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Abstract

Confidence calibration is a quickly growing area of research in deep learning, including com-

puter vision applications. New model architectures and loss functions are being introduced

to improve model calibration, an important topic for safety critical AI applications. In order

to evaluate these new methods, they are frequently compared to simple baselines, which serve

as a comparison and help measure new methods’ effectiveness. Popular baselines for eval-

uating model confidence calibration include label smoothing, mixup and dropout. Despite

these methods frequent use and simple implementations, the parameter values that define

them are rarely validated, and are usually a default value. This thesis demonstrates the

danger in using these default values for calibration benchmarks on common datasets; poor

model calibration, specifically, a model that is purely over- or underconfident. We present an

adaptive framework that can adjust the parameter value of these baseline methods during

training based on validation accuracy and confidence to maintain good model calibration and

balance over- and underconfidence. Experiments with the CIFAR-10 and CIFAR-100 image

classification datasets show that our approach improves model calibration compared to using

these popular methods with default values and we achieve good model calibration regardless

of model architecture and dataset. Further, our analysis provides a comparison between

these baseline methods that can be considered for future confidence calibration research.
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Abrégé

L’étalonnage de la confiance est un domaine de recherche en croissance rapide dans le do-

maine de l’apprentissage en profondeur, y compris les applications de vision par ordinateur.

De nouvelles architectures de modèles et fonctions de perte sont introduites pour améliorer

l’étalonnage des modèles, un sujet important pour les applications d’IA critiques pour la

sécurité. Afin d’évaluer ces nouvelles méthodes, elles sont fréquemment comparées à des

bases de référence simples, qui servent de comparaison et permettent de mesurer l’efficacité

des nouvelles méthodes. Les lignes de base courantes pour évaluer l’étalonnage de la confiance

du modèle incluent le lissage des étiquettes, la confusion et l’abandon. Malgré l’utilisation

fréquente de ces méthodes et des implémentations simples, les valeurs des paramètres qui

les définissent sont rarement validées, et sont généralement une valeur par défaut. Cette

thèse démontre le danger d’utiliser ces valeurs par défaut pour des benchmarks de calibra-

tion sur des jeux de données communs ; un mauvais calibrage du modèle, en particulier un

modèle qui est purement trop ou pas assez confiant. Nous présentons un cadre adaptatif qui

peut ajuster la valeur des paramètres de ces méthodes de base au cours de la formation en

fonction de la précision et de la confiance de validation pour maintenir un bon étalonnage

du modèle et équilibrer la confiance excessive et insuffisante. Les expériences avec les en-

sembles de données de classification d’images CIFAR-10 et CIFAR-100 montrent que notre
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approche améliore l’étalonnage du modèle par rapport à l’utilisation de ces méthodes popu-

laires avec des valeurs par défaut et nous obtenons de bonnes bases de référence d’étalonnage

indépendamment de l’architecture du modèle et de l’ensemble de données. De plus, notre

analyse fournit une comparaison entre ces méthodes de base qui peuvent être envisagées

pour les futures recherches sur l’étalonnage de la confiance.
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Chapter 1

Introduction

In machine learning applications that involve probabilistic predictions, knowing that the

probabilities outputted by the system reflect the true chance of an event occurring is im-

portant. A machine learning model that has accurate prediction confidences is considered

well calibrated and is less harmful to use in real world applications, than a model that is

not well calibrated. Calibration is considered the most important property of a predictive

model in certain applications [Alba et al., 2017]. The most common definition for calibration

is to ask if we observe a predicted outcome R% of the time when the prediction is made

with R% confidence. For example, in a clinical health setting, if an image classification

model predicts that a breast cancer patient has an 80% probability of residual tumor tissue

then the observed frequency of tumor tissue should be approximately 80 out of 100 patients

with the same predicted probability. Typically in deep learning applications, these output

probabilities are obtained with a softmax function in the last layer of the neural network.

A poorly calibrated model can be very costly to the people interacting with it, as well as

the people operating and maintaining the model. Confidence calibration has been identified
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as one of the most significant challenges for deep learning applications [Sünderhauf et al.,

2018]. Machine learning algorithms continue to replace humans in decision-making pipelines

and are being deployed in high risk fields such as autonomous driving [Levinson et al., 2011]

and healthcare [Miotto et al., 2016]. Despite impressive accuracies in supervised learning

tasks, such as image classification, modern deep neural networks are typically poorly cali-

brated; their predictions’ are significantly overconfident when trained with hard targets and

standard data augmentation methods [Guo et al., 2017]. Models that exhibit poor calibra-

tion, specifically overconfidence can be harmful or offensive when used in practical high risk

settings [Amodei et al., 2016]. Therefore it is crucial for deep learning models to be well

calibrated.

Since the observations that modern deep neural networks are poorly calibrated when

trained using a default approach [Guo et al., 2017] there has been an increase into calibration-

based research with new model architectures designed specifically to minimize calibration

error [Xing et al., 2020], loss functions that prevent significant overconfidence [Mukhoti et al.,

2020] and methods that calibrate individual data classes independently [Wen et al., 2021].

Most of this new research utilizes popular baseline methods that have been shown to be well

calibrated (when used with properly validated parameter values), as way to compare and

evaluate these more novel methods. Like all empirically driven research, strong and reliable

baselines are fundamental to developing and evaluating successful new methods. There

are a number of common and popular calibration baseline methods for computer vision

classification tasks: label smoothing [Szegedy et al., 2016], a label augmentation technique;

mixup [Zhang et al., 2018], a data augmentation technique; and dropout [Srivastava et al.,

2014], a method that helps prevents over-fitting by modifying a model’s architecture during

training. These three methods were originally introduced as regularization techniques which

2



(a) SF = 0 (Hard Targets) (b) SF = 0.05 (c) SF = 0.1

Figure 1.1: Reliability diagram analysis of smoothing factor (SF) impact on model calibration
for VGG11 model trained on CIFAR-100 dataset.

improved model accuracy in classification tasks. Later research, found that these methods

are all able to improve calibration compared to default training methods [Müller et al., 2019,

Thulasidasan et al., 2019], while maintaining the increase in model accuracy. With respect

to calibration, these methods’ efficacy depends on their parameter values which, despite their

frequent use, are typically set to a default value without validation [Xing et al., 2020, Müller

et al., 2019]. When their parameters are validated, the procedure is rarely detailed [Mukhoti

et al., 2020, Thulasidasan et al., 2019, Lukasik et al., 2020]. Without a thorough validation

procedure for the parameters that define these methods, that accounts for the dataset,

model architecture and training procedure, baseline benchmarks for confidence calibration

can vary greatly in calibration error [Carratino et al., 2020] and make it difficult to evaluate

the significance of newer methods.

Of these popular benchmarking methods, label smoothing is most widely used. Label

smoothing is simple to implement and it typically improves a model’s accuracy, calibration

and ability to generalize to new data [Müller et al., 2019]. Figure 1.1a illustrates the over-

confidence issue of deep neural networks trained with a standard learning procedure (no
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(a) CIFAR10 - VGG (b) CIFAR10 - ResNet (c) CIFAR100 - VGG (d) CIFAR100 - ResNet

Figure 1.2: Analysis of smoothing factor impact on model over- and underconfidence. Over-
confidence = ECEOC and underconfidence = ECEOC are defined in section 4.1. Smoothing
factor = 0 is equivalent to training with hard targets.

label smoothing), within each confidence bin, the average output confidence is greater than

the accuracy of predictions in that bin. Figure 1.1b shows how label smoothing can reduce

this overconfidence issue and produce a well calibrated model. However, Figure 1.1c shows

the risk of a poorly chosen smoothing factor for label smoothing, the model’s overconfidence

issue is simply replaced with significant underconfidence. Balancing over- and underconfi-

dence depends on the smoothing factor, and the optimal smoothing factor value for model

calibration can depend on both model architecture and dataset as seen in Figure 1.2. Table

1.1 provides a brief summary of comparable label smoothing results, with chosen smoothing

factor and validation procedure (if available). Despite its frequent use, the smoothing factor

is typically set to a default value without validation. When the smoothing factor is validated,

only a few values are considered. Validating the smoothing factor can be expensive, as some

models can take days to train, however, an improper smoothing factor can result in poor

performance. These same issues arise with mixup and dropout and the parameter values

that define these methods.

