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RESUME \ 
1 ... 

, . 
Uné nouvelle méthode est présentée pour étudier le phénomène de 

1 

tt'Ji; dispers40n d'ondes de plusieurS se9me~ts droits de conducteurs filiformes, joints arbi-

'\ 
t~airement 1 et irradiés par des ondes planes à polarisation liné'aire. . - / 

., , .. ',J' .. 
Lléquation intégraLe de Pocklington qui en re'sulte~ est résolue\par 

la méthode de projection de Bubnov-Galerkin. La répartition du courant le long des 
" 

fils est approximé~ par des ~Iynômes à coefficients complexes. Cette formulation 
~ . 

est valide pour tout angle entre les segme~ts et traite 'particulièrement le cas o~ les 

segment,s sont, coliné'aires. -Les integrales obtenues dans cette analyse -sont ~valué'es à 
~ ~ 

• Ilaide de fQmules de Gauss specifiquement adopté'es à cette étude. Les résultats 
'. / 

montrent un excellent accord avec ceux trouvés par d'autres chereheurs. 

Un programme dlordinateur a é'té' mis à point afin dlanalyser le 
• 

comportement électromagnetique dès antennes d~ reception. le programme peut-

traiter des structu~es d'ar1't~nnes compliquée$. 
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ABSTRACT 

~ 1. A new method~for treatirtg the intercopnections of arbittarily 
" . ('. 1 M 

locCited straight thin wi(es irradiated by a Ii~arly po.~rized plane wave is presented. , 
The resùlting Pocklington's integra( equation is solved_by the Bubnov-Ga'erkin pro­

" jective method. The current drstribution along the wirès is opproximated by poly-

nomials with complex coefficients. This fo.rmulation is valid for,~re. t'ofming any 

angle, with specia-'-. .arovision made for the collinear case. The i~tegrals i"volved in 
.. 

the onalysis are evoluated by using Gaussian quadrature formlJlae specially con-

structed for the purpose. Results show excellent agreement with those of other 
l..", 

investigators. 
. . 

A cpmputer program was 0110 written for the analysis of the elec-

tromagnetic behaviour of wire sc~tterers. The program is able to hancHe ge'nerai ' 
t . 

wire antenna .f.fructures • 
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CHAPTER 
Il 

.. 
INTRODUCTION 

To analyse the electromagnetic bekaviour oF.any antenna,.a 

knowledge of the current distribution is of fundamental importance. This can be 

l' 

obtained experimentally, but it is quit'e inaccurate. An exact d'ete~otion o-f 

the current requires the solution to a boundory value proble~ which is u~uolly formu-, ~ 

lated in terms of antenna integral equations. However, these equations are diffi-

cult to solve even for the simplest case of a dipole antenna. Therefore, numerical 

.techniques ore adopted. Examples are, Bvbnov-Galerkin method, collocation <, 

~ method, subsectional method. 

ln thi, the,is, the Bubnov-Galerkin princ:iple is used for the 

solution of Pocklington 's integral equations of wire structures. S'cattering by inter-
- , 

colinected wil'es only is considered. The structure is illuminoted by a known inci::· 

" ') ~ " 
dent, linearly polarized plane wove of arbitrary dtfection. The current distribution' 

" , 

is approximoted by logran,gian interpolation polynomials with complex coefficients., 

The wires ore assumed ta be thin and made of perfect conductor and the currents Flow 

only in the axial direction in a filamehtary manne':. The procedure presented here 

con be used ta analyse 1 inear, planar- and three dimensional wire structures. 

Chapt~r Il is devoted to giving< a brief review on the varieus 

numerical techniques that con be used in solving wir~ antinna;. . . 
, 

f 
," 

... ... Y' • 

, 
t. , 
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\ 1 • r 8 . 

ln Chopter III, the application of these numerical techniques to 
'" . ~ .. 

-, . ,... 1 
the wire probl~m is ~x'plained~' First, the integro-differential eqUation is solved , ~ ~ 

Q 

uStng~the method-of subseètions. Next., Ha,!en's equation is ~olved by Çlpproximat- , 
f' ~ • \. ~ ~ 

ing the cOrrent by polynomia.ls· wjth. cOl11plex coeffi~ients •. Finally 1 the Bubnov'" 
~ 

( 

Gaf~rkin profecti~e me~~d for:,-sqlvi!"9 antenna probJems is ';esented witf! some 
... .. ; ,. .. .. '. " 

detoils. At'the end of Ch,apter "~ ~ b.r,ief wrvey on the diffèrent methods fo,.. 
........ ( 

treating wire junc:;tions is explained. 
r • 

• Chapter IV gives a complete detaHed analysis for the new tech- f . . 
niquecusej;l for .solving a wire antenna with interconnected eJements forming any 

\ . 
.. »" •• " 

angle'. The excitation matrix formulated is' For onalys'ing fcattering problems only. , 
, . , , 

ln the lost chapfer?f the thesis, nu~ric,?1 resultS obtoined by 

solving some wire configu~tions of errgine~ring interest, are clecrly plotted and 

cOfnpared w;th othor ~thods. Excellent agrèement ii obtai~ed. 

, .. 
, 0 

, ., 
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/" 
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CHAPTER 11 

, 

BASIC NUMERtCAl TECHNIQUES 

, 
• • n J;;.~ • 

" Apprc:ximote solutions to an operotor equ~on C{)n be ~determ!ne1 
. . 

by severol mèthods. Exomples ,ore: the method o~ successive opptoximq}ions, , 0150 

called the iterative method, and the proipctive method~ 
". r- 0 ' 

"' ,.. 
This ch6pter presents a l)rief review on the projective method. 

:. 
Projecti on Me"thdd 

This method is used to give 00 approximate solution to any operotor . . , 
( 

equation. I~ oppr~ximat~s the equotj..~ and then de't~rmin~ t~e exact sol~tion 

. for this'opproximoting equotioo. Usually-, this merhod reduces to a matf'Îx equa-. . 
tioo, which cpn be solved by known· techniques. ~ " . 

,~ 

.' let E and F be Boooch spoces. ConslcJer the following inhomo-

gen~ou5 ope rotor equo!i on 
f' 

• l(e) = f (2.1) 
ù 

wt\ere l is a linear ope rotor with dOmain D(l) c E and range R(l~ c: F, f 
o ., 

is the source of excitation and e is ,tHe respOnsè or the unknown funcHoo to be 
~ . . 

determined. 'let [E r CRld [". ,Ji be two givan subspeces, . 
no. " • 

Let P 
n 

, , 
/1>. J < e c D(l) c: E, f C . R(l) C.:f '" 'r.-

n n • l .' 't 
~ • t 

be a projectlOl') operator m0p,ping F into itself, thot 1'5 ~ 
n 

1 

1 • 

P F ='F 
1 

n n n 

t , 

, 

. , 

" 

, 
• 

o 



'. 

. 
\ , 

, 

• 

-" 

• .. 

. -

md then solve 

" 

P Le = P f 
n n n 

(2.4) 

, 

wherethesequence [é l , e
2

, .•• , en} converges ta e ifandonlyiftheopera-

tor P n map! l ~n' onto F n. [11 J. 

Equation (2.4) can be put in the form 

P (L e - f) = 0 
n n .' (2.5) 

.-v' 

Now, let E md F be Hilbert spaces and E 
n 

and F 
n 

be gi~en su~ces sponned 
, , , 

,~ '... ' 
respectively. These ore ~ubspaces by [<0./._ -, ' ] and [l/J./ _ ] 

1 l-l,2, .•.. ,~ 11-1,2, .•• ,n , 
• ". v • 

of dimensiooality n and are embedded in .sorne higher dimensioned subspaces, 

i.e., we have to choose CE ] and CF } ,such that 
n n ,t 

, ... 
1 

.. 
, 

"'l ' 

The approximate solution is ossumect to be the lineor combination 

" 

~ 

"r~ 

.1 

',' 

J 

n 

• e' = ) 
_ n i~ 

ci. fre. \ 
1 1 

~l. ~., . 
to (2.5) gives( . 

n 

'JI P (L9lt.,o. - f) . n 1 1 
~ -

'" 1 

.. , 

," 
• 
, 

(l 

41 

'0' 

f 

~~'!à 
~ 0 

1 ,; 

-" 
0 

,c 
, 

.'Jt' 

'1 ... . (. 

p 

(2.6) 

(2.7) 

. , 
(~ .8). 

" 

~ , . ... 
1 

1 • 

. l, 

, 

. , 

) 

~ 
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~. 
• .:> ~ <' 

.... r AI. \ 
. "To~termine o., t,ake the inner product projection (orthogonal projectia.) of ,. " 1 

'1..1 Equoticn (2.8) onte) the subspoce F sponned by [lIJ.J resulting in the following , 
,~. . : n ,. 
~, ,-

set of 1 inèor equati cns for the coefficfer1ts ai" . 
1 .. .. 

n r 
j .. . \~' lIJ,) a. .. (l f,e., = ( f, lIJ.' " i~L 1 1 1 • • 1 h 

j':= 1, 2, •. j" n (2.9). . 

.... P 

This can be put into matrix form, 
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6 

Hoving obtoinecHhe resulting coeffic1ents o. From (2. 10), the unknown functioo 
'If' 1 

e is determJned by (2.7). This is the sp-cofled, "Golerkin-Petrov Method". 

[ffl.1 ore colled the exponsial or bosis functials, while [ltJJ ore 
1 1 

c ~~~~ 

the testing or weighting functions. Since the accur~ey of this method and the 
, 

, rate of convergence of the solutioo depend enti rely upon the choice of bot;J.. ~xpon- . 

.. ' 

" 

sion and testing funetions, some cases of porticular interE!st ore given next . 
... 

2. 1 • 1 Method of Least Squares 

Consider the resia.,ol Dormi 

ilLe - fl/2 = ilLe ,,2 - 2 < le J f> t /lfl/2 
n n n 

Sub,ti tuti Q1 of e by 
n 

, we get 

e 
n 

, , 

n 

= '\ lA 1 O • .,... 
,w

1 
1 1 ,= 

n n n 

(2. 14) 

, 2 
ilLe -fil n = ~ \' 'o. 'o. < l"., L..,. > - 2 \" a. <l'Alf > + IIfl/2 

i~ 1 f= 1 l, 1 1 1 i~ 1 1 1 • 

Equotial (2.15) is fhen minimized 

2 
aLe - F~ n 

/ 

(2.15) 

(2.16) 

\ 

L 

1 

, , 

" 



~ 

1 

• 

( 

,-

Fr~ Equation (2.17) we conclude that if we choose 

.1, = Le. 
'î 1 

, 

(2. 18) 

we get the best solution of the operator equotion in the se,nse that an L
2 

norm . 
, , 

(root mean squares) is min"imjzed. This il often called the method of least squares. 

2.1.2 Bubnov-Galerkin Method 

If we choose the subspaces E 
1 ~ n 

linearly independent functions, i.e. 

and F 
n 

/ 
/, 
ta be spanned by the same 

1 

'! 
.~ 

-.., 
(2.19) 

, . 

