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Abstract

As operating frequency increases and device sizes shrink, the complexity of current state-of-
the-art designs has increased dramatically. One of the main éontributors to this complexity is
high speed iﬁterconnects. At high frequencies, interconnects become dominant contributors to
signal degradation, and their effects such as delays, reflections, and crosstalk must be accurately
simulated. Time domain analysis of such structures is however very difficult because, at high
frequencies, they must be modeled as distributed transmission lines which, after discretization,
result in very large networks. In order to improve the simulation efficiency of such structures,
model order reduction has been proposed in the literature. Conventional model order reduction

methods based on Krylov subspace have a number of limitations in many practical simulétion
| problems. This restricts their usefulness in general commercial simulators.

In this thesis, a number of new reduction techniques were developed in order to address the
key shortcomings of current model order reduction methods. Specifically a new approach for
handling macromodels with a very large number of ports was developed, a multi-level reduction
and sprasification method was proposed for regular as well as parametric macromodels, and
finally a new time domain reduction method was presented for the macromodeling of nonlinear
. parametric systems. Using these approaches, CPU speedups of 1 to 2 orders of magnitude were

obtained.



Résumé

A mesure que la fréquence d’opération augmente et la taille des dispositifs se rétrécit, la com-
plexité de conceptions avancées a la pointe de la technologie a augmenté considérablement.
Une des causes principales de cette complexité sont les interconnexions haute-vitesse. A hautes
fréquences, ces interconnexions deviennent les causes dominantes de la dégradation de signal et
leurs effets tels que les retards, les réflexions et la diaphonie doivent étre simulés précisément.
L’analyse du domaine temporel de telles structures est cependant trés difficile, car a hautes
fréquences, elles doivent étre modelées comme lignes de transmission distribuées, ce qui entraine
de trés grands réseaux aprés discrétisation. Afin d’améliorer 1’efficacité de simulation de telles
structures, quelques travaux proposent la réduction d’ordre de modele. Les méthodes conven-
tionnelles de réduction d’ordre de modéle basées sur le sous-espace de Krylov causent plusieurs
limitations dans beaucoup des problemes de simulation pratiques. Ceci limite ainsi leur utilité
dans les simulateurs commerciaux généraux.

Dans cette thése, un certain nombre de nouvelles techniques de réduction ont été développées
afin d’adresser les imperfections principales des méthodes courantes de réduction d’ordre de
modele. Spécifiquement une nouvelle approche pour manipuler des macromodeles avec un tres
grand nombre de portes a été développée. De plus, une méthode de réduction et de sparcification a
multiniveaux a été proposée pour macromodeles généralaux ainsi que paramétriques. Finalement
une nouvelle méthode de réduction dans le domaine temporel a été présentée pour le macromod-
eling des systémes paramétriques non-linéaires. En utilisant ces techniques, des améliorations de

vitesse de CPU a I’ordre de 1 a 2 ordres de grandeur ont été obtenues.
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Chapter 1

Introduction

1.1 Background and Motivation

In recent years, the complexity of the state-of-the-art microsystems has increased dramatically.
Device miniaturization and technology scaling have led to larger designs containing orders of
magnitude more components, and have resulted in more complicated models for both active and
passive elements. This rise in complexity has made electronic design automation (EDA) tools a
more essential part of the design cycle, while at the same time pushing the capabilities of existing
tools and computing resources to their limits. In fact, the performance of high end designs is in-
creasingly limited by the capabilities of EDA tools rather than by what can be optimally achieved
using the available technology. One example of increased complexity in the digital Very Large
Scale Integrated (VLSI) circuits and mixed signal areas is the signal integrity issues stemming
from the high speed interconnects and packages [1]-[6].

Due to the increasing operating frequencies coupled with smaller feature sizes, lower power
consumption, and the use of mixed analog/digital circuits, interconnect effects such as delay,
crosstalk, attenuation, dispersion, reflection, ringing have become prominent and are causing a
significant degradation in signal quality. These high speed interconnect effects, if not detected at

early design stages, would severely degrade the system performance. It is therefore imperative
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for circuit designers to simulate interconnects as accurately and efficiently as possible and correct
the signal integrity problems as early as possible in the design cycle. Interconnects are therefore
a critical component of the design process and can be a bottleneck for system performance.
Efficient simulation of interconnects is critical from a design perspective. However high-speed
interconnects also present significant difficulties for simulation and optimization, and have also
become a bottleneck from a simulation and design automation perspective as well.

The main difficulty in the simulation of interconnect networks stems from the fact that, at high
frequencies, they must be considered as transmission lines, and modeled using the Telegrapher’s
equations, which are partial differential equations in space and time. These equations cannot be
directly integrated in a Spice like time domain simulator which is based on nonlinear ordinary
differential equations. Such nonlinear transient simulators including the nonlinear receivers and
drivers are, however, a necessary part of the design process. In order to link the transmission
lines to the rest of the circuit, a time domain model in the form of ordinary differential equations
is necessary. Obtaining such a model requires some form of discretization of the partial differ-
ential equations [2], [7]-[13]. Approaches based on cutting the interconnects into small sections
with each section small enough to be modeled using lumped resistors, capacitors, and inductors
(RLCG) provide a brute force way for the discretization [2]. Other more efficient discretization
methods have been proposed. They include compact difference based discretization [8], inter-
polation based discretization [10], and matrix rational approximation [12], [13]. Regardless of
discretization methods used, the resulting model after discretization contains a large system of
equations, which significantly increases the CPU cost.

Model Order Reduction (MOR) techniques were therefore proposed in the literature to ad-
dress the problem of simulation of high speed interconnects [5], [14]-[20]. The goal of model or-
der reduction is to find a reduced order macromodel, which is much smaller than the original sys-
tem, but still captures the essential input/output behaviors of the original system. Once available,
these reduced order macromodels can replace the original large circuits and thus greatly reduce

computational cost in system level simulation and designs. A number of model order reduction
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methods for high-speed interconnect networks have been proposed in the literature [14]-[25].
They can be roughly classified into two general categories. One category is based on direct
moment-matching. Reducing the original system using a single Padé expansion is known as
asymptotic waveform evaluation (AWE) [18], [21], while complex frequency hopping (CFH)
extends the moment-matching to multiple expansions [16]. However these methods have an in-
herent ill-conditioned problem. Moreover, there is no guarantee that the reduced order model is
passive. Passivity is an important property for interconnect networks. A non-passive model, even
if it is stable, may result in a unstable system when connected to other passive networks [5]. To
overcome these difficulties, another category of model order reduction techniques known as in-
direct moment-matching was proposed in the literature [19], [20], [22], [23], [26], [27]. The key
feature of these methods is that the reduced basis can be computed using robust well-conditioned
algorithms such as Arnoldi and Lanczos [28]. The reduced system can preserve a certain num-
ber of moments of the original system implicitly, thus making the reduced macromodel more
accurate as the number of moments is increased. This provides an accuracy versus size trade
off up to a relatively high order. In addition, after some modification, indirect methods based
on congruence transformation were shown to be passive by construction [19], [22], [23]. Due
to robust algorithms and the guarantee of the passivity, congruence transformation based model
order reduction has become a standard approach for generating macromodels. However, they still
suffer from two important limitations. The first is related to the number of ports. As the number
of ports increases, the size of the macromodel grows rapidly. The second limitation is the result
of properties of the Krylov subspace used in the reduction. Such a subspace is known to capture
significantly more poles than what is necessary in order to conserve the responses of the original
system [29], [30]. Another indirect model order reduction technique is based on truncated bal-
anced realization [24], [25]. These methods provide a good global error bound and the stability
and the passivity of the original system can be preserved for reduced models. However high
computational cost associated with solving Lyapunov equations limits these approaches to small

or medium size problems.
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Traditional model order reduction methods work for specific circuits, and require a new re-
duction each time a circuit parameter is modified. This can be very inefficient in many practical
cases such as when the optimization or parameter sweeping is performed which requires re-
peated simulation for different parameter values. In order to address this issue, parametric model
order reduction (PMR) techniques were proposed in [31], [32] to reduce the order of large sys-
tems, simultaneously with respect to frequency as well as design parameters. These techniques
avoid repeated generation of the macromodels for different parameters, thus making it an efficient
simulation tool for performing optimization and analyzing designs. However currently existing
parametric model reduction methods face two difficulties. One is that these methods are based
on multi-dimensional moment-matching which produces a larger parametric reduced model than
what is necessary. Another difficulty is that the reduced parametric model is dense. A dense
model would significantly limit the efficiency of the simulation.

The model order reduction methods described above are frequency domain methods, which
cannot directly apply to nonlinear systems. However interconnect circuits are generally nonlin-
ear systems containing drivers and receivers. The general approach used so far would therefore
require partitioning of a system into linear and nonlinear subsections and performing model order
reduction on the linear parts. However there were attempts to extend the linear macromodeling
techniques to the nonlinear circuits in time domain. For example, a nonlinear system could be
approximated with a set of linear subsystems, then followed by linear reduction utilizing methods
described above. One straightforward way for the approximation is based on polynomial (Taylor)
expansion of the nonlinearity [33]-[37]. The main problem about this group of methods is that
they generate macromodels valid only around the expansion point. This limits the application
to only weakly nonlinear systems and/or small input signals. In order to address this problem,
a trajectory piece-linear model order reduction approach was proposed in [38]. The key obser-
vation in trajectory model order reduction is that the nonlinearity is represented by collections
of linearized systems at different expansion points instead of one expansion point in order to

overcome the weakly nonlinear limitation. The final reduced model is then obtained by taking
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a weighted combination of the resulting reduced order linearized models. However, finding a
good weighting function is not an easy task for a broad class of nonlinear systems. Moreover, if
the weighting function is not well chosen, the resulting macromodel would give poor results and
even suffer from the instability [39]. A more practical and robust methodology is thus required

for obtaining nonlinear macromodels.

1.2 Contributions of the Thesis

In this thesis, a number of advanced novel model order reduction methods have been developed
that address the key shortcomings of the current model order reduction techniques, thus improv-
ing their CPU efficiency and extending their applicability to new applications. More specifically,

the main contributions are listed as follows.

1. Model order reduction for systems with large number of ports (see Chapter 3): One of
the difficulties with model order reduction methods is that the size of the reduced order
model increases rapidly with the number of ports as shown in Fig. 1.1. In this thesis, a
new method for the computation of the congruence transformation matrix has been pro-
posed as well as a new parametric port formulation has been developed which allows us
to embed the load parameters without any modification to the vector of unknowns in the
modified nodal analysis formulation {40]-[43]. It has been shown that the block moments
with respect to frequency as well as the block moments with respect to load parameters
are conserved [44]. As demonstrated in the examples, the size of the proposed reduced
macromodels is significantly less sensitive to the number of ports than those obtained from
the traditional methods. This proposed method therefore significantly extends the range
of applicability of model order reduction methods to systems with large number of ports

when information about the types of loads on the ports is available.

2. Multi-Level Reduction (see Section 4.2): Traditional Krylov subspace based model order

reduction techniques result in reduced order models which are much larger than necessary
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Fig. 1.1 Size of the reduced macromodels obtained from traditional MOR versus
the number of ports

and are thus not optimal. In this thesis, a multi-level reduction method with a second level
of reduction based on singular value decomposition has been developed [45]-{47]. The
new singular value decomposition based reduction can reduce by more than half the size
of the macromodel obtained from the traditional model order reduction techniques. The
major advantage of the proposed algorithm is that it is simple to implement, as compared

with other methods such as Balanced Truncations.

3. Multi-level Parametric Reduction (see Section 4.3): Parametric model order reduction
(PMR) methods were introduced for applications such as optimization and design space
exploration. All these applications require repeated simulations at different values of cer-
tain design parameters. Parametric model order reduction techniques were therefore pro-
posed in the literature to produce a macromodel which is valid over a range of parameter
values [31], [32]. However, conventional parametric model order reduction methods are
based on moment-matching and would result in a macromodel which contains many re-
dundant poles. In this thesis, a multi-level reduction based on singular value decomposi-
tion has been proposed for parametric systems [48]. The macromodel obtained using the

proposed approach is typically about one third the size of the macromodel obtained using
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the traditional parametric model order reduction method.

4. Sparse parametric macromodel (see Section 4.4): The conventional parametric model order
reduction techniques result in very dense reduced macromodels which significantly reduce
the efficiency of the simulation. In this thesis, a new parametric formulation has been
developed, which allows for the sparsification of the reduced parametric macromodel [49].
The reduction procedure and the sparsification are then performed on the macromodel in
the space of the new formulation. This approach significantly improves the CPU efficiency

of the simulation due to the sparsification.

5. Sparse Multi-level Parametric Reduction (see Section 4.5): In this thesis, a sparse multi-
level parametric reduction method based on the sparsification and the multi-level reduction
has been developed. The resulting macromodels are very small as well as sparse. They can
achieve up to 350 times faster than the original systems to obtain the transient responses

and therefore significantly improve the simulation efficiency.

6. Macromodeling of nonlinear networks (see Section 5.3 and Section 5.4): Traditional model
order reduction methods are frequency domain techniques which are limited to the macro-
modeling of linear networks. In this thesis, a time domain nonlinear macromodeling tech-
nique, which is able to deal with arbitrary nonlinearity, has been developed [50] as well
as a nonlinear formulation suitable for sparsification has been proposed [51]. This results
in an efficient reduced order nonlinear macromodel which is sparse, and is valid over a

predefined range of input waveforms and load conditions.

7. Macromodeling of parametric nonlinear networks (see Section 5.4.4): In this thesis, a new
nonlinear model order reduction approach has been proposed for parametric nonlinear sys-
tems [52]. This new technique produces a sparse parametric nonlinear macromodel. This
macromodel only needs to be created once, and can be reused many times over different
input waveforms, different load conditions, as well as different internal circuit parameters.

As demonstrated in the examples, the proposed nonlinear macromodel can achieve up to 40
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times faster than the original nonlinear system to obtain the transient responses. This has
many applications for interconnect networks containing nonlinear loads and internal circuit
parameters, but also has the potential to provide an automatic and systematic approach to

develop dynamic macromodels for nonlinear drivers.

1.3 Organization

The thesis is organized as follows. After the introduction in Chapter 1, the system formulation
of circuit equations is outlined as well as existing model order reduction techniques for both
linear and nonlinear systems are reviewed in Chapter 2. Chapter 3 presents a new model order
reduction method to deal with a system with large number of ports by taking advantage of prior
information on the ports. A new sparse multi-level parametric model order reduction technique
is proposed in Chapter 4. In Chapter 5, a new sparse macromodeling technique for parametric
nonlinear systems is proposed. Finally, a summary of current work and possible directions of

future work is given in Chapter 6.



Chapter 2

Review of Model Order Reduction

Techniques

As operation frequencies increase and device sizes shrink, the complexity of the current state-of-
the-art designs has increased dramatically. One of the promising methods to deal with such in-
creasing complexity is the use of model order reduction [S], [14]-[21], [23], [26], [29], [30], [53]-[62].
The general idea behind model order reduction is that, although the original networks may contain
a large number of poles, only a fraction of those poles significantly contribute to the responses
of the original network. We could therefore replace the original network with a reduced order
macromodel, which captures the dominant poles and thus captures the essential characteristics
of the original system. The focus of this thesis work is to develop advanced model order reduc-
tion methods with applications to the signal integrity analysis of modern microsystems. In this
chapter, the main model order reduction methods for both linear and nonlinear systems currently
available in the literature are presented in order to provide the necessary background as well as
the motivation for the work.

This chapter is organized as follows. Section 2.1 presents the system formulation for intercon-
nect circuits. Model order reduction based on direct methods is discussed in Section 2.2. Model

order reduction based on indirect methods is described in Section 2.3. Parametric model order
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reduction techniques are reviewed in Section 2.4, followed by discussing the truncated balanced
realization in Section 2.5. Finally, model order reduction for nonlinear systems is reviewed in

Section 2.6.

2.1 System Formulation

Before reviewing the currently existing model order reduction methods, it is useful to intro-
duce the generic system formulation which is used throughout this thesis for representing circuit
equations as well as macromodels for linear and nonlinear subsections. This formulation is a
mathematical representation of the system that can be used for the analysis and simulation of
the behavior of the system. For the electrical circuits containing resistors, capacitors, inductors,
transmission lines as well as nonlinear elements such as drivers and receivers, the mathematical
model is a set of nonlinear differential algebraic equations, which are obtained by using Kirch-
hoff’s Current Law and Kirchholff’s Voltage Law. The methodology for obtaining such circuit
equations is known as Modified Nodal Analysis (MNA). It is important to note that in this context
the transmission lines have been discretized into lumped sections using one of the discretization

methods proposed in the literature [2], [7]-[13].

2.1.1 Modified nodal analysis formulation for circuits with lumped elements

Consider a lumped linear and nonlinear network, the modified nodal analysis (MNA) formulation
of this network consists of nodal equations based on Kirchhoff’s Current Law at each independent
node, as well as additional equations to deal with voltage sources, inductors, and other special

elements. The general MNA formulation can be written as [63], [64]

Gz(t) + Ci(t) + f(z(t)) = b(t) @.1)

1. * € R" is a vector of node voltages appended by independent voltage source currents and

linear inductor currents, nonlinear capacitor charges and nonlinear inductor fluxes.
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2. G € R™" and C € R™" are constant matrices containing the contributions of lumped

memoryless and memory elements respectively.

3. f(x(t)) € R™is a vector containing algebraic functions describing the nonlinear elements

of the circuit.
4. b(t) € R™ is a vector with entries determined by the independent voltage/current sources.

5. m is the total number of the variables in the formulation.

1;(e(V27Y3)/VT )

de 1 node 2 de 3
noae noae
AN )

Vs

-C,

w<
©)
-
MCD
|1

Fig. 2.1 A simple nonlinear example circuit

The modified nodal analysis formulation in (2.1) is illustrated using a simple nonlinear exam-
ple circuit shown in Fig. 2.1. By applying Kirchhoff’s Current Law (KCL) at each node of the

example circuit, we obtain

Gl(’Ul—Ug)—iv =0

G1(vy — v1) + Govy + I, (ei:fl - 1) = 0 2.2)
Civs — I, (e“z‘}‘& - 1) = 0

v = wv(t)
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Equation (2.2) can be recast in the matrix form (MNA formulation)
( Gl '—Gl 0 -1 (%] 00 0 O ’i)l
-G 1 G 1+ G2 0 0 Vg + 00 0 O '[)2
0 0 0 0 V3 00 Cl 0 ’03
1 0 0 0 iy 00 0 0 by
0 0 |
t e; . : ° 2.3)
+ vy —, = .
-1, (e . 1) 0
0 vs(t)

where I is the reverse bias saturation current of the diode and vy is the thermal voltage. Note that
in addition to three nodal voltages (v1, ve,v3) as unknown variables and three nodal equations,
one more unknown variable (voltage source current, ,) and one more equation are added in the
modified nodal analysis (MNA) formulation to deal with the independent voltage source. One
of the main advantages of MNA formulation is that the resulting equations are sparse, which
significantly increases the CPU efficiency of the simulation. The detailed information about

modified nodal analysis formulation can be found in [65].

2.1.2 Modified nodal analysis formulation for linear subsections

In this section, we consider linear multi-port subsections which can contain lumped passive ele-
ments (resistors, inductors, and capacitors) as well as discretized transmission lines. The modi-
fied nodal analysis (MNA) formulation for this subsection, after discretization of the distributed
elements, is written as [29], [63]

Gz(t) + Cz(t) =

Ro(t) (2.4a)

i = RTz(t) (2.4b)
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where G € R™" and C € R"™*" are constant matrices obtained from lumped elements and
discretization of the distributed elements. R € R"*? is a selector matrix that maps port cur-
rents to the node space of the subnetwork. v(t) € RP is a vector containing the port voltages
V1,2, -+ ,Up. t(t) € RP is a vector containing the port currents i;,4z,- -« ,4p. n is the total

number of the variables in the formulation. p is the number of ports as shown in Fig. 2.2.

— Multi-Port
2 | Subsection

Io)
L o
— )

v

Fig. 2.3 A two-port example circuit as a subsection

To illustrate the modified nodal analysis (MNA) formulation for a linear subsection, a sim-

ple two-port linear circuit is shown in Fig. 2.3. This two-port circuit is described as first order
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differential equations in (2.4), where G, C, z(t), R, v(t),  are in the form of

(¢, 0 -¢ 0 10] (0 0 0 0O 00|
0 0 0 0 01 0 ¢ 0 —-C 00
G, 0 Gi+G, 0 0 0 0 0 C -C, 00
G = . C = 2.5)
0 0 0 G5 00 0 —-C, —-C, Ci+C, 0 0
1 0 0O 0 00 0 0 0 0 00
0 -1 0 0 00 0 0 0 0 00
r T
()= | v, vy v3 vy g is2] (2.6)

- NT
0000 -1 0

R = 2.7

0000 0O -1

i
ot)=| " i=| " 2.8)
()] i2

Note that the last two rows in the modified nodal analysis formulation are port equations, which
are v; = v; and v, = vy. In other words, the voltages across portl and port2 are arbitrarily set by
the boundary conditions. In general, for a p-port network, the last p rows of the MNA formulation

are port equations.

2.1.3 Modified nodal analysis formulation for nonlinear subsections

For a subsection containing nonlinear elements, such as nonlinear resistors, nonlinear capacitors,

nonlinear inductors, and inverters, the modified nodal analysis (MNA)formulation can be written

as

Gx(t) + Ci(t) + f(x(t))
i = LTz(t) (2.9b)

Rov(t) + b(t) (2.92)
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where f(x(t)) € R" is a vector containing algebraic functions describing the nonlinear elements
of the circuit. b(t) € R™ is a vector containing the independent sources inside the subsection
(e.g. the DC bias voltage source for an inverter). R € R™*? is a selector matrix that maps the
port voltages into the node space of the subsection. L € R™*? is a selector matrix that maps the
port currents into the node space of the subsection. (t) = [¢1,- -, %,]* is a vector containing the
port currents. This nonlinear subsection formulation is illustrated by a simple example shown in
Fig. 2.4. This two-port subsection is described by first order differential equations in (2.9), where
G, C, z(t), f(x(t)), R, v(t) and ¢ are as follows

IS (e(V3—‘V4)/VT _ 1)

is1 G'1 ‘ C1 isg
E Nar—y
v, T) Vg v, (l_ Vo
1 2
G
2 GS
v

¢, 0 -G, 0 10] (0 0 0 0 00]
o 0 0 0 01 0 G 0 —Ci 0 0
Go| G 0 Gre 000|000 0 00| o
0 0 0 G500 0 —-C; 0 Ci 00
1 0 0 000 0 0 0 0 00
i 0 —1 0 0 00_ L-0 0 0 0 00_

T
fv(t)-——[vl vy Uz Vg g1 isz] (2.11)
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2.14)

Note that the last two rows of the modified nodal analysis formulation for the circuit in Fig. 2.4

are general port equations.