In this thesis we demonstrate the potential danger of improperly validating the parameter
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Table 1.1: Label smoothing - survey of literature, smoothing factor (SF) validation procedure
and calibration results for experiments on CIFAR-100 dataset

Model Paper SF Validation SF Final ECE(%)

ResNet50
[Mukhoti et al., 2020] {0.05, 0.1} 0.05 7.81

[Xing et al., 2020] N/A N/A 3.3

ResNet56
[Müller et al., 2019] N/A 0.05 2.4
[Zhang et al., 2020] N/A 0.1 3.35 ± 0.86

ResNet110
[Mukhoti et al., 2020] {0.05, 0.1} 0.05 11.02
[Zhang et al., 2020] N/A 0.1 2.32 ± 1.03

values for popular baseline calibration methods and using default values in calibration exper-

iments. We find that although these methods generally decrease calibration error compared

to standard training procedures, using incorrect parameters can fail to alleviate the model

overconfidence issue, and can in some cases create an underconfidence problem. We provide

a decomposition of Expected Calibration Error (ECE) that provides metrics to measure over-

and underconfidence calibration error for classification models. These measures of over- and

underconfidence enable us to create an adaptive parameter framework for model calibration.

This framework circumvents the issue of parameter validation in calibration methods. It

works by adjusting the respective parameters of the calibration methods during training

based on validation accuracy and confidence statistics, to maintain good model calibration.

We extend this adaptive framework further with label smoothing, developing and testing

a class adaptive parameter framework, where each class has its own smoothing factor that

adjusts during training based on class specific statistics. Finally, we present an additional

calibration metric, Confidence Balance (CB) that evaluates how well a model is balancing

over- and underconfidence and justify that this metric should be used in addition to cali-

bration error metrics to evaluate model calibration. We evaluate our adaptive calibration
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framework and compare to the baseline methods with default parameter values. We con-

duct experiments on the CIFAR-10 and CIFAR-100 image classification datasets, evaluating

model accuracy, calibration error and over- and underconfidence balance. We find that our

adaptive calibration framework is an effective method for validating the parameter values of

calibration methods during training. Our methods improve model calibration compared to

baseline methods with fixed default values. We also gain further insights into the strengths

and weaknesses of using label smoothing, mixup and dropout for calibration research.

1.1 Contributions of this work

The contribution of this work is the formulation of an adaptive parameter framework for

calibrating deep neural networks during training. This framework can be used in calibration

research to ensure that methods such as label smoothing and mixup are well calibrated and

therefore provide a proper comparison and evaluation of more novel methods. This frame-

work adjusts parameter values during training to guarantee well calibrated models, regardless

of model architecture, dataset and training setup. Our framework adjusts these parameters

based on model over- and underconfidence, an often overlooked aspect of calibration. We

provide a decomposition of the well used metric, Expected Calibration Error (ECE) into two

terms that estimate model over- and underconfidence. We present a new evaluation metric

to help measure a models’ balance of over- and underconfidence, this metric can be used in

tandem with calibration error metrics to evaluate a models’ true calibration. Finally our

results and analysis provide new insights for using label smoothing, mixup and dropout for

calibration research.
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1.2 Thesis Outline

This work is organized as follows. In Chapter 2, we present background information for the

methods that we use in our experimental methods; label smoothing, mixup and dropout.

We also provide background on calibration evaluation methods. In Chapter 3, we present

recent calibration research focusing on methods for in-training calibration, we further discuss

how methods such as label smoothing, mixup and dropout have been used as benchmarks in

calibration research as well as new methods that extend these basic approaches. In Chapter

4, we introduce our adaptive framework for parameter adjustments during training and

show how this framework can be applied to label smoothing, mixup and last-layer dropout.

Finally, in Chapter 5 we discuss the results obtained and in Chapter 6 we suggest possible

directions for future work.
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Chapter 2

Background

In this chapter, we present the background on the learning methods and calibration metrics

used in the methods and results sections of this thesis. The first three subsections describe

learning methods for training; label smoothing, mixup and dropout. Theses methods have

previously been shown to produce more well calibrated models than a standard training

procedure. The fourth subsection, outlines metrics for evaluating model calibration error,

these metrics are typically evaluated using the validation and test sets.

Let D = 〈(xi, yi)〉Ni=1 be a dataset consisting of N independent and identically distributed

real-world images belonging to K different classes. For each sample i, xi ∈ X is the in-

put image and yi ∈ Y = {1, 2, ..., K} is the ground-truth class label. Let fθ represent the

CNN classifier f with model parameters denoted by θ. Let p̂i,y = fθ(y|xi) be the confidence

(computed using the softmax function) that the image xi belongs to the class y. The pre-

dicted class is then ŷi = argmaxy∈Y p̂i,y and the predicted class confidence is p̂i = maxy∈Y p̂i,y,

following the notation adopted by Mukhoti et al. [2020].
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(a) model output (b) hard target (c) label smoothing target

Figure 2.1: Illustration of label smoothing

2.1 Label Smoothing

Label smoothing [Szegedy et al., 2016] improves accuracy and model calibration [Müller

et al., 2019] by computing cross entropy not with the “hard” targets from the dataset, but

with a weighted mixture of these targets with the uniform distribution as illustrated in Figure

2.1c. We denote the distribution of the hard target label for image xi with ground truth

class yi as qi = (qi,1, ..., qi,K), where qi,y = 1 when y = yi, and qi,y = 0 otherwise. For a

model trained with hard targets we minimize the expected value of the cross-entropy loss L

between the true targets qi,y the model’s outputs p̂i,y

L(p̂, q) =
K∑
y=1

−qi,ylog(p̂i,y). (2.1)

For a network trained with label smoothing, with smoothing factor α, we instead minimize

the cross-entropy between the smoothed targets qLSi,y , and the model’s outputs p̂i,y. Where

qLSi,y is a weighted average of the hard targets and the uniform distribution over labels,

qLSi,y = (1− α)qi,y + α/K. (2.2)
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Figure 2.2: Illustration of mixup

2.2 Mixup

Mixup training [Zhang et al., 2018] is based on the principle of Vicinal Risk Minimization

[Chapelle et al., 2001]: the classifier is trained not only on the training data, but also in the

vicinity of each training sample. The vicinal points are generated according to the following

simple rule:

x̃ = λxi + (1− λ)xj,

ỹ = λyi + (1− λ)yj,

(2.3)

where xi and xj are two randomly sampled input points, and yi and yj are the label dis-

tributions of the respective images, Figure 2.2 illustrates this process. This has the effect of

the empirical Dirac delta distribution,

Pδ(x,y) =
1

n

n∑
i=1

(x = xi,y = yi) (2.4)
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centered at (xi, yi) being replaced with the empirical vicinal distribution

Pν(x,y) =
1

n

n∑
i=1

ν(x = xi,y = yi), (2.5)

where ν is a vicinity distribution that gives the probability of finding the virtual feature-

target pair (x̃, ỹ) in the vicinity of the original pair (xi,yi). The vicinal samples (x̃, ỹ) are

generated as above, and during training minimization is performed on the empirical vicinal

risk using the vicinal dataset Dν := {(x̃i, ỹi)}mi=1

Rν(f) =
1

m

m∑
i=1

L(f(x̃i), ỹi), (2.6)

where L is the standard cross-entropy loss, but calculated on the soft-labels ỹi instead of

hard labels. The linear interpolator λ ∈ [0, 1] that determines the mixing ratio is drawn

from a symmetric Beta distribution, Beta(ε, ε) at each training iteration, where ε is the

hyperparameter that controls the strength of the interpolation between pairs of images and

the associated smoothing of the training labels. ε = 0 recovers the base case corresponding

to zero-entropy training labels (hard targets, in which case the resulting image is either just

xi or xj), while a high value of ε ends up in always averaging the inputs and labels.

