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Abstract

In this thesis major minor LQG mean field game (MM LQG MFG) theory is extended in three
main directions which are motivated by algorithmic trading (more specifically optimal execution)
problems in finance. In financial applications in this thesis, following standard financial models,
the market is studied as a large population non-cooperative game where each trader has stochastic
linear dynamics with quadratic costs. We consider the case where there exists one institutional
investor (interpreted as an MFG major agent) with a large number of high frequency traders
(interpreted as MFG minor agents) constituting two subpopulations of liquidators and acquirers.
In general, the traders are coupled in their dynamics and cost functions by the market’s average
trading rate (a component of the system’s mean field). In each case, the existence of an ε-Nash
equilibrium. together with the individual agents’ trading strategies which yield the equilibria, are
established.

In the first part of the thesis, partially observed (PO) MM LQG MFG problems with general
information patterns are investigated where (i) the major agent has partial observations of its own
state, and (ii) each minor agent has partial observations of its own state and the major agent’s
state. The assumption of partial observations by all agents leads to a new situation involving the
recursive estimation by each minor agent of the major agent’s estimate of its own state. For the
general case of indefinite LQG MFG systems, the existence of ε-Nash equilibria together with
the individual agents’ control actions yielding the equilibria are established via the Separation
Principle. Numerical experiments are presented. The PO MM LQG MFG theory is then applied
to an optimal execution problem where the major trader has partial observations of its own state
(which includes its inventory), and each one of minor traders has partial observations of its own
state and the major trader’s state (which include the corresponding inventories). A simulation
example is provided.

The second part of the thesis presents a novel framework that combines LQG MFG theory
and hybrid optimal control theory to obtain a unique ε-Nash equilibrium for a non-cooperative
game with stopping and switching times. We consider the case where there exists one major
agent together with a large number of minor agents constituting two subpopulations. Each agent
has stochastic linear dynamics with quadratic costs, and the agents are coupled in their dynamics
by the average state of minor agents. The hybrid feature enters via the indexing by discrete states:
(i) the switching of the major agent between alternative dynamics, or (ii) the termination of the
agents’ trajectories in one or both of the subpopulations of minor agents. Optimal switchings and
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stopping time strategies together with best response control actions for, respectively, the major
agent and all minor agents are established with respect to their individual cost criteria by an
application of LQG Hybrid MFG theory. Then LQG Hybrid MFG theory is applied to optimal
execution problems where minor agents are provided with the option to quit the market if it is
optimal for them to do so. Hence, the hybrid feature enters via the indexing of the cessation of
trading by one or both subpopulations of minor traders by discrete states.

In the third part of the thesis, first, a convex analysis method is used to rederive the solutions
to LQG optimal control problems. Then the methodology is applied to MM LQG MFG systems
to retrieve the best response strategies for the major agent and each individual minor agent which
collectively yield an ε-Nash equilibrium for the entire system. Subsequently a class of (non-
cooperative) stochastic games with major and minor agents is investigated where agents interact
with a completely observed common process. However, the common process is modulated by
a latent Markov chain and a latent Wiener process (common noise) which are not observable to
agents. Consequently the Wonham filter is used to generate the posteriori estimates of the latent
processes based on the realized trajectories of the common process. Then, the convex analysis
is further developed to (i) solve the MFG limit of the problem, (ii) demonstrate that the best
response strategies generate an ε-Nash equilibrium for the finite player game, and (iii) obtain
explicit characterisations of the best response strategies.
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Résumé

Dans cette thèse, la théorie du jeux majeur mineur à champ moyen linéaire-quadratique-
Gaussienne (MM LQG MFG) est étendue dans trois directions principales qui sont motivées
par des problèmes de commerce algorithmique (plus précisément exécution optimale) en finance.
Dans les applications financières de cette thèse, qui suivent les modèles financiers classiques, les
marchés financiers sont étudiés comme un jeu non coopératif de grande population dans lequel
chaque commerçant a une dynamique linéaire stochastique avec des coûts quadratiques. Nous
considérons le cas où il existe un seul investisseur institutionnel (interprété comme un agent
majeur de MFG) avec un grand nombre de commerçants à haute fréquence (interprété comme
des agents mineurs de MFG) constituant deux sous-populations de liquidateurs et d’acquéreurs.
En général, les commerçants sont couplés dans leur dynamique et leurs fonctions de coût au
taux moyen de commerce du marché (une composante du champ moyen du système). Dans
chaque cas, l’existence d’un équilibre de ε-Nash ainsi que les stratégies commerciales des agents
individuels qui donnent les équilibres sont établies.

Dans la première partie de la thèse, les problèmes partiellement observés (PO) MM LQG
MFG avec informations générales sont examinés lorsque (i) l’agent majeur a des observations
partielles de son propre état, et (ii) chaque agent mineur a des observations partielles de propre
état et l’état de l’agent majeur. L’hypothèse d’observations partielles par tous les agents crée
une nouvelle situation impliquant l’estimation récursive par chaque agent mineur de l’estimation
par l’agent majeur de son propre état. Dans le cas général des systèmes LQG indéterminée
MFG, l’existence d’équilibre de ε-Nash et des actions de contrôle des agents individuels générant
l’équilibre sont établis via le principe de séparation. Des expériences numériques sont présentées.
La théorie de PO MM LQG MFG est ensuite appliquée à un problème d’exécution optimale où le
commerçant majeur a des observations partielles de son propre état (ce qui inclut son inventaire),
et chaque commerçant mineur dispose d’observations partielles de son propre état et de l’état du
commerçant majeur (qui incluent les inventaires correspondants). Un exemple de simulation est
fourni.

La deuxième partie de la thèse présente un nouveau cadre combinant la théorie LQG MFG et
la théorie du contrôle optimal hybride pour obtenir un équilibre unique de ε-Nash pour un jeu non
coopératif avec des temps d’arrêt et de commutation. Nous considérons le cas où il existe un agent
majeur avec un grand nombre d’agents mineurs constituant deux sous-populations. Chaque agent
a une dynamique linéaire stochastique avec des coûts quadratiques, et la dynamique des agents
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est couplée à l’état moyen des agents mineurs. La caractéristique hybride entre via l’indexation
par états discrets: (i) le commutation de l’agent majeur entre des dynamiques alternatives, ou
(ii) la fin des trajectoires des agents dans l’une ou les deux sous-populations d’agents mineurs.
Des stratégies optimales de temps de commutation et de temps d’arrêt ainsi que les actions de
contrôle de meilleures réponse pour, respectivement, l’agent majeur et tous les agents mineurs
sont établies en fonction de leurs critères de coût individuels par l’application de la théorie LQG
Hybrid MFG. Ensuite, la théorie LQG Hybrid MFG est appliquée aux problèmes d’exécution
optimale lorsque des agents mineurs ont l’option de quitter le marché si cela leur convient
le mieux. Par conséquent, la caractéristique hybride entre via l’indexation de la cessation de
commerce par une ou les deux sous-populations de commerçants mineurs par des états discrets.

Dans la troisième partie de la thèse, d’abord, une méthode d’analyse convexe est utilisée pour
redériver les solutions aux problèmes de contrôle optimal LQG. La méthodologie est ensuite
appliquée aux systèmes MM LQG MFG pour extraire les stratégies de meilleure réponse pour
l’agent majeur et chaque agent mineur individuel qui produisent collectivement un équilibre de
ε-Nash pour l’ensemble du système. Ensuite, une classe de jeux stochastiques (non coopératifs)
avec des agents majeurs et mineurs est examinée lorsque les agents interagissent avec un
processus commun complètement observé. Cependant, le processus commun est modulé par
une chaı̂ne de Markov latente et un processus de Wiener latent (bruit commun) qui ne sont pas
observables par les agents. Par conséquent, le filtre de Wonham est utilisé pour générer les
estimations à posteriori des processus latents basées sur les trajectoires réalisées du processus
commun. Ensuite, l’analyse convexe est développée plus avant pour (i) résoudre la limite MFG
du problème, (ii) démontrer que les stratégies de meilleure réponse génèrent un équilibre de ε-
Nash pour le jeu à joueur fini, et (iii) obtenir des caractérisations explicites des stratégies de
meilleures réponse.
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Claims of Originality and Published Work

Claims of Originality

The following original contributions are presented in this thesis:

Part I

• Partially observed major minor LQG mean field game (PO MM LQG MFG) problems with
the following general information patterns are studied where (i) the major agent has partial
observations of its own state, and (ii) each minor agent has partial observations of its own
state and the major agent’s state.

• In the theory the new and general case where (i) the major agent recursively estimates
its own state, and (ii) each minor agent recursively estimates its own state, and the major
agent’s estimate of its own state (in order to estimate the major agent’s feedback control
input), is presented. In addition, both the major agent and minor agents generate estimates
of the system’s mean field.

• MFG theory is extended to cover the general case of indefinite LQG MFG systems which
alleviates the positive definiteness condition of weight matrices in linear quadratic cost
functionals .

• The existence of ε-Nash equilibria together with the individual agents’ control laws
yielding the equilibria is established; this is achieved in the PO MM LQG case by
an application of the Separation Principle which also yields computationally tractable
solutions which in nonlinear case is far more complex.

• Completely observed major minor LQG mean field game (CO MM LQG MFG) framework
is utilized to formulate optimal execution problems in financial markets with the standard
linear financial models where there exist one institutional investor, interpreted as major
agent, and a large population of high frequency traders (HFTs), interpreted as minor agents,
who attempt to maximize their own wealth. Nash equilibrium and ε-Nash equilibrium best
response trading strategies for all participating traders in the market are obtained.

• PO MM LQG MFG theory is applied to optimal execution problems where an institutional
investor aims to liquidate a specific amount of shares and it has only partial observations
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of its own state (which includes its inventory). Furthermore, there exists a large population
of HFTs who wish to liquidate or acquire shares, and each of them has partial observations
of its own state and the major agent’s state (which include the corresponding inventories).
The existence of an ε-Nash equilibrium together with the best response trading strategies
are established.

Part II

• A hybrid systems MFG (Hybrid MFG) framework is developed for a general class of
LQG mean field game systems with a major agent permitted to switch between different
dynamics and subpopulations of minor agents provided with the option to stop at some
optimal time. Optimal switching time and stopping time strategies together with best
response control actions for, respectively, the major agent and all minor agents are
established with respect to their individual cost criteria.

• Conditions under which the stopping and switching times for LQG systems are trajectory
independent are derived.

• Hybrid MFG theory is employed in a non-cooperative game formulation of the financial
market where HFTs (minor agents) may leave the market before the final time. The best
response trading policies for the agents are further shown to yield an ε-Nash equilibrium
for the the market.

Part III

• A convex analysis method is used to rederive the solutions to LQG optimal control
problems. Then the methodology is applied to major minor LQG mean field game (MM
LQG MFG) systems to retrieve the best response strategies for the major agent and each
individual minor agent

• MM LQG MFG theorem is extended to incorporate the impact of a common process which
modulated by a latent Markov chain process and a latent Wiener process (common noise).

• The Wonham filter is used to generate the posteriori estimates of latent processes using the
complete observations on the common process.
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• Common process (an extended form of common noise) is modeled as a passive major agent
in the MM MFG framework.

• Convex analysis method is further developed to obtain the best response strategies which
yield an ε-Nash equilibrium for the MM LQG MFG systems including common noise and
Markovian latent processes.
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Chapter 1

Introduction

Large population dynamical multi-agent noncooperative and cooperative phenomena occur
in a wide range of designed and natural settings such as communications, environmental,
epidemiological, transportation and energy systems, and they underlie much economic and
financial behaviour. Analysis of such systems with even a moderate number of agents is regarded
as being extremely difficult using the finite population game theoretic methods which were
developed over several decades for multi-agent control systems (see e.g. [1–4]) [5].

Subsequently, what is now called MFG theory originated in the equations for dynamical
games with (i) large finite populations of asymptotically negligible agents together with (ii) their
infinite limits, in the work of Caines, Huang and Malhamé ([6–9]), where the framework was
called the Nash Certainty Equivalence Principle, and independently in that of Lasry and Lions
([10–12]), where the now standard terminology of Mean Field Games (MFG) was introduced.
The closely related notion of Oblivious Equilibria for large population dynamic games was also
independently introduced by Weintraub, Benkard, and Van Roy ([13, 14]) within the framework
of discrete time Markov Decision Processes (MDP) [5].

Mean Field Game (MFG) theory studies the existence of Nash equilibria, together with the
individual strategies which generate them, in games involving a large number of asymptotically
negligible agents modelled by controlled stochastic dynamical systems. This is achieved
by exploiting the relationship between the finite and corresponding infinite limit population
problems. The solution to the infinite population problem is given by (i) the Hamilton-Jacobi-
Bellman (HJB) equation of optimal control for a generic agent and (ii) the Fokker-Planck-
Kolmogorov (FPK) equation for that agent, where these equations are linked by the distribution
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of the state of the generic agent, otherwise known as the system’s mean field. Moreover, (i) and
(ii) have an equivalent expression in terms of the Stochastic Maximum Principle together with
a McKean-Vlasov stochastic differential equation, and yet a third characterisation is in terms of
the so-called Master Equation. An important feature of MFG solutions is that they have fixed
point properties regarding the individual responses to and the formation of the mean field which
conceptually correspond to equilibrium solutions of the associated games (see e.g. [5, 8, 15]).

The theory and methodology of MFG systems has rapidly developed since its inception and is
still advancing. In [16, 17] the authors analyse and solve the linear quadratic systems case where
there is a major agent (i.e. non-asymptotically vanishing as the population size goes to infinity)
together with a population of minor agents (i.e. individually asymptotically negligible). The new
feature in this case is that the mean field becomes stochastic but by minor agent state extension
the existence of ε-Nash equilibria is established together with the individual agents’ control laws
that yield the equilibria [17]. In the purely minor agent case the mean field is deterministic and
this obviates the need for observations on other agents’ states. This is a separate issue from that of
an agent estimating its own state (self state for short) from partial observations on that state, see
[18]. However, when a systems has a major agent whose state is partially observed the standard
MFG procedure for generating a Nash equilibrium needs to be extended to include estimates of
the major agent’s state generated by each minor agent.

In [19–21], partially observed LQG mean field games with major and minor agents (PO MM
LQG MFG) have been investigated and in [22–24], a nonlinear generalization of this problem is
considered. The main results in those papers are obtained with the assumptions that (i) the major
agent’s state is partially observed by the minor agents and (ii) the major agent has complete
observations of its own state.

Single-agent optimal execution problems have been addressed in the literature (see e.g.
[25–28]) where an agent must liquidate or acquire a certain amount of shares over a pre-specified
time horizon at a trading speed to balance the price impact (from trading quickly) and the price
uncertainty (from trading slowly), while it maximizes its final wealth. Further, in [29] the partially
observed setting where the market liquidity variable is not observed was studied. This problem
with the linear models in [25] was formulated as for the nonlinear major minor (MM) MFG
model in [30].

The primary goal of this thesis is to develop and extend the theory of MM LQG MFG systems
in three main directions which are motivated by algorithmic trading (more specifically optimal
execution) problems in finance. A brief description of each chapter follows.
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Chapter 2 formulates PO MM LQG MFG problems with general information patterns where
(i) the major agent has partial observations of its own state, and (ii) each minor agent has partial
observations of its own state and the major agent’s state. The assumption of partial observations
by all agents leads to a new situation involving the recursive estimation by each minor agent of
the major agent’s estimate of its own state. For the general case of indefinite LQG MFG systems,
the existence of ε-Nash equilibria together with the individual agents’ control laws yielding the
equilibria are established via the Separation Principle. Numerical experiments are presented.

Chapter 3 applies the theory of partially observed mean field games to an optimal execution
problem in finance. Following standard financial models, controlled linear system dynamics
are postulated where an institutional investor (interpreted as a major agent) in the market aims
to liquidate a specific amount of shares and has partial observations of its own state (which
includes its inventory). Furthermore, the market is assumed to have two populations of high
frequency traders (interpreted as minor agents) who wish to liquidate or acquire a certain number
of shares within a specific time, and each one of them has partial observations of its own state
and the major agent’s state (which include the corresponding inventories). The objective for each
agent is to maximize its own wealth and to avoid the occurrence of large execution prices, large
rates of trading and large trading accelerations which are appropriately weighted in the agent’s
performance function. The existence of ε-Nash equilibria together with the individual agents’
trading strategies yielding the equilibria, are established. A simulation example is provided.

Chapter 4 presents a novel framework that combines MFG theory and hybrid optimal control
theory to obtain a unique ε-Nash equilibrium for a non-cooperative game with stopping times.
We consider the case where there exists one major agent with a significant influence on the
system together with a large number of minor agents constituting two subpopulations, each with
individually asymptotically negligible effect on the whole system. Each agent has stochastic
linear dynamics with quadratic costs, and the agents are coupled in their dynamics by the average
state of minor agents (i.e. the empirical mean field). The hybrid feature enters via the indexing
by discrete states: (i) the switching of the major agent between alternative dynamics or (ii) the
termination of the agents’ trajectories in one or both of the subpopulations of minor agents.
Optimal switchings and stopping time strategies together with best response control actions for,
respectively, the major agent and all minor agents are established with respect to their individual
cost criteria.

Chapter 5 employs LQG Hybrid MFG theory to obtain a unique ε-Nash equilibrium for
optimal execution problems within the stock market. Following standard financial models, the
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stock market is studied in this paper as a large population non-cooperative game where each trader
has stochastic linear dynamics with quadratic costs. We consider the case where there exists
one major trader with a large number of minor traders (in two subpopulations). The traders are
coupled in their dynamics and cost functions by the market’s average trading rate (a component of
the system mean field) and the hybrid feature enters via the indexing of the cessation of trading by
one or both subpopulations of minor traders by discrete states. Optimal stopping time strategies
together with best response trading policies for all traders are established with respect to their
individual cost criteria.

Chapter 6 develops a convex analysis method to rederive the solutions to LQG optimal control
problems. Then the methodology is applied to MM LQG MFG systems addressed in [16] to
retrieve the best response strategies for the major agent and each individual minor agent which
collectively yield an ε-Nash equilibrium for the entire system.

Chapter 7 investigates a class of non-cooperative stochastic games with major and minor
agents where agents interact with a completely observed common process. However, the common
process is modulated by a latent Markov chain and a latent Wiener process (common noise)
which are not observable to agents. Consequently the Wonham filter is used to generate the
posteriori estimates of the latent processes based on the realized trajectories of the common
process. Then, the convex analysis is further developed to (i) solve the MFG limit of the problem,
(ii) demonstrate that the best response strategies generate an ε-Nash equilibrium for the finite
player game, and (iii) obtain explicit characterisations of the best response strategies.

Chapter 8 presents future research directions.
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Part I

Major Minor LQG Mean Field Game
Systems with Partial Observations
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Chapter 2

Partially Observed Major Minor LQG
Mean Field Game Systems

2.1 Introduction

In [19–21], partially observed LQG mean field games with major and minor agents (PO MM
LQG MFG) have been investigated and in [22–24], a nonlinear generalization of this problem is
considered. The main results in those papers are obtained with the assumptions that (i) the major
agent’s state is partially observed by the minor agents and (ii) the major agent has complete
observations of its own state. In this chapter, PO MM LQG MFG problems with general
information patterns are studied where (i) the major agent has partial observations of its own
state, and (ii) each minor agent has partial observations of its own state and the major agent’s
state. In the theory we present for this new, general case where (i) the major agent recursively
estimates its own state, and (ii) each minor agent recursively estimates its own state, and the
major agent’s estimate of its own state (in order to estimate the major agent’s feedback control
input). In addition, both the major agent and minor agents generate estimates of the system’s
mean field. We remark that an infinite regress does not happen here due to the asymmetric major
minor (MM) feature of the MFG problem. Moreover, MFG theory is extended to cover the
general case of indefinite LQG MFG systems which alleviates positive definiteness condition
of weight matrices in linear quadratic cost functionals. The existence of ε-Nash equilibria
together with the individual agents’ control laws yielding the equilibria is then established; this is
achieved in the PO MM LQG case by an application of the Separation Principle which also yields
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computationally tractable solutions which in nonlinear case is far more complex (see [22–24]).
The initial results of this work has been published in [31].

This extension of the situation in [21], where only assumption (ii) holds, is in particular
motivated by optimal execution problems in financial markets where there exist one institutional
trader (interpreted as major agent) and a large population of high frequency traders (interpreted
as minor agents) who attempt to maximize their own wealth. To obtain the Nash equilibrium best
response trading strategy, each minor trader estimates the major agent’s inventory and trading
rate based on its partial observations of market state which entails the estimation of the major
trader’s self estimates. The reader is referred to Chapter 3 and the works [32–35] for more details
on financial applications.

The rest of the chapter is organized as follows. Section 2.2 introduces Partially Observed
Major-Minor LQG MFG systems. The estimation and control problems for PO MM LQG MFG
systems are addressed in Section 2.3. The simulation results and the concluding remarks are
presented in Section 2.4 and Section 7.4, respectively.

2.2 Partially Observed Major-Minor LQG MFG Systems

A class of major-minor LQG MFG (MM LQG MFG) systems including a large population of N
stochastic dynamic minor agents with a stochastic dynamic major agent is considered where the
agents are coupled through their cost functionals.

2.2.1 Dynamics

The dynamics of the major and minor agents in the class of systems under consideration are,
respectively, given by

dx0 = [A0x0 +B0u0]dt+D0dw0, (2.1)

dxi = [A(θi)xi +B(θi)ui +Gx0]dt+Ddwi, (2.2)

where t ≥ 0, 1 ≤ i ≤ N < ∞, θi ∈ Θ, where Θ is a parameter set. Here xi ∈ Rn, 0 ≤ i ≤ N ,
are the states, ui ∈ Rm, 0 ≤ i ≤ N , are control inputs, {wi, 0 ≤ i ≤ N} denote (N + 1)

independent standard Wiener processes in Rr on an underlying probability space (Ω,F , P )

which is sufficiently large that w is progressively measurable with respect to the filtration
Fw , (Fwt ; t ≥ 0) on F , and EwiwTi = Σ.
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Assumption 2.1. The initial states {xi(0), 0 ≤ i ≤ N} defined on (Ω,F , P ) are identically

distributed, mutually independent and also independent of Fw∞, with Exi(0) = 0. Moreover,

supiE‖xi(0)‖2 ≤ c <∞, 0 ≤ i ≤ N <∞, with c independent of N .

The matrices A0, B0, D0, G, and D are constant matrices of appropriate dimensions. From
(2.2), A(.) and B(.) depend on the parameter θ which specifies the minor agent’s type. Minor
agents are given in K distinct types with 1 ≤ K <∞. The notation Ik is defined as

Ik = {i : θi = k, 1 ≤ i ≤ N}, 1 ≤ k ≤ K,

where the cardinality of Ik is denoted by Nk = |Ik|. Then, πN = (πN1 , ..., π
N
K), πNk = Nk

N
, 1 ≤

k ≤ K, denotes the empirical distribution of the parameters (θ1, ..., θN) sampled independently
of the initial conditions and Wiener processes of the agents Ai, 1 ≤ i ≤ N . The first assumption
is as follows.

Assumption 2.2. There exists π such that limN→∞π
N = π a.s.

We note that except for clarity the time argument for the stochastic and deterministic
processes throughout the paper may be dropped for the purpose of notation abbreviation as in
(2.1)-(2.2).

2.2.2 Cost Functionals

The individual (finite) large population infinite horizon cost functional for the major agent A0 is
specified by

JN0 (u0, u−0) = E
∫ ∞

0

e−ρt
{
‖x0 − Φ(x(N))‖2

Q0
+ ‖u0‖2

R0

}
dt, (2.3)

Φ(.) := H0x
(N) + η0,

where R0 > 0, and the individual (finite) large population infinite horizon cost functional for a
minor agent Ai, 1 ≤ i ≤ N , is given by

JNi (ui, u−i) =E
∫ ∞

0

e−ρt
{
‖xi −Ψ(x(N))‖2

Q + ‖ui‖2
R

}
dt, (2.4)

Ψ(.) := H1x0 +H2x
(N) + η,
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where R > 0. We note that the major agent A0 and minor agents Ai, 1 ≤ i ≤ N , are coupled
with each other through the average term x(N) = 1

N

∑N
i=1 xi in their cost functionals given by

(6.48)-(2.4).

2.2.3 Observation Processes

The major agent’s partial observations y0 is given by

dy0 = L0[xT0 , (x(N))T ]Tdt+R
1
2
v0dv0, (2.5)

where v0 is a standard Wiener process in R` with E[v0v
T
0 ] = Rv0 and matrix L0 is given by

L0 =
[
l10 0`×n

]
, (2.6)

with l10 ∈ R`×n. The partial observations for a minor agent Ai, 1 ≤ i ≤ N , of type
k, 1 ≤ k ≤ K, is given by

dyi = Lk[x
T
i , x

T
0 , (x(N))T ]Tdt+R

1
2
v dvi, (2.7)

where {vi, 1 ≤ i ≤ N} denotes the set of N independent standard Wiener processes in R` with
E[viv

T
i ] = Rv, and matrix Lk is given by

Lk =
[
l1k l2k 0`×n

]
, (2.8)

where l1k, l
2
k ∈ R`×n.

Control σ-Fields

The family of partial observation information sets Fy0 is defined to be the increasing family of σ-
fields of partial observations {Fy0,t, t ≥ 0} generated by the major agentA0’s partial observations
(y0(τ), 0 ≤ τ ≤ t) on its own state as given in (3.39). The set of control inputs UN,Ly is defined
to be the collection of linear feedback control laws adapted to FN,yt = {

∨N
i=0F

y
i }.

Assumption 2.3. Major Agent σ-Fields and Linear Controls: For the major agent A0 the set of

control inputs UL0,y is defined to be the collection of linear feedback control laws adapted to the

increasing σ-fields of partial observations {Fy0,t, t ≥ 0}.
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The family of partial observation information sets Fyi , 1 ≤ i ≤ N , is defined to be
the increasing σ-fields {Fyi,t, t ≥ 0} generated by the minor agent Ai’s partial observations
(yi(τ), 0 ≤ τ ≤ t), on its own state and the major agent’s state, as given in (3.41).

Assumption 2.4. Minor Agent σ-Fields and Linear Controls: For each minor agent Ai, 1 ≤ i ≤
N , the set of control inputs ULi,y is defined to be the collection of linear feedback control laws

adapted to the increasing σ-fields of partial observations {Fyi,t, t ≥ 0}.

2.3 Estimation and Control Solutions for PO MM LQG MFG Systems

In this section we present the solution to partially observed (PO) MM LQG MFG problems where
it is assumed that the major agent partially observes its own state, and each generic minor agent
partially observes its own state and the major agent’s state. The problem is first solved in the
infinite population case which is far simpler to solve than the finite large population problem.
Because the agents in the infinite population case are decoupled and therefore the problem
reduces to the type of indefinite LQG tracking problem whose solution is given in Theorem 2.1.
Subsequently, the ε-Nash equilibrium property is established in Theorem 2.2 for the system when
the infinite population control laws are applied to the finite large population PO MM LQG MFG
system.

The following theorem is a restriction to the constant matrix parameter case of the general
result in [36].

Theorem 2.1 (Stochastic Indefinite LQ Problem [36]). Let T̆ > 0 be given. For any (s̆, y̆) ∈
[0, T̆ )× Rn, consider the following linear system

dx̆ =
[
Ăx̆+ B̆ŭ+ b̆

]
dt+

[
C̆x̆+ D̆ŭ+ σ̆

]
dw̆, (2.9)

where t ∈ [s̆, T̆ ], x̆(s̆) = y̆ and Ă, B̆, C̆, D̆, b̆, σ̆ are matrix valued functions of suitable sizes,

w̆(.) ∈ Rr is a standard Wiener process. Moreover, Ft = σ{w̆(τ), 0 ≤ τ ≤ t}, and ŭ(.) ∈ U ,

where U is the set of all Ft-adapted Rm-valued processes such that E
∫ T

0
‖u(t)‖2dt <∞.
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A quadratic cost functional is given by

J(s̆, y̆, ŭ(.)) = E
{1

2

∫ T̆

0

[
〈P̆ x̆(t), x̆(t)〉+ 〈N̆ x̆(t), ŭ(t)〉

+ 〈R̆ŭ(t), ŭ(t)〉
]
dt+

1

2
〈 ˘̄Px̆(T̆ ), x̆(T̆ )〉

}
, (2.10)

with P̆ , N̆ and R̆ being Sn, Rm×n and Sm-valued functions, respectively, and Ğ ∈ Sn×n, where

Sn denotes symmetric matrix space of size n.

We also denote the set of all Rn-valued continuous functions defined on [s, T ] by

C([s, T ];Rn). Then, let Π̆(.) ∈ C([s̆, T̆ ];Sn) be the solution of the Riccati equation

˙̆
Π + Π̆Ă+ ĂT Π̆ + C̆T P̆ C̆ + P̆ − (B̆T Π̆ + N̆ + D̆T Π̆C̆)T (R̆ + D̆T Π̆D̆)−1

× (B̆T Π̆ + N̆ + D̆T Π̆C̆) = 0, a.e.t ∈ [s̆, t], Π̆(T̆ ) = ˘̄P, (2.11)

where R̆ + D̆T Π̆D̆ > 0, a.e. t ∈ [s̆, T̆ ], and s̆(.) ∈ C([s̆, T̆ ];Rn) be the solution of the offset

equation given by

˙̆s+ [Ă− B̆(R̆ + D̆T Π̆D̆)−1(B̆T P̆ + s̆+ D̆T P̆ C̆)]T s̆+ [C̆ − D̆(R̆ + D̆T Π̆D̆)−1

(B̆T Π̆ + N̆ + D̆T Π̆C̆)]T Π̆σ̆ + Π̆b̆ = 0, a.e. t ∈ [s̆, T̆ ], s̆(T̆ ) = 0.

Let us define Ψ̆ , (R̆+D̆T Π̆D̆)−1[B̆T Π̆+N̆+D̆T Π̆C̆], and ψ̆ , (R̆+D̆T Π̆D̆)−1[B̆T s̆+D̆T Π̆σ̆].

Then the stochastic LQ problem (2.9)-(2.10) is solvable at s̆ with the optimal control ŭ◦(.) being

in the state feedback form as in

ŭ◦(t) = −Ψ̆(t)x̆(t)− ψ̆(t), t ∈ [s̆, T̆ ].

�

Henceforth we discuss the stochastic optimal control problem for the major agent, and a
generic minor agent.
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2.3.1 Mean Field Evolution

We introduce the empirical state average as

x(Nk) =
1

Nk

Nk∑
j=1

xkj , 1 ≤ k ≤ K,

and write x(N) = [x(N1), x(N2), ..., x(NK)], where the point-wise in time L2 limit of x(N), if it
exists, is called the mean field of the system and is denoted by x̄ = [x̄1, ..., x̄K ]. We consider for
each minor agent Ai of type k, 1 ≤ k ≤ K, a uniform (with respect to i in any subpopulation
k, 1 ≤ k ≤ K) feedback control uki ∈ ULi,y, which is a function of

(i) minor agent’s estimate of its own state, i.e. x̂i|Fyi , E|Fyi xi = E{xi|Fyi },

(ii) minor agent’s estimate of the major agent’s state, i.e. x̂0|Fyi , E|Fyi x0 = E{x0|Fyi },

(iii) minor agent’s estimate of xj, 1 ≤ j ≤ N, j 6= i, i.e. x̂j|Fyi , E|Fyi xj = E{xj|Fyi },

(iv) minor agent’s estimate of the major agent’s estimate of its own state, i.e. (x̂0|Fy0 )|Fyi ,

E|Fyi x̂0|Fy0 = E{x̂0|Fy0 |F
y
i },

(v) minor agent’s estimate of the major agent’s estimate of xj, 1 ≤ j ≤ N, j 6= i, i.e.
(x̂j|Fy0 )|Fyi , E|Fyi x̂j|Fy0 = E{x̂j|Fy0 |F

y
i },

(vi) bounded continuous functions of time mk(.) ∈ Cb([0,∞);Rm).

Hence uki is given by

uki = Lk1x̂
k
i|Fyi

+Lk2x̂0|Fyi +
K∑
l=1

Nl∑
j=1

Lk,l3 x̂
l
j|Fyi

+Lk4(x̂0|Fy0 )|Fyi +
K∑
l=1

Nl∑
j=1

Lk,l5 (x̂lj|Fy0
)|Fyi +mk, (2.12)

for matrices Lk1, L
k
2, L

k,l
3 , and Lk4 of appropriate dimension, which are time invariant due to the

time shift invariance of the infinite horizon performance function (2.4) and the dynamics (2.2),
and where Lk,l3 , Lk,l5 are assumed to depend upon Nl, and satisfy NlL

k,l
3 → L̄k,l3 , NlL

k,l
5 → L̄k,l5 as
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Nl →∞ for all k, 1 ≤ k ≤ K. Substituting (2.12) in (2.2) yields

dxi = [Akxi +BkL
k
1x̂

k
i|Fyi

+BkL
k
2x̂0|Fyi +Bk

K∑
l=1

NlL
k,l
3 x̂

(Nl)

|Fyi
+BkL

k
4(x̂0|Fy0 )|Fyi

+Bk

K∑
l=1

NlL
k,l
5 (x̂

(Nl)

|Fy0
)|Fyi +Bkmk +Gx0]dt+Ddwi, (2.13)

Then we take the average over the subpopulation k to obtain

dx(Nk) =
[
Akx

(Nk) +BkL
k
1

1

Nk

Nk∑
i=1

x̂ki|Fyi
+BkL

k
2

1

Nk

Nk∑
i=1

x̂0|Fyi +Bk

K∑
l=1

NlL
k,l
3

1

Nk

Nk∑
i=1

x̂
(Nl)

|Fyi

+BkL
k
4

1

Nk

Nk∑
i=1

(x̂0|Fy0 )|Fyi +Bk

K∑
l=1

NlL
k,l
5

1

Nk

Nk∑
i=1

(x̂
(Nl)

|Fy0
)|Fyi +Bkmk +Gx0

]
dt

+D
1

Nk

Nk∑
i=1

dwi. (2.14)

To compute the average of the estimation terms in (2.14), we use the state decomposition

x̂i|Fyi
x̂0|Fyi
x̂

(Nl)

|Fyi
(x̂0|Fy0 )|Fyi
(x̂

(Nl)

|Fy0
)|Fyi


=



x̂i|Fyi − xi
x̂0|Fyi − x0

x̂
(Nl)

|Fyi
− x(Nl)

(x̂0|Fy0 )|Fyi − x̂0|Fy0
(x̂

(Nl)

|Fy0
)|Fyi − x̂

(Nl)

|Fy0


+



xi

x0

x(Nl)

x̂0|Fy0
x̂

(Nl)

|Fy0


, (2.15)

which we denote equivalently in the compact form

x̂k,ex
i|Fyi

= −x̃k,exi + xk,exi , (2.16)
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for 1 ≤ i ≤ N , and 1 ≤ k ≤ K. Accordingly we rewrite (2.14) as

dx(Nk) =
[
Akx

(Nk) +BkL
k
1

1

Nk

Nk∑
i=1

xki +BkL
k
2x0 +Bk

K∑
l=1

NlL
k,l
3 x

(Nl)

+BkL
k
4x̂0|Fy0 +Bk

K∑
l=1

NlL
k,l
5 x̂

(Nl)

|Fy0
+Bkmk +Gx0

]
dt

−
[
BkL

k
1

1

Nk

Nk∑
i=1

(xi − x̂i|Fyi ) +BkL
k
2

1

Nk

Nk∑
i=1

(x0 − x̂0|Fyi )

+Bk

K∑
l=1

NlL
k,l
3

1

Nk

Nk∑
i=1

(
x(Nl) − x̂(Nl)

|Fyi

)
+BkL

k
4

1

Nk

Nk∑
i=1

(
x̂0|Fy0 − (x̂0|Fy0 )|Fyi

)
+Bk

K∑
l=1

NlL
k,l
5

1

Nk

Nk∑
i=1

(
x̂

(Nl)

|Fy0
− (x̂

(Nl)

|Fy0
)|Fyi
)]
dt+D

1

Nk

Nk∑
i=1

dwi. (2.17)

From (2.17) as N →∞ we obtain the convergence in quadratic mean to the solution to

dx̄k =
[
(Ak +BkL

k
1)x̄k + (G+BkL

k
2)x0 +Bk

K∑
l=1

L̄k,l3 x̄
l +BkL

k
4x̂0|Fy0 +Bk

K∑
l=1

L̄k,l5
ˆ̄xl|Fy0

+Bkmk

]
dt−

[
BkL

k
1(xi − x̂i|Fyi )k +BkL

k
2(x0 − x̂0|Fyi )k +Bk

K∑
l=1

L̄k,l3

(
x̄l − ˆ̄xl|Fyi

)k
+BkL

k
4

(
x̂0|Fy0 − (x̂0|Fy0 )|Fyi

)k
+Bk

K∑
l=1

L̄k,l5

(
ˆ̄xl|Fy0
− (ˆ̄xl|Fy0

)|Fyi
)k]

dt, (2.18)

where the overline symbol with superscript k, i.e. (.)
k

denotes the infinite-population limit of the
the average over subpopulation k of the corresponding terms, which are the components of x̃exi
in (2.16) (see Proposition 3.1 in [21] for the convergence analysis in quadratic mean).

Subsequently, a compact representation of (2.18) shall be used as in

dx̄k =
(

(Ak +BkL
k
1)x̄k + (G+BkL

k
2)x0 +Bk

K∑
l=1

L̄k,l3 x̄
l +BkL

k
4x̂0|Fy0

+Bk

K∑
l=1

L̄k,l5
ˆ̄xl|Fy0

+Bkmk

)
dt+ J̄k ¯̃xk,exdt, (2.19)
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where we denote by ¯̃xk,ex the average of the estimation errors of the minor agents of
subpopulation k as Nk →∞, and which satisfies the dynamical equation (2.58) in Section 2.3.4.
Hence, the second bracket in (2.18) is given by J̄k ¯̃xk,ex. (Here the term J̄k ¯̃xk,ex corrects its
omission in [21].)

Therefore the mean field state vector x̄ satisfies

dx̄ = Āx̄dt+ Ḡx0dt+ H̄x̂0|Fy0 dt+ L̄ˆ̄x|Fy0 dt+ J̄ ¯̃xexdt+ m̄dt, (2.20)

where (¯̃xex)T = [(¯̃x1,ex)T , . . . , (¯̃xK,ex)T ], and the matrices Ā, Ḡ, H̄ , L̄, J̄ , and m̄ collect the
corresponding terms in (2.19) and have the block matrix form

Ā =


Ā1

...
ĀK

 , Ḡ =


Ḡ1

...
ḠK

 , H̄ =


H̄1

...
H̄K

 ,

L̄ =


L̄1

...
L̄K

 , m̄ =


m̄1

...
m̄K

 , J̄ =


J̄1 0

. . .

0 J̄K

 . (2.21)

We note that Āk, L̄k ∈ Rn×nK , Ḡk, H̄k ∈ Rn×n, m̄k ∈ Rn, J̄k ∈ Rn×(3n+2nK), 1 ≤ k ≤ K, are
to be solved for using the consistency equations in Section 2.3.4. By abuse of language, the mean
value of the system’s Gaussian mean field given by the state process x̄ = [x̄1, ..., x̄K ] shall also
be termed the system’s mean field.

