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Abstract 

As operating frequency increases and device sizes shrink, the complexity of current state-of­

the-art designs has increased dramatically. One of the main contributors to tbis complexity is 

high speed interconnects. At high frequencies, interconnects become dominant contributors to 

signal degradation, and their effects such as delays, reftections, and crosstalk must be accurately 

simulated. Time domain analysis of such structures is however very difficult because, at high 

frequencies, they must be modeled as distributed transmission Hnes which, after discretization, 

result in very large networks. In order to improve the simulation efficiency of such structures, 

model order reduction has been proposed in the literature. Conventional model order reduction 

methods based on Krylov subspace have a number of limitations in many practical simulation 

problems. This restricts their usefulness in general commercial simulators. 

In this thesis, a number of new reduction techniques were developed in order to address the 

key shortcomings of current mode1 order reduction methods. Specifically a new approach for 

handling macromodels with a very large number of ports was developed, a multi-Ievel reduction 

and sprasification method was proposed for regular as weIl as parametric macromodels, and 

finally a new time domain reduction method was presented for the macromodeling of nonlinear 

parametric systems. Using these approaches, CPU speedups of 1 to 2 orders of magnitude were 

obtained. 
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Résumé 

À mesure que la fréquence d'opération augmente et la taille des dispositifs se rétrécit, la com­

plexité de conceptions avancées à la pointe de la technologie a augmenté considérablement. 

Une des causes principales de cette complexité sont les interconnexions haute-vitesse. À hautes 

fréquences, ces interconnexions deviennent les causes dominantes de la dégradation de signal et 

leurs effets tels que les retards, les réflexions et la diaphonie doivent être simulés précisément. 

L'analyse du domaine temporel de telles structures est cependant trés difficile, car à hautes 

fréquences, elles doivent être modelées comme lignes de transmission distribuées, ce qui entraîne 

de trés grands réseaux aprés discrétisation. Afin d'améliorer l'efficacité de simulation de telles 

structures, quelques travaux proposent la réduction d'ordre de modèle. Les méthodes conven­

tionnelles de réduction d'ordre de modéle basées sur le sous-espace de Krylov causent plusieurs 

limitations dans beaucoup des problèmes de simulation pratiques. Ceci limite ainsi leur utilité 

dans les simulateurs commerciaux généraux. 

Dans cette thèse, un certain nombre de nouvelles techniques de réduction ont été développées 

afin d'adresser les imperfections principales des méthodes courantes de réduction d'ordre de 

modèle. Spécifiquement une nouvelle approche pour manipuler des macromodèles avec un très 

grand nombre de portes a été développée. De plus, une méthode de réduction et de sparcification à 

multiniveaux a été proposée pour macromodèles général aux ainsi que paramétriques. Finalement 

une nouvelle méthode de réduction dans le domaine temporel a été présentée pour le macromod­

eling des systèmes paramétriques non-linéaires. En utilisant ces techniques, des améliorations de 

vitesse de CPU à l'ordre de 1 à 2 ordres de grandeur ont été obtenues. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

In recent years, the complexity of the state-of-the-art microsystems has increased dramatically. 

Deviee miniaturization and technology scaling have led to larger designs containing orders of 

magnitude more components, and have resulted in more complicated models for both active and 

passive elements. This rise in complexity has made electronic design automation (EDA) tools a 

more essential part of the design cycle, while at the same time pushing the capabilities of existing 

tools and computing resources to their limits. In fact, the performance of high end designs is in­

creasingly limited by the capabilities of EDA tools rather than by what can be optimally achieved 

using the available technology. One example of increased complexity in the digital Very Large 

Scale Integrated (VLSI) circuits and mixed signal areas is the signal integrity issues stemming 

from the high speed interconnects and packages [1]-[6]. 

Due to the increasing operating frequencies coupled with smaller feature sizes, lower power 

consumption, and the use of mixed analog/digital circuits, interconnect effects such as delay, 

crosstalk, attenuation, dispersion, reftection, ringing have become prominent and are causing a 

significant degradation in signal quality. These high speed interconnect effects, if not detected at 

early design stages, would severely degrade the system performance. It is therefore imperative 
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for circuit designers to simulate interconnects as accurately and efficiently as possible and correct 

the signal integrity problems as early as possible in the design cycle. Interconnects are therefore 

a critical component of the design process and can be a bottleneck for system performance. 

Efficient simulation of interconnects is critical from a design perspective. However high-speed 

interconnects also present significant difficulties for simulation and optimization, and have also 

become a bottleneck from a simulation and design automation perspective as weIl. 

The main difficulty in the simulation of interconnect networks stems from the fact that, at high 

frequencies, they must be considered as transmission lines, and modeled using the Telegrapher's 

equations, which are partial differential equations in space and time. These equations cannot be 

directly integrated in a Spice like time domain simulator which is based on nonlinear ordinary 

differential equations. Such nonlinear transient simulators including the nonlinear receivers and 

drivers are, however, a necessary part of the design process. In order to link the transmission 

lines to the rest of the circuit, a time domain model in the form of ordinary differential equations 

is necessary. Obtaining such a model requires sorne form of discretization of the partial differ­

ential equations [2], [7]-[13]. Approaches based on cutting the interconnects into small sections 

with each section small enough to be modeled using lumped resistors, capacitors, and inductors 

(RLCG) provide a brute force way for the discretization [2]. Other more efficient discretization 

methods have been proposed. They include compact difference based discretization [8], inter­

polation based discretization [10], and matrix rational approximation [12], [13]. Regardless of 

discretization methods used, the resulting model after discretization contains a large system of 

equations, which significantly increases the CPU co st. 

Model Order Reduction (MOR) techniques were therefore proposed in the literature to ad­

dress the problem of simulation ofhigh speed interconnects [5], [14]-[20]. The goal ofmodel or-

der reduction is to find a reduced order macromodel, which is much smaller than the original sys­

tem, but still captures the essential input/output behaviors of the original system. Once available, 

these reduced order macromodels can replace the original large circuits and thus greatly reduce 

computational cost in system level simulation and designs. A number of model order reduction 
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methods for high-speed interconnect networks have been proposed in the literature [14]-[25]. 

They can be roughly c1assified into two general categories. One category is based on direct 

moment-matching. Reducing the original system using a single Padé expansion is known as 

asymptotic waveform evaluation (AWE) [18], [21], while complex frequency hopping (CFH) 

extends the moment-matching to multiple expansions [16]. However these methods have an in­

herent ill-conditioned problem. Moreover, there is no guarantee that the reduced order model is 

passive. Passivity is an important property for interconnect networks. A non-passive model, even 

if it is stable, may result in a unstable system when connected to other passive networks [5]. To 

overcome these difficulties, another category of model order reduction techniques known as in-

direct moment-matching was proposed in the literature [19], [20], [22], [23], [26], [27]. The key 

feature of these methods is that the reduced basis can be computed using robust well-conditioned 

algorithms such as Arnoldi and Lanczos [28]. The reduced system can preserve a certain num­

ber of moments of the original system implicitly, thus making the reduced macromodel more 

accurate as the number of moments is increased. This provides an accuracy versus size trade 

off up to a relatively high order. In addition, after sorne modification, indirect methods based 

on congruence transformation were shown to be passive by construction [19], [22], [23]. Due 

to robust algorithms and the guarantee of the passivity, congruence transformation based model 

order reduction has become a standard approach for generating macromodels. However, they still 

suffer from two important limitations. The first is related to the number of ports. As the number 

of ports increases, the size of the macromodel grows rapidly. The second limitation is the result 

of properties of the Krylov subspace used in the reduction. Such a subspace is known to capture 

significantly more poles than what is necessary in order to conserve the responses of the original 

system [29], [30]. Another indirect model order reduction technique is based on truncated bal­

anced realization [24], [25]. These methods provide a good global error bound and the stability 

and the passivity of the original system can be preserved for reduced models. However high 

computational cost associated with solving Lyapunov equations limits these approaches to small 

or medium size problems. 



1 Introduction 4 

Traditional model order reduction methods work for specific circuits, and require a new re­

duction each time a circuit parameter is modified. This can be very inefficient in many practical 

cases such as when the optimization or parameter sweeping is performed which requires re­

peated simulation for different parameter values. In order to address this issue, parametric model 

order reduction (PMR) techniques were proposed in [31], [32] to reduce the order of large sys­

tems, simultaneously with respect to frequency as well as design parameters. These techniques 

avoid repeated generation of the macromodels for different parameters, thus making it an efficient 

simulation tool for performing optimization and analyzing designs. However currently existing 

parametric model reduction methods face two difficulties. One is that these methods are based 

on multi-dimensional moment-matching which produces a larger parametric reduced model than 

what is necessary. Another difficulty is that the reduced parametric model is dense. A dense 

model would significantly limit the efficiency of the simulation. 

The model order reduction methods described above are frequency domain methods, which 

cannot directly apply to nonlinear systems. However interconnect circuits are generally nonlin­

ear systems containing drivers and receivers. The general approach used so far would therefore 

require partitioning of a system into linear and nonlinear subsections and performing model order 

reduction on the linear parts. However there were attempts to extend the linear macromodeling 

techniques to the nonlinear circuits in time domain. For example, a nonlinear system could be 

approximated with a set of linear subsystems, then followed by linear reduction utilizing methods 

described above. One straightforward way for the approximation is based on polynomial (Taylor) 

expansion of the nonlinearity [33]-[37]. The main problem about this group of methods is that 

they generate macromodels valid only around the expansion point. This limits the application 

to only weakly nonlinear systems and/or small input signaIs. In order to address this problem, 

a trajectory piece-linear model order reduction approach was proposed in [38]. The key obser­

vation in trajectory model order reduction is that the nonlinearity is represented by collections 

of linearized systems at different expansion points instead of one expansion point in order to 

overcome the weakly nonlinear limitation. The final reduced model is then obtained by taking 
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a weighted combination of the resulting reduced order linearized models. However, finding a 

good weighting function is not an easy task for a broad class of nonlinear systems. Moreover, if 

the weighting function is not well chosen, the resulting macromodel would give poor results and 

even suffer from the instability [39]. A more practical and robust methodology is thus required 

for obtaining nonlinear macromodels. 

1.2 Contributions of the Thesis 

In this thesis, a number of advanced novel model order reduction methods have been developed 

that address the key shortcornings of the current model order reduction techniques, thus improv­

ing their CPU efficiency and extending their applicability to new applications. More specifically, 

the main contributions are listed as follows. 

1. Model order reduction for systems with large number of ports (see Chapter 3): One of 

the difficulties with model order reduction methods is that the size of the reduced order 

model increases rapidly with the number of ports as shown in Fig. 1.1. In this thesis, a 

new method for the computation of the congruence transformation matrix has been pro­

posed as well as a new parametric port formulation has been developed which allows us 

to embed the load parameters without any modification to the vector of unknowns in the 

modified nodal analysis formulation [40]-[43]. It has been shown that the block moments 

with respect to frequency as well as the block moments with respect to load parameters 

are conserved [44]. As demonstrated in the examples, the size of the proposed reduced 

macromodels is significantly less sensitive to the number of ports than those obtained from 

the traditional methods. This proposed method therefore significantly extends the range 

of applicability of model order reduction methods to systems with large number of ports 

when information about the types of loads on the ports is available. 

2. Multi-Level Reduction (see Section 4.2): Traditional Krylov subspace based model order 

reduction techniques result in reduced order models which are much larger than necessary 
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and are thus not optimal. In this thesis, a multi-Ievel reduction method with a second level 

of reduction based on singular value decomposition has been developed [45]-[47]. The 

new singular value decomposition based reduction can reduce by more than half the size 

of the macromodel obtained from the traditional model order reduction techniques. The 

major advantage of the proposed algorithm is that it is simple to implement, as compared 

with other methods such as Balanced Truncations. 

3. Multi-Ievel Parametric Reduction (see Section 4.3): Parametric model order reduction 

(PMR) methods were introduced for applications such as optimization and design space 

exploration. AU these applications require repeated simulations at different values of cer­

tain design parameters. Parametric model order reduction techniques were therefore pro­

posed in the literature to produce a macromodel which is valid over a range of parameter 

values [31], [32]. However, conventional parametric model order reduction methods are 

based on moment-matching and would result in a macromodel which contains many re­

dundant poles. In this thesis, a multi-Ievel reduction based on singular value decomposi­

tion has been proposed for parametric systems [48]. The macromodel obtained using the 

proposed approach is typicaUy about one third the size of the macromodel obtained using 



1 Introduction 7 -_._----_ .. _---_._ .. __ ._-----_._-_._ .. __ ._------------._-----.. _----------_._--_. 

the traditional pararnetric model order reduction method. 

4. Sparse parametric macromodel (see Section 4.4): The conventional parametric model order 

reduction techniques result in very dense reduced macromodels which significantly reduce 

the efficiency of the simulation. In this thesis, a new parametric formulation has been 

developed, which allows for the sparsification of the reduced parametric macromodel [49]. 

The reduction procedure and the sparsification are then performed on the macromodel in 

the space of the new formulation. This approach significantly irnproves the CPU efficiency 

of the simulation due to the sparsification. 

5. Sparse Multi-Ievel Parametric Reduction (see Section 4.5): In this thesis, a sparse multi­

level parametric reduction method based on the sparsification and the multi-Ievel reduction 

has been developed. The resulting macromodels are very srnall as weIl as sparse. They can 

achieve up to 350 times faster than the original systems to obtain the transient responses 

and therefore significantly improve the simulation efficiency. 

6. Macromodeling of nonlinear networks (see Section 5.3 and Section 5.4): Traditional model 

order reduction methods are frequency domain techniques which are lirnited to the macro­

modeling of linear networks. In this thesis, a time domain nonlinear macromodeling tech­

nique, which is able to deal with arbitrary nonlinearity, has been developed [50] as weIl 

as a nonlinear formulation suitable for sparsification has been proposed [51]. This results 

in an efficient reduced order nonlinear macromodel which is sparse, and is valid over a 

predefined range of input waveforms and load conditions. 

7. Macromodeling of parametric nonlinear networks (see Section 5.4.4): In this thesis, a new 

nonlinear model order reduction approach has been proposed for parametric nonlinear sys­

tems [52]. This new technique pro duces a sparse parametric nonlinear macromodel. This 

macromodel only needs to be created once, and can be reused rnany times over different 

input waveforms, different load conditions, as weIl as different internaI circuit pararneters. 

As demonstrated in the examples, the proposed nonlinear macromodel can achieve up to 40 
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times faster than the original nonlinear system to obtain the transient responses. This has 

many applications for interconnect networks containing nonlinear loads and internaI circuit 

parameters, but also has the potential to provide an automatic and systematic approach to 

develop dynamic macromodels for nonlinear drivers. 

1.3 Organization 

The thesis is organized as follows. After the introduction in Chapter 1, the system formulation 

of circuit equations is outlined as weIl as existing model order reduction techniques for both 

linear and nonlinear systems are reviewed in Chapter 2. Chapter 3 presents a new model order 

reduction method to deal with a system with large number of ports by taking advantage of prior 

information on the ports. A new sparse multi-Ievel parametric model order reduction technique 

is proposed in Chapter 4. In Chapter 5, a new sparse macromodeling technique for parametric 

nonlinear systems is proposed. FinaIly, a summary of current work and possible directions of 

future work is given in Chapter 6. 
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Chapter 2 

Review of Model Order Reduction 

Techniques 

As operation frequencies increase and device sizes shrink, the complexity of the current state-of­

the-art designs has increased dramatically. One of the promising methods to deal with such in­

creasing complexity is the use ofmodel orderreduction [5], [14]-[21], [23], [26], [29], [30], [53]-[62]. 

The general idea behind model order reduction is that, although the original networks may contain 

a large number of poles, only a fraction of those poles significantly contribute to the responses 

of the original network. We could therefore replace the original network with a reduced order 

macromodel, which captures the dominant poles and thus captures the essential characteristics 

of the original system. The focus of this thesis work is to develop advanced model order reduc-

tion methods with applications to the signal integrity analysis of modern microsystems. In this 

chapter, the main model order reduction methods for both linear and nonlinear systems currently 

available in the literature are presented in order to provide the necessary background as well as 

the motivation for the work. 

This chapter is organized as follows. Section 2.1 presents the system formulation for intercon­

nect circuits. Model order reduction based on direct methods is discussed in Section 2.2. Model 

order reduction based on indirect methods is described in Section 2.3. Parametric model order 
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reduction techniques are reviewed in Section 2.4, followed by discussing the truncated balanced 

realization in Section 2.5. FinaIly, model order reduction for nonlinear systems is reviewed in 

Section 2.6. 

2.1 System Formulation 

Before reviewing the currently existing model order reduction methods, it is useful to intro­

duce the generic system formulation which is used throughout this thesis for representing circuit 

equations as well as macromodels for linear and nonlinear subsections. This formulation is a 

mathematical representation of the system that can be used for the analysis and simulation of 

the behavior of the system. For the electrical circuits containing resistors, capacitors, inductors, 

transmission lines as weIl as nonlinear elements such as drivers and receivers, the mathematical 

model is a set of nonlinear differential algebraic equations, which are obtained by using Kirch­

hoff's Current Law and Kirchholff's Voltage Law. The methodology for obtaining such circuit 

equations is known as Modified Nodal Analysis (MNA). It is important to note that in this context 

the transmission lines have been discretized into lumped sections using one of the discretization 

methods proposed in the literature [2], [7]-[13]. 

2.1.1 Modified nodal analysis formulation for circuits with lumped elements 

Consider a lumped linear and nonlinear network, the modified nodal analysis (MNA) formulation 

of this network consists of nodal equations based on Kirchhoff' s CUITent Law at each independent 

node, as weIl as additional equations to deal with voltage sources, inductors, and other special 

elements. The general MNA formulation can be written as [63], [64] 

Gx(t) + Cx(t) + f(x(t)) = b(t) (2.1) 

1. x E ]Rn is a vector of node voltages appended by independent voltage source currents and 

linear inductor currents, nonlinear capacitor charges and nonlinear inductor fluxes. 
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2. G E ]Rnxn and C E ]Rnxn are constant matrices containing the contributions of lumped 

memoryless and memory elements respectively. 

3. f (x( t)) E ]Rn is a vector containing algebraic functions describing the nonlinear elements 

of the circuit. 

4. b( t) E ]Rn is a vector with entries determined by the independent voltage/cuITent sources. 

5. n is the total number of the variables in the formulation. 

node 1 
v1 

1 (e(V2-V3)/vr -1) 
s ) 

node 3 ....... ---, 
v3 

Fig. 2.1 A simple nonlinear ex ample circuit 

The modified nodal analysis formulation in (2.1) is illustrated using a simple nonlinear exam­

pIe circuit shown in Fig. 2.1. By applying Kirchhoff's CUITent Law (KCL) at each node of the 

example circuit, we obtain 

G l (VI - V2) - iv - 0 

GI (V2 - VI) + G2V2 + ls (e V2v-;'V3 - 1) - 0 (2.2) 

Cl V3 - 18 e VT - 1 (~ ) 0 

vI - Vs(t) 
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Equation (2.2) can be recast in the matrix form (MNA formulation) 

Cl -Cl 0 -1 VI 0 0 0 0 VI 

-Cl Cl +G2 0 0 V2 0 0 0 0 V2 
+ 

0 0 0 0 V3 0 0 Cl 0 V3 

1 0 0 0 iv 0 0 0 0 'Lv 

0 0 

(~ ) ls e VT - 1 0 
+ 

(~ ) - (2.3) 
-ls e VT - 1 0 

0 vs(t) 

where ls is the reverse bias saturation CUITent of the diode and VT is the thermal voltage. Note that 

in addition to three nodal voltages (VI, V2, V3) as unknown variables and three nodal equations, 

one more unknown variable (voltage source cUITent, iv) and one more equation are added in the 

modified nodal analysis (MNA) formulation to deal with the independent voltage source. One 

of the main advantages of MNA formulation is that the resulting equations are sparse, which 

significantly increases the CPU efficiency of the simulation. The detailed information about 

modified nodal analysis formulation can be found in [65]. 

2.1.2 Modified nodal analysis formulation for linear subsections 

In this section, we consider linear multi-port subsections which can contain lumped passive ele­

ments (resistors, inductors, and capacitors) as well as discretized transmission lines. The modi­

fied nodal analysis (MNA) formulation for this subsection, after discretization of the distributed 

elements, is written as [29], [63] 

Gx(t) + Cx(t) = Rv(t) 

i R T x(t) 

(2.4a) 

(2.4b) 
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where G E IRnxn and C E IRnxn are constant matrices obtained from lumped elements and 

discretization of the distributed elements. R E IRnxp is a selector matrix that maps port cur­

rents to the node space of the subnetwork. v (t) E IRP is a vector containing the port voltages 

Vl, V2, . .. ,vp. i (t) E IRP is a vector containing the port currents il, i2, . .. ,ip. n is the total 

number of the variables in the formulation. p is the number of ports as shown in Fig. 2.2 . 

.... 
V-

1 

.-

V2 

•• 11 

•• 12 
Multi-Port 

Subsection 

Fig. 2.2 A subsection with p ports 

Fig. 2.3 A two-port example circuit as a subsection 

To illustrate the moditied nodal analysis (MNA) formulation for a linear subsection, a sim­

ple two-port linear circuit is shown in Fig. 2.3. This two-port circuit is described as tirst order 
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differential equations in (2.4), where G, C, x(t), R, v(t), i are in the form of 

G1 0 -G1 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 Cl 0 -Cl 0 0 

-G1 0 G1 +G2 0 0 0 0 0 C2 -C2 0 0 
G= ;C= (2.5) 

0 0 0 G3 0 0 0 -Cl -C2 Cl +C2 0 0 

-1 0 0 0 0 0 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 0 0 0 0 

x(t) = [ V1 V2 V3 V4 'lsl i
s2 

] T (2.6) 

R= [~ 0 0 o -1 ~lr (2.7) 
0 0 0 0 

v(t) = [ :J z= [ :: ] (2.8) 

Note that the last two rows in the modified nodal analysis formulation are port equations, which 

are V1 = V1 and V2 = V2. In other words, the voltages across portl and port2 are arbitrarily set by 

the boundary conditions. In general, for a p-port network, the last p rows of the MNA formulation 

are port equations. 

