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Abstract

This thesis investigates neural network properties and behaviours from multiple perspec-

tives, aiming to enhance our understanding of these complex models and improve their

reliability, generalization, and interpretability. We focus on three main projects: neural

activation patterns (NAPs), Delta Debugging for image reduction, and scalar invariant

neural networks. First, we examine NAPs using a custom mining algorithm on simple

Feed-Forward Neural Networks (FNNs) with the MNIST dataset, demonstrating their

potential for formal verification and providing insights into neural network decision-

making. Next, we adapt the Delta Debugging algorithm for image reduction, leveraging

NAPs to generate minimal images that preserve recognizable features. This approach al-

lows us to gain more insights into neural network properties and the decision-making

process while validating our NAP findings. Finally, we introduce scalar invariant neural

networks, which exploit the directional nature of image data to achieve scalar invariance.

These networks demonstrate improved resilience to brightness and contrast adjustments

and robust performance, with properties showcased by analysis via NAPs. This shows

potential for more robust neural network applications in image classification tasks for

real-world scenarios. Our work contributes to both the theoretical understanding and

practical applications of neural networks, offering new aspects for analysis and novel

architectural approaches.
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Abrégé

Cette thèse examine les propriétés et comportements des réseaux neuronaux sous plusieurs

angles, dans le but d’améliorer notre compréhension de ces modèles complexes et d’accroı̂tre

leur fiabilité, leur capacité de généralisation et leur interprétabilité. Nous nous concen-

trons sur trois projets principaux : les motifs d’activation neuronale (NAP), le Delta De-

bugging pour la réduction d’images, et les réseaux neuronaux scalaires invariants. Tout

d’abord, nous examinons les NAP en utilisant un algorithme de fouille personnalisé

sur des réseaux neuronaux à propagation avant (FNN) simples avec le jeu de données

MNIST, démontrant leur potentiel pour la vérification formelle et fournissant des insights

sur la prise de décision des réseaux neuronaux. Ensuite, nous adaptons l’algorithme

de Delta Debugging pour la réduction d’images, en utilisant les NAP pour générer des

images minimales qui conservent des caractéristiques reconnaissables. Cette approche

nous permet de mieux comprendre les propriétés des réseaux neuronaux et le processus

de prise de décision tout en validant nos découvertes sur les NAP. Enfin, nous intro-

duisons les réseaux neuronaux scalaires invariants, qui exploitent la nature directionnelle

des données d’image pour atteindre une invariance scalaire. Ces réseaux démontrent une

résilience accrue aux ajustements de luminosité et de contraste ainsi qu’une performance

robuste, avec des propriétés mises en évidence par l’analyse via les NAP. Cela montre

un potentiel pour des applications de réseaux neuronaux plus robustes dans les tâches

de classification d’images pour des scénarios réels. Notre travail contribue à la fois à la

compréhension théorique et aux applications pratiques des réseaux neuronaux, offrant

de nouvelles perspectives d’analyse et des approches architecturales novatrices.
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Chapter 1

Introduction

Neural networks have revolutionized machine learning, achieving remarkable perfor-

mance across various domains, such as computer vision [16, 35], natural language pro-

cessing [8, 37], and healthcare [29, 40]. However, as these models are increasingly de-

ployed in critical applications, understanding their inner workings has become crucial

for ensuring reliability, generalization, and safety. This thesis addresses the pressing need

to bridge the gap between neural networks’ performance and our comprehension of their

behaviours. We approach this challenge from three angles.

First, we investigate neural activation patterns (NAPs) and their mining process. Through

comprehensive evaluations, we analyze the relationship between NAPs and datasets to

understand neural network behaviors. We demonstrate potential applications of NAPs

in formal verification, highlighting the inadequacies of previous specification diagrams

used in the VNNCOMP.

Second, we further explore neural network behaviors using NAPs. We augment the

software engineering algorithm Delta Debugging [44], applying it to image classification

tasks to generate minimal recognizable images. By integrating NAPs from our previous

work into this augmented algorithm, we provide insights into the decision-making pro-

cesses of neural networks.

Finally, we shift our focus from exploring existing properties to modifying neural net-

works to create new properties, specifically scalar invariance. Based on our findings re-

garding the directional nature of image data, we introduce scalar invariant neural net-
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works. We explore their potential in image processing applications by comparing them

with state-of-the-art benchmarks. Leveraging NAPs, we study the robustness advantages

of these networks compared to traditional models with bias terms.

The main contributions of this thesis can be summarized as follows:

• We propose our own definition of NAPs and implement a corresponding NAP-

extract algorithm. Our work demonstrates the potential of using NAPs in formal

verification of neural network robustness.

• We adapt the Delta Debugging algorithm to create an image reduction method. This

approach, enhanced by our NAP findings, provides insights into neural network

decision-making processes.

• We introduce a new neural network architecture called the Scalar Invariant Neural

Network. We explore its potential in image classification tasks and investigate its

unique robustness properties, leveraging our understanding of NAPs to provide a

comprehensive analysis of this novel architecture.

Through these diverse approaches, we aim to contribute both to the theoretical foun-

dations of neural networks and to their practical applications. Our work not only of-

fers new tools for network analysis but also proposes novel architectural concepts. By

examining neural networks from these multiple perspectives, we seek to enhance their

interpretability, reliability, and performance in real-world scenarios.

This thesis is structured as follows: Chapter 2 provides essential background knowl-

edge of related work in the field, including previously existing research that served as

the basis for our work. Chapters 3 to 5 include the main body of this thesis. We begin

by discussing our exploration of NAPs in Chapter 3, followed by our adaptation of Delta

Debugging for image analysis in Chapter 4. We then present our work on scalar invariant

neural networks in Chapter 5. Each section details our methodologies, findings, and their

implications. Finally, in Chapter 6, we conclude by discussing the limitations of our ap-

proaches and outlining promising directions for future research in this rapidly evolving

field.
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Chapter 2

Background

2.1 Neural activation analysis

In recent years, deep neural networks have made significant successes and become in-

creasingly important across various domains. However, the achievement of state-of-the-

art performance comes with certain disadvantages. The complexity of deep neural net-

works, while a key factor in their high performance on many real-world tasks, also makes

these models difficult to understand, often resembling black boxes [46]. This black-box

nature can be risky for real-world applications, impacting safety and industrial liabili-

ties [15]. For example, a mistake made by a self-driving car could result in the loss of

several human lives. Therefore, it is crucial to understand the working mechanism of

deep neural networks and create more reliable and trustworthy tools for the future.

One research direction focuses on studying neuron activations through visualization

and analysis to gain more interpretability of neural network models. Olah et al. [26]

studied feature visualization by optimization, aiming to trigger and visualize activation

maximization in two ways: by finding examples in practice or creating inputs that most

activate the neurons. The visualizations reveal the patterns learned by different neurons

or layers of the model. They even observed that individual neurons could be consid-

ered basis vectors of activations, allowing arithmetic operations to combine different pat-

terns. These visualizations provide deeper insights into the black-box nature of neural
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networks. When combined with other tools, they can significantly enhance human un-

derstanding of neural network behavior.

Bäuerle et al. [2] examined neuron activation through layer-wise neural activation pat-

terns. Instead of focusing on the high values of individual neurons triggered by specific

inputs, they considered the entire activation distribution by analyzing the pattern formed

by the values of all neurons in each layer. They collected and categorized images sharing

similar neural activation patterns and observed that images following the same neuron

activation patterns share common concepts. Moreover, the deeper the layers from which

neuron activation patterns were extracted, the less abstract the shared concepts became.

By associating neural activation patterns with image samples and their shared common

concepts, this approach provides more straightforward visualizations of what models

have learned. Additionally, by comparing the learned concepts and categorized images

from the same dataset across different models, it helps observe learning differences. More

advanced models tend to build classifications at earlier layers. Furthermore, the catego-

rized images and their corresponding common concepts help identify potential biases in

data collection.

Apart from helping in better understanding neural networks, the insights we ob-

tained from neural activations also help model performance. Wang et al. [41] studied

neuron activations from a statistical perspective and conducted layer-wise entropy anal-

ysis to examine how information flows between layers. They visualized feature maps of

convolution-pooling layers, demonstrating the increased abstraction level as the layers

get deeper. They also analyzed neuron activation patterns and their corresponding en-

tropies, including the entropy of individual fully connected layers and the joint entropy

of successive fully connected layers. Their observations showed that the gradient of en-

tropy change between layers is related to the number of fully connected layers, which

could potentially be an indicator for determining the right number of fully connected

layers to improve model performance.

Although the above work represents only a small part of the research on model ex-

plainability through neuron activations, it highlights the significant value of studying
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neural activations. This importance is what motivates us to conduct our study in this

area.

2.2 Robustness Verification and VNNCOMP

Formal verification, as described by Meng et al. [24], involves mathematically proving

the correctness of a software or hardware system against specified properties or specifi-

cations. Model checking is one of the classic verification techniques which includes two

phases: specification and verification. In the specification phase, two key elements are

required: property formalization, which defines the expected behaviour of the system,

and a reduced framework, representing the system in a simplified form that preserves

essential features for proper simulation during verification. In the verification phase, the

verifier performs reasoning tasks and provides outputs indicating whether the specified

properties hold.

Verification against the adversarial robustness of neural networks is a prominent di-

rection within formal verification, driven by the need for trustworthy AI. For robustness

verification, the neural network is considered a function mapping inputs to outputs, such

as classification results. Within a maximum perturbation magnitude, usually denoted as

ϵ, the network is considered non-robust if there exists an input x with classification y that

can be perturbed within the range of ϵ to yield a different classification result.

VNN-COMP (Verified Neural Networks Competition) [38] is an annual competition

focused on the formal verification of neural networks. Its goal is to provide standard-

ized benchmarks for evaluating the performance of different neural network verification

tools. With the provided benchmarks of datasets and models, participating tools need to

verify the corresponding properties or specifications within given runtime limits. These

tools are evaluated based on various metrics such as correctness, speed, scalability, and

ease of use. In Chapter 3, we will use the benchmarks focusing on verifying adversarial

robustness as references for some of our evaluations.

5



2.3 Delta Debugging

Delta Debugging, an algorithm firstly introduced by Andreas Zeller [44] in 1999, is rooted

in the concept of regression containment. It addresses software regressions by automati-

cally identifying changes made to a previously functional program that caused it to crash.

This methodology was further developed in [44], laying the groundwork for the discus-

sions presented in Chapter 4.

As a technique initially developed to identify the changes that cause a working pro-

gram to fail, delta debugging focuses on analyzing the differences, or ”deltas,” between

the working and broken versions of the program. Since an empty input can be consid-

ered a working program, the difference between an empty input and a failure input is the

failure input itself, allowing this technique to be generalized to locating bugs in failure

inputs, as demonstrated in [44].

Two versions of the Delta Debugging algorithm are discussed in [44]: ddmin and dd,

representing the Minimizing Delta Debugging Algorithm and General Delta Debugging Algo-

rithm, respectively. The primary distinction between these versions lies in their objectives.

ddmin aims to identify the minimal test case that triggers program failure, ensuring that

removing any additional atomic parts will eliminate the failure. On the other hand, dd,

an extended version of ddmin, seeks to identify the minimal difference between a passing

subset and a failing subset of the original test case.

This difference in objectives leads dd to address a significant weakness of ddmin: the

substantial increase in complexity with larger input sizes. However, since we are study-

ing the MNIST dataset, which consists of relatively small image sizes and uses a simple

feedforward neural network, runtime is not a major concern for us. Therefore, we will

focus on ddmin as our baseline for this work, providing an overview of the algorithm for

background knowledge.

Definition 2.3.1 (n-minimal test case). A test case c Ď c✘ is n-minimal if @c1 Ă c ¨ |c| ´ |c1| ď

n ñ ptestppc1q ‰ ✘q holds. Consequently, c is 1-minimal if @δi P c ¨ testpc´ tδiuq ‰ ✘ holds,

where δi denotes some arbitrary elementary change of c✘ could be decomposed into.
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Algorithm 1 Zeller and Hildebrandt’s Minimizing Delta Debugging Algorithm

Let test and c✘ be given such that testpHq “ ✔ ^ testpc✘q “ ✘ hold.
The goal is to find c1

✘
“ ddminpc✘q such that c1

✘
Ď c✘, testpc1

✘
q “ ✘, and c1

✘
is 1-minimal.

