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Thesis Format 

This thesis is in manuscript format which conforms to the “Guidelines for Thesis 

Preparation” of the Faculty of Graduate Studies and Research at McGill University. The 

thesis consists of four chapters and the manuscripts are presented in the order of which 

they were published or submitted for publication. Chapter 1 provides a general 

introduction and overview of the relevant literature of this thesis. A subsection of Chapter 

1 (section X.3.7) has been incorporated in a textbook chapter (Do chromatin dynamics in 

spermatogenesis have implications for fertility and epigenetic inheritance?, 3rd edition of 

Andrology Handbook, American Society of Andrology, 2023, in press). Chapter 2 is a 

manuscript published in the journal Molecular Metabolism 1. This study assessed the 

inter- and transgenerational effects of paternal diet-induced obesity in combination with 

germline-specific overexpression of a histone modifying enzyme, their impact on offspring 

metabolic health and on the sperm epigenome. Chapter 3 of this thesis is a manuscript 

currently under revision (eLife, manuscript #06-09-2022-RA-eLife-83288), which has also 

been uploaded as a preprint (DOI: https://doi.org/10.1101/2022.08.30.503982). In this 

chapter we assessed the consequences of diet-induced obesity on the sperm epigenome, 

the placental transcriptome and cellular composition. Lastly, Chapter 4 includes a general 

discussion of the thesis.  
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Abstract 

Worldwide obesity rates have drastically increased over the past 50 years, at rates that 

cannot be attributed to genetic factors alone. Other known factors contributing to obesity 

risks include diet, energy imbalance, the microbiome, and environmental stressors during 

the in-utero and preconception development. Most preconception health research has 

historically revolved around maternal factors, whereas the paternal influence on future 

generations health has received less attention. Importantly, both epidemiological studies 

and animal models have provided compelling evidence that a father’s environment can 

impact his children’s metabolic health. Whether paternally-induced phenotypes can have 

transgenerational effects remains subject of debate. The mechanisms underlying the 

paternal transmission of non-genetic information is still poorly understood, but likely 

involve epigenetic inheritance. In terms of paternal obesity (non-genetic) transmission, 

research investigating the mechanisms has only focused on DNA methylation and non-

coding RNA as sperm-mediated factors, whereas the role of sperm histones and their 

modifications has been underexplored. Recent advances in sequencing technologies and 

biochemical methods have provided us with the unprecedented opportunity to study the 

unique chromatin profiles in sperm. 

In this thesis, I provide a better understanding on the paternal contribution to future 

generations metabolic health. As such, in Chapter 2, we used a diet-induced obesity 

(DIO) model to assess whether obesity alters the sperm chromatin at the level of histone 

modifications. We combined this DIO model with a genetic model of epigenetic 

inheritance, where males overexpress the histone demethylase KDM1A specifically in the 

germline. We aimed to determine whether multiple epimutation-inducing factors could 

result in cumulative epigenetic changes in sperm associated with more severe 

phenotypes in the next generations, which could reflect the increasing rates of obesity 

worldwide. We identified sperm histone H3 lysine 4 tri-methylation (H3K4me3) as a 

metabolic sensor for paternal obesity and showed that DIO in combination with germline 

KDM1A overexpression resulted in cumulative aberrant sperm H3K4me3 profiles and 

more severe and transgenerational phenotypes in offspring. Obesity-sensitive epigenetic 

regions occurred at genes critical for embryonic development. Lastly, this chapter alluded 

to the intriguing possibility that paternally-induced aberrant sperm epigenetic profiles 
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could impact placenta development. Consequently, in Chapter 3 I aimed to assess 

whether paternal diet-induced obesity could impact placental functions. This study 

revealed that obesity-associated sperm epimutations were linked to aberrant gene 

expression and cellular composition in the placenta. These effects were comparable with 

that of hypoxic placentas – a condition previously linked to intrauterine growth restriction 

and increased adult-onset obesity risk. 

Collectively, these studies support an important role for paternal preconception health 

and the sperm epigenome for proper placenta development and functions, as well as 

future generations metabolic health. The sperm chromatin appears to be a sensor of 

paternal metabolic and reproductive health, and a potential predictor for pregnancy 

outcomes and offspring phenotypes. More studies are warranted to better understand the 

molecular mechanisms that induce these obesity-associated epigenetic changes, to 

determine whether these effects are reversible, and to dissect the molecular events 

during embryogenesis and fetal development that are at the origin of paternally-induced 

maladaptive programming of metabolic and complex diseases.  
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Résumé 

Les taux d'obésité dans le monde ont considérablement augmenté au cours des 50 

dernières années, à des rythmes qui ne peuvent être attribués qu’à des facteurs 

génétiques. D'autres facteurs possibles comprennent l'alimentation, le déséquilibre 

énergétique, le microbiote et l’environnement durant le développement in utero et 

préconceptionnel. La recherche sur la santé préconceptionnelle a souvent porté sur les 

facteurs maternels, tandis que l'influence paternelle sur la santé des générations futures 

a reçu moins d'attention. Pourtant, plusieurs études épidémiologiques et modèles 

animaux ont fourni des preuves convaincantes que le père peut influencer la santé 

métabolique de ses enfants. Si les phénotypes induits par le père peuvent avoir des effets 

transgénérationnels reste un sujet de débat. Les mécanismes de transmission de 

l'information paternelle non génétique sont encore mal compris, mais impliquent 

probablement un héritage épigénétique. En termes de transmission paternelle de 

l'obésité, les recherches portant sur les mécanismes (non génétiques) se sont jusqu'à 

présent concentrées sur la méthylation de l'ADN et l'ARN non codante comme facteurs 

médiés par les spermatozoïdes, alors que le rôle des histones spermatiques et leurs 

modifications a été sous-exploré. Les progrès récents des technologies de séquençage 

et de méthodes biochimiques nous ont fourni l'opportunité sans précédent d'étudier les 

profils uniques de chromatine du sperme. 

Dans cette thèse, j'ai cherché à mieux comprendre la contribution paternelle à la 

santé métabolique des générations futures. Ainsi, dans le chapitre 2, nous avons utilisé 

un modèle d'obésité induite par l'alimentation (OIA) pour évaluer si l'obésité altère les 

modifications des histones des spermatozoïdes. Nous avons combiné ce modèle OIA 

avec un modèle génétique d'hérédité épigénétique, où les mâles transgéniques 

surexpriment l'histone déméthylase KDM1A spécifiquement dans la lignée germinale. 

Nous avons cherché à déterminer si de multiples facteurs pouvaient entraîner des 

changements épigénétiques cumulatifs du sperme, et des phénotypes plus prononcés 

dans les prochaines générations. Nous avons identifié la triméthylation de l'histone H3 

lysine 4 (H3K4me3) du sperme comme un capteur métabolique de l'obésité et avons 

montré que l’OIA chez les mâles transgéniques entraînait des profils H3K4me3 cumulatifs 

aberrants de sperme, et des phénotypes plus graves et transgénérationnels chez la 
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progéniture. Des régions épigénétiques sensibles à l'obésité se sont produites au niveau 

de gènes critiques pour le développement embryonnaire. Enfin, ce chapitre a éludé la 

possibilité que les profils épigénétiques aberrants de spermatozoïdes induits par le père 

puissent avoir un impact sur le développement du placenta. Par conséquent, dans le 

chapitre 3, j'ai cherché à évaluer si l'obésité induite par l'alimentation paternelle pouvait 

avoir un effet sur les fonctions placentaires. Cette étude a révélé que les épimutations du 

sperme étaient associées à une expression génique et à une composition cellulaire 

aberrantes du placenta. Ces effets étaient comparables à ceux de placentas hypoxiques 

- une condition liée à une restriction de croissance intra-utérine et à un risque accru 

d'obésité à l'âge adulte. 

Collectivement, ces études soutiennent un rôle important pour la santé paternelle 

avant la conception et l'épigénome du sperme, pour le bon développement du placenta, 

ainsi que pour la santé métabolique des générations futures. La chromatine du sperme 

semble être un capteur de la santé métabolique et reproductive paternelle, et un 

prédicteur potentiel des phénotypes de la progéniture. D'autres études sont nécessaires 

pour mieux comprendre les mécanismes qui induisent ces changements épigénétiques 

associés à l'obésité, pour déterminer si ces effets sont réversibles, et pour disséquer les 

événements moléculaires au cours du développement fœtal qui sont à l'origine de la 

programmation inadaptée de maladies métaboliques.  
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Chapter 1: Introduction 

10.1 Obesity and metabolic syndrome etiology 

Obesity rates have drastically increased within the past four decades, with 39% of the 

world adult population being overweight and 13% being obese as of 2016 2. Alarmingly, 

children and adolescents have also experienced a global rise in obesity prevalence with 

a seven-fold increase between 1975 and 2016 3. These rates are projected to maintain 

an upward trend in all age groups with an estimated prevalence of 45% (39-52%) of 

overweight individuals and 16% (13-20%) of obese individuals, as of 2050 4. This health 

condition has become a problem not only for developed countries, but for low- and middle-

income countries as well, with global obesity prevalence now exceeding rates of 

underweight individuals 2.  

Obesity is defined based on the body mass index (BMI; kg/m2), with a BMI<18.5 

considered underweight, a BMI between 18.5 and 25 considered normal, a BMI>25 

considered overweight, and a BMI>30 considered obese. An elevated BMI globally 

accounts for a large fraction of a plethora of noncommunicable and chronic diseases such 

as type 2 diabetes (T2D), cardiovascular and cerebrovascular diseases, hypertension, 

and certain cancer types 5–7. Excess weight is also a predictor for conditions that 

negatively impacts an individual’s life quality, such as osteoarthritis and sleep apnea 8,9. 

Furthermore, obese individuals are at heightened risk for severe forms of communicable 

diseases, as exemplified during the COVID-19 pandemic 10–12. Consequently, obesity and 

its comorbidities are among the leading causes of global premature deaths and disability-

adjusted life years (DALYs) 5,13,14. This obesity epidemic and its associated comorbidities 

therefore represent a huge burden for the healthcare system, even more so in the context 

of an aging population, especially since obesity rates are not expected to drop in the 

coming years 15. A deeper understanding on the molecular mechanisms underlying the 

causes, progression, and impacts of obesity and how to prevent this condition, could help 

alleviate the consequences it has worldwide and reduce its use on health care resources. 

Body weight is regulated via complex and interconnected neuronal, hormonal, and 

metabolic pathways, balancing energy (Figure 1, from 16). Hedonic (reward/craving) and 

homeostatic (hunger or satiety) signals from the periphery are integrated within the central 

nervous system (CNS) to promote food-seeking behaviours 17–19. Highly palatable foods 
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promote the release of dopamine via the mesolimbic dopamine pathway, driving hedonic 

feeding behaviours 20–23. In contrast, homeostatic pathways regulate feeding behaviour 

to maintain physiological needs 17,24,25. One such signalling pathway regulating energy 

homeostasis involves the hypothalamic melanocortin circuit, which is comprised of 

hormone- and peptide-responsive neurons located in the arcuate nucleus (ARC) that 

project to melanocortin 4 receptor (MC4R)-expressing neurons in the paraventricular 

nucleus (PVN) 26. These ARC hypothalamic neurons either express orexigenic 

neuropeptides (neuropeptide Y or NPY; agouti-related protein, AgRP) or the anorexigenic 

(appetite-suppressing) neuropeptide precursor pro-opiomelanocortin (POMC) 27. PVN 

neurons integrate these orexigenic and anorexigenic signals to modulate physiological 

and metabolic responses via the release of thyrotropin-releasing hormone and 

corticotropin-releasing hormone (TRH and CRH, respectively) 26. Peripheral hormones 

associated with a fed state act on POMC neuron receptors to promote POMC release, 

and on NPY neuron receptors to suppress NPY/AgRP signalling 28. These anorexigenic-

inducing hormones include leptin (produced by adipocytes proportional with fat mass), 

insulin (secreted by pancreatic beta islets proportional to blood glucose levels), and 

estradiol (secreted by the gonads and by aromatase-expressing peripheral organs such 

as adipose tissue, brain, bone, placental syncytiotrophoblast, and skin fibroblasts) 27–31. 

Other anorexigenic hormones that are released post-prandially from cells located in the 

gastrointestinal system include peptide YY (PYY3-36), cholecystokinin (CCK), 

oxyntomodulin (OXM), and glucagon-like peptide-1 (GLP-1) 28,32. In contrast, the peptide 

hormone ghrelin is produced by the stomach in a fasting state and acts to stimulate the 

production of NPY/AgRP and promote food intake 33. When exposed to obesogens, these 

key hormones and neurotransmitters are all subject to modifications that can result in 

aberrant energy balance, thereby increasing risk for elevated body weight and associated 

comorbidities.  
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Figure 1: Hormonal and neuronal control of body weight.  

Figure obtained from 16, Copyright (2022), with permission from Elsevier. 

 

Obesity is a complex health condition with multifactorial origins, for which 

numerous risk factors likely have interacting or additive effects. This condition results from 

genetic factors, an obesogenic environment, (epi)genetic-environmental interactions, in 

utero programming, and parental preconception health. These factors will be further 

discussed in the next subsections. 

10.1.1 Genetic factors 

Obesity can be classified into two distinct genetic categories: monogenic and polygenic 

obesity. Monogenic obesity manifests early, is typically severe, rare, and caused by a 

single mutation, and follows Mendelian patterns as mode of heredity. In contrast, 
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polygenic obesity (or common obesity) results from many interacting polymorphisms of 

small but additive effects. Although monogenic and polygenic obesity show distinct 

phenotypic, genetic and etiology characteristics, they share common underlying biology, 

involving genes of similar pathways, mainly impacting the regulation of food intake via 

satiety, hunger and hedonic signals within the CNS. 34,35 

The first genes linked to body weight were identified in the ob and db mouse lines. 

Mutations in the ob and db genes (later identified as encoding leptin, and leptin receptor, 

respectively) result in hyperphagia and severe obesity and were found to be due to leptin 

deficiency 36–39.  In the Agouti mouse model, obesity resulted from ectopic and constitutive 

expression of the agouti peptide, an antagonist for melanocortin 1/4 receptors (Mc1r and 

Mc4r) which are key mediators for the anorectic effects of leptin 40–43. These discoveries 

demonstrated the first evidence for hormonal and neuronal basis of body weight and 

feeding behaviour regulation, and prompted the search for genetic drivers underlying 

human interindividual variations in body weight, adiposity and metabolic status, beginning 

in the early 1990s.  

Early attempts to identify genes causing monogenic obesity were made by 

examining individuals with severe obesity along with their family members with the use of 

Sanger sequencing, restricted to a set of candidate genes. These investigations led to 

the discovery of severe obesity-inducing mutations in leptin and its receptor associated 

with leptin deficiency, and in key components of the melanocortin system such as PCSK1, 

MC4R and POMC 44–50. Technical advances and increased accessibility in unbiased 

genetic screening approaches such as whole-exome sequencing (WES)  have identified 

novel causative mutations such as genes encoding class 3 sematophorins (SEMA3A-G) 
51. Sematophorin signalling drives the development of hypothalamic neurons of the 

energy homeostasis-regulating melanocortin circuit 51. 

In the search for genetic variants driving polygenic obesity, candidate gene studies 

were initially performed. For over a decade, variants from previously identified genes were 

assessed to test their association with obesity traits, yielding only six variants identified 

with reproducible outcomes 52–57. Next, genome-wide linkage approaches were 

introduced and revealed over 300 loci with potential links with obesity traits. However, the 

replicability of these identified loci has been limited and no causal gene has been 
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successfully mapped to these candidate loci 58. These approaches were constrained by 

low genome coverage, small sample size, and limited replicability. Advances in 

sequencing technologies and the introduction of genome-wide association studies 

(GWAS) led to a significant progression in the discovery of genes associated with obesity 

traits. GWAS have now identified over 1,000 genes associated with various obesity traits, 

such as BMI, body fat mass, body fat percentage, fat-free mass, adipose tissue imaging, 

and leptin levels 59–65. Some examples are shown in Figure 2 66. Important challenges to 

note in the gene discovery for polygenic obesity are the pleiotropic effects of transcription 

factors involved which can impact expression of several target genes; the epistasis nature 

of genes involved where one gene can affect another gene’s expression or action; and 

gene-environment interactions. Given the multifactorial nature of obesity etiology, several 

GWAS studies have included demographic and environmental factors in their analyses 
67–70. These studies have identified 12 loci showing gene-by-environment interactions, 

whereby certain non-genetic factors can have attenuating or exacerbating effects on 

genetic variant-associated obesity risk. These studies highlighted the complexity of 

obesity traits etiology, with numerous interacting genetic and non-genetic factors 

involved.  

 
Figure 2: Venn diagram showing the overlap of identified loci associated with various metabolic traits related 

to obesity and metabolic syndrome.  

Figure obtained from 66, Copyright (2014) with permission from Springer Nature. 
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Although the advances in high-throughput sequencing technologies, 

computational tools and regulatory regions mapping have allowed for a better 

understanding of the regulatory pathways involved in obesity and identified numerous 

associated loci, the main challenge remaining is the translation of the genomic regions 

into meaningful functional biology via follow-up analyses. For example, most of the 

GWAS-identified variants loci map to regulatory elements at non-coding or intergenic 

regions in the genome – potentially at enhancer regions or alternative promotes – posing 

a particular challenge in determining the underlying biological mechanism explaining their 

role in obesity risk. Furthermore, most GWAS have been biased with sample population 

overrepresented with European ancestry. However, obesity-related loci have been 

identified in cohorts of African, Asian, Hispanic and other ancestry background, with 

associations consistent across ancestries 71–74. Using the newest version of the human 

reference genome recently presented by the Telomere-to-Telomere (T2T) Consortium, 

now covering gapless assemblies of all autosomal chromosomes, future studies will likely 

be able to identify novel obesity-associated genetic variants 75. 

Although there clearly is a strong genetic component underlying risks for obesity 

and associated comorbidities, genetic studies describe heritability estimates ranging from 

10% and 30% to 70% 76–79. Consequently, the rapid and drastic rise in global obesity 

rates observed within the past four decades cannot be attributed to genetic factors alone. 

Nevertheless, the remaining unexplained heritability can be attributed to non-genetic 

factors which can also strongly contribute to interindividual variability in BMI and obesity 

risks. These environmental factors are discussed in the next subsections.  

10.1.2 Obesogens and the obesogenic environment 

Obesity can also result from an imbalance in energy expenditure and energy 

consumption. Such imbalance has been exemplified by the recent pandemic-related 

drastic changes in behaviour, such as the increased implementation of remote working 

during the past three years due to ongoing lockdowns, sedentary lifestyles, and reduction 

of exercise with sporadic sports centres closure. These behavioural changes have 

resulted in sharp increase in self-reported weight gain and increased obesity prevalence 

in USA among all age group 80,81. Before the COVID-19 pandemic, the rise in obesity 



 33 

prevalence can be partly attributed to behavioural changes observed worldwide 

throughout the past century due to industrialization, urbanization and Westernization 

phenomena 4,13,82–88. These phenomena are characteristic of the modern world, 

particularly in Western countries, associated with behavioural changes leading to an 

imbalance in energy consumption and expenditure.  

At the beginning of the 20th century, approximately 10 percent of the global 

population lived in cities 87. Since then, urbanization has spread in both developed and 

developing countries, with now over 50% of the world population living in cities, and these 

numbers are projected to increase to two thirds by 2050 87,89. Urbanization comes with 

various changes in dietary habits, and a shift towards a more sedentary lifestyle 87,89,90. 

For example, this phenomenon leads to greater food supply and access, and increased 

fast-food availability, thereby altering food consumption patterns with higher caloric intake 
4. Urbanization is also associated with reduced physical activity, given the increase in 

computer-based activities both at work as well as during leisure time, and with the use of 

cars as means of transport being preferred over means of transport associated with more 

energy spending, such as public transport, walking, or biking. Importantly, physical activity 

and exercise are beneficial as they can have preventative effects on obesity due to 

increased energy expenditure. Furthermore, metabolites produced upon exercise have 

been shown to suppress feeding 91. The recent finding that BMI values have increased at 

the same rate in rural and urban area in low- and middle-income countries further 

highlights the contribution of other factors driving the obesity epidemic 88.  

Dietary factors strongly influence an individual’s BMI, and food consumption trends 

have also greatly evolved within the past 50 years. Improved agricultural practice and 

productivity have led to increased food availability along with increased food diversity and 

reduced seasonal dependence 87. The use of sweeteners has drastically increased during 

the 1900s and since then their composition has shifted from glucose-based to high-

fructose corn syrup (HFCS) and sucrose 92–95. Additionally, the westernization of lifestyles 

favours a reduction in home cooking, increased consumption of convenience food and 

snacks 82,96–98. Persuasive marketing of the food industry also strongly influences dietary 

habits by promoting large meal portions, snaking, and normalizing the consumption of 

soft drinks, candies and fast food on a weekly or even daily basis 98,99. Other overall 
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changes observed in dietary habits include an increased consumption in sugar and fat, 

energy-dense, low-fibre and animal-source food 4. Consequently, these shifts in dietary 

trends have resulted in an overall increase in the daily caloric intake, concomitant with 

the global rise in obesity prevalence 96.  

Of note, although caloric intake influences energy imbalance, the sources of 

calories such as macronutrient distribution and other food properties play an important 

role in obesity etiology, weight loss and body weight maintenance 100–102. Food properties 

that must be taken into consideration in this paradigm include energy densities, glycemic 

index, satiety value, macronutrient composition, taste, metabolic response elicited upon 

consumption, the types of fats or carbohydrates consumed, the amount of fibres, and 

more 100. The glycemic index (GI) is a numerical value that reflects the blood glucose 

levels elicited following consumption of a specific food, relative to pure glucose as 

reference 103. A low GI food (≤ 55) will slowly and steadily release glucose, whereas a 

high GI food (≥ 70) will result in rapid and high postprandial blood glucose, which is 

associated with glucose homeostasis impairments and metabolic disturbances 102,104. The 

satiety value reflects the degree a food reduces hunger or appetite 105. It is thought that 

foods with high-energy density but low satiety value, such as diets high in fat, are prone 

to facilitate overconsumption 106. In contrast, high-protein diets provide high satiety levels 

and facilitate energy consumption control 107. Certain types of sugars are associated with 

impaired glucose metabolism such as fructose 108–110. Fructose bypasses the main rate-

limiting and enzymatically-regulated step of glycolysis, resulting in uncontrolled 

production of glucose and other molecules, and excess energy flux 111. The amount of 

fibres in food is associated with lower GI, greater satiety value (due to delayed gastric 

emptying and increased production of satiating gut hormones), as well as lower energy 

density 112. Due to its properties, dietary fibres have been shown to provide a wide range 

of health benefits, with protective effects for certain complex diseases such as obesity, 

coronary heart disease, stroke, hypertension, diabetes, and gastrointestinal diseases 112.  

Aside from dietary factors, many environmental chemicals have been shown to 

have obesogenic effects. These compounds are classified as obesogens, with biological 

properties promoting obesity by increasing white adipose tissue mass in vivo. To date, 

about 50 compounds have been identified with obesogenic properties, and most of these 
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chemicals are commonly found in our environment such as in dust, water, processed food 

from additives, food packaging, cosmetics, furniture, electronics, pesticides, plasticizers, 

sweeteners, medications and household products 113,114. Obesogens can elicit their 

obesogenic effects and act directly on adipocytes, affecting stem cell commitment or 

differentiation into adipocytes, the size and number of adipocytes, and adipocyte 

triglyceride storage. Some of these compounds are endocrine disrupting chemicals 

(EDC), meaning that they can disrupt hormone levels or actions and modulate endocrine 

pathways 115. Obesogens can also act on critical organs such as the brain, liver, pancreas, 

gastrointestinal system, muscles and adipose tissue, to modulate physiological pathways 

involved in appetite control, metabolism and energy homeostasis 113,116–119. Other 

obesogens can elicit their obesogenic actions via other mechanisms such as by acting 

on specific target receptors, or via intermediate events such as inflammatory processes 

and oxidative stress. These compounds do not necessarily induce obesity alone, but 

rather interact with and exacerbate the effects of various factors on weight gain, such as 

dietary composition, energy balance and metabolism.  

Biological agents such as the microbiome can impact the bioavailability of 

nutritional metabolites and small molecule intermediates involved in metabolic processes. 

The host microbiome is comprised of bacteria, viruses and fungi residing in symbiosis 

within the gut, more specifically in the small and large intestine, and in the colon. These 

resident bacteria play critical roles in homeostasis, maintaining the gut, brain, metabolic 

and immune physiological health 16,120. With advances in next-generation and high-

throughput sequencing, the microbiome has recently received increased attention in the 

research community. The microbiome content is highly variable throughout one’s life, and 

studies have described associations with microbiota signatures and various health 

conditions, including obesity 120,121. Some diets high in fat or in fructose have been shown 

to alter gut barrier integrity and absorption capacity, promoting increased capacity for 

energy harvest and thereby contributing to excess energy stores 122–125. Likely 

contributing to the low-grade metainflammation of metabolic disease, it was reported that 

pro-inflammatory bacteria are enriched in T2D microbiomes at the expense of anti-

inflammatory bacteria 122,125–133. Although the causal role of the microbiome in obesity 

onset remains a subject of debate, it is clear that dysbiosis is part of the obesity and 
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metabolic syndrome phenotype, and influences the progression and perpetuation of these 

diseases 134. 

Taken together, numerous factors including genetics as well as lifestyle, diet and 

environmental exposures throughout a person’s lifetime can interact and influence their 

risk to develop obesity and associated co-morbidities. These factors can be of particular 

importance during critical periods of development, which are discussed in the next 

subsection. 

10.1.3 The in utero and preconception environment  

10.1.3.1 Developmental Origins of Health and Disease (DOHaD) 

Although the global rise in obesity rates has been largely causally linked to 

behavioural changes related to post-natal diet and physical activity during a life course, 

the focus of research on obesity etiology has now shifted towards considering early life 

factors 135,136. This shift was prompted by a report published almost 40 years ago, linking 

increased heart disease mortality rates in the years of 1968-78, and infant mortality in 

1921-25 137. It was therefore speculated that poor living conditions such as nutrition in 

early life increases risk for chronic diseases in adulthood 137. Following these 

speculations, documented feeding practices and birth weights from babies in the early 

1900s revealed an association between small birth weight and increased risk for complex 

diseases including T2D, hypertension and coronary heart disease 138–140. Since then, 

similar observations have been drawn from cohorts in Africa, northern Europe, North and 

South America, and Asia 141–145. Additionally, a number of epidemiological studies with 

historical food supply data and birth weights found that individuals born from in utero 

exposure to famine, as well as their children, were at heightened risk to develop chronic 

diseases, mental health and neurological disorders in adulthood 141,146,155–163,147–154. A U-

shaped relationship has also been described between birth weight and BMI, where 

weights of < 2,500 g and > 3,500 g at birth were associated with increased risk to obesity 

in adulthood 164,165. Furthermore, the growth trajectory after birth seems to be of particular 

importance for metabolic programming. Indeed, maternal stress or poor nutrition during 

pregnancy resulting with low birth weight and rapid postnatal weight gain – also called 

catch-up growth – has been linked to metabolic dysfunction in adulthood 166,167. 
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Collectively, these studies suggested that the in-utero environment represents a critical 

window of development that can program maladaptive responses to affluent food 

availability, with specific timing of exposures resulting in varying degrees of phenotypes, 

including obesity, hypertension, dyslipidemia, insulin resistance, and impaired glucose 

metabolism 168–172. This so-called “Barker’s Hypothesis” paved the way for research 

avenues on the concept of the Developmental Origins of Health and Disease (DOHaD) 
136,173,174. Importantly, the developing gonads are also susceptible to in utero insults, 

consequently with far-reaching implications for the health of the next generation(s) – 

potentially leading to inter- or transgenerational effects. 

The mechanistic basis of DOHaD in humans has been difficult to study with large, 

complex and longitudinal cohorts. The underlying mechanism is thought to involve 

adverse influences of various environmental and extrinsic factors during development that 

could result in permanent physiological and metabolic changes in the developing fetus, 

which could in turn lead to increased predisposition to adult-onset non-communicable 

diseases. During development, organisms adapt to external signals such as nutrition and 

stress, by adjusting their phenotype and metabolic trajectory to match their environment. 

These effects can be maladaptive and result in the thrifty phenotype (where low birth 

weight is associated with increased risk for complex diseases in adulthood), particularly 

if there are discrepancies between the intrauterine and postnatal environments 175,176.  

Animal models of undernutrition and overnutrition have been helpful in providing 

insights on the underlying mechanisms of metabolic programming. Consistent with 

epidemiological data, maternal caloric restriction, diet-induced obesity models, and low-

protein diets in rodents have been linked to low birth weight, lower nephron numbers 

associated with elevated blood pressure, as well as reduced pancreatic beta-islets 

proliferation, size and vascularization 177–183. Consequently, catch-up growth poses 

excess metabolic demand on limited beta-cell mass thereby impairing metabolic 

functions. Supporting the detrimental effects of mismatched perinatal versus postnatal 

environments, postnatal caloric restriction of rodents born from intrauterine growth 

restriction protects from obesity 184,185. Additionally, the effects of obesogenic diets are 

more pronounced in animals born from undernourished mothers 186. In terms of stress 

models, maternal stress has been associated with offspring elevated blood pressure, 
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glucose intolerance, and altered stress response in adulthood 187–189. Because the 

hypothalamic-pituitary-adrenal (HPA) axis has strong impact on metabolism and the 

vasculature, the stress response is thought to be involved in maternal stress-induced 

hypertension and altered metabolism 190,191. Indeed, intrauterine stress results in reduced 

glucocorticoid receptor density in the hypothalamus, leading to long-term upregulation of 

the HPA axis and thereby impair blood pressure regulation and glucose metabolism 
192,193. Both intrauterine stress and nutritional programming inducing fetal maladaptation 

and adult-onset phenotypes are thought to also involve epigenetic mechanisms, with 

aberrant epigenetic patterns in various tissues upon in utero insults 194–198. 

The term epigenetics – with the Greek prefix epi that stands for “on top of” or “in 

addition to” – refers to the biochemical features that associate with DNA and influence 

gene expression. First, these epigenetic factors include histone proteins within the 

chromatin, which are organized as nucleosomes whereby the DNA is wrapped around 

histone octamers (pairs of histones H2A, H2B, H3 and H4). Histone proteins can bear 

post-translational modifications which impact DNA compaction and association with DNA-

binding proteins 199,200. Second, the most well-studied epigenetic factor is DNA 

methylation (DNAme), where methyl groups are found (generally) at the 5th position of 

cytosines. DNAme regulates gene expression via the recruitment of proteins repressing 

gene expression, or by preventing the binding of transcription factors to DNA 201. Third, 

another layer of epigenetic factors are non-coding RNAs (ncRNAs), which are RNA 

molecules that are not translated into proteins, but instead are involved in a number of 

biological processes including RNA splicing and gene regulation 202. While the genome 

encodes information within the DNA sequence, the epigenome dictates the spatio-

temporal characteristic of gene expression. Consequently, epigenetic profiles vary across 

cell types, they are dynamic throughout development, cellular differentiation, and 

maturation, and under varying conditions. Importantly, aberrant epigenetic signatures 

have been associated with nearly any known disease or health status, including infertility 

and obesity.  
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10.1.3.2 Paternal preconception health and long-term consequences on the next 

generations 

Most of the focus of DOHaD research has historically revolved around maternal factors, 

and their impact on the in-utero and postnatal development are well recognized. In 

contrast, until recently, the influence of paternal factors on offspring metabolic health has 

largely been unexplored. Indeed, this is partly because childbearing people directly 

expose the developing fetus during gestation, and the baby during breastfeeding. In 

contrast, men were initially thought to only provide genetic material at fertilization via their 

sperm. However, epidemiological studies have highlighted the intriguing possibility that 

ancestral exposures could have generational impacts, with a paternal germ line non-

genetic transmission of phenotypes (reviewed in 203). For example, an epidemiological 

study conducted in a small municipality named Överkalix in Northern Sweden, revealed 

sex-specific associations between grandparent’s diet during the pre-pubertal period – 

also called the slow growth period (SGP) – and grandchildren longevity 204. Additionally, 

the ALSPAC study showed that sons from fathers with a smoking onset during the SGP 

were more likely to become obese 205. Since then, cumulative data support a link between 

paternal preconception factors such as advanced age, vitamin D levels, smoking, 

phthalates exposure, stress, and BMI, with poor embryo quality, and offspring increased 

risk to develop elevated BMI, asthma, and autism 205–213. Several studies identified 

epigenetic changes in various tissues, associated with paternally-induced offspring 

outcomes. While some of these epidemiological studies have been criticized due to 

relatively low sample sizes and suboptimal statistical testing approaches, the growing 

evidence from human data and animal models have made it clear that a father’s 

environment before conception can impact pregnancy outcomes and offspring health 
203,214–218.  

From a mechanistic point-of-view, the paternal contribution in DOHaD had 

previously not received much attention, due to the misconception that sperm only 

provides genetic material and does not encode any paternal preconception environmental 

information via epigenetic marking. In fact, despite a number of reprogramming steps 

throughout spermatogenesis (described in detail in a later section), mature spermatozoa 

do contain some epigenetic information that could be transmitted to the embryo after 
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fertilization and potentially impact development 219–223. This knowledge highlights the 

possibility that factors impacting men’s reproductive and overall health could have 

implications for the metabolic and reproductive health of the next generation(s). Exactly 

how paternal information including diet, lifestyle, environmental exposures, and health 

status, can be at the origins of offspring disease, still warrants further investigation. 

Furthermore, whether these effects can persist over multiple generations remains a topic 

of debate. The phenomenon of intergenerational and transgenerational epigenetic 

inheritance, as well as the potential underlying molecular mechanisms, will be further 

discussed in a later section. 
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10.2 Pathophysiological and molecular changes in obesity 

Obesity results in excess weight gain concomitant with excessive fat accruement and is 

associated with a health condition called metabolic syndrome 224,225. Incidentally, the 

worldwide increase in obesity rates is concomitant with an increase in metabolic 

syndrome incidence 226. Metabolic syndrome is defined by the co-occurrence of multiple 

risk factors for atherosclerotic cardiovascular disease (CVD), such as central obesity 

(high waist circumference), elevated blood glucose (hyperglycemia), elevated plasma 

insulin (hyperinsulinemia), hypertension, and dyslipidemia including elevated 

triglycerides, reduced levels of high-density lipoprotein (HDL), and elevated low-density 

lipoprotein (LDL) 227. This shared pathophysiology among patients with metabolic 

syndrome puts them at particularly greater risk for CVD and T2D 228,229.  Some of these 

key characteristics of obesity and how they impact organs physiology will be discussed 

in this section. 

10.2.1 Adipose tissue biology in obesity 

A key hallmark of obesity includes accumulation and dysfunction of white adipose 

tissue (WAT). Excessive fat accruement can have systemic impacts on the metabolism 

and basic functions of multiple organs. Adipose tissues are highly dynamic, and they 

adapt to changes in weight. For example, weight loss will result in decreased adipocyte 

size, whereas weight gain causes hyperplasia (increased number of fat cells) and 

hypertrophy (increased fat cell size) 230,231.  

There are four distinct types of adipocytes: brown, beige, white and pink 232. They 

differ in cell-surface marker expression, functions, and metabolic activity 233. While white 

adipocytes store energy in the form of intracellular lipid droplets, brown adipocytes are 

involved in thermogenesis and energy expenditure processes 234,235. Healthy white 

adipocytes are small in size, numerous in numbers, highly vascularized, they contain low 

numbers of macrophages with anti-inflammatory characteristics, they secrete 

adiponectin, are sensitive to insulin levels, and have low lipolytic activity 236. In contrast, 

upon obesity, unhealthy white adipocytes show increased secretion of leptin, but 

decreased secretion of adiponectin, they increase in size, show increased lipolytic 

activity, with reduced blood vessel density, increased infiltrating macrophages with pro-
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inflammatory characteristics, and decreased sensitivity for insulin 237. Brown adipocytes 

have a limited capacity for lipid storage, are highly vascularized, and contain a high 

number of mitochondria, conferring their brown colour 238. Their functional capacity for 

heat generation and energy expenditure is due to the expression of uncoupling protein-1 

(UCP-1) which uncouples respiration from ATP synthesis towards thermogenesis 234. 

Beige adipocytes reside within white adipose tissues and are involved in cold-induced 

thermogenesis 234. Pink adipocytes appear from pregnancy up to post lactation in breast 

tissue 239. The level of impact adipose depots can have on metabolic health depends on 

the location of the fat deposit.  

There are three main adipose depots in rodents and humans: subcutaneous 

adipose tissue (SAT), visceral adipose tissue (VAT), and ectopic fat 16. These fat deposits 

can have divergent effects on metabolic syndrome etiology based on their biological 

functions (for example: blood drainage sites and metabolic activity) 240,241. Adipose tissue 

distribution manifests in a sexual dimorphism manner. In general, women tend to carry 

more total body fat compared to men, and harbour more SAT and less visceral adipose 

depot than their male counterparts - likely as a result of hormonal differences across 

sexes 242–244. 

SAT represents the largest adipose deposit of all three 241. In humans, the two 

main subcutaneous depots are divided in the upper-body region (abdominal depot), and 

in the lower body (gluteofemoral depot; buttocks and thighs). In contrast, in mice, the two 

main subcutaneous pads are located in the anterior and posterior regions, with the 

posterior pad (also called inguinal fat pad) corresponding to the human gluteofemoral 

depot 245. Because the blood drains from the SAT site into the systemic circulation, its 

cytokines and triglyceride loads are diluted within the circulation before it reaches key 

metabolic organs such as the liver. Although excess SAT accruement is associated with 

increased risk to develop metabolic syndrome, it requires at least over 10 kg of excess 

SAT in order to induce metabolic disturbances. For these reasons, accumulation of this 

fat depot (pear-shaped obesity) confers relatively less metabolic impairments compared 

to other adipose tissues 246–250.  

In contrast, VAT accruement (apple-shaped or central obesity) strongly correlates 

with insulin resistance, glucose metabolism impairments and T2D, both in humans and in 
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mice 251–253. The mesenteric fat pad in mice is thought to be the most analogous to human 

intra-abdominal depot, both in terms of location and biology 245. This adipose depot is in 

the abdominal cavity including the omentum and mesentery, and therefore drains into the 

portal circulation, directly exposing the liver with its cytokines and triglyceride content. For 

this reason, the portal vein hypothesis states that increased adiposity deposition will result 

in excess free fatty acid flux via portal and systemic circulation 254–257. Additionally, the 

adipocytes within VAT are thought to be more metabolically and lipolytically active thereby 

contributing more strongly to circulating free fatty acid (FFA) levels in comparison with 

SAT 258. This adipose deposit is also more innervated and vascularized than SAT 241,257. 

Consequently, VAT is thought to be particularly damaging for metabolic health, with only 

an excess two kg of VAT associated with metabolic disease 259. 

The fat deposit that is thought to be the most metabolically harmful and a strong 

predictor for metabolic disease is ectopic fat 260. In ectopic fat, lipids are not stored in 

WAT, but instead within organs such as the liver, skeletal muscle or the pancreas. As 

little as 0.25 kg of fat accumulation within the liver can induce insulin resistance 261. 

Hepatic fat accumulation can also result in a condition called non-alcoholic fatty liver 

disease (NAFLD), while fat accumulation in the pancreas impairs insulin secretion 262.  

 During obesity, the reduced capacity of adipocytes to store lipids result in 

enhanced lipolytic activity thereby releasing excess FFAs, and inflammatory factors. 

These FFAs are metabolized in the liver into triglycerides and released as very low-

density lipoproteins (VLDL) in the circulation. Consequently, these effects can impact 

metabolic organs such as skeletal muscles, the pancreas, and the liver, resulting in 

ectopic lipid deposition, hyperlipidemia, pancreatic ß-cell impairments, and altered 

metabolic functions, such as impaired glucose metabolism, and insulin secretion and 

sensitivity. 240 

10.2.2 Hepatic role in obesity etiology 

The liver is the main site of biochemical reactions regulating whole-body metabolic 

homeostasis. It plays critical roles in nearly every organ system, by interacting with 

endocrine and gastrointestinal systems. Its functions range from producing bile (for fat 

breakdown), plasma proteins, cholesterol, proteins carrying fats, immune factors, to 
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glucose metabolism and storing excess glucose in the form of glycogen, metabolizing 

drugs, clearing bilirubin, and regulating amino acid levels, and blood clotting. This organ 

is highly vascularized allowing for the delivery and export of nutrients, hormones, and 

metabolites 263. It is supplied of blood via 2 sources: oxygenated blood is delivered 

through the hepatic artery, and nutrient-rich blood through the hepatic portal vein. The 

unique anatomy of the liver facilitates the sequential perfusion of nutrients and 

metabolites (see Figure 3 from 264). Hepatocytes are positioned along blood vessels in 

functional units called lobules, forming different metabolic zones (periportal, intermediate, 

and pericentral zone) from the portal triad to the central vein 265. This hepatic architecture 

phenomenon is termed metabolic zonation 266–271. Blood flows in a unidirectional manner 

creating zone-specific concentration patterns of various metabolites and signalling 

molecules, resulting is specific hepatocyte metabolic activity accordingly 264,272. Metabolic 

changes occurring following obesity can impact liver zonation and functions. 

 

 
Figure 3: Blood flow, nutrient and oxygen gradients in the liver.  

Figure adapted from 264 (Copyright 2016) with permission from Springer Nature. 
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Upon obesity, increased FFA production is associated with aberrant intrahepatic 

triglycerides (IHTG). IHTG develops when the uptake and synthesis of fatty acids is 

greater than its oxidation and secretion, and is the major cause of  non-alcoholic fatty liver 

disease (NAFLD) 273–276. This condition is an umbrella term that encompasses a spectrum 

of liver pathologies, including non-alcoholic hepatic steatosis, steatohepatitis (NASH), 

liver fibrosis, cirrhosis or hepatocellular cancer 277. NAFLD is the most common chronic 

liver disease, concomitant with the obesity epidemic, and is found in over 60% of T2D 

patients 278,279. 

10.2.3 Lipotoxicity 

As described previously, obesity is accompanied with excess fat accruement. Adipose 

tissues have the capacity to expand in order to accommodate for fluctuations in energy 

availability. This ability is not unlimited and greatly varies across individuals, likely due to 

variance in adipocyte expansion capacity 280. Indeed, adipocyte hypertrophy is associated 

with dyslipidemia, impaired glucose metabolism and inflammation in obese individuals. 

Additionally, adipocytes are smaller in size in obese individuals that do not show 

metabolic disturbances in contrast with metabolically compromised obese people with 

larger adipocytes 281. In other words, a high prevalence of hypertrophic adipocytes in 

combination with low prevalence of hyperplasia reduces the threshold for adipose tissue 

expansion, rendering an individual more prone for metabolic syndrome. The inability of 

adipocytes to expand impedes the overall lipid storage capacity which results in adipose 

tissue dysfunction, inefficient energy storage, and systemic hyperlipidemia. Over time, 

hyperlipidemia causes the deposition of circulating free fatty acids in non-adipose organs 

such as hepatic, cardiac, skeletal muscle and pancreas tissue 282,283. Ectopic fat 

deposition is accompanied with lipotoxicity, which ultimately accounts for obesity-related 

adverse outcomes. The accumulation of excessive body fat mass induces a constellation 

of metabolic disturbances and diseases. These effects include hyperinsulinemia and 

multi-organ insulin resistance, hyperglycemia and glucose intolerance, dyslipidemia (high 

plasma triglyceride and low plasma HDL-cholesterol), pancreatic ß cell dysfunction, low-

grade inflammation, non-alcoholic fatty liver disease, prediabetes, type 2 diabetes, 

cardiovascular diseases, and more. 
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10.2.4 ß cell integrity and insulin resistance 

Insulin is secreted by pancreatic ß islet cells and exerts its actions by binding to its 

receptors on target cells, activating a cascade of intracellular events. Insulin regulates 

circulating glucose levels via several different mechanisms that involve increasing 

glucose uptake by tissues, reducing circulating glucose, and increasing glucose 

conversion into energy storage molecules. First, insulin stimulates the uptake and use of 

glucose in skeletal muscle and adipose tissues, by promoting the translocation of glucose 

transporter-containing vesicles to the plasma membrane 284; second, insulin also induces 

glycogen synthesis and inhibits glycogenolysis in skeletal muscles and liver; third, insulin 

inhibits gluconeogenesis in the liver, and fourth, insulin action on adipose tissue 

stimulates glucose uptake and inhibits lipolysis 227. Other downstream actions of insulin 

signalling include the activation of endothelial nitric oxide synthase in vascular endothelial 

cells, the production of the vasoconstriction-inducing factor endothelin-1, and the 

expression of cell adhesion molecules that promote leukocyte-endothelial interaction. 

