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Abstract

The application of elliptic curves to the field of cryptography has been relatively

recent. It has opened up a wealth of possibilities in terms of securitYt encryp-

tion, and real-world applications. In particular, we are interested in public-key

cryptosystems that use the el1iptic curve discrete logarithm problem to establish

security. The objective of this thesis is to assemble the most important facts and

findings into a broad, unified overview of this field. To illustrate certain pointst

we aiso discuss a sample implementation of the elliptic curve analogue of the El

Gamal cryptosystem.
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Résumé

L'application des courbes elliptiques au domaine de la cryptograplùe est relative-

ment récente. Elle a ouvert un éventail de possibilités en termes de sécurité, de

chiffrement, et des applications pratiques. En particulier, nous nous intéressons

aux systèmes à clé publique qui utilisent le problème du logarithme discret sur des

courbes elliptiques pour établir la sécurité. L'objectif de cette thèse est de rassem-

bler les résultats et les faits les plus importants en un aperçu large et unifié de ce

domaine. Pour illustrer certains points, nous discutons aussi une mise-en-oeuvre

de l'analogue du système El Gamal.
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Chapter 1

Introduction

Cryptography is the science of securely transmitting messages from a sender to a

receiver. The objective is to encrypt the message in a way such that an eavesdrop­

per would not be able to read it. A cryptosystem is a system of algorithms for

encrypting and decrypting messages for this purpose. Computer cryptography,

once the exclusive domain of the military, has only recently become accessible

to the layperson with the advent of personal computers and the boom in public

research over the last 20 years.

In contrast, elliptic curves are not new to the field of Number Theory - they

have been studied and scrutinized for most of this past century. But the ap­

plication of elliptic curves to the field of cryptography is a recent phenomenon,

beginning barely 10 years ago. Some well-known cryptosystems work with multi­

plicative groups of fields, and as it turns out, elliptic curves over finite fields are

a rich source of finite abelian groups. Faced with an infinite variety of elliptic

curves to choose from, much research remains to be conducted on how different

cryptosystems using different elliptic curves perform.

6
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Future studies will not be motivated solely by the simple concept of applying

el1iptic curves to cryptographie schemes. As we will see in this thesis, the appeal

of the elliptic curve cryptosystem is its strengths and its practical applications to

the real world. Such systems involve elementary arithmetic operations that make

it easy to implement (in either hardware or software). They can maintain reliable

security with key lengths that are shorter (therefore more practical) than those in

other public-key schemes. There are very few known attacks that can break the

cryptosystems: each is effective only on a particular class of elliptic curves and

even the best algorithms require exponential time. Therefore, these cryptosystems

are generally more secure than others. Elliptic curves could easily be applied to

other cryptosystems (or combinations of cryptosystems) and as stated above, there

are countless elliptic curves to choose from.

It is fairly easy to learn the dry computational steps of an elliptic curve cryp­

tosystem, but understanding the scheme's design or irnplementation requires a

scholarly background in mathematics. The objective of this thesis is to assemble

an overview of this field of study and its findings to date, while filtering out an

but the basic concepts necessary for understanding tlùs overview.

We begin with a cursory review (it is assumed that readers have at least an

undergraduate background in Computer Science) of the mathematics used in the

rest of the thesis. We also introduce sorne concepts from the field of cryptography.

Chapter 3 defines elliptic curves, their arithmetic operations, the discrete loga­

rithm problem on an elliptic curve, and sorne of its properties. Chapter 4 focuses

on one particular elliptic curve cryptosystem - both in theory and in practice­

then proceeds to break down and analyse the components of elliptic curve cryp-
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tosystems. We conclude by summarizing the latest findings and predicting the

future course of study in this seemingly inexhaustible field.
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Chapter 2

Essential Concepts

Before we begin any discussion on elliptic curves or public-key cryptosystems, we

will first review sorne basics of number theory, linear algebra, cryptography, etc.

that support the ideas of the chapters that follow.

2.1 Integers

The set of aIl integers will he denoted by Z. N stands for the set of an positive

integers. For a finite set A, the number of elements of A is denoted by #A.

An equivalence relation on a set A is a binary relation,...., on A such that for any

X,Y,Z E At

1. x r">J x [reftexivity)

2. if x r">J y then y"'" x [symmetry]

3. if x,..., y and y"'" z then x,...., z (transitivity)

Let f"V be an equivalence relation on a set A. Then P = {[a] 1 a E A}, where

9
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[a] = {b E A 1 a t'V b} is a partition of A, that is

1. for each SEP, S t= 0

2. if 5, TEP, then 5 = Tor 5 n T = 0

3. UsEPS=A

An element SEP is called an equivalence class of the partition P.

10
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We assume the reader's familiarity with sorne of the most basic properties of

integers.

Theorem 2.1.1 (Euclid's Division Algorithm) For a,b E Z, b =1- 0, there exist

uniquely determined q, r E Z such that

a = bq + r, (0::; r < lb!)

[15, page 43].

If r = 0, we say that b is a divisor of a, and denote it as bla. Otherwise we

write b ,fa. For al, .. . ,ak E Z, if blai (i = 1, . .. ,k), then bis called a common divisor

of ah"" ak. The largest common divisor of al, ... , ak always exists. It is denoted

by gcd(ah ... , ak)' a, b E Z are called relatively prime (or coprime) if and only if

gcd(a, b) = 1.

Theorem 2.1.2 If a, b E Z, not both zero, then d = gcd(a, b) is the smallest element

in the set of a11 positive integers of the form ax + by (x, y E Z).

Prao! Let C = {c ENI c = ax + 't1y, x,y E Z}. c t= 0, because if a =# 0, -a E C. Let

e = axo + byo
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be the smallest element of c. We shaH show that d = e. If a = eq+r, 0 ~ r < e, then

r = a- eq = a(l- qxo) + b(-qyo).

If r # 0, it would he in C and would eontradict our ehoice of e. Thus, ela. Similarly,

elb, so we have e ~ d. On the other hand, sinee e = axo + byo and dia, dlb, it foHows

that die. Hence, d ~ e. Therefore, d = e.

Corollary 2.1.3 There exist x, y E Z satisfying

ax+by=e

if and only if die, where d = gcd(a, b).

Proof If a = ed, b = Id, then clearly die. On the other hand, if die, let kd = e.

Sinee there exist xo, Yo E Z sueh that

axo +byo = d

then

a(kxo) + b(kyo) = kd = e

For a, b, m E Z we define

a == b mod m if and onlY if ml(a - b).

We ean easily see that for a fixed m, this is an equivalence relation on Z. Con­

sequently, Z is partitioned into equivalenee classes: Zm = {[a] 1 a E Z}, where

la] = {b E Zia == b mod ml. Each equivalenee class [a] is often represented by its

element. For example, we can write Zm = {n, 1, 2, ... , m - 1}.
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Theorem 2.1.4 For a, mE Z, there is a x E Z such that ax =1 mod m if and only if

gcd(a, m) = 1.

Prao! There is a x E Z such that ax =1 mod m <=> there are x, y E Z such that

ax - my = 1. Therefore, Corollary 2.1.3 completes the proof.

pEN is called a prime number if and only if p > 1 and a I1p for all a e Z,

1 < a < p. Let pEN, P > 1. p is prime if and only if for any a, b E Z,

plab => pla or plb

(See [15, page 46] for the proof.)

Theorem 2.1.5 (Chinese Remainder Theorem) Suppose ml,"" m,. E N are rela­

tively prime in pairs, i.e. gcd(fflt, mj) = 1 for i #- j. Let al,"" a,. E Z. Then, the

system of r congruences

x == ai (mod 7ni) (1:5 i :5 r)

has a unique solution modulo M = ml x ... x mr given by

r

X = EaiMiYi mod M
i=l

where Mi =M/fflt and MiYi == 1 mod fflï.

ProoJ Note that Mi is the product of all mj where j =F i. So if j :1 i, then

Mi =0 modmj' Note also that gcd(Mi,ffli) = 1, so by Theorem 2.1.4, MiYi == 1 mod1ni

has a solution Yi' Thus,

r

X = E D.&MiYi == D.&MiYi =~ mod fflï

i=l

for ail i, 1 Si:5 r. Therefore, x is a solution to the system of congruences.
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Euler'8 function ep : N --. N is defined as

ep(m) = #{k ENI 1 ~ k ~ m, gcd(k,m) = 1}

Theorem 2.1.6

ep(m) = #{a E Zm 1 ab == 1 mod m for sorne bE Zm}

Prao! The proof fol1ows from Theorem 2.1.4.

13
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Example If p is a prime number, 4>(P) = p - 1 and for any a E Zp, P Aa, there is

b E Zp such that ab == 1 mod p.

Suppose p is an odd prime and x E Z, 1 ~ x ::; p - 1. Then x is called a quadratic

residue modulo p if y2 == x mod p has a solution y E Zp. x is a quadratic non-residue

if x is not a quadratic residue modulo p and x ~ 0 mod p.

2.2 Groups

A group is a structure consisting of a set G and a binary operation * on G (i.e. for

any a, b E G, a* b E G is defined) such that:

1. a*(b*c) = (a*b)*c for a,b,c E G [associativity]

2. there is an element e E G such that

This unique element e is called the neutral element of G.

3. for each a E G there is an element b E G snch that
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b is uniquely determined and called the inverse of a.
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We use the notation (G,*) to represent a group with group operation *. (G, +)

and (G,·) are called an additive group and a multiplicative group, respectively. In

an additive group, the neutral element is represented by the symbol 0 and the

inverse of a is denoted as -a. In a multiplicative group, the neutral element is

represented by the symbol 1 and the inverse of a is denoted as a- l .

(G, *) is called an abelian or commutative group if a * b = b* a for any a, b in G .

Let (G,*) be a group and let H be a subset of G. The structure (H,0) is said to

be a subgroup of (G,*), if 0 is the restriction of * to H x H and (H,0) is a group.

If G is a finite group, then the number of elements of G is called the order of

Gand it is denoted as IGI. Given a finite multiplicative group G, the order of

an element a E G is the smallest positive integer m sncb that am = 1. Snch an m

exists for every element in a finite multiplicative group, as follows from the next

theorem and its corollary.

Theorem 2.2.1 Let G be a finite multiplicative gronp of order n. If the order of

an element a E G is m, then

ale == 1 if and only if mlk

Prao! If k = mq, then ale = (am)q = 1. For the converse, let k = mq + r, 0:::; r < m.

Then aT = ale . (a-I)mq = 1. Therefore, it follows by the minimality of m that r must

be O.

