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ABSTRACT

There has recently been much interest in how limitations in spatial frequency range
affect face and object perception. This work has mainly focussed on determining which
bands of frequencies are most useful for visual recognition. However. a fundamental
question not yet addressed is how spatial frequency overlap (i.e.. the range of spatial
frequencies shared by two images) affects complex image recognition. Aside from the basic
theoretical interest this question holds. it also bears on research about effects of display
format (e.g.. line-drawings. Mooney faces, etc.) and studies examining the nature of
mnemonic representations of faces and objects. Examining the effects of spatial frequency
overlap on face and object recognition is the main goal of this thesis.

A second question that is examined concerns the effect of calibration of stimuli on
recognition of spatially filtered images. Past studies using non-calibrated presentation
methods have inadvertently introduced aberrant frequency content to their stimuli. The effect
this has on recognition performance has not been examined, leading to doubts about the
comparability of older and newer studies. Examining the impact of calibration on
recognition is an ancillary goal of this dissertation.

Seven experiments examining the above questions are reported here. Results
suggest that spatial tfrequency overlap had a strong ettect on face recognition and a lesser
effect on object recognition. Indeed, contrary to much previous research it was found that
the band of frequencies occupied by a face image had little effect on recognition, but that
small variations in overlap had significant effects. This suggests that the overlap factor is
important in understanding various phenomena in visual recognition. Overlap effects likely
contribute to the apparent superiority of certain spatial bands for different recognition tasks,
and to the inferiority of line drawings in face recognition. Results concerning the mnemonic
representation of faces and objects suggest that these are both encoded in a format that
retains spatial frequency information. and do not support certain proposed fundamental

differences in how these two stimulus classes are stored. Data on calibration generally



. shows non-calibration having little impact on visual recognition, suggesting moderate

confidence in results of older studies. [348 words]



RESUME

[l y a eu derniérment beaucoup d’intérét sur les effets qu’a la gamme de fréquences
spatiales sur la perception des objets et des visages. Ce travail ¢’est surtout concentré sur la
question des gammes de fréquences les plus utiles pour la reconaissance visuelle. Une
question fondamentale n’a pas encore été addressée. Celle-ci concerne I'effet qu’a le
chevauchement des gammes de fréquences spatiales de deux images sur la reconaissance. A
part son intérét théorique. cette question a ausie des implications pour les études examinant
les formats représentationels des stimuli (e.g., dessins, visages Mooney, etc.) ou la nature
des représentations mnémoniques des objets et des visages. Cette thése examine
principalement les effets de chevauchement des gammes de fréquences spatiales sur la
reconnaissance.

Une deuxiéme question examinée est reliée a I'effet qu’a la calibration des stimuli
sur la reconaissance des images filtrées spatialement. Les études antérieures qui ont utilisées
des stimuli non-calibrées ont introduit, par inadvertence, des fréquences spatiales anormales
a leurs images. ce qui aurait pu avoir un effet sur la reconaissance. Le fait que cette question
n"a jamais été examiné met en doute I’équivalence des résultats de ces études par rapport i
ceux d’études plus récentes.

Sept expériences sont discutées ici. Les résultats suggerent que, contrairement a ce
qui avait été proposé précédemment, la gamme de fréquences spatiales d’une image a peu
d’effet sur sa reconnaissance. et que le chevauchement de ces fréquences est la determinante
principale de la reconnaissance. Ceci suggére que le chevauchement des fréquences
spatiales pourrait expliquer certains phénomeénes de reconaissance visuelle. Quant aux
représentations mnémoniques des visages et des objets, les résultats suggérent que ces deux
types d’image sont retenues en mémoire dans un format qui contient de 1'information sur
les fréquences spatiales. Ces résultats ne sont pas compatibles avec I'idée qu'il existe des
différences fondamentales entre les représentations de ces deux types de stimuli.

Finalement, la calibration a généralement eu peu d’impact sur la reconnaissance, suggérant



. que les études qui ont utilisées des stimuli non-calibrés sont généralement fiables. (332

mots|
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CHAPTER |: INTRODUCTION

This dissertation examines the effects of varying spatial frequency overlap on face
and object recognition. This is done in an attempt to provide a better understanding of how
we see and how we remember what we see. Spatial frequency overlap simply refers to the
degree to which two images share spatial frequency bandwidth (a more extensive
description is given in a later section). This factor has been little examined in the past and
may help in understanding the sometimes contradictory body of findings on spatial
frequency and complex image recognition.

A second area which is investigated is the effect of calibration on recognition of
spatially filtered images. A number of researchers (Metha, Vingrys & Badcock. 1993; Olds.
Cowin & Jolicoeur, 1999; Pelli & Zhang. 1991:; Tyler & McBride. 1997) have noted that
failing to linearize the relationship between pixel values -- the input for filtering algorithms -
- and luminance values -- the output of stimulus presentation apparatus -- results in the
inclusion of aberrant frequency elements in a filtered image. However, while there have been
a number of articles on how to linearize this relationship, there have been none investigating
exactly how non-calibration might aftect recognition. This is important because many early
studies (e.g., Fiorentini. Maffei, & Sandini, 1983; Millward and O'Toole, 1986) used slides
or other stimuli which produced a non-linear luminance tunction. If non-calibration has
strong effects. then this would make interpretation of these early studies relative to more
modern ones quite difficult.

The dissertation begins with a brief history of the field of face and object perception
in general. This provides a broad context for the rest of the research presented here. The
historical review concentrates on the controversy over whether faces are treated in a way that
is qualitatively different from objects, and includes a discussion of recent challenges to the
idea of face “specialness.” The subsection concludes with a summary rationale for

studying spatial frequency overlap effects on face recognition.
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Following the historical outline is a detailed literature review. This examines past
research on spatial vision as it applies to complex image perception, especially concentrating
on face recognition. The literature is divided into four major segments: 1) Research on
coarse-quantization (also called pixelization or block averaging), 2) Studies of recognition
across display form, such as work on the recognizability of line drawings, 3) Research on
which bands of spatial frequencies are most useful for various visual tasks. and 4) Studies
of how spatial frequency information is used in storing face and object representations in
memory. The literature review closes with a detailed rationale for studying spatial frequency
overlap. This also includes a brief rationale concerning the effects of calibration and a
review of what little previous work has been done concerning this question. This concludes
the first chapter.

The second chapter of the dissertation presents seven novel experiments on spatial
frequency overlap as it affects face and object recognition (there are in fact 12 experiments.
but 10 of them are paired into the first five for the sake of organization). These use a variety
of methods. including learn/test recognition, simultaneous matching and sequential
matching. All show a strong effect of overlap. suggesting that this factor should be taken
into account when analyzing a variety of higher-order visual phenomena.

The third and final chapter of this document is the general discussion. This is an
attempt to bring together the findings of past research with those presented here to provide a
better overall understanding of visual recognition. This chapter re-iterates the form of the
rationale given in the introduction, examining each of the questions it poses in a separate
subsection. The discussion closes with suggestions for further research and a summary of

basic conclusions which can be drawn from this work.

A Brief History of Face Perception Research
Research in face perception has enjoyed a steady rise in popularity over the past few

decades. Whereas there were fewer than 30 scholarly articles published on this topic during



the 1950's (Ellis, 1986), there were over 600 published articles in the 1970s. More recent
decades have seen thousands of articles on face perception published, as well as several
books (Bruce. 1988: Bruce & Young, 1998; Bruce, Cowey, Ellis, & Perrett, 1992; Bruyer,
1983: Ellis. Jeeves, Newcombe. & Young, 1986; Young, 1998). The reasons for this rising
interest are many and complex, but likely have much to do with the intitively compelling
nature of human faces. Faces are a conduit of communication between people that arguably
rivals spoken language in importance. They are also the most important and central means
for assessing individual identity on an everyday basis. Given the great social relevance of
face perception, what is perhaps surprising is the lack of attention it received prior to the
1970s. Though Darwin (1872) wrote extensively about facial expression and several early
psychologists touched on related topics (see Goldstein, 1983), systematic research has only
been undertaken in earnest in the last 25 years or so.

One reason for the relative neglect of face perception as an area of study in the past
may have been that faces were assumed to be recognized by the same mechanisms
underlying general visual perception. As such, face recognition did not warrant study in
isolation. Indeed. the recent surge of interest in this topic seems largely fueled by the
intriguing suggestion that faces are processed by the human visual system in a manner
qualitatively different from other objects. Teuber (1968) was the first modern scientist to
propose this possibility, and a number of researchers have since provided evidence to
support the idea. Prima facie the suggestion that humans might have a “face processing
module” seems quite plausible, for it would have been of paramount importance for our
primate ancestors to correctly identify each other and to accurately assess each other's
emotional states (Anderson, 1994). As we are a social species heavily dependent on the
sense of vision, it seems reasonable that a powerful and efficient means of accomplishing
these tasks using visual cues would have evolved in us, just as similar scent-based
mechanisms have evolved in species who rely on that sensory modality. Supporting the idea

of face "specialness” is a great deal of evidence suggesting a qualitative difference between



how faces, as opposed to objects in general, are visually processed. As we will see in this
review, however. the underlying source of this apparent difference remains contentious.

Yin (1969, 1970) was the first to report behavioural evidence for qualitative
differences between face and object processing. He found that upside-down faces were
disproportionately difficult for subjects to recognize as compared to upside-down objects.
Since then many studies have replicated his findings in humans and other higher primates
(e.g.. Bartlett & Searcy. 1993: Enns & Shore. 1997; Farah, Tanaka & Drain, 1995; Parr,
Dove. & Hopkins, 1998; Phelps & Roberts, 1994; Pullan & Rhodes. 1996; Tomonaga,
1994; Vermeire & Hamilton. [998; Wright & Roberts. 1996; see Valentine, 1988 for a
review of earlier work) and a number of other phenomena have been uncovered that seem to
point to differences in the way the visual system treats faces vs. objects (for reviews see
Bruce. Cowey. Ellis, & Perrett, 1992; Bruce & Humpbhreys, 1994; Bruce & Young, 1998;
Farah. 1996: Tovee. [998: Tovee & Cohen-Tovee, 1993; Young, 1998). For example, face
recognition is disproportionately affected by contrast reversal, also known as photographic
negation or brightness reversal (Anstis. 1992; Bruce & Langton, 1994; Galper, 1970;
Galper & Hochberg, 1971; Gauthier. Williams, Tarr, & Tanaka,1998; Hayes, 1988: Hayes,
Morrone. & Burr. 1986: Johnston, Hill, & Carman, 1992; Kemp, McManus, & Pigott,
1990: Kemp. Pike. White, & Musselman, 1996; Liu & Chaudhuri. 1997, 1998; Luria &
Strauss. [978: Phillips, 1972). Also. variations in lighting direction (Braje. Kersten, Tarr &
Troje. 1998: Bruce, 1998; Enns & Shore. 1997; Hill & Bruce, 1993. 1996; Johnston et al..
1992) and rotation in depth (Bruce, Valentine & Baddeley, 1987; Davies, et al.. 1978;
Krouse, 1981; Logie et al., 1987; Patterson & Baddeley. 1977; Schyns & Bulthoff, 1994,
Troje & Bulthoff, 1994; Wogalter & Laughery, 1987) have greater effects on face
recognition. Lastly, it has been suggested that faces are processed holistically while objects
are processed in a part-based manner (Biederman and Kalocsai, 1997; Bradshaw &

Wallace, [971; Tanaka & Farah, 1993; also see Bruce, 1988 for a review).



This behavioural evidence has been supported by a number of neurological studies
that have suggested that face processing is supported by its own brain module, located in the
middie fusiform gyrus. These include brain imaging studies (Aguirre, Singh, & D’Esposito,
1999; Haxby et al.. 1999; McCarthy, Puce, Gore, & Allison, 1997) as well as clinical and
electrophysiological studies (see Farah, 1996 for a review). The McCarthy et al. (1997)
study is typical of this body of research. In this study. subjects were shown face and flower
images that were either scrambled or unscrambled. The scrambled condition was necessary
to control for or "subtract out” general visual recognition areas. [t was assumed that these
sorts of images would activate basic visual areas as well as feature and shape detecting
modules. but not higher centers responsible for face or object recognition. McCarthy et al.'s
(1997) results support the notion of a face specific area. They found that when faces were
viewed amidst unscrambled objects there was bilateral activation in the fusiform gyrus. but
when faces were viewed amist scrambled objects. there was focal activation in the right
fusiform gyrus. These results are compatible with a model in which the fusiform gyri are
the seat of a general object recognition system, while an area of the right fusiform gyrus is
specific to face recognition.

The special status of faces in cognitive and visual systems has recently been
challenged by the work of Gauthier and colleagues (Gauthier. 1999; Gauthier. Behrmann. &
Tarr, 1999; Gauthier & Tarr, 1997; Gauthier. Tarr, Anderson, Skudlarski & Gore, 1999:
Gauthier, Williams, Tarr & Tanaka, 1998; Tanaka & Gauthier, 1997). These researchers
argue that many of the phenomena that are held to distinguish faces from objects are in fact
the result of differences in subject expertise with the two sets of stimuli. Gauthier (1999)
points out that whereas normal human beings have great expertise in recognizing faces, they
do not have similar expertise with other sorts of objects. She predicts that if subjects are
well trained to recognize and discriminate an object class with similar physical
characteristics to faces, then it will elicit the same inversion. lighting, and contrast reversal

phenomena that faces do. If this is the case, it argues against studying face perception in



isolation from object perception. Instead, the appropriate course would be to include an
expertise factor in models of general visual recognition. which would thus be able to predict
face recognition performance without resort to less parsimonious special mechanisms.

In several studies, Gauthier and her colleagues had participants train extensively to
recognize a class of artificial objects known as "greebles" and then tested them to see if they
showed the same effects with these stimuli as they did with face images. For example,
Gauthier and Tarr (1997) found that subjects trained to be "greeble experts” did indeed
exhibit the kinds of holistic effects seen in face recognition, though in terms of accuracy
they did not show a similar inversion effect. nor an effect of brightness reversal. Gauthier
and Tarr (1997) found some evidence for an inversion effect in expert greeble-viewers, but
only in the form of a reaction time (RT) difference, not an accuracy deficit as seen with face
stimuli. Also, the RT deficit is only seen on the second of two blocks of test trials. The
authors interpret this in terms of non-expert subjects adapting to the new inverted stimuli
faster than expert subjects. However, this is not the pattern of behaviour one would predict
with face stimuli. which would be expected to show the inversion effect on the initial testing
trial as well as any subsequent ones. That is, normal subjects -- who presumably have been
training since infancy in upright face recognition -- show an inversion effect any time they
are shown inverted faces, including initial presentation. They do not merely adapt to them
more slowly. Finally. the inverted greebles were found to be more difficult for both novices
and experts, indicating that there is something innately more difficult in dealing with upside-
down greebles than right-side up ones. This should not have been the case if the objects
being presented were truly novel and the novices had no prior expectations of them.

