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Abstract

In this thesis major minor LQG mean field game (MM LQG MFG) theory is extended in three
main directions which are motivated by algorithmic trading (more specifically optimal execution)
problems in finance. In financial applications in this thesis, following standard financial models,
the market is studied as a large population non-cooperative game where each trader has stochastic
linear dynamics with quadratic costs. We consider the case where there exists one institutional
investor (interpreted as an MFG major agent) with a large number of high frequency traders
(interpreted as MFG minor agents) constituting two subpopulations of liquidators and acquirers.
In general, the traders are coupled in their dynamics and cost functions by the market’s average
trading rate (a component of the system’s mean field). In each case, the existence of an e-Nash
equilibrium. together with the individual agents’ trading strategies which yield the equilibria, are
established.

In the first part of the thesis, partially observed (PO) MM LQG MFG problems with general
information patterns are investigated where (i) the major agent has partial observations of its own
state, and (i1) each minor agent has partial observations of its own state and the major agent’s
state. The assumption of partial observations by all agents leads to a new situation involving the
recursive estimation by each minor agent of the major agent’s estimate of its own state. For the
general case of indefinite LQG MFG systems, the existence of e-Nash equilibria together with
the individual agents’ control actions yielding the equilibria are established via the Separation
Principle. Numerical experiments are presented. The PO MM LQG MFG theory is then applied
to an optimal execution problem where the major trader has partial observations of its own state
(which includes its inventory), and each one of minor traders has partial observations of its own
state and the major trader’s state (which include the corresponding inventories). A simulation
example is provided.

The second part of the thesis presents a novel framework that combines LQG MFG theory
and hybrid optimal control theory to obtain a unique e-Nash equilibrium for a non-cooperative
game with stopping and switching times. We consider the case where there exists one major
agent together with a large number of minor agents constituting two subpopulations. Each agent
has stochastic linear dynamics with quadratic costs, and the agents are coupled in their dynamics
by the average state of minor agents. The hybrid feature enters via the indexing by discrete states:
(1) the switching of the major agent between alternative dynamics, or (ii) the termination of the

agents’ trajectories in one or both of the subpopulations of minor agents. Optimal switchings and
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stopping time strategies together with best response control actions for, respectively, the major
agent and all minor agents are established with respect to their individual cost criteria by an
application of LQG Hybrid MFG theory. Then LQG Hybrid MFG theory is applied to optimal
execution problems where minor agents are provided with the option to quit the market if it is
optimal for them to do so. Hence, the hybrid feature enters via the indexing of the cessation of
trading by one or both subpopulations of minor traders by discrete states.

In the third part of the thesis, first, a convex analysis method is used to rederive the solutions
to LQG optimal control problems. Then the methodology is applied to MM LQG MFG systems
to retrieve the best response strategies for the major agent and each individual minor agent which
collectively yield an e-Nash equilibrium for the entire system. Subsequently a class of (non-
cooperative) stochastic games with major and minor agents is investigated where agents interact
with a completely observed common process. However, the common process is modulated by
a latent Markov chain and a latent Wiener process (common noise) which are not observable to
agents. Consequently the Wonham filter is used to generate the posteriori estimates of the latent
processes based on the realized trajectories of the common process. Then, the convex analysis
is further developed to (i) solve the MFG limit of the problem, (ii) demonstrate that the best
response strategies generate an e-Nash equilibrium for the finite player game, and (iii) obtain

explicit characterisations of the best response strategies.
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Résumé

Dans cette these, la théorie du jeux majeur mineur a champ moyen linéaire-quadratique-
Gaussienne (MM LQG MFQG) est étendue dans trois directions principales qui sont motivées
par des problemes de commerce algorithmique (plus précisément exécution optimale) en finance.
Dans les applications financieres de cette these, qui suivent les modeles financiers classiques, les
marchés financiers sont étudiés comme un jeu non coopératif de grande population dans lequel
chaque commercant a une dynamique linéaire stochastique avec des colts quadratiques. Nous
considérons le cas ou il existe un seul investisseur institutionnel (interprété comme un agent
majeur de MFG) avec un grand nombre de commercants a haute fréquence (interprété comme
des agents mineurs de MFQG) constituant deux sous-populations de liquidateurs et d’acquéreurs.
En général, les commercants sont couplés dans leur dynamique et leurs fonctions de colit au
taux moyen de commerce du marché (une composante du champ moyen du systeme). Dans
chaque cas, I’existence d’un équilibre de e-Nash ainsi que les stratégies commerciales des agents
individuels qui donnent les équilibres sont établies.

Dans la premiere partie de la these, les problemes partiellement observés (PO) MM LQG
MFG avec informations générales sont examinés lorsque (i) I’agent majeur a des observations
partielles de son propre état, et (ii) chaque agent mineur a des observations partielles de propre
état et I’état de I’agent majeur. L’hypothese d’observations partielles par tous les agents crée
une nouvelle situation impliquant I’estimation récursive par chaque agent mineur de I’estimation
par ’agent majeur de son propre état. Dans le cas général des systemes LQG indéterminée
MEFG, I’existence d’équilibre de e-Nash et des actions de contrdle des agents individuels générant
I’équilibre sont établis via le principe de séparation. Des expériences numériques sont présentées.
La théorie de PO MM LQG MFG est ensuite appliquée a un probleme d’exécution optimale ou le
commercant majeur a des observations partielles de son propre état (ce qui inclut son inventaire),
et chaque commercant mineur dispose d’observations partielles de son propre état et de 1’état du
commerc¢ant majeur (qui incluent les inventaires correspondants). Un exemple de simulation est
fourni.

La deuxieéme partie de la these présente un nouveau cadre combinant la théorie LQG MFG et
la théorie du controle optimal hybride pour obtenir un équilibre unique de e-Nash pour un jeu non
coopératif avec des temps d’arrét et de commutation. Nous considérons le cas ou il existe un agent
majeur avec un grand nombre d’agents mineurs constituant deux sous-populations. Chaque agent

a une dynamique linéaire stochastique avec des colits quadratiques, et la dynamique des agents
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est couplée a I’état moyen des agents mineurs. La caractéristique hybride entre via I’indexation
par états discrets: (i) le commutation de 1’agent majeur entre des dynamiques alternatives, ou
(i1) la fin des trajectoires des agents dans I’une ou les deux sous-populations d’agents mineurs.
Des stratégies optimales de temps de commutation et de temps d’arrét ainsi que les actions de
controle de meilleures réponse pour, respectivement, 1’agent majeur et tous les agents mineurs
sont établies en fonction de leurs criteres de colit individuels par I’application de la théorie LQG
Hybrid MFG. Ensuite, la théorie LQG Hybrid MFG est appliquée aux problemes d’exécution
optimale lorsque des agents mineurs ont ’option de quitter le marché si cela leur convient
le mieux. Par conséquent, la caractéristique hybride entre via I’indexation de la cessation de
commerce par une ou les deux sous-populations de commercants mineurs par des états discrets.
Dans la troisieme partie de la these, d’abord, une méthode d’analyse convexe est utilisée pour
redériver les solutions aux problémes de contréle optimal LQG. La méthodologie est ensuite
appliquée aux systtmes MM LQG MFG pour extraire les stratégies de meilleure réponse pour
I’agent majeur et chaque agent mineur individuel qui produisent collectivement un équilibre de
e-Nash pour I’ensemble du systeme. Ensuite, une classe de jeux stochastiques (non coopératifs)
avec des agents majeurs et mineurs est examinée lorsque les agents interagissent avec un
processus commun completement observé. Cependant, le processus commun est modulé par
une chaine de Markov latente et un processus de Wiener latent (bruit commun) qui ne sont pas
observables par les agents. Par conséquent, le filtre de Wonham est utilisé pour générer les
estimations a posteriori des processus latents basées sur les trajectoires réalisées du processus
commun. Ensuite, I’analyse convexe est développée plus avant pour (i) résoudre la limite MFG
du probleme, (ii) démontrer que les stratégies de meilleure réponse génerent un équilibre de e-
Nash pour le jeu a joueur fini, et (iii) obtenir des caractérisations explicites des stratégies de

meilleures réponse.



Claims of Originality and Published Work

Claims of Originality

The following original contributions are presented in this thesis:

Part 1

e Partially observed major minor LQG mean field game (PO MM LQG MFG) problems with
the following general information patterns are studied where (i) the major agent has partial
observations of its own state, and (i) each minor agent has partial observations of its own

state and the major agent’s state.

e In the theory the new and general case where (i) the major agent recursively estimates
its own state, and (ii) each minor agent recursively estimates its own state, and the major
agent’s estimate of its own state (in order to estimate the major agent’s feedback control
input), is presented. In addition, both the major agent and minor agents generate estimates

of the system’s mean field.

e MFG theory is extended to cover the general case of indefinite LQG MFG systems which
alleviates the positive definiteness condition of weight matrices in linear quadratic cost

functionals .

e The existence of e-Nash equilibria together with the individual agents’ control laws
yielding the equilibria is established; this is achieved in the PO MM LQG case by
an application of the Separation Principle which also yields computationally tractable

solutions which in nonlinear case is far more complex.

e Completely observed major minor LQG mean field game (CO MM LQG MFG) framework
is utilized to formulate optimal execution problems in financial markets with the standard
linear financial models where there exist one institutional investor, interpreted as major
agent, and a large population of high frequency traders (HFTs), interpreted as minor agents,
who attempt to maximize their own wealth. Nash equilibrium and e-Nash equilibrium best

response trading strategies for all participating traders in the market are obtained.

e PO MM LQG MFG theory is applied to optimal execution problems where an institutional

investor aims to liquidate a specific amount of shares and it has only partial observations
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of its own state (which includes its inventory). Furthermore, there exists a large population
of HFT's who wish to liquidate or acquire shares, and each of them has partial observations
of its own state and the major agent’s state (which include the corresponding inventories).
The existence of an e-Nash equilibrium together with the best response trading strategies

are established.

Part I1

A hybrid systems MFG (Hybrid MFG) framework is developed for a general class of
LQG mean field game systems with a major agent permitted to switch between different
dynamics and subpopulations of minor agents provided with the option to stop at some
optimal time. Optimal switching time and stopping time strategies together with best
response control actions for, respectively, the major agent and all minor agents are

established with respect to their individual cost criteria.

Conditions under which the stopping and switching times for LQG systems are trajectory

independent are derived.

Hybrid MFG theory is employed in a non-cooperative game formulation of the financial
market where HFT's (minor agents) may leave the market before the final time. The best
response trading policies for the agents are further shown to yield an e-Nash equilibrium
for the the market.

Part I11

A convex analysis method is used to rederive the solutions to LQG optimal control
problems. Then the methodology is applied to major minor LQG mean field game (MM
LQG MFG) systems to retrieve the best response strategies for the major agent and each

individual minor agent

MM LQG MFG theorem is extended to incorporate the impact of a common process which

modulated by a latent Markov chain process and a latent Wiener process (common noise).

The Wonham filter is used to generate the posteriori estimates of latent processes using the

complete observations on the common process.
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e Common process (an extended form of common noise) is modeled as a passive major agent

in the MM MFG framework.

e Convex analysis method is further developed to obtain the best response strategies which

yield an e-Nash equilibrium for the MM LQG MFG systems including common noise and
Markovian latent processes.
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Chapter 1
Introduction

Large population dynamical multi-agent noncooperative and cooperative phenomena occur
in a wide range of designed and natural settings such as communications, environmental,
epidemiological, transportation and energy systems, and they underlie much economic and
financial behaviour. Analysis of such systems with even a moderate number of agents is regarded
as being extremely difficult using the finite population game theoretic methods which were
developed over several decades for multi-agent control systems (see e.g. [1-4]) [5].

Subsequently, what is now called MFG theory originated in the equations for dynamical
games with (i) large finite populations of asymptotically negligible agents together with (ii) their
infinite limits, in the work of Caines, Huang and Malhamé ([6-9]), where the framework was
called the Nash Certainty Equivalence Principle, and independently in that of Lasry and Lions
([10-12]), where the now standard terminology of Mean Field Games (MFG) was introduced.
The closely related notion of Oblivious Equilibria for large population dynamic games was also
independently introduced by Weintraub, Benkard, and Van Roy ([13, 14]) within the framework
of discrete time Markov Decision Processes (MDP) [5].

Mean Field Game (MFG) theory studies the existence of Nash equilibria, together with the
individual strategies which generate them, in games involving a large number of asymptotically
negligible agents modelled by controlled stochastic dynamical systems. This is achieved
by exploiting the relationship between the finite and corresponding infinite limit population
problems. The solution to the infinite population problem is given by (i) the Hamilton-Jacobi-
Bellman (HJB) equation of optimal control for a generic agent and (ii) the Fokker-Planck-

Kolmogorov (FPK) equation for that agent, where these equations are linked by the distribution



1 Introduction 2

of the state of the generic agent, otherwise known as the system’s mean field. Moreover, (i) and
(i1) have an equivalent expression in terms of the Stochastic Maximum Principle together with
a McKean-Vlasov stochastic differential equation, and yet a third characterisation is in terms of
the so-called Master Equation. An important feature of MFG solutions is that they have fixed
point properties regarding the individual responses to and the formation of the mean field which
conceptually correspond to equilibrium solutions of the associated games (see e.g. [5,8, 15]).

The theory and methodology of MFG systems has rapidly developed since its inception and is
still advancing. In [16, 17] the authors analyse and solve the linear quadratic systems case where
there is a major agent (i.e. non-asymptotically vanishing as the population size goes to infinity)
together with a population of minor agents (i.e. individually asymptotically negligible). The new
feature in this case is that the mean field becomes stochastic but by minor agent state extension
the existence of e-Nash equilibria is established together with the individual agents’ control laws
that yield the equilibria [17]. In the purely minor agent case the mean field is deterministic and
this obviates the need for observations on other agents’ states. This is a separate issue from that of
an agent estimating its own state (self state for short) from partial observations on that state, see
[18]. However, when a systems has a major agent whose state is partially observed the standard
MFG procedure for generating a Nash equilibrium needs to be extended to include estimates of
the major agent’s state generated by each minor agent.

In [19-21], partially observed LQG mean field games with major and minor agents (PO MM
LQG MFG) have been investigated and in [22-24], a nonlinear generalization of this problem is
considered. The main results in those papers are obtained with the assumptions that (i) the major
agent’s state is partially observed by the minor agents and (ii) the major agent has complete
observations of its own state.

Single-agent optimal execution problems have been addressed in the literature (see e.g.
[25-28]) where an agent must liquidate or acquire a certain amount of shares over a pre-specified
time horizon at a trading speed to balance the price impact (from trading quickly) and the price
uncertainty (from trading slowly), while it maximizes its final wealth. Further, in [29] the partially
observed setting where the market liquidity variable is not observed was studied. This problem
with the linear models in [25] was formulated as for the nonlinear major minor (MM) MFG
model in [30].

The primary goal of this thesis is to develop and extend the theory of MM LQG MFG systems
in three main directions which are motivated by algorithmic trading (more specifically optimal

execution) problems in finance. A brief description of each chapter follows.
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Chapter 2 formulates PO MM LQG MFG problems with general information patterns where
(1) the major agent has partial observations of its own state, and (ii) each minor agent has partial
observations of its own state and the major agent’s state. The assumption of partial observations
by all agents leads to a new situation involving the recursive estimation by each minor agent of
the major agent’s estimate of its own state. For the general case of indefinite LQG MFG systems,
the existence of e-Nash equilibria together with the individual agents’ control laws yielding the
equilibria are established via the Separation Principle. Numerical experiments are presented.

Chapter 3 applies the theory of partially observed mean field games to an optimal execution
problem in finance. Following standard financial models, controlled linear system dynamics
are postulated where an institutional investor (interpreted as a major agent) in the market aims
to liquidate a specific amount of shares and has partial observations of its own state (which
includes its inventory). Furthermore, the market is assumed to have two populations of high
frequency traders (interpreted as minor agents) who wish to liquidate or acquire a certain number
of shares within a specific time, and each one of them has partial observations of its own state
and the major agent’s state (which include the corresponding inventories). The objective for each
agent is to maximize its own wealth and to avoid the occurrence of large execution prices, large
rates of trading and large trading accelerations which are appropriately weighted in the agent’s
performance function. The existence of e-Nash equilibria together with the individual agents’
trading strategies yielding the equilibria, are established. A simulation example is provided.

Chapter 4 presents a novel framework that combines MFG theory and hybrid optimal control
theory to obtain a unique e-Nash equilibrium for a non-cooperative game with stopping times.
We consider the case where there exists one major agent with a significant influence on the
system together with a large number of minor agents constituting two subpopulations, each with
individually asymptotically negligible effect on the whole system. Each agent has stochastic
linear dynamics with quadratic costs, and the agents are coupled in their dynamics by the average
state of minor agents (i.e. the empirical mean field). The hybrid feature enters via the indexing
by discrete states: (i) the switching of the major agent between alternative dynamics or (ii) the
termination of the agents’ trajectories in one or both of the subpopulations of minor agents.
Optimal switchings and stopping time strategies together with best response control actions for,
respectively, the major agent and all minor agents are established with respect to their individual
cost criteria.

Chapter 5 employs LQG Hybrid MFG theory to obtain a unique e-Nash equilibrium for
optimal execution problems within the stock market. Following standard financial models, the
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stock market is studied in this paper as a large population non-cooperative game where each trader
has stochastic linear dynamics with quadratic costs. We consider the case where there exists
one major trader with a large number of minor traders (in two subpopulations). The traders are
coupled in their dynamics and cost functions by the market’s average trading rate (a component of
the system mean field) and the hybrid feature enters via the indexing of the cessation of trading by
one or both subpopulations of minor traders by discrete states. Optimal stopping time strategies
together with best response trading policies for all traders are established with respect to their
individual cost criteria.

Chapter 6 develops a convex analysis method to rederive the solutions to LQG optimal control
problems. Then the methodology is applied to MM LQG MFG systems addressed in [16] to
retrieve the best response strategies for the major agent and each individual minor agent which
collectively yield an e-Nash equilibrium for the entire system.

Chapter 7 investigates a class of non-cooperative stochastic games with major and minor
agents where agents interact with a completely observed common process. However, the common
process is modulated by a latent Markov chain and a latent Wiener process (common noise)
which are not observable to agents. Consequently the Wonham filter is used to generate the
posteriori estimates of the latent processes based on the realized trajectories of the common
process. Then, the convex analysis is further developed to (1) solve the MFG limit of the problem,
(i) demonstrate that the best response strategies generate an e-Nash equilibrium for the finite
player game, and (iii) obtain explicit characterisations of the best response strategies.

Chapter 8 presents future research directions.



Part I

Major Minor LQG Mean Field Game

Systems with Partial Observations



Chapter 2

Partially Observed Major Minor LQG
Mean Field Game Systems

2.1 Introduction

In [19-21], partially observed LQG mean field games with major and minor agents (PO MM
LQG MFG) have been investigated and in [22-24], a nonlinear generalization of this problem is
considered. The main results in those papers are obtained with the assumptions that (i) the major
agent’s state is partially observed by the minor agents and (ii) the major agent has complete
observations of its own state. In this chapter, PO MM LQG MFG problems with general
information patterns are studied where (i) the major agent has partial observations of its own
state, and (i) each minor agent has partial observations of its own state and the major agent’s
state. In the theory we present for this new, general case where (i) the major agent recursively
estimates its own state, and (i1) each minor agent recursively estimates its own state, and the
major agent’s estimate of its own state (in order to estimate the major agent’s feedback control
input). In addition, both the major agent and minor agents generate estimates of the system’s
mean field. We remark that an infinite regress does not happen here due to the asymmetric major
minor (MM) feature of the MFG problem. Moreover, MFG theory is extended to cover the
general case of indefinite LQG MFG systems which alleviates positive definiteness condition
of weight matrices in linear quadratic cost functionals. The existence of e-Nash equilibria
together with the individual agents’ control laws yielding the equilibria is then established; this is

achieved in the PO MM LQG case by an application of the Separation Principle which also yields
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computationally tractable solutions which in nonlinear case is far more complex (see [22-24]).
The initial results of this work has been published in [31].

This extension of the situation in [21], where only assumption (ii) holds, is in particular
motivated by optimal execution problems in financial markets where there exist one institutional
trader (interpreted as major agent) and a large population of high frequency traders (interpreted
as minor agents) who attempt to maximize their own wealth. To obtain the Nash equilibrium best
response trading strategy, each minor trader estimates the major agent’s inventory and trading
rate based on its partial observations of market state which entails the estimation of the major
trader’s self estimates. The reader is referred to Chapter 3 and the works [32—35] for more details
on financial applications.

The rest of the chapter is organized as follows. Section 2.2 introduces Partially Observed
Major-Minor LQG MFG systems. The estimation and control problems for PO MM LQG MFG
systems are addressed in Section 2.3. The simulation results and the concluding remarks are

presented in Section 2.4 and Section 7.4, respectively.

2.2 Partially Observed Major-Minor LQG MFG Systems

A class of major-minor LQG MFG (MM LQG MFG) systems including a large population of N
stochastic dynamic minor agents with a stochastic dynamic major agent is considered where the

agents are coupled through their cost functionals.

2.2.1 Dynamics

The dynamics of the major and minor agents in the class of systems under consideration are,

respectively, given by

d$0 = [Aofl?() + BQUO]dt + D()dw[), (21)

wheret > 0,1 <7 < N < o0, 6; € O, where O is a parameter set. Here z; € R", 0 <7 < N,
are the states, u; € R™, 0 < ¢ < N, are control inputs, {w;, 0 < i < N} denote (N + 1)
independent standard Wiener processes in R” on an underlying probability space (€2, F, P)
which is sufficiently large that w is progressively measurable with respect to the filtration
Fv & (Fv t>0)onF,and Eww! =¥
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Assumption 2.1. The initial states {x;(0), 0 < i < N} defined on (Q, F, P) are identically
distributed, mutually independent and also independent of F, with Exz;(0) = 0. Moreover,
sup;E|lz;(0)||* < ¢ < 00, 0 < i < N < oo, with ¢ independent of N.

The matrices Ag, By, Dy, G, and D are constant matrices of appropriate dimensions. From
(2.2), A(.) and B(.) depend on the parameter # which specifies the minor agent’s type. Minor
agents are given in K distinct types with 1 < K < oo. The notation Z;, is defined as

Tn={i:0,=k 1<i<N}, 1<k<K,

where the cardinality of Z is denoted by Nj, = |Z;|. Then, 7 = (7V, ..., 7¥), =¥ = J& 1 <

k < K, denotes the empirical distribution of the parameters (61, ..., fy) sampled independently
of the initial conditions and Wiener processes of the agents A;, 1 < ¢ < N. The first assumption

is as follows.
Assumption 2.2. There exists 7 such that limy_..m" = T a.s.

We note that except for clarity the time argument for the stochastic and deterministic
processes throughout the paper may be dropped for the purpose of notation abbreviation as in
(2.1)-(2.2).

2.2.2 Cost Functionals

The individual (finite) large population infinite horizon cost functional for the major agent .4, is

specified by
T o, u0) =E [ e {lan = 2@, + ol it 3)
0
() = Hox™ + 1,

where Ry > 0, and the individual (finite) large population infinite horizon cost functional for a

minor agent A4;, 1 < i < N, is given by

0

V() == Hixg+ Hoaa™ 41,
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where R > 0. We note that the major agent .4, and minor agents A;, 1 < i < N, are coupled

(N)

with each other through the average term =\ = % Zf\il x; in their cost functionals given by

(6.48)-(2.4).

2.2.3 Observation Processes

The major agent’s partial observations v is given by
1
dyo = Lo[zl, (z™N)TTdt 4+ R2,dwy, (2.5)
where vy is a standard Wiener process in R® with E[vyvl] = R,, and matrix L is given by

Lo = [ 1L Open ] , 2.6)

with [} € R®". The partial observations for a minor agent A;, 1 < i < N, of type
k, 1 <k < K,is given by

1

where {v;, 1 < i < N} denotes the set of N independent standard Wiener processes in R with

E[v;v}] = R,, and matrix Ly is given by
where [}, [Z € RO,

Control o-Fields

The family of partial observation information sets F is defined to be the increasing family of o-
fields of partial observations { {;, ¢ > 0} generated by the major agent .4,’s partial observations
(y0(7),0 < 7 < t) on its own state as given in (3.39). The set of control inputs 2/," is defined
to be the collection of linear feedback control laws adapted to 7" = {\/~ F¥}.

Assumption 2.3. Major Agent o-Fields and Linear Controls: For the major agent Ay the set of
control inputs Z/I&y is defined to be the collection of linear feedback control laws adapted to the

increasing o-fields of partial observations {Fg,,t > 0}.
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The family of partial observation information sets F.,1 < i < N, is defined to be
the increasing o-fields {F;{t,t > 0} generated by the minor agent .4;’s partial observations
(yi(7),0 < 7 < t), on its own state and the major agent’s state, as given in (3.41).

Assumption 2.4. Minor Agent o-Fields and Linear Controls: For each minor agent A;,1 < i <
N, the set of control inputs Mfy is defined to be the collection of linear feedback control laws

adapted to the increasing o-fields of partial observations {F},,t > 0}.

2.3 Estimation and Control Solutions for PO MM LQG MFG Systems

In this section we present the solution to partially observed (PO) MM LQG MFG problems where
it is assumed that the major agent partially observes its own state, and each generic minor agent
partially observes its own state and the major agent’s state. The problem is first solved in the
infinite population case which is far simpler to solve than the finite large population problem.
Because the agents in the infinite population case are decoupled and therefore the problem
reduces to the type of indefinite LQG tracking problem whose solution is given in Theorem 2.1.
Subsequently, the e-Nash equilibrium property is established in Theorem 2.2 for the system when
the infinite population control laws are applied to the finite large population PO MM LQG MFG
system.

The following theorem is a restriction to the constant matrix parameter case of the general
result in [36].

Theorem 2.1 (Stochastic Indefinite LQ Problem [36]). Let T > 0 be given. For any (3,7) €

0, T) x R™, consider the following linear system
di = [Ai + Bu + b]dt + [Ci + D + 5], (2.9)

where t € [8,T], #(3) = § and A, B, C, D, b, & are matrix valued functions of suitable sizes,
w(.) € R" is a standard Wiener process. Moreover, F; = o{w(7),0 < 7 < t}, and u(.) € U,
where U is the set of all F;-adapted R™-valued processes such that E fOT lu(t)])?dt < .
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A quadratic cost functional is given by

T30 =E{G [ [(Pa(0.a(0) + (Vi) (o)
1

+ (Rui(), ii(t)) ) dt + §<ﬁz(f),i~(f’)>}, (2.10)

with p, N and R being 8", R™*" and S™-valued functions, respectively, and G e S where
S" denotes symmetric matrix space of size n.

We also denote the set of all R"-valued continuous functions defined on [s,T] by
C([s, T);R™). Then, let T1(.) € C([3,T]; S™) be the solution of the Riccati equation

M+ A+ ATH+ OTpC 4+ b —
(

% v

where R + DTIID > 0, a.e.t € [3,T), and 3(.) € C([3,T];R") be the solution of the offset

equation given by

Let us define U 2 (R+DTILD) ' [BTI+ N +DTIC], and ) £ (R+DTID) " [BT5+ DT115).
Then the stochastic LQ problem (2.9)-(2.10) is solvable at § with the optimal control u°(.) being

in the state feedback form as in

O

Henceforth we discuss the stochastic optimal control problem for the major agent, and a

generic minor agent.
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2.3.1 Mean Field Evolution

We introduce the empirical state average as

1 &
(Nk) — k
x = — x;, 1<k<K,
and write (V) = [N g (V2) (V&) where the point-wise in time L? limit of ("), if it
exists, is called the mean field of the system and is denoted by 7 = [7!, ..., zX]. We consider for

each minor agent A; of type k, 1 < k < K, a uniform (with respect to ¢ in any subpopulation
k, 1 < k < K) feedback control uf € UL . which is a function of

7 y’
(i) minor agent’s estimate of its own state, i.e. Z;F £ E pvr; = E{xy| F},
(ii) minor agent’s estimate of the major agent’s state, i.e. gz £ E Fvzo = E{zo| F},

(iii) minor agent’s estimate of z;, 1 < j < N, j # i, i.e. ij‘fiy £ E‘fiyxj = E{z;|F/},

. . R . . . . . . ~ A
(iv) minor agent’s estimate of the major agent’s estimate of its own state, i.e. (Zoz) v =
A _ A~ Y
B rylory = E{x0|f3|‘Fi H

(v) minor agent’s estimate of the major agent’s estimate of z;, 1 < 57 < N, j # 1, ie.
S A ~ A
(@)1 = Birpdyry = B{Z 0|}

(vi) bounded continuous functions of time my(.) € Cy([0, 00); R™).

k . .
Hence u; is given by

K N; K N;
§ E kil A § §

Lk 7/|]_-y<FI/ l‘o‘]_‘y+ L l‘]__y‘|>L 1‘0|]_-u |]:U*|> L |]_-y |]_-y+mk, (2 12)
=1 j=1 =1 j=1

for matrices LY, L%, ng’l, and L% of appropriate dimension, which are time invariant due to the
time shift invariance of the infinite horizon performance function (2.4) and the dynamics (2.2),
and where L5, LI are assumed to depend upon N, and satisty N, L5" — L5, N,LEH — LF' as
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N; — oo forall k, 1 < k < K. Substituting (2.12) in (2.2) yields

dx; = [Ay; + ByLY @} v + By Lsio v + By Z N LE &
=1

|(]-'y) + BiLf (Zo7y) 7

+ By, Z NLE! (#24)) 7y + Bym + Gaoldt + Ddw, (2.13)
=1

Then we take the average over the subpopulation £ to obtain

(V;
Az — [A x +BkL’fN Z ik + B L QN Zxo‘;y%—BkZNlL’;lN Z oy
1 1 O
. k.l ~(N1)
+ B Lk F;(Iolfg)lfg’Jer;NlL N ;( |}-y)‘}-§/+Bkmk+G:E0}dt

+ D— Z dw;. (2.14)

To compute the average of the estimation terms in (2.14), we use the state decomposition

LijFy TijFy — X T
To|Fy ToFy — To Lo
-~ (N1) ~ (N N,
| =] d - 20| (2.15)
(Zoz )17y (Zoyr2 )17y — ZojFy Lo|ry
~ (V1) (N) A(Nz) ~ (1)
( T ry )7 i (x\fy Fr = T ry 7y
which we denote equivalently in the compact form
{i’k’€$ o _jf;,ea: + xf,ea}) (216)

i\F
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for1 <¢ < N,and 1 < k < K. Accordingly we rewrite (2.14) as

a0 = [ Ay )+BL—Zx + ByL} $0+BkZN1Lkl o

=1

+ ByLkzozy + By Z NiLE'G(3%) + By, + G|t

|7
-1
1 1
- [BkLlfF Z(ﬂfi — ZyFv) + BkLkN Z(wo — ZoFv)
L i=1
K Ny,

1
+ By ZNlL’??lE Z (fﬁ(Nl) - \(J]rvzl!) + B Ly — Z ToFy — $0|fg)\f§’)

K Ng, Ni,
1 1
FBY NI Y (5~ G (;V;))my)}dHDmE dw;. (2.17)
=1

=1 =1

From (2.17) as N — oo we obtain the convergence in quadratic mean to the solution to

K

=1 =1

_ ) —\k
+ Bk;mk’] dt — [BkLlf(% — xi\ﬂy)k + Bi L (o xO\Fy “+ By Z L xl xfff’)
=1

K
Iy Py k M & ~ k
+ BkLIZ (iL‘O‘]:éJ — ($0|fg)|fiél) + Bk E ng,l (xf]__g — (l'ffé;hfly) :|dt, (218)
=1

where the overline symbol with superscript £, i.e. ( ) denotes the infinite-population limit of the
the average over subpopulation % of the corresponding terms, which are the components of z§*
in (2.16) (see Proposition 3.1 in [21] for the convergence analysis in quadratic mean).

Subsequently, a compact representation of (2.18) shall be used as in

dz* ((Ak + BLY)7* 4 (G + BrLk)wo + By Z LE'E + BiLkigm

=1

K
B Y L+ Bkmk> dt + Jiberdt, (2.19)

=1
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where we denote by 7% the average of the estimation errors of the minor agents of
subpopulation k£ as N, — oo, and which satisfies the dynamical equation (2.58) in Section 2.3.4.
Hence, the second bracket in (2.18) is given by J,2%¢*. (Here the term J,Z%°* corrects its
omission in [21].)

Therefore the mean field state vector T satisfies
dz = Azdt + Guodt + Hiopydt + LT zydt + JEdt + mdt, (2.20)

where (7¢)T = [(zbex)T ... (%)), and the matrices A, G, H, L, J, and m collect the

corresponding terms in (2.19) and have the block matrix form

Al Gl Hl
A= |, G=| + |, H=| : |,

&
3
i
(@)

L=1| : |, m= o, J= . (2.21)

Ly 115% 0 JK

We note that Ay, L, € RV G, Hy, € RV, my € R, J, € R*Gnt2nK) 1 < I < K are

to be solved for using the consistency equations in Section 2.3.4. By abuse of language, the mean

value of the system’s Gaussian mean field given by the state process T = [z*, ..., 2] shall also

be termed the system’s mean field.
2.3.2 Major Agent: Infinite Population

The major agent’s infinite population dynamics, as the number of agents goes to infinity (N —

00), remain the same as in (2.1), while its infinite population individual cost functional is given
by
J5° (ug, u_o) = E/ e—pt{”x() — o(D)|15, + ||u0||§%}dt, (2.22)
0

¢(.) == Hgx + no, (2.23)
HY =7 ® Hy = |7 Hy, 72 Hy, ..., 7 Ho), (2.24)
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where 2() in (6.48) was replaced by its L? limit, i.e. the mean field 7.

