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Abstract 

Magnetic resonance imaging (MRI) is a non-invasive imaging technique commonly used to 

study neurological changes associated with disease. Morphometric analysis of MRI focuses on 

the quantitative analysis of size and shape of regions within the brain, thus providing a powerful 

tool for observing neurological changes. While many image processing tools have been 

developed for morphometric analyses, most have been designed with the adult population in 

mind. However, numerous diseases and disorders present themselves during childhood, and 

pediatric neuroimaging studies can help us better characterize them, aiding in understanding 

their etiology and progression, and providing information for better diagnostic tools. Pediatric 

neuroimaging studies present a series of unique challenges due to the normal 

neurodevelopment occurring during childhood and adolescence, with the brain undergoing 

substantial changes in size, shape, and maturation. The primary objective of this thesis is to 

design, test and validate morphometric techniques for pediatric neuroimaging studies. The first 

proposed technique focuses on early childhood (6-24 months of age), and consists of the 

application of tensor-based morphometry (TBM) by using T1 and T2-weighted scans 

simultaneously for the non-linear registration of scans to better account for the normal contrast 

changes that occur in this age range, as well as using age-appropriate templates as the target 

for this registration. This technique was applied to the study of autism spectrum disorder 

(ASD), with the results showing distinct differences in the growth trajectories of children with 

ASD when compared to controls in several regions across the brain. The second proposed 

technique focuses on later childhood and adolescence (4-23 years of age) and consists of a 

morphometric normalization technique that uses a large longitudinal normative database to 

establish normal growth trajectories for the volume of several regions in the brain, as well as 

at the voxel level. This technique was applied to study 16p11.2 copy number variants, with the 

results showing significant differences for the duplication and deletion cohorts already present 

at 4.5 years of age and remaining stable throughout childhood and adolescence. Finally, we 

propose an extension of this normalization technique that includes the addition of a second 

normative dataset and improved preprocessing, enabling normalization in studies with data 

acquired at both 1.5 and 3 T. This technique was applied to study pediatric onset multiple 

sclerosis (MS), with the results showing a lack of age expected growth in the MS patients in 

overall brain volume, and specifically in the thalamus, putamen, and globus pallidus. 
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Résumé 

L’imagerie par résonance magnétique (IRM) est une technique d’imagerie non-invasive 

utilisée pour étudier les changements neurologiques associés aux maladies. L’analyse 

morphométrique d’IRM se concentre sur l’analyse de la taille et forme de régions du cerveau, 

constituant ainsi un outil pour observer les changements du cerveau. Bien que de nombreux 

outils de traitement des images aient été développés, la plupart ont été conçues pour les adultes. 

Cependant, de nombreuses maladies apparaissant pendant l’enfance, les études de 

neuroimagerie pédiatrique peuvent donc permettre de mieux caractériser l’étiologie et 

progression de ces maladies et fournissant de l’information pour l’amélioration des outils de 

diagnostic. Ces études comportent une série d’enjeux liés au neurodéveloppement pendant 

l’enfance, avec d’importants changements de taille, forme et maturation du cerveau. L’objectif 

principal de cette thèse est de développer, tester et valider des techniques morphométriques 

pour les études de neuroimagerie pédiatrique. La première technique proposée se concentre sur 

la petite enfance (6-24 mois d’âge) et consiste à l’application de morphométrie basée sur les 

tenseurs (TBM) en utilisant simultanément des scans T1 et T2 pour l’enregistrement non-

linéaire afin de mieux prendre en compte les changements de contrastes qui apparaissent à cette 

tranche d’âge, ainsi que d’utiliser des patrons adaptés à l’âge comme cible. Cette technique a 

été appliquée à l’étude des troubles du spectre autistique (TSA), les résultats ont montré des 

différences distinctes dans les trajectoires de croissances des enfants ayant un TSA en 

comparaison avec des contrôles dans plusieurs régions à travers du cerveau. La deuxième 

technique proposée se concentre sur l’enfance plus avancée et l’adolescence (4-23 ans d’âge) 

et consiste à une technique de normalisation morphométrique utilisant une large base de 

données normatives longitudinales pour établir des trajectoires de croissance normale pour le 

volume du cerveau, ainsi qu’au niveau du voxel. Cette technique a été appliquée à l’étude des 

variations du nombre de copie 16p11.2, les résultats ont montré des différences significatives 

pour les cohortes de duplication et de suppression déjà présentes à l’âge de 4.5 ans et restant 

stables durant l’enfance et l’adolescence. Enfin nous proposons une extension de cette 

technique de normalisation incluant l’ajout d’une deuxième base de données normatives et une 

amélioration du pré-traitement, permettant la normalisation d’études avec des données acquise 

à 1.5 et 3 T.  Cette technique a été appliquée à l’étude de l’apparition pédiatrique de la sclérose 

en plaques (SP), les résultats ont montré un manque de croissance attendue pour l’âge chez les 

patients SP au niveau du volume total du cerveau, en particulier pour le thalamus, putamen, et 

globus pallidus.  
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Chapter 1  

Introduction and motivation 

1 Introduction  

The main purpose of this thesis is to describe the motivation, development and application 

of morphometric image analysis techniques of magnetic resonance imaging (MRI) for pediatric 

studies. The following sections provide the motivation for the thesis, as well as an overview of 

its contents and a summary of its scientific contributions. 

2 Motivation 

Neuroimaging is often useful to quantitively assess the size and shape of regions in the brain. 

This analysis is known as morphometry, from the Greek μορφώ (morpho) meaning form or 

shape, and μετρία (metria) meaning measurement. MRI is a non-invasive, non-ionizing imaging 

technique, that in addition provides high resolution and strong tissue contrast. Morphometric 

analysis of MRI data can be used to observe potential changes in the brain both within a single 

subject as well as across populations. If we couple these morphometric analyses with clinical 

data, many scientific questions regarding the identification and progression of neurological 

diseases and disorders can be addressed. Among these questions, MRI morphometry can help 

to find biomarkers that can potentially aid diagnosis. It can help in understanding the etiology 

and progression of a disease. It can even be used as a tool for measuring potential changes 

during a clinical trial for a new drug.  

In particular, MRI morphometry can be used to understand the changes that occur in the 

brain during childhood as part of normal neurodevelopment, as well as to identify potential 

abnormalities in neurodevelopment associated with a wide array of diseases and disorders. 

However, most of the imaging processing tools commonly used in MRI morphometry have 

been developed for use in adult populations. Performing MRI morphometry in pediatric studies 

presents several complications, mainly due to a wide array of changes that occur during the 

different stages of neurodevelopment. 

Some of the underlying changes that affect MRI morphometry in pediatric studies include 

the reversal of contrast between white matter and grey matter in the first months of life, 

myelination throughout childhood, increasing cortical gyrification, changes in the shape and 

size of the skull, and overall brain growth, among others. Thus, when performing MRI 
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morphometry during childhood, it is very important to fine-tune neuroimaging techniques to 

the age range to be studied, as well as to have a firm framework that accounts for normal 

neurodevelopment.  

In addition to the technical difficulties caused by normal neurodevelopment, it is usually 

difficult to recruit normally developing controls for pediatric studies, particularly when they 

involve numerous visits. As such, the ability to use established databases of normal 

development during childhood to model the underlying changes presents itself as an 

opportunity to better discriminate abnormal changes due to disease. The present thesis aims to 

design, test and validate techniques that can account for the changes that occur during normal 

neurodevelopment while also dealing with the possibility of a small number of normal controls 

within a study. 

3 Thesis Overview 

The present thesis is organized as follows. Chapter 2 provides a background on magnetic 

resonance imaging, image pre-processing techniques, morphometric techniques and statistical 

analyses, as well as a review of normal neurodevelopment during childhood and how this 

affects image processing and morphometry. Chapter 3 presents a longitudinal tensor-based 

morphometry approach to understand potential growth abnormalities during the first 2 years of 

life. It uses age-appropriate templates to deal with contrast differences between 6 months and 

2 years of age and provides a voxel-wise assessment of growth trajectories. The technique is 

applied to a dataset of children at high risk of autism spectrum disorder (ASD), showing 

differences in the growth trajectories of children diagnosed with ASD when compared to 

normally developing controls. Chapter 4 presents a morphometric normalization technique for 

pediatric studies. In general, it uses a large longitudinal normative database to establish normal 

growth trajectories from 4 to 23 years of age for the volume of several regions in the brain. A 

variant of this method enables voxel-wise growth trajectory analysis. These growth trajectories 

are used to normalize a small set of study-specific controls, as well as subjects with 16p11.2 

copy number variants, thus providing information on the brain abnormalities present in this 

genetic disorder. Chapter 5 presents an extension of the normalization technique presented in 

Chapter 4. This extension includes the addition of a second normative dataset, this one acquired 

at 3 Tesla, as well as improvements in pre-processing in order to account for the use of data 

acquired at both 1.5 and 3 T. This normalization is applied to a multi-centre database, acquired 

at both 1.5 and 3 T, of children with multiple sclerosis (MS). Finally, Chapter 6 provides the 

discussion and conclusion of the thesis. 
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4 Scientific Contributions 

The main original contributions of this thesis are described below: 

• Implementation of Tensor Based Morphometry (TBM) in early childhood (6-24 

months of age) and its application to Autism Spectrum Disorder (ASD). The 

application of TBM within this age range poses several unique challenges, primarily 

due to the fast and important changes in brain size that occur during this period as 

well as changes in intensity due to the reversal of contrast in T1 and T2-weighted 

images caused by myelination as the brain matures. In order to get better results given 

these challenges, the subjects' MRI scans were registered to age appropriate 

templates created from the same database and inter-template registrations were used 

to bring all the subjects to a common space. This analysis has provided information 

regarding morphological abnormalities at the voxel level occurring during the first 2 

years of life in children with ASD when compared to normally developing children. 

These abnormalities include regions with increased growth rate (posterior cingulate 

gyrus, left temporal pole, among others) as well as reduced growth rate in other 

regions (left precuneus, subgenual anterior cingulate cortex, among others).  

• The development and implementation of a method to use a large normative dataset 

(NIHPD) to obtain voxel-wise trajectories of normal development using mixed 

effects modelling. These trajectories were used to obtain voxel-wise z-scores of 

children with 16p11.2 Copy Number Variants (CNVs). This method is a valuable 

alternative since many databases lack a sufficient amount of normal controls with 

which to compare the population of interest. The results provided valuable 

information, particularly showing that all the growth abnormalities were already 

present at 4 years of age and were stable throughout childhood and adolescence until 

23 years of age in both deletion and duplication carriers. Some of the results worth 

highlighting include increased volume in the calcarine cortex and insula in deletions, 

compared to controls, with an inverse effect in duplication carriers. 

• The refinement and validation of a 4-dimensional model of voxel-wise growth 

trajectories from normally developing subjects that enables application of the 

previously mentioned z-scoring to a wider variety of studies. This model is 

constructed using an improved longitudinal processing pipeline that incorporates 

better pre-processing and registration algorithms. It includes data acquired at both 

1.5 and 3 T to better account for field strength differences and allows for z-scoring 
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of databases at either field strength without the need for further corrections. Its 

application to a large, multi-centre, multiple sclerosis (MS) database showed a lack 

of age-expected growth in the MS cohort compared to controls in the overall brain 

volume, thalamus, globus pallidus, and putamen. 
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Chapter 2  

Background 

1 Magnetic Resonance Imaging 

1.1 Overview 

Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging technique that is 

widely used to investigate the internal human anatomy. It is commonly used both in the clinic 

and in research studies due to its lack of ionizing radiation, making it a safe technique to be 

used in longitudinal and pediatric applications.  

MRI relies on the behaviour of nuclei when exposed to a strong external magnetic field. 

Nuclei composed of an odd number of protons and/or neutrons possess an angular momentum 

S that represents the intensity of their spinning motion. This spin leads to protons and neutrons 

having a proportional magnetic dipole moment µ perpendicular to the direction of the spin. The 

most common signal source for MRI in the human body are the hydrogen nuclei. Hydrogen 

nuclei are composed of a single proton, are found in all the water and fat molecules of the 

human body and have a high magnetic moment relative to the spin, known as the gyromagnetic 

ratio γ. 

Without the application of an external magnetic field, the magnetic moments of hydrogen 

nuclei are randomly oriented. When these nuclei are exposed to an external field B0, their 

magnetic moment vectors are aligned either in the direction of B0 (known as a low energy state), 

or in the opposite direction of B0 (known as a high energy state). Conventionally, the direction 

of B0 is known as the longitudinal or z direction. Since the number of nuclei in a low energy 

state is slightly larger than those in a high energy state, we end up with a net magnetic moment 

M0. The spins will also exhibit a precession around B0 at an angular frequency ω0, known as 

the Larmor frequency. The Larmor frequency is related to the gyromagnetic moment and to the 

external magnetic field by ω0 = γB0 . 

After the magnetization reaches the equilibrium state, a short RF magnetic pulse B1 of 

frequency ω=ω0 is applied in the transversal plane (i.e. the xy plane), breaking the equilibrium 

and leading to a precession in the transversal plane. After an RF pulse excitation, the 

longitudinal magnetization (i.e. parallel to B0) will undergo a relaxation back to its equilibrium 

state, while the transverse component (i.e. perpendicular to B0) decays. 
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 The varying magnetization caused by the precession in the transversal plane induces an 

electric current in an RF receiver coil following Faraday’s law of induction. The corresponding 

signal is called Free Induction Decay (FID), and it oscillates sinusoidally at the Larmor 

frequency while gradually decaying. Before using the FID in further processing, the oscillating 

component is removed by demodulation, leaving only a decaying signal known as the envelope 

of the FID. 

1.2 Spatial localization and k-space 

So far, the induced signal in the RF receiver coil will provide us with information in time, 

but since all the induced signals are received at the same frequency it does not provide spatial 

information. In MRI, the spatial information comes from the application of an additional linear 

gradient field G. This gradient field is superimposed on B0 and varies linearly in each direction, 

yielding 3 perpendicular components of G (Gx, Gy, Gz).  

One common method of spatial localization is using one component of G (typically referred 

to as GS or slice-select gradient) to vary the frequency of precession of spins along the 

longitudinal axis, so that the frequencies contained in the RF pulse can be adjusted to excite 

spins only within a thin slice. The remaining components of G are used to incorporate additional 

spatial information within the slice defined by GS. The frequency encoding or readout gradient 

(Gf) causes the frequency of precession of spins to vary from one end of the slice to the other. 

The phase encoding gradient Gp causes spins at one end of the slice to briefly spin faster than 

the spins at the other end, causing a phase shift parallel to Gp. As a result of this process, we 

can now tell individual spins within the slice apart by their frequency and phase. 

The acquired signal is digitized and stored in k-space. K-space is an abstract spatial 

frequency domain, with a horizontal frequency axis and vertical phase axis. While k-space does 

not correspond spatially to the acquired image, it contains all the information required to 

reconstruct the MR image. This reconstruction is done by applying the inverse Fourier 

transform to the raw k-space data. Figure 1 shows an example of data represented in k-space 

and the corresponding reconstructed MR slice. 
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1.3 T1 and T2 weighted modalities 

As mentioned in section 1.2, after an RF pulse is applied, the longitudinal component of the 

net magnetization returns to equilibrium as the spins dissipate their energy, while the 

perpendicular component decays due to the interaction between the magnetic field of 

neighbouring spins. The time constants that characterize these events are known as the spin-

lattice relaxation time (T1), and the spin-spin relaxation time (T2), respectively. The equation 

relating T1 to the longitudinal magnetization is: 

𝑀𝑧(𝑡) = 𝑀0 (1 − 𝑒
−

𝑡
𝑇1) (1) 

 

where Mz(t) is the longitudinal magnetization at time t, M0 is the longitudinal magnetization in 

equilibrium, and T1 is the spin-lattice relaxation time. The equation relating T2 to transverse 

magnetization is: 

𝑀𝑥𝑦(𝑡) = 𝑀𝑥𝑦 𝑒
−

𝑡
𝑇2 (2) 

 

where Mxy(t) is the transverse magnetization at time t, Mxy is full transverse magnetization, and 

T2 is the spin-spin relaxation time. 

Figure 1. Data in k-space (left) where pixel intensity corresponds to amplitude of frequency component. The 

center of the k-space image corresponds to low frequency components, while the periphery corresponds to 

higher frequency components. Reconstructed MR slice after application of the Inverse Fourier Transform 

(right). 
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 The T1 and T2 relaxation times are inherent to the tissue being imaged. T1 largely depends 

on the ability of the tissue to absorb the energy dissipated by the spins, how well the molecular 

motion of the molecules matches the Larmor frequency, as well as the strength of B0. For 

example, fat can absorb energy more efficiently than water, leading to the T1 of fat being much 

shorter than the one of water. Since T2 depends on the energy transfer between neighbouring 

spins, it depends on how closely molecules are found in a given context. For example, the 

molecules in fat are tightly packed while the molecules in water tend to be spaced, leading to 

the T2 of fat being very short while the one for water is very long. 

During an MRI acquisition, we apply a collection of RF and gradient pulses, known as the 

MR pulse sequence. The parameters of this pulse sequence can be selected to give different 

weight to the tissue properties and control the contrast of the resulting image. A common 

equation to show this is: 

𝐼 = 𝑃𝐷 ∗ 𝑒
−

𝑇𝐸
𝑇2 (1 − 𝑒

−
𝑇𝑅
𝑇1 ) (3) 

 

where: 

• I is the resulting signal intensity. 

• PD is proton density in the tissue. 

• TE, or time to echo, is the time between the application of an RF pulse and the 

collection of the signal. 

• TR, or repetition time, is the time between the application of 2 subsequent RF pulses 

for a particular slice. 

• T2 is the spin-spin relaxation time. 

• T1 is the spin-lattice relaxation time. 
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From equation 3 we can deduce that we can produce an image that mainly depends on the 

differences in T1 between tissues (known as a T1-weighted image) by choosing a relatively 

short TR and a short TE, while a T2-weighted image can be obtained by using a relatively long 

TR and a long TE. Figure 2 shows an example of T1 and T2-weighted images. 

 

The ability to obtain both T1 and T2-weighted images, and other contrasts, is one of the 

main advantages of MRI in brain imaging, since it provides images where the main tissue 

classes of the brain can be discriminated. In general, a T1-weighted scan of an adult brain will 

show contrast between white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) 

by having higher intensities for WM, medium for GM and darker for CSF. On the other hand, 

a T2-weighted image shows the opposite contrast between tissues, with CSF being brightest, 

followed by GM, and finally by WM. 

1.4 Image artifacts 

Image artifacts can be thought of as an undesirable set of features that appear in an image 

but are not present in the imaged object. Several artifacts are commonly present in reconstructed 

MR images, affecting our ability to interpret and process them. We will describe some of the 

most common artifacts found in MRI. 

Figure 2. Comparison between T1 and T2-weighted axial images of the same subject. T1-weighted is 

shown in the 2 left columns, with T2-weighted shown in the right 2 columns. 
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One of the main causes of artifacts in MRI are magnetic field inhomogeneities. Local 

inhomogeneity in the magnetic field B0 can cause non-uniformity in the image intensity due to 

signal loss, while long-range inhomogeneities can cause geometric distortion of the image.  

Even though modern MRI equipment is designed to minimize inhomogeneities in B0 and 

techniques like shimming are used in reducing them, the spatial changes in the magnetic 

susceptibility of the imaged object and objects outside the scanner will always lead to some 

amount of inhomogeneity. Furthermore, inhomogeneity in the RF pulses due to noise or 

technical limitations of the equipment, as well gradient non-linearity, can also lead to intensity 

non-uniformity and geometric distortion. 

Another common source of artifacts is motion. When motion is present during acquisition, 

the resulting image is blurred or the object is extended or repeated along the direction of motion, 

known as ghosting. Motion artifacts cannot be fully controlled, since the acquisition time of 

MRI is relatively long, and are caused by voluntary motion from the patient, and can also occur 

due to involuntary movements like respiration and blood flow. 

The Larmor frequency of a hydrogen proton is affected by the electrons that surround it 

within its local environment. This causes chemical shift artifact where tissue (usually fat) 

appears slightly shifted along the frequency encoding direction. This artifact increases with the 

strength of B0. 

Other common artifacts in MRI include wrap-around, where the imaged object is larger than 

the field of view. It can be seen as a folding over of anatomical parts into the area of interest 

and it is usually common along the phase encoding direction. Finally, Gibb’s ringing is caused 

by the behaviour of the Fourier series used in reconstruction when presented with jump 

discontinuities, and they typically appear as parallel lines next to high-contrast regions (e.g. the 

boundary between WM and GM). 

2 Image Pre-processing 

2.1 Overview 

Due to the variability in the acquisition parameters as well as with inherent differences that 

depend on individual scanner hardware, MR images typically undergo a series of pre-

processing techniques in order to improve the quality of the image and provide a certain amount 

of standardization. These pre-processing tools provide a better starting point for any subsequent 

analysis or processing. Some of the most common steps in pre-processing include the correction 

of image artifacts, like intensity inhomogeneity and denoising, as well as image registration, 
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intensity normalization and brain extraction. In this section we will briefly describe some of the 

most common pre-processing steps, however image registration, due to its overall importance 

in the present work, will be described separately in Section 3. 

2.2 Intensity Inhomogeneity Correction 

After reconstruction, the MRI signal intensities from homogeneous tissue are not usually 

uniform, but rather present a low-frequency gradient across the image. This intensity non-

uniformity can cause problems and affect the performance of several processing techniques 

such as registration and tissue classification, where an assumption of tissue intensity 

homogeneity is typically made. Some of the factors that cause this intensity inhomogeneity 

include poor uniformity receptivity in the RF coil, inhomogeneity in the magnetic field used in 

acquisition, eddy currents induced by the applied gradients, as well as heterogeneity in the 

anatomy of the patient. Additionally, the strength of the magnetic field B0 affects the frequency 

characteristics of the inhomogeneity, with stronger fields resulting in higher frequency 

gradients. 

A well-known, robust, automatic technique for intensity inhomogeneity correction called the 

nonparametric nonuniform intensity normalization (N3) was proposed by Sled et al. (1998). 

Like most of the state-of-the-art techniques, it is based on modelling the inhomogeneity as a 

multiplicative nonuniform field as follows: 

𝑣(𝑥) = 𝑢(𝑥)𝑓(𝑥) + 𝑛(𝑥) (4) 

 

where v(x) is the corrupted signal at location x, u(x) is the corresponding true signal, f(x) is the 

bias field causing the inhomogeneity, and n(x) is white Gaussian noise. We further simplify the 

model by looking at the noise free case and taking the logarithm of both sides as follows: 

𝑣(𝑥) = �̂�(𝑥) + 𝑓(𝑥)  𝑤ℎ𝑒𝑟𝑒 𝑣(𝑥) = log(𝑣(𝑥)) (5) 

 

using the probability densities of v̂, û, and f̂, and assuming that û and f ̂are uncorrelated random 

variables, we can describe the distribution of their sum as a convolution: 

𝑉(𝑣) = 𝐹(𝑣) ∗ 𝑈(𝑣) = ∫ 𝐹(𝑣 − 𝑓)𝑈(𝑓)𝑑𝑓 (6) 

 

If we look at F as a low-pass filter applied to U, the correction of the intensity inhomogeneity 

will then consist in restoring the frequency content of U. In N3 this is achieved by searching 

for the multiplicative bias field that maximizes the frequency content in U. This is done 
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iteratively by obtaining an estimate of U, from the deconvolution of a proposed Gaussian 

distribution F from V. The formula describing the iterative solution being: 

�̂�𝑛 = 𝑣 − 𝑓𝑒
𝑛 = 𝑣 − 𝑆{𝑣 − 𝐸[�̂�|�̂�𝑛−1]} (7) 

 

where 𝑓𝑒
𝑛 is the estimated total bias field at the nth iteration, 𝑆{∙} is a B-spline least squares 

approximator used to smooth the estimated bias field and 𝐸[�̂�|�̂�𝑛−1] is the expected value of û 

given a measurement of û estimated in the previous iteration. The iterations are terminated 

when the variation between subsequent field estimates is smaller than a given parameter e. The 

final estimated bias field is extrapolated to the whole volume and is removed from the 

uncorrected image by a simple voxelwise division. 

An improved version of N3 known as N4 was proposed by Tustison et al. (2010a). N4 uses 

the following iterative solution: 

�̂�
𝑛

= �̂�
𝑛−1

− 𝑓𝑟
𝑛 = �̂�

𝑛−1
− 𝑆∗{�̂�𝑛−1 − 𝐸[�̂�|�̂�𝑛−1]} (8) 

 

with  𝑆∗{∙} being a generalized n-dimensional Ck B-spline approximation used to smooth the 

bias field and 𝑓𝑟
𝑛 is the estimated residual bias field at the nth iteration. The main advantages 

of N4 over N3 being the better behaviour of 𝑆∗{∙} when compared to 𝑆{∙},  and improved 

convergence in higher magnetic fields (i.e. 3T or 7T). Figure 3 shows an example of an MR 

image with intensity inhomogeneity, as well as the estimated bias field and a corrected image. 
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2.3 Denoising 

During MR image reconstruction, the Gaussian noise present in the acquisition undergoes a 

non-linear mapping, causing the noise present in the reconstructed image to be non-Gaussian. 

Gudbjartsson and Patz (1995) showed that the probability distribution of the measured pixel 

intensities in a reconstructed MR image follows the Rician distribution, which, for small signal-

to-noise ratios deviates considerably from a Gaussian distribution. 

A wealth of different approaches to denoising MR images have been used throughout the 

years, including simple low-pass filtering, wavelet-based filtering (Healy and Weaver, 1992; 

Yang and Fei, 2011), anisotropic diffusion filtering (Gerig et al., 1992; Samsonov and Johnson, 

2004), spectral subtraction (Erturk et al., 2013) and non-local means (Coupe et al., 2008; 

Manjon et al., 2008). 

In general, the choice of a denoising algorithm will depend on the signal-to-noise ratio of 

the images, as well as the subsequent analyses to be performed, since different methods can 

impact the data by blurring edges, erasing small features, modification of the image statistics, 

amongst others. Some of the modern non-local means methods (Coupe et al., 2008; Manjon et 

al., 2008) seem to overcome most of these limitations and appear to be well-suited for MR 

images with higher levels of noise, but may be more computationally expensive to apply. 