2.3.2 Major Agent: Infinite Population

The major agent’s infinite population dynamics, as the number of agents goes to infinity (N →
∞), remain the same as in (2.1), while its infinite population individual cost functional is given
by

J∞0 (u0, u−0) = E
∫ ∞

0

e−ρt
{
‖x0 − φ(x̄)‖2

Q0
+ ‖u0‖2

R0

}
dt, (2.22)

φ(.) := Hπ
0 x̄+ η0, (2.23)

Hπ
0 = π ⊗H0 , [π1H0, π2H0, ..., πKH0], (2.24)
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where x(N) in (6.48) was replaced by its L2 limit, i.e. the mean field x̄.
To solve the infinite population tracking problem for the major agent, its state is extended

with the mean field process x̄, where this is assumed to exist, i.e. xex0 = [x0, x̄].
Then the Kalman filter which generates the estimates of the major agent’s state x̂0|Fy0 and the

mean field ˆ̄x|Fy0 based on its own observations are, respectively, given by

dx̂0|Fy0 = A0x̂0|Fy0 dt+B0û0dt+K1
0dν0, (2.25)

dˆ̄x|Fy0 = (Ḡ+ H̄)x̂0|Fy0 dt+ (Ā+ L̄)ˆ̄x|Fy0 dt+ m̄dt+K2
0dν0, (2.26)

where ˆ̃̄x|Fy0 = 0 is used (see Observation 2.4). Moreover, m̄ is a deterministic process according
to (2.19), K1

0 and K2
0 are the Kalman filter gains, and ν0 is the innovation process. Therefore the

Kalman filter which generates the estimates of the major agent’s extended state is given by[
dx̂0|Fy0
dˆ̄x|Fy0

]
=

[
A0 0n×nK

Ḡ+ H̄ Ā+ L̄

][
x̂0|Fy0
ˆ̄x|Fy0

]
dt

+

[
B0

0nK×m

]
û0dt+

[
0n×1

m̄

]
dt+K0dν0, (2.27)

with the corresponding Kalman filter gain K0 = [(K1
0)T , (K2

0)T ]T , and the innovation process ν0,
respectively, given by

K0 = V0LT0R−1
v0
, (2.28)

dν0 = dy0 − L0

[
x̂T0|Fy0

, ˆ̄xT|Fy0

]T
dt, (2.29)

where L0 =
[
l10 0`×nK

]
, and V0(t) is the solution to the corresponding Riccati equation (3.56).

From (2.1), (6.54), and (2.27) we denote

A0 =

[
A0 0n×nK

Ḡ+ H̄ Ā+ L̄

]
, B0 =

[
B0

0nK×m

]
, M0 =

[
0n×1

m̄

]
,

D0 =

[
D0 0n×rK

0nK×r 0nK×rK

]
, J0 =

[
0n×(3nK+2nK2)

J̄

]
. (2.30)

Then to guarantee the convergence of the solution to the Riccati equation to a positive definite
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asymptotically stabilizing solution, we assume:

Assumption 2.5. [A0,D0] is stabilizable and [L0,A0] is detectable.

The corresponding Riccati equation is then given by

V̇0 = A0V0 + V0AT
0 −K0Rv0K

T
0 + J0V̄ JT0 +Qw0 , (2.31)

where Qw0 = D0DT
0 , V̄ (t) = E

[
¯̃xex(t)

(
¯̃xex(t)

)T ] satisfies (2.65), and V (0) = E
[(
xex0 (0) −

(x̂ex0 (0))|Fy0
)(
xex0 (0)− (x̂ex0 (0))|Fy0

)T ].
Then, utilizing the infinite horizon discounted analogy to Theorem 2.1, it can be shown (see

Theorem 2.2 in Section 2.3.4) that the optimal control action for the major agent’s tracking
problem (and hence best response MFG control input) is

û◦0 = −R−1
0 BT0 [Π0(x̂T0|Fy0

, ˆ̄xT|Fy0
)T + s0], (2.32)

where Π0 and s0 are the solutions to the Riccati and offset equations given by

ρΠ0 = Π0A0 + AT
0 Π0 − Π0B0R

−1
0 BT0 Π0 +Qπ

0 , (2.33)

ρs0 =
ds0

dt
+ (A0 − B0R

−1
0 BT0 Π0)T s0 + Π0M0 − η̄0, (2.34)

with η̄0 = [In×n,−Hπ
0 ]TQ0η0 and Qπ

0 = [In×n,−Hπ
0 ]TQ0[In×n,−Hπ

0 ]. We note ds0
dt

= 0 in
(2.34), since M0, η̄0 are constant.

Finally, the joint dynamics of the major agent’s closed-loop system and its Kalman filter
system are given by

dx0

dx̄

dx̂0|Fy0
dˆ̄x|Fy0

 = A0


x0

x̄

x̂0|Fy0
ˆ̄x|Fy0

 dt+ J0
¯̃xexdt+ M0dt+ D0


[

dw0

0nK×1

]
dv0

 , (2.35)
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where

A0 =


[
A0 0n×nK

Ḡ Ā

] [
−B0R

−1
0 BT0 Π0[

H̄ L̄
] ]

,

K0L0 A0 −K0L0 − B0R
−1
0 BT0 Π0

 , J0 =

[
J0

0(n+nK)×(3nK+2nK2)

]
,

M0 =

[
M0 − B0R

−1
0 BT0 s0

M0 − B0R
−1
0 BT0 s0

]
, D0 =

[
D0 0(n+nK)×`

0(n+nK)×(r+nK) K0R
1
2
v0

]
.

2.3.3 Minor Agent: Infinite Population

A generic minor agent’s infinite population dynamics, as the number of agent goes to infinity
(N →∞), remain the same as in (2.2), while its infinite population individual cost functional is
given as

J∞i (ui, u−i) = E
∫ ∞

0

e−ρt
{
‖xi − ψ(x̄)‖2

Q + ‖ui‖2
R

}
dt, (2.36)

ψ(.) = H1x0 +Hπ
2 x̄+ η, (2.37)

Hπ
2 = π ⊗H2 , [π1H0, π2H0, ..., πKH0]. (2.38)

In the case where all agents have partial observations on the major agent’s state, the joint
dynamics of the major agent’s closed-loop system and its Kalman filtering recursions are
employed in order to solve the minor agent’s tracking problem. Therefore, the minor agent’s
state is next extended to form xexi , [xi, x0, x̄, x̂0|Fy0 ,

ˆ̄x|Fy0 ]. Specifically this yields

dxexi = Akx
ex
i dt+ Bkuidt+ J¯̃xex + Mdt+ D[dwTi , dw

T
0 , 01×nK , dv

T
0 ]T , (2.39)

where

Ak =

[
Ak [ G 0n×(n+2nK) ]

02(n+nK)×n A0

]
, Bk =

[
Bk

02(n+nK)×m

]
,

J =

[
0n×(3nK+2nK2)

J0

]
, M =

[
0n×1

M0

]
, D =

[
D 0n×(r+nK+`)

02(n+nK)×r D0

]
. (2.40)

To derive the Kalman filter equations for (2.39), we first define Lk =
[
l1k l2k 0`×(n+2nK)

]
.

To guarantee the convergence of the solution to the Riccati equation to a positive definite
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asymptotically stabilizing solution, we assume:

Assumption 2.6. The system parameter set Θ = {1, ..., K} is such that [Ak,D] is stabilizable

and [Lk,Ak] is detectable for all k, 1 ≤ k ≤ K.

The Riccati equation associated with the filtering equations for (2.39) is then given by

V̇k = AkVk + VkAT
k −KkRvK

T
k + JV̄ JT +Qw, (2.41)

where Qw = DDT , V̄ (t) = E
[
¯̃xex(t)

(
¯̃xex(t)

)T ] satisfies (2.65), and Vk(0) = E
[(
xexi (0) −

(x̂exi (0))|Fyi
)(
xexi (0)− (x̂exi (0))|Fyi

)T ]. The Kalman filter gain Kk is in turn given by

Kk = VkLTkR−1
v , (2.42)

and the innovation process νi(t) is defined as in

dνi = dyi − Lk
[
x̂Ti|Fyi

, x̂T0|Fyi
, ˆ̄xT|Fyi

, (x̂0|Fy0 )T|Fyi
, (ˆ̄x|Fy0 )T|Fyi

]T
dt, (2.43)

where (x̂0|Fy0 )|Fyi and (ˆ̄x|Fy0 )|Fyi , respectively, denote the minor agent Ai’s estimates of the major
agent’s estimates of its own state and the mean field. Then the Kalman filter equations for a
generic minor agent Ai, 1 ≤ i ≤ N , are given as in

dx̂exi|Fyi
= Akx̂

ex
i|Fyi

dt+ Bkûidt+ Mdt+Kkdνi, (2.44)

where ˆ̃̄xex|Fyi
= 0 (see Observation 2.4) is used. Clearly, (2.44) generates the iterated estimates

(x̂0|Fy0 )|Fyi and (ˆ̄x|Fy0 )|Fyi which are required to calculate x̂0|Fyi and ˆ̄x|Fyi (see Proposition 1 in [37]
for a simplified case of Estimates of Estimates Filter).

Remark 2.1. By virtue of the asymmetric information available to the major agent and a generic
minor agent, an infinite regress does not occur in the process of estimating other agents’ states. In
fact to calculate the best response action, the major agent only estimates its own state and hence
does not estimate minor agents’ states, while each minor agent estimates its own state and the
major agent’s state.

We note that by Assumption 2.3 the minor agent Ai is able to estimate û◦0 whenever the
functional dependence of the major agent’s control on it’s state is available to the minor agent



2 Partially Observed Major Minor LQG Mean Field Game Systems 20

through forming the conditional expectation of the major agent’s control action which by (2.32)
is given by the following expression

(û◦0)|Fyi = E{û◦0|F
y
i } = −R−1BT0

[
Π0

(
(x̂0|Fy0 )T|Fyi

, (ˆ̄x|Fy0 )T|Fyi

)
+ s0

]
, (2.45)

and which is embedded in (2.44). Then, utilizing the infinite horizon discounted analogy to
Theorem 2.1, it can be shown (see Theorem 2.2) that the optimal control action for the minor
agent Ai’s tracking problem (and hence best response MFG control input) is given by

û◦i = −R−1BTk
[
Πk

(
x̂Ti|Fyi

, x̂T0|Fyi
, ˆ̄xT|Fyi

, (x̂0|Fy0 )T|Fyi
, (ˆ̄x|Fy0 )T|Fyi

)T
+ sk

]
, (2.46)

where the iterated estimation terms (x̂0|Fy0 )|Fyi , and (ˆ̄x|Fy0 )|Fyi explicitly appear, and the
corresponding Riccati and offset equations are given by

ρΠk = ΠkAk + AT
kΠk − ΠkBkR−1BTkΠk +Qπ, ∀k, (2.47)

ρsk =
dsk
dt

+ (Ak − BkR−1BTkΠk)
T sk + ΠkM− η̄, ∀k, (2.48)

with
η̄ = [In×n, −H1, −Hπ

2 , 0n×(n+nK)]
TQη,

Qπ = [In×n, −H1, −Hπ
2 , 0n×(n+nK)]

TQ[In×n, −H1, −Hπ
2 , 0n×(n+nK)].

We note dsk
dt

= 0 in (2.48), since M, η̄ are constant.

2.3.4 Mean Field Consistency Equations

Let us denote the components of Πk in (2.47) as

Πk =

[
Πk,11 Πk,12 Πk,13 Πk,14 Πk,15

Πk,21 Πk,22 Πk,23 Πk,24 Πk,25

]
, (2.49)

1 ≤ k ≤ K, and where Πk,11, Πk,12, Πk,14 ∈ Rn×n, Πk,13, Πk,15 ∈ Rn×nK , Πk,21, Πk,22, Πk,24 ∈
R2(n+nK)×n, and Πk,23, Πk,25 ∈ R2(n+nK)×nK . Let us also define the block matrix ek,v =

[0v×v, ..., 0v×v, Iv, 0v×v, ..., 0v×v] with K blocks, where the v × v identity matrix Iv is located
at the kth block. Finally we define the block matrix 1v = [Iv, ..., Iv, ..., Iv] with K blocks of
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identity matrix. Then we denote by

ēk = ek,n, (2.50)

ẽk = ek,(3n+2nK), (2.51)

1̃ = 1(3n+2nK) (2.52)

To obtain the mean field consistency equations, we substitute (2.46) in (2.2) to get

dxi = Akxidt+Gx0dt−BkR
−1BTk

[
Πkx̂

ex
i|Fyi

+ sk
]
dt+Ddwi. (2.53)

Then x̂ex
i|Fyi

can be written as

x̂exi|Fyi
= −(xexi − x̂exi|Fyi ) + xexi ,

= −x̃exi + xexi , (2.54)

where x̃exi denotes the estimation error, and the governing dynamics for 1 ≤ i ≤ N , 1 ≤ k ≤ K,
are given by

dx̃k,exi = (Ak −KkLk)x̃k,exi + J¯̃xexdt−KkR
1
2
v dvi + D[dwTi , dw

T
0 , 01×nK , dv

T
0 ]T , (2.55)

where (¯̃xex)T = [(¯̃x1,ex)T , . . . , (¯̃xK,ex)T ] satisfies (2.60).
Next the empirical average of (2.53), where (2.54) has been substituted, over the population

of the minor agents of type k is given by

d(
1

Nk

Nk∑
i=1

xki ) = Ak(
1

Nk

Nk∑
i=1

xki )dt+Gx0dt

−BkR
−1BTk

[
Πk

( 1

Nk

Nk∑
i=1

x̃k,exi +
1

Nk

Nk∑
i=1

xk,exi

)
+ sk

]
dt+D

1

Nk

Nk∑
i=1

dwi. (2.56)

As Nk →∞, the solution to (2.56) converges, in quadratic mean, to the solution of

dx̄k = Akx̄
kdt+Gx0dt−BkR

−1BTk
[
Πk

(
¯̃xk,ex + x̄k,ex

)
+ sk

]
dt, (2.57)

where x̄k,ex =
[
(x̄k)T , xT0 , x̄

T , x̂T
0|Fy0

, ˆ̄xT|Fy0

]T , and from (2.55) the average of the estimation error
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x̃exi over subpopulation k, 1 ≤ k ≤ K, as Nk →∞, i.e. ¯̃xk,ex, is given by

d¯̃xk,ex = (Ak −KkLk)¯̃xk,ex + J¯̃xex − D[01×r, dw
T
0 , 01×rK , dv

T
0 ]T . (2.58)

Note that in the derivation of (2.58), we use the property that 1
Nk

∑Nk
i=1 w0 = w0 and 1

Nk

∑Nk
i=1 ν0 =

ν0, since w0 and ν0 are the common processes shared between all agents of type k. Moreover, the
law of large numbers is used to obtain as Nk →∞

1

Nk

Nk∑
i=1

Kkdνi
q.m.−−→ 0,

1

Nk

Nk∑
i=1

dwi
q.m.−−→ 0.

Subsequently, from (2.58), (¯̃xex)T = [(¯̃x1,ex)T , . . . , (¯̃xK,ex)T ] satisfies

d¯̃xex =


(A1 −K1L1)ẽ1 + J

...
(AK −KKLK)ẽK + J

 ¯̃xexdt+


−D

...
−D




0r×1

dw0

0rK×1

dv0,

 , (2.59)

or equivalently in the compact form

d¯̃xex = Ã¯̃xexdt+ D̃[01×r, dw
T
0 , 01×rK , dv

T
0 ]T . (2.60)

Using (2.49) the mean field equation (2.57) can be presented as

dx̄k =
([
Ak −BkR

−1BT
k Πk,11

]
ēk −BkR

−1BT
k Πk,13

)
x̄dt+

(
G−BkR

−1BT
k Πk,12

)
x0dt

−BkR
−1BT

k Πk,14x̂0|Fy0 dt−BkR
−1BT

k Πk,15 ˆ̄x|Fy0 dt−BkR
−1BTkΠk

¯̃xk,exdt

−BkR
−1BTk skdt. (2.61)

Since (2.57) and (6.54) must be identical, we obtain the Consistency Equations, determining
the components of Ā, Ḡ, H̄ , L̄, J̄ , and m̄ in (6.54), given by the following compact set of
equations

Āk = [Ak −BkR
−1BT

k Πk,11]ēk −BkR
−1BT

k Πk,13, ∀k,

Ḡk = G−BkR
−1BT

k Πk,12, ∀k,
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H̄k = −BkR
−1BT

k Πk,14, ∀k,

L̄k = −BkR
−1BT

k Πk,15, ∀k,

J̄k = −BkR
−1BTkΠk, ∀k,

m̄k = −BkR
−1BTk sk, ∀k, (2.62)

where Πk and sk satisfy (2.47) and (2.48), respectively. The set of equations (5.51) together
with (2.33)-(2.34) and (2.47)-(2.48) form a fixed point problem which must be solved by each
individual agent Ai, 0 ≤ i ≤ N , in order to compute the matrices in the mean field dynamics
(6.54).

Finally from (2.39) and (2.57)-(2.60) the Markovian dynamics of x̄k (i.e. the mean field of
subpopulation k, 1 ≤ k ≤ K) are given by[

dx̄k,ex

d¯̃xex

]
=

[
Ak − BkR−1BTkΠk −BkR−1BTkΠkẽk

0 Ãk

][
x̄k,ex

¯̃xex

]
dt

[
M− BkR−1BTk sk

0

]
dt+

[
D 0

0 D̃

]
0r×1

dw0

0rK×1

dv0

 . (2.63)

Remark 2.2. From (2.58) in the infinite population limit the average of the estimation errors of
the minor agents of type k, 1 ≤ k ≤ K, is driven by the major agent’s Wiener process w0 and the
measurement noise v0 (or equivalently innovation process ν0). In other words, it is driven by the
non-zero quadratic variation processes in the dynamics of the common processes xex0 , x̂

ex
0|Fy0

, with
which the minor agents Ai, 1 ≤ i ≤ N , are coupled.

Subsequently, V̄ (t) = E
[
¯̃xex(t)

(
¯̃xex(t)

)T ] satisfies

˙̄V = ÃV̄ + V̄ ÃT + D̃


0r×r

Ir×r

0rK×rK

Ir×r

 D̃T , (2.64)
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and if we put D̃ = −1̃TD, we obtain

˙̄V = ÃV̄ + V̄ ÃT + Q̃Q̃T , (2.65)

where

Q̃Q̃T = 1̃T

 0n×n

Qw0

K0Rv0K
T
0

 1̃. (2.66)

To guarantee the convergence of the solution to the corresponding Lyapunov equation to a unique,
symmetric and positive definite solution, we assume:

Assumption 2.7. The pair [Ã, Q̃] is controllable.

�

Remark 2.3. For the case where the major agent has complete observation on its own state, and
each minor agent has complete observations on their own state and the major agent’s state we
have

¯̃xk,ex(t) = 0, t ≥ 0, (2.67)

E{x0|Fy0 } = x0, (2.68)

E{x̄|Fy0 } = x̄, (2.69)

where (2.69) holds since the major agent can compute the real value of x̄ by observing its own
state. Hence the mean field equation (6.54) reduces to that of completely observed major minor
LQG MFG systems (see [16]). �

Remark 2.4 (Estimate of Infinite-Population Average Estimation Error). The solution to (2.60) is
given by

¯̃xex(t) = Φ(t, 0)¯̃xex(0) +

∫ t

0

Φ(t, τ)D̃[01×r, dw
T
0 , 01×rK , dv

T
0 ]Tdτ, (2.70)
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where Φ(t, τ) = exp
(
Ã(t− τ)

)
. The initial estimation error of the minor agent Ai is given by

x̃k,exi (0) =


x̂i|Fyi (0)− xi(0)

x̂0|Fyi (0)− x0(0)

ˆ̄x|Fy0 (0)− x̄(0)

(x̂0|Fy0 )|Fyi (0)− x̂0|Fy0 (0)

(ˆ̄x|Fy0 )|Fyi (0)− ˆ̄x|Fy0 (0)

 =


−xi(0)

−x0(0)

0nK×1

0n×1

0nK×1

 , (2.71)

since the partial observation information sets Fyi , 0 ≤ i ≤ N , at time t0 = 0 are null sets,
the conditional expectations turn into total expectations which according to Assumption 2.1 their
value is zero. Hence, the infinite-population limit of the average initial estimation error of the
minor agents of subpopulation k is given by

¯̃xk,ex(0) = [01×n, x
T
0 (0), 01×nK , 01×n, 01×nK ]T , (2.72)

where Assumption 2.1 is again used, and hence E[¯̃xk,ex(0)|Fyi ] = 0. Then the conditional
expectation of ¯̃xex(t) with respect to Fyi , 0 ≤ i ≤ N , i.e. ˆ̃̄xex|Fyi

(t), is given by

ˆ̃̄xex|Fyi
(t) , E[¯̃xex(t)|Fyi ]

= Φ(t, 0)E[¯̃xex(0)|Fyi ] + E
[ ∫ t

0

Φ(t, τ)D̃


0r×1

dw0

0nr×1

dv0

 dτ
∣∣∣Fyi ] (2.73)

= 0, (2.74)

where the second term in (2.73) is zero due to the independence of {wi, 0 ≤ i ≤ N} and
{vi, 0 ≤ i ≤ N}. �
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Next we define

M1 =


A1 −B1R

−1BT
1 Π1,11

. . .

AK −BKR
−1BT

KΠK,11

 ,

M2 =


B1R

−1BT
1 Π1,13

...
BKR

−1BT
KΠK,13

 , M3 =

 A0 0 0

Ḡ Ā 0

Ḡ −M2 M1

 ,
L0,H = Q

1/2
0 [I, 0,−Hπ

0 ]. (2.75)

The final set of assumptions is as follows:

Assumption 2.8. The pair (L0,H ,M3) is observable.

Assumption 2.9. The pair (La,A0 − (ρ/2)I) is detectable, and for each k, 1 ≤ k ≤
K, the pair (Lb,Ak − (ρ/2)I) is detectable, where La = Q

1/2
0 [I,−Hπ

0 ] and Lb =

Q1/2[I,−H1,−Hπ
2 , 0n×(n+nK)]. The pair (A0−(ρ/2)I,B0) is stabilizable and (Ak−(ρ/2)I,Bk)

is stabilizable for each k, 1 ≤ k ≤ K.

Assumption 2.10. There exists a stabilizing solution Π0, s0, Πk, sk, Āk, Ḡk, H̄k, L̄k, J̄k, m̄k to

the major-minor mean field equations (5.51) in the sense that the matrices

A0 − B0R
−1
0 BT0 Π0 −

ρ

2
I,

Ak − BkR−1BTkΠk −
ρ

2
I, 1 ≤ k ≤ K,

are asymptotically stable, and

sup
t≥0,1≤k≤K

e−
ρ
2
t(|s0(t)|+ |sk(t)|+ |m̄k(t)|) <∞.

Theorem 2.2 (ε-Nash Equilibria for PO LQG MM-MFG Systems). Subject to Assumptions 2.1-

2.10, the KF-MFG state estimation scheme (2.27)-(3.56) and (3.65)-(2.44) together with the MM-

MFG equation scheme (5.51) generate an infinite family of stochastic control laws Û∞MF , with

finite sub-families ÛNMF , {u◦i ; 0 ≤ i < N}, 1 ≤ N <∞, given by (2.32) and (2.46), such that

(i) Û∞MF yields a unique Nash equilibrium within the set of linear controls U∞,Li,y and UL0,y such
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that

J∞i (u◦i , u
◦
−i) = inf

ui∈U∞,Li,y

J∞i (ui, u
◦
−i);

(ii) All agent systems 0 ≤ i ≤ N , are e−
ρ
2
t discounted second order stable in the sense that

sup
t≥0, 0≤i≤N

e−
ρ
2
tE
(
‖x̂i|Fyi ‖

2 + ‖ˆ̄x|Fyi ‖
2

+ ‖(x̂0|Fy0 )|Fyi ‖
2 + ‖(ˆ̄x|Fy0 )|Fyi ‖

2
)
< C,

with C independent of N;

(iii) {ÛNMF ; 1 ≤ N <∞} yields a unique ε-Nash equilibrium within the class of linear control

laws UN,Li,y and UL0,y for all ε, i.e. for all ε > 0, there existsN(ε) such that for allN ≥ N(ε);

Js,Ni (û◦i , û
◦
−i)− ε ≤ inf

ui∈UN,Ly

Js,Ni (ui, û
◦
−i) ≤ Js,Ni (û◦i , û

◦
−i),

where the major agent’s and the generic minor agent’s performance function Js,Ni (u◦i , u
◦
−i),

ui ∈ UN,Li,y , 0 ≤ i ≤ N , is given by

JNi (ui, u−i) + ÊN ,

where JNi (ui, u−i) is as in the completely observed case, ÊN > 0, and when ui = û◦i the

following limits hold:

• limN→∞ J
N
i (û◦i , û

◦
−i) = J∞i (û◦i , û

◦
−i),

• limN→∞ ÊN =
∫∞

0
e−ρttr[QπV ]dt,

where V (t) is the solution to (3.56) for the major agent and the solution to (3.65) for

a generic minor agent.

Proof. Generalizing the standard methodology in [38] and [39], we first decompose the state
processes into their estimates and their estimation errors orthogonal to the corresponding
estimates. Substituting the decomposed states into the performance functions and applying the
smoothing property of conditional expectations with respect to the increasing filtration families
Fyi and Fy0 to the major and minor cost functionals respectively, we obtain the separated
performance functions. This technique is applied to both finite and infinite population cases
which yields the best response controls {û◦i , 0 ≤ i ≤ N} as optimal tracking controls for the
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major and minor agents in the infinite population case (see [21] for the case where only the minor
agent has partial observations on the major agent’s state). Specifically we form the following
decompositions where the superscript ’s’ on the resulting performance functions indicates the
separation into control dependent and control independent summands.

1. Major Agent’s State Decomposition
Finite Population: [

x0

x(N)

]
=

[
x̂0|Fy0
x̂

(N)

|Fy0

]
+

[
x0 − x̂0|Fy0
x(N) − x̂(N)

|Fy0

]
.

Infinite Population: [
x0

x̄

]
=

[
x̂0|Fy0
ˆ̄x|Fy0

]
+

[
x0 − x̂0|Fy0
x̄− ˆ̄x|Fy0

]
.

2. Major Agent’s Cost Functional Separation
Finite Population:

Js,N0 (u0, u−0) = E
[ ∫ ∞

0

e−ρt
{∥∥x̂0|Fy0 −H0x̂

(N)

|Fy0
− η0

∥∥2

Q0
+ ‖u0‖2

R0

}
dt

]
+ E

[ ∫ ∞
0

e−ρt
∥∥(x0 − x̂0|Fy0 )−H0(x(N) − x̂(N)

|Fy0
)
∥∥2

Q0
dt

]
. (2.76)

Infinite Population:

Js,∞0 = E
[ ∫ ∞

0

e−ρt
{∥∥x̂0|Fy0 −H

π
0

ˆ̄x|Fy0 − η0

∥∥2

Q0
+ ‖u0‖2

R0

}
dt

]
+ E

[ ∫ ∞
0

e−ρt
∥∥(x0 − x̂0|Fy0 )−Hπ

0 (x̄− ˆ̄x|Fy0 )
∥∥2

Q0
dt

]
. (2.77)

3. Minor Agent’s State Decomposition
Finite Population:

 xi

x0

x(N)

 =


x̂i|Fyi
x̂0|Fyi
x̂

(N)

|Fyi

+


xi − x̂i|Fyi
x0 − x̂0|Fyi
x(N) − x̂(N)

|Fyi

 .
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Infinite Population:  xi

x0

x̄

 =

 x̂i|Fyi
x̂0|Fyi
ˆ̄x|Fyi

+

 xi − x̂i|Fyi
x0 − x̂0|Fyi
x̄− ˆ̄x|Fyi

 .
4. Minor Agent’s Cost Functional Separation

Finite Population:

Js,Ni (ui, u−i) = E
[ ∫ ∞

0

e−ρt
{∥∥x̂i|Fyi −H1x̂0|Fyi −H2x̂

(N)

|Fyi
− η
∥∥2

Q
+ ‖ui‖2

R

}
dt

]
+ E

[ ∫ ∞
0

e−ρt
∥∥(xi − x̂i|Fyi )−H1(x0 − x̂0|Fyi )−H2(x(N) − x̂(N)

|Fyi
)
∥∥2

Q
dt

]
. (2.78)

Infinite Population:

Js,∞i = E
[ ∫ ∞

0

e−ρt
{∥∥x̂i|Fyi −H1x̂0|Fyi −H

π
2

ˆ̄x|Fyi − η
∥∥2

Q
+ ‖ui‖2

R

}
dt

]
+ E

[ ∫ ∞
0

e−ρt
∥∥(xi − x̂i|Fyi )−H1(x0 − x̂0|Fyi )−Hπ

2 (x̄− ˆ̄x|Fyi )
∥∥2

Q
dt

]
. (2.79)

As can be seen, the first integral expressions in (2.76), (2.77), (2.78) and (2.79) depend on the
estimated states generated by the estimation schemes (2.27) and (2.44) for the major agent and
minor agents respectively, and the second integral expressions depend only upon the respective
estimation errors and on the solutions to the associated Riccati equations. The latter expressions
are independent of the control actions and generate the additional cost ÊN in the finite population
case incurred by the errors in the estimation process.

Next, the resulting infinite population tracking problems are solved for the major and minor
agents in their separated forms. The control dependent summands in (2.77) have exactly the
same structure in terms of the functional dependence on the estimated states as the infinite
population cost functionals in the complete observation case have on the states. Moreover, the
control dependent summands in (2.79) have exactly the same structure in terms of the functional
dependence on the estimated states as the infinite population cost functional for the system (2.39)
with complete observations on its own state, the major agent’s state, and the major agent’s
estimates of its own state and the mean field. Hence, by the Separation Principle the infinite
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population Nash Certainly Equivalence equilibrium controls are given by {û◦i , 0 ≤ i ≤ N} in
the theorem statement. Finally the infinite population control actions are applied to the finite
population systems and the fact that these yield (i) e−

ρ
2
t second order system stability, and (ii)

ε-Nash equilibrium property, is established by the standard approximation analysis parallel to
that of completely observed major-minor LQG MFG systems (see [9], [16]).

Remark 2.5. We note that (x̂0|Fy0 )|Fyi and (ˆ̄x|Fy0 )|Fyi do not appear in the minor agent’s state
decomposition and in its separated performance function but that they are used in the extended
estimated state recursion (2.44) and hence appear in the control action for a minor agent in (2.46).

�

Remark 2.6. The non-uniqueness of Nash equilibria which may occur in classical LQG stochastic
dynamic games with specified information sets [40, 41] does not occur in this analysis. This
holds since, for the specified maximal individual information sets, and subject to the hypotheses
of Theorem 2.2 giving unique solutions to the MFG Consistency equations (as functions of
the system parameters), a unique linear best response function is obtained for each agent with
respect to its stochastic control problem arising from its performance function in the infinite
population limit. We note that any set of controls generating a Nash equilibrium will yield the
same consistency equations whose solution depends only on the system parameters. �

2.4 Simulations

Consider a system of 100 minor agents and a single major agent. The system matrices
{Ak, Bk, 1 ≤ k ≤ 100} for the minor agents are uniformly defined as

A ,

[
−0.05 −2

1 0

]
, B ,

[
1

0

]
,

and for the major agent we have

A0 ,

[
−1 −1

1 0

]
, B0 ,

[
1

0

]
.

The parameters used in the simulation are: tfinal = 25 sec, ∆t = 0.01 sec, σw0 = σwi =

0.009, σv0 = σvi = 0.0003, ρ = 0.9, η0 = η = [0.25, 0.25]T , Q0 = Q = I2×2, R0 = R =
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1, H0 = H1 = H2 = 0.6 × I2×2, G = 02×2. The true and estimated state trajectories, and the
estimation errors for a single realization can be displayed for the entire population of 101 agents
together, but in figures 2.1-2.6 only 10 minor agents are shown for the sake of clarity.

2.5 Conclusions

In this chapter, PO MM LQG MFG problems with general information patterns are studied where
(i) the major agent has partial observations on its own state, and (ii) each minor agent has partial
observations on its own state and the major agent’s state. For the general case of indefinite LQG
MFG systems, the existence of ε-Nash equilibria together with the individual agents’ control
laws generating them are established via the Separation Principle. The assumption of partial
observations for all agents leads to a new situation involving the recursive estimation by each
minor agent of the major agent’s estimate of its own state. To the best of our knowledge, the
dynamic game theoretic equilibrium which is established in this chapter constitutes a rare case
wherein agents explicitly generate estimates of another agent’s beliefs. Moreover, this does not
give rise to an infinite regress due to the information asymmetry of the major and minor agents.



2 Partially Observed Major Minor LQG Mean Field Game Systems 32

Figure 2.1: The Major agent’s true and estimated trajectories.

Figure 2.2: 10 Minor agents’ true and estimated trajectories.
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Figure 2.3: The mean field true and estimated trajectories.

Figure 2.4: The estimation errors of the major agent’s trajectory.
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Figure 2.5: The estimation errors of the mean field trajectory.

Figure 2.6: The estimation errors of 10 minor agents’ trajectories.
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Chapter 3

Optimal Execution Problems in Finance
with Partial Observations

3.1 Introduction

The PO MM LQG MFG theory was first applied to an optimal execution problem with the
linear models of [25] in [32] where an institutional investor, interpreted as a major agent, aims
to liquidate a specific amount of shares and it has only partial observations of its own state
(which includes its inventory). Furthermore, there is a large population of high frequency traders
(HFTs), interpreted as minor agents, who wish to liquidate their shares, and each of them has
partial observations of its own state and the major agent’s state (which include the corresponding
inventories). In the current chapter, this work is refined in the formulation of the market dynamics
in the MFG framework, and also is extended to consider two populations of HFTs with liquidation
or acquisition objectives who wish to, respectively, liquidate or acquire a certain number of shares
within a specific duration of time. MM (indefinite) LQG MFG theory is then utilized to establish
the existence of ε-Nash equilibria together with the best response trading strategies such that each
agent attempts to maximize its own wealth and avoid the occurrence of large execution prices, and
large trading accelerations which are appropriately weighted in the agent’s performance function.
The results of this chapter have been presented in [33, 34].

We note that the terms major trader (respectively, minor trader), and institutional trader
(respectively, HFT) are used interchangeably in this chapter.

The chapter is organized as follows. Section 3.2 is devoted to the description of trading
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dynamics in the market and the execution problem. In Section 3.3 the optimal execution problem
is formulated in the mean field game framework. Completely observed and partially observed
optimal execution problems are then addressed in Sections 3.4 and 3.5, respectively. Section 3.6
presents the simulation results.

3.2 Trading Dynamics of Agents in Market

As stated in the Introduction, the institutional investor is considered as a major agent in the
mean field model of the market which liquidates its shares and the HFTs are considered as minor
agents, where two types of them are considered: liquidators and acquirers. Employing the trading
model in [25], the trading dynamics of the major agent and any generic minor agent in the market
are described by the linear time evolution of the inventories, trading rates and prices while the
bilinear cash process appears in the quadratic performance function for each agent.

3.2.1 Inventory Dynamics

It is assumed that the institutional investor liquidates its inventory of shares, Q0(t), by trading at
a rate ν0(t) during the trading period [0, T ]. Hence the major agent’s inventory dynamics is given
by

dQ0(t) = ν0(t)dt+ σQ0 dw
Q
0 (t), 0 ≤ t ≤ T,

where wQ0 is a Wiener process modeling the noise in the inventory information that the
institutional trader collects from its branches in different locations; σQ0 is a positive scalar and
we assume that Q0(0)� 1. The same dynamical model is adopted for the trading dynamics of a
generic HFT

dQi(t) = νi(t)dt+ σQi dw
Q
i (t), 1 ≤ i ≤ Na +Nl, 0 ≤ t ≤ T

where Na and Nl are respectively liquidator and acquirer populations of N minor traders, i.e.
N = Na +Nl, w

Q
i is a Wiener process that models the HFT’s information noise, σQi is a positive

scalar, νi(t) is the agent’s rate of trading which can be positive or negative depending on whether
the agent is acquirer or liquidator, respectively; Qi(t) is the minor liquidator agent’s remaining
shares at time t, or the shares the minor acquirer agent has bought until time t. However, the
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initial inventories of the HFTs, {Qi(0), 1 ≤ i ≤ Na +Nl}, are not considered to be large.
We assume that the trading rate of the major agent is controlled via u0(t) as

dν0(t) = u0(t)dt, 0 ≤ t ≤ T,

where the trading strategy u0(t) can be seen to be the trading acceleration of the major trader.
Correspondingly, ui(t) controls the trading rate of minor agent, Ai, by

dνi(t) = ui(t)dt, 1 ≤ i ≤ Na +Nl, 0 ≤ t ≤ T.

3.2.2 Price Dynamics

The trading rate of the major agent and the average trading rate of the minor agents give rise
to the asset midprice which models the permanent effect of agents’ trading rates on the market
price. Further, each agent has a temporary effect on the asset price which only persists during
the action of the trade and which determines the execution price, that is to say the price at which
each agent can trade.

Asset Midprice

We model the dynamics of the asset midprice, as seen from the major agent’s viewpoint, by

dF0(t) =
(
λ0ν0(t) +

λ

N

N∑
i=1

νi(t)
)
dt+ σdwF0 (t), 0 ≤ t ≤ T,

where the Wiener process wF0 (t) models the aggregate effect of all traders in the market which
- unlike the major and minor agents A0, Ai, - have no partial observations on any of the
state variables appearing in the dynamical market model (these are termed uninformed traders).
Further, σ denotes the intensity of the market volatility and λ0, λ ≥ 0 denote the strength of
the linear permanent impact of the major and minor agents’ tradings on the asset midprice,
respectively. Similarly, we model the asset midprice dynamics, as seen by a minor agent Ai,
by

dFi(t) =
(
λ0ν0(t) +

λ

N

N∑
i=1

νi(t)
)
dt+ σdwFi (t), 1 ≤ i ≤ Na +Nl, 0 ≤ t ≤ T,



3 Optimal Execution Problems in Finance with Partial Observations 38

where the Wiener process, wFi (t), represents the mass effect of all uninformed traders in the
market. The time differences between agents in getting data from fast changing limit order book
make the Wiener processes, wFi , 0 ≤ i ≤ Na +Nl independent.

Execution Price

The major agent’s execution price S0(t) evolution is assumed to be given by

dS0(t) = dF0(t) + a0dν0(t), 0 ≤ t ≤ T, (3.1)

where a0 ≥ 0 is the temporary impact strength of the major agent on the asset midprice. Likewise,
a minor agent’s execution price, Si(t), is assumed to evolve as

dSi(t) = dFi(t) + adνi(t), 1 ≤ i ≤ Na +Nl, 0 ≤ t ≤ T, (3.2)

where a models the temporary impact of a minor agent’s trading on its execution price.

3.2.3 Cash Process

The cash processes for the major agent and a generic minor agent, Z0(t), Zi(t), are given by

dZ0(t) = −S0(t)dQ0(t), 0 ≤ t ≤ T, (3.3)

dZi(t) = −Si(t)dQi(t), 1 ≤ i ≤ Na +Nl, 0 ≤ t ≤ T, (3.4)

where Z0(t), Zi(t), 1 ≤ i ≤ Nl, are the cash obtained through liquidation of shares, and
Zi(t), 0 ≤ i ≤ Na, is the cash paid for acquisition of shares up to time t. We note that the
value of dQ0(t) in a stock sale is negative and hence for positive S0(t), Z0(t) increases.

3.2.4 Cost Function

Major Liquidator Trader

The objective for the major trader is to liquidate N0 shares and maximize the cash it holds at
the end of the trading horizon, i.e. maximize Z0(T ), and if the remaining inventory at the final
time T is Q0(T ), it can liquidate it at a lower price than the market asset price, reflected in the
cost function by Q0(T )(F0(T )− α0Q0(T )). Further, the major trader’s utility in minimizing the
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inventory over the period [0, T ] is modeled by including the penalty
∫ T

0
Q2

0(s)ds in its objective
function, and the utility of avoiding very high execution prices, large trading intensities and
large trading accelerations by including the terms S2

0(T ),
∫ T

0
S2

0(s)ds, ν2
0(T ),

∫ T
0
ν2

0(s)ds and∫ T
0
R0u

2
0(s)ds in the objective function. Therefore, its cost function to be minimized is given by

J0(u0, u−0) = E
[
− ψ0Z0(T )− µ0Q0(T )

(
F0(T )− α0Q0(T )

)
+ ξ0S

2
0(T ) + γ0ν

2
0(T )

+

∫ T

0

(
φ0Q

2
0(s) + δ0S

2
0(s) + θ0ν

2
0(s) +R0u

2
0(s)

)
ds
]
, (3.5)

where ψ0, µ0, α0, ξ0, γ0, φ0, δ0, θ0 and R0 are positive scalars, and u−0 := (u1, ..., uNa+Nl) are
trading strategies of the minor traders. Note that for larger values of φ0 the trader attempts to
liquidate its inventory more quickly.

