
Preconditioned Conjugate Gradient for

Pivoting-based Complementarity Solvers in

Multibody Simulations

Wing Hang Ho, School of Computer Science

McGill University, Montreal

August, 2022

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of

Master of Computer Science

©Wing Hang Henry Ho, 2022

Abstract

We present two numerical methods for solving stiff contact-rich physical systems mod-

eled as mixed linear complementarity problems. The first approach combines a precondi-

tioned conjugate gradient (PCG) solver and a block principal pivoting algorithm to solve

large systems, whereas the second approach improves the robustness and convergence of

the generalized conjugate gradient method through preconditioning. To improve conver-

gence, we propose a variant of the zero-fill incomplete Cholesky preconditioner that uses

imaginary values to avoid breakdown when negative diagonal elements are encountered

during the factorization. Furthermore, we propose an adaptive regularization scheme to

the friction rows of the system matrix to address variables that pivot too frequently, which

improves convergence without introducing simulation artifacts. Various challenging

scenarios are used to evaluate our proposed methods.

i

Abrégé

Nous présentons deux méthodes numériques pour résoudre des systèmes physiques de

corps rigides riches en contacts modélisés comme des problèmes de complémentarité

linéaire mixte. La première approche combine un solveur de gradient conjugué précondi-

tionné (PCG) et un algorithme de pivotement principal de bloc pour résoudre de grands

systèmes, tandis que la deuxième approche améliore la robustesse et la convergence de la

méthode du gradient conjugué généralisé grâce au préconditionnement. Pour améliorer

la convergence, nous proposons une variante du préconditionneur de la factorisation de

Cholesky incomplète qui utilise des valeurs imaginaires pour éviter l’échec de la méthode

lorsqu’il y a des éléments diagonaux négatifs lors de la factorisation. De plus, nous

proposons un schéma de régularisation adaptatif aux lignes de friction de la matrice

système pour traiter les variables qui pivotent trop fréquemment, ce qui améliore la

convergence sans introduire d’incohérence de simulation. Divers scénarios difficiles sont

utilisés pour évaluer nos méthodes proposées.

ii

Acknowledgements

First of all, I would like to thank my supervisors Paul Kry and Sheldon Andrews for their

patience and limitless support throughout my studies. It was their constant guidance that

enable me to complete this thesis. I will always miss the 6 AM discussions with Paul and

the past midnight discussions with Sheldon. I would also like to thank Xiao Wen Chang

for his valuable feedback on my thesis and for giving me the chance to become a teaching

assistant for the numerical computations course. Furthermore, I would like to thank

Christopher Batty for encouraging me to pursue the field of physics-based animation

during my undergraduate studies. Likewise, I am grateful to Sander Rhebergen and Lilia

Krivodonova for their advice about conducting research.

Secondly, I would like to thank all group members in Paul’s and Sheldon’s group. It

was a blast hanging out with you all, from lab meetings to our own group gatherings. I

would like to thank Andreas and Quoc-Minh Ton-That in particular for all the research

and mental support they provided me during my studies. Furthermore, I want to express

my gratitude to Marek, Jozsef, Joe and Daniel for sharing research ideas with me and

helping me with using the Vortex software for my research project.

Moreover, I would like to thank my friends and mentors at Waterloo: Brad Lushman,

Yangang Chen, Jason Pye, Michael Waite, Edward Vrscay, Conrad Hewitt and all lab

members from Christopher’s, Sander’s and Lilia’s respective research groups for moti-

vating me to pursue further studies. Special thanks to Michael Honke, Abdullah Ali

Sivas, Brad and Yangang for always being there when I need someone to talk to.

iii

Finally, deepest thanks to my parents for their unconditional love and support that

allow me to keep up with my studies.

iv

Table of Contents

Abstract . i

Abrégé . ii

Acknowledgements . iii

List of Figures . viii

List of Tables . ix

1 Introduction 1

2 Background and related work 4

2.1 Equations of motion . 4

2.1.1 Discretizing the equations of motion 6

2.2 Constraints . 7

2.3 Constrained rigid body systems . 9

2.3.1 Constraint violation . 10

2.3.2 Constraint stabilization . 11

2.4 Modelling friction . 13

2.4.1 Coulomb friction model . 14

2.4.2 Box approximation of Coulomb friction cone 15

2.5 Solving the MLCP . 19

2.5.1 Pivoting methods . 19

2.5.2 Principal pivoting method . 21

2.5.3 Block principal pivoting method . 22

v

2.5.4 Cholesky factorization . 24

2.5.5 Limitations of the principal pivoting method 24

3 Conjugate Gradient Method 26

3.1 Convergence theory of CG . 28

4 Preconditioning 30

4.1 Incomplete Cholesky factorization . 31

4.1.1 Zero-fill incomplete Cholesky . 31

4.1.2 Incomplete Cholesky with diagonal compensation 32

4.1.3 Incomplete Cholesky with drop tolerance 32

4.1.4 Incomplete Cholesky with partial shift 34

4.1.5 Zero-fill incomplete Cholesky with imaginary entries 35

4.1.6 Matrix pre-shifting . 38

4.2 Preconditioned Conjugate Gradient method 39

5 Using PCG in MLCPs solvers 41

5.1 BPP with PCG . 41

5.2 Preconditioned generalized conjugate gradient 42

5.3 Warm starting . 43

5.4 Adaptive regularization . 44

6 Results 47

6.1 Examples . 48

6.1.1 Boxes . 48

6.1.2 Tower . 48

6.1.3 Spinner . 48

6.1.4 Chain . 49

6.1.5 Trucks . 49

6.1.6 Rocks . 49

vi

6.1.7 Wall . 49

6.2 Performance comparison . 50

6.2.1 Outer iteration count . 51

6.2.2 LCP error . 53

6.2.3 Solve time . 54

6.2.4 Inner PCG iteration count . 55

6.2.5 Visual comparison . 56

6.3 Performance with adaptive regularization . 59

7 Conclusion and future work 61

A Computing the constraint Jacobian 63

A.1 Constraint Jacobian for non-interpenetration constraints 63

A.2 Constraint Jacobian for contact constraints 65

vii

List of Figures

1.1 Challenging examples with thousands of constraints and large mass ratios . 2

2.1 Non-interpenetration constraints . 8

2.2 Local contact frame when two surfaces are in contact 13

2.3 The nonlinear Coulomb friction cone . 16

2.4 Box approximation of the Coulomb friction cone. 17

2.5 Complementarity conditions for non-interpenetration constraints 18

4.1 Zero-fill incomplete Cholesky with imaginary entries 36

6.1 Comparison between our IC(0) preconditioner with other preconditioners . 53

6.2 Relationship between condition number of matrix and total solve time . . . 54

6.3 Relationship between system size of matrix and total solve time 56

6.4 Effect of number of imaginary columns on convergence of PCG solvers . . . 57

6.5 Visual comparison between each solver . 58

6.6 Effect of different adaptive amounts of diagonal shift on the simulation . . . 60

A.1 Illustration of two bodies in contact with each other 64

viii

List of Tables

6.1 Information about the examples used to test the solvers 50

6.2 Comparison of average outer iteration counts between each solver 51

6.3 Maxima of LCP error produced by each solver 51

6.4 Comparison of average solve time (ms) per frame for each solver 52

6.5 Effect of adaptive regularization on average outer iteration 60

ix

Chapter 1

Introduction

Interactive simulation of multibody dynamics with contact arises in many applications

such as games and virtual-reality training. An important challenge, however, is the

frictional contact problems that arise in systems with large mass ratios and many stiff and

redundant constraints because this leads to large poorly conditioned problems. When

systems are poorly conditioned, popular iterative methods struggle to converge to a

solution, and a natural alternative is to make use of direct pivoting-based methods.

However, these methods do not scale well to handle large problems.

In this thesis, we explore the modification of pivoting-based methods to make use of

the preconditioned conjugate gradient (PCG) method. We propose two approaches. The

first exploits the strengths of the block principal pivoting method by replacing the direct

linear solver used within its inner iterations with a PCG solver. The second extends the

generalized conjugate gradient method to use preconditioning. Because we are interested

in simulating systems with poorly conditioned problems, preconditioning is critical to

mitigating slow convergence. Specifically, we use an incomplete Cholesky preconditioner

to exploit the sparsity of the systems, and in an effort to reduce the overall computation

we exclusively use zero-fill incomplete Cholesky. We avoid the problem of negative diag-

onal elements that can arise in zero-fill incomplete Cholesky by proposing an inexpensive

modification. We allow imaginary columns in the factorization, which permits a useful

1

Figure 1.1: We evaluate the use of the preconditioned conjugate gradient method in

pivoting-based solvers for these examples, which are challenging since they all have

hundreds or thousands of constraints and contacts, and involve simulation with large

mass ratios.

preconditioner to be factored without resorting to more costly approaches to deal with

negative diagonals, such as revising an added diagonal compensation to the lead matrix

and recomputing the preconditioner.

Figure 1.1 shows examples of the systems we simulate to evaluate our proposed meth-

ods. The proposed PCG-based solvers, when combined with our incomplete Cholesky

preconditioner, yield reasonable convergence rates. We demonstrate that our incomplete

Cholesky preconditioner is much more effective in speeding up the convergence of our

PCG solvers than the Jacobi preconditioner and also comparable to the variant of the

incomplete Cholesky that uses a relatively low drop tolerance to reduce fill-ins. We also

propose an adaptive regularization technique for taming indecisive friction constraints

(i.e., those that pivot too frequently) in order to reduce the number of iterations required

to determine the correct index set. Finally, this thesis demonstrates the challenge of

solving complicated contact problems, such that even with clever and efficient precon-

2

ditioning, the PCG solvers still struggle to outperform the baseline direct solver due to

the ill-conditioning of the contact problems we considered.

Due to the fact that the performance of direct methods is heavily dependent on the

size of the system, this means the baseline direct solver will struggle as the number of

constraints becomes orders of magnitude larger than the examples we considered. We

believe this is when our PCG solvers will shine despite their limitations.

3

Chapter 2

Background and related work

A detailed introduction to the background and challenges of solving frictional contact

problems for multibody dynamics can be found in the state of the art report of Bender et

al. [4], and the recent course of Andrews and Erleben [2]. In this chapter, we review some

of the content in both references that are related to the work of this thesis.

2.1 Equations of motion

The Newton-Euler equations give a second order ordinary differential equation that

governs the dynamics of a physical system

M(t)v̇(t) = f(q(t),v(t), t), (2.1)

where q(t) is the generalized position of the bodies in the physical system, v(t) is the gen-

eralized velocity of the bodies in the system, v̇(t) is the acceleration, f is the generalized

force acting on the system and M(t) is the mass of the bodies in the system. The term

generalized is used to describe the variables that parameterize the equations of motion.

Note that all terms in Equation 2.1 are dependent on time t. Hence, in the remainder of

this thesis, we will assume such time dependency and omit the time parameter.

4

We treat each body in the system as a rigid body, meaning the distance between

points in the body is fixed. In other words, the bodies in our system do not undergo

any deformation. For each rigid body moving in three-dimensional space, there are 3

positional degrees of freedom and 3 rotational degrees of freedom. So for a physical

system with n rigid bodies, the generalized velocity v and acceleration v̇ are 6n × 1

vectors. The generalized position provides the position and orientation of each body

in the system. We use unit quaternions (ai, bi, ci, di) to define the i-th body’s orientation.

With the 3 positional degrees of freedom, the generalized position of the system q is a

7n × 1 vector. The generalized positions are related to the generalized velocities in the

following way

q̇ = H(q)v, (2.2)

where H is the 7n× 6n block diagonal kinematic mapping matrix defined as

H =



I3×3

Hi

. . .

I3×3

Hn


, with Hi =

1

2


−bi −ci −di

ai di −ci

−di ai bi

ci −bi ai


, (2.3)

and I3×3 is the 3-by-3 identity matrix.

The generalized forces in the system f is a 6n×1 vector, as each body has linear forces,

such as gravity, and torque applied to it. As for the mass matrix M of the system, it is a

6n × 6n symmetric block diagonal matrix, where each block includes the linear mass mi

and the symmetric moment of inertia tensor Ii of each body i

Mi =

miI3×3

Ii

 . (2.4)

5

The moment of inertia tensor is positive definite, and if we consider rotating bodies

around the principal axes, the inertia tensor is a diagonal matrix with positive entries.

Hence, the mass matrix M is positive definite.

In the remainder of the thesis, when referring to the position and velocity of bodies in

the system, we are referring to the generalized positions and velocities.