Insulin resistance is characteristic of obesity and T2D, and refers to the process 

by which a rise in insulin levels does not result in an increased uptake of glucose by 

insulin-sensitive tissues 227. In that process, cells in adipose tissues, muscles and the liver 

do not response properly to insulin, resulting to hyperglycemia. Ultimately, the pancreas 

aims at compensating via the increased production of insulin leading to hyperinsulinemia. 

Additionally, the deregulated action of insulin signalling results in endothelial dysfunction 

via imbalanced endothelial nitric oxide production, as well as vascular abnormalities, all 

contributing to the development of metabolic syndrome associated comorbidities such as 

atherosclerosis. 

Pancreatic islet integrity is a critical determinant for metabolic functions in obesity. 

Indeed, the progressive decline of ß cell function causes a decline in proper glycemic 

control. In obese individuals, ß cell mass is about 50% greater than in lean individuals, 

but the relative ß cell volume is 50% lower due to ß cell apoptosis 285. Several factors are 

thought to negatively impact ß cell function, growth, and survival. These factors include 

plasma glucose levels, as well as lipid mediators such as free fatty acids, long-chair acyl-

CoA esters, ceramides, phosphatidic acid, diacylglycerides, and more 286. The 
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glucolipotoxicity of increases in plasma glucose and lipid factors likely act synergistically, 

along with other metabolic stressors, to cause ß cell dysfunction.  

10.2.5 Inflammation and oxidative stress in obesity  

Other key hallmarks of obesity are chronic low-grade inflammation, systemic oxidative 

stress and damage, and immune dysfunction 287. Adipokines produced by adipose tissues 

can induce the production of reactive oxygen species (ROS) thereby resulting in oxidative 

stress. Additionally, excess adipose tissue is associated with increased production of pro-

inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6 

and IL-1ß. These inflammatory factors impact adipose tissue biology, promote ROS 

production, reduce systemic anti-inflammatory cytokines, and further stimulate the 

production of pro-inflammatory cytokines. Obese individuals are at greater susceptibility 

to oxidative damage with reduced antioxidants sources such and decreased activity of 

superoxide dismutase, glutathione peroxidase, and catalase, and decreased levels of 

vitamins A, E, C, and ß-carotene 288. Pathological increase in serum FFA levels results in 

increased mitochondrial oxidation and thereby elevated synthesis of free radicals, which 

in turn impacts cellular structures and damage 289–293.  

 

 

Overall, the plethora of obesity-associated physiological changes ranging from 

insulin resistance, systemic inflammation, oxidative stress, altered metabolism, visceral 

fat accumulation, dyslipidemia, to endothelial dysfunction, all contribute to the 

development of metabolic syndrome and associated comorbidities. Not only do these 

pathophysiological hallmarks occur in metabolic tissues, but also they can compromise 

the integrity and functions of germ cells, which can have far-reaching implications for the 

next generations’ health. Indeed, in humans, an elevated BMI has been linked to 

subfertility, with increased time to conceive, increased rates of pregnancy losses and 

reduced rates of fertilization in couples undergoing assisted reproductive technologies 

(ART), and poor semen parameters 294–299. In animal models of high-fat diet-induced 

obesity, male obesity has been linked to embryo health impairments with reduced 

implantation and live birth rates, reduced sperm DNA integrity, and poor sperm 
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parameters, with elevated intracellular ROS 216,300–303. These findings highlight the 

consequences of obesity that go beyond metabolic functions and reproductive health, 

whereby germ cells are not immune to obesity-induced damage, which implications for 

the next generations. The next section will dive into the cellular and molecular 

mechanisms involved in the production of male germ cells: spermatogenesis. 
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10.3 Cellular and molecular events in spermatogenesis: implications for the next 

generation 

The process of spermatogenesis takes place in the testes, within the seminiferous 

tubules. The seminiferous tubules contain the developing germ cells and Sertoli cells. 

These convoluted tubules are surrounded by interstitial space where immune cells and 

steroidogenic Leydig cells reside, as well as contractile peritubular myoid cells that permit 

the transport of spermatozoa and testicular fluid within the tubules to the epididymis, 

where spermatozoa cells are stored 304. While there are differences in terms of cellular 

organization within the testes and seminiferous tubules between rodents and humans, 

the overall cellular arrangements and components are highly similar.   

Spermatogenesis is a complex process that involves dynamic chromatin 

remodeling, progressive cellular morphological changes, in parallel with two rounds of 

cell mitosis, one round of meiosis, and differentiation (reviewed in 305). This process gives 

rise to haploid, fully differentiated and mature germ cells. Upon fertilization, spermatozoa 

provide the genetic and epigenetic material necessary to produce a totipotent zygote 

which will give rise to all somatic lineages, tissues, and gametes of the next generation.  

The complex series of molecular events that entails spermatogenesis is tightly 

regulated via the reciprocal interactions between the endocrine system, germ cells, and 

somatic supporting cells, and is influenced by the seminiferous tubule microenvironment 

(see Figure 4 from 305). Hypothalamic cells within the brain are responsible for the 

production of gonadotropin-releasing hormone (GnRH) which acts on gonadotropic cells 

located within the anterior pituitary, to induce the production and secretion of the 

gonadotropin follicle-stimulating hormone (FSH) and luteinizing hormone (LH) 306. FSH 

and LH are released in the circulation and reach the testes where they act on FSH and 

LH receptors on Sertoli and Leydig cells, respectively 307–310. Sertoli and Leydig cells 

produce a number of endocrine and paracrine factors, as well as chemokines, that act in 

a cell- and stage-specific manner. The major cell types involved, and each 

spermatogenesis step, will be described in the next subsections, including the cellular, 

hormonal, molecular, and epigenetic events involved in this process. 
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Figure 4: Schematic representation of a testis cross section including key somatic and germ cells, and 

paracrine and endocrine factors.  

BTB, Blood-testis barrier; FSH, Follicle-stimulating hormone; GDNF, Glial cell line-derived 
neurotrophic factor; LH, Luteinizing hormone; RA, Retinoic acid; T, Testosterone. 
Figure obtained from 305 Copyright (2019), with permission from Elsevier. 
 

10.3.1 Spermatogenesis-supporting cells: Leydig cells and Sertoli cells 

Sertoli cells, or “nurse” cells, accomplish structural, protective, immunomodulatory, and 

secretory roles that support the development and maturation of germ cells. Until the first 

wave of spermatogenesis, the predominant cell type occupying the seminiferous tubules 

are the Sertoli cells. Thyroid hormone and FSH-induced GDNF secretion are among the 

factors responsible for the rapid expansion of the Sertoli cell population during the fetal, 

neonatal and peripubertal periods 308–312. Spermatogenic output is in part determined by 

Sertoli cell number 313. 

At puberty, Sertoli cells undergo maturation, cease proliferation, and establish the 

blood-testis barrier (BTB) via the formation of tight junctions. This separates the interstitial 

blood compartment from the adluminal compartment 314–316. This barrier prevents the 

passage of cytotoxic agents, and also maintains the unique composition of the adluminal 

environment, which is rich in androgens, estrogens, potassium, inositol, glutamic and 



 51 

aspartic acid, and other regulatory factors, and poor in protein and glucose 317–319. 

Furthermore, the BTB creates an immune-privileged environment whereby the immune 

system is prevented from mounting autoimmune reactions against sperm-specific 

antigens 320. These autoimmune reactions are also prevented by immunomodulatory 

factors that are produced by Sertoli cells 321. Because of the apical movement of the 

developing germ cells, the BTB is highly dynamic, being reformed and broken down to 

allow the passing of immune-identical spermatogonia through the barrier 320.  

In addition to providing structural support and protection against autoimmune 

responses to germ cells, Sertoli cells secrete a number of regulatory molecules which are 

essential to support spermatogenesis. For example, they secrete the anti-Müllerian 

hormone, which is expressed during fetal development to inhibit the formation of the 

female reproductive tract. Complex proteins produced by Sertoli cells, namely inhibins 

and activins, act with opposing effects on FSH metabolism and secretion. Sertoli cells 

also support spermatogenesis by producing androgen binding proteins, which maintain 

the high testosterone concentration within the tubules 322.  

In mice, fetal Leydig cells arise at around embryonic day (E)12.5 after Sertoli cell 

differentiation, forming clusters in the interstitial compartment 323. They acquire 

steroidogenic capacity around E16 to produce androstenedione 324. Because they do not 

yet express 17-beta hydroxysteroid dehydrogenase (17ß-HSD), fetal Leydig cells rely on 

Sertoli cells for the conversion of androstenedione to testosterone 325. Adult Leydig cells 

are the primary source of androgens and testosterone in males 326. Under the regulation 

of the hypothalamic-pituitary-gonadal axis, androgens are secreted and diffuse into the 

seminiferous tubules, the bloodstream and the interstitial space 327. These hormones elicit 

their regulatory functions on spermatogenesis by binding the androgen receptors of 

Sertoli and myoid cells. Testosterone impacts spermatogenesis by facilitating meiotic 

progression, regulating sperm release, maintaining the BTB by promoting its assembly 

upon preleptotene spermatocyte transit, and regulating the separation of spermatocytes 

from sperm via the expression of connexin 328. 
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10.3.2 Myoid cells 

Peritubular myoid cells are located around the seminiferous tubules providing structural 

support 329. Their smooth muscle-like characteristics generate peristaltic contractions that 

facilitate movement of immotile spermatozoa forward throughout the seminiferous tubules 

up to the epididymis where they are stored. These cells secrete signalling factors such as 

components of extracellular matrix and growth factors that can modulate the activity of 

Leydig and Sertoli cells 330,331. They also secrete GDNF which serves in the maintenance 

of the spermatogonial stem cells within the stem cell niche 332. 

10.3.3 Male germ cell specification and sex determination  

Germ line epigenetic and gene expression programs are established early in 

development (see Figure 5 from 333). Beginning in the post-implantation embryo (E6), 

commitment of germ cells is induced by bone morphogenetic protein signals (BMP4,8b,2) 

arising from the extraembryonic ectoderm and visceral endoderm 334–341. These signals 

lead to the expression of Blimp1, Tcfap2c, and Prdm14, a triad of transcription factors 

that facilitates germ cell specification via the repression of somatic genes including Lim1, 

Evx1, Fgf8, Snail, and homeobox genes 342–349. From that stage on, the specified 

primordial germ cells (PGCs) express the PGC markers TNAP, SSEA1, and DPPA3, and 

some pluripotency genes including Sry, Nanog, and Oct4 350–359.  

 
Figure 5: Male germ cell development and reprogramming of epigenetic marks throughout 

spermatogenesis in mice.  
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Figure adapted from 333 (Copyright 2017) with permission from Springer Nature. 
 

Upon completion of PGC specification (E7.5 to E10.5), the cells proliferate and 

migrate through the hind gut, then to the genital ridge – the future gonad. Germ cell-soma 

signalling facilitate this directional migration, where germ cells express c-KIT and somatic 

cells paving the way to the gonad express STEEL. Mesenchyme near the genital ridges 

express the chemoattractant SDF-1 360–364. Once the PGCs have reached the gonad, they 

undergo several rounds of cellular divisions with incomplete cytokinesis forming germ cell 

clusters 365. These germline cysts remain indistinguishable in male and female fetuses, 

both morphologically and molecularly, up until sex determination 366,367.  

Male sex determination and testis morphogenesis begins at E11.5 with the 

expression of SRY within the genital ridges, which later prompts the specification of 

Sertoli cells 368–370. Following Sertoli cell proliferation and cluster formation, testis cords 

are formed, establishing structural organization in the developing testis where germ cells 

and Sertoli cells are separated from the interstitium. The interstitium is comprised of 

Leydig cells, peritubular myoid cells, immune cells and vasculature 367,371. Male fate 

commitment of the gonocytes occurs at E14.5, where cells exit the cell cycle, arrest at 

G0, and remain in a quiescent state up until after birth 372.  

10.3.4 From primordial germ cells to the life-long supply of spermatogonial stem cells 

Once primordial germ cells have migrated to the genital ridge and undergone rounds of 

cellular proliferation and differentiation to colonize the developing testes, there is a 

change in gene expression marked by downregulation of alkaline phosphatase, and 

upregulation of Gcna1 373. The cells are then in a transient state as gonocytes 374–376. 

These transitionary cells migrate to populate the seminiferous tubules at the basement 

membrane, and undergo differentiation into spermatogonial stem cells (SSC) or 

spermatogonia (for the first wave of spermatogenesis) 376. This prepubertal first cycle of 

spermatogenesis is different from the subsequent adult cycles in that its rate is much 

faster, and a large portion of the resulting spermatogonia and pachytene spermatocytes 

undergo apoptosis, likely due to the newly but incompletely formed BTB 377–379. The 

subsequent “regular” waves take place in a continuous and asynchronous manner and 

last for approximately 35 days in mice and 42-76 days in humans 380–382.  
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10.3.5 Spermatogenesis 

Spermatogenesis involves multiple rounds of mitotic divisions and differentiation, that can 

be classified into 12 distinct stages in the mouse, based on cell type associations 383. 

Because spermatogenesis occurs continuously, all the cell types involved can be found 

at any given time in an adult testis. SSCs represent about 0.02-0.03% of all testicular 

germ cells and are thought to represent the life-long supply of germ stem cells 384–389. 

SSCs have the capacity to self-renew via asymmetrical mitotic divisions (called Asingle 

spermatogonia), and can also divide symmetrically giving rise to the Apaired 

spermatogonia, which are interconnected via cytoplasmic bridges resulting from 

incomplete cytokinesis 304,384–390. The Apaired spermatogonia go through successive 

rounds of mitosis with again incomplete cytokinesis, giving rise to approximately 16 

bridged Aaligned spermatogonia. Next, retinoic acid from Sertoli cells prompts the 

undifferentiated spermatogonia to differentiate into A1 spermatogonia which gain 

expression of the cKIT receptor 391. Sequential mitotic division give rise to the A2, A3, A4, 

intermediate and B spermatogonia 392,393. Next, type B spermatogonia undergo cellular 

division to produce the tetraploid primary spermatocyte, or pre-leptotene spermatocyte, 

which subsequently undergo meiosis 394. This meiosis step consists of two sequential 

reductive cellular division giving rise to the haploid round spermatid cells 395. This complex 

process requires multiple days and is further subdivided into the leptonema, zygonema, 

pachynema and diplonema phases 395,396. Round spermatids next enter the 

spermiogenesis cycle. 

10.3.6 Spermiogenesis and the production of a terminally differentiated and mature 

spermatozoa  

The process of spermiogenesis involves a differentiation and maturation process as well 

as structural and morphological changes that give rise to the fully mature and 

differentiated spermatozoon. Round spermatids elongate, shedding a large portion of its 

cytoplasm which is engulfed by Sertoli cells 397,398. Spermatids also develop specialized 

structures such as the flagellum and the acrosome 399. In parallel, a drastic chromatin 

reorganization (further described in the next subsection) allows for the compaction of the 

haploid genome within the sperm head, up to a volume that represents about 5% of that 
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of somatic cell nucleus. Finally, sperm cells leave the testis and enter the epididymis – a 

long convoluted tubule. During the epidydimal transit, spermatozoa undergo maturation 

and progressively acquire motility and fertilizing capacity (reviewed in 400). 

10.3.7 Epigenetic landscape establishment and programming during spermatogenesis 

The testis is comprised of a highly diverse and complex transcriptome, partly owing to the 

uniquely expressed coding and non-coding transcripts 401–404. Many genes expressed in 

somatic cells make use of alternate promoters in male germ cells, have homologs that 

are expressed in a male germ line-specific manner, or are regulated via germ-cell specific 

factors 405,406. These spermatogenic-specific transcriptomic programs permit the unique 

functions of male germ cells and are promoted by profound epigenetic reprogramming 

and chromatin remodeling during spermatogenesis.  

 Throughout germ cell development, cells undergo two waves of epigenetic 

reprogramming. The first reprogramming round occurs upon PGCs specification, where 

two sequential rounds of DNA methylation erasure take place (see Figure 5 from 333). 

First, from E6.5 to E10.5, repression of the de novo DNA methyltransferases DNMT3a 

and DNMT3b causes passive DNA demethylation in germ cells upon replication-

dependent dilution 343,407–410. In parallel, during this rapid proliferation phase, the DNA 

methyltransferase DNMT1 maintains DNA methylation at maternally and paternally 

imprinted genes and at genes involved in meiosis 411. A second round of DNA methylation 

erasure takes place in an active manner, from E10.5 to E12.5 during PGCs migration to 

the genital ridge, by ten-eleven translocation 1 and 2 (TET1/2) enzymes 412–414. These 

enzymes catalyze the conversion of 5-methylcytosine (5mC) into 5-

hydroxymethylcytosine (5hmC), and the resulting 5hmC are either cleared in a passive 

manner via replication, or in an active manner via base excision repair mechanisms 412,415. 

By E13.5, germ cells reach their lowest DNA methylation levels, with only 4% of the 

genome being hypermethylated, including at some repetitive elements and intracisternal 

A particles (IAPs; a class of transposable elements) 416,417. Unlike in somatic cells, 

hypomethylation in PGCs does not result in genome instability and ectopic expression of 

retrotransposons 407,418. Maintenance of genome stability is promoted by the increasing 

enrichment of the repressive histone marks histone H3 lysine 27 trimethylation 
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(H3K27me3), and histone H2A and H4 arginine 3 dimethylation (H2A/H4R3me2), from 

E8.5 to E11.5 349,419,420. After erasure of the majority of methylated sites in the genome, 

de novo DNA methylation takes place in the male germline from E14.5 until birth to re-

establish methylation profiles including at sex-specific imprinted loci with the action of 

DNMT3A/B and DNMT3L 421–426. Imprinted genes (260 in mice and 228 in humans 

identified thus far) have monoallelic expression in a parent-of-origin manner in the next 

generation 427–429. 

 During gametogenesis, the chromatin undergoes a series of drastic waves of 

partial remodeling, including chromatin reorganization which includes the incorporation of 

histone variants and the temporary transition proteins. The majority of histones are 

replaced by protamines in condensing spermatids (reviewed in 305,430–432). These gamete-

specific events facilitate meiosis, germ cell morphological changes, and the progression 

of spermatogenesis. Ultimately, these unique processes produce a predominantly non-

histone genome-packaging structure within the nucleus of the highly specialized 

spermatozoa.  

Global reorganization in chromatin packaging takes place in post-meiotic cells 

where most histone proteins are replaced by nuclear sperm proteins called protamines in 

a stepwise process 305,430–438. The nucleohistone-nucleoprotamine exchange begins in 

the round spermatids by the weakening of interactions between histones and the DNA 

upon histone hyperacetylation 439–441. Histone protein eviction is followed by the 

accumulation of unique testis-specific histones and histone variants, which almost 

completely replace canonical histones 437.  

In differentiating spermatogonia, the gene coding for the histone H3 variant H3t 

becomes active, and gradually replaces the canonical histone H3. This testis-specific 

variant decondenses nucleosomes 442,443. Meiosis is marked by a sequential 

incorporation of transient histone variances such as H1t, macroH2A.X, H2A.Z, and H3.3 
444–447. At the onset of meiosis in early spermatocytes, the majority of histones H2A and 

H2B are replaced by the co-expressed germline-specific TH2A and TH2B (or THS2B), 

respectively 448–451. These variants permit the weakening of nucleosomes stability 

genome-wide, thereby facilitating subsequent histone eviction 452–454. In contrast to TH2A, 

TH2B function is not dispensable for proper spermatogenesis progress due to 
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compensatory mechanisms involving H2B accumulation, and intranucleosome-

destabilizing histone modifications 449,453–457. Post-meiosis, the sex chromosomes 

accumulate the variant H2A.Z, and H2A.Z is subsequently replaced by H2A.B.3 at the 

exon-intron boundaries of active genes, likely regulating RNA splicing events 445,458. It is 

thought that H2A, H2A.Z and H2A.B.3 may define spatio-temporal expression of the 

genes they mark. Indeed, the incorporated variant H2A.L.2 appears to regulate stage-

specific transcriptomic program, by accumulating at transcriptional start sites of genes 

highly expressed in spermatocytes and round spermatids 459. Additionally, H2A.B.3 marks 

X-linked genes that escape sex chromosome inactivation 460. Another histone variant is 

the replication-independent histone H3.3, which massively replaces the canonical histone 

H3 on sex chromosomes during meiosis 446. It is encoded by the H3f3a and H3f3b mouse 

genes, both producing identical H3.3 but functioning at different stages of 

spermatogenesis 446,461,462. Interestingly, the combinations of H3.3 with macroH2A in 

spermatocytes and H3.3 with H2A.Z in round spermatids confer either more stable or 

unstable chromatin domains, respectively 463–465.  

Next, most of these germline-specific histones are replaced by transition proteins 
466. The incorporation of transition proteins onto chromatin is ensured by the replacement 

of TH2A with the H2A.L.2 variant, promoting accessibility of H2A.L.2-contaning 

nucleosomes 450,467. Transition proteins (TP1 and TP2) are small basic proteins that 

constitute 90% of the basic proteins present at that stage. They are important for proper 

sperm configuration, chromatin condensation, and DNA integrity, and both TPs appear to 

accomplish overlapping roles and partly compensate for each other 466. Their assembly 

ultimately permits the final eviction of histones, and the incorporation of protamines. The 

high content of positively charged amino acids in protamines promotes the compaction 

of, and complex with, the negatively charged paternal genomic DNA within the small 

sperm head. Compared to somatic cell heterochromatin, sperm DNA is ten-fold more 

compact with protamines 468.  

Despite the complex reprogramming and reorganization of the chromatin, the 

retention and establishment of epigenetic marks in sperm is not random in the genome. 

Most of the sperm genome is hypermethylated, with the exception of most CpG islands 

at promoters, and several retrotransposon families 221,469,470. Despite the drastic histone-
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to-protamine exchange, mature spermatozoa retain 1-15% of histones in mice and men, 

respectively 220,223,471,472. Early studies established that histones are preferentially 

retained at genomic regions that are rich in CpGs and hypomethylated in the sperm of 

mice and men 223,472. In contrast, subsequent studies with distinct experimental and 

analysis approaches suggested histones are located at gene-poor regions such as 

retrotransposons and intergenic regions 473–475. It is thought that the sperm histone 

landscape is complex. Indeed, the gene-activating histone mark histone H3 lysine 4 

trimethylation (H3K4me3) is enriched at promoters, embryonic enhancers, some 

retrotransposons subfamilies, and largely mutually exclusive with DNA methylation at 

promoters, with the exception of regions bearing intermediate and high levels of DNA 

methylation overlapping with H3K4me3-marked regions 1,221,476,477. Interestingly, many of 

the retained canonical histones present in mature spermatozoa are enriched at key 

promoters and enhancers of developmental genes 220,221,472. Importantly, histone 

H3K4me2 profiles are highly conserved from the spermatogonia to the mature 

spermatozoa, suggesting epigenetic errors could persist throughout spermatogenesis at 

certain sites 478. Some developmental loci bear bivalent domains – that is, the presence 

of both active and repressive histone marks – which are thought to be in a poised 

chromatin state, an evolutionarily conserved feature in the male germline of the zebrafish 

and the mouse 220,223,473,479–481.  

These findings on the epigenetic landscape of mature spermatozoa and its 

evolutionary conservation, suggest sperm packages paternal information that could be 

transmitted to the next generation and be instructive for developmental processes. This 

so-called process of paternal epigenetic inheritance will be further discussed in the next 

subsection.   
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10.4 Paternal epigenetic inheritance and the transmission of obesity and metabolic 

syndrome  

Globally, one in six couples experience infertility, with nearly half of cases being attributed 

to male factors 482. Male infertility is intertwined with environmental factors and health 

status, such as toxicant exposures, diets, and obesity. Of note, elevated BMI and obesity 

have been linked to negative impacts on semen parameters and sperm functions, male 

fertility, and seminal plasma composition 294,295,483–487. Importantly, these paternal 

environmental conditions not only impact sperm function, they can also influence 

pregnancy outcomes and offspring health 488–491. Exactly how paternal exposures can 

influence offspring health is still poorly understood. The underlying molecular 

mechanisms are likely to involve sperm-mediated transmission of environmentally-

sensitive epigenetic regions. The studies on which this thesis is based aimed to address 

this gap in knowledge in the context of paternally-transmitted metabolic dysfunction. 

In order for a paternal environmental factor to induce phenotypes in the next 

generation(s) via epigenetic inheritance: (1) the exposure must induce epigenetic 

alterations in the developing sperm; (2) these environmentally-induced epigenetic 

changes must escape reprogramming and be retained in the fully differentiated and 

mature sperm; (3) this epigenetic information must be transmitted to the embryo and 

escape embryonic epigenetic reprogramming; and (4) the sperm-transmitted 

epimutations must perturb gene expression in the developing embryo or fetus (Kimmins, 

unpublished). The following subsections will cover the evidence for the phenomena of 

paternal epigenetic inheritance, with a focus on the transmission of paternally-induced 

obesity in the next generation(s). 

10.4.1 Evidence paternal factors are associated with metabolic disturbances and obesity 

phenotypes in offspring (POHaD)  

10.4.1.1 Epidemiological studies 

Several of the foundational studies establishing the concept and research field of DOHaD 

have suggested that prepubertal nutritional conditions are associated with sex-specific 

and transgenerational phenotypes through the male line. For example, historical datasets 

from the Överkalix northern Sweden region, revealed that paternal grandfather’s good 
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food access was linked to increased diabetes and all-cause mortality in grandchildren. 

Moreover, paternal poor, and maternal good nutritional exposure was associated with 

cardiovascular disease mortality in their children 204,492,493. Some of these findings have 

been recently replicated with a larger dataset from the Uppsala Multigeneration Study, 

where paternal grandfather’s good food supply could predict male grandchildren’s all-

cause mortality including cancer, but not diabetes nor cardiovascular mortality 494,495. The 

lack of congruence and reproducibility across these studies is likely due to differences in 

methodological approaches involving different factors being taken into account, the 

smaller sample sizes from the initial study, and differences in procedure for cause-of-

death recording given data across studies come from different years. Nevertheless, since 

then other studies have drawn associations between paternal and children metabolic 

health. For example, children born from two overweight or obese parents are more likely 

to become overweight than children from none or one overweight parent 496. Paternal 

body fat has been associated with a daughter’s changes in body fat before puberty 497. 

Additionally, excessive BMI gains from childhood to adulthood in parents is associated 

with an elevated BMI and risk for obesity in offspring 498. Despite these studies, an 

important challenge with human data is to exclude genetic, epigenetic, cultural, and 

ecological factors of inheritance, and separate maternal and paternal factors 214. 

Therefore, it poses a challenge to provide evidence for true (paternal) epigenetic 

inheritance and draw conclusions regarding whether effects occur inter- or 

transgenerationally in humans.  

10.4.1.2 Animal models 

Animal models have been useful to dissect the paternal contribution to offspring health, 

given the possibility to use inbred strains in strictly controlled environments. The diet-

induced obesity (DIO) model consists of feeding rodents with an obesogenic diet such as 

diets high in fat, which induce obesity and recapitulate symptoms that are characteristic 

of the metabolic syndrome 499. This DIO model was established and characterized over 

30 years ago, and has since been a valuable tool to study the interplay between diets, 

obesity development, progression, and the underlying mechanisms 499–503. 

 The first report of paternal non-genetic and intergenerational transmission of 

metabolic disturbances in mammals was shown using a DIO model in Sprague-Dawley 
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rats 504. Paternal chronic high-fat diet (HFD) consumption led to impaired insulin 

sensitivity and glucose tolerance, pancreatic ß-islets dysfunction with altered gene 

expression and DNA methylation in F1 female offspring 504. Since then, numerous studies 

have replicated the findings that paternal HFD impacts offspring metabolic functions. 

Studies have additionally linked paternal DIO with offspring increased adiposity, elevated 

body weight, metabolic dysfunction including elevated glucose and insulin blood levels, 

blood leptin levels, elevated blood pressure, aberrant whole-body energy metabolism, 

glucose intolerance, reduced insulin sensitivity, differential hepatic, adipose, and 

pancreatic islet gene expression, and more 504,505,514–517,506–513. Similar cardiometabolic 

phenotypes have been observed in offspring associated with a wide range of paternal 

factors such as a paternal low-dose streptozotocin-induced prediabetes, low-protein or 

caloric restriction diets, age, smoking, and chemical exposures (reviewed in Eberle, 

Kirchner, Herden, & Stichling, 2020). While it has become evident from these models that 

paternal exposures lead to increased risk to develop various health conditions in the next 

generations, elucidating how paternal non-genetic information can influence offspring 

phenotype would help understanding the underlying molecular mechanisms and 

determine whether these effects are preventable.  

10.4.2 Evidence paternal environmental factors alter the sperm epigenome 

The non-genetic transmission of paternally-induced phenotypes is thought to occur via 

epigenetic inheritance mechanisms whereby paternal factors influence epigenetic 

information encoded in mature germ cells to impact offspring development and health. 

The next subsections describe the current state of knowledge regarding how paternal 

exposures alter the sperm epigenome at the level of DNA methylation patterns, RNA 

content and histone modifications, respectively. 

10.4.2.1 DNA methylation 

DNA methylation (DNAme) is the most well-studied epigenetic mark, and has been 

associated with various health conditions, disease states and environmental exposures, 

in a wide range of different tissues 519. More specifically, in the context of obesity-

associated sperm epimutations, in humans, comparing sperm from lean versus obese 

individuals revealed differentially methylated regions (DMRs) at genes involved in the 
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central nervous system development and functions 520. Importantly, these DMRs were no 

longer detected following bariatric surgery-induced weight loss, suggesting the potential 

reversibility of these epigenetic changes. In rodent models, obesity and HFD have been 

linked to altered global DNAme profiles in germ cells 506,521. Additionally, some of these 

models have detected changes at specific DMRs, including at retrotransposons, satellite 

repeats, insulin signalling genes, and imprinted genes 508,521,522. The obesity-associated 

DNAme patterns previously detected could impact offspring development and contribute 

to paternally-induced phenotypes across generations.  

10.4.2.2 Non-coding RNA 

Although the vast majority of the mammalian genome is transcribed at varying levels, 

some genomic regions do not code for proteins 202,523–525. These non-protein-coding 

sequences are transcribed in molecules termed non-coding RNAs (ncRNAs), which serve 

a number of biological functions 526–528. For example, ncRNAs are involved in gene 

expression regulation by altering the stability and translation of messenger RNAs 

(mRNAs), they modulate chromatin function, and interfere with signalling factors. 

Ultimately, their functions impact gene expression, and aberrant ncRNA expression or 

action are involved in a number of diseases 202,529. 

 While the sperm is transcriptionally inactive, it does carry various RNA species, 

such as messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), as well as several 

small non-coding RNA (sncRNA) subtypes such as small nuclear RNA (snRNA), piwi-

interacting RNA (piRNA), microRNA (miRNA), transfer RNA-derived fragments (tRFs). 

PiRNAs are mainly expressed in the germline 530. This class of ncRNA is involved in 

regulating the expression of coding genes, and its role in maintaining genomic stability by 

repressing repetitive elements has been shown to be evolutionarily conserved 531,532. The 

role of piRNAs in epigenetic inheritance has been described in C. elegans and 

Drosophila, suggesting that alterations in this class of sperm RNA abundances could 

potentially have an impact on development 533,534.  

 In the context of obesity, aberrant abundance of specific miRNAs, piRNAs, tRFs, 

and snRNAs has been linked to elevated BMI in humans 520. In DIO mouse models, 

changes in sperm-borne RNA content was detected in sires fed a HFD, which was linked 

to intergenerational metabolic disturbances in the F1 generation 506,508,509,513,517,535. 
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Importantly, zygotic injection of isolated testes or sperm total RNA, or of a subset of sperm 

transfer RNA-derived small RNAs (tsRNAs) from HFD-fed males conferred metabolic 

disorders in offspring 513,517. RNA modifications have also been found to carry an 

additional layer of epigenetic information, as an injection of unmodified RNA fractions did 

not induce these offspring metabolic phenotypes 514,536–538. These studies suggest sperm 

RNA is impacted by diets inducing obesity and could contribute to offspring metabolic 

health. 

10.4.2.3 Histone modifications 

Most of the focus of research on the underlying mechanisms of epigenetic inheritance 

has been concentrated on assessing DNA methylation profiles and RNA content in sperm 

to link paternal factors and offspring phenotypes. Indeed, it was thought that sperm-borne 

histone modifications were unlikely to be involved in the phenomenon of paternal 

epigenetic inheritance, given that most histones are evicted from the paternal genome 

during spermiogenesis and replaced by protamines 431,436. It has now become clear that 

the remaining of histones in mature sperm are not retained randomly, but instead serve 

critical functions for proper spermatogenesis progression and embryonic development 
219–222. Nevertheless, a few studies have assessed whether paternal factors can impact 

sperm nucleosome positioning and histone modifications.  

In the context of obesity, to date and to the best of my knowledge, only one study 

has profiled sperm histone methylation to link paternal diet-induced obesity with offspring 

metabolic disturbances in mammals 539. Although authors claim to detect diet-associated 

changes in H3K4me1 enrichment, the study only shows comparison across two samples 

(one sample per experimental group), with changes that appear to occur globally in the 

genome, suggesting the detected differential H3K4me1 enrichment may only be driven 

by differences in library sizes. Additionally, the sequencing data is not publicly available, 

making it impossible to assess the quality of the data. One study has profiled testicular 

germ cells H3K9me2 enrichment upon low-protein diet feeding, but this was assessed 

using targeted approaches, restricting the analysis to a few sites and therefore lacking 

genome-wide information 540. In another mouse model, folate deficiency was found to be 

associated with reduced global levels of H3K4me1, H3K9me1, and H3K9m3 in sperm as 

assessed by Western blot 541. In humans, sperm samples collected in lean versus obese 
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men revealed no changes in nucleosome positioning 520, but whether the enrichment of 

specific histone modifications are altered in sperm in association with BMI values has yet 

to be assessed.  

Because of the lack of studies assessing diet-induced changes in sperm histone 

modification enrichment, this thesis will focus on exploring the potential role of this 

epigenetic mark in the molecular mechanisms underlying paternal epigenetic inheritance 

of obesity. The next subsections highlight the rationale behind the importance to study 

the implication of histone modification in sperm the transmission of paternally-induced 

phenotypes. 

10.4.3 Evidence sperm histones are important for offspring health 

Following the emerging interest in the field of paternal epigenetic inheritance, it remained 

unclear whether retained canonical histones in sperm and their modifications served any 

functions or whether they were remnants of incomplete histone-to-protamine exchange. 

This latter hypothesis was challenged by the intriguing findings that histones are not 

retained randomly in the genome, but instead are conserved across mammalian species, 

they are enriched at genes important for spermatogenesis, and importantly at 

developmental loci, and genes involved in metabolism and cellular processes 220,221,472,542.  

While histone modifications in sperm have been overlooked in the field of paternal 

epigenetic inheritance research, evidence suggests they serve critical roles for proper 

embryonic development and offspring health. A foundational study using a genetic model 

of epigenetic inheritance, where males overexpressed the lysine-specific histone 

demethylase 1A (LSD1 or KDM1A) enzyme specifically in the developing germline, 

demonstrated for the first time that sperm-borne histone methylation is critical for offspring 

health 543. Indeed, the genetic model generated males that have an altered sperm 

epigenome at the level of histone H3K4me2 and H3K4me3, and that sire offspring with a 

wide range of developmental abnormalities, reduced survivability, with phenotypes that 

persisted transgenerationally. KDM1A overexpression in the developing male germline 

was associated with differential gene expression in two-cell embryos that corresponded 

with sperm regions bearing differentially enriched H3K4me2 543. Further supporting the 

role of paternal histones for proper embryonic development, is the finding that sperm 
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H3K4me loss disrupts paternal pronucleus zygotic genome activation 544. Additionally, 

embryos derived from spermatids that have not undergone histone-to-protamine 

exchange, develop less frequently to adulthood than embryos derived from sperm, 

suggesting a reduced developmental potential for spermatid cells 545,546. Spermatid-

derived embryos also show deregulation of developmental genes, which corresponds 

with epigenetic differences that distinguish spermatid chromatin from that of sperm 222. 

These findings are in accordance with the premise that sperm is epigenetically 

programmed to regulate gene expression in the embryo. 

10.4.4 Evidence sperm-borne histone modifications are transmitted to the embryo 

Whether paternal histones are fully reprogrammed shortly after fertilization, or whether 

they persist to alter embryonic gene expression was unresolved. This open question was 

purportedly addressed in a report using ultra-low input chromatin immunoprecipitation 

followed by sequencing (ChIP-seq) protocols on pre-implantation embryos derived by 

crossing two distinct parental mouse strains, allowing for discrimination of paternal or 

maternal alleles. The authors claimed H3K4me3 peaks from the paternal allele were fully 

depleted after fertilization 547. However, a re-analysis of their data revealed an error in 

their normalization of paternal reads. Correcting this error revealed that a subset of 

H3K4me3 regions in sperm are transmitted and retained from the pronucleus stage 

zygote throughout pre-implantation embryo development 476. Further evidence supporting 

the transmission of sperm histones and retention beyond fertilization is the detection of 

histone H3.3 in the paternal pronucleus of the zygote, a variant that is enriched in sperm 
544,548,549. Although this has yet to be demonstrated in humans, the enrichment of the 

gene-activating histone mark H3K4me3 in sperm at genes expressed in the pre-

implantation embryo, is in accordance with a potential transmission in the human embryo 
221.  

 More recently, a paternal folate deficiency model further supported the 

transmission of sperm H3K4me3 to alter embryonic gene expression. Feeding males with 

a folate deficient diet was associated with offspring developmental abnormalities, and 

induced differential H3K4me3 enrichment in sperm, with 64% of these aberrant epigenetic 

regions persisting in the 8-cell embryo, of which half showed the same directionality 
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change from the sperm to the embryo 477. Furthermore, altered sperm H3K4me3 profiles 

were associated with the differential gene expression in the 8-cell embryo. This study 

demonstrated that diet-induced changes in sperm H3K4me3 are transmitted to the 

embryo, involving paternally-induced intergenerational phenotypes. Collectively, these 

findings show transmission of sperm H3K4me3 to the embryo, and that some regions 

bearing H3K4me3 persist during early chromatin remodeling in the embryo.  

While there is now evidence that diet-induced obesity can alter the sperm 

epigenome, exactly how these paternally-inherited epimutations can impact development 

throughout and program offspring maladaptive metabolic phenotypes in utero remains 

unclear. Additionally, whether these effects can span multiple generations – resulting in 

transgenerational epigenetic inheritance – remains an open question. 

 

10.4.5 Intergenerational versus transgenerational inheritance 

10.4.5.1 Definition 

The concept of intergenerational and transgenerational epigenetic inheritance refers to 

the non-genetic transmission of phenotypes, with inheritance spanning one or multiple 

generations. Such effects are termed ‘transgenerational’ when an environmental stimulus 

to one directly exposed individual (F0) induces phenotypes to the subsequent unexposed 

generations. Paternal and maternal transgenerational epigenetic inheritance therefore 

differ in that they can be characterized as such when the F2 and F3 generations are 

phenotypically affected, respectively 550,551. Indeed, in order for a paternal exposure to 

result in transgenerational effects, the F2 generation must show a phenotype, given that 

the F1 offspring and its germ cells arise from the exposed sperm (F0). In contrast, the 

mother will directly expose the fetus (F1) during gestation, as well as the developing germ 

cells of the fetus that will give rise to the next generation (F2) for that reason maternal 

transgenerational inheritance occurs at the F3 generation. The next subsections will 

highlight evidence and mechanisms on the phenomenon of transgenerational epigenetic 

inheritance in various organisms. 
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10.4.5.2 Examples of transgenerational inheritance in mammals: epigenetic 

mechanisms and gaps in knowledge 

10.4.5.2.1 In rodents 
 One of the first examples of transgenerational epigenetic inheritance in mammals 

was described in mice with endogenous metastable epialleles – variably expressed 

alleles in isogenic individuals. The viable yellow agouti (AVY) and the Axin fused (AxinFu) 

alleles are classical models, which arise from the random insertion of an intracisternal A 

particle (IAP) retrotransposon upstream or inside a gene, controlling its expression in an 

epigenetic-dependent manner 41,552,553. The AVY insertion occurs upstream of the Agouti 

murine gene, a gene that promotes the production of yellow pigment in follicular 

melanocytes, and act on melanocortin receptors to inhibit leptin anorectic effects. The 

epiallele insertion resulted in constitutive and ectopic Agouti expression, causing yellow 

fur, obesity and tumorigenesis in these mice, with variable degrees of the phenotypes 

related to the degree of DNA methylation at the IAP locus. These effects were shown to 

be maternally transmitted – but not paternally – and this parent-of-origin effect is thought 

to arise from differences in IAPs epigenetic reprogramming between the male and female 

germline, and across paternal and maternal genome after fertilization 551. Similarly, the 

AxinFu IAP metastable epiallele occurs within an intron of the Axin gene, which encodes 

the axin protein which plays roles in embryonic axis formation. Consequently, AxinFu mice 

show tail kinks, with variable severity of the kink in the tail depending on the state of 

methylation at the IAP 554. Both the AVY and AxinFu models showed transgenerational 

transmission of phenotypes. 

 More recently, another genetic model of transgenerational epigenetic inheritance 

has been established. A hypomorphic mutation in the methionine synthase reductase 

(Mtrr) enzyme – responsible for utilizing methyl groups generated in the folate cycle – 

showed transgenerational transmission of congenital malformations over five generations 

through either maternal grandparents 555. These effects were associated with differentially 

methylated regions (DMRs) in F0 sperm that did not persist in offspring (F1-F2) embryos, 

placentas, and somatic tissue 556. Some of the sperm DMRs corresponded with altered 

somatic gene expression in F2 embryos and adult livers and F1-F3 embryos, including that 

of Hira – a histone chaperone – which was considered a reflection of transcriptional 



 68 

memory of the associated germline DMR. It remains to be determined how misexpression 

of Hira persists across generations through the sperm. A proposed mechanism was 

through altered histone methylation, given that embryonic stem cells are enriched for 

H3K4me3 at the DMR genomic location. It was also speculated that aberrant sperm 

epigenetic patterns could be reprogrammed and then stochastically re-established, which 

would explain inter-individual variability in the phenotypes observed. 