To solve the infinite population tracking problem for the major agent, its state is extended
with the mean field process Z, where this is assumed to exist, i.e. z§" = [z, Z].

Then the Kalman filter which generates the estimates of the major agent’s state Z zv and the

mean field §| #v based on its own observations are, respectively, given by

oy = Aodorydt + Botiodt + Kduy, (2.25)
d)ry = (G + H)iozydt + (A + L)Zzvdt + mdt + Kidu, (2.26)

where §| 7y = 0is used (see Observation 2.4). Moreover, 1 is a deterministic process according
to (2.19), K} and K¢ are the Kalman filter gains, and vy is the innovation process. Therefore the

Kalman filter which generates the estimates of the major agent’s extended state is given by

d.ﬁ%ou:g _ B A() B Oﬁan]E 350|]:(3)/ dt
B 0,
T O Naedt+ | Y| dt + Kodw, (2.27)
nKxm m

with the corresponding Kalman filter gain K = [(K})?, (K2)T]7, and the innovation process vy,

respectively, given by

Ko = VoL R, (2.28)

R T
dvy = dyo — Lo [;@afg, flﬁfg] dt, (2.29)

where Ly = [ I8 Opni } , and V;(t) is the solution to the corresponding Riccati equation (3.56).
From (2.1), (6.54), and (2.27) we denote
B n
’ ) MO = 0 - )
OnKXm m

DO Onxri ] Jo _ [ 0n><(3nK+2nK2) ] (2 30)

AO OanK

Ag=| . |, By=
G+H A+ L

DO —
OnKXr OnKXrK J

Then to guarantee the convergence of the solution to the Riccati equation to a positive definite
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asymptotically stabilizing solution, we assume:
Assumption 2.5. [Ag, D] is stabilizable and Ly, A¢| is detectable.

The corresponding Riccati equation is then given by
Vo = AoV + VoAL — KoRy KT + JoVIL + Quy, (2.31)

where Q,,, = DoDE, V(t) = E[7(t)(Z(t))"] satisfies (2.65), and V(0) = E[(z5*(0) —
ez (M exr Z\ T
(57 (0)z) (257 (0) — (267(0)) ) " |-

Then, utilizing the infinite horizon discounted analogy to Theorem 2.1, it can be shown (see
Theorem 2.2 in Section 2.3.4) that the optimal control action for the major agent’s tracking

problem (and hence best response MFG control input) is
iy = — Ry "By [To (5,5, )T+ 50, (2.32)
where I and s, are the solutions to the Riccati and offset equations given by

plly = oAy + AJ T — By R, 'BE Ty + Q7 (2.33)
ds _ _
psy = d_to + (A — BoRy 'BE )" 59 + oMy — 7o, (2.34)
with 7y = [Luxn, —HF)TQono and QF = [Luxn, —HF T Qol[lnxn, —HF]. We note %0 = 0in
(2.34), since M, 1y are constant.
Finally, the joint dynamics of the major agent’s closed-loop system and its Kalman filter

system are given by

d

dfCo :C,O dwy

oAy | T @t 3eEdt - Modt Do | | Opsens | | (2.35)
d$0|}-g Lol 7y dvo

A7y oy
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where
AO OanK _BORalBgHO J
Ay = G A [ H L } ’ R [ . 0 ] |
KolLo Ay — KoLy — BoR; 'BITI, (n+nkK)x (3nK+2nk?)

My — BoR; ‘Bl s

M, —
" | My — BoR; "B s,

D O(n+n
’ DO:[ 0 (n+nK)x£
(

1
0 n+nK)x(r+nkK) KORgo

2.3.3 Minor Agent: Infinite Population

A generic minor agent’s infinite population dynamics, as the number of agent goes to infinity

(N — 00), remain the same as in (2.2), while its infinite population individual cost functional is

given as
I (ug, u_g) = IE/ e—pt{“xi — (@) + ||ui||§z}dt, (2.36)
0
Y(.) = Hizo + H3Z + 1, (2.37)
HY = 7 ® Hy 2 [mHy, mH,y, ..., T Hy). (2.38)

In the case where all agents have partial observations on the major agent’s state, the joint
dynamics of the major agent’s closed-loop system and its Kalman filtering recursions are

employed in order to solve the minor agent’s tracking problem. Therefore, the minor agent’s

state is next extended to form z{® 2 [z;, zo, Z, ToyFy, §:| fg]. Specifically this yields

dzt® = Apatdt + Brugdt + JT° + Mdt + D[dw] , dwl, 01xnx, dvd |7, (2.39)
where
A G Onx (n+2n B
Ak _ k [ X (n+2nK) ] : Bk _ k ’

02(n+nK)><n AO OQ(n—l—nK)Xm

On . n On D OTL rn
J= x (3nK+2nK?2) , M = x1 7 D= X (r+nK+L) ' (240)

Jo M, O2(ntnk)xr D,
To derive the Kalman filter equations for (2.39), we first define Ly = [l; 12 Opx(nionk)]-

To guarantee the convergence of the solution to the Riccati equation to a positive definite
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asymptotically stabilizing solution, we assume:

Assumption 2.6. The system parameter set © = {1, ..., K} is such that [Ay, D] is stabilizable
and [Ly, Ay] is detectable for all k, 1 < k < K.

The Riccati equation associated with the filtering equations for (2.39) is then given by
Vi = AV + VRAT — KGR KT + IVIT + Qu, (2.41)

where Q,, = DD7, V() = E[7(t)(7(t))"] satisfies (2.65), and Vi(0) = E[(z(0) —
(x?x(O))my) (xfx(O) — (xfx(()))‘;iy)T}. The Kalman filter gain K, is in turn given by

K, = ViL{ R, (2.42)
and the innovation process v;(t) is defined as in

where (2o 5y ) v and (Z) Fu)|Fv. respectively, denote the minor agent A;’s estimates of the major
agent’s estimates of its own state and the mean field. Then the Kalman filter equations for a

generic minor agent 4;, 1 <i < NN, are given as in
dijﬁ}iy = Aki'f‘xfiy dt + Bya;dt + Mdt + Kpdy;, (2.44)

EGCC
where TiF

k3

(ozy ) 7v and (7| £y ), 7v which are required to calculate Zozv and Z|zv (see Proposition 1 in [37]

v = 0 (see Observation 2.4) is used. Clearly, (2.44) generates the iterated estimates

for a simplified case of Estimates of Estimates Filter).

Remark 2.1. By virtue of the asymmetric information available to the major agent and a generic
minor agent, an infinite regress does not occur in the process of estimating other agents’ states. In
fact to calculate the best response action, the major agent only estimates its own state and hence
does not estimate minor agents’ states, while each minor agent estimates its own state and the

major agent’s state.

We note that by Assumption 2.3 the minor agent 4; is able to estimate g whenever the

functional dependence of the major agent’s control on it’s state is available to the minor agent



2 Partially Observed Major Minor LQG Mean Field Game Systems 20

through forming the conditional expectation of the major agent’s control action which by (2.32)

is given by the following expression

(ag)zr = E{ag| 7} = —~R™'By [H0<(fo\fg)\j}ga (@fé’)f}g) + 50}, (2.45)

and which is embedded in (2.44). Then, utilizing the infinite horizon discounted analogy to
Theorem 2.1, it can be shown (see Theorem 2.2) that the optimal control action for the minor

agent A;’s tracking problem (and hence best response MFG control input) is given by
~o 1T T AT AT (n T a o \'
u; = —-R Bk |:Hk: (xi|]:l?47$0|]-‘iya x|]—'l?fv (x0|fg)\Fg/a (:L‘|]:é’)|]-‘ly> + Sk:| ) (246)

where the iterated estimation terms (Zgry) v, and (z) Fv)iFv explicitly appear, and the

corresponding Riccati and offset equations are given by

plly, = Ay + ALTL, — TLBLR'BLTL, + Q™, VK, (2.47)
ds
psp = d—: + (A — ByR'BIIL) s, + LM — 7, Vk, (2.48)
with
77} = [[nxna _Hla _Hga Onx(n+nK)]TQ777
Qﬂ- - [[nxnu _Hb _H;rv OnX(n+nK)]TQ[In><n7 _Hb _H;r7 OnX(n+nK)]-
We note %’“ = 01in (2.48), since M, 7 are constant.

2.3.4 Mean Field Consistency Equations

Let us denote the components of 11 in (2.47) as

11 II 11 II II
T, — k11 k12 k,13 k,14 k,15 ’ (2.49)
Mpor Ilpoe goz Ilpos Ik s

1 < k < K, and where IT 11, [y 12, Iy 14 € R, T 13, g 15 € R T o1, g0, o4 €
R2(HnE>xn and Ty, 93, Ty 95 € R2MFMOXnK - et us also define the block matrix ey, =

[0uxvs -5 Ouxwy Loy Opscus o5 Ouxy] With K blocks, where the v x v identity matrix I, is located
at the kth block. Finally we define the block matrix 1, = [I,,..., I,, ..., [,] with K blocks of
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identity matrix. Then we denote by

ék = €k.n, (250)
€k = €k (3n+2nK)) (2.51)
1= 1Gu 00K (2.52)

To obtain the mean field consistency equations, we substitute (2.46) in (2.2) to get

dv; = Agwidt + Guodt — B R™'By [IL.a5% + si]dt + Ddw;. (2.53)
Then Z77%, can be written as
Ty = —(af" — &%) +af",
— —E (2.54)

where 77" denotes the estimation error, and the governing dynamics for1 <¢: < N,1 <k < K,
are given by

_ 1
dEP = (A — KLy 2 + J2°%dt — K RZ dv; + D[dw? | dwl’, 01 xnk, dvl]T,  (2.55)

where (7¢2)T = [(zbeo)T | ... (25)T] satisfies (2.60).
Next the empirical average of (2.53), where (2.54) has been substituted, over the population
of the minor agents of type k is given by

1 O 1
d(— kY = A (— At + Grodt
(Nk;%) k(NklZ:;:vz) + G
1 1 1
_B R‘llB%T[H N ke 2 N pher }dt D—S dw,. (2.56
K k k(Nkaz +Nkizl$z ) + sk |dt + Nk;w (2.56)

i=1

As Nj — o0, the solution to (2.56) converges, in quadratic mean, to the solution of
dz* = Ayz*dt + Grodt — ByR™'B] [Hk (Z5er + 78 + sk] dt, (2.57)

_ _ o aq 1T L
where 28" = [(z%)7, 2, 27, wa 7o xﬁg} , and from (2.55) the average of the estimation error
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T over subpopulation k, 1 < k < K, as Ny — 0o, i.e. 2%, is given by
™ot = (A, — KiLy) 25 + J2° — D01, dwg , 01, dug | (2.58)

Note that in the derivation of (2.58), we use the property that Nik ZZN:’H wy = wp and Nik ZZNZIH vy =

Vp, since wy and v, are the common processes shared between all agents of type k. Moreover, the

law of large numbers is used to obtain as N — oo
1 N L
— D Kpdy, 50, — ) dw; 25 0.

Subsequently, from (2.58), (z¢*)7 = [(zb*)T, ..., (2%°*)T] satisfies

N 0,
(A; — K1Lp)é, +J -D ) x
die = : Frdt + o
~ 07"K><1

(Ag — Kgllg)éx +1J -D
dUOJ

or equivalently in the compact form
Az = AT dt + D[01xr, dwl, Orsrie, dvd 7.

Using (2.49) the mean field equation (2.57) can be presented as

, (2.59)

(2.60)

dz* — ([Ak — ByR™'BIT, 1]e, — ByR BT Hk,lg):fdt + <G — B.R'BT Hw) zodt

— ByR™' Bl M 14io rydt — By R~ Bl 1152 7y dt — B R B2 dt
— ByR™'Blspdt. (2.61)

Since (2.57) and (6.54) must be identical, we obtain the Consistency Equations, determining

the components of A, G, H, L, J, and m in (6.54), given by the following compact set of

equations

Ay = [Ay, — BLR'B{Tl}11)6, — ByR'B[ T} 13, VE,
Gy =G — ByR'Bl'Tl; 10, Vk,
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Hy = —ByR "Bl T} 14, Vk,
Ly = —ByR'BlT, 15, Vk,
jk = —BkR_IEgH;@, Vk,

my = —ByR 'Blsg, Vk, (2.62)

where Il and s, satisfy (2.47) and (2.48), respectively. The set of equations (5.51) together
with (2.33)-(2.34) and (2.47)-(2.48) form a fixed point problem which must be solved by each
individual agent 4;,0 < ¢ < N, in order to compute the matrices in the mean field dynamics
(6.54).

Finally from (2.39) and (2.57)-(2.60) the Markovian dynamics of Z* (i.e. the mean field of
subpopulation £, 1 < k£ < K) are given by

di.k,ex B
d%e:p

A, — BkR_lBgﬂk —]B%kR_leHkék

0 A,
Orxl
M — B,R~'B” 0 d
REECBRSE g . o (2.63)
0 D rKx1
dUO

Remark 2.2. From (2.58) in the infinite population limit the average of the estimation errors of
the minor agents of type k,1 < k < K, is driven by the major agent’s Wiener process wy and the
measurement noise vy (or equivalently innovation process ;). In other words, it is driven by the
non-zero quadratic variation processes in the dynamics of the common processes z(", i"gffg, with
which the minor agents A;, 1 <1 < N, are coupled.

Subsequently, V (¢) = E[z°"(t) (f“‘(t))T} satisfies

OT‘XT‘

. N Iy -
* DT, (2.64)

OT‘KXTK
[r><r
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and if we put D = —17D, we obtain
V = AV + VAT + QQ7, (2.65)

where

[y

QQT =17 Qup (2.66)

KoR, K[!

To guarantee the convergence of the solution to the corresponding Lyapunov equation to a unique,

symmetric and positive definite solution, we assume:
Assumption 2.77. The pair [A, Q] is controllable.

O

Remark 2.3. For the case where the major agent has complete observation on its own state, and

each minor agent has complete observations on their own state and the major agent’s state we

have
ety =0, t>0, (2.67)
E{zo| 75} = o, (2.68)
E{z|F} =z, (2.69)

where (2.69) holds since the major agent can compute the real value of by observing its own
state. Hence the mean field equation (6.54) reduces to that of completely observed major minor
LQG MFG systems (see [16]). [

Remark 2.4 (Estimate of Infinite-Population Average Estimation Error). The solution to (2.60) is
given by
t
() = ®(¢,0)7(0) + / ®(t, 7)D[01 5, dwi , O1srsc, dvd T dr, (2.70)
0
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where ®(t, 7) = exp (A(t — 7)). The initial estimation error of the minor agent .4; is given by

i 70 (0) — 2;(0) [ —2,;(0) |
o)y (0) — 20(0) —0(0)
7 (0) = Z173(0) — 2(0) = | Ourx1 |- 2.71)
(Zoj72 )72 (0) — Zo172(0) Opx1
| @)z (0) =2z (0) | | Oprsa

since the partial observation information sets ]-“Zy ,0 < ¢ < N, at time ty = 0 are null sets,
the conditional expectations turn into total expectations which according to Assumption 2.1 their
value is zero. Hence, the infinite-population limit of the average initial estimation error of the

minor agents of subpopulation k is given by
i,k,ex(o) = [lena %T(O), 01><nK7 O1><na 01 XnK]Ta (272)

where Assumption 2.1 is again used, and hence E[7**(0)|F?] = 0. Then the conditional

expectation of 7¢%(¢) with respect to 7,0 < i < N, i.e. f:f]x_.y (1), is given by

%f%, (t) & B[z ()| FY]

Orxl
— t ~ dU@
= ®(t, 0)E[7(0)|FY] +E[ / o(t, 7)D d’r’fiy} (2.73)
0 nrx1
dUO
0, (2.74)

where the second term in (2.73) is zero due to the independence of {w;,0 < i < N} and
{1@,0 f;ijg fV}. OJ
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Next we define

| Al — BlRilB?HLH |
Ml = ’ )
AK — BKR_IB£HK711
BiR'BT1I; 15 A, 0 0]
M2 = ) M3 = G A 0 ;
BxR'BETk 13 G —M, M, |
Lon = Qy*[1,0,—H{). (2.75)

The final set of assumptions is as follows:
Assumption 2.8. The pair (Lo g, M3) is observable.

Assumption 2.9. The pair (L,,Aq — (p/2)I) is detectable, and for each k,1 < k <
K, the pair (Ly,Ax — (p/2)I) is detectable, where L, = (1)/2[1,—H6’] and L, =
Q'V2[I,—Hy, —HE, 0px(nink))- The pair (Ao —(p/2)1,By) is stabilizable and (A, — (p/2)1, By)
is stabilizable for each k,1 < k < K.

Assumption 2.10. There exists a stabilizing solution 11y, so, 11, s, Ay, Gy, Hy, Ly, Ji, My to
the major-minor mean field equations (5.51) in the sense that the matrices

Ay — BoRy'BTTI, — gl,

A, — ByR'BTII, — gl, 1<k<K,
are asymptotically stable, and

sup e 2 (|so(t)| + |sk(t)] + [mi(t)]) < oo.
t>0,1<k<K

Theorem 2.2 (e-Nash Equilibria for PO LQG MM-MFG Systems). Subject to Assumptions 2.1-
2.10, the KF-MFG state estimation scheme (2.27)-(3.56) and (3.65)-(2.44) together with the MM-
MFG equation scheme (5.51) generate an infinite family of stochastic control laws LA{]?jF, with
finite sub-families U, & {u®; 0 <i < N}, 1< N < oo, given by (2.32) and (2.46), such that

(i) Z;{]C;?F vields a unique Nash equilibrium within the set of linear controls L[Z»‘E’L and U&y such
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that
i (ug,uly) = inf I (ug, uly);

oo, L
u; 61/11 v

(ii) All agent systems 0 < i < N, are e~ 2" discounted second order stable in the sense that

swp e HE(aqm | + 1217 + | Gom) I + G 11 < €
t>0,0<i<N

with C independent of N;

(iii) {Z;{ﬁF; 1 < N < oo} yields a unique e-Nash equilibrium within the class of linear control
laws Mz%’L and U&yfor alle, i.e. forall € > 0, there exists N (€) such that for all N > N (e);

JPN(ag,a0,) — e < 12f TP (ugya0) < PN (a5, 02,),
u; €

where the major agent’s and the generic minor agent’s performance function J; ’N(uf, u’;),
N,L : L
Guzy ,0< 1< N, is given by

JN(uza ) +EN7

where JN (u;,u_;) is as in the completely observed case, Ex > 0, and when u; = u; the

following limits hold:

Nag,a;) = Jpe(ay,acy),

o th—>oo J z?

® hrnN_mo EN = fooo e‘pttr[Q“V]dt,
where V (t) is the solution to (3.56) for the major agent and the solution to (3.65) for

a generic minor agent.

Proof. Generalizing the standard methodology in [38] and [39], we first decompose the state
processes into their estimates and their estimation errors orthogonal to the corresponding
estimates. Substituting the decomposed states into the performance functions and applying the
smoothing property of conditional expectations with respect to the increasing filtration families
F? and F{ to the major and minor cost functionals respectively, we obtain the separated

performance functions. This technique is applied to both finite and infinite population cases

which yields the best response controls {4, 0 < i < N} as optimal tracking controls for the



2 Partially Observed Major Minor LQG Mean Field Game Systems 28

major and minor agents in the infinite population case (see [21] for the case where only the minor
agent has partial observations on the major agent’s state). Specifically we form the following
decompositions where the superscript ’s’ on the resulting performance functions indicates the

separation into control dependent and control independent summands.

1. Major Agent’s State Decomposition

Finite Population:

[ Zo ] - [ §30|fg n Zo —ffou-‘g
Ny | T | &) (N) _ #(N)
2 17 R
Infinite Population:
To | _ »’%o|fg 4 Lo — fi'o\fg
z Ty z— 25y

2. Major Agent’s Cost Functional Separation

Finite Population:

JoN (ug, u_g) = E[/ e”’t{
0

oo _ ) (N 9

. ~(N 2
b~ 3l + Dol ot

Infinite Population:

JyT = E[/OOO e_pt{

A~ ~ 2
o — H 17—l +

+ E{/ e |(xo — &g zy) — H (T — i";g)HéOdt} . (277
0

3. Minor Agent’s State Decomposition

Finite Population:

T L Fy Ti — X7y
To | = | Tory | T | To— ToFy
(N) i'(N) ) _ j(N)

i
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Infinite Population:

Zi Li|Fy Li — X7y
To | = | Zory | T | To— Ty
T Ty py T— Iy

4. Minor Agent’s Cost Functional Separation

Finite Population:

s > — ~ ~ ~(N 2
0 1
< . . . 2
+ EU e | (2 — &yv) — Hy(xo — Boppv) — Ha(z!™) — x%))Hth]- (2.78)
0 1

Infinite Population:

5,00 00 — 5, 2 e 2
J;T = E[/ e pt{Hqugf — H\Zo 7y — Hy2 v — 77HQ + HUZ”?%}dt]
0

—|—]E[/ @_ptH(xi — :i‘“]_—zy) — Hi(xg — i’o‘}-iy) — HI (z — .%}-Zy)Hgdt} (2.79)
0

As can be seen, the first integral expressions in (2.76), (2.77), (2.78) and (2.79) depend on the
estimated states generated by the estimation schemes (2.27) and (2.44) for the major agent and
minor agents respectively, and the second integral expressions depend only upon the respective
estimation errors and on the solutions to the associated Riccati equations. The latter expressions
are independent of the control actions and generate the additional cost El in the finite population
case incurred by the errors in the estimation process.

Next, the resulting infinite population tracking problems are solved for the major and minor
agents in their separated forms. The control dependent summands in (2.77) have exactly the
same structure in terms of the functional dependence on the estimated states as the infinite
population cost functionals in the complete observation case have on the states. Moreover, the
control dependent summands in (2.79) have exactly the same structure in terms of the functional
dependence on the estimated states as the infinite population cost functional for the system (2.39)
with complete observations on its own state, the major agent’s state, and the major agent’s

estimates of its own state and the mean field. Hence, by the Separation Principle the infinite
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population Nash Certainly Equivalence equilibrium controls are given by {u$, 0 < i < N} in
the theorem statement. Finally the infinite population control actions are applied to the finite
population systems and the fact that these yield (i) e~ 2% second order system stability, and (ii)
e-Nash equilibrium property, is established by the standard approximation analysis parallel to
that of completely observed major-minor LQG MFG systems (see [9], [16]). [l

Remark 2.5. We note that (Zozy) v and (Z) #v)|Fv do not appear in the minor agent’s state
decomposition and in its separated performance function but that they are used in the extended
estimated state recursion (2.44) and hence appear in the control action for a minor agent in (2.46).

OJ

Remark 2.6. The non-uniqueness of Nash equilibria which may occur in classical LQG stochastic
dynamic games with specified information sets [40, 41] does not occur in this analysis. This
holds since, for the specified maximal individual information sets, and subject to the hypotheses
of Theorem 2.2 giving unique solutions to the MFG Consistency equations (as functions of
the system parameters), a unique linear best response function is obtained for each agent with
respect to its stochastic control problem arising from its performance function in the infinite
population limit. We note that any set of controls generating a Nash equilibrium will yield the

same consistency equations whose solution depends only on the system parameters. U

2.4 Simulations

Consider a system of 100 minor agents and a single major agent. The system matrices

{Ag, Bg, 1 <k <100} for the minor agents are uniformly defined as

pA —0.05 -2 BA 1
10|’ 01’
and for the major agent we have
-1 -1 1
Ag & . By2
’ 10 ’ [ 0

The parameters used in the simulation are: %, = 25sec, At = 0.01sec, o,y = 0w, =

7

0.009, 0y = 04, = 0.0003, p = 0.9, 7y = n = [0.25,0.25]7, Qp = Q = Ipxo, Ry = R =
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1, Hy = Hy = Hy = 0.6 X I5yx5, G = 0y49. The true and estimated state trajectories, and the
estimation errors for a single realization can be displayed for the entire population of 101 agents

together, but in figures 2.1-2.6 only 10 minor agents are shown for the sake of clarity.

2.5 Conclusions

In this chapter, PO MM LQG MFG problems with general information patterns are studied where
(1) the major agent has partial observations on its own state, and (ii) each minor agent has partial
observations on its own state and the major agent’s state. For the general case of indefinite LQG
MFG systems, the existence of e-Nash equilibria together with the individual agents’ control
laws generating them are established via the Separation Principle. The assumption of partial
observations for all agents leads to a new situation involving the recursive estimation by each
minor agent of the major agent’s estimate of its own state. To the best of our knowledge, the
dynamic game theoretic equilibrium which is established in this chapter constitutes a rare case
wherein agents explicitly generate estimates of another agent’s beliefs. Moreover, this does not

give rise to an infinite regress due to the information asymmetry of the major and minor agents.
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Major Agent Traj. & Estimates
0.5
Ty
0.4 Lo\
Lopr, € Ny

Figure 2.1: The Major agent’s true and estimated trajectories.

Minor Agents Trajs & Estimates
—_—ux;,t=1,...,10

0.6

Figure 2.2: 10 Minor agents’ true and estimated trajectories.
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Mean Field Traj. & Estimates
06 —_—
— i
0.4 &, i€ N,

Figure 2.3: The mean field true and estimated trajectories.

Estimation Errors

— o — o 7y
0.2 Ty — .i‘o‘}-fi, i€ N:;
T
oA zo — (Zoz2) |7, 0 € N

——&ory — (Bory) 172, 1 € Ny

Figure 2.4: The estimation errors of the major agent’s trajectory.
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Estimation Errors

0.4 —T- ?\-ﬁ"{
05 —— T =T, 1 €N
0.2 Y 2 .
— 3 — @) i€ N

0.1

> 0
-0.1
-0.2
-0.3
-0.4 -]
0.5

25
20
0 15
10
5
X 05 g Time
Figure 2.5: The estimation errors of the mean field trajectory.
Estimation Errors
0.4
— i — ﬁ:zl‘rF;}’ q S Nq
0.2
0

>_
-0.2
-0.4

Figure 2.6: The estimation errors of 10 minor agents’ trajectories.
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Chapter 3

Optimal Execution Problems in Finance

with Partial Observations

3.1 Introduction

The PO MM LQG MFG theory was first applied to an optimal execution problem with the
linear models of [25] in [32] where an institutional investor, interpreted as a major agent, aims
to liquidate a specific amount of shares and it has only partial observations of its own state
(which includes its inventory). Furthermore, there is a large population of high frequency traders
(HFTs), interpreted as minor agents, who wish to liquidate their shares, and each of them has
partial observations of its own state and the major agent’s state (which include the corresponding
inventories). In the current chapter, this work is refined in the formulation of the market dynamics
in the MFG framework, and also is extended to consider two populations of HFT's with liquidation
or acquisition objectives who wish to, respectively, liquidate or acquire a certain number of shares
within a specific duration of time. MM (indefinite) LQG MFG theory is then utilized to establish
the existence of e-Nash equilibria together with the best response trading strategies such that each
agent attempts to maximize its own wealth and avoid the occurrence of large execution prices, and
large trading accelerations which are appropriately weighted in the agent’s performance function.
The results of this chapter have been presented in [33,34].

We note that the terms major trader (respectively, minor trader), and institutional trader
(respectively, HFT) are used interchangeably in this chapter.

The chapter is organized as follows. Section 3.2 is devoted to the description of trading
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dynamics in the market and the execution problem. In Section 3.3 the optimal execution problem
is formulated in the mean field game framework. Completely observed and partially observed
optimal execution problems are then addressed in Sections 3.4 and 3.5, respectively. Section 3.6

presents the simulation results.

3.2 Trading Dynamics of Agents in Market

As stated in the Introduction, the institutional investor is considered as a major agent in the
mean field model of the market which liquidates its shares and the HFTs are considered as minor
agents, where two types of them are considered: liquidators and acquirers. Employing the trading
model in [25], the trading dynamics of the major agent and any generic minor agent in the market
are described by the linear time evolution of the inventories, trading rates and prices while the

bilinear cash process appears in the quadratic performance function for each agent.

3.2.1 Inventory Dynamics

It is assumed that the institutional investor liquidates its inventory of shares, Qo(t), by trading at
arate 1(t) during the trading period [0, 7']. Hence the major agent’s inventory dynamics is given
by

dQo(t) = vo(t)dt + o¥dwi(t), 0<t<T,

where wég is a Wiener process modeling the noise in the inventory information that the

institutional trader collects from its branches in different locations; 082 is a positive scalar and
we assume that ()o(0) > 1. The same dynamical model is adopted for the trading dynamics of a

generic HFT
dQi(t) = v(t)dt + o®dw®(t), 1<i< N+ N, 0<t<T

where N, and N; are respectively liquidator and acquirer populations of N minor traders, i.e.
Q

N=N,+ N, wiQ is a Wiener process that models the HFT’s information noise, 0;° is a positive
scalar, v;(t) is the agent’s rate of trading which can be positive or negative depending on whether
the agent is acquirer or liquidator, respectively; Q;(¢) is the minor liquidator agent’s remaining

shares at time ¢, or the shares the minor acquirer agent has bought until time ¢t. However, the
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initial inventories of the HFTs, {Q;(0),1 <i < N, + N,}, are not considered to be large.

We assume that the trading rate of the major agent is controlled via uo(t) as
dV()(t) = Uo(t)dt, 0 S t S T,

where the trading strategy uo(t) can be seen to be the trading acceleration of the major trader.

Correspondingly, u;(t) controls the trading rate of minor agent, 4;, by
dl/z(t) = Uz(t)dt, 1 S 1 S Na + Nl, 0 S t S T.

3.2.2 Price Dynamics

The trading rate of the major agent and the average trading rate of the minor agents give rise
to the asset midprice which models the permanent effect of agents’ trading rates on the market
price. Further, each agent has a temporary effect on the asset price which only persists during
the action of the trade and which determines the execution price, that is to say the price at which

each agent can trade.

Asset Midprice

We model the dynamics of the asset midprice, as seen from the major agent’s viewpoint, by
dFy(t 0( ) )\01/() +

where the Wiener process w( () models the aggregate effect of all traders in the market which
- unlike the major and minor agents A,, .4;, - have no partial observations on any of the
state variables appearing in the dynamical market model (these are termed uninformed traders).
Further, o denotes the intensity of the market volatility and A\g, A > 0 denote the strength of
the linear permanent impact of the major and minor agents’ tradings on the asset midprice,

respectively. Similarly, we model the asset midprice dynamics, as seen by a minor agent A,

by

N
A
dF;(t) = (Mowo(t NZ ))dt +odwf(t), 1<i<N,+N, 0<t<T,
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F

where the Wiener process, w; (), represents the mass effect of all uninformed traders in the

market. The time differences between agents in getting data from fast changing limit order book

make the Wiener processes, wf , 0 <1 < N, + N, independent.

Execution Price
The major agent’s execution price Sy () evolution is assumed to be given by

dSO(t) = dFo(t) + aodl/o(t>, 0 S t S T, (31)

where ay > 0 is the temporary impact strength of the major agent on the asset midprice. Likewise,

a minor agent’s execution price, S;(), is assumed to evolve as
dS;(t) = dF;(t) + adv;(t), 1<i<N,+ N, 0<t<T, (3.2)
where a models the temporary impact of a minor agent’s trading on its execution price.

3.2.3 Cash Process

The cash processes for the major agent and a generic minor agent, Zy(t), Z;(t), are given by

dZy(t) = =So(t)dQo(t), 0<t<T, (3.3)
dZ;(t) = =Si(t)dQi(t), 1<i< N+ N, 0<t<T, (3.4)

where Zy(t), Z;(t), 1 < ¢ < N, are the cash obtained through liquidation of shares, and
Zi(t),0 < i < N,, is the cash paid for acquisition of shares up to time . We note that the
value of dQo(t) in a stock sale is negative and hence for positive Sy(t), Zo(t) increases.

3.2.4 Cost Function

Major Liquidator Trader

The objective for the major trader is to liquidate N shares and maximize the cash it holds at
the end of the trading horizon, i.e. maximize Zy(7"), and if the remaining inventory at the final
time 7" is Qy(7T), it can liquidate it at a lower price than the market asset price, reflected in the

cost function by Qo(T")(Fo(T) — agQo(T)). Further, the major trader’s utility in minimizing the
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inventory over the period [0, 7] is modeled by including the penalty fOT Q3(s)ds in its objective
function, and the utility of avoiding very high execution prices, large trading intensities and
large trading accelerations by including the terms S2(T fo S2(s)ds, v3(T), OT v3(s)ds and

fo Roud(s)ds in the objective function. Therefore, its cost functlon to be minimized is given by

Jo(ug, u—g) = E[ — 100 Zo(T) = 110Qo(T) (Fo(T') — aoQo(T)) + £S5(T) + Y05 (T)
—i—/o (¢0Q0( ) + 6055 () + Oovp(s) + Roug(s))ds}, (3.5)

where v, 1o, o, &0, Y0, G0, 00, b and Ry are positive scalars, and u_q := (uy, ..., un,n,) are
trading strategies of the minor traders. Note that for larger values of ¢, the trader attempts to

liquidate its inventory more quickly.

