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ABSTRACT 

ln this work we describe a category of domains, whose abjects 
are in general categories instead of posets, such that J.-Y. Girard's 
category of qualitative domains and stable functions is contained in 
it as a full subcategory. We describe two ways of interpreting 
Martin-Lof type theory in this category, the first one allowing 1:: 
and TT , the second one only TT • Finally we show how to extend the 
second interpretation ta a model of the theory of constructions. 
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RESUME 

Nous présentons dans ce travail une catégorie de domaines, dont les 
objets sont en géneral des catégories et non des ensembles ordonnés, telle 
Que la catégor1e des domaines qual1taUfs et fonctions stables de GIrard en 
est une sous-catégorIe pleine. Nous donnons deux façons d'y 1nterpréter la 
théorie des types de Martin-LOf: la première permet d'Interpréter les 
quantificateurs l: et TT , la seconde seulement TI. Finalement nous 
étendons la seconde Interprétation a un modèle de la théorIe des 
construct Ions. 
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INTRODUCTION 

The lambda calculus, which embodies a certain formaI property 
of naive sets (the application of a function to an argument) has 
given rise to syntactic systems whose behavior is definity impossible 
to model in the category of sets. The simplest example is the 
untyped lambda calcul us, which forces one to consider the idea of a 
set which is isomorphic to its own set of endofunctions. In order to 
find models of this theory that ·live in the real world·, Dana Scott 
invented a notion of ·limited set·, that allows one to escape the 
Cantor diagonalization argument. In their original presentation 
[Sc72] these "sets· cou Id be defined in two ways: as a class of 
topological spaces, or as a class of complete lattices. In the first case 
the ·functions· between them were simply the continuous functions. 
In the second case, the ·functions" were morphisms of posets that 
preserved filtered colimits. This pioneering work, due in a major 
part to its applications in theoretical computer science, gave rise to a 
large amount of activity, which usually goes under the na me of 
domain theory. The topological point of view quickly receded in the 
background in favor of the lattice-theoretical aproach (poset­
theoretical would be more fitting since Scott lattices were saon 
generalized to posets that were not lattices). 

These domains can furnish models of versions of lambda calculus 
which have a property intuitively quite contrary to the accepted 
notion of set: the naive interpretation of these theories aIJows one to 
take a large indexed familyof "sets· (meaning the indexing "set· is 
"large", in the order of size of the class of ail ·sets· of the theory, or a 
finite power thereot) and still get a ·set·. Clearly, this goes against 
the Russel paradox, and cannot be modeled in the category of 
ordinary sets. In fact, the proof that any one of these systems is 
consistent is always qui te non-trivial. This general phenomenon has 
been called polymorphism; the simplest polymorphie system is 
second-or der lambda calculus, called F by J.-Y. Girard in his thesis 
[Gi72] 1 and discovered independently by Reynolds [Re]. A different 
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class of polymorphic systems is given by systems with dependent 
types, à la Martin-Lof. The first and simplest polymorphie system 
with dependent types is the theory constructions of Coqua nd-Huet 
[C085] . 

Two years ago Girard constructed a model of F using a version 
of domain theory slightly different from Scott's [Gi86]. The domains 
themselves were typical of ordinary do~ain theory. But the 
morphisms of domains (the "functions") were required to preserve 
pullbacks in addition to filtered colimi'ts (it turns out Girard had been 
preceded in this direction by G. Berry) [Be]. The advantage of this 
approach is that it makes everything "leaner" and easier to calcula te. 
In tact Girard's model was the first model of a polymorphie theory 
where anything at aIl could he calculated! The essential reason for 
this computational simplicity is the pr-operty of t!ltomicity which 
makes the posets under consideration more than abstract, general 
posets, but concrete ones, (as subposets of the power set of a given 
set) and th us much easier to describe or present. 

To the author, it was obvious from the start that Girard's posets 
(he called them qualitative domains) could he generalized to 
categories. In tact the category qD of qualitative domains and their 
"strong morphisms" of [Gi86) could he taken as a paradigm of the 
sort of category that would generalize the concept of a qualitative 
domain. There was interest in doing this generalization, since the 
modelling of a system like the theory of constructions forces one to 
consider a "domain of ail domains", which for example could very 
weil œ (and in fa ct will he in our case) the category qD. There 
already are in the literature models of polymorphism that use 
categories as domains, for instance lH-P] , which is basically in the 
tradition of Scott. 

In this work we describe in detail a category Aggr of domains 
whose objects are categories we C;ln aggregates, and which contains 
ilS a full subclltegory Girard's category of domains and "functions". 
This category eontains many models of polymorphism, and we will 
describe the -most naturar model of the theory of constructions 
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living in it, which was announced in [laU. Another model 
contained in Aggr is decribed in [La2]. Our choice of Aggr as il 
subject of study was motivated by conflicting considerations of 
gen~rality and simplicity. By experienc~, the author has found that 
finding models of polymorphism with dependent types is a two-step 
procedure: when you meet a potential model the first thing you 
should do is to try to interpret classical, predicative Martin-Lof type 
theory in it. An intepretation is essentially given by a class of 
morphisms which are stable under pullbacks; a ca tegory may 
contain several related interpretations. Only after this should you 
look for the specifically polymorphie features of the model, say a 
Wnotion of small seC, along with an Wobject of a11 small sets· which in 
this particular case will allow you to interpret the theory of 
constructions (a more standard terminology would he "notion of 
type"). Therefore it would be a good thing to interpret classical 
Martin-Lof theory in the largest possibl~ category that generalizes 
Girard 's. A candidate for this is Thierry Coquand's category of ail 
"stable categories of embeddings· and ail stable (which we caU en tire) 
functors (CoSS]. It contains Aggr as a full subcategory. and there 
obviousl,r are in it many different "notions of small set", each one 
giving rise to a model of constructions. Interestingly, the gap of 
generality hetween Coquand's approach and ours can he stated 
exactly: with all other axioms the sarne, an aggregate is required to 
have a1l connected Iimits, while a category of embeddings is only 
required to have ·small pullbacks" (see below). By slightly 
generalizing the work of Yves Diers, these conditions on Iimits can be 
translated to conditions on the colimit structure of the categories 
involved; by ·colimit" we mea..n a generalized notion of coli mit 
which applies to e.g. fields or algebraically c10sed fields. In this light 
categories of embeddings have features which sharply deviate from 
aggregates: for example, a generalized initial object in a category of 
embeddings can start having nontrivial automorphisms. 

Wfl dflcided to work in a mor~ limited context for practical 
reasons. Our proof of the main theorem is already quite intricate, 
and we tee) an added layer of generality (going trom ·multiW to 
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-poly·) wou Id simply add bulk to the proof without much insight. 
Maybe we are wrong in this respect. But also, what is the use of 
having a model if you can't calculate things in it? The trouble is 
that a general notion of presentation for a category of embeddings 
(e.g. Coquand's ·categories of information-) seems a very unwieldy 
tool, just as complicated as the category it defines. Things are 
already much too complicated with aggregates. Fortunately there is 
a full subcategory Sem C Aggr , whose objects we call semigranular 
categories, for which there is a simple representation theorem: 
semigranular categories are concrete categories, and their structure 
can be described in detail; they are exactly the aggregates that obey 
Girard's magic property of atomicity. It is unfortunate that due to 
time constraints we cannot include the chapter about their 
structure theory in this work; it will he published independently. 
Using only semigranular categories, one can interpret Martin-Lof 
theory with TT but not 1:; aggregates appear as auxiliaries but do 
not model types. This is alrelldy something since the original theory 
of constructio! IS had only TI, which is by far the more important 
conn~ctive from a polymorphie point of view. Thus, the model of 
constructions we will give will he "essentially semigranular". If one 
adds in aggregates, it is possible to interpret Martin-Lof type theory 
with both ~ and TT , but not the equality predicate (which would 
immediately kill the possibility of polymorphism). This larger 
universe also possesses a "notion of small set', and therefore another 
modelof the theory of constructions. This latter model will only be 
described briefly. 

Thus our work centers around the description of the category of 
aggregates and that of semigranulars, and the Martin-Lof 
structurees) they contain. It is the first time that the latter is done 
in full for such a class of domains, although [CoSS] contains partial 
results. We have been faithful to Girard's approach, and generalize 
his notion of trace by the definition of generic and ultrageneric 
arrows. They are instances of the general concept of a universal 
family, discovered by Diers. This allows us to describe the TT 
operator in much more detail than if we were only using, say, limits 
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and filtered colimitl. We Ihould say that the result falls short (but, 
we think, not by much) of our hope of makinl everythinl 
computable; examples of how complicated things can he will be 
given (4.'). Still, the model that we let is way simpler than any 
model previously constructed that uses categories as domains; 
compare ours with IH-P). 

We have been talkinl about interpreting Martin-Lof type theory 
in categories without saying much on how this is done. During the 
past year, a general cstegorical framework, built on the work of 
Cartmell [Ca], has appeared. It is characterized by a remarkable 
simplicity, in comparison with the formai system (judgements, and 
the like) interpreted in it. A detailed account is in IH-P] , which we 
will use as a reference, although our terminolosy will not coincide 
perfectly. Regrettably, this paper contains a lap, in that the actual 
interpretation of the formai system into the categorical framework 
is not given. This is a long multiple induction (triple, at the leasti, 
which Andy Pitts tells me he will cover in a subsequent paper. We 
will nevertheless defer to the authority of (H-P] in these matterl; 
in particular we will not describe any formai system, but rely 
entirely on categorical properties. 

The plan of the work is as follows. Chapter 0 contains ail the 
definitions of categorical concepts which go beyond Mac Lane 
[CWM] . An exception is the notion of Grothendieck fibration, which is 
only cursorily treated there, since it has recently become quite 
referred to in theoretical computer science [CGW] , (Eh] ,(Pi] . The 
proofs are not given in full, since they are easy and weil documented 
elsewhere. Chapter 1 is the definition of agregates and 
semigranular categories, along with their basic properties. Chapter 2 
is the general theory of morphisms (stable, or entire, functors) 
between agregates. Chapter 3 is the theory of variable aggregates, 
that is, display map. Chapter 4 is the proof of the main theorem on 
the Martin-Lof structures that can be defined on the category of 
aggregates, and the description of the modeICs) of constructions. 
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CHAPTER 0 

This is a preliminary chapter in which we live sorne more or less 
well-known definitions and standardize the notation. We will only 
live sketches of the proofs. 

Unless it is laid otherwise, a catesory is always locally small, i.e. 
has small hom-sets. For variety, we will also cali the morphisms of 
a category arrom. A small set will he called simply a set, and a 
potentially large one a class. We will den ote the category of small 
sets and functions by s,t. Let 1: he a catesory, and X. Y ,Z 
objects of it. The set of morphisms from X to Y is denoted 
[(X,V) . If f:X .... Y and l:y .... Z we denote their composition by 
either gf or g • f , depending on readability. If D is another 
category, F,G:C .... n functors and ':F .... G a natural 
transformation, for X€C we denote the components of " by 
'X:FX .... GX. We will use the subscript notation for diagrams, that 
is, a small diagram (Xd)dED in 1: is composed of a small category 
[) and a functor X:I) .... I: , and for q:d .... d· in D we denote 
Xq:Xd .... Xd· by Xq:Xd .... Xd·. We will also sometimes say things like 
~X . Given X€C a subobject of X is as usual an equivalence class 
of monomorphisms into X, but we will be notationally quite 
abusive and say things like -let y: y .... X he a subobject of X - or 
even -let Y be a subobject of X-. We will use the term -essentiar 
in the standard meaning of -modulo equivalence-; for example, an 
essentially small category is one which is equivalent to a small one. 

Given a category C and an object X€t , the slice CAt_ory 
tlX is defined as usual: an object is a pair (A,a) where A€I: and 
a:A .... X and a morphism f:(A,a) .... (B,b) is an f:A .... B with bf· a . 
Thus we will use the same name to describe morphisms in different 
categories; there is no danger to this. 

We will assume the notion of filtered category ([CWM IX,ll) and 
filtered diagram is known to the reader. We will also assume the 
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reader kno'WS a bit about Grothendieck fibrations. The next section is 
dedicated to a review of Mo-accessible categories lM-Pl. 

0.1 Definition 

Let a category t have filtered eolimits, that ia, ail diagrams 
1) ... [ where 1) is small and filtered have a colimit. An object X(t 

is said to be finitely presentAble (abbreviated AS f.R.) if the functor 
[(x,-):[ ... s,t preserves filtered colimits. In the category of groups, 
an f.p. object is the sorne as a group that con he described bya finite 
numher of generAtors and relations. If t is a poset, an f.p. object is 
also called an isolated (or compact) point. 

ln a category t we say that idempotents split if given any 
endomorphism f of t such that f • f • f the equalizer of f and 
identityexists (equivalently (exercise), the coequalizer of f and 
identity). 

0.2 Definition 

Let t he a small category. A presheaf F: tOP ..... ,s,t is said to he 
flA1 if in the associated discrete fibration el(F) .... t the category 
el(F) is a filtered category. 

0.3 Theorem 

Let A be a small category. Let Flat(A)C Set"OP be the full 
subcategory of flat presheoves and Flat,(A) its full subcategory of 
finitely presented flat presheaves. Then idempotents split in 
Flalf(A) and 

Flatf(A) C Flat(A) C Set"OP 

" / Yoneda 

A 

the Yoneda inclusion factors through Flatf(A). If idempotents split 
in A then the arrow to the left of the diagram is an equivalence of 
categories. If not, it is a universal arrow (in the ·up to equivalence· 
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sense of the solution of universal problems in the catesory of 
categories) to the -free idempotent-splitting completion of "-. 

0.4 Definition 

3 

A Oocally small) category C is laid to he finite1yaccessible or 
Mo-accessible if 

i) It has filtered colimits. 

ii) The full subcategory C, of f.p. objects is essentially small. 

iii) For every X in C the category C,IX (which has for 
objects pairs (A ,a) , where a: A ..... X , A€tf , and where a 
morphism f:(A,a)-.(B,b) is a f:A ..... B with bf. a) is 
filtered. The forsetful functor UX:(C,IX) ..... C sending f:a .... b 
above to f:A ..... a has an obvious cocone to X and that 
cocone is a colimit cocone. 

The reader can show as an exercise (he will need the help of the 
concept of (co-)final functor, lM-P 1.1.2, CWM IX,!]) that condition 
iii) is equivalent to saying that every object of t is the colimit of a 
filtered diagram of f.p. objects. 

0.5 Theorem 

For wery small A, Flat(A) is Mo-accessible. If C is MO­
accessible then idempotents split in Cf and the functor C .... Flat(C') 
which sends XEt to t(-,X) is an equivalence. 

These two very important facts are easy to prove, and are a 
recommended exercise for the inexperienced reader. Another 
interestins related fact is that Flat(A) is the universal completion 
of the small category A with respect to filtered colimits. 

The class of MO-accessible categories has a number of subclasses, 
determined by addition a! structure on the categories. A very 
important (historically and technically) subclass is the lollowinl, 
which we will make no use 01, but mention for the sake of 
completeness. 
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0.6 Theorem (Gabriel-Ulmer duality, Makkai-Paré version) 

Let t he an MO-accessible category. Then the followins are 
equivalent. 

i) t is complete. 

ii) t is cocomplete. 

iii) Cf has finite colimits. 

Such a category is called a locally MO-presentable category. 
Notice that a flat presheaf on Cf is the same as a functor trp ..... Set 
which preserves finite limits. Thus a locally MO-presentable 
category is precisely the category of finite-limit preserving functors 
from a (essentially uniquely determined) small category with finite 
limits to sets (with morphisms ail natural transformations). This 
alsebraic result has a Iogical (i.e. syntactic) counterpart. The "0-
Iocally presentable catesories are the categories of models of first­
order theories where the only connectives used are conjunction and 
the quantifier -there exists a unique- [Cs, chapter III] . This logical 
facet is also true for other classes of Mo-accessible categories. 

Gabriel-Ulmer duality in its original version did not use the 
notion of MO-accessibility, but instead that of a strong generating 
set, which has sorne technical advantages. 

0.7 Definition 

A set a of objects of a category t is called a strons lenuatinl 
Bi if the functor 

li [(A,-):[-+SPt 
A(Q 

reflects isomorpisms (il is the disjoint sum). This is a fancy wayof 
saying the following: a morphism f:X .... Y is an isomorphism iff for 
every a€A the morphism of sets C(A,f):t(A,X) .... C(A,Y) is an 
isomorphism. The element of a strong senerating set which is a 
singleton is called a stroDI unerator . For example in the category of 
groups Z is a strong generator. 
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0.8 Theorem (Gabriel-Ulmer duality, original version) 

A category t is locally MO·presentable iff it is cocomplete and 
has a strong genetatins set of f.p. objects. 

We are interested in two classes of MO-accessible categories 
which are a generalization of the one discovered by Gabriel-Ulmer. 
One is due to Diers [DiS 0] and the other is a slight seneralization of 
it, due to the author. 

0.9 Definition 

Let t he a category. An object A€t is said to he lenerie if the 
following holds: siven any diagram of the lorm 

V 
11 

A---tX 
a 

in t, there exists a unique b:A-'Y with fb· a . 

0.10 Proposition 

If A is a generic object of t then every morphism b: B .... A is 
a split epi. If B is also seneric, then b is an iso. 

Proof 

Looking at 

B 
lb 

A---+A 
1A 

by genericity of A there is a unique f:A~B with bf -1A. If B is 
also seneric, then f is not only a split mono, but a split epi, too, 
which forces it to he an iso. 
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0.11 Proposition 

Let [ have pullbacks and suppose ail its morphisms are mono. 
Then A([ is generic iff it has no proper subobject (i.e. its only 
subobject is itself). 

Proof 

Suppose A has no proper subobject. Then given 
y 

lf 
A~X 

a 

let p: p .... A and q: p .... Y he the pullback. By assumption p is an 
isomorphism and qp -1 is the required tiller. It is unique since ail 
morphisms are mono. For the converse, if A is generic, then any 
mono to it is a split epi. i.e. an iso. 

0.12 Definition 

A poly-initial family in a category t is a family CAJ)J(J of 
generic objects sueh that given any X€C , there exists a unique j€J 
and a morphism a:AJ-+X. a is not necessarily unique, but sinee A 
is generic, defined up to unique automorphism of AJ' To say that t 
has a poly-initial family is to say that every one of its components 
has an -initial object with possibly nontrivial automorphisms·, 

Ezample 

Take t to be the category of algebraically closed fields, Take J 
to be the set {O}U{ ell prtmes} . Then if for j€J AJ is the algebraic 
closure of the prime field of eharacteristie j the family CAJ) J,J is 
poly-initial, as the reader may verity. 

We say a category has small pullbacks if aU diagrams of the form 
(at:Ar'" X)ld Cwhere 1 is a small set l) , have a limit. Here is a 
generalization of a famous theorem of Freyd [CWM V,6): 
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0.13 Lemma 

Let t have small pullbacks. Then t has a poly-initial family if 
and only if it satisfies the solution set condition; that is, there is a 
family (Ct),€! such that every object of t admits an arrow from a 
~. 

Proof 

Assume there is a solution set. Choose a Ct. The category t/Ct 
has ail products and pullbacks, and is therefore complete. Since it 
obviously has a solution set, it has an initialobject a,:A,"'C. 
[op. cit.] . ·Let a:Al-tX, f:Y"'X . Form the pullback: 

p-...y 

pl lf 
~t--A,--tX 

al a 

A morphism b:Aj"'Y with fb- a is the same as a splitting of p. 
Considering such a splitting as a morphism aj ..... a'p in tiC. one 
easily sees that because aj is initial therein the splitting exists and 
is unique. To get Il poly-initial family one just has to take a subset 
Je) such that the family (AJ)J€J is a minimal representative 
choice of isomorphism classes. The converse is trivial. 

0.14 Definition 

A category D is connected if it is nonemptyand any pair of 
objects X, Y E D can be joined by a -finite zig-zag- of morphisms ; i.e. 
there are Zo ... ,Zn,V!1 ... ,Wn € () and morphisms 

X Wl 

\1\1 
Zo Z1 

The zig-zag property between X and Y defines an equivalence 
relation on the objects of t. The full subcategory determined by 
such an equivalence class is called a conneçted component of t (for 
short, a component). A component is obviously connected. A 



~ 

[ 
c 

l .' 
! 
i 
l 
tr 
t 
t . 
~ 
f 
~ 

'. 
~ .. 
f'. 

1 
1: 
" 

c 

( 

c 

8 

connected limit diAlrom in sorne catesory C is a diagram 1) .... C 
which has a limit and where 1) is a smal) connected category. 
Examples of (finite) connected limits are pullbacks and equalizers. 
An example of a cateaory which has all connected limits but is not 
complete is the CAtesOry of fields. 

0.15 Definition 

An object A of a category t is $Aid to he an initial candidate 
if it is initial in its connected component of C. 

0.1' Proposition 

An object Aet is an initial candidate iff it is generic and has a 
trivial group of automorphisms. 

Proof 

Suppose A is an initial candidate, Then obviously. it is generic, 
,~nd its only automorphism is identity, For the converse, if A is 
generic, it is easy to He that for any X in its component, there is a 
morphism A-tX: just ·climb the steps of the zig-zag·, If f,g:A-tX 
are two morphisms, by genericity of A there exists ex: A -t A with 
foc • g . But by assumption oc is identity and 50 f· 8 ' 

0.17 Definitions (Diers) 

A family (Oj)j(J of objects of a category t is called a mylti­
initial family if the followiDg holds: given Any Xet , the disjoint 
sum llj€Jt(Oj,X) has a unique element. Let X,VEt ,and x:OJ-tX 
and y: 0 J' ... V he the morphisms X and V determine. If there is 
I:X-tV then having both fx and y going to Y implies that j.j' 
and lx. y , More generally if X and Y can be connected by a zig­
zag as in 0.14, we can prove easily that Oj. 0J' . Hence a multi­
initial family is exactly e choice, for every connected component of 
t , of an initial candidate in that component (50 t must have only 
a set of components). For example, in the category of fields the 
family {Q}U(Z/(p»)p prime is a multi-initial family. 
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Let A· (Ai)iel he a family of objects of some catesory t. A can 
he thought of as a diagram from the discrete category 1. A cocone 
(sometimes called an A-cocone) is then a pair (X,(XI)id) where X€t 
and x,:A, .... X is a familyof morphisms. A morphism of cocones 
f:(X,(X')I) .... (y,(yi)i) is an f:X-tY such that fX.-YI . A 
multicgproduct family for A is a multi-initial family in the 
category of cocones and morphisms of cocones; that is, it is a family 
(X',(X'.)i)'ES , x'.:Xr·~Xs of cocones such that given Any cocone 
(V,(Y.)i) there exists a unique SE:S and a unique f:X· .... Y which is 
a morphism of A-cocones (X·,(x·,)I) .... (Y,(y,),) . We say that t .bu 
muJticoproducts if Any famUy (AI),d admits a multicoproduct 
family. More generally we say t is multicocomplete (or has ail 
multico1imits) if for Any small category D, Any diagram D:D-tt, 
the category of cocones from D has a multi-initial family. We will 
not say much here about the general notion of multicolimit since we 
can define everything we need in terms of multicoproducts. 

Ixamplas 

A category which has aU coproducts has 011 multicoproducts. In 
this case multicoproduct tamilies are one-element families, with 
coproduct cocones as unique elements. 

Let t be the category of total orderings and injective order 
preserving f unctions. Let (Ai)id be a f amily of objects of t . Let a 
coyerini cocone be a (x,:A, .... X)'d such that Ut x,(AI)· X where 
xi(Ai) eX is the image of Ai by xi. It is easy to prove (exercise) 
that between Any two covering cocones there exists at Most one 
morphism of cocones, and that it has to be an isomorphisme For 
every isomorphism class of covering cocones choose one 
representative cocone, and coll the resulting family (X' ,(X')I)scS • It 
is easy to see that this is a small family: wery isomorphism class 
corresponds to a unique pair (E,O). where E is an equivalence 
relation on the disjoint sum 

lllAll 
Id 

,~ ... , ... 
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of underlying sets and 0 an orderina on the set of classes llilA,11E 
(the correspondence is bijective if one puts simple conditions on E 
and 0). The family (x·,eral ),). is a multicoproduct family : given a 
cocone (Ys: Ar"'tV) , if one takes the image y'cY 

y'. UYi(Ai) , 
then the obvious cocone (y'.: A ...... yi). is a covering cocone and 
therefore there exists a unique S€S and a unique isomorphism 
from (x·.). to it. 

Let us show what it means for a poset P to have multi­
coproducts (or equivalently, to be multicocomplete) as a category: 
for every family (ai)id of elements of P there is a family (X.)S(8 

with a1~xS such that given aDy upper bound y of (al)1 there is a 
unique s with xs~y. An important case of this is when P is 
consistently cocomplete, meaning that every bounded set has a least 
upper bound. ln fact to say that a poset is consistently cocomplete is 
just to say that it is multicocomplete and that multicoproduct 
families are either empty or singletons. 