2.1.3 Modified nodal analysis formulation for nonlinear subsections 

For a subsection containing nonlinear elements, such as nonlinear resistors, nonlinear capacitors, 

nonlinear inductors, and inverters, the modified nodal analysis (MNA)formulation can be written 

as 

Gx(t) + Cx(t) + f(x(t)) - Rv(t) + b(t) 

i L T x(t) 

(2.9a) 

(2.9b) 
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where f(x(t)) E ]Rn is a vector containing algebraic functions describing the nonlinear elements 

of the circuit. b(t) E ]Rn is a vector containing the independent sources inside the subsection 

(e.g. the DC bias voltage source for an inverter). R E ]Rnxp is a selector matrix that maps the 

port voltages into the node space of the subsection. L E ]Rnxp is a selector matrix that maps the 

port currents into the node space of the subsection. i( t) = [il,' .. ,ip]t is a vector containing the 

port currents. This nonlinear subsection formulation is illustrated by a simple example shown in 

Fig. 2.4. This two-port subsection is described by first order differential equations in (2.9), where 

G, C, x(t), f(x(t)), R, v(t) and i are as follows 

Fig. 2.4 A two-port example nonlinear circuit as a subsection 

Cl 0 -Cl 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 Cl 0 -Cl 0 0 

-Cl 0 Cl +C2 0 0 0 0 0 0 0 0 0 
G= C= (2.10) 

0 0 0 C3 0 0 0 -Cl 0 Cl 0 0 

-1 0 0 0 0 0 0 0 0 0 0 0 

0 -1 0 0 0 0 0 0 0 0 0 0 

x(t) = [ VI V2 V3 V4 i sl 
i

s2 
] T (2.11) 
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R=[OOOO 10]T 
o 0 0 0 ~ -1 (2.12) 

f(x(t)) = [0 0 ls (e V3v-;'V
4 

- 1) -ls (e V3v-;'V4 _ 1) 0 0] T (2.13) 

v(t) = [:J · = [ :: ] (2.14) 

Note that the last two rows of the modified nodal analysis formulation for the circuit in Fig. 2.4 

are general port equations. 

2.1.4 Modified nodal analysis stamp for linear and nonlinear subsections 

In this section, we present the general stamps used to inc1ude linear and nonlinear subsections 

such as the ones defined in (2.4) and (2.9) in the overall modified nodal analysis formulation. 

Consider a circuit 'ljJ containing linear and nonlinear lumped elements, as weIl as n1jJ subsections. 

The modified nodal analysis formulation for this overall circuit can be obtained by combining the 

lumped formulation with various subsection formulations as follows 

o 

o 
o 

o 0 

o 

+ 

o 
o 

f 1jJ(X1jJ(t)) 

fl(XI(t)) 

+ 

(2.15) 

o 

where G1jJ, C1jJ, f 1jJ(X1jJ(t)), and b1jJ(t) are obtained from lumped elements as defined in (2.1). 

G I ,' .. ,Gn "" Cl, ... ,Cn "" fI (XI(t)),' .. ,f n", (x n ", (t)), RI, ... ,Rn", are obtained from n1jJ 
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subsections described in (2.9). Dl,'" ,Dn1jJ are selector matrices with maximum one nonzero 

in each row or column. These selector matrices map the port voltages or currents to the node 

space of the circuit 1/J. 

An example is given to illustrate the formulation in (2.15). Consider a circuit shown in 

Fig. 2.5, which contains one subsection. The port voltages and currents of this subsection are 

Vnl, Vn2 and il, i 2. This two-port subsection is represented by nonlinear first order differential 

equations as 

(2. 16a) 

(2. 16b) 

where the modified nodal analysis (MNA) matrices for the nonlinear subsection, G I , Cl, RI, Xl, 

il and VI are described in (2.10), (2.11), (2.12), (2.13), and (2.14). The modified nodal analysis 

formulation for the overall circuit containing one nonlinear subsection as weIl as lumped elements 

can be written according to the unified formulation in (2.15). 

Fig. 2.5 An ex ample of circuit with one subsection 

[ 
b1/Jo(t) 1 (2.17) 
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where G'IjJ, C'IjJ, f 'IjJ' b'IjJ(t), x'IjJ are obtained from the lumped elements without the subsection as 

Gnl 

0 
G'IjJ= 

-Gnl 

0 

0 -Gnl 

0 0 

0 Gnl 

0 1 

o 
o 
-1 

o 

V n2 Vn3 

Cnl 0 0 0 

o Cn2 0 0 

o 
o 

o 0 0 

o 0 0 

f'IjJ (x'IjJ (t)) = [0 V~2 0 0] T 

b'IjJ = [0 0 0 V 8 (t) ] T 

_[lOOO]T 
DI-

O 1 0 0 

2.2 Model Order Reduction based on Direct Moment Matching 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

In the circuit simulation area, the initial attempts for mode1 order reduction mainly focused on 

direct moment-matching methods, which are based on extracting dominant poles from a large 

network [14]-[18], [66]-[71]. To that end, the Taylor series coefficients also known as moments 

of the original system are tirst computed and then a direct moment-matching technique is used to 

obtain a low order rational approximation of the transfer function for the original system. Such ra­

tional approximation in the frequency domain can be used to find pol es and residues of the system 

and obtain a time domain macromodel. This provides an efficient way to estimate the transient 

responses of a large system over a predefined range of frequency. Reducing the original system 

using a single Padé expansion is known as asymptotic waveform evaluation (AWE) [18], while 

complex frequency hopping (CFH) extends the moment-matching to multiple expansions [16]. 
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2.2.1 Asymptotic waveform evaluation 

Asymptotic waveform evaluation (AWE) provides a general approach for the approximation of 

the responses of linear RLC circuits. The basic idea of this approach is to reduce the original 

linear circuit with a large number of poles to a model with a small number of dominant poles. 

The dominant poles are the poles close to the imaginary axis and significantly influence the be­

havior of the system. Asymptotic waveform evaluation is based on single Taylor series expansion 

(typically at s = 0). It consists of two main steps, moment computation and moment matching. 

To simplify the illustration of asymptotic waveform evaluation, consider a single input-single 

output system, the frequency domain expression is written as 

Gx(s) + sCx(s) = b(s) (2.23) 

Taking Taylor series expansion of variables x( s) at s = 0 for the ab ove system with the impulse 

input yields 

(2.24) 

where the Taylor coefficients of mû, ml,'" ,mn are known as moments, which can be ca1cu­

lated from equating the coefficients of equal power of sin (2.24) 

mû G-Ib 

mi - -G-ICmi_1 

The qth moment mq can therefore be related to the zeroth moment mû as 

(2.25) 

(2.26) 

(2.27) 

Once the moments are computed, the next step is to find the impulse response h( s) of the re-
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duced order system, which is approximated by a Padé rational function with order kj q. Note that 

the moments of the impulse response correspond to a particular element in the vector mi, i = 

1, 2, ... , which are denoted as mj, j = 1, 2, . . . . The impulse response of the system can there­

fore be expressed as 

h(s) = mO+mls+m2s2+ .. . (2.28) 

~ 
ao + aIS + a2s2 + ... + aksk 

1 + bIS + b2s2 + ... + bqsq 

By cross multiplying equation (2.28) and equating the coefficients of equal power of S, the coef-

mk-q+2 mk-q+3 
(2.29) 

and 

(2.30) 

min(k,q) 

ak mk + L bimk-i 
i=1 

Although low order rational functions can be obtained using asymptotic waveform evaluation, the 

accuracy of these methods deteriorates as we move away from the expansion point. In general, 

less than eight dominant poles can be extracted from asymptotic waveform evaluation. In addi­

tion, asymptotic waveform evaluation provides no estimation for error bounds [5]. To overcome 
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these difficulties, complex frequency hopping was introduced in the literature [16]. 

2.2.2 Complex frequency hopping 

Due to the limitations of the single Padé approximation, Complex Frequency Hopping (CFH) 

was proposed in the literature to extend the moment-matching at multiple expansion points 

(hops) [16]. The expansion points are on or near the imaginary axis of the complex plane. A 

binary search algorithm is used in complex frequency hopping to find the expansion points and 

minimize the number of expansions. By doing this, enough information is obtained to generate 

the reduced system that can match the original system up to the predefined highest frequency. 

The comparison for the dominant poles extracted by CFH to those from AWE is illustrated in 

Fig. 2.6. In addition, CFH provides error criterion for the selection of accurate poles and transfer 

function. Detailed information on this method can be found in [16], [72]. Early CFH techniques 

were targeted at single input-single output systems. In [73], these techniques have been extended 

to multi-port systems known as block CFH. 

Peles captured using AWE 

~
cg 

o 0 o 
00 0 

o 
0000 

* 

jro Peles captured using CFH 

0, non-dominMt pol, ~ 
* : dominant pole 0 0 

o 0 
o 

00 0 
o 

0000 

jro 

Fig. 2.6 Poles extracting from CFH compare ta those extracted from A WE 

2.3 Model Order Reduction Based on Indirect Moment Matching 

The direct moment-matching methods described in the previous section suffer from two main 

problems. First, there is no guarantee that the reduced model is passive. This is a significant 
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limitation because the passivity is an important property for interconnect networks. Violating 

this requirement would result in the instability of the simulation [5]. In addition, due to inher­

ently ill-conditioned matrix in (2.29) associated with direct moment-matching, only less than 

eight dominant poles can be extracted from any expansion point. In order to address these diffi­

culties, another c1ass of model order reduction techniques known as indirect moment-matching 

techniques were developed in the literature [19], [20], [23], [26], [27], [55]. 

2.3.1 Moment matching based on Arnoldi 

Consider a linear multi-port circuit described in subsection 2.1.2. In the Laplace domain, the 

MNA formulation (2.4) becomes 

Gx(s) + sCx(s) 

1(s) 

(2.31a) 

(2.31b) 

where G E }Rnxn, C E }Rnxn, RE }Rnxp , x E }Rn, n is the number ofunknown variables in the 

circuit. pis the number of ports. Premultiplying (2.31a) by G-1
, we can obtain 

sAx(s) = x(s) - BV(s) (2.32) 

where 

A = -G-1C' B = G-1R , (2.33) 

The reduced order macromodel can be found by changing the variables as 

a:; = Qx (2.34) 
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where Q E IRnxq (q « n) is an orthogonal matrix, x E IRq is the variable vector of the reduced 

system. Substituting (2.34) in (2.32) results in 

sAQx(s) = Qx(s) - BV(s) 

1(s) - RTQx(s) 

Premultiplying both sides of (2.35a) with QT, we obtain 

SQT AQx(s) _ QTQX(S) - QTBV(s) 

1(s) RTQX(S) 

Using the orthogonal definition, which is 

The reduced system can therefore be written as 

sÂx(s) 

1(s) 

x(s) - ÊV(s) 

il x(s) 

and the transfer function of the reduced system is 

Y(s) = il (1 - SÂ)-l Ê 

(2.35a) 

(2.35b) 

(2.36a) 

(2.36b) 

(2.37) 

(2.38a) 

(2.38b) 

(2.39) 

where Â E ~qxq = QT AQ is an upper Hessenberg matrix, iJ E ~qxp = QT B, R E ~qxp = 

QT R, and x E IRq is the variable vector of the reduced system. q « n, the reduced system is 

therefore much smaller than the original system. It has been shown in [74] that the eigenvalues 

of Â are a good approximation of the leading eigenvalues of A. In other words, the transfer 



2 Review of Model Order Reduction Techniques 24 
- -

function of the reduced system is a good approximation of the transfer function of the original 

system. The congruence transformation Q is defined to span the subspace formed by the system 

moments. 

where 

K 

colsp[Q] = colsp[K] 

[Mo,M1,··· ,Mq] 

[B AB ... AqB] , , , 

(2.40) 

(2.41) 

(2.42) 

It follows from (2.40) that any vector that is a linear combination of the moments in K is also 

a linear combination of the columns in Q. Note that the column space spanned by the moments 

is simply the Krylov subspace. Although the matrix K spans the Krylov subspace, it is very ill­

conditioned as the power order q increases. This is due to the fact that the higher order moments 

quickly converge to an eigenvector corresponding to the largest eigenvalue [5]. It is therefore 

difficult to explicitly generate the reduction subspace from K. To overcome this difficulty, an 

orthogonal basis Q is implicitly constructed to span the Krylov subspace. This orthogonal matrix 

can be computed using the Arnoldi process such as modified Gram-Schimdt algorithm [74]. In 

contrast to direct moment-matching techniques, the reduction based on the Arnoldi process can 

produce high order subspace which is well conditioned and can therefore achieve good accuracy. 

Further improvement for obtaining Q, such as double orthogolization [75], were also proposed 

in the literature. An important indicator for the accuracy of the reduced order model is the total 

number of moments it can preserve. It can be shown that if the transformation matrix Q spans 

the Krylov subspace of the qth order moment vector, the reduced system preserves the first q 

moments of the original system [19]. Consequently, the larger the order q is, the more accurate 

the reduced system is. However, a larger order q results in a larger reduced macromodel. 
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2.3.2 Projection based passive Krylov methods 

Since the original interconnect network is passive by nature, it is therefore necessary that the 

reduced order system should also be passive. By definition, a passive circuit is one that cannot 

generate more energy than it absorbs. Preserving the passivity of the reduced system is impor­

tant because a non-passive system, even if it is stable, may result in a non-stable system when 

connected to other passive networks [5]. 

Although the size of the reduced system in (2.38) is much smaller than the original system, 

it does not preserve the passivity. In [19], a general technique for the passive reduction was 

proposed based on the Arnoldi algorithm. Instead of performing reduction to the matrix G-1C, 

the algorithm in [19] applies reduction to the conductance matrix G and the susceptance matrix 

C separately. Referring to the original system in (2.31), the reduced system can be found by 

applying the change of variables x = Qx 

GQx(s) + sCQx(s) - RV(s) 

1(s) RTQX(S) 

Premultiplying both side of (2.43a) by QT, we have 

where 

Gx(s) + sêx - RV(s) 

1(s) - RTX(S) 

G=QTGQ; Ô=QTCQ; R=QTR 

(2.43a) 

(2.43b) 

(2.44a) 

(2.44b) 

(2.45) 

The transformation performed on the original system is known as congruence transformation. 

It can be proved that the reduced order model in (2.44) is passive provided that the congruence 

transformation Q is a real matrix and the conductance and susceptance matrices Gand C are 
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symmetric nonnegative definite [19]. The modified nodal analysis formulation for RLC inter­

connect networks can be formulated such that the above conditions are satisfied. For example, 

matrix C is symmetric nonnegative, matrix G can also be symmetric nonnegative definite after 
T 

N E 

slight modification as the form of G = , where N is symmetric nonnegative 

_ET 0 

definite. It is important to note that although Q is obtained from the Arnoldi process, the passive 

reduction technique proposed in [19] is not limited to a particular Arnoldi process. For exam­

pIe, one of the important methods to obtain Q is based on singular value decomposition (SVD) 

as described in Chapter 4. Due to the passivity by construction and the significant ftexibility 

in choosing Q, the algorithm in [19] has become prevalent over the past decade for the reduc­

tion of linear systems. It is also a key technique widely used in the nonlinear macromodeling 

approaches [25], [37], [38], [64], [76]. 

2.4 Parametric Model Order Reduction 

The model order reduction methods reviewed in the previous section work for specific circuits, 

and require a new reduction each time a circuit parameter is modified. This can be very inefficient 

in many practical cases such as when the optimization or parameter sweeping is performed which 

requires repeated simulation for different parameter values. In order to improve the efficiency, 

parametric model order reduction (PMR) was proposed in the literature [31], [32], [77]. 

Consider a large interconnect network consisting of many distributed elements as weIl as 

lumped components. After discretization, the parametrized modified nodal analysis circuit equa­

tions [31], [63], [77] can be written as: 

(2.46) 

where: 
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1. x is a vector of node voltages appended by independent voltage source currents and linear 

inductor currents; 

2. Gis a matrix corresponding to the network's memoryless elements, excluding those that 

are memoryless parameters; 

3. C is a matrix corresponding to the lumped memory elements ofthe network, also excluding 

the memory parameters; 

4. R is a selector matrix that maps port voltages to the node space of the modified nodal 

analysis equations; 

5. u is a vector that contains the port voltages; 

6. i is a vector that contains the port currents; 

7. Dl,"" Dr are matrices each containing the modified nodal analysis stamp of a particular 

memoryless element acting as a parameter; 

8. El, ... , Ec are matrices each containing the modified nodal analysis stamp of a particular 

memory element acting as a parameter; 

9. ÀI' ... , Àr are input scalars that correspond to the values of the variable parameters repre­

sented by Dl, ... , Dr respectively; 

10. (/JI, ... , <Pc are input scalars that correspond to the values of the variable parameters repre­

sented by El, ... , Ec respectively. 

The traditional parametric reduced order macromodel is obtained from (2.46) by using a 

congruence transformation which results in: 

(2.47) 
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where: 

ê=QTcQ; (2.48) 

The congruence transformation matrix Q is chosen as an orthonormal basis of a subspace which 

spans the moments of the system with respect to frequency, and with respect to the parameters 

Àl' ... , Àr, <Pl, ... , <Pc, as well as the cross moments. 

colsp [Q] = colsp [MSk ... M)..ik ... M tPjk ... MSatPbd ... MSPtPmn ... ] (2.49) 

where M Sk is the eh moment with respect to frequency, M )..ik is the kth moment with respect to 

the ith memoryless parameter, M tPjk is the kth moment with respect to the lh memory parameter, 

M SatPbd is the cross moment between the ath frequency moment and the d!h moment of the bth 

memoryless parameter, M SptPnm is the cross moment between the pth frequency moment and the 

mth moment of the nth memory parameter. 

A combination of the Arnoldi process and standard QR decomposition is used to accurately 

compute Q. It has been shown in [31] that the moments with respect to frequency and the mo­

ments with respect to parameters are conserved. In addition, the parametric reduced macromodel 

is passive by construction. 

2.5 Model Order Reduction Using Truncated Balanced Realization 

The concept of balanced truncation of a system was first introduced in the area of control theory 

to generate a reduced order model [61]. The general idea is to obtain a reduced order system 

by retaining the most controllable-observable states and truncating the rest. These states have 

more impact on the input and output behavior of the original system. Consider a c1assic state 
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formulation for a linear time invariant (LTI) system as 

x Ax+Bu 

y Cx+Du 

29 

(2.50a) 

(2.50b) 

where x is the state vector, u and y are vectors containing inputs and outputs of the system. The 

algorithm for standard truncated balance realization can be summarized as follows [24], [78]. 

1. Solve Lyapunov equation A W e + WeAT + BBT = 0 for the controllability grammian 

Wc' 

2. Solve Lyapunov equation ATW 0 + W oA + CT C = 0 for the observability grammian 

W o• 

3. Since Wc and W 0 are always symmetric and positive definite matrices, Cholesky factor­

ization can be computed as Wc = LeL~, W 0 = LoL~ for Le and Lo, where Le and Lo 

are known as square roots of the grammians Wc and W 0 respectively; 

4. Compute singular value decomposition (SVD) of the product UL:VT = L~ Le, L: is a 

diagonal matrix, with singular values in decreasing order. These singular values are called 

Hankel singular values of the system; 

5. Compute the balanced transformation matrix T = Le V(L:)-1/2, T-1 = (L:t 1/2UT L~; 

6. Compute the balanced realization as Â = T-1 AT, n = T-1 B, ê = CT, b = D. 

7. Partition Â, n, ê, band truncate them to desired orders. 

The reduced model obtained from the standard truncated balanced realization can be made pas-

sive by modifying step 1 and step 2 in the standard algorithm [24]. Specifically, instead of 

solving Lyapunov equations, Lur'e equations and its dual are used for the controllability gram­

mian Wc and the observability grammian W o. Truncated balance realization (TBR) offers the­

oretically provable error bounds and also produces better global accuracy than projection-based 
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approaches. However comparing with Krylov projection based approaches whose computational 

co st is O(nq2) [5], truncated balanced realization is significantly more expensive to implement. 

The computational cost is O(n3 ) with two large Lyapunov equations to solve and one singular 

value decomposition to perform [24], where n is the dimension of the original system, q is the 

dimension of the reduced system, and q « n. This often excludes it from being used directly on 

large problem sizes and requires the employment of projection based methods to obtain an initial 

system reduction in a prior step. 

2.6 Model Reduction for Nonlinear Networks 

Compared to the model order reduction for linear networks, the problems of finding a reduced 

order macromodel for nonlinear networks have been less studied and explored. This is mainly 

due to the fact that it is significantly more difficult and complex to deal with nonlinear systems 

than linear counterparts. The primary challenge facing the computer aided design (CAD) com­

munit y is to find an efficient macromodel while maintaining good model accuracy for arbitrary 

nonlinearity. 

2.6.1 Nonlinear circuit reduction based on congruence transformation 

The main objective of the reduction algorithm in [64] is to significantly reduce the size of the 

original nonlinear system in (2.1) by using congruence transformation. The resulting reduced 

nonlinear model is therefore relatively inexpensive to solve. In order to achieve this goal, reduc­

tion is performed by changing the variables 

x=Q& (2.51) 

in (2.1), and then premultiplying by QT to result in 

Gx(t) + Cx(t) + Î(x(t)) = b(t) (2.52) 
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where 

G=QTGQ; 

Î(œ) = QT f(Qœ); 

ô=QTCQ; 

b(t) = QTb(t) 
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(2.53) 

In (2.53), the congruence transformation matrix Q E jRnxq is an orthogonal basis in time domain 

for the subspace spanned by the first q time domain derivatives of x. In order to obtain such 

derivatives, we take time domain Taylor series expansion of x 

x(t) = L ak(t - to)k 
k=O 

(2.54) 

where ak = x(k) /kl, k = 1,2,' .. , are normalized time domain derivatives evaluated at t = to, 

and the time domain expansion for of f(x(t)) and b(t) is given by 

f(x(t)) = L fk(t - to)k (2.55) 
k=O 

and 

b(t) = L bk(t - to)k (2.56) 
k=O 

where f k and bk are normalized time domain derivatives of f(x(t)) and b(t) evaluated at t = to. 

Substituting (2.54), (2.55) and (2.56) in (2.1), we have 

(2.57) 

Assuming the initial condition ao is known, the time domain coefficients can be computed recur­

sively using (2.57). The subspace, constructed by time derivatives, is given by 

(2.58) 
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The transfonnation matrix Q is chosen as the orthogonal basis of the time domain subspace 

in (2.58), which is 

colsp(Q) = colsp(K) (2.59) 

This is achieved by performing orthogonal decomposition on K 

K=QR (2.60) 

It can be shown that the reduced order circuit in (2.52) preserves the first q time derivatives of 

the original system [64]. It is to be noted that the reduced order circuit is accurate only near 

the expansion point, which is t = to. The accuracy deteriorates as we move away from the 

expansion point. In other words, the expansion point needs to be updated as time marches ahead. 

The derivatives (aD, al, . .. ,aq ) are computed again for each expansion point. The reduced order 

nonlinear circuit is shown to be much smaller than the original circuit, thus resulting in significant 

CPU savings [64]. However this technique is basically a circuit reduction based approach. It does 

not produce a macromodel, which is valid over different input waveforms and output conditions. 

ln other words, this reduction cannot be perfonned on a nonlinear subsection described in (2.9). 

ln addition, the reduced matrices in (2.52) are typically dense. The simulation of corresponding 

dense systems is relatively more expensive compared to sparse ones. These two issues will be 

addressed in Chapter 5. 