 In terms of transgenerational responses to environmental or nutritional exposures, 

previous studies have focused on models of over- or under-nutrition, endocrine-disrupting 

chemical exposure, stress, and drug-induced diabetes 521,557–560. These studies detected 

exposure-associated changes in sperm at the level of DNA methylation and non-coding 

RNA content, but the contribution of these marks in the non-genetic transmission of 

phenotypes remains ill-defined. Indeed, the implication of DNA methylation in sperm in 

the transmission of diet-induced phenotypes has been challenged, given that stochastic 

variation appeared to show a greater contribution to the sperm methylome than that 

associated with dietary treatment 561. Additionally, several studies detecting sperm DMRs 

failed to detect corresponding epigenetic or transcriptomic alterations in offspring tissue 
541,562. In terms of the acquisition of aberrant RNA content in sperm, this is thought to 

occur through the transfer of RNA cargoes from somatic to germ cells via extracellular 

vesicles in the epididymis (also called epididymosomes) 538. While it was demonstrated 

that RNA-carrying vesicles can fuse with and transfer RNA molecules to sperm cells in 

vitro, it remains to be confirmed whether this occurs in the epididymis in vivo 563. The 

mechanism by which this RNA-mediated transmission could occur transgenerationally 

also remains unresolved. Further contributing to the confusion and controversy in this 

field of research, some studies state detecting paternally-induced transgenerational 

effects, when solely the F1 generation was being assessed, permitting only 

intergenerational characterization 564. Consequently, the evidence for transgenerational 

epigenetic inheritance is scarce and these exposure studies remain to be independently 

replicated. It is also still unclear how sperm-borne epigenetic alterations can be 

transmitted over multiple generations.  
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10.4.5.2.2 In humans 

Transgenerational inheritance of phenotypes in humans – as highlighted in previous 

sections of this chapter – have been described in several epidemiological studies, linking 

grandparental nutritional states with heightened risk for complex diseases. While these 

studies paved the way for the DOHaD and transgenerational inheritance research fields, 

demonstrating transgenerational epigenetic inheritance mechanisms in humans is 

difficult. Indeed, such retrospective epidemiological studies are confounded by cultural 

and ecological factors. These studies have received tremendous attention through media 

coverage but have also been criticized given the important claims made with limitations 

in study design and statistical approaches used. First, the sample sizes were relatively 

small, especially for such epidemiological studies. Additionally, authors claimed to 

observed sex-specific effects, but it appeared that these effects were not hypothesized a 

priori, and instead arose from the results 204. Additionally, there were many parameters 

assessed, implying high number of multiple testing with small sample size. In other words, 

these studies involve small sample sizes, hypotheses that are not predefined and instead 

are established after results are generated, and excessive multiple testing 214. Better 

designed studies with larger sample size, and independent validations would be required 

to provide more convincing evidence of the phenomenon in humans. 

 

10.4.5.3 Challenges and gaps in knowledge 

Collectively, whether transgenerational inheritance can have an epigenetic basis in 

mammals – especially in humans – remains controversial. Proving such phenomenon in 

humans is extremely challenging, especially with current reliance on retrospective studies 

with confounding factors that are impossible to rule out. Additionally, studies describing 

epigenetic inheritance effects in mammals often show inter- rather than transgenerational 

effects, or do not exclude a genetic basis initiating the heritability of phenotypes.  

 In order to prove such transgenerational epigenetic inheritance mechanism in 

mammals, genetic, cultural and ecological confounding factors must be ruled out. This 

can only be achieved by using isogenic animal models in strictly controlled environment. 

The use of in vitro fertilization (IVF) should be used in order to rule out any intrauterine or 

semen factors, and instead ensure exclusive gametic transmission. Nevertheless, it is 
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worth mentioning that IVF has been linked to epigenetic changes which could potentially 

impact the findings 565,566. Lastly, to show proof-of-concept that a specific epigenetic mark 

plays a causal role in the transmission of phenotypes, the specific mark should be 

manipulated to show that the effect is lost when the mark is erased/removed, and that the 

effect is gained once the mark is reintroduced. With non-coding RNA, this can be done 

via microinjection of RNA molecules in the zygote, as has been previously performed in 

paternal high-fat diet and stress models 514,557,567. For histone modifications and DNA 

methylation epigenetic marks, epigenome editing methods using CRISPR-dCas9 

systems can be leveraged 568. However, these methods can be challenging especially if 

more than one locus is being targeted at once. Overall, true transgenerational epigenetic 

inheritance mechanisms are extremely challenging to prove in mammals, and even more 

so in humans.  

 

10.4.6 Potential role of the placenta in the developmental origins of paternally-induced 

phenotypes 

The placenta is an extraembryonic tissue that is critical for proper fetal development as it 

functions to deliver nutrients and oxygen to, and remove metabolic waste from, the fetus, 

produce pregnancy-associated hormones, synthesize glycogen and cholesterol, regulate 

the maternal immune system to prevent the rejection of the allogeneic fetus, and more. 

This temporary organ arises from the trophectoderm upon the first cell fate decision 

between the inner-cell mass and trophoblast lineages established early in development 

by the blastocyst stage 569. Post-implantation, trophoblast cells invade the maternal 

decidua to remodel the vasculature which facilitates the flow of maternal blood to the 

placenta and thereby the fetus 570,571. This transient organ is fully formed at embryonic 

(E)14.5 day in mice and 10 to 12 weeks in humans 572.  

The mature mouse placenta can be divided into three major functional regions – 

the decidua, the junctional zone and the labyrinth. The junctional zone is located directly 

beneath the decidua and is comprised of cells that serve endocrine and metabolic 

functions, including trophoblast giant cells, spongiotrophoblasts, and glycogen cells 
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573,574. The labyrinth lies beneath the junctional zone, and its architecture permits to 

maximize surface area for efficient exchange between the maternal and fetal blood 575,576.  

Placenta function can influence the development of specific embryonic organ 

systems. Indeed, gene knockouts that induce placental defects are significantly more 

prone to exhibit abnormal brain, heart and vascular system development, in comparison 

with knockouts that do not impact placentation 577. Such influence may occur through 

placenta production of various factors including neurotransmitters, hormones, and growth 

factors 578,579. For example, the placenta produces serotonin, dopamine, epinephrine, and 

norepinephrine, which have been postulated to influence brain functions 580. Importantly, 

changes in placental serotonin production may put the fetus at greater risk to develop 

neurobehavioral disorders such as autistic spectrum disorders and anxiety-like 

behaviours.  

Placental abnormalities can be classified as structural, implantation, and functional 

anomalies. These placental defects can impact decisions related to delivery methods and 

timing, but also result in complications that can be fatal for both the mother and the fetus, 

such as serious hemorrhage, and fetal growth restriction (FGR). FGR can result from 

placental insufficiency, whereby the placenta fails to deliver sufficient oxygen and 

nutrients to the fetus. This placental complication can result from various maternal chronic 

conditions such as pregnancy-induced hypertension, as well as due to idiopathic causes. 

Intrauterine growth restriction (IUGR) occurs in approximately 10% of pregnancies, and 

babies born from IUGR can suffer from a number of neonatal metabolic, hematological, 

and cognitive disturbances. A deprived intrauterine environment is also associated with 

low birth weight, which can set the postnatal trajectory for rapid catch-up growth. This 

catch-up growth process has been linked both in humans and animal models with an 

imbalanced accumulation in lean versus fat mass and a transition from insulin sensitivity 

to resistance 581–585. These early life growth trajectories increase the risk to develop T2D, 

coronary heart disease, hypertension, and stroke, in adulthood 585,586.  

The placenta is of particular interest to study in the context of paternal 

preconception health. Indeed, the paternal genome is thought to strongly contribute to 

placental development. Early experimental evidence suggested that the paternal and 

maternal genome exert divergent but complementary potential for inner cell mass and 
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trophectoderm development. This was recognized through studies with manipulated 

mouse embryos, whereby embryos derived from two paternal genomes showed greater 

developmental potential for the trophoblast lineage than embryos generated with two 

maternal genomes 587–591. Further supporting a strong contribution of the paternal 

genome is the finding that paternally expressed genes are enriched in the placenta 592. 

Moreover, paternal factors have been linked to adverse pregnancy outcomes and 

placental dysfunction. In humans, recurrent pregnancy loss and preeclampsia – a form of 

placental insufficiency – have been linked to poor semen parameters and paternal 

metabolic syndrome status, respectively 593,594. In animal models, advanced paternal age 

as well as paternal preconception toxicant exposure or folate deficiency, have been 

associated to alterations in placental gene expression and methylation profiles 541,595,596. 

In the context of paternal obesity, paternal high-fat diet alters blastocysts cell allocation 

ratios to the inner cell-mass versus the trophectoderm lineage 489,491. More recently, 

paternal high-fat diet was shown to impact placental functions, with elevated hypoxia and 

altered vasculature, characteristics of placental insufficiency 597.  

Because the placenta plays such critical roles in supporting fetal growth, with 

implications for adult-onset complex disease risk, and because increasing evidence hint 

towards a paternal contribution to placental integrity and functions, it suggests this organ 

represents an important site of action for paternally-induced intergenerational 

transmission of phenotypes. This possibility will be addressed and further explored in the 

third chapter of this thesis. 
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10.5 Research goals and scope of the thesis 

The previous sections have highlighted the negative consequences the rapid rise in 

obesity rates has had on the healthcare system with obesity being associated with 

numerous adverse health conditions, particularly in the context of an aging population. 

This condition therefore remains a health priority to tackle due to its prevalence reaching 

epidemic levels, with rates that are not expected to decrease. Given genetic factors alone 

cannot fully explain the sharp rise in obesity rates globally, it is also possible that a 

cumulation of potentially interacting factors, such as behavioural changes surrounding 

eating patterns and energy expenditure, obesogens exposure, in utero programming, as 

well as generational exposures, could contribute to this obesity epidemic. Consequently, 

there are implications for parental health status and the non-genetic transmission of 

complex disease to future generations. Importantly, paternal environmental factors in 

preconception health have received considerably less attention in public health and there 

is a lack of public awareness on how men can impact the health of their children. Although 

little is known on the exact paternal contribution to preconception health, it is clear that a 

father’s environment plays a crucial role in offspring health. Mechanistically, it is known 

that diets associated with obesity alter the epigenome, including that of the sperm at 

ncRNA and DNAme. It remains unclear whether diet-induced obesity can also alter sperm 

histone post-translational modifications (PTMs). More scientific effort is required to focus 

on identifying molecular mechanisms underlying paternal origins of health and disease 

(POHaD), identify molecular signatures that could predict pregnancy outcomes including 

obstetrical complications, translate mechanistic findings to the clinic, and act to limit 

further spread of noncommunicable diseases.  

In light of these knowledge gaps, within the scope of this thesis, I aimed to address 

these issues through the following aims: 

1. Investigate whether paternal obesity can lead to inter- or transgenerational heightened 

risk to complex disease, and whether these effects are sex-specific. 

2. Examine whether diets associated with obesity alter the sperm epigenome at the level 

of histone modifications. 
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3. Using a genetic model of epigenetic inheritance combined with a diet-induced obesity 

model, assess whether there can be cumulative impacts of paternal stressors on the 

sperm epigenome and on offspring metabolic health. 

4. Assess whether there are environmentally-sensitive epigenetic regions in sperm that 

could impact embryonic or fetal development to program paternally-induced 

maladaptive responses in the next generation. 

5. Interrogate whether paternal obesity influences placenta development, and can be 

associated with cellular compositions and altered gene expression. 
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Chapter 2: Sperm histone H3 lysine 4 tri-methylation serves as a metabolic sensor of 

paternal obesity and is associated with the inheritance of metabolic dysfunction 

 

 
 

Pepin, A.-S., Lafleur, C., Lambrot, R., Dumeaux, V., Kimmins, S., 2022. Sperm histone 

H3 lysine 4 tri-methylation serves as a metabolic sensor of paternal obesity and is 

associated with the inheritance of metabolic dysfunction. Molecular Metabolism 59: 

101463, Doi: https://doi.org/10.1016/j.molmet.2022.101463. 
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11.1 Abstract 

Objective: Parental environmental exposures can strongly influence descendant risks for 

adult disease. How paternal obesity changes the sperm chromatin leading to the 

acquisition of metabolic disease in offspring remains controversial and ill-defined. The 

objective of this study was to assess (1) whether obesity induced by a high-fat diet alters 

sperm histone methylation; (2) whether paternal obesity can induce metabolic 

disturbances across generations; (3) whether there could be cumulative damage to the 

sperm epigenome leading to enhanced metabolic dysfunction in descendants; and (4) 

whether obesity-sensitive regions associate with embryonic epigenetic and transcriptomic 

profiles. Using a genetic mouse model of epigenetic inheritance, we investigated the role 

of histone H3 lysine 4 methylation (H3K4me3) in the paternal transmission of metabolic 

dysfunction. This transgenic mouse overexpresses the histone demethylase enzyme 

KDM1A in the developing germline and has an altered sperm epigenome at the level of 

histone H3K4 methylation. We hypothesized that challenging transgenic sires with a high-

fat diet would further erode the sperm epigenome and lead to enhanced metabolic 

disturbances in the next generations.  

Methods: To assess whether paternal obesity can have inter- or transgenerational 

impacts, and if so to identify potential mechanisms of this non-genetic inheritance, we 

used wild-type C57BL/6NCrl and transgenic males with a pre-existing altered sperm 

epigenome. To induce obesity, sires were fed either a control or high-fat diet (10% or 60% 

kcal fat, respectively) for 10-12 weeks, then bred to wild-type C57BL/6NCrl females fed 

a regular diet. F1 and F2 descendants were characterized for metabolic phenotypes by 

examining the effects of paternal obesity by sex, on body weight, fat mass distribution, 

the liver transcriptome, intraperitoneal glucose, and insulin tolerance tests. To determine 

whether obesity altered the F0 sperm chromatin, native chromatin immunoprecipitation-

sequencing targeting H3K4me3 was performed. To gain insight into mechanisms of 

paternal transmission, we compared our sperm H3K4me3 profiles with embryonic and 

placental chromatin states, histone modification, and gene expression profiles. 

Results: Obesity-induced alterations in H3K4me3 occurred in genes implicated in 

metabolic, inflammatory, and developmental processes. These processes were 

associated with offspring metabolic dysfunction and corresponded to genes enriched for 
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H3K4me3 in embryos and overlapped embryonic and placenta gene expression profiles. 

Transgenerational susceptibility to metabolic disease was only observed when obese F0 

had a pre-existing modified sperm epigenome. This coincided with increased H3K4me3 

alterations in sperm and more severe phenotypes affecting their offspring.  

Conclusions: Our data suggest sperm H3K4me3 might serve as a metabolic sensor that 

connects paternal diet with offspring phenotypes via the placenta. This non-DNA-based 

knowledge of inheritance has the potential to improve our understanding of how 

environment shapes heritability and may lead to novel routes for the prevention of 

disease. This study highlights the need to further study the connection between the sperm 

epigenome, placental development, and children’s health. 

Summary sentence: Paternal obesity impacts sperm H3K4me3 and is associated with 

placenta, embryonic and metabolic outcomes in descendants. 
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11.2 Introduction 

The prevalence of obesity and type II diabetes is growing globally at rates indicating that 

environment rather than genes is the principal driver. Exposures to high-fat diet, toxicants 

or micronutrient deficiency can impact our health and that of future generations 518,598–600. 

Only now are we beginning to identify mechanisms linking these exposures to parental 

and offspring health. One connection between environment and health is the epigenome. 

The epigenome refers to the biochemical content associated with DNA that impacts gene 

expression and chromatin organization. Uncovering how genomic information is 

organized and regulated through epigenetic processes to control gene expression and 

cell functions in the next generation is still in a nascent stage. We and others have shown 

that errors in epigenomic profiles in sperm can be induced by environmental exposure to 

toxicants such as those in insecticides and plastics, obesity, and poor diet 
477,520,541,562,601,602. We recently demonstrated that these epigenome changes at the level 

of chromatin can be transmitted via sperm to alter embryonic gene expression, 

development, and offspring health 477. Historically, parental health and fertility have 

focused predominantly on the mother, although it is clear a father’s health and lifestyle 

can also impact his children’s health. How epimutations in sperm functionally impact the 

embryo urgently require elucidation to prevent transmission of disease from father to 

offspring. 
 

Metabolic disease including obesity and type II diabetes can in part be attributed to 

genetic factors with a 5-10% increased risk 76. The remaining risk is attributable to 

environmental-epigenetic interactions including potentially those of our ancestors. This 

possibility is supported by epidemiological and animal studies. Transgenerational effects 

are suggested by studies in humans that linked the food supply of grandfathers to obesity 

and cardiovascular disease in their grandchildren 204,603,604. However, the ability for diet 

to induce transgenerational effects in animal models remains controversial and requires 

more in depth studies addressing the underlying molecular mechanisms 493,543,605. To 

date, studies using mice to assess the impact of diet and obesity in relation to the sperm 

epigenome, have focused on the DNA methylome and non-coding RNA (ncRNA) as the 

potential sperm-borne mediators of metabolic disease 513,517,562–564,606,607. The role of 
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sperm chromatin in the non-genetic inheritance of metabolic disorders is unknown. In 

human and mouse sperm, histone H3 lysine 4 trimethylation (H3K4me3) localizes to 

genes involved in metabolism and development 477,608,609. Moreover, sperm H3K4me3 

can be altered by folate deficiency and influences embryonic development and gene 

expression 476,543. This association of histone modifications in sperm with offspring 

phenotypes has since been confirmed in other mouse models 610,611. Based on these 

observations, we hypothesized that sperm H3K4me3 may serve as a metabolic sensor 

that is implicated in the paternal transmission of obesity-associated disease in offspring.  

 

A focus of this study was to identify whether paternal obesity impacts the F1-F2, and if so, 

to identify potential mechanisms of this non-genetic inheritance. In our transgenic (TG) 

mouse model of epigenetic inheritance, male mice overexpress the histone demethylase 

KDM1A specifically in spermatogenesis, resulting in sperm with alterations in H3K4me2 

and me3. Of note, only H3K4me3 has been implicated in transgenerational inheritance in 

this mouse model 476. Therefore, as sperm H3K4me3 is responsive to paternal folate 

deficiency 477, and has been implicated in transgenerational inheritance 476, we targeted 

this mark in sperm to probe in response to paternal obesity and as a potential mediator 

of inheritance. In this study, we aimed to: 1) assess the impact of high-fat diet (HFD) 

induced paternal obesity on sperm H3K4me3 and its association with metabolic 

dysfunction across generations, and 2) determine if descendants of obese TG sires with 

a previously altered sperm epigenome would show more severe metabolic dysfunction. 

To address these aims, we used wildtype (WT), or the germline specific KDM1A-

overexpressing TG mice, in combination with a diet-induced obesity model. These TG 

sires have descended from males that have an altered sperm epigenome and whose 

ancestors had compromised health (see Materials and Methods for details). This TG 

model is used to represent an at-risk population that may be more susceptible to poor 

health when challenged with obesity. Here, we demonstrate that a paternal high-fat diet 

induces F0 obesity and metabolic dysfunction in the F1. Remarkably, transgenerational 

phenotypes were only observed in descendants of obese KDM1A TG males, and this was 

associated with enhanced alterations in H3K4me3 enrichment in obese TG sperm. This 

suggests that the risk of transgenerational disease transmission may be greater if an 
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ancestor has had prior exposures that cause pre-existing damage to the sperm 

epigenome. Concordant with the metabolic phenotypes observed in offspring, obesity-

induced alterations in sperm H3K4me3 occurred at genes involved in development, 

placenta formation, inflammatory processes, glucose and lipid metabolic pathways. 

These sperm altered H3K4me3 regions persist in the embryo and placenta, supporting a 

role for sperm H3K4me3 in paternal origins of adult-onset metabolic disorders.  

 

11.3 Materials and Methods 

11.3.1 Resource availability 

11.3.1.1 Lead contact 

Further information and requests for resources and reagents should be directed to and 

will be fulfilled by the Lead Contact, Sarah Kimmins (sarah.kimmins@mcgill.ca). 

11.3.1.2 Materials availability 

This study did not generate new unique reagents. 

11.3.1.3 Data and code availability 

The sperm H3K4me3 ChIP-Seq and liver RNA-Seq data generated in this study are 

available at the following GEO accession number: GSE178096. 

11.3.2 Experimental model and subject details 

11.3.2.1 Animals 

All animal procedures were carried out in accordance with the guidelines of the Faculty 

Animal Care Committee of McGill University, Montreal. For the wildtype line (WT), 

C57BL/6NCrl 8-week old males and 6-week old females were purchased from Charles 

Rivers Laboratory and were allowed one week of acclimation before breeding. For the 

KDM1A transgenic line (TG), mice were generated as previously described 543, with the 

same genetic background as the wildtype line. The F0 TG mice used in this study were 

from the 11th generation. The earlier generations of mice in this KDM1A TG had severe 

developmental abnormalities, pre-implantation loss and early post-natal death 543.  Over 

time we have selected against the severe phenotype by breeding the mice that survive 

and are normal. Single males were housed with two females to generate the F0 

mailto:sarah.kimmins@mcgill.ca
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generation. All animals were given access to water and food ad libitum and were 

maintained on a controlled light/dark cycle. 

11.3.3 Methods details 

11.3.3.1 Diet experiments and animal breeding 

The low-fat control diet (CON; D12450J) and high-fat diet (HFD; D12492) were obtained 

from Research Diets, and selected based on the matched amounts of sucrose, vitamin 

mix and folate. Diets’ macronutrients composition are listed in Table S1. Males of the F0 

generation were generated from at least 7 different sires per group. F0 males were 

weaned at 3 weeks of age and randomly assigned to either a CON or HFD. The number 

of animals per group, per sex and per generation, used for all metabolic characterization 

tests can be found in Table S2. Total body weights were monitored weekly. Cumulative 

caloric intake was recorded weekly by weighting pellets from the food hopper and 

calculated as kilocalorie per animal. The diet intervention spanned 10-12 weeks followed 

by 2 weeks of metabolic testing (at 4 months of age), 1 week of rest and 1-2 weeks of 

breeding with 7-week old C57BL/6NCrl females. Females used for breeding were housed 

with males overnight (1-2 females per male) and removed the following morning. This 

was repeated until a vaginal plug was detected, 3 nights per week for a maximum of 2 

consecutive weeks. A limitation worth noting is that despite these precautions the females 

were exposed for a maximum of 6 nights to the HFD pre-pregnancy during this breeding 

period.  However the impacts of this exposure are minimal as female mice require several 

weeks (~5-8 weeks) before significant weight gain on a HFD 612.  

Litter sizes (number of pups per litter) were recorded, and sex ratios (ratio of male pups 

over total number of pups) were calculated for all litters generated and can be found in 

Tables S3 and S4, respectively. The same timeline was used to generate the F1 and F2 

animals. All females used for breeding and all F1 and F2 were fed a regular chow diet 

(2020X Teklad rodent diet, Envigo). All animals were sacrificed at 22 weeks (±2 weeks) 

by carbon dioxide asphyxiation under isoflurane anesthesia.  

11.3.3.2 Metabolic testing 

Assessment of metabolic parameters was conducted at 4 months of age within 2 

consecutive weeks according to the standard operating procedures of the National 
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Institutes of Health (NIH) Mouse Metabolic Phenotyping Center 613.  For the glucose 

tolerance test, animals were fasted overnight for 15 hours (± 1 hour) starting at 6:00PM 

with free access to water. Blood glucose was measured before and 15, 30, 60 and 120 

minutes following an intraperitoneal injection of 2 g/kg of a 20% glucose solution (D-

glucose, G7021, Sigma Aldrich) with one drop of blood from the tail-tip using a glucometer 

(Accu-Chek Aviva Nano). For the insulin tolerance test, animals were fasted for 6 hours 

(± 1 hour), starting at 9:00AM with free access to water. Blood glucose was measured 

before and 15, 30, 60 and 120 minutes following an intraperitoneal injection of 1 IU/kg 

insulin (Insulin solution, I9278, Sigma Aldrich), with one drop of blood from the tail-tip 

using a glucometer (Accu-Chek Aviva Nano). The area under the curves (AUCs) for the 

tolerance tests were calculated using the trapezoidal rule (GraphPad Prism, version 8). 

For the baseline blood glucose levels, blood glucose levels were measured after an 

overnight fasting of 15 hours (± 1 hour) with one drop of blood from the tail-tip using a 

glucometer (Accu-Chek Aviva Nano). 

11.3.3.3 Tissue collection 

At necropsy, mice were dissected to collect adipose tissue (gonadal and mesenteric white 

adipose depots; gWAT and mWAT, respectively) and a liver lobe (left lateral lobe or lobus 

hepatis sinister lateralis for RNA-sequencing). All tissues were weighed, transferred to a 

clean tube, snap frozen in liquid nitrogen and stored at -80°C until subsequent 

downstream experiments. Cauda epididymides were weighed and immediately used for 

sperm isolation. 

11.3.3.4 Sperm isolation 

Spermatozoa were isolated from paired caudal epididymides 614,615. Cauda epididymides 

were cut into 5 mL of freshly-prepared Donners medium (25 mM NaHCO3, 20 mg ml-1 

BSA, 1 mM sodium pyruvate, 0.53% vol/vol sodium DL-lactate in Donners stock) and 

gently agitated to allow to swim out for 1 hour at 37°C. The solution was passed through 

a 40-µm cell strainer (Fisher Scientific, #22363547) and washed three times with 

phosphate-buffered saline (PBS). The swim out and the cleaning steps remove 99% of 

contaminating somatic cells which is visually confirmed and has been validated in our 

prior studies 476,477,543,608,614,615. The sperm pellet was cryopreserved in freezing medium 
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(Irvine Scientific, cat. #90128) and kept in a -80°C freezer until the chromatin 

immunoprecipitation experiment. 

11.3.3.5 RNA-Sequencing and library preparation 

RNA extraction was performed using the RNeasy Mini Kit (Qiagen, cat. #74104) following 

the manufacturer’s protocol with slight modifications. In brief, 15-20 mg of liver lobes were 

cut on dry ice using a sterile scalpel and Petri dish. Samples were lysed in 350 µL of a 

denaturing buffer (Buffer RLT with beta-mercaptoethanol) and homogenized with 

homogenizer pestles. Lysates were centrifuged at maximum speed for 3 minutes and the 

supernatants transferred to a clear tube. Ethanol (50%) was added to lysates to promote 

selective binding of RNA molecules to the silica-based membrane when applied to the 

spin columns. To avoid genomic DNA contamination, an additional DNase digestion was 

performed. Finally, membranes of the spin columns were washed twice with 500 µL of 

Buffer RPE and total RNA was eluted using 30 µL of RNase-free water. Libraries were 

prepared and sequenced at the Génome Québec Innovation Centre with single-end 50 

base-pair (bp) reads on the illumina HiSeq 4000 and paired-end 100 bp reads on the 

illumina NovaSeq 6000 S2 sequencing platforms. 

11.3.3.6 ChIP-Sequencing and library preparation 

Chromatin immunoprecipitation was performed as we have previously described 614,615. 

In brief, spermatozoa samples in freezing media were thawed on ice and washed with 1 

mL phosphate-buffered saline. For each sample, two aliquots of 10 µL were used to count 

spermatozoa in a hemocytometer under microscope, and 10 million spermatozoa were 

used per sample (n=5 sample per group). Sperm chromatin was decondensed in 1 M 

dithiothreitol (DTT; Bio Shop, #3483-12-3) and the reaction quenched with N-

ethylmaleimide (NEM). Samples were lysed in lysis buffer (0.3 M sucrose, 60 mM KCl, 

15 mM Tris-HCl pH 7.5, 0.5 mM DTT, 5 mM McGl2, 0.1 mM EGTA, 1% deoxycholate and 

0.5% NP40). An MNase enzyme (15 units; Roche, #10107921001) was added to aliquots 

containing 2 million spermatozoa in an MNase buffer (0.3 M sucrose, 85 mM Tris-HCl pH 

7.5, 3 mM MgCl2 and 2 mM CaCl2), for exactly 5 minutes at 37°C. The digestion was 

stopped with 5 mM EDTA. Samples were centrifuged at maximum speed for 10 minutes, 

and the supernatants of aliquots from each sample were pooled back together. Each tube 

was supplemented with a protease inhibitor to obtain an 1X solution (complete Tablets 
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EASYpack, Roche, #04693116001). Magnetic beads (DynaBeads, Protein A, Thermo 

Fisher Scientific, #10002D) were pre-blocked in a 0.5% Bovine Serum Albumin (BSA, 

Sigma Aldrich, #BP1600-100) solution for 4 hours at 4°C and then used to pre-clear the 

chromatin for 1 hour at 4°C. Pulling down of the pre-cleared chromatin was performed 

with the use of magnetic beads that were previously incubated with 5 µg of antibody 

(Histone H3 Lysine 4 trimethylation; H3K4me3; Cell Signaling Technology, cat. #9751) 

for 8 hours at 4°C. Immunoprecipitation of the chromatin with the beads-antibody 

suspension was performed overnight at 4°C. Beads bound to the chromatin were 

subjected to a 3-step wash, one wash with Washing Buffer A (50 mM Tris-HCl pH 7.5, 10 

mM EDTA, 75 mM NaCl) and two washes with Washing Buffer B (50 mM Tris-HCl pH 

7.5, 10 mM EDTA, 125 mM NaCl). The chromatin was eluted in 250 µL of Elution Buffer 

(0.1 M NaHCO3, 0.2% SDS, 5 mM DTT) by incubating the beads twice (2 x 125 µL) 

shaking at 400 rpm for 10 minutes at 65°C, vortexing vigorously and transferring the 

chromatin elute in a clean tube. The eluted chromatin was finally treated with 5 µL of 

RNase A (Sigma Aldrich, #10109169001) by shaking in a thermomixer at 400 rpm for 1 

hour at 37°C, and then with 5 µL of Proteinase K (Sigma Aldrich, #P2308) overnight at 

55°C. DNA was extracted and purified using the ChIP DNA Clean and Concentrator kit 

(Zymo Research, #D5201) using the manufacturer’s protocol, eluted with 25 µL of the 

provided elution buffer. Size selection of the mononucleosomes (147 bp) was performed 

with the use of Agencourt AMPure XP beads (Beckman Coulter, #A63880). Libraries were 

prepared in-house using the Ultra-low Input Library kit (Qiagen; #180495). Libraries were 

sequenced with single-end 50 bp reads on the illumina HiSeq 4000 sequencing platform 

(n=5 samples per experimental group). 

11.3.3.7 Pre-processing 

11.3.3.7.1 Liver RNA-Sequencing data 
All samples were processed with the same parameters with the exception of those 

sequenced on the NovaSeq platform to adapt for paired-end sequencing and sequencing 

read length. Reads were trimmed using Trim Galore (version 0.5.0, parameters for HiSeq: 

--phred33 --length 36 -q 5 --stringency 1 -e 0.1; parameters for NovaSeq: --paired --

retain_unpaired --phred33 --length 36 -q 5 --stringency 1 -e 0.1) 616. Trimmed reads were 

aligned to the Ensembl Genome Reference Consortium mouse reference 38 (GRCm38) 
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primary assembly using hisat2 (version 2.1.0, parameters: -p 8 --dta) 617. Aligned files 

with SAM format were converted to binary SAM format (BAM) and sorted by genomic 

position using SAMtools (version 1.9) 618. Transcripts were assembled and gene 

abundances calculated using Stringtie (version 2.1.2, parameters: -p 8 -e -B -A) 619. 

11.3.3.7.2 Sperm ChIP-Sequencing data 
Sequencing reads were trimmed using Trimmomatic on single-end mode to remove 

adapters and filter out low-quality reads (version 0.36, parameters: 2:30:15 LEADING:30 

TRAILING:30) 620. Trimmed reads were aligned to the Mus Musculus mm10 genome 

assembly using Bowtie2 (version 2.3.4) 621. Unmapped reads were removed using 

SAMtools (version 1.9) 618, and those with 3 mismatches or more were filtered out using 

Perlcode. BAM coverage files (BigWig) were generated using deeptools2 bamCoverage 

function (version 3.2.1, parameters: -of bigwig -bs 25 -p 20 --normalizeUsing RPKM -e 

160 --ignoreForNormalization chrX) 622. 

11.3.3.7.3 Other publicly available ATAC-Sequencing or ChIP-Sequencing datasets 
Raw files were downloaded from the National Centre for Biotechnology Information 

(NCBI) using the Sequencing Read Archive (SRA) Toolkit for 2-cell H3K4me3 ChIP-Seq 
623 (GEO: GSE73952), MII oocyte H3K4me3 ChIP-Seq 547 (GEO: GSE71434), sperm 

ATAC-Seq 471 (GEO: GSE79230), 4-cell and morula ATAC-Seq 624 (NCBI SRA: 

SRP163205), TE H3K4me3 ChIP-Seq 623 (GEO: GSE73952), and placenta H3K4me3 

ChIP-Seq 625 (GEO: GSE29184). Files were pre-processed as described above for the 

sperm H3K4me3 ChIP-Sequencing with slight modifications to adapt for datasets with 

paired-end reads and for different sequencing read lengths. 

11.3.3.7.4 Other publicly available RNA-Sequencing data 
Raw files for 4-cell and morula 624 (NCBI SRA: SRP163205), TE 623 (GEO: GSE73952), 

and placenta 626 (NCBI SRA: SRP137723) RNA-Seq were downloaded from NCBI using 

the SRA Toolkit. Files were pre-processed as described above for the liver RNA-

Sequencing with slight modifications to adapt for datasets with paired-end reads and for 

different sequencing read lengths. 

11.3.3.7.5 Paternal allele 2-cell embryo ChIP-Sequencing data 
Raw files for 2-cell H3K4me3 ChIP-Seq 547 (GEO: GSE71434) were downloaded from 

NCBI using the SRA Toolkit. These datasets from mouse 2-cell embryos were generated 
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by crossing males and females of different strains, permitting the assignment of reads to 

the paternal-specific allele. SNPsplit (version 0.3.2) was used to build a reference 

genome with PWK_PhJ single nucleotide polymorphism (SNPs) masked 627. Reads were 

aligned to the generated PWK_PhJ SNPs N-masked reference genome using Bowtie2 

(parameters: -p 10 -t -q -N 1 -L 25 -X 2000 --no-mixed --no-discordant). Aligned files with 

SAM format were converted to binary SAM format (BAM) and sorted by genomic position 

using SAMtools (version 1.9) 618. SNPsplit (version 0.3.2) was used to assign reads to 

either the paternal (PWK_PhJ) or the maternal (C57BL/6) genome based on SNPs origin. 

BAM coverage files (BigWig) were generated using deeptools2 bamCoverage function 

(parameters: -of bigwig -bs 25 -p 20 --normalizeUsing RPKM -e 160 --

ignoreForNormalization chrX). 

11.3.4 Quantification and statistical analysis 

11.3.4.1 Visualization and statistical analyses for metabolic characterization 

Visualization of the metabolic characterization data was performed using Jupyter 

Notebook (version 6.0.1) with Python (version 3.7.4), with the use of the following 

packages: seaborn (version 0.9.0) 628, numpy (version 1.17.2) 629, and panda (version 

0.25.2) 630. The pyplot and patches modules were loaded from the matplotlib library 

(version 3.4.2) 631. Statistical analyses were conducted using GraphPad Prism 8. For all 

tests, a p-value less than 0.05 was considered significant. To assess main effects of time, 

diet or genotype, and diet-genotype interactions, for the blood glucose curves of the 

glucose and insulin tolerance tests, and for cumulative energy intake and growth 

trajectories during the diet intervention, 3-way ANOVA with Geisser-Greenhouse 

correction was used. Significance for individual time points was tested using multiple t-

test with a Holm-Sidak correction. For total body weight, mesenteric and gonadal white 

adipose tissue weight, baseline blood glucose and the area under the curve for the 

glucose and insulin tolerance tests, main effects of diet, genotype, and diet-genotype 

interactions were assessed using 2-way ANOVA. To assess significance for pairwise 

comparisons of interest, normality was assessed by D’Agostino and Pearson’s test to 

determine whether parametric or nonparametric statistics should be conducted. For 

parametric tests, an F-test was used to determine whether equal variance can be 
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assumed. The unpaired t-test or the Welch’s t-test was used accordingly. For 

nonparametric tests, the Mann-Whitney test was used. Litter sizes and sex ratios were 

analyzed by 2-way ANOVA to assess main effects of genotype and diet, and interaction, 

followed by Tukey’s multiple comparisons test. 

11.3.4.2 Bioinformatics analysis 

All bioinformatics analyses were conducted using R version 4.0.2 632.  

11.3.4.3 Liver RNA-Sequencing data 

Transcripts with a mean count below 10 were filtered out, conferring a total of 27,907 and 

45,992 detected expressed transcripts in samples sequenced on the illumina HiSeq and 

NovaSeq platforms, respectively. The samples tended to cluster by RNA Integrity Number 

(RIN), which was corrected for in the differential analysis (Fig. S3B). Differential 

expression analysis was conducted using DESeq2 (version 1.28.1) 633, by including 

sample’s RIN value and group in the design formula. Independent hypothesis weighting 

(IHW, version 1.16.0) was used to correct for multiple testing and prioritization of 

hypothesis testing based on covariate (i.e. the means of normalized counts) 634. IHW 

calculates weight for each individual p-value and then applies the Benjamini-Hochberg 

(BH) procedure to adjust weighted p-values 635. Finally, we used the Lancaster method 

to perform a gene-level analysis at single transcript resolution (aggregation package, 

version 1.0.1) 636. Lancaster applies aggregation of individual transcripts p-values to 

obtain differentially expressed genes while capturing changes at the transcript level. 

Genes with a Lancaster p-value below 0.05 were considered significant. 

For data visualization, transcript counts were normalized using variance stabilizing 

transformation without the use of blind dispersion estimation (i.e. with parameter 

blind=FALSE) 633. This transformation approach translates data on a log2 scale, allows 

correction for library size and removes the dependence of the variance on the mean 

(heteroscedasticity). Variance-stabilized transcript counts were corrected for RIN values 

using limma’s removeBatchEffect function (version 3.44.3) 637. Pearson correlation 

heatmaps were generated using the corrplot package (version 0.88) 638, with samples 

ordered by hierarchical clustering. Principal component analysis was performed using 

DEseq’s plotPCA function, with RIN values and sexes labeled. Heatmaps of differentially 

expressed genes were generated with the Pheatmap package (version 1.0.12) 639, with 
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transcripts ordered by k-means clustering (n kmeans=2) and samples ordered by 

hierarchical clustering using complete-linkage clustering based on Euclidean distance. 

Alluvial plots were generated with ggplot2 (version 3.3.3) 640, and overlap of differentially 

expressed genes across genotypes, generations and sexes were determined by the 

GeneOverlap package (version 1.24.0) 641, which uses a Fisher’s exact test to compute 

p-values.  

11.3.4.3.1 Visualization, Semantic similarity, and Enrichment Analysis of Gene 
Ontology (ViSEAGO) 

Gene ontology (GO) analysis was performed using the ViSEAGO package (version 1.2.0) 
642. Gene symbols and EntrezGene IDs from the org.Mm.eg.db database were retrieved 

using the AnnotationDbi package. GO annotations were retrieved from EntrezGene for 

the Mus Musculus species (ID=”10090”) using the ViSEAGO EntrezGene2GO followed 

by annotate functions. ViSEAGO uses topGO to perform GO terms enrichment tests on 

the sets of genes of interest (differentially expressed genes). We used the Biological 

Process (BP) ontology category with Fisher’s exact test (classic algorithm), and a p-value 

below 0.01 was considered significant. Results of enrichment tests for each set of genes 

of interest were then merged and hierarchical clustering was performed based on Wang’s 

semantic similarity distance and ward.D2 aggregation criterion. Results are visualized on 

a heatmap where GO terms are ordered by hierarchical clustering based on their 

functional similarity and GO terms enrichment significance is shown as a color gradient 

(-log10 p-value) in each set of differentially expressed genes of interest. 

11.3.4.4 Sperm ChIP-Sequencing data 

To detect genomic regions enriched with H3K4me3 in sperm, we used csaw (version 

1.22.1) 643 to scan the genome into windows of 150 bp. Windows with a fold-change 

enrichment of 4 over bins of 2,000 bp (background) were considered enriched. Enriched 

regions less than 100 bp apart were merged for a maximum width of 5,000 bp, conferring 

a total of 30,745 merged enriched regions. Counts in enriched regions were normalized 

using TMM normalization followed by ComBat’s correction for batch effects (sva package, 

version 3.36.0) 644,645. Spearman correlation heatmaps and MA-plots were generated 

using raw and normalized counts at enriched regions using corrplot (version 0.88) 638, 

and graphics packages, respectively.  
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Principal component analysis was conducted on normalized counts in enriched regions, 

by comparing WT HFD vs WT CON (effect of diet in WT), TG HFD vs TG CON (effect of 

diet in TG), and WT CON vs TG HFD (combined effects of genotype and HFD). Based 

on visual assessment of the separation of samples according to dietary or genotype 

groups along Principal Component 1 (PC1; x axis) or 2 (PC2; y axis), the top 5% regions 

contributing the PC of interest were selected. Permutational multivariate analysis of 

variance (PERMANOVA) was conducted to determine whether variation is attributed to 

dietary/genotype group, using the adonis function (vegan package, version 2.5-7) 646. 

Euclidean distances were used as a metric, 999 permutations were performed, and a 

p<0.05 was considered significant. The directionality change in enrichment was identified 

based on the positive (up-regulated regions) and negative (down-regulated regions) log2 

fold change values of the median of normalized counts using gtools’ foldchange2logratio 

function. Regions with increased and decreased enrichment for each comparison of 

interest were visualized using Pheatmap (version 1.0.12) 639. Regions distance relative to 

transcription start site (TSS) were annotated and visualized using the package chipenrich 

(version 2.12.0) 647. Gene ontology analysis was performed using topGO (version 2.40.0) 

for genes with increased or decreased H3K4me3 enrichment at the promoter region for 

each comparison of interest. We used the Biological Process (BP) ontology category with 

Fisher’s exact test weight01Fisher algorithm 648, and a p-value less than 0.05 was 

considered significant. Genomic regions with deH3K4me3 were annotated using annotatr 

(version 1.14.0) 649 including CpG annotations and basic genes genomic features. Upset 

plots were generated using UpsetR (version 1.4.0) 650, by ordering each set by frequency 

and displaying 12 sets. Z-scores were calculated using regioneR’s overlapPermTest 

(version 1.20.1) which performs a permutation test (n=1,000 permutations) to assess 

whether a set of regions is significantly enriched to a specific genomic feature compared 

to genomic regions from the whole genome 651. Genome browser snapshots were 

generated using trackplot 652. 

To assess linear trends associated with the cumulative exposure of KDM1A 

overexpression and high-fat feeding in sperm, we ran DESeq2 (version 1.28.1) on the top 

5% regions contributing to Principal Component 2 (PC2; n=1,538 regions) associated with 

sample separation when comparing WT CON and TG HFD normalized counts. In the 
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design formula, we included sample’s batch information, and assigned a numerical value 

for each sample based on their group category (WT CON=1, WT HFD=2, TG CON=2, 

TG HFD=3). Independent hypothesis weighting (IHW) was used to correct for multiple 

testing and prioritization of hypothesis testing based on covariate (i.e. the means of 

normalized counts) 634. Median of normalized counts were used to depict the increased 

and decreased trend of significant regions (adjusted p-value less than 0.2) across groups 

recoded on a numerical scale as defined above. 