2.1.4 Modified nodal analysis stamp for linear and nonlinear subsections

In this section, we present the general stamps used to include linear and nonlinear subsections

such as the ones defined in (2.4) and (2.9) in the overall modified nodal analysis formulation.

Consider a circuit 1) containing linear and nonlinear lumped elements, as well as n,, subsections.

The modified nodal analysis formulation for this overall circuit can be obtained by combining the

lumped formulation with various subsection formulations as follows

(c, o
e
L0

0 o

0 C

Gy
-R, DT

T
! —Ry, Dy,

0
0
0

Ty

D,RT

G,

0

0
Ty(t)
a1 (t)

EN0

T
D, RL,

| Fry (@ () |

zy (1)
wl(t)

T, (t)

(2.15)

where Gy, Cy, f,(xy(t)), and by(t) are obtained from lumped elements as defined in (2.1).

Gy, 7Gn¢’ Cy,-- 7Cn1p’ fl(ml(t))7 te ;fn¢(mn¢(t))’ Ry,

, Ry, are obtained from n,,
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subsections described in (2.9). Dy, -, D, are selector matrices with maximum one nonzero
in each row or column. These selector matrices map the port voltages or currents to the node
space of the circuit .

An example is given to illustrate the formulation in (2.15). Consider a circuit shown in
Fig. 2.5, which contains one subsection. The port voltages and currents of this subsection are
Uni, Ung and ¢, 72. This two-port subsection is represented by nonlinear first order differential

equations as

Glazl(t)+Clw1(t)+f(:c1(t)) = Rl’Ul(t) (216&)
i1 = RTxz\(t) (2.16b)

where the modified nodal analysis (MNA) matrices for the nonlinear subsection, G, Cy, Ry, @1,
1, and v, are described in (2.10), (2.11), (2.12), (2.13), and (2.14). The modified nodal analysis
formulation for the overall circuit containing one nonlinear subsection as well as lumped elements

can be written according to the unified formulation in (2.15).

Is (e(V3—'V4)/ VT _ 1)
G i ) Cil i
Vns n Vi, s1 1 2. V 2
A ES AW P e
1 1
. 1 G 2
VS('[) @T is ::Cm : § GS Cn2:: in2=vn22
v v v v v

Fig. 2.5 An example of circuit with one subsection

G, DR N C, 0 &y () N Folzy@®) | _ | bu(®) 217
-rRDT & 0 C; (1) Ji(z1(2) 0
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where G, Cy, f¢, by (t), x,, are obtained from the lumped elements without the subsection as

Gy 0 ~Gp 0 ] Cu 0 00
0O 0 0 0 0 Cup 0 0
Gy = ;. Cy= (2.18)
‘_Gnl 0 Gnl ""1 0 O 0 O
0 0 1 0 0 0 00
AT
o= vm1 vz vea 4y (2.19)
T
f¢(w¢(t))=[0 v, 0 o] (2.20)
T
by=[0 0 0 v ] @21)
T
1000
D, = 2.22)
0100

2.2 Model Order Reduction based on Direct Moment Matching

In the circuit simulation area, the initial attempts for model order reduction mainly focused on
direct moment-matching methods, which are based on extracting dominant poles from a large
network [14]-[18], [66]-[71]. To that end, the Taylor series coefficients also known as moments
of the original system are first computed and then a direct moment-matching technique is used to
obtain a low order rational approximation of the transfer function for the original system. Such ra-
tional approximation in the frequency domain can be used to find poles and residues of the system
and obtain a time domain macromodel. This provides an efficient way to estimate the transient
responses of a large system over a predefined range of frequency. Reducing the original system
using a single Padé expansion is known as asymptotic waveform evaluation (AWE) [18], while

complex frequency hopping (CFH) extends the moment-matching to multiple expansions [16].
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2.2.1 Asymptotic waveform evaluation

Asymptotic waveform evaluation (AWE) provides a general approach for the approximation of
the responses of linear RLC circuits. The basic idea of this approach is to reduce the original
linear circuit with a large number of poles to a model with a small number of dominant poles.
The dominant poles are the poles close to the imaginary axis and significantly influence the be-
havior of the system. Asymptotic waveform evaluation is based on single Taylor series expansion
(typically at s = 0). It consists of two main steps, moment computation and moment matching.
To simplify the illustration of asymptotic waveform evaluation, consider a single input-single

output system, the frequency domain expression is written as
Gz(s) + sCx(s) = b(s) (2.23)

Taking Taylor series expansion of variables x(s) at s = 0 for the above system with the impulse

input yields
G(mg+mis+ -+ mys") +sC(mo+mys+ - +m,s")=b (2.24)

where the Taylor coefficients of mg,m4, - - - , m, are known as moments, which can be calcu-

lated from equating the coefficients of equal power of s in (2.24)

my = G7'b (2.25)
m; = —G_ICmi_l (226)

The gth moment m,, can therefore be related to the zeroth moment my as
m, = (-G7'C)'m, (2.27)

Once the moments are computed, the next step is to find the impulse response h(s) of the re-
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duced order system, which is approximated by a Padé rational function with order k/q. Note that
the moments of the impulse response correspond to a particular element in the vector m;,7 =
1,2,---, which are denoted as m;, j = 1,2,---. The impulse response of the system can there-

fore be expressed as

h(s) = mg+mys+mas®+ - (2.28)
ag+ 015+ ags? + - + s
1+b18+b282+"'+bq3q

By cross multiplying equation (2.28) and equating the coefficients of equal power of s, the coef-

ficients ag, a1, - ,ax, b1, b, -+ , by are obtained
B 1r T [ T
Mk—gr1 Mi—qr2 Mg by M1
Mi—gt2 Mg—gt3 “°° Myl bg-1 | M2 2.29)
mg MEg+1 " Mppg-1 by Mi+tq
and
Qg = My
ap = mi+bmg
Gy = Mo+ b1m1 -+ bzmo (230)
min(k,q)

ay = my+ Z bimng—;

i=1

Although low order rational functions can be obtained using asymptotic waveform evaluation, the
accuracy of these methods deteriorates as we move away from the expansion point. In general,
less than eight dominant poles can be extracted from asymptotic waveform evaluation. In addi-

tion, asymptotic waveform evaluation provides no estimation for error bounds [5]. To overcome
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these difficulties, complex frequency hopping was introduced in the literature [16].

2.2.2 Complex frequency hopping

Due to the limitations of the single Padé approximation, Complex Frequency Hopping (CFH)
was proposed in the literature to extend the moment-matching at multiple expansion points
(hops) [16]. The expansion points are on or near the imaginary axis of the complex plane. A
binary search algorithm is used in complex frequency hopping to find the expansion points and
minimize the number of expansions. By doing this, enough information is obtained to generate
the reduced system that can match the original system up to the predefined highest frequency.
The comparison for the dominant poles extracted by CFH to those from AWE is illustrated in
Fig. 2.6. In addition, CFH provides etror criterion for the selection of accurate poles and transfer
function. Detailed information on this method can be found in [16], [72]. Early CFH techniques
were targeted at single input-single output systems. In [73], these techniques have been extended

to multi-port systems known as block CFH.

AN - .
Jo Poles captured using CFH Jo
Poles captured using AWE
** . *
o * O : non-dominant pole o *
00 #+ * : dominant pole 00 /Fs
[ I O [ %
o * (o]
o°, * 0% % . .
- o X 0% o Expansion Points
o© * o© *
0 0O/ % » 0 " 09/ * «

(
(

Fig. 2.6 Poles extracting from CFH compare to those extracted from AWE

2.3 Model Order Reduction Based on Indirect Moment Matching

The direct moment-matching methods described in the previous section suffer from two main

problems. First, there is no guarantee that the reduced model is passive. This is a significant
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limitation because the passivity is an important property for interconnect networks. Violating
this requirement would result in the instability of the simulation [5]. In addition, due to inher-
ently ill-conditioned matrix in (2.29) associated with direct moment-matching, only less than
eight dominant poles can be extracted from any expansion point. In order to address these diffi-
culties, another class of model order reduction techniques known as indirect moment-matching

techniques were developed in the literature [19], [20], [23], [26], [27], [55].

2.3.1 Moment matching based on Arnoldi

Consider a linear multi-port circuit described in subsection 2.1.2. In the Laplace domain, the

MNA formulation (2.4) becomes

Gz(s) +sCx(s) = RV(s) (2.31a)
I(s) = RTx(s) (2.31b)

where G € R™", C € R™", R € R"*P, x € R", n is the number of unknown variables in the

circuit. p is the number of ports. Premultiplying (2.31a) by G~!, we can obtain
sAz(s) = z(s) — BV (s) (2.32)

where

A=-G'Cc; B=G'R (2.33)

The reduced order macromodel can be found by changing the variables as

T = Q& (2.34)
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where Q € R"*? (¢ <« n) is an orthogonal matrix, & € RY is the variable vector of the reduced

system. Substituting (2.34) in (2.32) results in

sAQx(s) = Qx(s)— BV(s)
I(s) = RTQ%(s)

Premultiplying both sides of (2.35a) with Q7T we obtain

SQTAQi(s) = QTQi(s)— QTBV(s)
I(s) = RTQ#(s)

Using the orthogonal definition, which is
RTQ=1

The reduced system can therefore be written as

and the transfer function of the reduced system is

Y(s)=R (I-sA)'B

(2.35a)
(2.35b)

(2.362)
(2.36b)

(2.37)

(2.38a)
(2.38b)

(2.39)

where A € R?*? = QT AQ is an upper Hessenberg matrix, B e R = QTB, R € R?P =

QTR, and & € RY is the variable vector of the reduced system. ¢ < n, the reduced system is

therefore much smaller than the original system. It has been shown in [74] that the eigenvalues

of A are a good approximation of the leading eigenvalues of A. In other words, the transfer
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function of the reduced system is a good approximation of the transfer function of the original

system. The congruence transformation @ is defined to span the subspace formed by the system

moments.
colsp(Q] = colsp[K] (2.40)
where
K = [Mo,M,--,M] 2.41)
= [B,AB,---,A"B| (2.42)

It follows from (2.40) that any vector that is a linear combination of the moments in K is also
a linear combination of the columns in (). Note that the column space spanned by the moments
is simply the Krylov subspace. Although the matrix K spans the Krylov subspace, it is very ill-
conditioned as the power order ¢ increases. This is due to the fact that the higher order moments
quickly converge to an eigenvector corresponding to the largest eigenvalue [5]. It is therefore
difficult to explicitly generate the reduction subspace from K. To overcome this difficulty, an
orthogonal basis @ is implicitly constructed to span the Krylov subspace. This orthogonal matrix
can be computed using the Arnoldi process such as modified Gram-Schimdt algorithm [74]. In
contrast to direct moment-matching techniques, the reduction based on the Arnoldi process can
produce high order subspace which is well conditioned and can therefore achieve good accuracy.
Further improvement for obtaining @, such as double orthogolization [75], were also proposed
in the literature. An important indicator for the accuracy of the reduced order model is the total
number of moments it can preserve. It can be shown that if the transformation matrix € spans
the Krylov subspace of the gth order moment vector, the reduced system preserves the first g
moments of the original system [19]. Consequently, the larger the order g is, the more accurate

the reduced system is. However, a larger order ¢ results in a larger reduced macromodel.
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2.3.2 Projection based passive Krylov methods

Since the original interconnect network is passive by nature, it is therefore necessary that the
reduced order system should also be passive. By definition, a passive circuit is one that cannot
generate more energy than it absorbs. Preserving the passivity of the reduced system is impor-
tant because a non-passive system, even if it is stable, may result in a non-stable system when
connected to other passive networks [5].

Although the size of the reduced system in (2.38) is much smaller than the original system,
it does not preserve the passivity. In [19], a general technique for the passive reduction was
proposed based on the Arnoldi algorithm. Instead of performing reduction to the matrix G™'C,
the algorithm in [19] applies reduction to the conductance matrix G and the susceptance matrix
C separately. Referring to the original system in (2.31), the reduced system can be found by
applying the change of variables x = Q&

GQz(s) +sCQx(s) = RV(s) (2.43a)
I(s) = RTQi(s) (2.43b)

Premultiplying both side of (2.43a) by Q7, we have

Gi(s)+sC: = RV(s) (2.44a)
I(s) = RTi(s) (2.44b)

where
G=Q7GQR; C=Q7cQ; R=Q"R (2.45)

The transformation performed on the original system is known as congruence transformation.
It can be proved that the reduced order model in (2.44) is passive provided that the congruence

transformation @ is a real matrix and the conductance and susceptance matrices G and C' are
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symmetric nonnegative definite [19]. The modified nodal analysis formulation for RLC inter-
connect networks can be formulated such that the above conditions are satisfied. For example,
matrix C' is symmetric nonnegative, matrix G can also be symmetric nonnegative definite after
N E
slight modification as the form of G = , where IN is symmetric nonnegative
—-ET 0
definite. It is important to note that although Q is obtained from the Arnoldi process, the passive
reduction technique proposed in [19] is not limited to a particular Arnoldi process. For exam-
ple, one of the important methods to obtain @ is based on singular value decomposition (SVD)
as described in Chapter 4. Due to the passivity by construction and the significant flexibility
in choosing @, the algorithm in [19] has become prevalent over the past decade for the reduc-
tion of linear systems. It is also a key technique widely used in the nonlinear macromodeling

approaches [25], [37], [38], [64], [76].

2.4 Parametric Model Order Reduction

The model order reduction methods reviewed in the previous section work for specific circuits,
and require a new reduction each time a circuit parameter is modified. This can be very inefficient
in many practical cases such as when the optimization or parameter sweeping is performed which
requires repeated simulation for different parameter values. In order to improve the efficiency,
parametric model order reduction (PMR) was proposed in the literature [31], [32], [77].
Consider a large interconnect network consisting of many distributed elements as well as
lumped components. After discretization, the parametrized modified nodal analysis circuit equa-

tions [31], [63], [77] can be written as:

Gz + sCx + (Z fi(Ai)Di) T+ s (Z gj(qﬁj)EJ) z=Ru i=Rz (2.46)
j=1

i=1

where:
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1.

10.

x is a vector of node voltages appended by independent voltage source currents and linear

inductor currents;

G is a matrix corresponding to the network’s memoryless elements, excluding those that

are memoryless parameters;

C is a matrix corresponding to the lumped memory elements of the network, also excluding

the memory parameters;

. R is a selector matrix that maps port voltages to the node space of the modified nodal

analysis equations;

. u is a vector that contains the port voltages;

1 is a vector that contains the port currents;

. Dy, ..., D, are matrices each containing the modified nodal analysis stamp of a particular

memoryless element acting as a parameter;

. Ey,..., E, are matrices each containing the modified nodal analysis stamp of a particular

memory element acting as a parameter;

A1, ..., A, are input scalars that correspond to the values of the variable parameters repre-

sented by Dy, ..., D, respectively;

o1, ..., 9 are input scalars that correspond to the values of the variable parameters repre-

sented by E1, ..., E. respectively.

The traditional parametric reduced order macromodel is obtained from (2.46) by using a

congruence transformation which results in:

T c
(A;(AB + SéiAB + (Z fz()\l)i),) :i' + s (Z gj(¢j)Ej) T = Ru; '; = RTC% (247)

i=1 j=1
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where:
G=Q7GQ;, C=Q"CQ; D;=Q'D,Q; E;=QTE;Q; R=Q'R (249)

The congruence transformation matrix @ is chosen as an orthonormal basis of a subspace which
spans the moments of the system with respect to frequency, and with respect to the parameters

ALy ooy Apy @14 ..., @0, as well as the cross moments.

colsp[Q] = colsp | M., .. My, .. My, .. Mug, .. Myg, .| @49

where M, is the k** moment with respect to frequency, M y,, is the k** moment with respect to
the i** memoryless parameter, My, is the £** moment with respect to the j** memory parameter,
M, ,, is the cross moment between the a'* frequency moment and the d** moment of the b**
memoryless parameter, M, 4,,,, is the cross moment between the pt* frequency moment and the

h moment of the n** memory parameter.

mt

A combination of the Arnoldi process and standard QR decomposition is used to accurately
compute Q. It has been shown in [31] that the moments with respect to frequency and the mo-
ments with respect to parameters are conserved. In addition, the parametric reduced macromodel

is passive by construction.

2.5 Model Order Reduction Using Truncated Balanced Realization

The concept of balanced truncation of a system was first introduced in the area of control theory
to generate a reduced order model [61]. The general idea is to obtain a reduced order system
by retaining the most controllable-observable states and truncating the rest. These states have

more impact on the input and output behavior of the original system. Consider a classic state
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formulation for a linear time invariant (LTI) system as

t = Ax+ Bu (2.50a)
y = Cz+ Du (2.50b)

where x is the state vector, u and y are vectors containing inputs and outputs of the system. The

algorithm for standard truncated balance realization can be summarized as follows [24], [78].

1.

6.

7.

Solve Lyapunov equation AW, + W AT + BBT = 0 for the controllability grammian
W..

Solve Lyapunov equation AW, + W,A 4+ CTC = 0 for the observability grammian
W,.

Since W, and W, are always symmetric and positive definite matrices, Cholesky factor-
ization can be computed as W, = LCLZ, W, = L,,L:op for L, and L,, where L. and L,

are known as square roots of the grammians W, and W, respectively;

Compute singular value decomposition (SVD) of the product US VT = LTL,, Y isa
diagonal matrix, with singular values in decreasing order. These singular values are called

Hankel singular values of the system;

. Compute the balanced transformation matrix T' = L,V (3))~Y/2, T7! = ()" 2UTLT;

Compute the balanced realizationas A = T"'AT, B=T"'B,C =CT, D = D.

Partition fl, B , c , D and truncate them to desired orders.

The reduced model obtained from the standard truncated balanced realization can be made pas-

sive by modifying step 1 and step 2 in the standard algorithm [24]. Specifically, instead of

solving Lyapunov equations, Lur’e equations and its dual are used for the controllability gram-

mian W, and the observability grammian W ,. Truncated balance realization (TBR) offers the-

oretically provable error bounds and also produces better global accuracy than projection-based
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approaches. However comparing with Krylov projection based approaches whose computational
cost is O(ng?) [5], truncated balanced realization is significantly more expensive to implement.
The computational cost is O(n®) with two large Lyapunov equations to solve and one singular
value decomposition to perform [24], where n is the dimension of the original system, g is the
dimension of the reduced system, and ¢ < n. This often excludes it from being used directly on
large problem sizes and requires the employment of projection based methods to obtain an initial

system reduction in a prior step.

2.6 Model Reduction for Nonlinear Networks

Compared to the model order reduction for linear networks, the problems of finding a reduced
order macromodel for nonlinear networks have been less studied and explored. This is mainly
due to the fact that it is significantly more difficult and complex to deal with nonlinear systems
than linear counterparts. The primary challenge facing the computer aided design (CAD) com-
munity is to find an efficient macromodel while maintaining good model accuracy for arbitrary

nonlinearity.

2.6.1 Nonlinear circuit reduction based on congruence transformation

The main objective of the reduction algorithm in [64] is to significantly reduce the size of the
original nonlinear system in (2.1) by using congruence transformation. The resulting reduced
nonlinear model is therefore relatively inexpensive to solve. In order to achieve this goal, reduc-

tion is performed by changing the variables
T =Qx (2.51)
in (2.1), and then premultiplying by Q7 to result in

Ga(t) + Ca(t) + F(@(t) = b(t) 2.52)



2 Review of Model Order Reduction Techniques 31

where

G=Q'GQ; C=Q"CQq;
F(@)=Q"r(Q&); b(t)=Q"b(t) (2.53)
In (2.53), the congruence transformation matrix @ € R™*? is an orthogonal basis in time domain

for the subspace spanned by the first ¢ time domain derivatives of . In order to obtain such

derivatives, we take time domain Taylor series expansion of

a(t) =Y an(t—to)* (2.54)
k=0
where a;, = z*) /k!,k = 1,2,-- - , are normalized time domain derivatives evaluated at ¢ = t,,

and the time domain expansion for of f(x(t)) and b(¢) is given by

F@®) = filt = to)* 2.55)
k=0
and
b(t) = bi(t — to)F (2.56)
k=0

where f, and by are normalized time domain derivatives of f(x(¢)) and b(t) evaluated at t = ¢,.

Substituting (2.54), (2.55) and (2.56) in (2.1), we have

Gay + (k+ 1)Cayy1 + f1, = by (2.57)

Assuming the initial condition ag is known, the time domain coefficients can be computed recur-

sively using (2.57). The subspace, constructed by time derivatives, is given by

K = [ag,a;1,Qz, - ,a, (2.58)
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The transformation matrix @ is chosen as the orthogonal basis of the time domain subspace
in (2.58), which is
colsp(Q) = colsp(K) (2.59)

This is achieved by performing orthogonal decomposition on K
K=QR (2.60)

It can be shown that the reduced order circuit in (2.52) preserves the first ¢ time derivatives of
the original system [64]. It is to be noted that the reduced order circuit is accurate only near
the expansion point, which is ¢ = f;. The accuracy deteriorates as we move away from the
expansion point. In other words, the expansion point needs to be updated as time marches ahead.
The derivatives (ag, a1, - - , a4) are computed again for each expansion point. The reduced order
nonlinear circuit is shown to be much smaller than the original circuit, thus resulting in significant
CPU savings [64]. However this technique is basically a circuit reduction based approach. It does
not produce a macromodel, which is valid over different input waveforms and output conditions.
In other words, this reduction cannot be performed on a nonlinear subsection described in (2.9).
In addition, the reduced matrices in (2.52) are typically dense. The simulation of corresponding
dense systems is relatively more expensive compared to sparse ones. These two issues will be

addressed in Chapter 5.

2.6.2 Nonlinear macromodeling techniques for weakly nonlinear circuits

Weakly nonlinear systems are often referred to systems whose nonlinear terms can be sufficiently
characterized by polynomial series. Typical example circuits include mixers, op-amps, etc. Con-

sider a multi-port nonlinear system described by the modified nodal analysis formulation

Cix(t) + f(x(t)) = Ru(t) (2.61a)
y(t) = LTz(t) (2.61b)
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where x(t) € R™ is the unknown vector. u(t) € R™ is the input to the system. f(x(t)) is a
vector containing algebraic function describing the nonlinear elements of the network. R and L
are select matrices that map the input and output to the node space of the system respectively. n
is the total number of variables in the formulation.

