and cFN are necessary [El-Hallous et al., 2007; Kumra et al., 2018; 

Kumra et al., 2019]. 

 

1.2.5 Fibulin-5 

FBLN5 (~ 66 kDa) is another member of the fibulin family which shares a high homology with 

FBLN4 [El-Hallous et al., 2007; Kobayashi et al., 2007; Yanagisawa et al., 2009]. However, 

FBLN5 has a higher binding affinity to tropoelastin compared to FBLN4 [Kobayashi et al., 2007; 
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Choudhury et al., 2009]. FBLN5 also tethers and activates lysyl oxidase like 1 (LOXL1) for cross-

linking in elastogenesis [Liu et al., 2004; Choi et al., 2009].  Furthermore, FBLN5 can interact 

with the N-terminal half of FBN1 and the C-terminal half of FBLN4 to potentially mediate 

tropoelastin deposition and coacervation although the function of these bindings is not studied 

extensively [Freeman et al., 2005; Zheng et al., 2006; Choudhury et al., 2009]. Although FBLN5 

contributes to elastogenesis, FBLN5 neither interacts with FN nor contributes to the formation of 

fibrillin-containing microfibrils [El-Hallous et al., 2007].   

 

1.2.6 Latent TGF-β binding protein-4 

LTBP4 (~250 kDa), one of the members in LTBP family, has structural similarities with FBN1 

[Saharinen et al., 1998; Saharinen & Keski-Oja, 2000]. LTBP4 binds via the latency-associated 

peptide (LAP) to TGF-β which is a major mediator of ECM formation and modulates vascular 

remodeling and potentially elastogenesis [Saharinen & Keski-Oja, 2000; Chen et al., 2005; 

Randell & Daneshtalab, 2017]. LTBP4 occurs in two isoforms identified by the number of 

cysteine domains at the N-terminus: the long (LTBP4L) and the short (LTBP4S) isoforms. The 

isoforms are determined by differential transcriptional start sites. The FBLN4 center fragment 

interacts the strongest with LTBP4L, whereas FBLN4 C-terminus has a weaker binding with 

LTBP4L [Kumra et al., 2019]. With the interaction between FBLN4 multimers and LTBP4L, 

LTBP4L undergoes a conformational change from a compact to an extended structure [Kumra et 

al., 2019]. Even when FBLN4 is removed after initiating this conformational change, the extended 

structure of LTBP4L persists, revealing that FBLN4 acts as a chaperone for the conformational 

change of LTBP4L [Kumra et al., 2019]. The extended LTBP4L interacts stronger with FBN1 and 

less with FN leading to a switch from FN fibers to microfibrils [Kumra et al., 2019]. FBLN4 then 
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escorts tropoelastin to the microfibril-bound extended LTBP4L to promote tropoelastin deposition 

[Noda et al., 2013; Kumra et al., 2019]. 

FBLN5 also interacts with LTBP4L and changes the conformation of LTBP4L, but the efficiency 

is lower than the FBLN4-induced conformational change, resulting in less amount and length of 

elastic fiber equivalents in vitro [Bultmann-Mellin et al., 2015; Kumra et al., 2019]. FBLN5-

induced LTBP4L alone is not able to interact with FBN1 and pFN showing a weaker role of 

FBLN5 in LTBP4L function related to elastogenesis [Kumra et al., 2019]. 

 

1.2.7 Elastin 

Tropoelastin (60–70 kDa), the monomeric precursor of multimeric elastin (ELN), is produced by 

elastogenic cells, including in the aorta primarily smooth muscle cells, but also endothelial cells 

and fibroblasts. With alternations of hydrophobic and cross-linking domains, ELN can self-

aggregate and form cross-links [Dyksterhuis et al., 2007]. The hydrophobic domains which contain 

non-polar amino acid residues (glycine, valine, alanine and protein) allow tropoelastin to self-

assemble to some extent [Vrhovski et al., 1997; Debelle & Tamburro, 1999; Toonkool et al., 2001]. 

The cross-linking domains consist of lysine residues not only mediating limited self-assembly but 

also allowing the formation of mature elastic fibers. The cross-linking process requires LOX or 

LOXL enzymes in a copper-dependent manner [Schmelzer et al., 2019]. However, domain 36, a 

unique C-terminal domain in tropoelastin, is the only lysine-containing domain that does not form 

cross-links [Hedtke et al., 2019]. The domain 36 does not only consist of positive-charged arginine 

residues located between the lysines but also two cysteine residues forming the only disulfide bond 

in tropoelastin. These components are required for tropoelastin’s self-assembly and interaction 

with microfibril scaffold [Nonaka et al., 2014; Ozsvar et al., 2021] (Figure 1.3). Elastic fibers in 
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aorta are required to maintain the aortic compliance, which in turn is the ability of blood vessel 

wall to increase in volume in response to higher hemodynamic pressure [Wagenseil et al., 2010; 

Jadidi et al., 2021]. It is calculated as change in volume of aortic segment divided by aortic pulse 

pressure, determined through echocardiography and pressure transmitter. Aortic compliance 

correlates negatively with aortic wall stiffness and elastic fiber fragmentation [Nettersheim et al., 

2021]. Patients with thoracic aortic aneurysm (TAA) and aortic dilation of 1.5 times or higher are 

known to have increased loss of elastic fibers and reduced aortic compliance [Zhou et al., 2018; 

Tobey et al., 2019]. 
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Figure 1.3: Schematic representation of elastogenesis. (Figure legend next page) 
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Figure 1.3: Schematic representation of elastogenesis. (Figure legend continued)  

(A) FN assembly. Cells secrete FN dimers that interact with cells via cell surface receptors 
integrins. These interactions initiate focal adhesion formation (integrin, actin filament and other 
focal adhesion proteins) and cellular contraction leading to conformational change in FN, 
facilitating FN fiber assembly in matrix. The initial cell surface associated FN fibers gradually 
transitions into insoluble FN fibers over time, providing a master scaffold for other matrix proteins. 
(B) Fibrillin microfibril formation. Following furin mediated cleavage of  propeptides, FBN1 
undergoes multimerization via its C-terminus. The process of multimerization facilitates enhanced 
interaction with cell surface associated heparan sulfate proteoglycans and initiates a downstream 
cascade of focal adhesion formation and actin remodelling. This process increases cellular tension 
allowing better N-to-C-terminal self-interaction and formation of the “bead-on-a-string” 
microfibril structure. The FBN1 multimers interact with FN which is essential for stabilization and 
further assembly of FBN1. (C) Role of FBLN4 and LTBP4 in elastogenesis. LTBP4 once 
secreted from cells is deposited onto FN fibers in compact form. FBLN4 when secreted from cells, 
undergoes multimerization and interacts with the compact LTBP4 to induce LTBP4 extension, 
unmasking the FBN1 binding sites. The extended LTBP4 then interacts with FBN1 containing 
microfibrils. FBLN4 then interacts with tropoelastin to linearly deposit it onto the extended LTBP4 
fibers. Both LOX and LOXL enzymes initiate crosslinking of tropoelastin to form the mature 
elastic fibers in the matrix. 

  

 

1.3 Fibrillinopathies and TAA 

Fibrillin-containing microfibrils are required to form elastic fibers. Heritable connective tissue 

disorders occur due to mutations in fibrillin-1 known as type 1 fibrillinopathies [Dietz et al., 1991; 

Collod-Beroud et al., 2003]. Diseases associated with FBN1 mutations are Marfan syndrome 

(MFS), dominant Weill-Marchesani syndrome, stiff skin syndrome, acromicric and geleophysic 

dysplasia, among others [Dietz et al., 1991; Tsipouras et al., 1992; Faivre et al., 2003; Loeys et 

al., 2010; Le Goff et al., 2011]. Among these, MFS is the most prevalent occurring 2-3 in every 

10000 individuals [Groth et al., 2015]. MFS is a heritable and progressive connective tissue 

disorder with over 3000 known mutations leading to multiple systemic pathologies in the 

cardiovascular, skeletal, ocular, and adipose tissue [Dietz et al., 1991; Pyeritz, 2000; Judge & 

Dietz, 2005; Kinori et al., 2017; Milewicz et al., 2021]. Among these pathologies, aortic aneurysm 
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is the most detrimental. Due to mutations of fibrillin-1 in MFS patients, improper fibrillin-

containing microfibril formation can lead to elastic fiber fragmentation [Canadas et al., 2010; 

Zhang et al., 2022]. Consequently, TAA in these patients occurs and eventually leads to aortic 

rupture which is the primary cause of death in MFS [Pyeritz, 2000].  

 

1.4 Dysregulated signaling related to TAA 

1.4.1 Embryonic origins of SMCs 

Among the layers in the aorta, the focus of interest of this thesis is the media layer in TAA, which 

is typically heavily remodelled by SMCs during disease progression. SMC heterogeneity in the 

media is a hallmark of 3 distinct embryological origins. SMCs located at aortic root and outer 

media layer throughout anterior and posterior ascending aorta are derived by Isl1+ secondary heart 

field (SHF) cells; SMCs located at the aortic arch and inner media layer throughout ascending 

aorta are derived from Wnt1+ cardiac neural crest (CNC) cells; SMCs located at descending aorta 

are derived from Meox1+ somites [Cai et al., 2003; Sun et al., 2007; Wasteson et al., 2008; Zhou 

& Pu, 2008; Zhang et al., 2018]. This heterogeneity does not only contribute to the variation of 

aneurysm region but also how SMCs from different origins respond to pathological signals. With 

elevated TGF-β, Smad signaling is defective in SHF-derived SMCs but elevated in CNC-derived 

SMCs [MacFarlane et al., 2019]. Furthermore, CNC-derived SMCs are prone to calcification 

which signifies severe aneurysm development, whereas the somite-derived SMCs are not [Leroux-

Berger et al., 2011].  

Another origin of SMCs is adventitia-derived Sca-1+ progenitor cells. These cells are not 

originated in the aortic media layer. However, they migrate from the adventitia into media layer 
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and differentiate into SMCs during artery injuries and aneurysm leading to the elevation of 

collagen levels and to a stiffer ECM [Kramann et al., 2016; Gharraee et al., 2022].  

 

1.4.2 Hypoxia-inducible factor 1 alpha 

Hypoxia-inducible factor 1 alpha (HIF-1α) is a transcription factor activated under hypoxic 

conditions [Wang & Semenza, 1995]. Under normoxic conditions, the proline residues of HIF-1α 

undergo oxygen-dependent hydroxylation by prolyl hydroxylase (PHD). The von Hippel-Lindau-

containing (VHL-containing) E3 ubiquitin ligase complex subsequently ubiquitinates HIF-1α, and 

consequently, HIF-1α is degraded by proteasomes. However, under hypoxic conditions, both PHD 

and VHL are phosphorylated and become inactive leading to an increased levels of HIF-

1α translocating to the nucleus [Ampofo et al., 2010; Di Conza et al., 2017]. Downstream signals 

associated with hypoxia responding element (HRE) are consequently elevated. This leads to 

elevation of matrix metalloproteinase-2, -9, -12, proteoglycan and collagen levels [Xiong & Liu, 

2017; Hiden et al., 2018; Oller et al., 2021; Shimomura et al., 2021]. Although both mRNA and 

protein levels of HIF-1α are elevated in MFS and non-MFS associated aortic aneurysms, the full 

mechanisms still require more investigations to understand the upstream and downstream 

pathways associated with HIF-1α in the MFS aorta [Liu et al., 2017; Li et al., 2018; Oller et al., 

2021; Zhang et al., 2022]. 