2.3 Dropout

Dropout [Srivastava et al., 2014] is used frequently in deep learning as a way to avoid over-

fitting, the key idea is to randomly drop units (along with their connections) from the neural

network during training. Consider a neural network with L hidden layers. Let l ∈ {1, ..., L}

index the hidden layers of the network. Let z(l) denote the vector of inputs into layer l,

11



(a) Standard Neural Net (b) After applying dropout.

Figure 2.3: Illustration of dropout

y(l) denote the vector of outputs from layer l (y(0) = x is the input). W(l) and b(l) are the

weights and biases at layer l. The feed-forward operation of a standard neural network can

be described as (for l ∈ {0, ..., L− 1} and any hidden unit i),

z
(l+1)
i = w

(l+1)
i y(l) + b

(l+1)
i ,

y
(l+1)
i = f(z

(l+1)
i ),

(2.7)

where f is any activation function. With dropout, the feed-forward operation becomes

r
(l)
j ∼ Bernoulli(p)

ỹ = r(l) ∗ y(l)

z
(l+1)
i = w

(l+1)
i ỹ(l) + b

(l+1)
i ,

y
(l+1)
i = f(z

(l+1)
i ).

(2.8)
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Here ∗ denotes an element-wise product. For any layer l, r(l) is a vector of independent

Bernoulli random variables each of which has probability p of being 1. This vector is sampled

and multiplied element-wise with the outputs of that layer, y(l), to create the thinned outputs

ỹ(l). The thinned outputs are then used as input to the next layer. This process is applied

at each layer. This amounts to sampling a sub-network from a larger network. For learning,

the derivatives of the loss function are backpropagated through the sub-network. At test

time, the weights are scaled as W
(l)
test = pW(l). The resulting neural network is used without

dropout.

2.4 Calibration

Expected Calibration Error

A model is said to be perfectly calibrated when for each sample (x, y) ∈ D, the confidence of

the model p̂ in the class prediction ŷ is equal to the model accuracy P(ŷ = y|p̂). For example,

of all the data samples that a perfectly calibrated model assigns a prediction confidence of 0.8,

80% of those samples will be predicted correctly. A popular metric used to measure model

confidence calibration is the expected calibration error (ECE) [Naeini et al., 2015]. ECE

approximates the difference in expectation between model confidence and model accuracy,

more formally written as,

Ep̂[|P(ŷ = y|p̂)− p̂|]. (2.9)

Due to finite data, ECE cannot be computed in practice using (2.9). Instead, we group

predictions into M interval bins (each of size 1/M ) and calculate the accuracy and confidence

of each bin. Let Bm be the set of indices of samples whose prediction confidence falls into
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the interval Im = (m−1
M
, m
M

]. The accuracy and confidence of Bm are defined as

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi),

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i.

(2.10)

Where yi is the true class label for sample i and p̂i is the model confidence for the class

prediction ŷi. ECE is a weighted average of the absolute difference between the accuracy

and confidence of each bin,

ECE =
M∑
m=1

|Bm|
N
|acc(Bm)− conf(Bm)|. (2.11)

A disadvantage of ECE (and all binning-based calibration metrics) is that it is not differen-

tiable and can therefore not be added to the training loss to penalize calibration error [Nixon

et al., 2019, Kumar et al., 2018]. Our adaptive framework, introduced in section 4.2, solves

this problem and provides a solution for optimizing calibration methods.

Reliability diagrams

A popular visualization method for model calibration that is strongly connected to ECE

is reliability diagrams [DeGroot and Fienberg, 1983, Niculescu-Mizil and Caruana, 2005a],

which plot the accuracies of confidence bins as a bar chart as illustrated in Figure 2.4.

Reliability diagrams do not display the proportion of samples in a given bin, and thus

cannot be used to estimate how many samples are calibrated, unlike ECE. The advantage

of reliability diagrams over ECE is that they can capture model over- and underconfidence.

If most of the bars lie below the diagonal, then the model is observed to be overconfident
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Figure 2.4: Reliability Diagram Example

and similarly with a majority of bars above the diagonal the model is underconfident. This

ability to measure and compare model over- and underconfidence is not possible with ECE,

and helped motivate our new evaluation metric, confidence balance, defined in section 4.3.

Classwise-ECE

ECE only considers the probability of the predicted class, which means it does not consider

how well calibrated a model is with respect to the K − 1 other probabilities that a model

outputs. A stronger definition of calibration requires the probabilities of all the classes for

every data instance to be calibrated [Kull et al., 2019, Nixon et al., 2019, Widmann et al.,

2019, Kumar et al., 2019, Vaicenavicius et al., 2019]. Classwise-ECE is a simple extension of

ECE that accounts for all predictions [Kull et al., 2019, Nixon et al., 2019]. For Classwise-

ECE, we group predictions by the K classes and then into M interval bins (each of size

1/M) and calculate the accuracy and confidence of each bin. Let Bk,m be the set of indices

of samples from class k whose prediction confidence falls into the interval Im = (m−1
M
, m
M

].
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The accuracy and confidence of Bk,m are defined as

acc(Bk,m) =
1

|Bk,m|
∑
i∈Bk,m

1(k = yi),

conf(Bk,m) =
1

|Bk,m|
∑
i∈Bk,m

p̂i,k.

(2.12)

Where p̂i,k is the model confidence that sample i belongs to class k. Classwise-ECE is a

weighted average across all K classes and their M bins, of the absolute difference between

the bin accuracy and confidence,

Classwise-ECE =
1

K

K∑
k=1

M∑
m=1

|Bk,m|
N
|acc(Bk,m)− conf(Bk,m)|. (2.13)
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Chapter 3

Related Work

Popular statistical learning methods have been studied and analyzed in the context of model

calibration. Logistic regression, which has been frequently used successfully in calibration

literature [Cox, 1958, Platt, 1999, Guo et al., 2017] produces well calibrated models as it

directly optimizes log loss [Elkan, 2007]. Other popular statistical learning methods are less

successful at calibration. Naive Bayes models are built on the assumption that features are

conditionally independent given the target class. However, features are commonly positively

correlated. Zadrozny and Elkan [2001] find that the result of this assumption is that naive

Bayes models produce probabilistic estimates close to 0 or 1 which results in poor calibra-

tion. Niculescu-Mizil and Caruana [2005b] find maximum margin methods such as Support

Vector Machines (with output scaled to [0,1]), boosted trees and boosted stumps suffer from

the opposite distortion in their probabilistic estimates, they tend to have risk estimates far

away from 0 and 1. They further observe that other types of models such as random forests,

bagged trees, and neural nets have been shown to be well calibrated by default in an experi-

mental setting. However, there is no theoretical basis to guarantee these models will be well
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calibrated, like with logistic regression. Guo et al. [2017] observed that modern deep neural

networks (LSTMs and CNNs) are significantly overconfident (prediction confidence greater

than accuracy) and therefore poorly calibrated. In order to correct this overconfidence is-

sue they reviewed and evaluated a number of recalibration methods that rescale model’s

confidence to be more well calibrated. They reviewed two classes of recalibration methods;

parametric and non parametric. The parametric methods, tempurature, vector and matrix

scaling were all mutliclass extensions of platt scaling [Platt, 1999] and the non parametric

methods were histogram binning [Zadrozny and Elkan, 2001], isotonic regression [Zadrozny

and Elkan, 2002] and Bayesian Binning into Quantiles [Naeini et al., 2015] extended to the

multiclass setting. Parametric methods proved to be more successful at recalibration, and

temperature scaling was the strongest method. Recalibration (post processing calibration)

has been a popular area of research in recent years [Kull et al., 2019, Gupta et al., 2021,

Flach et al., 2017]. However, Nixon et al. [2019] argue that machine learning models should

be calibrated by default, in other words, they should not require any post processing recal-

ibration. In-training calibration methods such as label smoothing, mixup and dropout can

produce well calibrated models that do not require recalibration.

