v

-




1'y

)

SCATTERING BY INTERCONNECTED STRAIGHT-WIRES

by

Mohamed A.A.l. Hassan, B.Sc.(Eng.)Hons., M.Sc.(Eng.), Egypt.

Department of Electrical Engineering

\ \

i

McGill University,

‘Montreal, Canada.



~

)

. SCATTERING'BY INTERCONNECTED STRAIGHT WIRES

N
~, b >

' ]
\( "?
. ' o
y Mohamed A.A.I. Hassan, B.Sc.(Eng.)Hons., M.Sc.{Eng.), Egypt. =
i,
v - - :
" \.a‘ . . L]
¥ i
A thesis submitted to the Faculty of Gradu?te Studies and Reseorch .
in porhqj fuIﬂHmerqt of the fequirements for the degree of | ‘ ‘ ~ 7
C _ Mesferof Engineering. . T . o (ﬁ
é L |
. i )
) Department of Electrical Engineering, "
%,' ‘ . McGill University,
o . ~ :
. - , * . Montreal, Canada. ; \
,”.\S - ’ ) ‘ ‘ "
; , g [
July, 1974, o e



RESUME '

L

, Uné nouvelle methode est presentee pour etudier le phehomene de
)
® dispersion d'ondes de plusieurs segments droits de conducteurs filiformes, joints arbi-
- 1\ ©
trairement, et irradies par des ondes planes a polarisation lineaire.
¥ - / . .
L'equation integrale de Pocklington qui en resulte est resolue ‘par

h

la methode de projection de Bubnov-Galerkin. La repartition du courant le long des

fils est approximee par des polyndmes a coefficients complexes. Cette formulation

Q .

est valide pour tout angle entre les segments et traite ‘particulierement le cas o0 les

. ‘ N . re » ~
segments son{, colineaires. Les integrales obtenues dans cette analyse sont evaluees a
3 4 :
. o e ’ > ¢ ¢
I'aide de fomules de Gauss specifiquement adaptees a cette etude. Les resultats

- N

montrent un excellent accord avec ceux trouves par d'autres chersheurs.

Un programme d'ordinateur a ete mis @ point afin d'analyser le
prog ' po y

comportement élecfmmagnetique dés antennes de reception. Le programme peut

.

’
>

traiter des structures d'arftennes compliquees. ‘

—




ABSTRACT

A new methodfor treating the intercopnections of arbitrarily

-
F

~ located straight thin wires irradiated by a Iirgarly polarized plane wave is presented.
N 3

The resulting Pocklington's integral equation is solved by the Bubnov-Galerkin pro-
)
jective method. The current distribution along the wires is approximated by poly-

S

~ nomials with complex coefficients. This formulation is valid for wires forming any

2

angle, with special grovision made for the collinear case. The integrals involved in
the analysis are evaluated by using Gaussian quadrature formylae specially con-

structed for the purpose. Results show excellent agreement with those of other

‘ - N,
{ . \mi\
t 4 f\\ __

investigators.
A cpmputer program was also written for the analysis of the elec~

tromagnetic behu}viour of wire scatterers. The program is able to handle ge'nenﬂ

»

wire antenna gfructures.
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‘ CHAPTER |

S

INTRODUCTION

To analyse the electromagnetic behaviour of any antenna, a

<

-~

knowledge of the current distribution is of fundamental importance. This con be

»

obtained experimentally, but it is quit.e inaccurate. An exact determination of

the current requires the solytion to a bour{dory value prob]er;\ whichxuo"y formu-
lated in terms of antenna intedgral equations. However, these equations are diffi-
cult to solve even for the simplest case of a dipole antenna. Therefore, numerical

techniques are adopted. Examples are, Bubnov-Galerkin method, collocation .

»

meth(oc_i, subsectional method.
: In this thesis, the Bubnov-Galerkin principle is used for the

solution of Pocklington's integral equations of wire structures, Si:'a.ﬂeiing by i‘n‘ter-

connected wires only is considered. The structure is illuminated by a known inci="

8 o . - o« -t s
dent linearly polarized plane wave of arbitrary direction. The current distribution-

is approximated by Lagrangian interpolation polynomials with complex coefficients.

o

The wires are assumed to be thin and made of perfect conductor and the currents flow

7 s 1
Y- (S

only in the axial direction in a filameftary manner. The procedure presented here
can be used to analyse linear, planar and three dimensional wire structures.
-~ . Chapter Il is devoted to giving a brief review on the various

v

numerical techniques that can be used in solving wire anfdnnas.

'S

v
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’

In Chlapter‘ i1, the application of. these numerical t%chhique_s to

o . . . . o, Y /
the wire problem is explained. First, the integro-differential equation is solved

\ . v
using the method of subsections. Next, Hallen's equation is solved by approximat-
- ) . ¢ ‘ 1 o v
ing the current by polynomials  with complex coefficients, ‘ Finally, the Bubnov=

Galerkin proi'ectivq method for.solving antenna problems is presented with some

“

a9 - h

details. Atthe end of Chapter Illg a brief survey on the different methods for

- bl . R . ¢ -
treating wire junctions is explained. , .

”

’ Chapter IV gives a complete detailed analysis for the new tech- -

nique.used for solving a wire antenna with interconnected elements forming any

A}

- E N 4 - . . .
angle’. The excitation matrix formulated is for analysing scattering problems only.
. Inthe last chapfer of the thesis, numerical results obtained by

solving some wire configurations of engineering interest, are clearly plotted and

campared with other methods. Excellent agréement is obtained.

?

/0




g . ‘ R ©  CHAPTER 1|

' ) .
- o BASIC NUMERICAL TECHNIQUES u
C ’ ' ) 2 )
AN * Approximate solutions to an operoto; equc}‘ion can be ’defermfnec}
' ' by several methods. Examples ore: the method o~f~ successiv>e approximqtions, also
called the iter’uti;e method, and the projective meﬂ'}od_.'
» . This chapter presents a brief review on the Proiecti,ve method.
~ .
2,1 Projection MetYhod ‘ | % X
_ This me;hod is‘use'd to give ;Jn ﬁpproxi(r\ofe solution ‘to any operator
i Y .
: ‘ . equation. |t approximates the equation ond then de?faminés the exact solution
T . + for this-approximating equc;tim . Usually, this merh?d reduces to o matiix equa-
tioch, which can be solved.by known techniques. :, v )
J ‘ t : Lc;f E ;:nd F be Banach spaces. Consider the followir:g inhdfno-
- . ) .
‘ gengous operator ecfuotion e , . q
: L L =f S )
. " ‘ where L \is a linear opergfor;ﬂith domain D(L) ¢ E ong ronge R(L) < F, f
’ i; the source of excitation ond e is_tiie response or the unknown ’function‘ to be
_ determined. Let {En}_ and {#n\}« be two given subspoces,‘ ‘ 'a '
- : N -
! o ” e
k . . E © l?(L) cC E ? F,.€ Rl cF t’f’?z o (2:2)
) ” ‘Lét‘ P be a Pro;ection operator mae;)ing F‘_l into itself, thcft is ’(L ‘ -
. l:'n Fn B Fn . , £® M 62,13
; y
. . - g T

TR

-
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ond then solve

where the sequence {e], e

1

tor Pn maps LE - onto Fn‘[ll]. ¢

:  Equation (2.4) can be put in the form

-

Pn(Len -f) =0

2.4

PURERY en} converges to e if and only if the opera-

(2.5)

»

’

Y

Now, let E ond F be Hilbert spaces and En and Fn be given subSpaces spanned
¢ - oo f

by {wi’i=]'2 ., } and {wi’i:'llzl . -o:"} reSpecfivelyl These are Qubspéces

l . .~.'r?

of dimensionality n ond are embedded in some higher dimensioned subspaces, |
s f L’ - *

. ' l

i.e., we have to choose {En} ond {Fn} .such that . »

*

e .
%} En En'H( C DC E ,
- ~ | C T (2.6)

‘En CFn+kC Rc F

~3

- k - N
. - , % ~
The approximate solution is assumed to be the linear combination ' = '
“5' ¢ &v .

3 n |
e - do ”0\ o
LN )
s . - ‘.'T . ' '
s B L y s ? .

- n - Fd d
* 3 . o * »
' - a
\\ 2 P (Lo~ =0 , . (2.8), '
-~ n w1 . .
. - [ ] v . . L ¢
: e ™~ » o « .-
. ’q ” 3 v
¢ . ‘ v
. » ’ &
« ’
o4 - Ll
. ! ’ ’ / ! L]
¥ - ﬁ '
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s + .
& N )
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' AT ’ 3 . r [ ! »




+ Equation (? .8)

\’%

33

o A
‘ ,'Towete

N

!

) . " . .
set of lingar equations for the coefficlerits a,.
o

n

i=1

This can be put into matrix form,

- \LaiJ =

¢

£

~-

(e 1o = [g)

(Les;, w,>

(Ley, &)

ie

L, ey Wa = w

A
(Lo, ¥))

(Lo, w2> i

.

rmine a., take the inner product projection (orthogonal projectiom) of

ontd the subspace Fn spanned by [y.} resulting in the following -

(2.9) . '

(2.10)

(2.11)




2.‘1 .1 Method of Least Squares

N

Having obtained the resultﬂi'ng coefficients a, from (2.10), the unknown functia%

.

e is determined by (2.7). This is the so-called: "Galerkin-Petrov Method".