 

11.4 Results 

11.4.1 Paternal obesity induces metabolic phenotypes in a sex-specific manner that are 

enhanced in KDM1A F1 and F2 transgenic descendants 

11.4.1.1 Impact of paternal obesity on offspring bodyweight and fat accruement 

Beginning at weaning until 20 weeks, inbred C57BL/6NCrl control mice (WT), or KDM1A 

heterozygous transgenics (TG) were fed either a calorie-dense high-fat diet (HFD; 60% 

kcal fat), or a sucrose- and vitamin-matched control diet (CON; 10% kcal fat) (Fig. 1A-C 

and Table S1). Table S2 provides the animal numbers by sex, generation, and genotype 

for metabolic characterization. In the 2-4 weeks post-weaning, F0 males on the HFD 

consumed more calories and gained significantly more weight than CON males 

irrespective of genotype (Fig. S1A-B). These effects persisted throughout the diet 

intervention (Fig. S1A-C), with TG HFD males weighing the most at 4 months (Fig. S1Ci). 

This trend continued in the TG male F1 and F2 descendants (fed regular chow), with 

weights being significantly more than the F1 and F2 of TG CON and WT HFD (Fig. S1Cii-

iii). Indicating sex-specific responses to paternal obesity, in female descendants the 

changes in body weight and fat deposition differed from males (Fig. S1C-E). To assess 

fat accruement, we measured visceral mesenteric and gonadal white adipose tissue 

(mWAT and gWAT, respectively). All male (F0) on the HFD accumulated more mWAT 

compared to CON males, with no genotype effect (Fig. S1Di). Male and female F1 

offspring sired by WT HFD or TG HFD had increased mWAT fat mass compared to WT 

CON and TG CON (Fig. S1Dii and S1Div, respectively). Strikingly, mWAT stores were 

greater in TG HFD F1 and F2 males and females compared to WT HFD descendants (Fig. 
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S1Dii-v). Gonadal fat depots in F0 males were not impacted by the HFD (gWAT; Fig. S1Ei), 

while male WT HFD F1 showed increased gWAT, and TG HFD F1 did not (gWAT; Fig. 

S1Eii). Like for body weight and mWAT, male and female F2 TG HFD had increased gWAT 

in comparison to WT HFD (Fig. S1Ev). Overall analysis of body weight and fat accruement 

revealed sex-specific responses in descendants with transgenerational effects of paternal 

obesity being detected only in the TG HFD descendants of both males and females.  
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Figure 1: Paternal obesity induces transgenerational metabolic phenotypes in a sex-specific manner that 

are enhanced in KDM1A descendants.  

A) Experimental mouse model depicting breeding scheme and generations studied. Male C57BL/6NCrl 

(WT) and KDM1A+/- transgenics (TG, C57BL/6NCrl) were fed either a control diet (CON) or high-fat diet 

(HFD) from weaning for 10-12 weeks, then mated to 8-week-old C57BL/6NCrl females fed a regular chow 

diet (CD). Animals studied per experimental group: F0 (n=15-25 males), F1 (n=28-49 per sex) and   F2 

(n=8-21   per sex). Created with   BioRender.com.   B)   Experimental   timeline   for   metabolic   testing   

and   downstream experiments   performed    for    each generation (F0-2).   Metabolic   profiles   were 

measured after the diet intervention at 15 weeks of age and included: baseline blood glucose, and 

intraperitoneal glucose and insulin tolerance tests (ipGTT and ipITT, respectively). Visceral adipose 

depots were weighed (mWAT: mesenteric white adipose tissue and gWAT: gonadal white adipose tissue) 

and the left lateral lobe of the liver used for RNA-sequencing (RNA-seq). Sperm from cauda epididymides 

were used for chromatin immunoprecipitation followed by sequencing (ChIP-seq), targeting histone 

H3 lysine 4 tri-methylation (H3K4me3).   Created   with BioRender.com. C) Age-matched male mice fed 

either a control (left) or a high-fat diet (right) for 12 weeks. D) Glucose tolerance test. Blood glucose 

levels before and after (shaded   in   grey) an intraperitoneal glucose injection, after overnight fasting (15 

±1 hour) at 4 months of age in F0 males (i), F1 males (ii), F2 males (iii), F1 females (iv) and F2 females (v). 

E) Insulin tolerance test. Blood glucose levels before and after (shaded in grey) an intraperitoneal insulin 

injection, after a 6-hour (±1 hour) fasting at 4 months of age in F0 males (i), F1 males (ii), F2 males (iii), F1 

females (iv) and F2 females (v). Results are shown as mean ± SEM. Significance for main effects of 

diet, genotype, time, and for diet-genotype interactions are shown above each graph. NS, not significant 

(P>0.05). Significance for pairwise comparisons are shown as the following:    *P<0.05, **P<0.01, 

***P<0.001, ****P<0.0001 (in blue; WT CON vs WT HFD, in green; TG CON vs TG HFD) and 
#P<0.05, ##P<0.01 (WT HFD vs TG HFD).  Obtained from 1 (Copyright 2022) with permission from Elsevier. 

 

11.4.1.2 Impact of paternal obesity on glucose homeostasis 

Next, we assessed glucose metabolism and insulin sensitivity by glucose tolerance 

(GTT), and insulin tolerance tests (ITT). These were conducted following the standard 

operating procedures of the NIH Mouse Metabolic Phenotyping Center 613. First, we 

assessed the effects of the HFD on fasting blood glucose. Consumption of a HFD resulted 

in elevated baseline glucose in male (F0) WT HFD and TG HFD in comparison to WT 

CON and TG CON, respectively (Fig. S2Ai). Male TG HFD descendants (F1), but not WT 

HFD descendants had significantly elevated fasting blood glucose (Fig. S2Aii). In contrast, 

the glycemic status of all descendant females (F1 and F2) did not differ between groups 
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(Fig. S2Aiv-v). The same animals used to assess baseline glucose were then given an 

intraperitoneal glucose challenge and the rate of glucose disposal measured. Analysis of 

GTT data showed that F0 WT HFD and TG HFD were glucose intolerant following glucose 

injection in comparison to F0 CON males (Fig. 1Di). Indicating that there were 

intergenerational effects of paternal obesity, elevated glucose levels persisted across the 

GTT time-course for the F1 WT and TG HFD males (Fig. 1Dii). Interestingly, glycemic 

response impairments persisted in the F2 generation of male descendants of TG HFD 

only (Fig. 1Diii).  Although fat measures were impacted in female F1 and F2 HFD, they did 

not exhibit glucose impairment (Fig. 1Div-v). Analysis of the area under the curve (AUC) 

for the GTT was consistent with the male and female glycemic responses shown in the 

glucose curves (Fig. S2Bi-v). In line with the observed glycemic responses, the insulin 

tolerance test and the corresponding AUC demonstrated that male F0 WT HFD and TG 

HFD were insulin insensitive (Fig. 1Ei and S2Ci). Analysis of the AUC indicated that F1 

WT HFD and F1 TG HFD were insulin insensitive (Fig. S2Cii). Like the glucose tolerance 

test, there were more pronounced impairments revealed by the ITT for the F1 TG HFD in 

comparison to the F1 WT HFD and only the F2 TG HFD showed impaired insulin sensitivity 

(Fig. 1Eiii and Fig. S2Cii-iii). Like the GTT, there was no indication of insulin impairment in 

female HFD F1 nor F2 (Fig. 1Eiv-v and Fig. S2Civ-v).   

To summarize, the effects of paternal high-fat diet on glucose homeostasis were 

sex-specific; male descendants had impaired glucose homeostasis, whereas females did 

not. Taken together, the assessments of weight and metabolic testing indicate that the 

TG descendants had enhanced responses to paternal obesity in comparison to WT 

descendants.  

11.4.2 Paternal obesity was associated with altered liver gene expression in the F0-F1 

with unique genes being differentially expressed in KDM1A descendants (F1-F2) 

Obesity contributes to pathophysiological changes in gene expression in the liver 653. To 

determine whether the altered metabolic status of HFD sires and their descendants (F1-

F2) was associated with differential gene expression in the liver, we performed RNA-

sequencing on the left lateral lobe (lobus hepatis sinister lateralis) of adult mice (F0-F2). 

Sequencing quality was high with RNA profiles having a Pearson correlation coefficient > 
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0.8 (Fig. S3A). Interestingly, principal component analysis of sequencing data revealed 

distinct hepatic transcriptomic profiles between males and females that was independent 

of experimental group and genotype (Fig. S3C). We compared hepatic transcriptome 

profiles by diet, sex, genotype and generation using a gene-level analysis at single-

transcript resolution 636. As expected, obesity was associated with differential liver gene 

expression. Liver from obese F0 WT males showed differential expression of 2,136 genes 

in comparison to non-obese F0 WT males (Fig. 2A, Lancaster p<0.05). Similarly, when 

comparing obese F0 TG to non-obese F0 TG, 1,476 genes were differentially expressed 

(Fig. 2B, Lancaster p<0.05). Of these differentially expressed genes (DEGs), 448 were 

commonly altered by obesity in both the F0 WT and F0 TG (p<0.0001; Fig. 2i). To identify 

which genes were altered due to genotype, we compared WT obese to TG obese and 

identified 524 DEGs, suggesting that obesity had a unique effect in TG mice due to an 

interaction between diet and genotype (Fig. 2C, Lancaster p<0.05). 
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Figure 2: Paternal obesity is associated with altered gene expression in the livers of the F0-F2.  
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A-J) Heatmaps of normalized expression values scaled by row (z-score) for transcripts that code for 

differentially expressed hepatic genes (Lancaster p-value<0.05) for each comparison assessed across sex 

and generation. Individual transcripts (rows) are ordered by k-means clustering and samples (columns) are 

arranged by hierarchical clustering, using complete-linkage clustering based on Euclidean distance. F0 WT 

CON vs WT HFD males (A), F0 TG CON vs TG HFD males (B), F0 WT HFD vs TG HFD males (C), F1 WT 

CON vs WT HFD males (D), F1 TG CON vs TG HFD males (E), F1 WT HFD vs TG HFD males (F), F1 WT 

CON vs WT HFD females (G), F1 TG CON vs TG HFD females (H), F1 WT HFD vs TG HFD females (I), 

and F2 WT HFD vs TG HFD males (J). i-x) Alluvial plots depicting frequency distributions of significant 

(colored boxes) and non-significant (grey boxes) genes for each comparison and their overlap across 

genotype (i-iii), across F0 and F1 males (iv-vi), across F1 males and females (vii-ix) and across F1 and F2 

males (x). Significance of overlap between differentially expressed genes lists was calculated by Fisher’s 

exact test. P-values are included for each comparison above the respective alluvial plot. Obtained from 1 

(Copyright 2022) with permission from Elsevier. 

To determine if the effects of paternal obesity on liver function were intergenerational, we 

compared the liver transcriptome of male and female F1. In comparison to F1 WT CON 

and TG CON males, livers of F1 WT HFD and TG HFD, showed differential expression of 

1,015 and 794 genes (Fig. 2D and Fig. 2E, respectively, Lancaster p<0.05). A total of 165 

DEGs overlapped between F1 WT and TG (p<0.0001; Fig. 2ii). Of the DEGs between the 

WT CON and HFD in the F1, 139 were the same deregulated genes as identified in the 

F0 WT CON vs HFD males (p=0.76; Fig 2iv).  Similarly, there were 103 shared transcripts 

identified as differentially expressed between the F1 TG CON vs HFD, that were also 

altered in the F0 TG CON vs HFD (p=0.003; Fig 2v). This suggests that a common set of 

genes maintain dysfunction as a consequence of direct exposures to obesity and these 

changes are maintained in the F1 despite being fed a regular diet. When comparing genes 

altered by genotype in the F1 (WT HFD vs TG HFD), 961 were significantly altered (Fig 

2F, Lancaster p<0.05), with 78 overlapping DEGs between the F0 and the F1 (p<0.0001; 

Fig 2vi). Demonstrating intergenerational (F0-F1) inheritance of metabolic dysfunction at 

the level of the liver, the metabolic regulators Btg1 654, Cd300lg 655, FoxP4 656, and E4f1 
657, were differentially expressed in the livers of the obese F0 and their WT descendants. 

The overlap in deregulated genes between the F0 and F1 indicates that the metabolic 

phenotypes generated by the paternal HFD persist intergenerationally despite the F1 

being fed a regular chow diet.   
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The last comparisons in liver transcriptomes were between the F1 male and female. 

Despite the female F1 having no metabolic phenotype detected by our measures, there 

was significantly altered gene expression in the livers of F1 female offspring of WT HFD 

vs WT CON sires (830; Fig 2G, Lancaster p<0.05). Of these, 153 were in common with 

the F1 male WT HFD sired offspring (p<0.0001; Fig 2vii). Likewise, the F1 female sired by 

TG HFD had 1,125 DEGs in comparison to females sired by TG CON (Fig. 2H, Lancaster 

p<0.05) with 148 in common with F1 male TG HFD sired offspring (p<0.0001; Fig. 2viii). Of 

these altered transcripts, 160 were in common between F1 female descendants of WT 

HFD and TG HFD (p<0.0001; Fig. 2iii). Like the F1 male TG HFD offspring, there were 

unique transcripts altered in F1 female TG HFD offspring (1,370; Fig. 2I, Lancaster 

p<0.05), with 181 differentially expressed in both F1 males and females (p<0.0001; Fig. 

2ix). These may reflect genes impacted by genotype regardless of sex. An interesting 

finding from the F2 phenotyping was those transgenerational metabolic effects of the HFD 

were only detected in the male descendants of TG.  Therefore, we only profiled F2 male 

livers by RNA-seq. This analysis revealed differential expression of 2,141 genes between 

the F2 WT HFD and TG HFD (Fig. 2J, Lancaster p<0.05) with 129 overlapping with the 

F1 WT HFD vs TG HFD males (p=0.06; Fig 2x). We identified 12 genes that showed 

transgenerational deregulated expression across the F0-F2, (WT HFD vs TG HFD), 

including Eno3 which has been implicated in glycogen storage 658,659, Med23 which 

regulates insulin responsiveness 660, and Prmt1 an epigenetic regulator implicated in liver 

glucose metabolism 661–663. The number of differentially expressed genes increased every 

generation in comparisons between the WT HFD and the TG HFD (F0=524, F1=961, F2 = 

2,141).  This sustained deregulated gene expression in the livers of TG HFD F2, matches 

the enhanced metabolic phenotypes observed in only F2 TG HFD males, but not in the F1 

WT HFD.  

11.4.3 Paternal diet-induced obesity disrupts gene expression in functional processes 

that differ between genotypes, sexes and generations 

To gain insight into the physiological implications of obesity-induced altered hepatic 

transcriptomes, we used a gene ontology (GO) approach combined with functional 

similarity clustering to compare processes in the liver impacted by diet across genotype 
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and sex, and those impacted by genotype across generation (Fig. 3A-C, Supplemental 

files 1-3 and Table S5-7) 642. Interactive heatmaps that facilitate in-depth probing of the 

gene frequency and the -log10 p-value of enriched GO terms within each cluster are found 

in Supplemental files 1-3.  The non-interactive heatmaps are shown in Fig. 3. Overall, 

there were similar processes altered by obesity in F0 WT and TG livers, including lipid, 

amino acid, and small molecule metabolism (Fig. 3A, Supplemental file 1 and Table S5; 

clusters 1-5), homeostasis and environmental responses (clusters 8-10), and cellular 

differentiation and signalling (clusters 11-13). However, the gene frequency (# of genes 

annotated to that process) within processes differed by genotype.  

When the altered functional pathways in F1 WT CON vs WT HFD were compared 

between males and females, there were clear impacts of paternal obesity on the liver 

biological pathways of offspring, and these differed by sex (Fig. 3B, Supplemental file 2 

and Table S6). Reflecting sex differences, a greater number of GO terms related to 

inflammation (cluster 4), and cell cycle, differentiation and signalling regulation (clusters 

10-11) were significantly enriched in males compared to females. Of note, genes involved 

in the regulation of proinflammatory cytokines were particularly enriched in males but not 

females (clusters 4). This concurs with the more severe phenotypes observed in the 

males. Conversely, genes involved in DNA/RNA biosynthesis, transcription factors and 

telomere activity (clusters 1-3), and macromolecule and nitrogen metabolism (cluster 5) 

were more enriched in females. Interestingly, pathways associated with chromatin and 

cellular organization and protein metabolism (clusters 8-9) were enriched by paternal 

obesity in both sexes.  

Next, we compared the intergenerational and transgenerational effect of the 

interaction between the KDM1A transgene with obesity in terms of differences in process 

enrichment across generations (Fig. 3C, Supplemental file 3 and Table S7).  When 

comparing F0-2 WT HFD with F0-2 TG HFD, there was an increase in the number of 

significantly enriched GO terms across generations (F0 male=79; F1 male=118; F1 

female=159; F2 male=206; Supplemental file 4). Enriched categories included functions 

related to inflammation and environmental response (clusters 3-5), metabolic processes 

(clusters 11-14), and chromatin remodelling and transcription (clusters 17-19). These 

enriched pathways in hepatic differentially expressed genes might reflect the interaction 
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between obesity and the KDM1A transgene in the F0 sperm associated with the uniquely 

more severe and transgenerational phenotypes in TG HFD descendants (Fig. 3C). 
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Figure 3: Obesity-induced hepatic transcriptome disturbances show functional similarities across genotype, 

sex and generation.  

A-C) Heatmaps of significant gene ontology (GO) terms clustered by functional similarity, comparing 

enriched biological functions for each comparison of interest across genotype (A), sex (B) and generation 

(C). Columns represent enriched GO terms which are ordered by hierarchical clustering based on Wang’s 

semantic similarity distance and ward.D2 aggregation criterion. Each row represents a comparison of 

interest for which enriched GO terms were annotated based on the list of significant genes. The color 

gradient depicts the GO term enrichment significance (-log10 p-value). Interactive versions of these 

figures can be found in Supplemental files 1-3 and the complete lists of significantly enriched GO 

terms can be found in Tables S5-7. Obtained from 1 (Copyright 2022) with permission from Elsevier.  

 

  

11.4.4 Obesity in combination with germline expression of the KDM1A transgene 

increases differential enrichment of sperm H3K4me3 at genes involved in 

metabolism and development  

We hypothesized that the sperm epigenome at the level of H3K4me3 would be 

altered by obesity and that this effect would be enhanced in KDM1A TG males with pre-

existing alterations in sperm H3K4me3. To test these hypotheses, we performed native 

chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) targeting 

histone H3K4me3, using sperm from individual WT or TG males fed either a CON or HFD 

(N=5 per experimental group, on average 33.3 million reads per sample with an alignment 

rate of 97%; Table S8). H3K4me3 localized to 30,745 genomic regions, with a Spearman 

correlation coefficient of 0.98 between samples (Fig. 4A and Fig. S4). Principal 

component analysis of H3K4me3 profiles revealed a clear separation of samples 

according to dietary treatment within genotype groups (Fig. 4B-C). WT samples 

separated along Principal Component 1 (PC1) with 37.41% of variance attributed to diet 

(Fig. 4B; PERMANOVA, permutation-based p=0.01). TG samples separated on PC1 with 

32.68% of the variability, with diet as the second source of variance (PC2), at 25.56% 

(Fig. 4C; PERMANOVA, permutation-based p = 0.009).  
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Figure 4: Genomic location, directionality change and functions of regions with altered H3K4me3 

enrichment by obesity 
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A) Histogram showing frequency distributions of read abundances in 150 bp windows throughout the 

genome. Windows with an abundance below log2(4) fold over background bins of 2,000 bp were filtered out 

as indicated by the vertical red line. Enriched regions less than 100 bp apart were merged for a maximum 

width of 5,000 bp, conferring a total of 30,745 merged enriched regions. Reads were counted in merged 

enriched regions and normalized counts were used for downstream analyses. (see Material and Methods) B-

C) Principal component analysis on normalized counts at merged enriched regions comparing WT CON vs 

WT HFD (B) and TG CON vs TG HFD (C). The top 5% regions contributing to separation of samples along 

Principal Component 1 (in B; PC1; x axis) or PC2 (in C; y axis) were selected. The PERMANOVA p-values 

indicating significance associated with dietary treatment are included under each PCA plot. D) Heatmaps of 

log2 normalized counts of deH3K4me3 regions in sperm with increased enrichment in WT HFD (i; n=1,323), 

decreased enrichment in WT HFD (ii; n=215), increased enrichment in TG HFD (iii; n=1,067) and decreased 

enrichment in TG HFD (iv; n=471) in each group. Samples (columns) and regions (rows) are arranged by 

hierarchical clustering using complete-linkage clustering based on Euclidean distance. Colored boxes 

indicate sample groups (light blue=WT CON, dark blue=WT HFD, light green=TG CON, dark green=TG 

HFD). E-G). Venn diagrams showing the overlap of deH3K4me3 in sperm of WT HFD (blue) and in TG HFD 

(green), for all detected regions (E), those gaining H3K4me3 (F) and those losing H3K4me3 (G). H) Barplots 

showing the distribution of altered regions based on the distance from the TSS of the nearest gene, for 

regions with increased enrichment in WT HFD (i; n=1,323), decreased enrichment in WT HFD (ii; n=215), 

increased enrichment in TG HFD (iii; n=1,067), and decreased enrichment in TG HFD (iv; n=471). The color 

gradient represents the distance of the regions to TSS in kilobase. I) Gene ontology analysis of diet-induced 

deH3K4me3 regions at promoters with increased enrichment in WT HFD (i; n=381), decreased enrichment 

in WT HFD (ii; n=34), increased enrichment in TG HFD (iii; n=230) and decreased enrichment in TG 

HFD (iv; n=150). Barplots show 8 selected significant GO terms with their respective -log2(p-value). 

Tables S9-12 include the complete lists of significantly enriched GO terms. Obtained from 1 (Copyright 

2022) with permission from Elsevier. 
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To focus our analysis on the regions most impacted by diet, we selected the top 

5% differentially enriched H3K4me3 regions (deH3K4me3, n=1,538) in each genotype 

(PC1 in WT, PC2 in TG) (Fig. 4Di-iv). The genome distribution analysis for specific 

annotations showed that obesity-sensitive H3K4me3 regions were predominantly located 

in CpG islands, promoters, exons, and intergenic regions (Fig. S5).  To a lesser extent, 

deH3K4me3 also occurred at transposable elements (LINE, SINE and LTR), where 

epigenetic de-repression is associated with the use of alternative promoters and long- 

and short-range enhancers that are implicated in embryo development and pluripotency 
664 (Fig. S5). Representative genome browser tracks (Fig. S5) showing enrichment gains 

and losses for H3K4me3 at gene promoters are shown for Pde1c (phosphodiesterase 

1C; affects the olfactory system), Bcdin3d (RNA methyltransferase; highly expressed in 

embryonic development), Sh2d4a (Sh2 domain containing protein 4A; expressed during 

development and associated with endocrine and liver function),  and Col15a1 (collagen 

Type XV alpha 1; involved in cell differentiation and various system development) 665.  

Next, we compared the regions of H3K4me3 that were altered by obesity, their 

genomic location, directionality change and functions between diets and genotype (Fig. 

4). As a response to obesity, H3K4me3 enrichment gains were more predominant than 

losses for both F0 WT HFD and TG HFD (Fig. 4D). In the WT HFD, 1,323 regions gained 

and 215 lost H3K4m3 in comparison to the WT CON (Fig. 4Di-ii).  Similarly, in the F0 TG 

HFD sperm, 1,067 regions gained and 471 lost H3K4me3 in comparison to the F0 TG 

CON (Fig 4Diii-iv).  Regions with deH3K4me3 in WT HFD had an 15.6% overlap (240/1,538 

regions) with those of TG HFD (Fig.  4E). Of those common 240 regions, 162 had the 

same directionality change in both WT and TG HFD, with 159 regions with a gain and 3 

regions with a reduction in H3K4me3 enrichment (Fig. 4F and Fig. 4G, respectively). The 

non-overlapping regions of deH3K4me3 in WT HFD and TG HFD sperm could be a 

consequence of genetic-epigenetic interactions where the TG mice respond uniquely to 

obesity as was observed in the phenotypic characterization. The proximity to the 

transcription start site (TSS) of the deH3K4me3 regions in sperm altered by obesity in the 

F0 WT HFD and TG HFD were similar (Fig. 4H).  

Next, we performed a GO enrichment analysis on promoters to gain functional 

insight into the genes with obesity-responsive changes in sperm H3K4me3 enrichment 
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and how they may relate to the developmental origin of offspring phenotypes. Notably, 

deH3K4me3 genes were identified in processes related to metabolism, inflammatory 

processes, and one-carbon cycle metabolism (Fig. 4Ii-iv; Tables S7-10). Some of the 

significantly enriched pathways are concordant with disturbed metabolic phenotypes of 

the F0-F2 including for example, carbohydrate metabolic processes, glycolysis, growth 

hormone signaling and insulin signaling (Fig 4I, Tables S7-10).   

The metabolic phenotypes of WT HFD and TG HFD descendants were similar, 

although the F1-2 TG HFD showed enhanced metabolic abnormalities. We hypothesized 

that these enhanced metabolic disturbances may relate to the greater degree of 

H3K4me3 alteration in F0 sperm, the directionality of the change (gain versus loss), and 

the functionality of genes bearing alterations. Together these factors could lead to 

increased disturbances of embryonic metabolic gene expression and more profound adult 

disease. Interestingly, when comparing WT CON with TG HFD sperm, samples separated 

along PC2, with 26.69% of variance associated with genotype and diet (Fig. 5A; 

PERMANOVA, permutation-based p=0.006). Of the top 5% impacted regions selected 

(n=1,538), a greater proportion showed a gain of enrichment for H3K4me3 in TG HFD 

sperm in comparison to WT CON (Fig. 5B, n=1,071 regions with gains; Fig. 5C. n=467 

regions with losses). We analyzed the detected regions impacted by genotype and diet 

(n=1,538) for differential enrichment to determine whether obesity in combination with 

KDM1A overexpression led to greater changes in H3K4me3 enrichment. This analysis 

identified 264 regions with a significant linear trend, where TG HFD sperm showed a 

greater degree of change in enrichment, and TG CON and WT HFD showed intermediate 

changes in comparison to WT CON (Fig. 5D-E, adjusted p<0.2).  There were only 9 

significant regions with further increase in H3K4me3 in the TG HFD (Fig. 5D), whereas 

255 regions showed a greater loss of H3K4me3 enrichment in the TG HFD (Fig. 5E). 

Consistent with the stronger metabolic phenotypes observed in the TG HFD F1-2, the 

functional analysis of the promoters showing significant linear trends (n=104) for 

H3K4me3 across experimental groups occurred at genes implicated in metabolic and 

cardiovascular disease progression (Fig. 5F, Table S13).  
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Figure 5: Additive effects of KDM1A overexpression and diet-induced obesity in the sperm epigenome at 

the level of H3K4me3 

A) Principal component analysis on normalized counts at merged enriched regions comparing WT CON vs 

TG HFD. The top 5% regions contributing to separation of samples along Principal Component 2 (PC2; y 

axis) were selected. The PERMANOVA p-value under the plot indicates significance. B-C) Profile plots of 

RPKM H3K4me3 counts +/- 1 kilobase around the center of regions with increased H3K4me3 (B) and +/- 

2.5 kilobase around the center of regions with decreased H3K4me3 enrichment in TG HFD (C). D-E) Line 

plots showing the median of normalized sperm H3K4me3 counts for each experimental group at regions 

showing a significant trend (n=264, adjusted p-value<0.2) with a linear increase in H3K4me3 enrichment 

(D; n=9) or a linear decrease in H3K4me3 enrichment (E; n=255) from WT CON, WT HFD, TG CON to TG 

HFD groups. F) Gene ontology analysis on the regions associated with a significant linear trend at 

promoters (n=104). Barplots show 8 selected significant GO terms with their respective -log2(p-value). Table 

S13 includes the complete list of significantly enriched GO terms. Obtained from 1 (Copyright 2022) with 

permission from Elsevier. 

11.4.5 Paternal obesity impacts sperm H3K4me3 at regions that coincide with open 

chromatin and gene expression in pre-implantation embryos 

We recently demonstrated that sperm H3K4me3 is transmitted to the embryo and 

associated with gene expression 477. We hypothesized that obesity-altered sperm 

H3K4me3 is transmitted and associated with chromatin accessibility in the early embryo, 

which in turn could influence gene expression and offspring phenotypes. To assess this 

possibility, we investigated the relationship between deH3K4me3 in sperm in relation to 

H3K4me3 in the embryo, the oocyte and open chromatin, and embryonic gene expression 
471,547,623,624. In line with a preferential paternal contribution of H3K4me3 to the 2-cell 

embryo, regions enriched for H3K4me3 in sperm, including those altered by obesity are 

not enriched in the oocyte (Fig 6A). There was a strong association between sperm 

H3K4me3, chromatin accessibility and embryonic gene expression at the 4-cell and 

morula stages (Fig. 6A-B and Fig. S6Ai). Strikingly, sperm H3K4me3 including obesity-

sensitive regions are associated with open chromatin in pre-implantation embryos (Fig. 

6A-B).   

To determine the functional relationship between the H3K4me3 obesity-altered 

regions and embryonic gene expression, we compared these with 4-cell and morula 

expressed genes and performed a gene ontology analysis. Of the sperm deH3K4me3 
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regions overlapping promoters (n=738), 51.8% (n=382) are expressed in the 4-cell 

embryos, and 44.3% (n=327) are expressed in the morula embryos (Fig. S6Aii).  To gain 

insight into what obesity-altered H3K4me3 associated genes in sperm relate to embryonic 

gene expression, we performed a GO analysis on promoters with deH3K4me3 in sperm 

and the corresponding genes expressed in 4-cell and morula embryos (Fig. 6Ci-ii). Again, 

supporting a role for sperm H3K4me3 in paternal transmission of metabolic disease, gene 

processes that are specific to metabolism were significantly enriched (Fig. 6Ci-ii and 

Tables S12-13). Taken together these findings suggest a preferential contribution of 

sperm H3K4me3 in the early embryo that includes obesity-sensitive regions that may be 

instructive of metabolic-associated gene expression and a direct route for epigenetic 

inheritance. 
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Figure 6: Sperm H3K4me3 regions sensitive to obesity occur at genes with an open chromatin state and 

expressed in the pre-implantation embryo 

A) Heatmaps of RPKM counts signal +/- 10 kilobase around the center of regions enriched with H3K4me3 

in sperm (i; n=30,745) and regions with obesity- induced deH3K4me3 in sperm (ii; n=2,836) for H3K4me3 

enrichment levels in sperm (this study), 2-cell embryo (Liu et al., 2016), 2-cell embryo on the paternal allele 

and MII oocyte (Zhang et al., 2016), and for chromatin accessibility signal in sperm (Jung et al., 2017), 4-

cell embryo and morula embryo (Liu et al., 2019). B) Scatterplots showing H3K4me3 enrichment in sperm 

(x axis; log2 counts + 10), chromatin accessibility signal (y axis; log2 counts + 10; (Jung et al., 2017)) and 

gene expression levels (color gradient; log2 FPKM + 10; (Liu et al., 2019)) in 4-cell (i,ii,v,vi) or in morula 

(iii,iv,vii,viii) embryos, at either all genes with promoters enriched with H3K4me3 in sperm (i-iv) or at diet-

sensitive genes (v-viii). The top row of scatterplots includes lowly-expressed genes (bottom 50%) in 4-cell 

(i and v) or morula (iii or vii) embryos. The bottom row of scatterplots includes highly-expressed genes (top 

50%) in 4-cell (ii and iv) or morula (vi and viii) embryos. Pearson’s correlation coefficients and their 

associated p-values are indicated above each scatterplot, comparing H3K4me3 enrichment in sperm versus 

H3K4me3 enrichment in 4-cell or morula embryos. C) Gene ontology analysis of genes expressed in the 4-

cell (i) or the morula (ii) embryos, overlapping with diet-sensitive promoters in sperm. Barplots show 8 

selected significant GO terms with their respective -log2(p-value). Tables S14-15 include the complete lists 

of significantly enriched GO terms. Obtained from 1 (Copyright 2022) with permission from Elsevier. 

11.4.6 HFD alters the sperm epigenome at regions instructive for placenta development  

The placenta is a key extra-embryonic organ that represents the uterine-fetal 

interface and plays a central role in energy allocation, nutrient exchange, and 

developmental progression. Placental abnormalities have been linked to late onset 

cardiometabolic diseases, highlighting the importance of the in utero environment for 

metabolic health in adulthood 577. Our gene ontology analysis on diet-induced 

deH3K4me3 regions in sperm revealed significant enrichment of genes involved in 

placenta development (Fig. 4I and Tables S7-10). Given the sperm epigenome influences 

placental gene expression 592, we were interested in the prospect that diet-induced 

epimutations in sperm affect placenta gene expression that could influence metabolic 

phenotypes across generations. To investigate this possibility, we compared the 

enrichment profiles of H3K4me3 in sperm, with H3K4me3 signal and gene expression 

data from trophectoderm (TE, the embryonic precursor of placental lineage) 623, and 

placenta 625,666. Most regions enriched with H3K4me3 in sperm showed strong H3K4me3 

signal in TE and placenta (Fig. 7A), with 65.9% (n=8,663) and 79.4% (n=10,434) of 
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H3K4me3-enriched sperm promoters (n=13,142) expressed in these tissues, respectively 

(Fig. S6Bi). Of the 738 deH3K4me3 regions localizing to promoters in sperm, 56.8% 

(n=418) were expressed in the trophectoderm, 76.8% (n=567) were expressed in the 

placenta, and 54.6% (n=403) were expressed in both (Fig. S6Bii). Notably, gene ontology 

analysis of the shared H3K4me3 in sperm with TE and placenta revealed that there was 

an association with placenta function including at deH3K4me3 regions (Fig. 7Bi,iii, Tables 

S14 and S16). The GO analysis of the sperm H3K4me3 regions that were not common 

with TE and placenta were involved in spermatogenesis, fertilization and sperm function 

(Fig. 7Bii and iv, Tables S15 and S17).  

Next, we compared gene enrichment of sperm H3K4me3 with low- and high-

expressed genes in the TE and placenta. Suggesting an influential role of sperm 

H3K4me3, the highly expressed genes and to a lesser extent the lowly expressed genes 

in TE and placenta were positively correlated with sperm H3K4me3 (Fig. 7Ci-iv). Notably 

when the same comparisons were made with the deH3K4me3 there was a significant 

relationship with both lowly- and highly-expressed placenta genes (p=1.2e-11 and 

p=0.008, respectively; Fig. 7Cv-viii). These included genes implicated in altered placenta 

hormonal profiles and preeclampsia such as Ldoc1, Dab2ip, and Rgs2 667–670. In addition, 

the GO analysis of TE- and placenta-expressed genes that overlap with deH3K4me3 

promoters are in line with the metabolic phenotypes in offspring (Fig. 7Di-ii, Tables S18-

19). Taken together this analysis raises the possibility that obesity-induced alterations in 

sperm may influence embryonic and placenta gene expression to alter metabolic function 

of offspring.  
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Figure 7: Obesity-induced deH3K4me3 regions overlap with genes marked by H3K4me3 and expressed in 

the trophectoderm and placenta 
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A) Heatmaps of RPKM counts signal +/- 5 kilobase around the center of regions enriched with H3K4me3 in 

sperm (i; n=30,745) and at regions with diet-induced deH3K4me3 in sperm (n=2,836) for H3K4me3 

enrichment levels in sperm (this study), trophectoderm (TE) (Liu et al., 2016) and placenta (Shen et al., 

2012). B) Gene ontology analysis of regions enriched with H3K4me3 in sperm, TE and placenta (top 75% 

from A i) (i), regions enriched with H3K4me3 in sperm only (bottom 25% from A i) (ii), diet-sensitive regions 

enriched with H3K4me3 in sperm, TE and placenta (top 75% from A ii) (iii), and diet-sensitive regions 

enriched with H3K4me3 in sperm only (bottom 25% from A ii) (iv). Barplots show 8 selected significant GO 

terms with their respective -log2(p-value). Tables S16-19 include the complete lists of significantly 

enriched GO terms. C) Scatterplots showing H3K4me3 enrichment at promoters in sperm (x axis; log2 

counts + 10), H3K4me3 enrichment (y axis; log2 counts + 10) and gene expression levels (color gradient; 

log2 FPKM + 10) in the trophectoderm (i,ii,v,vi; (Liu et al., 2016)) or in the placenta (iii,iv,vii,viii; (Shen et al., 

2012; Chu et al., 2019)), at either all genes with promoters enriched with H3K4me3 in sperm (i-iv) or at diet-

sensitive genes (v-viii). The top row of scatterplots includes lowly-expressed genes (bottom 50%) in 

trophectoderm (i and v) or placenta (iii or vii). The bottom row includes highly-expressed genes (top 50%) 

in trophectoderm (ii and iv) or placenta (vi and viii). Pearson’s correlation coefficients and associated p-

values are indicated above each scatterplot, comparing H3K4me3 enrichment in sperm versus H3K4me3 

enrichment in the trophectoderm or placenta. D) Gene ontology analysis of genes expressed in the 

trophectoderm (i) or the placenta (ii), overlapping with diet-sensitive promoters in sperm. Barplots show 

8 selected significant GO terms with their respective -log2(p-value). Tables S20-21 include the complete 

lists of significantly enriched GO terms. Obtained from 1 (Copyright 2022) with permission from Elsevier. 

11.4.7 Obesity-induced sperm epigenomic and hepatic transcriptomic alterations are 

unrelated  

In a recent study, paternal low-protein diet was associated with reduced H3K9me2 at 

genes in sperm and were suggested to modulate gene expression profiles in the liver 540. 

We aimed to assess whether a similar association between obesity-induced deH3K4me3 

in sperm would relate to differential expression in the livers of the next generation. We 

focused on the obesity-associated sperm deH3K4me3 at promoters in F0 sires and their 

relationship to differentially expressed genes in the liver (DEGs) of F1 males. This analysis 

revealed that genes with differential expression in livers (n=1,644) were by and large 

unrelated to genes bearing deH3K4me3 in sperm. Only 9.1% (n=67) of promoters with 

deH3K4me3 in sperm were differentially expressed in the liver of F1 males sired by HFD-

fed sires (Fig. S7A-B).  We then asked if deH3K4me3 promoters in sperm and liver DEGs 

had related biological functions. Strikingly, sperm- and liver-altered genes showed few 
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functional similarities (Fig. S7C, Supplemental file 5 and Table S22). Functional pathways 

specifically enriched in deH3K4me3 promoters in sperm involved development and 

differentiation processes (clusters 12-15). As expected in a paternal obesity model, gene 

processes altered in offspring livers included: regulation of transcription and RNA splicing 

(clusters 1-3), protein and histone post-translational modifications (clusters 4-5), and 

metabolism of lipid, nitrogen and glucose (clusters 6-8). Pathways enriched in both the 

deH3K4me3 promoters in sperm and the DEGs in liver were involved in cell cycle, 

transport and signaling (clusters 16-19), and response to stress and inflammation 

(clusters 20-22). These commonly enriched pathways might reflect obesity-associated 

systemic inflammation which could affect multiple organs in a similar manner. These 

findings indicate that paternal obesity alters the sperm epigenome at distinct genes and 

functional pathways than those differentially expressed in offspring livers and fits with a 

developmental origin of adult metabolic dysfunction that could be related to alterations in 

gene expression in the embryo and placenta.  

 

11.5 Discussion 

In mammals, spermatogenesis is a highly complex cell differentiation process involving 

unique testis-specific gene expression programs that are accompanied by dynamic 

remodeling of the chromatin 305,431,671,672. During this process, most histones are replaced 

by protamines to facilitate DNA compaction 431. Interestingly, 1% of sperm histones are 

retained in mice and 15% in men 223,472. Retained histones are conserved across species 

from mice to men and are found at the gene regulatory regions implicated in 

spermatogenesis, sperm function, embryo development, metabolism and routine cellular 

processes 220,472,542. We have shown that in human and mouse sperm histone H3 lysine 

4 dimethylation (H3K4me2) and trimethylation (H3K4me3) localize to genes involved in 

metabolism and development 221,477,608. Since this tantalizing discovery we and others 

have suggested that histones in sperm may directly influence embryonic gene expression 

and contribute to the developmental origin of adult disease. The findings of this study 

support histones serving in this mechanism of disease inheritance.  
In spermatogenesis there are dynamic changes to the sperm epigenome including 

histone methylation which is susceptible to alterations induced by changes in methyl 
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donor availability 477,541. Diets high in fat alter epigenetic programming, likely through the 

alteration of cellular metabolism, which influences the availability of methyl donors and/or 

the activation or inactivation of chromatin modifying enzymes. In overweight and obese 

individuals, homocysteine is consistently elevated, and associated with reduced B12 and 

folate 673,674. It follows that the obesity-induced alterations in H3K4me3 we report here 

could be a consequence of an altered methyl donor pool. Intriguingly, the effects of 

obesity on the paternal epigenome were linked with the metabolic dysfunction in the F1 

and F2 descendants; deH3K4me3 occurred at the promoters of genes involved in fertility, 

metabolism, and placenta processes. Indicative of paternal transmission of sperm altered 

H3K4me3 as a mediator of metabolic dysfunction was the strong relationship between 

deH3K4me3, an open chromatin state and gene expression in embryos and placenta. 

However, a limitation of the study is that we did not examine H3K4me3 in sperm from the 

F1 and thus whether H3K4me3 abnormalities in sperm persist in the subsequent 

generation is unknown. In this model of diet-induced transgenerational inheritance and in 

others, offspring phenotypes are likely the consequence of a complex interplay between 

chromatin, DNA methylation and non-coding RNA in sperm and embryos.  For example, 

a paternal low protein diet has been shown to alter testicular germ cell activating 

transcription factor 7 (ATF7) binding, and this was associated with differential sperm 

H3K9me2 and small RNA content in spermatocytes 540. Elucidating whether there are 

common molecular pathways mediating inter- and trans-generational impacts of paternal 

diet remains to be determined.  

The enhanced metabolic abnormalities observed in the descendants of obese F0 

TG revealed an increased susceptibility to metabolic disease in the TG line. An 

explanation for this response is that the F0 TG were descendants from a lineage with pre-

existing alterations in the sperm epigenome due to the genetic modification causing 

KDM1A overexpression. This genetic stress in combination with the environmental 

challenge of the HFD resulted in a more severely altered sperm epigenome in comparison 

to the WT, with consequent enhanced offspring phenotypes. Admittedly speculative, 

these findings suggest that the higher incidence of poor health in at-risk populations may 

be attributed to generational exposures to poor diet that leads to an accumulation of 

sperm epigenome errors that escape reprogramming.   
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Notably, paternal obesity-induced transgenerational metabolic disturbances in 

offspring were only observed in descendants of obese TG males. The phenomenon of 

transgenerational inheritance has been most documented in genetic mouse models of 

epigenetic inheritance and studied in relation to DNA methylation patterns. These include 

the Avy agouti model 606,675,676, the kinky tail model (AxinFu allele) 554, and in mice bearing 

a mutation in the Mtrr gene, a folate metabolism enzyme 555. In the context of 

environmental challenges, paternal transgenerational inheritance has been associated 

with altered sperm DNA methylation when there has been gestational exposure to 

toxicants and undernutrition 677,678, and in a non-genetic pharmacologically-induced 

prediabetes model begun at weaning 521. Taken together, this growing body of evidence 

indicates that transgenerational inheritance occurs under genetic influence, or when 

exposures coincide with developmental programming. The male F0 mice in this study 

were exposed to the paternal HFD from weaning and not in utero, which may account for 

why transgenerational effects were not observed in WT HFD descendants. Another 

possibility is that transgenerational responses in the WT may have become detectable in 

older mice.  

Our analysis indicates that the inherited metabolic disturbances observed in adult 

descendants originated early in development. In rodent models, paternal obesity and in 

utero undernutrition has been linked to altered gene expression in offspring livers and 

pancreatic islets with some minor links to concordant DNA methylation changes 521,678,679. 

