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ABSTRACT 

Cardiovascular disease has been the leading cause of human mortality globally for years. 

Increasing cardiovascular health could reduce the frequency of cardiovascular disease and save 

lives, and preventative care has the potential to increase cardiovascular health. However, 

preventative care for cardiovascular disease is not ideal, most importantly lacking an established 

non-invasive, continuous method of cardiac monitoring. Non-invasive health monitoring could 

improve the application and efficiency of medical treatment and significantly reduce the 

frequency of cardiovascular disease-related mortality rates.  Vibrational cardiography (VCG) has 

the potential to deliver non-invasive cardio-respiratory monitoring. VCG is the term given to a 

coupled seismocardiography (SCG) and gyrocardiography (GCG) measurement. VCG (along 

with its components, SCG and GCG) have been well studied and developed for cardiac 

monitoring. Moreover, the inherent effects of respiration on the VCG signal due to the proximity 

of the lungs to the heart have been studied as well. However, there is no established method of 

mitigating the respiratory variation in a VCG signal, thus reducing its efficacy as a cardiac 

monitoring tool. Approaches have been taken to filter out respiratory information from the VCG 

signal entirely, but studies have shown that this respiratory information could be useful for 

monitoring cardiovascular health. Instead, other approaches have been taken to separate VCG 

signals based on the respiratory phase or volume of the subject at the time they were recorded. 

This reduces respiratory variation in the signal without losing the potentially useful respiratory 

information altogether. The objective of this thesis is to take this separation approach, classifying 

VCG signals based on their respiratory volume and phase, specifically using 1-dimensional (1D) 

convolutional neural networks (CNN). 1D CNNs are artificial neural networks which apply 

convolving filters to local features in one dimension. These networks are especially useful for 

analysing data in the temporal dimension and have been shown to have excellent performance in 

many signal processing domains, hence why they were chosen for this analysis. Data were 

collected from 50 subjects at McGill University, using an inertial measurement unit taped to the 

chest to obtain a VCG signal, and a spirometer to obtain a reference respiratory flow signal. 

Three classification objectives were examined: static respiratory volume, dynamic respiratory 

volume, and dynamic respiratory phase. For each objective, the cardiac cycles obtained from the 

VCG signals were manually split into one of two classes based on the respiratory flow signal and 

a 1D CNN was employed to classify these cardiac cycles based solely on their VCG information. 
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Subsequently, experiments were performed on the CNN architecture to determine the optimal 

architecture for each of the classification objectives. It was found that a 1D CNN has the ability 

to classify VCG signals based on the respiratory volume and phase of the subject at the time they 

were recorded, achieving harmonic mean of precision and recall (F1) scores of 0.9972, 0.8324 

and 0.8617 for the static respiratory volume, dynamic respiratory volume and dynamic 

respiratory phase classification objectives, respectively. Moreover, it was found that in many 

cases these scores were improved by reducing the complexity of the models used. Our findings 

show that 1D CNNs are a viable method to mitigate respiratory variation in VCG signals. 

Moreover, the finding that less complex models outperformed more complex models is 

significant because it increases the viability of deploying such models in low-power, low-

memory or mobile applications. More work should be explored as to why less complex models 

tended to perform better, and a more detailed study on a larger population to validate these 

findings would be beneficial. VCG is a powerful tool that has the potential to provide non-

invasive health monitoring for both cardiac and respiratory applications. 
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RÉSUMÉ 

La maladie cardiovasculaire est la cause majeure de la mortalité humaine dans le monde 

depuis des années. L’amélioration de la santé cardiovasculaire peut réduire son incidence tout en 

sauvant la vie. Les soins préventifs ont le potentiel d’améliorer la santé cardiovasculaire. 

Pourtant, les soins destinés à prévenir la maladie cardiovasculaire ne constituent pas une solution 

idéale dans la mesure où ils manquent une méthode systématique de surveillance cardiaque non 

invasive. La surveillance sanitaire non invasive peut améliorer l’application et l’efficacité des 

soins médicaux tout en réduisant la fréquence du taux de mortalité relatif à la maladie 

cardiovasculaire:  La cardiographie vibrationnelle (VCG) a le potentiel de fournir la surveillance 

non invasive cardio-respiratoire. La VCG désigne la mesure qui combine la seismocardiographie 

(SCG) et la gyrocardiographie (GCG). La VCG (y compris ses composantes, la SCG et la GCG) 

relatives à la surveillance cardiaque ont été bien étudiées et mises au point. En outre, les effets 

inhérents de la respiration sur le signal VCG en raison de la proximité des poumons au coeur, ont 

également été étudiés. Pourtant, il n’existe pas de méthode établie pour minimiser la variation 

respiratoire présente dans le signal VCG, réduisant donc son efficacité d’outil de la surveillance 

cardiaque. Certaines approches ont été adoptées pour éliminer complètement les données 

respiratoires du signal VCG, mais des études ont démontré que ces données peuvent être utiles 

pour suivre la santé cardiovasculaire. A leur place, d’autres méthodes ont été adoptées pour 

séparer les signaux VCG basées sur la phase respiratoire ou volume du sujet au moment de 

l’enregistrement. Cette méthode minimise la variation respiratoire du signal, sans perdre 

complètement l’utilité éventuelle au niveau de la respiration.  Cette thèse a comme objectif 

l’adoption de cette méthode de séparation, tout en classant les signaux VCG basés sur leur phase 

et volume respiratoire, utilisant spécifiquement des réseaux neuronaux convolutifs (RNC) 

unidimensionnels (UD). Les RNC UD sont des réseaux neuronaux artificiels qui appliquent des 

filtres convolutifs aux éléments locaux dans une seule dimension. Ces réseaux sont 

particulièrement utiles pour analyser les données en dimension temporelle et ont démontré une 

performance excellente dans de nombreux domaines de traitement du signal, ce qui explique le 

choix de sujet de cette analyse. Les données ont été recueillies auprès d'un échantillon de 50 

personnes (les sujets) à l'Université de McGill, utilisant une unité de mesure inertielle attachée à 

la poitrine pour obtenir un signal VCG, ainsi qu'un spiromètre en vue d' obtenir un signal de 

débit respiratoire. Trois objectifs de classification ont été examinés: volume respiratoire statique, 
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volume respiratoire dynamique, et phase respiratoire dynamique. Pour chaque objectif, les cycles 

cardiaques obtenus auprès des signaux VCG ont été manuellement divisés en une de deux classes 

basés sur le signal de débit respiratoire et un RNC UD a été utilisé pour classer ces cycles 

cardiaques basés uniquement sur les données émanant de leur VCG. Par la suite, des 

expérimentations ont été menées sur l'architecture RNC en vue d'établir l'architecture optimale 

pour chacun des objectifs de classification. Il a été constaté qu' un RNC UN est capable de 

classer des signaux VCG basé sur le signal de débit respiratoire et la phase du sujet au moment 

de l'enregistrement, atteignant respectivement des scores F1 de 0,9972, 0,8324 et 0,8617 pour le 

volume respiratoire statique, volume respiratoire dynamique, et phase respiratoire dynamique des 

objectifs de classification. En outre, il a été constaté que, dans de nombreux cas, ces scores ont 

été améliorés en minimisant la complexité des modèles utilisés. Nos résultats démontrent que des 

RNC UD constituent une méthode efficace pour minimiser la variation respiratoire des signaux 

VCG.  En outre, le résultat que les modèles moins complexes ont surpassé les modèles plus 

complexes est important dans la mesure où cela augmente la viabilité du lancement de tels 

modèles dans des applications à faible-puissance, à faible-mémoire ou portable. Des recherches 

plus approfondies doivent être menées afin d'expliquer pourquoi des modèles moins complexes 

ont la tendance de mieux fonctionner, et une étude plus minutieuse sur un plus grand échantillon 

pour valider ces résultats serait utile. La VCG est un outil puissant possédant le potentiel de 

fournir à la fois la surveillance sanitaire non invasive à l'intention des applications cardiaques et 

respiratoires.  
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I. INTRODUCTION 

A. Motivation 

Cardiovascular disease (CVD) continues to be the leading cause of death across the 

world [1]. In 2020 alone, nearly 19 million deaths were attributed to CVD globally, amounting to 

an increase of 18.7% from 2010 [2]. In addition, an estimated 70.0% of the major instances of 

CVD events in the United States can be attributed to low and moderate cardiovascular health 

(CVH) [2]. Even a partial CVH score improvement from low to moderate among US adults 

could lead to a reduction of 1.2 million major CVD events annually [2]. The pervasiveness of 

CVD events and the global health benefits of increasing CVH, coupled with the fact that 

preventative care has the potential to reduce mortality rates by millions and economic losses by 

trillions [3], has incited the medical community to seek preventative measures in tackling CVD 

and improving CVH. 

Preventative care for CVD often consists of regular check-ups with a physician, usually 

involving an assessment of CVH using one or more of the many cardiac and respiratory 

monitoring techniques available for a medical setting. However, uncommon or intermittent 

symptoms can easily be overlooked if they do not appear during the (usually brief) monitoring 

session [4]. Continuous monitoring options such as insertable cardiac monitors do exist, but their 

costs are significant; around $4,000 for the initial insertion and device in addition to subsequent 

monitoring costs. They also require an invasive procedure which can lead to rare 

complications [5]. As a result, these techniques are usually reserved for patients who are at a 

higher risk of atrial fibrillation due to existing cardiovascular complications such as a stroke [6]. 

Therefore, patients who do not fall into this category often do not receive continuous monitoring, 

or any cardio-respiratory monitoring outside of their regular check-ups. This demonstrates the 

need for an established non-invasive, continuous method of cardio-respiratory monitoring that 

remains accurate while not significantly interfering with daily life. 