Gauthier et al. (1999) also challenge previous findings of a face specific area of the
infero-temporal cortex in or around the middle fusiform gyrus (Puce, Allison, Asgari, Gore
& McCarthy, 1996; Damasio, Damasio, & Van Hoesen, 1982; Damasio, Tranel, &
Damasio, 1990; Kanwisher, McDermott, & Chun, 1997; Puce, Allison, Spencer, Spencer, &
McCarthy, 1997; Puce, Allison, Gore, & McCarthy, 1995). In their study, they examined



both novices and greeble experts using functional magnetic resonance imaging (fMRI) and
found that the middle fusiform gyrus was activated in the latter group when viewing
greebles, just as it was with normal observers viewing faces. Gauthier (1999) also reports
similar results with bird and car experts when they viewed their stimuli of expertise. She and
her colleagues interpret these findings as indicating that the middle fusiform gyrus is not
specifically dedicated to faces. but rather to the recognition of any relatively homogeneous
class of stimuli with which one has much experience. In this interpretation, the module is
devoted to some process that develops as one gains aptitude in discriminating small
differences in a visually similar class of objects. The nature of this process is difficult to
determine, but may involve higher-order configural processing (Gauthier, 1999).

Several criticisms have been leveled at Gauthier's work. For instance, Biederman and
Kalocsai (1997) have noted that greebles are somewhat face-like in their arrangement. They
are composed _of two rounded masses analogous to a body and a head. Three spikes emerge
from the "head” in positions appropriate for ears and a nose. while a single spike emerges
low on the “body”. which may be seen as a penis. Biederman and Kalocsai argue that such
feature arrangements may simpiy be eliciting face-like effects because of their similarity to
faces. That is. greeble experts may not be learning to identify greebles per se. but rather
learning to see greebles as faces. Greebles might also be seen as heads with a nose -- where
Biederman and Kalocsai see a penis -- and an unusual hairstyle or horns. This interpretation
is even more amenable to processing by a face-specific module. In response to these
criticisms, Gauthier and colleagues are presently developing a new class of novel objects
called "Yufos" (Gauthier, 1999). These have a distinctly non-face-like appearance, but no
results using these stimuli have yet been published.

Even if Gauthier and colleagues’ conclusions are correct, however, this does not
necessarily mean that there is no specific mechanism for face recognition, nor does it argue
conclusively against the role of the middle fusiform gyrus as the seat of this mechanism.

Indeed. given that this cortical area is devoted to higher-order configural computations or



some other process necessary for the discrimination of visually homogeneous objects. it
may nonetheless be devoted to face recognition in a phylogenetic sense. That is, the area
may have evolved its capacities due to evolutionary pressures related to face recognition
only to be recruited, with extensive training, for other tasks. A similar situation has already
been recorded concerning another area of the brain. specifically the left inferior frontal lobe.
containing Broca's area. Although it is widely accepted that this area is devoted to language
processing, it activates in expert musicians when they are exposed to tunes (e.g., Hugdahl, et
al., 1999; Penhune, Zatorre, & Evans, 1998). Clearly the area did not evolve for music
perception. but due to the plasticity of cortical function it can be recruited for this task given
sufficient training. Similarly, it seems unlikely that the capacity to discriminate subtly
different forms within object classes would have evolved for the purpose of identifying cars
or birds. Indeed. it is difficult to think of any class of natural objects other than faces whose
subte individual discrimination is of adaptive significance to primates under natural
conditions. Other animals and plants need only be identified by species to allow appropriate
responses, individual discrimination is unnecessary.

Based on the above argument, it seems highly plausible that we possess an innate
ability to make subtle intra-class discriminations and that this evolved for the purpose of
face perception. The most likely candidate for a cortical center subtending this ability
remains the middle fusiform gyrus. The fact that this area can, given sufficient practice, be
recruited for other tasks does not counter this assertion.

In summary. Gauthier and colleagues have convincingly shown that higher-order
configural processing is involved in face recognition and that this type of processing can be
recruited for other visually homogeneous object classes given high levels of training. But
their work has not shown inversion effects nor contrast reversal effects on accuracy in
greeble experts. To date, the photographic negative effect, depth rotation effects and a

number of other phenomena continue to qualitatively distinguish face recognition from the



recognition of other object classes. Thus, the idea of studying face perception in isolation
from general object recognition remains valid.

If one accepts that faces are indeed "special”. that they are processed in some way
qualitatively different from other objects, one is then faced with the question of what the
nature of this difference might be. One possibility is that face and object recognition make
primary use of visual information at different spatial scales. It may be that the two processes
make primary use of different spatial bands. or it may be that the stored representations
retain different bands. Another possibility that has been suggested is that object
representation might rely on higher-order features that are spatial-frequency-free whereas
face representations store matrices of raw low-level filter outputs (Biederman & Kalocsai,
1997; Kalocsai & Biederman. 1998).

Along these lines, several researchers have proposed that whereas objects are
recognized primarily based on high spatial frequency edge information. faces are recognized
by surface properties that incorporate both coarse and fine spatial frequencies (see Bruce &
Humphreys, 1994, for a review). Evidence for this comes from studies of recognition of
images in different display formats (e.g.. line drawings, photographs and two-tone images).
which are held to preferentially preserve different spatial frequency bands. Full bandwidth
photographs of faces are better recognized than either line drawings or two-tone images.
which are thought to preferentially preserve high- and low-frequency information
respectively (Bruce, Hanna, Dench, Healey, & Burton, 1992; Davies, et al., 1978). However,
for object recognition, line drawings are about as effective as photographs (Biederman & Ju,
1988).

Object recognition may also be more robust to variations in spatial frequency
content in general than face recognition. Low-pass or high-pass face images containing a
narrow band of frequencies are more difficult to recognize than those containing a broader
band of frequencies. which in turn are more difficult to recognize than full-bandwidth

images (Bachmann, 1991; Costen, Parker, & Craw, 1994, 1996; Fiorentini, Maffei, &
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Sandini, 1983; Harmon, 1973; Millward, & O'Toole, 1986; Parker, Lishman, & Hughes.
1996). But studies on naming or matching of complementary images in the Fourier domain
show that object recognition displays relative invariance to spatial frequency content
(Biederman & Kalocsai, 1997; Kalocsai & Biederman, 1998).

The above shows that researchers consider knowledge about how spatial scale
affects visual recognition to be important, and that they feel it may reveal interesting things
about how face and object perception differ. Despite this. there are a number of questions
related to spatial scale and visual recognition which have not been addressed. One of these
concerns the effects of varying spatial frequency overlap. Although a few studies have
touched on this factor (Biederman & Kalocsai, [997:; Kalocsai & Biederman. 1998;
Millward & O'Toole. 1986), there have been no systematic attempts to evaluate the effects of
it on recognition.

Instead, studies on the effects of spatial frequency variations in visual recognition
have primarily concentrated on determining what ranges of spatial frequencies are most
useful for the tasks. In object recognition, this initially took the form of a debate as to
whether low or high spatial frequencies were of paramount import (e.g., Ginsburg, 1978,
1980: vs. Fiorentini. Maffei & Sandini, 1983), an issue that is still being examined (Parker
et al.. 1996). In face recognition. a series of studies points to a "critical band" of middle
object frequencies as most important (Bachmann, 1991; Costen. Parker. & Craw. 1994,
1996: Fiorentini et al.. 1983; Harmon. 1973; Hayes, et al., 1986; Peli. Lee, Trempe., &
Buzney, 1994; Gold. Bennett. & Sekuler, 1999; Nasanen, 1999).

Although determining the relative usefulness of different spatial bands provides us
with some useful data for making predictions about the effects of spatial frequency on
human recognition performance. it does not provide sufficient information for modeling
human behaviour under certain circumstances. To predict performance at some tasks, it is
necessary to know something about how the degree of spatial frequency overlap affects

recognition. [t is clear, for instance, that matching a high-pass image to a low-pass one is
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more difficult than matching either of these to an unfiltered original. Part of the reason for
this is likely that the high-pass and low-pass images share little or none of the spatial
frequency spectrum. To the extent that different display formats (line drawings,
photographs, two tone images) present different spatial frequency bands. information on
overlap effects will also be important in determining how humans can match across
variations in such representations.

Another motivation for examining the overlap factor is that such investigations can
give us insights into how faces and objects are represented in the brain. Biederman and
Kalocsai (1997; Kalocsai & Biederman, 1998) have proposed a model wherein face
representations retain spatial frequency information but object representations do not. That
is. they hold that faces are mnemonically stored in the form of vectors in a multi-
dimensional metric space. with the dimensions representing the activation levels of an array
of early filters. As such. these representations retain information about the spatial frequency
of different detected features. In contrast, objects in this model are thought to be represented
as Geon Structural Descriptions (GSDs) which are qualitative descriptions consisting of a
number of volumetric primitives and terms describing their aspect ratios, their relations to
one another. and so on. GSDs do not retain spatial frequency information and can be
activated by a broad range of early filter activation patterns. thus providing objects with
greater robustness to spatial frequency variations. If this is the case one would expect object
images to show greater tolerance for low levels of spatial frequency overlap than face
images. Biederman and Kalocsai (1997; Kalocsai & Biederman, 1998) report results that
suggest exactly this, though their paradigm examines only the case of no overlap vs.
complete overlap. An examination of more gradual changes in overlap might therefore be
more informative as to how this difference comes about.

This dissertation examines the effects of spatial frequency overlap on face and
object recognition. This is done with the goal of better understanding the issues discussed

above, as well as several other questions in the general area of visual recognition. As a first
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step. past research on spatial scale as it applies to complex image perception is reviewed in
detail in the next subsection. This concludes with a detailed rationale for the study of spatial

frequency overlap, which includes a set of specific question which need to be addressed.

A Note On Units

In studies of spatial vision, spatial frequency is typically measured in units of cycles
per degree (c/d). However. it is widely agreed in the literature on recognition that a better
unit for examining complex images is cycles per object or cycles per face. Research has
shown (e.g.. Parish & Sperling, 1991) that varying the viewing distance -- and thus the
absolute spatial frequency content -- of stimulus images does not affect complex image
recognition over a wide range. For this reason, relative units, using stimulus dimensions as a
base. are generally used in the literature. This dissertation will follow this convention, using
“cycles per object” (c/o0) to describe research on both face and object recognition wherever
possible. Unless otherwise noted. this unit refers to the number of sinusoidal cycles that
cross the width of the actual face or object stimulus (as opposed to the complete stimulus
image. which may incorporaie an irrelevant background of varying size). [n some cases, the
information necessary (o calculate c/o is not given and estimates based on limited
information are used. These are clearly labeled as such. Cycies per degree (c/d) will also be
used on occasion. and refer as usual to the number of cycles that cross an area subtending

one degree of visual arc.

Literature Review
To date. four major lines of research have dominated the literature on spatial
frequency in complex image recognition. Early work concemed the effects of pixelizing
faces and the fact that this caused recognition to decline until the image was blurred or
viewed from a distance. Two basic theories as to the reason for this phenomenon were

advanced, one which held that pixelization added high-frequency noise to an image, thus
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masking the contents of the original (e.g., Harmon & Julesz, 1973), and another which held
that the phenomenon arose from a spatial mislocation of landmarks in perceptual
organization (e.g., Morrone et al., 1983; Morrone & Burr, 1994).

At the same time. another group of researchers were examining the effects of
varying mode of representation, investigating the efficacy of representations such as line
drawings and two-tone images relative to photographs. This work, originally very practical
and applied in nature, branched off in a more theoretical direction concerned with which
bands of spatial frequencies were most useful for recognition. Early research on this
question debated the efficacy of high vs. low frequencies in object recognition. Later
research examined face recognition and suggested the importance of a middle band between
8 and 16 c/o.

Recently. the issue of which bands of frequencies are most useful to the recognition
process has spawned a fourth line of research. this one concerning how spatial frequency
information is used in representing faces and objects in memory. This has been most
directly examined by Biederman and Kalocsai (1997; Kalocsai & Biederman, 1998), who
propose a model in which face representations retain information on spatial frequency while
object representations discard it (see also Biederman. 1993, for the apparent genesis of the
idea). This line of inquiry represents an interesting new direction for studies in spatial
vision, bringing issues of spatial frequency into the cognitive domain.

The following literature review will examine the four issues mentioned above,
treating each in detail. The review concludes with the observation that attention to the factor
of spatial frequency overlap may be of use in providing a more complete understanding of
how we recognize what we see. Note that although these four research directions are
presented as developments of one another, they should not be taken to have occurred in any
definite chronological order. As will be seen. they have generally paralleled each other
throughout the last half of the 20th century. Only the relative degree of interest in each has

changed.
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Recognizing Pixelized [mages: Critical Band Masking vs. Spatial Mislocation

Harmon and Julesz (Harmon, 1971; Harmon & Julesz, 1973) were the first

researchers to examine spatial frequency effects using complex stimuli. They had subjects
attempt to recognize images that had been pixelized. That is, the image was divided into a
grid of square cells and all pixels in each cell were set to the mean of their origina! set of
values. This procedure is sometimes called pixelization, coarse-quantization or block-
averaging. Harmon and Julesz (Harmon, 1971: Harmon & Julesz. 1973) noticed that
recognition accuracy improved if the pixelized images were blurred or viewed from a
distance. They hypothesized that block averaging, in addition to reducing the resolution of
the image and effectively low-passing it. also impaired recognition by producing high-
frequency spatial noise that masked the original image. Block averaging produces spurious
spatial frequency elements whose amplitude drops off linearly as frequency rises above the
fundamental frequency of the quantization grid (Harmon, 1971). Harmon and Julesz
(Harmon, 1971; Harmon & Julesz, 1973) proposed that the noise adjacent in frequency to
the signal in a complex image would produce the greatest deficit in recognition, in a manner
analogous to critical band masking seen in audition (e.g., Scharf, 1971; Moore, 1995) and
basic vision (e.g., Blakemore & Campbell, 1969; Campbell & Robson, 1968: Morgan &
Watt. 1984). To examine this hypothesis, they repeated their experiments using blocked
images that had been band-stop filtered to remove elements either immediately above the
frequency of the quantization grid or to remove elements more remote in spatial frequency.
Leaving in elements at frequencies adjacent to the image frequencies indeed caused greater
impairment than elements that were more distal in frequency. For instance, in a picture
block-averaged at 10 c/o (i.e., 20 pixels per image), leaving in the noise between 10 and 40
¢/o width had great effect on recognition accuracy while noise between 40 and 70 ¢/o had

little effect.
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Morrone, Burr & Ross (1983) question the interpretation offered by Harmon
(1971) and Julesz (Harmon & Julesz. 1973), noting that the energy of the high frequency
components introduced by coarse-quantizing an image is too low to mask the low frequency
components of the original picture, which are generally high in energy in natural images.
Morrone et al. (1983) show that introducing noise at oblique spatial orientations renders
block-averaged images easier to perceive. This is incompatible with the masking hypothesis.
as according to this view adding more high-frequency noise should only produce greater
difficulties in recognition.