It has been suggested that diet-associated alterations in DNA methylation in sperm are 

retained through embryogenesis and maintained in adult tissues mediating paternally-

induced phenotypes 521,678. Consistent with these studies, altered hepatic gene 

expression occurred in F1-2 offspring of obese sires. In contrast, we observed minimal 

overlap of genes and functional pathways between altered H3K4me3 enrichment in 

sperm, with those differentially expressed in F1 livers. Instead, we demonstrate a 

significant overlap of obese sperm H3K4me3 profiles with the expression of metabolic-

related genes in the embryo and placenta. Based on these findings, we suggest that the 

metabolic phenotypes we observe originate in early embryogenesis and through changes 

in placental gene expression.  
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There is a bounty of research linking maternal obesity to adverse metabolic 

consequences for the offspring that coincide with altered placental gene expression and 

function 680,681. On the other hand, it is an emerging concept that the paternal environment 

including factors such as diet and age can influence placental development and function. 

It is known that paternally expressed genes contribute to placental growth, trophoblast 

invasion and insulin resistance and adiposity 491,592,682–686. In humans, errors in 

epigenomic programming have been associated with gestational trophoblast disease and 

pre-eclampsia, but the role of the obese father in these conditions has been entirely 

unexplored 687,688. Previous studies support a connection between paternal diets, obesity, 

and placental dysfunction as a developmental route to metabolic disease in children. For 

example, we have shown that a folate deficient paternal diet and altered sperm DNA 

methylation coincided with deregulated placenta gene expression of Cav1 and Txndc16 
541. Moreover, paternal obesity in mice has been attributed to defective placental 

development 489,491,689. In women, altered DNA methylation in the regulation of some 

genes in preeclampsia has been established. However, many genes with deregulated 

expression were not associated with DNA methylation raising the possibility of altered 

chromatin signatures leading to abnormal gene expression in this placental disorder 690. 

Indeed, upregulated expression of LncRNA by increased H3K4me3 has been observed 

in preeclampsia placentas 691, and the levels of H3K4me3 as detected by 

immunohistochemistry are decreased 692. Until now the connection between sperm 

chromatin and placenta function has been unexplored. Our analyses revealed that most 

of the obesity-altered H3K4me3 at promoters occurred at loci involved in placental 

development and inflammatory processes, with 56.6% and 76.8% of deH3K4me3 

occurring at promoters expressed in the trophectoderm and placenta, respectively. 

Remarkably, deregulated expression of genes implicated in inflammation has been 

implicated in hypertensive disorders in pregnancy including pre-eclampsia. Hypertensive 

disorders in pregnancy have been associated with increased risk for developing 

cardiovascular disease 684. This raises the possibility that the paternal sperm epigenome 

may influence maternal health during pregnancy in addition to that of the developing fetus.  

As in previous studies we found that paternal obesity resulted in sex-specific 

differences in metabolism and fat accruement with males being more impacted. The 
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underlying mechanisms that lead to the greater susceptibility of males may be related to 

sexually dimorphic placental gene expression 693. In support of this possibility, paternal 

environment (diet) influenced placental function in a sex-specific manner 489. Alternatively, 

different metabolic responses in male and female offspring may be due to hormonal 

responses where estrogen has been shown to protect against altered glucose 

homeostasis 612,694.  

 

11.6 Conclusion 

In summary, we provide evidence that paternal obesity is associated with H3K4me3 

signatures in sperm which could contribute to the inheritance of metabolic disease. In 

addition, we identified links between sperm regions bearing obesity-altered H3K4me3, 

with placenta and embryonic H3K4me3, and the regulation of gene expression in these 

tissues. Important next steps to better understand disease inheritance related to paternal 

obesity, sperm chromatin and placental function will be to explore this possibility using 

embryonic and placenta tissue from pregnancies sired by obese males. The translational 

validation of these findings will be important in developing intervention strategies focused 

on paternal factors that could impact the health of future generations 695.  
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Figure 8: Graphical summary 

• Sperm H3K4me3 serves as a metabolic sensor of HFD-induced obesity. 
• Obesity-altered sperm H3K4me3 corresponds to embryonic transcription and 

chromatin profiles. 
• HFD- and KDM1A-induced cumulative sperm epimutations enhanced F1 

metabolic dysfunction. 
• Sperm epimutations may influence placenta function inducing F1 metabolic 

phenotypes. 
 
Figure obtained from 1 Copyright (2022) with permission from Elsevier. 
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Figure S5: Obesity-sensitive H3K4me3 regions are predominantly located in CpG 
islands, promoters, exons, and intergenic regions 

Figure S6: Obesity alters sperm H3K4me3 at genes expressed in the 4-cell and 
morula embryos, 
trophectoderm and placenta  
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Table S2: Number of animals used per group per sex per generation for metabolic 

characterization 

Table S3: Litter size generated by F0 and F1 sires 

Table S4: Sex ratios of litters generated by F0 and F1 sires 

Table S8: Sperm H3K4me3 ChIP-Sequencing read numbers and alignment rates   
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Figure S1: Paternal obesity increases body weight and fat accruement across generations 

Cumulative energy intake during the dietary treatment. The amount of food consumed weekly per cage was 

measured and the cumulative caloric intake per mouse was calculated based on the calorie content specific 

to each diet. B) Growth trajectories of F0 sires before and during the 12-week diet intervention. C) Total 

body weight at 4 months of age in F0 males (i), F1 males (ii), F2 males (iii), F1 females (iv) and F2 females 

(v). D) Mesenteric white adipose tissue (mWAT) weight at necropsy in F0 males (i), F1 males (ii), F2 males 

(iii), F1 females (iv) and F2 females (v). E) Gonadal white adipose tissue (gWAT) weight at necropsy in F0 

males (i), F1 males (ii), F2 males (iii), F1 females (iv) and F2 females (v). Results are shown as mean ± SEM. 
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Significance for main effects of diet, genotype, time, and for diet-genotype interactions are shown above 

each graph. NS, not significant (P>0.05). Significance for pairwise comparisons are shown as the following: 

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 (in blue; WT CON vs WT HFD, in green; TG CON vs TG 

HFD) and #P<0.05, ##P<0.01, ###P<0.001 (WT HFD vs TG HFD). Obtained from 1 (Copyright 2022) with 

permission from Elsevier. 

  

 

 
Figure S2: Paternal obesity alters metabolic profiles across generations in a sex-specific manner 

A) Baseline blood glucose levels after overnight fasting (15 ± 1 hour) at 4 months of age in F0 males (i), F1 

males (ii), F2 males (iii), F1 females (iv) and F2 males (v). B) Glucose tolerance test area under the curve 
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(AUC) for F0 males (i), F1 males (ii), F2 males (iii), F1 females (iv) and F2 females (v). C) Insulin tolerance 

test AUC for F0 males (i), F1 males (ii), F2 males (iii), F1 females (iv) and F2 females (v). The AUC was 

calculated using the trapezoidal rule from individual animal glucose tolerance test curves (in Fig. 1D) and 

insulin tolerance test curves (in Fig. 1E). Results are shown as mean ± SEM. Significance for main effects 

of diet, genotype, and for diet-genotype interactions are shown above each graph. NS, not significant 

(P>0.05). Significance for pairwise comparisons are shown as the following: *P<0.05, **P<0.01, 

***P<0.001, ****P<0.0001 (in blue; WT CON vs WT HFD, in green; TG CON vs TG HFD) and #P<0.05, 

##P<0.01 (WT HFD vs TG HFD). Obtained from 1 (Copyright 2022) with permission from Elsevier. 
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Figure S3: Liver RNA-sequencing data quality assessment and normalization  

A) Pearson correlation heatmaps on transcripts with variance stabilizing transformation (VST), before (i) 

and after (ii) correcting for RIN values in F0 and F1 samples run on an illumina HiSeq platform, and in F2 

samples run on an illumine NovaSeq platform (iii). Color gradients indicate the Pearson correlation 

coefficients for each pairwise comparison of samples. B) Principal component analysis on transcripts with 

variance stabilizing transformation (VST), with samples labeled by RIN value before (i) and after (ii) 

correcting for RINs in F0 and F1 samples (illumina HiSeq) and in F2 samples (illumina NovaSeq) (iii). C) 



 126 

Principal component analysis on transcripts with variance stabilizing transformation (VST), with samples 

labeled by sex before (i) and after (ii) correcting for RINs in F0 and F1 samples (illumina HiSeq). Obtained 

from 1 (Copyright 2022) with permission from Elsevier.  
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Figure S4: Sperm ChIP-sequencing data quality assessment and normalization  

A-B) Spearman correlation heatmaps for genomic regions enriched with H3K4me3, before (A) and after (B) 

TMM normalization and batch correction. Colored boxes indicate sample groups (light blue=WT CON, dark 

blue=WT HFD, light green=TG CON, dark green=TG HFD) and numbers (from 1 to 5) indicate the sample 

batch. Color gradients indicate the Spearman correlation coefficients for each pairwise comparison of 
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samples. C-D) MA-plots of pairwise comparisons between WT CON (rep 1) and all other samples, before 

(C) and after (D) TMM normalization and batch correction. Obtained from 1 (Copyright 2022) with permission 

from Elsevier. 
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Figure S5: Obesity-sensitive H3K4me3 regions are predominantly located in CpG islands, promoters, 

exons, and intergenic regions  

A-D) Upset plots show genome annotation identifying the functional regions with obesity-induced differential 

enrichment of H3K4me3 in sperm according to directionality change, with increased enrichment in WT HFD 

(A), decreased enrichment in TG HFD (B), increased enrichment in TG HFD (C) and decreased enrichment 

in TG HFD (D). Horizontal bars on the left represent the number of regions belonging to each genomic 

annotation (set size). Vertical bars represent the number of regions belonging to intersecting annotations 

(intersection size). Intersection sets are represented by connecting nodes. Horizontal bars on the right 

represent the enrichment (z-score) for each respective annotation compared to what would be expected by 
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chance if regions of similar sizes were randomly located across the genome (p<0.05, 1,000 permutations). 

Dark grey bars represent significant enrichment whereas light grey bars are not significant. Genome 

browser snapshots show genes with deH3K4me3 in sperm (WT CON light blue, WT HFD dark blue, TG 

CON light green and TG HFD dark green). Obtained from 1 (Copyright 2022) with permission from Elsevier. 
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Figure S6: Obesity alters sperm H3K4me3 at genes expressed in the 4-cell and morula embryos, 

trophectoderm and placenta  

A) Venn diagrams showing the overlap between genes expressed in the 4-cell embryo and genes 

expressed in the morula embryo, with genes with H3K4me3-enriched promoters in sperm (i) or with genes 

with diet-induced deH3K4me3 at promoters in sperm (ii). B) Venn diagrams showing the overlap between 

genes expressed in the trophectoderm and genes expressed in the placenta, with genes with H3K4me3-

enriched promoters in sperm (i) or with genes with diet-induced deH3K4me3 at promoters in sperm (ii). 

Obtained from 1 (Copyright 2022) with permission from Elsevier. 

  



 132 

 
Figure S7: Obesity-induced changes in H3K4me3 enrichment in sperm show minor overlap with genes 

altered in adult offspring liver  

A) Scatterplot showing liver RNA expression values (y axis; log2 counts +1) and sperm H3K4me3 

enrichment values (x axis; log2 counts + 1) for genes with paternal-diet induced differential expression in 

livers of F1 males overlapping with deH3K4me3 at promoters in sperm. B) Venn diagram showing the 

overlap of genes enriched with diet-induced deH3K4me3 at promoters in sperm and genes with paternal-

diet induced differential expression in livers of F1 males. C) Heatmap of significant GO terms, comparing 

enriched biological functions in diet-induced sperm differentially enriched regions at promoters and liver 

differentially expressed genes in F1 males WT and TG HFD. Rows represent enriched GO terms which are 

ordered by hierarchical clustering based on Wang’s semantic similarity distance and ward.D2 aggregation 
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criterion. Each column represents a comparison of interest for which enriched GO terms were annotated 

based on the list of significant genes. The color gradient depicts the GO term enrichment significance (-

log10 p-value). An interactive version of this heatmap can be found in Supplemental file 5 and the complete 

list of significantly enriched GO terms can be found in Table S22. Obtained from 1 (Copyright 2022) with 

permission from Elsevier. 
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Table S1: Diets’ energy density and macronutrients composition 

 Control diet 
(CON; D12450J, 
Research Diets 
Inc.) 

High-fat diet 
(HFD; D12492, 
Research Diets 
Inc.) 

Regular chow diet 
(2020X, 
Teklad Diets) 

Energy density (kcal/g) 3.85 5.24 3.1 
Calories from Protein 
(%) 

20 20 24 

Calories from Fat (%) 10 60 16 
Calories from 
Carbohydrate 
(%) 

 
70 

 
20 

 
60 

 
 
Table S2: Number of animals used per group per sex per generation for metabolic characterization 

 F0 males F1 males F2 males F1 females F2 females 
WT CON 17 35 18 38 15 
WT HFD 18 28 19 39 19 
TG CON 15 30 8 49 13 
TG HFD 25 43 11 42 21 

 
 
Table S3: Litter size generated by F0 and F1 sires 

Group WT CON TG CON WT HFD TG HFD Significance 
F0 litter 
size Mean 
± SEM 
(N=) 

6.833 ± 
0.458 
(12) 

7.9 ± 
0.767 
(10) 

6.333 ± 
0.607 
(12) 

6.2 ± 0.48 
(15) 

 
N
S 

F1 litter 
size Mean 
± SEM 
(N=) 

7 ± 0.5 
(8) 

4.6 ± 
1.288 
(5) 

5.667 ± 
0.689 
(12) 

4.875 ± 
0.666 
(8) 

 
N
S 
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Table S4: Sex ratios of litters generated by F0 and F1 sires 

Group WT CON TG CON WT HFD TG HFD Significan
ce 

F0 sex 
ratio 
Mean ± 
SEM (N=) 

0.509 ± 
0.068 
(12) 

0.343 ± 
0.069 
(10) 

0.534 ± 
0.071 
(12) 

0.579 ± 
0.055 
(15) 

 
NS 

F1 sex 
ratio 
Mean ± 
SEM 
(N=) 

0.476 ± 
0.072 
(8) 

0.548 ± 
0.141 
(5) 

0.598 ± 
0.073 
(12) 

0.425 ± 
0.095 
(8) 

 
NS 

 
 
Table S8. Sperm H3K4me3 ChIP-Sequencing read numbers and alignment rates 
 

Batch Diet Genotyp
e 

Reads # Alignment rate 
(%) 

1 CON WT 25,237,875 91.24 
2 CON WT 36,679,172 98.04 
3 CON WT 44,156,311 97.58 
4 CON WT 38,188,136 97.57 
5 CON WT 32,891,823 97.25 
1 HFD WT 30,356,006 94.03 
2 HFD WT 36,934,484 97.11 
3 HFD WT 31,718,194 97.38 
4 HFD WT 27,841,763 97.9 
5 HFD WT 30,902,900 96.91 
1 CON TG 29,310,441 96.88 
2 CON TG 38,274,515 96.88 
3 CON TG 27,291,467 97.27 
4 CON TG 39,918,514 97.81 
5 CON TG 30,925,671 97.68 
1 HFD TG 23,856,350 94.75 
2 HFD TG 39,534,589 97.93 
3 HFD TG 38,469,968 97.73 
4 HFD TG 28,052,094 98.14 
5 HFD TG 35,028,161 98.13 

  Average 33,278,421.7 96.9105 
 

Supplementary data can be accessed via the following link:  

https://doi.org/10.1016/j. molmet.2022.101463  

https://doi.org/10.1016/j.%20molmet.2022.101463
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Exploring the placental origins of paternally-induced adult-onset metabolic diseases 

In Chapter 2, our study revealed that a paternal diet-induced obesity can have 

intergenerational impacts on metabolic functions, with more severe and transgenerational 

effects when combined with a previously altered sperm epigenome. Furthermore, we 

have identified epigenetic regions in sperm with altered histone H3K4me3 upon diet-

induced obesity. Interestingly, these detected diet-sensitive regions were found to be 

enriched for genes involved in placenta formation and development. Our analyses 

revealed sperm H3K4me3 profiles reflected those of trophectoderm and placental tissues. 

Additionally, sperm H3K4me3 enrichment corresponded with gene expression in these 

tissues. Through the next chapter, we direct our focus towards exploring the connection 

between the sperm chromatin and placental development.  

Growing evidence suggests that paternal exposures can alter the placental 

epigenome and transcriptome. However, studies have been limited to targeted 

approaches to link changes in the placenta methylome or transcriptome associated with 

paternal factors 489,541,696. A recent study demonstrated that paternal high-fat diet 

preconception can lead to deregulated hypoxia and impaired vascularization in the 

placenta 510. Nonetheless, no study has assessed the connection between paternal 

obesity, the sperm epigenome and its impact on placenta development, at the genome-

wide level. 

In the next chapter, we were interested in exploring the potential involvement of 

placental gene expression in the developmental origins of paternally-induced 

phenotypes. Similarly to our initial study, we used a paternal diet-induced obesity model. 

We aimed to (1) determine whether diet-induced changes in the sperm chromatin would 

be reproducible across two different studies, (2) explore the potential molecular 

determinants of epigenetic hotspots in sperm at identified diet-sensitive regions, (3) reveal 

molecular connections between the sperm epigenome and placental transcriptomic 

networks, and (4) assess functional consequences of paternal obesity on placental 

cellular composition. 
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Chapter 3: Paternal obesity alters the sperm epigenome and is associated with changes 

in the placental transcriptome and cellular composition 

 

 

 

Pépin, A.-S., Jazwiec, P.A., Dumeaux, V., Sloboda, D.M., Kimmins, S., 2022. Paternal 

obesity alters the sperm epigenome and is associated with changes in the placental 

transcriptome and cellular composition. BioRxiv: 2022.08.30.503982, Doi: 

https://doi.org/10.1101/2022.08.30.503982. 

 

  

https://doi.org/10.1101/2022.08.30.503982
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13.1 Abstract 

Paternal obesity has been implicated in adult-onset metabolic disease in offspring. 

However, the molecular mechanisms driving these paternal effects and the 

developmental processes involved remain poorly understood. One underexplored 

possibility is the role of paternally driven gene expression in placenta function. To address 

this, we investigated paternal high-fat diet-induced obesity in relation to sperm epigenetic 

signatures, the placenta transcriptome and cellular composition. C57BL6/J males were 

fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were 

timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by 

collection of sperm, and placentas at embryonic day (E)14.5. Chromatin 

immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by 

sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in 

enrichment. Paternal obesity corresponded with altered sperm H3K4me3 enrichment at 

imprinted genes, and at promoters of genes involved in metabolism and development. 

Notably, sperm altered H3K4me3 was localized at placental enhancers and genes 

implicated in placental development and function. Bulk RNA-sequencing on placentas 

detected paternal obesity-induced sex-specific changes in gene expression associated 

with hypoxic processes such as angiogenesis, nutrient transport and imprinted genes. 

Paternal obesity was also linked to placenta development; specifically, a deconvolution 

analysis revealed altered trophoblast cell lineage specification. These findings implicate 

paternal obesity-effects on placenta development and function as one mechanism 

underlying offspring metabolic disease.  
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13.2 Introduction 

The placenta is an extraembryonic organ that regulates fetal growth and 

development, and contributes to long-term adult health 586. Placental defects can result 

in obstetrical complications such as pre-eclampsia, stillbirth, preterm birth and fetal 

growth restriction 697. Intrauterine growth restriction (IUGR) in turn, is associated with a 

heightened risk for adult-onset cardiometabolic diseases, coronary heart disease and 

stroke, supporting a placental role in long-term health of offspring 698–705. Despite the 

many adverse pregnancy outcomes involving placental defects, the molecular and 

cellular factors that impact placental development are poorly understood 577,706. Until 

recently, most studies on the origins of placental pathology have focused on maternal 

factors. For example, placental insufficiency occurs in 10 to 15% of pregnancies, and 

underlying causes include advanced maternal age 707–709, hypertension 710, obesity 711–

715, cigarette smoking 716, drug and alcohol use, and medications 717. However, emerging 

studies, indicate that the paternal preconception environment including diet and obesity 

also play a critical role in placental development and offspring health 489,491,510,541.  

The placenta is a complex tissue arising from the differentiation of distinct cell 

subtypes important for its functions. In the mouse, the cells that give rise to the placenta, 

the trophectoderm cell lineage, first appear in the pre-implantation blastocyst at 

embryonic day 3.5 (E3.5). Blastocyst implantation commences at E4.5, triggering a 

cascade of paracrine, endocrine and immune-related events that participate in 

endometrial decidualization. Cells of the trophectoderm overlying the embryonic inner cell 

mass serve as a source of multipotent trophoblast stem cells (TSCs) that diversify as a 

result of spatially and epigenetically regulated transcriptional cascades, giving rise to 

specialized trophoblast-subtypes. The first placental fate segregation is between the 

extraembryonic ectoderm (EXE) and ectoplacental cone (EPC). Cells of the EPC in direct 

contact with the decidua give rise to the cells with invasive and endocrine capacity, 

including trophoblast giants (TGCs), glycocen trophoblast (GlyT), and spongiotrophoblast 

(SpT). Cells of the chorion will produce two layers of fused, multinucleate 

syncytiotrophoblast (SynT-I and SynT-II) and sinusoidal TGCs. From E8.5, the embryonic 

allantois becomes fused with the chorion, permitting invagination of mesoderm-derived 

angiogenic progenitors that form the basis of the placental vascular bed (Hemberger, 
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Hanna, & Dean, 2020). Together, these cells form a transportive interface, the placental 

labyrinth zone, which is functionally critical for sustaining fetal growth throughout 

gestation (Rossant & Cross, 2001; Simmons & Cross, 2005). Interhemal transfer between 

maternal and fetal circulation commences at E10.5, and by E12.5 all terminally 

differentiated cell types of the mature placenta are present. 

Genetic studies of placental development using mouse mutants have identified key 

genes for development, differentiation, maintenance and function 577,718. For example, 

homeobox transcription factors are required for trophoblast lineage development (e.g. 

Cdx2, Eomes) 719–723, and maintenance of SPT requires Ascl2 and Egfr 724–728.  

Genomic imprinting refers to monoallelic gene expression that is dependent on 

whether the gene was inherited maternally or paternally 729. The expression of imprinted 

genes is regulated by DNA methylation, acting in concert with chromatin modifications, 

such as histone H3 lysine 4 tri-methylation (H3K4me3) and histone H3 lysine 9 di-

methylation (H3K9me2) 730–732. There exists 228 imprinted genes in humans and 260 in 

mice; many are strongly expressed in the placenta 427–429,592. Disruption of placental 

imprinting is associated with aberrant fetal growth, preeclampsia and IUGR 733–735. 

Notably, genetic manipulation studies have determined that the paternal genome is 

essential for extraembryonic and trophoblast development, and paternally expressed 

genes dominate placenta gene expression 587–592 

The connection between paternal gene expression and placenta development has 

led to a growing interest in the role of paternal factors in placental development and 

function and offspring health 592. In mice, we demonstrated that paternal folate deficiency 

was associated with an altered sperm epigenome, differential gene expression in the 

placenta, and abnormal fetal development 541. In other mouse models, advanced paternal 

age and toxicant exposure have been linked to altered placental imprinting and reduced 

placental weight 595,596. In human studies, recurrent pregnancy loss is associated with 

increased seminal reactive oxygen species (ROS) and sperm DNA damage 593. Male 

partner metabolic syndrome and being overweight have been associated with an 

increased risk for pre-eclampsia and negative pregnancy outcomes 594,736. Animal models 

suggest that pregnancy complications that have been associated with paternal metabolic 

complications may be a consequence of placental dysfunction. Indeed, in mice, paternal 
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obesity was linked to alterations in placental DNA methylation, aberrant allocation of cell 

lineage to trophectoderm (TE), hypoxia, abnormal vasculature, increased expression of 

inflammatory factors and impaired nutrient transporters 489,491,510. These findings support 

the hypothesis that paternal factors impact placental development and can have negative 

effects on pregnancy outcomes. To explore the relationship between paternal obesity, the 

sperm epigenome and offspring health we previously profiled H3K4me3, a gene-

activating epigenetic mark, in mouse sperm from sires fed a high-fat diet (HFD) 1. There 

was an association between HFD-induced obesity, altered sperm H3K4me3, and 

metabolic dysfunction in offspring. However, there remains a gap in our mechanistic 

understanding of the connection between the sperm epigenome and offspring 

metabolism. Interestingly, a significant portion of genes with altered H3K4me3 in sperm 

after HFD were related to placental formation and function.  

In the current study, we test the hypothesis that obesity-associated changes in sperm 

H3K4me3 drives aberrant gene expression during placental formation leading to placental 

dysfunction, and abnormal offspring metabolic phenotypes. To test this hypothesis, sperm 

was collected from obese sires and placentas from obese-sired pregnancies. Obesity-

altered H3K4me3 in sperm occurred at placenta-specific enhancers and the placental 

transcriptome was altered in a sex-specific manner. Changes in gene expression included 

genes critical for placental functions that support fetal and organ system development. A 

deconvolution analysis revealed changes in the placental lineage specification 

comparable with pathological changes observed in placental defects that are associated 

with adult-onset cardiometabolic diseases 626,737–739. Comparative analysis between 

placental transcriptomic profiles from our paternal HFD-induced obesity model with that 

of a hypoxia-induced fetal growth restriction model, revealed common placental defects 

across the two models 626 consistent with our previous work that sire-obesity induces 

placental hypoxia 510. This study revealed that paternal obesity was linked with 

transcriptomic and cellular defects in the placenta and may drive developmental origins 

of cardiometabolic disease in offspring. Confirmation of such paternal effects in humans 

are needed. 
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13.3 Methods 

13.3.1 Resource availability 

13.3.1.1 Lead contact 

Further information and requests for resources and reagents should be directed to and 

will be fulfilled by the Lead Contacts,  D. Sloboda (sloboda@mcmaster.ca) and S. 

Kimmins (sarah.kimmins@mcgill.ca). 

13.3.1.2 Materials availability 

This study did not generate new unique reagents. 

13.3.1.3 Data and code availability 

The sperm H3K4me3 ChIP-Seq and placenta RNA-Seq data generated in this study are 

deposited at GEO under the SuperSeries GSE207326. 

13.3.2 Experimental model and subject details 

13.3.2.1 Animals husbandry and dietary treatment 

Animal experiments were conducted at the McMaster University Central Animal Facility, 

approved by the Animal Research Ethics Board, and in accordance with the Canadian 

Council on Animal Care guidelines. Six-week-old C57BL/6J male mice were randomly 

allocated to either the control (n=8; CON; standard chow diet, Harlan 8640, Teklad 22/5 

Rodent Diet; 17% kcal fat, 54% kcal carbohydrates, 29% kcal protein, 3 kcal/g) or high-

fat diet (n=16; HFD; Research Diets Inc., D12492; 20% kcal protein, 20% kcal 

carbohydrates, 60% kcal fat, 5.21 kcal/g) group, for 10-12 weeks. All animals had free 

access to water and food ad libitum, housed in the same room which was maintained at 

25°C on a controlled 12-hour/12-hour light/dark cycle. After the diet intervention, male 

mice were housed with one or two virgin C57BL/6J females overnight. To confirm mating, 

females were examined the following morning, and the presence of a copulatory plug was 

referred to as embryonic day 0.5 (E0.5). Females confirmed as pregnant were individually 

housed throughout gestation and fed a standard chow diet (Harlan 8640, Teklad 22/5 

Rodent Diet). Pregnant females (n=4 CON; n=5 HFD) were sacrificed at E14.5 by cervical 

dislocation to collect placenta samples for RNA-seq. One male and one female placenta 

samples per dam were collected. Placenta were cut in half, with one half snap frozen in 

mailto:sloboda@mcmaster.ca
mailto:sarah.kimmins@mcgill.ca
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liquid nitrogen and kept at -80°C until RNA extraction. CON- and HFD-fed male mice were 

sacrificed at 4-5 months of age via cervical dislocation, and sperm was collected. 

13.3.3 Methods details 

13.3.3.1 Sperm isolation 

Sperm was collected at necropsy from paired caudal epididymides as previously 

described 1,614,615. Caudal epididymides were cut in 5 mL of Donners medium (25 mM 

NaHCO3, 20 mg ml-1 BSA, 1 mM sodium pyruvate, 0.53% vol/vol sodium DL-lactate in 

Donners stock), and spermatozoa were allowed to swim out by agitating the solution for 

1 hour at 37°C. Sperm cells were collected by passing the solution through a 40-µm 

strainer (Fisher Scientific, #22363547) followed by three washes with phosphate-buffered 

saline (PBS). The sperm pellet was cryopreserved at -80°C in freezing medium (Irvine 

Scientific, cat. #90128) until used for the chromatin immunoprecipitation. 

 

13.3.3.2 Chromatin Immunoprecipitation, library preparation, and sequencing 

Chromatin immunoprecipitation experiment was performed as previously described 
1,614,615. In brief, samples were thawed on ice and washed with phosphate-buffered saline. 

Spermatozoa were counted under a microscope using a hemocytometer and 12 million 

cells were used per experiment. Sperm from 2-7 male mice were pooled per sample 

(Table S1). We used 1 M dithiothreitol (DTT, Bio Shop, cat #3483-12-3) to decondense 

the chromatin and N-ethylmaleimide (NEM) was used to quench the reaction. Cell lysis 

was performed with a lysis buffer (0.3M sucrose, 60mM KCl, 15mM Tris-HCl pH 7.5, 

0.5mM DTT, 5mM McGl2, 0.1mM EGTA, 1% deoxycholate and 0.5% NP40). DNA 

digestion was performed in aliquots containing 2 million spermatozoa (6 aliquots per 

sample), with micrococcal nuclease (MNase,15 units per tube; Roche, #10107921001) in 

an MNase buffer (0.3 M sucrose, 85 mM Tris-HCl pH 7.5, 3mM MgCl2 and 2 mM CaCl2) 

for 5 minutes at 37°C. The reaction was stopped with 5 mM EDTA. Supernatants of the 

6 aliquots were pooled back together for each sample after a 10 minutes centrifugation 

at maximum speed. A 1X solution of protease inhibitor (complete Tablets EASYpack, 

Roche, #04693116001) was added to each tube. Magnetic beads (DynaBeads, Protein 

A, Thermo Fisher Scientific, #10002D) used in subsequent steps were pre-blocked in 
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0.5% Bovine Serum Albumin (BSA, Sigma Aldrich, #BP1600-100) solution for 4 hours at 

4°C. Pre-clearing of the chromatin was done with the pre-blocked beads for 1 hour at 4°C. 

Magnetic beads were allowed to bind with 5 µg of antibody (Histone H3 Lysine 4 

trimethylation; H3K4me3; Cell Signaling Technology, cat. #9751) by incubating for 8 

hours at 4°C. The pre-cleared chromatin was pulled down with the beads-antibody 

suspension overnight at 4°C. Beads-chromatin complexes were subjected to 3 rounds of 

washes; one wash with a low-salt buffer (50 mM Tris-HCl pH 7.5, 10 mM EDTA, 75 mM 

NaCl) and two washes with a high-salt buffer (50 mM Tris-HCl pH 7.5, 10 mM EDTA, 125 

mM NaCl). Elution of the chromatin was done in two steps with 250 µL (2 x 125 µL) of 

elution buffer (0.1 M HaHCO3, 0.2% SDS, 5 mM DTT) by shaking the solution at 400 rpm 

for 10 minutes at 65°C, vortexing vigorously, and transferring the eluate in a clean tube. 

The eluate was subjected to an RNase A (5 µL, Sigma Aldrich, #10109169001) treatment 

shaking at 400 rpm for 1 hour at 37°C, followed by an overnight Proteinase K (5 µL , 

Sigma Aldrich, #P2308) treatment 

at 55°C. The ChIP DNA Clean and Concentrator (Zymo Research, #D5201) kit was used 

following the manufacturer’s protocol to purify the eluted DNA with 25 µL of the provided 

elution buffer. Libraries were prepared and sequenced at the McGill University and 

Génome Québec Innovative Centre, with single-end 100 base-pair reads on the illumina 

HiSeq 2500 sequencing platform (n=3 pooled samples per diet group, Table S1). 

 

13.3.3.3 RNA extraction, library preparation and sequencing 

Extraction of RNA from placentas was performed using the RNeasy Mini Kit (Qiagen, cat. 

#74104) following the manufacturer’s protocol. In brief, 10-20 mg of frozen placenta were 

cut on dry ice. Samples were lysed in a denaturing buffer and homogenized with 

homogenizer pestles. Lysates were centrifuged, supernatants transferred into a clean 

tube, and 70% ethanol was added to lysates. An additional DNase digestion step was 

performed to avoid DNA contamination. Spin columns were washed twice, and total RNA 

was eluted with 30 µL of RNase-free water. Libraries were prepared and sequenced at 

the McGill Genome Centre with paired-end 100 base-pair reads on the illumina NovaSeq 

6000 sequencing platform (n=4 per sex per diet group). 
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13.3.3.4 Pre-processing 

13.3.3.4.1 Sperm ChIP-Sequencing data 

Pre-processing of the data was performed as previously described 1. Sequencing reads 

were trimmed using the Trimmomatic package (version 0.36) on single-end mode filtering 

out adapters and low-quality reads (parameters: ILLUMINACLIP:2:30:15 LEADING:30 

TRAILING:30) 620. Reads were aligned to the mouse genome assembly (Mus Musculus, 

mm10) with Bowtie2 (version 2.3.4) 621. SAMtools (version 1.9) was used to filter out 

unmapped reads and Perlcode to remove reads with more than 3 mismatches 618. BAM 

coverage files (BigWig) files were created with deeptools2 (version 3.2.1) (parameters: -

of bigwig -bs 25 -p 20 --normalizeUsing RPKM -e 160 --ignoreForNormalization chrX) 622. 

 

13.3.3.4.2 Placenta RNA-Sequencing data  

Sequencing data was pre-processed as previously described 1. Sequencing reads were 

trimmed with Trim Galore (version 0.5.0) in paired-end mode to remove adapters and low-

quality reads (parameters: --paired --retain_unpaired --phred33 --length 70 -q 5 --

stringency 1 -e 0.1) 616. Reads were aligned to the mouse reference primary assembly 

(GRCm38) with hisat2 (version 2.1.0, parameters -p 8 --dta) 740. The generated SAM files 

were converted into BAM format and sorted by genomic position with SAMtools (version 

1.9) 618. Stringtie (version 2.1.2) was used to build transcripts and calculate their 

abundances (parameters: -p 8 -e -B -A) 619.  

 

13.3.3.4.3 Publicly available datasets 

Raw files for bulk RNA-sequencing in control and hypoxic placentas (n=7 and 8, 

respectively) were downloaded from the National Centre for Biotechnology Information 

(NCBI) with the Sequencing Read Archive (SRA) Toolkit (NCBI SRA: SRP137723) 666. 

Files were pre-processed as described above for RNA-sequencing on single-end mode.  

Processed files with raw counts for single-cell RNA-sequencing data from E14.5 mouse 

placenta were downloaded from NCBI (GEO: GSE108097) and metadata matrix and 

cluster annotations were downloaded from 

https://figshare.com/s/865e694ad06d5857db4b 738. 

https://figshare.com/s/865e694ad06d5857db4b
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13.3.4 Quantification and statistical analysis 

13.3.4.1 Visualization, statistical, and bioinformatic analyses 

Bioinformatic data analyses were conducted using R (version 4.0.2) 632 and Python 

(version 3.7.4) 741. Figures were generated using the R package ggplot2 (version 3.3.3) 
640 and the Python package seaborn (version 0.9.0) 628. Statistical analysis were 

conducted using R version 4.0.2 632. For all statistical tests, a p-value less than 0.05 was 

considered significant. To assess significance of overlap between different sets of genes, 

a Fisher’s exact test was performed using the fisher.test function from the stats package 

(version 4.0.2), and the numbers that were used to assess statistical significance were 

those found in the common universe (background) of both lists being compared. To 

assess differences in cell type proportions across experimental groups, a beta regression 

was performed using betareg function from the betareg package (version 3.1-4) 742. 

13.3.4.2 Sperm ChIP-Sequencing data 

ChIP-sequencing data was processed and analyzed as previously described 1. Using 

csaw (version 1.22.1), sequencing reads were counted into 150 base-pair windows along 

the genome, and those with a fold-change enrichment of 4 over the number of reads in 

2,000 base-pair bins were considered as genomic regions enriched with H3K4me3 in 

sperm 643. Enriched windows less than 100 base-pair apart were merged allowing a 

maximum width of 5,000 base-pair (n=35,186 merged enriched regions in total). Reads 

were counted in those defined regions, and those with a mean count below 10 across 

samples were filtered out (conferring a total of n=35,184 regions). Read counts within 

enriched regions were normalized with TMM and corrected for batch effects arising from 

experimental day, using the sva package (version 3.36.0) 644,645. Spearman correlation 

heatmaps were generated using corrplot (version 0.88) and mean-average (MA) plots 

with graphics packages 638.  

To detect the obesity-sensitive regions, Principal Component Analysis (PCA) was 

performed. We selected the top 5% regions contributing the separation of samples 

according to diet group along Principal Component 1 (PC1), conferring a total of 1,760 

regions associated with dietary treatment. Those regions were split according to 
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directionality change based on positive and negative log2 fold-change values (increased 

versus decreased enrichment in high-fat diet group, respectively) from the median 

normalized counts of each group. The selected obesity-sensitive regions were visualized 

with Pheatmap (version 1.0.12) 639. Profile plots were generated using deeptools 622. The 

distance from the nearest transcription start site (TSS) from each selected region was 

calculated and visualized with chipenrich (version 2.12.0) 647. The genes for which their 

promoters overlapped the detected obesity-sensitive regions were used in the Gene 

Ontology (GO) analysis using topGO (version 2.40.0) with Biological Process ontology 

category and Fisher’s exact test (weight01Fisher algorithm) to test enrichment 

significance 648. A weight01Fisher p-value below 0.05 was considered significant. 

Genome browser snapshots of examples of detected obesity-sensitive regions were 

generated using trackplot 652. Annotations for tissue-specific enhancers were downloaded 

from ENCODE 625 (GEO: GSE29184) and genome coordinates were converted from the 

mm9 to the mm10 mouse assembly using the liftOver function from the rtracklayer 

package (version 1.48.0) 743. To determine the corresponding genes that could be 

regulated by tissue-specific enhancers, we scanned the landscape surrounding putative 

enhancer genomic coordinates, and selected the nearest gene located less than 200 kb 

away, given that enhancers interact with promoters located within the same domain 625,744. 

To retrieve the gene annotations, we used the function annotateTranscripts with the 

annotation database TxDb.Mmusculus.UCSC.mm10.knownGene (version 3.10.0) and 

the annotation package org.Mm.eg.db (version 3.11.4) from the bumphunter package 

(version 1.30.0) 745,746. From the same package, the function matchGenes was used to 

annotate the putative tissue-specific enhancer genomic coordinates with the closest 

genes. Annotations for transposable elements and repeats were obtained from annotatr 

(version 1.14.0) 649 and RepeatMasker (https://www.repeatmasker.org/). Upset plots 

were generated using the UpSetR package (version 1.4.0) 650. The motif analysis was 

performed using HOMER (version 4.10.4) 747, with the binomial statistical test and 

standard parameters. ViSEAGO  (version 1.2.0) 642 was used for visualization, semantic 

similarity and enrichment analysis of gene ontology (Fig. S1 I). Gene symbols and 

annotations were obtained from the org.Mm.eg.db database for the Mus Musculus 

species. The Biological Process ontology category was used, and statistical significance 
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was assessed with a Fisher’s exact test with the classic algorithm. A p-value less than 

0.01 was considered significant. Enriched terms are clustered by hierarchical clustering 

based on Wang’s semantic similarity distance and the ward.D2 aggregation criterion.  

 

13.3.4.3 Placenta RNA-Sequencing data  

Placenta bulk RNA-sequencing data from this study and from 666 was processed and 

analyzed using the same approach, as previously described 1. In brief, transcripts with 

low read counts were filtered out (mean count<10), for a total of 47,268 and 49,999 

transcripts detected in male and female placentas, respectively, and 32,392 transcripts in 

placentas from 666. Differential analysis was conducted with DESeq2 (version 1.28.1) 748. 

For the data generated in this study, we included the batch information (RNA extraction 

day) and dietary group in the design formula and performed a stratified analysis by 

running male and female samples separately (Fig. S3 B-C). For the data generated in 666, 

only male samples were analyzed given there was not a sufficient number of female 

samples, and we included the experimental group in the formula. Independent hypothesis 

weighting (IHW, version 1.16) 634 was used for multiple testing correction and prioritization 

of hypothesis testing. We performed a gene-level analysis at single-transcript resolution 

using the Lancaster method (aggregation package, version 1.0.1) 749. This method 

aggregates p-values from individual transcript to detect differentially expressed genes 

based on changes at the transcript level. A p-value less than 0.05 was considered 

significant. 

For visualization, variance stabilized transcript counts were used without blind dispersion 

estimation 750. Spearman correlation heatmaps were plotted with corrplot (version 0.88) 
638 with samples clustered by hierarchical clustering. Transcripts coding for detected 

differentially expressed genes were visualized with pheatmap (version 1.0.12) 639, with 

samples clustered with hierarchical clustering and transcripts by k-means clustering (n 

kmeans=2). Gene ontology analysis was performed as described above for the sperm 

ChIP-seq data. For the genomic imprinting analysis, the list of known mouse imprinted 

genes was retrieved from 429. 
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13.3.4.4 Deconvolution analysis 

We used single-cell RNA-sequencing datasets from mouse E14.5 placenta from to 

deconvolute our bulk RNA-sequencing data 738. The following Python packages were 

used: seaborn (version 0.9.0) 628, numpy (version 1.17.2) 629, pandas (version 0.25.2) 630, 

pickle (version 4.0) 751, scanpy (version 1.8.2) 752, scipy (version 1.7.3) 753, and autogenes 

(version 1.0.4) 737. The pyplot module was loaded from the matplotlib library (version 

3.4.2) 631. The deconvolution analysis was performed following the AutoGeneS package’s 

available code (version 1.0.4) 737. In brief, single-cell counts were log normalized and the 

4,000 most highly variable genes were selected. A principal component analysis was 

performed  (Fig. S4 A) and the cell types previously annotated in 738 were visualized (Fig. 

S4 B). The means of each centroids for each cell type cluster was used for optimization 

and feature selection. AutoGeneS uses a multi-objective optimization approach to select 

marker genes. In this process, a search algorithm explores a set of optimal solutions 

(commonly called Pareto-optimal solutions) and evaluates the objective functions (in this 

case, correlation and distance between the cell-type specific clusters; Fig. S4 C-D). This 

optimization technique allows to select the 400 marker genes (Fig. S4 E). Lastly, the Nu-

support vector machine (Nu-SVR) regression model 754 was used to estimate the cell-

type proportions for the bulk RNA-seq data from this study and from 666. The estimated 

cell-type proportions were visualized as box plots for each cell type. The cell-types with 

percent abundance values of zero across all samples were excluded. Statistical 

significance across experimental groups was assessed with beta regression on the cell-

types that had a median relative abundance of at least 1.5%.  

 

13.3.4.5 Placenta RNA-Sequencing differential analysis with cell-type proportion 

adjustment 

To adjust for cell-type proportions in the differential analysis, while reducing the number 

of covariates in the model, and to account for dependence between the cell-type 

proportions, a principal component analysis was performed with the deconvolved cell type 

proportions using the prcomp function from R’s base statistics. The top 3 or 4 principal 

components were selected to capture most of the sample variance (Fig. S6 A and D, Fig. 

S7 E). The differential analysis described above was repeated, with the selected principal 
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components added as covariates in the design formula to form the cell-type adjusted 

model.  