Notice that for t having multicoproducts includes the case of 
the empty family and that means t has a multi-initial family: it 
has a small set of connected components and every one of them has 
an initial objecte 

Let C have multicoproducts. We say a cocone (y,:A1 ..... Y)1d is a 
cQproduct candidate (or simplya candidate) if it belongs to a 
multicoproduct family; that is, if it is an initial candidate in the 
category of cocones. We have the followins terminology: a given 
cocone (yl:Aj ..... Y)jd determines a candidate (Xl:A' ..... X)'d ,unique 
up to unique isomorphism of cocones, and a unique 1: X ..... Y , lhi 
factoriol determinecl by (Yl)1 such that 

lXI-Y' . 
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Obviously, if two (Ai)i-cocones belons to the same component of the 
category of cocones they determine the seme candidate. Arguments 
of this sort will appear repeatedly. Let (x,: Ai .... X)jE! be a candidate. 
The family (XI). is obviously jointly epimorphic; that is, if 
f,g:X ... Y and fXj-gxj for all i then f-S. Also, if (al:Bt~Al)l is a 
family of isomorphisms and h:X'" Z another iso, then the family 
(hx'a':Bt .... A,), is also a candidatt'. 

Here is the equivalent of 0.13 for multi-initial femilies. 

0.18 Lemma 

Let C have connected limits. Then Chas Il multi-initial 
family iff it satisfies the solution set condition. 

Proof 

We already know t has a poly-initial family. It suffices to 
show (0.16) generic objects have trivial automorphism groups. So 
let A he generic, oc: A -. A . Let e· E -t A be the equalizer of oc and 
the identity. e is a split epi as weIl as a regular mono, forcing it to 
he an iso, and ex -1A . 

We can now describe the generalizations of Gabriel-Ulmer duality 
which were announced earlier. 

0.19 Theorem [Di80] 

Let C he a category. Then the following are equivalent. 

i) t is MO-accessible and has ail connected limits. 

ii) t is MO-accessible and is multicocomplete. 

iii) t has filtered colimits, Il small strongly generating set of f.p. 
objects, and is multicocomplete. 

Y. Diers calls such Il category an "O-locally multipresentable 
category, but we will call it a Diers category. 
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Sketch of proof 

To show i)"ii} use the fact that for Any small diagram in t 
the category of cocones is MO-accessible, and therefore satisfies the 
solution set condition, and apply the previous lemma. ii)~iii) is 
obvious. To prove iii)=+i) show that the full subcategory Cf of f.p. 
objects is essentially smalI (transfini te recursion has to he used (op. 

cit.4.2» and finitely multicocomplete (i.e. has multicolimits for finite 
diagrams), and that if D is a small finitely multicocomplete 
category the category Flat(l» of fiat presheaves over D has 
connected limits. The result follows from the natural comparison 
functor C ..... }7ctt(Cf) which is an equivalence whenever C is "0-
accessible. The syntactical aspect of Diers categories has been studied 
by P. Johnstone [Jn791. A Diers category is precisely the category of 
models for a first-order theory which only uses the connectors of 
fini te conjunction, unique existence, and (potentially infinite) disjoint 
disjunction. 

Ezemple 

We can easily prove that the category of total orderings is a 
Diers category. Other standard examples include the category of 
fileds, and the category of local rings and local homomorphisms. 

It is a natural step to generalize from -multi- to -poly·. The 
whole terminology of multicolimits, etc. can he adapted. We will not 
bother to give the details since in this work the more general 
situation plays a secondary role. 

A small discrete category is a Diers category of Il degenerate 
nature: all its objects are initial candidates! 

0.20 Theorem 

Let t be a category. Then the fo11owing are equivalent. 

i) t is MO-accessible and has a11 small pullbacks. 

ii) t is MO-accessible and is polycocomplete. 
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iii) t has filtered colimits, a small strongly generating set of f.p. 
objects, and is polycocomplete. 

We will ca]] such a category (we won't have ta caU it very often, 
fortunately) a locolly "o-polypresentable category. The proof is the 
same as for 0.19, replacing every mention of ·multi· by ·poly·, and 
every mention of ·connected limit· by ·small pullbacks·. 

Ezamples 

The paradigm of such categories is the category of algebraically 
closed fields and morphisms of fields. We leave the necessary 
verifications to the reader. 

A small groupoid (hence, just a group will do) is such a category 
too, since groupoids have small pullbacks and filtered colimits and 
they obviously have enough f.p. objects. Groupoids are to MO-locally 
polypresentable categories what discrete categories are to Diers 
categories. 

The syntactical presentation of locally MO-polypresentable 
categories is not known at this time. 

ln the sections that follow we will describe the necessary 
categorical framework needed to interpret Martin-Lof t.ype theory. 
Remember that its essential characteristic is the presence of types 
which depend on another type,' that is, if S is a type of the 
theory, and 5 a variable of type S, then there May arise types of 
the form T[sJ, in which the variable s appears. The naive 
interpretation is that T is an S-indexed family of sets. Now there 
is an already venerable tradition in category theory of interpreting 
indexed families by morphisms: that is, one represents the Aboye in 
a category as a morphism w:T -+S ,where S models the type S. 
and T should he thought of as the disjoint union 1151[s] and w 
the obvious projection. Then if f:V-+S is a morphism of the given 
category such that the pullback f*w: f*T ..... Y exists, this latter 
morphism is interpreted as the variable type T[f(v)] , where v is of 
type V and the meaning of f,v,V should he clear. Now 
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substitution in syntax is risid: if 0 and 9 are two expressions of 
a formallanluale, x a variable appearinl in Cl, then the 
substitution ()[xI91 is a uniquely defined entity. In contrast, 
pullback. the counterpart of type substitution in categories, is 
defined as a universal property, that is, only up to unique 
isomorphism. This prompted Cartmell (Ca) to equip his categories 
with the added structure of predetermined, functorial pullbacks, to 
make catelories look more like lanluales. There is something to he 
laid for this approach, which lives more rilidity and in some cases 
could he technically advantageous. We have opted for the opposite 
tack of adaptinl the semantics to the more common cateaorical 
practice of having things determined only up to isomorphism. This is 
already common practice in catesorical IOSic. In other words, 
whenever you need a pullback (or a right adjoint, or whatever 
universal construction) to interpret a term, just take the first one at 
hand; the universal properties will ensure that the final outcome 
will he independent of the chosen pullback. Whence the followinl 
definition: 

0.21 Definition 

A di§plA)' cate&ory (C,.D) is made of a not-necessarily-locally­
small category e with finite products, along with a distinguished 
class .D of arrows, the di$play maps , such that 

il If E:E-tC is a display map and F:D .... C any arrow then 
the pullback F*E:F*E"'O exists and is a display map 

ii) If E is as above and «:C .... C' ,~:E' ... E isomorphisms then 
«E~ is a display map. 

iii) every isomorphism is a display map. 

Sorne comments are in order. First notice that our notation for 
pullback is ambiguous, but this poses no problem in practice. 
Condition i) is called Stability in IH-Pl, and condition iii) llDi1. 
Condition ii) is a natural complement to condition i) , and cornes 

from our desire of making thinls as close as possible to categorical 
practice. It says that the property of heinl a display map is intrinsic 
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to the map, and not an arbitrary whim; it is always met in 
practice. The Unit condition IÏves us the possibility of modellinl the 
(type corresponding to the) one-element set, and ail its constant 
indexed families. This simplifies life in many instances, but actually 
in all the known models a stronser condition is met: if for ]t, e wt 

denote by J)X the full subcatesory of elX whose objects are 
display maps, then we always have that .Dx has finite products. 
ln this case we will say that (e,D) admits discrett Products. 

0.22 Definition 

Let (e,D) be a display catesory. We say it admits suros if J) 

is closed under composition. 

This condition enta ils the following well-known consequence: for 
every F:F~Y in J) the pullback functor F*:J)y~J)p has 0 left 
adjoint IF, and the Beek condition holds for pullback diasrams 
with two parallel display rnaps: if 

S 
E--+F 

El 1 F 
X--+Y 

X 

is a pullback where E,F€D and G:G~F is also a display map, then 
the natural morphism IES*G~X·l:rG in J)X is an Iso. Clearly, 
IF is laIt composition by F ,i.e. I.-G. FG . Admitting sums means 
thot we con interpret the Martin-Lof connective l in (e,D) 
[H-P] . 

0.23 Proposition CStreicher [St) 

Let ce,J» be a display catesory. Then the following are 
equivalent: 
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i) For wery display map F: p ... y the pullback functor 
F*:C/Y-tCIF has a partial right adjoint TT, which is 
defined for every object of .n,c tIF and lands in lly. In 
other words, for flVery display map G:G"" there is a 
display map TT,G:TT,G ... Y and eG:F*TT,G-tG in ll .. such 
that eG is (co)universal: for every H:H"'Y in e we 
have the isomorphism e/Y (H, TT iN) aE e/F (F*H,G) , mediated 
in the usual way. 

ii) For wery display map F:P"'Y the pullback functor 
F*:J)y ... .D,. has a right adjoint TT, and the Beek condition 
holds for pullback diagrams with parallel display maps. 

Proof 

For n .. ii) we obviously only have to prove the Beek condition. 
Let E,F,S,X he the same pullback square as Aboye, and let G:G~F 
and A: A'" X he display maps. Let E* A: B~ E he the pullback. 

Weget 

rA S G 
B ........ E---tFt-G 

A*E 1 El l F 
A ........ X---tY 

A X 

.DX(A,X*TTfG) Il e/Y (XA,TTfCi) 
Il e/F(S.E*A,G) 
• .DE (r A,S*G) 
fi J)X (A, TT p:S*G) 

by pullbackness 
by assumption 
By pullbackness 

and this heinl true for any A, proves the claim. For the converse, 
let F:F ... Y ,G:G ... r he display maps. We have to show that for 
any X: X'" Y in e e/Y (X, TT,cl> Il elF (F*X,G). Let S: E ... F , 
E: E-t X be the pullback of F and X. Then 

>' "j 
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elY(X,TI,G) • C/x(lX,X*n,G) by pullbackness 
• J)X(lX,X*nFG) by Unit 
SI J)X(lX,TIES*G) by Beek 
;1 J)y(lE,S"G) by nradjunction 
Il e/F (S,G) by pullbackness 
• e/F (F*X,G) . Qm. 
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When the conditions above are satisfied, we say that «<:,1» 
admits products . This allows us to interpret the Martin-Lof 
connective TI. The unexperienced reader should try the following as 
an exercise. 

0.24 Proposition 

Let (e,J» be a display category which admits products. Then 
Dl is cartesian-closed (1 the terminal object). If in addition ce,J:» 
admits discrete products, then for Any XE: e the category DX is 
cartesian-closed, and for any F:X .... Y the pullback functor 
Dy .... .Dx preserves the full cartesian-closed structure. 

We can now say what to add to a display category in order to be 
able to interpret the theory of constructions. 

0.25 Definition 

Let (e,J) he a display category which admits products. A 
notion of smallnas is a pair (.8,S) , where .8 is a subclass of J) 

whose elements are called the smoll maps, and S:A .... S is a 
classifier of small maps in the sense that S,.8 and the elements of 
A are exactly the morphisms obtained by pulling back S by an 
arbitrary arrow of l:. We require that for any F:X ..... Y in l: the 
functor TIF: Dx .... lJy send objects of llx which are small maps to 
small maps of Dy (this last condition is polymorphism proper). 

The formai systems we will interpret are simply those of [H-P] 
that apply to our models. That is, we will construct two display 
categ,.,ries using aaregates. 80th of them admit products, and the 
first one also admits sums. Therefore the ·purely Martin-Lof· part 
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of type theory (the restriction of the formaI system to Orders) wiJl 
apply to both models, with both -quanti fiers- for the first model and 
on]y TT for the second. This is not apparent at first reading of 
(H-P] • but the two quantifiers are independent in both syntax and 
categorical interpretation (in other words, the system is quite 
modular, and can customized by parina down). Then 'Ile will 
descrihe a notion of smallness for the second mode], which will allow 
the addition of an Order of Types to its forma] language. Finally we 
will give a short description of an Order of Types for the first model. 

We end this chapter with a short review of Grothendieck 
fibrations. The reader who wants more information can consult 
[CGW] , [Eh] or [Pi]. 

0.26 Definition 

Let E:E .... t he a functor between categories. If. for X€E EX-S 
'Ile will often say that X is Aboye S, and samewise for morphisms. 
Let f:X .... y he above s:S~T . We say f is cartesian if for every 
g:Z~Y such that Eg is of the form st. for t:EZ~S there is a 
unique h:Z .... X Aboye t such that fh-g. We say f is cocartesian 
if f is cartesian for the dual functor [OP: EOP .... tOP . A 
(Grothendieck) fibration is an E:E~t such that for every YEE 
aboye T and every s:S .... T there exists a cartesian f:X .... Y above 
s . An opfibration is an E such that [OP is a fibration. For S€t 
we denote by ES the liber above S, i.e. the category of all objects 
aboye Sand all morphisms above 1S. If E is a fibration and 
s:S .... T in t then -the- usual functor ET .... ES will he denoted by 
s* . If s* has a left adjoint we will denote it by 3 •. The following 
will he left to the reader as an exercise. 

0.27 Proposition 

Let E:E .... t he a fibration. Then the folloWÎng are equivalent. 

i) For every morphism s of t the functor s* has a left 
adjoint 3 •. 

ii) E is a bifihration, that is, it is a]so an opfibration. 
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CHAPTER 1 

ln this chapter we introduce the two classes of categories which 
will be our main subject of study. Agregates and semigranular 
categories are Diers categories with conditions added, an important 
one being that aIl their morphisms are mono. This permits us a 
more specialized, simpler presentation than the fullgeneral theory of 
Diers categories, and in particular we only have to consider 
multicoproducts instead of multicolimits in general. But firat the 
example that gave birth to the theory. 

1.0 Definition 

A Qualitative ~WAin X is composed of an underlying set IXI, 
and a subset XcPIXI with the following properties 

i) _f:X 
ii) for Any Xf:X , (x}€IXI 
iii) a€X , bea .. b€X 
iv) X is closed under directed (filtered) unions. 

If X is a qualitative domain, the poset of elements of X ordered by 
inclusion is denoted X. It is quite easy to see that lé is consistent1y 
(çP)CQroplete (0.16), i.e. that Any bounded subset of X has a least 
upper bound, and that st as a category has pullbacks. Notice that a 
nonempty consistently cocomplete poset always has a bottom 
element: the l.u.b of the empty set. A stable function between 
qualitative domains X. Y is a morphism of posets lé -t Y that 
preserves filtered sups and pullbacks. Girard proves that the 
category of qualitative domains and stable functions is cartesian­
closed. 

A morphism of qualitative domains X -t Y is an injective 
funcdon f:IXI",'YI such that f(a)€Y iff a€X. f(a) heing the direct 
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image of a by f . We denote the category of qualitative domains 
and morphisms by qD. 

1.2 Proposition 

Let t have pullbacks and a strong generating set a . Then to 
check that a diagram 

20 

is a pullback it suffices to show the pullback property for ail A d~ , 
i.e. that for ail Adl , t:A ..... Y ,s:A ..... Z such that fs· gt there is a 
unique x: A ..... X making hx· s , kx· t . 

Proof 

Let P he a pullback object. There exists x:X ..... P . Now the 
property Aboye will show that t(A,x) is an isomorphism for ail AEa 
and therefore that x is an isomorphism. 

1.3 Definition 

Let t have multicoproducts, and let ail its morphisms he 
monomorphisms. This implies that for Any object XEt the set of 
subobjects SU.b(X) is a (co-)complete lattice. We say that X is 
priJ'DI if .5Ub(X) is finite, and whenever we have a coproduct 
candidate (at:At .... X)td then there is iEI such that at is an 
isomorphism. X is 5aid to he atomic if it has exactly two 
subobjects: itself and the initial candidate it determines. It is eAsy 
to see that An atom is always prime. 
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1.4 Definition 
A category t is an Allrepte (resp. a semilraDulor cotllOtY) 

if the following five axioms hold. 

1- It has filtered colimits. 
2- Ali morphisms are mono. 
S- It has ail multicoproducts. 
4- It has a strong generating set a of f.p. prime (rap. 

f.p. atomic) objects. 

1.4.1 Remarks 

Having only monomorphisms in t simplifies our life 
considerably. For example, to prove that f:X .... Y is an iso it is 
sufficient to show that there is g:Y .... X such that gf -lX. Or if we 
use the generating set ail we have to do to show that f is an iso is 
to prove that for ail A€Cl and y:A .... Y there is x:A .... X with 
fx - y. Also an object CE:t is f.p. iff the following holds : 

Given a filtered diagram (Xh)hdl in t with colimit X and 
coprojections CXh:Xh~X ,and a morphism f:C~X there exist 
h€1i and f':C~Xh with ochf-f . 

Finally a morphism f: A ~ B between atoms is always an iso: f 
is a representative of either the full or the minimum subobject. In 
the tirst case there is g:S-tA with 

commuting and f is an isomorphisme The second case is impossible, 
sinee it forces A to be an initial candidate, contradicting the 
atolT.icity of A. And now the last axiom : 
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5- If (At)td is a family of obJects of t. (xl:At~X)ld a 
candidate, f:S .... X some morphism where B is prime then 
there is i€1 • and g:B~AI with xll- f . 

We will soon show that Axiom$ 1-4 imply that t always has 
pullbacks. and then that Axiom 5 is equivalent to saying that 
coproduct candidates (a notion of covering family) are stable under 
pullbacks. 

1.4.2 Ezample 

Let t be the category of totally ordered sets and injective 
morphisms of orders. It is easy to show that the underlying set 
functor 1-1: t .... Set creates filtered colimits (That is, given a filtered 
diagram (Xh)h,H in t there is a unique total ordering on the set 
!!!!lh IXhl that will make it a colimit in t). We have already shown 
that t has multicoproducts, and it is trivial to prove that the one­
element ordered set 1 is a $tron8 generating set and that it 
satisfies Axiom 5. Therefore t is semigranular. 

Until the end of this chapter t is an agregate with a a 
generating set of primes. 

1.5 Proposition 

Let (Xj:Xj .... X)td be a discrete cocone in t. Then it is a 
candidate iff any A .... X where A is prime factors through sorne 
XI • 

Proof 

Necessity is just Axiom 5 . For sufficience let (Yl:X1~Y)1 be the 
candidate determined by (Xl)1 and y:Y~X the factoring. We just 
show y is an iso by verifying that every A .... Y where A is prime 
factors through y. 
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1.6 Definition 

Let x(t . A leOD cocone for X is a discrete cocone (Xi:A,~X)id 
where Ai is prime such that given any prime Band f: B .... X 
there exists exactly one i E 1 such that f factors through Xi by an 
isomorphisme 

By the previous proposition a lean cocone is a coproduct candidate. 

An object always admits a lean cocone to it: if XEt let eux he 
the full subcategory of tlX whose objects are arrows with domain 
in Ci. Choosing one representative for every isomorphism cla55 of 
objects of CiIX will give a lean cocone. 

1.6.1 Corollary 

Every prime of t is isomorphic to an object of a. 
If X is a prime of t we know it has 0 leon cocone where 011 

the domains of the arrows are in a. But one of the components of 
that cocone has to be an isomorphism by the definition of ·prime· . 

1.7 Proposition 

Let X€t . Then X is f.p. iff Sub(X) is finite. 

Proof 

Suppose .5U.b(X) is finite. Then obviously there is a lean cocone 
(xl:Al~X)id with 1 finite. Let (Yd)d€D he a filtered diagrom 
D .... t with coli mit Y and coprojections ()(d:Yd .... Y . Let f:X .... Y. 
Sinee the primes are f.p., for every id there is diED and 
',:A1 ..... ydl with adl-"· fx, . Since 1 is finite and D filtered there 
is a Qiscrete cocone (st:dl-te)l in D. This determines a cocone 
(y Sl- sx :Ar" y .)'d in t. 
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l, Ya, 
Al--t y dl---t Y. 

xil OCdi'\. / oc. 
X .y 

f 

We claim (X')I is the candidate that cocone determines. This is 
because a.oY Sjoli • fXi' as the dialram above shows, 50 (Xi)i and 
(y 51 081). belong to the same component in the category of (A.)I­

cocones. Therefore there is fi: X .... Y. with f'Xi· y Si °Si . But then 

OC.of'oXi 

and by joint epiness of (x.). we set that oc.of' = f and 50 X is t.p. 
by 1.4.1. 

Now suppose that X is f.p .. Let (Xi:Ai .... X)ld he a lean cocone. 
As before, for Jel, XJ is the subobject determined by the cocone 
CXJ)J(J , and xJ:XJ .... X the factoring. Obviously, for JCJ' we have 

XJ --+XJ' 

XJ\ /xJ' 
X 

50 look at the filtered system (XJ)J finU •. Let X' he its colimit, 
with coprojections OCJ:XJ -. X' . The family (xJ)J forms a cocone. So 
there is f:X'-.X. We will prove it is an i5Omorphism by testins with 
primes. If A€Cl and a:A-'X , then since there is i€1 and 

A.-.A j 

a\ 'Xi X 

and there is J finite with i€J (take Ci}!) , so 

A,-+XJ 
x.\ ~xJ 

X 
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and by composing the two and following with CXJ, A .... Ai .... XJ .... X' 
we get a morphism al: A .... X' such that fa'. a and therefore f is 
an isomorphisme 

Hence X is the sup of its f.p. subobjects. But since X is f.p there 
is J such that f-l factors through cxJ and that forces J -1 . 
Therefore 1 is finite. QIn. 

1_8 Corollary 

Every object of t is the sup of its f.p subobjects. 

Since f.p. objects in t have such strong finiteness properties it is 
fitting to call them finite objects. There is only Il small set of 
isomorphism types of finite objects: to every finite X one can 
associate essentially one lean cocone (Ar~X)ld. But the class of ail 
multieoproduct families from ail finite families (Ai)i of objects of a 
for ms a set. This shows t is MO-accessible. In the same vein of 
thought, sinee the initial candidates are exactly the objects of [ 
whose subobject lattiee is a singleton, we will cali them empty 
objects. 

1.9 Proposition 

1: has eonnected limits. 