Minor Liquidator Trader

In a similar way, the objective function to be minimized for a liquidator HFT who wants to
liquidate Nl shares during the time interval [0, T ] is given by

Ji(ui, u−i) = E
[
− ψlZi(T )− µlQi(T )

(
Fi(T )− αlQi(T )

)
+ ξlS

2
i (T ) + γlν

2
i (T )

+

∫ T

0

(
φlQ

2
i (s) + δlS

2
i (s) + θlν

2
i (s) +Rlu

2
i (s)

)
ds
]
, 1 ≤ i ≤ Nl, (3.6)

where ψl, µl, αl, ξl, γl, φl, δl, θl and Rl are positive scalars, and u−i := (u0, u1, ..., ui−1,

ui+1, ..., uNa+Nl). Note that Nl � N0.

Minor Acquirer Trader

The objective for a minor acquirer trader is to buy Na shares over the trading horizon [0, T ],
while it minimizes the execution cost including the cash Zi(T ) paid up to time T , and the
cash must be paid at time T to buy the remaining shares at once at a higher price than the
market’s asset price, i.e. (Na −Qi(T ))

(
Fi(T ) + αa(N −Qi(T ))

)
. It also intends to avoid high

execution prices, large trading intensities and large trading accelerations modeled by including
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ξaS
2
i (T ) + γaν

2
i (T ) +

∫ T
0

(
δaS

2
i (s) + θaν

2
i (s) +Rau

2
i (s)

)
ds in its objective function

Ji(ui, u−i) = E
[
ψaZi(T ) + µa(Na −Qi(T ))

(
Fi(T ) + αa(Na −Qi(T ))

)
+ ξaS

2
i (T )+

γaν
2
i (T ) +

∫ T

0

(
φa(Na −Qi(s))

2 + δaS
2
i (s) + θaν

2
i (s) +Rau

2
i (s)

)
ds
]
, 1 ≤ i ≤ Na, (3.7)

where
∫ T

0
φa(Na − Qi(s))

2ds is to penalize the agent for the remaining shares to be bought up
to T and to expedite the acquisition. The parameters ψa, µa, αa, ξa, γa, φa, δa, θa and Ra are
positive scalars, and u−i := (u0, u1, ..., ui−1, ui+1, ..., uNa+Nl).

3.3 Mean Field Game Formulation of Optimal Execution Problems

In this section we formulate the optimal execution problem in the major minor LQG MFG
framework.

3.3.1 Finite populations

Major Agent

The stochastic optimal control problem for the major trader is modeled as

dν0(t) = u0(t)dt, (3.8)

dQ0(t) = ν0(t)dt+ σQ0 dw
Q
0 (t), (3.9)

dS0(t) =
(
λ0ν0(t) +

λ

N

N∑
i=1

νi(t)
)
dt+ a0u0(t)dt+σdwF0 (t), (3.10)

with the cost function

J0(u0, u−0) = E
[
− µ0Q0(T )

(
S0(T )− a0ν0(T )− α0Q0(T )

)
+ ξ0S0(T )2 + γ0ν

2
0(T )+∫ T

0

(
φ0Q

2
0(s) + ψ0S0(s)ν0(s) + δ0S

2
0(s) + θ0ν

2
0(s) +R0u

2
0(s)

)
ds
]
,

wherein the final cash process in (3.5) was replaced by E[Z0(T )] = −E[
∫ T

0
S0(s)ν0(s)ds], and

the asset midprice F0(T ) were replaced using (3.1).
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As can be seen, the major agent is coupled with the minor agents by the average term λ
N

∑N
i=1 νi

in the execution price dynamics (3.10).
Now let the major agent’s state be denoted by

x0 =

 ν0

Q0

S0

 .
Then the major agent’s cost function will be written in the standard quadratic form

J0(u0) = E
[
‖x0(T )‖2

P̄0
+

∫ T

0

(
‖x0(s)‖2

P0
+ ‖u0(s)‖2

R0

)
ds
]
, (3.11)

with

P̄0 =

 γ0
1
2
µ0a0 0

1
2
µ0a0 µ0α0 −1

2
µ0

0 −1
2
µ0 ξ0

 , P0 =

 θ0 0 1
2
ψ0

0 φ0 0
1
2
ψ0 0 δ0

 , R0 > 0. (3.12)

Minor Liquidator Agent

Similarly, the stochastic optimal control problem for a minor liquidator trader Ai, 1 ≤ i ≤ Nl,
is given by the set of dynamical equations

dνi(t) = ui(t)dt, (3.13)

dQi(t) = νi(t)dt+ σQdwQi (t), (3.14)

dSi(t) =
(
λ0ν0(t) +

λ

N

N∑
i=1

νi(t)
)
dt+ aui(t)dt+ σdwFi (t), (3.15)

The equations above show that a minor agent is coupled with the major agent and other minor
agents through the execution price dynamics (3.15).
Similar to the major trader, we define a generic minor trader’s state vector as

xi =

 νi

Qi

Si

 ,
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and its quadratic cost function where the final cash process in (3.6) has been replaced by
E[Zi(T )] = −E[

∫ T
0
Si(s)νi(s)ds] using (3.4), and the asset midprice Fi(T ) were replaced using

(3.2) is given by

Ji(ui, u−i) = E
[
‖xi(T )‖2

P̄l
+

∫ T

0

(
‖xi(s)‖2

Pl
+ ‖ui(s)‖2

Rl

)
ds
]
, (3.16)

where

P̄l =

 γl
1
2
µla 0

1
2
µla µlαl −1

2
µl

0 −1
2
µl δl

 , Pl =

 θl 0 1
2
ψl

0 φl 0
1
2
ψl 0 δl

 , Rl > 0.

Minor Acquirer Agent

The stochastic optimal control problem for a minor acquirer trader Ai, 1 ≤ i ≤ Na, is given by
the set of dynamical equations

dνi(t) = ui(t)dt, (3.17)

dYi(t) = −νi(t)dt+ σQdwQi (t), (3.18)

dSi(t) =
(
λ0ν0(t) +

λ

N

N∑
i=1

νi(t)
)
dt+ aui(t)dt+ σdwFi (t), (3.19)

where Yi(t) = Na −Qi(t) is the remaining shares at t to be acquired until the end of the trading
horizon. Accordingly, the cost function for acquisition is given by

Ji(ui, u−i) = E
[
ψaZi(T ) + µaYi(T )

(
Fi(T ) + αaYi(T )

)
+ ξaS

2
i (T ) + γaν

2
i (T )+∫ T

0

(
φaYi(s)

2 + δaS
2
i (s) + θaν

2
i (s) +Rau

2
i (s)

)
ds
]
, 1 ≤ i ≤ Na.

We define a generic minor acquirer trader’s state vector as

xi =

 νi

Yi

Si

 ,
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and its quadratic cost function is given by

Ji(ui, u−i) = E
[
‖xi(T )‖2

P̄a
+

∫ T

0

(
‖xi(s)‖2

Pa + ‖ui(s)‖2
Ra

)
ds
]
, (3.20)

where

P̄a =

 γa −1
2
µaa 0

−1
2
µaa µaαa

1
2
µa

0 1
2
µa ξa

 , Pa =

 θa 0 −1
2
ψa

0 φa 0

−1
2
ψa 0 δa

 , Ra > 0.

We denote by w = {wi, 0 ≤ i ≤ N} the set of (N + 1) independent Rr-valued standard
Wiener processes on the probability space (Ω,F , P ), where w is progressively measurable with
respect to the filtration Fw = {Fwt ⊂ F ; t ≥ 0}.

Assumption 3.1. The initial states {xi(0), 0 ≤ i ≤ N} defined on (Ω,F , P ) are identically

distributed, mutually independent and also independent of Fw∞, with Exi(0) = 0. Moreover,

supi E‖xi(0)‖2 ≤ c <∞, 0 ≤ i ≤ N <∞, with c independent of N .

3.3.2 Mean Field Evolution

Minor agents are categorized in two distinct types. The notation Ik is defined as

Ik = {i : θi = k, 1 ≤ i ≤ N}, k , a, l

where the cardinality of Ik is denoted by Nk = |Ik|. Then, πN = (πNa , π
N
l ), πNk = Nk

N
, k , a, l,

denotes the empirical distribution of the parameters (θ1, ..., θN) sampled independently of the
initial conditions and Wiener processes of the agents Ai, 1 ≤ i ≤ N . The first assumption is as
follows.

Assumption 3.2. There exists π such that limN→∞π
N = π = (πa, πl) a.s.

Following the LQG MFG methodology [16], the mean field, x̄, is defined as the L2 limit,
when it exists, of the average of minor agents’ states when the population size goes to infinity

x̄k(t) = lim
Nk→∞

xNk(t) = lim
Nk→∞

1

Nk

Nk∑
i=1

xi(t), q.m., k , a, l (3.21)
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Now, if the control strategy for each minor agent is considered to have the general feedback form

ui = Lk1xi + Lk2x0 +
N∑

j 6=i,j=1

Lk4xj + Lk3, 1 ≤ i ≤ N, k , a, l (3.22)

then the mean field dynamics can be obtained by substituting (3.22) in the minor agents’ dynamics
(3.13)-(3.15), (3.17)-(3.19) and taking the average and then its L2 limit as Nk →∞.
The dynamical equation of the mean field x̄ = [(x̄a)T , (x̄l)T ]T for the optimal execution problem
can be written as

dx̄ = Āx̄dt+ Ḡx0dt+ m̄dt, (3.23)

where

Ā =

[
Āa

Āl

]
, Ḡ =

[
Ḡa

Ḡl

]
, m̄ =

[
m̄a

m̄l

]
, (3.24)

which can be determined from the consistency equations.

3.3.3 Infinite Populations

Following the mean field game methodology with a major agent [42], the optimal execution
problem is first solved in the infinite population case where the average term in the finite
population dynamics and cost function of each agent is replaced with its infinite population limit,
i.e. the mean field. Then specializing to MFG linear systems [16], the major agent’s state is
extended with the mean field, while the minor agent’s state is extended with the mean field
and the major agent’s state; this yields LQG problems for each trader linked only through the
mean field and the major agent’s state. Finally the infinite population best response strategies are
applied to the finite population system which yields an ε-Nash equilibria (see Theorem 3.1).

In this chapter we address the optimal execution problem in the MFG framework when the
traders have, first, complete observations and, second, partial observations of their state and the
major trader’s state in Sections 3.4 and 3.5, respectively.

The stochastic optimal control problem for each agent in the infinite population case is given
below.
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Major Liquidator Agent

The major trader’s stochastic optimal control problem in the infinite population case is given by

dx0 = A0x0dt+B0u0dt+ Eπ
0 x̄dt+D0dw0, (3.25)

where Eπ
0 = π ⊗ E0 , [πaE0, πlE0], and

A0 =

 0 0 0

1 0 0

λ0 0 0

 , B0 =

 1

0

a0

 , E0 =

 0 0 0

0 0 0

λ 0 0

 , D0 =

 0 0

σQ0 0

0 σ

 , w0 =

[
wQ0

wF0

]
,

together with the cost function (3.11).

Minor Liquidator Agent

The stochastic optimal control problem for a minor liquidator agent in the infinite population case
is given by

dxi = Alxidt+ Elx̄dt+Bluidt+Glx0dt+Dldwi, 1 ≤ i ≤ Nl, (3.26)

with Eπ
l = π ⊗ El , [πaEl, πlEl], and the matrices

Al =

 0 0 0

1 0 0

0 0 0

 , El =

 0 0 0

0 0 0

λ 0 0

 , Bl =

 1

0

a

 ,

Gl =

 0 0 0

0 0 0

λ0 0 0

 , Dl =

 0 0

σQ 0

0 σ

 , wi =

[
wQi
wFi

]
,

together with the cost function (3.16).
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Minor Acquirer Agent

The stochastic optimal control problem for an acquirer agent in the infinite population case is
given by

dxi = Aaxidt+ Eax̄dt+Bauidt+Gax0dt+Dadwi, 1 ≤ i ≤ Na, (3.27)

where Eπ
a = π ⊗ Ea , [πaEa, πlEa], and

Aa =

 0 0 0

−1 0 0

0 0 0

 , Ea =

 0 0 0

0 0 0

λ 0 0

 , Ba =

 1

0

a

 ,

Ga =

 0 0 0

0 0 0

λ0 0 0

 , Da =

 0 0

σQ 0

0 σ

 , wi =

[
wQi
wFi

]
,

together with the cost function (3.20).

3.4 Completely Observed Optimal Execution Problems

In the completely observed (CO) optimal execution problem it is assumed that the major trader
completely observes its own state, and each generic minor trader completely observes its own
state and the major trader’s state. In the following we introduce the admissible sets of controls
for each agent. The null set augmented σ-field Fi,t, 1 ≤ i ≤ N , is defined to be the increasing
family of null set augmented σ-fields generated by (xi(τ); 0 ≤ τ ≤ t), and by definition F0,t is
the increasing family of σ-fields generated by (x0(τ); 0 ≤ τ ≤ t). FN

t is the increasing family of
σ-fields generated by the set {xj(τ), x0(τ); 0 ≤ τ ≤ t, 1 ≤ j ≤ N}. The set of control actions
UN,Lg consists of linear feedback control actions adapted to {FN

t , t ≥ 0}, 1 ≤ N <∞.

Assumption 3.3 (Major Agent σ-Fields and Linear Controls). For the major agent A0 the set

of control inputs UL0 is defined to be the collection of linear feedback controls adapted to the

filteration {F0,t, t ≥ 0}.

Assumption 3.4 (Minor Agent σ-Fields and Linear Controls). For the minor agent Ai, 1 ≤ i ≤
N , the set of control inputs ULi is defined to be the collection of linear feedback controls adapted

to the filtration {Fi,t, t ≥ 0}, 1 ≤ i ≤ N .
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The best response MFG trading strategies which are obtained later in this section yield an
ε-Nash equilibria for the market by the following theorem.

Theorem 3.1 (ε-Nash Equilibria for CO MM-MF Systems). Subject to Assumptions 3.1-3.5, the

system equations (3.8)-(3.20) together with the mean field equations (3.38) generate the set of

control laws UNMF , {u◦i ; 0 ≤ i ≤ N}, 1 ≤ N <∞, given by (3.29) and (3.34) such that

(i) All agent systems Ai, 0 ≤ i ≤ N , are second order stable.

(ii) {UNMF ; 1 ≤ N < ∞} yields an ε-Nash equilibrium for all ε, i.e. for all ε > 0, there exists

N(ε) such that for all N ≥ N(ε);

Js,Ni (u◦i , u
◦
−i)− ε ≤ inf

ui∈UN,Lg

Js,Ni (ui, u
◦
−i) ≤ Js,Ni (u◦i , u

◦
−i).

After applying the mean field methodology to decouple the agents, the problem of obtaining
the best response trading strategy is transformed to a stochastic indefinite LQ problem that is
solved for using the Theorem 2.1 which is a restriction to the constant matrix parameter case of
the general result in [36]. Henceforth we discuss the stochastic optimal control problem for the
major trader, and a generic minor trader.

3.4.1 Major Liquidator Agent

The dynamics for the major agent’s extended state xex0 = [xT0 , x̄
T ]T in the infinite population is

given by[
dx0

dx̄

]
=

[
A0 Eπ

0

Ḡ Ā

][
x0

x̄

]
dt+

[
03×1

m̄

]
dt+

[
B0

03×1

]
u0(t)dt+

[
D0 0

0 0

][
dw0

0

]
.

(3.28)

Accordingly, the following matrices are defined

A0 =

[
A0 Eπ

0

Ḡ Ā

]
, M0 =

[
03×1

m̄

]
, B0 =

[
B0

03×1

]
, D0 =

[
D0 0

0 0

]
.
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Consequently, using Theorem 2.1, the infinite population best response control is given by

u◦0(t) = −R−1
0 BT0 Π0

(
xT0 , x̄

T
)T
, (3.29)

−dΠ0

dt
=Π0A0 + AT

0 Π0 − Π0B0R
−1
0 BT0 Π0 + P0, Π0(T ) = P̄0,

where in the above Riccati equation

P0 = [I3×3, 03×3]TP0[I3×3, 03×3], (3.30)

P̄0 = [I3×3, 03×3]T P̄0[I3×3, 03×3]. (3.31)

3.4.2 Minor Acquirer/Liquidator Agent

For brevity, the notation (.)a/l is used in the rest of this chapter to denote the matrices and
parameters correspoding to a generic acquirer or a liquidator agent, respectively. Accordingly,
a generic minor (acquirer/liquidator) agent Ai’s extended dynamics with the extended state
xexi = [xTi , x

T
0 , x̄

T ]T is

 dxi

dx0

dx̄

 =

[
Aa/l

[
Ga/l Eπ

a/l

]
06×3 A0

] xi

x0

x̄

 dt+

[
03×1

M0

]
dt+

[
03×1

B0

]
u0(t)dt

+

[
Ba/l

06×1

]
ui(t)dt+

[
Da/l 03×6

06×3 D0

] dwi

dw0

0

 . (3.32)

Substituting the major agent’s control action (3.29) into (3.32) yields

dxexi = Aa/lx
ex
i dt+ Ma/ldt+ Ba/ldt+ Da/ldWi, (3.33)

where

Aa/l =

[
Aa/l

[
Ga/l Eπ

a/l

]
06×3 A0 − B0R

−1
0 BT0 Π0

]
, Ma/l =

[
03×1,

M0

]
,
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Ba/l =

[
Ba/l

06×1

]
, Da/l =

[
Da/l 03×6

06×3 D0

]
, Wi =

 wi

w0

0

 .
We utilize Theorem 2.1 again to obtain the best response control for a generic minor agent as

u◦i (t) = −R−1
a/lB

T
a/lΠa/l

(
xTi , x

T
0 , x̄

T
)T
, (3.34)

where Πa/l is calculated by the following Riccati equation

−
dΠa/l

dt
= ΠlAa/l + AT

a/lΠa/l − Πa/lBa/lR−1
a/lB

T
a/lΠa/l + Pa/l, Πa/l(T ) = P̄a/l,

with the matrices

Pa/l = [I3×3, 03×6]TPa/l[I3×3, 03×6],

P̄a/l = [I3×3, 03×6]T P̄a/l[I3×3, 03×6].

3.4.3 Mean Field Consistency Equations

The closed loop trading dynamics of a generic minor agent Ai, 1 ≤ i ≤ N applying (3.34) is
given by

dxi =
(
Aa/lxi +Eπ

a/lx̄−Ba/lR
−1
k BTa/l(Πa/l[(xi)

T , (x0)T , x̄T ]T ) +Ga/lx0

)
dt+Da/ldwi. (3.35)

Let us define

Πa/l =

 Πa/l,11 Πa/l,12 Πa/l,13

Πa/l,21 Πa/l,22 Πa/l,23

Πa/l,31 Πa/l,32 Πa/l,33

 ,
ea = [In, 0n×n], el = [0n×n, In]. (3.36)
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If we average out (3.35) over subpopulation Aa/l, and then take the L2 limit as the number Na/l

of agents within the subpopulation goes to infinity ( i.e. Na/l →∞), we get

dx̄a/l =
(
Eπ
a/l + [Aa/l −Ba/lR

−1
a/lB

T
a/lΠa/l,11]ea/l −Ba/lR

−1
a/lB

T
a/lΠa/l,13

)
x̄dt

+ (Ga/l −Ba/lR
−1
a/lB

T
k Πa/l,12)x0dt. (3.37)

If we equate (3.37) with (3.23), then by consistency requirement a compact description of the
major minor mean field equations determining Ā, Ḡ, m̄ is given by

Π̇0 + Π0A0 + AT
0 Π0 − Π0B0R

−1
0 BT0 Π0 + P0 = 0, Π0(T ) = P̄0,

Π̇a/l + Πa/lAa/l + AT
a/lΠa/l − Πa/lBa/lR−1

a/lB
T
a/lΠa/l + Pa/l = 0, Πa/l(T ) = P̄a/l,

Āa/l = Eπ
a/l + [Aa/l −Ba/lR

−1
a/lB

T
a/lΠa/l,11]ea/l −Ba/lR

−1
a/lB

T
a/lΠa/l,13,

Ḡa/l = Ga/l −Ba/lR
−1
a/lB

T
a/lΠa/l,12,

m̄a/l = 0. (3.38)

Assumption 3.5. There exists a stabilizing solution Π0, Πk, Āa/l, Ḡa/l to the major-minor mean

field equations (3.38) in the sense that the matrices

A0 − B0R
−1
0 BT0 Π0,

Aa/l − Ba/lR−1BTa/lΠa/l,

are asymptotically stable.

3.5 Partially Observed Optimal Execution Problems

In this section it is assumed that the major trader has partial observations of its own state. This can
happen for example in the foreign exchange (Forex) market, where an electronic communication
network (ECN) Forex broker as a major agent trades on behalf of banks, high net worth (HNW)
traders, and other brokers, and hence needs to estimate the trades, amount of exchanges and
prices of each agent reqularly. Fig 3.1 depicts this scenario.

It is also assumed that each minor trader has partial observations of its own state and the
major trader’s state. A justification for the partial observations assumption on the minor agents’
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Central Bank

ECN Forex Broker

BanksHNW traders Brokers

Orders Liquidity and
interbank rates

Figure 3.1: ECN broker (major trader) in the Forex market

own state is similar to that of the major trader but at a smaller scale. However one may also argue
that the minor agents have complete observations of their states because they carry out smaller
trades which they manage individually. We note that the latter special case may be obtained from
the former more general one by setting the corresponding part of the filter equations to zero; this
will not cause any singularities because the observability and noise controllability conditions will
still hold.

We now follow the general development in [31,33] for PO MM LQG MFG systems to address
the partially observed optimal execution problem for the major trader and a generic minor trader.

3.5.1 Observation Processes

The major agent’s partial observations y0 is given by

dy0 = L0[xT0 , (x(N))T ]Tdt+R
1
2
v0dv0, (3.39)

where v0 is a standard Wiener process in R` with E[v0v
T
0 ] = Rv0 and matrix L0 is given by

L0 =
[
l10 l20

]
, (3.40)
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with l10, l
2
0 ∈ R`×n. Now, assume the partial observations for a minor agent Ai, 1 ≤ i ≤ N , of

type k , a, l, is given by

dyi = La/l[x
T
i , x

T
0 , (x(N))T ]Tdt+R

1
2
v dvi, (3.41)

where {vi, 1 ≤ i ≤ N} denote N independent standard Wiener processes in R` with E[viv
T
i ] =

Rv, and matrix La/l is defined as in

La/l =
[
l1a/l l2a/l l3a/l

]
, (3.42)

where l1a/l, l
2
a/l, l

3
a/l ∈ R`×n.

We note that in contrast to the analysis of the partially observed major agent case in [21],
where the major agent has complete observations on its own state, in the case studied in this
chapter the minor and major agents are equipped with partial observations on the empirical (i.e.
finite population) mean field, denoted x(N), and the limiting (i.e. infinite population) mean field,
denoted x̄. This turns out to be necessary in order that detectability conditions may be imposed
which imply the convergence of the solutions to the associated filter Riccati equations to positive
definite limits which necessarily yield asymptotic stable filters.

Control σ-Fields

The family of partial observation information sets Fy0 is defined to be the increasing family of σ-
fields of partial observations {Fy0,t; 0 ≤ t} generated by the major agentA0’s partial observations
(y0(τ); 0 ≤ τ ≤ t) on its own state as given in (3.39).

Assumption 3.6 (Major Agent σ-Fields and Linear Controls). For the major agent A0 the set

of control inputs UL0,y is defined to be the collection of linear feedback controls adapted to the

increasing σ-fields of partial observations {Fy0,t, t ≥ 0}.

We recall that the family of partial observation information sets Fyi , 1 ≤ i ≤ N , is defined
to be the increasing σ-fields {Fyi,t; 0 ≤ t < ∞} generated by the minor agent Ai’s partial
observations (yi(τ); 0 ≤ τ ≤ t), on its own state and the major agent’s state, as given in (3.41).

Assumption 3.7 (Minor Agent σ-Fields and Linear Controls). For each minor agent Ai, 1 ≤
i ≤ N , the set of control inputs UN,Li,y is defined to be the collection of linear feedback controls

adapted to the increasing σ-fields of partial observations {Fyi,t; t ≥ 0}.
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Moreover, the set of control inputs UN,Ly is defined to be the collection of linear feedback
control laws adapted to FN,yt = {

∨N
i=0F

y
i }.

3.5.2 Mean Field Evolution

If we consider for each minor agent Ai of type k , a, l, a uniform (with respect to i) feedback
control ua/li ∈ Ui,L ⊂ Ui, then it can be shown that the L2 limit x̄ of xN , i.e. the mean field
satisfies

dx̄ = Āx̄dt+ Ḡx0dt+ H̄x̂0|Fy0 dt+ L̄ˆ̄x|Fy0 dt+ J̄ ¯̃xexdt+ m̄dt, (3.43)

where x̂0|Fy0 and ˆ̄x|Fy0 , respectively, denote the conditional expectation of x0 and x̄ with respect
to the observation σ-field Fy0,t of the major agent A0 at the instant t ≥ 0, i.e.

x̂0|Fy0 , E|Fy0 x0 = E{x0|Fy0 }, (3.44)

ˆ̄x|Fy0 , E|Fy0 x̄ = E{x̄|Fy0 }. (3.45)

Moreover, (¯̃xex)T = [(¯̃x1,ex)T , . . . , (¯̃xK,ex)T ], where we denote by ¯̃xk,ex the average of the
estimation errors of the minor agents of subpopulation k as Nk → ∞, and which satisfies
the dynamical equation (3.67). Finally, the matrices Ā, Ḡ, H̄ , L̄, m̄, and J̄ in (3.43) may be
represented as

Ā =

[
Āa

Āl

]
, Ḡ =

[
Ḡa

Ḡl

]
, H̄ =

[
H̄a

H̄l

]
,

L̄ =

[
L̄a

L̄l

]
, m̄ =

[
m̄a

m̄l

]
, J̄ =

[
J̄a 0

0 J̄l

]
. (3.46)

and are to be solved for in the tracking solution. By abuse of language, the mean value of the
system’s Gaussian mean field given by the state process x̄ = [x̄a, x̄l] shall also be termed the
system’s mean field (The derivation of the properties above may performed using the methods of
[21], [19] and [16]).
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3.5.3 Major Liquidator Agent: Infinite Population

The major agent’s observation process in the infinite population is given by

dy0 = L0[xT0 , x̄
T ]Tdt+ σv0dv0, (3.47)

L0 =
[
l10 l̄20

]
, (3.48)

l̄20 = π ⊗ l20 , [πal
2
0, πll

2
0]. (3.49)

where L0 is a constant matrix with appropriate dimension. Then the corresponding Kalman filter
equation to generate the estimates of the major agent’s state and the mean field based on its own
observations are, respectively, given by

dx̂0|Fy0 = A0x̂0|Fy0 dt+B0û0dt+K1
0dν0, (3.50)

and

dˆ̄x|Fy0 = (Ḡ+ H̄)x̂0|Fy0 dt+ (Ā+ L̄)ˆ̄x|Fy0 dt+ m̄dt+K2
0dν0, (3.51)

where ˆ̃̄x|Fy0 = 0 is used (see (3.73)). Moreover, m̄ is a deterministic process, K1
0 and K2

0 are
the Kalman filter gains, and ν0 is the innovation process. Henceforth, the Kalman filter which
generates the estimates of the major agent’s extended state is given by

dx̂ex0|Fy0
= A0x̂

ex
0|Fy0

dt+M0dt+ B0û0|Fy0 dt+K0(t)[dy0 − L0x̂0|Fy0 dt], (3.52)

where

A0 =

[
A0 0n×nK

Ḡ+ H̄ Ā+ L̄

]
, B0 =

[
B0

0nK×m

]
,

M0 =

[
0n×1

m̄

]
, D0 =

[
D0 0n×rK

0nK×r 0nK×rK

]
. (3.53)
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Moreover, the corresponding Kalman filter gain K0 = [(K1
0)T , (K2

0)T ]T , and the innovation
process ν0 are given by

K0 = V0LT0R−1
v0
, (3.54)

dν0 = dy0 − L0

[
x̂T0|Fy0

, ˆ̄xT|Fy0

]T
dt, (3.55)

where Rv0 = σv0σ
T
v0

, and V0(t) is the solution to the corresponding Riccati equation

V̇0(t) = A0V0(t) + V0(t)AT
0 −K0(t)Rv0K0(t)T + J0V̄ (t)JT0 +Qw0 , (3.56)

where Qw0 = D0D
T
0 , JT0 =

[
0(3nK+2nK2)×n, J̄

T
]
, V̄ (t) = E

[
¯̃xex(t)

(
¯̃xex(t)

)T ] satisfies (3.69),
and V (0) = E

[(
xex0 (0)− (x̂ex0 (0))|Fy0

)(
xex0 (0)− (x̂ex0 (0))|Fy0

)T ].
Following the methodology in Chapter 2 ([31, 33]), the cost function (3.11) can be

decomposed as

J0 = E
[
‖x̂0|Fy0 (T )‖2

P̄0
+

∫ T

0

(
‖x̂0|Fy0 (s)‖2

P0
+ ‖u0(s)‖2

R0

)
ds

+ ‖x0(T )− x̂0|Fyi (T )‖2
P̄0

+

∫ T

0

(
‖x0(s)− x̂0|Fy0 (s)‖2

P0

)
ds
]
,

and thence employing the Separation Principle of LQG stochastic control the corresponding
infinite population best response control action is given by

û◦0 = −R−1
0 BT

0

[
Π0

(
x̂T0|Fy0

, ˆ̄xT|Fy0

)T ]
. (3.57)

3.5.4 Minor (Acquirer/Liquidator) Agent

The extended state shall be denoted by

Xi = [xTi , x
T
0 , x̄

T , x̂T0|Fy0
, ˆ̄xT|Fy0

]T , (3.58)

then the minor agent’s observation process in the infinite population is given by

dyi(t) = La/l[xTi , xT0 , x̄T , x̂T0|Fy0 , ˆ̄xT0|Fy0
]Tdt+ σvidvi, (3.59)
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with the constant matrix La/l given by

La/l =
[
l1a/l l2a/l l̄3a/l 0n×(n+nK)

]
, (3.60)

l̄3a/l = π ⊗ l3a/l , [πal
3
a/l, πll

3
a/l]. (3.61)

Then the extended dynamics of the minor agent is given by


dxi

dx0

dx̄

dx̂0|Fy0
dˆ̄x|Fy0

 =


Aa/l

[
Ga/l Ea/l

]
03×6

06×3

[
A0 03×6

Ḡ Ā

] [
−B0R

−1
0 BT0 Π0[

H̄ L̄
] ]

06×3 K0L0 A0 − B0R
−1
0 BT0 Π0 −K0L0




xi

x0

x̄

x̂0|Fy0
ˆ̄x|Fy0

 dt+
 03×1

M0

M0

 dt

+

[
Ba/l
06×1

]
ui(t)dt+

[
Da/l 0

0 K0

]
dWi

dW0

0rK×1

dv0

 , (3.62)

or equivalently

dXi = Aa/lXidt+ Ma/ldt+ Ba/luidt+ Σa/l

[
dW T

i , dW
T
0 , 01×rK , dv0

]T
.

The Kalman filter which generates the estimates of the minor (liquidator/acquirer) agent’s states
is

dX̂i|Fyi = Aa/lX̂i|Fyi dt+ Ma/ldt+ Ba/lûi|Fyi dt+Ka/l(t)
[
dyi − La/lX̂i|Fyi dt

]
, (3.63)

where the filter gain is given as

Ka/l(t) = Va/l(t)LTa/lR−1
vi
, (3.64)

with Rvi = σviσ
T
vi

, and where ˆ̃̄xex|Fyi
= 0 (see (3.73)) is used. The corresponding Riccati equation

is

V̇a/l(t) = Aa/lVa/l(t) + Va/l(t)A
T
a/l −Ka/l(t)RvKa/l(t)

T + JV̄ (t)JT +Qa/l
w , (3.65)
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where Qa/l
w = Σa/lΣ

T
a/l, V̄ (t) = E

[
¯̃xex(t)

(
¯̃xex(t)

)T ] satisfies (3.69), and Vk(0) = E
[(
xexi (0) −

(x̂exi (0))|Fyi
)(
xexi (0)− (x̂exi (0))|Fyi

)T ].
Then the same procedure as in Chapter 2 ([31,33]) can be used to decompose the cost function

(3.16) or (3.20) as

Ji =E
[
‖x̂i|Fyi (T )‖2

P̄a/l
+

∫ T

0

(
‖x̂i|Fyi (s)‖2

Pa/l
+ ‖ui(s)‖2

Ra/l

)
ds

+ ‖xi(T )− x̂i|Fyi (T )‖2
P̄a/l

+

∫ T

0

‖xi(s)− x̂i|Fyi (s)‖2
Pa/l

ds
]
.

So employing the Separation Principle the corresponding infinite population best response control
for a generic minor trader is seen to be

û◦i = −R−1
a/lB

T
a/l

[
Πa/l

(
x̂Ti|Fyi

, x̂T0|Fyi
, ˆ̄xT|Fyi

, (x̂0|Fy0 )T|Fyi
, (ˆ̄x|Fy0 )T|Fyi

)T ]
. (3.66)

From Chapter 2, (¯̃xex)T = [(¯̃xa,ex)T , (¯̃xl,ex)T ] satisfies

d¯̃xex =

[
(Aa −KaLa)ẽa + J

(Al −KlLl)ẽb + J

]
¯̃xexdt+

[
−Σa

−Σb

]
0r×1

dW0

0rK×1

dv0,

 , (3.67)

or equivalently in the compact form

d¯̃xex = Ã¯̃xexdt+ D̃[01×r, dw
T
0 , 01×rK , dv

T
0 ]T . (3.68)

Subsequently, V̄ (t) = E
[
¯̃xex(t)

(
¯̃xex(t)

)T ] satisfies

˙̄V = ÃV̄ + V̄ ÃT + Q̃Q̃T , (3.69)
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where

Q̃Q̃T = 1̃T

 0n×n

Qw0

K0Rv0K
T
0

 1̃, (3.70)

1̃ = [I21, I21]. (3.71)

To guarantee the convergence of the solution to the corresponding Lyapunov equation to a unique,
symmetric and positive definite solution, we assume:

Assumption 3.8. The pair [Ã, Q̃] is controllable.

The solution to (3.68) is given by

¯̃xex(t) = Φ(t, 0)¯̃xex(0) +

∫ t

0

Φ(t, τ)D̃[01×r, dw
T
0 , 01×rK , dv

T
0 ]Tdτ, (3.72)

where Φ(t, τ) = exp
(
Ã(t − τ)

)
. Then the conditional expectation of ¯̃xex(t) with respect to

Fyi , 0 ≤ i ≤ N , i.e. ˆ̃̄xex|Fyi
(t), is given by

ˆ̃̄xex|Fyi
(t) , E[¯̃xex(t)|Fyi ]

= Φ(t, 0)E[¯̃xex(0)|Fyi ] + E
[ ∫ t

0

Φ(t, τ)D̃


0r×1

dw0

0nr×1

dv0

 dτ
∣∣∣Fyi ] = 0, (3.73)

where the first term is zero due to Assumption 3.1, and the second term is zero due to the
independence of {wi, 0 ≤ i ≤ N} and {vi, 0 ≤ i ≤ N}.

Finally the set of mean field consistency equations (see Chapter 2) is given by

−Π̇0 = Π0A0 + AT
0 Π0 − Π0B0R

−1
0 BT

0 Π0 +Qπ
0 ,

−Π̇a/l = Πa/lAa/l + AT
a/lΠa/l − Πa/lBa/lR

−1BT
a/lΠa/l +Qπ,

Āa/l = [Aa/l −Ba/lR
−1BT

a/lΠa/l,11]ea/l −Ba/lR
−1BT

a/lΠa/l,13,

Ḡa/l = G−Ba/lR
−1BT

a/lΠa/l,12,

H̄a/l = −Ba/lR
−1BT

a/lΠa/l,14,
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L̄a/l = −Ba/lR
−1BT

a/lΠa/l,15,

J̄a/l = −Ba/lR
−1BTa/lΠa/l. (3.74)

which forms a fixed point problem which should be solved by each agent to compute the matrices
in the mean field equation (3.43).

Assumption 3.9. There exists a stabilizing solution Π0, Πa/l, Āa/l, Ḡa/l, H̄a/l, L̄a/l to the Major-

Minor MF equations (3.74) in the sense that the matrices

A0 −B0R
−1
0 BT

0 Π0,

Aa/l −Ba/lR
−1BT

a/lΠa/l,

are asymptotically stable.

Moreover, one may show (see [31,33]) that the infinite population best response control laws
applied to a finite population system yield the following ε-Nash equilibrium.

Theorem 3.2 (ε-Nash Equilibria for PO MM-MF Systems). Subject to Assumptions 3.1-3.2, and

Assumptions 3.6-3.9, the KF-MF state estimation scheme (3.52)-(3.56) and (3.63)-(3.65) together

with the MM-MFG equation scheme (3.74) generate the set of control laws ÛNMF , {û◦i ; 0 ≤ i ≤
N}, 1 ≤ N <∞, given by

û◦0 = −R−1
0 BT0 Π0(x̂T0|Fy0

, ˆ̄xT|Fy0
)T ,

û◦i = −R−1BTΠ(x̂Ti|Fyi
, x̂T0|Fyi

, ˆ̄xT|Fyi
, (x̂0|Fy0 )T|Fyi

, (ˆ̄x|Fy0 )T|Fyi
)T , 1 ≤ i ≤ N

such that

(i) All agent systems Ai, 0 ≤ i ≤ N , are second order stable.

(ii) {ÛNMF ; 1 ≤ N < ∞} yields an ε-Nash equilibrium for all ε, i.e. for all ε > 0, there exists

N(ε) such that for all N ≥ N(ε);

Js,Ni (û◦i , û
◦
−i)− ε ≤ inf

ui∈UN,Ly

Js,Ni (ui, û
◦
−i) ≤ Js,Ni (û◦i , û

◦
−i).
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3.6 Simulations

In the numerical experiments it is assumed that the trading action takes place within T = 1.
The temporary impact strength of the major agent’s trading and a generic minor agent’s trading
on the market are a0 = a = 5.43 × 10−6, while their permanent impact strengths are taken
to be λ0 = λ = 2 × 10−8. The diffusion coefficients in the trading dynamics are selected as
σQ0 = 0.05, and σQi = 0.02. The weights in the cost function for the major trader are: ψ0 = 100,
µ0 = 100, α0 = 5a0 × 105, φ0 = 10−6a0, δ0 = 1/(2a0), ξ0 = 1/(2α0), θ0 = 1/(2δ0), γ0 = 10;
and those of a generic minor (liquidator/acquirer) trader are: ψl = ψa = 1, µl = µa = 1000,
αl = αa = 5a× 105, φl = φa = 10−1a, ξl = 1/(2αl), ξa = 1/(2αa), δl = 1/(2al), δa = 1/(2aa),
θl = 1/(2δl), θa = 1/(2δa), γl = γa = 10. Furthermore, the market volatility is σ = 0.6565, the
initial asset price is taken to be F0(0) = Fi(0) = $35, and the initial inventory stock of the major
trader to be liquidated is set to Q0(0) = 5 × 106, while the minor liquidator HFT aims to sell
Qi(0) = 5000 shares and the acquirer HFT wishes to buy Qi(0) = 5000 shares. In the estimation
part, the measurement noise standard deviation for the major trader is σ0 = 0.05, and for the HFT
is σ = 0.05.