Minor Liquidator Trader

In a similar way, the objective function to be minimized for a liquidator HFT who wants to

liquidate \; shares during the time interval [0, 7] is given by

Ji(ui; Ufz') = E[ - ¢lZ'(T) - MlQi(T) (Fz(T) - OélQi(T)) + &S?(T) + %V?(T)

b [ (@) + 85206) + 05200) + RaZ(0) ] 1S < N GO
0

where 1y, 1, ou, &, i, ¢, 01, 0 and Ry are positive scalars, and u_; 1= (ug, U, ..., U;_1,
Uity -y uNa+Nz)‘ Note thatM < ./VZ)

Minor Acquirer Trader

The objective for a minor acquirer trader is to buy N, shares over the trading horizon [0, T,
while it minimizes the execution cost including the cash Z;(T") paid up to time 7', and the
cash must be paid at time 7' to buy the remaining shares at once at a higher price than the
market’s asset price, i.e. (N, — Q;(T))(Fi(T) + a(N — Q;(T))). It also intends to avoid high

execution prices, large trading intensities and large trading accelerations modeled by including
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§aSE(T) + P (T) + fOT (6252(s) + Oav2(s) + Rqu?(s))ds in its objective function

Jilts, ui) = B Zi(T) + paNa = Q1)) (FAT) + aalN, = Qu(T))) + &S2(T)+
T
7 (T) + / (6a(No = Quls))? + 852(5) + a2 (s) + Rl (5))ds |, 1 i < Ny B.7)
0
where fOT ba(N, — Q;(s))?ds is to penalize the agent for the remaining shares to be bought up

to 7" and to expedite the acquisition. The parameters vy, fia, Qs Eas Var Pas 0> 0, and R, are

positive scalars, and u_; 1= (U, Uy, ..o, Ui—1, Uit 1, ooy UN,+N, )-

3.3 Mean Field Game Formulation of Optimal Execution Problems

In this section we formulate the optimal execution problem in the major minor LQG MFG
framework.

3.3.1 Finite populations

Major Agent

The stochastic optimal control problem for the major trader is modeled as

dQo(t) = vo(t)dt + o@dwq (¢), (3.9)
\ N
dSo(t) = (Moo(t) + ; ))dt + aguo(t)dt +odw (t), (3.10)

with the cost function

Jo(ug, u—g) = E[ — 110Qo(T) (So(T) — agro(T) — aoQo(T)) + &0So(T)? + Yoy (T')+

/T (¢0Q0( )+ 10So(5)vo(s) + 60S2(s) + Oord(s) +Roug(8)>ds],

0

wherein the final cash process in (3.5) was replaced by E[Z,(T)] = —E[fOT So(s)vo(s)ds|, and
the asset midprice Fy(7") were replaced using (3.1).
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As can be seen, the major agent is coupled with the minor agents by the average term % Zfil v
in the execution price dynamics (3.10).

Now let the major agent’s state be denoted by

<0

zo= | Qo
So

Then the major agent’s cost function will be written in the standard quadratic form

T
(o) =E[lroDIB, + [ (ofo)l, + o) s, a1
0
with
) Yo o 3poag 0 0 0 3t
Po=| juoao mooo —3p0 | Fo=1| 0 ¢ 0 |, Ro>0. (3.12)
0 —3m0 & 500 0 4o
Minor Liquidator Agent

Similarly, the stochastic optimal control problem for a minor liquidator trader A;, 1 < i < N,

is given by the set of dynamical equations

dQi(t) = vy(t)dt + c%dw®(t), (3.14)
N
dS;(t) = (Movo(t) + % vi(t))dt + aw;(t)dt + odw; (t), (3.15)

The equations above show that a minor agent is coupled with the major agent and other minor
agents through the execution price dynamics (3.15).

Similar to the major trader, we define a generic minor trader’s state vector as

V;
€Ty = Qi )
S;
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and its quadratic cost function where the final cash process in (3.6) has been replaced by

E[Z:(T)] = —E]| fo (s)ds] using (3.4), and the asset midprice F;(T") were replaced using
(3.2) is given by
T
s u-) = B[l + [ (sl + us(s) ) s (3.16
where
1 1
wo sma 0 0, 0 3
P = %,ula oy —%,ul , P = 0 gbl 0 , R;>0.

0 —3m & ste 0

Minor Acquirer Agent

The stochastic optimal control problem for a minor acquirer trader A;, 1 < i < N, is given by

the set of dynamical equations

dYi(t) = —v;(t)dt + anwQ( t), (3.18)
dSi(t) = (Novo(t Z ))dt + au,(t)dt + odwy (t), (3.19)

where Y;(t) = N, — Q;(¢) is the remaining shares at ¢ to be acquired until the end of the trading

horizon. Accordingly, the cost function for acquisition is given by

Ty w2) = B[$aZ(T) + ptaYi(T) (FA(T) + 0aYi(T)) + E&SHT) + 10 (T)+

T
/ (¢aYi(5)” + 6257 (s) + 0417 (s) + Rauf(s))ds}, 1 <i<N,.
0

We define a generic minor acquirer trader’s state vector as
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and its quadratic cost function is given by

T
Ji(ui, u) = E||ai(T) 3, + / (2 ()3, + lus(s)I13, ) ds|. (3.20)
0
where
Ya —%uaa 0 0, 0 —%@Da
Pa = _%,uaa Halg %,ua ) Pa = 0 ¢a 0 ) Ra > 0.
0 %,ua ga _%wa 0 5(1

We denote by w = {w;,0 < i < N} the set of (N + 1) independent R"-valued standard
Wiener processes on the probability space (2, F, P), where w is progressively measurable with
respect to the filtration F* = {F* C F;t > 0}.

Assumption 3.1. The initial states {x;(0), 0 < i < N} defined on (2, F, P) are identically
distributed, mutually independent and also independent of F*, with Ex;(0) = 0. Moreover,
sup; E||z;(0)]|? < ¢ < 00,0 <i < N < oo, with ¢ independent of N.

3.3.2 Mean Field Evolution

Minor agents are categorized in two distinct types. The notation Z;, is defined as
T,={i:0;=k 1<i< N} k=2a,l

where the cardinality of Zj, is denoted by Ny, = |Z;,|. Then, 7 = (7Y, 7N), 7} = &k &k £ a, 1,
denotes the empirical distribution of the parameters (61, ...,0y) sampled independently of the
initial conditions and Wiener processes of the agents A;, 1 < ¢ < N. The first assumption is as

follows.
Assumption 3.2. There exists  such that limy_,o,m™ = m = (7,,m) a.s.

Following the LQG MFG methodology [16], the mean field, Z, is defined as the L? limit,

when it exists, of the average of minor agents’ states when the population size goes to infinity

z°(t) = lim 2™*(t) = lim —Za:z m., k=a,l (3.21)

Nkﬁoo N;C~>oo
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Now, if the control strategy for each minor agent is considered to have the general feedback form

N
wp = Lya; + Lhwo + ) Lhz; + L5, 1<i<N, k£a,l (3.22)
JFuLj=1
then the mean field dynamics can be obtained by substituting (3.22) in the minor agents’ dynamics
(3.13)-(3.15), (3.17)-(3.19) and taking the average and then its L? limit as N;, — oo.

The dynamical equation of the mean field 7 = [(z%)7, (z')T]" for the optimal execution problem

can be written as

dz = Azdt + Gxodt + mdt, (3.23)
where
_ Aa _ G - mo
- Al - al | m = [ L ]’ (3.24)

which can be determined from the consistency equations.

3.3.3 Infinite Populations

Following the mean field game methodology with a major agent [42], the optimal execution
problem is first solved in the infinite population case where the average term in the finite
population dynamics and cost function of each agent is replaced with its infinite population limit,
1.e. the mean field. Then specializing to MFG linear systems [16], the major agent’s state is
extended with the mean field, while the minor agent’s state is extended with the mean field
and the major agent’s state; this yields LQG problems for each trader linked only through the
mean field and the major agent’s state. Finally the infinite population best response strategies are
applied to the finite population system which yields an e-Nash equilibria (see Theorem 3.1).

In this chapter we address the optimal execution problem in the MFG framework when the
traders have, first, complete observations and, second, partial observations of their state and the

major trader’s state in Sections 3.4 and 3.5, respectively.
The stochastic optimal control problem for each agent in the infinite population case is given

below.
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Major Liquidator Agent

The major trader’s stochastic optimal control problem in the infinite population case is given by
dlL‘o = AOZL’()dt + BQUOdt + Egi’dt + Dodwo, (325)

where BT = 7 ® Fy = [r,Fy, m F|, and

0 00 00 0 0 0
_ _ Q _ | Wo

AO— 1 0 0 ,BO— 0 7EO_ 0 00 ) DO_ Og 7w0_[ F]’
w
X 0 0 a A0 0 0 o 0

together with the cost function (3.11).

Minor Liquidator Agent

The stochastic optimal control problem for a minor liquidator agent in the infinite population case

is given by
dZL'Z' = AlZL'idt + El[fdt + Bluidt + Glfbodt + Dldwi, 1 S 1 S Nl, (326)

with Ef = 7 ® E; £ [r,E), m F], and the matrices

000 0 00 1
A=|l100]|, EE=|00O0|, B=]0],
000 A 0O a
0 00 0 0 0
w-
G[: 0O 0 0 ) Dl— UQ 0 ) wl_[ ZF]u
w:
X 00 0 o ’

together with the cost function (3.16).
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Minor Acquirer Agent

The stochastic optimal control problem for an acquirer agent in the infinite population case is

given by
dl’i = Aa:cl-dt + Ea.f'dt + Bauidt + Gaxodt + Dadwi, 1 S 1 S Na, (327)

where ET = 7 ® E, = [r,E,, mE,], and

0 0 0 000
Aa: —100 ) Ea: OOO ) Ba: 07
0 0 0 A0 O a
0 00 0 0
w
Ga: 0O 0 0 y Da: UQ 0 , wz_[ ZF]7
W
X 0 0 0 o ’

together with the cost function (3.20).

3.4 Completely Observed Optimal Execution Problems

In the completely observed (CO) optimal execution problem it is assumed that the major trader
completely observes its own state, and each generic minor trader completely observes its own
state and the major trader’s state. In the following we introduce the admissible sets of controls
for each agent. The null set augmented o-field F;;,1 < ¢ < N, is defined to be the increasing
family of null set augmented o-fields generated by (z;(7);0 < 7 < t), and by definition Fj; is
the increasing family of o-fields generated by (x((7); 0 < 7 < t). F}N is the increasing family of
o-fields generated by the set {z;(7),zo(7);0 < 7 < ¢,1 < j < N}. The set of control actions
UM consists of linear feedback control actions adapted to {F{¥,¢t > 0},1 < N < oc.

Assumption 3.3 (Major Agent o-Fields and Linear Controls). For the major agent Ay the set
of control inputs UL is defined to be the collection of linear feedback controls adapted to the
filteration {Fy4,t > 0}

Assumption 3.4 (Minor Agent o-Fields and Linear Controls). For the minor agent A;,1 < i <
N, the set of control inputs UF is defined to be the collection of linear feedback controls adapted
to the filtration {F;;,t > 0},1 <7 < N.
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The best response MFG trading strategies which are obtained later in this section yield an

e-Nash equilibria for the market by the following theorem.

Theorem 3.1 (e-Nash Equilibria for CO MM-MF Systems). Subject to Assumptions 3.1-3.5, the
system equations (3.8)-(3.20) together with the mean field equations (3.38) generate the set of
control laws L{ﬁF = {u3;0 <i < N}, 1 < N < oo, given by (3.29) and (3.34) such that

(i) All agent systems A;, 0 < i < N, are second order stable.

(ii) {UY ;1 < N < oo} yields an e-Nash equilibrium for all ¢, i.e. for all ¢ > 0, there exists
N (€) such that for all N > N (¢);

FN e ) — e < inf I () < IV ().
uiGUg ’

After applying the mean field methodology to decouple the agents, the problem of obtaining
the best response trading strategy is transformed to a stochastic indefinite LQ problem that is
solved for using the Theorem 2.1 which is a restriction to the constant matrix parameter case of
the general result in [36]. Henceforth we discuss the stochastic optimal control problem for the

major trader, and a generic minor trader.

3.4.1 Major Liquidator Agent

The dynamics for the major agent’s extended state z5% = [z2, Z7]7 in the infinite population is
given by
d Ay Ef 0 B Dy 0O d
S e it N I VT Rt I B PYNTAV T B o
dz G A T m O3x1 0 0 0
(3.28)
Accordingly, the following matrices are defined
Ao E 0 B Dy 0O
A0 = 70 P ) MO = o ) BO = ‘ 3 DO = ’ .
G A m O3x1 0 0
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Consequently, using Theorem 2.1, the infinite population best response control is given by

ug(t) = — Ry 'BI Ty («F, 27) ", (3.29)

dIl B
—— =IoAo + ATy — oBo Ry 'By o + Po,  Iho(T) = B,

where in the above Riccati equation

Py = [I5x3, 03x3)" Po[I3x3, O3x3), (3.30)
Po = [I3x3, 03x3)" Po[I3x3, 03x3]. (3.31)

3.4.2 Minor Acquirer/Liquidator Agent

For brevity, the notation (.),/; is used in the rest of this chapter to denote the matrices and
parameters correspoding to a generic acquirer or a liquidator agent, respectively. Accordingly,

a generic minor (acquirer/liquidator) agent A;’s extended dynamics with the extended state

2 = of, 2, 27T is
a3 A | Gop B [T 0
dog | = | 7 o/t Zafl zo |di+ | | dt+ 3“]u0(t)dt
dz 06><3 AO 7 0 0
B Dap 0 dui
| D w@wyde+ | T T dw, | (332)
O6x1 6x3 Do
0
Substituting the major agent’s control action (3.29) into (3.32) yields
doi® = Ay xidt + M, dt + B, jdt + Dy i dW;, (3.33)

where

Ayt [ Gon Eg) }

Aa/l - T
Osx3 Ag — BoRy Byl
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%

B, D,y 0
IB3(1L/l - 0 /f ) ]D)a/l = [ 0 /"t H:;XG ) W; = Wo
6x1 6x3 0 0

We utilize Theorem 2.1 again to obtain the best response control for a generic minor agent as

uf(t) = =R\ BY M (a2, 27)" (3.34)

where 11, is calculated by the following Riccati equation

dHa/l
dt

= HZAG/Z + Ag/lna/l - Ha/lBa/ZR;/llBg/[Ha/l + IEDa/la Ha/l(T) = IPDa/la

with the matrices

Py = [IS><3703><6]Tpa/l[[3><3703><6]7
]l_ma/l = [I3><37 03><6]Tpa/l[l3><37 O3><6]-

3.4.3 Mean Field Consistency Equations
The closed loop trading dynamics of a generic minor agent A;, 1 < ¢ < N applying (3.34) is
given by

dr; = (Aupi + EqZ — Bop By By (Wapl(2:) ", (20)", ") + Gapwo)dt + Dypdwi. (3.35)
Let us define

Hapnn Moo Majiis
I = Wapror Hapioe ajios |
Hapzr Tajize Hayss
e, = [In, Onxnl, € = [Onxn, In]. (3.36)
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If we average out (3.35) over subpopulation A4, /;, and then take the L? limit as the number N, /1

of agents within the subpopulation goes to infinity (i.e. N,/ — 00), we get

Az = (B3 + [Aaji — BapR, )i Bl Tagi)€as — Bap Ry )y Bl Mo 1s) Bt

+ (Ga/l - Ba/lR;/llBgHa/l’m)xodt. (337)

If we equate (3.37) with (3.23), then by consistency requirement a compact description of the

major minor mean field equations determining A, G, m is given by

Iy + oA + ATl — TToBy Ry 'BL Ty + By = 0, TIo(T) = Py,

oyt + Majthap + AL oy — Ha/lBa/lR;/llEf/lHa/l + P =0, Iu(T) =P,

Aa/l =Eq + [Aajr — Ba/lR;/llBg/lHa/l,ll]ea/l - Ba/ZR;/llBg/lHa/l,Ba

Ga/l =Gon — Ba/lR;/llBg/lHa/l,lz,

May = 0. (3.38)

Assumption 3.5. There exists a stabilizing solution I, I1;, A, Y G, /1 to the major-minor mean

field equations (3.38) in the sense that the matrices

Ay — BoRy "B I,
Aa/l - IBa/l}%_IIBZ/ll_[a/la

are asymptotically stable.

3.5 Partially Observed Optimal Execution Problems

In this section it is assumed that the major trader has partial observations of its own state. This can
happen for example in the foreign exchange (Forex) market, where an electronic communication
network (ECN) Forex broker as a major agent trades on behalf of banks, high net worth (HNW)
traders, and other brokers, and hence needs to estimate the trades, amount of exchanges and
prices of each agent reqularly. Fig 3.1 depicts this scenario.

It is also assumed that each minor trader has partial observations of its own state and the

major trader’s state. A justification for the partial observations assumption on the minor agents’
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Central Bank

Liquidity and

Orders .
interbank rates

ECN Forex Broker

HNW traders Banks Brokers

Figure 3.1: ECN broker (major trader) in the Forex market

own state is similar to that of the major trader but at a smaller scale. However one may also argue
that the minor agents have complete observations of their states because they carry out smaller
trades which they manage individually. We note that the latter special case may be obtained from
the former more general one by setting the corresponding part of the filter equations to zero; this
will not cause any singularities because the observability and noise controllability conditions will
still hold.

We now follow the general development in [31,33] for PO MM LQG MFG systems to address

the partially observed optimal execution problem for the major trader and a generic minor trader.

3.5.1 Observation Processes

The major agent’s partial observations ¥ is given by
1
dyo = Lo[zl, (z™N)T1Tdt 4+ R2,dwy, (3.39)
where vy is a standard Wiener process in R® with E[vgvl] = R,, and matrix L is given by

L= ], (3.40)
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with l(l), l% € R>™. Now, assume the partial observations for a minor agent A4;, 1 < ¢ < N, of

type k = a, 1, is given by
dy; = Lapla , xg, (z")"Tdt + Ridv;, (3.41)

where {v;, 1 < i < N} denote N independent standard Wiener processes in R with E[v;v]] =
R, and matrix L, is defined as in

l2

Lo = la a/l l?z/l ] )

L (3.42)

where I}, 12, 2, € R,

We note that in contrast to the analysis of the partially observed major agent case in [21],
where the major agent has complete observations on its own state, in the case studied in this
chapter the minor and major agents are equipped with partial observations on the empirical (i.e.
finite population) mean field, denoted ("), and the limiting (i.e. infinite population) mean field,
denoted z. This turns out to be necessary in order that detectability conditions may be imposed
which imply the convergence of the solutions to the associated filter Riccati equations to positive

definite limits which necessarily yield asymptotic stable filters.

Control o-Fields

The family of partial observation information sets F is defined to be the increasing family of o-
fields of partial observations {3 ;; 0 < ¢} generated by the major agent .Ay’s partial observations
(yo(7); 0 < 7 < t) on its own state as given in (3.39).

Assumption 3.6 (Major Agent o-Fields and Linear Controls). For the major agent Ay the set
of control inputs U&y is defined to be the collection of linear feedback controls adapted to the

increasing o-fields of partial observations {Fg,,t > 0}.

We recall that the family of partial observation information sets F;,1 < ¢ < N, is defined
to be the increasing o-fields {F};; 0 < ¢ < oo} generated by the minor agent A;’s partial

observations (y;(7); 0 < 7 < t), on its own state and the major agent’s state, as given in (3.41).

Assumption 3.7 (Minor Agent o-Fields and Linear Controls). For each minor agent A;, 1 <
1 < N, the set of control inputs MZ{\;’L is defined to be the collection of linear feedback controls

adapted to the increasing o-fields of partial observations {F},;t > 0}.
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Moreover, the set of control inputs L[év L is defined to be the collection of linear feedback
control laws adapted to 7Y = {\/~ F¥}.

3.5.2 Mean Field Evolution

If we consider for each minor agent A; of type k = a, [, a uniform (with respect to i) feedback
control u?/ be U; 1 C U, then it can be shown that the L? limit Z of =, i.e. the mean field

satisfies
dz = Azdt + Guodt + Higpydt + LT zydt + JEdt + mdt, (3.43)

where g zv and %‘ 7y, respectively, denote the conditional expectation of x, and = with respect

to the observation o-field ]-'g’t of the major agent A at the instant ¢t > 0, i.e.

Zoyry = Bypyao = E{ao] Fy}, (3.44)
Moreover, (7¢%)T = [(zbe*)T ..., (Z%<®)T], where we denote by 7%°* the average of the

estimation errors of the minor agents of subpopulation £ as N, — oo, and which satisfies
the dynamical equation (3.67). Finally, the matrices A, G, H, L, m, and .J in (3.43) may be

represented as

Ao | ] g |G| g ||
Al Gl Hl

_ L, Tg _ J, 0

L=|2|, m=|"|, J= _y (3.46)
Ll my 0 J[

and are to be solved for in the tracking solution. By abuse of language, the mean value of the
system’s Gaussian mean field given by the state process T = [z, 7'] shall also be termed the
system’s mean field (The derivation of the properties above may performed using the methods of
[21], [19] and [16]).
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3.5.3 Major Liquidator Agent: Infinite Population

The major agent’s observation process in the infinite population is given by

dyo = Lo[zg, 277 dt + 0,,dvy, (3.47)
Lo=|# %] (3.48)
=712 m.l3, mlg). (3.49)

where L is a constant matrix with appropriate dimension. Then the corresponding Kalman filter
equation to generate the estimates of the major agent’s state and the mean field based on its own

observations are, respectively, given by
diory = AoZozydl + Bolodt + Kyduw, (3.50)
and
At ry = (G + H)igzydt + (A + L)Zjpedt + mdt + Kiduw, (3.51)

where 9:c| FU = 0 is used (see (3.73)). Moreover, m is a deterministic process, K& and Kg are
the Kalman filter gains, and 14 is the innovation process. Henceforth, the Kalman filter which

generates the estimates of the major agent’s extended state is given by

dilry = Mg dt-+Modt + Botig zydt + Ko(t)[dyo — Lo zydt], (3.52)
where
Aq — AO OanK _ BO
’ G + [_{ A + Z 7 ’ OnKXm ’

OnKXr OnKXrK

0" D nxr
MO—[ “], DO—[ 0 OXK]. (3.53)
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Moreover, the corresponding Kalman filter gain K, = [(K})T, (K2)"]*, and the innovation

process v are given by

Ko =WLIR,! (3.54)

v

dvp = dyo — Lo [aeafg, iﬁfgr dt, (3.55)
where R,, = 0,0, and Vy(t) is the solution to the corresponding Riccati equation
Vo(t) = AoVo(t) + Vo)A — Ko(t) Ry Ko(t)™ + JoV (£)I8 + Quy, (3.56)
where Qu, = DD, JT = [0@uxi2nr2)ysn, I, V() = E[fex(t)(:f”(t))T} satisfies (3.69),
and V(0) = E[(z§7(0) — (fm)w) (57(0) — (ﬂﬁ/fim@)ug)T]-

Following the methodology in Chapter 2 ([31, 33]), the cost function (3.11) can be

decomposed as

T
o = B[y (T, + [ (1o 9, + luo(s) [, ) s

+lleoT) = oz (DI, + [ (ls) = dourg(5) ) s

and thence employing the Separation Principle of LQG stochastic control the corresponding

infinite population best response control action is given by
~0O _ ~ ~ T
iy = —Ry ' By [Mo (Zoy5, T)5) " |- (3.57)

3.5.4 Minor (Acquirer/Liquidator) Agent

The extended state shall be denoted by
Xi = [z, 20,7, &gz, Tml”, (3.58)

then the minor agent’s observation process in the infinite population is given by

dy;(t) = Lapr] 2, 37, &0 5y, 30 2] dt + 0, dvi, (3.59)
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with the constant matrix L, /; given by

g = [ 8y By By Otusnro | (3.60)
Lo =m0, = [mall, mily ). (3.61)

Then the extended dynamics of the minor agent is given by

dm A [ Gan Eap ] O3x6 x .
0 T Zo 3x1
—ByR, B 11
dz = | Ogx3 A_O 0356 v o T di+| Mo
do ry G A [ L } ToFy Mo
| digy | LOss KoLo Ao—BofgB{lo— Koo || o,
dw;
B, Dop 0 aw;
| T ()t & 1, Ge)
Opx 1 0 K Orgx1

or equivalently
T
dXz = Aa/lXidt + Ma/ldt + Ba/luidt + Ea/l [ dWiT, de, Ol><rK7 dUO ] .

The Kalman filter which generates the estimates of the minor (liquidator/acquirer) agent’s states

is
dX; 70 = AapXyzvdt + Majdt + By ity vdt + Koy () [dy; — Lo Xy zdt], (3.63)
where the filter gain is given as

Kapn(t) = Vapu(t)LE /lR;l, (3.64)

fjﬁ_y = 0 (see (3.73)) is used. The corresponding Riccati equation

k3

with R,, = 0,,0,,, and where &

1S

Vau(t) = AupVau(t) + Vap ()AL, — Kop(t) RoKop ()" + IV (6)IT + Q1" (3.65)

dt
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where Q%' = Sae, V(t) = E[i”(t)(%e‘”(t))T] satisfies (3.69), and V;(0) = E|[(z5"(0) —

ez (0 exr ? T Z
(257 (0) ) (2°(0) — (2§"(0))22) " |-
Then the same procedure as in Chapter 2 ([31,33]) can be used to decompose the cost function
(3.16) or (3.20) as

T
J =E |2y (D)3, + / (I (), + (), ) ds

T
FlladT) = (T, + / l2(s) — () %, 5]

So employing the Separation Principle the corresponding infinite population best response control

for a generic minor trader is seen to be
N 1T ~T AT 2T A T S T \T
i = =R By M (T, Zo 7o 27, (Zoizg) 7 (B0 70) |- (3.66)

From Chapter 2, (7°°)T = [(z¢*)T, (21°*)T] satisfies

Orxl
- A, - K,JLye,+J | - —2 AW,
g — | )~e T erar 4 o1, (3.67)
(Al — Kl]Ll>eb + J _Zb 01"K><1
dUQ,
or equivalently in the compact form
dz® = A7 dt + D01, dwl, 01k, dvl]7. (3.68)

Subsequently, V (t) = E[z°"(t) (Ew(t))T] satisfies

V=AV+ VAT +QQ7, (3.69)
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where

QQ"' =1" Qus 1, (3.70)
KonO KOT

1= [la1, Io]. (3.71)

To guarantee the convergence of the solution to the corresponding Lyapunov equation to a unique,

symmetric and positive definite solution, we assume:
Assumption 3.8. The pair [A, Q] is controllable.

The solution to (3.68) is given by
— — t ~
(1) = ®(t,0)7°°(0) + / ®(t, 7)D[01xs, dwi , 01 i, dvd T dr, (3.72)
0

where ®(¢,7) = exp (A(t — 7)). Then the conditional expectation of Z°*(¢) with respect to

F/0<i<N,ie. if}y (t), is given by

¥ (t) £ E[F (1) FY]
Orxl

t
—a0EE O+ [ ewnd | " al#] <0 e
0

nrx1

dUO

where the first term is zero due to Assumption 3.1, and the second term is zero due to the
independence of {w;,0 < i < N} and {v;,0 <i < N}.

Finally the set of mean field consistency equations (see Chapter 2) is given by

~Tlp = TpAg + Al TI, — TI,Bo R, BTl + QF,

T,y = Ay + AL la — oy Bayp R BL I, + QT
Aa/l = [Ag)1 — Ba/lR_lBg/lHa/l,ll]ea/l — Ba/lR_lB;F/lHa/l,l?n
éa/l =G — Ba/lRilBZ/lHa/l,l%

H,) = —Ba/lRleg/lHa/z,m’
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Ea/l = _Ba/lRilBg/lHa/l,l&
Jojt = —Bap R7'BL 10 (3.74)

which forms a fixed point problem which should be solved by each agent to compute the matrices

in the mean field equation (3.43).

Assumption 3.9. There exists a stabilizing solution 11y, 11, fla/l, Ga/l, I:[a/l, [_/a/l to the Major-
Minor MF equations (3.74) in the sense that the matrices

Ay — BoR,'BLTI,
Aa/l - Ba/lRilBZ’/lHa/la

are asymptotically stable.

Moreover, one may show (see [31,33]) that the infinite population best response control laws

applied to a finite population system yield the following e-Nash equilibrium.

Theorem 3.2 (e-Nash Equilibria for PO MM-MF Systems). Subject to Assumptions 3.1-3.2, and
Assumptions 3.6-3.9, the KF-MF state estimation scheme (3.52)-(3.56) and (3.63)-(3.65) together
with the MM-MFG equation scheme (3.74) generate the set of control laws Z/A{AJ/VI FE{5;0<i <
N}, 1< N < oo, given by

ro _  poIpTy (4T AT \T
ro _ _ peAmTr(aT AT AT (a  NT (2 NT T :
; = =R B (& 2o, Zo p, T 7y, (Zopre) pvs (Tzg) o), LS SN

such that
(i) All agent systems A;, 0 < i < N, are second order stable.

(ii) {Z;l]\]\jF; 1 < N < oo} yields an e-Nash equilibrium for all €, i.e. for all € > 0, there exists
N (€) such that for all N > N (¢);

JN@S a°) —e < inf I (ug,00,) < JPN (a8, a0,).

7 1) =1 ) 19—t
N,L
uieuy
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3.6 Simulations

In the numerical experiments it is assumed that the trading action takes place within 7" = 1.
The temporary impact strength of the major agent’s trading and a generic minor agent’s trading
on the market are ag = a = 5.43 x 1075, while their permanent impact strengths are taken
to be \g = A = 2 x 107%. The diffusion coefficients in the trading dynamics are selected as
crg = 0.05, and aiQ = 0.02. The weights in the cost function for the major trader are: 1)y = 100,
o = 100, ag = bag x 105, ¢g = 107%ay, dy = 1/(2a0), & = 1/(2a0), o = 1/(28), Yo = 10;
and those of a generic minor (liquidator/acquirer) trader are: v, = ¥, = 1, y; = p, = 1000,
a =0 =5ax10°, ¢ = ¢o = 107"a, § = 1/(2m), & = 1/(20), 61 = 1/ (2w), 60 = 1/(2aa),
0, =1/(26,), 6, = 1/(204), 7 = 7o = 10. Furthermore, the market volatility is o = 0.6565, the
initial asset price is taken to be F((0) = F;(0) = $35, and the initial inventory stock of the major
trader to be liquidated is set to Qy(0) = 5 x 10°, while the minor liquidator HFT aims to sell
Q:(0) = 5000 shares and the acquirer HFT wishes to buy ();(0) = 5000 shares. In the estimation
part, the measurement noise standard deviation for the major trader is oy = 0.05, and for the HFT
is 0 = 0.05.

The resulting e-Nash equilibria trajectories of the major agent and generic acquirer/liquidator
HFTs for the complete observation case are displayed in Figure 3.2, and the corresponding
estimated trajectories in the partial observation case are depicted in Figure 3.3. As can be seen in
Figure 3.2, the major trader liquidates its shares gradually during the trading interval and comes
up with 28520 shares at the end of trading horizon. The minor acquirer buys 5004 shares and
the minor liquidator sells 4974 shares during the trading horizon 7'. Moreover, in the partial
observation case shown in Fig. 3.3, the estimated trajectories generated by the Kalman filter

closely follow the real ones.

3.7 Conclusions

In this chapter, an execution problem in finance with major and minor traders having liquidation
or acquisition objectives was formulated and addressed in the mean field game framework by
application of the Separation Principle of stochastic optimal control theory extended to indefinite
partially observed LQG problems. Our future work will include parameter estimation of dynamic

models of real market data employing methodologies including those in [26].
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Figure 3.2: The trading rate, inventory, and execution price trajectories of (a) the major liquidator
trader, (b) a generic minor liquidator, and (c) a generic minor acquirer trader in the market
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Chapter 4

A Hybrid Optimal Control Approach to
LQG Mean Field Games with Switching
and Stopping Strategies

4.1 Introduction

In several situations in stochastic dynamic games, such as in mathematical finance [43], agents
wish to find the best time at which to enter or exit a given strategy. In order to determine
the optimal stopping time strategies together with best response policies for the agents one is
required to invoke the necessary optimality conditions of stochastic hybrid optimal control theory
[44-47]. These optimality conditions are an extension of deterministic optimal control theory
[48-53] for systems interacting with stochastic diffusions. In [45], in particular, the Stochastic
Hybrid Minimum Principle (SHMP) is established for a general class of stochastic hybrid
systems with both autonomous and controlled switchings and jumps possibly accompanied by
dimension changes. Given the computational difficulty of the generally nonlinear forward-
backward stochastic differential equations (FB-SDE) and the associated boundary conditions in
the SHMP, a class of linear quadratic Gaussian (LQG) hybrid optimal control (HOC) problems
are presented in [44] for which the corresponding Riccati equations are independent from
realizations of stochastic diffusion terms.

