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ABSTRACT

In this work we describe a category of domains, whose objects
are in general categories instead of posets, such that J.-Y. Girard’s
category of qualitative domains and stable functions is contained in
it as a full subcategory. We describe two ways of interpreting
Martin-Lof type theory in this category, the first one allowing £
and TT, the second one only TT. Finally we show how to extend the
second interpretation to a model of the theory of constructions.
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RESUME

Nous présentons dans ce travail une catégorie de domaines, dont les
objets sont en géneral des catégories et non des ensembles ordonnés, telle
que 1a catégorie des domaines qualitatifs et fonctions stables de Girard en
est une sous-catégorie pleine. Nous donnons deux fagons d'y interpréter 1a
théorie des types de Martin-Lbf : la premiére permet d'interpréter les
quantificateurs Z et TT, 1a seconde seulement TT.Finalement nous
étendons 12 seconde interprétation a un modeéle de la théorie des
constructions.
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INTRODUCTION

The lambda calculus, which embodies a certain formal property
of naive sets (the application of a function to an argument) has
given rise to syntactic systems whose behavior is definity impossible
to model in the category of sets. The simplest example is the
untyped lambda calculus, which forces one to consider the idea of a
set which is isomorphic to its own set of endofunctions. In order to
find models of this theory that “live in the real world", Dana Scott
invented a notion of “limited set”, that allows one to escape the
Cantor diagonalization argument. In their original presentation
[Sc72] these "sets” could be defined in two ways: as a class of
topological spaces, or as a class of complete lattices. In the first case
the “functions” between them were simply the continuous functions.
In the second case, the “functions” were morphisms of posets that
preserved filtered colimits. This pioneering work, due in a major
part to its applications in theoretical computer science, gave rise to a
large amount of activity, which usually goes under the name of
domain theory. The topological point of view quickly receded in the
background in favor of the lattice-theoretical aproach (poset-
theoretical would be more fitting since Scott lattices were soon
generalized to posets that were not lattices).

These domains can furnish models of versions of lambda calculus
which have a property intuitively quite contrary to the accepted
notion of set: the naive interpretation of these theories allows one to
take a large indexed family of "sets” (meaning the indexing "set” is
“large”, in the order of size of the class of all "sets” of the theory, or a
finite power thereof) and still get a "set”. Clearly, this goes against
the Russel paradox, and cannot be modeled in the category of
ordinary sets. In fact, the proof that any one of these systems is
consistent is always quite non-trivial. This general phenomenon has
been called polymorphism; the simplest polymorphic system is
second-order lambda calculus, called F by J-Y. Girard in his thesis
[Gi72] , and discovered independently by Reynolds [Re] . A different
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class of polymorphic systems is given by systems with dependent
types, a la Martin-Lof. The first and simplest polymorphic system
with dependent types is the theory constructions of Coquand-Huet
[Co85) .

Two years ago Girard constructed a model of F using a version
of domain theory slightly different from Scott's [Gi86)] . The domains
themselves were typical of ordinary domain theory. But the
morphisms of domains (the "functions”) were required to preserve
pullbacks in addition to filtered colimits (it turns out Girard had been
preceded in this direction by G. Berry) [Be] . The advantage of this
approach is that it makes everything “leaner” and easier to calculate.
In fact Girard’s model was the first model of a polymorphic theory
where anything at all could be calculated! The essential reason for
this computational simplicity is the property of atomcity which
makes the posets under consideration more than abstract, general
posets, but concrete ones, (as subposets of the power set of a given
set) and thus much easier to describe or present.

To the author, it was obvious from the start that Girard's posets
(he called thern qualitative domains) could be generalized to
categories. In fact the category qD of qualitative domains and their
"strong morphisms” of [Gi86] could be taken as a paradigm of the
sort of category that would generalize the concept of a qualitative
domain. There was interest in doing this generalization, since the
modelling of a system like the theory of conistructions forces one to
consider a "domain of all domains”, which for example could very
well be (and in fact will be in our case) the category qD . There
already are in the literature models of polymorphism that use
categories as domains, for instance [H-P], which is basically in the
tradition of Scott.

In this work we describe in detail a category Aggr of domains
whose objects are categories we call aggregates, and which contains
as a full subcategory Girard's category of domains and “functions”.
This category contains many models of polymorphism, and we will
describe the "most natural” model of the theory of constructions

viii



—

living in it, which was announced in [Lal] . Another model
contained in Aggr is decribed in [La2]. Our choice of Aggr asa
subject of study was motivated by conflicting considerations of
generality and simplicity. By experience, the author has found that
finding models of polymorphism with dependent types is a two-step
procedure: when you meet a potential model the first thing you
should do is to try to interpret classical, predicative Martin-Lof type
theory in it. An intepretation is essentially given by a class of
morphisms which are stable under pullbacks; a category may
contain several related interpretations. Only after this should you
look for the specifically polymorphic features of the rmodel, say a
"notion of small set”, along with an "object of all small sets” which in
this particular case will allow you to interpret the theory of
constructicns (a more standard terminology would be "notion of
type’). Therefore it would be a good thing to interpret classical
Martin-Lof theory in the largest possible category that generalizes
Girard's. A candidate for this is Thierry Coquand's category of all
“stable categories of embeddings” and all stable (which we call entire)
functors [Co88] . It contains Aggr as a full subcategory, and there
obviously are in it many different "notions of small set”, each one
giving rise to a model of constructions. Interestingly, the gap of
generality between Coquand's approach and ours can be stated
exactly: with all other axioms the same, an aggregate is required to
have all connected limits, while a category of embeddings is only
required to have “small pullbacks" (see below). By slightly
generalizing the work of Yves Diers, these conditions on limits can be
translated to conditions on the colimit structure of the categories
involved; by “colimit”™ we mean a generalized notion of colimit
which applies to eg. fields or algebraically closed fields. In this light
categories of embeddings have features which sharply deviate from
aggregates: for example, a generalized initial object in a category of
ermnbeddings can start having nontrivial automorphisms.

We decided to work in a more limited context for practical
reasons. Our proof of the main theorem is already quite intricate,
and we feel an added layer of generality (going from “multi” to
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"poly”) would simply add bulk to the proof without much insight.
Maybe we are wrong in this respect. But also, what is the use of
having a model if you can't calculate things in it 7 The trouble is
that a general notion of presentation for a category of embeddings
(e.g. Coquand's “categories of information”) seems a very unwieldy
tool, just as complicated as the category it defines. Things are
already much too complicated with aggregates. Fortunately there is
a full subcategory Sem C Aggr , whose objects we call semigranular
categories, for which there is a simple representation theorem:
semigranular categories are concrete categories, and their structure
can be described in detail; they are exactly the aggregates that obey
Girard's magic property of atomicity. It is unfortunate that due to
time constraints we cannot include the chapter about their
structure theory in this work; it will be published independently.
Using only semigranular categories, one can interpret Martin-Lof
theory with TT but not ¥ ; aggregates appear as auxiliaries but do
not model types. This is already something since the original theory
of constructious had only TI, which is by far the more important
conniective from a polymorphic point of view. Thus, the model of
constructions we will give will be “essentially semigranular®. If one
adds in aggregates, it is possible to interpret Martin-Lof type theory
with both 2 and 1T, but not the equality predicate (which would
immediately kill the possibility of polymorphism). This larger
universe also possesses a "notion of small set’, and therefore another
model of the theory of constructions. This latter model will only be
described briefly.

Thus our work centers around the description of the category of
aggregates and that of semigranulars, and the Martin-Lof
structure(s) they contain. It is the first time that the latter is done
in full for such a class of domains, although [Co88] contains partial
results. We have been faithful to Girard's approach, and generalize
his notion of trace by the definition of generic and ultrageneric
arrows. They are instances of the general concept of a universal
family, discovered by Diers. This allows us to describe the TT
operator in much more detail than if we were only using, say, limits
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and filtered colimits. We should say that the result falls short (but,
we think, not by much) of our hope of making everything
computable; examples of how complicated things can be will be
given (4.6). Still, the model that we get is way simpler than any
model previously constructed that uses categories as domains;
compare ours with [H-P].

We have been talking about interpreting Martin-Lof type theory
in categories without saying much on how this is done. During the
past year, a general categorical framework, built on the work of
Cartmell [Ca], has appeared. It is characterized by a remarkable
simplicity, in comparison with the formal system (judgements, and
the like) interpreted in it. A detailed account is in [H-P], which we
will use as a reference, although our terminology will not coincide
perfectly. Regrettably, this paper contains a gap, in that the actual
interpretation of the formal system into the categorical framework
is not given. This is a long multiple induction (triple, at the least),
which Andy Pitts tells me he will cover in a subsequent paper. We
will nevertheless defer to the authority of [H-P] in these matters;
in particular we will not describe any formal system, but rely
entirely on categorical properties.

The plan of the work is as follows. Chapter 0 contains all the
definitions of categorical concepts which go beyond Mac Lane
[CWM] . An exception is the notion of Grothendieck fibration, which is
only cursorily treated there, since it has recently become quite
referred to in theoretical computer science [CGW],[Eh],[Pil . The
proofs are not given in full, since they are easy and well documented
elsewhere. Chapter 1 is the definition of aggregates and
semigranular categories, along with their basic properties. Chapter 2
is the general theory of morphisms (stable, or entire, functors)
between aggregates. Chapter 3 is the theory of variable aggregates,
that is, display map. Chapter 4 is the proof of the main theorem on
the Martin-Lof structures that can be defined on the category of
aggregates, and the description of the model(s) of constructions.
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CHAPTER 0

This is a preliminary chapter in which we give some more or less
well-known definitions and standardize the notation. We will only
give sketches of the proofs.

Unless it is said otherwise, a category is always locally small, ie.
has small hom-sets. For variety, we will also call the morphisms of
a category arrows . A small set will be called simply a set, and a
potentially large one a class. We will denote the category of small
sets and functions by Set¢. Let C be a category, and X,Y,2
objects of it. The set of morphisms from X to Y is denoted
CX,Y) . If £:X—Y and gY—Z we denote their composition by
either gf or geof , depending on readability. If D is another
category, F,G:C—D functors and ¢:F—G a natural
transformation, for XeC we denote the components of ¢ by
pX:FX—GX . We will use the subscript notation for diagrams, that
is, a small diagram (Xg)qep in € is composed of a small category
D and a functor X:D—C , and for q:d—d' in D we denote
Xq:Xd—=Xd' by Xq:Xg—Xq . We will also sometimes say things like
limX . Given XeC a subobject of X is as usual an equivalence class
of monomorphisms into X, but we will be notationally quite
abusive and say things like “let y:Y—X be a subobject of X" or
even “let Y be a subobject of X . We will use the term “essential’
in the standard meaning ¢f “modulo equivalence®; for example, an
essentially small category is one which is equivalent to a small one.

Given a category € and an object XeC , the slice category
C/X is defined as usual: an object is a pair (A,a) where AeC and
a:A—X and a morphism f:(A,a)—(B,b) is an f:A—B with bf=a.
Thus we will use the same name to describe morphisms in different
categories; there is no danger to this.

We will assume the notion of filtered category (ICWM IX,1)) and
filtered diagram is known to the reader. We will also assume the
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reader knows a bit about Grothendieck fibrations. The next section is
dedicated to a review of #g-accessible categories [M-P] .

01 Definition
Let a category € have filtered colimits, that is, all diagrams
D—C where D is small and filtered have a colimit. An object x¢€C

is said to be finitely presentable (abbreviated as £p.) if the functor
C(x,-):C— Set preserves filtered colimits. In the category of groups,
an f.p. object is the same as a group that can be described by a finite
number of generators and relations. If € is a poset, an f.p. object is
also called an isolated (or compact) point.

In a category € we say that jdempotents split if given any
endomorphism f of € such that fef=f the equalizer of f and
identity exists (equivalently (exercise), the coequalizer of f and
identity).

0.2 Definition

Let C be a small category. A presheaf F:C°P— Se¢ is said to be
flat if in the associated discrete fibration el(F)—C the category
el(F) is a filtered category.

0.3 Theorem

Let A be a small category. Let Flat(A)c SetA? be the full
subcategory of flat presheaves and Flatg(A) its full subcategory of
finitely presented flat presheaves. Then idempotents split in
Flatf(A) and

Flatg(A) C Flat(A) C SerA%®
AN / Yoneda

A

the Yoneda inclusion factors through Flatg(A) . If idempotents split
in A then the arrow to the left of the diagram is an equivalence of
categories. If not, it is a universal arrow (in the “up to equivalence”




sense of the solution of universal problems in the category of
categories) to the “free idempotent-splitting completion of A °.

0.4 Definition
A (locally small) category € is said to be finitely accessible or
i) It has filtered colimits. .
ii) The full subcategory C€; of f.p. objects is essentially small.

ii) For every X in € the category €¢/X (which has for
objects pairs (A,a) , where a:A—X, AeC, and where a
morphism f:(A,a)—(B,b) isa f:A—=B with bf=a) is
filtered. The forgetful functor Uy:(Cs/X)—C sending f:a—b
above to f:A—B has an obvious cocone to X and that
cocone is a colimit cocone.

The reader can show as an exercise (he will need the help of the
concept of (co-)final functor, [M-P1.1.2, CWM IX,3]) that condition
iii) is equivalent to saying that every object of € is the colimit of a
filtered diagram of f.p. objects.

0.5 Theorem

For every small A, Flat(A) is Wg-accessible. If € is Wg-
accessible then idempotents split in € and the functor C—Flat(Cy)
which sends XeC to €(-,X) is an equivalence.

These two very important facts are easy to prove, and are a
recommended exercise for the inexperienced reader. Another
interesting related fact is that Flat(A) is the universal completion
of the small category A with respect to filtered colimits.

The class of Wg-accessible categories has a number of subclasses,
determined by additional structure on the categories. A very
important (historically and technically) subclass is the following,
which we will make no use of, but mention for the sake of
comnpleteness.
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0.6 Theorem (Gabriel-Ulmer duality, Makkai-Pare version)

Let € be an Mp-accessible category. Then the following are
equivalent.

i) € iscomplete.
ii) € is cocomplete.
iii) €¢ has finite colimits.

Such a category is called a Jocally Mg-presentable category.
Notice that a flat presheaf on €; is the same as a functor CP— Set
which preserves finite limits. Thus a locally %g-presentable
category is precisely the category of finite-limit preserving functors
from a (essentially uniquely determined) small category with finite
limits to sets (with morphisms all natural transformations). This
algebraic result has a logical (i.e. syntactic) counterpart. The Wo-
locally presentable categories are the categories of models of first-
order theories where the only connectives used are conjunction and
the quantifier "there exists a unique” (Cs, chapter 111] . This logical
facet is also true for other classes of Wg-accessible categories.

Gabriel-Ulmer duality in its original version did not use the
notion of Wg-accessibility, but instead that of a strong generating
set, which has some technical advantages.

0.7 Definition

A set Q of objects of a category € is called a strong generating
set if the functor

Ll €(A,-):C~ Sex
AcQ

reflects isomorpisms (Ll is the disjoint sum). This is a fancy way of
saying the following: a morphism f:X—Y is an isomorphism iff for
every acA the morphism of sets C(A,f):C(A,X)—C(A,Y) is an
isomorphism. The element of a strong generating set which is a
singleton is called a strong generator . For example in the category of
groups Z is a strong generator.




08 Theorem (Gabriel-Ulmer duality, original version)

A category C is locally Wg-presentable iff it is cocomplete and
has a strong genetating set of f.p. objects.

We are interested in two classes of #g-accessible categories
which are a generalization of the one discovered by Gabriel-Ulmer.
One is due to Diers [Di80] and the other is a slight generalization of
it, due to the author.

0.9 Definition

Let € be a category. An object A€C is said to be generic if the
following holds: given any diagram of the form

Y
L
A—X
a

in €, there exists a unique b:A—Y with fb=a.

0.10 Proposition

If A is a generic object of € then every morphism b:B—A is
a split epi. If B is also generic, then b is an iso.

Proof
Looking at
B
b
A—A

1A

by genericity of A thereis a unique f:A—B with bf=15 . If B is
also generic, then f is not only a split mono, but a split epi, too,
which forces it to be an iso.




0.11 Proposition

Let € have pullbacks and suppose all its morphisms are mono.
Then AecC is generic iff it has no proper subobject (i.e. its only
subob ject is itself).

Proof
Suppose A has no proper subobject. Then given
Y
lf
A—X

let p:P-A and q:P—Y be the pullback. By assumption p is an
isomorphism and qp~! is the required filler. It is unique since all
morphisms are mono. For the converse, if A is generic, then any
mono to it is a split epi, i.e. an iso.

0.12 Definition

A poly-initial family in a category € is a family (A of
generic objects such that given any XeC , there exists a unique jeJ
and a morphism a:A;—X. a is not necessarily unique, but since A
is generic, defined up to unique automorphism of A;.To say that €
has a poly-initial family is to say that every one of its components
has an "initial object with possibly nontrivial automorphisms".

Example

Take € to be the category of algebraically closed fields. Take J
to be the set {0)U{ell primes} . Then if for jeJ A; is the algebraic
closure of the prime field of characteristic j the family (Ajg is
poly-initial, as the reader may verify.

We say a category has small pullbacks if all diagrams of the form
(agA;—=X)1 (where 1 is a small set!), have a limit. Here is a

generalization of a famous theorem of Freyd [CWM V,6):
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0.13 Lemma

Let € have small pullbacks. Then € has a poly-initial family if
and only if it satisfies the solution set condition; that is, there is a
family (C;)i1 such that every object of C admits an arrow from a

G .

Proof

Assumne there is a solution set. Choose a C;. The category C/C;
has all products and pullbacks, and is therefore complete. Since it
obviously has a solution set, it has an initial object a;:A;—C;

[op. cit] . Let a:A—=X , f:Y—=X .Form the pullback:

Pp—Y
pl f
Ci—A—X
a4 a

A morphism b:A;—Y with fb=a is the same as a splitting of p .
Considering such a splitting as a morphism a;—a;p in C/C; one
easily sees that because a; is initial therein the splitting exists and
is unique. To get a poly-initial family one just has to take a subset
JCI such that the family (AJ) jeJ is @ minimal representative
choice of isomorphism classes. The converse is trivial.

0.14 Definition

A category D is connected if it is nonempty and any pair of
objects X,YeD can be joined by a “finite zig-2ag™ of morphisms ; i.e.
there are Z...,Z,,V4... WpeD and morphisms

AYAVERVY/

The zig-zag property between X and Y defines an equivalence
relation on the objects of € . The full subcategory determined by

such an equivalence class is called a connected component of € (for
short, a component ). A component is obviously connected. A
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connected limit diagram in some category € is a diagram D—C
which has a limit and where D is a small connected category.
Examples of (finite) connected limits are pullbacks and equalizers.
An example of a category which has all connected limits but is not

complete is the category of fields.

0.15 Definition

An object A of a category C is said to be an initial candidate
if it is initial in its connected component of C .

0.16 Proposition

An object A€C is an initial candidate iff it is generic and has a
trivial group of automorphisms.

Proof

Suppose A is an initial candidate. Then obviously, it is generic,
and its only automorphism is identity. For the converse, if A is
generic, it is easy to see that for any X in its component, there is a
morphisn A—X : just “climb the steps of the zig-zag™. If fg:A—X
are two morphisms, by genericity of A there exists c:A—A with
foe= g . But by assumption o is identity and so f=g.

0.17 Definitions (Diers)

A family (05 of objects of a category C is called a multi~
initial family if the following holds: given any XeC , the disjoint
sum Ll 4jC(04,X) has a unique element. Let X,YeC ,and x:0;—X
and y:04—Y be the morphisms X and Y determine. If there is
f:X—Y then having both fx and y going to Y implies that j=j'
and fx=y.More generally if X and Y can be connected by a zig-
zag as in 0.14, we can prove easily that 0;=0y . Hence a multi-
initial family is exactly a choice, for every connected component of
C , of an initial candidate in that component (so € must have only
a set of components). For example, in the category of fields the
family {Q}U(Z/(p))p prime is a multi-initial family.
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Let A=(A) be a family of objects of some category C.A can
be thought of as a diagram from the discrete category 1. A cocone
(sometimes called an A-cocone) is then a pair (X,(x;);)) where XeC
and x;:A;—X is a family of morphisms. A morphism of cocones
£:(X,(x);)=(Y,(y);) isan £:X—Y such that fx;=y; . A
multicoproduct family for A is a multi-initial family in the
category of cocones and morphisms of cocones; that is, it is a family
(X3,(x%);)ses , X%:X;—=X® of cocones such that given any cocone
(Y,(y;);) there exists a unique s€S and a unique f:X%—Y which is
a morphism of A-cocones (X%,(x%);)—(Y,(y;));) . We say that € has
multicoproducts if any family (A admits a multicoproduct
family. More generally we say € is multicocomplete (or has all
multicolimits) if for any small category D, any diagram D:D-C,
the category of cocones from D has a multi-initial family. We will
not say much here about the general notion of multicolimit since we
can define everything we need in terms of multicoproducts.

Examples

A category which has all coproducts has all multicoproducts. In
this case multicoproduct families are one-element families, with
coproduct cocones as unique elements.

Let C be the category of total orderings and injective order
preserving functions. Let (A be a family of objects of € . Let a
covering cocone be a (x;:A;—X);1 such that U x,(A) =X where
x;(A))CX is the image of A; by x;. It is easy to prove (exercise)
that between any two covering cocones there exists at most one
morphism of cocones, and that it has to be an isomorphism. For
every isomorphism class of covering cocones choose one
representative cocone, and call the resulting family (X3,(x)),)ses - It
is easy to see that this is a small family: every isomorphism class
corresponds to a unique pair (E,0) , where E is an equivalence
relation on the disjoint sum

L1 1A

fel
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of underlying sets and O an ordering on the set of classes 11;|A|/E
(the correspondence is bijective if one puts simple conditions on E
and 0). The family (X2,(x%);)s is a multicoproduct family : given a
cocone (y:A;—=Y), if one takes the image Y'CY

Y= %JY;(A])

then the obvious cocone (y';: A;—Y'); is a covering cocone and
therefore there exists a unique s€S and a unique isomorphism
from (x%); toit.

Let us show what it means for a poset P to have multi-
coproducts (or equivalently, to be multicocomplete) as a category:
for every family (a;)i of elements of P there is a family (x,)ss
with a;<x, such that given any upper bound y of (ap), thereis a
unique s with x.<y . An important case of this is when P is
consistently cocomplete, meaning that every bounded set has a least
upper bound. In fact to say that a poset is consistently cocomplete is
Just to say that it is multicocomplete and that multicoproduct
families are either empty or singletons.