Let (Yd)d(1) he a connected dia gram D .... I:. Let ~ be the 
following category: an object of B is a eone (A,Crd)d), rd:A .... Yd 
where Ad) and a morphism (A,(rd)d) .... (A',(,,'d)d) is a morphism 
of cones. Such a morphism forces 

A---.A' 

rd\f~ 
to c"mmute and there is therefore at most one morphism between 
objects of B. Let 1 be the set of isomorphism classes of ~ and for 
wery' iE:1 let (Al,(r~)d) he a choiee of a representative. Now for 
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every d € 1) there is a discrete cocone (r4:A i-t y cI)td • Since for 
f:d .... d' YI is a morphism of eocones (r'cI)~-t(r~')i and sinee D is 
eonnected, for any d,d'€D the cocones (rd)S and (r1d,)s determine 
the same candidate. Hence there is ta candidate (Yt: Ai ..... Y}t and for 
every d there is ~d: y ...... Y d with ~d ·y.- rd , for ail d, i . (~d)d is a 
cone : if f:d .... d· then 

y~tà 
~~~~' 

Yd IiYd' 
~ 

Yfo~doyj • Yford • rd' 
= ~cI'OYt 

and by joint epiness of (Yl)l we get Yfo~d· ~d' . We claim 
(y ,(~d)d) is a limit cone: let (Sd:Z ..... y d)dd) be some cone. Let 
(bj:Bj ..... Z}j(J be a lean cocone to Z. For every j€J we get a cone 
eSdobj)dd) and since Bj is prime there is a unique aej) and a 
unique morphism of D-cocones Sj: (Bj, (6dObj)d)-t(ACX(J>,Cr:(J) )d) . 

B j sJ. AOI.(J) 

bJ+ ~(j + Y",(jJ 
z d Y 

"~d Yd 

But now the family (Ycx{j)osJ:Bj .... X}j(J is a discrete cocone from 
(Bj)j . The candidate it determines is CbJ)j. This is because 

~d·Ycx(j)·Sj = rr(j>oSJ 
a Sd obj 
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and 50 the usual connectedness argument holds. So there is g:Z .... Y 
with gobJ-Ycx<J).sJ and therefore 

• ~d·Ycx(J)·sJ 
• 6d ebJ 

So Pd og. Ôd for Any d , and this shows (X,(~d» is a limite 

1.10 Remart 

We do end up proving that aggregates and semigranular 
categories are Diers categories. In fact, an aggregate is just a Diers 
category where axioms 2,4 and 5 hold in addition. We could have 
chosen other paths than the rather elementary (and explicit) one we 
took. For example, it is not ha rd to show that a category with 
multicoproducts aIl whose morphisms are mono is multicocomplete. 

1.11 Ezamples 

ln the category qD the only qualitative domain on the one point 
set is a strong generator, and obviously atomic. lt is easy to see that 
qD has multicoproducts ; it is done just as for total orders, and the 
same holds for Axiom 5. 

The same happens with the category :nt of sets and 
monomorphisms. 

The three examples above have two things in common: they are 
semigranular and the only automorphisms of atoms are trivial. A 
semigranular category is said to he aranular if this is the case. 

Here is an example of a non-granular semigranular category. 
Let G he a group. Let ~ he the category whose objects are (right) 
actions XxG ..... X where X is a set, such that for any x€X, g€G 
with g ~ 1 we have xg ~ x (i.e. the orbits are all isomorphic to G ). 
The morphisms are injective morphisms of group actions. We leave 
to the reader the verification that ~ is semigranular. 
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Let X be a qualitative domaine Then 5t is a Il'anular poset: we 
already know 1 has multicoproducts; the singletons of X are 
obviously a stronggenerating set of atoms, and Axiom 6 is trivial to 

check. For the converse: 

1.11.1 Proposition 

Let li he a eonnected semigranular poset which is consistently 
cocomplete. Then there is a qualitative domain X sueh that li is 
isomorphic to 5t. 

Proof 

Take IXI to be the set of atoms of li (sinee we are in a poset 
there is exaetly one atom per isomorphism type and li is granular). 
Define a function 'f from the underlying set of li to the power set 
of IXI by 'f(g). {x€IXllx$g}. Since li is connected the unique 
g€1i such that 't(S>. fi is the bottom element a. Since li is 
consistently cocomplete 't is injective on Ii-{a} , and therefore on 
the whole of li. If we take xcP(lXI) to be the image of 'f it is 
trivial to check that X is a qualitative domain and that 't 

preserves order. 

Here is an example of an agregate which is not semigranular: 
let [ he semigranular, and let 1 he a finite partially ordered set. 
It is easy to eheck that the functor catesory [1 has filtered eolimits 
and multieoproduets (multicoproducts are calculated pointwise in a 
funetor category; i.e. a coproduct candidate in [1 is a discrete 
cocone (CPx:Fx~F) such that for fNery iEl (CPx(i)x is a coproduct 
candidate), If A is an atom of [ and i€l let [A,i]€[I be defined 
by: 

{

A if j~i 
[A,iJ(j) • 

the initial candidate a A ~ A if note 

An easy exereise will show that [A,il is prime, and that the family 
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([A,i]).,J,Aca 

obeys the necessary requirements to make Cl an allregate. 

A small discrete category is a semigranular category whose 
generating set of f.p. atoms is empty. 

1.12 Proposition 

Coproduct candidates in C are stable under pullbacks. 

Proof 

29 

Let (Xi: Xr-' X)id be a coproduct candidate, f: Y -t X some 
morphism. If Yi:V.-+Y is the pullback of Xi by f to show (Yi)1 is 
a candidate we just have to use 1.5 and test with primes. 

1.13 Proposition 

If t is semigranular, then for any X€t SU.b(X) is a complete 
atomic boolean algebra. 

Proof 

Let (X1:At-tX)1d be a lean cocone. Ail Ai are atomic. We will 
prove that Sub(X) is lattice-isomorphic to PU). Define functions 

(-)-
PO) f=i Sub(X) 

(_)b 

where for Jel , 

J. • The factoring XJ -t X determined by the cocone 
(xJ)JeJ 

and for a subobject Y .... X 

yb. {id IXi factors through V} 
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We first show that (yb}4t. Y • Let y:Y~X b~ a subobject. If j€yb • 
let xj:Aj-t Y he such that yxj. Xj. (yb). comes from a factorins 
z:Z~X and a coproduct candidate (zJ:Aj~Z)JEyb. But by definition 
(xj)jEyb is a lean cocone. and therefore is a candidate. So we have 
two candidates (Zj)j and (xj)J that are sent by Z and y 
respectively to (Xj) J • Therefore y and z determine the same 
subobject. 

10 show that (J*)b. J , let Jel, and x:XJ .... X he the factoring 
determined by the cocone (Xj}j with candidate (xj:Aj .... Xj)j(J. Now 

(J4t)b. {iEllxt factors through x} . 

Obviously Je(J-)b since for each j€J there is xj with xxj- xJ . 
Let Xl:At-tX be such that there is f:Al~XJ with xf· xi . By 
axiom 5 f is isomorphic in Ci/XJ to a xj. jEJ. but since (xj)j is 
lean this forces i. j . 
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CHAPTER 2 

ln this chapter 'We study the -right notion· (for our purposes) of 
morphism bet'Ween aaregates. 

2.1 Definition 

Let t,Il be categories and F:C .... D a functor between them. 
For AEI) the category AIF is defined as usual: an object is a pair 
(X ,x) whère XEt and x:A .... FX. A morphism (X,x) .... (Y,y) is an 
f:X .... Y such that Ff.x· y. f will be thought of as a morphism 
living both in C and A/F. We say that (X,x) is a poerie 
morphism, or a seneric arrQW if it is a generic object in AIF: given 
any diagram of the form 

(X,x) (y ,y) 

f~ ~ 
(Z,Z) 

in AIF there is a unique h:(X,x) .... (Y,y) such that gh. f . 

This notion is related to, but stronger than the Joyal notion of 
genericity [Jo] and 50 should be called strong genericity. But both 
notions are the same in a category ail whose morphisms are mono, 
in particular for asgregates. Note that if x:A .... FX is seneric and 
a: B .... A , s:X .... Y are isomorphisms, then Fs. xa will be a generic 
arrow. 

Let us recall that if (X,x) is leneric, then any morphism 
f:(y,y) .... (X,x) is a split epi. If in addition (Y,y) is senerie then f is 
an isomorphisme 

2.2 Proposition 

Let C and D have pullbacks. Let aU the morphisms of C be 
monO!; and let F:t~1) preserve puUbacks (and therefore 
monomorphisms). Let x:A .... FX he an object of A/F. Then TFAE : 
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i) x is leneric 

ii) if f:Y~X illuch that x factors throush Ff 

A 

1'\ 
FV ~FX 

Ff 

then f il an isomorphisme 

Proof 

This is just 0.11 over again, if one proves that under the 
conditions given A/F has pullbacks. But this is quite easy and will 
be left to the reader. 

2.3 Proposition 

Let t and D he aggregates and let F:t .... D he sorne functor. 
Then TFAE 

il F preserves filtered colimits and pullbacks. 

ii) For any prime A€D,y:A-tFY there is a generic x:A-tFX 
where X is finite and a morphism (X,x)--(Y,y) in A/F. 

iii} For any finite AED,y:A .... FY there is a generic x:A .... FX 
where X is finite and a morphism (X,x)--CY,y) in AIF. 

Proof 

iii) .. ii) is obvious. 

i) .. iii) 

Just as in (Gi86). Let A be finite and y:A .... FY. We know that 
y is the sup of its finite subobjects. 

y. li!l Z 
ZeY,Z finit. 
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This a filtered eolimit diagram, and sinee F preserves filtered 
eolimits 

FY • ll!!1 FZ 
ZCy,Z finit. 

Sinee A is finite there is ZeV finite sueh that 

FZ. A 

'\/Y 
FY 

y factors through FZ. But SUb(Z) is finite. Let 

X· n{ Z'cZ 1 y factors through FZ' } 

33 

where intersection of subobjects means pullback as usual. There will 
be x:A~FX and it is easy to prove that x€AIF does not have any 
proper subobject. Therefore x is generie. This proof is just a 
slightly modified version of Freyd's adjoint funetor theorem. 

mati) 

Let every y: A ~ FY where A is prime admit a generic arrow to 
it. Let 

~P'{' 
y Y' f"- ,;,-

Z 

be a pullback diagram. Let A be prime, and y:A~FV, y':A-tFV' 
with Ff.y. Ff'.y' , and let z • Ft.y . Let (X,x) be generie with 
g:(X,x)~(V,y) . Then we have 

(X,x) (V',y') 

fg'- -"f' 
(Z,z) 

.. " . -
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in AIF. 50 by generieity there is h: X -t Y' with f'h - fg and 
Fhex·y' . But then there is k:X .... P, with pk-g and p'k-h. 

Sinee we have 

FpeFkox - Fgex • y 

Fp'eFkox - Fhex • yi 

we have shown that F preserves pullbaeks by testing with primes. 

Now let (Yh)hEtt he a filtered diagram It ... C with eolimit Y 
and coprojeetions ah:Yh-tY . Let Z -!!!!lh FYh with coprojeetions 
~b:FYh-tZ. There is a canonical w:Z"'FY. We will prove w is an 
iso by testing with primes. Let A be prime and y: A..., FY . There is 
x: A"" ne ,enerie with X finite and f:X .... Y with y. Ff.x . Sinee 
X is finite there is h € It and f': X -t Y h with ah 0" -f . But then 

we~heFf'.x • FabeFf'ox • Ff.x 
=y 

Ff' 
FYh~ FX 

~~~ ~lx 
Z .FY4 -A 

w y 

so C(A,w) is bijective and this proves F preserves filtered colimits. 

We will eall a functor between aggregates that fills the conditions 
above an entirl funetor. A funetor which is constant over each 
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component of t is mtire, since pullbacks and filtered diagrams are 
connected. Another example of an entire functor is a stable function 
between qualitative domains. The concept of entire funetor is 
related to some very classical concepts. Given Any two catesories C 
and 1) say a functor F:C-tl) -has a polyadjoint- if for wery A€D 
the category AIF has a poly-initial family. This is a leneralization 
of the property of having a left adjoint: this latter case is equivalent 
to AIF having an initial object for fNery A. For example the 
inclusion of the category of algebraically closed fields into the 
category of fields has a polyadjoint; in this case wery category of 
the form A/F is in fact connected. If A is a field a leneric object 
of A/F is an inclusion A .... A where A is the algebraic closure of 
A . An entire functor between agregates is the same as a functor 
which preserves filtered colimits and has a polyadjoint. 

ln the same way we can define what it means for a functor to 
have a -multiadjoint-. This case has been studied by Diers [Di81]. It 
does not hold much interest for us sinee the categories it gives rise to 
are not cartesian-closed. 

2.4 Proposition 

Let t,D a"regates, F,G:t .... D entire functors and cx:F .... G a 
natural transformation. Then TFAE 

i) For every AE: 1) , every leneric arrow x: A ..... FX , cxX.x is 
generic. 

ii) For every prime A€ 1) , every generic x: A ..... FX , cxX.x is 
generic. 

iii) For every f:Z ..... Y in t, the square 
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f • 
f 
· · ;; 

C fi 

f , , 

c 

Fr 
FZ--tFY 

cxZ! ! cxY 
GZ--tGY 

Gf 

is a pullback. 

We will cali such a natural transformation a cartesian 
transformation. 

Proof 

i) .. ii) is obvious. 

iO"iii) 
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We just have to prove ·pullbackness· for prime objects. 50 let A 
he a prime and s:A~GZ, t:A~FY with Gf .s- cxY.t (. u , by 
definition). Let x:A~FX he generic and g:(X,x)~(Y,t). Since 
cxX·x is generic and we have a diagram 

(X,cxX • x) (Z,S) 

g"- /f 
(Y,u) 

in A/G there exists k:X~Z with Gk.cxX.x· sand fk· g. 
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Then looking at the diagram above will show Fltox fills in the 
square. 

iii)~ü) 

Let x:A--FX be generic. Let there be m:W--X and w:A--GW 
with Gm 0 w· aX 0 x . By assumption there is w':A --FW with 
aW ow·· w and Fm ow' • x. But the last equation forces m to be 
an isomorphism, 50 aX 0 x is generic. 

2.5 Proposition 

Let F .G.H be entire functors. and 9:F--G. cp:G--H natural 
transformations. Then 

e., cartesian 
cp and cpe cartesian 

Proo' 

.. cpe cartesian. 

.. e cartesian. 

One just uses the fact that in a composite of squares 

.---.. ---te 

l l l 
• --t • ----te 

If the left and the right squares are pullbacks then the outer 
square is. 

If the right and the outer square are pullbacks then the left 
square is. 

The following proposition uses in an essential way the tact that 
we are dealing only with monomorphisms. That is. while 2.3 and 
2.4 generalize to categories with non-monomorphisms, this one does 
not. 

'<' 
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2.6 Proposition 

Let t, D be auregates. Let F,G:C ..... I) be any two functors, 
e:F ..... G a natural transformation. Let x:A-tFX be such that eX.x 
is generie. Then x is generic. 

Proof 

Let 

(X,x) (Z,z) 

f'\, /1 
(y ,y) 

be a diagram in A/F. Then 

(X,eXox) (Z,eZoz) 
f \. / g 

(Y,eYoy) 

is a diagram in A/G. So there exists h:(X,tX.x)-t(Z,eZoz) with 
gh • f . But then 

eZoFhox • GhoeXox • tZoz 

eX 
FX--tGX 

x/II 
A IFh IGh 
z \.l l 

FZ--tGZ 
eZ 

and sinee eZ is mono we let that Fh 0 x • z . QED. 

2.7 Proposition 

Let Aggr be the not-locally-small category of aggregates and 
entire funetors. Then Aa8r has ail small products and coproduets. 
The same is true of Sem, the full subcategory of semigranular 
categories and entire funetors. 
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Proof 

Let t,1) and E be agregates (semigranular). It is easy to see 
that txl), the usual product of categories, is an aggregate 
(semigranular). First. connected limits and filtered colimits are 
taken pointwise, e.g. if (Xl, Y')ldt is a connected diagram then its 
limit in txD is H!!!.x .. l!!!. Yi) . An object (X,Y) is finitely 
presented iff X, Y are f.p. in their respèctive categories. Primes 
(atoms) are either of the form n,A) or (A\r) where I€t, l'€D 
are initial candidates and A€t, A'E:D primes (atoms). The 
projections txl)~t and txl)~D are obviously entire functors. 
Hence to show that ! has finite products we just have to show that 
if f:E .... C, g:E .... D are entire then <f,g>:E .... txl) is entire. This is 
also quite trivial. The terminal object of both Aa:8r and s'm is 
the one-object discrete category 1 . 

The proof for binary products generalizes trivially to arbitrary 
products: if (Cl)idt is a family of aggregates (semigranulars) then 
the usual product TI iCi is an aggregate (semigranular) and the 
product in Aggr (SPm) . The proof is just as above. Primes (atoms) 
are families (Ai)'€!, A,E:t, such that there is exactly one i with 
Ai prime (atomic), AJ an initial candidate, for j '1 i . 

The disjoint sum llt tl is an aggregate (semigranular). This is 
trivial to prove since ail the limit, colimit and candidate diagrams 
always stay in the same component. The coprojections ji:tl~llt t 1 
are surely entire and if F,:ti~D is a family of entire functors then 
[Ft]t:lltCi-tD is entire and this shows we have coproducts. 

" l ' ~ '1 : .,"r~ 
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CHAPTER 3 

This chapter generalizes the definitions of the previous two 
chapters to the case of a -variable agregate-, i.e. an indexed family 
of aggregates indexed in an -entire fashion-, 

3.1 Proposition 

Let C,D be categories with F:D-tC a functor admitting a right 
adjoint G, Then if (xr:Xj-t yS)ld,S€S is a multicoproduct family in 
1) ,(Fx~:FXi~FyS)itS is a muticoproduct family in t. 

Proof 

Just as in the classical case: for ZEt 

niC(FXi,Z) iii niD(X .. GZ) 
;; lit t(FYs,Z) 

El lis D(Y· ,GZ) 

Let t be an aggregate, with Cl a strongly generating set of 
primes. Let :Bca. We are interested in the full subcategory D of C 
generated by :e. An object of D will simply he an XEt admitting 
a coproduct candidate (Ai~X)id where AiE~ for aIl i. It makes 
sense to require that :B be ·closed under prime subobjects·: if 
AE ~ , and there is BEG with B-t A ,then B € ~ • Then :e is 
essentially determined by D as its strongly generating set of 
primes, and an object of D is an X admitting a lean tocone ail 
whose domains are (essentially) in !B. The inclusion D-t t has a 
right adjoint G such that the counit €X:GX-tX is the factoring 
determined by the sub-cocone of the lean cocone of X all whose 
domains are in ~ .It is now easy to see that D is an aggregate: as 
a coreflexive subcategory D has ail filtered colimits. A very 
predictable argument will show that it also has ail multicoproducts, 
and ~ will he a generating set of primes with aIl the required 
properties. 
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3.2 Proposition 

Let t, D be agregates, F: D~t a full and faithful functor with 
right adjoint G. Then TF Al: 

i) F is powerful, that is, if X€D any subobject of FX is in 
the essential image of F . 

ii) If A€D is a prime and B€t is such that there is b:B~FA, 
then B is in the essential image of D (and 50 is b. 
obviously). 

iii) 

iv) 

v) 

vi) 

If A€D is a prime and B€t is prime and there is 
b: B~ FA ,then B is in the essential image of D 

F sends lean cocones to lean cocones. In particular F sends 
primes to primes. 

E:FG~11 is cartesian, Le. has the pullbaC'k property for 
natural squares 

Both F and Gare entire and E is cartesian. 

We will cali F in such a situation Il stiff embeddiDi . 

Ezample 

It is easy to see that if t, D are qualitative domains, then 
F: D~ t is a stiff embedding iff it is of the form Fe f+ for a 
morphism of qualitative domains f:D-.t, where f+ is the direct 
image functor. 

Proof 

i) .. ii) ct iii) is obvious. 

iii)~iv) 

Let (aj:Aj~X)jd be a lean cocone. Let B€t he prime, and 
b:B-.FX . Byassumption there is i€I such that Faj is isomorphic 
to b in t/FX. Such an i is unique since a full and faithful functor 
with a right adjoint reflects isos. 
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iv).v) 

Let f:Y~X be a morphism of t. To show 

eV 
FGY~Y 

FGf 1 1 f 
FGX---tX 

eX 

is a pullback we will test with primes. Let B be one and let s: B .... Y 
and t:B~FGY with eX.t - fs. Let (ai:Ar-+GX)id be a lean cocone 
for GX in Il. By assumption (Fai)l i5 lean, 50 there is i and an 
iso B .... FAi . We can suppose without 1055 of generality that B-FAi 
and t.F~i. Therefore 

S 

FA1---+Y 
Fai 1 1 f 

FGX---+X 
eX 

commutes. Applying the adjunction on both 5 and Fai gives 

s· 
A1~GY 

Fat 1 1 Gf 
GFGX~GX 

GeX 

But both GeX and GeY are isomorphisms by the -triangular 
identities- [CWM p.83] , and the tact everything is monie. 

GFGY 
GFGf / '\ GeY 

GFGX 4-Ai .... GY 

GeX \. / Gf 
GX 
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Bence there is g:A,-tGFGY with GEYe.- s· and GFGf e.- Fa,· . 
Applying the adjunction to 1 will give the required FA,-tFGY. 

v) .. vi) 

43 

It is now easy to show that F and Gare entire. We already 
know that G preserves pullbacks and F preserves filtered colimits. 
Let (Xh)hdt he a filtered diagram in t with colimit X and 
coprojections CPh:Xh~X. By the previous argument we know that 
FGCPh: FGXh .... FGX is obtained by pull in. back CPh by EX. Then the 
cocone (FGCPh)h seen as a discrete cocone is a coproduct candidate, 
and 50 is (G'h)h: if (Zh:GXh .... Z)h is a candidate for (G'h)h, and 
a:Z ... GX the factoring, then 3.1 shows a is an iso and we know 
F reflects isos. It is now only a formality to show that (GCPh)h is a 
colimit cocone, and we leave the proof that F preserves pullbacks 
as an exercise. It is also easy to prove (exercise) that an adjoint pair 
among agregates with cartesian counit always has the left adjoint 
full and faithful. 

vi)"i) 

Let b:B .... FX be a subobject of FX. Since by hypothesis 

EB 
FGB-tB 

FGb l 1 b 
FGFX--.FX 

EFX 

!s a pullback and EFX is an isomorphism, eB is an iso. 

3.2.1 Corollary 

Let F:D .... C be a functor between semigranular categories. Then 
F is'l stiff embedding iff it is full and faithful, has a right adjoint 
and ~nds atoms to atoms. 

This is just because a prime subobject of an atomic object has to 
be the full object. 

, " 
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We are interested in Grothendieck fibrations E .... t correspondins 
to functors X: tOP .... Olt where for ti/Wrf f:X-.Y in t, XX and 
XY are semigranular, and the transition functor Xf: XY .... XX is the 
right adjoint to a still embedding. This boils down to the following: 

3.3 Definition 

Let t he an agregate. A stift fibration is a diagram E: E -. t 
such that 

a) E is a bifibration: it is a Grothendieck fibration and 
[OP:EoP .... t Op is also a Grothendieck fibration. As is 
customary we call cartesian arrows in the dual fibration 
cocartesian morphisms in E. A bifibration corresponds 
exactly to a (pseudo-)functor X: tOP .... c.t where for every 
f in t Xf has a left adjoint. 

b) For every S€t the fi ber ES is an aggregate. We will cali 
an object X of E which is prime (atomic) in its fiber EEX 
a ml prime (atom). ]n the same way, we will say of an 
object which is empty (finite) in its fiber that it is locally 
empty (finite) . 

c) (correspondins to full- and faithfulness of left adjoints) 
Every cocartesian arrow is also cartesian. 

d) (corresponding to stiffness of left adjoints). If f:X .... Y is a 
cocartesian arrow and b:B .... Y above identity then the 
pullback p ..... B of f by b is cocartesian. 

A word of explanation about conditions c) and d) is in order. The 
first one just a wayof formulating that the unit of the adjunction is 
an iso, making the left adjoint full and faithful. The second one is a 
formulati:m of 3.2 i), using condition c) and the well-known lact 
about fibrations that if g:W .... Z is in the liber ET and s:S .... T in t 
then the diagram 
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s·W---tW 
5·11 11 

s·Z ---t Z 

where the horizontal arrows are cartesian abova s is a pullback 
(see 3.10). Condition d) could he formulated differently , in view 
of 3.2. For example we could give seemingly weaker conditions by 
requirinl that X ,or X and Y he local primes. 

From now on until otherwise stated E: E'" t is a stiff fibration. 
We will split our fibrations whenwer we want, using a standard 
notation: if s:S .... T is in C, then choosing for fNery X(ET a 
cartesian arrow s·X ..... X defines a functor s·: ET ..... ES , and choosing 
for wery Y (ES a cocartesian arrow y ... 3. Y defines a functor 
3.:Es ..... ET and 3. is left adjoint to s· . When we split things 'Ile 
use the following notation for cartesian and cocartesian arrows: a 
cartesian arrow s·X .... X is called rsx, or r., or rx, or simply 
r . A cocartesian arrow y ... 3. Y is called ". Y , \. , \ Y ,or \. 

The following proposition is just a translation in this language of 
results already proven, and therefore the proofs are omitted. 

3.5 Proposition 

Let s: S-t T in C, (Xi: Xi'" X)id a coproduct candidate in ES. 
Then (3.Xi: 3.Xi-t 3.X)id is a coproduct candidate in ET . If (Xl)! is 
a lean cocone, then C3.x,), is lean too. AllO, if 0 is empty in ES, 
3.0 il empty in ET. Finally, if A il prime in ES then 3.A il 
prime in ET. 

3.6 Proposition 

Let s:S ..... T in C, h:X .... Y a cocartesian arrow above s. 

il If X is finite in ES then Y is finite in ET. 

li) If Y is prime in ET then X is prime in ES. 

iiJ If f:Z ..... W is any arrow above s where W is empty in ET 
then f is cartesian and Z is empty. 
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Choose 3 s:ES .... ET such that 3sX- y . Let (Xt:At .... X)td be a 
lean cocone. 1 is finite, and (3sAj-t Y)j is a candidate cocone too. 
Since y admits a finite candidate to it whose vertices are local 
primes, it is finite in ET. 

ii) 

This is a simple argument using the tact that 3. preserves 
candidates and reflects isos. 

iii) 

Let f factor as z: Z -t Zl , g: ZI-t W where g is cartesian and z 
above identity. By 3.2 iv) ZI is empty in ES and 50 z is an iso 
and f cartesian. 

The following is folklore, and we will prove it since we could not 
find a reference. 

3.7 Proposition 

Let e be a class of limit diagrams, say ail finite limits, or ail 
products, ail connected limits ... Let t he any category, and 
E:E ..... t a Grothendieck fibration such that every fiber of E has ail 
t:-limits, that for Any s:S .... T in t -the- functor f*:ET .... ES 
preserves them and that t has ail e-limits. Then E has ail e­
limits, E preserves them, and 50 does the inclusion functor ES ..... E 
for any liber. 

3.7.1 Corollary 

If t is an aggregate and E a stifl fibration then E has 
connected limits (a right adjoint preserves alllimits that exist). J.15O 
the inclusion of Any fiber Es ..... t preserves ail connected limita. 



o 

3.7.2 Corollary 

If t is an aggregate and E a stiff fibration then E has ail 
filtered colimits (the dual fibration EOP-ttOP will satisfy the 
conditions if e is the class 01 ail (co-)filtered limits). Also, the 
inclusion of any liber (S .... E preserves ail filtered colimits. 