2.1.1 Discretizing the equations of motion

In order to simulate the dynamics at a particular instant of time t, we apply numerical

integrators to discretize the equations of motion in terms of time. To do so, we choose a

time step h and approximate v̇ using finite differences

v̇ ≈ v+ − v

h
, (2.5)

where v denotes the velocity at the beginning of the time step and v+ is the velocity at

the end of the time step. We solve the following discretized equations of motion for v+

Mv+ = Mv + hf , (2.6)

where the terms on the right hand side are known quantities that are evaluated at the

beginning of the time step. We use v+ to update the position at the end of the time step

q+ = q+ hH(q)v+. (2.7)

This time-stepping integrator is called the semi-implicit Euler method. The difference

between the semi-implicit Euler method and the forward Euler method is semi-implicit

Euler method uses v+ to update the position q+ rather than using v. We use the semi-

implicit Euler method because we can choose larger time steps without encountering

numerical stability issues. Although we can instead consider using the backward Euler

method, where we use f+ to update v+, and not worry about stability issues in our choice

6

of the time step h, the method is more costly due to needing to solve a linear system

for v+. Similar to any Euler time integration scheme, the semi-implicit time-integrator is

first-order accurate, meaning it has a local truncation error of O(h2) and global error of

O(h). An important thing to note is for our problems, we only consider sliding motions

on flat, isotropic planar surfaces, so the sliding motion is linear, and hence using linear

first-order accurate numerical integrator is sufficient [2].

2.2 Constraints

In physics-based computer animation, we would like to accurately model interactions

between bodies in the system. To do so, we need to enforce constraints on the position or

velocity of the bodies.

Bilateral constraints are used to model positional constraints and joint constraints

between two or more bodies. Bilateral constraints can be expressed as the equality

constraint for some scalar function ϕ

ϕ(q) = 0. (2.8)

Unilateral constraints are used to simulate contact between bodies. We want to satisfy

the inequality constraint of a scalar function ϕ of the form

ϕ(q) ≥ 0, (2.9)

where the constraint ϕ = 0 denotes two objects that are in contact with each other

(Figure 2.1a), and ϕ > 0 means that the objects are separated from each other (Figure 2.1b).

The unilateral contact constraint helps prevent objects from interpenetrating each other

(Figure 2.1c). Unilateral constraints are also used to model friction, which we will discuss

in Section 2.4.

7

(a) Non-interpenetration (b) Separation (c) Interpenetration

Figure 2.1: A notable example of unilateral constraints is the non-interpenetration con-

straint that is used to model contact between two bodies.

To make sure the bodies satisfy all constraints ϕ ∈ Rm in the system at the end of the

time step, we enforce the constraints at the velocity level. We consider

ϕ̇ =
∂ϕ

∂q

∂q

∂t
=

∂ϕ

∂q
H(q)v = Jv, (2.10)

where J ∈ Rm×6n is the constraint Jacobian matrix. The system of bilateral constraint

equations in the velocity-level can be written as

Jv = 0, (2.11)

and the velocity-level unilateral constraint equations are

Jv ≥ 0. (2.12)

One can also consider enforcing the constraints at the acceleration level, for example

ϕ̈ = J̇v + Jv̇ = 0, (2.13)

in order to make sure the position and velocity constraints are satisfied. However, due

to the additional computational cost in computing the time derivative of the constraint

Jacobian matrix J̇, we only enforce constraints at the velocity level in this thesis.

8

Other than enforcing position and velocity constraints, we also need to account for a

constraint force that is used to make sure the bodies satisfy the constraints without doing

actual work. Our discretized equations of motion become

Mv+ − JTλ+ = Mv + hf , (2.14)

subject to constraints

Jv+ = w, (2.15)

where λ+ is the constraint impulse at the end of the time step that we also need to solve

for. Here, we are using a general form of the constraint velocity w, where the constraint

velocity wi = 0 if constraint i is a bilateral constraint and wi ≥ 0 if it is a unilateral

constraint. Notice that in Equation 2.15, we are using the Jacobian evaluated at the

beginning of the time step rather than the Jacobian evaluated at the end of the time step

J+. The reason is we want to avoid the expensive computation of the time derivative

of the Jacobian matrix J̇ when Taylor approximating J+. Since unilateral constraints

are dominant in the examples we consider, we illustrate how the constraint Jacobian for

different unilateral constraints are computed in Appendix A.

2.3 Constrained rigid body systems

Combining Equations 2.14 and 2.15 gives the linear system

M −JT

J 0

v+

λ+

 =

Mv + hf

w

 , (2.16)

where we need to solve for the velocities v+ and constraint impulses λ+ at the end of

the time step. To eliminate the variable v+, we apply the Schur complement of the mass

matrix M in Equation 2.16 and get a mixed linear complementarity problem (MLCP) with

9

a reduced linear system where we only need to solve for the constraint impulses λ+:

JM−1JT︸ ︷︷ ︸
A

λ+ + JM−1(Mv + hf)︸ ︷︷ ︸
b

= w. (2.17)

We will discuss MLCPs in Section 2.4, which essentially enforce bounds and conditions

on the constraint impulses λ and constraint velocities w such that they can only represent

physically correct quantities. The bounds on the constraint impulses depend on the

constraint type.

2.3.1 Constraint violation

There are, however, two problems with the reduced linear system in Equation 2.17.

Firstly, the matrix A may be rank deficient. The reason is most likely due to the existence

of redundant constraints when modeling contact such that there are rows in the constraint

Jacobian matrix J that are linearly dependent. The second problem with Equation 2.17 is

we are assuming that the position constraints are satisfied when enforcing the velocity

constraints in Equation 2.15. However, this assumption may not be true due to numerical

drift. To explain why numerical drift occurs, suppose we want two bodies to remain in

contact. In this case, the constraint function at the beginning of the time step will be zero,

meaning ϕ(q−) = 0. Since we are enforcing constraints at the velocity-level, the time

derivative of the constraint function, or the constraint velocity, at the beginning of the

time step will be zero as well, where ϕ̇(q−) = Jv− = 0. For two bodies to remain in

contact at the end of the time step, we want to enforce ϕ(q+) = 0. Since ϕ(q+) is not

known, we apply the Taylor series approximation:

ϕ(q+) ≈ ϕ(q−) + hϕ̇(q−) +
h2

2
ϕ̈(q−) +O(h3) (2.18)

=
h2

2
ϕ̈(q−) +O(h3) (2.19)

10

The issue is the second order term is non-zero, where ϕ̈(q−) ̸= 0 due to only considering

constraints at the velocity level. Hence, this error will accumulate regardless of our

choice of the time step h. The other cause of numerical drift is due to round-off errors

during numerical computations. Numerical drift will cause bodies to, for example,

interpenetrate each other.

2.3.2 Constraint stabilization

There are multiple ways to fix the issue of constraint violations. Examples are Baumgarte

stabilization [3], fast projection [15] and post-step stabilization [7]. In our work, we

apply the Baumgarte stabilization technique [3]. Since we only enforce constraints at

the velocity level, we consider

λ+
j = −hkjϕ+

j − hbjϕ̇
+
j . (2.20)

for the j-th constraint in the system. The physical intuition of the Baumgarte stabilization

technique is we apply a spring-like restoration impulse to bring the position of the bodies

back to the constraint manifold, where kj and bj are the stiffness and damping coefficients

of the Hookean spring, and ϕ+
j is the j-th constraint function evaluated with the position

of the bodies at the end of the time step. We use a first-order accurate implicit integrator

such as backward Euler to approximate ϕ+
j

ϕ+
j ≈ ϕj + hϕ̇+

j , (2.21)

in order to avoid numerical stability issues from using a stiff spring-like restoration

impulse. We can rewrite Equation 2.20 as

(hbj + h2kj)ϕ̇
+
j + λ+

j = −hkjϕj. (2.22)

11

Dividing the equation by hbj + h2kj gives

ϕ̇+
j +

(
1

hbj + h2kj

)
︸ ︷︷ ︸

ϵj

λ+
j = −

(
hkj

bj + hkj

)
︸ ︷︷ ︸

γj

ϕj

h
. (2.23)

Considering individual stiffness and damping coefficients for each constraint, and the

fact that ϕ̇ = Jv, the velocity constraint with Baumgarte stabilization is

Jv+ +Cλ+ = −Γϕ

h
, (2.24)

where C,Γ ∈ Rm×m are diagonal matrices such that

C =


ϵ1

. . .

ϵm

 and Γ =


γ1

. . .

γm

 . (2.25)

One issue with the Baumgarte stabilization technique is it can be tricky to pick appropri-

ate values for ϵj and γj as they are dependent on the constraint type and what is being

simulated. One can directly tune ϵj and γj , or can instead go for a more intuitive approach

of tuning the stiffness and damping parameters of the implicit spring impulse.

Combining Equations 2.14 and 2.24 gives the linear system

M −JT

J C

v+

λ+

 =

Mv + hf

w − Γϕ
h

 . (2.26)

The compliance matrix C is used to handle redundant constraints. Since the diagonals of

the compliance matrix are positive, it makes the matrix A positive definite. The constraint

violation term Γϕ
h

is used to combat numerical drift. Taking the Schur complement of the

12

Figure 2.2: Local contact frame when surfaces A and B are in contact.

mass matrix M in Equation 2.26 gives the more compact linear system

(
JM−1JT +C

)︸ ︷︷ ︸
A

λ+ + Γ
ϕ

h
+ JM−1(Mv + hf)︸ ︷︷ ︸

b

= w, (2.27)

which only requires solving for the constraint impulses λ+. Here, M is block diagonal

and so it is easy to invert. The matrix A is also symmetric. For the examples we are

considering, most of our constraints are (unilateral) contact constraints between two

bodies, which means the constraint Jacobian matrix J is sparse. Despite our examples

having a large number of contact constraints, the number of bodies each body is in contact

with is small, and so the number of contact constraints with overlapping bodies in the

Jacobian matrix J is small. Hence the matrix A is sparse.

2.4 Modelling friction

In order to account for the friction impulse generated when there is sliding between two

surfaces A and B, we consider a local contact frame spanned by the unit normal n̂ at

contact point p of the contact plane C and two unit vectors t̂1 and t̂2 that are tangential

13

to the contact plane C (Figure 2.2), where n̂, t̂1, t̂2 ∈ R3. The vectors t̂1 and t̂2 define

the friction axes. In this local contact frame, the contact space velocity w and impulse λ

each have three components, with w = (wn̂, wt̂1
, wt̂2

) and λ = (λn̂, λt̂1
, λt̂2

). The relative

tangential velocity at the contact point wt̂ is expressed as a linear combination of the

friction axes t̂1 and t̂2, where wt̂ = wt̂1
t̂1 + wt̂2

t̂2. Similarly, the tangential impulse, or the

friction impulse, between two sliding objects is expressed as λt̂ = λt̂1
t̂1 + λt̂2

t̂2. We refer

the readers to Appendix A.2 on how to compute the constraint Jacobian when frictional

contact is present in the simulation.

2.4.1 Coulomb friction model

We use the Coulomb friction model to describe the friction impulse between two surfaces.

Coulomb friction couples the normal impulse λn̂ and the friction impulse λt̂ using the

exact isotropic planar Coulomb friction cone constraint [2]

∥λt̂∥ ≤ µλn̂, (2.28)

where µ is the coefficient of friction that is dependent on the materials that are in

contact. The geometric interpretation of the constraint in Equation 2.28 is a quadratic

cone illustrated in Figure 2.3. The Coulomb friction cone models the isotropic Coulomb

friction law such that if there is sliding motion between two objects, then the friction

impulse opposes the sliding motion and will be at its maximum, where

µλn̂ − ∥λt̂∥ = 0, ∥wt̂∥ > 0. (2.29)

On the other hand, if the objects are not sliding, then the friction impulse can act in any

direction and needs to satisfy the inequality in Equation 2.28 such that it is enough to

counteract other impulses (Figure 2.3b). We can express this with

µλn̂ − ∥λt̂∥ > 0, ∥wt̂∥ = 0. (2.30)

14

Note that Equations 2.29 and 2.30 imply

(µλn̂ − ∥λt̂∥) ∥wt̂∥ = 0. (2.31)

We concisely write Equations 2.29 - 2.31 as a nonlinear complementarity problem (NCP)

µλn̂ − ∥λt̂∥ ≥ 0 ⊥ ∥wt̂∥ ≥ 0, (2.32)

where we use the complementarity condition a ≥ 0 ⊥ b ≥ 0 to express a ≥ 0, b ≥ 0 and

ab = 0.

To deal with the NCP in Equation 2.32, one can rewrite it as a nonlinear function

in order to apply Newton’s method to linearize a system of nonlinear equations and

solve for the constraint impulses λ+ that satisfies the inequality in Equation 2.28 [20, 22].