The minimizing Delta Debugging algorithm ddmin(c) is

ddminpc✘q “ ddmin2pc✘, 2q

where

ddmin2pc
1
✘
, nq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ddmin2p∆i, 2q if Di P t1, . . . , nu ¨ testp∆iq “ ✘

(“reduce to subset”)

ddmin2p∇i,maxpn ´ 1, 2qq else if Di P t1, . . . , nu ¨ testp∇iq “ ✘

(“reduce to complement”)

ddmin2pc1
✘
,minp|c1

✘
|, 2nqq else if n ă |c1

✘
| (“increase granularity”)

c1
✘

otherwise (“done”)

where ∇i “ c1
✘

´∆i, c
1
✘

“ ∆1 Y∆2 Y . . .Y∆n, all ∆i are pairwise disjoint, and @∆i ¨ |∆i| «
|c1

✘
|{n holds.

The recursion invariant (and thus precondition) for ddmin2 is testpc1
✘
q “ ✘ ^ n ď |c1

✘
|.

Algorithm 1 is the ddmin algorithm adapted from [44]. The algorithm takes a failing

test case, denoted as c✘, and a testing function, test, which determines if a test case pass

(denoted as ✔) or fail (denoted as ✘). An empty test case is considered a pass test case.

The goal of the algorithm is to find the 1-minimal test case c1
✘

that is simplified from

c✘. According to Definition 2.3.1, a test case is 1-minimal if removing any atomic part

eliminates the failure.

The essential idea of this algorithm is to split the input test case into subsets and re-

move as many subsets as possible to reach the 1-minimal test case while still preserving

the original failure. The function ddmin2 conducts the reduction process of delta debug-

ging, taking two parameters: c1
✘
, a fail test case, and n, the number of partitions or subsets.

For each recursive step of running ddmin2pc
1
✘
, nq, we first split the input failure test case c1

✘

into n subsets, denoted as ∆1,∆2, . . . ,∆n. Correspondingly, we have their complements,

denoted as ∇1,∇2, . . . ,∇n, where ∇i “ c1
✘

´ ∆i. Then, we have four possible outcomes of

this run:
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Reduce to subset. We run tests on each subset, denoted as testp∆iq for i “ 1, . . . , n. If any

subset ∆i fails the test, we set n “ 2 and proceed with ddmin2p∆i, 2q for the next recursive

step.

Reduce to complement. If none of the subsets produce the original failure, we then test the

complements of the subsets, denoted as testp∇iq for i “ 1, . . . , n. If any ∇i fails the test,

we proceed with ddmin2p∇i,maxp2, n ´ 1qq. In general, we set n “ n ´ 1 to maintain the

same level of granularity for the next step, but we also consider the n “ 2 case to ensure

a minimal granularity level of 2.

Increase granularity. If neither of the previous cases works, it might be because the current

granularity level is insufficient. Therefore, we double the granularity and proceed with

ddmin2pc
1
✘
,minp|c1

✘
|, 2nqq. However, this is only done if n ă |c1

✘
| as a test case cannot be

partitioned into infinitely small subsets.

Done. If we have already reached the highest level of granularity, i.e., n “ |c1
✘
|, and none

of the previous cases work, we have found the 1-minimal test case.

The delta debugging process begins with n “ 2 (i.e., ddmin2pc1
✘
, 2q) and concludes

when the Done case is reached.

This algorithm provides a straightforward and easy-to-implement methodology for

automated debugging [44]. As we know, debugging plays a significant role in developing

a functional program, and this process can be divided into two main tasks: reproducing

the failure and finding the root cause of the failure [39]. The debugging process to accom-

plish these tasks includes three detailed activities: fault localization, understanding, and

correction [27].

Fault localization is the primary step, as we need to identify the program segment con-

taining the failure before proceeding with the other two steps. However, in real-world

cases, programs can be very large, requiring significant time and repetition during this

process. Understanding the failure also demands much from programmers, such as their

ability to comprehend the context around the bugs and their past experience dealing with

similar issues. Consequently, debugging can be a time-consuming, challenging, and te-

dious task that requires substantial resource investment from both computational and

human levels. The Delta Debugging approach significantly aids in the fault localization
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step by removing irrelevant information from the input failure program, potentially sav-

ing a huge amount of work and resources.

The intrinsic idea of the Delta Debugging algorithm is fundamentally a divide-and-

conquer process that reduces input while maintaining certain invariant properties [21].

This versatile approach has found applications beyond its original use in debugging pro-

gram code. It has been successfully adapted to various domains, including precision

tuning [14, 30], model signal awareness [33, 34], semantic history slicing [23], etc. The al-

gorithm’s ability to systematically reduce complex inputs while preserving specific char-

acteristics makes it a valuable tool in diverse areas of computer science and software

engineering.

2.4 Fixed-update Initialization

Before the invention of batch normalization, the changing distribution of inputs during

the training process, also referred to as internal covariate shift, raised a significant problem.

This shift could lead to issues such as saturation and vanishing gradients, complicating

the model training process. To address these problems, a combination of ReLU [25], care-

ful initialization [13, 31], and small learning rates was used as a solution. However, this

approach made the training process very slow [19].

Batch normalization, proposed by Ioffe et al. [19], was introduced to stabilize the dis-

tribution of layer inputs. This innovation allowed the use of larger learning rates and

reduced concerns about initialization. Consequently, batch normalization significantly

improved training speed, stability, and overall performance and has been widely adopted

in various state-of-the-art neural networks.

Although batch normalization has demonstrated significant success in model train-

ing, Zhang et al. [45] conducted a study revealing that the benefits of batch normalization

are not exclusive to this technique. They proposed fixed-update initialization (Fixup), an

initialization method that properly rescales standard initialization for deep residual net-

works to address the gradient explosion and vanishing problems. Their findings showed

that models could be trained stably at a maximum learning rate without the need for nor-
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3. Add a scalar multiplier (initialized at 1) in every branch and a scalar bias (initialized

at 0) before each convolution, linear and element-wise activation layer.

Figure 2.1 illustrates the differences between a normal ResNet block and a Fixup ResNet

block, including versions with and without bias terms. It also visualizes how the three

rules mentioned above are applied to Fixup ResNet blocks.

This work draws our attention because the scalar invariant neural network we pro-

posed in Chapter 5 relies on removing all bias terms from the network. The essential idea

is that by eliminating bias terms, the network should remain invariant in its predictions

when a positive scalar is applied to the input image. However, this approach encounters

issues with removing bias terms from the batch normalization layers. Therefore, we need

an alternative to batch normalization that can preserve its benefits while allowing us to

construct scalar invariant neural networks.
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Chapter 3

Neural Activation Pattern

With the development of the deep learning and it’s success in performance, knowing

the mechanism behind the black-box of neural networks has also get more and more

significant. As we mentioned in Chapter 2.1, the study of neural activation is a popular

area within model explainability. Beyond achieving good performance, it is crucial to

understand neural networks better to improve the models. Consequently, this research

direction has drawn our attention. In this chapter, we will be exploring the NAPs of

models within a domain of image classification tasks and the potential of extending the

application of NAPs to formal verifications which is sparked by our observation from

evaluations.

3.1 NAP definition and properties

Before we dive into the details of all the experiments and evaluations, we will first pro-

vide essential information about NAPs. The Rectified Linear Unit (ReLU) [25] is a widely

used activation function in neural networks, defined by the mathematical expression

ReLUpxq “ maxp0, xq. In simpler terms, ReLU outputs the input value x if it is positive

or zero; otherwise, it returns zero. Consequently, each neuron can exhibit two activation

states: activated if the output value is positive, and deactivated if the output is zero.
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Definition 3.1.1 (Neural Activation Pattern). A Neural Activation Pattern (NAP) of a neural

network is a tuple P :“ pA,Dq, where A and D are two disjoint subsets of activated and

deactivated neurons, respectively.

Definition 3.1.2 (Partially ordered NAP). For any given two NAPs P̄ :“ pĀ, D̄q and P :“

pA,Dq. We say P̄ subsumes P iff A,D are subsets of Ā, D̄ respectively. Formally, this can

be defined as:

P̄ ď P ðñ Ā Ě A and D̄ Ě D (3.1)

Moreover, two NAPs P̄ and P are equivalent if P̄ ď P and P ď P̄ .

Definition 3.1.3 (NAP Extraction Function). A NAP Extraction Function E takes a neural

network N and an input x as parameters, and returns a NAP P :“ pA,Dq where A and

D represent all the activated and deactivated neurons of N respectively when passing x

through N .

Definition 3.1.4 (δ-relaxed NAP). We introduce a relaxing factor δ P r0, 1s. We say a NAP

is δ-relaxed with respect to the label ℓ, denoted as Pδ
ℓ :“pAδ

ℓ , D
δ
ℓ q, if it satisfies the following

condition:

DS 1
ℓ Ď Sℓ s.t.

|S 1
ℓ|

|Sℓ|
ě δ and @x P S 1

ℓ, EpN , xq ď Pδ
ℓ (3.2)

3.2 NAP mining

In accordance with our specified definition of NAP (definition 3.1.1), we have imple-

mented the preliminary version of the NAP mining algorithm. This algorithm systemat-

ically extracts activated and deactivated neurons based on their activation status in each

sample from the training set. In the NAP, only neurons consistently activated across every

training sample are included in the activated set, and similarly, neurons are considered as

deactivated if they consistently remain inactive throughout all training samples.

However, our experiments are conducted on a relatively small-sized and simple-structured

neural network, and the MNIST dataset is relatively small compared to many other ex-
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isting image datasets. This means that gathering neurons by only selecting those that are

consistently activated or deactivated throughout the entire training set might not be an

effective mining algorithm. This limitation becomes particularly apparent when applying

more complex neural network architectures to larger datasets. In such cases, the number

of neurons increases significantly, and the datasets contain more samples for each class

with greater diversity. This complexity makes it more challenging to identify consistently

activated or deactivated neurons.

Therefore, we introduce a relaxation factor, denoted as δ, into our NAP, serving as a

means to regulate its abstraction level. And we implemented the corresponding mining

algorithm in Algorithm 21. For a NAP associated with a specific label ℓ, when mining

the NAP with δ “ 1.0 using Algorithm 2, denoted as Pδ“1.0
ℓ , it covers all training samples

labelled ℓ. This configuration yields the most precise NAP, yet concurrently, it is the least

specific. In this context, Pδ“1.0
ℓ can be perceived as the highest level of abstraction for the

common neural representation of label ℓ. However, excessive abstraction introduces the

risk of under-fitting, thereby increasing the likelihood of Type II Errors in NAPs. As δ

decreases, the probability of a neuron being selected to form a NAP increases, resulting

in more specific NAPs. While this adjustment may help reduce Type II Errors, it could

simultaneously increase the rate of Type I Errors, potentially impacting the recall rate.

Utilizing Algorithm 2, we mined NAPs for each class within the MNIST dataset across

four distinct values of δ. The comprehensive examination involved the entire testing set,

evaluating the coverage of samples for each class, as outlined in Table 3.1. For each NAP,

we present the count of test samples sharing the same label as the NAP, denoted as Pδ
ℓ ,

and those with a label different from ℓ following Pδ
ℓ , designated as ℓ̄. The initial row iden-

tifies the label and total number of test samples for that label. Two columns are provided

beneath each label, detailing the coverage of test samples. For instance, considering label

0, there are a total of 980 test samples. Among these, 976 adhere to Pδ“1.0
ℓ“0

, and 20 samples

from classes 1 to 9 also follows Pδ“1.0
ℓ“0

. If we decrease δ to 0.99, we see that the number

of test samples from class 0 decrease but at the same time, the number of sample from

1Note that this algorithm is an approximate method for mining δ-relaxed NAP, whereas δ should be
greater than 0.5, otherwise, Aδ

ℓ

Ş

Dδ

ℓ
‰ H. We leave more precise algorithms for future work.
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Algorithm 2 NAP Mining Algorithm

Input: relaxing factor δ, neural network N , subset of dataset containing all samples
with same label Sℓ

Initialize a counter ck for each neuron vk
for x P Sℓ do

compute EpN , xq
for each k do

if vk is activated then
ck `“ 1

end if
end for

end for
Aℓ Ð tvk | ck

|Sℓ|
ě δu

Dℓ Ð tvk | ck
|Sℓ|

ď 1 ´ δu

Pδ
ℓ Ð pAℓ, Dℓq

other than 0 also decreases, which indicates that the mined NAP Pδ“0.99
ℓ“0

is more speci-

fied towards class 0 but at the same time, it will cause more test samples from class 0

also failed to follow it. In summary, the effectiveness of NAPs greatly depends on the

precision-recall trade-off. Therefore, selecting the appropriate δ value or the optimal level

of abstraction becomes significant when leveraging NAPs in practical applications.