2.6.2 Nonlinear macromodeling techniques for weakly nonlinear circuits 

Weakly nonlinear systems are often referred to systems whose nonlinear tenns can be sufficiently 

characterized by polynomial series. Typical example circuits inc1ude mixers, op-amps, etc. Con­

sider a multi-port nonlinear system described by the modified nodal analysis fonnulation 

Cx(t) + f(x(t)) = Ru(t) 

y(t) = L T x(t) 

(2.61a) 

(2.61b) 
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where x(t) E IRn is the unknown vector. u(t) E IRn is the input to the system. f(x(t)) is a 

vector containing algebraic function describing the nonlinear elements of the network. Rand L 

are select matrices that map the input and output to the node space of the system respectively. n 

is the total number of variables in the formulation. 

The early approach towards the weakly nonlinear macromodeling was proposed in [34], 

where the nonlinearity is represented by Taylor series expansion. For example, we can exp and 

the nonlinear terms f(x(t)) in (2.61) in the following form 

f(x(t)) = Flx(t) + F 2x(t) 0 x(t) + F 3x(t) <>9 x(t) <>9 x(t) + ... (2.62) 

where x(t) E IRn is a small signal response around DC bias point. The symbol0 is the Kronecker 

(tensor) product operator. Fi E IRnxn
i 

is the ith order tensor and FI is the Jacobian of f 

evaluated at the expansion point. In order to extend the linear model order reduction approaches 

to nonlinear systems, variational method is used to decompose the original nonlinear system into 

series of linear systems. This variational approach was widely used in nonlinear system theory to 

find various Volterra kernels [79]. Consider a nonlinear system with inputs of the form au( t) 

Cx(t) + f(x(t)) = R(au(t)) 

y(t) = LT x(t) 

(2.63a) 

(2.63b) 

where a is an arbitrary scalar. The system response is then a function of the parameter a and it 

can be expanded into power series as follows 

00 

x(t) = L aixi(t) (2.64) 
i=l 

Substituting (2.64) in (2.63a) and replacing the nonlinear vector f(x(t)) with its Taylor series 
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expansion in (2.62), we can write 

Equating the coefficients of powers of a, we can obtain the responses for different order system. 

For example, the first to the third order responses, Xl(t), X2(t) and X3(t) are given by 

(2.66a) 

(2.66b) 

(2.66c) 

To simplify the notation, the time augments for the first order to the third order responses have 

been dropped in (2.65) and (2.66). Given the fact that systems in (2.66a), (2.66b) and (2.66c) are 

linear, we could therefore use Krylov subspace based techniques such as the algorithm in [19] to 

reduced them separately [34]. For example, the first order reduced system from (2.66a) is given 

by 

(2.67) 

where 

(2.68) 

QI E jRnxql is chosen as the orthonormal basis of the subspace spanned by the system moments 

of (2.66a). After solving Xl, the first order response is approximated by 

(2.69) 
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Substituting (2.69) in the second order system in (2.66b), we have 

(2.70) 

where R 2 = -F2(Q1 ® QI) E jRnxqr, U2(t) = X1(t) ® X1(t) E jRq?, It follows that the system 

describing the second order response is also a linear system with U2(t) as the input. Similarly, 

an orthogonal basis of the subspace spanned by the system moments of (2.70) is constructed to 

perform the reduction. The procedure for the reduction of higher order linearized systems follows 

analogously. The main difficulty associated with this method is the exponentially increasing size 

of the subspace basis as the order of the linearized systems grows. For example, if the first order 

linearized system in (2.66a) has been reduced into the size of q1, i.e., QI E jRnxql. The reduction 

matrix Q2 for the second order system is implicitly constructed to span the block Krylov subspace 

which is defined by the block moments. Each block moment contains qr vectors. While for 

the third order system, the reduction subspace is constructed to span the block moments of the 

system, with each block moment containing (q~ + ql q2) vectors, where q2 is the size of the second 

order reduced system [37]. 

In order to generate a more efficient reduced macromodel , it was proposed in [36] to construct 

a single projection basis based on separate subspaces (QI' Q2" .. ). Since these subspaces are 

not linearly independent, singular value decomposition is therefore used to remove the redundant 

information. 

The final reduced nonlinear model is therefore given by a unit form 

ê:i; + FIx + F2x ® x + F3x ® x ® x + ... = Îlu(t) 
AT 

y(t) = L x(t) 

(2.71) 

(2.72a) 

(2.72b) 
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The common difficulty for variational reduction methods is the large size of the reduced sys­

tem due to the exponentially increasing size of the input vectors for higher order systems. In order 

to address this difficulty, an efficient nonlinear reduction scheme for weakly nonlinear systems 

known as NORM was proposed in [37]. Unlike methods in [34], [36], a general matrix-form 

nonlinear transfer function and associated nonlinear transfer function moments were developed 

in [37]. This development allows us to generate a minimum order ofthe Krylov projection basis 

by investigating the interdependence between the Krylov subspace and moments to be matched 

in a nonlinear context, and thus resulting in a compact reduced macromodel. 

The nonlinear macromodeling techniques described so far are aIl based on Taylor series ex­

pansion of nonlinearities around a fixed state. They share the common problem that Taylor series 

expansion with two or three terms is only valid around the equilibrium point (expansion point). 

If the operation point of the original system varies significantly from the expansion point, the 

reduced order model would be very inaccurate, thus the reduction methods only work for weakly 

nonlinear systems and/or limited range of input signaIs. Furthermore, the exponentially increas­

ing computational costs with the number of expansion terms included makes these methods only 

limited in practice to cubic expansion. 

In addition to Taylor series based approaches, another closely related method for the weakly 

nonlinear macromodeling is based on bilinear forms of a nonlinear system. The detailed reduction 

procedure of this technique can be found in [35], [76]. Although the bilinear-based method results 

in smaller macromodels than the original nonlinear time-varying systems, it suffers from the same 

difficulties with Taylor series approaches. 

2.6.3 Trajectory piecewise linear methods 

A trajectory piecewise linear approach [38], [80], [81] was proposed to address strong nonlinear­

ity issues. The key observation of this method is to represent a nonlinear system with a small set 

of linearized systems at different expansion points about the state trajectory, and then reduce each 
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set with Krylov subspace projection methods. The trajectory is the trace of the solutions x(t) to 

the nonlinear differential equations excited by input signaIs. The main steps of this algorithm 

are summarized as follows. First, given a nonlinear system, run simulations to find the solution 

x (t) with certain input signaIs u( t). This solution constructs astate trajectory of the original 

system. Then, the system is linearized around sampling points, which are properly picked up on 

the state trajectory. The nonlinear system is therefore decomposed into collections of linearized 

systems. Next, reduce the order of each of lineariztions using projection based methods. The 

final nonlinear macromodel is obtained by weighted combinations of all the reduced order linear 

models. 

2.7 Limitations of Existing Projection-based Model Order Reduction 

Methods 

In this section, main difficulties facing the existing moment-matching techniques based on Krylov 

subspace are discussed. These difficulties tend to increase the size of the reduced macromodel, 

thus severely limit the CPU efficiency of such macromodel. These problems are addressed in 

later chapters using advanced projection based model order reduction techniques. 

2.7.1 Unnecessarily large reduced macromodel 

The subspace for projection based reduction is obtained from the implicit moment-matching 

technique, which captures the dominant poles in a radius around the expansion point (for example 

s = 0). As can be seen from Fig. 2.7, in order to extract all the dominant poles of the system, 

the reduced system contains not only the dominant poles but many non-dominant poles as well. 

In other words, The passive reduction technique described in Section 2.3.2 would result in a 

macromodel whose size is much larger than what is necessary. 
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Poles captured using traditional 

projeC~d m:hO~d __ S--r-_JCO __ 

00 i* 
00 0 ** 

00 0 * 
o * ** 

0000 * * 

o : non-dominant pole * : dominant pole 

Fig.2.7 Poles captured using tradition al Krylov subspace based reduction 

2.7.2 Model order reduction for a system with large number of ports 

When using Krylov subspace based methods to obtain the reduction subspace, the size of the 

reduced order macromodel grows rapidly as the number of ports increases. This is mainly due to 

the fact that the reduction matrix is implicitly constructed to span the Krylov subspace which is 

defined by the block moments as shown in Fig. 2.8, each block moment contains p vectors, where 

pis the number of ports. In order to illustrate this point, an example interconnect network was 

considered. Fig. 2.9 shows a typical circuit example when the size of the reduced macromodel 

increases as the number of ports is increased in the network. As can be seen from the figure, the 

size of the macromodel obtained using the standard Krylov subspace reduction process increases 

rapidly with the number of ports. 

Block moments Mo. M,. M2 ••• Mq., 

P is the number of the ports 

Colsp[Ql~~lsp tl B t]--B 
xp nxp nxp nxp 

QR decomposition 

Fig. 2.8 Reduction matrix spanning the same subspace as block moments 
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Fig. 2.9 The size of the reduced macromodel obtained from the standard Krylov 
subspace method versus the number of ports 

2.7.3 Dense parametric reduced model 

39 

Parametric reduction methods were introduced for application such as optirnization and design 

space exploration. AlI these applications require repeated simulations at different parametric 

values. The parametric model order reduction techniques were therefore proposed in the literature 

to produce a macromodel which is valid over a range of parameter values [31], [32], [77]. The 

parametric techniques, however, result in very dense reduced macromodels which significantly 

reduce the efficiency of the simulation. 

2.7.4 Nonlinear macromodeling technique 

Projection based model order reduction using Krylov subspace methods are frequency domain 

methods, and cannot directly apply to nonlinear systems. In [64], the concept of projection based 

techniques has been extended to time domain, and the reduced nonlinear circuit has been shown 

to be much smaller than the original nonlinear circuit. However, this method is a circuit reduction 

based approach, and cannot be used for a nonlinear subsection. 

There have been sorne nonlinear macromodeling techniques proposed in the literature re­

cently for a nonlinear subsection [25], [33], [37], [38], [76]. These methods first linearize the 
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nonlinear system and then perform the reduction, which utilizes linear model order reduction 

methods. However, current nonlinear macromodeling methods face two main challenges. The 

first challenge for the nonlinear macromodeling is to capture arbitrary nonlinearities, both weak 

and strong nonlinearities. This is very important to a wide range of applications. Secondly, 

although the size of the reduced model can be much smaller than the original system, the nonlin­

ear model order reduction would generally produce a dense model, which severely reduces the 

efficiency of the simulation. 
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Chapter 3 

Model Order Reduction with Parametric 

Port Formulation 

3.1 Introduction 

As we have discussed in Section 2.7, one of the major difficulties associated with Krylov sub­

space based model order reduction methods is that the size of the reduced macromodel grows 

rapidly as the number of ports increases. In order to address this issue, a new method for the 

computation of the congruence transformation matrix, which is significantly less sensitive to the 

number of ports is proposed [40], [41]. The new approach is based on taking advantage of prior 

information regarding the port conditions. In order to achieve this goal, a systematic method for 

taking into account information about the possible loads that may be connected to the ports was 

developed. SpecificaIly, resistive, reactive, resistive/reactive, transmission line loads as weIl as 

nonlinear loads are considered. A new parametric port formulation was developed which allows 

us to embed the load parameters without any modification to the vector of unknowns in the MNA 

formulation [63]. Parametric model order reduction method [77] is then used implicitly to obtain 

an efficient subspace Q which takes into account the load parameters. Once the new real re­

duction subspace is computed, a congruence transformation on the original system is done using 
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the standard traditional approach [19] which results in a passive reduced model. Note that since 

the load conditions were taken into account, the reduction subspace is significantly smaller than 

those obtained from the block moment method. This provides a computationally efficient tool for 

the analysis of circuits with a large number of ports. 

The rest of the chapter is organized as follows. Section 3.2 introduces the conventional model 

order reduction. Section 3.3 presents the proposed model order reduction with parametric port 

formulation followed by moments conservation proof in Section A. Finally, examples and results 

are given in Section 3.4. 

3.2 Conventional Model Order Reduction 

Consider a multi-port interconnect network containing p ports. After discretization, the MNA 

[63] circuit equations can be written as: 

(G+sC)x RV 

l - RTx (3.1) 

where s represents the complex frequency, V and l are vectors containing port voltages and 

currents. G E lR.nxn and C E lR.nxn contain the contributions of the memoryless and memory 

elements respectively. x E lR.nxl refers to unknown node voltages and unknown currents. n is 

the total number of variables in the MNA equations. R E lR.nxp is a selector matrix that maps 

the port voltages and currents into the node space of the circuit. The reduced order model is 

constructed through congruence transformation to obtain: 

(G+sê)x = RV (3.2) 

where 

(3.3) 
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In the case of traditional Krylov subspace methods, the matrix Q E IRnxNq is a real orthonormal 

basis ofthe subspace spanned by the block moments [19], [75]. 

colsp[Ql = colsp[Mo, Ml, M 2 , ..• , Mq-ll (3.4) 

where Mo E IRnx p, ... , Mq-l E IRnxp are block moments, therefore the size ofreduced matrix 

Q (Nq = p x q) grows rapidly with the number of ports. Note that Q is typically implicitly 

computed using the Arnoldi process. 

3.3 Model Order Reduction with Parametric Port Formulation 

The method proposed in this section differs from traditional approaches in the way the congru­

ence transformation matrix is computed. Using conventional Krylov techniques, the reduction 

matrix Q spans the column space of the block moments of all ports. This can lead to a large 

subspace when the number of ports is high. The subspace found in this section spans the block 

moments of the unconstrained ports only as weIl as the parametric moments with respect to the 

conductances and capacitances parameters for the constrained ports with resistive and reactive 

loads. This results in a significantly smaller subspace which is obtained by taking advantage of 

this parametric port information. 

The proposed macromode1 is obtained in three steps. The first two steps are mainly concerned 

with the computation of the subspace Q. The last step is a congruence transformation based re­

duction step and is similar to the conventional reduction methods. More specifically, the first step 

consists of transforming the original multi-port MNA equations into a corresponding parametric 

model by taking the resistive and reactive loads on the port as parameters. This is outlined in 

Section 3.3.1, Section 3.3.2 and Section 3.3.3. The second step (outlined in Section 3.3.4) is to 

apply parametric model order reduction techniques to find a parametric reduction subspace. The 

final step is to obtain the reduced order model using a real congruence transformation on the orig­

inal network as outlined in Section 3.3.5. Note that using su ch a real congruence transformation 
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matrix guarantees the passivity of the maeromodel [19]. 

unconstrained port .-----------.constrained port 
Port1 + ~ Port2 

I~ + 

l 

Two-port 
Network ~' l!i~ 

Fig. 3.1 A large interconnect network with two ports 

3.3.1 Parametric port model for reactive loads 

44 
-------------

For clarity of presentation, we will first eonsider a two-port system shown in Fig. 3.1, then the 

formulation for general multi-port networks will be presented. The ports are divided into une on­

strained ports and constrained ports. A capacitor c is connected to the constrained port2. The 

voltages on the uneonstrained port (portl) and the eonstrained port (port2) in Fig. 3.1 are VI and 

V2 respeetively, and the eurrents for portl and port2 are i sI and i s2 respeetively. If we examine the 

MNA equations of sueh a system as defined in (3.1), we note that the last two rows of G matrix, 

eorresponding to portl and port2 equations, in (3.1) are: 

G= 
-1 0 

o -1 

(3.5) 
o 0 

o 0 
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and 

VI 
0 0 

V2 

[ :] x= R= ,V= , 
-1 0 

~sI 

(3.6) 

0 -1 
~s2 

Using this general port representation, the port equations in the last two rows are simply VI = VI 

and V2 = V2. In other words, the port voltage can be arbitrarily set by the boundary conditions. 

Note that portl is designated as an unconstrained port and port2 is designated as a constrained 

port with reactive loading. In this case the equation at portl remains unchanged but the equation 

at port2 becomes: 

(3.7) 

Incorporating equation (3.7) into the MNA stamp has the effect of converting the multi-port 

network in (3.1) into a parametric "single-port" network while keeping the vector of unknowns 

x unchanged. This is done by modifying the row corresponding to port2 equation in the MNA 

formulation in (3.1) as follows: 

(3.8) 

where Gr/> is obtained by setting the last row of G matrix in (3.5) to all zeros. Tl is the tirst 

column of R. T2 is the second column of R. l2 is a selector vector containing only one non-zero, 

corresponding to V2, the node voltage of port2. Therefore the resulting elements in T2lI are all 

zeros except for the last row and the column, corresponding to the node voltage of port2. 

o o o 0 

(3.9) 

o -1 o 0 
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The resulting elements in r2rf are aIl zeros except for the last row and the last column, corre­

sponding to is2 , the port2 current. 

o 0 o 0 

(3.10) 

o 0 o 1 

Note that there are two parameters in the parametric MNA equations in (3.8), the frequency 

parameter, s, and the parameter, c, corresponding to the reactive load. 

To extend the above method into M unconstrained ports and N constrained ports networks, 

(M + N = p), the parametric formulation becomes: 

(3.11) 

where Gcp is obtained by setting N rows of Gin (3.1) into aIl zeros. RM E ]RnxM is a selector 

matrix that maps currents and node voltages at the unconstrained ports into the node space of the 

circuit. UM E ]RMXl represents M unconstrained voltage sources. r M+i is a selector vector that 

maps the currents on the constrained port (M + i) into the node space of the circuit. lM+i is a 

selector vector mapping the node voltages on the port (M + i) into the node space of the circuit. 

The parameters Ci represent the reactive loads that can be connected to the constrained ports. 

Port1 G, C, C2 Port2 

V, V2 + + 
U, U2 

Fig. 3.2 An example 2-port network 
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In order to simplify the notation, (3.11) is recast as follows: 

(3.12) 

where En E ]Rnxn is a diagonal matrix. The first n - N diagonal elements are zero. While 

the last N diagonal elements are Ci, i = 1,'" ,N. Ci represents the reactive loads that can be 

connected to the constrained ports. LN E IRnxN is a selector matrix with one nonzero in each 

column and a maximum of one nonzero in each row that maps voltages at the constrained ports 

into the node space IRnx l of the circuit. It is given by: 

(3.13) 

where V N E IRNxl is a vector containing constrained port voltages. RN E ]RnxN is a selector 

matrix with one nonzero in each column and a maximum of one nonzero in each row that maps 

currents at the constrained ports into the node space IRnxl ofthe circuit. It is given by: 

(3.14) 

where IN E ]RN x l is a vector containing constrained port currents. In order to illustrate the above 

formulation, we take a simple circuit shown in Fig. 3.2 as an example. The MNA equations for 

the simple circuit are given by: 

Cl 0 -Cl 0 1 0 VI 

0 0 0 0 0 1 V2 

-Cl 0 Cl + C2 + C3 -C3 0 0 V3 

0 0 -C3 C3 +C4 0 0 V4 

-1 0 0 0 0 0 i s1 

0 -1 0 0 0 0 i s2 
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0 0 0 0 0 0 VI 0 0 

0 C 2 0 -C2 0 0 V2 0 0 

0 0 Cl -Cl 0 0 V3 0 0 [:] +8 (3.15) 
0 -C2 -Cl Cl +C2 0 0 V4 0 0 

0 0 0 0 0 0 'lsl -1 0 

0 0 0 0 0 0 'ls2 0 -1 

Assume port2 is the constrained port connecting to a capacitor c, and port 1 is the unconstrained 

Port1 Port2 

Fig. 3.3 An example 2-port network with parametric port condition 

port connecting to a voltage source Ul, which is shown in Fig. 3.3. By incorporating the port2 

equation into the above MNA stamp, the parametric equations are as follows: 

Gl 0 -Gl 0 1 0 VI 0 0 0 0 0 0 VI 

0 0 0 0 0 1 V2 0 C 2 0 -C2 0 0 V2 

-Gl 0 Gl + G2 + G3 -G3 0 0 V3 0 0 Cl -Cl 0 0 V3 
+8 

0 0 -G3 G3 +G4 0 0 V4 0 -C2 -Cl Cl +C2 0 0 V4 

-1 0 0 0 0 0 'lsl 0 0 0 0 0 0 i s1 

0 0 0 0 0 0 is2 0 0 0 0 0 0 'ls2 
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0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 
[010000] +sc 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 1 -1 

0 VI 

0 V2 

0 
[ 0 -1 ] 

V3 
+ 0 0 0 0 

0 V4 

0 i sl 

-1 ~s2 

Aiso the constrained port voltage V 2 is given by: 

V 2 = V2 = [0 1 0 0 0 0] 

o 
o 
o 
o 

-1 

o 

49 

VI 

V2 

V3 

V4 

~sl 

~82 

(3.16) 

(3.17) 
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The constrained port CUITent 1 2 is given by: 

1 2 = i 2 = [0 0 0 0 0 -1] (3.18) 

Zsl 

Note that the parametric equations in (3.16) are obtained by modifying the la st row of the MNA 

equations in (3.15), corresponding to the port2 equation and changing the right hand side of the 

MNA equations into a vector indicating one input Ul. The other equations remain unchanged. 

3.3.2 Parametric port model for resistive loads 

If a resistor is connected to port2 in Fig. 3.1, then the port2 equation becomes: 

(3.19) 

Here, we use conductance g to represent the value of the resistive load in order to have the 

similar parametric MNA formula with that for reactive loads. Incorporating equation (3.19) into 

the MNA formulation in (3.1) by modifying the row corresponding to the port2 equation in the 

formulation as follows: 

(3.20) 

Note that the above formulation is similar to those in (3.8) except for the parameter g, which 

represents the conductance. As we did in the reactive loads, extending the two-port formulation 

into M unconstrained ports and N constrained ports networks, the above parametric formulation 
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becomes: 

(3.21) 

where Dn E ]Rnxn is a diagonal matrix. The tirst n - N diagonal elements are zero, while the last 

N diagonal elements are gi, i = 1,' .. ,N. gi represents the resistive loads that can be connected 

to the constrained ports. 

3.3.3 Parametric port model for parallel reactive and resistive loads 

unconstrianed ports 

V1~ 
181 

Multi-Port 
Network 

Fig.3.4 Multi-port network connected to combined reactive and resistive loads 

If both a capacitor with capacitance c and a resistor with conductance 9 are connected to port2 

in Fig. 3.1, the port2 equation becomes 

is2 - (g + SC)V2 = 0 (3.22) 

Incorporating equation (3.22) into the MNA formulation in (3.1) would result in a parametric 

formulation based on the combination of (3.12) and (3.21) for a two-port network. Extending the 

two-port formulation into M unconstrained ports and N constrained ports networks as shown in 

Fig. 3.4, the parametric formulation is given by combining the formulations in (3.12) and (3.21): 

(3.23) 
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The last N diagonal e1ements of En and Dn are Ci and gi respective1y, which represent the reac­

tive and resistive loads that can be connected to the constrained ports. Note that the parametric 

port formulation in (3.23) is not limited to a physical resistor or capacitor. It is valid for general 

resistive and reactive loads as will be shown in the next subsections. In other words, we do not 

make any assumption about the physical nature of the loads. 