However, this involves the expensive Hessian computation. In order to avoid this costly

computation, we consider using an approximation of the Coulomb friction cone. In the

next section, we will introduce a cheap yet effective method to linearize the Coulomb

friction cone.

2.4.2 Box approximation of Coulomb friction cone

We use a box approximation to linearize the Coulomb friction cone (Figure 2.4). With this

approximation, we can express the friction bounds in each friction direction using two

independent inequalities

λl
t̂1
≤ λt̂1

≤ λu
t̂1
, (2.33)

λl
t̂2
≤ λt̂2

≤ λu
t̂2
, (2.34)

where λl
t̂i
= −µλn̂ and λu

t̂i
= µλn̂. To compute the friction bounds, one can first determine

the normal impulse λn̂ for each contact constraint by assuming the physical system is

frictionless, then solve Equation 2.27 for λn̂ for each contact constraint, and then compute

15

(a) Sliding friction (b) Sticking friction

Figure 2.3: The nonlinear Coulomb friction model that is used to model isotropic friction.

the approximate friction bounds using λn̂ and the friction coefficient µ. Depending on the

magnitude of the normal impulse, we can get friction bounds that are larger or smaller

than the actual Coulomb friction bounds in Equation 2.28. To avoid solving Equation 2.27

for the normal impulses λn̂ in order to compute the box friction bounds, one can manually

set λl
t̂i

and λu
t̂i

. While this approach to determining the friction bounds is cheap, it

is inaccurate as it essentially decouples the normal and friction impulse and will yield

artifacts such as objects being too slippery if inappropriate friction bounds are chosen.

Box Linear Complementarity Problem

To obey the approximate Coulomb friction laws, we have to satisfy the following three

conditions for the box friction model for contact constraint i

wi > 0 if λ+
i = λl

i, (2.35a)

wi < 0 if λ+
i = λu

i , (2.35b)

wi = 0 if λl
i ≤ λ+

i ≤ λu
i , (2.35c)

16

Figure 2.4: Box approximation of the Coulomb friction cone.

where wi is the constraint velocity of contact constraint i, and λl
i and λu

i are the lower

and upper bounds of contact constraint i. Equations 2.35a or 2.35b produces sliding

friction, where the friction impulse λ+
i at the end of the time step is at its maximum and

opposes the constraint velocity wi, which in this case is the relative tangential contact

velocity. Equation 2.35c produces sticking friction, where the objects are not sliding

and the friction impulse is just strong enough to counteract other impulses acting on

the objects. Equations 2.35a or 2.35c can also be used to model non-interpenetration

constraints. In that case, wi will be the normal component of the relative contact velocity

and λ+
i will be the normal impulse such that λl

i = 0 and λu
i = ∞ (Figure 2.5). In other

words, we can conveniently express friction and non-interpenetration constraints using

the same set of equations listed in 2.35a - 2.35c. As for bilateral constraints, the bounds

will be λl
i = −∞ and λu

i = ∞, as we do not bound the impulses but enforce constraints

on the positional degrees of freedom.

17

Figure 2.5: A normal contact impulse λn̂ is only generated when two bodies are in contact

with each other, where the normal relative contact velocity wn̂ is zero.

Constrained equations of motion

Combining Equation 2.27 and Equations 2.35a - 2.35c yields the mixed linear complemen-

tarity problem (MLCP) formulation

Aλ+ + b = w = w+ +w−, (2.36a)

subject to w+ ≥ 0 ⊥ λ+ − λl ≥ 0

w− ≥ 0 ⊥ λu − λ+ ≥ 0.
(2.36b)

Here, w is the vector of constraint velocities that is decomposed into the slack velocities

w+ and w−, where w+ = max(w,0) and w− = −min(w,0). It is the slack velocities that

must satisfy the non-negative complementarity condition in Equation 2.36b. The problem

is a MLCP because there are lower and upper bounds, λl and λu, on the constraint im-

pulses λ+, and the complementarity conditions wT
+

(
λ+ − λl

)
= 0 and wT

− (λu − λ+) = 0

must be satisfied. Since we have two tangent directions and one normal direction for the

box friction model, the Jacobian matrix J can be computed in a similar way compared to

when the nonlinear Coulomb friction cone is used (Appendix A.2). The main advantage

18

of using the boxed MLCP formulation is the matrix A is symmetric positive definite,

permitting the use of the Cholesky factorization (Algorithm 2 in Section 2.5.4) on the

matrix A if we use direct methods to solve for Equation 2.36, or the use of iterative

solvers such as variants of the preconditioned conjugate gradient method (Chapter 5).

Furthermore, since the matrix A is positive definite, the solution λ+ to the MLCP in

Equation 2.36b exists and is unique [9].

2.5 Solving the MLCP

There are many works on solving MLCPs for simulating frictional contact [2, 24]. Two of

the approaches to solving MLCPs are iterative methods and pivoting methods. Iterative

methods such as projected Gauss-Seidel [14], staggered projections [19], and projective

dynamics [21], are quite popular. However, convergence can be an issue, and in particu-

lar, the projected Gauss-Seidel method is notoriously slow to converge for ill-conditioned

problems, even when warm starting is applied. Pivoting methods can therefore be an

attractive alternative, and this is likewise the focus of our work.

2.5.1 Pivoting methods

With the conditions 2.35a - 2.35c, pivoting methods use index sets to help correctly label

constraint variables in the system. Constraint variables are placed into the free set F or

the tight set T, where the tight set T can be further decomposed into the tight lower set Tl

and tight upper set Tu. The sets are defined as

F :=
{
i : λl

i < λi < λu
i and wi = 0

}
(2.37a)

Tl :=
{
i : λi = λl

i and wi > 0
}

(2.37b)

Tu := {i : λi = λu
i and wi < 0} , (2.37c)

19

where T = Tl ∪ Tu. Recall that for friction constraints, the box friction bounds are

λl
i = −µλn̂ and λu

i = µλn̂, with λn̂ being the normal impulse. As for non-interpenetration

constraints, the bounds are λl
i = 0 and λu

i = ∞, whereas bilateral constraints are

boundless such that λl
i = −∞ and λu

i = ∞. As bilateral constraints have no impulse

bounds and always have constraint velocities w of zero (Section 2.2), variables that

correspond to bilateral constraints will always be marked as free. With these sets to label

variables, we can partition the linear system in Equation 2.36 in the following way


AFF AFTl

AFTu

ATlF ATlTl
ATlTu

ATuF ATuTl
ATuTu



λF

λTl

λTu

+


bF

bTl

bTu

 =


wF

wTl

wTu

 , (2.38)

subject to conditions

λTl
< λF < λTu and wF = 0 (2.39a)

λTl
= λl and wTl

≥ 0 (2.39b)

λTu = λu and wTu ≤ 0, (2.39c)

where the submatrices in Equation 2.38 refer to rows and columns of the lead matrix A

selected by the index sets. For example, ATuF corresponds to row indices of variables that

are in the upper tight set Tu and column indices of variables that are in the free set F.

Since the lower and upper bounds λl and λu are known, we only need to solve for λF.

Hence, we can reduce the linear system in Equation 2.38 to

AFFλF = −bF −AFTl
λTl
−AFTuλTu , (2.40)

where the principal submatrix AFF is symmetric positive definite if the box friction model

is used. This means if we are using direct methods to solve Equation 2.40, one can

apply Cholesky factorization on the submatrix AFF, where AFF = LLT , with L being a

20

lower triangular matrix. After factorizing the matrix A, we apply forward and backward

substitution to solve Equation 2.40 for λF.

The essence of pivoting methods is to correctly determine the index set. For a system

with m variables, if we partition variables into free and tight, there are 2m possible index

sets, while partitioning variables into free, lower tight, and upper tight will give 3m

possible index sets. In the next section, we are going to go over popular techniques to

efficiently determine the correct index set without brute forcing through a large number

of possible index sets.

2.5.2 Principal pivoting method

We start with an initial guess of the correct index set. A common choice is to label every

variable as free. One can also use the free and tight sets from the previous time step, in

which we set the tight entries of λ to the bounds λl and λu.

With a guess of the index set, we solve Equation 2.40 for λF. After the linear solve, we

compute the constraint velocities w = Aλ + b and then check whether variables in λF

satisfy Equations 2.39a - 2.39c. The pivoting algorithm is outlined below:

F← F− {i} and Tl ← Tl ∪ {i} , if λi ≤ λl
i and wi = 0, (2.41)

F← F− {i} and Tu ← Tu ∪ {i} , if λi ≥ λu
i and wi = 0, (2.42)

Tl ← Tl − {i} and F← F ∪ {i} , if λi = λl
i and wi < 0, (2.43)

Tu ← Tu − {i} and F← F ∪ {i} , if λi = λu
i and wi > 0. (2.44)

The first two cases 2.41 and 2.42 concerns infeasible free variables in the constraint impulse

λ that exceeds the impulse bounds after the linear solve. We clamp these infeasible

variables to their bounds and classify those variables as tight. Cases 2.43 and 2.44 refer

to variables in the tight set that are not physical such that the constraint velocities w and

the friction impulses λ are acting in the same direction. In other words, the complementary

conditions are violated. In this case, we move these variables from the tight set back

21

into the free set for subsequent linear solves to correct. Note that the principal pivoting

method only pivots one variable at a time. So if there are multiple infeasible or non-

complementary variables, we pick and pivot the smallest index. Another important thing

to note is for matrices AFF that are not ill-conditioned, the principal pivoting method is

guaranteed to determine the correct index set in m pivots if the matrix AFF is symmetric

positive definite, where m denotes the number of constraints in the system [2]. However,

for cases where the matrix AFF is ill-conditioned, we do not have such guarantees and

we might cycle back to an index set we have encountered in previous pivots, preventing

progress. In such situations, we simply return the best solution we have seen so far,

which is the index set with the least number of variables that are infeasible or not

complementary.

While this method is effective for linear systems with a symmetric positive definite

matrix, it is costly in the sense that we have to solve a linear system at each pivot. Hence,

in the next section, we describe an extension of the principal pivoting method that pivots

multiple infeasible variables and non-complementary variables simultaneously.

2.5.3 Block principal pivoting method

We outline the block principal pivoting (BPP) method in Algorithm 1 [18]. We see in

lines 14 - 16 that the BPP algorithm pivots all infeasible and non-complementary variables

in each iteration. Pivoting multiple variables at a time speeds up convergence and reduces

the number of times we have to solve the linear system in Equation 2.40. However, the

problem with BPP is it can cycle through the same index set even if the matrix AFF is

symmetric positive definite. To fix this, we have to implement robust cycle detection and

prevention schemes to allow BPP to converge to a solution.

Cycle detection and cycle breaking

To break the cycle on the same index set, we first recover the index set to the state before

pivoting, and then switch from block pivoting mode to single pivoting mode. How long

22

Algorithm 1 Block principal pivoting method

1: procedure BPP(A, b, λ, λl, λu, F, Tl, Tu)
2: Initialize k = 0
3: while F, Tl and Tu changes or k < max iteration do
4: for each i ∈ Tl do ▷ Clamp infeasible variables
5: λi ← λl

i

6: end for
7: for each i ∈ Tu do ▷ Clamp infeasible variables
8: λi ← λu

i

9: end for
10: Perform Cholesky factorization AFF = LLT .
11: Solve Ly = −bF −AFTl

λTl
−AFTuλTu ▷ Forward substitution

12: Solve LTλ = y ▷ Backward substitution
13: w = Aλ+ b
14: for i = 1 to m do ▷ Pivot multiple variables
15: Pivot index i in F, Tl, or Tu using Equations 2.41 - 2.44.
16: end for
17: k = k + 1
18: end while
19: end procedure

should the method remain in single pivoting mode is up to the user. One option is the

user can run the single pivoting mode for a fixed number of iterations before switching

back to block pivoting mode. Another option is to switch back to block pivoting mode

when the method makes good progress and finds a solution that has the least number of

infeasible and non-complementary variables compared to all the solutions it has found so

far. For simplicity, Algorithm 1 omits cycle detection and the single pivoting fail-safe.

Even with cycle detection and prevention schemes, it is still possible for BPP to

encounter cycles even after switching from block to single pivoting mode, or after cycle

breaking has been attempted on that cycling index set. This occurs on complicated

problems with a lot of redundant constraints. In these failure cases, we simply return

the best solution we have seen so far.