The first combination of MFG theory and HOC theory appeared in [43] (see Chapter 5) in a
non-cooperative game formulation of the financial market where high frequency trading (HFT)

minor agents may leave the market before the final time. The best response policies for the
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agents are further shown to yield an e-Nash equilibrium for the the market. In this chapter, we
further extend the results and develop a hybrid systems MFG (HS-MFG) framework for a general
class of LQG mean field game systems with a major agent permitted to switch between different
dynamics and several subpopulations of minor agents provided with the option to stop at some
optimal time. Each agent has stochastic linear dynamics with quadratic costs, and the agents are
coupled in their dynamics by the average state of minor agents. Since the governing stochastic
differential equations for the system change with the switching of the major agent or cessation
of one or both subpopulations of minor agents, a hybrid systems formulation of the problem is
presented with indexing these modes by discrete states. Optimal switching time and stopping
time strategies together with best response control actions for, respectively, the major agent and
all minor agents are established with respect to their individual cost criteria by an application of
LQG HOC theory. The results of this chapter appear in [54].

We note that the following terms are used interchangeably throughout the chapter: optimal
and best response, quit and stop.

The chapter organization is as follows. Section 4.2 presents LQG hybrid-MFG problems
where the class of the problems under study is described briefly in Section 4.2.1 and it is
argued that due to the presence and interactions of discrete and continuous states and dynamics,
one needs to formulate the problem within hybrid optimal control framework. Discrete states
and transitions are introduced in Section 4.2.2 and the underlying continuous dynamics and
costs in the finite population case are presented in Section 4.2.3. Then, Section 4.3 presents
hybrid-MFG approach, where following the MFG methodology, with the introduction of the
mean field’s hybrid evolution in Section 4.3.1, major agent’s and minor agents’ extended hybrid
optimal control problems are, respectively, formulated in Sections 4.3.2 and 4.3.3, and best
response policies for the infinite population case are determined. Then, subject to the consistency
conditions in Section 4.3.4, the existence and uniqueness of the Nash equilibrium for the infinite
population system, and e-Nash equilibrium for the finite population system are established where
the latter is obtained by the implementation of the infinite population best response strategies.

Next, Section 4.4 depicts simulation results. Finally, Section 4.5 presents concluding remarks.
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4.2 Major Minor LQG Hybrid Mean Field Game Systems

4.2.1 Problem Description

It is assumed that there exist one major agent and N minor agents interacting with each other
through the mean field coupling in their dynamics over the time interval [0, 7]. Two types of
minor agents are considered: type A% with the population of N, and type .A” with the population
of N,, such that N, + N, = N. The dynamics of the major agent and a generic minor agent
are described by the linear time evolution of their states and a quadratic performance function.
However, the two populations of minor agents have different linear dynamics and quadratic
performance objectives. We study the interaction of agents over the interval [0, T'], where the
major agent Ay is permitted to switch from one set of dynamics to another at time ¢ if optimal,
while a generic minor agent A;, 1 < i < N, is permitted to stop at an optimal time ¢’. With
abuse of notation, the superscript k in A, k = 1,2, denotes that the major agent is subject to
the dynamics k, and in Af”, 1 <i <N,k % a,b, denotes that minor agent A;, 1 < i < N is
of type k, k £ a,b. As it will be discussed in Section 4.2.2, the optimal switching or stopping
time policy for each agent is trajectory and state independent, and depends only on its dynamical
parameters (i.e. the agent’s type). Since the dynamical parameters for all minor agents in their
respective types are the same, it follows that the stopping times are the same for all agents of
each subpopulation. The distinct nature of the switching (stopping) events, together with the
continuous evolution of the state processes between switchings, result in the stochastic hybrid
form of the problem analyzed in this chapter. Moreover, the fact that the minor agents are
modeled as members of large populations gives rise to our use of the LQG mean field games
framework. The system has several distinct combinatoric alternatives; this is because there are
various distinct sequences wherein one minor population or another drops out first, or the major
agent switches to one particular discrete state before or after a minor agent stopping event. It is to
be emphasized that the discrete state sequence that actually occurs for any given system depends
upon the solution of the complete (initial to terminal) MFG equations for the system, and in
particular is not prescribed. We note that a key condition which yields the collective switching
of the entire subpopulations is given by (4.92) and while this is reasonable in a class of LQG

problems, the corresponding condition is most unlikely to hold in a nonlinear framework.
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4.2.2 Discrete State Association

In order to present the dynamics of the system in the stochastic hybrid systems framework of
[44,45], the discrete states Qrq are assigned (see Figure 4.1) where & £ a, b refers to the mode
in the dynamics of the major agent and e represents the active populations of minor agents. For
instance, the discrete state g1, indicates that the major agent is subject to its first dynamics and
both subpopulations 4% and A® are present, and the discrete state 2, indicates that the major
agent is subject to its second dynamics, subpopulation .A? is present and subpopulation .A” has
already quit the system. Furthermore, in order to refer to the temporal mode of the system, the
multivalued discrete states ();, 0 < j < 3, are introduced (see Figure 4.1), which correspond
to the evolution of the system within the intervals [tj, tj41), where to = 0 is the initial time, ¢,
to, t3 correspond to the times of the events of stopping of a subpopulation or switching of the
major agent, in the order of occurance, and ¢4 = 7' is the terminal time. This corresponds to the
scenario in which all the possible discrete changes in the system occur before the terminal time,
re. QY3 = - Other scenarios where the discrete state at terminal time is different from the case
considered here are possible with minor variations over the results presented in this chapter.

We remark that the HS-MFG problems studied in this chapter lie within the class of hybrid
LQG problems for which optimal switching strategies are F;-independent, where J; is the natural
filtration associated with the sigma-algebra generated by the corresponding Wiener process (see
appendix A). Therefore optimal switching or stopping strategies depend only on the dynamical
parameters of the major agent and those of each subpopulation, respectively. In particular,
an individual’s optimal stopping decision coincides with stopping time of all agents in its
subpopulation since the dynamical parameters are the same across a subpopulation.

Now, we describe the evolution of the system over the sequence of generic discrete states
Qj, 0 < j < 3. The discrete state (), as indicated in Figure 4.1, associates with the system
evolution over the interval [0,¢;) in the system’s initial setting where both subpopulations of
minor agents are interacting together and with the major agent which is subject to its first
dynamics AJ.

The multivalued discrete state (); corresponds to the evolution of the system over [ti,t5)
with one change relative to the initial setting; this consists of three possible situations: (i) the
major agent subject to its second dynamics A2 is interacting with both subpopulations A,
A® present in the system; this corresponds to the centre node inside (Q; in Figure 4.1 and is
denoted by (), = 2qp» (11) the major agent subject to its first dynamics A} is interacting with the

subpopulation A% while the subpopulation A® has quit the system; this corresponds to the left-
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Figure 4.1: Hybrid Automata Diagram with a single major player and two populations of minor
players with stopping times. Transitions accompanied by dimension changes are identified with
double-line arrows.

most node inside ()1 in Figure 4.1 and is denoted by 1 = ¢1,, and (iii) the major agent subject
to its first dynamics A} is interacting with A° while .A® has quit, corresponding to the right-most
node inside ()1 in Figure 4.1, denoted by ()1 = qy,,.

The multivalued discrete state (), represents the evolution of the system over [to,t3) with
two changes relative to the initial setting for which three situations can be considered: (I) the
major agent subject to its second dynamics A2 is interacting with the subpopulation A%, and the
subpopulation .4° have already quit, which corresponds to the left-most node inside () in Figure
4.1 denoted as Q2 = ¢z,, (II) the major agent subject to its second dynamics A? is interacting
with A%, and the subpopulation A% has already quit, which corresponds to the right-most node
inside () in Figure 4.1 denoted by Q)5 = qzp, (IIT) the major agent is subject to its first dynamics
A} and both subpopulations A%, A’ have already quit, which corresponds to the centre node
inside () in Figure 4.1, denoted by ()5 = q.-

The discrete state ()3 corresponds to the evolution of the major agent subject to its second
dynamics A7 over [t3, T| which corresponds to Q3 = ¢z.

In this work it is assumed that each of the time periods [¢;,;+1) associated with the
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multivalued discrete state ();, 0 < j < 3, is non-empty. This assumption is tenable since it
will be shown that the switching times ¢, ¢, t3 are deterministic and depend only on the system

parameters.

4.2.3 Dynamics and Costs: Finite Population
Major Agent
Let the evolution of the major agent A%, k = 1,2, be expressed as

drg = Akzodt + Brugdt + Fra™Ndt + DEdwy, (4.1)

where o € R" is the state, ug € R™ is the control input, and wy, € R" is a standard Wiener
process. The matrices A%, BY, F¥, and D§, k = 1,2, are of appropriate dimension. We note once

again that the superscript k in A denotes that the major agent is in dynamics k.

From (4.1), the major agent is coupled with the minor agents by the average term (V) =
N% vaztl x;. Note that in (4.1), /V; may take the following values.
Ny + Ny for QO = q(%aba Ql = qaab
N, for Q1 = q,, Q2 = @2,
N, = @ q3 Q2 qz 42)
Ny for Q1 = g, Q2 = gz
0 for Q2 = q1, Q3 = ¢z
The major agent A%, k = 1,2, aims to minimize the following cost functional
T
Ty (uo, u—0) = B [lzo(T)| 4 +/ (lzo — @) |5 + lluol| ) dt]. (4.3)
0
O(.) = HEa™), (4.4)

with RE > 0, P¥ > 0, PF > 0, and H¥ of appropriate dimension.
Equation (4.1) together with the cost functional (4.3) form the stochastic LQG problem for
the major agent.
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Generic A”-Type Minor Agent

The dynamics for a minor agent .A?, is given by
dr; = Agzidt + Byudt + Guzodt + Foa™)dt + D, dw;, 4.5)

where x; € R™ is the state of agent A¢, u; € R™ is the control input, w; € R" is a standard
Wiener process, and A,, B,, G,, F,, D, are constant matrices of appropriate dimension. Note
that V; in (4.5) again takes values as in (4.2) over the horizon 7. The cost for a type .A* minor

agent is given by

th
ﬁ@mdzEWM@—wwﬂwmg+é<mrwuﬂww2+mmmm, (4.6)

U, () = H{wo(.) + Hx™), (4.7)

where the weight matrices P, > 0, P, > 0, R, > 0, H?, and H¢ have appropriate dimensions.
The set of equations (4.5) and (4.6) constitute the stochastic optimal control problem for a
minor agent of type A”. It can be seen that a generic A%-type minor agent interacts with the
major agent’s state as well as the average state of all existing minor agents through its dynamics

and cost functional.

Generic A’-Type Minor Agent

Similarly, we define the state vector x; of a generic minor agent .A° whose evolution can be

written as
dx; = Apxidt + Byuydt + Gyaodt + Fya™N)dt + Dydw;, (4.8)

where z; € R”, u; € R™, w; € R" is a standard Wiener process, and Ay, By, Gy, Fy,, Dy, are
matrices of appropriate dimension.
The cost functional for a generic minor agent of type .A” is given by

th

s

cwww»:mwwb—%w%m&+éum—%mwm&+MMwm, 4.9)

Wy(.) == HPxo(.) + Hox™), (4.10)

with matrices P, > 0, P, > 0, R, > 0, H?, and H} having appropriate dimensions.
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Equations (4.8) and (4.9) form the stochastic LQG problem for a generic minor agent of type
A’. Additionally, they show that a A’-type minor agent is coupled with the major agent’s state
and the average state of all existing minor agents in its dynamics.

We denote by w = {w;,0 < i < N} the set of (N + 1) independent R"-valued standard
Wiener processes on the probability space (2, F, P), where w is progressively measurable with
respect to the filtration F* = {F” C F;t > 0}.

Assumption 4.1. The initial states {x;(0), 0 < i < N} defined on (S, F, P) are identically
distributed, mutually independent and also independent of F2, with Ez;(0) = 0. Moreover,
sup,; E|z;(0)[]? < ¢ < 00, 0 < i < N < oo, with c independent of N.

The empirical distribution of the agents sampled independently of the initial conditions and

Wiener processes within populations A% and A° at time ? is denoted by ¥ = (7¥', 7)), where
7N = e and 1) = Ak
Assumption 4.2. There exists m = (7,4, ™) such that limy_,.om = .

In the following we introduce the admissible sets of controls for each agent. The null set
augmented o-field F;;,1 < ¢ < N, is defined to be the increasing family of null set augmented
o-fields generated by (x;(7);0 < 7 < t), and by definition Fy; is the increasing family of o-
fields generated by (7(7);0 < 7 < t). F is the increasing family of o-fields generated by the
set {z;(7),20(7);0 < 7 < t,1 < j < N}. The set of control actions ¢,"" consists of linear

feedback control actions adapted to {F}¥,t > 0},1 < N < oo.

Assumption 4.3 (Major Agent o-Fields and Linear Controls). For the major agent Ay the set
of control inputs UL is defined to be the collection of linear feedback controls adapted to the
filteration {Fy,,t > 0}

Assumption 4.4 (Minor Agent o-Fields and Linear Controls). For the minor agent A;,1 < i <
N, the set of control inputs U is defined to be the collection of linear feedback controls adapted
to the filtration {F;;,t > 0},1 < i < N.

4.3 Hybrid Mean Field Game Approach

Following the mean field game methodology with a major agent [16, 42], the hybrid MFG

problem is first solved in the infinite population limit where the average term in the finite
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population dynamics and cost functional of each agent is replaced by its infinite population limit,
i.e. the mean field. Then specializing to linear systems (see e.g. [16]), the major agent’s state
is extended with the mean field, while the minor agent’s state is extended with the mean field
and the major agent’s state; this yields LQG hybrid optimal control problems (see appendix A)
for each agent linked only through the mean field and the major agent’s state. Then the main
results of [16], [42] are (i) the existence of infinite population best response strategies which
yield the Nash equilibria, and (ii) the infinite population best response strategies applied to the
finite population system yield an e-Nash equilibrium (see Theorem 4.1).

In this section, first, the hybrid evolution of the mean field is derived. Then the extended
hybrid optimal control problems for the major agent and minor agents are formed and addressed
in the infinite population case. Finally, Theorem 4.1 is presented which links the infinite

population and finite population LQG Hybrid-MFG problem solutions.

4.3.1 Hybrid Evolution of Mean Field

Following the LQG MFG methodology [16], the mean field is defined as the limit (in quadratic
mean), when it exists, of the average of minor agents’ states when the population size goes to
infinity
1 &
*(t) = lim 2™ (1) = lim — Z z;i(t), q.m.

Nip—o0 N —o0 Nk? —
1=

where k £ a, b, for the case considered in this chapter. Now, if the control strategy for each minor

agent is considered to have the general feedback form

Ny
wp = Lyz; + Lhwo + > Liwj+my, 1<i< N, (4.11)
Ji,j=1
then the mean field dynamics is obtained by substituting (4.11) in the minor agents’ dynamics
(4.8) (respectively, (4.5)), and taking the average over population A¥ k= a,b, and then its L?
limit as N, — oo.
With the assignment of discrete states (); introduced in Section 4.2.2, the set of the mean field

equations is given by

dz% = A%z dt + Goadidt + m@dt, j=0,1,2,3. (4.12)
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For Qo = i, T9° = [z}, %} ]" consists of the mean field Z, of the population A%, and the

mean field Z;, of the population A® with 7% = 7. The matrices in (4.12) are then

. m@ = [m“ ] , (4.13)

my

A,

Ay

Ga

G

AQo — 7 GQo —

where A,, A, € R G, G, € R™", m,, m; € R". The above matrices shall be determined

from the consistency equations discussed in Section 4.3.4.
In case (i) in Section 4.2.2 where (1 = g2, the mean field is defined as 26 = [z], z]]"

)

q2
hence 70? = 7, and

A%t —

)

A, @ Mg
_ , Mmoo = ) 4.14)
Ay

For case (ii) where ()1 = Qs 7% = Z,, and hence 1'0° = (1,0), and the matrices in (4.12) are

given as
Aq(l)a = A,ZLM Gq(l)a = G(M mq(l)a = m(u (415)

where A, € R, G, € R, m, € R™.
For case (iii) where (), = Qs 7' = 7,, and hence 7'0* = (0, 1), and the matrices in (4.12)

are given by
Al = 4, G =Gy, m =m,. (4.16)

For case (I) in Section 4.2.2 where (), = Ba> the mean field is defined as 70¢ = T4, and

hence 7'6e = (1,0), and the matrices in (4.12) are given as

A% = 4,, GB =G, mb =m,. 4.17)

For case (II) where Q2 = g2, 7% = 7,, and hence 76" = (0,1), and the matrices in (4.12)

are given by

A =4, G%=@G, m=m,. (4.18)
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For case (III) where (2 = qi, 7% =0, hence 7 = (0,0).
Finally, for Q3 = ¢z, 79 = 0, and as a result 7% = (0, 0).
4.3.2 Major Agent: Infinite Populations
Hybrid Dynamics and Cost

The extended hybrid dynamics of the major agent in the infinite population, i.e. the dynamics for

Q” is given by

dry™ = (AF g™ + M{ + B ug )t + D dWy, 0<j <3, (4.19)

where the dynamical matrices are given by

Qj - Qj Qj
AL — Ay T @ K MY — Onx1 BY — By
0 GQi A Y mQi 0 Ouxce |
| DS 0. |
DY = | 70 Texe | o M0 (4.20)
Oo><o Oo><o OOXO

In (4.20), O.x. denotes a zero matrix of appropriate dimension, and 7% ® F(?j denotes the
Kronecker product of 7% and FOQ 7.

The cost functional for the extended major agent’s hybrid system would be given by

Joltuo, u—o) = B [l75°%(T)| p%+§:H”% Iz,

+Z/ 57 (5) 120, + I (5) 2, ) ds] - @:21)

where to = 0, t4, = T'. In (4.21), the first term denotes terminal cost and the third term denotes

running cost where the corresponding weight matrices are defined as

P§* = P2,
P = [Lyxn, —7% @ HP TP [ Lysn, —7% @ HY). (4.22)

Moreover, the second term in (4.21) denotes switching cost where the corresponding weight
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matrix C, ; shall be identified for each switching in Section 4.3.2.
Now the dynamical and weight matrices introduced in their general form, respectively, in
(4.20) and (4.22) are specified for each discrete state );, 0 < j < 3.

Over the interval [ty,?;), and in discrete state ()y, the dynamics of the continuous state

z¢"90 = [T zT zT)7T is determined by (4.19) with
A, TR F Opxc1
A0620 = Ga A(L ) MOQO == ma b
G, A, my
Bl D0, .0
B =| O |, pg=| 70 Cmerfogy@e—| PO (4.23)
02nxn1 OQan O2nx2r OQTXl
where 7 ® F} = [r,F}, mF}], and P$° in (4.21) is given by
P = [Lsn, =T HE, =y HT PY 1, —mo HE, —m HY. (4.24)
We also define
P = [Lnxn, T HE, —my HI T PY [ Ln, =T HE, —m, HY), (4.25)

which will be used in section 4.3.2 to specify the switching cost at ¢;.

Over the interval [t1,1s), in case (i) where @)1 = @ab holds over the interval [t1,1s), the

dynamics of xzx’qgab = 2, zl' 2" is governed by (4.19) with
A? TR F§ Onx1
92 .5 — - 924
}§OO = (;a /1a ’ FM[00 = 771a )
(?b fib 77lb
]ngab _ Bg : Dggab _ D(% 077,)(27‘ 7 W(;Igab _ Wo 7 (426)
2nxm OQnXT 02nx2r 02rx1

and P,0"" in (4.21) is given by

q2 .4

P = Ly, —7aH, —my H2) P Luxn, —maHa, —mp H). (4.27)
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Moreover,
B = [Lns —TaHEy — 1o H2 B2 T, — 0 Ha, —my H3), (4.28)

which will be used in section 4.3.2 to specify the switching cost at ¢5.

Over the interval [tq,5), in case (ii) where () = Qi holds, the dynamics for xzx e _
[zl 2117 is determined by (4.19) with
Al _ Ay By oMl = Onx1 ol = B} |
Ga A(l ma OTLXm
D = D5 Our Cowh = | (4.29)
Onxr Onxr 07"><1

and the cost functional is determined by (4.21) with Pgéa = [Luxn, —H}|" P} [Luxn, —H}]. In
addition, matrix Pgé“ which shall be used in Section 4.3.2 to identify the switching cost at 75 is
defined as

]P)OO = [[nxna _Hé]Tp(} [[nxna _HS] (430)

Over the interval [t1,t,), in case (iii) where Q, = gy, holds, 7% = [ #7]" and

gg)b Al R Mqéb: Onxm | ng)b: B} ’
Gb Ab mb On><m
D, = Omer | gy _ | W0 | 431)
n><r n><r Or><1
Py’ = [Lsns —H P Lsen, —HY, (4.32)
X = [Lusn, —H3 )" Py [Lscn, — Hj).- (4.33)

Over the interval [ty, 3), in case (I) where Q3 = gz, holds, % = 2T, 71" and

Bj

Y

a2 0 a2
0 nx1 0e
. M, _[ " ] B =

Mg,

0n><m
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2a D§ Onscr 2a
Dot = | 0 el e = | 0] (4.34)
0n><’r‘ Onxr 07“><1
a2,
]P)O0 = [[nxna _Hg]TP()z[[ana _Hg]a (435)
_q2, _
Py = [[nxnv _Hg]TPOz[[nxnv _Hg]' (4.36)
Over the interval [t,, t3), in case (I) where Q, = gz, holds, 27 = (28, zI]" and
A | AR | O | g | B
Gy A my, Onxm
D R I (437)
Onxr Onxr Or><1
q2
Py = [Lusn, —H3)" Py [Luxn, —Hg), (4.38)
—q2 _
P = [Lnxn, —HR" P [Lnxn, —H{)- (4.39)

Over the interval [to, t3), in case (IIT) where @)y = g holds, 2% =z and
% 1 %4 7 1 7 1 K) 7 1 b 1
Finally, over the interval [t3, T, in discrete state 3, 2°*@* = x4 and

AP = A2, MG =0,, B =DBZ D =D W=uw, PJ=pr P=P".

Jump Transition Maps and Switching Costs

We first define the notation M(? 7(I:m), 0 < j < 3, which shall be used to identify the switching
cost associated with switching time ¢;, 1 < j < 3, for the major agent Ay. Matrix MOQ"(Z 1 m)
is formed by using matrix I?’OQj wherein all the entires are made zero except those associated with

its {-th to m-th columns and rows. Hence it has the same dimension (size) as I?’(? 7 i.e.

]f”ij (:;0:m)
~ =
0 0
M(?j (l : m) = }]P’(?j (L:m,>) (440)
0 size(]?’(?j)
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where Pde (:,1 : m) and P(?j (I : m,:), respectively, denote [-th to m-th columns and [-th to m-th
rows of P$7.
The values of the major agent’s continuous state before and after switching at ¢; satisfy the

following jump map
2g 9 (1) = Yo a0 (8 —). (4.41)

For the transition between () and case (i) for ()1 where )1 = gz, the map Wy is the identity
matrix, 1.€.
\Ijo,l = \IJO,qéabqgab = [3n><3n- (442)

This transition is not accompanied by change in the dimension of the major agent’s extended

state. Furthermore, the weight matrix for the corresponding switching cost is given by
CO,I = (CO,qlaquab = 03n><3n' (443)
0 0

For the transition between () and case (ii) where Q1 = ¢,

Wo1=Tog a1, = : : S (4.44)

Oa OH’ Oan [n><n 0n><n
Cor =Cog a1, = M(‘)%“”(Qn +1:3n). (4.45)

0”70
For the transition between () and case (iii) where ()1 = ap

In><n Oan 0n><n

Vo1 = \Iio,qéabq(l)b = [ 0 O L. ] , (4.46)
q1 .p

Coy = CO:qg)abqg)b = M,"" " (n+1:2n). (4.47)

The values of the major agent’s continuous state before and after the switching at ¢, satisfy

the following jump transition map

25592 (1) = Wo 0265 (1), (4.48)

where
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(
\IJO,qéaq%a = Ionxon, for transition from Q1 = g1, to Q2 = g2,
‘IIO,qéaq(l) = | Lnxn Opxn ] ; for transition from Q1 = g1, 0 Q2 = i,

_ [TLXTL OTLXTL OTLXTL

0,2 ,,92, —

\Ij %ab (%a | Oan ]TLX’I’L OTZXTZ | 7
0,2 = - _

_ [TLXTL OnXTL OTLX’n

0,92 ,,,92, —

gab (2)b OnXTL Oan InX’I’L 7

for transition from ()1 = 245 10 Q2 = gz,

for transition from Q1 = gz, to Q2 = gz,

\1107q(1)bng = Lpxon, for transition from )1 = gy, to Q2 = 2
\\Ifg,qébq6 = [ Lnsn Onxn ] ; for transition from )1 = g, to Q2 = q1.
(4.49)

Furthermore, the matrix coefficient C, 5 of the switching cost at ¢, for each case is defined as

;

Co,q1 g2 = O2nx2n, for transition from Q1 = g1, t0 Q2 = g2,
04 0
qla ..
(Co,q(l)aqé =M,"" (n+1:2n), for transition from (1 = g1, to Q2 = g,
q2a . .
Cogz, 00, = My° "(2n+1: 3n), for transition from Q1 = gz, t0 Q2 = ¢z,,
Cog=q %
’ a2 .p .
(Co,q%abng = M," " (n+1:2n), for transition from Q1 = @245 10 Q2 = g2y,
CQq})bng = 02px2n, for transition from Q1 = g to Q2 = ¢z,
a1y ..
\C07q(1)bq(1) = M," (n+1:2n), for transition from )1 = g1, to Q2 = q1.
(4.50)

The values of the major agent’s continuous state before and after the switching at ¢35 satisfy

the following jump map

ZL‘(E)I’Q:3 (tg) = \110731'83;7622 (tg—), 4.51)
where
\Ifo,qgaqg = [ Lixn Onxn } , for transition from () = gz, to Qs,
Vo3 = \Ifo,q(l)qg = I, for transition from Qs = g1 to Qs, (4.52)

\Ifo,ngq% = [ Lisn Onxn } , for transition from Q1 = ¢z, to 3.
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Accordingly, the matrix coefficient Cy 3 of the switching cost at ¢3 for each case is given by

a2, ..
Co,q%aqg = M,"" (n+1:2n), for transition from () = gz, to Qs,
Coz = € Cogo = Onscm,s for transition from Qy = ¢ to Qs (4.53)
00
a2, ..
Coﬂgbqg = M," (n+1:2n), for transition from Q)1 = gz, to @3,

Notice that some of the transitions of (4.41), (4.71), (4.51) are between the spaces of the
same dimension such as (4.42) while other transitions may be accompanied by changes in the
dimension of the state space, e.g. (4.44) is a mapping from R®" into R?". These dimension
changes are permitted in the stochastic hybrid systems framework of [44,45] (see [55] for another

motivating example for change of dimension at switching).

Best Response Hybrid Control Action

To obtain the best response hybrid control action for the major agent in the infinite population,
we utilize Theorem 4.2 in Appendix A developed for single agent LQG hybrid optimal control
problems.

By the definition of the terms ]D)OQj , they automatically satisfy the condition (4.92) (see
appendix A), or equivalently condition A1 in [45, Eq. (3)] as

DY = Wy DY, j=1,2,3, (4.54)

holds for all the jump transition maps introduced in this section. Moreover, it is assumed
conditions (4.97)- (4.99) (in Appendix A) hold. Therefore, the optimal controlled switching
times for the major agent are F;-independent. Then an application of the LQG hybrid optimal
control theory ( i.e. Theorem 4.2) yields the infinite population best response hybrid control

action for discrete states {Qo, ..., @3} as in

u () = —[RP] B THY () 2259 (1), (4.55)
% = nYAY + AP - D9BY[RY ) BY I + PY, (4.56)
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subject to the terminal and boundary conditions

g™ (T) = By, (4.57)

I (t;) = WI TG (1) Wo,,; + Coy, (4.58)

Qj-1 Qj-1 Qj-1 Qj-1 Qj-1 Qj— Qi1 pRj-11— Qj-1 Qj-1
Po ™+ T0g 7 () Ag "+ [Ag TG () — TIg 7" (8)Bg” ' [Re™ ']~ B Tl (1)

Qj Qj Qj Q; Qj Qj Qi pQi-1m@i Qj
= UF (B +TI (1) A+ AP T T (1)1 (1) B (R B 1T (1) ) W+ 22

9
t=t;

(4.59)

where ¢, j = 1,2, 3, indicate the times of change in the system due to the major agent’s switching

of dynamics or cessation of subpopulations of minor agents.

4.3.3 Minor Agents: Infinite Population

Hybrid Dynamics and Costs

The extended dynamics for a generic minor agent Af, 1 <7 < N, in the population £ £ a,b,

with the extended state "% has a general form as in

dri"% = (AP ™Y+ MP + B ul)dt + DE AW,

where
A% | | Gx =¥k ]
Ouxe AF —BG Ry Bl I |
| B | D Ouve |
Q; k Q; k exe
B = , DY = Sj
Ooxo Oo><o ]D)()

(4.60)
0n><17

My |

ol (4.61)
wy’

Notice that in (4.60) the major agent’s closed-loop dynamics at discrete state ();, 0 < j < 3,

given by (4.19) is used to derive the extended dynamics for minor agent A¥ at discrete state

Qj;, 0 < j < 3. Similar to the major agent’s case, Ooxe in (4.61) denotes a zero matrix of

appropriate dimensions.
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The cost functional for the extended minor agent .A*’s hybrid system is given by
TE(ug, uy) = [erx @ () 20, + Z s )

23 [ O Ol @
j=0 7t

where Q. denotes the discrete state at which minor agent A? quits the system at time ¢ and
« € {1,2} denotes the index of the associate discrete state. The weight matrices associated with

the terminal cost (first term) and the running cost (third term) in (4.62) are, respectively, given by

Pg* - pka
Pij = [Ian7 _Hfa _WQj ® H;]Tpk’[lrwwu _Hfa _ﬂ-Qj ® H§]7 (463)
EDQj _ [Inxn7 Hf, _,R-Qj ® Hk]Tpk:[Inxn, Hk _,R-Qj X Hk] (4.64)

where ]P’QJ shall be used in Section 4.3.3 to specify the weight matrix (C associated with the

switching cost (second term) in (4.62) .

Jump Transition Maps and Switching Costs

We first define the notation M, ,?j (I:m), k= a,b, 0 < j < 3, which shall be used to identify
the switching cost associated with switching time ¢;, 1 < j < 3. Matrix M, ij (I : m) is made by
making all the entires of ng zero except those associated with its [-th to m-th columns and rows,

hence it has the same size as ng, ie.

]f"gj(:,l tm)
A~
0 0
Mij (l : m) = }[P’Sj (L:m,:) (465)
0 size(P,; J)

where P (:,1 : m) and P (I : m, ), respectively, denote I- th to m-th columns and [-th to m-th
rows of ng.
The values of minor agent A¥ continuous state before and after the switching at switching

time ¢, satisfy the following jump transition map

o9 (1) = Wt ), (4.66)
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where for k £ a

;

Ve . = I3nxan, for transition from Qo = g1 10 Q1 = 24>
’ Oab Oab

[n><n OTLX’I"L Oan

=Y, 0= , for transition from Qy = i t0 Q1 = G14s
’ Mlabiia

0 0 OTLXTL ]an OTZXTL

a —
i’q(l)abq(l)b_ Onxn 0n><n Onxn )

for transition from Qg = Qap tO Q1 = Qp-
(4.67)
Moreover, the weight matrix Cf, associated with the switching cost in (4.62) at time ¢; is

specified as

Cia D 03nx3n, for transition from Qo = 143 t0 Q1 = G2,
0”70
a1, .
i = nglabqla = M,° b(3n +1:4n), for transition from Qo = g1, 0 Q1 = qi,,
0 0
—dq1, .
nglabqlb =P, for transition from Qo = g1, to Q1 = gy,
0 0
(4.68)
For k £ b, the jump transition map (4.66) at ¢ is given by
(b
\Iji’qlaquab = I3nx3n, for transition from (g = Q1ap tO Q1= B2 abs
0 o
b _ o _ _
|- \Ilhq%)abqéa - [ Onxn Onxn Onxn :| J for transition from @y = Qiab to @y = Qlas
i1 =
]n><n Oan OTLXTL o,
§7q1abq1b = , for transition from Qo = 14y 10 Q1 = q1p»
0 0 OnXTL OTLXTL ITLXTL

(4.69)
and the corresponding switching cost weight matrix is given by
C?’qéabqgab = I3px3n, for transition from Qo = 4, t0 Q1 = G2
— g1
b ab ..
Ci,= C?’qéabqéa =P, for transition from Qg = Qrap 1O Q1 = Qas
‘hab(hb L.
(C?vqg)abqg)b =M, " (2n+1:3n), for transition from Qo = g1, to Q1 = gy,
(4.70)

The values of the minor agent’s continuous state before and after the switching at ¢, satisfy
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the following jump map

7P () = \I’iﬂfLQl(h_)v *.7D)
where U¥, &k £ q, is given by
( ..
¢ = Tonxan, for transition from )y = qiq O Q2 = Q2as
0% 0
\pgqéaq}) = [ Onxn  Onsn } , for transition from () = qiq 1O Q2 = q1,
a
0 — I 0 0
2 X X X ..
i \Ijz%ab@a — e Tmn , for transition from Q; = Qap tO Q2 = UEPe
0 0 Oan Ian Onxn
\\II?’qgabq%b - [ Onxn Onxn Opxn ] ) for transition from Ql - qﬁab to Q2 - ng'

(4.72)
Furthermore, the weight matrix Cf, associated with the switching cost at time ¢, is specified by

Cly oo = O2nxan, for transition from Q1 = g1, t0 Q2 = g2,
a Oll
_q1,
a — 0 11 — —
. by, P, for transition from ()1 = g1, to Q2 = g,
2 a2, ..
' Clogn, = Ma’ "(3n+1: 4n), for transition from Q1 = gz, t0 Q2 = ¢z,,
Oll a
—q2, .
i a2, = Pa’ ’, for transition from Q)1 = gz, t0 Q2 = g2
(4.73)
In (4.71), the jump transition map \Ilf’z, k £ b, is given by
( b ., .
Ui 41,00, = Lonxan, for transition from Q1 = g1, t0 Q2 = g2,
\Ifgq%bq% = [ Onxn Onxn } , for transition from Q1 = g1, to Q2 = q1,
b .
Ui, = qj?ﬂgabq(%a = [ Onxn Onxn  Onxn } , for transition from Q1 = 24, 10 Q2 = gz,
I X 0 X 0 X
?QQ 0, = B for transition from ()1 = gz, to Q2 = ¢z,
’ Oab Ob O ]— 0 0 0
\ nxn nxn nxn

(4.74)
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and the corresponding switching cost weight matrix (sz is given by

b B .. B o
Yoy, = 095 2m. for transition from Q1 = qi, t0 Q2 = ¢z,
—q1
b _ Ob .. _ -
b Ci,q})bq}) =P, for transition from ()1 = q1q tO Qs = q1s
Cia= Cb 5w i . .
S, = PO, for transition from Q; = Q2ap tO Q2 = Qa>
0 0
b q%ab ..
Ci’q%bq% =M," (2n+1:3n), for transition from @)1 = Qap tO Q2 = Q-
0 0

(4.75)
The values of the minor agent’s continuous state before and after the switching at ¢3 satisfy

the following jump transition map

TP () = Wy (t3—), (4.76)
where for k £ a
\IJZS - ‘Ijtz'l,qgaqg = [ Onxn On><n 0n><n } 9 (477)
0" 0
_q2,
i3 = (Ci,qgaqa =P, (4.78)
and for k £ b
\1133 = \Ij’?,ngqg = [ Onxn Oan Onxn ] ) (479)
0" 0
b b o — 42,
Cis =Cigq =P (4.80)

Best Response Hybrid Control Actions

The optimal stopping problem for a minor agent is equivalent to a hybrid optimal control problem
in which the dynamics and costs become zero after stopping. Let us assume that minor agent A¥
stops at time t* after the discrete state Q,, * € {0, 1,2}. The definitions for ng directly result
in the satisfaction of condition (4.92) (see Appendix A), or equivalently condition Al in [45, Eq.

