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Abstract

Recent advances in Reinforcement Learning (RL) have been primarily fo-

cused on leveraging the field of Deep Learning (DL) to overcome issues when

scaling to larger sequential decision-making problems. An alternative approach

which has historically been used to understand certain aspects of RL is the

Linear Programming (LP) formulation of this problem. The LP approach to

RL provides a unique perspective and strong theoretical guarantees. This the-

sis attempts to provide a comprehensive review of the use of LPs in RL and

to demonstrate how they have helped lay the foundations for creating broader

connections between RL and convex optimization. This thesis also proposes a

kernel-based LP approach applicable to large, and even infinite state spaces.
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Résumé

Les progrès récents en matière d’apprentissage par renforcement (RL) ont

été principalement axés sur l’exploitation des outils de l’apprentissage profond

(DL) afin de surmonter les problèmes liés à l’élargissement des domaines dans les

problèmes de prise de décision séquentielle. Malgré cela, des travaux antérieurs

qui utilisent la programmation linéaire (LP) sont actuellement poursuivi en rai-

son de leurs perspectives uniques et leurs solides garanties théoriques. Cette

thèse tente de fournir un examen complet de l’utilisation de la programma-

tion linéaire dans le cadre de l’apprentissage par renforcement. Il s’agit d’une

demonstration de comment cette approche a fourni des bases pour la création

de connexions entre l’apprentissage par renforcement et l’optimisation convexe.

Cette thèse propose également une approche en programmation linéaire base

sur les méthodes de noyaux en apprentissage par renforcement, applicable aux

grands espaces d’état.
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1
Introduction

The field of Reinforcement Learning (RL) has garnered considerable attention in re-

cent years. Several recent works by Minh et al. [41], Silver et al. [62], Schrittwieser et

al. [60], OpenAI [49] and Abbeel et al. [2] have demonstrated the validity of RL as a

framework for solving large scale sequential decision-making problems. However, these

successes aren’t without their limitations. Some well-known limitations involve data

inefficiency [32], the lack of theoretical guarantees when using function approximation

[28], [48], as well as off-policy divergence [5]. These issues can manifest themselves,

for example, as premature convergence to sub-optimal solutions, extremely resource

intensive algorithms or, in the context of safety in RL, as taking actions deemed dan-

gerous. Avoiding dangerous actions is crucial in the robotics settings where they may

lead to the loss of valuable equipment or even life. To remedy some of these issues,

researchers have drawn on different fields in hopes of finding connections that can be

usefully applied. One such attempt is the Linear Programming (LP) approach to RL

which formulates the Sequential Decision-Making problem as an LP.

There are several reasons why the use of LP in RL is important. First, it

provides a unique perspective for solving sequential decision-making problems, which

differs from classical RL [64]. For example, the interpretation of the dual variables

as an occupancy measure of an agent in different states of the environment may help

1



1. INTRODUCTION 2

uncover new approaches such as the work on Successor Representations [18]. Sec-

ond, it can be used as a starting point from which to create connections between

the vast, well-established, theories and techniques of convex optimization (for which

LP is a sub-field) and RL which may hopefully be leveraged to advance the field of

RL. Thirdly, the LP approach may provide further justification to concepts already

present within the RL literature as demonstrated by Neu et al. [47] with a framework

that proves powerful performance guarantees for a state-of-the-art algorithm, TRPO

[61]. Additionally, the LP approach is well suited to the study of Constrained Markov

Decision Processes [3] for its simplicity in adding constraints.

This thesis aims to review and synthesize the literature on LPs and

their use in advancing the field of RL. More specifically, the objectives of this

thesis are:

(i) Review the literature to study the applicability of LPs to the sequential decision-

making problem and compile the existing theory, methods and techniques.

(ii) Demonstrate that we may derive a kernel-based LP based on the concept of

kernel-based RL(Ormoneit and Sen [50]) which simultaneously alleviates the

reliance on knowledge of the environment and dependence on the size of the

state space when scaling to larger, even infinite, state spaces.

Over the years, the use of LPs in RL went through several important

conceptual developments. Linear Programming was pioneered in the mid 1900s

by Dantzig, Von Neumann and Tucker among others [17]. Around the same time,

the development of the larger theory surrounding convex optimization was studied

by Rockafeller [57]. These advancement lead to the first use of Linear Program-

ming in Reinforcement Learning in the 1960-70s with the work of Manne [39], De

Ghellinck [26] and Denardo [23]. This work was later revived by Puterman [53] and

developed for the linear function approximation case by De Farias and Van Roy [21,



1. INTRODUCTION 3

20]. Using LP duality, Wang et al. [72] demonstrated how to re-derive equivalent

methods to those commonly used in Reinforcement Learning (such as value itera-

tion and temporal-differencing) based solely on the dual domain. Pazis and Parr [51]

suggested a modification to the approximate Linear Program [21] that replaces the

linear approximation with a non-parametric representation. More recently, Chen and

Wang [16] and Bas-Serrano and Neu [8] leveraged the subsequent Lagrangian derived

from the Linear Programming formulation to demonstrate provably efficient stochas-

tic gradient descent policy optimization. The line of work of Nachum et al. [44, 43,

42] leveraged duality and convex regularization for the Linear Programming formula-

tion to try to obtain new algorithms and convergence guarantees in the batch data,

off-policy setting.

This thesis is organized in six chapters. Chapter 2 provides an overview of

the sequential decision-making problem and convex optimization as the underlying

frameworks for RL and LP. This lays the groundwork for the subsequent chapters.

Chapter 3 provides a literature review of LPs for Markov Decision Processes. This

chapter will be divided into two sections: Section 3.1 discusses the formulation of

the LP for solving the “planning” problem in RL (with access to the environment

dynamics). Section 3.2 describes extensions used to scale the LP approach to larger,

more complex problems. Chapter 4 introduces a kernel-based LP which extends the

LP approach to the RL setting with a possibly infinite number of states. Chapter

5 summarizes recent attempts to use the LP formulation as a starting point from

which to create new connections to the optimization literature that can be leveraged

to obtain new algorithms, insights and theoretical guarantees. Chapter 6 concludes

and offers recommendations for future directions.



2
Background

This chapter provides an overview of the fundamentals of RL as a class of methods

which aim to handle sequential decision making under uncertainty (section 2.1). Fur-

thermore, this chapter also provides background on convex optimization (section 2.2),

which underpins the theory useful for understanding Linear Programming.

The experienced reader may use this chapter as a reminder while simultaneously

getting acquainted with the notation. The new reader may use this chapter as a guide

to key concepts in these fields as well as a reference to aid with further study.

2.1 Sequential Decision Making under Uncertainty

Sequential Decision Making is an integral part of artificial intelligence concerned with

specifying the behavior of an agent interacting with a possibly uncertain environment

over an extended period of time. According to Littman [37], “Sequential decision

making [...] is the act of answering the question “What should I do now?” when

“now” is one of a finite set of states, “do” is one of a finite set of actions, “should” is

maximize a long-run measure of reward, and “I” is an automated planning or learning

system (agent).”

One of the main frameworks used to study this concept rigorously is the Markov

Decision Process (MDP), first introduced by Bellman [11].

4
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2.1.1 Markov Decision Process

In an MDP, an agent interacts with an environment at a sequence of discrete times t

by taking actions At ∈ A while being in states of the environment St ∈ S. In doing

so, the agent receives a reward Rt+1 = r(St, At) and transitions to another state St+1.

The process is then repeated. The components of this interaction can be exemplified

through Figure 2.11.

Figure 2.1: The agent-environment interaction in a Markov Decision Process.

Definition 1. A Markov decision process (MDP), denotedM, is a 5-tupleM =

〈S,A, r,P , γ〉 where S is the set of states (often called the state space), A the set of

actions (often called the action space), P the set of transition probability distributions

P (.|s, a) defined for each s ∈ S and a ∈ A, r is the reward function typically defined

over state-action pairs r : S ×A → R and γ ∈ (0, 1) the discount factor.

An MDP is a Markov process, hence the Markov property is assumed to hold,

which means that transitions to new states, conditioned on the current state, are

independent of the preceeding sequence of states:

P (St+1|S0, A0, S1, A1, . . . , St, At) = P (St+1|St, At).

The goal of an agent in this setting is to produce a policy π which establishes how

it should act. A policy is therefore just an instruction manual on what to do in
1Figure taken from Sutton and Barto [64].
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each state and can either be a deterministic mapping, π : S → A, or stochastic,

by defining a probability distribution over the set of actions conditioned on a state

π(a|s) = P (At = a|St = s).

As a result of its broad definition, many problems can be formulated

and solved using the MDP framework presented above. The following are a

few popular illustrative examples:

• A mobile autonomous robot cleaner makes the decision of whether to continue

searching for more trash to collect or return to its recharging station. [59]

• An inventory management problem for determining the optimal reorder points

of a product. A store must determine how much of a product to order (the

action) based on how much stock is left (the state) in order to maximize the

long-run profit while mitigating inventory carrying costs. [53]

• A baseball pitcher makes the decision of what type of pitch to throw. Depending

on the opponents, the pitcher would like to throw the most likely pitch that leads

to strikeout while reducing the risk of a home run, in order to optimize the global

goal of maximizing the chances of winning the game. [37]

When specifying an MDP modelling a specific application, several dimensions of

the environment have to be considered: finite versus infinite state and action spaces,

discounted (γ ∈ (0, 1)) versus undiscounted (γ = 1) objective, and finite vs infinite

horizon. Moving forward, this thesis will adopt the following assumptions on MDPs

unless stated otherwise.

Assumption 1. The reward function is bounded, i.e.

max
(s,a)
|r(s, a)| = Rmax <∞.

Assumption 2. The sets of states and actions are considered discrete, finite and

fixed over time, St = S and At = A for all time steps t.
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Assumption 3. The MDP is assumed to have an infinite horizon and discounted

returns, ie γ ∈ (0, 1).

Assumption 4. The policies are assumed to be stationary, i.e. they are invariant

over time, π(At = a|St = s) = π(a|s) for all time steps t.

Assumption 5. The MDP is assumed to be ergodic. Informally, this means that

any state is reachable from any other state with some positive probability, regardless

of the policy. More specifically, this means that the transitions induced by any policy

will produce an ergodic Markov Chain (i.e. irreducible and positive recurrent).

2.1.1.1 Value Function

The notion of a value function in RL is ubiquitous. To make decisions, an agent must

be able to compare different outcomes. The value function allows for this comparison

by quantifying how valuable a particular state (or state-action pair) is. As such,

a value function is a mapping from state (or state-action) to a real valued scalar,

representing the expected sum of per-step rewards received from this point onward,

ie. the return R:

Rt =
∞∑
t=0

γtr(St, At) (2.1)

However, the rewards received are dependent on the states visited and the actions

taken. Hence the expected return is dependent on a specific policy as well as the

environment, both of which are possibly stochastic. This leads to the notion of a

value function. More formally,

Definition 2. The state-value function of a (stationary) policy π is the conditional

expected return given a current state s.

vπ(s) = Eπ[R0|S0 = s] = Eπ
[ ∞∑
t=0

γtr(St, At)
∣∣∣∣∣ S0 = s

]
, s ∈ S (2.2)
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A slight modification to this definition leads to another notion of interest, the

action-value function, which differs only in that it imposes the first action a to be

taken.

Definition 3. The action-value function of a (stationary) policy π is the condi-

tional expected return given an initial state-action pair:

qπ(s, a) = Eπ
[ ∞∑
t=0

γtr(St, At)
∣∣∣∣∣ S0 = s, A0 = a

]
, s ∈ S, a ∈ A (2.3)

While the previous two quantities look similar, further elaboration in the subse-

quent chapters will clarify the purpose of this distinction.

2.1.1.2 Policy Evaluation

To evaluate the quality of a policy, its value function must be computed. One im-

portant initial observation when unrolling the sum of rewards in (2.2) is that we can

write the value function recursively.

vπ(s) = E
[ ∞∑
t=0

γtr(St, At)
∣∣∣∣∣ S0 = s

]

= E
[
r(S0, A0) +

∞∑
t=1

γtr(St, At)
∣∣∣∣∣ S0 = s

]

= E
[
r(S0, A0) +

∞∑
t=0

γt+1r(St+1, At+1)
∣∣∣∣∣ S0 = s

]

= E
[
r(S0, A0) + γ

∞∑
t=0

γtr(St+1, At+1)
∣∣∣∣∣ S0 = s

]

= Eπ [r(S0, A0) + γvπ(S1) | S0 = s] , (2.4)

We can therefore write the state-value function recursively as:

vπ(s) =
∑
a∈A

π(a|s)
r(s, a) + γ

∑
s′∈S

P (s′|s, a)vπ(s′)
 (2.5)

Similarly, unrolling the action-value function leads to a recursive formula:

qπ(s, a) = Eπ
[ ∞∑
t=0

γtr(St, At)
∣∣∣∣∣ S0 = x,A0 = a

]

= r(s, a) + γ
∑
s′∈S

P (s′|s, a)vπ(s′) (2.6)
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These two equations (2.4) and (2.6) are commonly referred to in the literature as

Bellman equations. Other terms have been given to these equations, such as policy

evaluation equations [22], however this thesis will use the rather pedantic terminology

of Bellman recurrence equations to clearly distinguish them from the Bellman

optimality equations which will be introduced shorty.

Writing these equations in matrix form leads to a straightforward solution

to policy evaluation. Considering the state-value function and reward as vectors

in R|S|, the linear systems of equations can be written in a more condensed matrix

form as:

vπ = rπ + γP πvπ, (2.7)

here rπ(s) = ∑
a π(a|s)r(s, a) and P π(s, s′) = ∑

a π(a|s)P (s′|s, a). Notice that fixing a

policy for an MDP induces a Markov chain described by the S ×S stochastic matrix

P π. We can therefore solve for vπ in the above equation.

vπ = rπ + γP πvπ

⇔ (I − γP π)vπ = rπ

⇔ vπ = (I − γP π)−1rπ (2.8)

Hence the existence of the value function relies on the invertibility of the matrix (I −

γP π). The interested reader can find a formal proof of its existence in Bacon’s thesis

[4]. However, this approach is usually avoided in practice since the computational

complexity for inverting a matrix is of the order O(|S|3) operations, a limiting factor

when the state space becomes very large.

