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1 |

Hereditary spastic paraplegia (HSP) is a group of neuro-
degenerative disorders characterized by lower limb spas-
ticity and weakness, with or without additional symptoms
(Faber, Pereira, Martinez, Franca Jr, & Teive, 2017). Some

INTRODUCTION

Abstract

Background: Hereditary spastic paraplegias (HSP) are neurodegenerative disor-
ders characterized by lower limb spasticity and weakness, with or without additional
symptoms. Mutations in ATP13A2, known to cause Kufor—Rakeb syndrome (KRS),
have been recently implicated in HSP.

Methods: Whole-exome sequencing was done in a Canada-wide HSP cohort.
Results: Three additional patients with homozygous ATP13A2 mutations were iden-
tified, representing 0.7% of all HSP families. Spastic paraplegia was the predominant
feature, all patients suffered from psychiatric symptoms, and one patient had devel-
oped seizures. Of the identified mutations, ¢.2126G>C;(p.[Arg709Thr]) is novel,
¢.2158G>T;(p.[Gly720Trp]) has not been reported in ATP13A2-related diseases,
and c.2473_2474insAAdelC;p.[Leu825Asnfs*32]) has been previously reported
in KRS but not in HSP. Structural analysis of the mutations suggested a disrup-
tive effect, and enrichment analysis suggested the potential involvement of specific
pathways.

Conclusion: Our study suggests that in HSP patients with psychiatric symptoms,
ATP13A2 mutations should be suspected, especially if they also have extrapyramidal

Symptoms.
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HSP-related genes may be involved in other disorders in
which spasticity is not among the main features, for example,
FA2H (OMIM 611026) and KIAA1840 (OMIM 610844) mu-
tations may cause neurodegeneration with brain-iron accumu-
lation and Charcot—-Marie-Tooth (CMT) (Kruer et al., 2010;
Montecchiani et al., 2015). Similarly, genes that are involved
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in other neurological disorders, such as ALS2 (OMIM 205100)
and POLR3A (OMIM 614258), were also implicated in HSP
(Eymard-Pierre et al., 2002; Rydning et al., 2019).

One of the most interesting genes in the latter category
is ATP13A2 (OMIM 610513), which was initially implicated
in Kufor—Rakeb syndrome (KRS, OMIM 606693), charac-
terized by early onset parkinsonism, pyramidal tract degen-
eration, dementia, and cognitive dysfunction (Ramirez et al.,
2006). Subsequently, ATP/3A2 mutations were reported in
Neuronal Ceroid Lipofuscinosis (NCL) and amyotrophic lat-
eral sclerosis (ALS; Farias et al., 2011; Spataro et al., 2019).
ATP13A2 mutations in HSP (SPG78, OMIM 617225) were
first described in a consanguineous Pakistani family (Kara
et al., 2016), followed by three reports on five more families
(Erro, Picillo, Manara, Pellecchia, & Barone, 2019; Estrada-
Cuzcano et al.,, 2017; van de Warrenburg et al., 2016).
ATPI13A2 encodes a lysosomal enzyme which serves as an
inorganic cation transporter that regulates endolysosomal
cargo sorting and neuronal integrity (Demirsoy et al., 2017;
Ramonet et al., 2011).

Herein, we report three additional HSP patients from
three different families with homozygous ATPI3A2 muta-
tions. Long-term follow-up, genetic analysis, protein struc-
ture, and network analyses were done to explore the clinical
and genetic spectrum of ATP13A2-related disease.

2 | METHODS

2.1 | Population

HSP patients (n = 696) from 431 families were recruited
across Canada, and data on diagnosis, recruitment, and the
cohort were previously published (Chrestian et al., 2017).
Of those, 383 HSP genetically undiagnosed patients went
through whole-exome sequencing (WES). All participants
have signed an informed consent form and the study protocol
was approved by the institutional review board.

2.2 | Genetic analysis

Whole-exome capture, sequencing, alignment, annotation,
and variant calling was performed as previously described
(Chrestian et al., 2017). Nonsynonymous, frameshift, splice-
site, and stop variants with allele frequencies <0.005 in the
Exome Aggregation Consortium (ExAC) database were fil-
tered-in, and segregation analysis was performed. The poten-
tial pathogenicity of variants was estimated based on their
frequency of in gnomAD and ExAC, and by in silico tools:
MutationTaster, combined annotation-dependent depletion
(CADD), genomic-evolutionary rate profiling (GERP++),
sorting intolerant from tolerant (SIFT), and PolyPhen-2.

2.3 | Insilico analysis of ATP13A2

Genic intolerance of ATPI3A2 was assessed using the re-
sidual variation intolerance score (RVIS) tool. Pathways
enrichment and interaction network were analyzed using
GeneMANIA, g:Profiler, and STRING, and networks were
visualized by Cytoscape. Clustal Omega program was used
for protein sequence alignment of multiple species. A 3D
atomic model of human ATP13A2 was built using the auto-
mated I-TASSER server. The steric clashes induced by each
mutation were evaluated using the mutagenesis toolbox in
PyMol v.2.2.0.