The early approach towards the weakly nonlinear macromodeling was proposed in [34],
where the nonlinearity is represented by Taylor series expansion. For example, we can expand

the nonlinear terms f(x(¢)) in (2.61) in the following form
flz(t)) = Fiz(t) + Fox(t) @ z(t) + Faz(t) @ z(t) @ () + - - - (2.62)

where z(t) € R™ is a small signal response around DC bias point. The symbol ® is the Kronecker
(tensor) product operator. F'; € R™ ™ s the ith order tensor and F, is the Jacobian of f
evaluated at the expansion point. In order to extend the linear model order reduction approaches
to nonlinear systems, variational method is used to decompose the original nonlinear system into
series of linear systems. This variational approach was widely used in nonlinear system theory to

find various Volterra kernels [79]. Consider a nonlinear system with inputs of the form au(t)

Ci(t) + f(z(t)) = R(au(t)) (2.63a)
y(t) = LT z(t) (2.63b)

where « is an arbitrary scalar. The system response is then a function of the parameter o and it

can be expanded into power series as follows
x(t) =) a'z(t) (2.64)
i=1

Substituting (2.64) in (2.63a) and replacing the nonlinear vector f(x(t)) with its Taylor series
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expansion in (2.62), we can write
Clax+o’Eo+adts+- - )+ Fi(axi+’zot - )+ Fy(a’x @z + - ) = Rou(t)) (2.65)

Equating the coefficients of powers of o, we can obtain the responses for different order system.

For example, the first to the third order responses, @1 (t), () and x3(¢) are given by

Ci,+ Fix; = Ru (2.66a)
C:.EQ + F1m2 -+ Fg(wl &® ml) =0 (266b)
Ci’3 -+ FISC;; -+ Fz(wl ® Ty + Ty @ (121) + F3(SU1 RIT1 R :131) =0 (2660)

To simplify the notation, the time augments for the first order to the third order responses have
been dropped in (2.65) and (2.66). Given the fact that systems in (2.66a), (2.66b) and (2.66c) are
linear, we could therefore use Krylov subspace based techniques such as the algorithm in [19] to
reduced them separately [34]. For example, the first order reduced system from (2.66a) is given
by

i (t) + i (t) = Rul(t) (.67)

where
C.=Q7cqQ,; F,=QTF,Q,;, R=Q'R (2.68)

Q, € R™ is chosen as the orthonormal basis of the subspace spanned by the system moments

of (2.66a). After solving &, the first order response is approximated by

ml(t) ~ Qlil(t) (269)
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Substituting (2.69) in the second order system in (2.66b), we have
Ciy + Fixs = Rous(t) (2.70)

where R, = —F3(Q, ® Q,) € R4, uy(t) = &,(t) ® &1(t) € RE. It follows that the system
describing the second order response is also a linear system with u,(¢) as the input. Similarly,
an orthogonal basis of the subspace spanned by the system moments of (2.70) is constructed to
perform the reduction. The procedure for the reduction of higher order linearized systems follows
analogously. The main difficulty associated with this method is the exponentially increasing size
of the subspace basis as the order of the linearized systems grows. For example, if the first order
linearized system in (2.66a) has been reduced into the size of ¢y, ¢.e., @; € R™%. The reduction
matrix @, for the second order system is implicitly constructed to span the block Krylov subspace
which is defined by the block moments. Each block moment contains ¢? vectors. While for
the third order system, the reduction subspace is constructed to span the block moments of the
system, with each block moment containing (g3 + g1 ¢2) vectors, where g is the size of the second
order reduced system [37].

In order to generate a more efficient reduced macromodel , it was proposed in [36] to construct
a single projection basis based on separate subspaces (@, @5, - -). Since these subspaces are
not linearly independent, singular value decomposition is therefore used to remove the redundant

information.

Q= svd[Ql) Q,, - ] 2.71)

The final reduced nonlinear model is therefore given by a unit form

Cr+Fie+Fii®:+F2@&®@&+---= Ru(t) (2.72a)
y(t) = L &(t) (2.72b)

where C = QTCQ, F; = QTF.1Q, F, = QTF,(Q®Q), Fs = Q"F;(Q® Q ® Q),
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R=Q™R,L=Q"L.

The common difficulty for variational reduction methods is the large size of the reduced sys-
tem due to the exponentially increasing size of the input vectors for higher order systems. In order
to address this difficulty, an efficient nonlinear reduction scheme for weakly nonlinear systems
known as NORM was proposed in [37]. Unlike methods in [34], [36], a general matrix-form
nonlinear transfer function and associated nonlinear transfer function moments were developed
in [37]. This development allows us to generate a minimum order of the Krylov projection basis
by investigating the interdependence between the Krylov subspace and moments to be matched
in a nonlinear context, and thus resulting in a compact reduced macromodel.

The nonlinear macromodeling techniques described so far are all based on Taylor series ex-
pansion of nonlinearities around a fixed state. They share the common problem that Taylor series
expansion with two or three terms is only valid around the equilibrium point (expansion point).
If the operation point of the original system varies significantly from the expansion point, the
reduced order model would be very inaccurate, thus the reduction methods only work for weakly
nonlinear systems and/or limited range of input signals. Furthermore, the exponentially increas-
ing computational costs with the number of expansion terms included makes these methods only
limited in practice to cubic expansion.

In addition to Taylor series based approaches, another closely related method for the weakly
nonlinear macromodeling is based on bilinear forms of a nonlinear system. The detailed reduction
procedure of this technique can be found in [35], [76]. Although the bilinear-based method results
in smaller macromodels than the original nonlinear time-varying systems, it suffers from the same

difficulties with Taylor series approaches.

2.6.3 Trajectory piecewise linear methods

A trajectory piecewise linear approach [38], [80], [81] was proposed to address strong nonlinear-
ity issues. The key observation of this method is to represent a nonlinear system with a small set

of linearized systems at different expansion points about the state trajectory, and then reduce each
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set with Krylov subspace projection methods. The trajectory is the trace of the solutions x(t) to
the nonlinear differential equations excited by input signals. The main steps of this algorithm
are summarized as follows. First, given a nonlinear system, run simulations to find the solution
x(t) with certain input signals w(¢). This solution constructs a state trajectory of the original
system. Then, the system is linearized around sampling points, which are properly picked up on
the state trajectory. The nonlinear system is therefore decomposed into collections of linearized
systems. Next, reduce the order of each of lineariztions using projection based methods. The
final nonlinear macromodel is obtained by weighted combinations of all the reduced order linear

models.

2.7 Limitations of Existing Projection-based Model Order Reduction
Methods

In this section, main difficulties facing the existing moment-matching techniques based on Krylov
subspace are discussed. These difficulties tend to increase the size of the reduced macromodel,
thus severely limit the CPU efficiency of such macromodel. These problems are addressed in

later chapters using advanced projection based model order reduction techniques.

2.7.1 Unnecessarily large reduced macromodel

The subspace for projection based reduction is obtained from the implicit moment-matching
technique, which captures the dominant poles in a radius around the expansion point (for example
s = 0). As can be seen from Fig. 2.7, in order to extract all the dominant poles of the system,
the reduced system contains not only the dominant poles but many non-dominant poles as well.
In other words, The passive reduction technique described in Section 2.3.2 would result in a

macromodel whose size is much larger than what is necessary.



2 Review of Model Order Reduction Techniques 38

Poles captured using traditional
projection based methods 4
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Fig. 2.7 Poles captured using traditional Krylov subspace based reduction

2.7.2 Model order reduction for a system with large number of ports

When using Krylov subspace based methods to obtain the reduction subspace, the bsize of the
reduced order macromodel grows rapidly as the number of ports increases. This is mainly due to
the fact that the reduction matrix is implicitly constructed to span the Krylov subspace which is
defined by the block moments as shown in Fig. 2.8, each block moment contains p vectors, where
p is the number of ports. In order to illustrate this point, an example interconnect network was
considered. Fig. 2.9 shows a typical circuit example when the size of the reduced macromodel
increases as the number of ports is increased in the network. As can be seen from the figure, the
size of the macromodel obtained using the standard Krylov subspace reduction process increases
rapidly with the number of ports.

Block moments My, M,, M, ... M,
P is the number of the ports

Colsp[Q]=Colsp| | Mo M M2 | Mg-p

Xp nxp nxp nxp

QR decomposition

Fig. 2.8 Reduction matrix spanning the same subspace as block moments
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Fig. 2.9 The size of the reduced macromodel obtained from the standard Krylov
subspace method versus the number of ports

2.7.3 Dense parametric reduced model

Parametric reduction methods were introduced for application such as optimization and design
space exploration. All these applications require repeated simulations at different parametric
values. The parametric model order reduction techniques were therefore proposed in the literature
to produce a macromodel which is valid over a range of parameter values [31], [32], [77]. The
parametric techniques, however, result in very dense reduced macromodels which significantly

reduce the efficiency of the simulation.

2.7.4 Nonlinear macromodeling technique

Projection based model order reduction using Krylov subspace methods are frequency domain
methods, and cannot directly apply to nonlinear systems. In [64], the concept of projection based
techniques has been extended to time domain, and the reduced nonlinear circuit has been shown
to be much smaller than the original nonlinear circuit. However, this method is a circuit reduction
based approach, and cannot be used for a nonlinear subsection.

There have been some nonlinear macromodeling techniques proposed in the literature re-

cently for a nonlinear subsection [25], [33], [37], [38], [76]. These methods first linearize the
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nonlinear system and then perform the reduction, which utilizes linear model order reduction
methods. However, current nonlinear macromodeling methods face two main challenges. The
first challenge for the nonlinear macromodeling is to capture arbitrary nonlinearities, both weak
and strong nonlinearities. This is very important to a wide range of applications. Secondly,
although the size of the reduced model can be much smaller than the original system, the nonlin-
ear model order reduction would generally produce a dense model, which severely reduces the

efficiency of the simulation.
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Chapter 3

Model Order Reduction with Parametric

Port Formulation

3.1 Introduction

As we have discussed in Section 2.7, one of the major difficulties associated with Krylov sub-
space based model order reduction methods is that the size of the reduced macromodel grows
rapidly as the number of ports increases. In order to address this issue, a new method for the
computation of the congruence transformation matrix, which is significantly less sensitive to the
number of ports is proposed [40], [41]. The new approach is based on taking advantage of prior
information regarding the port conditions. In order to achieve this goal, a systematic method for
taking into account information about the possible loads that may be connected to the ports was
developed. Specifically, resistive, reactive, resistive/reactive, transmission line loads as well as
nonlinear loads are considered. A new parametric port formulation was developed which allows
us to embed the load parameters without any modification to the vector of unknowns in the MNA
formulation [63]. Parametric model order reduction method [77] is then used implicitly to obtain
an efficient subspace @ which takes into account the load parameters. Once the new real re-

duction subspace is computed, a congruence transformation on the original system is done using
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the standard traditional approach [19] which results in a passive reduced model. Note that since
the load conditions were taken into account, the reduction subspace is significantly smaller than
those obtained from the block moment method. This provides a computationally efficient tool for
the analysis of circuits with a large number of ports.

The rest of the chapter is organized as follows. Section 3.2 introduces the conventional model
order reduction. Section 3.3 presents the proposed model order reduction with parametric port
formulation followed by moments conservation proof in Section A. Finally, examples and results

are given in Section 3.4.

3.2 Conventional Model Order Reduction

Consider a multi-port interconnect network containing p ports. After discretization, the MNA

[63] circuit equations can be written as:

(G+sC)x = RV
I = R’z (3.D

where s represents the complex frequency, V' and I are vectors containing port voltages and
currents. G € R™™ and C € R™ " contain the contributions of the memoryless and memory
elements respectively. € R™! refers to unknown node voltages and unknown currents. n is
the total number of variables in the MNA equations. R € R™*? is a selector matrix that maps
the port voltages and currents into the node space of the circuit. The reduced order model is

constructed through congruence transformation to obtain:
(G +sC)& = RV (3.2)

where

G=Q7GQ; ¢=Q'cQ; R=Q"R (3.3)
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In the case of traditional Krylov subspace methods, the matrix Q € R™™s is a real orthonormal

basis of the subspace spanned by the block moments [19], [75].

colsp[Q] = colsp[Mo, M1, M5, ..., M ,_4] 3.4)

where My € R™?, ..., M,_; € R™P are block moments, therefore the size of reduced matrix
Q (N, = p x q) grows rapidly with the number of ports. Note that @ is typically implicitly

computed using the Arnoldi process.

3.3 Model Order Reduction with Parametric Port Formulation

The method proposed in this section differs from traditional approaches in the way the congru-
ence transformation matrix is computed. Using conventional Krylov techniques, the reduction
matrix € spans the column space of the block moments of all ports. This can lead to a large
subspace when the number of ports is high. The subspace found in this section spans the block
moments of the unconstrained ports only as well as the parametric moments with respect to the
conductances and capacitances parameters for the constrained ports with resistive and reactive
loads. This results in a significantly smaller subspace which is obtained by taking advantage of
this parametric port information.

The proposed macromodel is obtained in three steps. The first two steps are mainly concerned
with the computation of the subspace Q. The last step is a congruence transformation based re-
duction step and is similar to the conventional reduction methods. More specifically, the first step
consists of transforming the original multi-port MNA equations into a corresponding parametric
model by taking the resistive and reactive loads on the port as parameters. This is outlined in
Section 3.3.1, Section 3.3.2 and Section 3.3.3. The second step (outlined in Section 3.3.4) is to
apply parametric model order reduction techniques to find a parametric reduction subspace. The
final step is to obtain the reduced order model using a real congruence transformation on the orig-

inal network as outlined in Section 3.3.5. Note that using such a real congruence transformation
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matrix guarantees the passivity of the macromodel [19].

unconstrained port constrained port
Port1 :—4:;— Port2
Ist +
v, Two-port L
Network Vo 7 | s2
_ c

Fig. 3.1 A large interconnect network with two ports

3.3.1 Parametric port model for reactive loads

For clarity of presentation, we will first consider a two-port system shown in Fig. 3.1, then the
formulation for general multi-port networks will be presented. The ports are divided into uncon-
strained ports and constrained ports. A capacitor c is connected to the constrained port2. The
voltages on the unconstrained port (portl) and the constrained port (port2) in Fig. 3.1 are v; and
v respectively, and the currents for portl and port2 are i, and i, respectively. If we examine the
MNA equations of such a system as defined in (3.1), we note that the last two rows of G matrix,

corresponding to portl and port2 equations, in (3.1) are:

i ]

ao | o 55
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and ) )

(%1 r b
0 O

V2
e PRI ’Ul

z=|...| ,R= V= (3.6)

-1 0 (%)

isl
0 -1

7;.‘32 - -

Using this general port representation, the port equations in the last two rows are simply v; = v;
and v, = v,. In other words, the port voltage can be arbitrarily set by the boundary conditions.
Note that portl is designated as an unconstrained port and port2 is designated as a constrained
port with reactive loading. In this case the equation at port] remains unchanged but the equation
at port2 becomes:

’1132 ~ 8CUy = 0 (37)

Incorporating equation (3.7) into the MNA stamp has the effect of converting the multi-port
network in (3.1) into a parametric “single-port” network while keeping the vector of unknowns
x unchanged. This is done by modifying the row corresponding to port2 equation in the MNA

formulation in (3.1) as follows:
G4z + sCx + scrylyx + rori @ = v, (3.8)

where G, is obtained by setting the last row of G' matrix in (3.5) to all zeros. 7, is the first
column of R. 7, is the second column of R. [, is a selector vector containing only one non-zero,
corresponding to vy, the node voltage of port2. Therefore the resulting elements in 515 are all

zeros except for the last row and the column, corresponding to the node voltage of port2.

ol = | (3.9)
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The resulting elements in 7573 are all zeros except for the last row and the last column, corre-

sponding to i, the port2 current.
rort = ... o L (3.10)

Note that there are two parameters in the parametric MNA equations in (3.8), the frequency
parameter, s, and the parameter, ¢, corresponding to the reactive load.
To extend the above method into M unconstrained ports and /N constrained ports networks,

(M + N = p), the parametric formulation becomes:

N N
Gy + sCx + s (Z cirMH-lin) T+ (Z 7'M+i""'11\;1+i> T = Ryuy 3.11)

i=1 i=1

where G 4 is obtained by setting /N rows of G in (3.1) into all zeros. Ry € R™*M is a selector
matrix that maps currents and node voltages at the unconstrained ports into the node space of the
circuit. uy; € RM*! represents M unconstrained voltage sources. 7. is a selector vector that
maps the currents on the constrained port (M + %) into the node space of the circuit. Ijs4; is a
selector vector mapping the node voltages on the port (M + ¢) into the node space of the circuit.

The parameters c; represent the reactive loads that can be connected to the constrained ports.

Il
il
c C
Port1 G, ! 2 Port2
VW 1+—" " WN—-—| ”
+ 1 3 G 4 2
3 +
G, § “
u 4
1 u,
- v v -

Fig. 3.2 An example 2-port network
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In order to simplify the notation, (3.11) is recast as follows:
Gsx + sCx + sE,RyLyx + RyRYx = Ryuy, (3.12)

where E,, € R" " is a diagonal matrix. The first n — IV diagonal elements are zero. While
the last /V diagonal elements are ¢;, 7 = 1,--- , N. ¢; represents the reactive loads that can be
connected to the constrained ports. Ly € R™¥ is a selector matrix with one nonzero in each
column and a maximum of one nonzero in each row that maps voltages at the constrained ports

into the node space R™*! of the circuit. It is given by:
Vy=Lix (3.13)

where V y € RV*! is a vector containing constrained port voltages. Ry € R™¥ is a selector
matrix with one nonzero in each column and a maximum of one nonzero in each row that maps

currents at the constrained ports into the node space R™*? of the circuit. It is given by:
Iy=Rix (3.14)

where Iy € RV*! is a vector containing constrained port currents. In order to illustrate the above
formulation, we take a simple circuit shown in Fig. 3.2 as an example. The MNA equations for

the simple circuit are given by:

— - - -

G, 0 e 0 10w
0 0 0 0 01 Vg
-G, 0 Gi+Gy+Gs —-Gs; 00 U3
0 0 —Gs Gs+Gs 00 (!
-1 0 0 0 0 0 g1

i 0 -1 0 0 0 0 11 g2 |
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8 1r T [ T
0 O 0 0 00 o 0 0
0 Cg 0 —02 00 (%] 0 0
0 O C - 00 v 0 0 N
+s ' ' = ' (3.15)
0 —Cz —01 01 + 02 00 V4 0 0 U9
0 O 0 0 00 151 -1 0
0 0 0 0 00 159 0 -1

Assume port2 is the constrained port connecting to a capacitor ¢, and portl is the unconstrained

Porti | | Port2
i G, C, C, ip
| |
S —t— 13— 1
. G, +2 .
ls1 G2 '52
l"11 G4 u2 IC

Fig. 3.3 An example 2-port network with parametric port condition

port connecting to a voltage source u;, which is shown in Fig. 3.3. By incorporating the port2

equation into the above MNA stamp, the parametric equations are as follows:

-
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Also the constrained port voltage V5 is given by:

U1
V2
U3
Uy

isl

152

V2=’U2=[0 1000 0}

41
V2
U3
Uy
isl

152

o o O O

U1
V2
U3
Vg

151

152

(3.16)

(3.17)
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The constrained port current I, is given by:

U1
U2

. U3
Iz=zz=[ooooo —1] (3.18)
Vg
Z.sl

152

L -

Note that the parametric equations in (3.16) are obtained by modifying the last row of the MNA
equations in (3.15), corresponding to the port2 equation and changing the right hand side of the

MNA equations into a vector indicating one input u;. The other equations remain unchanged.

3.3.2 Parametric port model for resistive loads

If a resistor is connected to port2 in Fig. 3.1, then the port2 equation becomes:
g — gua =0 (3.19)

Here, we use conductance g to represent the value of the resistive load in order to have the
similar parametric MNA formula with that for reactive loads. Incorporating equation (3.19) into
the MNA formulation in (3.1) by modifying the row corresponding to the port2 equation in the

formulation as follows:
Gsx + sCx + gr2l2Ta: + 'rzrsz =riv (3.20)

Note that the above formulation is similar to those in (3.8) except for the parameter g, which
represents the conductance. As we did in the reactive loads, extending the two-port formulation

into M unconstrained ports and /N constrained ports networks, the above parametric formulation
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becomes:

Gsx + sCx + D,RyLix + RyRYyx = Ryuy (3.21)

where D,, € R™*" is a diagonal matrix. The first n — /N diagonal elements are zero, while the last
N diagonal elements are g;, 7 = 1,--- | N. g; represents the resistive loads that can be connected

to the constrained ports.

3.3.3 Parametric port model for parallel reactive and resistive loads

i 1 .
“”CO”M”S M) constrained ports

v, + J_

st V1 9y C1I

: Multi-Port :

i Network i
o-t——
Ym

Fig. 3.4 Multi-port network connected to combined reactive and resistive loads

If both a capacitor with capacitance c and a resistor with conductance g are connected to port2

in Fig. 3.1, the port2 equation becomes
is2— (g+ sc)va =0 (3.22)

Incorporating equation (3.22) into the MNA formulation in (3.1) would result in a parametric
formulation based on the combination of (3.12) and (3.21) for a two-port network. Extending the
two-port formulation into M unconstrained ports and N constrained ports networks as shown in

Fig. 3.4, the parametric formulation is given by combining the formulations in (3.12) and (3.21):

Gyx + sCx + (sE, + D,)RyLyx + RyRyx = Ryuy (3.23)
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The last /V diagonal elements of F,, and D,, are ¢; and g; respectively, which represent the reac-
tive and resistive loads that can be connected to the constrained ports. Note that the parametric
port formulation in (3.23) is not limited to a physical resistor or capacitor. It is valid for general
resistive and reactive loads as will be shown in the next subsections. In other words, we do not

make any assumption about the physical nature of the loads.

3.3.4 Reduction subspace

Using parametric model order reduction techniques established in [31], [77], the subspace @,
spanning the moments with respect to frequency is implicitly computed using the Arnoldi pro-
cess. The cross moments (1, )y, ; with respect to frequency and the parameters c; can be com-
puted by the procedure elaborated in [31], [82]. The corresponding subspace denoted by Q,..,
¢t = 1,... N, is obtained by performing a standard QR decomposition [74] on the cross mo-
ments. The subspace le, ng, cee QgN spanning the moments with respect to conductance
91,92, - ,gn is implicitly computed using the Arnoldi process.

Once all the required subspaces are evaluated, the resulting multidimensional subspace de-

noted by Q is as follows:

COlSp[Q] = COISp[Qs: Qscl ’ Q3027 Ty QscNa le ) ng7 T QQN] (324)

This can be achieved by using another standard QR decomposition [74] on the various subspaces

in (3.24).