Equati an (2.9) becomes,f> r 
o 

(Ltt., ~Ja. (f, .,.> 
1 1 1 1 

" ; '<: 1, 2, ... 1 n (2.20) 

.. 
Equation (2.20) has the advantage that If L is a symmetrlc Opera-

tor t the matrix 

1 (2.21') 

, 

" A 

... ·i ( 
• ') h 

, : 



• 

• 

8 

\ 

• will be a symmetric matriXi. 

The Bubnov-Golerkin approximation produces 

solutions with higher accuracy than the collocation method prese 

secticn • 

2.2 The CoJlocation Method , 

This is 0 projective f!1ethod and it is also coHed "point matc~ing" . 
..-

Consider n sompling functions 

{w., J 
1 i=l,2, •.. ,n 

lineorly independent and spanning the subspoce F. Each of these functions hos a . . n 

unit y value ot one of the r"pling points and zero elsewhere. This means thot 

. , ' 

the weighting functions are chosen ta be the delta functions 

w. = 6 (x - x.) 
l , 1 

where x. are the sampling points. 
1 

(2.22) 
, . 

\ 

r Also, consider the subspace En spanned by n lineorly independent 
1 

bosis funetian$, 

o , 
'. 

, 
o • 

{~I; =J, 2, "0' n
l 

'-



• 

., 

.. ..;-

( 

Here, the opproxirtlote sol,utioo of Equation (2.1) 

e = n 
fi" 

is determined by satisfying 

n 

i~l o.Y. .. 

Le == f 
n 

, 1 

ot the n sampi ing points in the region of interest . 

2.3 ,Jfhe. M8thod of Subsectioos 

9 

/ 

(2.23) 

ln this method, each of the basis f~ctions exist only oVe; ~b-. \ 

sections within the domoin of e. ~h; pulse functià'l can b& uaed oY.eL~~b- _ 

intcvvol. A linear corpbinotion of these pulses gives the step approximation- to e. /~ 
. . , 

A well behaved function is the trimgle function. This is usually 

used over 0 group of adjacent subintervals. A piecewise linear approximation ta, . \ 

obtained by a linear'combinotion of the .. functîons. 

Sometîmes, it is convenient to use the point mathcing method ln 

COti Îttnctian with)he subsec:tional method." 

t , 

" 

, . 

o . 

, . 

} 

1 

\ , 
\ 

.. 
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CHAPTER III 

APPLICATION OF NUMERlCAl TECHNIQUES TO WIRE ANTENNA 

AND SCATTERER PRQBlEMS 

IntrociJction 

This chopter is devoted to presenting sorne numericol techniques 

use fui for soIving antenno problems. The problem of rqdiotion and scottering by , 

wire objects of arbitral)' shape is solved in detoils us~ng different methods. AllO;. 

the treâtment of wire junctions is suggested here, with previ-ous triols for solv,ing 

it. 
1 

Generally speaking, the projection method nos the advCl'\tag~s of 

\ . 
flexibitity md simplicity. Therefore, it can be used in the study of the electro-

~~eticbef,avrour-cif-o .Ingte wi~ antenna, orroys of wire antennos and wire 

Q1tenaas of arbitrory orientation. 'n eoch case, the clefining integral isteplaced 
,. , 

, by a matrix equotion and 50Ived by motrix inversion to get the current. The 

structure. of the ontenno moy be very complex, but the method does not chmge. 
( -

'" Once the current distribution is obtoined, the antenno behaviour can be eosily 

3.2 Formulation of the Prablem 
) 

'The problem of An ding the cur ..... t distribution on wlre ontennàs 
" 

and lCat~rers is a port\culor case of the general bouncldry value problem involving 

j 



• o 

conducting bodies in a knpwn impressed field, E
im

. If the source is distant . ~ 

\ ~ "\ 

n-om th~ bod~ it is viewed 6s a scatterer, ahd if the source is on the body it Ï$ 
~ • # 

li 

considered an ante'1lla. The boundary condition ot the surface bf each perfect, 

con duc tOI is, . , 

-t n xE=: 0 
j 

(3.1) 

where, 

-t . -im -s 
E =: E + E .. (3 ;2) 

Substituting (3.2) into (3.1), the çondition (3.1) res,ults in' 

, ./ 
1 

-s ' ' .... im 
n x E == -n )t E (3.3) 

where 

n is 0 unit vectot:.normol ta the sur.face of the ccnducmr in the 

outward direction. 

, ft is the total electric ,field vector consisting of both impr.~ssed 
. .. 

-----~eld vector rm and ;oattered field vector ëS
• The latter is definéd os the 

• 

field produced by the induced current on the ~onductors. 

~h. bqSiC' equations that sumJrlze this ~cundary value ~roblem 

• 

ëS = -jw A 

Fi 
' -ik~ 

J e dS --r 
s 

, , (3.4) 

(3.5) 

" 

J 

• 0 



. 
, 1 

.=-

• .. - , 
"". 

IJ 

\ 

" 

, 
1 1.. 

• 
- " 
i ., 

12 

1 Fi 
-jkR 

e 
dS 

, 
(3.6) rp = 

41FE 
a -" 

R . . , 
S 

,f 
t 

-. 
J ~'\ (3.7) a = - - v . 

jw 

together with Lorentz's rela~ion , 
~ 

v . A = - jWI! ... " (3.8) 

. Here, 'A, J, a, ffJ, ... and I! are used to" denote the magnetic 

vector potential, the electric cur;ent clensif)', th~ ~Iectric charge density, the 

scalar potential, the permeability and the ,permittivity respectively. R" is the 

distance from the source point ta the field point, and S is the surtace of the 

conductor. 
.t 

ln the study of ~tenna theory, the knowledge of current distrib'ution 

is of fundcrnentol importance. Equatia'lS (3.3) through (3.8) are 'used to fomula.te 

the in.tegral equç.tion for the curre..,t on the antenno. Mei (12) showed the eate , 

of direct< numerical calculation for the wire antenna integral equations usuolly 

'.,countered. These are the Integro-differential equation, Pocklington's 8qaation ~ 

and Hollen's equatian. 

, 

3.3 Curreat Approximation 
l' 

The ,oluticn of Ci1I1 integral equotion for the current cannot be , 

exoctlr determi"ed. _ Several appr~lmate methods,for sôlving thi,' equotion ore 

" 
* 

" 
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13 

in the antenna théory. The opproximate current distributioos which are usually 

u d in' these methods should satisfy some practi~al requirements. The most impor-

t t ooe is that _\ must be a good overall approx,imatioo along the antenna length 

to yield an accur~te radiatioo pattem. _ . 
" 

The sinusoidal current distribution al009 the cylindrical antennas 

was the first approximate current distribution used far solving the integrQt./qUation 

and analysing the radiatioo properties of such structures. lklfortunately, this type 
. . 

of approximation is quite inaccurate. Various correctioo terms, usually some other 

trigonometric functioos, are added to the leading sinusoida( terme The modified 

current distributions agree much better with experimental results. 
, 

Another type of approximation is the expansion o.f the current Înto 

pulses resulting in a step approximation to the current [23] or its expansion into 

triangles resulting in a piecewi~ linear,current approximation [2, 10). The wire 
, . 

is divided into a number of short segments connected together. Each pulse extends 

over only ooe segment while each triangle extends over four adjacent segments. 
" . . 

Since the current distribution is a weil behaved function, it can be 

approximate.d accurately by a polynomial of a relatively low order with complex 

coefficients [13, 14J 

L~rangian interpolation polynQmials [1a-, 19) have beèn used to 
' . 

approximate the c~~tents an a wire antenna structure. Th'ese polynomials are of 

theoretical' and practical interests. Seme details cx:t this interesting kind of apprO?ti-

"'tion will he given later. 



14 

3.4' Solu~ion of Integro-Differential Equations br the Method of Subsections 

hè're, the integro-differential equation is solved using the method 

of subsections. In this method, the antenna structure is divided Into a number of 

... , segments. Cùrrent 'expCluion functioos are taken to be nonzero over each segment 

or a group ~f adja;ent segments Cl'\d z.ero everywhere else. , 

For thin wires, the ,following approximations can be used: 

. 1. The currents and charges are assumed t.o flow in thé axial direction' 

in a filamentary mCl'\ner. 

2. If a denotes the w~re radiu! and .t its length Cl'\d >. trye wavelength, 

we have a « t. Cl'\d a « À. 

3. Ali wire segments are assumed to be made of perfect 'conductors so 

that the boundary condition (3.3) con be opplied. 

Using the~ approximations, Equations (3.3) through (3.7) reduce 

to: 

_ Ei 
-iwA 

afP A 
1 = -ai "'z ..ort S 

z 
(3.9) 

" 

./ _. =j; J 
"'ikR ..r 

A ï (z) e • ' , 

R (3.10) 
OXIS .. 

1 
ft / 'e -JlcR 1 dz " = 4;ë ; J 0' (x) R 

exf 
i> 

(3.11) 

~ 
'. 

1 dl (z) 
0' = --iw dzl (3.12) 



". 
, 
, , 

, 

.. 

•• 

• 

1 

15 ~ 

, 
where z is the length variable oloog the wire axis. The additioooi boundory 

condition I:::z: 0 at the ends of eàch wire must 0150 be 5Otisfied. SubltitutiQn of 

(3.10) - (3.12) into (3.9) gives t~e jn~egro-differential 'equatioo, 

L{ï) -i = E tan on S (3.13) 
" , 

. where the integro-differential operotor L is given by' 

"-

L(ï) - a~' = (i w A . + oz] tan (3.14) 

" , 
It is interesting to note that Equation (3.13) has exoctly thé ~e,form os (2. i), 

/ ~ 

, . ' 

Therefere, ~aking: of the meth~ of mIls (6,7], and u1in9 ~. opproxima-

tiCJ"l of the current los, -\ 

ï = ~ l -1. F. 
, 1 n I,n ',n 

(3.15)" 

Equation (3.13)' reduc~s'to, 
" 

. , ... 
l l 1. l f. i: 'E" L,.~,~ (3.f6) , n ln .n ton 

'\ 
whe,.&' f. i. a set of. expansion functions, crtd~ 1. are the cQfnp'ex ~ficients 

ln . ' ( .n 

ta be de~nnined. Taking the inner p~ct of Equation (3. 16) ~ith ~ach testing· 

functicn W. , this results in 
lm, -

'c 

.. 

" 

.. 

" .-, 
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~ II.. < W. ,L F. > =<W ... 'ft"> 
,lm an 

(3.17) , 
1 n 1 ~ P lm t n 

i = 1, 2, .. 4' NW 

m ;; 1, 2, ..., ~ E{ il 

, c 

. ' h·~t:i"'4 
whel'e NW is the number of wires ~ ~E(j) ,i~ the number of eMpal'\lUiiIA functions 

a-. the jth Wire. , 
'" 

, Equation (3.17) Cg" be written.as a matrix equotion, 

.. 