(3)], 1.e.

ng — \I,ijD’?jfl’ j € {1’”'7*}’ = a,b. (4.81)
Furthermore, it is assumed that conditions (4.97)-(4.99), and (4.111)-(4.113), respectively, hold
for the stopping time ¥ and the switching times ¢; < ¢*. Hence, the optimal stopping time for

each minor agent is F;-independent and only depends on its dynamical parameters which implies
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that all minor agents of the same type stop at the same time. Then the application of the results
of Theorem 4.2 and Corollary 4.3 yield the infinite population best response strategies for the
discrete states {Qo, . .., Q.} given by

(1) = Ry BT (1) 2 (1), (4.82)
with
—ILY = IPAY + AL, T — VB R B T + P, (4.83)
subject to the terminal conditions
I (18) = P, (4.84)
Qs | Qs p Qs T Qs HRem@+ p—1mQ«1TH@x ocy,
<Pk HPAL + Ao, P — PUB R BT P >t=tk = (4.85)
and the boundary conditions ) )
T (1) = WY () i + Cy. (4.86)
Q-1 Qj-1 Qj-1 Qj-1 Qj-1 Qj-1 Qj—1 p— Qj-1 Qj-1
P+ T () A+ [AY I () — T () By Ry By T I ()
OCk .
Qj Qj Q; Qj Qj Qj Qj p—1p@; Qj i,
= W (BRI (1) AP HAD ) T ()~ I () BY B BRI (1)) Waak— 2|
(4.87)
where {t;, j € {1,...,}} indicate the times of change in the system due to the major agent’s

switching of dynamics or cessation of the other subpopulation of minor agents. We observe that
for the case where subpopulation k, k £ a, b, stops at time ¢, there is not boundary condition

associated with the Riccati equation (4.83).

4.3.4 Hybrid Mean Field Consistency Equations
Let us define
0 HI(BJH HIZ;H HIZ;B
7 = | 105, I s | k=a,b,
Qj Qj Qj
| s Mgy s

(
I, if 29 =7y,

e’ =4 [, Onxn] i 29 # T Ak =, (4.88)
(Opsens 1] if 2% # 7, ANk =D,
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where [, is an n X n identity matrix.
Then, by consistency requirement, a compact description of the hybrid major minor mean

field equations determining A9, G%, m% is given by

1Y - @A+ (49T - 1B Ry (B T + Y
1P = TPAY + (A7) 1P - IPBP R BY) 1P + P,
AP = (A, — ByR;'BITIY e’ + Fy @ 7% — By R, ' Bl
G =Gy — ByR; Bl
my’ =0, (4.89)
for each discrete state );, 0 < j < 3, and the corresponding population k, k = a, b. The set of
equations (4.89) forms a fixed point problem for each discrete state );,1 < j < 3, that should

be solved by each minor agent in order to compute the matrices in the mean field dynamics.

Assumption 4.5. There exists a stabilizing solution TI{", TI¥, A% G2, 1< j <3, k2 a,b,

to the major-minor mean field equations (4.89) in the sense that the matrices

Qj o i1—1 @i Qj
Ag’ — By’ [Ry’] 1[Bo ]THo )
Ay —BY R BT
are asymptotically stable.

The following theorem links the infinite population equilibria to the finite population case.

Theorem 4.1 (e-Nash Equilibrium for LQG Hybrid-MFG Systems). Subject to Assumptions 4.1-
4.5, the system equations (4.19), (4.60) together with the mean field equations (4.89) generate a
set of control laws which yields the infinite population Nash equilibrium. When the set of infinite
population control laws L[ﬁtF = {u?j; 0<i< N}, 1 <N <N < o0, given by (4.55), (4.82)
is applied to the finite population system (4.1), (4.5), (4.8), it results in the following properties:

(i) All agent systems A;, 0 < i < N, are second order stable.

(ii) L{ﬁtF, 1 < Ny < o0 yields an e-Nash equilibrium for all €, i.e. for all ¢ > 0, there exists
N(€) such that for all N > N (¢);

J;7N<u;?7 uiz) — € S inf Jz‘&N(uia uiz) S J;7N<uz?7 uiz)
uiGZ/[éV’L



4 A Hybrid Optimal Control Approach to LQG Mean Field Games with Switching and
Stopping Strategies 88

Proof. Applying the approach of [16] backwards from 7' along the optimal realization of the
sequence (o, (Q1, @2, Y3 establishes the existence and uniqueness of the Nash equilibrium
and e-Nash equilibrium for the infinite population system and finite population system,

respectively. 0

4.3.5 Hybrid Dynamic Programming Methodology

The order of the switching and stopping events (Jy, ()1, ()2, @3, if all of them occur, is assumed
to be fixed. As depicted in Fig. 4.1 and explained in Section 4.2.2, there are three possible
realizations for each of the discrete states (); and (5. The optimal sequence of switching, that
is to say the discrete trajectory of the system, is determined via dynamic programming backward
propagation. For this purpose, the steps below are followed.

Step 1. (Solving backwards for transitions from Q3 to ()3). Equation (4.56) is solved for
T19% (t) backward in time, subject to the terminal condition (4.57). Then the values for II¢*(¢) are
substituted in the right hand side of (4.58) to obtain HOQ2 (t) for all three realizations of Wy 3 and
Co,3 given by (4.52) and (4.53), respectively. Next, we substitute HOQ2 (t) and the corresponding
U 3 and Cy 3 in (4.59). Then the time instant at which (4.59) holds determines 3 for the transition
from the corresponding realization of ()5 to Q5. The transitions from @, = gz to ()3 or from
Q, = @ tO (23 are equivalent to the stopping of subpopulation A4, or A,, respectively, at the
obtained switching time ¢3. Hence equation (4.85) must also hold at the associated 5 for each
of the mentioned cases. Similarly, for the transition from () = q to (23 both (4.59) and (4.87)
must hold at the same time.

We observe that if (4.59) does not hold for any of the realizations of ()5 = {qga, qQ, ng}, then
we conclude that ()3 is not the final discrete state of the system. Subsequently, we start from Step
2 solving the dynamic programming backward in time from ¢ = 7'

Step 2. (Solving backwards for transitions from Qs to ()1). Starting from the obtained
realizations of (), in Step I and the corresponding switching times ¢3, we follow a similar
approach as in Stepl to determine the realizations of (); which may take place and their
corresponding switching times ¢,. More specifically, equation (4.56) is solved with the boundary
(terminal) condition (4.58) with j = 3 at 3. Then, for example, to determine from () = 2
which of (either of or neither of) the transitions to ); = @2qp and Q1 = q, may occur, equations
(4.59), (4.85) and (4.59), (4.87) are checked, respectively.

Step 3. (Solving backwards for transitions from () to ()y). Similar to previous steps, starting
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from the determined cases for (), and the determined ¢; in Step 2, it is investigated whether the
transition to ()y may occur or not using equations (4.59), (4.85) and (4.87).

Step 4. (Specifying the optimal discrete sequence). If Steps 1-3 yield more than one discrete
trajectory for the system, the optimal one is determined by comparing the value functions along
the obtained discrete state sequences with the value function for the case where no switching or
stopping event happens. Finally it should be noted that if Steps -3 result in no realized discrete

trajectory, then the system may remain in the discrete state )y over the interval [0, 7).

4.4 Simulations

Consider a system of 100 minor agents with two types A% and A° and a single major agent Aj.

The system matrices for minor subpopulation A® with N, = 50 are defined as

2€_t 6_0'5t 1
A, = , B, = ;
e 05t 9p—t 0.1

and for minor subpopulation A” with IV, = 50 are given by

4 A 5e~tcos(t)  He B A 0
b 5 2tsin(t) He Ot |’ " lotr |

and for the major agent is given by

2e t et 0.1
AO £ ) BO =
6—0.5t 26_0'5t 0.1
The parameters used in the simulation are: tf;,, = 18sec, At = 0.01sec, o9 = 0.015, 0, =

oy, = 0.05, Hy = 0.6 X Ioyo, HE = H? = 0.2X Iy, HY = HS = 0.02 X Iyxa, G, = Gy = 0axs.
The control actions and state trajectories for a single realization in discrete states (g, ()1, ()2 can
be displayed for the entire population of 101 agents together, but in Figure 4.2 and Figure 4.3

only 10 minor agents are shown for the sake of clarity.

4.5 Conclusions

A class of hybrid LQG mean field game problems was introduced where there exists one major
agent together with a large number of minor agents within two subpopulations, each agent with

stochastic linear dynamics and quadratic cost. The agents are coupled in their dynamics and cost
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Control Actions of 10 Minor Agents of Type A
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Figure 4.2: The control actions for a single realization of the major agent, 10 sample minor
agents of type A%, and 10 sample minor agents of type A° in discrete states Qg, Q1, Q-.
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Figure 4.3: The state trajectories for a single realization of the major agent, 10 sample minor
agents of type A%, and 10 sample minor agents of type .A” in discrete states Qg, Q1, Q2.
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functionals by the average state of minor agents (i.e. the empirical mean field). In addition, the
major agent is provided with the option to switch to another dynamics, and each minor agent
is provided with the option to quit if it is optimal for them to do so. It was shown that for
this class of problems the stopping and switching times are realization independent, and only
depend on the dynamical parameters of each agent. Hence, all the minor agents within the same
subpopulation stop at the same time. Therefore, the hybrid feature of the system was formulated
via the indexing by discrete states: (i) the switching of the major agent or (ii) the cessation of
one or both subpopulations of minor agents. Finally, by developing and then utilizing hybrid
LQG mean field game theory, optimal switching and stopping time strategies for, respectively,
the major agent and all minor agents, together with their best response control actions which

yield a unique e-Nash equilibrium were established.

4.6 Appendix

4.6.1 F;-Independent State-Invariant Optimal Switchings and Stopping Strategies

The following exposition is an elaboration of the results of [44] that presents a set of conditions
under which the optimal switching and stopping times for LQG systems are JF;-independent and
state-invariant and therefore, to be almost surely equal for all agents within a subpopulation.

Let (2, F, F;, P) be a probability space such that F; contains the P-null sets, 7;, = F for
a fixed final time ¢y, and let 7; = o {w (s) : 0 < s < t} be the natural filtration associated with
the sigma-algebra generated by the Wiener process.

Consider a stochastic hybrid system governed by the family of linear It6 differential equations
of the form

dz®i(t) = (A9 ()29 (t) + BY (t)u (t)) dt + DY (t)dw(t), te€ [t7,t4,,), (4.90)

Jor g+l
where ); € Q, with Q denoting the sequence of the discrete states of the system and having

finite cardinality , 297 (t) € R"%, u9 (t) € R™%, A% (t) € R"% "%, B (t) € R"% ™™,
D% (1) e R"%,0<j < L, try =ty

Switching from a discrete state ();_; = ¢ € Q to another discrete state ); = ¢’ € Q is
considered to be a controlled switchings, that is the direct result of a discrete input o; € X at an

arbitrary J;-adapted switching time ¢. Upon switching, the continuous component of the state
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is reinitialized according to a jump map provided as

29 (t;) = U a9 (tj—) = Vg, g, 2% (t;—). (4.91)
It is further assumed that
D% (t;) = Wq, o, DU (t;), (4.92)

forall 1 < 7 < L, which implies equivalent diffusion fields before and after switching events.
Over a fixed time horizon [to,¢f] and for a given initial condition (Q(to),z? (%))

(Qo, xOQO), consider the hybrid optimal control problem associated with the cost

1 Lo
J(UQO7 "'7U'QL) = §E{ ||'TQL (tf)”fBQL(tf) + Z HxQ]71 (tj _) Hi‘gj(t;")
j=1

Lo rten
+Z/tw (Hx@: (B[ + 4 (t)H;Qi(tJdt}, (4.93)
=0 i
where 0 < [P9r (1)]" = P () € R* e, 0 < [C,, ()] = C, (t) € R"-1""1,
0< [P ()] = P9 (t) e Rremei, 0 < [R9 ()] = R (t) € Rmaxmes,

Theorem 4.2 (Switching Policies for LQG Hybrid Systems). For the system governed by (4.90)-
(4.93), assume that a family of matrices {HQJ' (t);7=0,1,---, L} exists such that

19 (tp) = Por, (4.94)
and T1% = 119 (t) satisfy the following family of Riccati equations (for simplicity of notation,

the explicit time dependence (t) is dropped whenever it is clear from the context)

[1% = 0% B% [RY] ™ [BY]" % — % A% — [A%]TT1% — P, (4.95)

where
9t (t;) = WL T (t;) Uy, + Co (L), (4.96)
and for every j = L, L —1,--- |1 (i.e. determined from a backward sequence), there exist t; €

0, t,41) satisfying the following algebraic matrix relations (equality, strict positive definiteness,
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and strict negative definiteness):

H, (s)=0, s =t 4.97)
H, (s)>0, s>t (4.98)
H, (s) <0, s < t;, (4.99)

where
o, () = VAT (5) | B[RO (B = w,, 5 (1] (59 [0 [ (9,
+ Wl T19% () {\IfngQw — A%V, — 0, BY% [RQfl]l[BQfl]TC’oj}
+ [[A%)Tw,, - 0T [AD]T — €, B[RO [BO- 10T | 19 (s) 0,
+ POt — C, B9 [RO]BYTC,, + C,, A% + [A%1]1C,

0C,,(t
— Ul PYY, — o () (4.100)

. . . . C e e i= N
Then switching times are JF;-independent (almost surely deterministic) independent oj‘ the initial

J

condition, and optimal control actions are determined by

u®® (ta) = = [RO (0] [BY (0] 1% ()2 (1) @101
0

Proof. We invoke the Stochastic Hybrid Minimum Principle [45] and form the family of system

Hamiltonians as

1
H% (29,0 2%, K%) = 2 ([ (0[5, + 4% O30,

+ \U]T (A%92% + By®)+ [K4]" DY (4.102)
It immediately follows that

argmin H (2% 4 A\ K@) = — [R%] ™ [B%]" \%, (4.103)
u@eRm
and therefore, it remains to be shown that along a trajectory x% (t) associated with the input
(4.101) and switchings at ¢;’s satisfying (4.97)—(4.99), the processes defined as @i (t) =
I19: (t) 29 (t) are adjoint processes of the associated optimal control problem.

Beginning with the final discrete state (), similar arguments as those in the classical LQG
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theory (see e.g. [36]) show that

10
AP (t) =190 (1) 29 (1) = S o o () [arg) (4.104)
OHRL

Xz

d\Pr — _ (:EQL7UQL’ )\QL’KQL) dt + K9Ldw

_ (P%QL + [4%:]T )\QL> dt + K% dw, (4.105)

with K@ (t) = T19¢ (t) D9,
As the (backward) induction hypothesis, assume that A\9i+1 (t) = T19+1 (¢) 2%+1 (¢) holds.
We need to show that A% () = T19 (t) 29 () follows. To this end, we note that from [45] (see

also [44]) adjoint processes and Hamiltonians must satisfy

T
)\Qj (tj+1) - |:\pUQj’Qj+1:| )\QjH (tj+1+) + CUQj»Qj—O—l ij (tj"'l)’ (4.106)
1, - [K2)7 D% + I e
(299,079 \95 K 9) ot ’ CC(;Z?'Q]'+1 o
_ g _ [KQJ-H}TDQJ-H . (4.107)

(ij+1,u°’Qj+1,,\QjJrl’KijLl) "

One can easily verify by substitution that (4.96) and (4.97) lead to the satisfact'gr; of (4.106)
and (4.107) with F;-independence. Moreover, (4.98) and (4.99) ensure that such a switching
instant is uniqune for all values of state and therefore the associated Riccati equations and
switching conditions golbaly represent a unique optimal strategy.

[

As an important result of Theorem 4.2, one can obtain F;-independence and state-invariance

of optimal stopping times for controlled LQG systems. Consider a system governed by

dx(t) = (A(t)x (t) + B(t)u(t))dt + D (t) dw(t), t€[0,t2), (4.108)
where ¥ is an JF;-adapted stopping time, to be determined together with a continuous input in

order to infimize (minimize) the cost

to

1 " &
J(u) = 5E{Hx<t5)llé(t:)+/ = ()5 + e ()7 dt}, (4.109)
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H(s):=P(s)+C(s)B(s)R ' (s) B (s)C(s) +C(s) A(s) + AT (s)C (s) — ag—f)
(4.110)

Corollary 4.3 (Stopping Policies for LQG Systems). Consider the (deterministic) algebraic

matrix expression (4.110). If there exists a finite time ts € |0, 00) for which

H (s) =0, s = t,, 4.111)
H(s) >0, s> t,, (4.112)
H(s) <0, s < t,, (4.113)

then 1¥ = i, for all w € (), that is the optimal stopping time for the system (4.108) with the cost
(4.109) is Fi-independent state-invariant and is equal to ts almost surely, and the optimal input
is determined by

w(t,z) =R ()BT ()T () z (1), (4.114)

where 11 (t) is the solution to
I1(t) = TI() B) R~ () BT ()T1(t) — (1) A(t) — AT ()II(t) — P(t), (4.115)
subject to the terminal (stopping) condition

I (t,) = C (t,). 4.116)
O
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Chapter 5

A Mean Field Game - Hybrid Systems
Approach to Optimal Execution Problems

in Finance with Stopping Times

5.1 Introduction

In this chapter, the considered financial market consists of an institutional investor, interpreted as
the major agent, who aims to liquidate a specific amount of shares, and a large population high
frequency traders (HFTs), interpreted as minor agents, who wish to liquidate or acquire a certain
amount of shares within a specific time horizon. The traders are coupled in their dynamics and
cost functions by the market’s average trading rate (a component of the system mean field) and the
hybrid feature enters via the indexing of the cessation of trading by one or both subpopulations
of minor traders by discrete states. This work combines two contemporary systems and control
techniques: MFG theory and hybrid optimal control (HOC) theory to establish optimal stopping
time strategies together with best response trading policies for all agents with respect to their
individual cost criteria which yield a unique e-Nash equilibria for the market.

We note major trader (respectively, minor trader), and institutional trader (respectively, HFT)
are used interchangeably in this chapter.

The rest of the chapter is organized as follows. Section 5.2 presents the trading dynamics
and performance functions in the market. Optimal execution problems in the market are then

formulated in the Hybrid MFG framework in Section 5.3. Finally, concluding remarks are made
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in Section 5.4.

5.2 Trading Dynamics of Agents in Market

As stated in the Introduction, the institutional investor is considered as a major agent in the mean
field model of the market which liquidates its shares and the HFT's are considered as minor agents,
where two types of them are considered: acquirers .4, with the population of NV, and liquidators
A; with the population of N, such that N, + N; = N. All agents trade over the interval [0, 7],
and minor agents are allowed to stop trading at an optimal time ¢ < 7. It will be shown in
Section 5.3 that the optimal stopping time policy for each agent is F;-independent, and depends
only on its dynamical parameters. In this chapter, for simplicity of exposition the dynamical
parameters for all minor traders in their respective type are the same, and hence the stopping
times are the same for all agents of each population. Employing the trading model in [25], the
trading dynamics of the major agent and any generic minor agent in the market are described by
the linear time evolution of the (i) inventories, (ii) trading rates and (iii) prices while the bilinear

cash process appears in the quadratic performance function for each agent.

5.2.1 Inventory Dynamics

It is assumed that the institutional investor liquidates its inventory of shares, qy(t), by trading at a
rate 1o(t) during the trading period [0, T'|. Hence the major agent’s inventory dynamics is given
by

dqo(t) = vo(t)dt + oddwd, 0<t<T,

where w{ is a Wiener process modeling the noise in the inventory information that the institutional
trader collects from its branches in different locations; o is a positive scalar and we assume that

¢0(0) > 1. The same dynamical model is adopted for the trading dynamics of a generic HFT

dq;(t) = vi(t)dt + oldw],
where for a minor acquirer trader A; € A,, 0 < t < t%, and correspondingly for a minor
liquidator A; € A;,0 <t < ti. The Wiener process w{ models the HFT’s information noise, o7 is
a positive scalar, v;(t) is the agent’s rate of trading which can be positive or negative depending on
whether the agent is acquirer or liquidator, respectively; ¢;(¢) is the minor liquidator’s remaining

shares at time ¢, or the shares the minor acquirer has bought until time ¢. However, the initial
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share stock of the HFTs, {¢;(0),1 < i < N, + N,}, are not considered to be large, furthermore
they are not motivated to retain shares and are assumed to trade them quickly.

We assume that the trading rate of the major agent is controlled via ug(t) as

dV()(t) = U()(t)dt, 0 S t S T,
where the trading strategy uo(t) can be seen to be the trading acceleration of the major trader.

Correspondingly, u;(t) controls the trading rate of minor agent, .A;, by

where again for a minor acquirer trader A; € A,, 0 < ¢t < t%, and correspondingly for a minor
liquidator 4; € A, 0 <t < tls, and w;(t) is the trading acceleration of the minor acquirer or

liquidator.

5.2.2 Price Dynamics

The trading rate of the major agent and the average trading rate of the minor agents give rise to
the fundamental asset price which models the permanent effect of agents’ trading rates on the
market price. Further, each agent has a temporary effect on the asset price which only persists
during the action of the trade and which determines the execution price, that is to say the price at

which each agent can trade.

Fundamental Asset Price

We model the dynamics of the fundamental asset price, as seen from the major agent’s viewpoint,
by
dFy(t) = (Moo (t) + AN (t))dt + odwg (t), 0<t<T,

where N, is the number of minor agents trading at time ¢, vV (t) = N% ZzNztl v;(t) is the average
trading rate of the minor agents trading at time ¢. The Wiener process w/'(¢) models the aggregate
effect of all traders in the market which - unlike the major and minor agents Ay, A;, - have no
complete or partial observations on any of the state variables appearing in the dynamical market
model (these are termed uninformed traders). Further, o denotes the intensity of the market
volatility and Ao, A > 0 denote the strength of the linear permanent impact of the major and minor
agents’ trading on the fundamental asset price, respectively. Similarly, we model the fundamental

asset price dynamics, as seen by a minor agent .4;, by
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dF;(t) = (Aovo(t) + AN (t))dt + odw] (2),
where 0 < ¢t < 9, for A; € Ay, and 0 < ¢t < ¢, for A; € A, v (t) = N% vaztl v;(t) is
again the average trading rate of the V; minor agents trading at ¢, and the Wiener process, w!(t),

represents the mass effect of all uninformed traders in the market.
Execution Price
The major agent’s execution price Sy(t) evolution is assumed to be given by
dS()(t) = dF()(t) + aodyo(t>, 0 <t< T, (51)

where ap > 0 is the temporary impact strength of the major agent on fundamental asset price.

Likewise, a minor agent’s execution price, .S;(t), is assumed to evolve by

dS;(t) = dF;(t) + adv(t), (5.2)
where 0 < t < t%, for A; € Ay, and 0 < t < ¢!, for A; € A;, and a models the temporary impact

of a minor agent’s trading on its execution price.

5.2.3 Cash Process

The cash processes for the major agent and a generic minor agent, Z(t), Z;(t), respectively, are
given by
dZo(t) = =So(t)dgo(t), 0<t<T, (5.3)
dZZ(t) = —Sl(t)dql<t), for AZ € Aa, 0 <t< tg’
dZ;(t) = =S;(t)dg(t), for A; € A, 0 <t <t

5.4)

where Z,(t), and Z;(t) for A; € A, are the cash obtained through liquidation of shares, and Z;(t),
for A; € A, is the cash paid for acquisition of shares up to time ¢. We note that the value of dgy(t)
in a stock sale (respectively, buy) is negative (respectively, positive) and hence for positive Sy(t),

Zy(t) increases (respectively, decreases).
5.2.4 Performance Function

Major Liquidator

The objective for the major trader is to liquidate N shares and maximize the cash it holds at

the end of the trading horizon, i.e. maximize Zy(7'), and if the remaining inventory at the
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final time 7" is qo(7'), it can liquidate it at a lower price than the market asset price reflected
at cost function by qo(7)(Fo(T) — aqo(T')). Further, the major trader’s utility in minimizing the
inventory over the period [0, 7] is modeled by including the penalty ¢ fOT q2(s)ds in its objective
function, and the utility of avoiding very high execution prices, large trading intensities and large
trading accelerations by including the terms €S3(7T), fOT 6Sa(s)ds, Bra(T), fOT 0vg(s)ds and
fOT Rou3(s)ds in the objective function. Therefore, its cost function to be minimized is given by

J0<U0, U—o) = E[ - TZO(T) - pQO(T) (FO(T) - OCCIO(T)) + eSﬁ(T) + 5V§(T)
T
+ / (dgg(s) +55(s) + v (s) + Roug(s))ds} , (5.5)
where r, p, a, €, 5, ¢, 6, 0, and R, are poositive scalars, and u_g := (uy, us, ..., uy) are trading
strategies of the minor traders. Note that for larger values of ¢ the trader attempts to liquidate its

inventory more quickly.

Minor Liquidator

In a similar way, the objective function to be minimized for a liquidator HFT who wants to

liquidate N shares over the interval [0, 7] with the stopping time 0 < | < T is given by

Ji(usy ) = B| = rZi(th) = pas(8) (F(th) = via(8)) + &) + 2 (1)

th
+ / (mqu(s) + VS (s) + o (s) + Rlu?(s))ds} , for A; € A, (5.6)
0 ..
where 7, p, U, & s, ki, Y, o and Ry are positive scalars, and u_; =
(Uo, ULy ooy Ui—1y Ujg1y oeny UN). Note thatM < ./VZ]

Minor Acquirer

The objective for a minor acquirer is to buy A shares during the trading horizon [0, T]. Given
that it stops trading at t? < T, it also wishes to minimize the execution cost including the cash
Z;(t%) paid up to time t%, and the cash must be paid at time ¢¢ to buy the remaining shares at once
at a higher price than the market’s asset price, i.e. (N —gq;(t2)) (Fi(t2) + o (N —g;(t2)). Itis also
intended to avoid high execution prices, large trading intensities and large trading accelerations
modeled by including €, 52 (1) + 12 (t%) + [* (72S2(5) + 0412 (s)+ Rau?(s)) ds in itts objective
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function

Ji(ui,uy) = [pa(/\/ — qi(t9)) (Fi(t2) + vaN = qi(t2))) +7aZi(t3) + €aS7 (1) + paty (£2)+

ts
/ (FaN = i(5))* +7aS7(s) + 0atif (s) + Rw?(s))ds], Ai € Auy (57)
. 0
where fg * ka(N — qi(s))?ds is to penalize the agent for the remaining shares to be bought up

to ¢ and to expedite the acquisition. The parameters p,, V4, 74, &as Has Kas VYa» Oas and R, are

positive scalars and u_; 1= (Ug, U1, .oy Ui 1, Uiy 1, -y UN)-

5.3 Hybrid Mean Field Game Formulation of Optimal Execution Problems

In this section we formulate optimal execution problems in the Hybrid MM LQG MFG

framework.

5.3.1 Discrete State Association

In order to present the trading dynamics of the stock market in the stochastic hybrid systems
framework of [44,45], the discrete states ();, j = 0, 1, 2 are introduced, which correspond to the
evolution of the market in the intervals [¢;,,41), where ¢, = 0 is the initial time, ¢; and ¢, denote
the stopping times of the first population and the second population respectively, and ¢35 = 1" is
the terminal time.

We remark that the HS-MFG problems studied in this chapter lie within the class of hybrid
LQG problems in [44] for which optimal switching strategies are J;-independent, and therefore,
optimal stopping strategies depend only on the dynamical parameters of each population.

We associate the discrete state () to the initial case where both the liquidator and acquirer
populations are trading together with the major agent over the interval [0, ¢;).

The discrete state (); corresponds to the interval [tq,¢3) for which two situations can be
considered: (i) the liquidator population stops at ¢; while the acquirer population is still trading,
in which case ()1 = qo,, and (ii) the acquirer population stops at ¢; while the liquidator population
is trading, which corresponds to ()1 = q;-

The discrete state (), represents the system over the interval [¢o, T'] after the second population
of HFT's stops at ¢5, and hence the major agent is trading in the absence of both populations.

The above discrete state association is summarized in the following table.
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Table 5.1: Discrete State Association

’ Discrete State \ Ao \ A, \ A, ‘
Qo vV | vV |V
qoa v v X
@ doi vV | x|V
QQ v X X

5.3.2 Finite Populations

Major Agent

The dynamics of the major trader in the market can be modeled as
dVo (t) = Ug (t)dt,

dqo(t) = vo(t)dt + oldwi,
dSo(t) = (Novo(t) + AN (t))dt + aguo(t)dt +odwy (t).

Let the major agent’s state be denoted by ¢ = 1, qo, So|”, then its dynamics can be expressed
as
dIO = Aol’odt + Bolb(]dt + E()JJNtdt + Dodwo (58)
with the matrices
0 00 1 ; 0 00 0 0
Wo
Ag=11 0 0|,By=1]0 ,IUo:[F ,Eo=10 0 0]|,Do=1]0d 0
w
X 0 0 ag 0 A0 0 0 o

Note that in (5.8), N, takes the following values.

.
N, + N, for Qy,
N, for = Qoaq,

N, = Q1= qo (5.9)
N, for Q1 = qoi,
0 for ()s.

The major trader’s cost function (5.5) can also be described in terms of its states with replacing
the final cash process by E[Zy(T)] = —E| fOT So(s)vo(s)ds], and the fundamental asset price
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Fyo(T) using (5.1). The equation (5.8) together with the cost function (5.5) form the stochastic
LQG problem for the major trader. Note that the major trader is involved with the market’s
average trading rate in its dynamics while involved with the market’s average selling rate in its

cost function.

Minor Liquidator

Similarly, the stochastic optimal control problem for a minor liquidator A; € A, is given by the

set of dynamical equations

dqi(t) = y;(t)dt + ofdwy],
= (Xovo(t) + Wi (t))dt + au;(t)dt + odw;".

Similar to the major trader, we define a generic minor trader’s state vector as x; = [v;, ¢;, Si]%,
and its dynamics can be written as
dr; = Ajxidt + Budt + Eix™dt + Dydwy, (5.10)
with
000 0 00
A=11001|, EE=]1000]|, B=1|0],
0 00 A 00 a
0 00 0 0 .
w?
Gl: 0 00 7Dl: 0’7(41 0 , Wi, = Zp]
W3
Ao 0 0 0 o '
The quadratic cost function (5.6) can also be expressed in terms of the minor agent’s state when
the final cash process in (5.6) is replaced by ]E[Z = —[E| fo i (s)ds] using (5.4), and

the fundamental asset price Fj(t.) is replaced using (5 .2).

The equations (5.10) and (5.6) form the stochastic LQG problem for a generic minor liquidator.
Additionally, they show that a minor liquidator is coupled with the major agent’s trading rate and
the market’s average trading rate in its dynamics while coupled with the market’s average selling

rate in its cost function.



