
Adversarial Strategy Learning

Daniel Bairamian

Department of Electrical & Computer Engineering

McGill University

Montréal, Québec, Canada

December 15, 2021

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of

Master of Science.

©2021 Daniel Bairamian



Abstract

Imitation learning is the process of learning a policy from observing expert demonstrations.

Traditionally, this consists of exposing an agent to sets of state-actions trajectories. The

expected result would then be that the agent matches the expert’s policy through

observation, and learning to behave similarly under comparable conditions and

environments. Rather than imitating the expert, what if we wanted to encourage our agent

to solve the task at hand, while specifically avoiding the expert’s solution? We propose a

novel approach to define and leverage the strategy of an expert, and through adversarial

examples, encourage the agent to find a new solution to a given task.

To do so, we will not only be looking at the expert’s policy, but unlike traditional imitation

learning, we will also leverage the information of the Q-function of our expert. This

information will determine the likelihood of an observation to be used as an adversarial

example. Our experimental results show that our approach is able to extract multiple

unique and distinguishable solutions from a given environment.

i



Résumé

L’apprentissage par imitation est le processus d’apprentissage d’une politique à partir de

l’observation de démonstrations d’experts. Traditionnellement, cela consiste à exposer un

agent à des ensembles d’états-actions de trajectoires. Le résultat attendu serait alors que

l’agent corresponde sa politique a celle de l’expert par observation et qu’il apprenne à se

comporter de manière similaire dans des conditions et des environnements comparables.

Plutôt que d’imiter l’expert, que ce passerait-il si nous voulions encourager notre agent

à résoudre la tâche à accomplir, tout en évitant spécifiquement la solution de l’expert ?

Nous proposons une nouvelle approche pour définir et extraire la stratégie d’un expert, et

à travers des exemples adversaires, encourager l’agent à trouver une nouvelle solution à une

tâche donnée.

Pour ce, nous n’examinerons pas seulement la politique de l’expert, mais contrairement

à l’apprentissage par imitation traditionnel, nous exploiterons également les informations

de la fonction Q de notre expert. Cette information déterminera la probabilité qu’une

observation soit utilisée comme exemple adversaires. Nos résultats expérimentaux montrent

que notre approche est capable d’extraire plusieurs solutions uniques et distinguables pour

un environnement donné.

ii



Acknowledgements

First and foremost, I am incredibly grateful to my supervisor Derek Nowrouzezahrai, who

has been an incredibly supportive mentor.

I am also grateful to Paul Barde for taking the time to share his ideas with me, always

giving invaluable feedback and advice, which contributed to the iterative improvement of

this project.

Thank you to Tord Jon for sharing his insight on the development of some of the tools

created for this project.

I would also like to thank my friends Antonios Valkanas and Ali Shobeiri for their insightful

discussions and feedback throughout this project.

Finally I would like to thank my parents Raffi and Nathalie.

iii



Contents

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4

2.1 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Policy and Value Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Policy Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Value Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Value Function Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Temporal Difference Learning . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Function Approximators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Policy Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Policy Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.2 Actor-Critic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Imitation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iv



2.7 Exploration vs. Exploitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7.1 Intrinsic vs. Extrinsic Reward . . . . . . . . . . . . . . . . . . . . . . 23

3 Literature Review 25

3.1 Random Network Distillation . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Entropy Regularized Reinforcement Learning . . . . . . . . . . . . . . . . . . 28

3.2.1 Soft Actor Critic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Learning Different Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Methodology 34

4.1 Defining a Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Data Generation and State Resampling . . . . . . . . . . . . . . . . . . . . . 38

4.3 Intrinsic Bonus Reward Mechanism . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 State Likelihood Discriminator . . . . . . . . . . . . . . . . . . . . . 40

4.3.2 Random Network Distillation Gating Function . . . . . . . . . . . . . 40

4.3.3 Combining the Learned Functions . . . . . . . . . . . . . . . . . . . . 43

5 Experiments 46

5.1 MountainCar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 FourRooms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 GridWorld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

v



5.5 Training a second agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5.1 MountainCar: Second Agent . . . . . . . . . . . . . . . . . . . . . . . 68

5.5.2 FourRooms (Hacked) . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Discussion and Conclusion 74

6.1 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 74

vi



List of Figures

2.1 The agent-environment interaction in a Markov Decision Process [1] . . . . . 6

2.2 Tic Tac Toe: Markovian property example . . . . . . . . . . . . . . . . . . . 6

2.3 Tic Tac Toe policy examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Random Network Distillation Architecture . . . . . . . . . . . . . . . . . . . 27

3.2 Low entropy vs. high entropy policy examples . . . . . . . . . . . . . . . . . 29

3.3 Diversity Is All You Need Architecture [2] . . . . . . . . . . . . . . . . . . . 32

4.1 Directional gradient of Q-values along expert trajectory, MountainCar . . . . 36

4.2 MountainCar expert behaviour, panorama view . . . . . . . . . . . . . . . . 37

4.3 Random Network Distillation Gating Function Architecture . . . . . . . . . 42

4.4 MountainCar expert behaviour, projected view . . . . . . . . . . . . . . . . . 43

4.5 MountainCar expert learned RND and gating functions . . . . . . . . . . . . 44

4.6 MountainCar expert intrinsic bonus map . . . . . . . . . . . . . . . . . . . . 45

5.1 MountainCar Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Expert MountainCar strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 MountainCar expert vs. agent behaviour, panorama view 1 . . . . . . . . . . 50
1https://github.com/danielbairamian/Spotter/blob/main/Results/MountainCar.md

vii

https://github.com/danielbairamian/Spotter/blob/main/Results/MountainCar.md


5.4 FourRooms Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5 Expert FourRooms strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 FourRooms expert vs. agent behaviour, projected view 2 . . . . . . . . . . . 55

5.7 GridWorld Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.8 Expert GridWorld strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.9 GridWorld expert vs. agent behaviour, projected view3 . . . . . . . . . . . . 59

5.10 Pendulum Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.11 Expert Pendulum strategy: Two swings . . . . . . . . . . . . . . . . . . . . . 63

5.12 Expert Pendulum strategy: One swing . . . . . . . . . . . . . . . . . . . . . 64

5.13 Expert Pendulum strategy: No swings . . . . . . . . . . . . . . . . . . . . . 65

5.14 Pendulum agent vs. expert behaviour, panorama views4 . . . . . . . . . . . . 67

5.15 MountainCar two experts vs. agent behaviour, panorama views5 . . . . . . . 69

5.16 FourRooms two experts vs. agent behaviour, projected view6 . . . . . . . . . 72

2https://github.com/danielbairamian/Spotter/blob/main/Results/FourRooms.md
3https://github.com/danielbairamian/Spotter/blob/main/Results/GridWorld.md
4https://github.com/danielbairamian/Spotter/blob/main/Results/Pendulum.md
5https://github.com/danielbairamian/Spotter/blob/main/Results/MountainCar2.md
6https://github.com/danielbairamian/Spotter/blob/main/Results/FourRooms2.md

viii

https://github.com/danielbairamian/Spotter/blob/main/Results/FourRooms.md
https://github.com/danielbairamian/Spotter/blob/main/Results/GridWorld.md
https://github.com/danielbairamian/Spotter/blob/main/Results/Pendulum.md
https://github.com/danielbairamian/Spotter/blob/main/Results/MountainCar2.md
https://github.com/danielbairamian/Spotter/blob/main/Results/FourRooms2.md


List of Tables

5.1 MountainCarContinuous experiment hyperparameters . . . . . . . . . . . . . 51

5.2 FourRooms experiment hyperparameters . . . . . . . . . . . . . . . . . . . . 56

5.3 GridWorld experiment hyperparameters . . . . . . . . . . . . . . . . . . . . 60

5.4 Pendulum experiment hyperparameters . . . . . . . . . . . . . . . . . . . . . 66

5.5 MountainCar second agent experiment hyperparameters . . . . . . . . . . . 70

5.6 FourRooms Hacked experiment hyperparameters . . . . . . . . . . . . . . . . 73

ix



Chapter 1

Introduction

In order to teach an agent how to interact with its environment, reinforcement learning

(RL) is the procedure of training an agent by interacting with the world by performing

actions at a given state, and observing the response of the environment. RL agents perform

actions based on a probability distribution conditioned on their state, called a policy. After

performing an action, the environment will respond to the agent with a reward value and a

state update, from which the agent’s policy can now sample a new action. The problem then

becomes a sequential decision making process where the goal is for the agent to maximize

the expected long term return through improving its policy. There are multiple different

archetypes of learning algorithms to achieve the goal of RL. Policy-based methods allow the

agent to directly learn a stochastic policy function from which the agent could sample actions,

such as Trust Region Policy Optimization [3] (TRPO) and REINFORCE [4]. Value-based

methods allow the agent to learn the value of a state through value functions, or learn the

value of state-action pairs through Q-functions, and then subsequently act by choosing the

best action based on these values, such as Deep Q-Network (DQN) [5]. Finally actor-critic

1



methods combine both previously described archetypes, by learning both a policy and a value

function or Q-function, such as Advantage Actor-Critic [6] (A2C) and Soft Actor-Critic [7]

(SAC).

Instead of having the agent learn through interacting with the environment, another related

approach is imitation learning (IL) [8], where the agent is shown demonstrations of an expert

interacting with the same environment. The problem then ends up resembling a traditional

supervised machine learning (ML) problem, also referred to as behavioural cloning, as seen

in NVIDIA’s dataset aggregation algorithm [9] (DAgger). Another more modern approach

to imitation learning called generative adversarial imitation learning [10] (GAIL) uses a

framework similar to generative adversarial networks [11] (GANs), in order to train an agent

to match policies with the expert using a discriminator on the policy outputs.