3.3.5 Reduced order macromodel

Having the multidimensional subspace Q, the reduced system is then produced by performing a

congruence transformation on the original system in (3.1):

(G + sC)i(s) = RV (3.25)
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where

G=QTGQ; €=Q'cQ; R=Q"R (3.26)

Note that although the congruence matrix @ is obtained from the system containing the in-
formation on the constrained ports, the model order reduction procedure is applied to the original
multi-port system in (3.1) so that the ports can be connected with any value of capacitors and
resistors. This is possible because the parametric modification in Section 3.3.1, Section 3.3.2 and
Section 3.3.3 does not affect the unknown variables in the vector x in (3.1). It can be demon-
strated that the reduced system conserves the moments with respect to frequency as well as the
load values. The proof of conservation of moments with respect to the load values g, and fre-
quency is shown in the appendix. An experimental verification is done using a twenty-port net-
work, nineteen of which are constrained ports. The size of the original network after discretiza-
tion is 4890 x 4890. The 2-norm of relative errors for the moments of the reduced model and
original system are below le — 7. Furthermore, since the proposed macromodel is obtained by
applying real congruence transformation to the original system in (3.1), and the system formula-
tion for the original system in (3.1) is in PRIMA compatible form [19], the resulting macromodel

is passive by construction.

Port1 e g(t)=i V(1)
- Port2
+ Iy +
Two-port .
A"
1 s vzmzl'szm
! !

Fig. 3.5 A diode is connected to port2

3.3.6 Model validity for general loads

As was discussed in the previous section, the parametric port formulation in (3.23) can be used

to conduct a subspace for a reduced order macromodel which is valid for a certain range of loads.
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Port1 — Y(S)=Y,(s)+iy,(s)
L ——
+ T N Port2
v, Two-port ,
Network v, ls

Fig. 3.6 A transmission line is connected to the port2

Namely, the real and imaginary parts of the admittance seen by the port have to fall within a
certain range. Note that no assumption was made about the physical nature of this load. The
macromodel is therefore valid for linear loads consisting of lumped components as long as their
overall admittance seen by the port fall in the validity range. But also, it is valid for other types
of loads such as nonlinear loads and distributed loads as shown in Fig. 3.5 and Fig. 3.6. In the
case of nonlinear loads, the admittance seen by the port is a function of time, and in the case of
distributed transmission line loads, it is a function of frequency. However, as long as the values
of this admittance are always bounded by the validity range of the macromodel, the macromodel

will be valid for nonlinear and distributed loads as will be demonstrated in the examples.

3.4 Results

Four cases studies are presented. The reduced macromodel was obtained using the proposed
method, and then was sparsified based on the standard diagonalization schemes [75]. The tran-

sient simulations were conducted using a spice-class simulator implemented in MATLAB.

3.4.1 Example 1

The first example is a 10-port network (nine of which are considered to be constrained ports)
which we refer to as circuitl as shown in Fig. 3.7. The circuit contains 18 non-coupled transmis-
sion lines and 1 nine-coupled transmission line system. After discretization of the interconnects,

the resulting size of the MNA matrices was 4340 x 4340. Using the proposed approach, the
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size of the reduced macromodel was 324 x 324. Using traditional block Arnoldi macromodel-
ing approach, the size of the reduced order model was 460 x 460 in order to match the original
system up to 4GHz. A summary of macromodel size comparisons for example 1 is shown in
Table 3.1. The nominal load values (expansion point) for generating the reduced macromodel
are conductance 0S (corresponds to open circuit) and capacitance OpF" at all constrained ports.
This macromodel was tested to be valid for resistive capacitive loads at the ports when the con-
ductance ranges from O to 1S (which corresponds to 1 £2 to open circuit), and capacitance from
0 to 90pF'. This range of validity depends on the number of moments matched, as well as the
expansion points.

Constrained Ports

port2 .
; | port3
Unconstrained Port
porti | portd
O]

10-port [ port5

Macromodel [—2%o

port7 o

port8 o

port8 o
Eomo

Fig. 3.7 A 10-port interconnect network as circuitl.

The macromodel was tested by varying the value of one load resistor (or capacitor) while the
other values of loads were kept constant. Fig. 3.8 shows a comparison of the frequency responses
obtained from the proposed macromodel with the responses from the original system as the value
of the resistor for constrained port2 varies from 1€2 to 20000¢2, while the value of each resistor
connected to the other 8 constrained ports is 20§2 and the value of each capacitor at 9 constrained
ports is 10pF'. Fig. 3.9 shows the frequency response comparisons as the value of the capacitor
for constrained port2 varies from 0.0001pF' to 90pF, while the values of the capacitors for the
other 8 constrained ports is 10pF and the values of the resistors are 20€2. As can be seen from
Fig. 3.8 and Fig. 3.9, they are all good approximation of the original network.

This macromodel was also tested with 100 different cases with resistive loads, capacitive
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Fig. 3.8 Frequency responses for the reduced macromodel with resistive/capacitive
loads as the value of the resistor at the constrained ports varies from 1€ to 20000€2,
while the values of other resistor are 202 and the values of capacitors are 10pF

0.08 T T

... reduced
unreduced

Output 1 (Volts)

Frequency (GHz)

Fig. 3.9 Frequency responses for the reduced macromodel with resistive/capacitive
loads as the value of the capacitor at port2 varies form 0.0001pF to 90pF’, while the
values of other capacitors are 10pF" and the values of the resistors are 2002
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Fig. 3.10 Frequency response of port2 for circuitl with capacitive loads at the con-
strained ports (comparison between the original system and the proposed macro-
model).
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Fig. 3.11 Frequency response of port2 for circuitl with resistive loads at the con-
strained ports (comparison between the original system and the proposed macro-
model).
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Fig. 3.12 Frequency response of port2 for circuitl with resistive/capacitive loads
at the constrained ports (comparison between the original system and the proposed
macromodel).
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Fig. 3.13 Frequency response of the constrained port10 for circuitl with resis-
tive/capacitive loads at the constrained ports (comparison between the original system
and the proposed macromodel).
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Table 3.1 Macromodel size comparisons between the proposed method and block

Arnoldi
Example 1 | Example 2 | Example 3
Number of Ports 10 20 30
Original System 4340 4890 4900
Block Arnoldi 460 800 990
Proposed Method 324 494 554

Table 3.2 CPU comparison of transient analysis for circuitl

Size | Time | Speed-up
Reduced System || 324 | 28s 27
Original System || 4340 | 759s -

loads and parallel resistive and capacitive loads. The values of the capacitors are randomly chosen
from 0.1pF to 90pF, and the values of resistors were randomly chosen from 12 to 10000%2,
which fall within the range of validity of the macromodel indicated above. For 100 testing cases,
the average relative error in the output frequency responses obtained from the proposed model
compared to the original network is 0.38%. Fig. 3.10, Fig. 3.11, Fig. 3.12 and Fig. 3.13 show
four sample frequency response results for different loads. As can be seen, they match well to
the original network. The comparison of transient responses for the reduced macromodel and the
original system using a 1-V pulse with a rise time of 0.1ns and a pulse width of 2ns is shown in
Fig. 3.14. The CPU cost for the transient analysis is shown in Table 3.2, indicating a speed-up of
27 with respect to the solution obtained from the original circuitl.

This macromodel was also tested with transmission line loads and nonlinear loads as shown
in Fig. 3.15. Fig. 3.16 shows the frequency response for the transmission line load obtained from
the proposed macromodel compared with that from the original system. It matches the original

system very well. The transient responses for the transmission line loads, diode and inverter are
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Fig. 3.14 Transient results obtained from the proposed macromodel for resistive
and capacitive loads and from the original system for circuitl.
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Fig. 3.15 Transmission line, diode and inverter loads
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shown in Fig. 3.17, Fig. 3.18 and Fig. 3.19 respectively. The transient responses are due to a
pulse with a rise time of 500ps and a pulse width of 2ns. The amplitudes of the pulses are 1V, 5V
and 15V respectively. As can be seen, they are accurate. Note that the reduced macromodel was
generated once and was reused for performing frequency and transient responses in all the tests
in Example 1.

0.16

T
— reduced
----- original

Output (V)

0.04

. A . . . A
0 05 1 15 2 25 3 35 4
Frequency GHz

Fig.3.16 Frequency response for transmission line loads for examplel (comparison
between the original system and the proposed macromodel).

3.4.2 Example 2

The second example is a 20-port network (nineteen of which are considered to be constrained
ports) which we refer to as circuit2 as shown in Fig. 3.20. The circuit contains 36 non-coupled
transmission lines and 1 nine-coupled transmission line system. After discretization of the in-
terconnects, the resulting size of the MNA matrices was 4890 x 4890. The size of the reduced
macromodel was 494 x 494 if using the proposed approach. Using traditional block Arnoldi
macromodeling approach, the size of the reduced order model was 800 x 800 in order to match
the original system up to 4GHz. A summary of macromodel size comparisons between the pro-

posed method and block Arnoldi for example 2 is shown in Table 3.1. The nominal load values
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Fig. 3.17 Transient response for transmission line loads for example 1 (comparison
between the original system and the proposed macromodel).

—— reduced
original

Output (V)

4 5
Time(ns)

Fig. 3.18 Transient response for diode loads for example 1 (comparison between
the original system and the proposed macromodel).
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Fig. 3.19 Transient response for inverter load for example 1 (comparison between
the original system and the proposed macromodel).

(expansion point) for generating the reduced macromodel are conductance 0S (corresponds to
open circuit) and capacitance OpF’ at all constrained ports. This macromodel for example 2 was
tested to be valid for resistive capacitive loads at the ports when the conductance ranges from 0
to 10S (which corresponds to 0.1 €2 to open circuit), and capacitance from 0 to 100pF.

The macromodel for example 2 was generated once using the proposed approach and then
was reused by 100 testing cases with different resistive and capacitive loads. The values of the
capacitors are randomly chosen from 0.01pF to 100pF, and the values of resistors were randomly
chosen from 0.1€2 to 100002, which fall within the range of validity of the macromodel indi-
cated above. The average relative error in the frequency responses for all testing cases is 0.43%.
Fig. 3.21, Fig. 3.22, Fig. 3.23 and Fig. 3.24 show four sample frequency response results. As can
be seen, they are accurate compared to the original network.

The transient response for circuit2 with resistive and capacitive loads is shown in Fig. 3.25.
CPU cost for the transient analysis is shown in Table 3.3, indicating a speed-up of 28 with respect
to the solution obtained from the original circuit2.

This macromodel was also tested with transmission line loads and diode loads as shown
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Pon195

Port 20

Fig. 3.20 A 20-port interconnect network as circuit2.
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Fig. 3.21 Frequency response of port2 for circuit2 with capacitive loads at the con-
strained ports (comparison between the original system and the proposed macro-
model).

Table 3.3 CPU comparison of transient analysis for circuit2

Size | Time | Speed-up
Reduced System || 494 36s 28
Original System | 4890 | 1022s -
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Fig. 3.22 Frequency response of port2 for circuit2 with resistive loads at the con-
strained ports (comparison between the original system and the proposed macro-
model).
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Fig. 3.23 Frequency response of port2 for circuit2 with resistive/capacitive loads
at the constrained ports (comparison between the original system and the proposed
macromodel).
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Fig. 3.24 Frequency response of port4 for circuit2 with resistive/capacitive loads
at the constrained ports (comparison between the original system and the proposed

macromodel).
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Fig. 3.25 Comparison of the transient results obtained from the proposed macro-
model and the original system in circuit2 with constrained ports connected to resistive
and capacitive loads.
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in Fig. 3.15(a) and (b). Fig. 3.26 shows the frequency response for the transmission line load
compared with that of the original system. It matches the original system. The transient responses
for the transmission line loads and diode loads are shown in Fig. 3.27 and Fig. 3.28 respectively.
The transient responses are due to a pulse with a rise time of 500ps and a pulse width of 2ns. The
amplitudes for the pulses are 1V and S0V respectively. As can be seen, they match the original

system very well.
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Fig. 3.26 Frequency response for transmission line loads for example 2 (compari-
son between the original system and the proposed macromodel).

3.4.3 Example 3

The third example is a 30-port network(twenty-nine of which are constrained ports) which we
refer to as circuit3 as shown in Fig. 3.29. The circuit contains 36 non-coupled transmission
lines and 1 nine-coupled transmission line system. After discretization of the interconnects, the
resulting size n of the MNA matrices was 4900 x 4900. Using traditional block Arnoldi macro-
modeling approach, the size of the reduced order model was 990 x 990. Using the proposed
approach, the size of the reduced macromodel was 554 x 554 in order to match the original

system up to 4GHz. A summary of macromodel size comparisons between the proposed method
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Fig. 3.27 Transient response for transmission line loads for example 2 (comparison
between the original system and the proposed macromodel).
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Fig. 3.28 Transient response for diode loads for example 2 (comparison between
the original system and the proposed macromodel).



3 Model Order Reduction with Parametric Port Formulation 69

and block Arnoldi for example 3 is shown in Table 3.1. The nominal load values (expansion
point) for generating the reduced macromodel are conductance 0S (corresponds to open circuit)
and capacitance OpF" at all constrained ports. This macromodel for example 3 was tested to be
valid for resistive capacitive loads at the ports when the conductance ranges from O to 1S (which
corresponds to 1 {2 to open circuit), and capacitance from 0 to SOpF.

Constrained Ports

‘ Port2:

Unconstrained Port Port 3
e a3 8- o)
Port 1

Port 4

30-port °
Macromodel

Port 29

Port 30

Fig. 3.29 A 30-port interconnect network as circuit3
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0.008

0.006

0.004

0.002

Frequency GHz
Fig. 3.30 Frequency response for circuit3 with resistive/capacitive loads at the con-
strained ports (comparison between the original system and the proposed macro-
model).

Once again, the proposed macromodel was generated once and was tested by 30 different

cases. The values of the capacitors are randomly chosen from 0.1pF to 50pF, and the values of
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Fig. 3.31 Comparison of the transient results obtained from the proposed macro-
model and the original system in circuit3 with constrained ports connected to capac-
itive loads.

Table 3.4 CPU comparison of transient analysis for circuit3

Size | Time | Speed-up
Reduced System || 554 | 39s 17
Original System || 4900 | 662s -
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resistors were randomly chosen from 1€2 to 10000€2, which fall within the range of validity of the
macromodel indicated above. The average relative error for those testing cases in the frequency
responses compared to the original network is 0.39%. One sample frequency response is shown
in Fig. 3.30. As can be seen, it matches the original network. The transient response for circuit3
with capacitive loads is shown in Fig. 3.31. CPU cost comparison for the transient analysis is

shown in Table 3.4, indicating a speed-up of 17 with respect to the solution obtained from the

original circuit3.
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Fig. 3.32 Macromodel size versus number of ports (comparison between the pro-
posed method and the traditional MOR method).

3.4.4 Example 4

The fourth example illustrates the relationship between the size of the reduced macromodel and
the number of ports. Consider an interconnect network with p ports. p is varied between 2 to
40. The comparison between the proposed approach and the traditional model order reduction
method is shown in Fig. 3.32. As can be seen, the size of reduced order macromodels obtained
from the proposed algorithm is much less sensitive to the number of ports than those obtained

from traditional block Arnoldi method. This proposed method therefore significantly extends the
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range of applicability of model order reduction methods to systems with large number of ports

when information about the types of loads on the ports is available.
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Chapter 4
Sparse Parametric Multi-level Reduction

4.1 Introduction

Krylov projection methods have proven to be very effective in reducing the size of interconnect
networks while, at the same time, preserving the passivity. However, these methods still suffer
from two difficulties. First, these methods generate a reduced order macromodel which contains
many redundant poles. This results in a relatively large macromodel and significantly reduces the
efficiency of the simulation. In order to address the problem associated with a large macromodel,
a projection method based on two levels of reduction is presented [45]. The proposed method is
guaranteed passive and typically results in a macromodel which is half the size of that obtained
using conventional Krylov techniques.

Another difficulty for the traditional model order reduction methods is that the reduced model
is valid for a specific circuit, and therefore has to be regenerated each time a circuit parameter
is modified. This is a very inefficient process for many practical cases such as optimization or
parameter sweeping. In order to address this issue, parametric model order reduction techniques
were proposed [31], [32], [77], [83]. These techniques improved the simulation time for para-
metric interconnect networks since the model only needs to be created once and then it can be

used many times with different parameter values. However, the traditional parametric model re-
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duction methods are based on moment-matching. Such approaches are known to achieve a larger
macromodel than what is necessary. Furthermore, the resulting parametric macromodel obtained
from parametric model reduction is generally dense. A dense macromodel significantly reduces
the efficiency of the simulation. To overcome these two problems, sparse multi-level parametric
model order reduction is proposed to produce a parametric macromodel which is very small as
well as sparse [48], [49]. In the proposed approach, a new parametric system model suitable
for sparsification is first developed. The formulation for this new model replaces the stamps of
the parametric elements with constrained port representation. Then two-level reduction is done
on the new model. This results in a reduced order parametric macromodel which is very small
but in general dense. Sparsification is therefore performed on this dense macromodel. Finally,
the sparse reduced macromodel is brought back to the traditional representation without losing
sparsity.

The rest of the chapter is organized as follows. A new multi-level model order reduction
method based on singular value decomposition is proposed in Section 4.2. In addition, a new
multi-level parametric model order reduction is described in Section 4.3. Furthermore, a novel
sparsification technique for a parametric system is outlined in Section 4.4. Finally, sparse multi-

level parametric model order reduction is proposed in Section 4.5.

4.2 Singular Value Decomposition Based Multi-level Reduction

The new model order reduction method consists of two levels of order reduction. In the first level,
a passive reduced model is obtained through projection on the Krylov subspace using the Arnoldi
process. The second level of reduction is also performed using a real congruence transformation
in order to guarantee the passivity of the macromodel [84]. In this case the reduction basis is
chosen by using singular value decomposition (SVD) to filter out redundant information as will
be outlined in the sections below.

Recalling from Section 2.1.2, the MNA formulation for a multi-port interconnect network



4 Sparse Parametric Multi-level Reduction 75

containing p ports can be written as [63]

(G+sC)x = RV
I = R™z (4.1)

where s represents the complex frequency, V' and I are vectors containing port voltages and
currents. G € R™” and C' € R™*" contain the contributions of the memoryless and memory
elements respectively. x refers to unknown node voltages and unknown currents. n is the total
number of variables in the MNA equations. R € R"*? is a selector matrix that maps the port
voltages and currents into the node space of the circuit.

4.2.1 First level of reduction

In the first level of reduction, a standard Krylov subspace is used [19]. The reduced order model

is constructed through a congruence transformation @ on the original system in (4.1) to obtain:
(G +sC)& = RV 4.2)
where &, € € RVoxNa and R € RMa*? are given by

G=QTGQ; C=QcQ; R=Q"R (4.3)

The matrix @ € R™Ne (N, = (¢ + 1) x p) is a real orthonormal basis of the subspace spanned

by the block moments
colsp[Q] = colsp[Mo, M1, M, ..., M, 4.4)

where M, € R™?, ..., M, € R™ P are block moments of the original system. The congruence

matrix @ is accurately computed using the Arnoldi process. It can be shown that the reduced
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macromodel is passive and preserves the first ¢ moments of the original system [19]. Although
the reduced model is much smaller than the original system (N, < m), it is not optimal and
contains a lot of redundant poles [29], [30], [84]. A large macromodel significantly increases the
CPU cost of simulation. This problem is addressed using a second level reduction as discussed

in the following section.

4.2.2 Second level of reduction

The objective of doing the second level reduction is to remove unnecessary poles of the reduced
model from the first level reduction, while at the same time preserving the passivity. In order
to achieve this goal, the system in (4.2) is further reduced by performing another congruence
transformation.

(G +sC)z = RV (4.5)

G=QTGQ,; C=QTCQ,; R=Q'R (4.6)

Q, € RNe*Nk js a real orthonormal matrix, thus the reduced system is passive by construction
[84]. In order to obtain the subspace @, for the second level of reduction, we first construct a
subspace which spans the response of the reduced system in (4.2) over the frequency range of

interest.
F = [real(&;),imag(Z1), real(&s),imag(Es), . .., real (), imag(Ty)] 4.7)

where &; € RNeXP, . &y € RN+*P are sampling frequency response points. They are com-

puted using (4.2) and are given by the solution:

(G + jwiC)&; = R (4.8)
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It is to be noted that while the frequency response points are in general complex. F is collected
by splitting the real and imaginary parts of the complex response in order to obtain a real basis. A
real basis is required for preserving the passivity. As can be seen from (4.7), the matrix F' spans
sampling frequency response points and therefore conserves the system response. But this matrix
cannot be directly used as the reduction subspace since various vectors in F' are not completely
linearly independent and therefore contains many redundant information. Thus, the next step is
to find an orthonormal basis of the dominant directions in F'. In order to achieve this, the matrix
F is decomposed using singular value decomposition process. It computes the matrices U, S,
V from F such that:

F=USVT 4.9

where S is a diagonal matrix whose entries are non-negative elements in decreasing order and
U, V are orthogonal matrices. The values on the diagonal of .S provide a measure of the relative
importance of the various vectors in the orthonormal subspace defined by the columns of U. This
provides a convenient way to filter out the redundant subspace. Thus, taking only the leading &
columns of U that correspond to large values in S will give us a compact subspace, @, which
contains the responses of the system as shown in Fig. 4.1. The order Nj is chosen using the

following criteria:
S ( N, k, N, k )

S, 1) <err 4.10)

s(1,1) and s(Ny, Ny) is the first and the N;'" elements of the diagonal elements of S. err is the
error bound to choose the dominant subspace. Thus the dominant subspace Q, for the second

level of reduction is given by:

Q, = [u1,us,...,un] 4.11)

where uy, Uy, ..., uy, are the first IV columns of the matrix U'.
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Fig. 4.1 Reduction subspace obtained using singular value decomposition

4.2.3 Results
Example 1

The first example is an 18-port network. This network contains 1 coupled nine-transmission line
network. After discretization of the interconnects, the resulting size n of the MNA matrices is
2727. Using the block Arnoldi macromodeling approach, the size of the subspace that would
match the original network up to 10GHz was 720. After the second level of reduction, the final
size of the subspace was only 490. A summary of macromodel size comparison among the
original system, the reduced macromodel obtained from traditional model order reduction based
on block Arnoldi, and that from multi-level reduction is shown in Table 4.1.

The Y parameters Y7; and Y7, are computed and shown in Fig. 4.2 and Fig. 4.3. As can be
seen, the results of the proposed macromodel match the original circuit up to 10GHz. Fig. 4.4
shows the transient response due to a 1V pulse with a rise time of 0.3ns and a pulse width of

Sns. As expected, it is also accurate. To further demonstrate the efficiency of the proposed
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method, a summary of CPU cost comparison for examplel to obtain transient responses is shown

in Table 4.2, indicating a speed-up of 15 with respect to the original circuit.