3.3.4 Reduction subspace 

Using parametric model order reduction techniques established in [31], [77], the subspace Qs 

spanning the moments with respect to frequency is implicitly computed using the Arnoldi pro­

cess. The cross moments (mscJk,j with respect to frequency and the parameters Ci can be com­

puted by the procedure elaborated in [31], [82]. The corresponding subspace denoted by QSCi' 

i = 1, ... N, is obtained by performing a standard QR decomposition [74] on the cross mo­

ments. The subspace Q 91' Q 92' "', Q 9N spanning the moments with respect to conductance 

gl, g2, ... ,gN is implicitly computed using the Arnoldi process. 

Once all the required subspaces are evaluated, the resulting multidimensional subspace de­

noted by Q is as follows: 

(3.24) 

This can be achieved by using another standard QR decomposition [74] on the various subspaces 

in (3.24). 

3.3.5 Reduced order macromodel 

Having the multidimensional subspace Q, the reduced system is then produced by performing a 

congruence transformation on the original system in (3.1): 

(G + sê)x(s) = RV (3.25) 
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where 

(3.26) 

Note that although the congruence matrix Q is obtained from the system containing the in­

formation on the constrained ports, the model order reduction procedure is applied to the original 

multi-port system in (3.1) so that the ports can be connected with any value of capacitors and 

resistors. This is possible because the parametric modification in Section 3.3.1, Section 3.3.2 and 

Section 3.3.3 does not affect the unknown variables in the vector x in (3.1). It can be demon­

strated that the reduced system conserves the moments with respect to frequency as weIl as the 

load values. The proof of conservation of moments with respect to the load values gh and fre­

quency is shown in the appendix. An experimental verification is done using a twenty-port net­

work, nineteen of which are constrained ports. The size of the original network after discretiza­

tion is 4890 x 4890. The 2-norm of relative errors for the moments of the reduced model and 

original system are below le - 7. Furthermore, since the proposed macromodel is obtained by 

applying real congruence transformation to the original system in (3.1), and the system formula­

tion for the original system in (3.1) is in PRIMA compatible form [19], the resulting macromodel 

is passive by construction. 

Port1 

l 

Two-port 
Network 

Fig. 3.5 A diode is connected to port2 

3.3.6 Model validity for generalloads 

As was discussed in the previous section, the parametric port formulation in (3.23) can be used 

to conduct a subspace for a reduced order macromodel which is valid for a certain range of loads. 
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Port1 

+ 
sI 

l 
Two-port 
Network 

Fig. 3.6 A transmission line is connected to the port2 
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Namely, the real and imaginary parts of the admittance seen by the port have to fall within a 

certain range. Note that no assumption was made about the physical nature of this load. The 

macromodel is therefore valid for linear loads consisting of lumped components as long as their 

overall admittance seen by the port fall in the validity range. But also, it is valid for other types 

of loads such as nonlinear loads and distributed loads as shown in Fig. 3.5 and Fig. 3.6. In the 

case of nonlinear loads, the admittance seen by the port is a function of time, and in the case of 

distributed transmission line loads, it is a function of frequency. However, as long as the values 

of this admittance are always bounded by the validity range of the macromodel, the macromodel 

will be valid for nonlinear and distributed loads as will be demonstrated in the examples. 

3.4 Results 

Four cases studies are presented. The reduced macromodel was obtained using the proposed 

method, and then was sparsified based on the standard diagonalization schemes [75]. The tran­

sient simulations were conducted using a spice-class simulator implemented in MATLAB. 

3.4.1 Example 1 

The first example is a lü-port network (nine of which are considered to be constrained ports) 

which we refer to as circuitl as shown in Fig. 3.7. The circuit contains 18 non-coupled transmis­

sion lines and 1 nine-coupled transmission line system. After discretization of the interconnects, 

the resulting size of the MNA matrices was 4340 x 4340. Using the proposed approach, the 
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size of the reduced macromodel was 324 x 324. Using traditional block Arnoldi macromodel­

ing approach, the size of the reduced order mode! was 460 x 460 in order to match the original 

system up to 4GHz. A summary of macromodel size comparisons for example 1 is shown in 

Table 3.1. The nominalload values (expansion point) for generating the reduced macromode! 

are conductance OS (corresponds to open circuit) and capacitance OpF at aIl constrained ports. 

This macromode! was tested to be valid for resistive capacitive loads at the ports when the con­

ductance ranges from 0 to IS (which corresponds to 1 n to open circuit), and capacitance from 

o to 90pF. This range of validity depends on the number of moments matched, as weIl as the 

expansion points. 

Constrained Ports 

port2 

Uncons trained Port 
oort3 

port1 port4 

10-port port5 

Macromodel oort6 

port7 

port8 

port9 

port10 

Fig.3.7 A lü-port interconnect network as circuit!. 

The macromodel was tested by varying the value of one load resistor (or capacitor) while the 

other values of loads were kept constant. Fig. 3.8 shows a comparison of the frequency responses 

obtained from the proposed macromodel with the responses from the original system as the value 

of the resistor for constrained port2 varies from 1 n to 20000n, while the value of each resistor 

connected to the other 8 constrained ports is 20n and the value of each capacitor at 9 constrained 

ports is 10pF. Fig. 3.9 shows the frequency response comparisons as the value of the capacitor 

for constrained port2 varies from O.OOOlpF to 90pF, while the values of the capacitors for the 

other 8 constrained ports is lOpF and the values of the resistors are 20ft As can be seen from 

Fig. 3.8 and Fig. 3.9, they are aIl good approximation of the original network. 

This macromodel was also tested with 100 different cases with resistive loads, capacitive 
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........ Reduced 
0.7 

R=20000 __ Original 

0.6 
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0.3 

0.2 

0.1 R=l 

06-~~~ ____ -=~==~~====~~~=_ __ _J 
o 0.5 1.5 2.5 3.5 

Frequency (GHz) 

Fig. 3.8 Frequency responses for the reduced macromodel with resistive/capacitive 
loads as the value of the resistor at the constrained ports varies from H1 to 20000n, 
while the values of other resistor are 20n and the values of capacitors are 10pF 

0.08 

0.07 

0.06 

~ 
~ 
s 
~ 
0 

0.02 

0.01 

0 
0 0.5 

C=O.OOOlp 

C=lp 

1.5 

Frequency (GHz) 

2.5 

.... reduced 
_unreduced 

3.5 

Fig. 3.9 Frequency responses for the reduced macromodel with resistive/capacitive 
loads as the value of the capacitor at port2 varies form O.OOOlpF to 90pF, while the 
values of other capacitors are 10pF and the values of the resistors are 20n 

S6 



3 Model Order Reduction with Parametric Port Formulation 
_._-_._-------------_._---------------

0.7 

0.6 

0.5 

~ 0.4 

~ 

) 

Frequency GHz 

Fig. 3.10 Frequency response of port2 for circuit! with capacitive loads at the con­
strained ports (comparison between the original system and the proposed macro­
model). 

O.35,-..---.--..,.----.---.----.-r==::,ed;::uc=edCi"l 
., ,. ori inal 

0.3 

~~-~O.~5-~--~,.5~-~-~2~.5--~-~3~.5-~· 

Frequency GHz 

Fig. 3.11 Frequency response of port2 for circuit! with resistive loads at the con­
strained ports (comparison between the original system and the proposed macro­
model). 
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0.35 1 ---,------.--.---.---,-----.---r=:c:::::
red

;:=uc=:=ed", 

'" 1 ori inal 

0.3 

3.5 

Frequency GHz 

Fig. 3.12 Frequency response of port2 for circuit1 with resistive/capacitive loads 
at the constrained ports (comparison between the original system and the proposed 
macromodel). 
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0.6 

0.5 
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! 
). 0.3 
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Frequency GHz 

Fig. 3.13 Frequency response of the constrained portlO for circuitl with resis­
tive/capacitive loads at the constrained ports (comparison between the original system 
and the proposed macromodel). 
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Table 3.1 Macromodel size comparisons between the proposed method and block 

Arnoldi r-------..,..-----,------,------, 
1 Il Example 1 1 Example 2 1 Example 3 1 

N umber of Ports 10 20 30 

Original System 4340 4890 4900 

Block Arnoldi 460 800 990 

Proposed Method 324 494 554 

Table 3.2 CPU comparison of transient analysis for circuit1 

Il Size 1 Time 1 Speed-up 1 

Reduced System 324 28s 27 

Original System 4340 7598 -

loads and parallel resistive and capacitive loads. The values of the capacitors are randomly chosen 

from O.lpF to 90pF, and the values of resistors were randomly chosen from ln to 10000n, 

which fall within the range of validity of the macromodel indicated above. For 100 testing cases, 

the average relative error in the output frequency responses obtained from the proposed model 

compared to the original network is 0.38%. Fig. 3.10, Fig. 3.11, Fig. 3.12 and Fig. 3.13 show 

four sample frequency response results for different loads. As can be seen, they match weIl to 

the original network. The comparison of transient responses for the reduced macromodel and the 

original system using a 1-V pulse with arise time of 0.1 n8 and a pulse width of 2ns is shown in 

Fig. 3.14. The CPU cost for the transient analysis is shown in Table 3.2, indicating a speed-up of 

27 with respect to the solution obtained from the original circuitl. 

This macromodel was also tested with transmission line loads and nonlinear loads as shown 

in Fig. 3.15. Fig. 3.16 shows the frequency response for the transmission !ine load obtained from 

the proposed macromodel compared with that from the original system. It matches the original 

system very weIl. The transient responses for the transmission !ine loads, diode and inverter are 
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0.3 

0.25 

0.2 

1 
0.15 

J 0.1 

0.05 

-0.05
0
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Time(ns) 

Fig. 3.14 Transient results obtained from the proposed macromodel for resistive 
and capacitive loads and from the original system for circuitl. 

Transmission Line Diode 
R 

~e.1 ~ Il 
c + 

(a) (b) (c) 

Fig. 3.15 Transmission !ine, diode and inverter loads 
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shown in Fig. 3.17, Fig. 3.18 and Fig. 3.19 respectively. The transient responses are due to a 

pulse with arise time of 500ps and a pulse width of 2ns. The amplitudes of the pulses are 1 V, 5V 

and 15V respectively. As can be seen, they are accurate. Note that the reduced macromodel was 

generated once and was reused for performing frequency and transient responses in aIl the tests 

in Example 1. 

~ 
R 0.1 
'S o 

0.08 

0.06 

0·040~-0:"c:c.5------'------,J1.':-5 ----'-2 --:":2.5---'-~3~.5------l 

Frequency GHz 

Fig.3.16 Frequency response for transmission line loads for ex ample 1 (comparison 
between the original system and the proposed macromodel). 

3.4.2 Example 2 

The second example is a 20-port network (nineteen of which are considered to be constrained 

ports) which we refer to as circuit2 as shown in Fig. 3.20. The circuit contains 36 non-coupled 

transmission lines and 1 nine-coupled transmission line system. After discretization of the in­

terconnects, the resulting size of the MNA matrices was 4890 x 4890. The size of the reduced 

macromodel was 494 x 494 if using the proposed approach. U sing traditional block Arnoldi 

macromodeling approach, the size of the reduced order model was 800 x 800 in order to match 

the original system up to 4GHz. A summary of macromodel size comparisons between the pro­

posed method and block Amoldi for example 2 is shown in Table 3.1. The nominalload values 
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Fig. 3.17 Transient response for transmission line loads for ex ample 1 (comparison 
between the original system and the proposed macromodel). 
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Fig. 3.18 Transient response for diode loads for example 1 (comparison between 
the original system and the proposed macromodel). 

62 



3 Model Order Reduction with Parametric Port Formulation ----_._--_._-----_._------------------------

4 5 

Time(ns) 

1- reduced 1 
, .. , .. original 

Fig.3.19 Transient response for inverter load for example 1 (comparison between 
the original system and the proposed macromodel), 
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(expansion point) for generating the reduced macromodel are conductance OS (corresponds to 

open circuit) and capacitance OpF at aU constrained ports. This macromodel for example 2 was 

tested to be valid for resistive capacitive loads at the ports when the conductance ranges from 0 

to lOS (which corresponds to 0.1 0 to open circuit), and capacitance from 0 to 100pF. 

The macromodel for example 2 was generated once using the proposed approach and then 

was reused by 100 testing cases with different resistive and capacitive loads. The values of the 

capacitors are randomly chosen from O.OlpF to 100pF, and the values ofresistors were randomly 

chosen from 0.10 to 100000, which faU within the range of validity of the macromodel indi­

cated above. The average relative error in the frequency responses for aU testing cases is 0.43%. 

Fig. 3.21, Fig. 3.22, Fig. 3.23 and Fig. 3.24 show four sample frequency response results. As can 

be seen, they are accurate compared to the original network. 

The transient response for circuit2 with resistive and capacitive loads is shown in Fig. 3.25. 

CPU co st for the transient analysis is shown in Table 3.3, indicating a speed-up of 28 with respect 

to the solution obtained from the original circuit2. 

This macromodel was also tested with transmission line loads and diode loads as shown 
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Fig.3.20 A 20-port interconnect network as circuit2. 
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Fig. 3.21 Frequency response of port2 for circuit2 with capacitive loads at the con­
strained ports (comparison between the original system and the proposed macro­
model). 

Table 3.3 CPU comparison of transient analysis for circuit2 

Il Size 1 Time 1 Speed-up 1 

Reduced System 494 368 28 

Original System 4890 10228 -
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Fig. 3.22 Frequency response of port2 for circuit2 with resistive loads at the con­
strained ports (comparison between the original system and the proposed macro­
model). 
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Fig. 3.23 Frequency response of port2 for circuit2 with resistive/capacitive loads 
at the constrained ports (comparison between the original system and the proposed 
macromodel). 
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Fig. 3.24 Frequency response of port4 for circuit2 with resistive/capacitive loads 
at the constrained ports (comparison between the original system and the proposed 
macromodel). 
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Fig. 3.25 Comparison of the transient results obtained from the proposed macro­
model and the original system in circuit2 with constrained ports connected to resistive 
and capacitive loads. 
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in Fig. 3.15(a) and (b). Fig. 3.26 shows the frequency response for the transmission line load 

compared with that of the original system. It matches the original system. The transient responses 

for the transmission line loads and diode loads are shown in Fig. 3.27 and Fig. 3.28 respectively. 

The transient responses are due to a pulse with arise time of 500ps and a pulse width of 2ns. The 

amplitudes for the pulses are IV and 50V respectively. As can be seen, they match the original 

system very well. 
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Fig.3.26 Frequency response for transmission line loads for example 2 (compari­
son between the original system and the proposed macromodel). 

3.4.3 Example 3 

The third example is a 30-port network(twenty-nine of which are constrained ports) which we 

refer to as circuit3 as shown in Fig. 3.29. The circuit contains 36 non-coupled transmission 

lines and 1 nine-coupled transmission line system. After discretization of the interconnects, the 

resulting size n ofthe MNA matrices was 4900 x 4900. Using traditional block Arnoldi macro­

modeling approach, the size of the reduced order model was 990 x 990. Using the proposed 

approach, the size of the reduced macromodel was 554 x 554 in order to match the original 

system up to 4GHz. A summary of macromodel size comparisons between the proposed method 
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Fig. 3.27 Transient response for transmission line loads for ex ample 2 (comparison 
between the original system and the proposed macromodel). 
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Fig. 3.28 Transient response for diode loads for example 2 (comparison between 
the original system and the proposed macromodel). 
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and block Arnoldi for example 3 is shown in Table 3.1. The nominal load values (expansion 

point) for generating the reduced macromodel are conductance OS (corresponds to open circuit) 

and capacitance OpF at aH constrained ports. This macromodel for example 3 was tested to be 

valid for resistive capacitive loads at the ports when the conductance ranges from 0 to IS (which 

corresponds to 1 n to open circuit), and capacitance from 0 to 50pF. 

Constrained Ports 

Port 2 

Uncon strained Port Port 3 
Port 1 Port 4 

3D-port 
Macromodel i 

i 
i 
! 

Port 29 

Port 30 

Fig. 3.29 A 30-port interconnect network as circuit3 
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Fig. 3.30 Frequency response for circuit3 with resistive/capacitive loads at the con­
strained ports (comparison between the original system and the proposed macro­
model). 

Once again, the proposed macromodel was generated once and was tested by 30 different 

cases. The values ofthe capacitors are randomly chosen from O.lpF to 50pF, and the values of 
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Fig. 3.31 Comparison of the transient results obtained from the proposed macro­
mode! and the original system in circuit3 with constrained ports connected to capac­
itive loads. 

Table 3.4 CPU comparison of transient analysis for circuit3 

Il Size 1 Time 1 Speed-up 1 

Reduced System 554 398 17 

Original System 4900 6628 -

70 



3 Model Order Reduction with Parametric Port Formulation 71 

resistors were randomly chosen from ln to 10000n, which faU within the range ofvalidity of the 

macromodel indicated above. The average relative error for those testing cases in the frequency 

responses compared to the original network is 0.39%. One sample frequency response is shown 

in Fig. 3.30. As can be seen, it matches the original network. The transient response for circuit3 

with capacitive loads is shown in Fig. 3.31. CPU co st comparison for the transient analysis is 

shown in Table 3.4, indicating a speed-up of 17 with respect to the solution obtained from the 

original circuit3. 
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Fig. 3.32 Macromodel size versus number of ports (comparison between the pro­
posed method and the tradition al MOR method). 

3.4.4 Example 4 

The fourth example illustrates the relationship between the size of the reduced macromodel and 

the number of ports. Consider an interconnect network with p ports. pis varied between 2 to 

40. The comparison between the proposed approach and the traditional model order reduction 

method is shown in Fig. 3.32. As can be seen, the size of reduced order macromodels obtained 

from the proposed algorithm is much less sensitive to the number of ports than those obtained 

from traditional block Arnoldi method. This proposed method therefore significantly extends the 
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range of applicability of model order reduction methods to systems with large number of ports 

when information about the types of loads on the ports is available. 
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Chapter 4 

Sparse Parametric Multi-Ievel Reduction 

4.1 Introduction 

Krylov projection methods have proven to be very effective in reducing the size of interconnect 

networks while, at the same time, preserving the passivity. However, these methods still suffer 

from two difficulties. First, these methods generate a reduced order macromodel which contains 

many redundant poles. This results in a relatively large macromodel and significantly reduces the 

efficiency of the simulation. In order to address the problem associated with a large macromodel, 

a projection method based on two levels of reduction is presented [45]. The proposed method is 

guaranteed passive and typically results in a macromodel which is half the size of that obtained 

using conventional Krylov techniques. 

Another difficulty for the traditional model order reduction methods is that the reduced model 

is valid for a specific circuit, and therefore has to be regenerated each time a circuit parameter 

is modified. This is a very inefficient process for many practical cases such as optimization or 

parameter sweeping. In order to address this issue, parametric model order reduction techniques 

were proposed [31], [32], [77], [83]. These techniques improved the simulation time for para­

metric interconnect networks since the model only needs to be created once and then it can be 

used many times with different parameter values. However, the traditional parametric model re-
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duction methods are based on moment-matching. Such approaches are known to achieve a larger 

macromodel than what is necessary. Furthermore, the resulting parametric macromodel obtained 

from parametric model reduction is generally dense. A dense macromodel significantly reduces 

the efficiency of the simulation. To overcome these two problems, sparse multi-Ievel parametric 

model order reduction is proposed to produce a parametric macromodel which is very small as 

well as sparse [48], [49]. In the proposed approach, a new parametric system model suitable 

for sparsification is first developed. The formulation for this new model replaces the stamps of 

the parametric elements with constrained port representation. Then two-Ievel reduction is done 

on the new model. This results in a reduced order parametric macromodel which is very small 

but in general dense. Sparsification is therefore performed on this dense macromodel. Finally, 

the sparse reduced macromodel is brought back to the traditional representation without losing 

sparsity. 

The rest of the chapter is organized as follows. A new multi-level model order reduction 

method based on singular value decomposition is proposed in Section 4.2. In addition, a new 

multi-Ievel parametric model order reduction is described in Section 4.3. Furthermore, a novel 

sparsification technique for a parametric system is outlined in Section 4.4. Finally, sparse multi­

level parametric model order reduction is proposed in Section 4.5. 

4.2 Singular Value Decomposition Based Multi-level Reduction 

The new model order reduction method consists of two levels of order reduction. In the first level, 

a passive reduced model is obtained through projection on the Krylov subspace using the Amoldi 

process. The second level of reduction is also performed using a real congruence transformation 

in order to guarantee the passivity of the macromodel [84]. In this case the reduction basis is 

chosen by using singular value decomposition (SVD) to filter out redundant information as will 

be outlined in the sections below. 

Recalling from Section 2.1.2, the MNA formulation for a multi-port interconnect network 
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containing p ports can be written as [63] 

(G + sC)x RV 

1 (4.1) 

where s represents the complex frequency, V and 1 are vectors containing port voltages and 

currents. G E IRnxn and C E IRnxn contain the contributions of the memoryless and memory 

elements respectively. x refers to unknown node voltages and unknown currents. n is the total 

number of variables in the MNA equations. R E IRnxp is a selector matrix that maps the port 

voltages and currents into the node space of the circuit. 

4.2.1 First level of reduction 

In the first level of reduction, a standard Krylov subspace is used [19]. The reduced order model 

is constructed through a congruence transformation Q on the original system in (4.1) to obtain: 

(C + sê)x = RV (4.2) 

where C, ê E IRNqxNq and il E IRNqxp are given by 

(4.3) 

The matrix Q E IRnxNq (Nq = (q + 1) x p) is a real orthonormal basis of the subspace spanned 

by the block moments 

colsp[Q] = colsp[Mo, Ml, M 2 , ••. , M q ] (4.4) 

where Mo E lRnxp , ... , M q E lRnxp are block moments of the original system. The congruence 

matrix Q is accurately computed using the Arnoldi process. It can be shown that the reduced 
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macromodel is passive and preserves the first q moments of the original system [19]. Although 

the reduced model is much smaller than the original system (Nq « n), it is not optimal and 

contains a lot ofredundant poles [29], [30], [84]. A large macromodel significantly increases the 

CPU cost of simulation. This problem is addressed using a second level reduction as discussed 

in the following section. 