{eai} are called the expansion or basis functions, while {dli} are

the testing or weighting functions. Since the accuracy of this method and the

rate of convergence of the solution depend entirely upon the choice of both %xpan-

- ‘

sion and testing functions, some cases of particular interest are given next. ’

-~

Consider the residual norm,

2 2 . 2
Cole, - fl1T = e )17 - 2< Le, >t [If] (2.14)
Substitution of e by "
- n . ’
®n =.Z %%,
i=1
we get
’ n n ! . n - 2
. n .
ILe -7 = ) ) ‘ea<ie,le > -2) o <tauf>+ ]
i=1 =1 ~ i=1 .
(2.15)
Equation (2.15) is then minimized ) *
: 'd 2
a-q ﬂl.en - f" . ' (2"6)

-~




|
7
o
| to give ,
| i
‘ 5
i (Lo, le)e. = (Lo, k=1, ...,n (2.17)
i1 ' ’
From Equation (2.17) we conclude that if we choose
) v ’
% = Leai ) (2.18)
¢ ,
we get the best solution of the operator equation in the sense that an L2 norm .
\ (root mean squares) is min.imized. This is often called the method of least squares.

’ : 2.1.2 Bubnov-Galerkin Method ) /(
. ‘ e

Y

. " If we choose the subspaces En ond Fn to be sponned by the same
linearly independent funcﬁons: i.e. ' o
- B
. . H

f’i e o (2.19)

y .

Equation (2.9) becomes,»

1 . P
v .

n
' . . Z (Lo, w)o, = (f, @) ,? 1,2, ..., n (2.20)
| =y ! P
[ ' oo Equation (2.20) has the‘advon'toge that If L is o symmetric opera-

tor, the matrix

L]

£, = (o 0) - (2.2)

¥ -

4444_‘444,44*..44*4444‘_44_44
B
. { i
3
-
[y

N

ré



will be o symmetric matrix.

section. -

2 ,'2 The Collocation Method -

This is a projective method and it is also called “point matching”.

Consider n sampling functions

(v, | }

i=1,2, ...,n

linearly independent and spanning the subspace Fn' Each of these functions has a
" unity value at one of the éampling points and zero elsewhere. This means that

the weighting functions are chosen to be the delta functions -

we = 8(-x) 4% C(2.2)

i =

where x, are the sampling points. \

T Also, consider the subspace E, spanned by n linearly independent
\ 4 L ;
basis functions, ‘ \

'
R *

{agl }
i=1,2, ..., n

«

¢, 3



Here, the approxithate solution of Equation (2.1) . s

n ’

®n Z a7
1= ] hd . +
L)
is determined by satisfying ; °
Le =f (2.23)
at the n sampling points in the region of interest.
2.3 /The Method of Subsections
1 1 - \‘
e In this method, each of the basis functions exist only over sub-. \\ ‘

sections within the domain of e. The pulse funchm can be used aver & sub-

“w [}

intgrval . A linear combination of these pulses gives the step approximation to e.

A well behaved function is the triangle function. This is usually

used over a group of adjacent subintervals. A piecewise linear approximation i,

.
. ' by
.

¢ ob?ained by a linear combination of fhese functions. o N

Somchmas, it is convenient to use the point mathcing method in

) oon jenction withthe subsectional method.
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CHAPTER 1l

3

APPLICATION OF NUMERICAL TECHNIQUES TO WIRE ANTENNA
AND SCATTERER PROBLEMS . , )

3.1 Introduction \a .

o

This chapter is devoted to presenting some numerical techniques
useful for solving antenna problems. The problem of radiation and scattering by .
;vire objects of arbitrary shape is solved in details using different methods. Also, .
the treatment of wire junctions is suggested here, with previous trials for solving

it.

Py

l
Generally specking, the projection method has the advantages of

flexibility and sir;\plicity. Therefore, it can be used in the study of the electro-
@B.;ﬁémmﬁ;"éf ‘a single wire antenna, ;.:rroys of wire antennas ond wire
antennas c;f arbitrary orientation. In each case, the defining integral is replaced
by a matrix equation and solved by matrix inversion to get the current. The
structure of the antenna may be very complex, but the method does not change.
Once the .current distribution is obtained, the ontenna behaviour can be easily

'

detemined.
miness.

.

3.2 Formulation of the Problem

"The problem of finding the current distribution on wire antennas

and scatterers is a particular case of the general boundary value problem involving

N

-




»
.

¢ ]

conducting bodies in a known impressed field, E'™. If the source is distant

A}

from the body it is viewed &s a scatterer, ond if the source is on the body it is

considered an antenna. The boundary condition at the surface of each perfect

conductor is,

where,

where
outward direction.

T eld vector E™ and soattered field vector E®. The latter is defined as the

n is o unit vectornomal to the surface of the conductor in the

A}

”

~ - __t ) . i
nx El=0 3.1)
=™+ E 3:2)

n x E' = -n 'x‘ E'm (3.3)

-

E' is the total electric field vector consisting of both impressed

field produced by the induced current on the fonductors.

are,

The basic equations that summdrize this boundary value problem

.
E' = -jwA - Vo oy (3.4
[ - -ikR I )
- e
x ’53”1? f? T S s (3.5




¢
a4

together with Lorentz's relafion

N

V. A=<-jwepp Y (3.8)

Here, A, J, 0, @, p ond ¢ are used to denote the magnetic
vector potential, the electric cur;ent density, the Jle-ctric charge density, the
scalar potential, the permeability and the ,pe‘rmiffivify respectively. R-is the
distance from the source point to the field point, ond S is the surface of the
conductor. . .

In the study of antenna theory, the knowledge of current distribution
is of fundomental importance. Equations (3‘.3) through (3.8) are ‘used to fomulate
the integral equation for the current on the ontenna. Mei [ 12] showed the ease
of direct numerical calculation for the wire ontenna integral equations usually

encountered. These are the Integro-differential equation, Pocklington's 'eqoaﬁm ®

i

and Hallen's equation.

3.3  Current Apgro;dmutim

&

The solution of an integral equation for the current cannot be

exactly determined. Several opprdxlmuto methods for solving this equation are




[

A L

used in the antenna theory. The approximate current distributions which are usually

uséd in these methods should satisfy some practical requirements. The most impor-~

-

‘f t one is that & must be a good overall approximation along the antenna length
to yieid on accurdte radiation pattem. R

The sinusoidal current distribution along the cylindrical entennas
was the first approximate current distribution used for solving the integrgl.equation
and onalysing the radiation properties of such structures. Unfortunately, this type
of ap(;roximaﬁm is quite inaccurcte. Various correction terms, uwﬁlly some gthe.r |

trigonometric functions, are added to the leading sinusoidal term. The modified

© “

current distributions agree much better with experimental results.

° Another type of approximation is fi'\e exponsion of the current into
pulses resulting in a step approximation to ;he current [ 23] or its expansion into
triongles resulting in o piacewisé linear.current approximation [2, 10]. The wire
is divided into a number of short segments connected togethér. Each puise extends
over only one segment while each triangle extends over four adjacent segments.

Since the current distribution is a well behaved function, it con be

-

approximated accurately by a polynomial of o relatively low order with complex . .

’

coefficients [13, 14]

A}

Lograngion interpolation polynomials [18, 19] have been used to

o

approximate the cuffents on @ wire ontenna structure. These polynomials are of

d

theoretical ond practical interests. Some details on this interesting kind of approxi-

muation will be given later. . »




in a filamentary manner.

to:
-E = -‘w.K -2 on S b -K 3.9 -
z I z V2 ' ) :
_ e-ika' - ,
A = f; T (2) —p— & (3.10)
axis, . )
R =‘..'__ " o) X & (3.11)
L T J ¥ R . :
axi§¥

\
H

3.4 Solution of Integro-Differential Equations by the Mathod of Subsections

v

é/l-vl'e‘re, the in\tegro-di‘fferential equation is solved using the method
;f subsections. In this meﬂ‘\od, the antenna structure is divided into a pumber of
segments. Cu’rrent‘expmsion‘ functions are taken to be nonzero over each \segmenf
ora grc;up ?f cdiagent segments and zerd everywhere else. V
For thin wires, the following approx‘imaﬁc;m can be used : "

1. The currents and charges are assumed to flow in thé axial direction’

2. If a denotes the wire radius ond £ its leng'fh ond A fhe wavelength,
we have a << & ond o << .

3. All wire segments are assumed t; be made of perfect conductors so
that the boundary condition (3.3) can be applied.

Using these approximations, Equations (3.3) through (3.7) reduce

g = 4l . (3.12)



),

B
. -
&

where z is the length variable along the wire axis. The additional boundary

" condition | =0 at the ends of each wire must also be satisfied. Substitution of

L1

(3.10) - (3.12) into (3.9) gives the integro-differential equation, |

T _ g
L(1) Etan on S (3.13) |
- where the integro-differenti;:xl operator L is given by’
- .o a¢ R
L(M) = [jwA '+ =] (3.14)

X

kY

It is interesting to note that Equation (3.13) has exactly the same, form as (2.") \

Therefore, making use of the method of moments [6,7], ond using the opéroxiﬁm-

tion of the current | as,

' T=1¢ I F (3.1 - . °
in i,n i,n \ 2
i Equation (3.13) reducés'to, . N
| Pr L =E N D el
N ~ 70 in in ton N "