A B C 

Figure 3. Example of two MR images with intensity non-uniformity (A), the estimated underlying bias field 

(B), and the corrected image (C). 
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2.4 Intensity Normalization 

The image intensity values in a reconstructed MR image do not have an inherent meaning 

nor do they relate directly to any physical quantity, but rather depend on the selection of 

acquisition and calibration parameters, the scanner hardware, and even slight differences in the 

position of the subject. Typically, the absolute values of the intensities do not severely impact 

visual interpretation by a specialist, as they depend more on the simple contrast between tissue 

types and structures. However,  these differences in intensity values can hinder the functionality 

of automatic image processing tools that require quantitative comparisons of intensities, like 

image registration or tissue classification.  

The goal of any intensity normalization technique is to transform the acquired images in 

such a way that the intensities of similar anatomical regions between different scans have 

smaller variations. Several methods have been used to achieve intensity normalization, ranging 

from simple normalization of the intensities to have zero mean, to more complex intensity 

mappings derived from specific mean tissue intensities.  

Perhaps the most commonly used methods rely on histogram matching. In general, 

histogram matching techniques estimate a set of intensity landmarks and maps those landmarks 

to those of a previously chosen reference histogram. The main difference amongst histogram 

matching methods is the choice of mathematical mapping between the histograms with 1-

dimensional linear (Wang et al., 1998), 1-dimensional piecewise linear (Nyul et al., 2000; Nyúl 

and Udupa, 1999), Gaussian mixture fit (Hellier, 2003), and multi-dimensional joint histogram 

non-linear mapping (Jager and Hornegger, 2009) as examples. 

Other methods have been proposed, that include additional information for the normalization 

procedure. These methods include combined intensity normalization and inhomogeneity 

correction by minimizing the Kullback-Leibler divergence between a reference MR image and 

the uncorrected image (Weisenfeld and Warfield, 2004) and the incorporation of expected 

tissue intensities to inform the intensity mapping (Manjón and Coupé, 2016; Robitaille et al., 

2012). 
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2.5 Brain extraction 

In several applications of MRI, it is desirable to isolate the brain tissue from its surrounding 

environment (i.e. skull, dura, eyes, etc.). As such, brain extraction (also known as skull-

stripping) is a common preprocessing step. Its accuracy can affect the results of non-linear 

registration algorithms, volume estimations, and cortical thickness, among others (Novosad et 

al., 2018). Some common approaches to brain extraction include the use of deformable models 

made to fit the brain’s surface (Smith, 2002), hybrid approaches that combine watershed 

algorithms, deformable surface models and correction from a statistical atlas (Ségonne et al., 

2004), as well as more complex, learning-based methods that use a template or a set of atlases 

to drive the segmentation to a target image (Avants et al., 2011; Lutkenhoff et al., 2014). One 

example of brain extraction can be seen in Figure 4. 

 

One common technique, and the one used in this work, is the brain extraction based on 

nonlocal patches segmentation technique (BEaST) developed by Eskildsen et al. (2012). BEaST 

relies on a library of segmentation priors, and it applies a label to a given voxel in the target 

image based on the similarity of its surrounding patch to all the patches found in the library. 

BEaST performs this in a multi-resolution framework, beginning with lower resolution images 

A B C 

Figure 4. Example of brain extraction. Column A shows a regular MR image, column B shows the same 

image with the estimated brain mask overlayed in red, and column C shows the final extracted brain. 
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and refining the results. The library of segmentation priors can be enriched by adding examples 

of good brain segmentations of a particular dataset, which increases the accuracy of BEaST by 

providing priors with patches that are likely to have more similar contrast profiles.  

 

3 Image Registration and Brain Templates 

3.1 Overview 

Image registration consists of the spatial alignment of two or more images by applying a 

transformation, so that corresponding points of features assume the same coordinates, thus 

maximizing their similarity and facilitating spatial comparison.  Registration is a particularly 

important step in neuroimaging, since it allows the analysis of shape, structure, and size of 

anatomical structures, as well as providing a way of performing longitudinal analyses or 

comparisons amongst subjects. 

The origins of medical imaging registration started with the use of markers and 

immobilization tools so that the position of the patient could be reproducible. Unfortunately, 

these strategies are not useful for the registration of scans from different subjects, and are time 

consuming, uncomfortable, and unreliable. 

Currently, image registration is achieved post-acquisition by using algorithms that estimate 

the optimal spatial transformation from one image (known as the “moving” image) and another 

image (known as the “fixed” or “target” image). We can broadly separate MRI registration 

algorithms into linear registration and non-linear (or non-rigid) registration. In order to facilitate 

processing,  provide prior information, and define a common coordinate system for a set of 

images, it is common to perform image registration of the MR images of interest into a common 

template, making the creation of these templates an important area of research within the MR 

imaging processing community.  

3.2 Linear Registration 

Linear registration consists in finding a global set of parameters that maps the moving image 

to the fixed image. In MRI, the set of parameters typically used are rotation, translation, scaling 

and shear. The uses of linear transformations are numerous, ranging from multi-modality 

alignment, pre-processing for brain extraction, initialization for non-linear registration 

algorithms, and even simply to work within a standardized reference frame. 
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Several methods have been developed for linear registration, which can be grouped 

according to the feature type used, and the similarity metric used to assess the alignment. We 

will briefly review some of the features commonly used in linear registration: 

• Point-based. They rely on the identification of a set of corresponding points in 

both images and minimizing the distance between them. The registration error in 

when using this type of feature is highly dependent on the number of points 

selected, n, decreasing by 1/√𝑛, as well as on the accuracy of the correspondence 

of the points between the two images. Point-based registration found a particular 

use in image-guided surgery (Hong and Hashizume, 2010; Maurer et al., 1998). 

• Line-based. They rely on the identification of a set of corresponding curves in 

both images and minimizing the distance between them. In neuroimaging, 

contours of the whole brain, skull-based contours, as well as boundaries in the 

ventricles or other brain structures have been used as curves. Due to normal inter-

subject variability in anatomy, this method can be reasonably reliable in intra-

subject registration, but not in inter-subject registration. The work of Habib and 

Alruzouq (2004) is a general example of line-based registration for images from 

coming from multiple sources. 

• Surface-based. Essentially a 2-dimensional version of line-based registration, 

where instead of curves the distance between surfaces is reduced. One famous 

example of this method is known as the “head and hat”, proposed by Pelizzari et 

al. (1989), where the contours of the surface are selected on a series of slices from 

one image and identified as the “head”, and a set of points in the other image that 

correspond to the same surface are identified as the “hat”. The algorithm then 

proceeds to minimize the head-to-hat distance. 

• Voxel-based. These methods operate directly on the intensity values of the 

images. Their biggest advantage is that they do not depend on prior data obtained 

by the user (such as manual point-selection) and can therefore be fully automatic.  

Within voxel-based methods, the choice of similarity metric, a mathematical function that 

determine the distance between the transformed moving image and the target image, is very 

important. The mathematical definitions of some of the most common similarity metrics as 

described by Jenkinson et al. (2002) with the addition of cross-correlation are shown in Table 

1. 
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Table 1. Mathematical definition of similarity metrics (Jenkinson et al., 2002). Notation: X and Y are the 

moving and target images as a set of intensities; µ(A) is the mean of set A; Var(A) is the variance of set A; 

Yk is the intensity of image Y at voxels where the intensity of X is in the kth intensity bin; nk is the number 

of elements in Yk such that 𝑵 = ∑ 𝒏𝒌𝒌 ; 𝑯(𝑿, 𝒀) = − ∑ 𝒑𝒊𝒋 𝐥𝐨𝐠 𝒑𝒊𝒋𝒊𝒋  is the entropy function where pij is the 

joint probability estimated using the joint intensity histogram; H(X) and H(Y) are the marginal entropy 

functions. 

Similarity Metric Formula 

Least Squares ∑(𝑌 − 𝑋)2 

Normalized Correlation ∑(𝑋 ∗ 𝑌)

√∑ 𝑋2 √∑ 𝑌2
 

Woods 
∑

𝑛𝑘

𝑁

√𝑉𝑎𝑟(𝑌𝑘)

𝜇(𝑌𝑘)𝑘
 

Correlation Ratio 1

𝑉𝑎𝑟(𝑌)
∑

𝑛𝑘

𝑁
𝑉𝑎𝑟(𝑌𝑘)

𝑘
 

Mutual Information 𝐻(𝑋, 𝑌) − 𝐻(𝑋) − 𝐻(𝑌) 

Normalized Mutual Information 𝐻(𝑋, 𝑌)

𝐻(𝑋) + 𝐻(𝑌)
 

Cross-correlation ∑ (𝑌 − 𝜇(𝑌))(𝑋 − 𝜇(𝑋)𝑁
𝑥=1

√∑ 𝑌 − 𝜇(𝑌)𝑁
𝑥=1 √∑ 𝑋 − 𝜇(𝑋)𝑁

𝑥=1

 

 

One common feature in several linear registration is the use of a hierarchical approach. This 

can be done by using blurred versions of the image intensity volumes, starting by optimizing 

the registration the most blurred image and, once the optimal solution is found, it is used as the 

starting point for the next step using a less blurred volume. One example of a voxel-based 

technique with a hierarchical approach was proposed by Collins et al. (1994).  
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3.3 Non-linear Registration 

As opposed to linear registration, non-linear registration is not global in nature, allowing it 

to model local geometric differences between images. As such, instead of estimating global 

parameters that align the images, non-linear registration consists in estimating a deformation 

field, where each voxel of the moving image undergoes a displacement that aligns it with a 

corresponding voxel in the target image. Non-linear registration is typically used for inter-

subject registration as well as registration to a common template, where the deformations 

handle inherent biological variation while conserving correspondence between structures. 

Figure 5 shows an example of an MR image after being registered to a common template. 

In most current non-linear registration algorithms, we can find two different ways of 

modelling the deformation field. On one hand there are non-parametric models where the 

deformation at each voxel is estimated while modeling physical constraints to ensure 

smoothness, and on the other hand there parametrize the whole deformation field by using a set 

of basis functions (e.g. polynomials or B-splines). 

A 

B 

Figure 5. Example of registration to a template (ICBM152). The first row (A) shows the result of a linear 

registration of an MR image, with the template outline shown in red. The second row (B) shows the results 

after non-linear registration, again with the template outline shown in red. 
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In general, we can look at non-linear registration as an optimization problem where we 

optimize the transformation parameters by maximizing a similarity metric. Mathematical 

definitions of common similarity metrics were presented in Table 1 in the previous section. 

Some of the most common similarity metrics used in non-linear registration are cross-

correlation and mutual information, with the latter being particularly useful in inter-modality 

registration due to it working with the probability distribution of intensities as opposed to the 

intensity values directly. 

In the present thesis, two main non-linear registration algorithms, or slight modifications of 

them, were used: Automated Non-linear Image Matching and Anatomical Labelling 

(ANIMAL)  (Collins et al., 1995) and the Symmetric Diffeomorphic non-linear registration 

(SyN) (Avants et al., 2008). Thus, these methods will now be described with more depth. 

ANIMAL focuses on small neighbourhoods of the image that are selected by stepping in 

a 3D grid over the entire volume, where the deformation field is formed by a series of local 

linear deformations for each position in the grid. ANIMAL uses a hierarchical multi-scale 

approach, starting with a very blurred version of the volumes and subsequently reducing the 

blurring on each step. At each step, the deformation is recovered with a voxel spacing no greater 

than the Nyquist sampling limit, in this case denoted by half of the Full Width at Half Maximum 

(FWHM) of the blurring kernel. ANIMAL uses a similarity metric for each local 

neighbourhood, yielding a normalized similarity metric between the moving image and the 

target image as follows: 

𝑆(𝑉𝑚, 𝑉𝑠; 𝑁) =
1

𝑛
∑ 𝑅(

�⃗�∈𝑉

𝑉𝑚, 𝑉𝑠; 𝑁, �⃗�) 

where n is the number of elements in the 3-dimensional cubic lattice that defines the 

deformation field, Vm is the target or model image, Vs is the moving or subject image, N is the 

current estimated transformation, and 𝑅(𝑉𝑚, 𝑉𝑠; 𝑁, �⃗�) is the similarity metric used for each local 

neighborhood of �⃗�. The optimization problem is now to find the local deformation vector 𝑑𝑖
⃗⃗⃗⃗  

that maximizes 𝑅(𝑉𝑚, 𝑉𝑠; (𝑁 + 𝑑𝑖
⃗⃗⃗⃗ ), 𝑥𝑖⃗⃗⃗⃗ ), but in order to ensure that the deformation field is 

continuous, a smoothing constraint is added as such: 

𝑑′⃗⃗ ⃗⃗ = 𝛼𝑑 + (1 − 𝛼)𝑀(�⃗�) 

where 0<α<1, allowing the user to control the level of smoothing, with values close to 0 

ensuring a very smooth deformation and larger values increasing the weight of the estimated 

deformation vector. 
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The main idea behind SyN is that the use of differentiable maps with differentiable 

inverses, called diffeomorphisms, are able to deal with both small and large deformation 

problems. Additionally, SyN is a symmetric algorithm, which ensures that the end result is 

identical regardless of the choice of moving and target images, and provides exact inverse 

transformations, allowing for back and forth mapping between moving and target image. SyN 

allows the user to choose the preferred similarity metric, amongst them cross-correlation and 

mutual information.  In general, this method defines a diffeomorphism ϕ which is used to 

transform an image Vs into the coordinate system from image Vm, and depends on parameters 

time t, spatial coordinate x, and velocity field v. After this, ϕ is decomposed into two parts, ϕ1 

and ϕ2, of equivalent length that map Vs and Vm , respectively, to a mean shape between the 

images. The chosen similarity metric is calculated over local windows and maximized. A 

summary of the algorithm is given by Avants et al. (2008), as follows: 

• Initialize ϕ1 and ϕ2 being the identity matrix. 

• Compute the similarity metric. 

• Compute the velocities by smoothing the result of the cross-correlation. 

• Update the values of ϕ1 and ϕ2 by the corresponding velocity at every location. 

• Calculate the inverses of ϕ1 and ϕ2. 

• Calculate the solutions at time 1 using:  

ϕ1(1) = ϕ2
−1(ϕ1(𝑥, 0.5), 0.5)  𝑎𝑛𝑑 ϕ1

−1(1) = ϕ2(1) = ϕ1
−1(ϕ2(𝑥, 0.5), 0.5)    

• Repeat until convergence. 

3.4 Brain Templates 

Perhaps the first brain template to find application in neuroimaging was used by Fox et al. 

(1985) to register positron emission tomography images to a stereotactic atlas from a post-

mortem brain image that included anatomical landmarks and labels for anatomical structures, 

previously devised by Talairach et al. (1967). One historically important atlas was proposed in 

1988 by Talairach and Tournoux (1988). This atlas was built using photographs and drawings 

of a dissected brain and included labels for the Brodmann areas (Brodmann, 1909). 

In order to better capture the variability of normal population anatomy, new templates have 

been constructed by averaging MR images. In particular, the ICBM152 template was created 

using the average of 152 images of healthy, young adults. The creation of the ICBM152 

template involved an iterative registration procedure of the images into Talairach space, using 

both linear and non-linear registration. 
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Depending on the particular application, the use of templates created from healthy, young 

adults might not be ideal. One example of this is the use of templates for analyses during early 

childhood. Wilke et al. (2002) compared the performance of image registration of pediatric data 

to an adult template and a custom pediatric template. Their results show that the use of adult 

templates increase registration variability, so the use of age-appropriate templates is highly 

recommended. A comparison between different templates is shown in Figure 6. 

One technique for the construction of age-appropriate templates was proposed by Fonov 

et al. (2011).  In this method, all the MR images used for template construction are iteratively 

non-linearly registered, using the current estimation of the average template as the target image 

(in the first iteration, the ICBM152 template is used as the target image). Essentially, this 

method attempts to find a template Φ that simultaneously minimizes the intensity difference 

between the template and each subject’s transformed image Ii, and the magnitude of the 

deformations Ψ𝑖,Φ that result from the non-linear registration of the template to each volume. 

The optimization problem is then posed as follows: 

Φ∗ = 𝑎𝑟𝑔min
Φ

[∑ ∫ (Φ(𝑣) − 𝐼𝑖 (Ψ𝑖,Φ(𝑣)))
2

𝑑𝑣

 

𝑣𝑜𝑙𝑢𝑚𝑒

𝑛

𝑖=1

] (9) 

 

A B 

C D 

Figure 6. Comparison between different T1-weighted templates. A) Custom 3 months template, B) custom 6 

months template, C) custom 2 years template, D) ICBM152 (adult) template. 
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Φ∗ = 𝑎𝑟𝑔min
Φ

[∑ ∫ |Ψ𝑖,Φ(𝑣) − 𝑣|
2

𝑑𝑣

 

𝑣𝑜𝑙𝑢𝑚𝑒

𝑛

𝑖=1

] (10) 

 

Where v is a volume coordinate, 𝐼𝑖(Ψ𝑖,Φ(𝑣)) is the intensity in the individual images 

after application of the transformation Ψ𝑖,Φ, and Φ(𝑣) is the intensity of the template at 

location v. In practice, the algorithm interleaves the minimization of both equations for each 

iteration, and the algorithm stops when the root mean square magnitude of the average 

residual deformation vector field falls below a certain threshold. 

The applications of template construction are not limited to age-appropriate or 

population specific templates. Average brain template construction has proven useful in the 

processing and analysis of longitudinal data, where a subject specific template can be created, 

allowing for consistency between timepoints and making the final transformations from each 

timepoint to the population template more consistent (Aubert-Broche et al., 2013). 

4 Morphometry 

4.1 Overview 

Brain morphometry can be defined as the analysis of the size and shape of brain structures. 

The history of brain morphometry can be traced back to the late 1800s, where the study of the 

weight of the human brain showed differences between males and females, as well as a decrease 

associated with aging, and continued through the 1900s with the introduction of quantitative 

measures of area and volume (Haug, 1986).  

With the advent of neuroimaging, we can now obtain quantitative measures of size and shape 

in vivo, allowing a large array of studies to be performed. A common morphometric approach 

in neuroimaging is to use measures of volume of specific brain structures or regions of interest 

(ROI) and compare them between subjects or groups of subjects. Some of the earliest efforts 

included the estimation of ventricle volume in healthy subjects (Condon et al., 1988, 1986) and 

comparing ventricle volumes in multiple sclerosis (Young et al., 1981). Many different tools 

exist to perform tissue classification and to estimate brain structure volumes. Studies designed 

under this paradigm typically require a priori hypotheses regarding which structures or ROIs 

are of interest. However, alternative approaches exist that are not limited to specific structures 

or ROIs, instead providing an assessment of morphometry on the whole brain in an exploratory 

voxelwise fashion. One of the first such techniques was proposed by Wright et al. (1995) by 

looking at the voxel-wise density of GM and WM in patients with schizophrenia. 
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Most of these alternative techniques rely on the deformation fields obtained from non-linear 

registration and include Voxel-Based Morphometry (VBM), Deformation Based Morphometry 

(DBM), and Tensor Based Morphometry (TBM). These three techniques rose to prominence 

mainly following the work of Ashburner and Friston (2000, 2004), and since then have been 

applied to a wide variety of studies. 

4.2 Tissue Classification and Structure Segmentation 

Image segmentation can be defined as the process of dividing an image into a set of 

semantically meaningful, homogeneous, and nonoverlapping regions with similar features (i.e. 

intensity, depth, color or texture) (Despotović et al., 2015). Image classification and 

segmentation are intrinsically connected, since segmentation implies a classification into 

regions, while classification will implicitly yield the segmentation of an image by labeling 

voxels into different groups (albeit without regard for connectivity).  

In neuroimaging, the classification of MR images into white matter (WM), grey matter (GM) 

and cerebrospinal fluid (CSF) is a very common and useful tool for analyzing changes in the 

overall volumes of these tissues, allowing us to identify abnormal changes such as atrophy and 

overgrowth from a global brain perspective. The resulting tissue classification can also be used 

to perform further analyses, such as VBM, tissue density, and cortical thickness. 

Besides tissue classification, the brain can also be segmented into specific anatomical 

structures, ranging from segmentation into lobes (i.e. frontal, parietal, occipital and temporal) 

to segmentation of smaller structures (e.g. hippocampus, putamen, etc.).  Changes in volume 

and shape of some of these regions can be associated with different diseases, and if studied over 

time, with disease progression. An example of an MR image after tissue classification and lobe 

segmentation is shown in Figure 7. 

Typically, manual segmentations provided by trained experts in neuroanatomy are 

considered the gold standard. However, manual segmentation is subject to inter-rater and intra-

rater variability. One common approach to reduce inter-rater variability is to enforce a carefully 

defined protocol of segmentation. Additionally, inter-rater and intra-rater variability can be 

reduced by producing an ensemble segmentation, essentially averaging the segmentations 

produced by multiple experts. Unfortunately, manual segmentation is very time consuming and 

is usually used only in small-scale studies or as priors in fully automatic methods applied to 

large-scale studies. 
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Automated image segmentation methods can be grouped in different ways. They can be 

categorized by whether the method requires annotated training data (supervised methods), or if 

they do not require annotated training data but rather are driven by directly by the data  itself 

(unsupervised methods). An alternative categorization, and the one preferred in the present 

work, is the following: 

• Based on the intensity value of voxels or intensity histograms (intensity-based 

methods). 

• Based on the use of deformable models (surface-based methods). 

• Based on previously segmented brain atlases (atlas-based methods). 

 

4.2.1 Intensity-based methods 

One of the simplest intensity-based methods for segmentation is thresholding. Thresholding 

consists on choosing an appropriate cut-off value in the image histogram that properly separates 

between classes (Hanson and Riseman, 1978; Lim and Pfefferbaum, 1989). An alternative 

method to thresholding is region growing, where a manually or automatically selected seed 

point is used to initialize a search of all neighbouring voxels, and if their intensities are similar 

enough, they are added into the growing region (del Fresno et al., 2009; Zucker, 1976). 

Several classification methods, both supervised and unsupervised, can be used for intensity-

based segmentation of MR-images. Some of the most common classifiers used in neuroimaging 

A 

B 

Figure 7. Examples of tissue classification (A) and lobe segmentation (B). In A, GM is shown in green, CSF in 

red, and WM in white. In B, the tissue classes are further segmented according to lobes (Frontal, parietal, 

temporal, and occipital) as well as cerebellum. 
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include the k-nearest-neighbour classifier (Cocosco et al., 2003; Cover and Hart, 1967; 

Hellman, 1970; Warfield et al., 2000) and Bayesian classifiers, typically using the expectation-

maximization algorithm (Ashburner and Friston, 2005; Fischl et al., 2002). Bayesian classifiers 

can also incorporate additional spatial context, particularly with the use of Markov random 

fields (Van Leemput et al., 1999; Zhang et al., 2001). 

Additionally, clustering methods can be used as an unsupervised approach to segment 

images. The two most common clustering methods used in neuroimaging segmentation are the 

fuzzy C-means clustering (Ahmed et al., 2002; Chen and Zhang, 2004), and the expectation-

maximization method (Liang et al., 1994). 

4.2.2 Surface-based methods 

Within the field of image segmentation, surface-based methods refer to the use of 

deformable models that are shaped in order to fit the desired object. These methods define a 

deformable model by parametric curves (2-dimensional case) or surfaces (3-dimensional case) 

which are deformed by the application of external “forces” derived from the image features and 

internal “forces” that enforce surface regularity. The external “forces” can be related to 

gradient-based edge information, region based information, or a combination of both 

(Despotović et al., 2015; Kass et al., 1988).  

Although surface-based methods have been successfully applied to MR imaging 

segmentation  (Albert Huang et al., 2009; Chunming Li et al., 2011; Mesejo et al., 2015), they 

have not garnered the same popularity as intensity-based and atlas-based methods. 

4.2.3 Atlas-based methods 

In atlas-based segmentation, the information contained in a previously segmented brain atlas 

or set of atlases is used to inform the segmentation of a new MR image. The actual segmentation 

is achieved by propagating the labels of the atlas(es) to the new image, assuming the 

correspondence across the brain structures (Bajcsy, 2003; Cabezas et al., 2011; Christensen et 

al., 1994; Gee et al., 1993).  

The simplest case of atlas-based segmentation consists in using the transformation obtained 

from non-linear registration of the new image to an atlas. Subsequently, the inverse of this 

transformation is used to warp and resample the labels from the atlas, effectively mapping the 

labels onto the new image (Collins et al., 1995). The same idea can be applied when using a set 

of atlases instead of a single atlas, in which case the resampled labels from each atlas need to 

be combined in order to obtain a single, final label. This can be done by simple majority vote, 

or by assigning a voting weight to each atlas. The voting weights can be assigned from 
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similarity between the registered image and atlas, either globally (Heckemann et al., 2006), or 

locally (Artaechevarria et al., 2009; Hongzhi Wang et al., 2013). 

Since non-linear registration is computationally expensive, non-local patch-based 

techniques have been proposed for multi-atlas segmentations. These techniques essentially 

consider multiple candidate patches from each atlas, making the final segmentation less 

sensitive to image misregistration, and allowing the use of less computationally expensive 

linear registrations to be used (Coupé et al., 2011; Rousseau et al., 2011). 

4.3 Voxel Based Morphometry 

In general, VBM is a technique that focuses on finding differences in the local concentration 

of brain tissue (GM or WM) while accounting for structure and shape differences. VBM 

performs this comparison voxelwise and results in a statistical parametric map of volume 

differences. The first step when performing VBM involves the non-linear registration of MR 

images to a common template. The next step consists in tissue classification, labeling each 

voxel as WM, GM or CSF. Afterwards, the segmented tissue maps are smoothed by convolving 

them with an isotropic Gaussian filter. Smoothing with the Gaussian filter helps to compensate 

for inexactitudes that arise from the spatial normalization step as well as making the data more 

normally distributed. 

One optional step can be incorporated after the tissue classification, modulating the 

segmented images with the Jacobian determinants of the deformation field. This can be useful 

since, by multiplying the segmented tissue maps by the relative voxel volumes, VBM goes from 

comparing relative local concentration of tissue to comparing the absolute amounts of tissue 

density in the different regions. 