. 
\-' l 

[Z] [1] == [V] • (3.18) 

, , 
, . 

[ Z] is eotled the generalbed impec:b\ce matrix, [V] the general fze~ voltage ' 

veetor ar~ll] the generalized eurrent vector. Therefore, the complex c\Jrrent 
1 

, coefficients are given by 
. , 

, , 
, '$' , 

[L]=[Y][V] (3.19) 

, where [y] il 'called the 'generaliiéd acinittanee matrix. 
" 

,; Str4it and Hi~osawé:t [23J used the subseetionol ,point matching 

, tJ 0 

Ameth'od with pulsel QI expCl1sicn funetionl~ Kuo and Stroit [10] end Choa and 
1 ,1,,1 

Strait (2, 3J used Galerlein's method with tri~gulo'r current e~sion functicni. 
. , 

Harr!ngton -and Mautz (SJ-hove lolved 'the lingle stra'ight wire problem using th,.. 
different proeedures. These include point matching with pulses as basis funct~ons,· 

, . , 
'point matchlng with triangle expon,ion functicns, and Galerlel,,'s procecllre with 

• jV 

1 1$ , 

triangle expontion func:tions. They found that, with segments less then Wl0 in . 



r 

o 
J 

e. 

. \ 
, 

• < 

.. 

. . , 

e 

~ 

o 

• 

.. 

" 

.. 

, 
r , 

length, no significCI'l"t difference in results is ~bservëd between the 'Iast two 

met~ods and that they converge about twice os fast as the fjl'lt. " _ 1 

- , 

5ullsectia1ol piecewise sinusoïdal fUn'Ctions [221are used for,'-

. , 

both expansic;n and weighting functions resulting in 0 Galerkin saTütion to the 

anolysis of wire proMems. This is suggested.by Richmon.~ and progf!ÇImmed by 
, . 

Strait'et al. The Neor electric and magnetic fields of wire antennas [29] have' 
~ 

'-béen c:omputed by Warren et al, They solve' the resulting integro-clifferential 
f" 

equat.ion usil"àg subsection~1 point motchinQ,mlth~cIs ~tb pulse curl"!nt expansion 

functions. 

. ) 

~, ' 

3.5 Hallen'$ Equation and Polynomial Current Aèproxima,tion 

" 

P.opovic [T3] formulated th~ in~esiral equ~tiOn fo;the CU~f on 

1 

CIl isolated, -symmetrical cylindricol. dipole of length D 2h • He cCl'ltrder~d a~ 
fun~ti~ ganerotor 9f vol~~e ~~ ~sed EquatiOns (3.3) - (3.4)'~ether with 

Lor6ntz condition (3.8) to ge-t the differentiol eqtlotion for"' the vector potentiel' 
~ , 

A alèng the,antenhe whose âxis coïncides with the z-axis • 
z 

2 1 

jw'(l + 1 
j;2". 

The solutia'l is found to be: 
., 

~) A% = V ~%) 
a% 

1 a 

(> 

~ 

17 

.. A Cl COI kE 
kV 

sin k 1% 1 (3.27
0 

= +. rr;; % • IW 

"''' 

"-

C 
,1 

'"' 

J 

" 

• 

r 
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"; 

.. 
• , • f ',., t 1 

~quatin~ the rip~,t' hond sf~~ of Equati~s (3.~ and (~.21!'.,~e ~~~I~ th~ apprexi-

mate form of the HaUen's i~tegral equation for current alang the dipole. 

,~ 
h -jkR 

V 1 (z') 
e 

dz' o cos kz + sin k Izl -hJ Ir = j;{,() 

4 

(3.22) 
. ... . ' 

~> 

where • 
• 

c = '4.C lu 1 ro. 
.) 

1 
~ 

= 

f 

According to the method of Unc:fetermin~d coefficients, I(Z:) is r.epr,-
~.... { 1 

1.< 

sented by a series of known fùncti~s with unkn~~ complex coefficients. Th~se 

coefficient.s are th en determin~d by satisfying E~uati~ (3 .22)-at as many poInts 
. l 

alang the mlen'na as ore needed to determine these coefficients. 
} , 

It is assumed thbt I(z') can be representedin the form of a poly-,. 
: th 

homial of n order; 

n 

I(z') = l 
m = 1 

4 p 

1 (1 - li'//h)m 
m • 

where 
~ i ~ 

(", are the: campl.~ coefficien-ts to be ~termined. With fhis .çurrent 

distribution functian, Èquation (3.22) becomes 

·f 
1 

(3.24) 

" . . , 

.. 

\ 

. ' 
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Now, let Equation (3.24) be satisfied at the points 

z , 
p 

p == f,' 2, •.• , (n + 1) 

\ , 

This results in (n + 1) complex Iin~ar equations in (il + 1) complex unknowns 

Il' '2' ... , ~ n and C: 

, ~ . . . 

\ 

.. 
1 F (z) - C cosk z = ~,60 sin k Izp r, . 
m m p p 

p = 1,2, ... , (n+l) 

where, 

\ -'kR W' 
h 1 P 

= l (1 - Iz'l/h)mire dz' 
• L' '. R 
-n ... , p 

md 

The best choice of the % points i s: 
p 

, 

z = (p .. 1) h/n' 
p 

, . , 1 

P = 1, 2, ... , (n+l) 

(3.25) 

(3.26) 

(3.27) 

Ev~luati~g the Integrais of (lIa",y numericallY,1 we Ca'l solve the system of linec:r 
,-' '\ 

Equatl~,.(3.25) for '11' 12, ""1 'n' ~ ~ 
\. Pop~ic [J4) used the some approach to get the current distribu-., 

\' , 

.' 

tions on two identicol AQrallel, orbitrorily locot~d thin a'ltennos. Two simultaneous 

--.,f • 

, 

" 
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integral equations for currents '1 (z) and '2 (z) are obtained. Using the method 

of undetermined coefficients, these integral equations con. be reduced to two sets 
,.-... .f , 

of Iinear equatiais for the unknowCl parameters,. • " , 

m = 1, 2, ."! n 

3.6, Bubnov-Galerkin Projective ~thod for Antenna Problems 

• 
This method is intenslwe'y discussed and ~alysed by Silvester and 

, , 

Chan [18, 19]; fhey fou"d that the Most convenJent equation to use is. the Pock-
,- .. 

1 ington equati c?" • , .. 
ln this section, Poklington's equationslor arbitrary configuratiol" of 

.. . " \ 

., 
Consider two wires m and 9. arbitrarily located in spaoe, and of different 

lengths 2h and 2h re-ctively. The following derivation uses the approxi-m M "T'- • , • 
• • <> , • 

mation of making the source point (- s ) on the axis of wire. m and the field 
~ m,", - S 

., , " '..Jf .. '1 ,.' ,'" .,\'( 

point (1 ) on the surface of wire n. Using EquGltionl (3.4) and (3.8), we' gef 
- n ' 

, . 
~~ 
( ~ ",,, (3.28) 
1 

1 
grad div A + 

jw ... 

// , 

whent the ~.tic v~ctor pot~tial ;, given by~ 
\. ~ ,. ~ ~. : 

exp (-jkR ) 
m ,m(s ) mn 

m R 
mrt 

dl m 

'. ;; (' 

Il'. ' 

~" , 

(3,.29) 

.. 

'., 

.. 

.. 

.. 
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The eledric field canpon,entl of Equation (3.28) iA cylindrical 'coordinatel are, 

1 a èA 
E = -'jwA + - ( 0 Il) (~.30) , 
z z jw ... e oz 

1 

l' 
ôA 

Ep 
a ( z • (3.31) = ~.p Ti"'). i w .... ... 

,,'J " 
f' t ,0 

.. 

= (3.32) 
fP 

\ 

éarrying out the diff8renti~tia11 by Js~.,g (3 .29), Equati~s (3.30) 
i \ 1 .. . , 

end (3'.31) are reduced to ~ 

... 

~ h f, 

~ • .., 1 f '.. rn,. 
• E =. J' 
~ p . 

\

0 '-h-
" m 

1 • 

• c 
' ... l'T "-

, 8Xp.( -jkR' ) 
(m (1 ) 1]"0 

m. ~ R5 , Iwe .. 1r 
, lm 

'\. 
j. 

• (2R2. (,1 + °k'R ) 
~ 1 rnn 

• 
(3.33) 

2 2 '2 2 
(p + a ) • (3 + i3kR - k R ) J d s 

n" . mn mn m 
.\ 

r 
(p(z - 1 )(3 + i3kR - k2R2 ] ds 

m mn mn m, 

1 . 

(3.34) 

Substitut .. (~) a6d (3.34) i"to ... /' ' . 
.. 

'. . 
0' l (1) = fJ E + i. E 

" p z 
(3.35) 

1 • 

J \ 

.. 
.. , 

. ' 

1 

" , 

J ' 

"lo ... .. 
,.' 

'" 

,-' 
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• 

and then take the dot praduct' of the resulting equation with n, th~ tangential 

ton . 
electric field E (s) on the surface 'of element n 'Clue 'to element m is 

nm' n 

h 
m 

= jwe4w _h J Im{sm)F{sn,sm)dsm 

• m 1 

where ,":' (s ) is the current on element /'n, and 
m 

v 

"F(s , ~ ) = 
n m 

R
2 

{x = 
mn n 

exp (-jkR ) 
mn 

, 
+ (R • m)(R • ")(3 + i3k~ • - k2R2 ) J 

mn mn mn fM 

+ A A 
- 5 

A ·G,l + (Yn - x s x • n x - y 
m n m m 

,. '" '" ",)2 (z + s Y' n - s Y' m + - z + 
n m n m 

,., A)2 +: 2 s' Z' m ; a m . " n 
/ .... / , , J 

, '( 

.. .. 
s z • n 
n \ 

f 

, 

(3.36) 

/\ 

(3.37) 

" 

(3.31) 

(x'''ï y , Z ) CI"Id (x " y , z ) ore the cOf~esjan coordinotes of the centres' of 
n n n m m m 

elements n and m respectively, m CI1d n. denote unit vectors direct~d olong 
1 

the axis of m and n respectively, a is the radius. of element n. To app~y 
n 

t 

• 

1 



.' 

, . 

l' e. 

23 

the bOU1dary condition, we con use Equation (3.3) on the wire surface at 's • 
n 

Using Equation (3.36) ond considering N wire elements the Pocklington's 

equations con be obtained . 
• 

N 

L 
m = 1 

,m (s ) F(s ; s ~s~ + il . Eim 
(s) = 0 • 

m n m m n n 
• 

jwe 4 .. 

