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Privacy has become one of the fundamental concerns in the industrial deployment of

machine learning algorithms. While designing adversarial attacks reveals the poten-

tial level of privacy leakage in these algorithms, privacy-preserving algorithm design

techniques propose solutions to protect individuals’ privacy at certain levels. Despite

the recent advancements in the design and development of privacy-preserving machine

learning algorithms, research on the subject of private reinforcement learning is still in its

infancy. In this thesis, we develop the first differentially private reinforcement learning

algorithms for the problem of evaluating a given way of behaving (policy) and provide a

comprehensive analysis of the privacy-accuracy trade-off in the proposed algorithms. We

subsequently introduce a generic sub-sampling framework to improve the utility of these

private algorithms. Theoretically, we show that under certain assumptions, our proposed

sub-sampling framework significantly improves the utility of the underlying private

algorithms. Empirically, in a full Markov Decision Process setting, we observe that the

sub-sampling framework amplifies the accuracy of the proposed differentially private

algorithms across different privacy regimes. Finally, we establish the first membership

inference attack framework against a state-of-the-art deep reinforcement learning model.

We demonstrate the vulnerability of deep reinforcement learning to membership infer-

ence attacks in collective (i.e. consisting of a collection of data points) and individual

membership inference modes. We show that the learning stage of the deep reinforcement

learning agent (how close the learned policy is to the optimal policy) and the temporal

correlation among transition tuples within input trajectories have significant impact on

the membership inference accuracy.
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La confidentialité est devenue l’une des préoccupations fondamentales dans le déploie-

ment industriel des algorithmes d’apprentissage machine. Alors que la conception d’at-

taques adversariales révèle le niveau potentiel de perte de la vie privée de ces algorithmes,

les techniques de conception d’algorithmes qui ont pour bût de préserver la vie privée,

proposent des solutions pour protéger la vie privée des individus à certains niveaux.

Malgré les récents progrès de la conception et le développement d’algorithmes d’appren-

tissage machine préservant la confidentialité, la recherche sur le sujet de l’apprentissage

par renforcement privé en est encore dans son enfance. Tout au long de cette thèse, nous

développons les premiers algorithmes différentiels d’apprentissage par renforcement

privés et fournissons une analyse complète du compromis confidentialité-précision dans

les algorithmes proposés.Nous introduisons par la suite un cadre de sous-échantillonnage

générique pour améliorer l’utilité des algorithmes privés. Théoriquement, nous mon-

trons que sous certaines hypothèses, notre cadre de sous-échantillonnage proposé amé-

liore considérablement l’utilité des algorithmes privés. Empiriquement, dans un cadre

de processus décisionnel de Markov complet, nous observons que le cadre de sous-

échantillonnage amplifie la précision des algorithmes différentiellement privés proposés

dans différents régimes de confidentialité. Enfin, nous établissons le premier cadre d’at-

taque par inférence d’appartenance contre un modèle d’apprentissage par renforcement

profond à la pointe de la technologie. Nous démontrons la vulnérabilité de l’apprentissage

par renforcement profond aux attaques par inférence d’appartenance dans les modes d’in-

férence d’appartenance collective (i.e. consistant en une collection de points de données)

et individuelle. Nous montrons que l’état d’apprentissage de l’agent d’apprentissage

par renforcement profond (à quel point la politique apprise est proche de la politique

optimale) et la corrélation temporelle entre les tuples de transition avec les trajectoires

d’entrée ont un impact significatif sur la précision de l’inférence des membres.

gomrokma@mila.quebec


Contribution to Original Knowledge

This thesis contributes to the understanding of privacy-preserving reinforcement learning.

More specifically, it addresses the problem of private policy evaluation and membership

inference attacks in reinforcement learning by:

1. introducing privacy-preserving policy evaluation algorithms in reinforcement

learning, including:

• two novel privacy-preserving algorithms for Monte Carlo policy evaluation

in the Markov Decision Process setting.

• a comprehensive theoretical analysis of privacy-utility trade-off in the pro-

posed algorithms.

• empirical analysis of the proposed algorithms in the full MDP setting.

2. designing a novel sub-sampling framework for utility amplification of privacy-

preserving algorithms through:

• defining novel sensitivity and utility measures tailored to the proposed sub-

sampling framework,

• a comprehensive comparison between the theoretical utility bounds asso-

ciated with the baseline private algorithms and the ones obtained in the

proposed sub-sampling framework,

• empirical evaluation of the sub-sampling impact on the utility of the baseline

private algorithms.

3. proposing a novel framework to investigate membership inference attacks against

deep reinforcement learning models, including:

• a unified framework for attacks against deep reinforcement learning models,

• two novel deep attack classifiers designed to perform inference attacks in

individual and collective modes,

• empirical evaluation of the proposed framework against a state-of-the-art

deep reinforcement learning model in high-dimensional continuous control

environments.
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Contribution of Authors

• Chapter 3 presents the first privacy-preserving policy evaluation algorithm that

appeared in Balle et al. (2016) that I second-authored. During this work I initiated

the ideas and carried out the empirical evaluation. Borja Balle carried out the

theoretical analysis with my collaboration. My advisor, Doina Precup, helped with

the writing and advised on the research.

• Chapter 4 introduces a novel utility amplification framework for privacy-preserving

algorithms, which is empirically benchmarked as a wrapper on the algorithms

proposed in Chapter 3. I have been the main contributor to this work. My

collaborator Borja Balle helped me with the formalism of the framework and my

advisor, Doina Precup, helped with the writing and advised on the research. The

paper, on which I am first author, is ready for submission to an upcoming machine

learning venue.

• Chapter 5 proposes the first membership inference attack framework against deep

reinforcement learning models. I was the main initiator of the ideas, designer of the

framework and responsible for the writing. Susan Amin and Hossein Aboutalebi

helped my in both writing and experiments of this project and Doina Precup and

Alex Wong helped in the writing and advised on the research direction of this

project. A paper on this work, on which I am the first author, was published at

NeurIPS 2020 Privacy-Preserving Machine Learning (PriML and PPML Joint

Edition) workshop. The work was subsequently extended and is currently under

review in an upcoming privacy and security venue.
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0.1 Other Individual Contributions

During my Ph.D., apart from the research that I have conducted on the privacy of

reinforcement learning algorithms, I was actively involved in the following side projects:

• Reproducibility of benchmarked deep reinforcement learning tasks for continuous

control (Islam et al., 2017), which I third-authored. (Published in Workshop of

Reproducibility in Machine Learning, ICML 2017)

• Locally Persistent Exploration in Continuous Control Tasks with Sparse Rewards

(Amin et al., 2020), which I jointly first-authored. (Accepted in International

Conference on Machine Learning (ICML), 2021)

• A Survey of Exploration Methods in Reinforcement Learning (Amin et al., 2021),

which I second-author. (submitted at Journal of Artificial Intelligence Research

(JAIR))
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Chapter 1

Introduction and motivation

Machine learning (ML) methods have a distinctive potential to revolutionize many

domains, such as healthcare, robotics, transportation and natural language processing.

Over the past decade, we have witnessed remarkable success in the application of

traditional ML (Bishop, 2006) and deep learning (Goodfellow et al., 2016) methods in

many domains, including those in which data can be sensitive in nature, such as medical

domains (McKinney et al., 2020). The rise of data-driven solutions and the explosion

of data size due to the recent progress in high-performance computing systems have

equipped ML tools with a great source of information, which has led to significantly

improved modelling and prediction accuracy. While these improvements are notable, it

is also apparent that many existing ML applications require access to individuals’ private

and personal information to achieve the desired level of accuracy. Broad applicability

and vast deployment of ML methods in industrial-scale problems pose privacy challenges

to the field. Hence, an increasing amount of research and development effort in ML is

devoted to the development of ML-based systems that, while delivering state-of-the-art

performance, also preserve the privacy of the underlying data.

Despite the numerous studies and efforts in privacy preservation, we still witness reports

on privacy breaches in a variety of domains (Narayanan and Shmatikov, 2006; Douriez

et al., 2016; Pandurangan, 2014; Yeom et al., 2018). In fact, it has been shown that data

anonymization and other similar techniques are not sufficient to prevent tracking personal

information, and that machine learning can be used to reverse-engineer such information

(Rocher et al., 2019). Thus, the general public has become aware of the potential danger

of using non-private ML services (Cormode, 2011; Fredrikson et al., 2014; Li et al.,

2013; Shokri et al., 2017; Brickell and Shmatikov, 2008). Due to this potential harm

1



Introduction and Motivation 2

and lack of practical privacy-preserving ML solutions and algorithms, many industries

have adopted a conservative approach in data sharing. Since 2006, when Dwork (2006)

proposed Differential Privacy as a mathematically rigorous privacy standard, there has

been an extensive effort to develop privacy-preserving ML algorithms (Friedman and

Schuster, 2010; Dwork et al., 2014, 2006; Dwork, 2008; Ji et al., 2014; Arachchige

et al., 2019; Mohammed et al., 2013; Alhadidi et al., 2012). On the other hand, there

have been attempts to design adversarial privacy attacks, in order to identify and expose

the vulnerabilities of existing ML solutions against such attacks (Shokri et al., 2017;

Sablayrolles et al., 2019; Hu et al., 2021; Su et al., 2020).

However, most of the existing research effort has been devoted to privacy in supervised

learning, where the data is assumed to be labelled and to be governed by i.i.d. assump-

tions. This makes both theoretical analysis and algorithm development easier, as one

can consider, for example, introducing various forms of noise in individual examples

in a dataset. This allows achieving reasonable trade-offs between privacy requirements

and the resulting accuracy, or utility, of models trained on private data. We are instead

interested in the setting of reinforcement learning (RL), in which an agent interacts with

its environment over a period of time, taking actions and receiving observations and

rewards. RL brings some significant complications compared to supervised learning,

both for theoretical analysis and algorithm design. First, in sequential tasks, the inputs are

not i.i.d., but instead depend on each other. Moreover, the data distribution from which

the agent samples is not fixed, and instead depends on its action choices. These choices

typically vary over time, as the goal of an RL agent is to find a way of behaving (also

called a policy) which maximizes the expectation of its long-term cumulative reward

(more details on the specifics of these notions are given in Chapter 2). Yet RL algorithms

are increasingly making their way into practical applications with sensitive data, from

medicine to finance (Zhou et al., 2021; Maeda et al., 2020). Hence, it is imperative

to study their privacy properties and to understand how vulnerable they are to privacy

attacks.

In recent years, there have been some works on privacy-preserving RL algorithms,

e.g. Balle et al. (2016); Wang and Hegde (2019); Suriyakumar et al. (2020); Vietri et al.

(2020). In this thesis, we aim to further contribute to the study of privacy in RL from

both the algorithm designer and the adversarial point of view. Thus, we address three

main questions:

1. Can we develop privacy-preserving policy evaluation algorithms?
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2. Can we amplify the utility of private policy evaluation algorithms using well-

established techniques such as sub-sampling?

3. How vulnerable is reinforcement learning to membership inference attacks?

The first question is motivated by the fact that policy evaluation, i.e. computing the

expected long-term return of a given policy, is a core component of many RL algorithms,

including algorithms that try to find an optimal way of behaving. Such algorithms often

evaluate the existing policy first, and then improve it by increasing the probability of

taking actions that have higher value, as established in this estimation process. Hence,

understanding privacy for this problem, and developing private algorithms for policy

evaluation is an important step towards privacy-preserving RL in general. Policy evalua-

tion already presents the difficulty of the agent observing a non-iid stream of data, as

both the inputs and the outputs observed on a trajectory are correlated. However, the

input distribution observed by the agent is fixed, as the policy does not change, which

makes this problem more tractable, intuitively, than the full control case, when the policy

changes over time.

The second question is motivated by the fact that the utility loss of privacy-preserving

policy evaluation can be high, i.e. the error in estimating returns can be quite big.

This would limit the practical use of such algorithms. Hence, we study the use of

well-established sub-sampling techniques to improve the utility, while is preserving

privacy.

The final question is motivated by a recent body of work which shows that various

privacy-preserving ML algorithms are still vulnerable to a particular kind of attack,

called membership inference attack, in which someone tries to identify if a particular

data point has been used in training a particular ML model. This motivated us to

understand if RL algorithms, specifically deep RL, could be vulnerable to this kind of

attack.

1.1 Overview and Contributions

The thesis is structured as follows. Chapter 2 reviews the necessary background on

reinforcement learning, differential privacy and membership inference attack design in

machine learning. In Chapter 3, we answer the first research question by developing
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privacy-preserving policy evaluation algorithms and empirically evaluating their perfor-

mance in a synthetic, simulated domain. We carry out a comprehensive theoretical and

empirical analysis of the privacy-utility trade-off of the proposed algorithms. In Chapter

4, we first provide a set of tools and background required for a systematic approach

towards amplifying the utility of a class of algorithms known as linear queries. We

subsequently employ these tools and propose a subroutine that amplifies the utility of the

algorithms introduced in Chapter 3. We show empirically the substantial positive impact

of the proposed approach on the utility of these algorithms. In Chapter 5, we tackle the

third question by designing a generic membership inference attack framework tailored to

non-private RL algorithms. We analyze empirically the vulnerability of a state-of-the-art

deep RL algorithm to membership inference attacks. Finally, we conclude in Chapter 6

with a summary of the contributions and results in this dissertation, and discuss possible

future work directions. Please refer to the preamble of the thesis for a detailed discussion

of contributions as well.



Chapter 2

Background and related work

This chapter presents background on differential privacy and reinforcement learning

that is required in order to design privacy-preserving policy evaluation algorithms and

membership inference attacks against reinforcement learning models. We begin with an

overview of the general RL paradigm in Section 2.1, followed by Differential Privacy

background in Section 2.3. We then provide some examples of prior work on privacy-

preserving algorithms in reinforcement learning, and finally, in Section 2.4, we discuss

the prior work on membership inference attacks in machine learning more broadly, and

then specifically in reinforcement learning. Further, more detailed background is also

included in later chapters as needed.

2.1 Reinforcement Learning

Reinforcement learning was inspired by behavioral psychology and theories of animal

learning but its modern version developed at the confluence of control theory, operations

research and machine learning (see Sutton and Barto (1998) for a comprehensive intro-

duction). In reinforcement learning, an agent interacts with its environment sequentially,

receiving observations and taking actions. The agent’s actions influence the observations

received. Additionally, the agent receives a numerical signal called reward. The agent’s

goal is to take actions in such a way as to maximize the expected value of a cumulative

function of the rewards received (with several such functions considered in different

works).

5
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The agent’s task is usually formalized as a Markov Decision Process (MDP). A fixed-

horizon, discrete-time MDP is a tuple ⟨S ,A,P , r, p0, T⟩ consisting of a set of states S ,

a set of actions A, and initial state distribution p0, a transition probability distribution

P : S × A → P(S), which assigns to each state-action pair (s, a) ∈ S × A a

probability measure over states in S , a reward function r : S ×A → R and the number

of time steps in an episode T. We note that the rewards are in fact typically assumed to

be bounded in absolute value by Rmax. We also note that rewards can depend in general

on the triple st, at, st+1, but we do not consider this case for ease of development; there

are straightforward procedures for extending results to this case.

At each time-step t = 0, 1, 2, . . . , the agent’s state is st ∈ S and it chooses an action

at ∈ A. The next state of the agent, st+1, is determined stochastically by P(st+1|st, at)

and the reward obtained by the agent on this transition, rt = r(st, at), is computed by the

reward function. We note that the initial state s0 is sampled from p0, and that in the fixed

horizon setting, the agent’s episode (i.e. interaction with the environment) terminates

after T transitions, in state sT. A trajectory is a sequence of states, actions and rewards

obtained by the agent. The total return of the agent on a trajectory in a fixed-horizon

MDP, starting from time step 0 ≤ t < T, is given by the sum of rewards:

Gt =
T−t−1

∑
k=0

rt+k (2.1)

If the agent’s interaction is assumed to continue for an unknown amount of time, or

possibly forever, the task can be modelled as a discounted discrete-time MDP, modelled

as a tuple ⟨S ,A,P , r, p0, γ⟩, where all elements are as described above and γ ∈ [0, 1)

is the discount factor, which is used to incentivize the agent to pay less attention to

rewards that occur in the far future. The process of interaction between the agent and the

environment is as described above, except a trajectory might continue forever, or might

stop only upon entering a designated terminal state. The discounted return on a given

trajectory, from time t onward, is calculated as follows:

Gt :=
∞

∑
k=0

γkrt+k, (2.2)

A Markovian stochastic policy, π : S → P(A), maps states to a probability distribution

over actions. Given a state s, the policy provides a conditional distribution over actions,

conditioned on s, π(a|s). A deterministic Markovian policy π : S → A is a map which
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FIGURE 2.1: A schematic of the policy iteration method.

assigns an action to each state. In the stochastic policy setting, the agent samples from

the policy to select the action, and this stochasticity gives rise to different exploratory

behaviours. We note that if the agent adopts a fixed policy π, the MDP reduces to a

Markov reward procss with induced state transition probability:

Pπ(st+1|st) = ∑
at

P(st+1|at, st)π(at|st). (2.3)

The goal of reinforcement learning agent is to learn a policy that maximizes the expected

cumulative return, possibly discounted as described above. A well-established approach

for finding optimal policies is the policy iteration method (see Figure 2.1), which

consists of two main steps: i) policy evaluation and ii) policy improvement. In the policy

evaluation step, the RL agent computes the expected cumulative return for its current

policy π, as a function of the state. This is called the value function Vπ (Sutton and

Barto, 1998; Szepesvári, 2010). In many problems of interest, the MDP M is unknown,

but the agent has access to trajectories produced by interacting with M, which allow it

to estimate Vπ approximately. Once the value function Vπ is estimated, the RL agent

improves the policy π, modifying it into a new policy π′, such that the expected return

Vπ′(s) ≥ Vπ(s) for all s ∈ S . The policy iteration cycle (Figure 2.1) continues until

the optimal policy π∗ is obtained, corresponding to optimal value function V⋆(s) for all

s ∈ S . The existence of a unique V⋆ has been proven for MDPs with finite state and

action spaces by Bellman (Bellman, 1957).
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2.1.1 Policy Evaluation

In the policy evaluation step, the value function for the current policy is computed.

The expected return when starting from state s and following policy π thereafter is the

state-value function, Vπ : S → R, defined as,

∀s ∈ S , Vπ(s) := EP ,π [G0|s0 = s] . (2.4)

In other words, the value function evaluates the expected return of the RL agent’s policy

for each possible state. Additionally, one can compute the expectation of Vπ over the

initial state distribution p0. This allows the comparison of policies when the state space

is infinite as well.

Similarly, the action-value function, Qπ : S ×A → R, estimates the expected value of

the return when the agent starts in state s, takes action a, and follows policy π afterwards:

Qπ(s, a) = EP ,π [G0|s0 = s, a0 = a] . (2.5)

The ultimate goal of reinforcement learning agents is to learn a policy that maximizes

value either at all states (in a finite MDP) or for a given start state distribution p0.

Policy evaluation is the problem of obtaining (an approximation to) the value function of

a Markov reward process defined by MDP M and a given policy π (Sutton and Barto,

1998; Szepesvári, 2010). Policy evaluation algorithms usually start with the following

re-framing of the value function of a state in terms of the values of its successors:

∀s ∈ S , Vπ(s) := EP ,π [r(st, at) + γVπ(st+1)|st = s] , (2.6)

which is also called Bellman equation for policy evaluation. If the state space is finite

and the reward function and transition model of the MDP M are known, this can be

re-written as a linear system of equations, and solved exactly or iteratively, as detailed

below.

Let N = |S|. Let V π denote the N dimensional vector such that its coordinate i contains

the state-value estimate of Vπ(i), i ∈ S for a fixed order of the states. The Bellman

equation (2.6) can be seen as the fixed point of the affine transformation Tπ : RN → RN

known as the Bellman operator (Szepesvári, 2010; Puterman, 2014) and define as:

TπV π := Rπ + γPπV π. (2.7)
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Here, Rπ ∈ RN denotes the reward vector for policy π, whose ith coordinate is

Rπ
i := Eπ

[
r(si, .)

]
and the elements of the transition matrix Pπ are as defined in 2.3.

The value function can then be computed as the fixed point of Tπ:

TπV π = V π. (2.8)

Note that Tπ is a contraction mapping due to the fact that γ < 1, which together with

some mild assumptions on the state visitation Markov chain guarantees that the fixed

point exists and is unique (Szepesvári, 2010).

However, in many cases of interest, M is unknown, but we have access to trajectories

containing state transitions and immediate rewards sampled from π, a case called on-

policy policy evaluation. In this case, the right-hand-side of 2.6 can be approximated

from samples, leading to Monte Carlo or temporal-difference (TD) learning methods.

When the state space of M is relatively small, tabular methods that represent the value of

each state can be used individually. However, in problems with large (or even continuous)

state spaces, parametric representations for the value function are typically needed in

order to defeat the curse of dimensionality and exploit the fact that similar states will

have similar values. In this thesis, we focus on policy evaluation with linear function

approximation in the batch setting, where we have access to a set of trajectories sampled

from the target policy or the behaviour policy. The problem of policy evaluation splits

into two categories of on-policy estimation, when the target policy and behaviour policies

are the same and off-policy estimation when the target policy and behaviour policy are

not the same. In this thesis in Chapters 3 and 4 we choose to adopt the on-policy setting

and in Chapter 5 we adopt the off-policy setting. Future rewards play fundamental role

on the state value and this dependency diminishes as the value of discount factor γ

approaches to zero, in which the problem of state value estimation reduces to standard

supervised learning setting. One standard way of computing state-value function (2.4) is

the recursive representation of Equation (2.2) for two successive time-steps.

In real-world applications the state-space is either large or infinite. This gives rise to

an inherent problem in stat-value estimation, in which the size of state space increase

exponentially as the number of state variables increases. This problem is known as

the curse of dimensionality. This pushes us towards the approximation of state-value

function. In this thesis, we use the most common approximation approach, known as a

linear function approximation with the parameter vector θ ∈ Rd.
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Let Φ ∈ RS×d be a feature representation that associates each state s ∈ S to a d-

dimensional feature vector ϕ⊤s = Φ(s, :) ∈ Rd with d ≪ |S|. The goal in the linear

function approximation is to find a parameter vector θ ∈ Rd such that V̂π = Φθ is a

good approximation to Vπ. To do so, we assume that we have access to a collection

X = (x1, . . . , xm) of finite trajectories sampled from M by π, where each xi is a

sequence of states, actions and rewards. A dataset X ∈ Xm is considered as a multiset

of m i.i.d. trajectories and τ ∈ X be a trajectory chosen from X. Each trajectory

τ = {(Sτ
i , Aτ

i , Rτ
i )}

lτ
t=0 starts with a state drawn w.r.t. the initial state distribution ρ,

collects transition triples based on the fixed policy π and terminates with an absorbing

state from the set of absorbing states B.

2.2 Batch Off-policy Deep Reinforcement Learning

FIGURE 2.2: A schematic of replay buffer mechanism. Replay buffer (on the right)
receives a set of n trajectories (on the left), each formed by the concatenation of corre-
lated tuples (sj

t, aj
t, rj

t+1, sj
t+1), where j = 1, 2, . . . , n denotes the trajectory number and

t = 0, 1, . . . , T − 1 is the tuple index in each trajectory. The replay buffer subsequently
breaks each trajectory into its constituent tuples and stores the resulting tuples from
the decorrelated trajectories. Note that the small disks in the replay buffer on the right

represent tuples.

In batch off-policy setting, the reinforcement learning agent decouples the data collection

phase from the policy training phase (i.e. off-policy), which ensures that the learning

system is not tied to a particular exploration algorithm and it also ensures disjointedness

between the training datasets provided for the RL algorithm in different settings. This

feature is essential in real-world applications, where the training data is provided privately

for the reinforcement learning model by a certain industry, which is subsequently used

to train the private model.
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For more clarification, let us walk through an illustrative example. In the healthcare

industry, the system’s goal is to design medical treatment policies, through which at each

stage patients receive different treatment recommendations based on the information

obtained from the patients’ history of interaction with the system. In such instances, it is

often hazardous to train and employ the reinforcement learning models simultaneously.

Thus, the reinforcement learning agent is first trained with a batch of patients’ treatment

records (trajectories) in off-policy mode, and the trained policy is subsequently released

for decision making.

FIGURE 2.3: Batch off-policy deep reinforcement learning architecture. An external
behaviour policy generates a batch of i.i.d. trajectories composed of transition tuples
(state, action, reward, new state), which are delivered to the deep RL model. The replay
buffer mechanism as an internal part of the model decorrelates each trajectory into a
collection of i.i.d. transition tuples and then uses them in the form of mini-batches to

train the target policy.