Finally, a set of voxelwise statistical tests are done on the smoothed tissue maps. A variety 

of statistical tests can be used in VBM, including general linear models, general linear mixed-

effects models, and ANOVA, among others. These tests will result in statistical parametric 

maps that provide values at each tested voxel. An example of a parametric map resulting from 

TBM can be seen in Figure 8, where the t-values resulting of a voxel-wise group comparison 

are shown. As such, these maps encompass the results of numerous statistical tests, and a 

correction for multiple comparisons is required for interpretation. Some of the commonly used 

multiple comparisons corrections in VBM include Gaussian random fields (Worsley et al., 

1996), Bonferroni corrections (Holland and Copenhaver, 1987; Holm, 1979), and False 

Discovery Rate controls (Benjamini and Hochberg, 1995). 
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The accuracy of VBM relies heavily on the performance of the non-linear registration 

and of the tissue classification. In addition, the choice of reference template is very important 

to avoid the introduction of bias to the VBM results, and it is recommended to use templates 

created with a large number of MR images, that are age-appropriate and, if possible, that come 

from the same cohort to be studied, this is known as “optimized” VBM (Good et al., 2001). In 

the case of tissue classification performance, VBM can become unreliable when applied to 

populations where tissue classification is not ideal. This is the case for example of MR images 

acquired during early childhood, where the contrast between GM and WM is not enough to 

reliably perform tissue classification with most automatic methods.  

4.4 Deformation Based Morphometry 

As opposed to VBM, DBM does not use the information of tissue classification, but rather 

depends only on the deformation fields of the non-linear registration to the reference template. 

One way to interpret these deformation fields is as vectors pointing from the coordinates of the 

reference template to the corresponding coordinates in the native image. This vector 

representation can be seen in Figure 9. Therefore, the parameters at each voxel of the 

deformation field contain the coordinates of the corresponding structure in the native image. 

DBM consists in taking these coordinates and comparing the relative position of structures in 

the images of different subjects or groups. This is possible because, in essence, the shape of an 

object is defined by the relative positions of each of its components. 

 

A B C 

-6 6 

t-value 

Figure 8. Example of a statistical parametric map. A) The ICBM152 template, B) is a map showing the t-

values at each voxel for a linear regression test, C) is the overlay of both images, showing the highest t-values 

in the lateral ventricles. 
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In DBM, singular value decomposition is applied to the deformation fields, yielding 

different components related to global position, orientation and size, as well as a shape 

component (i.e. the component describing relative position of structures). Once we have 

decomposed the deformation fields, we can apply a multi-variate statistical test, usually multi-

variate analysis of variance (MANCOVA). When DBM is applied globally, it does not provide 

a statistical parametric map, but rather a single p value for each of the explanatory variables 

(e.g. age, diagnosis, etc.).  

As previously mentioned, the deformation fields contain more information than just  the 

relative position of structures. The position, orientation and size information encoded in the 

deformation fields can be incorporated into a more complex analysis known as TBM, where 

information on local shape can be extracted and analyzed on a voxel-by-voxel basis. It is 

important to note that the definition of DBM presented in this subsection follows the definition 

given by Ashburner and Friston (2004), however, the term DBM is commonly used in the 

literature when referring to TBM, as described in the following subsection. 

4.5 Tensor Based Morphometry 

Briefly, TBM consists on using the information contained in the deformation fields from a 

non-linear registration to perform a voxelwise comparison of the relative volumes of different 

subjects or groups. The first step in TBM is to non-linearly register all the MR images of interest 

Figure 9. Visual representation of a deformation field as a set of vectors. Each vector essentially points to 

the corresponding point in the template. The size of the vectors is enlarged for visualization purposes. 
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to a common reference template. The second step consists in the extraction of the information 

contained in the deformation fields obtained from the first step. By far the most common way 

to obtain a metric that reliably describes local brain shape is the calculation of the Jacobian 

matrix of the deformation field (i.e. the matrix of all the first-order partial derivatives of the 

deformation field).  

These Jacobian matrices contain information describing the local stretching, rotation, and 

shearing caused by the non-linear deformation. One possible approach is to use the full 

information of the Jacobian matrix to perform statistical comparisons. In order to do this, it is 

necessary to remove the information related to orientation encoded in the Jacobian matrix so 

that inferences are based only on changes in local stretching and shearing. This can be achieved 

by using the polar decomposition theorem to decompose the Jacobian matrix into a rotation 

matrix and a Lagrangian strain tensor. In the next step, a desirable metric that can be used to 

compare between tensors is required. This poses a complicated mathematical challenge, with 

different methods including Log-Euclidian  metrics (Lepore et al., 2008) and eigen 

decomposition (Rajagopalan et al., 2015). Finally, we can apply a multi-variate test, typically 

Hotelling’s T2 test, to obtain a statistical parametric map. 

A simpler, more common TBM technique, consists in calculating the determinant of the 

Jacobian matrix. By doing this, we obtain a single, meaningful metric that describes the local 

volume change of each voxel in the template when compared to the corresponding voxel in the 

native image. The Jacobian determinant metric is typically log-transformed in order to better 

prepare the data for subsequent parametric tests that have assumptions about data normality, as 

well as providing symmetry in the interpretation of the results. A value of 0 in the log-

transformed Jacobian determinant indicates no difference in local volume, a value larger than 

0 indicates expansion, and a value smaller than 0 indicates contraction. Figure 10 shows an 

example of a log-transformed Jacobian map, where each voxel represents the local contraction 

or expansion of a template to an individual subject’s brain, according to their non-linear 

registration. Finally, voxelwise statistical tests are applied to the log-transformed Jacobian 
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determinants. Examples of these tests include the use of generalized linear models or linear 

mixed-effects models. 

5 Statistical Tools 

5.1 Linear Regression Models 

Linear Regression is a common statistical method used to analyze the relationship between 

a response variable and a set of one or more factors (or explanatory variables). The inherent 

assumptions behind linear regression are simple: 

• There is a linear relationship between the response variable and the explanatory 

variable(s). 

• The errors of the response variable are uncorrelated. 

• The response variable follows the normal distribution. 

Formally, linear models are described as follows: 

𝑦 = 𝛽𝑋 + 𝜀 (11) 

 

where y represents the vector of measurements of the response variable, β represents the vector 

of unknown regression coefficients, X is the matrix of explanatory variables, and ε is the vector 

of errors. Perhaps the most common way of obtaining estimates of the regression coefficients 

is the least-squares approach, which consists in finding a line that minimizes the sum of squared 

A B C 

-2 2 

Figure 10. An example of a log-transformed Jacobian Determinant map. A) Custom 12 month old pediatric  

template, B) log-transformed Jacobian of single subject mapped to template, where values above 0 denote 

larger volume expansion, while values below 0 denote volume reduction when compared to the template, C) 

overlay of both images. 
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residuals (i.e. the differences between the measured values and the predicted values of the 

response variable). 

In cases where the assumption of the normal distribution of the response variable is not valid, 

or when the data is discrete, a simple linear regression cannot be used. For those cases, 

Generalized Linear Models were first proposed by Nelder and Wedderburn (1972), with some 

further extensions developed by McCullagh and Nelder (1989). Generalized Linear Models 

differ from traditional regression by assuming that the response variable follows an exponential 

family distribution. 

Linear Regression and Generalized Linear Models are well suited for many cross-sectional 

studies, longitudinal studies that involve repeated measures over time of the same subject often 

require a way of accounting for within-subject correlations. As such, a different class of models, 

known as Linear Mixed-effects Models (Laird and Ware, 1982), are better suited for 

longitudinal applications. 

5.2 Linear Mixed-effects Models 

Linear Mixed Effects Models (LMEM) are class of statistical parametric regression 

models obtained by the introduction of random effects into a Linear Regression model. These 

random effects are parameters that are themselves random variables and can be used to account 

for intra-subject variability, as well as different situations that arise from a hierarchical 

structure. 

Formally, the LMEM is described as follows: 

𝑦 = 𝛽𝑋 + 𝑏𝑍 + 𝜀 (12) 

 

where y represents the vector of measurements of the response variable, β represents the vector 

of unknown regression coefficients, X is the matrix of explanatory variables, Z is the matrix of 

random effects, b is the vector of random effects, and ε is the vector of errors. 

In general, LMEM techniques estimate the unknown parameters β using a maximum 

likelihood approach, typically based on the maximum likelihood method or the restricted 

maximum likelihood method. The most common algorithm used in LMEM is the expectation-

maximization (EM) algorithm, an iterative process that alternates between the E-step, a 

computation of the conditional expectation of the data given the current estimated parameters, 

and the M-step, the estimation of the parameters given the current estimated incomplete data 

by maximizing the conditional expectation. The use of maximum likelihood methods in LMEM 

allow the use of unbalanced data. Unbalanced data is a common problem in neuroimaging 
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studies, since missing data for a given timepoint can happen due to acquisition problems, 

imperfect timing or subject dropout. LMEM deals with this problem by weighting the parameter 

estimations based on the number of observations. 

In 2013, Bernal-Rusiel et al. (Bernal-Rusiel et al., 2013) performed an objective comparison 

between LMEM, repeated measures ANOVA, and cross-sectional analysis of the slope in the 

context of neuroimaging studies. Their results suggest that LMEM provides better statistical 

power for detecting longitudinal group differences and provides a better overall framework for 

studies where inter-subject variability is important. 

5.3 Multiple Comparisons Correction 

Once a particular statistical model is chosen, we need to establish a way to determine if there 

is a significant difference between subjects or groups, as well as if the relationship between 

variables is statistically significant. This is done by defining a null hypothesis H0 stating no 

difference between groups exists (or here is no relationship between variables), and an 

alternative hypothesis H1 stating that the difference exists (or there is a relationship between 

variables). We can now calculate the probability of observing a result at least as extreme as the 

observed test statistic assuming H0 is true, known as the p-value, and define a significance level 

α, which is the probability of incorrectly rejecting H0. If the p-value is less than or equal to α, 

we reject H0 in favor of H1. Typical values for α include 0.1, 0.05 and 0.01. The selection of α 

largely depends on the field of study, study design, and specific question, and essentially 

represents the maximum tolerable exposure to erroneously rejecting H0 for a given study. In 

neuroscience, α often is set at 0.05. 

In the field of neuroimaging, it is unlikely that a study makes a single hypothesis 

comparison as described above, but rather a family of simultaneous tests are performed. For 

example, when using morphometric techniques such as VBM and TBM, hypothesis testing 

occurs at each voxel, which leads to a large susceptibility to false-positive results due to random 

chance, making classic theoretical thresholds for the individual tests unreliable. Dealing with 

this problem is known as multiple comparison correction. 

Numerous methods of multiple comparison correction have been developed. A well-

known, popular approach for multiple comparison correction is the Bonferroni correction 

(Bonferroni, 1936), where the nominal significance level α is replaced by the level α/k, where 

k is the number of tests being performed. The Bonferroni correction is known to be very 

effective in controlling for false discoveries, however, it is generally considered very 
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conservative, and in cases where hundreds of thousands of comparisons are involved it can lead 

to true positives not surviving the resulting threshold. 

One alternative for the Bonferroni correction for use in neuroimaging was proposed by 

Worsley et al. (1999). The method, known as Gaussian Random Field Theory, is based on the 

Bonferroni correction, but instead of assuming independence of all voxels within a volume, 

only resels (resolution elements, essentially a group of voxels) are independent. This approach 

essentially reduces the value of k and works well in data where spatial correlation of neighbours 

is a fair assumption. The use of this method provides corrected p-values for local maxima as 

well as for cluster size, commonly known as peak and cluster threshold respectively. 

Another alternative was proposed by Benjamini and Hochberg (1995), where instead of 

controlling the false positives for all tests regardless of rejection, the idea is to control the 

expected proportion of errors in the accepted hypotheses, the False Discovery Rate (FDR). One 

way of applying FDR control in neuroimaging studies was proposed by Genovese et al. (2002), 

it is based on the procedures previously described by Benjamini and Hochberg (1995), and 

Benajmini and Yekutieli (2001). This method is used as the basis for the mathematics presented 

in this sub-section. 

In a voxelwise neuroimaging analysis, let V denote the total number of voxels, and each 

voxel will be classified as a true positive, a true negative, a false positive, or a false negative. 

If we let VTP be the number of true positives, VTN the number of true negatives, VFP the number 

of false positives, and VFN the number of false negatives, the FDR is defined as: 

𝐹𝐷𝑅 =
𝑉𝐹𝑃

𝑉𝑇𝑃 + 𝑉𝐹𝑃

(13) 

      

The FDR is controlled by specifying a rate q between 0 and 1 and ensuring that, on 

average, the FDR is equal to or smaller than q. We can then express the control of the FDR as 

follows: 

𝐸(𝐹𝐷𝑅) ≤
𝑉𝑇𝑁 + 𝑉𝐹𝑃

𝑉
𝑞 ≤ 𝑞 (14) 

  

where E(FDR) is the expected value of the FDR.     

Therefore, we can summarize the FDR controlling procedure as follows: 

• Selection of q. 

• Ordering from smallest to largest of the P values resulting from the hypothesis 

testing, letting i represent the index in the ordered P values. 
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• Choose an appropriate value for the constant c(V). The options are c(V)= 1 in the 

case of the P values being independent or positive dependent, or c(V)=∑ 1/𝑖𝑉
𝑖=1  

for any joint distribution of the P values.  

• Let r be the largest i that fulfills: 

𝑃(𝑖) ≤
𝑖

𝑉

𝑞

𝑐(𝑉)
(15) 

     

• The value corresponding to the P value P(r) denotes the desired threshold. 

 

FDR control is popular amongst neuroimaging studies, and it has been applied to a variety 

of data, including fMRI (Fransson, 2005), cortical thickness (Shaw et al., 2006) and 

longitudinal TBM (Lau et al., 2008). 

6 Childhood and Adolescence Neurodevelopment 

6.1 Overview 

During the course of life, the human brain undergoes a constant change and adaptation 

process. However, it is during the pre-natal, peri-natal and childhood developmental phases that 

it experiences the most dramatic and significant changes, perhaps shaping the majority of the 

potential and vulnerabilities inherent to a person. Therefore, understanding the process of 

neurodevelopment is a very important step in our overall comprehension of the human brain. 

Additionally, many diseases and disorders that affect the brain can be traced back to this critical 

neurodevelopmental period. 

The study of brain development is a complex, multidisciplinary affair, since the processes 

that are involved are varied, including gene expression, environmental factors, and the 

interaction between them (Stiles and Jernigan, 2010). Before the advent of MR imaging in 

neuroscience, early histological studies like the ones performed by Yakovlev and Lecours 

(1967), and Huttenlocher (1979), showed the progression of myelination as well as synaptic 

proliferation and pruning in different areas of the brain. Perhaps some of the first studies of 

brain development using MR imaging were performed by Jernigan et al. (1991; 1990), using 

simple morphometric techniques to observe in vivo the changes in GM and WM volumes in the 

different cerebral lobes of children. As the field of MR imaging has advanced, our 

understanding on the timing and characteristics of brain maturation has expanded accordingly 

(Toga et al., 2006). 
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In light of all these changes occurring in the brain during childhood, pediatric studies of 

diseases and disorders pose a particular problem in neuroimaging, since it is important to 

account for the normal maturation of the brain when performing these studies (Giedd and 

Rapoport, 2010; Marsh et al., 2008; Mills et al., 2016). In the present section we will briefly 

summarize some of the normal neurodevelopmental changes during childhood and 

adolescence, as well as the challenges they present for neuroimaging studies. 

6.2 First 2 years of life 

The first two years of life are marked by stark changes in brain structure and function, with 

the brain growing to about 70% of the expected adult size in the first year and to about 80% by 

the end of the second year of life (Tau and Peterson, 2010). At birth, the majority of the 

production and migration of neurons has already occurred, however, some degree of 

proliferation and migration of glial progenitors still happens during early postnatal life, with 

the differentiation and maturation of these cells an ongoing process throughout childhood 

(Stiles and Jernigan, 2010). The main maturation processes that occur during can be categorized 

as proliferation and migration, myelination, and regressive events. 

Proliferation and migration of neurons after birth occurs almost exclusively on small 

amounts of neurogenesis in the subventricular zone with migration to the olfactory bulb, and 

neurogenesis in the hippocampus with migration to the nearby granular layer. These cases of 

neurogenesis are not exclusive of early life, but rather seem to continue during the whole 

lifespan. On the other hand, proliferation and migration of glial progenitors is an active process 

during early childhood, with glial progenitors proliferating in subventricular zone of the 

forebrain before migrating into WM, cortex, striatum, and hippocampus, finally differentiating 

into oligodendrocytes and astrocytes (Stiles and Jernigan, 2010). 

The differentiation of glial progenitors into oligodendrocytes leads to the process of 

myelination during early childhood. The oligodendrocytes progenitor cells increase myelin 

protein expression and start forming membrane wraps around nearby axons while extruding a 

part of the cytoplasm. This process results in the formation of the multi-layered myelin sheath 

around axons, which is known to increase axonal conduction velocity.  

Due to the human brain development following a strategy of overproduction of neurons, 

glial cells, neural processes, and synapses, part of brain maturation consists of culling these 

excesses by what are known as regressive events. During the first two years of life, two types 

of regressive events happen in the brain, glial cell death and pruning. Glial cell death occurs 

during the myelination process, with the cellular death of numerous oligodendrocytes signalled 



 

 37 

by nearby axons, in order for the number of surviving oligodendrocytes to match the axonal 

surface area. During this period, there is a marked overabundance of connections in the brain, 

known as synaptic exuberance. As the brain develops, there is a systematic elimination of the 

excess connections known as pruning. It is particularly interesting that the exuberance and 

pruning effects can be observed both at a macroscopic level within brain regions on a timescale 

of months, as well as at a microscopic level of individual neurons on a timescale of minutes. 

In summary, brain development during the first two years of life includes dramatic brain 

growth primarily driven by the production of glial cells and myelination of axons, rather than 

neurogenesis. In addition, this developmental period features a fundamental development of 

GM connections, in particular in sensorimotor and visual cortices (Tau and Peterson, 2010).  

6.3 Childhood and Adolescence 

After two years of age, the rate of growth of the brain slows down significantly, with the 

brain growing only from 80% of its expected adult size at two years of age to 90% at five years 

of age, with cortical GM volume increasing up to 4 or 5 years of age (Tau and Peterson, 2010). 

During this period, myelination, synaptic formation, and pruning are the main maturation 

processes. The time-course of synaptic formation and pruning is particularly interesting during 

this period, with synaptic density peaking first in sensory areas, then association areas, followed 

by higher cognition areas, such as the prefrontal cortex. The rate of WM volume increase is still 

high during this period, with myelination still an important driving force. Overall, the relatively 

slower growth rate during this period can be explained by a decrease in synaptic formation with 

a simultaneous increase in pruning, thus slowing the overall growth. 

After five years of age, cortical GM volume begins to decline, first in dorsal parietal and 

primary sensorimotor areas between 5-8 years of age, followed by spatial orientation and 

language areas between 11-13 years of age, and finally higher cognition areas in late 

adolescence. This decline in GM volume has been corroborated in animal and post-mortem 

histological data, as well as morphometric MR imaging studies and cortical thickness 

measurements (Tau and Peterson, 2010; Toga et al., 2006). Furthermore, the myelination 

process does not stop at 5 years of age, but rather it continues all throughout childhood and 

adolescence. Due to this process, there is a constant increase in WM volume. 

Perhaps the most notable changes occurring in the brain during adolescence are found in the 

prefrontal cortex. The prefrontal cortex experiences synaptic proliferation at puberty, followed 

by pruning a reorganization of synaptic connections during late adolescence, leading to a net 

decrease in synaptic density in the prefrontal cortex by adulthood (Choudhury et al., 2008). It 



 

 38 

is also important to note that, due to major hormonal and physiological changes, the peak GM 

volume in the frontal lobe occurs at around 11 years for girls and 12 years for boys, with the 

parietal GM volumes peaking around 10 years for girls and 12 years for boys. It is therefore 

very important to account for sex-based differences in development during puberty and 

adolescence (Mills et al., 2016). 

6.4 Myelination and Contrast Changes 

As previously described in subsection 6.2, one of the main changes that occurs during the 

first 2 years of life is the myelination of WM, playing a critical role in the facilitation of the 

transmission of nerve impulses travelling through the axons of neurons across the nervous 

system.  

MR imaging studies during early childhood are particularly susceptive to changes in 

myelination, as shown in 1988 by Barkovich et al. (1988). Particularly, this study showed that 

differences in contrast due to myelination in T1 and T2-weighted scans have slightly different 

time-courses. At birth, a T1-weighted scan of the brain will show lower intensities in WM than  

in GM (the opposite than an adult brain), and as the brain mature there is a reversal in contrast 

during the first 6-8 months of life. A similar reversal of contrast occurs in T2-weighted images, 

with GM showing lower intensities than WM in neonates and the reversal occurring after 6 

months. Figure 11 shows changes in contrast during the first year of life. 

In general, changes in MR imaging due to myelination are observed earlier in T1-weighted 

images than in T2-weighted images. One of the possible explanations for the reversal in contrast 

and the difference in time-course between modalities was proposed by Barkovich et al. (1988) 

and later supported by Takeda et al. (1997). In the case of changes in T1-weighted imaging, the 

proportions of cholesterol and glycolipids that are part of the outer layer of the myelin 

membrane increase during the first 6-8 months of development, leading to a shortening of the 

T1 relaxation. In the case of changes in T2-weighted imaging, the inner layer of myelin becomes 

hydrophobic during development,  decreasing the amount of free water molecules thus affecting 

the T2 relaxation. 

The general pattern of myelination in the brain has been observed in several MRI studies 

(Barkovich et al., 1988; Bird et al., 1989; Christophe et al., 1990; Dietrich et al., 1988; 

Hayakawa et al., 1991), and can be described as follows: 

• Myelination of the pons and cerebellar peduncles by birth. 

• Myelination of the posterior limb of the internal capsule, the optic radiation and 

the splenium of the corpus callosum between 1-3 months of age. 
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• Myelination of the anterior limb of the internal capsule and genu of the corpus 

callosum around 6 months of age. 

 

A 

B 

C 

D 

Figure 11. Contrast changes due to myelination in the first 2 years of life.  A) 3 months, B) 6 months, C) 12 

months, and D) 24 months of age. The left column shows T1-weighted images, while the right column 

shows T2-weighted images. 
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 These changes in contrast during early childhood have a big impact in the accuracy of 

neuroimaging tools. In particular, MR images acquired around 6 months of age will show very 

little contrast between GM and WM, making tissue classification a very complex problem at 

this age. In recent years several efforts of performing robust, accurate tissue classification and 

brain segmentation have been done, particularly using atlas-based techniques (Kuklisova-

Murgasova et al., 2011; Prastawa et al., 2005; Weisenfeld and Warfield, 2004). These 

techniques typically separate the common WM label into 2 separate classes, unmyelinated WM 

and myelinated WM. Methods that rely on accurate tissue classification or where having two 

distinct classes for WM affect their working, such as VBM, are not well suited for application 

in morphometric studies during early childhood without special considerations. However, one 

can easily adapt methods that do not rely on tissue classification, such as TBM, to work within 

this time period, as long as accurate, age-appropriate templates with the corresponding contrast 

profile are used. 

6.5 Genetics and Neurodevelopment 

Due to the prevalence of neurodevelopmental disorders, such as ASD, intellectual disability, 

and attention deficit hyperactivity disorder, among others, it has become particularly important 

to understand the role of genetics in neurodevelopment. Normal neurodevelopment can be 

affected by different types of genetic mutations, including chromosomal rearrangements, copy 

number variants (CNVs), small indels, and nucleotide substitutions (Cardoso et al., 2019). Most 

evidence points towards these mutations mainly affecting biological pathways of 

synaptogenesis, chromatin remodelling, cell proliferation, and cell differentiation (Berryer et 

al., 2016; Cardoso et al., 2019; Clement et al., 2012). 

Unfortunately, understanding the specifics in which genetics and neurodevelopmental 

disorders are related is a highly complex task, with over 1000 loci potentially involved (Shashi 

et al., 2014). Furthermore, the heterogeneity of neurodevelopmental disorders, including the 

existence of syndromic (e.g. Rett syndrome) and non syndromic variants, as well as 

comorbidity between different neurodevelopmental disorders and with other diseases, 

complicate these studies (Tărlungeanu and Novarino, 2018). One potential avenue to study the 

effects of genetics in neurodevelopment is the “genetics first approach”, where the study itself 

focuses on the effects of a particular mutation (e.g. a CNV in a specific locus) in 

neurodevelopment, as opposed to focusing on a neurodevelopmental disorder and studying their 

genetics post hoc.  
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6.6 Morphometry during Early Childhood 

The first use of MR images in the study of early childhood focused on analysing the patterns 

of myelination, rather than growth patterns. As such, many of these studies did not use any 

particular morphometric techniques, but rather relied in qualitative descriptions of changes in 

contrast of GM and WM, as well as differences in the timing of observations between T1 and 

T2-weighted images, to track the progress of myelination in the infant brain (Barkovich et al., 

1988; Bird et al., 1989; Christophe et al., 1990; Dietrich et al., 1988; Hayakawa et al., 1991; 

Martin et al., 1988; McArdle et al., 1987). Perhaps the first attempt at morphometry in early 

childhood was a study by Barkovich and Kjos (1988), where measurements of thickness and 

length of the corpus callosum, and reported significant increase in thickness all over, 

particularly in the splenium between 4-6 months of age. 

In 2001, a study by Matsuzawa et al. (2001) set out to investigate the volumetric changes 

that occur during normal development in early childhood. In their study, they used linear 

regression on the volumes of GM, WM and CSF obtained using manual segmentation into 

tissue classes and lobes of 13 children aged 1 month to 2 years. Their results showed that both 

GM and WM increase during the first 2 years of life, with particularly larger increases in frontal 

and temporal lobes. In 2008 a similar study was conducted by Knickmeyer et al. (2008) using 

a larger database of normally developing children (98 children), and automatic tissue 

classification tools. With a larger number of subjects, they were able to model the volumetric 

changes of total brain volume, volume of cortical hemispheres, cerebellum, and subcortical and 

brainstem, in addition to the overall growth trajectories of GM and WM. Some highlights from 

this study includes the observation of a 240% increase in the size of cerebellum during the first 

year of life, as well as the observation that, while both GM and WM are increasing, GM has a 

larger growth rate during the first 2 years of life. 

Additional volumetric studies have focused on observing the growth patterns of more 

specific regions (e.g. deep nuclei, hippocampi, lateral ventricles) by using more advanced brain 

segmentation techniques (Bompard et al., 2014; Choe et al., 2013; Gilmore et al., 2012). Other 

morphometric techniques have been rarely used, including DBM (Aljabar et al., 2008) and 

finite strain (Kim et al., 2016). 