5 A Mean Field Game - Hybrid Systems Approach to Optimal Execution Problems in
Finance with Stopping Times 104

Minor Acquirer Agent

The stochastic optimal control problem for a minor acquirer A; € A,, is given by the set of

dynamical equations

dv;(t) = u(t)dt,

dY;(t) = —vi(t)dt + oldw],

dS(t) = (Aoro(t) + AN (t))dt + au,(t)dt + odw],
where Y;(t) = N, — ¢;(t) is the remaining shares at ¢ to be acquired until the end of trading
horizon. We define a generic minor acquirer’s state vector as x; = [v;, Y, S;], hence its dynamics

in compact form would be

dx; = Agxidt + Boudt + E,2™Ntdt + D,dw,,, (5.11)
where
0 00 000 1
A= -1 00]|,E,=]000|,B,=1|0
0 00 A0 0 a
0 0 0 0 0
w!
Go=| 0 00]|,D,=|0" 0 ,wm—[ ;].
w;
X 00 0 o '

Note that /V; in (5.11) again takes values as in (5.9) over the trading horizon. Accordingly, the

cost function for acquisition is given by

Ji(ui, ug) =K [paYi(tZ‘) (Si(te) — avi(t) + aYi(t])) + &aS7(t2) + pav (£7)
2
+ / (/@an(s) + Y2S2(5) + 0412 () — 1o Si(s)vi(s) + Rau?(s)>d8} , for A, € A,. (5.12)
Thg set of equations (5.11)-(5.12) constitute the standard stochastic LQG problem for a minor
acquirer. It can be seen that a generic minor acquirer interacts with the major agent’s trading rate
as well as the market’s average trading rate through it dynamics, and with the market’s average

buying rate through its cost function.
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5.3.3 Mean Field Evolution

Following the LQG MFG methodology [16], the mean field, Z, is defined as the L? limit, when it

exists, of the average of minor agents’ states when population size goes to infinity

o0 = Jim =0 = ]&;H;O—sz ,

Now, if the control strategy for each minor agent is c0n51dered to have the general feedback form

w =Lz + Lozo +»_ Lywj+ Ly, 1<i <N, (5.13)
j#i,7=1
then the mean field dynamics can be obtalned by substituting (5.13) in the minor liquidator

(respectively, acquirer) agents’ dynamics (5.10) (respectively, (5.11)), and taking the average
and then its L? limit as N — oo.

The set of mean field equations for the optimal execution problem can be written as

dz = Azdt + Guodt + mdt. (5.14)

For Qo, 7 = [z, 21" consists of the mean field z; of the liquidator population, and the mean
field 7, of the acquirer population. The matrices in (5.14) are defined as
n /_1@ Aal ~ Ga Mg

A= 20 9l g=| 7", m= : (5.15)
Ala Al Gl ml

which shall be determined from consistency equations discussed in section 5.3.5.

For qo,, T = Z,, and the matrices in (5.14) are given as

A=A, G=G, m=m,. (5.16)
For qq;, * = Z;, and the matrices in (5.14) are given by

Finally, for (), z = 0.
The empirical distribution of the minor traders is denoted by 7V = (7 7V), 7l = 2¢ k =

a, l. The first assumption is as follows.

Assumption 5.1. There exists m such that limy_,.,7" = (74, ) a.s.
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5.3.4 Infinite Populations

Following the mean field game methodology with a major agent [16, 42] the hybrid optimal
execution problem is first solved in the infinite population case where the average term in the
finite population dynamics and cost function of each agent is replaced by its infinite population
limit, i.e. the mean field. Then specializing to linear systems [16], the major agent’s state is
extended with the mean field, while the minor agent’s state is extended with the mean field and
the major agent’s state; this yields LQG problems for each trader linked only through the mean
field and the major agent’s state. Then the main results of [16], [42] are (i) the existence of infinite
population best response strategies which yield the Nash equilibria, and (ii) the infinite population
best response strategies applied to the finite population system yield an e-Nash equilibria (see
Theorem 5.1).

Major Liquidator Agent

The extended dynamics of the major agent in the infinite population, i.e. the dynamic for the

ex,QQ; . .
Ty @ s given by

dag™® = (Ag"xy" Y + Mg + B§ ug”)dt + DG dWy, (5.18)

0 < j < 2, and the cost function for the extended major agent’s system would be

To(utns o) = E|[2579(T PQ2+Z/ 2o ( g, —i—Huoﬂ'(s)H;(?j)ds], (5.19)

where {5 = 0,t3 = T'. Let matrix coefﬁ01ents Py, Py, respectively, associated with the running

and final costs in (5.5) be given by

5 %pao 0 6 0 %r
Py = tpag pa —ip |, Po=|0 ¢ 0 [,
0 —3p e ir 0 0

then over the interval [y, ?1), and in the discrete state )y, the dynamics of the continuous state

26790 = [T 7 zT)7 is determined from (5.18) with

By

A% — A_o [T Eo, T1Eo)
G 061

i , B =
A 0

m

: Mggo _ [ O37><1

D% — Dy 0O3x6 .
Osx3  Osxe



5 A Mean Field Game - Hybrid Systems Approach to Optimal Execution Problems in
Finance with Stopping Times 107

and PY° in (5.19) is given by

PG” = [Isx3, 033, 053] Pollsx3, 033, Oscs).
In case (i) where (Q; = g, over the interval [t,t;), the dynamics for z;" " = [zl zT]T

determined from (5.18) with
. D = Dy Osxs .
03x3 03X3

is

AO E()
G, A,
and P{™ is given by

By

q0a __ q0a __
AO — ? BO -

’ Mgoa — [ O3><1

Mg

3x1

Pgoa = [I3xs, 03><3]TP0[I3><3’ O3x3).

In this case, the values of the continuous state before and after ¢; are related by the jump map

P (1) = W g™ (1) (520
where
I 0 0
\1107(1 _ 3x3 3x3 3x3 ' (521)
O3x3  I3x3 Osxs

In case (ii) where Q1 = qq; holds, z¢*%! = [zI' z]]" and

Al — 1‘}0 E_o B = By oM — 0?:><1 - Dy O3x3 .
G A 03x1 my O3x3 O3x3
P = [I3x3, 03x3)" Po[I3x3, 03x3, 03x3]-

In this case, the values of the continuous state of the major trader before and after ¢, are

related by the jump map

ZEHO (1) = W, 259 (1 —) (5.22)
where
Ty, — [ I3xs Osxs Osxs ] ' (5.23)
O3x3 Osxs  I3x3
For the discrete state ()2, the continuous state of the major trader is z;"%* = x, and

A = Ay, MG =03, B =B, D§ =D,
P¢: =P, PJ*=FR

The values continuous state of the major trader before and after ¢, are related by the the jump
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map
26792 (ty) = Wo 0z t" 9 (ty—) (5.24)

where W5 = [ I343 O3x3 }

By the definition of the terms ]DOQj necessarily satisfy the condition Al in [45], which in the
LQG takes the following form

DY = Wy DY, j=1,2. (5.25)
An application of the stochastic hybrid control theory of [45], specialized to the LQG case in

[44], yield the infinite population best response hybrid control action as

ug’ () = =Ry gy BY o 1157 () 267 (1), (5.26)
where T1$7 (t) is the solution of
—II7 =TI AGY + AT 157 — T BG Ry BY ¢ 1157 + Py, (5.27)
subject to the terminal and boundary conditions
1§*(T) = Po, (5.28)
[ (t;) = WI 1157 (t)) W, (5.29)

Qj—1 Qj Qj-1 Qj
Py~ + W T (1) Wo ,Ag" " + Ag o, WG TT57 (1) Vo,
Qj Qj-1 p— Qj
_\I’oT,jHO (tj)‘IJO,jBO Ro,égj,lBoT,Qj,llpoT,jHO (tj)\IJOJ
= Vg, <P0Qj+ﬂc?j (t1) AT +AT  TIE () 115 (tj)BdeR&ézj]BanHOQj (tj)>‘1’o,j, forj =1,2.
(5.30)

Minor Acquirer

A generic minor agent A;’s extended dynamics in the acquirer population with the extended state
AT

A" = (AQig™ % 4 MY + B u@ + BLu)dt + DR AW, (5.31)

ex,Qo = T T ZT —T]T

where for Qo, z; T, Ty, %,,; ", and

AQO o Aa [Gaa 7T11E1t17 7T1Ea]
¢ Ogxs AL — BOQOR&éOBaQOHOQO ’
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MQO: 03><1, ’ BQOZ Ba : ID)QO: Da 03><9 ’
M() Ogx1 Ogx3 ]D(?O
and for qo,, ;" = [z}, 2, zl]", and
Adoa — A (Ga, Bl ;
¢ L O3 AgOa - Bg()a RO_véOaBg:qu Hgm
Mqu: O3><1 : Bqu: Ba ’ Goa Da 03><6
MO 06)( 1 06X3 Dgoa

In case (i) where the acquirer population is trading over [ty t5), i.e. Q1 = qoa, the total hybrid

cost for a minor acquirer is given by

1 tj+1 . .
T sy u) = B[ (1) [En + > / (29 ()12, + 6 ()20, )ds|, (5:32)
j=0 ts a a

with

P% = [I343, 03x6]" Pall3x3, 03x] (5.33)
P = [I33,03x6]” Pall3x3, 03x6] (5.34)
]PaQO = [IS><3703><9]TPa[[3><3aO3><9]> (5.35)

where P,, P, are, respectively, associated with the running and final costs in (5.7) are given by

Ha _%paa 0 Qa 0 _%ra

D _ 1 1 —

Pa - _§paa pa% §pa ) Pa - 0 Ka 0 : (536)
0 %pa fa _%Ta 0 Ya

In this case, the extended state for a generic minor agent in the acquirer population at ¢, satisfies
the jump transition map
76%:d0a (tl) — \I'i,aCUGI’QO (tl_)

with
I3><3 O3><3 03><3 O3><3
Via= | O3x3 I3x3 O3x3 Osxs

O3xs O3xz 1I3x3 O3x3

In case (ii) where ()1 = qq; holds over the interval [t,%5), the cost for the minor acquirer

agent A; is given by
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t1
Fetusus) =E[ e @ @, + [ (@) g + [0 G)Eg)ds], 653D
with P90 = [I3,3, 0350]" P[I3x3, O3x]. .
The optimal stopping problem for a minor acquirer is equivalent to a hybrid optimal control
problem in which the dynamics and costs become zero after stopping. By the definition of the
terms ]D)an necessarily satisfy the condition A1 in [45]. To be specific, for the case (i) the diffusion

coefficients in (5.31) satisfy

DLe =, D, (5.38)

ID)CLQ)2 - ‘Ijiaa—‘IOaa%tongloa = ? (539)

where 0@, 4., denotes the stopping event in the discrete state ;. Both conditions in (5.39) are
satisfied since D92 = 0 due to the zero dynamics after stopping and \I/ivgq()a’qsmp = 0 due to

removal of the minor acquirer trader’s state from the market dynamics. For the case (ii) we also

have

DY = D = 0, (5.40)

Z70—Q0 »dstop

which holds due to the stopping decision at ¢;. The results of [44,45] yield

u? (1) = —Rg Big, I (1) 27 (1) (5.41)

with
—% =P AY + AL, TP — P BY R, BL o 1% + Py, (5.42)

where for the case (i), in which Q)1 = qoq, % (t) is the solution of (5.42) subject to the terminal

conditions
I (tQ) = Pgoav

@,40a @,d0a” Ayq40a~ @

(Ip)goﬂ + PZOaAZOa + AT ]P)g()a _ PZOaBZOaR_I BT ]P)‘K)a) =0,
t=to

and the boundary conditions
0@ () = Wi, (8) Ui, (5.43)

L,aa

P20 + Wl T (8)W; AP + AL o W7 10 (81) T,

iL,a ra i,a ra

— U T (8)0; B R, B o, W1 10 (1) Uy g

,atra w,a-a

— T, (P 4 T (1) A - AT TP (1) = T (1) B2 R, L BE, T2 (1)) W, (5.44)

a,90a a,40a" @,40a

and in case (ii) where ()1 = ¢u holds, HaQU (t) is the solution of (5.42) subject to the terminal
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I () = Per, (5.45)

(P + P A% + AL, PP — POBY R Y B QOPaQo)t:h: 0. (5.46)

Minor Liquidator

The hybrid dynamics, jump maps and performance measures for a minor liquidator are presented
in a similar form as the minor acquirer, and therefore, due to space limitations, are not presented

here. The infinite population best response hybrid control action as

P (t) = —Rg' Bl 1LY () 25" % (1), (5.47)
with
—ILY =Y AY + Al Y — VB R B, I + Py, (5.48)

where for the case (i), in which Q1 = qoq, Hle (t) is the solution of (5.48) subject to the terminal

conditions

I (t) = P,
(PR +PRoAR + AT, PP - P?OB?OR;éOB{QOP?O>ttI= 0.
and in case (ii) where ()1 = ¢y holds, HIQO (t) is the solution of (5.42) subject to the terminal

conditions

1P 1) = B,
(]P)E]Ol 4 IPJ;]OZA;IOZ 4 AZquP?Ol . IPJ;IOZBEIOZ R;{JIOZ]BIZ;]OZP;I(N) — 07

.. t=t
and the boundary conditions ’

I (t;) = W7 I (),

PO+ W7 T (41 ) W, AP+ AL UTIT (4) Ty — U T (4) Ty B Ry b Bl WEITE (8) Wy
= W (P o+ T (1) AP AT, T (1) — T () B By B, T (1)) Wi, (5.49)
The infinite population equilibria is linked to the finite population equilibria by the following

theorem.

Theorem 5.1 (e-Nash Equilibria for Hybrid MM LQG MFG Systems). Subject to Assumptions
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4.1-4.5 in Chapter 4, the system equations (5.8), (5.10), (5.11) together with the mean field
equations (5.51) generate the set of control laws Z/{]\]XF = {u?j; 0<i< N}, 1<N, <N < o0,
given by (5.26), (5.41), and (5.47) such that

(i) All agent systems A;, 0 < i < N, are second order stable.

(ii) {UY ;1 < N < oo} yields an e-Nash equilibrium for all ¢, i.e. for all ¢ > 0, there exists
N (€) such that for all N > N (¢);

Rt ) —e < inf, N ut) < V)

0

Proof. Applying the approach of [16] backwards from 7' along the optimal realization of
the sequence )y, )1, ()2, establishes the existence and uniqueness of the Nash equilibrium
and e-Nash equilibrium for the infinite population system and finite population system,
respectively. O

5.3.5 Mean Field Consistency Equations

The closed loop trading dynamics of a minor acquirer A; € A, applying (5.41), or
correspondingly a minor liquidator A; € A; applying (5.47) is consequently

dv; = =R, By oy (a7 x5, @ ) dt — R, By 50 (t)dt,
then the average of the closed loop trading dynamics over the acquirer or liquidator population is

obtained as

Na/l a/l a/l
1
N > dv = Z Ry B (o g 27) " dt — Z R,/ Bysap(t)dt, (5.50)
where T = [zI, 7} ]T. Then taking the L? limit of (5.50) as the populatlon size N,/ goes to

infinity yields the trading rate mean field dynamics

dva = lim dvNert = —R- lBa/lHa/Z X lim ((a:N“/’)T xOT,xg,xlT) dt — R~ IB%a/lsa/ldt

a/l—>OO a/l a/l—>oo a/l
and hence the consistency equations are given by

Aj1 = —Rfl(Ha,n + 1o 17) — GRJI(Ha,m +11,37),

a
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Agi2 = —Rgl(Ha,w +11,18) — CLRgl(Ha,B.z +11,38),
Auiz = _Ril(Ha,l?) +11409) — GRJI(Ha,:z:«s +11,39),

Aa1 = =Ry (g 110 + allg 310),

Aurz = =R, N (U111 + all, 311),

Aal,lB = —Rgl(Ha,nz + all, 312),

Al,ll = —Rfl(Hz,n +1I;110) — aRl_l(Hl,:ﬂ + 11 310),
Al,lQ = —Rfl(HuQ + 10011 — &Rfl(Hz,:sz + 11, 311),
Al,l?; = —Rfl(Hz,m + 115 112) — aRfl(Hz,sza +11; 312),
A1 = —R;y M7 — aRy T 37,

Aparz = —R; 15 — aR; T 3,

Az = —R; 19 — aR; ' 30,

Ga/l,ll = _Rg/ll(na/l,u + ally i 34),

Gaji12 = _R;/ll(na/l,IS + allayi3s),

Gajiiz = _R;/ll(na/l,lﬁ + allq36),

Maps =0, (5.51)
where I1,/,,; = I1,,(4, 5) fori = {1,3}, j = {1,2,3,...,12}. Hence the matrices in (5.15) are

given as

Aa/l,ll Aa/l,12 Aa/l,13 Aal,ll Aal,12 Aal,13
Ao = 1 0 0 |, Au= 0 0 0

(Tap A+ aAap1) aAajiie alais mA+ady aAgis aAaas

Ma11 Ala,ll /La,m Ala,l?)

77_nLa/l = 0 5 Ala = 0 0 0 )
amMa/11 TaA + Am,n aAla,H azzlm,w
Ga/l,12 Ga/l,22 G7(1/l,23
Gan = 0 0 0

()\0+a@a/l721) aéa/z,m aéa/l,ZB
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5.4 Conclusions

Hybrid MFG theory was utilized in a non-cooperative game formulation of the financial market
where HFT's (minor agents) may leave the market before the final time. The best response trading
and stopping policies for the agents are further shown to yield an e-Nash equilibrium for the the

market.
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Part 111

Mean Field Game Systems with Common

noise and Latent Processes
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Chapter 6

Convex Analysis for LQG Systems with
Applications to Major Minor LQG Mean
Field Game Systems

6.1 Introduction

In the literature, various approaches such as calculus of variations, (stochastic) maximum
principle, dynamic programming, and change of functional have been used to address
deterministic linear quadratic (LQ) and stochastic linear quadratic (LQG) optimal control
problems [36, 56—-58].

In a convex analysis approach to optimization for static systems, the Gateaux derivative of
the functional to be optimized is used to solve the problem (see e.g., [59], [60]). In [61], the
relationship between the Gateaux derivative of the cost functional of a dynamic system and its
Hamiltonian is established. A stochastic tracking problem in finance is studied in [62] using the
convex analysis approach, while an algorithmic trading problem is investigated in [63] and the
best response trading strategies are obtained for a large number of heterogeneous traders using
the convex analysis approach.

In this work, a convex analysis method is used to rederive the solutions to LQG optimal
control problems. Then the methodology is applied to major minor LQG mean field game
(MM LQG MEFG) systems to retrieve the best response strategies for the major agent and each

individual minor agent addressed in [16].
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6.2 Convex Analysis

Let V' be a reflexive Banach space with the dual space VV* and V be a non-empty closed convex
subset of V.

Definition 6.1 (Gateaux Derivative). The function J defined on a neighbourhood of v € V' with
values in R is differentiable in the sense of Gateaux at w in the direction of w, if there exists
J'(u) € V* such that

J(u+ ew) — J(u)

(' (w). ) = Iim
€—> €
The function J'(u) is called the Gateaux derivative of .J at w.

6.1)

Theorem 6.1 (Euler Inequality). Assume that the function J is convex, continuous, proper, and

Gateaux differentiable with continuous derivative J'(u). Then

J(u) = 1r€1]f} J(v), (6.2)

if and only if ’
(J'(u),v—u) >0, Yvel. (6.3)
0

Proof of Theorem 6.1 may be found in [59] and [60].

Remark 6.1 (Euler Equality). In the case where V = V', w = v — u produces the whole space of
V', and therefore (6.3) reduces to Euler equality

(J'(u),w) =0, YwelV, (6.4)
which implies that
J' (u) = 0. (6.5)

We note that the Banach space under consideration in this paper is the space of square-
integrable R™-valued measurable functions which will be specified in more detail in the next

sections.

6.3 Single-Agent LQG Problems

In this section, the solutions to single-agent LQG problems are rederived using a convex analysis
method.
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6.3.1 Dynamics
Consider single-agent LQG systems with governing dynamics

dxy = (Axy + Buy + b(t))dt + o (t)dwy, (6.6)
where ¢ > 0, the continuous processes x; € R"™, u, € R™, and w; € R" denote, respectively, the

state, the control action, and a standard Wiener process. Moreover, A € R™*" B € R"*™, and

b(t) € R", o(t) € R™*", are deterministic continuous functions of time.

Control o-Fields

We denote by F := (F)cjo,r] the natural filtration generated by the agent’s state (¢ );c[0,77. Then,
we introduce the admissible control set ¢/ to be the set of feedback control laws © = (ut)te[gﬂ
which are F-adapted R™-valued continuous processes such that E| fOT ul'uydt] < oo, for any
finite 7.

6.3.2 Cost Functional

The cost functional to be minimized is given by

1 T
J(u) = EE e Plal Gy + / e‘pt{xtTth + 208 Nuy + ul Ruy — 22 n — 2u?n}dt} , (6.7)

0
where p denotes the discount rate.
Assumption 6.1. For the cost functional (6.7) to be convex, it is assumed that G > 0, R > 0,

and Q) — NR7'NT > 0.

6.3.3 Optimal Control Action

The system dynamics (6.6) together with the cost functional (6.7) constitute an LQ stochastic

optimal control problem, which is solved for using the following theorem.

Theorem 6.2. (Gdateaux Derivative of Cost for LQG Systems) For system (6.6)-(6.7), the Gateaux
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derivative of the cost functional is given by
t
(J'(u),w) = E{/ wf{eptNTmf + e " Ruy — e "'n
0

t
+ BT (efATtMt _ / efpseAT(S*t)(ng + Nug — n)ds) }dt] ,
0

(6.8)
where M, is a martingale process given by
T T T
M, = E[e_pTeA TGmZ} + / o Ps A (Qze+ Nug — n)ds‘}"t]. (6.9)
0
O

Proof. The Géteaux derivative J'(u) of (6.7) is computed as follows.
The solution z}' to the state representation of the system (6.6) subject to the control action w;
is given by
t t
gt = ety + / eAlt=9) (Bus + b(s))ds + / A5 (s)dws, (6.10)
0 0
where o € R" and ¢(t,s) = eA(t_S), s <t < T, denote, respectively, the initial state and the
state transition matrix for the system (6.6).
Let 2} denote the solution to (6.6) subject to a perturbed control action u; + ew; in the
direction of w; € U given by
t t t
gt = el +/ eAlt=9) (Bu, + b(s))ds +/ A5 (s)dw, + 6/ e~ Buw,ds (6.11)
0 0 0
To find the relation between x!* and x}"*, (6.10) is substituted in (6.11) which yields
t
T = gt e / eA=%) By, ds. (6.12)
0
Then by differentiating both sides of (6.12), the evolution of z"*t*’(t) in terms of x*(t) is given
by
t
Azt = dz" + eBwydt + €A | "9 Buw,ds. (6.13)

The cost induced by the perturbed control action u; + ec%t and, subsequently, the perturbed state
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T is given by

1 T
J(ut aw) = S |7 ()T Gt + / e { ()T Quite
0

+ 2(2" NN (ug 4 ews) + (ug + ews) T R(ug + ew,) — 2(x" ) 'y — 2(u, + ews)Tn}ds} ,

(6.14)
where the terminal cost, by utilizing the integration by parts technique for Itd processes [64], can

be presented in integral form as

T
e*PT<x%+ew)TGx1%+ew — (Qio)TGﬂfo +/0 d(efps<xg+ew>Tva;+ew)

T T
— (CE())TGHZ’O o p/ efps<x1sz+ecu)TGx1Sz+ewd8 4 2/ efps(xg+cw)Tdeg+ew
0 0

T
—i—/ e Po(s)'Go(s)ds. (6.15)

To write J(u+ ew) in terms of J(u), u, and x¥', first (6.15), and th(e):n (6.12)-(6.13) are substituted
in (6.14) which gives rise to

T s
Ju+ew)=J(u)+E [e/ e_”s{ (/ eA(S_t)Bwtdt)T(deg
0 0

+ (Qz¥ + Nu, + ATGXY — pGa? — n)ds) + ((2¥)" Nw, + (2)" G Buw
T s
+ (uS)TRws — nTwS)ds} + 62/ eps{ (/ eA(s’t)Bwtdt) (GA/ (s—t) Bw dt
0 0 0

_ pG/ (s—t) Bwtdt + GBuw, + Q/ (s—1) Bwtdt + Nws) (WS)TRMS) ds|. (6.16)
Then the Gateaux derivative of .J'(u) in the direction of w is obtained by first taking .J(u) to the

left hand side of (6.16), then dividing both sides of the equation by e, and finally taking the limit
as € — 0, which yields

T s
(J'(u),w) = ]E{/ e’”s{ (/ eA(S’t)Bwtdt)T(Gd:I:Z + (Qz" + Nu, + ATGa"
0 0

— pGz¥ —n)ds) + ((z¥)" Nw, + (2%)"GBw, + (us)" Rws — n"wy)ds p|. (6.17)
Given that the processes in (6.17) are F-measurable, continuous and bounded on the interval

[0, T'], the conditions of the stochastic Fubini’s theorem hold [65]. Subsequently an application
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of Fubini’s theorem to change the order of integration in (6.17) results in

T
(J'(u),w) = ]E{/ th{eptBTGa:;‘f +e NIzt + e P Ruy — e Fin
0

T
+ BT/ e_pseAT(s_t) <de;L + (ATGQ’,‘Z - PG$7; + ij: + Nus - n)d8> }:| dt
t

(6.18)
By using integration by parts again, we have

T T
/ e 5 (AT G yds + Gdy — pGxids) = / d(e" e 0 Gg,)
¢ ¢

= e TeA TDGrr — e P'Gr,,  (6.19)

whose substitution in (6.18) yields

T
(J'(u),w) = E{/ th{e_pTBTeAT(T_t)Gx% + e P"NTg! + e P Ru, — e P'n
0

T
+ BT | e e (Qat + Nu, — n)ds pdt|. (6.20)

Using the smoothing property of conditiontal expectations [38], the Gateaux derivative (6.20)

may be rewritten as

T
(J'(u),w) = El/ th{e_ptNTxt“ + e Ru; — e "'n
0

T
L BTE [e—pTeAT(T—t)GI% +/ e—pseAT(s—t)(Qxfj + Nug, — n)ds‘}'t] }dt]. (6.21)

Then the following martingale is defined

T
M, —E [e*pTeATTGx; + / e eA"5 (Qu" + Nu, — ) ds‘ft] , (6.22)
and is substituted in (6.21) to give ‘

T
(J'(u),w) = E[/ th{eptNT:U}f + e " Ruy — e "'n
0
t
+ BT (e’ATtMt - / e e 0 (Qat + Nuy — n)ds) }dt] :
0

(6.23)
]
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Theorem 6.3 (LQG Optimal Control Action). Given Assumption 6.1, the optimal control action
for LOG systems given by (6.6)-(6.7) is specified by

t

Ur _ _R—l NTx: —n+ BTept (e—ATtMt . / e—pseAT(s—t)(Qx: + Nu: _ n)ds)}. (6.24)
0

0

Proof. As per Theorem 6.1 and Remark 6.1, the necessary condition for u*(¢) to be the optimal

control is given by

(J'(u*),w) =0, a.s. forall possible paths of w(t) € U. (6.25)
Moreover, since Assumption 6.1 holds, (6.25) is the sufficient condition of optimality as well.
According to (6.8), equation (6.25) holds if and only if

uf = —R | NTa; —n+ BTe (e’ATtMt — /t e’pSeAT(S’t)(Qx: + Nu; — n)ds)] . (6.26)
All the processes in the right hand side of (6.26) are F-measurable. Moreover, using the triangle
inequality and Cauchy-Schwarz inequality it can be shown that E| fOT ujTujdt] < 00, and hence
uy €U.

Then the sufficiency condition can be shown to hold by the direct substitution of (6.26) in

(6.8). The necessity condition is proved by contradiction. Let us choose w; € U as

t
wy = e "NTar + e " Ruf — e 'n+ BY (e’ATt]\/[t - / e e 570 (Qat + Nut — n)ds).
If we substitute (6.27) in (6.8), we have ‘

(J'(u),w) >0, (6.27)
which contradicts (6.25). [
Theorem 6.4 (LQG State Feedback Optimal Control). For LOG systems governed by (6.6)-(6.7),

the optimal control action is given by the linear state feedback control

uy = —RY(N"z; — n+ BT[II(t)z] + s(t)]), (6.28)
where 11(t) and s(t) are given by

T1(t) + T(£) A + ATTI(t) — (BTTI(t) + N) RN (BTTI(t) + N) + Q = 0, (6.29)
§(t) + [(A— BR'N)T —TIBR™'BT|s(t) + I1(¢)b(t) = 0. (6.30)
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with terminal conditions I1(T) = G and s(T') = 0.

Proof. Let us define p(t) as

t

P = e”t(e_ATtMt - / e e D (Qu 4+ Nut — n)ds), (6.31)
which is the adjoint process for the syste(%n (6.6)-(6.7) in the framework of stochastic maximum

principle. Then the ansatz for p! is adopted to be

pe = H(t)z + s(t), (6.32)
and is substituted in (6.24) to give

uy = =R NTz; —n+ BT (II(H)z] + s(t))]. (6.33)
To find I1(¢) and s(t), both sides of (6.32) are first differentiated, and then (6.6) and (6.33) are
substituted to yield

dp = | (11(1) + () A — TI() BR'N” ~ (1) BR ™' BTII(1)) ) — TL(t) BR™"B"s(1)

L TI(H)b + TI(H) BR 0 + s'(tﬂ dt + TI(t)o(H)dws. (6.34)
Next, both sides of (6.31) are differentiated to give

dp, = (ppr — ATpy — Quy — Nuj +n)dt + e”e™ 4 tdM,, (6.35)
where according to the martingale representation theorem, the martingale )/, may be written as
t
M, = M —|—/ Zsdwy, (6.36)
and hence ’
dMy = Zidwy. (6.37)

with Z,; being an F;-adapted process.
Then, equations (6.32), (6.33) and (6.37) are substituted in (6.35) to get

dp, = [(pn(t) —Q+ NR'N" + NR'BTI(t) — A"IL(t))z; + ps(t)

+ (NRIBT — AT)s(t) + 1 — NR—ln] dt + gudw,;, (6.38)

AT
where ¢, = efle 4 1 Z,.
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Finally, for (6.34) and (6.38) to be equal, the corresponding drifts and diffusions must be

equal. Hence the following equations must hold

_ q = 1(t)o(t), (6.39)
pll(t) = I1(t) + TI(t)A + ATTI(¢t) — (LI(¢)B + N)R~Y(BTTI(t) + N*) + Q, (6.40)
(T) = G,
ps(t) = 5(t) + [(A— BR'NT)T — I1(¢t)BR™' BT s(t)
+I0(t)(b(t) + BR™'n) + NR™'n —n, (6.41)
s(T) =0,
O

Remark 6.2 (Finite Horizon LQG Systems). Typically, the cost functional for finite horizon LQG
systems is not discounted, i.e. p = 0, and hence the Riccati and offset equations (6.29)-(6.30)
reduce to

—II(t) = TI(t)A + ATTI(t) — (TI(t)B + N)R~Y(BTII(t) + NT) + Q,

—5(t) = [(A— BRINT)T —1I(t)BR™'BT|s(t) + 11(t)(b(t) + BR™'n) + NR™'n —n,
(6.42)
subject to the terminal conditions II(T") = G, s(T") = 0.

Remark 6.3 (Infinite Horizon LQG Systems). For Infinite horizon LQG systems where the
terminal time 7" in (6.7) is set to infinity, the terminal cost becomes zero. Hence, the infinite

horizon cost functional is given by

o0

1
J(u) = 51[{‘, [/ e’pt{xtTth + 227 Nuy + ul Ruy — 227n — QutTn}dt], (6.43)
The dynamics (6.6) reronains the same in the infinite horizon LQG systems.
Assumption 6.2. The pair (L, A — (p/2)1) is detectable where L = Q2.

Assumption 6.3. The pair (A — (p/2)1, B) is stabilizable.

Given that Assumptions 6.7-6.8 hold, for infinite horizon LQG systems governed by (6.6)
and (6.43), the optimal control action is given by (6.28), where the steady state Riccati matrix II
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satisfies an algebraic Riccati equation given by

pll = A + A™Il — (IB + N)R™Y(B'T1 + N*) + Q, (6.44)
and the steady state offset vector sy satisfies the differential equation

ps(t) = () +[(A—BR'N")T —IBR'B"]s(t) + (M (t)+BR*n) + NR™'n—1n. (6.45)

6.4 Major Minor LQG Mean Field Game Systems

In this section, the convex analysis method introduced in Section 6.3 is utilized to rederive the best
response strategies for major minor LQG MFG problems addressed in [16]. A large population
N of minor agents with a major agent, where agents are subject to stochastic linear dynamics
and quadratic cost functionals are considered. Each agent is coupled with other agents through
their dynamics and cost functional with the average state of minor agents, i.e. the empirical mean
field.

6.4.1 Dynamics

The dynamics of the major and minor agents are assumed to be given, respectively, by

dz? = [Ao2? + Foz™ + Boul + bo(t)]dt + oodw?, (6.46)

dzt = [Apxl + Fkng) + Byl + by (t)]dt + opduwl, (6.47)
where t > 0,7 € M N = {1,...,N}, N < oo, and the subscript k, £k € K, K =
{1,...,K}, K < N, denotes the type of a minor agent. Here ! € R", i € Ny, Ny =
{0,..., N}, are the states, u! € R™, i € 9, are the control inputs, {w!, i € 9Ny} denotes
(N + 1) independent standard Wiener processes in R”, where w; is progressively measurable
with respect to the filtration 7 := (F;")¢cjo,r). All matrices in (6.46) and (6.47) are constant and

of appropriate dimension; vectors by(t), and by (¢) are deterministic functions of time.