CoroUary 2.2.2 If G is a finite multiplicative group of order n, then
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(1) for every element a E G, an = 1.

(2) the order of any element of G divides IGI.

If a E G is of arder m, then

H = {ak
1 k E Z}

is a subgroup of G of arder m. If G has an element a of arder n = ICI, then

G = {ak
1 k E Z}

and G is called cycHc and a is called a generator of G.

15
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The set Zn = {a, 1,2, ... ,n-l} is a cyclic group of arder n under addition modulo

n, Le. a + b:= r mod n, where r < n (r is the remainder when a + b is divided by n).

Theorem (Euler) For a,m E Z such that (a,m) = 1,

a9'>(m) == 1 mod m

Praof By Theorem 2.1.4

Cm = {a E Zm 1 gcd(a,m) = 1}

forms a multiplicative group of order <p(m). Sa this is an immediate consequence

of Corollary 2.2.2 (1).

Theorem (Fermat) Let p be a prime number and a E Z.

(1) aP- 1 := 1 modp, if pla.

(2) aP :=amodp.

Proof (1) Since ifJ(P) = p -1, this is a special case of Euler's Theorem. (2) This

is trivial if a:= 0 mod p. Otherwise, it follows from (1).
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2.3 Rings
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A ring is a set R together with two binary operations + and· (caUed addition and

multiplication, respectively) defined on R such that the fol1owing conditions are

satisfied :

1. (R, +) is an ahelian group

2. a· (b· c) = (a· b) . c for any a, b, c E R [associativity of·]

3. a· (b + c) = a . b+ a . c and (a + b) . c = a . c+ b • c for any a, b, c E R [distributlvlty

of· over +]

A ring in which the multiplication. is commutative is called a commutative

ring. An element e in a ring R such that e . a = a . e = a for each a E R is a unlty

element or multipHcative identity, and it is represented by 1. If R has a unitY

element, then it is said to he a unitary ring or a ring with unity element.

2.4 Mappings

Given that * and 0 are binary operations on the sets A and B respectively, a

mapping f : A ~ B preserves the operation of A if for aH a, b E A we have

f(a* b) = f{a) 0 f(b).

Suppose A and B are two groups (or two rings). We caU h : A ~ B a homomor­

phism of A into B if h preserves the group operation (or ring operations + and

.) of A. A homomorphism h is a monomorphism if h is one-to-one (i.e. if a :/: b

implies that h{a) =1- h(b»). h is said to be a map onto B if {h(a) 1 a E A} = B. A
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monomorphism onto B is called an isomorphism. If there is an isomorphism of A

onto B, then we say that A and B are isomorphic and we write A ~ B.

2.5 Fields

A field Fis a commutative ring with unitYelement e =F 0 such that F* = {a E Fla =F

O} is a multiplicative group.

Theorem The ring Zp is a field if and only if p is a prime number.

Prao! Given a,b E Z, we recall the fact that

pis a prime number <:> plab implies pla or plb

If Z" is a field, then by definition Zp* forms a multiplicative group. H pla, then

a ~ 0 mod p. This would imply that a E Zp* and that 0.- 1 exists. So if plab, and p la

then pl(ab)a- 1 = b. Therefore, p is prime.

For the converse, suppose that p is prime. It is sufficient to show that zp*

is a multiplicative group, i.e. we only need to show that every x E Zp* has its

multiplicative inverse. For a, b E Zp and x e Zp·,

if xa == xb mod p then a == b mod p =* a - b == 0 mod p

since plx(a - b) ~ plx or pla - band also xE Z"* implies that p lx. This shows that

xZ" = {xa 1 a E Z,,} = Zp, where xa = 1 for sorne a E Z" sinee there must be a neutral

element 1 in Zp. Therefore, each xe Zp· has a multiplicative inverse.

Let F be a field. A subset K of F that is also a field under the operations of

F (with restriction to K) is called a subfield of F. In this case, F is called an
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extension field of K. If K #- F then K is a proper subfield of F. A field is called

prime if it has no proper subfield.

For any field F, the intersection Fo of an suhfields of F has no proper suhfield,

and

Fo ~ Q (= the field of aU rational numbers)

or

Fo ~ Zp, where p is a prime number

A field F is said to have characteristic 0 if Fo ~ Q, that is, if F contains Q as a

subfield. A field F is said to have cbaracteristic p if Fo ~ Zp.

A finite field is a field that contains only finitely many elements. Every finite

field has a prime number as its characteristic [17, page 161. In a field F of prime

characteristic p, for all a E F,

p

pa =a+.: .+ à =o.

Let F be an extension field of a field K. F = K(o:) if Fis the smallest extension

field (i.e. the intersection of all extension fields) of K which contains 0:. If F is a

finite field of characteristic p, then the multiplicative group F· = F \ {O} is cyclic

and F = Zp(a), where 0: is a generator of the group F· (see [17, pp. 46-471 for the

proof). a is called a primitive element of F.

2.6 Vector Spaces

Let K be a field and let V be an additive abelian group. vis called a vector space

over K if an operation K x V --7 V is defined so that the following conditions are

satisfied :
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1. a(u + v) = au +av

2. (a + b)u = au +bu

3. a(bu) = (a· b)u

4. lu = u

The elements of V are called vectors and the elements of K are called scalars.

19
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Let V be a vector space over a field K and let VI, V2, ••. , Vm EV. Any vector in

V of the form

where Ci E K (i = l, ... ,m) is a linear combination of VI,V2, ••• ,Vm • The set of ail

snch linear combinations is cailed the linear span of VI, V2, ••• , Vm and it is denoted

by span(vhv2,""Vm), The vectors VhV2, ... ,Vn are said to span or generate V if

V = span(vhv2,' .. ,vn ).

Let V be a vector space over a field K. The vectors VI, V2, ••• , Vm E V are said to

he Iinearly independent over K if there are no scalars Ch C2, • •• , Cm E K (not aIl 0)

that satisfy

A set S = {UI, U2, ••. , Un} of vectors is a basis of V if and only if UI, U2, ... , Un are

linearly independent and they span V. If s is a basis of V, then every element of

Vis uniquely represented as a linear comhination of the elements of S. If a vector

space V has a basis of a finite number of vectors, then any other basis of V will

have the same number of elements. This number is called the dimension of V over

K.
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If F is an extension field of a field K, then F is a vector space over K. The

dimension of F over K is called the degree of the extension of F over K.

2.7 Polynomial Rings

Let F he an arbitrary ring. A polynomial of degree nover F is an expression of

the form
n

J(x) = EUiXi = ao +alX +... + anxn

i=O

where n is a positive integer, the coefficients ai E F (0 :s; i ::; n), and x is a symbol

not belonging to F, called an indetermlnate over F. To evaluate a polynomial I(a)

for sorne a E F, we replace every instance of the indeterminate x in J(x) with a.

Given two polynomials

n n

J(x) = Eaixi and g(x) = Ebixi

i=O i=O

we define the sum of J(x) and g(x) as

n

J(x) +g(x) = E(~ + bi)Xi

i=O

Given two polynomials

n m

J(x) =E aixi and g(x) =E bjxi
i=O j=O

we define the product of I(x) and g(x) as

n+m

f(x)g(x) = E ckxk, where Cie = E aibj
k=O i+i=1<

O$iS",OSi$m

The ring formed by aIl polynomials over F with ordinary operations of addition

and product is called the polynomial ring over F and denoted by F[x).

In the fol1owing, we assume that F is a field.



CHAPTER 2. ESSENTIAL CONCEPTS 21

(

(

Theorem (Division algorithm for F[x]) Let j(x),g(x) E F[x] he of positive degrees.

Then there exist unique polynomials q(x), r(x) E F[x] such that

j(x) = g(x) . q(x) + r(x)

where the degree of r(x) is less than the degree of g(x) [17, page 20].

If r(x) is the zero polynomial (i.e. r(x) = 0), then g(x) is said to he a divisor

of J(x). A non-constant polynomial J(x) in FIx] is irreducible in FIx] if it has no

divisor of lower degree than j(x) in FIx]. An element a E Fis a root or zero of the

polynomial j(x) E FIx] if J(a) = O.

Corollary An element a E F is a root of the polynomial j(x) E F[x] if and only if

x - a is a divisor of j(x) in F[x}.

Prao! In fact, let J(a) = o. Since j(x) = (x - a)· q(x) + r(x), then the degree of r(x)

is less than 1, i.e. r(x) = c E F. Hence, c = j(a) = O. Conversely, if j(x) = (x-a) .q(x),

then J(a) = O.

Corollary A nonzero polynomial j(x) E FIx] of degree n can have at most n roots

in F [17, page 27].

2.8 Finite Fields

A field of a finite number of elements is denoted Fq or GF(q), where q is the number

of elements.

Proposition Let F he a finite extension of degree nover a finite field K. If K has

q elements, then F has qn elements.
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Prao! In fact, let {al,"" an} he a basis for F as a vector space over K. Then

every f3 E F is uniquely represented in the form

where Ci E K (i = 1, ... , n). Since each Ci may he any of q elements of K 1 the total

number of such a linear combination is qn.

Corollary If F is a finite field of characteristic p then F has exactly pn elements

for some positive integer n [17, page 44}.

Therefore, every finite field is an extension of finite degree of a field isomorphic

to Zp, where p is a characteristic of F.

Theorem A finite field F = Fpn is an extension field of Zp of degree n and every

element of Fpn is a root of the polynomial x pn
- x over Zp.

Proo! The characteristic of Fpn must he p. The set F* = F \ {O} forms a multi­

plicative group of order pn -1 under the field multiplication. For a E F*, the order

of Cl! in this group divides the order of F*, pn - 1. Therefore, for every Cl! E F*, we

have apn
- 1 = 1, i.e. OI.pn = Cl!. Since xp" - x has at most pn roots, F p" consists of all

roots of x pn
- x over Zp.

Example We can see that the field F2r contains F2 (or Z2)' Hwe write the addition

operation in Fz.- as the vector addition and write the product of k and v (k, v E F2'" )

as the scalar product kv of k E F2 and v E F2r , then F2r can be viewed as a vector

space over F2 with a dimension of r. Furthermore, let d denote the dimension

of this vector space. A one-to-one correspondence can be drawn between the
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elements (vectors) of this d-dimensional vector space and the set of aH d-tuples of

elements in F2. Therefore, there must be 2d elements in this vector space. Since

d = r, F2r is a vector space of dimension r.

Let Fqn> be an extension of F q • Two elements a, {3 E Fqn> are conjugate over

Fq if a and {3 are roots of the same irreducible polynomial of degree m over Fq •

a,aq ,OlQ2, •• • ,aqm
-

1 are called the conjugates of a E Fqm with respect to Fq [17, page

49].