While these approaches can make the learning much faster, the expert’s knowledge would

then act as a performance ceiling, meaning the expected behaviour of our agent would be

to, at best, match the expert’s.

1.1 Contributions

We are interested in solving a given task through multiple unique and distinct strategies. We

want to use expert demonstrations as adversarial examples, in order to encourage our agent

to find a new solution to the given task. However, blindly avoiding all observed behaviour

2



is not ideal, as some states and actions could be essential for solving a given task. It is

therefore crucial to determine if an observed behaviour is unique to a strategy, or common

to all solutions for a given task. We propose a novel framework that identifies the emergent

strategy of an expert by analyzing the Q-values along the trajectory of observations. Our

expert agent is trained using SAC and therefore uses both actor and critic networks. While

imitation learning usually only considers the actor network to learn a new policy, we will

also make use of the critic network in order to determine the likelihood of the observation

to be considered strategic, and therefore if it should be used as an adversarial example. We

will then use this information as an intrinsic reward mechanism for our new agent, which

should encourage it find a new unique solution to a task.

1.2 Thesis Overview

Chapter 2 will give an overview of reinforcement learning as well as explain the exploration

versus exploitation problem. Chapter 3 will review some of the novel literature in exploration

methods, as well as some existing work on learning diverse behaviour. Chapter 4 will present

our novel framework’s methodology by explaining each component and their role. Chapter

5 will present all of our experimental results. Finally, Chapter 6 will conclude with some

discussion and future work ideas.

3



Chapter 2

Background

The goal is to formally introduce the RL framework, as well as any other relevant background.

We will first introduce the concept of Markov Decision Processes in section 2.1. We will then

introduce the concept of policy and value functions with their mathematical formulations

in section 2.2. Using these definitions we will then present the various ways to accomplish

decision making in sections 2.3, 2.4 and 2.5. Furthermore, we will discuss how Imitation

Learning is used to transfer knowledge from an expert to an agent in section 2.6. Finally,

we will present the exploration vs. exploitation problem in RL in section 2.7, which are the

various ways we can encourage our agent to not always act optimally in order to explore its

environment.

2.1 Markov Decision Process

The reinforcement learning framework is modeled as what is known as a Markov Decision

Process (MDP), which is a mathematical framework that is used for decision making

problems. An MDP is defined as:

4



• a state space S, which is the set of states s the agent can be in

• an action space A, which is the set of actions a the agent can take

• a reward function r where r : S ×A → R, which is the immediate reward r the agent

observes when performing an action a ∈ A, while being at state s ∈ S

• a transition probability P where P : S × A × S → [0, 1], which is the probability of

transitioning from a given state s ∈ S to another state s′ ∈ S when taking an action

a ∈ A , formally defined as P (s′|s, a)

We can therefore define an MDP as the tuple M = { S, A, P, r}. Our decision making

interaction intervals are referred to as timesteps, where at each timestep t, the agent observes

a state st ∈ S, acts on the environment with an action at ∈ A, transitions to state st+1 ∈ S

with probability P (st+1|st, at), while also observing a reward rt+1 = r(st, at) as seen in figure

2.1. One of the key property of an MDP is the memoryless property, known as the markov

property. This means, the transition probability should only be conditioned on the current

state and action, disregarding any previous information from the past

P (st+1|st, at, st−1, at−1, . . . , s0, a0) = P (st+1|st, at) . (2.1)

5



Figure 2.1: The agent-environment interaction in a Markov Decision Process [1]

An example of this would be chess or tic tac toe. For a given board layout, in order to

compute what the next optimal move is, we only need to consider the current state. The

history of the board does not give us any additional information on what the next best move

is. In figure 2.2, we can see an example of the markovian property on a tic tac toe board.

Figure 2.2: Tic Tac Toe: Markovian property example

At state s2, both boards look exactly identical, however the chain of events that lead to this

state are completely different. Still, the information needed to compute the next best move

a2 is exactly the same for both scenarios, namely only s2. The history of events is therefore

irrelevant to the computation of our next decision.

6



2.2 Policy and Value Functions

The goal of RL is to maximize the expected long term return. The agent will interact with

the environment until the latter responds with a signal indicating the end of the task. We

call the sequence of states from the initial state to the terminal state an episode, and the

length of an episode is called a horizon. The return of a state in an episode of infinite horizon

is defined as Gt, which is the sum of discounted reward from the state st until the end of the

episode

Gt = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + . . .

Gt =
∞∑
k=0

γkrt+k+1 .

(2.2)

Here γ ∈ [0, 1] is called the discount factor, which is used to balance our agent’s long term

planning. Setting γ closer to zero will make it very myopic with almost no interest in the

delayed long term reward, while setting γ closer to one will assign high importance to later

reward, suitable for long term planning. In practice, this value is generally really close to

one, γ ≈ 0.99. The goal is then to maximize the expected return E[Gt]. From eq. (2.2),

Gt = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + . . .

Gt = rt+1 + γ(rt+2 + γrt+3 + γ2rt+4 + . . .)

Gt = rt+1 + γGt+1 .

(2.3)

7



2.2.1 Policy Functions

We define π(a|s) as a stochastic policy function, which is a conditional probability

distribution over actions a ∈ A given a state s ∈ S. Similarly, we denote π(s) as a

deterministic policy function. Rather than returning a distribution over actions, this policy

will return a single action. An example of both types of policy functions can be seen in

figure 2.3

(a) Tic Tac Toe: Stochastic policy (b) Tic Tac Toe: Deterministic policy

Figure 2.3: Tic Tac Toe policy examples

2.2.2 Value Functions

We denote V π(s) : S → R as the value function, which takes as input a state s and outputs

the expected return from the input state when taking actions with respect to the policy

8



π

V π(s) = Eπ[Gt|st = s] . (2.4)

Computing the value of a state requires to then compute an infinite sum. However, we

can rewrite the equation of the value function using eq. (2.1), (2.2), (2.3) and (2.4), to

transform the problem into a tractable recursive definition, commonly known as Bellman

equations [12]

V π(s) = Eπ[Gt|st = s]

= Eπ[rt+1 + γGt+1|st = s]

=
∑
a∈A

π(a|s)
∑
s′∈S

P (s′|s, a)[r(s, a) + γEπ[Gt+1|st+1 = s′]

=
∑
a∈A

π(a|s)
∑
s′∈S

P (s′|s, a)[r(s, a) + γV π(s′)] .

(2.5)

Simply put, in order to estimate the value of a state s, we need to consider all possible

actions weighted by their respective probabilities ∑
a∈A π(a|s). For each action, we then

need to consider all possible state s′ we can end up in, weighted by their respective transition

probability ∑
s′∈S P (s′|s, a). Finally we need to combine the immediate reward we get for

taking the current action we’re considering a, as well as the discounted value of the next

state s′ : [r(s, a) + γV π(s′)].

9



Similar to attributing a value to a single state s, we can also assign a value to a state-action

pair (s, a). We denote Qπ(s, a) : S ×A → R as the Q function, which takes as input a state

s and action a and outputs the expected return from the input state when taking the input

action

Qπ(s, a) = Eπ[Gt|st = s, at = a] . (2.6)

Similarly to the value function, we can transform the problem of evaluating the Q function

into a recursive formulation, with the following Bellman equation

Qπ(s, a) = Eπ[Gt|st = s, at = a]

= Eπ[rt+1 + γGt+1|st = s, at = a]

=
∑
s′∈S

P (s′|s, a)[r(s, a) + γEπ[Gt+1|st+1 = s′]

=
∑
s′∈S

P (s′|s, a)[r(s, a) + γV π(s′)] .

(2.7)

We can also see from eq. (2.5) and (2.7) that the relationship between a value function and

a Q function is the following

V π(s) =
∑
a∈A

π(a|s) ·Qπ(s, a) = Eπ[Qπ(s, a)] . (2.8)

Finally, we denote Aπ(s, a) : S×A → R as the advantage function. This gives us an estimate

10



of the value of an action compared to the other actions, on average when sampled from the

policy π

Aπ(s, a) = Qπ(s, a)− V π(s) . (2.9)

2.3 Value Function Based Methods

As previously stated, the goal of RL is to maximize the expected long term return. This

directly translates to then learning the optimal policy, denoted by π∗. One approach is to

consider a deterministic policy π∗(s), where the action taken with respect to the highest

return from our value function, known as the optimal value function V ∗(s), or from our Q

function, known as the optimal Q function Q∗(s, a), also referred to as greedy policy

V ∗(s) = max
π

V π(s) = max
a

∑
s′∈S

P (s′|s, a)[r(s, a) + γV ∗(s′)] (2.10)

Q∗(s, a) = max
π

Qπ(s, a) =
∑
s′∈S

P (s′|s, a)[r(s, a) + γmax
a′

Q∗(s′, a′)] . (2.11)

11



2.3.1 Dynamic Programming

The first approach to find the optimal policy π∗ is a set of algorithms from the dynamic

programming (DP) family, that directly make use of our Bellman equations, namely Policy

Iteration (Algorithm 1) and Value Iteration (Algorithm 2) [1] . The convergence of V π

Algorithm 1: Policy Iteration
Step 1: Initialize V π and π arbitrarily;
Step 2: Policy Evaluation;
while V π(s) has not converged do

for all s ∈ S do
v ← V π(s) ; /* Save previous value of V π(s) */
V π(s)← ∑

s′∈S P (s′|s, π(s))[r(s, π(s)) + γV π(s′)] ;

Step 3: Policy Improvement;
for all s ∈ S do

a← π(s) ; /* Save previous value of π(s) */
π(s)← arg maxa

∑
s′∈S P (s′|s, a)[r(s, a) + γV π(s′)] ;

if a 6= π(s) then
goto Step 2 ; /* Policy is not stable, go back to Step 2 */

return V π and π

Algorithm 2: Value Iteration
Initialize V π arbitrarily;
while V π(s) has not converged do

for all s ∈ S do
v ← V π(s) ; /* Save previous value of V π(s) */
V π(s)← maxa

∑
s′∈S P (s′|s, a)[r(s, a) + γV π(s′)] ;

π(s) = arg maxa
∑
s′∈S P (s′|s, a)[r(s, a) + γV π(s′)] ∀s ∈ S ;

return V π and π

is determined by the maximum observed changes between V π(s) and v. If all observed

12



values are less than some small threshold, then we convisder the value function to have

converged.