Non-invasive, continuous health monitoring could accelerate diagnoses, improve 

preventative care, and save lives by capitalising on algorithms that connect physiological signals 

to cardiovascular health state trajectories, and the potential of machine learning (ML) algorithms 

to identify such trends is evident [7]. This research used ML to investigate vibrational 

cardiography (VCG) as a possible solution. 
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B. Non-invasive Cardio-respiratory Monitoring 

1. Respiratory Monitoring 

Respiratory monitoring systems typically measure either airflow or chest movement to 

get a measure of respiratory activity. The most accurate method currently is to measure airflow 

and air volume using a spirometer. Commonly, spirometers measure air volume indirectly by 

measuring airflow with a pneumotachograph, turbines or ultrasound and deriving volume from 

it [8]. A pneumotachograph measures airflow by measuring the pressure change across a thin 

film inside the breathing tube which is linearly related to volumetric flow rate [9]. Usually, a 

pneumotachograph requires daily calibration [10], and heating at a constant temperature to 

mitigate pressure variances and condensation in the system. Additionally, it requires that the 

subject be breathing directly into the breathing tube continuously, which can be uncomfortable 

for the patient. Overall, these systems lack portability, require consistent calibration and re-

calibration, and require the patient remain still while measurements are taken [11]. 

Another widely used wearable method is respiration inductance plethysmography (RIP). 

RIP measures the change in inductance of a coil within a band placed around the chest and uses 

this measurement to monitor torso expansion. Usually, two bands are utilised in tandem, with 

one monitoring abdomen expansion while the other monitors ribcage expansion. These systems 

can give a very accurate respiration rate and volume representation when calibrated 

properly [12]. However, their volumetric measurements are sensitive to changes in patient 

position or posture [13]. As a result, RIP has very limited portability because positional and 

postural changes during a measurement can result in large artifacts in the signal. 

Alternatively, a nasal thermistor can be used to monitor airflow with a more portable 

system. A thermistor is a device whose electrical resistance changes with temperature. When 

fixed to a patient’s face between their nose and mouth, this effect can be utilised to measure the 

temperature drop caused by the movement of air over the sensor with each breath. However, 

since the airflow from the patient’s breath is not constrained, there is too much uncertainty for 

these systems to measure airflow or air volume. Therefore, they are most often used to estimate 

respiration rate and not flow [14]. In fact, their exact timing when compared to other methods 

has been disputed [15]. 
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2. Cardiac Monitoring 

The current standard of non-invasively measuring cardiac activity is the 

electrocardiogram (ECG). ECG was first discovered towards the end of the 19th century, and its 

clinical usage began around the 1950’s [16]. To obtain an ECG measurement, several electrodes 

are placed on a patient’s torso, and they are used to measure the voltage change caused by the 

electrical activity of the heart [17]. This method is robust but can be complex for an 

inexperienced user, as its setup utilises a 12-lead configuration which requires the placement of 

10 electrodes across the patient’s chest in specific locations [17]. There is also a more portable 

ECG method called the Holter monitor. This method was discovered by Dr. Norman J. Holter in 

1957 and is specifically designed for long-term, continuous ECG recording outside of a hospital 

setting. While Holter monitors can still utilise the aforementioned 12-lead configuration, they are 

also available in less complex 2-lead and 3-lead configurations which use significantly fewer 

electrodes [18]. ECG is commonly used to monitor heart rate [19]. It has also been shown to 

detect CVH-related abnormalities such as arrythmias [20] or ischemia [21]. It has even been 

shown to have reasonable accuracy in the prediction of overall mortality [22]. 

Impedance cardiography (ICG) is another method which is somewhat similar to ECG. 

However, instead of measuring changes in voltage, this method measures changes in electrical 

conductivity. The electrode placement for ICG also differs from that for ECG as it requires 

paired electrodes which are usually placed on the patient’s neck and thorax [23]. Although this 

method is less complicated as the 12-lead ECG configuration and about as complicated as the 

2-lead and 3-lead Holter monitor configurations, it is still not ideal for continuous monitoring as 

the placement of the electrodes on the neck can cause significant motion artifacts when patients 

move [24]. 

Photoplethysmography (PPG) is another method which has gained traction recently due 

to its portability and affordability. It has been utilised in many consumer electronics applications 

such as FitBits or Apple Watches for health and fitness monitoring. PPG operates by using a 

light-emitting diode (LED) and a photodetector to measure variations in blood circulation. 

Generally, the device is placed on the fingertip or earlobe. The LED emits light, and the 

photodetector measures the change in light absorption caused by blood flow [25]. Despite its 

portability and affordability, PPG still has drawbacks. The main one is that since PPG is 
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sensitive to ambient light, slight movement by the patient relative to light sources in the 

recording area can result in significant motion artifacts [26]. Generally, PPG is used as a 

replacement for ECG to monitor heart rate [27]. However, it has also been shown to provide 

information on oxygen saturation [25], cardiac abnormalities [28] or artery stiffness [29]. 

Other cardiac monitoring methods are available but are mostly limited in their continuous 

non-invasive monitoring applications due to the technical knowledge required for operation or a 

lack of portability. For example, echocardiography images the heart using ultrasound technology, 

but requires a trained operator to obtain accurate measurements [30]. Similarly, magnetic 

resonance imaging (MRI) technology can be used to image the heart but also requires a trained 

operator and lacks portability due to the large, expensive equipment required [31]. Even high-

speed cameras have been utilised recently to detect heart rate by measuring the fluctuations in 

skin colour caused by blood circulation, but this method lacks portability [32]. Each of these 

methods have their own specific use-cases and their importance for cardiac monitoring should 

not be understated. However, for continuous, non-invasive and wearable applications, 

researchers are limited to simpler, more portable methods such as ECG and PPG. Another option 

for such applications is VCG. 

 

3. Mechanical Cardiac Monitoring 

a) Evolution 

Cardio-respiratory activity generates thoracic vibrations that propagate throughout the 

body [33]. These vibrations can easily be recorded non-invasively. This observation was first 

made as far back as the late 19th century [34]. In this work, subjects were placed on a bed 

suspended by ropes from the ceiling. The movements of the body imparted by the ballistic forces 

associated with cardio-respiratory activity and blood flow were recorded and found to be 

synchronous with the heartbeat. Subsequently, further work was done by many researchers, 

culminating in the emergence of ballistocardiography (BCG) in 1938 [35]. As BCG evolved, so 

did the associated vibrational recording techniques. For example, instead of a bed suspended by 

ropes, other researchers have utilised electrical apparatus such as the hot wire microphone. The 

hot wire microphone was originally designed in war times to detect enemy guns by measuring 

the pressure changes caused by the vibrations which emanated from the guns [36]. However, its 
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ability to detect vibrations made it an ideal candidate for detecting the vibrations in the body 

generated by cardio-respiratory activity [37]. 

b) Seismocardiography 

With the advent of micro-electro-mechanical systems (MEMS)-based motion tracking 

technology, it became feasible to record these vibrations with a miniaturized accelerometer 

attached to the skin at the xiphoid process of the sternum (where vibrational signals are strongest 

due to the position of the heart in the thorax [38]). The recorded accelerometer signal is called a 

seismocardiography (SCG) signal [39]. 

One significant benefit of SCG is that since an accelerometer is used, the motion 

recorded is not solely constrained to cardiac activity – respiratory motion is also incorporated 

into the recording [40]. Since cardiac and respiratory monitoring techniques have largely evolved 

separately from each other, cardiac monitoring techniques often carry little respiratory 

information and vice versa. ECG and PPG have been shown to have slight respiratory effects in 

their signals, but this effect varies strongly based on the subject [41]. Moreover, respiratory 

monitoring techniques generally have no insight into cardiac activity whatsoever. This is not 

ideal, as cardiac and respiratory functions are inherently coupled and usually need to be 

monitored simultaneously. Therefore, the ability of SCG to capture both cardiac and respiratory 

activity in one signal and with one device is beneficial. 

Furthermore, SCG has shown considerable accuracy in predicting several important 

cardiac time intervals such as the opening and closing of both the mitral and aortic valves [42]. 

During a single cardiac cycle, the mitral and aortic valves open and close as the heart contracts 

and expands. These valvular movements create specific vibrations during the cardiac cycle that 

appear on and can be defined as fiducial points on an SCG signal. An example of an SCG 

cardiac cycle with the fiducial points from [43] is shown in Figure 1. Since this work was one of 

the first to define SCG fiducial points, the naming conventions used have largely remained and 

are the current standard. However, some of their timing correlations have been both 

disputed [44] and renamed [45]. Using these fiducial points to track the timing of cardiac events 

has led SCG to emerge as a strong candidate for cardiac monitoring [38, 46]. In fact, cardiac 

detection using SCG has demonstrated accuracy at the same level as that of ECG [47]. This 

candidacy for cardiac monitoring is further strengthened by the fact that SCG sensors are 
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generally unobtrusive because they are small and only require a single point of contact on the 

body [48]. 

 

Figure 1. SCG cardiac cycle with fiducial points annotated. Fiducial points shown are the mitral 

valve closure (MC), isovolumic movement (IM), aortic valve opening (AO), isotonic contraction 

(IC), peak of rapid systolic ejection (RE), aortic valve closure (AC), mitral valve opening (MO), 

peak of rapid diastolic filling (RF), and peak of atrial systole (AS). Recreated using experimental 

data and fiducial points from [43]. 

 

Additionally, SCG can monitor respiration using similar principles to those of RIP – by 

monitoring the motion of the chest [49]. Many recent studies have also applied these principles, 

using cameras [50], wearable strain sensors [51], ultrasound [52] and radar [53] to monitor 

respiration via chest motion. However, outside of the high-speed cameras, these methods lack the 

granularity required to also record cardiac activity via chest motion. As a result, SCG remains 

one of the few current tools available that can monitor both cardiac and respiratory activity 

simultaneously. 

 

c) Vibrational Cardiography 

Recently, MEMS-based motion tracking technology has improved to the point where 

both an accelerometer and a gyroscope could be integrated into a single miniaturized inertial 

measurement unit (IMU). This provided an integrated, coupled gyration signal, which motivated 

research into gyrocardiography (GCG) as a complementary measurement [54]. In fact, over 50% 

of the total kinetic energy transferred from the heart to the body is contained in the GCG 

signal [55]. This shows the added value of incorporating GCG into cardio-respiratory monitoring 
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applications. Additionally, since the SCG and GCG measurements are mutually orthogonal by 

nature, there is an inherent difference in the noise characteristics to which each measurement is 

vulnerable. As a result, combining information from both measurements facilitates a more 

comprehensive analysis. This coupled SCG and GCG measurement has been termed vibrational 

cardiography (VCG) [47], and is the measurement utilised in this research. The signal 

morphologies for the six axes which constitute a single VCG cardiac cycle are shown in Figure 

2, with Figure 2(a) showing the SCG axis components and Figure 2(b) showing the GCG axis 

components. 