Reinforcement learning agents do not have knowledge of the environment at the very

initial stage of learning, and acquire the necessary experience through continued interac-

tions with the environment. A reinforcement learning agent can acquire the necessary

information in two ways: on-policy and off-policy. In the off-policy setting, the agent

collects the necessary information via the behaviour policy πb (exploration), and sub-

sequently uses the acquired data to train the target policy π f (exploitation). Figure 2.3

presents a schematic of off-policy deep RL architecture. In the on-policy setting, on

the other hand, the agent uses the target policy that is trained so far to obtain data by

interacting with the environment. From the privacy point of view, since the private data

is assumed to exist a priori, off-policy methods are natural choices to analyze in this

regard.
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The reinforcement learning agent requires deep neural networks as non-linear function

approximators to train the target policy in complex environments. Most of the existing off-

policy deep reinforcement learning methods such as Deep Deterministic Policy Gradients

(DDPG) (Lillicrap et al., 2015), Soft Actor Critic (SAC) (Haarnoja et al., 2018), and Deep

Q-learning algorithm (DQN) (Mnih et al., 2015) are indeed considered as near-on-policy

algorithms since their exploration policy is greatly correlated with the learning policy,

yet they are labelled as an off-policy algorithm due to their use of classic off-policy

Q-learning (Watkins and Dayan, 1992). Thus, decoupling exploration from the learning

phase becomes challenging in the methods mentioned above. To properly address the

vulnerability of deep reinforcement learning algorithms to membership inference attacks

(MIAs), we need to adopt a truly off-policy deep reinforcement learning method that

explicitly decouples exploration and learning steps. The state-of-the-art off-policy model

that is widely used as the basis of other deep RL algorithms is the Batch-Constrained

deep Q-learning (BCQ) (Fujimoto et al., 2019) method. Structurally, BCQ trains a

generative model on the input trajectories such that the model learns the relationship

between the visited states in the input trajectories and the corresponding taken actions.

The BCQ algorithm subsequently uses the developed generative model to train a deep

Q-network, which ultimately learns to sample the highest valued actions similar to the

ones in the input trajectories.

The fact that the input trajectories in off-policy deep RL models are temporally correlated

necessitates the use of a mechanism that converts the input data to i.i.d. samples before

passing it to the deep network. A widespread and fundamental data management mecha-

nism that has become an inevitable part of the existing off-policy deep reinforcement

learning models is experience replay buffer or replay buffer. Application of experience

replay buffer significantly improves the sample efficiency and stability of off-policy deep

reinforcement learning algorithms (Mnih et al., 2015). The concept of replay buffer was

first introduced in Lin (1992). Several years later, authors in Mnih et al. (2015) for the

first time designed an off-policy deep reinforcement learning algorithm that incorporates

replay buffer in its architecture. The main intuition behind the application of replay

buffer in deep reinforcement learning lies at the heart of reinforcement learning theory. It

is well-studied that the Q-learning algorithm easily diverges in the case of linear function

approximation (Sutton and Barto, 1998). The solution that replay buffer offers to the

problem of the divergence of Q-learning algorithm is to decorrelate the input trajectories

and subsequently treat each transition tuple as an i.i.d. sample point (Figure 2.2). This

intermediate decorrelation step significantly impacts data efficiency and helps the deep

reinforcement learning algorithm converge to the optimal policy according to the law of
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large numbers. Moreover, it allows the deep RL algorithm to benefit from mini-batch

training and shuffling techniques, which are proven to improve the performance of deep

reinforcement learning algorithms significantly (Mnih et al., 2015; Zhang and Sutton,

2017; Silver et al., 2017; Liu and Zou, 2018; Fedus et al., 2020).

In the context of RL, a data point in a batch of data is a sequence (a trajectory) of

observations, actions and any kind of information that the RL agent exchange with the

environment, which is denoted as the following,

τT = (s0, a0, r1, s1), (s1, a1, r2, s2), . . . , (sT−1, aT−1, rT, sT). (2.9)

The RL agent receives an input batch of data in the form of trajectories provided by an

exploratory agent, and subsequently uses this data to train the target policy. The output

of the trained target policy consists of data points (trajectories) produced via interaction

between the target policy and the environment (Figure 2.3).

2.3 Differential privacy

Differential Privacy (DP) has become a de-facto standard for designing privacy-preserving

machine learning algorithms with strong privacy guarantees Dwork et al. (2014); Xiao

et al. (2010); Mohammed et al. (2011); Chen et al. (2011, 2014). DP takes a user-centric

approach, by providing privacy guarantees based on the difference of the outputs of a

learning algorithm trained on two databases differing in a single user. The central goal

is to bound the loss in privacy that a user can suffer when the result of an analysis on a

database with her data is made public. This can incentivize users to participate in studies

using sensitive data, e.g. mining of medical records. In the context of machine learning,

differentially private algorithms are useful because they allow learning models in such a

way that their parameters do not reveal information about the training data (McSherry

and Talwar, 2007). For example, one can think of using historical medical records to

learn prognostic and diagnostic models which can then be shared between multiple health

service providers without compromising the privacy of the patients whose data was used

to train the model.

To formalize the above discussion, let X be an input space and Y an output space.

Suppose A is a randomized algorithm that takes as input a tuple X = (x1, . . . , xm) of
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elements from X for some m ≥ 1 and outputs a (random) element A(X) of Y . We inter-

pret X ∈ Xm as a dataset containing data from m individuals and define its neighbouring

datasets as those that differ from X in their last element: X′ = (x1, . . . , xm−1, x′m) with

xm ̸= x′m. Formally, we should define neighbouring datasets as those which differ in one

element, not necessarily the last. But we are implicitly assuming here that the order of the

elements in X does not affect the distribution of A(X), so we can assume without loss of

generality that the difference between neighbouring datasets is always in the last element.

We denote this (symmetric) relation by X ≃ X′. A is (ε, δ)-differentially private for

some ε, δ > 0 if for every m ≥ 1, every pair of datasets X, X′ ∈ Xm, X ≃ X′, and

every measurable set Ω ⊆ Y we have

P[A(X) ∈ Ω] ≤ eεP[A(X′) ∈ Ω] + δ . (2.10)

This definition means that the distribution over possible outputs of A on inputs X and

X′ is very similar, so revealing this output leaks almost no information on whether xm or

x′m was in the dataset.

2.3.1 Output perturbation mechanism

A simple yet popular way to design a DP algorithm for a given function f : Xm → Y is

the output perturbation mechanism, which releases A(X) = f (X) + η, where η is noise

sampled from a properly calibrated distribution. For real outputs Y = Rd, the Laplace

(resp. Gaussian) mechanism (see e.g. Dwork et al. (2014)) samples each component

of the noise η = (η1, . . . , ηd) i.i.d. from a Laplace (resp. Gaussian) distribution with

standard deviation O(GS(m)
1 ( f )/ε) (resp. O(GS(m)

2 ( f ) ln(1/δ)/ε)), where GS(m)
p ( f )

is the global sensitivity of f defined in the following definition.

Definition 2.1 (Global Sensitivity (Dwork et al., 2006)).

GS(m)
p ( f ) = sup

X,X′∈Xm,X≃X′
∥ f (X)− f (X′)∥p ,

where x ≃ x′ means that x′ can be obtained by replacing a single entry in x.

The notion of global sensitivity captures the maximum impact on the output of a deter-

ministic algorithm induced by changing a single input entry, we generalize this notion in

the following definition.
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Definition 2.2 (Global Sensitivity Generalized). Let A = {An}n∈N be a family of

deterministic algorithms of the form An : Xn → Rd. The global sensitivity of A is

defined as,

GS(n)p (A) := sup
x,x′∈Xn :x∼x′

∥A(x)−A(x′)∥p =

(
sup

x,x′∈Xn :x∼x′
∥A(x)− A(x′)∥p

p

)1/p

,

(2.11)

where x ≃ x′ means that x′ can be obtained by replacing a single entry in x.

Calibrating noise to the global sensitivity is a worst-case approach that requires taking the

supremum over all possible pairs of neighbouring datasets, and in general, does not ac-

count for the fact that in some datasets, privacy can be achieved with substantially smaller

perturbations. Notably, in reinforcement learning applications where data efficiency is

of great importance (e.g. healthcare applications), one needs to adopt data-dependent

notions of sensitivity for better utility-privacy tradeoff management. In Chapter 3 we

adopt a notion of sensitivity that is suitable for policy evaluation algorithms.

2.3.2 Private Reinforcement Learning

Contrary to supervised learning, literature on privacy-preserving RL is quite scarce. Balle

et al. (2016) is the first study that addressed privacy in general RL. Prior to this work

the focus was on privacy-preserving algorithms with partial feedback, e.g. bandit-type

problems (Mishra and Thakurta, 2015; Tossou and Dimitrakakis, 2016). The study on

privacy-preserving bandit algorithms is still an active research direction (Shariff and

Sheffet, 2018; Basu et al., 2019; Dubey, 2021).

In the control setting, Wang and Hegde (2019) propose a privacy-preserving Q-learning

algorithm in the continuous space RL setting using functional noise (Hall et al., 2013).

Their theoretical analysis proposed in Wang and Hegde (2019) provides useful insight

on the interplay between the utility and privacy of the proposed algorithm. In a similar

line of research, Vietri et al. (2020) employed the relaxed notion of joint differential

privacy (JDP) in the tabular setting and developed a private optimism-based learning

algorithm with PAC and regret bounds. Vietri et al. (2020) provide the first formal utility

guarantee of the privacy-preserving Upper Confidence Bound (PUCB) algorithm in the

tabular setting. Using the private UCB algorithm proposed in Vietri et al. (2020), authors

propose an algorithm that computes the optimistic private Q-function. The paper leaves

the extension of proposed algorithms to non-tabular setting to the future work.
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Our principal motivation for studying differential privacy (DP) in reinforcement learning

(RL) comes from medical applications. Learning and evaluation of dynamic treatments is

a crucial part of personalised medicine and adaptive clinical trials (Kulynych and Greely,

2017; Stiles and Appelbaum, 2019). Privacy at the level of trajectories is a natural

requirement in these applications because each trajectory represents the evolution of a

single patient during their treatment. We will include this example in the introduction to

clarify the motivation of our work.

Chapter 3 provides the first study of privacy-preserving policy evaluation along with the

comprehensive study of privacy-utility trade-off in the linear function approximation

setting. Research on privacy-preserving policy evaluation algorithms is still at its infant

stages and to the best of our knowledge algorithms proposed in this thesis are the only

privacy-preserving algorithms that are particularity tailored to the policy evaluation

setting. Our rationale for going in this direction was that policy evaluation is a building

block of many RL algorithms, and at the same time provides an easier scenario than the

control case. Hence, theoretical guarantees can be easier to obtain and the privacy-utility

trade-off is crisper. We also wanted to work in a setting that is independent of the

exploration algorithm, as the latter is still a very active area of research in RL even

outside of any privacy considerations.

2.4 Membership Inference Attacks

Membership Inference Attacks (MIAs) are a form of adversarial attacks that use a pub-

licly available trained model, and some other auxiliary information, in order to identify

whether a particular sample point was used in the training of the model or not. This is

relevant, for example, if we consider the healthcare setting, because knowing if a person

was, for example, included in training a predictor for disease progression conditioned on

treatment can indicate their condition, which is sensitive private information.

In the research on MIAs, one takes the perspective of an attacker and tries to design some

approach by which membership of a given data point into the training data of a model

from a particular class can be established. Often, classifiers are used as a tool to learn how

to perform this identification. MIAs can be either black-box or white-box. In black-box

MIAs, the attacker can query the model by using its own data but does not have any

knowledge of how the model was trained. In the white-box setting, further information

about the model, for example the training algorithm, may be available. While white-box
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MIAs can be a lot more effective, they are also more difficult to implement in practice,

as they require particular kinds of extra information, and therefore they are less relevant.

Hence, we will restrict our attention to black-box MIAs. In this section, we provide

a brief overview of relevant work in MIA design in both supervised learning and RL

settings.

2.4.1 Membership inference in supervised machine learning.

There exists an extensive body of literature on membership inference attacks on su-

pervised machine learning models, where they provide an interesting counterpart to

privacy analyses. In the context of genomics data, authors in Dwork et al. (2015) propose

membership inference attacks (tracing attacks) against supervised classifiers. The main

intuition in the design of membership inference attacks is that a publicly available trained

model h will exhibit higher confidence in the individuals who participated in the training

data, and thus the instances in the training are more vulnerable to privacy threats.

The shadow model technique (Shokri et al., 2017) is known as an effective and practical

approach for designing membership inference attack models. Shadow models are parallel

models that can be trained by an attacker on data sets often sampled from the same

distribution as the underlying distribution of the private data. In this method, the

adversary trains the models with complete knowledge of the training set. Thus, using

auxiliary membership information and the trained shadow models, the adversary can

build a membership classifier that identifies whether an individual has participated in the

training of similarly trained models.

In the rest of this section, we provide a brief overview of the existing studies that adopt

the shadow model technique as their principle attack training strategy in the supervised

setting, and we refer the interested reader to a comprehensive survey on membership

attacks in machine learning by Hu et al. (2021) for further information.

Authors in Shokri et al. (2017) for the first time adopted shadow model training technique

in the supervised setting and proposed a membership attack against a deep classifier

in the black-box setting. (Shokri et al., 2017) used shadow model training to design

membership inference attacks in black-box settings by replicating the behaviour of

the target model through training shadow models on some public datasets drawn from

the same distribution as the private dataset used to train the target model. Salem et al.

(2019) discuss two main assumptions adopted by Shokri et al. (2017) and propose attack
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strategies with milder assumptions. They test the performance of the proposed attacks

on some datasets such as MNITS, CIFAR100, and Purchase-10. The authors of Yeom

et al. (2018) show that overfitting is sufficient for the adversary to perform membership

inference attacks against several machine learning models, such as regression and deep

convolutional neural networks (CNNs). Many other works study membership attacks

in machine learning in different settings and under different sets of assumptions (Long

et al., 2017; Hayes et al., 2019a; Sablayrolles et al., 2019; Long et al., 2018).

2.4.2 Membership inference attack in reinforcement learning

The most suitable setting to test the vulnerability of deep RL algorithms against MIAs is

the batch off-policy setting. In the off-policy batch reinforcement learning, the training

set x for a Deep RL agent is composed of m trajectories {τ1, ..., τm}, each represents a

data-point and is composed of a finite number of tuples in the form of ⟨st, at, rt, st+1⟩. A

trajectory as a single data point in a dataset can be interpreted differently. For example, a

trajectory can capture a patient’s interactions with different parts of a hospital, from the

reception office to the patient release office. Trajectories can have various finite sizes.

In deep RL, adopting a similar MIA design principle as in a supervised setting arises

some non-trivial and fundamental challenges. The first challenge is that a data point

in a deep RL setting is a complete trajectory composed of temporally correlated entry

points, and this gives rise to a much richer input representation compare to the classic

supervised learning to set. Exploring the inherent correlation within the input data in

a deep RL model is considered as one of the main sources of high variance in model

outputs Sutton and Barto (1998). The second challenge arises from the inevitable use

of the data transformation mechanism termed replay buffer Mnih et al. (2015). Replay

buffer is mainly used to remove temporal correlation within a trajectory and smooth out

the distributional discrepancy at the trajectory. This intermediate transformation phase

adds a new source of noise to the input data from the attacker perspective, which is while

improving on the stability of the target model predictions, it also makes the membership

inference a more challenging task against deep RL models. Investigating the trade-off

between the initial correlation among transition tuples that potentially helps the attacker

to infer the membership of the target trajectory in the training set and the existence of

replay buffer is one of the main contributions of this paper. This trade-off, of course, is

a subtle and non-trivial trade-off for a non-RL audience. The third challenge is due to

the temporal nature of model training in deep RL, which gives rise to a fundamentally
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different design of shadow training technique that is discussed in more detail in Section

5.5.

Pan et al. (2019) propose a shadow training model to infer the transition model used to

train the target policy from the set of candidate transition dynamics. In such a setting,

the set of transition models act as the set of classes in standard classification tasks. The

assumption of having access to a collection of transition dynamics is infeasible to many

real-wold RL settings and less appealing to the industrial audience, where the concern is

the privacy of individuals who participated in a particular study or training. To the best

of our knowledge, our study (Chapter 5) is the first work that addresses the problem of

membership inference attack in reinforcement learning where the target model is trained

on the environment accessible to the adversary with the same query access level as the

target model.

2.4.3 Performance Metrics

We adopt the standard performance metrics used in the classification literature (Sokolova

and Lapalme, 2009) to evaluate the performance of our proposed attack models against

the deep reinforcement learning model. We measure the performance of the attack

classifier as a function of the following quantities:

1. True Positives (TP): Number of correctly recognized positives,

2. True Negatives (TN): Number of correctly recognized negatives,

3. False Positives (FP): Number of incorrectly recognized positives,

4. False Negatives (FN): Number of incorrectly recognized negatives.

We use the following metrics to analyze our data:

Overall accuracy (ACC) captures the overall performance of attack classifier and is

calculated as follows,

ACC =
TP + TN

TP + TN + FP + FN
. (2.12)
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Precision (PR) shows the fraction of pairs classified as matching pairs that are indeed

coming from the same model, and is written as,

PR =
TP

TP + FP
. (2.13)

Recall (RE) measures the fraction of matching pairs that the attack classifier can infer

correctly, and is computed as follows

RE =
TP

TP + FN
. (2.14)

The evaluation metrics mentioned above are sometimes misleading. For instance, ac-

curacy is a metric that heavily depends on the distribution of the classifier input pairs.

For instance, where 90% of input pairs are negative and 10% are positive, a simple

attack model that without any learning outputs ’negative’ for any test pairs, exhibits 90%

accuracy. Thus, to evaluate the performance of our proposed attack models and improve

the robustness of our findings, we further employ two other evaluation metrics:

F1 score (F1) is the harmonic mean of the precision (PR) and recall (RE), found as

F1 =

(
1
2

(
1

PR
+

1
RE

))
=

2.PR.RE
PR + RE

(2.15)

Matthews Correlation Coefficient (MCC) Matthews (1975) calculates the correlation

between the predicted and the true classification labels, and is defined as

MCC =
TP.TN− FP.FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (2.16)

MCC is an effective and meaningful combination of all four quantities TP, TN, FP, and

FN, which ranges from −1 to 1. The closer MCC is to 1, the better the model performs

(Chicco et al., 2021). MCC= 0 shows that the model is a random guesser. The other

evaluation metrics ACC, PR, RE, and F1 vary in the range [0, 1]. In a well-performing

model, all of these evaluation metrics have values close to 1.

Finally, to show the performance of our proposed MIA classifiers in individual and

collective modes at different classification thresholds θ, we plot receiver operating
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characteristic (ROC) curve, which shows the changes of RE as a function of False

Positive Rate (FPR),

FPR =
FP

FP + TN
(2.17)

for different values of θ.



Chapter 3

Private Monte Carlo Policy Evaluation

In this chapter, we present the first differentially private algorithms for reinforcement

learning, which apply to the task of evaluating a fixed policy. We establish two approaches

for achieving differential privacy, provide a theoretical analysis of the privacy and utility

of the two algorithms, and show promising results on simple empirical examples.

3.1 Introduction and motivation

Learning how to make decisions under uncertainty is becoming paramount in many

practical applications, such as medical treatment design, energy management, adaptive

user interfaces, recommender systems etc. Reinforcement learning (Sutton and Barto,

1998) provides a variety of algorithms capable of handling such tasks. However, in many

practical applications, aside from obtaining good predictive performance, one might also

require that the data used to learn the predictor be kept confidential. This is especially

true in medical applications, where patient confidentiality is very important, and in other

applications which are user-centric (such as recommender systems). Differential privacy

(DP) (Dwork, 2006) is a very active research area, originating from cryptography, but

which has now been embraced by the machine learning community. DP is a formal model

of privacy used to design mechanisms that reduce the amount of information leaked

by the result of queries to a database containing sensitive information about multiple

users (Dwork, 2006). Many supervised learning algorithms have differentially private

versions, including logistic regression (Chaudhuri and Monteleoni, 2009; Chaudhuri

et al., 2011), support vector machines (Chaudhuri et al., 2011; Rubinstein et al., 2012;

Jain and Thakurta, 2013), and the lasso (Thakurta and Smith, 2013). However, differential

22
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privacy for reinforcement learning tasks has not been tackled yet, except for the simpler

case of bandit problems (Shariff and Sheffet, 2018; Mishra and Thakurta, 2015; Tossou

and Dimitrakakis, 2016).

In this chapter, we tackle differential privacy for reinforcement learning algorithms for

the full Markov Decision Process (MDP) setting. We develop differentially private

algorithms for the problem of policy evaluation, in which a given way of behaving has to

be evaluated quantitatively. We start with the batch, first-visit Monte Carlo approach to

policy evaluation, which is well understood and closest to regression algorithms, and

provide two differentially private versions, which come with formal privacy proofs as

well as guarantees on the quality of the solution obtained. Both algorithms work by

injecting Gaussian noise into the parameters vector for the value functions, but they

differ in the definition of the noise amount. Our privacy analysis techniques are related

to previous output perturbation for empirical risk minimization (ERM), but there are

some domain specific challenges that need to be addressed. Our utility analysis identifies

parameters of the MDP that control how easy it is to maintain privacy in each case.

The theoretical utility analysis, as well as some illustrative experiments, show that the

accuracy of the private algorithms does not suffer (compared to usual Monte Carlo) when

the data set is large.

The rest of this chapter is organized as follows. In Section 3.2 we provide background

notation and results on differential privacy and Monte Carlo methods for policy eval-

uation. Section 3.3 presents our proposed algorithms. The privacy analysis and the

utility analysis are outlined in Section 3.4 and Section 3.5 respectively. Detailed proofs

for both of these sections are given in the Supplementary Material. In Section 3.8 we

provide empirical illustrations of the scaling behaviour of the proposal algorithms, using

synthetic MDPs, which try to mimic characteristics of real applications. Finally, we

conclude in Section 3.9 with a discussion of related work and avenues for future work.

3.2 Background and notation

In this section we provide background on differential privacy and policy evaluation from

Monte Carlo estimates.
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3.2.1 Monte Carlo Policy Evaluation

We will use a Monte Carlo approach, in which the returns of the trajectories in X are

used as regression targets to fit the parameters in V̂π via a least squares approach (Sutton

and Barto, 1998). In particular, we consider first-visit Monte Carlo estimates obtained as

follows. Suppose x = ((s1, a1, r1), . . . , (sT, aT, rT)) is a trajectory that visits s and ix,s

is the time of the first visit to s; that is, six,s = s, and st ̸= s for all t < ix,s. The return

collected from this first visit is given by

Fx,s =
T

∑
t=ix,s

rtγ
t−ix,s =

T−ix,s

∑
t=0

rt+ix,s γ
t ,

and provides an unbiased estimate of Vπ(s). For convenience, when state s is not visited

by trajectory x we assume Fx,s = 0.

Given the returns from all first visits corresponding to a dataset X with m trajectories,

we can find a parameter vector for the estimator V̂π by solving the optimization problem

arg minθ JX(θ), where

JX(θ) =
1
m

m

∑
i=1

∑
s∈Sxi

ρs(Fxi,s − ϕ⊤s θ)2 , (3.1)

and Sx is the set of states visited by trajectory x. The regression weights 0 ≤ ρs ≤ 1

are given as an input to the problem and capture the user’s believe that some states are

more relevant than others. It is obvious that JX(θ) is a convex function of θ. However,

in general it is not strongly convex and therefore the optimum of arg minθ JX(θ) is not

necessarily unique. On the other hand, it is known that differential privacy is tightly

related to certain notions of stability (Thakurta and Smith, 2013), and optimization

problems with non-unique solutions generally pose a problem to stability. In order to

avoid this problem, the private policy evaluation algorithms that we propose in Section 3.3

are based on optimizing slightly modified versions of JX(θ) which promote stability

in their solutions. Note that the notions of stability related to DP are for worst-case

situations: that is, they need to hold for every possible pair of neighbouring input dataset

X ≃ X′, regardless of any generative model assumed for the trajectories in those datasets.