The resulting ε-Nash equilibria trajectories of the major agent and generic acquirer/liquidator
HFTs for the complete observation case are displayed in Figure 3.2, and the corresponding
estimated trajectories in the partial observation case are depicted in Figure 3.3. As can be seen in
Figure 3.2, the major trader liquidates its shares gradually during the trading interval and comes
up with 28520 shares at the end of trading horizon. The minor acquirer buys 5004 shares and
the minor liquidator sells 4974 shares during the trading horizon T . Moreover, in the partial
observation case shown in Fig. 3.3, the estimated trajectories generated by the Kalman filter
closely follow the real ones.

3.7 Conclusions

In this chapter, an execution problem in finance with major and minor traders having liquidation
or acquisition objectives was formulated and addressed in the mean field game framework by
application of the Separation Principle of stochastic optimal control theory extended to indefinite
partially observed LQG problems. Our future work will include parameter estimation of dynamic
models of real market data employing methodologies including those in [26].
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Figure 3.2: The trading rate, inventory, and execution price trajectories of (a) the major liquidator
trader, (b) a generic minor liquidator, and (c) a generic minor acquirer trader in the market
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Figure 3.3: The trading rate, inventory, and execution price trajectories and the corresponding
estimated trajectories based on its own observations of (a) the major liquidator trader, (b) a
generic minor liquidator, and (c) a generic minor acquirer trader in the market
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Part II

Major Minor LQG Hybrid Mean Field
Game Systems
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Chapter 4

A Hybrid Optimal Control Approach to
LQG Mean Field Games with Switching
and Stopping Strategies

4.1 Introduction

In several situations in stochastic dynamic games, such as in mathematical finance [43], agents
wish to find the best time at which to enter or exit a given strategy. In order to determine
the optimal stopping time strategies together with best response policies for the agents one is
required to invoke the necessary optimality conditions of stochastic hybrid optimal control theory
[44–47]. These optimality conditions are an extension of deterministic optimal control theory
[48–53] for systems interacting with stochastic diffusions. In [45], in particular, the Stochastic
Hybrid Minimum Principle (SHMP) is established for a general class of stochastic hybrid
systems with both autonomous and controlled switchings and jumps possibly accompanied by
dimension changes. Given the computational difficulty of the generally nonlinear forward-
backward stochastic differential equations (FB-SDE) and the associated boundary conditions in
the SHMP, a class of linear quadratic Gaussian (LQG) hybrid optimal control (HOC) problems
are presented in [44] for which the corresponding Riccati equations are independent from
realizations of stochastic diffusion terms.

The first combination of MFG theory and HOC theory appeared in [43] (see Chapter 5) in a
non-cooperative game formulation of the financial market where high frequency trading (HFT)
minor agents may leave the market before the final time. The best response policies for the
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agents are further shown to yield an ε-Nash equilibrium for the the market. In this chapter, we
further extend the results and develop a hybrid systems MFG (HS-MFG) framework for a general
class of LQG mean field game systems with a major agent permitted to switch between different
dynamics and several subpopulations of minor agents provided with the option to stop at some
optimal time. Each agent has stochastic linear dynamics with quadratic costs, and the agents are
coupled in their dynamics by the average state of minor agents. Since the governing stochastic
differential equations for the system change with the switching of the major agent or cessation
of one or both subpopulations of minor agents, a hybrid systems formulation of the problem is
presented with indexing these modes by discrete states. Optimal switching time and stopping
time strategies together with best response control actions for, respectively, the major agent and
all minor agents are established with respect to their individual cost criteria by an application of
LQG HOC theory. The results of this chapter appear in [54].

We note that the following terms are used interchangeably throughout the chapter: optimal
and best response, quit and stop.

The chapter organization is as follows. Section 4.2 presents LQG hybrid-MFG problems
where the class of the problems under study is described briefly in Section 4.2.1 and it is
argued that due to the presence and interactions of discrete and continuous states and dynamics,
one needs to formulate the problem within hybrid optimal control framework. Discrete states
and transitions are introduced in Section 4.2.2 and the underlying continuous dynamics and
costs in the finite population case are presented in Section 4.2.3. Then, Section 4.3 presents
hybrid-MFG approach, where following the MFG methodology, with the introduction of the
mean field’s hybrid evolution in Section 4.3.1, major agent’s and minor agents’ extended hybrid
optimal control problems are, respectively, formulated in Sections 4.3.2 and 4.3.3, and best
response policies for the infinite population case are determined. Then, subject to the consistency
conditions in Section 4.3.4, the existence and uniqueness of the Nash equilibrium for the infinite
population system, and ε-Nash equilibrium for the finite population system are established where
the latter is obtained by the implementation of the infinite population best response strategies.
Next, Section 4.4 depicts simulation results. Finally, Section 4.5 presents concluding remarks.
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4.2 Major Minor LQG Hybrid Mean Field Game Systems

4.2.1 Problem Description

It is assumed that there exist one major agent and N minor agents interacting with each other
through the mean field coupling in their dynamics over the time interval [0, T ]. Two types of
minor agents are considered: type Aa with the population of Na and type Ab with the population
of Nb, such that Na + Nb = N . The dynamics of the major agent and a generic minor agent
are described by the linear time evolution of their states and a quadratic performance function.
However, the two populations of minor agents have different linear dynamics and quadratic
performance objectives. We study the interaction of agents over the interval [0, T ], where the
major agent A0 is permitted to switch from one set of dynamics to another at time t0s if optimal,
while a generic minor agent Ai, 1 ≤ i ≤ N, is permitted to stop at an optimal time tis. With
abuse of notation, the superscript k in Ak0, k = 1, 2, denotes that the major agent is subject to
the dynamics k, and in Aki , 1 ≤ i ≤ N, k , a, b, denotes that minor agent Ai, 1 ≤ i ≤ N is
of type k, k , a, b. As it will be discussed in Section 4.2.2, the optimal switching or stopping
time policy for each agent is trajectory and state independent, and depends only on its dynamical
parameters (i.e. the agent’s type). Since the dynamical parameters for all minor agents in their
respective types are the same, it follows that the stopping times are the same for all agents of
each subpopulation. The distinct nature of the switching (stopping) events, together with the
continuous evolution of the state processes between switchings, result in the stochastic hybrid
form of the problem analyzed in this chapter. Moreover, the fact that the minor agents are
modeled as members of large populations gives rise to our use of the LQG mean field games
framework. The system has several distinct combinatoric alternatives; this is because there are
various distinct sequences wherein one minor population or another drops out first, or the major
agent switches to one particular discrete state before or after a minor agent stopping event. It is to
be emphasized that the discrete state sequence that actually occurs for any given system depends
upon the solution of the complete (initial to terminal) MFG equations for the system, and in
particular is not prescribed. We note that a key condition which yields the collective switching
of the entire subpopulations is given by (4.92) and while this is reasonable in a class of LQG
problems, the corresponding condition is most unlikely to hold in a nonlinear framework.
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4.2.2 Discrete State Association

In order to present the dynamics of the system in the stochastic hybrid systems framework of
[44, 45], the discrete states qk

0• are assigned (see Figure 4.1) where k , a, b refers to the mode
in the dynamics of the major agent and • represents the active populations of minor agents. For
instance, the discrete state q1

0ab
indicates that the major agent is subject to its first dynamics and

both subpopulations Aa and Ab are present, and the discrete state q2
0a

indicates that the major
agent is subject to its second dynamics, subpopulation Aa is present and subpopulation Ab has
already quit the system. Furthermore, in order to refer to the temporal mode of the system, the
multivalued discrete states Qj, 0 ≤ j ≤ 3, are introduced (see Figure 4.1), which correspond
to the evolution of the system within the intervals [tj, tj+1), where t0 = 0 is the initial time, t1,
t2, t3 correspond to the times of the events of stopping of a subpopulation or switching of the
major agent, in the order of occurance, and t4 = T is the terminal time. This corresponds to the
scenario in which all the possible discrete changes in the system occur before the terminal time,
i.e. Q3 = q2

0
. Other scenarios where the discrete state at terminal time is different from the case

considered here are possible with minor variations over the results presented in this chapter.
We remark that the HS-MFG problems studied in this chapter lie within the class of hybrid

LQG problems for which optimal switching strategies areFt-independent, whereFt is the natural
filtration associated with the sigma-algebra generated by the corresponding Wiener process (see
appendix A). Therefore optimal switching or stopping strategies depend only on the dynamical
parameters of the major agent and those of each subpopulation, respectively. In particular,
an individual’s optimal stopping decision coincides with stopping time of all agents in its
subpopulation since the dynamical parameters are the same across a subpopulation.

Now, we describe the evolution of the system over the sequence of generic discrete states
Qj, 0 ≤ j ≤ 3. The discrete state Q0, as indicated in Figure 4.1, associates with the system
evolution over the interval [0, t1) in the system’s initial setting where both subpopulations of
minor agents are interacting together and with the major agent which is subject to its first
dynamics A1

0.
The multivalued discrete state Q1 corresponds to the evolution of the system over [t1, t2)

with one change relative to the initial setting; this consists of three possible situations: (i) the
major agent subject to its second dynamics A2

0 is interacting with both subpopulations Aa,
Ab present in the system; this corresponds to the centre node inside Q1 in Figure 4.1 and is
denoted by Q1 = q2

0ab
, (ii) the major agent subject to its first dynamics A1

0 is interacting with the
subpopulation Aa while the subpopulation Ab has quit the system; this corresponds to the left-
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q1
0ab

A1
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Aa,Ab
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0ab

A2
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0
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0
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0
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Q0

Q1

Q2
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Figure 4.1: Hybrid Automata Diagram with a single major player and two populations of minor
players with stopping times. Transitions accompanied by dimension changes are identified with
double-line arrows.

most node inside Q1 in Figure 4.1 and is denoted by Q1 = q1
0a

, and (iii) the major agent subject
to its first dynamics A1

0 is interacting with Ab while Aa has quit, corresponding to the right-most
node inside Q1 in Figure 4.1, denoted by Q1 = q1

0b
.

The multivalued discrete state Q2 represents the evolution of the system over [t2, t3) with
two changes relative to the initial setting for which three situations can be considered: (I) the
major agent subject to its second dynamics A2

0 is interacting with the subpopulation Aa, and the
subpopulationAb have already quit, which corresponds to the left-most node inside Q2 in Figure
4.1 denoted as Q2 = q2

0a
, (II) the major agent subject to its second dynamics A2

0 is interacting
with Ab, and the subpopulation Aa has already quit, which corresponds to the right-most node
inside Q2 in Figure 4.1 denoted by Q2 = q2

0b
, (III) the major agent is subject to its first dynamics

A1
0 and both subpopulations Aa, Ab have already quit, which corresponds to the centre node

inside Q2 in Figure 4.1, denoted by Q2 = q1
0
.

The discrete state Q3 corresponds to the evolution of the major agent subject to its second
dynamics A2

0 over [t3, T ] which corresponds to Q3 = q2
0
.

In this work it is assumed that each of the time periods [tj, tj+1) associated with the



4 A Hybrid Optimal Control Approach to LQG Mean Field Games with Switching and
Stopping Strategies 69

multivalued discrete state Qj, 0 ≤ j ≤ 3, is non-empty. This assumption is tenable since it
will be shown that the switching times t1, t2, t3 are deterministic and depend only on the system
parameters.

4.2.3 Dynamics and Costs: Finite Population

Major Agent

Let the evolution of the major agent Ak0, k = 1, 2, be expressed as

dx0 = Ak0x0dt+Bk
0u0dt+ F k

0 x
(Nt)dt+Dk

0dw0, (4.1)

where x0 ∈ Rn is the state, u0 ∈ Rm is the control input, and w0 ∈ Rr is a standard Wiener
process. The matrices Ak0, Bk

0 , F k
0 , and Dk

0 , k = 1, 2, are of appropriate dimension. We note once
again that the superscript k in Ak0 denotes that the major agent is in dynamics k.

From (4.1), the major agent is coupled with the minor agents by the average term x(Nt) =
1
Nt

∑Nt
i=1 xi. Note that in (4.1), Nt may take the following values.

Nt =



Na +Nb for Q0 = q1
0ab
, Q1 = q2

0ab

Na for Q1 = q1
0a
, Q2 = q2

0a

Nb for Q1 = q1
0b
, Q2 = q2

0b

0 for Q2 = q1
0
, Q3 = q2

0
.

(4.2)

The major agent Ak0, k = 1, 2, aims to minimize the following cost functional

Jk0 (u0, u−0) = E
[
‖x0(T )‖2

P̄k0
+

∫ T

0

(‖x0 − Φ(x(Nt))‖2
Pk0

+ ‖u0‖2
Rk0

)dt
]
, (4.3)

Φ(.) := Hk
0x

(Nt), (4.4)

with Rk
0 > 0, P̄ k

0 ≥ 0, P k
0 ≥ 0, and Hk

0 of appropriate dimension.
Equation (4.1) together with the cost functional (4.3) form the stochastic LQG problem for

the major agent.
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Generic Aa-Type Minor Agent

The dynamics for a minor agent Aai , is given by

dxi = Aaxidt+Bauidt+Gax0dt+ Fax
(Nt)dt+Dadwi, (4.5)

where xi ∈ Rn is the state of agent Aai , ui ∈ Rm is the control input, wi ∈ Rr is a standard
Wiener process, and Aa, Ba, Ga, Fa, Da are constant matrices of appropriate dimension. Note
that Nt in (4.5) again takes values as in (4.2) over the horizon T . The cost for a type Aa minor
agent is given by

Jai (ui, u−i) = E
[
‖xi(tis)−Ψa(x

(N
tis

)
)‖2
P̄a

+

∫ tis

0

(‖xi −Ψa(x
(Nt))‖2

Pa + ‖ui‖2
Ra)dt

]
, (4.6)

Ψa(.) := Ha
1x0(.) +Ha

2x
(N.), (4.7)

where the weight matrices P̄a ≥ 0, Pa ≥ 0, Ra > 0, Ha
1 , and Ha

2 have appropriate dimensions.
The set of equations (4.5) and (4.6) constitute the stochastic optimal control problem for a

minor agent of type Aa. It can be seen that a generic Aa-type minor agent interacts with the
major agent’s state as well as the average state of all existing minor agents through its dynamics
and cost functional.

Generic Ab-Type Minor Agent

Similarly, we define the state vector xi of a generic minor agent Abi whose evolution can be
written as

dxi = Abxidt+Bbuidt+Gbx0dt+ Fbx
(Nt)dt+Dbdwi, (4.8)

where xi ∈ Rn, ui ∈ Rm, wi ∈ Rr is a standard Wiener process, and Ab, Bb, Gb, Fb, Db are
matrices of appropriate dimension.

The cost functional for a generic minor agent of type Ab is given by

J bi (ui, u−i) = E
[
‖xi(tis)−Ψb(x

(N
tis

)
)‖2
P̄b

+

∫ tis

0

(‖xi −Ψb(x
(Nt))‖2

Pb
+ ‖ui‖2

Rb
)dt
]
, (4.9)

Ψb(.) := Hb
1x0(.) +Hb

2x
(N.), (4.10)

with matrices P̄b ≥ 0, Pb ≥ 0, Rb > 0, Hb
1, and Hb

2 having appropriate dimensions.
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Equations (4.8) and (4.9) form the stochastic LQG problem for a generic minor agent of type
Ab. Additionally, they show that a Ab-type minor agent is coupled with the major agent’s state
and the average state of all existing minor agents in its dynamics.

We denote by w = {wi, 0 ≤ i ≤ N} the set of (N + 1) independent Rr-valued standard
Wiener processes on the probability space (Ω,F , P ), where w is progressively measurable with
respect to the filtration Fw = {Fwt ⊂ F ; t ≥ 0}.

Assumption 4.1. The initial states {xi(0), 0 ≤ i ≤ N} defined on (Ω,F , P ) are identically

distributed, mutually independent and also independent of Fw∞, with Exi(0) = 0. Moreover,

supi E‖xi(0)‖2 ≤ c <∞, 0 ≤ i ≤ N <∞, with c independent of N .

The empirical distribution of the agents sampled independently of the initial conditions and
Wiener processes within populations Aa and Ab at time t0 is denoted by πN = (πNa , π

N
b ), where

πNa = Na
N

and πNb = Nb
N

.

Assumption 4.2. There exists π = (πa, πb) such that limN→∞π
N a.s.

= π.

In the following we introduce the admissible sets of controls for each agent. The null set
augmented σ-field Fi,t, 1 ≤ i ≤ N , is defined to be the increasing family of null set augmented
σ-fields generated by (xi(τ); 0 ≤ τ ≤ t), and by definition F0,t is the increasing family of σ-
fields generated by (x0(τ); 0 ≤ τ ≤ t). FNt is the increasing family of σ-fields generated by the
set {xj(τ), x0(τ); 0 ≤ τ ≤ t, 1 ≤ j ≤ N}. The set of control actions UN,Lg consists of linear
feedback control actions adapted to {FNt , t ≥ 0}, 1 ≤ N <∞.

Assumption 4.3 (Major Agent σ-Fields and Linear Controls). For the major agent A0 the set

of control inputs UL0 is defined to be the collection of linear feedback controls adapted to the

filteration {F0,t, t ≥ 0}.

Assumption 4.4 (Minor Agent σ-Fields and Linear Controls). For the minor agent Ai, 1 ≤ i ≤
N , the set of control inputs ULi is defined to be the collection of linear feedback controls adapted

to the filtration {Fi,t, t ≥ 0}, 1 ≤ i ≤ N .

4.3 Hybrid Mean Field Game Approach

Following the mean field game methodology with a major agent [16, 42], the hybrid MFG
problem is first solved in the infinite population limit where the average term in the finite
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population dynamics and cost functional of each agent is replaced by its infinite population limit,
i.e. the mean field. Then specializing to linear systems (see e.g. [16]), the major agent’s state
is extended with the mean field, while the minor agent’s state is extended with the mean field
and the major agent’s state; this yields LQG hybrid optimal control problems (see appendix A)
for each agent linked only through the mean field and the major agent’s state. Then the main
results of [16], [42] are (i) the existence of infinite population best response strategies which
yield the Nash equilibria, and (ii) the infinite population best response strategies applied to the
finite population system yield an ε-Nash equilibrium (see Theorem 4.1).

In this section, first, the hybrid evolution of the mean field is derived. Then the extended
hybrid optimal control problems for the major agent and minor agents are formed and addressed
in the infinite population case. Finally, Theorem 4.1 is presented which links the infinite
population and finite population LQG Hybrid-MFG problem solutions.

4.3.1 Hybrid Evolution of Mean Field

Following the LQG MFG methodology [16], the mean field is defined as the limit (in quadratic
mean), when it exists, of the average of minor agents’ states when the population size goes to
infinity

x̄k(t) = lim
Nk→∞

xNk(t) = lim
Nk→∞

1

Nk

Nk∑
i=1

xi(t), q.m.

where k , a, b, for the case considered in this chapter. Now, if the control strategy for each minor
agent is considered to have the general feedback form

ui = Lk1xi + Lk2x0 +
Nt∑

j 6=i,j=1

Lk4xj +mk, 1 ≤ i ≤ Nk, (4.11)

then the mean field dynamics is obtained by substituting (4.11) in the minor agents’ dynamics
(4.8) (respectively, (4.5)), and taking the average over population Ak, k , a, b, and then its L2

limit as Nk →∞.
With the assignment of discrete states Qj introduced in Section 4.2.2, the set of the mean field
equations is given by

dx̄Qj = ĀQj x̄Qjdt+ ḠQjx
Qj
0 dt+ m̄Qjdt, j = 0, 1, 2, 3. (4.12)
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For Q0 = q1
0ab

, x̄Q0 = [x̄Ta , x̄
T
b ]T consists of the mean field x̄a of the population Aa, and the

mean field x̄b of the population Ab with πQ0 = π. The matrices in (4.12) are then

ĀQ0 =

[
Āa

Āb

]
, ḠQ0 =

[
Ḡa

Ḡb

]
, m̄Q0 =

[
m̄a

m̄b

]
, (4.13)

where Āa, Āb ∈ Rn×2n, Ḡa, Ḡb ∈ Rn×n, m̄a, m̄b ∈ Rn. The above matrices shall be determined
from the consistency equations discussed in Section 4.3.4.

In case (i) in Section 4.2.2 where Q1 = q2
0ab

, the mean field is defined as x̄
q2
0ab = [x̄Ta , x̄

T
b ]T ,

hence π
q2
0ab = π, and

Ā
q2
0ab =

[
Āa

Āb

]
, Ḡ

q2
0ab =

[
Ḡa

Ḡb

]
, m̄

q2
0ab =

[
m̄a

m̄b

]
. (4.14)

For case (ii) where Q1 = q1
0a

, x̄
q1
0a = x̄a, and hence π

q1
0a = (1, 0), and the matrices in (4.12) are

given as

Ā
q1
0a = Āa, Ḡ

q1
0a = Ḡa, m̄

q1
0a = m̄a, (4.15)

where Āa ∈ Rn×n, Ḡa ∈ Rn×n, m̄a ∈ Rn.
For case (iii) where Q1 = q1

0b
, x̄

q1
0b = x̄b, and hence π

q1
0b = (0, 1), and the matrices in (4.12)

are given by

Ā
q1
0b = Āb, Ḡ

q1
0b = Ḡb, m̄

q1
0b = m̄b. (4.16)

For case (I) in Section 4.2.2 where Q2 = q2
0a

, the mean field is defined as x̄
q2
0a = x̄a, and

hence π
q2
0a = (1, 0), and the matrices in (4.12) are given as

Ā
q2
0a = Āa, Ḡ

q2
0a = Ḡa, m̄

q2
0a = m̄a. (4.17)

For case (II) where Q2 = q2
0b

, x̄
q2
0b = x̄b, and hence π

q2
0b = (0, 1), and the matrices in (4.12)

are given by

Ā
q2
0b = Āb, Ḡ

q2
0b = Ḡb, m̄

q2
0b = m̄b. (4.18)
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For case (III) where Q2 = q1
0
, x̄

q1
0 = 0, hence π

q1
0 = (0, 0).

Finally, for Q3 = q2
0
, x̄Q3 = 0, and as a result πQ3 = (0, 0).

4.3.2 Major Agent: Infinite Populations

Hybrid Dynamics and Cost

The extended hybrid dynamics of the major agent in the infinite population, i.e. the dynamics for
x
ex,Qj
0 is given by

dx
ex,Qj
0 = (AQj

0 x
ex,Qj
0 + MQj

0 + BQj0 u
Qj
0 )dt+ DQj

0 dW
Qj
0 , 0 ≤ j ≤ 3, (4.19)

where the dynamical matrices are given by

AQj
0 =

[
A
Qj
0 πQj ⊗ FQj

0

ḠQj ĀQj

]
, MQj

0 =

[
0n×1

m̄Qj

]
, BQj0 =

[
B
Qj
0

0•×•

]
,

DQj
0 =

[
D
Qj
0 0•×•

0•×• 0•×•

]
, W

Qj
0 =

[
w0

0•×•

]
. (4.20)

In (4.20), 0•×• denotes a zero matrix of appropriate dimension, and πQj ⊗ F
Qj
0 denotes the

Kronecker product of πQj and FQj
0 .

The cost functional for the extended major agent’s hybrid system would be given by

J0(u0, u−0) = E
[
‖xex,Q3

0 (T )‖2

P̄Q3
0

+
3∑
j=1

‖xex,Qj0 (t−j )‖2
C0,j

+
3∑
j=0

∫ tj+1

tj

(
‖xex,Qj0 (s)‖2

P
Qj
0

+ ‖uQj0 (s)‖2

R
Qj
0

)
ds
]
, (4.21)

where t0 = 0, t4 = T . In (4.21), the first term denotes terminal cost and the third term denotes
running cost where the corresponding weight matrices are defined as

P̄Q3

0 = P̄ 2
0 ,

PQj0 = [In×n,−πQj ⊗H
Qj
0 ]TP

Qj
0 [In×n,−πQj ⊗H

Qj
0 ]. (4.22)

Moreover, the second term in (4.21) denotes switching cost where the corresponding weight
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matrix C0,j shall be identified for each switching in Section 4.3.2.
Now the dynamical and weight matrices introduced in their general form, respectively, in

(4.20) and (4.22) are specified for each discrete state Qj, 0 ≤ j ≤ 3.
Over the interval [t0, t1), and in discrete state Q0, the dynamics of the continuous state

xex,Q0

0 = [xT0 , x̄
T
a , x̄

T
b ]T is determined by (4.19) with

AQ0

0 =

 A1
0 π ⊗ F 1

0[
Ḡa

Ḡb

] [
Āa

Āb

]  , MQ0

0 =

 0n×1[
m̄a

m̄b

]  ,
BQ0

0 =

[
B1

0

02n×m

]
, DQ0

0 =

[
D1

0 0n×2r

02n×r 02n×2r

]
, WQ0

0 =

[
w0

02r×1

]
, (4.23)

where π ⊗ F 1
0 = [πaF

1
0 , πbF

1
0 ], and PQ0

0 in (4.21) is given by

PQ0

0 = [In×n,−πaH1
0 ,−πbH1

0 ]TP 1
0 [In×n,−πaH1

0 ,−πbH1
0 ]. (4.24)

We also define

P̄Q0

0 = [In×n,−πaH1
0 ,−πbH1

0 ]T P̄ 1
0 [In×n,−πaH1

0 ,−πbH1
0 ], (4.25)

which will be used in section 4.3.2 to specify the switching cost at t1.
Over the interval [t1, t2), in case (i) where Q1 = q2

0ab
holds over the interval [t1, t2), the

dynamics of x
ex,q2

0ab

0 = [xT0 , x̄
T
a , x̄

T
b ]T is governed by (4.19) with

A
q2
0ab

0 =

 A2
0 π ⊗ F 2

0[
Ḡa

Ḡb

] [
Āa

Āb

]  , M
q2
0ab

0 =

 0n×1[
m̄a

m̄b

]  ,
B
q2
0ab

0 =

[
B2

0

02n×m

]
, D

q2
0ab

0 =

[
D2

0 0n×2r

02n×r 02n×2r

]
, W

q2
0ab

0 =

[
w0

02r×1

]
, (4.26)

and P
q2
0ab

0 in (4.21) is given by

P
q2
0ab

0 = [In×n,−πaH2
0 ,−πbH2

0 ]TP 2
0 [In×n,−πaH2

0 ,−πbH2
0 ]. (4.27)
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Moreover,

P̄
q2
0ab

0 = [In×n,−πaH2
0 ,−πbH2

0 ]T P̄ 2
0 [In×n,−πaH2

0 ,−πbH2
0 ], (4.28)

which will be used in section 4.3.2 to specify the switching cost at t2.
Over the interval [t1, t2), in case (ii) where Q1 = q1

0a
holds, the dynamics for x

ex,q1
0a

0 =

[xT0 , x̄
T
a ]T is determined by (4.19) with

A
q1
0a

0 =

[
A1

0 F 1
0

Ḡa Āa

]
, M

q1
0a

0 =

[
0n×1

m̄a

]
, B

q1
0a

0 =

[
B1

0

0n×m

]
,

D
q1
0a

0 =

[
D1

0 0n×r

0n×r 0n×r

]
, W

q1
0a

0 =

[
w0

0r×1

]
, (4.29)

and the cost functional is determined by (4.21) with P
q1
0a

0 = [In×n,−H1
0 ]TP 1

0 [In×n,−H1
0 ]. In

addition, matrix P̄
q1
0a

0 which shall be used in Section 4.3.2 to identify the switching cost at t2 is
defined as

P̄
q1
0a

0 = [In×n,−H1
0 ]T P̄ 1

0 [In×n,−H1
0 ]. (4.30)

Over the interval [t1, t2), in case (iii) where Q1 = q1
0b

holds, x
ex,q1

0b = [xT0 , x̄
T
b ]T and

A
q1
0b

0 =

[
A1

0 F 1
0

Ḡb Āb

]
, M

q1
0b

0 =

[
0n×m

m̄b

]
, B

q1
0b

0 =

[
B1

0

0n×m

]
,

D
q1
0b

0 =

[
D1

0 0n×r

0n×r 0n×r

]
, W

q1
0b

0 =

[
w0

0r×1

]
, (4.31)

P
q1
0b

0 = [In×n,−H1
0 ]TP 1

0 [In×n,−H1
0 ], (4.32)

P̄
q1
0b

0 = [In×n,−H1
0 ]T P̄ 1

0 [In×n,−H1
0 ]. (4.33)

Over the interval [t2, t3), in case (I) where Q2 = q2
0a

holds, x
ex,q2

0a = [xT0 , x̄
T
a ]T and

A
q2
0a

0 =

[
A2

0 F 2
0

Ḡa Āa

]
, M

q2
0a

0 =

[
0n×1

m̄a

]
, B

q2
0a

0 =

[
B2

0

0n×m

]
,



4 A Hybrid Optimal Control Approach to LQG Mean Field Games with Switching and
Stopping Strategies 77

D
q2
0a

0 =

[
D2

0 0n×r

0n×r 0n×r

]
, W

q2
0a

0 =

[
w0

0r×1

]
, (4.34)

P
q2
0a

0 = [In×n,−H2
0 ]TP 2

0 [In×n,−H2
0 ], (4.35)

P̄
q2
0a

0 = [In×n,−H2
0 ]T P̄ 2

0 [In×n,−H2
0 ]. (4.36)

Over the interval [t2, t3), in case (II) where Q2 = q2
0b

holds, x
ex,q2

0b = [xT0 , x̄
T
b ]T and

A
q2
0b

0 =

[
A2

0 F 2
0

Ḡb Āb

]
, M

q2
0b

0 =

[
0n×1

m̄b

]
, B

q2
0b

0 =

[
B2

0

0n×m

]
,

D
q2
0b

0 =

[
D2

0 0n×r

0n×r 0n×r

]
, W

q2
0b

0 =

[
w0

0r×1

]
, (4.37)

P
q2
0b

0 = [In×n,−H2
0 ]TP 2

0 [In×n,−H2
0 ], (4.38)

P̄
q2
0b

0 = [In×n,−H2
0 ]T P̄ 2

0 [In×n,−H2
0 ]. (4.39)

Over the interval [t2, t3), in case (III) where Q2 = q1
0

holds, x
ex,q1

0 = x0 and

A
q1
0

0 = A1
0, M

q1
0

0 = 0n×1, B
q1
0

0 = B1
0 , D

q1
0

0 = D1
0, W

q1
0

0 = w0, P
q1
0

0 = P 1
0 , P̄

q1
0

0 = P̄ 1
0 .

Finally, over the interval [t3, T ], in discrete state Q3, xex,Q3 = x0 and

AQ3

0 = A2
0, MQ3

0 = 0n×1, BQ3

0 = B2
0 , DQ3

0 = D2
0, WQ3

0 = w0, PQ3

0 = P 2
0 , P̄Q3

0 = P̄ 2
0 .

Jump Transition Maps and Switching Costs

We first define the notation MQj
0 (l : m), 0 ≤ j ≤ 3, which shall be used to identify the switching

cost associated with switching time tj, 1 ≤ j ≤ 3, for the major agent A0. Matrix MQj
0 (l : m)

is formed by using matrix P̄Qj0 wherein all the entires are made zero except those associated with
its l-th to m-th columns and rows. Hence it has the same dimension (size) as P̄Qj0 , i.e.

M
Qj
0 (l : m) =


P̄Qj

0 (:, l : m)︷ ︸︸ ︷
0 0

0 0


size(P̄

Qj
0 )

}
P̄
Qj
0 (l :m, :) (4.40)
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where P̄Qj0 (:, l : m) and P̄Qj0 (l : m, :), respectively, denote l-th to m-th columns and l-th to m-th
rows of P̄Qj0 .

The values of the major agent’s continuous state before and after switching at t1 satisfy the
following jump map

xex,Q1

0 (t1) = Ψ0,1x
ex,Q0

0 (t1−). (4.41)

For the transition between Q0 and case (i) for Q1 where Q1 = q2
0ab

the map Ψ0,1 is the identity
matrix, i.e.

Ψ0,1 = Ψ0,q1
0ab

q2
0ab

= I3n×3n. (4.42)

This transition is not accompanied by change in the dimension of the major agent’s extended
state. Furthermore, the weight matrix for the corresponding switching cost is given by

C0,1 = C0,q1
0ab

q2
0ab

= 03n×3n. (4.43)

For the transition between Q0 and case (ii) where Q1 = q1
0a

Ψ0,1 = Ψ0,q1
0ab

q1
0a

=

[
In×n 0n×n 0n×n

0n×n In×n 0n×n

]
, (4.44)

C0,1 = C0,q1
0ab

q1
0a

= M
q1
0ab

0 (2n+ 1 : 3n). (4.45)

For the transition between Q0 and case (iii) where Q1 = q1
0b

Ψ0,1 = Ψ0,q1
0ab

q1
0b

=

[
In×n 0n×n 0n×n

0n×n 0n×n In×n

]
, (4.46)

C0,1 = C0,q1
0ab

q1
0b

= M
q1
0ab

0 (n+ 1 : 2n). (4.47)

The values of the major agent’s continuous state before and after the switching at t2 satisfy
the following jump transition map

xex,Q2

0 (t2) = Ψ0,2x
ex,Q1

0 (t2−), (4.48)

where
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Ψ0,2 =



Ψ0,q1
0a
q2
0a

= I2n×2n, for transition from Q1 = q1
0a

to Q2 = q2
0a

,

Ψ0,q1
0a
q1
0

=
[
In×n 0n×n

]
, for transition from Q1 = q1

0a
to Q2 = q1

0
,

Ψ0,q2
0ab

q2
0a

=

 In×n 0n×n 0n×n

0n×n In×n 0n×n

 , for transition from Q1 = q2
0ab

to Q2 = q2
0a

,

Ψ0,q2
0ab

q2
0b

=

 In×n 0n×n 0n×n

0n×n 0n×n In×n

 , for transition from Q1 = q2
0ab

to Q2 = q2
0b

,

Ψ0,q1
0b
q2
0b

= I2n×2n, for transition from Q1 = q1
0b

to Q2 = q2
0b

,

Ψ0,q1
0b
q1
0

=
[
In×n 0n×n

]
, for transition from Q1 = q1

0b
to Q2 = q1

0
.

(4.49)
Furthermore, the matrix coefficient C0,2 of the switching cost at t2 for each case is defined as

C0,2 =



C0,q1
0a
q2
0a

= 02n×2n, for transition from Q1 = q1
0a

to Q2 = q2
0a

,

C0,q1
0a
q1
0

= M
q1
0a

0 (n+ 1 : 2n), for transition from Q1 = q1
0a

to Q2 = q1
0
,

C0,q2
0ab

q2
0a

= M
q2
0ab

0 (2n+ 1 : 3n), for transition from Q1 = q2
0ab

to Q2 = q2
0a

,

C0,q2
0ab

q2
0b

= M
q2
0ab

0 (n+ 1 : 2n), for transition from Q1 = q2
0ab

to Q2 = q2
0b

,

C0,q1
0b
q2
0b

= 02n×2n, for transition from Q1 = q1
0b

to Q2 = q2
0b

,

C0,q1
0b
q1
0

= M
q1
0b

0 (n+ 1 : 2n), for transition from Q1 = q1
0b

to Q2 = q1
0
.
(4.50)

The values of the major agent’s continuous state before and after the switching at t3 satisfy
the following jump map

xex,Q3

0 (t3) = Ψ0,3x
ex,Q2

0 (t3−), (4.51)

where

Ψ0,3 =


Ψ0,q2

0a
q2
0

=
[
In×n 0n×n

]
, for transition from Q2 = q2

0a
to Q3,

Ψ0,q1
0
q2
0

= In×n, for transition from Q2 = q1
0

to Q3,

Ψ0,q2
0b
q2
0

=
[
In×n 0n×n

]
, for transition from Q1 = q2

0b
to Q3.

(4.52)
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Accordingly, the matrix coefficient C0,3 of the switching cost at t3 for each case is given by

C0,3 =


C0,q2

0a
q2
0

= M
q2
0a

0 (n+ 1 : 2n), for transition from Q2 = q2
0a

to Q3,

C0,q1
0
q2
0

= 0n×n, for transition from Q2 = q1
0

to Q3,

C0,q2
0b
q2
0

= M
q2
0b

0 (n+ 1 : 2n), for transition from Q1 = q2
0b

to Q3,

(4.53)

Notice that some of the transitions of (4.41), (4.71), (4.51) are between the spaces of the
same dimension such as (4.42) while other transitions may be accompanied by changes in the
dimension of the state space, e.g. (4.44) is a mapping from R3n into R2n. These dimension
changes are permitted in the stochastic hybrid systems framework of [44,45] (see [55] for another
motivating example for change of dimension at switching).

Best Response Hybrid Control Action

To obtain the best response hybrid control action for the major agent in the infinite population,
we utilize Theorem 4.2 in Appendix A developed for single agent LQG hybrid optimal control
problems.

By the definition of the terms DQj
0 , they automatically satisfy the condition (4.92) (see

appendix A), or equivalently condition A1 in [45, Eq. (3)] as

DQj
0 = Ψ0,jD

Qj−1

0 , j = 1, 2, 3, (4.54)

holds for all the jump transition maps introduced in this section. Moreover, it is assumed
conditions (4.97)- (4.99) (in Appendix A) hold. Therefore, the optimal controlled switching
times for the major agent are Ft-independent. Then an application of the LQG hybrid optimal
control theory ( i.e. Theorem 4.2) yields the infinite population best response hybrid control
action for discrete states {Q0, . . . , Q3} as in

u
Qj
0 (t) = −[R

Qj
0 ]−1[BQj0 ]TΠ

Qj
0 (t)x

ex,Qj
0 (t), (4.55)

−Π̇
Qj
0 = Π

Qj
0 AQj

0 + [AQj
0 ]TΠ

Qj
0 − Π

Qj
0 BQj0 [R

Qj
0 ]−1[BQj0 ]TΠ

Qj
0 + PQj0 , (4.56)
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subject to the terminal and boundary conditions

ΠQ3

0 (T ) = P̄Q3

0 , (4.57)

Π
Qj−1

0 (tj) = ΨT
0,jΠ

Qj
0 (tj)Ψ0,j + C0,j, (4.58)

PQj−1

0 + Π
Qj−1

0 (tj)A
Qj−1

0 + [AQj−1

0 ]TΠ
Qj−1

0 (tj)− Π
Qj−1

0 (tj)B
Qj−1

0 [R
Qj−1

0 ]−1[BQj−1

0 ]TΠ
Qj−1

0 (tj)

= ΨT
0,j

(
PQj0 +Π

Qj
0 (tj)A

Qj
0 +[AQj

0 ]TΠ
Qj
0 (tj)−Π

Qj
0 (tj)B

Qj
0 [R

Qj
0 ]−1[BQj0 ]TΠ

Qj
0 (tj)

)
Ψ0,j+

∂C0,j

∂t

∣∣∣
t=tj

,

(4.59)

where tj , j = 1, 2, 3, indicate the times of change in the system due to the major agent’s switching
of dynamics or cessation of subpopulations of minor agents.