" 

(3.39) 
n • 1, 2, ..• , N 

.. 
1 

If we,apprc»simate the current in (3.39) by the finite ~t of linearly . 
Independant basi. functions 

1:" (s ) = r I~ fol! (s ) m, m (3.40) 

Equatidn~ (3 :39) becomes 

I~ fp(s )Fh,s )ds =-jweA ,rim(s) 
""m nm m n n 

nr ..... N 

(3.41) 
-

where ~ are the unkn~ complex coefficients to be '~termin\d. ' 

, \ 
Using the imer prociJct proiection of both ,ide, a~ (3.41), onto-

. ' 

subspoce tpanned by the ba,ls functions, EquatiQ'l (3.41) results in 

1 

./ 

1 
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'1. ' 

<0 , 

\ 

1 = h " 
J -h 
n 

h 
n" 

[ J 
-h 

n 

<) 

/ h 
m 

f.{s ) J 
1 n -h 

m 

.... 

... . -im ) f ) n • E ($ • (s d s 
n n 1 n n 

, i = l, 2, . ~ ., ~ 

n = 1, 2,' 00" N 

Equation (3.43) ean be put in the matrix form 

'if -' 
\. 

[l ..... ] [1 111 ] = [V .• ] ,'--
1 .... l, ~ 

'ô 

\ 

J 
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• (3.42) 

. (3.43) 

~~ .... ', 0 

where il =; + (n - 1) L, : 1 =: + (m - 1) L, [Z],1 [1] and [V] have the sorne 
r 

ryteaning as' in Seetioo ~.4. Therefore, the' Bù&o~-Gcrlerkin solutioo is gtven by 

= [y.. ...) [V o.] 
1.. 1 

(3.44) , 

where zed oanittanee motrix. 

l, 

3.7 Treotment of Wire Junetions 

r 

Using. trjatgle expansion' funetions, Chao ond Strah [2] showed 

1hot 0 junetioo of N wi,.s eern be treoted as 0 problem involving N open ended 

wires with N - 1 averlops. Henee, N - 1 triongle expansion funetierns O\ferJap 

the iunction. This treatm.at has been used in suceelSful studies of'severc;ll rcrcRcr-

tion crnd lCc;tttering' problems [27). 

• 1 

"1 
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Of course, junction problems can also be handled'with other sets 

Qf expansia1 fooctia1s including pulses. Sayre [17J expanded tlle current in 

tenns of pulse expansion functlons properly positia1ed on the wire object such 

that the current is forced to zero at the wire ends. In the vicinity of a junction, 

the pulse expansia1s for the current on each ~ire are positia1ed such that each 

pulse ends at the junction. The continuity equation in its integral forYJ1 is con-
, 

sidered near the junc.tia"l. It relates the total junctfon currerit to the charges a1 
.' 

the wire segments forming the current. 

Butler [2J established Hallen's integral équations for the skew 

crossed wires and used the method of moments to solve them. the complex 

ooknowo coefficients of the current are recklced by equating the currents to zero 

at the ends of the wires. An auxiliary equation, in tenns of the unknown coeffi-
'~ ,~ 

, < 

cients is obtained by equating the sum of the currents at the junction to zero. • 

Solutia1 of the algebraic equations results in the determinatia1 of the current 

coefficients. 

PracticQlly, the use of the methocl proposed by Chao and Strait 

i, somewhat Inca1venient. ft requires that near the junctia"l of N wires, over-

laps of two Mgments mUlt be included for (N -1) of the wires in the geometry 
l 

inputted ta th. program. Sayre'. method ulÎng pulles i. a low conv~rging a1e 

with respec! to other methods. ~he method of handling wire junctia1' proposed 

by Butler il restricted ta ,skew crossed wires only. 

Howev.r, a limple and general methocl to cIeol with w;re junetiOns, 
" 

p"-ted by Silve.ter and Chan (J9J, will be discuued later. , 
• 
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This was a brief review of the various numerical methods that have 

been employed in the solution of wire antenna and scatterer problems. Methods ... 
for hCl1dling wire junctions were also included.. The Impressed field was consjdered orbi, 

, " 

atbitrary, h.~ce, both radiation and scottering pr9blems éan be solved. 

, . 
, 

.. 

, 
4\ 
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CHAPTER IV 
! 

SOLUTION OF THE INTERCONNECTED STRAIGHT WIRE PRO~LEM 
f' 

BY NEW TRANSFORMATION TECHNIGlUES 

27 

This chapter is designed to provide the complete defoiled onolysis 

for solving any w ire antenno or scotterar struc ture. 

The ritain purpose is to follow some new transformations to get the 

currént distributions 00 the wires of 0 scatterer structure. With these new treot-• ! .; 

ments, difficult problems thot have never been solved before, a're easily anolysed 
~ 

thr.ought this chop~er. The some approoch can be used with wire ant~nos. 

, 

· 4.1 F~rmulatian of t~e Self and Mutual Impedances of Two Arbitr~rily 
Locoted Stroight Thin Wires ... 

, 
Consider MO straight wire elements m and n, having rodii a 

m 
, 

"and 0 ' and langths S and S respectively, arbitrarily locotèd in spocelifas .. 
n m n 

shown in Figura 4. 1. f 
.. 

Let these wire lengths and radii He-such that S,J,/o» 1, Sni 0 » 1, 

~ «X and 0 «)., w~ ). is the wovelength .. m and fi are unit vectors 
m n '* 

dlracted olong th. axes, and~iving th. direction of curr..,t flow of m'and n 

respec::tivèly. Cansider two elements d s and d s on m CI"Id n ot distances 
m,' n 

s CI"Id s from (x , y' ,z ) and (x ,y' ,z) respectively. cf s is the element 
'·m n mmm", nnn m 

where the point louree il locoted Qnc:l d s is the element whera the field ~Int' is 
n 
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, , 
locoted. 

The tangential electric field Q'l the surface of element n due. to 

m 
a current 1 (5 ) flowing 00 the axis of element m is given by Equation (3.37). 

• m 

~ . S 
_ Eton (s-) 

nm n 
1 

::.: ._-..,.-
i w~ 4" 

, m 

~ 
(4.1) ~ 

," 

where, J" 

~(s ,s ) = _1_ exp(-ikR ) [~ . n R2 (-1 - jkR +k2R2) 
n m R5 -../' mn mn_ m n m n 

mn 

'i 

(4.2) 

and 

A 2 lA. '" • 'lA A 2 
. m) +, (y - y + s. y,- n - s Y' m) 

n mn- m 
= (x - X + S x· rÎ - 5 X 

n m n m 
t .. 

. + 

() . (4.3) 

" .' 
k = wave number ,0 

E = permittivily of the mec;fium . ' 
v. . ~ . . 

= distance between 'the field point on the wire surface and the source R 
mn 

poinA' on the wlr~ axis •.. 



.• , 

# 

-

d 

" 

The mutua,'impedance (referred to cu~ts ,m . , max 
n and ,~ ) 

, max 
r ~ l ' 

"between the two wire èlements m and n of Figure "4.1, con be determined bt 
\ , 

" ' the ~ known induced' emf method • 
.. 

Z 
nm 

- l ~J tan n* '., 
E (s)l, {.s)ds 
nm n ' n n 

(4 .. 4), = ---"-----
o ' 

w~ere' t, 

,n (sn~ = induced current CIl elèment n 

, , 

II~ 'and I,n 1 ore fhe'rnÇJgnitudes of the maximum "currents on e'ements 
m?x . max '. 0 . ' 

1 

m "and n respeëtively. 
l 

By substituti~g Equation (4.1) into (4.4) \Yi get 
"'. -, 

'- 1 
Sm Sn 

• ,. m n 
= z , nm 

iwe4wll
m 

f 
max 

J. 'J' F(,.}"s) 1 (S )l~'{s \d s d s 

lin 1 -0 O· n m m ri n , m . 11 

m9x . . 

, . 
'-

, (4.5) 

" / g 

. Approxlmate 8ach'Of the unkl"lown ~~r~ts lm (s~) ~~', ln (sn)' by a ~ . , 
finite MIt of lineorly indepen~nt interp~tÇJtive balil functiorrs iAOth~ form, .. . , , 

1 , 
M 

1 ,lm (1 ) 
.... 

"L 
\ 

0m f (s ) m m m 
" m=l 

, ., 

N Î , 
r ' 

l {' (~n) = b l. (s ) 
n n n 

1 n=1 ' . " 

. 
'. 

'e ", 
r 

~ 

30 1 
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If 
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\ 

r 

i> 

• 

, 
~ . 

'. a 

where 

. r ' 

. M 'CJI'fd N a.r.·number of ,t~rpolatial nodes for wires'm and n, 

fm ood ln are polynantia~s, 

a and b ore the complex cu'rrent coefficients to be determined. 
m n 

Therefore, Equation (4.5) con be written os follow5 
'~ 

Z 
nm 

M 
-1 I, 

m=l 

f (. ) l '(<$ ) d s d.s ) b * 
mm)"" "mn 

) 

,$ 

a (rp 
m OJ 

s 
" JF(5,5 ) 

o "m 

v . 
'( If"we define the coJumn. vectors .' 

',. 

( '. " .. 
A = '- . ood . 

G, 

~ 0 

aM 
'~ ,. 

, ~ 

h 
\ 1; 

, . 
1t and 8 ... q 

/' : 
/' r , .3 

"' bN 
,,~ 

.. 

. ' . .. <, 

<, 

'., 
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the matrix P whœe élements ore 

~~--
p 

mn 

," .. 
F (s , sm) f (5) li (s ) d s d s 

n m m'~ n n n m 

the mutuol impedonce of E~ation (4.6) con be put in matrix form " 

z == 
"m 

, 

- 1 

jWE 411" 'lm Il'" " 
max max 

... 

(4.7) 

(4.8) 

The self impedance l of e~ement m should be equal to the 
• mm 

, 1 

mutual impe,t."nce' Z _betw~.p-. w-{.,d m when n = m, and l. (s) = f (s ), 
-'1' nm -- -- 1 n n m m 

md whe~ the' kemeJ (4.2) of the matrix eiement P reduces ta [19} 
mn 

1 

F(s ,s) = 

.f1~ 

exp( - i k R ) .. . 1 

. mn ,,+'kR ) (2 R2 - 3 a
2

) +lè?a
2 

R
2 

] 
, RS 1 *"'" mm m , m mm 

mm . 
/1 1) 

t 
(4.9) 

where 

R2 = (s' _ s )2 ~ a2 ~ 
mU' m\ mm. 

(4.10) 

/" 

Therefore, 'the sllf Impedance CCl'l be ~ritten as 

Z 
nm 

al - 1 . AlpA. 
• 4' -~m "I~: Iw.e ... max 

(4.11 ), 

Co .' 

• 
Jt is clear that the entri~$. P~ .ta .p in Equations (4.8) arld (4.11) 

are exactly the some matrix elements ~f Z in Equati~·(3.~3).' D.te~ation af 

" t 

t 

, . 
• 1.' 
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, ... 
these entries is discussed in the next section. It is 0150 clear that the eomponents 

of vectors cA and B in (4.8) and (4.11) are sirhilar to that of the unknolltn vector , , 

'"' [IJ in (3.44)'. .) . , 
'II .. ,1 • 
Therefore, the detennination of the comple)Ç' current coefficients 

and hence the self and mutual impedcinces requires th~:ao~ution ~f'the system (3.44). 