In particular, these stability considerations are not directly related to the variance of the

estimates in V̂π.
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We end this section with a discussion of the main obstruction to stability, i.e. the cases

where arg minθ JX(θ) fails to have a unique solution. Given a dataset X with m trajec-

tories we define a vector FX ∈ RS containing the average first visit returns from all

trajectories in X that visit a particular state. In particular, if Xs represents the multiset of

trajectories from X that visit state s at some point, then we have

FX(s) = FX,s =
1
|Xs| ∑

x∈Xs

Fx,s . (3.2)

If s is not visited by any trajectory in X we set FX,s = 0. To simplify notation, let

FX ∈ RS be the vector collecting all these estimates. We also define a diagonal matrix

ΓX ∈ RS×S with entries given by the product of the regression weight on each state and

the fraction of trajectories in X visiting that state: ΓX(s, s) = ρs|Xs|/m. Solving for θ

in ∇θ JX(θ) = 0, it is easy to see that any optimal θX ∈ arg minθ JX(θ) must satisfy

Φ⊤ΓXΦθX = Φ⊤ΓXFX . (3.3)

Thus, this optimization has a unique solution if and only if the matrix Φ⊤ΓXΦ is

invertible. Since it is easy to find neighbouring datasets X ≃ X′ where at most one of

Φ⊤ΓXΦ and Φ⊤ΓX′Φ is invertible, optimizing JX(θ) directly poses a problem to the

design differentially private policy evaluation algorithms with small perturbations. Next

we present two DP algorithm based on stable policy evaluation algorithms.

3.3 Private First-Visit Monte Carlo Algorithms

In this section we give the details of two differentially private policy evaluation algorithms

based on first-visit Monte Carlo estimates. Each of these algorithms corresponds to a

different stable version of the minimization arg minθ JX(θ) described in previous section.

A formal privacy analysis of these algorithms is given in Section 3.4. Bounds showing

how the privacy requirement affects the utility of the value estimates are presented in

Section 3.5.

3.3.1 Algorithm DP-LSW

One way to make the optimization arg minθ JX(θ) more stable to changes in the dataset

X is to consider a similar least-squares optimization where the optimization weights



Private Monte Carlo Policy Evaluation 26

do not change with X, and guarantee that the optimization problem is always strongly

convex. Thus, we consider a new objective function given in terms of a new set of positive

regression weights ws > 0. Let Γ ∈ RS×S be a diagonal matrix with Γ(s, s) = ws. We

define the objective function as:

Jw
X(θ) = ∑

s∈S
ws(FX,s − ϕ⊤s θ)2 = ∥FX −Φθ∥2

2,Γ , (3.4)

where ∥v∥2
2,Γ = ∥Γ1/2v∥2

2 = v⊤Γv is the weighted L2 norm. To see the relation

between the optimizations over JX and Jw
X , note that equating the gradient of Jw

X(θ) to 0

we see that a minimum θw
X ∈ arg minθ Jw

X(θ) must satisfy

Φ⊤ΓΦθw
X = Φ⊤ΓFX . (3.5)

Thus, the optimization problem is well-posed whenever Φ⊤ΓΦ is invertible, which

henceforth will be our working assumption. Note that this is a mild assumption, since it

is satisfied by choosing a feature matrix Φ with full column rank. Under this assumption

we have:

θw
X =

(
Φ⊤ΓΦ

)−1
Φ⊤ΓFX =

(
Γ1/2Φ

)†
Γ1/2FX , (3.6)

where M† denotes the Moore–Penrose pseudo-inverse. The difference between optimiz-

ing JX(θ) or Jw
X(θ) is reflected in the differences between (3.3) and (3.5). In particular,

if the trajectories in X are i.i.d. and ps denotes the probability that state s is visited

by a trajectory in X, then taking ws = EX [ρs|Xs|/m] = ρs ps yields a loss function

Jw
X(θ) that captures the effect of each state s in JX(θ) in the asymptotic regime m→ ∞.

However, we note that knowledge of these visit probabilities is not required for running

our algorithm or for our analysis.

Our first DP algorithm for policy evaluation applies a carefully calibrated output pertur-

bation mechanism to the solution θw
X of arg minθ Jw

X(θ). We call this algorithm DP-LSW,

and its full pseudo-code is given in Algorithm 1. It receives as input the dataset X, the

regression weights w, the feature representation Φ, and the MDP parameters Rmax and γ.

Additionally, the algorithm is parametrized by the privacy parameters ε and δ. Its output

is the result of adding a random vector η drawn from a multivariate Gaussian distribution

N (0, σ2
X I) to the parameter vector θw

X. In order to compute the variance of η the algo-

rithm needs to solve the discrete optimization problem ψw
X = max0≤k≤KX e−kβ φw

X(k),

where KX = maxs∈S |Xs|, β is a parameter computed in the algorithm, and φw
X(k) is
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given by the following expression:

φw
X(k) = ∑

s∈S

ws

max{|Xs| − k, 1}2 . (3.7)

Note that ψw
X can be computed in time O(KX N).

Algorithm 1 DP-LSW
Require: X, Φ, γ, Rmax, w, ε, δ

Compute θw
X ▷ cf. (3.6)

Let α← 5
√

2 ln(2/δ)
ε and β← ε

4(d+ln(2/δ))

Let ψw
X ← max0≤k≤KX e−kβ φw

X(k) ▷ cf. (3.7)

Let σX ← αRmax∥(Γ1/2Φ)†∥
1−γ

√
ψw

X
Sample a d-dimensional vector η ∼ N (0, σ2

X I)
Return θ̂w

X = θw
X + η

The variance of the noise in DP-LSW is proportional to the upper bound Rmax/(1− γ)

on the return from any state. This bound might be excessively pessimistic in some

applications, leading to unnecessary large perturbation of the solution θw
X. Fortunately, it

is possible to replace the term Rmax/(1− γ) with any smaller upper bound Fmax on the

returns generated by the target MDP on any state. In practice this leads to more useful

algorithms, but it is important to keep in mind that for the privacy guarantees to remain

unaffected, one needs to assume that Fmax is a publicly known quantity (i.e. it is not

based on an estimate made from private data). These same considerations apply to the

algorithm in the next section.

3.3.2 Algorithm DP-LSL

The second DP algorithm for policy evaluation we propose is also an output perturbation

mechanism. It differs from DP-LSW in the way stability of the unperturbed solutions

is promoted. In this case, we choose to optimize a regularized version of JX(θ). In

particular, we consider the objective function Jλ
X(θ) obtained by adding a ridge penalty

to the least-squares loss from (3.1):

Jλ
X(θ) = JX(θ) +

λ

2m
∥θ∥2

2 , (3.8)
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where λ > 0 is a regularization parameter. The introduction of the ridge penalty makes

the objective function Jλ
X(θ) strongly convex, and thus ensures the existence of a unique

solution θλ
X = arg minθ Jλ

X(θ), which can be obtained in closed-form as:

θλ
X =

(
Φ⊤ΓXΦ +

λ

2m
I
)−1

Φ⊤ΓXFX . (3.9)

Here ΓX is defined as in Section 3.2.1.

We call DP-LSL the algorithm obtained by applying an output perturbation mechanism

to the minimizer of Jλ
X(θ); the full pseudo-code is given in Algorithm 2. It receives as

input the privacy parameters ε and δ, a dataset of trajectories X, the regression weights

ρ, the feature representation Φ, a regularization parameter λ > ∥Φ∥2∥ρ∥∞, and the

MDP parameters Rmax and γ. After computing the solution θλ
X to arg minθ Jλ

X(θ), the

algorithm outputs θ̂λ
X = θλ

X + η, where η is a d-dimensional noise vector drawn from

N (0, σ2
X I). The variance of η is obtained by solving a discrete optimization problem

(different from the one in DP-LSW). Let cλ = ∥Φ∥∥ρ∥∞/
√

2λ and for k ≥ 0, define

φλ
X(k) as: (

cλ

√
∑

s
ρs min{|Xs|+ k, m}+ ∥ρ∥2

)2

. (3.10)

Then DP-LSL computes ψλ
X = max0≤k≤m e−kβ φλ

X(k), which can be done in time

O(mN).

Algorithm 2 DP-LSL
Require: X, Φ, γ, Rmax, ρ, λ, ε, δ

Compute θλ
X ▷ cf. (3.9)

Let α← 5
√

2 ln(2/δ)
ε and β← ε

4(d+ln(2/δ))

Let ψλ
X ← max0≤k≤m e−kβ φλ

X(k) ▷ cf. (3.10)

Let σX ← 2αRmax∥Φ∥
(1−γ)(λ−∥Φ∥2∥ρ∥∞)

√
ψλ

X

Sample a d-dimensional vector η ∼ N (0, σ2
X I)

Return θ̂λ
X = θλ

X + η

3.4 Privacy Analysis

This section provides a formal privacy analysis for DP-LSW and DP-LSL and shows

that both algorithms are (ε, δ)-differentially private. In fact, for many applications (like
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the one we consider in this chapter) the global sensitivity is too large to provide useful

mechanisms. Ideally one would like to add perturbations proportional to the potential

changes around the input dataset X, as measured, for example by the local sensitivity

LSp( f , X) = supX′≃X ∥ f (X)− f (X′)∥p. Nissim et al. (2007) showed that approaches

based on LSp do not lead to differentially private algorithms, and then proposed an

alternative framework for DP mechanisms with data-dependent perturbations based on

the idea of smoothed sensitivity. This is the approach we use in this chapter. We use the

smooth sensitivity framework of (Nissim et al., 2007, 2011), which provides tools for

the design of DP mechanisms with data-dependent output perturbations.

3.4.1 Smoothed Gaussian Perturbation

We rely on the following lemma, which provides sufficient conditions for calibrating

Gaussian output perturbation mechanisms with variance proportional to smooth upper

bounds of the local sensitivity.

Lemma 3.1 (Nissim et al. (2011)). Let A be an algorithm that on input X computes

a vector µX ∈ Rd deterministically and then outputs ZX ∼ N (µX, σ2
X I), where

σ2
X is a variance that depends on X. Let α = α(ε, δ) = 5

√
2 ln(2/δ)/ε and β =

β(ε, δ, d) = ε/(4d + 4 ln(2/δ)). Suppose ε and δ are such that the following are

satisfied for every pair of neighbouring datasets X ≃ X′: (a) σX ≥ α∥µX − µX′∥2, and

(b) | ln(σ2
X)− ln(σ2

X′)| ≤ β. Then A is (ε, δ)-differentially private.

Condition (a) says we need variance at least proportional to the local sensitivity LS2( f , X).

Condition (b) asks that the variance does not change too fast between neighbouring

datasets, by imposing the constraint σ2
X/σ2

X′ ≤ eβ. This is precisely the spirit of the

smoothed sensitivity principle: calibrate the noise to a smooth upper bound of the local

sensitivity. A proof of Lemma 3.1 can be found in the pre-print Nissim et al. (2011).

For the sake of completeness, we provide here an elementary proof (albeit with slightly

worse constants). We acknowledge Lemma 3.1 is only available in pre-print form, and

thus provide an elementary proof later in this Section for completeness. In particular, we

are going to prove the following.

Lemma 3.2. Let A be an algorithm that on input X computes a vector µX ∈ Rd deter-

ministically and then outputs ZX ∼ N (µX, σ2
X I), where σ2

X is a variance that depends

on X. Let α = α(ε, δ) = 15
√

2 ln(4/δ)/ε and β = β(ε, δ, d) = (2 ln 2)ε/5(
√

d +
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√
2 ln(4/δ))2. Suppose that ε ≤ 5, δ and d are such β ≤ ln 2, and the following are

satisfied for every pair of neighbouring datasets X ≃ X′:

1. σX ≥ α∥µX − µX′∥2,

2. | ln(σ2
X)− ln(σ2

X′)| ≤ β.

Then A is (ε, δ)-differentially private.

We start with a simple characterization of (ε, δ)-differential privacy that will be useful

for our proof.

Lemma 3.3. Let A(X) = θX ∈ Rd be the output of a randomized algorithm on input X.

Write fθX(θ) for the probability density of the output of A on input X. Suppose that for

every pair of neighbouring datasets X ≃ X′ there exists a measurable set ΘX,X′ ⊂ Rd

such that the following are satisfied:

1. P[θX /∈ ΘX,X′ ] ≤ δ;

2. for all θ ∈ ΘX,X′ we have fθX(θ) ≤ eε fθX′
(θ).

Then A is (ε, δ)-differentially private.

Proof. Fix a pair of neighbouring datasets X ≃ X′ and let E ⊆ Rd be any measurable

set. Let ΘX,X′ be as in the statement and write Θc
X,X′ = Rd \ ΘX,X′ . Using the

assumptions on ΘX,X′ we see that

P[θX ∈ E] = P[θX ∈ E ∩ΘX,X′ ] + P[θX ∈ E ∩Θc
X,X′ ]

≤ eεP[θX′ ∈ E ∩ΘX,X′ ] + δ

≤ eεP[θX′ ∈ E] + δ .

Now we proceed with the proof of Lemma 3.2. Let X ≃ X′ be two neighbouring

datasets and let us write Z1 = ZX and Z2 = ZX′ for simplicity. Thus, for i = 1, 2 we

have that Zi ∼ N (µi, σ2
i I) are d-dimensional independent Gaussian random variables

whose means and variances satisfy the assumptions of Lemma 3.2 for some ε, δ > 0.
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The density function of Zi is denoted by fZi(z). In order to be able to apply Lemma 3.3

we want to show that the privacy loss between Z1 and Z2 defined as

L(z) = ln
fZ1(z)
fZ2(z)

(3.11)

is bounded by ε for all z ∈ Ω, where Ω ⊂ Rd is an event with probability at least 1− δ

under Z1.

We can start by identifying a candidate Ω. Since Ω has to have high probability w.r.t.

Z1, it should contain µ1 because a ball around the mean is the event with the highest

probability under a spherical Gaussian distribution (among those with the same Lebesgue

measure). For technical reasons, instead of a ball we will take a slightly more complicated

region, which for now we will parametrize by two quantities a, b > 0. The definition of

this region will depend on the difference of means ∆ = µ2 − µ1:

Ω = Ωa ∩Ωb = {z + µ1 ∈ Rd | | ⟨z, ∆⟩ | ≤ a} ∩ {z + µ1 ∈ Rd | ∥z∥ ≤ b} .

(3.12)

We need to choose a and b such that the probability P[Z1 /∈ Ω] ≤ δ, and for

that we shall combine two different tail bounds. On the one hand, note that Z =

⟨Z1 − µ1, ∆⟩ /(σ1∥∆∥) ∼ N (0, 1) is a one dimensional standard Gaussian random

variable and recall that for any t ≥ 0:

P[|Z| > t] ≤ 2e−t2/2 . (3.13)

On the other hand, X = ∥Z1− µ1∥2/σ2
1 ∼ χ2

d follows a chi-squared distribution with d

degrees of freedom, for which is known Laurent and Massart (2000) that for all t ≥ 0:

P[X > d + 2
√

dt + 2t] ≤ e−t . (3.14)

To make our choices for a and b we can take them such that P[Z1 /∈ Ωa], P[Z1 /∈ Ωb] ≤
δ/2, since then by a union bound we will get

P[Z1 /∈ Ω] ≤ P[Z1 /∈ ΩA] + P[Z1 /∈ ΩB] ≤ δ . (3.15)

Since Z satisfies |Z| ≤
√

2 ln(4/δ) with probability at least 1− δ/2, we can take

a = σ1∥∆∥
√

2 ln
4
δ
= σ1∥∆∥Cδ . (3.16)
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For X we have that d+ 2
√

d ln(2/δ)+ 2 ln(2/δ) ≤ d+ 2
√

2d ln(2/δ)+ 2 ln(2/δ) =

(
√

d +
√

2 ln(2/δ))2. Hence, we choose

b = σ1(
√

d +
√

2 ln(2/δ)) = σ1Dδ . (3.17)

Fixing this choice of Ω, we now proceed to see under what conditions on σ1 and σ2 we

can get L(z) ≤ ε for all z ∈ Ω. We start by expanding the definition of L(z) to get

L(z) =
d
2

ln
σ2

2
σ2

1
+
∥µ2 − z∥2

2σ2
2

− ∥µ1 − z∥2

2σ2
1

. (3.18)

The easiest thing to do is to separate this quantity into several parts and insist on each

part being at most a fraction of ε. To simplify calculations we will just require that each

part is at most ϵ = ε/5. This reasoning applied to the first term shows that we must

satisfy
σ2

2
σ2

1
≤ e2ϵ/d . (3.19)

Note that this becomes more restrictive as ϵ ≈ 0 or d → ∞, in which case we have

eϵ/d ≈ 1.

Next we look at the second part and write z = z′ + µ1 because this is the form of the

vectors in Ω. With some algebra we get:

∥µ2 − (z′ + µ1)∥2

2σ2
2

− ∥µ1 − (z′ + µ1)∥2

2σ2
1

=
∥∆∥2 + ∥z′∥2 − 2 ⟨z′, ∆⟩

2σ2
2

− ∥z
′∥2

2σ2
1

.

(3.20)

To further decompose this quantity we write z′ ∈ Rd as z′ = zp + zo, where zp =

∆ ⟨z′, ∆⟩ /∥∆∥2 is the orthogonal projection of z onto the line spanned by the vector

∆, and zo is the corresponding orthogonal complement. Pythagora’s Theorem implies

∥z′∥2 = ∥zp∥2 + ∥zo∥2, and the RHS in the above expression is equal to

∥∆∥2

2σ2
2
− ⟨z

′, ∆⟩
σ2

2
+
| ⟨z′, ∆⟩ |2

2∥∆∥2

(
1
σ2

2
− 1

σ2
1

)
+
∥zo∥2

2

(
1
σ2

2
− 1

σ2
1

)
. (3.21)

Now note that the last two terms can be upper bounded by zero if σ1 ≤ σ2, but need to

be taken into account otherwise. Furthermore, if it were the case that σ1 ≫ σ2 ≈ 0, then

these terms could grow unboundedly. Thus we shall require that a bound of the form

σ2
1

σ2
2
≤ γ , (3.22)
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holds for some γ ≥ 1 to be specified later. Nonetheless, we observe that under this

assumption
1
σ2

2
− 1

σ2
1
≤ γ− 1

σ2
1

. (3.23)

Furthermore, z ∈ Ω implies ∥zo∥2 ≤ ∥z′∥2 = ∥z − µ1∥ ≤ b2 and | ⟨z′, ∆⟩ |2 =

| ⟨z− µ1, ∆⟩ |2 ≤ a2. Thus we see that

| ⟨z′, ∆⟩ |2
2∥∆∥2

(
1
σ2

2
− 1

σ2
1

)
≤

C2
δ(γ− 1)

2
, (3.24)

and
∥zo∥2

2

(
1
σ2

2
− 1

σ2
1

)
≤

D2
δ(γ− 1)

2
. (3.25)

By requiring that each of these bounds is at most ϵ we obtain the following constraint

for γ:

γ ≤ 1 +
2ϵ

max{C2
δ , D2

δ}
, (3.26)

which can be satisfied by taking, for example:

γ = 1 +
2ϵ(√

d +
√

2 ln(4/δ)
)2 . (3.27)

Note that for fixed δ, small ϵ and/or large d this choice of γ will make (3.22) behave much

like the bound (3.19) we assumed above for σ2
2 /σ2

1 . In fact, using that 1 + x ≥ ex ln 2 for

all 0 ≤ x ≤ 1 we see that (3.22) can be satisfied if 2ϵ/(
√

d +
√

2 ln(4/δ))2 ≤ 1 and

σ2
1

σ2
2
≤ exp

 (2 ln 2)ϵ(√
d +

√
2 ln(4/δ)

)2

 . (3.28)

From here it is immediate to see that if the second condition | ln(σ2
1 )− ln(σ2

2 )| ≤ β in

Lemma 3.2 is satisfied, then (3.19) and (3.28) are both satisfied.
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The missing ingredient to show that L(z) ≤ ε for all z ∈ Ω is an absolute lower bound

on σ1. This will follow from bounding the remaining terms in L(z) as follows:

∥∆∥2

2σ2
2
− ⟨z

′, ∆⟩
σ2

2
≤ ∥∆∥

2 + 2σ1∥∆∥Cδ

2σ2
2

(3.29)

≤ γ

2
∥∆∥2 + 2σ1∥∆∥Cδ

σ2
1

(3.30)

≤ 3
2
∥∆∥2 + 2σ1∥∆∥Cδ

σ2
1

(3.31)

=
3∥∆∥2

2σ2
1

+
3∥∆∥Cδ

σ1
, (3.32)

where we used that ϵ ≤ 1 implies γ ≤ 3. If we require each of these two terms to be at

most ϵ, we obtain the constraint:

σ1 ≥ ∥∆∥max

{√
3
2ϵ

,
3Cδ

ϵ

}
=

3∥∆∥Cδ

ϵ
. (3.33)

To conclude the proof just note that the above bound can be rewritten as σ1 ≥ α∥∆∥,
which is precisely the first condition in Lemma 3.2.

3.4.2 Privacy Analysis of DP-LSW

We start by providing an upper bound on the norm ∥θw
X− θw

X′∥2 for any two neighbouring

datasets X ≃ X′. Using (3.6) it is immediate that:

∥θw
X − θw

X′∥2 ≤ ∥(Γ1/2Φ)†∥∥FX − FX′∥2,Γ . (3.34)

Thus, we need to bound ∥FX − FX′∥2,Γ.

Lemma 3.4. Let X ≃ X′ be two neighbouring datasets of m trajectories with X =

(x1, . . . , xm−1, x) and X′ = (x1, . . . , xm−1, x′). Let X◦ = (x1, . . . , xm−1). Let Sx

(resp. Sx′) denote the set of states visited by x (resp. x′). Then we have

∥FX − FX′∥2,Γ ≤
Rmax

1− γ

√
∑

s∈Sx∪Sx′

ws

(|X◦s |+ 1)2 .

Proof. We start by noting that if s ∈ S \ (Sx ∪ Sx′), then FX,s = FX′,s. In the case

s ∈ Sx ∪ Sx′ we can write FX,s = (|X◦s |FX◦,s + Fx,s)/(|X◦s |+ 1). Using a symmetric
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expression for FX′,s we see that in this case

|FX,s− FX′,s| =
1

|X◦s |+ 1
|Fx,s− Fx′,s| ≤

1
|X◦s |+ 1

max{Fx,s, Fx′,s} ≤
1

|X◦s |+ 1
Rmax

1− γ
,

where we used that 0 ≤ Fx,s ≤ Rmax/(1− γ) for all s and x. When s ∈ Sx \ Sx′

we can use the same expression as before for FX,s and write FX′,s = FX◦,s. A similar

argument as in the previous case then yields

|FX,s − FX′,s| =
1

|X◦s |+ 1
|Fx,s − FX◦,s| ≤

1
|X◦s |+ 1

Rmax

1− γ
.

Note the same bound also holds for the case s ∈ Sx′ \ Sx. Finally, since we have seen

that the same bound holds for all s ∈ Sx ∪ Sx′ , we obtain

∑
s∈S

ws(FX,s − FX′,s)
2 ≤ R2

max
(1− γ)2 ∑

s∈Sx∪Sx′

ws

(|X◦s |+ 1)2 ,

which yields the desired bound.

Since the condition in Lemma 3.1 needs to hold for any dataset X′ neighbouring X, we

take the supremum of the bound above over all neighbours., which yields the following

corollary.

Corollary 3.5. If X is a dataset of trajectories, then the following holds for every

neighbouring dataset X′ ≃ X:

∥FX − FX′∥2,Γ ≤
Rmax

1− γ

√
∑
s∈S

ws

max{|Xs|, 1}2 .

Proof. Using the notation from Lemma 3.4 we observe that |Xs| = |X◦s |+ 1 if s ∈ Sx,

and |Xs| = |X◦s | if s /∈ Sx. Therefore, the following holds for any trajectories x, x′:

∑
s∈Sx∪Sx′

ws

(|X◦s |+ 1)2 ≤ ∑
s∈S

ws

(|X◦s |+ 1)2 = ∑
s∈Sx

ws

|Xs|2
+ ∑

s∈S\Sx

ws

(|Xs|+ 1)2

≤ ∑
s∈SX

ws

|Xs|2
+ ∑

s∈S\SX

ws ,
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where SX denotes the set of states visited by at least one trajectory from X. Since s /∈ SX

implies |Xs| = 0, we can plug this bound into the result of Lemma 3.4 as follows:

∥FX − FX′∥2,Γ ≤
Rmax

1− γ

√
∑

s∈SX

ws

|Xs|2
+ ∑

s∈S\SX

ws =
Rmax

1− γ

√
∑
s∈S

ws

max{|Xs|, 1}2 .