4.3.3 Minor Agents: Infinite Population

Hybrid Dynamics and Costs

The extended dynamics for a generic minor agent Aki , 1 ≤ i ≤ N , in the population k , a, b,

with the extended state xex,Qji has a general form as in

dx
ex,Qj
i = (AQj

k x
ex,Qj
i + MQj

k + BQjk uQii )dt+ DQj
k dW

Qj
i , (4.60)

where

AQj
k =

[
Ak

[
Gk πQj ⊗ Fk

]
0•×• AQj

0 − BQj0 R−1
0,Qj

BT0,QjΠ
Qj
0

]
, MQj

k =

[
0n×1,

MQj
0

]
,

BQjk =

[
Bk

0•×•

]
, DQj

k =

[
Dk 0•×•

0•×• DQj
0

]
, W

Qj
i =

[
wi

w
Qj
0

]
. (4.61)

Notice that in (4.60) the major agent’s closed-loop dynamics at discrete state Qj, 0 ≤ j ≤ 3,
given by (4.19) is used to derive the extended dynamics for minor agent Aki at discrete state
Qj, 0 ≤ j ≤ 3. Similar to the major agent’s case, 0•×• in (4.61) denotes a zero matrix of
appropriate dimensions.
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The cost functional for the extended minor agent Aki ’s hybrid system is given by

Jki (ui, u−i) = E
[
‖xex,Q∗i (tis)‖2

P̄Q∗k
+

∗∑
j=1

‖xex,Qji (t−j )‖2
Cki,j

+
∗∑
j=0

∫ tj+1

tj

(
‖xex,Qji (s)‖2

P
Qj
k

+ ‖uQji (s)‖2
Rk

)
ds
]
, (4.62)

where Q∗ denotes the discrete state at which minor agent Aki quits the system at time tis and
∗ ∈ {1, 2} denotes the index of the associate discrete state. The weight matrices associated with
the terminal cost (first term) and the running cost (third term) in (4.62) are, respectively, given by

P̄Q∗k = P̄k,

PQjk = [In×n,−Hk
1 ,−πQj ⊗Hk

2 ]TPk[In×n,−Hk
1 ,−πQj ⊗Hk

2 ], (4.63)

P̄Qjk = [In×n,−Hk
1 ,−πQj ⊗Hk

2 ]T P̄k[In×n,−Hk
1 ,−πQj ⊗Hk

2 ], (4.64)
where P̄Qjk shall be used in Section 4.3.3 to specify the weight matrix Ck

i,j associated with the
switching cost (second term) in (4.62) .

Jump Transition Maps and Switching Costs

We first define the notation MQj
k (l : m), k , a, b, 0 ≤ j ≤ 3, which shall be used to identify

the switching cost associated with switching time tj, 1 ≤ j ≤ 3. Matrix MQj
k (l : m) is made by

making all the entires of P̄Qjk zero except those associated with its l-th to m-th columns and rows,
hence it has the same size as P̄Qjk , i.e.

M
Qj
k (l : m) =


P̄Qj

k (:, l : m)︷ ︸︸ ︷
0 0

0 0


size(P̄

Qj
k

)

}
P̄
Qj
k (l :m, :) (4.65)

where P̄Qjk (:, l : m) and P̄Qjk (l : m, :), respectively, denote l-th to m-th columns and l-th to m-th
rows of P̄Qjk .

The values of minor agent Aki continuous state before and after the switching at switching
time t1 satisfy the following jump transition map

xex,Q1

i (t1) = Ψk
i,1x

ex,Q0

i (t1−), (4.66)
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where for k , a

Ψa
i,1 =



Ψa
i,q1

0ab
q2
0ab

= I3n×3n, for transition from Q0 = q1
0ab

to Q1 = q2
0ab

,

Ψa
i,q1

0ab
q1
0a

=

 In×n 0n×n 0n×n

0n×n In×n 0n×n

 , for transition from Q0 = q1
0ab

to Q1 = q1
0a

,

Ψa
i,q1

0ab
q1
0b

=
[

0n×n 0n×n 0n×n

]
, for transition from Q0 = q1

0ab
to Q1 = q1

0b
.

(4.67)
Moreover, the weight matrix Ca

i,1 associated with the switching cost in (4.62) at time t1 is
specified as

Ca
i,1 =


Ca
i,q1

0ab
q2
0ab

= 03n×3n, for transition from Q0 = q1
0ab

to Q1 = q2
0ab

,

Ca
i,q1

0ab
q1
0a

= M
q1
0ab

a (3n+ 1 : 4n), for transition from Q0 = q1
0ab

to Q1 = q1
0a

,

Ca
i,q1

0ab
q1
0b

= P̄
q1
0ab

a , for transition from Q0 = q1
0ab

to Q1 = q1
0b

.

(4.68)
For k , b, the jump transition map (4.66) at t1 is given by

Ψb
i,1 =



Ψb
i,q1

0ab
q2
0ab

= I3n×3n, for transition from Q0 = q1
0ab

to Q1 = q2
0ab

,

Ψb
i,q1

0ab
q1
0a

=
[

0n×n 0n×n 0n×n

]
, for transition from Q0 = q1

0ab
to Q1 = q1

0a
,

Ψb
i,q1

0ab
q1
0b

=

 In×n 0n×n 0n×n

0n×n 0n×n In×n

 , for transition from Q0 = q1
0ab

to Q1 = q1
0b

,

(4.69)
and the corresponding switching cost weight matrix is given by

Cb
i,1 =


Cb
i,q1

0ab
q2
0ab

= I3n×3n, for transition from Q0 = q1
0ab

to Q1 = q2
0ab

,

Cb
i,q1

0ab
q1
0a

= P̄
q1
0ab

b , for transition from Q0 = q1
0ab

to Q1 = q1
0a

,

Cb
i,q1

0ab
q1
0b

= M
q1
0ab

q1
0b

b (2n+ 1 : 3n), for transition from Q0 = q1
0ab

to Q1 = q1
0b

.

(4.70)
The values of the minor agent’s continuous state before and after the switching at t2 satisfy
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the following jump map

xex,Q2

i (t2) = Ψk
i,2x

ex,Q1

i (t2−), (4.71)
where Ψk

i,2, k , a, is given by

Ψa
i,2 =



Ψa
i,q1

0a
q2
0a

= I2n×2n, for transition from Q1 = q1
0a

to Q2 = q2
0a

,

Ψa
i,q1

0a
q1
0

=
[

0n×n 0n×n

]
, for transition from Q1 = q1

0a
to Q2 = q1

0
,

Ψa
i,q2

0ab
q2
0a

=

 In×n 0n×n 0n×n

0n×n In×n 0n×n

 , for transition from Q1 = q2
0ab

to Q2 = q2
0a

,

Ψa
i,q2

0ab
q2
0b

=
[

0n×n 0n×n 0n×n

]
, for transition from Q1 = q2

0ab
to Q2 = q2

0b
.

(4.72)
Furthermore, the weight matrix Ca

i,2 associated with the switching cost at time t2 is specified by

Ca
i,2 =



Ca
i,q1

0a
q2
0a

= 02n×2n, for transition from Q1 = q1
0a

to Q2 = q2
0a

,

Ca
i,q1

0a
q1
0

= P̄
q1
0a

a , for transition from Q1 = q1
0a

to Q2 = q1
0
,

Ca
i,q2

0ab
q2
0a

= M
q2
0ab

a (3n+ 1 : 4n), for transition from Q1 = q2
0ab

to Q2 = q2
0a

,

Ca
i,q2

0ab
q2
0b

= P̄
q2
0ab

a , for transition from Q1 = q2
0ab

to Q2 = q2
0b

.

(4.73)
In (4.71), the jump transition map Ψk

i,2, k , b, is given by

Ψb
i,2 =



Ψb
i,q1

0b
q2
0b

= I2n×2n, for transition from Q1 = q1
0a

to Q2 = q2
0a

,

Ψb
i,q1

0b
q1
0

=
[

0n×n 0n×n

]
, for transition from Q1 = q1

0a
to Q2 = q1

0
,

Ψb
i,q2

0ab
q2
0a

=
[

0n×n 0n×n 0n×n

]
, for transition from Q1 = q2

0ab
to Q2 = q2

0a
,

Ψb
i,q2

0ab
q2
0b

=

 In×n 0n×n 0n×n

0n×n In×n 0n×n

 , for transition from Q1 = q2
0ab

to Q2 = q2
0b

,

(4.74)
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and the corresponding switching cost weight matrix Cb
i,2 is given by

Cb
i,2 =



Cb
i,q1

0b
q2
0b

= 02n×2n, for transition from Q1 = q1
0a

to Q2 = q2
0a

,

Cb
i,q1

0b
q1
0

= P̄
q1
0b

b , for transition from Q1 = q1
0a

to Q2 = q1
0
,

Cb
i,q2

0ab
q2
0a

= P̄
q2
0ab

b , for transition from Q1 = q2
0ab

to Q2 = q2
0a

,

Cb
i,q2

0ab
q2
0b

= M
q2
0ab

b (2n+ 1 : 3n), for transition from Q1 = q2
0ab

to Q2 = q2
0b

.

(4.75)
The values of the minor agent’s continuous state before and after the switching at t3 satisfy

the following jump transition map

xex,Q3

i (t3) = Ψk
i,3x

ex,Q2

i (t3−), (4.76)
where for k , a

Ψa
i,3 = Ψa

i,q2
0a
q2
0

=
[

0n×n 0n×n 0n×n

]
, (4.77)

Ca
i,3 = Ca

i,q2
0a
q2
0

= P̄
q2
0a

a , (4.78)

and for k , b

Ψb
i,3 = Ψb

i,q2
0b
q2
0

=
[

0n×n 0n×n 0n×n

]
, (4.79)

Cb
i,3 = Cb

i,q2
0b
q2
0

= P̄
q2
0b

b . (4.80)

Best Response Hybrid Control Actions

The optimal stopping problem for a minor agent is equivalent to a hybrid optimal control problem
in which the dynamics and costs become zero after stopping. Let us assume that minor agent Aki
stops at time tks after the discrete state Q∗, ∗ ∈ {0, 1, 2}. The definitions for DQj

k directly result
in the satisfaction of condition (4.92) (see Appendix A), or equivalently condition A1 in [45, Eq.
(3)], i.e.

DQj
k = Ψk

i,jD
Qj−1

k , j ∈ {1, . . . , ∗}, k , a, b. (4.81)
Furthermore, it is assumed that conditions (4.97)-(4.99), and (4.111)-(4.113), respectively, hold
for the stopping time tks and the switching times tj < tks . Hence, the optimal stopping time for
each minor agent is Ft-independent and only depends on its dynamical parameters which implies
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that all minor agents of the same type stop at the same time. Then the application of the results
of Theorem 4.2 and Corollary 4.3 yield the infinite population best response strategies for the
discrete states {Q0, . . . , Q∗} given by

u
Qj
i (t) = −R−1

k [BQjk ]TΠ
Qj
k (t)x

ex,Qj
i (t), (4.82)

with

−Π̇
Qj
k = Π

Qj
k AQj

k + AT
k,Qj

Π
Qj
k − Π

Qj
k BQjk R−1

k [BQjk ]TΠ
Qj
k + PQjk , (4.83)

subject to the terminal conditions

ΠQ∗
k (tks) = P̄Q∗k , (4.84)(

PQ∗k + P̄Q∗k AQ∗
k + AT

k,Q∗P̄
Q∗
k − P̄Q∗k BQ∗k R−1

k [BQ∗k ]T P̄Q∗k
)
t=tks

=
∂Ck

i,∗

∂t

∣∣∣
t=tks

, (4.85)

and the boundary conditions

Π
Qj−1

k (tj) = ΨT
i,kΠ

Qj
k (tj)Ψi,k + Ck

i,j, (4.86)

PQj−1

k + Π
Qj−1

k (tj)A
Qj−1

k + [AQj−1

k ]TΠ
Qj−1

k (tj)− Π
Qj−1

k (tj)B
Qj−1

k R−1
k [BQj−1

k ]TΠ
Qj−1

k (tj)

= ΨT
i,k

(
PQjk +Π

Qj
k (tj)A

Qj
k +[AQj

k ]TΠ
Qj
k (tj)−Π

Qj
k (tj)B

Qj
k R−1

k [BQjk ]TΠ
Qj
k (tj)

)
Ψi,k+

∂Ck
i,j

∂t

∣∣∣
t=tj

,

(4.87)
where {tj , j ∈ {1, . . . , ∗}} indicate the times of change in the system due to the major agent’s
switching of dynamics or cessation of the other subpopulation of minor agents. We observe that
for the case where subpopulation k, k , a, b, stops at time t1, there is not boundary condition
associated with the Riccati equation (4.83).

4.3.4 Hybrid Mean Field Consistency Equations
Let us define

Π
Qj
k =

 Π
Qj
k,11 Π

Qj
k,12 Π

Qj
k,13

Π
Qj
k,21 Π

Qj
k,22 Π

Qj
k,23

Π
Qj
k,31 Π

Qj
k,32 Π

Qj
k,33

 , k , a, b,

e
Qj
k =


In if x̄Qj = x̄k,

[In, 0n×n] if x̄Qj 6= x̄k ∧ k = a,

[0n×n, In] if x̄Qj 6= x̄k ∧ k = b,

(4.88)
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where In is an n× n identity matrix.
Then, by consistency requirement, a compact description of the hybrid major minor mean

field equations determining ĀQj , ḠQj , m̄Qj is given by

−Π̇
Qj
0 = Π

Qj
0 AQj

0 + (AQj
0 )

T
Π
Qj
0 − Π0B

Qj
0 R−1

0 (BQj0 )
T

Π
Qj
0 + PQj0 ,

−Π̇
Qj
k = Π

Qj
k AQj

k + (AQj
k )

T
Π
Qj
k − Π

Qj
k BQjk R−1

k (BQjk )
T

Π
Qj
k + PQjk ,

Ā
Qj
k = [Ak −BkR

−1
k BT

k Π
Qj
k,11]e

Qj
k + Fk ⊗ πQj −BkR

−1
k BT

k Π
Qj
k,13,

Ḡ
Qj
k = Gk −BkR

−1
k BT

k Π
Qj
k,12,

m̄
Qj
k = 0, (4.89)

for each discrete state Qj, 0 ≤ j ≤ 3, and the corresponding population k, k , a, b. The set of
equations (4.89) forms a fixed point problem for each discrete state Qj, 1 ≤ j ≤ 3, that should
be solved by each minor agent in order to compute the matrices in the mean field dynamics.

Assumption 4.5. There exists a stabilizing solution Π
Qj
0 , Π

Qj
k , ĀQjk , ḠQj

k , 1 ≤ j ≤ 3, k , a, b,

to the major-minor mean field equations (4.89) in the sense that the matrices

AQj
0 − BQj0 [R

Qj
0 ]−1[BQj0 ]TΠ

Qj
0 ,

AQj
k − BQjk R−1

k [BQjk ]TΠ
Qj
k ,

are asymptotically stable.

The following theorem links the infinite population equilibria to the finite population case.

Theorem 4.1 (ε-Nash Equilibrium for LQG Hybrid-MFG Systems). Subject to Assumptions 4.1-

4.5, the system equations (4.19), (4.60) together with the mean field equations (4.89) generate a

set of control laws which yields the infinite population Nash equilibrium. When the set of infinite

population control laws UNtMF , {u
Qj
i ; 0 ≤ i ≤ Nt}, 1 ≤ Nt ≤ N < ∞, given by (4.55), (4.82)

is applied to the finite population system (4.1), (4.5), (4.8), it results in the following properties:

(i) All agent systems Ai, 0 ≤ i ≤ N , are second order stable.

(ii) UNtMF , 1 ≤ Nt < ∞ yields an ε-Nash equilibrium for all ε, i.e. for all ε > 0, there exists

N(ε) such that for all N ≥ N(ε);

Js,Ni (u◦i , u
◦
−i)− ε ≤ inf

ui∈UN,Lg

Js,Ni (ui, u
◦
−i) ≤ Js,Ni (u◦i , u

◦
−i).

�
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Proof. Applying the approach of [16] backwards from T along the optimal realization of the
sequence Q0, Q1, Q2, Q3 establishes the existence and uniqueness of the Nash equilibrium
and ε-Nash equilibrium for the infinite population system and finite population system,
respectively.

4.3.5 Hybrid Dynamic Programming Methodology

The order of the switching and stopping events Q0, Q1, Q2, Q3, if all of them occur, is assumed
to be fixed. As depicted in Fig. 4.1 and explained in Section 4.2.2, there are three possible
realizations for each of the discrete states Q1 and Q2. The optimal sequence of switching, that
is to say the discrete trajectory of the system, is determined via dynamic programming backward
propagation. For this purpose, the steps below are followed.

Step 1. (Solving backwards for transitions from Q3 to Q2). Equation (4.56) is solved for
ΠQ3

0 (t) backward in time, subject to the terminal condition (4.57). Then the values for ΠQ3

0 (t) are
substituted in the right hand side of (4.58) to obtain ΠQ2

0 (t) for all three realizations of Ψ0,3 and
C0,3 given by (4.52) and (4.53), respectively. Next, we substitute ΠQ2

0 (t) and the corresponding
Ψ0,3 and C0,3 in (4.59). Then the time instant at which (4.59) holds determines t3 for the transition
from the corresponding realization of Q2 to Q3. The transitions from Q2 , q2

0b
to Q3 or from

Q2 , q2
0a

to Q3 are equivalent to the stopping of subpopulation Ab or Aa, respectively, at the
obtained switching time t3. Hence equation (4.85) must also hold at the associated t3 for each
of the mentioned cases. Similarly, for the transition from Q2 , q1

0
to Q3 both (4.59) and (4.87)

must hold at the same time.
We observe that if (4.59) does not hold for any of the realizations of Q2 = {q2

0a
, q1

0
, q2

0b
}, then

we conclude that Q3 is not the final discrete state of the system. Subsequently, we start from Step

2 solving the dynamic programming backward in time from t = T .
Step 2. (Solving backwards for transitions from Q2 to Q1). Starting from the obtained

realizations of Q2 in Step 1 and the corresponding switching times t3, we follow a similar
approach as in Step1 to determine the realizations of Q1 which may take place and their
corresponding switching times t2. More specifically, equation (4.56) is solved with the boundary
(terminal) condition (4.58) with j = 3 at t3. Then, for example, to determine from Q2 , q2

0b

which of (either of or neither of) the transitions to Q1 , q2
0ab

and Q1 , q1
0b

may occur, equations
(4.59), (4.85) and (4.59), (4.87) are checked, respectively.

Step 3. (Solving backwards for transitions from Q1 to Q0). Similar to previous steps, starting
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from the determined cases for Q1 and the determined t1 in Step 2, it is investigated whether the
transition to Q0 may occur or not using equations (4.59), (4.85) and (4.87).

Step 4. (Specifying the optimal discrete sequence). If Steps 1-3 yield more than one discrete
trajectory for the system, the optimal one is determined by comparing the value functions along
the obtained discrete state sequences with the value function for the case where no switching or
stopping event happens. Finally it should be noted that if Steps 1-3 result in no realized discrete
trajectory, then the system may remain in the discrete state Q0 over the interval [0, T ].

4.4 Simulations

Consider a system of 100 minor agents with two types Aa and Ab and a single major agent A0.
The system matrices for minor subpopulation Aa with Na = 50 are defined as

Aa ,

[
2e−t e−0.5t

e−0.5t 2e−t

]
, Ba ,

[
1

0.1

]
,

and for minor subpopulation Ab with Nb = 50 are given by

Ab ,

[
5e−1.5tcos(t) 5e−2t

5e−2tsin(t) 5e−1.5t

]
, Bb ,

[
0

0.1

]
,

and for the major agent is given by

A0 ,

[
2e−t e−t

e−0.5t 2e−0.5t

]
, B0 ,

[
0.1

0.1

]
.

The parameters used in the simulation are: tfinal = 18 sec, ∆t = 0.01 sec, σ0 = 0.015, σa =

σb = 0.05, H0 = 0.6×I2×2, H
a
1 = Hb

1 = 0.2×I2×2, H
a
2 = Hb

2 = 0.02×I2×2, Ga = Gb = 02×2.
The control actions and state trajectories for a single realization in discrete states Q0, Q1, Q2 can
be displayed for the entire population of 101 agents together, but in Figure 4.2 and Figure 4.3
only 10 minor agents are shown for the sake of clarity.

4.5 Conclusions

A class of hybrid LQG mean field game problems was introduced where there exists one major
agent together with a large number of minor agents within two subpopulations, each agent with
stochastic linear dynamics and quadratic cost. The agents are coupled in their dynamics and cost
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Figure 4.2: The control actions for a single realization of the major agent, 10 sample minor
agents of type Aa, and 10 sample minor agents of type Ab in discrete states Q0, Q1, Q2.
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Figure 4.3: The state trajectories for a single realization of the major agent, 10 sample minor
agents of type Aa, and 10 sample minor agents of type Ab in discrete states Q0, Q1, Q2.
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functionals by the average state of minor agents (i.e. the empirical mean field). In addition, the
major agent is provided with the option to switch to another dynamics, and each minor agent
is provided with the option to quit if it is optimal for them to do so. It was shown that for
this class of problems the stopping and switching times are realization independent, and only
depend on the dynamical parameters of each agent. Hence, all the minor agents within the same
subpopulation stop at the same time. Therefore, the hybrid feature of the system was formulated
via the indexing by discrete states: (i) the switching of the major agent or (ii) the cessation of
one or both subpopulations of minor agents. Finally, by developing and then utilizing hybrid
LQG mean field game theory, optimal switching and stopping time strategies for, respectively,
the major agent and all minor agents, together with their best response control actions which
yield a unique ε-Nash equilibrium were established.

4.6 Appendix

4.6.1 F t-Independent State-Invariant Optimal Switchings and Stopping Strategies

The following exposition is an elaboration of the results of [44] that presents a set of conditions
under which the optimal switching and stopping times for LQG systems are Ft-independent and
state-invariant and therefore, to be almost surely equal for all agents within a subpopulation.

Let (Ω,F ,Ft, P ) be a probability space such that F0 contains the P -null sets, Ftf = F for
a fixed final time tf , and let Ft = σ {w (s) : 0 ≤ s ≤ t} be the natural filtration associated with
the sigma-algebra generated by the Wiener process.

Consider a stochastic hybrid system governed by the family of linear Itô differential equations
of the form

dxQj(t) =
(
AQj (t)xQj (t) +BQj (t)uQj (t)

)
dt+DQj (t) dw(t), t ∈

[
tωj , t

ω
j+1

)
, (4.90)

where Qj ∈ Q, with Q denoting the sequence of the discrete states of the system and having
finite cardinality , xQj (t) ∈ RnQj , uQj (t) ∈ RmQj , AQj (t) ∈ RnQj×nQj , BQj (t) ∈ RnQj×mQj ,
DQj (t) ∈ RnQj , 0 ≤ j ≤ L, tL+1 := tf .

Switching from a discrete state Qj−1 = q ∈ Q to another discrete state Qj = q′ ∈ Q is
considered to be a controlled switchings, that is the direct result of a discrete input σj ∈ Σ at an
arbitrary Ft-adapted switching time tωj . Upon switching, the continuous component of the state
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is reinitialized according to a jump map provided as

xQj (tj) = Ψσjx
Qj−1 (tj−) ≡ ΨQj−1Qj x

Qj−1 (tj−) . (4.91)
It is further assumed that

DQj(tj) = ΨQj−1QjD
Qj−1(tj), (4.92)

for all 1 ≤ j ≤ L, which implies equivalent diffusion fields before and after switching events.
Over a fixed time horizon [t0, tf ] and for a given initial condition

(
Q(t0), xQ0(t0)

)
=(

Q0, x
Q0

0

)
, consider the hybrid optimal control problem associated with the cost

J(uQ0 , ..., uQL) =
1

2
E

{∥∥xQL (tf )
∥∥2

P̄QL (tf )
+

L∑
j=1

∥∥xQj−1
(
tωj−

)∥∥2

Cσj (tωj )

+
L∑
i=0

∫ tωi+1

tωi

(∥∥xQi (t)
∥∥2

PQi (t)
+
∥∥uQi (t)

∥∥2

RQi (t)

)
dt

}
, (4.93)

where 0 ≤
[
P̄QL (t)

]T
= P̄QL (t) ∈ RnQL×nQL , 0 ≤

[
Cσj (t)

]T
= Cσj (t) ∈ RnQj−1

×nQj−1 ,
0 ≤

[
PQi (t)

]T
= PQi (t) ∈ RnQi×nQi , 0 <

[
RQi (t)

]T
= RQi (t) ∈ RmQi×mQi .

Theorem 4.2 (Switching Policies for LQG Hybrid Systems). For the system governed by (4.90)-
(4.93), assume that a family of matrices

{
ΠQj (t) ; j = 0, 1, · · · , L

}
exists such that

ΠQL (tf ) = P̄QL , (4.94)
and ΠQj ≡ ΠQj (t) satisfy the following family of Riccati equations (for simplicity of notation,

the explicit time dependence (t) is dropped whenever it is clear from the context)

Π̇Qj = ΠQjBQj
[
RQj

]−1 [
BQj

]T
ΠQj − ΠQjAQj − [AQj ]TΠQj − PQj , (4.95)

where

ΠQj−1 (tj) = ΨT
σj

ΠQj (tj) Ψσj + Cσj(tj), (4.96)

and for every j = L,L − 1, · · · , 1 (i.e. determined from a backward sequence), there exist tj ∈
[0, tj+1) satisfying the following algebraic matrix relations (equality, strict positive definiteness,
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and strict negative definiteness):

Hσj (s) = 0, s = tj, (4.97)

Hσj (s) > 0, s > tj, (4.98)

Hσj (s) < 0, s < tj, (4.99)
where

Hσj (s) := ΨT
σj

ΠQj(s)

[
BQj [RQj ]−1[BQj ]T −ΨσjB

Qj−1 [RQj−1 ]−1[BQj−1 ]TΨT
σj

]
ΠQj(s)Ψσj

+ ΨT
σj

ΠQj(s)

[
ΨσjA

Qj−1 − AQjΨσj −ΨσjB
Qj−1 [RQj−1 ]−1[BQj−1 ]TCσj

]
+
[
[AQj−1 ]TΨσj −ΨT

σj
[AQj ]T − CσjBQj−1 [RQj−1 ]−1[BQj−1 ]TΨT

σj

]
ΠQj(s)Ψσj

+ PQj−1 − CσjBQj−1 [RQj−1 ]−1[BQj−1 ]TCσj + CσjA
Qj−1 + [AQj−1 ]TCσj

−ΨT
σj
PQjΨσj −

∂Cσj(t)

∂t

∣∣∣∣
t=s

. (4.100)

Then switching times are Ft-independent (almost surely deterministic) independent of the initial

condition, and optimal control actions are determined by

uQj ,◦ (t, x) = −
[
RQj (t)

]−1 [
BQj (t)

]T
ΠQj (t)xQj ,◦ (t) . (4.101)

�

Proof. We invoke the Stochastic Hybrid Minimum Principle [45] and form the family of system
Hamiltonians as

HQj
(
xQj , uQj , λQj , KQj

)
=

1

2

(∥∥xQj (t)
∥∥2

PQj (t)
+
∥∥uQj (t)

∥∥2

RQj (t)

)
+
[
λQj
]T (

AQjxQj +BQjuQj
)
+
[
KQj

]T
DQj , (4.102)

It immediately follows that

argmin
uQ∈Rm

HQj
(
xQj , uQj , λQj , KQj

)
= −

[
RQj

]−1 [
BQj

]T
λQj , (4.103)

and therefore, it remains to be shown that along a trajectory xQj (t) associated with the input
(4.101) and switchings at tj’s satisfying (4.97)–(4.99), the processes defined as λQj (t) :=

ΠQj (t)xQj (t) are adjoint processes of the associated optimal control problem.
Beginning with the final discrete state QL, similar arguments as those in the classical LQG
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theory (see e.g. [36]) show that

λQL (tf ) = ΠQL (t)xQL (tf ) =
1

2

∂

∂x
‖x (tf )‖2

P̄QL (tf ) , (4.104)

dλQL = −∂H
QL

∂x

(
xQL , uQL , λQL , KQL

)
dt+KQLdw

= −
(
PQxQL +

[
AQL

]T
λQL

)
dt+KQLdw, (4.105)

with KQL (t) = ΠQL (t)DQL .
As the (backward) induction hypothesis, assume that λQj+1 (t) = ΠQj+1 (t)xQj+1 (t) holds.

We need to show that λQj (t) = ΠQj (t)xQj (t) follows. To this end, we note that from [45] (see
also [44]) adjoint processes and Hamiltonians must satisfy

λQj (tj+1) =
[
ΨσQj,Qj+1

]T
λQj+1 (tj+1+) + CσQj,Qj+1

xQj(tj+1), (4.106)

H
Qj

(xQj ,uo,Qj ,λQj ,KQj)
−
[
KQj

]T
DQj +

∂

∂t

∥∥xQj∥∥2

C
(t)
σQj,Qj+1

∣∣∣∣
tωj+1−

= H
Qj+1

(xQj+1 ,u
o,Qj+1 ,λ

Qj+1 ,K
Qj+1)

−
[
KQj+1

]T
DQj+1

∣∣∣∣
tωj+1

. (4.107)

One can easily verify by substitution that (4.96) and (4.97) lead to the satisfaction of (4.106)
and (4.107) with Ft-independence. Moreover, (4.98) and (4.99) ensure that such a switching
instant is uniqune for all values of state and therefore the associated Riccati equations and
switching conditions golbaly represent a unique optimal strategy.

As an important result of Theorem 4.2, one can obtain Ft-independence and state-invariance
of optimal stopping times for controlled LQG systems. Consider a system governed by

dx(t) = (A (t)x (t) +B (t)u (t)) dt+D (t) dw(t), t ∈ [0, tωs ) , (4.108)
where tωs is an Ft-adapted stopping time, to be determined together with a continuous input in
order to infimize (minimize) the cost

J(u) =
1

2
E

{
‖x (tωs )‖2

C(tωs ) +

∫ tωs

t0

‖x (t)‖2
P (t) + ‖u (t)‖2

R(t) dt

}
, (4.109)
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Define

H (s) := P (s) + C (s)B (s)R−1 (s)BT (s)C (s) + C (s)A (s) + AT (s)C (s)− ∂C(t)

∂t

∣∣∣∣
t=s

.

(4.110)

Corollary 4.3 (Stopping Policies for LQG Systems). Consider the (deterministic) algebraic

matrix expression (4.110). If there exists a finite time ts ∈ [0,∞) for which

H (s) = 0, s = ts, (4.111)

H (s) > 0, s > ts, (4.112)

H (s) < 0, s < ts, (4.113)
then tωs = ts for all ω ∈ Ω, that is the optimal stopping time for the system (4.108) with the cost

(4.109) is Ft-independent state-invariant and is equal to ts almost surely, and the optimal input

is determined by

u (t, x) = −R−1 (t)BT (t) Π (t)x (t) , (4.114)

where Π (t) is the solution to

Π̇(t) = Π(t)B(t)R−1(t)BT (t)Π(t)− Π(t)A(t)− AT (t)Π(t)− P (t), (4.115)

subject to the terminal (stopping) condition

Π (ts) = C (ts) . (4.116)
�
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Chapter 5

A Mean Field Game - Hybrid Systems
Approach to Optimal Execution Problems
in Finance with Stopping Times

5.1 Introduction

In this chapter, the considered financial market consists of an institutional investor, interpreted as
the major agent, who aims to liquidate a specific amount of shares, and a large population high
frequency traders (HFTs), interpreted as minor agents, who wish to liquidate or acquire a certain
amount of shares within a specific time horizon. The traders are coupled in their dynamics and
cost functions by the market’s average trading rate (a component of the system mean field) and the
hybrid feature enters via the indexing of the cessation of trading by one or both subpopulations
of minor traders by discrete states. This work combines two contemporary systems and control
techniques: MFG theory and hybrid optimal control (HOC) theory to establish optimal stopping
time strategies together with best response trading policies for all agents with respect to their
individual cost criteria which yield a unique ε-Nash equilibria for the market.

We note major trader (respectively, minor trader), and institutional trader (respectively, HFT)
are used interchangeably in this chapter.

The rest of the chapter is organized as follows. Section 5.2 presents the trading dynamics
and performance functions in the market. Optimal execution problems in the market are then
formulated in the Hybrid MFG framework in Section 5.3. Finally, concluding remarks are made
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in Section 5.4.

5.2 Trading Dynamics of Agents in Market

As stated in the Introduction, the institutional investor is considered as a major agent in the mean
field model of the market which liquidates its shares and the HFTs are considered as minor agents,
where two types of them are considered: acquirers Aa with the population of Na and liquidators
Al with the population of Nl, such that Na + Nl = N . All agents trade over the interval [0, T ],
and minor agents are allowed to stop trading at an optimal time tis ≤ T . It will be shown in
Section 5.3 that the optimal stopping time policy for each agent is Ft-independent, and depends
only on its dynamical parameters. In this chapter, for simplicity of exposition the dynamical
parameters for all minor traders in their respective type are the same, and hence the stopping
times are the same for all agents of each population. Employing the trading model in [25], the
trading dynamics of the major agent and any generic minor agent in the market are described by
the linear time evolution of the (i) inventories, (ii) trading rates and (iii) prices while the bilinear
cash process appears in the quadratic performance function for each agent.

5.2.1 Inventory Dynamics

It is assumed that the institutional investor liquidates its inventory of shares, q0(t), by trading at a
rate ν0(t) during the trading period [0, T ]. Hence the major agent’s inventory dynamics is given
by

dq0(t) = ν0(t)dt+ σq0dw
q
0, 0 ≤ t ≤ T,

wherewq0 is a Wiener process modeling the noise in the inventory information that the institutional
trader collects from its branches in different locations; σq0 is a positive scalar and we assume that
q0(0)� 1. The same dynamical model is adopted for the trading dynamics of a generic HFT

dqi(t) = νi(t)dt+ σqi dw
q
i ,

where for a minor acquirer trader Ai ∈ Aa, 0 ≤ t ≤ tas , and correspondingly for a minor
liquidatorAi ∈ Al, 0 ≤ t ≤ tls. The Wiener processwqi models the HFT’s information noise, σqi is
a positive scalar, νi(t) is the agent’s rate of trading which can be positive or negative depending on
whether the agent is acquirer or liquidator, respectively; qi(t) is the minor liquidator’s remaining
shares at time t, or the shares the minor acquirer has bought until time t. However, the initial
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share stock of the HFTs, {qi(0), 1 ≤ i ≤ Na + Nl}, are not considered to be large, furthermore
they are not motivated to retain shares and are assumed to trade them quickly.
We assume that the trading rate of the major agent is controlled via u0(t) as

dν0(t) = u0(t)dt, 0 ≤ t ≤ T,

where the trading strategy u0(t) can be seen to be the trading acceleration of the major trader.
Correspondingly, ui(t) controls the trading rate of minor agent, Ai, by

dνi(t) = ui(t)dt,

where again for a minor acquirer trader Ai ∈ Aa, 0 ≤ t ≤ tas , and correspondingly for a minor
liquidator Ai ∈ Al, 0 ≤ t ≤ tls, and ui(t) is the trading acceleration of the minor acquirer or
liquidator.

5.2.2 Price Dynamics

The trading rate of the major agent and the average trading rate of the minor agents give rise to
the fundamental asset price which models the permanent effect of agents’ trading rates on the
market price. Further, each agent has a temporary effect on the asset price which only persists
during the action of the trade and which determines the execution price, that is to say the price at
which each agent can trade.

Fundamental Asset Price

We model the dynamics of the fundamental asset price, as seen from the major agent’s viewpoint,
by

dF0(t) =
(
λ0ν0(t) + λνNt(t)

)
dt+ σdwF0 (t), 0 ≤ t ≤ T,

where Nt is the number of minor agents trading at time t, νNt(t) = 1
Nt

∑Nt
i=1 νi(t) is the average

trading rate of the minor agents trading at time t. The Wiener processwF0 (t) models the aggregate
effect of all traders in the market which - unlike the major and minor agents A0, Ai, - have no
complete or partial observations on any of the state variables appearing in the dynamical market
model (these are termed uninformed traders). Further, σ denotes the intensity of the market
volatility and λ0, λ ≥ 0 denote the strength of the linear permanent impact of the major and minor
agents’ trading on the fundamental asset price, respectively. Similarly, we model the fundamental
asset price dynamics, as seen by a minor agent Ai, by
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dFi(t) =
(
λ0ν0(t) + λνNt(t)

)
dt+ σdwFi (t),

where 0 ≤ t ≤ tas , for Ai ∈ Aa, and 0 ≤ t ≤ tls, for Ai ∈ Al, νNt(t) = 1
Nt

∑Nt
i=1 νi(t) is

again the average trading rate of the Nt minor agents trading at t, and the Wiener process, wFi (t),
represents the mass effect of all uninformed traders in the market.

Execution Price

The major agent’s execution price S0(t) evolution is assumed to be given by

dS0(t) = dF0(t) + a0dν0(t), 0 ≤ t ≤ T, (5.1)
where a0 ≥ 0 is the temporary impact strength of the major agent on fundamental asset price.
Likewise, a minor agent’s execution price, Si(t), is assumed to evolve by

dSi(t) = dFi(t) + adνi(t), (5.2)
where 0 ≤ t ≤ tas , forAi ∈ Aa, and 0 ≤ t ≤ tls, forAi ∈ Al, and a models the temporary impact
of a minor agent’s trading on its execution price.

5.2.3 Cash Process

The cash processes for the major agent and a generic minor agent, Z0(t), Zi(t), respectively, are
given by

dZ0(t) = −S0(t)dq0(t), 0 ≤ t ≤ T, (5.3)dZi(t) = −Si(t)dqi(t), for Ai ∈ Aa, 0 ≤ t ≤ tas

dZi(t) = −Si(t)dqi(t), for Ai ∈ Al, 0 ≤ t ≤ tls,
(5.4)

where Z0(t), and Zi(t) forAi ∈ Al are the cash obtained through liquidation of shares, and Zi(t),
forAi ∈ Aa is the cash paid for acquisition of shares up to time t. We note that the value of dq0(t)

in a stock sale (respectively, buy) is negative (respectively, positive) and hence for positive S0(t),
Z0(t) increases (respectively, decreases).

5.2.4 Performance Function

Major Liquidator

The objective for the major trader is to liquidate N0 shares and maximize the cash it holds at
the end of the trading horizon, i.e. maximize Z0(T ), and if the remaining inventory at the
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final time T is q0(T ), it can liquidate it at a lower price than the market asset price reflected
at cost function by q0(T )(F0(T )− αq0(T )). Further, the major trader’s utility in minimizing the
inventory over the period [0, T ] is modeled by including the penalty φ

∫ T
0
q2

0(s)ds in its objective
function, and the utility of avoiding very high execution prices, large trading intensities and large
trading accelerations by including the terms εS2

0(T ),
∫ T

0
δS2

0(s)ds, βν2
0(T ),

∫ T
0
θν2

0(s)ds and∫ T
0
R0u

2
0(s)ds in the objective function. Therefore, its cost function to be minimized is given by

J0(u0, u−0) = E
[
− rZ0(T )− pq0(T )

(
F0(T )− αq0(T )

)
+ εS2

0(T ) + βν2
0(T )

+

∫ T

0

(
φq2

0(s) + δS2
0(s) + θν2

0(s) +R0u
2
0(s)

)
ds
]
, (5.5)

where r, p, α, ε, β, φ, δ, θ, and R0 are positive scalars, and u−0 := (u1, u2, ..., uN) are trading
strategies of the minor traders. Note that for larger values of φ the trader attempts to liquidate its
inventory more quickly.

Minor Liquidator

In a similar way, the objective function to be minimized for a liquidator HFT who wants to
liquidate Nl shares over the interval [0, T ] with the stopping time 0 ≤ tls ≤ T is given by

Ji(ui, u−i) = E
[
− rlZi(tls)− plqi(tls)

(
Fi(t

l
s)− ψlqi(tls)

)
+ ξlS

2
i (t

l
s) + µlν

2
i (tls)

+

∫ tls

0

(
κlq

2
i (s) + γlS

2
i (s) + %lν

2
i (s) +Rlu

2
i (s)

)
ds
]
, for Ai ∈ Al (5.6)

where rl, pl, ψl, ξl, µl, κl, γl, %l and Rl are positive scalars, and u−i :=

(u0, u1, ..., ui−1, ui+1, ..., uN). Note that Nl � N0.