2.3.2 Temporal Difference Learning

One of the issues with dynamic programming is that we require a probability model of

the world in order to compute the expectation of the entire distribution of next states and

rewards, which we may not always have, and could be intractable for complex environments.

Another approach is instead to learn directly from interacting with the environment, without

requiring a model of the world, known as model free methods. Temporal Difference learning

(TD) [13] is a class of learning algorithms which are model free, that learn by iteratively

updating a current estimate of the value function, known as bootstrapping. We initialize

our value function arbitrarily, e.g. V π(s) = 0 ∀ s ∈ S, and approximate the infinite horizon

return Gt, defined in eq. (2.2) with an n-step return Gt:t+n defined as

Gt:t+n = rt+1 + γrt+2 + γ2rt+3 + . . .+ γn−1rt+n + γnV π(st+n)

=
n−1∑
k=0

[γkrt+k+1] + γnV π(st+n) .
(2.12)

We therefore have an estimate of how good our approximated return Gt:t+n is, by computing

the TD error δt+n = Gt:t+n − V π(st), then use this error to update our value function

13



estimation. This is known as n-step TD

V π(st)← V π(st) + α[Gt:t+n − V π(st)] . (2.13)

Where α ∈ [0, 1] is a learning rate. Note that setting n =∞ no longer approximates the n-

step return, but rather gets the exact infinite horizon, known as ∞-step TD or Monte Carlo

(MC) methods. However waiting for an episode to terminate is not ideal, and often not

practical for complex environments. The simplest case is the one-step TD method, known

as TD(0), with the following update rule for V π(st)

V π(st)← V π(st) + α[Gt:t+1 − V π(st)]

← V π(st) + α[rt+1 + γV π(st+1)− V π(st)] .
(2.14)

We can also use the same idea to evaluate a Q function using a one step return

Qπ(st, at)← Qπ(st, at) + α[rt+1 + γQπ(st+1, at+1)−Qπ(st, at)] . (2.15)

This idea is the basis of the famous one-step TD control algorithm, known as Q-learning [14]

(Algorithm 3).

14



Algorithm 3: Q-Learning
Initialize Qπ arbitrarily, α ∈ [0, 1], small ε > 0;
for each episode do

for each step of the episode t do
Choose at from Qπ(s, a) (ε− greedy) ; /* more on this in section 2.7 */
Take action at, observe rt+1 = r(st, at) and st+1;
Qπ(st, at)← Qπ(st, at) + α[rt+1 + γmaxaQπ(st+1, a)−Qπ(st, at)];
st ← st+1;
if st is terminal then

go to next episode ;

return Qπ

2.4 Function Approximators

Thus far, in order to estimate the value of a state or state-action pair, we would have had

to see that specific input beforehand multiple times in order to get an accurate estimation.

This is not only intractable for high dimensional environments, but also impossible for

environments with continuous state spaces, as opposed to discrete state space. Similarly to

state spaces, our action space can also be either discrete or continuous. Therefore, we use

function approximators to return an estimate of our value, Q and policy functions. We

denote V π
φ and Qπ

φ as a value function and Q function parametrized by the set of learnable

parameters φ respectively. Similarly, we denote πθ as a policy function parametrized by the

set of learnable parameters θ. The idea of function approximators is to use neighbouring

values already seen to estimate an input value that we may have never encountered. The

accuracy of this estimation will be directly linked to the power of the approximator’s

15



ability to generalize. Recent advances in deep learning [15] have made neural networks the

prime candidate for function approximaton, due to their ability to generalize but most

importantly due to the fact that they are differentiable, and thus enabling the use of

back-propagation [16] for learning.

2.5 Policy Optimization

Rather than deterministically taking actions according to the value or Q function as seen

in section 2.3, a new class of methods known as policy gradients [17], aim at directly

optimizing the policy function. We will also see how these methods can be greatly

improved by reusing the concept of bootstrapping seen in section 2.3.2, known as

Actor-Critic (AC) [18] methods.

2.5.1 Policy Gradients

In policy gradients , we consider a parametrized stochastic policy πθ. The goal is the same

as before, namely maximizing the expected return. Here we denote our objective function

J(πθ) as the expected return of some trajectory when taking actions with respect to to the

policy πθ

J(πθ) = V πθ(s0) = Eπθ [Gt|st = s0] . (2.16)

16



Where [Gt|st = s0] is the total expected return of the entire episode. The aim is the to

update the parameters θ of our policy

θk+1 = θk + α∇θJ(πθ) . (2.17)

Given an episode τ = (s0, a0, s1, a1, . . .), in order to compute our policy gradient updates,

we need to first compute the log probability of a trajectory logP (τ |θ), as well as its gradient

∇θ logP (τ |θ) with respect to our parameters θ. We denote p(s0) as the probability of our

trajectory starting in the observed state s0. Note that it does not depend on our policy, but

rather on the environment itself. An environment does not necessarily have a fixed starting

point, and therefore we need to consider this in our derivation

P (τ |θ) = p(s0)
∞∏
t=0

P (st+1|st, at)πθ(at|st)

logP (τ |θ) = log p(s0) +
∞∑
t=0

logP (st+1|st, at) + log πθ(at|st)

∇θ logP (τ |θ) = ����
���∇θ log p(s0) +

∞∑
t=0
(((

((((
((((∇θ logP (st+1|st, at) +∇θ log πθ(at|st)

=
∞∑
t=0
∇θ log πθ(at|st) .

(2.18)

17



Finally, remember the log-trick:

∇θ logP (τ |θ) = ∇θP (τ |θ)
P (τ |θ)

∇θP (τ |θ) = P (τ |θ)∇θ logP (τ |θ) .
(2.19)

Putting eq. (2.16), (2.18) and (2.19) together, we get the following derivation for policy

gradients

∇θJ(πθ) = ∇θEπθ [Gt|st = s0]

= ∇θ

∫
τ
P (τ |θ)[Gt|st = s0]

=
∫
τ
∇θP (τ |θ)[Gt|st = s0]

=
∫
τ
P (τ |θ)∇θ logP (τ |θ)[Gt|st = s0]

= Eπθ [∇θ logP (τ |θ)[Gt|st = s0]]

= Eπθ [
∞∑
t=0
∇θ log πθ(at|st)[Gt|st = s0]] .

(2.20)

An example of a policy gradient algorithm is REINFORCE [4] (Algorithm 4).

Algorithm 4: REINFORCE
Initialize πθ arbitrarily, α ∈ [0, 1];
for each episode do

Generate episode with respect to πθ;
for each step of the episode t do

Gt ←
∑∞
k=0 γ

krt+k+1 ;
θ ← θ + αγtGt∇θ log πθ(at|st) ; /* Update the parameters of πθ */

return πθ

18



2.5.2 Actor-Critic

We have seen before how estimating the infinite horizon return Gt can be approximated with

temporal difference learning. The same can applied in Actor-Critic methods. Rather than

using Gt, we can use an n-step return estimation Gt:t+n instead. The simplest case is the

one-step actor-critic algorihtm (Algorithm 5). Instead of directly learning a policy function,

we learn both a value function V π
φ , and a policy function πθ. The policy function is referred

to as the actor, as it is responsible for taking actions. The value function is referred to as

the critic, as it is responsible for estimating the current state, and then transferring this

information to the actor for the latter to use it to update its policy. We therefore have a

way to optimize our policy through gradients without having to run episodes to completion.

Algorithm 5: One-step Actor-Critic
Initialize πθ, V π

φ arbitrarily and two learning rates αθ, αφ ∈ [0, 1];
for each episode do

for each step of the episode t do
at ∼ πθ;
Take action at, observe rt+1 = r(st, at) and st+1;
δ ← rt+1 + γV π

φ (st+1)− V π
φ (st);

φ← φ+ αφδ∇φV
π
φ (st) ; /* Update the parameters of V π

φ */
θ ← θ + αθγtδ∇θ log πθ(at|st) ; /* Update the parameters of πθ */
st ← st+1;
if st is terminal then

go to next episode ;

return πθ,V π
φ

19



2.6 Imitation Learning

So far, we have seen that in order to learn an optimal policy π∗, we either need to know the

model of our environment (DP), or directly interact with it (TD). Imitation learning is an

alternative framework of learning a policy function by observing another agent’s actions,

referred to as the expert. The problem then becomes a classical supervised learning

problem, where the agent is exposed to some dataset of state and actions

D = {s1, a1, s2, a2, . . . , sN , aN} extracted from the expert, who we assume operates under

the optimal policy. The expected end result would then be that both the agent’s and the

expert’s policy will be identical, and since the expert’s policy is optimal, our agent’s policy

will also be optimal. A popular example of this is the DAgger [9] algorithm from NVIDIA

(Algorithm 6), where they use a human-in-the-loop approach to iteratively expand their

dataset D.