 

Figure 2. (a) Signal morphology of a single VCG cardiac cycle shown for acceleration in all 

three axis components. (b) Signal morphology of a single VCG cardiac cycle shown for gyration 

in all three axis components. 
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C. Respiratory Variation 

Due to the physical proximity of the heart and the lungs, respiration inevitably affects the 

cardiovascular system. It modulates the morphology, timing and amplitude of cardiac signals, 

especially mechanical signals such as VCG. This effect was observed as early as the 1920s in 

some of the first studies of BCG. In these studies, it was noted that respiration phase modulates 

the amplitude of the acquired heart signal [37]. This view has since been expanded, showing that 

the respiratory variation of an SCG signal can be explained not only as amplitude modulation but 

as a combination of amplitude modulation, frequency modulation and baseline wandering. More 

specifically, the amplitude is dependent on respiratory volume while baseline and frequency 

modulation are dependent on respiratory phase [56]. 

Because of this significant respiratory effect, previous works often attempted to reduce 

the respiratory variation by filtering out the respiration signal altogether [57]. In other works, 

patients were asked to hold their breath while measurements were taken [58]. While these 

methods achieve the desired effect of reducing respiratory variation, they also remove potentially 

useful respiratory information. For example, it has been shown that expiration cycles are affected 

first in many cardiac abnormalities [59]. Therefore, losing the respiratory information 

corresponding to these cycles could be detrimental to early detection of such cardiac 

abnormalities. Additionally, breath holding can be uncomfortable for patients and oftentimes, 

such as in ambulatory monitoring, it is not a feasible request. 

Alternatively, the categorization of SCG heartbeats based on respiratory information such 

as respiratory volume and respiratory phase has been investigated as a potential method to reduce 

respiratory variation. This is favourable because it retains useful respiratory information while 

still reducing respiratory variation. It has been shown that separating heartbeats based on 

respiratory phase drastically improves analysis and interpretation of the SCG morphology [60]. 

This method facilitates more accurate estimation of SCG features, and better signal 

characterization and classification [61], and is the approach taken in this research.  

Multiple studies have used ECG or SCG to extract respiratory information such as 

respiration rate or respiration phase [62, 63], but none have done so on a beat-to-beat basis using 

VCG. The closest works to this study are [64], in which a machine learning approach was 

employed on SCG to identify respiratory phase on a beat-to-beat basis, [65], in which the effect 
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of static respiration volume on VCG signal morphology was investigated, and [58] in which 1-

dimensional convolutional neural networks were utilised to classify static lung volume states 

using VCG. This work builds on the work done in [58]. 

 

D. Machine Learning 

The human body is a complex, interconnected system and this causes biomedical signals 

to be generally prone to noise and interference. As a result, signal characteristics which may 

provide clinically important information could easily be overlooked by a human [66]. This has 

led to a significant increase in the use of statistical and computational methods to analyze 

biomedical signals [67]. The most prevalent of these is machine learning (ML). The benefit of 

using ML to analyse biomedical signals is that ML has the potential to objectively interpret the 

signal, in some cases leading to analyses that surpasses that of a human with years of 

experience [66]. 

 

1. Supervised learning 

The field of ML consists largely of two main learning paradigms: supervised and 

unsupervised learning [68]. In supervised learning, a computer program “learns” the correlations 

between input data and output targets in a training dataset in order to make future predictions 

about unseen data in a testing dataset. The name “supervised learning” arises from the fact that 

generally, training is done on a training set where the true output targets are already known. 

Subsequently, the trained model is used to make predictions on a testing set where the true 

output targets are unknown. The predictions made by a supervised learning algorithm can be 

classifications or regressions. Classification attempts to map input data to a discrete set of output 

targets, or classes, while regression attempts to map input data to a continuous set of output 

targets. There are many established algorithms for classification such as logistic regression [69], 

decision trees [70] and support vector machines (SVM) [71]. There are also many established 

algorithms for regression such as linear regression [72] and support vector regression 

(SVR) [73]. 
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2. Convolutional Neural Networks 

Over the last few decades, a variety of impressive advancements have been brought forth 

in the field of ML [74]. One of these advancements, and perhaps the most significant, is the 

evolution of artificial neural networks (ANN). This led to research into increasingly deep neural 

network architectures with powerful learning capabilities and resulted in the emergence of deep 

learning (DL) [75, 76] as a sub-field within ML. There are a variety of DL techniques available 

today, such as recurrent neural networks (RNN) [77] and long short-term memory networks 

(LSTM) [78]. One of the most popular and widely used DL architectures today is the 

convolutional neural network (CNN) [79]. CNNs make use of convolving filters that are applied 

to local features, which ensures a certain degree of shift, scale and distortion invariance [80]. The 

convolving filters can be applied repeatedly at different layers of the network, giving rise to 

different features at each layer. This property is important because it allows CNN-based methods 

to combine feature extraction and prediction tasks into a single body, unlike traditional ML 

methods. Traditional ML methods generally require certain pre-processing steps be taken to form 

hand-crafted features which may be computationally expensive and suboptimal. On the other 

hand, CNN-based methods can extract features directly from raw data and use them to maximise 

prediction accuracy [81]. This key characteristic improves prediction performance significantly 

and has made CNN-based methods very attractive for a wide range of complicated applications. 

CNN architectures were originally developed for computer vision tasks and therefore 

were originally proposed only using 2-dimensional (2D) convolving filters. As a result, their 

application to 1-dimensional (1D) signals was not straightforward. To resolve this, researchers 

either reshaped 1D signals into a 2D matrix before feeding it to the CNN [82] or simply take a 

2D image of the 1D signal and feed that to the CNN [83]. 

However, utilising 2D convolutions posed a significant computational limitation, thus 

making the application of 2D CNNs for mobile, low-power or low-memory devices relatively 

infeasible [81]. In contrast, 1D CNNs offer significantly reduced computational complexity over 

2D CNNs. For example, 2D data with 𝑛 × 𝑛 dimensions convolved with a 2D 𝑘 × 𝑘  kernel 

would have a computational complexity of ~𝑂(𝑛2𝑘2). Conversely, the corresponding 1D 

convolution with equivalent dimensions 𝑛 and 𝑘 would have a computational complexity of 

~ 𝑂(𝑛𝑘). This shows that under equivalent conditions (that is, same network configurations, 
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hyperparameters and kernel size), the computational complexity of a 1D CNN is significantly 

lower than that of a 2D CNN. Additionally, in order to achieve reasonable generalization 

capability and high accuracies, 2D CNNs generally require very large datasets. This can pose an 

issue for many 1D signal applications where available labeled data may not be abundant. 

To address these limitations of 2D CNNs, the first adaptive 1D CNNs used on patient-

specific ECG signals were proposed [84]. Since then, 1D CNNs have gained significant traction 

and have even reached state-of-the-art performance in many signal processing domains such as 

early arrythmia detection in ECG beats [85], damage detection in bearings [86, 87] and high-

power motor fault detection [88]. A 1D CNN operates largely the same as a 2D CNN, with the 

main difference being that 1D convolving filters are used instead of 2D ones. These architectures 

are especially useful for analysing data along the temporal dimension [89], hence why they were 

chosen for the task of VCG signal analysis. 

 

E. 1-Dimensional Convolutional Neural Networks 

1. Overview 

1D CNNs have many varying architectures but generally follow the framework shown in 

Figure 3, with an input layer followed by one or more convolution layers, followed by one or 

more multilayer perceptron (MLP) layers, finally ending with an output or prediction layer. 

Generally, the convolution layers perform operations on the input and can be viewed as “feature 

extractor” layers. Consequently, the MLP layers can be viewed as “decision” layers which take 

the locally extracted features from the convolution layers and use them to make a prediction. 

 

Figure 3. A general CNN structure. 
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2. Convolution Layers 

Convolution consists of sliding a kernel over the input signal and computing consecutive 

dot products with it in a procedure known as shift-compute. For a given 1D input sequence 𝒙 and 

a filter 𝒌 of length 𝟐𝒎 + 𝟏, the 1D convolution operation for a given kernel window can be 

represented by equation (2) to obtain the convolution output 𝒉. 

ℎ(𝑡) = (𝑥 ∗ 𝑘)(𝑡) =  ∑ 𝑥(𝑡 − 𝜏) ∙ 𝑘(𝜏)

𝑚

𝜏=−𝑚

 (2) 

This convolution operation is repeated as the kernel window is shifted across the input. 

The number of positions shifted after each convolution operation is called the stride. Padding of 

the input, generally with zeros, is often implemented to handle convolution operations at the 

edges of the input and ensure consistent dimensionality between input and output. 

After the convolution output has been obtained, a bias vector is added, and the resulting 

value is passed through an activation function (discussed in Section D.5 of Chapter II) to obtain 

the final output of the layer. Altogether, the output 𝒐 of a convolution layer for a single kernel 

(or filter) window is shown in equation (3), where 𝒃 represents the bias vector and 𝒇(∙) 

represents the activation function. 

𝑜(𝑡) = 𝑓 (𝑏(𝑡) + ∑ 𝑥(𝑡 − 𝜏) ∙ 𝑘(𝜏)

𝑚

𝜏=−𝑚

) (3) 

This is commonly repeated for multiple filters, giving the final output of the entire 

convolution layer. These filters, along with the bias term are learned during training to minimize 

a chosen loss function. 

 

3. Multilayer Perceptron Layers 

An MLP layer operates similarly to a 1D convolution layer. However, instead of a filter 

that is slid across the input, a weight vector is used in the dot product computation with the input. 

For a given 1D input sequence x and weight vector 𝒘 of length N, this operation can be 

represented by equation (4) to obtain output 𝒉. 
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ℎ(𝑡) =  ∑ x(t) ∙ 𝑤(t)

N

t =0

 (4) 

The output of this operation is also added to a bias vector and passed through an 

activation function. Altogether, the output 𝒐 of an MLP layer is shown in equation (5), where 𝒃 

represents the bias vector and 𝒇(∙) represents the activation function. 

o(t) = 𝑓 (b(t) + ∑ x(t) ∙ 𝑤(t)

N

t =0

) (5) 

These layers are stacked and reduced in dimensionality until the output layer is reached, 

which contains the same number of neurons as classes in the target data. The weight vector and 

the bias term are learned during training to minimize a chosen loss function. 