Minor Acquirer

The objective for a minor acquirer is to buy N shares during the trading horizon [0, T ]. Given
that it stops trading at tas ≤ T , it also wishes to minimize the execution cost including the cash
Zi(t

a
s) paid up to time tas , and the cash must be paid at time tas to buy the remaining shares at once

at a higher price than the market’s asset price, i.e.
(
N−qi(tas)

)(
Fi(t

a
s)+ψa(N−qi(tas)

)
. It is also

intended to avoid high execution prices, large trading intensities and large trading accelerations
modeled by including ξaS2

i (t
a
s)+µaν

2
i (tas)+

∫ tas
0

(
γaS

2
i (s)+%aν

2
i (s)+RAu

2
i (s)

)
ds in its objective
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function

Ji(ui, u−i) = E
[
pa(N − qi(tas))

(
Fi(t

a
s) +ψa(N − qi(tas))

)
+ raZi(t

a
s) + ξaS

2
i (t

a
s) +µaν

2
i (tas)+∫ tas

0

(
κa(N − qi(s))2 + γaS

2
i (s) + %aν

2
i (s) +Rau

2
i (s)

)
ds
]
, Ai ∈ Aa, (5.7)

where
∫ tas

0
κa(N − qi(s))

2ds is to penalize the agent for the remaining shares to be bought up
to tas and to expedite the acquisition. The parameters pa, ψa, ra, ξa, µa, κa, γa, %a, and Ra are
positive scalars and u−i := (u0, u1, ..., ui−1, ui+1, ..., uN).

5.3 Hybrid Mean Field Game Formulation of Optimal Execution Problems

In this section we formulate optimal execution problems in the Hybrid MM LQG MFG
framework.

5.3.1 Discrete State Association

In order to present the trading dynamics of the stock market in the stochastic hybrid systems
framework of [44,45], the discrete states Qj, j = 0, 1, 2 are introduced, which correspond to the
evolution of the market in the intervals [tj, tj+1), where t0 = 0 is the initial time, t1 and t2 denote
the stopping times of the first population and the second population respectively, and t3 = T is
the terminal time.

We remark that the HS-MFG problems studied in this chapter lie within the class of hybrid
LQG problems in [44] for which optimal switching strategies are Ft-independent, and therefore,
optimal stopping strategies depend only on the dynamical parameters of each population.

We associate the discrete state Q0 to the initial case where both the liquidator and acquirer
populations are trading together with the major agent over the interval [0, t1).

The discrete state Q1 corresponds to the interval [t1, t2) for which two situations can be
considered: (i) the liquidator population stops at t1 while the acquirer population is still trading,
in which caseQ1 = q0a, and (ii) the acquirer population stops at t1 while the liquidator population
is trading, which corresponds to Q1 = q0l.

The discrete stateQ2 represents the system over the interval [t2, T ] after the second population
of HFTs stops at t2, and hence the major agent is trading in the absence of both populations.

The above discrete state association is summarized in the following table.
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Table 5.1: Discrete State Association

Discrete State A0 Aa Al
Q0 X X X

Q1
q0a X X ×
q0l X × X

Q2 X × ×

5.3.2 Finite Populations

Major Agent

The dynamics of the major trader in the market can be modeled as

dν0(t) = u0(t)dt,

dq0(t) = ν0(t)dt+ σq0dw
q
0,

dS0(t) =
(
λ0ν0(t) + λνNt(t)

)
dt+ a0u0(t)dt+σdwF0 (t).

Let the major agent’s state be denoted by x0 = [ν0, q0, S0]T , then its dynamics can be expressed
as

dx0 = A0x0dt+B0u0dt+ E0x
Ntdt+D0dw0 (5.8)

with the matrices

A0 =

 0 0 0

1 0 0

λ0 0 0

 , B0 =

 1

0

a0

 , w0 =

[
wq0

wF0

]
, E0 =

 0 0 0

0 0 0

λ 0 0

 , D0 =

 0 0

σq0 0

0 σ

 .
Note that in (5.8), Nt takes the following values.

Nt =



Na +Nl for Q0,

Na for Q1 = q0a,

Nl for Q1 = q0l,

0 for Q2.

(5.9)

The major trader’s cost function (5.5) can also be described in terms of its states with replacing
the final cash process by E[Z0(T )] = −E[

∫ T
0
S0(s)ν0(s)ds], and the fundamental asset price
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F0(T ) using (5.1). The equation (5.8) together with the cost function (5.5) form the stochastic
LQG problem for the major trader. Note that the major trader is involved with the market’s
average trading rate in its dynamics while involved with the market’s average selling rate in its
cost function.

Minor Liquidator

Similarly, the stochastic optimal control problem for a minor liquidator Ai ∈ Al, is given by the
set of dynamical equations

dνi(t) = ui(t)dt,

dqi(t) = νi(t)dt+ σqi dw
q
i ,

dSi(t) =
(
λ0ν0(t) + λνNt(t)

)
dt+ aui(t)dt+ σdwFi .

Similar to the major trader, we define a generic minor trader’s state vector as xi = [νi, qi, Si]
T ,

and its dynamics can be written as

dxi = Alxidt+Bluidt+ Elx
Ntdt+Dldwli (5.10)

with

Al =

 0 0 0

1 0 0

0 0 0

 , El =

 0 0 0

0 0 0

λ 0 0

 , Bl =

 1

0

a

 ,

Gl =

 0 0 0

0 0 0

λ0 0 0

 , Dl =

 0 0

σqi 0

0 σ

 , wli =

[
wqi
wFi

]
.

The quadratic cost function (5.6) can also be expressed in terms of the minor agent’s state when
the final cash process in (5.6) is replaced by E[Zi(t

l
s)] = −E[

∫ tls
0
Si(s)νi(s)ds] using (5.4), and

the fundamental asset price Fi(tls) is replaced using (5.2).
The equations (5.10) and (5.6) form the stochastic LQG problem for a generic minor liquidator.
Additionally, they show that a minor liquidator is coupled with the major agent’s trading rate and
the market’s average trading rate in its dynamics while coupled with the market’s average selling
rate in its cost function.
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Minor Acquirer Agent

The stochastic optimal control problem for a minor acquirer Ai ∈ Aa, is given by the set of
dynamical equations

dνi(t) = ui(t)dt,

dYi(t) = −νi(t)dt+ σqi dw
q
i ,

dSi(t) =
(
λ0ν0(t) + λνNt(t)

)
dt+ aui(t)dt+ σdwFi ,

where Yi(t) = Na − qi(t) is the remaining shares at t to be acquired until the end of trading
horizon. We define a generic minor acquirer’s state vector as xi = [νi, Yi, Si], hence its dynamics
in compact form would be

dxi = Aaxidt+Bauidt+ Eax
Ntdt+Dadwai , (5.11)

where

Aa =

 0 0 0

−1 0 0

0 0 0

 , Ea =

 0 0 0

0 0 0

λ 0 0

 , Ba =

 1

0

a



Ga =

 0 0 0

0 0 0

λ0 0 0

 , Da =

 0 0

σqi 0

0 σ

 , wai =

[
wqi
wFi

]
.

Note that Nt in (5.11) again takes values as in (5.9) over the trading horizon. Accordingly, the
cost function for acquisition is given by

Ji(ui, u−i) = E
[
paYi(t

a
s)
(
Si(t

a
s)− aνi(tas) + ψaYi(t

a
s)
)

+ ξaS
2
i (t

a
s) + µaν

2
i (tas)

+

∫ tas

0

(
κaY

2
i (s) + γaS

2
i (s) + %aν

2
i (s)− raSi(s)νi(s) +Rau

2
i (s)

)
ds
]
, for Ai ∈ Aa. (5.12)

The set of equations (5.11)-(5.12) constitute the standard stochastic LQG problem for a minor
acquirer. It can be seen that a generic minor acquirer interacts with the major agent’s trading rate
as well as the market’s average trading rate through it dynamics, and with the market’s average
buying rate through its cost function.
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5.3.3 Mean Field Evolution

Following the LQG MFG methodology [16], the mean field, x̄, is defined as the L2 limit, when it
exists, of the average of minor agents’ states when population size goes to infinity

x̄(t) = lim
Nt→∞

xNt(t) = lim
N→∞

1

Nt

Nt∑
i=1

xi(t), a.s.

Now, if the control strategy for each minor agent is considered to have the general feedback form

ui = L1xi + L2x0 +
Nt∑

j 6=i,j=1

L4xj + L3, 1 ≤ i ≤ Nt, (5.13)

then the mean field dynamics can be obtained by substituting (5.13) in the minor liquidator
(respectively, acquirer) agents’ dynamics (5.10) (respectively, (5.11)), and taking the average
and then its L2 limit as N →∞.
The set of mean field equations for the optimal execution problem can be written as

dx̄ = Āx̄dt+ Ḡx0dt+ m̄dt. (5.14)
For Q0, x̄ = [x̄Ta , x̄

T
l ]T consists of the mean field x̄l of the liquidator population, and the mean

field x̄a of the acquirer population. The matrices in (5.14) are defined as

Ā =

[
Āa Āal

Āla Āl

]
, Ḡ =

[
Ḡa

Ḡl

]
, m̄ =

[
m̄a

m̄l

]
, (5.15)

which shall be determined from consistency equations discussed in section 5.3.5.
For q0a, x̄ = x̄a, and the matrices in (5.14) are given as

Ā = Āa, Ḡ = Ḡa, m̄ = m̄a. (5.16)
For q0l, x̄ = x̄l, and the matrices in (5.14) are given by

Ā = Āl, Ḡ = Ḡl, m̄ = m̄l. (5.17)
Finally, for Q2, x̄ = 0.

The empirical distribution of the minor traders is denoted by πN = (πNa , π
N
l ), πNk = Nk

N
, k ,

a, l. The first assumption is as follows.

Assumption 5.1. There exists π such that limN→∞π
N = (πa, πl) a.s.
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5.3.4 Infinite Populations

Following the mean field game methodology with a major agent [16, 42] the hybrid optimal
execution problem is first solved in the infinite population case where the average term in the
finite population dynamics and cost function of each agent is replaced by its infinite population
limit, i.e. the mean field. Then specializing to linear systems [16], the major agent’s state is
extended with the mean field, while the minor agent’s state is extended with the mean field and
the major agent’s state; this yields LQG problems for each trader linked only through the mean
field and the major agent’s state. Then the main results of [16], [42] are (i) the existence of infinite
population best response strategies which yield the Nash equilibria, and (ii) the infinite population
best response strategies applied to the finite population system yield an ε-Nash equilibria (see
Theorem 5.1).

Major Liquidator Agent

The extended dynamics of the major agent in the infinite population, i.e. the dynamic for the
x
ex,Qj
0 is given by

dx
ex,Qj
0 = (AQj

0 x
ex,Qj
0 + MQj

0 + BQj0 u
Qj
0 )dt+ DQj

0 dW0, (5.18)
0 ≤ j ≤ 2, and the cost function for the extended major agent’s system would be

J0(u0, u−0) = E
[
‖xex,Q2

0 (T )‖2

P̄Q2
0

+
2∑
j=0

∫ tj+1

tj

(
‖xex,Qj0 (s)‖2

P
Qj
0

+ ‖uQj0 (s)‖2

R
Qj
0

)
ds
]
, (5.19)

where t0 = 0, t3 = T . Let matrix coefficients P0, P̄0, respectively, associated with the running
and final costs in (5.5) be given by

P̄0 =

 β 1
2
pa0 0

1
2
pa0 pα −1

2
p

0 −1
2
p ε

 , P0 =

 θ 0 1
2
r

0 φ 0
1
2
r 0 δ

 ,
then over the interval [t0, t1), and in the discrete state Q0, the dynamics of the continuous state
xex,Q0

0 = [xT0 , x̄
T
a , x̄

T
l ]T is determined from (5.18) with

AQ0

0 =

[
A0 [πaE0, πlE0]

Ḡ Ā

]
, MQ0

0 =

[
03×1

m̄

]
, BQ0

0 =

[
B0

06×1

]
, DQ0

0 =

[
D0 03×6

06×3 06×6

]
.
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and PQ0

0 in (5.19) is given by

PQ0

0 = [I3×3, 03×3, 03×3]TP0[I3×3, 03×3, 03×3].

In case (i) where Q1 = q0a over the interval [t1, t2), the dynamics for xex,q0a0 = [xT0 , x̄
T
a ]T is

determined from (5.18) with

Aq0a
0 =

[
A0 E0

Ḡa Āa

]
, Mq0a

0 =

[
03×1

m̄a

]
, Bq0a0 =

[
B0

03×1

]
, Dq0a

0 =

[
D0 03×3

03×3 03×3

]
.

and Pq0a0 is given by
Pq0a0 = [I3×3, 03×3]TP0[I3×3, 03×3].

In this case, the values of the continuous state before and after t1 are related by the jump map

xex,q0a0 (t1) = Ψ0,ax
ex,Q0

0 (t1−) (5.20)
where

Ψ0,a =

[
I3×3 03×3 03×3

03×3 I3×3 03×3

]
. (5.21)

In case (ii) where Q1 = q0l holds, xex,q0l = [xT0 , x̄
T
l ]T and

Aq0l
0 =

[
A0 E0

Ḡl Āl

]
, Bq0l0 =

[
B0

03×1

]
, Mq0l

0 =

[
03×1

m̄l

]
, Dq0l

0 =

[
D0 03×3

03×3 03×3

]
.

Pq0l0 = [I3×3, 03×3]TP0[I3×3, 03×3, 03×3].

In this case, the values of the continuous state of the major trader before and after t1 are
related by the jump map

xex,q0l0 (t1) = Ψ0,lx
ex,Q0

0 (t1−) (5.22)

where

Ψ0,l =

[
I3×3 03×3 03×3

03×3 03×3 I3×3

]
. (5.23)

For the discrete state Q2, the continuous state of the major trader is xex,q0a0 ≡ x0, and

AQ2

0 = A0, MQ2

0 = 03×1, BQ2

0 = B0, DQ2

0 = D0

P̄Q2

0 = P̄0, PQ2

0 = P0

The values continuous state of the major trader before and after t2 are related by the the jump
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map
xex,Q2

0 (t2) = Ψ0,2x
ex,Q1

0 (t2−) (5.24)

where Ψ0,2 =
[
I3×3 03×3

]
.

By the definition of the terms DQj
0 necessarily satisfy the condition A1 in [45], which in the

LQG takes the following form

DQj
0 = Ψ0,jD

Qj−1

0 , j = 1, 2. (5.25)
An application of the stochastic hybrid control theory of [45], specialized to the LQG case in

[44], yield the infinite population best response hybrid control action as

u
Qj
0 (t) = −R−1

0,Qj
BT0,QjΠ

Qj
0 (t)x

ex,Qj
0 (t), (5.26)

where Π
Qj
0 (t) is the solution of

−Π̇
Qj
0 = Π

Qj
0 AQj

0 + AT
0,Qj

Π
Qj
0 − Π

Qj
0 BQj0 R−1

0,Qj
BT0,QjΠ

Qj
0 + P0, (5.27)

subject to the terminal and boundary conditions

ΠQ2

0 (T ) = P̄0, (5.28)

Π
Qj−1

0 (tj) = ΨT
0,jΠ

Qj
0 (tj)Ψ0,j, (5.29)

PQj−1

0 + ΨT
0,jΠ

Qj
0 (tj)Ψ0,jA

Qj−1

0 + AT
0,Qj−1

ΨT
0,jΠ

Qj
0 (tj)Ψ0,j

−ΨT
0,jΠ

Qj
0 (tj)Ψ0,jB

Qj−1

0 R−1
0,Qj−1

BT0,Qj−1
ΨT

0,jΠ
Qj
0 (tj)Ψ0,j

= ΨT
0,j

(
PQj0 +Π

Qj
0 (tj)A

Qj
0 +AT

0,Qj
Π
Qj
0 (tj)−Π

Qj
0 (tj)B

Qj
0 R−1

0,Qj
BT0,QjΠ

Qj
0 (tj)

)
Ψ0,j, for j = 1, 2.

(5.30)

Minor Acquirer

A generic minor agentAi’s extended dynamics in the acquirer population with the extended state
x
ex,Qj
i is

dx
ex,Qj
i = (AQj

a x
ex,Qj
i + MQj

a + BQj0 u
Qj
0 + BQja u

Qj
i )dt+ DQj

a dWi, (5.31)

where for Q0, xex,Q0

i = [xTi , x
T
0 , x̄

T
a , x̄

T
l ]T , and

AQ0
a =

[
Aa [Ga, πaEa, πlEa]

09×3 AQ0

0 − BQ0

0 R−1
0,Q0

BT0,Q0
ΠQ0

0

]
,
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MQ0
a =

[
03×1,

M0

]
, BQ0

a =

[
Ba

09×1

]
, DQ0

a =

[
Da 03×9

09×3 DQ0

0

]
,

and for q0a, x
ex,q0a
i = [xTi , x

T
0 , x̄

T
a ]T , and

Aq0a
a =

[
Aa [Ga, Ea]

06×3 Aq0a
0 − Bq0a0 R−1

0,q0a
BT0,q0aΠ

q0a
0

]
,

Mq0a
a =

[
03×1

M0

]
, Bq0aa =

[
Ba

06×1

]
, Dq0a

a =

[
Da 03×6

06×3 Dq0a
0

]
.

In case (i) where the acquirer population is trading over [t1, t2), i.e. Q1 = q0a, the total hybrid
cost for a minor acquirer is given by

Jai (ui, u−i) = E
[
‖xex,q0ai (t2)‖2

P̄q0aa
+

1∑
j=0

∫ tj+1

tj

(
‖xex,Qji (s)‖2

P
Qj
a

+ ‖uQji (s)‖2

R
Qj
a

)
ds
]
, (5.32)

with

P̄q0aa = [I3×3, 03×6]T P̄a[I3×3, 03×6] (5.33)

Pq0aa = [I3×3, 03×6]TPa[I3×3, 03×6] (5.34)

PQ0
a = [I3×3, 03×9]TPa[I3×3, 03×9], (5.35)

where P̄a, Pa are, respectively, associated with the running and final costs in (5.7) are given by

P̄a =

 µa −1
2
paa 0

−1
2
paa paψa

1
2
pa

0 1
2
pa ξa

 , Pa =

 %a 0 −1
2
ra

0 κa 0

−1
2
ra 0 γa

 . (5.36)

In this case, the extended state for a generic minor agent in the acquirer population at t1 satisfies
the jump transition map

xex,q0a(t1) = Ψi,ax
ex,Q0(t1−)

with

Ψi,a =

 I3×3 03×3 03×3 03×3

03×3 I3×3 03×3 03×3

03×3 03×3 I3×3 03×3

 .
In case (ii) where Q1 = q0l holds over the interval [t1, t2), the cost for the minor acquirer

agent Ai is given by
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Jai (ui, u−i) = E
[
‖xex,Q0

i (t1)‖2

P̄Q0
a

+

∫ t1

t0

(
‖xex,Q0

i (s)‖2

PQ0
a

+ ‖uQ0

i (s)‖2

R
Q0
a

)
ds
]
, (5.37)

with P̄Q0 = [I3×3, 03×9]T P̄ [I3×3, 03×9].
The optimal stopping problem for a minor acquirer is equivalent to a hybrid optimal control

problem in which the dynamics and costs become zero after stopping. By the definition of the
terms DQj

a necessarily satisfy the condition A1 in [45]. To be specific, for the case (i) the diffusion
coefficients in (5.31) satisfy

Dq0a
a = Ψi,aDQ0

a , (5.38)

DQ2
a = Ψi,σq0a,qstop

Dq0a
a ≡ 0, (5.39)

where σQj ,qstop denotes the stopping event in the discrete state Qj . Both conditions in (5.39) are
satisfied since DQ2

a = 0 due to the zero dynamics after stopping and Ψi,σq0a,qstop
= 0 due to

removal of the minor acquirer trader’s state from the market dynamics. For the case (ii) we also
have

DQ1
a = Ψi,σQ0,qstop

DQ0
a ≡ 0, (5.40)

which holds due to the stopping decision at t1. The results of [44, 45] yield

u
Qj
i (t) = −R−1

Qj
BTa,QjΠ

Qj
a (t)x

ex,Qj
i (t), (5.41)

with
−Π̇Qj

a = ΠQj
a AQj

a + AT
a,Qj

ΠQj
a − ΠQj

a BQja R−1
a,Qj

BTa,QjΠ
Qj
a + Pa, (5.42)

where for the case (i), in which Q1 = q0a, Π
Qj
a (t) is the solution of (5.42) subject to the terminal

conditions

Πq0a
a (t2) = P̄q0aa ,(

Pq0aa + P̄q0aa Aq0a
a + AT

a,q0a
P̄q0aa − P̄q0aa Bq0aa R−1

a,q0a
BTa,q0aP̄

q0a
a

)
t=t2

= 0,

and the boundary conditions
ΠQ0
a (t1) = ΨT

i,aΠ
q0a
a (t1)Ψi,a, (5.43)

PQ0
a + ΨT

i,aΠ
q0a
a (t1)Ψi,aAQ0

a + AT
a,Q0

ΨT
i,aΠ

q0a
a (t1)Ψi,a

−ΨT
i,aΠ

q0a
a (t1)Ψi,aBQ0

a R−1
a,Q0

BTa,Q0
ΨT
i,aΠ

q0a
a (t1)Ψi,a

= ΨT
i,a

(
Pq0aa + Πq0a

a (t1)Aq0a
a + AT

a,q0a
Πq0a
a (t1)− Πq0a

a (t1)Bq0aa R−1
a,q0a

BTa,q0aΠ
q0a
a (t1)

)
Ψi,a, (5.44)

and in case (ii) where Q1 = q0l holds, ΠQ0
a (t) is the solution of (5.42) subject to the terminal
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conditions

ΠQ0
a (t1) = P̄Q0

a , (5.45)(
PQ0
a + P̄Q0

a AQ0
a + AT

a,Q0
P̄Q0
a − P̄Q0

a BQ0
a R−1

a,Q0
BTa,Q0

P̄Q0
a

)
t=t1

= 0. (5.46)

Minor Liquidator

The hybrid dynamics, jump maps and performance measures for a minor liquidator are presented
in a similar form as the minor acquirer, and therefore, due to space limitations, are not presented
here. The infinite population best response hybrid control action as

u
Qj
i (t) = −R−1

Qj
BTl,QjΠ

Qj
l (t)x

ex,Qj
i (t), (5.47)

with
−Π̇

Qj
l = Π

Qj
l AQj

l + AT
l,Qj

Π
Qj
l − Π

Qj
l BQjl R−1

l,Qj
BTl,QjΠ

Qj
l + Pl, (5.48)

where for the case (i), in which Q1 = q0a, Π
Qj
l (t) is the solution of (5.48) subject to the terminal

conditions

ΠQ0

l (t1) = P̄Q0

l ,(
PQ0

l + P̄Q0

l AQ0

l + AT
l,Q0

P̄Q0

l − P̄Q0

l BQ0

l R−1
l,Q0

BTl,Q0
P̄Q0

l

)
t=t1

= 0.

and in case (ii) where Q1 = q0l holds, ΠQ0

l (t) is the solution of (5.42) subject to the terminal
conditions

Πq0l
l (t2) = P̄q0ll ,(

Pq0ll + P̄q0ll Aq0l
l + AT

l,q0l
P̄q0ll − P̄q0ll Bq0ll R

−1
l,q0l

BTl,q0lP̄
q0l
l

)
t=t2

= 0,

and the boundary conditions
ΠQ0

l (t1) = ΨT
i,lΠ

q0l
l (t1)Ψi,l,

PQ0

l +ΨT
i,lΠ

q0l
l (t1)Ψi,lAQ0

l +AT
l,Q0

ΨT
i,lΠ

q0l
l (t1)Ψi,l−ΨT

i,lΠ
q0l
l (t1)Ψi,lBQ0

l R−1
l,Q0

BTl,Q0
ΨT
i,lΠ

q0l
l (t1)Ψi,l

= ΨT
i,l

(
Pq0ll + Πq0l

l (t1)Aq0l
l + AT

l,q0l
Πq0l
l (t1)− Πq0l

l (t1)Bq0ll R
−1
l,q0l

BTl,q0lΠ
q0l
l (t1)

)
Ψi,l. (5.49)

The infinite population equilibria is linked to the finite population equilibria by the following
theorem.

Theorem 5.1 (ε-Nash Equilibria for Hybrid MM LQG MFG Systems). Subject to Assumptions
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4.1-4.5 in Chapter 4, the system equations (5.8), (5.10), (5.11) together with the mean field

equations (5.51) generate the set of control laws UNMF , {u
Qj
i ; 0 ≤ i ≤ Nt}, 1 ≤ Nt ≤ N <∞,

given by (5.26), (5.41), and (5.47) such that

(i) All agent systems Ai, 0 ≤ i ≤ N , are second order stable.

(ii) {UNMF ; 1 ≤ N < ∞} yields an ε-Nash equilibrium for all ε, i.e. for all ε > 0, there exists

N(ε) such that for all N ≥ N(ε);

Js,Ni (u◦i , u
◦
−i)− ε ≤ inf

ui∈UNi,y
Js,Ni (ui, u

◦
−i) ≤ Js,Ni (u◦i , u

◦
−i).

�

Proof. Applying the approach of [16] backwards from T along the optimal realization of
the sequence Q0, Q1, Q2, establishes the existence and uniqueness of the Nash equilibrium
and ε-Nash equilibrium for the infinite population system and finite population system,
respectively.

5.3.5 Mean Field Consistency Equations

The closed loop trading dynamics of a minor acquirer Ai ∈ Aa applying (5.41), or
correspondingly a minor liquidator Ai ∈ Al applying (5.47) is consequently

dνi = −R−1
a/lB

T
a/lΠa/l

(
xTi , x

T
0 , x̄

T
)T
dt−R−1

a/lB
T
a/lsa/l(t)dt,

then the average of the closed loop trading dynamics over the acquirer or liquidator population is
obtained as

1

Na/l

Na/l∑
i=1

dνi = − 1

Na/l

Na/l∑
i=1

R−1
a/lB

T
a/lΠa/l

(
xTi , x

T
0 , x̄

T
)T
dt− 1

Na/l

Na/l∑
i=1

R−1
a/lB

T
a/lsa/l(t)dt, (5.50)

where x̄ = [x̄Ta , x̄
T
l ]T . Then taking the L2 limit of (5.50) as the population size Na/l goes to

infinity yields the trading rate mean field dynamics

dν̄a/l = lim
Na/l→∞

dνNa/l = −R−1
a/lB

T
a/lΠa/l × lim

Na/l→∞

(
(xNa/l)T , xT0 , x̄

T
a , x̄

T
l

)T
dt−R−1

a/lB
T
a/lsa/ldt,

and hence the consistency equations are given by

Āa,11 = −R−1
a (Πa,11 + Πa,17)− aR−1

a (Πa,31 + Πa,37),
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Āa,12 = −R−1
a (Πa,12 + Πa,18)− aR−1

a (Πa,32 + Πa,38),

Āa,13 = −R−1
a (Πa,13 + Πa,19)− aR−1

a (Πa,33 + Πa,39),

Āal,11 = −R−1
a (Πa,110 + aΠa,310),

Āal,12 = −R−1
a (Πa,111 + aΠa,311),

Āal,13 = −R−1
a (Πa,112 + aΠa,312),

Āl,11 = −R−1
l (Πl,11 + Πl,110)− aR−1

l (Πl,31 + Πl,310),

Āl,12 = −R−1
l (Πl,12 + Πl,111 − aR−1

l (Πl,32 + Πl,311),

Āl,13 = −R−1
l (Πl,13 + Πl,112)− aR−1

l (Πl,33 + Πl,312),

Āla,11 = −R−1
l Πl,17 − aR−1

l Πl,37,

Āla,12 = −R−1
l Πl,18 − aR−1

l Πl,38,

Āla,13 = −R−1
l Πl,19 − aR−1

l Πl,39,

Ḡa/l,11 = −R−1
a/l(Πa/l,14 + aΠa/l,34),

Ḡa/l,12 = −R−1
a/l(Πa/l,15 + aΠa/l,35),

Ḡa/l,13 = −R−1
a/l(Πa/l,16 + aΠa/l,36),

m̄a/l,1 = 0, (5.51)
where Πa/l,ij = Πa/l(i, j) for i = {1, 3}, j = {1, 2, 3, ..., 12}. Hence the matrices in (5.15) are
given as

Āa/l =

 Āa/l,11 Āa/l,12 Āa/l,13

1 0 0

(πa/lλ+ aĀa/l,11) aĀa/l,12 aĀa/l,13

 , Āal=

 Āal,11 Āal,12 Āal,13

0 0 0

πlλ+ aĀal,11 aĀal,12 aĀal,13

 ,

m̄a/l =

 m̄a/l,1

0

am̄a/l,1

 , Āla =

 Āla,11 Āla,12 Āla,13

0 0 0

πaλ+ Āla,11 aĀla,12 aĀla,13

 ,

Ḡa/l =

 Ḡa/l,12 Ḡa/l,22 Ḡa/l,23

0 0 0

(λ0 + aḠa/l,21) aḠa/l,22 aḠa/l,23

 .
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5.4 Conclusions

Hybrid MFG theory was utilized in a non-cooperative game formulation of the financial market
where HFTs (minor agents) may leave the market before the final time. The best response trading
and stopping policies for the agents are further shown to yield an ε-Nash equilibrium for the the
market.
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Part III

Mean Field Game Systems with Common
noise and Latent Processes
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Chapter 6

Convex Analysis for LQG Systems with
Applications to Major Minor LQG Mean
Field Game Systems

6.1 Introduction

In the literature, various approaches such as calculus of variations, (stochastic) maximum
principle, dynamic programming, and change of functional have been used to address
deterministic linear quadratic (LQ) and stochastic linear quadratic (LQG) optimal control
problems [36, 56–58].

In a convex analysis approach to optimization for static systems, the Gâteaux derivative of
the functional to be optimized is used to solve the problem (see e.g., [59], [60]). In [61], the
relationship between the Gâteaux derivative of the cost functional of a dynamic system and its
Hamiltonian is established. A stochastic tracking problem in finance is studied in [62] using the
convex analysis approach, while an algorithmic trading problem is investigated in [63] and the
best response trading strategies are obtained for a large number of heterogeneous traders using
the convex analysis approach.

In this work, a convex analysis method is used to rederive the solutions to LQG optimal
control problems. Then the methodology is applied to major minor LQG mean field game
(MM LQG MFG) systems to retrieve the best response strategies for the major agent and each
individual minor agent addressed in [16].
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6.2 Convex Analysis

Let V be a reflexive Banach space with the dual space V ∗ and V be a non-empty closed convex
subset of V .

Definition 6.1 (Gâteaux Derivative). The function J defined on a neighbourhood of u ∈ V with
values in R is differentiable in the sense of Gâteaux at u in the direction of ω, if there exists
J ′(u) ∈ V ∗ such that

〈J ′(u), ω〉 = lim
ε→0

J(u+ εω)− J(u)

ε
. (6.1)

The function J ′(u) is called the Gâteaux derivative of J at u.

Theorem 6.1 (Euler Inequality). Assume that the function J is convex, continuous, proper, and

Gâteaux differentiable with continuous derivative J ′(u). Then

J(u) = inf
v∈V

J(v), (6.2)
if and only if

〈J ′(u), v − u〉 ≥ 0, ∀v ∈ V . (6.3)

�

Proof of Theorem 6.1 may be found in [59] and [60].

Remark 6.1 (Euler Equality). In the case where V = V , ω = v − u produces the whole space of
V , and therefore (6.3) reduces to Euler equality

〈J ′(u), ω〉 = 0, ∀ω ∈ V, (6.4)
which implies that

J ′(u) = 0. (6.5)

We note that the Banach space under consideration in this paper is the space of square-
integrable Rm-valued measurable functions which will be specified in more detail in the next
sections.

6.3 Single-Agent LQG Problems

In this section, the solutions to single-agent LQG problems are rederived using a convex analysis
method.
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6.3.1 Dynamics

Consider single-agent LQG systems with governing dynamics

dxt = (Axt +But + b(t))dt+ σ(t)dwt, (6.6)
where t ≥ 0, the continuous processes xt ∈ Rn, ut ∈ Rm, and wt ∈ Rr denote, respectively, the
state, the control action, and a standard Wiener process. Moreover, A ∈ Rn×n, B ∈ Rn×m, and
b(t) ∈ Rn, σ(t) ∈ Rn×r, are deterministic continuous functions of time.

Control σ-Fields

We denote byF := (Ft)t∈[0,T ] the natural filtration generated by the agent’s state (xt)t∈[0,T ]. Then,
we introduce the admissible control set U to be the set of feedback control laws u = (ut)t∈[0,T ]

which are F-adapted Rm-valued continuous processes such that E[
∫ T

0
uTt utdt] < ∞, for any

finite T .

6.3.2 Cost Functional

The cost functional to be minimized is given by

J(u) =
1

2
E
[
e−ρTxTTGxT +

∫ T

0

e−ρt
{
xTt Qxt + 2xTt Nut + uTt Rut − 2xTt η − 2uTt n

}
dt
]
, (6.7)

where ρ denotes the discount rate.

Assumption 6.1. For the cost functional (6.7) to be convex, it is assumed that G ≥ 0, R > 0,

and Q−NR−1NT > 0.

6.3.3 Optimal Control Action

The system dynamics (6.6) together with the cost functional (6.7) constitute an LQ stochastic
optimal control problem, which is solved for using the following theorem.

Theorem 6.2. (Gâteaux Derivative of Cost for LQG Systems) For system (6.6)-(6.7), the Gâteaux



6 Convex Analysis for LQG Systems with Applications to Major Minor LQG Mean Field
Game Systems 119

derivative of the cost functional is given by

〈J ′(u), ω〉 = E
[ ∫ t

0

ωTt

{
e−ρtNTxut + e−ρtRut − e−ρtn

+BT
(
e−A

T tMt −
∫ t

0

e−ρseA
T (s−t)(Qxus +Nus − η)ds

)}
dt

]
,

(6.8)
where Mt is a martingale process given by

Mt = E
[
e−ρT eA

TTGxuT +

∫ T

0

e−ρseA
T s(Qxus +Nus − η

)
ds
∣∣∣Ft]. (6.9)

�

Proof. The Gâteaux derivative J ′(u) of (6.7) is computed as follows.
The solution xut to the state representation of the system (6.6) subject to the control action ut

is given by

xut = eAtx0 +

∫ t

0

eA(t−s)(Bus + b(s)
)
ds+

∫ t

0

eA(t−s)σ(s)dws, (6.10)

where x0 ∈ Rn and φ(t, s) = eA(t−s), s ≤ t ≤ T, denote, respectively, the initial state and the
state transition matrix for the system (6.6).

Let xu+εω
t denote the solution to (6.6) subject to a perturbed control action ut + εωt in the

direction of ωt ∈ U given by

xu+εω
t = eAtx0 +

∫ t

0

eA(t−s)(Bus + b(s)
)
ds+

∫ t

0

eA(t−s)σ(s)dws + ε

∫ t

0

eA(t−s)Bωsds (6.11)

To find the relation between xut and xu+εω
t , (6.10) is substituted in (6.11) which yields

xu+εω
t = xut + ε

∫ t

0

eA(t−s)Bωsds. (6.12)

Then by differentiating both sides of (6.12), the evolution of xu+εω(t) in terms of xu(t) is given
by

dxu+εω
t = dxut + εBωtdt+ εA

∫ t

0

eA(t−s)Bωsds. (6.13)

The cost induced by the perturbed control action ut + εωt and, subsequently, the perturbed state
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xu+εω
t is given by

J(u+ εω) =
1

2
E
[
e−ρT (xu+εω

T )TGxu+εω
T +

∫ T

0

e−ρs
{

(xu+εω
s )TQxu+εω

s

+ 2(xu+εω
s )TN(us + εωs) + (us + εωs)

TR(us + εωs)− 2(xu+εω
s )Tη − 2(us + εωs)

Tn
}
ds

]
,

(6.14)
where the terminal cost, by utilizing the integration by parts technique for Itô processes [64], can
be presented in integral form as

e−ρT (xu+εω
T )TGxu+εω

T = (x0)TGx0 +

∫ T

0

d
(
e−ρs(xu+εω

s )TGxu+εω
s

)
= (x0)TGx0 − ρ

∫ T

0

e−ρs(xu+εω
s )TGxu+εω

s ds+ 2

∫ T

0

e−ρs(xu+εω
s )TGdxu+εω

s

+

∫ T

0

e−ρsσ(s)TGσ(s)ds. (6.15)

To write J(u+ εω) in terms of J(u), ut and xut , first (6.15), and then (6.12)-(6.13) are substituted
in (6.14) which gives rise to

J(u+ εω) = J(u) + E
[
ε

∫ T

0

e−ρs
{(∫ s

0

eA(s−t)Bωtdt
)T (

Gdxus

+ (Qxus +Nus + ATGXu
s − ρGxus − η)ds

)
+
(
(xus )

TNωs + (xus )
TGBωs

+ (us)
TRωs − nTωs

)
ds

}
+ ε2

∫ T

0

e−ρs
{(∫ s

0

eA(s−t)Bωtdt
)T (

GA

∫ s

0

eA(s−t)Bωtdt

− ρG
∫ s

0

eA(s−t)Bωtdt+GBωs +Q

∫ s

0

eA(s−t)Bωtdt+Nωs
)

+ (ωs)
TRωs

)}
ds

]
. (6.16)

Then the Gâteaux derivative of J ′(u) in the direction of ω is obtained by first taking J(u) to the
left hand side of (6.16), then dividing both sides of the equation by ε, and finally taking the limit
as ε→ 0, which yields

〈J ′(u), ω〉 = E
[ ∫ T

0

e−ρs
{(∫ s

0

eA(s−t)Bωtdt
)T (

Gdxus + (Qxus +Nus + ATGxus

− ρGxus − η)ds
)

+
(
(xus )

TNωs + (xus )
TGBωs + (us)

TRωs − nTωs
)
ds

}]
. (6.17)

Given that the processes in (6.17) are F-measurable, continuous and bounded on the interval
[0, T ], the conditions of the stochastic Fubini’s theorem hold [65]. Subsequently an application
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of Fubini’s theorem to change the order of integration in (6.17) results in

〈J ′(u), ω〉 = E
[ ∫ T

0

ωTt

{
e−ρtBTGxut + e−ρtNTxut + e−ρtRut − e−ρtn

+BT

∫ T

t

e−ρseA
T (s−t)

(
Gdxus +

(
ATGxus − ρGxus +Qxus +Nus − η

)
ds
)}]

dt.

(6.18)
By using integration by parts again, we have∫ T

t

e−ρseA
T (s−t)(ATGxsds+Gdxs − ρGxusds) =

∫ T

t

d(e−ρseA
T (s−t)Gxs)

= e−ρT eA
T (T−t)GxT − e−ρtGxt, (6.19)

whose substitution in (6.18) yields

〈J ′(u), ω〉 = E
[ ∫ T

0

ωTt

{
e−ρTBT eA

T (T−t)GxuT + e−ρtNTxut + e−ρtRut − e−ρtn

+BT

∫ T

t

e−ρseA
T (s−t)(Qxus +Nus − η

)
ds

}
dt

]
. (6.20)

Using the smoothing property of conditional expectations [38], the Gâteaux derivative (6.20)
may be rewritten as

〈J ′(u), ω〉 = E
[ ∫ T

0

ωTt

{
e−ρtNTxut + e−ρtRut − e−ρtn

+BTE
[
e−ρT eA

T (T−t)GxuT +

∫ T

t

e−ρseA
T (s−t)(Qxus +Nus − η

)
ds
∣∣∣Ft]}dt]. (6.21)

Then the following martingale is defined

Mt = E
[
e−ρT eA

TTGxuT +

∫ T

0

e−ρseA
T s(Qxus +Nus − η

)
ds
∣∣∣Ft], (6.22)

and is substituted in (6.21) to give

〈J ′(u), ω〉 = E
[ ∫ T

0

ωTt

{
e−ρtNTxut + e−ρtRut − e−ρtn

+BT
(
e−A

T tMt −
∫ t

0

e−ρseA
T (s−t)(Qxus +Nus − η)ds

)}
dt

]
.