In-training calibration methods have been another popular area of research. Common

methods for developing new in-training calibration techniques include utilizing new loss

functions, building new model architectures or improving baseline methods such as label

smoothing. Mukhoti et al. [2020] replace the cross entropy error typically used in deep

learning training with focal loss [Lin et al., 2017]. They oberseve that focal loss minimizes

a regularised KL divergence between the predicted (softmax) distribution and the target

distribution over classes. This results in minimizing the KL divergence while increasing the

entropy of the prediction distribution, which prevents the model from becoming overconfi-
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dent. The work of Kumar et al. [2018] seeks to minimize an explicit calibration error during

training. They introduce Maximum Mean Calibration Error (MMCE) a differentiable proxy

for calibration error that they use as a regularization method during training. Xing et al.

[2020] develop a dual model system that uses prototypical learning [Snell et al., 2017] to

train a classification model and a confidence model simultaneously.

Very little work in confidence calibration has been focused on comparing model over-

and underconfidence. Thulasidasan et al. [2019] introduce overconfidence error, a metric

which penalizes predictions by the weight of the confidence but only when confidence ex-

ceeds accuracy, they use this metric to assess the safety of learning methods for high risk

applications. Mund et al. [2015] introduce a definition of over- and underconfidence for their

work in active learning, where overconfidence is the average confidence of a classifier on its

false predictions and underconfidence is the average uncertainty on its correct predictions.

Pleiss et al. [2017] utilize this same definition of over- and underconfidence in an analysis of

algorithmic fairness. Under their definition, over- and underconfidence measure confidence

and uncertainty respectively on different data instances, they are not quantities that can be

compared directly, they are only used for comparison between algorithms as a measure of

fairness. Very recently, Wen et al. [2021] introduced a method to improve the calibration

performance of an ensemble of models trained with mixup. This work is closely related to

our method, as they utilize mixup during training, but if the model becomes underconfident,

they switch to standard cross entropy. They do not discuss the possibility of adjusting the

mixup parameter as an alternative solution.
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3.1 Label Smoothing

Label smoothing, a method that uses soft targets that are a weighted average of hard targets

and the uniform distribution over labels was first proposed by Szegedy et al. [2016] as a way

to improve the performance of the Inception architecture on the ImageNet dataset. Since

then, many state-of-the-art image classification models have utilized label smoothing in their

training procedures [Zoph et al., 2018, Real et al., 2019]. Müller et al. [2019] demonstrated the

significant improvement in model calibration when trained with label smoothing as opposed

to hard targets. Since then, label smoothing has become a popular calibration benchmark,

however it is not always accurately reported. Xing et al. [2020] utilize label smoothing as a

calibration benchmark to evaluate their dual model, however they do not discuss the effect

of the smoothing factor parameter on calibration and they do not even report the value of

the smoothing factor used, making the benchmark difficult to reproduce. Other works that

use label smoothing as a calibration benchmark [Mukhoti et al., 2020, Thulasidasan et al.,

2019, Lukasik et al., 2020] very briefly discuss validating the smoothing factor, however it is

generally minimal with at most three values considered and the chosen smoothing factor is

then used across all experiments (model architectures, datasets, training setups). Notably

the results of label smoothing from Mukhoti et al. [2020] are particularly poor (Table 1.1).

Recent work has begun to build off of the uniform label smoothing method to obtain further

calibration gains on a variety of datasets and tasks. Krothapalli and Abbott [2020] proposed

an adaptive label smoothing method for object detection, where the smoothing factor is

updated based on relative object size within an image, in an effort to produce confidences

that do not rely on the context of images. Zhang et al. [2020] propose an online label

smoothing strategy for image classification that implicitly measures class similarity and

20



generates soft labels based on the statistics of the model prediction for the target category.

In contrast, Liu and JaJa [2020], calculates class similarity explicitly prior to training and

uses these scores to obtain smoothing factors for each target class. Of these advances in label

smoothing only Liu and JaJa [2020] discuss the effect of the smoothing factor on uniform

label smoothing.

3.2 Mixup

Mixup, a data augmentation method for training deep neural networks where additional

data samples are created during training by convexly combining pairs of images and their

labels was proposed by Zhang et al. [2018]. Although simple to implement, mixup was shown

to be very effective, improving the the generalization of state-of-the-art neural network ar-

chitectures, reducing the memorization of corrupt labels and increasing the robustness to

adversarial examples. Thulasidasan et al. [2019] demonstrated that deep neural networks

trained with mixup are significanly better calibrated than deep neural networks trained

with only regular data augmentation. Since, mixup has become the standard benchmark in

calibration research that focuses on data augmentation methods. Similarly to label smooth-

ing Xing et al. [2020] utilize mixup as a calibration benchmark to evaluate their methods,

however they do not disclose the parameter value used for their implementation of mixup.

Carratino et al. [2020] attempt to explain the theoretical foundations of mixup, they utilize

mixup as a baseline in calibration experiments and compare with empirical risk minimization

and simple extensions of both methods, they also observe the effect of the mixup param-

eter value on calibration error. Wen et al. [2021] discuss how data augmentation methods

such as mixup do not always improve model calibration when used to train ensemble mod-
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els. They present a simple adaptive method to prevent the underconfidence issue caused by

combining mixup and ensembles, this adaptive method helps improve calibration over other

methods that use ensembles and data augmentations methods together. Mixup has lead

to the creation of many other data augmentation methods, the most notable being augmix

[Hendrycks et al., 2020], which obtains similar improvements on robustness and calibration

measures compared to more traditional methods.

3.3 Dropout

Dropout, a method which randomly drops units and their connections from neural networks

during training was originally introduced by Srivastava et al. [2014] as a method to prevent

neural network models from overfitting. The method is very effective and is frequently used

in applications of neural networks. Gal and Ghahramani [2016] showed that dropout can be

viewed as a Bayesian approximation method for representing model uncertainty. Bayesian

neural networks can achieve state of the art results for estimating predictive uncertainty

[Lakshminarayanan et al., 2017], however they require modifications to the training setup

and are computationally expensive (compared to standard non-Bayesian neural networks).

Gal and Ghahramani [2016] interpret dropout as a way to create an ensemble model, they

sample multiple dropout masks at test time and average the predictions as a way to represent

model uncertainty. Havasi et al. [2021] and Wen et al. [2021] utilize dropout as a calibration

benchmark in their work on deep neural network ensembles. Ovadia et al. [2019] use dropout

as well as last-layer dropout (dropout only applied to the final network layer) as benchmarks

for model calibration under dataset shift. Riquelme et al. [2018] introduced the idea of

approximate Bayesian inference for the parameters of the last layer only of a neural network.
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The results from Ovadia et al. [2019] show that last-layer dropout achieves nearly equal

calibration results as more complex dropout schemes on the same model architecture. In all

of these works the dropout parameter is not validated.
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Chapter 4

Methods

In this chapter, we present our theoretical contributions to this thesis. We provide a decom-

position of ECE, into two new metrics, which measure over- and underconfidence calibration

error. These new metrics provide the basis for our adaptive parameter framework for model

calibration. We present this framework and its assumptions in a general setting, before ex-

plaining how label smoothing, mixup and last-layer dropout satisfy the assumptions and can

be utilized with our framework. We outline how this framework can be extended with label

smoothing to work when each class has its own smoothing factor. Finally, we introduce a

new evaluation metric, confidence balance, which measures how well a model is balancing

over- and underconfidence calibration error.

4.1 Over- and Underconfidence Metrics

A key feature of reliability diagrams is the ability to analyze model calibration, specifically,

over- and underconfidence. The Expected Calibration Error (ECE) metric is closely re-

lated to reliability diagrams in that it is a weighted average of the bins’ accuracy/confidence
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difference. As we have mentioned before, the downside to ECE is that unlike reliability

diagrams it does not capture any information about whether a model is over- or undercon-

fident. We present a simple decomposition of ECE (and the notion of miscalibration that it

approximates) that provides measures of model over- and underconfidence,

ECE ≈ Ep̂[|P(ŷ = y|p̂)− p̂|]

= Ep̂[P(ŷ = y|p̂)− p̂ | p̂ < P(ŷ = y|p̂)]︸ ︷︷ ︸
underconfidence

+Ep̂[p̂−P(ŷ = y|p̂) | p̂ > P(ŷ = y|p̂)]︸ ︷︷ ︸
overconfidence

.
(4.1)

By conditioning on whether the model accuracy is greater than or less than the model

confidence we are able to break up ECE into two terms, one which measures the amount of

calibration error that is caused by model underconfidence and the other measures the amount

of calibration error that is caused by model overconfidence. In practice the decomposition

becomes,

ECE =
M∑
m=1

|Bm|
N

∣∣∣acc(Bm)− conf(Bm)
∣∣∣

=
M∑
m=1

|Bm|
n

max
[
acc(Bm)− conf(Bm), 0

]
︸ ︷︷ ︸

underconfidence

+
M∑
m=1

|Bm|
n

max
[
conf(Bm)− acc(Bm), 0

]
︸ ︷︷ ︸

overconfidence

.