Alternatively, an indirect iterative approach can be taken that leads to successively

better approximation. This approach consists of defining a linear operator T π : R|S| →

R|S| (usually called the one-step Bellman operator) as follows:

T πv = rπ + γP πv (2.9)



2. BACKGROUND 10

The vector v that satisfies T πv = v is our vπ of interest. Therefore, determining the

value function is equivalent to finding the fixed point of the operator T π. It can be

shown that successive application of the operator T π on an initially random vector

converges to a (unique) fixed-point [4]. This may be established by demonstrating

that the operator is a contraction mapping and using Banach fixed-point theorem

[6]. The complete proof is outside the scope of this thesis, however, it can be found

in Bacon [4] and Bertsekas and Tsitsiklis [12]. Algorithm 1 describes the resulting

algorithm.

Algorithm 1: Iterative Policy Evaluation

Input: MDPM, π and γ ;

Compute rπ, where rπ(s) = ∑
a π(a|s)r(s, a) ;

Compute P π, where P π(s, s′) = ∑
a π(a|s)P (s′|s, a);

initialize v = 0 ∈ R|S| ;

repeat

v ← rπ + γP πv;

until convergence criteria;

2.1.1.3 Policy Improvement / Control

The previous section demonstrated how to evaluate the significance of a given policy.

However, our ultimate objective is to improve the policy in order to reach an optimal

policy with the highest expected value (sometimes called the control problem in the

literature).

Definition 4 (Optimal Policy). A policy π∗ is optimal when the value function

associated to this policy is greater than the value function associated to any other

policy. i.e. if π 6= π∗ then, vπ∗(s) ≥ vπ(s) ∀s ∈ S.

The optimal value function may be written recursively. In addition to

adhering to the Bellman recurrence equations (2.7), the optimal value function must
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also satisfy a nonlinear system of equations:

v∗ = max
π
{rπ + γP πv∗} (2.10)

It can be shown that there exists at least one optimal stationary policy that is deter-

ministic [53]. Given that such a deterministic policy exists, we may write the above

equation in component form as:

v∗(s) = max
a∈A

q∗(s, a) = max
a∈A

r(s, a) + γ
∑
s′∈S

P (s′|s, a)v∗(s′)

 (2.11)

And similarly, for the optimal action value function:

q∗(s, a) = r(s, a) + γ
∑
s′∈S

P (s′|s, a) max
a′∈A

q∗(s′, a′) (2.12)

These two equations (2.11) and (2.12) are known as the Bellman optimality equa-

tions. Retrieving the optimal policy once the optimal state-value (or action-value)

function has been computed is relatively straightforward:

π∗(s) = arg max
a∈A

r(s, a) + γ
∑
s′∈S

P (s′|s, a)v∗(s′)
 (2.13)

which is a greedy policy based on v∗.

An iterative method for finding the optimal policy can be derived using

the Bellman optimality equations. Following the same steps as in Section 2.1.1.2,

we can define the nonlinear Bellman optimality operator T ∗ : R|S| → R|S| as:

T ∗v = max
π
{rπ + γP πv} (2.14)

Based on equation (2.10), the fixed point of this operator, T ∗v∗ = v∗, satisfies the

Bellman optimality equations and is therefore the optimal value function of interest.

Similar to our discussion on the convergence of Iterative Policy Evaluation (Algorithm

1), we can prove that the successive application of this operator on an initially random

vector converges to its fixed point, by establishing that T ∗ is a contraction mapping.

The proof is left outside of this thesis but can be found in Bellman’s seminal paper [11].

This leads to the value iteration algorithm.
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Algorithm 2: Value Iteration

Input: an MDPM ;

Output: estimated optimal action-value function q

initialize q = 0 ∈ R|S|×|A| ;

repeat
q(s, a)← r(s, a) + γ

∑
s′∈S P (s′|s, a) maxa′∈A q(s′, a′),∀s ∈ S,∀a ∈ A

until change in one iteration is small;

The update equation used as the premise for the value iteration algorithm (2.11) can

be divided into two separate steps, leading to a new algorithm, as follows:

v∗(s) = r(s, π∗(s)) + γ
∑
s′∈S

P (s′|s, π∗(s))v∗(s′) (2.15)

where π∗(s) = arg max
a∈A

(r(s, a) + γP (s′|s, a)v∗(s′)) (2.16)

These two equations can be seen as a step of policy evaluation (2.15) followed by a

step of policy improvement (2.16). This realization leads to the methods of policy

iteration [27] where policy evaluation and policy improvement are repeatedly applied

in order to get monotonically improving policies and value functions (this result is

known as the policy improvement theorem [64]). Value iteration can be seen as a

special case of policy iteration where we approximately compute v∗ using only a one-

step Bellman update. In general, we may decide to dom iterations of policy evaluation

before proceeding to policy improvement (2.16). This method is known as modified

policy iteration (MPI).

2.1.2 Using Reinforcement Learning to solve MDPs

So far, we have solved MDPs under the assumption of complete knowledge of the en-

vironment, known as the “planning” scenario (also called the Dynamic Programming

(DP) setting). This assumption is limiting in practice because, for many environ-

ments, this information is hard to acquire or model accurately. The Reinforcement
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Learning (RL) setting bypasses this limitation by learning strictly through experience

(trial-and-error). In doing so, the agent must decide whether to gain new information

about the unknown environment (explore) or use its current information about the

environment to gain rewards (exploit). This problem is commonly referred to as the

exploration versus exploitation trade-off. The notion of trial-and-error learning

is unique to RL and distinguishes this field from others such as Supervised Learn-

ing and Unsupervised Learning. The following sections present Monte-Carlo (MC)

and Temporal Difference (TD) learning methods for evaluation and control in the RL

scenario.

2.1.2.1 Monte Carlo Methods

Broadly speaking, MC methods are concerned with using random samples to obtain

numerical results [56]. In our setting, MC methods will be used to estimate the

state/action-value function. If the MDP is episodic, then we can estimate vπ(s)

(the expected return) as the average return received over multiple sampled episodes

starting at state s. As the number of samples tends towards infinity, the strong law of

large numbers tells us that the average return is an unbiased estimator for the mean.

vπ(s) = Eπ[Ri|S0 = s] ≈ 1
n

n∑
i=1
Ri, (for large n) (2.17)

where Ri are sampled returns from episodes following state s. We may proceed in a

similar fashion to estimate qπ(s, a) by taking the average return of sampled episodes

starting in state-action pair (s, a).

qπ(s, a) = Eπ[R0|S0 = s, A0 = a] ≈ 1
n

n∑
i=1
Ri, (for large n) (2.18)

Once we obtain values for qπ(s, a) we may proceed to improve the policy using the gen-

eralized policy iteration principle (seen in section 2.1.1.3) to get successively better

policies. However, this assumes that we are able to sample from any initial state-

action pair (called exploratory starts), which isn’t always applicable in practice. For
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example, many environments, such as typical games, may only be initiated at a des-

ignated starting state. Another way of maintaining exploration is through ε-greedy

policies that take random actions with some small probability, ε, rather than strictly

greedy action selection. In doing so, we guarantee that all state-action pairs will be

sampled enough (in the limit) to make proper estimates of the values functions over

all states.

For efficient implementations of MC methods, an incremental update

formula for our estimate can be devised. Let v̂n(s) be our estimate for vπ(s)

after n samples, this can be rewritten incrementally as:

v̂n(s) = 1
n

n∑
i=1
Ri

= 1
n
Rn + 1

n

n−1∑
i=1
Ri

= 1
n
Rn + n− 1

n
v̂n−1(s)

= 1
n

(Rn + (n− 1)v̂n−1(s))

= v̂n−1(s) + 1
n

(Rn − v̂n−1(s)) (2.19)

Given a new sample, we can now update the estimate in O(1) instead of O(n). More-

over, we may interpret the fraction 1
n
as the amount of weight we give to the most

recent sample. This parameter is referred to as the step-size (or learning rate) and can

be altered more generally to any αn. A well-known result in stochastic approximation

theory gives us conditions required to guarantee convergence with probability 1 [55].

∞∑
n=1

αn =∞ and
∞∑
n=1

α2
n <∞ (2.20)

A decaying step size, such as 1/n, will satisfy these conditions. However, a constant

α ∈ (0, 1] does not. Nonetheless, a constant step-size is commonly used in practice

and is actually desirable in non-stationary environments.

The form of the update rule (2.19) occurs so frequently that it’s components are given
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names. The general form, as specified in [64], is

NewEstimate← OldEstimate + StepSize
[
Target−OldEstimate

]
(2.21)

The term between brackets, [Target−OldEstimate], is referred to as the error in the

estimate.

2.1.2.2 Temporal Difference

Temporal Difference (TD) methods combine the idea of sampling from experience

(section 2.1.2.1) and updating based on previous estimates (section 2.1.1.3) to form a

particularly useful approach for solving MDPs in the RL setting, first introduced by

Sutton [63].

Just as the MC estimate (equation 2.19) can be seen as an approximation of the

expected value (2.2), vπ(s) = E [R|S0 = s], so can the TD estimate (equation 2.22) be

seen as an approximation of the expectation of the value function written in the form

of the Bellman recurrence equations (2.4), vπ(s) = Eπ [r(s0, a0) + γvπ(S1) | S0 = s].

Written as an incremental update similar to (2.21), The target value used for a TD

estimate replaces a sampled return from an episode, Ri, (as used in MC estimate,

equation 2.19) with a sampled one-step reward.

v̂(St)← v̂(St) + α (Rt+1 + γv̂(St+1)− v̂(St)) (2.22)

St and Rt+1 are capitalized to emphasis the fact that these are random variables

produced through one sampled transition. The estimate produced by this method is

called TD(0) (or one-step TD) and is classified as a bootstrap estimate since it reuses

previous estimates to compute new ones. The error term Rt+1 + γv̂(St+1) − v̂(St) is

typically called the TD-error

The TD(0) update rule (2.22) gives us a way to estimate vπ that pro-

vides several benefits over MC methods. First, this method can be executed
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in an online fashion where we update our estimate as soon as we get a new reward.

This is different from MC methods that require the entire episode to terminate before

updating. In doing so, TD(0) can learn value functions quickly when MDPs have

very long, even infinite, horizons. Second, computation is distributed in a much more

even manner when compare to MC methods since simple updates happen at every

step of an MDP rather than waiting until the end of an episode to process all of the

new information. Finally, information is propagated faster using TD(0) since learning

happens within an episode, and therefore new information can instantly be used when

updating the value function. The convergence of TD(0) in the tabular setting was

first proven by Sutton [63] and later strengthened by Dayan [19] and Jaakkola et al.

[29].

We can extend this approach beyond one-step reward estimates. One

might question why we should limit ourselves to consider only a one-step reward

estimate. Why not use a 2 or 3-step estimate? This idea leads to n-step TD methods

[73] which use an n-step reward as the target value in our update equation (2.21).

Let Gt:t+n be the multi-step target written as:

Gt:t+n =
n−1∑
i=0

γiRt+i+1 + γnv(St+n) (2.23)

Where the subscript for the return G, Gt:t+n, describes the range of time-steps for

which sampled rewards are used before applying bootstrapping. When n = 1, this

term is equivalent to the TD(0) target. Similarly, when n = T , where T is the length

of the episode, this becomes the MC target. Although MC updates are unbiased, they

lead to high variance due to the possibly very long and stochastic trajectories. TD(0)

target estimates, on the other hand, produce low variance estimates that have a high

bias due to bootstrapping. Therefore, n-step TD methods unify these two ideas and

allow us to explicitly regulate the bias-variance trade-off between them.

Taking this a step further, we may decide not to truncate our reward signal (the
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target) at some fixed number n. Instead, we may want to average different n-step

targets. TD(λ) [73] can be understood as creating an exponentially weighted moving

average over n-step updates, with λ being the decay rate. The target used in this

method is called the λ-return,

Gλ
t = (1− λ)

∞∑
n=1

λn−1Gt:t+n (2.24)

Setting λ = 0 recovers TD(0) while setting λ = 1 reduces to the MC target.

Having discussed policy evaluation using TD methods, we now focus on

TD policy improvement. The methods discussed are akin to the previously seen

sections. Under the general process of policy iteration, we may use updates similar

to (2.22) to obtain estimates for qπ(s, a) and proceed to improve our ε-greedy policy

using these new estimates. This method is known as Sarsa [58] (n-step Sarsa when

using n-step target updates). Q-learning [73], which can be seen as a sample-based

approach to value iteration (previously seen as Algorithm 2), directly approximates

the optimal action-value function q∗ through the update equation,

q(St, At)← q(St, At) + α
(
Rt+1 + γmax

a′
q(St+1, a

′)− q(St, At)
)
, (2.25)

The resulting algorithm yields:
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Algorithm 3: Q-learning

Input: step size α ∈]0, 1], small ε;

Output: An optimal action-value function q∗;

initialize q(s, a) arbitrarily ∀s ∀a;

for each episode do

initialize s;

for each step of episode do

Choose action a from state s using policy derived from q;

Take action a, observe reward r and next state s′

q(s, a)← q(s, a) + α (r + γmaxa′ q(s′, a′)− q(s, a)) ;

s← s′

end

end

Interestingly, the q values are updated independently of the policy being followed.

Therefore, any policy can be followed so long as we guarantee that all state-action

pairs continue to be visited. This is known as off-policy learning and differs from the

on-policy learning of Sarsa or MC methods which directly evaluate the policy being

followed.