23

2.5.4 Cholesky factorization

In order to compute an exact solution to the linear system with m constraints

Aλ = b, (2.45)

where A ∈ Rm×m and λ,b ∈ Rm, we have to factorize the matrix A in order to apply for-

ward substitution (Algorithm 1, line 11) and backward substitution (Algorithm 1, line 12)

to get the solution x. However, if A is symmetric positive definite, then we can apply the

Cholesky factorization A = LLT [32], where L is lower triangular, such that we only need

to compute and store one matrix L. As we are using the box friction model, our system

matrix A is symmetric positive definite, and so the Cholesky factorization is applicable

to our problems. We outline the Cholesky factorization method in Algorithm 2 [32]. It is

important to note that the diagonal elements of L remain positive during the Cholesky

factorization steps [31]. Since our matrix A is sparse, some operations are skipped during

the factorization. For example, line 9 will be skipped if aik = 0 or ajk = 0.

The Cholesky factorization can introduce fill-ins in the factor L (Algorithm 2, lines 9

and 11). The computational complexity of the sparse Cholesky factorization is therefore

O(|L|) [11], where |L| is the number of nonzeros in the Cholesky factor L. To reduce

the number of fill-ins introduced, one can apply ordering strategies such as Cuthill-

McKee [10], reverse Cuthill-McKee [5], or approximate minimum degree [1]. We choose

the Cuthill-McKee ordering approach for our problems [12, 26].

2.5.5 Limitations of the principal pivoting method

While pivoting methods such as the BPP method are efficient in determining the solution

λ that satisfies Equations 2.39a - 2.39c by pivoting multiple variables per iteration, the

Cholesky factorization of AFF does not scale to large problems due to the increasing ratio

of fill-ins as the matrix size increases (Section 2.5.4). So, in chapters 3 - 5, we are going to

24

Algorithm 2 Cholesky factorization

1: procedure CHOLESKY(A)
2: for j = 1 : m do ▷ Iterate over columns
3: for k = 1 : j − 1 do
4: ajj = ajj − ajkajk ▷ Update diagonal using previous columns
5: end for
6: ajj =

√
ajj

7: for i = j + 1 : m do ▷ Update elements below diagonal
8: for k = 1 : j − 1 do
9: aij = aij − aikajk ▷ Update using previous columns

10: end for
11: aij = aij/ajj ▷ Update using diagonal
12: end for
13: end for
14: L = tril(A) ▷ Lower triangular part of A
15: end procedure

discuss about the preconditioned conjugate gradient method and how to use it to solve

large frictional contact problems.

25

Chapter 3

Conjugate Gradient Method

As described in the previous chapter, the computational cost in obtaining an exact

solution to the linear system Aλ = b increases as the problem size gets larger due to

the Cholesky factorization becoming more expensive. In most cases, we only need a

good approximate solution to the linear system. Since the matrix of the linear system is

symmetric positive definite (SPD), we can apply the conjugate gradient (CG) method [16]

to find a good approximate solution to the linear system. In this chapter, we will describe

the CG method and also briefly look at the convergence theory of CG.

The CG method is outlined in Algorithm 3. Solving the linear system Aλ = b is the

same as finding the solution to the minimization problem

min
λ

1

2
λTAλ− λTb︸ ︷︷ ︸

F (λ)

. (3.1)

In our case, since the matrix A is SPD, F (λ) is strictly convex, which means there is a

global minimum to Equation 3.1 that can be determined by solving the linear system

Aλ = b. To iteratively step towards the global minimum in the optimization process,

at the k-th iteration, we pick a search direction q(k) and update the approximate solution

with:

λ(k+1) = λ(k) + α(k)q(k). (3.2)

26

The step size α(k) at the k-th iteration of the CG method is computed using:

α(k) =

(
r(k), r(k)

)
(q(k),Aq(k))

, (3.3)

where (·, ·) denotes the inner product (Algorithm 3, line 12). The residual r(k) (Algo-

rithm 3, line 4) measures how close we are to the vector b. If the norm of the residual

∥r(k)∥ is small, then we are confident we have obtained a good approximate solution to

the linear system Aλ = b. It is important to note that the step size is chosen such that it

minimizes F (λ(k+1)).

The essence of CG is its choice of the search direction q. CG applies Gram-Schmidt

conjugation to construct a set of search directions {q(0),q(1), ...,q(k)} such that the search

direction at the k + 1-th iteration q(k+1) is A-orthogonal to the previous search directions,

(q(k))TAq(l) = 0, k ̸= l. (3.4)

The subspace that the search directions span is called the Krylov subspace. The

theories of Krylov subspaces allows us to only need the search direction from the previous

iteration q(k−1) to update the search direction at the current iteration q(k) (Algorithm 3,

line 10), where:

β(k) =

(
r(k), r(k)

)
(r(k−1), r(k−1))

. (3.5)

The theories of Krylov subspace also permits a slightly cheaper update of the residual

(Algorithm 3, line 14), where the matrix-vector product Aq(k) used to compute the step

size α(k) can be reused to update the residual.

The CG algorithm requires one matrix-vector multiplication and 10m FLOPs per

iteration, and we only need to store and update the four vectors (λ,q, r,Aq) during the

CG iterations [16]. Here, m denotes the number of variables in our linear system.

27

Algorithm 3 Conjugate gradient

1: procedure CG(A,b)
2: k = 0
3: Initialize λ(k) = 0
4: Initialize r(k) = b−Aλ(k) ▷ Residual
5: do
6: if k = 0 then
7: Set q(k) = r(k) ▷ Initialize search direction
8: else
9: Compute β(k) ▷ Equation 3.5

10: q(k) = r(k) + β(k)q(k−1) ▷ Update search direction
11: end if
12: Compute α(k) ▷ Equation 3.3
13: λ(k+1) = λ(k) + α(k)q(k) ▷ Update solution
14: r(k+1) = r(k) − α(k)Aq(k) ▷ Update residual
15: k = k + 1
16: while (k < max iteration or

∥∥r(k)∥∥ > ε)
17: end procedure

3.1 Convergence theory of CG

Theoretically, for a m × m symmetric positive definite matrix A with full rank, CG

converges in at most m steps due to having at most m A-orthogonal search directions

in Rm [16]. But, due to roundoff errors, this is not guaranteed in practice. Also, for linear

systems where m is large, this convergence guarantee is not meaningful. Fortunately,

there is a theorem that states the convergence rate of CG is dependent on the condition

number of the matrix, A κ(A), and is bounded by [16]

∥∥λ− λ(k)
∥∥
A
≤ 2

∥∥λ− λ(0)
∥∥
A

(√
κ(A)− 1√
κ(A) + 1

)k

, (3.6)

where
{
λ(k)

}
is the sequence of iterates produced by CG, λ is the exact solution, and ∥·∥A

is the A-norm defined by ∥x∥A =
√
xTAx for vector x ∈ Rm [16]. The condition number

of the matrix A (with respect to the Euclidean norm) is given by κ(A) = ∥A∥2 ∥A−1∥2 [16].

It is important to note that Equation 3.6 gives the worst bound for the convergence of CG,

and we can get a better bound if the eigenvalues of the matrix A are clustered [32].

28

Due to our problems being very ill-conditioned, where κ(A) is large, CG will converge

very slowly for our problems. In the next chapter, we will discuss different preconditioning

techniques to construct the linear system Ãλ̃ = b̃ from Aλ = b such that κ(Ã) ≪ κ(A)

and κ(Ã) ≈ 1. The importance of constructing the linear system Ãλ̃ = b̃ is CG will

converge much faster when solving this linear system due to the condition number of Ã

being much smaller than A.

29

Chapter 4

Preconditioning

Preconditioning is essential for speeding up the convergence of iterative solvers such

as conjugate gradient (CG). It is a technique that is used to improve the condition

number of a matrix. Suppose we have a symmetric positive definite (SPD) matrix P that

approximates the matrix AFF and is easy to invert. We want to solve for this modified

linear system instead

P−1AFFλ = P−1b. (4.1)

The reason why we consider solving this modified linear system is if P approximates AFF,

then the condition number κ(P−1AFF) ≈ κ(I) = 1. Note that if P is SPD, its inverse P−1 is

also SPD. However, despite the matrix AFF and P−1 being SPD, the matrix P−1AFF might

not be SPD, which will be problematic for CG.

To make sure the matrix of the modified linear system is SPD, we use the fact that the

SPD matrix P has a Cholesky factorization P = LLT , where L is lower triangular, and

then transform the problem into

L−1AFFL
−T︸ ︷︷ ︸

Ã

LTλ︸︷︷︸
λ̃

= L−1b︸ ︷︷ ︸
b̃

, (4.2)

30

in order to solve a linear system where the matrix Ã is SPD (because L−1 has full column

rank) [29].

There are many choices for the preconditioning matrix P. The simplest choice is the

Jacobi preconditioner, where P is simply the diagonals of the matrix AFF. However, the

Jacobi preconditioner does not provide much improvement in the convergence rate of

CG [29]. In order to speed up the convergence rate of CG, we will need a more effective

preconditioner.

4.1 Incomplete Cholesky factorization

A better preconditioning choice will be the incomplete Cholesky preconditioner [16],

where P = L̂L̂T , with the matrix L̂ being lower triangular. The incomplete Cholesky

preconditioning technique aims to reduce the computation and memory cost of the

full Cholesky factorization while getting a reasonable approximation of the matrix AFF.

There are different variants of the incomplete Cholesky preconditioner. We are going to

first discuss the different existing variants and then propose our own variant of such a

preconditioner.

4.1.1 Zero-fill incomplete Cholesky

The first variant we will introduce is incomplete Cholesky with zero-fill [16], IC(0),

where all steps that introduce fill-ins are ignored. It is commonly used due to it being

computationally and memory efficient. The zero-fill incomplete Cholesky factorization

is summarized in Algorithm 4. The result is a matrix L̂ that has the same sparsity

pattern as the lower triangular part of the matrix AFF. As matrix AFF is sparse, the

incomplete Cholesky factor L̂ is cheap to compute. However, a problem with IC(0) is

that the remaining matrix after a factorization step may consist of negative diagonal

elements. This is because elements (that would introduce fill-ins) are dropped during

the factorization step. As the algorithm takes the square root of the diagonal elements

31

Algorithm 4 Zero-fill incomplete Chokesky IC(0)

1: procedure IC0(AFF)
2: Initialize L̂ = tril(AFF). ▷ Lower triangular part of AFF.
3: for each i ∈ F do ▷ Iterate over columns
4: L̂ii =

√
L̂ii

5: for each j ∈ F following i do
6: if L̂ji ̸= 0 then ▷ Skip fill-ins
7: L̂ji = L̂ji/L̂ii

8: end if
9: end for

10: for each j ∈ F following i do ▷ Update lower right block
11: for each k ∈ F following i do
12: if L̂kj ̸= 0 then ▷ Skip fill-ins
13: L̂kj = L̂kj − (L̂kiL̂ji) ▷ Update step
14: end if
15: end for
16: end for
17: end for
18: end procedure

of the matrix (Algorithm 4, line 4), this will potentially cause the factorization to break

down due to taking the square root of a negative diagonal element.

4.1.2 Incomplete Cholesky with diagonal compensation

One way to resolve breakdowns is to instead compute the incomplete Cholesky factor-

ization of the diagonally shifted matrix AFF + γI, where γ > 0 [27]. If the factorization of

AFF fails, we keep increasing the shift γ applied to the matrix AFF until the factorization

succeeds. The problem with this approach is the shift γ can be very large, which

drastically reduces the effectiveness of the preconditioner. Note that rather than applying

a shift of γI, one can instead apply a shift of γdiag(AFF) [23].

4.1.3 Incomplete Cholesky with drop tolerance

Another approach to resolving breakdowns is to keep more fill-ins and only drop el-

ements that fall below a computed drop tolerance. We describe this approach using

32

Algorithm 5 Incomplete Cholesky with drop tolerance ICT

1: procedure ICT(AFF, ϵ)
2: Initialize L̂ = tril(AFF). ▷ Lower triangular part of AFF.
3: Compute τ using ϵ. ▷ Drop tolerance for each column.
4: for each i ∈ F do
5: for each j ∈ F following i do
6: if L̂ji < τi then
7: L̂ji = 0. ▷ Drop element
8: end if
9: end for

10: L̂ii =

√
L̂ii

11: for each j ∈ F following i do
12: L̂ji = L̂ji/L̂ii

13: if L̂ji < τi then
14: L̂ji = 0. ▷ Drop element
15: end if
16: end for
17: Keep p largest element of column i.
18: for each j ∈ F following i do ▷ Update lower right block
19: for each k ∈ F following i do
20: L̂kj = L̂kj − (L̂kiL̂ji) ▷ Update step
21: if L̂kj < τj then
22: L̂kj = 0. ▷ Drop element
23: end if
24: end for
25: end for
26: end for
27: end procedure

Algorithm 5 [27]. We compute a drop tolerance τi for each column i using a user-defined

parameter ϵ > 0 and the norm of column i of the lower triangular part of the matrix AFF,

∥ai∥, where τi = ϵ∥ai∥ (Algorithm 5, line 3).