4.2 Determination of Motrix Elements 
");' r. 

From section 4.1, we conclude that the c1eterminâtion of the .eH 

and mutual impedonces depet'ids entirely upon the entries P to tbe matrix' P. 
mn • ' 

(, 

eref6re," evaluation ofI.,these motrix elements is needed. There 9re severa' , '. 

le situations ta bé examined independen'tly. 

.... 
\ 

4.2.1 Source and Field Points on Separate' Wires , 

, • 
When the source point and the field point are on separate ~Ii.es, ' 1 

• • 1 • L--

as shawn in Figure 4. l, F (5 ,5 ) given by Equation (4.2) is 'Continuaus and finite 
~ n m " .. 
everywhere. Sinee the integrand uf (4.7) is smooth, the double'integral e$l1 .. ' 

< ~ 

eosily be evaluated numericolly by double Gauss-Legendre quadrature fÔi'mulae 

1 r 



e 

( 

• 

• 

, " 
.. __ 1 

\ 

• 

,This coulel, ~valuated to give 

1 J 

l I 
i=1

9
j=1 

p 
mn 

= w. W. K (s ., s .) 
1 1 nI ml 

(4.12) 

. . ~ , , 
where 1, J are nu&. of quadrature nodes to perforrn the integrations with' 

q 

respect ta s,and 5 respective,ly, and n m 

. 
< "\ K ($ ,s ) = F (s ,5 ) f (s ).t ($ ) 

nm nm mmnn 
1 

~ 
J 

(4.13) 

The number of quadrature nodes required depends cd the degree of 

" 

the current approximating polynomials as weil as the distance between the wire 

elements. For example, at large distances, the integrand i~tooth, hence fewer 

quadraturel'Iodes .are needed. 

4.2!2 Source and Field Points on the Seme Wires 

, t# 

When the source point and the field poi'lt are on "the same wire, 

asshown in'Figure4.2(a), F(s,s ) isgivenby Equation (4.9)CI1d R by 
. n m Mm 

(4.10). Here, the integfœd is finite but varies .very rapidl,y as s df'proaehfts 
m . 

- ) ) 

s· , whef:\: becomes équal to the wire radius a .. This wire radius i. às'sumed 
m m~ m 

. \ , 
to he very Il • 

8y using sinHiar transformations to those 9iven by Silvester and 

Chan ,'[18 ], . 

P, 

.' 

1 

1 

1 
1 

1 

• 1 
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" 

x = (s' .. s Vs ' 
. m m m 

" 

together with 

't J 
2' 

dx dy == ~ d s d s' 
S~ m m 
m 

J Equation (4.10) becomes 

This transformation is iIIustrated in Figures 4.2(b) and 4'.2(c). 

Equation (4.7) then becomes . , 

0,. 
p 
mn 

= J 
-1 

36 

(4.14) 

(4.lS) 

• 

\ 

• 

, J 

l ,> exp( .. i k S R) . ., 2 2 2 2 2 2' 2 
+ m [(1 + • le S RM2 SR .. 3 Q, ) ~ k S R a J • 

Q J 55 RS 1 mm, '. ~~ , 
m 

2 .. x ,. . -' 
,S S S- , .. 

m m m f J lm ((x+y) T) "n'~-x) T) T dy dx 
x 

(4.16) & 

, , 

• 

& • 
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where ( 
~.17) 

Put x' = ~ in the ... cend integ",1 al the fint tenn in ~.~U~ion (4.1~> 
reduces to " 

P mn = oli .~ l
R5 

exp(- jk Sm Il)((1 + jk Sm R)(2 S! R2 -3 a!> + k
2 s! R2 

0
2

] 

m 

(4.18) 
.. 
Substituting~ z = l.:.!, .. 1 and dx th = -11 cIx di in Equation (4.18) relUits in 

r -x -x 

./ P mn 

s s 
+ f f(y( 1 - x). + 1 + x) rm J f f{y(' - x) + 1 - x) Tm J J dy. dx 

, m n --.J. . 

, (4.19) 

. , 
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With these transformations, the kemel in the final Equation (4.19) 

is independent of y and is ~Iy a f.unctiat of x. This kemel is nearly singular' 
\ 

when x equals zero, while it is smooth for ail values of lit at a given x. 

Integration wit"-~ct to y is carried out using Gauss-legendre quadratures. 

Integration with respect to x is evaluated using Gouss-Christoffel formula [4) , 

h [ 2 am 2 ]-5/2 - . 
wit weiqht function x + ($ ) , speclally coostructed for the purpose. 

, . 
m 

4.2.3 _,Seurce and Field Points on Two Connected Wires 

~Ity usually encountered by antenna engineers is the 

solutiOn of the two cennected wires problem, espe"cia'lIy if these wi'" form very 

/ small angles. This problem has been solved by mony of them [1,2,3,17], but 

it was restricted to a certain angle or a smoll r~ge of angles. Chan [5] suggested 

an elegant approach to solve tne wires at a junction. lktfortunately, this approach 

is inaccurote when the wires ore unequol in lengths and radii. It can be more 

efficient, ooly when wires of equol lengths and radii.?re used. Thii restrictioo 

together with the small range of angles that can be treoted, limit the usefulness 

of this approoch. 

Here, a new method ,for treating this problem, wÎth w~res forming 

any angle--whatever it could ~e-is carefully disc:ussed and analy~~. This 

method il general in the sense thot il' can analyS:8 the problem when t'wo wH·es of 
~ . 

different radii and different lengthl ore joined at any angle. 

Conli,der two wires m and n coonected ot one end and fOtming 
) 

CI1 angle 9. At this end the t'wo coordinates (x y z) and (x y z) 1 1 l , ,m m m n n n 

j 
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are eqvi~alent. The wire radii ore a , a md lengths S and S respectively. m n mon 

m md n denote unit vectors directed 0lon9 the oxes of m md ft, and give 

the reference di rections of current Flow. Also, consider two elements d s Cl'\d 
~ m . 

d s on m md n at distances s end s , from the junction respectively. 
n m n 

Referring to Figure 4.3(a}, the arrows give the reference directicns 

J 
of current flow. The di st'ance R between the fiel d poin t s and the source 

mn n 

point s is given by 
m 

2 2 2' 2 
R = (s + S - 2 s s cos 9 + a ) 

mn m n m n n 
(4.20) 

~ 
The integrals of Equations (4.n have a near singularity when both 

m 
CIld s 

n 
approach the junction point. It is possible to rewrite expression (4.7) 

using the following trensformation 10 as to limplify the Integrations CQ'lSiderobly. 

Set 

9 9 
x sin - sin ~ 

»- 2 

= 
9 9 

Y cos -2 ·cos -2 

with this trauformation, Equation (~.20) becomes 

and the elementary orea in the x·y plane is, 
b 

• dK dy = sin' d s d s 
n m 

~ 

s 
n 

(~.21) 
s 
m 

o 

" . (4.22) 

(4 .• 23) , 

• 

, 
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ond the limits of integrotial in s - 5 
m n 

and x-y plClles ore shown in Figures 4.4(b), 

4 .4(c} • ~\ , 

Numericol integrotioo 'is theTonge S, <, s ~ S , the shaded area 
m n n 

in Figures 4.4(b), 4.4(c), should be easy since the integrond Is smooth and the 

o 

kemel functiOA i'S cootinuous. A cartesian product of Gauss-legendre quadrature 

formulae con be vsed here •. 

.. 
S S 
n " m' = j \J 

Sm 0 

K (s ,5 ) d s d $ 
n. m m n 

(4.24) 

this could be written as \ 

J 
p -
rtln2 

\' W.W. K (5 .,5 .) 
'1 nt ml 

(4.25) 

i :: 1 i:: 1 

where l, J are nUl')'1bers of quadrature nodes required to perform the integratian 

in 5 and s directioos respectively. K (s , s ) is given by (4.13). 
n m n m 

, " , 1'" 
The troublesome region, regian 1 in Figure 4.4(b), occvrs/in the 

.< , 

vicinity of the singulority. In this areo, P con be written as 
. mn 

where 

p 
mnl 

S 1 ;r;r g (5 ,5 ) d s d s 
n m n m 

mn 

, . 

9 (s ,5 ) = R5 
K (s ,s ) n. m, mn n m 

( 

(4.26) • 

(4.27) 

4, 

.' 
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\ 
~r' 

'. Divlde thll regian of inl~"'II ... inIO'1t-.A) and (1-8) ond use the 

trcrasfolTrlotion , 

~ 
tcgettier' wi th 

, ' 

x = r COl~ 

(4.28) 
l' Y '= r sin q) 

dx dy = r dr d., , (4.29) 

~inin~ (4.21) and (4.28), the C(.~lele' I"",slonneli"" of . ' 

coordinotes bec anes 

r - 9 r 9. s = 2' casec 2' cOs" + 2'18C 2' Sin OS n 

r 9 - r 9 1 s = 2 cosec ~ COi ft - -sec-sn., 
m 2 2 

and Equation (4.22) reduce, to 

o 

, 2 
R 

mn 
2 2-

= r + Q 
n 

To flnd the Ii!"ib, regia'1 1-~ Ji bounc::led by OS = 0, .s = ( ... -8)/2 Ql)d 

9 -1 9 
Y = -cot 2' x + 2 c l Sm 

or ~ 

'0 lin" = -col ;(,f fil + 2 COI; Sm 

~ 

~ 

--~ 

(4.30) 

(4.31) 

(4.32) 

(~.33) 

42 
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S sin 9 
m 

r = ---r,-"""x~ 
o .. tr) 

CO~ (tp ... 2" 

" 
43 

.(4.34) 

'Using (4.23),' (4.29) through (4.31) and Equation (4.34), Equation (4 •. 2'&.tie1ds, 

,..-9 
P 1 

mn 1 = sin è -rr 
~ 

t,e=O 

r 
• 0 

.~. l 
r=O 

1 . 

• 
[g (r,9') + 9 (r, -ft) ] r dr 

Again, if we con~ider the foll.owi.n~ transfo~ation, 
\ 

Equation (4.35) becomes 

Q .. 

~. . " 

dr-\ = r ch o 

d" ~ 1 J ~ 2 
i-o .: (z2:" f )5/2 

ro 

[g {r i,,,> + 9 (r z, .. .,>J -!- z di 
o 0 '" r . 

o 1 

{ 

(4.35) 
.. 

Q) 

"" 

) 
< 

.. - .. - (4.36) 

(4.37) 

(il 

" 
• 

(4.38) 

1 

,',1 .. 

:. 
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The integrafion with'respect to ., now involves an int~,grand 
, \. 

bounded ana continuous throughaut the region of integratran. Thus~ it canobe 

, ; 0 '. 

carried oyt using Gauss-Legendre quadrature formula. Thè integration with respect 

to z , whose wei ght function depencfs on r and ~enée on ffJ, varies very rapidly ~ ",\ 
\. ' , 0 • 

" 0 .. 
near z = O. A Guass-Chrisft)ffel quadrature formula with weight function 

is used. 

r , 
2 

(z2 + i-) -5/2 
r 
o 

This approach requires generatian of as"ma.ny special quadrature 

formulae as there.are nodes in' the fi' direction." Si~ceJls nurnb~r midtt be.of the 

arder of 4, no fundamental difficulty arises. 