4.2.2 Second level of reduction 

The objective of doing the second level reduction is to remove unnecessary poles of the reduced 

model from the first level reduction, while at the same time preserving the passivity. In order 

to achieve this goal, the system in (4.2) is further reduced by performing another congruence 

transformation. 

(4.5) 

(4.6) 

Qs E ]RNqxNk is a real orthonormal matrix, thus the reduced system is passive by construction 

[84]. In order to obtain the subspace Qs for the second leve1 of reduction, we first construct a 

subspace which spans the response of the reduced system in (4.2) over the frequency range of 

interest. 

where Xl E IRNqX p , ... , XN E IRNqxp are sampling frequency response points. They are com-

puted using (4.2) and are given by the solution: 

(4.8) 
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It is to be noted that while the frequency response points are in general complex. F is collected 

by splitting the real and imaginary parts of the complex response in order to obtain a real basis. A 

real basis is required for preserving the passivity. As can be seen from (4.7), the matrix F spans 

sampling frequency response points and therefore conserves the system response. But this matrix 

cannot be directly used as the reduction subspace since various vectors in F are not completely 

linearly independent and therefore contains many redundant information. Thus, the next step is 

to find an orthonormal basis of the dominant directions in F. In order to achieve this, the matrix 

Fis decomposed using singular value decomposition process. It computes the matrices U, S, 

V from F such that: 

(4.9) 

where S is a diagonal matrix whose entries are non-negative elements in decreasing order and 

U, V are orthogonal matrices. The values on the diagonal of S provide a measure of the relative 

importance of the various vectors in the orthonormal subspace defined by the columns of U. This 

provides a convenient way to filter out the redundant subspace. Thus, taking only the leading k 

columns of U that correspond to large values in S will give us a compact subspace, Qs' which 

contains the responses of the system as shown in Fig. 4.1. The order N k is chosen using the 

following criteria: 
S(Nk1 Nk ) 

s(l, 1) ~ err (4.10) 

s(l, 1) and s(Nk , N k ) is the first and the N k
th elements of the diagonal elements of S. err is the 

error bound to choose the dominant subspace. Thus the dominant subspace Q s for the second 

level of reduction is given by: 

(4.11) 

where Ul, U2, ••• , UNk are the first N k columns of the matrix U. 
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F u v 

> threshold < threshold 
err err 

Fig. 4.1 Reduction subspace obtained using singular value decomposition 

4.2.3 Results 

Example 1 

The first example is an 18-port network. This network contains 1 coupled nine-transmission line 

network. After discretization of the interconnects, the resulting size n of the MNA matrices is 

2727. Using the block Arnoldi macromodeling approach, the size of the subspace that would 

match the original network up to lOGHz was 720. After the second level of reduction, the final 

size of the subspace was only 490. A summary of macromodel size comparison among the 

original system, the reduced macromodel obtained from traditional model order reduction based 

on block Arnoldi, and that from multi-Ievel reduction is shown in Table 4.1. 

The Y parameters Yu and Y12 are computed and shown in Fig. 4.2 and Fig. 4.3. As can be 

seen, the results of the proposed macromodel match the original circuit up to lOGHz. Fig. 4.4 

shows the transient response due to a 1 V pulse with arise time of 0.3ns and a pulse width of 

5ns. As expected, it is also accurate. To further demonstrate the efficiency of the proposed 
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Fig.4.2 Yll(S) for exampll (comparison between the original system and the pro­
posed macromodel) 
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Fig. 4.3 Y12 (s) for example 1 (comparison between the original system and the pro­
posed macromodel) 
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Fig.4.4 transient response for examplel (comparison between the original system 
and the proposed macromodel) 

method, a summary of CPU cost comparison for examplel to obtain transient responses is shown 

in Table 4.2, indicating a speed-up of 15 with respect to the original circuit. 

Table 4.1 Macromodel size comparlson 

Il Examplel 1 Example2 1 Example3 1 

N umber of Ports 18 lü 20 

Original System 2727 4340 4890 

Block Arnoldi 720 920 1500 

Multi-Ievel Reduction 490 400 620 

Example2 

The second example is a lü-port network. This network contains 18 non-coupled transmission 

Hnes and 1 coupled nine-transmission Hne. After discretization of the interconnects, the resulting 

size n of the MNA matrices is 4340. Using traditional block Arnoldi macromodeling approach, 
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Fig.4.5 Yn (s) for example2 (comparison between the original system and the pro­
posed macromodel) 
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Fig. 4.6 Y12 (s) for example2 (comparison between the original system and the pro­
posed macromodel) 
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the size of the subspace that would match the original network up to lOGHz was 920. After the 

second level of reduction, the final size of the subspace was only 400. A summary of macromodel 

size comparison is shown in Table 4.1. The Y parameters Yil and Y12 for example2 are computed 
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Fig.4.7 transient response for example2 (comparison between the original system 
and the proposed macromodel) 

and shown in Fig. 4.5 and Fig. 4.6. As can be seen, the results are accurate up to lOGHz. Fig. 4.7 

shows the transient response due to a 1 V pulse with arise time of 0.1 ns and a pulse width of 

5ns. As expected, it is also accurate. A summary of CPU co st comparison for example2 to obtain 

transient responses is shown in Table 4.2. 

Table 4.2 Macromodel CPU comparison between the proposed reduced macro­
model and the original system 

Multi-Ievel Reduction Original System Speed-up 

Example1 27.4(s) 411.4(s) 15 

Example2 17.8(8) 201.5(8) 11 

Example3 43.3(s) 633.2(s) 14 
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Example3 

The third example is a 20-port network. This network contains 36 non-coupled transmission 

lines and 1 coupled nine-transmission line. After discretization of the interconnects, the resulting 

size n of the MNA matrices is 4890. Using traditional block Arnoldi macromodeling approach, 

the size of the subspace that would match the original network up to lOGHz was 1500. After the 

second level of reduction, the final size of the subspace was only 620. A summary of macromodel 

size comparison is shown in Table 4.1. 
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Fig. 4.8 Yn (s) for example3 (comparison between the original system and the pro­
posed macromodel) 

The Y parameters Yn and Y12 for example3 are computed and shown in Fig. 4.8 and Fig. 4.9. 

Again, the results are accurate up to lOGHz. Fig. 4.10 shows the transient response due to a 

1 V pulse with arise time of 0.5ns and a pulse width of 5ns. As expected, accurate results are 

also obtained in this case. A summary of CPU cost comparison for circuit3 to obtain transient 

responses is shown in Table 4.2. 
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Fig. 4.9 Y12 (s) for example3 (comparison between the original system and the pro­
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4.3 Parametric Singular Value Decomposition Based Model Order 

Reduction 

The model order reduction methods presented in the previous section are performed on one pa­

rameter (frequency). However in many practical cases, it is necessary to account for the variations 

of sorne parameters when evaluating system performance. These variations could be the width 

and height of the transmission lines due to the environmental effects or manufacturing varia­

tions. Given the fact that the system equations for interconnect networks are very large due to 

discretization, it is not feasible to perform model order reduction each time as the parameter 

changes. In order to improve the efficiency, parametric model order reduction was proposed in 

the literature [31], [32], [77]. This technique produced a reduced order macromodel which is 

valid over a predefined range of parameters. In other words, we do not need to perform a new 

model order reduction each time as the parameter is modified. This results in significant CPU 

co st savings. However CUITent parametric model order reduction is based on multi-dimensional 

moment matching, this method is known to result in a macromodel, which is not optimal [83]. 

In order to address this problem, a multi-Ievel parametric model order reduction approach is 

proposed [48]. This new approach can remove the redundant information from using Krylov 

methods, while at the same time preserving the passivity of the system. The proposed method 

consists of two levels of reduction. The first is done using traditional parametric model order re­

duction, and in the second level, the singular value decomposition (SVD) [85] process is used to 

obtain the congruence transformation matrix and further reduces the system. The system after the 

second level of reduction is typically one-third the size of the first reduced model obtained using 

Krylov methods. Finally, since a real congruence transformation is used, the reduced model is 

provably passive by construction as will be demonstrated in Section 4.3.3. 

Consider a large parametric interconnect network containing distributed elements as well 

as lumped components. After discretization, the parametrized modified nodal analysis (MNA) 

formulation for this network can be written as 
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(4.12) 

The above formulation is the same as the parametrized formulation described in (2.46). However 

it is repeated in this chapter for the sake of c1arity and comp1eteness. 

4.3.1 First level of reduction 

In the tirst 1eve1 of reduction, traditiona1 parametric mode1 order reduction is used [31], [86]. The 

reduced order macromode1 is obtained from (4.12) by using a congruence transformation which 

resu1ts in: 

(4.13) 

where G, ê, Di, (i = 1,··· ,r) and Ê j , (j = 1,· .. ,c) E }RNqxNq and are given by 

G=QTGQ; (4.14) 

The congruence transformation matrix, Q, is chosen as an orthonormal basis of a subspace which 

spans the moments of the system with respect to frequency, and with respect to the parameters 

ÀI' ... , Àr, <Pl, ... , <Pc, as well as the cross moments. 

colsp[Q] = colsp [MSk ••• M Àik ••• M</>jk ••• MSa</>bd ••• MSp</>mn ••• ] (4.15) 

where M Sk is the kth moment with respect to frequency, M Àik is the kth moment with respect to 

the i th memory1ess parameter, M </>jk is the kth moment with respect to the lh memory parameter, 

M Sa</>bd is the cross moment between the ath frequency moment and the cJ!h moment of the bth 

memory1ess parameter, M Sp</>nm is the cross moment between the pth frequency moment and the 
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m th moment of the nth memory parameter. 

A combination of the Amoldi process and standard QR decomposition is used to accurately 

compute Q. The reduced order model in (4.13) is much smaller than the original system in (4.12). 

However, this approach is based on moment matching and results in a much larger reduced model 

than is necessary [5], [83]. In the following section, a second level of reduction is described which 

addresses this issue. 

4.3.2 Second level of reduction 

The reduced model in (4.13) provides an efficient way to solve the original system, however, it 

is still much larger than is necessary [5], [29]. In the second level of reduction, this macromodel 

is further reduced using another congruence transformation matrix, Qs' This time, the change of 

variables is with respect to the reduced model in (4.13). Thus, substituting x = Qsx, the second 

level of reduction gives: 

(4.16) 

- TA - TA - TA - TA - TA _ 
where: G = Qs GQs' C = Qs CQs, Di = Qs DiQs' Ej = Qs EjQs, R = Qs R. and x 

is the solution to this second reduced mode!. For the second level of reduction, the congruence 

transformation matrix, Qs' is chosen such that it spans the response of the system in (4.13) over 

the desired range of frequency and parameters À1, ... , Àr, (h, ... , cPc. To that end, the response of 

the system is sampled as follows in order to define the subspace K: 

(4.17) 

where Xi are the system responses given by: 

(4.18) 
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(4.19) 

and evaluated at various frequency and parameter points within the range of interest. 

Given the nature of the frequency response, the subspace K contains a lot of redundant 

information. The singular value decomposition (SVD) technique presented in [45], [85] is used 

to identify the dominant dimensions and obtain an optimal orthonormal basis spanning the system 

response. Singular value decomposition computes the matrices U, S, y from K such that K = 

U SyT where S is a diagonal matrix with non-negative elements and in decreasing order, and 

U and Y are unitary matrices. The singular values along the diagonal of S measure the relative 

importance of the corresponding column of U. This provides a convenient way to filter out the 

redundant directions. Taking only the first N k columns of U, those corresponding to the highest 

singular values, produces the congruence transformation matrix, Qs' which now contains only 

the dominant directions of the system response. Thus: 

(4.20) 

where Ui is the ith column of U. The order N k is chosen using the following criteria: 

(4.21) 

where 8(1,1) and 8(Nk , N k ) are the first and the N k
th singular values along the diagonal of 

S respectively. err is the error bound for the dominant subspace. Using this newly produced 

congruence transformation matrix, Qs' for the reduction in (4.16) produces a compact model 

valid over a range of values, determined by the sample points, for the parameters and frequency. 

It is to be noted that such a macromodel obtained from the second level reduction produces a 

macromodel which is passive by construction as will be proved in the following subsection. 



4 Sparse Parametric Multi-level Reduction 89 

4.3.3 Proof of preservation of passivity 

By definition, a passive circuit is one that cannot generate more energy than it absorbs. Passivity 

is an important property for interconnect networks. Non-passive model, even if it is stable, may 

result in an unstable system when connected to other passive networks [5]. In [87], the necessary 

and sufficient conditions for the passivity are outlined using admittance matrix Y (s) as follows. 

1. Y (s*) = Y* (s) for all complex s, where * is the complex conjugate operator. 

2. Y(s) is a positive matrix, that is, Z*T (Y(s) + yT(s*))z 2:: 0 for all complex values of s 

satisfy Re(s) > 0 and for any complex vector z. 

In order to prove that the reduced system from two-Ievel reduction is passive, we first show that 

the parametric model reduction based on a congruence transformation preserves the passivity of 

the system. We then demonstrate that two-Ievel reduction in the proposed algorithm is equiv­

aIent to the reduction on the original parametric system based on a congruence transformation. 

Consider the MNA formulation for the original parametric system described in (4.12). 

(4.22) 

After performing the first level reduction, the reduced model can be written as 

(4.23) 

where G, ê, Di, (i = 1,' .. ,r) and Ê j , (j = 1,' .. ,c) E JRNqxNq and are given by 

(4.24) 

and Q E ]RnxNq is the congruence transformation matrix for the first level reduction. It has 

been proved in [77] that the parametric reduced order system in (4.23) is passive by construction. 
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Next, we demonstrate that two-level reduction using congruence transformation Q E IRnxNq and 

Qs E IRNqxNk is equivalent to reducing the original system using a congruence transformation 

Q E IRnxNk 
total . 

The reduced macromodel obtained from the second level reduction was described in (4.16) 

as 

(4.25) 

where G, ë, Di, (i = 1,' .. ,r) and È j , (j = 1,' .. ,c) E IRNkXNk and are given by 

il = Q;R (4.26) 

and Qs E IRNqxNk is the congruence transformation matrix for the second level reduction. Sub­

stituting (4.24) in (4.26), we obtain 

G Q;QTGQQs 

ë Q;QTCQQs 

Di - Q;QTDiQQs (4.27) 

Ej Q;QTEjQQs 

il Q;QTR 
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By setting Qtotal = QQs' the ab ove equations can be rewritten as 

G Q'fotalGQ total 

C = Q'fotalC Q total 

Di - Q'fotal Di Q total (4.28) 

Ej Q'fotal E j Q total 

R - Q'fotalR 

It follows from (4.28) that the reduced macromodel based on two congruence transformations Q 

and Qs is equivalent to a macromodel based on one congruence transformation Qtotal' Therefore 

the final reduced order macromodel obtained from two-Ievel reduction is passive by construction. 

4.3.4 Results 

Example 1 

The first example is an interconnect network with 9 non-coupled transmission lines, 1 nine­

coupled transmission line system (see [88] for a description of the 9 coupled li ne system), and 

30 resistors. This system is a parametric 2-port network with 3 resistor values, RI, R2' R3 as 

parameters. The resulting size of the MNA matrices is 3522. 

Using the traditional parametric method described in Section 4.3.1 for the first level of reduc­

tion, the resulting reduced system was size 360. After applying the second level of reduction, the 

size of the reduced macromodel became 110. Table 4.5 shows the size comparison of the orig­

inal network (original system), macromode1 obtained from traditional parametric model order 

reduction (traditional PMR) and macromodel obtained from multi-Ievel parametric model order 

reduction (multi-Ievel PMR). The reduced model was tested over the frequency and parameter 

range of interest and the results matched the original system within an error of 0.04%. The Y2,2 

parameters of three sample cases (see Table 4.3 for the parameter values) are shown in Fig. 4.11. 
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Table 4.3 Three Sample Test Cases for Example 1 

Case 1 1020 2300 340 
Case 2 570 840 1530 
Case 3 1510 440 2290 

Table 4.4 Three Sample Test Cases for Example 2 

Case 1 2110 1680 1.70pF 1.25pF 
Case 2 1310 2090 0.94pF l.77pF 
Case 3 500 40 2.07pF 1.07pF 

The transient responses for the three sample cases are shown in Fig. 4.12. A summary of CPU 

co st comparison to obtain the transient responses is shown in Table 4.6. 

Example 2 

The second example is another interconnect network, this time with 3 ports and parametric with 

respect to 2 resistor values, R1, R2' and 2 capacitor values, Cl, C2. It contains 12 transmission 

lines, 145 capacitors, 138 inductors, and 175 resistors. The resulting size of the MNA matrices is 

1989. 

The first level reduction used the traditional parametric modified Krylov technique outlined 

in Section 4.3.1 and created a reduced model of size 300. Applying the second level of reduc­

tion created a smaller macromodel, having a size of 101. Table 4.5 compares the sizes of the 

original system (original system), macromodel obtained from traditional parametric model order 

reduction (traditional PMR) and macromodel obtained from multi-Ievel parametric model order 

reduction (multi-Ievel PMR). Again, the reduced model was tested over the range of interest for 

parameters and frequency and it matched the original within an error of 0.03%. Three sample 
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Table 4.5 Macromodel Size Comparison 

Il Example 1 1 Example 2 1 

Original system 3522 1989 
Traditional PMR 360 300 
Multi-Ievel PMR 110 101 

Table 4.6 CPU Co st Comparison for Examplel and Example2 

Il Examplel 1 Example2 1 

Traditional PMR 493.8s 339.6s 
Multi-level PMR 16.8s 24.1s 

Speed-up 29.4 14.1 

cases (see Table 4.4 for the parameter values) ofthe Y2,2 parameters are shown in Fig. 4.13. The 

transient responses for the three cases are also shown in Fig. 4.14. A summary of CPU cost 

comparison for example2 to obtain the transient responses is shown in Table 4.6. 

4.4 Sparse Parametric Model Order Reduction 

The size of the parametric macromodel obtained from parametric multi-level reduction discussed 

in the previous section is significantly smaller than the size of the original system, however, this 

reduced macromodel is generally dense. A dense macromodel significantly reduces the efficiency 

of the simulation. This problem was addressed in [75] for regular model order reduction methods. 

However, this approach is not applicable to parametric macromodels. In this section, a new tech­

nique is presented to produce a reduced order parametric macromodel which is sparse [49]. In 

order to achieve this goal, a new parametric formulation is proposed. This formulation replaces 

the stamps of the parametric elements with constrained port representations. The reduction and 

sparsification are performed on the macromodel in the space of the new formulation scheme, 

and the sparse reduced macromode1 is then brought back to the traditional representation with-
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Fig. 4.15 Adding a constrained port 

out losing sparsity. It is ta be noted that the newly introduced parametric ports do not have a 

significant impact on the size of the reduced macromodel. A significant CPU cast saving over 

traditional parametric model order reduction methods is however achieved due to the sparsity of 

the macromodel. 

4.4.1 New formulation suitable for sparsification 

As can be seen in Section 4.3, the parametric elements, represented by fi(>'i)D i and 9j (<pj) Ej in 

(4.12) hinder the use of the procedure ta sparse macromodels elaborated in [75]. In the first step 

of the proposed method, these elements are decoupled from the original formulation by adding 

constrained ports. 

For instance, assume that (4.12) only contains one parametric element and it is connected to 

the node "a" and node "b" of the system. Then, one additional constrained port is added into the 

original multi-port network as shown in Fig. 4.15. Therefore (4.12) becomes 

G1Xl + SCIXI = Rlu + R 2U 2 

. LT 
1. = I Xl 

(4.29a) 

(4.29b) 

(4.29c) 
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where 

(4.30) 

(4.31) 

(4.32) 

and Vab and ia are the voltage and current on the newly introduced constrained port. da is a 

vector with all zeros elements except for the rows that corresponds to node "a" and "b". Equation 

(4.29c) represents the parametric constraint on the newly appended constrained port. Notice that 

(4.29) denotes the same network as (4.12) but with the parametric element decoupled and a port 

at node "a" and "b" added. This port is a constrained port since the type of load (memory or 

memoryless) that will be attached is known - it is the same as that of the removed element. This 

load information is used to parametrize the port as will be shown in the following section. 

Similarly, if (4.12) contains w parametric e1ements, then multiple constrained ports are added 

with each port connecting to one parametric element. In general, the formulation becomes 

~ 

(4.33a) 

(4.33b) 

(4.33c) 
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where 

(4.34a) 

(4.34b) 

(4.34c) 

(4.34d) 

and V n and in are the voltages and currents respectively at newly introduced constrained ports. 

Dn is a matrix with an zero elements except for the rows and columns that correspond to the 

parametric nodes, and 1 is the identity matrix. Again, formulation (4.33a) does not contain any 

parametric elements, but instead contains constrained ports. In other words, the constrained port 

voltages and currents are not arbitrary but are subject to the parametric condition in (4.33c). 

4.4.2 Model reduction with constrained ports 

Having the modified formulation in (4.33), the reduced system is then obtained by using congru-

ence transformation, resulting in 

~ 

Îlwl U + Rw2û W 2 

AT 
Lw1xw 
AT 
L w2xw 

(4.35a) 

(4.35b) 

(4.35c) 
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(4.36a) 

(4.36b) 

(4.36c) 

The congruence transformation matrix, Q, is chosen such that the size of the reduced system 

in (4.35) is not aft'ected by the introduced constrained ports by exploiting the information on 

those ports. Since the type of elements (resistive or capacitive elements) on the constrained 

ports are known, the congruence transformation matrix can be obtained by taking the parametric 

elements on the ports as parameters and using parametric port formulation. To obtain such new 

formulation, consider a p port parametric system with w constrained ports as described in (4.33). 

The parametric elements are resistive and capacitive as shown in Fig. 4.16. In this case, the 

parametric condition in (4.33c) becomes 

(4.37a) 

(4.37b) 
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Incorporating the constraint equations in (4.37) into (4.33a), we obtain the parametric port for­

mulation 

(4.38) 

where Gw is obtained by modifying w rows of G w matrix with one non-zero in each row, cor­

responding to the constrained port current. The entries of Fi are no more than two non-zeros, 

corresponding to the two node voltages on the ith constrained port. The parameters Ci and 9i 

represent the capacitive and resistive elements connected to the constrained ports. The detailed 

process of constructing the above parametric port formulation can be found in Section 3.3. Note 

that the unknown variables in (4.38) is the same as those in (4.33a). In other words, embedding 

the parametric elements into the system equations is done in such a way that unknown variables 

do not change. It is also important to note that the new formulation in (4.38) is multi-dimensional 

with 9i and Ci, i = 1,··· ,w as parameters. Parametric model order reduction techniques are 

therefore used to obtain the subspace Q. This subspace spans the moments with respect to fre­

quency, moments with respect to parameters as well as sorne cross moments. The subspace 

denoted as Q S spanning the moments with respect to frequency can be implicitly computed using 

the Arnoldi process. The cross moments (m SCi ) k,j with respect to frequency and the parame­

ters Ci can be computed by the procedure elaborated in [31], [82]. The corresponding subspace 

denoted by QSCi' i = 1, ... w, is obtained by performing a standard QR decomposition [74] on 

the cross moments. The subspace Q gl' Q g2' ... , Q gw spanning the moments with respect to 

conductance 91,92,· .. ,9w is implicitly computed using the Arnoldi process. 