6.7 Morphometry during Late Childhood and Adolescence 

The characterization of developmental trajectories during childhood and adolescence is an 

important field of research, not only for the understanding of normal neurodevelopment, but 
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also as a basis to look for potential abnormalities associated with a variety of disorders and 

diseases. Early morphometric studies using MR imaging showed that GM volumes in children 

were considerably larger than in adults, as well as overall estimates of brain growth during 

childhood (Caviness et al., 1996; Jernigan et al., 1991; Pfefferbaum et al., 1994; Reiss et al., 

1996). These early studies were inconsistent in the selection of a “childhood” age range, with 

some studies covering a large age range (3 months to 30 years) (Pfefferbaum et al., 1994) while 

others focused on a specific time period (7 to 11 years of age) (Caviness et al., 1996). Moreover, 

these first studies consisted of cross-sectional MR imaging data that could not look at the 

growth trajectories of individuals. 

In 1999, Giedd et al. (1999) performed  landmark brain development study using 

longitudinal MR imaging of 145 healthy subjects, scanned up to 5 times at two-year intervals, 

from 4 to 20 years of age. The study used a hybrid tissue classification technique, mixing an 

intensity-based classification with an atlas-based approach, in order to obtain morphometric 

volumes of GM and WM for the frontal, parietal, temporal and occipital lobes. Their study 

showed linear increases in WM volume with nonlinear, regionally specific changes in GM 

volume. Around the same time, Sowell et al. (1999) used a contrast of average grey matter 

differences, a precursor of VBM, to explore localized changes between childhood and 

adolescence, with their findings being consistent with the pattern and distribution of changes 

found in earlier volumetric studies. 

More recently, the interest in the analysis of large, longitudinal data during childhood has 

increased, leading to the acquisition of large, normal development datasets. In 2006, the NIH 

MRI study of normal brain development (NIHPD) was created (Evans, 2006), composed of MR 

imaging, clinical, and behavioral information of normally developing children and adolescents. 

In particular, the NIHPD cohort includes longitudinal structural MRI acquired at 1.5 T of 392 

subjects aged 4 to 22. In 2014, the Philadelphia Neurodevelopmental cohort (PNC) 

(Satterthwaite et al., 2014) set to acquire longitudinal MR imaging of 1445 normally developing 

children aged 8 to 23, with the addition of clinical and cognitive phenotypes, as well as 

genomics. 

Several morphometric studies throughout the years have looked into modelling 

developmental trajectories during childhood, with the most common approach being the use of 

tissue classification and brain segmentation to explore the volumetric changes in different areas 

of the brain (Aubert-Broche et al., 2013; Ducharme et al., 2016; Lenroot et al., 2007; Tamnes 

et al., 2013). Mills et al. (2016) studied the potential inconsistencies in developmental 

trajectories from tissue classification and brain segmentation due to the comparability of the 
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datasets, by modelling trajectories across four separate longitudinal samples. Their results 

suggest good convergence across differently sampled datasets of normal development. A 

normal development trajectory during childhood and adolescence is shown in Figure 12. This 

figure is part of the supplementary material presented in Chapter 4 and showcases the 

application of a linear mixed-effects model that includes age, age2 and sex as predictors of total 

brain volume in subjects from the NIHPD database (Evans, 2006). 

Alternative morphometric techniques have not been as common as volumetric methods in 

the study of normal neurodevelopment. Some of the additional techniques that have been used 

include tensor mapping (Thompson et al., 2000), TBM (Hua et al., 2009), and cortical thickness 

(Sowell et al., 2004). 

Figure 12. Plot showing an example of normal growth trajectories for males and females during childhood 

and adolescence for total brain volume. Note how growth reaches a peak and then begins to decline 

slowly. 
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7 Summary of Objectives 

The application of MRI tools during childhood presents a series of challenges, as has been 

described in the present chapter. In order to deal with these complications, the overall objective 

of this thesis is to describe the development and application of MRI analyses suited for use 

during childhood. Building on several of the morphometric methods discussed in this chapter, 

and tailoring many MR image processing tools to children, in Chapter 3 we describe a 

methodology to analyse longitudinal data from early childhood using TBM and its application 

to Autism Spectrum Disorder. In Chapter 4, we present a methodology that allows the study of 

cross-sectional data during childhood and adolescence when the study design lacks the 

acquisition of enough, well-matched controls. The methodology presented in Chapter 4 can be 

used both in volumetric studies, as well as voxelwise using TBM, and was applied to the study 

of 16p11.2 copy number variants. Chapter 5 presents an extension of the methodology 

presented in Chapter 4, allowing the study of volumetric changes during childhood in multi-

site longitudinal studies acquired at either 1.5 T and 3 T. The methodology presented in Chapter 

5 can be applied even when a subject is scanned for the first timepoints at 1.5 T and subsequent 

timepoints are acquired at 3 T, and was applied to the study of pediatric multiple sclerosis. 
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Chapter 3  

A Voxel-wise Assessment of Growth Abnormalities in 

Infants with Autism Spectrum Disorder 

Preface 

In this chapter, we present a methodology to apply TBM in a longitudinal database during 

early childhood (6-24 months of age). Any morphometric technique applied during this age 

range faces several complications, primarily due to the very fast growth rate that happens 

overall in the brain during the first 24 months of life, as well as the stark changes in contrast 

that occur due to myelination in the first 12 months. We propose the use of age-appropriate 

templates at 3 different timepoints (6, 12 and 24 months) as the target for non-linear registration 

for scans at the corresponding age as well as using both the T1 and the T2-weighted images 

simultaneously to perform the registration, therefore taking advantage of the tissue contrast 

present in each modality and time difference in the occurrence of contrast changes between 

modalities due to myelination. Furthermore, we use linear mixed-effects to model voxel-wise 

growth trajectories across the age range. 

We applied this method to a study of young children at high risk of ASD. In this study, 

children with older siblings already diagnosed with ASD were recruited at an early age and 

were scanned longitudinally throughout their development and assessed at 2 years of age to see 

if they fit the diagnosis of ASD. ASD is a very heterogeneous neurodevelopmental disorder 

that has been previously associated with increased head size and overall brain volume in young 

children, as well as several regional abnormalities in older children and adults, with very little 

information regarding the neurodevelopment during early childhood, particularly since the 

ASD is typically diagnosed at an older age (>3y). Our results show significant differences in 

the growth trajectories of several regions across the brain and present a new insight into the 

complex neurodevelopmental abnormalities found in ASD. 
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Abstract 

Autism Spectrum Disorder (ASD) is a complex, heterogeneous developmental disorder 

typically diagnosed clinically around 4 years of age. The development of biomarkers to help in 

earlier diagnosis could facilitate earlier intervention and may lead to better outcomes, as well 

as providing information to help better understand the underlying mechanisms of ASD. In this 

study, Magnetic Resonance Imaging scans of infants from the Infant Brain Imaging Study 

(IBIS) at 6, 12 and 24 months of age were included in a morphological analysis, fitting a mixed-

effects model to Tensor Based Morphometry (TBM) results to obtain voxel-wise growth 

trajectories.  Subjects were grouped by familial risk and clinical diagnosis at 2 years of age. 

After correction for multiple comparisons, several regions, including the posterior cingulate 

gyrus, the cingulum, the fusiform gyrus, and the precentral gyrus, showed a significant effect 

for the interaction of group and age associated with ASD, either as an increased or a decreased 

growth rate of the cerebrum. In general, our results showed increase growth rate within white 

matter with decreased growth rate found mostly in grey matter. These results detail, at the voxel 

level, abnormalities in brain growth trajectories in ASD, in the first years of life, previously 

reported in terms of overall brain volume, surface area, or head circumference. 
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1 Introduction 

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder that is 

typically diagnosed around 4 years of age (Centers for Disease Control and Prevention (CDC), 

2014). However, there continues to be no clear understanding of its underlying causes 

(Buxbaum and Hof, 2013). Early behavioural intervention in children with ASD has been 

shown to improve their acquisition of language and play skills (Ben-Itzchak and Zachor, 2007; 

Schreibman et al., 2015; Shire et al., 2017), as well as their overall social behaviour (Dawson 

et al., 2012, 2010). Thus, our goal is to closely characterize morphological differences of the 

brain during early neurodevelopment to further our understanding of the underlying 

mechanisms of ASD that may suggest additional specific interventions. In the future, these may 

be used as biomarkers that can help in the early diagnosis of ASD allowing for earlier new and 

established interventions. 

ASD is formally characterized by impaired social communication and interaction, as well 

as repetitive patterns of behavior, and restricted interests and activities. The syndrome 

encompasses early infantile autism, childhood autism, Kanner’s autism, high-functioning 

autism, atypical autism, childhood disintegrative disorder and Asperger’s syndrome (American 

Psychiatric Association, 2013). This heterogeneity is a challenge in the study of ASD.  

Several studies established replicable morphological differences in ASD. Some of the 

most consistent and prominent findings include larger head circumferences (Bailey et al., 1993; 

Davidovitch et al., 1996; Elder et al., 2008; Lainhart et al., 1997; Stevenson et al., 1997; 

Woodhouse et al., 1996) and brain volumes (Carper et al., 2002; Hazlett et al., 2005; Piven et 

al., 1996, 1995; Redcay and Courchesne, 2005), as well as differences in the growth trajectories 

of the cerebrum during childhood (Courchesne et al., 2001; Hazlett et al., 2005). 

A number of regions have been found to have abnormalities in ASD, including the corpus 

callosum (Frazier et al., 2012; Hardan et al., 2009, 2000; Manes et al., 1999; Piven et al., 1997; 

Wolff et al., 2015), the amygdala and hippocampus (Aylward et al., 1999; Barnea-Goraly et al., 

2014; Schumann et al., 2009), and the cerebellum (Bauman and Kemper, 1985; Carper and 

Courchesne, 2000; D’Mello et al., 2015; Stoodley, 2014; Wang et al., 2014). The nature of 

these abnormalities, however, is sometimes conflicting across different studies. For example, 

the corpus callosum has been variously reported as reduced in surface area or volume in the 

anterior region only (Hardan et al., 2000), posterior  region only (Piven et al., 1997) or in its 

whole volume (Boger-Megiddo et al., 2006; Hardan et al., 2009). 
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These apparently conflicting results may be explained in part by cohort age differences 

between studies, highlighting the importance of longitudinal developmental studies starting at 

a very young age. In the case of children between 6 and 24 months of age, a recent study found 

the corpus callosum to be enlarged (Wolff et al., 2015), in contrast with most studies reporting 

decreased corpus callosum size in elementary age children and older subjects with ASD (Frazier 

et al., 2012; Hardan et al., 2009). In addition, several studies have consistently reported an early 

increase in brain growth rate during childhood (Courchesne et al., 2011; Hazlett et al., 2012b, 

2011; Piven et al., 1996; Redcay and Courchesne, 2005), however, there are few studies that 

have focused on subjects younger than 24 months of age, where early diagnosis may be 

difficult. Some of the key structural findings that have been reported in children with ASD 

during early childhood include cortical surface hyperexpansion between 6 and 12 months of 

age in the middle occipital gyrus (bilaterally), right cuneus, right lingual gyrus, the left inferior 

temporal gyrus, and right middle frontal gyrus, followed by overall brain overgrowth between 

12 and 24 months of age (Hazlett et al., 2017). Additional findings in this age range include 

abnormal white matter tract development (Wolff et al., 2012), distinct behavioral and cognitive 

developmental trajectories (IBIS network et al., 2015), and correlation between restrictive and 

repetitive behavior and alterations in brain functional connectivity (McKinnon et al., 2019). 

Longitudinal studies using anatomical magnetic resonance imaging (MRI) can help to 

understand the structural changes that occur during early childhood (Hazlett et al., 2012b, 

2005). In particular, morphometric techniques such as Voxel Based Morphometry (VBM) have 

been used to look at changes in the volume of white and grey matter in subjects with ASD 

(Chung et al., 2004; McAlonan et al., 2005). However, VBM may not be the best tool in the 

analysis of MRI data from early childhood, since it requires the accurate segmentation of grey 

matter (GM), white matter (WM) and cerebrospinal fluid (CSF) (Ashburner and Friston, 2000), 

a particularly difficult task due to the evolving myelination process occurring during the first 

year of life (Barkovich et al., 1988). 

As an alternative, Tensor Based Morphometry (TBM), a technique using the deformation 

fields resulting from a non-linear registration to an appropriate template, can be used to observe 

morphological changes in individual subjects in a longitudinal study, and compare these 

changes between groups (Ashburner and Friston, 2004; Lau et al., 2008). Like VBM, one of 

the advantages of TBM is that there is no restriction to a priori regions of interest, but rather a 

voxel-by-voxel statistical analysis that yields the location of anatomical differences, including 

differences within a region, even if there are no evident full-brain or regional size differences 

(Ashburner and Friston, 2004; Boddaert et al., 2004; Chung et al., 2004). Longitudinal TBM 
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studies have not been performed to analyze potential neurodevelopmental differences in early 

childhood (before 2 years of age) in ASD. 

In the present study, a longitudinal analysis using TBM in the whole brain was performed 

on subjects between 6 and 24 months of age, looking both at subjects at high familial risk 

(defined below) of ASD with a positive diagnosis at 24 months, high-risk with a negative 

diagnosis, and low-risk, typically developing controls. In order to tackle some of the 

complications of MRI studies in early childhood (e.g. reduced WM and GM contrast), we 

propose the use of both T1 and T2-weighted images simultaneously for the optimization of non-

linear registration. Contrast changes due to myelination occur at different times in T1 and T2-

weighted images (Barkovich et al., 1988), thus providing complimentary information for robust 

registration. Additionally, we incorporate the use of unbiased, age-appropriate templates as our 

registration targets. Our findings demonstrate significant differences in the growth trajectories 

of multiple regions in the brain between the high-risk ASD-positive group and both the high 

risk ASD-negative and low-risk controls, with some regions showing a faster growth rate and 

others showing a slower growth rate. 

2 Methodology 

2.1 Participants 

 All participants were part of the Infant Brain Imaging Study (IBIS), a collaborative 

longitudinal study of infants at high and low familial risk of developing ASD based on their 

family history. It has been shown that siblings of children with ASD are at a higher risk of 

developing ASD themselves, with a reported risk as high as 18.7% (August et al., 1981; Girault 

et al., 2020; Ozonoff et al., 2011).  Specifically, in this study infants were defined at high risk 

(HR) if they have an older sibling with an ASD diagnosis confirmed by the Social 

Communication Questionnaire (SCQ) (Rutter et al., 2003b) and the Autism Diagnostic 

Interview-Revised (ADI-R) (Rutter et al., 2003a). Infants were included in the low risk ASD-

negative group (LR-) if they have at least one typically developing older sibling confirmed with 

the SCQ and no first-degree relatives with a developmental disability and also do not qualify 

for a clinical best estimate diagnosis of ASD at 24 months. 

Recruitment, screening and assessment of the participants were performed at each of four 

sites: University of North Carolina, University of Washington, Children’s Hospital of 

Philadelphia, and Washington University in St. Louis. Participants were excluded from the 

study if they fulfilled any of the following general criteria: evidence of a specific genetic 
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condition or syndrome, any significant medical condition potentially affecting 

neurodevelopment, significant vision or hearing impairments, low weight at birth (<2000 g), 

birth prior to 36 gestational weeks, significant perinatal adversity, pre-natal exposure to 

neurotoxins, any contraindication for MRI, predominant home language other than English, 

adopted children or half siblings, first-degree relative with psychosis, schizophrenia, bipolar 

disorder, or if they were twins. 

All study procedures required the informed, written consent from the parents or legal 

guardians of all participants, as well as approval by institutional review at each site. All infants  

enrolled in the study were seen multiple times at 6, 12, and/or 24 months of age for MRI 

scanning and developmental and behavioural evaluation. 

 

Table 2. Demographic information of participants. 

 High-risk 
ASD-

positive 

High-risk 
ASD-

negative 

Low-risk 
ASD-

negative 

 p-value 

Total 
Participants 

56 285 162   

6 m scans 40 202 137   
12 m scans 35 222 116   
24 m scans 40 203 93   

Participants with 
1 time-point 

18 53 39   

Participants with 
2 time-points 

17 122 62   

Participants with 
3 time-points 

21 110 61   

Age (6 m scan)1 6.6 (0.6) 6.7 (0.7) 6.8 (0.7)  0.71 
Age (12 m 

scan)1 
12.8 (0.5) 12.8 (0.7) 12.9 (0.8)  0.76 

Age (24 m 
scan)1 

25 (0.7) 25 (0.9) 25.1 (1.1)  0.74 

ADOS severity1 6.1 (1.8) 1.5 (1.0) 1.3 (0.8)  <0.001 
Sex (% male)1 85.6 58.3 59.3  <0.001 

 

Using the complete diagnostic assessment at 24 months of age, the HR group was split 

into high risk ASD-positive (HR+) and high risk ASD-negative (HR-) subgroups.  The HR+ 

group was defined by familial risk and diagnostic outcome based on clinical best estimate made 

by experienced, licensed clinicians using the Diagnostic and Statistical Manual of Mental 

Disorders, 4th Edition, Text Revision (DSM-IV-TR) (American Psychiatric Association and 

American Psychiatric Association, 2000) checklist and supported by all available behavioural 

assessment data including the Autism Diagnostic Observation Schedule (ADOS) (Lord et al., 
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2000) and the Autism Diagnostic Interview, Revised (ADI-R) (Rutter et al., 2003a). The 

remaining HR subjects were included into the HR- group.  For this study, we compared MRI 

scans from LR-, HR-, and HR+ infants that passed quality control. These criteria yielded 503 

total participants (1,088 total scans) that included 162 LR- (346 scans), 285 HR- (627 scans) 

and 56 HR+ (115 scans). From these participants, 40% provided data for at least two time 

points, with 38.2% providing three time points. Demographic data for study participants as 

detailed in Table 2. 

2.2 Image Acquisition 

The acquisition of all MRI scans was carried out at the four sites identified above during 

natural sleep, on identical 3T Siemens TIM Trio scanners with 12-channel head coils using the 

following protocols: sagittal T1 MPRAGE (repetition time=2400 ms, echo time=3.16 ms, slice 

thickness=1 mm, field of view=256 mm, 256 x 160 matrix), 3D T2 fast spin echo (repetition 

time=3200 ms, echo time=499 ms, slice thickness=1 mm, field of view=256 mm, 256 x 160 

matrix). Quality assurance was achieved using local Lego phantoms and travelling human 

phantoms over time to characterize intra- and inter-site reliability (Gouttard et al., 2008).  

Quality control for each scan included automatic verification of acquisition protocol parameters 

and visual assessment for potential artifacts due to subject motion, blood flow, or hardware 

issues.  

2.3 Longitudinal Tensor-based Morphometry 

2.3.1 Preprocessing 

All the scans were corrected for geometric distortion using data collected from the Lego 

and travelling human phantoms (Fonov et al., 2010). Intensity nonuniformity artifacts were 

corrected using the nonparametric nonuniform intensity normalization (N3) algorithm (Sled et 

al., 1998), followed by a histogram-based intensity normalization between 0.0 and 100.0, where 

the histogram is separated into deciles and the best linear mapping of the histograms is 

calculated. 

2.3.2 Age-appropriate average templates 

T1 and T2-weighted unbiased average templates were created for each time-point in the 

longitudinal analysis (6, 12 and 24 months) according to the methods proposed by Fonov et al. 

(Fonov et al., 2011). All available scans from the IBIS database were used in the creation of the 

templates, including children from both the high risk and low risk cohorts. As such, each 

template is made from subjects that are approximately within 1 month of the template age.  It 
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is important to note that while there is a large contrast change over the period from 6 to 24 

months, the contrast does not change significantly between 5 and 6 months or between 12 and 

13 months for example, making it possible to use these templates as anchors in our registration 

process. 

2.3.3 Registration 

Each scan was linearly registered to the corresponding unbiased age-appropriate 

templates followed by a non-linear registration using the symmetric image normalization (SyN) 

method (Avants et al., 2008), a symmetric diffeomorphic image registration algorithm. All non-

linear registrations were obtained by simultaneously optimizing the mutual information 

between the T1 and T2-weighted scans and their corresponding unbiased templates. 

In order to obtain the inter-template transformations, the 6 and 24 months templates were 

linearly registered to the 12 months template, followed by a non-linear registration procedure 

using the SyN method (Avants et al., 2008) and optimizing for T1 and T2-weighted images 

simultaneously. 

Finally, the non-linear deformation grids for each scan’s registration to an age-appropriate 

template were concatenated with the inter-template non-linear transformation, normalized and 

inverted, effectively yielding a voxel-by-voxel nonlinear mapping from the 12 months template 

reference space to the native space of each scan. A visual representation of this process is shown 

in Figure 13. By doing this, the individual differences of each subject to its age-appropriate 

template are conserved, while ensuring that all subjects at 6 and 24 months of age, respectively, 

undergo the same transformation from template to template. 

2.3.4 Jacobian determinant 

The natural logarithm of the Jacobian determinant of the deformation field was computed 

at every voxel and used as a surrogate of the local volume difference between each subject and 

the 12 m template. In general, a negative log-Jacobian determinant value represents shrinking 

from the template to the native space, a value of 0 indicates that there is no volume change in 

the voxel and a positive value indicates enlargement.  

2.3.5 Statistical Analysis 

Voxel-by-voxel tests of linear mixed-effects models were performed on the Jacobian 

determinant maps. These mixed-effects models are used to characterize the local growth 

trajectory of each voxel. Mixed-effects models are commonly used in longitudinal data analysis 

since they can deal with missing data while accounting for heterogeneity from different 

individuals by introducing subject-specific random effects (Cheng et al., 2010). 
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Forward selection was used, beginning with the testing of the simplest growth trajectory 

model and subsequently adding variables that show statistical significance. The fixed effects 

that were evaluated included the linear, quadratic and cubic age effects (age, age2, age3), 

acquisition site, the effect of sex and group (LR-, HR-, or HR+), as well as any interactions 

between them (e.g., age*sex). The age in days of each participant was used in the model. For 

the random effects, both a random intercept and random slope were tested to account for within-

subject dependencies, as well as a random intercept to account for potential inter-site 

differences. The mixed-effects models were compared using voxel-wise log-likelihood ratio 

tests, and the simpler model was chosen whenever it explained most of the variance. The 

selected model was applied to all voxels. 

The Jacobian determinant maps provide a voxel-wise measure of local relative volume 

with respect to the 12-month reference space (Ashburner and Friston, 2004). After performing 

the mixed-effects models testing using the previously mentioned effects, the final statistical 

model tested in the whole brain included fixed-effects for age (𝛽1), age2 (𝛽2),  group (𝛽3), the 

interaction between age and group (𝛽4), and sex (𝛽5), as well as a random effect for the intercept 

for each subject (𝛾0𝑖) and for acquisition site (𝛾0𝑠𝑖𝑡𝑒). Therefore, the model evaluated for each 

subject i at each voxel was: 

 

Figure 13. Visual representation of the registration process. For an exemplary 5.9 months old subject the 

Jacobian determinant would be the result of: |𝑱| = 𝑪𝒐𝒏𝒄𝒂𝒕(𝑻𝟔𝒎,𝒊𝑻𝟔−𝟏𝟐𝒎)−𝟏. 
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𝐽𝑖(𝑥) = 𝛾0𝑖+𝛾0𝑠𝑖𝑡𝑒 + 𝛽0 + 𝛽1 ∗ 𝑎𝑔𝑒 + 𝛽2 ∗ 𝑎𝑔𝑒2 +

𝛽3 ∗ 𝑔𝑟𝑜𝑢𝑝 + 𝛽4(𝑔𝑟𝑜𝑢𝑝 × 𝑎𝑔𝑒) + 𝛽5 ∗ 𝑠𝑒𝑥 + 𝐸 (16)
 

 

where 𝛽0 represents the intercept and E is the residual error in the model. 

The false discovery rate (FDR) procedure described by Genovese et al. (Genovese et al., 

2002) was used to control for multiple comparisons with an FDR of 5%. A single t-value 

threshold was determined for each resulting statistical map by taking into account the estimated 

degrees of freedom for a given statistical test and an FDR p-value obtained by pooling the 

uncorrected p-values across all effects and all voxels tested (Lau et al., 2008). All statistical 

analyses were performed using the R software package (www.r-project.org) in conjunction with 

the lme4 (Bates et al., 2015) and RMINC (Lerch et al., 2017) libraries. 

3 Results 

The results of the analysis identified voxels with significant changes in local volume that 

can be described by the parameters in the model. As such, a statistical map was obtained for 

each effect in the model, where each statistically significant voxel provides information about 

the local growth trajectory when the other effects are removed. Of particular interest to this 

study are the voxels found to be statistically significant for the interaction between age and 

group, since it signifies a region that is affected differently by age in each group and may be 

thus associated with a group-specific growth trajectory, indicating an increase or decrease in 

growth rate in the HR+ group compared to the HR- and LR- groups. The effect of group was 

not significant at any level at the centered age (6 months). 

We used the Neuromorphometics atlas (Neuromorphometrics Inc., 2013) to identify the 

anatomical regions of groups of voxels showing significantly different growth trajectories. 

These anatomical regions are summarized in Table 3. Representative slices showing the 

pairwise HR+ vs LR comparison thresholded t-values with an FDR of 5% of the age by risk 

group interaction are shown in Figure 14. The largest connected region of increased growth rate 

associated with the HR+ group includes the splenium of the corpus callosum, WM radiating 

from the splenium bilaterally, as well as the posterior cingulate gyrus bilaterally. Additional 

areas of increased growth rate include the cingulum bilaterally,  the right parahippocampal 

gyrus and entorhinal area, and the left temporal pole and cerebellum. Significant regions 

showing decreased growth rate associated with the HR+ group include the anterior portion of 

the caudate bilaterally, the left precuneus, middle occipital gyrus and lingual gyrus, and the 
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right fusiform gyrus, supplementary motor cortex, supramarginal gyrus and subgenual anterior 

cingulate cortex.  

Table 3.  Regions with significant differences in growth trajectories between HR+ and LR- groups. 