In order to control the number of fill-ins and reduce the computational cost in subse-

quent factorization steps, after updating an entry in a column of the incomplete Cholesky

factor L̂, we check and see whether we should discard that entry by comparing against

the drop tolerance of that column (Algorithm 5, lines 13 - 15 and lines 21 - 23). To further

reduce memory cost, we also drop elements before updating a column (Algorithm 5,

33

lines 6 - 8). Moreover, after fully updating a column, one can only keep the p largest

elements and the diagonal element in that column, where p is a user-defined parameter.

Note that with any of these dropping schemes, it is possible for the original nonzero

entries of the matrix AFF to be dropped.

While this method helps resolve breakdowns and in general computes a more effective

preconditioner compared to IC(0) due to having more fill-ins, the factorization cost in-

creases as we decrease our drop tolerance (by choosing a smaller ϵ). Unfortunately, for the

matrices of our problems, we need to choose a very small ϵ in order to avoid breakdowns.

Although this method will give a very effective preconditioner, the computational cost of

the preconditioner approaches the computational cost of the full Cholesky factorization,

which defeats the purpose of using an iterative solver. One possible way to mitigate this

issue is to apply this method to the shifted matrix AFF + γI (or AFF + γdiag(AFF)) as

described in the previous section. Scott and Tuma [28] describe an incomplete Cholesky

preconditioner where one can control both the density of the incomplete Cholesky factor,

the amount of diagonal shift added to the system matrix if a negative pivot occurs, and

the amount of memory used. Despite being able to pick a larger ϵ, we, however, may still

have to pay the cost of refactoring the whole matrix again if our choice of γ does not avoid

breakdowns.

4.1.4 Incomplete Cholesky with partial shift

Since re-computing the whole factorization because of breakdowns is costly, Chen et al.

[6] propose a partial shift strategy that only shifts the diagonal elements of the columns

that affect the column with the negative diagonal element during the IC(0) factorization

step, where the diagonals of those columns are incrementally shifted by 2piγ, with pi

being the number of times we shift the column i and γ is chosen to be 1e-4. Although

this method does reduce the re-computation cost of the zero-fill incomplete Cholesky

factorization, due to how often breakdowns occur in our matrices, we still have to re-

factorize many times and apply large diagonal shifts to the problematic columns.

34

Algorithm 6 IC(0) with imaginary columns η

1: procedure IMAGINARYIC0(AFF)
2: Initialize L̂ = tril(AFF). ▷ Lower triangular part of AFF.
3: Initialize η = 1 ▷ Initialize all columns to be real.
4: for each i ∈ F do
5: if L̂ii < 0 then ▷ If diagonal is negative
6: ηi = −1 ▷ Mark column i imaginary
7: end if
8: L̂ii =

√
ηiL̂ii

9: for each j ∈ F following i do
10: if L̂ji ̸= 0 then ▷ Skip fill-ins
11: L̂ji = L̂ji/L̂ii

12: L̂ji = ηiL̂ji ▷ Complex conjugate multiply
13: end if
14: end for
15: for each j ∈ F following i do ▷ Update lower right block
16: for each k ∈ F following i do
17: if L̂kj ̸= 0 then ▷ Skip fill-ins
18: L̂kj = L̂kj − (ηiL̂kiL̂ji) ▷ Update step
19: end if
20: end for
21: end for
22: end for
23: end procedure

4.1.5 Zero-fill incomplete Cholesky with imaginary entries

To prevent the factorization from breaking down while minimizing the cost of the factor-

ization, we develop a method that allows imaginary entries in the incomplete Cholesky

factor. The main idea is to make the best of a bad situation. Instead of restarting the

incomplete factorization with a diagonal compensation or drop tolerance, we do not

discard the work we have done and complete the factorization while making note of the

columns that become imaginary. Rather than explicitly storing the imaginary entries of

the incomplete Cholesky factor, we only store the magnitude of the imaginary numbers.

This is due to the fact that there can only be purely imaginary entries in the incomplete

Cholesky factor. We will use L̂ to denote our implementation of the imaginary incomplete

Cholesky factor and use L̃ to denote the theoretical incomplete Cholesky factor with

35

Output dataInput data Square root of negative diagonal Complex division

Figure 4.1: Since the imaginary incomplete Cholesky factor L̃ can only have purely imag-

inary entries (bottom), we only store the magnitude of the purely imaginary numbers

when computing our factor L̂ with Algorithm 6 (top). As column 2 only contains purely

imaginary entries, we set η2 = −1 to mark column 2 imaginary.

actual imaginary entries. Since we only store the magnitude of the purely imaginary

numbers in L̃, our incomplete Cholesky factor L̂ only contains real entries. Our approach

is equivalent to a non-optimal diagonal compensation, and while it can still break down

if we have a zero on the diagonal, we do not observe this to happen in practice.

Pseudocode for the algorithm to compute our incomplete Cholesky factor L̂ is shown

in Algorithm 6. We use Figure 4.1 to illustrate how Algorithm 6 handles a column with a

negative diagonal element during the factorization step. Essentially, we use a sign vector

η to prevent the square root of a negative diagonal element. If the diagonal of column i

is negative (meaning L̃ii and L̂ii are negative), we set ηi = −1 (Algorithm 6, line 6), and

then multiply L̂ii by ηi in order to take the square root of a positive number. With these

updates, the entry L̂ii is equal to the magnitude of the purely imaginary number
√

L̃ii.

For example, in Figure 4.1, after updating L̂22, we see that L̂22 = 2, which is equal to the

magnitude of the purely imaginary number
√

L̃22 = 2i.

Once the diagonal of the column i becomes purely imaginary, the remaining entries in

column i are also purely imaginary since we divide them by the diagonal entry. Notice

there is an extra factor of ηi = −1 when we divide the real row entries below the diagonal

of column i by L̂ii (Algorithm 6, line 12). This is to mimic the multiplication of the numer-

36

ator and denominator of the row entries below the diagonal by the complex conjugate of

the purely imaginary diagonal element when performing the complex division. We see

in Figure 4.1 that after dividing L̂32 by L̂22, we multiply L̂32 by η2 = −1 in order to obtain

L̂32 = −1, which matches the magnitude of the purely imaginary number L̃32 = −i.

Moreover, when updating the real columns in the lower right block of L̂ with column i,

those columns remain real because the multiplication of two purely imaginary numbers

gives a real number (Algorithm 6, line 18).

An important fact is a column in L̃ can either contain only real entries or only purely

imaginary entries. So in Algorithm 6, we also use the sign vector η to mark real and

imaginary columns. The important thing to note is entries in the imaginary columns of

our factor L̂ are real numbers. For instance, in Figure 4.1, we see that the imaginary

column 2 of our factor L̂ consists of real entries that denote the magnitude of the purely

imaginary numbers in column 2 of the factor L̃. Observe that we mark η2 = −1 for the

imaginary column 2.

With purely imaginary entries in L̃, we obtain the preconditioner P = L̃L̃H , where L̃H

is the conjugate transpose of the L̃. The matrix P = L̃L̃H contains only real entries, as

Pij =

min(i,j)∑
k=1

L̃ikL̃jk (4.3)

only consist of products of entries in the same column, and we know the product of two

purely imaginary numbers gives a real number. Hence Pij is real. Here, L̃jk denotes

the complex conjugate of the entry L̃jk. Although our zero-fill imaginary incomplete

Cholesky factorization differs from the full Cholesky factorization such that we are

introducing purely imaginary entries into the factor L̃ and skipping entries that introduce

fill-ins, our goal is to come up with a good enough preconditioner P = L̃L̃H where

κ
(
L̃−1AFFL̃

−H
)
≪ κ(AFF).

The linear solve with our incomplete Cholesky factor L̂L̂Hz = rF illustrated in

Algorithm 7 gives a real solution z because we divide the imaginary entries introduced

37

Algorithm 7 IC(0) linear solve with imaginary columns η

1: procedure MODIFIEDLINEARSOLVE(L̂, rF, η)
2: Initialize zi = rF
3: for each i ∈ F do ▷ Forward substitution L̂y = rF
4: zi = ηi

zi
L̂ii

5: for each j ∈ F following i do
6: zj = zj − (ηiL̂jizi)
7: end for
8: end for
9: for each i ∈ F do ▷ Backward substitution L̂Hz = y

10: for each j ∈ F preceding i do
11: zi = zi − (ηiL̂jizj)
12: end for
13: zi =

zi
L̂ii

14: end for
15: end procedure

during forward elimination (Algorithm 7, line 4) by the diagonal element in the imaginary

column i (Algorithm 7, line 13). Note that we never need to deal with complex numbers

because matrix entries and intermediate values are either real or purely imaginary,

permitting a smaller memory footprint and faster implementation than one needing to

deal with complex numbers whose real and imaginary parts are not zero.

4.1.6 Matrix pre-shifting

One other way to mitigate or reduce the frequency of encountering breakdowns in the

factorization is to factorize the preshifted matrix SAFFS rather than the original matrix

AFF, where S is a diagonal scaling matrix. There are various options for the scaling matrix

S. For example, S can be the inverse of the diagonals of the matrix AFF [6] or the L2-norm

of the columns of AFF [28].

38

Algorithm 8 Preconditioned conjugate gradient

1: procedure PCG(A,b)
2: k = 0
3: Initialize λ(k) = 0
4: Initialize r(k) = b−Aλ(k) ▷ Residual
5: Compute P
6: do
7: Solve Pz(k) = r(k) for z(k)

8: if k = 0 then
9: Set q(k) = z(k) ▷ Initialize search direction

10: else
11: Compute β(k) ▷ Equation 4.5
12: q(k) = z(k) + β(k)q(k−1) ▷ Update search direction
13: end if
14: Compute α(k) ▷ Equation 4.4
15: λ(k+1) = λ(k) + α(k)q(k) ▷ Update solution
16: r(k+1) = r(k) − α(k)Aq(k) ▷ Update residual
17: k = k + 1
18: while (k < max iteration or

∥∥r(k)∥∥ > ε)
19: end procedure

4.2 Preconditioned Conjugate Gradient method

Now we will discuss about applying CG on the transformed linear system Ãλ̃ = b̃.

With some mathematical manipulations [16], we do not need to explicitly construct the

modified linear system Ãλ̃ = b̃ when applying preconditioning to conjugate gradient.

The preconditioned conjugate gradient (PCG) method is outlined in Algorithm 8.

Notice the PCG algorithm (Algorithm 8) is very similar to the standard CG algorithm

(Algorithm 3), but that PCG needs to do the extra work of computing the preconditioning

matrix P (Algorithm 8, line 5) and performing a linear solve (Algorithm 8, line 7). Also,

the computation of the step size α and scalar β is slightly different for PCG as well, where

α(k) =

(
r(k), z(k)

)
(q(k),Aq(k))

, (4.4)

and

β(k) =

(
r(k), z(k)

)
(r(k−1), z(k−1))

. (4.5)

39

Although PCG converges faster to a good approximate solution, the step size α in Equa-

tion 4.4 does not guarantee our solution to satisfy the complementarity conditions 2.35a

- 2.35c, which makes the standard PCG method not suitable for solving MLCPs. In the

next chapter, we will discuss two methods of applying PCG to solve MLCPs.

40

Chapter 5

Using PCG in MLCPs solvers

There are many algorithms that may be used to solve the linear system in Equation 2.40.

When the system is large, iterative solvers are often preferable. Additionally, since the

linear system is symmetric positive definite, the preconditioned conjugate gradient (PCG)

method is a viable and effective algorithm, assuming that a suitable preconditioner can

be found. Solving MLCPs, however, requires a method that can also handle the feasibility

and complementarity conditions in Equation 2.36b, and the standard PCG method does

not guarantee the satisfaction of such conditions.

In this thesis, we are specifically interested in principal pivoting methods that identify

constraints that are at their bounds (tight) and provide a solution to the linear system

formed by the remaining free variables. In this chapter, we propose two methods

that make use of the PCG method in solving MLCPs. In addition, we also describe a

regularization technique that will potentially speed up the convergence of our methods.

5.1 BPP with PCG

The first method we introduce involves a simple modification to the BPP method (Al-

gorithm 1) proposed by Júdice [18]. The modification is using PCG to solve for the

linear system in Equation 2.40 (Algorithm 10, line 11) rather than obtaining an exact

41

solution to the linear system using the Cholesky factorization. The point of using PCG

instead is to mitigate the curse of dimensionality. We summarize the BPP+PCG method

in Algorithm 10.