Table 4.1 Macromodel size comparison

Examplel | Example2 | Example3
Number of Ports 18 10 20
Original System 2727 4340 4890
Block Arnoldi 720 920 1500
Multi-level Reduction 490 400 620

Example2

The second example is a 10-port network. This network contains 18 non-coupled transmission

lines and 1 coupled nine-transmission line. After discretization of the interconnects, the resulting

size n of the MNA matrices is 4340. Using traditional block Arnoldi macromodeling approach,
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the size of the subspace that would match the original network up to 10GHz was 920. After the
second level of reduction, the final size of the subspace was only 400. A summary of macromodel

size comparison is shown in Table 4.1. The Y parameters Y7, and Y}, for example2 are computed

04
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Fig. 4.7 transient response for example2 (comparison between the original system
and the proposed macromodel)

and shown in Fig. 4.5 and Fig. 4.6. As can be seen, the results are accurate up to 10GHz. Fig. 4.7
shows the transient response due to a 1V pulse with a rise time of 0.1ns and a pulse width of
Sns. As expected, it is also accurate. A summary of CPU cost comparison for example2 to obtain

transient responses is shown in Table 4.2.

Table 4.2 Macromodel CPU comparison between the proposed reduced macro-
model and the original system

Multi-level Reduction | Original System | Speed-up
Examplel 27.4(s) 411.4(s) 15
Example2 17.8(s) 201.5(s) 11
Example3 43.3(s) 633.2(s) 14
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Example3

The third example is a 20-port network. This network contains 36 non-coupled transmission
lines and 1 coupled nine-transmission line. After discretization of the interconnects, the resulting
size n of the MNA matrices is 4890. Using traditional block Arnoldi macromodeling approach,
the size of the subspace that would match the original network up to 10GHz was 1500. After the
second level of reduction, the final size of the subspace was only 620. A summary of macromodel

size comparison is shown in Table 4.1.
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Fig. 4.8 Y7;(s) for example3 (comparison between the original system and the pro-
posed macromodel)

The Y parameters Y7, and Y3, for example3 are computed and shown in Fig. 4.8 and Fig. 4.9.
Again, the results are accurate up to 10GHz. Fig. 4.10 shows the transient response due to a
1V pulse with a rise time of 0.5ns and a pulse width of Sns. As expected, accurate results are

also obtained in this case. A summary of CPU cost comparison for circuit3 to obtain transient

responses is shown in Table 4.2.
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Fig. 4.10 transient response for example3 (comparison between the original system
and the proposed macromodel)
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4.3 Parametric Singular Value Decomposition Based Model Order

Reduction

The model order reduction methods presented in the previous section are performed on one pa-
rameter (frequency). However in many practical cases, it is necessary to account for the variations
of some parameters when evaluating system performance. These variations could be the width
and height of the transmission lines due to the environmental effects or manufacturing varia-
tions. Given the fact that the system equations for interconnect networks are very large due to
discretization, it is not feasible to perform model order reduction each time as the parameter
changes. In order to improve the efficiency, parametric model order reduction was proposed in
the literature [31], [32], [77]. This technique produced a reduced order macromodel which is
valid over a predefined range of parameters. In other words, we do not need to perform a new
model order reduction each time as the parameter is modified. This results in significant CPU
cost savings. However current parametric model order reduction is based on multi-dimensional
moment matching, this method is known to result in a macromodel, which is not optimal [83].
In order to address this problem, a multi-level parametric model order reduction approach is
proposed [48]. This new approach can remove the redundant information from using Krylov
methods, while at the same time preserving the passivity of the system. The proposed method
consists of two levels of reduction. The first is done using traditional parametric model order re-
duction, and in the second level, the singular value decomposition (SVD) [85] process is used to
obtain the congruence transformation matrix and further reduces the system. The system after the
second level of reduction is typically one-third the size of the first reduced model obtained using
Krylov methods. Finally, since a real congruence transformation is used, the reduced model is
provably passive by construction as will be demonstrated in Section 4.3.3.

Consider a large parametric interconnect network containing distributed elements as well
as lumped components. After discretization, the parametrized modified nodal analysis (MNA)

formulation for this network can be written as
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Gx + sCx + (Z fi()\,-)DZ) x+s <Z gj(¢j)Ej> x=Ru;, i=RTzx 4.12)
=1

=1

The above formulation is the same as the parametrized formulation described in (2.46). However

it is repeated in this chapter for the sake of clarity and completeness.

4.3.1 First level of reduction

In the first level of reduction, traditional parametric model order reduction is used [31], [86]. The
reduced order macromodel is obtained from (4.12) by using a congruence transformation which

results in:

T c
Gz + sC# + <Z fi()\i)f),) &+s <Z gj(¢j)Ej> G=Ru 1=R & 4.13)

=1

where G, C, D;,(i =1,--- ,r)and E;,(j = 1,--- ,c) € RNe*Ne and are given by
G=Q"GQ; C=Q'CQ; D:;=Q"D\Q; E;=Q"E;Q; R=Q"R 414

The congruence transformation matrix, @, is chosen as an orthonormal basis of a subspace which
spans the moments of the system with respect to frequency, and with respect to the parameters

A1y ey Ap, &1, ..., Gc, as well as the cross moments.

colsp[@] = colsp | My, .. My, .. My, oo Mog, o Moo, .| @15

where M ,, is the k** moment with respect to frequency, M ,,, is the k'* moment with respect to
the ¢** memoryless parameter, M, is the k** moment with respect to the 5™ memory parameter,
M, is the cross moment between the a** frequency moment and the d** moment of the b*

memoryless parameter, M, 4, is the cross moment between the p** frequency moment and the
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" moment of the n** memory parameter.

mt

A combination of the Arnoldi process and standard QR decomposition is used to accurately
compute Q. The reduced order model in (4.13) is much smaller than the original system in (4.12).
However, this approach is based on moment matching and results in a much larger reduced model
than is necessary [5], [83]. In the following section, a second level of reduction is described which

addresses this issue.

4.3.2 Second level of reduction

The reduced model in (4.13) provides an efficient way to solve the original system, however, it
is still much larger than is necessary [5], [29]. In the second level of reduction, this macromodel
is further reduced using another congruence transformation matrix, Q,. This time, the change of
variables is with respect to the reduced model in (4.13). Thus, substituting X = Q,X, the second

level of reduction gives:
Gi+ sCz + (Z fi()\i)f),) X+s (Z gj(¢j)Ej) $=Ru i=R% (4.16)
i=1 Jj=1

where: G = Q7GQ,,C = QTCQ,, D; = Q*D,Q,,E; = QTE;Q,,R = QTR. and &
is the solution to this second reduced model. For the second level of reduction, the congruence
transformation matrix, Q,, is chosen such that it spans the response of the system in (4.13) over
the desired range of frequency and parameters Ay, ..., Ay, &1, ..., ¢.. To that end, the response of

the system is sampled as follows in order to define the subspace K:
K= [ real(x,) imag(xy) ... real(x,) imag(x,) ] (4.17)
where X; are the system responses given by:

@i = (Gau(X) + sCan(¢:)) ' R 4.18)
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Gau(N) =G + (Z fi()\i)f),) , Cald) =C+ (Z 9j(¢j)Ej> (4.19)
i=1 Jj=1

and evaluated at various frequency and parameter points within the range of interest.

Given the nature of the frequency response, the subspace K contains a lot of redundant
information. The singular value decomposition (SVD) technique presented in [45], [85] is used
to identify the dominant dimensions and obtain an optimal orthonormal basis spanning the system
response. Singular value decomposition computes the matrices U, S, V from K such that K =
USVT where S is a diagonal matrix with non-negative elements and in decreasing order, and
U and V are unitary matrices. The singular values along the diagonal of S measure the relative
importance of the corresponding column of U. This provides a convenient way to filter out the
redundant directions. Taking only the first N; columns of U, those corresponding to the highest
singular values, produces the congruence transformation matrix, Q,, which now contains only

the dominant directions of the system response. Thus:

Q, = [ wy Uy ... up, ] (4.20)
where u; is the i*® column of U. The order Ny, is chosen using the following criteria:

%Q <err 4.21)
where s(1,1) and s(Ng, Ni) are the first and the N ™" singular values along the diagonal of
S respectively. err is the error bound for the dominant subspace. Using this newly produced
congruence transformation matrix, @, for the reduction in (4.16) produces a compact model
valid over a range of values, determined by the sample points, for the parameters and frequency.
It is to be noted that such a macromodel obtained from the second level reduction produces a

macromodel which is passive by construction as will be proved in the following subsection.
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4.3.3 Proof of preservation of passivity

By definition, a passive circuit is one that cannot generate more energy than it absorbs. Passivity
is an important property for interconnect networks. Non-passive model, even if it is stable, may
result in an unstable system when connected to other passive networks [5]. In [87], the necessary

and sufficient conditions for the passivity are outlined using admittance matrix Y (s) as follows.
1. Y(s*) = Y*(s) for all complex s, where * is the complex conjugate operator.

2. Y (s) is a positive matrix, that is, z* (Y (s) + Y7 (s*))z > 0 for all complex values of s

satisfy Re(s) > 0 and for any complex vector z.

In order to prove that the reduced system from two-level reduction is passive, we first show that
the parametric model reduction based on a congruence transformation preserves the passivity of
the system. We then demonstrate that two-level reduction in the proposed algorithm is equiv-
alent to the reduction on the original parametric system based on a congruence transformation.

Consider the MNA formulation for the original parametric system described in (4.12).

T c
Gz + sCx + (Z fi(Ai)Di> x+s (Z gj(¢j)Ej> r=Ru;, i=RTz (422
i=1 Jj=1

After performing the first level reduction, the reduced model can be written as

G# + sCa + (Z fi(,\i)b,) &+ s (Z gj(qu)Ej) g=Ru =Rz 423

i=1 j=1

where G, C, D;, (i =1,--- ,7) and Ej, (j =1, ,c) € RVe*Na and are given by
G=Q"GQR; C=Q"CQ;, D:=Q"D:Q; E,=Q"E;Q; R=Q"R (424

and Q € R™Ma is the congruence transformation matrix for the first level reduction. It has

been proved in [77] that the parametric reduced order system in (4.23) is passive by construction.
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Next, we demonstrate that two-level reduction using congruence transformation @ € RV« and
Q, € RNo*Nk js equivalent to reducing the original system using a congruence transformation
Quotar € RM*M,

The reduced macromodel obtained from the second level reduction was described in (4.16)

as

where G, C, D, (¢=1,---,r)and E‘J-, (j=1,---,c) € RV>*Ne and are given by
G=Q]GQ,; C=QCQ; D:=Q]DQ, E;=QEQ,; R=QJR (4.26)

and Q, € RN«*Nr is the congruence transformation matrix for the second level reduction. Sub-

stituting (4.24) in (4.26), we obtain

G = QIQ"GQQ,
C = QIQTCcQQ,
D; = QfQ"D.QQ, 4.27)

E; = QIQ"E;QQ,
QTQ"R

Y

o
I
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By setting Q,.,;.; = QQ,, the above equations can be rewritten as

é = Qz;talGQtotal

é = Qz;talCQtotal

D; = QuuDiQua (4.28)
Ej = Qf;szthomz

ﬁ = QZ:)talR

It follows from (4.28) that the reduced macromodel based on two congruence transformations Q
and @, is equivalent to a macromodel based on one congruence transformation Q,,,,;. Therefore

the final reduced order macromodel obtained from two-level reduction is passive by construction.

4.3.4 Results
Example 1

The first example is an interconnect network with 9 non-coupled transmission lines, 1 nine-
coupled transmission line system (see [88] for a description of the 9 coupled line system), and
30 resistors. This system is a parametric 2-port network with 3 resistor values, R;, Ry, R3 as
parameters. The resulting size of the MNA matrices is 3522.

Using the traditional parametric method described in Section 4.3.1 for the first level of reduc-
tion, the resulting reduced system was size 360. After applying the second level of reduction, the
size of the reduced macromodel became 110. Table 4.5 shows the size comparison of the orig-
inal network (original system), macromodel obtained from traditional parametric model order
reduction (traditional PMR) and macromodel obtained from multi-level parametric model order
reduction (multi-level PMR). The reduced model was tested over the frequency and parameter
range of interest and the results matched the original system within an error of 0.04%. The Y5,

parameters of three sample cases (see Table 4.3 for the parameter values) are shown in Fig. 4.11.
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Table 4.3 Three Sample Test Cases for Example 1

l R | Ry | Ry |
Case 1 || 1029 | 230Q | 34Q
Case2 || 572 | 84Q | 153Q
Case 3 || 15102 | 440 | 2290

Table 4.4 Three Sample Test Cases for Example 2

l LR [ R | G | & |
Case 1 || 211Q | 1682 | 1.70pF | 1.25pF
Case 2 || 13192 | 20992 | 0.94pF | 1.77pF
Case3 || 500 | 4Q | 2.07pF | 1.07pF

The transient responses for the three sample cases are shown in Fig. 4.12. A summary of CPU

cost comparison to obtain the transient responses is shown in Table 4.6.

Example 2

The second example is another interconnect network, this time with 3 ports and parametric with
respect to 2 resistor values, R;, Ry, and 2 capacitor values, C'y, C,. It contains 12 transmission
lines, 145 capacitors, 138 inductors, and 175 resistors. The resulting size of the MNA matrices is
1989.

The first level reduction used the traditional parametric modified Krylov technique outlined
in Section 4.3.1 and created a reduced model of size 300. Applying the second level of reduc-
tion created a smaller macromodel, having a size of 101. Table 4.5 compares the sizes of the
original system (original system), macromodel obtained from traditional parametric model order
reduction (traditional PMR) and macromodel obtained from multi-level parametric model order
reduction (multi-level PMR). Again, the reduced model was tested over the range of interest for

parameters and frequency and it matched the original within an error of 0.03%. Three sample
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Table 4.5 Macromodel Size Comparison

I

|| Example 1 | Example 2 |

Original system 3522 1989
Traditional PMR 360 300
Multi-level PMR 110 101

Table 4.6 CPU Cost Comparison for Examplel and Example2

|| Examplel | Example? |

Traditional PMR 493.8s 339.6s
Multi-level PMR 16.8s 24.1s
Speed-up 294 14.1

cases (see Table 4.4 for the parameter values) of the Y5 » parameters are shown in Fig. 4.13. The
transient responses for the three cases are also shown in Fig. 4.14. A summary of CPU cost

comparison for example2 to obtain the transient responses is shown in Table 4.6.

4.4 Sparse Parametric Model Order Reduction

The size of the parametric macromodel obtained from parametric multi-level reduction discussed
in the previous section is significantly smaller than the size of the original system, however, this
reduced macromodel is generally dense. A dense macromodel significantly reduces the efficiency
of the simulation. This problem was addressed in [75] for regular model order reduction methods.
However, this approach is not applicable to parametric macromodels. In this section, a new tech-
nique is presented to produce a reduced order parametric macromodel which is sparse [49]. In
order to achieve this goal, a new parametric formulation is proposed. This formulation replaces
the stamps of the parametric elements with constrained port representations. The reduction and
sparsification are performed on the macromodel in the space of the new formulation scheme,

and the sparse reduced macromodel is then brought back to the traditional representation with-



4 Sparse Parametric Multi-level Reduction 96

. Multi-port a ==|a
I network (p-port) | + -
v, |withaddingone | v,, [Paramettc

! parametric port | = ]

b
== | constrained port

Fig. 4.15 Adding a constrained port

out losing sparsity. It is to be noted that the newly introduced parametric ports do not have a
significant impact on the size of the reduced macromodel. A significant CPU cost saving over
traditional parametric model order reduction methods is however achieved due to the sparsity of

the macromodel.

4.4.1 New formulation suitable for sparsification

As can be seen in Section 4.3, the parametric elements, represented by fi(,)D; and g; ( ¢j)Ej in
(4.12) hinder the use of the procedure to sparse macromodels elaborated in [75]. In the first step
of the proposed method, these elements are decoupled from the original formulation by adding
constrained ports.

For instance, assume that (4.12) only contains one parametric element and it is connected to
the node “a” and node “b” of the system. Then, one additional constrained port is added into the

original multi-port network as shown in Fig. 4.15. Therefore (4.12) becomes

lel + sClml = Rlu -+ RQ’U,Q (4293)
i=LTx, (4.29b)

Fi(ug) = Lg-”h (4.29¢)



4 Sparse Parametric Multi-level Reduction 97

where

G d, C 0
G]_ = ,Cl = (430)
—df 0 0
R 0
Rl - 7R2 -
0 -1
L 0
L1 - ,Lz - (431)
0 ~1
T
u=| vy | o= | 432)
lq

and v, and i, are the voltage and current on the newly introduced constrained port. d, is a
vector with all zeros elements except for the rows that corresponds to node “a” and “b”. Equation
(4.29¢) represents the parametric constraint on the newly appended constrained port. Notice that
(4.29) denotes the same network as (4.12) but with the parametric element decoupled and a port
at node “a” and “b” added. This port is a constrained port since the type of load (memory or
memoryless) that will be attached is known — it is the same as that of the removed element. This
load information is used to parametrize the port as will be shown in the following section.
Similarly, if (4.12) contains w parametric elements, then multiple constrained ports are added

with each port connecting to one parametric element. In general, the formulation becomes

Gy +SCuy = Ryu+ Rty (4.33a)
i = LI =z, (4.33b)

foltw:) = LT, x, (4.33¢)
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where

G D, C 0
G, = C, = (4.34a)
-DT o 00
R o |
R, = s Ry = (4.34b)
0 _I
L 0
L, = y Loy = (4.34¢)
0 I
xr
Uyy = [ v, ] @, = (4.34d)
-

and v, and ¢, are the voltages and currents respectively at newly introduced constrained ports.
D, is a matrix with all zero elements except for the rows and columns that correspond to the
parametric nodes, and I is the identity matrix. Again, formulation (4.33a) does not contain any
parametric elements, but instead contains constrained ports. In other words, the constrained port

voltages and currents are not arbitrary but are subject to the parametric condition in (4.33c).

4.4.2 Model reduction with constrained ports

Having the modified formulation in (4.33), the reduced system is then obtained by using congru-

ence transformation, resulting in

GuZw + $Cuiw = Ryt + Ruystius (4.352)
R (4.35b)

Fuw(lwz) = Lyz®y (4.35¢)
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where

G.,=Q7G,Q;, C,=Q"C.Q (4.36a)
Ry = Q"R,1; Ry =Q"R,, (4.36b)
Ly =QTLy;; Lus=QTLy, (4.36¢)

The congruence transformation matrix, €, is chosen such that the size of the reduced system
in (4.35) is not affected by the introduced constrained ports by exploiting the information on
those ports. Since the type of elements (resistive or capacitive elements) on the constrained
ports are known, the congruence transformation matrix can be obtained by taking the parametric
elements on the ports as parameters and using parametric port formulation. To obtain such new
formulation, consider a p port parametric system with w constrained ports as described in (4.33).
The parametric elements are resistive and capacitive as shown in Fig. 4.16. In this case, the

parametric condition in (4.33c) becomes

i = (g1+sc1)vg (4.37a)

= (gsw + Scsw)vsw (437b)
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Incorporating the constraint equations in (4.37) into (4.33a), we obtain the parametric port for-

mulation

w

Gy, + sCyxy, + (Z giFi> Xy + s (Z ciFi) x, = Ryu (4.38)
=1

i=1
where G,, is obtained by modifying w rows of G, matrix with one non-zero in each row, cor-
responding to the constrained port current. The entries of F'; are no more than two non-zeros,
corresponding to the two node voltages on the i constrained port. The parameters c; and g;
represent the capacitive and resistive elements connected to the constrained ports. The detailed
process of constructing the above parametric port formulation can be found in Section 3.3. Note
that the unknown variables in (4.38) is the same as those in (4.33a). In other words, embedding
the parametric elements into the system equations is done in such a way that unknown variables
do not change. It is also important to note that the new formulation in (4.38) is multi-dimensional
with g; and ¢;, ¢+ = 1,--- ,w as parameters. Parametric model order reduction techniques are
therefore used to obtain the subspace Q. This subspace spans the moments with respect to fre-
quency, moments with respect to parameters as well as some cross moments. The subspace
denoted as @, spanning the moments with respect to frequency can be implicitly computed using
the Arnoldi process. The cross moments (M, )y ; with respect to frequency and the parame-
ters ¢; can be computed by the procedure elaborated in [31], [82]. The corresponding subspace
denoted by Q,.., ¢ = 1,... w, is obtained by performing a standard QR decomposition [74] on
the cross moments. The subspace Q,, Q,,, -+, Q, spanning the moments with respect to
conductance gi, g2, * - - , gy 1S implicitly computed using the Arnoldi process.

Once all the required subspaces are evaluated, the resulting multidimensional subspace de-

noted by Q is as follows:

COlSp[Q] = COlSp[Q37 Qscl ) Qscz’ Tty QscN7 le y Qgéa Y Q!]N] (439)

This can be achieved by using another standard QR decomposition [74] on various required
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subspaces in (4.39).

4.4.3 Sparsification of the macromodel

The reduced order macromodel in (4.35), while much smaller than the original system, is gener-
ally very dense. This significantly reduces the CPU efficiency of the simulation. Fortunately the
macromodel is now expressed in a traditional state space form and the contributions of the param-
eters are expressed as port conditions. This allows us to use standard diagonalization schemes to

make the reduced system sparse [75]. Equations in (4.35a) can be reformulated by premultiplying
1

G

w

Eo + 5Go Cow = Go Ruytu+ Go' Runfis (4.40)

By applying eigen-decomposition to é;léw, we obtain
G.'¢,=VvDV-! (4.41)

V and D are in general complex; however a real diagonalization can be derived from (4.41) in
the form

G, ¢, =S.D,S,™ (4.42)
where D, is a real block diagonal matrix and

S, = VP! (4.43)
D, = PDP™! (4.44)

P is defined as [75]:

1. when the corresponding element of the diagonal matrix D, d; ;, is a real, the element of P

matrix is p; ; = 1,

2. when the corresponding elements of the diagonal matrix D, d;; and d;4, ;+1 are complex
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1 1
conjugate, the elements of P matrix are: pi.y1 iit1 =

Jo=J

By substituting (4.42) into (4.40), the sparse reduced system becomes

G + 5C ke = Ryt + Ryt (4.452)
i= Lo &, (4.45b)
Fo (i) = Lo (4.45¢)

where éw is an identity matrix,

C, = PDpP (4.46a)
Ry = (VPYIG, R (4.46b)
Ry = (VPG R (4.46¢)
Ly, = (VP YL, (4.46d)
Ly = (VP Y 'L, (4.46¢)
&, = (VP H 'z, (4.46f)

and C:‘w and é’w are small yet sparse matrices. Note that this sparse model, similar to (4.35) also

retains the constraints on the loads attached to the constrained ports.