(4.2)

Denoting the underconfidence term ECEUC and the overconfidence term ECEOC we have,

ECE = ECEUC + ECEOC. (4.3)
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ECEOC only counts calibration error for confidence bins where the model’s average confi-

dence is greater than its’ accuracy, and similarly ECEUC only counts calibration error in

bins where the model’s average confidence is less than model accuracy. These two metrics

help recover the information that is lost when using ECE instead of reliablity diagrams,

specifically, observing model over- and underconfidence. A perfectly calibrated model will

have ECE = 0, which implies ECEOC = ECEUC. In practice, achieving perfect calibration

is not possible [Guo et al., 2017], therefore ECE > 0, in this case if ECEOC = ECEUC

the model is balanced, however it is not perfectly calibrated. We introduce a new metric

(confidence balance) in section 4.3, that measures this concept of calibration balance.

4.2 Adaptive Calibration

Recent work has argued that machine learning models should be calibrated by default [Nixon

et al., 2019], and should not require any post processing recalibration such as temperature

scaling [Guo et al., 2017]. In the related work section above we have discussed how there are

simple methods such as label smoothing, mixup and dropout that, improve model calibration

when compared to standard training practices, do not require post processing recalibration

and are frequently used as benchmarks to help evaluate more novel calibration methods.

However, it is clear that validating the parameter(s) that define these methods is critical for

them to perform well and produce a model that has a low calibration error and additionally

balances over- and underconfidence. Although empirical validation is sometimes possible,

this process is time consuming and should (in theory) be redone whenever there is any change

in dataset, model architecture or training procedure. We propose an adaptive calibration

method, that can adjust and validate the parameters of these calibration methods during
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training by seeking to balance model over- and underconfidence. Using the decomposition

of ECE presented above, we are able to define a learning rule to adapt the calibration

parameters during training,

θj+1 = θj + β(ECEOCj − ECEUCj). (4.4)

Where θj ≥ 0 is the calibration parameter(s) during training epoch j, β ≥ 0 is the step size

of the parameter update, ECEOCj and ECEUCj are the over- and underconfidence expected

calibration errors respectively, computed on the validation set at the end of epoch j. There

are two fundamental assumptions of this adaptive framework. The first assumes that θj =

0 represents the calibration method not being used (e.g. smoothing factor α = 0, implies

learning is done with hard targets). The second assumption is that increasing θj will decrease

the model’s average confidence (e.g. increasing the smoothing factor α, reduces the entropy

of the label distribution and decreases the model’s confidence). Under these assumptions,

if the model becomes overconfident (ECEOCj ≥ ECEUCj), θj will increase and reduce the

model’s confidence, where as if the model is underconfident (ECEOCj ≤ ECEUCj), θj will

decrease and the model’s average confidence will increase. Since ECE is not differentiable

and can therefore not be incorporated into a loss function [Nixon et al., 2019, Kumar et al.,

2018], this adaptive framework provides a solution for optimizing calibration methods using

only a simple decomposition of ECE.

4.2.1 Adaptive Label Smoothing

For label smoothing we have θ = α, where α is the smoothing factor. α = 0 is equivalent

to training with no label smoothing (hard targets) thus satisfying the first condition of the
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adaptive framework. Müller et al. [2019] demonstrate that label smoothing encourages the

differences between the logits of the correct class and incorrect classes to be a constant

dependent on α. Therefore, increasing α decreases the difference in logits and lowers the

model’s prediction confidence, satisfying the second condition of the adaptive framework.

Under the adaptive framework, the smoothing factor α is adjusted at the end of every

training epoch according to this equation,

αj+1 = αj + β(ECEOCj − ECEUCj). (4.5)

Where αj ∈ [0, 1] is the smoothing factor during epoch j, β is the step size of the smoothing

factor update and, ECEOCj and ECEUCj are the over- and underconfidence expected cali-

bration errors respectively, computed on the validation set in epoch j. Under this adaptive

label smoothing scheme the smoothed targets from standard label smoothing (qLSi,y ) become

indexed by epoch j.

qLSi,y,j = (1− αj)qi,y + αj/K. (4.6)

4.2.2 Adaptive Mixup

For mixup we have θ = ε, where ε is the mixup hyperparameter that controls the strength

of the interpolation between pairs of images and the associated smoothing of the training

labels. Thulasidasan et al. [2019] discuss that, ε = 0 recovers the base case corresponding

to zero-entropy training labels, satisfying the first condition of the adaptive framework.

They further mention that high values of ε result in uniformly averaging the inputs and

labels, which corresponds to the case of maximum prediction uncertainty and lower model

confidence, satisfying the second condition of the adaptive framework. Under the adaptive
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framework, the mixup parameter ε is adjusted at the end of every training epoch according

to this equation,

εj+1 = εj + β(ECEOCj − ECEUCj). (4.7)

Where εj ∈ [0,∞] is the mixup parameter during epoch j. Under this adaptive mixup

scheme the the linear interpolator λ ∈ [0, 1] that determines the mixing ratio is now drawn

from a symmetric Beta distribution that is indexed by epoch j,

λj ∼ Beta(εj, εj). (4.8)

4.2.3 Adaptive Last Layer Dropout

For our experiments with dropout, we utilize last-layer dropout, where dropout is only ap-

plied to the last layer in the neural network. last-layer dropout requires only one parameter,

the dropout rate p of the last layer. This decision makes the comparison between dropout,

mixup and label smoothing more fair since mixup and label smoothing both only utilize one

parameter for their methods. For last layer dropout we have θ = p, where p is the dropout

rate for the last layer of the neural network. Trivially, p = 0 is equivalent to no dropout

occurring, which satisfies the first condition of the adaptive framework. Increasing p results

in more nodes being dropped, which increases the uncertainty in the model’s prediction

confidence, satisfying the second condition of the adaptive framework. Under the adaptive

framework, the dropout rate p is adjusted at the end of every training epoch according to

this equation,

pj+1 = pj + β(ECEOCj − ECEUCj). (4.9)
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Where pj ∈ [0, 1] is the dropout rate during epoch j. Under this adaptive last layer dropout

scheme the vector of independent Bernoulli random variables r
(l)
j becomes indexed by epoch

j.

r
(l)
j ∼ Bernoulli(pj). (4.10)

4.2.4 Extensions

Class Adaptive Label Smoothing

Training deep neural networks for image classification, specifically with cross entropy loss

has been found to be class-biased [Wang et al., 2019]. Some classes are ”easy” for a model

to learn and converge faster than other ”harder” classes. This results in some classes having

significantly higher test accuracy than other classes. This difference in class accuracy moti-

vates the need for model confidence to be adjusted for each class individually, rather than all

the classes together. We can extend our adaptive framework to adjust a smoothing factor

for each class independently.

αj+1,k = αj,k + β(ECEOCj,k − ECEUCj,k). (4.11)

Where αj,k ∈ [0, 1] is the smoothing factor for class k during epoch j. ECEOCj,k and

ECEUCj,k are computed using only prediction confidences for class k during epoch j. Here

the smoothed targets from standard label smoothing (qLSi,y ) become indexed by epoch j and

class k.

qLSi,y,j,k = (1− αj,k)qi,y + αj,k/K. (4.12)
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4.3 Confidence Balance

Ideally, a model will balance over- and underconfidence, specifically ECEOC = ECEUC, as

well as minimize total calibration error. We introduce the Confidence Balance (CB) metric

as a way to measure how well a model is balancing over- and underconfidence.