The BPP+PCG method is similar to the PGS-SM method proposed by Silcowitz et

al. [30] in that they also used PCG to solve the system in Equation 2.40. However,

PGS-SM uses projected Gauss-Seidel to determine and reduce the free set, whereas our

BPP+PCG method first executes a PCG solve on an unbounded problem to determine

variable bounds and index sets, followed by pivoting and bound updates in subsequent

iterations.

5.2 Preconditioned generalized conjugate gradient

The second method we propose is a preconditioned version of the generalized conjugate

gradient method derived from the work of O’Leary [25]. We build on their work

by applying an incomplete Cholesky preconditioner (Section 4.1). Our preconditioned

generalized conjugate gradient (PGCG) method is summarized in Algorithm 11. The

method uses the step size αmax to make sure the constraint impulses λ stays within the

bounds (Algorithm 11, lines 10 - 12). The step size αmax at each inner iteration is given by

αmax = min

 min
i=1,...,s

qi<0

λl
i − λi

qi

, min
i=1,...,s

qi>0

λu
i − λi

qi

 , (5.1)

where λl
i and λu

i are the lower and upper bounds of the i-th component of the constraint

impulse, qi is the search direction and s denotes the size of the free set F. In each inner

iteration, the PGCG algorithm places all variables in F that hit the lower bound into the

lower tight set Tl and all variables that hit the upper bound into the upper tight set Tu

(Algorithm 11, lines 14 and 15). With the free set F changing, the matrix AFF changes as

well, and so the residual vector rF, search direction qF and the preconditioning matrix P

have to be re-computed (Algorithm 11, lines 16 - 19).

42

Algorithm 9 Adaptive regularization

1: procedure ADAPTIVEREGULARIZE(AFF, ϵ, d)
2: for each i ∈ F do
3: if PIVOTCOUNT(i) > di then
4: AFFi,i

= AFFi,i
+ ϵ

5: di = 2di

6: end if
7: end for
8: end procedure

If no variables move from the free set F into the tight set T during an inner iteration,

then we apply standard PCG (Algorithm 11, lines 11 and 21 - 22) to update the constraint

impulses λF. Note that if the problem only contains bilateral constraints, then our

PGCG algorithm will be equivalent to the standard preconditioned conjugate gradient

algorithm, as no variables will ever be placed into the tight set T.

After the inner iteration, similar to BPP+PCG (Algorithm 10), we put variables that

do not satisfy Equation 2.35a or 2.35b from the tight set T back into the free set F for

subsequent PGCG inner iterations to correct (Algorithm 11, lines 27 - 29).

The PGCG and BPP+PCG algorithms share some similarities, but there are also impor-

tant differences. BPP+PCG pivots variables after running the standard PCG algorithm,

whereas PGCG modifies the standard PCG algorithm to pivot variables that reach a

bound into the tight sets. We observed that the fine-scaled pivoting in PGCG also helps

to avoid cycling of the index set, which impacts solver progress.

5.3 Warm starting

To have a better initial guess of the free set F, tight set T and the constraint impulses λ,

we use the free and tight sets from the previous time step. We set the tight entries of λ to

the bounds l or u and the free entries to zero.

43

Algorithm 10 Block principal pivoting with PCG

1: procedure BPPWITHPCG(A, b, λ, λl, λu, F, Tl, Tu, d)
2: Initialize k = 0
3: while F, Tl and Tu changes or k < max iteration do
4: for each i ∈ Tl do ▷ Clamp infeasible variables
5: λi ← λl

i

6: end for
7: for each i ∈ Tu do ▷ Clamp infeasible variables
8: λi ← λu

i

9: end for
10: b̃← −bF −AFTl

λTl
−AFTuλTu

11: λF ← PCG(AFF, b̃) ▷ Section 4.2
12: w = Aλ+ b
13: for i = 1 to m do
14: Pivot index i in F, Tl, or Tu using Equations 2.41 - 2.44.
15: end for
16: if useAdaptiveReg then
17: ADAPTIVEREGULARIZE(AFF, ϵ, d) ▷ Section 5.4
18: end if
19: k = k + 1
20: end while
21: end procedure

5.4 Adaptive regularization

Due to our problems being ill-conditioned, our PCG-based solvers may still have trouble

determining the correct index set with reasonable outer iteration counts. To mitigate this,

we propose adding a varying amount of positive shift ϵ to the diagonal entries of the

matrix AFF that correspond to friction variables in the system. The physical meaning

of this adaptive regularization technique is the addition of instantaneous slip, where we

make the problem better conditioned by allowing objects in the simulation to slip more

than it should. Because we prioritize avoiding interpenetration, we only shift the friction

variable entries in AFF.

We outline the adaptive regularization technique in Algorithm 9. The amount of shift

we add to a diagonal element is dependent on how often the corresponding friction

variable goes into and out of the tight set T. If the number of times the friction variable i

44

goes into and out of the tight set, PIVOTCOUNT(i), exceeds a certain limit, di, we shift the

diagonal entry of column i by ϵ (Algorithm 9, lines 3 - 4).

The adaptive regularization is applied after updating the free and tight set in the PCG

solvers at the end of each outer iteration (lines 16 - 18 of Algorithm 10 and lines 30 - 32 of

Algorithm 11), where we double the pivot limit whenever we apply such regularization in

order to further soften the problem if the friction variables pivot more in later iterations

(Algorithm 9, line 5). For simplicity, we initialize all friction variables to have the same

initial pivot limit.

An important note is our adaptive regularization technique is different than the diago-

nal compensation [27] or partial shift [6] preconditioning technique since the latter’s goal

is used to obtain a successful incomplete Cholesky factorization, while our regularization

technique is used to soften the conditioning of the problem. Another distinction is this

adaptive regularization technique can also be applied to the direct BPP solver.

45

Algorithm 11 Preconditioned generalized conjugate gradient

1: procedure PGCG(A,b,λ,λl,λu, F, Tl, Tu, d)
2: k = 0
3: do
4: rF = −bF −AFFλF −AFTl

λTl
−AFTuλTu ▷ Residual

5: Compute P ▷ Section 4.1
6: Solve Pz = rF for z
7: j = 0
8: Initialize q = z ▷ Search direction
9: do

10: Compute αmax ▷ Equation 5.1
11: Compute αCG ▷ Equation 3.3
12: α = min{αCG, αmax} ▷ Step size
13: λF = λF + αq
14: if variables in λF hit bounds in λl or λl then
15: Place variables into Tl or Tu.
16: Recompute rF ▷ See step 4
17: Recompute P. ▷ Section 4.1
18: Solve Pz = rF for z
19: Reset q = z
20: else ▷ Standard PCG
21: q = z+ βq
22: rF = rF − αAFFq
23: end if
24: j = j + 1
25: while (j < max inner iteration) and (∥rF∥ < ε)
26: w = Aλ+ b
27: for i = 1 to m do
28: Pivot index i in F, Tl, or Tu using Equations 2.41 - 2.44.
29: end for
30: if useAdaptiveReg then
31: ADAPTIVEREGULARIZE(AFF, ϵ, d) ▷ Section 5.4
32: end if
33: k = k + 1
34: while (k < max outer iteration) and (F, T changes)
35: end procedure

46

Chapter 6

Results

This section evaluates the performance of the PCG variant solvers for several challenging

scenarios. All simulations were performed on an Intel Core i7-7700HQ (2.80 GHz) with

32 GB of RAM. We use the Vortex physics engine [8] to perform collision detection and

computing constraint Jacobian matrices. A time step of h = 1/60 s is used for all of the

examples.

The numerical methods, including computation of preconditioners, are implemented

in C++ using the Eigen linear algebra library [17]. Double precision is used for scalar,

vector, and matrix operations. A compressed sparse column format is used to store the

incomplete Cholesky factorizations and other sparse matrices. Eigen’s sparse Cholesky

factorization implementation is used for the baseline BPP solver. A maximum of 20,000

inner and outer iterations is used for the PCG variant solvers in order to allow them to

fully converge. We use a tolerance of ε = 1e−6 for terminating the PCG iterations (line 18

of Algorithm 8 and line 25 of Algorithm 11) and use a tolerance of 1e−10 for satisfying

the condition of Equation 2.35.

47

6.1 Examples

Figure 1.1 shows screenshots from the examples used in our experiments, and Table 6.1

summarizes important information about each simulation (e.g., maximum number of

constraints, maximum condition number). Due to large mass ratios and redundant

constraints in all these examples, the MLCP matrices for these examples have large

condition numbers. To handle redundant constraints, constraint compliances (diagonal

values of C in Equation 2.27) ranging from 10−7 to 10−10 are used to regularize the system.

Note that unconnected systems are split into multiple islands, and we apply the PCG

solvers to get the constraint impulses for each island. We now give brief descriptions of

the five challenging scenarios.

6.1.1 Boxes

This example is composed of boxes of mass 2.5 kg each, falling onto the ground. Eventu-

ally, the boxes form separate stable stacks. This is a simple scene testing how the solvers

handle examples with a large amount of static friction.

6.1.2 Tower

This example consists of a log tower made from 160 logs of mass 50 kg each, stacked with

a 2500 kg block falling from the top. The initially stable stack will collapse completely due

to the rolling ball colliding with it. A large number of contact constraints are generated

between the logs when the tower collapses.

6.1.3 Spinner

This example is a complex system where a 10 kg plate and a 2500 kg ball are suspended

by 8 inextensible cables. Each cable contains cable links of 0.1 kg each that are coupled

48

to neighbouring links using a joint with 6 degrees of freedom. This system is used to test

the ability of the PCG solvers to handle ill-conditioned problems with large mass ratios.

6.1.4 Chain

This example simulates a stiff chain wrapping around a rod. The chain is composed of

100 links of mass 0.25 kg that are connected by a universal joint. It has a box of mass

500 kg attached to it. Many friction variables are sliding (tight) when the chain wraps

fully around the rod.

6.1.5 Trucks

This simulation involves four trucks of mass 8000 kg each falling onto a net of very stiff

cables. Each cable has a linear density of 5 kg/m and is constructed from 48 - 65 bodies

and more than 280 constraints. Each truck has 22 bodies and more than 120 constraints.

We use this example to stress test the performance of the solvers.

6.1.6 Rocks

This example has a large pile of rocks with mass ranging from 80−250 kg each falling onto

the ground, which is then pushed by a stiff, lightweight shovel of 1 kg. A large number of

non-interpenetration and friction constraints are present throughout the simulation due

to the collisions between rocks in the pile.

6.1.7 Wall

This test case involves a static brick wall constructed with bricks of mass 2.5 kg that is hit

by a metal box of mass 10 kg. The brick wall starts to collapse when the metal box comes

into contact with it. Initially, there are small gaps between the bricks so that there is no

contact at the start of the simulation. Although the setup and simulation of this example

are similar to the tower example, only part of the brick wall collapses, meaning there is

49

Table 6.1: Maxima of mass ratio, total number of constraints, and condition number of A.

Example Mass ratio Constraints Condition
Boxes − 12, 000 1e+08
Tower 50:1 1, 300 1e+08
Spinner 25, 000:1 2, 920 1e+06
Chain 2, 000:1 1, 480 1e+08
Trucks 8, 000:1 5, 650 1e+10
Rocks 250:1 1, 800 1e+09
Wall 4:1 1, 006 1e+09

a mixture of kinetic and static friction during the impact between the metal box and the

wall.

6.2 Performance comparison

The performance of the PCG solvers is evaluated in three ways: i) the number of outer

iterations required to converge to the correct index set, ii) the LCP error produced by

the solver, and iii) the computational time required to solve the MLCP. Additionally, we

include iv) the average number of inner PCG iterations required for the PCG solvers to

converge to a solution per frame in order to further analyze the PCG solvers’ perfor-

mance.

Our comparisons focus on challenging frames with a non-trivial solution (i.e., where

the tight set T is non-empty). Simulations of multiple unconnected islands are not

parallelized, and the results simply report the sum of the solve times, outer iterations,

and LCP errors across all islands for each frame. We then compute the average of the

three quantities respectively across all the frames for each example. As for the average

inner PCG iterations, we report the results from the island that takes the longest time to

solve.

50

Table 6.2: Comparison of average outer iteration counts.

Example BPP+PCG PGCG BPP
Boxes 1.6 1.5 1.6
Tower 40.9 31.7 40.9
Spinner 9.6 9.5 9.6
Chain 68.0 17.2 68.0
Trucks 47.6 7.8 47.6
Rocks 17.5 64.4 17.5
Wall 1.3e+03 32.9 1.9e+03

Table 6.3: Maxima of LCP error [13] produced by each solver.