One possible explanation of Morrone et al.’s (1983) results is that the oblique noise
they added may have masked the noise already introduced by block averaging. In essence,
the added energy may have "canceled out" that which was introduced by coarse-
quantization. However. the noise added by Morrone et al. (1983) was dissimilar in
orientation to that introduced by block averaging. occupying only those areas within 22.5~
of the oblique in each quadrant of the Fourier domain (i.e.. orientations from 22.5 to 67.57,
112.510 157.57, 202.5 t0 247.5, and 292.5 to 337.5). Morrone et al. (1983) argue that this
rules out the possibility of low-level masking by the oblique noise of the horizontal/vertical
noise because elements of dissimilar orientation do not mask each other under most
circumstances.

The explanation favored by Morrone et al. (1983) is that the grid structure
introduced by block averaging interferes with higher-order perceptual organization
mechanisms designed to perform figure-ground segregation and overall structural analysis
of images, and that adding the oblique noise removes this effect. That is. when a picture is
block-averaged, a high-frequency structure is introduced along the blocks’ edges. This is
made more salient than the original structure of the face, producing a form of high-level
shape masking. Adding oblique noise at the same frequencies as the blocks' noise causes a
breakdown of the block structure. allowing low-frequency higher-order mechanisms to

detect and extract the structure of the original face image.
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Durgin and Proffitt (1993) report another experiment that challenges Harmon and
Julesz's model. They found that super-imposing a grid of black lines over the quantization
grid produced superior recognition, with the face appearing to be "behind” the grid. They
interpret this finding as being counter to the noise hypothesis, claiming that they are in
effect adding more quantization noise and yet improving recognition. But the results are
difficult to interpret, as adding solid black lines to the image introduces spatial elements at
all frequencies. not just high ones. More importantly, the black lines differ strongly in
luminance from the other elements in the picture and could thus be luminance-masking the
original noise that is at adjacent frequencies to the image elements.

[n an experiment similar to Durgin and Proffitt's (1993), Morrone and Burr (1994)
found that reversing the contrast of the edges produced by the blocking operation had
similar effects. Again, performance improved and again face images appeared to be
"behind” the contrast-reversed grid. Although this manipulation eliminates concerns about
luminance differences, it nonetheless produces new sharp edges in the image that introduce
harmonic elements across a broad range of spatial frequencies. A later experiment by the
same researchers (Morrone & Burr. 1997) varied the phase of the spurious harmonics
introduced by block averaging. They found that with large phase shifts, subjects improved
in recognition, reporting as with the earlier experiments (Morrone & Burr, 1994; Durgin &
Prottitt. 1993) that the low frequency elements appeared "behind" the phase-shifted
quantization grid. This assuages the methodological concerns regarding similar earlier
experiments and makes a strong argument against the idea that noise is solely responsible
for the effects of quantization. Taken together. this group of experiments (Durgin &
Proffitt. 1993; Morrone & Burr, 1983; Morrone & Burr, 1994; Morrone & Burr, 1997)
supports the involvement of higher-order perceptual organization mechanisms in the
phenomenon.

Costen, Parker and Craw (1994, 1996) also examined the effects of low-pass

filtering vs. coarse-quantizing face images. They found that coarse quantization causes a
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more rapid decline in performance as the cut-off frequency is lowered. They attribute this to
a mixture of noise effects and mislocation of features in the spatial domain. in essence
agreeing with the idea that noise effects cannot be the sole explanation for pixelization
phenomena. It should be noted, however, that their studies were not designed to test either
theory explicitly, so strong conclusions cannot be reached from their data as to what the
relative contributions of noise and higher-order effects might be.

Uttal. Baruch. and Allen (1995a; 1995b; 1997) have performed a series of studies
that examines the effect originally reported by Harmon and Julesz (1973). In the first (Uttal
et al., 1995a), they examined the ability of subjects to discriminate small silhouettes of
airplanes. They found that filtering such a block-averaged stimulus did not improve
performance, but rather degraded it further. This result is the qualitative opposite of that
found by Harmon and Julesz (1973). They argued from this that task differences exist in
this phenomenon. a position similar to one earlier proposed by Sergent (1986). A second.
closely-related study (Uttal et al.. 1995b) used the same stimuli but in a recognition
paradigm. Here they found results in agreement with Harmon and Julesz (1973), supporting
the hypothesis that different tasks use spatial frequency information differently. Oddly.
however. they found the same results whether they first block-averaged the stimuli and then
filtered them or first filtered and then block averaged them. As the latter manipulation
should introduce noise elements in the same way that blocking alone does, this result is
incompatible with an explanation of the blocking/filtering phenomenon, which relies purely
on high-frequency noise effects.

[n their most recent study, Uttal et ai. (1997) used a recognition paradigm and
changed the stimuli to faces of two different sizes. With large faces (about 6° across) they
find a pattern compatible with the noise hypothesis: Blocking then filtering creates superior
recognition to blocking only, but filtering then blocking does not. However, with small face
stimuli (about 1° across) they find that either order of image degradation produces similar

results. That is, whether one quantizes an image and then filters it or filters it and then
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quantizes it, subject accuracy is better than with the quantized image alone. The researchers
suggest that it is not the size of the stimuli per se that is causing differences in the resuits.
but rather a complex interplay between type of task, size of the stimuli, size of the blocks.
and the fiiter parameters. Unfortunately. they do not detail their position any more than this.

To summarize the above literature, it seems that Harmon and Julesz's (1973) original
explanation for the improvement in recognizing coarse-quantized images cannot be the
entire explanation. Although noise effects may certainly be involved. there is also a great
deal of evidence for higher-order mechanisms taking part (e.g., Durgin & Proffitt, 1993;
Morrone et al.. 1983: Morrone & Burr. 1994) and some suggestion that the phenomenon
works differently at different spatial scales (Uttal et al., 1997). In retrospect, this seems
entirely likely, as the "noise” introduced by block averaging is structured and therefore
something of ecological relevance to the visual system. Certainly a grid of squares is
something we would expect the visual system to extract from a scene. so what the block
averaged image presents is not so much a signal obscured by noise, but two competing
signals. both of which have higher-order structure, and both of which cover a wide range of
spatial frequencies. A variety of manipulations can reduce the saliency of one signal or the
other. eliminating this competition and allowing a single clearer image to emerge (or
alternately, disentangling the two signals so they can both be perceived clearly).
Unfortunately. this explanation is not entirely satisfactory. as the characteristics of higher-
order perceptual organization have proven difficult to define formally and remain poorly
understood relative to lower-level mechanisms. For instance, while it intuitively clear what
the two competing signals are in a pixelized image, it is difficult to formally define which
elements belong to each signal.

Research on coarse-quantization effects was only one antecedent of the current
interest in spatial frequency etfects on visual recognition. Another important precursor was
work examining the effects of different display formats (e.g., photographs, line drawings,

two-tone images, and so on) on face and object recognition. Initially this line of
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experimentation was concerned mainly with purely practical matters such as whether line
drawings were effective means of identifying criminals to the public. But later researchers
recognized that the issue was related to the spatial frequency content of the images and they

manipulated display format to explore more fundamental questions.

Recognizing Images Across Different Display Formats.

A number of early studies examined the effectiveness of various modes of
representation on face and object recognition. Mainly these were concerned with practical
matters. For instance. Ryan and Schwartz (1956) investigated the effectiveness of line
drawings vs. photographs in presenting complex visual information such as electrical
diagrams and machine schematics. They found that photographs were identified more
quickly than line drawings but that the latter produced a better understanding of the material
being presented. Fraisse and Elkin (1963) examined the ability of subjects to recognize
items represented as line drawings, shaded drawings, photographs or actual objects.
Surprisingly. shaded drawings proved more recognizable than photographs in general, while
outline drawings along with actual objects were hardest to recognize.

Davies, Ellis and Shepherd (1978) were the first to examine the question of display
format with regards to face perception (In scientific terms, that is. The issue has of course
been of interest to artists for considerably longer!). They investigated the effectiveness of
outline drawings. detailed line drawings and photographs in a recognition paradigm. Their
study was motivated by the question of which method of representation would be best for
reconstructing faces of criminals, but it nonetheless provides some interesting hints as to
how spatial frequency content affects recognition. In their first experiment, they tested
subjects’ recognition of faces of celebrities, gathering measures of recognition (the name
associated with the stimulus) and familiarity (a rating on a 5-point scale). Both indicators
suggested a strong advantage for photographs over detailed drawings. which were in turn

superior to outline drawings. A second experiment along similar lines examined recognition
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of previously unknown faces in an old/new paradigm. Here subjects examined either
detailed drawings or photographs in a learning session and were subsequently tested on
photographs only in the testing session. Photographs continued to show a superiority, but
this was much reduced as compared to the first experiment. These findings are opposite to
those of previous studies (Fraise & Elkin. 1963; Ryan & Schwartz, 1956), finding that
photographs produced better recognition than detailed drawings, which in turn were better
than outlines.

The obvious explanation for the differences between Davies et al.'s (1978) findings
and those of previous studies (Fraisse & Elkin . 1963; Ryan & Schwartz, 1956) lies in the
types of stimuli they used. Davies used faces whereas the others used objects. [t may be that
difterent sorts of information are optimally useful for the purposes of face and object
recognition. Recently, this idea has been reiterated by Biederman and Kalocsai (1997;
Kalocsai & Biederman, 1998) who posit that whereas face representations retain a full range
of spatial frequencies in their mental representations, objects discard spatial frequency in
favor of a feature-based representation based mostly on edge locations.

Other evidence for the inadequacy of line drawings for face recognition was found
by Kuehn and Jolicoeur (1993). Using a visual search task. they compared performance
with line-drawn faces against performance with digitized face images. They found that both
types of face elicited serial-search styles of visual search but that line drawings produced
slower reactions overalt. One could interpret this as evidence that low spatial frequencies are
important to the face recognition task. However. this conclusion must be a guarded one as
the full-bandwidth faces most likely contained a greater degree of information overall.

In addition to studies of line drawings. a number of studies have explored the
recognition of two-tone images. These representations, also referred to as Mooney.
lithographic or bi-quantized pictures, assign one of two values to each point in an image,
usually a light white and a dark black. Hayes (1988) was the first to examine these sorts of

faces with regards to what they might say about spatial frequency effects on recognition. He
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examined the récognition of both line drawings and two-tone images. To produce bi-
quantized images Hayes (1988) performed a thresholding function on 256-level greyscale
images at the mid-point of their luminance range. Line drawings were made by marking the
points at which there was a transition from biack to white in the bi-quantized image. The
results of this experiment showed that two-tone images could be recognized quite well,
whereas edge images produced near-chance performance. Contrast-reversed versions of the
two-tone images also produced poor performance. This finding is unexpected because
previous research on object-recognition showed that it was little affected by this
manipulation (Sutherland. [971). Hayes (1988) reasoned that the difference between his
face stimuli and Sutherland’s (1971) object stimuli might be that whereas the latter could be
identified by their high spatial frequencies alone, the former required low-spatial frequencies
for analysis. He supported this conclusion by showing nearly equivalent recognition
performance for low-pass filtered two-tone and low-passed multi-tone images of faces
(Hayes. 1988).

In another study of display format. Bruce et al. (1992) combined line drawing and
two-tone images into “cartoons’. They tested the ability of subjects to recognize each
component of these cartoons (i.e., the line drawing alone and the two-tone image alone) as
well as the combination. As with some of the previous studies, this one was directed at a
practical issue, testing the efficacy of a [-bit image transmission system for the hearing
impaired. The line-drawings and bi-quantized images were produced by a system developed
by Pearson and Robinson (1985) that created 1-bit images by combining an edge-detector
with a thresholding function. This creates images that are subjectively quite recognizable, an
impression that Bruce et al. (1992) attribute to the inclusion of the thresholded component,
which provides some impression of the "mass" of the face. To test this assumption, they
had subjects attempt to recognize images of famous persons that were rendered in one of
four formats: Full greyscale images. line-drawings, thresholded images, and cartoons.

Different groups of subjects were first asked to identify the photographs in order to



determine a baseline for performance. About 90% of these images were recognized, with
only small and non-significant differences between groups. Subjects were then asked to
recognize the same images in the other three formats. Full cartoons (lines with thresholding)
fared best. with a 93.3% relative accuracy. Images with only lines produced the worst
performance, with a 67.2% relative accuracy. Images with only the threshold elements (bi-
quantized images) were in between these two, with a relative accuracy of 77.4%. The fact
that the full cartoons do better than either of the components is not surprising, as there is
more information in the combination of the elements. But the fact that the threshold
component was superior to the edge component is of interest. as it suggests that edges are
not very useful for face recognition. while shading information is. This in turn suggests that
lower spatial frequencies may be more important than higher ones.

Liu & Chaudhuri (1998) examined the recognition of two-tone vs. multi-tone faces
in four conditions: Learn Positive/Test Positive (PP). Learn Positive/Test Negative (PN),
Learn Negative/Test Negative (NN). and Learn Negative/Test Positive (NP). They found
that two-tone images were recognized as well as multi-tone images in the PP condition, but
inat the two-tone images produced deficits in all other conditions. They attribute this pattern
of findings to disruptions of different bands of spatial frequencies. Contrast reversal of an
image is thought to interfere with the usefulness of low-frequencies because it creates
impossible shadows and shading. Bi-quantization on the other hand. disrupts high spatial
frequencies. If this is the case, and if low spatial frequencies are sufficient for face
recognition. then simply bi-quantizing a face should not create insurmountable difficulties in
its recognition. However, both bi-quantizing an image and contrast reversing it would
hamper both the upper range of frequencies and the lower, making the task extremely
difficult. This is exactly the pattern they found (Liu & Chaudhuri, 1998).