 

1.4.3 Matrix metalloproteinases 

Matrix metalloproteinases (MMPs) cause elastin degradation in the ascending artic wall leading 

to aortic aneurysm [Kadoglou & Liapis, 2004; Nagase et al., 2006; Rabkin, 2017]. Imbalance of 
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MMP enzymes and inhibitors leads to the degradation of vascular ECM and subsequently aortic 

aneurysm. Among these MMPs, MMP-2, -9 and -12 are the most recognized ones associated with 

thoracic aortic aneurysm [Xiong et al., 2012; Song et al., 2013; Rabkin, 2014; Tscheuschler et al., 

2016]. Different MMPs utilize different combinations of transcription factors binding to their 

promoter regions of the genes [Fanjul-Fernandez et al., 2010]. The above mentioned 3 MMPs are 

upregulated by HIF-1α, but only MMP-9 is regulated by nuclear factor kappa B which is a 

transcription factor regulated in inflammation [Robert et al., 2009; Li et al., 2013; Hiden et al., 

2018]. These MMPs are classified by their structural differences (Figure 1.4). Although they share 

structural homologies in the N-terminal propeptide, catalytic zinc-binding and hemopexin-like 

domains, MMP-2 and -9 have three extra FN-like repeats in their catalytic domain to interact with 

collagens or gelatins, whereas MMP-12 does not [Allan et al., 1995; Steffensen et al., 1995; Kim 

& Joh, 2012]. In addition, MMP-9 has a type V collagen-like domain, but MMP-2 and -12 do not 

[Wilhelm et al., 1989]. Despite the structural differences, all three MMPs are capable to degrade 

elastin mediated by a zinc-binding catalytic domain [Klein & Bischoff, 2011; Lu & Aikawa, 2015]. 

Therefore, MMP-2, -9 and -12 are often analyzed in MFS [Oller et al., 2021; Zhang et al., 2022]. 
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Figure 1.4: Schematic structure of MMP-2, -9 and -12. MMP-2, -9 and -12 have signal peptide, 
propeptide, catalytic domain, hinge region and hemopexin-like domain. Both MMP-2 and -9 have 
3 FN-like domains. MMP-9 has a unique type V collagen-like domain. MMP-12 is devoid of any 
FN-like or type V collagen-like domains. 

 

1.4.4 Proteoglycan 

Proteoglycans are important extracellular matrix proteins to maintain aortic structure. Under 

normal conditions, proteoglycans with their covalently attached long unbranched sulfated (and 

thus negatively charged) glycosaminoglycans retain water molecules to form a stable aortic 

structure and allow mechanosensing of smooth muscle cells to prevent deformation of blood 

vessels [LeBaron et al., 1992; Evanko et al., 1999; Azeloglu et al., 2008; Roccabianca et al., 

2014b]. Furthermore, proteoglycan promotes formation of elastic fibers [Merrilees et al., 2002]. 

However, in a pathological condition, proteoglycan is over-deposited in the ECM potentially 

mediated by HIF-1α [Cikach et al., 2018; Shimomura et al., 2021]. In this situation, smooth muscle 

cells can be over-pressurized leading to the loss of mechanosensing and cell integrity 

[Roccabianca et al., 2014b]. There are two types of proteoglycans known to be elevated in MFS: 

aggrecan and versican [Cikach et al., 2018; Yin et al., 2019]. 
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Aggrecan consists of three globular domains (G1, G2 and G3) and three extended domains (inter-

globular, keratan sulfate and chondroitin sulfate domain) [Kiani et al., 2002]. The G1 domain 

serves as an anchor to bind to hyaluronic acid and interacts with link protein to stabilize the 

formation of aggrecan [Watanabe et al., 1998; Kiani et al., 2002]. The inter-globular domain 

locates between G1 and G2 domains. This region is where the MMP-2, -9 and -12 cleaves to 

modulate the retention of water molecules [Little et al., 1999; Durigova et al., 2011]. Compared 

to MMPs, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) are 

capable and more efficient to cleave this region of the aggrecan [Durigova et al., 2011]. Following 

the inter-globular domain is G2 domain [Kiani et al., 2001]. The subsequent domain is keratan 

sulfate domain which holds water molecules in aggrecan with the negatively charged 

glycosaminoglycan chains [Kiani et al., 2001]. The next domain is chondroitin sulfate domain 

which is the largest aggrecan domain. Compared to keratan sulfate domain, chondroitin sulfate 

domain holds a larger amount of water leading to tissue swelling and stiffening [Urban et al., 

1979; Humphrey, 2013]. Among these domains in aggrecan, G2, keratan sulfate and chondroitin 

sulfate domain are required for product secretion [Kiani et al., 2001]. The C-terminal G3 domain 

connects to ECM molecules such as fibrillin-1 and fibulins [Aspberg et al., 1999; Olin et al., 2001; 

Isogai et al., 2002; Scuderi et al., 2010; Aspberg, 2012].  

Versican also share similar structure as aggrecan having G1, chondroitin sulfate, and G3 domains. 

Although versican lacks certain domains compared to aggrecan, it retains water molecules as well 

[McGee & Wagner, 2003]. However, aggrecan harbors more chondroitin sulfate chains than 

versican, and thus the potential of swelling pressure is greater. Therefore, aggrecan is suggested 

to be a more prominent root cause of aortic swelling compared to versican [Kiani et al., 2002; 

Humphrey, 2013; Roccabianca et al., 2014a].  
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1.4.5 Collagen 

Collagen is the most abundant protein in mammals and forms ~30% of body protein [Vuorio & de 

Crombrugghe, 1990; Di Lullo et al., 2002; Stefanovic, 2013]. Collagen does not only provide 

mechanical support for tissues but also modulates cell migration and signaling [da Rocha-Azevedo 

& Grinnell, 2013; Li et al., 2021; Schuh et al., 2022]. It consists of three polypeptide chains (α-

chains) to form a triple helix structure. The polypeptide chains are composed of Gly-X-Y repeating 

motifs. Glycine occupies every third residue in the polypeptide chains to form a tight configuration 

and resist pressure or stress. The X and Y amino acid motifs are often proline and hydroxyproline 

to support the helix structure of collagen [Beck et al., 2000]. Hydroxylation occurs through prolyl 

hydroxylase and lysyl hydroxylase to add a hydroxyl group to proline and lysine residues, 

respectively [Yamauchi & Shiiba, 2008; Sipila et al., 2018]. Glycosylation also occurs by adding 

carbohydrate to hydroxyl groups via galactosyltransferase (addition of galactose) and 

glycosyltransferase (addition of glucose) [Eyre et al., 1984]. Hydrogen bonds do not only stabilize 

the triple helix structure between hydroxylated proline and water but also hold the three 

polypeptide chains together connecting between the N-H group in glycine and C=O bonds in 

neighbouring chains [Bella & Berman, 1996; Rappu et al., 2019]. Immature procollagens are 

formed and secreted out of cells. To form tropocollagen, the loose ends at N- and C-terminal of 

procollagen molecules are cleaved by collagen peptidases [Orgel et al., 2000]. These 

tropocollagen molecules undergo copper-dependent crosslinking by lysyl oxidase to form mature 

collagen. A staggered pattern known as D-bands (~67 nm) are observed [Mallinger et al., 1992]. 

With its organized structure, collagen is recognized by its stability and resistance responding to 

stress compared to other ECM macromolecules [Sawicki et al., 2009]. 
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Multiple types of collagens form the basis of various tissues [Gelse et al., 2003]. Among them, 

collagen I and III which are fibrillar-forming collagens are recognized as highly deposited ECM 

in fibrotic tissues [Ely et al., 2010; Perrucci et al., 2020; Nettersheim et al., 2021]. Collagen I is 

composed of two α1 and one α2 chains encoded by the COL1A1 and COL1A2 genes, respectively, 

whereas collagen III is composed of three α1 chains encoded by the COL3A1 gene. Recent studies 

revealed that TAA in MFS is characterized by elevated total collagen protein levels and gene 

expressions of COL1A1 and COL3A1 [Perrucci et al., 2020; Nettersheim et al., 2021]. Dilating 

aorta in TAA is associated with a phenotypic switch of SMCs from healthy contractile state to 

synthetic state with increased production of ECM proteins including collagens. Additionally,  HIF-

1α is known to upregulate collagen levels, promoting fibrosis like phenotype in the aortic tissue 

[Xiong & Liu, 2017; Nam et al., 2021]. Higher levels of collagen in matrix eventually results in 

stiffening of the aortic wall and thereby lowering the aortic compliance [Zhu et al., 2006; Steed et 

al., 2010; Jadidi et al., 2021]. Therefore, collagen expression and deposition are important factors 

investigated in MFS. Based on the results presented in multiple studies, the current proposed 

mechanism of elastic fiber fragmentation in TAA is shown in the following model (Figure 1.5).  
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Figure 1.5: Schematic overview of known physiological drivers of  elastic fiber fragmentation 
leading to TAA in MFS. Alterations or deficiency of FBN1 in aorta is associated with elevation 
in hypoxia or HIF1-α, increased MMP secretion, and extensive ECM remodelling with higher 
levels of proteoglycans and collagens in matrix. Increased proteoglycans and collagens contribute 
to aortic stiffness, loss of mechanosensing and elasticity and elastic fiber fragmentation. 
Additionally, MMPs further degrade the elastic fibers contributing to further loss of elastic fiber 
system. These processes altogether contribute to weakening of aortic wall and dilation under the 
physiological hemodynamic stress. 

 

1.5 Marfan syndrome and sexual dimorphism  

1.5.1 Metabolism in Marfan syndrome 

Abnormal metabolism in individuals with MFS is characterized by a lipodystrophic phenotype 

with 36% being overweight or even obese (body mass indices of >30 kg/m2) [Erkula et al., 2002; 

Graul-Neumann et al., 2010; Yetman & McCrindle, 2010; Goldblatt et al., 2011; Jacquinet et al., 

2014; Passarge et al., 2016; von Kodolitsch et al., 2019; Hansen et al., 2020]. Adiposity increases 
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with age in MFS patients [Erkula et al., 2002; von Kodolitsch et al., 2019; Hansen et al., 2020]. 