Once all the required subspaces are evaluated, the resulting multidimensional subspace de­

noted by Q is as follows: 

(4.39) 

This can be achieved by using another standard QR decomposition [74] on various required 
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subspaces in (4.39). 

4.4.3 Sparsification of the macromodel 

The reduced order macromodel in (4.35), while much smaller than the original system, is gener­

ally very dense. This significantly reduces the CPU efficiency of the simulation. Fortunately the 

macromodel is now expressed in a traditional state space form and the contributions of the param­

eters are expressed as port conditions. This allows us to use standard diagonalization schemes to 

make the reduced system sparse [75]. Equations in (4.35a) can be reformulated by premultiplying 
A -1 
Gw 

(4.40) 

A -1 A 

By applying eigen-decomposition to G w C w , we obtain 

(4.41) 

V and D are in general complex; however a real diagonalization can be derived from (4.41) in 

the form 

where Dr is a real block diagonal matrix and 

Vp-1 

Pis defined as [75]: 

(4.42) 

(4.43) 

(4.44) 

1. when the corresponding element of the diagonal matrix D, di,i, is a real, the element of P 

matrix is Pi,i = 1, 

2. when the corresponding elements of the diagonal matrlx D, di,i and di+1,i+1 are complex 
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conjugate, the elements of P matrix are: Pi:i+l,i:i+l = 

By substituting (4.42) into (4.40), the sparse reduced system becomes 

where Gw is an identity matrix, 

v 
PDP-1 Cw 

Hwl (lIP-1)-1(;:lilwl 

Rw2 - (lIP-1)-1(;:lilw2 

LWl = (lIP-1fLw1 
v (li p-1)T L w2 L w2 

Xw (li p-1 )-lxw 

(4.45a) 

(4.45b) 

(4.45c) 

(4.46a) 

(4.46b) 

(4.46c) 

(4.46d) 

(4.46e) 

(4.460 

and Gw and Cw are small yet sparse matrices. Note that this sparse mode!, similar to (4.35) aiso 

retains the constraints on the Ioads attached to the constrained ports. 

4.4.4 Sparse reduced order macromodel 

The final step is to reincorporate the nonlinear constraints in (4.45c) into the overall sparse macro-

model equations in (4.45a). In order to achieve this, the reduced macromodel is treated as a sub-

section, which is represented by (4.45a) and (4.45b), then the parametric elements, which were 

removed before are connected back to the constrained ports of the subsection to form the sparse 



4 Sparse Parametric Multi-level Reduction 103 -_._----------_._._---------_ .. ~----_._._._--_. __ ._-----_._-----_._._--_._ .. _-_._------------_._-

reduced parametric macromodel. 

(4.47) 

where 

(4.48) 

(4.49) 

G rP and C rP represent the general port formulation of unconstrained ports. RrP is a selector matrix. 

I:;=1 fi(Ài)D i represents the parametric memoryless elements. I:;=1 gj (rPi) Ej represents the 

parametric memory elements. Dis a selector matrix with elements di,j E {O, 1} and a maximum 

of one non-zero in each row or column that maps the vectors of port voltages and port currents 

entering subsection into the node space of the network. Xw is the unknown vectors of the reduced 

order macromodel in (4.45). In summary, the final reduced order macromodel based on (4.47) is 

in the form of 

[G + sC + t. J;(,jJ, + s t. gj«j)Ej 1 x = Ru 

i=Ï?x 

where C, C, Di, and Ëj are small yet sparse matrices. 

(4.50a) 

(4.50b) 
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4.4.5 Numerical results 

Example 1 
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Fig.4.17 Frequency responses for ex ample 1 (comparison between the original sys­
tem and the proposed macromodel) 
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The first example is an interconnect network with 9 non-coupled transmission lines, 1 nine­

coupled transmission line system (see [88] for a description of the 9 coupled line system), and 31 

resistors. This system is a parametric 2-port network with 4 resistor values, RI, R2' R3, and R4, 

as parameters. The resulting size of the MNA matrices is 3522. 

Table 4.7 Method Comparison for Example 1 

Size G Density C Density Time Speed-up 

(%) (%) (s) 

Original System 3522 0.0756 0.0866 2906.4 -

Traditional PMR 372 99.9 99.9 383.41 7.6 

Sparse PMR 366 3.43 0.479 36.84 78.9 

Using the sparse macromodeling technique proposed in this section, the size of the reduced 
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model is 366, with G only 3.43% filled, and ë only 0.479% filled. Note also that the other matri­

ces CR, L, ... ) in this proposed model contain less than 4 elements whereas using the traditional 

approach, the se other matrices are over 98.9% filled. Three sample cases ofY2,2 parameters (with 

resistor values randomly chosen from 1 rv 2000) are shown in Fig. 4.17. As can be seen from 

the figure, the results match very well (with average error 0.07%). Fig. 4.18 shows the transient 

responses due to a 1 V pulse with arise time of 0.5ns and a pulse width of 2ns. As expected, it 

is also accurate. A summary of CPU co st comparison between the original network, traditional 

parametric model order reduction (Traditional PMR), and the proposed method (Sparse PMR) to 

obtain transient responses is shown in Table 4.7. It is not surprising that the proposed approach 

can achieve 78.9 CPU speed-up while the traditional parametric model order reduction is only 

7.6 speed-up, since the reduced model is not only small but also sparse. 

Example 2 

The second example is another interconnect network, which consists of 9 non-coupled transmis­

sion lines, 2 nine-coupled transmission line systems (see [88] for a description of the 9 coupled 
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line system), 3 capacitors, and 29 resistors. The MNA size of this 2-port system is 6223. This 

system is parametric with respect to 2 resistor values and 2 capacitor values, RI, R2' CI. and C2. 

0.21--,----,.----.---.----r-r='====~=:==ïl 
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~ 0.14 

0.1 

0.5 1.5 2 2.5 
Frequency GHz 

3 3.5 4 

Fig. 4.19 Frequency responses for example 2 (comparison between the original sys­
tem and the proposed macromodel) 

Table 4.8 Method Comparison for Example 2 

Size G Density C Density Time Speed-up 

(%) (%) (s) (%) 

Original System 6223 0.0428 0.0541 3272.1 -
Traditional PMR 602 99.9 99.9 1848.8 1.8 

SparsePMR 628 1.72 0.299 91.04 36.0 

Applying the sparse parametric reduction procedure results in a reduced macromodel with 

size 628, where only 1.72% of G contains non-zero elements, and only 0.299% for C. The 

other matrices CR, L, ... ) contain less than 4 elements whereas using the traditional approach 

produces matrices which are over 99.9% filled. Three sample cases of the 1'2,2 parameters (with 

the values of resistor and capacitor randomly chosen from 1 rv 2000 and 0.5 rv 5 pF respectively) 

are shown in Fig. 4.19. As can be seen, it is accurate with the average error 0.1%. Fig. 4.20 
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shows the transient responses due to a 1 V pulse with arise time of O.5ns and a pulse width of 

2ns. As expected, it is also accurate. A summary of CPU cost comparison between the original 

network, the traditional parametric model order reduction, and the proposed method to obtain 

transient responses for example2 is shown in Table 4.8. In the example2, The CPU speed-up of 

the proposed model is 36.0 compared to 1.8 ifusing traditional parametric model order reduction, 

which again demonstrates the efficiency and accuracy of the proposed model. 

4.5 Sparse Multi-level Parametric Model Order Reduction 

4.5.1 Proposed algorithm 

In this section, a sparse two-Ievel parametric model order reduction (PMR) is proposed. This 

method is based on combining the multi-Ievel PMR in section 4.3 with the sparse PMR in sec-

tion 4.4. The proposed algorithm consists of five main steps as follows 

1. In the first step, the parametric elements are decoupled from the original parametric formu­

lation in (4.12) by adding constrained ports. The resulting formulation is a traditional state 
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space form as described in (4.33). 
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(4.51a) 

(4.51b) 

(4.51c) 

In the new formulation, the parametric element contributions appear as port constraints 

in (4.51c). 

2. In the second step, first level reduction based on congruence transformation is performed 

on the new formulation in (4.33) to obtain the reduced model as described in (4.35). 

Gwxw+sêwxw Hwl U + Hw2ÛW2 
AT 

i - Lwlxw 

f w(Ûw2) 
AT 
L w2 x w 

where 

A T A T A T 
R w2 = Q R w2 ; LWl = Q L wl ; L w2 = Q L w2 

(4.52a) 

(4.52b) 

(4.52c) 

(4.53a) 

(4.53b) 

The congruence transformation matrix Q is chosen such that the size of reduction subspace 

is not affected by the newly introduced constrained ports. This is achieved by taking the 

parametric elements as the parameters and using parametric prot formulation in (4.38). The 

details about model order reduction with constrained ports are discussed in section 4.4.2. 

3. In the third step, second level reduction based on singular value decomposition is used to 
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further reduce the macromodel. The resulting macromodel is given by 

Gwxw + sCwxw 
- -

RWI U + Rw2Uw2 

i 
-T 
Lw1xw 

f w(Uw2) 
-T 

- L w2 x w 

where 
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(4.54a) 

(4.54b) 

(4.54c) 

(4.55a) 

(4.55b) 

The reduction subspace Q; spans the dominant direction of the system responses in (4.52) 

over the range of frequency and parameters as presented in section 4.3.2. 

4. In the fourth step, the reduced macromodel obtained from two-Ievel reduction in (4.54) is 

sparsified as discussed in section 4.4.3. 

(4.56a) 

(4.56b) 

(4.56c) 

5. The final sparse reduced macromodel is obtained by incorporating the parametric elements 

into the sparse model in (4.56) and in form of 

[ G + sC + t, !<1J..)Di + s t gj l'j)Ej 1 if ~ Ru 

i =LTx 

where C, C, rh and Ë j are small yet sparse matrices. 

(4.57a) 

(4.57b) 
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4.5.2 Numerical results 

Example 1 
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Fig.4.21 Frequency responses for ex ample 1 (Y22) (comparison between the orig­
inal system and the proposed macromode1) 
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The first example is an interconnect network with 9 non-coupled transmission lines, 1 nine­

coupled transmission line system (see [88] for a description of the 9 coupled line system), and 31 

resistors. This system is a parametric 2-port network with 4 resistor values, Rt, R2' R3, and R4, 

as parameters. The resulting size of the MNA matrices is 3522. 

Using the proposed sparse multi-Ievel reduction method, the size of the reduced system after 

doing first level reduction is 366, while the macromodel is further reduced to 159 after doing 

the second level reduction. The size comparison is shown in Table 4.9. The values of the four 

parametric resistors are varied from 1 ,...., 2000 as shown in Table 4.10. The frequency responses 

for three sampling parameter cases are shown in Fig. 4.21 and Fig. 4.22. As can be seen, the 

results from the reduced macromodel match those from the original system up to 4GHz. The 

average relative error of Y parameters for all testing cases is 0.07%. Fig. 4.23 shows the transient 

responses for three sampling test cases of parameters due to a 1 V pulse with arise time of 

O.lns and a pulse width of 2ns. As expected, it is also accurate. A summary of CPU cost 
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Fig. 4.23 Transient responses for ex ample 1 (comparison between the original sys­
tem and the proposed macromodel) 
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comparison between the original network, traditional parametric model order reduction (PMR), 

and the proposed method to obtain transient responses is shown in Table 4.11. It is not surprising 

that the proposed approach can achieve 350.8 average CPU speed-up since the proposed model 

is not only very small but also sparse. 

Table 4.9 Size Comparison for Examples 

Il Examplel 1 Example2 1 

Original System 3522 6223 

Traditional PMR 372 608 

Sparse Multi-Ievel PMR 159 326 

Table 4.10 Test Cases for Example 1 

Case 1 960 440 930 1220 

Case 2 310 990 1190 990 

Case 3 560 420 1430 510 

Table 4.11 CPU Cost Comparison for Example 1 

Il Case 1 1 Case 2 1 Case 3 1 Ave. speed-up 1 

Original System 2906.4 2765.1 2712.6 -

Traditional PMR 383.4 336.8 381.6 7.6 

Sparse Multi-level PMR 7.9 7.7 8.3 350.8 
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Example 2 

The second example is another interconnect network, this time consisting of 9 non-coupled trans­

mission lines, 2 nine-coupled transmission line systems, 3 capacitors, and 29 resistors. The MNA 

size of this 2-port system is 6223. This system is parametric with respect to 2 resistor values and 

2 capacitor values, RI, R2' Cl, and C2. 

Table 4.12 Test Cases for Example 2 

Case l 2110 1680 1.70pF 1.25pF 

Case 2 1310 2090 0.94pF l.77pF 

Case 3 500 40 2.07pF 1.07pF 

Using the proposed sparse multi-Ievel reduction method, the size ofthe reduced system after 

doing first level reduction is 628 while the macromodel is further reduced to 326 after doing 

the second level reduction. The size comparison is shown in Table 4.9. The values of the two 
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Table 4.13 CPU Cost Comparison for Example 2 

Il Case 1 1 Case 2 1 Case 3 1 Ave. speed-up 1 

Original System 3272.1 3184.5 3187.5 -
Traditional PMR 1848.8 1817.8 1865.1 1.7 

Sparse Multi-leve1 PMR 50.3 50.8 47.7 64.8 

parametric resistors are varied from 1 t'V 200f2. The values of the two parametric capacitors are 

varied from 0.5pF t'V 5pF as shown in Table 4.12. The frequency responses for three sampling 

parameter cases are shown in Fig. 4.24 and Fig. 4.25. As can be seen, the results from the reduced 

macromodel match those from the original system up to 40Hz. The average relative error of Y 

parameters for a11 testing cases is 0.1 %. Fig. 4.26 shows the transient responses for three sampling 

cases of parameters due to a 1 V pulse with arise time of 0.5ns and a pulse width of 2ns. As 

expected, it is also accurate. A summary of CPU co st comparison between the original network, 

traditional parametric model order reduction (PMR), and the proposed method to obtain transient 

responses is shown in Table 4.13. In this example, the average CPU speed-up of 64.8 has been 

achieved. 

In summary, a new parametric model order reduction method was presented that produced 

macromodels which are small yet also sparse. As shown through numerical examples, the sparse 

and sma11 characteristics enable faster simulation, which is essential since parametric macromod­

els are often used repeatedly. 
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Chapter 5 

Nonlinear Model Order Reduction 

5.1 Introduction 

Model order reduction methods based on congruence transformation were developed for obtain­

ing passive [19] efficient macromodels for linear interconnect networks [5], [19]. Such con­

gruence transformation based techniques have become the methods of choice for model order 

reduction of interconnect networks due to their accuracy, numerical stability and passivity [5]. 

These methods are, however, frequency domain methods and are thus inherently limited to lin­

ear subcircuits. In [64], the concept of congruence transformation based reduction was extended 

to nonlinear equations in the time domain and was shown to be stable and passive. However, 

while the approach in [64] leads to significant CPU co st savings, it is fundamentally a simulation 

method based circuit reduction and it therefore does not pro duce a nonlinear macromodel which 

can be reused under different input waveforms and load conditions. In terms of the nonlinear 

macromodeling techniques, nonlinear reduction methods based on Taylor series were proposed 

in [35]-[37], where a set of linearizations is obtained by dropping the higher order terms of the 

Taylor series. Each linearization is then reduced using Krylov projection methods. The main 

drawback of these methods is that the reduction can only be performed to weakly nonlinear 

systems. Furthermore, the exponentially increasing cost with the number of expansion terms in-
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cluded makes these methods only limited in practice to cubic expansion. A trajectory piecewise 

linear approach [38], [80], [81] was proposed to handle strong nonlinearity. The key observation 

in trajectory model order reduction is that the nonlinearity is characterized by collections of lin­

earized systems at different expansion points around state trajectory. Each individuallinearized 

system is reduced using Krylov projection methods and the final macromodel is then obtained 

by taking a weighted combination of the resulting reduced order linearized models. However, 

finding a good weighting function is not an easy task for a broad c1ass of nonlinear systems. 

Given the problems associated with the existing nonlinear macromodeling techniques, a para­

metric sparse macromodeling technique for nonlinear networks is presented in this chapter. This 

method results in a sparse reduced order macromodel which is also valid over a range of param­

eter values. This nonlinear parametric macromodel improves the simulation time for parametric 

nonlinear networks since the macromodel only needs to be created once and can be used many 

times with different internaI circuit parameters. In order to achieve this goal, a new formulation is 

proposed. The proposed formulation allows for the decoupling of both nonlinear and parametric 

equations by introducing constrained ports. The reduction and sparsification are performed on the 

linear portion of the macromodel in the space of the new formulation scheme, and the reduced 

macromodel is then brought back to the traditional representation by reincorporating the para­

metric and nonlinear equations without losing sparsity. It is to be noted that the newly introduced 

constrained ports have a negligible impact on the size of the reduced macromodel. 

This chapter is organized into 6 sections. Following this introduction, Section 5.2 describes 

the system formulation for nonlinear networks. Nonlinear model order reduction based on con­

gruence transformation is presented in Section 5.3. In Section 5.4, the proposed method for ob­

taining sparse nonlinear macromodels is presented. The parametric sparse nonlinear macromodel 

is proposed in Section 5.5. Finally, numerical examples are shown in Section 5.6. 
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5.2 Network Formulation 

Consider a multi-port interconnect network consisting of many linear and nonlinear components. 

The nonlinear modified nodal analysis [63] formulation of such a p-port network as defined in 

equation (2.9), can be written as 

Gx(t) + Cx(t) + f(x(t)) = Ru(t) + b(t) 

i(t) LTx(t) 

(S.la) 

(S.lb) 

where x(t) E Rn is a vector of node voltages appended by independent voltage source currents, 

linear inductor currents, nonlinear capacitor charges and nonlinear inductor fluxes; G E Rnxn 

and C E Rnxn contain the contributions of the memoryless and memory elements respectively 

as was outlined in Section 2.1.3. 

The formulation in (5.1) can be generalized to take into account certain design parameters 

(interconnect geometries, resistors and capacitors etc). In such a case, the parametrized modified 

nodal analysis formulation [31], [63] inc1uding the nonlinear and parametric components can be 

expressed as: 

( G + ~ h;(Ài)Di) ,,(t) + I(,,(t)) + ( c + t, 9j( q,j)Ej) ;,(t) ~ Ru(t) + b(t) (S.2a) 

i = LT x(t) (S.2b) 

where Dl, ... , Dr are matrices each containing the modified nodal analysis formulation stamp of 

a particular memoryless parameter, El, ... , Ec are matrices each containing the modified nodal 

analysis formulation stamp of a particular memory parameter, Àl' ... , Àr are input scalars corre­

sponding to the variable parameters represented by Dl, ... , Dr respectively, <Pl, ... , <Pc are input 

scalars corresponding to the variable parameters represented by El, ... , Ec respectively. hi is 

an algebraic function describing the contributions of the parameter Ài to the memoryless ele­

ments. gj is an algebraic function describing the contributions of the parameter <Pj to the memory 
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elements. 

5.3 Nonlinear macromodeling based on congruence transformation 

5.3.1 Reduced macromodel 

In tbis section, model order reduction is applied in the time domain on the nonlinear MNA multi­

port formulation in (5.1). The resulting reduced system will therefore be in macromodel form 

and can thus be connected to other circuits [50]. Furthermore, the congruence transformation 

matrix Q used for the reduction is chosen such that it is valid over the desired user defined range 

of load conditions and input waveforms. 

By applying the change of variables x(t) = Qx(t) to equation (5.1), and pre-multiplying by 

QT, we obtain the reduced order macromodel as 

Gx(t) + ê!t(t) + Î(x(t)) = Ru(t) + b(t); i(t) = R
T 

x(t) (5.3) 

where 

(5.4) 

and Q E IRnxq is a real orthonormal matrix, x(t) E IRq is the solution to the reduced system, and 

q « n. The process of obtaining Q will be discussed in the next section. The macromodel in 

(5.3) can be stamped in the MNA equations of a large network. 

5.3.2 Reduction subspace 

In order for the change of the variables x(t) = Qx(t) to be valid, the congruence transformation 

matrix Q must span the subspace containing x(t) over the range ofloading conditions and input 

waveforms of interest. The subspace is generated by perforrning transient analyses and sampling 
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x(t) from the initial time point (to) up to the terminal time point (th). This is done several times 

on different load conditions and using a range of input waveforms. The subspace containing x( t) 

is then defined as 

where x(m) (t i ) is the ith time point for the mth transient response. Given the fact that there is 

typically a lot of similarities between various transient responses, and the fact that, for a large sys­

tem, the elements of x(t) are not alllinearly independent (which is the reason why linear model 

order reduction is possible), the subspace K typically contains a lot of redundant dimensions. 

In order to obtain an optimal orthonormal basis Q of this subspace, the singular value decom­

position(SVD) [85] is used to identify the dominant directions. The subspace K is therefore 

decomposed using singular value decomposition process such that 

K=USVT (5.6) 

where S is a diagonal matrix containing the singular values in decreasing order and U, V are 

orthogonal matrices. The matrix Q is constructed by taking only the leading k columns of U 

which correspond to large values in S, and thus contain the dominant dimensions of the subspace. 

The order k is chosen using the following criteria: 

8(k,k) 
8(1,1) ::; err (5.7) 

8(1,1) and 8(k, k) is the first and the kth elements of the diagonal elements of S. err is the error 

bound to choose the dominant subspace. Thus, the dominant subspace Q is given by: 

(5.8) 
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where Ub U2, ... , Uk are the tirst k columns of U. It is to be noted that this subspace is valid 

over the range of inputs and loads used to construct it. 

Obtaining the subspace detined in (5.5) requires samples of the transient responses under dif­

ferent input waveforms and loading conditions. However, it is not possible to perform a transient 

analysis directly on the multi-port formulation in (5.1). For that purpose, the load information is 

integrated into the original differential equations in (5.1) to obtain a new formulation called the 

nonlinear parametric port formulation. It is to be noted that the unknown variables in the new 

formulation are the same as the unknown variables x(t) in the original differential equations. 

The detailed process of obtaining such a nonlinear parametric port formulation can be found in 

Section 5.4.4. 

5.4 Sparse Nonlinear Macromodel 

If nonlinear time domain model order reduction was applied directly to the original system in 

(5.1) as was outlined in the previous section, the resulting nonlinear macromodel in (5.3) would 

be dense. This signiticantly reduces the efficiency of the simulation. In this section, we propose 

a new approach which allows for the application of time domain nonlinear macromodeling as 

well as for the sparsitication of the macromodel without any signiticant impact on the size of the 

reduced order macromodel [52]. 