Proof of 3.7 
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Since the ·colimit· version of the result is more important for 
us, we will prove it, assuming E: E ..... [ is an opfibration and e a 
class of colimit diagrams. Let (Yh)hdt he a e-diagram in E. Let 
(OCh:EYh-tT)h be a colimit cocone in t. For every h extend a 
cocartesian Yh:Yh ..... Zh above CXh. We obviously get a diagram 
(Zh)h in ET. Let (rh:zh ..... Y)h he a colimit cocone therein. We 
claim (rhYh)h is a colimit cocone for (Yh)h in E. Let (Sh:Yh .... X)h 
he a cocone. There is s:T~EX with soch - ESh. By the co-
cartesianness of Yh for every h there is an arrow Zh:Zh .... X 
with zhYh· Sh. Let zh factor as Wb:Zh ..... Zh and Xh:Zh .... X. 
where 'Wb is cocartesian Aboye sand xh Aboye lEX; in the 
obvious manner we get an tt-diagram (Zh)h and a cocone (Xh)h. 
If w: y .... Y is cocartesian above s, by pushing (rh)h we get 
another cocone (rh: Zh .... Y)h above la. Byassumption, this last 

Yb rh 
Yh--tZh--tY 

1 Wh! 1 
Sh 1 xh Zh rh 1 w 

! / \. ! 
X· y 

f 

cocone is a colimit cocone, 50 there is f:Y .... X above identity with 
1 rh If" xh . Then we get (fW)h'hYh) - Sh. To prove the uniqueness, if 
g:Y~X is such that g(rhYh) -Sh then g is necessarilyabove s; 
by looking at a cocartesian-above identity factorization g - f'w' and 
repeating the argument with f', w' it is easy ta see g - fw . 
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We revert back to the assumption that E: E -te is a stiff 
fibration above an agregate. We will prove the analogue of the 
Aboye for multicoproducts. 

3.8 Proposition 
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E has multicoproducts and E preserves coproduct candidates. 

Proof 

To avoid an orgy of indices we will first describe coproduct 
candidates in E. Let (Xj)jd be a familyof objects of E. It will 
turn out that a coproduct candidate in E can he descrihed a triple 
«SI)ld ,(Xj)ld ,(a.)jd) where 

(Sj:EX, ..... S)j is a coproduct candidate in e, 

(xj:Xj ..... A,)j is a choice of cocartesian arrows in E, with Exj • Sj, 

(aj:A ...... A). is a coproduct candidate in ES. 

The candidate itself is given by (ajx':X, .... A),. To get a 
multicoproduct family for (Xi)i choose a multicoproduct family 

(si:EXI-tsJ)ld.JEJ for (EX,),. Then for each si choose an xi:x.-tAi 
cocartesian Aboye si, and for ail j choose a multicoproduct family 
for the discrete cocone (Al)s. Then given (y.:Xs-tY)s there is a 
unique jt:J, t:sJ~EY with tsl· Ey, . Drop the superscripts for 
si, sJ, Al • xl. Let (ar: A. -t A k )kEK be the chosen multicoproduct 
family in ES. Let f:Z ... Y he a cartesian arrow Aboye t. Since Xi 
is cocartesian Aboye Sj and [Yj· tSj , there is a unique 8s:A,-tY 
Aboye t with liXi· Yi . By cartesianness of f there is hi:Ai-tZ in 
ES with thi 1: Il . This lives a cocone (hi) •. There is a unique 

Xl 
x,/ 1 

k AI III YI 
aj / lh.'l 
Ak---tZ--tY 

h f 
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k and a unique h:Ak ... Z with ha~. hj . It is easy to set that k is 
independent of the choice of the cartesian arrow f, and that if 
fl:ZI ... y is another such arrow, hl: Ak"'ZI the factoring it 
determines, that fh - flhl . So fhatxj - Yi and (Yi)i determines a 
unique j • a unique k among the j-candidates. and a unique 
factoring Ak-tY. 

3.8.1 Corollary 

The initial candidates in E are exactly the objects which are 
initial candidates in their liber and above an initial candidate of t. 

3.9 Proposition 

Let X be a finite object of EEX, where EX is finite. Then X 
is f.p. in E. Also, SU.b(X) is finite. 

Proof 

Let (Yh)hdf be filtered in E, with colimit cocone Ph:Yh"'Y. 
Let f: X ... Y . Factor every ~h as 

Yh rh 
Yb ---t Zh ---t y 

where Yh is cocartesian and rb above identity. We get an 11-
diagram (Zh)b and from the proof of 3.7 we know C'h)b is a 
colimit cocone for it. Let f factor as 

fi X 

X---t XI---t Y 

where f' is cocartesian and x above identity. We know (3.6 i» X' 
is finite in EEY. Choose h€H such that there is both m:XI",Zh in 
EEY with 'hm- x and t:EX-tEYh in t with E~h et - Et. Let 
w:X-tW be a cocartesian arrowabove t and w':W-tX' the 
unique arrow above E~h such that w'w· fi • Since mwl and Yb 
are both above EPh and Yh is cartesien there is 
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k 
W---tYh 

w /'1 lw'm l Yb 
X--. XI ...... Zb 
f\. lx/rh 

y 

k:W"'Yh above identity with Yhk- mw' . But then kw is such 
that 

• f . 

The proof that .5Ub(X) is finite is rather obvious. 
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Here is a collection of results about cartesian arrows in fibrations. 
The first three are standard and the proof is left to the reader. 

3.10 Proposition 

i) E:E-t[ any fibration. Let 

f 
X-tY 
h \,! g 

z 
be such that h and 1 are cartesian. Then f is cartesian. 

ii) Let 

be above a pullback, and such that l, l'are cartesian. 
Then the square is a pullback. 

iii) If E is a stiff fibration, cartesian arrows are stable under 
pullback. 
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iv) E a stift fibration. Let f: X .... Y , s: y .... Z he such that ,f is 
cocartesian. Then both f and B are cocartesian. 

Proof of iv) 
Let f': X .... yi be cocartesian above El , «:yl .... y above identity, 

afl - f . By cocartesianness there is a unique Si: yi ~ Z above El 
with ail' - af. Since 8f is cocartesia~, a' is cocartesian, by the 
dual of j), and therefore also cartesian. So there is a unique 
p: y .... yi with Sl~_g. Now g'~af' - g'~f -Sf. a'f' . 

f' " X ........ y·~Z 

f \.alTP /S 
y 

We get ~Od'. fi , and since pa is Aboye identity, fi cocartesian, 
pa • 1 y' and " a are isomorphisms. 

We want our bifibrations to satisfy one more condition: their left 
adjoint parts should correspond to functors 1: .... Gat that are 
-entire- in some way. This is done as follows. 

3.11 Definition 

J , ~ r" 

We say X(E is E-pneric if given cocartesian arrows f:X~Y 
and s: Z .... y there exists h: X .... Z (necessarily cocartesian) such that 
Sh = f . Notice this implies that Any cocartesian arrow w: W .... X is an 
isomorphism (just take f -1X and g. w ). We will cali an X 
fulfilling this weaker condition an E-minimal ob iect of E. We say 
i. is an ,otire fibration if for Any local prime BE:E there is an E­
seneric A such that EA is /inite in 1: and a cocartesian arrow 
A .... B . A is necessarily a local prime by 3.6, ii) . 
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S.12 Proposition 

Let E:E .... C be a stiff fibration. Then a local prime X€E is E­
generic iff given any f:X .... Y and any cocartesian g:Z .... Y there 
exists h: X .... Z fillinl the triangle. 

Proof 

The second condition is obviously stronger. So let X be locally 
prime and generic. Let f, g be given as above. Assume f is above 
s:S .... T and 8 is above t:V .... T. Let (at:At .... Z)td he lean cocone for 
Z in EV. By the usual nonsense there is a cocone (Yi:3tAi-+Y)' in 
ET and since g is cocartesian this cocone is Jean, by S.5. Also 
there is x: 3sX -+ y above identity with x. \sX • f . 

X 
\sX/p \.k 
3sX -+ 3tAt .... At 

xl/Yi lai 
y. Z 

g 

Since (Yi)j is a lean cocone in ET and 3s X is prime therein there 
exists i€I and an iso p: 3sX .... 3tY with y,p. x . But then PO\sX 15 

cocartesian too and since X is E-generic and \tA, cocartesian 
there exists k: X -+ Aj with \tAi 0 k • po \sX . Then h = aik is the 
arrow sought. 

S.13 Proposition 

Let E:E-+C be an entire fibration. Then E is an aggregate. It 
follows from 3.7.1,3.7.2 that E is an entire functor. 

First we prove 

3.13.1 Proposition 

il Let X be empty in ES, S prime in t. Then X is prime 
in E . 
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ii) Let X he prime in ES and E-generic, with S finite. Then 
X is prime in E • 

Proof 

i) 

If (Xl:Xl .... X)ld is a candidate in E, we know (Ex1) 1 is a 
candidate in t. Then for some i Exl is an isomorphisme But xI is 
cartesian (3.6 ii) so it is an isomorphisme 

ii) 

Let (x,:X' .... X)'d be a candidate in E. Let x,':X,~X,' be 
cocartesian, ai:Xi'~X above 18 such that Xi-aixi'. By 3.8 (ai)i 
is a candidate in ES so there is i with ai an isomorphisme Then 
Xi is cocartesian, and since X is E-generic, and therefore E­
minimal, Xl is an isomorphisme 

We will say X is a prime of the first (or second) kind if it 
satisfies the corresponding condition above. We can now prove 
3.13 : 

Since both kinds of primes are finite in their fibers and above 
finite objects of t, they are f.p. and have a finite subobject lattice. 
We will show that the collection of ail primes of either kind forms a 
strong generating set. It is easy to see that it is an essentially small 
set. Let f:X .... Y be a morphism of E above s:S .... T such that 
every A .... Y where A is one of the two kinds of primes factors 
through f. Let f factor as t'x where f·:X· .... y is cartesian and x 
above 1S' We first prove s is an isomorphism by testing with 
primes: let P be a prime of t and p: p .... T . There is k: K .... Y 
abo"e p where k factors as K~p*Y""Y and K is the empty 
object of E P determined by p*Y . K is a prime of the first kind and 
by hyPothesis there is m: K -+ X with fm- k . Then s. Em - p and 
this pr')ves our claim. Therefore f', being cartesian, is an 
isomorphism, and 'Ile are left to prove that x is an iso too. We just 



c' 

c 

__ ~ _____ ~ _____ . _________ ",_._" ___ '''_I( .. _____ .... lIùi
t 
____ ..... _ 

54 

have to test with the primes in ES. Let B be such a prime, and 
b: B ..... X' above identity. By hypothesis there is A E-generic and 
a: A ..... B cocartesian, EA finite. A is a prime of the second kind and 
50 there is n:A ..... X with f'xn a fn- f'ba . 

a 
A--tB 

nl lb 
X ---t X'--..... V 

X f' 

It ensues that ba • xn , and since a is cocartesian and x above 
identity there is c:B-tX with ca-n. We get that xc-b by the 
uniqueness property associated with cocartesian arrows (Ec= Eb ). 

It is left to show that Axiom 5 holds to complete the proof. 
Suppose (Xi:Xr-+X) is a candidate in E and let a:A ..... X with A 
prime (a prime of E has to be of the first or the second kind: 1.'.1). 
If A is of the fjrst kind, EA is prime in t , 50 there is i€ 1 and 
f:EA-tEXi with EXiof=Ea. Let y:y .... X be a cartesian arrow above 
EXi . There is m: Xi -t V above identity with ym 1: Xi . Let 'IV: f·V -+ y 
and rX1:f*X1 .... X he cartesian above f . There is p:A ..... f·V above 
1EA with yorVop-a sinee yo'tY is cartesian and above Ea. 

lXi 
f·Xi .Xi 

q / !f*m ml \'Xi 

A ..... f·V .Y-+X 
p 'IV Y 

f*m and p are in ElA, and sinee A is an initial candidate 
therein there is q:A ..... f*Xi with f·moq. p . But then rXloq is the 
morphism we are looking for. 

If A is of the second kind, let a':A .... A' he cocartesian Aboye Ea 
and s:A' .... X above identity, sa' -= Il. If 
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XI' tt 
XI~Xi''''''X 

is now the cocartesian-above-identity factorization of xi, we know 
(tl). is a candidate. At is prime in EEX by 3.2 iv) and therefore 
there is id and q:A'~Xi' with 

Xi 
a' q l Xi' 

A ---t A' -----t Xi' 
s'\. / ti 

X 

t.q = s . Since A is E-generic and x.' cocartesian, by 3.12 there is 
h:A~Xi with xi'h-qa'. Then Xih-a. 

3.13.2 Corollary 

The finite objects of an entire fibration E: E .... tare exacUy those 
which are finite in their fiber and above a finite object of t. 

This is because a finite object XEE will have a finite lean cocone 
(ai:Ai .... X)id in E . Since E preserves candidates cocones, and every 
EAi is finite in t. it follows easily that X is above a finite objecte 
By factoring every ai as 

bi x. 
A.~X ..... X 

where bi is cocartesian and xi above identity, we get a finite 
candidate (x.)., and since X. is locally prime, X is finite in (EX. 

The converse is 3.9. 

3.14 Proposition 

Let E:E ..... t he a stiff fibration. Then the following are 
equivalent: 
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j) E satisfies the Beek condition for ail pullback squares in t. 
il) The pullback of a cocartesian arrow by a cartesian arrow is 

cocartesian. 

iii) The pullback of a cocartesian arrow by an arbitrary arrow 
is cocartesian. 

When the above hold, for brevity we say that E satisfies the 
Beek condition, or that Beek holds. 

Proof 

First we leave it to the reader to verify the following tact, which 
is true in more general circumstances than stiff fibrations (and can 
he used as a definition of the Beek condition by the inexperienced 
reader). 

3.14.1 The Beek condition holds for là square 

P 
R---.S 

q! !s 
T----tV 

t 

in t iff for any X€ES the unique v:3q p*X .... 3.X above t 

ma king the square below commute is a cartesian arrow 

rp 
p·X--tX 

'\.q l l "'5 
3qp·X .... 3sX 

(v exists since '\.q is cocartesian). 

We can now prove 3.14 

i)"ij) 

Let 



f 
X~Y 

hl II 
W--tZ 

k 
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be a pullback square in E where g is cocartesian and k cartesian. 
let h':X~W' be cocartesian Aboye Eh, and k':Y'~Z the unique 
arrow Aboye Ek making k'h' • gf • There is oc: WI 

~ W Aboye 
identity with koc· k' . 3.14.1 applies and by hypothesis k' is 
cartesian. Therefore oc is an isomorphism. By the cartesianness of 
k ,Oth' is the unique morphism Aboye Eh making koch'· If and 50 

ah' • h . Therefore h is cocartesian. 

ii)~iii) 

Let now the square Aboye be a pullback where f and k are not 
necessarily cartesian. Let k factor as 

W k' 
W~Z'~Z 

where k' is cartesian and w' Aboye identity. Let 

f' 
Y'--+Y 

hl! l II 
WI----.Z 

k' 

be a pullback. f' is cartesian Aboye Et , (3.10) 50 there is x: X .... Y' 
Aboye identity with t'x· f . By hypothesis, h" is cocartesian. By 
3.3 d) ,h is cocartesian. 

iii) .. O 

Let p,q,s , ... be as in 3.14.1 . We want to prove 
v:3qp·X~3sX is cartesian. Let 



C· 

c 

a 
A----tX 

b 1 1 "sX 
t·3sX .... 3sX 

rt3•X 

he a pullback. By cartesianness, there is z:3qp·X~t·3.X Aboye 
identity with rt3.X. z· v . By pullbackness there is c:p·X .... A 
above identity with ac· rp and he. Z. 'lqp·X . 

rpX 
p·X .... X 

1 c\. a/ 1 
1 A 1 

l.qp·X 1 b l l'l,x 
1 t·3.X 1 
1 z/ '\. 1 

3qp·X~3.X 
v 
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By 3.10 a is cartesian, and 50 c is an isomorphism. But by 
hypothesis b is cocartesian and 50 z is an iso, and this rnakes v 
cartesian. 

3.14.2 Lem.,.. 
Let E:E .... C he a fibration satisfying the conditions of 3.14. Let 

S' h' 
X'~Z'~Y' 

xl lz ! y 
X---tZ---tY 

1 h 

be a diagram in E such that the outer and left squares are 
pullbacks, g ,,' are cocartesian, and the right square is above a 
pullback. Then the right square is a pullback. 
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Prao' 
Let m:A-tY' ,n:A .... Z be such that ym- hn. Let 

a 
B--.A 

pl !n 
X--+Z 

Il 

he a pullbaek. By hypothesis a is cocartesian. Sinee the outer 
square of (.) is a pullback there is q:B .... X' with h'g'q· ma and 
xq II: p . Sinee the right square is above a pullback there is s: EA -t Eli 

with Ez os • En and Eh' 0 s • Em . Then it is easy to show 
soEa. EgloEq, sinee EhlosoEa - EmoEa. EhI.EgloEq . Since a is 
cocartesian there is f:A~Z' above s with fa· glq . Then, using the 
-relative epiness- of a one can check that hlf· m and zf· n . 

3.15 Proposition 

Let E:E .... [ be a stiff fibration. Then the following are 
equivalent: 

i) E is entire 

ii) E satisfies the Beek condition (for ail pullbacks) and every 
local prime B( E admits a cocartesian A .... B where A is 
E-minimal and above a finite object of 1:. 

iii) E satisfies the Beek condition and every B€ E which is 
locally fini te admits a cocartesian A ~ B where A is E­
minimal and above a finite object of ~. 

Proof 

i) ... m 
Suppose E is an entire fibration. Obviously we only have to 

show that Beek holds. Let 

D' • 
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be a pullback where 1 is cocartesian. Let k split as 

k' W 
X~W'---tW 

where k' is cocartesian above Ek and w above identity. To show 
k is cocartesian it suffices to show w is an isomorphism by testing 
with primes of EEW. Let b:8-+W he above identity with B prime 
in its fiber. There is a:A ..... 8 cocartesian with A E-generic. Since 
1 is cocartesian there is y: A ..... Y with gy. hba . Therefore there is 
x: A .... X with kx· ha . The cocartesianness of a will give the 
required B .... W' . 

m .. iii) 
Let B be finite in its liber and let (bj:Bi ..... B)id be a lean cocone 

in EES . For every i let fi:A, .... Bi he a cocartesian arrow where Ai 
is E-minimal. Let (al: Ai"'" A)l he the candidate determined by 
(b,fi)' and f:A ..... B the factoring. It is easy to set that f is 
cocartesian: if 

• ai x, 
Ai ..... A·' .... A 

is a cocartesian-above identity factoring for (aj)i. then there is 
li: A', .... 8, cocartesian above El with lia',. fi , and the fact that 
3Ef preserves candidates and both (Xi)i and (bi)i are will force 
the cocartesianness of f. We just have to show A is E -Ieneric: let 
c:C-+A be sorne cocartesian arrow. By 3.12 for every i there is 
cj:Aj .... C with cCi· ai and this shows c is an isomorphisme 
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iii) .. i) 

Let B be a local prime in E. Since it is locally finite, there is 
a:A-tB where A is [-minimal (and A is above a finite object of 
[). We want to prove A is E-generic. Let 

f 1 
A--+V---Z 

where 8 is cocartesian. Let c:C .... A he the pullback. By 
assumption (Beek), c is cocartesian , and therefore an 
isomorphi5m, since A i5 (-minimal. We get A~Z making the 
triangle commute in an obvious manner. 

3.15.1 Corollary 

Let t he an aggregate. An entire fibration above t i5 the 
seme as a bifibration E:E-t[ where ail the fibers are agregates, 
cocartesian arrows are cartesian and stable under ail pullbacks. and 
where for any locally finite A there is an E-minimal object Aboye 
a finite object and a cocartesian morphism to A Cit suffices to 
assume A is locally prime). 

This is just the fact that condition 3.3 d) and Beek are covered 
by the assumption that cocartesians are stable under arbitrary 
pullbacks. 

3.15.2 Corollary 

ln a stiff fibration with the Beek condition, [-minimalobjects 
are E -generic. 

3.16 Definition 

Let E:E-tt be an entire fibration above an agregate. If for 
every s€ t the fiber ES is semigranular we say E is a 
semiaranular fibration. We denote by n:b(t) the category whose 
objects are entire fibrations E: E -t t and morphisms entire 
morphisms of fibrations, i.e. where a morphism E-tF (F:F -tt) is an 
entire functor H:E-tF such that FH-E. We denote by Si'm(t) 
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the full subcategory of J>lI(C) whose objects are the semigranular 
fibrations. Notice that }i1l(1). Amlr (2.7), and .$pm(l). s'm . 
By Fib and .sgr we denote the class of ail entire fibrations, and 
the class of ail semigranular fibrations. 

3.17 Proposition 

i) Let C, 1) be aggregates. The~ the projection 1t:Cxl) ..... C is 
an entire fibration. If 1) is semigranular it is a 
semigranular fibration. In particular identity functors are 
semigranular fibrations. 

ii) Let E:E .... [ be an entire fibration, F:r .... c: an entire 
functor. Then the pullback p:f ..... r is an entire fibration. If 
E is semigranular, P is semigranular. 

iii) the composite of two entire fibrations is an entire fibration. 
ln particular, if E: E -t t is an entire fibration, the pullback 
lunctor E·:}iD([) .... }iD(E) has a lelt adjoint IE . 

iv) The categories .&t(C) and }iD(t) have productr.. 

3.17.1 Corollary 

80th (Aa'8~}iD ) and ( Aggr,S8r) form display categories. The 
first one also admits sums, and satisfies the condition Display of 
[H-P1: every morphism to the terminal object is a display rnap. 
80th display categories admit discrete products. 

Proof of 3.17 

il 

We know that the projection as a fibration corresponds to the 
constant functor D:[OP .... Cat; therefore, 'ft is a stiff fibration. It is 
easy to check that a 'ft-generic object of [xl) is of the form (K,X) , 
where K is empty in C and X any object of D. It follows that 1t 

is an entire fibration. Trivially, 1t is semigranular when [) is. 
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If E is a fibration correspondins to the pseudo-funetor 
!:tOP .... Cat, then we know that P corresponds to f.fOP. Hence, P 
is a stiff fibration, and is the libers are semigranular when those of 
E are. We have to show P is an entire fibration. Remember that 
an object of f Aboye XEf is a pair (X,A) where AEEFX. A very 
standard argument shows that a (co)cartesian arrow (X,A) .... (Y,B) 
is a pair Cf,a) where a is (co)cartesian above Ff. Therefore, 
cocartesians are cartesian and stable under arbitrary pullbacks. Let 
(X,A) he any object. of P • Let a:A'-'A he cocartesian, above 
s:S .... FX with A' E-generie. Sinee F is entire there is t:S"'FX' 
senerie Along with x:(X',t)~(X,s) in SIF. 3tA' is Aboye FX' , 50 

(X" 3 tA') is an object of P and there is (x,w): (X',3tA·) ..... (X,A) 
where w is the unique morphism 3lA' .... A above Fx such that 
WO'LtA'.: a . (x.w) is cocartesian by 3.10 iv) . 

X' 
/x 

X 

t 'LtA' 
5---+FX' A'----.3tA' 
5 \. /Fx a'\. /w 

FX A 
We claim (X',3tA') is P-minimal. whieh will prove P is an entire 
fibration, by 3.15.1. Let (t,b): (Y,B)-' (X',3tA') he P-eocartesian, 
that is, b is E-cocartesian. Then, since A' is E-generie there is 
c:A' .... B with he= "tA'. Then it is easy to SN Ec:S ... FY is such 
that f is a morphism (y ,Ec)"'(X' .t) in SIF, forcing f to be an iso, 
and then b is one too sinee is is cocartesian above Ff . 

iii) 

It is weil known that if F:r"'E and E:E ... t are two ordinary 
(bi-)fibrations then EF is a (bi-)fibration, where a (co-)cartesian 
arrow f:X .... Y for EF is a morphism such that f is Cco-)cartesian 
for F and Ff is (co-)cartesian for E .It is then easy to ste then 
that in our case cocartesian arrows are cartesian and stable under 
pullbaeks. If S€t then the EF-liber rS is the composite pullback 
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rS--.r 
1 1F 
ES--"'E 

! ! E 
l---tt 

S 

and by the previous proposition rS is an aggregate. In view of 
3.15.1 it now suffiees to show that if B is finite in rS (as above) 
then there is an EF -minimal object and a cocartesian arrow to B. 
By 3.13.2 FB is finite in ES and since E is an en tire fibration 
there is X E-minimal and x:X .... FB cocartesian (EX is finite). 
But al50, sinee F is an entire fibration there is CF-minimal and 
e:C .... B eocartesian for F , and FC is finite in E. Let f ,1 be the 
candidate determined by Fe, x and y the factoring: 

FC 
fl y\. Fe 
Y~FB 

IT /x 
X 

by 3.10, iv) both 1 and y are eocartesian. We ean split c as a 
pair 

h a 
C~A~B 

of cocartesian arrows above f and y. Then a is cocartesian for 
EF , and EFA is obviously finite. We are left to show A is EF­
minimal. Let k:K .... A he EF-cocartesian. This means k is F­
eocartesian and Fk:FK .... Y is E-cocartesian. By the former, there is 
m:C-tK with km-h (F-minimal objects are F-generic, by 3.15.2). 
By the latter there is z: X .... FK with Fk. z • 1 . But then both f 
and g factor through Fk and this shows Fk is an isomorphisme 
But sinee k is eocartesian above Fk, it is an iso too, QED. 
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Notice that if F and E are both semigrtlnulllr fibrations. it is 
not necessarily th~ case that EF is a semigranular fibration. This is 
because given an entire fibration E:E ... t. a prime of the second 
kind in E is atomic in E if and only if it is atomic in its fiber and 
is above an empty object of t J as the reader may verify. 

iv) 

ln view of the preceding proposition, the proof that Ent(t) has 
products is trivial: if D: 1) ..... t and E: E ..... tare entire fibrations then 
their product in EntCt) is the composite, say P~D ... t where 
f-tD is the pullback of E by D. But f~1) is an entire fibration 
by ii) J and then f~t is an entire fibration by iii). Now if both 
D,E are semigranular fibrations, it is weil known that for S€t the 
fiber pS is the product I)SxES , and this is semigranular. 