With abnormal adipose tissue deposition, patients experience insulin resistance and type 2 diabetes 

mellitus and have a higher risk of cardiovascular diseases [Erkula et al., 2002; Orio et al., 2007; 

Graul-Neumann et al., 2010; Yetman & McCrindle, 2010; Goldblatt et al., 2011; Bastien et al., 

2012; Jacquinet et al., 2014; Passarge et al., 2016; von Kodolitsch et al., 2019; Hansen et al., 

2020; Zheng et al., 2021]. To study MFS, Fbn1mgR/mgR (mgR) mice are used in this study. This 

mouse model has an insertion of a “neo-cassette” in the intron between exons 18 and 19 in the 

Fbn1 gene, leading to a reduction of FBN1 protein to 20-25%, long bone overgrowth and kyphosis 

[Pereira et al., 1999]. Male mgR mice are more susceptible to weight gain compared to female 

mgR mice [Muthu et al., 2022]. Surprisingly, the C-terminal half of FBN1 attenuates adipogenic 

differentiation, suggesting the inhibition of adipogenesis in early commitment [Muthu et al., 2022]. 

However, the response to high-calorie diet in MFS is not investigated extensively. 

 

1.5.2 Thoracic aortic aneurysms and aortic dissection in Marfan syndrome 

Thoracic ascending aortic aneurysms (TAA) increase the risk of dissection (TAAD), a more severe 

form of aortic complication with tears in the inner layer of aortic wall [Pape et al., 2007; Cheung 

et al., 2017; Chung et al., 2020]. Nearly 70% of patients who have no genetic etiology and 

experience TAAD are male individuals, showing that men are more prone to TAAD than women, 

but the risk of TAAD in women with TAA is three times higher than men [Juvonen et al., 1997; 

Davies et al., 2002; Nienaber et al., 2004]. Furthermore, women have 40% higher chance to die 

from TAA than men [Pape et al., 2007; Cheung et al., 2017]. This parallels with TAA or TAAD 

prevalence in MFS. In MFS, TAA occurs more severe and earlier in men than in women [Detaint 

et al., 2010; Roman et al., 2017]. However, women with MFS experienced higher TAAD rates at 
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later stages of their lives than men [Meijboom et al., 2005]. Possibly, in women, estrogen 

decreasing with increasing age may lead to a higher risk of aneurysm [Wu et al., 2007; Tripathi et 

al., 2017; Qi et al., 2020]. The mgR mice also experience severe TAA and die around 12 to 16 

weeks of age [Pereira et al., 1999]. Aortae in male mgR mice are more dilated than aortae in 

female mgR mice even as early as 4 weeks of age, revealing the sexual dimorphism of TAA [Zhang 

et al., 2022]. 

 

1.5.3 High-calorie-induced metabolism and aneurysm 

Although the consequence of high-calorie diet in metabolism and aneurysm have not been studied 

in MFS, a high-calorie diet promotes abnormal metabolism and non-thoracic aortic aneurysm. The 

high-calorie diets can contain high fat, high sucrose or a combination of both (western diet), and 

induce insulin resistance, obesity and non-alcoholic fatty liver disease with elevation of 

inflammation markers [Lackey et al., 2016; Stanhope, 2016; Taskinen et al., 2019; Liang et al., 

2022]. Although both fat and sucrose can contribute to abnormal metabolic phenotypes, a study 

emphasizes that sucrose induces non-alcoholic fatty liver phenotype stronger than fat [Ishimoto et 

al., 2013]. Both high fat and high sucrose diets promote inflammation and collagen levels in 

abdominal aortic aneurysm [Miyamoto et al., 2018; Takahara et al., 2018; Shimizu et al., 2019; 

Xu et al., 2019]. Excess adiposity often correlates with aortic aneurysm progression in humans, 

but the high-calorie-induced consequence in TAA is not studied [Yetman & McCrindle, 2010].  
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1.6 Rationale, hypotheses and objectives 

1.6.1 Rationale  

Individuals with MFS are characterized by the mutations in the FBN1 gene, leading to abnormal 

metabolism (obesity and lipodystrophy) and TAA. Previous studies from the Reinhardt laboratory 

showed the sexual dimorphism of MFS metabolism and aneurysm correlating with clinical data 

[Muthu et al., 2022; Zhang et al., 2022]. In addition, high-calorie diets contribute to abnormal 

metabolism and multiple cardiovascular diseases [Yetman & McCrindle, 2010; Lackey et al., 

2016; Takahara et al., 2018; Shimizu et al., 2019; Xu et al., 2019; Liang et al., 2022]. However, 

there are no studies on the consequence of these diets in MFS metabolism and TAA. 

 

1.6.2 Hypotheses  

We hypothesize that high-calorie diets will worsen body metabolism and promote aortic aneurysm 

development in MFS. Based on previous data in the lab, we also hypothesize that MFS females 

are protected from metabolic phenotypes and aneurysm development, responding to high-calorie 

diets compared to MFS males.  

 

1.6.3 Objectives 

This MSc project aimed to characterize and investigate the consequences of high-calorie diets in 

male and female MFS metabolism and TAA with these specific objectives: 

1. Investigate the role of high-calorie diet and sex in metabolic phenotype of MFS mice 

2. Study the consequence of high-calorie diet and sex in TAA of MFS mice 
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Mouse model and diets 

The McGill University Animal Care Committee approved all experimental procedures following 

the guidelines of the Canadian Council on Animal Care (Protocol #2014-7561). Fbn1mgR/mgR (mgR) 

mice were kindly provided by Dr. Francesco Ramirez at the Icahn School of Medicine at Mount 

Sinai in New York. These mice have a neomycin cassette inserted in the Fbn1 gene between exons 

18 and 19 which leads to a transcriptional interference ultimately reducing normal fibrillin-1 levels 

to 20-25% compared to wild-type (WT) mice. Consequently, the mgR mice experienced severe 

aortic aneurysm, leading to death around 12 to 16 weeks of age [Pereira et al., 1999]. WT mice 

from the same breeding were used as a littermate control in the study. Both mgR and WT mice 

were on the C57BL/6J genetic background and housed in a pathogen-free animal facility. Male 

Fbn1mgR/+ (mgR/+) were bred with female WT mice purchased from Jackson Laboratories as 

backcrossing to generate mgR/+ and WT mice and prevent genetic drift. From the backcrossing, 

male mgR/+ mice were bred with female mgR/+ mice to generate WT, mgR/+ and mgR mice. WT 

and mgR mice were used for experiments. The mgR mouse colonies were fed with chow diet 

(grain-based) purchased from Envigo, USA (Cat #2920X). All mice were maintained under 12 h 

of light-dark cycle. For the experiments, male and female WT and mgR mice were fed from 4-12 

weeks of age with control (10% fat), high fat (60% fat) and western diet (45% fat; 30% sucrose) 

purchased from Research Diets (Figure 2.1, Table 2.1). Breakdown of number of mice per 

genotype per diet that was used in the study for both sexes in various experiments are provided in 

Table 2.2. The survival of each mouse was recorded daily to obtain a Kaplan-Meier survival curve. 

The cause of death due to aortic rupture in these mice was determined through dissection.  
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Figure 2.1: Timeline of experiments. Male and female WT and mgR mice were fed for 8 weeks 
starting at 4 weeks with CD, HFD or WD as outlined in Table 2.1. ITT was performed at 10 weeks 
and GTT at 11 weeks of age. At 12 weeks of age, the mice were euthanized and the aortae were 
perfused and dissected.  

 

 

Table 2.1: Composition of diets used in this study. 

Type of diet 
Control diet 
(CD) 

High fat diet 
(HFD) 

western diet 
(WD) 

Product ID D12450KY D08060104B D08112601R 
 %kcal %gm %kcal %gm %kcal %gm 
Protein 20 19 20 26 20 24 
Carbohydrate 70 67 20 26 35 41 
Fat 10 4 60 35 45 24 
Other 0 10 0 13 0 11 
Total  100 100 100 100  100 100  
Selected key ingredients modified from control diet (highlighted) 
 kcal gm Kcal gm kcal gm 
Lard (fat) 180 20 2205 245 1598 178 
Sucrose 
(sugar) 0 0 0 0 1182 296 
Total kcal 4057  4057  4057  
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Table 2.2: Overview of number of mice in each sex, genotypes and diets. 

Sex Genotype Diet Total 
Male WT CD 20 

mgR CD 25 
WT HFD 15 
mgR HFD 21 
WT WD 15 
mgR WD 16 

Female WT CD 17 
mgR CD 17 
WT HFD 17 
mgR HFD 19 
WT WD 14 
mgR WD 15 

 

The initial body mass was measured before providing known food quantities. Body mass and left-

over food mass were determined weekly until the experimental endpoint. The difference of 

provided food quantities and left-over food quantities was determined to capture the total food 

consumption. By converting grams to kilocalories based on each diet (see Table 2.1) and dividing 

by the number of days consuming the food, food consumption was analyzed for each mouse. At 

10 weeks of age, insulin tolerance test (ITT) was performed in the afternoon after starving the mice 

for 6 h. At 11 weeks of age, glucose tolerance test (GTT) was performed in the morning after 

starving the mice for 12 h overnight. This experimental setup was standardized based on numerous 

literature evidences and the previous published work from lab, giving stable readouts during the 

course of study [Lundbaek, 1962; Okita et al., 2014; Vinue & Gonzalez-Navarro, 2015; Benede-

Ubieto et al., 2020]. A drop of blood was collected by puncturing gently the tail vein with a needle 

and measured by dipping the blood glucose strips into the blood. The blood glucose level was 

measured by a blood glucometer (Verio Flex, OneTouch) immediately before (time 0) and after 

15, 30, 60, 90 and 120 min of intraperitoneal insulin (0.75 U/kg) or glucose (2 g/kg) injection. 
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Mice were euthanized by overdosed ketamine/xylazine/acepromazine cocktail (100/10/3 mg/kg) 

intraperitoneal injection at 12 weeks of age. Tibiae from male and female WT and mgR mice were 

dissected and the length was measured. Following phosphate-buffered saline (PBS) perfusion for 

3 min, thoracic aortae were micro-dissected for gross tissue image recording. 

 

2.2 Genotyping 

The genomic DNA was extracted from mouse tails, followed by polymerase chain reaction (PCR) 

using the protocol and materials from the Fast Lysis-PCR Genotyping Kit (ZmTech Scientifique, 

GT-001P). WT mice generated a 690 bp product, and mgR mice generated a 480 bp product due 

to the neo-cassette disrupting the Fbn1 gene (Figure 2.2). The forward (5’-

GGGTAAAGGATGCACATATGTAAAGTGGTGC-3’), reverse (5’- 

AATCCAGTACTAGGAGGAGAAGGCCATG-3’) and neo-cassette (5’- 

GCCAAGTTCTAATTCCATCAGAAGCTGGTC-3’) primers were used at 250 nM 

concentration in the PCR reaction.  
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Figure 2.2: Genotyping of WT, mgR and mgR/+ mice. WT, mgR and mgR/+ mice generated a 
690 bp, 480 bp and a combination of both 690 bp and 480 bp, respectively. Marker bands are 
shown on the left. 