_ .. N
where- F}n is a set of expansion fun?tions, and I; . Ore the complex c\;{ficients

to be determined. Taking the inner product of Equation (3. 165 with &ach testing- ‘

function wi"" this results in N oLt . .o '

- y . ~ .

r . "»‘F
\_’ﬁ -~
lr
¥
- ) l <
‘ .
" »
i . ‘ &

Tﬁ . - N - -

et e



—_— - _ H ‘
LIk =W, LF > = <w.ma,€ > 3.17) ,

: - . i=1,2, ..., NW

N . . m=‘,2,--~:NE(ij
¢ : . R, 4 A o

‘ . ’ restin )
where NW is the number of wires and NE(j) is the number of e’e;moéen functions

» \d

on the ith wire. v

’ Equa}iu:: (3.17) can be written .as a matrix equation,

(2301] = [V] J RS

[Z] is colled the generalized impedance matrix, [V ] the general ized voltage

vector m\o\U ] the generalized current vector. Therefore, the complex current

H -
- ., ] ,
. coefficients are given by : e /

, [L] = [Y][\/] . (3.19)

8
g

where (y] i; ‘c'l:olled the ‘gen"erulizid admittonce matrix.
s Strait and Hirasawa [23] used the subsectional .point ino;ching
-methiod with pulses as expansion functiom:@ Kuo and Strait [10] and Chao and
Strmt (2, 3] used Galerkin's method with trimgular current expmsion functions.
Harrmgton and Muufz (81 have solved the single straight wire problem using three-
different procedures. These include point matching with pulses os basis funcﬂons,~
' point motching with mmgle expcn;ion functions, ond Galerkfn s procedure with

triangle expansion funchonx. They found that, with segments Ies thaon N10 in

S

o




C length, no significont difference in results is observed between the ‘last two

meff:ods and that they converge about twicé as fast as the first, - p

- 2
% '

Subsectional piecewise sinusoidal functions [22] are used for.
1 .

both expansion and weighting functions resulting in o Galerkin sofution to the
analysis of wire problems. This is suggested by Richmond and progrommed by . . .

Strait'et al. The Near electric ond magnetic fields of wire antennas [29]have
. Q . 3
S . been computed by Warren et al . They solve the resulting integro-differential
‘-‘ . L4 £
% equation usihg subsectional point matching, meéthods with pulse current expansion

®

functions. ‘ ' .

. .

-~

LN : . '
.

%’\

3.5 Hallen's Equation and Polynomial Current Approximation

<

Popovic [T3] formulated the integﬁ:l equation for the cu;kf on

o

an isolated, symmetrical cylindricel dipole of length 2h. He confdered ama
function generator of voltage ﬁd used Equations (3.3) - (3.4)‘53ether with

Lorentz cmdiﬁor; (3.8) to get the differential equation for the vector potential

* A aling the antenna whose axis coincides with the z-axis. . .

o

®

- ' W v S A =V (3.20);.
. . . k™ 2z -

\ \ e

The solution is found to be: . .

—
@
.

< 4 ¥ .
o ¥ -
. v
- . .
ﬂc - o

. kv . ¢
. A = Cjcoskz ":m"“k'f,

-
. h ’
h -
r
. »

.
.-
2
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t

QEquofmg the npht haond sndes of Equahons 3. 2) and (3 21), P:‘fve obfatn the appr@x«-—

mate form of fhe Hallen's anregral equation for current along the dipole.

' = : .__v_._ H ) * ‘
dz C coskz + %0 s‘mk’z" (3.22

h - —.kR
-hd 1B

where «

C

‘4wC]’/p°

A:'k/gzinJ ' ~ -

5

{(z g ’2 1/2 . ®

=
It

‘ k]

According to the method of undetermined coefficients, |(z') is repre-
[ -
¥ s
sented by a series of known functions with unknown complex coefficients. These

v

coefficients are then determined by sahsfymg Equohon (3.22)-at as many po\nfs
along the antenna as are needed to determine these coeff'cuents

It is ossum’ed that 1(z') can be reprewmed in the form of a poly-

¥

nhomial of r;th order;
o n' ‘ % : ‘O. ‘ h
: @ = Y L a-lelm™ . @y

m=1

‘ v *q

where [m are the: co;nple‘g( coefficients to be éetermin;d. With this current

Ty .
K Y
! 7

distribution function, Equation (3.22) becomes

%

- . .
ﬁj('-lﬂ/h)'" °,: dz'.= Ccokz + 7%6 sin k |z|

R o - ' o (3.24)

,‘I\/P

" N . -
- . ['$ v
a

7

A
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Now, let Equation (3.24) be satisfied at the points

&

¥

Vo ‘
) zpl p=f,'2, eees (nt1)

~

e

1 . o ’ -
This results in (n+1) complex linear equations in (n+1) complex unknowns

.. ll'|2' ceoy !n and C: \‘
" M
m; I Fm(2) ~Ceoskz = s sink [z [ - p=1,2 ooy 0¥]) —
> ‘ . - (3.29)
D) v ) -
where, 5
v : \ 1 o B
- h _lkRp v
o o Fz)= [0zt ee— a ! (3.26)
| th P '_h : . R N N
. ~ - P . . o 4 *
ond - : 4
»
2 2 ~ ,
R = {(z -2 + o} ' ! -
e {( - )"+ a N
. he ' ‘ P s ) \
The best choice of the zp points is: b
1
] ) ) . ) . D
2, = e~Nh/m . p=1,2, ..., (n+1) (3.27) [
. Evatluoﬁf\g the integrals of (l) numerically, we can solve the system of linear
b S Equations (3.25) for Iy, lny ooy | .',
s 172 n
. " Popovic [14] used the some approach to get the current distribu-

tions on two identical parallel, arbitrarily located thin antennas. Two simultaneous

i
|
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integral equations for currents '1 (z) ond I2(z) are obtained. Using the method
of undetermined coefficients, these integral equations can be reduced to two sets

of linear equations for the unknown parameters, *
v

‘I(]) ond |(2), m=1,2, ...,n
m Lom . !
¢ .
o 1

3.6 . Bubnov-Galerkin Pro]ecﬁ\lre Method for Antenna Problems

¥

L4 '

«

This method is intensively discusséd and analysed by Silvester and

Chon [1‘8, 19]. They found that the most convenient equation to use is. the Pock-
lington equation. T ‘ &
. \

1

!

In this section, Poklington's equations Tor arbitrary configurations of

L 4 “ [

straight wires are derived: gnd then solved using theGalerkin br‘biecrive :p“efi’pd. %
Cmsic;er two wir;\scm ;d n arbil:rarily located in space, and of different

lengths 2!1"‘1 ond Z\m respectively. The following derjvaf:on uses the approxi=
m:tim of making the source poinot (s m)K on fl:le axis of wire m ond‘tlle field

~ ’ R "“}(

‘_poim( s n) on the surface of wire n. Using Equations (3.4) and (3.8), we ger

1 _ %K\q
- rad div A <+ {3.28
jwep 9 " B (( 3

s q .
/ ’ ’ * i\ﬂ

s
)

E@G) = -!'yx +

where the mag{mtic vector potential is given by, o o .
A - P

h oxp (-ikRmn) ¢ ‘

mn

m,. .
Ks) =4 J 1" (s ) —k ds (329 .




The electric field companents of Equation (3.28) in cylindrical coordinates are,

[y

) ’ . aA

. 12 ‘
Ez : IWA + Twpe 3z —a_;\) . . (3.30) .
L
»aA ,
S | R F ¢
By = Twm 35 (53 ~ (2-31)
Ewr = .0 o < o (3.32)

Carrying out the differénfiétioﬁs by Jsimg ((3.29), Equations (3.30)

' ' -
ond (3.31) are reduvced to" ( 3 ’ .
S . . ) ‘1"7' N \
" m o PR &*[2 2 .
2= ) Tl ———3 LR (4R )
~h ,jwe 4% R o
: m ’ ;m N » .
. . . (3.33
- 2 ‘ 2 . 2 2
. - (pta) - BHEKR -k Rmn)':{d‘m
B M) - [o(z - 5 )3+ BkR__ —k2R Jds_
% P
23 \ : ,- m IWG 4" R ‘ m,
- ’ ) . .
. o
S . - ‘ (3.34)
' i -
Subs::tutet f9(1?8) uﬁd (3.34) into
EGs) = BE + £E * . (3.3




o

_ and then take the dot product of the resulting equation with n, the tangential

- t - . )
electric field En(::,(sn) on the surface 'of element n due to element m is

3

given"g/
“ - [
h v
tan’ _ 1 ™ m d .
d © ’ ‘Enm (Sn) = -I-m _hJ | (sm) F(sn, Sm) Sm o (3.36)
2l . ] b m - .
| : .
}\
} where 1™ (s ) is the current on element m, ond
!
’ exp (- ||<R ) 2 2 '
| F(s ;8 ) = ——-5———-—— [m-n R (=1~ ||<R +k Rmn) A
: [ ‘ m % - .
K 4 ., (3.37)
| + (R -m)(R - n)3 +"3kR - k2R2 )]
) - 'mn mn ¥ n 'mn
R2 = (x~ -x + s x°n -3 h) + (y - v
mn m n m Y m
/ o
: ~ ~ ~ ~ 2 Py ~
+sny n - ¥ ) +(zn zm+snz n
r PPN 4 2
. v Sy A e <
e X . (3.38)

a

(xl‘_;',' Y, zn) and (xm"ym' zm) are the cartesion coordinotes of the centres of

¥

elements n ond m respectively, m ond n_denote unit vectors directed along

‘ " the‘cnxis of m and n respecfivély, a is the radius of element n. To apply

¥

>




23

the boundary condition, we can use Equation (3.3) on the wire surface ot X

Using Equation (3.36) and considering N wire elements the Pocklington's

equations con be obtained.