Notice that for € having multicoproducts includes the case of
the empty family and that means € has a multi-initial family: it
has a small set of connected cornponents and every one of them has
an initial object.

Let € have multicoproducts. We say a cocone (y:A—Y) is a

coproduct candidate (or simply a candidate) if it belongs to a
multicoproduct family; that is, if it is an initial candidate in the
category of cocones. We have the following terminology: a given

cocone (yy:A;=Y)1 determines a candidate (x;:A;—X) , unique
up to unique isomorphism of cocones, and a unique f:X—Y , the

factoring determined by (y;); such that
fxg=y; .
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Obviously, if two (Aj);-cocones belong to the same component of the
category of cocones they determine the same candidate. Arguments
of this sort will appear repeatedly. Let (x;:A;—*X);q be a candidate.
The family (x,); is obviously jointly epimorphic; that is, if

f,g:X—Y and fx;=gx; for all i then f=g. Also, if (a;:Bj—A;); isa
family of isomorphisms and h:X—Z another iso, then the family
(hx;a;:B;—A;); is also a candidate.

Here is the equivalent of 0.13 for multi-initial families.

0.18 Lemma

Let € have connected limits. Then € has a multi-initial
family iff it satisfies the solution set condition.

Proof

We already know € has a poly-initial family. It suffices to
show (0.16) generic objects have trivial automorphism groups. So
let A be generic, a:A—A .Let e E-A be the equalizer of o and
the identity. e is a split epi as well as a regular mono, forcing it to
be an iso, and o =1, .

We can now describe the generalizations of Gabriel-Ulmer duality
which were announced earlier.

0.19 Theorem [Di80]
Let € be a category. Then the following are equivalent.

i) € is Mg-accessible and has all connected limits.
i) € is Wp-accessible and is multicocomplete.

iii) € has filtered colimits, a small strongly generating set of f.p.
objects, and is multicocomplete.

Y. Diers calls such a category an Mg-locally multipresentable
category, but we will call it a Diers category.
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Sketch of proof

To show i)=ii) use the fact that for any small diagram in €
the category of cocones is Wg-accessible, and therefore satisfies the
solution set condition, and apply the previous lemma. ii)=iii) is
obvious. To prove iii)=»i) show that the full subcategory €5 of f.p.
objects is essentially small (transfinite recursion has to be used (op.
cit.4.2)) and finitely multicocomplete (i.e. has multicolimits for finite
diagrams), and that if D is a small finitely multicocomplete
category the category F/at(D) of flat presheaves over D has
connected limits. The result follows from the natural comparison
functor €C— F/az(Cs) which is an equivalence whenever C is ¥g-
accessible. The syntactical aspect of Diers categories has been studied
by P. Johnstone [Un79]. A Diers category is precisely the category of
models for a first-order theory which only uses the connectors of
finite conjunction, unique existence, and (potentially infinite) disjoint
disjunction.

Example

We can easily prove that the category of total orderings is a
Diers category. Other standard examples include the category of
fileds, and the category of local rings and local homomorphisms.

It is a natural step to generalize from "multi” to "poly”. The
whole terminology of multicolimits, etc. can be adapted. We will not
bother to give the details since in this work the more general
situation plays a secondary role.

A small discrete category is a Diers category of a degenerate
nature: all its objects are initial candidates!

0.20 Theorem
Let € be a category. Then the following are equivalent.

i) € is Mg-accessible and has all small pullbacks.

ii) € is Mg-accessible and is polycocomplete.
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iii) € has filtered colimits, a small strongly generating set of f.p.
objects, and is polycocomplete.

We will call such a category (we won't have to call it very often,
fortunately) a locally Mg-polypresentable category. The proof is the
same as for 0.19 , replacing every mention of "multi” by “poly”, and
every mention of “connected limit" by “small pullbacks".

Examples

The paradigm of such categories is the category of algebraically
closed fields and morphisms of fields. We leave the necessary
verifications to the reader.

A small groupoid (hence, just a group will do) is such a category
too, since groupoids have small pullbacks and filtered colimits and
they obviously have enough f.p. objects. Groupoids are to g-locally
polypresentable categories what discrete categories are to Diers
categories.

The syntactical presentation of locally ¥g-polypresentable
categories is not known at this time.

In the sections that follow we will describe the necessary
categorical framework needed to interpret Martin-Lof type theory.
Remember that its essential characteristic is the presence of ¢ypes
which depend on another type; thatis,if S is a type of the
theory, and s a variable of type S, then there may arise types of
the form T[s], in which the variable s appears. The naive
interpretation is that T is an S-indexed family of sets. Now there
is an already venerable tradition in category theory of interpreting
indexed families by morphisms: that is, one represents the above in
a category as a morphismm w:.T—S, where S models the type S,
and T should be thought of as the disjoint union L,T[s] and w
the obvious projection. Then if f:V—S is a morphism of the given
category such that the pullback f*w:f*T—V exists, this latter
morphism is interpreted as the variable type TIf(v)], where v is of
type V and the meaning of f,v,V should be clear. Now

o A e
. !
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substitution in syntax is rigid: if @ and B are two expressions of

a formal language, x a variable appearing in @, then the
substitution GIx|B) is a uniquely defined entity. In contrast,
pullback, the counterpart of type substitution in categories, is
defined as a universal property, that is, only up to unique
isomorphism. This prompted Cartmell [Ca] to equip his categories
with the added structure of predetermined, functorial pullbacks, to
make categories look more like languages. There is something to be
said for this approach, which gives more rigidity and in some cases
could be technically advantageous. We have opted for the opposite
tack of adapting the semantics to the more common categorical
practice of having things determined only up to isomorphism. This is
already common practice in categorical logic. In other words,
whenever you need a pullback (or a right ad joint, or whatever
universal construction) to interpret a term, just take the first one at
hand; the universal properties will ensure that the final outcome
will be independent of the chosen pullback. Whence the following
definition:

0.21 Definition

A display category (C,D) is made of a not-necessarily-locally-
small category C with finite products, along with a distinguished
class D of arrows, the display maps , such that

i) If E.E-C is adisplay map and F:D—C any arrow then
the pullback F*E:F*E~D exists and is a display map

ii) If E isas above and a:C—C', p:E'=E isomorphisms then
oEp is a display map.

iii) every isomorphism is a display map.

Some comments are in order. First notice that our notation for
pullback is ambiguous, but this poses no problem in practice.
Condition i) is called Stability in [H-P], and condition iii) Unit .
Condition ii) is a natural complement to condition i) , and comes
from our desire of making things as close as possible to categorical
practice. It says that the property of being a display map is intrinsic




L A P e e T )
. .t w o, AR . Tt i :1“)‘3414#'3\; b 1"*41'.,‘\4-‘\,‘[? e ‘3,5;

- 2 . wla 4RV

B PR Y

15

to the map, and not an arbitrary whim; it is always met in
practice. The Unit condition gives us the possibility of modelling the
(type corresponding to the) one-element set, and all its constant
indexed families. This simplifies life in many instances, but actually
in all the known models a stronger condition is met: if for Xe¢C we
denote by Dy the full subcategory of C/X whose objects are
display maps, then we always have that Dy has finite products.

In this case we will say that (C,D) admits discrete products .

0.22 Definition

Let (C,D) be a display category. We say it admits sums if D
is closed under composition.

This condition entails the following well-known consequence: for
every F.F=Y in D the pullback functor F*:Dy—Dp has a left
adjoint Zf, and the Beck condition holds for pullback diagrams
with two parallel display maps: if

S

E——F
E| |F
X—Y
X

is a pullback where E,FeD and G:G—F is also a display map, then
the natural morphism ZgS*G—X"ZpG in Dy is an iso. Clearly,
Zf is left composition by F , ie. ZgG=FG . Admitting sums means
that we can interpret the Martin-Lof connective £ in (C,D)

[H-P].

0.23 Proposition (Streicher [St])

Let (C,D) be a display category. Then the following are
equivalent:
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i)  For every display map F:F—Y the pullback functor
F*:C/Y—-C/F has a partial right adjoint Tz which is
defined for every object of DpCC/F and landsin Dy .In
other words, for every display map G:G—F thereisa
display map TIgG:TIgG—Y and €G:F*TIgG—G in Dp such
that €G is (co)universal: for every H:H—=Y in C we
have the isomorphism C/Y (H,TTgG) = C/F (F*H,G) , mediated
in the usual way.

ii) For every display map F:F—Y the pullback functor
F* Dy— Dy has a right adjoint TIp and the Beck condition
holds for pullback diagrams with parallel display maps.

Proof

For i)=ii) we obviously only have to prove the Beck condition.
Let E,F,SX be the same pullback square as above, and let G:G—F
and A:A-X be display maps. Let E*A:B—E be the pullback.

E'A S G

B—E—F—(G
A"E] E] |F

A—X—Y
A X

We get

Dx(AX*TIgG) = C/Y(XAJTIEG) Dby pullbackness
= C/F(SeE*A,G) by assumption
« Dp(E*AS*G) By pullbackness
= Dx(A,TgS*G)

and this being true for any A, proves the claim. For the converse,
let F:F-Y , G:G—F be display maps. We have to show that for
any X:X-Y in C C/Y(X,TigG) = C/F (F*X,G) . Let S:E-F,
E:E—X be the pullback of F and X. Then




C/Y(X,TIgG) = C/X(1x,X"TTgG) by pullbackness
= Dy(ix,X*TIFG) by Unit
& Dy(ix.TIgS"G) by Beck
& Dy(1g,S*G) by Tg-adjunction
« C/F(S,G) by pullbackness
C/F(F*X,G) . QED.

When the conditions above are satisfied, we say that (C,D)
admits products . This allows us to interpret the Martin-Lof
connective TI.The unexperienced reader should try the following as
an exercise.

0.24 Proposition

Let (C,D) be a display category which admits products. Then
D4 is cartesian-closed (1 the terminal object). If in addition (C,D)
admits discrete products, then for any XeC the category Dy is
cartesian-closed, and for any F:X—Y the pullback functor
Dy—Dx preserves the full cartesian-closed structure.

We can now say what to add to a display category in order to be
able to interpret the theory of constructions.

0.25 Definition

Let (C,D) be a display category which admits products. A

notion of smallness is a pair (8,5S) , where 8 is a subclass of D
whose elements are called the small maps, and S:A—S is a
classifier of small maps in the sense that S¢3 and the elements of

A are exactly the morphisms obtained by pulling back S by an
arbitrary arrow of €. We require that for any F:X—Y in C the
functor TIg:Dy— Dy send objects of Dx which are small maps to
small maps of Dy (this last condition is polymorphism proper).

The formal systems we will interpret are simply those of [H-P)
that apply to our models. That is, we will construct two display
categories using aggregates. Both of thern admit products, and the
first one also admits sums. Therefore the “"purely Martin-Lof" part




of type theory (the restriction of the formal system to Orders) will
apply to both models, with both “"quantifiers” for the first model and
only Tl for the second. This is not apparent at first reading of
[H-P], but the two quantifiers are independent in both syntax and
categorical interpretation (in other words, the system is quite
modular, and can customized by paring down). Then we will
describe a notion of smallness for the second model, which will allow
the addition of an Order of Types to its formal language. Finally we
will give a short description of an Order of Types for the first model.

We end this chapter with a short review of Grothendieck
fibrations. The reader who wants more information can consult

[CGW],[Eh] or [Pi].

0.26 Definition

Let E:E—C be a functor between categories. If, for X€E EX=S
we will often say that X is above S, and samewise for morphisms.
Let f:X—Y be above s:S—T . Wesay f is cartesian if for every
g:Z—Y such that Eg is of the form st , for t:EZ—S thereis a
unique h:Z—X above t such that fh=g.We say f is cocartesian
if f is cartesian for the dual functor E°P:E°P—-C°P A
(Grothendieck) fibration is an E:E—C such that for every Ye¢E
above T and every s:S—T there exists a cartesian f:X—Y above
s . An opfibration is an E such that E°P is a fibration. For SeC
we denote by ES the fiber above S, ie. the category of all objects
above S and all morphisms above 1g.If E is a fibration and
5:S—T in € then "the" usual functor ET~ES will be denoted by
s* . If s* has a left adjoint we will denote it by 3, . The following
will be left to the reader as an exercise.

0.27 Proposition
Let E:E—C be a fibration. Then the following are equivalent.

i) For every morphism s of C the functor s* has a left
adjoint 3, .

ii) E is a bifibration, that is, it is also an opfibration.




CHAPTER 1

In this chapter we introduce the two classes of categories which
will be our main subject of study. Aggregates and semigranular
categories are Diers categories with conditions added, an important
one being that all their morphisms are mono. This permits us a
more specialized, simpler presentation than the full general theory of
Diers categories, and in particular we only have to consider
multicoproducts instead of multicolimits in general. But first the
example that gave birth to the theory.

1.0 Definition

A gualitative domain X is composed of an underlying set IX|,
and a subset XC¥PIX| with the following properties

i) ZeX

ii) for any xeX, {x}eiX|

iii) aeX,bCa = beX

iv) X is closed under directed (filtered) unions.

If X is a qualitative domain, the poset of elements of X ordered by
inclusion is denoted X . It is quite easy to see that X is consistently
(co)complete (0.16), i.e. that any bounded subset of X has a least
upper bound, and that X as a category has pullbacks. Notice that a
nonempty consistently cocomplete poset always has a bottom
element: the L.u.b of the empty set. A stable function between
qualitative domains X,Y is a morphism of posets X—¥ that
preserves filtered sups and pullbacks. Girard proves that the
category of qualitative domains and stable functions is cartesian-
closed.

A morphism of qualitative domains X—Y is an injective
funcvion f:IXI-lY| such that f(a)eY iff a€X, f(a) being the direct
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image of a by f . We denote the category of qualitative domains
and morphisms by qD .

1.2 Proposition

Let C have pullbacks and a strong generating set @ . Then to
check that a diagram

is a pullback it suffices to show the pullback property for all AeQ,
i.e. that for all AeQ, t:A—Y , s:A—Z such that fs=gt thereisa
unique x:A—X making hx=s , kx=¢t.

Proof

Let P be a pullback object. There exists x:X—P . Now the
property above will show that €(A,x) is an isomorphism for all AeQ
and therefore that x is an isomorphism.

13 Definition

Let € have multicoproducts, and let all its morphisms be
monomorphisms. This implies that for any object XeC the set of
subobjects Sub(X) is a (co-)complete lattice. We say that X is
prime if Sub(X) is finite, and whenever we have a coproduct
candidate (ajA;— X)) then thereis iel such that a; isan
isomorphism. X is said to be atomic if it has exactly two
subobjects: itself and the initial candidate it determines. It is easy
to see that an atom is always prime.
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14 Definition
A category € is an aggregate (resp.a semigranular category)

if the following five axioms hold.
1- It has filtered colimits.
2-  All morphisms are mono.
3- It has all multicoproducts.
4- It has a strong generating set @ of f.p. prime (resp.
f.p. atomic) objects.

141 Remarks

Having only monomorphisms in € simplifies our life
considerably. For example, to prove that fX—Y is an iso it is
sufficient to show that thereis g:Y—X such that gf=1y.Or if we
use the generating set all we have to do to show that f is an iso is
to prove that for all A€@ and y:A—Y thereis x:A—X with
fx=y . Alsoan object CeC is f.p. iff the following holds :

Given a filtered diagram (Xp)h¢n in € with colimit X and
coprojections aph:Xp—X , and a morphism f:C—X there exist
heH and f:C—X;, with apf'=f .

Finally a morphism f:A—B between atoms is always an iso : f
is a representative of either the full or the minimum subobject. In
the first case thereis g:B—A with

g
B—®A

1% ¥t
B

commuting and f is an isomorphism. The second case is impossible,
since it forces A to be an initial candidate, contradicting the
atorr.icity of A . And now the last axiom :
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5- If (A)q is a family of objectsof €, (x;:A;=X)q a
candidate, f:B—X some morphism where B is prime then
thereis i€l ,and gB—A; with xg=f .

We will soon show that Axioms 1-4 imply that € always has
pullbacks, and then that Axiom 5 is equivalent to saying that
coproduct candidates (a notion of covering family) are stable under
pullbacks.

14.2 Example

Let € be the category of totally ordered sets and injective
morphisms of orders. It is easy to show that the underlying set
functor |-1:C— Se¢ creates filtered colimits (That is, given a filtered
diagram (Xp)pey in € there is a unique total ordering on the set
limy, Xyl that will make it a colimit in € ). We have already shown
that € has multicoproducts, and it is trivial to prove that the one-
element ordered set 1 is a sirong generating set and that it
satisfies Axiom 5. Therefore C is semigranular.

Until the end of this chapter € is an aggregate with Q@ a
generating set of primes.

15 Proposition

Let (x;:X;—X)i1 be a discrete coconein €. Then it is a
candidate iff any A—X where A is prime factors through some
Xi.

Proof
Necessity is just Axiom 5 . For sufficience let (y;:X;—Y); be the
candidate determined by (xy); and y:Y—X the factoring. We just
show y is an iso by verifying that every A—-Y where A is prime
factors through y .
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16 Definition

Let XeC . A lean cocone for X is a discrete cocone (x;:Aj—X)je1
where A; is prime such that given any prime B and f:B—X
there exists exactly one i€l such that f factors through x; by an
isomorphism.

B—¥A;

£ ¥x
X

By the previous proposition a lean cocone is a coproduct candidate.

An object always admits a lean cocone to it: if XeC let G/X be
the full subcategory of €/X whose objects are arrows with domain
in @ . Choosing one representative for every isomorphism class of
objects of @/X will give a lean cocone.

1.6.1 Corollary
Every prime of € is isomorphic to an object of Q.

If X is aprimeof € weknow it has a lean cocone where all
the domains of the arrows are in @ . But one of the components of
that cocone has to be an isomorphism by the definition of "prime".

1.7 Proposition
Let Xe€C .Then X isf.p.iff Sub(X) is finite.

Proof

Suppose Sub(X) is finite. Then obviously there is a lean cocone
(x:Ag=X)ie; with 1 finite . Let (Yq)gep be a filtered diagram
D—-C with colimit Y and coprojections oq:Yq—Y .Let f:X—Y.
Since the primes are {.p., for every iel thereis dijeD and
g:A—Yq, with agegj=fx;.Since 1 isfinite and D filtered there
is a aiscrete cocone (s;:dj—e); in D . This determines a cocone
(Ys“ g:Ai—Ye)i1 in C.
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g Yy
A— Ydl——’ Ye

x| “di\ /%

X——Y

f

We claim (x;); is the candidate that cocone determines. This is
because ageYsog; = fx;, as the diagram above shows, so (x;); and
(Y,iog,), belong to the same component in the category of (Ay);-
cocones. Therefore thereis f:X—Y, with fxj=Ygeg; . But then

a,of'oxi = o:.OY,icg‘ = fxi
and by joint epiness of (x;); we get that oagef'=f and so X is fp.
byi1.4.1.

Now suppose that X is f.p..Let (x:A;—X) be a lean cocone.
As before, for JCI, Xj is the subobject determined by the cocone
(Xj)jea . and xg:Xg—X the factoring. Obviously, for JCJ' we have

Xy —» X

X; Xy
X

So look at the filtered system (X))y finite - Let X' be its colimit,
with coprojections o j:Xj—X' . The family (xj); forms a cocone. So
there is f:X'—X . We will prove it is an isomorphism by testing with
primes. If AcQ@ and a:A—X , then since there is ic] and

A—"Ai

‘\ W,

and thereis J finite with ieJ (take {i}!) , so
Af‘" X J

"1\ ‘ Xy
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and by composing the two and following with aj, A—=A;=Xj—X'
we get a morphism a“A—X' such that fa'=a and therefore f is
an isomorphism.

Hence X is the sup of its f.p. subobjects. But since X is f.p there
is J such that 1 factors through oy and that forces J=1.
Therefore 1 is finite. QED.

1.8 Corollary
Every object of € is the sup of its f.p subobjects.

Since f.p. objects in € have such strong finiteness properties it is
fitting to call them finite objects. There is only a small set of
isomorphism types of finite objects: to every finite X one can
associate essentially one lean cocone (A;—X);e1. But the class of all
multicoproduct families from all finite families (A;); of objects of Q
forms a set. This shows € is Wp-accessible. In the same vein of
thought, since the initial candidates are exactly the objects of €
whose subobject lattice is a singleton, we will call them empty
objects.

1.9 Proposition

C has connected limits.

Let (Yg)gep be a connected diagram D—C.Let B be the
following category: an object of B is a cone (A,(¥q)q) , ¥a:A—Yq4
where Ae@ and a morphism (A,(¥3)g4)— (A',(¥'g)q) is a morphism
of cones. Such a morphism forces

A—bA’
% \{ K
d

to ccmmute and there is therefore at most one morphism between
ob,jec‘e; of B.Let I be the set of isomorphism classes of B and for
every i€l let (A‘,(X’d)d) be a choice of a representative. Now for
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every deD there is a discrete cocone (ri:A'=Y4)1 . Since for
f:d-d' Y¢ is a morphism of cocones (¥g) —’(Xid-), and since D is
connected, for any d,d'eD the cocones (;’d)l and (¥}), determine
the same candidate. Hence there is a candidate (y;:Al=Y); and for
every d thereis pgY—Yq with pdoy,-b"d , for alld,i.(pg)q isa

cone:if f:d—=d' then

Yf opd °Yi = on x‘d = [‘do
= Bd'°Yi

and by joint epiness of (yy); we get Ysopg=pq . We claim
(Y,(pg)q) is alimit cone: let (84:Z—+Y4)4ep be some cone. Let
(bJIBJ"’Z)J‘J be a lean cocone to Z. For every jeJ we get a cone
(84°bjlaep and since By is prime there is a unique a(j) anda
unique morphism of D-cocones s;: (B;, (Sdob_,)d)-'(A“(-'),(Xg‘(J))d) .

Sy peld)

B;
bji i y
( (1§},
Z ¥d Y

NP

But now the family (y«(j)es5:Bj—X);eg is a discrete cocone from
(Bj); . The candidate it determines is (by); . This is because

PaYalp)esy = Y5 es,
s 8d°bj
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and so the usual connectedness argument holds. So thereis g:Z—Y
with gebj=y,(;)es; and therefore

Pd°g°b; = Bd*Ya(j)*S;
= SdObJ

So pgeg=8q for any d, and this shows (X,(pq)) is a limit.

110 Remark

We do end up proving that aggregates and semigranular
categories are Diers categories. In fact, an aggregate is just a Diers
category where axioms 2,4 and 5 hold in addition. We could have
chosen other paths than the rather elementary (and explicit) one we
took. For example, it is not hard to show that a category with
multicoproducts all whose morphisms are mono is multicocomplete.