 

2.3 Measurement of in situ aortic diameters and preparations for histological and RNA 

analyses 

After perfusion with PBS, the diameter of the most dilated region perpendicular to the aortic wall 

was measured on images of the dissected aortae. For histological analysis, the aortae were perfused 

with an additional 4% paraformaldehyde in PBS for 2 min and fixated in a different 4% 

paraformaldehyde in PBS at 4°C overnight. The aortae were then washed with PBS 3 times and 

embedded in paraffin. The tissues were sectioned at 5 μm per section followed by deparaffinization 

through baking slides at 65°C for 45 min and incubating the slides in CitriSolv (Decon Labs) 2 

times 5 min each. Hydration was conducted by decreasing the percentage of ethanol (from 100% 
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to 0% ethanol) and simultaneously increasing the water content. Indirect immunofluorescence or 

histological staining was conducted immediately after this procedure. For RNA analysis at a later 

time, aortae were snap-frozen in liquid nitrogen and immediately transferred to a -80°C freezer. 

 

2.4 Quantification of aortic lumen area and wall thickness 

Autofluorescence images were captured by Axio Imager M2 microscope (Zeiss) equipped with an 

ORCA-flash 4.0 camera (Hamamatsu) at 50× magnification using the 517 nm filter. Both 

perimeter of outer elastic laminae (Po) and inner elastic laminae (Pi) were measured by ImageJ. 

The lumen area was determined according to this formula: lumen area = π × (Pi/2π)2. To measure 

the aortic wall thickness, this formula was used:  Wall thickness = (Po – Pi) / 2π.  

 

2.5 Indirect immunofluorescence 

After deparaffinization, both antigen retrieval methods using citric acid buffer (10 mM citric acid, 

pH 6.0, 0.05% Tween 20: 20 min) dissolved in distilled water and consecutively protease XXIV 

(10 μM, Sigma-Aldrich, Cat #P8038: 5 min) dissolved in 50 mM Tris-HCl, pH 7.6 were 

performed. The sections were washed with Tris-buffered saline with 0.05% Tween (TBST) for 3 

times (5 min each) followed by blocking with 2% bovine serum albumin for 1 h. The sections were 

incubated with primary antibodies using α-rF6H polyclonal anti-fibrillin-1 antiserum [Tiedemann 

et al., 2001], anti-HIF-1α (Novus Biologicals, Cat #NB100-479) and anti-MMP12 (Abcam, Cat 

#ab52897) at 1:1000, 1:200 and 1:500 dilution, respectively, overnight at 4°C. The sections were 

later incubated with secondary antibodies using goat anti-rabbit Cy5-conjugated antibody 

(ThermoFisher, Cat #A10523) for 1 h at room temperature at 1:200 dilution. Nuclei were stained 
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with Vectashield containing 4′, 6-diamidino-2-phenylindole (DAPI) (Vector labs, Cat 

#VECTH1200). No primary antibody control was used as the non-specific binding control (Figure 

2.3). Immunofluorescence images were taken using an Axio Imager M2 microscope (Zeiss) 

equipped with an ORCA-flash 4.0 camera (Hamamatsu). The fluorescence signal was detected at 

517 nm (green: autofluorescence), 673 nm (red: target protein), and 465 nm (blue: DAPI). Mean 

intensity of fibrillin-1, HIF-1α and MMP-12 were quantified with original images in the tiff format 

using ImageJ [Schneider et al., 2012; Zhang et al., 2020]. Multiple images were taken to cover 

70-80% of the entire aorta. 

 

 

Figure 2.3: No primary antibody control of aorta from a male WT mouse. Autofluorescence, 
primary antibody and DAPI fluorescence signals were detected at 517 nm, 673 nm, and 465 nm, 
respectively. 

 

2.6 Histological staining 

To quantify elastic fiber fragmentation, proteoglycan and collagen deposition levels, the aorta 

sections were stained using Hart’s, alcian blue and picrosirus red staining procedures, respectively. 

For Hart’s staining, the aorta sections were incubated in resorcin fuchsin solution (PolyScientific 
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R&D, Cat #s265s) for 6 h and counter-stained by metanil yellow (Sigma, Cat #M7276) solution 

for 5 min. These solutions were produced as previously described [Davis & Li, 2017]. To stain 

proteoglycan, alcian blue powder (Sigma, A5268-10G) was solubilized in 3% acetic acid at a 

1g:100mL ratio. The pH was adjusted to 2.5 with acetic acid before usage. The aorta sections were 

incubated in the alcian blue solution for 30 min. To stain collagen, aorta sections were stained by 

picrosirus red (Abcam, ab150681) for 1 h and rinsed by 0.5% acetic acid solution based on the 

recommended protocol. The sections were then dehydrated to absolute alcohol and incubated in 

CitriSolv (Decon Labs) for 5 min. Lastly, the sections were mounted with Permount (Fisher, SP15-

100). Images were captured with an Axio Imager M2 bright field microscope (Zeiss) equipped 

with an AxioCam ICc5 colour camera. Elastic fiber fragmentation of the entire aorta section was 

quantified by two independent researchers blinded to the sample groups and normalized to the 

total area of aortic wall. For quantification of alcian blue and picrosirius red staining, 

immunohistochemistry toolbox in ImageJ was used for quantifying the intensity of histological 

staining [Shu et al., 2016]. Multiple images were taken covering 70-80% of the entire aorta section 

for alcian blue and picrosirius red staining. 

 

2.7 RNA extraction and real-time quantitative PCR (qPCR) 

Total RNA was extracted from the aortae through sonification (Branson sonifier 150) and the 

RNeasy Kit (Qiagen, Cat #217004), following the manufacturer’s instructions. The mRNAs 

isolated from the aortae were reverse transcribed into cDNAs using the ProtoScript II First-Strand 

Synthesis System (New England Biolabs, Ipswich, MA, USA, Cat #E6560S). To quantify 

mRNAs, qPCR was conducted on the cDNA products using SYBR Green SelectMaster Mix 

(Applied Biosystems, Cat #4472908). The qPCR began by running at 50°C for 2 min and at 95°C 
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for 2 min to initiate. Afterwards, the qPCR was followed by 40 cycles of 3-step cycling program: 

denaturation at 95°C for 15 s, annealing at 58°C for 15 s and extension at 72°C for 1 min. 

Postamplification melting curve analysis was performed and target mRNA expression level was 

measured through delta-delta Ct method. Mouse-specific forward and reverse primers of the target 

genes at 5μM were used for qPCR (Table 2.2). Gapdh was used as the reference gene.  

 

Table 2.3: Mouse-specific primers used for qPCR. 

Gene Forward (5’-3’) Reverse (5’-3’) 
Fbn1 GGTAGTGGATTCTCTGAGAC  GGCGTATTGCACATGCTGTG  
Hif1a ACTTCTGGATGCCGGTGGTC CGCCGTCATCTGTTAGCACC 
Mmp2 TCGCAGTGATGGCTTCCTC AAACAAGGCTTCATGGGGGC 
Mmp9 CACCACAGCCAACTATGACC AGGAAGACGAAGGGGAAGAC 
Mmp12 GGCCATTCCTTGGGGCTGCA GGGGGTTTCACTGGGGCTCC 
Acan TCAGAAGGGTCAGGGGAGAC AGTGTCCAAGGCATCCACGC 
Vcan ACTACAAGGGGCGAGTGTCC ATCACATCGGTAGACGCCTG 
Col1a1 TGCTCCTCTTAGGGGCCACT TTTCCACGTCTCACCATTGGG 
Col3a1 AGGTGAACCCGGCAAGAACG CCATCTTCGCCCTTAGGTCC 
Gapdh CACTCTTCCACCTTCGATGC  CACCACCCTGTTGCTGTAGC  

 

 

2.8 Statistics  

For the Kaplan-Meier analyses, the survival rate comparisons were analyzed by the log-rank test. 

All other data are shown as means ± standard error of the mean (SEM). For growth curves, ITT 

and GTT, the means comparisons were analyzed by 2-way ANOVA with repeated measures 

Tukey’s test, whereas for other analyses, the means comparisons were analyzed by 3-way ANOVA 

Tukey’s test. All statistical analyses were performed using OriginPro version 2021 software 
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(OriginLab). Outliers were detected by Grubb’s test with confidence levels of 95%. In all relative 

analyses, the value of the male WT mice fed with CD was set to 1. 
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CHAPTER 3: METABOLIC ANALYSIS OF MALE AND FEMALE MGR 

MICE FED WITH HIGH-CALORIE DIETS 

3.1 HFD- and WD-induced weight gain in male and female mgR mice 

Male and female WT and mgR littermates were fed with CD, HFD or WD starting from 4 to 12 

weeks of age. The body mass was recorded weekly to determine weight gain throughout the 

duration of the HFD and WD period (Figure 3.1). There was no difference in body mass between 

male WT and mgR mice when fed with CD, HFD or WD. However, female mgR mice were 

significantly heavier than female WT mice when fed with CD starting from 8 weeks of age but not 

with HFD or WD (Figure 3.1A). Both male WT and mgR mice increased weight starting from 5 

weeks of age when fed with HFD or WD, confirming the expected consequences of these high-

calorie diets. This was similar in female WT mice, whereas female mgR mice were protected from 

weight gain fed with HFD or WD (Figure 3.1B). Therefore, male mgR were heavier than female 

mgR mice when fed with HFD starting from 5 weeks of age or fed with WD starting from 8 weeks 

of age (Figure 3.1C). Comparing male and female mice fed with the high-calorie diets, the female 

mgR mice resisted weight gain when fed with HFD or WD, but not the male mgR mice. 



35 
 

 

Figure 3.1: Relative body mass of 4-12-week-old male and female WT and mgR mice fed 
with CD, HFD or WD. (Figure legend next page) 
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Figure 3.1: Relative body mass of 4-12-week-old male and female WT and mgR mice fed 
with CD, HFD or WD. (Figure legend continued) 

The weight of each mouse at 4 weeks of age was set to 100%. (A) Genotype-dependent differences 
of male (top panel) and female (bottom panel) mice fed with CD (left column), HFD (middle 
column) or WD (right column). (B) Diet-dependent differences of male (top panel) and female 
(bottom panel) WT (left column) and mgR mice (right column). * compared HFD to CD; # 
compared WD to CD. (C) Sex-dependent differences of WT (top panel) and mgR (bottom panel) 
mice fed with CD (left column), HFD (middle column) or WD (right column). Data are represented 
as means ± SEM, n = 6–9 mice per group. Significance was assessed by 2-way ANOVA repeated 
measures and indicated as *p<0.05, **p<0.01, ***p<0.001, #p<0.05, ##p<0.01, and ###p<0.001.  

 

3.2 HFD- and WD-induced final body parameters in male and female mgR mice 

The final body mass and tibia length of male and female WT and mgR mice were determined at 

the experimental endpoint (12 weeks of age) (Figure 3.2A and B). To examine the overweight 

phenotype, body mass was normalized to the tibia length. The results correlate with the previous 

data in that male mgR mice were susceptible to weight gain but not the female mgR mice when 

fed with HFD. However, WD had no consequence in weight gain for both male and female mgR 

mice. Overall, male mgR mice were heavier than female mgR mice but only when fed with HFD 

or WD (Figure 3.2C). There was no difference in mgR mice except that female mgR mice fed 

with HFD had an increased food consumption while having a lower body mass (Figure 3.2D). 