Region 
Peak 

 t-value 
Beta 

(at peak) 
Cluster Size 

Bilateral Posterior Cingulate Gyrus 
Splenium and Isthmus of the Corpus Callosum 

Bilateral White Matter 
5.3 0.0055 2131 

Right Cingulum 
Right White Matter 

4.4 0.0035 1587 

Right Fusiform Gyrus  
Right Inferior Temporal Gyrus 

-5.2 -0.0087 1242 

Right Supplementary Motor Cortex 
Right Superior Frontal Gyrus (Medial Segment) 

-4.8 -0.0067 964 

Left Cingulum 
Left White Matter 

4.3 0.0037 788 

Right Supramarginal Gyrus 
Right Parietal Operculum 

-5.0 -0.0123 773 

Left Precuneus -4.4 -0.0099 388 

Left Middle Occipital Gyrus 
Left White Matter 

-4.3 -0.0091 312 

Left Cerebellum 5.4 0.0067 302 

Right Parahippocampal Gyrus 
Right Entorhinal Area 

4.3 0.0033 244 

Subgenual Anterior Cingulate Cortex 
Right Accumbens 

-4.7 -0.0042 244 

Left Temporal Pole 
Left Superior Temporal Gyrus 

5.4 0.0049 233 

Left Posterior Orbital Gyrus 
Left White Matter 

4.3 0.0055 221 

Right Precentral Gyrus 4.6 0.0080 173 

Right Occipital Fusiform Gyrus -5.0 -0.0076 151 

Left Temporal Pole 5.2 0.0056 147 

Left Caudate -4.4 -0.0042 146 

Right Caudate -4.1 -0.0035 117 

Right Precentral Gyrus 4.8 0.0059 115 

Right Fusiform Gyrus 4.3 0.0049 95 

Left Lingual Gyrus -4.2 -0.0060 72 

Left Precentral Gyrus 5.2 0.0043 68 

Right Precentral Gyrus 4.3 0.0062 60 

Right Medial Orbital Gyrus 4.2 0.0031 54 

Right Middle Frontal Gyrus  4.3 0.0085 50 

Right Middle Temporal Gyrus 4.4 0.0047 44 

Right Temporal Pole 4.0 0.0038 39 

Left Lateral Orbital Gyrus -4.1 -0.0039 35 
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To evaluate the magnitude and time-course of these differences, Figure 15 shows 

exemplar voxel-wise growth trajectories demonstrating distinct increased local growth rate in 

the HR+ group in 6 different regions distributed across the brain. These regions include the left 

temporal pole, right posterior cingulate gyrus, left posterior cingulate gyrus, left precentral 

gyrus, right precentral gyrus and the right cingulum. Additionally, Figure 16 shows trajectories 

Figure 14. Statistical maps showing regions with significant differences in growth rate given by the age 

andgroup interaction (HR+ vs LR-). All colored regions are statistically significant for pooled FDR 

(q=0.05). 
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with decreased local growth rate in the HR+ group in 4 different regions. These regions include 

the right fusiform gyrus, left anterior tip of the caudate, left precuneus and the right subgenual 

anterior cingulate cortex. 

 

Figure 15. Voxelwise growth trajectories with 95% confidence intervals for selected significant regions 

showing increased growth rate in the HR+ group when compared to the HR- and LR- groups. Voxels 

were selected by looking at the peak t-values of both the HR+ vs HR- and HR+ vs LR- comparisons. 
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4 Discussion  

 In this longitudinal study, we found a pattern of significant differences in growth in the 

HR+ group when compared with the HR- and LR- controls (see Figure 14).  Several regions 

across the brain show abnormal growth patterns in the HR+ group, either as an increased 

(Figure 15) or a decreased (Figure 16) growth rate. In general, the regions found to have 

decreased growth rate are found in GM, while regions with increased growth rate are mostly 

found in WM. Overall, regions found to have increased growth outnumber the regions with 

decreased growth, this effect could be tied to the well documented general brain overgrowth in 

children with ASD. Furthermore, the predominance of increased growth rate in WM is 

consistent with previous studies showing volume increases across WM in ASD (Herbert et al., 

Figure 16. Voxelwise growth trajectories with 95% confidence intervals for selected significant regions 

showing decreased growth rate in the HR+ group when compared to the HR- and LR- groups. Voxels 

were selected by looking at the peak t-values of both the HR+ vs HR- and HR+ vs LR- comparisons. 
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2004). Additionally, the differences between groups found here are dependent on age, with the 

growth trajectories diverging with aging (see Figures 15 and 16).  

Our results are in agreement with previous studies of ASD within the same age range, 

showing no significant volumetric differences at 6 months of age (Hazlett et al., 2012a), but 

rather distinct growth trajectories leading to overgrowth that begin to diverge later in life, 

between 12 and 24 months of age, as shown in total brain volume changes by Hazlett et al. 

(Hazlett et al., 2017). In their more recent work, Hazlett et al. (Hazlett et al., 2017) developed 

deep-learning algorithm using cross-sectional features based on surface area information of 6 

and12-month old individuals to predict the diagnosis of ASD in individual high-risk children 

at 24 months with a positive predictive value of 81% and a sensitivity of 88%. Interestingly, 

40% of the anatomical regions used in their deep learning framework show significant 

differences in the longitudinal growth trajectories estimated with the data-driven TBM 

methodology used here. Some of the more important trajectory differences include the medial 

portion of the right superior frontal gyrus, the left lingual gyrus, and the left precuneus. 

In the case of the regions with increased growth found in the cerebrum, the splenium of 

the corpus callosum has been related with language production in normally developing children 

between 6 and 24 months of age (Swanson et al., 2015), and therefore abnormalities in this 

region might be associated with deficits in communication, one of the core symptoms in ASD. 

Findings in the corpus callosum are of particular importance when considering that the axons 

that form the corpus callosum are predominantly involved in long-distance connections, and 

previous research has shown long-range functional and anatomical underconnectivity (Horwitz 

et al., 1988; Just et al., 2012; Kana et al., 2009). The posterior cingulate gyrus has been 

previously implicated in social impairments observed in ASD, particularly the self and other 

reflection (Chiu et al., 2008; Kennedy and Courchesne, 2008). The cingulum bundle has an 

important role in the connectivity required for social cognition (Amodio and Frith, 2006) as 

well as emotional processing (Bush et al., 2000), and has been previously reported to show 

abnormal WM integrity in ASD as early as 2 to 3 years of age (Weinstein et al., 2011; Xiao et 

al., 2014). Motor impairments present in ASD have been previously associated with 

abnormalities in the precentral gyrus, particularly as increases in WM volume in children 

between 8 and 12 years of age (Mostofsky et al., 2007). 

The regions showing a decrease in growth rate are found mainly in GM and are in general 

smaller in magnitude and size than those showing an increased growth rate. The biggest cluster 

with decreased growth rate in ASD is found in the right fusiform gyrus and includes a part of 

the right inferior temporal gyrus. The right fusiform gyrus has been consistently reported to be 
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involved in face processing tasks (Allison et al., 1994; Puce et al., 1996), and has been found 

to have increased volume in adolescents and adults with ASD (Rojas et al., 2006; Waiter et al., 

2004). Alterations in the right fusiform gyrus have been shown to vary with age in adolescents 

and adults (Raznahan et al., 2010; Wallace et al., 2010), as such, the decreased growth rate at 

this early age might be tied to future normalization and overgrowth in later stages. A similar 

situation occurs with the right inferior temporal gyrus and the left precuneus, where increased 

volumes have been associated with ASD in adolescents and adults (Liu et al., 2017). The left 

precuneus and the left lingual gyrus have also been found to have decreased cortical thickness 

in older subjects with ASD (Pereira et al., 2018). Little is known about potential alterations 

during early childhood, thus highlighting the importance of looking for longitudinal changes in 

neurodevelopmental patterns across the different age ranges. In addition, we found a decreased 

growth rate in the subgenual anterior cingulate cortex. This region is implicated in the inhibition 

of the amygdala and emotion regulation (McDonald, 1998; Ray and Zald, 2012; Stevens et al., 

2011) and is known to play an important role in various mood disorders (Drevets et al., 2008). 

Furthermore, it has been recently associated with ASD in rat models (Wu et al., 2018) and in 

older children and adolescents (Velasquez et al., 2017). 

We found two potential conflicts of the present results with previous studies. First, a study 

by Wolff et al. (Wolff et al., 2015) examined the length, area and thickness of the corpus 

callosum in  subjects from the IBIS database in the same age range (6-24 m). They reported a 

significantly greater area and thickness of the normalized corpus callosum in the HR+ subjects 

at six months, decreasing to a non-significant difference at 24m. Our results show an increased 

growth rate in the splenium throughout the age range. There are several potential explanations 

for this apparent discrepancy. First, the metrics analyzed in both studies are different, the shape 

analysis described in Wolff et al. uses explicit shapes and measures thickness, length, and are. 

Our voxel-based deformations measure local changes which do not really capture "object-level" 

differences. Second, the normalization procedure is different. In Wolff et al., corpus callosum 

metrics were normalized for brain volume, sex, site, mother’s education and Mullen Early 

Learning. The TBM method here registers all data to an average 12-month template, and the 

Jacobian determinant is used to estimate voxel-by-voxel growth on a per-subject basis.  The 

Jacobian values are thus normalized to the size of the average 12-month old brain. Brain volume 

is accounted for in the TBM registration process, while sex and site are included in our mixed-

effects model. Finally, Wolff et al. look at group differences in the size of the corpus callosum 

at 6, 12, and 24 months, while the present study focuses on differences in the growth 

trajectories, particularly the growth rate as affected by the group and age interaction.  
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Additionally, we found small regions at the tip of the anterior caudate nuclei to have a 

decreased growth rate, with no significant difference in the body of the caudate nuclei. The 

caudate nuclei has been reported to have an increased growth rate and larger overall volumes 

in older children with ASD  (Langen et al., 2014; Qiu et al., 2016). One potential explanation 

for this discrepancy is that, as the caudate begins to enlarge, the small section adjacent to the 

ventricular horn is slightly compressed, causing our method to detect a decreased growth rate 

in a very small portion of the caudate, while in reality the pattern of overgrowth in the caudate 

volume is increasing but not yet significant. 

The limitations of the present study are partially seen by the previously mentioned 

conflicts. Due to the reliance of TBM on the non-linear registrations, small regions (e.g. the 

corpus callosum and the anterior tip of the caudate) can be affected by changes in the opposite 

direction in its neighbouring structures. Furthermore, the contrast between GM and WM in the 

images changes with age. These changes in contrast affect the quality of the non-linear 

registration, especially in the data acquired at around 6 months of age, where brain regions 

undergo contrast reversal, leaving no visible boundary between GM and WM. The registration 

algorithm might then simply interpolate these regions, with the Jacobian being the result of the 

choice and scale of interpolation rather than image texture changes. Our methodology is 

designed to mitigate this problem, mainly with the simultaneous use of T1 and T2-weighted 

images for registration. The WM and GM contrast due to myelination changes differently in T1 

and T2-weighted images and, by leveraging this time-shift between modalities, we provide 

additional information resulting in more accurate registrations at an early age. However, the 

myelination process and its effects on T1 and T2-weighted contrast are complex, and some 

regions may still have no clear boundaries or sufficient information for accurate registration. 

In conclusion, these results detail, at voxel level, growth abnormalities previously 

documented as abnormally increased head circumference and brain volume. These voxel level 

measures of growth abnormality indicate that the abnormal patterns of growth are more 

complex than has been inferred from the global patterns, with regions showing growth 

abnormalities in either direction. Further, many of these regions are involved in social 

information processing, emotion and language, all of which are known to be impaired in ASD.  

These results thus more tightly couple the brain overgrowth seen in ASD to the behavioural 

phenotype.  This may help uncover the underlying etiology and lead to more specific, targeted 

interventions. 
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Chapter 4  

Developmental Trajectories of Neuroanatomical 

Alterations Associated with the 16p11.2 Copy Number 

Variations 

Preface 

In this chapter, we present a normalization technique that allows the study of morphometric 

differences across childhood and adolescence (4 to 22 years of age). Pediatric neuroimaging 

studies typically struggle to recruit a large number of normally developing controls, sufficient 

to properly model the underlying normal neurodevelopmental processes. We propose the use 

of a normative database (the NIHPD database (Evans, 2006) ) to model the normal growth 

trajectories of brain volumes as well as in a voxel-wise fashion using TBM. We applied this 

method to a study of 16p11.2 copy number variants, a genetic disorder associated with several 

neurodevelopmental disorders, including autism spectrum disorder (ASD). 16p11.2 copy 

number variants can be present as a deletion or a duplication, and typically present opposing 

phenotypes.  

Our results show that brain volume abnormalities are already present at 4 years of age in 

both deletion and duplication groups and seem to remain stable throughout childhood and 

adolescence. 

Note to the reader: To facilitate reading, all supplementary figures and tables referenced in 

the present Chapter can be found in the Supplementary Material section at the end of this 

Chapter. 

This work has been published as: 

Cárdenas-de-la-Parra, A., Martin-Brevet, S., Moreau, C., Rodriguez-Herreros, B., Fonov, 

V.S., Maillard, A.M., Zürcher, N.R., Hadjikhani, N., Beckmann, J.S., Reymond, A., 

Draganski, B., 16p11.2 European Consortium, Jacquemont, S., Collins, D.L., 2019. 

Developmental trajectories of neuroanatomical alterations associated with the 16p11.2 Copy 

Number Variations. NeuroImage 203, 116155. 

https://doi.org/10.1016/j.neuroimage.2019.116155 
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Abstract 

Most of human genome is present in two copies (maternal and paternal). However, segments 

of the genome can be deleted or duplicated, and many of these genomic variations (known as 

Copy Number Variants) are associated with psychiatric disorders. 16p11.2 copy number 

variants (breakpoint 4-5) confer high risk for neurodevelopmental disorders and are associated 

with structural brain alterations of large effect-size. Methods used in previous studies were 

unable to investigate the onset of these alterations and whether they evolve with age. In this 

study, we aim at characterizing age-related effects of 16p11.2 copy number variants by 

analyzing a group with a broad age range including younger individuals. A large normative 

developmental dataset was used to accurately adjust for effects of age. We normalized volumes 

of segmented brain regions as well as volumes of each voxel defined by tensor-based 

morphometry. Results show that the total intracranial volumes, the global gray and white matter 

volumes are respectively higher and lower in deletion and duplication carriers compared to 

control subjects at 4.5 years of age. These differences remain stable through childhood, 

adolescence and adulthood until 23 years of age (range: 0.5 to 1.0 Z-score). Voxel-based results 

are consistent with previous findings in 16p11.2 copy number variant carriers, including 

increased volume in the calcarine cortex and insula in deletions, compared to controls, with an 

inverse effect in duplication carriers (1.0 Z-score). All large effect-size voxel-based differences 

are present at 4.5 years and seem to remain stable until the age of 23. Our results highlight the 

stability of a neuroimaging endophenotype over 2 decades during which neurodevelopmental 

symptoms evolve at a rapid pace. 
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1 Introduction 

Most of human genome is present in two copies (a maternal and paternal copy). However, 

large segments of the genome can be deleted or duplicated and are therefore present in one or 

three copies respectively. While these genomic variations (known as Copy Number Variants, 

CNVs) can often be harmless, many have also been associated with neurodevelopmental and 

psychiatric disorders. The 600kb 16p11.2 CNVs (chromosome 16, locus 11.2, breakpoints 

(BP) 4–5, 29.6-30.2 Mb-Hg19) are strongly associated with neurodevelopmental disorders 

(Weiss et al., 2008). Deletion and duplication carriers have a 10-fold increased risk of 

developing autism spectrum disorders (ASD) (Moreno-De-Luca et al., 2013), and duplication 

(but not deletion) carriers a 10-fold increased risk for schizophrenia (Marshall et al., 2017). 

Genetic variants associated with psychiatric disorders offer unique opportunity to study the 

effects of the same molecular mechanisms on brain structure and behavior across different 

neurodevelopmental periods. 

Deletion and duplications at the 16p11.2 locus have “mirror” effects on head circumference, 

increasing and decreasing respectively with differences becoming apparent before two years of 

age (D’Angelo et al., 2016). At the macroscopic level, total gray and white matter volumes 

correlate negatively with the number of genomic copies (Maillard et al., 2015; Qureshi et al., 

2014), with increased volume in deletion and volume loss in duplication carriers when 

compared to non-carriers. Previous studies in deletion carriers report regional structural 

differences in the insula, calcarine cortex and superior, middle, transverse temporal gyri, which 

are independent of head size alterations. Duplication carriers show differences in the insula, 

caudate and hippocampus (Martin-Brevet et al., 2018). These findings are observed 

independently of sex and ascertainment (ie. the presence or absence of a psychiatric diagnosis). 

Alterations are present in adolescents as well as in adults. In the absence of proper normative 

data we have been unable to accurately adjust for age effects. It is unknown when these 

alterations appear during brain development or whether they are modified across childhood and 

adolescence. 

Given that genes included in the 16p11.2 interval are expressed throughout early brain 

development (Lin et al., 2015), we hypothesized that the established pattern of brain alterations 

associated with 16p11.2 CNVs might appear during early childhood. We aimed to characterize 

brain growth in 16p11.2 CNVs carriers by comparing global and regional developmental 

trajectories to those of healthy children. Considering the fact that most of the brain measures 
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do not show linear changes across childhood and adolescence (Giedd et al., 1999), we assume 

that it is very difficult, if not impossible, to properly correct for age based on small control 

groups. Instead, large normative developmental datasets are required to infer these trajectories. 

We (Aubert-Broche et al., 2013) have previously developed a longitudinal image processing 

pipeline and Z-scoring method to adjust for age- and sex effects on brain growth trajectories 

using the NIH MRI study of normal brain development (NIHPD) (Evans and Brain 

Development Cooperative Group, 2006). This normalizing method extended to whole-brain 

voxel-level data, where all Jacobian determinants of a deformation field were used as a 

surrogate metric of relative local tissue volume. This approach has been successful in the study 

of pediatric-onset multiple sclerosis (Aubert-Broche et al., 2014). In the present study, we use 

similar methods to Z-score a cross-sectional 16p11.2 dataset (56 deletion carriers, 19 

duplication carriers, 105 control individuals, including data on 8 individuals not analyzed in 

previous studies) to identify global and voxel-based differences between groups. 

2 Material and methods 

2.1 Participants 

2.1.1 16p11.2 CNVs cohort 

Cross-sectional data was acquired in 2 different cohorts (the European -EU 16p11.2 

consortium and the Simons VIP -SVIP study in North America) of 180 individuals (Martin-

Brevet et al., 2018; The Simons VIP Consortium, 2012). In order to be able to normalize with 

NIHPD data, we only included participants between 4.5 to 23 years of age. This included 56 

16p11.2 BP4-5 deletion carriers (DEL) from American (n=42) and European (=14) cohorts; 19 

duplication carriers (DUP) from American (n=15) and European (n=4) cohorts); and 105 

controls (CTRL), from American (n=75) and European cohorts (n=30). Four controls, 3 

duplication and 1 deletion carriers were not included in our previous publication (Martin-Brevet 

et al., 2018). CNV carriers were either probands referred for genetic testing or relatives of 

probands. The controls were recruited among non-carriers first-degree relatives of CNV carriers 

(n=34) or volunteers from the general population who did not have a relative with a 

neurodevelopmental disorder (n=71). The study was approved by the institutional review 

boards of each consortium, and signed informed consents were obtained from the participants 

or their legal representatives. Demographics, age distribution and neuropsychiatric diagnoses 

are detailed in Table 4, Supplementary Figure 2, Supplementary Table 1. Because our analysis 
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covers a broad age range, there is increased risk of systematic age-dependent motion artefacts. 

We performed a thorough visual quality control check looking for evidence of motion artefacts. 

Table 4. Population characteristics of the 16p11.2 dataset 

 DEL CTRL DUP 

N 56 105 19 

Age (years) 

Mean (SD) 

range (min-max) 

11.26 (3.62)1 

6.33-22.33 

14.15 (4.24) 

4.67-22.92 

12.29 (4.87) 

5-20.33 

Sex (M/F) 29/27 67/38 13/6 

Scan parameter 

(Multi/Single echo 

acquisition) 

38/18 76/29 12/7 

NVIQ 

Mean (SD) 
87 (14)2 108 (12) 77 (19)2 

Ancestry 

African-American 

Asian 

White 

Mixed and Other 

 

0 

1 

50 

4 

 

12 

1 

35 

8 

 

0 

0 

15 

2 

1 Deletion carriers significantly younger than control individuals (t = -4.5272, p= 1.347e-05) 

2 Mean NVIQ is significantly lower in deletion and duplication carriers than control individuals 

(respectively t = -9.3194, p=1.0126e-14; t = -6.6931, p=4.18997e-06) 

DEL, deletion carriers; CTRL, control individuals; DUP, duplication carriers; N, sample size; SD, 

standard deviation; M, male; F, female; NVIQ, non-verbal intelligent quotient. Ancestry is unknown 

for 3 CNV carriers and 49 controls. 

2.1.2 General population – NIHPD cohort 

As normative reference data for brain growth, we used the multi-site longitudinal data from 

Objective 1 (i.e. initial time-point for enrolment from 4.5 and 18.5 years) of the publicly 

available NIHPD project (Evans and Brain Development Cooperative Group, 2006). The 

normative model (Aubert-Broche et al., 2011) used data from 339 children (179 females and 

160 males), scanned longitudinally at 2 or 3 time points, with approximately 24 months between 

scans and mean age at first scan of 11.0 years, for a total of 874 scans. Only subjects that passed 

quality control were included. Supplementary Figure 1 shows the age distribution of the data 

for the NIHPD cohort. 



 

 77 

2.2 MRI protocol 

The MRI data from the 16p11.2 individuals included T1-weighted (T1w) anatomical images 

acquired at 7 sites using different 3T scanners: Philips Achieva, Siemens Prisma Syngo and 

Siemens Tim Trio. The MRI protocol included a whole-brain, 3D T1w magnetization prepared 

rapid gradient echo sequence (MPRAGE) with 1-mm-thick sagittal slices. Three sites used 

multi-echo sequences for 126 participants (38 DEL, 12 DUP, 76 CTRL with 5 familial and 71 

unrelated CTRL), and 4 sites used single-echo sequences for 54 participants (18 DEL, 7 DUP 

and 29 familial CTRL). Details of the scanners and image acquisition sequences can be found 

in Supplementary Table 2. Extensive analyses on the potential effect of these scanning sites and 

protocols were performed in a previous study showing that none of the regions associated with 

the 16p11.2 deletion or duplication could be attributed to artifacts introduced by the multisite 

analyses (Martin-Brevet et al., 2018). 

Scans of the NIHPD controls were obtained at 6 study centers with 1.5 Tesla MRI scanners 

from Philips, General Electric or Siemens Medical Systems. The MRI protocol included a 

whole-brain, 3D T1w RF-spoiled gradient echo sequence (1-mm-thick sagittal partitions, TR 

22–25 msec, TE 10–11 msec, excitation pulse angle 30°, Field Of View 160–180 mm). Details 

on acquisition and participants were previously published (Evans and Brain Development 

Cooperative Group, 2006). 

2.3 Image processing 

The longitudinal automatic image processing pipeline, developed for NIHPD analysis 

(Aubert-Broche et al., 2013), was adapted to the scans from the 16p11.2 dataset as described 

below. The preprocessing steps applied to the native T1w images were (1) denoising, (2) 

intensity inhomogeneity correction using the N3 algorithm (Sled et al., 1998), and (3) intensity 

normalization by histogram matching to the ICBM152 template (Fonov et al., 2011). A 

hierarchical 9-parameter linear registration based on an intensity cross-correlation similarity 

measure was performed between the T1w images and the ICBM152 template to align the 

images with the stereotaxic population template (Collins et al., 1994). Brain extraction was 

achieved using the Brain Extraction based on nonlocal Segmentation Technique (BEaST) 

(Eskildsen et al., 2012), a multi-resolution, nonlocal patch-based segmentation technique. 

Subsequently, images were non-linearly registered using the Automated Nonlinear Image 

Matching and Anatomical Labelling (ANIMAL) algorithm (Collins et al., 1995), a hierarchical, 

multi-scale registration algorithm. Whole-brain, individual lobes, thalamus, putamen, caudate, 
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globus pallidus and ventricular volumes were calculated, with the right and left volumes 

combined for analysis. 

To investigate brain alterations beyond a priori specified anatomical regions of interest, we 

used Tensor Based Morphometry (TBM), which enables a whole-brain voxel-by-voxel 

statistical analysis while accounting for brain size. TBM uses the deformation fields resulting 

from a non-linear registration to an appropriate template to analyze group differences and 

quantify changes in morphology (Frackowiak, 2004; Lau et al., 2008). The non-linear 

deformation grids for each scan’s registration to the ICBM152 template were inverted, 

effectively yielding a voxel-by-voxel nonlinear mapping from the ICBM152 template reference 

space to the space of each linearly registered scan. A 3D Gaussian filter with FWHM of 10 mm 

was applied to the resulting inverted deformation grids. The Jacobian determinant of the 

deformation field was computed for every voxel, log-transformed and used as a surrogate of 

the local volume difference between each subject and the ICBM152 template. In general, a log-

transformed Jacobian determinant value less than 0 represents shrinking from the template to 

the native space, a value of 0 indicates that there is no volume change in the voxel and a value 

of more than 0 indicates enlargement with respect to the template. When Jacobian determinant 

measures are applied to normative datasets such as the NIHPD study (Aubert-Broche et al., 

2011; Frackowiak, 2004), it enables the estimation of voxel-wise trajectories of brain 

development. 

2.4 Data analyses 

2.4.1 Z-scoring for the main effect of age and gender for global and voxel-based volumes 

To compute Z-scores that normalize for the effect of growth and sex in a pediatric 

population, we modeled the effect of those 2 variables in the NIHPD normative dataset. Mixed-

effect models were used since it is appropriate to estimate growth in longitudinal studies that 

take repeated measures from the same individuals over time. It accounts for the within-

participant correlation and for varying numbers of measurements for each participant. 

As we previously described (Aubert-Broche et al., 2013), individual profiles suggest 

modeling brain growth as a quadratic function over time: we included both linear and quadratic 

effects of age in the fixed effects structure. Age was not divided into bins, but was considered 

as a continuous variable and was centered at 13 years - the mean age of NIHPD cohort. Linear 

effect of sex was also included in the fixed terms (Aubert-Broche et al., 2013).  

The mixed-effects model that best fits the normative data is: 

𝑉𝑜𝑙𝑖 = 𝛽0 + 𝛾0 + (𝛽1 + 𝛾1)(𝐴𝑔𝑒𝑖 − 13) + 𝛽2(𝐴𝑔𝑒𝑖 − 13)2 + 𝛽3𝑆𝑒𝑥𝑖 + 𝜀𝑖 (17) 
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where 

• Voli is the value of the response variable (global brain volume or voxel) for subject i, 

• Agei, Age2
i, Sexi are the fixed and random effect explanatory variables for subject i, 

• β0, 0 are the intercept for the fixed and random terms, 

• β1, β2, β3 are the fixed effects coefficients and are identical for all subjects, 

• 1 is a random effect coefficient, 

• i is the error in subject i. The errors for subject i are assumed to have mean zero and 

constant independent variance. 