2.2 Convex Optimization

“Everyone goes through a stage of intellectual development where they realize

that everything is an optimization problem. [...] My recommendation is to

get over this phase quickly. What matters is what type of optimization

problem it is, because basically most optimization problems you can’t solve.”

– Stephen Boyd, Lecture 1 - Convex Optimization I (EE 364A), Stanford,

2009

A mathematical optimization problem is formalized as maximizing or minimizing
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an objective function subject to constraints. Convex optimization problems are a

special class of optimization problems for which there exists comprehensive theory

[57] and can be solved numerically very efficiently [46]. This section is derived from

Boyd and Vandenberghe [14] and follows similar notation.

2.2.1 Terminology and Theory of Convex Optimization

We describe a mathematical optimization problem using the following no-

tation:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

(2.26)

With x ∈ Rn the optimization variables, f0(x) : Rn → R, the objective function

(also called the cost function), fi(x) ≤ 0, i = 1, . . . ,m the inequality constraints and

hi(x) = 0, i = 1, . . . , p the equality constraints. Problem (2.26) may also have no con-

straints in which case it’s called an unconstrained optimization problem. The form of

the optimization problem (2.26), which consists of minimizing an objective subject to

inequality constraints of the form, fi(x) ≤ 0, i = 1, . . . ,m, and equality constraints of

the form, hi(x) = 0, i = 1, . . . , p, is known as a standard form optimization problem

in the literature. Many optimization problems can be manipulated and re-expressed

in a similar form to (2.26). For example, a maximization problem may be turned into

a minimization problem by negating the objective function. Additionally, we may also

use techniques such as a change of variables or introducing new constraints in order

to transform our optimization problem into the standard form. Therefore, we focus

our attention only on standard form problems (2.26).

To better understand the characteristics needed for the above problem to be consid-

ered convex, the following key concepts are defined:
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Definition 5 (Convex sets). A set C is convex if the line segment between any two

points in C also lies in C. i.e. if x1, x2 ∈ C, and θ ∈ [0, 1] then,

θx1 + (1− θ)x2 ∈ C (2.27)

Intuitively, this can be understood as saying that the line segment joining any two

points in the set must also belong to the set (Figure 2.2).

Figure 2.2: Convex and nonconvex sets. Left. the semicircle is not convex since the
line segment between the two points in not contained in the set. Right. The polygon
is a convex set since all line segments connecting two points are contained in the set.

A point of the form θ1x1 + · · · + θnxn, with 0 ≤ θi ≤ 1 ∀i and ∑n
i=1 θi = 1, is

called a convex combination. It can be shown that a set is convex if and only if it

contains every convex combination of its points [14].

Definition 6 (Convex function). A function f : Rn → R is convex if for all x1, x2 ∈

dom(f) and θ ∈ [0, 1] we have

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2). (2.28)

Intuitively, this means that the line segment joining two points of the function

must be larger than the function between those two points (Figure 2.3).
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x1 x2

f(θx1 + (1− θ)x2)

θf(x1) + (1− θ)f(x2)

θx1 + (1− θ)x2

f(x)

Figure 2.3: Plot of a convex function.

Convex functions have properties which are conducive to finding global

optima. Having quickly defined the main building blocks for the theory of convex

optimization, we now consider some of their unique properties.

Definition 7. (First order conditions for convexity) Assuming f is differentiable,

then f is convex if and only if dom(f) is convex and

f(x2) ≥ f(x1) +∇f(x1)T (x2 − x1) ∀x1, x2 ∈ dom(f) (2.29)

Where dom(f) is the domain set of the function. This condition implies that the

tangent plane at point x1, y = f(x1) +∇f(x1)T (x2 − x1), is a global under-estimator

of the function f (Figure 2.4). Knowing only local information about a point (it’s

value and it’s derivative), we can make global statement about the function. This

is a key realization about convex functions that leads to the well-known condition

for optimality; if f is convex and ∇f(x1) = 0 then ∀x2 ∈ dom(f), f(x2) ≥ f(x1),

meaning that x1 is the global minimum of the function f .

Definition 8. (Second-order conditions for convexity)

Assume f is twice differentiable, then f is convex if and only if dom(f) is convex

and the Hessian of f is positive semidefinite, i.e,

∇2f(x) � 0 ∀x ∈ dom(f) (2.30)
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f(x1) +∇f(x1)T (x2 − x1)

f(x2) (x1, f(x1))

Figure 2.4: Visualization of the first order condition for convexity.

A matrix H is positive semidefinite if and only if xTHx ≥ 0, ∀x ∈ Rn. Intuitively,

this can be understood as the operator H applied to the vector x keeps it the same

direction as x originally (the dot product between the two vectors 〈x,Hx〉 ≥ 0). The

second order condition for convexity is often expressed as saying the function f has

positive curvature. We will introduce a slight abuse of notation, � when applied to

matrices is as described above whereas, when applied to vectors refers to element-wise

greater than or equal to.

We may now define a convex optimization problem as the optimization problem

(2.26), when the objective function is convex, the inequality constraints functions,

f1, . . . , fm, are convex and the equality constraints are affine. Namely,

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

aTi x = bi, i = 1, . . . , p,

(2.31)

Where f0, . . . , fm are convex functions. When the objective function and constraints

are all affine, then the problem is called a Linear Program (LP) and has the general
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form:

minimize cTx+ d

subject to Gx � h

Ax = b,

(2.32)

Geometrically, the linear program can be interpreted as pushing a ball within the

feasible region as far as possible in the direction of the vector −c (Figure 2.5).

Figure 2.5: Geometric interpretation of an LP. x∗ is the point that goes furthest in
the direction −c within the feasible region P .

The first practical algorithm for solving LPs was the simplex method conceived by

Dantzig [17]. However, it was later shown to have worst-case exponential time com-

plexity [34]. Khachiyan [36] and Karmarkar [33] later developed algorithms which im-

proved the time complexity to polynomial in the worst case. Nesterov and Nemirovski

extended these results to nonlinear convex optimization [46] thus demonstrating effi-

cient solution methods to convex optimization problems.

2.2.2 Duality

Going back to the optimization problem considered (2.26). The Lagrangian for this

problem augments the objective function by incorporating the constraints into one

equation.
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Definition 9 (Lagrangian). The Lagrangian associated with problem (2.26), L :

Rn × Rm × Rp → R, is defined as

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +
p∑
i=1

νihi(x) (2.33)

Derived from the method of Lagrange multipliers for optimization problems with

equality constraints, we refer to the variables λ and ν as the Lagrange multipliers or

dual variables. Each dual variable is associated with one constraint. This equation

(2.33) has meaningful properties which can be used to help find optimal values (most

famous of which are the KKT conditions).

Definition 10 (Lagrange dual function). Sometimes just called the dual function,

g : Rm × Rp → R, is defined as the minimum value of the Lagrangian with respect to

x,

g(λ, ν) = inf
x
L(x, λ, ν) = inf

x

(
f0(x) +

m∑
i=1

λifi(x) +
p∑
i=1

νihi(x)
)

(2.34)

The dual function (2.34) has a few interesting properties. First, note that the dual

function (2.34) is just the infimum of an assortment of affine functions with respect

to λ and ν. Since the dual function is the infimum of affine functions, therefore it is

always concave (even when the problem (2.26) is not convex). Second, for any λ � 0

and any ν, the dual function gives a lower bound on the optimal value to the original

problem (2.26). To see this, suppose that x̃ is a feasible point for problem (2.26), i.e.

fi(x̃) ≤ 0 and hi(x̃) = 0, then we have

m∑
i=1

λifi(x̃) +
p∑
i=1

νihi(x̃) ≤ 0

Accordingly, it follows that,

L(x̃, λ, ν) = f0(x̃) +
m∑
i=1

λifi(x̃) +
p∑
i=1

νihi(x̃) ≤ f0(x̃)

which indicates that the infimum is definitely smaller, i.e. g(λ, ν) = infx L(x, λ, ν) ≤

f0(x̃). This is true for any arbitrary x̃ therefore it’s also true for the optimal point
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p∗, g(λ, ν) ≤ p∗. The dual function gives a non-trivial lower bound on the optimal

solution to (2.26).

Based on the above, one can inquire about the best possible lower bound. This leads

to another optimization problem:

maximize
λ,ν

g(λ, ν)

subject to λ � 0.
(2.35)

This is called the Lagrange dual problem (or simply the dual problem for short)

associated with the primal problem (2.26). This problem is always concave and

provides a useful lower bound on the primal problem (2.26).

Example 1. Consider trying to find the dual for an LP of the form:

minimize cTx

subject to Ax � b.

(2.36)

The Lagrangian is L(x, λ) = cTx + λT (Ax − b) = −bTλ + (c + ATλ)Tx with λ � 0.

The dual function is therefore,

g(λ) = inf
x
L(x, λ) = −bTλ+ inf

x
(c+ ATλ)Tx

Notice that g(λ) is −∞ almost always. The exception being when c + ATλ = 0. The

(Lagrange) dual problem of the LP (2.36) can therefore be reformulated explicitly as

minimize − bTλ

subject to ATλ = −c

λ � 0,

(2.37)

which is itself another LP. Moreover, it can be shown that taking the dual of this new

LP leads to the original LP (2.36). Lagrangian duality is described in much more

detail in the work of Rockafellar [57].

In general, we would like to know the optimally gap between the primal problem (2.26)

and its corresponding dual problem (2.35), i.e. p∗− d∗ with p∗ and d∗ the primal and



2. BACKGROUND 26

dual optimal values respectively. Weak duality states that d∗ ≤ p∗ regardless of

whether the problem is convex or not. Strong duality refers to when the primal and

dual optimal values are equal, p∗ = d∗ [71]. Fortunately, for most convex optimization

problems strong duality holds (conditions for which strong duality holds are called

constraint qualification conditions, with Slater’s condition being one such example).

Furthermore, it can be shown that strong duality holds for any LP provided that

either the primal or dual problem are feasible [14].

Strong duality can be used to derive the condition of complementary slackness.

Suppose strong duality holds and let x∗ and (λ∗, ν∗) be primal and dual optimal points

respectively. This implies that

f0(x∗) = g(λ∗, ν∗) (2.38)

= inf
x

(
f0(x) +

m∑
i=1

λ∗i fi(x) +
p∑
i=1

ν∗i hi(x)
)

(2.39)

≤ f0(x∗) +
m∑
i=1

λ∗i fi(x∗) +
p∑
i=1

ν∗i hi(x∗) (2.40)

≤ f0(x∗) (2.41)

The first line (2.38) follows from strong duality, the second line (2.39) is by definition

of the dual function and the third (2.40) is true because the dual function is the

infimum (therefore it will be at least as small as x∗). The last inequality follows from

the fact that x∗ is a feasible point meaning that fi(x∗) ≤ 0 and hi(x∗) = 0. Notice

that all above equations in fact hold with strict equality. Therefore, we must have
m∑
i=1

λ∗i fi(x∗) = 0.

since each term in this sum is nonpositive, we conclude that λ∗i fi(x∗) = 0 for each

i. This condition is called complementary slackness and we can deduce from it the

following properties.

if λ∗i > 0⇒ fi(x∗) = 0; if fi(x∗) < 0⇒ λ∗ = 0 (2.42)
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Strong duality can be interpreted as the saddle-point of the Lagrangian

function (2.33). Consider a convex optimization problem without equality con-

straints, the optimal value of the primal problem can be expressed as,

p∗ = inf
x

sup
λ�0

L(x, λ) (2.43)

Since supλ�0 L(x, λ) = f0(x) whenever x is primal feasible. By definition of duality,

we also have the optimal value of the dual problem,

d∗ = sup
λ�0

inf
x
L(x, λ) (2.44)

Therefore, strong duality implies,

sup
λ�0

inf
x
L(x, λ) = inf

x
sup
λ�0

L(x, λ). (2.45)

A saddle-point for a function f : W × Z → R (with W ⊆ Rn and Z ⊆ Rn) is a point

such that,

f(w̃, z) ≤ f(w̃, z̃) ≤ f(w, z̃), ∀w ∈ W z ∈ Z, (2.46)

meaning that w̃ minimizes f(w, z̃) on the right hand side and z̃ maximizes f(w̃, z)

on the left hand side. If the function is convex-concave in w and z, this implies that

strong duality hold (2.45) at f(w̃, z̃). We can therefore deduce that if the pair (x, λ)

is a saddle-point of the Lagrangian, then they are primal and dual optimal and the

optimality gap is zero.



3
Linear Programming in Reinforcement

Learning

This chapter provides a review of direct approaches for using LPs in RL. By examin-

ing the original implementation as well as highlighting a selected number of modern

extensions, we provide a clear and comprehensive picture of the current state of this

area of research. Until now, Chapter 2 provided an overview of two separate fields

of mathematics, namely Sequential Decision-Making (section 2.1) and Convex Opti-

mization (section 2.2). This chapter demonstrates how these two fields may be linked

together to the benefit of RL.

We begin by introducing the formulation of an LP for solving MDPs and its cor-

responding dual LP (section 3.1), which provide a unique perspective and strong

theoretical guarantees. Afterwards, we illustrate several distinct extensions that at-

tempt to broaden the applicability of this approach while maintaining some of the

favorable theory of LPs (section 3.2).

3.1 The Linear Programming formulation for solving

MDPs

The original formulation of an LP for solving MDPs was derived by Manne [39] and

Denardo [23] in the undiscounted infinite horizon case, and by De Ghellinck [26] in

the discounted case. Puterman [53] elaborated further on this idea and provided a

28
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concise explanation of this approach summarized below.