 

4. Pooling, Dropout and Flatten Layers 

Pooling layers reduce the dimensionality of a given input and highlight its prominent 

features. Commonly, pooling layers are placed after convolution layers to reduce the dimension 

of the convolution output. This reduction in dimensionality also helps to reduce overfitting. 

There are many types of pooling layers, but the most popular type is max pooling. With this type 

of pooling, a window of a chosen size is slid over the input with a chosen stride and the max 

value of each window is taken as the output. 

Dropout layers employ dropout regularization. The purpose of this technique is to reduce 

overfitting. Dropout regularization refers to “turning off” one or more neurons in the network at 

random, such that they provide zero input to the subsequent layer. This prevents an over-reliance 

on a few of the neurons and forces the network to learn to use as many neurons as possible, thus 

improving generalization. The number of neurons that are turned off is determined by a 

probabilistic measure called the dropout rate. For example, if the dropout rate is 0.5, a number 

between 0 and 1 will be randomly assigned to each neuron and those with a value lower than the 

dropout rate will be turned off. 

The output of convolution layers may have a depth greater than one. Therefore, in order 

for this output to be passed to an MLP layer, it must first be flattened. Flatten layers simply 
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concatenate the output from a convolution layer to form a flat structure which can then be passed 

to an MLP layer. 

 

5. Activation Functions 

               Activation functions are used largely to introduce non-linearity into a neural network 

and allow it to model non-linear correlations. There exist linear activation functions, but these 

are not as widely used as non-linear ones [90]. If linear activation functions were used (or if 

activation functions were omitted altogether), the output of the network would effectively be a 

linear combination of the network layers. Therefore, the network would only be able to adapt to 

linear changes of the input. However, real world data possess non-linear characteristics which 

also need to be considered. Therefore, non-linear activation functions are generally preferred. In 

this research, the activation function was taken as a hyperparameter to be tuned during 

experimentation. This section describes some common activation functions. 

               One of the earliest popular activation functions was the sigmoid function. This 

activation function transforms the input values to the range of 0 to 1 and is given by equation (6). 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =  
1

1 + 𝑒−𝑥
 (6) 

               Another popular activation function is the hyperbolic tangent function. This function is 

similar to the sigmoid function, with the main difference being that it is symmetric around the 

origin, transforming input values to the range of -1 to 1 instead of 0 to 1 like sigmoids. This 

activation function is given by equation (7). 

𝑡𝑎𝑛ℎ(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (7) 

               However, the current most popular activation function is the rectified linear unit 

(ReLU). This activation function typically converges faster than the sigmoid activation function 

and has even been shown to be an average of cascaded sigmoids [91]. ReLU activation is given 

by equation (8). 

ReLU(x) =  {
x, if x > 0

0, otherwise
(8) 
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               Additionally, activation functions for the output layer depend on the type of output. For 

a regression analysis output, any of the aforementioned activation functions could be used. 

However, for a classification analysis output, a specific type of output activation function is 

required. This activation function is called the SoftMax function [90]. This function creates a 

probability distribution over 𝑛 classes, assigning a weighted probability to each class based on 

the output in that class’s position. This function ensures that all the output values will sum to 1, 

thus constituting a valid probability distribution. The SoftMax activation function for a given 

class 𝑖 out of 𝑛 classes is given by equation (9). 

𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑥𝑖) =  
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑛
𝑗=1

 (9) 

 

6. Training 

In order to train a 1D CNN, the trainable parameters within the network (that is, the 

weights, filters and biases) must be learned based on the training data. This is done by defining a 

loss function and minimizing it in a process called back-propagation to update these parameters. 

Loss functions are generally convex functions, which means that updating parameters in a 

direction opposite to the gradient of the loss function with respect to the parameters will result in 

them reaching a global minimum of the loss function. These gradients are backpropagated 

through the network in an iterative optimization process called gradient descent. For gradient 

descent, a constant learning rate which is defined before training is used to control how quickly 

the parameters are updated based on the gradients. However, there are other optimizers such as 

Adam [92], RMSprop [93], or momentum [94] which alter their learning rate over time in a 

process called adaptive learning. While many of these adaptive learning optimizers have been 

shown to converge faster than regular gradient descent, in this research, the type of optimizer 

used in the model was taken as a hyperparameter to be tuned during experimentation. 
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F. Thesis Objectives 

The objective of this thesis was to determine whether 1D CNNs are a viable tool to 

classify VCG cardiac cycles based on the respiratory volume and phase of the subject at the time 

they were recorded. To achieve this, three classification objectives were defined: classifying 

static respiratory volume state, classifying dynamic respiratory volume state, and classifying 

dynamic respiratory phase. The collected VCG data were split into two classes for each of the 

classification objectives, based on the concurrently recorded respiratory flow signal. For each 

classification objective, 1D CNN was employed to predict the class of each cardiac cycle. 

Subsequently, the secondary objective of this thesis was to optimize the performance of 

each 1D CNN for each classification objective through experimentation. This was achieved 

through hyperparameter tuning of the models. Various values for each of the relevant 

hyperparameters were investigated until a final optimal architecture for each classification 

objective was found. 

The development of the data acquisition system, data collection methods, data 

processing, feature and target construction methods and all analysis and experimentation steps 

are detailed in Chapter II. The results are presented in Chapter III and discussed in Chapter IV. 

The thesis is concluded in Chapter V and Chapter VI presents an appendix. 
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II. METHODS 

A. Data Collection 

Experimental data were collected at McGill University with approval from the McGill 

Review Ethics Board. Data were collected using a custom-built system using commercially 

available and affordable components that could be assembled with minimal complexity. This 

facilitated a set up that could easily be replicated in other labs, thus demonstrating the broad 

applicability of VCG. 

 

1. Sensors 

Cardiac activity was recorded by a 6 axis IMU (MPU 9250, InvenSense) attached to the 

xiphoid process of the sternum with a single piece of double-sided tape. The MPU 9250 was 

selected for its small form factor. Moreover, it facilitates digital sampling with a sampling rate 

up to 4000 Hz and with a low root mean square (RMS) noise of 0.078 𝑚𝑠−2 [95]. The range of 

the accelerometer was set to ± 2 𝑔 while the range of the gyroscope was set to ± 250 𝑑𝑒𝑔/𝑠𝑒𝑐. 

The positive X, Y and Z-axes of the accelerometer were oriented downward, right and outward 

respectively. Consequently, the gyroscope coordinates followed the right-hand rule for rotation 

about these axes. 

A Biopac digital acquisition system (MP160, Biopac) was used to obtain reference ECG 

(BN-RSPEC, Biopac) and spirometer (TSD137H, Biopac) signals. Both systems have been 

validated for clinical use. The ECG electrodes were attached to the skin in an Einthoven 

triangle [96] on the torso. The spirometer with a disposable mouthpiece filter was placed in the 

subject’s mouth. Before testing each subject, the spirometer was calibrated to a 3-litre reference 

syringe (AFT27, Biopac). The described placement and orientation of the IMU, ECG and 

spirometer sensors is shown in Figure 4(a). 

 

2. System Connectivity 

The IMU data were polled over inter-integrated circuit (I2C) by a Raspberry Pi (Pi-Zero 

W, Raspberry Pi) at a sampling rate of approximately 600 Hz. A Raspberri Pi was chosen 
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because it facilitated wireless communications, a sufficiently powerful processor and quick 

iterations of prototyping. The Raspberry Pi was controlled by a custom-built webserver user 

interface designed in Python [97] using Flask [98]. The polled IMU data were saved to a text file 

on the Raspberry Pi and then transferred wirelessly to a laptop computer via file transfer protocol 

(FTP). The Biopac data were transmitted serially to a second computer and recorded and 

processed with the AcqKnowledge 5.0 (ACK100W, Biopac) software provided with the Biopac 

system. This software was used for standard smoothing and filtering of the acquired Biopac 

signals to mitigate sensor noise. Moreover, ECG annotation routines within the software were 

used to identify R-peaks. 

Additionally, an externally wired clock signal with varying pulse widths was sent from 

the Biopac system to the Raspberry Pi to create a global timing reference between the two 

systems and facilitate easier synchronisation in processing. Data were combined, synchronized 

and processed in Matlab. A schematic of the overall system and its connections is shown in 

Figure 4(b).  

 

Figure 4. (a) Placement of the inertial measurement unit (IMU) on the xiphoid process of the 

sternum (shown in red) with its orientation represented by the Cartesian reference axis (shown in 

black), placement of the spirometer (shown in blue) and placement of the electrocardiography 

(ECG) electrodes attached to the torso (shown in green). (b) Diagram of data flow. 
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3. Human Trials 

Subjects were first asked to keep a tight seal around the spirometer mouthpiece filter and 

breathe normally through their mouth. No other instructions were given to the subject to regulate 

the rate, intensity or depth of their breathing. Spirometer, ECG and VCG signals were recorded 

for 3 minutes while the subject was at rest. This constituted one “rest” test. Each subject 

performed two rest tests. Next, subjects were asked to hold their breath as long as possible at 

both high lung volume (HLV) and low lung volume (LLV), with a maximum of 2 minutes for 

HLV and 1 minute for LLV. The HLV holds involved inhaling as much as possible before 

holding, while the LLV holds involved exhaling as much as possible before holding. These holds 

were each repeated twice more with rests in between, giving a total of three HLV holds and three 

LLV holds per subject. All tests were performed with the subject in the supine position. The 

study was conducted on 50 healthy participants for a total of 18,330 cardiac cycles at rest and 

15,619 cardiac cycles of breath holds. The average metrics of the study population can be seen in 

Table 1. All subjects had no known prior or existing respiratory or cardiovascular conditions, and 

they all signed a consent form at the beginning of the study. 