111 Examples

In the category gD the only qualitative domain on the one point
set is a strong generator, and obviously atomic. It is easy to see that
gD has multicoproducts ; it is done just as for total orders, and the
same holds for Axiom 5.

The same happens with the category M of sets and
monomorphisms.

The three examples above have two things in common: they are
semigranular and the only automorphisms of atoms are trivial. A
semigranular category is said to be granular if this is the case.

Here is an example of a non-granular semigranular category.
Let G be a group. Let & be the category whose objects are (right)
actions XxG—X where X is a set, such that for any xeX, geG
with g#1 wehave xg#x (ie. the orbits are all isomorphic to G ).
The morphisms are injective morphisms of group actions. We leave
to the reader the verification that & is semigranular.
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Let X be a qualitative domain. Then X is a granular poset: we
already know X has multicoproducts; the singletons of X are
obviously a strong generating set of atoms, and Axiom 5 is trivial to
check. For the converse:

1.11.i Proposition

Let 6 be a connected semigranular poset which is consistently
cocomplete. Then there is a qualitative domain X such that 6 is
isomorphic to X .

Proof

Take [X| to be the set of atoms of & (since we are in a poset
there is exactly one atom per isomorphisrn type and G is granular).
Define a function T from the underlying set of & to the power set
of IXI by 7(g)= {xe€lX|Ixsg)}. Since 6 is connected the unique
ge6 such that t(g)=Z is the bottom element 0. Since € is
consistently cocomplete T is injective on 6-{0} , and therefore on
the whole of 6. If we take XCWP(IX]) to be the image of T itis
trivial to check that X is a qualitative domain and that 1
preserves order.

Here is an example of an aggregate which is not semigranular:

let C be semigranular, and let 1 be a finite partially ordered set.
It is easy to check that the functor category €! has filtered colimits
and multicoproducts (multicoproducts are calculated pointwise in a
functor category; i.e. a coproduct candidate in C! is a discrete
cocone (Py:Fx—F) such that for every i€l (@y(i))y is a coproduct
candidate). If A isanatomof € and i€l let [A,i}eC! be defined
by:

A if j2i

[Ai)(j) = {
the initial candidate 05— A if not.

An easy exercise will show that [A)i] is prime, and that the family
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((Ail)e1, Aca
obeys the necessary requirements to make ¢! an aggregate.

A small discrete category is a semigranular category whose
generating set of f.p. atoms is empty.

112 Proposition
Coproduct candidates in € are stable under pullbacks.

Proof

Let (x::X;—X)ic1 be a coproduct candidate, f:Y—X some
morphism. If y;:Y;—Y is the pullback of x; by f to show (yy); is
a candidate we just have touse 1.5 and test with primes.

1.13 Proposition

If € is semigranular, then for any XeC Swb(X) is a complete
atomic boolean algebra.

Proof

Let (x:A;—X),1 be a lean cocone. All A; are atomic. We will
prove that Sub(X) is lattice-isomorphic to P(I) . Define functions

(-)*
P() = Sub(X)
(-)p

where for JCI ,

J¥= The factoring Xj—X determined by the cocone
(XJ) jeJ
and for a subobject Y—X
YP= ({iellx factors through Y}
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We first show that (YP)*=Y . Let y:Y—X br a subobject. If jeYP,
let xj:A j—Y be such that yx =x;. (YP)* comes from a factoring
z:Z-X and a coproduct candidate (25:A;—~Z)yb . But by definition
(x))jcyb is a lean cocone, and therefore is a candidate. So we have

two candidates (2j); and (x_;) j that aresent by z and y
respectively to (x); . Therefore y and z determine the same

subobject.

To show that (J¥)P=J,let Jcl, and x:X;—X be the factoring
determined by the cocone (x5); with candidate (x;:A;~X;)jc . Now

(UMY =  {iellx, factors through x)} .

Obviously JC(J¥)P since for each jeJ there is Xy with xxj=x;.
Let x:Aj—X be such that thereis f:A;—»Xj with xf=x; .By
axiom 5 f is isomorphicin @/Xy to a x;, jeJ, but since (Xj)j is
lean this forces i=j.



CHAPTER 2

In this chapter we study the "right notion" (for our purposes) of
morphism between aggregates.

21 Definition

Let C,D be categories and F:C—D a functor between them.
For AeD thecategory A/F is defined as usual: an object is a pair
(X,x) where XeC and x:A—FX. A morphism (X,x)=(Y,y) isan
f:X—-Y such that Ffex=y . f will be thought of as a morphism
living both in € and A/F . We say that (X,x) is a generic
morphism, or a generic arrow if it is a generic object in A/F : given
any diagram of the form

(X,x) (Y,y)

N g
(Z.2)

in A/F thereis a unique h:(X,x)—(Y,y) such that gh=f.

This notion is related to, but stronger than the Joyal notion of
genericity [Jo] and so should be called strong genericity. But both
notions are the same in a category all whose morphisms are mono,
in particular for aggregates. Note that if x:A—FX is generic and
a:B—A , s:X-Y are isomorphisms, then Fsexa will be a generic
arrow.

Let us recall that if (X,x) is generic, then any morphism
f:(Y,y)=(X,x) is a split epi. If in addition (Y,y) is generic then f is
an isomorphism.

2.2 Proposition

Let € and D have pullbacks. Let all the morphisms of C be
monot and let F.:C—D preserve pullbacks (and therefore
monomorphisms). Let x:A—FX be an object of A/F . Then TFAE :
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i)  xis generic
ii) if f:Y-X issuch that x factors through Ff
A
Y N\
FY—¥®FX
Ff

then f is an isomorphism.

Proof

This is just 0.11 over again, if one proves that under the
conditions given A/F has pullbacks. But this is quite easy and will
be left to the reader.

2.3 Proposition
Let C and D be aggregates and let F:C—D be some functor.
Then TFAE

i) F preserves filtered colimits and pullbacks.

ii) For any prime AeD,y:A—FY thereis a generic x:A—FX
where X is finite and a morphism (X,x)—=(Y,y) in A/F.

iii) For any finite AeD,y:A—FY thereis a generic x:A—FX
where X is finite and a morphism (X,x)-(Y,y) in A/F.

Proof
iii) = ii) is obvious,
i) = iii)
Just as in [Gi86). Let A be finite and y:A—FY . We know that
Y is the sup of its finite subob jects.

Y- |l Z
ZCY,Z finite




33

This a filtered colimit diagram, and since F preserves filtered
colimits

FY= lim FZ
ZC-Y%Zﬂnlh

Since A is finite thereis ZCY finite such that
FZ4—A
AW,
FY
y factors through FZ . But Sub(2) is finite. Let

X= N{ZcZly factors through FZ'}

where intersection of subob jects means pullback as usual. There will
be x:A—FX and it is easy to prove that xe€A/F does not have any
proper subobject. Therefore x is generic. This proof is just a
slightly modified version of Freyd's adjoint functor theorem.

ii) = i)
Let every y:A—FY where A is prime admit a generic arrow to

it. Let
BN
Y Y'
AN
Z

be a pullback diagram. Let A be prime, and y:A—FY, y:A—FY'
with Ffey=Ff'ey', and let z=Ffey .Let (X,x) be generic with
g: (X, x)—=(Y,y) . Then we have

(X,x) Y'y")

s ¥4 ot



in A/F . So by genericity thereis h:X—Y' with f'h=fg and
Fhex=y'. But then thereis k:X—P, with pk=g and p'k=h.

y

?FS }/,FY\H
A—»FX—>FP FZ
\Fk_li‘.’:‘wﬂr‘f'

y

Since we have

FpeFkox = Fgex = y
Fp'oFkox = Fhex = y'

we have shown that F preserves pullbacks by testing with primes.

Now let (Yp)hen be a filtered diagram H—C with colimit Y
and coprojections op:Yp—Y . Let Z=lim, FY), with coprojections
Ph:FYh—Z . There is a canonical w:Z—=FY . We will prove w is an
iso by testing with primes. Let A be prime and y:A—=FY . There is
x:A-FX generic with X finiteand f:X—Y with y=Ffex . Since
X isfinite thereis heH and f:X—Y} with apef'=f.But then

weppeFf'ex = FapeFf'ex = Ffex
=Yy

FYhQ————FX

" A

Z—DFY Q——'—A

so C(A,w) is bijective and this proves F preserves filtered colimits.

We will call a functor between aggregates that fills the conditions
above an entire functor. A functor which is constant over each
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component of € is entire, since pullbacks and filtered diagrams are
connected. Another example of an entire functor is a stable function
between qualitative domains. The concept of entire functor is
related to some very classical concepts. Given any two categories €
and D say a functor F:C—D "has a polyad joint® if for every AeD
the category A/F has a poly-initial family. This is a generalization
of the property of having a left adjoint: this latter case is equivalent
to A/F having an initial object for every A .For example the
inclusion of the category of algebraically closed fields into the
category of fields has a polyadjoint; in this case every category of
the formm A/F is in fact connected. If A is a field a generic object
of A/F isaninclusion A=A where A is the algebraic closure of
A . An entire functor between aggregates is the same as a functor
which preserves filtered colimits and has a polyadjoint.

In the same way we can define what it means for a functor to
have a "“multiadjoint". This case has been studied by Diers [Di81]. It
does not hold much interest for us since the categories it gives rise to
are not cartesian-closed.

24 Proposition

Let €,D aggregates, F,G:C—D entire functors and o:F-=G a
natural transformation. Then TFAE

i) For every AeD , every generic arrow x:A—FX, aXex is
generic.

ii) For every prime AeD , every generic x:A—FX , aXex is
generic.

ii) For every f:Z—Y in €, the square
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Ff
FZ—FY
aZ | | aY
GZ—GY
Gf

is a pullback.

We will call such a natural transformation a cartesian
transformation.

Proof
i) = ii) is obvious.
ii) =iii)
We just have to prove “pullbackness” for prime objects. So let A
be a prime and s:A—-GZ, t:A-FY with Gfes=aYet (=u, by

( definition). Let x:A—FX be generic and g:(X,x)—(Y,t) . Since
aXex is generic and we have a diagram

(X, X o x) (Z,s)

e

| (Y,u)
in A/G there exists k:X—Z with GkeaXex=s and fk=g.




<

¢

Then looking at the diagram above will show Fkex fills in the
square.

jif) = i)
Let x:A—FX be generic. Let there be m:W—+X and w:A—GW
with Gmew=aXex . By assumption there is w:A—=FW with

aWew'=w and Fmoew'=x. But the last equation forces m to be
an isomorphism, so aXex is generic.

25 Proposition

Let F,G,H be entire functors, and 6:F—G, ¢:G—H natural
transformations. Then

0, cartesian = (@6 cartesian.
¢ and 9@ cartesian = @ cartesian.
Proof

One just uses the fact that in a composite of squares

@ wemeel) ¢ cm——)) o

L

If the left and the right squares are pullbacks then the outer
square is.

If the right and the outer square are pullbacks then the left
square is.

The following proposition uses in an essential way the fact that
we are dealing only with monomorphisms. That is, while 2.3 and
24 generalize to categories with non-monomorphisms, this one does
not.
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2.6 Proposition

Let €, D be aggregates. Let F,G:C—D be any two functors,
9:F—G a natural transformation. Let x:A—FX be such that 8Xex
is generic. Then x is generic.

Proof
Let
Xx) (Z,2)
I\ /¢
(Y.y)

be a diagram in A/F. Then
(X,0Xex) (Z,8Z¢2)
N /&8
(Y,eYey)
is a diagram in A/G . So there exists h:(X,0X¢x)—(Z,6Z+2) with
gh={ . But then

0ZoFhex = Ghe9Xoex = 0Zo2z

eX
FX—GX
/| |

A |Fh |Gh

z\ | l
FZ—GZ
-4

and since 6Z is mono we get that Fhex =z . QED.

2.7 Proposition

Let Aggr be the not-locally-small category of aggregates and
entire functors. Then A4ggr has all small products and coproducts.
The same is true of Sem, the full subcategory of semigranular

categories and entire functors.
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Proof

Let C,D and E be aggregates (semigranular). It is easy to see
that CxD , the usual product of categories, is an aggregate
(semigranular). First, connected limits and filtered colimits are
taken pointwise, eg. if (X;,Y{)in is a connected diagram then its
limitin CxD is (',l;n_,xi ’ '.lﬂi Yl) . An ObjeCt (X,Y) is finitely
presented iff X,Y are fp. in their respective categories. Primes
(atoms) are either of the forrn (I,A) or (A'l') where leC,l'eD
are initial candidates and AeC, A'eD primes (atoms). The
projections CxD—C and CxD—D are obviously entire functors.
Hence to show that E has finite products we just have to show that
if fE—-C, g E—D areentire then «<f,g>:E—CxD is entire. This is
also quite trivial. The terminal object of both Aggr and Sem is
the one-object discrete category 1.

The proof for binary products generalizes trivially to arbitrary
products: if (C;)n is a family of aggregates (semigranulars) then
the usual product TI;C; is an aggregate (semigranular) and the
product in Aggr (Sem) . The proof is just as above. Primes (atoms)
are families (A)1 , Aj€€; such that there is exactly one i with
A; prime (atomic), Aj an initial candidate, for j#i.

The disjoint sum Ll;€; is an aggregate (semigranular). This is
trivial to prove since all the limit, colimit and candidate diagrams
always stay in the same component. The coprojections ji:€;— 1€
are surely entire and if Fi:Cj—D is a family of entire functors then
[Fi)i: 1;€;—D is entire and this shows we have coproducts.
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CHAPTER 3

This chapter generalizes the definitions of the previous two
chapters to the case of a "variable aggregate®, i.e. an indexed family
of aggregates indexed in an “entire fashion".

3.1 Proposition

Let €,D be categories with F:D—C a functor admitting a right
adjoint G.Thenif (x{:X;~Y®) ees is a multicoproduct family in
D, (Fx§:FX;—FY*); ¢ is a muticoproduct family in € .

Proof
Just as in the classical case: for Ze€

TT;C(FX;,2) = TT;D(X;,62) = |1,D(Y*G2Z)
= .LliC(FYs,Z)

Let € be an aggregate, with @ a strongly generating set of
primes. Let BCQ. We are interested in the full subcategory D of €
generated by B . An object of D will simply be an Xe¢C admitting
a coproduct candidate (A;—X)i] where A;eB for all i. It makes
sense to require that B be “closed under prime subobjects": if
A¢B, and thereis BeQ with B—»A,then BeB.Then B is
essentially determined by D as its strongly generating set of
primes, and an object of D is an X admitting a lean cocone all
whose domains are (essentially) in B . The inclusion D—C has a
right adjoint G such that the counit eéX:GX—X is the factoring
determined by the sub-cocone of the lean cocone of X all whose
domains arein B. It is now easy to see that D is an aggregate: as
a coreflexive subcategory D has all filtered colimits. A very
predictable argument will show that it also has all multicoproducts,
and B will be a generating set of primes with all the required
properties.
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3.2 Proposition
Let C,D be aggregates, F:D—C a full and faithful functor with
right adjoint G. Then TFAE:
i) F is powerful, that is, if XeD any subobject of FX isin
the essential image of F .

ii) If AeD is a prime and BeC is such that thereis b:B—FA ,
then B is in the essential imageof D (andsois b,
obviously).

iii) If AeD is a prime and BeC is prime and there is
b:B—FA , then B is in the essential image of D

iv) F sends lean cocones to lean cocones. In particular F sends
primes to primes.

v) ¢€:FG-1p is cartesian, i.e. has the pullback property for
natural squares

vi) Both F and G are entire and ¢ is cartesian.
We will call F in such a situation a stiff embedding .

Example

It is easy to see that if C,D are qualitative domains, then
F:D—C is a stiff embedding iff it is of the form F=f* for a
morphism of qualitative domains f:D—C , where f* is the direct
image functor.

Proof
i)=ii)=»iii) is obvious.
iii) =iv)
Let (aj:Aj—X)ie be a lean cocone. Let BeC be prime, and
b:B—FX . By assurption there is i€l such that Fa; is isomorphic

to b in C/FX.Such an i is unique since a full and faithful functor
with a right adjoint reflects isos.
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iv)=v)
Let f:Y—X be a morphism of €. To show

eY
FGY—Y

Fef |  |f

FGX—X
eX

is a pullback we will test with primes. Let B be one and let s:B—Y
and t:B—+FGY with eXet=fs. Let (a;;A;—GX), be a lean cocone
for GX in D.By assumption (Fay); is lean, so thereis i and an
iso B—FA; . We can suppose without loss of generality that B=FA;
and t=Fa; . Therefore

S
FAi—Y
Fa, 1 1 f
FGX—X
eX

commutes. Applying the adjunction on both s and Fa; gives

*
$

A— GY
Fai* 1 1 Gf
GFGX — GX
GeX
But both GeX and GeY are isomorphisms by the "triangular
identities” [CWM p.83], and the fact everything is monic.

GFGY
GFGf 7\ GeY

GFGX — Ay~ GY

GeX \ / Gf
GX
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Hence thereis g:A;—GFGY with GeYeg=s" and GFGfeg = Fa;* .
Applying the adjunction to g will give the required FA;—FGY .

v)=vi)

It is now easy to show that F and G are entire. We already
know that G preserves pullbacks and F preserves filtered colimits.
Let (Xp)new be a filtered diagram in € with colimit X and
coprojections ¢p:Xp—X . By the previous argument we know that
FGyp: FGX;,—FGX is obtained by pulling back ¢, by €X. Then the
cocone (FGYp)n seen as a discrete cocone is a coproduct candidate,
and so is (GPp)y : if (24:GXKp—2)), is a candidate for (Ggp)y , and
a:Z—-GX the factoring, then 3.1 shows a is an iso and we know
F reflects isos. It is now only a formality to show that (Ggy), is a
colimit cocone, and we leave the proof that F preserves pullbacks
as an exercise. It is also easy to prove (exercise) that an adjoint pair
among aggregates with cartesian counit always has the left adjoint
full and faithful.

Vi) =i)
Let b:B—FX be a subobject of FX . Since by hypothesis
eB
FGB —B

FGb | b

FGFX—FX
eFX

is a pullback and €FX is an isomorphism, €B is an iso.

3.21 Corollary

Let F:D—C be a functor between semigranular categories. Then
F is a stiff embedding iff it is full and faithful, has a right adjoint
and sends atoms to atoms.

This is just because a prime subobject of an atomic object has to
be the full object.
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We are interested in Grothendieck fibrations E—C corresponding
to functors X:C°P- Cat where for every f:X=Y in €, XX and
XY are semigranular, and the transition functor Xf:XY—XX is the
right ad joint to a stiff embedding. This boils down to the following:

3.3 Definition

Let € be an aggregate. A stiff fibration is a diagram E:E—C
such that

a) E isa bifibration: it is a Grothendieck fibration and
E°P.EOP—(COP js also a Grothendieck fibration. As is
customary we call cartesian arrows in the dual fibration
cocartesian morphisms in E . A bifibration corresponds
exactly to a (pseudo-)functor X:C°P— Gaz where for every
f in € Xf has a left adjoint.

b) For every SeC the fiber ES is an aggregate. We will call
an object X of E which is prime (atomic) in its fiber EEX
a local prime (atom). In the same way, we will say of an
object which is empty (finite) in its fiber that it is locally

¢) (corresponding to full- and faithfulness of left adjoints)
Every cocartesian arrow is also cartesian.

d) (corresponding to stiffness of left adjoints). If f:X—-Y isa
cocartesian arrow and b:B—Y above identity then the
pullback P—+B of f by b is cocartesian.

A word of explanation about conditions ¢) and d) isin order. The
first one just a way of formulating that the unit of the adjunction is
an iso, making the left adjoint full and faithful. The second one is a
formulation of 3.2i), using condition ¢) and the well-known fact
about fibrations that if gW—2Z isin the fiber ET and s:S—-T in €

then the diagram
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s'W—W
ssl s
'2 — 2
where the horizontal arrows are cartesian above s is a pullback
(see 3.10 ). Condition d) could be formulated differently , in view
of 3.2.For example we could give seemingly weaker conditions by
requiring that X ,or X and Y be local primes.

From now on until otherwise stated E:E—C is a stiff fibration.
We will split our fibrations whenever we want, using a standard
notation: if s:S—T isin C, then choosing for every Xe ET a
cartesian arrow s*X—X defines a functor s*ET—ES , and choosing
for every Ye ES a cocartesian arrow Y— 3,Y defines a functor
I, ES—ET and 3, is left adjoint to s* . When we split things we
use the following notation for cartesian and cocartesian arrows: a
cartesian arrow s*X—X is called ¥, X, or ¥, ,or ¥X, or simply
¥ . A cocartesian arrow Y—3,Y iscalled 1,Y,1,,1Y,0or 1.

The following proposition is just a translation in this language of
results already proven, and therefore the proofs are omitted.

35 Proposition

Let s:SoT in C, (x;X;—X); a coproduct candidate in ES.
Then (3,%;:3,X;— 3.X);¢ is a coproduct candidate in ET . If (x;); is
a lean cocone, then (3,x,); is lean too. Also, if O is empty in ES,
3.0 isemptyin ET.Finally, if A is primein ES then JA is
prime in ET.
3.6 Proposition
Let s:S—T in C, h:X—Y a cocartesian arrow above s.

i) If X isfinitein ES then Y is finitein ET.

i) If Y isprimein ET then X is primein ES.

ii.) If f:Z-W isany arrow above s where W is empty in ET

then f is cartesian and Z is empty.
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Proof
i)

Choose 3,:Es-*ET such that 3;X=Y . Let (x:A;—X)i bea
lean cocone. 1 is finite, and (3,A;—Y); is a candidate cocone too.
Since Y admits a finite candidate to it whose vertices are local
primes, it is finite in ET.

if)
This is a simple argument using the fact that 3, preserves
candidates and reflects isos.

iii)
Let { factor as z:Z—Z', g:Z'<W where g is cartesian and 2z
above identity. By 3.2iv) Z' is empty in ES andso z is an iso
and f cartesian.

The following is folklore, and we will prove it since we could not
find a reference.

3.7 Proposition

Let € be a class of limit diagrams, say all finite limits, or all
products, all connected limits... Let € be any category, and
E:E—C a Grothendieck fibration such that every fiber of E has all
C-limits, that for any s:5S—T in € “the" functor f*: ET-ES
preserves them and that € has all C-limits. Then E has all C-
limits, E preserves them, and so does the inclusion functor ES-E

for any fiber.