This data further emphasizes the protective phenotype of the female mgR mice against weight 

gain.  
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Figure 3.2: Body parameters and food consumption of 12-week-old male and female WT and 
mgR mice fed with CD, HFD or WD. (A) Body mass. (B) Tibia length. (C) Body mass/tibia 
length. (D) Food consumption. Each data point represents an individual mouse and error bars 
represent ± SEM, n = 6–9 mice per group. Significance was assessed by 3-way ANOVA and 
indicated as *p<0.05, **p<0.01, and ***p<0.001. 
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3.3 HFD- and WD-induced insulin intolerance in male and female mgR mice  

To evaluate insulin sensitivity, ITT was performed 2 weeks before the experimental endpoint of 

12 weeks (Figure 3.3). Male WT mice fed with HFD but not with CD or WD showed a higher 

blood glucose level than male mgR mice from 15 to 60 min of ITT (Figure 3.3A). Female WT 

mice had a higher blood glucose level than female mgR mice that were fed with CD but not with 

HFD from 15 to 30 min of ITT (Figure 3.3A). However, there was no difference in blood glucose 

level when the area under the curve (AUC) was plotted comparing WT with mgR mice (Figure 

3.3D). This revealed that genotype alone could not affect insulin sensitivity.  

The role of HFD or WD alone was evaluated in insulin resistance as well. HFD did not affect the 

blood glucose level in male or female mice throughout the duration of ITT, whereas WD lowered 

it from 30 to 60 min of insulin injection in male WT mice and from 15 to 60 min in female WT 

mice (Figure 3.3B). Despite these differences, AUC only showed the reduced level of blood 

glucose in female WT mice fed with WD but not in male WT mice, revealing that WD had less 

effect in male WT than female WT mice (Figure 3.3D). These differences were not observed 

between different diets in male or female mgR mice demonstrated from the ITT curves and AUC, 

revealing that both male and female mgR mice had improved insulin sensitivity in response to 

HFD or WD compared to CD (Figure 3.3B and D). Although males and females responded to 

HFD or WD differently in insulin sensitivity, there was no difference between them when fed with 

HFD or WD (Figure 3.3C and D).  
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Figure 3.3: ITT of 12-week-old male and female WT and mgR mice fed with CD, HFD or 
WD. (Figure legend next page) 
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Figure 3.3: ITT of 12-week-old male and female WT and mgR mice fed with CD, HFD or 
WD. (Figure legend continued)  

(A) Genotype-dependent differences of male (top panel) and female (bottom panel) mice fed with 
CD (left column), HFD (middle column) or WD (right column). (B) Diet-dependent differences 
of male (top panel) and female (bottom panel) WT (left column) and mgR mice (right column). * 
compared HFD to CD; # compared WD to CD. (C) Sex-dependent differences of WT (top panel) 
and mgR (bottom panel) mice fed with CD (left column), HFD (middle column) or WD (right 
column). (D) Quantification of area under the curve. Data are means ± SEM, n = 6–9 mice per 
group. Significance was assessed by 2-way ANOVA repeated measures or 3-way ANOVA 
depending on the analysis mentioned in the method section. Significance was indicated as *p<0.05, 
**p<0.01, ***p<0.001, #p<0.05, ##p<0.01, and ###p<0.001.  

 

3.4 HFD- and WD-induced glucose intolerance in male and female mgR mice 

GTT was performed 1 week before the experimental endpoint to evaluate the glucose intolerance 

in male and female WT and mgR mice (Figure 3.4). Genotype and diet alone did not contribute 

to a difference in glucose intolerance among these mice demonstrated from the GTT curves and 

AUC (Figure 3.4A, B and D). Male WT mice were more glucose intolerant than female WT mice 

when fed with HFD but not with WD. However, HFD-fed male and female mgR mice did not have 

different glucose intolerance compared to CD, revealing their improved metabolic phenotype 

(Figure 3.4C and D). Therefore, both male and female mgR mice were resistant to HFD-and WD-

induced glucose intolerance. 
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Figure 3.4: GTT of 12-week-old male and female WT and mgR mice fed with CD, HFD or 
WD. (Figure legend next page) 
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Figure 3.4: GTT of 12-week-old male and female WT and mgR mice fed with CD, HFD or 
WD. (Figure legend continued) 

(A) Genotype-dependent differences of male (top panel) and female (bottom panel) mice fed with 
CD (left column), HFD (middle column) or WD (right column). (B) Diet-dependent differences 
of male (top panel) and female (bottom panel) WT (left column) and mgR mice (right column). * 
compared HFD to CD; # compared WD to CD. (C) Sex-dependent differences of WT (top panel) 
and mgR (bottom panel) mice fed with CD (left column), HFD (middle column) or WD (right 
column). (D) Quantification of area under the curve. Data are means ± SEM, n = 6–9 mice per 
group. Significance was assessed by 2-way ANOVA repeated measures or 3-way ANOVA 
depending on the analysis mentioned in the Methods. Significance was indicated as *p<0.05, 
**p<0.01, ***p<0.001, #p<0.05, ##p<0.01, and ###p<0.001. 
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CHAPTER 4: SURVIVAL ANALYSIS AND CHARACTERIZATION OF 

AORTAE IN MALE AND FEMALE MGR MICE FED WITH HIGH-

CALORIE DIETS 

4.1 Overall survival and aortic-rupture-specific survival in male and female mgR mice fed 

with CD, HFD or WD 

To evaluate the role of high calorie diet and biological sex in survival, Kaplan-Meier analysis was 

conducted (Figure 4). The overall survival rate was lower in male and female mgR mice fed with 

HFD (male: 76%; female: 79%) than the respective WT mice fed with HFD (male: 100%; female: 

100%) but not with CD (male WT: 90%; male mgR: 64%; female WT: 88%; female mgR: 88%) 

or WD (male WT: 93%; male mgR: 81%; female WT: 100%; female mgR: 87%). Diet or sex alone 

did not affect the survival of these mice (Figure 4.1A, B and C, Table 4.1). To determine the role 

of aortic complication in survival, the cause of death due to aortic rupture was validated by 

dissection followed by aortic-rupture-specific survival analysis. Both male and female WT mice 

did not experience death caused by aortic rupture. Male mgR mice had a lower survival rate than 

male WT mice when they were fed with CD (WT: 100%; mgR: 76%) but not with HFD (male 

WT: 100%; male mgR: 80%) or WD (WT: 100%; mgR: 81%), whereas female mgR and WT mice 

showed the same aortic-rupture-specific survival rate when fed with CD (WT: 100%; mgR: 100%), 

HFD (WT: 100%; mgR: 94%) or WD (WT: 100%; mgR: 93%). Diet alone did not contribute to 

differences in survival caused by aortic rupture, but biological sex difference did. The male mgR 

mice demonstrated a lower aortic-rupture-specific survival than female mgR mice when fed with 

CD but not with HFD or WD, revealing the sexual dimorphism between male and female mgR 

mice responding to the diets (Figure 4.1D, E and F, Table 4.1). These results showed 
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unexpectedly that HFD or WD rescued premature death in male mgR mice by reducing aortic 

rupture incidences. 
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Figure 4.1: Survival of 4-12-week-old male and female WT and mgR mice fed with CD, HFD 
or WD. (Figure legend next page)  
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Figure 4.1: Survival of 4-12-week-old male and female WT and mgR mice fed with CD, HFD 
or WD. (Figure legend continued) 

(A–C) Overall survival curves including all causes of death. (D–F) Aortic-rupture-specific 
survival curves. (A and D) Male WT and mgR mice fed with CD, HFD or WD. (B and E) Female 
WT and mgR mice fed with CD, HFD or WD. (C and F) Male (blue) and female (red) mgR mice 
fed with CD, HFD or WD. Survival curves are shown from 4-12 weeks of age, n = 14–21 mice 
per group. Significance was assessed by log-rank test and indicated as *p<0.05. 

 

 

Table 4.1: Survival of mice fed with CD, HFD or WD at the experimental endpoint of 12 
weeks. 

Sex Genotype Diet Overall survival  
(all causes of death) in % 

Aortic-rupture-specific 
survival in % 

Male WT 

 

CD 90 100 
HFD 100 100 
WD 93 100 

mgR 

 

CD 64 76 
HFD 76 80 
WD 81 81 

Female WT CD 88 100 
HFD 100 100 
WD 100 100 

mgR CD 88 100 
HFD 79 94 
WD 87 93 

 

 

4.2 Analysis of aortae of male and female mgR mice fed with CD, HFD or WD (gross view) 

Aneurysms which are known to increase the risk of aortic rupture were analyzed from the gross 

view of dissected aortae [Condemi et al., 2020]. Variations of aneurysm region (aortic root versus 

arch) and severity (less or more dilated) were observed in both male and female mgR mice (Figure 

4.2A). We observed no signs of dilation in the descending aortae for both genotypes and sexes, 

under any of the dietary conditions. Therefore, the focus of the study was only ascending aorta. 

While measuring aneurysmal dilation, the aortic diameter was measured at the most dilated part 
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of the ascending aorta. Aortae from both male and female mgR mice dilated ≥2-fold than male and 

female WT mice when they were fed with CD, HFD or WD, except female mgR mice fed with 

HFD. Diet alone did not contribute to the difference in aortic diameter, but biological sex did. 