Table 1: Study Population 

Description Value 

Participants 50 

Percent Male 56% 

Age 24.4 ± 4.45 years 

Weight 69.1 ± 13.0 kg 

Height 172.6 ± 10.6 cm 

 

 

B. Data Processing 

After acquisition, all data were processed using Biopac’s AcqKnowledge 5.0 software, 

Matlab (R2020A) and Python. In the AcqKnowledge 5.0 software, a modified Pan Tomkins real-

time QRS analysis algorithm [99] supplied by the software was used to detect R-peaks in the 
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ECG signal. However, this algorithm incorrectly identified some of the R-peaks, which was 

remedied in Matlab by locating the incorrectly identified R-peaks and reassigning them to the 

correct peak. 

In Matlab, the varying pulse widths in the reference clock signal were used to identify the 

start and end points of all signals from the IMU and Biopac systems and match them in time. 

Due to the inherent time discrepancies caused by manually starting the IMU and Biopac 

recordings for each test, the signals often had portions either at the start or the end which did not 

overlap with the other signals for a given test. Therefore, each signal was carefully trimmed to 

ensure that only the portions which overlapped with the other signals were retained. 

Subsequently, the respiratory flow signal from the spirometer was smoothed and integrated to 

measure respiratory volume. This numerical integration introduced drift to the signal, which was 

removed by fitting a 2nd order polynomial to the recording and subtracting it. Additionally, due 

to the large random spikes in the VCG signal from cardiac vibrations, spikes that were larger 

than 5 times the median of the signal were treated as outliers and removed. The time-matched, 

trimmed and processed signals were then exported to Python for further processing. 

In Python, the VCG data from the IMU was interpolated to 200 Hz for faster post-

processing and to match the sampling rate needed for SCG analyses [40]. A 5th order 

Butterworth filter was used to remove high-frequency noise. 

As mentioned, CNNs can extract features directly from raw data and use them to 

maximise prediction accuracy. They also tend to perform better when given more data. 

Therefore, all 6 axes of the VCG signal were used in feature construction. 

 

C. Feature and Target Construction 

               Feature and target construction involved separating VCG signals into cardiac cycles 

and then using either the location of each cardiac cycle on the respiratory volume signal or the 

static breath hold test each cardiac cycle came from to create respiratory targets. 
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1. VCG Cardiac Cycles  

The VCG data were separated into cardiac cycles using the concurrently recorded ECG 

signal. The beginning of each cardiac cycle was set as 0.02 seconds prior to the timestamp of the 

R-peak in the ECG signal. This was done to approximately account for the onset of the P wave 

and consequently, the vibrations corresponding to the given cardiac cycle. Each cardiac cycle 

was then padded to a uniform length of 500 samples per cardiac cycle with the average value of 

the cycle. Previously, the cycles were interpolated to 500 samples instead of padded. This 

approach was abandoned because each cycle was then stretched differently in time, leading to 

the loss of potentially useful timing information. During experimentation it was found that 

padding the cardiac cycles instead of interpolating them led to a greater prediction accuracy. 

The uniform-length cardiac cycle vectors were then concatenated to form a preliminary 

𝑛 × 𝑚 feature matrix for each axis component, where 𝑛 was the number of cardiac cycles in the 

dataset and 𝑚 was the number of elements per cardiac cycle (500 in this case). The preliminary 

feature matrix is shown in equation (1), where 𝑥𝑛[𝑚] represents the 𝑚𝑡ℎ element of the 𝑛𝑡ℎ 

cardiac cycle. 

[
𝑥1[1] 𝑥1[2] ⋯ 𝑥1[𝑚]

⋮ ⋮ ⋱ ⋮
𝑥𝑛[1] 𝑥𝑛[2] ⋯ 𝑥𝑛[𝑚]

] (1) 

This process was repeated for all six axis components, and the resulting feature arrays 

were concatenated along a third axis to form the final 𝑛 × 𝑚 × 6 feature matrix used for training. 

 

2. Static Respiratory Volume Targets 

For predicting static respiratory volume, the breath hold test data were used. The target 

creation process was trivial, and the targets were binary; with a 1 attributed to cardiac cycles 

taken from an HLV test and a 0 attributed to cardiac cycles taken from an LLV test. 

 

3. Dynamic Respiratory Volume Targets 

For predicting dynamic respiratory volume, the rest test data were used. The location of 

the start of each cardiac cycle on the respiratory volume signal was found and the volume at each 
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location was examined. Cardiac cycles with a volume above the mean of the respiratory volume 

signal were taken as HLV cycles and attributed a 1, while cardiac cycles below the mean of the 

respiratory volume signal were taken as LLV cycles and attributed a 0. The HLV and LLV 

cycles are shown in Figure 5, overlayed onto the respiratory flow signal. 

 

Figure 5. HLV and LLV cardiac cycles overlayed on respiratory flow signal. 

 

4. Dynamic Respiratory Phase Targets 

For predicting dynamic respiratory phase, the rest test data were also used. The location 

of each cardiac cycle on the respiratory volume signal was found and the slope of the respiratory 

volume signal at each location was examined. Cardiac cycles on a positive slope were taken as 

inspiration cycles and attributed a 1, while cardiac cycles on a negative slope were taken as 

expiration cycles and attributed a 0. The inspiration and expiration cycles are shown in Figure 6, 

overlayed onto the respiratory flow signal. 
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Figure 6. Inspiration and expiration cardiac cycles overlayed on respiratory flow signal. 

 

 

D. Experimentation and Evaluation 

1. Hyperparameter Tuning 

There are many factors which can affect the performance of a 1D CNN. As mentioned, 

there are parameters such as weights, filter weights and biases which are learned during training 

of the network. However, there are also various parameters that affect performance which are not 

learned during training. These parameters are called hyperparameters. Generally, 

experimentation to improve the performance of a 1D CNN involves tuning these 

hyperparameters to achieve higher performance. In this research, a base architecture from [58] 

was selected due to its proven success in respiratory classification from VCG signals. This base 

architecture is shown in Figure 7. 
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Figure 7. Base architecture upon which hyperparameter tuning was performed. Red blocks 

represent blocks that were changed during hyperparameter tuning, black blocks represent blocks 

that were unchanged. 

Subsequently, various hyperparameters on this base architecture were experimented on 

until a final optimal architecture for each of the chosen classification objectives was found. First, 

each hyperparameter was investigated in isolation, leaving the other hyperparameters unchanged 

from the base architecture. Subsequently, the highest performing values from each 

hyperparameter search were combined to form the optimal architecture for each classification 

objective. The optimal architecture was then evaluated using the techniques detailed in 

Section E.2 of Chapter II. This process was repeated using the data for each of the classification 

objectives. The hyperparameters investigated are discussed in this section. The values of these 

hyperparameters for the base architecture are shown in Table 2. 

Number of convolution layers – The number of convolution layers included in the convolution 

block. 
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Number of MLP layers – The number of MLP layers included in the MLP block. 

Number of convolution filters – The number of convolution filters trained for each convolution 

layer. 

Batch size – The number of training samples propagated through the network in order to update 

the trainable parameters. 

Number of epochs – The number of times training data are propagated through the network and 

errors are backpropagated to update trainable parameters. A single epoch refers to a single 

iteration of propagation followed by a single iteration of backpropagation. 

Activation functions – The activation functions used for convolution and MLP layers. The 

activation function at the output remains unchanged because the objective is always a 

classification task. 

Filter/kernel size – The width of the convolution filters used in the convolution layers. Due to 

the nature of the convolution operation, this value must always be an odd integer. 

Optimizer – The optimization algorithm used to iteratively update the trainable parameters of 

the network based on the loss function. 

Loss function – The loss function used by the optimization algorithm to iteratively update the 

trainable parameters of the network. 

Dropout rates – The rate at which neurons are “dropped” in a given dropout layer. In the base 

architecture, there is a dropout layer after the convolution block and another one after the MLP 

block. These are the two dropout rates investigated in this research. 

Number of MLP layer neurons – The number of neurons in each of the MLP layers of the 

network. 

 

 

 

 

 



26 

 

Table 2: Base architecture hyperparameter values 

Hyperparameter Value 

Number of convolution layers 2 

Number of MLP layers 1 

Number of convolution filters 512 

Batch size 50 

Number of epochs 50 

Activation function – Conv ReLU 

Activation function – MLP ReLU 

Filter/kernel size 3 

Optimizer Adam 

Loss function 
Sparse categorical cross-

entropy 

Dropout rate – Conv 0.5 

Dropout rate – MLP 0.5 

Number of MLP neurons 100 

 

 

2. Evaluation Techniques 

When evaluating the performance of a binary classification model, predictions are 

divided into four possible outcomes. Positive targets correctly predicted as positive are labelled 

true positives (TP), negative targets correctly predicted as negative are labelled as true negatives 

(TN), positive targets incorrectly predicted as negative are labelled false negatives (FN) and 

negative targets incorrectly predicted as positive are labelled false positives (FP). Using these 

outcomes, evaluation metrics such as accuracy, precision, recall and F1 score can be defined. 

These metrics are given by equations (10), (11), (12) and (13) respectively. Accuracy is the 

fraction of correct predictions overall, precision is the fraction of all positive predictions that 

were actually positive targets and recall is the fraction of all positive targets that were correctly 



27 

 

predicted as positive. Additionally, F1 score combines accuracy, precision and recall into one 

metric. 

Accuracy =  
∑ 𝑇𝑃 + ∑ 𝑇𝑁

∑ Total Population
 (10) 

Precision =  
∑ 𝑇𝑃

∑ 𝑇𝑃 + ∑ 𝐹𝑃
 (11) 

Recall =  
∑ 𝑇𝑃

∑ 𝑇𝑃 + ∑ 𝐹𝑁
 (12) 

F1 Score = 2 ∙
Precision × Recall

Precision + Recall
=

2 ∑ 𝑇𝑃

2 ∑ 𝑇𝑃 + ∑ 𝐹𝑃 + ∑ 𝐹𝑁
 (13)   

To evaluate the performance of a given CNN architecture and its hyperparameters, 

K-fold cross validation was used [100]. This method of evaluation splits the dataset into 𝑘 folds 

of equal size, then trains on 𝑘 − 1 folds and tests on the remaining fold. This process is repeated 

𝑘 times, each time changing the testing fold such that each of the 𝑘 folds is used as a testing fold 

throughout the process. The average evaluation metrics across the 𝑘 iterations is used as the 

measure of performance. This method of evaluation is beneficial because validating performance 

on multiple folds of data helps to detect and thus mitigate overfitting. 
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III. RESULTS 

This chapter describes the results obtained from the analyses described above. The value 

of each hyperparameter was varied using a predetermined set of options and 10-fold cross 

validation was performed to obtain an average F1 score for each value. Subsequently, the value 

with the highest F1 score was included in the final optimal architecture for the given 

classification objective. 