The LP formulation for solving MDPs can be deduced through prop-

erties of the value function. Recall the Bellman optimality operator (2.14),

T ∗v = maxπ {rπ + γP πv}, which can be interpreted as nonlinear constraints on the

optimal state-value function v∗. Interstingly, we may find an upper bound, v ≥ T ∗v,

by considering a larger set of linear constraints.

v(s) ≥ r(s, a) + γ
∑
s′
P (s′|s, a)v(s′), ∀a ∈ A, s ∈ S (3.1)

To see this, consider the above linear inequalities (3.1) with respect to just one state

s,

v(s) ≥ r(s, a1) + γ
∑
s′ P (s′|s, a1)v(s′)

v(s) ≥ r(s, a2) + γ
∑
s′ P (s′|s, a2)v(s′)

...

v(s) ≥ r(s, a|A|) + γ
∑
s′ P (s′|s, a|A|)v(s′)


|A| equations for fixed s ∈ S. (3.2)

Notice that the right hand side of the above equation, r(s, a) +γ
∑
s′ P (s′|s, a)v(s′), is

nothing more than the one-step Bellman recurrence equation (2.4) using a determinis-

tic policy π(a|s) = 1. The set of linear inequalities (3.2) state that the value function

v(s) is larger than the one-step Bellman recurrence equation using any deterministic

policy. Therefore, the value function is also larger than any convex combination of

the above Bellman recurrence equations, i.e.

v(s) ≥
∑
∀a
π(a|s)

(
r(s, a) + γ

∑
s′
P (s′|s, a)v(s′)

)
(3.3)

Since this is true for any arbitrary policy π therefore it is also true for the optimal

policy π∗. However, the optimal value function v∗ adheres to strict equality for the

optimal Bellman operator, v∗ = T ∗v∗. Already knowing that such a solution is

guaranteed to exist [53], therefore we’re interested in the minimum vector upper
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bound v such that v ≥ T ∗v. This leads to the following optimization problem,

minimize
v∈R|S|

∑
∀s
µ(s)v(s)

subject to v(s) ≥ r(s, a) + γ
∑
s′
P (s′|s, a)v(s′), ∀a ∈ A, s ∈ S

v(s) unconstrained, ∀s ∈ S

(3.4)

Where µ can be interpreted as the starting/initial state distribution. Notice that the

objective and constraints for (3.4) are linear, therefore the optimization problem (3.4)

is an LP with |S| variables and |S| × |A| constraints. We may write it in a more

compact matrix form as:

minimize
v∈R|S|

µTv

subject to v ≥ ra + γP av, ∀a ∈ A

v unconstrained

(3.5)

With ra ∈ R|S| : [r(s1, a).r(s2, a), . . . , r(s|S|, a)]T and P a ∈ R|S|×|S| : P a
i,j = P (j|i, a)

the rewards and transitions associated with action a. We will call this LP (3.4) the

LP-MDP. Following Example 1 (from section 2.2), we may write the dual LP (after

some algebraic manipulation) for the LP-MDP (3.4) as,

maximize
d

∑
∀s∈S

∑
∀a∈A

r(s, a)d(s, a) = E(s,a)∼d[r(s, a)]

subject to
∑
∀a∈A

d(s, a)− γ
∑
∀s′∈S

∑
∀a∈A

P (s|s′, a)d(s′, a) = µ(s), ∀s ∈ S

d(s, a) ≥ 0, ∀a ∈ A,∀s ∈ S

(3.6)

The dual problem (3.6) has |S| constraints and |S| × |A| variables, d. We will call

this the Dual LP-MDP.

The Dual LP-MDP (3.6) provides a unique perspective for solving

MDPs. Theorem (6.9.1) from Puterman [53] establishes an alternative way to ex-

press the dual constraints. Assuming d is any dual feasible solution and using the
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following policy,

π(a|s) = d(s, a)∑
∀a′ d(s, a′) (3.7)

Then, d(s, a) is equivalent to:

d(s, a) =
∑
j

µ(j)
∞∑
t=0

γtP (St+1 = s, At+1 = a|S0 = j)

Also, if we let u(s) = ∑
∀a∈A d(s, a), we may write the constraints for (3.6) as:

µ(s) = u(s)− γ
∑
∀s′

∑
∀a
p(s|s′, a)d(s′, a)

= u(s)− γ
∑
∀s′

∑
∀a
p(s|s′, a)d(s′, a) u(s′)∑

∀a′ d(s′, a′)

= u(s)− γ
∑
∀s′

∑
∀a
p(s|s′, a)π(a|s′)u(s′)

= u(s)− γ
∑
∀s′

∑
∀a
P π(s|s′)u(s′)

(3.8)

which in matrix form may be written as µT = uT
(
I − γPπ

)
. Solving for uT , we get

uT = µT
(
I − γP π

)−1
= µT

[ ∞∑
t=0

(γP π)t
]

The term ∑∞
t=0(γP π)t forms a valid Neumann series since the spectral radius of

γP , ρ(γP ), is strictly less than 1. Therefore, the matrix (I − γP π)−1 exists and

(I − γP π)−1 = ∑∞
t=0(γP π)t. This is more thoroughly derived as part of corollary C.4

from Puterman [53]. Writing both of these results again,

dπ(s, a) =
∑
j

µ(j)
∞∑
t=0

γtP π(St = s, At = a|S0 = j) = Eµ
[ ∞∑
t=0

γt1{St=s,At=a}

]
(3.9)

uπ(s) =
∑
j

µ(j)
∞∑
t=0

γtP π(St = s|S0 = j) = Eµ
[ ∞∑
t=0

γt1{St=s}

]
(3.10)

These quantities, called the discounted state visitation functions, represents a sort of

occupancy measure for the expected amount of time the system will occupy state s

(or both s and a) under the initial state distribution µ. Since these quantities are the

dual variables for the associated LP-MDP, they provide an alternative way to solve
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MDPs which differs from the value function based approaches seen previously (section

2.1). It’s worth noting that they are not distributions:

∑
s′

∞∑
t=0

γtP π(St = s′|s) =
∞∑
t=0

γt
∑
s′
P π(St = s′|s) = 1

1− γ .

Some may prefer to work with distributions and therefore sometimes consider a nor-

malized variant such as ūπ = (1 − γ)uπ which is referred to as the discounted state

distribution [66]. In the infinite horizon undiscounted case, the occupancy measure

(3.10) becomes a stationary distribution for the underlying Markov Chain induced by

a policy (assuming all stationary policies lead to irreducible Markov Chains).

The discounted state visitation functions (3.9) and (3.10) share many of the same

properties as the value function and state-action value function. They may be writ-

ten recursively (equation (3.8)) and can be solved explicitly using the methods seen

in chapter 2 such as temporal difference learning. This approach was developed by

Dayan [18] and is called Successor Representation (SR) for its explicit emphasis on

comparing states based on how often they encounter similar states in the future, their

successors. This representation is said to improve generalization to different tasks for

a given environment [18]. The SR perspective has been subject to recent interest in

the field of RL with the works of Barreto [7], Kulkarni [35].

There are two ways to derive the optimal policy from the dual LP-MDP

(3.6). First, we can solve for the optimal dual variables and derive a policy based

on normalizing the dual variables per state, similar to equation (3.7). Second, by

strong duality the optimal value of both the primal LP-MDP (3.4) and dual LP-MDP

(3.6) are equal: ∑∀s∈S µ(s)v∗(s) = ∑
∀s∈S

∑
∀a∈A r(s, a)d∗(s, a). By complimentary

slackness, we can also say the following about the properties of these optimal variables.

d∗(s, a)
(
v∗(s)− γ

∑
s′
P (s|s, a)v∗(s′)− r(s, a)

)
= 0, ∀a ∈ A, ∀s ∈ S
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Recall that by definition of the stationary deterministic optimal policy we have

v∗(s)− γ
∑
s′
P (s′|s, π∗(s))v∗(s′)− r(s, π∗(s)) = 0

Since π∗ is deterministic, we also have that for any other action a,

v∗(s) ≥ γ
∑
s′
P (s′|s, a)v∗(s′)− r(s, a) ∀a 6= π∗(s)

Therefore, we must have that d∗(s, a) = 0 for all a 6= π∗(s) by complementary slack-

ness. Thus, the optimal dual variable, d, only has |S| nonzero elements (one per state)

corresponding to the |S| active row constraints. This suggests a correspondence be-

tween the optimal policy and the optimal dual variable, π∗(s) = a if d(s, a) > 0.

Finding the optimal policy corresponds to finding the non-zero dual variables.

The LP formulation has theoretical benefits. Since both the primal LP-

MDP (3.4) and dual LP-MDP (3.6) are linear programs, they can be solved exactly

in polynomial time in the number of variables, constraints and number of bits needed

to represent the dynamics of the environment [38].More recently, there have been

several positive results which demonstrate that the simplex method [17] (an algorithm

for solving LPs), with a specific pivoting rule, is strongly polynomial for solving both

fixed discount and deterministic MDPs [75] [52]. Strongly polynomial in this context

refers to the algorithm being polynomial time in only the number of states and actions

(and not dependent of the size of the representations of the environment). However,

this approach is practical only in small environments. As the state space grows, the

dependency on the size of the state space becomes a limiting factor.

3.2 Modern Approaches

As we attempt to tackle larger MDPs, the size of the state space typically grows expo-

nentially. This phenomenon is known as the curse of dimensionality [10] and renders

most problems intractable. Although the LP approach discussed in section 3.1 has
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algorithms with polynomial time theoretical guarantees, the degree of the polynomial

is often large enough that the implementation becomes impractical.

Moving forward, this section examines how the LP approach has been extended to

be more practical at scale. To do so we study two distinct approaches, namely the

Approximate Linear Program [21] (subsection 3.2.1) and the non-parametric Approx-

imate Linear Program [51] (section 3.2.2), which attempts to alleviate some of the

issues with scaling while maintaining strong theoretical guarantees on performance.

3.2.1 LP Linear Value Function Approximation

In De Farias and Van Roy [21], the authors approximate the value function by a

linear function v̂(s, θ) ≈ v(s), where v̂(s, θ) is a linear function of the weight vector,

θ. In the function approximation setting, for each state s, there is a corresponding

feature vector x(s), which is a multi-dimensional vector associated with features the

agent perceives when in state s. The linear function approximation v̂(s, θ) is the inner

product between these two vectors, v̂(s, θ) = θT · x(s) with |θ| = |x(s)| = n << |S|.

In matrix form, we can write the value function approximation as a vector v̂ = Xθ

where X is a S × n matrix with each column corresponding to one feature of the

feature vector across all states. Notice that the features are in fact basis functions

for the linear function approximation since they form a linear basis for the set of

representable functions using v̂. The authors transform the primal LP (3.4) into an

approximate LP (ALP) of the from:

minimize
θ∈Rn

µT ·Xθ

subject to Xθ(s) ≥ r(s, a) + γ
∑
s′
P (s′|s, a)Xθ(s′), ∀a ∈ A, s ∈ S

θ unconstrained

(3.11)

Where Xθ(s) is the sth entry of the S-dimensional vector Xθ. Notice the number of

variables of the ALP (3.11) has been reduced to n.
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Having established the ALP, the authors then go on to study the properties and

performance guarantees that can be achieved using this approximate solution method.

First, they demonstrate the significance of the initial state distribution on the perfor-

mance of the ALP through the following illuminating Lemma.

Lemma 3.2.1. (Lemma 1 from De Farias and Van Roy [21])

A vector θ̃ solves

minimize
θ∈Rn

µTXθ

subject to Xθ ≥ ra + γP aXθ, ∀a ∈ A
(3.12)

if and only if it solves

minimize
θ∈Rn

‖v∗ −Xθ‖1,µ

subject to Xθ ≥ ra + γP aXθ, ∀a ∈ A
(3.13)

Where ‖.‖1,µ is the weighted `1 norm (i.e. ‖x‖1,c = ∑
∀xi |xi|ci). This lemma tells

us that our original LP is equivalent to minimizing a weighted norm determined by

starting state distribution, µ. The starting state distribution µ can be understood as

imposing a trade-off in the quality of the approximation across different states.

The following theorems establish a bound on the quality of this ap-

proximation. The first theorem provides a relationship between the solution to the

LP (3.11) and the resulting policy derived from this solution. The quality of the

approximation is based upon the following evaluation criteria:

Es∼µ [v∗(s)− vπ(s)] = ‖v∗ − vπ‖1,µ

Theorem 3.2.2. (Theorem 1 from De Farias and Van Roy [21])

Let v : S → R such that v ≥ T ∗v (a feasible solution to the LP). Then,

‖v∗ − vπv‖1,µ ≤
1

1− γ ‖v
∗ − v‖1,uπv
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In other words, if the approximate value function v found by solving the LP is close

to v∗ (the right hand side of the above equation) then the performance of the policy

generated by v, πv, should similarly be close to the performance of the optimal policy

(the left hand side of the equation). The quantity uπv refers to the discounted state

distribution mentioned in section 3.1 (3.10). Combining this result with the above

lemma 3.2.1, we would like the starting state, µ, to be as close to uπv as possible. The

next theorem provides a bound on the error of the ALP.

Theorem 3.2.3. (Theorem 2 from De Farias and Van Roy [21])

Let µ be a probability distribution over states. If θ̃ is an optimal solution to the

approximate LP, we have

∥∥∥v∗ −Xθ̃∥∥∥
1,µ
≤ 2

1− γ min
θ
‖v∗ −Xθ‖∞

This error bound demonstrates the relationship between the quality of the solution

to the ALP (left hand side), Xθ̃, and the best possible linear value function approx-

imation (right hand side). If the optimal value function v∗ lies close to the span of

the basis function defined by x then the result obtained from the ALP will similarly

be close. Having said this, we may now bound the performance of the policy derived

from the solution to the ALP as,

‖v∗ − vπXθ̃‖1,µ ≤
2

(1− γ)2 min
θ
‖v∗ −Xθ‖∞ (3.14)

Where θ̃ is the solution to the ALP. This bound assumes µ = uπXθ̃ .