Table 3.1: The number of the test images in MNIST that follow a given NAPδ. For a label

i, i represents images with labels other than i yet follow NAPδ
ℓ“i. The leftmost column is

the values of δ. The top row indicates how many images in the test set are of a label.

0 1 2 3 4 5 6 7 8 9
(980) (1135) (1032) (1010) (982) (892) (958) (1028) (974) (1009)

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

1.00 967 20 1124 8 997 22 980 13 959 25 874 32 937 26 1003 28 941 22 967 12
0.99 775 1 959 0 792 4 787 2 766 3 677 1 726 4 809 2 696 3 828 4
0.95 376 0 456 0 261 1 320 0 259 0 226 0 200 0 357 0 192 0 277 0
0.90 111 0 126 0 43 0 92 0 76 0 24 0 45 0 144 0 44 0 73 0

To look into the details of how the relaxation factor affects on the extraction of our

NAPs, and to have a better view of how to manage the trade-off between the TYPE I and

TYPE II errors as we mentioned above, we checked on the overlapping of neurons for

each class under different values δs and displayed the results in Figure 3.1 and Table 3.2.
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Table 3.2: The maximum overlap ratio for each label (class) on a given NAPδ for MNIST.

Each cell is obtained by maxi |N δ
col

Ş

N δ
i |{|N δ

col| where N δ
col is the set of neurons in the dom-

inant pattern for the label (class) in the header of the column of the selected cell with the

given δ, Ni is the set of neurons in the dominant pattern for the label (class) i with the

given δ.

0 1 2 3 4 5 6 7 8 9

1.00 0.959 0.928 0.963 0.966 0.972 0.973 0.930 0.965 0.957 0.981
0.99 0.844 0.834 0.911 0.901 0.881 0.898 0.895 0.884 0.880 0.908
0.95 0.864 0.885 0.909 0.904 0.915 0.908 0.899 0.897 0.890 0.893
0.90 0.877 0.900 0.910 0.901 0.921 0.910 0.890 0.899 0.900 0.901
0.85 0.876 0.904 0.904 0.900 0.919 0.913 0.893 0.907 0.904 0.900
0.75 0.893 0.922 0.913 0.912 0.928 0.925 0.905 0.916 0.916 0.913
0.50 0.903 0.905 0.925 0.923 0.926 0.923 0.907 0.918 0.927 0.927

Figure 3.1 illustrates a heatmap depicting the overlap ratio between NAPs of any two

classes across six different values of δ. Within each column of the heatmap, the overlap

ratio is computed by dividing the number of overlapping neurons in the NAPs of the

classes indicated via the row and column by the total number of neurons in the NAP of

the class specified by the column. This asymmetry in values along the diagonal is due to

the calculation methodology.

The varying shades of color in the heatmap reveal a trend where, as δ decreases, the

overlap ratios initially decline before showing a general increase. This observation may

be attributed to the relaxation of constraints on determining if a neuron is considered ac-

tivated or deactivated. A slightly looser criterion, or lower δ value, leads to the inclusion

of more neurons in the NAPs, which increases the total number of neurons included in

the NAPs and lowers the overlap ratio. However, if we continue decreasing δ, the likeli-

hood of more neurons appearing in both NAPs from different classes increases, resulting

in higher overlap ratios.

Table 3.2 presents the maximum overlap ratio for a single class. Specifically, it repre-

sents the highest overlap ratio between a reference class and any other class. This table

essentially extracts the maximum values from each column, excluding the diagonal ele-
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3.3.1 L1, L2 and L8 maximum verified bounds

We investigated the potential connections between our NAP and formal verification spec-

ifications for enhancing neural network robustness. One of existing methods in neural

network verification is to construct specifications using a limited dataset, focusing on a

small local neighbourhood surrounding known input samples. However, this approach

fails to guarantee robustness for inputs lying beyond this restricted area. Additionally,

these small changes might not be meaningful for neural networks performing image clas-

sification tasks, as augmented images with meaningful changes, i.e., with more semantic

meanings, from the real world often originate from regions outside the verified neigh-

bourhood [28]. This limitation highlights the need for a more comprehensive approach.

Leveraging the inherent properties of our NAPs, we propose integrating them into the

formal specification framework to address this issue.

Primarily, we observe that the local neighbourhood size is insufficient for accommo-

dating test samples and unseen inputs. To empirically substantiate this observation,

we computed distances between all pairs of samples belonging to the same class across

the entire MNIST dataset using L1, L2, and L8 norms. We employed the VNNCOMP-

2021 [38] as a reference for our evaluation. While in VNNCOMP-2021, they primarily

utilized the L8 norm for measuring distances between inputs, we also analyzed distribu-

tions with respect to L1 and L2 norms.

The result distributions, illustrated in Figure 3.2, indicate significant distances across

all three measurement criteria, highlighting that it is insufficient for setting the local

neighbourhood as the region to be verified. Our analysis reveals that the maximum ver-

ifiable bounds under L1, L2, and L8 norms are considerably smaller than the distances

observed between real data instances. Particularly noteworthy is the finding that for each

class, the smallest L8 distance between any two images sharing the same label exceeds

0.05. This value represents the largest perturbation magnitude employed in VNNCOMP-

2021, as denoted by the red dotted line in Figure 3.2c.

This implies that relying solely on the ”data as specification” paradigm, wherein ref-

erence inputs with perturbations bounded in L2 or L8 norms are utilized, is inadequate

18







Table 3.3: The frequency of each ReLU and the NAPs for each label. Activated and deac-

tivated neurons are denoted by ` and ´, respectively, and ˚ denotes an arbitrary neuron

state.

Label Neuron states #samples NAP

0 (Green)
p`,´,´,`,´,`q 8

p`, ˚,´,`,´,`q
p`,`,´,`,´,`q 2

1 (Red)
p`,`,´,´,`,´q 7

p˚,`,´,`,´, ˚qp´,`,´,´,`,´q 2
p`,`,´,´,`,`q 1

for class 0 and 1, respectively, while the remaining area represents the unspecified region

where label guarantees are absent. We selected a sample from class 0, denoted as a green

dot in the figure, positioned close to the boundary of the NAP for class 0.

Considering the VNNCOMP framework, verification regions are L8-norm ϵ-balls cen-

tered around reference sample points. Successful verification within an ϵ-ball indicates a

safe zone against adversarial attacks. We marked two distinct ϵ values and drew the

corresponding neighbourhoods with boxes. The solid-line box represents a safe ϵ-ball

where no adversarial examples exist, whereas the dotted-line box, larger in size, repre-

sents an unsafe zone, extending beyond the NAP region of class 0 into the unspecified

area. Consequently, for this case, the verified region corresponds to the smaller solid-line

box. However, by incorporating NAPs into specifications, we can verify a much broader

and flexible region, extending our verification capabilities significantly.

3.3.3 Misclassification examples

Up to this point, we have demonstrated that through the proper utilization of NAPs and

an appropriate choice of the relaxation factor δ, we can derive effective representations

or abstractions that capture patterns in the data. However, there remain unexplored sce-

narios that could provide further insights into how NAPs reveal patterns within groups

of samples with shared attributes. In our context, this applies to sets of samples with the

same label, contributing to a deeper understanding of neural network properties, partic-

ularly their decision-making processes.
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Examining misclassified samples that also follow the NAPs of the class of their incor-

rect prediction is an unexplored scenario that could provide more insights. As shown in

Table 3.1, when δ=1.0, for each class, here are samples from other classes that also adhere

to the NAPs of that class. We identified some instances and presented them visually in

Figure 3.4. These examples are intriguing and, to some extent, provide evidence support-

ing the notion that NAPs serve as robust abstractions of their respective classes. These

misclassified samples themselves are problematic, and it is more reasonable to assert that

these images may have been assigned an inaccurate ground truth from a human perspec-

tive.

For instance, in Figure 3.4a, we present three instances where samples originally from

classes other than 0 are misclassified as 0, following the NAP of label 0, that is, Pδ“1.0
ℓ“0

. No-

tably, the left-most image in Figure 3.4a presents a case with a ground truth of 5, which,

from a human perspective, is challenging to identify as such. The neural network’s deci-

sion to classify it as 0 seems reasonable. In the case of the middle and right-most images

in Figure 3.4a, human observers may still recognize them as 8 and 9, respectively. How-

ever, it’s acknowledged that in the middle image, the upper loop of the 8 is relatively

small compared to the lower loop. In the right-most, the tail of the 9 is notably short, and

the loop occupies a significant portion of its size. Despite being recognizable by humans,

the neural network’s decision to classify these instances as 0 is not surprising.

As seen in other examples, some cases are very problematic even from a human per-

spective. For instance, the first image in Figure 3.4b has a ground truth of 6 but is misclas-

sified as 1, and the first image in Figure 3.4d has a ground truth of 5 but is misclassified as

3. Similarly, the middle image in Figure 3.4e has a ground truth of 6 but is misclassified

as 4. Some samples are inherently problematic, while others, although recognizable by

humans, align with the model’s decision. Consequently, it is reasonable for these misclas-

sified samples to follow the NAP of their erroneously predicted class. Moreover, the fact

that misclassified samples also adhere to NAPs of other classes underscores the capability

of NAPs to capture shared attributes among samples within the same class to a certain

extent.
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3.4 Discussion

In this chapter, we explored the behaviors of neural networks through NAPs. Using our

custom implementation of the NAP mining algorithm, we conducted experiments on

simple FNN with MNIST dataset to extract NAPs under varying relaxation constraints

represented by δ. This allowed us to demonstrate the trade-off between NAP specificity

and the coverage of test samples. In essence, we explored how NAPs can capture common

features among test samples while balancing specificity.

Moreover, we observed the flexibility of NAPs in covering the input space, which

inspired us to consider incorporating them into formal verification specifications. We il-

lustrated this motivation through two experiments. First, we computed the L1, L2 and L8

distances between pairs of samples from the same class in the MNIST dataset to show-

case the limited coverage of the original verification area defined by ϵ-balls, where we

used the ϵ values from VNNCOMP-2021 as a reference. Our analysis revealed that this

original verification area was insufficient to cover real-case inputs effectively.

Secondly, we presented a case study using a simple FNN and a dataset containing

20 points to highlight the broader and more flexible coverage of NAPs in the input space

compared to ϵ-balls. This demonstrated the potential of integrating NAPs into formalized

specification processes.

We also conducted additional analysis on the misclassified samples observed in previ-

ous experiments to gain deeper insights into neural networks. Specifically, we examined

misclassified samples that adhere to the NAPs of their wrongly predicted labels. Our

observations revealed that these incorrect predictions often appear reasonable because

some samples pose challenges even from a human perspective, which partly explains

why neural networks make these erroneous decisions.

The content discussed in this chapter is derived from the research outlined in [11].

Here, we mainly present an exploration of NAPs and the development of the idea of in-

corporating NAPs into formal verification specifications. The study detailed in [11] cov-

ers a comprehensive array of experiments conducted on established benchmarks such as

MNIST and CIFAR-10 and detailed discussions on the models utilized and the Marabou
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toolkit [20], which was employed in VNNCOMP-2021, to show the advantages of in-

corporating NAPs in formalizing specifications. These experiments collectively serve to

show the potential of NAPs as a more reliable and extensible specification for neural net-

work verification.
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Chapter 4

Application of Delta Debugging in

Image Classification Task

In this chapter, we explore a study involving the Delta Debugging Algorithm [43], a tech-

nique commonly used in software engineering to pinpoint the root causes of bugs in

programs. This method iteratively tests and narrows down the input size to minimize

the range causing issues. However, instead of focusing on program debugging, we apply

this algorithm to the domain of machine learning tasks, particularly image classification.

Our aim is to augment images using this algorithm to uncover intriguing features that

may offer insights into the behaviour or properties of neural network models during pre-

diction tasks.

4.1 Delta Debugging to images

For this part of work, we aim to apply the Delta Debugging Algorithm to image classi-

fication tasks to uncover interesting features of neural networks. Our technique retains

the core concept of the ddmin method from [44], but since this is a different domain from

programming debugging, we will make some modifications to the details.

The essential idea of ddmin, detailed in Chapter 2.3, is to iteratively remove parts from

a failure input and test the reduced input. This process continues until removing any
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additional atomic part causes the failure to disappear, thereby achieving a 1-minimal state.

This helps to identify the most relevant parts responsible for the failure.

In our case, we will use an image as the input and iteratively mask out pixels from

the input image. At each iteration, we will test pre-defined conditions. This iterative

process will continue until masking out even one more pixel from the image no longer

satisfies these conditions, which corresponds to the 1-minimal state in ddmin. We refer to

our technique as ddImage.