 

13.4 Results 

13.4.1 High-fat diet-induced obesity alters the sperm epigenome at regions implicated in 

metabolism, cellular stress and placentation 

Figure 1 describes the previously phenotypically characterized paternal HFD-

induced obesity mouse model used in this study 510. Of note, it differs from our previous 

model 1 by mouse sub-strain (C57BL/6J vs C57BL/6NCrl), research setting, timing of diet 

exposure (at 6 vs 3 weeks of age), and the control diet (chow vs low-fat diet). This 

difference in experimental design allows to test the robustness of our previous results 

linking HFD with alteration of sperm H3K4me3. This study also newly examines functional 

genomic regions in relation to the placenta cell composition and transcriptomic profile 

including imprinted genes, placenta enhancers and transcription factor binding motifs.  

 

 
Figure   1: Experimental design showing the timeline and methods used to study the consequences of 
an obesity-induced altered sperm epigenome on the placenta.  
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A) Six-week-old C57BL/6J sires were fed either a control or high-fat diet (CON or HFD, respectively) for 8-

10 weeks. Males were then time-mated with CON-fed C57BL/6J females to generate pregnancies. 

Pregnant females were sacrificed at embryonic day (E)14.5 and placentas were collected to perform RNA-

sequencing (RNA-seq, n=4 per sex per dietary group). Sires were sacrificed at 5 months of age and sperm 

from cauda epididymides was collected for chromatin immunoprecipitation sequencing (ChIP-seq, n=3 per 

dietary group) targeting histone H3 lysine 4 tri-methylation (H3K4me3). Created with BioRender.com. 

 

 Sperm from CON- and HFD-fed sires was profiled using ChIP-seq targeting 

H3K4me3 (n=3 per dietary group, Table S1). A total of 35,184 regions in sperm were 

enriched for H3K4me3 (Fig. S1 A; Methods), of which 28,279 were also detected in our 

previous study 1. H3K4me3 profiles were highly concordant across samples which 

demonstrate the robustness of our profiling approach (Fig. S1 B). Principal component 

analysis on counts at sperm H3K4me3-enriched regions revealed separation of samples 

along Principal Component 1 (PC1) according to dietary treatment, after trimmed Mean 

of M-values (TMM) normalization and batch adjustment (Fig. S1 C). The top 5% regions 

(n=1,760) contributing to PC1 were considered the most sensitive to HFD-induced obesity 

and were selected for downstream analysis (Fig. S1 C, Fig. 2). Despite differences in 

experimental design and animal models, we found a significant overlap in regions 

showing differential H3K4me3 (deH3K4me3) from both studies (128 overlapping regions, 

Fisher’s exact test P=2.2e-16, Fig. S1 D). Additionally, there were similarities in terms of 

enriched processes between both lists of deH3K4me3 regions overlapping promoters - in 

particular metabolic and neurodevelopmental pathways (Fig S1 E, Table S2, Supp file 1). 

Consistent with our previous study, the majority of obesity-associated regions showed an 

increase in enrichment for H3K4me3 (n=1,257 versus n=503, 71.4%, Fig. 2 A-B). Regions 

losing H3K4me3 showed moderate H3K4me3-enrichment in CON sperm, with 

predominantly low CpG density, whereas regions gaining H3K4me3 showed low-to-

moderate enrichment with mainly high CpG density (Fig. 2 C). Regions not impacted by 

diet showed high H3K4me3 enrichment in CON sperm, with low and high CpG density 

(Fig. 2 C). Consistent with our previous study, regions losing H3K4me3 were 

predominantly located >5 kilobase (kb) from the transcription start site (TSS), likely in 

intergenic spaces (Fig. 2 D i). Regions gaining H3K4me3 in HFD sperm were located 

near the TSS (within 1 kb), likely at promoter regions (Fig. 2 D ii). Obesity-associated 
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deH3K4me3 regions overlapping promoters were found at genes involved in metabolic 

processes, cellular stress responses, vasculature development, and placentation (Fig. 2 

E i-ii, Tables S3-4). Examples of genes showing deH3K4me3 in sperm include, Cbx7 

(Chromobox protein homolog 7; a component of the polycomb repressive complex 1, 

involved in transcriptional regulation of genes including the Hox gene family), Prdx6 

(Peroxiredoxin 6; an antioxidant enzyme involved in cell redox regulation by reducing 

molecules such as hydrogen peroxide and fatty acid hyperoxides), and Slc19a1 (Solute 

carrier family 19 member 1 or folate transporter 1; a folate organic phosphate antiporter 

involved in the regulation of intracellular folate concentrations) (Fig 2F).  We identified 

deH3K4me3 in HFD-sperm at Igf2 (Fig. 2 F ii – Insulin-like growth factor 2), a paternally-

expressed imprinted gene with an essential role in promoting cellular growth and 

proliferation in the placenta. Importantly Igf2 function has been related to metabolic 

disease and obesity (Kadakia & Josefson, 2016; Livingstone & Borai, 2014; reviewed in 

St-Pierre et al., 2012). Other imprinted genes with deH3K4me3 included the 

homeodomain-containing transcription factor Otx2 (involved in brain and sense organs 

development), and the voltage-gated potassium channel Kcnq1 gene (required for 

cardiac action potential).  
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Figure   2: H3K4me3 signal profile at obesity-sensitive regions in sperm.  
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A) Heatmap of log2 normalized counts for obesity-sensitive regions in sperm (n=1,760). Columns (samples) 
and rows (genomic regions) are arranged by hierarchical clustering with complete-linkage clustering based 
on Euclidean distance. Samples are labeled by batch (grey shades) and by dietary group.  
B) Profile plots showing RPKM H3K4me3 counts +/- 3 kilobase around the center of genomic regions with 
decreased (i) and increased (ii) H3K4me3 enrichment in HFD-sperm compared to CON-sperm. 
C) Scatter plot showing H3K4me3 enrichment (log2 counts) versus CpG density (observed/expected) for 
all H3K4me3-enriched regions in sperm (n=35,184, in grey), regions with HFD-induced decreased 
H3K4me3 enrichment (n=503, in beige), and regions with increased H3K4me3 enrichment (n=1,257, in 
purple). The upper and right panels represent the data points density for CpG density and H3K4me3 
enrichment, respectively.  
D) Bar plots showing the proportion of peaks for each category of distance from the transcription start site 
(TSS) of the nearest gene in kilobase (kb), for obesity-sensitive regions with decreased (i) and increased 
(ii) H3K4me3 enrichment in HFD-sperm. 
E) Gene ontology (GO) analysis for promoters at obesity-sensitive regions with decreased (i) and increased 
(ii) H3K4me3 enrichment in HFD-sperm. The bubble plot highlights 8 significantly enriched GO terms, with 
their -log2(p-value) depicted on the y-axis and with the color gradient. The size of the bubbles represents 
the number of significant genes annotated to a specific GO term. Tables S3-4 include the full lists of 
significant GO terms. 
F) Genome browser snapshots showing genes with altered sperm H3K4me3 at promoter regions (CON 

pale purple, HFD dark purple). 

 

13.4.2 Differentially enriched H3K4me3 in HFD sperm occurred at enhancers involved in 

placenta development, and at transcription factor binding sites 

We previously showed that changes in sperm H3K4me3 associate with altered 

embryonic gene expression 477. To gain functional insight into how deH3K4me3 in sperm 

may impact embryonic gene expression, we assessed the association between 

deH3K4me3 and tissue-specific and embryonic enhancers. Notably, deH3K4me3 

localized at enhancers implicated in gene regulation of the testes, placenta, and 

embryonic stem cells (Fig. S2 A-B) 625. Interestingly, when searching for closest genes 

potentially regulated by placenta-specific enhancers, 3 were paternally-expressed 

imprinted genes 429. These included the transmembrane protein Tmem174, the zinc finger 

protein Plagl1 (a suppressor of cell growth), and the growth factor Pdgfb (a member of 

the protein family of platelet-derived and vascular endothelial growth factors; plays 

essential roles in embryonic development, cellular proliferation and migration).  

Since H3K4me3 often localizes to promoters and can serve in the recruitment of 

transcription factors (TFs) 758,759, we asked whether deH3K4me3 were significantly 

enriched in known TF binding site locations across the genome. Changes in H3K4me3 at 
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these specific locations in sperm could impact embryonic gene expression – for example 

TFs, such as Foxa1, maintain an open chromatin state from the sperm to the embryo on 

the paternal chromatin 471,760. To explore this possibility, we searched for known TF 

binding motifs enriched in deH3K4me3 regions in sperm (Methods). The regions that 

gained H3K4me3 were significantly enriched for 202 TF binding motifs  (P<0.05, binomial 

statistical test, q-value<0.05; Fig. 3 A and Supp file 2) 747 whereas regions that had 

reduced H3K4me3 were not significantly enriched for TF binding motifs (q-value>0.05). 

Of the top 10 motifs enriched at regions with increased H3K4me3 signal in HFD-sperm, 

these genomic sequences were predicted to be bound by TFs belonging to the ETS, 

THAP, and ZF motif families (P<1e-10, q-value<0.0001; Fig. 3A). Interestingly, changes 

in sperm DNA methylation upon HFD feeding has been previously reported, and ETS 

motifs have been found to be DNA-methylation sensitive, including in spermatogonial 

stem cells 761–764. Strikingly, Sp1, a pregnancy-specific TF associated with recurrent 

miscarriage, was found to be among the top TF-associated motif hits (P=1e-16, q-

value<0.0001) in regions gaining H3K4me3 in sperm from obese sires 765. Furthermore, 

another TF of interest enriched at regions gaining H3K4me3 in HFD sperm is the 

Activating Transcription Factor 7 (Atf7; p-value=1e-3, q-value=0.0044, Supplemental File 

3). Of note, this TF has been associated with oxidative stress-induced epigenetic changes 

in male germ cells in a mouse model of low-protein diet 540.  
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Figure   3: Enriched motifs at obesity-sensitive regions in sperm. 
A) Top 10 significantly enriched known motifs at obesity-sensitive regions with increased H3K4me3 

enrichment in HFD-sperm. Motifs are clustered based on sequence similarity with hierarchical clustering. 

Branches of the dendrogram tree are color-coded by motif family. The name of the motif is indicated on the 

right, with the motif family in parenthesis, and the associated p-value for enrichment significance (binomial 

statistical test). The full list of enriched motifs can be found in Supplemental files 2. 

Taken together we have shown there is consistency in the impacts of HFD on sperm 

H3K4me3 and in this model we extended our findings with a deeper functional analysis. 

Namely we identified novel functional genomic regions including enhancers, imprinted 

genes and transcription factor binding sites with altered H3K4me3 that are likely 

connected to paternal transmission of metabolic disease in offspring.  

 

13.4.3 Placental gene expression is altered by paternal high-fat diet-induced obesity in a 

sex-specific manner 

As deH3K4me3 in sperm was located at genes involved in placental formation (Fig. 2 E 

and Pepin et al., 2022), we assessed whether paternal obesity was associated with 
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changes in gene expression of the placenta. We isolated RNA from E14.5 placentas 

derived from CON- or HFD-fed sires and performed RNA-sequencing (RNA-seq), yielding 

high quality data (Spearman correlation coefficient >0.89; Fig. S3 A-C). In response to 

paternal obesity, we detected 2,035 and 2,365 differentially expressed genes (DEGs) in 

female and male placentas, respectively (Fig. 4 A-B). These dysregulated genes were 

significantly enriched in pathways related to placental function, such as cholesterol, 

vitamin and protein transport, transcriptional and mRNA splicing processes, 

angiogenesis, and organ growth (Fig. 4 C-D, Tables S5-6). Perhaps reflecting the brain-

placenta axis 580,766, other significantly enriched processes were implicated in brain and 

neuron development 580. Given that correct imprinted gene expression is critical for 

development, particularly of the placenta, it is noteworthy that in HFD-sired placentas 23 

and 28 imprinted genes were differentially expressed in female and male placentas, 

respectively (Fig. 4 E-F). 
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Figure   4: Paternal obesity alters the F1 placental transcriptome in a sex-specific manner. 
A-B) Heatmaps of normalized counts scaled by row (z-score) for transcripts that code for the detected 
differentially expressed genes (Lancaster p<0.05) in female (A, n=2,035 genes) and male (B, n=2,365 
genes) placentas. Rows are orders by k-means clustering and columns are arranged by hierarchical 
clustering with complete-linkage based on Euclidean distances. 
C-D) Gene ontology (GO) analysis for differentially expressed genes in female (C) and male (D) placentas. 
The bubble plot highlights 8 significantly enriched GO terms, with their -log2(p-value) depicted on the y-
axis and with the color gradient. The size of the bubbles represents the number of significant genes 
annotated to a specific enriched GO term. Tables S5-6 include the full lists of significant GO terms. 
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E-F) Heatmaps of normalized counts scaled by row (z-score) for detected differentially expressed imprinted 

genes (Lancaster p<0.05) in female (E, n=23 genes) and male (F, n=28 genes) placentas. Genes are 

labeled based on their allelic expression (paternally expressed genes in pale grey, maternally expressed 

genes in pale pink). Rows are orders by k-means clustering and columns are arranged by hierarchical 

clustering with complete-linkage based on Euclidean distances. 

 

 Of note, although a significant number of DEGs overlapped between female and 

male placentas (n=359, Fisher’s exact test P=1.5e-19; Fig. S3 D i), 82% of female DEGs 

and 85% of male DEGs were uniquely de-regulated, indicating sex-specific placental 

responses to paternal obesity. The findings are concordant with previous studies which 

observed sex-specific effects of paternal factors on offspring metabolism 489,510,535,767. 

This suggests some sexually dimorphic responses may originate in utero due to 

differences in placental development and function. To assess the link between sperm 

H3K4me3 and the placental transcriptome, we overlapped deH3K4me3 at promoters 

(n=508) with DEGs in the placenta, and identified 45 and 48 DEGs in female and male 

placentas, respectively (Fig. S3 D ii-iii). Next, we assessed deH3K4me3 in sperm at 

putative placenta-specific enhancers in relation to placenta DEGs. We identified 139 

putative enhancers with increased H3K4me3 and 46 with reduced H3K4me3 in HFD-

sperm (Fig. S2 A-B). We then focused the analysis on the predicted genes (200 kb range) 

regulated by these putative enhancers 625,744, and defined 18 genes that were DEG in 

female and 19 in male placentas (Fig. S3 D iv-v). Taken together these findings show 

there was minor overlap between genome regulatory regions bearing deH3K4me3 and 

placenta DEGs. This may reflect the terminally differentiated state and heterogenous 

nature of the placenta at E14.5. Greater correspondence between sperm deH3K4me3 

may have been observed if we had analyzed gene expression earlier in development 

when H3K4me3 in sperm may have a greater influence on gene expression in the first 

embryonic lineage of the placenta, the TE from PND 3.5. Indeed,  we previously found by 

in silico analysis that there was a significant overlap between sperm and TE H3K4me3, 

and TE gene expression 1. It is also worth considering that placenta profiles in this study 

are from bulk homogenates of whole placenta which represent a heterogeneous mixture 

of cell types. Bulk tissue RNA-seq measures average gene expression across these 
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molecularly diverse cell types in distinct cellular states and the identification of DEGs can 

therefore be confounded by cell composition. 

 

13.4.4 Deconvolution analysis of bulk RNA-seq reveals paternal obesity alters placental 

cellular composition 

To assess whether there were changes in placental cellular composition associated 

with paternal obesity, we performed a deconvolution analysis on our bulk RNA-seq data 

(Fig. S4) 737 using a single-cell RNA-sequencing dataset that matched the samples’ 

developmental stage (E14.5) and mouse strain (C57BL/6J) 738. Of the 28 different cell 

types identified 738 (Table S7; Fig. S4 A), we detected 15 cell types in our deconvolved 

placenta bulk RNA-seq data (Fig. 5 A and Fig. S5 A). The bulk placenta profiles were 

enriched for 3 trophoblast, 1 stroma and 1 endothelial cell subtypes (Figure 5A). Two of 

the three trophoblast cell types belonged to the spongiotrophoblast (SPT) lineage 

including the invasive SPT cells and SPT cells molecularly defined by highly-expressing 

11-ß hydroxysteroid dehydrogenase type 2 (Hsd11b2). Paternal obesity was associated 

with changes in both SPT cell populations (Fig. 5A); we detected a significant decrease 

in invasive SPT cell relative abundance in female placentas (P=0.02; Fig. 5 A) and an 

increase in high-Hsd11b2 SPT cells in both male and female placentas (P=0.01 and 

P=0.06, respectively; Fig. 5 A). These changes in SPT cellular composition  indicated by 

this analysis upon paternal HFD-induced obesity could contribute to adult-onset metabolic 

dysfunction in offspring sired by obese males as observed in previous studies 1,510. 
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Figure   5: Paternal obesity-induced changes in placental cellular composition and differential expression. 
A) Boxplots showing sample-specific proportions for the top 5 cell types with highest proportions detected 
in the bulk RNA-seq data deconvolution analysis across experimental groups. Beta regression was used 
to assess differences in cell-type proportions associated with paternal obesity for each placental sex. 
P<0.05 was considered significant. 
B-C) Heatmaps of normalized counts scaled by row (z-score) for transcripts that code for the detected 

differentially expressed genes (Lancaster p<0.05) in female (B, n=423 genes) and male (C, n=1,487 genes) 

placentas, after adjusting for cell-type proportions. Rows are orders by k-means clustering and columns 

are arranged by hierarchical clustering with complete-linkage based on Euclidean distances. 

To further identify gene expression changes associated with paternal obesity we 

performed similar differential gene expression analysis for male and female placentas but 

adjusted for estimated cell-type proportions (Fig. S6 A-F). We first encoded cell-type 

composition using the top 4 and 3 principal components identified by PCA (Fig. S6 A, B, 

D and E). As expected, cell types contributing the most to the sample variances for both 

male and female placentas included the most abundant cell types – namely invasive SPT 

and spiral artery TGCs, and decidual stromal cells, and endodermal cells (Fig. S6 C and 

F). After adjustment for placental cellular composition, we detected de-regulated genes 

in female (n=423 DEGS) and male placentas (n=1,487 DEGs, Fig. 5 B-C, Fig. S6 G-H), 
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respectively. There were similarities between the bulk RNA-Seq and deconvoluted 

analysis in that there was overlap of DEGs detected before and after adjusting for cell-

type proportions (Fig. S6 G-H). This differential gene expression analysis accounting for 

cellular composition provides insight into how paternal obesity may impact placental 

development and function.  

 

13.4.5 Hypoxic and paternal obese-sired placentas show common transcriptomic 

deregulation and cell-type composition changes 

Placentas derived from obese sires, like hypoxic placentas, exhibit changes in gene 

expression and altered angiogenesis, vasculature, and development 489,491,510,696,736,768. 

Hypoxia is a tightly regulated process during placental development which is essential for 

proper vascular formation. To determine whether paternal obese-sired placentas 

resemble transcriptomic and pathological phenotypes of hypoxic placentas, we compared 

our HFD placenta RNA-seq data to a hypoxia-induced IUGR mouse model RNA-seq data 

set 626. We conducted differential gene expression analysis of the RNA-seq data from the 

IUGR mouse model using the same parameters as the obese-sired placenta analysis. 

Because this dataset did not include a sufficient number of female placenta samples, we 

focused the analysis on male samples only (n=5 control, n=5 hypoxic placentas). This 

differential analysis identified 1,935 DEGs in hypoxic placentas (Fig. S7 A-C). Likewise, 

we applied our deconvolution analysis described above to this bulk RNA-seq data from 

hypoxic placentas and detected the same principal cell types as those detected in our 

samples; a total of 17 different cell types were detected (Fig. 6A, Fig. S7D). Remarkably, 

the proportion values for each individual cell types were highly comparable across the 

placenta from the HFD sire model and the hypoxia mouse models (Fig. 6B). Similar to 

placentas derived from obese sires, hypoxic placentas showed a significant decrease in 

invasive SPT cell abundance (p=0.003, Fig. 6 A). Hypoxic placentas also showed a 

significant increase in progenitor trophoblast (Gjb3-high), primitive endoderm (PE) 

lineage (Gkn2-high), erythroblast (Hbb-y-high), and endodermal (Afp-high) cells, 

compared to control (p=0.000004, p=0.01, p=0.000003, p=0.005, respectively; Fig. 6A). 
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Overall, the trends for directionality of changes in specific cellular abundances were 

consistent across the two mouse models (Fig. 6B).  
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Figure   6: Hypoxia-induced growth restriction is associated with changes in placental cellular composition 
and differential expression. 
A) Boxplots showing sample-specific proportions for the top 10 cell types with highest proportions detected 
in the bulk RNA-sequencing data deconvolution analysis across experimental groups. Beta regression was 
used to assess differences in cell-type proportions associated with hypoxia-induced intrauterine growth 
restriction. P<0.05 was considered significant. 
B) Pyramid plot showing the median values of cell-type proportions commonly detected in both datasets 
assessed. The asterix (*) denote significance (P<0.05) between control versus hypoxia groups or CON M 
versus HFD groups, as calculated by beta regression. 
C) Heatmap of normalized counts scaled by row (z-score) for transcripts that code for the detected 
differentially expressed genes (Lancaster p<0.05, n=1,477 genes) in hypoxic placentas, after adjusting for 
cell-type proportions. Rows are orders by k-means clustering and columns are arranged by hierarchical 
clustering with complete-linkage based on Euclidean distances. 
D) Venn diagrams showing overlap between hypoxia-induced de-regulated genes in an intrauterine growth 

restriction model (Chu et al., 2019), with paternal obesity-induced de-regulated genes (this study) in male 

placentas. 

 Next, we sought to similarly investigate how much the observed changes in cellular 

composition within hypoxic tissues might contribute to the differential gene expression 

observed between conditions. Principal component analysis on placental cellular 

proportion values revealed a separation of samples between the control and hypoxic 

placentas (Fig. S7 E). Similar to the analysis of HFD-placentas,  we used the top principal 

components (n=4 explaining 98.8% of the sample cell proportion variance) to adjust the 

differential expression analysis for cellular composition (Fig. S7 F). Similarly to placentas 

derived from HFD-fed sires, the cell types contributing the most to sample variance 

included the invasive SPT cells, endodermal cells (Afp-high), decidual stromal cells, and 

(Fig. S7 G). Additionally, erythroblast cells (Hbb-y-high) and spiral artery TGCs also 

strongly contributed to sample variance (Fig. S7 G). Accounting for cell-type proportions 

allowed for the detection of 1,477 DEGs associated with hypoxia and growth restriction 

(Fig. 6C), of which 356 overlapped with those initially detected before cellular composition 

adjustment (24%; Fig. S7 H). These data suggest that like paternal obesity-induced 

placental de-regulated genes, differential gene expression in hypoxic placentas is partly 

driven by changes in cellular composition.  

Importantly, after adjusting for cell-type proportions, 207 of the paternal-obesity-

induced dysregulated genes in male placentas were also found to be differentially 

expressed in hypoxic placentas (Fisher’s exact test P=5.1e-16; Fig. 6 D). A key gene, 

supporting this similarity in the molecular pathology of hypoxic placenta and obese sired 
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placenta was the dysregulation of the imprinted gene Igf2. Collectively, our comparative 

analyses of placental transcriptomic data from both models indicate that paternal obesity, 

like gestational hypoxia, induces pathological and molecular consequences that are 

hallmarks of placental defects, and may elicit serious pregnancy complications like 

preeclampsia. 

 

13.5 Discussion 

Paternal health and environmental exposures impact the establishment of the sperm 

epigenome and are associated with altered development of the placenta, embryo, and 

offspring health. However, the molecular and cellular mechanisms underlying paternal 

obesity effects on offspring are still unclear. Our findings build on prior knowledge to show 

that paternal obesity alters sperm chromatin, specifically H3K4me3, in connection with 

widespread changes in the placental transcriptome. We provide a significant advance 

towards understanding the cellular and molecular drivers at the level of the sperm 

epigenome and placenta transcriptome that could underlie paternally-induced placental 

pathogenesis, growth impeded embryo development and adult-onset metabolic 

phenotypes.  

We further observed that paternal HFD-induced obesity alters the placental 

transcriptome in a sex-specific manner. There is strong evidence demonstrating sex 

disparity in metabolic phenotypes and cardiometabolic disease risks (reviewed in 

Tramunt et al., 2020). These sex-specific effects are thought to be driven by sex 

chromosomes, hormonal factors, the gut microbiome, as well as differential fetal 

programming across sex in response to pre-conception and in utero exposures (reviewed 

in Sandovici, Fernandez-Twinn, Hufnagel, Constância, & Ozanne, 2022). Here, our 

findings suggest some of the post-natal metabolic disturbances observed in paternally-

induced offspring sexually dimorphic phenotypes are established in the placenta. 

Interestingly, some of the de-regulated genes included imprinting genes. These genes 

are epigenetically controlled and inherited in a parent-of-origin manner, and the placenta 

is a key organ for imprinted gene function 771. According to the conflict hypothesis, 

maternally imprinted genes (paternally expressed) support fetal growth, whereas 

paternally imprinted genes (maternally expressed) restrict fetal growth 772–774. Some of 
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the dysregulated imprinted genes we identified have been implicated in placental defects 

and pregnancy complications. For example, deletion of the gene Htra3 (identified here as 

a DEG in female placentas) in mice has been implicated in IUGR owing to the 

disorganization of placental labyrinthine capillaries and thereby affecting offspring growth 

trajectories postnatally 775. The maternally expressed gene Copg2 (identified here as a 

DEG in female placentas) has been associated with pregnancies with small for 

gestational age infants 776. Loss of the paternally expressed gene Snx14 in mice 

(identified here as a DEG in female placentas) causes severe placental pathology 

involving aberrant SynT differentiation, leading to mid-gestation embryonic lethality 777. 

The paternally expressed gene Zdbf2 (DEG in male placentas) has been implicated in 

reduced fetal growth in mice, associated with altered appetite signals in the hypothalamic 

circuit 778. Placental deficiency of the paternally expressed gene Slc38a2 (identified here 

as a DEG in male placentas) leads to fetal growth restriction in mice 779. Lastly, mice 

deficient for the paternally expressed transcriptional co-repressor Tle3 (identified here as 

a DEG in male placentas) show abnormal placental development including TGC 

differentiation failure, resulting in fetal death 780. Importantly, disrupting the expression of 

a single imprinted gene can result in placental defect and consequently compromise fetal 

health or survival. It is therefore likely that the differential expression of imprinted genes 

detected in female and male placentas as a result of paternal obesity could at least partly 

explain metabolic phenotypes observed in this mouse model 1,510.   

We identified changes in sperm H3K4me3 associated with paternal obesity, some 

of which were enriched for transcription factor binding sites. This could in turn alter TF 

functions. This phenomenon has been described in a mouse model of paternal low-

protein diet, where oxidative stress-induced phosphorylation of the Atf7 TF was 

suggested to impede its DNA-binding affinity in germ cells, leading to a decrease in 

H3K9me2 at target regions 540. As in the low-protein diet model, oxidative stress is a 

hallmark of obesity and increased levels of reactive oxygen species have been observed 

in testes of diet-induced obesity mouse models and linked to impaired embryonic 

development 488,490,781. These findings provide avenues for further investigation such as 

whether epigenetic changes on paternal alleles may impact TF binding during early 

embryogenesis. 
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 The identification of alterations of cell type proportion must be considered within 

the limitations of a deconvolution analysis. This analysis only provides estimates of cell-

type relative within a heterogeneous tissue. This allowed us to adjust for the effect of 

differences in cell-type composition, but exact cell-type composition and their specific 

gene expression changes need to be validated by single-cell approaches such as single-

cell RNA-seq or spatial transcriptomics. Furthermore, even though we used a reference 

dataset which included cells representative of placental tissues, the detection capacity of 

this approach is limited for low-abundant cell types, such as blood cells, immune cells, 

and inflammatory cells, which would be highly informative of placental pathological states. 

For example, aberrant abundance of decidual inflammatory cells, such as natural killer 

(NK) cells, have been linked to the pathogenesis of preeclampsia 782–786. Incidentally, it 

was previously shown that paternal diet-induced obesity is associated with placental 

inflammation 510,535. Interestingly, many GO terms related to inflammatory processes were 

enriched in the obesity-induced deH3K4me3 in sperm (Fig. 2E, Table S3-4, and Pepin et 

al., 2022), suggesting sperm deH3K4me3 might be partly influencing placental 

inflammation. However due to the low representation of immune cells in the data set this 

could not be assessed. 

 

13.5.1 Speculation and perspectives 

Many of the DEGs in the paternal obese-sired placentas were involved in the 

regulation of the heart and brain. This is in line with paternal obesity associated to the 

developmental origins of neurological, cardiovascular, and metabolic disease in offspring 
1,488,515,521,577,606,787–792,489–491,504–506,510,513. The brain-placenta and heart-placenta axes 

refer to their developmental linkage to the trophoblast which produces various hormones, 

neurotransmitters, and growth factors that are central to brain and heart development  
580,793. This is further illustrated in studies where placental pathology is linked to 

cardiovascular and heart abnormalities 789–791. For example, in a study of the relationship 

between placental pathology and neurodevelopment of infants, possible hypoxic 

conditions were a significant predictor of lower Mullen Scales of Early Learning 792. A 

connecting factor between the neural and cardiovascular phenotypes is the neural crest 
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cells which make a critical contribution to the developing heart and brain 577,766. Notably, 

neural crest cells are of ectodermal origin which arises from the TE 794, which is in turn 

governed by paternally-driven gene expression. It is worth considering the routes by 

which TE dysfunction may be implicated in the paternal origins of metabolic and 

cardiovascular disease. First, altered placenta gene expression beginning in the TE could 

influence the specification of neural crest cells which are a developmental adjacent cell 

lineage in the early embryo. TE signaling to neural crest cells could alter their downstream 

function.  Second, altered trophoblast endocrine function will influence cardiac and 

neurodevelopment 766.   

In line with these possible routes to developmental origins of obesity and metabolic 

disease, paternal obesity was associated with altered trophoblast lineage specification. 

During placentation, invasive SPT have the ability to migrate and invade the maternal-

fetal interface and replace maternal vascular endothelial cells, a critical step for maternal 

arterial remodeling to facilitate low resistance high volume blood flow to the fetus 795. 

Consequently, improper trophoblastic invasion has been linked to various obstetrical 

complications, including premature birth, fetal growth restriction, pre-eclampsia and 

placenta creta 796–798. Paternal obesity also induced changes in trophoblast expressing 

the glucocorticoid metabolizing enzyme Hsd11b2. In the placenta, Hsd11b2 is 

responsible for the conversion of cortisol into its inactive form, cortisone, which limits fetal 

exposure to maternal glucocorticoid levels. Interestingly, de-regulation of Hsd11b2 has 

been observed in rodent fetal growth restriction models 626,739,799. These aberrant cellular 

composition profiles suggest that paternal factors, such as diet, can induce functional 

changes in the placenta that mirror placental defects associated with adult-onset 

cardiometabolic phenotypes.  

Next, it will be important to assess earlier developmental time points to determine 

when and how these effects originate. Indeed, studies have shown that paternal diet-

induced obesity alters preimplantation development, such as cellular allocation to TE 

versus ICM lineages 491. Investigating multiple and earlier time points would help reveal 

the dynamic trajectory of paternally-induced deregulated transcriptomic and epigenetic 

signatures which might be at the origin of adult-onset disease. Translating these findings 

to humans would be beneficial to better understand the paternal preconception 
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contribution to placental health. This is of particular relevance, given that although most 

obstetrical complications are thought to be rooted in the placenta, in many cases placental 

defects are only detected in late gestation and the etiology of these defects are oftentimes 

idiopathic 586,766. There are no established guidelines or clinical procedures that predict 

pregnancy complications and placental defects associated with paternal factors. The 

connections we report here between paternal effects and the placental transcriptome 

open new avenues for the development of epigenome-based sperm diagnostics that 

could be used to predict pregnancy pathologies and the developmental origins of adult 

disease. 
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13.9 Supporting information 

The Supporting Information includes the following Figures and Tables: 

Figure S1: Sperm H3K4me3 ChIP-sequencing data quality and normalization. 

Figure S2: Obesity-sensitive regions in sperm are found at tissue-specific enhancers 

important for development. 

Figure S3: Placenta RNA-sequencing data quality assessment. 

Figure S4: Cell-type specific marker genes selection using reference mouse E14.5 

placenta single-cell RNA-sequencing dataset. 

Figure S5: Estimated cell type proportions across experimental groups for male and 

female E14.5 bulk placenta tissues derived from CON- and HFD-fed sires. 

Figure S6: Principal component analysis (PCA) of estimated cell-type proportions 

Figure S7: Quality assessment, processing, differential analysis, and deconvolution of 

RNA-sequencing data from mouse placenta in a hypoxia-induced intrauterine growth 

restriction mouse model. 

Supplemental tables and files can be accessed at the following link:  

https://www.biorxiv.org/content/10.1101/2022.08.30.503982v1.supplementary-material   

 

Table S1: ChIP-sequencing sample information 

 

Table S2: Significant gene ontology terms enriched in HFD-sperm deH3K4me3 regions 

at promoters detected in our previous study and this study, related to Fig S1 E 

 

Table S3: Significant gene ontology terms enriched in HFD-sperm at regions showing a 

decrease in H3K4me3 at promoters, related to Fig 2 E i 

 

Table S4: Significant gene ontology terms enriched in HFD-sperm at regions showing 

an increase in H3K4me3 at promoters, related to Fig 2 E ii 

 

Table S5: Significant gene ontology terms enriched in differentially expressed genes in 

female placentas derived from HFD-sires, related to Fig 4 C 

https://www.biorxiv.org/content/10.1101/2022.08.30.503982v1.supplementary-material
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Table S6: Significant gene ontology terms enriched in differentially expressed genes in 

male placentas derived from HFD-sires, related to Fig 4 D 

 

Table S7: Reference single-cell RNA-sequencing data information – number of cells per 

cell type, related to Fig S4 

 

Supplemental file 1: Interactive heatmap for significant gene ontology terms enriched in 

HFD-sperm deH3K4me3 regions at promoters detected in our previous study and this 

study, related to Fig. S1 I 

 

Supplemental file 2: Motif analysis, showing significantly enriched known motifs in 

regions gaining H3K4me3 in HFD-sperm, related to Fig 3 A 

 

  



 172 

 
Figure S  1: Sperm H3K4me3 ChIP-sequencing data quality and normalization. 
A) Histogram showing frequency distributions of read abundances of genome-wide 150 bp windows. The 
vertical red line indicates the cut-off where windows with low read counts were filtered out (abundance 
below log2(4) fold over 2,000 bp bins). The remaining windows (considered enriched for H3K4me3) which 
were less than 100 bp apart were merged allowing a maximum width of 5,000 bp (n=35,184 merged regions 
enriched for H3K4me3 in sperm). 
B) Spearman correlation heatmap on counts at sperm H3K4me3-enriched genomic regions after TMM 
normalization and batch adjustment. Color gradients represent correlation coefficients for each pairwise 
comparison. 
C) Principal component analysis (PCA) plot for counts in H3K4me3-enriched regions in sperm after 
normalization. The top 5% regions contributing to Principal Component 1 (PC1) were selected as those 
associated with sample separation according to dietary treatment (E). 
D) Venn diagram showing the overlap of detected obesity-sensitive regions from this study (dark grey) and 
our previous study (Pepin et al., 2022; pale grey). Significance was tested with a Fisher exact test and the 
p-value is shown under the graph. 
E) Heatmap showing significant gene ontology (GO) terms clustered based on functional similarity, 

comparing enriched biological functions in obesity-sensitive regions located at promoters detected in this 
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study (top row) and in our previous study (Pepin et al., 2022, bottom row). Columns represent enriched GO 

terms ordered by hierarchical clustering based on Wang’s semantic similarity distance and ward.D2 

aggregation criterion. The color intensity represents the GO term enrichment significance (-log10 p-value). 

Interactive versions of these figures can be found in Supplemental file 1 and the complete lists of 

significantly enriched GO terms can be found in Table S2. 
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Figure S  2: Obesity-sensitive regions in sperm are found at tissue-specific enhancers important for 
development. 
A-B) Upset plots showing annotations for tissue-specific enhancers overlapping with deH3K4me3 regions 
with decreased enrichment in HFD sperm (A) and increased enrichment in HFD sperm (B). 
Horizontal bars on the left sides of each panel represent the number of regions overlapping with each 

genomic annotation (set size). Vertical bars on the top of each panel represent the number of regions 

belonging to intersecting annotations (intersection size). Intersection sets are represented by connecting 

nodes. 
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Figure S  3: Placenta RNA-sequencing data quality assessment. 
A) Spearman correlation heatmap on variance stabilized transcripts. The color gradient represents the 
Spearman correlation coefficient for each sample pairwise comparison.  
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B-C) Principal Component Analysis (PCA) on variance stabilized transcripts with samples labeled by batch 
(B) and experimental group (C).  
D) Venn diagrams showing the overlap of paternal obesity-induced de-regulated genes between female 

and male placentas (i), with sperm obesity-sensitive regions at promoters (ii and iii), and with the nearest 

gene to placental-specific enhancer overlapping sperm deH3K4me3 (iv and v). 
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Figure S  4: Cell-type specific marker genes selection using reference mouse E14.5 placenta single-cell 
RNA-sequencing dataset. 
A) Principal Component Analysis (PCA) plot of 4,346 single cells from mouse E14.5 placenta, with the 28 
different cell types previously identified within the placenta (Han et al., 2018). The number of cells annotated 
to each cell type can be found in Table S7. 
B) The 4,000 most highly variable genes were used for feature selection using a multi-objective optimization 
approach with the AutoGeneS package (Aliee & Theis, 2021). The plot shows distance and correlation 
values for each Pareto-optimal solution. The red triangle indicates the Pareto-optimal solution used to select 
the 400 marker genes which maximizes distance and minimizes correlation values across cell types. 
C) Heatmap showing Pearson correlation between each cell-type based on expression values of the 
selected marker genes. The color gradient represents the Pearson correlation coefficients. Cell types are 
arranged by hierarchical clustering. 
D) Expression signatures of marker genes distinguishing the different cell types detected. The heatmap 

shows the mean normalized counts per cell type (rows) for the 400 marker genes (columns) as identified 

by AutoGeneS (Aliee & Theis, 2021). Rows and columns are arranged by hierarchical clustering. 
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Figure S  5: Estimated cell type proportions across experimental groups for male and female E14.5 bulk 
placenta tissues derived from CON- and HFD-fed sires. 
A) Boxplots showing sample-specific proportions for the remaining cell types detected in the bulk RNA-seq 

data deconvolution analysis across experimental groups. Beta regression was used to assess differences 

in cell-type proportions associated with paternal obesity for each placental sex. P<0.05 was considered 

significant. 
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Figure S  6: Principal component analysis (PCA) of estimated cell-type proportions  
A-F) Principal component results for female (A-C) and male (D-F) placentas.  
A and D) Principal component analysis plot of cell-proportions. Confidence ellipses are drawn around mean 
points for each experimental group. 
B and E) Scree plots showing percentage of variances explained by each principal component (dimension).  
C and F) Variables factor map showing the top cell types contributing to sample variances. The color 
gradients on vectors represent the contribution values for each variable (cell type).  
G-H) Venn diagrams showing the overlap between the differentially expressed genes in female (G) and 

male (H) placentas, before and after adjusting for cell-type proportions.  
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Figure S  7: Quality assessment, processing, differential analysis, and deconvolution of RNA-sequencing 
data from mouse placenta in a hypoxia-induced intrauterine growth restriction mouse model. 
A) Spearman correlation heatmap on variance stabilized transcripts. The color gradient represents the 
Spearman correlation coefficient for each sample pairwise comparison.  
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B) Principal Component Analysis (PCA) on variance stabilized transcripts with samples labeled by 
experimental group.  
C) Heatmap of normalized counts scaled by row (z-score) for transcripts that code for the detected 
differentially expressed genes (Lancaster p<0.05, n=1,935 genes) placentas. Rows are orders by k-means 
clustering and columns are arranged by hierarchical clustering with complete-linkage based on Euclidean 
distances. 
D) Boxplots showing sample-specific proportions for cell types detected in the bulk RNA-sequencing data 
deconvolution analysis across experimental groups. 
E-G) Principal component analysis of estimated cell-type proportions. 
E) Principal component analysis plot of cell-type proportions. Confidence ellipses are drawn around mean 
points for each experimental group.  
F) Scree plot showing percentage of variances explained by each principal component (dimension).  
G) Variables factor map showing the top cell types contributing to sample variances. The color gradients 
on vectors represent the contribution values for each variable (cell type). 
H) Venn diagram showing the overlap between the differentially expressed genes detected in hypoxic 

placentas, before and after adjusting for cell-type proportions. 
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Summary of the thesis and contributions to original knowledge 

The present work included in this thesis aimed to explore the consequences of paternal 

diet-induced obesity on the sperm chromatin, placenta functions and offspring metabolic 

health. The contributions to original knowledge I provide through this work are as follows: 

In my first manuscript (Chapter 2), by combining two mouse models, namely a 

paternal diet-induced obesity model, and a genetic model of epigenetic inheritance, I 

assessed the effects on the sperm epigenome, and offspring metabolic health. 

(1) I demonstrated that multiple paternal sperm epimutation-inducing factors can 

result in more severe and transgenerational metabolic phenotypes in offspring, 

that are associated with transcriptomic changes in the liver across generations. 

(2) Using refined protocols that allow to scale-down the input sample while 

maintaining good signal to perform native immunoprecipitation sequencing to 

profile the sperm chromatin, I identified histone H3K4me3 as a metabolic 

sensor of paternal obesity.  

(3) This was the first study generating genome-wide sperm chromatin profiling data 

for H3K4me3 profiles associated with diet-induced obesity. Sperm histone 

H3K4me3 signatures in response to obesity revealed changes in enrichment 

at genes involved in metabolism that correspond to offspring phenotypes. 

(4) Using publicly available epigenetic profiling and transcriptomic data from 

oocytes, pre-implantation embryos, trophectoderm and placenta tissues, I 

provided evidence that sperm epigenetic profiles greatly resemble those of 

embryos, trophectoderm and placenta, whereas oocyte profiles did not. My 

analyses suggest a potential transmission of epigenetic information to impact 

embryonic and placental development. 

(5) By comparing sperm H3K4me3 profiles from obese KDM1A transgenic sires 

with lean wildtype males, I showed that combining the diet-induced obesity 

model with the germline-specific KDM1A overexpression resulted in a 

cumulation of changes in the sperm epigenome. These effects reflected the 

more severe and transgenerationally lasting phenotypes in offspring.  
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In my second manuscript (Chapter 3), using a similar paternal diet-induced obesity 

model, I assessed the implication of paternal obesity on placental functions. 

(1) I profiled sperm H3K4me3 and identified obesity-sensitive regions that showed 

some consistency across our two independent studies, despite differences in 

experimental design, technical approaches, and animal models. 

(2) The motif enrichment analysis provides avenues for future studies to delineate 

the molecular mechanisms underlying metabolically-driven changes in the 

sperm epigenome (further discussed in the general discussion of this thesis in 

the next chapter). 

(3)  I generated transcriptome-wide gene expression data from placentas derived 

from obese sires. Building on a recent study showing that paternal obesity 

induced placental hypoxia and altered vasculature, I demonstrated that the 

placenta transcriptome is altered in association with paternal diet, at imprinted 

genes and genes critical for placenta functions. Importantly, some of the sperm 

obesity-associated regions at promoters and enhancers overlapped with 

placental differentially expressed genes. 