(6.23)
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Theorem 6.3 (LQG Optimal Control Action). Given Assumption 6.1, the optimal control action

for LQG systems given by (6.6)-(6.7) is specified by

u∗t = −R−1

[
NTx∗t − n+BT eρt

(
e−A

T tMt −
∫ t

0

e−ρseA
T (s−t)(Qx∗s +Nu∗s − η)ds

)]
. (6.24)

�

Proof. As per Theorem 6.1 and Remark 6.1, the necessary condition for u∗(t) to be the optimal
control is given by

〈J ′(u∗), ω〉 = 0, a.s. for all possible paths of ω(t) ∈ U . (6.25)
Moreover, since Assumption 6.1 holds, (6.25) is the sufficient condition of optimality as well.

According to (6.8), equation (6.25) holds if and only if

u∗t = −R−1

[
NTx∗t − n+BT eρt

(
e−A

T tMt −
∫ t

0

e−ρseA
T (s−t)(Qx∗s +Nu∗s − η)ds

)]
. (6.26)

All the processes in the right hand side of (6.26) are F-measurable. Moreover, using the triangle
inequality and Cauchy-Schwarz inequality it can be shown that E[

∫ T
0
u∗

T

t u
∗
tdt] < ∞, and hence

u∗t ∈ U .
Then the sufficiency condition can be shown to hold by the direct substitution of (6.26) in

(6.8). The necessity condition is proved by contradiction. Let us choose ωt ∈ U as

ωt = e−ρtNTx∗t + e−ρtRu∗t − e−ρtn+BT
(
e−A

T tMt −
∫ t

0

e−ρseA
T (s−t)(Qx∗s +Nu∗s − η)ds

)
.

If we substitute (6.27) in (6.8), we have

〈J ′(u), ω〉 > 0, (6.27)
which contradicts (6.25).

Theorem 6.4 (LQG State Feedback Optimal Control). For LQG systems governed by (6.6)-(6.7),
the optimal control action is given by the linear state feedback control

u∗t = −R−1
(
NTx∗t − n+BT [Π(t)x∗t + s(t)]

)
, (6.28)

where Π(t) and s(t) are given by

Π̇(t) + Π(t)A+ ATΠ(t)−
(
BTΠ(t) +N

)T
R−1

(
BTΠ(t) +N

)
+Q = 0, (6.29)

ṡ(t) + [(A−BR−1N)T − ΠBR−1BT ]s(t) + Π(t)b(t) = 0. (6.30)
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with terminal conditions Π(T ) = G and s(T ) = 0.

�

Proof. Let us define p(t) as

pt = eρt
(
e−A

T tMt −
∫ t

0

e−ρseA
T (s−t)(Qx∗s +Nu∗s − η)ds

)
, (6.31)

which is the adjoint process for the system (6.6)-(6.7) in the framework of stochastic maximum
principle. Then the ansatz for p0

t is adopted to be

pt = Π(t)x∗t + s(t), (6.32)
and is substituted in (6.24) to give

u∗t = −R−1
[
NTx∗t − n+BT

(
Π(t)x∗t + s(t)

)]
. (6.33)

To find Π(t) and s(t), both sides of (6.32) are first differentiated, and then (6.6) and (6.33) are
substituted to yield

dpt =
[(

Π̇(t) + Π(t)A− Π(t)BR−1NT − Π(t)BR−1BTΠ(t)
)
x∗t − Π(t)BR−1BT s(t)

+ Π(t)b+ Π(t)BR−1n+ ṡ(t)
]
dt+ Π(t)σ(t)dwt. (6.34)

Next, both sides of (6.31) are differentiated to give

dpt = (ρpt − ATpt −Qx∗t −Nu∗t + η)dt+ eρte−A
T tdMt, (6.35)

where according to the martingale representation theorem, the martingale Mt may be written as

Mt = M0 +

∫ t

0

Zsdws, (6.36)

and hence

dMt = Ztdwt. (6.37)
with Zt being an Ft-adapted process.

Then, equations (6.32), (6.33) and (6.37) are substituted in (6.35) to get

dpt =
[(
ρΠ(t)−Q+NR−1NT +NR−1BTΠ(t)− ATΠ(t)

)
x∗t + ρs(t)

+ (NR−1BT − AT )s(t) + η −NR−1n
]
dt+ qtdwt, (6.38)

where qt = eρte−A
T tZt.



6 Convex Analysis for LQG Systems with Applications to Major Minor LQG Mean Field
Game Systems 124

Finally, for (6.34) and (6.38) to be equal, the corresponding drifts and diffusions must be
equal. Hence the following equations must hold

qt = Π(t)σ(t), (6.39)ρΠ(t) = Π̇(t) + Π(t)A+ ATΠ(t)− (Π(t)B +N)R−1(BTΠ(t) +NT ) +Q,

Π(T ) = G,
(6.40)


ρs(t) = ṡ(t) +

[
(A−BR−1NT )T − Π(t)BR−1BT

]
s(t)

+Π(t)(b(t) +BR−1n) +NR−1n− η,

s(T ) = 0,

(6.41)

Remark 6.2 (Finite Horizon LQG Systems). Typically, the cost functional for finite horizon LQG
systems is not discounted, i.e. ρ = 0, and hence the Riccati and offset equations (6.29)-(6.30)
reduce to−Π̇(t) = Π(t)A+ ATΠ(t)− (Π(t)B +N)R−1(BTΠ(t) +NT ) +Q,

−ṡ(t) = [(A−BR−1NT )T − Π(t)BR−1BT ]s(t) + Π(t)(b(t) +BR−1n) +NR−1n− η,
(6.42)

subject to the terminal conditions Π(T ) = G, s(T ) = 0.

Remark 6.3 (Infinite Horizon LQG Systems). For Infinite horizon LQG systems where the
terminal time T in (6.7) is set to infinity, the terminal cost becomes zero. Hence, the infinite
horizon cost functional is given by

J(u) =
1

2
E
[ ∫ ∞

0

e−ρt
{
xTt Qxt + 2xTt Nut + uTt Rut − 2xTt η − 2uTt n

}
dt
]
, (6.43)

The dynamics (6.6) remains the same in the infinite horizon LQG systems.

Assumption 6.2. The pair (L,A− (ρ/2)I) is detectable where L = Q1/2.

Assumption 6.3. The pair (A− (ρ/2)I, B) is stabilizable.

Given that Assumptions 6.7-6.8 hold, for infinite horizon LQG systems governed by (6.6)
and (6.43), the optimal control action is given by (6.28), where the steady state Riccati matrix Π
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satisfies an algebraic Riccati equation given by

ρΠ = ΠA+ ATΠ− (ΠB +N)R−1(BTΠ +NT ) +Q, (6.44)
and the steady state offset vector s0 satisfies the differential equation

ρs(t) = ṡ(t)+[(A−BR−1NT )T −ΠBR−1BT ]s(t)+Π(M(t)+BR−1n)+NR−1n−η. (6.45)

6.4 Major Minor LQG Mean Field Game Systems

In this section, the convex analysis method introduced in Section 6.3 is utilized to rederive the best
response strategies for major minor LQG MFG problems addressed in [16]. A large population
N of minor agents with a major agent, where agents are subject to stochastic linear dynamics
and quadratic cost functionals are considered. Each agent is coupled with other agents through
their dynamics and cost functional with the average state of minor agents, i.e. the empirical mean
field.

6.4.1 Dynamics

The dynamics of the major and minor agents are assumed to be given, respectively, by

dx0
t = [A0x

0
t + F0x

(N)
t +B0u

0
t + b0(t)]dt+ σ0dw

0
t , (6.46)

dxit = [Akx
i
t + Fkx

(N)
t +Bku

i
t + bk(t)]dt+ σkdw

i
t, (6.47)

where t ≥ 0, i ∈ N, N = {1, . . . , N}, N < ∞, and the subscript k, k ∈ K, K =

{1, . . . , K}, K ≤ N , denotes the type of a minor agent. Here xit ∈ Rn, i ∈ N0, N0 =

{0, . . . , N}, are the states, uit ∈ Rm, i ∈ N0 are the control inputs, {wit, i ∈ N0} denotes
(N + 1) independent standard Wiener processes in Rr, where wi is progressively measurable
with respect to the filtration Fw := (Fwt )t∈[0,T ]. All matrices in (6.46) and (6.47) are constant and
of appropriate dimension; vectors b0(t), and bk(t) are deterministic functions of time.

Agents types

Minor agents are given in K distinct types with 1 ≤ K <∞. The notation

Ψk , Ψ(θi), θi = k
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is introduced where θi ∈ Θ, with Θ being the parameter set, and Ψ may be any dynamical
parameter in (6.47) or wight matrix in the cost functional (6.50). The symbol Ik denotes

Ik = {i : θi = k, i ∈ N}, k ∈ K

where the cardinality of Ik is denoted byNk = |Ik|. Then, πN = (πN1 , ..., π
N
K), πNk = Nk

N
, k ∈ K,

denotes the empirical distribution of the parameters (θ1, ..., θN) sampled independently of the
initial conditions and Wiener processes of the agents Ai, i ∈ N. The first assumption is as
follows.

Assumption 6.4. There exists π such that limN→∞ π
N = π a.s.

Control σ-Fields

We denote by F i := (F it )t∈[0,T ], i ∈ N, the natural filtration generated by the i-th minor agent’s
state (xit)t∈[0,T ], by F0 := (F0

t )t∈[0,T ] the natural filtration generated by the major agent’s state
(x0

t )t∈[0,T ], and Fg := (Fgt )t∈[0,T ] the natural filtration generated by the states of all agents
((xit)i∈N, x

0
t )t∈[0,T ].

Next, we introduce three admissible control sets. Let U0 denote the set of feedback control
laws u0

(.) which are adapted to the local information set of the major agent A0, i.e. F0 such that
E[
∫ T

0
(u0

t )
Tu0

tdt] <∞, for any finite T . The set of control inputs U i, i ∈ N, based upon the local
information set of the minor agentAi, i ∈ N, consists of the feedback control laws adapted to the
filtration F i,r := (F i,rt )t∈[0,T ], where F i,r := F i ∨ F0, i ∈ N, and E[

∫ T
0

(uit)
Tuitdt] < ∞, i ∈ N,

for any finite T . The set of control inputs UNg consists of feedback control laws u(.) which are
adapted to the general filtration Fg := (Fgt )t∈[0,T ], Fg := ∨i∈N0F i, such that E[

∫ T
0
uTt utdt] <∞,

for any finite T .

6.4.2 Cost functionals

The individual (finite) large population finite horizon cost functional for the major agent is
specified by

JN0 (u0, u−0) =
1

2
E
[
‖x0

T − Φ(x
(N)
T )‖2

G0
+

∫ T

0

{
‖x0

t − Φ(x
(N)
t )‖2

Q0

+ 2
(
x0
t − Φ(x

(N)
t )

)T
N0u

0
t + ‖u0

t‖2
R0

}
dt
]
, (6.48)
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where
Φ(.) := H0x

(N)
t + η0. (6.49)

Assumption 6.5. For the cost functional (6.48) to be convex, we assume that G0 ≥ 0, R0 > 0,

and Q0 −N0R
−1
0 NT

0 > 0.

The individual (finite) large population finite horizon cost functional for a minor agent
Ai, i ∈ N, is specified as

JNi (ui, u−i) =
1

2
E
[
‖xiT −Ψ(x

(N)
T )‖2

Gk
+

∫ T

0

{
‖xit −Ψ(x

(N)
t )‖2

Qk

+ 2
(
xit −Ψ(x

(N)
t )

)T
Nku

i
t + ‖uit‖2

Rk

}
dt
]
, (6.50)

where
Ψ(.) := Hkx

0
t + Ĥπ

k x
(N)
t + ηk. (6.51)

Assumption 6.6. For the cost functional (6.50) to be convex, we assume that Gk ≥ 0, Rk > 0,

and Qk −NkR
−1
k NT

k > 0 for k ∈ K.

We note that the major agent A0 and minor agents Ai, i ∈ N are coupled with each other
through the average term x

(N)
t = 1

N

∑N
i=1 x

i
t in their dynamics and cost functionals given by,

respectively, (6.46)-(6.47) and (6.48)-(6.50).

6.4.3 Solutions to Major Minor LQG MFG Problems

Following the mean field game methodology with a major agent [42], [16], the problem is first
solved in the infinite population case where the average terms in the finite population dynamics
and cost functional of each agent are replaced with their infinite population limit, i.e. the mean
field. Then specializing to LQG MFG systems, the major agent’s state is extended with the mean
field, while the minor agent’s state is extended with the major agent’s state, and mean field; this
yields stochastic optimal control problems for each agent linked only through the major agent’s
state and mean field. Finally the infinite population best response strategies are applied to the
finite population system which yields an ε-Nash equilibrium [16]. The following theorem (a
more general version of the theorem in [16]) specifies the control laws which yield the infinite
population Nash equilibrium and their relation with the finite population ε-Nash equilibrium.

Theorem 6.5 (ε-Nash Equilibrium for LQG MFG Systems). Assume that the conditions of

[16] for the existence and uniqueness of Nash equilibrium hold, then the system equations
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(6.46)-(6.50) together with the mean field equations (6.77)-(6.78) generate a set of control laws

U∞MF , {ui,∗; i ≥ 0} where ui,∗t is given by

u0,∗
t = −R−1

0

[(
NT

0 + BT0 Π0(t)
)[

(x0
t )
T , (x̄t)

T
]T

+ BT0 s0(t)− n̄0

]
, (6.52)

ui,∗t = −R−1
k

[(
NT
k + BTkΠk(t)

)[
(xit)

T , (x0
t )
T , (x̄t)

T
]T

+ BTk sk(t)− n̄k
]
, (6.53)

such that

(i) the set of infinite population control laws U∞MF , {ui,∗; i ≥ 0} yields the infinite population

Nash equilibrium.

J∞i (ui,∗, u−i,∗) = inf
ui∈U∞,Li

J∞i (ui, u−i,∗);

(ii) All agent systems Ai, i ∈ N0, are second order stable.

(iii) the set of control laws UNMF , {ui,∗; i ∈ N0}, 1 ≤ N < ∞, yields an ε-Nash equilibrium

for all ε, i.e. for all ε > 0, there exists N(ε) such that for all N ≥ N(ε);

JNi (ui,∗, u−i,∗)− ε ≤ inf
ui∈UN,Li

JNi (ui, u−i,∗) ≤ JNi (ui,∗, u−i,∗).

�

The proof of Theorem 6.5 consists of two parts: (i) the set of control laws U∞MF yields the
Nash equilibrium for the infinite population system, (ii) when a finite subset of the control laws
UNMF is applied to the finite population system, all agent systems are second order stable and it
yields an ε-Nash equilibrium. In this section, a novel convex analysis approach is presented to
retrieve the set of best response strategies U∞MF which yields the Nash equilibrium.

Mean Field Evolution

We introduce the empirical state average as

x
(Nk)
k =

1

Nk

Nk∑
j=1

xkj , k ∈ K,

and write x(N) = [x
(N1)
1 , x

(N2)
2 , ..., x

(NK)
K ], where the pointwise in time L2 limit of x(N), if it exists,

is called the mean field of the system and is denoted by x̄ = [x̄1, ..., x̄K ] . We consider for each
minor agent Ai of type k, k ∈ K, a uniform (with respect to i) feedback control uki ∈ Ui,L ⊂ Ui,
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where Ui,L consists of linear time invariant controls, as

ui,kt = Lk1x
i,k
t + ΣK

l=1ΣNl
j=1L

k,l
2 x

j,l
t + Lk3x

0
t +mk(t),

where 0 ≤ t ≤ ∞, Lk1, L
k,l
2 and Lk3 are constant matrices, and mk(t) is a continuous bounded

function of time. If we substitute ui,kt in (6.47) for i ∈ N, and take the average of the states of
closed loop systems of type k, k ∈ K, and hence calculate x(N)

t , it can be shown that the L2 limit
x̄t of x(N)

t , i.e. the mean field satisfies

dx̄t = Āx̄tdt+ Ḡx0
tdt+ m̄(t)dt, (6.54)

where Ā, Ḡ, and m̄ are to be solved for in the tracking solution. By abuse of language, the mean
value of the system’s Gaussian mean field given by the state process x̄t = [x̄1

t , ..., x̄
K
t ] shall also

be termed the system’s mean field.

Major Agent: Infinite Population

To solve the infinite population tracking problem for the major agentA0, first, its state is extended
with the mean field process x̄t, where this is assumed to exist. Then the dynamics of major agent’s
extended state X0

t ,
[
(x0

t )
T , (x̄t)

T
]T is given as (see [16])

dX0
t = A0X

0
t dt+ B0u

0
tdt+ M0(t)dt+ Σ0dW

0
t , (6.55)

where

A0 =

[
A0 F0

Ḡ Ā

]
, B0 =

[
B0

0

]
, M0(t) =

[
b0(t)

m̄(t)

]
, Σ0 =

[
σ0 0

0 0

]
, W 0

t =

[
w0
t

0

]
.

(6.56)
The infinite population individual cost functional for the major agent is given by

J∞0 (u0) =
1

2
E
[
(X0

T )TG0X
0
T +

∫ T

0

{
(X0

s )TQ0X
0
s + 2(X0

s )TN0u
0
s + (u0

s)
TR0u

0
s

− 2(X0
s )T η̄0 − 2(u0

s)
T n̄0

}
ds

]
, (6.57)

where the corresponding weight matrices are specified by

G0 = [In,−Hπ
0 ]T G0 [In,−Hπ

0 ] , Q0 = [In,−Hπ
0 ]T Q0 [In,−Hπ

0 ] ,

N0 = [In,−Hπ
0 ]T N0, η̄0 = [In,−Hπ

0 ]T Q0η0, n̄0 = NT
0 η0. (6.58)

The dynamics (6.55) together with the cost functional (6.57) constitute a stochastic LQ
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optimal control problem for the major agentA0’s extended system in the infinite population limit.
To determine the optimal control u0,∗

t , first Theorem 6.2 (with ρ = 0 ) is utilized to compute the
Gâteaux derivative J∞′0 (u0) of (6.57) in the direction of ω0

t ∈ U0 as in

〈J∞′0 (u0), ω0〉 = E
[ ∫ T

0

(ω0
t )
T

{
NT

0X
0,u
t +R0u

0
t − n̄0

+ BT0
(
e−A

T
0 tM0

t −
∫ t

0

eA
T
0 (s−t)(Q0X

0,u
s + N0u

0
s − η̄0)ds

)}
dt

]
, (6.59)

where

M0
t = E

[
eA

T
0 TG0X

0,u
T +

∫ T

0

eA
T
0 s(Q0X

0,u
s + N0u

0
s − η̄0)ds

∣∣∣F0
t

]
. (6.60)

Then, as per Theorem 6.3, the optimal control action for the major agent’s extended system
(6.55)-(6.58) in the infinite population limit is given by

u0,∗
t = −R−1

0

[
NT

0X
0,∗
t − n̄0 + BT0

(
e−A

T
0 tM0

t −
∫ t

0

eA
T
0 (s−t)(Q0X

0,∗
s + N0u

0,∗
s − η̄0)ds

)]
,

(6.61)
Finally, using Theorem 6.4, (6.61) can be written in the state feedback form as

u0,∗
t = −R−1

0

[
NT

0X
0
t − n̄0 + BT0

(
Π0(t)X0

t + s0(t)
)]
, (6.62)

where−Π̇0(t) = Π0(t)A0 + AT
0 Π0(t)− (Π0(t)B0 + N0)R−1

0 (BT0 Π0(t) + NT
0 ) + Q0,

Π0(T ) = G0,
(6.63)

−ṡ0(t) = [(A0 − B0R
−1
0 NT

0 )T − Π0(t)B0R
−1
0 BT0 ]s0(t)

+Π0(t)(M0(t) + B0R
−1
0 n̄0) + N0R

−1
0 n̄0 − η̄0,

s0(T ) = 0.

(6.64)

Minor Agent: Infinite Population

To solve the infinite population tracking problem for a minor agent Ai, i ∈ N, first, its state is
extended with the major agent’s state and the mean field process x̄t, where this is assumed to
exist. Then the dynamics of minor agent Ai’s extended state X i

t ,
[
(xit)

T , (x0
t )
T , (x̄t)

T
]T is
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given as (see [16])

dX i
t = AkX

i
tdt+ Bkuitdt+ Mk(t)dt+ ΣkdW

i
t , (6.65)

where

Ak =

[
Ak [Hk, F

π
k ]

0 A0 − B0R
−1
0 N0 − B0R

−1
0 BT0 Π0

]
, Bk =

[
Bk

0

]
,

Mk(t) =

[
bk(t)

M0(t)− B0R
−1
0 BT0 s0(t)

]
, Σk =

[
σk 0

0 Σ0

]
, W i

t =

[
wit

W 0
t

]
. (6.66)

The infinite population individual cost functional for minor agent Ai, 1 ≤ i ≤ N , is given by

J∞i (ui) =
1

2
E
[
(X i

T )TGkX
i
T +

∫ T

0

{
(X i

s)
TQkX

i
s + 2(X i

s)
TNku

i
s + (uis)

TRku
i
s

− 2(X i
s)
T η̄k − 2(uis)

T n̄k

}
ds

]
, (6.67)

where the corresponding weight matrices are specified by

Gk = [In,−Hk,−Ĥπ
k ]TGk[In,−Hk,−Ĥπ

k ], Qk = [In,−Hk,−Ĥπ
k ]TQk[In,−Hk,−Ĥπ

k ],

Nk = [In,−Hk,−Ĥπ
k ]TN0, η̄k = [In,−Hk, Ĥ

π
k ]TQkηk, n̄k = NT

k ηk. (6.68)
The dynamics (6.65) together with the cost functional (6.67) constitute a stochastic LQ

optimal control problem for the minor agent Ai’s extended system in the infinite population
limit. To determine the optimal control ui,∗t for minor agent Ai, 1 ≤ i ≤ N , first, using Theorem

6.2, the Gâteaux derivative J∞′i (ui) of (6.67) in the direction of ωit, where ωit ∈ U i, is computed
as

〈J∞′i (ui), ωi〉 = E
[ ∫ T

0

(ωit)
T

{
NT
kX

i,u
t +Rku

i
t − n̄k

+ BTk
(
e−A

T
k tM i

t −
∫ t

0

eA
T
k (s−t)(QkX

i,u
s + Nku

i
s − η̄k)ds

)}
dt

]
, (6.69)

where

M i
t = E

[
eA

T
k TGkX

i,u
T +

∫ T

0

eA
T
k s(QkX

i,u
s + Nku

i
s − η̄k)ds

∣∣∣F it]. (6.70)

Then according to Theorem 6.3, the optimal control action for minor agent Ai, i ∈ N, is given
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by

ui,∗t = −R−1
k

[
NT
kX

i,∗
t − n̄k + BTk

(
e−A

T
k tM i

t −
∫ t

0

eA
T
k (s−t)(QkX

i,∗
s + Nku

i,∗
s − η̄k)ds

)]
.

(6.71)
Finally, using Theorem 6.4, the control action (6.71) can be presented in linear state feedback
form as

ui,∗t = −R−1
k

[
NT
kX

i
t − n̄k + BTk

(
Πk(t)X

i
t + sk(t)

)]
, (6.72)

where−Π̇k(t) = Πk(t)Ak + AT
kΠk(t)− (Πk(t)Bk + Nk)R

−1
k (BTkΠk(t) + NT

k ) + Qk,

Πk(T ) = Gk,
(6.73)

−ṡk(t) = [(Ak − BkR−1
k NT

k )T − Πk(t)BkR−1
k BTk ]sk(t)

+Πk(t)(Mk(t) + BkR−1
k n̄k) + NkR

−1
k n̄k − η̄k,

sk(T ) = 0.

(6.74)

Mean Field Consistency Conditions

To obtain the consistency conditions, we substitute (6.72) into (6.47) which results in

dxit =
(
Akx

i
t −BkR

−1
k

[
NT
k [(xit)

T , (x0
t )
T , x̄Tt )]T − n̄k + BTk

(
Πk[(x

i
t)
T , (x0

t )
T , x̄Tt ]T + sk

)]
+Hkx

0
t + F π

k x̄t + bk

)
dt+ σkdw

i
t. (6.75)

Let define

Πk =

 Πk,11 Πk,12 Πk,13

Πk,21 Πk,22 Πk,23

Πk,31 Πk,32 Πk,33

 , k ∈ K,

and ek = [0n×n, ..., 0n×n, In, 0n×n, ..., 0n×n], where the n × n identity matrix In is at the kth
block.
If we take the average of (6.75) over subpopulation Ak, k ∈ K, and then take the L2 limit as the
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number Nk of agents within the subpopulation goes to infinity ( i.e. Nk →∞), we get

dx̄kt =
(
F π
k + [Ak −BkR

−1
k (NT

k,1 +BT
k Πk,11)]ek −BkR

−1
k BT

k Πk,13

)
x̄tdt

+ (Hk −BkR
−1
k BT

k Πk,12)x0
tdt+ (bk +BkR

−1
k n̄k −BkR

−1
k BTk sk)dt. (6.76)

If we equate (6.76) with (6.54), then by consistency requirement a compact description of the
major minor mean field equations determining Ā, Ḡ, m̄ is given by

−Π̇0 = Π0A0 + AT
0 Π0 − (Π0B0 + N0)R−1

0 (BT0 Π0 + NT
0 ) + Q0, Π0(T ) = G0,

−Π̇k = ΠkAk + AT
kΠk − (ΠkBk + Nk)R

−1
k (BTkΠk + NT

k ) + Qk, Πk(T ) = Gk, ∀k,

Āk = F π
k + [Ak −BkR

−1
k (NT

k,1 +BT
k Πk,11)]ek −BkR

−1
k BT

k Πk,13, ∀k,

Ḡk = Hk −BkR
−1
k BT

k Πk,12, ∀k,
(6.77)

−ṡ0(t) = [(A0 − B0R
−1
0 NT

0 )T − Π0B0R
−1
0 BT0 ]s0(t)

+Π0(M0(t) + B0R
−1
0 n̄0) + N0R

−1
0 n̄0 − η̄0, s0(T ) = 0,

−ṡk(t) = [(Ak − BkR−1
k NT

k )T − ΠkBkR−1
k BTk ]sk(t)

+Πk(Mk(t) + BkR−1
k n̄k) + NkR

−1
k n̄k − η̄k, sk(T ) = 0, ∀k,

m̄k = bk +BkR
−1
k n̄k −BkR

−1
k BTk sk, ∀k.

(6.78)

Remark 6.4 (Infinite Horizon LQG MFG Systems). For Infinite horizon LQG MFG systems
where the terminal time is set to infinity, the terminal cost becomes zero. Hence, the major
agent’s infinite horizon cost functionals is given by

JN0 (u0, u−0) =
1

2
E
[ ∫ ∞

0

e−ρt
{
‖x0

t −Φ(x
(N)
t )‖2

Q0
+ 2
(
x0
t − Φ(x

(N)
t )

)T
N0u

0
t + ‖u0

t‖2
R0

}
dt
]
,

(6.79)
Similarly, the discounted infinite horizon cost functional for minor agent Ai, 1 ≤ i ≤ N is given
by

JNi (ui, u−i) =
1

2
E
[ ∫ ∞

0

e−ρt
{
‖xit − Ψ(x

(N)
t )‖2

Qk
+ 2
(
xit −Ψ(x

(N)
t )

)T
Nku

i
t + ‖uit‖2

Rk

}
dt
]
.

(6.80)
The dynamics (6.46)-(6.47) for the major agent and minor agents remain the same in the infinite
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horizon LQG MFG systems.

Assumption 6.7. The pair (La,A0 − (ρ/2)I) is detectable, and for each k ∈ K, the pair

(Lb,Ak − (ρ/2)I) is detectable, where La = Q
1/2
0 [I,−Hπ

0 ] and Lb = Q
1/2
k [I,−Hk,−Ĥπ

k ].

Assumption 6.8. The pair (A0− (ρ/2)I,B0) is stabilizable and (Ak − (ρ/2)I,Bk) is stabilizable

for each k ∈ K.

Given that Assumptions 6.7-6.8 hold, for the major agent’s system (6.46), (6.79), the best
response strategy is given by (6.62), where the steady state Riccati matrix Π0 satisfies an algebraic
Riccati equation given by

ρΠ0 = Π0A0 + AT
0 Π0 − (Π0B0 + N0)R−1

0 (BT0 Π0 + NT
0 ) + Q0, (6.81)

and the steady state offset vector s0 satisfies the differential equation

ρs0(t) = ṡ0(t)+[(A0−B0R
−1
0 NT

0 )T−Π0B0R
−1
0 BT0 ]s0(t)+Π0(M0(t)+B0R

−1
0 n̄0)+N0R

−1
0 n̄0−η̄0.

(6.82)
Similarly, for minor agent Ai’s system (6.47), (6.80), i ∈ N, the best response strategy is given
by (6.72), where the steady state Riccati matrix Πk and offset matrix sk satisfy the following
algebraic Riccati equation and differential offset equation.
ρΠk = ΠkAk + AT

kΠk − (ΠkBk + Nk)R
−1
k (BTkΠk + NT

k ) + Qk, ∀k,

ρsk(t) = ṡk(t) + [(Ak − BkR−1
k NT

k )T − ΠkBkR−1
k BTk ]sk(t) + Πk(Mk(t) + BkR−1

k n̄k)

+NkR
−1
k n̄k − η̄k, sk(T ) = 0, ∀k.

(6.83)

6.5 Conclusions

A convex analysis method was used to rederive the solutions to LQG optimal control problems.
Then the methodology was applied to major minor LQG mean field game (MM LQG MFG)
systems to retrieve the best response strategies for the major agent and each individual minor
agent which yield an ε-Nash equilibrium for the entire system.
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Chapter 7

Mean Field Game Systems including
Common Noise and Markovian Latent
Processes

7.1 Introduction

In this chapter, an MFG framework is considered where there exist one major agent and a large
number of minor agents which are subject to linear dynamics and quadratic cost functionals. Each
agent interacts with other agents in the system through the coupling in their cost functional with
a common process. The common process is modulated by a latent Markov chain process and a
latent Wiener process, which are not directly observed by the agents but rather are inferred from
the agents’ observation processes. We refer to the latent Wiener process as the common noise
process. Moreover, the common process is impacted by the major agent’s state, the major agent’s
control action, the average state of all the minor agents, and the average control action of all the
minor agents. We obtain the best response strategies for the major agent and each individual
minor agent in the infinite population limit which collectively yield an ε-Nash equilibrium for the
finite population system.

Motivation: Financial and economic systems (among others) are often driven by latent
factors, and these latent factors also affect the cost (profit) functional of the traders involved.
Moreover, the agents in these system are often acting in a non-cooperative manner, and hence
playing a large stochastic game with one another; while they may control aspects of the system,
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they are also at the whim of factors they cannot control or observe. For example, in optimal
execution problems (where traders aim to sell or buy shares of an asset), all traders are subject
to the same asset price process and must make their trading decisions based on the observed
price. The asset price dynamics may be driven by a common Wiener process, which accounts for
so-called noise (uninformed) traders. In addition, the effect of unobserved factors on the price
dynamics, other than the major agent’s trading action and the aggregate impact of minor agents’
trading actions, are important factors to incorporate (see e.g. [66], [63] ) in specifying the best
response trading strategies and ε-Nash equilibrium.

Methodology: Although latent processes are not directly observable, the information provided
from the realized trajectories of the common process and the evolution of system’s aggregate
state (mean field) can be used to obtain posteriori estimates, and to subsequently partially predict
future behavior of the common process [66]. Certain versions of such problems can then be
recast as MFG systems with a common noise. A variation of this type of MFG system has been
investigated in [67], where the case of correlated randomness in a nonlinear setting is analyzed.
Here we utilize a different approach in order to address the existence of a latent process together
with the common noise. Specifically, we treat the common process as a major agent and further
extend the Major - Minor LQG MFG analysis of [16] to incorporate such a latent process in the
dynamics. Then, we utilize the convex analysis approach in Chapter 6 ([68]) to obtain the best
response strategies for all agents that yield an ε-Nash equilibrium.

The rest of the chapter is organized as follows. Section 7.2 introduces a class of major minor
MFG problems with a common process as well as a latent process. The MFG formulation of the
problem is then presented in Section 7.3. Concluding remarks are made in Section 7.4.

7.2 Major Minor Mean Field Game Systems with a Common Process

7.2.1 Dynamics: Finite Population

We consider a large population of N minor agents and a major agent, where the agents are
coupled through their individual cost functionals with a common process.
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Major and Minor agents

The underlying dynamics of the major and minor agents are assumed to be given, respectively,
by

dx0
t = [A0x

0
t +B0u

0
t + b0(t)]dt+ σ0dw

0
t , (7.1)

dxit = [Akx
i
t +Bku

i
t + bk(t)]dt+ σkdw

i
t, (7.2)

where t ∈ [0, T ], i ∈ N, N = {1, . . . , N}, N < ∞, and the subscript k ∈ K, K =

{1, . . . , K}, K ≤ N , denotes the type of a minor agent. Here, xit ∈ Rn, i ∈ N0,N0 =

{0, . . . , N}, are the states, uit ∈ Rm, i ∈ N0 are the control inputs, {wit, i ∈ N0} denotes
(N + 1) independent standard Wiener processes in Rr, where wi is progressively measurable
with respect to the filtration Fw := (Fwt )t∈[0,T ]. All matrices in (7.1) and (7.2) are constant and of
appropriate dimension; the vector processes b0(t), and bk(t) are deterministic functions of time.

Assumption 7.1. The initial states {xi0, i ∈ N0} are identically distributed and mutually

independent and also independent of Fw; E[wit(w
i
t)
T ] = Σ, i ∈ N0. Moreover, Exi0 = 0,

and E‖xi0‖2 ≤ C <∞, i ∈ N0, with Σ and C independent of N .

Minor Agents Types:

Minor agents are given in K distinct types with 1 ≤ K <∞. The notation

Ψk , Ψ(θi), θi = k

is introduced where θi ∈ Θ, with Θ being the parameter set, and Ψ may be any dynamical
parameter in (7.2) or weight matrix in the cost functional (7.6). The symbol Ik denotes

Ik = {i : θi = k, i ∈ N}, k ∈ K

where the cardinality of Ik is denoted byNk = |Ik|. Then, πN = (πN1 , ..., π
N
K), πNk = Nk

N
, k ∈ K,

denotes the empirical distribution of the parameters (θ1, ..., θN) sampled independently of the
initial conditions and Wiener processes of the agents Ai, i ∈ N. The first assumption is as
follows.

Assumption 7.2. There exists π such that limN→∞π
N = π a.s.



7 Mean Field Game Systems including Common Noise and Markovian Latent Processes138

Common Process: Finite Population

We consider the systems where the major agent and any minor agent Ai, i ∈ N, observe a
common stochastic process yt, where both the state and common process yt appear in an agent’s
cost functional as introduced in Section 7.2.2. The common process yt ∈ Rn is governed by

dyt = dyLt + (Fu
(N)
t dt+ F0u

0
t +Hx

(N)
t +H0x

0
t )dt, (7.3)

where yLt evolves as in

dyLt = f(t, yLt ,Γt)dt+ σdwt. (7.4)
In (7.4), the process Γ := (Γt)t∈[0,T ] denotes a latent continuous Markov chain process with
Γt ∈ {γj, j ∈ M}, M = {1, . . . ,M}, M < ∞; the vector f(t, yLt ,Γt) denotes a deterministic
nonlinear function of t, yL, and Γ; wt ∈ Rr denotes a latent Wiener process independent of
{wit, i ∈ N0}, and the matrices F , F0,H ,H0, and σ are deterministic, constant and of appropriate
dimension. Moreover, by substituting (7.4) in (7.3), it is evident that the common process yt is
impacted by

1) a latent Markov chain process Γt,

2) the major agent’s state x0
t ,

3) the major agent’s control action u0
t ,

4) the average state of minor agents, i.e. x(N)
t = 1

N

∑N
i=1 x

i
t,

5) the average control action of minor agents, i.e. u(N)
t = 1

N

∑N
i=1 u

i
t,

6) a latent Wiener (common noise) process wt ∈ Rr independent of w0
t , w

i
t, i ∈ N.

Assumption 7.3. The major agentA0 completely observes its own state and the common process

yt.

Assumption 7.4. Each minor agent Ai, i ∈ N completely observes its own state, the major

agent’s state and the common process yt.

We again emphasize that the latent processes Γt andwt are not directly observed by the agents
Ai, i ∈ N0. However, each agent may obtain their posteriori estimates based on its complete
observations on the common process yt. We refer to the latent Wiener process as the common
noise process in this work.



7 Mean Field Game Systems including Common Noise and Markovian Latent Processes139

Control σ-Fields

We denote by F i := (F it )t∈[0,T ], i ∈ N, the natural filtration generated by the i-th minor
agent’s state (xit)t∈[0,T ], by F0 := (F0

t )t∈[0,T ] the natural filtration generated by the major agent’s
state (x0

t )t∈[0,T ], and F := (Ft)t∈[0,T ] the natural filtration generated by the states of all agents
((xit)i∈N, x

0
t )t∈[0,T ].

Moreover, we denote by G := (Gt)t∈[0,T ] the natural filtration generated by (Γt, wt)t∈[0,T ], and
Fy := (Fyt )t∈[0,T ] the natural filtration generated by (yt)t∈[0,T ].

Next, we introduce two admissible control sets. Let U0 denote the set of feedback control
laws with second moment lying in L1[0, T ], for any finite T , which are adapted to the smaller
filtration F0,r := (F0,r

t )t∈[0,T ], where F0,r := F0 ∨ Fy. The set of control inputs U i, i ∈ N,
based upon the local information set of the minor agent Ai, i ∈ N, consists of the feedback
control laws adapted to the smaller filtration F i,r := (F i,rt )t∈[0,T ], where F i,r := F i ∨ F0 ∨ Fy,
i ∈ N, while UNg is adapted to the general filtration Fg := (Fgt )t∈[0,T ], where Fg := F ∨Fy ∨G,
1 ≤ N ≤ ∞, and the L1[0, T ] constraint on second moments applies in each case. We note in
passing the significant differences between the information structures specified here and those in
the team theory literature [69].

Assumption 7.5 (Major Agent’s Linear Control Laws). For major agent A0, the set of control

laws U0,L ∈ U0, is defined to be the collection of linear feedback control laws adapted to F0,r.

Assumption 7.6 (Minor Agent’s Linear Control Laws). For each minor agent Ai, i ∈ N, the set

of control laws U i,L ∈ U i, i ∈ N, is defined to be the collection of linear feedback control laws

adapted to F i,r, i ∈ N.

7.2.2 Cost Functionals: Finite Population

Given the vector z0
t as

z0
t =

[
yt

x0
t

]
,

the major agent’s cost functional to be minimized is formulated by

J0(u0, u−0) =
1

2
E
[
(z0
T )TG0z

0
T +

∫ T

0

{
(z0
s)
TQ0z

0
s + 2(z0

s)
TN0u

0
s + (u0

s)
TR0u

0
s

}
ds

]
, (7.5)

where u−0 = (u1, u2, ..., uN).
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Assumption 7.7. For the cost functional (7.5) to be convex, we assume that G0 ≥ 0, R0 > 0,

and Q0 −N0R
−1
0 NT

0 > 0.

Similarly, given the vector zit, i ∈ N, as

zit =

[
xit

yt

]
,

the cost functional to be minimized for minor agent Ai, i ∈ N, is formulated by

Ji(u
i, u−i) =

1

2
E
[
(ziT )TGkz

i
T +

∫ T

0

{
(zis)

TQkz
i
s + 2(zis)

TNku
i
s + (uis)

TRku
i
s

}
ds

]
, (7.6)

1 ≤ k ≤ K, where u−i = (u0, ..., ui−1, ui+1, ..., uN).

Assumption 7.8. For the cost functional (7.6) to be convex, we assume that Gk ≥ 0, Rk > 0,

and Qk −NkR
−1
k NT

k > 0 for k ∈ K.