The right notion of genericity for morphisms of entire fibrations 
is the following. 

3.18 Definition 

Let E:E~t, F:r~t he entire fibrations, H:E~r with FH - E. 
We say an arrow x:A-tHX of r is ultroaeneric if: 

a) x is above identity. 

b) For any cocartesian b:8-tA, xb is generic. 

Note this implies X is generic itself. 

3.1' Proposition 

Let E: E ..... t be a stiff fibration. Let A Aboye S he locaUy 
empty, that is, be empty in ES. Let s:S-'T. For any X€ET there 
is at most one morphism A-.X above s. If there exists f:X ..... Yand 
y:A-tY such that Etos- Ey • then that morphism exists . 
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Proof 

The first part is just the observation that Any arrow x Aboye s 
decomposes in an essentially unique way as one in ES followed by a 
cartesian arrow, and that if A is the source of x 1 the arrow in ES 
is unique. For the second part, let g:Z ..... X be cocartesian Aboye s. 
Then there is a: A ~ Z with fga • y . 

3.20 Proposition 

E,F as Aboye. Let H:E ...... F he a functor such that FH-E. H is 
entire iff for Any local prime B€F 1 Any y:B ..... HY Aboye identity, 
there is a cocartesian arrow a: A ~ B (A will necessarily he locally 
prime, cf. 3.6), an ultrageneric x:A~HX and a morphism 
f:(X,x)-t(Y,ya) in AIH. 

Proof 

Suppose H is entire. Let B be locally prime, y:S ..... HY above 
identity. Let BI he E-generic, b:BI-tB cocartesian. There is 
y':B'-tHX generic and f:X"""Y with Hf.yl-yb. Let yi split as 

m x 
BI--tA---tHX 

where m is cocartesian above Eyl and x Aboye identity. We 
have 

Fb • Fy.Fb • F(Hf oy') - F(Hfoxm) 
• FCHf)oFm - El oFm 

b 
BI -B 

1 \.m 1 
yi 1 A 1 y 

l/x l 
HX----tHY 

Hf 

. . { 
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and since m is cocartesian there is a: A"" B Aboye Et with 
am • b . We claim x is ultrageneric. Since H preserves pullbacks it 
suffices to prove that if c:C .... A is cocartesian and there are 
z:C .... HZ ,g:Z .... X such that Hgoz. xc then g is an iso. 

m c 
B'---tA~C 

y'\. lx 1 z 
HX..-HZ 

Hg 

Since B' is E-generic there is n:B'--C with en-m. Then we get 
g:(Z,zn)-!o(X,y') in B'IH and since y' is leneric 1 is an iso. 

For the converse, let A he prime in r ,y:A-tHY above 
s: S .... T . We want to find a generic arrow and a morphism to y in 
AIH . Two cases May happen: 

j) A is empty in ES (and 5 is prime). 

Let X he the initial candidate of s*Y in ES. There is a unique 
f: X .... Y above s . Hf and y are both above 5 so there are 
HX .... s·HY and A .... s·HY above 1S' 

HX .... s·HY+-A 

Hf\.l/y 
HY 

But since A is empty in ES, there is x: A --HX , and obviously 
Hf 0 x • y . Let us prove x is a leneric arrow: let 

(X,x) (Z,z) 

g \. / l' 
(Z',z') 

he morphisms in AIH. Since we have Hg 0 x • Hg' 0 z and x is 
Aboye identity, we have FHg 0 Fx = FHg'. Fz ,i.e. Eg =- Eg' 0 Fz . 
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Fz 
EX .El 

Eg \. /EI' 
EZ' 

Since X is locally empty, by 3.19 there is h:X .... Z above Fz 
with glh = g . It is trivial to show that Hhox· z . 

ii) A is E-generic and atomic in ES. 

Let Y factor as 

a y' 
A --+ A'--.. HY 
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where a is cocartesian above s and y' in ET. There is x:B-.HX 
ultrageneric, with b:B-.A I cocartesian and f:(X,x)-.(Y,y'b) in 
B/H . 

b a 
B--+A'4--A 

x 1 yll /y 
HX-+HY 

Hf 

Since A is E-generic and B cocartesian there is c:A-.B with 
bc -= a . But then xc is generic, since x is ultrageneric. QED 

3.20.1 Corollary 

Let E, r be as above, H: E .... r an entire morphism of fibrations. 
Let A be a prime of the first kind, z:A-tHZ a generic arrow. Then 
Z is initial in its fiber, and z is above an isomorphisme 

Proof 

The proof of the theorem in the case -A is of the first kind­
constructs a generic x: A .... HX where X is initial in its fiber and x 
above identity. The conclusion follows from the fact that x and z 
are initial in AIH. 



3.21 Proposition 
a) 

Let E,F be as above. Let H,K:E .... r he entire morphisms of 
fibrations, cp:H .... K a natural transformation above identity, i.e. 
such that for every X€E, cpX:HX .... KX is above identity. The 
following are equivalent: 

i) For every local prime A of r , every ultrageneric 
x: A .... HX , cpX 0 x is ultrageneric. 

ii) For every ultrageneric x:A .... HX in r , cpXox is 
ultrageneric. 

iii) cp is cartesian. 

b) 

69 

E,F as above. H,K:E .... r not necessarily entire, but such that 
FH = FK = E. Let cp:H-.K he a natural transformation above 
identity. Let x:A-.HX above identity be such that cpXox is 
ultrageneric. Then x is ultrageneric. 

Proof 

a) 

ii) =+ i) is obvious. 

i)=+iii) 

Let y: A .... HY he generic, with A prime. We want to prove 
cpXoy is generic. If A is of the first kind. we know from 3.20.1 
that Y is empty in its fiber. Without 10ss of generality we can 
suppose that y is above identity. Then cpY 0 y is a morphism 
A-tKY above identity. Using the fact that Y is locally empty, 
argument i) in the converse of 3.20 will show that cpY.y is 
generic. 

If A is of the second kind it is locally prime, and therefore 
argument ii) in 3.20 shows there is x:B-tHX ultrageneric, 
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c:A .... S cocartesian and f:X .... Y with Hf.xc·y. Sinee A is ,­
generic, e is an isomorphism, and then both xc and and y are 
generic, showing f is an isomorphism. But by hypothesis, cpX. x is 
ultragenerie. Henee qtX. e is lenerie, and sinee f is an iso 
(X,cpX o xc)---t(Y,cpYoy) in AIK, qtY.y is generie. 

iii) .. ji) 

Let x: A -+ HX be ultragenerie. To show epX. x is ultrageneric, let 
there be b:B-+A eocartesian, y:B-+KY and f:(Y,y)-t(X,cpXoxb) in 
A/K . We want to show f is an !somorphism. Sinee cp is eartesian, 
there is x':B .... HY with Hf ox' -= xb (and epYox'. y) . 

B 
b/ lx'\'y 
A HY-+KY 

x'\. lHt !Kf 
HX~KX 

cpX 

But x is ultrageneric, and therefore f is an isomorphism. 

The proof of b) is trivial, using the definition of an ultragenerie 
arrow and 2.6 
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CHAPTER 4 

The main theorem 4.7 asr.erts that our display categories admit 
products. We can then construct the mode) of the theory of 
constructions. As in the last few pages, E: E ~ e: and F: F ~ e: are 
entire fibrations above aggregate t. 

4.1 Definition 

We denote by mt(E,F), or EntC(E,F) the category whose 
objects are entire morphisms of fibrations, and morphisms cartesian 
transformations Aboye identity. 

ln order to simplify the arguments in what follows, if H:E ..... r is 
a functor with FH II: E we will denote by FIIH the category whose 
objects are triples (A,X,x), where x: A ..... HX is Aboye identity, and 
where a morphism (a,f):(A,X,x)~(B,Y,y) is Il pair a:A~B, f:X~Y , 
where a is cocartesian, Fa· Et ,and Hf. x • ya . We will say 
(A,X,x) is gmeric if x is generic, and ultrageneric if x is 
ultrageneric. The statement of 3.20 can now he rewritten as: for 
Any (B, Y ,y) in r //H with B locally prime there is an ultrageneric 
(A,X,x) and a morphism (A,X,x) ..... (B,Y,y). When the context is 
clear we will simply use x to denote the full object (A,X,x). 

4.2 Theorem 

Let E:E ..... e: and F:F ... e: he entire fibrations above agregate 
e: . Then Ent(E,F) is an aggregate. If F is a semigranular fibration, 
Ent(E,F) is semigranular. 

ln order to prove th;,s, we will embed EntCE,F) in the category 
e whose objects are all functors H: E ..... r with FH c E and whose 
morphisms are ail natural transformations above identity. 
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4.2.1 Jiiltered cohinits .re œJcuJ"ted pointW/Se in e .nd 
Ent(E,F). 

Since the prao! for e is a subset of the proof for EntCE,F) we 
will only prove the latter. Let (Hh)hdf he a filtered diagram in 
Ent(E,F) . Let H he its pointwise colimit: HX -!!!!lh HhX . Since the 
diagram (HhX)h lays entirely in the liber f EX , on can choose HX 
and the coprojections CPh:HhX-+HX to he in fEX for every X 
Cremember, the inclusion of fi bers preserves filtered colimits). H is 
entire since in a Diers category Iiltered colimits commute with 
pullbacks [Di80, 5.0] . We will first show that if AEf is locally prime 
and x:A ...... HhX ultrageneric, then 'PhX. x is ultrageneric too, 
proving 'Ph is cartesian. So let b:B-+A be cocartesian, y:B-+HY 
above identity, and f: Y -t X such that Hf oy = CPhX .xb . 

b 
B tA 

1 \,y' Hkf HqX 1 x 
y 1 HkY~HkX+-HhX 

l/"kY CPkX\. l 'PhX 

HY tBX 
Hf 

1 t suffices to show f is an isomorphism. Since y is above identity, 
B locally prime and therefore finite in its fiber, and (Hh Y)h a 
filtered diagram in that fiber, there exists kE: If , y':B ...... HkY above 
identity such that «Pk Y .y' • y; k can he chosen with q:h-tk. 
Then HqX.x is ultrageneric by hypothesis, and since 

CPkX .Hkf .y' • "kX oHqX ·xb 

and 'kX is mono, we get that f is an iso. 

We still have to prove (CPh)h is a colimit cocone in EntCE,F). 
Let (IiIh: Hh -t K)h he some cocone therein. There exists a unique 
natural transformation 9:H-+K such that 9°cph· "'h , and 9 can 
he shown easily to be above identity. Let us show 9 is cartesian: 
let x: A -+ HX he ultrageneric with A locally prime. There exists h 
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and x':A-tHhX with 'PhX.X'. x , all this happening in the same 
fiber of r . Xl is ultrageneric, too by 3.21 b) . 

HhX 
x

l

/ l '\. 'i'hX 
A-tHX"'KX 

x ex 
Then "'hX 0 Xl = eX 0 x is ultrageneric. 
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This proposition can be proven without using the fact that 
filtered colimits commute with pullbacks. One then has to use the 
original definition of generic arrow, which gives a more intricate 
argument. 

4.2.2 e has "weax multicoproducts: in the sense th.t 
multicoproduct families may not De 5malJ. Ent(E,F) has 
multicoproducts. 

Say a discrete cocone ('Pi:Hï'~H)id in e or Ent(E,F) is correct 
if for every X€E, (cPiX:HiX-+HX)i is a coproduct candidate in fEX. 
One sees easily that between two correct cocones there can be at 
most one morphism of cocones, and that that morphism must he an 
iso. Given a family (Hi)id in either e or Ent(E,F) we will show 
that a choice of one representative for each isomorphism type of 
correct cocone in the corresponding category constitutes a 
multicoproduct family thereir.. Let us first work in e: let 
("'i:Hr-+K)i be some cocone in e. For every X€E look at 
C"'iX:HiX-+KX), in fEX and let Ccp,X:H,X-tHX), be the candidate 
in that fiber determined by ("'iX)., and ex :HX ..... LX the factoring. 
We claim H(-) is the object part of a functor, and 'Pi(-) , e(-) 
components of natural transformations. 

Let f:X ..... y in E. We will show there is a unique Hf:HX ... HY 
such that Hf oepiX 1: epiYoHif for ail id . 
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Clearly, this will ensure that H thus defined is a functor and the CPl 
are natural transformations. Let vl:Hl~~Vi J v:HX~V ,and 
w: KX ~ W be cocartesian arows Aboye Et . There are the usual 
mi:Vi~HiY and n:V-+W corresponding to the image of CPtX and 
eX by 3, respectively. Let H1f factor as YI VI and Kf as zw J 

where Yi and z are in FEY. 

eplX eX 
HtX~HX~KX 

vi l l v l W 

V1--tV--tW 

Yi l mi n 1 z 
H1Y~HY ..... KY 

ep,Y eY 

By 3.1 (m,), is a candidate in FEY. We claim it is the candidate 
determined by (ep.Yoy.) •. This is because composing (m,), with zn 
yields the same cocone as composing (cp.Y.y.). with eY. Hence 
there is c: V ..... HY with cv fulfilling the requirements for Hf . To 
prove uniqueness of Hf let r: HX ~ HY he any morphism of F with 
roepiX = epiYoHif for aIl i. ThQre is c':V-+HY with c'v = r . It follows 
that c'm.vl- ,IY ·ysvs J and by the cocartesianness of Vt, that 
c'm, • ep, y .y, . Therefore Cl. c and Hf is unique. 

Suppose now that the original diagram ("'i:Hi~K), was in 
mt(E,F) . Let us show the CPi are -cartesian-. in the sense that they 
send ultragenerics to ultragenerics: if x: A ~ H.X is ultrageneric, 
then eX ocp,X.x - "'tX. x is ultrageneric, and 3.21 b) shows ,IX.x 
is ultrageneric. To show eX is -cartesian-, let y:B~HY be 
ultrageneric, with B locally prime. By Axiom 5 there will he i • 
and y':B-+HtY with epiYoy' -= y. But th en eYoy = "'tYoy' will he 
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ultrageneric. To show H is entire, let (B,V,y)€FIIH, with B locally 
prime. Again, there is i, and y·:B ..... HiY with 'iY·Y·· y. Find 
(A,X,x) ultrageneric and (a,f):(A,X,x) ..... (B,V,y·) in FIIH,. 'iX.X 
will he the required ultrageneric arrow for y, i.e we have 
(a,f):(A,X,.iX.X) ..... (B,Y,y) in FIIH. 

We are left to show multicoproduct families in Ent(E,F) are 
small. This is a standard argument, using the tact that a natural 
transformation between filtered-colimit-preserving functors is 
determined by its components on the finite objects. 

4.2.3 Connected h'rnits tJre ctJ/cu/tJted pointwise (tJnd fiberwise) in 
EntCE.F) . 

That is, if (Hh)hdi is a diagram with li connected, and its 
limit is called H • then HX = ~h HhX. We have that (HhX)h is a 
diagram above X, and since both the inclusion rX ..... r and F 
preserve connected limits, HX can (and should) he taken in rX . 
Let us give the details in the case the diagram above is a pullback, 
which is the only case we will need. Let 

, '" H-tL+--K 
he the diagram and let 

cs 
M-tK 

el 1", 
H-tL , 

he the pointwise pullbaek, that is, M is the pullbaek in Ef and has 
been chosen sueh that e, cs are above identity. M is entire, sinee 
filtered colimits and pullbacks commute with each other. Let us 
show e is cartesian. Let f: X ..... Y in E, and let 
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A--tMY 

x! ! eY 
HX~HY 

Hf 
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commute. An easy diagram chase will show .Y.aY.y. Lf.,X.x, 
and by the cartesianness of • there is z:A-. KX with Kf·z· aY·y 
and "'X. Z II: 'X. X • But then there is w: A ..... MX with aX. w II: Z , 

eX. w = x . Then, trivially Mf. w = y , eX. w = x and that proves 
the claim. 

So if a:N ..... H, ~:N ..... K are in Ent(E,F) and such that 
cpa Il "'~ , there is a unique p:N ..... M in Ef with ep II: a , op Il ~ • 

These equations force p to be Aboye identity, and an easy use of 
3.21 b) will show p is cartesian. 

We now have to describe the prime generators of Ent(E,F). It is 
natural to use the fact that ultrageneric arrows are an -invariant· 
property of entire morphisms of fibrations, stable under cartesian 
transformations. That is, if x:A ..... HX is an ultrageneric arrow, it 
makes sense to ask whether there is a ·smallest- subobject K ..... H in 
&t(E,F) through which x will factor. It could turn out to he that 
whenever A is locally prime, K would be prime in Ent(E,F) , and 
that there would be only a small set of K's thus obtained; they 
certainly look as if they would form a strong generating set. With 
the goal of proving these facts in mind, for any f.p. A(F , X(E , we 
define the categories Arr(A,X) and Ult(A,X). The objects in the 
first one are pairs CH,x) where H is an object of c: and x: A ..... HX 
an arrow Aboye identity. A morphism (H,x) ..... CH',x') is a 
transformation 9:H ..... 8' Aboye identity such that 9X.x· x' . We 
take Ult(A,X) to be the subcategory of Arr(A,X) whose objects 
are pairs (H,x) where H is entire and where a morphism 9 is a 
cartesian transformation. 
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4.2.4 Definition 

Let A€r • X€E be finite objects such that EX· FA . An A.X:. 
re,presentoble functor is an object (H.x) of Arr(A,X) sueh that for 
every y €E the family 

(Hk .x:A .... HY)kE(X.Y) 

has the following property: if Hk.x is factored as 

ak bk 
A~Ak~HY 

where ak is eocartesian above Ek and bk above 1EY then the 
family (bk)kE(X.Y) is a coproduct candidate in FEY. Such an x 
will he called a representor for H. Sometimes we will just say -let 
H he A,X-representable-, meaning that there exists an x:A .... HX 
with the desired properties, or even -let H he representable, 
meaning there exist unspecified A ,X and x. Notice that if E(X,Y) 
is empty, then HY is an initial candidate. The definition entoils 
that if (H,x) and (K,y) are A,X-representable there exists at most 
one natural transformation &:(H,x) .... (K,y) and e is an 
isomorphism if it exists. 

Let (H,x) he A,X-represerltable. For Any Y,k:X .... Y let 
Xk 1: Hk.x . Let xk factor as bk.ak as above. Then for f:Y-+Z we 
have 

1: Hf.Hk-x 1: H(fk)-x 

• xfk 

Therefore, sinee (3Efbk)kEC(X.Y) is a candidate in fEZ. and we can 
put Afk· 3EfAk , by the usual properties of eocartesian arrowa, we 
find that ... 



( 

( 

ak bit 
A .... Ak--tHY 

aflt '\. l3Etbkl \EfHY 
Afk-t3EfHY 

., '"" 11_. 

b'k \. l v (V€rZ s.t. v·"EfHY. Hf) 
HZ 
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4.2.5 ... lin A,X- representtJble (H,x) is complete/y determined by 
the fo/Jowing dattJ: for every Y(E , an object HY(rEY a/ong lI/ith 
a candidate (bk: 3EkA-tHY)kE(X,Y) in rEY , such that for every 
f:Y-tZ the cocone (bfk:3!Uk)A-tHZ)kE(X,Y) in r Z d~termjn~s 
(3Efbk)k for œndidate. 

Hence the value of H on morphisms is determined by the 
factorings and one takes x· b1X . We will always use the notation 
ait: A ...... Ait for \EkA . 

4.2.6 Proposition 

A, X as before. Arr(A,X) has a "weak multi-initial family", in 
the sense that every one of its connected components has an initial 
object, but there may be a proper class of connected components. 

Proof 

We know there is at most one morphism in ArrCA,X) between 
A,X-representables, and it must be an isomorphism. 50 we have to 
show that given any (K,y) in Arr(A,X) there exists a unique (up 
to iso) A,X-representable (H,x) and a unique morphism to (K,y) in 
ArrCA,X) . Choose Y€E. For k:X-+Y let Kk.y factor as 

ak Ck 
A-+Ak .... KY 

where ak is cocartesian and ck in rY . The cocone (Ck)kE(X.Y) 
determines a candidate in r y , call it (bit: Ait -t HY)k , and a 
factoring 'PY:HY ..... KY. 



o y 
A .KX 

akl Ck 1 Kk 
Ak---tKV 

bk'\. /.V 
HY 

Do this construction for any V in E. Let f:V .... Z in E. The 
discrete cocone (bfk:Afk ..... HZ)kE(X.V) determines (3Efbk)k for 
candidate because if we factor Kt as WO\.EfKV where w€fEZ 
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and if we call d: Ak .... Afk the unique (cocartesian) arrow above Ef 
such that dak = afk 

ait bit cpV 
A ..... Ak .HV ·KV 

afk\.! d ! '-EfMY ! "EfKY 
Afk t3EfHV---t3EfKV 
bfk '\.3Efbk 3EfCPV 1 W 

HZ .KZ .Z 
then chasing the diagram above shows 

w o 3Ef'V. 3Efbk od c .Zobfk od 

and the cocartesianness of d allows it to he removed trom the 
equation. Henee, by 4.2.5 we have defined an A,X-representable 
(H,x) , where X· b1X and it is easy to see we have a natural 
transformation above identity cp:H"'K such that cpXox· y. Such a 
cp is unique, since for any V€E the family (bk)kE(X.V) is jointly 
epi in its fiber. 

If (K,y) is initial in its component, then the morphism 
(H,x)"'(K,y) it determines, where (H,x) is A,X-representable, must 
be an iso, and therefore (K,y) is already A,X-representable. 

We are now ready to describe the generating set of Ent(E,F) in 
the case F is a semigranular fibration. The general case is more 
complicated. 
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4.2.7 Proposition 

Let (H,x) he A,X-ropresentable with A locally atornie and 
x: A ..... HX ultragenerie. Then H is entire. If y: B ..... HY is an 
ultragenerie arrow with B locally atornie then H is B,Y­
representable, y is a representor, and (B,Y,y) , (A,X,x) are 
isomorphie in FIIH. 

Proof 

"1 
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Let b: B ..... HY he sorne arrow above identity with B locally 
prime. By Axiom 5, and sinee H is A,X-representable, there exists 
k:X ..... Y along with e:B ..... Ak above identity with bke. b. Sinee Ait 
is atomie in rEY by 3.2.1 e is an isomorphisme 

ak e 
A---tAkf-B 

x! bk'\,!b 
HX .HY 

Hk 

Therefore e-1ak is eocartesi~n and H is entire ,by 3.20. If now 
b is ultragenerie, sinee e-lak is cocartesian, be-lait is generie, by 
definition, and sinee then k is a morphism in AIH between generie 
arrows it is an isomorphisme This shows e-1ak, being eocartesian 
above an iso, is also an isomorphisme Then a simple translation 
argument shows b is a representor for H. 

4.2.8 Corollary 
i) 

If A is locally atomie then V/t(A,X) has a (small) multi-initial 
family. 

ii) 

If F is a semigranular fibration, th en Ent(E,F) is semigranular . 
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We already know that if (K,y) € lJJt(A,X) then there exists an 
essentially unique representable (H,x) and a unique cp: (H,x)-+(K,y) 
in Arr(A,X). By 3.21 b) x is ultrageneric and by the preceding 
proposition H is entire. so (X,x) € lI/t(A,X) . So we are left to prove 
cp is cartesian. But if z:B-+HZ is an ultrageneric arrow we know 
(4.2.7) z is isomorphic to x in FIIH, hence cpZoz is isomorphic to 
y in rliK and therefore ultrageneric. Ta show there is only a smalI 
number of representables (H,x) € lJltCA,X) , use the fact that such an 
H must preserve filtered colimits, and therefore is entirely defined 
by its value on finite objects of E. The description of representables 
given by 4.2.5 shows there can be only a smalI numher of them. 

Let us now show that if A is atomic, (H,x) A,X-representable, 
then H is atomic in Ent(E,F). We know its bottom subobject is 
the functor L, where LX is the initial candidate determined by 
HX in rEX . So let cp: K .... H he a morphism in EntCE,F) where 
K _ L . Then for sorne Y E: E KY is nonempty in its fiber, and 50 there 
is y:B-+KY in FEY where B, by the same argument as in 4.2.7, 
is locally atomic. There is an ultrageneric x: A .... KX Along with 
(a,f):(A~X,x)-+(B,Y,y) in rilK. By 4.2.7 cpXox is a representor for 
H sinee it is ultrageneric. Let Z€E. We will show <pZ is an 
isomorphism by testing with the primes of FEZ. Let C he one and 
c:C .... HZ in rEZ . Since H is A,X-representable, by Axiom 5 there 
is k:X-+Z and a:C .... Ak with bkcx - c (bkak being a cocartesian­
above identity factorization of HkocpXox). 