5.4.1 Macromodel formulation suitable for sparsification 

ln the tirst step of the proposed approach, the system in (5.1) is reformulated such that the non­

linear equations in f(x(t)) are decoupled from the nonlinear equations through the introduction 
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of constrained ports. The resulting formulation is in the form of: 

GpXp(t) + Cpxp(t) 

i(t) 

f p (U2) 

Rpl U ( t) + bp ( t) + R P2 U2 

L~lXp(t) 

L~2Xp(t) 
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(5.9a) 

(5.9b) 

(5.9c) 

where Gp, Cp are obtained by adding the constrained ports to the original system in (5.1). The 

variable xp(t) is obtained by appending the new constrained port currents to x(t). Rpl is essen­

tially the same as R in (5.la) except for adding new rows with all zeros corresponding to the new 

constrained ports. Rp2 is a selector matrix mapping the new constrained port voltages into the 

node space. Lpl is essentially the same as L in (5. lb) except for adding new rows with all zeros 

corresponding to the new constrained ports. Equation (5.9c) represents the nonlinear equations 

of the circuit which are expressed as nonlinear constraints on the newly introduced ports. It is to 

be noted that these constraints are utilized in the computation of the reduction matrix in order to 

ensure that the size of the reduced macromodel is not affected by the addition of the constrained 

ports. 

Having the modified formulation in (5.9), the reduced system is then obtained by using con­

gruence transformation, resulting in 

GpXp(t) + êpfup(t) = Îlp1u(t) + bp(t) + Rp2Û 2 

i(t) t;l xp(t) 

(5.l0a) 

(5. lOb) 

(5.lOc) 
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where: 
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(5.11a) 

(5.11b) 

(5.11c) 

The computation of the congruence transformation Q p in the time domain is described in Sec­

tion 5.4.4. A simple example ofthis representation is illustrated in Section 5.4.5. 

5.4.2 Sparsification of the reduced macromodel 

The reduced macromodel in (5.10) is generally a dense nonlinear macromodel. However, we note 

that the formulation in (5.lOa) is in the form of generallinear multi-port network. It is therefore 

possible to apply diagonalization techniques such as the one described in [75] to equation (5.lOa). 
A -1 

Equation (5.lOa) can be reformulated by premultiplying Gp 

(5.12) 

A -1 A 

By applying eigen-decomposition to Gp Cp, we obtain 

(5.13) 

V and D are in general complex; however a real diagonalization can be derived from (5.13) in 

the form 

(5.14) 
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where Dr is a real block diagonal matrix and 

P is defined as: 
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(5.15) 

(5.16) 

1. when the corresponding element of the diagonal matrix D, di,i' is real, the element of P 

matrix is Pi,i = 1, 

2. :::::~::e~~~::: 0::::: :::::::r r'~~';r d;H,;H are complex 
By substituting (5.14) into (5.12), the sparse reduced system becomes 

GpXp(t) + C/ép(t) f41 U (t) + bp(t) + f42 U2 (5.17a) 

i( t) 
vT 
L P1 xp(t) (5.17b) 

f p(U2) 
vT 
L p2 x p(t) (5.17c) 

v 
where G p is an identity matrix, 

Cp - PDP-1 (5.18a) 

141 (V p-1 )-la;l Î41 (5.18b) 

bp = (Vp-1)-la;lbp (5.18c) 

Rp2 (V p-1 )-1(;;1 Îlp2 (5.18d) 

LP1 = (Vp-1fLp1 (5.18e) 

LP2 (vp-1)TLp2 (5.18t) 

Xp(t) (V p-1 )-1 Xp (t) (5.18g) 



5 Nonlinear Model Order Reduction 125 

Note that Cp and è\ are sparse real reduced matrices. 

5.4.3 Sparse reduced order nonlinear macromodel 

The final step is to reincorporate the nonlinear constraints in (5.17 c) into the overall sparse macro­

model equations in (5.17a). In order to achieve this, the reduced macromodel is treated as a sub­

section, which is represented by (5.17a) and (5. 17b). Then the nonlinear elements, which were 

removed before are connected back to the constrained ports of the subsection to form the sparse 

reduced order nonlinear macromodel. 

(5.19) 

where 

(5.20) 

(5.21) 

Gq, and Cq, represent the general port formulation of input and output ports. Rq, is a selector 

matrix. f q, (xq, (t)) represents the nonlinear elements for constrained ports. D is a selector matrix 

with elements di,j E {O, 1} and a maximum of one non-zero in each row or column that maps the 

vectors of port voltages and port currents entering subsection into the node space of the network. 

xp(t) is the unknowns of the reduced order macromodel in (5.17a). The above formulation is 

ilIustrated by a simple example in Section 5.4.5. In summary, the final reduced order macromodel 
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based on (5.19) is in the form 

Gx(t) + ë~(t) + j(x(t)) - Ru(t) + b(t) 

i(t) I
T 
x(t) 

where Gand ë are small and sparse matrices. 

5.4.4 Reduction subspace 

Nonlinear parametric port formulation 
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(5.22a) 

(5.22b) 

The congruence transformation matrix Qp used in the reduced order macromodel must span the 

subspace containing xp(t) over the desired range of loading conditions and input waveforms. 

However it is not possible to perform a transient analysis directly on the multi-port formulation 

in (5.9a). It is in fact necessary to take into account the conditions imposed by equations (5.9b) 

and (5.9c) and obtain nonlinear parametric port formulation. For c1arify of presentation, we will 

first consider a simple two-port network with one nonlinear element, shown in Fig 5.1, then the 

results will be extended into general multi-port nonlinear networks. Since there is one nonlinear 

Port3 
_ (constrained port) 

,........L-..:.._~-~ 

Fig. 5.1 An example two-port network with one nonlinear element 

element, a constrained port (port3) is added to the network. Here, the two ports are divided into 

input port (portl) and output port (port2). The voltages across the input port, output port and the 

constrained port are VI, V2 and V3 respectively and the currents are i sl , i s2 and iS3 respectively. If 
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we examine the modified nodal analysis formulation equation of such a system defined in (5.9), 

we note that the last three rows of the Gp matrix, corresponding to the portl, port2 and port3 

equations, in (5.9a) are: 

Gp = -1 0 0 0 0 (5.23) 

0 -1 0 0 0 

0 0 -1 0 0 

and 

VI 

V2 0 0 

V3 

u(t) = [ :: ] X p = R pl = -1 0 

i sI 0 -1 

(5.24) 

i s2 0 0 

iS3 

0 

Rp2= U2 = [ V3 ] 
0 

(5.25) 

-1 

Using this general port representation, the port equations in the last three rows are simply VI = VI, 

V2 = V2, and V3 = V3. In other words, the port voltage can be arbitrarily set by the boundary 

conditions. Note that port! is the input port and port2 is designated as output port with capacitive 

loads and port3 is constrained by the nonlinear element. In this case, the equation at port! remains 
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unchanged but the equation at port2 becomes: 

(5.26) 

and the equation at port3 becomes: 

i83 - 18 (e~ - 1) = 0 (5.27) 

Equation (5.27) represents a nonlinear constraint. In this case, a simple diode model was used, 

where ls is the reverse bias saturation current of the diode and VT is thermal voltage. Incorporat­

ing (5.26) and (5.27) into modified nodal analysis formulation stamp has the effect of converting 

the multi-port network in (5.9a) into parametric "single-port" network while keeping the vector 

of unknowns x p unchanged. This is done by modifying the rows corresponding to port2, port3 

equations in the modified nodal analysis formulation in (5.9a) as follows: 

where 

Cp = -1 0 0 

000 

000 

000 

o c 0 

000 

o 0 

-1 0 

o -1 

o 0 

o 0 

o 0 

(5.28) 

(5.29) 

(5.30) 
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o 

Rl = -1 Ül(t) = [ Vl ] 

o 
o 

o 

o 
o 

ls (e# - 1) 
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(5.31) 

(5.32) 

It is to be noted that there is one parameter in (5.28), c, corresponding to the capacitive 10ad. 

To extend the above method into M input ports, N output ports network (M + N = p), and E 

constrained ports, the nonlinear parametric port formulation with capacitive loads becomes 

(5.33) 

where Op is obtained by modifying (N + E) rows, corresponding to output port and constrained 

port equations, from port voltages into port currents, eN is a matrix with elements containing ca­

pacitive load parameters, Cl, C2, ... ,CN and RM is a selector matrix that maps input port voltages 

into the node space of the circuit. 

If a resistor is connected to the port2 in Fig. 5.1, then the port2 equation becomes: 

(5.34) 

Here we use conductance 9 to represent the value of the resistive load. 
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Incorporating (5.34) and (5.27) into (5.9a) results in 

(5.35) 

The above equation is similar to that in (5.28) except for the matrix G 1, containing one nonzero 

elements, g. To extend the above method into M input ports, N output ports network (M + 
N = p), and E constrained ports, the nonlinear parametric port formulation with resistive loads 

becomes: 

(5.36) 

where G N is a matrix with elements containing resistive load parameters, gl, g2, ... ,gN. 

If the loads are the parallel combination of a resistor and a capacitor, then the nonlinear 

parametric port formulation with combination of capacitive and resistive loads becomes 

(5.37) 

where G N and eN are matrices with elements containing resistive load parameters, gl, g2, ... ,gN 

and capacitive parameters,Cl, C2,· .• ,CN respectively [40]. 

Congruence Transformation Matrix 

Using (5.37), the subspace is defined by performing transient responses sampling xp(t) from the 

initial time point (to) up to the terminal time point (th). This is done several times on different 

load conditions (for capacitive loads, ci, ... ,dN, ; for resistive loads, gi, ... ,!lN)' and using a 

range of input waveforms ul (t), ... ,uk(t) as shown in Fig. 5.2. Four different input waveforms 

are used to generate the subspace data. They are SV step input with fall time of SOps and SOOps 

and 5V step input with rise time of 50ps and 500ps as shown in Fig. 5.3. The subspace containing 
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Multi-Port Network c 1i g1i 

K = [x p l(tO)" ... " ... ,xp m(th)] 

i =1...r, j=1...k 

UMi(t) cN
i 

gNi 

Fig. 5.2 Network used for generation of subspace data 

X p (t) is then defined as 

u(t) 

5 (V) 

Time (t) 

u(t) 

5 (V) 
Step Input 

Fig. 5.3 Input waveforms for calculation of congruence transformation 

(5.38) 

Time (t) 

Given the fact that there is typically a lot of similarities between various transient responses, 

the subspace K typically contains a lot of redundant dimensions. In order to obtain an optimal 

orthonormal basis Q p of this subspace, singular value decomposition [45], [85] is used to identify 

the dominant directions, which results in 

K=USVT (5.39) 
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where S is a diagonal matrix with the singular values and in decreasing order. U and V are 

unitary matrices. The singular values along the diagonal of S measure the relative importance 

of the corresponding columns of U. This provides a convenient way to filter out the redundant 

directions. Taking only the first k columns of U, those corresponding to the highest singular 

values, produces the congruence transformation matrix, Qp' Note that although the congruence 

matrix Qp is obtained from (5.37) containing the information on the output ports and constrained 

ports, the order reduction procedure is applied to the general port formulation in (5.9) so that 

the reduced system is a macromodel expressed in (5.22) that can be connected to the predefined 

range of loads. 

In summary, the proposed sparse nonlinear macromodeling algorithm consists of eight main 

steps as follows 

1. The original system in (5.1) is reformulated such that the nonlinear elements are decoupled 

through the introduction of constrained ports. The new multi-port formulation is in (5.9). 

2. In order to construct the subspace, a new nonlinear parametric port formulation in (5.37) 

is obtained by embedding the nonlinear constraints in (5.9c) and the load information into 

the multi-port formulation in (5.9a). 

3. Generate the subspace K by performing transient responses on (5.37) over the range of 

input waveforms and loads (K = [X(l)(tO),'" ,X(l)(th),'" ,'" ,X(m)(th)])' 

4. Decompose the subspace K into three matrices using SVD decomposition , rU, S, V] -SVD(K). 

5. Extract the dominant subspace by taking the leading k columns of U, Qp -first k columns 

ofU. 

6. Performing the congruence transformation to (5.9) results in a dense reduced macromodel 

in (5.10). 

7. The dense reduced macromodel in (5.10) is sparsified into a sparse reduced macromodel 

in (5.17). 
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8. The final reduced macromodel in (5.22) is obtained by reincorporating nonlinear con­

straints in (5.17c) into the sparse macromodel in (5.17a). 

5.4.5 Illustration example 

In this subsection, a simple example is given to illustrate the various mutation of the previous 

subsection. Consider a two-port network inc1uding an nonlinear component, a diode, shown in 

Fig. 5.4, the modified nodal analysis formulation of the original network is as in the form of (5.1): 

Fig. 5.4 An example circuit for illustration 

GI 0 -GI 0 1 0 VI 

0 0 0 0 0 1 V2 

-GI 0 GI +G2 0 0 0 V3 

0 0 0 G3 0 0 V4 

-1 0 0 0 0 0 i sl 

0 -1 0 0 0 0 i s2 
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0 0 0 0 0 0 ilI 

0 Cl 0 -Cl 0 0 V2 

0 0 0 0 0 0 V3 

+ 
0 -Cl 0 Cl 0 0 V4 

0 0 0 0 0 0 i 8l 

0 0 0 0 0 0 '/,82 

0 0 0 

0 0 0 

(~ ) 
[ :: 1 

18 e VT - 1 0 0 
+ 

(~ ) = (5.40) 
-18 e VT - 1 0 0 

0 -1 0 

0 0 -1 

where 18 is the reverse bias saturation current of the diode, VT is thermal voltage. As the nonlinear 

element in the above equation hinder the sparsification of the reduced system, it is decoupled from 

the original modified nodal analysis equation by adding a nonlinear constrained port, port3, as 

shown in Fig. 5.5. Therefore the resulting formulation is obtained as shown in (5.9a): 

Nonlinear Constrained Port 

Fig.5.5 Nonlinear constrained port 
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Cl 0 -Cl 0 1 0 0 VI 

0 0 0 0 0 1 0 V2 

-Cl 0 Cl +C2 0 0 0 1 V3 

0 0 0 C3 0 0 -1 V4 

-1 0 0 0 0 0 0 'lsl 

0 -1 0 0 0 0 0 'ls2 

0 0 -1 1 0 0 0 iS3 

0 0 0 0 0 0 0 VI 

0 Cl 0 -Cl 0 0 0 V2 

0 0 0 0 0 0 0 V3 

+ 0 -Cl 0 Cl 0 0 0 V4 

0 0 0 0 0 0 0 'lsl 

0 0 0 0 0 0 0 'ls2 

0 0 0 0 0 0 0 1,s3 

0 0 0 

0 0 0 

0 0 

[ :: ] + 

0 

0 0 0 [ V34 ] (5.41) 

-1 0 0 

0 -1 0 

0 0 -1 

where 

V34 = V3 - V4 (5.42) 

The variable vector in (5.41) differs from the vector in (5.40) by adding a new variable, the 

introduced nonlinear constrained port cUITent, iS3' Furthermore, the new CUITent is bounded by 
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the following nonlinear equation 

V3 

Is (e ~ - 1) = [0 0 0 0 1] V4 (5.43) 

'ls2 

The above equation is the nonlinear constraint on the newly introduced constrained port as in 

(5.9c). The port3 is different from the general port in the way that the load connected to the 

port3 is completely known. In the illustration circuit, it is a diode. This load information can 

be exploited in order to obtain a congruence transformation which is not affected by the new 

added ports. Note that the last two rows in (5.41), corresponding to the port2, port3 equations, 

are simply 

(5.44a) 

(5.44b) 

In other words, the port2, port3 can be arbitrarily set by the boundary condition. Consider that 

the port3 is connected to the diode, the port2 is designated as the output port with capacitive load, 

embedding (5.43) and (5.26) into (5.41) without changing the unknown variables would result in 
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the nonlinear parametric port formulation in (5.33) 

+ 

o 0 

-1 0 

o 0 

o 0 

o 
o 
o 
o 

o 0 0 0 000 

o CIO-Cl 0 0 0 

o 0 0 0 000 

o 1 0 0 

o 0 1 0 

G3 0 0 -1 

o 0 0 0 ~sl 

o 0 -1 0 

o 0 0 -1 

o 0 0 0 0 0 0 

o 0 0 0 0 0 0 

o 0 0 0 0 0 0 

o -Cl 0 Cl 0 0 0 + 0 0 0 0 0 0 0 

o 0 0 0 000 

o 0 0 000 0 

o 0 0 0 000 

+ 

o 
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o = 

o 0 0 0 0 0 0 

o c 0 0 0 0 0 
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o -1 

o 0 

ls (e~ -1) 0 
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(5.45) 

The transient responses for (5.45) are sampled from the initial time point to the terminal time 

point to form the subspace containing the system responses over the desired input waveforms 

and output loads. Then the congruence transformation matrix is found by taking the dominant 
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direction of this subspace by using singular value decomposition. Having the transformation 

matrix, the congruence transformation is applied to (5.41) to find the reduced system. It is to be 

noted that the reduced system is a three-port network with an input port, an output port connected 

to a capacitive load and a constrained port connected to the nonlinear element, diode. After doing 

the sparsification as explained in Section 5.4.2, the reduced sparsified macromodel is in the form 

of (5.17). The final step is to connect the diode back to the nonlinear constrained port, which 

results in the macromodel expressed in (5.19) as shown in Fig. 5.6, where: 

-1 0 0 

0 -1 0 

0 0 0 [ v,(t) 1 Rq,= f q,(xq,(t)) = u(t) = (5.47) 
0 0 0 V2(t) 

0 0 0 

0 0 18 (e~ -1) 

5.5 Nonlinear Parametric Macromodel 

The nonlinear macromodei presented in the previous section is valid for a specifie nonlinear 

circuit. This macromodei has to be regenerated each time as the internaI parameters change. 

These parameters couid be the Iength and width of transmission Iines or the values of resistances 
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Reduced Sparse 
Nonlinear 

Macromodel 

G,C} (x(t»,R,L 

Fig. 5.6 Reduced nonlinear sparse macromodel 
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and capacitances of circuits su ch as the parametric circuit shown in Fig. 5.10. Given the fact 

that the system equations for interconnect networks are very large due to the discretization, it is 

computational time consuming for performing simulation. In order to improve the efficiency, a 

nonlinear parametric macromodel technique is presented in this section. 

Consider the parametric nonlinear networks in (5.2) with M input ports, N output ports, E 

nonlinear elements and D parametric elements, because of the parametric terms (2:.::=1 hi (Ài ) Di), 

(2:.:~=lgj(1Jj)Ej) and the nonlinear terms f(x(t)), the standard sparsification process cannot 

be operated. They are decoupled from the original equation by adding constrained ports for the 

parametric terms and nonlinear terms. The resulting formula suitable for the sparsification is as 

follows: 

Gwxw(t) + Cwxw(t) Rw1u(t) + bw(t) + Rw2 U 2 + Rw3 U 3 

i(t) L~lXW(t) 

f w(U2) = L~2XW(t) 

gw(U3) L~3XW(t) 

(5.48a) 

(5.48b) 

(5.48c) 

(5.48d) 

Equation (5.48c) and (5.48d) represent the nonlinear elements and parametric elements respec­

tively expressed as the nonlinear or parametric conditions on the newly introduced constrained 

ports. Therefore, in the parametric nonlinear system, we have two kinds of constrained ports, 

parametric and nonlinear ports. The nonlinear constrained ports are connected to nonlinear el­

ements, while parametric constrained ports are connected to parametric elements. Having the 
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formulation, the real congruence transformation is applied to the system in (5.48) to obtain: 

GWXw(t) + êwfxw(t) RW1u(t) + bw(t) + R W2 Û2 + Rw3 Û3 (5.49a) 

i(t) 
AT 

LWlxw(t) (5.49b) 

Î w(Û2) 
AT 

LW2 x w(t) (5.49c) 

9w(Û3) -
AT 

LW3 XW (t) (5.49d) 

where: 

A T 
Gw = QwGwQw; 

A T 
C w = QwCwQw (5.50a) 

A T 
Rwl = QWRwl; 

A T 
Rw2 = QWRW2 (5.50b) 

A T 
LWl = QWLWl; bw(t) = Q~bw(t) (5.50c) 

A T 
LW2 = QW LW2; 

A T 
LW3 = QWLW3 (5.50d) 

To sparsify the reduced order model in (5.49a), the diagonalizing process explained in the 

Section 5.4.2 is performed, which results in 

GwXw(t) + Cw5:w(t) 

i(t) 

j w(i12 ) 

(5.51a) 

(5.51b) 

(5.51c) 

(5.51d) 

Finally the nonlinear constraints in (5.51c) and parametric constraints in (5.51d) are reincor­

porated into the overall macromodel equation by taking (5.51a) and (5.51b) as a subsection. The 
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following sparse reduced order macromode1 is obtained 

( G + t. hi( >'i)Di) x( t) + f( x( t)) + ( ë + t, gj( <P; )E; ) :i:( t) = Ru( t) + b( t) (5.520) 

i = Ï} x(t)(5.52b) 

where G, ë, Di and È j are small and sparse matrices. 

The congruence transformation Qw used in model order reduction must contain the informa­

tion about the parametric elements, the nonlinear elements and the loads. In order to do that, the 

load information, the nonlinear elements information as well as the parametric information are 

incorporated into the formulation in (5.48a) and result in 

( Gw + G N + t. hi( >'i)Di) "'w( t) + ( ë w + t. gj( <Pj )E;) ;'w{t) 

+ j(xw(t)) = RMuM(t) + bw(t) 

( Gw + t. hi (>'i)Di) "'w{t) + ( Cw + C N + t, g; (<p; )E; ) ;'w (t) 

+ j(xw(t)) = RMuM(t) + bw(t) 

( Gw + GN + t. hi(>'i)iii) "'w(t) + ( C w + C N + t,g;(<P;)E;) ;'w(t) 

+ j(xw(t)) = RMuM(t) + bw(t) 

(5.53) 

(5.54) 

(5.55) 

Equation (5.53), (5.54), and (5.55) are nonlinear parametric formulation with resistive loads, ca­

pacitive loads and combination of resistive and capacitive loads respectively. Where G N contains 

resistive load parameters, gl, g2, . .. ,gN. eN contains capacitive load parameters, Cl, C2, . .. ,CN· 

Gw is obtained by modifying (N + E + D) rows corresponding to output ports, nonlinear con-
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strained ports and parametric constrained ports equations, from port voltages into port currents. 

Di and Ej contains parametric information. RM is a selector matrix that maps input port volt­

ages into the node space of the circuit. 