. N h ¢
] m m . - im -
/ Z] Twe 4 ..I-.J | (sm) F(sn, s"f\d@/«% n- En (’n).— 0.
" m

n=1,2, ..., N .

L4

(3.39)
if we,approxir'nat; the current in (3.39) by the finite set of linearly

» independent basis functions
) = E1Gfe) : ~ (3.40)

Equation (3:39) becomes

IQJ N L hm |
r mé—.‘ 1 ; 1 ‘hJ l: fS(’m) F(‘ﬂ, s‘m) d sm = -in A . E‘:'m(sn)
) m

o S ?/1 oo N
- * (3.41)

where G are the unknown complex coefficients to be deferminyd.

N \
Using the inner product projection of both sides of (3.41), onto

subspace spanned by the basis functions, Equ'dtim (3.41) results in
c ’
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~ ¢ M
- | . . .
N L h / h \K\ \—\
31% DY ( fs) f(s)F(ssdsd\‘}
LI i o’ € T
m
S \
h . j 'y
b= M O AYE™(s) f(s)ds
N "h I n
. n
—~ i=1,2, l‘-
n=1,2, ..., N '(3.42)
Equation (3.43) can be put in the matrix form .
‘ = ,}" :
. [Zi'.c'”'.c'] [v.,] o (3.43)
where i' =i+(n-1)L, £'—3+(m-') L, [Z] [I] and [V] have thesame

meaning as-in Section 3.4. Tharefore, the Bubnov-Galerkm solution is given by

W

= [YiISIJ [vi'] (3'44)‘

-

3.7  Treatment of Wire Junctions
7 »

L4

Using‘hjcnglar expansion’ functions, Chao and Strait [2] showed

#hot a junction of N wires can be treated as a problem involving N open ended

wires with N -~ 1 overlaps. Hence, N -1 triangle expansion functions overlap

the junction. This treatment has been used in successful studies of ‘severql radia-

tion and scattering problems [27].




Of course, junction problems can also be handled with other sets

of exponsion functions including pulses. Sayre [17] expanded the current in
terms of pulse expansion functions properly positioned on ‘fhe wire object such
that the current is forced to zero at the wire ends. 'In the vicinity of a iuncti'cn, |
the pulse expansions for the current on each wire are positioned such that each
pulse ends at the junction. The continuity equation in its integral form is con-
sidered near the junction. It relates the total junctlon currert to the charges on
the wire segments forming the current. .

Butler [ 2] established Hallen's integral equations for the si(ew
crossed wires and used the method of moments to solve them. The complex .
unknown coefficients of the current ore reduced by equating the currents to zero
at the ends of the wires. An auxiliary equation, in terms of fhf unknown coeffi-
cients is obtained by equating the sum of the curr;ents at the junction to zero.
Solution of the algebraic equations results in the determination of the current
coefficients. -

Practically, the use of the method proposed by Chao and Strait

is somewhat inconvenient. |t requires that near the junction of N wires, over-

-

lops% of two segments must be included for (N -1) of the wires in the geometry
inputted to the program. Sayre's method using pulses is a low converging one
with respect to other methods. The method of handling wire junctions proposed

by Butler is restricted to skew crossed wires only.

However, a simple and general method to deal with wire junctions,

a

preented by Silvester and Chan (191, will be discussed later.
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This was a brief review of the various numerical mefhc')ds that have

»

been employed in the solution of wire antenna ond scatterer problems. Methods

+ .-

for handling wire junctions were also included. The impressed field was considered arbi,
%, \ *

arbitrary, hence, both radiation ond scattering problems can be solved. ,
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CHAPTER IV

o

»

SOLUTION OF THE INTERCONNECTED STRAIGHT WIRE PROE.LEM
F

BY NEW TRANSFORMATION TECHNIQUES

g i
This chapter is designed to provide the complete detailed analys'is
for solving any wire antenna or scatterer structure .
The main purpose is to follow some new transformations to get the
;:urr'gnt distributions on the wires of a scatterer structure. With Ifh?se new treat-

ments, difficult problems that have never been solved before, are easily onalysed

fhl;ougin this chapter. The same approach can be used with wire ontennas.

r

4.1  Formulation of the Self and Mutual impedonces of Two Arbitr&rily
Located Straight Thin Wires “

Conslder two straight wire elements m and n, hoving radii a
E md a " ond Iengths S ond S respectively, orbutranly Iocoted in space, as

shown in Figure 4.1. ¢
- Let these wire lengths and radii Besuch that er/a >»1, Sn/° >»>1,

b

t‘:m << and a << A, where ) is th; wavelength. m ond n are unit vectors

LY

directed along the axes, and giving the direction of current flow of m” and n

respectivély. Consider two elements dsm ond dsn on m and n ot distonces
. .

. ond s from (xm,y,‘n,zm) qv:nd (xn,yn,zn) respectively. d S is the element

where the point source is located and d s, is the element where the field point’ is




,
)

FIGURE 4.1  Two Arbitrarily Located Wires..

.




located. . ‘ S o ' “©
) The tangential electric field on the surface of element n due to ’
a current lm(sm) fléwing on the axis of element m is given by Equation (3.37).
tan 1 e Sm . m )
. I L * )
Enm (5"3 - 0“ F(sn,sn?) | (sm) d s (4.1)
%‘ L] .
where, - . - . / .
. Vd ‘ |
F(s ,s ) = I exp(~ikR_) [m -ﬁRz (=1 ~-ijkR +k2R2 ) ¢
n""m S mn mn mn mn
mn
(4.2) i
‘ + (R -m)(3+8ikR -k2R2 YR :a)]) ‘ ' 'J
mn 2 n ml Vmn " 4 3 ‘
ond 1 '
2 -, .. . .2 ) . a2
Rmn (xn-xm+snx "n-s X m)” + (yn y +sr'1 y.-‘rn Sy ¥ m) v E
& ¢
, Y .
) +(z -z *+s z°na-s z°m) ,+ o
€ m n ,
& ; S (4.3
% "\ "‘ o - .
) 9
k .= wave number v : o ' ‘
E ) € = permittivity of the medium i
| ) Rmn = distance between the field point on the wire surface and the source
point on the wire axis.. s
‘ X
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i

_between the two wire elements m aond n of
4

‘, " the VM known induced - emf method.

2 N
‘ ¥

The mutual impedance (referred to cu?r‘hnts |::°x ond l': )

«r

max

Figure 4.1, can be determined b

L]

- S'n tan . n* o
zZ = — j ") 1" (s )ds  (4.4)
“nm “m ' “n ’ nm'n *n n *

- max max o - ¢ .
where * A - .
W ° 1 0\. -
ln(s = induced current on element n ’ .
n f - a

m [N . .
{ 17} and |1 | are the magnitudes of the maximum currents on elements
max - Umax e ) :

t
m and n respectively.

», ‘ | N :l

n = v - R
I’ (fﬂ) Z bﬂ xl'l (sn)

) =1 . " .

-
©

[y

By {ybstirufir{g_fquafim (4.1) into (4.4) weé get

Y . . - Sm S ‘
- -1 T Esies ) 1™ (s )P |
,an . m n JJ-. F(’ﬁ'sm) . (sm)I (s")d *n ‘d *m \
jwedx 1T |10 [0 0 , v
max' ' max .
* o . ”
- . « . & (4.5_)
-Approximate ach "of the unknown currents [ (s;n) ond Dln (sn)' b.y a
finite set of linearly independent interpolative basis functions in"the form,
¢, ! . -
. ML
/ m, o \ -
i) = Z s o o) )
‘ e * ‘ - .
m=1 )



where . f " Ty

n ) .