Example BPP+PCG PGCG BPP
Boxes 2.3e−11 9.7e−23 2.3e−11
Tower 1.9e−11 7.6e−12 2.8e−17
Spinner 6.3e−14 6.0e−14 2.7e−22
Chain 1.2e−13 1.1e−13 3.5e−20
Trucks 8.6e−11 9.3e−11 1.4e−13
Rocks 9.4e−17 2.4e−16 6.4e−19
Wall 1.8e+10 1.1e−11 1.8e+10

6.2.1 Outer iteration count

Table 6.2 presents the average outer iteration count needed to determine the correct index

sets F and T across all frames for both PCG solvers and the baseline BPP solver. Since

BPP+PCG essentially replaces the Cholesky factorization and linear solve of the baseline

BPP solver with standard PCG, we observe that the outer iterations needed to determine

the index sets for BPP and BPP+PCG are similar for almost all examples.

Table 6.2 also illustrates that the wall and trucks examples are where the PGCG solver

is most effective in terms of determining the index set in the least number of outer

iterations. We believe this is due to the additional pivoting within the inner iteration

that helps the PGCG solver make faster progress in determining the correct index set.

It appears that the additional pivoting is even necessary for convergence for the wall

example, where BPP+PCG and BPP struggle to converge on frames where the metal box

is in contact with the static brick wall. On the other hand, for the chain example, we see

51

Table 6.4: Comparison of average solve time (ms) per frame for each solver method.

Example BPP+PCG PGCG BPP
Boxes 2.2e+01 (3.1×) 2.7e+01 (2.6×) 6.8e+01
Tower 6.7e+01 (0.5×) 1.6e+02 (0.2×) 3.5e+01
Spinner 1.3e+00 (4.1×) 1.0e+00 (5.6×) 5.3e+00
Chain 1.1e+03 (0.5×) 1.4e+03 (0.4×) 5.1e+02
Trucks 9.3e+03 (0.1×) 5.1e+03 (0.2×) 9.8e+02
Rocks 2.0e+04 (0.03×) 5.0e+04 (0.01×) 6.3e+02
Wall 5.4e+04 (0.09×) 6.0e+02 (7.9×) 4.7e+03

that PGCG has a slower solve time than BPP+PCG despite a lower average outer iteration

count. There are three reasons for this. The first reason is there are actually more frames

where BPP+PCG (and BPP) converge in fewer outer iterations than the PGCG solvers. We

believe these frames in the chain example convey the limitation of the additional pivoting

in PGCG; the pivoting within the inner iterations gives a poor guess of the correct index

set. Secondly, there exist frames in the chain example where BPP+PCG (and BPP) requires

many outer iterations to converge and this explains the increased average outer iteration

count for both solvers. Nevertheless, there are few frames where both solvers struggle to

converge in a reasonable number of outer iterations. Thirdly, the system sizes of the chain

example are not very large, and thus, the additional IC(0) factorization cost incurred by

BPP+PCG for frames where it struggles is small enough that it still does better on average

than PGCG.

Figure 6.1 illustrates the total inner PCG iterations across all outer iterations for each

frame of the chain example. Our robust zero-fill incomplete Cholesky preconditioner

not only allows PGCG to converge 100 times faster than the Jacobi preconditioner, but is

also comparable to the more effective version of the incomplete Cholesky preconditioner

with a relatively low drop tolerance of 1e−5. The reason is the convergence of the

solver is affected by the large shifts that are added to the diagonals of the lead matrix

AFF during the factorization step of ICT (in order to prevent negative diagonal entries).

Unsurprisingly, as the drop tolerance used for ICT is smaller, it becomes a much more

52

0 50 100 150 200 250 300 350 400
Frame number

101

102

103

104

105

106
T

ot
al

 it
er

at
io

ns
Chains

Ours
ICT droptol 1e-3
ICT droptol 1e-5
ICT droptol 1e-7
Jacobi preconditioner
No preconditioner

Figure 6.1: With our implementation of the incomplete Cholesky preconditioner that han-

dles negative pivots, for the chains example, our PGCG solver converges two magnitudes

faster than the Jacobi preconditioner and is comparable to ICT with a relatively low drop

tolerance of 1e−5.

effective preconditioner compared to our zero-fill incomplete Cholesky preconditioner

due to it being much closer to the full Cholesky factor and large diagonal shifts not

required to prevent having negative diagonal elements during the factorization step.

6.2.2 LCP error

To measure the accuracy of the solvers, the unit consistent error measure for MLCPs

proposed by Enzenhöfer et al. [13] is computed and averaged over all constraints and

all frames. The maximal LCP errors (in Joules) for all examples are presented in Table 6.3.

We observe that the errors are reasonably low for all three solvers in all examples other

than the wall example. This is because the solvers converge for almost all examples and

because our choice of the stopping tolerance is small. Note that due to rounding the

values to 1 decimal place, we see some values in Table 6.3 being identical.

53

104 105 106 107 108 109 1010 1011

Condition number of initial system matrix

100

102

104

106
T

ot
al

 s
ol

ve
 ti

m
e

pe
r

fr
am

e
(m

s)
Relationship between condition number and total solve time

BPP+PCG
PGCG
Baseline BPP

Figure 6.2: A log-log plot demonstrating how the total solver time of both PCG variant

solvers worsens as the problems become more ill-conditioned. This plot includes the total

solve time per frame of all examples we considered.

6.2.3 Solve time

The average MLCP solve time of PCG variant solvers is compared with the baseline direct

BPP solver in Table 6.4, where the numbers inside the brackets are the speed up factors.

We observe that the PCG solvers are much slower than the direct BPP solver in almost all

cases, with the box, spinner, and the wall being the only examples where the PCG variant

solvers outperform BPP. One reason for this is the BPP+PCG and BPP solver struggles to

converge to an index set for the wall example on certain frames (Section 6.2.1). Another

reason is the convergence rate of the PCG solvers depends on the condition number of

the system matrix and also the number of imaginary columns in the incomplete Cholesky

factor. The box and spinner are examples that consist of incomplete Cholesky factors with

the least number of imaginary columns compared to the other examples, which explains

why the PCG solvers perform best in the box and spinner examples. The log-log plot

54

in Figure 6.2 demonstrates how the ill-conditioning of the problem seriously impacts the

performance of the PCG solvers, to a point where BPP still outperforms the PCG solvers

even when the system size increases (Figure 6.3). Note the clusters in Figure 6.2 and

6.3 where the PCG solvers outperforms the BPP solver corresponds to frames from the

spinner example.

Despite this, it is known that direct methods struggle for large examples due to

the large number of fill-ins introduced during the Cholesky factorization (even when a

reasonable ordering strategy is chosen). A large number of fill-ins will increase the FLOPs

needed to perform the factorization, which significantly slows down the factorization

time. The fill-ins introduced might even cause the factorization to fail due to insufficient

memory [6]. Hence, we anticipate that for problems where the number of constraints

is orders of magnitude larger than the examples we considered, we will see our PCG

solvers start to shine. We believe the effect of the condition number on the convergence

of the PCG solvers will not be as serious as the effect of a large number of fill-ins on the

Cholesky factorization.

6.2.4 Inner PCG iteration count

We now take a further look into how the number of imaginary columns in our incomplete

Cholesky preconditioner affects the inner PCG iterations of our two methods. Figure 6.4

illustrates that the performance of the inner PCG solve plummets as the number of

imaginary columns in the incomplete Cholesky preconditioner increases. We focus on

the chains, trucks and rocks examples because these are the examples where the PCG

solvers struggle the most. Note that we only display the results from the island that is

most challenging to solve in Figure 6.4 in order to get a clear picture of the effect of the

number of imaginary columns on the convergence of the PCG solvers.

We see the rocks example is the example that contains the most imaginary columns,

which explains why the PCG variant solvers perform particularly bad on the rocks

example such that the solve time is more than 100 times slower. The PGCG solver

55

103 104

System size of initial system matrix

100

102

104

106
T

ot
al

 s
ol

ve
 ti

m
e

pe
r

fr
am

e
(m

s)
Relationship between system size and total solve time

BPP+PCG
PGCG
Baseline BPP

Figure 6.3: A log-log plot illustrating that the PCG solvers still performs poorly compared

to BPP even when the initial system matrix A gets larger.

struggles with this example due to more frequent computation of the preconditioner.

The deterioration in the performance of the inner PCG solve due to large number of

negative imaginary columns also affects the quality of the index set obtained per outer

iteration, as we see PGCG took much more outer iterations to determine the correct

index set (Table 6.2). Furthermore, Figure 6.4 also shows that the average percentage

of columns that encountered negative diagonal elements is less for the PGCG solver. This

is due to having preconditioner computations that involves less imaginary columns in

the modified inner PCG iterations.

6.2.5 Visual comparison

Our PCG variant solvers produce simulations that are numerically stable and physically

similar compared to the baseline BPP solver, as demonstrated in Figure 6.5. This is due

to the LCP errors being low for the PCG solvers (see Table 6.3). Despite this similarity,

56

0 0.1 0.2 0.3 0.4 0.5 0.6
Average percentage of imaginary columns (%)

20

40

60

80

100

120

140

160

180

A
ve

ra
ge

 in
ne

r
PC

G
 it

er
at

io
ns

Chain

BPP+PCG
PGCG

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Average percentage of imaginary columns (%)

1400

1600

1800

2000

2200

2400

2600

A
ve

ra
ge

 in
ne

r
PC

G
 it

er
at

io
ns

Trucks

BPP+PCG
PGCG

0 0.5 1 1.5 2 2.5 3 3.5 4
Average percentage of imaginary columns (%)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

A
ve

ra
ge

 in
ne

r
PC

G
 it

er
at

io
ns

Rocks

BPP+PCG
PGCG

Figure 6.4: As the number of imaginary columns increases, the inner iterations increases

for the PCG solvers. The average imaginary columns is less for PGCG because it has

preconditioner computations with less imaginary columns in the inner iterations.

57

BPP+PCG
(1.7x speedup)

PGCG
(0.6x speedup)

BPP
(baseline)

BPP+PCG
(5.7x speedup)

PGCG
(4.2x speedup)

BPP
(baseline)

BPP
(baseline)

BPP+PCG
(13.1x speedup)

PGCG
(16.5x speedup)

Figure 6.5: Snapshots showing how the log tower (top), chain (middle) and spinner

(bottom) examples progress when different solvers are used. The three solvers produce

visually similar results.

58

Figure 6.5 shows that both solvers produce different behaviors for some examples. This is

because the solvers produce different index sets in some frames. The different index sets

will, for example, cause the logs to interact differently when the tower is collapsing, which

leads to the block and the logs to land at different positions once the tower collapses

completely. Another instance of this behavior difference is seen in the chain example.

The different index sets affect the accumulated twists and how the block collides with

the chain while the chain is wrapping around the rod, leading to a difference in how the

chain fully wraps around the rod.

6.3 Performance with adaptive regularization

We illustrate how different parameters of the adaptive regularization technique described

in Section 5.4 improves the convergence rate of the BPP+PCG solver. Table 6.5 demon-

strates the result of adding different amounts of adaptive regularization to the system

matrices of the three most challenging examples when applying the BPP+PCG solver.

We experimented with different initial pivot limits and different amounts of positive

shifts. Recall we initialize all friction variables to have the same initial pivot limit for

simplicity sake, and the pivot limit di is doubled each time its corresponding diagonal

entry is shifted. We see a clear boost in convergence rate when adaptive regularization

is added, where the BPP+PCG solver converges around 3.9 times faster for the wrapping

chain example if an initial pivot limit of 10 is used, and even faster if a smaller initial pivot

limit is used.

One main caveat of this technique, however, is if we add too much regularization

to the system matrix, objects may appear overly slippery and overly compliant, as seen

from the right image in Figure 6.6, when an initial pivot limit of 5 is used for the wrapping

chain example. On the other hand, if we use an initial pivot limit of 10 (middle image of

Figure 6.6), the chain wraps around the rod in a similar manner as when no adaptive

59

Table 6.5: Average outer iteration count when different amount of regularization is

added. A shift of 1e-3 is added to the diagonal entries of the system matrix whenever

the corresponding friction variables exceed their pivot limits.

Example Initial pivot limit d Average outer iterations
− 68.0

Chain 10 17.5 (3.9 ×)
5 14.8 (4.6 ×)
− 47.6

Trucks 10 28.2 (1.7 ×)
5 19.6 (2.4 ×)
− 17.5

Rocks 10 16.5 (1.1 ×)
5 17.1 (1.0 ×)

Figure 6.6: Different adaptive amounts of diagonal shift, showing results for an initial

pivot limit of 10 (left), 5 (middle), and no regularization (right). The chain and rod become

slippery if too much regularization is added.

regularization is used (left image of Figure 6.6). But this artifact mostly arises when there

is a sufficient amount of sliding motion in the simulation.