Aortae from HFD-fed female mgR mice were less dilated than HFD-fed male mgR mice but not 

in CD or WD (Figure 4.2A–D). Since HFD reduced aortic aneurysm in female mgR mice, our 

studies focused on CD and HFD by analyzing various aneurysm phenotypes and its downstream 

effectors. 
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Figure 4.2: Analysis of thoracic aortae from male and female WT and mgR mice fed with 
CD, HFD or WD at 12 weeks. (A) Gross view of the entire thoracic aortae. (B) The most dilated 
region in each aorta shown in A was quantified and plotted according to the genotype, diets, and 
biological sex as indicated on the x-axis. Each data point represents an individual mouse and error 
bars represent ± SEM, n = 5–10 mice per group. Significance was assessed by 3-way ANOVA and 
indicated as *p<0.05, **p<0.01, and ***p<0.001. 
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4.3 Analysis of aortae of male and female mgR mice fed with CD or HFD (cross section) 

To further characterize ascending aortic aneurysms, the aortic lumen area and wall thickness were 

determined in male and female WT and mgR mice fed with CD or HFD using cross sections 

(Figure 4.3). The aortae from the male mgR mice showed a greater lumen area than male WT 

mice fed with CD (3.3-fold) or HFD (2.5-fold) (Figure 4.3A and B). The aortic wall was also 

thicker in male mgR than in WT mice fed with CD (1.7-fold) or HFD (1.6-fold) (Figure 4.3A and 

C). In females, the lumen area was greater in CD-fed mgR mice (3.9-fold) than in CD-fed WT 

mice, but the difference was lost when they were fed with HFD (Figure 4.3A and B). The aortic 

wall thickness was not different between female WT and mgR mice fed with CD or HFD, 

emphasizing that the aortic wall only thickened in male mgR mice over the course of the 

experiment (Figure 4.3A and C). Diet or sex alone did not contribute to changes in lumen area or 

thickness (Figure 4.3A–C). When analyzed through histology, the adipocytes in perivascular 

adipose tissues from both male and female mice under all dietary conditions did not exhibit any 

observable hypertrophy or hyperplasia. Therefore, analysis of perivascular fat depot was excluded 

from the study. 
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Figure 4.3: Ascending aortic lumen area and thickness of male and female WT and mgR 
mice fed with CD, HFD or WD at 12 weeks of age. (A) Autofluorescence images of aorta cross 
sections taken at 50× magnification. Arrows point to the ascending aorta. (B) Quantification of 
lumen area. Note that the procedure was independent of the tissue shape as explained in Material 
and Methods. (C) Quantification of aortic wall thickness. Each data point represents an individual 
mouse and error bars represent ± SEM, n = 6–9 mice per group. Significance was assessed by 3-
way ANOVA and indicated as *p<0.05, **p<0.01, and ***p<0.001. 
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4.4 HFD-induced changes in FBN1 deposition, assembly and gene expression levels of male 

and female mgR mice  

FBN1 plays an important role in elastogenesis and the aortic phenotype in MFS [Pereira et al., 

1999; Sabatier et al., 2009; Sabatier et al., 2014; Kumra et al., 2019; Zhang et al., 2022]. Yet, the 

role of HFD and biological sex in FBN1 deposition and assembly was not studied. As expected, 

immunofluorescence staining revealed that both male and female WT mice had a higher FBN1 

deposition in the ascending aorta than male and female mgR mice fed with CD or HFD (Figure 

4.4A and B). FBN1 fibers in mgR ascending aortae appeared thinner and more fragmented than 

in WT aortae, but aortae from both WT and mgR mice deposited more FBN1 in the adventitia and 

the intimal endothelial layer under all these conditions. HFD alone did not contribute to the 

difference in FBN1 deposition or assembly in males or females. Unexpectedly, FBN1 was 

deposited more in male WT mice fed with HFD than in female WT mice fed with HFD but not in 

mgR mice whose FBN1 deposition was only genotype-dependent (Figure 4.4A and B). 

Surprisingly, the Fbn1 gene expression was not different under all conditions (Figure 4.4C).  
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Figure 4.4: FBN1 deposition, assembly and Fbn1 gene expression levels in ascending aortae 
from male and female WT and mgR mice fed with CD or HFD at 12 weeks of age. (A) 
Immunofluorescence analysis of FBN1. Autofluorescence of the aorta is shown in green, whereas 
nuclear counterstain with DAPI is shown in blue for all images. (B) Quantification of FBN1 
protein levels quantified from images as shown in A. (C) Analysis of Fbn1 gene expression levels 
by qPCR. Each data point represents an individual mouse and error bars represent ± SEM, n = 6–
9 mice per group. Significance was assessed by 3-way ANOVA and indicated as *p<0.05, 
**p<0.01, and ***p<0.001. 
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4.5 HFD-induced changes in HIF-1α protein and gene expression levels of male and female 

mgR mice 

HIF-1α is a major modulator of hypoxia, which is a known characteristic of the MFS aorta [Oller 

et al., 2021; Zhang et al., 2022]. The role of HFD and sex in modulating HIF-1α levels in the 

ascending aortae were analyzed through immunofluorescence (Figure 4.5A and B). Under all 

conditions, the HIF-1α protein was only localized in the media layer but not in the adventitia or 

intima. Male mgR mice revealed higher HIF-1α levels than male WT mice fed with CD or HFD. 

Female mgR mice also had a higher HIF-1α level than female WT mice fed with HFD but not with 

CD. Both HFD and biological sex alone did not contribute to the HIF-1α levels. Overall, the 

elevated HIF-1α levels in female mgR mice was HFD-dependent but not in male mgR mice. Unlike 

protein levels, the Hif1a gene expression was not different with different genotype, diet and 

biological sex in these mice (Figure 4.5C).  
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Figure 4.5: HIF-1α protein and Hif1a gene expression levels in ascending aortae from male 
and female WT and mgR mice fed with CD or HFD at 12 weeks of age. (A) 
Immunofluorescence analysis of HIF-1α on cross sections of ascending aortae. Autofluorescence 
of the aorta is shown in green, whereas nuclear counterstain with DAPI is shown in blue for all 
images. (B) Quantification of HIF-1α protein levels as shown in A. (C) Analysis of Hif1a gene 
expression levels by qPCR. Each data point represents an individual mouse and error bars represent 
± SEM, n = 6–9 mice per group. Significance was assessed by 3-way ANOVA and indicated as 
*p<0.05, **p<0.01, and ***p<0.001. 
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4.6 HFD-induced changes in elastic fiber fragmentations, Mmp2 and Mmp9 gene expression 

levels of male and female mgR mice  

Elastic fiber fragmentation was visualized by staining ascending aorta sections with the Hart’s 

procedure, which provided the basis for the following quantification (Figure 4.6A and B). Male 

and female mgR mice showed a higher number of elastic fiber fragmentation than WT mice fed 

with CD or HFD. However, CD or HFD alone did not change the amount of elastic fiber 

fragmentation in male and female WT and mgR mice. Surprisingly, female mgR mice 

demonstrated a lower number of elastic fragmentation than male mgR mice fed with HFD but not 

with CD, correlating with the aortic diameter. However, Mmp2 and Mmp9 gene expression which 

were known to contribute to elastic fiber fragmentations were not different under all conditions 

(Figure 4.6C) [Klein & Bischoff, 2011; Lu & Aikawa, 2015]. 
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Figure 4.6: Elastic fiber fragmentation and Mmp2 and Mmp9 gene expression levels in 
ascending aortae from male and female WT and mgR mice fed with CD or HFD at 12 weeks 
of age. (A) Hart’s staining of the ascending aortae cross sections to visualize the integrity of the 
elastic lamellae. Arrows point to examples of elastic fiber fragmentation. The inset shows an 
example of elastic fiber fragmentation for clarity. (B) Quantification of elastic fiber fragmentation 
(see Materials and Methods). (C) Analysis of Mmp2 and Mmp9 gene expression levels by qPCR. 
Each data point represents an individual mouse and error bars represent ± SEM, n = 6–9 mice per 
group. Significance was assessed by 3-way ANOVA and indicated as *p<0.05, **p<0.01, and 
***p<0.001. 
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4.7 HFD-induced changes in MMP-12 protein and gene expression of male and female mgR 

mice  

MMP-12 was recently discovered to be upregulated in MFS through reduction of miR-122 [Zhang 

et al., 2022]. Through immunofluorescence staining and quantification, MMP-12 protein levels 

which were known to be regulated by HIF-1α in the aortic wall were not different under all 

conditions (Figure 4.7A and B). However, the Mmp12 gene expression was higher in male mgR 

mice than male WT mice fed with CD but not with HFD, which showed only an increasing trend 

(Figure 4.7C). The male mgR mice fed with CD showed an increased trend of Mmp12 gene 

expression compared to the male mgR mice fed with HFD. These differences and trends were not 

observed between female mgR and WT mice that expressed relative low levels of Mmp12. Thus, 

male mgR mice had higher Mmp12 expression than female mgR mice when they were fed with 

CD but not with HFD. 
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Figure 4.7: MMP-12 protein and gene expression in ascending aortae from male and female 
WT and mgR mice fed with CD or HFD at 12 weeks of age. (A) Immunofluorescence analysis 
of MMP-12 on cross sections of ascending aortae. Autofluorescence of the aorta is shown in green, 
whereas nuclear counterstain with DAPI is shown in blue for all images. (B) Quantification of 
MMP-12 protein level as shown in A. (C) Analysis of Mmp12 gene expression levels by qPCR. 
Each data point represents an individual mouse and error bars represent ± SEM, n = 6–9 mice per 
group. Significance was assessed by 3-way ANOVA and indicated as *p<0.05, **p<0.01, and 
***p<0.001. 

 



59 
 

4.8 HFD-induced changes in proteoglycan deposition and Acan and Vcan gene expression 

levels of male and female mgR mice  

Proteoglycans, and specifically aggrecan and versican, are known to be deposited higher in MFS 

and regulated by HIF-1α [Cikach et al., 2018; Shimomura et al., 2021]. Alcian blue staining of 

proteoglycans confirmed that male and female mgR mice deposited higher proteoglycan levels 

than male and female WT mice, respectively (Figure 4.8A and B). HFD alone did not change the 

proteoglycan deposition in the ascending aortae. However, male mgR mice fed with HFD had a 

higher proteoglycan deposition than female mgR mice fed with HFD but not with CD. To 

determine whether aggrecan or versican are differentially regulated in these mice, both Acan and 

Vcan gene expression levels were evaluated (Figure 4.8C). However, there was no difference 

under all conditions. 
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Figure 4.8: Proteoglycan deposition, Acan and Vcan gene expression levels in ascending 
aortae from male and female WT and mgR mice fed with CD or HFD at 12 weeks of age. (A) 
Proteoglycan staining of cross sections of ascending aortae was performed by alcian blue. (B) 
Quantification of proteoglycan protein levels as shown in A. (C) Analysis of Acan and Vcan gene 
expression levels through qPCR. Each data point represents an individual mouse and error bars 
represent ± SEM, n = 6–9 mice per group. Significance was assessed by 3-way ANOVA and 
indicated as *p<0.05, **p<0.01, and ***p<0.001. 
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4.9 HFD-induced changes in collagen deposition and Col1a1 and Col3a1 gene expression 

levels of male and female mgR mice  

Collagens are generally highly regulated ECM proteins in MFS aorta, fibrosis and hypoxia [Xiong 

& Liu, 2017; Perrucci et al., 2020; Nettersheim et al., 2021]. Picrosirius red staining revealed that 

male mgR mice showed a higher collagen deposition than male WT mice fed with CD or HFD 

level (Figure 4.9A and B). Female mgR mice demonstrated a higher collagen deposition than 

female WT mice fed with HFD but not with CD. There was an increased trend noticeable that 

female mgR mice fed with HFD deposited more collagen than female mgR mice fed with CD but 

not between the male mgR mice fed with HFD and CD. The difference of biological sex alone did 

not change the collagen deposition levels. Despite these findings, the type of collagen was not 

determined. Collagen I or collagen III are commonly regulated in fibrosis, so both Col1a1 and 

Col3a1 gene expression levels were analyzed [Wulandari et al., 2016]. Male mgR mice expressed 

more Col1a1 and Col3a1 than male WT mice fed with CD but not with HFD (Figure 4.9C). The 

difference was lost among the female mice fed with CD or HFD that were characterized by low 