The crucial aspect of this process is the conditions set for testing at each iteration,

as they are the primary factors influencing the output and affecting the results of our

observations. The details of these conditions and the different experiments we conducted

will be discussed in Section 4.2. Different conditions were set for different experiments.

For masking out pixels, we will follow the ddmin approach of partitioning the program

into subsets by splitting the pixels into subsets. Given a number n, we will evenly split the

unmasked pixels into n subsets. The details of our technique are presented in Algorithm

3.

Algorithm 3 High level algorithm for applying delta debugging for image augmentation
ddImage. The algorithm is initiated by ddImagepIo, lo,N , 2q

Input: Image I ; label lI ; neural network N ; number of subsets n

Split I into n pixelwise disjoint subsets ∆1,...,∆n where @|∆i| « |I|{n
if D∆i such that N pI ´ ∆iq ““ lI and ConditionspI ´ ∆iq is true then
i “ argmaxjPn ProbplI |N pI ´ ∆jq ““ lIq
ddImagepI ´ ∆i, lI ,N maxpn ´ 1, 2qq

else if n ă |I| then
ddImagepI ´ ∆i, lI ,N ,minp2n, |I|qq

else
return I

end if

We use Io and lo to denote an original input image and its label, respectively. The

neural network used for prediction is denoted as N . I and lI denote an arbitrary image

and a label, respectively, that are input into the algorithm. n denotes the number of par-

titions we want to split the image into by grouping the pixels of the image evenly into

n subsets. Conditions is a function representing all the conditions or constraints we want
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an image to satisfy to proceed as the input for the next iteration step. It returns True if

all the conditions are satisfied; otherwise, it returns False. The symbol ´ represents the

operation of masking out a subset of pixels. For example, I ´ ∆i means masking out all

the pixels in subset ∆i from image I . The function | ¨ | gives the size of an image. In the

original application of the Delta Debugging Algorithm, the size of a program is considered

the number of atomic parts it has [44]. Here, as we are dealing with images, we consider

an atomic part of an image to be one pixel. Therefore, | ¨ | gives the number of pixels left in

the input image, or more specifically, the number of unmasked pixels in the input image.

We specifically mention unmasked pixels because, when we pass an arbitrary image I

to test for the conditions, we still pass all the pixels, including both masked and unmasked

ones. It is impossible to remove the pixels completely from an image while keeping the

remaining pixels in their original positions. Therefore, at each iteration step, we keep a

mask to track which pixels are still unmasked. For the masked pixels, we simply set the

pixel value to 0, making it pure black. 1

For each iteration step, there are three possible outcomes, indicated by the if-elseif-

else block. The if corresponds to the Reduce to complement case, elseif corresponds to the

Increase granularity case, and else corresponds to the Done case. Here are the details for

each case:

Reduce to complement. If there exists a subset of pixels ∆i such that masking out these

pixels from the input image I , i.e., I ´ ∆i, results in a prediction matching the label lI

and satisfies the Conditions, we will reduce to the complement that gives the highest pre-

diction probability. We want to ensure that the augmented image maintains the same

prediction as the ground truth because observing patterns would be meaningless if the

augmented image does not retain the same label as the ground truth. This approach dif-

fers from ddmin, which can reduce to any qualified complement, because we believe that

the confidence level of a neural network in its predictions is significant.

Increase granularity. If no complements qualify as the input for the next iteration step, we

will increase the granularity level, similar to the approach in ddmin.

1We chose to set masked pixels to black because the MNIST dataset consists of black-and-white images.
The digits are presented by white strokes, while black serves as the background, containing no information.
Thus, it is reasonable to set our masked pixels to black.
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Done. As in ddmin, if we have reached the highest granularity level, i.e., each subset

contains exactly one pixel, it means we have reached the 1-minimal state and have found

the minimal image.

There is one thing worth nothing that in our implementation of ddImage, we exclude

one case from ddmin, namely Reduce to subset. In ddmin, the goal is to quickly find the

minimal failure test case by reducing the input as much as possible at each step, focus-

ing solely on preserving the original failure without other constraints. However, in our

scenario, we are dealing with images and considering both the predictions and corre-

sponding confidence levels for each possible augmentation. Our objective is to mask out

pixels while maintaining a correct prediction with a high confidence level.

Intuitively, masking out more pixels erases more information from the image, leading

to a greater drop in prediction confidence. Given that n ě 2 throughout the process,

it’s clear that @i P r1, ns ¨ |I ´ ∆i| ě |∆i|. Therefore, unlike ddmin, we prioritize Reduce

to complement over Reduce to subset. Also, because of this rationale, we find it is not very

necessary to check the Reduce to subset case, and thus, we have omitted it from our ddImage

algorithm.

4.2 Evaluations

4.2.1 Evaluation of applying Delta Debugging to images

For our experiment, we worked with a relatively small-sized FNN with four layers and

the MNIST dataset [7]. Since we consider correct prediction as a condition to be checked,

we first filtered out all the test images that could be predicted correctly by our neural net-

work. We then applied our method to these correctly predicted test images individually,

as each process is image-dependent, making batch processing impractical. Our methodol-

ogy, detailed in the previous section, leaves one crucial part to be specified: the conditions

for the iteration steps, which are essential for our experiments.

Initially, we set no additional conditions, meaning we continued the reduction pro-

cess until the prediction of the augmented image no longer matched the ground truth.
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However, this approach did not yield very meaningful observations. For most images,

the resulting minimal images contained only a few pixels, making it difficult to discover

any obvious patterns.

To address this, we added a constraint by setting a threshold for the prediction prob-

ability. This adjustment aimed to ensure that the augmented images maintained a high

confidence level in their predictions, thereby producing more informative result minimal

images for our analysis:

Condition case 1. D∆i such that N pI ´ ∆iq ““ lI and ProbplI |I ´ ∆iq ě t where t is a

given threshold and t P r0, 1s.

In this scenario, if we set t ď 0.1, it is effectively the same as having no additional

conditions beyond ensuring the prediction remains correct throughout the entire process.

This is because the sum of probabilities for all labels is 1. If the probability of the ground

truth label is less than 0.1, another label must have a higher probability than the ground

truth, resulting in an incorrect prediction and thus failing to satisfy the conditions.

Figures 4.1 and 4.2 display examples selected by running Condition case 1 without set-

ting a threshold t on probability, which is equivalent to setting t ď 0.1. The images on the

left are the original images, while the images on the right are the minimal images result-

ing from applying our ddImage method. As evident from the result minimal images, only

a few pixels remain compared to their original counterparts.

For each label, we can observe some similarities between their minimal images. For

instance, in Figure 4.1d, images labeled 1 tend to have only a dot in the middle, and

images labeled 4 tend to have pixels left in the middle in the shape of a dotted line, as

shown in Figure 4.1j. However, these observed patterns are not uniquely consistent across

all classes. For example, images labeled 5 in Figure 4.2b also result in minimal images

with dots, some of which are located in the middle of the image, similar to images labeled

1.

Consequently, it is challenging to identify a clear and distinctive pattern across these

samples. Additionally, given that there are 10 classes, a random guess would result in a

uniform prediction probability of 0.1. When the prediction probability is lower, the result

is closer to a random guess. From this perspective, even if we observe some patterns, they
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Pred prob: 0.3469 Pred prob: 0.4829 Pred prob: 0.4631 Pred prob: 0.4034

(a) Label 0 original images

Pred prob: 0.1297 Pred prob: 0.1272 Pred prob: 0.1216 Pred prob: 0.1192

(b) Label 0 minimal images
Pred prob: 0.3394 Pred prob: 0.3841 Pred prob: 0.2143 Pred prob: 0.3153

(c) Label 1 original images

Pred prob: 0.1109 Pred prob: 0.1105 Pred prob: 0.1140 Pred prob: 0.1150

(d) Label 1 minimal images
Pred prob: 0.4944 Pred prob: 0.7136 Pred prob: 0.8280 Pred prob: 0.2821

(e) Label 2 original images

Pred prob: 0.1094 Pred prob: 0.1137 Pred prob: 0.1116 Pred prob: 0.1144

(f) Label 2 minimal images
Pred prob: 0.3551 Pred prob: 0.4233 Pred prob: 0.4222 Pred prob: 0.6046

(g) Label 3 original images

Pred prob: 0.1193 Pred prob: 0.1216 Pred prob: 0.1198 Pred prob: 0.1144

(h) Label 3 minimal images
Pred prob: 0.3283 Pred prob: 0.2079 Pred prob: 0.2804 Pred prob: 0.2562

(i) Label 4 original images

Pred prob: 0.1165 Pred prob: 0.1179 Pred prob: 0.1259 Pred prob: 0.1296

(j) Label 4 minimal images

Figure 4.1: Some examples from classes 0 to 4 before and after applying ddImage with-

out setting a threshold on prediction probability. The left columns display the original

images, while the right columns show the corresponding minimal images after applying

ddImage.

might not reflect the true intrinsic logic behind the decision-making process. Therefore,

we believe it would be beneficial to increase the threshold probability to better observe

interesting features.

We increased the threshold for the prediction probability and experimented with sev-

eral different values, including 0.2, 0.3, and 0.4, as presented in Figure 3.4. Each group of

three images shows the same input image processed by ddImage with thresholds t ě 0.2,
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Pred prob: 0.2027 Pred prob: 0.3192 Pred prob: 0.3369 Pred prob: 0.2998

(a) Label 5 original images

Pred prob: 0.1132 Pred prob: 0.1112 Pred prob: 0.1172 Pred prob: 0.1146

(b) Label 5 minimal images
Pred prob: 0.5436 Pred prob: 0.3631 Pred prob: 0.2633 Pred prob: 0.3599

(c) Label 6 original images

Pred prob: 0.1163 Pred prob: 0.1119 Pred prob: 0.1127 Pred prob: 0.1164

(d) Label 6 minimal images
Pred prob: 0.4843 Pred prob: 0.3604 Pred prob: 0.4004 Pred prob: 0.2499

(e) Label 7 original images

Pred prob: 0.1115 Pred prob: 0.1106 Pred prob: 0.1114 Pred prob: 0.1109

(f) Label 7 minimal images
Pred prob: 0.4056 Pred prob: 0.4207 Pred prob: 0.4489 Pred prob: 0.2930

(g) Label 8 original images

Pred prob: 0.1184 Pred prob: 0.1202 Pred prob: 0.1178 Pred prob: 0.1127

(h) Label 8 minimal images
Pred prob: 0.2944 Pred prob: 0.2075 Pred prob: 0.4331 Pred prob: 0.3327

(i) Label 9 original images

Pred prob: 0.1119 Pred prob: 0.1147 Pred prob: 0.1154 Pred prob: 0.1111

(j) Label 9 minimal images

Figure 4.2: Some examples from classes 5 to 9 before and after applying ddImage with-

out setting a threshold on prediction probability. The left columns display the original

images, while the right columns show the corresponding minimal images after applying

ddImage.