3 | RESULTS

3.1 | ATPI3A2 mutations are responsible for
0.7% of families with HSP in Canada and may
affect the protein structure and function

Biallelic homozygous ATPI3A2 mutations were identi-
fied in three patients (representing 0.4% of HSP patients
and 0.7% of families), including ¢.2473_2474insAAdelC;p.
(Leu825Asnfs*32), ¢.2126G>C;p.(Arg709Thr), and
¢.2158G>T;p.(Gly720Trp). The p.(Leu825Asnfs*32) and
p-(Arg709Thr) variants were not reported in gnomAD (https:/
gnomad.broadinstitute.org), and the p.(Gly720Trp) variant has
a very low allele frequency of 0.000026 in Europeans in gno-
mAD. ATPI3A2 is highly intolerable for functional genetic
variations with an RVIS score of —1.16, putting it in the top
6.1% of intolerant human genes. Interaction network analysis
(Figure 1a) demonstrated that the ATP13A2 protein closely
interacts with other HSP-related proteins. Pathway enrichment
analysis of genes which are known to be involved in HSP,
ALS, and Parkinsonism showed enrichment (FDR p < .05,
Table S1) of genes involved in copper ion binding, vesicle-
mediated transport cellular response to oxidative stress, among
others. Both p.(Arg709Thr) and p.(Gly720Trp) destabilize the
N-domain of ATP13A2 protein and are conserved (Figure
1b—e) and the p.(Leu825Asnfs*32) mutation deletes an entire
segment at the C-terminal of the protein (Figure 1c—e). The
distribution of the current and previously reported mutations in
ATPI3A2 in HSP, KRS, ALS, and NCL (Park, Blair, & Sue,
2015; Spataro et al., 2019) is depicted in Figure 1f.

3.2 | Clinical characteristics of hsp patients
with ATP13A2 mutations

Table 1 details the clinical characteristics of previously pub-
lished ATP13A2-related HSP patients and the three patients
identified in this study. The description of the patients below
will detail only the main characteristics.
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In silico analysis of ATP13A2. (a) Network analysis demonstrated that ATP13A2 is associated with other HSP-related

proteins. Green: putative homologs are comentioned or coexpressed in other species, purple: shared protein domains, brown: genetic interactions,

blue: colocalization, red: coexpression. (b) Conservation of the residues harboring missense mutations in the ATP13A2 protein. (c) Cartoon

representation of human ATP13A2 a.a. 138-1180. The position of the cytosolic A-, P-, and N-domains, and transmembrane (TM) helices are

indicated. Lys654 is an invariant lysine that interacts with the adenine ring of ATP prior to the g-phosphate transfer. Glu348 is the catalytic

glutamate in the invariant TGE motif. The HSP mutation sites p.(Arg709Thr) and p.(Gly720Trp) are underlined. The segment consisting of a.a.
8261180 (cyan) would be deleted in the p.(Leu825Asnfs*32) mutation. (d) Arg709 is located in the N-domain, on the opposite side of the ATP-
binding site. The mutation p.(Arg709Thr) would result in the loss of a favorable electrostatic interaction, which would destabilize the N-domain. (e)
Gly720 is located in the middle of a p-strand in the N-domain. The mutation p.(Gly720Trp) would create significant steric clashes (red), thus likely
unfolding the N-domain. (f) Schematic representation of the location of ATP/3A2 mutations in HSP, ALS, KRS, and NCL patients reported so

far (Park et al., 2015; Spataro et al., 2019). The top schematic represents the ATP13A2 protein. Functional domains, including the P-5 ATPase, E1-
E2 ATPase, and hydrolase domains, are indicated with vertical lines. Mutations associated with HSP are indicated in black (mutations identified in
this study are circled), ALS in blue, KRS in red, and NCL in yellow. The bottom schematic represents the cDNA of ATP/3A2. Exons are delineated

with vertical line, and the location of the transmembrane domains are colored in blue

3.2.1 | Patient A

The patient, a 44-year-old woman of Inuit-Canadian origin,
was initially evaluated at age 31 due to gait dysfunction. She
was found to have bilateral lower extremity spasticity, weak-
ness, hyperreflexia, nonsustained bilateral ankle clonus and
speech difficulties. On evaluation at age 40, she was laugh-
ing excessively and seemingly had an inappropriate affect.
Minor Parkinsonian tremor and action tremor were noted. At
age 43, the patient was agitated and verbally and physically
aggressive. Fine movements were decreased, and spinocer-
ebellar ataxia and prominent spastic paraplegia were present.
Some of her parkinsonian symptoms may be attributed to
her treatment with haloperidol. Brain and spine MRI dem-
onstrated diffuse cerebellar atrophy and normal spine (Figure
2a). WES revealed a p.(Leu825Asnfs*32) mutation which

results in a truncated peptide of 857 a.a and deletion of six
C-terminally located transmembrane alpha-helixes. The mu-
tation has not been reported in gnomAD and ExAC, but was
previously reported (also as homozygous) in a patient with
KRS from a Greenlandic Inuit family (Eiberg et al., 2012).
As our patient is of Inuit-Canadian family, this might suggest
that this is an old, founder Inuit mutation.