Constraint sampling can be used to reduce the number of constraints

in the ALP (3.11). Despite reducing the number of variables in the LP (3.4) to

n << |S| using the linear ALP (3.11), the dependency on |S| still exists in the number

of constraints (|S| × |A| constraints). To alleviate this issue, De Farias and Van Roy

[20] consider the effect of constraint sampling of the linear ALP (3.11). The idea is to

reduce the number of constraints in the ALP by only considering those that belong
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to a subset, X , generated by independently sampling m constraints following some

distribution over state-action pairs. Additionally, the authors add a parameter N

which restricts the magnitude of the solution. The resulting linear program is named

the reduced linear program (RLP) [20],

minimize
θ

µTXθ

subject to Xθ(s) ≥ r(s, a) + γ
∑
s′
P (s′|s, a)Xθ(s′), ∀(s, a) ∈ X

θ ∈ N

(3.15)

The authors break down and bound two sources of error for this approach.

The first source of error when solving the RLP (3.15) is the feasibility

of the resulting solution. The RLP only adheres to a subset of the constraints, X ,

whereas the original ALP has all |S|× |A| constraints. To bound this source of error,

the authors consider an LP with constraints of the form:

αTz θ + kz ≥ 0, ∀z ∈ Z (3.16)

It is easy to see that constraints of this form corresponds directly to the RLP where

αz and kz would translate to αz = (I − γP a)x and kz = ra in the RLP (3.15).

The following theorem bounds the possibility that a solution using a subset, X , of

constraints of the form (3.16) is infeasible with respect to constraints not sampled

during the sampling process, S ×A \ X .

Theorem 3.2.4. (Sample complexity of near feasibility, Theorem 2.1 from De Farias

and Van Roy [20])

For any δ, ε ∈]0, 1[ and

m ≥ 4
ε

(
n ln 12

ε
+ ln 2

δ

)
(3.17)
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a set X of m i.i.d. random variables drawn from |S| × |A| according to distribution

ψ satisfy [
sup

{θ|αTz θ+kz≥0 ∀z∈X}
ψ({y : αTy θ + ky < 0})

]
≤ ε (3.18)

with probability at least 1− δ.

The statement made in the theorem above tells us that the worst case set of con-

straints (hence the sup) that are violated by sampling using distribution ψ happens

rarely, ε, with probability at least 1 − δ. Note that the sample size needed m is de-

pendent on the size of the vector θ, |θ| = n.

The second source of error considered is how far is the approximation

the RLP (3.15) is to the original ALP (3.11). A simplified version of the main

theorem of De Farias and Van Roy [20] is given.

Theorem 3.2.5. (Theorem 3.1 from De Farias and Van Roy [20])

Let ε, δ ∈]0, 1[. Let V be a Lyapunov function. Let κu∗,V,N be a constant which is

a function of the optimal discounted state distribution u∗, The Lyapunov function V

and a set N . Let X be a set of m state-action pairs sampled independently according

to the distribution ψπ∗,V (s, a) (the distribution is a function of the optimal policy π∗

and V ) where

m ≥ 16|A|κ
(1− γ)ε

(
n ln 48|A|κ

(1− γ)ε + ln 2
δ

)

Let θ̃ be an optimal solution to the ALP that is in N , and let θ̂ be an optimal solution

of the corresponding RLP. If θ̃ ∈ N then, with probability at least 1− δ, we have

||v∗ −Xθ̂|||1,µ ≤ ||v∗ −Xθ̃|||1,µ + ε||v∗||1,µ.

This rather convoluted theorem manages to bound the performance of the RLP in

relation to the ALP. Combining this result with Theorem (3.2.3), we can bound the
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performance of the RLP as,

||v∗ −Xθ̂||1,µ ≤
2

1− γ min
θ
‖v∗ −Xθ‖∞ + ε||v∗||1,µ. (3.19)

with probability at least 1− δ for m ≥ 16|A|κ
(1−γ)ε

(
n ln 48|A|κ

(1−γ)ε + ln 2
δ

)
.

Nonetheless, The ALP (3.11) and RLP (3.15) still present a few draw-

backs. Despite the results of both theorem (3.2.5) and (3.2.3), we list a few of the

drawbacks of the ALP and RLP which prevent them from truly being useful.

1. Both theorems involve the knowledge of the optimal discounted state distribu-

tion, u∗ (3.10). This quantity is as difficult to find as v∗ since it forms the basis

of the dual LP-MDP (3.6). Computing these bounds are intractable in practice

and therefore hinder their applicability.

2. Any practical implementation of the ALP or the RLP are still dependent on

the size of the state space, |S|. These approaches still require a starting state

distribution, µ, and complete knowledge of the environment, such as the transi-

tion dynamics P (s′|s, a), which are quantities of magnitude O(|S|). Hence any

practical implementation would require O(|S|) storage.

3. The results from theorem (3.2.5) and (3.2.3) are relative bounds. Theorem

(3.2.3) bounds the solution to the ALP relative to the optimal linear function

approximation. Theorem (3.2.5) bounds the solution to the RLP solution rela-

tive to that of the ALP. These bounds may still be very loose and uninformative

if the relative quantities they are compared to are very large.

4. This approach is only viable in the DP (planning) setting since knowledge of

the environment is required. There’s aren’t any straightforward ways to extend

this approach to the RL settings. Any attempt to do so, such as creating

an approximate model of the environment, would introduce another source of

possible error.
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5. Extracting the global optimal policy from the ALP (or the RLP) requires

O(|S| × |A|) operations. Therefore, mitigating the impact of these suggested

improvements.

These drawbacks provide a significant barrier for utilising the ALP in practice on large-

scale MDPs and, as a result, the ALP hasn’t garnered much attention when compared

to other function approximation approaches such as policy gradient methods [64].

However, the theoretical guarantees given by this approach hint at the potential for

LPs to solve some of the issues which plagues the theory of RL (Chapter 1). We now

discuss two more extensions in this section which attempt to overcome some of these

drawbacks in hopes of making this approach more practical.

3.2.2 Non-parametric Approximate Linear Program

Pazis and Parr [51] consider a non-parametric approach to the ALP that

improves several aspects of De Farias and Van Roy [21]. The authors consider

the value function LP (3.4) with the additional constraint of restricting the value

function to a specific family of functions,M.

minimize
ṽ

∑
s

µ(s)ṽ(s)

subject to ṽ(s) ≥ r(s, a) + γ
∑
s′
P (s′|s, a)ṽ(s′) ∀(s, a) ∈ S ×A (3.20)

ṽ ∈M

Notice that when M = span(x) (where x is the feature vector) the optimization

problem above (3.20) becomes equivalent the ALP (3.11) [21]. However, this formu-

lation allows for arbitrary constraints on ṽ viaM so long as they can be implemented

through linear constraints (so that the resulting optimization problem remains a lin-

ear program). Consequently, the authors make the assumption that the optimal value

function is Lipschitz continuous, with Lipschitz constant L, and impose this as a con-
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straint to (3.20) via

|v∗(s)− v∗(s′)| ≤ Lv∗ · d(s, s′), ∀s, s′ ∈ S

where d(s, s′) = ||k(s) − k(s′)|| with k(s) some mapping from the state space to a

normed vector space (i.e. some notion of distance between two states). If we denote

byML to be the set of functions that are L-Lipschitz. The constraint ṽ ∈ ML can

be enforced via linear constraints:

ṽ(s) ≥ ṽ(s′)− Lṽ · d(s, s′), ∀s, s′ ∈ S (3.21)

If the Lipschitz assumption is true for the optimal value function (with Lipschitz

constant say Lv∗) and we choose the correct Lipschitz constant, Lṽ = Lv∗ , then

including constraints (3.21) to (3.20) won’t affect the solution, ṽ = v∗. However,

in practice we don’t know Lv∗ and the number of constraints are too large. The

authors therefore limit themselves to a set S̃ ⊆ S for which they enforce the Bellman

recurrence constraints and the Lipschitz constraints. This leads to the following LP,

minimize
ṽ

∑
s∈S̃

ṽ(s)

subject to ṽ(s) ≥ r(s, a) + γ
∑
s′∈S̃

P (s′|s, a)ṽ(s′), ∀s ∈ S̃, ∀a ∈ A (3.22)

ṽ ∈MLṽ(S̃),

WhereMLṽ(S̃) denotes that the smoothness constraints are only enforced on the

states in S̃. This LP is known as the non-parametric approximate linear program

(NP-ALP). The optimization problem above has a number of variables and an objec-

tive function of size |S̃| < |S| and a set of constraints of size |S̃| × |A|.

This approach has the added benefit of being able to extrapolate to

unseen states by leveraging the smoothness constraints (a notion of gener-

alization). Let t be a unknown state when solving the NP-ALP (3.22), i.e. t /∈ S̃,
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we may estimate ṽ(t) by identifying a constrained state s ∈ S̃ that maximizes the

associated Lipschitz constraint:

ṽ(t) = max
s∈S̃
{ṽ(s)− Lṽd(s, t)}

Finding the state that maximizes this quantity would translate to the value that state

t would have been assigned by the LP (3.22) if the smoothness constraint on t had

been included (i.e. ṽ(s)− Lṽ · d(s, t), ∀s ∈ S̃).

The smoothness constraints can also aid in action selection. Since the LP

is reduced to only a subset S̃, we might not have an action a for each state s such

that the Bellman constraint associated with state-action pair (s, a) holds with strict

equality (as we would expect when solving the full LP-MDP). States that have this

equality property are called basic whereas those that don’t are called non-basic by

the authors. A basic state, s, has a corresponding action, a, such that ṽ(s) = q̃(s, a),

which signifies a non-zero dual variables (see section 3.1). Action selection for a basic

state, s, translates simply to choosing the action, a, corresponding to the non-zero

dual variable for that state. However, for non-basic states and unseen states alike,

we can deduce an action by finding the corresponding basic state, s, that maximizes

the smoothness constraint. If a basic state s bounds the value of a non-basic state t

by ṽ(t) ≥ ṽ(s) − Lṽ · d(s, t), it also implicitly bounds q̃(t, a). The predicted optimal

action at t will therefore be the same as the one at the action at state s which max-

imizes the smoothness constraint (i.e. π(a|s) = π(a|t) = 1) since the bound from all

other states are lower, implying a lower q values. This demonstrates a way to derive

policies for all states and therefore can be used for large, even infinite state spaces.

Additionally, action selection relies only on previously seen actions (in some training

set for example). Therefore, this approach is independent of the size of the action

space and can also be extended to large and infinite actions spaces.
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The following theorem attempts to bound the error of the NP-ALP.

Theorem 3.2.6. (Theorem 5.4. from Pazis and Parr [51])

Define ε = 2
1−γ minv∈M(Lṽ) ‖v − v∗‖∞, let ṽ be the solution to the non-parametric

ALP and let µ be a starting state distribution, ∑s∈S µ(s) = 1, then,

‖ṽ − v∗‖1,µ ≤ ε+ 2dmax · (Lv∗ + Lṽ)
1− γ

Where dmax is the maximum distance from a non-sampled state to the closest

sampled state. Notice that the error term ε is very similar to the error bound of De

Farias and Van Roy [21] (Theorem 3.2.3). WhenM = span(x) the bound is exactly

the same. The additional term dmax(Lv∗ + Lṽ) bounds the violation of Bellman con-

straints missing in the sampled LP.

To summarize this approach, the NP-ALP [51] improves upon the shortcom-

ing of the ALP [21] by extending it to possibly infinite state and action spaces and

extending the hypothesis class of approximate solutions beyond linear functions to

any Lipschitz function, through the added Lipschitz continuity constraints. The au-

thors also provide intuitively interpretable bounds on performance which build upon

the bounds of the ALP. However, a few difficulties remain:

1. The Lipschitz continuity assumption might be limiting. There are no clear way

of knowing apriori if this assumption would hold for an arbitrary MDP and

might require domain specific (expert) knowledge.

2. The performance of this approach relies heavily on the hyper-parameters in-

troduced such as the distance metric d(s, s′) and the Lipschitz constant Lṽ.

Moreover, the theorem provides bounds on the approximation to optimal value

function v∗ but it isn’t immediately apparent whether this would translate to a

near-optimal policy.
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3. This approach is still incompatible with the RL setting since we require knowl-

edge of environment, namely P (s|s, a) and r(s, a). Any model-based attempt

to estimates these parameters could negatively impact the performance and

guarantees of this approach.

The NP-ALP takes a step in the right direction and provides many advantages

over the ALP, both in terms of practical implementation and theoretical guarantees

using a more expressive class of function to approximate the value function. In the

next chapter (4), we build upon some of the intuitive concepts exhibited with the

NP-ALP, namely the notion of a distance metric and non-parametric representations,

to introduce an LP approach using kernel-based methods which can be derived from

Ormoneit and Sen [50].



4
Kernel-Based Linear Program

In this chapter, we demonstrate that the kernel-based approximate value iteration

algorithm proposed by Ormoneit and Sen [50] can give rise to a kernel-based LP

formulation. This approach is non-parametric, fully compatible within the RL setting

and suitable to infinite state spaces.

The two main issues when trying to implement an LP in the RL setting are:

removing the dependency on the transition dynamics and scaling to large state spaces.

The two previously studied approaches (the ALP from section 3.2.1 and the NP-ALP

from section 3.2.2) address the second issue without ever directly discussing how these

can be extended to unknown environments. One could, however, build an approximate

model of the environment using samples (a model-based approach) and compose the

error bounds previously seen (Theorems 3.2.5 and 3.2.6) with bounds on model error

such those of Ravindran and Barto [54] or Jiang et al. [30]. Instead, we opt to follow

a different approach, that of Kernel-Based RL [50].

We first briefly summarize Kernel-Based RL [50] (section 4.1) and illustrate the

favorable theoretical guarantees that accompany it. We then derive a kernel-based

LP and experimentally validate this approach through an experiment on the Cart-

Pole environment [15] (section 4.2). Finally, we concisely summarize and compare the

different LP approaches discussed so far.