Algorithm 6: DAgger: Dataset Aggregation
Initialize πθ arbitrarily;
collect dataset D = {s1, a1, s2, a2, . . . , sN , aN} from an expert ;
while training do

Fit πθ to the dataset D;
Using πθ, collect new dataset of states only Dπθ = {s1, s2, . . . , sM} ;
Ask a human to label each action at, Dπθ = {s1, a1, s2, a2, . . . , sM , aM};
Aggregate both datasets, D ← D ∪Dπθ ;

return πθ

Another popular approach to imitation learning takes inspiration from recent advances in

20



generative methods in deep learning with a framework inspired by Generative Adversarial

Networks [11] (GAN), called Generative Adversarial Imitation Learning [10] (GAIL,

Algorithm 7). In the paper, the authors define a discriminator D parametrized by weights

w, which takes as input a state-action pair (s, a), and returns a value between zero and

one, Dw : S × A → (0, 1). The goal of this discriminator is to determine if the input

state-action pair came from the agent, or the expert. An output closer to zero means that

the discriminator thinks that the input pair belongs to the expert’s policy, while a value of

one means that it belongs to the agent’s policy. Since this is a continuous value, an output

of 0.5 would indicate that the discriminator has no clue weather or not the observed input

was from the agent or the expert, meaning our agent has successfully fooled the

discriminator into making it believe it is acting like the expert, and therefore learned a

policy which is optimal.

Algorithm 7: GAIL: Generative Adversarial Imitation Learning
Initialize πθ, Dw arbitrarily;
Sample expert trajectories τE from the expert policy πE;
while training do

Sample agent trajectory τθ ∼ πθ;
Calculate discriminator loss function
L(Dw) = Eτθ [log(Dw(s, a))] + EτE [log(1− (Dw(s, a))] ;

Update w with gradient descent with respect to ∇wL(Dw);
for each (st, at) pair in τθ do

rt = − log(Dw(st, at))
Update θ with policy gradients ;

return πθ

21



The reward observed by the agent is maximized as Dw(s, a) tends towards zero, meaning the

discriminator thinks the agent is acting like the expert. When the agent’s policy matches

the expert’s policy at optimality, the discriminator’s output will be 0.5 for all input pairs

(s, a), as it will not be able to differentiate between the two functions.

2.7 Exploration vs. Exploitation

Thus far, all of our efforts were dedicated to finding the optimal policy π∗. However,

having our agent always act greedily is not desirable, as we want our agent to explore its

environment in order to potentially find a greater source of reward to what’s currently

known. This is referred to as the exploration versus exploitation dilemma. We briefly

mentioned the simplest form of exploration when we presented Q-learning (Algorithm 3),

which is ε-greedy exploration (Algorithm 8). This technique consists of taking a random

action with probability ε, or taking the greedy action with probability 1− ε.

Algorithm 8: ε-greedy exploration
p ∼ U(0, 1); /* Draw a random number p uniformly between (0, 1) */
if p < ε then

at ← random ∈ A ; /* take a random action with probability ε */
else

at ← arg maxaQπ(st, a) ; /* take greedy action with probability 1− ε */

Another approach to exploration is to let the agent sample actions according to a softmax

22



distribution over the Q values observed, regulated by a parameter τ called the temperature,

known as Boltzmann exploration (Algorithm 9). The temperature will control the amount

of exploration or exploitation we want our agent to do, by directly affecting the distribution

the agent is sampling from. Setting τ = ∞ will make the action sampling uniform, while

setting τ = 1 will make the action sampling directly proportional to the Q values.

Algorithm 9: Boltzmann exploration
for each possible action at at state st do

p(at) =
exp Qπ(st,at)

τ∑
a∈A exp Qπ(st,a)

τ

;

Sample at according to the probability calculated ;

2.7.1 Intrinsic vs. Extrinsic Reward

Another form of exploration can be achieved through intrinsic reward. Unlike extrinsic

reward, which is the reward the agent observes from the environment rt = r(st, at), we can

encourage exploration through an internal source of bonus reward. One simple example

would be to give bonus reward based on the amount of time an agent visited a certain

state, known as count-based exploration (Algorithm 10). For this method we need to keep

a counter of the number of total states visited n, a counter that keeps track of the number

of visit for each state N(s), and finally some reward function B(N(s), n) that will give a

reward based on these two counters. There are many ways to design this reward function,

some popular choices are the following:

23



• B(N(s), n) =
√

2 log(n)
N(s)

• B(N(s), n) =
»

1
N(s) [19]

• B(N(s), n) = 1
N(s) [20]

Algorithm 10: count-based exploration
n = 0 ; /* total states visited counter */
N(s) = 0 for all s ∈ S ; /* per state visit counter */
for each step of the episode t do

n += 1;
N(st) += 1;
rt = r(st, at) ;
rintrinsic = B(N(st), n) ;
agent observed reward rt + rintrinsic

As a state s is visited more frequently, N(s) will increase, and therefore the reward observed

at a subsequent visit will decrease. This encourages our agent to explore early on, then

exploit as time goes on.

24



Chapter 3

Literature Review

We will present some of the relevant literature required to understand our method. We will

first introduce how exploration can be achieved for complex and continuous state spaces

with Random Network Distillation (RND) [21], by using a set of two neural networks that

generate a source of intrinsic bonus reward similar to count based exploration. We will then

introduce entropy regularized RL, a framework that uses entropy as a mechanism to boost

exploration through regularization of the policy function, which has seen a lot of popularity

recently with the famous paper Soft Actor Critic (SAC) [7]. Finally, we will see how an

agent can learn various skills without an extrinsic reward signal, with purely unsupervised

exploration, from the paper ”Diversity Is All You Need” (DIAYN) [2].

3.1 Random Network Distillation

As stated in section 2.7, we can use count based exploration as an intrinsic source of

reward to encourage exploration. However, just like our motivation for function

approximators seen in section 2.4, when dealing with continuous state spaces, counting the

25



occurrence of a sate becomes impractical. The paper ”Exploration by Random Network

Distillation” [21] proposes a framework using two neural networks that mimics the idea of

count based exploration. This method consists of two architecturally identical networks,

randomly initialized separately; which take as input a state st, and output a random vector

of arbitrary size Rk. The first one is fixed, called the target network f : R|S| → Rk, the

second one is called the predictor network f̂ : R|S| → Rk. The predictor network f̂ is

trained to minimize the mean squared error (MSE) between its output and the output of

the target network f : MSE(f̂ , f) = ||f̂(s; θ)− f(s)||2, by gradient descent with respect to

the parameters of the predictor network θ. The target network f is frozen on initialization,

meaning its weights never get updated. A visualization of this framwork can be seen in

figure 3.1.

Since both networks have been randomly initialized separately, their outputs will be

seemingly random for any given input. However, the predictor network is being trained to

match the target network, therefore with each subsequent observation of a datapoint, the

MSE will be reduced. The value of the MSE will then give an estimate of how often a

specific state s has been seen. States that have not been observed much will have a

relatively high MSE, while states that have been observed more frequently will have a

relatively low MSE. This idea is therefore directly analogous to the count based exploration

we have seen before, where the MSE can be directly used as an intrinsic source of bonus

26



Figure 3.1: Random Network Distillation Architecture

reward.

Since some sort of unsupervised learning is occurring on the data, this framework is somewhat

similar to that of an autoencoder [22] (AE). The MSE error between the two networks can be

seen as the reconstruction error observed in AEs, however an important difference to note is

that this method does not aim to learn some efficient encoding or representation of the data

27



as in AEs. The randomness of the target network prevents this method from generalizing,

and rather forces the predictor network to memorize [23,24], which, for this application, is a

desired property. By not allowing the model to learn some underlying representation of the

data, unseen states will be correctly attributed a high MSE value.

3.2 Entropy Regularized Reinforcement Learning

For a given random variable X, we denote the entropy as a H(X), which quantifies the

predictability or uncertainty of the random variable. We know from information theory [25]

that a high entropy value denotes high uncertainty of the random variable, while a low

entropy denotes low uncertainty

H(X) = Ex∼P (x)[− log(P (x))]

= −
∑
x∈X

P (x) log(P (x)) .
(3.1)

For a given stochastic policy π(a|s), we can estimate the predictibilty of an action by the

entropy of the policy H(π(·|s))

H(π(·|s)) = Eπ[− log(π(a|s))]

= −
∑
a∈A

π(a|s) log π(a|s)) .
(3.2)

28



An example of entropy for policies can be seen in figure 3.2. The policy on the left has a

low entropy, meaning its outcomes are very predictable. Indeed, the optimal action has a

probability of being sampled of 0.96, and the observed entropy is 0.322. The policy on the

right has a high entropy, meaning its outcomes are unpredictable. The optimal action only

has a probability of being sampled of 0.22, while all other actions have relatively close

probability, and the observed entropy is 2.32. In the context of RL, entropy is used as a

(a) Low entropy stochastic policy (b) High entropy stochastic policy

Figure 3.2: Low entropy vs. high entropy policy examples

regularizer. Similar to regularization in traditional supervised learning, entropy

regularization prevents the policy function from overfitting to its current experience, which

may often be a suboptimal solution to the given task. By preventing the stochastic policy

to skew its distribution, exploration becomes baked inside the sampling process itself, as

otherwise low probability actions are now given a higher sampling rate. This is the

29



fundamental idea behind Soft Actor Critic [7].