ě 0.3, and ě 0.4 from left to right. Each row includes four groups of images of the same

class. From top to bottom, images are from class 0 to class 9, respectively. As the proba-

bility threshold increased, more pixels were preserved in the resulting images, which was

expected. Unlike when we set the threshold to ď 0.1, the digits are relatively more recog-

nizable after reduction, and the higher the threshold, the more recognizable the resulting

images are.
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Pred prob: 0.2007 Pred prob: 0.3005 Pred prob: 0.4001 Pred prob: 0.2004 Pred prob: 0.3009 Pred prob: 0.4010 Pred prob: 0.2008 Pred prob: 0.3011 Pred prob: 0.4000 Pred prob: 0.2005 Pred prob: 0.3002 Pred prob: 0.4006

Pred prob: 0.2006 Pred prob: 0.3005 Pred prob: 0.4006 Pred prob: 0.2029 Pred prob: 0.3008 Pred prob: 0.4008 Pred prob: 0.2038 Pred prob: 0.3005 Pred prob: 0.2811 Pred prob: 0.2053 Pred prob: 0.3014 Pred prob: 0.3014

Pred prob: 0.2008 Pred prob: 0.3000 Pred prob: 0.4001 Pred prob: 0.2002 Pred prob: 0.3002 Pred prob: 0.4009 Pred prob: 0.2000 Pred prob: 0.3005 Pred prob: 0.4004 Pred prob: 0.2005 Pred prob: 0.3003 Pred prob: 0.4004

Pred prob: 0.2001 Pred prob: 0.3001 Pred prob: 0.3322 Pred prob: 0.2001 Pred prob: 0.3001 Pred prob: 0.3657 Pred prob: 0.2000 Pred prob: 0.3005 Pred prob: 0.4005 Pred prob: 0.2001 Pred prob: 0.3002 Pred prob: 0.4002

Pred prob: 0.2007 Pred prob: 0.3006 Pred prob: 0.4002 Pred prob: 0.2003 Pred prob: 0.3010 Pred prob: 0.4007 Pred prob: 0.2004 Pred prob: 0.3004 Pred prob: 0.3069 Pred prob: 0.2002 Pred prob: 0.3002 Pred prob: 0.4007

Pred prob: 0.2001 Pred prob: 0.3001 Pred prob: 0.3192 Pred prob: 0.2001 Pred prob: 0.3002 Pred prob: 0.3201 Pred prob: 0.2003 Pred prob: 0.3000 Pred prob: 0.3152 Pred prob: 0.2015 Pred prob: 0.3004 Pred prob: 0.3226

Pred prob: 0.2010 Pred prob: 0.3002 Pred prob: 0.4006 Pred prob: 0.2009 Pred prob: 0.3001 Pred prob: 0.4014 Pred prob: 0.2008 Pred prob: 0.3005 Pred prob: 0.4001 Pred prob: 0.2004 Pred prob: 0.3007 Pred prob: 0.4002

Pred prob: 0.2005 Pred prob: 0.3004 Pred prob: 0.4010 Pred prob: 0.2009 Pred prob: 0.3010 Pred prob: 0.4008 Pred prob: 0.2002 Pred prob: 0.3020 Pred prob: 0.4002 Pred prob: 0.2004 Pred prob: 0.3014 Pred prob: 0.3718

Pred prob: 0.2001 Pred prob: 0.3002 Pred prob: 0.3551 Pred prob: 0.2007 Pred prob: 0.3003 Pred prob: 0.4004 Pred prob: 0.2000 Pred prob: 0.3002 Pred prob: 0.4002 Pred prob: 0.2009 Pred prob: 0.3005 Pred prob: 0.3427

Pred prob: 0.2007 Pred prob: 0.3004 Pred prob: 0.4003 Pred prob: 0.2003 Pred prob: 0.3001 Pred prob: 0.4001 Pred prob: 0.2009 Pred prob: 0.3003 Pred prob: 0.4001 Pred prob: 0.2009 Pred prob: 0.3009 Pred prob: 0.4001

Figure 4.3: Some examples of results image under three different probability thresholds.

For each group of three images, from left to right, they are under threshold t ě 0.2,ě 0.3

and ě 0.4 as conditions. Each row contains images from one class. From top to bottom,

images are from class 0 to class 9, respectively.

There are discernible patterns in the reduction process for each class. Certain areas

tended to be reduced first, leaving the remaining pixels clustered in specific regions. For

example, for the digit 0, the lower half of the hoop tends to be retained during reduction.

However, these patterns are not always unique for each class. For instance, the shapes

after the reduction process for classes 4 and 6 exhibit some similarities, with both retaining

an upward curve as the remaining part.

In conclusion, our initial reduction process using probability as the threshold revealed

intriguing patterns in the resulting minimal images. As we increased the prediction prob-
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ability threshold, the results progressed from completely unrecognizable to relatively

more identifiable. However, the patterns observed across different classes lacked unique-

ness.

The masked-out pixels demonstrated that not all pixels are essential for the neural net-

work’s decision-making process, with some features being more important than others.

This varying importance of features also exposes the neural network’s vulnerability, as

there exists a critical point where prediction fails.

Moreover, the unrecognizable minimal images highlight the gap difference between

human and machine perception, underscoring the challenges in neural network inter-

pretability. These images also raise potential reliability concerns, suggesting that net-

works may classify seemingly unrelated inputs into a given class—a finding that deserves

further investigation.

These insights led us to explore another conditioning criterion. As discussed in Chap-

ter 3, our study on NAPs demonstrated their potential to abstract features of the neural

network. We aim to incorporate NAPs into our conditions, using them instead of proba-

bility, to evaluate how well the neural network preserves image information during the

pixel reduction process. Therefore, we set our condition as follows:

Condition case 2. D∆i such that N pI ´ ∆iq ““ lI and PI ““ PIo where PI is the NAP

of I and PIo is the NAP of Io, i.e., the NAP of the original image we input at the start of

delta debugging process.

In this scenario, we first extract the NAP of the original input image Io, denoted as

PIo . Given that our neural network is relatively small, we include all the neurons without

incorporating the relaxation factor δ mentioned in Chapter 3.1. At each step, we extract

the NAP of the augmented image, denoted as PI , and compare it with PIo until it reaches

the 1-minimal state, meaning that removing even one more pixel will cause it to no longer

follow PIo .

From the resulting minimal images, we observed that using NAP as the sole condition

for the reduction process produces more ideal minimal images, as shown in Figure 4.4

and 4.5. The shape of digits and the information of the original input images are well-

preserved under this condition case. For images with thinner strokes, fewer pixels are
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Pred prob: 0.7717 Pred prob: 0.5408 Pred prob: 0.7045 Pred prob: 0.2693

(a) Label 0 original images

Pred prob: 0.7553 Pred prob: 0.5372 Pred prob: 0.7680 Pred prob: 0.2687

(b) Label 0 minimal images
Pred prob: 0.4289 Pred prob: 0.3457 Pred prob: 0.2811 Pred prob: 0.3246

(c) Label 1 original images

Pred prob: 0.4354 Pred prob: 0.3762 Pred prob: 0.2797 Pred prob: 0.3239

(d) Label 1 minimal images
Pred prob: 0.3860 Pred prob: 0.5129 Pred prob: 0.6490 Pred prob: 0.7835

(e) Label 2 original images

Pred prob: 0.3773 Pred prob: 0.4791 Pred prob: 0.7416 Pred prob: 0.7516

(f) Label 2 minimal images
Pred prob: 0.5352 Pred prob: 0.5357 Pred prob: 0.3859 Pred prob: 0.4460

(g) Label 3 original images

Pred prob: 0.6490 Pred prob: 0.6690 Pred prob: 0.3785 Pred prob: 0.4290

(h) Label 3 minimal images
Pred prob: 0.3283 Pred prob: 0.4696 Pred prob: 0.3166 Pred prob: 0.2126

(i) Label 4 original images

Pred prob: 0.3133 Pred prob: 0.5488 Pred prob: 0.3308 Pred prob: 0.2118

(j) Label 4 minimal images

Figure 4.4: Some examples from classes 0 to 4 before and after applying ddImage with

coorporating NAP in the condition.

masked out, leading to only minor changes compared to the original images. For those

with bolder strokes, more pixels are removed from the strokes, creating small holes, but

the majority of the stroke pixels are retained, making the digits easily recognizable and

preserving the important information of the images.

In general, the strokes of the digits are preserved in a more continuous manner, main-

taining most of the significant parts, whereas the images conditioned on prediction prob-
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Pred prob: 0.2372 Pred prob: 0.3739 Pred prob: 0.3369 Pred prob: 0.2973

(a) Label 5 original images

Pred prob: 0.2331 Pred prob: 0.3859 Pred prob: 0.3471 Pred prob: 0.3262

(b) Label 5 minimal images
Pred prob: 0.7326 Pred prob: 0.3781 Pred prob: 0.3848 Pred prob: 0.3930

(c) Label 6 original images

Pred prob: 0.7581 Pred prob: 0.3748 Pred prob: 0.4335 Pred prob: 0.4255

(d) Label 6 minimal images
Pred prob: 0.3604 Pred prob: 0.3505 Pred prob: 0.6858 Pred prob: 0.3270

(e) Label 7 original images

Pred prob: 0.3663 Pred prob: 0.3529 Pred prob: 0.6966 Pred prob: 0.3708

(f) Label 7 minimal images
Pred prob: 0.3551 Pred prob: 0.5922 Pred prob: 0.4362 Pred prob: 0.3874

(g) Label 8 original images

Pred prob: 0.3605 Pred prob: 0.5889 Pred prob: 0.4101 Pred prob: 0.4052

(h) Label 8 minimal images
Pred prob: 0.2075 Pred prob: 0.4850 Pred prob: 0.4784 Pred prob: 0.4051

(i) Label 9 original images

Pred prob: 0.2118 Pred prob: 0.4969 Pred prob: 0.4852 Pred prob: 0.4106

(j) Label 9 minimal images

Figure 4.5: Some examples from classes 5 to 9 before and after applying ddImage with

coorporating NAP in the condition.

ability have more segmented strokes. This demonstrates that NAP helps preserve impor-

tant information in an image selectively and smartly.

To further verify this observation, we conducted an evaluation comparing the result-

ing images from these two conditions in a more obvious manner. For each image, we

first performed the reduction process using NAP as the condition. We then used the

prediction probability of the NAP-conditioned minimal image as the threshold for the

reduction process conditioned on prediction probability, and compared the two resulting
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Pred prob: 0.7081 Pred prob: 0.7071 Pred prob: 0.7077 Pred prob: 0.2657 Pred prob: 0.2650 Pred prob: 0.2651 Pred prob: 0.2213 Pred prob: 0.2672 Pred prob: 0.2673

(a) Label 0 images
Pred prob: 0.3979 Pred prob: 0.4041 Pred prob: 0.4048 Pred prob: 0.3377 Pred prob: 0.3430 Pred prob: 0.3451 Pred prob: 0.3085 Pred prob: 0.3085 Pred prob: 0.3092

(b) Label 1 images
Pred prob: 0.6106 Pred prob: 0.6055 Pred prob: 0.6057 Pred prob: 0.3416 Pred prob: 0.3148 Pred prob: 0.3151 Pred prob: 0.2821 Pred prob: 0.2821 Pred prob: 0.2823

(c) Label 2 images
Pred prob: 0.1593 Pred prob: 0.1605 Pred prob: 0.1609 Pred prob: 0.2265 Pred prob: 0.2302 Pred prob: 0.2302 Pred prob: 0.6508 Pred prob: 0.6737 Pred prob: 0.6741

(d) Label 3 images
Pred prob: 0.3283 Pred prob: 0.3133 Pred prob: 0.3143 Pred prob: 0.4370 Pred prob: 0.4255 Pred prob: 0.4261 Pred prob: 0.4888 Pred prob: 0.5015 Pred prob: 0.5022

(e) Label 4 images

Figure 4.6: Some examples from classes 0 to 4 between NAP-conditioned and probability-

conditioned result images of the same level of prediction probability. For each group of

three images, the left one is the original image, middle one is NAP-conditioned, the right

one is probability-conditioned.

images. The examples of this comparison are shown in Figure 4.6 and 4.7. As you can

see, with the same level of prediction probability, the NAP-conditioned result minimal

images could preserve more information and better shape of the digits. In some exam-

ples, the probability-conditioned result image has a significant part of the stroke masked

out, such as in Figure 4.6b. Some images even become unrecognizable from a human

perspective, such as in Figure 4.6d. In contrast, the NAP-conditioned result images of the

same original images have the digit shape well-preserved.
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Pred prob: 0.2027 Pred prob: 0.2057 Pred prob: 0.2066 Pred prob: 0.4327 Pred prob: 0.4233 Pred prob: 0.4236 Pred prob: 0.1901 Pred prob: 0.1897 Pred prob: 0.1898

(a) Label 5 images
Pred prob: 0.2892 Pred prob: 0.3010 Pred prob: 0.3014 Pred prob: 0.2327 Pred prob: 0.2381 Pred prob: 0.2381 Pred prob: 0.2735 Pred prob: 0.2731 Pred prob: 0.2733

(b) Label 6 images
Pred prob: 0.2231 Pred prob: 0.2233 Pred prob: 0.2248 Pred prob: 0.3718 Pred prob: 0.3657 Pred prob: 0.3665 Pred prob: 0.2929 Pred prob: 0.2953 Pred prob: 0.2966

(c) Label 7 images
Pred prob: 0.3049 Pred prob: 0.3040 Pred prob: 0.3041 Pred prob: 0.3427 Pred prob: 0.3419 Pred prob: 0.3420 Pred prob: 0.3874 Pred prob: 0.4052 Pred prob: 0.4053

(d) Label 8 images
Pred prob: 0.4108 Pred prob: 0.4223 Pred prob: 0.4231 Pred prob: 0.3484 Pred prob: 0.3650 Pred prob: 0.3656 Pred prob: 0.4173 Pred prob: 0.4095 Pred prob: 0.4097

(e) Label 9 images

Figure 4.7: Some examples from classes 5 to 9 between NAP-conditioned and probability-

conditioned result images of the same level of prediction probability. For each group of

three images, the left one is the original image, middle one is NAP-conditioned, the right

one is probability-conditioned.