Let Fqm be an extension field of Fq • A basis of Fq'm (a vector space over Fq ) of

the form {a, aq, dl
2

, ••• , aq"'-
l
}, consisting of a suitable a E Fqn> and its conjugates

with respect to Fq , is called a normal basis of FQm over F q • For every extension

field of finite degree of a finite field there is a normal basis. (See [17, page 56) for

the proof.)

2.9 Projective Coordinates

Consider L = Kn+l \ {o}, where K is a field. For A = (ao, ab ... ,an), B = (bo, b), ,bn) E

L, define a relation A f'oJ B to mean that A, B and the origin 0 = (0,0, ,0) are

colinear, that is, there is a À E K such that

Àai=bi (i=O,l, ... ,n).

This relation f'oJ is an equivalence relation, and defines a partition of L. The

quotient set is a projective space denoted by pn(K).

In particular, the projective plane is the set of equivalence classes of triples

(X, Y,Z) (not all components zero) where (>..X,À~ÀZ) f'oJ (X,Y,Z) (À E K). Each

equivalence class (X, ~Z) is called a projective point on the projective plane. If a
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projective point has Z =J 0, then (x, y, 1) is a representative of its equivalence class

where we set x = ttY =~. Therefore, the projective plane can he defined by aIl

the points (x, y) of the ordinary (affine) plane (denoted in projective coordinates

as (x,y,1») plus aU the points for which z = o.
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In this section, we discuss sorne well-known means by wwch Allee can send a

private (Le. encrypted) message to Bob. The information that Alice wants to

share with Bob is called the plaintext. The encrypted plaintext that Alice actually

sends to Bob is called the clphertext. A cryptosystem consists of a finite set of

possible plaintexts, a finite set of possible ciphertexts, a finite set of possible

keys, an encryption rule for encrypting plaintext into ciphertext and a decryption

rule for decrypting ciphertext back to plaintext. The general idea behind any

cryptosystem is that Alice and Bob must skaTe a secret key l which is used to

encrypt a message, and without which the plaintext cannot he recovered.

Private-key Cryptosystems If there is a way for Alice and Bob to secretly share

a key K prior to the transmission of plaintext, they can use encryption and de­

cryption rules defined by their secret value of K. Cryptosystems of this form are

called prlvate-key cryptosystems. One approach to sharing keys is the key agree­

ment protocol whereby Alice and Bob jointly establish the secret key by using

values they have sent eaeh other over a public channel.

In these systems, the decryption rule is identical to or easily derived from the

encryption rule. Renee, exposure of the encryption rule to an eavesdropper will

render the system insecure.

pubnc-key Cryptosystems The security of private-key systems depends on the

secret exchange or establishment of keys between Alice and Bob. However, in

pubnc-key cryptosystems Bob keeps bis key (and bis decryption ruIe) to himself,

IThe range of possible key values is called the keyspace.



CHAPTER 2. ESSENTIAL CONCEPTS 26

(

(

whereas the corresponding encryption rule is publicly known. Therefore, Alice

can send encrypted messages without any prior sharing of keys, and Bob will be

the only person able to decrypt the messages sent to him.

2.10.1 The Discrete Logarithm Problem

For some group G, suppose (Xt (3 E G. Solving for an integer x such that 0::& = {3 is

called the discrete logarithm problem (DLP). The DLP in Zp is considered diflicult

(or intractible) if p has at least 150 digits and p - 1 has at least one large prime

factor (as close to p as possible). These criteria for pare safeguards against the

known attacks on DLP. [33, page 162]

Numerous cryptosystems base their security on the difliculty of solving the

DLP. One such public-key cryptosystem is the El Gama! Cryptosystem in Zp· [33,

page 163] which is presented in Figure 2.1. An attacker could decrypt Alice's

message if Bob's secret key aB could be computed from (3 == o:GB (mod p) and 0:

which are publicly known. This is the DLP.

The decryption rule can be explained as follows:

The Diffi~HellmanKey Exchange [33, page 271] also involves the DLP. It is a

key agreement protocol that is described in Figure 2.2. An eavesdropper, Oscar,

could intercept o:GA mod p and o:aB mod p; the security of this protocol is based on

the (yet unproven/disproven) assumption that computing K = o:"AGB mod p from

those intercepted values is as hard as obtaining x from a:& = {J (i.e. the DLP). Oscar

could also attempt to derive aA or aB from aGA mod p and aaB mod p, respectively,

then compute the key just as Alice or Bob would, but sucb computations would
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Let p be a prime 5uch that the DLP in Zp is intractible, and let 0: E Zp• be a prinùtive element. p

and 0: are publicly known. Each user X Ch005es a secret key ax (an integer, where 0:::; a:::; p-2)

and publishes f3 where (3 == o:a.x (mod pl.

For Alice to send her message x E Zp·, she must chOO5e a random number k E Zp-l and send

To decrypt, the recipient Bob computes

where aB is his secret key.

Figure 2.1: The El GaInai Crypt05ystem

be instances of the DLP. Therefore, this protocol is secure as long as the DLP is

intractible.

There are several algorithms for solving the DLP, though none of them per­

form in polynomial time. Shanks' algorithm and the Pohlig-Hellman algorithm are

among the strongest attacks, and they are presented in Figure 2.3 and Figure 2.4,

respectively [33, pp. 165-170]. In bath cases, we assume that p is prime and that

0: is a primitive element of Zp. Given /3 E Zp·, our goal is to find x (0 :::; x :::; p - 2)

where a'Z == {3 (mod pl.
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Let p be a (large) prime and assume that ct is a prinùtive element of Zp. p and ct are publicly

known.

1. Alice chooses aA (0 ~ aA ~ P - 2) at random.

2. Alice computes aGA mod p and sends it to Bob.

3. Bob chooses aB (0 $ aB 5 p - 2) at random.

4. Bob computes (kaB mod p and sends it to Alice.

5. Alice computes K = (o:as)GA mod p

whereas Bob computes K = (a:aA )as mod p

In other words, both Alice and Bob compute the same key

Figure 2.2: The Diffie-Hellman Key Exchange
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There are also a number of cryptosystems whose security is based on the difficulty

of factoring large integers. One well-known example is the public-key system called

the RSA Cryptosystem [28, 33]. It is presented in Figure 2.5. Note that Bob can

compute a = b- 1 mod q,(n) from b by using the Extended Euclidean Algorlthm [33,

page 119] presented in Figure 2.6.

For x E Zn·, the decryption rule can be verified as follows: since ab == 1 (mod t/J(n»,

we can represent ab as ab = k· q,(n) + 1 for sorne integer k ~ 1. Then

ya. - (xb)a. (mod n)

- xk.,p(n)+l (mod n)

( - (x,p(n)k X (mod n)

- l kx (mod n)

- x (mod n)

For RSA to be secure, it should be computationally infeasible to factor n = pq

even when using the best factoring algorithms, i.e. p and q should be sufIiciently

large. If p and q are known, it is easy to compute q,(n) = (P-l)(q-l) and derive a.

At present, it is recommended that p and q should each be primes having around

100 digits [33, page 126]. However, it should he noted that there are also a number

of attacks on RSA that do not involve the factoring of n at ail. They generally

exploit weaknesses in the setup of the cryptosystem, such as poor choices of a,

or Bob's usage of the same n to communicate with other people. For further

information, see [28, 33].

(
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Set m = rvP=1l.

1. Compute amj mod P, where 0 ::; j ::; m - 1

30
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2. Sort the m ordered pairs (j, o.mj mod p) with respect to the second coordinates, producing

a list Li

3. Compute (3œ.- i mod p, where 0 ::; i ::; m - 1

4. Sort the m ordered pairs (i, (3o:-i mod p) with respect to the second coordinates, producing

a list L 2

5. Find (j, y) E Li and (i, y) E L2, Le. pairs with identical second coordinates

6. Define x = logo: {3 = mj + i mod (p -1)

Figure 2.3: Shanks' Algorithm for the DLP in Zp
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Suppose we factorize p - 1 :
11

p-l = TI qiCi

i=l

(the qi'S are distinct primes). For each qi (1 ~ i ~ n) we compute ao, ... , aCi-l where

ci-l

loga:{3 mod qiCi = L aiqik

k=O

using the pseudo-code below:

1. compute "Yi = o:(p-l)i/qi mod p for 0 ~ j ~ qi - 1

2. set k = 0 and ,Bk = fJ

3. while k ~ Ci - 1 do

(a) compute fi = fJk (P-l)/qik+l mod p

(b) find j such that 6 = "Yj

(e) k = k + 1

31

(

Finally, we use the Chinese Remainder Theorem to solve the system of congruences

loga:fJ mod q{i (1 ~ i ::; n). Tlûs gives us loga: fJ modulo rr:=l qiCi
, Le. loga,B mod (p - 1).

Figure 2.4: The Pohlig-Hellman Algorithm for the DLP in Zp
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Bob secretly chooses two primes, p and q, and publishes n = pq. Next, he randomly chooses

b sucb that band <p(n) = (p - 1) (q - 1) are relatively prime. Bob computes a such that

ab == 1 (mod <p(n». ais his secret key, whereas bis revealed to the public.

Alice encrypts ber plaintext message x E Zn by computing

y=xbmodn

and sends y to Bob.

Bob retrieves x by computing

Figure 2.5: The RSA Cryptosystem

no = n, ho = b, to = 0, t = 1

r = no div bo

while r > 0 do

temp = to - L~J x t

to = t, t = temp, no = bo, bo = r

r = no div bo

If bo #- 1 then b has no inverse modulo n, otherwise b- l = t mod n.

Figure 2.6: The Extended Euclidean Algorithm for computing b- l modulo n
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Chapter 3

Elliptic Curves

Now we are ready to discuss elliptic curves and their varions properties. The

notation we present here will apply to the remainder of this thesis.

3.1 Introduction to Elliptic Curves

We begin with the definition of an elliptic curve.

Let K he a field. For example, K can he the finite (extension) field.Fqr of Fq ,

the prime field Zp where p is a (large) prime, the field R of real numbers, the field

Q of rational numhers, or the field C of complex numhers.

Definition An elliptic curve over a field K is defined by the Weierstrass equatlon:

(3.1)

( The elliptic curve E over K is denoted E(K). The number of points on E (the

cardinality) is denoted #E(K) or just #E.

33
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For fields of various characteristics, the Weierstrass equation can be trans-

formed (and simplified) into different forms by a linear change of variables. We

present the equations for fields of charaeteristic # 2,3 and of eharacteristic 2. (The

equation for a field of characteristic 3 was omitted sinee it is not central to the

discussions in the remaining chapters.)