3.2.1 Soft Actor Critic

In regular policy gradient methods (section 2.5), we saw in eq. (2.16) the objective function

we’re optimizing is J(πθ) = Eπθ [Gt|st = s0]. The new entropy regularized objective function

adds the regularization term αH(πθ(·|s)), where α ∈ R+ is a coefficient to control the

exploration versus exploitation balance. Setting α = 0 would give back the original objective

function

J(πθ) = Eπθ [Gt|st = s0] +
∞∑
k=0

αγkH(πθ(·|st+k)|st = s0)

= Eπθ [Gt|st = s0] +
∞∑
k=0

αγkEπθ [− log(πθ(at+k|st+k))|st = s0]

= Eπθ [Gt|st = s0]− Eπθ [
∞∑
k=0

αγk log(πθ(at+k|st+k))|st = s0]

= Eπθ [Gt −
∞∑
k=0

αγk log(πθ(at+k|st+k))|st = s0]

= Eπθ [
∞∑
k=0

γkrt+k+1 −
∞∑
k=0

αγk log(πθ(at+k|st+k))|st = s0]

= Eπθ [
∞∑
k=0

γk(rt+k+1 − α log(πθ(at+k|st+k)))|st = s0] .

(3.3)

The entropy regularized objective function then simplifies down to giving an extra reward

signal to the agent at every timestep, proportional to the entropy of the policy. From the

new objective function, we can also write out the new value and Q functions, now called soft

30



value and soft Q functions

V πθ
soft(s) = Eπθ [

∞∑
k=0

γk(rt+k+1 − α log(πθ(at+k|st+k)))|st = s] (3.4)

Qπθ
soft(s, a) = Eπθ [

∞∑
k=0

γkrt+k+1 −
∞∑
k=1

αγk log(πθ(at+k|st+k)))|st = s, at = a] . (3.5)

Note that for the soft Q function, the entropy bonus is omitted for the first timestep. The

relationship between the two new soft functions is then given by

V πθ
soft(s) = Ea∼πθ [Q

πθ
soft(s, a)− α log π(a|s)] (3.6)

Qπθ
soft(s, a) = E s′∼P

a′∼πθ
[r(s, a) + γ(Qπθ

soft(s′, a′)− α log π(a′|s′)]

= Es′∼P [r(s, a) + γV πθ
soft(s′)] .

(3.7)

3.3 Learning Different Skills

Up until this point, all of our efforts were focused on finding an optimal policy. Some recent

efforts proposed a new framework using a maximum entropy policy to let an agent explore

its environment and learn a set of skills without a reward function. In the paper ”Diversity

is All You Need: Learning Skills without a Reward Function” [2], the author define a latent

variable Z ∼ p(z), on which they condition their policy πθ(a|s, z). Here, the latent variable is

31



referred to as a skill. The goal of their new policy function is to have distinguishable outputs

based on the skill it’s conditioned on, by evaluating the next state st+1 when sampling from

πθ(at|st, z). The authors define a discriminator qφ(z|s), whose goal is to approximate p(z|s).

In essence, the goal of this discriminator is to estimate from the state it’s conditioned on

s, the skill z that produced this state. For a given state st, when sampling an action at

from πθ(at|st, z), the next state st+1 should be such that it is maximally distinguishable from

other skills, by the discriminator qφ(z|st+1). The reward the agent observes at timestep t

is entirely intrinsic, as its goal is to purely maximize the discriminability of the skills. The

reward observed is rt = log qφ(z|st+1)− log p(z), and the policy parameters are updated using

Soft Actor Critic [7]. A depiction of the framework can be seen in figure 3.3.

Figure 3.3: Diversity Is All You Need Architecture [2]

The formulation of the reward function comes from maximizing the entropy of p(z), while

32



minimizing the entropy of p(z|s), approximated by qφ(z|s). By maximizing the entropy of

the prior distribution H(Z), this encourages the skill diversity the agent will generate.

Conversely, by minimizing H(Z|S), this encourages the agent’s policy to maximize

discriminability

H(Z)−H(Z|S) = Es∼π(z)[− log p(z)]− Ez∼p(z)
s∼π(z)

[− log qφ(z|s)]

= Ez∼p(z)
s∼π(z)

[log qφ(z|s)]− Es∼π(z)[log p(z)]

= Ez∼p(z)
s∼π(z)

[log qφ(z|s)− log p(z)] .

(3.8)

The prior distribution of the latent variable z is fixed to be a uniform distribution, as it

guarantees a maximum entropy. The resulting learned skills are all uniquely distinguishable,

with all of the skills that do correspond to solving the task being different solutions. However,

there is no guarantee that a learned skill will result in solving the task, as the reward is purely

intrinsic. While some of the learned skills could be valid solutions, some other skills could

also be seemingly random actions. The main idea here is to conduct an exhaustive search in

policy space, by extracting as many unique policies, regardless of their effectiveness.

33



Chapter 4

Methodology

We will present our novel framework called Adversarial Strategy Learning. The goal of this

framework is to learn multiple unique strategies to solve a given environment, by treating

expert demonstrations as adversarial examples. The first challenge that comes to mind is

defining a strategy. We do not want to treat every expert observation as adversarial, as

some behaviour might be common to every solution for a task, and we therefore need to

determine the likelihood of an observation being part of the strategy or not. To do so, our

framework analyses the Q-values along the expert’s trajectory, specifically, we will look at

the directional gradient of Q-values. Our framework also makes use of a Random Network

Distillation (RND) [21] unit, however instead of using it as a source of intrinsic reward as it is

traditionally, we will make use of some of its innate properties to act as a gating function on

the state space. Before considering if an observation is part of a the strategy or not, we first

consider if it was ever part of the expert demonstrations, using the RND gating function. We

then use this new information to compute a new source of intrinsic bonus reward, however

rather than being an exploration reward, this new reward signal’s purpose is to discourage

34



the agent from mimicking the identified strategic behaviour. We run our new framework

on the OpenAI Gym [26] environments MountainCarContinuous and Pendulum, as

well as a few custom GridWorld-like environment specifically curated to demonstrate our

algorithm.

4.1 Defining a Strategy

The first goal of our framework is to determine which behaviour would be considered part of

the unique strategy of an expert. We start with an agent fully trained with an actor-critic

algorithm (SAC [7] in our case) which will serve as our expert, and save both the policy

function πθ and Q-function Qπθ
φ . For a given state st, we sample an action at from the

policy at ∼ πθ(at|st), as well as evaluate the Q-value of our state-action pair Qπθ
φ (st, at).

We then proceed to take the gradient of our Q-function with respect to the input state st,

∇stQ
πθ
φ (st, at), then project this gradient along the vector towards the next state st+1. This

will give us a new scalar value that we denote by gradt, given by:

gradt+1 = ∇stQ
πθ
φ (st, at) ·

−−−−−−−→
(st+1 − st) . (4.1)

Note that since the evaluation of gradt requires the information of a previous state st−1, we

set gradt=0 = 0. For a given expert on the OpenAI Gym [26] MountainCarContinuous

environment, a visualization of the evolution of the gradient value gradt along the trajectory

35



can be seen in figure 4.1. Note that we’re using∇stQ(st, at) as a shorthand for∇stQ
πθ
φ (st, at)·

−−−−−−−→
(st+1 − st). The expert’s behaviour that generated related to figure 4.1 can be seen in 4.2.

Figure 4.1: Directional gradient of Q-values along expert trajectory, MountainCar

36



Figure 4.2: MountainCar expert behaviour, panorama view

The panorama view of the expert in figure 4.2 splits the trajectory into two parts. The view

on the left correspond to frames zero to 34, while the view on the right correspond to frames

35 and onward. We use an alpha blending on the frames to show the progression of the expert

over time. The peak of gradients we see roughly around steps 30 corresponds to the moment

where the expert reaches its maximum height on the left hill, which is also the moment just

enough elevation is reached to generate the momentum required to solve the task. This also

corresponds to the high level idea of the strategy of this task, which is generating enough

momentum. The desired behaviour of our framework would then be to discourage our new

agent to mimic the behaviour observed in these high gradient states.

37



4.2 Data Generation and State Resampling

We start by gathering trajectories from our expert, storing the observations in an ordered

data buffer, to keep track of the continuity of our observations in order to evaluate our

directional gradient. At each timestep t, we record the current state st and the action taken

at sampled from the policy πθ(at|st), and store them in our buffer. We then evaluate our

directional gradient gradt that we also store in this buffer. This dataset now associates

each state with the directional gradient observed when our expert transitioned to it. Since

we’re merging the observations of many trajectories and we already computed our directional

gradient, we no longer need to keep track of the continuity of our observations. We then

simply combine all our data points into one unified unordered buffer of pairs of state-gradient

(si, gradi) of some size N . Once our dataset is assembled, we proceed to a state re-sampling

with repetition. We create a new empty dataset of similar size N, which we populate with

states sampled proportional to their associated gradi value. To do so, perform a softmax

across all values of gradi, and assign this value to each respective state as their probability

of being sampled P (si)

P (si) = exp(gradi)∑N
k=0 exp(gradk)

. (4.2)

38



We proceed to populate our new dataset by repeatedly sampling N states with repetition,

with respect to the new computed sampling probability P (si). We associate to every state

si some occurrence value occi, which is simply a counter that keeps track of how many times

a specific state was resampled. Our new dataset then consists of the pairs (si, occi). We

perform this resampling of our dataset over many iterations, then average the result of the

occurrence values. Finally, we normalize our occurrence values occi to be between zero and

one by a simply dividing by the range and subtracting the minimum

occi = occi −min {occ0, occ1, . . . , occN}
max {occ0, occ1, . . . , occN} −min {occ0, occ1, . . . , occN}

. (4.3)

Our final dataset then consists of the pairs (si, occi). The states that observed higher values

of directional gradients gradi will have an occurrence occi value closer to one, while the

states that observed relatively lower values of gradi will have an occi value closer to zero.