45
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4.1 Kernel-Based Reinforcement Learning

This section briefly describes the work of Ormoneit and Sen [50]. The intuition be-

hind their approach is to produce an approximation for the one-step Bellman operator

T π (discussed in chapter 2, section 2.1.1.2) using a kernel function. Instead of ap-

proximating the operator for a given policy π, the authors approximate the Bellman

operator for each unique, fixed action a ∈ A, i.e. they approximate T a by T̂ a such

that T̂ a ≈ T a. Notice that this operator is useful in that it can be used to describe

the relation between the state-value function v and the action-value function q.

qπa = T avπ (4.1)

Where qπa is a vector of the action-values associated only to action a. This operator

can also help express the Bellman optimality operator T ∗ (equation 2.14),

T ∗v = max
a
T av = max

a
qa (4.2)

Let us denote a new operator T as the max operator. Then, we may rewrite the

Bellman optimality equations (equations 2.12, 2.11) as,

q∗a = T aTq∗a (4.3)

Using equation (4.3), and an approximate one-step Bellman operator T̂ a, we may

derive approximate Bellman equations as q̂a = T̂ aT q̂a. This is the approach taken by

Ormoneit and Sen [50] and utilised to estimate an approximately optimal policy.

To produce an approximate one-step Bellman operator, T̂ a, the authors of

[50] motivate their approach by first considering an approximation based on partition-

ing the state space. Consider for example a finite number of partitions B1, . . . , BN . If

the rewards and transition probabilities are, in fact, constant along these partitions

then, if sufficient historical data is available, we can approximate the transitions prob-

abilities between partitions, P (St+1 ∈ Bj|St ∈ Bi, At = a), arbitrarily well. We may
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then recover the value function for the MDP associated with these new transitions

and solve for the optimal policy using the techniques discussed in section 2.1.

In principle, we may apply this approach to recover the value function for any ar-

bitrary MDP by using finer and finer partitions which corresponds to constructing

a sequence of piece-wise constant approximations of v. Taking this approach to the

extreme, we would intuitively like to replace these hard partitions by smoothing meth-

ods which define “membership” through a some notion of distance, a weighted kernel.

Consider data collected into separate sets based on the actions. Let Sa be a

historical dataset of times when action a was taken, i.e. Sa = {(xs, yas )|s = 1, . . . ,m}

with xs the feature vectors for state s and yas the feature vector associated to the next

state transitioned to by taking action a in state s. The action-value function can now

be approximated using kernel averaging. The authors define a kernel function kSa,b

and approximate the action value, q as:

q(x, a) = E [r(x, a) + γv(St+1)|St = x,At = a] (4.4)

≈ T̂ av(x) (4.5)

=
∑

(xs,yas )∈Sa
kSa,b(xs, x) [r(xs, a) + γv(yas )] (4.6)

The kernel function kSa,b is determined by a dataset, Sa, a hyper-parameter, b, and a

univariate, non-negative “mother kernel” φ+,

kSa,b(xs, x) =
φ+

(
||xs−x||

b

)
∑

(xu,yau)∈Sa φ+
(
||xu−x||

b

) (4.7)

In practice, the authors implement φ+ as a Gaussian kernel where b becomes the

standard deviation (referred to as the bandwidth). Intuitively, the approximation

(4.6) uses a weighted average of previously seen data to estimate the expected return.

The weighting is determined by how similar the data is to the state of interest x,

using the kernel function. When using a Gaussian kernel, N (0, 1), points closer to

the mean, 0, will have higher weight. The point (||xs − x||/b) will be closer to zero if
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||xs − x|| → 0, therefore having a higher influence on the approximation (4.6). The

bandwidth parameter plays an important role in determining the threshold for inclu-

sion/exclusion of points from the neighborhood.

Having defined a way to compute the action-value (equation 4.6), the authors then

proceed to solve for the approximately optimal action-values by following the principal

of policy iteration (section 2.1.1.3) and implementing an approximate value iteration

algorithm (Algorithm 2), i.e. through successive applications of the approximate

optimal Bellman operator:

q̂a ← T̂ aT q̂a (4.8)

It’s important to note that T̂ a is only defined for states previously seen in the dataset

Sa. Therefore, we only evaluate q̂a ≈ q∗a for states, yas , already seen in the dataset and

not over all states. In doing so, we remove the dependency on the size of the state

space from the solution method. Also, the constructed approximate one-step Bellman

operator T̂ a acts as an approximate model for the underlying MDP, therefore we no

longer rely on knowledge of the dynamics of the MDP and instead follow a model-

based approach. These two concepts directly address the issues previously discussed

when implementing LPs in the RL setting and are essential observations for the LP

we derive in the next section (section 4.2).

We now discuss the theoretical guarantees associated with this ap-

proach. The main results establish that the kernel-based approximate value iteration

method (equation 4.8) converges to a unique fixed-point and, given appropriate con-

ditions, that this method is consistent, meaning that additional training data always

improves the quality of the estimate. This implies that the estimate will eventu-

ally lead to globally optimal performance. These results are in stark contrast to

essencially locally optimality results when using parametric models [65] and seems
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to overcome one of the main issues with RL, the instability and lack of theoretical

guarantees on convergence when using function approximation and off-policy learning

[13] [68] [5]. We explicitly state these theorems as follows:

Theorem 4.1.1. (Theorem 1 from Ormoneit and Sen [50])

The approximate value iteration method converges to a unique fixed point.

Theorem 4.1.2. (Theorem 2 from Ormoneit and Sen [50])

Let b(m) be any admissible shrinkage rate used to evaluate the random operator

T̂ a. Let q̂ be an approximation for q∗ using approximate value iteration. Then,

‖q̂ − q∗‖∞
P−→ 0 as m→∞.

Where an admissible shrinkage rate for the bandwidth parameter, b(m), corre-

spond to the condition that b(m)d+1√m→∞ and b(m)→ 0 as m→∞ (with d the

dimension of the state space). This condition (Lemma 2 from Ormoneit and Sen [50])

ensures that the bandwidth parameter decreases slowly enough so as to not incur a

large variance in the estimate. Moreover, P−→ signifies convergence in probability. This

theorem assumes that the reward r and value functions q∗ and v∗ are smooth (i.e.

Lipschitz continuous). What this theorem tells us is that, as the number of observed

transitions m→∞, the solution to the equation q̂a = T̂ aT q̂a should deviate arbitrar-

ily little from q∗. Finally, the following theorem establishes the convergence of the

policy derived from this method to the optimal policy.

Theorem 4.1.3. (Theorem 4 from Ormoneit and Sen [50])

By using the random operator T̂ aT q̂ and an admissible shrinkage rate to approxi-

mate the true action-value function, T aTq∗, the probability of choosing a sub-optimal

action converges to zero as the number of samples in each data set Sa goes to infinity.
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4.2 Deriving a Kernel-Based LP

To obtain a LP from the Kernel-Based RL approach [50], we can compare the two.

Consider the one-step Bellman constraints of the LP-MDP (3.4),

v ≥ ra + γP av, ∀a ∈ A (4.9)

The right-hand side of the above inequality is nothing more than the Bellman operator

defined in the previous section (section 4.1), T a, i.e. T av = ra + γP av. Therefore,

using the same approximate one-step Bellman operator defined in section 4.1, T̂ a, we

may approximate these constraints by:

v̂ ≥ T̂ av̂, ∀a ∈ A (4.10)

Which is only defined over the dataset collected Sa, much in the same way as (4.8),

with v̂ symbolizing the estimated value for v∗. This can written in component form

(following equation 4.6) as :

v̂(x) ≥
∑

(xs,yas )∈Sa
kSa,b(xs, x) [r(xs, a) + γv̂(yas )] (4.11)

Having said this, we may directly substitute the above constraints into the LP-MDP,

to obtain a new LP:

minimize
v̂∈Rm×M

∑
∀a

∑
yas∈Sa

µ̂(yas )v̂(yas )

subject to v̂(yas ) ≥
∑

(xs,ya′s )∈Sa′
kSa,b(xs, yas )

[
r(xs, a′) + γv̂(ya′s )

]
, ∀a′ ∈ A, ∀s ∈ {1, . . . ,m}

v̂(yas ) unconstrained

(4.12)

Where the datasets for each action Sa are of similar size, |Sa| = m. This LP, which

we call the KB-LP, has m× |A| variables and m× |A| constraints which refer to the

number of data points collected. We also introduce a modified starting state distri-

bution µ̂, defined over all collected data points.
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Although the KB-LP may seem overly elaborate, it manages to tackle both previously

stated issues when using LPs in the RL setting. Firstly, this approach removes the

dependency on the environment dynamics, namely knowledge of the transition dis-

tribution and rewards. This is done through the implicit approximate model of the

underlying MDP constructed using the approximate one-step Bellman operator T̂ a.

Second, the size of the LP is no longer dependent on the size of the state space |S|.

This dependency is replaced by a dependency on the number of samples, m. Although

the number of samples, m, may grow beyond the size of the state space, we argue

that this substitution is beneficial since m is something we typically have control over.

Therefore, this allows the user to have explicit control over the impact of the curse of

dimensionality on their solution by varying m with respect to the resources available

and the specifics of an MDP of interest.

This kernel-based approach enables policy evaluation for unseen states, x.

v̂(x) = T T̂ av̂

= max
a

∑
(xs,yas )∈Sa

kSa,b(xs, x) [r(xs, a) + γv̂(yas )]
(4.13)

Which allows this approach to be used in infinite state spaces. Given a new unseen

state x, we may retrieve our estimated optimal policy π̂∗ with,

π̂(x) = arg max
a

∑
(xs,yas )∈Sa

kSa,b(xs, x) [r(xs, a) + γv̂(yas )] (4.14)

Which is the greedy policy associated with the approximately optimal action-values

q̂ produced through solving the KB-LP (4.12).

Theoretically, this method has the same guarantees as kernel-based RL

(section 4.1). The KB-LP (4.12) solves the same underlying MDP as the approx-

imate value iteration algorithm proposed by Ormoneit and Sen [50] (equation 4.8).

Therefore, the theory with respect to the resulting approximate solution v̂ and q̂ also

hold for the solution to the KB-LP. Namely, the convergence of the KB-LP to a unique
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fixed-point and the consistency of this solution: convergence to the optimal solution

as the number of data points collected tends towards infinity (Theorems 4.1.1, 4.1.2

and 4.1.3) provided the bandwidth parameter decreases adequately (this assume Lip-

schitz continuous value functions and rewards) hold for the KB-LP.

Experimental validation. To further support the proposed KB-LP and provide

a proof of concept for this approach, we empirically validate its performance on a

classic benchmark task in RL, the Cart-Pole environment1. The Cart-Pole problem

consists of balancing a pole upright on a cart. The cart may move laterally in either

direction by applying a fixed force. The state of the environment is defined by 4

continuous variables (the features): the cart’s lateral position x, the cart velocity ẋ,

the pole angle θ and the pole’s angular velocity θ̇. There are two discrete actions

available to the agent: move right or move left. A reward of +1 is given for every

time-step the pole remains upright with a pole angle larger than 12 degrees. The

episode ends when the pole either falls or the cart exceeds the left or right side limits

of the environment. The environment will also terminate after 200 time-steps have

been reached. The maximum return attainable in this environment is therefore 200.

For our experiments, we ran both the kernel-based approximate value iteration al-

gorithm of Ormoneit and Sen [50] and the KB-LP using a normalized radial basis

function as our kernel. To evaluate these methods, we average the performance ob-

tained while running the greedy policy derived from their solutions, v̂KB-LP and v̂VI

(equation 4.14) over 1000 episodes. Our experiments are run using 3 different setups:

• The first setup (Figure 4.1(a) and 4.1(b)) consists of learning using randomly

collected data. The dataset Sa for each action a is created by generating random

roll-outs (trajectories) of the Cart-Pole environment and storing the transitions

and rewards obtained each time we take action a. We do this for 1000 obser-

vations of each action. Therefore, |Sa| = 1000 for each of the two actions. The
1Code: https://github.com/NadeemWard/kernel-based_RL

https://github.com/NadeemWard/kernel-based_RL
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results in these figures are obtained using the same randomly generated dataset

for both methods (KB-LP and the approximate value-iteration approach).

• In the second setup, we investigate how these methods scale as we increase the

amount of data available. The setup is similar to the first except that we obtain

different randomly generated datasets for each method and we increase the

amount of data available for each action to 2000 samples, i.e. |Sa| = 2000 for

each action. These experiments correspond to Figure 4.1(c) and 4.1(d).

• In our last setup (Figure 4.1(e) and 4.1(f)), we consider first deriving a policy

by KB-LP and approximate value iteration using different random trajectories

of size 1000, |Sa| = 1000, for each method. We then use this policy to generate

1000 new samples for each action. We call this data “guided”. We then retrain

our models on all 2000 samples consisting of both the random and guided data,

|Sa| = 2000.

The results are visualized in Figure (4.1) for different values of the bandwidth hyper-

parameter and γ = 0.99. The dark blue line is the average performance of the method

over the 1000 episodes and the light blue region represents one standard deviation from

the mean. We see that both methods have identical performance when trained on the

same dataset of randomly generated trajectories and obtain the maximum reward pos-

sible in this environment, 200, for selected values of the bandwidth hyper-parameter

(Figure 4.1(a) and (b)). This falls in line with what is expected since since both

methods are essentially two different ways to solve the same underlying approximate

MDP. When we increase the amount of data (Figure 4.1(c) and (d)), we see that

performance improves over a larger set of the bandwidth values. Finally, when we

augment the data using “guided” samples (Figure 4.1(e) and (f)) we see stable perfor-

mance for bandwidth values which perform well (i.e. less variance for high performing

bandwidth values). However, performance stagnates for poor performing bandwidth

values. This can be explained by considering the fact that generating data using the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Average performance on Cart-Pole environment for different kernel band-
width values. Left: KB-LP. Right: Kernel-Based Approximate Value Iteration [50].
Top: Data collected using 1000 random samples. Middle: Different data collected
for each method using 2000 random samples. Bottom: Different data collected for
each method using 1000 random samples and 1000 guided samples.
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greedy policy will always yield similar trajectories. When performance is poor, these

similar trajectories will provide low reward data and provide no information on how

to improve in the environment. As a result, the agent will not know how to increase

reward and continue to perform poorly. This can be seen as a case of premature ex-

ploitation in RL, where further exploration is necessary. Through these experiments,

we provide empirical validation that the performance of the KB-LP is similar to the

approximate value iteration algorithm proposed by Ormoneit and Sen [50].