For more general solutions, two other cases have to be considered 

according to th~' direGlions.of current flow~ The transfol1l1Qtions used béfore are 

exactly the lame, but the si.n~lari~Nts appear at èfifferent Positions in the s - • 
.> • ~ m n 

plane. TheM 7illustrated in ~igures 4.4 and 4.S •. 

, . 
4.2.4 Source and Field Points on Two Collineer Wires 

This c~se il' usually encounte~ in practice, especially in,multi-. . 
dimen'sional wi.re structures. A vertical wi~ in the presençe of an infinite ground 

plane': cou Id allO he ..n..lysed as Iwo colll~r wl~;' ~1)Ipe of pioblem.ha. ~ 
tolved by many research worken in this .r8O.., The most interelting IOlution is tha~ of 
. -~. \ 

.... ~ fl 

Chpn [5]. Again, hi, method ln the special case of two collin~r wH'es, r. reJtrltted 

1 
1 

1 

, 

i 

1 

1 

~I 
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8 
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Q -
TrCl'uformotiert from (s - s ) Plane to (x .y) Plane, 

J m n . . 
u~d fQr th~ Two Conneded Wire Problem of (0). 
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1 

to equol lengths and radi i. 

A general and elegont approach to solve this type of wire structure 

is prese~ted here. This;$ generol i'n the sense thot collineJ wires ~f unequal todii 

a'nd 'engths con be efficientl)'>analysed. 

\ Consider Figure 4.6(a) whe[e the two wires n' and m Qre col-

~'inear of unequal "engths Sand Sand radii Q and a •• The~nts, in 
o m n m n-

opposite directions are directed towards the free ends. R is the qistance between 
mn 

the $Ource point s and the fjeld point 5 • 
m n 

.. 
1 

(4.39) 

Area (2) of Figure 4.6(b) has a smooth integrand. Gauss-legendre Formulae in both 

s· dnd 5 dir,ctions ore' used. . 
n m 

The singularity of (4.7) appears when bO'th sand sare equal n m 

ta zero. The following transformation Js used to ah ift the singularity in only one 

direction, as shown in Figure 4.6(c). 

,Using 

u = (s + l' )/5 
n m m 

v = (s - s )/5 n m m 

, f -" " ' 

(4.40) 

• 

r 

, 
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• 
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" 

... 

• 



/ 

. 
.( 

• 

49 

") 

'" • 

together wlth the element of area ,- . , --

. 
.. <1 ~J 

du dv 
2 = 
~ 

m 

Equation (4.39) becomel " 

(4.41 ) 

• 
and ihe double integrals of (4,7) in region 1, P lM l' of Figure 4.6(b) il . 

u=l 

p mnl = l 
u=O ' 

v=u 

v=-J 
1 

g (u,v) dv du , 
u=2 

+ l 
u=l 

v=-u+2 

l 
S2 
T K (u,v) dv dù (4.42) 

v=u-2 

where K (u,v) and 9 (u,v) are given by (4.13) and (4.26) respe9tlvety. 

The int.grand of the second term of (4.42) il smooth and continuous 
------~ 

'". --- ' . 
everywhére, 10 a Gauu-Legendre fonnula is used to carry out the Integration witt, 

,. 
respect to' u. The integration \yith respect tG v is evaluated ~sing a Gauu-Legendre 

, . 
1 

formula at each quadrature node in the u direction. 

The reglon of Integration of the fi,..t 't.rm in (4.42) contains the .. 
singularity. Gauss-Christoffel is used in the u direction, and Gauss-Legendre ln 

the v direction il aiso evafuated at each quadrature node in the u direction. 

/ j' 
. j 

,.. . 

, , . 
, 
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When twq col~near wires are carrying current. in the same direc-

tion, Figure 4.1(a), Region (2) of Figure 4.7(b), is handled al before, wh~le Region (1) 

is treated as follows. 

ln this case, 

(4.43) 

• " 
Using the .following transformation, 

and the element of area (4.40), Equation (4.43) reduces to the expression (4.~1), 

and P rm 1 can be easily deriyed. 

/ 

v=u+2 u=l 
= l 

u=O 

1 

27" 
m 

1 , 
9 (u,v) dv du l 

v=·u+2 

1 

u=2 

-+ f 
u=l 

s'i 
m 

"2 

y=-u+4 

l y=u K (u,y) '* du (4 • .45) 

.. 
Ey~lation of the ,inte9f'Ols, oppearing in ( ... ..s) i. exactly the lame QI explained 

aboye. ,. 

\ . 
... 

. 'll' \ 
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\ sr 

.. 
Another case of interest, when the curren~ are directed towards~ 

the junction, al shown in_figure 4.8(0), is consideree! here. In the present case, 
\ 

. Region (2) is treated as before. In Region (1) we have to use the transformation 
, -

(4.40). Thus, P mn 1 has the value, 
, . 

- 1 1 p = 
rml 

v =1- (>n - U)J 
m . 

v=u-2 
~ . 

r 
" 

b2 
9 (u, v) dv du + f 

u=b . 1 

K (u,v)dv du 

m 

v=u 

2 J v=- u +-r-(5 -5 ) 
~ n m 
m 

where the constants b

" 

b
2 

and b3 have the values 

1 
b = - S 2 S n 

m 

b =..l.. (5 + 5 ) 
3 S n m 

) 
m 

. 
The .. integrals are efficiently evoluated a. Equation. ( .... 42) and (4.45) • 

.. 

(4.46) 

-, 

\ 
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_ 4.3 Determination of the Excitation Matrix 

\? The solution of (4.8) requires a know'edge of the co",!plex currant 

coefficiehts. These can be determined by solving Equation (3.43). In this equation, 

the right hand side 

5 
, n 

R.H.5. = l 
o 

-im ~ 
ft • E (s) f. (s ) d sn 

n 1 n 

" 

i = l, "', l(n) 

n=l, "'1 N 

th where l is the number of interpolation nodes of the n wire, 

NI is the number of wir~s, " 

(4.47) 

is gen~' in the sense that both radiation and scattering may be considered. Here, 

the soiution of the Icattering problem is obtained by taking the impreued field Eim 
. . 

, 

of (4.47) al the incident electric field. (4.47) should be evaluated for N wires 

at L(l) + t(2) + ••• l(N) nodes. 

Consider, the wire shown in Figure 4.9(0). The wire end coordin-. ~ ,. 
~ . -

\ates are (xl IYl ,zl) and (x2 'Y2,Zt and the current flow il indicoted by the arrow. 

Also, '~t UI toke a linearly polarized:plane w;atravelling in so!M ,arbitrary direc-

tion ft with respect to the cartisian axes. «"is illultrated th Figure 4. 10. The \ 

i,pressed field 
i ' , 

eim . •• • b at a polOt 1 on wlre n, Il glven y 
n 

! (4.48) 
\ 

where T 

2 'Ir .-

k = T 1 the wave, number 

J' 

\ 
). 
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r=x â + y â + z â 
n x n y n z 

x y z are H\e cartes ion 'coordinbtes of s n' n' n n 

El and E2 are ~ electrié field compenents in û1 and û2 directions respec­

tively. They are normal to each other and-lie o,n the-plane of the wave. 

û- is the unJt vector normal to the plane of the wave and can be expreSled, in 

terms of the unit vecton â ,â ,â as 
x y z 

û = cos A â + cos B ô + cos C â 
x 'y z 

A, Band C are the Qngles that the un it vector ri makes with the positive"~, 

y and z axes res~ctively. 

The dot product of rand u has the value , 

û • r = x cosA +. y cos 8 + z cos C 
n n n 

(4.49) 

'\ 

If Elis equal to zero, the wave is linearly polarized in û2 direction. 1 
. If E

2 
is e~ual to zero, the WQve will be polarized in 0, direction. Howe ri . ~ ... 

""\ .... 
if El and E2 aœ both real or complex. with equal phase, we have 1 inecr polariza-

tion in the direçtion (tan -1 i wi'th û1) of th~' r~ltant (/E~ + E~ ). 
1 

1~~'~l"'-and E
2 

are both complex vecton having the co:~nents -El 1 El ' El:\' 
'.' x y Z :\ 

and E2x, E2Y, E2z 
in the x, y and z axes respectivèly 1 they can be represe~ted 

by " 

• 

. . , 



, 

-
\ 

• 
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11 = EIx a + Ely a + El â ' x y Z % 
, , 

(4.50) 
Ë2 = E â + E2y ây + El â 2x x Z % 

With this choice, we can moke our scattering analysis more general and hence it 
, 

can be used for linear, planar and three-dimensional wire structure. 

Substitution of (4.48)-(4.50) into (4.47) we get 

S 
n 

R. H. S. = C . 'rl::4xp (- i k (x cosA + y cos"8 + z cos C)] f. (s )d s o Ji n n, n ,In n 

, ? (4.51) 

where the constant C is given by 
• 

x -x y -y . % -z 
C = (1 2 ) (E _ E ) + (1 2 ) (E - E > + (1 2) (El. - E2z> 

S lx 2x S ly 2y S .. 
n n n 

1· 
arid Xn ' Yn 

and % can be expressed in·terms of s as n n , ..?- xl - x2 
x = S S 

A n 
n 

iIII 

\ Y1 - Y2 

\ Yn = s 
S " n 

%1 - z2 ,. z == s 
n S n 

n • 
This il illultrated in Figure 4.9(b). Makjng Ule of the following tI'Cmsformatr&, 

t 

( , . 
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(a) 

, 
~, 

j'" 

P 
l 

FIGURE 4.9- (a) A Single Wire. 

(b) Interpolation Nocles. 
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, , 

(4.52) , 

Equation (4.51) becomes 

1 
R.H.S. = S C 

n J' o 
exp(- i kT) f

1 
(5 s) d 1 

, n n n 
(4.53) " 

where 

The integrand of (4.53) is smooth, thus the integration is efficiently 

\ evaluated by Gauss:legetlàre quadrature formula. 

Now', substitution of the results of both sectiQns 4.2 and 4.3 
~ . 

into (3.44), (3.44) çan he easily solved for tf\e unkn'own current coefficients.' 

However, reduction of the number of unknown coefficients can be obtoined as 
'\ -

exploined next; { 

" 

J 
4.4 Current Distribution on Interconnected Wires 

Althou~, 0 cemplete a"al1Sis to deal with scattering by arbi­, 
trary configuration of wires has. been..given: yet the present thesis aims of th~ solu-

o • 

, tion of interconnected wires of .orbitrary orientations. At any iunc~on, we have to 

sotisfy Kirchhoff's current law. This can be'achieved by followingtthe treatment .. , 
1 

us8d by Silvester and Chan [19]. . QJ. 

'-

1 .. 