CB =
min{ECEOC,ECEUC}
max{ECEOC,ECEUC}

. (4.13)

The value of CB will always be in [0, 1], with CB = 0 representing a model that is purely

over- or underconfident with its class predictions and CB = 1 representing a model that is

balancing over and underconfidence perfectly. CB is independent of the magnitude of the

calibration error. Therefore CB should only be used in addition to calibration error metrics

(e.g. ECE, classwise-ECE) during analysis, in order to provide a more complete evaluation

of model calibration.
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Chapter 5

Results

5.1 Experimental Details

We conduct image classification experiments using the CIFAR-10/100 datasets [Krizhevsky,

2009]. We use a train/validation/test split of 45,000/5,000/10,000 images for both CIFAR-

10 and CIFAR-100. We train and evaluate our methods with the VGG11 [Simonyan and

Zisserman, 2015] and ResNet50 [He et al., 2016] architectures. The mini-batch size is 128

and we train for 150 epochs with stochastic gradient descent with Nesterov momentum of

0.9, starting with learning rate 0.1 and dropping by a factor of 10 at 75 epochs and 115

epochs. Experiments were run with a NVIDIA Tesla P4 GPU on a cloud provider, training

the VGG11 model for 150 epochs took approximately two hours, training the ResNet50

model for 150 epochs took approximately five hours.

We provide two initial benchmarks for comparison; the standard training procedure where

our prediction probabilites are simply the softmax values of the model output and the other

is the post processing calibration method temperature scaling [Guo et al., 2017]. For the
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other benchmarking experiments we use the most commonly used parameter values for the

three methods (label smoothing, mixup and last-layer dropout). For label smoothing the

smoothing factor is fixed at α = 0.05, this is the value most commonly used for CIFAR

datasets [Müller et al., 2019, Mukhoti et al., 2020]. For mixup we set ε = 0.2, where ε

parameterizes the beta distribution that is sampled from, this value is used by Zhang et al.

[2018] and Thulasidasan et al. [2019]. Finally, for last-layer dropout we fix the dropout

rate at 0.2, similarly to the work of Ovadia et al. [2019] and Wen et al. [2021]. For the

adaptive experiments we initialize the parameters with the same values as above. We keep

these parameter values fixed for the first 30 epochs, this avoids any issue with unnecessary

parameter changes early in the training process which could lead to poor model performance.

For all adaptive methods the step size is set to β = 0.5, ECEOC and ECEUC are calculated

with 15 bins. We evaluate all methods using model accuracy, ECE (15 bins), classwise-ECE

(100 bins), confidence balance, negative log-likelihood, and brier score [Bröcker, 2009].

5.2 Discussion

Generally all three methods achieved better classification accuracy than standard training on

the test sets of CIFAR-10 and CIFAR-100 (Table 5.1), agreeing with the original findings of

these methods [Szegedy et al., 2016, Zhang et al., 2018, Srivastava et al., 2014]. Between the

adaptive framework and non-adaptive method, mixup achieves the best test set accuracy on

all four dataset and model architecture combinations. Label smoothing (adaptive and non-

adaptive) is very similar in accuracy, and is at most 0.4% behind mixup. Last-layer dropout is

less competitive with respect to accuracy and three of the four CIFAR-10 last-layer dropout

experiments actually obtained worse accuracy than the standard training procedure. An
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Table 5.1: Accuracy (%)

Method CIFAR10 CIFAR100

VGG11 ResNet50 VGG11 ResNet50

Standard Training 90.10 93.58 66.24 71.91

Temperature Scaling 90.17 93.62 66.22 72.10

Label Smoothing 90.65 93.92 67.59 73.48

Mixup 90.90 93.91 68.00 73.46

LL Dropout 90.32 92.82 67.84 73.24

Adaptive Label Smoothing (Ours) 90.18 93.91 67.07 73.33

Adaptive Mixup (Ours) 90.62 93.94 67.58 73.77

Adaptive LL Dropout (Ours) 89.93 92.63 66.93 73.60

observation of the adaptive methods is that their accuracy appears to be slightly lower than

the same methods trained without the adaptive framework, this decrease in accuracy is

minimal.

The standard training method obtains poor expected calibration error (ECE) in all set-

tings (Table 5.2), agreeing with the findings of Guo et al. [2017]. Both label smoothing and

mixup with fixed parameter values of 0.05 and 0.2 respectively are able to significantly reduce

ECE compared to the standard training method, this effect has been observed before [Müller

et al., 2019, Thulasidasan et al., 2019], this improvement is most notable for CIFAR-100 ex-

periments. Last layer dropout with a fixed parameter value p = 0.2 does not improve ECE

at all over the standard training procedure for either dataset, agreeing with the findings of

Ovadia et al. [2019]. Our adaptive calibration framework performs very well, lowering ECE

for all methods, with the only expception being VGG11 with label smoothing for CIFAR-10

where the default parameter used typically in research, happened to be virtually equal to

the value our adaptive framework converged too. Since we were using the decomposition

34



Table 5.2: Expected Calibration Error (ECE)(%)

Method CIFAR10 CIFAR100

VGG11 ResNet50 VGG11 ResNet50

Standard Training 6.92 4.02 19.07 15.17

Temperature Scaling 3.98 2.86 11.74 5.74

Label Smoothing 4.10 3.96 3.27 5.61

Mixup 7.31 5.24 3.46 3.03

LL Dropout 6.70 4.54 19.43 15.02

Adaptive Label Smoothing (Ours) 4.65 2.83 1.96 2.15

Adaptive Mixup (Ours) 2.03 2.50 1.95 1.51

Adaptive LL Dropout (Ours) 2.38 2.89 6.15 6.98

of ECE to adjust our parameters this improvement in ECE is expected. Adaptive mixup

performs the best, achieving the lowest ECE on all four experimental setups. Adaptive label

smoothing is competitive as well. Adaptive last-layer dropout achieves a great reduction in

ECE compared to its regular version with fixed parameter, however even with the improve-

ment it is still beaten by mixup and label smoothing with fixed default parameter values.

For top-1 classification calibration, last layer dropout is a poor choice for a benchmark, label

smoothing and mixup are far better options.

As expected the confidence balance for non-adaptive methods was poor (Table 5.3). The

only instances of non-adaptive methods achieving a reasonable confidence balance was when

the default parameter used in those experiments was roughly optimal (Table 5.6). The

standard training models and non-adaptive dropout models were overconfident at the end

of training where as the non-adaptive mixup and label smoothing models were generally

underconfident. This poor balance between over- and underconfidence with trained models

motivates our adaptive framework. It can become very costly to rerun these experiments
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Table 5.3: Confidence Balance (CB)(%)

Method CIFAR10 CIFAR100

VGG11 ResNet50 VGG11 ResNet50

Standard Training 0.05 0.53 0 0

Temperature Scaling 0 0 0 0

Label Smoothing 90.86 28.49 0.15 0.08

Mixup 2.75 2.18 0 49.35

LL Dropout 0 0 0 0

Adaptive Label Smoothing (Ours) 91.70 96.58 59.60 23.56

Adaptive Mixup (Ours) 6.87 45.89 0.03 87.24

Adaptive LL Dropout (Ours) 66.57 1.48 97.79 77.04

until you find a suitable parameter value for optimal calibration, our adaptive framework

removes this need for external parameter validation and instead finds a good parameter

value during training. From Table 5.3, we see that the adaptive methods were much more

successful at balancing over- and underconfidence on the test data. Label smoothing achieves

the best results and obtains a good confidence balance in all four experimental settings, last

layer dropout worked well in three settings and adaptive mixup was the worst performing

with only two of the four resulting models obtaining a good confidence balance. Label

smoothing performing the best with respect to confidence balance is most likely due to its

close relation to the cross entropy loss function we are optimizing. With label smoothing,

when the smoothing factor is changed during training this effect is immediately applied to

the loss functions and every mini batch of data in the next training epoch, therefore label

smoothing reacts very precisely and quickly to the changes made by the adaptive framework.