Using this result we see that in order to satisfy item (a) of Lemma 3.1 we can choose a

noise variance satisfying:

σX ≥
αRmax∥(Γ1/2Φ)†∥

1− γ

√
∑
s∈S

ws

max{|Xs|, 1}2 , (3.35)

where only the last multiplicative term depends on the dataset X, and the rest can be

regarded as a constant that depends on parameters of the problem which are either public

or chosen by the user, and will not change for a neighbouring dataset X′. Thus, we are left

with a lower bound expressible as σX ≥ C
√

φw
X, where φw

X = ∑s(ws/ max{|Xs|, 1}2)

only depends on the dataset X through its signature ⟨X⟩ ∈NS given by the number of

times each state appears in the trajectories of X: ⟨X⟩(s) = |Xs|. Accordingly, we write

φw
X = φw(⟨X⟩), where φw : NS → R is the function

φw(v) = ∑
s

ws

max{vs, 1}2 . (3.36)

The signatures of two neighbouring datasets X ≃ X′ satisfy ∥⟨X⟩ − ⟨X′⟩∥∞ ≤ 1

because replacing a single trajectory can only change by one the number of first visits

to any particular state. Thus, assuming we have a function ψ : NS → R satisfying

ψw(v) ≥ φw(v) and | ln(ψw(v))− ln(ψw(v′))| ≤ β for all v, v′ ∈ NS with ∥v−
v′∥∞ ≤ 1, we can take σX = C

√
ψw(⟨X⟩). This variance clearly satisfies the conditions

of Lemma 3.1 since

| ln(σ2
X)− ln(σ2

X′)| = | ln(ψ
w(⟨X⟩))− ln(ψw(⟨X′⟩))| ≤ β .

The function ψw is known as a β-smooth upper bound of φw, and the following result

provides a tool for constructing such functions.

Lemma 3.6 (Nissim et al. (2007)). Let φ : NS → R. For any k ≥ 0 let φk(v) =

max∥v−v′∥∞≤k φ(v′). Given β > 0, the smallest β-smooth upper bound of φ is the
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function

ψ(v) = sup
k≥0

(
e−kβ φk(v)

)
. (3.37)

For some functions φ, the upper bound ψ can be hard to compute or even approxi-

mate (Nissim et al., 2007). Fortunately, in our case a simple inspection of (3.36) reveals

that φw
k (v) is easy to compute. In particular, the following lemma implies that ψw(v)

can be obtained in time O(N∥v∥∞).

Lemma 3.7. The following holds for every v ∈NS :

φw
k (v) = ∑

s∈S

ws

max{vs − k, 1}2 .

Furthermore, for every k ≥ ∥v∥∞ − 1 we have φw
k (v) = ∑s ws.

Proof. Recall that φw
k (v) = max∥v′−v∥∞≤k φw(v′) with φw(v) = ∑s ws/ max{vs, 1}2

and observe the result follows immediately because

φw
k (v) = ∑

s∈S

ws

min−k≤l≤k max{vs + l, 1}2 = ∑
s∈S

ws

max{vs − k, 1}2 .

Combining the last two lemmas, we see that the quantity ψw
X computed in DP-LSW is in

fact a β-smooth upper bound to φw
X. Because the variance σX used in DP-LSW can be

obtained by plugging this upper bound into (3.35), the two conditions of Lemma 3.1 are

satisfied. This completes the proof of the main result of this section:

Theorem 3.8. Algorithm DP-LSW is (ε, δ)-differentially private.

Before proceeding to the next privacy analysis, note that Corollary 3.5 is the reason

why a mechanism with output perturbations proportional to the global sensitivity is

not sufficient in this case. The bound there says that if in the worst case we can find

datasets of an arbitrary size m where some states are visited few (or zero) times, then

the global sensitivity will not vanish as m → ∞. Hence, the utility of such algorithm

would not improve with the size of the dataset. The smoothed sensitivity approach works

around this problem by adding large noise to these datasets, but adding much less noise

to datasets where each state appears a sufficient number of times. Corollary 3.5 also

provides the basis for efficiently computing smooth upper bounds to the local sensitivity.

In principle, condition (b) in Lemma 3.1 refers to any dataset neighbouring X, of which

there are uncountably many because we consider real rewards. Bounding the local
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sensitivity in terms of the signature reduces this to finitely many “classes” of neighbours,

and the form of the bound in Corollary 3.5 makes it possible to apply Lemma 3.6

efficiently.

3.4.3 Privacy Analysis of DP-LSL

The proof that DP-LSL is differentially private follows the same strategy as for DP-LSW.

We start with a lemma that bounds the local sensitivity of θλ
X for pairs of neighbouring

datasets X ≃ X′. We use the notation Is∈x for an indicator variable that is equal to one

when state s is visited within trajectory x.

Lemma 3.9. Let X ≃ X′ be two neighbouring datasets of m trajectories with X =

(x1, . . . , xm−1, x) and X′ = (x1, . . . , xm−1, x′). Let Fx ∈ RS (resp. Fx′ ∈ RS ) be

the vector given by Fx(s) = Fx,s (resp. Fx′(s) = Fx′,s). Define the diagonal matrices

Γρ, ∆x,x′ ∈ RS×S given by Γρ(s, s) = ρs and ∆x,x′(s, s) = Is∈x − Is∈x′ . If the

regularization parameter satisfies λ > ∥Φ⊤∆x,x′ΓρΦ∥, then the following holds:

∥θλ
X − θλ

X′∥2

2
≤

∥∥∥(∆x,x′Φθλ
X − Fx + Fx′

)⊤ ΓρΦ
∥∥∥

2
λ− ∥Φ⊤∆x,x′ΓρΦ∥

. (3.38)

Proof. In order to simplify our notation we write θ̄ = θλ
X and θ̄′ = θλ

X′ for the rest

of the proof. Given a trajectory x and a vector θ ∈ Rd we shall also write ℓ(x, θ) =

∑s∈Sx ρs(Fx,s − ϕ⊤s θ)2 so that JX(θ) = 1
m ∑m

i=1 ℓ(xi, θ). Now we proceed with the

proof.

Let us start by noting that because Jλ
X(θ) is λ/m-strongly convex, we have Jλ

X(θ1)−
Jλ
X(θ2) ≥ ⟨∇Jλ

X(θ2), θ1 − θ2⟩+ λ
2m∥θ1 − θ2∥2

2 for any θ1, θ2 ∈ Rd. Thus, using that

optimality implies ∇Jλ
X(θ̄) = ∇Jλ

X′(θ̄
′) = 0, we get

λ

m
∥θ̄ − θ̄′∥2

2 ≤ Jλ
X(θ̄
′)− Jλ

X(θ̄) + Jλ
X′(θ̄)− Jλ

X′(θ̄
′)

= JX(θ̄
′)− JX(θ̄) + JX′(θ̄)− JX′(θ̄

′)

=
1
m
(
ℓ(x, θ̄′)− ℓ(x, θ̄) + ℓ(x′, θ̄)− ℓ(x′, θ̄′)

)
,
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where the equalities follows from definitions of X, X′, Jλ
X and JX. If we now expand the

definition of ℓ(x, θ) we see that

ℓ(x, θ̄′)− ℓ(x, θ̄) = ∑
s∈Sx

ρs

(
(ϕ⊤s θ̄′)2 − (ϕ⊤s θ̄)2 − 2Fx,sϕ

⊤
s (θ̄

′ − θ̄)
)

,

ℓ(x′, θ̄)− ℓ(x′, θ̄′) = ∑
s∈Sx′

ρs

(
(ϕ⊤s θ̄)2 − (ϕ⊤s θ̄′)2 − 2Fx′,sϕ

⊤
s (θ̄ − θ̄′)

)
.

Using the identity (ϕ⊤s θ̄′)2− (ϕ⊤s θ̄)2 = (θ̄′ + θ̄)⊤ϕsϕ
⊤
s (θ̄

′ − θ̄), we rewrite ℓ(x, θ̄′)−
ℓ(x, θ̄) + ℓ(x′, θ̄)− ℓ(x′, θ̄′) as

∑
s∈S

ρs

[
(Is∈x − Is∈x′)(θ̄

′ + θ̄)⊤ϕsϕ
⊤
s − 2(Fx,s − Fx′,s)ϕ

⊤
s

]
(θ̄′ − θ̄) , (3.39)

where we implicitly used that Fx,s = 0 whenever s /∈ x. Finally, using the definitions in

the statement we can rearrange the above expression to show that

λ

m
∥θ̄ − θ̄′∥2

2 ≤
1
m

(
(θ̄′ + θ̄)⊤Φ⊤∆x,x′ − 2(Fx − Fx′)

⊤
)

ΓρΦ(θ̄′ − θ̄)

=
2
m

(
θ̄⊤Φ⊤∆x,x′ − (Fx − Fx′)

⊤
)

ΓρΦ(θ̄′ − θ̄) +
1
m
(θ̄′ − θ̄)⊤Φ⊤∆x,x′ΓρΦ(θ̄′ − θ̄)

≤ 2
m
∥
(

θ̄⊤Φ⊤∆x,x′ − (Fx − Fx′)
⊤
)

ΓρΦ∥2∥θ̄′ − θ̄∥2 +
1
m
∥Φ⊤∆x,x′ΓρΦ∥∥θ̄′ − θ̄∥2

2 ,

where we used the Cauchy–Schwartz inequality and the definition of operator norm. The

result now follows by solving for ∥θ̄ − θ̄′∥2 in the above inequality.

As before, we need to consider the supremum of the bound over all possible neighbours

X′ of X. In particular, we would like to get a bound whose only dependence on the

dataset X is through the signature ⟨X⟩. This is the purpose of the following corollary:

Corollary 3.10. Let X be a dataset of trajectories and suppose λ > ∥Φ∥2∥ρ∥∞. Then

the following holds for every neighbouring dataset X′ ≃ X:

∥θλ
X − θλ

X′∥2 ≤
2Rmax∥Φ∥

(1− γ)(λ− ∥Φ∥2∥ρ∥∞)

√
φλ

X ,

where

φλ
X =

(
∥Φ∥∥ρ∥∞√

2λ

√
∑
s∈S

ρs|Xs|+ ∥ρ∥2

)2

.

Proof. We start by noting that ∥∆x,x′∥ ≤ 1 and ∥Γρ∥ = ∥ρ∥∞, hence submultiplicativity

of matrix operator norms yields ∥Φ⊤∆x,x′ΓρΦ∥ ≤ ∥Φ∥2∥ρ∥∞. On the other hand, for
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the numerator in (3.38) we have∥∥∥∥(∆x,x′Φθλ
X − Fx + Fx′

)⊤
ΓρΦ

∥∥∥∥
2
≤
(
∥θλ

X∥2∥Φ∥∥ρ∥∞ + ∥(Fx − Fx′)
⊤Γρ∥2

)
∥Φ∥ .

(3.40)

Bounding the individual entries in Fx and Fx′ by Rmax/(1−γ) we get ∥(Fx− Fx′)
⊤Γρ∥2 ≤

Rmax∥ρ∥2/(1− γ). The last step is to bound the norm ∥θλ
X∥2, for which we use the

closed-form solution to arg minθ Jλ
X(θ) given in this chapter and write:

∥θλ
X∥2 ≤

∥∥∥∥(Φ⊤ΓXΦ +
λ

2m
I)−1Φ⊤Γ1/2

X

∥∥∥∥ ∥FX∥2,ΓX

≤
∥∥∥∥(Φ⊤ΓXΦ +

λ

2m
I)−1Φ⊤Γ1/2

X

∥∥∥∥
(

Rmax

1− γ

√
∑
s∈S

ρs|Xs|
m

)
.

To bound the last remaining norm let use write UΣV⊤ for the SVD of Γ1/2
X Φ, where

V ∈ Rd×d with V⊤V = VV⊤ = I. With this we can write:

(Φ⊤ΓXΦ +
λ

2m
I)−1Φ⊤Γ1/2

X = V
(

Σ2 +
λ

2m
I
)−1

ΣU⊤ . (3.41)

Now we use that ∥U∥ = ∥V∥ = 1 and x/(x2 + a) ≤ 1/(2
√

a) for any x ≥ 0 to get

∥V(Σ2 + (λ/2m)I)−1ΣU⊤∥ ≤
√

m/2λ. Thus we get a bound for ∥θλ
X∥2 that when

plugged into (3.40) yields the desired result.

By the same reasoning of Section 3.4.2, as long as the regularization parameter is larger

than ∥Φ∥2∥ρ∥∞, a differentially private algorithm can be obtained by adding to θλ
X a

Gaussian perturbation with a variance satisfying

σX ≥
2αRmax∥Φ∥

(1− γ)(λ− ∥Φ∥2∥ρ∥∞)

√
φλ

X

and the second condition of Lemma 3.1. This second requirement can be achieved by

computing a β-smooth upper bound of the function φλ : NS → R given by

φλ(v) =

(
∥Φ∥∥ρ∥∞√

2λ

√
∑
s∈S

ρs max{vs, m}+ ∥ρ∥2

)2

.

When going from φλ
X to φλ(v) we substituted |Xs| by max{vs, m} to reflect the fact that

any state cannot be visited by more than m trajectories in a dataset X of size m. It turns

out that in this case the function φλ
k (v) = max∥v−v′∥∞≤k φλ(v′) arising in Lemma 3.6

is also easy to compute.
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Lemma 3.11. For every v ∈NS , φλ
k (v) is equal to:

(
∥Φ∥∥ρ∥∞√

2λ

√
∑
s∈S

ρs max{vs + k, m}+ ∥ρ∥2

)2

.

Furthermore, for every k ≥ m−mins vs we have φλ
k (v) =

(
∥Φ∥∥ρ∥∞

√
m√

2λ

√
∑s∈S ρs + ∥ρ∥2

)2
.

Proof. The proof is similar to that of Lemma 3.7.

Finally, in view of Lemma 3.6, Corollary 3.10, and Lemma 3.11, the variance of the

noise perturbation in DP-LSL satisfies the conditions of Lemma 3.1, so we have proved

the following.

Theorem 3.12. Algorithm DP-LSL is (ε, δ)-differentially private.

3.5 Utility Analysis

Because the promise of differential privacy has to hold for any possible pair of neigh-

bouring datasets X ≃ X′, the analysis in previous section does not assume any gen-

erative model for the input dataset X. However, in practical applications we expect

X = (x1, . . . , xm) to contain multiple trajectories sampled from the same policy on

the same MDP. The purpose of this section is to show that when the trajectories xi are

i.i.d. the utility of our differentially private algorithms increases as m → ∞. In other

words, when the input dataset grows, the amount of noise added by our algorithms

decreases, thus leading to more accurate estimates of the value function. This matches

the intuition that when outputting a fixed number of parameters, using data from more

users to estimate these parameters leads to a smaller individual contributions from each

user, and makes the privacy constraint easier to satisfy.

To measure the utility of our DP algorithms we shall bound the difference in empirical

risk between the private and non-private parameters learned from a given dataset. That is,

we want to show that the quantity EX,η
[

J•X(θ̂
•
X)− J•X(θ

•
X)
]

vanishes as |X| = m→ ∞,

for both • = w and • = λ.
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3.6 Utility Analysis of DP-LSW

The goal of this section is to show that as the size m of the dataset X grows, the

differentially private solution θw
X provided by algorithm DP-LSW is not much worse than

the one obtained by directly minimizing Jw
X(θ). In other words, for large datasets the

noise introduced by the privacy constraint is negligible. We do so by proving a O(1/m2)

bound for the expected empirical excess risk given by EX,η
[

Jw
X(θ̂

w
X)− Jw

X(θ
w
X)
]
. Our

analysis starts with a lemma that leverages the law of total expectation in order to reduce

the bound to a quantity that only depends on EX
[
σ2

X
]
.

Lemma 3.13.

EX,η
[

Jw
X(θ̂

w
X)− Jw

X(θ
w
X)
]
= ∥Γ1/2Φ∥2

FEX

[
σ2

X

]
. (3.42)

Proof. By the law of total expectation it is enough to show that

Eη

[
Jw
X(θ̂

w
X)− Jw

X(θ
w
X)|X

]
= σ2

X∥Γ1/2Φ∥2
F . (3.43)

Let X be an arbitrary dataset. Expanding the definition of Jw
X(θ) we have that for any

θ ∈ Rd

Jw
X(θ) = F⊤X ΓFX + θ⊤Φ⊤ΓΦθ − 2F⊤X ΓΦθ . (3.44)

On the other hand, since ∇θ Jw
X(θ

w
X) = 0, we have θw

X
⊤Φ⊤ΓΦ = F⊤X ΓΦ. Thus, using

the definition θ̂w
X = θw

X + η, a simple algebraic calculation yields

Jw
X(θ̂

w
X)− Jw

X(θ
w
X) = η⊤Φ⊤ΓΦη − F⊤X ΓΦη − η⊤Φ⊤ΓΦθw

X . (3.45)

Finally, taking the expectation over η ∼ N (0, σ2
X I) of the above expression we get

Eη

[
Jw
X(θ̂

w
X)− Jw

X(θ
w
X)
]
= Eη

[
η⊤Φ⊤ΓΦη

]
= σ2

X Tr(Φ⊤ΓΦ) = σ2
X∥Γ1/2Φ∥2

F .

(3.46)

In order to bound EX
[
σ2

X
]

we recall the variance has the form σ2
X = C2ψw

X, where C is

a constant independent of X and

ψw
X = max

k≥0
e−kβ ∑

s∈S

ws

max{|Xs| − k, 1}2 ≤∑
s

ws

(
max
k≥0

e−kβ

max{|Xs| − k, 1}2

)
.

(3.47)
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Thus, we can bound EX
[
σ2

X
]
= C2EX [ψw

X] by providing a bound for the expectation

of each individual maximum in (3.47). The two following technical lemmas will prove

useful.

Lemma 3.14. Let b > 0 and a ≥ 1. Then the following holds:

max
0≤x≤a−1

e−bx

(a− x)2 =


1
a2 b < 2/a

e1−ab b > 2
e2

4 b2e−ab otherwise

(3.48)

Proof. The result follows from a simple calculation.

Lemma 3.15. Suppose Bm,p is a binomial random variable with m trials and success

probability p. Then the following hold:

E

[
1

Bm,p + 1

]
=

1− (1− p)m+1

p(m + 1)
,

E

[
1

B2
m,p

IBm,p≥1

]
≤ 6

p(m + 1)

(
1− (1− p)m+2

p(m + 2)
− (1− p)m+1 − p(m + 1)

2
(1− p)m

)
.

Proof. The first expectation is a classical exercise in probability textbooks. The second

one can be proved as follows:

E

[
1

B2
m,p

IBm,p≥1

]
=

m

∑
k=1

1
k2

(
m
k

)
pk(1− p)m−k

≤ 6
m

∑
k=1

1
(k + 1)(k + 2)

(
m
k

)
pk(1− p)m−k

=
6

p(m + 1)

m

∑
k=1

1
k + 2

(m + 1)!
(k + 1)!(m− k)!

pk+1(1− p)m−k

=
6

p(m + 1)

m

∑
k=1

1
k + 2

P[Bm+1,p = k + 1]

=
6

p(m + 1)

m+1

∑
j=2

1
j + 1

P[Bm+1,p = j]

=
6

p(m + 1)

(
E

[
1

Bm+1,p + 1

]
−P[Bm+1,p = 0]− 1

2
P[Bm+1,p = 1]

)
=

6
p(m + 1)

(
1− (1− p)m+2

p(m + 2)
− (1− p)m+1 − p(m + 1)

2
(1− p)m

)
,

where we used the first equation in the last step, and the bound (k + 1)(k + 2)/k2 ≤ 6

for k ≥ 1 in the first inequality.
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Recall that ps denotes the probability that a trajectory from X visits states s. Because

these trajectories are i.i.d. we have that |Xs| = Bm,ps is a binomial random variable.

Therefore, we can combine the last two lemmas to prove the following.

Lemma 3.16. Suppose β ≤ 2. Then we have:

EX

[
max
k≥0

e−kβ

max{|Xs| − k, 1}2

]
≤


6

p2
s (m+1)(m+2)

+ e2β2

4 (1− (1− e−β)ps)m ps > 0 ,

1 ps = 0 .
(3.49)

Proof. Note in the first place that Lemma 3.14 implies

max
k≥0

e−kβ

max{|Xs| − k, 1}2 = I|Xs|=0 + I1≤|Xs|<2/β
1
|Xs|2

+ I|Xs|≥2/β
e2

4
β2e−β|Xs| ,

(3.50)

where we used that in the case |Xs| = 0 the maximum is 1. If ps = 0, then obviously

|Xs| = 0 almost surely and the expectation of (3.50) equals 1. On the other hand, when

ps > 0 we use the linearity of expectation and bound each term separately. Clearly,

EX

[
I|Xs|=0

]
= PX[Bm,ps = 0] = (1− ps)m. On the other hand, by looking up the

moment generating function of a binomial distribution we have

EX

[
I|Xs|≥2/β

e2

4
β2e−β|Xs|

]
≤ e2

4
β2EX

[
e−β|Xs|

]
=

e2

4
β2(1− (1− e−β)ps)

m .

(3.51)

The remaining term is bounded by

EX

[
I1≤|Xs|<2/β

1
|Xs|2

]
≤ EX

[
I1≤|Xs|

1
|Xs|2

]
. (3.52)

Therefore, applying Lemma 3.15 and upper bounding some negative terms by zero, we

get

EX

[
max
k≥0

e−kβ

max{|Xs| − k, 1}2

]
≤ 6

p2
s (m + 1)(m + 2)

+
e2β2

4
(1− (1− e−β)ps)

m .

(3.53)

Now we can combine Lemmas 3.13 and 3.16 using Equation 3.47 to get our final result.

This theorem bounds the expected empirical excess risk of DP-LSW. The bound contains

two terms: one vanishes as m→ ∞, and the other reflects the fact that states which are

never visited pose a problem to stability.
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Theorem 3.17. Let S0 = {s ∈ S|ps = 0} and S+ = S \ S0.

Let C = αRmax∥(Γ1/2Φ)†∥∥Γ1/2Φ∥F/(1− γ). Suppose β ≤ 2. Then we have the

following:

EX,η
[

Jw
X(θ̂

w
X)− Jw

X(θ
w
X)
]

≤ C2

(
∑

s∈S0

ws + ∑
s∈S+

ws

(
6

p2
s (m + 1)(m + 2)

+
e2β2

4
(1− (1− e−β)ps)

m
))

.

By noting that e2/4 ≤ 6, m2 ≤ (m + 1)(m + 2), and when β ≤ 1/2 then 1− (1−
e−β)ps ≤ 1− βps/2, then the following corollary is easily obtained.

Corollary 3.18. Let S0 = {s ∈ S|ps = 0} and S+ = S \ S0.

Let C = αRmax∥(Γ1/2Φ)†∥∥Γ1/2Φ∥F/(1− γ). Suppose β ≤ 1/2.

Then EX,η
[

Jw
X(θ̂

w
X)− Jw

X(θ
w
X)
]

is upper bounded by:

C2

(
∑

s∈S0

ws + 6 ∑
s∈S+

ws

(
1

p2
s m2 + β2

(
1− βps

2

)m))
.

Note the above bound depends on the dimension d through β and ∥Γ1/2Φ∥F. In terms

of the size of the dataset, we can get excess risk bounds that decreases quadratically with

m by assuming that either all states are visited with non-zero probability or the user sets

the regression weights so that such states do not contribute to θw
X.

The following is an immediate consequence of the results in this section.

Corollary 3.19. If ws = 0 for all s ∈ S0, then EX,η
[

Jw
X(θ̂

w
X)− Jw

X(θ
w
X)
]
= O(1/m2).

A similar theorem can be proved for DP-LSL. However, in this case the statement of

the bound is complicated by the appearance of co-occurrence probabilities of the form

Px[s ∈ x ∧ s′ ∈ x] and Px[s ∈ x ∧ s′ /∈ x].

3.7 Utility Analysis of DP-LSL

The analysis in this section follows a scheme similar to the previous one. We start

by taking the expectation of the excess empirical risk with respect to the Gaussian

perturbation η.
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Lemma 3.20.