Using the mean and the estimated standard deviation of the model we were able to compute 

Z-scores for the global volumes of the brain as well as for each voxel independently, for the 

16p11.2 and control participants using the following formula: z=(x-x̅)/s. x is the sample value 

(i.e. the volume or Jacobian of an individual subject), �̅� is the estimated mean from the Mixed 

Effects model of the NIHPD cohort, and s is an estimate of the standard deviation, calculated 

from the variance-covariance matrix of the fixed effects along with the residual variance of the 

random effects. Supplementary Figure 3 shows the resulting Mixed-Effects fit on Total Brain 

Volume for the NIHPD population. 

2.4.2 Correcting for scanning protocol between NIHPD normative data and 16p11.2 

case-control data 

After normalization of the 16p11.2 controls, we observed that certain regions required small 

additional corrections attributed to differences in scanning parameters between the NIHPD and 

the 16p11.2 data (e.g. 1.5 T vs 3T scans). We estimated a linear model that included Age and 

Intercept (i.e. bias and slope) for the Z-scored segmented volumes and the voxel-wise log-

transformed Jacobian determinants of the 16p11.2 control data. The parameters of this linear 

model were used to adjust the 16p11.2 control dataset in order to obtain a mean Z-score of 0 

for all ages. Supplementary Figure 4 shows a linear fit of the controls before and after 

normalization. The same adjustment was applied to the CNV carrier groups. This correction 

shows that there is a simple linear effect of the scanning protocol. This linear effect is the same 

between the NIHPD and 16p11.2 control data as well as between the NIHPD and 16p11.2 CNV 

carrier data. The intercepts and the slopes were, respectively -0.68 / -0.04 for the total brain 
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volume; -0.11 / -0.1 for the gray matter volume (GM); 0.42 / 0.05 for the white matter volume 

(WM) and -0.32 / -0.02 for the lateral ventricle (LV). Regarding voxel-based mean Z-scores, 

16p11.2 CTRL also show deviations from the baseline of NIHPD controls, in particular in the 

left putamen and the medial frontal cortex (Z-scores between -0.88 and 1.09) (Supplementary 

Figure 5.A). 

2.4.3 Analyzing the age-related effects of deletions and duplications on brain structure 

We used a linear model introducing genetic status as a covariate to investigate the effect of 

the DEL and DUP on normalized segmented regional and voxel-level adjusted Z-scores 

volumes. The following interaction terms were tested : age*sex and age*group. 

We extracted the p-values from the linear models. Results for the 4 global volumes are 

Bonferroni corrected for 8 simultaneous comparisons (4 × DEL vs CTRL and 4 × DUP vs 

CTRL). Results for the voxel-wise analysis are adjusted using Benjamini-Hochberg False 

Discovery Rate – FDR correction (q<0.05) (Benjamini and Hochberg, 1995). Regions with 

significant differences were anatomically labeled using the neuromorphometric atlas 

(http://www.neuromorphometrics.com). 

All analyses were conducted using R 3.4.0 (The R Project for Statistical Computing; 

http://www.R-project.org/). The mixed-effect models were built using the nlme package. 

3 Results 

Data was analyzed for 56 DEL, 19 DUP, 105 familial and unrelated CTRL with ages ranging 

from 4.5 to 23 years. The clinical phenotype description of the participants is provided in Table 

4. 

3.1 Developmental trajectory of total intracranial, global gray and white 

matter volumes for deletion and duplication carriers 

16p11.2 carriers present an inverse gene dosage effect for most of the global metrics. 

Deletion carriers have higher volume than controls for total brain (mean Z-score=1.165, p-

value<0.0001), gray (mean Z-score=0.414, p-value=0.00433) and white matter volumes (mean 

Z-score=0.693, p-value<0.0001) (Figure 17). Duplication carriers show the opposite effect, 

with lower total brain (mean Z-score=-1.17, p-value=0.0001), gray (mean Z-score=-0.631, p-

value=0.00272) and white matter volume (mean Z-score=-0.53, p-value=0.0018) compared to 

http://www.neuromorphometrics.com)/


 

 81 

controls. Duplication carriers have larger lateral ventricles, with mean Z-score of 1.629 (p-

value<0.0001).  

We do not observe any interaction between the effects of genetic groups and age nor between 

sex and age. These global brain differences are unchanged across the full age range in our 

dataset (Figure 17). 
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Figure 17.- Developmental trajectory of global brain metrics. Trajectory of the global brain metrics for 

the 3 genetic groups show an inverse gene dosage effect, the differences between groups are already 

present at 4.5 years and identical through the development until 23 years of age. Raw values of each 

metrics are corrected for age and protocol (i.e. single echo vs multi echo scans) through a linear model, 

then values from control individuals are centered to 0 for visualization purposes. For each of the genetic 

groups, fitted lines represent the predicted mean computed per age range of 2.4 months, polygons 

represent the confidence interval at each age, the points are normalized subject-level data-points. Mean 

(minimum/maximum of the confidence interval) are presented in the table. P-values are corrected with 

Bonferroni correction for 8 simultaneous comparisons (p<0.05). DEL: deletion carriers; CTRL: control 

individuals; DUP: duplication carriers. 



 

 83 

3.2 Developmental trajectory of regional voxel-based differences 

The TBM analysis identifies several brain regions associated with an inverse gene dosage 

effect: Deletion carriers have significantly higher Jacobian determinants than controls, whereas 

duplication have significantly lower values (i.e. DEL>CTRL>DUP) in the following regions: 

bilateral calcarine cortex, insula, left transverse temporal gyrus, planum temporale and parietal 

operculum. Reciprocal inverse gene dosage effects are also present in the frontal and occipital 

white matter (Supplemental Table 2, Figure 18). 

Differences predominantly or specifically associated with DEL include increased Jacobian 

determinants values in the cuneus, anterior cingulate, posterior orbital and inferior frontal gyri. 

Regions predominantly decreased in DEL compared to controls include the bilateral 

cerebellum, middle cingulate gyrus, pallidum, putamen, precentral and post-central gyri, 

fusiform gyrus, middle and inferior temporal gyri, supplementary motor cortex, gyrus rectus, 

left accumbens area and angular gyrus. The only region predominantly or specifically 

associated with DUP is the occipital fusiform gyrus with a decrease in volume compared to 

controls as well as the lateral ventricles that are increased in DUP. Additional regions with 

smaller significant clusters are described in Supplemental Table 2. 

We did not identify any effect of age for any of the clusters described above. Figure 19 shows 

this complete lack of age-related effects for the top 8 regional differences with the largest effect 

sizes. Whatever the age, the DEL have volume Z-scores of 0.7 and 1 for the anterior insula and 

the calcarine cortex respectively, and the DUP have volume Z-scores of -0.9 and -1.2 on the 

same structures. DEL have volume Z-scores of 0.9 and 0.7 for the posterior orbital and anterior 

cingulate gyri respectively; they have the most negative volume Z-scores: -1.6 and -1.1 for the 

cerebellar hemispheres and the fusiform gyrus. DUP have also high volume Z-scores for the 

lateral ventricle and inferior temporal gyrus, 1.6 and 0.9 respectively. 
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Figure 18. Effect of genetic status on brain structures for voxel-based analyses. Significant differences on 

Jacobian determinants highlight the inverse gene dosage effect at the regional voxel-based level on 

volumes between DEL>CTRL>DUP, as well as some specific volume differences between DEL>CTRL, 

CTRL>DUP and DEL<CTRL. A. DEL versus CTRL, B. DUP versus CTRL. Only regions with a FDR 

correction (q<0.05) are presented. Negative t-values represent, respectively, the contrasts DEL<CTRL 

and DUP<CTRL, positive t-values represent the contrasts DEL>CTRL and DUP>CTRL. DEL: deletion 

carriers; CTRL: control individuals; DUP: duplication carriers 
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Figure 19. Developmental trajectory from typical voxel showing a difference between genetic groups. 

Trajectory of the Jacobian determinants of 8 representative voxels from regions with significant 

differences between genetic groups. All of them are from the right hemisphere. Anterior insula and 

calcarine cortex have some voxels with significantly higher values in deletion and lower values in 

duplication than control individuals. Posterior orbital gyrus and anterior cingulate gyrus have 

significantly higher values in deletion carriers compared to controls; on the contrary cerebellum exterior 

and fusiform gyrus have significantly lower values in deletion carriers than controls. Lateral ventricle 

and inferior temporal gyrus have significantly higher values in duplication carriers than controls. All 

these differences are already present at 4.5 years and identical through the development until 23 years of 

age. Raw values of each voxel are corrected for age and number of echo (i.e. single echo vs multi echo 

scans) through a linear model, then values from control individuals are centered to 0 for visualization 

purposes. For each of the genetic groups, fitted lines represent the predicted mean computed per age 

range of 2.4 months, polygons represent the confidence interval at each age, the points are normalized 

subject-level data-points. Mean (minimum/maximum of the confidence interval) are presented in the 

table. DEL: deletion carriers; DUP: duplication carriers. P-values are corrected with an FDR correction, 

q<0.05. 
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4 Discussion 

The main goal of this study is to identify the onset and potential changes through childhood, 

adolescence, and adulthood of brain differences associated with 16p11.2 CNVs. Our study 

provides a thorough investigation of the age-related effects of 16p11.2 deletions and 

duplications on brain anatomy between the ages of 4.5 and 23 years. We do not observe any 

age-related effects on global and voxel-based volumes in deletions or duplication carriers. 

These results are in favor of early onset of brain changes that remain stable across childhood, 

adolescence and early adulthood. Differences related to 16p11.2 CNV carriers are already 

present at 5 years of age. 

Our method allows us to compute normalized values for neuroanatomical regions as well as 

for each individual voxel despite the fact that the normative data was acquired on a different 

scanner. Our results corroborate global and voxel-based effects described in our previous 

study: insula is affected in both CNVs in a mirror fashion, while calcarine cortex, temporal and 

precentral gyri are altered in deletion carriers. 

4.1 Continuous model of normative developmental trajectory 

The major contribution of our paper is the use of a model to normalize the non-linear effect 

of age during typical brain development (Giedd et al., 1999). This allows us to reliably study a 

sample of mutation carriers and controls spanning a broad age range. Papers studying 

neuroimaging alterations associated with neurodevelopmental disorders have mostly used 

narrow age bins because the study-specific control groups were too small (less than 100 

individuals) to reliably model the effect of age. We show that despite the fact that the NIHPD 

data has been collected with a 1.5T magnet, the model for the effect of age during typical brain 

development is robust and applies to data acquired on a 3T after a linear adjustment. However, 

integrating large normative datasets to correct for complex covariates such as age still requires 

an additional control group scanned with the same protocol as done here, to be able to match a 

particular study to the norm. 

4.2 Developmental trajectories in neurodevelopmental disorders and 

genetic risk factors 

Recently, a large cross-sectional neuroimaging study in idiopathic ASD (van Rooij et al., 

2018) identified differences in subcortical volumes that are stable across the entire age range 
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of the study from 2 to 64 years of age. The study also highlighted differences in cortical 

thickness between the ASD and control groups. The strongest group differences were observed 

during childhood and adolescence, with normalized or even reversed thickness results in 

adulthood. However, in the absence of longitudinal data, it is unknown whether the same 

mechanisms were underlying ASD symptoms in participants from these different age groups. 

Indeed, ASD diagnostic boundaries have changed tremendously during the past decade. In 

contrast, the interpretation of cross-sectional studies is easier in genetically defined groups 

since the inclusion criteria (presence of a specific mutation) does not vary across time, clinical 

sites or age of the participants. 

Longitudinal studies in idiopathic ASD showed that subcortical alterations and increased 

total and regional cortical surface area present at 2 years of age remain stable at the age of 4 

years (Hazlett et al., 2011). An increase in growth rate of cortical surface area occurs between 

6 and 12 months of age and remains stable between 12 and 24 months of age in high-risk infants 

who are later diagnosed with ASD compared to low-risk children (Hazlett et al., 2017). The 

longitudinal investigation of network efficiencies also showed that alterations in connectivity 

of the superior and middle temporal gyrus as well as the insula are present at 6 and 12 months 

of age (Lewis et al., 2017).  

Few developmental studies in carriers of large genetic risk factors for ASD or intellectual 

disability have been conducted. In Fragile X syndrome, larger brain volumes are stable between 

2 and 5 years of age (Hazlett et al., 2012b). Similar to observations in ASD, neuroimaging 

studies of 22q11.2 deletion carriers suggest that alterations in subcortical and surface area are 

stable from 5 to 65 years while a few cortical thickness measures show age-related differences 

(Sun et al., 2018). They are the greatest during preadolescence and seem to disappear during 

adulthood, although much larger studies are required to confirm this observation (Schaer et al., 

2009). 

The main limitations of the present study stem from the technical differences in acquisition, 

which include the aforementioned 1.5 T and 3 T fields used in the NIHPD and 16p11.2 datasets 

respectively. In addition, the 16p11.2 is a multi-center database, further increasing the 

variability in the scans. These acquisition differences can affect the quality of the non-linear 

registrations from which the Jacobians are calculated.  

The broad age range could have introduced systematic age-dependent motion artefacts 

leading to spurious findings. This is however unlikely due to the absence of any age-related 

findings in our analysis and the thorough quality check performed on the dataset. 
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Our power to observe age-related differences was constrained by sample size. We estimate 

that the smallest detectable change with power=0.80, and alpha=0.05 in the duplication carriers 

for whole brain is 0.16 Z-score per year, for grey matter 0.10/year and 0.09/year for white 

matter. For deletions, we could detect 0.12 Z-score per year for whole brain, 0.09/year for grey 

matter and 0.07/year for white matter. There is also uncertainty for the lower age range of our 

study. A larger sample of younger participants is required to further investigate the presence of 

these findings at 4 years of age. 

Results may not generalize to 16p11.2 CNV carriers with extreme obesity or severe ASD 

symptoms that were unable to complete the scanning session. Nevertheless, our cohort is highly 

representative of the Intelligence quotient and psychiatric symptoms observed in our broader 

sample of 16p11.2 CNV carriers (D’Angelo et al., 2016). 

Future directions to refine the normalization procedure, include normative data acquired 

with 3T longitudinal scans and investigations of other methods such as splines instead of linear 

mixed models (Mills et al., 2016). 

5 Conclusion 

Investigating individuals who carry the same genetic mutation is a powerful strategy to 

study alterations of brain growth trajectories associated with molecular mechanisms underlying 

neurodevelopmental disorders. Thanks to a continuous voxel-wise model of normative 

developmental trajectory, we show that 16p11.2 CNV carriers have brain alterations present 

already at 4.5 years, with comparable effect size from 5 to 20 years of age. The brain 

differences are reminiscent of MRI studies in several 16p11.2 deletion mice models which have 

identified alterations in the insula and striatum at 7 days, equivalent to a prenatal period in 

humans (Portmann et al., 2014). Data in neonates and toddlers will be required to advance our 

understanding on the onset of these alterations.  
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6 Supplementary Material 

Supplementary Table 1. Neuropsychiatric diagnoses. From the Diagnostic and Statistical Manual of 

Mental Disorders, DSM-5 (American Psychiatric Association, 2013). A total of 53 of 56 deletion carriers 

(95%) had at least one psychiatric diagnosis: 11 had one diagnosis and 42 had several diagnoses; 15 of 19 

duplication carriers (79%) had at least one psychiatric diagnosis: 1 had one diagnosis and 14 had several 

diagnoses; 12 of 34 familial control subjects (35%) had at least one psychiatric diagnosis: 7 had one 

diagnosis and 5 had two diagnoses. In both cohorts, unrelated control subjects without psychiatric 

diagnosis were recruited. 

 
DEL 

Familial 

CTRL 
DUP 

N 56 34 19 

Attention-deficit/hyperactivity disorder 12 6 5 

Intellectual Disabiliy  5 - 2 

Langage and communication disorders 14 2 2 

Phonological disorder 41 1 - 

Learning disorders 12 1 4 

Autistic Spectrum Disorder  9 1 3 

Developmental coordination disorder  16 - 5 

Enuresis and encopresis disorders 17 1 2 

Oppositional-defiant-disorder / Disruptive-behavior and other 

conduct disorders 

5 - 2 

Mood disorder 1 - 1 

Anxiety Disorders – social phobia 6 4 6 

Stereotypic Movement disorder 1 - - 

Tic disorder 2 1 1 

Borderline Intellectual Functioning 8 - 5 

Other disorders (stuttering, trichotillomania, sexual-abuse-of-

child) 

2 - 1 
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Supplementary Table 2. Image acquisition parameters for the 16p11.2 dataset. EU European cohort, 

SVIP Simons VIP cohort, ME-MPRAGE Multi-Echo Magnetization Prepared RApid Gradient Echo, 

MPRAGE Magnetization Prepared RApid Gradient Echo, TR Repetition Time, TE Echo Time. 

Cohort Scanner 
Echo 

sequences 
TR TE 

Flip 

angle 

Field 

Of 

View 

EU 

Magnetom 

TIM Trio  

(1 site) 

ME-MPRAGE 2530 ms 

TE1: 1.64 ms 

TE2: 3.5 ms  

TE3: 5.36 ms 

TE4 : 7.22 ms 

7° 256 

EU 

Magnetom 

Prisma 

Syngo 

(1 site) 

MPRAGE 2000 ms 2.39 ms 9° 256 

SVIP 

Magnetom 

TIM Trio 

(2 sites) 

ME-MPRAGE 2530 ms 1.64 ms 7° 256 

SVIP 

Philips 

Achieva 

(2 sites) 

MPRAGE 2300 ms 3 ms 9° 256 

SVIP 

Magnetom 

TIM Trio 

(1 site) 

MPRAGE 2300 ms 2.98 ms 9° 256 
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Supplementary Table 3. Coordinates of brain regions with significant differences between genetic groups 

in Jacobian determinant analyses. “Overlap” refers to the percentage of significant voxels within each 

brain region. When some brain regions have more than one cluster that overlaps with them, we reported 

the bigger one. Only regions with a False Discovery Rate FDR correction (q<0.05) and with cluster size 

>30 voxels are presented. (1) The developmental trajectory of a typical voxel for each of these regions is 

shown in Figure 19. 

A.      Deletion > Control Side Size 

(voxels) 

Overlap 

(%) 

Z Y X t-score 

CLUSTER 1 

Posterior orbital gyrus (1) 

 

Right 

Left 

200 

190 

62 

61 

-14 

-17 

21 

23 

40 

-31 

5.58 

4.52 

Inferior frontal gyrus orbital part Left 

Right 

73 

64 

49 

42 

-8 

-9 

25 

23 

-45 

41 

4.39 

5.04 

Frontal operculum Left 95 41 -1 27 -43 5.35 

Inferior frontal gyrus triangular part Left 150 35 1 29 -53 4.90 

Anterior cingulate gyrus (1) 

 

Right 

Left 

212 

142 

33 

21 

-4 

-1 

37 

41 

5 

-10 

4.44 

3.57 

Anterior insula (1) 

 

Left 

Right 

156 

148 

28 

27 

3 

-5 

25 

28 

-33 

29 

3.88 

4.47 

Temporal pole 

 

Left 

Right 

93 

61 

8 

5 

-26 

-22 

9 

9 

-37 

39 

4.80 

3.72 

CLUSTER 2 

Transverse temporal gyrus Right 

 

87 60 14 -29 43 7.77 

Parietal operculum 174 59 16 -33 41 8.27 

Posterior insula 87 31 15 -25 33 5.92 

Planum temporale 44 23 13 -33 41 8.17 

Posterior cingulate gyrus 134 22 5 -53 21 6.76 

Middle occipital gyrus 133 21 6 -81 36 4.76 

Calcarine cortex (1) 96 17 7 -68 25 8.75 

Lingual gyrus 164 14 3 -58 25 7.94 

Ventral DC 92 14 -14 -15 15 3.40 

Cuneus 69 11 13 -98 11 5.04 

Occipital pole 31 9 11 -103 14 2.82 

Central operculum 33 7 14 -19 43 3.88 

Precuneus 116 6 7 -60 25 8.16 

Lateral ventricle 75 6 6 -54 29 7.58 

Inferior occipital gyrus 47 6 4 -83 33 4.07 

Thalamus proper 41 3 1 -35 13 4.03 
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Supplementary Table 3 (continued) 

CLUSTER 3 

Calcarine cortex Left 260 45 5 -67 -25 7.44 

Superior occipital gyrus 194 43 30 -88 -12 4.15 

Cuneus 241 35 13 -63 -15 4.48 

Lingual gyrus 183 15 3 -57 -19 7.04 

Posterior cingulate gyrus 95 15 5 -51 -17 6.13 

Lateral ventricle 115 9 8 -53 -28 6.25 

Inferior occipital gyrus 68 9 3 -83 -33 4.36 

Precuneus 140 8 7 -58 -20 6.97 

Middle occipital gyrus 30 5 6 -84 -31 3.71 

Thalamus proper 35 3 4 -33 -11 3.80 

CLUSTER 4 

Transverse temporal gyrus Left 130 94 7 -21 -41 9.82 

Planum temporale 128 59 14 -33 -38 8.11 

Parietal operculum 162 59 18 -31 -38 8.35 

Posterior insula 99 35 8 -21 -35 7.74 

Superior temporal gyrus 124 13 9 -27 -71 4.19 

B.      Deletion < Control Side Size 

(voxels) 

Overlap 

(%) 

Z Y X t-score 

CLUSTER 1        

Pallidum Right 

Left 

190 

182 

95 

89 

4 

5 

-1 

-3 

23 

-24 

-7.12 

-8.07 

Middle cingulate gyrus Right 

Left 

543 

426 

81 

61 

42 

39 

9 

12 

1 

-3 

-5.12 

-5.30 

Putamen Right 

Left 

480 

454 

77 

73 

5 

7 

-1 

-3 

23 

-25 

-7.20 

-8.60 

Accumbens area Left 34 77 -7 11 -11 -6.04 

Cerebellum exterior (1) Right 

Left 

6247 

6113 

70 

69 

-53 

-54 

-61 

-59 

35 

-33 

-8.37 

-6.89 

Precentral gyrus Left 

Right 

924 

556 

56 

33 

61 

27 

-13 

-1 

-30 

55 

-5.06 

-4.36 

Fusiform gyrus (1) Right 

Left 

589 

224 

54 

20 

-26 

-21 

-45 

-50 

44 

-47 

-6.34 

-4.43 

Middle temporal gyrus Left 

Right 

1139 

243 

51 

12 

5 

-5 

-45 

-29 

-49 

50 

-6.05 

-3.72 

Angular gyrus Left 801 51 47 -65 -50 -5.20 
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Supplementary Table 3 (continued). 

Inferior temporal gyrus Left 

Right 

715 

465 

40 

25 

-17 

-19 

-51 

-43 

-51 

47 

-5.41 

-5.41 

Supplementary motor 

cortex 

Left 

Right 

258 

208 

36 

28 

45 

45 

11 

9 

-3 

5 

-4.50 

-4.20 

Postcentral gyrus Left 

Right 

434 

167 

32 

12 

31 

21 

-7 

-4 

-57 

57 

-4.03 

-3.70 

Caudate Right 

Left 

116 

77 

31 

21 

13 

-5 

10 

13 

17 

-11 

-5.36 

-5.52 

Parahippocampal gyrus Left 

Right 

90 

75 

30 

27 

-29 

-30 

-21 

-20 

-23 

27 

-4.82 

-3.66 

Thalamus proper Right 325 27 9 -15 9 -4.56 

Hippocampus Left 

Right 

121 

62 

25 

12 

-2 

-7 

-37 

-33 

-27 

33 

-4.20 

-3.41 

Central operculum Left 

Right 

121 

106 

24 

23 

3 

5 

7 

-1 

-43 

47 

-4.90 

-3.69 

Anterior insula Left 

Right 

134 

37 

24 

7 

4 

1 

5 

1 

-41 

45 

-4.90 

-3.65 

Inferior frontal gyrus 

opercular part Right 98 22 29 17 51 -4.61 

Superior temporal gyrus Left 

Right 

186 

176 

20 

20 

10 

-5 

-43 

-25 

-51 

49 

-5.18 

-3.92 

Lingual gyrus Right 

Left 

237 

208 

20 

17 

-17 

-15 

-90 

-90 

7 

-3 

-4.99 

-4.35 

Precentral gyrus medial 

segment Right 64 18 49 -21 3 -3.58 

Brain stem   387 14 -47 -41 -11 -5.78 

Temporal pole Right 136 11 -34 15 23 -3.62 

Supramarginal gyrus Left 146 11 50 -51 -47 -3.27 

Middle frontal gyrus Right 

Left 

240 

227 

8 

8 

31 

31 

20 

7 

49 

-35 

-5.23 

-4.36 

Ventral DC Left 31 5 -9 -25 -25 -3.77 

Superior frontal gyrus Left 84 4 59 -11 -27 -4.47 

CLUSTER 2 

Gyrus rectus Left 

Right 

182 

149 

55 

47 

-25 

-25 

45 

43 

-5 

1 

-4.68 

-4.25 

Medial orbital gyrus Left 102 17 -26 43 -9 -4.36 

CLUSTER 3 

Temporal pole Left 232 19 -37 19 -25 -4.34 
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Supplementary Table 3 (continued). 

CLUSTER 4 

Supramarginal gyrus Right 137 12 27 -32 70 -3.97 

CLUSTER 5 

Superior parietal lobule Left 153 10 66 -63 -13 -3.71 

CLUSTER 6 

Superior parietal lobule Right 69 5 60 -68 15 -3.22 

CLUSTER 7 

Superior frontal gyrus 

medial segment Right 41 4 39 49 2 -2.99 

C.   Duplication > Control Side Size 

(voxels) 

Overlap 

(%) 

Z Y X t-score 

CLUSTER 1        

Lateral ventricule (1) Left 

Right 

1038 

875 

77 

67 

14 

19 

-37 

-33 

-23 

23 

5.29 

5.36 

Caudate Right 

Left 

66 

66 

18 

18 

24 

9 

-13 

19 

17 

-13 

4.92 

3.98 

Thalamus Proper Left 

Right 

100 

70 

8 

6 

17 

19 

-23 

-17 

-14 

15 

4.43 

4.56 

CLUSTER 2        

Inferior temporal gyrus (1) Right 91 5 -24 -53 53 3.56 

CLUSTER 3        

Posterior cingulate gyrus Left 70 11 35 -35 -5 3.76 

CLUSTER 4        

Fusiform gyrus Left 41 4 -29 -27 -39 3.67 

D.   Duplication < Control Side Size 

(voxels) 

Overlap 

(%) 

Z Y X t-score 

CLUSTER 1        

Occipital fusiform gyrus Left 

Right 

267 

46 

60 

12 

-13 

-7 

-91 

-78 

-25 

31 

-4.45 

-4.05 

Calcarine cortex (1) Left 

Right 

260 

171 

45 

30 

5 

9 

-67 

-73 

-17 

17 

-3.93 

-3.94 

Inferior occipital gyrus Left 300 38 2 -85 -29 -4.79 

Occipital pole Left 45 13 3 -101 -11 -3.45 

Superior occipital gyrus Right 58 12 27 -78 28 -3.66 

Middle occipital gyurs Left 62 10 5 -85 -29 -4.72 

Cuneus Right 52 8 19 -71 20 -3.73 
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Supplementary Table 3 (continued). 