The evaluations above demonstrate that neural networks encode significant informa-

tion in their NAPs, effectively preserving crucial information learned from the dataset

during the reduction process. This suggests a better alignment between the network’s

internal representation and human perception, indicating that the NAP captures more

semantically meaningful features. It also highlights that studying NAPs could be a more

promising direction for neural network interpretability, as it is meaningful for both neu-

ral networks and humans. Considering our findings in Chapter 3, where we showed

that NAPs could capture features from images, these results further support our point to
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Split sequentially. In this method, pixels are assigned to group numbers 1 through n, and

this assignment process is repeated. As indicated in Figure 4.8b, pixels with the same

group number belong to the same subset.

Split randomly. For each subset, we randomly pick k unmasked pixels to form one sub-

set. These k pixels are then considered selected and are out of consideration for the next

subset-picking step, as indicated in Figure 4.8c.

Upon comparing the results of these three methods, we did not notice any significant

differences. Each method displays its own pattern regarding the distribution of remain-

ing unmasked pixels in the resulting minimal images. The split into chunks method tends

to produce images where the remaining unmasked pixels are clustered together, forming

larger dots or lines. In contrast, the results from the split sequentially and split randomly

methods have more scattered distributions of unmasked pixels, making the digits rela-

tively easier to recognize. However, when the probability threshold is set very low, such

as 0, it remains difficult for humans to recognize the digits. Therefore, we believe that the

choice of subsetting method does not significantly impact the experiments in the previous

section. Consequently, we focused on the results of one subsetting method, choosing split

into chunks for running Algorithm 3 and the evaluations.

We explored different methods because the form of the input can play an important

role in the subsetting procedure, especially for the input type (e.g., programs) of the orig-

inal application of the Delta Debugging algorithm, where the syntactic correctness of the

result subset must be considered [21]. While image data is relatively straightforward to

handle, as there are no syntactic or semantic issues, we still wanted to assess the extent to

which the subsetting method would affect the evaluation results.

4.3 Discussion

In this chapter, we explored a case study applying a software engineering algorithm

called Delta Debugging to perform image reduction and observe patterns that could po-

tentially provide insights into the logic behind neural networks’ decision-making pro-

cesses. We adopted the ddmin method from [44] to develop our method, ddImage. Ini-
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tially, we used prediction probability as the criterion for the reduction process. However,

we found that relying solely on this criterion was insufficient to make significant obser-

vations. From a decision-making perspective, the resulting images revealed the varying

significance of the features of input data in contributing to decision-making or prediction

results. This variation also highlights the vulnerability and reliability issues of neural

networks. The unrecognizable digits in the images after the reduction process indicate

a different logic behind decision-making between humans and neural networks, as the

patterns observed were not easily interpretable to humans. Given our previous study

of NAPs, which demonstrated their potential to abstract learned features from the data,

we incorporated NAPs into the reduction process criteria. As expected, relying solely on

NAPs produced highly effective minimal images, preserving the digits in a well-defined

shape, even from a human perspective. This not only shows that NAPs capture infor-

mation for inference at a similar level to humans but also further validates the points

discussed in Chapter 3.

There are two important points not addressed in [44] regarding the original Delta De-

bugging algorithm ddmin, which were proposed by [21]. These points include the order

of examining subsets and complements, which might affect the results based on the use

case, and the necessity of considering the format of input during subsetting. In our case,

for efficiency purposes, we removed the step of examining the subsets. Regarding input

format, our experiments on different subsetting methods revealed that, due to the nature

of image data (which has no semantic or syntactic issues), there was no major effect on

the results. However, for future work or for variants of Delta Debugging in other appli-

cations, these two points are definitely worth noting.
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Chapter 5

Scalar Invariant Neural Network

In this chapter, rather than focusing on the existing properties of current models, we ob-

served an intriguing property in the distribution of image data. Based on this observation,

we modified the neural network to create a new property—scalar invariance. This new

property is better suited for image classification tasks and has the potential to address

real-world issues in applications involving image processing.

5.1 Property of the distribution of image domain

Image data is typically stored in computers using a pixel-based format. In most cases,

each pixel in an image is represented by three numeric values, corresponding to the in-

tensity of red, green, and blue required to produce the color of that pixel. These numeric

values are usually represented as integers ranging from 0 to 255, or as floating-point val-

ues ranging from 0.0 to 1.0. When we flatten out the pixel matrix, it essentially forms

a high-dimensional vector. Ignoring the clipping issue, modifying any point along this

vector direction mainly alters the brightness or contrast of the image. While such modifi-

cations may alter the appearance of the image, they generally do not change its category

or label from a human perspective. In other words, a dog remains recognizable as a dog

even if there are significant changes in image brightness or contrast. Therefore, based on

this observation, it suggests the distribution of image datasets incorporates directionality,

as displayed in Figure 5.1.
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(a) Image classes can be

thought of as manifolds in

n-dimensional input space.

(b) Image classes can be con-

ceptualized as corn-shaped if

considering the varying con-

trast.

(c) An image specifes a direction in

input space, and copies of that im-

age with varying contrast lie along

the same direction.

Figure 5.1: The directionality (varying contrast) manifests in the intrinsic distribution of

images.

This discover of the inherent directional nature of image data has made us to rethink

the design of the neural network structure and start to question whether conventional

neural network architecture adequately account for this special property of image data.

As we look into the neural networks, the bias terms play a significant role in shaping the

responses or making predictions for neural networks to input data. However, these bias

terms may introduce biases or preferences that conflict with the directional characteristics

inherent in image data. Hence, we create scalar invariant neural network by removing the

bias terms and evaluate the accountability of this new-structured neural network.

5.2 Scalar invariant neural networks

5.2.1 Basic architect of convolutional neural network

A neural network consists of an input layer, hidden layers, and an output layer. For

CNNs, commonly used for image-related tasks, a fundamental component is the con-

volutional layer, specifically designed for processing grid-like data. This layer plays a

crucial role in extracting meaningful features from input images through a process called

convolution.
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In a convolutional layer, there are multiple filters or kernels. Each kernel slides through

the input volume spatially, computing the dot product between each weight in the kernel

and each value of the input column it is currently covering. Each dot product results in

a single value. By sliding through the entire input column, a feature map is formed from

these values. This feature map is then passed through an activation function, usually

ReLU. Next, a pooling layer performs downsampling to reduce the spatial dimensions of

the feature map.

After several convolutional and pooling layers, the feature maps are flattened into a

1D vector. This flattening process combines all the spatial information from the feature

maps into a single vector, which serves as the input to the fully connected layers. The

flattened vector is passed through one or more fully connected layers, where transforma-

tions on the input vector are performed using learnable parameters (weights and biases),

ultimately producing an output vector. Finally, the output vector is passed through the

output layer, which typically uses an appropriate activation function, such as Softmax,

depending on the task.

To further investigate the scalar invariant property, we formally denote the input sam-

ple as X and a convolutional neural network as N . Then N is composed of convolutional

layers Fi, pooling layers Pi, and fully connected layers Lj , where i, j P N. And we denote

the final activation function as A and refer to ReLU as R. Considering layers and activa-

tion functions as transformations on the input X , then the output of the network before

the final activation function A is represented by:

OpXq “ Lj ˝ R ˝ ... ˝ R ˝ L1
looooooooooomooooooooooon

j Linear layers

˝Pi ˝ R ˝ Fi... ˝ P1 ˝ R ˝ F1
loooooooooooooooomoooooooooooooooon

i Convolutional layers

˝X (5.1)

The FNNs with simple architects could also use this representation, where FNNs could

be considered as a special case with 0 convolutional layers or blocks.

And the final prediction class is determined by the one with the highest probability

over all classes C, that is:

N pXq “ argmax
cPC

tA ˝ OpXqu (5.2)
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5.2.2 Scalar associative transformations

Now that we have a clear understanding of the structure of typical CNNs and FNNs,

we aim to demonstrate that the associative property holds for each type of layer. This

theoretical proof will establish the feasibility of creating a scalar invariant neural network.

It’s important to note that in our analysis, we will only consider positive scalar values.

This decision is based on the nature of image data, as multiplying by negative scalars

could easily lead to pixel values exceeding their range, resulting in colour or intensity

inversions that significantly alter the image’s appearance. Furthermore, negative scalars

can change the sign of neurons, potentially causing issues in subsequent layers such as

pooling and ReLU activation. Therefore, our focus will solely be on positive scalars for

this analysis.

When examining the operation within a convolutional layer F using a kernel K, it is

evident that the associative property holds for convolution operations. To formalize this

observation, consider a positive scalar denoted by s such that s P R
`. We can express this

property as follows:

F ˝ psXq “
ÿ

m

ÿ

n

sXpi ` m, j ` nqKpm,nq

“s
ÿ

m

ÿ

n

Xpi ` m, j ` nqKpm,nq

“spF ˝ Xq

(5.3)

Next, we examine the pooling layer, where the above property also remains valid,

for both max pooling and average pooling operations. This assertion stems from the

fact that both the max and average pooling operations are expected to maintain scalar

multiplication. It is similar for the ReLU function. Hence, we can conclude:

P ˝ psXq “ spP ˝ Xq

R ˝ psXq “ spR ˝ Xq
(5.4)

Finally, passing the input X to a fully connected layer L can be thought of as applying a

linear transformation (W ,B) on X . If we set the bias term B to 0. We will have the scalar
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associative property. That is:

L ˝ psXq “ psXqWT “ sXWT “ spL ˝ Xq (5.5)

It’s worth noting that our proofs also rely on the commutative property, which typically

holds for matrix and vector multiplications involving a scalar. Consequently, when biases

are set to zero, we establish that the scalar multiplication associative property holds for

the output function, specifically: OpsXq “ sOpXq.

5.2.3 Scalar invariant convolutional neural networks

Having established the multiplication associativity of the preceding hidden layers, we

now turn our attention to the output layers preceding the final predictions of the network

N . In classification tasks, the last activation function A is typically the Softmax. When

we multiply the input X by a scalar s (s P R
`) and pass the product through the Softmax

function, it is equivalent to adjusting the temperature of the distribution. It’s important to

note that despite the change in the shape of the distribution, the rank of candidate classes

remains unchanged. In essence, the predicted class by the network N remains invariant

under scalar multiplication.

argmax
c

esOpXqc

ÿ

cPC

esOpXqc
“ argmax

c

eOpXqc

ÿ

cPC

eOpXqc
(5.6)

Put together with the scalar associative property of the output function Op¨q, we have a

scalar invariant neural network:

N psXq “ argmax
c

tA ˝ OpsXqu “ argmax
c

tA ˝ OpXqu “ N pXq (5.7)

The notion of scalar invariance in neural networks extends beyond convolutional neu-

ral networks. In essence, as long as the hidden layers execute scalar associative (and

commutative) transformations, and the final activation function maintains the highest

probable candidate under scalar multiplication, the neural network retains scalar invari-
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ance. Given that an image input X represents a direction in the input space, and we have

demonstrated that zero-bias neural networks can yield identical predictions along that

direction, we may reinterpret this property as the directional robustness property.

Lemma 1 (Directional robustness property). For any input X to a zero-bias neural net-

work N , the prediction remains the same when X is multiplied by any positive scalar s.

Formally, we have N psXq “ N pXq @s P R
`.

5.2.4 Scalar invariant ResNet

We briefly discussed the most simple architecture of convolutional neural networks in

the previous section. However, in addition to those basic layers we mentioned before,

modern powerful CNNs also employ extra layers and techniques to address over-fitting

and gradient exploding/vanishing issues. For example, ResNet [17] adopts Dropout [32],

Additive Skip Connection [17] and Batch Normalization [19] which contributes enormously

to its success. First, as dropout layers are disabled during the inference phase, it has no

impact on the scalar invariant property. Second, it is trivial to show skip connection is

also scalar multiplication associative if the corresponding residual branch G is also scalar

multiplication associative.

sX ` GpsXq “ spX ` GpXqq @s P R
` (5.8)

Lastly, we consider Batch Normalization, which is performed through a normalization

transformation that fixes the means and variances of inputs to each layer. Let us use XB

to denote a mini-batch of the entire training set. Then we have the batch normalization

transformation as follows:

BN pXBq “ γX̂B ` β (5.9)

where γ and β are learnable parameters, and X̂B is the normalized input, represented

by X̂B “
X

B
´µ

B
b

pσBq
2

`ϵ
, ϵ is an arbitrarily small constant. Clearly, we observe that the scalar

associative/invariant property doesn’t hold for the normalization step, because:
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γpsXq ` β “ γ
psXq ´ µ

B
b

pσ
B

q2 ` ϵ

` β ‰ spγX ` βq (5.10)

Thus, in order to achieve scalar invariance, we can adopt two approaches. Firstly,

for small neural networks that do not have severe gradient explosion/vanishing issues,

we can drop BN layers. Secondly, for larger neural networks, we can consider some

alternatives to batch normalization. There exists a line of work on exploring efficient

residual learning without normalization such as Instance Normalization [36], Fixup [45],

X -DNNs [18], and NFNets [3, 4]. We chose the Fixup network as an alternative option to

construct our networks to achieve scale invariance.