With dropout when the parameter p is changed this effect is immediate as well and is applied

to the next training epoch, however the difference with dropout is that the nodes that are
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Table 5.4: Classwise-ECE(%)

Method CIFAR10 CIFAR100

VGG11 ResNet50 VGG11 ResNet50

Standard Training 1.54 0.95 0.52 0.43

Temperature Scaling 1.04 0.92 0.40 0.34

Label Smoothing 1.18 1.15 0.38 0.38

Mixup 1.99 1.41 0.38 0.35

LL Dropout 1.50 1.03 0.51 0.45

Adaptive Label Smoothing (Ours) 1.23 0.90 0.37 0.34

Adaptive Mixup (Ours) 0.90 0.83 0.37 0.32

Adaptive LL Dropout (Ours) 1.00 0.79 0.32 0.28

removed are different for every data instance, therefore this change is not uniformly applied

across the training data and slows down the response from the parameter changes. Mixup

suffers from a similar problem to dropout, a delay between the calibration parameter being

changed by the adaptive framework and the validation statistics reflecting this change. For

mixup this is caused by a disconnect between the mixup parameter ε that is altered during

training and the parameter λ used to create the convex combinations of data instances. The

mixup parameter ε only defines the distribution from which λ is drawn from, therefore this

sampling procedure delays the response between changing the value of ε and the validation

statistics reflecting that change. Label smoothing is most suited for the adaptive framework

as the changes in the smoothing factor α are immediately and directly applied to the loss

function and the change in α results in a uniform change for all training data labels.

The classwise-ECE results (Table 5.4) further demonstrate how the adaptive framework

produces more well calibrated models than standard methods. Across all three benchmark

methods, using adaptive parameter tuning produces lower classwise-ECE. The most interest-
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Table 5.5: Negative Log-Likelihood (NLL)

Method CIFAR10 CIFAR100

VGG11 ResNet50 VGG11 ResNet50

Standard Training 0.49 0.28 1.74 1.31

Temperature Scaling 0.33 0.22 1.61 1.11

Label Smoothing 0.36 0.24 1.38 1.14

Mixup 0.36 0.24 1.29 1.11

LL Dropout 0.46 0.30 1.75 1.31

Adaptive Label Smoothing (Ours) 0.37 0.24 1.38 1.10

Adaptive Mixup (Ours) 0.32 0.21 1.29 1.02

Adaptive LL Dropout (Ours) 0.42 0.29 1.45 1.15

ing results of Table 5.4 is that adaptive last layer dropout achieves the lowest classwise-ECE

on three of the four experimental setups. This is contrary to the results of ECE (Table 5.2),

where adaptive last-layer dropout performed poorly. Although adaptive last-layer dropout is

relatively poor at top-1 calibration (ECE) it is able to provide accurate confidence measures

for non class predictions (Classwise-ECE).

Our adaptive framework appears to decrease negative log likelihood (NLL) loss (Table

5.5). This improvement in NLL makes sense as it has previously been proven that NLL

can be decomposed into three components; uncertainty, resolution and calibration [Bröcker,

2009]. Therefore since Table 5.2 and 5.4 demonstrate that calibration error decreases with

our adaptive methods, it follows that NLL will decrease as well, assuming uncertainty and

resolution remain constant. We observe that similar to ECE, adaptive mixup achieves the

lowest NLL on all four experimental setups.

Our adaptive framework appears to decrease Brier score (Table 5.6). This improvement in

Brier score makes sense as it has previously been proven that Brier score can be decomposed
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Table 5.6: Brier Score

Method CIFAR10 CIFAR100

VGG11 ResNet50 VGG11 ResNet50

Standard Training 7.99 4.94 20.01 16.73

Temperature Scaling 6.98 4.04 16.54 13.46

Label Smoothing 6.70 3.65 15.43 12.09

Mixup 6.51 3.47 14.90 11.83

LL Dropout 7.73 4.79 19.66 16.21

Adaptive Label Smoothing (Ours) 6.65 3.42 14.87 11.63

Adaptive Mixup (Ours) 6.39 3.27 14.38 11.55

Adaptive LL Dropout (Ours) 7.03 4.34 15.07 12.01

into two components; calibration and sharpness [Bröcker, 2009]. Therefore since Table 5.2

and 5.4 demonstrate that calibration error decreases with our adaptive methods, it follows

that Brier score will decrease as well. We observe that similar to ECE, adaptive mixup

achieves the lowest Brier score on all four experimental setups.

Finally we examine how the parameter values evolved over training (Table 5.7). For

label smoothing, the smoothing factor did depend on the dataset and model architecture,

the smoothing factor at the end of training for VGG11 on CIFAR-10 was the highest and

ResNet50 on CIFAR-100 was the lowest. Therefore for label smoothing, larger model archi-

tectures and datasets with more classes require smaller smoothing factors. An important

observation though is that the difference between the final smoothing factor value between

all four experiments was only 0.03, therefore there is not significant variation in optimal

smoothing factor between datasets and model architectures. Mixup does not appear to have

this same property, there is a large difference between the final mixup parameter values

of CIFAR-10 and CIFAR-100 experiments. For the same dataset, the difference in final
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Table 5.7: Calibration parameter analysis: initial parameter values (θ0) compared to parame-
ter values at the end of training for adaptive methods across datasets and model architectures

Method θ0 CIFAR10 CIFAR100

VGG11 ResNet50 VGG11 ResNet50

Adaptive Label Smoothing 0.05 0.053 0.033 0.036 0.027

Adaptive Mixup 0.2 0.100 0.097 0.186 0.177

Adaptive LL Dropout 0.2 0.966 0.988 0.962 0.979

parameter value is minimal much like label smoothing. Therefore we see that selecting a

good mixup parameter is very dependent on the dataset. The dropout parameter finishing

above 0.95 is very surprising, considering most work with last layer dropout sets the pa-

rameter at 0.2. We observe that in order to balance over and underconfidence the dropout

rate increases significantly. An interesting observation is that obtaining a good confidence

balance and calibration error with last layer dropout is only possible with our method. We

have demonstrated that a fixed value of 0.2 keeps the model overconfident, but if we use a

dropout rate of 0.95 throughout training, learning is too slow. Therefore obtaining a well

calibrated model with last layer dropout is only possible with our adaptive framework that

slowly enables the dropout rate to increase during training in order to balance model over-

and underconfidence.

Figure 5.1 presents the reliability diagrams for all seven methods evaluated on one of

the four dataset and model architecture experimental setups. This figure provides a visual

analysis to support both our discussion about calibration error metrics (ECE, classwise-ECE)

and our new calibration balance metric (CB). The additional reliability diagrams for the

other three experimental setups can be found in appendix A. standard training and last-layer

dropout (p=0.2) achieve poor model calibration, both models are significantly overconfident.
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(a) standard training

(b) label smoothing (c) mixup (d) last-layer dropout

(e) adaptive label smoothing (f) adaptive mixup (g) adaptive last-layer dropout

Figure 5.1: Reliability Diagrams for VGG11 model trained on CIFAR100
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Label smoothing and mixup are more well calibrated, most bins have relativly small error, but

a clear trend of underconfidence can be observed in every bin. Adaptive last-layer dropout is

significantly more well calibrated than last-layer dropout with a fixed dropout rate, however

it still appears worse off than label smoothing and mixup with fixed parameters. Adaptive

last-layer dropout displays underconfidence on low confidence predictions and overconfidence

on high confidence predictions. This reliability diagram demonstrates why the confidence

balance metric should be reported along with calibration error, for this model CB ≈ 98%

however the ECE is three times greater than for adaptive label smoothing and mixup. The

last-layer dropout reliability diagram also points out a clear weakness in the formulation of

confidence balance, the CB of 98% is a near perfect score, however if you were to calculate

the confidence balance on the first ten bins and the last 5 bins separately each would have

CB = 0, this further supports the idea that confidence balance must be reported along

with calibration error metrics. Adaptive label smoothing appears to be well calibrated, and

appears to have improved slightly from label smoothing with a fixed smoothing factor value.