Biederman and his colleagues investigated the efficacy of line-drawings for object
recognition in a number of studies (e.g., Biederman. 1987; Biederman & Ju, 1988,

Biederman & Kalocsai, 1997; Kalocsai & Biederman, 1998). The study conducted by
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Biederman and Ju (1988) is representative of this work. In this experiment, subjects were
asked either to identify an object by naming it or to verify that presented names were
congruous with presented pictures. They did this with either full-colour pictures of objects
or with line drawings of the same. In all cases, accuracy and reaction time were virtually
identical for the two types of representation. Biederman and Ju argue that this is due to the
internal representations of object being edge based as opposed to surface-based. a finding
that they take to support Biederman'’s (1987) Recognition by Components (RBC) model of
object identification.

A summary of the research on cross-format recognition is difficult to give, as the
wide variety of methods make it difficult to compare across studies. In general. however, it
seems to be agreed upon that whereas line drawings are sufficient for object recognition.
they are not enough to produce reliable face identification. It has been suggested that this
implies a greater role for high frequencies in general object recognition. whereas middle or
low frequencies are most important for tace recognition. A more exact and quantitative
conclusion is unfortunately not possible, as the image manipulations used in such studies
have effects on spatial information content that are difficuit to formally define. For instance,
although line drawings are thought by many to present only high spatial frequencies to the
observer, this is an incorrect assumption. Line drawings are in fact broad-band stimuli.
Although a line drawing may include only high-frequencies from the original image upon
which it was based. it also contains highly correlated information across the spatial
spectrum. If a line drawing is derived from a fuli-bandwidth image by some kind of
mathematical algorithm (e.g., high-passing and bi-quantizing). then it may be possible to
determine the relationship between them in terms of spatial frequency content with some
precision. But if the image is simply an artist's rendition of an object, as is often the case in
such studies. then the exact relationship between the contents of the drawing and those of a

normal full-bandwidth image are difficult to determine. Similarly, bi-quantizing an image,
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while disrupting the high spatial frequencies in the original, also adds in sharp edges highly
correlated with the information in the original.

The exact consequences of these manipulations in terms of spatial frequency content
are therefore hard to quantify and the nature of the information added by them is difficult to
ascertain. Thus, although the manipulation of display format is an interesting issue in its
own right, its use in exploring spatial frequency issues in visual recognition is somewhat
limited. It is perhaps for this reason that most recent work on spatial frequency in
recognition has focused more directly on the problem. using spatially filtered images or
noise-masking techniques that allow more precision as to which spatial frequency elements

are affected by the manipulation. It is to this line of work that I turn next.

Which Spatial Bands are Most Useful?

Perhaps the issue that has been of the greatest interest to researchers examining
spatial frequency and visual recognition has been that of which spatial frequencies (if any)
are most useful to the visual system for various tasks. Interest in this topic followed closely
from Campbell and Robson's (1968) suggestion that the visual system processed scenes
through a number of spatial frequency channels and continues to the present (e.g., Nasanen,
1999; Gold et al.. 1999). This research is partly motivated by the possibility that different
channels subserve different tasks, and partly by a debate over whether the processing speed
advantage of low-frequency elements gives them a special role in higher visual processes.
The latter issue has implications for models of face and object recognition, with some
favoring a coarse-to-fine sequence and others emphasizing the importance of high-
frequency information (Parker et al., 1996).

Harmon (1971) and Julesz (Harmon & Julesz, 1973), though primarily interested in
determining an explanation for why filtering coarse-quantized images makes them more
recognizable, also worked on determining the minimum number of picture elements that

could drive recognition. Their experiments suggested that face recognition could be
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supported by a coarsely-quantized image containing as little as 16 x 16 pixels. Because their
face images did not fill the entire grid. this corresponds (based on the examples provided in
their papers) to about 4 ¢/o. Under these conditions. subjects could name faces of familiar
people quite well. Accuracy was 48% (chance was 17%) when the quantization grid was
randomly aligned with the original image. rising to 95% when the best of several grid
alignments was used.

Although Harmon and Julesz were the first to spur interest in spatial frequency
effects on recognition. it was Ginsburg (1978. 1980) who first explicitly hypothesized that a
given band of spatial frequencies might be more useful for recognition than others. His
experiments examined the effects of spatially filtering images of faces, objects. and letters
(Ginsburg, 1978. 1980). He found in all cases that bandpass filters of 2 octaves in width are
necessary for identification of items and that filters centered on 2 c/o (thus covering the
range of 1 to 4 c/o) produced sufficient information for high-accuracy recognition.
Ginsburg suggests that this range provides the general form of the objects. He argues from
this that low spatial frequency information is most important for a majority of visual tasks
and that high spatial frequencies are largely redundant.

[n response to this. other researchers were quick to point out the relevance of high
spatial frequencies to recognition. For instance. Fiorentini et al. (1983) showed that faces
high pass-filtered above 5 c¢/o can be recognized better than those low-pass filtered at the
same cut-off frequency. Furthermore, they show that high-passed images with a cut-off
frequency of 8 c/o are recognized as well as complementary low-passed images. despite the
latter having greater energy content. They argue from this that high frequency information is
not redundant to face recognition, but is rather sufficient on its own to produce correct
identification.

Hayes et al. (1986) provided interesting data that can paradoxically be seen as
supporting the importance of both low and high spatial frequencies in face recognition.

They had subjects match 1.5 octave-wide band-passed images in photographic positive and
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regative. Identification of negatives was inferior to that of positives only when the images
contained low spatial frequencies, suggesting that it is the disruption of these which causes
the photographic negative effect. This in turn suggests that these frequencies are highly
important to face recognition. However, performance was best in both conditions when the
images' spatial bands centered around 20 to 25 c/o, suggesting that these higher frequencies
provided the most information for the task. In this sense, Hayes et al.'s (1986) findings
suggest that a wide range of spatial frequencies are involved in face recognition. These
results are compatible with the notion that different mechanisms are acting at different
spatial scales and suggest that higher-order contour seeking mechanisms may be active at
higher spatial frequencies. Although the researchers make no explicit statements about the
purpose of low-frequency mechanisms, the implication is that they are involved in shape-
from-shading.

Sergent (1986) attempted to reconcile the apparently contradictory findings of the
Ginsburg (1978; 1980) and Fiorentini et al. (1983) studies (which suggested that low and
high frequencies. respectively, were of paramount import in visual recognition) by noting
that whereas the former used a matching task, the latter used a recognition task. In a
matching task. subjects have continuous access to sample images of the stimulus faces
whereas in a recognition task they are asked to first learn faces and then identify them later.
Sergent (1986) argues that recognition relies more on the internal features and suggests that
these are more dependent on higher spatial frequencies. whereas matching relies on the
shape of the face and is thus low-frequency dependent. Sergent's (1986) position is that low
frequencies. because they are processed faster, will tend to be predominant in early visual
processing tasks such as matching or entry-level categorization, and that higher frequencies
will predominate in later or higher visual processes such as identification. Unfortunately.
this position fails to explain Hayes et al.'s (1986) findings that higher spatial frequencies

were most useful in a matching task.



Contrary to the work discussed so far in this section, Parker et al. (1996) found
evidence that high frequencies were equally relevant to both face and object recognition
tasks. In a series of experiments they investigated the role of fine and coarse spatial
information with reference to two broad theoretical positions concerning the role of these
bands in higher-level vision. One position. exemplified by the work of Ginsburg (1978) and
later Sergent (1986), holds that low-frequency spatial information has a special role in
higher-level processes such as recognition and matching. In this theory, the processing
speed advantage of low-frequency information is thought to reflect its role in guiding the
analysis of higher-frequency information in a coarse-to-fine feed-forward system. It is
assumed that representations in memory follow a similar model and are accessed or
compared to input in a coarse-to-fine manner as well. But as Parker et al. (1996) point out.
this assumption does not necessarily follow from the speed advantage of processing. It may
be that while visual input is processed in a coarse-to-fine manner, stored information is not.
This position. exemplified by the work Marr (1982). Biederman (1987) and Lowe (1987),
holds that object representations are in a form which does not retain spatial frequency
information but is rather feature-based. For these researchers the low spatial frequencies
hold no special place in the recognition task. Instead, high spatial frequency edge
information may be of higher importance because it defines important edges and
boundaries.

Parker et al. (1996) argue that if coarse information guides the analysis of finer
information, then cueing full-bandwidth images with low-pass images should have greater
effects on performance than cueing with high-pass images. If, on the other hand, object
representations are edge-based, then high-pass images should have greatest effect. They
explore these possibilities in an experiment that combined a sequential matching paradigm
with a cueing paradigm. Subjects were shown a full-bandwidth target face for 500 ms,
tollowed by a 1 second blank und then a 500 ms comparison stimulus. [n the test

conditions, the latter was temporally divided into a 100 ms priming image followed by a 400
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ms probe image. The probe always consisted of a full bandwidth image. The prime could
consist of either low-pass or high-pass images of either the same face as the probe
("relevant” condition) or a different face ("irrelevant” condition). There were thus 4
experimental conditions. A control condition was also run in which the comparison stimulus
consisted simply of a 500 ms full-bandwidth presentation.

In their first experiment using this paradigm, Parker et al. (1996) examined face
recognition. They found that RT was higher for high-pass irrelevant primes than low-pass
irrelevant primes, suggesting that high-pass information has more of an effect on
recognition. There was no ditference between high pass and low-pass for the relevant prime
conditions, however. In their second experiment they ran the same paradigm using cross-
category object images (e.g.. a tunnel, a cup. etc.). They found that relevant high-pass
primes produced better recognition accuracy than relevant low-pass primes. RT data support
this, showing that high-pass irrelevant primes were more disruptive than low-pass ones.
Parker et al. (1996) conclude from these findings that there is no evidence for the pre-
potency of coarse-scale information. That is. the fact that this information is processed first
does not lead to it being more important in object or face recognition. Rather, their
experiments lend support to the idea that high-frequency information is more relevant, in
that the presence of a high-passed image that does not match a subsequent full-band image
is more disruptive than a similar low-passed image.

The studies discussed thus far all used spatially filtered images as stimuli and
matching or recognition type paradigms, but a few studies have also examined the question
of spatial frequency efficacy through masking paradigms. Tieger and Ganz (1979)
combined faces with two-dimensional sine-wave gratings ranging in frequency from 0.54 to
3.9 c¢/d. Figures were not given in terms of cycles per face width, but the display subtended
10 degrees and faces seemed to fill about 80% of the width of this based on the example

stimuli given, so the mask frequencies ranged from roughly 4.5 to 31 c/o. Tieger and Ganz



(1979) report that a mask of 2.2 c¢/d. corresponding to roughly 18 c/o, had the greatest
detrimental effect on face recognition.

Moscovitch and Radzins (1987. see also further analyses in Moscovitch, 1988 based
on recommendations in Bruyer, 1988) examined face recognition in a backward masking
paradigm using noise, pattern and spatial frequency masks. The latter were random dot
patterns that varied in their grouping distances from .5 to 24 c/d. They found no effect of
varying this factor. which seems to conflict with the earlier masking study (Tieger & Ganz,
1979). although the differences in methodology make it difficult to compare the two. Also.
the relevance of spacing changes in random dot arrangements to spatial frequency as it is
usually defined is questionable.

Keenan, Witman and Pepe (1989, 1990) examined masking by square wave gratings
with fundamental frequencies similar to those used by Moscovitch and Radzins (i.e.. 0.5, 12
and 24 c/d. roughly 1.6, 38.4 and 76.8 c/o0). Contrary to Moskovitch et al. (1987), they
found a significant effect of the spatial frequency of the mask, with the highest frequency
being less disruptive than the other two. They attributed the difference in results to a
difference in the intensity of the masks used. Moscovitch and Radzins (1987) used a high
intensity mask. not matched for contrast with the face stimuli, and Keenan et al. (1989)
argue that the effects of mask spatial frequency may have been obscured by intensity-based
masking effects.

The studies discussed so far have concerned themselves mainly with the relative
import of low vs. high spatial frequencies in face and object recognition. In contrast to these,
a series of studies this decade (Bachmann, 1991; Costen, Parker, & Craw, 1994, 1996: Gold
et al., 1999; Nasanen, 1999) has suggested that a band of middle frequencies between 8 and
16 cycles per face is of vital importance to face recognition, and that information outside this
band provides little to the process.

Bachmann (1991) tested the recognition of tachistoscopically presented faces that

were coarse-quantized. He had subjects learn six faces in normal full-bandwidth images and
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then tested them on pixelated ones. He tested a range of quantization levels having
fundamental frequencies from 7.5 c/o to 37 c/o. His results showed a sharp increase in
accuracy between 7.5 c/o (where accuracy was 45%) and 9 c/o (where accuracy was 80%).
Images with higher numbers of pixels did not produce significantly better performance.

Costen, et al. (1994) attempted to replicate Bachmann's (1991) results and expanded
the methodology to include low-passed and Gaussian-blurred faces. In their first
experiment, they had subjects learn six faces in full bandwidth normal images and then
tested them with images whose high spatial frequencies had been removed in one of three
ways: Coarse-quantization. gaussian blurring. or low-pass filtering in the Fourier domain.
For each manipulation, three cutoff frequencies were tested: 5.5, 10.5, and 21 c/o. Goth
accuracy and response time were measured. For accuracy, they found a similar pattern of
results for all three manipulation types: There was a small but reliable increase in
performance between the 5.5 c/o and 10.5 c/o conditions. but no difference between 10.5 c/o
and 21 c¢/o. Coarse quantization produced significantly lower performance over all, while
blur and filtering manipulations did not differ from one another. Response time showed
overall similar patterns, with RT higher at 5.5 c/o than 10.5 c/o. For the quantized stimuli
performance was slower overall and the 21 c/o level also produced faster performance than
10.5 c/o.

Costen et al. (1994) interpret their results as compatible with those of Bachmann
(1991), suggesting that information below 8 c/o is not useful for face recognition. However,
they acknowledge that their interpretations are threatened by a ceiling effect. All accuracies
in this experiment were above 85% and those at 10.5 c/o and 21 c/o were all above 96%.
Reactions times show a pattern suggestive of a concomitant flattening out, except in the case
of the coarse-quantized images, which, producing slower overall reactions, leave room for
improvement between the latter two conditions.

Because of the possible ceiling effect, Costen et al. (1994), performed a second

experiment using a more difficult discrimination task in which the face stimuli used were
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selected to be more homogeneous than in their Experiment L. The second experiment also
used slightly different cut-offs (22.5, 11.5, 6 and 4.5 c/o) than the first, and a "jumbling”
manipulation was introduced in place of gaussian blurring (which is equivalent to a form of
Fourier low-pass filtering in any case). Jumbled faces had their Fourier components slightly
randomized in terms of orientation, phase and amplitude. This retained the energy
distribution of the face elements above the cut-off, but destroyed their two-dimensional
structure. Accuracy data in this experiment again revealed a discontinuity around 8 c/o. In
general. performance was similar for the two lower cutoffs. which differed from the two
higher cutoff. The latter did not differ significantly between themselves. Accuracy data in
this case remained below 80% in all cases. assuaging concerns about a ceiling effect.
Overall, the findings support the idea that there is a discontinuity in recognition performance
as one lowers the low-pass cutoff of a face image below 8 c/o.