A 
x/ \.ak 

KX .... HX Ak 
Kk 1 HklbV T cx 

KZ---t HZ+--C 
<pZ c 
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Again as in 4.2.7 • C and At are locally atomic and ex is an i50. 
Since ak is cocartesian there is d:Ak .... KZ in fEZ with 
dak:ll Kkox . dcx-1 will be the required arrow. 

ii) 

Now suppose F is a semigranular fibration. Take a 
representative class 9 of functors H such that there is A€f 
locallyatomic, X€E finite and x:A .... HX ultrageneric ma king (H,x) 
representable. Such a class is obviously small (4.2.5, essentially). 
It is a strong generating set of finitely presented objects: let us 
prove the strong generation property; the proof for finite 
presentedness will he postponed a little. Let 8:X .... L he a morphism 
of Ent(E,F) such that for every H€~ }(om(H,8) is an isomorphism. 
Let B he sorne local atorn of r and y: B ..... LV sorne arrow above 
identity. There is the usual x: A"" LX ultrageneric along with 
(a,f):x ..... y in rUL. Let (H,x l

) he the initial candidate of UittA,X) 
determined by (L,x) and p:(H,x') ..... (L,x) the unique morphism. 
(H,x') is isomorphic to sorne object of Q. By assumption there is 
"':H .... X with e'll = P . 

HX 
'IIX/ lpX~ x' 
KX--'LX4-A 

Xf l ex l Lf x l a 
KV---tLY ...... B 

eV y 

Since a is cocartesian there is z: B ..... KY above identity such that 
za = Xf 0 ",X 0 Xl , and a simple diagram chase shows 9 V 0 za = ya , and 
a can he factored out by cocartesianness. 

Let us now prove Axiom 5 for Ent(E,F). Let (CP1:Hl-tL)ld he a 
candidate in Ent(E,F), and e:K-tL where K is in our set of 
generators. There is a: A -t KX ultrageneric with A atomic making 
(K,a) an initial candidate in Vit(A,X). Since (CPiX)i is a candidate 
in r X (4.2.2) by Axiom 5 there is id and b: A .... HiX with 
CPiX 0 b • eX 0 a . Since eX 0 a is ultrageneric b is (3.21 b». Then, 



1 

· .' 

since (K,a) is an initial candidate in Ult(A,X) there is 'II: K .... Hi 
making the triangle commute. The proof that the elements of 9 
are finitely presented is essentially the same. This completes the 
proof. 
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We can now tackle the general case of entire fibrations. The 
concept of A,X-representable functor is not sufficient in this case, 
since given an ultrageneric arrow, the repr~sentable it determines 
may not necessarily be an en tire functor. We need a broader 
concept: 

4.2.9 Definition 

Let AEf be locally prime, HEe, x:A .... HX an ultrageneric 
arrow where X is finite. Let (al:Al .... A)l(6ù.b(A) he a choice of 
representatives of the subobjects of A in fFA. If AiCAj let 
&ij:Ai .... Aj he the morphism that realizes the inclusion. We say 
(H,x) is A.X-aenerated if 

il For every i E Sub(A) there exists a yi:Bi .... HYi 
ultrageneric, where YI is finite, and (bilf1):yi .... XAl in rilH. 

ii) If CPl: H.-. H is the morphism in e where Hl is the BI' Y C 
representable determined by Yi, then ('Pl)i is a candidate 
cocone in e, that is, a correct cocone. 

We will cali x a generator for H. 

4.2.10 Il (H,x) is A,X-8ener/lt~ then H is entire. 

First we show (ail notation as Aboye) that for any iJ such that 
AiCAj there is fU:YC"'YJ with fJfU=fi' Let P:P .... Bi, q:P-tBj he 
the pullback of bj:Bj .... AJ by aijbj:Bj ..... Aj. P is cocartesian since bJ 
is. Defining m = xaibiP = xaJbjq it is easy to see we get morphisms 
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, :1..> 1" :~ ,,~-'1 .. )'Ié... '" \ 

P Yi 
P---tBt .HYI 

1 1 bt 1 
q 1 Al 1 

1 a1J1 '.ai 1 Hf, 
B.r:-tAr-tA 1 

YJ 1 bJ l1J X '\. 1 
HYj -HX 

Hfj 

fl:(Yl,Y1P)~(X,m) and fj:(YJ,yjq)~(X,m) in P/H. Since YI is 
ultrageneric and p cocartesian, YIP is generic and there is 
fiJ:(Yi.YiP)~(yJ.YJq) with fJf'J. f, . 
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Now let z:C~HZ he an arbitrary arrow above identity. Clearly, 
by the definition of A,X-generated and Axiom 5 there is j, 
g:YJ~Z such that z factors through 3EIBJ' bya morphism above 

tE,BJ.... c 
B~3EIBt-C 

YJl '\ 1 z 
HYJ • HZ 

Hg 

identity we will cali c. Let c':C'~Bj, n:C'~C be the pullback of c 
by '\.EIBJ' n is cocartesian. There is d: 3fJC'~AJ above identity 
with do "EfJC' = bjc' . There is i such that aJd as a subobject is 
equivalent to Ai. and so AiCAJ' Identify 3 EfJC' with Ai' We can 
then restate the Aboye by saying there is r:C' ..... Ai cocartesian such 
that a1Jr· bJc'. By the cartesianness of r, there is l:Bl~C' above 
fij with rI = bi' 1 is cocartesian by 3.10 iv) . Then nl:Bi~C is 
cocartesian, and gtij:Yi~Z is such that F(nl)· E(gfij) and 
H(gfij) 0 Yi = znl ,and Yi is ultrageneric. QED. 

Corollary 

If z:C .... HZ is ultrageneric then it is isomorphic in rllH to a bi 
for sorne i. 
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We already know there is i, d:Bt~C cocartesian and g:Yl~X 
with Hg. Yt • zd ,d and g being above a common arrow. But if z 
is ultrageneric g is an iso and therefore d too. 

4.2.11 Proposition 

If (H,x) is A,X-generated, h:W~X such that Hh is 
cocartesian, then h is an isomorphism. 

Proof 

We assume YilBt.Yt, are defined as above. Let w:O~HW , 
d: 0 .... A he the pullback of x by Hh. d is cocartesian and w 
above identity. Byassumption, there is i, k:Yi .... W , along with 

p 
p/ '\.q d 

Bt D----+A 

1 c\' /i 1 1 
Yi 1 C 1 w 1 x 

l e'\.l l 
HY 1 ----t HW ---t HX 

Hk Hh 

a cocartesian arrow c:Bt~C above Ek such that w factors 
through the unique e:C-tHW above identity with Hk.Yi = ec . 
Calling this factoring i:O-tC, let p:P ..... Bt and q:P-tO be the 
pullback of c and i. q is cocartesian since c is, and we get a 
morphism hk:(Y1'YiP)-t(X,xdq) in P/H. But xdq is generic since 
dq is cocartesian, and therefore hk ,h are isomorphisms. 

4.2.12 Forany A /0C4/1y prime, X appropn;'te, the œtegory 
Ult(A,X) has a poly-initia/ fami/y. The C4tegOry EntC(E,F) is an 
tW8regate. 

This is 4.2.8 over again. Let (K,x) € V/t(A,X) . Let (al:At-tA)td 
he a choice of representatives for the subobjects of A above 
identity, as in 4.2.9, and let aO:AO .... A denote the identity 
subobject, 50 0(1. Let (bt,ft):(Bj,Yt,Yl)-t(A,X,xat) be a choice of 
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ultrageneric YI'S and arrows in filK. We have YO - x . For any ifl 
there is an essentially unique Bt,Y.-representable (Hi,Y.) and a 
unique fPi:(Hj,Yi)-t(K,Yi) in Arr(St,Yi). This gives a discrete cocone 
('1: Hr-tK)1 in e. Cali 'i'1:HI-+H the coproduet candidate in e it 
determines and ,: 8 -+ K the factoring. Let Zj denote "', VI • y, and 
cali z = zo . Sinee every z. is sent by ., to Yi, all the zi are 
ultrageneric. It is now easy to see that (8,z) is A,V-generated, and 
therefore entire (4.2.10). We can now show (8,z) is generic in 
Ult(A,X) . First, 4.2.3 along with a trivial argument show that 
Ult(A,X) has pullbacks. Therefore, by 0.11 we only have to show 
(H,z) dOIs not have any subobject but itself. But this is obvious, 
since 8 is the entire functor generated by the ultragenerie arrow 
z: any entire subfunctor of H through z factors will have aIl the 
Zi'S factor through it too, and therefore will he 8. The poly-initial 
family of Vlt(A,X) is small by the usual counting argument (cf. 
4.2.8). A generie object in Ult(A,X) is obviously always ilo,X­
generated since it admits a morphism trom an A,X-generated object 
to it. 

Now suppose (K,x) as above is sueh that it is A,X-generated. 
We wânt to prove K is prime in EntCE,F); let us first show 
SUb(K) is finite. For every i€l let (K"Vl) he the generic object of 
V/t(Bi,Yi) determined by (K,Yi), and 1)i:(KitVi)-+(K,Yi) the arrow. 
If 'l':L-t K is a subobject, Let JeI be the set of i such that lIi 

factors through 't'. This happens iff Yi factors through 
'tV,:LYs .... KYs , and determines a discrete cocone (XJ:KJ-+L)J(J. We 
c1aim it is a coproduct candidate, thus showing .5ùb(K) has a 
smaller cardinal than the powerset of l, and proving our claim: it 
suffices to show (by 1.5 + 4.2.2 ) that for any object W of E, any 
w:C-+LW above identity where C is locally prime, there is a j€J 
such that w factors through XJW. Since, by the corollary to 
4.2.10 the Yt'S are a representative set of ultrageneric arrows for 
K , there is id and (c,g):(B.,Vi,Yi)-t(C,W,'tWow) in rilK. By the 
pullbackness of the square 



( 

1'Yi 
LY.---tKY. 

Lgl lKI 
LW--tKW 

TW 

87 

there is u:Bj .... LYl such that TYjOU -Yj and Lgou -wc. The first 
equation says that i€J, and 50 U = ÀiYi oVi . Since c is cocartesian 
above g there is s:C ..... K.W with sc= KiloVi . 

Lg 
LY. -LW 
T,",u cW/T 

ÀiVi 1 Bi .... C 1 ÀiW 

1 /Vi s '\. 1 
KiYi -KiW 

Kig 

Then chasing the diagram above shows ).i W 0 sc = wc , and since c 
is cocartesian it can be factored out, so W does indeed factor 
through a ). j W . 

We will now show K has the other property of primes: let 
(<ps:Hs .... H)s(S he a candidate cocone and 9:K .... H. By Axiom 5 
there is s such that ex 0 x factors through 'PsX. But since CK,x) 
is generic, there is K .... Hs making the triangle commute. 

We now know what a strong generating set for Ent(E,F) should 
look like: take a representative c1ass 9 of functors H such that 
there are AEF locally prime, X€E finite. and a generator x 
making H A,X-generated. The same old argument shows Q is 
essentially small. The proof that 9 is a strong generating set is 
exactly the same as in 4.2.8 ii); one simply has to substitute 
-generic object- for -initial candidate-. The same substitution will 
yield proofs that Axiom 5 holds and that the objects of 9 are 
finitely presented. This completes the proof of 4.2. 
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Let us show some special cases of that theorem where the prime 
generators are more tractable than in general. First we will need 
some more information about initial candidates in functor categories. 
Let 'flO: A88r .... Set be the functor that sends every aggregate to its 
set of connected components. Notice that nO preserves small 
products; that is ,if (Ai)lEJ is a familyof aggregates, then 
no(TIiAi) ~ TIi(1tO(Ai». If A:A ..... D is a morphism in Aggr, for 
x€'flo(A) define Alx:x .... D to he the restriction of A to xcA. x is 
an aggregate by itself, and Aix is also an entire functor. We assume 
C ,E • r are still the same as above. If z( C ,let EZ: Ez ..... z be the 
en tire fibration obtained by pulling back E by the inclusion z .... t . 
Quite clearly, we have 

Ent(E,F) a! n Ent(Ez,FZ) . 
zu'CO(C) 

4.3 Proposition 

Let t be connected. Then for any SE:t noOS):1to(ES) ..... no(E) is 
a bijection (IS being the inclusion). It follows that if C is any 
aggregate, then TTO\ Ent(E,F» is isomorphic to 
Sëtlno(C)(no(E),no(F» , that is, the set of functions f:nO(E) ..... nO(r) 
with 'IlO(F) 0 f = noCE) . 

Proof 

Remember that in an aggregate connected components are in 
bijective correspondence with isomorphism classes of initial 
candidates. Let V he -the" initial object of t. Then by 3.8.1 the 
initial candidates of E V are the initial candidates of E. There is a 
unique !:V ..... S and since 31.!* form an adjoint pair they 
determine isomorphisms between the connected components of EV 
and those of ES, and this proves the first claim. Still assuming t 
is connected, let y€'flocr). We can define a section <y>:c ..... r , 
Fo<y>. 1C as follows: for SE:t <y>S is (a choice of) the initial 
candidate of r S contained in y. The value on a morphism of t is 
uniquely defined, and the rules for calculating limits and colimits in 
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stiff fibrations (3.7) easily show that <y> is entire. We have 
(y):c~ycr • which can be restated by noting that noCC) = {Cl, 50 

(no<y»(C) = y. Now if f:no(E)-.nO(F) is any function (we 
obviously have 'RO(F) 0 f = 'Ro(E) ). define 1: E ~ f as follows: using 
the fact that E is the coproduct 

E = li x 
XEUO(() 

we take f to be the unique functor whose restriction to x€'IlO(E) IS 

<f(x» 0 Eix. Obviously, by its construction f E: Entc(E,F) , and 
nO( i) = f . Notice that f is a functor that sends every object of E 
to an object which is an initial candidate in Its fiber. Therefore r is 
an initial candidate in &t(E,F). We can now prove the second 
claim; let C be any aggregate. Let 

p: Ent(E,F) ---tSèt/'rro(C)(no(E),1to(F)) 

send H to 'IlO(H). Notice that p is a functor to a discrete category. 
If H, K are in the same component of Ent(E,F) we have p(H) = p(K) 
since H and K will send every component of E to the same 
component of F. Therefore thëre is a natural 

Tt: 'Ro(Ent(E,F») --tSetlnoCC)(noCE),ttoCF» 

and our goal is to prove it is bijective. Notice that the argument 
above is just a proof that p is surjective when C is connected, and 
therefore that Tt is too. Let 2 range over TtoCC). 

no( EntCE,F» ---t SetlnoCC)(no(E),ttO(F» 

'! 1 
tto(TIzEnt(EZ,FZ» Il 

~ J 
TTz{ no( Ent(Ez,FZ»--+TTz{ no(EZ),nOCYZ» 

The nature of the vertical isomorphisms should he clear. If 
f € Sëtlno(C){no(E),Tto(F» the iso to the right (which is just the 
remark that Set InoCC) == S'etUOee) ) transforms f into a family 
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(tz)z , where fz:ttO(EZ)'-'ttO(FZ). Since every z is connected there 
exists (z: Ez ..... rz with 1to({z) = {z t and therefore the morphism at 
the bottom is surjective, making the top morphism surjective. 
Notice that the vertical isos at the left piece the (Z'S into a single 
1: E ~ F with 'lto( 1) • f , and it is easy to see 1 is an initial 
candidate in Ent(E,F), since lx = (zx , where z is the component 
of EX. 

To prove the injectivity of 'ft, let H, K € EntCE,F) be such that 
Tto(H) :' nO(K) (1: f , by definition) . For every X€E we have that lx 
is in the same component of F as both HX and KX, and therefore 
(by the first claim, applied to rz ..... z where z is the component of 
EX) they aU are in the same component of rEX . Therefore, there 
are fX-+HX, lX-+KX , for every X 1 and 50 r ~H , r ~K , proving 
that H and K represent the same element of TtO( Ent(E,F» . This 
completes the proof. 

4.3.1 Corollary 

If F is a fibration aIl whose fibers are connected then Ent(E,F) 

is a connected aggregate. 

Proof 

By the first claim, Tto(F) is an isomorphism, and therefore in 
terrninal in Setltto(t), ma king TtO(.Ent(E,F» a one-element set by 
the second claim. 

We can now explore sorne special cases of 4.2. 

4.4 Ali the hœrs 01 r ~re qU8b't~tive dom~ins. 
Since qualitative domains are (semilgranular, Ent(E,F) is 

semigranular; it is obviously a poset, and the corollary above shows 
it is connected. We only have to show Ent(E,F) is consistently 
cocomplete to get that it is a qualitative domain, by 1.11.1. But 
this is trivial to show, since multicoproduct families are calculated 
pointwise and fiberwise (4.2.2), and therefore have to he singletons. 
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Let us try to ,ee what the ·underlying- set of atoms looks Iike. 
Since the fibers are posets we know that for 5: S"'" T in t the 
functor 3s:rS .... r T is uniquely defined. Let X€E be finite and A 
be an atom of r EX . Since the coproduct candidates in the fibers of 
rare uniquely defined, it is easy to see that there exists at most 
one A,X-representable functor, caU it [X,A] ,and [X,A] is defined 
iff for every Y€E the family (3EkA)kE(X.Y) has an upper bound 
in FEY; if E(X,Y) is empty, [X,A]Y is the bottom element of 
r EY . Let X,A he a pair satisfying the condition above. Let (X,A) , 
(Y,B) he pairs such that [X,A] and [V,B] are defined and equal, 
say to H. By 4.2.7 we know the morphisms A .... HX and B...., HV 
(above identity) are isomorphic in rilH. This is equivalent to saying 
there is an iso ex: X...., Y such that B· 3EcxA . Conversely, it is trivial 
to prove that if ~:X""'Z is an iso, then [X,A] and [Z,3E,A] are the 
same functor. Therefore the set of atoms of Ent(E,F) is isomorphic 
to the set a of all sets X such that 

The elements of X are pairs (X,A) where X€E is finite 
and AE:f a local atom above EX. 

If both (X,A) and (Y,B) are in X then there is an iso 
ex: X...., Y (not necessarily unique) such that B = 3EcxA . 

If (X,A)E:X and ~:X-'Z is an iso then (Z,3E,A)€X. 

When does a subset :BcG have a sup? For every X€~ let 
(Xx,Ax) be a choice of an eiement of X. Clearly, a necessary 
condition is that the family of functors ([XX,AX])XEB have a sup in 
e , i.e. that for every V(E the family (3EkAX)XEB,kE(XX.Y) have 
a sup in f EV , cali it H. Notice this will be the case if ail the Xx 
are in different components of r. Also, notice that H th us defined 
always preserves pullbacks (exercise; use the fact that for any 
f:X .... Y in E Hf is cocartesian). To make this necessary condition 
sufficient, ail we have to add (cf. proof of 4.2.2) is to require that 
the morphisms rXX,AX) .... H he cartesian for ail X. Since [Xx,Axl 
has an essentially unique ultrageneric morphism, namely 
AX .... [XX.AX1XX , we are simply asking that AX .... HXX he 
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ultrageneric. Assume it is not the case for X. Then there is a: B ..... A 
cocartesian, y: y ..... Xx not an iso (since H preserves pullbacks, we 
can use 2.2) such that 

a 
B----tAx 

l l 
HY ......... HXX 

Hy 

the vertical arrow to th\? left is above identity and the square 
commutes. But since H is the sup of the [Xx,Ax)'s by Axiom 5 
there is V€S ,x:XV-tY such that B= 3ExAV . By composing the 
cocartesian arrows AV ~ B-+ AX we get that 

There exists '\IE~ and z:XV~Xx not an iso such that 
AX= 3EzAV . 

Conversely, if that condition arises, then the natural [XX,AX)~ H 
will certainly not he cartesian. Hence we have found a condition of 
compatibily for the atoms of Ent(E,F): a family ([XX,AX])X€B of 
atomic functors has a sup iff for every Y€E the family 
(3EkAX)X(B.k€(XX.Y) has a sup in FEY and for no pair X,'Y €:B is 
there a k:XX-+XV not an iso such that AV = 3EkAX . This condition 
is a gereralization of the one given in [Gi86), and should he 
compared with it. 

4.5 [, E , rare posets. 

Obviously the fibers of E and rare posets too. Since in this 
situation it is useless to na me the morphisms, for S~T in t and X 
above S we will use the notation 3rX for the object obtained by 
pushing X Aboye T bya cocartesian arrow. Let now X€E be 
fini te, A a local prime of r above EX. Let g:nO(E) ..... nO(r) he 
such that 'nO(F) 0g. 'no(E) and g(Component(X». Component(A) . Define a 
functor (X,A,g): E ..... r as follows: 



_--------~ .... AU_.'II .... '!iI: III 'tAru MI)::".'*,~.,...".WIIIIroItIlO; ... \I_ .. ...;;~.;;; __ ..:..lA .. ;..;.'" 1_....:';;;IUt;;:;, ...... :;;;:_~a .=:.,.=. =. ===. =_=== 

( 

{ 

3yA if Y~X 
[X,A,g]Y • 

iY if not (cf. 4.3) . 
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It is quite easy to see i is indeed a functor, in fact, an A,X­
representable one. What is more surprising is that g is entire, and 
therefore A,X-generated; the verification of this poses no problem, 
and will he left to the reader. Here is an instance of a fibration of 
aggregates where the unwieldy concept of A,X-generated functor 
can he avoided. 

4.6 t = 1 . That J~ EntCE,F) = A66rCE,F) . 

Many definitions simplify considerably in this context. For 
instance, the notion of ultrageneric becomes identical with that of 
generic. Given X€E finite, A€r ,an A,X-representable (H,x) is a 
functor H:E-+F along with x:A-+HX su ch that for every Y~E the 
family (Hk 0 X)k€(eX. y) is a coproduct candidate. Let F = :nt , the 
category of sets and monomorphisms, and let us determine the 
atomic entire functors E -+:nt . Since m is granular and has 
essentially one atom, the one-element set 1, the atoms of the 
functor category form a generating set and they ail are 1,X­
representable for some XE:E. Let H he such an atomic functor. Let 
x:1-+HX he generic. We can also write x€HX, obviously. Let G he 
the automorphism group of x in 1/H; it is the set of ail 
endomorphisms (they being automatically automorphisms) ex of X 
such that Ha 0 x = x . G is obviously a subgroup of AutCX). For 
every Y€E G acts on the right on E(X,Y) by {t,a) .... f(X. For a 
morphism Y -+ Z in Ethere is a morphism of actions 
E(X,Y)-+E(X,Z) and so we can define a functor K: E -+ Set that 
sends Y to the set of G-orbits on E(X, y) . By Yoneda there is a 
unique natural transformation cp:hX .... H sending 1X to x, where 
hX is the covariant representable functor associated to X (hX can 
obviously he considered as a functor E-+:nt). Since (H,x) is 1,X­
generated, cp is surjective in every component. Let f.aE:E(X.Y) he 
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such that q>Y(f)· q>Y(g) (. y , by definition) . We can restate this by 
saying there are morphisms 

f g 
(X,X) --+ (Y,y) +-(x,x) 

in l/H, and therefore by the genericity of x there is CX€G with 
fex = g , and 50 f and g belong to the same orbit of the G-action. 
The converse, that G-congruent morphisms of Ent(X,Y) are 
identified by q>Y , is trivial. 'Chus we have proven that H == K . 
Conversely it is quite easy to show that given any X€E finite, any 
subgroup Ge Aut(X) , the functor hX/G:E-+m defined as K above 
is 1,X-representable, with the orbit of lX, an element l .... (hx/G)X 
as as representor. This means that our notion of A,X-representable 
is a generalization of the classical notion of representable functor: if 
we restrict ourselves to :nt (Sets) as a target category, a 1,X­
representable functor is the same thing as a multiple coequalizer of 
representable functors 

(hg)g€G 
hX~hX~hX/G 

where aIl the gis are isomorphisms. Let X' E: E , and G' he a 
subgroup of Aut'X'). Clearly, if there is a natural transformation 
'i':hXI/G' .... hX/G , by Yoneda and the surjectivity of the projection 

hX' ----t hX 

l l 
hX'/G'~hX/G 

hX-+hX/G' there is a natural e:hX' .... hX ma king the square above 
commute, and then, a morphism f:X ..... X' with e = h f . In order for 
the transformation to he cartesian, f has to be an isomorphism 
(since lX': 1 .... hX'X' is generic, and eX' 0 1X' 1: f can he generic in 
hX'X only if f is an iso). We get that cartesian morphisms of 1,X­
repre.sentable functors have to he isomorphisms and are mediated 
by isomorphisms in E (the first observation is not surprising since 
l,X-representables are atomic). So let f:X-+X' be an isomorphism 
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such that the lower horizontal (iso)morphism in the square above 
exists, making the square commute. For any Y€E , any h,k:X' .... Y, 
weget 

h G'-congruent to k 
h-1k E G' 
h-1k E G' 

~ hf G-congruent to kf 
.. (hfr 1(kt) E G 
=t r 1(h-1k)f E G 

and therefore such an f is exactly a morphism such that for 
every aEG' we have f-locf E: G. In particular, by putting X· X' 
we can describe the set jx of isomorphism types of aU 1,X­
representable functors: if 1lT X is the set of subgroups of A ut(X) , 
then Jx is the set of orbits of the standard action of Aut(X) on 
1lTX by conjugacy. The automorphism groups of the 1,X­
representable functors can be similarly characterized. This is not 
very good news: for example, if E = ~ , then the category 
Ent(m,3Il) has its set of isomorphism types of atoms in bijective 
correspondence with the disjoint sum 

li Orbit(Sn,lITn ) 
nEN 

where 1D'n is the set of subgroups of the symmetrical group en 
and en acts on 'bTn by conjugacy. Not a trivial computation. 