(Characteristic #: 2, 3) Let K be a field of characteristic # 2, 3, and let x 3 + ax + b

(where a,b E K) he a cubic polynomial with the condition that 4a3 + 27b2 =F 0 (this

ensures that the polynomial has no multiple roots). An elliptic curve E over K is

the set of points (x, y) with x, y E K that satisfy the equation

(3.2)

( and also an element denoted 0 and called the point at infinity (to be described in

greater detail below).

(Characteristic 2] li K is a field of characteristic 2, then there are two types of

el1iptic curves:

An elliptic cmve of zero j-invariant1 is the set of points satisfying

(3.3)

(

(where a3,a4,<Z6 E Fq , a3 =f:. 0) and 0, the point at infinity. (It does not matter in

this case whether the eubic on the right side of the equation has multiple roots or

not.)

An elliptic curve of nonzero j-invariant is the set of points satisfying

(3.4)

ITheJ-lnvarlant ofE over K is an element of K determined by al.a2.ag.a4 and a6. See [32. pp. 4S-52l for

further detail.
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(where a2, aB E Fq , aB -:F 0) and 0, the point at infinity.
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The Polnt at l nfinitY The Une at infinlty is the collection of points on the projec­

tive plane for which z = o. The polnt at Inflnity is the point of intersection where

the y-axis and the Hne at infinity meet. More precisely, the point at infinity is

(0,1,0) in the projective plane (the equivalence class with X = Z =0).

An elliptic curve E over a finite field K can be made into an abelian group by

defining an additive operation on its points. The operation is defined in the next

section.

3.2 The Rules for Addition

Given two points P,Q E E(K) we define a third point P+Q so that E(K) forms an

abelian group with this addition operation. If P f Q, then the Hne connecting P

and Q intersects E(K) in a uniquely determined point which we denote as PQ. If

P = Q then the tangent of E(K) at P gives rise to the point PQ. It is tempting

to take PQ as P + Q, but it would not define a group structure sinee there is no

neutral element in this case. Therefore, we find a point of intersection where E(K)

meets the line connecting PQ and the point at infinity 0, and caU this point P+Q.

By joining 0 to a point PQ on the affine part of E(K), we mean that a vertical

line is drawn through PQ. A verticalline intersects E(K) at 3 points: (x,y), (x,-y)

and O. Hence, the point at infinity 0 serves as the additive identity element and

P + Q + PQ = 0 or P + Q = - PQ, the inverse of PQ. Figure 3.1 illustrates these

concepts on the elliptic curve y2 = x3 - x, plotted in the xy-plane2 •

2The curve was drawn using Gnuplot v3.5 and }{fig v3.!
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Figure 3.1: Adding points P and Q
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For each of the three cases of elliptic curves described above, the algebraic

formulas which represent P + Q are easily derived from the fol1owing geometric

procedures3 :

The Addition Formula for 3.2 The inverse of p = (Xl, YI) E E is -P = (Xl, -YI). If

Q # -P, then P + Q = (X3, Y3) where

where

If P =fi Q

IfP=Q

The Addition Formula for 3.3 The inverse of p = (Xt,YI) E E is -P = (Xl, YI + a3).

If Q# -P, then P + Q = (X3, Y3) where

If P =fi Q

X3 (Yl+Y2)2+ Xl + X2
Xl +X2

Y3 = (Yl :Y2) (Xl +X3) +Yl +a3
Xl X2

3See [32 t pp. 55-63] for further discussion of these addition formulas.
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IfP=Q
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The Addition Formula for 3.4 The inverse of p = (Xl, YI) E E is -P = (Xl, YI +XI).

If Q i= -P, then P + Q= (X3, Y3) where

IfP#Q

IfP=Q

X3 = (;:2) +X12
Y3 = X1

2 + (Xl + ~:) Xa + X3

Theorem The addition operation defined above turns E(K) into an abelian group

that has 0 as the identity element [32, pp. 55-57]. (This is not too difficult to

prove except for the step where we must show associativity.)

3.3 The Discrete Logarithm Problem

Exponentiation and Logarithm Since an el1iptic curve E is made into an abelian

group by an additive operation (as opposed to a multiplicative one), "the expo­

nentiation of a point on E" actually refers to repeated addition. Therefore, the

ith power of a E E is ith multiple of a, i.e. {3 =Qi = ia. The logarithm of {3 to the

base Cl: would he i, the inverse of exponentiation.
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The Discrete Logarithm Problem For some group C, suppose O!, {3 E G. Recall

that in the discrete logarithm problem (DLP) we solve for an integer x such that

o:zl = {3. Analogously, in the eWptlc curve discrete logarithm problem (EDLP) we

solve for an integer x such that xo = (3 given o,{3 E E. For the EDLP over E(Fq ) to

be intractible, it is important to select an appropriate E and q such that #E(Fq )

is divisible by a large prime (of more than 30 digits [22]) or such that q is itself a

large prime [23]. The elliptic curve cryptosystems described in the next chapter

are dependent on the presumed intractibility of the EDLP. It is believed that the

EDLP is more intractible than the DLP sinee some of the strongest algorithms

for solving the DLP cannot be adapted to the EDLP.

3.4 Computing #E(K)

Elliptic curve cryptosystems generally involve the selection of a suitable elliptic

curve E and a point P on E called the base point. To learn more about the

structure of the group E(K) (hence to make a wise selection), it is useful to know

the exact value of #E(K). We will look at the case when K is Fq , a finite field of q

elements. The following results are the best known methods ta date for computing

#E.

Hasse's Theorem Let N he the number of points on an elliptic curve over Fq , a

finite field with q elements. Then

IN - (q+ 1)1 ~ 2y'q

8tated in another way, Hasse's Theorem gives the estimate #E(Fq ) =q+l-t where

Itl ~ 2.Jq. [9, 12]
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The Weil Conjecture In 1949, Weil made a series of conjectures in a general

context regarding algebraic varieties (geometric objects) defined over finite fields.

For the case of elliptic curves, Deligne proved the conjectures (now a theorem) in

1973, although the particular conjecture we present below was proved for elliptic

curves in 1934 by Hasse [12) 32].

Let t = q + 1- #E(Fq). Then

#E{Fqlc) = q'c + 1- cl- - pk

where 1 - tx + qx2 = (1 - ax)(l-l3x). In other words, it is possible to compute

#E(Fqlc) given #E(Fq). [10, 20}

Schoof's Algorithm In 1985, Schoof presented a deterministic algorithm that

could compute #E(Fq) (its precise value; not a bound or an estimate) in O(log9 q) bit

operations (where Fq is a finite field of characteristic i: 2, 3) [29}. This deterministic

polynomial time algorithm is the fastest to date4, and given few alternatives, it

is the best choice for computing #E. But in practice, it is awkward and cosUy to

implement, particularly when q is large. The implementation of Schoof's algorithm

is discussed at the end of Chapter 4.

These are the basic properties of elliptic curves that provide the seed for the

concept of elliptic curve cryptosystems.

4Some improvements have been suggested very recently for Schoofls algorithm in [16].
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Chapter 4

Elliptic Curve Cryptosystems

Finally, we are ready to diseuss elUptic curve cryptosystems. Unlike earlier cryp­

tosystems, an elliptie curve eryptosystem works with a finite abelian group formed

by the points on an elliptie curve over a finite field.

4.1 History

In 1976, Diffie and Hellman [7) introdueed a cryptographie protocol whose security

over insecure communication channels was based on the presumed intractibility

of the DLP. In other words, they had introduced the notion of a trapdoor one-way

fonction or TOF. A TOF is easy to evaluate but eomputing the inverse without a

secret "trapdoor" is an intractible problem. In 1985, Lenstra succeeded at using

elliptic curves for integer factorization. This result suggested the possibility of

applying elliptic curves to public-key cryptosystems.

Miller and Koblitz were the first to propose cryptosystems that employed ellip­

tic eurves. They did not invent new cryptographie algorithms but they were the

41
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first to implement existing public-key cryptosystems using elliptic curves. (Miller

proposed an analogue of the Diffie-Hellman key exchange protocoP in 1985 [21].

Koblitz presented analogues of the El Gamal and Massey-Omura cryptosystems

in 1987 [13].)

The first analogue of the RSA scheme and three new TOFs based on elliptic

curves were introduced in 1991, by Koyama, Maurer, Okamoto and Vanstone (14).

(The analogue of RSA is computationally less efficient than RSA - operating at

1/6 the speed of RSA. Its security, as with the original RSA scheme, depends

greatly on the difficulty of integer factorization. However, the analogue is more

secure than the RSA scheme in terms of attacks that are not based on factoring.

For example, the analogue is secure against the Low MultipUer Attack which can

otherwise exploit RSA's weakness when the same plaintext is encrypted with

several distinct moduli [14].)

Around the same time, Kaliski observed that elliptic curves could offer one­

way functions that appear ta require exponential time for inversion [11], while

Menezes, Okamoto and Vanstone discovered the MOV reduction method for solv­

ing the EDLP in specifie cases. Soon after, Miyaji found the conditions for an

elliptic curve ta be immune to the MOV attack [23] and propased the real-world

application of elliptic curves to the signature and identification schemes of smart

cards [22]. In 1993, Demytko presented a new analogue of RSA based on elliptic

curves over a ring Zn that overcame the limitations of eartier versions [6], and

Menezes and Vanstone proposed hardware implementations that would improve

elliptic curve computations over finite fields [20]. Recently, the notion of con-

IThe analogue of the Diffi&-Hellman scheme appears to be around 20% faster than the Dif6.&Hellman key

exchange protocol.
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structing elliptic curves for a cryptosystem (instead of randomly choosing one)

has become a serious concern, as can be seen in [5].

4.2 Analogue of the El Gamal Cryptosystem

Since "elliptic curve cryptosystem" is a generic term for any cryptosystem that

works in the domain of el1iptic curves, we will il1ustrate the meaning of that term

by focusing on one particular example: the analogue of the El Gamai cryptosys­

tem.

Since the El Gamal protocol (see Figure 2.1) can be generalized to work in an

arbitrary finite cyclic group, the analogue implemented on an elliptic curve (as

proposed by Koblitz in 1987) over the field Z" can he described as in Figure 4.1

[12, 13]. We discuss imbedding and the computation of the multiple kP E E(Z,,)

below.

When we imbed plaintext on an elliptic curve E, we are representing the plain­

text as points on E so that we May perform our computations in E. Note that

imbedding is performed prior to encryption (this is not part of the encryption step,

as demonstrated in the analogue of El Gamal).