®

a 2 " p " .,
"M ‘ard N ape-number of i}terpolaﬁon nodes for wires m and n,
fm and £n are polynomials, . A\ » 2
o a ond bn are the complex current coefficients to be determined. .
o r
S Therefore, Equation (4.5) can be written as follows
: ) ,
a a . s
| UM N 5,
) -
\ z = YooY e (] TR
: , nm . m n , m n’"m
- - iweds U [0 | T 0" 0
- o max' 'max' m=1 n=1l. '
; )
, ¢ v
- f 8 )L&'(s)ds ds )b*
‘ . mm onn n m n- R
: 6 . ' - ) :
, . . n : N L
. ‘¢ If we define the column. vectors _ . .
. . A o a - N
. [ ({" a] - S
)] ' {‘ ’ . * ' 4 ’ ‘
> -
N N ] . A = .0' A md M ~ -
. ’ . AN v
3 1
! S a o
f M - ™
. . | M . :
& b ¢
K] " t
i ~ -y 4 -
M\ b, .
o ! . ' vig
r \\ ) -1 s
« ° ' 4 ¢ f »
re ’ )
C . B = : 9 " and '
: c o’ Lot |- .
* ] ¢ ~ i
I3 ~ ¢ 3 t.
n ° o P 3 ~ b ‘" ¢ '
| 'y ’ ° ' ~ L -J ° ’ ’
g - . " ° a .
- B * \
S . 2,

» A J
1 Al L -] .
B - N *
°
°
“~ . & ¢
» .
- w, <
.
F] s y’
) 2 o -
* 0
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&
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P = J J" F(sn; srh) fm (s";);t'i‘ (sn) d s d s ) (4.7)

!
N\

the mutual impedance of Equation (4.6) can be put in matrix form

Z = -1 : Al p B (4.8)

nm . m n
|W€4R “mcx’ “max’ ‘ u‘

The self impedcnce Z of element m should be equal to the
/
mutual impedance’ Zn _between. a~ond m when n =m, and 8 (s) f (s ),

and when the kemel (4.2) of the matrix element Pmn reduces to [19]

exp(- kR ) . 2 2.2 2
' F(S ,S) ————3————- ( +|kR )(2 Rm "30 )+k Om mm]
‘V?" mm .
’ .6 (4.9)
) } .
where
P
- 2 _ ..\, 2,
ngn (st\ sm) + o (4"0)0
. s
Therefore, sthe sélf impedance can be written as f
) = ‘] 3 T) * | ’. .
YA ,7— APA U R (4.11)

nm Apem
. jwe 4:Ll

max

’ .

It is clear that the entries Pﬁ: to P in Equations (4.8) and (43])

are exactly the same matrix elements of Z in Equation (3 43 Deferr&mtion of




fo""‘

these entries is discussed in the next section. It is also clear that the components
of vectors ‘A and B in (4.8) and (4.11) are similar to that of the unknown vector

[1 in‘(3. 44). N ~ ¥

Y - .
Therefore, the determination of the complex: current coefficients

i i

and hence the self and mutual impeddnces requires the\sojluﬁon-of' the system (3.44).

]
\

4.2 Determination of Matrix Elements
w7

)

From section 4.1, we conclude that the determination of the self

and mutual impedances depefids entirely upon the entries Pmn to the matrix' P.
7o
erefdre; evaluation ofgthese matrix elements is needed. There are several

posstble situations to be examined in&ependen'tly. T

. . 4 /
- "
]
.

¢ of

4.2.1 Source and Field Points on Separate: Wires . ) N
. ) - ' .. -
. When the source point and the field point are on separate wires, L/
> . . v ] I3

as shewn in Figure 4.1, F(sn,sm) given by Equation (4.2) is ‘continuous ond finite

everywhere. Since the integrand uf (4.7) is smooth, the doubleintegral can

I

easily be evaluated numerically by double Gauss-Legendre quodrofur‘e fomulae
f

SR

+

inthe s -s  plane [9,24].

-

s S :
P = "J' mj’ K(s,s )ds ds
(' ] mn o O ‘ﬂ m m [4]




4

to be very sinall.

J .
Z W, wi Ks ./ smi) ;4.12)

{ Y

where 1, J are nul&: of quadrature nodes to perform the integrations with *

L

respect fo s and s raspectively, and

¢ "\ Kisss ) = Fs s ) fm(sm%ﬁn () (4.13)

. Y

=4

The number of quadrature nodes required depends on the degree of
the current appioximating potynomials as well as the distance between the wire

elements. For example, ot large distances, the integrand is‘;mooth, hence fewer

quadraturenodes are needed. _ 8

4.2!'2 Source and Field Points on the Same Wires

“
When the source point and the field point are on the same wire,

v

as shown in Figure 4.2 (a), f:(s",sm) is given by Equation (.’1,9) and Rmm by

(4.10). Here, the integrand is finite but varies very rapidly as S dﬁproochés
} 4 J

s' , wherg R becomes équal to the wire radius a .’ This wire radius is assumed

m mm,, m

A3

By using siniilar transformations to those given by Silvester ond
; .

Chan![18],



singulari

- -
AN
S '* s
. m
.
(b) '
. e
. . . "’i
' FIGURE 4.2 Transformation from (< s ) Plane to (x=y) Plmne, . ' .
* : N * o e . e - 4
" used for Single Wire Problems. . )
Doe o ‘. T )
. o ‘N N |
' . .\ P‘}L .

>




together with

) )
dxdy=;§-'ds ds
m

This transformation is illustrated in Figures 4.2(b) ond 4.2(c).

Equation (4.7) then becomes .
"

0. exp(-jkS R

~

(4.15)

-

P = ¥ —?—3—-— [(1+iks_ R)(252R -30) + k22 22 )

? \
;X | s s g2
J Gl ) 6 (-0 ) g dylee
-x . ) .

¢

1. exp(-ijk Sm R) 2
+ (l+|kS R)(ZS R
e 2-x s

AN S U
o o (b)) 6, (0-0) ) .-g‘-dydx

-3a )+k22 22]




2 .2 7 02 2 o2 42
CRE = 4 e /ST = RS (#.17)

mm m

Put x' = =x in the second integral of the first term in (4.16)) .Equation (4.16) v

o

reduces to N

©

: 1
IR e g . 2,2 .2, .22,22
P = OJ I3 exp(-ikS R) [(1+jkS R)2S R°-3a )+ k'S R°a”]

J 2-x r Sfﬁ R Sm Sm Sm
[ O =x) = 6 (y+2) =) +£ (cty) =) £ (y =2 )]

\
52 .

m
= dr &

X,

. _ (4.18)

L d

Substituting z = 'Z:'_';] ond dx dz = T!:?( dx dy' in Equation (4.18) results in

-

1. exp(~jkS_R) 2
,P = ’[‘§' ]  — [(l+ikSmR)(2'R2-332-)+k2$202]
. m 0 R Sm
. ,

1 S S
(=x) [ LE {G0-) +1 =20 -1 £ (1 =x) +1 +x) )
-' ' i !

]

: s s
S (1) 1) ) [ly(1-x)+1 - ) -1 1 dy.dx

. (4.19)




With these transformations, the kemel in the final Equation (4.19)

is independent of y ond is only a function of x. This kemel is nearly singular’
\

when x equals zero, while it is smooth for all values of §x ot a given x. I
Integration wifhﬁpect to y is carried out using Gauss-Legendre quadratures.

" ~
Integration with respect to x is evaluated using Gauss-Christoffel formula [4],

v a -
with weight function [xz + (-S-T- )2 ] 5/2
‘ - m

.
S
'

, specially constructed for the purpose.

4.2.3 _Se;urce and Field Points on Two Connected Wires 4
R‘ mlty usually encountered by ontenna engineers is the

solution of the two connected wires problem, espe'cia'lly if these wird form very
| / smoll angles. This problem has been solved by many of them [1,2,3,17], but
it was restricted to a certain angle or a small ronge of ongles. Chan [5] suggested
an elegant approach to solve the wires’of a junction. Unfortunately, this approach
is inaccurate when the wires are unequal in lengths and radii. It con be more
efficient, only when wires of equal lengths and radii are used. This restriction
together with the small ronge of angles that con be treated, limit the usefulness
‘ " of this approath .
' : Here, a new method for trea;ing this problem, with wires forming
any angle--whatever it could be~~is carefully discussed and ma!ys;ed‘. This
method is general in the sense that it can onalyse the problem when two wires of
different radii and different lengths are joined at ony angle.
Consider two wires m ond n cc)nnected ot one end and forming

v’

an angle @, At this end the two coordinates (?‘m'ym' zm) and (xn'yn'zn)




L

39
2

are equivalent. The wire radii are a ra and lengths Sm and Sn respectively .
m ond A denote unit vectors directed along the axes of m and n, ond give

the reference directions of current flow. Also, consider two elements d *n and

~

dsn on m and n at distonces s and s from the junction respectively.
Referring to Figure 4.3(a), the arrows give the reference directions
- of current flow. The disfance Rmn between the field point s, ond the source
point s is given by
RZ = (s2+52-25 5 cos@+a?) (4.20) ,
. mn m n mn n

b

K The integrals of Equations (4.7) have a near singularity when both
s! ond s approach the junction point. It is possible to rewrite expression (4.7)

using the following transformation so as to simplify the integrations considerably.

&

Set .
x r sin g sin g— r $
Py n
= o 0 (4.21)
y cos 5 -cos s, .
L 4 L
with this transformation, Equation (4.20) becomes
2 _ 2,2, 62 ., ’ .-
Rmn = x“ +ty +am ) (4.22)
Td the elementary areo in the x~y plane is, -
d<dy =sin@d s d S ' (4.23) .,

2



ingulari
\smsu an\t’y& \\ //A .

=--¢:ofo x +é cosgS
A/Y 7 2 n

_ .9 . o
y =cotx.x 2°°’}'Sm

sl

x
y=-cotgx +2 corg§_
. ‘
* e, ‘
® " FIGURE 4.3 Trensfomation from s =3 ) Plane to (x =) ""“‘Wl

. used for the Two Connected Wire Problem of (a).




ond the limits of integration in R ond x~-y planes are shown in AFigures 4.4(b),
4.4(c). . . . -

Numerical integration is the Tange S"'1 Ss < Sn' the shaded area

e

in Figures 4.4(b), 4.4(c), should be easy since the integrand is smooth and the

kemel function is continuous. A cartesion product of Gauss-Legendre quadrature

i

formuloe con be used here,.