·-

!' 

( 

( 

, , 

• 

" 

Consider a junction of N 'wires as shown in Figure 4. 11. let 
) 

th 
l(n) be, the number of interpomtion nodes on the n wire, the total number of 

nodes is 

N" t 
\ SN n~l l{n) 

/"-\~ 
:::: 1< " 

\ 

To satisfy Kirchhoff's current law at the junction of figure 4.11, we . 
, ... ' 

have ",' 

! ' -

60 

151 + 152 + •• ••• + ISN = 0 (4.54) 

where ' 5' is the current coefficient of the rast node of the i
th 

wire and 

~ )'" 
, . '" ".JI ·f 

""..,. SI = ~'. t(n) ,~ 
JI ",,\, l ,,~ = 1 

" , t.- \ ' \ . ) 
!Equation (4'.51) r_~~uctS the number of unknowns by onen. ~ , 

/ ~ . 
, \. 1 Thë re(ëtion between ~ interpolatiôn coeffjcients of the conjoint st~c-

1 ~ • 
{j fi' ..,.. '- ~ 

\ -fu"re and ~at df the co,';ponding diSjOint. strueh,re con be obIGined if we eons~., 

(4.54) as a mapping of the SN ,- 1 unknowns of the conjoint structure inta the S~ 
~ 

-, 

, 
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) 
(-1) t in the last row is located in the S 1 th colunm and the last (-1) 

• , th . ' 
SN column: 

The IT,IOtrix eit,:,otion of {4.55) is 

(4.56) ) 
'\ J ,..l't.... ........ 

Substitution of (4.56) into (3.44) of the_disioi~t 'structure, and premultiplication by 

T 
C 1 we get 

(C T Zdis C) .eon ::: CT Vdis ~" ,(4.57) L 

or 

(4.58) 

-
where 

(4.59) 

~ " 
Vcon f CT y:Jis ()(L. 

Equation (4.58) i~\'ved 10 get the un~urr:'t co.ffjci~" 
(4.60) 

'l' '2' " ... 'SN-I'\ 
Thus the current distributions con be ob~~ined. 

.. \ 

·4.5 Far~Field and Ratlar C~-section Patterns of Interconneètec:r Wh ... 
ft j " - , 

Once tht.current distributions on the wi,as "are known, the for 
--~~ . 

field patte~ and hence the radar âo .. ';sectfon patte;.m-ore ~Jily~determin~. H~re, , 
\ -

1 /J' 

l, . 

o 



a (J 

the approach de~ived by Chin [5] is briefly discussed. G. ' An arbitra,ily locatad wire of length 2hm is considered. The 

coor(finotes of the centre is (x ,y ,z ). Its unit vectar is, 
• . m m m 

. m = ~ casa cos~ + y c"(.' sin~ • + z sina 
m m ~ m m 

r \. 

~e 
am is the ongle between the wire and its projection on the x-y plane 

~m 'is the angle betw n this projection and thè x-axis 

62 : 

far field point, (r, 9, ft), ~ that only the radiation -field is obtained. 

E = -jwuA ~ 
1,0 - 1 m 

E = 0 
r 

Let the "rrent be af'proximated by ,m (sm) = 

number of interpolation nodel on elèment n:t. 

(4.61 ) 

L 
\" I~ f.' (s ) where L is the 

i ~1 1 1 m 

~ Evaluation ot the ma~tic veçfeJr potential li: 'ot the field m 
• • 
,potn~ due.to element m, and wbstitutina't+ae resulting expression into (4.61), we . ~ , 
~t • / 

" 

,. 

• 



l .. . 
. " ~- i jc.r} 

. 
~,r, if .', ~~). :. - .. Ii l "'-.. '" 

\ 
, , 'E {r r 9,.) = - i -"u ~- pu) ...... p~.i 1.1) 

. e .r 

. "-
,'\ .. III 

t. 
1"" . - f.' < 

J." 
l 1· l 
'\.:- ' 

i"l'_,01 

t.. \$: \ ,-

",\ 

.li • .ivs. d s ~"cos~ COIO sin .... sin~ ~~ ~.} 
1ft 1ft.. 1 1ft M 

-
whent 

1 

u = le (x sin 8 cos" + y sin i sin. + 1: cote) 
mm", 

, 
v '= k h",(sln8 çœ. cosp cota 

'!' m 

• 

The .I.ctrle fi.ld M to N w~. can be obtalned from ( •• 62) 

o 

. \ ' 

and (4.63) by summlng up ail .I.ctric fl.rd componenta ~lUltlng from th. Indlvlduell 

wires, f~m 1 to N. \ 
lhè rodar crou-•• ctlon of an obetacl. 1. deaned al th. Grea for 

1 . , 
whieh th. incident wave contains iufflelent po~.r te produc., by omnldlrfttlonal 

radiation, th. IOmê bacle-lCatt.red pow.r den.t'ty. lta math.ma~'Clal .M"...lori l, 

a == Ifm 
r"'CD 

" 

(4.~) 

., 

. ' 
J 



., 
where 

~s = 1. 
." 

- i 1 
S " -- -

." 

1 e' ,2 , the scattered power density 
o ; 

I~, the incident power den,ily 

Substitution of (4.62) and (4.65) into (4.64) relUits in 

or using (4.63), we get 

.. 

l 

\ , , 

64 
, 

(4.65) • 

(4.66) 

(4.67) 

A 
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CHAPTER V 

NUMERICAl 1 NVESTI GATIONS -
," 

5.1 ' Introduction 

ln th;s chapter 1 the analytical investigation giv,en in Chap~er IV, 

is applied to solve sev~'rol wire configuratiQ/ls. Computer programs have ~en writ-
1 

ten for analysing the electromagnetic behaviour of interconnected stroight thin wires. 

Scatte~ing problems only are solved. The current djstri~ ~Iculat~ by using 

lagrangian interpolation polynomial approximation. Then, the far scattered field 

and the bistatic radar cross-section patterns, as weil as the self and mutual impe-

dances, ,are eomputed for SOme configurations. Almost ail curves are drawn ~ 

using an H-P 7202A Graphie Piotter operating in parollel with a Tektronix 4010 

terminal. 

o For the present plane wave scattering problem, a structure of 

arbitrarily located stra;ght w;res is illuminated by a knoWJ'l incident linearly polar-
o #-

,i~~ plane wave of arbitrary direction. The procedure presented here con ~e l.lsed 
'" " , 

~ '...0 analyse linear, 'planar and three dimensional wire structures. 

5.2 Numericol Results for Simple Problems 

, 
" .' 

To -illustrate the accuracy and the efficiency of the new method, 

,~ several interconnected wire pioblems have been considered. In 011 these problems, 
4-

'. 
\ 

JI 



on inci~ent plane wave 1f unit y amplitude and polCl(ized in the. z-dinfction, is 
assumed to be p~pagoting along the y-axis. The operating frequency is taken.1to 

be 150·megacycles. A second order polynomial approximates the currents. on the 
'\ 

wires. 

66 

Fint of 0/1, the si~'e wire whose axis cQincides with the z-axis 

as shoym in Figure 5. l, is analysed. 'rhe wire is half a wave len'gth tong with a' 

radius!"a = .00350),.. The current distribution obtained, sho'wn in.Figure"5.2, is 
...... 

'1 
compored with the Kuo and Strait reluits [10]. The discrepancy b'è1wee(1 the two 

curves is due to the inaccurate reluits of Kuo and Strait. They performed numeri-, 
>~ , 

cally the integrations, appearing in the entries·to the generalised inpedance matrix, 

by using 0 current approximation of the first order, i.e., pie;:ewise linear approxi-

mation. Althoug, a second order approximation suffiees, the currènt is approximated ... 

here by Lagrangian interpofation polynomials of the third ordt to ge.t an accurate 

eurrent distribut!on. 

We have mentioned il1 Chapfer IV, that the present method is 

valid for very large angles between the interçonneeted wires, and for very small-

angles as weil. This type of problelTl ho. never been analysed before. Very good 

·r .. sults are obtained. These con be'illustrated by .ne foilowing examples. 

The two coll ineor wires of Figure 5. 3(a~are fint considered. 

They ore directed into the z-axis. The wire lengths and the radii are equal 

(l = )./4, a = .(035).). The currents are assigned the same reference direction. 

Two interconnected wires forming a very large angle, about 177.8 degrees, are 

considered next. The axis of the first wire coincides with the z-axis, -while that 
\ 

( 
/ 

/ 

l" 
f ' 

/ 

, . 
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. .~~_. • ~In&:: 5.1 A Single Wire. 
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FIGURE 5.7 Two Conn.eted Wh .. , 9 =.2.20 
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of the second wire is directed in the z!.axis, as shown in Figure 5.3(b). The sorne 

lengths and radii of the two c~lIinear wire cases are taken. The sorne current 

reference directions are also assumed. Results of these two cases are compared in 

Figure 5.4, giving an agreement to the third decimal figure. Single precision is 

used throughout the whole program. 

The two ~ires together having a total length of )./2 give the 

sorne results al that obtained by the half wave length wire of Figure 5. 1. 

Again the some problem is repeated but with unequal lengths. 

Figures 5.3(c) and 5.3(d) show respectively, collinear wirel and-connected ~ires , 
forming an angle of 117.8 degrees. In both cases, the ftnt wire is O.2À'in length, 

t ") •• 

while the second is O.3}\o Ourves of the current distribution are illustrated in 
~ 

Figure 5.6. They agree with the results of the probJems of Figures 5. l, 5.3(0), . . 
and 5.3(b~. 

The vertical far field pattem, for the case of two co-Ilinear wires, 
, ' 
-

il iIIustràted in Figure 5.5. Since the currènt distribution is the sorne os for the 

single wire, the expected figure eight is obtained. 
.... 

With these different methods and different analysel, which-give 

th. JO'" resulh, one ~n _1 th. ule~lneu and th~l;dity of th. preI4!fIl ( 

method. 

Figure 5.7 shows two, interconnected wires forming a very small 

angle, about 2.2 degrees. They have equaJ lengths (l=)./2) and'rodij (a = .OO35~) 

" and are directed along the z and z'-axes. Currant distribution is shown in Figure 

) 
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FIG URE 5.3 Collineor (a, c) and Cannecteid (b, cl) Wh ... with Equal \ 

and Unequal lengths. 1 
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\ ,. 

5.8. Here, the cu·rrent obtoined in each element i, about holf th. curre~,~of 0 

~" , 

half wave length wire. This could be expfcted if we assume thàt this single wire is . 
'i ,--

split into :wo wires con~ected ot one ;nd. Therefore, the c~rr-"t is distributed 

equolly into the two wires giving holf the single 'wire ~urrent. 
-~~, ' . 

, # __ , €-emPidation of ~rent distribution for such' connect;' 
...-

ele",nts using second order polynomials takes about 3 seconds and for collinear 
.. 1 t .. 

wires about 0.75 seconds on the IBM 360/75. 