Lingual gyrus Right 

Left 

65 

43 

5 

3 

-7 

-2 

-90 

-65 

15 

-17 

-3.48 

-3.77 

Cerebellum exterior Left 219 2 -21 -81 -37 -3.84 

CLUSTER 2        

Anterior insula (1) 

Right 

 187 34 6 15 32 -4.4 

Putamen  123 20 3 9 29 -4.34 

CLUSTER 3        

Parietal operculum Left  147 53 25 -33 -45 -4.69 

Posterior insula  139 49 8 -19 -35 -5.63 

Transverse temporal gyrus  67 49 9 -23 -37 -5.36 

Planum temporale  49 23 23 -35 -49 -4.21 

Central operculum  37 7 21 -15 -37 -4.1 

CLUSTER 4        

Anterior insula Left 96 17 3 27 -29 -4.08 

Putamen  105 17 1 9 -29 -4.65 

CLUSTER 5        

Thalamus Proper Right 88 7 3 -30 15 -4.05 

Posterior cingulate gyrus Left 43 7 15 -43 0 -4.37 

CLUSTER 6        

Medial orbital gyrus Left 54 9 -19 11 -19 -4.62 

 

 

Supplementary Figure 1. Age distribution of the NIHPD cohort. 
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Supplementary Figure 2. Age distribution of the 16p11.2 cohort. 

Supplementary Figure 3. Mixed Effects fit of Total Brain Volume for NIHPD controls. Males are shown 

in red and females in blue. Individual data points are shown, with each acquisition site represented by a 

different marker. 
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Supplementary Figure 4. Normalization procedure on 16p11.2 controls. The top plot shows a 

simple linear model (age+sex) fit to the original data. The bottom plot shows the results after 

normalization, where neither sex nor age terms are significantly different than 0. Males are 

shown in red and females are shown in blue. 
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Supplementary Figure 5. Mean Z-scores voxel-based per genetic group. Results of the mean Z-scores per 

genetic groups, on the Jacobian determinants voxel-by-voxel. A. Mean Z-scores for the CTRL; B. Mean 

Z-scores for the DEL; C. Mean Z-scores for the DUP. 16p11.2 CTRL show similar profile than the 

baseline of NIHPD controls, with only some deviations in the left putamen and the medial frontal cortex, 

whereas DEL and DUP show extensive clusters different from NIHPD controls. DEL, deletion carriers; 

CTRL, control individuals; DUP, duplication carriers. 
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Chapter 5  

Methodology for Normalization of Serial 1.5 and 3 Tesla 

Magnetic Resonance Imaging Scans and its Application in 

Pediatric Multiple Sclerosis 

Preface 

In this chapter, we extend the previous work to design and validate a normalization 

technique for more complex, longitudinal, multi-center studies, where data can be acquired at 

1.5 or 3 T. Furthermore, an individual subject may have their first scans acquired at 1.5 T and 

subsequent scans at 3 T. During longitudinal studies that span a wide age-range, it is common 

that scanners within a site are updated and even upgraded or replaced (e.g. from a 1.5 to a 3 T 

scanner). Such equipment changes can confound the analysis of longitudinal data – what 

detected changes are due to the scanner change, and what changes are due to the biology? We 

propose the use of an optimized longitudinal pipeline based on previous work by Aubert-

Broche et al. (2013). Our novel contribution is to account for MRI acquisition at 1.5 or 3 T 

during pre-processing, while still preserving the longitudinal connection between the scans of 

individual subjects. In addition, we extend the previous normalization technique by 

incorporating a second normative database (the Philadelphia Neurodevelopmental cohort 

(Satterthwaite et al., 2014)) acquired at 3 T, to complement the NIHPD database acquired at 

1.5 T. By doing this, we attempt to account for field intensity differences within our normal 

growth trajectory modelling. We applied this technique to a longitudinal, multi-site, study of 

pediatric onset multiple sclerosis (MS).  

Our results show a lack of age expected growth associated with pediatric onset MS in the 

overall brain volume, thalamus, putamen, and globus pallidus.  

This work has been submitted to NeuroImage: Clinical as: Cárdenas-de-la-Parra, A., Fonov, 

V.S., Yeh, E.A., Bar-Or, A, Marrie, R.A., Arnold, D.L., O’Mahony, J., Banwell, B., Collins, 

D.L (2020). Methodology for Normalization of Serial 1.5 and 3 Tesla Magnetic Resonance 

Imaging Scans and its Application in Pediatric Multiple Sclerosis. NICL-S-20-00557 
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Abstract 

Pediatric neuroimaging studies need to carefully account for normal neurodevelopment, 

which includes ongoing changes in size, shape, and maturation of the brain, which occurs 

differentially in males and females. With increasing availability of stronger field magnets and 

retirement of 1.5 T scanners, several established pediatric neuroimaging cohorts face the 

challenge of harmonization of archived data with new images acquired at 3 T. We propose a 

morphometric normalization technique that uses two large longitudinal normative databases, 

one acquired at 1.5 T and the other at 3.0 T, to establish growth trajectories for the volume of 

the brain and several brain regions in typically-developing boys and girls. Our methodology 

effectively accounts for changes due to age, sex, and acquisition field strength. To determine 

whether our technique was applicable in the context of a pediatric disorder known to negatively 

impact normative brain growth, we analyzed serial 1.5 and 3 T MRI scans of children and 

youth with relapsing CNS demyelination and regional control participants, obtained as part of 

the Canadian Pediatric Demyelinating Disease Study (CPDDS). We confirm a lack of age-

expected growth and subsequent whole brain and deep gray matter atrophy in pediatric MS 

patients and in those with relapsing CNS demyelination associated with antibodies against 

myelin oligodendrocyte glycoprotein (relapsing aMOG disease). Furthermore, using the 

proposed normalization technique, we were able to observe that deviations from age-expected 

brain growth trajectories increase with disease duration, and differences in thalamic and 

putamen volume are already present at disease onset. We suggest that our methodology will be 

of value in the context of longitudinal cohorts and multi-site, pediatric studies. 
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1 Introduction  

Current trends in neuroimaging studies are leading towards the use of large cohorts to 

analyze potential differences in the brain caused by a variety of diseases. To collect these large 

cohorts, it is common to resort to multi-site data acquisition, where certain MRI parameters are 

standardized to attempt to mitigate inter-site variability (Clark et al., 2006; van Haren et al., 

2003), or to pool data from separate, independent studies that have already occurred. This can 

lead to higher number of participants to study, but with a possible increase in the variability in 

the scans due to different acquisition sequence or scanner field strength (Biberacher et al., 

2016; Schnack et al., 2010). 

Additionally, it is in the interest of many studies to have long follow-up on patients to better 

understand the longitudinal implications of a particular disease. When these studies span 

multiple years, it is common that even within a single site, the scanner used will undergo 

updates, upgrades, or even be replaced by a newer higher Tesla model (Han et al., 2006). In 

addition, it can also be complicated to obtain a control group of healthy participants with 

sufficient participants acquired longitudinally throughout the complete duration of the study at 

a single site. This longitudinal control group is required for proper statistical comparisons with 

the patient group, as well as to account for any changes or upgrades done to the scanner during 

the study. 

Furthermore, pediatric studies present a unique challenge, since during the course of normal 

neurodevelopment the brain is growing and undergoing various changes (Mills et al., 2016). 

As such, it is important to account for the normal developmental trajectory of growth in the 

brain when considering potential differences due to disease in childhood. 

To address some of these challenges, we propose a normalization procedure for brain 

volumes that can be used to analyze longitudinal, multi-site, 1.5 T or 3.0 T data, during 

childhood. To explore the functionality of our method, we analyzed a longitudinal dataset of 

pediatric participants with relapsing central nervous system (CNS) demyelination, specifically 

multiple sclerosis (MS) and relapsing anti-myelin oligodendrocyte glycoprotein (MOG) 

demyelination, conditions known to negatively impact brain growth and volume over time in 

childhood. Atrophy in adults with MS has been widely reported both for Grey Matter (GM) 

and White Matter (WM) (Ghione et al., 2019) with the thalamus, putamen, caudate and globus 

pallidus particularly affected (Chard and Miller, 2009). We have shown abnormal brain growth 

trajectories during childhood, leading to failure of age-expected growth in overall brain 
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volume, reduced maximal brain volumes, relatively greater loss in thalamic volume, and 

atrophy of the brain by adolescence in pediatric-onset MS as well (Aubert-Broche et al., 2014).  

2 Materials and methods 

2.1 Participants 

2.1.1 Typically Developing Controls—NIHPD cohort 

We used the multi-site longitudinal data from Objective 1 of the publicly available NIH 

study of normal brain development (NIHPD) (Evans, 2006) as one of two normative datasets. 

We accessed MRI data from 402 children (207 females and 195 males), scanned at 1, 2 or 3 

time points, with approximately 24 months between scans, for a total of 910 scans (age at scan 

4.5 to 22.3 years). 

Scans of the NIHPD controls were obtained at six study centres with 1.5 T MRI scanners 

from Philips, General Electric or Siemens Medical Systems. The MRI protocol included a 

whole-brain, 3D T1w RF-spoiled gradient echo sequence (1-mm-thick sagittal partitions, 

TR=22–25 msec, TE=10–11 msec, excitation pulse angle 30°, Field of View =160–180 mm). 

Details on acquisition and participants were previously published (Evans, 2006).  

2.1.2 Typically Developing Controls—Philadelphia Neurodevelopmental cohort 

In addition to the NIHPD cohort, we included data from the Philadelphia 

Neurodevelopmental cohort (Satterthwaite et al., 2014) as normative data acquired at 3 T. We 

accessed data from 410 children (196 females and 214 males), scanned at 1 or 2 time points 

with an average separation between scans of 18 months, for a total of 529 scans (age at scan 

8.2 to 22.5 years). MRI acquisition occurred at a single study centre using a 3.0 T Siemens 

TIM Trio and included a whole-brain, 3D T1w MPRAGE sequence (TR= 1810 msec, TE=3.51 

msec, flip angle=9°, Field of View=180/240 mm). Details on acquisition and participants were 

previously published (Satterthwaite et al., 2014). 

2.1.3 Canadian Pediatric Demyelinating Disease Study (CPDDS) 

The Canadian Pediatric Demyelinating Disease Study (CPDDS) is a longitudinal incident 

cohort study (2004-present) of children with acute CNS demyelination evaluated at onset, 3, 6, 

and 12 months and then annually with comprehensive clinical data, research and clinical brain 

MRI, and biological specimen analysis (Banwell et al., 2011). We analyzed MRI scans from 

211 participants (486 research scans) selected from the three largest CPDDS sites. We 

restricted our analyses to research scans obtained from the three largest sites to ensure a 
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reasonable number (n>25, spread across the age range) of typically-developing youth imaged 

on their local scanner. Table 5 delineates the MRI acquisition protocols. Each site provided 

MRI scans from two participant groups: (i) typically-developing healthy local study controls 

(total controls, n=135) from whom a single MRI scan was acquired at 1.5 or 3 T; and (ii) serial 

MRI scans of participants enrolled prior to age 17 years 11 months with relapsing remitting 

MS (as per 2017 McDonald diagnostic criteria for MS (Thompson et al., 2018) or relapsing 

aMOG disease (total n=73; 348 scans; n=65 MS and 8 relapsing non-MS ). Demographic 

features of the 211 participants are shown in Table 6.  

Table 5. Description of the different sites from the CPDDS cohort, including scanner model and sequence 

parameters. 

Site Scanner Field 

strength 

(T) 

Sequence TE (ms) TR (ms) Flip 

Angle 

(deg) 

FOV 

(mm) 

The 

Hospital for 

Sick 

Children 

GE Signa 

Excite 

1.5 T1w RF-

spoiled 

gradient 

recalled 

echo 

8 22 30 250 

GE Signa 

HDxt 

1.5 T1w RF-

spoiled 

gradient 

recalled 

echo 

8 22 30 250 

Siemens 

TIM Trio 

3.0 T1w 

MPRAGE 

3.51 1810 9 256 

Siemens 

Prisma Fit 

3.0 T1w 

MPRAGE 

3.51 1910 9 256 

Children’s 

Hospital of 

Philadelphia 

Siemens 

Verio 

3.0 T1w 

MPRAGE 

2.87 1900 9 256 

Alberta 

Children’s 

Hospital 

Siemens 

Avanto 

1.5 T1w 

FLASH 

8 22 30 250 
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Table 6. Demographic description of the different datasets, grouped as normative, local controls, and 

Relapsing Demyelinating (RD). NIHPD= NIH study of normal brain development, PNC=Philadelphia 

Neurodevelopmental Cohort, HSC= Hospital for Sick Children, CHP= Children’s Hospital of 

Philadelphia, CAL= Alberta Children’s Hospital.  

Dataset Group Participants No. Scans Age range 

(years) Total Males Females 

NIHPD Normative 402 195 207 910 4.9-22.3 

PNC Normative 411 214 197 529 8.2-22.5 

HSC 1.5 T 

Controls 

45 16 29 45 6.2-17.3 

1.5 T RD 17 6 11 93 7.3-22.3 

3.0 T 

Controls 

40 14 26 40 8.2-22 

3.0 T RD 20 7 13 58 13.6-21.4 

1.5 + 3 T RD 16 3 13 144 5.9-22.4 

CHP 3.0 T 

Controls 

27 12 15 27 5.7-17.6 

3.0 T RD 17 1 16 40 7.3-19.8 

CAL 1.5 T 

Controls 

26 17 9 26 8.0-16.0 

1.5 T RD 3 2 1 13 11.1-16.32 

 

2.2 Image Processing 

The longitudinal automatic image processing pipeline, developed for NIHPD analysis 

(Aubert-Broche et al., 2013), was adapted to the scans from the CPDDS dataset as described 

below. The preprocessing steps applied to the native T1w images were (1) denoising; (2) 

intensity inhomogeneity correction using the N4 algorithm (Tustison et al., 2010b); and (3) 

intensity normalization by histogram matching to the ICBM152 template used in our previous 

work in pediatric MS (Fonov et al., 2011). Revised BestLinReg, a 5-stage hierarchical linear 

registration technique based on a normalized mutual information similarity measure, was 

performed between the T1w images and the ICBM152 template to align the images with the 



 

 114 

stereotaxic population template using a full 9-parameter transformation (Dadar et al., 2018). 

Brain extraction was achieved using the Brain Extraction based on nonlocal Segmentation 

Technique (BEaST), a multi-resolution, nonlocal patch-based segmentation technique 

(Eskildsen et al., 2012). Subsequently, images were non-linearly registered using the 

symmetric image normalization (SyN) method (Avants et al., 2008), a symmetric 

diffeomorphic image registration algorithm. For participants with MS or aMOG disease, T2 

lesions were masked to avoid matching healthy tissue to lesions. These T2w lesion masks were 

obtained using an automated multispectral Bayesian classifier designed specifically for the 

segmentation of MS and aMOG disease patients (Francis, 2004) followed by a manual label 

correction. Volumes for whole brain, thalamus, putamen, caudate, and globus pallidus were 

calculated, with the right and left volumes combined for analysis. In the case of thalamus, 

putamen, caudate, and globus pallidus, the volumes used for analysis were normalized by the 

whole brain volume. 

2.3 Data analyses 

2.3.1 Z-scoring for age, gender, and field strength effects. 

To compute Z-scores that normalize for the effect of growth and sex in a pediatric 

population, as well as possible differences due to field strength, we modelled the effect of those 

variables in our normative dataset. We chose to use mixed-effects modelling since it allows 

estimation of growth in longitudinal studies with repeated measures from the same individuals 

over time, while accounting for the within-participant correlation and varying numbers of 

measurements for each participant. 

As we previously described (Aubert-Broche et al., 2013), individual profiles suggest 

modelling brain growth as a quadratic function over time: we included both linear and quadratic 

effects of age in the fixed effects structure. Age was considered as a continuous variable and 

was centred at 14 years—the mean age of our normative cohort. (Note the mean age of the 

CPDDS cohort was 15 years.) The fixed terms also included the effect of sex, interaction of 

sex and age, as well as acquisition field strength.  

The mixed-effects model that best fits the normative data is: 

𝑉𝑜𝑙𝑖 = 𝛽0 + 𝛾0 + (𝛽1 + 𝛾1)𝐴𝑔𝑒𝑖 + 𝛽2𝐴𝑔𝑒𝑖
2 +

𝛽3𝑆𝑒𝑥𝑖 + 𝛽4(𝑆𝑒𝑥𝑖 × 𝐴𝑔𝑒𝑖) + 𝛽5𝐹𝑖𝑒𝑙𝑑𝑖 + 𝜀𝑖 (18)
 

where 
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• Voli is the value of the response variable (volume) for subject i, 

• Agei, Age2
i, Sexi, Fieldi are the fixed and random effect explanatory variables for subject i, 

• (Sexi * Agei) is the fixed effect of the interaction of sex and age for subject i, 

• β0, 0 are the intercept for the fixed and random terms, 

• β1, β2, β3 are the fixed effects coefficients and are identical for all participants, 

• 1 is a random effect coefficient, 

• i is the error in subject i. The errors for subject i are assumed to have mean zero and 

constant independent variance. 

To estimate the standard deviation of the model, we extracted the variance-covariance 

matrix of the fixed effects along with the residual variance of the random effects. Using the 

mean and the estimated standard deviation of the model, we computed z-scores for the five 

different brain volumes for the MS and aMOG disease participants and the local study controls. 

2.3.2 Correcting for scanning protocol between normative data and CPDDS local 

control data 

To correct for differences in scanning parameters between our normative dataset and the 

three CPDDS acquisition sites, we estimated a simple bias  term for the z-scored segmented 

volumes of the typically developing local controls scanned as part of the CPDDS. If this bias 

was found to be significantly different than 0 (p < 0.05), it was used to adjust both the typically 

developing local controls and the corresponding MS and aMOG disease group of that particular 

site.  

2.3.3 Analyzing the normalization of local control data 

To validate the functionality of our normalization technique, we analyzed the z-scores of 

the local study controls belonging to each study acquisition site for the total brain and different 

brain region estimated volumes. We used linear regression to look for any significant intercept 

(i.e. mean z-score different than 0.0) and slope (i.e. changes in z-score with age)  across the 

age range. This was done both individually for each control site, as well as taking all controls 

as a single group. Additionally, we used the one-sample Kolmogorov-Smirnov test to verify 

that the z-scores of the local study controls approximate a standard normal distribution ( µ=0, 

σ=1), for each of the volumes of interest. 

2.3.4 Analyzing the effect of field strength on the normalization 

We further explored the performance of our normalization procedure between field 

strengths by analyzing patients (n=16) with initial time points acquired at 1.5 T and subsequent 
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time points acquired at 3 T (note: typically developing control participants enrolled at different 

sites did not have serial scans obtained at both field strengths, as these individuals were not 

followed over as long a time period). We tested if the change in field strength caused a step 

and/or slope change by performing interrupted time series regressions for estimated volumes 

of total brain and regional brain structures. 

2.3.5 Analyzing the trajectories of MS and aMOG disease participants. 

We tested if the trajectories of relapsing-remitting MS and aMOG disease participants were 

different from the normative data (i.e., differed from z-score=0.0, across the age range) using 

a simple linear mixed-effects model that included age as a predictor for total brain volume and 

the selected brain regions. We performed an additional analysis using an additional linear 

mixed-effects model that included disease duration (i.e., time since onset, in years) as a 

predictor. The use of mixed-effects models helps us deal with the longitudinal aspect of the 

data, as well as handling missing data (i.e., not all participants have the same number of time 

points). We applied a Bonferroni correction to account for multiple comparisons. All analyses 

were conducted using MATLAB 2018b (The MathWorks Inc., 2018). 

3 Results 

3.1 Normalization of Typically Developing Control Data 

We found no significant deviation from a mean of zero, nor any slope, across the age range 

of the study, both when fitting a linear model to the controls of each site individually, as well 

as when taking all the controls as a single group (p>>0.05 in all cases). The results of the 

Kolmogorov-Smirnov tests show that the z-scores of local study controls approximate a 

standard normal distribution, thus supporting that the normalization procedure is working 

correctly on the typically developing controls across all sites (Figure 20).  

3.2 Normalization for different field strengths 

The results of the interrupted time series regressions showed no significant step or slope 

change for any of the volumes (p>>0.05 in all cases) when subjects transition from 1.5 to 3 T 

scans. These results support the functionality of the normalization technique in accounting for 

acquisition field changes. Figure 21 shows the behaviour of the z-scored structure volumes at 

1.5 and 3 T for overall brain volume. 



 

 117 

 

Figure 20. On the right: Plot showing the z-scores of the whole brain volume of normal controls from the 

different CPDDS sites and the corresponding linear model fit (neither the slope nor the intercept are 

significant). On the left a histogram showing that the z-scores of controls after normalization approximate 

a normal distribution with mean of 0 and standard deviation of 1. HSC= Hospital for Sick Children, 

CHP= Children’s Hospital of Philadelphia, CAL= Alberta Children’s Hospital 

Figure 21. Plot showing the z-scores of whole brain volume of participants with scans at both 1.5 and 3.0 

T. Scans obtained at 1.5 T appear to the left while scans obtained at 3.0 appear to the right of the vertical 

line (Adjusted age=0). 
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3.3 Failure to reach age-expected growth in pediatric relapsing-remitting 

MS and aMOG participants 

Given the relatively small number of relapsing aMOG disease patients, we first analyzed all 

73 relapsing MS and aMOG disease patients as a group (relapsing demyelination). After z-

scoring, a clear difference in the expected growth of the relapsing demyelination group was 

seen for overall brain volume, normalized thalamus, normalized putamen, and normalized 

globus pallidus in Figure 22. There was a downward slope (p<<0.001 in all cases) in total brain 

volume, normalized (to brain volume) thalamic, putamen, and globus pallidus volumes found 

in the relapsing demyelination group, signifying that they are straying further away from age-

expected growth (z-score of 0) as they age. The plots show that these deep grey structures have 

additional atrophy over and above that expected for age, sex and brain size. 

Furthermore, the difference in expected growth of the relapsing demyelination group is 

more evident when we consider disease duration, as opposed to age, as the predictor in our 

model. Figure 23 shows a deviation from expected growth as disease duration increases in the 

relapsing demyelination group as a downward slope (p<<0.001 in all cases) in total brain 

volume, normalized (to brain volume) thalamic, putamen, and globus pallidus volumes. 

Additionally, this analysis shows that the normalized (to brain volume) thalamic, and putamen 

volumes were already lower than expected (p<<0.001 in all cases) at disease onset. 

As is apparent in Figures 22 and 23, some relapsing demyelination patients demonstrated 

particularly dramatic deviation from age-expected thalamic (7 patients) and putamen volume 

(1 patient who also had thalamic volume loss: all indicated by filled black circles in Figures 22 

and 23). Data from these participants was carefully verified for imaging or processing artifacts, 

with no errors found. The clinical and MRI features of these patients are compared to the rest 

of the relapsing demyelination group in Table 7. We repeated our analysis, excluding these 7 

participants, and found that the downward slope in the relapsing demyelination group was still 

significant (data not shown). Of interest, while there was no difference in age, duration of 

disease, duration of follow-up, or disability as measured by EDSS, patients with the greatest 

reduction in deep gray volumes had significantly larger T2 lesion volumes (see Table 7), 

suggesting a potential relationship between high inflammatory disease burden and loss of brain 

tissue. 
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Figure 22. Plots showing the lack of age-expected growth in whole brain volume, thalamus, globus 

pallidus, and putamen for the Relapsing Demyelination (RD) group. Thalamus, globus pallidus and 

putamen have been normalized by whole brain volume before obtaining the corresponding z-scores. 

Participants marked with filled black circles were considered extreme, individually checked, and 

excluded from a secondary analysis to ensure they were not driving the fit. All significance testing was 

corrected for multiple comparisons using Bonferroni correction. 
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Figure 23. Plots showing the decline in age-expected growth as disease duration increases in whole brain 

volume, thalamus, globus pallidus, and putamen for the Relapsing Demyelination (RD) group. Thalamus, 

globus pallidus and putamen have been normalized by whole brain volume before obtaining the 

corresponding z-scores. Participants marked with filled black circles were considered extreme, 

individually checked, and excluded from a secondary analysis to ensure they were not driving the fit. All 

significance testing was corrected for multiple comparisons using Bonferroni correction. 



 

 121 

Table 7. Demographic and lesion volume comparisons for MS, Relapsing Non-MS, and Outlier 

participants. 