Y
o

S S
- n’ m’
Pmn2 = . J WJ K (sn.,sm) d s dsn (4.24)
m 0
this could be written as \
Pmn? - W;Wi K (sni'smi) (4.25)

i=1j=1

e 4

where 1, J are numbers of quadrature nodes required to perform the integration A

\
}

in s ond S Adirecﬁons respectively. K (sn,sm) is given by (4.13).

«
x-d

The troublesome region, region 1 in Figure 4.4(b), occum(;"in the

vicinity of the singularity. In this areq, Pmn con be written as

4

S

S.
1
P = M m ,s )ds d 4.26) .
mnl Of 0[;‘5"‘ g(s,s )ds ds_ " ( ).
mh .
where
g(s;)=R5‘ KG,s) - ' (4.27)
- n’"m’, mn n’'m '( . . *

?
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. CeC

Divide this region of integration into \{{-A) and (1-B) ond use the

tronsformation,

, X = rcos
N . (4.28)
LY = rsineg
}
\ 4
together with
dxdy = rdr de - (4.29) - *

dbinin; (4.21) and (4‘.28), the complete transformation of

coordinates bec omes

=T e . + ' o .
sn ] coseci- cosw f”cf sin ¢

L (4.30)
=F O cose - - sec 2 -
. sm Q-COSOC 5 (-] 3 sec 2 ne .
" and Equation (4.22) reduces to ) o -
v 5 i
R2 =2+ 2 | (4.31)
mn n

; To find the limits, region 1-A isboundedby @ =0, ¥=(x-6)/2 and
Y,

y = -cotg- x +2c¢ g Sy A (4.32)
or ." .
r sinn=-cota(r ca¢)+2cos° S (435)
° Z Z °m ’

$




giving . - y
} . Sm sin
s ) ol 5" ' (4.34)
. ' cos (o ~ '2') '

1‘\(

‘Using (4.23), (4.29) through (4.31) and Equation (4.34), Equation (4._2&!ields,

” -0 f .8 l L
N I ° 1. -
mnl sin @ J' deo . J‘ 2 2,5/2, ‘
_ i (r +a ) :
o=0 =0 n
3 . ) (4.35)
| (g (r,e0) +g (r,~@) J v dr ) '\ ®

Again, if we consider the following tronsformation,

\
r rz
o *
dr: = rodz
Equation (4.35) becomes
RSN I PR 1 .
/I;He‘ sin 6 Jl © M J‘ - 02
=Q ;=0 ., 2
a ”“ “2 3 z . (z + _5._ )5/2
. £l . r
. g o
n;,?‘ . o
. 1 l@
’ [9 ("ollﬂ) +g (folll "Q)J :5' z2dz
S . .

P
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.
o
]

The integration with'respect to @ now involves an integrond

[§
Thus, it con.be

bounded and continuous throughout the region of integration

N 4
carried out using Gauss-Legendre quadrature formula. The integration with respect
tﬁ? z , whose weight function dependson r_ and hence on o, varies very rapidly ~™
near z=0. A Guass-Christoffel quadrature formula with weight function
' El

' 3 (12 + n 5/2 N
° 4 - -
' is used, ' ¢
This approach requires generation of us:many special quadrature

formulae as there are nodes in the ¢ direction.’ Since#liis number might be.of the

order of 4’ no fundamental difficulty arises.
- For mote general solutions, two other cases have to be considered pe-
. . according to thé'dorQQl.ca;\s of current flow. The transformations used before are
exactly the same, but the singﬁlariti&s appear at different posmo?s mbthe s":-sn

plane.' These y itlustrated in Figures 4.4 and 4.5

w
.

>

4,2.4 Source and Field Points on‘Two Collinear Wires

This case is usually encountered in prochce, especially in.multi-

N

dumenslonol wire structures. A vemcal wire in the presence of an infinite ground
type of pioblem has beeh

plane could also be ofmlyud as two oollinear wires.
solved by many research workers in this area., The most interesting wolution is thcq of

Chan [5]. Agam, his method in the special case of two collmear wites, is restricted

.
‘
. .
'
.
.
.
.
v
v
o
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. FIGURE 4.4  Tronsformatién from (sm - sn) Plane to (x - y) Plane,

4

- ’ used for the Two Connected Wire Problem of (o).
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to equal lengths and radii. :

A general and elegant approach to solve this type of wire structure

is presented hére. This is general in the sense that collineai wires of unequal radii
. ) ,

and lengths can be efficiently.analysed. 3

\ . Coa Consider Figure 4.6(a) whece the two wires n*ond m are col-
% . - . '
linear of unequal ‘lengths S, and S, ond radii a  and a . The currénts, in

opposite directions are directed towards the free ends. Rmn is the distance between

kA

the source point 5 and the field point S . ‘

P

Rfm = +sm)2 + of (4.39)

Area (2) of Figure 4.6(b) has a smooth integrand. Gouss-ll.egendre formulae in both

s and s directions are’ used.
n m .
The singularity of (4.7) appears when bo'th s and s, are equal

fo zero. The following transformation Js used to shift the singularity in only one ’

direction, as shown in Figure 4.6(c). { Te’
Using

-

c
]

6 *5)/5, |
(4.40)

< -
]

(’n B sm)/ Sm
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’ ‘\\ / (2) 72~
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FIGURE 4.6 Transformation from (s - s ) Plane to (u~v) Plane used .
for the Tv_vé Collinear Wire Problem of (q). .
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together with the element of area

-

dudv = —%— ‘dd,s‘;nd,sn

S
m
Equation (4.39) becomes ! - , -
2 _ 2,2 2 ‘
/ R = Sm (L + (an/Sm) ) (4.41)
. -
and the double integrals of (4,7) in region 1, Pmnl , of Figure 4,6(b) is
v=1 v=u 1 ] )
Pm‘ i U=O f V=‘Uf 25"\ . +( )2)5/2 Q(U'V) dv du 1
g S
u = 2 v S U +2 2 .
+ J‘ I sm .
_ - K (u,v)dvdu , (4.42)
u=] _
te v=u-2
% - - ;
"~y )
where K (v,v) and g (u,v) are given by (4.13) and (4.26) respectively.
The integrand of the secgd term of (4.42) is smooth and continuous
, - > R
¢ everywhére, 50 a Gauss-Legendre formula is used to carry out the integration with

respect to "v. The integration with res?ec't‘td v is evaluated using a Gauss~Legendre
formula ot each quod;urure node in the u direction. |

‘The region of integration of the first term in (4.42) contains the
singularity. Gouu-ChrisfoffeT is used in the u direction, and Gauss-Legendre in
the v direction is also evaluated at each quadrature node in the v direction.

»~
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50

~ When twq collinear wires are carrying currents in the some direc~
tion, Figure 4.7(a), Region (2) of Figure 4.7(b), is handled as before, while Region (1)
is treated as follows.

In this case,

2.
Ron = @ = 5)" +7e5, (4.43)

r
< -

Using the following transformation,

(=
1

(’n B sm)/ Sm
Gyt )5,
¥

(4.44) w

<
it

and the element of area (4.40), Equation (4.43) reduces to the expression (4.41),

and P can be easily derived.
mnl

- s o=1 v=yu+2
_ , 1 | .
Pmnl = =of I -2—5-3- . 5 g (u,v) dv du
v vE-y+2 m (02 + %n )5/2

m

c -
]
N
<
"
!
c
+
2.
N
Ry

g f / 7 Klu,v) dv du (4.45)

]

Evaulation of the integrals appearing in (4.45) is exactly the same as explained

above. ' | »

o~
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Another case of interest, when the currents are directed towards'

e

the junction, as shown in Figure 4.8(a), is considered here. In the present case,

AN

. Region (2) is treated as before. In Region (1) we have to use the transformation

(4.40); Thus, P has the value, ¢~ ot
mnl .

3J"’s(5n”)f~1 o

-}
]

mnl ’ 25?
m

b2 vy
g (u,v)dvdu +

I

- e 22 e
u-,-bl v= u+-s—-m(Sn Sm)

52

¢+ o K(uvdvdu

. )
) Jir

where the constants b], b2 ond b3 have the values

5

_ 1
bl-..S---(sn“Sm)
m -
i
b2-“5—-Sr|
m
_ 1 .
bS‘S (Sn+sm) ' ’ J
m ) .

These inte.9m|s are efficiently evaluated as Equations (4.42) and (4.45).