Despite a few advantages, the KB-LP also presents some drawbacks. It

is fully compatible with the RL setting, relying on sampled data and a kernel function

rather than environment dynamics and the state space size. This approach is non-

parametric and always converges to a unique solution given an increasing amount of

data, a property that isn’t guaranteed when using temporal difference learning with

function approximation [13], [67]. However, we list a few significant drawbacks:

1. The results are heavily reliant on the kernel function used. The assumptions

of smoothness and exploratory starts may also be limiting in some settings.

Furthermore, we can’t directly compare the theoretical results to those of the

ALP [21] or the NP-ALP [51] to deduce the better approach.

2. Although the KB-LP removes the reliance of the LP-MDP on the size of the

state space, |S|. It introduces a reliance on the size of the data set, m × |A|,

which can grow larger than O(|S|). This necessitates further research to derive

ways of reducing or aggregating the information.

To conclude this section, we provide Table (4.1) as a brief comparison of the different

approaches discussed. Notice that since all of these methods are LPs, the run-time is

polynomial in the number of variables and the number of constraints. Next, we move

beyond directly trying to solve MDPs using an LP and elaborate on different ways

that the LP formulation can be leveraged.
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LP
Approach

Hypothesis
class

Number of
variables

Number of
constraints

Theoretical
guarantees

Applicability to
the RL setting

LP-MDP any function
in R|S| |S| |S| × |A| exact

solution 7

ALP
linear functions

in Rn,
n << |S|

|θ| = n |S| × |A|
within factor
2

1−γ of optimal
linear approximation

7

RLP
linear functions

in Rn,
n << |S|

|θ| = n

|X | = m,

m ≥ O
(
|A| ln |A|
(1−γ)ε

) ε-close to ALP
solution w.h.p. 7

NP-ALP non-parametric |S̃| << |S| |S̃| × |A|+ |S̃|
2

1−γ close to optimal
lipschitz function +
highest distance, dmax

7

KB-LP non-parametric m× |A|,
with m = |Sa|

m× |A|,
with m = |Sa|

converges to
unique optimal

solution as m→∞
3

Table 4.1: Comparison table of different LP approach to RL.



5
Other Directions for LP in RL

This chapter discusses how the LP formulation for solving MDPs, the LP-MDP (equa-

tion 3.4), has been leveraged in other ways to create new algorithms, insights and

theoretical guarantees. The recent approaches discussed here offer a glimpse at the

future potential for using the LP formulation to further advance the field of RL.

Specifically, we first study the approach of Wang et al. [72] for deriving dual rep-

resentation equivalent methods to those used in RL, described earlier in chapter 2).

Second, we examine how the Lagrangian of the LP-MDP has been used to design

provably efficient algorithms [16]. Finally, we explore how Nachum et al. [42] and

Neu et al. [47] have manipulated duality and convex regularization to justify com-

monly used algorithms and create new methods for the off-policy and fixed dataset

settings in RL.

5.1 Dual Representations for Dynamic Programming

In Wang et al. [72], the authors attempt to re-implement classical RL and Dynamic

Programming (DP) methods from the dual perspective (equation 3.6). They do so by

maintaining explicit representations of the discounted state distributions (equations

3.10 and 3.9) as opposed to value functions. Consequently, they derive new algorithm

which alleviate some of the issues with value function based approaches.

57
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Before explaining this approach, we first introduce some notation. Let

P be the matrix of probability distributions for all state-action pairs, with dimension

|S||A| × |S|, where each row corresponds to the probability distribution P (·|s, a)T .

Let the reward vector, r, and policy vector, π, be of size |S||A| × 1. We denote by

r(sa) the sath entry in the vector r, i.e. r(s,a) = r(s, a). Similarly, let P(sa,:) denote

the sath row in the matrix P, i.e. P(sa,:) = P (·|s, a). Furthermore, let Ξ be a block

diagonal matrix of size |S| × |S||A| where each block is the vector 1T of size |A| × 1.

Ξ =



1 · · · 1

1 · · · 1
. . .

1 · · · 1


Similarly, define Π to be a block diagonal matrix representation of policy π such that

each block is the conditional probability of taking an action in a given state, π(·|s)T .

Π =



π(·|s0)T

π(·|s1)T

. . .

π(·|sT|S|)


Π is of size |S| × |S||A|. Using this notation, we may describe the |S| × |S| state

transition matrix P π as ΠP . Likewise, we may define the state-action to state-action

transition distribution P π(s, a|s′a′) as PΠ. The dual LP-MDP (3.6) may be written

as:

maximize
d

dT r (5.1)

subject to Ξd = (1− γ)µ+ γPTd,

d � 0

The primal and dual variables can be written compactly using this nota-

tion. For example, Πr defines the expected reward over states, r(s). Therefore, we
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may write the value function as:

v =
∞∑
i=0

γi(ΠP)i · Πr (5.2)

= Πr + γΠPv (5.3)

Similarly, the action value function q may be written as:

q =
∞∑
i=0

γi(PΠ)ir (5.4)

= r + γPΠq (5.5)

Where the last lines in the above quantities (5.3), (5.5) are the Bellman recurrence

equations (2.4), (2.6) in matrix form. The dual variables may also be written in this

way,

uT = (1− γ)µT
∞∑
i=0

γi(ΠP)i (5.6)

= (1− γ)µT + γuTΠP (5.7)

and

dT = (1− γ)νT
∞∑
i=0

γi(PΠ)i (5.8)

= (1− γ)νT + γdTPΠ (5.9)

Where ν is an initial state-action distribution of size |S||A| × 1 defined as ν = ΠTµ

(the policy π times the starting state distribution). The relationship between u and

v can be written as (1 − γ)µTv = uTΠr, and the relationship between d and q as

(1− γ)νT q = dT r. All of these quantities can be solved for a given policy Π either by

iterative policy evaluation (Algorithm 1) or by solving the matrix inverse (equation

2.8) as seen in chapter 2.

Modified dual variables are used to facilitate policy improvement in the

dual domain. The authors of [72] use slightly different dual representations that
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decouple them from their dependence on the initial state distribution. Instead of u,

consider

M = (1− γ)
∞∑
i=0

γi(ΠP)i (5.10)

= (1− γ)I + γΠPM (5.11)

Where M is a matrix of size |S| × |S| which can also be expressed recursively (5.11).

Similarly, consider H instead of d.

H = (1− γ)
∞∑
i=0

γi(PΠ)i (5.12)

= (1− γ)I + γPΠH (5.13)

With H a matrix of size |S||A| × |S||A|. These matrices M and H represent the

conditional discounted state distributions conditioned on either states or state-action

pairs, respectively. The relationship between u andM can be expressed as uT = µTM

(Lemma 5 from [72]). This implies that the relationship between M and primal vari-

ables v can be expressed as (1−γ)v = MΠr. Similarly, dT = νTH which implies that

the relationship to q can be written as (1 − γ)q = Hr. Also, since v = Πq we may

say that MΠ = ΠH.

Dual policy improvement can be carried out similar to policy improve-

ment methods described in chapter 2. The dual form of the greedy policy update

can be expressed in terms of the state-action transition matrix H for π.

a∗(s) = arg max
a

q∗(sa) = arg max
a

H(sa,:)r (5.14)

Hence the new greedy policy can be expressed as π′(a|s) = 1{a=a∗(s)}. Implement-

ing a dual version of policy iteration can therefore proceed in a similar way to the

original policy iteration algorithm (Algorithm 2) by alternating between policy eval-

uation of M (solving the equation M = (1 − γ)I + γΠPM) and policy improve-

ment, using a∗(s) = arg maxaH(sa,:)r = arg maxa((1 − γ)I(sa) + γP(sa,:)ΠH)r =
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arg maxaP(sa,:)MΠr , until convergence.

Temporal difference learning methods can also be derived using dual

variables M and H. Having established the relationship between the primal state

value function v and the dual discounted state visitation distribution M , dual tem-

poral difference learning methods can be derived analogously. For policy evaluation,

recall the one-step TD update (2.22),

v(s)← v(s) + α
[
r + γv(s′)− v(s)

]
(5.15)

which is mimicked for the dual matrix M as follows:

M(s,:) ←M(s,:) + α
[
(1− γ)1Ts + γM(s′,:) −M(s,:)

]
(5.16)

As for dual policy improvement and control using temporal difference learning, an

analogous version of the Sarsa algorithm [58] may be derived using ε-greedy policy

improvement (equation 5.14) and policy evaluation of the form:

H(sa,:) ← H(sa,:) + α
[
(1− γ)1Tsa + γH(s′a′,:) −H(sa,:)

]
(5.17)

Similarly, the Q-learning algorithm (Algorithm 3) update:

q(s, a)← q(s, a) + α
[
r + γmaxa′q(s′, a′)− q(s, a)

]
(5.18)

is replaced by a dual version,

H(sa,:) ← H(sa,:) + α
[
(1− γ)1Tsa + γH(s′a′∗,:) −H(sa,:)

]
(5.19)

where a′∗ is the greedy policy a′∗ = arg maxa′ H(s′a′,:)r.

Linear function approximation may also be implemented in the dual do-

main. Wang et al. [72] suggest a linear function approximation variant to the dual

LP-MDP (3.6) following the example of De Farias and Van Roy [21] in the primal
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case. Since the dual variable, d, is a probability distribution, the authors consider

an approximation using a linear combination of predefined (“basis”) distributions,

Ψw ≈ d, and insure the resulting approximation remains a valid distribution. Where

Ψ is a matrix of size |S||A| × k with each column forming a valid probability (basis)

distribution over state-action pairs. To insure that the resulting solution remains a

valid distribution, additional convex combination constraints are added to the param-

eter values w (w � 0 and wT1 = 1). The resulting linear approximate dual version of

the ALP [21] (equation 3.11) is:

maximize
w

(Ψw)T r

subject to ΞΨw ≤ (1− γ)µ+ γPTΨw,

w � 0, wT1 = 1

(5.20)

Gradient based methods are yet another approach which can be presented

in the dual domain. Generally, gradient based methods in the primal domain

propose a parametric model v̂(s, w) ≈ vπ(s) and minimize the mean square value

error, VE:

VE(w) =
∑
∀s
µ(s)

[
vπ(s)− v̂(s, w)

]2
(5.21)

This can be done using stochastic gradient updates. When using a linear function

approximation, vπ ≈ xTw, the update becomes:

w ← w − 1
2α∇

[
vπ(s)− v̂(s, w)

]2

← w + α
(
r(s) + γv̂(s′, w)− v̂(s, w)

)
xT(s,:)

Implementing this approach in the dual domain can follow a similar procedure. Con-

sider an objective with dual representations of the form:

J = 1
2 ||M − M̂ ||

2
µ (5.22)

With M̂ a convex combination of basis distributions of size |S| × |S|, M̂ = ΥWΓ

with the parameters now a matrix W of size k × k and Υ, Γ the predefined basis
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distributions. The update equations for the weights in W can be written as:

W ← W + αδ∆ (5.23)

With δ the one step bootstrap estimate δ = 1 − γ + γM̂(s′,s′′) − M̂(s,s′) and ∆ the

gradient of the objective function J projected onto the space of feasible weights (to

ensure a valid distribution). ∆ can be obtained by solving the following quadratic

program (QP):

minimize
∆

∑
i,j

(
∆(i,j) −D(i,j)

)2

subject to ∆1 = 0
(5.24)

Where D is the unconstrained gradient and ∆ is the projection onto the constraint.

There exists a closed form solution for this QP of the form,

∆ = D − 1
k
D(11T ) (5.25)

Which therefore allows us to write the weight updates to W as:

W ← W + αδD(I − 1
k

11T ) (5.26)

The different methods presented earlier demonstrate the validity of the

dual representation as an alternative to the commonly used value function

in RL. By replacing the value function with explicit representation of the discounted

state distribution in commonly used RL methods, the authors demonstrate a viable

alternative approach. Additionally, these approaches alleviates the worst-case un-

bounded divergence behavior present in value function based methods [5] since dual

representations must remain valid distributions. This is enforced through constraints

in the dual linear approximate LP-MDP (equation 5.20) and through projection in

the gradient based method (equation 5.23). However, few challenges remain:

1. The computation complexity associated with ensuring the dual variables remain

valid distribution may render the proposed methods intractable. It will lead to
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additional computation cost which may be significant therefore hindering the

applicability of this approach.

2. The dual variables present a new set of issues due to the size and sparsity of their

representations. This may lead to slow convergence and numerically instability

when learning.

5.2 Leveraging the Lagrangian

The LP formulation can be used as a starting point from which to derive new ap-

proaches based on convex optimization. Here, we discuss the approach of Chen and

Wang [16] who use the Lagrangian of the LP-MDP (3.4) to derive a new algorithm

with strong theoretical guarantees.