We interpret this dataset as a mapping between a state, and its likelihood to be considered

part of the expert’s strategy.

39



4.3 Intrinsic Bonus Reward Mechanism

In order to discourage an agent from imitating the expert’s strategy, we generate a source

of intrinsic reward based on the dataset from in section 4.2. The two main components of

this method are the state likelihood discriminator presented in section 4.3.1, and the random

network distillation gating function presented in section 4.3.2. We finally also explain how

we combine the components to generate the intrinsic reward in section 4.3.3.

4.3.1 State Likelihood Discriminator

We define a discriminator D parametrized by weights w, which takes as input a state s, and

returns a value between zero and one, Dw(s) : S → (0, 1). The goal of this discriminator

is determine the likelihood of the input state to be considered part of the expert’s strategy.

This discriminator is trained through supervised learning to directly learn the dataset we

created (si, occi), using the occurrence value occi as the output target.

4.3.2 Random Network Distillation Gating Function

We define a random network distillation with an architecture similar to what was presented

in section 3.1, however rather than using it as a source of intrinsic reward for exploration,

our RND will serve a different purpose. The discriminator introduced in section 4.3.1 is

only trained on expert examples, and is therefore expected to behave poorly on non-expert

40



examples. Before we assess the importance of a state to the expert’s strategy, we need to

first determine if the state was ever encountered by the expert, to get an accurate result

from our state likelihood discriminator. Our solution to this is to use some of the underlying

assumptions of the random network distillation and use it as a gating function.

Since we know that a data point that was seen by a random network distillation would have

lower mean squared error than one that was not, we train our RND over many iterations on

the expert states. After enough iterations, we perform a final forward pass on all our data

points, and store some of the statistics observed of the entire expert dataset. We save the

mean MSE µ, as well as the standard deviation σ to later determine if a given state was ever

part of the expert dataset.

We define a function rnd(s) as the function that takes an input a state s, and returns the

random network distillation’s mean squared error, rnd(s) : S → R. We define a second

function gating(s) as the gating function based on the RND, which takes as input a state

s, and returns either zero or one, gating(s) : S → {0, 1}. The output of the gating function

translates to the state being part of the expert dataset or not. This is done by computing

rnd(s) and and checking if rnd(s) > µ+ 3σ. Note that for numerical stability, all distances

measured by our random network distillation will be on a logarithmic scale. The architecture

of our random network distillation gating function can be seen in figure 4.3.

41



Figure 4.3: Random Network Distillation Gating Function Architecture

42



4.3.3 Combining the Learned Functions

We take the expert trajectories, which are the same one seen in panorama view in figure 4.2

and project the state space into a 2D plane. The x-axis represents the position of the agent,

and the y-axis represents the velocity of the agent. The visualization of the expert’s projected

state space can be seen in figure 4.4. To illustrate how both the random network distillation

Figure 4.4: MountainCar expert behaviour, projected view

and the gating functions are functioning, we uniformly sample the entire state space of the

environment, and run every data point through our rnd(s) and gating(s) functions. We

visualize these outputs in figure 4.5.

43



(a) MountainCar expert: rnd(s) (b) MountainCar expert: gating(s)

Figure 4.5: MountainCar expert learned RND and gating functions

By combining our discriminator with our gating function, we then have a way to estimate

the importance of a state to the expert’s strategy, on the entire state space. To do so, we

simply multiply the outputs of Dw(s) and gating(s). We visualize this in figure 4.6.

44



(a) MountainCar expert: Dw(s) (b) MountainCar expert: Dw(s) ∗ gating(s)

Figure 4.6: MountainCar expert intrinsic bonus map

Since this value is strictly between zero and one, we can therefore scale it to any environment

based on a hyperparameter we denote by CASL, which would be a constant dependant on

the task. Since we want to discourage our agent to imitate our expert, this constant would

have to be strictly negative. The reward our agent observes Ragent is then a combinations of

the environment reward Renv and the intrinsic reward Dw(s) ∗ gating(s) ∗ CASL

Ragent = Renv +Dw(s) ∗ gating(s) ∗ CASL . (4.4)

45



Chapter 5

Experiments

We will present all of our experiments conducted using our novel framework along with their

hyperparameters and results. For each experiment, we will provide a visual representation of

the strategy for both the expert and the newly trained agent. Depending on the environment,

we will either provide a timelapsed image with progressive alpha-blending, similar to what

was shown in figure 4.2, or simply a projected trajectory onto a 2D graph as shown in figure

4.4. However, since these results are best seen in video format, we also provide a rendered

video of the results with each experiment, in the form of an externally hosted link. We’re only

interested in extracting distinct unique solutions to solve a task, and do not care so much

about the optimality of each solution, so long as it reasonably solves the task. This means,

the unique strategy consists of a novel sequence of events, and not a inconsequential sequence

of events followed by an already seen solution. The results are therefore not quantifiable by

some metric such as the reward observed, but requires rather some form of human estimation

of a strategy to solve a problem, i.e. the technique used to generate enough momentum or

finding a path in a maze.

46



To ensure that the comparison between the expert and the agent is on the exact same

condition, we created a tool1 that takes as input an arbitrary amount of RL agents and an

environment. As some environments have varying initial conditions, our tool first randomly

initializes the environment, then creates a clone for each agent to use. The agents then run on

their cloned environment until completion. We save the rendering of each agent individually,

as well as stack them on top of each other for a simpler comparison. We also provide a

functionality for our tool to change a target pixel value into another specified value. This

allows us to colour code our agents and differentiate them from the experts, making it easier

to evaluate our results. All experiments were implemented using PyTorch [27,28].

1https://github.com/danielbairamian/Spotter

47

https://github.com/danielbairamian/Spotter


5.1 MountainCar

The first experiment we run is on the MountainCarContinuous environment from the

OpenAI gym [26]. The setup of this experiment is a car located at the bottom of a hill, with

the goal being climbing the hill to reach a target, represented by the yellow flag, seen in figure

5.1. What makes this problem interesting is that the car’s motor is too weak to directly climb

the hill, and the agent therefore needs to use the environment physics to generate momentum.

The state space consists of two dimensions, the car position with range [−1.2, 0.6], and the

car velocity with range [−0.07, 0.07]. The action space consists of a single dimension which

represents the push on the car, a value with the range [−1.0, 1.0]. The reward observed by

the agent is 100 when reaching the target at the top of the hill, minus the squared sum of

actions from the start to the goal. The expert’s strategy can be seen in figure 5.2. The

resulting trained agent’s behaviour compared to the expert’s behaviour can be seen in figure

5.3. The hyperparameters used in this experiment can be found in table 5.1.

Figure 5.1: MountainCar Experiment Setup

48



(a) Expert panorama view

(b) Expert gradient view

Figure 5.2: Expert MountainCar strategy

49



(a) MountainCar expert behaviour

(b) MountainCar agent behaviour

Figure 5.3: MountainCar expert vs. agent behaviour, panorama view a

ahttps://github.com/danielbairamian/Spotter/blob/main/Results/MountainCar.md

50

https://github.com/danielbairamian/Spotter/blob/main/Results/MountainCar.md


Data Generation Hyperparameters Value
Expert Trajectories Extracted 1000
Resampling Repetition 1000
Random Network Distillation Hyperparameters Value
Network Dimensions [2, 256, 256, 256, 1024]
Network Activations [ReLU, ReLU, ReLU, Identity]
Training Epochs 1000
Learning Rate 1e-3
Batch Size 1024
Discriminator Hyperparameters Value
Network Dimensions [2, 256, 256, 256, 1]
Network Activations [ReLU, ReLU, ReLU, Sigmoid]
Training Epochs 100
Learning Rate 1e-3
Batch Size 256
RL Agent Hyperparameters Value
Policy Network Dimensions [2, 256, 256, 1]
Policy Network Activation (Gaussian Net) [ReLU, ReLU, Identity ]
Q-Network Dimensions [3, 256, 256, 1]
Q-Network Activations [ReLU, ReLU, Identity]
Actor & Critic Learning Rate 1e-3
SAC exploration parameter α 0.2
CASL -25

Table 5.1: MountainCarContinuous experiment hyperparameters

51



5.2 FourRooms

The second experiment we run is a custom environment we call FourRooms, inspired from

the work by [29]. We design a simple 2D environment split into four rooms connected by

small openings. The agent, symbolized by the red circle, starts in the bottom left room

at the position [2.0, 2.0] with some small Gaussian noise on both dimensions, seen in figure

5.4. The goal is situated at the upper right room, represented by the orange rectangle. The

reason we chose this setup is because this environment has two clear solutions. If our method

works correctly, it should correctly extract the only two paths available to get to the goal.

The state space consists of two dimensions, the agent’s x and y position, both with range

[0.0, 10.0]. The action space consists of a single dimension value with range [−π, π], which

represents an angular value. At every time step, the agent moves in the direction of this

angle at some fixed speed of 0.25. The reward observed by the agent is 100 when reaching the

goal, and a negative reward for every step where the agent is not at the goal. To encourage

the agent to go towards the goal room, rather than giving a negative distance to the goal

as the reward, we give a reward of −1.0 if the agent is in the bottom left room, a reward of

−0.1 if the agent is in the room which contains the goal, and a reward of −0.5 if the agent

is in any of the other two rooms. This way, we only encourage the agent to traverse rooms,

without giving it any information about the goal location. The expert’s strategy can be seen

in figure 5.5. The resulting trained agent’s behaviour compared to the expert’s behaviour

52



can be seen in figure 5.6. The hyperparameters used in this experiment can be found in

table 5.2.