8

2, o2

(4.46)



singulari
. sing \*Y

¢ ? o Q : a:h'! ‘
Sm . /,/7//
s i

Ci'

. , FIGURE 4.7  Tronsformation from (sm =3 ) Plane to (u-v) Plane used

+ for the Two Collinear*Wire Problem (a).
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4.3 Determination of the Excitation Matrix - 0

' \% The solution of (4.8) requires a know|edge of the complex current
coefficients. These can be determined by solving Equation (3.43). In this equation,

the right hand side

S .
. n o
=i =l see L(n)
R.H.S. = A-EMs ) F@)dsn i
) o‘f oo n=1, ..., N (4.47)
. . . th .
where L is the number of interpolation nodes of the n = wire, Q N\

N/ is the number of wires,
is geng in the sense that both radiation and scattering may be considered. Here,

the solution of the scattering problem is obtained by taking the impressed field e'm

I T

of (4.47) as the incident electric field. (4.47) should be evaluated for N wires

at L(1) +£(2) + ... L(N) nodes. )

\]

Consider, the wire shown in Figure 4.9(a). The wire end coordin- ;
%ates are (x],y],z]) and J(x2,y2,22) and the current flow is indicated 'by the arrow.
Also, let us take a linearly polarizec{.’plone wava travelling in some arbitrary direc-

?z%s illustrated th Figurre 4.10. The \

tion A with respect to the cartisian axes.

in?pressed field E'™ ata point 5, on wire n, is given by
i :

/ Eim(;n) = (;‘,'o‘EI +62E2) exp(-jkd - r) (4.48)
\ .
where /J ) T
2y : ' ‘
k = aul the wave number ° ,



r=x @ +ya +z &
n x n'y n z

\

x , y ,z_ are the cartesian ‘coordinttes of s
n’ 7n’ “n n

E; and E, are\fhe\electrié field components in 0y and §, directions respec-

tively. They are normal to each other and lie on the-plane of the wave.

G- is the unit vector normal to the plane of the wave and can be expressed, in

-~ ~

terms of the unit vectors G , & , 4 as
x' Ty’ Yz

L3
0 = cosAG +cosBa +cosCa
x y z

>

y and z axes respectively.

The dot product of r and v has the value

G*r = x cosA +y cosB + z cosC
n n n

v

'\\ﬂur

Es

g, ~~
e TN E

by N\ ‘

tion in the direction (tan-] T with G]) of thlerrotyltimt' ( 'E) +52 ).
1

If E, and 52 are both complex vectors having the components 'Elx

A, B and C are the angles that the unit vector i makes with the positive'x,

-

(4.49)

If E; is equal to zero, the wave is linearly polarized in 62 direction,
- If E, is e.qual to zero, the wave will be polarized in G, direction. Howe\)er,

if E; ond E, are both real or complex. with equal phase, we have linear polariza-

’ Ely' E]z/\;

and Ez(, E2'y’ E22 in the x, y and z axes respectively, they can be represented




With this choice, we can make our scattering analysis more general and hence it

can be used for linear, planar and three-dimensional wire sfru‘cfure.
Substitution of (4.48)-(4.50) into (4.47) we get
5 '
R.H.S. = C 0 fQ“"P (- k(xn cosA +y cosB + z cos'C)] fi (sn)d s -

. ) (4.51)

[

where the constant C is given by )

X, = X 2 ©Zy -2

T ) 172 ) 1 "2 -

€T TG T B) T E, - By

odd x ,y and z_ con be expressed in"terms of s as
n’’n n n

f X‘ - x2 . .

T e

- n §n n

\ - Y17 Y9
\, ’n S *a
n
) I .

. ln 3 Sn

n 4

This is illustrated in Figure 4.9(b). Making use of the following tronsformatién
{

AY
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FIGURE 4.9- (o) A Single Wire. _
. ' (b) Interpolation Nodes.




FIGURE 4.10
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N FIGURE 4.1

A Plane Wave Traveling in on Arbitrary Direction .

A Wire Junction.
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‘ . ¢ . N L -

' = s/Sn and ds' = %s 4.52

n

. : Equation (4.5]') becomes
. . . b ] |
R.H.S. =5 C oj“» exp(- ikT) £, (S5 ) ds_ (4.53) -

-

>
[

where " o

5‘“\ ! . !
‘T = (x]-xz)sn cosA+(y| .-yz)sn c~:>sB+(z]j-'zz)sn cosC

Ve d

i

Ei ‘ - The integrand of (4.53) is smooth, thus the integration is efficiently “
evaluated by GaussTLegeadre‘ quadrature formula.
Now, substitution of the results of both sections 4.2 and 4.3
A ‘ into (3.44), (3.44) can be easily solved for the unknown current coefficients.’
However, redt.Jc,ﬁon of the number of unknown coefficients can be obtained as
explained next. \ ¢ #

J

4,4 Current Distribution on Interconnected Wires

] »
!

-~

S Although, a cemplete analysis to deal with scattering by arbi-
% .

trary configuration of wires has. been_given, yet the present thesis aims at the solu-

L4

| ) tion of interconnected wires of arbitrary orientations. At any junction, we have to
satisfy Kirchhoff's current law. This can be‘achieved by following(the treatment
- f /

used by Silvester and Chan [19]. .
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%

$

’ﬂ{:'e ard fﬂat dof the corresponding disjoint structure can be ohtained if we conu\gr _

.

Consider a junction of N *wires as shown in Figure 4.11, Let
} 13

L(n) be, the number of interpotation nodes on the nth wire, the total number of

nodes is : L

. N | \ ° |

\ L ~ SN= ) L) N 1

n=1 ‘

To satisfy Kirchhoff's current law at the junction of Figure 4. 11 ., we

have . .
!f

‘;) ~ — ¢

gy *lgp *oevar Flgy = O (4.54)

s is the current coefficient of the rosf node of ﬂ'me i
. Ve y
y / (.
L o Sl = z‘ ’ {
23 \ - =1 .
W™
i \ ’ \//" ) ‘ \

Equohon (4. 54) reducgs the number of unknowns by one.

where | wire and / '

)y The re(ahon between the mferpolahon coefficients of the con|omt struc-
J - k. ' -

(4.54) as a mapping of the SN .- 1 unknowns of the conjoint structure info the §

unknowns of the disjaint structure.

' "
" - - - - -
|] : [. 1 0 0 e o @ ¢« o o ¢ s a . . 0 Il n '
o 1 0 o[*]1, ° !
|2 v L) o o of o s~3% & s » 2
* o
. " Y . . (4.55)
L * \ ° “JJ * AN
ISN-] 0 L'o\ 0 . (o, (' . ® ] o o ; l ISN-I ‘
) - o ‘ o "]‘ e » s s 2 .‘1 '0‘
K S0 o)
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7

where the first (-1)} in the last row is located in the Slfh column and the last (~1)

is locqted in the §th

=C1

The matrix eguation of (4.55) is

con

@.56) |
‘er- R

Substitution of (4.56) into (3.44) of the disjoint structure, and premultiplication by

CT, we get

L o

or

where

Thus the current distributions can be obtgined .

‘4.5 Far'Field ond Radar Cross-section Patterns of Interconnected Wires

con

= C

con

- ‘CT Zdis ¢

vcong::'l' Vciis f; .

Equation (4.58) isllved fo get the un

«

T les

known current coefficients '1 . I2, eae |

"4

‘ ﬁeld\paﬂem and hence the radar

Once thé current distributions on the wiges are known, the for

. (4.57) Cl\:\

(4.58)

(4.59)

(4.60)

%

SN-1° ’

Soss-section poﬂe;m-are eoPsily*determined. Here, -

¢
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o .

the approach derived by Chgn (5] is briefly discussed.

An arbitrarily located wire of length 2hm is considered. The

N -
4

coordinates of the centre is (xm,ym,zm). Its unit vector is,

[l

M = Rcosa_cosp_ + ycoga_ sinP * + Zsina
m m m m m

” - ( - ’
ere ! .
« ¢ v ‘
a s the angle between the wire and its projection on the x-y plane .
Bm 'is the angle betwden this projection and the x~axis

Assume a veMy for field point - (r, 8, 0), so that only the radiation

field is obtained. \\

~

E9 = —.iwl.:Am e
€, = -ivpR, 8 (4.61) h
" E =0 _
)
’ Y
v . L .
. m m .
Let the qurrent be approximated by | (sm) = Z Ii f:“ (sm) where L is the
i=1
number of interpolation nodes on element m.
; ! ©  Evaluation of the magnetic vect®r potential Tm~ at the field

.potnt due fo element m, and substifuﬁnj.&&wlﬁng expression info (4.61), we

4 —_—
)

ggt

S
N l

e

o




- * » v .
o~ N - 5B m‘-‘ikr} ~. .“« " -
:g,r,ﬂ,u' R T o g o) R Lo 5.*@“
» l‘: _vg.“ ! B
v ¥ ' -
% Sy - el
2 d3 + cusd S0t sd ovie t wnd L owQ
" n " ht "
singcos® - sina sin®’ J
/ - m *
\ \ \‘-w
: ‘k) L & t
. - r Co. < L3 -
. - - fie™
. 'fa“' S.e “"f‘:'”(i’;}‘“ ha $xpti ) . 'i ¢ P
R B
, ‘ ‘o
‘ i
v vag
.Y - . .
I .« - a + 3in \
. ds_ c«ﬁmc« o Jine * s E\me«\mc«u?
. : ' 4.63
s ,
where ’ )
2 3
- - + . - * 1]
v k(xm 'smO cose *y_ sin® sm.u z cos @)
F 4 : ©
= k sin® cosf cosa + 3inOsingcosa sin + 0 sina
v h,, ¢ -cosu ﬁ@ o+ din0sine m? p“} cos ‘,m)

© The electric field due to N wices can be obtained from (4,62)
and (4.63) by summiné up all electric fleld components rewlting from the Individual
wires, from 1 to N. | N

The rodar cross-section of an obstucle is delined as the areq for

which the incident wave contains sufficient power to produce, by omnidirectional

radiation, thé same back-scattered power density. Its mathematical expressior Is

) | 14 .
® ' o= lim (m’*?)‘ , (464

* ' Y.