Finally, adaptive mixup is clearly the most well calibrated model, it maintains a trend of

underconfidence in each bin, but the bin errors are very small and very consistent across

the entire confidence range. Visually, adaptive mixup was clearly the best method for this

particular dataset and model combination.

Class Adaptive Label Smoothing

Class adaptive label smoothing improves ECE over regular label smoothing in all experi-

ments and over adaptive label smoothing in three of the four experiments (Table 5.8). The

improvement in ECE for class adaptive label smoothing on CIFAR-10 is significant, com-

pared to standard label smoothing and adaptive label smoothing it lowers ECE by at least
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Table 5.8: Class adaptive label smoothing analysis

Method CIFAR10-VGG11 CIFAR10-ResNet50

Accuracy% ECE% CB% Accuracy% ECE% CB%

Standard Training 90.10 6.93 0.06 93.58 4.02 0.54

Label Smoothing 90.65 4.10 90.87 93.92 3.96 28.49

Adaptive LS (Ours) 90.18 4.65 91.70 93.91 2.83 96.59

Class Adaptive LS (Ours) 90.24 2.67 58.61 93.98 1.72 80.72

Method CIFAR100-VGG11 CIFAR100-ResNet50

Accuracy% ECE% CB% Accuracy% ECE% CB%

Standard Training 66.24 19.07 0.0 71.91 15.17 0.0

Label Smoothing 67.59 3.27 0.15 73.48 5.61 0.08

Adaptive LS (Ours) 67.07 1.95 59.60 73.33 2.15 53.55

Class Adaptive LS (Ours) 67.78 2.43 62.33 73.37 1.82 77.16

1%, clearly indicating that a smoothing factor dedicated for each different class can have sig-

nificant benefits on model calibration. Class adaptive label smoothing on CIFAR-100 is less

impressive, increasing ECE with the VGG11 architecture and barely decreasing ECE with

the ResNet50 architecture. The difference between CIFAR-10 and CIFAR-100 is the number

of image classes (10 and 100 respectively), therefore the number of images per class is ten

times less in CIFAR-100. In the CIFAR-10 experiments estimates for ECEOC and ECEUC

for each image class are computed with approximately 500 images (5000 images total in the

validation set), these same estimates for class adaptive label smoothing on CIFAR-100 are

computed with approximately 50 images. The decrease in images per class from CIFAR-

10 to CIFAR-100 make the confidence estimates that class adaptive label smoothing uses

less accurate and more variable, therefore the performance drops significantly. There are a

number of possible options to obtain more confidence data for each image class, the top-r
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Table 5.9: Class adaptive Classwise-ECE (%)

Method CIFAR10 CIFAR100

VGG11 ResNet50 VGG11 ResNet50

Standard Training 1.54 1.34 0.52 0.43

Label Smoothing 1.18 1.15 0.38 0.39

Adaptive Label Smoothing (Ours) 1.22 0.90 0.37 0.34

Class Adaptive LS (Ours) 1.16 0.83 0.36 0.33

prediction probabilities could be considered, as opposed to the current method of top-1,

a similar idea was proposed by Gupta et al. [2021]. Another option would be to use any

prediction confidence above a certain threshold, Nixon et al. [2019] use this concept in their

calibration evaluation framework. Further calibration evaluation is presented in Table 5.9

with Classwise-ECE. Class adaptive label smoothing had the lowest classwise-ECE for all

experiments, demonstrating that adjusting a smoothing factor for each target class has a

significant benefit over a joint smoothing factor used for every class.
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Chapter 6

Conclusion

In this work we have focused on improving methods for model confidence calibration. We

have shown that the most popular calibration methods; label smoothing, mixup and last-

layer dropout, are relatively simple in theory and practice, and confirmed previous observa-

tions that these methods can improve model calibration compared to using standard training

methods. We demonstrate that the parameter values that define these methods can have a

significant influence on how well these methods work for model calibration, and that these

optimal parameter values can change depending on dataset and model architecture. Re-

search that utilizes these methods rarely validate the parameter values and when they do,

their procedures are not extensive, most likely due to the computational cost of training

vision models for classification tasks. We introduced a decomposition of expected calibra-

tion error (ECE) that provides metrics to measure over- and underconfidence. These two

new metrics enabled us to develop a framework for optimizing calibration methods by ad-

justing method parameters in order to keep the over- and underconfidence metrics relatively

equal. This framework was motivated by the lack of attention and discussion on model
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over- and underconfidence in recent calibration research and since binning-based calibration

metrics are not differentiable and therefore cannot be incorporated into loss functions. This

framework also enables the method parameters to be validated during training, alleviating

the cost of traditional parameter validation. Using this framework with popular calibration

methods (label smoothing, mixup and last-layer dropout) we demonstrate its effectiveness;

lower calibration error and a better balance between model over- and underconfidence, while

preserving classification accuracy. We extend this idea to a class based adaptive framework,

which we test with label smoothing. This extension appears to work well when sufficient

data is supplied for each class. Our work also serves as a good comparison between label

smoothing, mixup and last-layer dropout for calibration experiments. Our results show that

when all three methods are used with our adaptive framework, mixup produces the most

well calibrated models, beating label smoothing by a small margin but consistently across

experimental setups (datasets and model architectures) and beating last-layer dropout by a

significant margin.

6.1 Future Work

There are multiple avenues of interest for future work. Applying our adaptive framework

to more recently developed methods for calibration such as focal loss [Mukhoti et al., 2020]

could further validate the effectiveness of the framework, and provide a better comparison of

how well these new methods compare to more widely used methods such as label smoothing

and mixup. We demonstrated the potential for our class based adaptive framework. Future

work could explore whether utilizing the top-r prediction probabilities could help resolve the

issues we experienced on CIFAR-100 with a lack of data for each class. It would be interesting
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to also apply the class adaptive framework to mixup (Wen et al. [2021] have done something

similar very recently) and last-layer dropout. Our work focused on the simple case of methods

that can be defined by a single parameter. In fact our framework can be viewed as a simple

one-dimensional optimization method. It would be interesting to explore extensions of this

framework for methods with multiple parameters, such as augmix [Hendrycks et al., 2020] or

dropout applied to multiple layers in a neural network. Expanding our framework to multiple

parameters could potentially require a more sophisticated optimization method. Despite its

popularity, ECE has quite a few weaknesses [Nixon et al., 2019, Kumar et al., 2019]. Since

our measures of over- and underconfidence for this work came from the decomposition of

ECE, our framework may have suffered slightly either by the number of bins we choose to

use for these metrics or simply by the fact that we choose ECE. It would be interesting to do

a review of the adaptive framework experiments in this thesis using different numbers of bins

for ECEOC and ECEUC to see if it improves the performance at all, or potentially trying

another calibration error metric (and its subsequent decomposition) such as classwise-ECE.
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Appendix A

Reliability Diagrams

Here, we follow up from Figure 5.1 and provide the reliability diagrams from our other three

experiments. Overall the general trends that we discussed with Figure 5.1 hold for these sets

of reliability diagrams as well. Most importantly our adaptive method appears to improve

calibration across all three methods; label smoothing, mixup and last-layer dropout, this

improvement is most noticeable in Figure A.3. Additionally, we observe in these reliability

diagrams that our adaptive method works best with mixup, nearly as well with label smooth-

ing and last-layer dropout performs reasonably on CIFAR10 experiments (Figure A.1,2) and

poorly on CIFAR100 (Figure A.3).
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(a) standard training

(b) label smoothing (c) mixup (d) last-layer dropout

(e) adaptive label smoothing (f) adaptive mixup (g) adaptive last-layer dropout

Figure A.1: Reliability Diagrams for VGG11 model trained on CIFAR10
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(a) standard training

(b) label smoothing (c) mixup (d) last-layer dropout

(e) adaptive label smoothing (f) adaptive mixup (g) adaptive last-layer dropout

Figure A.2: Reliability Diagrams for ResNet50 model trained on CIFAR10
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(a) standard training

(b) label smoothing (c) mixup (d) last-layer dropout

(e) adaptive label smoothing (f) adaptive mixup (g) adaptive last-layer dropout

Figure A.3: Reliability Diagrams for ResNet50 model trained on CIFAR100
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