3.7.1 Corollary

If C is an aggregate and E a stiff fibration then E has
connected limits (a right ad joint preserves all limits that exist). Also
the inclusion of any fiber ES—¢ preserves all connected limits.
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3.7.2 Corollary

If C is an aggregate and E a stiff fibration then E has all
filtered colimits (the dual fibration E°P—C°P will satisfy the
conditions if C is the class of all (co-)filtered limits). Also, the
inclusion of any fiber ES-E preserves all filtered colimits.

Proof of 3.7

Since the “colimit” version of the result is more important for
us, we will prove it, assuming E:E—C is an opfibration and C a
class of colimit diagrams. Let (Yp)ney be a C-diagram in E . Let
(oh:EYR—T), be a colimit cocone in € .For every h extend a
cocartesian yn:Ynh—Z), above ap . We obviously get a diagram
(Zy), in ET. Let (¥),:Z,~Y)y be a colimit cocone therein. We
claim (¥pyp)n is a colimit cocone for (Yp)y in E . Let (8p:Yp—X)y
be a cocone. Thereis s:T—EX with sajp = ES}, . By the co-
cartesianness of y), for every h thereis an arrow zp:Z,—X
with z,yp=8p . Let z, factor as wh:Zp,— 2 and xp:Zp—X,
where wy, is cocartesian above s and x,, above 1gx; in the
obvious manner we get an H-diagram (Z},), and a cocone (xp)y, .
If w:Y-Y is cocartesian above s , by pushing (¥n)n we get
another cocone (¥,:Z,,—Y)), above 1py. By assumption, this last
Yh  ¥h
Yh—Z,—Y
| wal _ |
6n| *n Zn | w

7N

l i
X &—Y
f

cocone is a colimit cocone, so there is f:Y—X above identity with
f¥y, = Xp, . Then we get (fw)(¥,y}) = 6, . To prove the uniqueness, if
g:Y—X is such that g(¥,yn)=56p then g is necessarily above s ;
by looking at a cocartesian-above identity factorization g=f'w' and
repeating the argument with f', w' it is easy to see g=fw.
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We revert back to the assumption that E:E—C is a stiff
fibration above an aggregate. We will prove the analogue of the
above for multicoproducts.

3.8 Proposition
E has multicoproducts and E preserves coproduct candidates.

Proof

To avoid an orgy of indices we will first describe coproduct
candidates in E .Let (X;) be a family of objects of E . It will
turn out that a coproduct candidate in E can be described a triple
((spse1,(%pse1.(a)ye1) where

(si:EX;—S); is a coproduct candidate in €,

(x;:X;—A,); is a choice of cocartesian arrows in E , with Ex,=s;,

(a;:A;—A); is a coproduct candidate in ES .

The candidate itself is given by (a;x;:X;—A); . To get a
multicoproduct family for (X;); choose a multicoproduct family
(sLEX EX;—Shq, jeJ for (EXy); . Then for each sf choose an xf x,-vAf
cocartesian above si, and for all j choose a multicoproduct family
for the discrete cocone (A{), Then given (y;:X;—Y); thereis a
unique jeJ,t: Sj-'EY thh tsf=Eyi Drop the superscripts for

f s Af xf Let (a; Ai-’A Jx¢k be the chosen multicoproduct
family in ES.Let :Z—Y be a cartesian arrow above t . Since x;
is cocartesian above s; and Ey;=ts;, there is a unique g;:A;—Y
above t with gix;=y; . By cartesianness of f thereis hiAj—=Z in
ES with fh;=g; . This gives a cocone (hy); . There is a unique

Xi
5/ |
A gl

1/ I\
Ak—Z—Y

h f
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k and a unique h:AK—+Z with haF=h; . It is easy to see that k is
independent of the choice of the cartesian arrow f, and that if
f:2'=Y is another such arrow, h:AK—=Z' the factoring it
determines, that fh=f'h'.So fhalf x;=y; and (y;); determinesa
unique j, a unique k among the j-candidates, and a unique
factoring ARy

3.8.1 Corollary

The initial candidates in E are exactly the objects which are
initial candidates in their fiber and above an initial candidate of C.

3.9 Proposition

Let X be a finite object of EEX, where EX is finite. Then X
is £p. in E.Also, Sub(X) is finite.

Proof

Let (Yp)nen be filtered in E, with colimit cocone pp:Yh—Y.
Let f:X—Y . Factor every py as

Yh ¥h
Yhr—2Zp—Y
where yj, is cocartesian and ¥, above identity. We get an K-
diagram (Zy,), and from the proof of 3.7 we know (¥},), is a
colimit cocone for it. Let f factor as
f x
X—X'—Y
where {' is cocartesian and x above identity. We know (3.61)) X'
is finite in EEY . Choose heH such that there is both m:X'—Zy, in
EEY with ¥ym=x and t:EX—EY} in € with Eppet=Ef. Let
w:X—W be a cocartesian arrow above t and w'W—X' the
unique arrow above Epy such that w'w=f'.Since mw' and yy
are both above Ep;p, and yy), is cartesian there is
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k
W—Yy

v/, W Iy
X— X' —2Z),

I\ 12/
Y

k:W=Y), above identity with ypk=mw'.But then kw is such
that

Bh(kw) = (¥hyn)(kw) = f .
The proof that Sub(X) is finite is rather obvious.

Here is a collection of results about cartesian arrows in fibrations.
The first three are standard and the proof is left to the reader.

3.10 Proposition
i) E:E—C any fibration. Let
f
X—Y
h\ | 8
yA

be such that h and g are cartesian. Then f is cartesian.
ii) Let
f
X—Y
gl s
Y'—2Z
i'
be above a pullback, and such that g,g' are cartesian.
Then the square is a pullback.
iii) If E is a stiff fibration, cartesian arrows are stable under
pullback.
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iv) E a stiff fibration. Let f:X—Y ,g:Y—Z be such that gf is
cocartesian. Then both f and g are cocartesian.

Proof of iv)

Let {"X—Y' be cocartesian above Ef , a:Y'—Y above identity,
of'={ . By cocartesianness there is a unique g"Y'—»Z above Eg
with g'f'=gf . Since gf is cocartesian, g' is cocartesian, by the
dual of i), and therefore also cartesian. So there is a unique
p:Y-Y' with g'p=g.Now g'paf =g'pf=gf = g'f'.

f g
X—Y' —Z
f\*|[f /g
Y

Weget paf' =f', and since po is above identity, ' cocartesian,
pa=1y' and p,a are isomorphisms.

We want our bifibrations to satisfy one more condition: their left
adjoint parts should correspond to functors €— Cat that are
"entire” in some way. This is done as follows.

3.11 Definition

We say XeE is E-generic if given cocartesian arrows f:X—Y
and g:Z—Y there exists h:X—Z (necessarily cocartesian) such that
gh =f . Notice this implies that any cocartesian arrow w:W—-X isan
isomorphism (just take f=1yx and g=w ). We will call an X
fulfilling this weaker condition an E-minimal object of E . We say

E is an egntire fibration if for any local prime B€E thereis an E-
generic A such that EA is /inite in € and a cocartesian arrow

A-B. A is necessarily a local prime by 3.6,ii) .
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3.12 Proposition

Let E:E—C be a stiff fibration. Then a local prime Xe¢E is E-
generic iff given any f{:X—Y and any cocartesian g:Z—Y there
exists h:X—2Z filling the triangle.

Proof

The second condition is obviously stronger. So let X be locally
prime and generic. Let f,g be given as above. Assume { is above
5:S—T and g isabove t:V—T.Let (a;A;—Z),] be lean cocone for
Z in EV.By the usual nonsense there is a cocone (y;:31A;—Y); in
ET and since g is cocartesian this cocone is /ean, by 3.5 . Also
there is x:3,X—Y above identity with xe1,X=f.

X
14X /p \ k
EISX-' BtAp—Ai
x 1l /v e

Yée—12
g
Since (y;); is a lean cocone in ET and 3.X is prime therein there
exists i€l and aniso p:3,X—3;Y with y;p=x.But then pe1 X is
cocartesian too and since X is E-generic and 1;A; cocartesian
there exists k:X—A; with 14Ajok=per X . Then h=ajk is the
arrow sought.

3.13 Proposition
Let E:E—C be an entire fibration. Then E is an aggregate. It
follows from 3.7.1,3.7.2 that E is an entire functor.

First we prove
3.13.1 Proposition

i) Let X beemptyin E5,S primein €.Then X is prime
ink.
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ii) Let X be primein E° and E-generic, with S finite. Then
X isprimein E.

Proof
i)
If (x:X;—X)e] is a candidate in E, we know (Exy); is a

candidate in €. Then for some i Ex; is an isomorphism. But x; is
cartesian (3.6 ii)) so it is an isomorphism.

ii)

Let (x;:X;—X)i be a candidatein E.Let x"X;—X;' be
cocartesian, a;:X;'—X above 1g such that x;=a;x;'.By 3.8 (a);
is a candidate in ES so thereis i with a; an isomorphism. Then
x; is cocartesian, and since X is E-generic, and therefore E-
minimal, x; is an isomorphism.

We will say X is a prime of the first (or second) kind if it
satisfies the corresponding condition above. We can now prove
3.13:

Since both kinds of primes are finite in their fibers and above
finite objects of € , they are f.p. and have a finite subobject lattice.
We will show that the collection of all primes of either kind forms a
strong generating set. It is easy to see that it is an essentially small
set. Let f:X—=Y be a morphism of E above s:S—T such that
every A—Y where A is one of the two kinds of primes factors
through f.Let f factor as f'x where {:X'=Y is cartesian and x
above 1g. We first prove s is an isomorphism by testing with
primes: let P be a prime of € and p:P—T. Thereis k:K—Y
above p where k factors as K—p*Y—Y and K is the empty
object of EP determined by p*Y .K is a prime of the first kind and
by hypothesis there is m:K—+X with fm=k.Then se<Em=p and
this prives our claim. Therefore f', being cartesian, is an
isomorphism, and we are left to prove that x is an iso too. We just
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have to test with the primes in ES.Let B besuch a prime, and
b:B—X' above identity. By hypothesis there is A E-generic and
a:A-B cocartesian, EA finite. A is a prime of the second kind and
so there is nA—X with fxn=fn=f'ba.

a
A—B

n] |[b
X—X'—Y
x f
It ensues that ba=xn, and since a is cocartesian and x above
identity thereis c:B—X with ca=n. We get that xc=b by the
uniqueness property associated with cocartesian arrows (Ec=Eb).

It is left to show that Axiom 5 holds to complete the proof.
Suppose (x:X;—X) is a candidatein E and let a:A—X with A
prime (a prime of E has to be of the first or the second kind: 1.6.1).
If A isof thefirst kind, EA is prime in €, so there is i€l and
f.EA-EX; with Exjef=Ea.Let y:Y—X be a cartesian arrow above
Ex; . There is m:X;—Y above identity with ym=x; . Let ¥Y:f*Y—Y
and ¥X;:f*X;»X be cartesian above f . Thereis p:A—f{*Y above
1A with yefYoep=a since ye°¥Y is cartesian and above Ea.

¥X
f*xi———’Xj
9,/ |f*m m| \|%
A=Y ——Y-X
P % vy

f*m and p arein gEA , and since A is an initial candidate
therein thereis q:A-{*X; with f*meq=p. But then ¥X;°q is the
morphism we are looking for.

If A is of the second kind, let aA—A'be cocartesian above Ea
and s:A'—X above identity, sa'=a.lf
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x4
X,—»X,'-DX
is now the cocartesian-above-identity factorization of x; , we know
(t), is a candidate. A' is primein EEX by 3.2iv) and therefore
there is i€l and q:A'—X;' with
X
a q | =
A—A'— Xi'

s\, / 4
X

tiq=s . Since A is E-generic and x; cocartesian, by 3.12 thereis
h:A—=X; with x'h=qa'. Then xh=a.

3.13.2 Corollary

The finite objects of an entire fibration E:E—C are exactly those
which are finite in their fiber and above a finite object of C.

This is because a finite object X¢E will have a finite lean cocone
(aj:Aj—X)] in E . Since E preserves candidates cocones, and every
EA; is finite in €, it follows easily that X is above a finite object.
By factoring every a; as

by x
A1-’X1—’x
where b; is cocartesian and x; above identity, we get a finite
candidate (x,);,and since X; is locally prime, X is finite in EEX .
The converse is 3.9 .

3.14 Proposition

Let E:E—C be a stiff fibration. Then the following are
equivalent:
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i) E satisfies the Beck condition for all pullback squaresin €.
ii) The pullback of a cocartesian arrow by a cartesian arrow is
cocartesian.
iii) The pullback of a cocartesian arrow by an arbitrary arrow
is cocartesian.
When the above hold, for brevity we say that E satisfies the
Beck condition, or that Beck holds.

Proof
First we leave it to the reader to verify the following fact, which
is true in rnore general circumstances than stiff fibrations (and can
be used as a definition of the Beck condition by the inexperienced

reader).

3.14.1 The Beck condition holds for a square

P
R—S

ql s
T—V
t

in € iff for any XeES the unique V:Bq p*X—3,X above t
making the square below commute is a cartesian arrow

¥
p'X--’;X

‘q | s
P X—3X

(v exists since 14 is cocartesian).
We can now prove 3.14
i) = ii)
Let
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f
X—Y

h] s
wW—Z
k

be a pullback square in E where g is cocartesian and k cartesian.

let h':X—W' be cocartesian above Eh, and k':Y'=Z the unique
arrow above Ek making k'h'=gf . There is o: W'=W above
identity with ka=k'.3.14.1 applies and by hypothesis k' is
cartesian. Therefore o is an isomorphism. By the cartesianness of
k, ah' is the unique morphism above Eh making kah'=gf and so
oh'=h . Therefore h is cocartesian.

ii) = iii)
Let now the square above be a pullback where f and k are not
necessarily cartesian. Let k factor as

w k'
W—Z'—2Z
where k' is cartesian and w' above identity. Let
‘l
Y'—Y
h"| g
w'—2Z
kl
be a pullback. f' is cartesian above Ef, (3.10) so thereis x:X—Y'
above identity with f'x=f . By hypothesis, h" is cocartesian. By
3.3d), h is cocartesian.

jii)=» 1)
Let p.q.s,...be asin 3.141 . We want to prove
v:3p"X—3,X is cartesian. Let

o
1
taet

o



a
A—X

b | | 1wX
t*3X—3,X
Y3 X
be a pullback. By cartesianness, there is 2:34p*X—t*3,X above
identity with ¥;3,X ¢z = v. By pullbackness there is c:p*X—A
above identity with ac=¥, and bc=ze14p"X.
15X
p*X——X
| e\ a2/ |
| & |
1qP"'X | bl |X
| t*3X |
12/ N\ |
Ip"X— 3 X
v
By 3.10 a is cartesian, and so ¢ is an isomorphism. But by
hypothesis b is cocartesian and so z is an iso, and this makes v

cartesian.

3.14.2 Lemma
Let E:E—C be a fibration satisfying the conditions of 3.14 . Let
8' hl
xl_.zl_.Yl
x| lz ly (v

X~—Z—Y

g h

be a diagram in E such that the outer and left squares are
pullbacks, g,g' are cocartesian, and the right square is above a
pullback. Then the right square is a pullback.
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Proof
Let m:A—Y', niA—~Z be such that ym=hn. Let
a
B—A
pl In
X—2Z
g

be a pullback. By hypothesis a is cocartesian. Since the outer
square of (») is a pullback thereis q:B—X' with h'g’q=ma and
xq = p . Since the right square is above a pullback there is s:EA—EZ’
with Ezes=En and Eh'es=Em . Then it is easy to show
soEa=Eg'oEq, since Eh'eseEa = EmoEa =Eh'¢eEg'¢Eq . Since a is
cocartesian there is :A—Z' above s with fa=g'q. Then, using the
“relative epiness” of a one can check that h'f=m and zf=n.

&3

3.15 Proposition

Let E:E—C be a stiff fibration. Then the following are
equivalent:

i) E isentire

ii) E satisfies the Beck condition (for all pullbacks) and every
local prime BeE admits a cocartesian A—+B where A is
E-minimal and above a finite object of €.

iii) E satisfies the Beck condition and every BeE which is
locally finite admits a cocartesian A—B where A isE-
minimal and above a finite object of C .

Proof
i)=ii)
Suppose E is an entire fibration. Obviously we only have to
show that Beck holds. Let
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f
X—Y

kl lsg
W—Z
h

be a pullback where g is cocartesian. Let k split as
k' w
X—W'—W
where k' is cocartesian above Ek and w above identity. To show
k is cocartesian it suffices to show w is an isornorphism by testing
with primes of EEW. Let b:B—W be above identity with B prime
in its fiber. There is a:A—B cocartesian with A E-generic. Since
g is cocartesian thereis y:A—Y with gy =hba . Therefore there is
x:A—-X with kx=ba . The cocartesianness of a will give the
required B-W'.
ii) = iii)

Let B be finite in its fiber and let (b;:Bi—B);] be a lean cocone
in EEB  For every i let fi:Aj—B; be a cocartesian arrow where A;
is E-minimal. Let (a;A;—A); be the candidate determined by
(byf;); and f:A—B the factoring. It is easy to see that f is
cocartesian: if

ay X
A""A'i"’A

is a cocartesian-above identity factoring for (a;); , then there is
gi:A'j—B; cocartesian above Ef with g;a’;={; , and the fact that
3gg preserves candidates and both (x;); and (by); are will force
the cocartesianness of f . We just have to show A is E-generic: let

c:C—A be some cocartesian arrow. By 3.12 for every i thereis
ci:A;—C with ccy=2a; and this shows c is an isomorphism.
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iii) =)

Let B be alocal prime in E . Since it is locally finite, there is
a:A—B where A is E-minimal (and A is above a finite object of
C). Wewant toprove A is E-generic. Let

f g
A—Y+—2Z
where g is cocartesian. Let c:C—A be the pullback. By
assumption (Beck), ¢ is cocartesian , and therefore an
isomorphism, since A is E-minimal. We get A—Z making the
triangle commute in an obvious manner.

3.15.1 Corollary

Let C be an aggregate. An entire fibration above € is the
same as a bifibration E:E—C where all the fibers are aggregates,
cocartesian arrows are cartesian and stable under all pullbacks, and
where for any locally finite A thereis an E-minimal object above
a finite object and a cocartesian morphisrn to A (it suffices to
assume A is locally prime).

This is just the fact that condition 3.3 d) and Beck are covered
by the assumption that cocartesians are stable under arbitrary
pullbacks.

3.15.2 Corollary

In a stiff fibration with the Beck condition, E-minimal objects
are E-generic.

3.16 Definition

Let E:E—C be an entire fibration above an aggregate. If for
every SeC the fiber ES is semigranular wesay E is a
semigranular fibration . We denote by #i5(C) the category whose
objects are entire fibrations E:E—C and morphisms entire
morphisms of fibrations, i.e. where a morphism E—F (F:F—C) is an
entire functor H:E—F such that FH=E. We denote by Sem(C)




62

the full subcategory of Fib(C) whose objects are the semigranular
fibrations. Notice that Fib(1) = Aggr (2.7),and Sem(1) = Serns .
By /b and Sgr we denote the class of all entire fibrations, and

the class of all semigranular fibrations.

3.17 Proposition .

i) Let C,D be aggregates. Then the projection n:CxD-C is
an entire fibration. If D is semigranular it isa
semigranular fibration. In particular identity functors are
semigranular fibrations.

i) Let E:E—C be an entire fibration, F:F—C an entire
functor. Then the pullback P:P—F is an entire fibration. If
E is semigranular, P is sernigranular.

iii) the composite of two entire fibrations is an entire fibration.
In particular, if E:E—C is an entire fibration, the pullback
functor E*:/75(C)— Fib(E) has a left adjoint Zf .

iv) The categories /n#{(C) and /F5(C) have producte.

3.17.1 Corollary

Both (Aggr,Fib) and (Aggr,S¢r) form display categories. The
first one also admits sumns, and satisfies the condition Display of
[H-P]: every morphism to the terminal object is a display map.
Both display categories admit discrete products.

Proof of 3.17
i)
We know that the projection as a fibration corresponds to the
constant functor D:C°P— Catz; therefore, m is a stiff fibration. It is
easy to check that a n-generic object of CxD is of the form (K,X),

where K isemptyin € and X any object of D . It follows that =
is an entire fibration. Trivially, n is semigranular when D is.
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ii)
If E is a fibration corresponding to the pseudo-functor
£:COP— Caz, then we know that P corresponds to EeF°P.Hence, P
is a stiff fibration, and is the fibers are semigranular when those of
E are. We have to show P is an entire fibration. Remember that
an object of P above XeF isa pair (X,A) where AcEFX A very
standard argument shows that a (co)cartesian arrow (X,A)—(Y,B)
is a pair (f,a) where a is (co)cartesian above Ff . Therefore,
cocartesians are cartesian and stable under arbitrary pullbacks. Let
(X,A) be any object.of P .Let a:A'»A be cocartesian, above
5:S—FX with A' E-generic. Since F is entire thereis t.S—FX'
generic along with x:(X't)—(X,s) in S/F. 3,A' is above FX', so
(X',34A") is anobject of P and thereis (x,w):(X',3;A")—=(X,A)
where w is the unique morphism 3;A'—A above Fx such that
welA'=a . (x,w) is cocartesian by 3.10 iv).
t yA'
X S—FX A'—JA
Jx s\ /Fx a\ /w
X FX A

We claim (X',3;A") is P-minimal, which will prove P is an entire
fibration, by 3.15.1 . Let (fb):(Y,B)—(X',3;A") be P-cocartesian,
that is, b is E-cocartesian. Then, since A' is E-generic there is
cA'=B with bc=1,A'. Thenit is easy to see Ec:S—FY is such
that f is a morphism (Y,Ec)=(X',t) in S/F, forcing f to be an iso,
and then b isone too since is is cocartesian above Ff .

iii)

It is well known that if F:f—=E and E:E—C are two ordinary
(bi-)fibrations then EF is a (bi-)fibration, where a (co-)cartesian
arrow fX—Y for EF is a morphism such that f is (co-)cartesian
for F and Ff is (co-)cartesian for E. It is then easy to see then
that in our case cocartesian arrows are cartesian and stable under
pullbacks. If SeC then the EF-fiber FS is the composite pullback
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FS—F
| |F

ES—E

| lE

1—¢C

S

and by the previous proposition FS is an aggregate. In view of
3.15.1 it now suffices to show that if B is finitein FS (as above)
then there is an EF-minimal object and a cocartesian arrow to B .
By 3.13.2 FB is finite in ES and since E is an entire fibration
there is X E-minimal and x:X—FB cocartesian ( EX is finite).
But also, since F is an entire fibration there is C F-minimal and
c:C—B cocartesian for F,and FC is finitein E.Let f,g be the
candidate determined by Fc,x and y the factoring:

FC
] y\Fe
Y—FB
gl /x
X

by 3.10,iv) both g and y are cocartesian. We can split ¢ as a
pair

h a

C—A—B
of cocartesian arrows above f and y . Then a is cocartesian for
EF , and EFA is obviously finite. We are left to show A is EF-
minimal. Let k. K—A be EF-cocartesian. This means k is F-
cocartesian and Fk:FK—Y is E-cocartesian. By the former, there is
m:C—K with km=h (F-minimal objects are F-generic, by 3.15.2).
By the latter there is 2:X—FK with Fkez=g . But then both f
and g factor through Fk and this shows Fk is an isomorphism.
But since k is cocartesian above Fk , it is an iso too, QED.
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Notice that if F and E are both semigranul/ar fibrations, it is
not necessarily the case that EF is a semigranular fibration. This is
because given an entire fibration E:E—C , a prime of the second
kind in E is atomic in E if and only if it is atomic in its fiber and
is above an empty object of C, as the reader may verify.

iv)

In view of the preceding proposition, the proof that Z£»¢(C) has
products is trivial: if D:D—=C and E:E—C are entire fibrations then
their product in Zn¢(C) is the composite, say P—D—C where
P-D is the pullback of E by D.But P—D is an entire fibration
by ii) , and then P—C is an entire fibration by iii) . Now if both
D,E are semigranular fibrations, it is well known that for SeC the
fiber PS is the product DSxE® , and this is semigranular.