We can modify the LP-MDP to create a saddle-point problem. To do so,

we first derive the Lagrangian of our problem of interest. Recall the primal LP-MDP

(3.5),

minimize
v∈R|S|

µTv

subject to (γP a − I)v + ra ≥ 0, ∀a ∈ A

v unconstrained

The Lagrangian for this LP is of the form,

L(v, d) = µTv +
∑
a∈A

dTa ((γP a − I)v + ra) (5.27)

Where da is a vector of size |S| corresponding to the dual variables associated with

action a, i.e. da = [d(s0, a), . . . , d(s|S|, a)]T . We can write the primal LP as a saddle-

point problem using the Lagrangian:

min
v∈R|S|

max
d�0

L(v, d) = min
v∈R|S|

max
d�0

{
µTv +

∑
a∈A

dTa ((γP a − I)v + ra)
}

(5.28)
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Chen and Wang [16] study a modification of the above saddle-point

formulation. This modification augments the previous saddle-point problem (5.28)

by restricting the primal and dual variables v and d to constrained sets.

min
v∈R|S|

max
d∈R|S||A|

{
µTv +

∑
a∈A

dTa ((γP a − I)v + ra)
}

(5.29)

subject to v ∈ V d ∈ X ∩∆ (5.30)

With V =
{
v|v ≥ 0, ||v||∞ ≤ Rmax

1−γ

}
, X = {d|∑a∈A d(s, a) ≥ µ(s), ∀s ∈ S} and

∆ =
{
d|d ≥ 0, ||d||1 = ||µ||1

1−γ

}
. These sets describe easily derivable information about

the solution. Notice for example, that the maximum reward an agent can receive in

a discounted finite reward MDP is ∑∞t=0 γ
tRmax = Rmax

1−γ . Therefore, it must be that

||v||∞ ≤ Rmax
1−γ , the constraint described in set V . Furthermore, the sets X and ∆ can

be derived from the dual LP constraints (3.6). Recall that the constraints are of the

from ∑
a da(I − γP aT ) = µ. Since P a is a probability matrix with values ≤ 1, we can

directly infer ∑a d(s, a) ≥ µ(s), which corresponds to set X. Similarly, if we consider

d∗ to be the vector of non-zero valued optimal dual variables (of size |S| since there

is only 1 non-zero dual variable per state), we may write d∗ = µ + γ(P π∗)Td∗, with

d∗ � 0 and µ � 0. From this, we may derive the following:

‖d∗‖1 = eTd∗ = eTµ+ γeT (P π∗)Tµ∗ = eTµ+ γeTd∗ = ‖µ‖1 + γ ‖d∗‖1

Which implies that ‖d∗‖1 = ‖µ‖1
1−γ corresponding to constraint set ∆. These observa-

tion about the sets V , X and ∆ imply that the solution to the modified saddle point

problem (5.29) is equivalent to that of the original problem (5.28).

The algorithm proposed by Chen and Wang [16] is concerned with a setting

where the state space S, action spaceA, reward upper bound Rmax and discount factor

γ are known. The transition probabilities P and rewards function r are unknown and

we assume access to a generative model of the dynamics of the environment, called a

sample oracle, denoted SO, which can be queried to get samples (i.e. given a state-
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action pair (s, a), SO generates s′ w.p. P (s′|s, a) and reward r from r(s′, a, s)).

To implement the proposed algorithm, we update running estimates of both the primal

variables v and the dual variables d using stochastic gradients with projection, hence

the name Stochastic Primal-Dual given to the method [16]. Several authors assimilate

this approach to Mirror-Descent [9], which also takes gradient steps in the dual space

[70] [8]. Per iteration, the algorithm samples a state-action (s, a) pair uniformly and

receive a next state s′ and reward r from SO. The primal and dual variables are

updates as,

v(k)(s)← max
{

min
{
vk−1(s)− β

(
1
|A|
− d(k−1)

a (s)
)
,
Rmax

1− γ

}
, 0
}

(5.31)

v(k)(s′)← max
{

min
{
vk−1(s′)− γβd(k−1)

a (s), Rmax

1− γ

}
, 0
}

(5.32)

d
k− 1

2
a (s)← dk−1(s, a) + β

(
γvk−1(s′)− vk−1(s) + r

)
(5.33)

dk ← ΠX∩∆d
k− 1

2 (5.34)

Where Π is the projection operator of the dual variables onto their constraint sets.

These updates are a modification of the gradient for the modified saddle-point prob-

lem (5.29) with respect to the primal and dual variables. After termination, the dual

variables are then averaged over time to provide an estimate to the optimal dual

variables, d̂, which can be used to produce a policy π̂(a|s) = d̂a(s)/
∑
a d̂a(s). Per it-

eration, the individual updates take constant time O(1). The dual variables are then

projected back into the space X∩∆ at an additional cost of O(|S|×|A|) per iteration.

Only the primal variables associated to the sampled s and s′ (v(s) and v(s′)) and the

associated dual variable of sampled action a, da(s), are updated.

The authors prove PAC style [69] theoretical guarantees on the perfor-

mance of their algorithm.

Theorem 5.2.1. (Theorem 3 from Chen and Wang [16])
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For any ε > 0, δ ∈]0, 1[, the Stochastic Primal-Dual algorithm proposed with a number

of iterations

Ω
(
|S|4|A|2R2

max
(1− γ)6ε2

ln
(1
δ

))

will produce an ε-optimal policy π̂ with probability at least 1− γ.

Where an ε-optimal policy π means maxs∈S |vπ(s)− v∗(s)| ≤ ε. This theorem was

obtained by leveraging results in the optimization literature to analysing the duality

gap between estimates vk and dk as the number of iterations grew. Bas-Serrano and

Neu [8] study an extension to this approach which considers a linear relaxation to the

primal and dual constraints of the saddle-point problem (5.28) in the average reward

undiscounted setting. There, the authors provide guarantees on the performance of a

policy derived from this linear relaxation using a Mirror-Descent type algorithm when

access to the environment dynamics are known.

5.3 Duality and Convex Regularization in RL

The theory of convex optimization provides strong foundations for understand and

justifying convex regularization [14]. As demonstrated by Neu et al. [47] and Nachum

et al. [42], these insights can be leveraged for RL.

Recently, the works of Nachum et al. [44], [43], [42] explore the use

of duality to derive new insights and algorithms for off-policy learning with a fixed

dataset, D. The first objective of this line of work is to reformulate the maximum-

return problem in RL,

max
π

J(π) = (1− γ)Es∼µ,a∼π(.|s)[q(s, a)] = E(s,a)∼dπ [r(s, a)] (5.35)

And make it amenable to fixed-dataset scenarios without access to the policy used to

generate the data. In doing so, the reformulation would be behavior-agnostic. The



5. OTHER DIRECTIONS FOR LP IN RL 68

second objective is to derive feasible algorithms from this formulation.

The authors introduce an action value equivalent to the LP-MDP (3.4).

This LP, called the Q-LP, is used for evaluating a fixed policy π.

ρ(π) = minimize
q∈R|S||A|

E s∼µ
a∼π(a|s)

[q(s, a)]

subject to q(s, a) ≥ r(s, a) + γ
∑
s′
P (s′|s, a)

∑
a′
π(a′|s′)q(s′, a′), ∀a ∈ A, s ∈ S

q(s, a) unconstrained,

(5.36)

It’s subsequent dual can be written as,

maximize
d

∑
s,a

d(s, a)r(s, a)

subject to d(s, a) = (1− γ)µ(s)π(a|s) + γ
∑
s′

∑
a′
π(a|s)P (s|s′a′)d(s′, a′), ∀a ∈ A, s ∈ S

d � 0, ∀a ∈ A, s ∈ S

(5.37)

The dual problem (5.37) can be manipulated to yield a new objective

function independent of the data generating policy. Notice that the dual

constraint for the problem (5.37) are sufficient to completely define d. The objective

function plays no part in determining the values of d. Therefore, the authors propose

to replace it with a convex regularizer. In doing so, the authors introduce data

dependent variables of interest, dD, which can later be manipulated to reformulate

the objective function (5.35). The described approach can be written as,

maximize
d

−Df (d||dD)

subject to d(s, a) = (1− γ)µ(s)π(a|s) + γ
∑
s′

∑
a′
π(a|s)P (s|s′a′)d(s′, a′), ∀a ∈ A, s ∈ S

d � 0, ∀a ∈ A, s ∈ S

(5.38)
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Where Df (d||dD) is the f -divergence from the offline discounted state-action distri-

bution, d, which is convex. The following Fenchel-Rockafellar dual [57] to this convex

optimization problem (5.38) is unconstrained thereby simplifying it’s optimization

[44],

min
q

(1− γ)Es∼µ,a∼π(.|s)[q(s, a)] + E(s,a)∼dD

f∗(γ∑
s′,a′

P (s′, a′|s, a)q(s′, a′)− q(s, a))


(5.39)

Where f∗ is the Fenchel-Rockafellar dual. This problem is unconstrained, convex and

no longer dependent on the knowledge of the data generation process d. We can

compute this quantity for a given policy π thereby enabling policy evaluation in the

fixed data setting. This line of reasoning is the main idea behind DualDice [44].

AlgeaDice [43] takes this one step further by tackling the problem of

policy improvement. Following similar steps to the above, the authors consider a

different regularized dual problem (5.37),

maximize
d

∑
s,a

d(s, a)r(s, a)−D(d||dD)

subject to d(s, a) = (1− γ)µ(s)π(a|s) + γ
∑
s′

∑
a′
π(a|s)P (s|s′a′)d(s′, a′), ∀a ∈ A, s ∈ S

d � 0, ∀a ∈ A, s ∈ S

(5.40)

From which they derive a similar unconstrained objective which involves only the

fixed data generating distribution dD using Fenchel-Rockafellar duality. However, the

resulting dual problem still only solves the policy evaluation problem. For policy

improvement, we must maximize over all policy which can be evaluated using this

newly formed Fenchel-Rockafellar dual problem thereby creating a bi-level optimiza-

tion problem which has no guarantee of convexity.

Nachum et al. [42] also explore applying Fenchel-Rockafellar duality to a regularized

version of the original dual LP-MDP (3.6). However, the resulting optimization prob-
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lem, although convex, can’t be easily manipulated to extract the optimal policy. We

must solve a separate optimization problem to approximate π∗ (bi-level optimization).

Furthermore, it’s isn’t apparent whether the approximate v∗ will yield near-optimal

policy π∗.

Duality and convex regularization can be used to derive Entropy Regu-

larized MDPs [47]. By modifying the dual LP-MDP (3.6) to incorporate a convex

regularizer, Neu et al. [47] create a regularized MDP framework. The modified dual

LP-MDP is of the form:

max
d∈∆

J̃η(d) = max
d∈∆

{∑
s

∑
a

d(s, a)r(s, a)− 1
η
R(d)

}
(5.41)

Where ∆ is the convex set of valid probability distribution in R|S|×|A|. The term

R(d) is a convex regularizer (the authors study negative Shannon entropy and the

negative conditional entropy) and η a learning rate. Using this convex optimization

problem (5.41), the authors derive a framework for regularized MDPs which provides

theoretical justification for regularization approaches in RL by linking them to con-

cepts in convex optimization. More specifically, they demonstrate that TRPO [61]

and the regularized policy gradient method of Mnih et al. [40] are approximate ver-

sions of Mirror Descent [9] and Dual Averaging [74] respectively.

Vieillard et al. [70] create similar links between RL and optimization. There, the au-

thors demonstrate that Conservative Policy Iteration [31] is equivalent to the Frank-

Wolfe algorithm [24], Mirror-Descent [9] is equivalent to Modified Policy Iteration [25]

and Dual Averaging [45] is equivalent to Politex [1].



6
Conclusion and Future Work

This thesis attempts to study the usefulness of the LP approach to solving MDPs. By

analyzing its progression over time, this work highlights why it has failed to garner

traction in the past and why it still holds potential for future research in RL.

LPs are a viable way of solving exact MDPs with good theoretical guarantees.

Using the LP formulation for solving MDPs (3.4) described by Puterman [53] is guar-

anteed to produce the optimal policy in a number of arithmetic operations polynomial

in |S|, |A| and B, the maximum number of bits needed to represent the model dy-

namics. Moreover, the dual LP-MDP (3.6) provides a unique perspective for solving

MDPs from which new algorithms can be derived (Wang et al. [72]). Also, the LP

formulation gives an insightful link to the notion of Successor Representations [18]

and facilitates adding constraints when studying constrained MDPs [3].

However, scaling the LP approach is difficult to implement in practice and is un-

suitable to the RL setting. Despite the works of De Farias and Van Roy [21] [20] which

manage to extend the LP approach to the function approximation setting and pro-

vide theoretical guarantees on performance. Issues with its implementation in large

state spaces along with theoretical guarantees dependent on quantities intractable to

compute for specific problem instances make this approach unusable in most cases. In

71
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addition, incorporating this approach into the RL setting is not straightforward and

would necessitate constructing an approximate model of the environment, thereby

introducing another source of approximation error. Further improvement such as the

NP-ALP [51] (section 3.2.2) and the KB-LP (chapter 4) provide hope for more practi-

cal implementations but aren’t quite there yet. Whether that be because they aren’t

fully adapt to the RL setting or because they don’t process data efficiently.

Nonetheless, several recent innovative works have explored new directions which

use the LP approach to pivot and create new algorithms and establish new connec-

tions between RL and optimization. Chen and Wang [16] exploit the Lagrangian of

the LP formulation to derive a new algorithm based on convex-optimization which

provides PAC-style guarantees on performance in a slightly modified RL setting. Neu

et al. [47] use the dual LP (3.6) to derive a theory of regularized MDPs and provide

theoretical justification to regularization methods used in RL. Nachum et al. [44],

[43], [42] successively demonstrate how to manipulate LP duality to derive new for-

mulas for the difficult off-policy and fixed dataset settings. These connections may

be leveraged to extract new insights and guarantees.

The link between RL and convex optimization may continue to be developed to

provide new insights, algorithms and theoretical guarantees which would be mutually

beneficial to both areas of research. Some suggested promising directions for future

research include:

• Algorithms such as those proposed by Chen and Wang [16] provide novel ap-

proaches in RL which maintain and update both value function and discounted

state distribution estimates. Each can provide distinct information about the

environment which may be aggregated to better balance the problem of explo-

ration versus exploitation.
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• Convex optimization algorithms are known to have problem dependent per-

formance. It is important to study the circumstances that lead to the poor

performance for a specific algorithm on a class of MDPs. This may lead to

better understanding of the underlying structure and characteristics of an MDP

which can be exploited [38].

• Finally, further exploration of LP duality in RL [42] may lead to effective ways

of tackling issues in off-policy learning and fixed data and provide guarantees

on performance.
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