EX,η

[
Jλ
X(θ̂

λ
X)− Jλ

X(θ
λ
X)
]
= EX

[(
λd
2m

+
1
m ∑

s∈S
ρs∥ϕs∥2

2|Xs|
)

σ2
X

]
. (3.54)

Proof. Let X be an arbitrary dataset with m trajectories. Recalling that θ̂λ
X = θλ

X + η

we get:

Jλ
X(θ̂

λ
X)− Jλ

X(θ
λ
X)

=
1
m

m

∑
i=1

∑
s∈Sxi

ρs

(
(ϕ⊤s θ̂λ

X)
2 − (ϕ⊤s θλ

X)
2 − 2Fxi,sϕ

⊤
s η
)
+

λ

2m

(
∥θ̂λ

X∥2
2 − ∥θλ

X∥2
2

)
=

1
m

m

∑
i=1

∑
s∈Sxi

ρs

(
η⊤ϕsϕ

⊤
s η + 2η⊤ϕsϕ

⊤
s θλ

X − 2Fxi,sϕ
⊤
s η
)
+

λ

2m

(
∥η∥2

2 + 2η⊤θλ
X

)
.

Taking the expectation over η ∼ N (0, σ2
X I) in the above expression we get

Eη

[
Jλ
X(θ̂

λ
X)− Jλ

X(θ
λ
X)
]
=

1
m

m

∑
i=1

∑
s∈Sxi

ρs Tr(ϕsϕ
⊤
s )σ

2
X +

λ

2m
dσ2

X .

The result now follows from noting that ∑m
i=1 ∑s∈Sxi

ρs Tr(ϕsϕ
⊤
s ) = ∑s∈S ρs∥ϕs∥2

2|Xs|.

In order to bound the expression given by previous lemma we will expand the definition

of σX = Cλ

√
ψλ

X, with Cλ = 2Rmax∥Φ∥/(1− γ)(λ − ∥Φ∥2∥ρ∥∞), and note that

using the straightforward bound (a + b)2 ≤ 2a2 + 2b2 we have:

ψλ
X = max

k≥0
e−kβ

(
∥ρ∥2 +

∥Φ∥∥ρ∥∞√
2λ

√
∑
s∈S

ρs min{|Xs|+ k, m}
)2

≤ 2∥ρ∥2
2 +
∥Φ∥2∥ρ∥2

∞
λ ∑

s∈S
ρs max

k≥0

(
e−2kβ min{|Xs|+ k, m}

)
.

The following lemma can be used to bound the maximums inside this sum.

Lemma 3.21. Suppose a ≥ 0 and b > 0. Then the following holds:

max
0≤x≤m−a

e−2bx(a + x) =


a b < a/2

me−2b(m−a) b > m/2
1

2eb e2ab otherwise

(3.55)
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Assuming we have 2β < 1 ≤ m, previous lemma yields:

max
k≥0

(
e−2kβ min{|Xs|+ k, m}

)
= |Xs|I|Xs|>2β +

1
2eβ

e2β|Xs|I|Xs|≤2β ≤ |Xs|+
1

2eβ
I|Xs|=0 .

(3.56)

When taking the expectation of the upper bound for (3.54) obtained by plugging in (3.56), several

quantities involving products of correlated binomial random variables will appear. Next lemma

gives expressions for all these expectations.

Lemma 3.22. Recall that ps = P[s ∈ x] and |Xs| is a binomial random variable with m trials

and success probability ps. Define ps,s′ = P[s ∈ x ∧ s′ ∈ x] and p̄s,s′ = P[s ∈ x ∧ s′ /∈ x] for

any s, s′ ∈ S . Then we have the following:

1. E [|Xs|] = mps,

2. E
[
I|Xs|=0

]
= (1− ps)m,

3. E
[
|Xs|2

]
= m2 p2

s + m(ps − p2
s ),

4. E [|Xs||Xs′ |] = m(m− 1)ps ps′ + mps,s′ ,

5. E
[
|Xs|I|Xs′ |=0

]
= mp̄s,s′(1− ps′)

m−1.

Proof. All equations follow from straightforward calculations.

Theorem 3.23. Suppose β < 1/2 and λ > ∥Φ∥2∥ρ∥∞. Let Cλ = 2αRmax∥Φ∥/(1− γ)(λ−
∥Φ∥2∥ρ∥∞). Then we have

EX,η

[
Jλ
X(θ̂

λ
X)− Jλ

X(θ
λ
X)
]

≤ C2
λ

{
∑
s∈S

ρs ps

(
d∥Φ∥2∥ρ∥2

∞
2

+ 2∥ρ∥2
2∥ϕs∥2

2

)
+

λ

m
d∥ρ∥2

2 +
1
m

d∥Φ∥2∥ρ∥2
∞

4eβ ∑
s∈S

ρs(1− ps)
m +

m
λ
∥Φ∥2∥ρ∥2

∞ ∑
s,s′∈S

ρsρs′ ps ps′∥ϕs∥2
2

+
1
λ
∥Φ∥2∥ρ∥2

∞

(
∑
s∈S

ρ2
s∥ϕs∥2

2(ps − p2
s )

+ ∑
s,s′∈S
s ̸=s′

ρsρs′∥ϕs∥2
2

(
ps,s′ − ps ps′ +

1
2eβ

p̄s,s′(1− ps′)
m−1

))}
.

Proof. Combining Lemma 3.20 with (3.56) and the definition of σ2
X yields the following upper

bound for EX,η
[

Jλ
X(θ̂

λ
X)− Jλ

X(θ
λ
X)
]
:

C2
λEX

[(
λd
2m

+
1
m ∑

s∈S
ρs∥ϕs∥2

2|Xs|
)(

2∥ρ∥2
2 +
∥Φ∥2∥ρ∥2

∞
λ ∑

s∈S
ρs

(
|Xs|+

1
2eβ

I|Xs|=0

))]
.
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Terms that do not involve products of the form |Xs||Xs′ | or |Xs|I|Xs′ |=0 can be straightforwardly

reduced to linear combinations of expectations in Lemma 3.22. The remaining term yields the

following:

EX

[
∑

s,s′∈S
ρsρs′∥ϕs∥2

2|Xs|
(
|Xs′ |+

1
2eβ

I|Xs′ |=0

)]

= ∑
s∈S

ρ2
s∥ϕs∥2

2EX

[
|Xs|

(
|Xs|+

1
2eβ

I|Xs|=0

)]
+ ∑

s,s′∈S
s ̸=s′

ρsρs′∥ϕs∥2
2E [] X

[
|Xs|

(
|Xs′ |+

1
2eβ

I|Xs′ |=0

)]

= ∑
s∈S

ρ2
s∥ϕs∥2

2
(
m2 p2

s + m(ps − p2
s )
)

+ ∑
s,s′∈S
s ̸=s′

ρsρs′∥ϕs∥2
2

(
m(m− 1)ps ps′ + mps,s′ +

1
2eβ

mp̄s,s′(1− ps′)
m−1

)
,

where we used Lemma 3.22 again. Thus we get:

EX,η

[
Jλ
X(θ̂

λ
X)− Jλ

X(θ
λ
X)
]
≤ C2

λ

{
λd∥ρ∥2

2
m

+
d∥Φ∥2∥ρ∥2

∞
2m ∑

s∈S
ρs

(
mps +

1
2eβ

(1− ps)
m
)

+
2∥ρ∥2

2
m ∑

s∈S
ρs ps∥ϕs∥2

2m +
∥Φ∥2∥ρ∥2

∞
λm ∑

s∈S
ρ2

s∥ϕs∥2
2
(
m2 p2

s + m(ps − p2
s )
)

+
∥Φ∥2∥ρ∥2

∞
λm ∑

s,s′∈S
s ̸=s′

ρsρs′∥ϕs∥2
2

(
m(m− 1)ps ps′ + mps,s′ +

1
2eβ

mp̄s,s′(1− ps′)
m−1

)
The final result is obtained by grouping the terms in this expression by their dependence in λ and

m.

Note that if we take λ = ω(1) with respect to m in the above theorem, then Cλ = O(1/λ) and

we get the following corollary.

Corollary 3.24. Suppose λ = ω(1) with respect to m. Then we have

EX,η

[
Jλ
X(θ̂

λ
X)− Jλ

X(θ
λ
X)
]
= O

(
1

λm
+

1
λ2 +

m
λ3

)
. (3.57)

The Corollary 3.24 is obtained by assuming the regularization parameter is allowed to grow with

m, and stresses the tensions in selecting an adequate regularization schedule.
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FIGURE 3.1: Empirical comparison of differentially private and non-private algorithms

Note that taking λ = Θ(m) we get a bound on the excess risk of order O(1/m2). However, if

we want the regularization term in Jλ
X(θ) to vanish as m→ ∞ we need λ = o(m). We shall see

importance of this trade-off in our experiments.

3.8 Experiments

In this section we illustrate the behaviour of the proposed algorithms on synthetic examples.

The domain we use consists of a chain of N states, where in each state the agent has some

probability p of staying and probability (1− p) of advancing to its right. There is a reward of 1

when the agent reaches the final, absorbing state, and 0 for all other states. While this is a toy

example, it illustrates the typical case of policy evaluation in the medical domain, where patients

tend to progress through stages of recovery at different speeds, and past states are not typically

revisited (partly because in the medical domain, states contain historic information about past

treatments). Trajectories are drawn by starting in an initial state distribution and generating

state-action-reward transitions according to the described probabilities until the absorbing state

is reached. Trajectories are harvested in a batch, and the same batches are processed by all

algorithms.

We experiment with both a tabular representation of the value function, as well as with function

approximation. In the latter case, we simply aggregate pairs of adjacent states, which are hence

forced to take the same value. We compared the proposed private algorithms DP-LSW and

DP-LSL with their non-private equivalents LSW and LSL. The performance measure used is

average root mean squared error over the state space. The error is obtained by comparing the state

values estimated by the learning algorithms against the exact values obtained by exact, tabular

dynamic programming. Standard errors computed over 20 independent runs are included.

The main results are summarized in Fig. 3.1, for an environment with N = 40 states, p = 0.5,

discount γ = 0.99, and for the DP algorithms, ε = 0.1 and δ = 0.1. In general, these constants

should be chosen depending on the privacy constraints of the domain. Our theoretical results

explain the expected effect of these choices on the privacy-utility trade-off so we do not provide

extensive experiments with different values.
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The ws parameters in LSW algorithm can be used to influence the relative importance of the

value estimate in different states. They play a similar role to the ρs in DP-LSL algorithm, but we

gave them a different name because as described above there is a choice of ws that mimics the

asymptotic behaviour of LSL algorithm with given ρs. If no prior knowledge is available, the ws

can be chosen to be uniform (as we do in our experiments). Corollary 3.24 in our utility analysis

shows that DP-LSL algorithm behaves nicely if these weights satisfy a mild condition.

The left plot in Fig. 3.1 compares the non-private LSL and LSW versions of Monte Carlo

evaluation, in the tabular and function approximation case. As can be seen, both algorithms

are very stable and converge to the same solution, but LSW converges faster. The second plot

compares the performance of all algorithms in the tabular case, over a range of regularization

parameters, for two different batch sizes. The third plot compares the expected RMSE of the

algorithms when run with state aggregation, as a function of batch size. As can be seen, the DP

algorithms converge to the same solutions as the non-private corresponding versions for large

enough batch sizes. Interestingly, the two proposed approaches serve different needs. The LSL

algorithms work better with small batches of data, whereas the LSW approach is preferable with

large batches. From an empirical point of view, the trade-off between accuracy and privacy in

the DP-LSL algorithm should be done by setting a regularization schedule proportional to
√

m.

While the theory suggests it is not the best schedule in terms of excess empirical risk, it achieves

the best overall accuracy.

Finally, the last figure shows excess empirical risk as a function of the batch size. Interestingly,

more aggressive function approximation helps both differentially private algorithms converge

faster. This is intuitive, since using the same data to estimate fewer parameters means the effect

of each individual trajectory is already obscured by the function approximation. Decreasing the

number of parameters of the function approximator, d, increases β, which lowers the smooth

sensitivity bounds. In medical applications, one expects to have many attributes measured about

patients, and to need aggressive function approximation in order to provide generalization. This

result tells us that differentially private algorithms should be favoured in this case as well.

Overall, the empirical results are very promising, showing that especially as batch size increases,

the noise introduced by the DP mechanism decreases rapidly, and these algorithms provide the

same performance but with the additional privacy guarantees.

3.9 Discussion

In this chapter, we presented the first (to our knowledge) differentially private algorithms for

policy evaluation in the full MDP setting. Our algorithms are built on top of established Monte

Carlo methods, and come with utility guarantees showing that the cost of privacy diminishes
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as training batches get larger. The smoothed sensitivity framework is a key component of our

analyses, which differ from previous works on DP mechanisms for ERM and bandits problems in

two substantial ways. First, we consider optimizations with non-Lipschitz loss functions, which

prevents us from using most of the established techniques for analyzing privacy and utility in

ERM algorithms and complicates some parts of our analysis. In particular, we cannot leverage the

tight utility analysis of (Jain and Thakurta, 2014) to get dimension independent bounds. Second,

and more importantly, the natural model of neighbouring datasets for policy evaluation involves

replacing a whole trajectory. This implies that neighbouring datasets can differ in multiple

regression targets, which is quite different from the usual supervised learning approach where

neighbouring datasets can only change a single regression target. Our approach is also different

from the on-line learning and bandits setting, where there is a single stream of experience and

neighbouring datasets differ in one element of the stream. Note that this setting cannot be used

naturally in the full MDP setup, because successive observations in a single stream are inherently

correlated.

Our techniques could be extended in two directions. First, it would be interesting to design differ-

entially private policy evaluation methods based on temporal-difference learning methods (Sutton,

1988). This case is difficult because regression targets become non-stationary, depending on the

current value function, so the methodology we used in the Monte Carlo case does not readily

apply. One path to obtain results in this case is to utilize the least-squares temporal-difference

learning algorithm (Boyan, 2002; Ghavamzadeh et al., 2010), which is a model-based algorithm.

In its linear version, it estimates the expected feature-to-feature transition model and the reward

vector, then computes the value function by inverting the transition matrix and multiplying by the

reward vector. This algorithm has the same fixed point as usual temporal-difference learning, but

the learning of the model is much more similar to the supervised case. We actually pursued this

line of research for some time, but in the end, the structure of the problem is still too different

from supervised learning overall and we were not able to obtain a satisfactory result of the type

presented above for the Monte Carlo case. We suspect that a different approach to perturbation

will be necessary to tackle this type of algorithms.

Secondly, it would be important to tackle the control case, where policy evaluation is often used

as a sub-routine, e.g. as in actor-critic methods. This case is even more complex than temporal-

difference learning, because the actions taken by the agent influence the data that will be seen in

the future. This complication is not present in bandit algorithms, where most differential privacy

for control has been studied. There, an action only influences the reward, not the next observed

state, so privacy analysis is a bit easier to carry out. It is not clear at the moment how to take

both the differential privacy bandit results from the literature and the results we presented in this

chapter and bridge them in order to be able to tackle the MDP case.
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Finally, it would also be important to to evaluate the algorithms we proposed in this chapter on

real data. For example, patient data from clinical studies would potentially create a compelling

case study, with the caveat that errors could not be estimated precisely, because the right answer

is not known. As we were not able to secure such data so far, we leave this direction open for

future work.



Chapter 4

Utility Amplification via Sub-Sampling

In the design and analysis of differentially private mechanisms, sub-sampling techniques have

become fundamental cornerstones. While the existing literature mostly focuses on privacy

amplification (Balle et al., 2018; Wang et al., 2019), the literature on the utility of sub-sampling-

based methods is relatively unexplored. Specifically, in the setting, that privacy-preserving

mechanism is only available for a fixed privacy regime. In such setting , knowing how to add

an intermediate step or subroutine to the algorithm to boost the accuracy of the original private

algorithm is of great value. This chapter’s main motivation is to initiate a systematic study of

utility boosting of the private algorithm by sub-sampling. In this chapter, we provide the necessary

tools for a systematic analysis of the impact of sub-sampling on the utility of private linear queries.

With the foundation established in Chapter 3, we now have the necessary background to the

challenges in designing private policy evaluation algorithms in reinforcement learning. Therefore,

this chapter’s main focus is to provide a utility boosting subroutine for the existing private policy

evaluation algorithms.

In this chapter, we begin in Section 4.1 by providing a broad overview of different frameworks

that employ sub-sampling subroutine in the context of privacy-preserving algorithm design.

In Section 4.2 we provide the necessary formal foundation to develop a new sub-sampling

subroutine to improve the results of algorithms proposed in Chapter 3. We propose new notions

of sensitivity and utility tailored to the proposed framework. In Section 4.3 we present the

utility analysis of classic multivariate Gaussian output perturbation mechanism based on the

new notions of sensitivity and utility introduced in Section 4.2. Subsequently, in Section 4.6 we

analyze the average utility of the proposed sub-sample and average mechanism for linear queries.

Finally, since the DP-LSL and DP-LSW algorithms proposed in Chapter 3 are linear function

approximators and thus resemble a form of linear query, we apply the framework proposed in

Section 4.6 on DP-LSL and DP-LSW algorithms and propose a new algorithm that boosts their

utility. We then experimentally examine the performance of proposed algorithm based on the

53
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private policy evaluation algorithms proposed in 3 and we show a significant improvement over

the baseline algorithms.

4.1 Review of Sub-Sampling Techniques Used in Differ-

ential Privacy

The impact of sub-sampling on privacy amplification has recently gained more attention compared

to other privacy amplification techniques such as iteration (Feldman et al., 2018), composition

(Kairouz et al., 2015; Vadhan, 2017) and shuffling (Erlingsson et al., 2019; Balle et al., 2019).

One of the early attempts in applying sub-sampling subroutines in the context of privacy-

preserving algorithm is Sub-sample and aggregate(SA) framework proposed by Nissim et al.

(2007). SA framework is designed to resolve the worst-case sensitivity analysis problem as one

of the main obstacles in designing DP algorithms. Particularly, output perturbation mechanisms

such as Laplacian or Gaussian add noise proportional to the target algorithm sensitively. However,

sub-sample and aggregate framework benefits from the assumption that if the target algorithm

yields accurate output on the input data x with high probability, it should yield proportionally

accurate output on a random sub-sample of x. The SA is proposed in the setting where the

sub-sampling is done without replacement (WOR) and the data is partitioned into equisized

disjoint mini batches.

Bootstrap aggregating or bagging (Breiman, 1996) can be seen as an extension of SA technique

and is known as a classic machine learning technique that improves stability and accuracy of

underlying statistical classifier or regressor (Freund et al., 1996; Quinlan et al., 1996). Recently,

Jordon et al. (2019) proposed DP bagging method that benefits from a methodological difference

between bagging and SA framework. In Jordon et al. (2019) the bagging framework proposed

first duplicates the input dataset, then partitions each instance into equisized disjoint mini batches

and then pass each mini batch to private estimators.

The sub-sampling technique we use in this chapter is more along the same line as studied in

Balle et al. (2018); Wang et al. (2019), where instead of partitioning the input dataset into a

set of disjoint sub-samples (eg. (Nissim et al., 2007)) or replicating multiple instances of the

input detaset and then use the classic bagging technique (eg. (Jordon et al., 2019)), we arbitrarily

or adaptively choose the sub-sample size and the number of sub-samples and generate finite

number of sub-samples and then run the private algorithm on each sub-sample. In this method

sub-sampling is often done uniformly with or without replacement and thus the mini batches

are not disjoint. In Figure 4.1 we present the schematical difference between the sub-sampling
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FIGURE 4.1: Schematic of different sub-sampling methods: (a) subsample-and-
aggregate framework (Nissim et al., 2007); (b) Differntial bagging framework (Jordon

et al., 2019); (c) random sub-sampling method used in this chapter.

method that we adopt in this chapter and the other commonly used sub-sampling techniques used

in the literature.

Since the sub-sample size and number of sub-samples in our method are chosen arbitrarily, two

important questions are raised:

1. Given the input dataset size and the privacy parameters, what is the optimal number of

sub-samples?

2. Given the input dataset size and the privacy parameters, what is the best choice of sub-

sample size?

To the best of our knowledge, this is the first study that proposes a principled approach in

analyzing optimal sub-sampling parameters in the context of differential private sub-sampling

from the utility standpoint.

The contributions of this chapter are:

• Rigorous analysis of impact of sub-sampling on utility of differential private linear queries.

• Proposing adaptive DP algorithm that adaptively chooses the main sub-sampling parame-

ters sub-sample size k and number of sub-samples m.

4.2 Notation and Framework

This section presents background and notation required for designing and analyzing sub-sampling-

based framework we propose in this chapter.
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We start by providing necessary definitions. A case of particular interest are linear queries, where

the query is uniquely identified by a parameter vector ω and is defined as the following.

Definition 4.1 (Linear Query). A linear query Aω is uniquely identified by a parameter vector ω

as Aω(.) = ⟨ω, .⟩.

It is straightforward to show that, in the case that A is a linear query the global sensitivity of A

satisfies GS(n)p (A) = GS(1)p (A)/n.

In the classic output perturbation-based mechanisms the upper-bound on the effect of data

inclusion and exclusion is captured by the notion of global sensitivity, defined in definition

2.2. However, to capture the maximum impact of sub-sampling on the output of a randomized

algorithm A in the following definition we introduce the notion of global sub-sampling sensitivity.

Definition 4.2 (Global Sub-sampling Sensitivity). Given x ∈ Xn we denote by x̃ ∼k x a random

subset of x with k ≤ n elements uniformly sampled without replacement. We define the global

sub-sampling sensitivity of A as,

GSS(n,k)
p (A) :=

(
sup
x∈Xn

Ex̃∼kx
[
∥A(x)− A(x̃)∥p

p
])1/p

. (4.1)

Similarly to capture the average impact of ata inclusion and exclusion on the output of a ran-

domized algorithm A we define Average Sub-sampling Sensitivity. Given D be a probability

distribution over X in the following we define the average sub-sampling sensitivity of A.

Definition 4.3 (Average Sub-sampling Sensitivity). Let D be a probability distribution over X.

The average sub-sampling sensitivity of A is defined as

AVSS(n,k,D)
p (A) :=

(
Ex∼Dn

[
Ex̃∼kx

[
∥A(x)− A(x̃)∥p

p
]])1/p

. (4.2)

To fully capture the impact of sub-sampling on the utility of randomized algorithm A in the

following definition we define the notion of Average Sub-sampling Bias, which captures the bias

induced by the sub-sampling process.

Definition 4.4 (Average Sub-sampling Bias). Let D be a probability distribution over X and k be

the size of mini-batch such that each data point is sampled from D. The Average Sub-sampling

Bias of A is defined as,

ASB(n,k,D)
p (A) :=

(
Ex∼Dn

[
∥A(x)−Ex̃∼kx [A(x̃)] ∥p

p
])1/p

. (4.3)

Utility measure: We now move on to define the utility measure that captures the impact of

randomization sources. We aim to define a utility measure in order to,
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1. compare two DP mechanisms for a fixed distribution,

2. compare the performance of one mechanism against another mechanism for all distribu-

tions.

Let M = {Mn}n∈N be a family of (ε, δ)-DP mechanisms with inputs in Xn and output in Rd. We

say that M is an output perturbation mechanism for A if for any x we have EM [M(x)] = A(x),

where the expectation is taken over the randomization in the mechanism M. In other words, we

consider how well the parameter vectors can be estimated under the output perturbation model.

Thus in our proposed notion of utility we only focus on the variation of sub-sample and aggregate

mechanism. Note that base of this notion of utility has been extensively used in the literature

(Wang, 2018; Wasserman, 2013).

Definition 4.5 (Average Utility). The average utility of M is defined as

UT(n,D)
p (M) := Ex∼Dn

[
EM

[
∥A(x)−M(x)∥p

p
]]

, (4.4)

where the internal expectation is over the randomization in M.

Now we are ready to define the Sub-sample-and-Average Mechanism, in which the choice of

aggregation is empirical averaging.

Definition 4.6 (Sub-sample-and-Average Mechanism). Suppose that M̃ is an output perturba-

tion (ε̃, δ̃)-DP mechanism with inputs in Xn and outputs in Rd. The subsample-and-average

mechanism for M̃(m,k) is defined as

M̃(m,k)(x) :=
1
m

m

∑
i=1

M̃(x̃i) , x̃i ∼k x . (4.5)

4.3 Average Utility Case Study: Gaussian Output Per-

turbation Mechanism

We start our utility analysis by measuring the average utility of Gaussian output perturbation

mechanism Dwork et al. (2014) for linear queries. For completeness, we first provide the Gaussian

mechanism in the following theorem.

Theorem 4.7 (Gaussian output perturbation mechanism (Dwork et al., 2014)). The output

perturbation mechanism M(.) = A(.) + η with noise parameters ε, δ ∈ (0, 1) and η ∼
N (0, σ2 I), where σ2 = 2GS(n)2 (A)2 log(1.25/δ)/ε2 is (ε, δ)-DP.