 

A. Static Respiratory Volume 

For the static respiratory volume classification objective, the best and worst performing 

hyperparameter values are shown in Table 3. A more detailed table showing the results of all 

values tested for all hyperparameters is shown in Appendix A.  

Table 3: Average F1 score for the best and worst performing values of each hyperparameter 

tuning experiment from the static respiratory volume classification objective. 

Hyperparameter Values Tested 

Best Worst 

Value 
Avg F1 

Score 
Value 

Avg F1 

Score 

Number of 

convolution layers 
1, 2, 3, 4, 5 1 0.9947 3 0.9937 

Number of MLP 

layers 
1, 2, 3, 4, 5 1 0.9949 5 0.9939 

Number of 

convolution filters 

2, 4, 8, 16, 32, 64, 

128, 256, 512, 1024 
16 0.9950 2 0.9855 

Batch size 32, 64, 128, 256 128 0.9950 64 0.9947 

Number of epochs 
50, 100, 150, 200, 

250, 300 
300 0.9948 50 0.9938 

Activation function 

(Conv, MLP) 

ReLU, Sigmoid, 

Tanh 

(ReLU, 

ReLU) 
0.9946 

(Tanh, 

Sigmoid) 
0.9185 

Filter/kernel size 
3, 5, 7, 9, 11, 13, 15, 

17, 19 
7 0.9960 3 0.9944 

Optimizer 

SGD, RMSprop, 

Adam, Adamax, 

Nadam, Adadelta 

SGD 0.9956 Adadelta 0.9746 

Loss function 

Sparse Categorical 

Cross-entropy, 

Poisson, KL 

Divergence 

Sparse 

Categorical 

Cross-

entropy 

0.9945 
KL 

Divergence 
0.1606 
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Dropout rate 

(Conv, MLP) 
0.1, 0.3, 0.5, 0.7, 0.9 (0.5, 0.1) 0.9950 (0.9, 0.9) 0.9781 

Number of MLP 

neurons 

10, 50, 100, 250, 500, 

750, 1000 
500 0.9954 10 0.9903 

 

These findings correspond with previous work [58] from which the base architecture for 

these experiments was obtained. However, it was found that a reduction in the number of 

convolution layers from 2 to 1 resulted in a 0.02% increase in F1 score from 0.9945 to 0.9947. It 

was also found that a reduction in the number of convolution filters from 512 to 16 resulted in a 

0.05% increase in F1 score from 0.9945 to 0.9950. Additionally, it was observed that a larger 

kernel size, more epochs, more MLP neurons, a smaller MLP dropout rate and a change in 

optimizer all lead to an increase in performance. In fact, all of the best performing 

hyperparameter values in these experiments produced results that either matched or 

outperformed the F1 score from that previous work. Moreover, the optimal architecture for this 

classification objective achieved an F1 score of 0.9972. This was an increase of 0.12% over the 

best F1 score from the individual hyperparameter searches and 0.27% over the base 

architecture’s performance on this classification objective. Table 4 shows the performance of the 

optimal architecture in comparison with the performance of the base architecture. 

Table 4: Performance of optimal architecture and base architecture for the static respiratory 

volume classification objective. 

Model F1 Score 

Optimal architecture 0.9972 

Base architecture 0.9945 

 

 

B. Dynamic Respiratory Volume Targets 

For the dynamic respiratory volume classification objective, the best and worst 

performing hyperparameter values are shown in Table 5. A more detailed table showing the 

results of all values tested for all hyperparameters is shown in Appendix B.  
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Table 5: Average F1 score for the best and worst performing values of each hyperparameter 

tuning experiment from the dynamic respiratory volume classification objective. 

Hyperparameter Values Tested 

Best Value Worst Value 

Value 
Avg F1 

Score 
Value 

Avg F1 

Score 

Number of 

convolution layers 
1, 2, 3, 4, 5 1 0.8052 5 0.7924 

Number of MLP 

layers 
1, 2, 3, 4, 5 1 0.8034 2 0.7863 

Number of 

convolution filters 

2, 4, 8, 16, 32, 64, 

128, 256, 512, 1024 
16 0.8019 2 0.7095 

Batch size 32, 64, 128, 256 64 0.8159 256 0.7958 

Number of epochs 
50, 100, 150, 200, 

250, 300 
300 0.8071 50 0.7805 

Activation function 

(Conv, MLP) 

ReLU, Sigmoid, 

Tanh 

(ReLU, 

ReLU) 
0.8098 

(Sigmoid, 

Tanh) 
0.3492 

Filter/kernel size 
3, 5, 7, 9, 11, 13, 15, 

17, 19 
15 0.8144 5 0.8028 

Optimizer 

SGD, RMSprop, 

Adam, Adamax, 

Nadam, Adadelta 

SGD 0.8098 Adadelta 0.7141 

Loss function 

Sparse Categorical 

Cross-entropy, 

Poisson, KL 

Divergence 

Sparse 

Categorical 

Cross-

entropy 

0.8048 
KL 

Divergence 
0.0619 

Dropout rate 

(Conv, MLP) 
0.1, 0.3, 0.5, 0.7, 0.9 (0.5, 0.5) 0.8131 (0.9, 0.9) 0.5975 

Number of MLP 

neurons 

10, 50, 100, 250, 500, 

750, 1000 
500 0.8123 10 0.7679 

 

In these experiments, it was again found that using just one convolution layer produced 

the best results. Additionally, it was found that fewer convolution filters, a smaller batch size, 

more epochs, a larger kernel size and more MLP neurons all improved performance. Moreover, 

the optimal architecture for this classification objective achieved an F1 score of 0.8324. This was 

an increase of 2.02% over the best F1 score from the individual hyperparameter searches and 

4.01% over the base architecture’s performance on this classification objective.  

Table 6 shows the performance of the optimal architecture in comparison with the 

performance of the base architecture. 
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Table 6: Performance of optimal architecture and base architecture for the dynamic respiratory 

volume classification objective. 

Model F1 Score 

Optimal architecture 0.8324 

Base architecture 0.8003 

 

C. Dynamic Respiratory Phase Targets 

For the dynamic respiratory phase classification objective, the best and worst performing 

hyperparameter values are shown in Table 7. A more detailed table showing the results of all 

values tested for all hyperparameters is shown in Appendix C.  

Table 7: Average F1 score for the best and worst performing values of each hyperparameter 

tuning experiment from the dynamic respiratory phase classification objective. 

Hyperparameter Values Tested 

Best Value Worst Value 

Value 
Avg F1 

Score 
Value 

Avg F1 

Score 

Number of 

convolution layers 
1, 2, 3, 4, 5 2 0.8410 5 0.8370 

Number of MLP 

layers 
1, 2, 3, 4, 5 1 0.8385 2 0.8279 

Number of 

convolution filters 

2, 4, 8, 16, 32, 64, 

128, 256, 512, 1024 
16 0.8429 2 0.7857 

Batch size 32, 64, 128, 256 32 0.8409 64 0.8345 

Number of epochs 
50, 100, 150, 200, 

250, 300 
300 0.8410 50 0.8324 

Activation function 

(Conv, MLP) 

ReLU, Sigmoid, 

Tanh 

(ReLU, 

Sigmoid) 
0.8459 

(Sigmoid, 

Tanh) 
0.7723 

Filter/kernel size 
3, 5, 7, 9, 11, 13, 15, 

17, 19 
7 0.8430 17 0.8319 

Optimizer 

SGD, RMSprop, 

Adam, Adamax, 

Nadam, Adadelta 

Nadam 0.8476 Adadelta 0.7628 

Loss function 

Sparse Categorical 

Cross-entropy, 

Poisson, KL 

Divergence 

Sparse 

Categorical 

Cross-

entropy 

0.8435 
KL 

Divergence 
0.0685 

Dropout rate 

(Conv, MLP) 
0.1, 0.3, 0.5, 0.7, 0.9 (0.5, 0.3) 0.8415 (0.9, 0.9) 0.6950 

Number of MLP 10, 50, 100, 250, 500, 750 0.8471 10 0.8119 
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neurons 750, 1000 

 

In these experiments, it was found that fewer convolution filters, a smaller batch size, 

more epochs, a change in MLP activation function, a larger kernel size, a change in optimizer 

and more MLP neurons all improved performance over the base architecture. Moreover, the 

optimal architecture for this classification objective achieved an F1 score of 0.8617. This was an 

increase of 1.66% over the best F1 score from the individual hyperparameter searches and 4.66% 

over the base architecture’s performance on this classification objective. Table 8 shows the 

performance of the optimal architecture in comparison with the performance of the base 

architecture. 

Table 8: Performance of optimal architecture and base architecture for the dynamic respiratory 

phase classification objective. 

Model F1 Score 

Optimal architecture 0.8617 

Base architecture 0.8233 
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IV. DISCUSSION 

The optimal architectures developed during experimentation provided reliable 

classification performance for all three of the classification objectives outlined, showing that 1D 

CNNs are a viable tool to classify VCG cardiac cycles based on the respiratory volume and 

phase of the subject at the time they were recorded. Due to the high F1 scores achieved, the 

results of this research validate and expand upon the conclusions reached by [65], in which it 

was shown that differences in lung volume state result in a quantifiable distinction between VCG 

waveforms. 