Figure 5.4: FourRooms Experiment Setup

53



(a) Expert panorama view

(b) Expert gradient view

Figure 5.5: Expert FourRooms strategy

54



Figure 5.6: FourRooms expert vs. agent behaviour, projected view a

ahttps://github.com/danielbairamian/Spotter/blob/main/Results/FourRooms.md

55

https://github.com/danielbairamian/Spotter/blob/main/Results/FourRooms.md


Data Generation Hyperparameters Value
Expert Trajectories Extracted 1000
Resampling Repetition 1000
Random Network Distillation Hyperparameters Value
Network Dimensions [2, 256, 256, 256, 1024]
Network Activations [ReLU, ReLU, ReLU, Identity]
Training Epochs 1000
Learning Rate 1e-3
Batch Size 1024
Discriminator Hyperparameters Value
Network Dimensions [2, 256, 256, 256, 1]
Network Activations [ReLU, ReLU, ReLU, Sigmoid]
Training Epochs 100
Learning Rate 1e-3
Batch Size 256
RL Agent Hyperparameters Value
Policy Network Dimensions [2, 256, 256, 1]
Policy Network Activation (Gaussian Net) [ReLU, ReLU, Identity ]
Q-Network Dimensions [3, 256, 256, 1]
Q-Network Activations [ReLU, ReLU, Identity]
Actor & Critic Learning Rate 1e-3
SAC exploration parameter α 0.2
CASL -50

Table 5.2: FourRooms experiment hyperparameters

56



5.3 GridWorld

The third environment we simply call GridWorld, is similar to the previous one, only

now without the walls, and modified starting and goal positions, seen in figure 5.7. The

agent observes a reward of 100 when reaching the goal, and a negative reward of −1.0 for

every step otherwise. The idea here is to test how our method would deal with environments

that have smooth Q-value gradients. The expert’s strategy can be seen in figure 5.8. The

resulting trained agent’s behaviour compared to the expert’s behaviour can be seen in figure

5.9. The hyperparameters used in this experiment can be found in table 5.3.

Figure 5.7: GridWorld Experiment Setup

57



(a) Expert panorama view

(b) Expert gradient view

Figure 5.8: Expert GridWorld strategy

58



Figure 5.9: GridWorld expert vs. agent behaviour, projected viewa

ahttps://github.com/danielbairamian/Spotter/blob/main/Results/GridWorld.md

59

https://github.com/danielbairamian/Spotter/blob/main/Results/GridWorld.md


Data Generation Hyperparameters Value
Expert Trajectories Extracted 1000
Resampling Repetition 1000
Random Network Distillation Hyperparameters Value
Network Dimensions [2, 256, 256, 256, 1024]
Network Activations [ReLU, ReLU, ReLU, Identity]
Training Epochs 1000
Learning Rate 1e-3
Batch Size 1024
Discriminator Hyperparameters Value
Network Dimensions [2, 256, 256, 256, 1]
Network Activations [ReLU, ReLU, ReLU, Sigmoid]
Training Epochs 100
Learning Rate 1e-3
Batch Size 256
RL Agent Hyperparameters Value
Policy Network Dimensions [2, 256, 256, 1]
Policy Network Activation (Gaussian Net) [ReLU, ReLU, Identity ]
Q-Network Dimensions [3, 256, 256, 1]
Q-Network Activations [ReLU, ReLU, Identity]
Actor & Critic Learning Rate 1e-3
SAC exploration parameter α 0.2
CASL -50

Table 5.3: GridWorld experiment hyperparameters

60



5.4 Pendulum

The fourth experiment we run is on the Pendulum environment from the OpenAI gym.

The setup of this experiment consists of balancing a pendulum upright by exerting some

force on the joint. The force the joint can exert is limited, and therefore not able to get

upright directly from any position. The agent needs to learn how to use the environment

physics to help it gain the momentum required to hoist itself upward. The pendulum’s initial

position is completely randomised for each episode, with a random velocity, seen in figure

5.10. The black curved arrow indicates the joint effort applied at the current step. The

state space consists of three dimensions, cos θ and sin θ of the current angle θ, with range

[−1.0, 1.0], as well as the current angular velocity θ̇ with range [−8.0, 8.0]. The action space

consists of a single dimension which represents the joint effort, with value [−2.0, 2.0]. The

reward observed by the agent is rt = −(θ2 + 0.1 ∗ θ̇2 + 0.001 ∗ a2
t ).

Figure 5.10: Pendulum Experiment Setup

61



The Pendulum environment poses a unique challenge to our approach, as each episode is

initialized randomly. Since we’re banning strategic states along trajectories, the importance

of a given state will drastically change given the starting position. If we naively apply our

technique to this environment, our discriminator ends up severely banning the state space

almost entirely, and our new agent gets a strong negative reward signal for whatever action it

takes, ending up doing nothing. Our solution to this is to concatenate the initial state to the

state space. This means, for environments where the starting position varies so much that

a different solution is required to solve the task, we provide the initial state as additional

information. Our state st becomes [st, s0], and our method is then applied as previously

mentioned without any additional changes. This environment has multiple obvious strategies

given the starting position. Sometimes, the agent requires so much momentum to reach the

top that it needs to perform two swings to generate enough speed. We can see this in figure

5.11, where we can clearly identify two peaks in Q-value gradient. Other cases sometimes

only require the agent to perform a single swing to reach the top. We can see this in figure

5.12, where we can clearly identify a single peak in Q-value gradient. Finally, sometimes

the agent is initialised at an angle high enough where minimal effort is required to reach an

upright position. We can see this in figure 5.13, where the gradient information is relatively

flat.

62



(a) Expert panorama view: Two swings

(b) Expert gradient view: Two swings

Figure 5.11: Expert Pendulum strategy: Two swings

63



(a) Expert panorama view: One swing

(b) Expert gradient view: One swing

Figure 5.12: Expert Pendulum strategy: One swing

64



(a) Expert panorama view: No swings

(b) Expert gradient view: No swings

Figure 5.13: Expert Pendulum strategy: No swings

65



One of the resulting trained agent’s behaviour compared to the expert’s behaviour can be

seen in figure 5.14. In some cases where the expert required to perform two swings to reach

the top, we notice that our agent ends up just copying the expert’s strategy. This could be

a result of poor hyperparameter choices or too few data or training. However what we think

the most likely explanation is that this might be due to the fact that there is no other way to

solve the task when two swings are required. The hyperparameters used in this experiment

can be found in table 5.4.

Data Generation Hyperparameters Value
Expert Trajectories Extracted 10000
Resampling Repetition 1000
Random Network Distillation Hyperparameters Value
Network Dimensions [6, 256, 256, 256, 1024]
Network Activations [ReLU, ReLU, ReLU, Identity]
Training Epochs 1000
Learning Rate 1e-3
Batch Size 1024
Discriminator Hyperparameters Value
Network Dimensions [6, 256, 256, 256, 1]
Network Activations [ReLU, ReLU, ReLU, Sigmoid]
Training Epochs 100
Learning Rate 1e-3
Batch Size 256
RL Agent Hyperparameters Value
Policy Network Dimensions [6, 256, 256, 1]
Policy Network Activation (Gaussian Net) [ReLU, ReLU, Identity ]
Q-Network Dimensions [7, 256, 256, 1]
Q-Network Activations [ReLU, ReLU, Identity]
Actor & Critic Learning Rate 1e-3
SAC exploration parameter α 0.2
CASL -30

Table 5.4: Pendulum experiment hyperparameters

66



(a) Pendulum expert behaviour

(b) Pendulum agent behaviour

Figure 5.14: Pendulum agent vs. expert behaviour, panorama viewsa

ahttps://github.com/danielbairamian/Spotter/blob/main/Results/Pendulum.md

67

https://github.com/danielbairamian/Spotter/blob/main/Results/Pendulum.md


5.5 Training a second agent

We perform additional experiments on some of the previously mentioned environments, by

training a second agent. Once we fully train our first agent, we now treat it, and the original

expert, as two experts. We extract trajectories from the new agent, and combine them with

the existing trajectories from the original expert. Once the two sets are combined we apply

our method without any additional change, by treating the combined dataset as a single

expert.

5.5.1 MountainCar: Second Agent

The first experiment we run is on the MountainCarContinuous environment, without

any modification to the environment. The resulting trained agent’s behaviour compared to

the two experts’ behaviour can be seen in figure 5.15. The hyperparameters used in this

experiment can be found in table 5.5.

68



(a) MountainCar expert 1 behaviour

(b) MountainCar expert 2 behaviour

(c) MountainCar agent behaviour

Figure 5.15: MountainCar two experts vs. agent behaviour, panorama viewsa

ahttps://github.com/danielbairamian/Spotter/blob/main/Results/MountainCar2.md

69

https://github.com/danielbairamian/Spotter/blob/main/Results/MountainCar2.md


Data Generation Hyperparameters Value
Expert 1 Trajectories Extracted 1000
Expert 2 Trajectories Extracted 1000
Resampling Repetition 1000
Random Network Distillation Hyperparameters Value
Network Dimensions [2, 256, 256, 256, 1024]
Network Activations [ReLU, ReLU, ReLU, Identity]
Training Epochs 1000
Learning Rate 1e-3
Batch Size 1024
Discriminator Hyperparameters Value
Network Dimensions [2, 256, 256, 256, 1]
Network Activations [ReLU, ReLU, ReLU, Sigmoid]
Training Epochs 100
Learning Rate 1e-3
Batch Size 256
RL Agent Hyperparameters Value
Policy Network Dimensions [2, 256, 256, 1]
Policy Network Activation (Gaussian Net) [ReLU, ReLU, Identity ]
Q-Network Dimensions [3, 256, 256, 1]
Q-Network Activations [ReLU, ReLU, Identity]
Actor & Critic Learning Rate 1e-3
SAC exploration parameter α 0.2
CASL -25

Table 5.5: MountainCar second agent experiment hyperparameters

70



5.5.2 FourRooms (Hacked)

The second experiment we run is on the FourRooms environment, where we introduce a

collision bug on the intersection of the four walls in the center of the environment. The goal

of this experiment is to demonstrate some of the use case of our method, which is finding

exploits in environments. Since there are two clear strategies available, introducing a third

agent would have one of two outcomes: The first outcome is that the agent ends up either

copying one of the experts or simply not solving the task, since there are no other solutions

available to it. The second outcome is that there is in fact a third solution available, through

an exploit or some design oversight, in our case the collision bug. The collision bug in our case

is emulated by letting the agent go from the bottom left room, directly to the top right room,

if it is at a precise position almost exactly on the intersection, with an angle between zero and

π
2 , meaning in the direction of the intersection. We should note that this collision bug did

not exist in the previous FourRooms experiment. While it would be possible for a regular

agent without our method to find the bug, there would be no guarantee that the bug would

have been found. The idea here is to show that we can somewhat guarantee the detection

of an exploit, if that exploit leads to a solution. The resulting trained agent’s behaviour

compared to the two experts’ behaviour can be seen in figure 5.16. The hyperparameters

used in this experiment can be found in table 5.6.