7.3 Major Minor LQG Mean Field Games Approach

In the mean field game methodology with a major agent [42], [16], the problem is first solved in
the infinite population case where the average terms in the finite population dynamics and cost
functional of each agent are replaced with their infinite population limit, i.e. the mean field. For
this purpose, the major agent’s state is extended with the mean field, while the minor agent’s state
is extended with the major agent’s state, and the mean field; this yields stochastic optimal control
problems for each agent linked only through the major agent’s state and mean field. Finally
the infinite population best response strategies are applied to the finite population system which
yields an ε-Nash equilibrium.

To address major minor mean field game systems involving a common process and a latent
Markov chain process, the following steps are followed. We first note that the common process in
this work represents an extended form of common noise in [67]. However, a different approach
is followed to incorporate the common process in the major minor LQG mean field game
framework. First in Section 7.3.1, the evolution of the state mean field and the control mean
field in the infinite population case are derived. Then, an F0,r-adapted and F i,r-adapted, i ∈ N,
forms of the common process in the infinite population case are presented in Section 7.3.2. Next
in Sections 7.3.3 and 7.3.4, the common process is perceived as a major agent in the major minor
LQG MFG framework. Subsequently, the major minor LQG analysis described above is further
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extended where the major agent’s state is extended with the mean field and the F0,r-adapted
common process, while a minor agent’s state is extended with the major agent’s state, the mean
field, and the F i,r-adapted common process. Finally, a convex analysis method is performed
in Section 7.3.5 to obtain the best response strategies which yield the infinite population Nash
equilibrium and finite population ε-Nash equilibrium.

7.3.1 Mean Field Evolution

The common process yt governed by (7.3) is involved with the empirical average of the minor
agents’ states, i.e. x(N)

t , as well as the empirical average of the minor agents’ control actions, i.e.
u

(N)
t . To attain the infinite population limit ȳt of yt, the state mean field x̄t and the control mean

field ūt are introduced as the infinite population limits of x(N)
t and u(N)

t , respectively.

Control Mean Field

The empirical average of minor agents’ control actions is introduced as

u
(Nk)
t =

1

Nk

Nk∑
j=1

uj,kt , k ∈ K, (7.7)

and the vector u(N)
t = [u

(N1)
t , u

(N2)
t , ..., u

(NK)
t ] is defined, where the pointwise in time limit (in

quadratic mean) of u(N)
t , if it exists, is called the control mean field of the system and is denoted

by ūt = [ū1
t , ..., ū

K
t ]. We consider for each minor agent Ai, i ∈ N, of type k, k ∈ K, a uniform

(with respect to i) state feedback control ui,kt ∈ U i,L as in

ui,kt = Lk1x
i,k
t + ΣK

l=1ΣNl
j=1L

k,l
2 x

j,l
t + Lk3x

0
t + Lk4yt +mk

t , (7.8)
where t ∈ [0, T ], Lk1, L

k,l
2 , L

k
3 and Lk4 are constant matrices of appropriate dimension, Lk,l2 is

assumed to depend upon Nl and satisfy NlL
k,l
2 → L̄k,l2 as Nl → ∞ for all k, 1 ≤ k ≤ K,

and mk
t is a F0,r

t -measurable process. If we take the average of the control actions ui,kt over the
population of the agents of type k, k ∈ K, and hence calculate u(N)

t , then it can be shown that
u

(N)
t as N →∞, converges in quadratic mean to the control mean field ūt given by

ūt = C̄x̄t + D̄x0
t + Ēȳt + r̄t, (7.9)

where x̄t, if it exists, denotes the state mean field introduced in Section 7.3.1, ȳt denotes the
limiting process associated with the common process yt as N →∞ (see Section 7.3.2), and r̄t is
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a F0,r
t -measurable process. Furthermore, the matrices in (7.9), i.e.

C̄ =


C̄1

...
C̄K

 , D̄ =


D̄1

...
D̄K

 , Ē =


Ē1

...
ĒK

 , r̄t =


r̄1
t
...
r̄Kt

 , (7.10)

are to be solved for using the mean field consistency equations (7.47)-(7.48) derived in Section
7.3.5.

State Mean Field

Similarly, the empirical state average is introduced as

x
(Nk)
t =

1

Nk

Nk∑
j=1

xj,kt , k ∈ K, (7.11)

and the vector x(N)
t = [x

(N1)
t , x

(N2)
t , ..., x

(NK)
t ] is defined, where the pointwise in time limit (in

quadratic mean) of x(N)
t , if it exists, is called the state mean field of the system and is denoted by

x̄t = [x̄1
t , ..., x̄

K
t ].

If we substitute (7.8) in (7.2) for i ∈ N, and take the average of the states of the minor agents’
closed loop systems of type k, k ∈ K, and hence calculate x(N)

t , it can be shown that x(N)
t as

N →∞ converges in quadratic mean to the state mean field x̄t which satisfies

dx̄t = Āx̄tdt+ Ḡx0
tdt+ L̄ȳtdt+ m̄tdt, (7.12)

where ȳt denotes the infinite population limit of the common process yt (see Section 7.3.2), m̄t

is a F0,r
t -measurable process, and the matrices

Ā =


Ā1

...
ĀK

 , Ḡ =


Ḡ1

...
ḠK

 , L̄ =


L̄1

...
L̄K

 , m̄t =


m̄1
t

...
m̄K
t

 , (7.13)

are again to be solved for using the mean field consistency conditions (7.47)-(7.48) derived in
Section 7.3.5.

By abuse of language, the mean value of the system’s Gaussian mean field given by the state
process x̄t = [x̄1

t , ..., x̄
K
t ] shall also be termed the system’s mean field (The derivation of the state

mean field equation above may be performed using the methods of [21], [19] and [16]).



7 Mean Field Game Systems including Common Noise and Markovian Latent Processes143

7.3.2 Common Process: Infinite Population

Each agent completely observes the common process yt but has no observations on the latent
Markov chain process Γt. In order to resolve the issue of the unobserved latent process Γt,
Wonham filtering method is used to estimate the distribution of Γt based on the observations
of each agent on yt, i.e. Fyt . Subsequently, f(t, yLt ,Γt) and wt in (7.4) are presented in their
Fyt -adapted forms (see e.g. [66], [70]).

Denote the transition probabilities for the continuous time Markov chain process Γ by

pij = P (Γt+h = γj|Γt = γi), 1 ≤ i, j ≤M (7.14)
and the corresponding transition rates by vij ≥ 0, and

vi =
M∑

j=1, j 6=i

vij, i ∈M. (7.15)

The posterior distribution of Γt conditional on Fyt is denoted by Π = {πjt , j ∈ M, t ∈ [0, T ]},
where

πjt = E[1{Γt=γj}|F
y
t ], j ∈M, t ∈ [0, T ], (7.16)

with initial distribution {πj0, j ∈M}.

Remark 7.1. As a result of Assumptions 7.3-7.4, the major agent A0, and each minor agent
Ai, i ∈ N, completely observe the unaffected common process yLt given by (7.3) in the infinite
population limit. Consequently

πjt = E[1{Γt=γj}|F
y
t ] , E[1{Γt=γj}|F

yL

t ]. (7.17)

Lemma 7.1 (Wonham Filter). [70] If σ > 0, the posterior distribution Π of Γt is given by

dπjt =
(
− vjπjt +

M∑
i=1, i 6=j

vijπ
i
t

)
dt− σ−2

( M∑
i=1

πitγi

)[
f(t, yLt , γj)−

M∑
i=1

πitγi

]
πjtdt

+ σ−2
[
f(t, yLt , γj)−

M∑
i=1

πitγi

]
πjtdy

L
t , (7.18)

i ∈M.

�
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Lemma 7.2. [66] Define the process ŵ = (ŵt, t ∈ [0, T ]) as

ŵt = wt + σ−1

∫ t

0

(fτ − f̂τ )dτ, (7.19)

where f̂ = (f̂t, t ∈ [0, T ]) is an Fyt -adapted process defined as

f̂t = E[f(t, yLt ,Γt)|F
yL
t ], (7.20)

and is computed by

f̂t = f̂(t, yLt ,Π) =
M∑
j=1

πjt f(t, yLt , γj). (7.21)

Then the process ŵt is an Fyt -adapted Wiener process.

�

According to Lemma 7.1 and Lemma 7.2, equation (7.4) can be rewritten as

dyLt = f̂tdt+ σdŵt, (7.22)
and by substituting (7.22) in (7.3), the F0,r

t -adapted dynamics of the common process for the
infinite population case, i.e. ȳt, is given by

dȳt = [f̂t + F πūtdt+ F0u
0
t +Hπx̄t +H0x

0
t ]dt+ σdŵt, (7.23)

where the average terms x(N)
t and u(N)

t in (7.3) have been replaced with their (quadratic mean)
limit asN →∞, i.e. the state mean field x̄t and the control mean field ūt, respectively. Moreover,
F π = π ⊗ F and Hπ = π ⊗ H , where ⊗ denotes the Kronecker product of the corresponding
matrices.

Remark 7.2. Since the state and the control action of each individual minor agent Ai, i ∈ N, do
not affect the infinite population evolution of the common process, i.e. ȳt, the F i,rt -adapted and
F0,r
t -adapted dynamics of the common process ȳt in the infinite population limit are identical and

given by (7.23).

7.3.3 Major Agent’s Regulation Problem : Infinite Population

First, the major agent’s state x0
t is extended with the state mean field x̄t and the infinite population

common process ȳt to form the major agent’s extended state X0
t = [(ȳt)

T , (x0
t )
T , (x̄t)

T ]T which
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is governed by

dX0
t = A0X

0
t dt+ B0u

0
tdt+ M0

tdt+ Σ0dW
0
t , (7.24)

By substituting (7.9) into (7.23), the matrices in the extended major agent’s dynamics (7.24) are
given by

A0 =

 F πĒ F πD̄ +H0 F πC̄ +Hπ

0n×n A0 0n×nK

L̄ Ḡ Ā

 , B0 =

 F0

B0

0nK×m

 ,

M0
t =

 f̂t + F πr̄t

b0(t)

m̄t

 , Σ0 =

 σ 0n×r 0n×rK

0n×r σ0 0n×rK

0nK×r 0nK×r 0nK×rK

 , W 0
t =

 ŵt

w0
t

0rK×1

 . (7.25)

Next, the major agent’s extended cost functional is given as

Jex0 (u0) =
1

2
E
[
(X0

T )TG0X
0
T +

∫ T

0

{
(X0

s )TQ0X
0
s + 2(X0

s )TN0u
0
s + (u0

s)
TR0u

0
s

}
ds

]
, (7.26)

where the corresponding weight matrices are given by

G0 = [I2n, 02n×nK ]T G0 [I2n, 02n×nK ] , (7.27)

Q0 = [I2n, 02n×nK ]T Q0 [I2n, 02n×nK ] , (7.28)

N0 =

[
N0

0nK×m

]
. (7.29)

The minimization of the extended cost functional (7.26) subject to the extended dynamics (7.24)
constitutes a stochastic optimal control problem for the major agent in the infinite population
limit. Then, according to Theorem 7.3 the major agent’s optimal control action is given by

u0,∗
t = −R−1

0

[
NT

0X
0
t + BT0

(
Π0(t)X0

t + s0
t

)]
, (7.30)

where Π0(t) and s0
t are to be solved for using

Π̇0 + Π0A0 + AT
0 Π0 − (BT0 Π0 + NT

0 )TR−1
0 (BT0 Π0 + NT

0 ) + Q0 = 0, Π0(T ) = G0, (7.31)
and the BSDE

ds0
t + [(A0 − B0R

−1
0 N0)T − Π0B0R

−1
0 BT0 ]s0

tdt+ Π0M0
tdt+ (Π0Σ0 − q0

t )dW
0
t = 0, s0

T = 0.

(7.32)
The Riccati eqution (7.31) and the offset equation (7.32) shall be derived in Section 7.3.5.
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Finally, the closed-loop dynamics of the major agent A0 when the control action (7.30) is
substituted in (7.1) is given by

dX0
t =

(
A0X

0
t −B0R

−1
0

[
NT

0X
0
t + BT0

(
Π0(t)X0

t + s0
t

)]
+ b0(t)

)
dt+ σ0dw

0
t . (7.33)

7.3.4 Minor Agent’s Regulation Problem: Infinite Population

First, minor agent Ai’s, i ∈ N, state is extended with the infinite population common process ȳt,
the major agent’s state x0

t , and the state mean field x̄t to form the minor agent’s extended state
X i
t = [(xit)

T , (ȳt)
T , (x0

t )
T , (x̄t)

T ]T which satisfies

dX i
t = AkX

i
tdt+ Bkuidt+ Mk

t dt+ ΣkdW
i
t . (7.34)

To attain the extended matrices in (7.34), the joint dynamics of (i) minor agentAi’s system given
by (7.2), (ii) the common process ȳt given by (7.23) where (7.9) and (7.30) are substituted , (iii)
the major agent A0’s closed loop system given by (7.33), and (iv) the state mean field x̄t given
by (7.12) are utilized which results in

Ak =

[
Ak 0n×(2n+nK)

0(2n+nK)×n A0 − B0R
−1
0 N0 − B0R

−1
0 BT0 Π

]
, Bk =

[
Bk

0(2n+nK)×m

]
,

Mk
t =

[
bk(t)

M0
t − B0R

−1
0 BT0 s0(t)

]
, Σk =

[
σk 0n×(2r+rK)

0(2n+nK)×r Σ0

]
, W i

t =

[
wit,

W 0
t

]
.

(7.35)
Next, the minor agent Ai’s extended cost functional is formed as

Jexi (ui) =
1

2
E
[
(X i

T )TGkX
i
T +

∫ T

0

{
(X i

s)
TQkX

i
s + 2(X i

s)
TNku

i
s + (uis)

TRku
i
s

}
ds

]
, (7.36)

where the corresponding weight matrices are given by

Gk =
[
I2n, 02n×(n+nK)

]T
Gk

[
I2n, 02n×(n+nK)

]
,

Qk =
[
I2n, 02n×(n+nK)

]T
Qk

[
I2n, 02n×(n+nK)

]
,

Nk =

[
Nk

0(n+nK)×m

]
. (7.37)

The dynamics (7.34) together with the cost functional (7.36) constitute a stochastic optimal
control problem for minor agent Ai, i ∈ N, in the infinite population limit. Then, according
to Theorem 7.3, the minor agent Ai’s optimal control action for the infinite population case is



7 Mean Field Game Systems including Common Noise and Markovian Latent Processes147

given by
ui,∗t = −R−1

k

[
NT
kX

i
t + BTk

(
Πk(t)X

i
t + si,kt

)]
, (7.38)

where Πk(t), k ∈ K, is the solutions to the following deterministic Riccati equation

Π̇k + ΠkAk + AT
kΠk − (BTkΠk + NT

k )TR−1
k (BTkΠk + NT

k ) + Qk = 0, Πk(T ) = Gk, (7.39)
and si,kt , k ∈ K, is the solution to the following BSDE

dsi,kt +
([

(Ak−BkR−1
k Nk)

T −ΠkBkR−1
k BTk

]
si,kt +ΠkMk

t

)
dt+(ΠkΣk−qit)dW i

t = 0, si,kT = 0.

(7.40)
The complete derivation of (7.39)-(7.40) will be discussed in Section 7.3.5.

Finally, control action (7.68) is substituted in (7.2) which gives minor agent Ai’s, i ∈ N,
closed loop system as

dX i
t =

(
AkX

i
t −BkR

−1
k

[
NT
kX

i
t + BTk

(
ΠkX

i
t + si,kt

)]
+ bk

)
dt+ σkdw

i
t. (7.41)

Remark 7.3. We note that for the case where there exists no latent process, i.e. yLt = 0, t ∈ [0, T ],
the diffusion terms of (7.32) and (7.40) become zero and they reduce to the deterministic offset
equations of classical major minor LQG mean field games in [16].

7.3.5 Nash and ε-Nash Equilibria

To derive the mean field consistency equations which specify the matrices in the control and state
mean field equations, respectively, (7.9) and (7.12), the closed loop system (7.41) of minor agent
Ai is rewritten as

dxit =
(
Akx

i
t−BkR

−1
k

(
NT
k +BTkΠk

)[
(xit)

T , ȳTt , (x
0
t )
T , x̄Tt )

]T −BkR
−1
k BTk s

i,k
t + bk

)
dt+ σkdw

i
t,

(7.42)
where i ∈ N, k ∈ K.

Then the block matrices

Πk =


Πk,11 Πk,12 Πk,13 Πk,14

Πk,21 Πk,22 Πk,23 Πk,24

Πk,31 Πk,32 Πk,33 Πk,34

Πk,41 Πk,42 Πk,43 Πk,44

 , Nk =


Nk,1

Nk,2

Nk,3

Nk,4

 ,
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ek = [0n×n, ..., 0n×n, In, 0n×n, ..., 0n×n] , (7.43)
are defined, where Πk,11,Πk,22,Πk,33 ∈ Rn×n, Πk,44 ∈ RnK×nK ; Nk,1,Nk,2,Nk,3 ∈ Rn×m,
Nk,4 ∈ RnK×m; and ek ∈ Rn×nK , k ∈ K, denotes a matrix which has the identity matrix In
in its kth block and zero matrix 0n×n in other (K − 1) blocks.

Now, if the average of (7.42) over Nk minor agents of type k, k ∈ K, and then its L2 limit as
the number Nk of agents within the subpopulation k goes to infinity (i.e. Nk → ∞) be taken, it
yields

dx̄kt =
[(
Ak −BkR

−1
k (NT

k,1 +BT
k Πk,11)

)
ek −BkR

−1
k (NT

k,4 +BT
k Πk,14)

]
x̄tdt

−BkR
−1
k (NT

k,3 +BT
k Πk,13)x0

tdt−BkR
−1
k (NT

k,2 +BT
k Πk,12)ȳtdt+ (bk −BkR

−1
k BTk s̄kt )dt.

(7.44)
In (7.44), s̄kt is obtained by taking the average and then the L2 limit of (7.40) over the
subpopulation k ∈ K as Nk →∞, and is given by

ds̄kt +
([

(Ak − BkR−1
k NT

k )T −ΠkBkR−1
k BTk

]
s̄kt + ΠkMk

t

)
dt+ (ΠkΣk − q̄t)dW̄t = 0, s̄kT = 0,

(7.45)
where

W̄t =

[
0r×1,

W 0
t

]
, (7.46)

since limNk→∞
1
Nk

∑Nk
i=1 w

i
t = 0; and hence q̄t is an F0,r

t -adapted process.
Then, equating (7.44) with (7.12) results in the following sets of equations.

Π̇0 + Π0A0 + AT
0 Π0 − (NT

0 + BT0 Π0)TR−1
0 (NT

0 + BT0 Π0) + Q0 = 0, Π0(T ) = G0,

Π̇k + ΠkAk + AT
kΠk − (NT

k + BTkΠk)
TR−1

k (NT
k + BTkΠk) + Qk = 0, Πk(T ) = Gk,

C̄k = −R−1
k (NT

k,1 +BT
k Πk,11)ek −R−1

k (NT
k,4 +BT

k Πk,14),

D̄k = −R−1
k (NT

k,3 +BT
k Πk,13),

Ēk = −R−1
k (NT

k,2 +BT
k Πk,12),

Āk = Akek +BkC̄k,

Ḡk = BkD̄k,

L̄k = BkĒk,

(7.47)
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ds0
t +

([
(A0 − B0R

−1
0 NT

0 )T − Π0B0R
−1
0 BT0

]
s0
t + Π0M0

t

)
dt+ (Π0Σ0 − q0

t )dW
0
t = 0, s0

T = 0,

ds̄kt +
([

(Ak − BkR−1
k NT

k )T − ΠkBkR−1
k BTk

]
s̄kt + ΠkMk

t

)
dt+ (ΠkΣk − q̄t)dW̄t = 0, s̄kT = 0,

r̄kt = −R−1
k BTk s̄kt ,

m̄k
t = Bkr̄

k
t + bk.

(7.48)
Equations (7.47)-(7.48) are called the mean field consistency equations (see [16]) from which the
matrices in (7.9) and (7.12) can be calculated.

Now, according to the asymptotic equilibrium analysis performed in [16], the following
matrices are defined.

M1 =


A1 −B1R

−1
1 (NT

1,1 +BT
1 Π1,11) 0

. . .

0 AK −BKR
−1
K (NT

K,1 +BT
KΠK,11)

 ,

M ′
1 =


−π1FR

−1
1 (NT

1,1 +BT
1 Π1,11) 0

. . .

0 −πKFR−1
K (NT

K,1 +BT
KΠK,11)

 ,

M2 =


−B1R

−1
1 (NT

1,4 +BT
1 Π1,14)

...
−BKR

−1
K (NT

K,4 +BT
KΠK,14)

 , M ′
2 =


−π1FR

−1
1 (NT

1,4 +BT
1 Π1,14)

...
−πKFR−1

K (NT
K,4 +BT

KΠK,14)

 ,

M3 =


F πĒ F πD̄ +H0 F πC̄ +Hπ 0n×nK 0n×n

0n×n A0 0n×nK 0n×nK 0n×n

L̄ Ḡ Ā 0nK×nK 0nK×n

L̄ Ḡ M2 M1 0nK×n

F πĒ F πD̄ +H0 M ′
2 M ′

1 0n×n

 ,

L0,H = Q
1
2
0

[
0n×n In 0n×nK 0n×nK 0n×n

0n×n 0n×n 0n+nK 0n+nK In

]
,

La = Q
1
2
0 [I2n, 02n×nK ] , Lb = Q

1
2
k

[
I2n, 02n×(n+nK)

]
. (7.49)

Assumption 7.9. The matrix M1 is Hurwitz.

Assumption 7.10. The pair (L0,H ,M3) is observable.

The analysis above leads to the following theorem where convex analysis and asymptotic
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MFG equilibrium analysis are utilized to establish the infinite population Nash equilibrium and
finite population ε-Nash equilibrium.

Theorem 7.3. Subject to Assumptions 7.1-7.10, the mean field equations (7.47)-(7.48) together

with the system equations (7.1)-(7.3) and (7.5)-(7.6), generate an infinite family of stochastic

control laws U∞,∗MF , with finite sub-families UN,∗MF , {ui,∗t ; i ∈ N}, 1 ≤ N < ∞, given by

(7.30)-(7.32) and (7.68)-(7.40), such that

(i) U∞,∗MF yields a unique Nash equilibrium within the set of linear control laws U∞L such that

J∞i (ui,∗, u−i,∗) = inf
ui∈U∞L

J∞i (ui, u−i,∗),

(ii) All agent systems i ∈ N0, are second order stable in the sense that

supt∈[0,T ],i∈N0
E
{

(‖xit‖
2

+ ‖x(N)
t ‖

2
+ ‖x̄t‖2 + ‖yt‖2)

}
< C with C independent of N.

(iii) {UNMF ; 1 ≤ N < ∞} yields a unique ε-Nash equilibrium within the set of linear control

laws UNL for all ε > 0, i.e. for all ε > 0, there exists N(ε) such that for all N ≥ N(ε)

JNi (ui,∗, u−i,∗)− ε ≤ inf
ui∈UNL

JNi (ui, u−i,∗) ≤ JNi (ui,∗, u−i,∗),

where JNi (ui,∗, u−i,∗)→ J∞i (ui,∗, u−i,∗), i ∈ N0, as N →∞.

�

Proof. We use the convex analysis method developed in [68] to obtain the best response strategies
(17)-(19) and (23)-(25); this proves parts (i) and (ii) of the theorem. Then following the
asymptotic equilibrium analysis of [10], the set of infinite population control actions yields an
ε-Nash equilibrium for the large population system which proves part (iii) of the theorem.

First, the convex analysis is performed for the major agent A0’s extended system to derive
the major agent’s optimal control action in the infinite population limit. Using Theorem 6.2

in Chapter 6 ([68]), the Gâteaux derivative of the major agent’s extended cost Jex′0 (u0) in the
direction of ω0

t ∈ U0 is given by

〈Jex′0 (u0), ω0〉 = E
[ ∫ T

0

(ω0
t )
T

{
NT

0X
0,u
t +R0u

0
t

+ BT0
(
e−A

T
0 tM0

t −
∫ t

0

eA
T
0 (s−t)(Q0X

0,u
s + N0u

0
s

)
ds
)}

dt

]
, (7.50)
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where the martingale M0
t is specified by

M0
t = E

[
eA

T
0 TG0X

0,u
T +

∫ T

0

eA
T
0 s(Q0X

0,u
s + N0u

0
s)ds

∣∣∣F0,r
t

]
. (7.51)

Given that Assumption 7.7 holds, according to Theorem 6.2 in Chapter 6 ([68]), the optimal
control action u0,∗

t for the major agent A0 in the infinite population limit is given by

u0,∗
t = −R−1

0

[
NT

0X
0,∗
t + BT0

(
e−A

T
0 tM0

t −
∫ t

0

eA
T
0 (s−t)(Q0X

0,∗
s + N0u

0,∗
s

)
ds
)]
, (7.52)

which is obtained by setting (7.50) to zero for all possible paths of ω0
t ∈ U0.

Now, Let us define p0
t as in

p0
t = e−A

T
0 tM0

t −
∫ t

0

eA
T
0 (s−t)(Q0X

0,∗
s + N0u

0,∗
s

)
ds, (7.53)

which is the adjoint process for the major agent’s system in the stochastic maximum principle
framework. Next, we adopt an ansatz for p0

t given by

p0
t = Π0(t)X0,∗

t + s0
t , (7.54)

whose substitution in (7.52) yields a linear state feedback form for the major agent’s optimal
control action, i.e.

u0,∗
t = −R−1

0

[
NT

0X
0,∗
t + BT0

(
Π0(t)X0,∗

t + s0
t )
)]
. (7.55)

To find Π0(t) ∈ R(2+K)n×(2+K)n and s0
t ∈ R(2+K)n, first both sides of (7.54) are differentiated

and then (7.24) and (7.55) are substituted, which gives

dp0
t =

[(
Π̇0 + Π0A0 − Π0B0R

−1
0 NT

0 − Π0B0R
−1
0 BT0 Π0

)
X0
t dt

+
(
− Π0B0R

−1
0 BT0 s0

t + Π0M0
t

)
dt+ ds0

t

]
+ Π0Σ0(t)dW 0

t . (7.56)
Next, both sides of (7.53) are differentiated to yield

dp0
t = (−AT

0 p
0
t −Q0X

0
t − N0u

0
t )dt+ e−A

T
0 tdM0

t . (7.57)
According to the martingale representation theorem, the martingale M0

t can be written as

M0
t = M0

0 +

∫ t

0

Z0
sdW

0
s , (7.58)

where Z0
t is an F 0,r

t -adapted process. Differentiating both sides of (7.58) yields

dM0
t = Z0

t dW
0
t . (7.59)
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Then, (7.55) and (7.59) are substituted in (7.57) which gives rise to

dp0
t =

[
(−Q0 + N0R

−1
0 NT

0 + N0R
−1
0 BT0 Π0 − AT

0 Π0)X0,∗
t + (N0R

−1
0 BT0 − AT

0 )s0
t

]
dt

+ q0
t dW

0
t , (7.60)

where q0
t = e−A

T
0 tZ0

t .
Finally, (7.56) and (7.60) are equated which results in a deterministic Riccati equation as

Π̇0 + Π0A0 + AT
0 Π0 − (BT0 Π0 + NT

0 )TR−1
0 (BT0 Π0 + NT

0 ) + Q0 = 0, Π0(T ) = G0, (7.61)
and a stochastic offset equation as

ds0
t +
([

(A0−B0R
−1
0 NT

0 )T−Π0B0R
−1
0 BT0

]
s0
t +Π0M0

t

)
dt+(Π0Σ0−q0

t )dW
0
t = 0, s0

T = 0.

(7.62)
To derive the optimal control action for minor agent Ai, i ∈ N, as well as the corresponding
Riccati and offset equations, a similar approach is followed. Utilizing Theorem 6.2 in Chapter 6
([68]), the Gâteaux derivative of the extended cost functional Jex′k (ui), k ∈ K, for minor agent
Ai, i ∈ N, is computed as

〈Jex′k (ui), ωi〉 = E
[ ∫ T

0

(ωit)
T

{
NT
kX

i,u
t +Rku

i
t

+ BTk
(
e−A

T
k tM i

t −
∫ t

0

eA
T
k (s−t)(QkX

i,u
s + Nku

i
s)ds

)}
dt

]
. (7.63)

where the martingale M i
t is defined by

M i
t = E

[
eA

T
k TGkX

i,u
T +

∫ T

0

eA
T
k s(QkX

i,u
s + Nku

i
s)ds

)∣∣∣F i,rt ]. (7.64)

Given Assumption 7.8, as per Theorem 3, the optimal control action ui,∗t for minor agent
Ai, i ∈ N, in the infinite population limit is given by

ui,∗t = −R−1
k

[
NT
kX

i,∗
t + BTk

(
e−A

T
k tM i

t −
∫ t

0

eA
T
k (s−t)(QkX

i,∗
s + Nku

i,∗
s )ds

)]
, (7.65)

which is obtained by setting (7.63) to zero for all possible paths of ωit ∈ U i.
Let us define pit as

pit = e−A
T
k tM i

t −
∫ t

0

eA
T
0 (s−t)(QkX

i,∗
s + Nku

i,∗
s )ds, (7.66)

which is in fact the adjoint process for the minor agent Ai’s system in the stochastic maximum
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principle framework. Then we adopt an ansatz for pit given by

pit = Πk(t)X
i,∗
t + si,kt , (7.67)

whose substitution in (7.65) results in a linear state feedback form for ui,∗t as

ui,∗t = −R−1
k

[
NT
kX

i,∗
t + BTk

(
Πk(t)X

i,∗
t + si,kt

)]
. (7.68)

To find Πk(t) ∈ R(3+K)n×(3+K)n and si,kt ∈ R(3+K)n, first both sides of (7.67) are differentiated
and then (7.34) and (7.68) are substituted which yields

dpit =
[(

Π̇k + ΠkAk − ΠkBkR−1
k NT

k − ΠkBkR−1
k BTkΠk

)
X i,∗
t − ΠkBkR−1

k BTk s
i,k
t

+ ΠkMk
t + dsi,kt

]
dt+ ΠkΣk(t)dW

i
t . (7.69)

Next, both sides of (7.66) are differentiated

dpit = (−AT
k p

i
t −QkX

i,∗
t − NT

k u
i,∗
t )dt+ e−A

T
k tdM i

t . (7.70)
According to the martingale representation theorem, the martingale M i

t shall be written as

M i
t = M i

0 +

∫ t

0

Zi
sdW

i
s , (7.71)

or equivalently, when both sides of (7.71) are differentiated, as

dM i
t = Zi

tdW
i
t , (7.72)

where Zi
t is an F i,rt -adapted process.

Then, (7.68) and (7.72) are substituted in (7.70) which gives

dpit =
[
(−Qk + NkR

−1
k NT

k + NkR
−1
k BTkΠk − AT

kΠk)X
i,∗
t

+ (NkR
−1
k BTk − AT

k )si,kt

]
dt+ qitdW

i
t , (7.73)

where qit = e−A
T
k tZi

t . Finally, (7.69) is equated with (7.73) which yields

Π̇k + ΠkAk + AT
kΠk − (BTkΠk + NT

k )TR−1
k (BTkΠk + NT

k ) + Qk = 0, Πk(T ) = Gk, (7.74)

dsi,kt +
([

(Ak−BkR−1
k NT

k )T−ΠkBkR−1
k BTk

]
si,kt +ΠkMk

t

)
dt+(ΠkΣk−qit)dW i

t = 0, si,kT = 0,

(7.75)
i ∈ N, k ∈ K.

Finally, following the asymptotic equilibrium analysis of [16], the set of control actions
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UN,∗MF , {ui,∗t ; i ∈ N}, 1 ≤ N < ∞, yields an ε-Nash equilibrium for the large population
system given by (7.1)-(7.3) and (7.5)-(7.6).

7.4 Conclusions

In this chapter, we introduced and formulated a new class of major minor MFG systems motivated
from financial and economic systems. In this novel setup, the major agent and each of the mass of
minor agents interact with a common process, and this process also affects their cost functionals.
The common process is influenced by (i) a latent process which is not observed, (ii) a common
Wiener process, (iii) the major agent’s state and control action, and (iv) the average state and
control action of all minor agents. Then, we used the convex analysis method to establish the
best trading strategies for all agents which yield an ε-Nash equilibrium. Our framework can
be easily extended to the case where each agent’s dynamics also is influenced by the common
process.
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Chapter 8

Future Research Directions

LQG Hybrid Mean Field Game Theory

In this thesis, the hybrid mean field game theory has been established for a class of MM
LQG MFG systems for which controlled switching and stopping times are state and trajectory
independent, and only depend on the dynamical and cost functional parameters of each agent. As
a result, all agents of the same type would stop or switch at the same time. and state jumps subject
to possible changes in the dimension of the state space. It is of significant interest to develop and
extend the hybrid MFG theory in the following directions.

• Switchings and stoppings upon arrival on switching manifolds where individuals in
subpopulations may quit or switch to alternative dynamics at different times. This is of
particular importance in the modelling of optimal execution problems where traders stop
or switch after reaching a specific number of shares.

• Tractable formulation for several subpopulations, including a systematic methodology for
treating more complex discrete state sequence lattices.

• Extend model so that subpopulations and individuals can rejoin game after quitting or
switch back and forth between specific modes of operation.

Mean Field Game Systems with Multiple Major Agents

All the theorems in this thesis are established for the LQG MFG systems with one major agent
and a large population of minor agents. This is not necessarily the case as for example in
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markets there are usually several institutional investors whose trading actions move the asset
price significantely. Hence, the extension of MM MFG theory to incorporate multiple major
agents surely merits study.

Mean Field Game Systems with Latent and Common Processes

In this thesis, MM MFG theory is extended to incorporate a common process in the dynamics of
all agents. The common process is driven by a latent process which is not directly observed by
agents. Given that the realized trajectories of the common process are completely observed, the
posteriori estimates of the latent process are generated and subsequently the future movements in
the common process are predicted. The generalization of this setup to the systems influenced by
more than one latent processes, and where the nested information patterns on latent processes are
available to agents, and studying the value of information is of interest. Moreover, generalizing
the setup and the utilized convex analysis method to accommodate jump processes, as well as
correlated Wiener processes, present interesting and important extensions.

Partially Observed Nonlinear Major Minor MFG Theory

In this thesis, partially observed LQG major minor MFG (PO LQG MM MFG) systems are
formulated where (i) major agent has partial observations on its own state, and (ii) each minor
agent has partial observations on its own state and the major agent’s state. Partially observed
nonlinear major minor mean field game (PO NL MM MFG) problems in the case where the
major agent completely observes its own state and each minor agent partially observes its own
state and the major agent’s state are studied in [22–24]. An extension of the problem tackled in
this thesis, where the major agent also partially observes its own state, to the PO NL MM MFG
case could be a future research direction.

Numerical Experiments

Performing simulations and analysis using real market data in all three parts of the thesis would
be of particular interest. Furthermore, the sensitivity analysis of the terms in the cost functional
of each trader and its impact on the market equilibrium would be another future direction.
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[41] T. Başar, “Informationally nonunique equilibrium solutions in differential games,” SIAM
Journal on Control and Optimization, vol. 15, no. 4, pp. 636–660, 1977.

[42] M. Nourian and P. E. Caines, “ε-Nash mean field game theory for nonlinear stochastic
dynamical systems with major and minor agents,” SIAM Journal on Control and
Optimization, vol. 51, no. 4, pp. 3302–3331, 2013.

[43] D. Firoozi, A. Pakniyat, and P. E. Caines, “A mean field game - hybrid systems approach
to optimal execution problems in finance with stopping times,” in Proceedings of the 56th
IEEE Conference on Decision and Control (CDC), pp. 3144–3151, 2017.

[44] A. Pakniyat and P. E. Caines, “A class of linear quadratic gaussian hybrid optimal control
problems with realization–independent riccati equations,” IFAC-PapersOnLine, vol. 50,
no. 1, pp. 2241–2246, 2017.

[45] A. Pakniyat and P. E. Caines, “On the stochastic minimum principle for hybrid systems,” in
Proceedings of the 55th IEEE Conference on Decision and Control (CDC), pp. 1139–1144,
2016.

[46] C. Aghayeva and Q. Abushov, “The maximum principle for the nonlinear stochastic optimal
control problem of switching systems,” Global Optimization, vol. 56, no. 2, pp. 341–352,
2011.



References 161

[47] A. Bensoussan and J. Menaldi, “Stochastic hybrid control,” Mathematical Analysis and
Applications, vol. 249, no. 1, pp. 261–288, 2000.

[48] A. Bensoussan and J. L. Menaldi, “Hybrid control and dynamic programming,” Dynamics
of Continuous, Discrete and Impulsive Systems Series B: Application and Algorithm, vol. 3,
no. 4, pp. 395–442, 1997.

[49] H. J. Sussmann, “A nonsmooth hybrid maximum principle,” Lecture Notes in Control and
Information Sciences, Springer London, Volume 246, pp. 325–354, 1999.

[50] M. Garavello and B. Piccoli, “Hybrid necessary principle,” SIAM Journal on Control and
Optimization, vol. 43, no. 5, pp. 1867–1887, 2005.

[51] M. S. Shaikh and P. E. Caines, “On the hybrid optimal control problem: theory and
algorithms,” IEEE Transactions on Automatic Control, vol. 52, no. 9, pp. 1587–1603, 2007.
Corrigendum: vol. 54, no. 6, pp. 1428, 2009.

[52] F. Taringoo and P. E. Caines, “On the optimal control of impulsive hybrid systems
on riemannian manifolds,” SIAM Journal on Control and Optimization, vol. 51, no. 4,
pp. 3127–3153, 2013.

[53] A. Pakniyat and P. E. Caines, “On the relation between the minimum principle and dynamic
programming for classical and hybrid control systems,” IEEE Transactions on Automatic
Control, vol. 62, no. 9, pp. 4347–4362, 2017.

[54] D. Firoozi, A. Pakniyat, and P. E. Caines, “A hybrid optimal control approach to LQG mean
field games with switching and stopping strategies,” arXiv, 2018.

[55] A. Pakniyat and P. E. Caines, “Hybrid optimal control of an electric vehicle with a dual-
planetary transmission,” Nonlinear Analysis: Hybrid Systems, vol. 25, pp. 263–282, 2017.

[56] D. E. Kirk, Optimal control theory: An introduction. New York: Prentice Hall, Inc., 1971.

[57] A. Bensoussan, Stochastic control of partially observable systems. Cambridge: Cambridge
University Press, 1992.

[58] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1990.

[59] I. Ekeland and R. Témam, Convex analysis and variational problems. Society for Industrial
and Applied Mathematics, 1999.

[60] G. Allaire, Numerical analysis and optimization: An introduction to mathematical modeling
and numerical simulation. Oxford University Press , 2007.



References 162

[61] R. Carmona, Lectures on BSDEs, stochastic control, and stochastic differential games with
financial applications. Philadelphia, PA: Society for Industrial and Applied Mathematics,
2016.

[62] P. Bank, H. M. Soner, and M. Voß, “Hedging with temporary price impact,” Mathematics
and Financial Economics, vol. 11, no. 2, pp. 215–239, 2017.

[63] P. Casgrain and S. Jaimungal, “Algorithmic trading with partial information: A mean field
game approach,” arXiv, 2018.

[64] I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus. New York: Springer-
Verlag, 1998.

[65] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes.
North-Holland Mathematical Library, Elsevier Science, 2014.

[66] P. Casgrain and S. Jaimungal, “Trading algorithms with learning in latent alpha models,”
SSRN, 2016.

[67] R. Carmona, F. Delarue, and D. Lacker, “Mean field games with common noise,” Annals of
Probability, vol. 44, pp. 3740–3803, 2016.

[68] D. Firoozi, P. E. Caines, and S. Jaimungal, “Convex analysis for LQG systems with
applications to major minor LQG mean field game systems,” arXiv, 2018.

[69] A. Nayyar, A. Gupta, C. Langbort, and T. Başar, “Common information based markov
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