One important finding of this research is that networks with fewer convolution layers 

tended to outperform networks with more convolution layers. This is highlighted by the fact that 

none of the three classification objectives produced an optimal architecture with more than two 

convolution layers, despite up to five convolution layers being tested for each one. As discussed 

in Section D.2 of Chapter I, convolution layers can be viewed as “feature extractor” layers which 

apply convolving filters to local features. That is, each filter of a convolution layer receives 

inputs from a set of filters located in a small neighbourhood in the previous layer. These filters 

can be applied repeatedly at different layers of the network to extract different features at each 

layer, each one building upon features extracted at previous layers. For example, in the case of 

image classification with CNNs, lower-level convolution layers have been shown to extract 

elementary visual features such as edges, corners and endpoints of an image. Subsequent layers 

build upon and combine these lower-level elementary features to extract more complex features, 

such as detecting certain objects based on the specific combination of edges, corners and 

endpoints found in those objects [101]. In other words, more convolution layers in a model 

suggests that features with increasing levels of complexity are being extracted before the 

decision-making process. However, the fact that models with fewer convolution layers 

outperformed models with more convolution layers suggests that the less complex feature 

representations extracted in the lower-level convolution layers were adequate to make accurate 

predictions. In fact, this finding suggests that further computation after these lower-level layers 

led to wasted computational power and degradation of model performance. In the context of 

CNNs, this degradation of model performance and wastage of computational resources is 

commonly referred to as overthinking [102]. One potential cause of overthinking in this research 
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is that higher-level, more complex feature representations are overlapping between classes more 

frequently than lower-level, less complex feature representations. That is, more of the higher-

level features exist in both classes than the lower-level features, thus giving the lower-level 

features a greater ability to distinguish between classes. Another potential cause of overthinking 

in this research is that higher-level features are focusing on finer details in the signal that are 

largely irrelevant to the prediction being made, thus giving the lower-level features (that lack 

such irrelevant focuses) a greater ability to distinguish between classes. The true cause of 

overthinking in this research is unknown and could be a combination of the two potential causes 

discussed. This is a potential avenue for further research into lung volume-based VCG analysis 

with 1D CNNs. 

Another important finding of this research is that decreasing the number of convolution 

filters in the model lead to greater performance. This is highlighted by the fact that the optimal 

architecture produced for all three classification objectives used 16 convolution filters, a 

decrease from 512 in the base architecture. As discussed in Section D.2 of Chapter I, multiple 

convolution filters can be added to each convolution layer of the network. The weights of each 

filter are initialized randomly and learned during training, generally leading to a collection of 

filters wherein each filter learns to extract a specific feature in the data. For example, again in the 

case of image classification with CNNs, each feature (such as edges, corners or endpoints) is 

extracted by a corresponding convolution filter. Therefore, more convolution filters in a given 

convolution layer suggests that at that level of abstraction, more features are being extracted. As 

a result, the fact that decreasing the number of convolution filters lead to greater performance 

suggests that fewer individual features were required to make an accurate prediction for all three 

classification objectives. In fact, this finding shows that extracting more features per layer after a 

certain point degraded model performance. This point was found to be about 16 filters, up to 

which performance increased but after which performance degraded. To determine the true cause 

of the underperformance of models with more convolution filters, further research is required. 

However, one potential cause is that there are approximately 16 important features in the data 

that correlate strongly to the respiratory variation in the signal. Therefore, models with more 

filters which attempt to extract more features will likely extract features which are not relevant to 

respiratory variation. As a result, they introduce noise into the decision-making process, leading 

to degradation of model performance. 
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The implications of these findings are favourable. Removing convolution layers from a 

model decreases the number of parameters which must be learned during training. For example, 

the base architecture modified to have 5 convolution layers has 15,701,806 trainable parameters, 

while the base architecture modified to have 1 convolution layer has 12,758,830 trainable 

parameters, an 18.74% decrease. This decrease is favourable because fewer trainable parameters 

can increase training by requiring fewer iterations and fewer computations per iteration [103]. In 

addition, fewer convolution filters in a model decreases the number of filter weights that must be 

learned during training and thus also reduces the overall number of trainable parameters. For 

example, the base architecture unchanged with 512 convolution filters for each convolution layer 

has 13,494,574 trainable parameters, while the base architecture modified to use 16 convolution 

filters for each convolution layer has 398,190 trainable parameters, a decrease of 97.05%. This 

decrease is even more significant than that of reducing the number of convolution layers. These 

reductions in training time and computational complexity could improve feasibility of the model 

being used for mobile or low-power applications. 

Additionally, several limitations of the conducted study have been recognized. To begin 

with, the study population was only 50 subjects. In order to properly validate the findings of this 

study, it would be beneficial that a much larger study population be used. Secondly, all data were 

recorded with the subject laying supine in a controlled environment with minimal external noise 

affecting the recordings. If VCG is to be developed into a robust non-invasive health monitoring 

tool, it must also be investigated in scenarios more aptly emulating everyday life. Thirdly, other 

than setting accelerometer and gyroscope ranges, no further calibration was performed on the 

IMU systems before each experiment. This is an area for future improvement, as calibrating on a 

per-experiment basis would likely yield more reliable results. Furthermore, due to time 

constraints, no specific investigations were carried out into the overall fault-tolerance or 

production deployment potential of the system. In order for the respiratory variation reducing 

CNNs in this work to be incorporated into a successful productionized wearable VCG solution, 

their reliability under condition of various faults (such as sensor faults or computing node faults) 

must be investigated and maximised, and their application to a fully online production system 

must be engineered. Finally, the inherent nature of 1D CNNs and most ML techniques is that 

they give little insight into the correlations being made within the model. That is, while proving 

to be very accurate in their predictions, little can be gleaned about how exactly those predictions 
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are being made. Therefore, an excellent future extension of this study would be to recreate the 

work done with a custom-designed 1D CNN that provides output at each inner layer, thus 

facilitating deeper analysis of the correlations being made within the model. 
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V. CONCLUSION 

The objective of this thesis was to determine whether 1D CNNs are a viable tool to 

classify VCG cardiac cycles based on the respiratory volume and phase of the subject at the time 

they were recorded. Three classification objectives were defined: classifying static respiratory 

volume state, classifying dynamic respiratory volume state and classifying dynamic respiratory 

phase. It was found that a 1D CNN was able to classify VCG cardiac cycles for all three 

classification objectives with a high degree of accuracy. Moreover, it was found that this 

accuracy could be increased by reducing the complexity of the models in all three cases. These 

findings have positive implications for the application of 1D CNNs to the task of VCG analysis, 

increasing the viability of deploying such models in low-power, low-memory or mobile 

applications. Further studies must be conducted with larger study populations and longer 

breathing windows to validate these findings. Additionally, future work could involve repeating 

these analyses with custom-built 1D CNNs that can facilitate deeper analysis into the 

correlations being made within the model. This would enable a deeper understanding of which 

aspects of the VCG signal were most important to the classifications that were made. 
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VI. APPENDIX 

A. Individual Hyperparameter Search Results – Static Respiratory 

Volume 

1. Number of Convolution Layers 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 

1 0.9947 0.0018 

2 0.9943 0.0013 

3 0.9937 0.0013 

4 0.9945 0.0012 

5 0.9942 0.0017 

 

2. Number of MLP Layers 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 

1 0.9949 0.0011 

2 0.9944 0.0017 

3 0.9940 0.0016 

4 0.9948 0.0015 

5 0.9939 0.0019 

 

3. Number of Convolution Filters 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 

2 0.9855 0.0021 

4 0.9989 0.0014 

8 0.9937 0.0020 

16 0.9950 0.0007 

32 0.9946 0.0016 
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64 0.9948 0.0022 

128 0.9944 0.0016 

256 0.9948 0.0010 

512 0.9943 0.0017 

1024 0.9944 0.0017 

 

4. Batch Size 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 

32 0.9949 0.0017 

64 0.9947 0.0016 

128 0.9950 0.0012 

256 0.9947 0.0015 

 

5. Number of Epochs 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 

50 0.9938 0.0010 

100 0.9944 0.0016 

150 0.9943 0.0005 

200 0.9944 0.0021 

250 0.9947 0.0017 

300 0.9948 0.0015 

 

6. Activation Function 

Hyperparameter Value 

(Conv, MLP) 

F1 Score 

Average Standard Deviation 

(ReLU, ReLU) 0.9946 0.0014 

(ReLU, Sigmoid) 0.9939 0.0019 
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(ReLU, Tanh) 0.9938 0.0014 

(Sigmoid, ReLU) 0.9890 0.0027 

(Sigmoid, Sigmoid) 0.9927 0.0016 

(Sigmoid, Tanh) 0.9891 0.0034 

(Tanh, ReLU) 0.9715 0.0072 

(Tanh, Sigmoid) 0.9185 0.0310 

(Tanh, Tanh) 0.9738 0.0055 

 

7. Filter/Kernel Size 

Hyperparameter Value 

(Conv, MLP) 

F1 Score 

Average Standard Deviation 

3 0.9944 0.0013 

5 0.9946 0.0016 

7 0.9960 0.0011 

9 0.9958 0.0016 

11 0.9958 0.0014 

13 0.9955 0.0014 

15 0.9959 0.0012 

17 0.9952 0.0014 

19 0.9958 0.0021 

 

8. Optimizer 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 

SGD 0.9956 0.0016 

RMSprop 0.9934 0.0020 

Adam 0.9950 0.0012 

Adamax 0.9953 0.0016 

Nadam 0.9950 0.0010 

Adadelta 0.9746 0.0034 
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9. Loss Function 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 

Sparse Categorical Cross-

Entropy 
0.9945 0.0021 

Poisson 0.4016 0.4016 

KL Divergence 0.1606 0.3212 

 

10. Dropout Rate 

Hyperparameter Value 

(Conv, MLP) 

F1 Score 

Average Standard Deviation 

(0.1, 0.1) 0.9932 0.0020 

(0.1, 0.3) 0.9942 0.0016 

(0.1, 0.5) 0.9947 0.0021 

(0.1, 0.7) 0.9941 0.0015 

(0.1, 0.9) 0.9923 0.0025 

(0.3, 0.1) 0.9939 0.0018 

(0.3, 0.3) 0.9944 0.0016 

(0.3, 0.5) 0.9947 0.0017 

(0.3, 0.7) 0.9947 0.0019 

(0.3, 0.9) 0.9920 0.0024 

(0.5, 0.1) 0.9950 0.0017 

(0.5, 0.3) 0.9947 0.0019 

(0.5, 0.5) 0.9945 0.0016 

(0.5, 0.7) 0.9947 0.0020 

(0.5, 0.9) 0.9922 0.0016 

(0.7, 0.1) 0.9941 0.0013 

(0.7, 0.3) 0.9945 0.0015 

(0.7, 0.5) 0.9945 0.0016 
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(0.7, 0.7) 0.9942 0.0014 