71



Figure 5.16: FourRooms two experts vs. agent behaviour, projected viewa

ahttps://github.com/danielbairamian/Spotter/blob/main/Results/FourRooms2.md

72

https://github.com/danielbairamian/Spotter/blob/main/Results/FourRooms2.md


Data Generation Hyperparameters Value
Expert 1 Trajectories Extracted 1000
Expert 2 Trajectories Extracted 1000
Resampling Repetition 1000
Random Network Distillation Hyperparameters Value
Network Dimensions [2, 256, 256, 256, 1024]
Network Activations [ReLU, ReLU, ReLU, Identity]
Training Epochs 1000
Learning Rate 1e-3
Batch Size 1024
Discriminator Hyperparameters Value
Network Dimensions [2, 256, 256, 256, 1]
Network Activations [ReLU, ReLU, ReLU, Sigmoid]
Training Epochs 100
Learning Rate 1e-3
Batch Size 256
RL Agent Hyperparameters Value
Policy Network Dimensions [2, 256, 256, 1]
Policy Network Activation (Gaussian Net) [ReLU, ReLU, Identity ]
Q-Network Dimensions [3, 256, 256, 1]
Q-Network Activations [ReLU, ReLU, Identity]
Actor & Critic Learning Rate 1e-3
SAC exploration parameter α 0.2
CASL -50

Table 5.6: FourRooms Hacked experiment hyperparameters

73



Chapter 6

Discussion and Conclusion

We presented our novel framework for identifying strategic behaviour in fully trained agents.

Our method is primarily based on analysing the change in directional Q-value gradients

observed along an episode. We then use these identified strategic behaviours as adversarial

examples for a new agent, with the goal of learning a new unique strategy. Our experimental

results show that our method is successful at correctly identifying strategic events by showing

peaks of gradients at key moments, as well as correctly encouraging a new agent to learn new

unique behaviour. Our experiments also show that our method is capable of using multiple

agents as experts, making it possible to exhaustively search for all possible unique solutions

for a given task.

6.1 Limitations and Future Work

One key limitation of our framework is that training multiple agents cannot be done in

parallel, and requires sequential training. An interesting extension of this work would be to

make the training of multiple agents parallelisable. As opposed to training one agent at a

74



time, we could imagine some training regiment similar to what we see in GANs, where both

the expert and the agent learn together. For an arbitrary number of agents K, each agent

would treat the remaining K − 1 agents as adversarial experts.

Another avenue of future work is to see how our method would deal with large dimension

state spaces. We have only trained on relatively low dimensional environments. It would

be interesting to extend our work to higher dimensional state spaces, or even environments

that use raw pixel state spaces. This could pose an interesting challenge for our framework,

as the uniqueness of a state space in higher dimension could be tougher to estimate. Our

method would most likely then benefit with some sort of representation learning [30] of the

state space.

Furthermore, defining a strategy when dealing with partially observable MDPs (POMDPs)

would also be an interesting line of work. As the information received could be inconsistent

across observation, the use of architectures like LSTMs [31] and Transformers [32] would

most likely be required. The use of these recurrent units could also give a more sophisticated

definition of a strategy allowing for more complex solutions to the given task, as the sequence

of states used to defined a key moment would increase from one transition to an arbitrary

amount, likely controlled by some hyperparameter.

75



Bibliography

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The MIT

Press, second ed., 2018.

[2] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, “Diversity is all you need: Learning

diverse skills without a reward function,” 2018.

[3] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust region policy

optimization,” CoRR, vol. abs/1502.05477, 2015.

[4] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods

for reinforcement learning with function approximation,” in Advances in Neural

Information Processing Systems (S. Solla, T. Leen, and K. Müller, eds.), vol. 12, MIT

Press, 2000.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A.

Riedmiller, “Playing atari with deep reinforcement learning,” CoRR, vol. abs/1312.5602,

2013.

76



[6] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver,

and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” CoRR,

vol. abs/1602.01783, 2016.

[7] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum

entropy deep reinforcement learning with a stochastic actor,” 2018.

[8] M. Bain and C. Sammut, “A framework for behavioural cloning,” in Machine

Intelligence 15, Intelligent Agents [St. Catherine’s College, Oxford, July 1995], (GBR),

p. 103–129, Oxford University, 1999.

[9] S. Ross, G. J. Gordon, and J. A. Bagnell, “No-regret reductions for imitation learning

and structured prediction,” CoRR, vol. abs/1011.0686, 2010.

[10] J. Ho and S. Ermon, “Generative adversarial imitation learning,” CoRR,

vol. abs/1606.03476, 2016.

[11] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial networks,” 2014.

[12] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37, 1966.

77



[13] R. Sutton, “Learning to predict by the method of temporal differences,” Machine

Learning, vol. 3, pp. 9–44, 08 1988.

[14] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, pp. 279–292,

May 1992.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-

propagating errors,” Nature, vol. 323, pp. 533–536, Oct 1986.

[17] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods

for reinforcement learning with function approximation,” in Advances in Neural

Information Processing Systems (S. Solla, T. Leen, and K. Müller, eds.), vol. 12, MIT

Press, 2000.

[18] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” in Advances in Neural Information

Processing Systems (S. Solla, T. Leen, and K. Müller, eds.), vol. 12, MIT Press, 2000.

[19] A. L. Strehl and M. L. Littman, “An analysis of model-based interval estimation for

78

http://www.deeplearningbook.org
http://www.deeplearningbook.org


markov decision processes,” Journal of Computer and System Sciences, vol. 74, no. 8,

pp. 1309–1331, 2008. Learning Theory 2005.

[20] J. Z. Kolter and A. Y. Ng, “Near-bayesian exploration in polynomial time,” in

Proceedings of the 26th Annual International Conference on Machine Learning, ICML

’09, (New York, NY, USA), p. 513–520, Association for Computing Machinery, 2009.

[21] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by random network

distillation,” 2018.

[22] M. A. Kramer, “Nonlinear principal component analysis using autoassociative neural

networks,” AIChE Journal, vol. 37, no. 2, pp. 233–243, 1991.

[23] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning

requires rethinking generalization,” 2017.

[24] D. Krueger, N. Ballas, S. Jastrzebski, D. Arpit, S. Kanwal, T. Maharaj, E. Bengio,

A. Fischer, and A. Courville, “Deep nets don’t learn via memorization,” 01 2017.

[25] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical

Journal, vol. 27, no. 3, pp. 379–423, 1948.

79



[26] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and

W. Zaremba, “Openai gym,” 2016.

[27] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.

[28] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,

M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,

“Pytorch: An imperative style, high-performance deep learning library,” in Advances in

Neural Information Processing Systems 32 (H. Wallach, H. Larochelle, A. Beygelzimer,

F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), pp. 8024–8035, Curran Associates, Inc.,

2019.

[29] M. Janner, Q. Li, and S. Levine, “Reinforcement learning as one big sequence modeling

problem,” arXiv preprint arXiv:2106.02039, 2021.

[30] Y. Bengio, A. C. Courville, and P. Vincent, “Unsupervised feature learning and deep

learning: A review and new perspectives,” CoRR, vol. abs/1206.5538, 2012.

[31] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,

80



vol. 9, no. 8, pp. 1735–1780, 1997.

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin, “Attention is all you need,” CoRR, vol. abs/1706.03762, 2017.

81


	Introduction
	Contributions
	Thesis Overview

	Background
	Markov Decision Process
	Policy and Value Functions
	Policy Functions
	Value Functions

	Value Function Based Methods
	Dynamic Programming
	Temporal Difference Learning

	Function Approximators
	Policy Optimization
	Policy Gradients
	Actor-Critic

	Imitation Learning
	Exploration vs. Exploitation
	Intrinsic vs. Extrinsic Reward


	Literature Review
	Random Network Distillation
	Entropy Regularized Reinforcement Learning
	Soft Actor Critic

	Learning Different Skills

	Methodology
	Defining a Strategy
	Data Generation and State Resampling
	Intrinsic Bonus Reward Mechanism
	State Likelihood Discriminator
	Random Network Distillation Gating Function
	Combining the Learned Functions


	Experiments
	MountainCar
	FourRooms
	GridWorld
	Pendulum
	Training a second agent
	MountainCar: Second Agent
	FourRooms (Hacked)


	Discussion and Conclusion
	Limitations and Future Work