Example Here is one probahilistic method of imbedding2 a plaintext m on E(Z,,),

where p is a prime such that p == 3 (mod 4). Suppose that E(Z,,) is given by

equation 3.2 and the plaintexts m are integers such that 0 =5 m < pjl000 - 1.

Appending three digits to m will produce a value x such that l000m =5 x < l000(m +

1) < p. We try appending different digits until we find anx such that f{x) = x3+ax+b

2This is a modified version of an example presented in [13].
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We are given a prime field Zp, an elliptic curve E(Zp), and a base point PEE, all of which are

fixed and publicly known. Each user X of this system chooses a random integer ax which will

be his/her own secret key, then computes and publishes the point ax P.

Suppose Alice wishes to send a message m (an integer, let's say) to Bob. First, she imbecls the

value m onto the elliptic curve E, i.e. she represents the plaintext m as a point Pm E E. Now

she must encrypt Pm. Let aB denote Bob's secret key (sa, aBP will be publicly known). Alice

first chooses a random integer k and semis Bob a pair of points on E:

To decrypt the ciphertext, Bob computes

Figure 4.1: Analogue of the El Gamal Cryptosystem
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is a square in Zp and y (where f(x) == y2 mod p) satisfies y ~ -1 mod p. Then, we

define the imbedded point corresponding to m as

(p+l)

Pm = (x,f(x)"-)

Let z = f(x) = x 3 + ax + b == y2 mod p. Then Pm is a point on E(Zp) (Le. z!fi.!l ==

y mod p) for the fol1owing reasons:

Since p == 3 (mod 4), we can write p =4k + 3. Then

.œ±!l (pH) 2k 2
Z 4 == y-r- = y + mod p

If y == 0 or y == 1 mod p, then clearly z (p!ll == y2k+2 == Y mod p. Otherwise, let m be the

order of y mod p in the group Zp·. By Fermat's Theorem,

yP-l = y4k+2 == 1mod p

henee ml4k + 2 = 2(2k + 1). Since y2 ~ 1 mod p, it follows that ml2k + 1. Therefore,

y2k+l == 1 mod p. Thus, by Fermat '5 Theorem again,

z (pr1
) == y2k+2 == y4k+3 == yP == y mod p

We cau easily retrieve a plaintext mfrom a point Pm E E(Zp), by simply dropping

the last three digits from the x-coordinate of Pm. f(x) is a square for roughly l
of aIl x [12, page 163} sinee there is an equal number of quadratic residues and

quadratic non-residues mod p. Therefore, the probability that j(x) will not be a

square is very small (around~ sinee 1000m::; x < 1000(m + 1»).

kP E E(Zp), where k is an integer, ean he computed by adding the base point

k times (a simple but tedious approaeh), or it could be found in O(logklog3 p) bit

operations by using the double-and-add algorithm3 which is deseribed in Figure 4.2:

3analogous to the square-and-multlply algorlthm for raising an element to the k·th power
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Let ka, kit ... , km-l denote the binary digits of k, such that k = koil+k121+k222+... km _12m - 1

(i.e. ki = 0 or 1, and km-l = 1 is the most significant bit). Set Pa: = nil and Py = P.

for i = 0 to m - 1

if P:z; = nil then P:z; = Py

else P:z; = P:z; + Py

double Py , i.e. set Py = Py + Py

The resulting value of Pa: is kP.

(
Security

Figure 4.2: The Double-and-Add Algorithm

If an eavesdropper, Oscar, cao solve the EDLP, then he could deter-

(

mine Bob's secret keyaB from the publicly known information P and aBP and

consequently read Alice's message. Clearly, the security of the analogue system

relies heavily on the intractibility of the EDLP, just as the original El Gamal

cryptosystem relies on the intractibility of the DLP. In turn, the intractibility of

the EDLP clearly depends on the choice of the elliptic curve E and the base point

PEE. Methods for selecting a suitable E and Pare analysed at the end of this

chapter.

Unlike some other cryptosystems (the analogue of the Massey-Omura system,

for example), this scheme has the advantage that the value of #E(Fq ) is not re­

quired in its computations. However, the latter cryptosystem has a message ex­

pansion factori of 4, as opposed to the message expansion factor of 2 of the former

4This is the ratio of the number of field e1ements sent as the ciphertext to the number of field elements in the
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cryptosystem.
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A variant of the El Gamal analogue is the Menezes-Vanstone El8ptic Curve

Cryptosystem [20, 33]. The difference between the Analogue of El Gamal pre­

sented above and this scheme is that Alice will "mask" her plaintext instead of

"imbedding" it (this will be explained later in greater detail). Figure 4.3 describes

the Menezes-Vanstone Cryptosystem.

The decryption rule can be explained as follows since Ya = kP, Bob can

compute

and then

4.3 Sample Implementation

We have chosen to implement the Menezes-Vanstone Elliptic Curve Cryptosystem

due to the conveniences that stem frOID "masking" vs. "imbedding" plaintext

(explained in the next section). We use the elliptic curve E defined by

over the prime field Z31 (Le. p = 31). Therefore, E is over a field of characteristic

i 2,3 as in equation 3.2. We also fixed the base point to be P = (9,10). The

underlying field of E is not large in cardinality, but we have used it for the sake

of simplicity. As it turns out, #E(Z31) = 34 and P is an element of order 34

original plaintext.
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Let E he an elliptic curve over the prime field Zl' (p > 3) such that E contains a cyclic subgroup

H in which the EDLP is intractible. Z", E(Zl')' and a base point PEE (preferably a generator

of E), are fixed and publicly known. Each user X chooses a random integer ax wmch will be

his/her own secret key, then computes and publishes the point ax P.

Suppose Alice wishes ta send a message M = (Xl, X2) E Zp• x Z,,· to Bob. Let aB denote Bob's

secret key. Alice chooses a random integer k E ZI Hl and sends

To decrypt the ciphertext, Bob computes

Figure 4.3: The Menezes-Vanstone Elliptic Curve Cryptosystem
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(these values were drawn from [33, page 201], though they are not required in

the operation of this particular eryptosystem). AH the points in E are listed in

Table 4.1.

1 (9,10) 7 (6, 24) 13 (27, 10) 19 (5, 22) 25 (16, 23) 31 (23, 12)

2 (18, 29) 8 (24, 29) 14 (26, 21) 20 (26, 10) 26 (24, 2) 32 (18, 2)

3 (23, 19) 9 (16, 8) 15 (5, 9) 21 (27, 21) 21 (6, 1) 33 (9, 21)

4 (4,22) 10 (20, 2) 16 (19, 3) 22 (28, 18) 28 (17, 13) 34 0

5 (25, 16) Il (22, 22) 17 (10,0) 23 (22, 9) 29 (25, 15)

6 (17, 18) 12 (28, 13) 18 (19, 28) 24 (20, 29) 30 (4,9)

GJ kP ~ kP [;J kP GJ kP ~ kP ~ kP

( Table 4.1: The Points in E(Z31)

Since we are masking plaintext instead of imbedding it, the plaintext space

is Z34· X Z34·. Each plaintext (Xb X2) represents two alphabetie eharaeters in this

case, and "a" corresponds to 1, "b" to 2, "e" to 3, ..., "z" to 26 (0 is avoided since

it is not allowed in the plaintext). Inverses modulo p were computed using the

Extended Euclidean Algorithm that was described in Figure 2.6. Multiples kP of

a point PEE were computed using the double-and-add algorithm.

A sample output of the program GAMAL.Cs is shown in Figure 4.4. Note

that we have printed out each important step in the eneryption and decryption

process. The lines of input are marked with % .

(

5The source code for this implementation is provided on the World Wide Web at ftp://ftp­

cgrl.cs.mcgill.ca/pub/crypto/saeki/gamal.c. It was written in C and tested using Turbo C++ @1990. 1992,

version 3.0.



(

(.

CHAPTER 4. ELLIPTIC CURVE CRYPTOSYSTEMS

Bob: Enter your secret key

'le 12

Bob's public key = (28,13)

Alice: Please enter your message

%crypto

Alice: Chose k=7

Alice: Now sending ciphertext«6,24), 26, 23)

Alice: Chose k=29

Alice: Now sending ciphertext«25,15), 11, 30)

Alice: Chose k=l

Alice: Now sending ciphertext«9,10), 2, 9)

Decryption starting

Bob: Reading Alice's message

crypto
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Figure 4.4: Sample Output of GAMAL.C

The encryption and decryption steps are straightforward and easy to impIe­

ment. Our program could be used with any elliptic curve defined by equation 3.2,

and it could aIso be adapted to other types of elliptic curves. The program's

performance could also he improved by applying the varions techniques described

in the next section.

However, this alone is not enough to ensure the security of the cryptosystem.

To preciude any attacks, the program should he preceded by an algorithm for
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selecting an elliptic curve with secure properties, i.e. a curve where #E has a large

prime factor or is itself a large prime. Therefore, we are compelled to compute

the value of #E, as discussed (more thoroughly) in section 4.4.3.t

t It should be noted that the El Gamai algorithm is unpatented but Public Key Partners

(PKP) dubiously considers it to he covered under the Diffie-Hellman patent6 which will expire

on April 29, 1997, making it the first public-key cryptography algorithm (for encryption and

digital signatures) unencumbered by patents in the United States.128, page 479]

6Hellman, M.E., Diffie, w., Merkle, R.C., "Cryptographie Apparatus and Method," U.S. Patent #4,200,770,

29 Apr 1980.
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4.4 Analysis of Techniques
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Let us now analyse sorne of the better known techniques that can enhance the

implementation and security of an el1iptic curve cryptosystem. We shall draw

examples from the sample implementation above.

4.4.1 Software/Hardware Optimization Techniques

There are various ways ofsimplifying the computations involved in an elliptic curve

cryptosystem. These tricks and shortcuts can speed up the computations or reduce

storage requirements for interrnediate results. Unfortunately, one improvement

comes at the expense of the other, so one must weigh the importance of speed

versus space before implementing these techniques.

Imbedding vs. Masking Plaintext There are basically two ways of representing

plaintext in an elliptic curve cryptosystem. Imbedding (or '~embedding") plaintext

on an elliptic curve E is one way. The other way is to use an elliptic curve to

"mask" the plaintext.

Imbedding We face three key issues when choosing to imbed our plaintext. The

first is that users will want a simple system of imbedding such that the relationship

between the plaintext and its corresponding point on the elliptic curve is clear.