Let us finish this remark by noting that if E is any aggregate, 
and if Cl is the set of isomorphism types of atoms of EnteE,m). for 
every A€Ci 1 denoting by GA the automorphism group of (a 
representative of) A, then Ent(E,m) is Equivalent to the product 
category 

where ~A is as in 1.11. This is proven by noting that in 
Ent(E,m> • for every discrete family of objects there is a unique iean 
cocone, and that this property characterizes categories of the form 

TIi ~i' 
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4.7 Theorem 

Let E:E-.t be an entire fibration. The pullback functor 

E*: }iD(t) --+ }i:b(E) 

has a right adjoint TT E . The Beck condition holds for any pullback 
dia gram of entire functors where two parallel ones are entire 
fibrations. If F:r -+E is a semigranular fibration, then nEF is a 
semigranular fibration too. 

Corollllry 

The display categories ( A88r, Fi:b) and (A88~Sgr) 
(3.16,3.17.1) both admit products. Since in addition they both 
admit discrete products, for any aggregate t ,Ab(e) and Sem(C) 
are cartesia.n-closed. In particular, both the category of aggregates 
and entire f unrtors ~nd the category of semigranular categories and 
entire functors are cartesian-closed . 

Proof 

Let F:F -.E be in }iD(C). We will construct nE F as a diagram 
G:G-+[ defined as follows. 

An object of li above S is a pair (S,H), where H is an entire 
functor H: (S-+r with FH = 1(S . As is customary we will say things 
like "let H be above S" in lieu of "let (S,H) € li ". A morphism 
'X,:H-+K in E above s:5-+T is a function that assigns to every 
arrow f:X-+Y above 5 a morphism XU]:HX-'KY above f , i.e. 
such that F( Xlt]) = f . 'X. is subject to the condition that if 

f 
X--+Y 

x! l y 
XI--+yl 

fi 

is a pullback square where f. fi are above 5 • and x. x' above 
identity th en the square 
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is a puUback too. 

x[t) 
HX--tKY 

Hx! !Ky 
HX'---tKY' 

Xlf'] 

4.7.1 Proposition 

Let X:H .... K be above s:S~T in li. 

il Let 

X--.y 

aB 
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be a commutative triangle in E where f. f' are above s and y is 
above identity. Then Ky. X[t] = XU'] . 

ii) Let 

w' 
"II! ,g 

W ..... Z 
g' 

commute in E wh~re g,g' are above s and "II above identity. 
Then X[g']. Hw = X[g] . 

Proof 

for i) , let x:X' .... X and h:X· .... y' complete the diagram to a 
pullback. There is a:X ..... X· with xa=lX and ha-f. This forces x 
to he an isomorphism, and the statement follows from the pullback 
condition on X. For ii) , let k:W' .... Z' be cocartesian above sand 
z: Z' ~ Z above identity with zk· g'w . By the above, "Ile have 
Kz 0 llk1- xhd , and since w, z, i' ,k form a pullback ( 3.3 d) and a 
trivial argument) "Ile have Xlg'] 0 Hw • Kzo xlk] - Xlg] . This shows 
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where f is cocartesian: 

4.7.2 Proposition 
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Let s:S~ T in t, H€GS and K€GT. Let X be a function which 
assings to every cocartesian arrow f:X-+Y above s an arrow 
X[f]:HX .... KY above f such that the pullback condition holds for the 
squares that can he made in this context: for any commutative 

f 
X---+Y 

xl ! y 
XI--+yl 

fi 

square where f, fi are cocartesian above s, and x, Xl above 
identity (any such square is a pullback) the square 

XU] 
HX-+KY 

Hx! lKy 
HXI-+Kyi 

XUI] 

is a pullback too. Then X can be extended to a unique morphism 
H -+ K of li above s, which we will also calI X . 

Proof 

First notice that 4.7.1 i) holds in this context: the proof car ries 
through since cocartesians are stable under pullbacks. Therefore 
given any two cocartesian arrows g, gl above 5 with common 
domain, the morphisms x,[g], Xlg'] will he isomorphic in the 
obvious sense. This allows us to extend X to ail arrows f above s: 
given such an f, let f· hg where g is cocartesian above sand h 
above identity and define X[f]. Kh 0 Xlg] . The previous remark 
ensures independence from the choice of g. To check the pullback 
condition, let 
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XI--tyl 

xl ly 
X---tY 

f 
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be an arbitrary pullback diagram. Factor f as hg just as above, 
with g:X-+Z, h:Z-+Y . Let Z:ZI-+Z, hl:Z'-+yl be the pullback of 
h ,y and gl: Xl .... ZI the unique arrow giving zgl -= gx . 

g h' 
X'--t Z' ---+ yi 

xl lz ly 
x--+z---+y 

g h 

The left square is a pullback (standard argument) and by 3.3 d) g' 
is cocartesian. Therefore 

X[g'] Kh' 
HX'--+ KZ'--+KY' 

Hx! !Kz! Ky 
HX ---t KZ --+ KY 

Xlg] Kh 

the left square above is a pullback by assumption, the right square is 
one since K is entire, and this shows our claim since 
'XJfJ = Kh 0 Xlg] 1 etc. The unicity of the extendeà X is quite obvious. 

We can now show how to compose morphisms of li. If X:H-+ K 
is above r:R-+S and ~:K-+L above s:S-+T we want a value to 
~x[f] for any f:X-+Y above sr.lf f can be decomposed as hg 1 g 
above rand h above s 1 then we could define e xU] as 
~[h] 0 'X,[g] , hoping that the final result is independent of the choice of 
g,h . Such g,h always exist: just take g to be a cocartesian above 
r with domain X. and h the unique arrow above s with hg. f . 
We leave it to the reader to verity that the value of ~ x[f) thus 
obtained is indeed independent of the actual decomposition of f 1 and 
that the axioms of a category hold. 
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Let H,K be in liS. Let X:H .... K be a morphism Aboye 1S' By 
definition, the family (X[1X):HX"'KX)X,ES is such that for f:X"'Y 
Aboye identity 

Xl1x] 
HX---'KX 

Hf l lKf 
HY---.KY 

Xl1y] 

is a pullback. That is, if we define XX = Xl1x] we get a cartesian 
natural transformation above identity. The converse is also true: 
given cp:H .... K cartesian above identity, one gets a morphism of li 
by defining cp[f]. Kf. cpX • cpY • Hf , and the verification of this is 
trivial. Ail this obviously defines a bijection between 6S(H,K) and 
the set of cartesian transformations H~K Aboye identity. Hence 
the fiber liS is the category of a11 entire splittings of pS:rS~ES, 
where pB is the pullback 

rS---.r 
pS l l F 

ES---'E 
1 

and 1 the inclusion, with cartesian transformations Aboye identity 
as morphisms. This shows liS is an aggregate since it is isomorphic 
to Ent(S(1(S,pS). This also shows liS is semigranular when F is 
a semigranular fibration. Let us show G is a bifibration. 

4.7.3 Proposition 

Let X:H .... K in li above s:S .... T he such that for every 
cocartesian f:X .... Y above s, X[f]:HX~KY is cartesian (that is, F­
cartesian ). Then X is cartesian. 

Proof 

Let t:L .... K be above sv with v:V .... S. We are looking for a 
unique ~:L .... H above v with X~· t . Let f:X .... Y he some arrow 
above v. If g: y .... Z is a cocartesian arrow above s, XlgJ is 

, , r~{ 



_._-.~~~~_"A __ .I1._'. __ ."'_..u_. _mw_.Il'1 ....... _1 1 ____ •• _n 1il_ ... _~,_ .. _itlfli_'_A·at_._t __ ... _·t ___ .. li ...... ~m.~~AI~IIîtJ(l. Sll'mn . mari 

« 

( 

101 

cartesian, and there is a unique way to define ~[f] to have 
X(g] 0 ~[f] =- t[gn . If ~ is defined thus, we do have X~ = t; by the 
last proposition we just have to check this for a cocartesian arrow 
h: X .... Z above sv • It decomposes as h = gf , where g and f are as 
above, and since both morphisms are cocartesian, 

x C[h] = xhd 0 dt] = dgf] = dh] , 

as above. So we are left to check the pullback condition. Let 

f 
X--+Y 

xl l y 
X'--+Y' 

f' 

be a pullback square, with f, f above v and x, y above identity. 
Let g:Y~Z, gl:YI .... Z' he cocartesian above s, and z:Z-+Z' above 
identity with zg· g'y . We 'want to prove that the left square below 

~[f] ~.lg] 
LX ---+ HY ---+ KZ 

Lx l l Hy l Kz 
LX'---+ HY'---+ KZ' 

~U'] x[g'] 

is a pullback. The square gf, g'f' , X ,z is a pullback, heing a 
composite of pullbacks. Therefore the outer square above is a 
pullback by the definition of C. The square to the right is a 
pullback by the definition of X. Therefore the result follows by the 
standard fact about composites of pullbacks. 

4.7.4 Proposition 

Let K€6 he above T ,and s:S~T. There is H€li and a 
cartesian arrow X: H ~ K above s. 

Proof 

For every X€ES let \sX:X-+ 3sX be a choice of a cocartesian 
arrowabove s, and let XX:HX---+K3sX he a choice of a cartesian 
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arrowabove 1.5 X. It follows that 'XX is EF-cartesien above s (cf. 
3.17 iii». For f:X-'Y in ES there is a unique Hf:HX-.HY above 
f such that 

'Xx 
HX---+K3s X 

Hf l l K3sf 
HY---tK35Y 

'XY 

commutes, since 'XY is cartesian. H is actually an entire functor, 
since it can be defined as a composite f* 0 K 0 35 ,where f*: r T -+ rS 

is obtained by choosing EF -cartesian arrows above s in the right 
manner. The family (lX)X€(S can be extended to a unique 
'X:H-.K in 6 by 4.7.2. 

Now for the cocartesian case 

4.7.5 Proposition 

Let l:H-+K in li above s:S-+T be such that for any cartesian 
f: X -+ Y above s lU] is F -cocartesian above f. Then 'X is 
cocartesian. 

Proof 

Let t: H -+ L he above ts, with t: T -+ V . We are looking for 
~: K -+ L above t with ~ l • t . Let f: X -+ Y be above t and ex tend 
g: Z -+ X cartesian above s. Since 'X[g) is cocartesian there is a 
unique way to define ~[f) 50 that eU) 0 xhd = C[fg] . Let us show ~ 
th us defined has the pullback condition. In the diagram helow 

S' f' 
Z' --+ X'---+ Y' 

zl lx l y 
Z---+X---+Y 

g f 

let the right square form a pullback, where f, f' are above t and 
x,y are above identity; let g,gl he cartesian arrows extended 



, 

) ( 

103 

above s, and z complete to a pullback. Let m: A .... KX , n: A .... L yi 
be such that ~(f1 0 m = Ly 0 n . By assumption there is a unique 
h:FA .... X' with xoh=Fm and f'oh=Fn. Let 

a 
B-...A 

p! !m 
HZ-tKX 

x,[g] 

form a pullback. a is cocartesian. Since ~[f) 0 X[g] = t[fg) , 
~[f'l 0 'X.lg'] = t[f'g'} and the latter along with Hz, Ly form a pullback 
there is a unique q: B .... HZ' such that Hz 0 q = p and 
~[f') 0 'X.[g'] 0 q - na . Examination of the diagram below shows 

Fa 
FB--+FA 

Fq! h! '\.Fn 
Z'-... X'---+ y' 

1 fi 
z! 1 !x ! y 

Z--tX--+Y 
g f 

Fq is the unique morphism FB .... Z' such that ho Fa = g' 0 Fq , 
zoFq = Fp . Since a is cocartesian there is b:A ....... KX' with 
'X(g') 0 q = ba . Then a diagram chase using the cocartesianness of a 
will show ~[f']ob -n and Kxob - m . 

4.7.6 Proposition 

Let H€fi he above Sand s:S-tT in [. There is K€G and a 
cocartesian X: H .... K . 

Proof 

For Any Y €E T choose a cartesian '1s Y: s·Y .... Y above s, and a 
cocartesian 'X.V:Hs*V .... KY above '1sV, K(-) is obviously the object 
part of a functor: for y:y-+y' in ET take Ky to he the unique 
morphism KY"" Kyi above y such that Kyo'X,Y = 'X. yi ° Hs·y . We 
can define a partial y, where Xlf] exists for any cartesian 
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f:X-tY above 5: if a:X-tf·Y is the unique iso Aboye identity with 
'l. yo a = f , we take XttJ to be X yo Ka . It is quite easy to see that 
the partial y thus defin~ satisfies 4.7.1 j); therefore if we define 
a full X by restricting X to the cocartesian arrows and using 
4.7.2 we get that X restricted to the cartesians is X, and that it 
satisfies the condition of the previous proposition. To show X 
satisfies the pullback condition we can restrict ourselves to 
cocartesian arrows, by 4.7.2. So let 

f 
X~Y 

xl ly 
XI~yl 

fi 

be with x, y above identity and f, f' cocartesian above s. That 
square is a pullback. By 3.10 ii) the square Kx, Ky , XU], X[f'] is a 
pullback, since the latter two arrows are F -(co)cartesian. 

We are left to show K is entire. Let 

X2 
X--+Y2 

xll 1 w2 
Yl---tW 

w1 

he a pullback diagram in ET. Let al:A-tKY1, a2: A-+KY2 in FT 
with KWloal- KW20A2 . There exists a unique m:FA-tX with 
Xlm = Fa1 , x2m = Fa2 . Let 

b 
B ---t A 

P l 1 KW1oa1 
Hs·W-tKW 

xw 
he a pullback diagram. b is cocartesian. Since we know X has the 
pullback property, the squares XVi, XW ,HS*Wi,Kwi Ci= 1,2) are 
pullbacks. Therefore there are bi:B-+Hs*Yi with 
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HS*Wl • bl • P • HS*W2· ~ . Since the image of the square xi, wi by 
the en tire functor Hs· is a pullback, there is q:B .... Hs·X with 
Hs*xjoq 1: bj . We have rsXoFq = moFb, obviously. Then we use the 
cocartesianness of b to get n: A .... XX with XXI 0 n = al: take n to 
he the unique A ~ KX above m such that XX 0 q - nb . 

To show K preserves filtered colimits, let (Xh)hdt be a filtered 
diagram in ET , with colimit cocone (CXh:Xh~X)h. Let 
(~h:KXh""Y)h be a coli mit cocone in fT (it also being a coli mit 
cocone in f) and let y: y .... KX he the factoring. Let 

q 
p---.y 

p! !y 
Hs*X .... KX 

XX 

he a pullback diagram. q is cocartesian. For every hE li the pair 
~hoXXh:Hs*Xh""Y , Hs*ah:Hs*Xh .... Hs*X determines a unique 
Sh:Hs*Xh~P with pSh - Hs·ah . But since Hos· is entire (Hs·ah>h 
is a coiimit cocone. Therefore p splits and is an iso. This forces y 
to be an iso too since q, XX are cocartesian. 

Note that it follows trivially that cocartesian arrows in li are 
cartesian. Therefore, in order to prove that G is a stiff fibration we 
only have to show cocartesian arrows are stable under pullback by 
morphisms above identity. So let X: H .... K he cocartesian in li, 
<P:L .... K above identity. Let ~:M""L be a cartesian arrow above 
GX , and ",:M~H the unique morphism above identity completing 
the square, which is a pullback: 

~ 
M---+L 

"'! 1<p 
H---+K 

X 

Let f:X .... y in E be cartesian above GX = G~ . Our goal is to prove 
dt) is cocartesian. Let 



g y 
X---tZ---tY 

he a cocartesian-above identity factorization of f. Look at 

~[g] Ly 
MX ---t UI---t L y 

'l'X 1 1,z l ,y 
HX--tKZ---tKY 

X[g] Ky 
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Keeping in mind the remark just above 4.7.3 we denote 
morphisms of li above identity as natural transformations, i.e. ,Z 
stands for ,[1ZJ. Since ~ is cartesian ~[gJ is cartesian. By 
assumption X[gJ is cocartesian, and since 'l'X, ,Z are aboye 
identity the left square is a pullback. The right square is also a 
pullback and since ~[f]. 'X.[g] 0 Ky is cocartesian we get that 
~[f] = Lyo ~(g) is cocartesian, by 3.14. 

4.7.7 The Beek condition holds in li. 

We will show cocartesian arrows are stable under pullback by 
cartesian arrows (3.14,ii». Let t:K .... L in li he cartesian above 
t: T ~ V , and let ~: M ~ L he cocartesian above v: W ~ V . By 
3.10 ii) , to form the pullback of t, ~ it suffi ces to get 

W 

S---tW 

51 1 v 
T---tV 

t 

a pullback s, w in t and then extend cartesian arrows X, ~ 
above s, W respectively (3.10, in will be invoked repeatedly in the 
argument that follows). Let now Y E ET. Let f: X .... Y he cartesian 
above s. Our goal is to show Xlf] is cocartesian. Extend a 
coca,·tesian y: y .... yi Aboye t and let f':XI~yl he cartesian Aboye 
y . Thp.re is a unique x: X ..... XI Aboye w making the square 
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commute, and that square is a pullback, and therefore x is 
cocartesian. 

X 

X--tX' 
f 1 1 fi 
y--ty' 

y 

ulxl 
HX--tMX' 

X[fJ 1 1 ~[f'J 
KY--tLyl 

tly] 
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Il[x) and t[y] are cartesian, and since the square to the left is a 
pullback, the one to the right is one too. Since ~ is cocartesian, 
~(fl] is cocartesian, and therefore X[fl is cocartesian. QED. 

4.7.8 Proposition 

Let H he locally prime in li, say above S. Let x: A -+ HX make 
(H,x) A,X-generated. Let X:K-+H be above s:T-+S, and let f:Y-+X 
be cartesian above s. Then TF AE 

i) The pullback a: B-+ A of XU] by x is cocartesian 

ii) a as above is cocartesian and f is cocartesian 

iii) 'X. is cocartesian. 

If any of the above happens, then (K,y) is B,Y-generated, where 
y: B-+ KY is the pullback of x by X[f1. 

Let 

Proof 

i)~ii) 

g n 
Y--tXI--tX 

be a cocartesian-above-identity factorization of f. Since a is 
cocartesian there is Xl: A -+ HX' above identity with x.[g] 0 y = Xl a . 
We have Hnoxla· xa and since a is cocartesian, it can be 
factored out of the equation. Therefore n is an isomorphism, x 
being ultrageneric, and f is cocartesian. 



ii)"iii) 
Let 

~ cp 
K ----. H'----. H 

he a cocartesian-above-identity factorization of 'X.. We have 
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xlf] = cpX 0 ~[t] Ckeeping in mind the remark just above 4.7.3 we 
denote morphisms of li above identity as natural transformations, 
i.e. cpX stands for cp[1X]. Since a is cocartesian there is w:A-tH'X 
with wa· ~[f1 0 x . A similar argument as above will show 
cpX 0 w = x , and since (H,x) is generic in lJlt(A,X) qJ is an 
isomorphism. 

iii)::oi) 

Since f is cartesian and X cocartesian XU] is cocartesian. 
Therefore the pullback a is cocartesian. 

We still have ta prove (K,y) is B,Y-generated. Let us first show 
y is ultrageneric. Since K is entire there is (C,Z,z) ultrageneric in 
rllK (4.1) and (b,h):(C,Z,z)-+(B,Y,y), where h is in ET and b in 
f"T . We get a commutative square 

ab 
C----tA 

zl lx 
KZ ..... HX 
X[fh] 

Since ab is cocartesian we can apply the argument of i)~ii) again, 
r,=placing a by ab and f by fh. Therefore fh is (co)cartesian, 
and 50 h is too. But being above 1 This an isomorphism, 50 y is 
ultrageneric. Now let &:(K',y')-t(K,y) he the generic object of 
lJJtCB,Y) determined by (K,y). If X,':K'-+H' is a cocartesian arrow 
above 5 and ",:H'-+H above identity with ",Xl = xe then by the 
cocartesianness of a there is v:A-+K'X with va = X,'[f]oy' . An oft­
repeated argument will show ",X 0 Xl =- X , and this forces '" to he an 
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isomorphisme But since the square X, X.' ,& J '" is a pullback, e is an 
iso too and (K,y) is B, Y -generated. 

4.7.9 For lIny H€ G locll/Iy prime there i5 li G -minimal K 
above t!J b'nite obJect of C and ~ coc~rtesian X:K ...... H. 

Let x:A ...... HX make (H,x) A,X-generated. Notice that given 
any cocartesian K ...... H J the proof above shows there is an F­
cocartesian a:B ...... A above an E-cocartesian f:Y ...... X. This is just 
saying a is EF-cocartesian. Therefore, to get aG-minimal K, first 
choose an EF -cocartesian a: B ...... A where B is EF -minimal. 
Denoting EFa by s:T ...... 5 and Fa by f: y ...... X , let X:K ...... H he a 
cartesian arrow in li above S. Since f is cocartesian by 4.7.3 
x[f] is cartesian above f. But then the pullback c 

c 
C---+A 

zl lx 
KY ....... HX 

X[t] 

is a cartesian arrow above f , and is therefore isomorphic to a, 50 

we can apply 4.7.8 and get that X is cocatesian. Now the proof 
that K is G-minimal is just 4.7.8 ii). 

We have proven G is an entire fibration. 

Let E·G:E·G ...... E be the pullback of G by E. An object of E·G 
is a pair (X,H) where X€E and H€IiEX, i.e. H:EEX ...... rEX . The 
fibration E·G obviously sends (X,H) to X. A morphism 
(X,H)-+(Y,K) is simply a pair Cf,XJ, where f:X ...... Y and X:H-+K 15 

above Ef . We define a tentative counit for the adjunction to he the 
morphism €:E·G ...... F of fibrations that sends (f,X):(X,H) ...... (Y,K) to 
X[f):HX ...... KY . We have to show among other things that € is entire. 
We will first show it preserves pullbacks. This amounts to proving 
(using the fact that in a pullback of fibrations pullbacks are 
ca1culated componentwise) that given any 
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1 

f 
X---+Z 

hl lk 
W--+Y 

g 

X 
H--+L 

1J1 le 
M--+K 

~ 
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pair of pullbacks, the left one in E, the right one in li, such that 
they are above a corn mon pullback of 1:., then the square 

X[f] 
HX--+LZ 

1J[h] 1 1 C[k] 
MW--+KY 

~[g] 

is a pullback too. We will not prove this directly, but first tackle a 
special case. 

4.7.10 11 'X. lInd ~ lire cxartesJ't!In then the squlIre lIhove is li 
pullhack 

Let 

f' z 
X --+ Z' ---+ Z 

hl lk' l k 
W--+Y'--+Y 

g' y 

he such that zf' = f , yg' = g ,f' and g' are cocartesian and z,y 
above identity. Since the left square has two parallel cartesian 
arrows and is above a pullback, it is a pullback. The right square is 
above a trivial pullback, and we can apply 3.14.2, to conclude it is 
a pullback too. Now look at the following, 

XU'] Lz 
HX---" LZ' ~ LZ 

lI[h] l l t[k') l t[k] 
KW----+KY '----+KY 

~[g'] Ky 
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whose external square is ( .. ) . Sinee 'X ,~,f' ,s'are cocartesian, l(l'J 
and ~[g'J are cocartesian. Since the left square is Aboye a pullback, 
it is a pullbaek. The right square is one too sinee it is the expression 
of the pullbaek condition for ~. 

Let 
We are now ready to prove e preserves pul1backs in seneral. 

x' K 
H---t L'--. L 

1)! 1 el 1 t 
M---tK'--tK 

~' ,. 
he a eoeartesian-above-identity deeomposition of X, ~ . That is, X' 
is cocartesian, K above iEZ, etc .. Let 

K 

L'---tL 

w
l ! 't

l 100 
NI---tN 

0'1 la 
KI---tK 

't 

be a similar deeomposition of t', t ,where w' ,00 are cocartesian 
and 0

1
,0 above identity. By 3.14.2 the lower square is a pullback 

(it is above a trivial pullbaek) . Now look at 

XU] KZ 
HX ---+ L'Z ---+ LZ 
1 w'[k1! 't'V loo[k] 

1J[h] 1 NIY---+NY 

1 a'Y! 1 aV 
MW---+K'Y ---+ KY 

~[sl 'tV 

The outer square is ( .. ) , and must he proven a pullback. The left 
square is one, because of 4.7.10. The same holds for the upper right 
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square, which is above a trivial pullback. But the lower right square 
is entirely above 1 y . By 4.2.3 it is a pullback, and this proves our 
c1aim. 