In a second study Costen et al. (1996) went on to determine if there was a
discontinuity in performance as one high-pass filtered face images. They had subjects
recognize faces that were either high-pass filtered, low-pass filtered or pixelated. The cut-
offs used were 4.5. 6. 1 1.5. and 22.5 c/o in all cases. Subjects learned to identify six faces in
full bandwidth format and then were asked to identify these in the three different filtered
modes. Results for the low pass and pixelization conditions essentially replicated those of
the earlier study. Results for the high pass conditions showed a discontinuity in accuracy
between the 22.5 c/o cut-off and the others, suggesting a critical threshold somewhere
between | 1.5 and 22.5 c/o. Based on this and other resuits (Bachmann, 1991; Costen et al.,
1994: Fiorentini et al., 1983) they propose that a band between 8 and 16 cycles per face is
critical to face recognition and that information outside this band is of little importance to
the process.

Nasanen (1999) supported the idea of a critical band in a study using various
manipulations of spatial frequency information in face images. He compared the

pertormance of human observers to that of an ideal observer. Briefly, an ideal observer is a



computer algorithm designed to make perceptual decisions based on optimal use of the
information in the images it is given. The ratio of human performance to machine
performance is termed "efficiency” and is a measure of how well humans use the
information in the image in making their perceptual decisions. In Expertment 1, Nasanen
(1999) showed that masking by narrow-band noise produced the greatest effects (on human
observers relative to the ideal observer) when it is centered around L1 c/o. Sensitivity
calculations further suggest that most of the contrast energy is gathered from a band 2
octaves wide centered around this point. Experiment 2 was a replication of Experiment | in
which learned images were not provided to the human subjects. This was done to show that
the eftect is truly one of face identification and not just image matching. Experiment 3
examined the effect of phase-randomizing a narrow band of spatial frequencies and finds
once again that the greatest effect occurred when a band of middle frequencies (around 8
c/o) was disrupted in this way. In a final experiment, Nasanen showed that human observers
have lower contrast energy thresholds at middle spatial frequencies (between 6 and 14 c/o).
Gold et al. (1999) ran a similar set of experiments to those of Nasanen (1999).
Again the researchers compared human and ideal observer performance, but they did so
with two types of complex pattern: Letters and faces. In their first experiment, they
compared the contrast variance threshold of human observers and an ideal observer in
recognition of faces narrow-band filtered to 1 octave in width. They found surprisingly that
human observers were completely unable to perform the task except when the center
trequency of the band was 17.5 c¢/o (though one observer could perform above chance at 8.8
c/o). Under the same conditions, letters could be identified above chance across almost the
entire range of center frequencies tested (1.1 c/o to 70 c/o). This difference is quite
surprising considering that ideal observers were little affected by changes in the center
frequency of the filtered images and could perform above chance in all conditions with both
face and letter stimuli. Stmilarly, in a second experiment, Goid et al. (1999) found that with

a 2-octave wide band, human observers fared much better, and were able to identify faces
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above chance in all but the lowest center frequency conditions. Efficiencies for letter stimuli
show a peak around 6.2 c/o. Maximum performance with face stimuli is also around 6.2 c/o,
but because humans could not perform the task below this center frequency it is difficult to
ascertain if the maximum represents a peak of a band-pass shaped tunction. Overall.
however, differences in efficiency across conditions were small, with only a 0.25 - 0.5 log
unit change in efficiency across conditions for letters and 0.5 to 1.2 log unit change for
faces. These data are compatible with the critical band hypothesis. although the small
magnitude of the differences and the missing data points make it difficult to conclude this
with confidence.

The literature reviewed in this section uses a wide variety of methods and shows an
equally varied range of results. Particularly in the case of object recognition. there seems to
be little consistency in findings. with some studies suggesting the importance of low spatial
frequencies and others high spatial frequencies. In face recognition there is somewhat more
agreement that middle frequencies are of higher importance, although even here there are
some contradictory findings (Parker et al.. 1996; Tieger & Ganz. 1979; Moscovitch &
Radzins, 1987). Sergent (1986) attempted a reconciliation of the disparate results of earlier
studies (Ginsburg. 1978, 1980; Fiorentini et al., 1983), invoking different spatial
information requirements for different tasks. Her position was that matching tasks use low
spatial frequencies whereas recognition tasks use high frequencies. Unfortunately for her
argument. studies using matching paradigms have found support for both low frequencies
(Hayes, et al.. 1986; Hayes. 1988) and high frequencies (Parker et al.. 1996). Thus, this
explanation on its own cannot explain the differences in results.

One factor that has been largely ignored in literature on spatial frequency effects is
that of spatial frequency overlap. In most of the studies mentioned above, subjects were
asked to match full bandwidth pictures with either band passed images or high-passed/low-
passed images of successively narrower bandwidth. In the former case overlap is kept

constant and in the latter it varies concomitantly with the image bandwidth. Exploring the
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overlap factor in isolation requires testing subjects’ ability to match two filtered images to
one another, while manipuiating the similarity in bandwidth between the pair of stimuli.
Although a few studies have examined the ability of subjects to match filtered images to one
another (Millward & O'Toole, 1986: Biederman & Kalocsai, 1997; Kalocsai & Biederman,
1998). none has varied the similarity of bandwidths occupied by the images. The few
studies that have looked at matching pairs of filtered images have done so with the goal of
understanding the nature of the stored representation of visual objects. The following

section reviews this topic.

Models of Spatial Frequency Content in Face and Object Representations.

Much effort has been devoted to determining the cognitive and perceptual nature of
face recognition (Burton. 1994 Bruce & Young, 1986; Young & Bruce, 1991; Burton,
Bruce. & Johnston. 1990; Bruce. Burton & Craw, 1992). The aspect of this that is of the
most relevance here is the nature of face and object representations and how they use (or do
not use) spatial frequency information. Only a few studies have examined this question
explicitly. These are described hereunder.

Millward and O'Toole (1986) were the first to examine the question of matching
images with limited spatial frequency overlap. They found that faces low-pass filtered at 11
c/o could be matched to spatially complementary images with fairly good accuracy (63%
with one learning run, up to 72% with three learning runs). They also found that subjects
were better able to match similarly filtered images to one another than to full-bandwidth
images. Millward and O'Toole (1986) explain this pattern of findings by postulating a form
of "common information” contained in all versions of the images. That is, spatially
complimentary images can be matched to each other because similar spatial-frequency-free
features are extracted from them. This idea is based on Marr's (1982) influential feature-
based model of spatial vision, especially relating to his "spatial coincidence assumption”.

which holds that spatial frequency information is correlated across scale in natural scenes.
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This assumption been supported by empirical and formal investigations of natural images
(Watt, 1988, 1991; Wandell, 1995).

Because information is correlated across scale, a feature-based model of vision such
as Marr's should extract similar information from low-passed and high-passed images.
Using a least-squared error model on their data, Millward and O'Toole (1986) find support
for their explanation, as the analysis reveals that the primary source of information being
used by subjects to make matches between the high- and low-passed images is indeed a
form of common information. This information is found to be much more important than
information contained solely in either image. Millward and O'Toole (1986) hypothesize that
this common information is equivalent to Marr's (1982) "primal sketch”, which is a
representation holding only image features and that is free of spatial scale.

[n an experiment somewhat similar to Millward and O'Toole's (1986) in concept if
not implementation, Biederman and Kalocsai (1997) examined priming and naming of
images that were complimentary in the Fourier domain. However. rather than simply high-
passing or low-passing their images. they implemented a more unusual form of spatial
complimentarity. This involved dividing the Fourier domain into an 8 x 8 array of frequency
by orientation cells, similar in appearance to a chess board. One image in a compiimentary
pair had every odd diagonal of cells -- analogous to the black squares on a chess board --
filtered out of them., while the other had every even diagonal of cells -- analogous to the
white squares on a chess board -- removed. The purpose of this research was to examine
how faces and objects are stored in memory. The researchers hypothesized that faces are
encoded as arrays of activation values derived from low-level oriented wavelet filters. The
activation patterns are stored in the form of a metric space, a format that retains all spatial
frequency information from the input image. In contrast, objects are stored as Geon
Structural Descriptions (GSDs), a format that does not retain spatial frequency information.
GSDs are qualitative descriptions of objects derived from non-accidental features in an

image. This form of representation consists of a number of volumetric primitives (e.g..
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cones, sphere, bricks) and statements about their relations to one another. their aspect ratios,
and a few other properties (Biederman. 1987).

To support this model of different representational formats, Biederman and
colleagues (Biederman & Kalocsai, 1998: Fiser, Biederman, & Cooper. 1997; Kalocsai &
Biederman, 1997) cite evidence suggesting that objects are not represented in a format that
retains raw spatial frequency information. That is, they argue that objects cannot be
represented in a format that retains the similarity space of the activation values of spatial
filters. One example of the evidence they provide is seen in Biederman's (1987) research on
contour deletion. These experiments showed that when half the contour in a line drawing is
eliminated so that the GSD cannot be extracted from an image -- that is. if corners and
intersections are eliminated -- recognition becomes impossible. However, the same amount
of contour deletion. when it does allow GSD extraction -- that is. when sections between
corners and intersections are eliminated -- allows easy recognition. In a related experiment,
Cooper and Biederman (1991) show that a line drawing in which every odd line and vertex
is eliminated primes a complementary image, in which every even line and vertex is
eliminated. as well as it primes itself. From this they argue that the visual system is treating
these two images as identical even though the pattern of activation produced by the two
images would be very different.

Based on the above, Biederman and colleagues (Biederman & Kalocsai, 1997;
Kalocsai & Biederman. 1998) argue that a GSD-based model of representation is best for
describing object recognition. However. they acknowledge that such a model is not
appropriate for face recognition, which shows strong effects of rotation, contrast reversal
and so on, effects that are not compatible with a GSD representation. They therefore
postulate that faces and objects are stored in different types of representations.

Biederman and Kalocsai (1997) tested this theory with a number of empirical
investigations. In their first experiment, they had subjects name common objects in two

blocks of trials. In the first block subjects were simply asked to name objects that were
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filtered as described above. In the second block, they were asked to name either the
complementary image of the same object. the identical image of the same object, or an image
of a different object with the same name (e.g.. a different shaped chair). They found that
different exemplars with the same name were named more slowly on the second block than
were complementary images of the same exemplar. and that there was no difference between
the complementary and identically filtered images. Thus, complementary images of objects
are treated virtually the same as the identical images of those objects. Only an actual change
in the GSD representation causes an effect. This insensitivity to spatial frequency contents
suggests a similar effect to that seen in Cooper and Biederman (1991), but instead of outline
deletion spatial-element deletion is at work.

A second experiment conducted by Biederman and Kalocsai (1997) examined name
verification of famous faces. Subjects were first shown a name of a famous person,
followed by an image of a famous person. If the face and name belonged to the same
individual. they answered "same", otherwise they answered "different”. Analogously to the
first experiment. the second image shown could be the identical image. the complement of
the same image. or another picture of the same person (with a different pose, expression,
etc.). In this case. the results showed that complementary images were named significantly
more slowly than identical images. and that the difference between complementary images
and different exemplars was non-significant. Thus. contrary to the results with chairs.
complementary and identical images were treated quite differently. In fact, complementary
images were responded to in virtually the same way as images of completely different
people. This suggests that face perception is highly sensitive to the original filter values that
are input, and that face representations must therefore retain information about spatial
frequency.

In summary, Biederman and Kalocsai's (1997) results showed that performance in
matching identical and complementary chair images was very similar, whereas subjects did

significantly worse matching complementary faces than identical ones. This supports their
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hypothesis that object representations are spatial-frequency free whereas face
representations are not. The matching of chair images shows an invulnerability to changes

in filter input values, while faces show sensitivity to this factor.

Conclusion and Rationale

In the preceding literature review, [ examined four issues relating to spatial
frequency effects in face and object recognition. Two antecedents of modern interest in
these questions were reviewed. specifically research on coarse-quantization of images and
research on matching between display formats. The former was seminal in producing
interest in spatial frequency factors with regards to higher-order recognition processes. This
research suggested that low spatial frequencies were sufficient for recognition. and that
these could be masked by structured high-frequency noise. Research on recognition across
display formats was also important in generating interest in this area. The finding that line
drawings are sufficient for efficient object recognition but not for face recognition was
important in that it presented the possibility that the two processes relied on different bands
of spatial frequencies. Some studies suggested a vital role for low frequencies in face
recognition, but it is difficult to come to precise conclusions regarding this, due to the nature
of the stimulus manipulations used.

Research directly concerning itself with spatial frequency effects in face and object
recognition has primarily been a recent phenomenon. The results in this area have been
conflicting, especially with regards to object recognition where different studies have argued
for the sufficiency or necessity of widely different ranges of spatial frequencies. Similar
research on face recognition has been somewhat more in agreement. with a number of
studies pointing to a band of middle spatial frequencies as being most important, although
even here there has been inconsistency. Finally, there has recently been a suggestion that
faces and objects are stored in different representational forms, with the latter being stored

in a spatial-frequency-free format that gives objects relative invulnerability to variations in



39

spatial frequency content. This last area presents an interesting new direction for research
into spatial frequency. tying as it does the perceptual to the cognitive.

Overall. the literature on spatial frequency and visual recognition appears to be
somewhat confused. Past ettorts to bring order to the findings of the different studies based
on methodological differences have failed (Sergent. 1986) and a consideration of other
factors that might contribute to the inconsistency of the findings seems necessary. Two
factors that have received little attention and which might provide some help in disentangling
the literature are discussed hereunder. One is stimulus calibration and the other is spatial
trequency overlap.

Calibration here refers to a procedure, generally applied to computer monitors, that
compensates for a non-linear relationship between the numerical value assigned to a pixel in
a stimulus image and the luminance output by the apparatus presenting the stimuli. The
most commonly used apparatus is a CRT. These generally show a curvilinear relationship
between these two factors, referred to as a gamma function. To compensate for the gamma
function. modern research typically employs either a special monitor that has been designed
for linear output or. more commonly. a system wherein the available luminance output levels
are measured and sub-sampled to create a colour look-up table (LUT) that is linear in
nature. The LUT is a mapping between the available output values and a linear set of
luminance values. Where the monitor’s luminance steps are too small (normaily at the low
end of the range) the mapping skips over several values until the appropriate amount of
increase in luminance is achieved. Where the monitor's luminance steps are too large
(normally at the high end of the range), several LUT entries will contain the same numerical
value so as to compress the rise into linearity.