3.22 | PatientB

During childhood, this patient from an Armenian-Lebanese
consanguineous family had impairment of fine motor move-
ments, and experienced learning difficulties and delayed
mental development noticeable at the age of 6 years. On
evaluation at age 18, the patient presented with increased
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FIGURE 2 MRIimages, pedigrees, and Sanger sequencing chromatograms. (a) Patient A’s MRI showed diffuse cerebellar atrophy (arrow).

(b) Patient B’s MRI showed moderate diffuse cerebral and cerebellar atrophy (arrows). (¢) MRI and DNA for sanger sequencing were not available

for patient C

muscle tone especially in the lower extremities and gait was
spastic. A Levodopa trial did not result in any improvement.
At age 24, the patient had a seizure for the first time. MRI
demonstrated moderate diffuse cerebral and cerebellar atro-
phy (Figure 2b). EEG demonstrated mild, slow biposterior
dysfunction but without epileptiform patterns. On evaluation
at the age of 31 years, the patient started to develop ideas
of reference and delusions. WES was performed and iden-
tified a novel homozygous missense ATPI3A2 mutation,
p-(Arg709Thr), in exon 19 within the hydrolase domain.
The mutation is predicted to be deleterious by CADD (25),
Polyphen-2 (0.99), MutationTaster (1), and was located in a
highly conserved amino acid with GERP++ score of 5.

3.23 | Patient C

At age 6, after normal development, this male patient of
French-Canadian origin was reported to have learning dif-
ficulties that became more pronounced through high school.
At age 12, the patient started abusing alcohol and drugs, and
throughout his teenage years he had two psychotic episodes
and paranoid delusions. On evaluation at age 32, the patient
had presented with spasticity and ataxia, spastic and mildly
magnetic gait with frequent falls. Brain MRI done at the age
of 29 showed cortical and cerebellar atrophy (images are not
available). Metabolic workup, EEG, EMG, nerve conduction

studies, and an abdominal ultrasound were normal. Clinical
WES identified a homozygous ATP/3A2 missense mutation
in exon 20, p.(Gly720Trp), predicted to be deleterious by
SIFT (0), Polyphen-2 (1), and CADD (31).

4 | DISCUSSION
We describe three unrelated patients with predominant spas-
tic paraplegia features, harboring homozygous ATPI3A2
mutations that are either novel or were not previously re-
ported in HSP. ATP13A2-HSP is rare, responsible for 0.4%
of all HSP patients and 0.7% of all HSP families in CanHSP.
Interestingly, all three patients suffered from psychiat-
ric symptoms, which were previously reported in only one
SPG78 patient (Estrada-Cuzcano et al., 2017). One of the
patients has developed seizures, which have not been pre-
viously reported in SPG78. Mild extrapyramidal symptoms/
signs were present in patient A and bradykinesia in patient B.
MRI in all three patients demonstrated cerebellar and/or cer-
ebral atrophy, consistent with previous reports on ATP13A2-
HSP (Table 1).

Interestingly, the p.(Leu825Asnfs*32) mutation in patient
A resulted in HSP-predominant phenotype, while in previous
patients reported with the same mutation it was Parkinsonism-
dominant phenotype (Eiberg et al., 2012). This may suggest
that the clinical presentation may be affected by other genetic
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and/or environmental factors. We also identified a novel mis-
sense ATP13A2 variant, p.(Arg709Thr) in a highly conserved
amino acid located within the hydrolase domain which is crit-
ical for the catalytic activity of ATP13A2. Furthermore, this
variant is affecting the last nucleotide of the exon, which may
also affect splicing and possibly result in nonsense mediated
decay. This possibility needs to be studied preferably in neuro-
nal models with the variant. The mutation in patient C, p.(Gl-
y720Trp) changes Glycine to Tryptophan at codon 720, which
could unfold the N-domain of ATP13A2 (Figure 1e). Our path-
way enrichment analysis may suggest that copper ion binding
is involved in the pathogenesis of specific forms of HSP, and
further studies are required to examine this possibility.

This study has several limitations. Since DNA was not
available for segregation analysis, and since our genetic data
include only in silico prediction tools and structural models,
we could not prove with full confidence that the detected
variants in ATP13A2 are disease causing. However, one of
the mutations was previously described in a patient, and it
is unlikely that by chance alone two extremely rare biallelic
variants in a gene that is already known as disease causing
will be found in two HSP patients. Therefore, it is probable
that these variants are disease causing. An additional limita-
tion is the lack of available DNA for patient C, therefore the
variant reported by the clinical lab could not be independently
confirmed.

Our study expands the genetic and phenotypic spectrum
of ATP13A2-related HSP. The different phenotypes observed
in carriers of ATP13A2 mutations imply that genetic and non-
genetic modifiers exist. Our findings may also suggest that
in HSP patients with psychiatric symptoms, mutations in
ATP13A2 should be suspected, especially if mild parkinso-
nian symptoms are also present.
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