The right notion of genericity for morphisms of entire fibrations
is the following.

3.18 Definition

Let E:E—C ,F.F—C be entire fibrations, H.E—F with FH=E.
We say an arrow x:A—HX of F is ultrageneric if:

a) x is above identity.

b) For any cocartesian b:B—A , xb is generic.

Note this implies x is generic itself.

3.19 Proposition

Let E:E—C be a stiff fibration. Let A above S be locally
empty, that is, be empty in ES . Let s:S—T.For any Xe ET there
is at most one morphism A—X above s. If there exists f:X—Y and
y:A—Y such that Efes=Ey , then that morphism exists.
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Proof

The first part is just the observation that any arrow x above s
decomposes in an essentially unique way as one in ES followed by a
cartesian arrow, and that if A is the source of x , the arrow in ES
is unique. For the second part, let g:Z—X be cocartesian above s.
Then there is a:A—Z with fga=y.

3.20 Proposition

E,F as above. Let H.E—F be a functor such that FH=E . H is
entire iff for any local prime BeF , any y:B—HY above identity,
there is a cocartesian arrow a:A—B (A will necessarily be locally
prime, cf. 3.6), an ultrageneric x:A—HX and a morphism
f:(X,x)=(Y,ya) in A/H.

Proof
Suppose H is entire. Let B be locally prime, y:B—4HY above
identity. Let B' be E-generic, b:B'—B cocartesian. There is
y:B'=HX generic and f:X—Y with Hfey'=yb.Let y' split as
m x
B'—A—HX

where m is cocartesian above Ey' and x above identity. We
have

Fb = FyeFb = F(Hfey') = F(Hfoxm)
= F(Hf)eFm = EfeFm

b
p——B
| \m |

y| A |y
l/x |

HX ——HY
Hf




gt

¢-

67

and since m is cocartesian there is a:A—B above Ef with
am=b . We claim x is ultrageneric. Since H preserves pullbacks it
suffices to prove that if c:C—A is cocartesian and there are
2:C—HZ , g:Z—X such that Hgez=xc then g is an iso.
m ¢
B—A—C

YN\ lx |z
HX~HZ
Hg

Since B' is E-generic thereis n:B'=C with cn=m . Then we get
g:(Z,zn)—(X,y') in B'/H and since y' is generic g is an iso.

For the converse, let A be prime in F, y:A—=HY above
s:5—T. We want to find a generic arrow and a morphism to y in
A/H . Two cases may happen:

i) A isemptyin ES(and S is prime).

Let X be the initial candidate of s*Y in ES.Thereis a unique
f:X—Y above s.Hf and y are both above s so there are
HX—s"HY and A—s*HY above 1g.

HX—s*HY«A
N |/ Yy
HY

But since A is empty in ES , thereis x:A—+HX , and obviously
Hfex=y . Let us prove x is a generic arrow: let

Xx) (Z,2)
g\ /¢
(Z'2")
be morphisms in A/H . Since we have Hgex = Hg'ez and x is
above identity, we have FHgoFx =FHg'eFz ,ie. Eg=Eg'oFz .
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Fz
EX—EZ

Eg\ /Eg
Ezl
Since X is locally empty, by 3.19 thereis h:X—Z above Fz
with gh=g. It is trivial to show that Hhex=2.

i) A is E-generic and atomic in ES .
Let y factor as

a y
A—A'—HY
where a is cocartesian above s and y' in ET . Thereis x:B—HX
ultrageneric, with b:B—A' cocartesian and f:(X,x)—(Y,y'b) in
B/H .
b a
B—A'—A

x| ¥yl /y
HX — HY
Hf

Since A is E-genericand B cocartesian there is c:A—B with
bc=a.But then xc is generic, since x is ultrageneric. QED

3.20.1 Corollary

Let E,F be as above, H:E—F an entire morphism of fibrations.
Let A be a prime of the first kind, 2.A—HZ a generic arrow. Then
Z is initial in its fiber, and 2z is above an isomorphism.

Proof

The proof of the theorem in the case "A is of the first kind”
constructs a generic x:A—HX where X is initial in its fiber and x
above identity. The conclusion follows from the fact that x and z

are initialin A/H .
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3.21 Proposition
a)

Let E,F be as above. Let H,K:E—F be entire morphisms of
fibrations, ¢:H—K a natural transformation above identity, i.e.
such that for every XeE , pX:HX—KX is above identity. The
following are equivalent:

i)  For every local prime A of F, every ultrageneric
x:A—-HX, 9Xox is ultrageneric.

ii) For every ultrageneric x:A—HX in F, ¢Xex is
ultrageneric.

iii) ¢ is cartesian.

b)

E,F as above. H K:E—F not necessarily entire, but such that
FH=FK=E. Let ¢:H—=K be a natural transformation above
identity. Let x:A—HX above identity be such that ¢Xex is
ultrageneric. Then x is ultrageneric.

Proof

a)
il)=i) is obvious.
i) = iii)

Let y:A—HY be generic, with A prime. We want to prove
@Xey is generic. If A is of the first kind, we know from 3.20.1
that Y is empty in its fiber. Without loss of generality we can
suppose that y is above identity. Then ¢Yey is a morphism
A—KY above identity. Using the fact that Y is locally empty,

argument i) in the converse of 3.20 will show that gYey is
generic.

If A is of the second kind it is locally prime, and therefore
argument ii) in 3.20 shows thereis x:B—HX ultrageneric,
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c:A-B cocartesian and f:X—Y with Hfexc =y .Since A is F-
generic, ¢ is an isomorphism, and then both xc and and y are
generic, showing f is an isomorphism. But by hypothesis, ¢Xex is
ultrageneric. Hence ¢Xec is generic, and since f is aniso
(X,pXoxc)—(Y,@Yey) in A/K, @Yoy is generic.

iii) = i)

Let x:A—HX be ultrageneric. To show ¢Xex is ultrageneric, let
there be b:B—A cocartesian, y:B—KY and f:(Y,y)—(X,pXexb) in
A/K . We want to show f is an isomorphism. Since ¢ is cartesian,
there is x:B—HY with Hfex'=xb (and ¢Yex'=y).

B
b/ le\Y
A HY-KY

x\ Hf [Kf
HX~KX
¢X

But x is ultrageneric, and therefore f is an isomorphism.

The proof of b) is trivial, using the definition of an ultrageneric
arrow and 2.6
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CHAPTER 4

The main theorern 4.7 asserts that our display categories admit
products. We can then construct the model of the theory of
constructions. As in the last few pages, E:E—C and F:F—C are
entire fibrations above aggregate €.

41 Definition

We denote by Zn¢(EF), or Zntg(EF) the category whose
objects are entire morphisms of fibrations, and morphisms cartesian
transformations above identity.

In order to simplify the arguments in what follows, if H:E—F is
a functor with FH=E we will denote by Fl|l[H the category whose
objects are triples (A,X,x) , where x:A—HX is above identity, and
where a morphism (a,f):(A X, x)=(B,Y,y) is a pair a:A—B, :X-Y,
where a is cocartesian, Fa=Ef ,and Hfex = ya . We will say
(A,X,x) is geperic if x is generic, and ultrageneric if x is
ultrageneric. The statement of 3.20 can now be rewritten as: for
any (B,Y,y) in F//H with B locally prime there is an ultrageneric
(A,X,x) and a morphism (A, X,x)-(B,Y,y) . When the context is
clear we will simply use x to denote the full object (A,X,x).

4.2 Theorem

Let E:E—-C and F:F--C be entire fibrations above aggregate
€ .Then £n¢(EF) is an aggregate. If F is a semigranular fibration,
£nt(EF) is semigranular.

In order to prove this, we will embed Zn¢(EF) in the category
C whose objects are all functors H:E—F with FH=E and whose
morphisms are all natural transformations above identity.
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4.21 Filtered colimits are calculated pointwise in C and
Ent(EF).

Since the proof for C is a subset of the proof for £n¢(E,F) we
will only prove the latter. Let (Hp)hen be a filtered diagram in
£nt(EF) .Let H be its pointwise colimit: HX = lim}, HpX . Since the
diagram (HpX)y, lays entirely in the fiber F EX  on can choose HX
and the coprojections ¢p:HRX—HX tobein F EX for every X
(remember, the inclusion of fibers preserves filtered colimits). H is
entire since in a Diers category filtered colimits commute with
pullbacks [Di80, 5.0] . We will first show that if AcF is locally prime
and x:A—HpX ultrageneric, then ¢ Xex is ultrageneric too,
proving ¢y, is cartesian. So let b:B—A be cocartesian, y:B—HY
above identity, and {:Y—X such that Hfey = ¢, Xexb .

b
B —A
INY Hf  HXx 1%
y | HxY—HpXe~HpX
1/ oxY (ka\- | X
HY — HX

Hf

It suffices to show f is an isomorphism. Since y is above identity,
B locally prime and therefore finite in its fiber, and (H,Y), a
filtered diagram in that fiber, there exists ke H , y:B—HyY above
identity such that ¢xYey'=y; k can be chosen with qgh—k.
Then HgXex is ultrageneric by hypothesis, and since

kX eHyf oy’ = PgXeHgXoxb

and ¢xX is mono, we get that f is an iso.

We still have to prove (¢p)n is a colimit cocone in £n¢(EF) .
Let (yp:Hp—K)y be some cocone therein. There exists a unique
natural transformation @:H—K such that @.¢p,=¢, ,and € can
be shown easily to be above identity. Let us show & is cartesian:
let x:A—2HX be ultrageneric with A locally prime. There exists h
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and x:A—-HpX with ¢pXex'=x, all this happening in the same
fiber of F. x' is ultrageneric, too by 3.21b).
HpX
X/ |\ X
A—- HX-KX
X ©Ox

Then YpXex'=0Xex is ultrageneric.

Remark

This proposition can be proven without using the fact that
filtered colimits commute with pullbacks. One then has to use the
original definition of generic arrow, which gives a more intricate
argurnent.

4.2.2 C has ‘weak multicoproducts’ in the sense that
multicoproduct families may not be small. Ent(EJF) has
multicoproducts.

Say a discrete cocone (¢ :H;—H), in € or £Zne(EF) is correct
if for every XeE, (¢;X:H;X—HX); is a coproduct candidate in FEX
One sees easily that between two correct cocones there can be at
most one morphism of cocones, and that that morphism must be an
iso. Given a family (H;),; in either C or Zn«E,F) we will show
that a choice of one representative for each isomorphism type of
correct cocone in the corresponding category constitutes a
multicoproduct family thereir.. Let us first work in C: let
(;:H;—K); be some cocone in C . For every XeE look at
(P X:HX~KX); in FEX andlet (¢X:HX—HX); be the candidate
in that fiber determined by (¢;X);,and ©X:HX—LX the factoring.
We claim H(-) is the object part of a functor, and ¢;(-) , o(-)
components of natural transformations.

Let f:X—Y in E . We will show there is a unique Hf:HX—HY
such that Hfo@;X = ;Y oH;f for all i€l .
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X
H‘X—' HX

Hf 1 1 Hf
H,Y ~ HY
oY

Clearly, this will ensure that H thus defined is a functor and the ¢
are natural transformations. Let v;HX—V;, v:HX-V, and
w:KX—W be cocartesian arows above Ef . There are the usual
m;:V;j—H,Y and n:V-W corresponding to the image of ¢;X and
©X by 3¢ respectively. Let Hif factor as y;v; and Kf as 2w,
where y; and z arein FEY

X X
H,X— HX— KX
vil v |w
V,-—-iV-—DW
vilm 0|z
H,Y = HY - KY
¢;Y oY

By 3.1 (m;) is a candidatein FEY . We claim it is the candidate
determined by (@,Y ¢y;); . This is because composing (m;); with zn
yields the same cocone as composing (¢,;Y oy;); with @Y . Hence
thereis c:V—HY with cv fulfilling the requirements for Hf . To
prove uniqueness of Hf let r:HX—HY be any morphism of F with
ro@;X = @;YeH;f for all i.Thereis c:V-HY with c'v=r.It follows
that c'myv; = ¢,Y ey vy, and by the cocartesianness of v;, that
c'm; = ¢;Y oy, . Therefore c'=c and Hf is unique.

Suppose now that the original diagram (¢;:H;—K); was in
EntEF) . Let us show the ¢; are “cartesian”, in the sense that they
send ultragenerics to ultragenerics: if x:A—H;X is ultrageneric,
then 8Xe@Xex = yXex is ultrageneric, and 3.21 b) shows ¢;Xex
is ultrageneric. To show X is "cartesian”, let y:B—HY be
ultrageneric, with B locally prime. By Axiom 5 there willbei,
and y:B-HY with ¢;Yey' =y .Butthen Yoy = Yoy will be
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ultrageneric. To show H is entire, let (B,Y,y)€FllH , with B locally
prime. Again, thereis i ,and y:B—H;Y with ¢;Yey'=y . Find
(A, X,x) ultrageneric and (af):(AXx)—-(B,Y,y") in FlH;. ¢;Xex
will be the required ultrageneric arrow for y , ie we have
(a,f):(A,X,p;X+x)—(B,Y,y) in FlH.

We are left to show multicoproduct families in Z£n¢(E,F) are
small. This is a standard argument, using the fact that a natural
transformation between filtered-colimit-preserving functors is
determined by its components on the finite objects.

423 (Connected limits are calculated pointwise (and fiberwise) in
Ent(EF) .

That is, if (Hp)hy is a diagram with H connected, and its
limit is called H, then HX=lim} H,X . We have that (H,X)y, is a
diagram above X, and since both the inclusion FX—F and F
preserve connected limits, HX can (and should) be taken in FX.
Let us give the details in the case the diagram above is a pullback,
which is the only case we will need. Let

Y

H—Le—K
be the diagram and let

c
M—K
el v
H—L
9
be the pointwise pullback, that is, M is the pullback in EF and has
been chosen such that ©,0 are above identity. M is entire, since

filtered colimits and pullbacks commute with each other. Let us
show © is cartesian. Let f:X—Y in E,b and let
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y
A—MY

x| | oY

HX—HY
Hf

commute. An easy diagram chase will show ¢YeoYey=LfepXex,
and by the cartesianness of ¢ there is zZA—KX with Kfez=oYey
and ¢Xez=@Xox .But then thereis w:A-MX with ocXew=2,
8Xow = x . Then, trivially Mfew=y , 8Xew = x and that proves
the claim.

Soif a:N—H, p:N—K arein Zn¢(EF) and such that
g = yp , there is a unique p:N—M in Ef with op=a ,0p=p.
These equations force p to be above identity, and an easy use of
3.21 b) will show p is cartesian.

We now have to describe the prime generators of Zn#EF). Itis
natural to use the fact that ultrageneric arrows are an “invariant”
property of entire morphisms of fibrations, stable under cartesian
transformations. That is, if x:A—HX is an ultrageneric arrow, it
makes sense to ask whether there is a "smallest” subobject K—H in
£ndEF) through which x will factor. It could turn out to be that
whenever A is locally prime, K would be prime in Zn¢(EF) , and
that there would be only a small set of K's thus obtained; they
certainly look as if they would form a strong generating set. With
the goal of proving these facts in mind, for any fp. AeF , X¢E , we
define the categories Arr(AX) and U/t(AX) . The objects in the
first one are pairs (H,x) where H is an object of C and x:A—-HX
an arrow above identity. A morphism (H,x)-(H'x') is a
transformation ©:H—H' above identity such that eXex=x'.We
take U/t(A,X) to be the subcategory of Arr(A,X) whose objects
are pairs (H,x) where H is entire and where a morphism € is a
cartesian transformation.
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4.24 Definition
Let AcF , XecE be finite objects such that EX=FA . An AX-

representable functor is an object (H,x) of Arr(AX) such that for
every YeE the family

(Hkox: A~ HY )xeE(x,Y)
has the following property: if Hkex is factored as

ax by

A—Ax—HY
where ay is cocartesian above Ek and by above 1gy then the
family (bk)keE(x,Y) is a coproduct candidate in FEY _Suchan x
will be called a representor for H . Sometimes we will just say ‘let
H be A, X-representable”, meaning that there exists an x:A—HX
with the desired properties, or even ‘let H be representable’,
meaning there exist unspecified A,X and x.Notice that if E(X,Y)
is empty, then HY is an initial candidate. The definition entails
that if (H,x) and (K,y) are A,X-representable there exists at most
one natural transformation 6:(H,x)=(K,y) and © is an
isomorphism if it exists.

Let (H,x) be A, X-representable. For any Y ,kX—Y let
Xy =Hkox . Let x) factor as byea) as above. Then for f:Y—Z we
have

Hf ox) = HfeHkex = H(fk)ex
= Xfk
Therefore, since (Igsbx)xec(x,y) is a candidate in FEZ | and we can

put Agy = IgsAx , by the usual properties of cocartesian arrows, we
find that ...
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ax by
A— Ap,——HY

afk\ 133{1)1‘1 VEHY
Ap— 3peHY
b L v (veFZ st velgHY=Hf)
HZ

425 ... an AX- representable (H,x) Is completely determined by
the following data.: for every Y¢E , an object HYeF EY along with
a candidate (by: IgxA—HY)xek(xy) i FEY , such that for every
t:Y—Z the cocone (bex:3g(x)A—-HZ)kek(xy) 1 F Z determines
(3gsby)x for candrdate.

Hence the value of H on morphisms is determined by the
factorings and one takes x=bjy, . We will always use the notation
ax:A—Ax for \gxA.

4.2.6 Proposition

A,X as before. Arr(A,X) has a "weak multi-initial family”, in
the sense that every one of its connected components has an initial
object, but there may be a proper class of connected cornponents.

Proof

We know there is at most one morphism in 4r7(A,X) between
A,X-representables, and it must be an isomorphism. So we have to
show that given any (K,y) in Arr(AX) there exists a unique (up
to iso) A X-representable (H,x) and a unique morphism to (K,y) in
Arr(AX) .Choose Y€E .For k:X—Y let Kkey factor as

ax Ck
A— Ax—KY

where ay is cocartesian and cx in FY . The cocone (ck)keE(X.Y)
determines a candidatein FY , call it (by:Ax—~HY)} , and a
factoring @Y:HY—-KY .
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y
A—KX
ax | Ck ! Kk
Ax—KY
bk\ /(pY
HY

Do this construction for any Y in E.Let f.Y—Z in E.The
discrete cocone (bgy:Agx—HZ)keE(x,Y) determines (Ig¢bk)x for
candidate because if we factor Kf as weigKY where weF
and if we call d:Ax—A¢x the unique (cocartesian) arrow above Ef
such that day = ag,
ax by oY
A— Ay *HY +KY
ac M| d LweHY | pKY
Agg— 3gHY— 3IgKY
b \OEPk  JEPY | w
HZ 'K2Z
¢z

then chasing the diagram above shows

wo 3gspY e Jgsbxed = @Zobgy od

and the cocartesianness of d allows it to be removed from the
equation. Hence, by 4.2.5 we have defined an A,X-representable
(H,x) , where x =b1x and it is easy to see we have a natural
transformation above identity ¢:H—K such that ¢Xex=y.Sucha
¢ is unique, since for any Y€E the family (by)kcg(x y) is jointly
epi in its fiber.

If (K,y) is initial in its component, then the morphism
(H,x)—(K,y) it determines, where (H,x) is A X-representable, must
be an iso, and therefore (K,y) is already A,X-representable.

We are now ready to describe the generating set of Zn¢(EJF) in
the case F is a semigranular fibration. The general case is more
complicated.

TSR e
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4.2.7 Proposition

Let (H,x) be A,X-representable with A locally atomic and
x:A—HX ultrageneric. Then H is entire. If y:B—HY is an
ultrageneric arrow with B locally atomic then H is B,Y-
representable, y is a representor, and (B,Y,y),(A,X,x) are
isomorphic in FIlH .

Proof

Let b:B—HY be some arrow above identity with B locally
prime. By Axiom 5, and since H is A ,X-representable, there exists
k:X-Y along with c:B— Ay above identity with bxc=b . Since Ay
is atomic in FEY by 3.2.1 c is an isomorphism.

ap ¢
A—Ax+-B

x| b\ IlDb
HX —HY
Hk

Therefore ¢ lay is cocartesizn and H is entire, by 3.20 . If now
b is ultrageneric, since c'lak is cocartesian, bc'iak is generic, by
definition, and since then k is a morphism in A/H between generic
arrows it is an isomorphism. This shows c'iak , being cocartesian
above an iso, is also an isomorphism. Then a simple translation
argument shows b is a representor for H.

428 Corollary
i)
If A is locally atomic then U/#(AX) has a (small) multi-initial
family.
ii)

If F is a semigranular fibration, then Zn¢(EF) is semigranular.
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Proof
i)

We already know that if (K,y) e U/t(A,X) then there exists an
essentially unique representable (H,x) and a unique ¢:(H,x)—(K,y)
in Arr(AX).By 3.21b) x is ultrageneric and by the preceding
proposition H is entire, so (X,x) € U7¢(A,X) . So we are left to prove
¢ is cartesian. But if 2:B—HZ is an ultrageneric arrow we know
(4.2.7) z is isomorphic to x in F||H, hence ¢Zez is isomorphic to
y in FlK and therefore ultrageneric. To show there is only a small
number of representables (H,x) € U/{A,X) , use the fact that such an
H must preserve filtered colimits, and therefore is entirely defined
by its value on finite objects of E . The description of representables
given by 4.2.5 shows there can be only a small number of them.