The reason this is necessary is that the mathematical procedures applied to images to
produce spatially filtered versions work on the numerical values in the image array. Ina
typical experiment. the images will be in 8-bit greyscale format and are thus input to filtering

algorithms as two-dimensional arrays of values from 0 to 255 (equivalently. they may be
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normalized to a 0 to | scale). The output of the filtering algorithm will typically be in the
same format. However, if the range of input and output values do not represent equal
luminance steps (e.g.. if the difference in luminance between values 0 and 1 is not the same
as that between value 254 and 253) then the output image will contain spurious spatial
frequency elements in the lower range. elements that are not from the original and which
could hamper recognition.

Unfortunately, early researchers seem to have been either unaware or unconcerned
with this problem. presenting stimuli on non-calibrated monitors or using photographs of
filtered images generated on computer monitors as stimuli. Photographs are known to show
a non-linear relationship between the input luminance and the reflectance (or transmittance
in the case of slides) of the image that is generated. This may present difficulties in
comparing the findings of past studies with those of modern ones, although the extent of
these difficulties depends on the magnitude of the effects that calibration vs. non-calibration
has.

Oddly. although there have been a number of papers published on the topic of
calibration (Metha, et al.. 1993; Olds, et al.. 1999; Pelli & Zhang, 1991; Tyler & McBride.
1997). none has explored the actual effects on human performance of using calibrated vs.
non-calibrated stimuli in experiments involving complex stimuli. If the effect is large, then
this causes problems with comparing past studies to present ones. If it is small, then one can
more confidently contrast older studies with new ones.

Although the issue of stimulus calibration is of important practical interest, a more
deeply theoretical concem is found in the concept of spatial frequency overlap. As noted
before, this factor has not been much examined. This despite the fact that it is likely
contributes a significant portion of the effects seen in experiments examining display format
as well as those examining the effectiveness of different spatial bands in recognition. For
instance, there has been little consideration of the fact that as one asks subjects to match a

full-bandwidth image to filtered images with ever-narrowing bandwidths, there is a loss of
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common bandwidth for the visual system to work with. In this sort of task, used by a
number of studies (e.g.. Costen et al.. 1994; 1996), the loss in overlap is concomitant with
the loss of information in the filtered image and it is difficult to say what proportion of
effects can be attributed to one factor or the other. Separating out the two factors requires
testing subjects’ ability to match two filtered images with one another while varying their
range of shared spatial frequencies.

Casual observation reveals that it is more ditficult to match a high-pass image to a
low-passed one than it is to match either one to a full-bandwidth original. But as the cut-offs
of the two filtered images approach one another. they become easier to match. The reason
for this is presumably that the range of the spatial spectrum they share increases as one
does so. Likewise. two band-passed images become easier to match as their cutoffs become
more similar. The lack of data on matching pairs of filtered images is unfortunate, as such
studies may be highly informative. For instance, if middle frequencies are more useful for
face recognition. then matching two images band-pass filtered so that they contain the same
range of frequencies within this range should be relatively easy (e.g.. matching two images
filtered to have frequencies between 8 and 16 c/o). Conversely. matching two face images
filtered so that they contain the same width of frequencies outside the critical band should
be more difficult (e.g.. matching two images filtered to have frequencies between 4 and 8
c/o). This possibility has not been examined. Studies have only examined the ability of
subjects to match filtered images with unfiltered ones.

At this point. it i1s important to be quite clear about what is meant by the term
“spatial frequency overlap™”. Figure 1 illustrates this concept, showing the gain profiles of
filters through which pairs of stimulus images are passed. As Figure la shows, when two
images are filtered — in this case when one is high-passed and the other low-passed —
they will vary in the range of spatial frequencies they share. If the low-pass cutoff is
relatively high and/or the high-pass cutoff is relatively low, the range of shared bandwidth

will be high. As the high cutoff rises and/or the low cutoff falls, the shared portion of the
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spectrum becomes smaller and may become zero. As the cutoffs continue to separate, the
range of shared spatial frequencies may be said to be negative. Throughout this dissertation,
spatial frequency overlap is given in octaves of spatial frequency. When two images share a
portion of the spectrum. overlap is positive. When two images are separated. overlap is
negative. Negative levels of overlap might be expressed in positive terms as a number of
octaves of "separation” or "gap" between the images, but for consistency only the term
"overlap” will be used throughout.

Changes in spatial frequency overlap are also seen when one of a pair of images is
unfiltered and the other image is successively filtered to narrower spatial ranges. This is
illustrated in Figure 1b. Here, as a low-passed image is restricted to an ever smaller range of
spatial frequencies. the range of common spatial frequencies it shares with a full-bandwidth
image shrinks concomitantly (i.e.. the shared range is identical to the range of the filtered
image. Finally, as illustrated in Figure lc. if two images are band-passed at ever closer
center frequencies. they come to share a greater portion of the spatial spectrum while the
total range of the images remains constant.

To summarize the above, spatial frequency overlap can be defined as the range of the
spatial scale simultaneously occupied by two images in a learn/test pair or in a pair of
images for matching. This factor is independent of the absolute position on the spatial scale,
as a given degree of overlap can be produced at any point on the spectrum and with any
bandwidth of image (within the limits of the fundamental and Nyquist frequencies of the
image, of course).

[n some sense what is being presented in Figure | is a subset of a four-factor
problem. where a full illustration would show a range of conditions manipulating the low-
and high-pass cutoffs of each image in a pair independently. Some parts of this four-
dimensional parameter space are obviously not of interest, for instance where one or both
images contain no spatial information because their low cutoff is lower than their high

cutoff. Other portions of it are of limited interest as well, as when the two images are too far



distant on the spatial scale to be matched even with optimal use of the data present.
Exploring this space in terms of the factors of spatial frequency overlap, image bandwidth,
and center frequency is fruitful because it necessarily keeps one within the informative and
interesting parts of the total parameter space.

The value of exploring recognition in these terms can be seen by examining past
studies that have supported the notion of a critical band of spatial frequencies for face
recognition (Costen et al.. 1994: 1996). These studies have subjects recognize or match
images that have been low- or high-pass filtered to learned images that are full-bandwidth.
The cutoffs are varied and a sudden drop is seen around 8 c/o for low-pass test images and
16 c/o for high-pass test images. This situation is analogous to that in Figure 1b, where the
entire bandwidth of the tested image is contained in the learned image but not vice-versa.
Although one interpretation of these results is to say that the more informative frequencies
are between 8 and 16 c/o. several other possibilities remain. For one, it is possible that the
narrowing of the spatial band in the filtered test images is contributing to the sudden drop
off. Thus. a band-passed image with a three-octave width might produce similar
performance to images with frequencies of | to 8 c/o, no matter what the center frequency of
the band is.

Another alternate hypothesis is that interterence is occurring because of frequencies
in the unfiltered image that do not match those in the filtered image. [t may be that making
two tmages more similar in their spatial range will result in improved performance
regardless of position on the spatial scaie. That is. spatial frequency overlap may play a role
in these findings. Consider. for the sake of illustration, a simplistic template-matching model
of visual recognition wherein the visual system is performing a feature-by-feature match
between an array of early wavelet-detector activation levels in an input layer and a similarly-
arranged stored image. If the stored image is full-bandwidth and the input image is filtered,
a number of factors might progressively impede recognition as the input image's bandwidth

is narrowed. The most obvious is that there will be fewer "hits", that is fewer elements in the
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input image that match elements in the stored image. It is also true that there will be more
"misses” as there will be a progressively larger number of elements left in the stored image
that are not in the input image. But if the stored image is also filtered, then the number of
misses is reduced while the number of hits remains the same. To put it succinctly, as the
stored image is filtered to occupy a similar spatial frequency range to the input image, the
correlation between the two images increases. Effectively then, filtering out the non-
overlapping frequencies reduces noise in the matching process.

Of course. the noise in this case is not noise in the traditional sense. as it is not
random. Instead. it correlates with the signal (i.e.. the elements in the stored image that
match the input image). This bears an interesting resemblance to the problem of coarse-
quantized images, where a structured form of "noise” at higher spatial frequencies is
thought to mask lower-frequency face structure. It was argued earlier that the pixelization
effect is not really a signal vs. noise problem but rather a problem of two competing signals.
In both cases. because the noise is structured. it presumably competes with the underlying
image. In the case of coarse-quantized images. the competing signals do not correlate and
are thus highly disruptive to each other. The grid pattern, being the more structured element.
wins out in terms of perceptual saliency. Only eliminating this competing signal by low-
passing the image (Harmon, 1971; Harmon & Julesz, 1973) or disrupting its structure by
adding energy at oblique frequencies causes the other signal to emerge (Morrone et al..
1983). In the case of matching a filtered face to a full-bandwidth face the competing signals
are correlated. so the interference is lesser. Indeed. elements close in spatial frequency
should aid recognition, but elements distant enough on the spatial spectrum should act as
noise in the recognition process because their correlation with the elements to be matched is
insufficient.

The above is not to say that some bands of frequencies are not more informative
than others for a given task. indeed this seems likely to be true. But although information on

these bands provides useful information concerning human recognition systems. it is not
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sufficient to simply know the efficacity of different bands if one wishes to predict human
performance in certain recognition tasks. For instance, when the spatial frequency content of
neither image is wholly contained within the other, such as when one must recognize a low-
pass filtered image from a high-pass one or (more naturalistically) when two different
display formats are being used. a very different situation from that examined in the critical
band studies arises. In this case, knowledge about the critical band alone may not provide
enough information for accurate predictions of recognition performance.

[tis fairly obvious that recognizing a low-pass image from a high-pass one (or vice
versa) will generally be more difficult than matching either of them to a full-bandwidth one.
This shows that even if a pair of filtered images have sufficient information in common with
an untiltered one to be matched with it. they may still not have sufficient information in
common with one another to be recognized as representations of the same object. This idea
is empirically supported by the work of Millward and O Toole (1986) who show that
matching low-passed or high-passed face images to similarly filtered images allows better
performance than matching either of these to a full-bandwidth image. The researchers also
show that matching a low-pass image to a high-pass one (or vice versa) is more difficult
than any other condition. These findings are important in that they support the importance
of spatial frequency overlap in visual recognition.

Also illustrative of the importance of this factor is an examination of some of the
contradictory findings in the literature concerning which spatial frequency bands are most
useful in face recognition. For example, Costen et al. (1994, 1996) had subjects recognize
images that were low-passed or high-passed at progressively more extreme cut-offs while
the learning stimuli remained full-bandwidth. In this situation it is not only the cut-off. but
also the range of spatial frequencies and the degree of overlap between learned and tested
faces which changes across conditions. Using this method, Costen et al. (1994, 1996) find
that the most useful frequencies for recognition are centered around 12 c/o. By comparison,

Hayes and colleagues (Hayes et al.. 1986) had subjects match band-passed images with
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full-bandwidth photos. This has the effect of keeping the overlap and range of frequencies
in the test images constant. Using this methodology, they found that the most useful
frequencies for recognition center around 20 to 25 c/o. The large difference in the findings
of these two studies may be attributable to the fact that overlap varied in one while staying
stable in the other.

An understanding of how variations in spatial frequency overlap affect recognition
may also aid in comprehending recognition across different forms of representation, such as
line drawings, low-resolution images, two-tone images and so on. Each of these
preferentially presents information at different bands of trequencies. A line drawing,
although it contains energy across the spectrum, primarily displays high-frequency
information from the original (indeed a reasonably effective algorithm for computer-
generated [ine drawings involves high-passing an image and then bi-quantizing it). In
contrast, a low-resolution image retains low spatial frequencies. In situations where a person
must recognize a face between two such representations, for instance when a police officer
must match a forensic artist's sketch to a security video, the visual system is challenged by a
lack of common information between the two representations.

A recent study (Burton. Wilson, Cowan & Bruce. 1999) shows an example of this.
These researchers have shown that lay subjects. as well as police officers with substantial
experience in forensic identification, were extremely poor in matching unfamiliar faces taken
by a low-quality security video to the same faces presented in high-quality photographs.
Part of the difficulty may be attributed to the discrepancy between the spatial content of the
two kinds of images. The high-quality photographs contain frequency elements that are not
present in the low-quality video images. Recognition should be even harder or impossible in
an example where a face in a low-resolution video image must be matched with a sketch. In
this case. neither image wholly contains the spatial frequency range of the other and in fact,
the two images may not share any of the spatial frequency spectrum at all. Similarly,

identifying a face learned in a two-tone image from a line drawing would be quite difficult
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because the two-tone image preserves low spatial frequencies while disrupting high ones
(Hayes. 1988: Liu & Chaudhuri, 1997, 1998).

The examples and studies cited so far show that spatial frequency overlap is an
important factor in image recognition. but to date there have been no studies examining it
quantitatively. Although some information can be inferred from studies that have examined
images complementary in the Fourier domain. no research has been done that varies the
range of spatial frequency in common between images to quantitatively determine the effect
of this manipulation.

The main purpose of this study was to systematically examine the effects of spatial
frequency overlap on face and object perception by varying the range of spatial frequencies
shared by pairs of images used in learning and matching paradigms. This will allow us to
estimate how much transfer occurs when an object is learned through one set of frequency
channels and tested through another. Within this context, we were interested in determining
the point at which floor and ceiling performance would be achieved as well as determining
the degree of improvement in pertormance elicited as images become more similar in spatial
content.

Along similar lines, we were interested in determining the relative contribution of
spatial range similarity as compared to position on the spatial spectrum. That is, assuming
that different bands of frequencies are more efficacious for recognition than others, how
much of a difference does this factor make relative to the spatial frequency overlap factor?
Also. we wished to determine if spatial frequency overlap effects are independent of position
on spatial scale or if there is an interaction (i.e., will the same change in overlap have a
different effect for images at the high and low ends of the spectrum?)

A number of different methodologies have been used in the literature on this topic,
sometimes making the literature difficult to interpret. Sergent (1986) has suggested that

variations in spatial frequency information may have different effects for different tasks. For
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this reason, we were interested in examining how spatial frequency information affects
performance in both recognition and matching paradigms.

Another factor that hinders interpretation of the literature on spatial frequency
effects in visual recognition are differences in how stimuli are presented. Many researchers
have presented their images on non-linearized monitors. In fact. of the studies cited in the
above literature review. only one (Peli. 1992a) explicitly states that a linearized monitor was
used, and another (Millward & O Toole. 1986) clearly states that their stimuli were non-
linear in nature. Others (e.g.. Fiorentini. et al., 1983) used slides to present stimuli, making it
unlikely that their stimuli had a linear luminance distribution. As Peli (1992a. 1992b) points
out. non-linearities in luminance lead to the introduction of aberrant low-frequency elements
in high-passed images. This threatens the interpretation of earlier studies and leaves open
the question of how easily one can compare and contrast their results with those of modemn
studies using linearized monitors.