It should he easy for any authorized user to convert back and forth between the

plaintext (integers) and the coordinates of the points on E. Secondly, when we

make these conversions frOID plaintext to points on E, we need a fast, systematic

way of generating these imbedded points on E. And finally, there aren't any

deterministic polYnomial time algorithms for imbedding a large number of points
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on an arbitrary elliptic curve E over Fq •[12, page 163]
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Masking To mask an ordered pair of elements (ml,m2) with an elliptic curve

means to alter the pair by multiplying ml and m2 with the x and y coordinate,

respectively, of some point on the curve. In the case of the Menezes-Vanstone

Elliptic Curve Cryptosystem, we are masking the pair of plaintexts M = (Xl, X2)

with the point (Ct,C2) = k(asP). Although asP is publicly known, the masking point

is protected from eavesdroppers by the secret value k, which thereby protects the

plaintext as weIl. Consequently, plaintexts and ciphertexts are not required to be

imbedded as points on an elliptic curve: they can be any ordered pair of (nonzero)

field elements. In the sample implemention, the plaintext space is Z31· x Z31·,

allowing 900 = 30 x 30 plaintexts. If we had used an imbedding algorithm, we

would be restricted to just #E(Z3d = 34 plaintexts. Masking instead of imbedding

kept the cryptosystem simple, and also saved us sorne valuable computing time.

Masking does not appear to be any more or less secure than imbedding sinee both

methods rely on the EDLP for seeurity. [20, 33]

Affine vs. Projective Coordinates Projective coordinates (or ho1TWgeneous coordi­

nates) have the distinct advantage of being able to explicitly represent the point

at infinity as (0,1,0). They also make it possible for us to avoid field inversions

(divisions) in our calculations (an example will follow). This is particulary useful

sinee - at present - field inversions are considerably more expensive ta com­

pute than field multiplications [20, 30]. Special techniques are being developed

for caleulating inverses or "reciprocals" more efficiently (this is the subjeet we will

present next), but for now, it would be advisable to avoid inversions as much as

possible, making good use of the properties of projective coordinates [6, 20].
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Example Suppose we have an elliptic eurve E over a finite field K of charaeteristie

=1- 2,3. Therefore, this is an elliptie eurve defined by equation 3.2. We shall

eonsider addition and subtraetion in the field K to be negligible computations

sinee they take signifieantly less time than multiplication and division. For the

sake of simplicity, multiplying a field element with a small constant (such as 2, 3,

4 or 8 in this example) will also be eonsidered negligible [22].

Recall the rules of addition for (3.1). Given P = (XhYI), Q = (X2,Y2) where P,Q E

E(K) and P,Q =1- 0, the addition formula for computing P + Q = (xa,Y3) involves

two field multiplications and one inversion when P i:- ±Q, and three multiplications

and one inversion when P = Q. To rewrite the addition formula in the projective

plane, let P = (Xl, Yl, Zl), Q = (X2, Y2, Z2) and P + Q = (X3, Y3, Z3). Then we will

have:

If Pi:- ±Q

Z3 = VllVS

where the following values are computed and saved in this rough order:

Step 3 Vg = V6
2

, VI0 = V7
2

, VII = V7
3 = V7' VIO, Vu = V9 • Vs - VlO' Vs
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If P=Q

Y3 = va(4V7 - vu) - 8V2VS

Za = 8vg

where the following values are computed and saved in this rough order:
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Step 4 Vu = VIO - SV1

If we follow the above steps, the formula for P f:. ±Q will consist of 15 mul­

tiplications and no inversions, whereas the formula for P = Q will require 12

multiplications and no inversions.

The resulting projective coordinate (X3, Y3, Z3) can be converted back to affine

coordinates by dividing each coordinate by Z3 (or by multiplYing the inverse of

Z3 to each coordinate). In effect, we have managed to avoid ail but one inversion

that is required at the end of an our computations on the projective plane.

Note that our count of multiplications in a formula depends on how the for­

mula is written and which intermediate results we choose to store in memory.

For instance, if we did not save the value of ). during our calculations in affine

coordinates, we would have to perform three times as many inversions in a single

addition operation. Clever substitutions and frugal storage of intermediate results
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have a substantial effect on computing speed. However, the neecl to store so much

data is also its weakness: this technique offers its speed at the expense of storage

space.

Faster Inversions For a long time, many have placed emphasis on the heavy

computational costs of field inversions and have gone out of their way to avoid

inversions by any means possible. But as we saw in the example above, bypassing

an inversion leacls to a dramatic increase in the number of multiplications. Clearly,

there cornes a point when the cost of a11 the extra multiplications surpasses the

cost of computing a reciprocal. Recent improvements in the area of fast field

divisions have highlighted this issue and have been slowly restoring the appeal

of reciprocals. Schroeppel, Orman, O'Malley and Spatscheck[30] have proposed a

"relatively fast algorithm for field inversion" that takes approximately three times

as long as a multiplication. This is considerably faster than the performance of

previous algorithms.

The new algorithm is aptly named The Almost Inverse AIgorithm. Given an

element a from the field Fq , it first computes (3 and k such that a{3 == uk mod q

using a combination of known algorithms. Then it uses a smart strategy of bit

operations to divide uk out of (3, thus finding the reciprocal of a. The proposed

algorithm was written for the field F211515 (specifically, a polYnomial extension field)

and it would be interesting to see if and how it applies to other fields.

Montgomery's Method The x coordinate of a point on an elliptic curve is sur­

prisingly malleable and informative. Two ideas have sprung frOID the interesting

properties of the x coordinate:
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1. rewriting part of the addition formula using only the x coordinates of points,

and

2. reconstructing the value of the y coordinate using only x and a single bit from

y.

The former is referred to as Montgomery's Method. The latter concept will he

discussed next.

An idea by Montgomery was adapted to the addition formula of elliptic curves

in [20}. Given an elliptic curve E, P = (Xt,Yl) and Q = (X2,Y2) where P,Q E E

and P f:. -Q, and supposing that P + Q = (X3, Y3), then Montgomery's Method is

to express X3 using only Xl, X2 and X4 where P - Q = (X4' Y4). Note that P - Q is

the addition of P and -Q. Unfortunately, this technique does not apply to every

elliptic curve, since it depends on the equation of the curve E and the definition

of -Q with respect to Q E E. According to [20}, it works weil with "supersingular"

curves over F2m (see equation 3.3) of the form y2 +y = x3 +a4X +ClG, resulting in the

expression
1

x3 =X4+ 2
(Xl + X2)

when P f:. Q. Not only is X3 expressed using only the x coordinates of points, but

it can also be calculated using only one inversion.

Reconstructing the y coordinate Recall that the Menezes-Vanstone Elliptic Curve

Cryptosystem masked its plaintext and had a message expansion factor of 2. Since

it is possible to recover the y coordinate of a point on an elliptic curve with just the

X coordinate and a single bit from y (explained in [20l), we can reduce the message

expansion factor of the Menezes-Vanstone scheme down ta ~. More specifical1y,
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we only neecl to publish and senrl the x coordinate of the public key axP (using

the notation from before). Therefore, if we use kP:r; to denote the x coordinate of

kP, then Yo = kP:r; will suffice, where (Yo, YI, Y2) is the ciphertext that Alice sends to

Bob.

If Montgomery's Method applies, then it could be combined with this recovery

technique to limit most (or aB) calculations to the x coordinate alone. Focusing

on the x coordinate of points will help reduce the complexity of computations and

also save storage space. Demytko's new analogue of RSA [6] performs encryption

and decryption on the x coordinate only, using projective coordinates and a new

scheme to his advantage. Other schemes can benefit from the same approach [22].

Hardware Implementations Menezes and Vanstone [20] have noted that arith­

metic in the finite field F2r is especially suitable for hardware implementation. An

arithmetic processor efficiently designed to compute in F2'" could readily apply to

implementations of el1iptic curve cryptosystems over the same field. Hence, it is

worth examining some of the properties of the field F2r.

Looking at F2r as a vector space of dimension r over F2 (recall the example from

Chapter 2), the elements of F2r cao be represented as binary vectors (or strings)

of length r, given a suitable basis of this vector space. This makes it easy to store

data in hardware (ideally in shift registers of length r). Addition in F2r cao be

performed in one dock cycle by bitwise XOR-ing the operands.

If we use a normal basis7 , then by definition it would have the form

{a a2 /322 a 2(r-l) }
fJ, fJ, , ••• , fJ

7 Constructing a special class of normal basis called an optimal normal basis [26J could further minimize

hardware complexity.
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for sorne appropriate {3 E F-r. Then any Cl: E F-r can he expressed as

r-l

Cl: = I:ai/32i

i=O

where ai E F2. Conveniently,
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Therefore, squaring an element in F2r is merely a matter of rotating its vector

representation, which can he done in one clock cycle.
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Just like any other encryption system) elliptic curve cryptosystems are by no

means immune ta attack. However, the effective attack algorithms - aU of which

attempt to invert the EDLP in subexponential time - are few in number, and

those that perform at practical, usable speeds are fewer still. From a cryptanalytic

view, elliptic curve cryptosystems are generally very secure.

The MOV Reduction The most effective and important attack to date is the

MOV reduction (also caUed the MOV attack), introduced by Menezes, Okamoto

and Vanstone in 1991 [191. Essentially, it is a method for reducing the elliptic

curve logarithm problem in E(Fq ) to the discrete logarithm problem in Fqlc for

sorne integer k - it exploits an isomorphism between the elliptic curve and finite

field when gcd(#E(Fq ), q) = 1. It is the first subexponential algorithm for solving the

EDLP when k is small. Consequently, its effectiveness is limited to a special class

of elliptic curves called supersingular curves (such as those defined by equation 3.3)

since it has been shown that k ~ 6 for these curves. For most other curves (called

nonsupersingular curves), k is too large for the MOV reduction to apply. (Both

classes of curves will be examined in greater detail in the Dext section.)

Miyaji [23] observed that the reduction applies well to elliptic curves defined

over F2'"' But it was also proposed that elliptic curves defined over Fp (where

p is a large prime) are immune to the attack. Furthermore, Miyaji proposed

a construction for such an elliptic curve that would make the reduction of the

EDLP to the DLP impossible. Therefore, not aU elliptic curve cryptosystems are

susceptible to the MOV attack.
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Other Attacks Before the MOV reduction was proposed in 1991, the best attacks

were Shanks' "baby-step giant-step" method, which works in exponential time (in

log #E), and a modified version of the Pohlig-Hellman attack, whose running time

is proportional to the square root of the largest prime factor of #E [21]. They

are algorithms for solving the DLP in the prime field Zp that can be extended

ta the EDLP. A combination of both will also serve as a good "general-purpose"

algorithm for the EDLP (20). Another known attack on the EDLP is the Pollard

p-method [22).