(0.7, 0.9) 0.9898 0.0030 

(0.9, 0.1) 0.9930 0.0019 

(0.9, 0.3) 0.9932 0.0021 

(0.9, 0.5) 0.9918 0.0019 

(0.9, 0.7) 0.9896 0.0025 

(0.9, 0.9) 0.9781 0.0053 

 

11. Number of MLP Neurons 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 

10 0.9903 0.0023 

50 0.9942 0.0019 

100 0.9947 0.0017 

250 0.9951 0.0013 

500 0.9954 0.0011 

750 0.9951 0.0010 

1000 0.9953 0.0013 

 

 

B. Individual Hyperparameter Search Results – Dynamic Respiratory Volume 

1. Number of Convolution Layers 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 

1 0.8052 0.0099 

2 0.7996 0.0097 

3 0.8051 0.0115 

4 0.7957 0.0144 

5 0.7849 0.0179 
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2. Number of MLP Layers 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 

1 0.8034 0.0132 

2 0.7863 0.0178 

3 0.7938 0.0137 

4 0.7878 0.0169 

5 0.7922 0.0128 

 

3. Number of Convolution Filters 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 

2 0.7095 0.0358 

4 0.7727 0.0178 

8 0.7906 0.0156 

16 0.8019 0.0195 

32 0.7922 0.0295 

64 0.7814 0.0197 

128 0.7784 0.0408 

256 0.7858 0.0164 

512 0.7816 0.0213 

1024 0.7746 0.0371 

 

4. Batch Size 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 

32 0.8089 0.0130 

64 0.8159 0.0110 
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128 0.7997 0.0159 

256 0.7958 0.0189 

 

5. Number of Epochs 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 

50 0.7805 0.0161 

100 0.8048 0.0104 

150 0.7902 0.0207 

200 0.8031 0.0157 

250 0.8045 0.0155 

300 0.8071 0.0175 

 

6. Activation Function 

Hyperparameter Value 

(Conv, MLP) 

F1 Score 

Average Standard Deviation 

(ReLU, ReLU) 0.8098 0.0104 

(ReLU, Sigmoid) 0.8072 0.0149 

(ReLU, Tanh) 0.8001 0.0145 

(Sigmoid, ReLU) 0.5770 0.2911 

(Sigmoid, Sigmoid) 0.7869 0.0187 

(Sigmoid, Tanh) 0.3492 0.3533 

(Tanh, ReLU) 0.6651 0.0359 

(Tanh, Sigmoid) 0.5035 0.1258 

(Tanh, Tanh) 0.6339 0.0283 

 

7. Filter/Kernel Size 

Hyperparameter Value 

(Conv, MLP) 

F1 Score 

Average Standard Deviation 
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3 0.8029 0.0171 

5 0.8028 0.0129 

7 0.8112 0.0119 

9 0.8122 0.0085 

11 0.8090 0.0151 

13 0.8115 0.0186 

15 0.8144 0.0085 

17 0.8076 0.0222 

19 0.8058 0.0130 

 

8. Optimizer 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 

SGD 0.8098 0.0093 

RMSprop 0.7867 0.0104 

Adam 0.8036 0.0143 

Adamax 0.8073 0.0106 

Nadam 0.8038 0.0097 

Adadelta 0.7141 0.0120 

 

9. Loss Function 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 

Sparse Categorical Cross-

Entropy 
0.8048 0.0128 

Poisson 0.1227 0.2456 

KL Divergence 0.0619 0.1857 

 

10. Dropout Rate 

Hyperparameter Value F1 Score 
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(Conv, MLP) Average Standard Deviation 

(0.1, 0.1) 0.7771 0.0114 

(0.1, 0.3) 0.7843 0.0155 

(0.1, 0.5) 0.7897 0.0111 

(0.1, 0.7) 0.7903 0.0103 

(0.1, 0.9) 0.7586 0.0146 

(0.3, 0.1) 0.7901 0.0109 

(0.3, 0.3) 0.7931 0.0141 

(0.3, 0.5) 0.7980 0.0113 

(0.3, 0.7) 0.7972 0.0152 

(0.3, 0.9) 0.7338 0.0323 

(0.5, 0.1) 0.7935 0.0129 

(0.5, 0.3) 0.8030 0.0111 

(0.5, 0.5) 0.8131 0.0110 

(0.5, 0.7) 0.7965 0.0186 

(0.5, 0.9) 0.7348 0.0421 

(0.7, 0.1) 0.7914 0.0188 

(0.7, 0.3) 0.7974 0.0195 

(0.7, 0.5) 0.8052 0.0188 

(0.7, 0.7) 0.8035 0.0159 

(0.7, 0.9) 0.7206 0.0446 

(0.9, 0.1) 0.7607 0.0275 

(0.9, 0.3) 0.7580 0.0183 

(0.9, 0.5) 0.7560 0.0327 

(0.9, 0.7) 0.6984 0.0313 

(0.9, 0.9) 0.5975 0.0609 

 

11. Number of MLP Neurons 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 
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10 0.7679 0.0245 

50 0.7993 0.0166 

100 0.8033 0.0149 

250 0.8071 0.0121 

500 0.8123 0.0084 

750 0.8121 0.0098 

1000 0.8121 0.0105 

 

 

C. Individual Hyperparameter Search Results – Dynamic Respiratory Phase 

1. Number of Convolution Layers 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 

1 0.8371 0.0102 

2 0.8410 0.0068 

3 0.8380 0.0081 

4 0.8391 0.0086 

5 0.8370 0.0070 

 

2. Number of MLP Layers 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 

1 0.8385 0.0077 

2 0.8274 0.0085 

3 0.8331 0.0085 

4 0.8300 0.0103 

5 0.8353 0.0090 

 

3. Number of Convolution Filters 
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Hyperparameter Value 
F1 Score 

Average Standard Deviation 

2 0.7857 0.0255 

4 0.8205 0.0145 

8 0.8394 0.0084 

16 0.8429 0.0079 

32 0.8352 0.0123 

64 0.8307 0.0109 

128 0.8275 0.0145 

256 0.8241 0.0090 

512 0.8200 0.0131 

1024 0.8194 0.0103 

 

4. Batch Size 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 

32 0.8409 0.0075 

64 0.8345 0.0116 

128 0.8375 0.0077 

256 0.8346 0.0109 

 

5. Number of Epochs 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 

50 0.8324 0.0087 

100 0.8376 0.0101 

150 0.8396 0.0057 

200 0.8379 0.0111 

250 0.8369 0.0071 

300 0.8410 0.0117 
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6. Activation Function 

Hyperparameter Value 

(Conv, MLP) 

F1 Score 

Average Standard Deviation 

(ReLU, ReLU) 0.8426 0.0093 

(ReLU, Sigmoid) 0.8459 0.0092 

(ReLU, Tanh) 0.8417 0.0066 

(Sigmoid, ReLU) 0.7791 0.0234 

(Sigmoid, Sigmoid) 0.8389 0.0093 

(Sigmoid, Tanh) 0.7723 0.0562 

(Tanh, ReLU) 0.8232 0.0119 

(Tanh, Sigmoid) 0.7928 0.0157 

(Tanh, Tanh) 0.8020 0.0182 

 

7. Filter/Kernel Size 

Hyperparameter Value 

(Conv, MLP) 

F1 Score 

Average Standard Deviation 

3 0.8416 0.0107 

5 0.8407 0.0070 

7 0.8430 0.0127 

9 0.8380 0.0077 

11 0.8388 0.0098 

13 0.8413 0.0054 

15 0.8402 0.0063 

17 0.8319 0.0103 

19 0.8389 0.0093 

 

8. Optimizer 
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Hyperparameter Value 
F1 Score 

Average Standard Deviation 

SGD 0.8449 0.0074 

RMSprop 0.8233 0.0169 

Adam 0.8406 0.0070 

Adamax 0.8454 0.0084 

Nadam 0.8476 0.0054 

Adadelta 0.7628 0.0121 

 

9. Loss Function 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 

Sparse Categorical Cross-

Entropy 
0.8435 0.0072 

Poisson 0.2035 0.3109 

KL Divergence 0.0685 0.2055 

 

10. Dropout Rate 

Hyperparameter Value 

(Conv, MLP) 

F1 Score 

Average Standard Deviation 

(0.1, 0.1) 0.8268 0.0096 

(0.1, 0.3) 0.8340 0.0081 

(0.1, 0.5) 0.8350 0.0080 

(0.1, 0.7) 0.8347 0.0077 

(0.1, 0.9) 0.8011 0.0146 

(0.3, 0.1) 0.8324 0.0101 

(0.3, 0.3) 0.8340 0.0089 

(0.3, 0.5) 0.8373 0.0111 

(0.3, 0.7) 0.8376 0.0083 

(0.3, 0.9) 0.7682 0.0181 
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(0.5, 0.1) 0.8387 0.0106 

(0.5, 0.3) 0.8415 0.0076 

(0.5, 0.5) 0.8384 0.0076 

(0.5, 0.7) 0.8394 0.0121 

(0.5, 0.9) 0.8069 0.0144 

(0.7, 0.1) 0.8356 0.0095 

(0.7, 0.3) 0.8372 0.0106 

(0.7, 0.5) 0.8328 0.0078 

(0.7, 0.7) 0.8357 0.0103 

(0.7, 0.9) 0.7983 0.0176 

(0.9, 0.1) 0.8175 0.0143 

(0.9, 0.3) 0.8052 0.0193 

(0.9, 0.5) 0.7874 0.0211 

(0.9, 0.7) 0.7624 0.0273 

(0.9, 0.9) 0.6950 0.0215 

 

11. Number of MLP Neurons 

Hyperparameter Value 
F1 Score 

Average Standard Deviation 

10 0.8119 0.0161 

50 0.8274 0.0108 

100 0.8419 0.0101 

250 0.8413 0.0084 

500 0.8453 0.0086 

750 0.8471 0.0035 

1000 0.8465 0.0089 
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