Although it is possible to ascertain what sorts of frequency elements will be
introduced into an image by non-linearities. it is difficult to predict what sorts of effects
these will have on subject performance in recognition tasks with complex images. In order
to be able to compare past studies to present ones. it would be useful to know to what
degree non-linearities affect performance. For this reason, several of the studies presented
below have been performed twice: Once with a linearized monitor and once with a non-
linearized one. Differences between the outcomes of these two sets of experiments should
give us some insight into how to compare older and newer studies.

Though the primary goal of the studies presented below is to examine the effects of
spatial frequency overlap on visual recognition, another objective is the examination of
models of face and object representation, specifically the "two representation” model
proposed by Biederman and Kalocsai (1997; Kalocsai & Biederman, 1998). They propose
that face representations retain information about the spatial frequency of features whereas

object representations do not. They argue that the spatial-frequency-free representation of
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objects gives them greater robustness to variations in image quality. If this is the case. then
object recognition should be less atfected by variations in spatial frequency overlap than
face recognition, as the former will involve essentially the same GSD representations across
a wide range of spatial filtering conditions. while the latter will suffer differences in
representation as spatial frequency varies.

[f the two representation model is correct, then we should see a greater robustness to
lack of spatial frequency overlap for object recognition than for face recognition. However,
there is an alternate hypothesis for results supporting this model. That is, it is possible that
greater robustness arises from greater correlation of information across scale in the object
images. Indeed. this seems likely as object images tend to have more sharp edges. and sharp
edges transcend spatial scale to a greater extent than smooth shape and shading variations.
To examine this alternative hypothesis, a control condition in which upside-down faces are
used as stimuli is run. Upside-down faces are thought to be treated more like objects by the
visual system (Haxby et al.. [999; Aguirre, et al., 1999), and so they should show a similar
pattern to objects if that is the case. If, on the other hand, they show a pattern more similar to
faces. then this argues that Biederman's findings are due to a difference in the stimuli.

To summarize. the following questions are examined in the studies presented in this
dissertation: 1) What is the effect of varying spatial frequency overlap, and how does this
compare in magnitude to the effect of varying the location on spatial scale? 2) What can the
answer to question #1 tell us about recognizing images across display format? 3) What can
the answers to questions #1 and #2 tell us about which bands of spatial frequencies are
most useful for different tasks? 4) How does luminance calibration of filtered stimuli affect
performance in such tasks and what does this tell us about comparing studies that do not
use calibrated displays to those that do? 5) How are the effects of spatial frequency overlap
and location on spatial scale affected by type of task (learn/test vs. matching)? 6) Do objects
and faces differ in how spatial frequency overlap affects them and what can this tell us about

the format of mnemonic representations for these two stimulus types?
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Finally. the following gives a brief synopsis of each experiment's methods, rationale
and predictions:

Experiment 1: This experiment looks at face recognition in a learn/test recognition
paradigm. [t examines the tolerance of the face recognition system for a lack of common
bandwidth as well as quantifying the effects of increasing overlap at three different locations
on the spatial scale. Subjects are asked to learn images in low-pass and recognize in high-
pass. or vice versa. The cutoffs of the filters are separated to different degrees to create
different levels of overlap. This experiment. as well as experiments 2 to 4. are broken up into
two sub-experiments a and b. which examine 3 lower levels of overlap (-2. -1 and 0 octaves
of overlap) and 3 higher levels (1. 2 and 3 octaves of overlap), respectively. The general
prediction here is that performance will rise with overlap and this factor will be a more
important determinant of performance than position on spatial scale.

Experiment 2: This experiment replicates Experiment 1, but uses an uncalibrated
display to examine the comparability of older studies that did not use calibrated stimuli to
modern studies that did. It is predicted that calibration will have greatest effects in
conditions that involve high-pass images with a fairly extensive spatial bandwidth but that in
general effects on performance will be small.

Experiment 3: This is a control and baseline experiment. Its methodology is similar
to Experiments 1 and 2, but it looks at subjects’ ability to match filtered images to other
similarly filtered images. The goal here is to determine how much effect the actual spatial
content of images has on recognition as compared to overlap. It is predicted that this factor
will have little effect overall.

Experiment 4: This experiment looks at face recognition in a simultaneous matching
paradigm. This allows us to generalize our data to other studies that used a similar paradigm
and to examine any paradigm-dependent differences in how spatial frequency information

affects visual recognition. It is predicted that overlap will have as strong an effect here as it



does in recognition, though there will overall be higher levels of performance due to
minimized memory load.

Experiment 5: This is a replication of Experiment 4 using uncalibrated stimuli. In a
similar manner to Experiment 2. it allows us to determine the comparability of past studies
to newer studies. As with Experiment 2, the prediction is that effects of calibration will be
small.

Experiment 6: This experiment contrasts the effects of spatial frequency overlap in
the recognition of faces vs. objects. In this case. bandpass images are used in a sequential
matching paradigm. This allows us to test one prediction of Biederman and Kalocsai's
(1997: Kalocsai & Biederman. 1998) theory that face representations retain spatial
frequency information whereas object representations do not. The hypothesis is that face
recognition will show a greater susceptibility to spatial frequency overlap than object
images.

Experiment 7: This experiment examines an alternative hypothesis for results
supporting of Biederman and Kalocsai's (1997; Kalocsai & Biederman, 1998) theory in
Experiment 6. Specifically. it is possible that object images would show less susceptibility
to spatial frequency overlap simply because the information in them is more strongly
correlated across scale. To test this, the same experiment was run with upside-down faces.
These are thought to be treated more like objects by the visual system (Haxby et al., 1999:
Aguirre et al.. 1999) and as such should show a pattern that is similar to that of objects,
assuming the two representation theory is correct. If they show a pattern more like upright

taces. then this argues that the effect is simply due to differences in the stimuli.
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CHAPTER 2: EXPERIMENTS
This section describes seven experiments examining the effects of varying spatial
frequency overlap on face and object recognition. Experiments I to 5 deal solely with face
recognition, whereas Experiments 6 and 7 compare performance with object and face
stimuli. Each set of experiments is preceded by a section describing the stimuli used in
them. The data from these experiments was previously presented in two manuscripts:
Experiments | to 5 were reported in Liu, Collin, Rainville and Chaudhuri (2000). while

Experiments 6 and 7 are reported in Collin. Liu and Chaudhuri (submitted).

Stimuli for Experiments 1 to 5

The stimuli for Experiments [ to 5 were spatially-filtered images of faces. The
original images were obtained from an internet database at the University of Essex. All
pictures were from the forward view. There were 46 individual faces, 10 of which were set
aside as practice stimuli. All images were converted to 256 gray-level format before filtering.
Filtered images were equated for mean luminance.

The spatial filtering of the images was done with MatLab 5.2 software for
Maclntosh. To create the filtered versions, the original full-bandwidth images were Fourier
transformed, then convolved with smooth Butterworth filters, and finally inversely
transformed back into the spatial domain. Butterworth filters were used to avoid the ringing
effects seen when images are filtered with abrupt spatial frequency cutoffs. Nonetheless. the
functions were steep enough to provide good spatial frequency localization. The low-pass

filters were defined by

l+(r/c)5
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‘ and the high-pass filters by

1+(c/r)5

where r is the component radius and c the cutoff radius.

Filter cutoffs were selected to cover a wide range between the fundamental
frequency of the images (1 c¢/o) and their folding frequency (about 68 c/o0). Because of the
image dimensions. the highest cutoff that did not result in a truncation of one of the high-
pass filters was 26.9 c/o. This was taken as the upper cutoff value. Three center frequencies
were then determined by maximizing their spacing within this range, producing values of
5.3. 8.0 and 12.0 c/o. Six overlap conditions were defined at each of the center frequencies
by placing low-pass/high-pass filter pairs symmetrically about them. The overlap conditions
varied by steps of one octave and ranged from -2 to 3 octaves of overlap.

Each overlap level was tested at each center freqllency. This was done in
consideration of the fact that the same amount of overlap might have different effects on
performance depending on the point in the spectrum at which the overlapping spatial
frequency bands meet. This might arise because of the changing bandwidths of the stimuli
as the center frequency shifts. For instance. if the bands meet at a very low frequency, the
high-frequency band contains most of the spectrum whereas the low-frequency band
contains only a small number of coefficients. The opposite is true if the overlapping bands
meet at high frequencies. Because these differences in spatial frequency range may well
have effects that are independent of or interact with those of spatial frequency overlap per se.
overlap was varied about three different center frequencies. This allowed measurement of

the effect of this factor along with overlap.
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Figure 2 illustrates the gain profiles of all the filters used in Experiments | to 5.
Figure 2a shows the filters used to make stimuli for the low overlap experiments (la to 5a).
which examined overlap levels of -2 to 0 octaves. Figure 2b shows the same for the high
overlap experiments (1b to 5b). which examined overlap levels of | to 3 octaves. As overlap
levels increase. the low-pass and high-pass elements of the filter pairs approach (and pass
each other in panel b) in | octave steps. That is. at each increase in overlap the low-pass cut-
off in each filter pair moves up .5 octaves as the high-pass cut-off moves down .5 octaves.
The lowest cutoff frequency thus obtained is 2.4 c/o. At the maximum overlap level, the low
pass filter's cut-off is 3 octaves above the high-pass cutoff. At the minimum overlap level.
the low pass filter's cutoff frequency is 2 octaves below the high-pass cutoff.

In examining Figure 2, readers may note that some cutoff frequencies are used in
more than one condition. representing different levels of overlap at each. This arises because
the center frequencies are shifted by .5 octave steps at the same time that the low-pass and
high-pass elements of each filter pair are shifted in .5 octave steps at each overlap level.
Although 32 filter profiles are shown in 2 there are in fact only 20 unique filters in the
diagram: 10 high-pass and 10 low-pass. These are labeled with ordinals from 1 to 10 that
give an index of the breadth of the spatial frequency range removed from images processed
with them. That is, filters with low ordinals let through a broader range of frequencies than
filters with high ordinals. For instance, the filter ordinals | to 5 in Figure 2a correspond to
cutoff frequencies of 12.0, 8.0, 5.3. 3.5. and 2.4 c/o width for the low pass filters and 5.3.
8.0. 12.0. 17.9. 26.9 c/o for the high-pass filters.

The relationship of the 20 filters and 18 filtering conditions (3 center frequency x 6
overlap) is somewhat complex, but can be visualized by examining Figure 3, which shows
examples of the stimuli used in the experiments. Figure 3a shows examples for the low
overlap experiments (la to 5a) while Figure 3b shows examples for the high overlap
experiments (1b to 5b). Each image in Figure 3 is a face image passed through one of the

filters shown in Figure 2. The images shown in Figure 3a are the result of processing by
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Figure 2a. Gain profiles and 50% cut-off values of filters used to generate
stimuli for Experiments 1a to 5a. The bracketed numbers below the cut-off
values are filter ordinals that identify each unique low-pass or high-pass
filter.
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values are filter ordinals that identify each unique low-pass or high-pass
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filters shown in Figure 2a whereas those in Figure 3b were made by filters in 2b. The rows
of Figure 3 represent the center frequencies and the columns represent the levels of overlap.
In each cell of the figure. the image on the left is the low-pass version and that on the right is
the high-pass version. Below the images are given the cutoff frequencies of the filters that
produced them as well as the filter ordinal which corresponds to the cutoff. The total
number of images used in this study was 920 (46 individual faces x 20 unique filters).

The term "opposite filters” is used throughout the report of these studies to describe
filters symmetrically positioned about a given center frequency. For instance, in the low-
overlap experiments the medium overlap level (-1 octaves of overlap) at center frequency 8.0
c/o involves two filters: A low-pass filter with cutoff frequency 5.3 c/o and high-pass filter
with a cutoff of 12.0 c/o (see Figure 2a. middle panel. dashed lines). These are referred to as

opposite filters to one another.

Experiment 1

This experiment examined the ability of subjects to recognize low-passed face
images from high-passed ones. and vice versa. The distance between the filter cutoffs was
varied to create different levels of spatial frequency overlap. A learn-test recognition
paradigm was used.

The major goal of this experiment was to test the limits of face recognition system's
ability to deal with a lack of common bandwidth between learned and tested images.
Millward and O'Toole (1986) found that when the cutoffs of a low-pass and a high-pass
fuce image are the same (i.e.. the images are complimentary in the Fourier domain) subjects
perform above chance in recognizing one from the other. It was therefore decided to
examine a range of conditions in which the cutofts of the filters were further apart, in
addition to one which was equivalent to that in this earlier study. This was done in

Experiment la. Also of interest was the examination of how performance continued to
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improve as the filter domains came to share part of the spectrum. producing positive values
of spatial frequency overlap. This was done in Experiment 1b.

The general hypothesis was that performance would increase significantly as spatial
frequency overlap increased. with chance performance occurring somewhere below 0

octaves of spatial frequency overlap and ceiling performance somewhere above it.

Experiment la

This experiment examines the effect of spatial frequency overlap on face recognition
in a learn/test paradigm. The goal is to quantify the effects of varying overlap and to
determine the minimum amount of overlap that allows above-chance recognition.

Method.

Participants. Twenty-one undergraduates from McGill University (7 male, 14
female) with ages ranging from 19 to 36 years (median = 20), participated. All participants
had normal or corrected-to-normal vision.

Materials. Materials were as described in the general stimulus description above.
For this experiment, face images were processed by the filters shown in Figure 2a. Example
stimuli may be seen in Figure 3a.

Design and procedure. The design of the experiment was 3 x 3, completely within
subjects. The factors were center frequency (5.3. 8.0 or 12.0 c/o) and spatial frequency
overlap (-2. -1. and 0 octaves).

Subjects were tested using a Power Macintosh 7200/120 computer with a 17"
monitor. The monitor was properly calibrated to correct for its gamma function. Images
were surrounded by a neutral gray background that filled the screen. Instructions were given
in written form on the monitor.