We have discussed the modifications made by Zhang et al. [45] to the original ResNet

to get a Fixup ResNet in Chapter 2.4. To construct a scale-invariant Fixup network, we

need to remove the bias terms. Therefore, our modification is applied solely to rule 3.

After our adjustments, the three rules will be:

1. Initialize the classification layer and the last layer of each residual branch to 0.

2. Initialize every other layer using a standard method (e.g., the methods used by He

et al. [17]), and scale only the weight layers inside residual branches by L´ 1

2m´2 ,

where L is the number of residual branches the model has, and m is number of

layers inside a single residual branch.

3. Add a scalar multiplier (initialized at 1) in every branch.

The first and second rules exclusively impact the training phase without altering the

structure of the ResNet model, thereby not influencing the scalar associative property

of the Fixup-ResNet model. Conversely, the third rule describes the modifications intro-

duced by the Fixup method to the model. Referring to Figure 2.1 for a visualization of

these changes, the method replaces batch normalization layers with multiplier and bias

layers. To construct the corresponding zero-bias version of the model, we simply omit

the bias layers, as depicted by the middle structure in Figure 2.1. Notably, the multiplier

layer maintains scalar associativity, thereby rendering the zero-bias Fixup-ResNet a scalar

invariant network.
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5.3 Evaluations

In preceding sections, we have demonstrated theoretically that by eliminating bias terms

and adopting alternative structures for specific layers unable to achieve scalar invariance,

we can construct scalar invariant zero-bias neural networks. In this section, we transi-

tion from theory to experimentation, validating the scalar invariance and comparing the

performance of these models with their with-bias counterparts.

In our experimental setup, we opted for four neural network architectures: a FNN, a

CNN, as well as ResNet18 and ResNet50. Notably, for the ResNet models chosen, we ap-

plied alternative techniques Fixup as we mentioned in the previous part to ensure scalar

invariance in their zero-bias variants. Across each neural network type, we conducted

training sessions for both with-bias and zero-bias models under the exactly the same con-

figuration. These experiments were conducted across several image classification bench-

marks, including MNIST [7], Fashion-MNIST [42], CIFAR-100 [22], and ImageNet [6].

Using the trained models, we selected a range of positive scalars from 1 to 0.0001 and

augmented the dataset with these scalars to adjust the contrast of the images. Subse-

quently, we evaluated the performance of both with-bias and zero-bias models for each

neural network selected and presented a comparative analysis of their performance un-

der these varied positive scalars in Table 5.1.

Table 5.1: As expected, zero-bias neural networks achieve perfect scalar invariance on

testing accuracies, while normal neural networks are generally not robust against de-

creasing the contrast of the input image. Results are replicated thrice and averaged to

reduce stochasticity effects, with all variances being below 0.5.

Scalar multiplier
1 0.25 0.15 0.125 0.1 0.075 0.05 0.025 0.01 0.001 0.0001

MNIST FCN
w/ bias 88.12 87.07 84.46 82.57 79.52 74.76 65.82 42.84 16.34 10.28 10.28

w/o bias 88.27 88.27 88.27 88.27 88.27 88.27 88.27 88.27 88.27 88.27 88.27

Fashion-MNIST CNN
w/ bias 89.10 67.10 40.12 32.52 24.16 17.91 12.46 10.12 10.00 10.00 10.00

w/o bias 89.02 89.02 89.02 89.02 89.02 89.02 89.02 89.02 89.02 89.02 89.02

CIFAR-100 ResNet18
w/ bias 67.62 19.86 8.20 6.11 4.16 2.58 1.69 1.06 1.01 1.01 1.01

w/o bias 67.33 67.33 67.33 67.33 67.33 67.33 67.33 67.33 67.33 67.33 67.33

ImageNet [6] ResNet50
w/ bias 75.37 66.72 57.84 53.62 47.27 37.61 21.81 3.39 0.21 0.10 0.10

w/o bias 73.82 73.82 73.82 73.82 73.82 73.82 73.82 73.82 73.82 73.82 73.82
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Figure 5.2: W/ bias and w/o bias stand for the prediction of normal and scalar invariant

models respectively. Prediction of normally trained neural networks changes constantly

as the scalar decreases, whereas that of scalar invariant networks remains unchanged.

Despite the probability of the corresponding class diminishing. models inherit scalar

invariance from removing bias.

Upon observation of the table, it is evident that even after bias removal, the zero-bias

models exhibit comparable performance to their with-bias counterparts on the original

test set (i.e., when the scalar is 1). While some networks may show slightly superior per-

formance with with-bias models, the differences in accuracies between the two are not

substantial, indicating the potential utility of zero-bias models for image classification

tasks. However, as the scalar of the input image decreases from 1 to 0.0001, with-bias

models demonstrate a lack of robustness, as evidenced by varying declines in their accu-

racies. In contrast, zero-bias models demonstrate scalar invariance, as anticipated from

the proofs presented in previous sections, maintaining consistent performance irrespec-

tive of the varying contrast of input images.

In addition to the tabulated results, we provide visualizations of images with vary-

ing contrast and a comparison of predictions made by the normal with-bias model and

the zero-bias model in Figure 5.2. In each row of images, the left-most image represents

the original image, while subsequent images depict decreasing contrast levels from left
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5.4 Interesting robustness property

In the previous sections, we explored the theoretical bases of achieving scalar invariance

by removing bias terms from the neural network while employing alternative solutions

for batch normalization layers. Furthermore, we substantiated this theoretical analysis

with empirical evidence, showcasing that the zero-bias network is not just a feasible con-

cept but can also match the performance of normal with-bias neural networks. However,

neural networks have been shown to lack robustness against small perturbations [1, 5].

Therefore, in this section, we will look into intriguing robustness properties observed in

the zero-bias network that are not typically present in normal with-bias neural networks.

In Chapter 3, we explored NAPs and used them to observe intriguing properties of

neural networks. In this chapter, we revisit NAPs due to the discovery of an interesting

robustness property during our study of zero-bias neural networks’ NAPs. The NAP we

refer to here is defined identically to what was discussed in the previous chapter, i.e.,

Definition 3.1.1. Leveraging the multiplication associative property established in the

preceding section, we uncovered that when mixing two images following the same NAP,

the resulting mixed image should yield the same prediction as the two reference images.

Theorem 2 (Interpolation robustness property). For any two inputs X1 and X2 that have

the same prediction and NAP by network N , i.e., N pX1q “ N pX2q and PX1
“ PX2

, their

linear interpolation also yield the same prediction, that is, N pαX1`p1´αqX2q “ N pX1q “

N pX2q, where α P r0, 1s.

Given that two samples share the same prediction and NAP, it follows that their inter-

polation also shares the same pattern. Our proof is provided below:

Proof. We show the interpolation robustness property holds for FNNs without bias. For

more complicated neural networks such as CNN, the property also holds as long as all

transformations before the output layer are scalar associative (Lemma 1). Consider a FCN

N composed of J number of fully connected layers Lj and some ReLU layers R. We think

of layers and activation functions as transformations on the input X , then the output of
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the network OpλX1 ` p1 ´ λqX2q before the softamx function is represented by:

OpλX1 ` p1 ´ λqX2q “ LJ ˝ R ˝ ... ˝ R ˝ L1 ˝ pλX1 ` p1 ´ λqX2q (5.11)

For any fully connected layer Lj , we have:

Lj ˝ pλX1 ` p1 ´ λqX2q “ pλX1 ` p1 ´ λqX2qW
T
j

“ λXW T
j ` p1 ´ λqX2W

T
j

“ λLj ˝ X1 ` p1 ´ λqLj ˝ X2

(5.12)

On the other hand, we have X and Y falling into the same NAP. Since the linear region

corresponding to the NAP is convex, the interpolation of X1 and X2, i.e., λX1 ` p1´λqX2,

also lies in the same NAP. Furthermore, we have:

R ˝ L1 ˝ pλX1 ` p1 ´ λqX2q “ λR ˝ L1 ˝ X1 ` p1 ´ λqR ˝ L1 ˝ X2

R ˝ L2 ˝ pλR ˝ L1 ˝ X1 ` p1 ´ λqR ˝ L1 ˝ X2q “ λR ˝ L2 ˝ R ˝ L1 ˝ X ` p1 ´ λqR ˝ L2 ˝ R ˝ L1 ˝ X2

...

OpλX1 ` p1 ´ λqX2q “ λOpX1q ` p1 ´ λqOpX2q, by Lemma 1

(5.13)

Given that N pX1q “ N pX2q, the index/class of the highest logit of OpX1q and OpX2q

must be the same, that is:

argmax
c

OpX1qc “ argmax
c

OpX2qc (5.14)

Since multiplying a positive scalar to the operand won’t change the output of the

argmax operator, we have:

argmax
c

λOpX1qc “ argmax
c

p1 ´ λqOpX2qc “ argmax
c

OpX1qc “ argmax
c

OpX2qc (5.15)

Note that the index/class of the highest logit of λOpX1qc and p1 ´ λqOpX2qc are the

same, the index/class of the highest logit of their addition is also the same as λOpX1qc
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and p1 ´ λqOpX2qc. Then it follows that:

argmax
c

OpλX1 ` p1 ´ λqX2qc “ argmax
c

OpX1qc “ argmax
c

OpX2qc (5.16)

Since the softmax function will preserve the ranking of logits, we have:

argmax
c

eOpλX1`p1´λqX2qc

ÿ

cPC

eOpλX1`p1´λqX2qc
“ argmax

c

eOpX1qc

ÿ

cPC

eOpX1qc
“ argmax

c

eOpX2qc

ÿ

cPC

eOpX2qc
(5.17)

Finally, this can be restated as:

N pλX ` p1 ´ λqX2q “ N pX1q “ N pX2q (5.18)

This property can be extended to the multiple inputs setting, where a convex region

can provide robustness assurance.

Theorem 3 (Convex region robustness property). Let tXi | i P t1, 2, . . . , nuu be a collection

of inputs that have the same prediction and NAP by network N , we denote the convex

polygon formed by vertices Xi as M. Then, for any point m that lies inside the poly-

gon M, m also yield the same prediction as Xi, that is, N pmq “ N pXiq @m P M @i P

t1, 2, ..., nu.