The adaptive regularization technique can also be applied to the PGCG solver on

problems where it struggles. However, the user has to be even more careful in choosing

the parameters of the adaptive regularization technique for the PGCG solver due to

pivoting happening even more often within the solver.

Notice that the adaptive regularization technique does not fix the poor performance

of the BPP+PCG solver on the rock pile example. This is because the poor performance

is related to the large number of imaginary entries in the incomplete Cholesky precondi-

tioner.

60

Chapter 7

Conclusion and future work

In this thesis, we investigate two different ways of applying the preconditioned conjugate

gradient method to solving frictional contact problems. We also propose an inexpensive

failure-free zero-fill incomplete Cholesky preconditioner. While our PCG variant solvers

are outperformed by the baseline BPP solver in most scenarios, we do obtain much

more reasonable convergence rates when our incomplete Cholesky preconditioner is used

instead of the Jacobi preconditioner. In some cases, our preconditioner is even comparable

to the incomplete Cholesky with drop tolerance preconditioner for a relatively low drop

tolerance. To help improve the number of outer iterations to determine the correct index

set, we introduce an adaptive regularization scheme for friction variables that pivots too

frequently to further speed up convergence. However, one must be careful with picking

reasonable parameters when using the adaptive regularization technique to prevent the

artifact of contacts that become noticeably slippery.

There are several directions to explore for future work. Despite the slow solve time

results, we believe that our PCG variant solvers will begin to shine when applied to exam-

ples that have orders of magnitude more constraints than the examples we considered, as

the Cholesky factorization will simply be too costly for those examples. We also believe

our PCG variant solvers are well-suited for use in sub-substructuring solvers, such as

the one recently proposed by Peiret et al. [26], if our PCG variant solvers are effective in

61

solving larger scale problems. The interface solver in this work is a bottleneck because

a direct method is used to solve interface constraint forces. We believe performance

could be improved by using a parallelized version of our PCG variant solvers. Another

important consideration is to reuse the zero-fill incomplete Cholesky factor whenever

pivoting occurs rather than recomputing the factor from scratch. We did preliminary

experiments on low-rank downdates to incrementally modify the incomplete Cholesky

factorizations based on the index set, similar to the one proposed by Enzenhöfer et al. [12].

This idea shows promise and will benefit from further investigation.

62

Appendix A

Computing the constraint Jacobian

We first describe the physical interpretation of the constraint Jacobian. The rows of the

constraint Jacobian are the directions in which motion is not allowed or directions in

which an object can move without doing actual work. To describe the computation of

the constraint Jacobian, we first elaborate more on the non-interpenetration constraint.

Consider a physical system with body A colliding with body B (Figure A.1), with the

point p being the contact point and n̂ being the unit contact normal. We use ci to denote

the center of mass position of body i, and vi and ωi to be the linear and angular velocity

of body i. The relative velocity at the contact point p is

∆vp = (vB + ωB × rB)− (vA + ωA × rA). (A.1)

where rA = p− cA and rB = p− cB.

A.1 Constraint Jacobian for non-interpenetration constraints

To prevent bodies from penetrating into each other, we have to apply the following

constraint on the normal component of the relative velocity at the contact point wn̂ with

wn̂ = ∆vp · n̂ = 0. (A.2)

63

Figure A.1: When two bodies A and B are in contact, we need to apply constraints on the

relative velocity in the normal direction in order to avoid interpenetration.

Expressing the velocity constraint wn̂ in matrix-vector form, we have

wn̂ =
[
−n̂T n̂T [rA]× n̂T −n̂T [rB]×

]
︸ ︷︷ ︸

J


vA

ωA

vB

ωB


︸ ︷︷ ︸
v+

= 0, (A.3)

where we treat the cross product as a linear operator and express the cross product r×ω

as a matrix-vector product [r]×ω by defining

[r]× ≡


0 −rz ry

rz 0 −rx

−ry rx 0

 , where r = (rx, ry, rz). (A.4)

Generally, for a system with n bodies and m non-interpenetration constraints, the

constraint Jacobian matrix for the non-interpenetration constraint is a m × 6n matrix,

as each body has 6 degrees of freedom. Note that only the blocks corresponding to

64

the indices of the two bodies in contact will be non-zero for each non-interpenetration

constraint. Hence the constraint Jacobian matrix J is sparse.

A.2 Constraint Jacobian for contact constraints

When simulating frictional contact, the constraint Jacobian is defined as:

J =
[
n̂ t̂1 t̂2

]T [
−I3×3 [rA]× I3×3 −[rB]×

]
, (A.5)

where t̂1 and t̂2 are the friction axes, I3×3 is the 3-by-3 identity matrix and the cross

product matrix [r]× is defined in Equation A.4. We can see the constraint Jacobian J

computation is very similar to the one described in Section A.1, with the only difference

being we need to take into account the friction axes t̂1 and t̂2. Since we consider two

bodies for each contact constraint, for a system with n bodies and m contact constraints,

the constraint Jacobian matrix J ∈ Rm×6n is sparse. Note that the non-interpenetration

constraint Jacobian Jn̂

Jn̂ =
[
−n̂T n̂T [rA]× n̂T −n̂T [rB]×

]
, (A.6)

is exactly like the one shown in Equation A.3.

65

Bibliography

[1] AMESTOY, P. R., DAVIS, T. A., AND DUFF, I. S. Algorithm 837: Amd, an approxi-

mate minimum degree ordering algorithm. ACM Trans. Math. Softw. 30, 3 (September

2004), 381–388.

[2] ANDREWS, S., AND ERLEBEN, K. Contact and friction simulation for computer

graphics. SIGGRAPH ’21 Courses (August 2021), 1–124.

[3] BAUMGARTE, J. Stabilization of constraints and integrals of motion in dynamical

systems. Computer Methods in Applied Mechanics and Engineering 1, 1 (1972), 1–16.

[4] BENDER, J., ERLEBEN, K., AND TRINKLE, J. Interactive simulation of rigid body

dynamics in computer graphics. Computer Graphics Forum 33, 1 (2014), 246–270.

[5] CHAN, W. M., AND GEORGE, A. A linear time implementation of the reverse cuthill-

mckee algorithm. BIT 20, 1 (March 1980), 8–14.

[6] CHEN, J., SCHÄFER, F., HUANG, J., AND DESBRUN, M. Multiscale cholesky

preconditioning for ill-conditioned problems. ACM Trans. Graph. 40, 4 (July 2021),

1–13.

[7] CLINE, M., AND PAI, D. Post-stabilization for rigid body simulation with contact

and constraints. Proc. of IEEE International Conference Robotics and Automation 3

(October 2003), 3744 – 3751.

[8] CM-LABS SIMULATIONS. Vortex studio, 2021.

66

[9] COTTLE, R., PANG, J., AND STONE, R. The Linear Complementarity Problem. Academic

Press, 1992.

[10] CUTHILL, E., AND MCKEE, J. Reducing the bandwidth of sparse symmetric matri-

ces. In Proceedings of the 1969 24th National Conference (New York, NY, USA, 1969),

ACM ’69, Association for Computing Machinery, p. 157–172.

[11] DAVIS, T. A. Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2).

Society for Industrial and Applied Mathematics, USA, 2006.

[12] ENZENHÖFER, A., LEFEBVRE, N., AND ANDREWS, S. Efficient block pivoting

for multibody simulations with contact. In Proceedings of the ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games (2019), I3D’19, ACM.

[13] ENZENHÖFER, A., PEIRET, A., TEICHMANN, M., AND KÖVECSES. A unit-consistent

error measure for mixed linear complementarity problems in multibody dynamics

simulation with contact. Proceedings of the ASME 2018 International Design Engineering

Technical Conferences and Computers and Information in Engineering Conference (2018).

[14] ERLEBEN, K. Velocity-based shock propagation for multibody dynamics animation.

ACM Trans. Graph 26, 2 (2007), 20 pages.

[15] GOLDENTHAL, R., HARMON, D., FATTAL, R., BERCOVIER, M., AND GRINSPUN, E.

Efficient simulation of inextensible cloth. ACM Trans. Graph. 26, 3 (July 2007), 49–56.

[16] GOLUB, G. H., AND VAN LOAN, C. F. Matrix Computations. Johns Hopkins

University Press, Baltimore, MD, 2013.

[17] GUENNEBAUD, G., JACOB, B., ET AL. Eigen v3. http://eigen.tuxfamily.org, 2021.

[18] JÚDICE, J. J., AND PIRES, F. M. A block principal pivoting algorithm for large scale

strictly monotone linear complementarity problems. Computers & operations research

21, 5 (1994), 587–596.

67

[19] KAUFMAN, D. M., SUEDA, S., JAMES, D. L., AND PAI, D. K. Staggered pro-

jections for frictional contact in multibody systems. ACM Transactions on Graphics

(SIGGRAPH Asia 2008) 27, 5 (2008), 1–11.

[20] LARIONOV, E., FAN, Y., AND PAI, D. K. Frictional contact on smooth elastic solids.

ACM Trans. Graph. 40, 2 (April 2021), 1–17.

[21] LY, M., JOUVE, J., BOISSIEUX, L., AND BERTAILS-DESCOUBES, F. Projective dynam-

ics with dry frictional contact. ACM Trans. Graph. 39, 4 (July 2020), 1–8.

[22] MACKLIN, M., KENNY, E., MÜLLER, M., CHENTANEZ, N., JESCHKE, S., AND

MAKOVIYCHUK, V. Non-smooth newton methods for deformable multi-body dy-

namics. ACM Trans. Graph. 38, 5 (2019), 1–20.

[23] MATLAB. Incomplete cholesky factorization (ichol), 2020.

[24] NIEBE, S., AND ERLEBEN, K. Numerical methods for linear complementarity

problems in physics-based animation. Synthesis Lectures on Computer Graphics and

Animation 7, 1 (2015), 1–159.

[25] O’LEARY, D. P. A generalized conjugate gradient algorithm for solving a class of

quadratic programming problems. Linear Algebra Appl. 34 (1980), 371–399.

[26] PEIRET, A., ANDREWS, S., KÖVECSES, J., KRY, P. G., AND TEICHMANN, M. Schur

complement-based substructuring of stiff multibody systems with contact. ACM

Trans. Graph. 38, 5 (2019), 1–17.

[27] SAAD, Y. ”Preconditioning Techniques.” Iterative Methods for Sparse Linear Systems. PWS

Publishing Company, 1996.

[28] SCOTT, J. A., AND TUMA, M. Mi28: An efficient and robust limited-memory

incomplete cholesky factorization code. ACM Transactions on Mathematical Software

40, 4 (June 2014), 1–19.

68

[29] SHEWCHUK, J. R., ET AL. An introduction to the conjugate gradient method without

the agonizing pain, 1994.

[30] SILCOWITZ, M., NIEBE, S., AND ERLEBEN, K. Projected gauss-seidel subspace

minimization method for interactive rigid body dynamics - improving animation

quality using a projected gauss-seidel subspace minimization method. GRAPP 2010 -

Proceedings of the International Conference on Computer Graphics Theory and Applications

229 (05 2010), 38–45.

[31] VAN DE GEIJN, R. A. Notes on cholesky factorization, March 2011.

[32] WENDLAND, H. Numerical Linear Algebra, An Introduction. Cambridge University

Press, United Kingdom, 2017.

69

	Abstract
	Abrégé
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Background and related work
	Equations of motion
	Discretizing the equations of motion

	Constraints
	Constrained rigid body systems
	Constraint violation
	Constraint stabilization

	Modelling friction
	Coulomb friction model
	Box approximation of Coulomb friction cone

	Solving the MLCP
	Pivoting methods
	Principal pivoting method
	Block principal pivoting method
	Cholesky factorization
	Limitations of the principal pivoting method

	Conjugate Gradient Method
	Convergence theory of CG

	Preconditioning
	Incomplete Cholesky factorization
	Zero-fill incomplete Cholesky
	Incomplete Cholesky with diagonal compensation
	Incomplete Cholesky with drop tolerance
	Incomplete Cholesky with partial shift
	Zero-fill incomplete Cholesky with imaginary entries
	Matrix pre-shifting

	Preconditioned Conjugate Gradient method

	Using PCG in MLCPs solvers
	BPP with PCG
	Preconditioned generalized conjugate gradient
	Warm starting
	Adaptive regularization

	Results
	Examples
	Boxes
	Tower
	Spinner
	Chain
	Trucks
	Rocks
	Wall

	Performance comparison
	Outer iteration count
	LCP error
	Solve time
	Inner PCG iteration count
	Visual comparison

	Performance with adaptive regularization

	Conclusion and future work
	Computing the constraint Jacobian
	Constraint Jacobian for non-interpenetration constraints
	Constraint Jacobian for contact constraints