Let us now show that if A is atomic, (H,x) A,X-representable,
then H is atomic in Zn#(EF) . We know its bottom subobject is
the functor L, where LX is the initial candidate determined by
HX in FEX So let ¢:K—H be a morphism in £n¢(E,F) where
K#L . Then for some Ye€E KY is nonempty in its fiber, and so there
is y:B—KY in FEY where B , by the same argument as in 4.2.7 ,
is locally atomic. There is an ultrageneric x:A—=KX along with
(a,f):(AX,x)=(B,Y,y) in FlK.By 4.2.7 ¢Xex is a representor for
H since it is ultrageneric. Let Ze¢E . We will show ¢Z is an
isomorphism by testing with the primes of FEZ Let C beoneand
c:C—HZ in FEZ Since H is A X-representable, by Axiom 5 there
is k:X—Z and o:C—Ax with bga =c ( bgxak being a cocartesian-
above identity factorization of Hke@pXex ).

A

X / \ak
KX—-HX Ay
Kk| Hk|Px/ T«
KZ—HZ—C
¢Z c
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Again asin 4.2.7 ,C and Ax are locally atomic and « is an iso.
Since ay is cocartesian thereis d:Ax—KZ in F EZ with
day = Kkox . da~1 will be the required arrow.

ii)

Now suppose F is a semigranular fibration. Take a
representative class § of functors H such that there is AeF
locally atomic, X¢E finite and x:A-HX ultrageneric making (H,x)
representable. Such a class is obviously small (4.2.5, essentially).
It is a strong generating set of finitely presented objects: let us
prove the strong generation property; the proof for finite
presentedness will be postponed a little. Let 8:K—L be a morphism
of Znt(EF) such that for every He3 Hom(H,8) is an isomorphism.
Let B be some local atorn of F and y:B—LY some arrow above
identity. There is the usual x:A—LX ultrageneric along with
(af):x—y in FlIL . Let (H,x'") be theinitial candidate of L/{A,X)
determined by (L,x) and p:(H,x')—(L,x) the unique morphism.
(H,x') is isomorphic to some object of & . By assumption there is
Y:H—K with ep=p.

HX
¥/ JpX\X
KX—LXe— A
Kf | 8X [Lf* |a
KY—LY+«—B
oY y

Since a is cocartesian there is z:B—KY above identity such that
za= KfoyXex', and a simple diagram chase shows 8Yeza=ya, and
a can be factored out by cocartesianness.

Let us now prove Axiom 5 for Znt(EF) .Let (¢p;:H;—L)q be a
candidate in £n¢(EF) ,and 8:K—L where K is in our set of
generators. There is a:A—KX ultrageneric with A atomic making
(K,a) an initial candidate in Z/¢(A,X). Since (¢;X); is a candidate
in FX (4.2.2) by Axiom 5 there is ic] and b:A—HX with
¢;Xeb = 8Xoa.Since 8Xea is ultrageneric b is (3.21b)). Then,
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since (K,a) is an initial candidate in U/?(A,X) thereis ¢:K—H;
making the triangle commute. The proof that the elements of 4
are finitely presented is essentially the same. This completes the
proof.

We can now tackle the general case of entire fibrations. The
concept of A,X-representable functor is not sufficient in this case,
since given an ultrageneric arrow, the representable it determines
may not necessarily be an entire functor. We need a broader
concept:

4.29 Definition

Let A€F belocally prime, HeC , x:A—HX an ultrageneric
arrow where X is finite. Let (a;A;—A)esus(a) be a choice of
representatives of the subobjects of A in FFA I AiCA; let
ajsAj—A; be the morphism that realizes the inclusion. We say
(Hx) is AX-generated if

i)  For every i€ Sub(A) there exists a y;:B;—HY;

ultrageneric, where Y; is finite, and (byf):y;—xa; in FIH.

ii) If ¢i:H—=H is the morphism in € where H; is the B,Y;-

representable determined by y;, then (¢;); is a candidate
cocone in C , that is, a correct cocone.

We will call x a generator for H.

4210 /f (Hx) is AX-generated, then H Is entire.

First we show (all notation as above) that for any i,j such that
AiCAj there is fifYi—Y; with fjfij=f; . Let p:P—B;, q:P—B; be
the pullback of byiB;—A; by aybi:Bj—A;.p is cocartesian since by
is. Defining m=xa;b;p=xa;b;q it is easy to see we get morphisms
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p Yi
P —B;—— HY
| I |
q| A |
| ayl \a | Hf
BJ'—"AJ"A
y;l by a5\ |
HY, HX
Hf,

fi:(Yy,yip)=»(X,m) and f;:(Y;y;q)—=(X,m) in P/H.Since y, is
ultrageneric and p cocartesian, y;p is generic and there is
fij:(Y,.yip)—’(Yj.qu) with fjfij'fi .

Now let z2:C—HZ be an arbitrary arrow above identity. Clearly,
by the definition of A X-generated and Axiom 5 thereis j,
g:Y;—Z such that z factors through 3ggB,, by a morphism above

"'E
: jBE,Bj«-C
YJl N\ lz
HYJ——’ HZ
Hg

identity we will call ¢ . Let c':C'—’Bj , n:C'=C be the pullback of ¢
by 1ggBj. n is cocartesian. There is d:3; JC'—'A 5 above identity
with deigg JC'= bjc' . There is i such that ajd as a subobject is
equivalent to A;, and so A;CA;. Identify 3EfJC' with A;.We can
then restate the above by saying thereis r:C'—A; cocartesian such
that ajr=bsc’. By the cartesianness of r, thereis 1:B;—C' above
fij with rl=b;. 1 is cocartesian by 3.10 iv) . Then nk:B;~C is
cocartesian, and gfy;:Y;—Z is such that F(nl)= E(gf;) and

H(gf;j) ey;=2nl , and y; is ultrageneric. QED.

Corollary

If z:C—HZ is ultrageneric then it is isomorphic in FIlH to a b
for some i .
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We already know thereis i, d:B;—C cocartesian and g:Y;—=X
with Hgey;=2d ,d and g being above a common arrow. Butif 2z

is ultrageneric g is an iso and therefore d too.

4.2.11 Proposition
If (H,x) is AX-generated, hW—X such that Hh is
cocartesian, then h is an isomorphism.

Proof
We assume Y;,B;,y;, are defined as above. Let w:D—-HW,
d:D—A be the pullback of x by Hh . d is cocartesian and w
above identity. By assumption, there is i, k:Y;{—=W , along with

P
P/ \9 4
Bl D—A
lc\ /il |
vil ¢ |w |x
I NI
HY; — HW —HX
Hk Hh

a cocartesian arrow c:B{—=C above Ek such that w factors
through the unique e:C—HW above identity with Hkey;=ec.
Calling this factoring i:D—C, let p:P—B; and q:P—D be the
pullback of ¢ and i. q is cocartesian since ¢ is, and we get a
morphismn hk:(Y;,y;p)—*(X,xdq) in P/H.But xdq is generic since
dq is cocartesian, and therefore hk , h are isomorphisms.

4.212 Forany A Jocally prime, X appropriate, the category
UIKAX) has a poly-initial family. The category Entg(EF) Jsan
aggregate.

This is 4.2.8 over again. Let (K,x)e U/H(AX) . Let (ajzAj—A)ji¢]
be a choice of representatives for the subobjects of A above
identity, as in 4.2.9 , and let ag:Ag— A denote the identity
subobject, so 0el.Let (byfp):(B;,Y,y1)—(AX,xa) be a choice of



¢4

86

ultrageneric yj's and arrows in FlK . We have yp=x.For any i€l
there is an essentially unique B;,Y;-representable (H;,y;) and a
unique @;:(H, ;)= (K,y) in Arr(B,Y;) . This gives a discrete cocone
(p4:H;=K); in T.Call y:H—H the coproduct candidatein C it
determines and @:H—K the factoring. Let z; denote ¢;Yjey; and
call z=2g. Since every 2z; is sentby ¢ to y;,all the 2z; are
ultrageneric. It is now easy to see that (H,2) is A,Y-generated, and
therefore entire (4.2.10) . We can now show (H,2) is generic in
U/IHAX) . First, 4.2.3 along with a trivial argument show that
U/t(A,X) has pullbacks. Therefore, by 0.11 we only have to show
(H,2) does not have any subobject but itself. But this is obvious,
since H is the entire functor generated by the ultrageneric arrow

Z : any entire subfunctor of H through z factors will have all the
2zi's factor through it too, and therefore will be H . The poly-initial
family of U/t(A,X) is small by the usual counting argument (cf.
4.2.8). A generic object in U/t(AX) is obviously always s,X-
generated since it admits a morphism from an A,X-generated object
to it.

Now suppose (K,x) as above is such that it is A,X-generated.
We want to prove K is prime in £n2¢(E,F) ; let us first show
Sub(K) is finite. For every i€l let (K;,v;) be the generic object of
U/HB;,Y;) determined by (K,yy) , and vy (K, v)=(K,y;,) the arrow.
If T:L—K isasubobject, Let JCI be the set of i such that v,
factors through < .This happens iff y; factors through
tYy:LY{—KY;, and determines a discrete cocone (A;Kj—L)seg . We
claim it is a coproduct candidate, thus showing SuA(K) has a
smaller cardinal than the powerset of |, and proving our claim: it
suffices to show (by 1.5 + 4.2.2) that for any object W of E, any
w:C—LW above identity where C is locally prime, there is a jeJ
such that w factors through AW . Since, by the corollary to
4.2.10 the y;'s are a representative set of ultrageneric arrows for
K, there is iel and (c,g:(B;Y;,y)—(C,W,TWew) in FIK . By the
pullbackness of the square
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TYi
LY;—KY;
lgl lKeg
LW—KW
™w

there is u:Bj—LY; such that TYjeu=y; and Lgeu=wec. The first
equation says that i€J, and so u=;Yjov;.Since c is cocartesian
above g thereis s:C—KiW with sc=Kigov;.
Lg
LY, /LW
T\Y V"1
A Y | B;—C l NW
| /vi s\ |
K;Yi—K;W
Kig

Then chasing the diagram above shows A;Wesc =wc , and since ¢
is cocartesian it can be factored out, so w does indeed factor
through a AW .

We will now show K has the other property of primes: let
(ps:Hs—H),es be a candidate cocone and ©:K—H . By Axiom 5
there is s such that 8Xex factors through ¢,X .But since (K,x)
is generic, there is K—H; making the triangle commute.

We now know what a strong generating set for Zn#(EJF) should
look like: take a representative class @ of functors H such that
there are A€F locally prime, X€E finite, and a generator x
making H A,X-generated. The same old argument shows ¢ is
essentially small. The proof that @ is a strong generating set is
exactly the same as in 4.2.8 ii) ; one simply has to substitute
"generic object” for “initial candidate”. The same substitution will
yield proofs that Axiom 5 hclds and that the objects of § are
finitely presented. This completes the proof of 4.2 .
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Let us show some special cases of that theorem where the prime
generators are more tractable than in general. First we will need
some more information about initial candidates in functor categories.
Let mq: Aggr — Set be the functor that sends every aggregate to its
set of connected components. Notice that mg preserves small
products; that is, if (A1 is a family of aggregates, then
no(TT,AD = TTi(rg(A)) . If A:A—D is a morphism in Aggr, for
xeng(A) define Alg:x—D to be the restrictionof A to xCA. x is
an aggregate by itself, and Al, is also an entire functor. We assume
C,E,F arestill the same as above. If zeC , let E%:E®*—>2z be the
entire fibration obtained by pulling back E by the inclusion z—C .
Quite clearly, we have

Ent(EF) = T1 En#(E%F?)
zenq(C)

43 Proposition

Let € be connected. Then for any Se€ mg(1S):mg(ES)=mnp(E) is
a bijection ( IS being the inclusion). It follows that if € is any
aggregate, then my( Zn¢(EF)) is isomorphic to
Set /no(€)(ng(E),np(F)) , that is, the set of functions f:mg(E)—nq(F)
with mg(F)ef = mo(E) .

Proof

Remember that in an aggregate connected components are in
bijective correspondence with isomorphism classes of initial
candidates. Let V be "the” initial object of € .Then by 3.8.1 the
initial candidates of EV are the initial candidates of E . There is a
unique :V-S and since 3,,!" form an adjoint pair they
determine isoorphisms between the connected componerits of eV
and those of ES , and this proves the first claim. Still assuming €
is connected, let yeng(F). We can define a section <y>:C—F ,
Fe<y> = 1¢ as follows: for SeC <y>S is (a choice of) the initial
candidate of FS contained in y . The value on a morphism of € is
uniquely defined, and the rules for calculating limits and colimits in
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‘ stiff fibrations (3.7) easily show that <y»> is entire. We have
<y>:€C-yCF , which can be restated by noting that ng(C)={C}, so
(mo<y’)(€) =y . Now if f:mg(E)—mg(F) is any function (we
obviously have mg(F)ef = my(E)), define T.E—-F as follows: using
the fact that E is the coproduct

E = |l x
xeng(E)

we take f to be the unique functor whose restriction to xewg(E) is
«f(x)>+El, . Obviously, by its construction fe Zn¢¢(EF) , and

no( ) = f . Notice that f is a functor that sends every object of E
to an object which is an initial candidate in 1ts fiber. Therefore tis
an initial candidate in £n¢(E,F) . We can now prove the second
claim; let € be any aggregate. Let

p: £nt(EF) — Set/ng(C){(ng(E),mo(F))

send H to mg(H) . Notice that p is a functor to a discrete category.

( If H,K are in the same component of Zn#E,F) we have p(H)=p(K)
since H and K will send every component of E to the same
component of F . Therefore there is a natural

n: ngl £nt(E,F)) — Set/mo(C)(no(E),no(F)

and our goal is to prove it is bijective. Notice that the argument
above is just a proof that p is surjective when € is connected, and
therefore that m is too. Let z range over mg(C) .

ol £nt(E,F)) — Set /mg(C)(ng(E),no(F))

| |
no(TT, £ne(EZF 2))

s
1) |
T, (mg( £nt(E3 F?)— T, (1o(E?),mo(F?))

The nature of the vertical isomorphisms should be clear. If
f € Set/mp(€)(ng(E),np(F)) the iso to the right (which is just the
remark that Set/ng(C) = Set™0(€) ) transforms f into a family

s
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(fz); , where f;:mg(E%)—1g(F?) . Since every z is connected there
exists f:E*—=F% with mg(f,) = f, , and therefore the morphism at
the bottom is sur jective, making the top morphism surjective.
Notice that the vertical isos at the left piece the f,'s into a single
P:E—~F with ng(f)=f, and it is easy tosee f is an initial
candidate in Zn#(EF) , since fX= sz , where z is the component
of EX.

To prove the injectivity of m,let H,Ke £Zn¢(E,F) be such that
no(H) = ng(K) (= f, by definition) . For every X¢E we have that fX
is in the same component of F as both HX and KX, and therefore
(by the first claim, applied to F2—z where 2z is the compcnent of
EX ) they all are in the same component of FEX Therefore, there
are IX—HX, IX—KX, for every X,andso f—-H, t—=K, proving
that H and K represent the same element of mng(£n¢(EF)) . This
completes the proof.

4.3.1 Corollary

If F is a fibration all whose fibers are connected then Zn¢(E,F)
is a connected aggregate.

Proof

By the first claim, ng(F) is an isomorphism, and therefore in
terminal in Se¢/ng(C) , making mng( Z72¢(EF)) a one-element set by
the second claim.

We can now explore some special cases of 4.2 .

44 All the fibers of ¥ are qualitative dornains.

Since qualitative domains are (semi)granular, £n¢(EF) is
semigranular; it is obviously a poset, and the corollary above shows
it is connected. We only have to show £nt(E,F) is consistently
cocomplete to get that it is a qualitative domain, by 1.11.1 . But
this is trivial to show, since multicoproduct families are calculated
pointwise and fiberwise (4.2.2), and therefore have to be singletons.
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Let us try to see what the "underlying” set of atoms looks like.
Since the fibers are posets we know that for s:S—+T in € the
functor 3,:F SoFT js uniquely defined. Let X¢E be finite and A
be an atom of FEX Since the coproduct candidates in the fibers of
F are uniquely defined, it is easy to see that there exists at most
one A,X-representable functor, call it [X,A] , and [X,A] is defined
iff for every Ye€E the family (3pxAlxcg(x,y) has an upper bound
in FEY ; if EQLY) is empty, [X,A]Y is the bottom element of
FEY | Let X,A be a pair satisfying the condition above. Let (X,A),
(Y,B) be pairs such that [X,A] and [Y,B] are defined and equal,
say to H. By 4.2.7 we know the morphisms A—HX and B—HY
(above identity) are isomorphic in FlH . This is equivalent to saying
thereis an iso a:X—Y such that B=3g,A . Conversely, it is trivial
to prove that if p:X—Z isan iso, then (X,A]l and [Z,3gpA] are the
same functor. Therefore the set of atoms of £n¢(E,F) is isomorphic
to theset Q of all sets X such that

- The elementsof X are pairs (X,A) where X¢E is finite
and A¢F alocal atom above EX.

- If both (X,A) and (Y,B) arein X then thereis an iso
a:X—Y (not necessarily unique) such that B=3g,A .

- If (X,A)eX and p:X—Z is an iso then (Z,3ggA)eX .

When does a subset BCQ have a sup ? For every XeB let
(Xx,Ax) be a choice of an element of X . Clearly, a necessary
condition is that the family of functors ([Xx,Axl)xsg have a sup in
C, ie that for every Y€E the family (3pxAx)xeB keE(xy,Y) have
asupin F EY , call it H. Notice this will be the case if all the Xx
are in different components of F . Also, notice that H thus defined
always preserves pullbacks (exercise; use the fact that for any
f:X=Y in E Hf is cocartesian). To make this necessary condition
sufficient, all we have to add (cf. proof of 4.2.2) is to require that
the morphisms [Xx,Ax)J—=H be cartesian for all X .Since [Xx.Axl
has an essentially unique ultrageneric morphism, namely
Ax—[Xx,Ax]Xx , we are simply asking that Ax—HXx be
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ultrageneric. Assume it is not the case for X . Then thereis a:B—A
cocartesian, y:Y—Xx not an iso (since H preserves pullbacks, we
can use 2.2) such that

a
B— Ay

| |
HY — HXx
Hy

the vertical arrow to the left is above identity and the square
commutes. But since H is the sup of the [Xx,Ax)'s by Axiom 5
there is YeB , x:Xy—Y such that B=3Ig,Ay . By composing the
cocartesian arrows Ay—B—Ayx we get that

There exists YeB and z:Xy—Xx not an iso such that

Ax= g Ay .
Conversely, if that condition arises, then the natural [Xy,Ax]—H
will certainly not be cartesian. Hence we have found a condition of
compatibily for the atoms of £n¢(EF): a family ([Xyx,Axlxeg of
atomic functors has a sup iff for every YeE the family
(3ExAx)xeB, keE(Xy,Y) has a supin FEY and for no pair X,Y€B is
there a k:Xx—Xy not an iso such that Ay = 3gxAx . This condition
is a gereralization of the one given in [Gi86] , and should be
compared with it.

45 C.E.F are posets.

Obviously the fibers of E and F are posets too. Since in this
situation it is useless to name the morphisms, for S<T in € and X
above S we will use the notation 37X for the object obtained by
pushing X above T by a cocartesian arrow. Let now X€E be
finite, A a local prime of F above EX.Let g:mg(E)—mnp(F) be
such that mg(F)eg= ng(E) and g(Component(X)) = Component(A) . Define a
functor [X,A,g)l:E—F as follows:
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IyA if YoX

(X,AglY = {
gY if not (cf. 4.3)

It is quite easy to see g is indeed a functor, in fact, an AX-
representable one. What is more surprising is that g is entire, and
therefore A,X-generated; the verification of this poses no problem,
and will be left to the reader. Here is an instance of a fibration of
aggregates where the unwieldy concept of A X-generated functor
can be avoided.

4.6 C=1. Jhatis, Ent(EF)= Aggr(EF).

Many definitions simplify considerably in this context. For
instance, the notion of ultrageneric becornes identical with that of
generic. Given X¢E finite, AcF, an A X-representable (Hx) isa
functor H.E—F along with x:A—HX such that for every Y¢E the
family (Hkox)kcg(x.y) is a coproduct candidate. Let F=1J, the
category of sets and monomorphisms, and let us determine the
atomic entire functors E— . Since M is granular and has
essentially one atom, the one-element set 1, the atoms of the
functor category form a generating set and they all are 1,X-
representable for some X¢E .Let H be such an atomic functor. Let
x:1-HX be generic. We can also write xeHX , obviously. Let G be
the automorphism group of x in 1/H; it is the set of all
endomorphisms (they being automatically automorphisms) o of X
such that Haxex=x .G is obviously a subgroup of Aut(X) .For
every Y¢E G acts on theright on E(X,Y) by (f,a)—fo . For a
morphism Y—Z in E there is a morphism of actions
E(X,Y)—E(X,Z) and so we can define a functor K:E — Set that
sends Y to the set of G-orbits on E(X,Y) . By Yoneda there is a
unique natural transformation go:hx-'H sending 1y to x, where
hX is the covariant representable functor associated to X (hX can
obviously be considered as a functor E=M ). Since (H,x) is 1,X-
generated, ¢ is surjective in every component. Let f,geE(X)Y) be
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such that ¢Y(f) = ¢Y(g) ( =y, by definition) . We can restate this by
saying there are morphisms
f g

(X,x)—(Y,y) —(X,x)
in 1/H, and therefore by the genericity of x there is a€G with
fo=g,andso f and g belong to the same orbit of the G-action.
The converse, that G-congruent morphisms of Zn¢(X)Y) are
identified by ¢Y , is trivial. Thus we have proven that H=K .
Conversely it is quite easy to show that given any Xe€E finite, any
subgroup GC Aut(X) , the functor hX/G:E— I defined as K above
is 1,X-representable, with the orbit of 1y, an element 1—(hX/G)X
as as representor. This means that our notion of A,X-representable
is a generalization of the classical notion of representable functor: if
we restrict ourselves to I (Sezs) as a target category, a 1,X-
representable functor is the same thing as a multiple coequalizer of
representable functors

(hg)g(G
hX = hX —n¥/G

»

where all the g's are isomorphisms. Let X'¢E,and G be a
subgroup of Aut{X'). Clearly, if thereis a natural transformation
q;:hx /G'= h%/G , by Yoneda and the surjectivity of the projection

hX —— KX

|
hX'/G'— h¥/G

hX—h*/G' there is a natural 8:hX—h¥ making the square above
commute, and then, a morphism {:X—X' with = hf . In order for
the transformation to be cartesian, f has to be an isomorphism
(since 1x-:1—’hX'X' is generic, and 8X'ely' =f can be generic in
hX'X only if f is aniso). We get that cartesian morphisms of 1,X-
representable functors have to be isomorphisms and are mediated
by isomorphisms in E (the first observation is not surprising since
1,X-representables are atomic). Solet f:X—X' be an isomorphism
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such that the lower horizontal (iso)morphism in the square above
exists, making the square commute. For any Ye¢E , any hkX'—Y,
we get

h G-congruent to k = hf G-congruent to kf
h™lkeG' - (hf)"(kf) €G
h™lkeG' > fihlfec

and therefore such an f is exactly a morphism such that for
every o€G we have flafeG. In particular, by putting X=X'
we can describe the set Iy of isomorphism types of all 1,X-
representable functors: if Wy is the set of subgroups of Auwt(X) ,
then $y is the set of orbits of the standard action of Auw#(X) on
Wy by conjugacy. The autormorphism groups of the 1,X-
representable functors can be similarly characterized. This is not
very good news: for example, if E=1Jl, then the category
Ent(M, M) has its set of isomorphism types of atoms in bi jective
correspondence with the disjoint sum

Ll orbit(&,,¥,)
neN

where W, is the set of subgroups of the symmetrical group &,
and &, actson W, by conjugacy. Not a trivial computation.