 All 
Participants 

(n=73) 

All MS 
(N=65) 

MS Non-
Outliers 
(n=58) 

MS 
Outliers 

(n=7) 

Relapsing 
Non-MS 

(n=8) 

p-value1 

Female 
n (%) 

54 48 41 7 6 0.10 

Age at Onset            
(median, IQR) 

14.9  
(13.0 – 16.1) 

15.2  
(13.8 – 
16.3) 

15.1  
(13.8 – 
16.2) 

15.9  
(11.9 – 
17.4) 

9.4  
(7.0 – 10.4) 

0.38 

EDSS at time of Last Scan 
(median, IQR) 

3 (2 – 4) 3 (2 – 4) 3 (2 – 4) 3 (2 – 4) 2.4 (2 – 3.5) 0.97 

First Research MRI 
Acquired within 30 days of 
onset 
n (%) 

21 (29%) 16 (25%) 15 (26%) 1 (14%) 5 (63%) - 

T2 Total 
Lesion 
Volume  
Within 30 
days of 
onset  

(median, 
IQR) 

2.9 
(1.0 – 9.5) 

3.4 
(1.3 – 9.1) 

2.9 
(1.1 – 8.6) 

13.5 0.4 
(0.04 – 
16.6) 

0.162 

(mean, SD) 7.2 (10.1) 5.6 (4.8) 5.0 (4.5) 13.5 12.3 (19.4) 

First Research MRI 
Acquired within 60 days of 
onset 
n (%) 

36 (49%) 29 (45%) 26 (45%) 3 (43%) 7 (88%) - 

T2 Total 
Lesion 
Volume  
With 60 
days of 
onset  

(median, 
IQR) 

4.4 
(1.2 – 12.8) 

5.0 
(2.3 – 
12.0) 

4.4 
(1.5 – 8.6) 

14.6 
(13.5 – 
32.5) 

0.4 
(0 – 16.6) 

0.03 

(mean, SD) 8.5 (11.0) 8.4 (9.6) 7.0 (8.6) 20.2 
(10.6) 

9.1 (16.8) 

First Research MRI 
Acquired within 90 days of 
onset 
n (%) 

41 (56%) 33 (69%) 30 (52%) 3 (43%) 8 (100%) - 

T2 Total 
Lesion 
Volume  
Within 90 
days of 
onset  

(median, 
IQR) 

3.9 
(1.1 – 9.5) 

4.8 
(1.3 – 9.5) 

3.9 
(1.2 – 7.7) 

14.5 
(13.5 – 
32.5) 

0.2 
(0.02 – 9.5) 

0.02 

(mean, SD) 7.7 (10.6) 7.6 (9.2) 6.4 (8.2) 20.2 
(10.6) 

8.0 (15.9) 

T2 Volume Acquired at 
Most Recent MRI3 

n (%) 

71 (97%) 63 (97%) 56 (97%) 7 (100%) 8 (100%) - 

T2 Total 
Lesion 
Volume  
at Most 
Recent MRI 

(median, 
IQR) 

3.8 
(1.3 – 11.0) 

4.2 
(1.9 – 
12.1) 

3.7 
(1.6 – 7.0) 

15.0 
(13.3 – 
16.0) 

0.09 
(0.04 – 0.6) 

<0.001 

(mean, SD) 6.4 (7.2) 7.1 (7.3) 6.2 (7.1) 15.0 (2.4) 0.7 (1.3) 

1We prioritized comparison of lesion volume as a contributing factor to brain volumes over time within 
the MS population (MS non-outliers were compared to MS outliers). Relapsing non-MS patients were not 
evaluated as these individuals have a distinct disease; future studies evaluating relapsing MOG 
demyelination require a larger cohort.  
2We are underpowered for this comparison.  
3 Every participant provided a most recent MRI. Time (median [IQR]) from first event to most recent MRI 
by group was: all participants  2.3 (1.1 – 5.6) years; all MS participants 2.0 (1.0 – 4.8) years; MS non-
outliers 2.0 (1.0 – 5.0) years; MS outliers 3.1 (1.2 – 4.2) years and; relapsing non-MS 8.1 (5.2 – 11.3) years.  
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4 Discussion 

We demonstrate a normalization method for brain volumetrics capable of using serial data 

obtained from different sites and different magnet strengths. Our methods will enhance pooling 

of data in the study of neurological diseases during childhood, particularly in the case of 

collaborative studies and those that have data acquired over many years. Furthermore, we 

confirm our previous longitudinal results showing that pediatric-onset MS leads to failure of 

age-expected brain growth, and that deep grey matter structures are even more impacted than 

the brain as a whole (Aubert-Broche et al., 2014). While the previous studies could not detect 

such a loss for normalized caudate, putamen or globus pallidus volume, our new normalization 

technique enabled the addition of data from 3.0 T scans, which then yielded sufficient power 

to detect a statistically significant loss of age-expected growth for the putamen and globus 

pallidus. 

Additionally, our normalization technique allows us to analyze the trajectory of changes in 

brain volumes associated with disease duration. We clearly observe in Figure 23 that the 

difference in brain volumes between the relapsing demyelination group and typical 

development increase with disease duration. Furthermore, a difference in thalamic and putamen 

volume was already present at disease onset- implicating a negative impact on brain integrity 

occurring even in the pre-symptomatic phase prior to initial attack. Interestingly, retrospective 

modeling in adult MS cohorts, suggests that putamenal atrophy might already be present even 

years before incident MS attack (Krämer et al., 2015). 

Early and progressive thalamic atrophy has been consistently reported in adult-onset MS 

and associated with worsening physical disability as measured by higher EDSS scores over 

time. The onset of MS as well as aMOG disease during childhood, however,  is not 

characterized by early neurological disability (Armangue et al., 2020; Waldman et al., 2014), 

as also evidenced in our present cohort. As such, correlations between brain volumetrics and 

EDSS are not demonstrable during childhood or adolescence. Of concern is the impact of 

progressive brain volume loss on future disability in early or mid-adulthood. We, and others, 

have demonstrated a strong relationship between reduced thalamic volume and reduced 

cognitive function in pediatric MS (De Meo et al., 2019; Till et al., 2011) and our ongoing 

work will evaluate relationships between brain volume trajectories and cognitive performance 

over time. 
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We also observed a possible association between very high T2 lesion volumes and 

particularly prominent loss of deep gray volumes. While this preliminary observation in only 

seven participants requires further validation in larger cohorts, it suggests that highly 

inflammatory disease may also drive more aggressive neurodegeneration. In adults, a recent 

study by Pontillo et al. (Pontillo et al., 2019) found global T2 lesion volume to be a main 

determinant of atrophy in deep grey volumes in patients with relapsing-remitting MS, while a 

morphometric study by Al-Radaideh et al. (Al-Radaideh et al., 2019) found a weak, yet 

significant, inverse correlation between T2 lesion volume and volumes of the putamen (r = 

−0.408), globus pallidus (r = −0.410) and thalamus (r = −0.407) in relapsing-remitting MS.   

Limitations of our work include the relatively small size of our relapsing demyelination 

cohort, an inherent challenge given the rarity of these diseases in children. To best define our 

methodology, we selected only research scans that passed a rigorous quality assurance process, 

analyzed scans from only three sites that had scanned patients and regional controls, and 

ensured that each site contributed a reasonable number (typically more than 25, sufficient to 

uniformly cover the age range) of scans for analysis. At baseline, and at the serial imaging 

timepoints, we did not analyze clinically acquired scans, nor did we include research scans that 

failed quality control. As such, our method may not generalize equally well to cohort studies 

wherein scans are acquired with more variability in sequence parameters between sites or 

between serial scans, or when quality assurance processes permit greater variability in 

acquisitions. 

Our work has immediate relevance. Serial MRI data from pediatric cohorts, typically-

developing and in the context of neurological disease, are limited. Our methods enable analyses 

of invaluable longitudinal cohort data, and permit retention of 1.5 T scan data as new 3 T MRI 

acquisition invariably occurs.  
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Chapter 6  

Discussion, Future Work and Conclusion 

In this chapter, we provide a summary of the rationale and main findings of Chapters 3, 4 

and 5, as well as additional discussion regarding their contributions, strengths and limitations. 

Furthermore, we discuss prospective future work that can be built upon these contributions and 

provide an overall conclusion to the present work. 

1 Discussion 

The main goal of this thesis is the development and application of morphometric image 

analysis techniques for pediatric studies. The principal challenge in this task stems from the 

wealth of changes that occur in the brain during the different stages of normal 

neurodevelopment, for it is of the outmost importance to be able to disentangle these normal 

changes from any potential abnormalities associated with a given disease or disorder. In 

addition to the unique challenges of pediatric studies, the techniques presented are also required 

to address challenges inherent to any image analysis study, including the use of different 

scanners and protocols, having data acquired at various sites, and having sufficient, high quality 

control data to perform comparisons. 

One of the most important factors to consider when applying image processing tools in 

studies of neurodevelopment is that each individual study presents its own complications, and 

as such any methods used need to be tuned for the specific data and analysis at hand. One of 

the main factors behind this comes down to the selection of an age range for the study, since 

the rate of changes, as well as the type of changes, vary significantly between the different 

stages of neurodevelopment. In terms of volume, the first years of age are characterized by 

very rapid growth, while later stages are characterized by slower growth that reaches a plateau 

and begins a very slow decline. In the case of myelination, strong changes in contrast in MRI 

can be seen during the first 12 months of life due to rapid and widespread myelination, while 

in later years myelination happens at a much slower rate and is confined to specific regions. 

We can easily observe this in Figure 24 by comparing what happens in the brain during the 

early stages of childhood (0-27 months of age) and later childhood and adolescence (3.5-18.5 

years of age). As such, the requirements for a study that includes early childhood are quite 
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different from those centred in later childhood and adolescence, and thus the methods used 

need to be adapted differently in each case. 

 

Figure 24. Average templates at different stages of neurodevelopment. The top row shows T1-weighted 

images, while the bottom row shows T2-weighted images. 

The proposed technique in Chapter 3 focuses on dealing with the application of voxel-wise 

morphometric techniques, specifically TBM, during early childhood (6 months to 2 years of 

age). The main issues that our proposed technique tackles are the stark changes in contrast that 

happen during the first 8 months of life, where the T1 and T2 weighted signals from WM and 

GM reverse in intensity contrast, as well as the drastic change in overall head and brain size 

throughout the first 2 years of life. In order to improve the non-linear registration, in particular 

for scans acquired at around 6 months of age where the WM and GM contrast is very small, 

we use the information of both the T1 and T2-weighted scans simultaneously to optimize the 

registration. The use of both scans proves to be useful mainly because the changes in contrast 

due to myelination have different timelines in T1 and T2-weighted scans (Barkovich et al., 

1988), and therefore provide complementary data for the registration algorithm. Furthermore, 

we chose to use three different age-appropriate templates (6, 12 and 24 months of age) as our 

registration targets, so that the non-linear transformation required for an individual scan was 

minimized and was performed to a template with the most similar WM and GM contrast. 

During quality control, the resulting non-linear registrations were found to be accurate and 

robust. 

The application of this method to the Infant Brain Imaging Study (IBIS) of children at high 

risk of autism spectrum disorder (ASD)  was of particular interest since this database included 

a large number of normally neurodeveloping controls (n=162) scanned longitudinally, thus 

providing enough information to model normal growth trajectories at the voxel level, while 
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accounting for changes due to age and sex during early childhood. Furthermore, this database 

includes 2 additional cohorts, one of children at high risk of autism diagnosed as neurotypical 

(HR-) and one of children at high risk of autism diagnosed with ASD (HR+). When comparing 

the 3 groups, it was found that the HR+ had significant differences in local growth trajectories 

when compared to controls, while the HR- were found to have similar growth trajectories to 

normal controls. In the few regions where the HR- group was found to be trending or only 

slightly (but statistically significantly) different from controls, the direction of the differences 

was the same as the ones found in the HR+ group and lay in between controls and the HR+ 

group. This leads to the speculation that the factors that play a role in the development of ASD 

are present in the HR- group but not sufficient to lead to ASD, as is the case for the HR+ group. 

The importance of studying ASD at such an early age is highlighted by the well-known 

increase in head circumference and brain size found retrospectively in children diagnosed with 

ASD (Bailey et al., 1993; Davidovitch et al., 1996; Elder et al., 2008; Redcay and Courchesne, 

2005; Woodhouse et al., 1996) coupled to studies showing abnormal morphology in older 

children and adults (Amaral et al., 2008; Barnea-Goraly et al., 2014; Hardan et al., 2000). Our 

results show that the growth trajectories of several regions in the brain are different in the HR+ 

group and may be the origin of volume abnormalities found in older children. Additionally, our 

results support the idea that ASD is strongly age-dependent, demonstrating different structural 

abnormalities at different stages of development (Carper et al., 2002; Courchesne et al., 2011), 

while providing one of the first insights into the nature of such abnormalities found in ASD 

during early childhood. 

While the study conducted in Chapter 3 included enough normally developing controls with 

longitudinal information to model the normal growth trajectories, this is rarely the case in 

pediatric studies, where neurotypical controls are hard to come by and it is particularly difficult 

to obtain longitudinal data. This issue was part of the rationale for developing the normalization 

technique presented in Chapter 4. There, we propose the use of a large database of normally 

developing children (NIHPD) (Evans, 2006) to estimate normal growth trajectories for 

volumes of interest (e.g. whole brain volume, putamen, thalamus, among others) as well as at 

the voxel level using TBM. We can now use these models to normalize data from a pediatric 

study and obtain z-scores that give us information about how much a subject deviates from the 

expected volume (or Jacobian determinant in the case of TBM) given the subject’s age and sex. 

This procedure has two main advantages, the first being that the dataset of interest requires 

fewer normal controls and does not require controls to be longitudinally acquired, as long as 
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they are spread evenly across the age-range, and the second being that any abnormality can be 

easily interpreted as a deviation from age-expected growth. 

We applied this normalization technique to a study of 16p11.2 copy number variants 

(Martin-Brevet et al., 2018; The Simons VIP Consortium, 2012), with the goal of 

understanding the location, direction (i.e. increase or decrease), and time-course of potential 

brain abnormalities in the duplication and deletion cohorts with an age range from 4.5 to 23 

years.  It is important to note that the normalization procedure works as intended. We can 

observe this in the supplementary material of Chapter 4, where the control cohort of the 

16p11.2 study is shown to have a mean z-score of 0.0 as expected across the age range after 

normalization, with neither a significant slope nor sex differences, while the data before 

normalization behaves as a quadratic function with a growth plateau around 17 years of age 

and a significant difference between males and females. Additionally, the voxel-wise z-scores 

of the 16p11.2 control cohort follow a standard Gaussian distribution (μ=0, σ=1). Therefore, 

the normal controls from the 16p11.2 study were not found to be significantly different from 

the NIHPD dataset. 

When we look at the duplication and deletion cohorts, we can see 2 different types of 

abnormalities: gene dose dependent abnormalities (i.e. the behaviour is mirrored in 

duplications and deletions) and abnormalities specific to either the duplication or the deletion 

cohort. These 2 types of abnormalities highlight the importance of performing “genetics first” 

(i.e. understanding genetic differences before looking at disorders) studies, particularly in the 

case of the 16p11.2 copy number variants, since these variants are specifically associated with 

several neurodevelopmental disorders, including ASD. Thus, knowing which areas of the brain 

present mirror alterations versus which areas are specific to a cohort can potentially help in 

understanding phenotypical traits specifically associated with either duplication or deletion, 

and could also potentially be tied to specific neurodevelopmental disorders.  

In terms of our methodology, it is important to note that the results found using regional 

volumes and using voxel-wise analysis are in agreement. The clearest example of this can be 

seen in the lateral ventricles, where the volumetric and the voxel-wise analyses clearly show 

an increase in ventricular volume in duplication carriers. Furthermore, our results indicate that 

these brain abnormalities are already present at 4-6 years of age and remain stable throughout 

childhood and adolescence, making the study of early neurodevelopment, and perhaps even 

during gestation, necessary to truly understand the origin and time-course of these 

abnormalities. 
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The normalization procedure proposed in Chapter 4 was later expanded in Chapter 5 with 

the objective of making it more generalizable, thus allowing it to be applied to more complex 

datasets, particularly datasets that include data acquired at MRI field strengths of 1.5 and 3 T. 

The rationale is that in longitudinal pediatric studies, a multi-site approach enables larger data 

collection but inserts the potential for scanner differences, and when acquiring longitudinal 

data within a large age range, updates to scanners, and even upgrades (i.e. from a 1.5 T to a 3 

T scanner) are possible. Therefore, a normalization technique that can account for these 

possibilities has a wider range of applications. 

 Some of the changes implemented include modifying some of the preprocessing steps, like 

improved bias field correction and integrating more robust non-linear registration methods. In 

addition to the changes in preprocessing, the normalization technique was enriched by adding 

an additional normative dataset acquired at 3T, the Philadelphia Neurodevelopmental Cohort 

(Satterthwaite et al., 2014). As such, our normative modeling is now more complex, since it 

includes 2 longitudinal datasets, one acquired at 1.5 T and one at 3 T, and a field strength effect 

is introduced to the mixed-effects model.  

This normalization technique was applied to a longitudinal, multi-site study of pediatric 

onset multiple sclerosis from the Canadian Pediatric Demyelinating Disease Study (Verhey et 

al., 2011), with data acquired at 1.5 and 3 T, and a neurotypical cohort acquired at each site. 

This study presented a great opportunity to test the normalization technique, since it includes 

longitudinal data of subjects acquired exclusively at 1.5 T, exclusively at 3 T, and some subjects 

with initial timepoints acquired at 1.5 T and subsequent timepoints acquired at 3 T. The 

normalization technique was evaluated in 5 volumes of interest: whole brain volume, putamen, 

thalamus, globus pallidus, and caudate. The first important results come from looking at the 

normalization of the neurotypical cohort from each site of the pediatric MS study, where we 

can see two different validations of the normalization process. First, when testing using a linear 

model, the z-scores of the local controls do not have a significant intercept nor a significant 

slope, both when each site is considered independently as well as when all of the local controls 

are considered as a single group, so the controls have a mean z-score of 0.0 that is stable across 

the age range, as expected. Second, we looked at the distribution of the resulting z-score of the 

local controls and found that they follow a standard Gaussian distribution (μ=0, σ=1). 

Therefore, the growth trajectories of the local controls from the Canadian Pediatric 

Demyelinating Disease Study are not significantly different from our normative datasets. 
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An additional test was performed to observe the effect of a subject transitioning from being 

scanned at 1.5 T at the start of the study to being scanned at 3 T later in the study. Unfortunately, 

we did not have neurotypical local controls that had been scanned longitudinally at both 1.5 

and 3 T, so we looked at this effect in subjects diagnosed with MS that were longitudinally 

scanned first at 1.5 T and then at 3 T. By using interrupted time series regressions, we did not 

find significant step or slope changes due to the change in field strength. This result is of 

particular importance, since it supports the conclusions that the normalization technique is 

properly accounting for changes due to field strength, and that the overall trend and behaviour 

of an individual subject can be studied using this procedure. 

The results obtained by applying this normalization technique to the MS cohort provide 

important insight into the development of this disease during childhood and adolescence. By 

looking at the behaviour of z-scores with age, we observe a lack of age-expected growth in the 

MS patients in terms of whole brain volume, with even larger differences found in thalamus, 

putamen and globus pallidus. Differences in whole brain volume and thalamus had already 

been reported in pediatric onset MS (Aubert-Broche et al., 2014) using a subset of the MS 

cohort used in Chapter 5 (i.e., using data from only one site, with fewer subjects and fewer 

timepoints). It is of note that using a larger, multi-site cohort shows a similar pattern of lack of 

age-expected growth, as well as extending the differences to the putamen and globus pallidus. 

Furthermore, by looking at changes in z-score related to disease duration, the differences are 

larger and indicate that at the moment of diagnosis, some atrophy is already present, 

particularly in the thalamus. This can be important evidence of disease presence even before 

enough symptoms for diagnosis are developed, improving our current understanding of the 

time course of MS in the pediatric population. 

Beyond the clinical implications found for ASD, 16p11.2 copy number variants, and 

pediatric onset MS, it is important to note that the techniques described in Chapters 3, 4, and 5 

can be applied to a wide array of pediatric imaging studies. These techniques were designed 

with the idea of accounting for the normal neurodevelopment to better isolate the potential 

abnormalities associated with a disease or disorder. The results of applying the normalization 

techniques to local neurotypical controls in Chapters 4 and 5 are especially important in 

showing that (local) normal controls behave as expected and that age and sex related changes 

occurring throughout childhood are properly accounted for. 
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2 Limitations 

The main methodological limitations of the techniques described in Chapters 3, 4, and 5 

stem from the accuracy of the main image processing tools used. In particular, the accuracy of 

non-linear registration heavily affects the overall performance and reliability of these 

techniques, since several key steps depend on high-quality nonlinear registration. Among these 

key steps we have the creation of age-appropriate templates in Chapter 3, the creation of 

longitudinal templates for each subject in Chapters 4 and 5, the use of atlas priors for the 

segmentation of deep nuclei in Chapters 4 and 5, and the use of Tensor Based Morphometry in 

Chapters 3 and 4. Due to the importance of nonlinear registration, we implemented a very 

thorough quality control process to evaluate the resulting transformations, as well as 

performing a round of tests to find the optimal parameters. Additionally, in Chapter 3 we used 

both T1 and T2 weighted images to curb the contrast problems found at an early age. 

In Chapter 3, the study of ASD at such an early age presents a series of challenges and 

limitations from a clinical perspective. One important thing to note is the definition of the High 

Risk negative (HR-) and the High Risk positive (HR+) groups. In both cases, the subjects were 

at a high risk of ASD due to having a sibling diagnosed with ASD, and the split was based on 

the best-estimate diagnosis of ASD at 2 years of age. While this diagnosis is the most 

commonly used predictor of ASD outcome, with an estimated diagnostic agreement at 2 and 9 

years of age of 67% (Lord et al., 2006), it is still highly likely that some of the subjects from 

the HR- group will later be diagnosed with ASD, while subjects from the HR+ group might 

have their diagnosis reversed. Furthermore, ASD is a complex disorder that affects individuals 

differently, with some experiencing larger problems in specific domains. This heterogeneity in 

ASD is difficult to analyze at such an early age, where it is quite a challenge to measure how 

different skill domains are affected. 

In the study of 16p11.2 copy number variants presented in Chapter 4, one big limitation 

came from the data available. Only cross-sectional scans were acquired, and only a few  

younger children (between 4 and 6 years) with either duplications or deletions were included 

in the study. This essentially eliminated the possibility of observing within-subject longitudinal 

changes throughout childhood, while also limiting our power to detect differences at an early 

age and age-related differences. 

The pediatric onset MS study from Chapter 5 also presented a limitation due to the 

availability of data. In this case, the subjects diagnosed with MS had longitudinal data, while 
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the local normal controls from each site had only cross-sectional scans. This lack of 

longitudinal local neurotypical controls reduces our ability to correct for site specific 

differences during the normalization procedure. While this correction can be done with cross-

sectional controls, it would be more robust if it is performed with longitudinal data. 

3 Future Work 

From a methodological perspective, there are many improvements that can be made to the 

techniques presented in Chapters 3, 4, and 5. One area of opportunity can be found in 

developing a normalization technique similar to the work from Chapters 4 and 5 for early 

childhood. While the normal controls from the IBIS database used in Chapter 3 could be used 

as a normative database, a better normative cohort would ideally include scans at a younger 

age (e.g. 3 months), before the WM/GM contrast reversal. The inclusion of scans at a younger 

age would enable a better mapping of the normal neurodevelopment and could help in the 

processing of data at 6 months, which is the most complicated age to analyze due to the lack 

of contrast between tissue types. Furthermore, data from before the contrast reversal could 

prove useful in developing a longitudinal tissue classification algorithm, designed to work 

during early childhood. 

In terms of the normalization technique for childhood and adolescence, we should be able 

to use the multi-field approach (i.e. using data acquired at 1.5 and 3 T) presented in Chapter 5 

at the voxel level, similar to what was shown in Chapter 4. In reality, this process is quite 

advanced and shows promise, however further evaluation of its performance is needed. 

Additionally, adopting newer, better tissue classification algorithms, and adapting them to our 

longitudinal framework could also provide further improvement in the overall performance of 

these normalization analyses. Finally, these normalization techniques can be constantly 

improved with the addition of more normative data, as long as these databases evenly cover 

the age-range and provide longitudinal data. 

For the ASD study, it would be interesting to obtain the clinical outcomes of the high-risk 

group when they turn 9 or 10 years old, and use these outcomes, as well as any quantitative 

measures of impairment for the different domains (e.g. social, emotional, repetitive behaviour), 

in a more complex analysis of the abnormalities found at this early age. 

In the case of 16p11.2 copy number variants, our results showed that abnormalities were 

already present at around 4-6 years of age and seem to remain stable during childhood and 

adolescence. This opens two interesting avenues of study. The first one being the study of these 
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copy number variants during early childhood, and perhaps even in utero, to better understand 

the moment in neurodevelopment that the deviation from neurotypical occurs. The second 

avenue of study would be to look into subgroups within the 16p11.2 duplications and deletions, 

by looking at the diagnosis of associated diseases and disorders. By studying these subgroups, 

we could potentially isolate abnormalities that are specifically associated with a particular 

disease or disorder. 

As for the pediatric onset MS study, the application of the normalization technique at the 

voxel level could lead to interesting insights, particularly in the thalamus, where perhaps the 

lack of age-expected growth may have a spatial pattern involving some structures more than 

others. This would have interesting anatomical-functional-behavioral implications. 

Finally, while the techniques presented in Chapters 3, 4, and 5 were each applied to a unique 

pediatric study, they can be used in many potential pediatric imaging studies for wide range of 

neurodevelopmental disorders as well as psychiatric diseases. In particular, the normalization 

for childhood and adolescence can be used in any pediatric study within the age range of 6 to 

22 years, the study can be multi-site and be acquired cross-sectionally or longitudinally, at 1.5 

T, 3 T or both, and only requires to have enough local controls that cover the whole age range 

to validate the normalization procedure before analyzing to specific study group. 

4 Conclusion 

In the past few years, brain image processing tools have advanced at a rapid pace, allowing 

us to investigate potential changes in the brain associated with diseases and disorders with 

better accuracy. However, many of these novel tools were developed and validated using an 

adult population, thus the need to tailor and adjust these tools for use in pediatric studies, where 

modelling and understanding the normal neurodevelopment becomes an additional challenge 

to overcome. In this thesis we propose some morphometric techniques tuned for their 

application to pediatric data, with the main objective of properly accounting for the normal 

changes that occur due to neurodevelopment so that we can have a better understanding of the 

potential abnormalities associated with a disease or disorder. 

By using the proposed techniques, we were able to observe changes in growth trajectories 

in children at high risk of ASD, to identify local brain volume differences in 16p11.2 copy 

number variants, and to observe the lack of age-expected growth in pediatric onset MS. These 

techniques provide an opportunity to better understand the time course and specific alterations 
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of a disease during childhood and have the potential to be used in the investigation of a vast 

number of neurodevelopmental disorders. 

In conclusion, these morphometric tools are a stepping-stone in the ever-evolving field of 

pediatric brain imaging, with many further improvements possible, and have been shown to be 

useful in the study of various diseases. Furthermore, by applying these techniques we can 

obtain valuable information that can potentially lead to improved understanding of the etiology 

of a disorder, the development of biomarkers for clinical trials, and new diagnostic aids.  
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