° ~ \ ) v N [+
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-:—’ IES | 2 , the scattered power density ¥
B 4
7 [E'|®, the incident power density

|

Substitution of (4.62) and (4.65) into (4.64) results in

or using (4.63), we get

(4.65)

I\

(4.66)

(4.67)
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CHAPTER V

NUMERICAL INVESTIGATIONS .

el

5.1 Introduction

In this chapter, the analytical investigation given in Chapter IV,

is applied to solve several wire configurations. Computer programs have been writ~

¥

ten for analysing the electromagnetic behaviour of interconnected straight thin wires. N
Scattering problems only are solved. The current distributionNs calculate_;d by using
Lagranéian interpolation polynomial approximation. Then, the far scattered field

and the bistatic radar cross~section patterns, as well as the self and mutual impe-

dances, are computed for some configurations. Almost all curves are drawn by\

using an H-P 7202A Graphic Plotter operating in parallel with a Tektronix 4010

terminal.
* For the present plane wave scattering problem, a structure of

arbitrarily located straight wires is illuminated by a known incident linearly polar-

3

.ized plane wave of arbitrary direction. The procedure presented here can be used

-

o analyse linear, planar and three dimensional wire structures.

N {

57
- 1

5.2 Numerical Results for Simple Problems

n
-

* " To-illustrate the accuracy and the efficiency of the new method,

{ several interconnected wire problems have been considered. In all these problems,

N \



P
an incident plane wave ‘of unity amplitude and polgrized in the. z-dirdction, is
assumed fo be prc:pagating along the y-axis. The operating frequency is taken.to
be 150 megacycles. A second order polynomial approximates fhg\ currents.on the
wires,

First of all, the single wire whose axis coincides with the z--axis
as shown in Figure 5.1, is anolysed.:.ﬁhe wire is half a wave length fong with a
radius=a = .00350\. The current distribution obtamed shown in- Fugure 5.2, is
compared with the Kuo and Strait results [10]. The discrepancy b‘é‘lween the two
curves is due to the inaccurate results oi Kvo and Strait. They performed numeri-
cally the integrations, appearing in fhe) entries-fo the genen&liséd inpedance matrix,
by using o current approximation of the first order, i.e., pie,c.ewise linear approxi- /
mation. Although a second order approximation suffices, the current is approximated
h;re by Lagrangian interpolation polynomials of the third ordg to get an accurate
current distribution, ,

We have mentioned in Chapfer IV that the present method is
valid for very large angles between the interconnected wires, and for very small
anqles as well, This type of problem has never been analysed before. Very good
“results are obtained. These can be illustrated by the foiloying examples.

The two collinear wires of Figure 5.3(a)are first considered.

They are directed into the z-axis. The wire lengths and the radii are equal
(£=N4, a=.0035)\). The currents are assigned the same reference direction.

Two interconnected wires forming a very large angle, about 177.8 degrees, are

considered next. The axis of the first wire coincides with the z-axis, while that

l‘ .
\ o

s
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Real component in ma

Im component in ma

FIGURE 5.2
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. Current Distribution on o Single Wire Scatterer £ = )\/2;
o = .0035 X, '

This Method

QOU‘O Kuo and Strait




of the second wire is directed in the z-axis, as shown in Figure 5.3(b). The same

lengths and radii of- the two gt-:llinearr wire cases are taken. The same current
reference direcf'ions are also assumed. Results of these two cases are compared in
" Figure 5.4, giving an agreement to the third decimal figure. Single precision is
used throughout the whole program.

The two wires together having a total length of /2 give ;he
sarr_le results as that obtained by the half wave lehgth wire of Figure 5.1.

Again the same problem is repeated but with unequal l_engths.
" Figures S.BSc) and 5. 3(d) show respectively, collinear wires and connected viires
forming an angle of 177.8rdegrees. In both cases, the first wire@ is 0.2vin length,
whil; the second is b.3)\. Curves of the current di;tribution are illustmted in

Figure 5.6. They agree with the results of.fhe problems of Figures 5.1, 5.3(a),
x

and 65.3(b)‘.

The vertical far field patferp, for the c'ase of two collineqr’wiFes,ﬁ
is illustrated in Figure 5.5. Since the currénht distribytion is the same as for the
single wire, the expected figure eight is obtained: f

With these different methods and differen‘t analyses ,P'which*’give
the same results, one can expect the usefulness and I’:Walidify of the presqnt<
method. -

Figure 5.7 shows two interconnected wires f;orming a very small

angle, about 2.2‘degrees. Th50y have equal lengths (£=)/2) and ‘radij (a = .0035)\)

and are directed along the z and z'-axes. Current distribution is shown in Figure

A3
I
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’ 5.8. Here, the current obtained in each element is about half the current)of a

.

t

half wave length wire. This could be expficted if we assume that this single wire is

, ¢
] N - )

split into two wires connected at one end. Therefore, the curraht is distributed

equally into the two wires giving half the single wire qurrent.
5 g A-

[y . - Wrmt distribution for suclr connected

P

elenfents using second order polynomials takes about 3 seconds and for collinear
wires about 0.75 seconds on the IBM 360/75.

’
f

5.3 Numerical Solution for Wire Structures ~™ . . J

—

More complicated structures of interconnected wires dre presented
here. , Results are compared with those of other investigators. Very good agreement
( is obtained., Somegprocﬁcul configurations of engiﬁeering interest are cortsidered '

In each case, an incident field of unity amplitude is taken. It is diretted glbng ﬂy . ‘

*

y-axis and polarized in the z-axis. The wavelength is one meter. A second order

> 1
) &

polynomial approximates the currents on all-wires.

-\; - A . .
) ‘Scattering by the wire cross of Figure'5.9, has b;er! analysed by s

Chan [5], Chao and Strait [2], Taylor et al [27] and Builo?[l J. lts ditnensions
are ,21 = .f? = £3 =0.11), £4= 0.22\ and the radii are all the same and equal %
0.00222\. The preseht method gives the same results as those of Butler and close -

' v results to fhose obtained-by the other aul'hors, as shown in Figure 5.10. Butler } j
' ST TV
eguation for the skgw crossed wires, More occurafe PR

Iormulated Hoilen s mtegrull

. » . results are obtained by. this method. Therefore W& can conclude that the prqsent C
v - oo . . . . ‘ . ,
SN . , , | .
Y , s L j
N . - 3 ~ )
<, . R 4 / Y .



S

analysis is very accurate and is preferable to other methods. Also the bistatic

radar cross-section, Figure 5.1], is computed in the plane © = 90°,

The speclal case of skew crossed wires when @ = 30°, of Figure ’( ’

° 5.12, is also considered. The same dimensions, as for the case of 8 =90° anglysed
3 ‘ v

above, are taken. Results are in good agreement-with those of Butler. These are

v

illustrated in Figure 5.13.

3; T ~~ Figure 5.14 shows a T-scatterer of equal elements. The lengths

w~

_ar‘e £,=8,=8,=0.1\ and radii a) =a, = ag = 0.00222\. One canisee

2
fmm Figures 5.15 and 5.16 the current distribution_obtained together with that of

Kud,}and Strait. . o

-

Finally, scattering by a three dimensional Brown wire structure

\
-

.+ is examined. Fiéure 5.17 illustrates this configuration illuminated by a plane ,
wave polarized in the z-direction and of unity amplitude. )It consists of four equal
legs directed olong the z, r, s, and t-axes. Each leg has q Iengrh L wavelengfh '

and a radius M200 The wavelenqth is taken to be one mqter. The currenfs mduced

¥ “

con the wires are plotted in Figure 5.!@ for £=0.2,

r 1 : Nasu [30 ] analysed theoretically this Brown strycture and got the
I

input impedance against wire Ienfgth:: Numerical computation, using the present
‘method, @lh in the curves shown in Fig;.:re 5.19 and c?mpored.with those of Nasu.
‘ ‘ It is inferesﬁné to nofe,thaﬂt the Ct:rr;nt is not forced to be zero
« " .
‘ I \F’ at the free end of the wire for any of the previous analyses. .Acceptable zeros
. are obf\oined f’" these ends. Other r:ethods con;i}Qr o b.oun'dary condition Ly requir-
. ' ' . . s - . T

ing the current to vanish ot the free &hd of the wire. o

.
s " .
& . ‘ .

¢ ¢

~
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’

The computation times neéded for a T-scatterer and Brown struc-

ture are respectively 7 seconds and 15 seconds on the IBM 360/75. The execu-

¢

tion time to find the input impedance for a Brown structure against a leg length is
. )

about 110 seconds. A completely different problem has to be solved eQery time the

length is changed.
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* FIGURE 5.14 T-wire Scatterer,
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CHAPTER VI

-

CONCLUSIONS

’

In this thesis, an arbitrary interconnected straight wire structure,
illuminated by a uniform plane wave linearly polarized, was analysed. Problems in
which the angle between the’wires is as small as 2° and as large as 1780, have been {
successfull} solved for the current ciistribufion on the wires. These problems have
never been sblv;d before. The collinear wire problem was also discussed.

The far sc;:ftered field, the bistatic rodar cross-section and the
mutual impedance have heen computed for some configurations of engineering infe.r-

est. Excellent agreement with other methods was obtained. !

n.
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