1 

5.3 Numericol Solution for Wire Structures ~ • 

More complicated structures of interconn~cted wires are presented 

here •• Re$U'Jts ~re compared with those ,of otherinv'estigators. Very ~ agreement 
, . ' 

is 9htalned •• Some.practical, cOllfigurations of en~i~eering interest are cortsldered) 

ln eacn case, an incident field of unit y amplitude is taken. It is dii'e~ted ~lOng "r 
. . 

y-axis and polarizéd in' the z-axis. _The Yt(ovelength ts 'one meter. A second order 
• 1 

pQltynomial approximates the currents on alr.'wires: 

·Scattering by the ytire c~ss of Figure
I
5.9, has beè~ anal)'S~ by 

'. Chan [5], Chao'~nd Strait (2], Taylor et'al [27] and Butle~[l]. Its diiMnsiôns 

are ,lt = "2 = l3 = O.llX, t. 4 = O.22X. and the radii are C!" the some and equal to~ 
. ~ 

O.OO2m. The presetlt method gives the sorne relUits QI those of Butler and close 
• 

results.to, those obtained..by'the othèr authors, as shown in figure 5.10. Butler 
" " fo~lated Ho!'en's integral le$luati9n ~ the Ik,~. c~ ~irel •• More a~c~rate ~ 

~ , .... .. \. ( 

results are obta,n~ by. this roethod. ThererOre wê'can conclude that the present ... . ~ . ~, 

~ , . .. 

, .. 
" 

·1 
) • 

" 

, 
• 1 

.. 

. ' 

,.' 
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'e 

ahalysi! is very accu rate and Ï$ preferable to other methods. Alsa the bistatic 

radar cross-s~ction, Figure 5. 11, is computed in the plane fIJ = 90
0

• 

Th. special case of skew crossed wires when e = 30
0

, oF Figure 

'0 5 • .12, is alsa considered. The some dimensions, as f~r the case of 9'; 90 0 anqlysed . ' . , 

above., aré token. R"ults are in good agreernent-with t.h.ose of Butler. These are 

illudrated in Figure 5.13 • 

....... Figure 5.14 shows a T-sc;atterer of equal elements'. The lengths 

~ . 
,are "1 =:2 = :3 = O. 11~ and radii al = a 2 = a3 = O.OO22~. One ~nlsee . .. 
from Figures 5. 15 and 5.16 the current distribution.obtained togeHler with thaf of 

" 
Q , 

l 

Finally, scattering by a three dimensional Brown wire structure 

.' is examined. Figure 5.17 illustrates this configuration illuminat~ bya plan, • 

,y waye polarized in the z-direc::tion an~ unity amplitud,. lit consists of ~ur equal 

1 

" legs directed alon9 the z, r, \, and t-axes. Eoch leg has cr length : ,wavelength, 
1 

and a radius ~200. The wavelenQ'th is token to be' one ""ter. The èurrents induced 
,J (:- ~ 

"On the wires ~re plotted in Figure 5. fa for : = 0.2 • . ~ , 
.~> 

~ , 

"tasu (30 lanal~ theoretically this Brown st~cture and got the 

input impedance against wire length: Nonierical computation, using the present 

method, results in the curvel shown in Figure 5.19 and compared ,with those of Nasu. 
• ; t ,t> 

J 

It ;, interesting to note, that the current is not forced to be zero 

'" at the free end of the 'Nire for any of the prev;oui analyses. ~cceptable zeros 
, Q , .. -' '\ ' . . 
àre obtained ot, these ends. Other methods consfder a boundary condition by reqoir-

1 -
ing th~ curr~t to vani'" ot the free ~d o'f the wlre. ' 

. ~, 
, . 

• 
. \ 

" 

t 

'" 1 
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. .. 
The computation ti'mes ne~ded for a T-scatterer and Br9wn *"ruc-

ture are respective Iy 7 seconds and 15 seconds on the 1 BM 360/75. The execu-

tian timë ta find the input impedance fdr a Brown structure against a leg length is .. -
about 1 \0 seconds. A completely different problem hai ta be so.Jved every time the 

langth i. changed. 

. . 
r' 

II! -

, 
,-

-~ ( 

• , . ~ 
6 

( 

, . , ! 

, ~ . 
~ 

"t ,. . ., . ." 

" 
• • 

~ ,)r7' t-- , 
'\) 

.. , 
~. 





e. 

0 

1 '" 
. , , . 

e ,. 

.3 

g .2 

c::: 
.... 
c::: 
! 
5 . 1 

U 

o 

1.5 

1.0 

g 
c::: 0 'H_ -• .t: 
lU 
"-
"- .5 ;) 

u 

/ 

-l .. 

• 1 

-.1 

wire no. 1 
~=" 11 X 

wire no. 4 
.r:= .22 >. 

FIGURE 5.10 

, 

lm lm ' 
wire QO. 2 
.&:=.11 X 

-.o~ o - .05 • 1 

lm il 6 

[j q 

wire no. 3 
l=.l1>. 

-# 
~" 

-.1 . o • 1 

_ r 
Currents on a Wire Cross (a:: .00222 X) • 

- This Method 000 Butler 

~, Chao and Strait {:..L.I... Taylor 

/ 

79 

" 

xl>. 

-

~ 

f 

\ .' 



~ 

/ 

'\ 

1 

" 

. 

e 

.. 
.\ ) 
• l 

r' 

. .: 

1 

1 

1 
1 

.b2 

" 

,. 

0' 

. / 
O.0y-

... 
<....... 

'" 

, -, 

.0'1' 

( 

" 

e=oO 

r 

20° 

'\ 

\ 
\ 

/ 

~.01 ... 

," . 
" 

~ 

~ 

40° 
7 

" , , 

.02 . 

FIGURE 5.11 
8istotic Radar CrOlS-section ae/>,.2 Pattern for the 'l{ire Cross tp=900 • 

k, 

l· " 

~ . 
. ' .. 

. ... 

" e -

;, 
" 

~60° 

.t-' 

&DO 

-: 

! 



• 
, \" 

\ . 
g , 

\ 

c: . .. 
c: 
Q) ... ... 
;:) 

u 

,,-

g 
c: .-... 
c: 
~ ... 
;:) 

u 
~ 

< • 

) 

.6 

l' 
.5 .. wire nO • 2 

wire no. • oC=.l1 
.4 :=.11 

.3 

.2 

• 1 Il> 

0 
-.05 0 .1 

1.5 
• 

t 
wire nO. 4 wire no. 3 
.t= ,22), J:=.11). 

1.0 

/ 

1 

.5 
, 
• 

Re 

. 0 ~ __ ---L. __ -.L._-~-------------"""'" z/X 
-.2 

FIGÜRE 5,13 

-.1 o • J 

Current~'a"I a ~ C_rossed Wire (0 = .00222),). 

-:-- This Me~hod Y, . 
000 Butler r 

" 

. ' 

,. 

81 

• , 
-( 

~ 

. 
" 

", 



.' 
p , 

, 
{ 

FIGURE 5.17, 
{ 

" 

1 " l, x' 
, '" 

x 

\\ 

·Th .... Dtmensicnol'Brown Wfre Conflgurotion. 
! ; - \.. , 

... . ,~-.. , 
'.' .. 

82 

! 

I~ 



t 

• 1 

... -

, . 

. ' 
.\ 

''> 

Q 

o .05 

. wire no.' 2 
,c== • 11 ~ 

• 1 

Il 

, Gurrent Distribution' on the Horizontal Curves of a 

T -scatterer , a = '.OO222À 

- This Method , 
000 Kuo and Strait 

0' 

, . 

83 

" , 

• 'II 

, . 



84 

• 
-. .2 

,) wire no. 3 
• . t;:::.l1 X 1 

o 
o 

L-
A 

f. ,-

.... 
.15 

. . 

\ 

!, 
1 

1 

.~ ... 
i 
1;, • 1 
!) 

U 

,. .. 
o .. .5-

'. .05 

o 
o 

FIGURE 5~ 16 

" 
8 • 

. ( . , 

• -. 



• 
~ 
c .... ~ ..... 
c 
cu ... ... 
::l 

U 

0 
Of> 

0 .05 

.. 

-(5 te 

~ 
è -1.0 .. ..... 
c 
~ lm L. 
::> 

U 
1 

-0.5 

o 
'v • o .os 

'< 

. 
r' 

J' .-

'" 

• 1 

j , 
, ~.".-

• 1 

-" 

.. 

wire no. 1 
l=.2X 

.15 

, 

wire no. 
l=.2À' 

.15 

85 

,. 

, 
zA 

.2 ".",-

./ 
2~ 

, 
.. 

.. 

.2 

\ 



,1 ..,. 

• /' 
~~ 

c 
.... 
c 
4) 
L-.... 
::> 

U 

'> C . . -

e' 
,/ 

/ 

-1.5 

-1.0 

• 
lm 

-0.5 

a 
o .05 • 1 ' 

-1 
( o 

1 • 

lm . , 
Re 

-0.5 . , 

'. 

.\ 

" , 

\t 

wire no. 3 
.,c"'.2X 

/ 

1.5 

/ 
wire no., 4 
.t=.2X 

.2 

\ 0, 

1 . '.,. 

" 

86 
-' 

" 

.. 

-.. -

oL-~~-~--~~--~----L---~----~~~~--~~v~ ~ 
o .05 

,.,' 1 J 

... . 
FIGURE 5. 18 . .. , 

~ ,. 

; , 

• 1 .15 '! -.2 

Current Distributionl\9I1 a Three Dimensiooal Brown 
1 

Wire Scatterer (a = tI~). 
, . 

1 
J.. 

't-. , 



') . 
o • 

87 

., 

-.' ,~ ~----, 
( ) 

1~r-----------~(~~/--------------------~ 

Ë 
'.,c 

o 
c 

Q) 
o c 

100 

'50 

t 
.S \ 

o 

, 
,-50 

a=N'200 

.. 
.8 

FIGURE ,5.19 

, 

'0 
Qj=60 

1 . 

, . 

Il, 

.9 1'.0 ~1.2 

t 

Theoréticol CI"Id Numericol-V.olues of (nput Resistance ft 

.• ~JnPUt Reactance X o~ Brow',Wire èonfiqurotiOn~' .. 
" ~ 

~ Theoretfcol Method " !f' 
... c 

000
1 

This Method' 
~i.;A 

, . 

\' 
\ 1 

.. 

.. 
<" 

'\ 



, . 

88 

CHAPTER VI 

CONCLUSIONS 

ln this thesis, an arbitrary interconnected straight wire structure, 
. 

illuminated by a uniform plane wave linearly palarized, was analysed. Problems in 

wh ich the angle between the'wires is as small as 2
0 

bnd as large as 178
0

, have been ( 

successfully solved for the current distribution on the wires. These problems have 

never been solved befor~. The collinear wire problem was a Iso discussed. 

The far scattered field, the bistatic radar cross-section and the 

mutual impedance ha'1e ~en computed for some config~rations of engineering inte~ 

est. Excellf:'nt agreement with other methods was obtained. 
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