4.4.4 Sparse reduced order macromodel

The final step is to reincorporate the nonlinear constraints in (4.45c) into the overall sparse macro-
model equations in (4.45a). In order to achieve this, the reduced macromodel is treated as a sub-
section, which is represented by (4.45a) and (4.45b), then the parametric elements, which were

removed before are connected back to the constrained ports of the subsection to form the sparse
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reduced parametric macromodel.

vwT 9
Gs DL, N > im1 fip Di Csy 0
~R,DT G, 0 0 Cyu
r \J
o | i 9w T | _ | Be @.47)
0 By, 0
where
vT
y i
L,=| (4.48)
Lw2
few=[izw1 1“%] (4.49)

G4 and C 4 represent the general port formulation of unconstrained ports. R is a selector matrix.
Sy fig ,\i)Di represents the parametric memoryless elements. Z;=1 9i( ¢i)}z‘ ; represents the
parametric memory elements. D is a selector matrix with elements d; ; € {0, 1} and a maximum
of one non-zero in each row or column that maps the vectors of port voltages and port currents
entering subsection into the node space of the network. @&, is the unknown vectors of the reduced
order macromodel in (4.45). In summary, the final reduced order macromodel based on (4.47) is

in the form of

r ¢
é+SC+Zfi(Ai)Di+SZQJ(¢j)EJ T = R’LL (450&)
i=1 j=1

=T

i=Lx (4.50b)

where G, C, D;, and E; are small yet sparse matrices.
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4.4.5 Numerical results

Example 1
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Fig.4.17 Frequency responses for example 1 (comparison between the original sys-
tem and the proposed macromodel)

The first example is an interconnect network with 9 non-coupled transmission lines, 1 nine-
coupled transmission line system (see [88] for a description of the 9 coupled line system), and 31
resistors. This system is a parametric 2-port network with 4 resistor values, R;, R, R3, and Ry,

as parameters. The resulting size of the MNA matrices is 3522.

Table 4.7 Method Comparison for Example 1

Size | G Density | C Density | Time | Speed-up
(%) (%) (s)
Original System || 3522 | 0.0756 0.0866 | 2906.4 -
Traditional PMR | 372 99.9 99.9 383.41 7.6
Sparse PMR 366 3.43 0.479 36.84 78.9

Using the sparse macromodeling technique proposed in this section, the size of the reduced
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Fig. 4.18 Transient response for example 1 (comparison between the original sys-
tem and the proposed macromodel)

model is 366, with G only 3.43% filled, and C only 0.479% filled. Note also that the other matri-
ces (R, L, ...) in this proposed model contain less than 4 elements whereas using the traditional
approach, these other matrices are over 98.9% filled. Three sample cases of Y5 » parameters (with
resistor values randomly chosen from 1 ~ 200(2) are shown in Fig. 4.17. As can be seen from
the figure, the results match very well (with average error 0.07%). Fig. 4.18 shows the transient
responses due to a 1V pulse with a rise time of 0.5ns and a pulse width of 2ns. As expected, it
is also accurate. A summary of CPU cost comparison between the original network, traditional
parametric model order reduction (Traditional PMR), and the proposed method (Sparse PMR) to
obtain transient responses is shown in Table 4.7. It is not surprising that the proposed approach
can achieve 78.9 CPU speed-up while the traditional parametric model order reduction is only

7.6 speed-up, since the reduced model is not only small but also sparse.

Example 2

The second example is another interconnect network, which consists of 9 non-coupled transmis-

sion lines, 2 nine-coupled transmission line systems (see [88] for a description of the 9 coupled
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line system), 3 capacitors, and 29 resistors. The MNA size of this 2-port system is 6223. This

system is parametric with respect to 2 resistor values and 2 capacitor values, Ry, R, C1, and Cs.
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Fig.4.19 Frequency responses for example 2 (comparison between the original sys-
tem and the proposed macromodel)

Table 4.8 Method Comparison for Example 2

Size | G Density | C Density | Time | Speed-up
(%) (%) (s) (%)
Original System || 6223 | 0.0428 0.0541 | 3272.1 -
Traditional PMR | 602 99.9 99.9 1848.8 1.8
Sparse PMR 628 1.72 0.299 91.04 36.0

Applying the sparse parametric reduction procedure results in a reduced macromodel with
size 628, where only 1.72% of G contains non-zero elements, and only 0.299% for C. The
other matrices (R, L, ...) contain less than 4 elements whereas using the traditional approach
produces matrices which are over 99.9% filled. Three sample cases of the Y3 » parameters (with
the values of resistor and capacitor randomly chosen from 1 ~ 2002 and 0.5 ~ 5 pF respectively)

are shown in Fig. 4.19. As can be seen, it is accurate with the average error 0.1%. Fig. 4.20
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Fig. 4.20 Transient response for example 2 (comparison between the original sys-
tem and the proposed macromodel)

shows the transient responses due to a 1V pulse with a rise time of 0.5ns and a pulse width of
2ns. As expected, it is also accurate. A summary of CPU cost comparison between the original
network, the traditional parametric model order reduction, and the proposed method to obtain
transient responses for example2 is shown in Table 4.8. In the example2, The CPU speed-up of
the proposed model is 36.0 compared to 1.8 if using traditional parametric model order reduction,

which again demonstrates the efficiency and accuracy of the proposed model.

4.5 Sparse Multi-level Parametric Model Order Reduction

4.5.1 Proposed algorithm

In this section, a sparse two-level parametric model order reduction (PMR) is proposed. This
method is based on combining the multi-level PMR in section 4.3 with the sparse PMR in sec-

tion 4.4. The proposed algorithm consists of five main steps as follows

1. In the first step, the parametric elements are decoupled from the original parametric formu-

lation in (4.12) by adding constrained ports. The resulting formulation is a traditional state
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space form as described in (4.33).

Guxy + sCuy = Ryiu+ Ryuys (4.51a)
i = LI =, (4.51b)
Foluw) = LIz, (4.51¢c)

In the new formulation, the parametric element contributions appear as port constraints

in (4.51c).

2. In the second step, first level reduction based on congruence transformation is performed

on the new formulation in (4.33) to obtain the reduced model as described in (4.35).

Gwiw + Séw:ﬁw = Rwlu + Rﬂ2ﬁ'w2 (4523)
i = L, (4.52b)
Follle) = liigrfcw (4.52¢)
where
G.=Q7G.Q; C,=Q7C.Q; R.,i=Q"Ru (4.53a)
sz = QTRw2; iwl = QTLwl; j/w2 = QTLU)Z (4.53b)

The congruence transformation matrix @ is chosen such that the size of reduction subspace
is not affected by the newly introduced constrained ports. This is achieved by taking the
parametric elements as the parameters and using parametric prot formulation in (4.38). The

details about model order reduction with constrained ports are discussed in section 4.4.2.

3. In the third step, second level reduction based on singular value decomposition is used to
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further reduce the macromodel. The resulting macromodel is given by
GuEw + sCuyw = Ryiu+ Rty (4.54a)
i = Lo, (4.54b)
Folites) = Loy (4.54c)
where
G, =Q;G.Q,; Cu,=QCuQ,; Rui=Q]Ru (4.552)
Ry =QRup; Lun=QLu; Luz=QlLus (4.55b)

The reduction subspace Q7 spans the dominant direction of the system responses in (4.52)

over the range of frequency and parameters as presented in section 4.3.2.

4. In the fourth step, the reduced macromodel obtained from two-level reduction in (4.54) is

sparsified as discussed in section 4.4.3.

(4.56a)
(4.56b)
(4.56¢)

5. The final sparse reduced macromodel is obtained by incorporating the parametric elements

into the sparse model in (4.56) and in form of

where G, C, D;, and E; are small yet sparse matrices.

(4.57a)

(4.57b)



4 Sparse Parametric Multi-level Reduction 110

4.5.2 Numerical results
Example 1
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Fig. 4.21 Frequency responses for example 1 (Y22) (comparison between the orig-
inal system and the proposed macromodel)

The first example is an interconnect network with 9 non-coupled transmission lines, 1 nine-
coupled transmission line system (see [88] for a description of the 9 coupled line system), and 31
resistors. This system is a parametric 2-port network with 4 resistor values, R, Ry, R3, and Ry,
as parameters. The resulting size of the MNA matrices is 3522.

Using the proposed sparse multi-level reduction method, the size of the reduced system after
doing first level reduction is 366, while the macromodel is further reduced to 159 after doing
the second level reduction. The size comparison is shown in Table 4.9. The values of the four
parametric resistors are varied from 1 ~ 200€2 as shown in Table 4.10. The frequency responses
for three sampling parameter cases are shown in Fig. 4.21 and Fig. 4.22. As can be seen, the
results from the reduced macromodel match those from the original system up to 4GHz. The
average relative error of Y parameters for all testing cases is 0.07%. Fig. 4.23 shows the transient
responses for three sampling test cases of parameters due to a 1V pulse with a rise time of

0.1ns and a pulse width of 2ns. As expected, it is also accurate. A summary of CPU cost
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comparison between the original network, traditional parametric model order reduction (PMR),
and the proposed method to obtain transient responses is shown in Table 4.11. It is not surprising
that the proposed approach can achieve 350.8 average CPU speed-up since the proposed model

is not only very small but also sparse.

Table 4.9 Size Comparison for Examples

Examplel | Example2
Original System 3522 6223
Traditional PMR 372 608
Sparse Multi-level PMR 159 326

Table 4.10 Test Cases for Example 1

R; | Ry Rs Ry
Casel | 9602 | 44Q2 | 9302 | 12202

Case2 || 31921990 | 119Q | 9952
Case 3 || 5602 | 420 | 1430 | 51Q

Table 4.11 CPU Cost Comparison for Example 1

Case 1 | Case 2 | Case 3 | Ave. speed-up

Original System 2906.4 | 2765.1 | 2712.6 -
Traditional PMR 383.4 | 336.8 | 381.6 7.6
Sparse Multi-level PMR 7.9 7.7 8.3 350.8
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Fig.4.24 Frequency responses for example 2 (comparison between the original sys-
tem and the proposed macromodel)
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tem and the proposed macromodel)
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Example 2

The second example is another interconnect network, this time consisting of 9 non-coupled trans-
mission lines, 2 nine-coupled transmission line systems, 3 capacitors, and 29 resistors. The MNA
size of this 2-port system is 6223. This system is parametric with respect to 2 resistor values and

2 capacitor values, R;, Ry, C}, and (5.

Table 4.12 Test Cases for Example 2

R, R, G C,

Case 1 || 21192 | 1682 | 1.70pF | 1.25pF
Case 2 || 131€2 | 20992 | 0.94pF | 1.77pF
Case3 || 50Q | 492 | 2.07pF | 1.07pF

Using the proposed sparse multi-level reduction method, the size of the reduced system after
doing first level reduction is 628 while the macromodel is further reduced to 326 after doing

the second level reduction. The size comparison is shown in Table 4.9. The values of the two
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Table 4.13 CPU Cost Comparison for Example 2

Case 1 | Case2 | Case 3 | Ave. speed-up
Original System 3272.1 | 3184.5 | 3187.5 -
Traditional PMR 1848.8 | 1817.8 | 1865.1 1.7
Sparse Multi-level PMR || 50.3 50.8 47.7 64.8

parametric resistors are varied from 1 ~ 200€2. The values of the two parametric capacitors are
varied from 0.5pF" ~ 5pF as shown in Table 4.12. The frequency responses for three sampling
parameter cases are shown in Fig. 4.24 and Fig. 4.25. As can be seen, the results from the reduced
macromodel match those from the original system up to 4GHz. The average relative error of Y
parameters for all testing cases is 0.1%. Fig. 4.26 shows the transient responses for three sampling
cases of parameters due to a 1V pulse with a rise time of 0.5ns and a pulse width of 2ns. As
expected, it is also accurate. A summary of CPU cost comparison between the original network,
traditional parametric model order reduction (PMR), and the proposed method to obtain transient
responses is shown in Table 4.13. In this example, the average CPU speed-up of 64.8 has been
achieved.

In summary, a new parametric model order reduction method was presented that produced
macromodels which are small yet also sparse. As shown through numerical examples, the sparse
and small characteristics enable faster simulation, which is essential since parametric macromod-

els are often used repeatedly.
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Chapter 5

Nonlinear Model Order Reduction

5.1 Introduction

Model order reduction methods based on congruence transformation were developed for obtain-
ing passive [19] efficient macromodels for linear interconnect networks [5], [19]. Such con-
gruence transformation based techniques have become the methods of choice for model order
reduction of interconnect networks due to their accuracy, numerical stability and passivity [S].
These methods are, however, frequency domain methods and are thus inherently limited to lin-
ear subcircuits. In [64], the concept of congruence transformation based reduction was extended
to nonlinear equations in the time domain and was shown to be stable and passive. However,
while the approach in [64] leads to significant CPU cost savings, it is fundamentally a simulation
method based circuit reduction and it therefore does not produce a nonlinear macromodel which
can be reused under different input waveforms and load conditions. In terms of the nonlinear
macromodeling techniques, nonlinear reduction methods based on Taylor series were proposed
in [35]-[37], where a set of linearizations is obtained by dropping the higher order terms of the
Taylor series. Each linearization is then reduced using Krylov projection methods. The main
drawback of these methods is that the reduction can only be performed to weakly nonlinear

systems. Furthermore, the exponentially increasing cost with the number of expansion terms in-



5 Nonlinear Model Order Reduction 117

cluded makes these methods only limited in practice to cubic expansion. A trajectory piecewise
linear approach [38], [80], [81] was proposed to handle strong nonlinearity. The key observation
in trajectory model order reduction is that the nonlinearity is characterized by collections of lin-
earized systems at different expansion points around state trajectory. Each individual linearized
system is reduced using Krylov projection methods and the final macromodel is then obtained
by taking a weighted combination of the resulting reduced order linearized models. However,
finding a good weighting function is not an easy task for a broad class of nonlinear systems.

Given the problems associated with the existing nonlinear macromodeling techniques, a para-
metric sparse macromodeling technique for nonlinear networks is presented in this chapter. This
method results in a sparse reduced order macromodel which is also valid over a range of param-
eter values. This nonlinear parametric macromodel improves the simulation time for parametric
nonlinear networks since the macromodel only needs to be created once and can be used many
times with different internal circuit parameters. In order to achieve this goal, a new formulation is
proposed. The proposed formulation allows for the decoupling of both nonlinear and parametric
equations by introducing constrained ports. The reduction and sparsification are performed on the
linear portion of the macromodel in the space of the new formulation scheme, and the reduced
macromodel is then brought back to the traditional representation by reincorporating the para-
metric and nonlinear equations without losing sparsity. It is to be noted that the newly introduced
constrained ports have a negligible impact on the size of the reduced macromodel.

This chapter is organized into 6 sections. Following this introduction, Section 5.2 describes
the system formulation for nonlinear networks. Nonlinear model order reduction based on con-
gruence transformation is presented in Section 5.3. In Section 5.4, the proposed method for ob-
taining sparse nonlinear macromodels is presented. The parametric sparse nonlinear macromodel

is proposed in Section 5.5. Finally, numerical examples are shown in Section 5.6.
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5.2 Network Formulation

Consider a multi-port interconnect network consisting of many linear and nonlinear components.
The nonlinear modified nodal analysis [63] formulation of such a p-port network as defined in

equation (2.9), can be written as

Gz(t) + Ca(t) + f(z(t)) = Ru(t)+ b(t) (5.1a)
i(t) = LTx(t) (5.1b)

where x(t) € R™ is a vector of node voltages appended by independent voltage source currents,
linear inductor currents, nonlinear capacitor charges and nonlinear inductor fluxes; G € R™*"
and C € R™ ™ contain the contributions of the memoryless and memory elements respectively
as was outlined in Section 2.1.3.

The formulation in (5.1) can be generalized to take into account certain design parameters
(interconnect geometries, resistors and capacitors etc). In such a case, the parametrized modified
nodal analysis formulation {31], [63] including the nonlinear and parametric components can be

expressed as:

i=1 j=1

i= LTz(t) (5.2b)

where D1, ..., D, are matrices each containing the modified nodal analysis formulation stamp of
a particular memoryless parameter, E1, ..., E, are matrices each containing the modified nodal
analysis formulation stamp of a particular memory parameter, Ay, ..., A, are input scalars corre-
sponding to the variable parameters represented by D, ..., D, respectively, ¢4, ..., ¢, are input
scalars corresponding to the variable parameters represented by E\, ..., E. respectively. h; is
an algebraic function describing the contributions of the parameter \; to the memoryless ele-

ments. g; is an algebraic function describing the contributions of the parameter ¢; to the memory
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elements.

5.3 Nonlinear macromodeling based on congruence transformation

5.3.1 Reduced macromodel

In this section, model order reduction is applied in the time domain on the nonlinear MNA multi-
port formulation in (5.1). The resulting reduced system will therefore be in macromodel form
and can thus be connected to other circuits [50]. Furthermore, the congruence transformation
matrix € used for the reduction is chosen such that it is valid over the desired user defined range
of load conditions and input waveforms.

By applying the change of variables x(t) = Q&(t) to equation (5.1), and pre-multiplying by

QT, we obtain the reduced order macromodel as

A~

Gia(t) + Ca(t) + F@1) = Ru(t) + b(t);  i(t) = R 2(t) (5.3)
where
G=Q"GQ, C=Q"CQ
R=Q"R; b(t)=Q"b(t);, f(2(t)=Q"f(Q&(t)) (5.4)

and @ € R™*1 is a real orthonormal matrix, &(¢) € RY is the solution to the reduced system, and
q < n. The process of obtaining ¢ will be discussed in the next section. The macromodel in

(5.3) can be stamped in the MNA equations of a large network.

5.3.2 Reduction subspace

In order for the change of the variables x(t) = Q(t) to be valid, the congruence transformation
matrix @ must span the subspace containing x(t) over the range of loading conditions and input

waveforms of interest. The subspace is generated by performing transient analyses and sampling
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x(t) from the initial time point (o) up to the terminal time point (¢). This is done several times
on different load conditions and using a range of input waveforms. The subspace containing x(t)

is then defined as
K = [w(l)(t0)7 v )m(l)(ti)a cee )w(l)(th)) v )m(m)(t0)7 v am(m)(ti)7 v am(m)(th)] (55)

where (™) (t;) is the i** time point for the m** transient response. Given the fact that there is
typically a lot of similarities between various transient responses, and the fact that, for a large sys-
tem, the elements of x(¢) are not all linearly independent (which is the reason why linear model
order reduction is possible), the subspace K typically contains a lot of redundant dimensions.
In order to obtain an optimal orthonormal basis @ of this subspace, the singular value decom-
position(SVD) [85] is used to identify the dominant directions. The subspace K is therefore

decomposed using singular value decomposition process such that
K=USVvT (5.6)

where S is a diagonal matrix containing the singular values in decreasing order and U, V are
orthogonal matrices. The matrix @ is constructed by taking only the leading k£ columns of U
which correspond to large values in S, and thus contain the dominant dimensions of the subspace.

The order & is chosen using the following criteria:

<err (5.7

s(1,1) and s(k, k) is the first and the k%" elements of the diagonal elements of S. err is the error

bound to choose the dominant subspace. Thus, the dominant subspace @ is given by:

Q = [u1,uz,. .., uk (5.8)
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where w,, ug, ..., ug are the first £ columns of U. It is to be noted that this subspace is valid
over the range of inputs and loads used to construct it.

Obtaining the subspace defined in (5.5) requires samples of the transient responses under dif-
ferent input waveforms and loading conditions. However, it is not possible to perform a transient
analysis directly on the multi-port formulation in (5.1). For that purpose, the load information is
integrated into the original differential equations in (5.1) to obtain a new formulation called the
nonlinear parametric port formulation. It is to be noted that the unknown variables in the new
formulation are the same as the unknown variables a(t) in the original differential equations.

The detailed process of obtaining such a nonlinear parametric port formulation can be found in

Section 5.4.4.

5.4 Sparse Nonlinear Macromodel

If nonlinear time domain model order reduction was applied directly to the original system in
(5.1) as was outlined in the previous section, the resulting nonlinear macromodel in (5.3) would
be dense. This significantly reduces the efficiency of the simulation. In this section, we propose
a new approach which allows for the application of time domain nonlinear macromodeling as
well as for the sparsification of the macromodel without any significant impact on the size of the

reduced order macromodel [52].

5.4.1 Macromodel formulation suitable for sparsification

In the first step of the proposed approach, the system in (5.1) is reformulated such that the non-

linear equations in f(z(t)) are decoupled from the nonlinear equations through the introduction
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of constrained ports. The resulting formulation is in the form of:

Gpxp(t) + Cpap(t) = Ry u(t)+ by(t) + Ry, u,y (5.9a)
i(t) = Lixy(t) (5.9b)
Foluz) = Liz,(t) (5.9¢)

where G, C), are obtained by adding the constrained ports to the original system in (5.1). The
variable x,(t) is obtained by appending the new constrained port currents to z(t). R,, is essen-
tially the same as R in (5.1a) except for adding new rows with all zeros corresponding to the new
constrained ports. R, is a selector matrix mapping the new constrained port voltages into the
node space. Ly, is essentially the same as L in (5.1b) except for adding new rows with all zeros
corresponding to the new constrained ports. Equation (5.9¢) represents the nonlinear equations
of the circuit which are expressed as nonlinear constraints on the newly introduced ports. It is to
be noted that these constraints are utilized in the computation of the reduction matrix in order to
ensure that the size of the reduced macromodel is not affected by the addition of the constrained
ports.

Having the modified formulation in (5.9), the reduced system is then obtained by using con-

gruence transformation, resulting in

Goap(t) + Cpitp(t) = Rypult) +by(t) + Rty (5.10a)
i(t) = Lya(t) (5.10b)
-fp(ﬁ’Z) = i;zz;iip(t) (5.10c)
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where:

G,=QlG,Q,; C,=QIC,Q, (5.11a)
R, =Q'R,; R, =Q'R, (5.11b)
Ly, =QJLy,; L,=Q]L,; by(t)=QIby(t) (5.11¢)

The computation of the congruence transformation Q,, in the time domain is described in Sec-

tion 5.4.4. A simple example of this representation is illustrated in Section 5.4.5.

5.4.2 Sparsification of the reduced macromodel

The reduced macromodel in (5.10) is generally a dense nonlinear macromodel. However, we note
that the formulation in (5.10a) is in the form of general linear multi-port network. It is therefore
possible to apply diagonalization techniques such as the one described in [75] to equation (5.10a).