It is possible, however, to thwart the Pohlig-Hellman attack. To avoid an

easy solution to the EDLP, we want an elliptic curve E over Fq that contains a

cyclic subgroup H in which the EDLP is intractible, i.e. we want the order of the

subgroup (or #E) to be divisible byat least one large prime factor (of more than

30 digits [22]). This technique applies to any finite abelian group.

Various other attacks have proven to be ineffective against elliptic curve cryp­

tosystems. Most notably, there are no known adaptations of the Index Calculus

attack (which is a powerful algorithm for solving the DLP) to the EDLP. The

analogue of the Diffie-Hellman key exchange protocol is apparently immune to

the attack methods of Western, Miller, and also Adleman's subexponential-time

attacks [21]. Demytko's analogue of MA is safe from homomorphism attacks

[6]. The schemes proposed in [14) are believed to be immune to homomorphism

attacks, isomorphism attacks and low multiplier attacks.
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4.4.3 Choosing an Elliptic Curve

After reviewing the attacks we have mentioned, it should he apparent that the

choice of the elliptic curve E and its underlying field K has enormous impact

on the speed, efficiency, key length (Le. practicality) and security of any elliptic

curve cryptosystem. Although E, K and a base point PEE are aU fixed and

puhlidy known prior to the encryption process, the task of selecting them for a

given scheme is the most important step. We will explore sorne of the choices

here.

The Field K

Let us review the influence that K has on the group structure of E(K) and on any

cryptosystem over E(K).

In the first place, an elliptic curve E over a finite field forms an abelian group,

which makes it useable in cryptosystems. We have seen that certain fields such

as F2" are amenahle to hardware implementations and fast field operations. In

fact, computations such as doubling a point (i.e. computing P + P, PEE) using

field arithmetic in F2" can be "free" (of negligible cost) if the field elements are

represented by a normal basis. For example, the formula for doubling a point

P = (Xl, YI) in an elliptic curve defined by y2 + Y = x3 can he simplified to

(hecause G3 = 1, G4 = G6 = 0, and F2r has characteristic 2). Since the addition of

field elements and squaring a field element each take only one dock cycle, they are

considered to be ''free'' computations. Therefore, (X3,Y3) = P+P can be computed
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in 5 clock cycles in this case, which is a negligible amount of time. [20]
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Elliptic curves over F2" are vulnerable to the MOV reduction which can solve

the EDLP in subexponential time, whereas curves over Fp (p is a large prime) are

safe against such attacks. Clearly, elliptic curves on the prime field Fp [23] and

curves on the finite field Fqtl. [20, 30] have well-established properties that make

them attractive for practical implementations.

In addition, recall that it is advantageous ta know the value #E(K). For exam­

pIe, E with an appropriate value #E would be immune from the Pohlig-Hellman

attack. It can be computed using Schoof's deterministic polynomial time algo­

rithm which was proposed for elliptic curves over a finite field Fq with characteristic

=1= 2,3. The speed of Schoof's algorithm depends on the size and characteristic of

K. For example, when r is small, #E(F2") can be computed slightly faster than

#E(Fp ) for a prime p whose size is comparable to 2r , but as r increases, the former

takes much more time to compute than the latter [16]. Future improvements in

this area may change this result.

Types of Elliptic Curves

To choose the "right" elliptic curve, we first need to know what kind of curve we

want and what types we can use. There are infinite varieties of elliptic curves

to choose from but a select few have been of interest to the study of elliptic

curve cryptosystems. In the previons section, we looked at the fields K that

have demonstrated qualities amenable to fast computation and security. We shall

present two classes of elliptic curves that have been used in varions encryption

schemes.
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Supersingular Curves Menezes and Vanstone [20] have examined the advantages

of supersingular elliptic curves in cryptosystems, specifically those over the field

F2'". An elliptic curve over a finite field of q elements is said to he supersingular if

t2 = 0, q, 2q, 3q or 4q where t is defined in Hasse's theorem as t = q+ 1 - #E(Fq ), Itl ~

2..;q. An elliptic curve over a field of characteristic 2 or 3 is supersingular if

and only if it has a zero j-invariant. For example, an elliptic curve defined by

equation 3.3 is a supersingular curve.

As stated before, the arithmetic operations for supersingular curves over F2r can

be implemented in hardware and the elements of F2r can be efficiently represented

by a normal basis. Also, given a supersingular curve over F2r, if we choose a3 = 1

(see equation 3.3) then inversions can be eliminated when doubling points (adding

a point to itself) [20].

Unfortunately, certain supersingular curves are vulnerable to the MDV attack

(namely, the curves over F2r). For supersingular curves, it has been shown that

k ~ 6 [19]. A supersingular curve could be protected from this attack if a finite field

Fq of sufficiently large size is chosen, so that the DLP in Fqk would be intractible

even when using the best known algorithms for this problem.

Nonsupersingular Curves A nonsupersingular curve or an "ordinary" elliptic curve

has a nonzero j-invariant. Equation 3.4 describes such a curve. The computation

techniques that apply to supersingular curves - projective coordinates, optimal

normal basis representation, hardware implementation, etc. - can easily be ex­

tended to the case of nonsupersingular curves. The advantage that a nonsuper­

singular Curve has over a supersingular curve is that it can provide the same level

of security as the supersingu1ar curve, but with a much smaller underlYing field
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[20]. This shortens the key length, making it attractive for use in smart cards.
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Much emphasis has been placed on supersingular curves, but they are vulner­

able to the MOV attack, and as it turns out, they make up only a small minority

of the domain of elliptic curves [5}. Nonsupersingular curves are a practieal alter­

native.

Nonsupersingular curves appear to be immune to the MOV attaek (for example,

those with a cyclic subgroup of size 2160). Therefore, the best known attack on

these curves is Shanks' exponential algorithm. The order of the subgroup should

be divisible by at least one large prime factor to guard it from a Pohlig-Hellman

attaek.

Selection Methods

There are several approaches to making the ''right'' choices. To date, curves have

often been selected randomly, though this method is losing sorne of its appeal due

to the lack of control exercised over the value of #E(K) in the selection process.

This technique is being replaced by the relatively recent idea of constructing the

desired elliptic curve with specifie attributes in mind (i.e. attributes that pre­

clude known attacks). Yet another alternative would be to create a cryptographie

scheme whose security is Dot dependent on the EDLP (like the elliptic curve based

analogues of RSA), thereby making the appropriate selection of elliptie curves a

non-issue.

Notice that elliptic curve cryptosystems actually work in the cyclic subgroup

of a eurve E generated by the base point P, rather than the entire group E.

Therefore, it is also important to select an appropriate P.
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Randomly Choosing Elliptic Curves Randomly picking an elliptic curve E over

the field K and a base point PEE is essentially a process of trial and error. K

has been chosen and fixed in advance. Koblitz's random selection method [12,

page 166] for curves over Fq (for large q) is described in Figure 4.5 (suppose we

are dealing with Fq of characteristic =f; 2, 3) .

1. Randomly select three elements from Fq ; caU them x, y, a

2. Set the value for b by computing b = y2 - (x3 + ax) since equation 3.2 is y2 = x 3 + ax +b

3. Check that the cubic on the right side of 3.2 does not have multiple roots, Le. check that

4a3 + 27b2 f:. 0

4. if the previous condition is not met, return to step 1.

5. else set P = (x,y) and let y2 = x3 + ax + b be our elliptic curve

Figure 4.5: Koblitz's Random Selection Method

Other random selection methods are similar, except for the condition in step

3. which could be any desired condition(s) to be met by the elliptic curve E.

The problem with this approach is that we waste time by repeating steps 1.­

3. until we finally obtain an acceptable result. Note that the probability that

a random x E Fq is in fact the x coordinate of a point in E is approximately ~

(by Hasse's Theorem). This method offers us very little direct controlover the

structure of the elliptic curve and the base point - their properties are more or

less 1eR up to chance - and therefore it denies us control over the security of the
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cryptosystem.
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Constructing an Elliptic Curve A more complex approach is ta construct the

elliptic curve we want. Ideally, it would be desirable for our design strategy ta

exercise total control over the group structure of the the eUiptic curve we choose.

In other words, we would first like ta specify the properties we want in an elliptic

curve, then set out to construct one that meets aU our conditions.

However, in practice, the best known strategy is ta place more demanding

conditions in step 3. or elsewhere in the random selection method. The more

demanding the conditions becorne, the less unpredictable the resulting selections

will be.

Example For security, we want the cyclic subgroup generated by the base point

p to he a group in which the EDLP is intractible. To satisfy this condition, we

could verify in step 3. that the arder of p = (x,y) is divisible by a large prime (as

close to #E as possible).

To date, Miyaji has suggested sorne constructions for elliptic curves over Fp

(where p is a large prime) in [22,23]. Chao, Tanada and Tsujii [5] very recently

modified Atkin and Morain's algorithm [1, 25) for building curves with complex

multiplication that satisfy specifications on #E.

Unfortunately, the control that we want over our choice of el1iptic curves comes

at the expense of speed. (For example, the construction algorithm in [5) takes

exponential time.) Not surprisingly, the computation of #E is required in ail

constructions interested in the security of the elliptic curve, and therefore, Schoof's

cumbersome algorithm (the best to date for computing #E) often accounts for the
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We implemented (a slightly modified version of) Koblitz's construction algo­

rithm [5], which is described in Figure 4.6. As indicated, Schoof's algorithm was

involved, and the size of the resulting program (nearly 700 lines of code) made

the algorithm's complexity plainly obvious.

1. Randomly choose a (large) prime q

2. Use Koblitz's random selection method to find an elliptic curve E(Fq ) of the type defined

by equation 3.2

3. Use Schoof's algorithm [29] to compute #E(Fq )

4. Verify that #E(Fq ) is a (large) prime.

5. if the previous condition is not met, return to step 2.

Figure 4.6: Koblitz's Construction Algorithm

If we perform Koblitz's algorithm, then any point in E other than 0 would he

a generator of E (sinee any group of prime order is cyclic), and the EDLP over E

would be intractihle. Once the desired elliptic curve is found, it can be used in

the cryptosystems described earlier in this chapter.

Schoof's algorithm essential1y consists of four steps, as described in Figure 4.7.

Step 2. is the most computationally taxing step, as can he seen in the processes

described in the Appendix. It involves numerous evaluations of complicated poly-
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1. Let II = 3,12 = 5,l3 = 7, ... , Ik he the k consecutive primes starting at 3, where k is the

largest integer such that

and set L = lk. (Note: Schoof's paper [29] asks for n:=lli>4Jij to he satisfied, which

appears to be a mistake.)