In order to obtain the required subspace data, transient analyses over the predefined input 

waveforms, load conditions and parametric conditions using formulation in (5.53), (5.54) or 

(5.55) are performed. The congruence transformation matrix Qw is found by extracting the dom­

inant subspace using singular value decomposition. 

5.6 Numerical Results 

In this section, we present two examples. The first example considers an interconnect system 

containing nonlinear elements. The second example considers a nonlinear parametric intercon­

nect system. The transient responses using the proposed method are compared to those obtained 

from original system. As was expected, the results match very weIl. Also CPU comparisons for 

two examples demonstrate the efficiency of the proposed method. The proposed algorithms for 

aIl examples were implemented in MATLAB. 

5.6.1 Example 1 

The first example is a nonlinear network containing 9 coupled transmission lines, nine single 

transmission lines and two inverters. The length for the coupled transmission lines is O.lm and 

the length for the single transmission Hnes is O.05m. The per unit length parameters of the 

9 coupled transmission lines are given in [88]. The per unit length parameters of the single 

transmission lines are R = 3.740/m, L = 284nH/m, C = 84.6pF/m. Inverterl is connected 

between two transmission Hnes, while inverter2 is connected at the output of one transmission 

line. The output of inverter2 is considered as the output of the network as shown in Fig. 5.7. 

After discretization of network, the resulting size of the modified nodal analysis matrices was 

3533. Four different input waveforms are used for computing the subspace data. They are SV 
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step inputs with rise time of 50ps and 500ps and 5V step inputs with faU time of 50ps and 500ps 

as shown in Fig. 5.3. The load condition was set to be a capacitor with value ranging from O.lpF 

to lOpF. Using the proposed approach, the size of the reduced macromodel was 320 as shown in 

Table 5.2. 

Original Nonlinear Network 
oize: 3533 

9-couple~.![!n~m!~.~ion line 

i LineU' i R 

son! Line#? ! son 

+5V 

son! Line#3 ! 50n'::,-.Lin.eU.'.2 ......... 
~i ! ...... -1·'····· 

SOl] j Line#4 1 ~ Lige#J3 

..:::I!:+,Swonlr-' ~; Line#5 j son l 1 jne#'4 
V, ~' i ...... ,....l~"··_···_ ...... 

50l]! Line#6 ! ~ 1 jœ#15 
~! Une#? 1~1 LigeU'6 

~! Line#8 !~1 Linef'! 

r:q! Line#9 ! ~ l IjpefJ8 rtW ............ ___ , l 

oize: 320 

Fig. 5.7 Interconnect network with two inverters as example 1 

Table 5.1 Three Cases for Example 1 

Il C Input Waveform 

Case 1 3.2pF step input with 488ps faU time 
Case 2 0.71pF step input with 79ps rise time 
Case 3 0.49pF sinusoidal input at frequency 2GHz 

v, 

In order to test the proposed method, a capacitor was connected at the output of the reduced 

macromodel. Different cases ofload capacitor values and input waveforms were considered. The 

transient responses for three of these cases are shown in Fig. 5.8 and Fig. 5.9. The values of the 

loads and input waveform for each case are given in Table 5.1. As can be seen the results match 

very weU with the transient responses of the original system. The CPU cost of the reduced system 

for three cases in Table 5.1 range from 38s to 78s, while the CPU co st for the original system 

range from 770s to 938s. The average speed-up of 15.8 was therefore achieved. A summary of 

CPU co st comparisons for examp1e 1 to obtain the transient responses is shown in Table 5.2. 
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Fig. 5.8 Transient response comparison between the original system and the pro­
posed macromodel for example 1 (cases land 2) 
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Fig. 5.9 Transient response comparison between the original system and the pro­
posed macromodel for example 1 (case 3) 
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Table 5.2 Size and CPU Co st Comparisons 

Il Example 1 

Size of Original System 3533 
Size of Proposed Macromodel 320 
CPU Cost for Original System 770s rv 938s 
CPU Cost for Reduced System 
Average CPU Cost Speed-up 

Rand C are intemal 
circuit parameters 

9--couple9Jr~m.~.rn!~.~ion line +5V 
! Line#1! R 

_2.s.~.s~ 
~;~T'Un;;;3r;;~ 

~ 
~ Line#10 

~V1~~~~~~~C~ 

~ 
~ Original 

250! Line#8 ! 250 macromodel 
~ 8ize:2512 

250 i Line#9 i 25Q 

~ 

38s rv 78s 
15.8 

Nonlinear 
parametric 

reduced i,. 
macromodel 

8ize: 282 

Fig.5.10 Interconnect network with two internaI circuit parameters as example 2 

Table 5.3 Size Comparisons for Example 2 

Size of Original System 
Size of Proposed Macromodel 

Table 5.4 Three sample cases from 100 test cases for ex ample 2 

Parameter# 1 R Parameter#2 C Load CL Input Waveform 

Case 1 760 6.2pF 0.24pF step input with 150ps rise time 

Case 2 110 2.1pF 3.7pF 4GHz sine waveform 

Case 3 550 O.12pF 0.86pF step input with 590ps fall time 
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Fig. 5.11 Transient response comparison between the original system and the pro­
posed macromodel for example 2 (cases 1) 
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Fig. 5.12 Transient response comparison between the original system and the pro­
posed macromodel for example 2 (case 2) 
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Fig. 5.13 Transient response comparison between the original system and the pro­
posed macromodel for example 2 (case 3) 

Table 5.5 CPU Comparisons for Example 2 Based on 100 Test Cases 
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Il Reduced System 1 Original System 1 Average speed-up 1 

Reduction overhead 2191.7s - -
Simulation for 100 test cases 1883.8s 46349.9s 24.6 

Overall for 100 test cases 4075.5s 46349.9s 11.4 
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5.6.2 Example 2 

The second example is an interconnect network with one single transmission line, nine coupled 

transmission lines system and one inverter. The length for the coupled transmission lines is 

O.lm and the length for the single transmission line is 0.05m. The per unit length parameters 

of the 9 coupled transmission lines are given in [88]. The per unit length parameters of the 

single transmission line are R = 3.74n/m, L = 28.4nH/m, C = 64.6pF/m. This system is 

a parametric 2-port network with 1 resistor Rand 1 capacitor C as internaI circuit parameters 

as shown in Fig. 5.10. For this network, the original modified nodal analysis matrix size is 

2512. When generating the subspace data, the desired range for the parametric resistor was set to 

1 rv 1000" and the desired range for the parametric capacitor was set to 0.1 rv 10pF. The load at 

the output port was set to be capacitive with CL ranging from 0.1 rv 10pF. The input waveforms 

used for generating the subspace data were 5V rising edge and falling edge steps with 50ps and 

500ps rise/faIl time as shown in Fig. 5.3. 

U sing the parametric nonlinear macromodel described in this chapter, the size of the reduced 

model is 282 as shown in Table 5.3. In order to test the accuracy and efficiency of the macro­

model, one hundred randomly chosen sample cases are tested. The parameter values as weIl 

as the load values were chosen randomly within the acceptable range defined above. The input 

waveforms for testing include the step input with rise time randomly chosen between 50ps and 

500ps; step input with faU time randomly chosen between 50ps and 500ps; pulse waveforms with 

different rise and faU times and different pulse widths; piece wise linear waveforms; sinusoidal 

waveform at frequencies ranging from 1 GHz to 4GHz. The transient responses for three cases 

from one hundred test cases are shown in Fig. 5.11, Fig. 5.12 and Fig. 5.13. The values of the 

loads and input waveforms for the three test cases are given in Table 5.4. 

In order to calculate the CPU speed-up for the reduced order macromodel over the original 

system, we include the CPU time to obtain the macromodel, which is referred to the reduction 

overhead time. The overhead time consists of the time for generating the subspace data (1776.6s) 

and the time for doing singular value decomposition (415.1s). The time to do the simulation 
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Fig. 5.14 Average CPU speed-up versus number of test cases 
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for 100 test cases using the reduced macromodel is 1883.8s, the overall time of the 100 test 

cases for the proposed approach is 4075.5s when the reduction overhead is included. On the 

other hand, the simulation time of the original system for 100 test cases is 46349.9s. Therefore 

a CPU speed-up of Il.4 is achieved as shown in Table 5.5. It is to be noted that the time for 

generating the macromodel is a one-time co st. It is therefore leveraged over many simulation 

runs of the reduced macromodel. As can be seen from Fig. 5.14, the overall speed-up approaches 

the simulation speed-up of 24.6 when the number of test cases is large. 
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Chapter 6 

Summary and Future work 

6.1 Summary 

This thesis presents a number of methods to enhance the efficiency and accuracy for modeling 

and simulation of interconnect networks. First, a new method for the computation of the congru­

ence transformation matrix to handle systems with a large number of ports has been proposed. 

The new approach is based on taking advantage of prior information regarding to the port con­

ditions. SpecificaIly, resistive, capacitive, transmission line loads as weIl as nonlinear loads such 

as diodes and inverters are considered. For that purpose, a new parametric port formulation has 

been developed which allows us to embed the load parameters without any modification to the 

vector of unknowns in the modified nodal analysis (MNA) formulation. Parametric model order 

reduction technique is then used to obtain the reduction subspace. It has been shown that the 

block moments with respect to frequency as weIl as the block moments with respect to the load 

parameters are conserved. As can be seen in the examples, the size of the proposed reduced 

macromodels is much less sensitive to the number of ports than those obtained from traditional 

methods. This demonstrates that the proposed method significantly extends the range of appli­

cability of model order reduction to systems with a large number of ports when the information 

about the types of loads is available. 
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Secondly, new multi-Ievel reduction methods based on singular value decomposition (SVD) 

for regular as well as parametric systems have been developed. The new SVD based reduction 

can reduce by more than one-third the size of the macromodels compared to those obtained from 

the traditional techniques. In addition, a new parametric formulation has been developed to allow 

the sparsification of parametric networks. This new formulation replaces the stamps of the para­

metric elements with constrained port formulation. The reduction procedure and sparsification 

are then performed on the macromodel in the space of the new formulation. CPU speed-ups from 

1 to 2 orders of magnitude have been achieved due to the sparsification. Furthermore, a new 

sparse multi-Ievel parametric model order reduction method based on the multi-Ievel reduction 

and sparsification has been developed. The proposed macromodel can achieve up to 350 times 

faster than the original system and therefore significantly improve the simulation efficiency. 

Finally, a time domain nonlinear macromodeling technique, which is able to deal with arbi­

trary nonlinearity, has been developed as well as a nonlinear formulation suitable for sparsifica­

tion has been proposed. This results in an efficient reduced order nonlinear macromodel which 

is sparse, and is valid over a predefined range of input waveforms and load conditions. Further­

more, a sparse parametric nonlinear model order reduction approach has been developed. Using 

this method, the macromodel only needs to be created once, and can be reused many times over 

different input waveforms, different load conditions, as well as different internaI circuit param­

eters. As demonstrated in the examples, the proposed nonlinear macromodel can achieve up to 

40 speed-up over the original nonlinear system to obtain the transient responses. This has many 

applications for interconnect networks containing nonlinear elements and internaI circuit param­

eters, and also has the potential to provide an automatic and systematic approach to develop 

dynamic macromodels for nonlinear drivers. 

6.2 Future work 

1. Passive macromodeling for interconnect networks characterized by tabulated/measured 

data: The model order reduction methods proposed in this thesis are aimed for intercon-
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nect networks which can be characterized by mathematically partial differential equations. 

However, in sorne cases, such analytical equations are not available and one must rely 

on experimental measurements or results of full wave simulation in order to characterize 

the interconnect networks. A number of methods have been proposed in the literature 

to address the macromodeling problem for interconnect networks characterized by tab­

ulated/measured data. However obtaining an efficient macromodel for interconnect net­

works based on tabulated data while preserving important properties such as pas si vit y is 

still an open problem facing the VLSI design and simulation community. 

2. Efficient nonlinear macromodels for analog/RF circuits: In this thesis, projection based 

model order reduction was proposed for nonlinear macromodeling in the time domain. 

This method is general for any nonlinear network but is more suitable for large intercon­

nect networks with a few nonlinear elements, and the sparsity of the resulting macromodel 

would deteriorate as the number of nonlinear elements becomes large. It is therefore worth­

while to explore methods for obtaining efficient nonlinear macromodels which are targeted 

towards specific classes of analoglRF circuits (e.g. amplifiers, and mixers) and using this 

information and insight into the circuit operation to develop systematic approaches for ac­

curate nonlinear macromodels for such circuits. 

3. Nonlinear macromodeling for Microelectromechanical System (MEMS): Integrating elec­

tronics with miniature MEMS devices at the microscopic level has caused the complexity 

of design to increase dramatically. The rise in complexity has made the CAD tools a more 

essential part of the design cycle of MEMS. A promising solution to the rising complexity 

problem is the use of accurate and efficient reduced mode!. CUITent macromodeling tech-

niques for MEMS have generally focused on linearized models, however, in many cases, 

a nonlinear macromodel is needed. The nonlinear macromodeling technique proposed in 

this thesis can be extended to model nonlinear MEMS. 
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AppendixA 

Proof of Conservation of Moments 

In this appendix, the proof of conservation of moments is presented. This proof that the reduced 

system conserves qgh moments (M gh E ~nxq9h) with respect to conductance gh is based on 

mathematical induction. First we prove that the zeroth moment obtained from the reduced system 

is conserved with respect to the conductance. Next, we demonstrate that the kth moment is 

conserved if the previous (k - 1 )th moment is conserved. 

The zeroth block moment MO at the expansion point s = 0, gl = gf,' .. ,gN = g~, Cl = 

0,'" ,CN = 0 is given by: 

(Al) 

where D~ E ~nxn is a diagonal matrix. The first n - N diagonal elements are zero, while the 

last N diagonal elements are gj, j = l, . " ,N. 

The kth block moment (k # 0) with respect to frequency, M~, at the expansion points 

s = 0, gl = gf, ... ,gN = g'N, Cl = 0, ... ,CN = ° can be evaluated from (3.23) and is given by: 

(A2) 

note that M~ = MO was calculated in (Al). 
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The kth block moment (k =1 0) with respect to gh, M;h' at the expansion points s -

0, gl = gf,· .. ,gN = gJy, Cl = 0,··· ,CN = 0 can also be calculated from (3.23) and is given 

by: 

G M k lT M(k-l) DaR L T M k R R T M k - 0 
</> gh + TM +h M +h gh + n N N gh + N N gh- (A3) 

note that M~h = MO was calculated in (Al). 

As shown in (Al), at an expansion point, s = 0, gl = gf, ... ,gN = gJy. The zeroth block 

moment M~h with respect to gh is the solution of 

(A.4) 

It is to be noted that the first (n - N) rows of D~RNL'ftM~h and RNR'ftM~h are zero, while 

the last N rows of Gt/JM~h and RM are zero. The above equation can be separated into two 

parts: the first (n - N) equations and the last N equations. 

(AS) 

(A6) 

where DÏv E IRNxN is a diagonal matrix with diagonal elements gj, j = 1,··· ,N. Note that 

L'ftM~h is nothing more than the zeroth block moment of the constrained port voltages, denoted 

by M~h(VN) E IRNxM , while R'ftM~h is nothing more than the zeroth block moment of the 

constrained port currents, denoted by M~h(IN) E IRNxM , therefore (A6) is rewritten as follows: 

(A7) 

To facilitate the presentation, the original system (3.1) is expressed in a similar form as the 
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parametric port model in (3.21). The original system can thus be recast as: 

Where 

Gt/JX + sOx + RNL~x = RMuM + RNV N 

IN = R~x = -DNVN 
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(A8) 

(A9) 

(A 10) 

IN E ]RNX1 is a vector containing constrained port currents, V N E ]RNxl is a vector con­

taining constrained port voltages. D N E ]RNxN diagonal matrix with diagonal elements 9j, 

j = 1, . .. ,N. On the other hand, the reduced system can be expressed in form of : 

(All) 

(A12) 

where Î N and V N E ]RNxl are vectors containing respectively the constrained port currents and 

constrained port voltages in the reduced system. It follows from (All) and (AI2) that at an 

expansion point, s = 0, 91 = 9î, ... ,9N = 9Ïv, the zeroth block moment for the reduced system 

is determined by: 

(A 13) 

(AI4) 

AD AD AD 
where M gh is the zeroth block moment for the reduced system. M gh(VN) E ]RNxM and M Yh(IN) E 

]RNxM are respectively the zeroth block moment of constrained port voltages and constrained 

port currents for the reduced system. Substituting (3.26) into (A.13), we get: 

(AI5) 
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Next we substitute K = QR in the above equation and use (AlO), which results in: 

(AI6) 

Substitute RM from (AS) into (A16) 

(A.17) 

Referring to (3.13), we have 

(AI8) 

which results in 

(AI9) 

Adding (AI7) and (AI9) and using (Al 0) 

(A.20) 

Also substitute (3.26) in (A14) 

(A21) 

Subtracting (A.2I) from (A7), we obtain 

(A.22) 

Now we substitute K = QR into (A22) and combine the resulting equation with (A20) in 



A Proof of Conservation of Moments 157 . __ ._----_ .. _. __ ••... _ .. _-_._----

matrix form to obtain 

(A23) 

The above equation can be recast as follows: 

o ] [G RN] [K 0 ] 
1 E(N) R'Jt - ncrv 0 1 E(N) 

where 1 E(N) E ]RNxN identity matrix. Since (A24) is nonsingular and therefore has a unique 

solution, which is the first M columns of the identity matrix eMl' 

It follows that: 

A 0 
R-1M -e -gh - Ml-

1 

0 

0 

0 

0 

1 

0 

0 

o 
o 

1 

o 

000 

A 0 -1 A 0 0 
QMgh = KR M gh = KeMl = M gh 

AIso, the following equality can be obtained from (A24): 

(A2S) 

(A26) 

(A27) 

Therefore the zeroth moment is conserved. Next, we demonstrate that if the (k - l)th moment 
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is conserved, then the kth moment is also conserved. In other words, if 

QM(k-l) = M(k-l) 
gh gh (A.28) 

k 1 ~ k-l 
(A.29) M- -M 

gh(VN) - gh(VN) 

then 

QM(k) = M(k) 
gh gh (A.30) 

k ~ k 
Mgh(VN) = Mgh(VN) (A. 3 1) 

The kth block moment is given by (A.3) and has the form of: 

G M k lT M(k-l) DaR LTMk R RTMk - 0 
<P % + r M +h M +h gh + n N N gh + N N gh- (A.32) 

The above matrix is separated into two parts, the tirst n - N equations and the last N equations. 

(A.33) 

(A. 34) 

where Mg(k-l) E ]RNxM is a matrix with each column containing only one nonzero, the (k-l)th 
h(Vh) 

block moment of the hth constrained port voltage. MZh(VN) and MZh(IN) E ]RNxM are the kth 

block moment of the constrained port voltages and constrained port currents for the original 

network. On the other hand, the kth block moment with respect to gh for the reduced system can 

be calculated from (A. 1 1) and (A. 12). Substituting (3.26) into the resulting equations results in 

(A.35) 

(A.36) 
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where M~:~::) E ]RNxM is a matrix with each column containing only one nonzero, the (k -
A k 

l)th block moment of the hth constrained port voltage for the reduced system. M
9h

(VN) and 
A k 

M 9h(IN) E ]RNxM are the kth block moment of the constrained port voltages and currents for the 

reduced system. Inserting K = Q R into (A35) and using (Al 0) result in 

(A.37) 

Substitute (A.33) in (A.37) 

(A.38) 

Referring to (3.13), we have: 

(A39) 

Adding (A.38) and (A.39) and using (A. 10), we obtain 

(A.40) 

Note that the (k - l)th block moment is conserved in (A.29), which results in 

(A.4l) 

Also subtracting (A36) from (A34) and using (A.4l) 

(A.42) 

Now we substitute K = QR in (A42) and combine the resulting equation with (A.40) in matrix 
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form to obtain 

(A43) 

Again, since (A43) is nonsingular and therefore has only one unique solution, which is the Rth 

M columns of the identity matrix eMR' where R corresponds to the location of M;h in K. It 

follows that: 

(A44) 

AIso, the following equality can be obtained: 

(A.4S) 

Therefore the kth moment of the system with respect to 9h is conserved if the previous mo­

ments are conserved. Thus, by mathematical induction, we can conclude that the first q9h mo­

ments are conserved. 

Sirnilarly, we proceed with the proof that the reduced system conserves qs moments with 

respect to frequency. Note that the zeroth moment with respect to conductance M~h = MO is 

the same as the zeroth moment with respect to frequency M~ = MO as defined in (Al), the 

proof for the conservation of the zeroth moment with respect to frequency is equivalent to that of 

the zeroth moment with respect to conductance as given before. 

Next we show that if the (k - l)th moment is conserved, then the kth moment is also con­

served. In other words, if 

M(k-l) = QM(k-l) 
S S (A46) 

(k-l) A (k-l) 
MS(VN) = MS(VN) (A.47) 

then 

(A.48) 
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k A k 
MS(VN) = MS(VN) (A49) 

The kth block moment (k =J. 0) with respect to frequency, MZ, at the expansion points 

s = 0, gl = gf,' ., ,gN = gN' Cl = 0,' .. ,CN = 0 is given by (A2) and has the form of: 

(A 50) 

The above matrix is separated into two parts, the first n - N equations and the last N equations. 

G M k + CM(k-l) = 0 q, S S (A5I) 

(A52) 

where MZ(VN) and MZ(IN) E ]R.NxM are the kth block moment of the constrained port voltages 

and constrained port currents for the original network. On the other hand, the kth block moment 

with respect to frequency for the reduced system can be calculated from (AlI) and (AI2). 

Substituting the congruence transformation in (3.26) into the resulting equations results in 

(A53) 

(A 54) 

A k A k 
where M S(VN) and M s(IN) E ]R.NxM are the kth block moment of the constrained port voltages 

and currents for the reduced system. Inserting K = QR into (A53) and using (AIO) result in 

(A55) 
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Substitute (A.51) in (A.55) 

(A. 56) 

note that the (k - 1 )th block moment is conserved in (A.46), it follows that 

(A.57) 

Referring to (3.13), we have: 

(A.58) 

Adding (A.57) and (A.58) and using (A.1O), we obtain 

(A.59) 

Also subtracting (A.54) from (A.52) 

(A. 60) 

Now we substitute K = QR in (A.60) and combine the resulting equation with (A.59) in matrix 

form to obtain 

(A.61) 

Again, since (A.61) is nonsingular and therefore has only one unique solution, which is the rth 

M columns of the identity matrix eMr , where r corresponds to the location of M~ in K. It 

follows that: 
A k -1 A k k 

QMs = KR Ms = KeMR = Ms (A.62) 
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Also, the following equality can be obtained: 

(A.63) 
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