Equation (5.10a) can be reformulated by premultiplying é; '

a1, - 1 r—1s a—la
() + G Cpiy(t) = G Rput) + G, by(t) + G, Ryt (5.12)
By applying eigen-decomposition to G’; 1@’,,, we obtain
G, '¢,=vDV (5.13)

V and D are in general complex; however a real diagonalization can be derived from (5.13) in
the form

G,'¢,=8,D,8,™ (5.14)
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where D), is a real block diagonal matrix and

S, = VP! (5.15)
D, = PDP! (5.16)

P is defined as:

1. when the corresponding element of the diagonal matrix D, d,;, is real, the element of P

matrix is p; ; = 1,

2. when the corresponding elements of the diagonal matrix D, d;; and d;,; ;41 are complex

1 1
conjugate, the elements of P matrix are: pi;y15i+1 =

J =J

By substituting (5.14) into (5.12), the sparse reduced system becomes

G, (t) + Cpitp(t) = Rpu(t) + by(t) + Rp,its (5.17a)
i(t) = L&) (5.17b)
fo(t2) = f;-’ip(t) (5.17c)

where é,, is an identity matrix,

¢, = PDP™! (5.182)
R, = (VPY)'G 'R, (5.18b)
b, = (VP)'&) ', (5.18¢)
it = (VP)7'G Ry, (5.18d)
L, = (vP YL, (5.18¢)
L, = (vPTL, (5.18f)
Ep(t) = (VP &,(t) (5.18g)
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Note that G, and C, are sparse real reduced matrices.

5.4.3 Sparse reduced order nonlinear macromodel

The final step is to reincorporate the nonlinear constraints in (5.17c) into the overall sparse macro-
model equations in (5.17a). In order to achieve this, the reduced macromodel is treated as a sub-
section, which is represented by (5.17a) and (5.17b). Then the nonlinear elements, which were
removed before are connected back to the constrained ports of the subsection to form the sparse

reduced order nonlinear macromodel.

G¢ Di: :13¢(t) n C¢ 0 Si}¢(t)
_RPDT ép ‘ip(t) 0 ép ip(t)
t
fol@s®) | | Re | | 519
0 0 by(t)
where .
y L
P=| " (5.20)
LPZ
Ry=| R, R, | (5.21)

G4 and C; represent the general port formulation of input and output ports. R, is a selector
matrix. f,(2,(t)) represents the nonlinear elements for constrained ports. D is a selector matrix
with elements d; ; € {0, 1} and a maximum of one non-zero in each row or column that maps the
vectors of port voltages and port currents entering subsection into the node space of the network.
&,(t) is the unknowns of the reduced order macromodel in (5.17a). The above formulation is

illustrated by a simple example in Section 5.4.5. In summary, the final reduced order macromodel
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based on (5.19) is in the form

Gi(t) + Cx(t) + f(&(t) = Ru(t)+ b(t) (5.22a)
i(t) = L &(t) (5.22b)

where G and C are small and sparse matrices.

5.4.4 Reduction subspace
Nonlinear parametric port formulation

The congruence transformation matrix Q,, used in the reduced order macromodel must span the
subspace containing x,(t) over the desired range of loading conditions and input waveforms.
However it is not possible to perform a transient analysis directly on the multi-port formulation
in (5.9a). It is in fact necessary to take into account the conditions imposed by equations (5.9b)
and (5.9¢) and obtain nonlinear parametric port formulation. For clarify of presentation, we will
first consider a simple two-port network with one nonlinear element, shown in Fig 5.1, then the
results will be extended into general multi-port nonlinear networks. Since there is one nonlinear

le3

—_—
N Port3
+ V3 — |(constrained port)
] Port1 Port2
(input port) + (output port)
e v, v, == |l

C.

Fig. 5.1 An example two-port network with one nonlinear element

element, a constrained port (port3) is added to the network. Here, the two ports are divided into
input port (port1) and output port (port2). The voltages across the input port, output port and the

constrained port are v, vo and vs respectively and the currents are 4,1, 52 and i3 respectively. If
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we examine the modified nodal analysis formulation equation of such a system defined in (5.9),
we note that the last three rows of the G, matrix, corresponding to the portl, port2 and port3

equations, in (5.9a) are:

Gp= -1 0 o -~ 0 0 (5.23)
O -1t 0 --- 0 O
0 O -1 --- 0 O
and _ .
0
(%] 0 0
U3
(%1
T, = e Rpl = -1 0 u(t) = (524)
(%)
11 0 -1
160 0 0
is3
0
Rp=| |u=]|u] (5.25)
0
-1

Using this general port representation, the port equations in the last three rows are simply v; = vy,
vp = g, and vz = vsz. In other words, the port voltage can be arbitrarily set by the boundary
conditions. Note that port] is the input port and port2 is designated as output port with capacitive

loads and port3 is constrained by the nonlinear element. In this case, the equation at port1 remains
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unchanged but the equation at port2 becomes:

1gg9 — CcUp = 0 (5.26)
and the equation at port3 becomes:
iss = Iy (7 1) =0 (5.27)

Equation (5.27) represents a nonlinear constraint. In this case, a simple diode model was used,
where I, is the reverse bias saturation current of the diode and v is thermal voltage. Incorporat-
ing (5.26) and (5.27) into modified nodal analysis formulation stamp has the effect of converting
the multi-port network in (5.9a) into parametric “single-port” network while keeping the vector
of unknowns x, unchanged. This is done by modifying the rows corresponding to port2, port3

equations in the modified nodal analysis formulation in (5.9a) as follows:

Gpxy(t) + (Cp + Cr)ap(t) + F(xp(t)) = Rutta (t) + by(t), (5.28)
where 3 )
G,=|-1 0 0 0 0 (5.29)
0 0 0 -1 0
0 0 0 0 -1
Ci=|10 0 0 0 0 (5.30)
0 ¢ 0 0 0
0 0 0 0 0
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o
Ri=| -1 |@@= [vl ] (5.31)
0
L 0 A
] ; )
Flay(t) = 0 (5.32)
0
I (e”ﬂ% - 1)

It is to be noted that there is one parameter in (5.28), ¢, corresponding to the capacitive load.
To extend the above method into M input ports, N output ports network (M + N = p), and E

constrained ports, the nonlinear parametric port formulation with capacitive loads becomes
Gpmy(t) + (Cp + Cn)2p(t) + Fl=p(t) = Rustina (1) + by (t), (5.33)

where G, is obtained by modifying (N + E) rows, corresponding to output port and constrained
port equations, from port voltages into port currents, C y is a matrix with elements containing ca-
pacitive load parameters, ¢, ¢, - - - , ¢y and Ry is a selector matrix that maps input port voltages
into the node space of the circuit.

If a resistor is connected to the port2 in Fig. 5.1, then the port2 equation becomes:
isg — gUug = 0 (534)

Here we use conductance g to represent the value of the resistive load.
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Incorporating (5.34) and (5.27) into (5.9a) results in
(Gp + Gz, (t) + Cpap(t) + F(x,(t) = Rytiy(t) + by(t), (5.35)

The above equation is similar to that in (5.28) except for the matrix G, containing one nonzero
elements, g. To extend the above method into M input ports, N output ports network (M +
N = p), and E constrained ports, the nonlinear parametric port formulation with resistive loads
becomes:

(Gp + GN)x,(t) + Cpp(t) + Fz,(t)) = Rprting () + by(t), (5.36)

where Gy is a matrix with elements containing resistive load parameters, g1, g2, - , gn-
If the loads are the parallel combination of a resistor and a capacitor, then the nonlinear

parametric port formulation with combination of capacitive and resistive loads becomes

(Gp + Gz, (t) + (Cp + Cn)iy(t) + Flzp(t)) = Rytine(t) + by(t) (5.37)
where G y and C'y are matrices with elements containing resistive load parameters, g1, g2, - - ,gn
and capacitive parameters,cy, cs, - - - , cy respectively [40].

Congruence Transformation Matrix

Using (5.37), the subspace is defined by performing transient responses sampling x,(¢) from the
initial time point (fo) up to the terminal time point (¢3). This is done several times on different
load conditions (for capacitive loads, c{, cee ,Cgv’ ; for resistive loads, g{, cee ,g’l'v), and using a
range of input waveforms ui (¢), - - - , ui,(t) as shown in Fig. 5.2. Four different input waveforms
are used to generate the subspace data. They are 5V step input with fall time of 50ps and 500ps

and 5V step input with rise time of 50ps and 500ps as shown in Fig. 5.3. The subspace containing
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Nonlinear Nonlinear
I'T Element 1 —I _____ |— Element E
U0 Multi-Port Network Sy 'L g
K=[xpl(to),,...,,...,xpm(th)]
i=l.r, j=1.k
uy () CNJ'.J_ gy

Fig. 5.2 Network used for generation of subspace data

x,(t) is then defined as

K = [z,(to),. .., zp(tn), ..., 2y (to), . .., xp (tn)] (5.38)
u(t) ] u(t)
5(V) 5 (V)
rise time 50ps Step Input Step Input
rise time 500ps fall time 500ps
fall time 50ps
Time (t) Time (t)

Fig. 5.3 Input waveforms for calculation of congruence transformation

Given the fact that there is typically a lot of similarities between various transient responses,
the subspace K typically contains a lot of redundant dimensions. In order to obtain an optimal
orthonormal basis @, of this subspace, singular value decomposition [45], [85] is used to identify

the dominant directions, which results in

K=USvVT (5.39)
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where S is a diagonal matrix with the singular values and in decreasing order. U and V' are
unitary matrices. The singular values along the diagonal of S measure the relative importance
of the corresponding columns of U. This provides a convenient way to filter out the redundant
directions. Taking only the first & columns of U, those corresponding to the highest singular
values, produces the congruence transformation matrix, €,,. Note that although the congruence
matrix @, is obtained from (5.37) containing the information on the output ports and constrained
ports, the order reduction procedure is applied to the general port formulation in (5.9) so that
the reduced system is a macromodel expressed in (5.22) that can be connected to the predefined
range of loads.

In summary, the proposed sparse nonlinear macromodeling algorithm consists of eight main

steps as follows

1. The original system in (5.1) is reformulated such that the nonlinear elements are decoupled

through the introduction of constrained ports. The new multi-port formulation is in (5.9).

2. In order to construct the subspace, a new nonlinear parametric port formulation in (5.37)
is obtained by embedding the nonlinear constraints in (5.9¢c) and the load information into

the multi-port formulation in (5.9a).

3. Generate the subspace K by performing transient responses on (5.37) over the range of

input waveforms and loads (K = [£(M(tg), -+ , M (ts), - , -+ , ™ (t)]).
4. Decompose the subspace K into three matrices using SVD decomposition , [U, S, V] «SVD(X).

5. Extract the dominant subspace by taking the leading k columns of U, @, «first k columns
of U.

6. Performing the congruence transformation to (5.9) results in a dense reduced macromodel

in (5.10).

7. The dense reduced macromodel in (5.10) is sparsified into a sparse reduced macromodel

in (5.17).
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8. The final reduced macromodel in (5.22) is obtained by reincorporating nonlinear con-

straints in (5.17¢) into the sparse macromodel in (5.17a).

5.4.5 IHustration example

In this subsection, a simple example is given to illustrate the various mutation of the previous
subsection. Consider a two-port network including an nonlinear component, a diode, shown in

Fig. 5.4, the modified nodal analysis formulation of the original network is as in the form of (5.1):

is1 G L C“ isz
Port1 Vi V3 \Z V2 Port2
G, G,

Fig. 5.4 An example circuit for illustration

(¢, 0 -¢ o0 10| w ]
0 0 0 0 01]||w
G, 0 Gi4G, 0 00| | v
0 0 0 Gi00||uw
1 0 0 0 00]|]|isy
0 -1 0 0 00|
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(0 0 0 0 oo0][w]
0 C, 0 —-C, 00 Uy
N 0 0 0 0 00 s
0 -C, 0 C, 00 g
0 0 0 0 00 is1
(0 0 0 0 00|
[ 0 1 [To o]
0 0 0
N I, (eﬂ%}i - 1) _ 0 0 vy (5.40)
1, (e‘“%“ - 1) 0 0 Vs '
0 -1 0
L O . L 0 _1 .

where I, is the reverse bias saturation current of the diode, v is thermal voltage. As the nonlinear

element in the above equation hinder the sparsification of the reduced system, it is decoupled from

the original modified nodal analysis equation by adding a nonlinear constrained port, port3, as

shown in Fig. 5.5. Therefore the resulting formulation is obtained as shown in (5.9a):

Nonlinear Constrained Port

%

1

O

——

Fig. 5.5 Nonlinear constrained port

V2 Port2
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(¢, 0 -¢¢ 0o 10 0 |[w]
0 0 0 0 01 0 Vs
—-G1 0 Gi+Gy, 0 00 1 vs
0 0 0 Gs 00 —1 4
-1 0 0 0 00 O Bs1
0 -1 0 0 00 0 isa

0 0 -1 1 00 0 ||ds|

(0 0 0 0 000/ ]
0 C, 0 —-C, 000 s
0 0 0 0 000 Dg
+10 -C; 0 ¢, 000 N
0 0 0 0 000 bs1
0 0 0 0 000 is2
[0 0 0 0 00 0] |ids
[0 0 | [ 0 |
0 0 0
0 0 0
=lo oll™|+] o0 [v34] (5.41)
Uy
-1 0 0
0 -1 0
| 0 0 =1
where
Ugq = Uz — Uy (5.42)

The variable vector in (5.41) differs from the vector in (5.40) by adding a new variable, the

introduced nonlinear constrained port current, ¢,3. Furthermore, the new current is bounded by
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the following nonlinear equation

U1
V2
Us
Is(e%—1)=[0000 1] g (543)
is1

152

153

The above equation is the nonlinear constraint on the newly introduced constrained port as in
(5.9¢). The port3 is different from the general port in the way that the load connected to the
port3 is completely known. In the illustration circuit, it is a diode. This load information can
be exploited in order to obtain a congruence transformation which is not affected by the new
added ports. Note that the last two rows in (5.41), corresponding to the port2, port3 equations,

are simply

—VUgy = —UV9 (5448.)
—v3 + Vg = —Uyy (5.44b)

In other words, the port2, port3 can be arbitrarily set by the boundary condition. Consider that
the port3 is connected to the diode, the port2 is designated as the output port with capacitive load,
embedding (5.43) and (5.26) into (5.41) without changing the unknown variables would result in
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the nonlinear parametric port formulation in (5.33)

[ ¢, 0 =&z o010 0 [w]
0 0 0 00 1 0|/ v
—G1 0 Gi4G, 0 0 0 1 || v
0 0 0 G0 0 —1]] v
10 0 00 0 0 |]|in
0 0 0 0 0 1 0 ||in
000 0 00 0 -1
(000 0 0 0oo0o0] [oo0o0o0o0o0o0|\[a)]
0 C. 0 —Ci 00 0 0000000 0
0 0 0 0 000 0000000 s
+{lo-c.0o ¢ ooo|+|0000000 4
0 0 0 0 000 0000000 i
0 0 0 0 000 0 c0O0O0OO Bs
\[0 0 0 0 000 |0000000])|is]
o0 ] [o]
0 0
0 0
+ 0 SERIEN (5.45)
0 1
0 0

The transient responses for (5.45) are sampled from the initial time point to the terminal time
point to form the subspace containing the system responses over the desired input waveforms

and output loads. Then the congruence transformation matrix is found by taking the dominant
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direction of this subspace by using singular value decomposition. Having the transformation
matrix, the congruence transformation is applied to (5.41) to find the reduced system. It is to be
noted that the reduced system is a three-port network with an input port, an output port connected
to a capacitive load and a constrained port connected to the nonlinear element, diode. After doing
the sparsification as explained in Section 5.4.2, the reduced sparsified macromodel is in the form
of (5.17). The final step is to connect the diode back to the nonlinear constrained port, which

results in the macromodel expressed in (5.19) as shown in Fig. 5.6, where:

1 0 000 0 - -
vi(t)
0 =1 000 0
vy(t)
0 0 000 0
1)34(t)
Go=| 0 0 000 0 [|; =z(t)= " (5.46)
1s
0O 0 000 O '
isa(t)
0 0 000 O
isa(t)
0 0 000 —1 : :
[ 1 0 | [ 0 ]
0 -1 0
0 0 0 vy (t
R, - L Fol@alt) = S B B
0 0 0 va(t)
0 0 0
1)_34
| 0 0] -I“"<e”T_1)-

5.5 Nonlinear Parametric Macromodel

The nonlinear macromodel presented in the previous section is valid for a specific nonlinear
circuit. This macromodel has to be regenerated each time as the internal parameters change.

These parameters could be the length and width of transmission lines or the values of resistances
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Fig. 5.6 Reduced nonlinear sparse macromodel

and capacitances of circuits such as the parametric circuit shown in Fig. 5.10. Given the fact
that the system equations for interconnect networks are very large due to the discretization, it is
computational time consuming for performing simulation. In order to improve the efficiency, a
nonlinear parametric macromodel technique is presented in this section.

Consider the parametric nonlinear networks in (5.2) with M input ports, /V output ports, £
nonlinear elements and D parametric elements, because of the parametric terms (3 _;_, h;(\:) D),
<Z§=1 gj(gbj)Ej) and the nonlinear terms f(x(t)), the standard sparsification process cannot
be operated. They are decoupled from the original equation by adding constrained ports for the
parametric terms and nonlinear terms. The resulting formula suitable for the sparsification is as

follows:

Guw(t) + Cottw(t) = Ruu(t)+ bu(t) + Rugus + Ru,us (5.482)
i(t) = LI z,(t) (5.48b)

fulua) = Lyzu(t) (5.48¢)

gu(us) = Ly,@u(t) (5.48d)

Equation (5.48c) and (5.48d) represent the nonlinear elements and parametric elements respec-
tively expressed as the nonlinear or parametric conditions on the newly introduced constrained
ports. Therefore, in the parametric nonlinear system, we have two kinds of constrained ports,
parametric and nonlinear ports. The nonlinear constrained ports are connected to nonlinear el-

ements, while parametric constrained ports are connected to parametric elements. Having the
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formulation, the real congruence transformation is applied to the system in (5.48) to obtain:

Guy(t) + Culey(t) = Ry, u(t) + by(t) + Ry, iy + Ry, tis (5.49a)
i) = Ly &) (5.49b)

A N "T N
Fultiz) = Ly, &.(t) (5.49¢)

~ N AT
Gy (tis) = Lo (1) (5.49d)

where:

Gw=QlGuQ,; Cu=QLC.Q, (5.50a)
R, =QTR,,; R,,=QTR,, (5.50b)
Ly, = QTLy,;  by(t) = QTby(t) (5.50¢)
Luw,=QTL,,; L.,,=QTL,, (5.50d)

To sparsify the reduced order model in (5.49a), the diagonalizing process explained in the

Section 5.4.2 is performed, which results in

Gy (t) + Coiy(t) = Ry u(t) + by(t) + Ruy,its + Ry, iis (5.51a)
) = Ly&u(t) (5.51b)

Fullia) = Ly u(t) (5.51¢)

Gulils) = Ly #u(t) (5.51d)

Finally the nonlinear constraints in (5.51c) and parametric constraints in (5.51d) are reincor-

porated into the overall macromodel equation by taking (5.51a) and (5.51b) as a subsection. The
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following sparse reduced order macromodel is obtained

(é +2. h,.Q,.)a) &(t) + F(@) + (é + Z gj<¢j>Ej> B(t) = Ru(t) + b(t)(5.520)

i = L &(t)(5.52b)

where é, C " 1~)i and Ej are small and sparse matrices.

The congruence transformation Q,, used in model order reduction must contain the informa-
tion about the parametric elements, the nonlinear elements and the loads. In order to do that, the
load information, the nonlinear elements information as well as the parametric information are

incorporated into the formulation in (5.48a) and result in

(éw + Gy + Zr: hﬁ()\z)Dz) :Bw(t) + (C_’w -+ igj(q&j)Ej) Zi)w(t)

+F(zw(t)) = Ryun(t) + bu(t) (5.53)

(é’w + Z hi(Ai)Di) T (t) + (éw +Cpn+ i gj(¢j)Ej> By (t)

i=1 j=1

+F(w(t)) = Ruunm(t) + bu(t) (5.54)

<C¥w +Gn+ Z hi(/\i)Dz) T (t) + (éw +Cn+ i gj(¢j)Ej) Eo (t)

i=1 J=1

+f(@,(t) = Ryun(t) + by(t)  (5.55)

Equation (5.53), (5.54), and (5.55) are nonlinear parametric formulation with resistive loads, ca-
pacitive loads and combination of resistive and capacitive loads respectively. Where Gy contains
resistive load parameters, g1, g2, * -+ , gn. C n contains capacitive load parameters, c;, ¢z, -+ ,Cn.

G, is obtained by modifying (N + E + D) rows corresponding to output ports, nonlinear con-
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strained ports and parametric constrained ports equations, from port voltages into port currents.
D; and E; contains parametric information. Ry, is a selector matrix that maps input port volt-
ages into the node space of the circuit.

In order to obtain the required subspace data, transient analyses over the predefined input
waveforms, load conditions and parametric conditions using formulation in (5.53), (5.54) or
(5.55) are performed. The congruence transformation matrix Q,, is found by extracting the dom-

inant subspace using singular value decomposition.

5.6 Numerical Results

In this section, we present two examples. The first example considers an interconnect system
containing nonlinear elements. The second example considers a nonlinear parametric intercon-
nect system. The transient responses using the proposed method are compared to those obtained
from original system. As was expected, the results match very well. Also CPU comparisons for
two examples demonstrate the efficiency of the proposed method. The proposed algorithms for

all examples were implemented in MATLAB.

5.6.1 Example 1

The first example is a nonlinear network containing 9 coupled transmission lines, nine single
transmission lines and two inverters. The length for the coupled transmission lines is 0.1m and
the length for the single transmission lines is 0.05m. The per unit length parameters of the
9 coupled transmission lines are given in [88]. The per unit length parameters of the single
transmission lines are R = 3.74Q/m, L = 284nH/m,C = 84.6pF'/m. Inverter] is connected
between two transmission lines, while inverter2 is connected at the output of one transmission
line. The output of inverter2 is considered as the output of the network as shown in Fig. 5.7.
After discretization of network, the resulting size of the modified nodal analysis matrices was

3533. Four different input waveforms are used for computing the subspace data. They are 5V
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step inputs with rise time of 50ps and 500ps and 5V step inputs with fall time of 50ps and 500ps
as shown in Fig. 5.3. The load condition was set to be a capacitor with value ranging from 0.1pF

to 10pF. Using the proposed approach, the size of the reduced macromodel was 320 as shown in

Table 5.2.