2. Compute Ti (mod li) for all i (1 ~ i ~ k) via the steps described in the Appendix.

3. Use the Chînese Remainder Theorem to compute

Je

t = 2:Ti MiYi mod M
i=l

where M = n:=lli' Mi = r;; and MiYi == 1 mod li' Find a t that satisfies Itl ~ 2~

(Hasse's Theorem), i.e. if t > 2...jQ set t = t - M

4. Compute #E(Fq) = q + 1- t

Figure 4.7: Schoof's Algorithm

nomials such as Wn(x, y) and fn(x), and a maze of tests that eventually yield the

final result.

Various other functions c1utter the program. For example, the square-and­

multiplyalgorithm [33, page 127] and the Extended Euclidean Aigorithm were

borrowed from the program described in section 4.3. Prime generation is per-

formed via trial division [8, pp. 37-40] and primality testing is performed by the

Miller-Rabin primality test [33, page 137] (applied five times to reduce the proba­

bility that a composite number will pass the test [28, page 260]). Euler's eriterion
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[33, page 131] is used to determine whether a number is a quadratic residue or

not, and the square root modulo p (where p is an odd prime) is computed by an

algorithm presented in [12, pp. 47-48]. For brevity, we will not examine these

algorithms in further detail.

Unfortunately, there is no definitive answer yet that determines the probability

that #E will be prime for a random E. Certainly, the extra criterion on #E's

properties forces the program to test and discard many elliptic curves. But there

is no way of predicting how the program will perform, as can be seen in Table 4.2.

Note that # Tries refers to the number of curves that were rejected by the program

before the first "acceptable" curve was found, and Time indicates the number of

seconds this process tookS. # Tries also refiects how frequently the program fails

to produce desirable output at step 4. of Koblitz's algorithm.

Another difficulty with the implementation is that there is no easy way of

testing the validity of the program's output for large q. For small q, verification

is a simple, straightforward matter of generating all the points on E(Fq ), but this

method becomes less and Jess practical as q becomes large.

It should also he noted that much of the program depends on the randomness

of the random numbers it generates. Since the best a computer can do is gener­

ate a pseudO-random sequence of numbers, there is a threat to the security of a

cryptosystem if the number generation turns out to be predictable (which it is,

in the case of the randO function in Turbo C++ @1990, 1992, version 3.0, with

which this program was tested).

8These results were obtained on a Dell Pentium XPS P90.
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Eillptic Curves Over a Ring Zn Finally, we would like to take this opportunity

to mention a concept that doesn't quite fit in anywhere else in the thesis: crypto­

graphie schemes based on elliptic curves over a ring Zn where n is a product of two

large primes. Most elliptic curve cryptosystems are designed around the EDLP,

relying on the intractibility of the problem for its security. However, a public-key

cryptographie scheme that uses curves over a ring Zn rely on the difficulty of fac­

toring n - a familiar, "traditional" approach te security in cryptography, used in

RSA, for example. This frees us from the grand task of selecting a curve from a

vast number of choices and the restrictions that other cryptosystems place on us

whenever we choose the ''right'' (or ''wrong'') elliptic curve for the scheme.

Koyama, Maurer, Okamoto and Vanstone were the first to propose TOFs based

on elliptic curves over the ring Zn [14]. A couple of years later, Demytko modified

these early concepts sa that the selection of elliptic curves could be more flexible:

"the scheme [...] can be used on elliptic curves with arbitrary parameters." [6]
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1 #E(Fq) 1 Time (sec) 1

11 2667 y2 = x3 + 8x + 1 17 0.164835

13 11 y2 = x3 +2x+9 17 0.000000

17 60 y2 = x3 +9x+5 11 0.054945

19 2 y2 = x3 + 5x + 12 19 0.054945

23 18 y2 = x3 +2x+6 29 0.000000

29 31 y2 = x 3 + 22x + 16 37 0.054945

31 71 y2 =x3+5x+3 41 0.054945

37 5 y2 = x 3 +8x+ 14 47 0.000000

41 1153 y2=x3 +8x+4 43 0.274725

43 2 y2 = x3 +27x+22 29 0.000000

47 43 y2=x3 +38x+6 37 0.054945

53 113 y2 = x3 + 5x + 12 43 0.054945

59 17 y2 = x3 + 4x+49 53 0.000000

61 34 y2 = x3 +31x+49 61 0.054945

67 12 y2 = x3 + 2x + 56 37 0.000000

71 9 y2 = x3 + 57x + 14 47 0.054945

73 71 y2 = x3 + 33x + 34 79 0.000000

79 3 y2 = x3 + 75x + 6 61 0.000000

83 8 y2 = x3 + 3x + 78 67 0.000000

89 149 y2 = x 3 + 54x + 52 103 0.054945

97 97 y2 = x 3 + 32x + 33 97 0.054945

(

( Table 4.2: Program Performance
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Chapter 5

Conclusion

So far, practieal applications of elliptic curve cryptosystems have primarily in­

volved hardware implementations in arithmetic proeessors. In conjunction with

Cryptech Systems me. (Canada), Newbridge Mierosystems Inc. manufactured a

single chip device that computes arithmetic in the field F2l1D3 for implementing var­

ious cryptosystems. A custom gate array device was constructed for field arith­

metic in F211111, specifical1y designed for efficient elliptic curve point additions [20).

In light of these results, the idea of implementing digital signature/identification

schemes in the form of smart cards has quickly gained momentum. Since the oon­

venience of smart cards depends on their portable size, the arithmetic processors

they employ should be restricted to an area of approximately 20 mm2 • Current

technology can't produce chips that meet this criterion.[20] However, el1iptic eurve

cryptosystems can provide security with short key lengths, requiring less data for

storage on a smart card and less computation.[22] According to Menezes and Van­

stone, a chip designed to perform arithmetic in F2... where m ~ 200 could OCCupY

just 15% of that allotted area. In maintaining a secure channel of communication,

73
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the hardware described above eould he shared by aH users, regardless of what

elliptic eurve they ehoose, as long as everyone uses curves over the same field K.

[20}

Next Computer Ine. reeently patented the Fast Elliptie Eneryption (FEE)

algorithm1 which uses eHiptie curves and pragmatieally features private keys that

are allowed to be strings. This makes a key easy to remember and use like an

ordinary password [28, page 481]. However, this is a dubious advantage sinee keys

that are easy to remember have a limited keyspaee.

The infinitude of elliptie curves - with familiar cryptographie properties, but

conveniently without properties that commonly facilitate cryptanalysis - sug­

gests the need to continue these studies with different elliptie curves and different

cryptosystems. Previously neglected elliptic curves might be applied to the cryp­

tosystems studied so far, sinee we have seen that the choice of eurves cau seriously

affect the security and efficiency of an elliptie eurve cryptosystem. The seareh for

suitable elliptic curves will be ongoing. Or, we could examine other existing cryp­

tosystems to which elliptic curves have yet to be applied, sinee the advantages

of elliptic curves vary from cryptosystem to cryptosystem. Sorne have reeently

proposed public-key cryptosystems using hyperelliptic curves [27]. The manner in

which elliptic curves are chosen could also be changed by welcome improvements

in Schoof's indispensable algorithm for calculating the cardinality of an elliptic

curve.[16]

These ideas for improving the computational speed, efficiencyand security of

1R.E. Crandell, "Method and Apparatus for Publie>Key Exchange in a Cryptographie System," U.S. Patent

#5,159,632,27 Oct 1992.



CHAPTER 5. CONCLUSION 75

(

(

elliptic curve cryptosystems are useful for improving practical implementations.

However, the exact nature of the relationship between the EDLP and the DLP

remains unc1ear. It is a critical open problem whose solution would determine

the security (or lack thereof) of el1iptic curve cryptosystems, especially since the

MOV reduction seems to apply only to specifie types of curves. Are there any

more practical methods for solving the EDLP expediently? Are there any more

TüFs that cannot be inverted in (sub)exponential time?

Furthermore, new results in the area of quantum computing may eventually

make crytosystems based on the EDLP obsolete. Quantum computers are ma­

chines based on principles of quantum mechanics (for more information, see [3]).

Shor [31] presented an algorithm that would theoretically allow a quantum com­

puter to solve the DLP in polynomial time, and recently, Boneh and Lipton [2]

showed that a quantum computer would be able to solve the EDLP in polynomial

time as weIl.
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Appendix A

Schoof's Aigorithm

This section describes step 2. of Schoof's Algorithm (see Figure 4.7).

First, we define the polynomials \}In(x, y) E Fq[x,y] and In(x) E Fq[x] for n E Z~-l'

If we replace an y2-terms in wn with x 3 + ax + b (see equation 3.2), we caU the

resulting polynomial 'II1n /(x,y). 80 we define

{

\}In/(x, y)/y if n is even and n > 0
Jn(X) =

\}In/(x, y) otherwise

For simplicity, we will use land T to denote l;. and Ti, respectively. For a given l,

perform the fol1owing:

'C

1. Compute

{

gcd«xq2 - x)ll(x)(x3 + ax+ b) + Ik-l (X)lk+l (x), I,(X»

gcd«rl - x)/l{x) + fk_l(X)/k+l(X)(X3 +ax + b), l,ex»

where k == q (mod I) and 1~ k < l

76

if k is even

if k is odd
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2. if the value computed in step 1. is i=- 1 then goto step 3.

else goto step 8.

3. if q is not a quadratic residue modulo l then set T == 0 (mod l) [END)

else goto step 4.

77

4. Compute

{

gcd«Xl - x)f;(x)(x3+ ax + b) + fW-l (x)fw+l (x), fl(x»

gcd«x'l -x)f;(x) + fW-l(X)fw+l(X)(X3 +ax+ b), JI(X»

where w2 == q (mod l)

if w is even

if w is odd

if w is even

(

(

5. if the value computed in step 4. is = 1 then set T == 0 (mod l) [END]

else goto step 6.

6. Compute

gcd(4(x3 + ax + b)(q-l)/2 f;(x) - f~+2(X)fw-1 (x)

+ f;'-2(x)fw+l(x), J,(X»

gcd(4(x3 + ax + b)(q+3)/2f~(x) - J~+2(X)JW-l(X)

+f;'-2(X)fw+l(X), fl(X» if w is odd

7. if the value computed in step 6. is = 1 then set T == -2w (mod l) [END)

else set T == 2w (mod l) [END]

8. Find a T (0 < T < l) that satisfies the fol1owing two conditions:
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