4.7.11 let YEE. HEIi be aœve Il common obJect 01 t. let 
y: B~ KY • .bove 1 y .he sucb that B is prime in r y , EF­
minima/, .nd (K,y) is B,Y-genertlted, as in 4.7.8. Thus K is 
G- minimal. Then y: B~ ~(Y ,K) is u'tr~neric. .As a consequense e 
is entire. 

Since e is already known to preserve pullbacks, it suffices to 
show that siven S:Z~Y in E and ~:L~K in Ci Aboye a common 
arrowof t, alons with b:C~B F-cocartesian and z:C--.U (not 
necessarily above identity) such that ~[g]. z • yb ,then both ~ and 
gare isomorphisms. Let 

p gl 
Z---tZI~y 

he a factorization of g where SI is cartesian and p above identity. 
Let 

d 
D---.B 

V! !y 
LZI ..... Ky 

~[glJ 

he a pullbaek. There is e:C--'D with de= band Hpoz = ve. Since 
b is cocartesian by 3.10 iv) d and c are cocartesian. 

...... ~~.~. .. 
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b 
C ·8 
1 c\. d / 1 
1 D 1 

zl vI Iy 
1 LZI 

1 
ILp/ \. l 
LZ • KY 

~[g] 

By 4.7.8 we get that ~ and gl are cocartesian. Since K is G­
minimal ~ is an isomorphism, and since B is EF -minimal and d 
EF-cocartesian gl is an isomorphism. We also now know that v is 
ultrageneric, and this forces p to he and iso, making g an iso too. 

It is now easy to show t is entire: given any Af.F locally 
prime for F , x:A~t(X,H) - HX above identity, let (M,w) be the 
generic object determined by (H,x) in U/t(A,X) and e the 
unique (M.w)~(H,x). Since M is A,X-generated we can apply 
4.7.9 and find KG-minimal and X:K~M cocartesian. Along 
come cocartesian a: B .... A , y: B .... KY ultrageneric and f: y .... X 
cocartesian such that 

a 
B tA 

yl lw 
t(Y,K) -t t(X,M) 

t(f, X) 

commutes. The last thing proven shows y is ultrageneric for e 
and combining the two factorizations we get (f,eX):(Y,K)~(X,H) 
with t(f,ex).y = xa . 

4.7.12 E is the counit 01 the aq./unctionl and the Beek condition 
holds lor a pullœck square WJ~h two parallel entire librations. 

By 0.23 we know we can prove both claims at once by showing 
that for any D:D-tC in Aggr, any J:E*D-tF in Aggr/E, there 
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exista a unique J:D""G with e.rj - J . So let D:D"'C he an 
en tire morphism of agregates, E*D: E*D .... Ethe pullback. As usual 
an object of E*D is a pair (X,P) where XE: E , P€ D and EX· DP . 
Let J ( Aggr/E (E*D,F) . Let us sn what are the requirements for a -functor J: D .... ' with GJ· D to make 

rJ 
E*D ----tE*G 

J'\. /r, 
F 

commute. Let p:p .... Q in D, sayabove s:S .... T, For any X€E 
above S, E*J sends (X,P) to (X,Jp) . Jp is a section ES ... rS and 
since f: is evaluation and we want the triangle to commute, we 
have to have (jp)X = J(X,P) for any X€ES . (jp)X thus defined is 
an object of liS since it is the composite Jo fJ ,where P is the 

E*D 'D 
l'\.P ,P/I 

E*O 1 ES..... 1 D 

!/I 5\.! 
E .e 

E 

unique functor ES"'E*D making the left triangle and the upper 
quadrangle commute (here we identify an object of say, t with 
the corresponding functor from the one-point category to t), 
Therefore j is uniquely defined on objects, if it exists. jp should 
be a morphism Jp .... jQ of li. But given f: X -t Y above s the 
same considerations as above force (Jp)[f] to he J(f,p) , It is trivial 
to check that the family (J(-,P»)f abave 5 satisfies the pullback 
property. AlI we have left to do is to prove J is entire. 

Let us tirst show it preserves pullbacks. Let 

" ' 
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P1 
O---.P1 

P2l l q1 
P2~Q 

q2 
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be a pullback diagram in D. Say this diagram is above the pullback 

s1 
R---+Sl 

s21 1 tl 
S2~T 

t2 

in t. Let Xi:H~JPi' i = 1,2 with Jql° Xl = Jq2° X2 . Let Xi he 
above vl:V~St. There is v:V~R with slv- vI . If there exists 
~:H .... jO with jPi o~ = Xi , this ~ necessarily must he above v. 
We know the value of ~ is entirely determined by its value on 
cocartesian arrows. 50 let XEEV, and f:X-+Y he cocartesian above 
v. Let 

gl 
Y----+Zl 

g21 1 hl 
Z2~W 

h2 

he a square of cocartesian arrows (necessarily a pullback) above 
sI, tl . Since the combined square (g.,Pl) , (h.,ql) is a pullback in 
E*V , we get that 

jpl[gl] 
(jO) y ~ (jp1)Zl 

jp2[g2] l 1 jql[hl] 
(JP2)Z2---+( JQ)T 

jq2[h21 

is a pullback in r . The equation (jpl)[gl]· ~[f] • Xl[glf] forces a 
unique value for ~[fl:HX-+(jO)Y . We are left to check ~ thus 
defined satisfies the pullback condition. This is easy: given 
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f 
X---tY 

xl l y 
X'---tY' 

f' 
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where f, f' are cocartesian above v and x, y above identity, one 
just extends cocartesian arrows k:Y-+W , k':Y'-tW' above 
h1g1 = h2g2 and then uses the standard proposition about pullbacks 
(2.5 , second part) . . 

ln order to finish proving € is en tire we need yet another 
proposition. 

4.7.13 Proposition 

Let H be locally prime in li. with x:A-tHX a generator. Let 
'P:H-tJp at,)ve identity he such that 'PXox:A-teJp)x=JeX,p) is 
ultrageneric for J( -, -) . Then cp is ultrageneric for j. 

Proof 

Let there be 'X.:K-+H cocartesian, ~:K-tJQ in li, along with 
q: Q .... P in D such that 

X 
K----+H 

~! !q» 
jQ---tjp 

jq 

commutes. Say ~ is above r:R .... S and q above s:S .... T , so 'X. is 
above sr. We want to show q is an isomorphisme If f:Y-+X is a 
cartesian arrow above sr and 

a 
B---tA 

yl lx 
Ky .... HX 

lm 
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the pullback we know by 4.7.8 that f ,a are cocartesian, and y 
ultrageneric. Let f factor as hg, where g:Y .... Z is cocartesian 
above rand h:Z .... X cocartesian above s. Obviously the bottom 
square commutes; 

a 
B----tA 

y 1 lx 
KY---.HX 

~(g]! X[f] ! q»X 
(jZ)Q--t(jX)P 

Jq[h] 

since jq[h] is J(h,q):J(Z,Q).-.J(V.P) and q»Xox is ultrageneric for 
J , we get that q,h are isomorphisms. 

We can finally show j is entire. Let L be locally prime in li 
and z:C .... LZ he a generator. Let 'i':L .... JQ he a morphism Aboye 
identity. The object (C,(Z,Q),'i'Zoz) of r/lJ determines an 
ultrageneric (B,(Y,P),y) and a morphism (b,U,p» from the latter to 
the former. If C:K .... L is a cocartesian morphism above Fb there 
is e:K.-.Jp with Jpoe = "'c. Let f (which is Aboye Fb) factor as 

m f' 
v----.y'--.z 

where f' is cartesian and m Aboye identity. By 4.7.8 we know 
that the y':B--tKY' with C[f']oy'. zb makes (K,y') B,V'-generated. 

b 
B • c 

y/ ,,-yi l z 
(jp)y KY' --t HZ 

(JP)m \, / eV' l ",Z 
(jp)V'--.(jQ)Z 

Jp[f'] 

Since e is cartesian there is y":B-+KY with Km.y" m y'. But y 
is generic, 50 m is an iso. Therefore ev'.y' is ultrageneric for J, 
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and the preceding lemma shows 9 is ultrageneric for J, QED. This 
completes the proof of 4.7. 

4.8 Theorem 

Let A be the class of all qualitative fibrations in Aggr, that is, 
all entire fibration ail whose fibers are qualitative domains. A is 
classified by the fibration Q:Q-+qD, where qD is the category of 
qualitative domains and strong morphisms (1.1) ,and Q the 
Grothendieck fibration associated with the forgetful functor 
qD-+ Poset which to every f:X-+Y in qD associates the stable 
function f+: X'" Y . As a consequence of 4.4 the pair C.8,Q) forms a 
notion of smallness. 

Proof 

Remember (1.1, 3.2: Ezample) that if X, Y are qualitative 
domains, the assignment f H f+ defines a bijection between the set 
of strong morphisms X ..... Y and the set of stiff embeddings St ... 9 . 
Therefore, if E:E~t is a stiff fibration aIl whose fibers are 
qualitative domains, it defines a funetor E·:t-+qD, whieh sends 
s:S ..... T in t to the strong morphism corresponding to 35:ES"'ET. 
Obviously, E will be the pullback of Q by E- . Let 1 he the 
atomie qualitative domain, and a:l .... E·r a morphism in qD. This 
is the same thing as the choiee of an atom AE:ET . It is trivial to 
show that there exists a morphism x ..... a in AIE- where x is 
generic iff A admits a cocartesian B-+A in E where B is E­
generic. Therefore E is an entire fibration iff E· is an entire 
functor. The fibration Q is obviously entire, sinee it corresponds to 
the identity qD-+qD. 

A natural question that arises now is: how does this model 
eonlpare with Girard's original model of the second-order lambda 
calculus [Gi86]? A model of the theory of constructions can always 
he restricted to a mode1 of F: let ce,D) he a display category, with 
x:A-+~ a notion of smallness. A variable type I(al, ... ,an) in F , 
where the (Xi'S are type variables, is interpreted as a morphism 

~:'/'f, ! 
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sn ... s , giving rise by pulling back ~ to a small display map 
1*:l:I-tSn . Therefore if t(X1, ... ,xml is a term of type 
I(OC1, ... ,an) ,with xi of type ii(OC1, ... ,an) , the natural 
interpretation of t is as Il morphism 

'l!i Je Sn '2 ... Je sn 'l!~ -----t 1* 
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in .Dsn, the category of display maps into Sn and commutative 
triangles. In our model, S = qD and ~ is the functor Q defined 
above. Now Girard in his model interprets types just as above, i.e. as 
entire functors qDn~qD. But now a term t(X1, ... xml , with 
variables as above. is interpreted as a family ('t'X)XEqI)D indexed by 
the objects of qon ,where ~X is a stable function (entire functor) 

'l!1X x '2X ... x 'l!mX ---+ IX , 

subject to the condition that for any f: X ~ Y in qDn the square 

'l!f+ 
iX----.iY 

"x l l "Y 
IX+-IY 

'l!r 

of stable functions commutes; we use the same notation for a type, 
say fi, and its interpretation fi:qDn~qD. f:qDn .... qD is the 
obvious product of functors f = '1 Je 'l!2 Je ••• Je 'l!m . Notice that the 
directions of the arrows make this square a non-classical 
commutative square. In particular it does not follow by a formaI 
argument that these modified natural transformations commute. 
The proof that they actually commute is rather non-trivial (if 
expressed in the original language of Girard, as he once explained it 
to the author. The proof becomes easier when translated in the 
language of this thesis, as 'Ile will see). It was unfortunately omitted 
in [Gi86]. A close reading of 5aid paper shows that this way of 
interpreting terms was dictated by the choice of the interpretation 
of the operator TI . Let e he the interpretation of a one-variable 
type, i.e. 8: qD .... qD is an entire functor. Define a qualitative 
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domain ne as follows: an atom AE:lnel is an isomorphism class 
in 1/8 of generic arrows a: 1 ..... ex ,where a is such that for ail 
YE:qO we have that the family (ekoa)kEqD(X,Y) (seen as a family 
of atoms of eV) is compatible, i.e. has a sup in ev. By filteredness, 
in order to define TT e it is sufficient to say what are the finite 
compatible families of atoms. We say a family al, ... an of 
(representatives of) atoms ai: 1 ~ eXi is compatible if for every 
Y€qO , every family (k1:X1 ..... Yhstsn of morphisms of qD the 
family (Ski 0 ai). is a compatible family of atoms of ev. Now let 
Zf:qD ,and IlZ be the constant functor qD ..... qD that sends 
everything to Z. We are looking for a set '-(6Z,8) of morphisms of 
functors Ilz-te that gives us an adjunction isomorphism 
qD(Z, ne) 5! '-(6Z,9) . If one puts Z -1 it is easy to see that 
qD(Z, ne) is isomorphic to the set of ail modified natural 
transformations 6Z -t e as described above, and from this it is easy 
to infer that for any Z 'T(6Z.9) should he defined by using 
modified natural transformations, and therefore that the operation 
TI defines a right adjoint to the functor 6:qD ..... T , where the 
objects of l' are stable endofunctors of qD and the morphisms 
modified natural transformations. This observation can be 
generalized to Any arity n f: ~ by defining TI pointwise. That is. let 
cr n have for objects stable functors qon -t qD and morphisms 
natural transformation. Then the operation that sends an object 
~€T n+1 to the object i€'T n defined by 

i(X1, ... ,Xn) = TII(X1.··· ,Xn , -) ( X1, ... XnE:qD ) 

defines a right adjoint to the functor ·compose to the right with the 
projection qOn+1 .... qOn -: cr n-tT n+1 . This. in a nutshell, is Girard's 
model. 

Let E:E-tqDn he the Grothendieck fibration associated with a 
stable functor l:qDn ..... qD. In other words, an object of E is a pair 
(X,A) where A is an element (object) of IX, and a morphism 
f:(X.A) ..... (Y,B) is a f:X ..... Y in qOn such that A~(If)-B, or 
equivalently (If) + A ~ B . Let F: r ..... qon he the same thing for 
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another stable t . If ('rX)X is given as in (.) it is easy to see (left 
to the reader) that the assignment 

(X,A) H (X,1'XA) 

uniquely defines Il morphism 't°:F-+E in Ent(F,E). It is al50 easy 
to see that the morphisms F .... E of entire fibrations that come from 
modified natural transformations are exactly the ones that send 
cocartesian arrows to cartesian ones (this shows that the modified 
naturality condition can he generalized to Any pair of entire 
fibrations, not just en tire fibrations of qualitative domains). 
Therefore the interpretation of any term in Girard's model belongs to 
our model. What cornes as a surprise is the converse: if H:F -t E is 
Any entire morphism of fibrations, where F,E are the fibrations 
associated to any pair of entire functors i,l:qDn""'qD, then H 
sends cocartesian arrows to cartesian ones. This observation, due to 
E. Moggi, was communicated to the author by Th. Coquand. We will 
work in the Most general context that we know of: 

4.9 Definition 

Let C he an aggregate. We say C amalg,amates weak1y if 
given Any morphism f:X .... Y in t there exist ZE:C, g,h:Y .... Z 
making 

a pullback. 

f 
X~Y 

f l J g 
Y---+Z 

h 

Let us show that the category qD amalgamates weakly: let 
f:X-+Y therein. Let Z have for set of atoms the amalgamated sum 
IYI +IXIIYI; That is, IZI is the pushout 



Ifl 
IXI--.IYI 

Ifll l 
IYI~IZI 
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in the category of sets (the meaning of Ifl should he obvious). IZI 
has two subsets W1 and W2, corresponding to the horizontal and 
vertical inclusions of IYI-+IZI. If we define the domain structure of 
Z by requiring that a subset AclZI be compatible iff A is either 
contained in Wl or W2, it is trivial" to prove that the resulting 
square in qD is a pullback. Note that the property of weak 
amalgamation is preserved by products. 

4.10 Lemme 

Let C he an aggregate that amalgamates weakly. Let E:E .... C, 
F:r -+ 1: he entire fibrations, such that aIl the fi bers of rare posets. 
Let H:E~F he an entire morphism of fibrations. Let x:A .... HX he 
an ultrageneric arrow (we do not have to na me x sinee the fibers 
are posets, but this will help intelligibility). Let b: B-+ A he 
cocartesian in E, sayabove 5:T-+S. Then if rsx:s*x .... X is 
cocartesian, b (and therefore s, rsX) are isomorphisms. 

Proof 

Let f:Y-+X denote ~sX. Let t,t':S-+V make s,t,s,t'a pullback. 
Let g:X~Z, g':X'~Z' be cocarte5ian above t,t' respectively. Since 
gt and g', are eocartesian above ts = t's, we can put Z = Z' and 
get gf = g'f , the square making a pullback (being formed of cartesian 
arrows, and above a pullback). 

s 
T---+S 

s l l t 
S---+V 

t ' 

fi 
y ........ X 

fl 19 
XI ........ Z 

g' 

In the ~ame manner we extend cocartesian arrows c:A .... C and 
cl:A"'C above t and t' respectively, and get that b,c,b',e form a 



c 

123 

pullback. By the cOCArtesianness of c,e' there are z: c ..... HZ and 
z':C-tHZ with zc= Hgox and Z'C' = Hg'ox . 

b 
B • A 
1 Hf x/ 1 
1 HY---tHX 1 

b 1 Hf l l Hg 1 c 
1 HX-tHZ 1 
l / X Hg

' "1 
A -e 

c' 

But since the fibers are posets z· z' , and so Hg 0 xb - Hg' 0 xb . 
Therefore by pullbackness there is y: B-t HY with Hf 0 Y = xb and 
since x is ultrageneric and b cocartesian f is an isomorphism. 
QED. 

4.10.1 Corollary 

Let C amalgama te weakly, F:r -t[ be an entire fibration aIl 
whose fi bers are posets. Let H be an entire splitting of F , x: A -t HX 
above identity. Then the following are equivalent: 

i) x is ultrageneric. 

ii) x is generic and A IS F -generic. 

Proof 

The proof of ii)=+i) is trivial and left to the reader. It is obvious 
that to prove the r.onverse we simply have to show that every 
eocartesian b: B ~ A is an isomorphism. Just apply the lemma by 
putting E equal to the identity on C; the result follows because 
every arrow of E = 1: is cocartesian. 

Given anyaggregate t we have shown in 4.8 how to identify 
entire functors C-tqD with entire fibrations E-+t aIl whose fibers 
are qualitative domains. Let Qu~I(C) he the full subeategory of 
Fib(C) whose objects have qualitative domains in every fiber. 

es_ 
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Examination of 4.4 in the light of the corollary above will show 
that the functor TI,: Qu4f/(qD) .... Ent(1) will have the same value on 
objects as the operator fi' seen just before 4.' . This can be proven 
in a more indirect and comprehensive fashion by the following 

4.11 Theorem 

Let t amalgamate weakly, E:E .... C, F:F .... t be entire 
fibrations where the fi bers of r are ail posets, and H:E-+F an entire 
morphism of fibrations. Then H sends cocartesian arrows of E to 
cartesian arrows of r. 

4.11.1 Corollary 

Any term or type of the second-order lambda calcul us has the 
sa me translation in our model as in Girard's. 

This is because for any nE: ~ the category cr n used in Girard's 
model is equivalent to Qu4fl(qJ)D). 

Proof of 4.11 

Let f:X-+Y be a cocartesian arrow of E. We want to show Hf 
is cartesian. By a standard fact of fibration theory it is sufficient 
(the proof of sufficiency is left as an exercise) to prove that if 
a: A -+ HY is above Hf there is x: A -+ HX above identity with 
Hf OW· a . Take such an a and factor if as 

b Y 
A~B---+HY 

b cocartesian, y Aboye identity. There is (g,c):(C,Z,z)-+(B,X,x) ln 

fliR. 
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b 
A -_._._- • B 

Hf x/ T 
HX---tHY 1 

T Hg 1 c 
HZ 1 z, 1 

C 

The pullback of f by 8 in E is cocartesian, and 50 is the pullback 
of b by c in f . But both these arrows are Aboye he same 
morphism of 1:, and by 4.10 this forces both pullbacks to he 
isomorphi:sms. This means there are h:Z-tX with fh = g and 
d:C-tA (above Eh and necessarily cocartesian) with bd = c. But 
then the cocartesianness of d guarantees an x: A -t HX Aboye 
identity with Hh· z = xd . QED. 

We will end this chapter by mentioning another notion of 
smallness which exists in the category .Aa'gr. A pl-domain [CGW] 
is an aggregate poset which is consistently cocomplete (0.16). In the 
aforementioned paper the Authors prove that the category of 01-
domains and stable morphisms (entire functors) is cartesian-closed. 
We can easily prove a generalization to this: let us define a Dl:. 
fibration to be an entire fibration F: t- -1 E of aggregates where aIl 
the fibers are DI-domains. Then, using 4.4 with the condition of 
atomicity removed, we know that the operator TT carries DI­
fibrations to DI-fibrations. That is, if F:F -tE is a DI-fibration, 
E: r -1 t an entire fibration, the fibration TT EF is a DI-fibration. 

Also, let DI he the category whose objects are DI-domains, and 
whose morphisms are stiff embeddings. In [CGW] it is proven that 
DI has filtered colimits and pullbacks. 

4.12 Theorem 

DI is an aggregate. 

Sketch of proof 
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First let f:X~Y he a stiff embedding of DI-domains. 8y 3.2 
we know f is an injective morphism of posets that preserves the 
sup~ that exist, and such that if Y$f(x} then y is in the image of 
f . Actually a slightly stronger property holds for f: if ACX then 
A has a sup in X iff f(A) has a sup in Y , and the sups are equal 
if they exist. This property is the expression of 3.1 in this 
specialized context: f preserves multicoproduct families. The 
converse is true: let W,Z he DI-domains, g:W .... Z a powerful, 
injective morphism of posets that has the above property. Then g 
has a right adjoint g- ,and is therefore a stiff embedding. Given 
Z€Z take g-(z) to be 

,-(z) = SLIP w 
W€W,I(W)SZ 

Armed with this knowledge, it is now quite easy to prove the two 
following facts: If X is a finite DI-domain then X is f.p. in DI. If 
X is finite and has a top element (i.e. X is a finite distributive 
lattice) then X is prime in DI. It is then a formality to prove that 
DI is an aggregate; it seems simpler to shnw DI is MO-accessible 
and has connected limits than to show directly it has multi­
coproducts. Notice that by 1.6.1 the set of primes of DI is the 
(essentiaI) set of finite distributive lattices. This gives a measure of 
the increase in complexity we have met by passin, from qD to DI: 
from the set (2), 2 heing the 2-element latti::::e, to the set of all 
finite distributive lattices. 

So if we take the class ~ of small maps to be DI-fibrations, we 
can construct a classifying map S:S-tDI for them, just as in 4.8. 
ï'ake S to he the fibration associated with the forgetful functor 
DI~ Poset . Then CS,S) is a notion of smallness, and we have a new 
model of the theory of constructions. In this model, we can 
interpret l:, but not with all the full generality of the model given 
in lK-P]. In this paper (2.12) is given a discussion of the different 
syntat.·tic rules one can associate with l: . The most powerful rule is 
called NBig Sums" . Let (e,J» he a display category. If (.8,S) is a 
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notion of smallness in it, the rule Big Sums is equivalent to saying 
that for every object X (t: the inclusion functor 

..8x~J)x 

has a left adjoint (..8X being the full subcategory of J)X whose 
objects are small maps). Our mode) falls short of having Big Sums 
by very little; what this means will be made precise in a 
forthcoming paper by Thierry Coquand. 
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CONCLUSION 

We would like to give some remarks about the directions this 
research should take in the near future. First, we want to point out 
that the model of constructions we have given is the simplest 
conceptually, but not structurally. For instance, Girard's concept of 
coherent domain can be applied to semigranular categories, giving 
rise to coherent (or binary) semigranular categories, and the 
corresponding c1ass of fibrations as display maps. In order to 
describe these categories we need the omitted chapter on the 
structure of semigranular fibrations. This further illustra tes the 
slogan we gave in the introduction: in the category Al!$r there lie 
Many models of polymorphism, and the essence of &Very modellies 
in the choice of special morphisms, i.e. display and small maps. 

The second remark concerns linear maps. They can be defined 
among semigranulars, but their rôle is at the present time quite 
mysterious. Are they significant? One essential technical problem 
is that the cotriple ! is much harder to define in this context, due 
to the 2-categorical nature of the structures involved. More should 
be done in order to clarify this situation. 

Finally, we would like to mention that the topological point of 
view, which was important at the inception of domain theory and 
then was r~legated to the background, is ma king a comeback. It 
turns out that Girard domains (and aggregates) can be given a 
geometric significance which is a generalization of the concept of 
topological space (and of Grothendieck topos). We made this 
realization vey recently and intend to develop the necessary 
theoretical tools extensively. 
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