We start by calculating the average sub-sampling bias of linear queries.



Utility Amplification via Sub-Sampling 58

Lemma 4.8. Let A be a linear query then ASB(n,k,D)
p (A) = 0.

Proof. For linear queries we always have Ex̃∼kx [A(x̃)] = A(x), thus we have,

ASB(n,k,D)
p (A) =

(
Ex∼Dn

[
∥A(x)−Ex̃∼kx [A(x̃)] ∥p

p
])1/p

=
(
Ex∼Dn

[
∥A(x)− A(x)∥p

p
])1/p

= 0

In the following theorem we show the average utility of Gaussian output perturbation mechanism.

Theorem 4.9. Let A(.) be a linear query and M(x) = A(x) + η with η ∼ N (0, σ2
n I) be a

(ε, δ)-DP Gaussian mechanism, then the average utility of M is,

UT(n,D)
2 (M) = C

dGS(1)2 (A)2 log(1/δ)

n2ε2 , (4.6)

where σ2
n = CGS(n)2 (A)2 log(1/δ)/ε2 and C > 2 ln (1.25/δ).

Proof. Suppose that M(x) = A(x) + η with η ∼ N (0, σ2
n I) is a (ε, δ)-DP Gaussian mecha-

nism, so that σ2
n = CGS(n)2 (A)2 log(1/δ)/ε2 (Dwork et al., 2014). Then we can calculate the

average utility of M as

UT(n,D)
2 (M) = Ex∼Dn

[
EM

[
∥A(x)−M(x)∥2

2
]]

= Ex∼Dn
[
EM

[
∥η∥2

2
]]

= EM
[
∥η∥2

2
]

= dσ2
n

= C
dGS(n)2 (A)2 log(1/δ)

ε2 .

Recall that if A is a linear query, then GS(n)2 (A) = GS(1)2 (A)/n, in which case we get

UT(n,D)
2 (M) = C

dGS(1)2 (A)2 log(1/δ)

n2ε2 ,

with C > 2 log 1.25/δ we finally have,

UT(n,D)
2 (M) =

2 log (1.25/δ)dGS(1)2 (A)2 log(1/δ)

n2ε2 .
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4.4 Privacy of Sub-Sample-and-Average Gaussian Mech-

anism

Our final goal is to compare the utility of the Gaussian mechanism M with that of the subsampled-

and-averaged Gaussian mechanism M̃(m,k). Since for the comparison to be meaningful, we must

achieve the same level of privacy on both mechanisms; we need to tune the privacy parameters of

the base mechanism M̃ so that M̃(m,k) attains the desired level of privacy. To do so, for the sake

of completeness, we re-state the following sub-sampling lemma.

Lemma 4.10 (Sub-sampling Lemma (Ullman, 2017)). Let x ∈ Xn, and k ∈ {0, 1, ..., n}, we

denote by x̃ ∼k x a random sub-sample of x with k ≤ n elements sampled without replacement.

If A(x) is (ε, δ)-DP, then mechanism Mk(A(x̃ ∼k x)), which runs A on x̃ ∼k x is ( k(eε−1)
n , kδ

n )-

DP.

Using the result of Lemma 4.10 and advance composition theorem from Dwork et al. (2010) we

obtain the following theorem.

Theorem 4.11. Suppose A : Xn → Rd is a linear query. Let M̃ be the (ε, δ)-DP Gaussian

mechanism for A and M̃(m,k) the subsample-and-average mechanism for A. For any δ′ > 0 the

mechanism M̃(m,k) is (ε∗, δ∗)-DP with

ε∗ =

(
mk
n

eε(eε − 1) +
√

2m log(1/δ′)

)
log
(

1 +
k
n

eε(eε − 1)
)

, (4.7)

δ∗ = δ
mk
n

eε + δ′ , (4.8)

or,

ε = log

1
2
+

√√√√1
4
+

nε∗

k
(√

8m log(1/δ′)
)
 , (4.9)

δ =
n(δ∗ − δ′)

mk
1

1
2 +

√
1
4 +

n
k

ε∗√
8m log( 1

δ′ )

. (4.10)

Proof. A simple analysis combining the results from lemma 4.10 together with the advance

composition theorem from Dwork et al. (2014) shows that M̃(m,k) is (ε∗, δ∗)-DP with

ε∗ =

(
mk
n

eε̃(eε̃ − 1) +
√

2m log(1/δ′)

)
log
(

1 +
k
n

eε̃(eε̃ − 1)
)

,

δ∗ = δ̃
mk
n

eε̃ + δ′ ,
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for any δ′ > 0.

To calculate the closed-formed solution of ε and δ we first need to state the following lemma.

Lemma 4.12. Let a, b, c ≥ 0. The bound ax log(1 + bx) ≤ c is satisfied for all 0 ≤ x ≤
√ c

ab .

Proof. Directly from log(1 + bx) ≤ bx.

Let ε̃ = eε − 1, ε′ = (1 + ε̃)ε̃, c1 = mk
n , c2 =

√
2m log( 1

δ′ ) and c3 = k
n . With this notation we

have to look for ε′ such that

ε∗ ≥
(
c1ε′ + c2

)
log
(
1 + c3ε′

)
. (4.11)

We conjecture a form ε′ = c4ε∗ and note that the inequality above will be satisfied if, for example

(the 1/2 constant here is arbitrary):

c1c4ε∗ log(1 + c3c4ε∗) ≤ ε∗
2

, (4.12)

c2 log(1 + c3c4ε∗) ≤ ε∗

2
. (4.13)

We recall that ε∗ is the target privacy parameter, which is a user specified value. We will assume

henceforth that 0 < ε∗ ≤ 1. Thus, using Lemma 4.12 we have that c4 must satisfy the following

two bounds simultaneously:

c4 ≤

√
1

2c1c3
⇒ c4 ≤

n
k

√
1

2m
, (4.14)

c4 ≤
1

2c2c4
⇒ c4 ≤

n

k
√

8m log( 1
δ′ )

. (4.15)

By taking the smallest of the two upper bounds we get c4 = n
k

1√
8m log( 1

δ′ )
, which implies the

choice

ε′ =
n
k

ε∗√
8m log( 1

δ′ )
. (4.16)

Recalling that ε = log(1 + ε̃) and ε̃ = (−1 +
√

1 + 4ε′)/2, we finally obtain

ε = log

1 +

−1 +
√

1 + 4nε∗

k
(√

8m log(1/δ′)
)

2

 = log

1
2
+

√√√√1
4
+

nε∗

k
(√

8m log(1/δ′)
)
 .

(4.17)
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For the sake of asymptotics we note that the choice above has the form ε = O(log(1 +

nε∗/k
√

m)) (assuming that δ′ is a constant).

Now for the δ parameter, we note that our choice of ε yields:

δ =
n(δ∗ − δ′)

mkeε
(4.18)

=
n(δ∗ − δ′)

mk
1

1
2 +

√
1
4 + ε′

(4.19)

=
n(δ∗ − δ′)

mk
1

1
2 +

√
1
4 +

n
k

ε∗√
8m log( 1

δ′ )

. (4.20)

4.5 Average Sub-sampling Sensitivity of Linear Queries

Recall that a linear query A evaluated on x = (x1, . . . , xn) ∈ Xn has the form A(x) =

(1/n)∑n
i=1 A(xi). To compute AVSS(n,k,D)

2 (A) we start by writing

Ex∼Dn
[
Ex̃∼kx

[
∥A(x)− A(x̃)∥2

2
]]

=

Ex∼Dn

Ex̃∼kx

∥∥∥∥∥ 1
n

n

∑
i=1

A(xi)−
1
k

k

∑
i=1

A(xϕ(i))

∥∥∥∥∥
2

2

 ,

where we used the notation x̃ = (xϕ(1), . . . , xϕ(k)) for some random injective function ϕ : [k]→
[n]. Now note that because the xi are i.i.d. and x̃ is a random sub-sample we can assume without

loss of generality that ϕ(i) = i. Therefore, the expression above is equal to

Ex∼Dn

∥∥∥∥∥
(

1
n
− 1

k

) k

∑
i=1

A(xi) +
1
n

n

∑
i=k+1

A(xi)

∥∥∥∥∥
2

2


=

(
1
k
− 1

n

)2

Ex∼Dn

∥∥∥∥∥ k

∑
i=1

A(xi)

∥∥∥∥∥
2

2


+

1
n2 Ex∼Dn

∥∥∥∥∥ n

∑
i=k+1

A(xi)

∥∥∥∥∥
2

2


− 2

n

(
1
k
− 1

n

) k

∑
i=1

n

∑
j=k+1

Exi ,xj∼D
[
⟨A(xi), A(xj)⟩

]
.
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The last term can be simplified using the identity Exi ,xj∼D
[
⟨A(xi), A(xj)⟩

]
= ∥Ex∼D [A(x)]22 ∥.

Furthermore, the other two terms can be computed as follows:

Ex∼Dn

∥∥∥∥∥ k

∑
i=1

A(xi)

∥∥∥∥∥
2

2

 =
k

∑
i=1

k

∑
j=1

Exi ,xj∼D
[
⟨A(xi), A(xj)⟩

]
= kEx∼D

[
∥A(x)∥2

2
]
+ k(k− 1)∥Ex∼D [A(x)]22 ∥,

Ex∼Dn

∥∥∥∥∥ n

∑
i=k+1

A(xi)

∥∥∥∥∥
2

2

 = (n− k)Ex∼D
[
∥A(x)∥2

2 + (n− k)(n− k− 1)∥Ex∼D [A(x)]22 ∥
]

.

By writing µ := Ex∼D [A(x)] and Σ := Ex∼D
[
A(x)A(x)⊤

]
, we get ∥Ex∼D [A(x)]22 ∥ =

∥µ∥2
2 and Ex∼D

[
∥A(x)∥2

2
]
= Tr(Σ). Therefore, using a simple calculation we see that

Ex∼Dn
[
Ex̃∼kx

[
∥A(x)− A(x̃)∥2

2
]]

=

(
1
k
− 1

n

)2 (
k Tr(Σ) + k(k− 1)∥µ∥2

2
)

+
1
n2

(
(n− k)Tr(Σ) + (n− k)(n− k− 1)∥µ∥2

2
)

− 2
n

(
1
k
− 1

n

)
k(n− k)∥µ∥2

2

=

(
1
k
− 1

n

) (
Tr(Σ)− ∥µ∥2

2
)

.

From the calculation above we see that the rate of AVSS(n,k,D)
2 (A) = Θ(1/km), since (assuming

that both ∥µ∥ and Tr(Σ) are constant with n):

1
m

(
1
k
− 1

n

)
=

1
km

(
1− k

n

)
= Θ

(
1

km

)
, (4.21)

where we used that k ≤ n implies (1− k/n) = Θ(1).

Now we move on to the average utility analysis of sub-sample and average mechanism.

4.6 Average Utility of Sub-sample and Average Gaussian

Mechanism: Average Case

In this section we show the connection between average utility of Gaussian mechanism and the

average utility of sub-sample-and-average mechanism.

The expectation of subsample-and-average mechanism M̃ is presented in the following lemma.
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Lemma 4.13. Let M̃(m,k) : Xn → Rd be a sub-sample-and-average mechanism, we have,

E
[

M̃(m,k)(x)
]
= Ex̃∼kx [A(x̃)] . (4.22)

Proof. Note that taking an expectation with respect to this mechanism amounts to taking expec-

tations over the sub-samples x̃i and the multiple instantiations of M̃. Thus, we will write

E
[

M̃(m,k)(x)
]
= E{x̃i}

[
EM̃

[
1
m

m

∑
i=1

M̃(x̃i)

]]
= Ex̃∼kx

[
EM̃

[
M̃(x̃)

]]
= Ex̃∼kx [A(x̃)] ,

where the last equality uses the fact that M̃ is an output perturbation mechanism.

Theorem 4.14. The utility of the sub-sample-and-average mechanism M̃(m,k) is,

UT(n,D)
2 (M̃(m,k)) =

1
m

UT(k,D)
2 (M̃) +

1
m

AVSS(n,k,D)
2 (A)2 +

m− 1
m

ASB(n,k,D)
2 (A)2 .

(4.23)

Proof. The utility of M̃(m,k) can now be computed as

UT(n,D)
2 (M̃(m,k)) = Ex∼Dn

[
E
[
∥A(x)− M̃(m,k)(x)∥2

2

]]
= Ex∼Dn

E{x̃i}

EM̃

∥∥∥∥∥
(

A(x)− 1
m

m

∑
i=1

A(x̃i)

)
+

(
1
m

m

∑
i=1

A(x̃i)− M̃(m,k)(x)

)∥∥∥∥∥
2

2


=

1
m2 Ex∼Dn

E{x̃i}

EM̃

∥∥∥∥∥ m

∑
i=1

(A(x)− A(x̃i))

∥∥∥∥∥
2

2


+

1
m2 Ex∼Dn

E{x̃i}

EM̃

∥∥∥∥∥ m

∑
i=1

(
A(x̃i)− M̃(x̃i)

)∥∥∥∥∥
2

2


+

2
m2

m

∑
i=1

m

∑
j=1

Ex∼Dn
[
E{x̃i}

[
EM̃

[
⟨A(x)− A(x̃i), A(x̃j)− M̃(x̃j)⟩

]]]
.

We can now analyze each of the terms in this expression independently. The first term is closely

related to the average random sensitivity of A. We can see that by noting that the expectation
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over M̃ has no effect in this term, and the expectation over the x̃i can be computed as follows:

E{x̃i}

∥∥∥∥∥ m

∑
i=1

(A(x)− A(x̃i))

∥∥∥∥∥
2

2


=

m

∑
i=1

m

∑
j=1

Ex̃i

[
Ex̃j

[
⟨A(x)− A(x̃i), A(x)− A(x̃j)⟩

]]
= mEx̃

[
∥A(x)− A(x̃)∥2

2 + m(m− 1)∥A(x)−Ex̃ [A(x̃)] ∥2
2
]

.

Thus, the first term in utility of M̃(m,k) can be written as

1
m2 Ex∼Dn

E{x̃i}

EM̃

∥∥∥∥∥ m

∑
i=1

(A(x)− A(x̃i))

∥∥∥∥∥
2

2


=

1
m

AVSS(n,k,D)
2 (A)2 +

m− 1
m

ASB(n,k,D)
2 (A)2 .

The second term is related to the utility of mechanism M̃. We start by seeing using that M̃ is an

output perturbation mechanism the first two inner expectations simplify to

E{x̃i}

EM̃

∥∥∥∥∥ m

∑
i=1

(
A(x̃i)− M̃(x̃i)

)∥∥∥∥∥
2

2


= E{x̃i}

[
m

∑
i=1

m

∑
j=1

EM̃
[
⟨A(x̃i)− M̃(x̃i), A(x̃j)− M̃(x̃j)⟩

]]
= mEx̃∼kx

[
EM̃

[
∥A(x̃)− M̃(x̃)∥2

2
]]

Now note that taking the expectation Ex∼Dn [Ex̃∼kx [.]] over a function that only depends on x̃

is equivalent to taking the expectation Ex̃∼Dk [.] over the same function. Therefore, the second

term in the utility of M̃(m,k) is equal to

1
m2 Ex∼Dn

E{x̃i}

EM̃

∥∥∥∥∥ m

∑
i=1

(
A(x̃i)− M̃(x̃i)

)∥∥∥∥∥
2

2


=

1
m

Ex̃∼Dk

[
EM̃

[
∥A(x̃)− M̃(x̃)∥2

2
]]

=
1
m

UT(k,D)
2 (M̃) .

Finally, the third term can be shown to be equal to zero by observing that because M̃ is an output

perturbation we have

EM̃
[
⟨A(x)− A(x̃i), A(x̃j)− M̃(x̃j)⟩

]
= ⟨A(x)− A(x̃i), A(x̃j)−EM̃

[
M̃(x̃j)⟩

]
= 0 .

(4.24)
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In conclusion, the utility of the subs-ample-and-average mechanism for M̃ can be written as

follows:

UT(n,D)
2 (M̃(m,k)) =

1
m

UT(k,D)
2 (M̃) +

1
m

AVSS(n,k,D)
2 (A)2 +

m− 1
m

ASB(n,k,D)
2 (A)2 . (4.25)

The following corollary extends the results of Theorem 4.14 for the case of linear queries.

Corollary 4.15. Suppose A : Xn → Rd is a linear query. Let M be the (ε, δ)-DP Gaussian

mechanism for A and M̃(m,k) the sub-sample-and-average mechanism for A. We then have,

UT(n,D)
2 (M̃(m,k)) =

2 log(1.25/δ̃)

m
dGS(1)2 (A)2 log(1/δ̃)

k2 ε̃2 +
1
m

AVSS(n,k,D)
2 (A)2 . (4.26)

Proof. Recalling that the average sub-sampling bias of linear queries is zero, we see that in the

case where M̃ is an output mechanism for a linear query A we can further simplify the equation

(4.25) to:

UT(n,D)
2 (M̃(m,k)) =

1
m

UT(k,D)
2 (M̃) +

1
m

AVSS(n,k,D)
2 (A)2 . (4.27)

If we further assume that M̃ is an (ε̃, δ̃)-DP Gaussian mechanism for a linear query A, then the

utility formula from theorem 4.9 yields:

UT(n,D)
2 (M̃(m,k)) =

2 log (1.25/δ̃)

m
dGS(1)2 (A)2 log(1/δ̃)

k2 ε̃2 +
1
m

AVSS(n,k,D)
2 (A)2 . (4.28)

We note here that the second term will have rate o(n−2) as long as AVSS(n,k,D)
2 (A) = o(

√
m/n).

To continue with the utility analysis, we first need to adjust the privacy parameters with respect to

the choice of sub-sampling parameters, sub-sample size k and number of sub-samples m. Thus, in

the following, we provide the privacy analysis of sub-sample-and-average Gaussian mechanism,

and then we continue our utility analysis in the future sections of this chapter.

We summarize the result of this section in the following theorem, which demonstrates the

dependency between the rate assumption for the average sub-sampling sensitivity of A and the

average utility of sub-sample-and-average mechanism.

Theorem 4.16. Suppose A : Xn → Rd is a linear query. Let M be the (ε, δ)-DP Gaussian

mechanism for A and M̃(m,k) be the subsample-and-average (ε, δ)-DP Gaussian mechanism

for A. Suppose k = ω(1) and m = ω(1) are functions of n satisfying k2m = ω(n2) and

k2m = ω(n2 log(km/n)). If D is a distribution over X such that AVSS(n,k,D)
2 = o(

√
m/n),

then UT(n,D)
2 (M̃(m,k)) = o(UT(n,D)

2 (M)).
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Proof. Now we can use the expressions for ε̃ and δ̃ obtained in Theorem 4.11 to estimate the first

term in UT(n,D)
2 (M̃). By simply plugging the two formulas into the first term of equation (4.28)

we get (ignoring the constant term CdGS(1)2 (A)2):
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mk2 log
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√

8m log(1/δ′)
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Since k and m can be chosen, suppose we have k = ω(1) and m = ω(1) with k2m = ω(n2), or

equivalently n = o(k
√

m). Then n/k
√

m = o(1) and we have

log

(
1
2
+

√
1
4
+

nε

k
√

8m log(1/δ′)

)
= log

(
1 +

√
1 + o(1)

)
− log(2) = o(1) .

To get more precise information about the behavior of this function note that for x ≈ 0 a Taylor

expansion yields

log

(
1
2
+

√
1
4
+ x

)
= x− 3x2

2
+ O(x3) . (4.29)

Before plugging x = nε/k
√

m
√

8 log(1/δ′) into the expression above we first note that

k
√

m = ω(n) implies

k2mx = Θ
(
nk
√

m
)
= ω(n2) ,

k2mx2 = Θ(n2) ,

k2mx3 = Θ
(

n3

k
√

m

)
= o(n2) .
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Therefore we see that under the assumption on the rate of k
√

m we obtain that the logarithmic

term above satisfies:

k2m log

(
1
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√
1
4
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nε

k
√

8m log(1/δ′)

)
=

nk
√

mε√
8 log(1/δ′)

− 3n2ε2

16 log(1/δ′)
+ o(n2)

=
n2ε√

8 log(1/δ′)

(
k
√

m
n
− 3ε√

32 log(1/δ′)

)
+ o(n2).

In particular, since k
√

m/n = ω(1), this function is ω(n2), which implies that the second term

in our expression for log(1/δ̃)/mk2 ε̃2 is of the form o(n−2).

To deal with the first term in our expression for log(1/δ̃)/mk2 ε̃2 we need to consider a Taylor

expansion of the square of the logarithm above when x ≈ 0, which will have the form:

log

(
1
2
+

√
1
4
+ x

)
= x2 + O(x3) . (4.30)

This implies that
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Plugging this observation into the expression above we now get

log(1/δ̃)

mk2 ε̃2 = Ω
(

8 log(1/δ′) (log(mk/n) + log(1/(δ− δ′))

n2ε2

)
.

This expression will have order o(n−2) (and therefore beat the utility rate of the Gaussian

mechanism) as long as log(mk/n)/mk2 = o(n−2), or equivalently k2m = ω(n2 log(km/n)).
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4.7 Average Utility of Sub-sample and Average Gaussian

Mechanism: Extreme Case

Consider the analysis in the previous section we suppose k
√

m = n. With this choice we see

immediately that:
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where we have hidden the dependence on δ and δ′ inside the Θ̃ for convenience. Therefore we see

that ignoring the term log(mk/n), we get the same rate as with the assumption k
√

m = ω(n).

Furthermore, since the term log(mk/n) is increasing with mk, we would like to make this as

small as possible, which will be attained for a choice satisfying k
√

m = n (among the ones that

give overall rate Õ(n−2)). In particular, if there were no constraints to be satisfied, the optimal

rate would be achieved (not surprisingly!) for k = n and m = 1. However, the application of the

subsampling lemma requires k ≤ n/2, so all we can do is take k = n/2 and m = 4. In any case,

for this choice (assuming that δ′ is a small constant factor of δ) we get

log(1/δ̃)

mk2 ε̃2 = Θ
(

log(1/δ)2

n2ε2

)
,

which is only worse than the rate of the Gaussian mechanism by a factor log(1/δ).

Aggregation of the results obtained in Sections 4.5, 4.6 and 4.7 we conclude the utility analysis

of our proposed sub-sample and average framework in the following theorem.

Theorem 4.17. Suppose A : Xn → Rd is a linear query. Let M̃(m,k) be the sub-sample-and-

average (ε, δ)-DP Gaussian mechanism for A. Suppose k = ω(1) and m = ω(1) are functions

of n satisfying mk2 = Θ(n2). If D is a distribution over X, then

UT(n,D)
2 (M̃(m,k)) = Θ

 log
(

mk
n

)
mk2ε2 +

1
km2

 . (4.31)
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For example, if we would like to make this rate Θ(n−2) we would need to take km2 = Θ(n2),

which is achievable since it does not contradict the optimal choice mk2 = ω(n2) for the sub-

sampling investigated above.

4.8 Algorithm and Experimental Evaluation

In this section, we conduct a series of experiments to illustrate the performance of our proposed

sub-sampling framework against the baseline algorithms proposed in Chapter 3. We summarize

the result of this chapter in Algorithm 3.

Algorithm 3 A (Sub-sample and average private policy evaluation)

Require: X, Φ, γ, Rmax, ε∗, δ∗, δ′

Let Θ = {}
Choose number of sub-sample parameter m and sub-sample size k that minimize eq.

(4.31) such that they satisfy conditions of Theorem 4.17.

Compute ε and δ using equations (4.9) and (4.10) w.r.t. the choices of m and k.

do
Let ui ← sub-sample k data-points from X uniformly at random WOR.

Let θi ←M(ui, Φ, γ, Rmax, ε, δ, δ′). ▷M ∈ {DP− LSL, DP− LSW}
Add θi to Θ.

Let θ̂M̃ ← M̃(Θ). ▷ cf. (4.5)

while (i < m)

Return θ̂g.