Let us finish this remark by noting that if E is any aggregate,
and if Q@ is the set of isomorphism types of atoms of Zn#(E,T) , for
every AeQ, denoting by Gp the automorphism group of (a
representative of) A, then Zn#(E,JN) is equivalent to the product
category

T Ga
AcQ

where G4 is asin 1.11 . This is proven by noting that in
Ent(EM) , for every discrete family of objects there is a unique iean
cocone, and that this property characterizes categories of the form

TTi Gi'
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4.7 Theorem
Let E:E—C be an entire fibration. The pullback functor

E*: F1b(C€) — F1b(E)

has a right adjoint TTg . The Beck condition holds for any pullback
diagram of entire functors where two parallel ones are entire
fibrations. If F:F—E is a semigranular fibration, then TIgF isa
sernigranular fibration too.

Corollary
The display categories (Aggr, Fib) and ( Ager,Sgr)
(3.16,3.47.1) both admit products. Since in addition they both
admit discrete products, for any aggregate €, F5(C) and Sem(C)
are cartesian-closed. In particular, both the category of aggregates
and entire functors and the category of semigranular categories and
entire functors are cartesian-closed.

Proof

Let F:F—E bein /b(C) . We will construct TlgF as a diagram
G:G—C defined as follows.

An object of G above S isa pair (S,H), where H is an entire
functor H:ES—F with FH= 1gS . As is customary we will say things
like “let H be above S " in lieu of “let (S,H)e€& ". A morphism
¥:H—K in E above s:S—T is a function that assigns to every
arrow {:X—Y above s a morphism ¥[f:HX—KY above f, ie.
such that F(x[f])=f .Y is subject to the condition that if

f
X—Y

x| ly
X—Y'
fl
is a pullback square where f,f' are above s, and x,x' above
identity then the square
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xif)
HX —KY

Hx| |Ky
HX'—KY'
xIf')

is a puliback too.

4.7.1 Proposition
Let %:H—K be above s:S—T in 6.

i) Let
Yl
t/ 1y
X—Y
fl

be a comrnutative trianglein E where {,f' areabove s and y is
above identity. Then Ky ¥[f] = X[f'].

ii) Let
W
w] \\ 8
W—2
g
commute in E where g,g' are above s and w above identity.
Then Ylig'leHw = Xlg].

Proof

for i), let x:X'=X and h:X'-Y' complete the diagram to a
pullback. Thereis a:X—X' with xa=1y and ha=f . This forces x
to be an isomorphism, and the statement follows from the pullback
condition on ¥ . For ii) , let k: W'—=2Z' Le cocartesian above s and
2:Z'-Z above identity with zk =g'w . By the above, we have
Kzo y%[kl= %[g) , and since w,z,g',k form a pullback ( 3.3 d) and a
trivial argument) we have Ylg'leHw = Kz %[k] = ¥[g] . This shows
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among others that % is entirely determined by its values %[f]
where f is cocartesian:

4.7.2 Proposition

Let s:S—T in €, He6S and KeGT.Let % be a function which
assings to every cocartesian arrow f:X—Y above s an arrow
XIf:HX—-KY above f such that the puilback condition holds for the
squares that can be made in this context: for any commutative

f
X—Y

x{ |y
X—Y'
f'
square where f,f' are cocartesian above s, and x,x' above
identity (any such square is a pullback) the square

xlf)
HX—KY

Hx | | Ky
HX'—KY'
xIf'}
is a pullback too. Then %X can be extended to a unique morphism
H-K of 6 above s, which we will also call ¥ .

Proof

First notice that 4.7.1 i) holds in this context: the proof carries
through since cocartesians are stable under pullbacks. Therefore
given any two cocartesian arrows g,g' above s with common
domain, the morphisms Y%lgl, %X[g'] will be isomorphic in the

obvious sense. This allows us to extend % to all arrows f above s:

given suchan f,let f=hg where g is cocartesian above s and h
above identity and define [f]=Khe%lg] . The previous remark
ensures independence from the choice of g . To check the pullback
condition, let



99

fl
xlﬁyl
x] ly
X—Y
f

be an arbitrary pullback diagram. Factor f as hg just as above,
with g:X—Z,h:Z—-Y .Let zZ'-Z, h".Z'=Y' be the pullback of
h,y and g:X'—Z' the unique arrow giving 2g'=gx .
8' hl
xl—_’zl —’Y'
x| lz ly
X—2Z—Y
g h
The left square is a pullback (standard argument) and by 3.34d) g
is cocartesian. Therefore

xlg'l Kh'
HX'—KZ'—KY'
Hx | Kz | Ky
HX — KZ —KY
Xlgl Kh

the left square above is a pullback by assumption, the right square is
one since K is entire, and this shows our claim since
X[fl=Khe % [g] , etc. The unicity of the extended ¥ is quite obvious.

We can niow show how to compose mcrphisms of 6 . If ¥:H-K
is above r:R—S and E:K—L above s:S—T we want a value to
eX[f] for any f:X—Y above sr.If f can be decomposed as hg, g
above r and h above s, then we could define £X[f] as
E[h]o¥Xlg} , hoping that the final result is independent of the choice of
g.,h .Such g,h always exist: just take g to be a cocartesian above
r withdomain X, and h the unique arrow above s with hg=f.
We leave it to the reader to verify that the value of exl[f] thus
obtained is indeed independent of the actual decomposition of f , and

that the axioms of a category hold.
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Let H,K bein 65.Let X:H-K be a morphism above 1g.By
definition, the family (X[1x}:HX-KX)xgS is such that for f:X—Y
above identity

xl1x]
HX—KX
Hf | | K
HY—KY
X1yl

is a pullback. That is, if we define XX=%[1x] we get a cartesian
natural transformation above identity. The converse is also true:
given @¢:H—K cartesian above identity, one gets a morphism of &
by defining ¢lf] = Kf+ X = ¢YoHf , and the verification of this is
trivial. All this obviously defines a bijection between G5(H,K) and
the set of cartesian transformations H—K above identity. Hence
the fiber 65 is the category of all entire splittings of PS.FSoES,
where PS is the pullback

FS—F

PS| |F
ES—E
I

and | the inclusion, with cartesian transformations above identity
as morphisms. This shows €5 is an aggregate since it is isomorphic

to ZEntgS(1gS,PS) . This also shows 65 is semigranular when F is
a semigranular fibration. Let us show G is a bifibration.

4.7.3 Proposition
Let X:H=K in G above s:S—T be such that for every

cocartesian f:X—Y above s, X[f:HX—KY is cartesian (that is, F-
cartesian). Then Y is cartesian.

Proof

Let §:L—K be above sv with v:V—S. We are looking for a
unique &:L—H above v with %&=¢ .Let f:X—Y be some arrow
above v .If g:Y—Z is a cocartesian arrow above s, Xlgl is
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cartesian, and there is a unique way to define E[f] to have
Xlgloelf) = ¢lgfl . If & is defined thus, we do have %&=¢; by the
last proposition we just have to check this for a cocartesian arrow
h:X—Z above sv . It decomposes as h=gf , where g and f areas
above, and since both morphisms are cocartesian,

xtlh] = xlgletlf) = ¢lgf]l = ¢lh] ,
as above. So we are left to check the pullback condition. Let

f
X—Y

x] |y
X—Y'
fl
be a pullback square, with f,f' above v and x,y above identity.
Let g.Y—Z, g"Y'—=Z' be cocartesian above s, and 2:Z—Z' above
identity with 2g=g'y . We want to prove that the left square below

elf]  xlgl
LX—HY —KZ

Lx | IHy |[Kz
LX—HY'—KZ'
Elfl  xlgl
is a pullback. The square gf,g'f',x,z is a pullback, being a
composite of pullbacks. Therefore the outer square above is a
pullback by the definition of ¢. The square to the right is a
pullback by the definition of % . Therefore the result follows by the
standard fact about composites of pullbacks.

474 Proposition

Let KeG be above T, and s:S—T. Thereis HeG and a
cartesian arrow Y :H—-K above s.

Proof

For every Xe ES let 1sX:X—3,X be a choice of a cocartesian
arrow above s, and let X X:HX—K3,X be a choice of a cartesian
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arrow above 1,X . It follows that XX is EF-cartesian above s (cf.
3.47iii) ). For f:X—Y in ES thereis a unique Hf:HX—HY above
f such that
XX
HX—K3, X
Hf | | K3.f
HY —K3,Y
XY

commutes, since XY is cartesian. H is actually an entire functor,
since it can be defined as a composite f*eKe3,, where f*:FT—FS
is obtained by choosing EF-cartesian arrows above s in the right
manner. The family (XX)x¢gS can be extended to a unique
%X:H—K in 6 by 4.7.2.

Now for the cocartesian case

4.7.5 Proposition

Let X:H—=K in 6 above s:S—T be such that for any cartesian
f:X—Y above s YIf] is F-cocartesian above f.Then X is
cocartesian.

Proof

Let 2:H-L be above ts, with t:T—V . We are looking for
E:K—L above t with EX=0.Let f:X—Y be above t and extend
g:Z—X cartesian above s. Since ¥lg] is cocartesian there is a
unique way to define E[f] so that &[f}exlg] = ¢lfg] . Let us show &
thus defined has the pullback condition. In the diagram below

g f
Z'—X'—Y'
z| lx |y
Z—X—Y
g f

let the right square form a pullback, where f{,f' are above t and
X,y are above identity; let g,g' be cartesian arrows extended
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above s, and z complete to a pullback. Let m:A—KX , n:A—LY'
be such that E[flem =Lyen . By assumption there is a unique
h:FA—X' with xeh=Fm and f'ch=Fn.Let
a
B—A
pl Im
HZ - KX
Xlgl

form a pullback. a is cocartesian. Since &lf]e X[g] = ¢lfg] ,
ElfTe xig = ¢lf'gl and the latter along with Hz,Ly form a pullback

there is a unique q:B—HZ' such that Hzeq=p and
E[f]e X[geq = na . Examination of the diagram below shows

Fa
FB—FA

Fql h] \Fn
Z—X'—Y'
z| ¢ |x' |y
Z—X—Y
g f

Fq is the unique morphism FB—Z' such that heFa=g'oFq,
zoFq=Fp . Since a is cocartesian there is b:A—KX' with
X[g'leq=Dba . Then a diagram chase using the cocartesianness of a
will show E[f}Jeb=n and Kxeb=m.

47.6 Proposition
Let HeG be above S and s:S—T in €.Thereis KeG and a
cocartesian Y¥:H—K.

Proof

For any YeET choose a cartesian ¥, Y:s"Y—>Y above s,anda
cocartesian ¥ Y:Hs*Y—KY above ¥Y.K(-) is obviously the object
part of a functor: for y:Y—Y' in ET take Ky to be the unique
morphism KY—KY' above y such that KyeXY =YY ¢Hs"y . We
can define a partial ¥ , where YIf]l exists for any cartesian
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f:X—Y above s: if a:X—f"Y is the unique iso above identity with
Y;Yea=f, wetake XIf] tobe %YeKa.Itis quite easy to see that
the partial ¥ thus defined satisfies 4.7.1i) ; therefore if we define
a full X by restricting X to the cocartesian arrows and using
4.7.2 we get that ) restricted to the cartesiansis Y , and that it
satisfies the condition of the previous proposition. To show %X
satisfies the pullback condition we can restrict ourselves to
cocartesian arrows, by 4.7.2 . So let

f
X—Y

x| ly
xl—-’Yl
f'
be with x,y above identity and f,f' cocartesian above s . That
square is a pullback. By 3.10 ii) the square Kx, Ky, XlIf],x[f'] is a
pullback, since the latter two arrows are F-(co)cartesian.

We are left to show K is entire. Let

X2
X—Yy
x1] 1wz
Y{—W
wy

be a pullback diagram in ET . Let aj;:A—KYy , ag2:A—KY;7 in FT
with Kwjeaj = Kwyeay . There exists a unique m:FA—X with
xym=Faq , xom = Faj . Let
b
B—A
P| | Kwyoay
Hs*W-KW
Xw

be a pullback diagram. b is cocartesian. Since we know % has the
pullback property, the squares XY;,XW, Hs*w;,Kw; (i=1,2) are
pullbacks. Therefore there are b;;B—Hs*Y; with
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Hs"wj+by = p = Hs*w3¢b> . Since the image of the square x;,w; by
the entire functor Hs* is a pullback, there is q:B—Hs"X with
Hs*x;eq=b; . We have ¥,XeFq=moeFb, obviously. Then we use the
cocartesianness of b to get n:A—KX with Kxjon=a;: take n to
be the unique A—KX above m such that ¥Xeq=nb.

To show K preserves filtered colimits, let (Xp)hey be a filtered
diagram in ET , with colimit cocone (op: Xp—X)p, - Let
(BL:KXnh— YY), be a colimit cocone in FT (it also being a colimit
cocone in F) and let y:Y—=KX be the factoring. Let

q
P—Y
Pl ly
Hs*X—KX
XX
be a pullback diagram. q is cocartesian. For every heH the pair
Pho X Xn:Hs*Xp—Y , Hs"atp: Hs" X, = Hs"X determines a unique
6p:Hs*Xp—P with p&j, = Hs®ay, . But since Hes* is entire (Hs*oap)p
is a coiimit cocone. Therefore p splits and is an iso. This forces y
to be an iso too since q, XX are cocartesian.

Note that it follows trivially that cocartesian arrowsin G are
cartesian. Therefore, in order to prove that G is a stiff fibration we
only have to show cocartesian arrows are stable under pullback by
morphisms above identity. So let %:H—K be cocartesian in @,
¢:L—K above identity. Let £:M—L be a cartesian arrow above
GYX ,and ¢:M—H the unique morphism above identity completing
the square, which is a pullback:

3
M—L
vl Lo
H—K
X
Let :X—Y in E be cartesian above G =GE . Our goal is to prove
Elf] is cocartesian. Let
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g VY
X—Z—Y

be a cocartesian-above identity factorization of f.Look at

tlgl Ly
MX— LZ'—LY
vX | loz | oY
HX —KZ —KY
Xlgl Ky

Keeping in mind the remark just above 4.7.3 we denote
morphisms of & above identity as natural transformations, i.e. ¢Z
stands for ¢[17] . Since & is cartesian Elg] is cartesian. By
assumption X[g] is cocartesian, and since ¢X, ¢Z are above
identity the left square is a pullback. The right square is also a
pullback and since E[f] = X[gleKy is cocartesian we get that

glf] = Ly oklg} is cocartesian, by 3.14.

4.7.7 The Beck conditiorr holds in G .

We will show cocartesian arrows are stable under pullback by
cartesian arrows (3.14,ii)). Let ¢:K—L in & be cartesian above
t.:T-V ,and let £:M—L be cocartesian above v:W—V . By
3.10 ii) , to form the pullback of ¢,E it suffices to get

w H
S—W H—M
sl v xl L&
T—V K—L
t 4

a pullback s,w in € and then extend cartesian arrows % ,H
above s,w respectively (3.10,ii) will be invoked repeatedly in the
argument that follows). Let now YeET . Let £:X—2Y be cartesian
above s . Our goal is to show ¥X[f] is cocartesian. Extend a
cocartesian y:Y—Y' above t andlet f:X'-Y' be cartesian above
v . There is a unique x:X—X' above w making the square
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commute, and that square is a pullback, and therefore x is
cocartesian.

X ulx)
X—X' HX —MX'
£l |f xIf] |  &lf)
Y —Y' KY —LY'
y tlyl

ulx] and tly] are cartesian, and since the square to the left is a
pullback, the one to the right is one too. Since E is cocartesian,
E[f'] is cocartesian, and therefore YI[fl is cocartesian. QED.

47.8 Proposition

Let H be locally prime in &, say above S.Let x:A—HX make
(H,x) A,X-generated. Let X:K—H be above s:T—S, and let f:Y—X
be cartesian above s.Then TFAE

i)  The pullback a:B—A of ¥[f] by x is cocartesian
ii) a as above is cocartesian and f is cocartesian
iil) X is cocartesian.

If any of the above happens, then (K,y) is B,Y-generated, where
y:B—KY is the pullback of x by xl[fl.

Proof
i)=ii)
Let
g n
Y —X'—X

be a cocartesian-above-identity factorization of f . Since a is
cocartesian there is x:A—HX' above identity with Y[gley=x'a.
We have Hnox'a=xa and since a is cocartesian, it can be

factored out of the equation. Therefore n is an isomorphism, x
being ultrageneric, and f is cocartesian.
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ii) = iii)

Let
E 9

K—H—H
be a cocartesian-above-identity factorization of % . We have
x[f] = pX < Elf] (keeping in mind the remark just above 4.7.3 we
denote morphisms of G above identity as natural transformations,
ie. ¢X stands for ¢[iyx].Since a is cocartesian there is w:A-H'X
with wa-=E[f]lex . A similar argument as above will show
pXew=x, and since (H,x) is genericin U/HAX) ¢ is an
isomorphism.

iii)=i)
Since f is cartesian and X cocartesian Ylf] is cocartesian.
Therefore the pullback a is cocartesian.

We still have to prove (K,y) is B,Y-generated. Let us first show
y is ultrageneric. Since K is entire thereis (C,Z,z) ultrageneric in
FIK (4.14) and (b,h):(C,Z2,2)—(B,Y,y) , where h isin ET and b in
FT.we get a commutative square

ab
C—A
z| |x
KZ — HX
x[fh]

Since ab is cocartesian we can apply the argument of i)=»ii) again,
replacing a by ab and f by fh. Therefore fh is (co)cartesian,
and so h is too. But being above 11 h is an isomorphism, so y is
ultrageneric. Now let ©:(K'y')—(K,y) be the generic object of
U/t(BY) determined by (K,y). If %X"K'—H' is a cocartesian arrow
above s and y:H'—H above identity with ¢X'= X & then by the
cocartesianness of a thereis v:A—=K'X with va=Y'[floy' . An oft-
repeated argument will show ¢Xex'=x, and this forces ¢ to be an
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isomorphism. But since the square %,X' 0,y is a pullback, & is an
iso too and (K,y) is B,Y-generated.

479 Forany HeG Jocally prime there isa G-mimmal K
above a finite object of € and a cocartesian %:K—H.

Let x:A—HX make (H,x) A,X-generated. Notice that given
any cocartesian K—H , the proof above shows thereis an F-
cocartesian a:B—A above an E-cocartesian f:Y—X . This is just
saying a is EF-cocartesian. Therefore, to get a G-minimal K, first
choose an EF-cocartesian a:B—A where B is EF-minimal.
Denoting EFa by s:T—S and Fa by f:Y—X,let X:K—H bea
cartesian arrow in & above s.Since f is cocartesian by 4.7.3
X [f] is cartesian above f. But then the pullback ¢

c

C—A

z] Ix
KY—HX
x!f]

1s a cartesian arrow above f , and is therefore isomorphic to a, so

we can apply 4.7.8 and get that X is cocatesian. Now the proof
that K is G-minimal is just 4.7.8 ii).

We have proven G is an entire fibration.

Let E*G:E*G—E be the pullback of G by E.An object of E*G
is a pair (X,H) where Xe¢E and He GEX , Le. H:EEXSFEX  The
fibration E*G obviously sends (X,H) to X . A morphism
(X,H~(Y,K) is simply a pair (f,X), where f:X—Y and X:H—K is
above Ef . We define a tentative counit for the adjunction o be the
morphism €:E*G—F of fibrations that sends (f,%):(X,H)=(Y,X) to
X [f: HX—-KY . We have to show among other things that € is entire.
We will first show it preserves pullbacks. This amounts to proving
(using the fact that in a pullback of fibrations pullbacks are
calculated componentwise) that given any
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f X
X—Z H—L
h|l [k vl ¢
W—Y M—K
g E

pair of pullbacks, the left one in E , the right one in G , such that
they are above a common pullback of €, then the square

xIfl
HX— L2

v[h] | | ¢lkl (%)
MW—KY
Elg)

is a pullback too. We will not prove this directly, but first tackle a
special case.

47.10 /f Y and E are cocartesian then the square above is a
pullback

Let
f 2
X——2Z2'—7Z
h| k' |k
W—Y'—Y

g y

be such that z2f'=f ,yg'=g ,f and g' are cocartesian and z,y
above identity. Since the left square has two parallel cartesian
arrows and is above a pullback, it is a pullback. The right square is
above a trivial pullback, and we can apply 3.14.2, to conclude it is
a pullback too. Now look at the following,

X[l Lz
HX—LZ'—LZ
vlh) | Lol | elk)
KW—KY'—KY
Elgl Ky



whose external square is (») . Since X ,t,f',g' are cocartesian, X[f']
and &gl are cocartesian. Since the left square is above a pullback,
it is a pullback. The right square is one too since it is the expression
of the pullback condition for E .

We are now ready to prove ¢ preserves pullbacks in general.
Let
) S
H—L'—L
vl It ¢
M—K'—K
' T
be a cocartesian-above-identity decomposition of % ,& .Thatis, %'
is cocartesian, Kk above 1g7, etc.. Let

K
L'—L
wl ¢ lw
N'—N
ol o
K'—K
T
be a similar decomposition of ¢', ¢, where w',w are cocartesian
and ¢',0 above identity. By 3.14.2 the lower square is a pullback
(it is above a trivial pullback) . Now look at

xifl «Z
HX—LZ— 12

| wikl] vy | wlk]
vlhl|  NY—NY
| o'Y| | oY
MW—K'Y — KY
tlgl Y

The outer square is (») , and must be proven a pullback. The left
square is one, because of 4.7.10 . The same holds for the upper right
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square, which is above a trivial pullback. But the lower right square
is entirely above 1y . By 4.2.3 it is a pullback, and this proves our
claim.