Originat Nonlinear Network
size: 3533

+5V

S-coupled transmission line

Line#1 | R

500} Line#2 i 500 j 500

s00i Line#3 {500 bagile, oo
500} Line#4 |502* | 50Q P Nonlinear
i\ 500 %W_Mj i i reduced order
== LA in i 50Q |Hﬁiﬂ 500Q 2 e | macromodel | .g2
Vi L . H .
500§ Line#6 i 500 a0 size: 320
Ison Line#7 i 500 |Hﬁiﬁ 500
L300} Line#s | s00 heilr, o0
$s00! Linetto {500 ke, o

Fig. 5.7 Interconnect network with two inverters as example 1

Table 5.1 Three Cases for Example 1

[ | C ] Input Waveform |
Case 1 || 3.2pF step input with 488ps fall time

Case 2 || 0.71pF step input with 79ps rise time
Case 3 || 0.49pF | sinusoidal input at frequency 2GHz

In order to test the proposed method, a capacitor was connected at the output of the reduced
macromodel. Different cases of load capacitor values and input waveforms were considered. The
transient responses for three of these cases are shown in Fig. 5.8 and Fig. 5.9. The values of the
loads and input waveform for each case are given in Table 5.1. As can be seen the results match
very well with the transient responses of the original system. The CPU cost of the reduced system
for three cases in Table 5.1 range from 38s to 78s, while the CPU cost for the original system
range from 770s to 938s. The average speed-up of 15.8 was therefore achieved. A summary of

CPU cost comparisons for example 1 to obtain the transient responses is shown in Table 5.2.
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Fig. 5.8 Transient response comparison between the original system and the pro-
posed macromodel for example 1 (cases 1 and 2)
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Fig. 5.9 Transient response comparison between the original system and the pro-
posed macromodel for example 1 (case 3)
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Table 5.2 Size and CPU Cost Comparisons

| | Example 1 |
Size of Original System 3533
Size of Proposed Macromodel 320

CPU Cost for Original System || 770s ~ 938s
CPU Cost for Reduced System || 38s ~ 78s
Average CPU Cost Speed-up 15.8

9-coupled transmission line +5V

Line#t | R

250} Line#2 | 250
R and C are internal 1—3\5/\‘/)\- ULSE) hSQ

circuit parameters 25Q3 Line#4 } 25Q Nonlinea_r
parametric

bplzse »2 250 [dhs0l inets |50 Lin#t0)) b &1 [“reduced |2
U [ e T VIR W ——“y Y, v |macromode
P T Wl 2501 Line#8 {250 !
33501 Line#7 1250 origina size: 282
[l
2501 Line#8 250 macromodet
size: 2612

2501 Line#g {250

Fig. 5.10 Interconnect network with two internal circuit parameters as example 2

Table 5.3 Size Comparisons for Example 2

Size of Original System 2512
Size of Proposed Macromodel || 282

Table 5.4 Three sample cases from 100 test cases for example 2

Parameter#1 R | Parameter#2 C' | Load C, Input Waveform
Case 1 7602 6.2pF 0.24pF | step input with 150ps rise time
Case 2 1192 2.1pF 3.7pF 4GHz sine waveform
Case 3 550 0.12pF 0.86pF | step input with 590ps fall time
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Fig. 5.11 Transient response comparison between the original system and the pro-
posed macromodel for example 2 (cases 1)
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Fig. 5.12 Transient response comparison between the original system and the pro-
posed macromodel for example 2 (case 2)
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Fig. 5.13 Transient response comparison between the original system and the pro-
posed macromodel for example 2 (case 3)

Table 5.5 CPU Comparisons for Example 2 Based on 100 Test Cases

| | Reduced System | Original System | Average speed-up |
Reduction overhead 2191.7s

Simulation for 100 test cases 1883.8s 46349.9s 24.6
Overall for 100 test cases 4075.5s 46349.9s 114
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5.6.2 Example 2

The second example is an interconnect network with one single transmission line, nine coupled
transmission lines system and one inverter. The length for the coupled transmission lines is
0.1m and the length for the single transmission line is 0.05m. The per unit length parameters
of the 9 coupled transmission lines are given in [88]. The per unit length parameters of the
single transmission line are R = 3.74Q/m,L = 28.4nH/m,C = 64.6pF/m. This system is
a parametric 2-port network with 1 resistor R and 1 capacitor C as internal circuit parameters
as shown in Fig. 5.10. For this network, the original modified nodal analysis matrix size is
2512. When generating the subspace data, the desired range for the parametric resistor was set to
1 ~ 100€2, and the desired range for the parametric capacitor was set to 0.1 ~ 10pF'. The load at
the output port was set to be capacitive with Cf, ranging from 0.1 ~ 10pF'. The input waveforms
used for generating the subspace data were 5V rising edge and falling edge steps with 50ps and
500ps rise/fall time as shown in Fig. 5.3.

Using the parametric nonlinear macromodel described in this chapter, the size of the reduced
model is 282 as shown in Table 5.3. In order to test the accuracy and efficiency of the macro-
model, one hundred randomly chosen sample cases are tested. The parameter values as well
as the load values were chosen randomly within the acceptable range defined above. The input
waveforms for testing include the step input with rise time randomly chosen between 50ps and
500ps; step input with fall time randomly chosen between 50ps and 500ps; pulse waveforms with
different rise and fall times and different pulse widths; piece wise linear waveforms; sinusoidal
waveform at frequencies ranging from 1GHz to 4GHz. The transient responses for three cases
from one hundred test cases are shown in Fig. 5.11, Fig. 5.12 and Fig. 5.13. The values of the
loads and input waveforms for the three test cases are given in Table 5.4.

In order to calculate the CPU speed-up for the reduced order macromodel over the original
system, we include the CPU time to obtain the macromodel, which is referred to the reduction
overhead time. The overhead time consists of the time for generating the subspace data (1776.6s)

and the time for doing singular value decomposition (415.1s). The time to do the simulation
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Fig. 5.14 Average CPU speed-up versus number of test cases

for 100 test cases using the reduced macromodel is 1883.8s, the overall time of the 100 test
cases for the proposed approach is 4075.5s when the reduction overhead is included. On the
other hand, the simulation time of the original system for 100 test cases is 46349.9s. Therefore
a CPU speed-up of 11.4 is achieved as shown in Table 5.5. It is to be noted that the time for
generating the macromodel is a one-time cost. It is therefore leveraged over many simulation
runs of the reduced macromodel. As can be seen from Fig. 5.14, the overall speed-up approaches

the simulation speed-up of 24.6 when the number of test cases is large.
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Chapter 6
Summary and Future work

6.1 Summary

This thesis presents a number of methods to enhance the efficiency and accuracy for modeling
and simulation of interconnect networks. First, a new method for the computation of the congru-
ence transformation matrix to handle systems with a large number of ports has been proposed.
The new approach is based on taking advantage of prior information regarding to the port con-
ditions. Specifically, resistive, capacitive, transmission line loads as well as nonlinear loads such
as diodes and inverters are considered. For that purpose, a new parametric port formulation has
been developed which allows us to embed the load parameters without any modification to the
vector of unknowns in the modified nodal analysis (MNA) formulation. Parametric model order
reduction technique is then used to obtain the reduction subspace. It has been shown that the
block moments with respect to frequency as well as the block moments with respect to the load
parameters are conserved. As can be seen in the examples, the size of the proposed reduced
macromodels is much less sensitive to the number of ports than those obtained from traditional
methods. This demonstrates that the proposed method significantly extends the range of appli-
cability of model order reduction to systems with a large number of ports when the information

about the types of loads is available.
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Secondly, new multi-level reduction methods based on singular value decomposition (SVD)
for regular as well as parametric systems have been developed. The new SVD based reduction
can reduce by more than one-third the size of the macromodels compared to those obtained from
the traditional techniques. In addition, a new parametric formulation has been developed to allow
the sparsification of parametric networks. This new formulation replaces the stamps of the para-
metric elements with constrained port formulation. The reduction procedure and sparsification
are then performed on the macromodel in the space of the new formulation. CPU speed-ups from
1 to 2 orders of magnitude have been achieved due to the sparsification. Furthermore, a new
sparse multi-level parametric model order reduction method based on the multi-level reduction
and sparsification has been developed. The proposed macromodel can achieve up to 350 times
faster than the original system and therefore significantly improve the simulation efficiency.

Finally, a time domain nonlinear macromodeling technique, which is able to deal with arbi-
trary nonlinearity, has been developed as well as a nonlinear formulation suitable for sparsifica-
tion has been proposed. This results in an efficient reduced order nonlinear macromodel which
is sparse, and is valid over a predefined range of input waveforms and load conditions. Further-
more, a sparse parametric nonlinear model order reduction approach has been developed. Using
this method, the macromodel only needs to be created once, and can be reused many times over
different input waveforms, different load conditions, as well as different internal circuit param-
eters. As demonstrated in the examples, the proposed nonlinear macromodel can achieve up to
40 speed-up over the original nonlinear system to obtain the transient responses. This has many
applications for interconnect networks containing nonlinear elements and internal circuit param-
eters, and also has the potential to provide an automatic and systematic approach to develop

dynamic macromodels for nonlinear drivers.

6.2 Future work

1. Passive macromodeling for interconnect networks characterized by tabulated/measured

data: The model order reduction methods proposed in this thesis are aimed for intercon-
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nect networks which can be characterized by mathematically partial differential equations.
However, in some cases, such analytical equations are not available and one must rely
on experimental measurements or results of full wave simulation in order to characterize
the interconnect networks. A number of methods have been proposed in the literature
to address the macromodeling problem for interconnect networks characterized by tab-
ulated/measured data. However obtaining an efficient macromodel for interconnect net-
works based on tabulated data while preserving important properties such as passivity is

still an open problem facing the VLSI design and simulation community.

2. Efficient nonlinear macromodels for analog/RF circuits: In this thesis, projection based
model order reduction was proposed for nonlinear macromodeling in the time domain.
This method is general for any nonlinear network but is more suitable for large intercon-
nect networks with a few nonlinear elements, and the sparsity of the resulting macromodel
would deteriorate as the number of nonlinear elements becomes large. It is therefore worth-
while to explore methods for obtaining efficient nonlinear macromodels which are targeted
towards specific classes of analog/RF circuits (e.g. amplifiers, and mixers) and using this
information and insight into the circuit operation to develop systematic approaches for ac-

curate nonlinear macromodels for such circuits.

3. Nonlinear macromodeling for Microelectromechanical System (MEMS): Integrating elec-
tronics with miniature MEMS devices at the microscopic level has caused the complexity
of design to increase dramatically. The rise in complexity has made the CAD tools a more
essential part of the design cycle of MEMS. A promising solution to the rising complexity
problem is the use of accurate and efficient reduced model. Current macromodeling tech-
niques for MEMS have generally focused on linearized models, however, in many cases,
a nonlinear macromodel is needed. The nonlinear macromodeling technique proposed in

this thesis can be extended to model nonlinear MEMS.



153

Appendix A

Proof of Conservation of Moments

In this appendix, the proof of conservation of moments is presented. This proof that the reduced
system conserves qq, moments (M, € R™ %) with respect to conductance g is based on
mathematical induction. First we prove that the zeroth moment obtained from the reduced system
is conserved with respect to the conductance. Next, we demonstrate that the kth moment is
conserved if the previous (k — 1)th moment is conserved.

The zeroth block moment M?° at the expansion point s = 0,g; = g%, , gy = g%, 1 =

0,---,cy = 0is given by:
GsM° + D!RyLY,M° + RyRYM® = Ry, (A.1)

where D; € R™" is a diagonal matrix. The first » — /N diagonal elements are zero, while the
last N diagonal elements are g7, j = 1,--- , N.
The kth block moment (k # 0) with respect to frequency, M '; at the expansion points

s=0,91 =9%,--- ,98v = g%,c1 =0,--- ,cy = 0 can be evaluated from (3.23) and is given by:
G,MF + cMEY + DRNLE MY + RyRE MY =0 (A2)

note that M? = M?° was calculated in (A.1).
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The kth block moment (k # 0) with respect to g,, M*

g0 at the expansion points s =

0,91 =9g%- ,9n =9%,c1 = 0,--- ,cy = 0 can also be calculated from (3.23) and is given
by:
GyME + ey nll  MED + DERVLEME + RyRYME =0 (A3)

note that M, = M?® was calculated in (A.1).
As shown in (A.1), at an expansion point, s = 0, ¢1 = g¢,- -+ ,gn = g%. The zeroth block

moment M gh with respect to gy, is the solution of
GyMy, + DiRyLy Mg + RyRyM{, = Ry (A4)

It is to be noted that the first (n — N) rows of D Ry Ly, M, and Ry R} My, are zero, while
the last N rows of Gy M gh and R, are zero. The above equation can be separated into two

parts: the first (n — N) equations and the last IV equations.

GyM; = Ry (A.5)
Y LyM,, +RyM), =0 (A.6)
where DY, € RV*Y is a diagonal matrix with diagonal elements g2, j = 1,--- , N. Note that

LM gh is nothing more than the zeroth block moment of the constrained port voltages, denoted

by M gh(VN) € RV*M while Ry M (g)h is nothing more than the zeroth block moment of the

0

on(ry) € RYM, therefore (A.6) is rewritten as follows:

constrained port currents, denoted by M

0 0 _
D‘ILVMgh(VN) + Mgh(IN) =0 (A7)

To facilitate the presentation, the original system (3.1) is expressed in a similar form as the
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parametric port model in (3.21). The original system can thus be recast as:

Gy +sCx + RyLix = Ryup + RyVy (A.8)
Iy=Rixz=-DyNVy (A.9)

Where
G4+ RyLL =G (A.10)

Iy € RM*! is a vector containing constrained port currents, Vy € R¥*! is a vector con-

taining constrained port voltages. Dy € RY*N diagonal matrix with diagonal elements g;,

j =1,---, N. On the other hand, the reduced system can be expressed in form of :
Gyi + sC + RyLye = Ry Vi + RyVn (A.11)
in=Ry&=-DyVy (A.12)

where Iy and Vy € RV*! are vectors containing respectively the constrained port currents and
constrained port voltages in the reduced system. It follows from (A.11) and (A.12) that at an
expansion point, s = 0, g1 = g{,- - ,gn = g%, the zeroth block moment for the reduced system
is determined by:

GyM, + RyLyM, = Ry + RyM,, ) (A.13)

~ 0 ~T ~ 0 ~ Q0
M, 1y = RyM, = -DyM,, v, (A.14)

~ 0, ~ 0 ~ 0
where M, is the zeroth block moment for the reduced system. M, v,y € RV*™and M, . €
RNVNXM are respectively the zeroth block moment of constrained port voltages and constrained

port currents for the reduced system. Substituting (3.26) into (A.13), we get:

~ 0 ~ 0 ~ 0
Q"G,QM, + Q"RNLLQM,, = Q"Ry + Q"RyM,, v, (A.15)
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Next we substitute K = QR in the above equation and use (A.10), which results in:
T 1740 T 0 T
K'GKR lMgh - K RNMgh(VN) =K' Ry (A.16)
Substitute Rj; from (A.5) into (A.16)
T —1 270 T -0 T 0
K 'GKR lMgh - K RNMgh(VN) =K G¢Mgh (A.17)

Referring to (3.13), we have
T
Mgh(VN) = LNMgh (A.18)

which results in

K"RyM;, . = K" RyLyMj, (A.19)
Adding (A.17) and (A.19) and using (A.10)

T —1x40 T 0 o7’
K"GKR™'M, + K"Ry(M), ., — M, )

= K'GM’, (A.20)
Also substitute (3.26) in (A.14)
RELQM, = —D%M, w (A21)
Subtracting (A.21) from (A.7), we obtain
REQNL, + DMy, ) — D3 M, vy — M3, ) = 0 (A.22)

Now we substitute K = QR into (A.22) and combine the resulting equation with (A.20) in
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matrix form to obtain

wor km ][ wewt, | [wem]
T a 0 " r0 - 0 '
RyK —DYy Mgh(VN) - Mgh(VN) Mgh(IN)

The above equation can be recast as follows:

KT 0 G Ry ||K o0 R-1M,, KTGM°,
a -0 -
0 Ipw R% —Dy 0 Igw) Mgh(VN) o Myh(VN) Mgh(IN)
(A.24)

where I'g(vy € RY*Y identity matrix. Since (A.24) is nonsingular and therefore has a unique

solution, which is the first M columns of the identity matrix epg, .

1 0 0
0 1 0
R'\My, =ery=| 0 0 - 1 (A.25)
0 0 0
0 0 0 |
It follows that:
QM, = KR™'M, = Keny = MS (A.26)

Also, the following equality can be obtained from (A.24):

~ 0

Mgh(VN) = Mgh(VN) (A.27)

Therefore the zeroth moment is conserved. Next, we demonstrate that if the (k — 1)th moment
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is conserved, then the kth moment is also conserved. In other words, if

(k-1)

k—1
QM, = = MG (A.28)
k—1 k=1
M, vy = Mg, vy) (A.29)
then
Qi = M 30
9h .
.k
M, vy = Mg, (A.31)

The kth block moment is given by (A.3) and has the form of:
GyM; + it MYV + DIRyLIME + RyRG M, =0 (A32)
The above matrix is separated into two parts, the first n — N equations and the last /V equations.
GyM;, =0 (A.33)

MED 4 DEME o+ ME

9h(Vy)

=0 (A34)

gn(In) =

where M gf, (Vl)) € RN*M js a matrix with each column containing only one nonzero, the (k—1)th
block moment of the hth constrained port voltage. M* an(vy) @nd M* o (Iy) € RM*M are the kth
block moment of the constrained port voltages and constrained port currents for the original
network. On the other hand, the £th block moment with respect to g, for the reduced system can

be calculated from (A.11) and (A.12). Substituting (3.26) into the resulting equations results in

QTG¢QM QTRNL QM _Q RNMgh(VN) (A.35)
Ve ToN" a wrk - (k1)
M, ) = RyQM,, = -DyM, v, — M, (A.36)
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€ RM*M 5 a matrix with each column containing only one nonzero, the (k —

1)th block moment of the Ath constrained port voltage for the reduced system. M lgch(VN) and

~ Kk
M ) € RN*M are the kth block moment of the constrained port voltages and currents for the

reduced system. Inserting K = QR into (A.35) and using (A.10) result in
T 154k T Ve
K GKR lMgh — K" RyM g, vy, = (A.37)

Substitute (A.33) in (A.37)

k

K"GKR™M, — K"RyM,, ., = KTG,M" (A.38)
Referring to (3.13), we have:
K"RyM: . = K"TRyLyM?% (A39)
Adding (A.38) and (A.39) and using (A.10), we obtain
K"GKR™M,, + K"Ry(M;, v,y — M, ) = KTGM*, (A.40)

Note that the (k — 1)th block moment is conserved in (A.29), which results in

MED = pr®y (A.41)

9h(vy) Ih(Vy,)

Also subtracting (A.36) from (A.34) and using (A.41)
~ k

-k a k
REQM% - DN(M’;h(VN) - Myh(VN)) = Myh(IN) (A.42)

Now we substitute K = QR in (A.42) and combine the resulting equation with (A.40) in matrix
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form to obtain

K'GK K'Ry R, KTGM!, A3
T k or® - k '
RyK  -Dj Mgh(VN) - Mgh(VN) Mgh(IN)
Again, since (A.43) is nonsingular and therefore has only one unique solution, which is the Rth
M columns of the identity matrix eps,, where R corresponds to the location of M ’g“h in K. It

follows that:
~ k 1~k &
QM, = KR™M, = Kep, = M¥, (A44)

Also, the following equality can be obtained:

k ~ k
My, vy = Mg, vy (A45)

Therefore the kth moment of the system with respect to g is conserved if the previous mo-
ments are conserved. Thus, by mathematical induction, we can conclude that the first g,, mo-
ments are conserved.

Similarly, we proceed with the proof that the reduced system conserves g, moments with
respect to frequency. Note that the zeroth moment with respect to conductance M gh = MP°is
the same as the zeroth moment with respect to frequency M° = M? as defined in (A.1), the
proof for the conservation of the zeroth moment with respect to frequency is equivalent to that of
the zeroth moment with respect to conductance as given before.

Next we show that if the (k — 1)th moment is conserved, then the kth moment is also con-
served. In other words, if

MY = QY (A.46)

(k=1) _ o k=1)

then
M* = QN1t (A.48)
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. . k
Mgy = My, (A.49)

The kth block moment (k # 0) with respect to frequency, M ’;, at the expansion points
s=0,01=9% - ,98n =9%,c1 =0, -+ ,cy = Ois given by (A.2) and has the form of:

G,M* + CM* + D:RyLE MY + RyRE M =0 (A.50)

The above matrix is separated into two parts, the first n — N equations and the last /V equations.

GyM* +CcM*D =0 (A.51)

S MEyy + ME, =0 (A.52)

where M%) and M¥, , € RN are the kth block moment of the constrained port voltages
and constrained port currents for the original network. On the other hand, the kth block moment
with respect to frequency for the reduced system can be calculated from (A.11) and (A.12).

Substituting the congruence transformation in (3.26) into the resulting equations results in

\ k ~ (k=1) K ~ k
QTG,QM,+Q"CQM,; "+ Q"RyLLQM, = Q"RyMy,, (A.53)

~ K ~ k o vk
Mg,y = R\QM, = —DyM . (A.54)

where M f(VN) and M ]:( ) € RN*M are the kth block moment of the constrained port voltages

and currents for the reduced system. Inserting K = QR into (A.53) and using (A.10) result in

K"GKR™M, + K"CKRM. " - KTRyM,y,, = 0 (A55)
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Substitute (A.51) in (A.55)

K'GKR-M: + KTCKR-N. " - KTRyM., ) = K'G,M* + KTCM®*-)
(A.56)
note that the (k — 1)th block moment is conserved in (A.46), it follows that
K'GKR™M, — KT RyMyy,, = K*G,M" (A.57)
Referring to (3.13), we have:
K"RyMY%y, )= KTRyLy M} (A.58)
Adding (A.57) and (A.58) and using (A.10), we obtain
~ k ~ k
K'GKRM,+ K"Ry(M¥y, ,— My, = KTGM: (A.59)
Also subtracting (A.54) from (A.52)
~ k o ~ Kk
RLQM, — D3 (MZy,y — M y.y) = MY, (A.60)

Now we substitute K = QR in (A.60) and combine the resulting equation with (A.59) in matrix
form to obtain
KTGK KRy RM" KTGM* Asl)
T a k Yo B k '
RyK —Dy MS(VN) — My MS(IN)
Again, since (A.61) is nonsingular and therefore has only one unique solution, which is the rth
M columns of the identity matrix e,z,, where r corresponds to the location of M* in K. It
follows that:
QM"' = KRM" = Kep,, = M* (A62)
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Also, the following equality can be obtained:

b ~ k
My = M) (A.63)
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