4.8.1 Experiment Setup

For the sake of comparison with the results we presented previously, we use the same synthetic

Markov chain domain as in Section 3.8 of Chapter 3. The chain has N states; with probability

p, the agent stays in the same state, while with probability (1 − p), it moves to wards the

right. There is a reward of 1 when the agent reaches the final, absorbing state and 0 for all

other states. With an initial state distribution (in our case, uniform over S), a new trajectory is

started and generating transitions are generated according to the described probabilities until

the absorbing state is reached. A batch of such trajectories is sent as input to Algorithm 3. We

conduct experiments in both the tabular and the function approximation settings. In the function

approximation setting, we simply aggregate pairs of adjacent states, which are then forced to take

the same value. We compared the proposed private algorithms with DP-LSW, DP-LSL and their
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FIGURE 4.2: Empirical comparison between Sub-sampled DPLSW (DPLSL) and
original DP-LSW (DPLSL) in the tabular setting. The green curve depicts the weighted
RMSE based on the difference between the true value estimates and value estimates
based on sub-sampling method we used in the chapter. The red curve demonstrates the
weighted RMSE based on the difference between the true value estimates and the value

estimates of original DPLSW (a) and DPLSL (b).

non-private equivalents LSW and LSL. The performance measure used is the average root mean

squared error over the state space, evaluated with respect to the initial state distribution. The

standard errors are computed over 5 independent runs. To show the consistency of Algorithm 3

in different privacy regimes, we also conduct a range of experiments for different values of ε.

The results are summarized in Figures 4.2, 4.3, 4.4 and 4.5, for an environment with N = 40

states, p = 0.5, discount γ = 0.99. For the differentially private algorithms, the privacy parame-

ters are ε ∈ {0.1, 0.01, 0.001, 0.0001, 0.00001} and δ = 0.1. In general, these constants should

be chosen depending on the privacy constraints of the domain. The sub-sampling parameters m

(number of sub-samples) and k (sub-sample size) are chosen adaptively based on the theoretical

results presented so far in this chapter.

Metric of success: we measure the performance of the Algorithm 3 in terms of weighted root

mean square error (RMSE) of the state value vector, compared to the true value function (which

in this case can be computed exactly by dynamic programminng), where the weight of each state

is the same as initial state probability assigned to that state. The initial state distribution adopted

for these experiments is the uniform distribution over S .

The experiments show that the utility of both DP-LSW and DP-LSL is significantly improved

by the use of sub-sampling. Our theoretical results clearly show the impact of the sub-sampling

parameters on privacy-utility trade-offs, so we do not provide extensive experiments with different

values.
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FIGURE 4.3: Empirical comparison between Sub-sampled DPLSW (DPLSL) and origi-
nal DP-LSW (DPLSL) in the function approximation (FA) setting with the aggregation
factor 2. The green curve depicts the weighted RMSE based on the difference between
the true value estimates and value estimates based on sub-sampling method we used in
the chapter. The red curve demonstrates the weighted RMSE based on the difference
between the true value estimates and the value estimates of original DPLSW (a) and

DPLSL (b).

The left plot in Figure 4.2 compares classic DP-LSW (the red curve) with Algorithm 3 that

employs DP-LSW as its base mechanism (the green curve) and the sub-sample and average

mechanism that employs DP-LSW mechanism after the aggregation (the blue curve) in the tabular

setting. The right plot in Figure 4.2 demonstrates similar comparison in the same setting except

that the base mechanism is DP-LSL. As the sample size increases Algorithm 3 for both DP-LSW

and SP-LSL exhibits much faster convergence rate in comparison to the other two algorithms.

Similar experiments are conducted in the function approximation setting with the aggregation

factor 2, where two consecutive states are assigned the same values. As can be seen in Figure 4.3,

Algorithm 3 (green curve) still exhibits a very stable behaviour with both base algorithms and

interestingly with faster converge rate in comparison with the tabular setting. This agrees with

our observation in Chapter 3 and shows that function approximation provides better accuracy

in relatively smaller batch-size setting. This agreed with the intuition that using the same data

to estimate fewer parameters means the effect of each individual trajectory is already obscured

by the function approximation. In medical applications, one expects to have many attributes

measured about patients, and to need aggressive function approximation in order to provide

generalization. This result tells us that differentially private algorithms should be favoured in this

case as well.

To show the advantage of our proposed framework over original DPLSL and DPLSW we conduct

of range of experiments for different privacy regimes. In Figure 4.4 demonstrates the consistency

of subsampled DPLSW over a range of ε values, changing from low privacy regime to high

privacy regime. As the graphs depict the performance margin between DPLSW and subsampled
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FIGURE 4.4: Empirical comparison of DPLSW(FA) and subsampled DPLSW for
different values of ε from big (left) to small.

FIGURE 4.5: Empirical comparison of DPLSL(FA) and subsampled DPLSL for differ-
ent values of ε, from big (left) to small.

DPLSW increases as we move towards higher privacy regimes. This phenomenon is less visible

in the case of DPLSL (Figure 4.5), however we still observe that subsampled DPLSL maintains

its significant performance margine as we move from low privacy to high privacy regime.

Overall, our experiments exhibits very promising results, showing that especially as batch size

increases, our proposed sub-sampling mechanism greatly adapt with the new batch setting and

the noise introduced by the DP mechanism decreases rapidly, and this adaptation to batch size

significantly boosts the performance of baseline mechanisms.

4.9 Discussion

In this chapter, we have provided a systematic analysis of the utility advantage of using subsam-

pling over classic diferentially private mechanisms in policy evaluation. In order to improve upon

the utility of the DP-LSW and DP-LSL mechanisms introduced in the previous chapter, while

maintaining sufficient privacy, we augmented these algorithms with a sub-sampling subroutine

that dynamically adapts with the input batch mechanism. We have shown both theoretically and

empirically that this approach can provide a utility boost. We suspect that stronger theoretical

results can be obtained for this setting, and we hope that the work we presented can inspire others

to investigate subsample-and-aggregate methods of various types.



Chapter 5

Membership Inference Attacks Against
Deep Reinforcement Learning

In the previous chapters, we addressed the challenges of designing privacy-preserving reinforce-

ment learning algorithms from the algorithm designer’s perspective. In this chapter, we take the

perspective of someone who wishes to attack models resulting from such algorithms. We study

the extent to which reinforcement learning is vulnerable to a popular family of privacy attacks,

known as membership inference attack.

Membership inference attacks or tracing attacks are special type of adversarial attacks designed

to identify whether a data point has been used in the training of a given model obtained through

a machine learning approach (Shokri et al., 2017; Yeom et al., 2018; Dwork et al., 2017).

Differential privacy, as a rigorous standard, can be used to protect machine learning algorithms

during the training phase, by alleviating the impact of a single data point on the behavior of a

trained machine learning model. Recently, many open source library such as the TensorFlow

Privacy framework (Ten) and the PyTorch Opacus framework (Opa) have been introduced to data

scientists to facilitate the employment of differential privacy in classic machine learning. One

of the goals of these frameworks is to protect machine learning algorithms against membership

inference attacks!(Humphries et al., 2020; Dwork et al., 2017). However, some recent studies

show that differential privacy algorithms are not necessarily successful in this task (Humphries

et al., 2020; Ying et al., 2020).

The goal of this chapter is to examine the potential of carrying out these types of attacks

against deep RL models. As deep RL becomes increasingly powerful for learning complex

control strategies, and its applications are starting to include domains such as health care (eg

adaptive treatment design) and dialog systems, in which user data is used to train the model,

it is quite important to understand whether membership attacks can create a problem for the

73
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resulting models. While this question have been investigated in supervised learning, the RL

setup is quite different due to the fact that training is done on trajectories of states, actions

and rewards, and correlations between the information at different time steps could potentially

be exploited. The potential vulnerability of deep RL models to membership attacks has not

been explored sufficiently at the moment. In particular, there have been no concrete adversarial

attack strategies in the literature tailored for deep reinforcement learning algorithms. To address

this gap, we propose an adversarial attack framework tailored for testing the vulnerability of

deep RL algorithms to membership inference attacks. We design a series of experiments to

investigate the impact of temporal correlation, which naturally exists in reinforcement learning

training data, on the probability of information leakage. Furthermore, we study the differences

in the performance of collective and individual membership attacks against deep reinforcement

learning algorithms. Experimental results show that the proposed adversarial attack framework

is surprisingly effective at inferring the data used during deep reinforcement training with an

accuracy exceeding 84% in individual and 97% in collective mode on two different control tasks

in OpenAI Gym, which raises serious privacy concerns in the deployment of models resulting

from deep reinforcement learning. Moreover, we show that the learning state of a reinforcement

learning algorithm significantly influences the level of the privacy breach.

5.1 Membership Inference Attack in Machine Learning

In machine learning, a membership inference attack (MIA) or tracing attack (Dwork et al., 2017;

Shokri et al., 2017) is a form of adversarial attack that is designed to infer the presence of a

particular data point x in the training set of a target modelM. Specifically, when the target model

is trained on a collection of sensitive data membership inference attacks become threatening. In

this situation, the presences or absence of a data point is valuable piece of information for the

adversary or attacker. The central intuition in the design of MIAs is that publicly available trained

models tend to exhibit higher confidence in their predictions on the individuals who participated

in the training data. Consequently, the members of training sets are vulnerable to privacy threats.

The main challenge for the adversary in implementing MIAs is to design a classifier compatible

with the target model domain setting and decide whether a particular data point was part of the

training set given the output of the trained target model.

Based on the formalism provided by Yeom et al. (2018) we formally describe the attack training

procedure. Let X be the training set of size n generated by the data oracle Odata and used to train

the target modelM. Based on this information, the adversary trains a membership inference

attack classifier A againstM in order to extract whether a particular data point x was used in

training of the target modelM. We note that we only assume black-box access to the data oracle;
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thus, the data distribution is not assumed to be common knowledge. Therefore, if x ∈ X, the

experiment Exp(M,A, x, n) = 1 and if x ̸∈ X then Exp(M,A, x, n) = 0.

Based on the existing literature on MIAs designed against models trained in supervised and

unsupervised setting (Rigaki and Garcia, 2020; Hu et al., 2021), attackers employ different MIA

design strategies based on: i) the adversary’s knowledge level of the parameters in the target

model, ii) the adversary’s knowledge level of the training data distribution.

In the Label-only strategy (Yeom et al., 2018; Choquette-Choo et al., 2021), the attacker only

relies on model predictions and discards the model’s confidence scores. In this technique, the

attacker uses the generalization gap (the difference between the train and test accuracy) in the

attack model as the main driver in inferring the membership of individuals used in training

the target model. The label-only technique was first introduced in Yeom et al. (2018) and was

subsequently extended by Choquette et al. Choquette-Choo et al. (2021) to show how the label-

only technique can improve the existing attack baselines. In the general RL setting, however, the

notion of label is not defined. Hence, the label-only technique cannot be applied.

The shadow model technique (Shokri et al., 2017) is known as an effective and practical approach

for designing membership inference attack models. Shadow models are parallel local models

trained on data sets often sampled from the same distribution as the underlying distribution

of the private data. In this method, the adversary trains the models with complete knowledge

of the training set. Thus, using the auxiliary membership information and the trained shadow

models, the adversary can build a membership classifier that identifies whether an individual has

participated in the training of similarly trained models.

In both label-only and shadow model techniques, the adversary should have access to the model

output labels and the training data true labels. However, the sequential nature of the training and

output data points and the temporal nature of model training make the design of membership

inference attacks for RL models fundamentally different. Moreover, the presence of replay buffer

as an inevitable part of off-policy deep RL models adds another level of complexity to the design

of membership inference attacks, as this intermediate transformation phase adds a new source of

noise to the input data from the attacker’s perspective.

5.2 Membership Inference Attack in Deep Reinforce-

ment Learning

The vulnerability of deep reinforcement learning models to privacy breaches has only begun to be

explored in literature. The only study on the privacy of deep reinforcement learning models Pan
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et al. (2019) demonstrated the potential vulnerability of deep reinforcement learning models to

privacy breaches by adversarially inferring floor plans in grid world navigation tasks as well as the

transition dynamics of continuous control environments from the models themselves. However,

to the best of our knowledge, there has been no study on the potential membership leakage of the

data directly employed in training deep reinforcement learning (deep RL) agents, which is known

as membership inference attacks. The potential success of such membership inference attacks

can have serious security ramifications in the deployment of models resulting from deep RL.

One of the major challenges in the implementation of membership inference attacks in deep RL

settings is the sequential and correlated nature of the deep RL data points. For instance, in this

context, a data point may consist of hundreds of correlated components in the form of tuples,

which all together form a single trajectory. A successful membership inference attack algorithm

should be able to learn not only the relation between the training and output trajectories but also

the correlation between the tuples within each data point. Another complication in this regard

concerns the type of relationship existing between the training and prediction data points. As an

example, in the text generation problems (e.g. machine translation or dialog generation systems,

there is a direct (usually one-to-one) correspondence between the input and output sequential

data points. On the other hand, in deep RL settings, batches of collected data are used for training

the deep RL policy, whose output corresponds to every single data point in the training batches.

In deep RL algorithms the concept of label is not defined as it is in supervised or semi-supervised

learning methods. Instead, during the learning phase, the deep RL agent receives reinforcement

(aka rewards) from the environment as the outcome of the selected action. The deep RL agent

uses the obtained rewards to learn the task and optimize its learning policy, which produces output

data points (trajectories) based on the trained data in the prediction phase. The aforementioned

factors lead to complications with regard to defining input-output pairs in the training of attack

classifiers and subsequently establishing a meaningful relationship between the pair constituents.

To gain a better understanding of the problem, we provide a brief introduction to the basics of

reinforcement learning (For more details, refer to section 2.2). A data point in reinforcement

learning is a sequence of temporally correlated tuples (st, at, rt, st+1) that denote the history of

the reinforcement learning agent’s interaction with the environment from time t = 0 to t = T.

This sequence of tuples is often referred to as trajectory. At time t, the reinforcement learning

agent is at state st, interacts with the environment by taking action at according to a policy

π, and subsequently receives the reward rt and moves to the state st1 . The dynamics of the

environment used by the policy π is not public information; thus, the reinforcement learning

agent has no prior knowledge of the underlying environment dynamics. To test the vulnerability

of reinforcement learning methods to membership inference attacks, we use batch off-policy

reinforcement learning setting, where the common practice is that an (unknown) exploration

policy (behaviour policy) πb collects the input batch (private data). The batch data is thereafter
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delivered to the reinforcement learning algorithm in the form of independent trajectories (Markov

chains) to train and release the target policy.

5.3 Problem Statement

Deep reinforcement learning methods have a unique structural difference compared to deep

supervised or unsupervised methods, i.e. learning based on temporal correlation between the

tuples in each trajectory and partial reinforcements the model receives upon interaction with the

underlying environment. Even though deep reinforcement learning models decorrelate input

trajectories through the replay buffer mechanism, the inherent correlation between transition

tuples still plays a significant role in the behaviour of the output policy. For instance, recent

studies show that feature representations learned by deep reinforcement learning models are

highly correlated Mavrin et al. (2019). Yet, considering that replay buffer obscures the correlation

of input trajectories through the process of decorrelation before passing them to the models, two

natural questions arise:

1. How much information (with regard to the training members) can an adversary extract

from the output of a trained off-policy deep RL agent?

2. To what extent can an adversary benefit from feature correlations in the learned policy?

In this study, we present the first black-box membership inference attack against a deep reinforce-

ment learning agent to address the two aforementioned questions. In our proposed adversarial

attack framework, the target model is considered a black box; thus, the attacker does not have

access to the internal structure of the off-policy reinforcement learning agent. In particular,

the attacker can only send a query to the target model and receive the answer in the form of a

trajectory τout
T .

Our proposed attack framework tests the vulnerability of a state-of-the-art off-policy deep

reinforcement learning model to membership attacks in two modes: individual and collective. In

the individual mode, the attacker’s goal is to train a probabilistic model that infers the membership

probability of a trajectory τin
T given the trained policy π f and the initial state s0. In other words,

the goal is to train a probabilistic classifier that learns the following distribution,

Pr[(S0 = s0, A0, R0, S1, A1, R1, . . . , ST, AT, RT)
in|π f , s0]. (5.1)
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On the other hand, in the collective mode, the attacker’s target is to predict the membership

probability of a collection of data points. We show that reinforcement learning models are

more vulnerable to collective membership inference attacks as in this mode, the attack classifier

has more access to the required information to infer the input data. Moreover, we assess the

vulnerability of the RL algorithm to membership inference attacks with respect to the learning

state of the algorithm. Our results show that the cumulative amount of reinforcement the RL agent

obtains in the course of training the policy affects the level of its vulnerability to membership

inference attacks. Finally, we compare the impact of training the attacker with correlated data

with that in decorrelated data on the quality of learning in the attack classifier.

5.4 Related Work

Membership inference attacks were used for the first time against machine learning systems by

Shokri et al. (Shokri et al., 2017). In the following years, extensive studies were performed on the

application of MIAs against supervised (Shokri et al., 2017; Long et al., 2020; Yeom et al., 2018;

Salem et al., 2019; Song and Mittal, 2021) and unsupervised (Hayes et al., 2019b; Hilprecht

et al., 2019; Chen et al., 2020) machine learning models, surveyed comprehensively by Hu et al.

(2021), and Rigaki and Garcia (2020). In this chapter, bcasue of the sequential nature of data

points in reinforcement learning we only review the existing attack models against supervised

and unsupervised models trained on sequential data.

MIAs have been studied in the context of text generation problems (Song and Shmatikov,

2019; Hisamoto et al., 2020), where the attacker’s goal is to identify whether or not a specific

sequence-to-sequence or sequence-to-word pair is part of the input training data of a machine

translation engine, a dialog system or a sentimental recommendation system. The structure of

machine learning algorithms with sequential data differs from that of classic classification tasks

regarding the input type and the type of prediction they output. While inputs and outputs in

standard classification problems have fixed sizes, they are chains of correlated elements with

variable lengths in sequence generation tasks. These differences pose a fundamentally different

approach in designing MIAs against sequence generation tasks. The knowledge of output space

distribution is no longer valid for the attack classifier since the output length may vary from one

model to another. To tackle this challenge, Song and Shmatikov (Song and Shmatikov, 2019)

assume access to a probability distribution over output-space vocabularies. Authors in Song and

Shmatikov (2019) split their proposed attack model into two phases of shadow model training

and audit model training. In the shadow model training phase, the attacker trains multiple shadow

models assuming that the attacker has access to a generative model that generates a sequence of

vocabularies. In the audit training phase, the attacker uses the rank of the words produced by the

target model instead of the output probability distribution. The main assumption here is that the
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gap between rank prediction is associated with the words that appeared in the training and test

sets. In a similar line of research, authors in Hisamoto et al. (2020) address membership inference

attack against sequence-to-sequence models in the setting where the adversary is agnostic to the

word sequence distribution. However, in this work, the attacker is equipped with a generative

model for different translation subcorpora, an alternative for output word sequence distribution.

Apart from the machine translation setting, membership inference attacks have been executed

against aggregate location time-series (Pyrgelis et al., 2017, 2018, 2020). For the first time,

authors in Pyrgelis et al. (2020) study the impact of different spatial-temporal factors that

contribute to the vulnerability of time-series-based algorithms to membership inference attacks.

Models trained on sequential data have the following fundamental differences with RL algorithms,

1. while in the language setting is the input-output relation is well defined and deterministic,

this type of relationship is defined through the trained policy, and each output sequence

can be considered as the evidence for the entire input dataset.

2. RL agent follows an online/active learning paradigm, while Machine Translation follows a

supervised or unsupervised learning paradigm; thus the notion of labels in RL is undefined.

3. RL agent directly learns from the temporal correlation, and this is why temporal correlation

becomes critical from both the attacker’s and the RL agent’s perspectives.

Due to the above-mentioned fundamental differences, one requires a fundamentally different

approach in designing MIAs against the RL algorithms. To the best of our knowledge, there

is no prior work in the context of deep reinforcement learning that addresses the problem of

membership inference at a microscopic level, where the attacker infers the membership of a

particular data-point in the training set of deep reinforcement learning models (Hu et al., 2021;

Rigaki and Garcia, 2020),.

For the sake of completeness, we briefly review the only existing privacy attack against reinforce-

ment learning. Pan et al. (2019) proposed a black-box attack against deep reinforcement learning

algorithms that centers around the over-fitting problem. More specifically, the proposed attack

studies the effect of over-fitting on revealing information about the agent’s training environment

as well as the model parameters. Shadow model training proposed in Pan et al. (2019) aims

to infer the transition model used to train the target policy from the set of candidate transition

dynamics. The assumption of having access to a collection of transition dynamics is infeasible to

many real-world reinforcement learning settings and less appealing to the industrial audience,

where the concern is the privacy of individuals participating in model training.
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5.5 Attack Framework

In this section, first, we explain the general problem setting and subsequently introduce our attack

platform and our proposed method of data formatting for training the attack models.

In the proposed adversarial attack framework, we successfully conduct membership inference

attacks against deep RL in a black-box setting, where only the model output is accessible to the

external users. The deep RL model interacts with an environment whose distribution of initial

states, state space S and action space A are assumed to be common knowledge, an assumption

that is widely accepted in the RL community (Sutton, 1985; Vietri et al., 2020; Szepesvári, 2010).

For instance, in clinical trials, the initial state could be a category of diseases, with respect to

which the RL clinical model will choose to take the proper action and train its policy based on

the outcome (rewards) it observes.

We propose an adversarial attack method for studying the vulnerability of the deep RL algorithm

to MIA in a black-box setting, where the attacker’s access to the model is limited to the output

trajectories of the model trained on given input trajectories. Figure 5.1 depicts the general

framework of our proposed black-box attack on deep RL algorithms.

The two important oracles that always accompany the end-to-end design of a black-box attack

model in off-policy deep reinforcement learning are: i) data oracle Odata and ii) model trainer

oracle Otrain. The data oracle interacts with the environment and returns a set of independent

and identically distributed (i.i.d.) training trajectories (Markov chains) for the model trainer

oracle Otrain (see Figures 5.1 (a, b)). The data oracle is a black box, which is equipped with a

set of unknown exploration policies. To train the target model, whose training input is of the

adversary’s interest, the data oracle is initialized privately (see Figure 5.1 (a)), leading to the

generation of a batch of private training data points in the form of trajectories. The model trainer

oracle is agnostic to the exploration policy used for the data collection. The training data batch is

passed to the deep RL trainer oracle, and the resulting trained model is made publicly available

for data query. Our experimental framework can adopt any of the existing off-policy batch deep

reinforcement learning models as the deep RL trainer oracle. In this study, we choose to work

with the state-of-the-art Batch-Constrained deep Q-learning (BCQ) (Fujimoto et al., 2019) model,

which exhibits remarkable performance in complex control tasks.

We use the shadow model (Shokri et al., 2017) training technique to acquire the data needed

for training the attack classifier. In particular, the attacker provides the deep RL trainer oracle

with a set of non-private training trajectories through the data oracle (Figure 5.1 (b)). The output

trajectories act as pieces of evidence for the input trajectories. The attacker subsequently queries

output trajectories from the trained deep RL model and passes the training and output trajectories

to the data formatter (Figure 5.1 (c)). In this step, the trajectories are augmented into pairs based
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FIGURE 5.1: Proposed black-box membership inference attack architecture in deep
reinforcement learning. (a) Private deep RL model training: the black-box exploration
engine (data oracle) interacts with the environment and provides private training trajecto-
ries for the black-box deep RL model trainer. The trained deep RL model is subsequently
used to output target trajectories through interaction with the environment. (b) Shadow
training: the data and deep RL trainer oracles are used to produce the training and output
trajectories in a non-private manner. (c) Training the attack classifier: the input and
output trajectories obtained in part (b) are paired together in data formatter to provide
positive training pairs for the attack model. Another set of trajectories, which has not
been used in training the shadow model, is used with the output trajectories from part (b)
to create negative training pairs for the attack model. The attack model is subsequently
trained using the paired trajectories. (d) Membership inference attack: the target output
trajectories are paired with sample test trajectories in the data formatter. The trained
attack model subsequently uses the pairs to infer the test set trajectories that were used

to train the private deep RL model.
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on the internal logic of the attack trainer and are subsequently labelled. The training and output

trajectories are labelled as positive or negative depending on whether or not the trajectories

belong to the same trained model. Finally, the attack trainer trains a probabilistic classifier that

takes as input the pairs of trajectories prepared by the data formatter and returns a trained attack

classifier that is subsequently used to infer the membership of target input trajectories (Figures

5.1 (c,d)).

Since the attack training data collected by the data oracleOdata and prepared by the data formatter

is of a sequential nature, we need to adopt an attack model that is compatible with time-series

data. The classifier should minimize the expected loss, defined as

ED
[
l( f (D, π f ), g(.))

]
≈ 1
|D| ∑

τ∈D
l( fθ(τ, π f ), g(τ, π f )), (5.2)

where g(.) is the function that assigns labels to the formatted pairs, f (.) is the parameterized

classifier and l(.) is the loss function adopted by f . The dataset D contains a set of i.i.d.

trajectories drawn from D and π f denotes the policy trained on D. The goal of the attacker is to

train a classifier that learns a parameter vector (or network) θ∗ that minimizes the loss function.