(4) Using novel bioinformatics analysis methods and publicly available single-cell 

RNA-sequencing data from mouse placenta, I was able to infer cell-type 

proportions and detect cellular composition changes associated with paternal 

obesity, which corresponded with features that are characteristic of placental 

defects associated with intrauterine growth restriction. 

(5) I established that paternally-induced placental aberrant transcriptomic and 

estimated cellular composition profiles correspond with those of a hypoxia-

induced intrauterine growth restriction model.  

Collectively, I have made significant advances studying paternal effects on the sperm 

chromatin, the impact on offspring metabolic health, and the implications on placental 

functions. Furthermore, I have generated valuable datasets that have been deposited 

online, and these publicly available data will be useful for researchers in the field of 

epigenetics, reproduction, development, and metabolism. My work highlights the urgent 

need to better understand the paternal contribution on placenta health, pregnancy 

outcomes, and on the determinants of the metabolic health of future generations. 
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Chapter 4: General Discussion 

15.1 Potential molecular mechanisms underlying diet-induced epigenetic changes in 

sperm 

Growing evidence suggests that the sperm epigenome is dynamic, responds to the 

paternal environment, and is a sensor of metabolic health. As described in previous 

chapters of this thesis, a number of human studies have drawn associations between 

various environmental exposures with epigenetic signatures in sperm, such as exposures 

to flame retardants or DDT, chemotherapy drugs, smoking, supplementation of folate or 

antioxidants, and alcohol consumption, as well as certain health conditions such as 

elevated BMI or exercise 470,520,800–806. Additionally, numerous paternal factors, such as 

obesity, birth weight, high-fat and low-protein diets, undernutrition, diabetes, 

hyperglycaemia, age, smoking, and chemical exposures, can influence offspring 

cardiometabolic health (reviewed in 518). Linking alterations in sperm epigenetic 

signatures with paternal factors, and understanding the underlying mechanisms inducing 

these epimutations could provide avenues to develop strategies to reverse the paternal 

transmission of complex diseases and estimate transmission risks.  

15.1.1 Interplay between metabolic pathways and the epigenome 

Both studies in this thesis have presented evidence that diet-induced obesity is 

associated with enrichment changes of histone H3K4me3 in sperm. A question that 

remains is how mechanistically these epigenetics changes occur as a result of diets and 

obesity. There is a dynamic interplay between metabolic pathways as well as processes 

involved in gene regulation, via chromatin remodeling, which has been previously largely 

unappreciated. More generally, the metabolic regulation of the epigenome involves a 

number of processes that alter the abundance and tissue distribution of chromatin-

modifying metabolites. Metabolites taken up by cells can also be further metabolized by 

metabolic enzymes resulting in substrates or co-factors that serve in chromatin-

remodeling processes. The impact of intracellular metabolites abundance changes on the 

rate of chromatin modification changes also depends on the kinetic and thermodynamic 

properties of the enzymes and proteins involved. Consequently, the resulting epigenetic 

changes observed depend on the metabolic pathways altered in the context of obesity. 
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Obesity is a complex, multifactorial health conditions that involves a plethora of 

functional and molecular changes at the tissue level and at the cellular level. In order to 

speculate on the metabolic factors potentially mediating epigenetic alterations in sperm 

in our model, the molecular events that are characteristic of an obesity phenotype must 

be taken into considerations. These include – but are not restricted to – metabolic 

changes related to the one-carbon metabolism cycle and oxidative stress, the hormonal 

changes, and the molecular changes occurring in semen. Indeed, only a handful of 

molecular pathways will be discussed in this thesis, but it is important to keep in mind that 

more factors are likely involved and contributing to the epigenetic changes observed in 

sperm associated with obesity and high-fat diets, highlighting the complexity of the 

phenomena.  

15.1.1.1 Changes in the one-carbon cycle in obesity and impact on methylation 

reactions 

One of the most well-studied epigenetic modifications is the methylation of DNA and 

histone proteins. The methyl group that is either added to DNA, or to lysine or arginine 

residues of histones, is derived from the one-carbon metabolism pathway. One-carbon 

(1C) metabolism is comprised of a series of interconnected metabolic pathways (folate 

cycle, methionine remethylation, and transsulfuration pathways; see Figure 1) that 

facilitate the transfer of 1C moieties to support various physiological processes, such as 

DNA biosynthesis, amino acid homeostasis, the production of phospholipids, epigenetic 

maintenance, and redox balance. Methionine metabolism mainly takes place in the liver 
807. Upon dietary uptake, methionine is converted into s-adenosylmethionine (SAM) – the 

universal methyl-donor metabolite – which serves as a substrate for the methylation of 

DNA, RNA, histones and other proteins, as well as the synthesis of phosphatidylcholine, 

creatine, methylarginines, and more 808,809. Through methylation reactions utilizing SAM, 

this metabolite gets converted into s-adenosylhomocysteine (SAH) and subsequently to 

homocysteine 810. Homocysteine can then either be remethylated as methionine, or be 

utilized in the transsulfuration cycle to produce glutathione, an antioxidant enzyme 

involved in limiting oxidative stress and damage 811. 
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Figure 1: Schematic representation of the interconnected pathways of the one-carbon 
metabolism cycle.  
The folate cycle, methionine cycle, and transsulfuration pathways. Abbreviations: 5-
mTHF, 5-methyltetrahydrofolate; 10-f-THF, 10-formyl-tetrahydrofolate; α-KB, α-
ketobutyrate; AHCY; S-adenosyl-L-homocysteine hydrolase; BHMT, betaine-
homocysteine S-methyltransferase; CBS, cystathionine β-synthase; CHDH, choline 
dehydrogenase; CHOL, choline; CTH, cystathionine γ-lyase; Cth, cystathionine; CYS, 
cysteine; DHF, dihydrofolate; DHFR, dihydrofolate reductase; DMG, dimethylglycine; 
DNMT1/3A/3B/3L DNA methyltransferases; dTMP, thymidine monophosphate; dUMP, 
deoxyuridine monophosphate; FA, folic acid; GLY, glycine; GCPII, glutamate 
carboxypeptidase; GGH, γ-glutamyl hydrolase; GNMT, glycine N-methyltransferase; 
GSH, glutathione; HCY, homocysteine; HMT, histone methyltransferase; Hse, 
homoserine; MATI/III, methionine adenosyltransferase; MET, methionine; MTHFD1/2, 
methylenetetrahydrofolate dehydrogenase; MTHFR, 5,10-methylenetetrahydrofolate 
reductase; MTR, methionine synthase; MTRR, methionine synthase reductase NH3, 
ammonia; PRMT, protein arginine methyltransferase; SAH, S-adenosylhomocysteine; 
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SAM, S-adenosylmethionine; SAR, sarcosine; SER, serine; SHMT, serine 
hydroxymethyltransferase; SO4, sulphate; THF, tetrahydrofolate; TYMS, thymidylate 
synthase. Figure obtained from 812 (Copyright 2013) with permission from Annual 
Reviews, Inc. 

 

Disruptions in the one-carbon metabolism, such as via changes in the intake of 

methionine or folate, the modulation of the activity of enzymes involved in these 

pathways, or single nucleotide polymorphisms in genes involved in this cycle, have been 

shown to impact metabolites and cofactors abundance 813,814. These metabolites level 

changes can result in epigenetic changes at the level of methylation of DNA, RNA, and 

histones, and thereby correlate to corresponding changes in gene expression 815–823. As 

described in previous chapters of this thesis, obesity has been previously linked to altered 

sperm DNA methylation profiles, levels of methylated small RNA species, and enrichment 

of histone methylation in sperm of diet-induced obesity mouse models and of obese men 
1,514,520. These epigenetic alterations detected in sperm could arise from changes in the 

1C metabolism as a result of changes in abundances in factors involved in these 

pathways.  

There are several lines of evidence supporting the idea that 1C metabolism is 

disrupted in obesity via changes in metabolite abundances. In humans, several studies 

have drawn correlations between blood levels of various 1C metabolism metabolites with 

obesity and associated comorbidities. For example, severe NAFLD was associated with 

reduced serum folate concentrations, and BMI was inversely correlated with serum folate 
824. Hyperhomocysteinemia has been linked to the incidence of cryptogenic stroke, and 

correlated with obesity in adult patients 825. Hyperinsulinemic obese subjects show higher 

fasting levels of homocysteine and triglyceride levels, with homocysteine levels 

correlating with insulin levels 673. In obese children and teenagers, similar associations 

have been drawn with elevated plasma homocysteine correlating with obesity status, 

serum leptin and serum apolipoprotein B 826.  

In rodents, high-fat diet feeding increases plasma homocysteine, but decreases 

homocysteine levels in the liver 827. These lower hepatic homocysteine levels were partly 

attributed to (1) a down-regulation of the enzyme S-adenosylhomocysteine hydrolase, 

which is responsible to convert S-adenosylhomocysteine (SAH) into homocysteine, and 
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(2) a decrease in the SAM:SAH ratio – which can serve as an index for transmethylation 

potential. These findings suggested the obesity-associated elevated plasma 

homocysteine levels could be as a result of enhanced hepatic efflux of homocysteine as 

well as altered sulfur amino acid metabolism. In a similar DIO model feeding mice a high-

fat high-cholesterol diet – associated with weight gain, hepatic steatosis and fibrosis – in-

depth metabolomics, enzymatic, and molecular analyses revealed changes in various 

protein levels, enzymatic activity, and metabolite levels, of factors involved in 1C 

metabolism 663. In the methionine cycle, changes included hepatic methionine depletion, 

increased SAM:methionine ratio, elevated SAH and homocysteine levels, and decrease 

SAH hydrolase levels. In the transsulfuration pathway, decreased serine levels, increased 

cystathionine and cysteine, and decreased glutathione levels were detected. Lastly, in 

the transmethylation pathway, there was an increase in PC:PE ratio, indicative of elevated 

PEMT activity. These metabolomic changes suggest obesity-associated methionine 

deficiency and homocysteine elevation could be attributed to impaired homocysteine 

remethylation and changes in methyltransferase activity. Finally, further supporting the 

link between the 1C metabolism cycle and lipid metabolism, is the finding that folate 

deficiency is associated with hepatic fat accumulation via PC synthesis impairment 828,829. 

Indeed, folate deficiency reduces choline and PC levels in the liver, via (1) reduced 

choline synthesis by PEMT, (2) increased choline use as a source of methyl groups, and 

(3) decreased activity of PEMT 830,831. The limited PC production causes accumulation of 

triglycerides in the liver resulting from reduced VLDL secretion 832,833.  

Another important connection between 1C metabolism and lipid metabolism is via 

the action of an important methyltransferase enzyme. SAM is a cofactor for the action of 

the enzyme phosphatidylethanolamine N-methyltransferase (PEMT), which converts 

phosphatidylethanolamine (PE) into phosphatidylcholine (PC) 834–836. PC is the most 

abundant phospholipid found in mammalian cell membranes and bile, as well as an 

important constituent of lipoproteins, which facilitate lipids transport 837. PC can be 

synthesized through the cytidine diphosphate(CDP)-choline pathway via dietary choline 

intake, or within the liver through the conversion of phosphatidylethanolamine into PC by 

the enzyme phosphatidylethanolamine N-methyltransferase (PEMT) 835. It follows that the 

biosynthetic demand on PEMT to produce PC is higher when the fatty acid influx 
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increases such as upon a high-fat diet intake or with elevated adiposity in obesity. 

Consequently, a greater pool of SAM is mobilized to package lipids via the production of 

lipoprotein constituents. These changes can impact the epigenome given that methylation 

reactions rely on methyl groups availability from SAM 838.  Collectively, these findings 

support the idea that the 1C pathway is disrupted at multiple levels during obesity, both 

in humans and in DIO models similar to the ones presented in the studies included in this 

thesis. Although we did not measure changes in levels or activity of components of this 

metabolism cycle, we can hypothesize that these effects also occurred in our DIO models. 

The disruptions in the 1C cycle could at least partly explain the changes in sperm 

H3K4me3 observed in our studies, as well as aberrant sperm DNA methylation on that of 

others upon high-fat feeding. Manipulating components of this cycle in parallel with high-

fat feeding could help determine whether these substrate availability changes serve a 

causal role in the detected epimutations. For example, supplementation of some of the 

depleted substrates and cofactors could be administered to mice fed a high-fat diet (such 

as SAM or methionine), or transgenic mice that show elevated activity of some enzymes 

that have reduced activity upon HFD (such as S-adenosyl-L-homocysteine hydrolase) 

could be used in combination with high-fat feeding, to determine whether HFD-induced 

sperm epimutations would be blunted upon these 1C component manipulations. 

Taken together, findings from the literature suggest there is a connection between 

obesity, lipid metabolism, and the epigenome, and one logical route by which obesity 

could influence the epigenome is through the 1C metabolism. These interconnected 

metabolic cycles show clear disruptions upon high-fat feeding in rodents and obesity in 

humans, with changes in levels of a number of substrates and cofactors, proteins and 

enzymes involved in these pathways.  

15.1.1.2 Obesity-related oxidative stress and impact on the epigenome 

The central principle of oxidative stress is the imbalance between oxidants and 

antioxidants, with oxidants favouring oxidative damage. As described in the first chapter 

of this thesis (Introduction), obesity is characterized by a systemic oxidative stress state, 

with elevated production of reactive oxygen species (ROS) and reduced activity of 

antioxidant enzymes 287. Male germ cells are not proofed from oxidative stress, as 

evidence by increased ROS and DNA damage in obese individuals and animals, and with 
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infertile and subfertile patients exhibiting sperm ROS damage 294,484,844–846,490,506,781,839–

843. Additionally, global oxidative damage has been observed in sperm of mice fed a HFD 
847. Of note, sperm cells are transcriptionally inactive and lack endogenous repair defence 

systems, making developing germ cells increasingly vulnerable to insults such as 

oxidative stress and damage as they advance through spermatogenesis 848. The male 

reproductive system is equipped with antioxidative systems to minimize oxidative 

damage, such as through the expression of antioxidant enzymes in Sertoli cells, the 

presence of antioxidant enzymes and molecules in semen such as vitamin C, E, and Zinc, 

and protamines deposited during spermiogenesis protecting the paternal genome from 

damage 848.Nevertheless, if there is an imbalance in ROS such as during obesity, this 

could potentially result in oxidative damage in germ cells. Importantly, oxidative DNA 

damage as a result of ROS can result in the formation of 8-oxoguanine (8-oxo-G), which 

represents the most common form of oxidative damage 849–852. 8-oxo-G has been 

associated with oxidative stress-related conditions including diabetes 853,854. Importantly, 

oxidative stress is also known to modulate the epigenome, including potentially that of 

sperm. If such 8-oxo-G accumulates throughout spermatogenesis as a result of obesity-

induced ROS, and impact the epigenome, this can have implications for paternal obesity-

associated epigenetic inheritance.  

The epigenetic roles of oxidative stress related to 8-oxo-G can involve multiple 

mechanisms that can induce transcriptional changes. First, 8-oxo-G at promoter regions 

can induce the recruitment of repair proteins that interact with regulatory proteins to 

control transcription 855. For example, this modification at the promoters of VEGF, TNF-

α, BCL2 and SIRT1 is associated with increased transcription of these genes 856–859. 

Interestingly, the oxidative-stress induced VEGF increased expression was found to be 

associated with increased binding of the SP1 transcription factor (TF), a motif that was 

enriched in our diet-sensitive regions 597,860. Similarly, hypoxia-induced genes were 

shown to recruit the OGG1 and APE1 repair proteins, promoting the binding of HIF1α and 

induce transcription – another motif that was enriched at obesity-associated regions 
597,859. Second, 8-oxo-G is also thought to exert crosstalk with histone modifications. This 

oxidative damage mark can arise as a result of histone demethylation reactions that 

induces the binding of the repair enzyme OGG1 and subsequently induce transcription. 
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This was observed in breast cancer cells, whereby increased estrogen levels induced 

estrogen receptor binding to its target genes, and promoted the removal of H3K9me2 

methylation via LSD1 action. This enzymatic reaction resulted in local H2O2-induced 8-

oxo-G accumulation, repair proteins and TFs recruitment, resulting in transcriptional 

activation 857. Similar effects involving LSD1 action to demethylate H3K4me2 were 

observed with the induction of H2O2-induced guanine oxidation and transcriptional 

activation of androgen-induced target genes in prostate cancer cells 861,862. Although 

speculative, given the increased estrogen levels and decreased testosterone levels 

observed in obese individuals, and with the overexpression of LSD1 (KDM1A) in our 

genetic model of epigenetic inheritance, it is possible that these mechanisms occurred in 

high-fat fed KDM1A transgenic, resulting in an accumulation of epimutations that could 

explain the more severe phenotypes in offspring 1. Third and lastly, 8-oxo-G can also 

impact DNA methylation. Indeed, 8-oxo-G inhibits the methylation of cytosines by 

reducing the binding affinity for DNA methyltransferase enzymes 863–865. Additionally, 8-

oxo-G impacts the binding of methyl-CpG binding proteins (MBPs) such as MeCP2, 

interfering with their transcriptional repression activity 866. Furthermore, oxidative stress 

can also induce DNA demethylation. This occurs via the recruitment of repair enzymes at 

8-oxo-G bases that next induces the recruitment of TET1 enzymes to induce DNA 

demethylation 867. 

It remains to be tested whether germ cells accumulate 8-oxoG as a result of 

obesity-induced oxidative stress, and whether these oxidative DNA damages can be 

linked to epigenetic changes in male germ cells. Such phenomenon could be tested using 

the Click-Code-Seq method, a technique that allows the mapping of oxidative DNA 

damage in the form of 8-oxoG, genome-wide and at nucleotide-resolution 868. While 

oxidative damage is more likely to persist at heterochromatin in somatic cells, where small 

ROS molecules can accumulate but regions that cannot be reached by large repair 

enzymes, this may not hold true for 8-oxo-G profiles in sperm 869,870. There are at least 

three possibilities for genomic locations that could be more prone to oxidative damage in 

sperm and that vary based on the timing of exposure during spermatogenesis. (1) 8-oxo-

G could accumulate at heterochromatin during earlier stages of spermatogenesis with 

similar genomic features as somatic cells. (2) Oxidative damage could potentially impact 
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protamine deposition during spermiogenesis thereby making regions normally bearing 

protamines at heightened risk for oxidative attack after this spermatogenesis step. (3) 

Oxidative damage could occur at regions free of protamines in mature sperm, given that 

these proteins protect the sperm chromatin against ROS-associated damage. All three 

options are possible given that ROS exposure occurs throughout spermatogenesis during 

obesity, a state of chronic and systemic oxidative stress. Using antibody-based methods 

targeting oxidized guanine (8OHdG), previous studies have found heightened 

vulnerability to oxidative DNA damage in sperm at regions with lower chromatin 

compaction and attached to the nuclear matrix 871,872. Overall, mapping of oxidative 

damage in sperm coupled with the mapping of epigenetic marks could provide further 

insights on the contribution to oxidative damage to obesity-induced sperm epimutations. 

15.1.2 What makes specific epigenetic regions sensitive to diet-induced obesity? 

The comparative analysis on the diet-sensitive regions detected in sperm in two different 

high-fat diet mouse models from both manuscripts included in this thesis (Chapters 2 and 

3) revealed some minor overlap across studies. Although modest, this significant overlap 

suggests that specific genomic regions could be more prone to epigenetic changes as a 

result of diet-induced obesity, rather than occurring randomly in the genome. This 

heightened sensitivity could be explained by various factors that are involved in the 

establishment of these epimutations, thereby the underlying mechanisms that induce the 

epigenetic changes. Although speculative, these possibilities will be explored in this 

section, through the motif enrichment analysis of obesity-associated epimutations 

presented in the second manuscript (Chapter 3).  

 The sensitivity of epigenetic regions impacted by diet could reflect sequence-

specificity of DNA-binding proteins that are impacted upon obesity or high-fat feeding. 

One class of DNA-binding protein that could be involved in promoting such sequence 

specificity to diet-sensitive regions are transcription factors (TFs). These proteins have 

the ability to recognize and bind to specific DNA motif sequences, usually located at 

regulatory regions, and to regulate transcription 873. TFs are composed of a DNA-binding 

domain (which recognizes specific motifs), a trans-activating domain (which complexes 

with effector proteins that either have activator or repressor functions), and an optional 
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signal-sensing of ligand-binding domain (which regulates TFs activity) 874. Importantly, 

TFs exert their transcriptional regulatory roles via their activation domain, which interacts 

with other TFs, coactivators, and chromatin remodelers, to regulate RNA polymerase II 

activity and location 875. What determines TF sensitivity to chromatin is not fully 

understood, but conceivably involves motif sequences recognized by TFs, epigenetic 

modifications and chromatin structure permitting physical access of TFs to DNA, and 

context-dependent mechanisms 876,877. Thus, motif enrichment of diet-sensitive 

epigenetic regions could possibly be conferred by TFs, whose expression or binding 

affinity is altered upon obesity. One example of such mechanism was described in a 

recent article involving an ATF7-dependent mechanism underlying low-protein diet 

(LPD)-induced epigenetic changes in male germ cells 540. The mechanism involved 

suggests that LPD-associated oxidative stress induces ATF7 phosphorylation, thereby 

reducing its binding affinity to the chromatin. Consequently, ATF7-target genes show 

decreased H3K9me2 levels and increased expression of tRNA fragments. Interestingly, 

ATF7 was among the hits in the motif analysis – showing some enrichment of ATF7’s 

target motif in HFD-sensitive regions – suggesting a potential role for ATF7 in our model. 

Supporting this possibility is the knowledge that obesity is associated with systemic 

oxidative stress. However, the implication of the described model in our HFD model is 

strictly speculative and remains to be confirmed.  

 Although speculative, digging into the top hits of our motif analysis (enriched motifs 

at regions gaining H3K4me3 in sperm of high-fat fed sires) can provide insights into 

potential mechanisms underlying obesity-induced epigenetic changes in sperm, and the 

sensitivity of specific epigenetic regions to obesity-induced altered metabolism. 

Alternatively, these enriched motifs can be informative on the downstream effects the 

sperm-transmitted epimutations could have during embryogenesis, whereby the 

epimutations could impact TF binding and transcriptional regulation. Here are some 

insights on what is known in the literature as to a potential link between the regulation or 

targets of selected TF hits from our analyses (ETV4, GABPA, Fli1, Ronin, and Sp1), and 

how these molecular targets could come into play in the obesity-induced sperm 

epimutations and their impact on development. It is important to keep in mind that these 
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links are purely speculative and are only meant to illustrate potential mechanisms 

involved in our model. 

ETV4 (ETS motif family) is a transcription factor whose role has been most described 

in the context of cancer of various tissues (prostate, pancreas, breast, liver, intestine, and 

more) 878–882. Interestingly, ETV4 has been found to cooperate with estrogen receptor 

(ER) and control estrogen signalling by impacting chromatin accessibility and gene 

expression 883,884. Given that increased adipose tissue is associated with elevated 

estrogen levels, there is a possible connexion for obesity-induced elevated estrogen to 

impact ETV4 activity and contribute to epigenetic changes to its target genes 883,885,886. 

Importantly, ETV4 has been shown to interact with MED25, a subunit of the Mediator 

complex 887. This complex is a transcriptional coactivator comprised of ~30 subunits that 

facilitate promoter-enhancer communication by interacting with TFs, RNA polymerase II, 

elongation factors, and chromatin modifiers 888. MED25 binds to response elements and 

recruits chromatin modifier enzymes to induce a permissive chromatin state 889. 

Additionally, the ETV4-MED25 complex occupies enhancers and regulate transcription at 

target genes 887. These findings may illustrate a potential mechanism in male germ cells, 

by which obesity-associated increase in estrogen could facilitate ETV4 action and 

recruitment to the chromatin with MED25 and chromatin-modifier enzymes that promote 

a permissive state. It remains to be tested whether these interactions take place in male 

germ cells and could underlying the detected obesity-induced changes in H3K4me3.  

The TF GABPA (ETS motif family) has been shown to be sensitive to ROS, and ROS-

induced TNF-alpha can mediate the dissociation of GABP complex in liver 890. Depletion 

of GAPBA has been shown to induce the deposition of acetylation of histones at target 

genes 891. Given that the TF GABPA is expressed in testes and its activity is disrupted 

upon ROS, and given that testicular ROS levels are elevated in obese men, it is possible 

that GAPBA functions may be altered during spermatogenesis as a result of obesity-

associated ROS and thereby alter histone modification patterns 892. Of note, while GABPA 

has been shown to be expressed in testes, its role in this tissue is still unknown 893. 

The motifs of the TFs Fli1 (ETS motif family) and Ronin (THAP motif family) were both 

enriched at obesity-associated regions gaining H3K4me3 in sperm. Both of these TFs 

have been shown to play roles in embryonic development. Fli1 acts as a transcriptional 



 195 

regulator for hemangioblast specification (hematopoietic and endothelial cell precursor) 

and governs vascular morphogenesis during embryogenesis 894,895. Ronin is a TF that 

targets genes involved in protein biosynthesis and energy production in mouse embryonic 

stem cells, and binds to a hyper-conserved enhancer element 896. This TF is critical for 

cardiogenesis during midgestation 897. The activity of Ronin coincides with Hcf-1 

recruitment (which acts as a cofactor) and presence of H3K4me3 at target genes 896. 

Recently, H3K4me3 has been shown to have the potential of causally instruct 

transcriptional activation 898. Therefore, it follows that sperm-transmitted H3K4me3 

epimutations could potentially impact transcription during early embryonic development, 

and lead to premature expression of genes targeted by Fli1 or Ronin which bear aberrant 

H3K4me3 profile in sperm. It remains to be determined whether Fli1 and Ronin are 

expressed in early embryogenesis, and whether these aberrant H3K4me3 patterns would 

induce the recruitment of the TFs and thereby result in aberrant gene expression.  

The last TF that will be highlighted from the enriched motifs in HFD-altered H3K4me3 

sperm regions is Sp1. Sp1 binding to DNA can be induced by oxidative stress, and 

restricted by DNA hypermethylation 860,874,899,900. This TF regulates chromatin looping and 

recruits chromatin remodelers such as the histone acetylase p300 to its target genes 901–

903. It is therefore possible that obesity-related oxidative stress and changed in DNA 

methylation could impact Sp1 binding during spermatogenesis, resulting in changes in 

chromatin looping and histone modification marking upon recruitment of chromatin 

remodelers. Interestingly, genomic regions that are marked by H3K4me3 in sperm and 

persist in the pre-implantation embryo are enriched for Sp1 motifs at genes involved in 

RNA splicing 904. Sperm-transmitted epimutations could potentially impact RNA splicing 

during early development.  

These speculative ideas provide avenues of research to determine the molecular 

mechanisms that induce epigenetic changes associated with obesity and the factors that 

render the genomic regions more prone to obesity-associated epimutations. Furthermore, 

these mechanisms could also be extrapolated to predict the cascade of events that occur 

post-fertilization, and how sperm epimutations can result in altered embryonic 

development and thereby result in paternally-induced phenotypes. Indeed, these target 

sequences represent the location of sperm-transmitted epimutations, and binding sites 
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for specific TFs. If the sperm epimutations are transmitted to the embryo and escape post-

fertilization programming, aberrant epigenetic profiles may impact the binding of TFs at 

these target regions. Incidentally, these targets could impact the development and 

differentiation of tissues and in part underlie paternally-induced metabolic maladaptation.  

A caveat of the motif analysis presented is, although we can identify enriched 

motifs in a set of regions of interest, it does not necessarily mean that the corresponding 

transcription factors actually bind at these regions in this specific cell type and specific 

context. In order to validate the speculated mechanisms described above, the following 

set of follow-up experiments could be performed. First, candidate TFs should be selected, 

such as the five proteins highlighted above (ETV4, GABPA, Fli1, Ronin and Sp1). Next, 

sperm and embryos derived from control- and HFD-fed sires should be collected, and a 

chromatin immunoprecipitation followed by sequencing should be performed in these two 

tissues, targeting the TFs stated above. Next, a differential enrichment analysis should 

be performed with these generated datasets to determine whether the targeted TFs 

differentially bind in sperm or embryos at the previously detected target regions bearing 

altered sperm H3K4me3. Further studies should also assess how the activity of these 

candidate TFs is altered upon obesity (for example, as a result of oxidative stress), 

whether these changes in TF activity also impact chromatin remodelers’ recruitment, and 

whether these effects can have a causal role in obesity-induced sperm epimutation. As 

well, it should be investigated whether the sperm-transmitted epimutations impact TFs 

binding during early development and result in altered gene regulation and expression. 

15.1.3 Other considerations: Are there other factors that could contribute to the non-

genetic transmission of paternally-induced phenotypes? 

While this has not been investigated in this thesis, it is important to acknowledge that 

factors present in the seminal fluid from semen – other than the sperm epigenome – have 

been shown to contribute to fertility and offspring health. Indeed, ablation of seminal 

glands resulted in reduced fertility and fecundity, impaired preimplantation embryo 

development, hypertrophic placentas, offspring with altered postnatal growth trajectories, 

increased central adipose depots, and impaired metabolism, with more severe 

phenotypes in male offspring 905. These seminal fluid-induced effects are thought to occur 
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by impacting sperm survival and functional competence, as well as through indirect 

effects, by affecting the female reproductive tract 905–908. Both human data and animal 

models have shown that obesity impacts seminal composition, which can in turn impact 

sperm integrity 905,909–914. The molecular composition of seminal fluid has not been 

assessed in our studies, though the findings highlighted above suggest it is possible that 

high-fat fed males from our cohorts would have exhibited alterations in seminal content. 

Although the contribution of seminal fluid molecular factors in the transmission of 

paternally-induced phenotypes cannot be ruled out, these factors are unlikely to be the 

main or sole carriers of paternal information, and instead may be dispensable to induce 

offspring metabolic phenotypes. Indeed, offspring derived from in vitro fertilization (IVF) 

from gametes with either one or both high-fat fed parents, showed elevated body weight 

and metabolic disturbances 515. Further studies would be warranted to dissect the exact 

contributions of the sperm epigenome versus seminal fluid factors, on the non-genetic 

transmission of paternal environmentally-induced offspring phenotypes, particularly in the 

context of obesity. Given the potential for the cumulative impacts on the sperm 

epigenome and offspring health upon multiple stress factors 1,477, it is conceivable to 

expect potential cumulative detrimental effects of the sperm epigenome and seminal fluid 

compositions on metabolic impairments in the progeny (conceived via natural mating). 
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15.2 Consistency and discrepancies of findings from this thesis versus the literature 

15.2.1 Sperm epimutations transmission of somatic tissues in offspring  

The first manuscript of this thesis included a comparative analysis of the obesity-induced 

changes in the H3K4me3 with the paternally-induced differentially expressed genes in 

offspring livers. The findings suggested that there was minimal overlap between sperm-

altered H3K4me3 promoters and genes showing hepatic differential expression in 

offspring, with also distinct transcriptomic programs enriched in each deregulated gene 

sets across tissues. Various animal studies have provided contradictory findings as to 

whether there is a direct transmission of sperm epimutations to offspring metabolic 

tissues. For example, several studies have linked sperm epigenetic patterns with offspring 

altered gene expression in various somatic tissues such as the liver, gonadal white 

adipose tissue, skeletal muscle, and pancreatic islets 505,521,607. Nevertheless, these 

studies usually lack genome-wide information or demonstrate only modest changes in the 

epigenetic changes on somatic tissues, and highlighting only a few genomic targets 

assessed. In contrast, several studies on various mouse models of parental exposures of 

undernutrition, folate deficiency, or cigarette smoking, inducing offspring phenotypes, 

have identified sperm differentially methylated regions (DMRs) that did not correspond to 

offspring somatic tissue DMRs 541,556,562,915. Given the numerous cellular events that 

separate the sperm from fully matured somatic tissues, such as cellular division, 

differentiation, migration, maturation and more, it might be unlikely that a sperm-mediated 

epimutations can directly impact adult somatic tissues. Instead, it may be more likely that 

sperm-inherited epigenetic changes upon obesity are (at least partly) retained in the 

embryo, and induce a cascade of molecular events that subsequently result in altered 

somatic tissue functions, expression, and epigenetic patterns.   

15.2.2 Discrepancies in sexually dimorphic responses to paternal obesity: Challenges in 

making comparisons on metabolic characterization across studies  

A number of studies in the fields of obesity, metabolism, DOHaD, and POHaD research, 

have also observed variations in the severity or presence of metabolic phenotypes when 

comparing male and female offspring sired by males fed a special diet. In some studies, 
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females are more vulnerable, whereas in other papers males are more susceptible. An 

important reason for the discrepancies in findings is due to the fact that data in the 

literature are fragmented and therefore not always directly comparable because results 

are obtained under different conditions, using different endpoints and using different 

animal models of obesity. The lack of harmonization in rodent metabolic phenotyping 

makes it difficult to make any clear conclusions regarding the exact sexually dimorphic 

effects of paternally-induced obesity, therefore cautions should be made when comparing 

findings from one study to another. Indeed, a plethora of parameters differ across studies.  

First, the species (mouse versus rat), and the strain and substrain varies across 

studies, and (sub)strain-specific single nucleotide polymorphism can influence 

metabolism 916–919. For example, BALB/c mouse strain is known to be resistant to HFD-

induced obesity, and the J and N substrains of the C57BL/6 show variable susceptibility 
916,920. Of note, the J-versus-N metabolic differences are thought to arise – at least partly 

– from lower energy expenditure in C57BL/6J mice, with more marked differences in 

female mice 916. This is of importance as some studies report increased metabolic 

sensitivity in females, whereas others state this susceptibility in males – potentially due 

to differences in substrains used. Second, the timing and length of the dietary exposure 

can vary – with chronic versus acute interventions showing variable metabolic 

consequences, and age being a significant factor impacting metabolism 921. Third, the 

diets used greatly differ across studies: the type of control diets (chow versus low-fat 

diets) and obesity-inducing diets used (high-fat, high-fructose high-sucrose, Western 

diets, etc.), and the diet compositions and characteristics (the percentage energy coming 

from macronutrients, and the source of fat, etc.). Every diet can induce different degrees 

of severity of phenotypes measured 922. Fourth, the endpoints measured also greatly vary 

across studies, as well as the methods used for measurements. For example, adiposity 

and body composition can be measured by weighting relevant tissues, or with different 

scans (dual X-ray absorptiometry – DEXA, micro computed tomography – microCT, etc.); 

metabolic functions can be assessed with a wide range of tests such as oral or 

intraperitoneal glucose tolerance test (o/ipGTT); the area under or above the curve (AUC 

or AAC, respectively) can be calculated and compared; and a number of different 

metabolites can be measured in the blood. When it comes to these different endpoints, 
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the timing of the test (during the day), the length of fasting before testing, and the 

concentration of the solution administered for a test can vary.  

Overall, the exponential number of possible combinations in terms of animal 

model, experimental design, endpoint measured, and methods used, highlight the 

difficulties in faithfully comparing findings from one study to another, and can at least 

partly explain the potential discrepancies observed across different studies addressing 

similar research questions.  

In order to improve the ability to compare findings across studies that involve 

rodent metabolic characterization, standard operating procedures should be reinforced in 

such studies in order to improve reproducibility 923. During the review process for 

publication, reviewers and editors should make mandatory the inclusion of information 

related to study design and animal models used to allow proper comparisons and 

reproducibility of findings. This is of particular relevance, as unfortunately, many articles 

omit to mention the strain and/or substrain of mice being used, or the sex of the animals 

assessed are not specified, for example, making it impossible to accurately compare 

results. In terms of study design, although more costly and time-consuming, it would be 

worth characterizing metabolically all animals within a litter, instead of only few randomly 

selected animals. Indeed, there can be high variability in terms of metabolic phenotypes 

within a litter, and this variability is not captured or well represented when only select 

animals are assessed. This would allow to better predict the penetrance of phenotypes 

and estimate risks for offspring phenotypes. Lastly, it would be beneficial to establish 

strain- substrain-, sex- and age-specific scale and cutoffs for various metabolic 

measurements (for example: BMI, fasting glucose levels, etc.) to establish clear 

diagnostic criteria for metabolic conditions in rodents. Overall, these harmonized data 

could be deposited in publicly available repositories, similarly to the following 

(https://www.mousephenotype.org/about-impc/), but open for researchers to provide their 

raw data.  

https://www.mousephenotype.org/about-impc/
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15.2.3 Mechanisms underlying sexually dimorphic responses associated with paternal 

obesity 

Some of the sexually-dimorphic characteristics of obesity and its associated co-

morbidities can translate to what is observed in humans 924. Worldwide, obesity is more 

prevalent among women 925. However, women are less likely to develop type 2 diabetes 

in comparison to men 926. Gonadal hormones are thought to play a central role in the 

sexual dimorphism observed with respect to obesity phenotypes, risks, and associated 

co-morbidities, by acting on different tissues and throughout a life-course. One such 

gonadal hormone-targeted tissue are fat deposits. As described in the first section of this 

thesis, visceral fat has the most impact on metabolic health in comparison with lower body 

fat which consists of subcutaneous depot 927. Incidentally, women – and female rodents 

– accumulate more subcutaneous and less visceral adipose depots than men or male 

rodents 928,929. Supporting a contributing role of female gonadal hormones on adipose 

tissue biology is the finding that surgical ablation of ovaries – preventing the endogenous 

production of estradiol and progesterone – results in increased susceptibility to diet-

induced metabolic disturbances in female rodents 612,930–932.    

Next, a non-gonadal hormone mechanism underlying sexually dimorphic 

susceptibility to obesity and metabolic syndrome involves a neuro-immune pathway 612. 

A study showed that diet-induced obesity resulted in increased neuro-inflammation in 

males which resulted in microglia activation, peripheral macrophage infiltration in the 

hypothalamus. This male-specific inflammation was also associated with impaired 

hypothalamic function, decreased synaptic proteins and reduced numbers of GnRH 

neuron spines. Although the factor that causes this male-specific neuro-inflammation was 

not identified, females showed increased levels of the anti-inflammatory cytokine IL-10.  

Other brain differences are thought to underly sexually dimorphic susceptibility to 

obesity. Estradiol establishes neural sex differences in development, and has a strong 

influence on energy balance in adulthood. This hormone exerts its action via the 

transcription factor estrogen receptor-alpha (ER𝝰𝝰), which orchestrates sex-biased gene 

expression program in the brain 933. Estrogen also plays a role in driving physical activity 

by acting through melanocortin-4 receptor (MC4R) signalling 934. Importantly, this 
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pathway is known to be central in the regulation of food intake and has been linked to 

monogenic forms of obesity 47.  

 Lastly, another example of mechanisms that can explain sex differences in 

metabolic phenotypes and sensitivity to diet-induced obesity involved the microbiome. 

Gut microbiome depletion was found to abolish differences in glucose homeostasis 

between male and female mice. Additionally, microbiota transfer from a male donor 

induced insulin resistance in female recipients. Castration of males inducing androgen 

depletion resulted in changes in microbiome content to resemble more that of females, 

improved glucose tolerance. These effects were counteracted upon dihydrotestosterone 

treatment. These androgen-dependent effects were shown to be modulated via changes 

in circulating glutamine and glutamate levels to induce glucose homeostasis sex 

differences 935. 

15.2.4 Intergenerational and transgenerational effects of paternal diet-induced obesity 

In the second chapter of this thesis, our manuscript described transgenerational 

transmission of obesity phenotypes only in descendants of sires that were exposed to two 

epimutation-inducing stressors: a diet-induced obesity, and a germline-specific 

overexpression of a histone modifier enzyme. In contrast, descendants of wildtype males 

fed a high-fat diet did not exhibit transgenerational metabolic disturbances. Because 

descendants (F1) of high-fat fed KDM1A transgenics showed more severe phenotypes 

compared to offspring of obese wildtype sires, it is possible that the severity of the 

phenotypes influences the probability of the next generation to exhibit detectable 

phenotypes. This was exemplified by the finding that the combination of high-fat feeding 

and KDM1A germline overexpression resulted in increased sperm epimutations at the 

level of H3K4me3 1. In other words, more severe phenotypes (in the F1 generation) as a 

result of paternal overnutrition, may be sufficient to induce similar sperm epimutations as 

those detected in F0, and result in the transmission of similar metabolic disturbances in 

the next generation (F2). 

It remains to be determined how mechanistically these effects can persist and be 

transmitted transgenerationally. In this study, we did not profile the sperm chromatin of 

the F1 generation, and therefore cannot conclude that this mark was still altered in the 



 203 

sperm of these animals, nor that H3K4me3 specifically is associated with the 

transgenerational transmission of metabolic disturbances in the F2 generation. This 

epigenetic mark remains a potential candidate given its previous association with the 

transgenerational transmission of developmental abnormalities 476,543. Furthermore, we 

did not phenotypically characterize animals beyond the F2 generation. It is likely that if 

phenotypic effects were detected beyond the F2 generation, the metabolic phenotypes 

would be diluted across generations. Indeed, although not tested statistically, a gradual 

reduction in the severity of phenotypes across generations could already be observed in 

some of the metabolic parameters tested as well as the number of differentially expressed 

genes in the livers in our study from F0 to F2 animals 1. These effects could arise from a 

gradual shift in epigenetic patterns in sperm across generations, as the generational 

distance increases from the F0 generation. Such generational dilution of epimutations has 

been observed in previous studies of transgenerational effects, including in a rodent 

model of vinclozolin toxicant exposure, as well as in two transgenerational epigenetic 

inheritance models of heat-induced stress in C. elegans 936–938. 

Absence of evidence is not evidence of absence: It is worth noting that although we 

did not observe transgenerational effects in descendants of wildtype males fed a high-fat 

diet, it is possible that offspring of the F2 generation may still show increased susceptibility 

to metabolic disturbances. In other words, these animals may be more prone to develop 

obesity and metabolic syndrome, upon a “second hit” such as a high-fat diet challenge. 

This is concordant with obesogens such as endocrine-disrupting chemicals that do not 

induce obesity on their own, but enhance obesity development risk 117.  

Currently, to my knowledge, the only reports of transgenerational inheritance of 

obesity through the male germline in rodents either involves a dietary challenge in the F2 

generation 607, a genetic model of epigenetic inheritance (the Avy Agouti mouse) combined 

with a Western diet challenge in the descendants 606, the use of pharmacological agents 

to induce insulitis and thereby prediabetes in sires 521, or paternal high-fat feeding with 

only very subtle effects in F2 offspring 506. These findings suggest there is still a lack of 

clear evidence to support transgenerational transmission of paternal obesity in rodents 

that do not rely on dietary challenge or that are not initiated by genetic mutations. As 

suggested, it appears that F2 offspring may not show obvious metabolic disturbances, but 
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instead be at heightened risk to develop such conditions upon a dietary challenge or other 

obesity-inducing exposures.  
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15.3  Limitations of experimental approaches and model used, and translatability to 

human conditions 

15.3.1 Diet-induced obesity model 

The diet-induced obesity mouse model has been established about six decades ago and 

has been widely used to model obesity, type 2 diabetes, and metabolic syndrome 503. 

While the use of this model has allowed to unravel the etiology and molecular 

mechanisms involved in these conditions, this model involves some limitations, and 

cautions must be taken when drawing conclusions with findings derived from such rodent 

model to extrapolate to human conditions. 