Col1a1 and Col3a1 expression. HFD alone did not contribute the changes of Col1a1 and Col3a1 

expression. However, male mgR mice fed with CD expressed more Col1a1 and Col3a1 than 

female mgR mice fed with CD but not with HFD.    
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Figure 4.9: Collagen deposition and Col1a1 and Col3a1 gene expression levels in ascending 
aortae from male and female WT and mgR mice fed with CD or HFD at 12 weeks of age. (A) 
Collagen staining of cross sections of ascending aortae was performed by picrosirus red. (B) 
Quantification of collagen protein levels as shown in A. (C) Analysis of Col1a1 and Col3a1 gene 
expression levels through qPCR. Each data point represents an individual mouse and error bars 
represent ± SEM, n = 6–9 mice per group. Significance was assessed by 3-way ANOVA and 
indicated as *p<0.05, **p<0.01, and ***p<0.001. 
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CHAPTER 5: DISCUSSION 

5.1 Sexual dimorphism of mgR mice in metabolism 

MFS individuals exhibit abnormal metabolism typically characterized by lipodystrophic 

phenotype with a significant subset of them being overweight or even obese [Erkula et al., 2002; 

Graul-Neumann et al., 2010; Yetman & McCrindle, 2010; Goldblatt et al., 2011; Jacquinet et al., 

2014; Passarge et al., 2016; von Kodolitsch et al., 2019; Hansen et al., 2020]. A recent study from 

the Reinhardt lab revealed that male mgR mice with fibrillin-1 deficiency had increased adipocyte 

size and elevated adipogenic markers in white adipose tissue, and furthermore, the recombinant 

C-terminal half of FBN1 reduced adipogenic differentiation particularly in the early commitment 

phase [Muthu et al., 2022]. This study highlighted 2 key aspects in MFS metabolism: sexual 

dimorphism in MFS and inhibition of adipogenesis by fibrillin-1. The sex difference in MFS 

metabolism responding to multiple high-calorie diets was previously not studied. To investigate 

this, the growth curves in male and female WT and mgR mice were evaluated. Male and female 

WT mice had an increased body mass even after 1 week of HFD or WD confirming that these diets 

were valid for metabolic studies. HFD-fed or WD-fed female mgR mice were suppressed from 

weight gain but not male mgR mice. The resistance of gaining weight under HFD or WD in female 

mgR mice was confirmed by the ratio of body mass to tibia length. However, male mgR mice did 

not have a higher body mass to tibia length ratio when fed with WD, contradicting the growth 

curves. This revealed that male mgR mice were more prominent responding to HFD-induced 

weight gain. Comparing males to females, a study has shown that estrogen inhibits adipogenesis 

through Pref-1 which might explain why male mgR mice were heavier than female mgR mice 

when fed with HFD or WD [Wang et al., 2010; Hudak & Sul, 2013].  
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Although different blood glucose levels were observed at various timepoints after insulin injection, 

there was no difference in insulin sensitivity based on AUC among the male and female WT and 

mgR mice fed with CD, HFD or WD except female WT mice fed with WD compared to CD. A 

study has shown that WD promoted local estrogen biosynthesis in adipose tissue [Goncalves et 

al., 2021]. Therefore, female WT mice fed with WD had an improved insulin sensitivity compared 

to CD. However, this difference was lost between CD- and WD-fed mgR mice suggesting that 

deficiency of fibrillin-1 facilitates alterations in insulin sensitivity and glucose homeostasis in 

female mgR mice. It is known that estrogen promotes inhibition of adipogenesis, reduces adipose 

tissue oxidative stress and inflammation [Wang et al., 2010; Stubbins et al., 2012; Hudak & Sul, 

2013]. Since the improved insulin sensitivity was only noted in female mgR mice and not in case 

of males, it is possible that deficiency of fibrillin-1 differentially regulates estrogen levels in female 

MFS mice under different dietary condition, thereby to improve glucose regulation. In a previous 

work from lab, a significant drop in the survival rate of mgR mice was observed after 12 weeks of 

age, when fed with HFD (unpublished data). In order to have increased number of viable mgR 

mice for analysis under the current study, ITT was performed at 10 weeks of age. This was an 

earlier timepoint compared to other metabolic studies [Macotela et al., 2009] and at 10 weeks of 

age no sex-specific alterations in the insulin sensitivity was observed between the WT and mgR 

mice under any of the dietary conditions.  

Glucose metabolism was evaluated by GTT in these mice at 11 weeks of age. Genotype and diet 

alone did not promote glucose intolerance in males or females. However, male WT mice were 

more glucose intolerant than female WT mice when fed with HFD but not CD or WD based on 

AUC. This once again reflected the role of estrogen in females rescuing abnormal metabolic 

phenotype [Hudak & Sul, 2013]. However, among the mgR mice, glucose intolerance of males 
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and females was the same. With these findings, we concluded that the metabolic phenotype was 

genotype and sex dependent, consequently leading to sexual dimorphism responding to HFD or 

WD. Despite these findings revealed different aspects in glucose metabolism, there were few 

limitations in this study. ITT and GTT were conducted at different ages of the mice (10 and 11 

weeks, respectively) because it takes one week for the mice to recover metabolically from ITT or 

GTT before the next metabolic analysis can be performed. This is a likely cause for the observed 

variance between ITT and GTT results. Lastly, the diets were only fed to the mice up to 12-week 

of age because the mgR mice often die soon after this time period which makes a longer analysis 

complicated. Therefore, the longer-term consequences of diet and sex are yet to be investigated, 

possibly with a different MFS mouse model with longer life span. 

 

5.2 Sexual dimorphism of mgR mice in aortic aneurysm 

With excess adiposity, the aortic aneurysm progression and formation are often worsened in 

humans [Yetman & McCrindle, 2010]. Therefore, we investigated the survival rate and aortic 

aneurysm in male and female WT and mgR mice fed with CD, HFD or WD. Male and female 

mgR mice had a lower survival rate than WT mice fed with HFD. The survival rate was the same 

between WT and mgR mice fed with CD or WD because either WT mice had a reduced trend of 

survival rate or mgR mice still maintained a relatively high survival rate in males or females. The 

cause of death was determined through dissection whether it was aortic rupture or not. Male mgR 

mice had a lower aortic-specific survival rate than male WT mice fed with CD revealing that HFD 

or WD potentially rescued aortic complications. The aortic-rupture-specific survival rate of male 

mgR mice was less than the survival rate of female mgR mice when they were fed with CD but 

not HFD or WD showing more severe aneurysm phenotype in male mgR mice. However, the 
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difference between the overall survival and the aortic-rupture-specific survival among these mice 

needs to be determined. The deaths caused by non-aortic rupture could be due to reduced food 

intake, growth deficits and other cardiac complications [Bergner & Goldberger, 2010]. 

Nevertheless, these significant findings showed the role of aortic complications in survival rate of 

these mice and the sexual dimorphism responding to the CD, HFD and WD. To understand the 

reasons behind these findings, both characterizations of thoracic aortic aneurysm and diet-induced 

downstream mechanisms in these mice were investigated. 

First, the in situ aortic diameter in the gross view was determined. There was heterogeneity in 

aneurysm region and severity among the male and female mgR mice. Heterogeneity was reported 

in mgR and Fbn1C1041G/+ mice, but the role of diets in heterogeneity of aortic aneurysm was 

undetermined [Chen et al., 2021; Zhang et al., 2022]. SMCs in different region of the thoracic 

aorta can behave differently due to the origin of SMCs. There was no dilation in descending aorta 

where SMCs were derived from somites [Pouget et al., 2006]. However, the dilation was observed 

from the root to aortic arch in male and female mgR mice fed with any diet. The SMCs at the root 

and outer media layer in ascending aorta were embryonically derived from second heart field 

(SHF), whereas the SMCs that were located distal away from the heart in ascending aorta and at 

the aortic arch were derived from cardiac neural crest cells (CNC) [Psaltis & Simari, 2015; 

Sawada et al., 2017]. In addition, a study showed that adventitial stem cells antigen-1 positive 

(Sca-1+) progenitor cells were more abundant in Fbn1C1041G/+ mice and could contribute to the 

heterogeneity of aortic aneurysm [Gharraee et al., 2022]. To investigate the role of diet and 

biological sex in SMC lineage in the future, the distribution of SHF- and CNC-derived cells in 

thoracic aortic aneurysm can be studied by breeding mgR mouse colonies with another mouse 

colonies that have Mef2c-Cre (promoter in SHF lineage) or Wnt1-Cre (promoter in CNC lineage) 
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mice with express LacZ in the ROSA26 locus. The β-galactosidase–positive areas will be 

evaluated. The amount of adventitial SMC progenitor cells, which are mesenchymal-like cells, can 

be determined by staining Sca-1 through immunofluorescence in mice fed with CD, HFD or WD 

in future studies as well. This will identify which SMC origin contributes to the aneurysm. 

Through the analysis of aortic diameter in males, mgR was confirmed as a validated mouse model 

to study MFS aortic aneurysm, but the sexual dimorphism of aortic aneurysm responding to HFD 

or WD was not known [Schwill et al., 2013; Chen et al., 2019]. Male and female mgR mice had 

more dilated aortae than the respective WT mice but not female mgR mice fed with HFD. Aortae 

from male mgR mice were also more dilated than female mgR mice when fed with HFD which 

potentially targeted adventitial SMC progenitor cells, CNC- or SHF-derived SMCs. Since HFD 

rescued aortic aneurysm in female mgR mice, our study focused on CD and HFD but not WD. To 

further characterize aortic aneurysm and determine the mechanism behind it, lumen area and wall 

thickness of the aortae were evaluated through capturing the autofluorescence images of the cross-

sectioned aortae. Female mgR mice not only had a thinner aortic wall but also had an advantage 

responding to HFD to reduce their lumen area compared to male mgR mice. The results were 

different between diameter from the gross view and lumen area from the cross sections because of 

the limitation in embedding. In gross view, aortic diameter was measured at the most aneurysm 

region perpendicular to the inner wall of the aorta, whereas in the cross sections, aortic wall 

thickness and lumen area could only be measured at a horizontal plane due to the embedding 

process from the root to the arch (Figure 5.1). The other reason was that the mice from the gross 

view were not the same mice from the cross sections. The heterogeneity could create the difference 

between these two analyses. Despite the technical and heterogeneity limitations, female mgR mice 
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had a positive response to HFD reducing their aortic phenotype in both gross view and cross 

sections. 

 
Figure 5.1: Comparison between gross view and cross sections. The ascending aortic diameter 
was measured at the most dilated region perpendicular to the inner wall of the aorta in gross view. 
Aortic wall thickness and lumen area could only be measured at one horizontal plane depending 
on the orientation of the specimen in the paraffin block.  

 

FBN1 regulation is important for elastogenesis and in relation to aneurysm phenotype [Pereira et 

al., 1999; Sabatier et al., 2009; Sabatier et al., 2014; Kumra et al., 2019; Zhang et al., 2022]. 