Agents types

Minor agents are given in K distinct types with 1 < K < oo. The notation
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is introduced where 0; € O, with O being the parameter set, and ¥ may be any dynamical

parameter in (6.47) or wight matrix in the cost functional (6.50). The symbol Z; denotes

Iy={i:0, =k, 1eMN}, keR
where the cardinality of Zj, is denoted by Ny, = |Z;|. Then, 7V = (a{, ..., 7}¥), 7y = 8 k € &,
denotes the empirical distribution of the parameters (61, ...,0y) sampled independently of the
initial conditions and Wiener processes of the agents A;,7 € D1. The first assumption is as

follows.

Assumption 6.4. There exists 7 such that limy_,.. 7 = 7 a.s.

Control o-Fields

We denote by F' := (F})eo,1), ¢ € N, the natural filtration generated by the i-th minor agent’s
state (2})eejo), by F° = (F})ieo,r) the natural filtration generated by the major agent’s state
(2)tejor), and F9 = (F{)ep,r) the natural filtration generated by the states of all agents
((ﬁ)z‘em, x?)te[O,T]-

Next, we introduce three admissible control sets. Let Z/° denote the set of feedback control
laws u(().) which are adapted to the local information set of the major agent Ay, i.e. F° such that
E[ fOT(uE)Tu?dt] < oo, for any finite 7. The set of control inputs U, i € N, based upon the local
information set of the minor agent A;, i € N, consists of the feedback control laws adapted to the
filtration F" := (F;" )01}, Where Fo" == Fi v FO, i € N, and E[ [ (u}) uidt] < oo, i € M,
for any finite 7. The set of control inputs Z/{év consists of feedback control laws u () which are
adapted to the general filtration 7 := (F{)cjo1), F? := Viem,F ", such that E| fOT ul uydt] < oo,
for any finite 7.

6.4.2 Cost functionals

The individual (finite) large population finite horizon cost functional for the major agent is

specified by

_ 1 N g N
T 00) = 5E I = 0N, + [ {21,

T
+2(af = (™)) Nou? + [[ufl, }at], (6.48)
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where
®(.) := Hox!™ + . (6.49)

Assumption 6.5. For the cost functional (6.48) to be convex, we assume that Gy > 0, Ry > 0,
and Qo — NoRy ' N[ > 0.

The individual (finite) large population finite horizon cost functional for a minor agent
A;, i € M, is specified as

i, =1 1 ) N g i N
Y (' u™) = SE| |l — Uar), + / {llat = w5,
0

. T . .
+2(2) — (™)) Nyul + Hu;uzk}dt}, (6.50)
where
o 0 Fr (V)
() = Hal+ ™ 4. (6.51)

Assumption 6.6. For the cost functional (6.50) to be convex, we assume that Gy, > 0, Ry > 0,
and Qy — N R,'NI' > 0 fork € &

We note that the major agent A, and minor agents .4;, ¢ € I are coupled with each other

through the average term ng) = le Zfil 2! in their dynamics and cost functionals given by,

respectively, (6.46)-(6.47) and (6.48)-(6.50).

6.4.3 Solutions to Major Minor LQG MFG Problems

Following the mean field game methodology with a major agent [42], [16], the problem is first
solved in the infinite population case where the average terms in the finite population dynamics
and cost functional of each agent are replaced with their infinite population limit, i.e. the mean
field. Then specializing to LQG MFG systems, the major agent’s state is extended with the mean
field, while the minor agent’s state is extended with the major agent’s state, and mean field; this
yields stochastic optimal control problems for each agent linked only through the major agent’s
state and mean field. Finally the infinite population best response strategies are applied to the
finite population system which yields an e-Nash equilibrium [16]. The following theorem (a
more general version of the theorem in [16]) specifies the control laws which yield the infinite

population Nash equilibrium and their relation with the finite population e-Nash equilibrium.

Theorem 6.5 (e-Nash Equilibrium for LQG MFG Systems). Assume that the conditions of

[16] for the existence and uniqueness of Nash equilibrium hold, then the system equations
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(6.46)-(6.50) together with the mean field equations (6.77)-(6.78) generate a set of control laws

U 2 {ui*;i > 0) where ul™ is given by

=~y [(NF + BET(0) [0, (20)") " + B so(t) — ] ©52)

w = =R (NE+ BIT) (@), @), (20)7]" + B su(t) — s, (6.53)
such that

(i) the set of infinite population control laws Uy = {u"*;1 > 0} yields the infinite population
Nash equilibrium.

JX(ub um) = inf 3 2 (ut u);
wrel;™

(ii) All agent systems A;, i € Ny, are second order stable.

(iii) the set of control laws UL = {u™*;i € My}, 1 < N < oc, yields an e-Nash equilibrium
foralle, i.e. forall € > 0, there exists N (€) such that for all N > N (¢);
IV ) —e < inf IV (uf um) < N (Wb umh).
uiGUiN’L

OJ

The proof of Theorem 6.5 consists of two parts: (1) the set of control laws U/}, yields the
Nash equilibrium for the infinite population system, (ii) when a finite subset of the control laws
UL - is applied to the finite population system, all agent systems are second order stable and it
yields an e-Nash equilibrium. In this section, a novel convex analysis approach is presented to

retrieve the set of best response strategies (/7> which yields the Nash equilibrium.

Mean Field Evolution

We introduce the empirical state average as

1 Ny
(Ng) _ }: k
xkk_mj:1xj, ke R,

and write (V) = [z{™) 2™ 20" where the pointwise in time L2 limit of 2™, if it exists,
is called the mean field of the system and is denoted by = = [z!, ..., Z%] . We consider for each

minor agent A; of type k, k € K, a uniform (with respect to i) feedback control u¥ € U; ;, C U;,



6 Convex Analysis for LQG Systems with Applications to Major Minor LQG Mean Field
Game Systems 129

where U, 1, consists of linear time invariant controls, as

x s N kil gl
up® = Liay® + Zfile:lng’ o' + LEa? + m* (),
where 0 < t < oo, L¥, L¥' and L% are constant matrices, and m*(t) is a continuous bounded

function of time. If we substitute uik in (6.47) for 7 € I, and take the average of the states of

closed loop systems of type k, k£ € R, and hence calculate ng), it can be shown that the L? limit
Z; of ng), i.e. the mean field satisfies
dz, = Az,dt + Ga)dt + m(t)dt, (6.54)

where A, G, and m are to be solved for in the tracking solution. By abuse of language, the mean
value of the system’s Gaussian mean field given by the state process 7; = [T}, ..., T1*] shall also

be termed the system’s mean field.

Major Agent: Infinite Population

To solve the infinite population tracking problem for the major agent Ay, first, its state is extended
with the mean field process 7;, where this is assumed to exist. Then the dynamics of major agent’s

extended state X £ [(z)7, (Et)T]T is given as (see [16])

dX0 = Ao XPdt + Bouldt + Mo (t)dt + SodW?, (6.55)
where
A, F B bo(t 0 0
P B I B IVt T I IR A R T B
G A m(t) 0 0 0
(6.56)

The infinite population individual cost functional for the major agent is given by

1 T
S5 () = 5B | X8t [ {(X0)QuXS + 20 N+ (u8)7 R
—2(X%) TR, — 2(ug)Tﬁ0}ds] , (6.57)

where the corresponding weight matrices are specified by

Go = [In, —HZ)" Go L., —H}], Qo= [I.,—HZ)" Qo [I,., —HZ],

No = [L,—Hg]" No, 7o = [Ln,—HG]" Qorio, 7o = Ng 1ho- (6.58)
The dynamics (6.55) together with the cost functional (6.57) constitute a stochastic LQ
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optimal control problem for the major agent .A,’s extended system in the infinite population limit.
To determine the optimal control u?’*, first Theorem 6.2 (with p = 0 ) is utilized to compute the

Gateaux derivative .J§' (u°) of (6.57) in the direction of w? € U° as in

T
(J5 (u°), ) = E [/ <wE>T{N§X?’“ + Roul — 7
0

t
+ By (e*AoTt M — / A D (Qp X" + Noul — ﬁg)d5> }dt] , (6.59)
0

where

T
M= [eAgTGoX%“ + / A3 (Qo X% + Noud — ﬁo)ds‘ff} . (6.60)
Then, as per Theorem 6.3, the optimal control action for the major agent’s extended system

(6.55)-(6.58) in the infinite population limit is given by

t
W = —Ry! [NOTX,?’* — g + BY <€7AOTtMtO - / et =D (QuX " + Noud™ — ﬁo)dsﬂ 7
0

(6.61)
Finally, using Theorem 6.4, (6.61) can be written in the state feedback form as
ut = —Ry' [NEXD — 7o + BE (T (6) X7 + s0(1)) ] (6.62)
where
—TIo(t) = () Ag + AITIo(t) — (To(t)Bo + No) Ry ' (BITIo () + N3 ) + Qo, 6.63)
H()(T) — Go,
—50(t) = [(Ag — Bo Ry 'NJ)T — IIo(t)Bo Ry "B |so(t)
+1o(t) (Mo (t) + BoRy ') + No Ry ' — 7o, (6.64)
So(T) = 0.

Minor Agent: Infinite Population

To solve the infinite population tracking problem for a minor agent A;, i € N, first, its state is
extended with the major agent’s state and the mean field process x;, where this is assumed to

exist. Then the dynamics of minor agent A;’s extended state X; = [(z})7, (2?)7, (ft)T]T is
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given as (see [16])

dX} = Ap X} dt + Bruldt + My (t)dt + SpdW/, (6.65)
where
A H,. FT B
A = k 7[1 Ky FYT] o B, — k 7
0 Ay—BoR, No—BoR, BjIl 0
by (t 0 . i
M, (1) = Kl )_1 . R s Cowi=| YL (6.66)
Mo(t) - BORO BO So(t) 0 20 Wt

The infinite population individual cost functional for minor agent A4;, 1 < i < N, is given by

| , , T , , , . . ,
J2(u) = | (X @XG + [ {OET QU+ 2060 Mok + () R

(X, — 2(u) }ds] - (667)
where the corresponding weight matrices are specified by

Gy, = [, —Hy, —HF'Gy[I,, —Hy, —HF], Q= [, —Hy, —HF 1 Q1 [I., —Hy,, — HF),

Ng = [In, —Hg, —HF' Ny, e = [T, —He, HF) Qs 7 = N, (6.68)

The dynamics (6.65) together with the cost functional (6.67) constitute a stochastic LQ
optimal control problem for the minor agent .4;’s extended system in the infinite population
limit. To determine the optimal control ui* for minor agent A;, 1 < i < N, first, using Theorem
6.2, the Gateaux derivative .J>' (u’) of (6.67) in the direction of w!, where w! € U’, is computed

as

T
Gty = | [T {NEX R -
0

t
+ B} <e*A‘£t M} — / A D (Qu XM + Nyl — ﬁk)ds> }dt] , (6.69)
0

where

Mi = [ATTG XE 4 /T S(Qe X + Nyt — 7 ds‘f*} (6.70)

Then according to Theorem 6.3, the opt1ma1 control action for minor agent A;, i € N, is given
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by

t
u* = —RYNEX)® — 7y + BY (w*ft M} — / et TO(Qp X + Nyub* — ﬁk)dsﬂ :
0

(6.71)
Finally, using Theorem 6.4, the control action (6.71) can be presented in linear state feedback
form as
uyt = =R NPX] — ay + BE (L)X + sk(1))], (6.72)
where

115 (t) = T (6) Ay + ATTILL () — (I (8) By + Np) Ry (BE I (£) + NT) + Qy,
I1(T) = Gy,
—35(t) = [(Ag — By R 'ND)T — ILe(6)By 1ty "B s (t)
+1T (8) (M, (2) + B Ry, ') + Ny Ry Mg — 7, (6.74)

(6.73)

Mean Field Consistency Conditions

To obtain the consistency conditions, we substitute (6.72) into (6.47) which results in

da; = (A} = BoRe [NEI(@), ()7 201" =+ BE (Hl(@))” ()7, )7 + 50 |

+ Hyal + FF 3, + bk>dt + odwi. (6.75)

Let define
11 Ipaie I
= | Hgor Ilgoo Mgos |, k€K,
31 Hpze i3s3
and e; = [0nny - Onxns Iy Onscns -y Onxn ), Where the n x n identity matrix I, is at the kth
block.

If we take the average of (6.75) over subpopulation A, k € £, and then take the L? limit as the
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number N, of agents within the subpopulation goes to infinity (i.e. N, — 00), we get

daf = (B + (A = Befp (N, + B{ Ty )ex — BBy B i3 ) audt

+ (Hy, — BLR ' Bi Ty 19)2Ydt + (by + ByR; ‘7, — BiR; "B} s)dt. (6.76)
If we equate (6.76) with (6.54), then by consistency requirement a compact description of the

major minor mean field equations determining A, G, m is given by

(

—1IIy = oA + ATTIy — (IToB, + No) Ry (BI Iy + NI) + Qo,  IIo(T) = Gy,

—1II;, = A, + ATTT, — (TB, + Np) R, U (BLTT, + NL) + Qp,  TIi(T) = Gy, Vi,
Ay = FF 4 [Ay — BR; ) (N] | + B{T11)|er — ByRy ' Bif i3, VE,

|Gr = Hy— By ' B{ T2, VE,

(6.77)

(

—50(t) = [(Ag — BoRy 'NJ)T — TIgBo R, "B ]so(t)
+1To(Mo(t) + Bo Ry '7g) + NoRy g — Mo, s0(T) = 0,
—55(t) = [(Ar — B R, 'N[)T — 1B Ry, "B s (¢)
+1T (Mg (t) + B R, '1ig) + Np Ry 'y — i, si(T) = 0, VE,
(T = b + BBy iy — Bl B sy, k.

(6.78)
Remark 6.4 (Infinite Horizon LQG MFG Systems). For Infinite horizon LQG MFG systems
where the terminal time is set to infinity, the terminal cost becomes zero. Hence, the major

agent’s infinite horizon cost functionals is given by

_ 1 > N NWT
I (W u) = E| / e Jlaf = o), +2(af — (™)) Nout + uf%, fat]

(6.79)
Similarly, the discounted infinite horizon cost functional for minor agent A;, 1 < i < N is given

by

v, —1 1 * — 3 N i N T i i
Iy = 5E[ [ el = W, + 20k = W) N + i, o]

(6.80)
The dynamics (6.46)-(6.47) for the major agent and minor agents remain the same in the infinite
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horizon LQG MFG systems.

Assumption 6.7. The pair (L,,Aq — (p/2)I) is detectable, and for each k € R, the pair
(Ly, Ax — (p/2)I) is detectable, where L, = (1)/2[1, —HJ| and Ly, = ,16/2[], —Hy, —HT.

Assumption 6.8. The pair (Ag — (p/2)1,By) is stabilizable and (Ay, — (p/2)1,By) is stabilizable
for each k € R.

Given that Assumptions 6.7-6.8 hold, for the major agent’s system (6.46), (6.79), the best
response strategy is given by (6.62), where the steady state Riccati matrix II satisfies an algebraic

Riccati equation given by

plly = oAy + Al Tl — (TTpBy + No) Ry ' (B Ty + N ) + Qo (6.81)
and the steady state offset vector sg satisfies the differential equation

pso(t) = $o(t)+[(Ao—Bo Ry Ny )" —TToBo Ry "By |so(t) +TTo(Mo (t) +Bo Ry o) +No Ry ' —1o-

(6.82)
Similarly, for minor agent A;’s system (6.47), (6.80), i € N, the best response strategy is given
by (6.72), where the steady state Riccati matrix I, and offset matrix s; satisfy the following

algebraic Riccati equation and differential offset equation.

pll, = I A, + Afl'[k — (I By + Nk)R,jl(Bfl'[k + Nf) + Qr, Vk,
pSk(t) = Sk(t) + [(Ak — ]B%lele{)T — Hk]Bleleg]Sk(t) + Hk(Mk<t) + Blezlﬁk)

+NkR;1ﬁk - ﬁk, Sk(T) = 0, Vk.
(6.83)

6.5 Conclusions

A convex analysis method was used to rederive the solutions to LQG optimal control problems.
Then the methodology was applied to major minor LQG mean field game (MM LQG MFG)
systems to retrieve the best response strategies for the major agent and each individual minor
agent which yield an e-Nash equilibrium for the entire system.
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Chapter 7

Mean Field Game Systems including
Common Noise and Markovian Latent

Processes

7.1 Introduction

In this chapter, an MFG framework is considered where there exist one major agent and a large
number of minor agents which are subject to linear dynamics and quadratic cost functionals. Each
agent interacts with other agents in the system through the coupling in their cost functional with
a common process. The common process is modulated by a latent Markov chain process and a
latent Wiener process, which are not directly observed by the agents but rather are inferred from
the agents’ observation processes. We refer to the latent Wiener process as the common noise
process. Moreover, the common process is impacted by the major agent’s state, the major agent’s
control action, the average state of all the minor agents, and the average control action of all the
minor agents. We obtain the best response strategies for the major agent and each individual
minor agent in the infinite population limit which collectively yield an e-Nash equilibrium for the
finite population system.

Motivation: Financial and economic systems (among others) are often driven by latent
factors, and these latent factors also affect the cost (profit) functional of the traders involved.
Moreover, the agents in these system are often acting in a non-cooperative manner, and hence

playing a large stochastic game with one another; while they may control aspects of the system,
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they are also at the whim of factors they cannot control or observe. For example, in optimal
execution problems (where traders aim to sell or buy shares of an asset), all traders are subject
to the same asset price process and must make their trading decisions based on the observed
price. The asset price dynamics may be driven by a common Wiener process, which accounts for
so-called noise (uninformed) traders. In addition, the effect of unobserved factors on the price
dynamics, other than the major agent’s trading action and the aggregate impact of minor agents’
trading actions, are important factors to incorporate (see e.g. [66], [63] ) in specifying the best
response trading strategies and e-Nash equilibrium.

Methodology: Although latent processes are not directly observable, the information provided
from the realized trajectories of the common process and the evolution of system’s aggregate
state (mean field) can be used to obtain posteriori estimates, and to subsequently partially predict
future behavior of the common process [66]. Certain versions of such problems can then be
recast as MFG systems with a common noise. A variation of this type of MFG system has been
investigated in [67], where the case of correlated randomness in a nonlinear setting is analyzed.
Here we utilize a different approach in order to address the existence of a latent process together
with the common noise. Specifically, we treat the common process as a major agent and further
extend the Major - Minor LQG MFG analysis of [16] to incorporate such a latent process in the
dynamics. Then, we utilize the convex analysis approach in Chapter 6 ([68]) to obtain the best
response strategies for all agents that yield an e-Nash equilibrium.

The rest of the chapter is organized as follows. Section 7.2 introduces a class of major minor
MFG problems with a common process as well as a latent process. The MFG formulation of the

problem is then presented in Section 7.3. Concluding remarks are made in Section 7.4.

7.2 Major Minor Mean Field Game Systems with a Common Process

7.2.1 Dynamics: Finite Population

We consider a large population of N minor agents and a major agent, where the agents are

coupled through their individual cost functionals with a common process.
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Major and Minor agents

The underlying dynamics of the major and minor agents are assumed to be given, respectively,
by

dz) = [Agz? + Bou) + bo(t)]dt + oodw), (7.1)

dxt = [Apzl + Byu) + by(t)]dt + opdwy, (7.2)
where ¢t € [0,7], i € M, N = {1,...,N}, N < oo, and the subscript k € R, R =
{1,...,K}, K < N, denotes the type of a minor agent. Here, ! € R", i € 9y,Ny =
{0,..., N}, are the states, ui € R™, i € I, are the control inputs, {w}, i € Ny} denotes
(N + 1) independent standard Wiener processes in R”, where w; is progressively measurable
with respect to the filtration F* = (]—"g")te[o,T]. All matrices in (7.1) and (7.2) are constant and of

appropriate dimension; the vector processes by(t), and by (t) are deterministic functions of time.

Assumption 7.1. The initial states {z}, i € Ny} are identically distributed and mutually
independent and also independent of F*; Elwi(wi)T] = X, i € MNy. Moreover, Ez}y = 0,
and E||z||> < C < oo, i € No, with 3 and C' independent of N.

Minor Agents Types:

Minor agents are given in K distinct types with 1 < K < oco. The notation

Uy 20(0;), 6;,=k
is introduced where 0; € O, with O being the parameter set, and ¥ may be any dynamical

parameter in (7.2) or weight matrix in the cost functional (7.6). The symbol Z; denotes

Ipy={i:0,=k,ieN}, kegr
where the cardinality of Zj, is denoted by Ny, = |Z;|. Then, 7V = (a, ..., 7¥), 7y = 8k k € &,
denotes the empirical distribution of the parameters (6, ...,0y) sampled independently of the
initial conditions and Wiener processes of the agents A;,7 € D1. The first assumption is as

follows.

Assumption 7.2. There exists 7 such that limy_...m = T a.s.
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Common Process: Finite Population

We consider the systems where the major agent and any minor agent A;, i € 91, observe a
common stochastic process y;, where both the state and common process ¥, appear in an agent’s

cost functional as introduced in Section 7.2.2. The common process ; € R" is governed by

dy, = dyF + (Ful™dt + Fyu? + Ha\™ + Hya)dt, (7.3)
where y! evolves as in

dyf = f(t,y;, T})dt + odw,. (7.4)
In (7.4), the process I' = (Ft)te[gvT] denotes a latent continuous Markov chain process with
Iye{y,jemp, m={1,..., M}, M < oo; the vector f(t,yF,T';) denotes a deterministic
nonlinear function of ¢, y*, and I'; w, € R" denotes a latent Wiener process independent of
{wi, i € Mo}, and the matrices F', Fy, H, Hy, and o are deterministic, constant and of appropriate
dimension. Moreover, by substituting (7.4) in (7.3), it is evident that the common process ¥; is

impacted by
1) alatent Markov chain process I';,
2) the major agent’s state x?,
3) the major agent’s control action uY,
4) the average state of minor agents, i.e. x,EN) = % Zf\il xi,
; : : (N) _ 1NV
5) the average control action of minor agents, i.e. u; ' = 5 > ;" Uy,
6) a latent Wiener (common noise) process w; € R” independent of w?, w, i € M.

Assumption 7.3. The major agent Ay completely observes its own state and the common process

Yt

Assumption 7.4. Each minor agent A;, i € I completely observes its own state, the major

agent’s state and the common process ;.

We again emphasize that the latent processes I'; and w; are not directly observed by the agents
A;, i € My. However, each agent may obtain their posteriori estimates based on its complete
observations on the common process y;. We refer to the latent Wiener process as the common

noise process in this work.
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Control o-Fields

We denote by F* = (F))epr, ¢ € N, the natural filtration generated by the i-th minor
agent’s state (2})tejo.77, by F° := (F})tejo,r) the natural filtration generated by the major agent’s
state (2))teo,7, and F := (F¢)ieo,) the natural filtration generated by the states of all agents
((2})iem, Qfg)te[o,T].

Moreover, we denote by G := (G;)icpo,r) the natural filtration generated by (I';, wy)sc[o,77, and
FY = (F{)ico,r) the natural filtration generated by (v;)¢c(o,77-

Next, we introduce two admissible control sets. Let 2/° denote the set of feedback control
laws with second moment lying in L'[0, T, for any finite 7', which are adapted to the smaller
filtration FO" = (EO’T)te[o,T}, where FO" = F°V F¥. The set of control inputs U*, i € N,
based upon the local information set of the minor agent A;, ¢ € I, consists of the feedback
control laws adapted to the smaller filtration F*" := (F;"),c(0.7), where Fo" := Fi v FO v FV,
i € N, while U, is adapted to the general filtration F := (F)e(o,1), Where F9 .= FV FY VG,
1 < N < o0, and the Ll[O, T constraint on second moments applies in each case. We note in
passing the significant differences between the information structures specified here and those in

the team theory literature [69].

Assumption 7.5 (Major Agent’s Linear Control Laws). For major agent Ay, the set of control
laws UOL € U, is defined to be the collection of linear feedback control laws adapted to F°.

Assumption 7.6 (Minor Agent’s Linear Control Laws). For each minor agent A;, i € N, the set
of control laws UY € U?, i € N, is defined to be the collection of linear feedback control laws
adapted to F'", i € M.

7.2.2 Cost Functionals: Finite Population

Given the vector 2? as

o__ | Yt
=1,
Ly

the major agent’s cost functional to be minimized is formulated by

1 T
Jo(u®, u‘o) = §E [(z%)TGoz% + / {(ZS)TQOZS + 2(zg)TN0uS + (ug)TRoug}ds] . (1.5
0
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Assumption 7.7. For the cost functional (7.5) to be convex, we assume that Gy > 0, Ry > 0,
and QO - NoRalNOT > 0.

Similarly, given the vector z{, i € N, as

Yt
the cost functional to be minimized for minor agent A;, ¢ € I, is formulated by

| , , T . , , , , ‘
Ji(u,u™) = §IE {(z’T)Tszr} + {(z;)Tka; + 22T Npul + (ué)TRku;}ds} , (7.6

1<k<K,whereu " = (u°, .., u " uitL .. ul).

Assumption 7.8. For the cost functional (7.6) to be convex, we assume that Gy, > 0, Ry > 0,
and Qy — N R,'NI' > 0 fork € &

7.3 Major Minor LQG Mean Field Games Approach

In the mean field game methodology with a major agent [42], [16], the problem is first solved in
the infinite population case where the average terms in the finite population dynamics and cost
functional of each agent are replaced with their infinite population limit, i.e. the mean field. For
this purpose, the major agent’s state is extended with the mean field, while the minor agent’s state
is extended with the major agent’s state, and the mean field; this yields stochastic optimal control
problems for each agent linked only through the major agent’s state and mean field. Finally
the infinite population best response strategies are applied to the finite population system which
yields an e-Nash equilibrium.

To address major minor mean field game systems involving a common process and a latent
Markov chain process, the following steps are followed. We first note that the common process in
this work represents an extended form of common noise in [67]. However, a different approach
is followed to incorporate the common process in the major minor LQG mean field game
framework. First in Section 7.3.1, the evolution of the state mean field and the control mean
field in the infinite population case are derived. Then, an F°"-adapted and F*"-adapted, i € N,
forms of the common process in the infinite population case are presented in Section 7.3.2. Next
in Sections 7.3.3 and 7.3.4, the common process is perceived as a major agent in the major minor

LQG MFG framework. Subsequently, the major minor LQG analysis described above is further
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extended where the major agent’s state is extended with the mean field and the F°"-adapted
common process, while a minor agent’s state is extended with the major agent’s state, the mean
field, and the F*"-adapted common process. Finally, a convex analysis method is performed
in Section 7.3.5 to obtain the best response strategies which yield the infinite population Nash

equilibrium and finite population e-Nash equilibrium.

7.3.1 Mean Field Evolution

The common process y; governed by (7.3) is involved with the empirical average of the minor

agents’ states, i.e. ang), as well as the empirical average of the minor agents’ control actions, i.e.

uiN). To attain the infinite population limit ¢, of v, the state mean field z; and the control mean

) (N)

field u, are introduced as the infinite population limits of IIEN and u,; ’, respectively.

Control Mean Field

The empirical average of minor agents’ control actions is introduced as

LM
(Nk) _ gk

WT N, Ejl Wk ke g (1.7)
and the vector uEN) = [uENl) , u,ENQ), o ugNK )] is defined, where the pointwise in time limit (in

quadratic mean) of ugN), if it exists, is called the control mean field of the system and is denoted

by u; = [u}, ..., u’]. We consider for each minor agent A;, i € N, of type k, k € K, a uniform
(with respect to 1) state feedback control uik c U asin

up® = Lkap® + S SN Ll + LEal + Ly, + mf, (7.8)
where t € [0,T], L¥, L L% and L% are constant matrices of appropriate dimension, L5 is
assumed to depend upon /V; and satisfy Nng’l — E’;’l as N - oo forall k,1 < k < K,
and m? is a .EO’T—measurable process. If we take the average of the control actions ui’k over the

population of the agents of type k, £ € R, and hence calculate uEN), then it can be shown that

u,gN) as N — oo, converges in quadratic mean to the control mean field #, given by
u, = Cxy + D2 + By, + 74, (7.9)
where 7, if it exists, denotes the state mean field introduced in Section 7.3.1, y; denotes the

limiting process associated with the common process y; as N — oo (see Section 7.3.2), and 7 is
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a .Eo’r—measurable process. Furthermore, the matrices in (7.9), i.e.

C1 Dl El _t1
OK D K EK 7:{(
are to be solved for using the mean field consistency equations (7.47)-(7.48) derived in Section
7.3.5.

<

State Mean Field

Similarly, the empirical state average is introduced as

1 &

x = — ", k€ R, (7.11)
and the vector xEN) = [a:,ENl), x§N2), o mgNK )] is defined, where the pointwise in time limit (in
quadratic mean) of :):EN), if it exists, is called the state mean field of the system and is denoted by
T, = [z},..., TK].

If we substitute (7.8) in (7.2) for « € )1, and take the average of the states of the minor agents’
closed loop systems of type k, £ € R, and hence calculate :v,EN), it can be shown that xEN) as

N — oo converges in quadratic mean to the state mean field z; which satisfies

dz, = Az,dt + Galdt + Ly,dt + mydt, (7.12)
where y; denotes the infinite population limit of the common process y; (see Section 7.3.2), m,

isa ff ""_measurable process, and the matrices

Aq G4 Ly m;
A= | + |, G=| + |, L=1| + |, m=| : [, (7.13)
Ak Cx Lk K
are again to be solved for using the mean field consistency conditions (7.47)-(7.48) derived in
Section 7.3.5.
By abuse of language, the mean value of the system’s Gaussian mean field given by the state
process T; = [z}, ..., ] shall also be termed the system’s mean field (The derivation of the state

mean field equation above may be performed using the methods of [21], [19] and [16]).
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7.3.2 Common Process: Infinite Population

Each agent completely observes the common process 7; but has no observations on the latent
Markov chain process I';. In order to resolve the issue of the unobserved latent process I,
Wonham filtering method is used to estimate the distribution of I'; based on the observations
of each agent on y;, i.e. F;. Subsequently, f(¢,y%,I';) and w; in (7.4) are presented in their
J}-adapted forms (see e.g. [66], [70]).

Denote the transition probabilities for the continuous time Markov chain process I' by

pij = PTon =yl =), 1<ij<M (7.14)
and the corresponding transition rates by v;; > 0, and

M

vi= Y vy, €M (7.15)
j=1,j#i ,
The posterior distribution of T'; conditional on F} is denoted by IT = {#{, j € M, t € [0,T]},

where
7Tg = E[ﬂ{f‘t:w}’f;yL j € ma S [07 T]7 (716)
with initial distribution {7, j € 9}.

Remark 7.1. As a result of Assumptions 7.3-7.4, the major agent Ay, and each minor agent
A;, i € M, completely observe the unaffected common process y given by (7.3) in the infinite

population limit. Consequently

7 = B[l r =y | FY] 2 ElLr oy | 7] (7.17)

Lemma 7.1 (Wonham Filter). [70] If o > 0, the posterior distribution I1 of Ty is given by

M M M
dr] = < —vym] + Z vij7r§> dt —o~? ( Zw,f%-) [f(t, yr, ;) — Z WZ%} 7l dt
i=1, i i=1 i=1

+o [ (.9, 7) Zﬁm] ldyf, (1.18)
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Lemma 7.2. [66] Define the process w = (wy,t € [0,T)) as

t
&y = w, + 0" / (. — F)ar, (7.19)
~ o~ 0
where [ = (fi, t € [0,T)) is an F{-adapted process defined as
fo = ELf(t.yF . To) | F"], (7.20)
and is computed by
j=1
Then the process w; is an JF; -adapted Wiener process.
O
According to Lemma 7.1 and Lemma 7.2, equation (7.4) can be rewritten as
dyF = fidt + odiy, (7.22)

and by substituting (7.22) in (7.3), the ff ""-adapted dynamics of the common process for the
infinite population case, i.e. ¥, is given by

Ay = f, + Fruydt + Foul + H" %y + Hyalldt + odiy, (7.23)
where the average terms x,EN) and uEN) in (7.3) have been replaced with their (quadratic mean)
limitas N — oo, i.e. the state mean field z; and the control mean field u,, respectively. Moreover,
F™" =7® Fand H™ = m ® H, where ® denotes the Kronecker product of the corresponding

matrices.

Remark 7.2. Since the state and the control action of each individual minor agent A4;, i € 91, do
not affect the infinite population evolution of the common process, i.e. ¥, the ]:Z ""-adapted and
.7-}0 "_adapted dynamics of the common process ; in the infinite population limit are identical and
given by (7.23).