Since m represents a convex combination of vertices Xi, this convex region robust-

ness property automatically holds as per Theorem 2. Notably, due to the absence of bias

terms in our zero-bias network, it contrasts with normal with-bias neural networks that

exhibit a higher combinatorial nature. In these networks, the activation status of neurons

after ReLU activation layer corresponds to hyperplanes in the input space, determined by

weights and bias terms for neuron calculation. With bias terms removed, all hyperplanes

pass through the origin, reducing the number of linear regions. Consequently, achieving

this robustness property is more challenging in normal with-bias neural networks. Recent

research, such as [9, 10], further underscores that ignoring bias terms can enhance model

robustness.
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= 0.00 pred=0 = 0.20 pred=0 = 0.40 pred=0 = 0.50 pred=0 = 0.60 pred=0 = 0.80 pred=0 = 1.00 pred=0

= 0.00 pred=2 = 0.20 pred=2 = 0.40 pred=2 = 0.50 pred=2 = 0.60 pred=2 = 0.80 pred=2 = 1.00 pred=2

= 0.00 pred=3 = 0.20 pred=3 = 0.40 pred=3 = 0.50 pred=3 = 0.60 pred=3 = 0.80 pred=3 = 1.00 pred=3

= 0.00 pred=5 = 0.20 pred=5 = 0.40 pred=5 = 0.50 pred=5 = 0.60 pred=5 = 0.80 pred=5 = 1.00 pred=5

= 0.00 pred=automobile = 0.20 pred=automobile = 0.40 pred=automobile = 0.50 pred=automobile = 0.60 pred=automobile = 0.80 pred=automobile = 1.00 pred=automobile

= 0.00 pred=deer = 0.20 pred=deer = 0.40 pred=deer = 0.50 pred=deer = 0.60 pred=deer = 0.80 pred=deer = 1.00 pred=deer

= 0.00 pred=frog = 0.20 pred=frog = 0.40 pred=frog = 0.50 pred=frog = 0.60 pred=frog = 0.80 pred=frog = 1.00 pred=frog

= 0.00 pred=horse = 0.20 pred=horse = 0.40 pred=horse = 0.50 pred=horse = 0.60 pred=horse = 0.80 pred=horse = 1.00 pred=horse

Figure 5.4: The left-most and right-most images are from the original MNIST (first five

rows) and CIFAR10 (the last five rows) dataset, whereas synthesized/interpolated images

are in the middle. For instance, the middle image in the first row is generated by adding

pα “ 0.5q times the left image to p1 ´ αq times the right image. The interpolated images

have the predictions same as the ground truth.
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= 0.00 pred=8 = 0.20 pred=8 = 0.40 pred=8 = 0.50 pred=8 = 0.60 pred=8 = 0.80 pred=8 = 1.00 pred=8

= 0.00 pred=2 = 0.20 pred=2 = 0.40 pred=2 = 0.50 pred=2 = 0.60 pred=2 = 0.80 pred=2 = 1.00 pred=2

= 0.00 pred=2 = 0.20 pred=2 = 0.40 pred=2 = 0.50 pred=2 = 0.60 pred=2 = 0.80 pred=2 = 1.00 pred=2

= 0.00 pred=8 = 0.20 pred=8 = 0.40 pred=8 = 0.50 pred=8 = 0.60 pred=8 = 0.80 pred=8 = 1.00 pred=8

= 0.00 pred=ship = 0.20 pred=ship = 0.40 pred=ship = 0.50 pred=ship = 0.60 pred=ship = 0.80 pred=ship = 1.00 pred=ship

= 0.00 pred=frog = 0.20 pred=frog = 0.40 pred=frog = 0.50 pred=frog = 0.60 pred=frog = 0.80 pred=frog = 1.00 pred=frog

= 0.00 pred=ship = 0.20 pred=ship = 0.40 pred=ship = 0.50 pred=ship = 0.60 pred=ship = 0.80 pred=ship = 1.00 pred=ship

= 0.00 pred=automobile = 0.20 pred=automobile = 0.40 pred=automobile = 0.50 pred=automobile = 0.60 pred=automobile = 0.80 pred=automobile = 1.00 pred=automobile

Figure 5.5: The left-most and right-most images are from the original MNIST (first five

rows) and CIFAR10 (the last five rows) dataset, whereas synthesized/interpolated im-

ages are in the middle. For instance, the middle image in the first row is generated by

adding pα “ 0.5q times the left image to p1 ´ αq times the right image. The synthe-

sized/interpolated images have the predictions different from the ground truth.

56



To evaluate this interpolation robustness property, we conducted experiments using

samples from the MNIST and CIFAR-10 datasets. We identified pairs from these datasets

that share the same NAPs and then interpolated each pair to generate 1000 images. This

involved selecting 1000 α values from the interval r0, 1s and performing the interpolation.

We verified that all interpolations preserve the same prediction as the two images used to

generate them.

In Figures 5.4 and 5.5, we showcase examples by specifically selecting 7 out of the

1000 α values, which include α “ 0 and α “ 1, representing the two reference images for

interpolation. Figure 5.4 features pairs with identical NAPs and correct predictions, i.e.,

predictions matching the ground truth. On the other hand, Figure 5.5 includes pairs with

matching NAPs and predictions that may not necessarily be correct.

However, it is important to note that to demonstrate this interpolation robustness

property, we employed simple neural networks with relatively lower accuracy. Our goal

was to empirically show that the theorem holds, but we cannot extend the same level

of assurance to larger and more accurate neural networks. In our experiments, we used

small neural networks with just 30 neurons, achieving accuracies of 32.27% and 29.6%

on the MNIST and CIFAR-10 datasets, respectively. Consequently, we could easily find

many qualified pairs for testing this property.

In contrast, in larger neural networks with higher accuracies, such as around 80%, we

can still find some pairs demonstrating this property. However, in even larger networks

with even better performance, such as 90% accuracy, we can barely find any examples of

this interpolation robustness property. This is attributed to the fact that as the number of

neurons increases to form the NAP, the input space becomes partitioned into more lin-

ear regions. With more neurons, it becomes increasingly challenging to find two images

sharing the exact same NAP.

Although there exists a trade-off between the performance of neural networks and

the interpolation robustness, we believe that there are potential ways to enhance model

accuracy while maintaining these robustness guarantees. However, exploring these ways

remains a topic for future work.
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5.5 Discussion

In this chapter, we made a noteworthy observation regarding image data: their distribu-

tion across the input space exhibits a unique attribute known as directionality. This prop-

erty implies that when images are multiplied by a positive scalar, they can preserve their

original content while only adjusting the contrast or brightness levels. From a human per-

spective, these augmented images should still be categorized identically to the original

image, resulting in the same prediction when processed through neural networks. Moti-

vated by this observation, we delved into a novel neural network architecture known as

zero-bias neural networks, involving the removal of bias terms from the network struc-

ture. Through both theoretical analysis and empirical validation, we demonstrated that

these zero-bias neural networks can achieve scalar invariance, aligning with the notion

that images should yield the same prediction after being multiplied by a positive scalar.

Furthermore, we showed that zero-bias networks can achieve a comparable level of per-

formance to normal with-bias neural networks, and at the same time, they also exhibit

robustness guarantees that are rarely found in normal with-bias neural networks. This

aspect enhances our confidence in the potential of zero-bias networks and underscores

the importance of exploring them further in future research work.

The content discussed in this chapter is part of the broader work outlined in [12].

This comprehensive work includes a deeper analysis of scalar invariant zero-bias neural

networks, looking into aspects such as the fairness of the zero-bias models, the training

dynamics involved, and the expressiveness of these models. These aspects collectively

provide evidence of the potential value inherent in zero-bias neural networks.
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Chapter 6

Conclusion and Future Work

Understanding neural network properties and behaviours is crucial in modern machine

learning research. As these models are increasingly deployed in critical applications, re-

searchers are motivated by the need for improved reliability, generalization, and safety.

This pursuit aims to reduce the gap between neural networks’ remarkable performance

and our understanding of their inner workings, ultimately leading to more robust, trust-

worthy, and explainable AI systems. In this thesis, we have approached the study of

neural network behavior and properties from two perspectives. Firstly, we examined ex-

isting properties of neural networks in Chapters 3 and 4. Secondly, we developed novel

properties inspired by observations in image domain data, as presented in Chapter 5.

These explorations allow us to both deepen our understanding of established neural net-

work characteristics and explore new avenues for enhancing their performance and in-

terpretability.

In Chapter 3, we explored neural network behaviours using NAPs, employing a cus-

tom mining algorithm on a simple FNN with the MNIST dataset. The experiments demon-

strate the trade-off between NAP specificity and test sample coverage, while showcasing

NAPs’ flexibility in input space coverage. This flexibility inspired potential applications

in formal verification, leading to comparisons between NAP coverage and traditional ϵ-

ball verification areas. The analysis reveals NAPs’ broader and more flexible coverage,

addressing limitations in current verification methods. Additionally, an examination of

misclassified samples adhering to NAPs of wrongly predicted labels provides insights
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into neural network decision-making, highlighting cases that prove challenging even

from a human perspective.

Given the promising potential demonstrated by NAPs in this chapter, several areas

are worthy of further exploration and improvement, offering potential future research

directions. While our mining algorithm was primarily tested on relatively simple struc-

tured feedforward neural networks in this chapter, it would be intriguing to extend this

analysis to neural networks with more complex layers or structures. Additionally, as

highlighted in Section 3.3.3, exploring misclassified examples can provide insights into

how neural networks make decisions. Furthermore, there are other scenarios we haven’t

covered yet, such as samples that do not adhere to NAPs from any class or samples that

follow the NAP of one class but yield predictions for another class. Investigating these

cases could potentially offer deeper insights into how NAPs can explain the behaviours

of neural networks.

In Chapter 4, we applied Delta Debugging to image reduction, developing ddImage

based on ddmin from [44]. Using prediction probability as the reduction criterion proved

inadequate, but incorporating NAPs yielded effective minimal images, validating our

Chapter 3 findings on NAPs’ feature abstraction capabilities. These approaches revealed

unequal pixel importance in neural network decision-making. Probability-based reduc-

tion produced unrecognizable images, exposing human-machine perception gaps and

interpretability challenges. Conversely, NAP-conditioned ddImage preserved recogniz-

able shapes, demonstrating NAPs’ ability to capture semantically meaningful features.

The contrast between methods highlights NAPs’ potential for enhancing neural network

interpretability. ddImage’s effectiveness in producing minimal yet recognizable images

reinforces NAPs’ role in abstracting learned features and capturing internal network rep-

resentations.

Several aspects of this work hold potential for future research. The core idea of Delta

Debugging—a divide-and-conquer process of reducing input while maintaining certain in-

variant properties—can be extended beyond our two cases to explore neural networks

and other domains further. The varying importance of features reveals neural network

vulnerabilities, while unrecognizable images raise robustness concerns. These issues sug-
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gest potential applications in studying robustness against adversarial attacks, using our

method to identify critical features and explore defense mechanisms. The alignment be-

tween NAP representations and human perception warrants further investigation to bet-

ter understand neural networks. As discussed in Chapter 4.2.2, although different sub-

setting techniques did not significantly impact our results, we acknowledge the points

raised by Kiss et al. [21] regarding case examination order and input format. These fac-

tors can affect subsetting details and potentially influence results. Therefore, researching

optimal input subsetting methods could further enhance this work’s potential.

In Chapter 5, we explored the concept of directionality in image data, highlighting

their unique property where scaling by a positive scalar preserves their content while

adjusting only contrast or brightness. This insight led us to investigate zero-bias neu-

ral networks, which remove bias terms to achieve scalar invariance. Through theoretical

analysis and empirical validation, we confirmed that these networks maintain consistent

predictions when images are scaled, demonstrating their robust scalar invariance. Fur-

thermore, zero-bias networks showed comparable performance to traditional networks

while offering improved robustness, underscoring their potential for further research and

development in neural network architectures.

However, it’s important to acknowledge that there are still some limitations that war-

rant attention in this work, paving the way for potential directions for future research.

From the perspective of data augmentation, we explored the directional aspect of image

data distribution by considering brightness adjustments as a means to simulate changes

in environmental illumination. Multiplying a positive scalar to an image effectively alters

its contrast or brightness, a concept crucial for mimicking real-world illumination shifts in

scenes captured by photographs. This study holds significance in scenarios where image

predictions are pivotal, such as in autonomous driving systems, where model robust-

ness against varying illumination is paramount due to potentially costly errors. Environ-

mental factors like time of day and weather conditions contribute to such illumination

changes.

However, our approach of uniformly adjusting brightness across all pixels may not

fully capture the intricacies of real-world brightness alterations. Actual changes in bright-
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ness are influenced by many factors, including light angles, surface textures, colour vari-

ations, and reflections. These factors collectively influence the final appearance of an

image and cannot be accurately replicated solely through uniform scalar multiplication

for brightness adjustment. Hence, there is potential for future exploration aimed at en-

hancing model responsiveness and robustness to dynamic environmental illumination

changes. This could pave the way for more effective and accurate image predictions in

real-world applications.
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[46] ZHANG, Y., TIÑO, P., LEONARDIS, A., AND TANG, K. A survey on neural network

interpretability. CoRR abs/2012.14261 (2020).

68


	Abstract
	Abrégé
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Background
	Neural activation analysis
	Robustness Verification and VNNCOMP
	Delta Debugging
	Fixed-update Initialization

	Neural Activation Pattern
	NAP definition and properties
	NAP mining
	Evaluations and potential applications
	L1, L2 and L maximum verified bounds
	Case study: Visualing NAPs of a simple neural network
	Misclassification examples

	Discussion

	Application of Delta Debugging in Image Classification Task
	Delta Debugging to images
	Evaluations
	Evaluation of applying Delta Debugging to images 
	Subsetting Techiniques for Masking

	Discussion

	Scalar Invariant Neural Network
	Property of the distribution of image domain
	Scalar invariant neural networks
	Basic architect of convolutional neural network
	Scalar associative transformations
	Scalar invariant convolutional neural networks
	Scalar invariant ResNet

	Evaluations
	Interesting robustness property
	Discussion

	Conclusion and Future Work