FBN1 deposition was reduced and the assembled FBN1 fibers were thinner and more fragmented 

in the mgR mice than WT mice. This indicated that FBN1 deposition and assembly were genotype-

dependent but not diet-dependent. Surprisingly, FBN1 deposited more in male WT mice than 

female WT mice fed with HFD potentially due to the elevation of epigenetic modification through 

histone H3 acetylation in male WT mice, but the epigenetic modification of Fbn1 gene in female 

mice was not confirmed [Gaikwad et al., 2010]. Our data might suggest that female WT mice had 

a different epigenetic modification of Fbn1 responding to HFD. Unexpectedly, there was no 

difference of the Fbn1 gene expression in all these conditions. We propose that FBN1 could be 
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deposited more in the aorta in an early stage of life, but FBN1 was not regulated as the mice aged 

similar to elastin turnover [Burnett et al., 1982; Davidson et al., 1982]. In addition, there were 

more SMC nuclei in the media layer orientated radially instead of orientated parallel with the 

FBN1 fibers. This result supported previous research in Eln-/- mice that the loss of ECM integrity 

promoted the SMC phenotypic switching from contractile to synthetic which was observed in other 

aneurysm studies as well [Misra et al., 2016; Pedroza et al., 2020].  

HIF-1α is an important transcription factor regulating hypoxia in MFS due to mitochondrial 

dysfunction and thickening of aortic wall [Oller et al., 2021; Zhang et al., 2022]. As expected, 

male mgR mice had an elevation of HIF-1α protein levels compared to male WT mice, whereas 

female mgR mice had an elevated HIF-1α protein levels compared to female WT mice when fed 

with HFD but not CD. Estrogen is known to promote mitochondrial efficiency potentially reducing 

HIF-1α level and explaining why the same HIF-1α level was observed between female mgR and 

WT mice fed with CD [Duckles et al., 2006; Yang et al., 2015]. However, HFD might have a 

stronger role promoting HIF-1α levels in the media layer of the aorta. This result correlated with 

multiple metabolic and cardiovascular studies that HFD elevates HIF-1α protein levels [Sun et al., 

2013; Semenza, 2014; Han et al., 2019]. Although Hif1a gene expression did not correlate the 

protein level, Hif1a expression is shown to be reduced by Repressor Element 1-Silencing 

Transcription Factor in prolonged hypoxia. While the Hif1a gene expression is suppressed, the 

HIF-1α protein is still stable before turnover which explains the difference between HIF-1α protein 

and gene expression level [Cavadas et al., 2015].  

Since deficiency of FBN1 provides less scaffold for elastogenesis and HIF-1α promotes various 

MMPs remodeling ECM in MFS, elastic fiber fragmentation was expected to have a reverse 

correlation with FBN1 deposition and similar correlation with HIF-1α [Zhang et al., 2022]. As 
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predicted, elastic fibers were more fragmented in male mgR mice than in male WT mice fed with 

CD or HFD. Female mgR mice fed with HFD had similar elastic fiber fragmentation compared to 

female WT mice fed with HFD but not CD revealing that HFD specifically rescued female aortic 

aneurysm phenotype. Although the sexual dimorphism of elastic fiber fragmentation did not show 

in FBN1 deposition and assembly, from previous knowledge of hierarchical multistep molecular 

processes in elastogenesis, it is possible that other important accessory proteins such as FBLN4, 

FBLN5 and LTBP4 are modulated by diet and sex instead [El-Hallous et al., 2007; Kumra et al., 

2018; Kumra et al., 2019]. The other possible mechanism in regulating elastic fibers is MMPs. 

Both Mmp2 and Mmp9 gene expression levels which are known to promote elastic fiber 

fragmentation were analyzed, but there was no difference under all conditions, suggesting that the 

elastic fiber fragmentation was caused by other ECM remodeling mechanism [Klein & Bischoff, 

2011; Lu & Aikawa, 2015]. MMP-12 protein levels, which are known to be elevated by reduced 

levels of miR-122 and increased levels of HIF-1α in MFS to promote elastic fiber fragmentation, 

did not change under all conditions [Zhang et al., 2022]. Interestingly, the Mmp12 gene expression 

was higher in male mgR mice than male WT and female mgR mice fed with CD. This difference 

was lost when the mice were fed with HFD. The contradiction between MMP-12 protein turnover 

and elevated Mmp12 gene expression levels could be due to post-translational modification. 

Tyrosine414 (Tyr414) in MMP-12 is known to be phosphorylated, but its functional role still requires 

more research [Bordoli et al., 2014; Madzharova et al., 2019]. Possibly, MMP-12 degrades the 

elastic fibers at an earlier timepoint than 12 weeks of age and subsequently get degraded due to 

post-translation modification. In transcription regulation, despite multiple transcription factors 

were recognized to regulate Mmp2, Mmp9 and Mmp12, a unique transcription factor targeting 

Mmp12 is currently unknown, but it might explain why Mmp12 was regulated but not Mmp2 or 
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Mmp9 [Robert et al., 2009; Li et al., 2013; Hiden et al., 2018]. The transcription regulation of 

Mmp12 can be possibly analyzed by Assay for Transposase-Accessible Chromatin Sequencing to 

predict open regions of chromatin for specific transcription factors to bind or by chromatin 

immunoprecipitation to investigate the interaction between transcription factors and DNA. 

Proteoglycan, which is known to be accumulated abnormally in MFS and upregulated by HIF-1α, 

was evaluated as observed through alcian blue staining [Cikach et al., 2018; Shimomura et al., 

2021]. The results of elastic fiber fragmentation and proteoglycan correlated with each other 

[Cikach et al., 2018]. Suggested by multiple studies, the build-up of proteoglycan promotes 

intralamellar swelling pressure, ultimately causing fragmentation of elastic lamellae [Humphrey, 

2013; Roccabianca et al., 2014a; Roccabianca et al., 2014b; Cikach et al., 2018; Shen et al., 

2019]. Studies showed that HFD promotes the estrogen level which might rescue aortic aneurysm; 

therefore, we propose that HFD rescued the aortic aneurysm in female mgR mice by elevating 

estrogen level [Wu et al., 2007; Tripathi et al., 2017; Qi et al., 2020; Goncalves et al., 2021]. With 

these interesting findings, both the gene expression of Acan and Vcan, encoding aggrecan and 

versican which are common proteoglycans regulated in MFS, were determined. Both Acan and 

Vcan gene expression levels were not different potentially due to turnover of proteoglycan as mice 

aged [Cikach et al., 2018]. 

Collagen is a key marker of fibrosis and is regulated by HIF-1α [Xiong & Liu, 2017]. Recent 

studies suggested that aortae undergo fibrosis in MFS, and express and deposit higher levels of 

collagen [Perrucci et al., 2020; Nettersheim et al., 2021]. Our data of collagen deposition 

confirmed these findings and correlated with HIF-1α protein levels. On a contrary, Col1a1 and 

Col3a1 expression did not correlate the collagen deposition. HFD reduced both Col1a1 and 

Col3a1 expression in male mgR mice. Although numerous studies showed that HFD promoted 
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Col1a1 and Col3a1 expression levels in the aorta [Halberg et al., 2009; Martinez-Martinez et al., 

2013; Singh et al., 2021], heart and white adipose tissue, another study actually showed that HFD 

reduced Col3a1 in the heart through epigenetic regulation of by histone H3 [Gaikwad et al., 2010]. 

We suspect that turnover of Col1a1 and Col3a1 expression was involved with HFD, but the exact 

mechanisms are not known with contradictions of fibrotic studies. Unlike males, female mgR mice 

expressed low levels of Col1a1 and Col3a1 like the WT mice fed with CD or HFD potentially by 

estrogen receptors acting as a corepressor leading to the turnover of Col1a1 and Col3a1 expression 

[Dworatzek et al., 2019]. Even though it is known that HFD could potentially induce 

atherosclerosis or vascular calcification [Choudhary et al., 2017; Son et al., 2020; Wan et al., 

2020], surprisingly, in the current study we did not observe any atherosclerotic plaque deposition 

or vascular calcification (analyzed through von Kossa staining, data not shown) in aortae of mgR 

mice in HFD or other dietary conditions. A possible explanation for which could be the 

experimental time frame of 12 weeks employed in this study, as opposed to the longer time frames 

of 16 weeks or longer used in other published work. We also did not observe any inflammatory 

cells (CD68 and CD3) in the aortae from male mgR mice fed with CD, HFD or WD (data not 

shown), which are more prone to have aneurysm. Since we did not observe any signs of 

inflammation in the aortae of mgR mice, we did not further analyze any inflammatory factors 

(TNF-α, IL-6 and PPAR-γ) secreted by white adipose tissue in the current study.  

Overall, an intriguing and novel finding from our study is the rescue effect mediated by HFD in 

female mgR mice, in the pathogenesis of TAA. Based on the substantial literature evidence on the 

role of estrogen and sexual dimorphism in TAA [Wu et al., 2007; Tripathi et al., 2017; Qi et al., 

2020; Goncalves et al., 2021], it is possible that differential regulation of estrogen is the 

responsible cause for the protective phenotype observed in our study in the MFS female mice. 
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Surgical procedures such as ovariectomy could be further employed in MFS mice from young and 

older age groups to analyze the role of sex hormones in regulating the syndromic TAA in different 

dietary conditions. These experimental approaches may enable better understanding of sex-

specific metabolic regulation and its consequence on TAA initiation and progression.  
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CHAPTER 6: CONCLUSION AND KEY FINDINGS 

In conclusion, HFD promoted weight gain in male mgR mice, but female mgR mice were resistant 

(Figure 6.1). In ITT and GTT analysis, mgR mice and female mice showed an improved metabolic 

phenotype. Furthermore, HFD rescued the aortic aneurysm in female mgR mice. Even though 

HFD was not able to reduce all aortic aneurysm markers in female mgR mice (thicker aortic wall, 

FBN1 deficiency, elevated HIF-1α and collagen levels), HFD was sufficient to attenuate certain 

key aortic aneurysm markers (reduced aortic diameter, elastic fiber fragmentation and 

proteoglycan levels). HFD also minimized aortic rupture occurrence, Mmp12, Col1a1 and Col3a1 

gene expression levels in male mgR mice (Figure 6.2). A personalized dietary adjustment with 

high fat content might be beneficial and improve MFS patients’ aneurysm progression, especially 

in females. 

 

 

Figure 6.1: Schematic of metabolic phenotype in 12-week-old male and female WT and mgR 
mice fed with HFD. Female mgR mice were resistant to HFD-induced weight gain but not male 
mgR mice. The size of the mouse schematics is meant to represent the relative weight. 
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Figure 6.2: Schematic of aortic aneurysm phenotype in 12-week-old male and female WT 
and mgR mice fed with CD or HFD. = signs indicate no changes, upwards arrows indicate 
increased level, downwards arrows indicate decreased level. Thin arrows indicate a trend. 
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