4711 Let YeE, HeG be above a common object of € . Let
y:B-oKY above 1y besuchthat B isprimein FY , EF-
minimal, and (Ky) is B,Y-generated asin 4.78 . Thus K Iis
G- minimal. Then y:B—¢(Y K) Is ultrageneric. As a consequense ¢
Is entire.

Since ¢ is already known to preserve pullbacks, it suffices to
show that given g:Z-Y in E and &L—K in & above a common
arrow of €, along with b:C—B F-cocartesian and z:.C—LZ (not
necessarily above identity) such that E[glez=yb , then both & and
g are isomorphisms. Let

Z—7'—Y

be a factorization of g where g' is cartesian and p above identity.
Let

d
D—B
vi |y
LZ'-KY
Elg')
be a pullback. There is c:C—D with dc=b and Hpez = vc. Since
b is cocartesian by 3.10iv) d and c are cocartesian.
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b

C—B
|e\ 4/
| D |
z| vl Iy
| Lz |
It/ N\ |
LZ —— KY
Elg)

By 4.7.8 we get that € and g' are cocartesian. Since K is G-

minimal & is an isomorphism, and since B is EF-minimal and d
EF-cocartesian g' is an isomorphism. We also now know that v is
ultrageneric, and this forces p to be and iso, making g an iso too.

It is now easy to show ¢ is entire: given any AeF locally
prime for F , x:A—¢(X,H) = HX above identity, let (M,w) be the
generic object determined by (H,x) in U/4AX) and © the
unique (M,w)—(H,x) .Since M is AX-generated we can apply
479 andfind K G-minimal and %:K—M cocartesian. Along
come cocartesian a:B—A , y:B—KY ultrageneric and f:Y-X
cocartesian such that

a
B——mA

vl lw
e(Y.K)=e(X,M)
e(f,X)

commutes. The last thing proven shows y is ultrageneric for €
and combining the two factorizations we get (f,0%):(Y,K)—(X,H)
with e(f,eX)ey=xa.

47.12 ¢ s the counit of the aqjunction, and the Beck condition
holds for a pullback square with two parallel entire fibrations.

By 0.23 we know we can prove both claims at once by showing
that for any D:D—C in Aggr,any J.E*D-F in Aggr/E, there
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exists a unique J:D—G with €+E*J=J.Solet D:D—C be an
entire morphism of aggregates, E*D:E*D—E the pullback. As usual
an object of E*D is a pair (X,P) where X¢E ,PeD and EX=DP.
Let Je¢ Aggr/E(E"DF) . Let us see what are the requirements for a
functor J:D—6 with GJ=D to make

E*J
E'D—E*G

JN /¢
F

commute. Let p:P—Q in D, say above s.:S—T.For any Xe¢E
above S, E*J sends (X,P) to (X,JP) . JP is a section ES—F°5 and
since € is evaluation and we want the triangle to commute, we
have to have (JP)X = J(X,P) for any XeES.(JP)X thus defined is
an object of 6 since it is the composite Jo P , where P is the

E*D D
I\P P/ |
E'D| ES-1 |D
/71 s\

E c

E

unique functor ESSE*D making the left triangle and the upper
quadrangle commute (here we identify an object of say, € with
the corresponding functor from the one-point category to C).
Therefore J is uniquely defined on objects, if it exists. Jp should
be a morphism JP-JQ of G .But given f:X—Y above s the
same considerations as above force (Jp)lf]l to be J(f,p) . it is trivial
to check that the family (J(-,p))fabove s Satisfies the pullback
property. All we have left to do is to prove J is entire.

Let us first show it preserves pullbacks. Let
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Hs

P1
0—Py

2l la
P,—Q
qQ2

be a pullback diagram in D . Say this diagram is above the pullback
51
R— S
s2y 1y
Sp—T
t2
in €.Let x:H-JP;,i=1,2 with Jqqe%X1=JqpeXp.Let ¥; be
above v;:V—S,. Thereis v:V=R with s;v=v; . If there exists
g:H-JO with Jp;e&=X;, this & necessarily must be above v .
We know the value of E is entirely determined by its value on
cocartesian arrows. So let XeEVY ,and f:X—Y be cocartesian above
v . Let

g1
Y—2,

g2l M
Zo—W
h2
be a square of cocartesian arrows (necessarily a pullback) above
sy, t; - Since the combined square (g;,p;), (hy,qy) is a pullback in
E*D, we get that
_ Ipalg)
(JO)Y— (JP4)Z4
Jplg2l | | Jqylhy]
(JPp)Zo—(JQ)T
Jqalhy]
is a pullback in F . The equation (Jpy)g)&lf] = X,lgf] forces a
unique value for E[f:HX—(JO)Y . We are left to check & thus
defined satisfies the pullback condition. This is easy: given
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f
X—Y

x] ly
xl __’Yl
f
where {,f' are cocartesian above v and x,y above identity, one
Just extends cocartesian arrows k:Y—W , k"Y'=+W' above
hig4 = hogz and then uses the standard proposition about pullbacks
(2.5, second part) . '

In order to finish proving € is entire we need yet another
proposition.

4.7.13 Proposition

Let H be locally primein &, with x:A—HX a generator. Let
¢:H— JP atove identity be such that ¢Xex:A—(JP)X=J(X,P) is
ultrageneric for J(-,-) . Then ¢ is ultrageneric for J.

Proof

Let there be %:K—H cocartesian, £:K—JQ in G, along with
qQ—-P in D such that

X
K—H

el le
JQ—JP
Jq
commutes. Say E is above r:R—+S and q above s:S—T,so Y is
above sr . We want to show q is an isomorphism. If f:Y=X isa
cartesian arrow above sr and

a
B—A
vyl Ix
KY - HX
xf]
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the pullback we know by 4.7.8 that f,a are cocartesian, and y
ultrageneric. Let f factor as hg, where g:Y—Z is cocartesian
above r and h:Z—X cocartesian above s . Obviously the bottom
square commutes,

a
B—A
vl | x
KY — HX
elg | XI] | X
(J2)Q—(IX)P
Jqlh)

since Jqlh) is J(h,q):J(ZQ—=J(Y,P) and @Xex is ultrageneric for
J, we get that q,h are isomorphisms.

We can finally show J is entire. Let L be locally prime in 6
and 2:C-LZ be a generator. Let $:L»JQ be a morphism above
identity. The object (C,(Z,Q),¢Z¢2) of FllJ determines an
ultrageneric (B,(Y,P),y) and a morphism (b,(f,p)) from the latter to
the former. If ¢:K—L is a cocartesian morphism above Fb there
is 8:K—=JP with Jpee=¢p. Let f (which is above Fb) factor as

m f
Y—Y' —2Z
where f' is cartesian and m above identity. By 4.7.8 we know
that the y:B—KY' with lf']ey'=2zb makes (K,y') B,Y'-generated.

B
y/ \Y |z

(JP)Y KY'—HZ
(Pm\ ey 1VZ
(JP)Y'—(JQ)Z
Jplf']
Since © is cartesian thereis y":B—KY with Kmey"=y'. But y'
is generic, so m is an iso. Therefore @Y'ey' is ultrageneric for J,
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and the preceding lemma shows @ is ultrageneric for J , QED. This
completes the proof of 4.7 .

48 Theorem

Let 8 be the class of all qualitative fibrations in Aggr , that is,
all entire fibration all whose fibers are qualitative domains. 3 is
classified by the fibration Q:Q—qD , where gD is the category of
qualitative domains and strong morphisms (1.1) , and Q the
Grothendieck fibration associated with the forgetful functor
qD — Poset which to every f:X—Y in qD associates the stable
function f*:X—¥ . As a consequence of 4.4 the pair (3,Q) forms a
notion of smallness.

Proof

Remember (1.1, 3.2:Example) thatif X,Y are qualitative
domains, the assignment f+ {* defines a bijection between the set
of strong morphisms X—Y and the set of stiff embeddings X—¥ .
Therefore, if E:E—C is a stiff fibration all whose fibers are
qualitative domains, it defines a functor E*:C—qD , which sends
5:5—T in € to the strong morphism corresponding to 3, ES-ET .
Obviously, E will be the pullback of Q by E® .Let 1 be the
atomic qualitative domain, and a:1—-E®*T a morphism in qD. This
is the same thing as the choice of an atom Ae ET . It is trivial to
show that there exists a morphism x—a in A/E® where x is
generic iff A admits a cocartesian B—A in E where B is E-
generic. Therefore E is an entire fibration iff E* is an entire
functor. The fibration Q is obviously entire, since it corresponds to
the identity qD—qD.

A natural question that arises now is: how does this model
compare with Girard's original model of the second-order lambda
calculus [Gi86] 7 A model of the theory of constructions can always
be restricted to a mode' of F: let (C,D) be a display category, with
MA—S a notion of smallness. A variable type $(«y,...,a5) in F,
where the aj's are type variables, is interpreted as a morphism
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Sh—S , giving rise by pulling back A to a small display map
$*.29—-S" . Therefore if t(xq,...,Xm) is a term of type
Blaq,...,0n) , with x; of type ¥lay,...,ap) , the natural
interpretation of t is as a morphism

I'xgn ¥y ... xgn¥?— B*

in Dgn, the category of display maps into S® and commutative
triangles. In our model, S=qD and X is the functor Q defined
above. Now Girard in his model interprets types just as above, ie. as
entire functors qD®—qD . But now a term t(x3,...Xy) , wWith

variables as above, is interpreted as a family (Tx)xeqpn indexed by
the objects of qD" , where Ty is a stable function (entire functor)

X xPX ... x X — 3X
subject to the condition that for any f:X—Y in qD" the square

of*
IX— IY
% | |ty (%)
X —dY
Pf~
of stable functions commutes; we use the same notation for a type,
say ¥;,and its interpretation ¥;:qD"—qD. ¥:qD"-qD is the
obvious product of functors ¥=%1x¥yx...x¥, . Notice that the
directions of the arrows make this square a non-classical
commutative square. In particular it does not follow by a formal
argument that these modified natural transformations commute.
The proof that they actually commute is rather non-trivial (if
expressed in the original language of Girard, as he once explained it
to the author. The proof becomes easier when translated in the
language of this thesis, as we will see). It was unfortunately omitted
in [Gi86] . A close reading of said paper shows that this way of
interpreting terms was dictated by the choice of the interpretation
of the operator TT . Let © be the interpretation of a one-variable
type, ie. ©:qD—qD is an entire functor. Define a qualitative
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domain TI® as follows: an atom A¢lf1©| is an isomorphism class
in 1/@ of generic arrows a:1—0X , where a is such that for all
YeqD we have that the family (Bkea)kqp(x,y) (seen as a family
of atoms of Y ) is compatible, i.e. has a sup in Y . By filteredness,
in order to define 1@ it is sufficient to say what are the finite
compatible families of atomns. We say a family ajg,...a, of
(representatives of) atoms a;:1—-0X; is compatible if for every
YeqD, every family (ky:X;—Y)i<i<n of morphisms of qD the
family (8k;oa;); is a compatible family of atoms of ©Y . Now let
ZeqD, and AZ be the constant functor qD—qD that sends
everything to Z . We are looking for a set T(AZ,8) of morphisms of
functors AZ—© that gives us an adjunction isomorphism
qD(Z,TTI8) = T(AZ,0) . If one puts Z=1 it is easy to see that
qD(z,T1®) is isomorphic to the set of all modified natural
transformations AZ—© as described above, and from this it is easy
to infer that for any Z T(AZ,8) should be defined by using
modified natural transformations, and therefore that the operation
TT defines a right adjoint to the functor A:qD—T , where the
objects of T are stable endofunctors of qD and the morphisms
modified natural transformations. This observation can be
generalized to any arity n€N by defining Tl pointwise. That is, let
T, have for objects stable functors qD®—qD and morphisms
natural transformation. Then the operation that sends an object
®€Tp+q to theobject ¥€T, defined by

¥(Xy,....Xp) = T8(Xq,....Xn,-)  (Xi,...Xp€qD)

defines a right adjoint to the functer “compose to the right with the
projection qD"*1-+qD™ *: T, =T 41 . This, in a nutshell, is Girard's
model.

Let EEE—qD"™ be the Grothendieck fibration associated with a
stable functor $:qD™—qD . In other words, an object of E is a pair
(X,A) where A is an element (object) of X, and a morphism
£:(X,A)—(Y,B) isa f:X—Y in gD™ such that A<(3f)"B, or
equivalently (Bf)*A<B.Let F:F—gD" be the same thing for

Pl
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another stable ¥ . If (Tx)x is given asin (») it is easy to see (left
to the reader) that the assignment

(X,A) » (X,txA)

uniquely defines a morphism 1%:F—E in Zn¢(F.E) . It is also easy
to see that the morphisms F—E of entire fibrations that come from
modified natural transformations are exactly the ones that send
cocartesian arrows to cartesian ones (this shows that the modified
naturality condition can be generalized to any pair of entire
fibrations, not just entire fibrations of qualitative domains).
Therefore the interpretation of any term in Girard's model belongs to
our model. What comes as a surprise is the converse: if HF—=E is
any entire morphism of fibrations, where F,E are the fibrations
associated to any pair of entire functors ¥,8:qD"—qD , then H
sends cocartesian arrows to cartesian ones. This observation, due to
E. Moggi, was communicated to the author by Th. Coquand. We will
work in the most general context that we know of:

4.9 Definition

Let € be an aggregate. We say € amalgamates weakly if
given any morphism f:X-Y in C there exist ZeC ,gh:Y—Z
making

X—Y

fl s
Y—2Z

a pullback.

Let us show that the category gD amalgamates weakly: let
f:X—Y therein. Let Z have for set of atoms the amalgamated sum

Y1 4% 1Yl ; Thatis, IZ| is the pushout




&4

122

Ifi
IXI—1Yl

Ifl | l
lYl— 12|

in the category of sets (the meaning of [f| should be obvious). [Z|
has two subsets W1 and W3, corresponding to the horizontal and
vertical inclusions of |Y|—|Z| . If we define the domain structure of
Z by requiring that a subset AC|Z| be compatible iff A is either
contained in W4 or Wp , it is trivial to prove that the resulting
square in qD is a pullback. Note that the property of weak
amalgamation is preserved by products.

410 Lemma

Let € be an aggregate that amalgamates weakly. Let E:E-C,
F:F—C be entire fibrations, such that all the fibers of F are posets.
Let H:E—-F be an entire morphism of fibrations. Let x:A—HX be
an ultrageneric arrow (we do not have to name x since the fibers
are posets, but this will help intelligibility). Let b:B—A be
cocartesian in E , say above s:T—S. Then if ¥ X:s*X—X is
cocartesian, b (and therefore s, ¥;X ) are isomorphisms.

Proof

Let f:Y-X denote ¥X.Let t,t:S—V makes,t,s,t' a pullback.
Let g:X—Z, g :X'2Z' be cocartesian above t,t' respectively. Since
gf and g'f are cocartesian above ts=t's, we can put Z=Z' and
get gf =g'f, the square making a pullback (being formed of cartesian
arrows, and above a pullback).

s f
T—S Y —X
sl 1t ]l g
S—YV X'—Z
tl gl

In the rame manner we extend cocartesian arrows c:A—C and
c:A-C above t and t' respectively, and get that b,c,b'c form a
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pullback. By the cocartesianness of c,c' there are z:C—HZ and
Zz.C—HZ with zc=Hgex and z'c'=Hg'ex.

b

- A
H %/ |
HY— HX
Hf | {Hg | c
HX—HZ |
/x B8 N |
+ C

c

b

> —————

But since the fibers are posets z=z', and so Hgexb =Hg'exb .
Therefore by pullbackness there is y:B—HY with Hfey=xb and
since x is ultrageneric and b cocartesian f is an isomorphism.

QED.

4.10.1 Corollary

Let € amalgamate weakly, F.F—C be an entire fibration all
whose fibers are posets. Let H be an entire splitting of F, x:A—~HX
above identity. Then the following are equivalent:

i) x is ultrageneric.

i) x isgenericand A is F-generic.

Proof
The proof of ii)=*i) is trivial and left to the reader. It is obvious
that to prove the converse we simply have to show that every
cocartesian b:B @A is an isomorphism. Just apply the lemma by
putting E equal to the identity on € ; the result follows because
every arrow of E=C is cocartesian.

Given any aggregate € we have shown in 4.8 how to identify
entire functors €C—qD with entire fibrations E—C all whose fibers
are qualitative domains. Let Qua/(C) be the full subcategory of
Fib(C) whose objects have qualitative domains in every fiber.
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Examination of 4.4 in the light of the corollary above will show
that the functor TI): Qua/(qD) — £n#(1) will have the same value on
objects as the operator T seen just before 4.9 . This can be proven
in a more indirect and comprehensive fashion by the following

411 Theorem

Let € amalgamate weakly, E:E—=C , F.F—=C be entire
fibrations where the fibers of F are all posets, and H:E—F an entire
morphism of fibrations. Then H sends cocartesian arrows of E to
cartesian arrows of F .

4.11.1 Corollary

Any term or type of the second-order lambda calculus has the
same translation in our model as in Girard’s.

This is because for any neN the category T, used in Girard's
model is equivalent to Qua/(qD") .

Proof of 4.11

Let f:X—>Y be a cocartesian arrow of E . We want to show Hf
is cartesian. By a standard fact of fibration theory it is sufficient
(the proof of sufficiency is left as an exercise) to prove that if
a:A—HY is above Hf thereis x:A—HX above identity with
Hfew = a . Take such an a and factor if as

b vy
A—B—HY .
b cocartesian, y above identity. There is (g,c):(C,Z,2)—(B,X,x) in

FIH .



125

b

A---——B

u */ 1
HX— HY
THg | c
HZ |

2\ |
C

The pullback of f by g in E is cocartesian, and so is the pullback
of b by c in F .But both these arrows are above he same
morphism of €, and by 4.10 this forces both pullbacks to be
isomorphisms. This means there are h:Z—X with fh=g and
d:C—A (above Eh and necessarily cocartesian) with bd=c . But
then the cocartesianness of d guarantees an x:A—HX above
identity with Hhez=xd . QED.

We will end this chapter by mentioning another notion of
smallness which exists in the category Aggr . A DI-domain [CGW]
is an aggregate poset which is consistently cocomplete (0.16). In the
aforementioned paper the authors prove that the category of DI-
domains and stable morphisms (entire functors) is cartesian-closed.
We can easily prove a generalization to this: let us define a DI-
fibration to be an entire fibration F.F—E of aggregates where all
the fibers are DI-domains. Then, using 4.4 with the condition of
atomicity removed, we know that the operator 11 carries DI-
fibrations to DI-fibrations. That is, if F:F—E isa DI-fibration,
E:F—C an entire fibration, the fibration TIgF is a DI-fibration.

Also, let DI be the category whose objects are DI-domains, and
whose morphisms are stiff embeddings. In [CGW] it is proven that
DI has filtered colimits and pullbacks.

412 Theorem
DI is an aggregate.

Sketch of proof
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First let f:X—Y be a stiff embedding of DI-domains. By 3.2
we know f is an injective morphism of posets that preserves the
sups that exist, and such that if y<f(x) then y is in the image of
f . Actually a slightly stronger property holds for f: if ACX then
A has asupin X iff f(A) hasa supin Y, and the sups are equal
if they exist. This property is the expression of 3.1 in this
specialized context: f preserves multicoproduct families. The
converse is true: let W,Z be Dl-domains, g:W—Z a powerful,
injective morphism of posets that has the above property. Then g
has a right adjoint g~ , and is therefore a stiff embedding. Given
zeZ take g (2) to be

g (2 = sup w
weW , g(w)sz

Armed with this knowledge, it is now quite easy to prove the two
following facts: If X is a finite DI-domain then X is f.p. in DI . If
X is finite and has a top element (i.e. X is a finite distributive
lattice) then X is primein DI. It is then a formality to prove that
DI is an aggregate; it seems simpler to show DI is Wg-accessible
and has connected limits than to show directly it has multi-
coproducts. Notice that by 1.6.1 the set of primes of DI is the
(essential) set of finite distributive lattices. This gives a measure of
the increase in complexity we have met by passing from qD to DI:
from the set {2}, 2 being the 2-element lattice, to the set of all
finite distributive lattices.

So if we take the class 8 of small maps to be DI-fibrations, we
can construct a classifying map S:8$—Dl for them, just asin 4.8 .
Take S to be the fibration associated with the forgetful functor
Dl— Poset . Then (3,S) is a notion of smallness, and we have a new
model of the theory of constructions. In this model, we can
interpret Z , but not with all the full generality of the model given
in [E-P). In this paper (2.12) is given a discussion of the different
syntactic rules one can associate with Z . The most powerful rule is
called "Big Sums" . Let (C,D) be a display category. If (8,5) is a
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notion of smallness in it, the rule Big Sums is equivalent to saying
that for every object XeC the inclusion functor

2x — Dx

has a left adjoint ( 8% being the full subcategory of Dx whose
objects are small maps). Our model falls short of having Big Sums
by very little; what this means will be made precise in a
forthcoming paper by Thierry Coquand.
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CONCLUSION

We would like to give some remarks about the directions this
research should take in the near future. First, we want to point out
that the model of constructions we have given is the simplest
conceptually, but not structurally. For instance, Girard's concept of
coherent domain can be applied to semigranular categories, giving
rise to coherent (or binary) semigranular categories, and the
corresponding class of fibrations as display maps. In order to
describe these categories we need the omitted chapter on the
structure of semigranular fibrations. This further illustrates the
slogan we gave in the introduction: in the category Agzr there lie
many models of polymorphism, and the essence of every model lies
in the choice of special morphisms, i.e. display and small maps.

The second remark concerns linear maps. They can be defined
among semigranulars, but their role is at the present time quite
mysterious. Are they significant 7 One essential technical problem
is that the cotriple ! is much harder to define in this context, due
to the 2-categorical nature of the structures involved. More should
be done in order to clarify this situation.

Finally, we would like to mention that the topological point of
view, which was important at the inception of domain theory and
then was relegated to the background, is making a comeback. It
turns out that Girard domains (and aggregates) can be given a
geometric significance which is a generalization of the concept of
topological space (and of Grothendieck topos). We made this
realization vey recently and intend to develop the necessary
theoretical tools extensively.
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