7.3.3 Major Agent’s Regulation Problem : Infinite Population

First, the major agent’s state ! is extended with the state mean field 7, and the infinite population

common process ¥; to form the major agent’s extended state X = [(7;)7, (22)7, (z;)T]* which
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is governed by

dX) = Ao XD dt + Bouddt + MY dt + SodWy, (7.24)
By substituting (7.9) into (7.23), the matrices in the extended major agent’s dynamics (7.24) are
given by
FTE F™D+H, FTC+H" Ey
AO = Onxn AO Onxni ) By = BO )
L G A Onk xm
f/; + Fﬂ—ft o Onxr OanK at
My = bot) |, Zo=1| Ouer 00 Opeer |» W) =] w) |. (725
mt OTLKXT OnKXr OnKXrK OTKX 1

Next, the major agent’s extended cost functional is given as

1 T
J§ () = SE| (X9 GoXP + /O {(XS)TQ0X§+2(XS)TNOu2+(ug)TRoug}dsl, (7.26)

where the corresponding weight matrices are given by

Go = [Lan, 02n><nK]T Go [Lon, O2nxnk] » (7.27)
Qo = [L2n, 02nxnic]” Qo [T, Oanscnic] (7.28)
N,
Ny = o . (7.29)
OnKXm

The minimization of the extended cost functional (7.26) subject to the extended dynamics (7.24)
constitutes a stochastic optimal control problem for the major agent in the infinite population

limit. Then, according to Theorem 7.3 the major agent’s optimal control action is given by

up* = — Ryt NP+ BE (1) X7 + ) . (7.30)
where TIj(¢) and s? are to be solved for using

ITy 4 ToAo + ATy — (BITL, + NO)T Ry MBI, + NI) + Qo = 0, TIo(T) = Gy, (7.31)
and the BSDE

ds) + [(Ag — BoRy 'No)" — ToBo R, "B |spdt + yMYdt + (IXg — ¢ )dW =0, s5. = 0.
(7.32)
The Riccati eqution (7.31) and the offset equation (7.32) shall be derived in Section 7.3.5.
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Finally, the closed-loop dynamics of the major agent .A; when the control action (7.30) is

substituted in (7.1) is given by
dX° = (AOX,? — ByRy! [Ng X0+ BT (I (H) X0 + s?)] + bo(t)) dt + oodu?.  (7.33)

7.3.4 Minor Agent’s Regulation Problem: Infinite Population

First, minor agent 4;’s, i € N, state is extended with the infinite population common process ¥,

the major agent’s state 27, and the state mean field Z; to form the minor agent’s extended state
Xi=[(@)T, (g)T, (2T, (z4)T]" which satisfies

dX} = A X dt + Brudt + MFdt + S.dW7. (7.34)
To attain the extended matrices in (7.34), the joint dynamics of (i) minor agent .4;’s system given
by (7.2), (i) the common process ¥; given by (7.23) where (7.9) and (7.30) are substituted , (iii)
the major agent A,’s closed loop system given by (7.33), and (iv) the state mean field z; given

by (7.12) are utilized which results in

Ak _ Ak 0n><(2n+nK) Bk _ Bk
O(2n+nK)><n AO - EORalNO - BoRnggH 7 0(2n+nK)><m 7
Mk _ bk(t> Y, — O 0n><(27‘+7”K) i ’UJ%,
‘| M? —ByR; B T o 5 o e |
t 0419 oso(t) (2n+nK)xr 0 h

Next, the minor agent A;’s extended cost functional is formed as
. 1 ) . T . . . ) . .
JE (') = SE [(X%)TGkXZT + [ {ee o+ 200) M + <uz>TRku;}ds] . (136)
0

where the corresponding weight matrices are given by

Gk = [IQna OQnX(n-{—nK)}TGk [I2n7 02n><(n+nK):| )
@k = |:I2n7 OQnX(n-{-nK)}TQk [IQna OQnX(n—l—nK)} ’
N,
Ny = . (7.37)

0(n+nK)><m
The dynamics (7.34) together with the cost functional (7.36) constitute a stochastic optimal

control problem for minor agent A;, i € MM, in the infinite population limit. Then, according

to Theorem 7.3, the minor agent .A;’s optimal control action for the infinite population case is
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given by
up* = — R NEXT + B ()X + 519)]. (3%

where II(t), k € R, is the solutions to the following deterministic Riccati equation

I, + Ay, + ATTL, — (BITL, + NDOTRUBI, + N + Qp =0, II(T) = Gy, (7.39)
and si’k, k € R, is the solution to the following BSDE

ds;* + ( [(Ax =By R, 'Ng) T — T B R BY ] sy + Hka) dt+ (IS, —q))dW; =0, 57" =0.
(7.40)
The complete derivation of (7.39)-(7.40) will be discussed in Section 7.3.5.
Finally, control action (7.68) is substituted in (7.2) which gives minor agent A;’s, i € N,
closed loop system as

dXi = (Aka — B.R;! [Nf Xi + BT (LX) + si’k)] + bk> dt + opduw. (7.41)
Remark 7.3. We note that for the case where there exists no latent process, i.e. y* = 0, ¢t € [0, T},

the diffusion terms of (7.32) and (7.40) become zero and they reduce to the deterministic offset

equations of classical major minor LQG mean field games in [16].

7.3.5 Nash and e-Nash Equilibria

To derive the mean field consistency equations which specify the matrices in the control and state
mean field equations, respectively, (7.9) and (7.12), the closed loop system (7.41) of minor agent

A; is rewritten as

dzi = (Akx;' — BeR (NT +BITL) [(29)7, 57, (a7, 2] — By BL " + bk> dt + oydu,
(7.42)
where i € N, k € K.
Then the block matrices

My Mo Hgaz Ilgag Ny
II II II II N

1, = e BT I k2 |
31 Igze Ilpzs 1lgas Ny 3
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ek = [Onxna'-'aonxnajnyonxn; -'-70n><n] 9 (743)
are defined, where Hk711,Hk722,Hk733 e Rmxm, Hk744 € RnKan; Nk,l,Nk72,Nk73 e Rnmxm,

Np4 € R*Exm: and e, € R™"K Lk € R, denotes a matrix which has the identity matrix 7,
in its kth block and zero matrix 0,,,, in other (K — 1) blocks.

Now, if the average of (7.42) over N, minor agents of type k, k € £, and then its L? limit as
the number N, of agents within the subpopulation % goes to infinity (i.e. Ny — 00) be taken, it
yields

daf = | (Ar = BoR; (NL, + BI ) )ex — BBy (NE + Bl M) |t

— ByR; (N5 + By 13)adt — BuRy '(Nf o + Bj I 12)3idt + (b, — Bp Ry, "By 57)dt.
(7.44)
In (7.44), Ef is obtained by taking the average and then the L? limit of (7.40) over the

subpopulation £ € K as N, — oo, and is given by

dsy + <[(Ak —ByR,'N;)" — IkBy R, 'B]5) + Hka> dt + (I Sy, — q)dWy = 0, 53 =0,
(7.45)

where

W, = [ Orxa, ] : (7.46)

. . N, ; _ . 0
since limpy, —y00 le > . w; = 0; and hence g, is an F; " -adapted process.

Then, equating (7.44) with (7.12) results in the following sets of equations.

[ Ty + Ty + AT Tl — (N} +B{TIo)" Ry (N} +BETly) + Qo = 0, TIo(T) = G,
I + TeAy + AFTL — (N + BUTL) Ry (N + B{TL) + Qi = 0, Ti(T) = Gy,

Cr = —R,'(N} | + Bl 11)er — R '(NL 4 + Bl Tl 14),

Dy = —R,;l(N;;C?, + BITI}13),

E, = —R;l(N}gQ + Bl 12),

Ap = Arer + BiCy,

G = BiDy,

Ly, = ByEy,

(7.47)
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(40 + ([(Ao — BoRy 'NJ)T — B Ry "B | s + HOMQ) dt + (g% — ¢f)dWP = 0, 55 =0,
s + ([(Ar — BBy N)T — By Ry ' BY] 56 + TLME )t + (IS — g)d W, =0, 55 =0,

=k __ —1mnT sk
Ty = _Rk Bk8t7

|y = BiTy + by

(7.48)
Equations (7.47)-(7.48) are called the mean field consistency equations (see [16]) from which the
matrices in (7.9) and (7.12) can be calculated.
Now, according to the asymptotic equilibrium analysis performed in [16], the following

matrices are defined.

Ay — ByR(NT, + BTl 11) 0
M, = .. )
0 Ag — BxRy' (Nk ; + BE k1)
—mFR'(NT, + Bl T 11) 0
M| = - :
0 —mx FR (N%l + BET g 11)

—Bi R (NT, + BI I 14)
M2 = ) Mé -
—Bg R (Ng 4 + BRIk 14)

—WlFRfl(NlTA + BTl 14)

—m FR! (N% 4 + BETk 14)

[ F"E F"™D+Hy F'C+H" Opnk  Onxn
Onxn Ay Onxnk Onxnk  Onxn
Ms; = L G A Onkxnk  Onkxn |
L G M, My Opkxn
| F"E F"™D + H, M; M{  Opxn |

I o % Onxn In OanK OanK Onxn
0,H — QO ’

Opxn Onxn Ongnx Ongnx 1
Lo = Q3 (B Osur] . Lo = Q@ [Ton. O s (7.49)
Assumption 7.9. The matrix M, is Hurwitz.
Assumption 7.10. The pair (Lg p, M3) is observable.

The analysis above leads to the following theorem where convex analysis and asymptotic
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MFG equilibrium analysis are utilized to establish the infinite population Nash equilibrium and

finite population e-Nash equilibrium.

Theorem 7.3. Subject to Assumptions 7.1-7.10, the mean field equations (7.47)-(7.48) together
with the system equations (7.1)-(7.3) and (7.5)-(7.6), generate an infinite family of stochastic
control laws Uy, with finite sub-families Uy 2 {uy™; i € M}, 1 < N < oo, given by
(7.30)-(7.32) and (7.68)-(7.40), such that

(i) Uyim yields a unique Nash equilibrium within the set of linear control laws U5° such that

JX (b u™) = inf  J(u',umh),
ut €U
(ii) All agent systems 1 € Ny, are second order stable in the sense that
in2 N) 2 _ . .
sbycio ey B (I + 281 + 2] + llwll*) } < C with C independent of N.

(iii) {UYp; 1 < N < oo} yields a unique e-Nash equilibrium within the set of linear control
laws UY for all € > 0, i.e. for all € > 0, there exists N (¢) such that for all N > N (¢)

JiN(ui’*, u—i,*) —€ S ian JzN(UZ, u—i,*) S JiN(Ui’*, U_i’*),
. . . yleuL
where JN (ub*, u=*) — JX(ub*,uH), i € Ny, as N — oc.

U

Proof. We use the convex analysis method developed in [68] to obtain the best response strategies
(17)-(19) and (23)-(25); this proves parts (i) and (i1) of the theorem. Then following the
asymptotic equilibrium analysis of [10], the set of infinite population control actions yields an
e-Nash equilibrium for the large population system which proves part (iii) of the theorem.

First, the convex analysis is performed for the major agent Ay’s extended system to derive
the major agent’s optimal control action in the infinite population limit. Using Theorem 6.2
in Chapter 6 ([68]), the Gateaux derivative of the major agent’s extended cost J5* (u°) in the

direction of w) € U" is given by

T
5 (u)) = | [T {NEX" 4 Ront
0

t
+ BT (e‘AOTtMtO _ /0 AT (s—1) (QoX2" + Nyu?) d8> }dt] , (7.50)
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where the martingale M} is specified by

T

M°=E [erTTGOX%“ [ M (Qux O 4 Noug)ds)fﬂ . (7.51)

Given that Assumption 7.7 holds, accord(}ng to Theorem 6.2 in Chapter 6 ([68]), the optimal
control action u"* for the major agent A, in the infinite population limit is given by

t
u = —Ry! {NOTX,?’* +Bj (e—AoTt M — / et 7D (QuX % 4 Noug’*)dsﬂ , (152
0
which is obtained by setting (7.50) to zero for all possible paths of w? € U°.

Now, Let us define p as in

t

Py = e’AgtMtO — [ oD (QOXS’* + Noug’*)ds, (7.53)
which is the adjoint process for the majoor agent’s system in the stochastic maximum principle

framework. Next, we adopt an ansatz for p) given by

P =T ()XY + ), (7.54)
whose substitution in (7.52) yields a linear state feedback form for the major agent’s optimal
control action, i.e.

upt = =Ry [NGX] + B (o (t) X + s9))]. (7.55)

To find ITy(t) € REHOMXCHER and 50 € REHKI firgt both sides of (7.54) are differentiated
and then (7.24) and (7.55) are substituted, which gives

dp® = [(HO + Ao — ToBo Ry 'NI — TIoB, Ry 'BETLy) X0dt
+ (= TIoBoR; "BY 52 + IoMP) dt + ds?] + IS (H)dW?. (7.56)
Next, both sides of (7.53) are differentiated to yield

dp? = (—AT P — QX0 — Noul)dt + e~ dM?. (1.57)
According to the martingale representation theorem, the martingale M can be written as

t
M) = M + / Z2dW?, (7.58)
0
where Z? is an Fto’r—adapted process. Differentiating both sides of (7.58) yields

dM = ZPawy. (7.59)
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Then, (7.55) and (7.59) are substituted in (7.57) which gives rise to

dp? = | (=Qo + NoRy'NT + Ny Ry 'BITI, — ALTI)) X7 + (NoRy 'BY — AL)s0 | dt
+q2dW, (7.60)
where ¢ = e A0t 20,

Finally, (7.56) and (7.60) are equated which results in a deterministic Riccati equation as

ITy 4 ToAg + ATy — (BITI, + NO)TR;YBITI, + NI) + Qo = 0, TIo(T) = Gy, (7.61)
and a stochastic offset equation as

ds} + ([(AO—BORglNg )" —IoBo R, 'By | s$+HOM$)dt+(HOEO—q3)dW£ =0, sp=0.

(7.62)
To derive the optimal control action for minor agent A4;, ¢ € 91, as well as the corresponding
Riccati and offset equations, a similar approach is followed. Utilizing Theorem 6.2 in Chapter 6

([68]), the Gateaux derivative of the extended cost functional J,?' (u?), k € R, for minor agent

A;,i € M, is computed as

T
e ) =8| [T {NEXE - R
0

t
+ BT (e_A{tMtz' _ / AR (s—1) (QeXb" + Nkui)d8> }dt} . (7.63)
. 0
where the martingale M} is defined by

T
Mi=E[HTGXG + [ @it + Nead)ds) | 77 (764

0 -
Given Assumption 7.8, as per Theorem 3, the optimal control action u;™ for minor agent

A;,i € N, in the infinite population limit is given by

t
u = Ry [NEXG 4+ B (e HEg - / N QXE + Nl )ds) |, (765)
0 , ,
which is obtained by setting (7.63) to zero for all possible paths of w; € U".

Let us define p! as

t

pl=e MM — [ PO (Q X 4 Nyul*)ds, (7.66)

which is in fact the adjoint process for the minor agent .4;’s system in the stochastic maximum
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principle framework. Then we adopt an ansatz for p! given by

p) = () X7 + s, | (7.67)
whose substitution in (7.65) results in a linear state feedback form for u;™ as

ult = R [foj’* + B (L0 X,™ + s0F)]. (7.68)
To find I, (t) € RBHEXGHE)n and 0% ¢ RGO first both sides of (7.67) are differentiated
and then (7.34) and (7.68) are substituted which yields

dpi = |:(Hk + HkAk — HkBlelez — Hk]B%leleng)XZ’* — HkBlelegS?k

+ I M 4 ds;?’“} dt + TS (H)dWi. (7.69)
Next, both sides of (7.66) are differentiated

dpl = (—ATp! — Qu X1 — NFul*)dt + e A dM}. (7.70)
According to the martingale representation theorem, the martingale M/ shall be written as

t

M} =M+ [ ZidW!, (7.71)

or equivalently, when both sides of (7.71) are diffe%entiated, as

dM} = ZdW}, (7.72)
where Z} is an ]-"Z ""-adapted process.
Then, (7.68) and (7.72) are substituted in (7.70) which gives

dpi = | (—Qp + N, R, 'N} + N, R, 'BI'TI, — ATTT,) X7

+ (N, R BT — AT )sf;’“] dt + gidWi, (1.73)
where ¢/ = e 2t Z!. Finally, (7.69) is equated with (7.73) which yields

I + Ay + ATTT, — (BET, + NDOTRABITL + ND) + Qu = 0, (7)) = Gy, (7.74)

sy + ([(A—BrRy N~ TLB Ry B s+ MY ) dic (TS —g))dW; =0, s =0,

(7.75)
€Mk e R

Finally, following the asymptotic equilibrium analysis of [16], the set of control actions
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Uﬁ; = {ui*, i € M}, 1 < N < oo, yields an e-Nash equilibrium for the large population
system given by (7.1)-(7.3) and (7.5)-(7.6). ]

7.4 Conclusions

In this chapter, we introduced and formulated a new class of major minor MFG systems motivated
from financial and economic systems. In this novel setup, the major agent and each of the mass of
minor agents interact with a common process, and this process also affects their cost functionals.
The common process is influenced by (i) a latent process which is not observed, (ii) a common
Wiener process, (iii) the major agent’s state and control action, and (iv) the average state and
control action of all minor agents. Then, we used the convex analysis method to establish the
best trading strategies for all agents which yield an e-Nash equilibrium. Our framework can
be easily extended to the case where each agent’s dynamics also is influenced by the common

Process.
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Chapter 8
Future Research Directions

LQG Hybrid Mean Field Game Theory

In this thesis, the hybrid mean field game theory has been established for a class of MM
LQG MFG systems for which controlled switching and stopping times are state and trajectory
independent, and only depend on the dynamical and cost functional parameters of each agent. As
aresult, all agents of the same type would stop or switch at the same time. and state jumps subject
to possible changes in the dimension of the state space. It is of significant interest to develop and

extend the hybrid MFG theory in the following directions.

e Switchings and stoppings upon arrival on switching manifolds where individuals in
subpopulations may quit or switch to alternative dynamics at different times. This is of
particular importance in the modelling of optimal execution problems where traders stop

or switch after reaching a specific number of shares.

e Tractable formulation for several subpopulations, including a systematic methodology for

treating more complex discrete state sequence lattices.
e Extend model so that subpopulations and individuals can rejoin game after quitting or
switch back and forth between specific modes of operation.
Mean Field Game Systems with Multiple Major Agents

All the theorems in this thesis are established for the LQG MFG systems with one major agent

and a large population of minor agents. This is not necessarily the case as for example in
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markets there are usually several institutional investors whose trading actions move the asset
price significantely. Hence, the extension of MM MFG theory to incorporate multiple major

agents surely merits study.

Mean Field Game Systems with Latent and Common Processes

In this thesis, MM MFG theory is extended to incorporate a common process in the dynamics of
all agents. The common process is driven by a latent process which is not directly observed by
agents. Given that the realized trajectories of the common process are completely observed, the
posteriori estimates of the latent process are generated and subsequently the future movements in
the common process are predicted. The generalization of this setup to the systems influenced by
more than one latent processes, and where the nested information patterns on latent processes are
available to agents, and studying the value of information is of interest. Moreover, generalizing
the setup and the utilized convex analysis method to accommodate jump processes, as well as

correlated Wiener processes, present interesting and important extensions.

Partially Observed Nonlinear Major Minor MFG Theory

In this thesis, partially observed LQG major minor MFG (PO LQG MM MFGQG) systems are
formulated where (i) major agent has partial observations on its own state, and (ii) each minor
agent has partial observations on its own state and the major agent’s state. Partially observed
nonlinear major minor mean field game (PO NL MM MFG) problems in the case where the
major agent completely observes its own state and each minor agent partially observes its own
state and the major agent’s state are studied in [22—24]. An extension of the problem tackled in
this thesis, where the major agent also partially observes its own state, to the PO NL MM MFG

case could be a future research direction.

Numerical Experiments

Performing simulations and analysis using real market data in all three parts of the thesis would
be of particular interest. Furthermore, the sensitivity analysis of the terms in the cost functional

of each trader and its impact on the market equilibrium would be another future direction.



157

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

T. Basar and Y. C. Ho, “Informational properties of the Nash solutions of two stochastic
nonzero-sum games,” Journal of Economic Theory, vol. 7, no. 4, pp. 370-387, 1974.

Y. C. Ho, “Team decision theory and information structures,” Proceedings of the IEEFE,
vol. 68, no. 6, pp. 644-654, 1980.

T. Basar and G. J. Olsder, Dynamic noncooperative game theory. Society for Industrial and
Applied Mathematics (STAM), 2nd Edition, 1998.

A. Bensoussan and J. Frehse, “Nonlinear elliptic systems in stochastic game theory,”
Journal fiir die reine und angewandte Mathematik (Crelles Journal), vol. 350, pp. 2367,
1984.

P. E. Caines, M. Huang, and R. P. Malhamé, “Mean field games,” in Handbook of Dynamic
Game Theory (T. Basar and G. Zaccour, eds.), pp. 1-28, Berlin: Springer, 2017.

M. Huang, P. E. Caines, and R. P. Malhamé, “Individual and mass behavior in large
population stochastic wireless power control problems: centralized and Nash equilibrium
solutions,” in Proceedings of the 42nd IEEE Conference on Decision and Control (CDC),
(Maui, HI), pp. 98-103, Dec. 2003.

M. Huang, R. P. Malhamé, and P. E. Caines, “Stochastic power control in wireless
communication systems: analysis, approximate control algorithms and state aggregation,”
in Proceedings of the 42nd IEEE Conference on Decision and Control (CDC), (Maui, HI),
pp. 4231-4236, Dec. 2003.

M. Huang, R. P. Malhamé, and P. E. Caines, “Large population stochastic dynamic
games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle,”
Communications in Information and Systems, vol. 6, no. 3, pp. 221-252, 2006.

M. Huang, P. E. Caines, and R. P. Malhamé, “Large-population cost-coupled LQG problems
with nonuniform agents: individual-mass behavior and decentralized e-Nash equilibria,”
IEEE Transaction on Automatic Control, vol. 52, no. 9, pp. 1560-1571, 2007.



References 158

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J. M. Lasry and P. L. Lions, “Jeux a champ moyen. i - le cas stationnaire,” Comptes Rendus
de I’Académie des Sciences, vol. 343, pp. 619-625, 2006.

J. M. Lasry and P. L. Lions, “Jeux a champ moyen. ii - horizon fini et contrdle optimal,”
Comptes Rendus de I’Académie des Sciences, vol. 343, pp. 679—684, 2006.

J. M. Lasry and P. L. Lions, “Mean field games,” Japanese Journal of Mathematics, vol. 2,
no. 1, pp. 229-260, 2007.

G. Y. Weintraub, L. Benkard, and B. Van Roy, “Oblivious equilibrium: A mean
field approximation for large-scale dynamic games,” in Advances in Neural Information
Processing Systems 18 (Y. Weiss, B. Scholkopf, and J. C. Platt, eds.), pp. 1489—-1496, MIT
Press, 2006.

G. Y. Weintraub, C. L. Benkard, and B. Van Roy, “Markov perfect industry dynamics with
many firms,” Econometrica, vol. 76, no. 6, pp. 1375-1411.

M. Huang, R. P. Malhamé, and P. E. Caines, ‘“Nash certainty equivalence in large population
stochastic dynamic games: Connections with the physics of interacting particle systems,”
in Proceedings of the 45th IEEE Conference on Decision and Control (CDC), (San Diego,
CA), pp. 4921-4926, Dec. 2006.

M. Huang, “Large-population LQG games involving a major player: The Nash certainty
equivalence principle,” SIAM Journal on Control and Optimization, vol. 48, no. 5, pp. 3318—
3353, 2010.

S. L. Nguyen and M. Huang, “Linear-quadratic-gaussian mixed games with continuum-
parametrized minor players,” SIAM Journal on Control and Optimization, vol. 50, no. 5,
pp- 29072937, 2012.

M. Huang, P. E. Caines, and R. P. Malhamé, “Distributed multi-agent decision-making with
partial observations: asymptotic Nash equilibria,” in Proceedings of the 17th International
Symposium on Mathematical Theory of Networks and Systems (MTNS), (Kyoto, Japan),
pp. 2725-2730, July 2006.

P. E. Caines and A. C. Kizilkale, “Recursive estimation of common partially observed
disturbances in MFG systems with application to large scale power markets,” in Proceedings
of the 52nd IEEE Conference on Decision and Control (CDC), (Florence, Italy), pp. 2505—
2512, Dec. 2013.

P. E. Caines and A. C. Kizilkale, “Mean field estimation for partially observed LQG
systems with major and minor agents,” in Proceedings of the 19th World Congress of
the International Federation of Automatic Control (IFAC), (Cape Town, South Africa),
pp- 8705-8709, Aug. 2014.



References 159

[21] P. E. Caines and A. C. Kizilkale, “e-Nash equilibria for partially observed LQG mean field
games with major player,” IEEE Transaction on Automatic Control, vol. 62, no. 7, pp. 3225-
3234, 2017.

[22] N. Sen and P. E. Caines, “Mean field games with partially observed major player and
stochastic mean field,” in Proceedings of the 53rd IEEE Conference on Decision and
Control (CDC), (Los Angeles, CA), pp. 2709-2715, Dec. 2014.

[23] N. Sen and P. E. Caines, “e-Nash equilibria for a partially observed mean field game with
major player,” in Proceedings of the 2015 American Control Conference (ACC), (Chicago,
IL), pp. 4791-4797, July 2015.

[24] N. Sen and P. E. Caines, “Mean field game theory with a partially observed major agent,”
SIAM Journal on Control and Optimization, vol. 54, no. 6, pp. 3174-3224, 2016.

[25] A. Carteaand S.J aimungal and J. Penalva, Algorithmic and high-frequency trading. United
Kingdom : Cambridge University Press, 2015.

[26] S.Jaimungal and D. Kinzebulatov, “Optimal execution with a price limiter,” Journal of Risk,
2014.

[27] R. Almgren and N. Chriss, “Optimal execution of portfolio transactions,” Journal of Risk,
pp. 5-39, 2001.

[28] A. Alfonsi, A. Fruth, and A. Schied, “Optimal execution strategies in limit order books with
general shape functions,” Quantitative Finance, vol. 10, no. 2, pp. 143-157, 2010.

[29] E. Bayraktar and M. Ludkovski, “Optimal trade execution in illiquid markets,”
Mathematical Finance, vol. 21, no. 4, pp. 681-701, 2011.

[30] X. Huang, S. Jaimungal, and M. Nourian, ‘“Mean-field game strategies for optimal
execution,” SSRN, 2015.

[31] D. Firoozi and P. E. Caines, “e-Nash equilibria for partially observed LQG mean field games
with major agent: Partial observations by all agents,” in Proceedings of the 54th IEEE
Conference on Decision and Control (CDC), (Osaka, Japan), pp. 44304437, Dec. 2015.

[32] D. Firoozi and P. E. Caines, “Mean field game e-Nash equilibria for partially observed
optimal execution problems in finance,” in Proceedings of the 55th IEEE Conference on
Decision and Control (CDC), (Las Vegas, NV), pp. 268-275, Dec. 2016.

[33] D. Firoozi and P. E. Caines, “An optimal execution problem in finance with acquisition and
liquidation objectives: an MFG formulation,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 4960
—4967, 2017.



References 160

[34] D. Firoozi and P. E. Caines, “The execution problem in finance with major and minor
traders: A mean field game formulation,” in Annals of the International Society of Dynamic
Games (ISDG): Advances in Dynamic and Mean Field Games, vol. 15, pp. 107-130,
Birkhiuser Basel, 2017.

[35] D. Firoozi and P. E. Caines, “An optimal execution problem in finance targeting the market
trading speed: an MFG formulation,” in Proceedings of the 56th IEEE Conference on
Decision and Control (CDC), pp. 7-14, 2017.

[36] J. Yong and X. Y. Zhou, Stochastic controls: Hamiltonian systems and HJB Equations.
New York: Springer-Verlag , 1999.

[37] D. Firoozi and P. E. Caines, “e-Nash equilibria for major minor LQG mean field games with
partial observations of all agents,” arXiv, 2018.

[38] P. Caines, Linear stochastic systems. Philadelphia: STAM Classics in Applied Mathematics,
SIAM, 2018.

[39] M. Davis, Linear estimation and stochastic control. London: Chapman and Hall, 1977.

[40] T. Basar, “On the uniqueness of the Nash solution in linear-quadratic differential games,”
International Journal of Game Theory, vol. 5, no. 2, pp. 65-90, 1976.

[41] T. Basar, “Informationally nonunique equilibrium solutions in differential games,” SIAM
Journal on Control and Optimization, vol. 15, no. 4, pp. 636-660, 1977.

[42] M. Nourian and P. E. Caines, “e-Nash mean field game theory for nonlinear stochastic
dynamical systems with major and minor agents,” SIAM Journal on Control and
Optimization, vol. 51, no. 4, pp. 3302-3331, 2013.

[43] D. Firoozi, A. Pakniyat, and P. E. Caines, “A mean field game - hybrid systems approach
to optimal execution problems in finance with stopping times,” in Proceedings of the 56th
IEEE Conference on Decision and Control (CDC), pp. 3144-3151, 2017.

[44] A. Pakniyat and P. E. Caines, “A class of linear quadratic gaussian hybrid optimal control
problems with realization—independent riccati equations,” IFAC-PapersOnLine, vol. 50,
no. 1, pp. 2241-2246, 2017.

[45] A. Pakniyat and P. E. Caines, “On the stochastic minimum principle for hybrid systems,” in
Proceedings of the 55th IEEE Conference on Decision and Control (CDC), pp. 1139-1144,
2016.

[46] C. Aghayeva and Q. Abushov, “The maximum principle for the nonlinear stochastic optimal
control problem of switching systems,” Global Optimization, vol. 56, no. 2, pp. 341-352,
2011.



References 161

[47] A. Bensoussan and J. Menaldi, “Stochastic hybrid control,” Mathematical Analysis and
Applications, vol. 249, no. 1, pp. 261-288, 2000.

[48] A. Bensoussan and J. L. Menaldi, “Hybrid control and dynamic programming,” Dynamics
of Continuous, Discrete and Impulsive Systems Series B: Application and Algorithm, vol. 3,
no. 4, pp. 395-442, 1997.

[49] H.J. Sussmann, “A nonsmooth hybrid maximum principle,” Lecture Notes in Control and
Information Sciences, Springer London, Volume 246, pp. 325-354, 1999.

[50] M. Garavello and B. Piccoli, “Hybrid necessary principle,” SIAM Journal on Control and
Optimization, vol. 43, no. 5, pp. 1867-1887, 2005.

[51] M. S. Shaikh and P. E. Caines, “On the hybrid optimal control problem: theory and
algorithms,” IEEE Transactions on Automatic Control, vol. 52, no. 9, pp. 1587-1603, 2007.
Corrigendum: vol. 54, no. 6, pp. 1428, 2009.

[52] F. Taringoo and P. E. Caines, “On the optimal control of impulsive hybrid systems
on riemannian manifolds,” SIAM Journal on Control and Optimization, vol. 51, no. 4,
pp- 3127-3153, 2013.

[53] A.Pakniyat and P. E. Caines, “On the relation between the minimum principle and dynamic
programming for classical and hybrid control systems,” IEEE Transactions on Automatic
Control, vol. 62, no. 9, pp. 43474362, 2017.

[54] D. Firoozi, A. Pakniyat, and P. E. Caines, “A hybrid optimal control approach to LQG mean
field games with switching and stopping strategies,” arXiv, 2018.

[55] A. Pakniyat and P. E. Caines, “Hybrid optimal control of an electric vehicle with a dual-
planetary transmission,” Nonlinear Analysis: Hybrid Systems, vol. 25, pp. 263-282, 2017.

[56] D. E. Kirk, Optimal control theory: An introduction. New York: Prentice Hall, Inc., 1971.

[571 A. Bensoussan, Stochastic control of partially observable systems. Cambridge: Cambridge
University Press, 1992.

[58] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1990.

[59] I. Ekeland and R. Témam, Convex analysis and variational problems. Society for Industrial
and Applied Mathematics, 1999.

[60] G. Allaire, Numerical analysis and optimization: An introduction to mathematical modeling
and numerical simulation. Oxford University Press , 2007.



References 162

[61] R. Carmona, Lectures on BSDEs, stochastic control, and stochastic differential games with
financial applications. Philadelphia, PA: Society for Industrial and Applied Mathematics,
2016.

[62] P. Bank, H. M. Soner, and M. Vo8, “Hedging with temporary price impact,” Mathematics
and Financial Economics, vol. 11, no. 2, pp. 215-239, 2017.

[63] P. Casgrain and S. Jaimungal, “Algorithmic trading with partial information: A mean field
game approach,” arXiv, 2018.

[64] I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus. New York: Springer-
Verlag, 1998.

[65] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes.
North-Holland Mathematical Library, Elsevier Science, 2014.

[66] P. Casgrain and S. Jaimungal, “Trading algorithms with learning in latent alpha models,”
SSRN, 2016.

[67] R. Carmona, F. Delarue, and D. Lacker, “Mean field games with common noise,” Annals of
Probability, vol. 44, pp. 3740-3803, 2016.

[68] D. Firoozi, P. E. Caines, and S. Jaimungal, “Convex analysis for LQG systems with
applications to major minor LQG mean field game systems,” arXiv, 2018.

[69] A. Nayyar, A. Gupta, C. Langbort, and T. Basar, “Common information based markov
perfect equilibria for stochastic games with asymmetric information: finite games,” IEEE
Transaction on Automatic Control, vol. 59, no. 3, pp. 555-570, 2014.

[70] W. M. Wonham, “Some applications of stochastic differential equations to optimal nonlinear
filtering,” Journal of the Society for Industrial and Applied Mathematics Series A Control,
vol. 2, no. 3, pp. 347-369, 1964.