15.3.1.1 The diets and animal model 

Both studies included in this thesis involved the use of a high-fat diet (HFD) to induce 

obesity (60% kcal fat, D12492, Research Diets Inc. was used in both studies). This 

standardized laboratory animal diet ensures experimental reproducibility and has been 

widely used worldwide and characterized in-depth over the years. In rodents, this HFD 

consistently induces obesity, hyperglycemia, insulin resistance, liver steatosis, 

hypertriglyceridemia, adipocyte hypertrophy, hypertension, impaired intestinal barrier 

integrity, with some variability in phenotypes as a result of different strains/substrains 

used and length of dietary intervention 939. While these formulated diets can replicate 

some of the metabolic disturbances and obesity-associated pathology observed in 

humans, it does not fully recapitulate the dietary patterns such as Western diets 

consumed by humans 940. Indeed, according to the National Health and Nutrition 

Examination Study (NHANES), a typical Western diet consists of 49% kcal from 

carbohydrates, 35% kcal from fat, and 16% kcal from protein 941. This is substantially 

different from the macronutrient compositions of the formulated HFD for rodents, which is 

composed of 20%, 60%, and 20%, energy from carbohydrates, fat, and protein, 

respectively. Additionally, given these HFDs are formulated to maintain animal health, the 

micronutrient content also differs from that of a Western diet. Although a HFD in rodents 

can largely recapitulate human obesity phenotypes and associated comorbidities, the 

model may not fully emulate the progression of the condition, such as the transition of 

NAFLD to NASH 942. Other diets have been developed to better recapitulate humans 
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eating patterns, such as the “cafeteria diet” whereby mice are free to select from various 

palatable foods. Nevertheless, these diets are poorly defined in terms of micronutrient 

composition and therefore show reduced replicability 943,944. To study NAFLD and NASH 

conditions and their progression, choline- and methionine-deficiency diets have been 

used, which impact hepatic lipid metabolism resulting in liver damage. Although these 

diets model some of the characteristics of NAFLD and NASH, they do not recapitulate 

metabolic disturbances observed in humans affected with these conditions 945. Lastly, 

given obesity is a multifactorial condition in humans, involving many underlying 

intertwined causes and interacting factors, the simplistic nature of these rodent DIO 

models cannot emulate the complexity of human obesity. Overall, it is generally accepted 

that no diets can perfectly model human conditions including the complexity of obesity 

causes, characteristics and progression 939,940,946. Nevertheless, they can be useful to 

study mechanisms underlying these conditions, such as epigenetic inheritance 

mechanisms in the presented studies. 

In the manuscripts included in this thesis, two different diets were used as control. 

In the first study, we used a low-fat diet (10%kcal fat; D12450, Research Diets Inc.), 

whereas in the second article we used a regular chow diet (17% kcal fat; Harlan 8640 

Teklad 22/5 Rodent Diet). The low-fat diet (used in the first study) matched its 

corresponding high-fat diet for sucrose amount, nutrients and vitamin content, allowing to 

strictly assess the impact of obesity resulting from increased fat content. In contrast, the 

regular chow diet (used in the second study) does not allow to control for these specific 

dietary components. Nevertheless, whether the HFD treatment is compared to either 

control diets, in both cases the HFD induces obesity, paternal obesity is associated with 

reproducible and comparable effects in offspring, and there are overlaps between the 

detected sperm epimutations 1,510,597. While there can be pros and cons in using either 

the low-fat or the chow diet as control, using different parameters in the experimental 

design across studies allowed us to determine whether these experimental discrepancies 

– among other differences in technical approaches across both studies – could produce 

comparable results in terms of the detected sperm epimutations. Indeed, we did observe 

some overlap on the diet-sensitive regions detected, with comparable genomic 

characteristics of obesity-associated regions across studies, as well as similar functional 
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pathways enriched. While this remains to be directly tested, it is conceivable to expect 

that using the same control diet in both studies would have resulted in a greater overlap 

of obesity-associated regions in sperm across studies. 

While the animal models used in the present studies cannot fully recapitulate 

human metabolic disorders and obesity phenotypes, they allow to control for numerous 

factors such as environmental exposures, diets, genetic background. Thus, allowing to 

make conclusions strictly from paternal diet-induced obesity, the impact on the sperm 

epigenome, and on offspring health. Such studies and experimental design are not 

suitable for human subjects. In the future, it would be interesting to clearly dissect the 

differential effects of various paternal diets that induce obesity and how they variably 

impact the sperm epigenome and offspring health.   

15.3.1.2 Impact of maternal preconception exposures to obese sires during mating 

Although great care was given to minimize preconception maternal interactions with sires 

used for breeding, maternal exposure to these males was inevitable given natural mating 

as breeding method, and therefore this should be kept in mind as a limitation. In order to 

completely prevent maternal preconception exposures to obese sires, assisted 

reproductive technologies (ART) such as in vitro fertilization (IVF) would have been 

required, where gametes would be collected separately. We opted not to perform IVF 

given that ART can impact the epigenome and embryonic development 566. As such, we 

did not want to confound any factors with these epimutation-inducing procedures. 

Nevertheless, effects on maternal exposure to paternal diet, their microbiome, and other 

potential factors, are likely minimal. Indeed, as mentioned in a previous section, females 

require more time in order to gain excess weight on a HFD, and to elicit metabolic 

disturbances 612. Additionally, it was reported that natural mating of chow-fed females with 

high-fat fed males did not alter maternal adaptation to pregnancy, maternal glucose 

metabolism, compared to females that were mated with (nonobese) sires fed a regular 

diet 510. 

15.3.2 Obesity phenotype characterization and hepatic molecular profiling 

The second chapter of this thesis involved the metabolic characterization and hepatic 

transcriptomic profiling of animals across generations to delineate the metabolic health 
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consequences of paternal diet-induced obesity in combination with an epigenetic model 

of inheritance with the germline-specific KDM1A overexpression. For the metabolic 

characterization, there are several pros and cons on the different tests chosen, and more 

tests could have been performed in order to provide a more in-depth characterization as 

well as to allow to differentiate the intricacies of the effects of paternally-induced metabolic 

phenotypes in offspring.  

For the glucose tolerance test (GTT), we performed an intraperitoneal injection of 

glucose. We followed the International Mouse Phenotyping Consortium, which 

exclusively uses the ipGTT for glucose metabolism assessment 923. There are debates 

as to whether an intraperitoneal (ip) versus oral (o) glucose administration are preferable 

to assess glucose tolerance. Indeed, the glucose administration through an ipGTT results 

in gastrointestinal bypassing, thereby lacking the ability to detect the effects of incretins 
947. On the other hand, while the oGTT may be more physiologically relevant, this method 

is thought to be technically more challenging, more stressful for the animal – which 

introduces variability in the outcome – and can result in incomplete glucose retention, as 

well as injuries to the animal 948.  

For the assessment of adiposity, we weighed two key fat deposits, namely the 

gonadal white adipose tissues and the mesenteric white adipose tissue. While this 

approach was inexpensive, rapid, and sufficient to detect changes across experimental 

groups, a whole-body scan would have revealed more valuable information to better 

characterize the animals. Indeed, dual-energy X-ray absorptiometry (DEXA), nuclear 

magnetic resonance spectroscopy (NMR), as well as micro computerized tomography 

(microCT) can be used in rodent models to simultaneously measure lean and fat mass 
949.  

 The characterization of liver functions in the first study presented in this thesis 

(Chapter 2) allowed to confirm whether animals exhibited transcriptomic changes across 

generations and whether these changes could relate back to obesity-induced alterations 

in the sperm epigenome. Although information, alternative methods could have been 

used which would have provided higher-content information. First, regarding the hepatic 

transcriptomic experiment, a single-cell RNA-sequencing or single-cell spatial RNA-

sequencing experiment could have been performed. Indeed, bulk RNA-sequencing 
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consist of samples with heterogeneous mixtures of cell types and therefore represent 

averaged expression levels, in contrast to single-cell omics methods which provide 

expression levels from individual cells 737. Additionally, bulk RNA-sequencing is 

confounded by the differences in cell-type proportions. The liver is of particular interest 

for single-cell profiling, given the highly heterogenous nature of hepatocyte transcriptomic 

profiles. This heterogeneity arises from the unique architecture of the liver, consisting of 

lobular zonation. Additionally, single-cell profiling would be important in this experimental 

setting, given that we have detected differentially expressed genes in offspring of obese 

sires, which were enriched for genes related to inflammatory pathways, particularly in 

male offspring 1. These deregulated pathways may reflect the infiltration of inflammatory 

cells, a hallmark of the progressive form of non-alcoholic fatty liver disease (NAFLD) – 

namely, non-alcoholic steatohepatitis (NASH) 950. Currently, single-cell (and spatial) 

transcriptomic maps have been established in whole liver from mice and humans, and 

have revealed coordinate-specific division of labour of hepatocytes, with approximately 

half of genes that are significantly zonated 265,951–953.  

Next, in order to further assess the pathology of the livers, a histological scoring 

system could have been applied to our liver samples 950. These protocols have been 

previously established and showed high reproducibility across different rodent models 

and across all stages of NAFLD. This preclinical scoring system consists of analyzing 

histological slides with defined criteria that assess the extent of steatosis, hepatocellular 

hypertrophy, inflammation, and fibrosis in the samples. These analyses could have 

revealed whether the animals showed signs of various stages of NAFLD or NASH. More 

interestingly, it would have been interesting to assess whether female offspring show any 

signs of NAFLD, given that they did not exhibit obvious metabolic disturbances, but 

showed different hepatic gene expression. The histological scoring could have allowed to 

determine whether female livers show early signs of steatosis.  

15.3.3 Sperm epigenome and profiling 

Spermatozoa are challenging cells to profile histone marks and other DNA-binding 

proteins, owed to their highly compacted chromatin via disulfide bonds formed with 

sperm-specific proteins – protamines 430. The past decade has been marked with the 
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development and advancement of technologies to profile sperm chromatin, with the 

adaptation of classic methodologies such as chromatin immunoprecipitation followed by 

sequencing (ChIP-seq) to be compatible with the uniqueness of the sperm chromatin 

features and structure 614,615. While the ChIP-seq approach used in this thesis was the 

best available method for sperm chromatin profiling at the time the experiments were 

performed, this technique has some caveats that should not go unrecognized. First, ChIP-

seq is limited by the inherent challenges that antibody-based methods possess. 

Antibodies can sometimes result in non-specific binding as well cross-reactivity with other 

epitopes 954. To circumvent the potential non-specific binding, we focus our analyses on 

genomic regions showing enrichment for the histone mark of interest. We have found 

reproducible profiles across studies using this protocol and antibody, with good sample-

to-sample correlation 1,221,476,477,597,615. Additionally, while the H3K4me3-specific antibody 

used may elicit some cross-reactivity with other H3K4 methylation states, data from 

previous studies from the lab suggest the antibody can at least discriminate between 

H3K4me2 and H3K4me3, given that KDM1A-induced enrichment changes at these two 

marks showed opposite directionality change 476.   

 In the years that have followed the execution of the ChIP-seq experiments 

presented in the manuscripts of this thesis, new methodologies have been developed 

which have some advantages over classical ChIP-seq methods. Namely, Cleavage 

Under Targets and Tagmentation (CUT&Tag) and Cleavage Under Targets and Release 

Using Nuclease (CUT&RUN) 955,956. Both of these methods share the same underlying 

principle, where antibody-targeted controlled enzymatic cleavage induces the release of 

targeted DNA-protein complexes. This strategy provides exceptionally high signal-to-

noise ratio given that the unbound chromatin is not fragmented nor subjected to 

immunoprecipitation. While these techniques seem like attractive alternatives to currently 

available ChIP-seq methods for sperm chromatin profiling, they still pose some 

challenges. For example, this method has been validated for various histone marks, but 

not widely for less abundant DNA-binding proteins such as transcription factors. This is 

because CUT&Tag works most efficiently when the epitope of interest is abundant, which 

would be a challenge to target histone modifications in sperm given the vast majority are 

replaced by protamines. It was also proposed in a new preprint that this method may 
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slightly be biased towards open chromatin regions, resulting in potential misinterpretation 

of the detected signal distributions and changes upon conditions (such as obesity) with 

this technique 957.  Additionally, these methods have yet to be adapted or made widely 

available to be used in sperm cells, with – to my knowledge – only one publication thus 

far that leveraged the CUT&Tag method to map a histone mark in sperm 958. If these 

challenges can be surpassed, establishing a sperm-adapted protocol from these recently 

introduced methods would be beneficial to generate sperm histone maps with improved 

signal-to-noise ratio. In the long run, these methods could even bring sperm chromatin 

mapping to the single-cell level with inclusion of multi-omics profiling, given that CUT&Tag 

has recently been adapted for these purposes (single-cell multi CUT&Tag) in somatic 

cells 959,960. 

15.3.4 Paternally-induced placenta gene expression changes and cellular composition  

The second manuscript (Chapter 3) involved in assessing the transcriptional impact of 

paternal diet-induced obesity on mid-gestation placentas. Our differential gene 

expression analysis revealed deregulated genes in placentas as a result of paternal 

obesity. Using a deconvolution analysis, we detected changes in cell-type proportions, 

which resembled those detected in hypoxic placentas associated with intrauterine growth 

restriction. While this work provides advancements in our knowledge on the paternal 

transmission to placental defects, as well as valuable datasets for such research, there 

are limitations and knowledge gaps that remain from these analyses.  

 There were differentially expressed genes in placentas that were detected in 

association with paternal obesity. However, these data do not provide information on 

whether the differentially expressed genes detected are as a result of changes in cellular 

functions, or aberrant cellular composition within this tissue. While the deconvolution 

analysis suggests there are some changes in cell-type proportions, the former possibility 

cannot be ruled out, and one outcome does not prevent the other. Future studies should 

repeat these experiments using single-cell RNA-sequencing approaches in order to 

detect cell-type-specific differential expression, which would provide deeper information 

on the pathophysiological changes occurring in placentas as a result of paternal 

preconception obesity. Additionally, these experiments would permit the validation of the 
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cellular proportion changes estimated via the deconvolution approach. Furthermore, this 

would also allow to detect changes in cell-types that are found in smaller proportions 

within the tissue, such as inflammatory cells, which currently cannot be reliably estimated 

with a deconvolution analysis. Such single-cell and single-nuclei approaches have 

already been adapted for placenta tissues 961–966, and improved protocols have recently 

been published for the dissociation of single cells 967. 

Importantly, only one developmental stage was assessed in this study (E14.5). 

The mouse model used has been previously characterized showing altered placenta 

phenotypes associated with paternal obesity at E14.5 and E18.5 fetal developmental 

stages 510. While we can safely state that it is established that the placenta defects 

previously observed manifest in mid-to-late gestation, these effects likely originate early 

in development. This possibility is exemplified by studies revealing changes in cellular 

allocation to the trophectoderm versus inner-cell mass of the blastocyst as a result of 

paternal obesity 489,491. Consequently, it would be worth performing multiple RNA-

sequencing experiments – preferably at the single-cell level – assessing multiple time 

points earlier in development. These experiments would provide a map of the 

developmental trajectories of aberrant gene expression, and would permit to track these 

differentially expressed genes as early as the pre-implantation embryo and throughout 

development. Additionally, one could (1) identify the deregulated genes that persist 

across developmental stages, cellular division and differentiation, and most importantly 

(2) determine the cell-type-specific deregulation of gene expression (using single-cell 

methodologies) to better understand the molecular mechanisms underlying paternally-

induced placenta defects. 

 Regarding the translatability of the data related to our placenta work, cautions 

should be made regarding the extrapolation of the findings to human health. While many 

studies using rodent models have been useful in studying the placenta, its development 

and pathophysiology, there exist some differences between mice and human placentas 

in terms of anatomical structures, cellular composition, trophoblast subtypes, and 

molecular content. 576,966,968. 

First, at the anatomical level, there are several structures that differ between 

mouse and human placentas. In mice, the labyrinth comprises three layers of trophoblasts 
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between the maternal and fetal blood, whereas in humans, the chorionic villi contain two 

layers in earlier stages of gestation, and then one layer later in gestation 576. Additionally, 

in mice, the trophoblast cells that anchor the placenta to the uterine wall (which are 

composed of parietal giant cells and glycogen trophoblasts) show less invasiveness than 

that of humans, which correspond to the extravillous trophoblasts 969–972. At the cellular 

level, both species show equivalency in terms of cell-types present in the placenta, with 

some cells’ formation that arise from differing mechanisms 973. For example, hyperdiploid 

trophoblast cells form at the placental implantation site for both species, but the 

hyperdiploidy of the cells occur in divergent mechanisms. In mice, trophoblast giant cells 

result from DNA synthesis that takes place without nuclear division (i.e. 

endoreduplication), whereas in humans, extravillous trophoblasts arise from mechanisms 

that are still poorly understood 974. Third, at the transcriptional program level, mouse and 

human placentas slightly differ. For example, the transcription factors ESRRB and SOX2 

seem to have a more prominent role in mouse trophoblast development than in humans, 

as they show low expression levels in this latter species, and humans lack the receptor 

isoform (FGFR2C) which drives expression of Esrrb and Sox2 in mice 975–977. Another 

marked difference is the absence of EOMES in human trophectoderm and placenta, an 

essential transcription factor for mouse trophoblast self-renewal 978–980.  

Nevertheless, placentation and associated abnormalities are challenging to study, 

and the mouse has served as a valuable model to study these processes, given the core 

features of placentation are still similar across species. Indeed, both species have a 

hemochorial placenta that also share similar molecular regulation 570. That is, the 

anatomical arrangement of the placenta where the maternal blood comes in direct contact 

with the fetal-derived trophoblast-lined villi. Additionally, these two species share 

approximately 80% of regulatory conserved genes that serve for placentation, as well as 

some key markers and signalling pathways 576,968. The inter-species differences related 

to placentation highlight the importance to validate placental mouse processes to the 

human system.  

 

 
 



 214 

15.4 Remaining gaps in knowledge and future directions 

15.4.1 Are paternal effects on the sperm epigenome and on future generations health 

reversible? 

Findings shown in this thesis as well as in the literature support that paternal 

environmental factors such as obesity can induce sperm epimutations and are associated 

with phenotypes in offspring. An important question that remains in the fields of paternal 

epigenetic inheritance and paternal preconception health in the context of obesity, is 

whether these effects are reversible at the level of the sperm epigenome, and whether 

offspring metabolic phenotypes can be prevented. There are several lines of evidence in 

the literature that support these possibilities.  

15.4.1.1 Reversibility of offspring phenotypes 

In the context of obesity, paternal exercise has been suggested to protect from the 

detrimental metabolic impacts of paternal diet-induced obesity on offspring. Indeed, a 

paternal diet-induced obesity (DIO) intervention, combined with chronic voluntary 

exercise, gave rise to males that sired offspring with reduced sensitivity to a HFD 

challenge 507. Supporting these findings, paternal DIO followed by exercise, restores 

offspring metabolic functions, reduces adiposity, increases muscle mass, restores 

pancreatic islet morphology and miRNA profiles 516. In contrast, another study showed 

conflicting results, where paternal long-term exercise alone resulted in offspring increased 

susceptibility to metabolic disturbances upon a HFD challenge 508. These discrepancies 

may be due to the fact that this latter mentioned study performed an exercise intervention 

alone, rather than combined with a DIO intervention, as well as the small sample size 

used in some of these studies, for endpoints that are known to show relatively high 

variability. Nevertheless, the conflicting results highlight the need to further replicate these 

findings and provide conclusive evidence to determine whether paternal exercise can 

provide protection for metabolic disturbances in offspring via the sperm epigenome. 

Additionally, while some of these studies have brought advances in our knowledge that 

paternal preconception exercise following a diet-induced obesity intervention can prevent 

or reduce the detrimental impacts related to obesity in offspring, some of these reports 

have only investigated the effects in male offspring. Consequently, further investigation 
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will be required to determine whether the impacts differ in male and female offspring, and 

if so, how these sexually dimorphic effects take place.  

Other preconception interventions following paternal HFD intervention in rodents 

that have shown to be beneficial to prevent offspring metabolic disturbances involved 

other weight loss-inducing procedures, such as exercise, exercise combined with diet 

reversal, or diet reversal alone 507,509,516,981–983. Micronutrient supplementation including 

methyl donor or taurine supplement has also been shown to improve offspring 

phenotypes. These intervention studies suggest that the paternal transmission of obesity-

associated phenotypes can be prevented by weight-loss strategies or by modulating 

metabolic pathways via micronutrients supplement 984. 

15.4.1.2 Reversibility of sperm epimutations 

Supporting the concept that an exercise intervention can restore sperm epigenetic 

signatures, paternal exercise not only reverses paternal effects of HFD on offspring 

metabolic phenotypes, but also improves sperm parameters and reverses changes in 

sperm RNA content 509. Other intervention options that involve weight loss are likely 

strategies that would be successful in reversing the detrimental impacts of DIO on the 

sperm epigenome and offspring health. For example, a Roux-en-Y gastric bypass surgery 

(GBP) is one such intervention that is known to induce weight loss, improve insulin 

resistance and type 2 diabetes, in severely obese individuals. Paired analysis of 

individuals before, one week after, and one year after a GPB procedure, showed a 

reversal of sperm DNA methylation patterns 520. Of note, this intervention is used as a last 

resort for weight loss and metabolic health improvement, with some risks associated to 

the procedure, and therefore is not a widely accessible or ideal solution. Nevertheless, 

these findings provide further evidence for the proof-of-concept that obesity-associated 

sperm epigenetic changes can be reversed upon weight loss. It remains to be tested 

whether these findings hold true for obesity-induced alterations in sperm histone 

methylation. 

15.4.1.3 Other possible paternal preconception interventions to consider 

Another question that remains, is whether other preconception interventions in 

future fathers – aside from exercise – can have protective effects on offspring metabolic 

health and sperm epimutations. While it is currently not possible to provide specific 
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interventions given the molecular mechanisms underlying obesity-induced epigenetic 

changes are not fully understood, there are several target strategies that could be worth 

exploring. From a general point-of-view, and keeping in mind some of the molecular and 

metabolic changes occurring in obesity and metabolic syndrome, targeting oxidative 

stress to reduce ROS burden (such as with antioxidants and vitamins), and the one-

carbon metabolism (with micronutrient supplementation as described in previous studies) 

to modulate aberrant substrate availability and enzyme activity, would be pathways worth 

investigating in this context.  

 

Collectively, there is cumulative evidence that support the concept that various 

interventions following paternal obesity can improve paternal phenotypes, sperm 

parameters and epigenetic signatures, as well as to protect offspring from the increased 

susceptibility of metabolic disorders. Future work should address these gaps in 

knowledge by generating a DIO model combined with a chronic exercise model – or other 

interventions that have weight loss, anti-inflammatory or anti-oxidative effects – in order 

to assess whether sperm epigenetic signatures, particularly sperm H3K4me3, can also 

reverse back to a lean-associated signature, improve offspring metabolic phenotypes, 

and susceptibility to a HFD challenge. Because studies have shown that paternal obesity 

can also impact sperm DNA methylation and non-coding RNA content, it would be 

interesting to simultaneously assess whether obesity-associated DNA methylation and 

RNA content signatures can be negated upon these interventions. Of note, it would be of 

particular relevance to determine the minimum length of the paternal intervention to 

reverse the sperm epigenome and prevent metabolic impairments. 

 

 

15.4.2 Which obesity-sensitive epigenetic regions in sperm are required/sufficient to 

induce phenotypes in the next generation(s)? 

It has become clear that various environmental exposures to the father can lead to 

epigenetic changes in the sperm. Furthermore, altering the sperm epigenome in the 

germline has been linked to abnormal phenotypes in offspring. Mechanistic studies will 
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be warranted in order to determine whether there are specific genomic regions in sperm 

altered by obesity that are required to induce metabolic disturbances in the next 

generation(s). To achieve this goal, several experiments should be performed in order to 

drill down the required phenotype-inducing sperm epigenetic regions and determine their 

causal relationship with offspring metabolic phenotypes.  

 First, in order to generate a list of potential regions that are changed upon diet-

induced obesity, the DIO model should be replicated multiple times to identify the most 

consistent effects on the sperm epigenome. As opposed to what was performed across 

the two studies presented in this thesis, it would be important that the experimental 

design, technical approaches and animal model remain consistent across the different 

trials. This will allow to reveal the essential – and consistent – epigenetic regions that are 

induced by obesity, and associated with phenotype transmission in this specific model.  

 Next, once a list of obesity-sensitive regions that consistently change across trials 

is generated, mechanistic studies would have to be conducted in order to determine the 

regions that are essential to induce metabolic disturbances in offspring. One possible 

approach to achieve this goal would be to take advantage of epigenome editing methods 

such as the CRISPR-Cas9 system. The fusion of the nuclease-deactivated Cas9 to either 

a transcriptional activator or repressor, or an epigenetic modifying enzyme, permits the 

targeted manipulation of epigenetic marks and consequently gene expression 568. Using 

this approach, the goal would be to generate mouse models with targeted epigenetic 

editing within the developing male germline. Guide RNAs would be designed to target the 

list of consistently changed epigenetic regions upon high-fat feeding. To induce increases 

in H3K4me3, the histone methytransferases could be fused to the dCas9 protein to induce 

epigenetic changes, such as MLL1-4, SETD1A/B, PRDM9, and SMYD3, 985. To induce 

decreases in H3K4me3, the histone demethylase enzymes JARID1A-D or NO66, could 

be used 985. Multiple models targeting different combinations of the selected target 

genomic regions would be generated, and offspring derived from sires bearing these 

sperm-borne epimutations would be characterized and compared. This model would 

allow to confirm (or refute) the proof of concept that obesity-associated sperm histone 

methylation can result in offspring metabolic disturbances. 
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15.4.2.1 Considerations, limitations, and challenges 

The proposed experiments are not trivial, and would require a significant time, financial 

resources, and importantly there are still significant gaps in knowledge in order to execute 

such ambitious projects. First, CRISPR-based methods are known to have some degrees 

of off-target effects (i.e. targets other than those specific to the guide RNAs used), which 

would beg the question whether the phenotypes (if observed) result from the targeted 

epimutations, or some of the resulting off-target epimutations. Additionally, many 

chromatin-modifying enzymes do not target only one epigenetic mark, therefore the fact 

that other marks may be altered at the targeted sites should not be ignored.  

Adding some complexity in this approach, is the fact that it is likely that many 

combinations of many sperm-borne epimutations can result in metabolic disturbances in 

offspring, meaning that it might not be possible to determine one single minimum list of 

epimutations to induce such effects. This possibility is in accordance with the multifactorial 

characteristic of obesity and metabolic syndrome, the variability in the manifestation of 

these conditions, as well as the polygenic nature of genetic forms of obesity.  

Importantly, it would be important to ensure that the epigenome-editing system 

does not cause mosaicism across cells. Indeed, given that one sperm cell results in one 

embryo/individual, if the epigenetic-editing is not uniform across cells within the same 

sire, this approach will not be valid in order to determine the required epimutations to 

induce offspring phenotypes. To reduce mosaicism, the transgene should be expressed 

over multiple stages of spermatogenesis to ensure that the epimutations are established. 

Another important point to keep in mind is that several studies have shown diet-

induced changes in sperm at the level of DNA methylation and RNA content. This 

suggests that it is likely that many epigenetic marks, or many non-genetic layers of 

information contribute to the paternal transmission of metabolic phenotypes, which would 

not be accounted for in this transgenic model. Additionally, with the proposed 

experiments, it is therefore possible that the CRISPR-induced histone mark epimutations 

may result in epimutations at other marks as well as changes in sperm RNA content as a 

result of altering histone methylation, which would all contribute to the (potentially) 

resulting offspring phenotypes.  
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As well, it is also important to be reminded that we detected both increased and 

decreased enrichment for H3K4me3 at diet-sensitive regions. This poses a technical 

challenge, and it therefore may not be possible to simultaneously target these regions 

and induce bi-directional changes at different targets given that two different enzymes 

would have to be targeted at each different sets of regions. It would be more feasible to 

select only one chromatin remodeling enzyme for this model. Additionally, because many 

different histone modifier enzymes exist and either deposit or remove H3K4me3, it is 

possible that several are impacted by the HFD in our model. One strategy to select one 

enzyme of interest to test this approach would be to perform ChIP-sequencing for these 

various histone modifiers in sperm derived from control-fed sires to determine which of 

these enzymes binds to the detected diet-sensitive regions. Furthermore, a pre-existing 

better understanding on the molecular mechanisms that underly the diet-induced 

epigenetic changes in sperm would help determine the enzymes of choice to use. 

Another outstanding question is: what are the essential genomic regions bearing 

obesity-induced epimutations in sperm that induce offspring metabolic disturbances? In 

the long term, determining these key epigenetic regions would have significant value for 

clinical purposes in order to be able to predict offspring metabolic outcomes with sperm 

samples that are epigenetically profiled at target regions. Before then, the clinical 

translation of these findings would have to be determined. 

15.4.3 Bringing -omics technologies to the single-cell resolution for sperm epigenetic 

landscape profiling 

A major progression for the field of paternal epigenetic inheritance will be the 

technological advancement that will permit epigenomic profiling of a single sperm. While 

bulk-sequencing methods provide valuable information on epigenetic and transcriptomic 

signatures reflecting mean enrichment or expression profiles, they lack information on 

cell-specific profiles, and mask individual cell heterogeneity. This is of particular relevance 

for sperm epigenetic profiling, given that one single sperm will give rise to one 

embryo/individual. The most recent advancement in -omics technologies now permit the 

assessment of transcriptomic, epigenomic and chromatin structure profiles at the single-

cell and single-nucleus resolution, with options to profile multiple epigenetic marks (DNA 
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methylation, histone modifications, DNA-binding proteins, transcription factors, RNA 

content, and chromatin accessibility) in the same cell. The technical feasibility of such 

techniques in single-sperm has been validated using ejaculate from two individuals to 

profile DNA methylation 986,987. However, these single-cell -omics methods have not been 

thus far made widely accessible or adapted for the unique molecular and structural 

characteristics of spermatozoa cells and chromatin, in order to compare profiles upon 

various paternal exposures and health conditions. Although this will be technically 

challenging, future studies should seek to develop such methods.  

Recent work in a preprint from the research group of Romain Barrès in 

Copenhagen, showed that they have been able to perform single-sperm DNA methylome 

profiling in human samples 988. The validity, quality, and reproducibility of these data are 

still to be confirmed, as the datasets are not yet publicly available, and the study has not 

yet gone through or completed peer review. Additionally, the work was done with 

ejaculates coming from 8 different individuals (4 lean and 4 obese; for a total of 87 motile 

spermatozoa), therefore it will be important to replicate the findings with increasing 

number of cells and from larger sample sizes. At this stage, the mapping rate is low and 

requires high sequencing depth – covering only 1-5% of CpG sites – making the cost 

efficiency of this technique quite low. Future work will need to either make use of 

computational and statistical approaches to predict methylation status at neighbouring 

CpG sites, use bisulfite free methylation methods, and/or refine protocols, in order to 

increase the mapping rate and reduce the associated costs 989,990. Nonetheless, this work 

provides significant advancement towards bringing such techniques at the single-sperm 

level and will likely encourage the community to improve this method, and to adapt other 

epigenetic profiling techniques in single-sperm.  

Using an adapted post-bisulfite adaptor tagging (PBAT)-based whole-genome 

single-cell bisulfite sequencing method, the authors found that obesity was associated 

with DNA methylation patterns defects 988. The findings suggest that a subpopulation of 

spermatozoa cells may bear these epimutations, which could potentially result in varying 

intergenerational effects. This possibility is in accordance with the variability observed in 

metabolic phenotypes in our model and that of other DIO models. It is important to keep 

in mind that, in comparison with humans, mice bear multiparous pregnancies, which can 
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differentially impact the developmental growth of the fetuses 991. Therefore, some of the 

intra-litter variability may result from differential energy and resource allocation in utero, 

in pregnancies with multiple conceptuses. 

Because of the limited coverage in this experiment, it is still unclear whether within 

the subpopulation of affected cells, some cells carry most or all of the differentially 

methylated regions. Therefore, it remains to be confirmed whether single sperm carry 

epigenetic defects at multiple loci, and if so, whether these defects occur at distinct 

regions independently, resulting in similar offspring phenotypes. Given the multifactorial 

nature of obesity and metabolic syndrome phenotypes, as well as the polygenic 

characteristic of these conditions, this hypothetical mode of variable epigenetic pattern 

transmission is plausible. Further supporting this possibility, is the discordance between 

the magnitude of obesity-associated DNAme changes and the high rates of metabolically-

affected offspring observed paternal DIO studies. Indeed, studies have identified minimal 

(5-15%) obesity-associated changes in DNAme (meaning that 1-3 sperm cells out of 20 

would bear DNAme changes),  whereas the penetrance of the transmission of metabolic 

phenotypes was high 600. This implies a mosaicism pattern of DNA methylation, where 

different regions bearing aberrant DNAme could independently result in similar metabolic 

phenotypes in offspring. Alternatively, this may be due to the fact that other epigenetic 

marks aside from DNAme are altered in the model and contributing to offspring 

phenotypes. Of note, the differentially methylated regions detected in this study did not 

overlap with those detected from a bulk experiment from the same research group 520. 

This is likely due to the differences in genomic regions covered across studies, different 

subjects assessed, small sample size, as well as the different methods used (bulk 

reduced representative bisulfite sequencing, versus PBAT single-cell bisulfite 

sequencing). Nevertheless, this further highlights the need for refining protocols to ensure 

reproducibility that will permit conclusive findings. 

Whether obesity-induced H3K4 methylation changes in sperm across the genome 

are carried by a subpopulation of spermatozoa cells, and whether these changes occur 

in a mosaic-like manner is still unknown and remains to be determined. Interestingly, the 

variance in terms of severity and manifestation of offspring metabolic phenotypes support 

the potential variability in sperm-borne epimutations. Such inter-individual phenotypic 
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variability has also been observed in genetic models of epigenetic inheritance, with sperm 

epimutations associated with a wide-range of developmental abnormalities, and variable 

phenotypes with varying degrees of severity in offspring 543,556.  

As mentioned, such single-sperm techniques targeting histone modifications have 

not been developed yet, and given the low mapping rate of the sperm scBS profiling data 

described above, there is a long way to go until we can reliably profile the epigenetic 

marks in sperm and draw any conclusions regarding obesity- and environmentally-

induced chromatin changes at a single-sperm resolution. As eluded in the preliminary 

findings from the sperm scBS profiling data from lean and obese men, it is possible that 

histone H3K4me3 profiles exhibit mosaicism within a single ejaculate with different 

epigenetic pattern variations are integrated to result in the same offspring phenotypes 988. 

The regions with obesity-associated H3K4me3 profile changes detected in our studies 

with bulk ChIP-seq protocols are likely occurring in a relatively greater fraction of sperm 

cells, whereas the epimutations affecting a smaller subpopulation of cells go undetected 

in our analyses.  

Although at the moment, we cannot make any other conclusions regarding the 

epigenetic profiles of individual sperm cells at the level of obesity-induced H3K4me3 

epimutations, phenotypes of offspring derived from our genetic model of epigenetic 

inheritance, as well as from our paternal folate deficiency model, suggest mosaicism of 

individual spermatozoa cells. Indeed, male germline-specific overexpression of KDM1A, 

and paternal preconception folate deficiency feeding, were both associated with sperm 

epigenetic changes at the level of H3K4me3, and a wide range of different developmental 

abnormalities, at varying degrees of severity 476,477,543.  

In the clinic, individual sperm profiling could be used to predict pregnancy 

outcomes and offspring postnatal health, and eventually develop intervention strategies 

that are tailored to specific epigenetic signatures. If a list of specific epigenetic regions is 

identified and correlated with various outcomes such as different pregnancy 

complications or offspring phenotypes, single-sperm epigenetic profiling could be 

eventually used to measure the percentage of sperm that bear a specific epimutation, 

and thereby predict or estimate the risk for specific pregnancy or offspring health 

outcomes.  
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15.4.3.1 Single-cell epigenetic tracking of paternally-induced epimutations to the 

embryo 

With the incentive of taking a step further into exploring paternal epigenetic 

inheritance mechanisms using single-cell technologies, future avenues of research would 

be to track down epigenomic and transcriptomic profiles during pre-implantation and post-

implantation embryonic development. Such experiments would have multiple goals: first, 

to confirm that obesity-induced sperm epimutations are transmitted to the embryo and 

retained during early development, and second, to assess the potential lineage-specific 

retention of such epimutations and how they influence gene expression throughout 

development. Addressing these questions could help delineate the molecular routes 

underlying paternally-induced maladaptive fetal programming, track the developmental 

trajectory of epigenetic and transcriptomic deregulation as a result of paternal obesity, 

and determine which and how different tissues are affected downstream.  

To address these questions, a similar paternal diet-induced obesity model as 

previously described could be generated using breeding partners where the sire and the 

dam have different genetic backgrounds, such as the C57BL/6 and CAST/EiJ mice. 

Following breeding, the collected embryos across pre-implantation stages would be 

subjected to single-cell CUT&Tag followed by sequencing, targeting histone H3K4me3 

and RNA simultaneously in the same cell 959,960. Because the genomes of the sire and 

dam differ at over 20 million single nucleotide polymorphisms (SNPs), bioinformatics tools 

can be used to separate sequencing reads in a parent-of-origin manner 992. Single-cells 

from embryos can also be separated according to their lineage cell fate using specific 

expression markers, as well as according to their sex using expression levels of Y-

chromosome-linked genes 993. This experiment would allow to assess whether the sperm-

transmitted epigenetic changes persist in embryos and whether they can be linked to 

transcriptional changes – as a result of paternal obesity – in an allele-, lineage- and sex-

specific patterns. It is important to point out that, although this breeding scheme can 

provide valuable information, this approach involves an important caveat. Indeed, the 

mapping analyses being restricted to the genomic locations that contains SNPs limits the 

number of regions that can be assessed. In other words, if some or many of the sperm 

epimutations occur outside these SNP-containing genomic regions, these genes will not 
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be included in the analysis. Nevertheless, our initial analysis in the first manuscript 

(Chapter 2) showed that there are indeed some obesity-sensitive regions containing 

C57BL/6-CAST/EiJ SNPs, suggesting this approach would be suitable to confirm 

paternal-specific transmission of epimutations at least at these regions which would be 

sufficient to prove this concept. 

Another avenue of research with such epigenetic and transcriptomic tracking over 

embryonic development would be to assess the extent by which epimutations persist or 

are diluted throughout cellular division and differentiation, and across developmental 

stages. Addressing this question would allow to determine which cellular lineages are 

being affected, thereby which tissues show altered programming, impaired functions, and 

at the origin of late-onset phenotypes. While the metabolic phenotypes observed in our 

paternal DIO model manifest in adulthood, and some defects have been detected at mid- 

and late-gestation in our models – such as altered hepatic and placental gene expression 

as well as placental abnormalities – these impairments likely arise early in development, 

but also persist across developmental stages, and act as a domino or butterfly effect, 

leading to altered organ system development 1,510,597. By generating single-cell gene 

expression and chromatin profile maps throughout development, this would allow to 

connect the sperm-induced deregulation in specific cell lineages to organ phenotypes, 

and potentially delineate the cross-talk between different organs to influence fetal 

maladaptive metabolic programming. Indeed, as alluded in Chapter 3 of this thesis, 

placental misexpressed genes were enriched for various organ system development, 

which would support the idea that the placenta can impact the development of other 

tissues. Consequently, the observed paternally-induced phenotypes may in part arise 

from placenta action on organs such as the brain and the heart 766. As discussed in the 

first chapter, the brain is an important site of regulation for satiety and hunger signals 16. 

Target tissues (along with their precursors) to assess would be those whose development 

is influenced by the placenta, such as the heart and brain, as well as metabolic tissues 

such as the liver, pancreatic islets, adipose depots, and skeletal muscles. 

Lastly, it would be interesting to further explore the connections between obesity-

induced oxidative stress and altered epigenetic profiles. Male mice fed a HFD exhibit 

increased oxidative DNA damage lesions in sperm as measured by 8-hydroxyguanosine 
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(8OHdG), and these lesions have been shown to persist in the paternal pronucleus 847. 

However, the method that was used could only provide global measures of oxidative DNA 

damage. Additionally, it is unknown when these lesions occur during spermatogenesis, 

whether these lesions persist further in development, and how they may impact 

embryonic gene expression. To address these knowledge gaps, it would be interesting to 

adapt the Click-Code-Seq method to single-cell resolution with simultaneous 

transcriptomic profiling, and apply this approach to germ cells throughout 

spermatogenesis as well as to the stages across pre-implantation embryo development. 

As a reminder, this method was described in a previous subsection, which profiles 8-

oxoguanine (8-oxoG) genome-wide at single-nucleotide resolution. This would allow to 

(1) track obesity-induced oxidative damage throughout spermatogenesis, determine 

when these legions occur, whether some stages are more prone for oxidative damage 

and whether these lesions accumulate throughout spermatogenesis, (2) determine 

whether the obesity-induced 8-oxoG lesions in sperm are transmitted to the embryo, and 

(3) whether these lesions persist across developmental stages and impact gene 

expression.  

Overall, these experiments would allow to show that (1) obesity-sensitive and 

oxidative DNA lesions are transmitted to the embryo, (2) these sperm-borne epimutations 

can directly impact embryonic gene expression, and lineage specification, (3) paternally-

induced gene expression changes can result in a cascade of impairments that involves 

changes in developmental trajectories, metabolism, and inter-tissues cross-talk, and 

finally (4) the paternal-obesity-associated developmental changes are associated with 

adult-onset increased susceptibility to obesity and metabolic syndrome. 
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Concluding remarks and summary 

The main goal of the present thesis was to further our understanding on the paternal 

contribution to metabolic health of future generations and on the molecular mechanisms 

underlying the non-genetic transmission of paternally-induced phenotypes. Using rodent 

models, we assessed whether paternal exposure to multiple factors can cumulatively 

impact the sperm epigenome and increase the risk to obesity and associated 

comorbidities in the subsequent generations. We also assessed the potential of obesity-

induced sperm epimutations to impact embryonic gene expression and placental 

functions.  

The findings presented provide evidence that sperm-borne histone methylation 

can act as a metabolic sensor of obesity, with increasing aberrant sperm epigenetic 

profiles upon multiple exposures, namely the diet-induced obesity and the germline-

specific KDM1A overexpression. These cumulative effects were associated with more 

severe phenotypes in offspring with metabolic disturbances transmitted 

transgenerationally. These cumulatively damaging factors add further significance and 

concern for the increasing rise in obesity rates worldwide. They are reflective of the many 

interacting factors that can contribute to obesity development and highlight the previously 

underappreciated role of paternal exposures. The presented data also suggest obesity-

sensitive epigenetic regions in sperm, at the level of histone methylation, can potentially 

alter embryonic and trophoblast gene expression and thereby impact the developmental 

trajectory of the offspring. These findings hint towards a potential role of placental 

functions in the developmental programming of paternally-induced maladaptive 

responses in the next generation. 

In light of the limitations and knowledge gaps highlighted in the general discussion 

of this thesis, more studies are warranted to determine the exact paternal contribution to 

offspring metabolic health. Furthermore, a better understanding on the molecular 

mechanisms that involve the crosstalk between obesity-induced altered metabolism and 

epigenetic changes could reveal molecular targets and pathways for the development of 

preventative strategies to reduce the risk of transmission across generations. In the long 

term, identifying the molecular determinants of obesity-sensitive epigenetic regions in 
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sperm has the potential to predict pregnancy outcomes and offspring metabolic health, 

as well as to determine whether these effects are reversible. 

As an example, the field of paternal epigenetic inheritance would benefit from 

significant advances in methodological approaches which take advantage of novel single-

cell technologies to assess the mosaicism of sperm epimutations. Leveraging single-cell 

methods would also allow the tracking of sperm-transmitted epimutations in embryos and 

resulting transcriptomic changes across developmental stages and cell lineages. These 

studies would shed light on the early origins of paternally-induced pregnancy 

complications, placenta defects, and potentially adult-onset complex diseases. 

 

Overall, these thesis chapters and knowledge gaps highlight the benefit to study 

the paternal contribution to pregnancy outcomes, placental integrity, with implications for 

maternal health as well as future generations health. These important future studies will 

help better define the determinants of health and develop strategies to improve paternal 

preconception health advising. 
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