We provide more details regarding the data formatter and the attack classifier in the following

sections.

5.6 Experimental Setup

In this section, we mention the different settings we have considered in our experimental design.

In our experimental design, we study the vulnerability of the deep RL model to membership

inference attacks in terms of the following factors, including:

1) the maximum trajectory length Tmax within each episode - The value of Tmax is determined

and fixed by the environment during data collection and model training. In particular, the RL

agent’s trajectory in each episode ends when either the agent arrives at an absorbing state at

T < Tmax or the number of time steps T = Tmax. Larger Tmax corresponds to larger values of

return (cumulative reward), thus improved deep RL policy.

2) the membership inference mode (collective vs. individual MIA) - In the individual mode, the

adversary’s goal is to infer the membership of single training data points (trajectories), while in

the collective mode, the adversary’s target is a batch of trajectories used in the training of the

deep RL model.
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3) the level of correlation within the input trajectories used to train the attack classifier - In the

case of individual MIA, we study the performance of our proposed attack classifier in two modes:

1) correlated mode, where the adversary is trained on pairs with undisturbed input trajectories,

2) decorrelated mode, where the input trajectory is formed by sampling tuples at random from

the whole batch. This set of experiments provides useful information regarding the effect of the

correlation level within the input trajectories on the performance of the attack model.

A detailed description of the environments used in our experimental design, the data formatting

technique, and the attack architecture is provided below.

5.6.1 Environments and RL Setting

We assess the the algorithms on OpenAI Gym environments (Brockman et al., 2016) powered

by MuJoCo physics engine (Todorov et al., 2012), which are standard tasks adopted by many

recent reinforcement learning studies (Lillicrap et al., 2015; Haarnoja et al., 2018; Fujimoto et al.,

2018; Henderson et al., 2018; François-Lavet et al., 2018). OpenAI Gym provides a variety of

simulated locomotion tasks with different action and state space dimensionalities. Here, we train

the deep RL agent on two high-dimensional continuous control tasks: Hopper-v2 (A ⊂ R3 and

S ⊂ R11) Half Cheetah-v2 (A ⊂ R6 and S ⊂ R17). Starting from virtually zero knowledge of

how each task works, the deep RL agent’s goal is to teach the robot in Hopper-v2 how to hop and

the cheetah in HalfCheetah-v2 how to run.

We use the Deep Deterministic Policy Gradient (DDPG) algorithm (Lillicrap et al., 2015) as the

data oracle Odata and Batch-Constrained Deep Q-Learning (BCQ) Fujimoto et al. (2019) as the

batch off-policy deep RL method used in the trainer oracle Otrain. The choice of data oracle is

arbitrary; any exploration policy or data collection mechanism or subroutine that is compatible

with batch off-policy deep RL setting is acceptable. For the set of experiments we perform in this

study, we trained two DDPG models with distinct initial parameters to act as data oracle in order

to provide the data required for the model training phase and two DDPG models with distinct

initial parameters to act as data oracle in order to provide the data required for the model testing

phase. Then, we trained one BCQ agent for the target modelling phase and one BCQ agent for

the shadow modelling phase (see Figure 5.1).

In interaction with the MuJoCo environments, the data oracle Odata produces training trajectories

for the trainer oracle Otrain, on which the deep RL agent is trained. The adversary uses the data

and train oracles to train a shadow deep RL model and subsequently passes the training and

model output trajectories to the data formatter. The next paragraph provides details regarding

how the data formatter prepares the pairs for training the attack classifier.
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5.6.2 Data Augmentation

In episodic tasks, each trajectory starts with an initial state s0 drawn from the available distri-

bution of initial states in the environment, based on which the RL agent selects action a0. The

environment subsequently takes the agent to the next state s1 and returns the reward r1. The

agent’s next choice of action is based on s1, and this cycle continues until the trajectory ends at

sT. In other words, the initial state s0 plays a significant role in determining the sequence of taken

actions by the RL policy and the consequent states and rewards. Thus, to prepare training pairs

for the attack classifier, we pair training and output trajectories that have the same initial states.

In this way, we fix the starting point of the two trajectories in a pair. Moreover, as the RL agent

interacts with MDP, the resulting trajectory is a Markov chain. Thus, every state and reward in

the trajectory is a consequence of the previous state and action. Therefore, we choose to remove

states and rewards from the trajectories and use only the selected actions for preparing the pairs.

Each task is equipped with a set of absorbing states B ∈ S . The state that leads to the termination

of an agent’s chain of interactions in an environment is absorbing. Due to the presence of

absorbing states in an environment, trajectories generated through the agent’s interaction with

the environment have different lengths. To pair the training and output action trajectories from

the deep RL model, we need to either increase the length of shorter action trajectories to match

that of the longest one, or clip longer action trajectories to a pre-determined length. Based on the

desired length, we choose to repeat the last action in shorter action trajectories for the required

number of times and trim longer trajectories. Note that setting the clipping length to large values

in sparse tasks, where the trajectories often end at time steps much smaller than Tmax, is not

desirable, as a considerable number of last-action repetitions in trajectories misleads the attack

classifier.

Each action trajectory is a dA × T dimensional array, where dA is the dimension of action space,

and T is the total number of actions in the trajectory. The output action trajectory is concatenated

with the RL training trajectory such that the resulting pair is a 2dA × T dimensional array. The

pairs are subsequently passed to the attack classifiers in multi-dimensional arrays R2dA×T and

R2dA×T×m in individual and collective modes, respectively. The value m refers to the number of

pairs in each batch in the collective mode, which is set to m = 50 in this study.

5.6.3 Attack Classifier Architecture

We use Temporal Convolutional Networks (TCNs) Bai et al. (2018) as the classifier for individual

MIA and Residual Network (ResNet) He et al. (2016) deep architecture for collective MIA. Figure

5.2 shows a schematic of TCN (Figure 5.2(a)) and ResNet (Figure 5.2(b)) network architectures.
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FIGURE 5.2: The network architecture of TCN (a) and ResNet (b) used in the individual
and collective membership inference attacks, respectively.
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5.6.3.1 Individual Mode Attack Classifier Architecture

In deep RL, both training and output trajectories are composed of temporally correlated transition

tuples with variable lengths. Thus, the choice of attack classifier must capture the input level

temporal correlation in its feature representation. TCNs are structurally designed to utilize the

inherent temporal correlation in the training data through a hierarchy of temporal convolutions

architecture. In this regard, TCN employs a 1D fully-convolutional network (FCN) architecture

(Long et al., 2015), where each of its hidden layer has the same length as the input layer (Figure

5.2(a)). The main advantage of TCN is the ability to use dilation in convolution layers to keep the

long-ranged temporal dependency and increase the receptive field of the convolutional layers. In

the individual MIA mode, since the input data to the classifier is a collection of i.i.d. temporally

correlated pairs (i.e. a two-dimensional tensor R2dA×T), the long-range correlation between

input tuples within each trajectory is well-aligned with the input structure of TCNs. For more

information on TCN architecture, please refer to Bai et al. (2018). Figure 5.2(a) demonstrates

the general TCN architecture we used to design and train the individual mode attack classifier.

TCN architecture we employed is composed of three hidden layers and one output layer that

computes the membership probabilities. The input later for our proposed TCN architecture is a

tensor R2dA×T that is compatible with a pair of trajectories of length T.

5.6.3.2 Collective Mode Attack Classifier Architecture

In the collective mode, we choose to work with deep residual networks (ResNets) as the choice of

attack classifier. We choose ResNet deep architecture because of its inherent compatibility with

data sets with complex deep structures with temporal correlation within its elements (Zhang et al.,

2017; Wen et al., 2018). In the collective mode, our input is in the form of three-dimensional

tensor (e.g. R2dA×T×m). Unlike the individual MIA mode, which involves 2-dimensional inputs,

in the collective MIA mode, we have another dimension m for the number of trajectories in

each batch of trajectories. Consequently, the collective MIA setting is similar to that in image

classification (He et al., 2016; Simonyan and Zisserman, 2014; Huang et al., 2017) problems.

Thus, we use ResNet (He et al., 2016) architecture, which is popular in solving standard computer

vision problems (He et al., 2016; Minaee et al., 2021; Zhao et al., 2019). Our ResNet architecture

is composed of 18 hidden layers with a a softmax output layer and three dimensional input tensor.

Table 5.1 shows the deep network parameters used in this study in both networks.
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TABLE 5.1: TCN and ResNet Architecture Settings

TCN Parameter Value

Optimizer Adam

Learning Rate 1e−3

Dropout value 0.5

Discount Factor 0.99

ResNet Parameter Value

Optimizer Adam

Learning Rate 1e−3

Weight decay 1

Discount Factor 0.99

0.0

0.2

0.4

0.6

0.8

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AC
C

Individual
Collective

(a) Hopper-v2

Tmax

Individual
Collective

10 50 100 200 500

M
C

C

Individual
Collective

(b) HalfCheetah-v2

10 30 50 100 200Individual
Collective

10 30 50 100 200

Tmax

FIGURE 5.3: The performance of the attack classifiers in tasks Hopper-v2 (a) and
HalfCheetah-v2 (b) in individual and collective attack modes. Each data point is
determined from the average result of 5 separate runs. The error bars depict the error on

the mean for ACC (top) and MCC (bottom) for the corresponding runs.

5.7 Results and Discussion

In this section, we discuss three different experimental scenarios to capture the interdependence

between different parameters that affect the accuracy of membership attacks in deep reinforcement

learning settings.
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TABLE 5.2: The performance of the attack classifiers in Hopper-v2 (a) and HalfCheetah-
v2 (b) for different maximum trajectory lengths Tmax in terms of accuracy (ACC),
precision (PR), recall (RE), F1 score (F1), and Matthews correlation coefficient (MCC).

The values in parentheses show the results for the collective attack mode.
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5.7.1 Collective vs. Individual MIAs

We assess the behaviour of the attack classifiers in predicting the membership probability of

each data point (individual attack mode) and collective data points (collective attack mode)

using different classification metrics thoroughly explained in Chapter 2. Figure 5.3 presents the

performance of the attack classifiers in the individual mode (TCN) and collective mode (ResNet)

in Hopper-v2 (Figure 5.3(a)) and HalfCheetah (Figure 5.3(b)) environments in terms of ACC

and MCC for different maximum trajectory lengths Tmax. The Full report of their performance

in the two tasks is provided in Tables 5.2(a) and 5.2(b), respectively. The results show that our

proposed attack framework is remarkably effective at inferring the RL model training data points.

Considering that both classifiers are trained with only one shadow model, the obtained results

demonstrate high privacy risks in employing deep reinforcement learning when working with

sensitive training data.

Moreover, the results reveal that for a fixed Tmax, the adversary infers collective data points

with significantly higher accuracy compared with that in the individual mode. For example,

there are instances in the Hopper-v2 task, where the membership inference accuracy in the

collective mode is more than 13% higher than that in the individual mode. This observation

shows that the deep RL algorithm is more vulnerable to MIA in the collective mode, which is

expected since more information is provided to the attack classifier through a batch of data points

instead of one. Nevertheless, from the deep RL agent’s perspective, specific information to each

individual is concealed from the adversary in the collective mode, which is helpful in preserving

the individuals’ identities.

FIGURE 5.4: Bench-mark results on two high-dimensional locomotion tasks from
OpenAI Gym environment Hopper-v2 (a), and Half Cheetah-v2 (b). The graphs depict
the performance of the deep RL model on the two tasks as a function of time for different
maximum trajectory lengths Tmax within each episode. The plots are averaged over 5
random seeds. The policy performance is assessed every 5000 steps over 1000000 time

steps.
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5.7.2 The Impact of Tmax

We test the performance of attack classifiers against the target model for different values of Tmax

in a set of experiments. As the environment is unvarying, the value of Tmax remains unchanged

throughout each experiment. Our observations presented in Figure 5.3 show that as Tmax increases,

the performance of the attack classifiers in both individual and collective modes improves. Since

MCC utilizes all four values in the confusion matrix, it provides a more reliable and robust

measure compared to the other metrics (Table 5.2). Our results show consistent improvement

of MCC across different values of Tmax in both Hopper-v2 and Half Cheetah-v2 environments,

which is consistent with the changes in ACC.

Maximum trajectory length Tmax plays a significant role in the performance of deep RL models.

Figure 5.4 illustrates the learning curves for the deep RL agent in Hopper-v2 (Figure 5.4(a)) and

HalfCheetah-v2 (Figure 5.4(b)) for different values of Tmax. The deep RL policy is evaluated

every 5000 time steps for the total number of 1000000 steps. The plots show that as Tmax

increases, the deep RL policy presents a consistently improved behaviour. As RL policy is

the function that maps the visited states to the selected actions, a closer deep RL policy to the

optimal policy corresponds to a more predictable relationship between the training and the output

trajectories. We argue that this feature of deep RL policies contributes to the vulnerability of

deep RL models that are trained on larger values of Tmax.

As the attack classifiers output membership probabilities, we determine the predicted binary

label with respect to a range of acceptance thresholds θ = 0.1, 0.2, . . . , 0.9, and subsequently

choose the threshold θ, at which the classifier shows the highest performance. Figure 5.5 depicts

the sample ROC curves for HalfCheetah-v2 in individual (Figure 5.5(a)) and collective (Figure

5.5(b)) modes. The plots show that the larger Tmax is, the attacker shows a better performance.

The best result is obtained at Tmax = 200 in the collective mode (Figure 5.5(b)). We find that the

acceptance threshold θ = 0.5 yields the highest performance throughout all of our experiments.

5.7.3 Clipping Length Impact

In our experimental design, we further study the effect of varying the clipping length on the

performance of the attack classifier. Clipping length determines the length of paired action

trajectories: trajectories longer than the clipping length are trimmed, while shorter ones are

extended via repeating the last action for the required number of times. Figure 5.6 illustrates a

sample graph that shows the performance of the adversary in individual and collective modes in

Hopper-v2 at Tmax = 100 for a range of clipping lengths. Our results show that the attacker’s

performance against the deep RL algorithm is relatively invariant with respect to the clipping

length. This observation indicates that due to the temporal correlation between the transition
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FIGURE 5.5: The receiver operator characteristic (ROC) curves of the membership
inference attack in HalfCheetah-v2 in the individual (a) and collective (b) modes for
different values of Tmax. We note that, the the trained attack classifiers are evaluated on

the balanced test data and thus, we choose 50% as the baseline for random guess.
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FIGURE 5.6: The accuracy of data inference in Hopper-v2 at Tmax = 100 for different
clipping lengths in individual and collective attack modes. Each data point is determined
from the average result of 5 separate runs. The error bars depict the error on the mean

for accuracy measurements for the corresponding runs.

tuples in a trajectory, the first few tuples carry sufficient information for learning the relationship

between the paired trajectories.

5.7.4 Temporal Correlation

The results presented so far exhibit the performance of the membership inference attacks against

deep reinforcement learning as a result of training the attack classifiers on the temporally

correlated data collected from the training set and output of the deep RL model. At this point, a

question may arise: how do we know that the high performance of the MIAs is the consequence

of temporal correlation in the data set?

To answer this question, we have performed a set of experiments, where before the data aug-

mentation phase, the temporal correlation between the deep RL training trajectories is broken.

In particular, we first decorrelate the trajectories through shuffling the tuples of trajectory used

in training the deep RL model and subsequently store the decorrelated transition tuples in an

auxiliary buffer. In the next step, we generate trajectories of the desired length by sampling
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FIGURE 5.7: Comparison of the membership inference attack accuracy between corre-
lated and decorrelated settings for HalfCheetah-v2.

actions uniformly from the buffer. Finally, we pass the collection of decorrelated trajectories to

the data augmentation mechanism and train the attack classifiers with the paired trajectories in

individual and collective modes. Figure 5.7 compares the accuracy of the membership inference

attack in the correlated mode with that in the decorrelated mode. The plots depict that upon

the decorrelation of the training trajectories, the adversary’s accuracy in inferring RL training

members decreases significantly. The results show that despite the inevitable input decorrelation

imposed by the replay buffer mechanism in the training phase of off-policy deep RL models,

the temporal correlation in the training trajectories is channeled to the model output data points.

Thus, the attack classifiers trained on temporally correlated training data points exhibit higher

accuracy in MIA than those trained on decorrelated trajectories.

5.8 Discussion

In this chapter, we designed and evaluated the first membership inference attack framework

against off-policy deep reinforcement learning in collective and individual membership inference

modes by exploiting the temporal correlations present in RL algorithms. We demonstrated the
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behavior of the proposed adversarial attack framework in complex high-dimensional locomotion

tasks for different maximum trajectory lengths. The proposed framework reveals substantial

vulnerability of a state-of-the-art off-policy deep RL model to black-box membership inference

attacks. Moreover, we showed that reinforcement learning is significantly more vulnerable to

membership inference attack in a collective setting than in the individual membership setting.

In addition, the experimental results reveal that the maximum trajectory length, which is set by

the environment, plays a significant role in the vulnerability of the deep reinforcement learning

model to the membership inference attack. A longer maximum trajectories correspond to less

privacy. Finally, our results reveal the role of temporal correlation in attack training. This type

of information can be utilized very effectively to design high accuracy membership inference

attacks against deep reinforcement learning. The results from this study highlight serious privacy

concerns that may affect the widespread deployment of models resulting from deep reinforcement

learning. It is important to investigate algorithmic solutions to this problem in in future work.



Chapter 6

Conclusions and Future Work

6.1 Main Findings

This dissertation developed algorithms and frameworks that address the challenges in designing

private reinforcement learning algorithms. In Chapter 3, we introduced the first privacy-preserving

policy evaluation algorithm under full MDP setting. Our theoretical analysis and empirical

evaluation unveiled the trade-off between the privacy budget, regularization coefficient and the

sample size. Under a particular selection schedule for the regularization coefficient with respect to

the sample size, the upper bound we derived on the empirical excess risk explicitly demonstrated

how the aforementioned parameters should be adjusted to minimize the empirical excess risk.

Additionally, we developed the first application of the smooth sensitivity framework on the class

of empirical risk minimization problems (ERMs) in which the loss function is non-Lipschitz.

Moreover, we extended the natural model of neighbouring datasets from a supervised setting,

where a data point is composed of a single regression target, to the reinforcement learning setting,

where a data point is composed of a trajectory of transition tuples with multiple regression

targets. Our experimental results show that in a non-tabular setting, a more aggressive function

approximation provides a better rate of convergence in both of the proposed private algorithms.

This observation is consistent with the results presented by some previous studies on privacy-

preserving linear regression (Wang, 2018; Sheffet, 2019).

The sub-sampling technique proposed in Chapter 4 successfully improved the utility of privacy-

preserving linear queries. From a theoretical perspective, we introduced new sensitivity and utility

measures tailored to our proposed utility-amplification framework. We developed theorems that

show how to adaptively apply the proposed sub-sampling subroutine in different privacy regimes,

for different sample size choices and privacy parameters. In particular, we showed that if the data
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distribution satisfies specific properties with respect to the number of sub-samples and the sub-

sample size, the utility of the proposed sub-sample and average mechanism improves compared

with that of the classic Gaussian mechanism. In the generic setting with no assumption on the

underlying data distribution, we explicitly derived the required relationship between the sample

size, number of sub-samples, and the sub-sample size. Empirically, our proposed sub-sampling

framework successfully improves the utility of the DP-LSL and DP-LSW algorithms introduced

in Chapter 3 in a chain MDP baseline. We tested the performance of our utility amplification

framework in comparison to the DP-LSL and DP-LSW algorithms in different privacy regimes.

The results we presented showcase the adaptability of the proposed algorithmic approach to

different privacy parameters.

Finally, in Chapter 5 we introduced the first membership inference attack framework against

deep reinforcement learning algorithms. We studied some of the factors contributing to the

vulnerability of off-policy deep reinforcement learning, including the learning state of the target

policy with respect to the optimal policy, individual versus collective data point inference, and

the temporal correlation in the attack classifier training set. Our results show that off-policy deep

reinforcement learning is significantly vulnerable to black-box membership inference attacks. In

particular, we demonstrate that as the maximum trajectory length in each episode increases and

the target policy gets closer to the optimal policy, a more meaningful (less noisy) relationship can

be built between the input training data point and the output trajectories. Thus, the reinforcement

learning model shows more vulnerability to membership inference attacks as this trajectory length

increases, as the attacker can better exploit the temporal correlations inherent in trajectories

generated in RL, in order to provide accurate identification. Moreover, our results show that

deep reinforcement learning exhibits a higher vulnerability to membership inference attacks in

collective mode, where the adversary aims at inferring the membership of a collection of data

points, as opposed to the individual mode. Because the temporal correlation within the training

trajectories of the attack classifier plays an important role in the adversary’s learning of the

relationship between the paired trajectories, breaking the temporal correlation in one of the paired

trajectories leads to a lower membership inference accuracy. This observation could be used

as a starting point for the design of deep RL algorithms that are less vulnerable to membership

inference attacks.

6.2 Future directions

Our work presents multiple directions for future studies, both in designing privacy-preserving rein-

forcement learning algorithms and testing the vulnerability of reinforcement learning algorithms

to membership inference attacks.
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6.2.1 Algorithm Design Extensions

One of the most important families of reinforcement learning algorithms is the temporal difference

(TD) learning algorithms. Adopting or introducing the proper privacy definition tailored to the

inherent assumptions of TD algorithms is an important research direction that would extend the

results of this thesis, as discussed at the end of Chapter 3.

Our experiments on private Monte Carlo policy evaluation with linear function approximation

were very encouraging, and during this work, we noticed that one approach which could be

beneficial both from the point of view of privacy as well as from the direction of achieving good

utility is the use of random projections. In particular, the use of the Johnson–Lindenstrauss

transform has already been studied in designing adaptive differentially private linear regression

algorithms (Wang, 2018) and differentially private ordinary least square methods (Sheffet, 2019),

and our approach could be extended in this direction. Specifically, our notion of neighbourhood

would still hold, and some of our theorems can likely be combined with the results mentioned

above without too much trouble. Studies on non-private least-square temporal difference learning

algorithms (Ghavamzadeh et al., 2010; Li et al., 2018) suggests that random projections can be

useful for TD algorithms as well, so we could explore this direction in the design of differentially

private least-squares TD learning algorithms.

Our final goal is to design differentially private algorithms for the whole reinforcement learning

problem. Policy evaluation is an important sub-problem, as it is typically used as a building

block towards control algorithms (eg by leveraging policy improvement or policy gradients. We

anticipate that by invoking the compositional properties that hold in many differential privacy

approaches, the ideas and algorithms we presented could be plugged into any reinforcement

learning algorithm. For example, one could consider using our algorithms to derive a differentially

private version of Q-learning by estimating a state-action value function instead of a state value

function. Our approach could guarantee the privacy of the policy evaluation part, but careful

further thinking would be required to understand how the fact that the agent is actively choosing

actions may provide further privacy leaks to be mitigated. Some ideas from the literature on

differential privacy for bandits could be used as a starting point, but would require significant

extensions to account for correlations between states and actions inside trajectories. We hope

to investigate this and other alternatives to achieve differentially private reinforcement learning

algorithms in future work.

6.2.2 Membership Inference Attack Extensions

The work in Chapter 5 is just a first step in developing our understanding of membership inference

attacks for RL. It focuses less on theory than the rest of the thesis (and the rest of the differential
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privacy field) and more on working with RL algorithms that are most relevant for practice.

Improving the theoretical understanding of how attacks could be both designed and counteracted,

by looking at easier cases (such as tabular and linear function approximation) could be quite

useful.

One of the directions in which our study on membership inference attacks can be extended is

training the attack classifier in a white-box setting, where the adversary benefits from knowing

the internal structure of the deep reinforcement learning model. For instance, the change in the

gradient norm of the network parameters captures the sensitivity of the target policy to change

in the private training set. The adversary could use this auxiliary information to design attack

classifiers. Moreover, system designers can benefit from our proposed attack framework to

measure the privacy level of algorithms and determine the required level of privacy (i.e. privacy

parameters) in the industrial deployment of privacy-preserving reinforcement learning algorithms.

Ultimately, we believe that privacy considerations will be just as important to the deployment of

RL algorithms in domains such as health care, finance or education, as the need to have robust

generalization or efficient exploration. The theoretical properties of RL algorithms are quite a bit

more difficult to establish than for supervised learning as well, so this research area also raises

interesting mathematical puzzles. While in this thesis we took some early steps in the direction

of building private RL algorithms, we hope our work will inspire more researchers to get into

this field.
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