The initial part of the experiment was a short practice session. [n the learning part of
the practice session, subjects were asked to memorize 5 filtered face images presented

sequentially for 4 seconds each. The faces were drawn at random from the 1O set aside for
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this purpose. The filter applied to each face was selected at random from the 18 possibilities
(3 center frequencies x 3 overlap levels x high-pass/low-pass). Subsequently, subjects were
tested to see how well they could recognize the learned faces when they were filtered with
opposite filters to the ones applied to the learned faces. For each learned face, one target and
one distractor were included in the testing set. Both the target and the distractor were
processed by the filter opposite that through which the learned image had been passed. For
example, if the learned face was low-pass filtered at center frequency 8.0 ¢/o and the -1
octave overlap condition (Figure 2a. middle panel. dashed lines), the target and distractor
were high-pass filtered at the same levels. That is. if the learned face was low-pass filtered at
5.3 c¢/o. the target and distractor were high-pass filtered at 12.0 c/o.

Subjects were informed that the test images would be different from the learned
images but that some of the test images were the same faces as the learned ones. Subjects
were instructed to press the "Yes" key if the tace had been seen during the learning phase or
the "No" key otherwise. The test image remained on the screen until the subject responded.

Immediately following the practice. the actual experimental session was performed.
Subjects were informed that this would follow the same procedure as the practice. but that
there would be more faces to remember. During the learning part of the experimental
session. |8 faces images were shown. one filtered with each of the 18 different filters (see
Figure 2). Thus. 9 were low-pass images and 9 high-pass. During the testing part of the
experimental session, 36 faces were presented. 18 targets and 18 distractors. As with the
practice session, one distractor and one target were presented for each learned face, and
these were both passed through the filter opposite that which had been applied to the learned
tace. The order of presentation of target faces was the same as the order in which they were

learned. but with distractors randomly interspersed in the sequence.
Results and Discussion.

Figure 4a shows the results for this experiment. The values given are mean

accuracies. with error bars representing one standard error. A two-way repeated measures
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ANOVA showed a significant main effect of overlap level, F(2,40) = 7.70, p < .002. Center
frequency did not produce a significant effect, F(2.40) = 1.80. p > .10, nor was the
interaction significant. F(4.80)=0.43, p>.10.

Post-hoc testing with Tukey HSD (alpha = .05) revealed that the main effect of
overlap was due to a significant difference in accuracy between the 0 octaves condition
(65% overall accuracy) and the two lower overlap conditions. The -1 octaves condition, at
52% and the -2 octaves condition, at 50%. did not differ significantly from one another.

Overall performance was quite poor, at 55%. One-sample t-tests were performed
against chance-level performance (50%) to determine which of the nine conditions was
significantly above chance. The three 0 octaves conditions all were. with mean accuracies of
64%. 60% and 72% for center frequencies 3.3. 8.0 and 12.0. respectively (1(20) =2.828,p =
O1:120) = 2.359. p = .03: «(20) = 3.697. p = .001. respectively). All conditions with less
than 0 octaves of overlap show chance level performance. The best score under these
conditions was 56%. which was not above chance, £(20) = [.00. p = .32.

Overall the data seem to suggest that for recognition to succeed at above chance
levels, images must share some part of the spatial frequency spectrum. [Images that are
complimentary on the spatial frequency spectrum can be recognized from one another with
limited success, but a gap between the images in terms of spatial content produces chance-
level performance. This seems to hold equally true across the center frequencies tested here,
though there may have been a trend towards better overall performance at higher center
frequencies.

[n comparison to Millward and O'Toole (1986). subjects seem to have done better in
this experiment. With a center frequency of 11 c/o and an overlap of 0 octaves, they found
63% accuracy, whereas the most similar condition here (12 c/o center frequency. O octaves
overlap) produced 72% performance. The difference may be due to this experiment using
calibrated stimuli, whereas the eﬁlier study used projected images whose luminance

function was clearly non-linear (Millward & O'Toole, 1986). These non-linear images
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contain spurious spatial frequency content that might have hindered recognition. Although
this interpretation is tempting, it must be viewed with some caution as there were a number
of methodological differences between the two experiments that might also explain the
results. Finding similar performance levels to Millward and O'Toole (1986) with a non-
calibrated display would bolster this contention. This possibility was tested in Experiment
2a.

Though these results suggest that the threshold for above-chance recognition of
faces is at or around 0 octaves under these circumstances. it is difficult to determine from
them the degree of improvement in accuracy that results from a given increase in overlap
and whether this will be similar at different center frequencies. This is due to the floor effect
seen in the negative overlap conditions. In order to better assess the effects of varying
overlap on performance. we examined higher levels of the factor in the following

experiment.

Experiment 1b

This experiment extends the examination performed in Experiment la by looking at
face recognition at higher overlap levels.
Method

Participants. Twenty-five undergraduates from McGill University (5 male. 20
female), with ages ranging from 19 to 44 years (median = 21), participated. All participants
had normal or corrected-to-normal vision.

Materials. Materials were as described in the general stimulus description above.
For this experiment, face images were processed by the filters shown in Figure 2b. Example
stimuli may be seen in Figure 3b.

Design and procedure. The design and procedure of experiment 1b are exactly the

same as experiment la, except that overlap levels of 1, 2 and 3 octaves were tested.
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Results and Discussion.

Figure 4b shows the resuits for this experiment. The values given are mean
accuracies with error bars representing one standard error. A two-way repeated measures
ANOVA showed a significant main effect of overlap level (F(2. 48) = 18.49, p <.00001), a
significant main effect of center frequency (E(2, 48) = 3.63. p = .03). and a significant
interaction between these two factors (E(4. 96) = 3.23, p = 02). Overall performance was
higher here than in Experiment 1. at 65%. This was as expected due to the higher levels of
overlap being tested.

Post-hoc testing with Tukey HSD (alpha = .035) tests showed that the interaction
was due to a non-significant simple main effect of overlap within center frequency 5.3 c/o.
None of the overlap levels differed from one another at this center frequency. This is likely
due to a floor effect. as all three levels of overlap at this center frequency produced
pertormance near chance. At center frequency 8.0 c/o however, a clear effect of overlap is
seen. The | octave overlap differed significantly from both 2 and 3, which did not differ
from one another. Within center frequency 12.0 c/o. a similar tendency is seen. although
here a significant difterence is seen only between 1 and 3 octaves of overlap. Ovcrlap ieveis
of 2 octaves and 3 octaves did not differ significantly, likely due to a ceiling effect. The data
suggest that higher center frequency produces superior results, as does higher spatial

frequency overlap. but the latter factor tops-out at 2 octaves of overlap.

Conclusions from Experiment |

Together. Experiments la and |b show that overlap has a strong effect on face
recognition performance, and that this effect combines with center frequency such that
higher center frequencies produce better recognition at equivalent levels of overlap. In
general. there seems to be an average rise of approximately 8.0% for every octave of
increase in overlap, but this varies widely depending on center frequency. Each octave of

change in center frequency produced an average increase in performance of 5.75%. This
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suggests that although both factors affect recognition, overlap has the more significant
contribution under the conditions examined here.

In addition to determining the effects of overlap, we were interested to see what the
effects of calibration vs. non-calibration were in this sort of paradigm. Non-calibration
causes aberrant spatial frequency elements to be included in filtered images, which may
hamper recognition. This should especially be the case when one is attempting to match two
images with little overlap. because the extra spatial frequency elements introduced by the
non-linearity would lower the correlation between the images. which is the only information
available to the recognition process under these circumstances. We examined this question

by also doing this experiment using a non-calibrated monitor in Experiment 2.

Experiment 2

This experiment is a replication of Experiment 1, using an uncalibrated monitor. The
goal here was to determine how much of a difference in performance would occur when
changing the monitor to a non-linear look-up table. This in turn allows suggestions to be
made regarding the comparability of a number of past studies using non-calibrated filtered
images as stimuli and more recent experiments that use a calibrated look-up table. The
hypothesis is that effects will primarily be seen in conditions where there is low overlap.
The reason for this is that under these circumstances. the only information available to the
recognition process is the degree of correlation between the two images. No strict matching
of same-frequency elements is possible. Adding in spurious elements to one image reduces
the correlation between them and should therefore affect such recognition in a significant
manner.

Experiment 2a

This experiment is the same as Experiment la, except that it uses an uncalibrated

monitor to examine the magnitude of the effect on accuracy this manipulation might have.
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Method

Participants. Twenty-four undergraduates from McGill University (12 male, 12
female), with ages ranging from 19 to 28 years (median = 24), participated. All participants
had normal or corrected-to-normal vision.

Materials. Materials were as described in the general stimulus description above.
Stimuli were the same as for Experiment la. For this experiment, face images were
processed by the filters shown in Figure 2a. Example stimuli may be seen in Figure 3a.

Design and procedure. The design and procedure of experiment 2a are exactly the

same as experiment la, except that the monitor used was not calibrated. Rather than using a
linearized look-up table, the native 256 gray levels of the screen were used. The exponent of
the monitor's gamma function of the monitor was approximately 2.4, which is fairly large (a
typical value is around 2.2).

Results and Discussion.

Figure 5a shows the results from this experiment. The values given are mean
accuracies, with error bars representing one standard error. A two-way repeated measures
analysis of variance (ANOVA) showed no main effects of overlap, F(2. 46) = 0.38, p = .69.
or of center trequency. F(2. 46) = 1.45, p = .24. There was no interaction either, F(4,92) =
0.05. p =.99. The lack of main effects in this experiment is very likely due to the expected
floor effect at lower overlap levels.

As with Experiment la, overall accuracy here was quite low at 56%. Although as a
whole this was significantly better than chance (1(23) = 3.40, p < .003), one-group t-tests
performed on each of the overlap by center trequency conditions showed that only the 0
octaves of overlap condition at center frequency 12.0 c/o was marginally greater than chance
as an individual condition (¢(23) = 1.93, p <.07). It is interesting to note that the accuracy
level of this condition, at 60%, was consistent with Millward and O'Toole's findings under
similar circumstances. For center frequency 11 c/o, overlap 0 octaves, and one practice

session. they found 62% accuracy. The same condition using a calibrated
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monitor (Experiment la) yielded a mean accuracy of 72% (Experiment la). This suggests
that the low-frequency noise introduced into filtered images as a result of monitor non-
calibration had an appreciable effect on recognition performance.

An overlap of 0 octaves at the other center frequencies produced chance-level
performance. as did the lower overlap levels at all center frequencies. With a calibrated
monitor, above-chance performance was achieved for 0 octaves ot overlap at all center
frequencies (Experiment la). This again suggests that monitor non-calibration has a
deleterious effect on recognition performance. These results indicate that comparing studies
using caltbrated vs. non-calibrated stimuli can be somewhat difficult, as calibration can make
the difference between chance and non-chance levels of performance. The fact that the lack
of calibration seems to have had its greatest etfect at the lower center frequencies is as
predicted. as these are the conditions where the high-pass image has the broadest band and
therefore there is the greatest potential for introduction of aberrant noise, although whether
the signal-to-noise ratio is affected is difficult to ascertain.

To more formally explore the effect of calibration, a three-way mixed-design
ANOVA was used to compare these findings with those of Experiment la. The design was
3 (overlap levels -2, -1, and 0 octaves) by 3 (center frequency 5.3. 8.0, and 12.0 c/o) by 2
(calibrated / uncalibrated monitor). with only the last factor being between subjects. The
ANOVA showed an interaction between the calibration and overlap factors (E(2, 86) = 3.21.
p < .05). Tukey HSD tests (alpha = .05) showed that this was due to the 0 octaves overlap
conditions providing a greater advantage over other overlap conditions when stimuli were
calibrated but not when they were uncalibrated. This further supports the assertion that
calibration can make a significant difference in performance.

While the evidence thus far points to an appreciable effect of monitor calibration, the
question remains as to whether this effect will only be seen when overlap is small. Under
the conditions tested here, only the correlation between the two images is available to the

recognition process. As overlap becomes greater, the effect of calibration may disappear as
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more direct information becomes available to the visual system for making the match. This

possibility was examined by replicating Experiment 1b with a non-calibrated monitor.

Experiment 2b

This experiment is the same as Experiment Lb. except that it uses an uncalibrated
monitor to determine if eftects of calibration continue to be seen as overlap increases. Also,
as with Experiments b and la. this experiment expands on the previous one by examining
higher levels of overlap.

Method

Participants. Twenty-four undergraduates from McGill University (5 male, 19
fernale). with ages ranging from 17 to 39 years (median = 21). participated. All participants
had normal or corrected-to-normal vision.

Materials. Materials were as described in the general stimulus description above and
were the same as in Experiment 1b. For this experiment. face images were processed by the
filters shown in Figure 2b. Example stimuli may be seen in Figure 3b.

Design and procedure. The design and procedure of experiment 2b are exactly the
same as experiment 2a. except that higher levels of overlap were tested (1. 2 and 3 octaves of
overlap). Stimuli were presented on an uncalibrated monitor.

Results and Discussion.

Figure 5b shows the results from this experiment. The values given are mean
accuracy with the error bars representing one standard error. A two-way repeated measures
ANOVA showed a significant main effect of overlap, F(2, 46) = 7.71. p < .001, and center
frequency, F(2, 46) = 6.68, p < .003. The interaction between the two factors was marginally
significant, F(4, 92) = 3.02, p = .08. Post-hoc testing with Tukey HSD (alpha = .05)
showed that the main effect of overlap was due to the superiority of the 3 octave condition
over the 1 octave condition. The difference between 1 octave and 2 octaves of overlap was

small (4%) and non-significant. The difference between 2 octaves and 3 was significant, at
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11 %. This hints at 2 non-linear increase in performance with increasing overlap, but without
an examination of finer gradations of this factor no firm conclusions can be made. Overall
the results match those in the calibrated version of the experiment (Experiment [b) quite
well.

Similar post-hoc analyses showed that images at the 12.0 c/o center frequency were
better recognized overall than the ones at the 8.0 and 5.3 c/o center frequencies, again
matching experiment 1b in an overall manner. Post-hoc testing of the interaction between
center frequency and overlap suggested that it was due to a greater advantage rendered by
higher overlap levels at higher center frequencies. This was also similar to the findings of
Experiment 1b.

Examining Figures 5a (results for Experiment 2a) and 5b (results for this
experiment) shows an overall steady increase as overlap rises from -2 octaves to 3 octaves.
The overall mean in this experiment was 68%. as compared to 56% in Experiment 2a. This
increase in performance is quite similar to that seen between Experiments la and Ib. One-
group t-tests revealed that most of the conditions in this experiment yielded above chance
performance. The two exceptions were at the 2 octaves overlap condition at center frequency
5.3 ¢/o. which yielded 55% accuracy, and at | octaves overlap for the 12 c/o center
frequency. where accuracy was only 51%.

As was done to compare Experiments la and 2a, a three-way ANOV A was used to
compare the findings of the present experiment with those of Experiment 1b. The design
was 3 (overlap levels -2, -1. and 0 octaves) by 3 (center frequency 5.3. 8.0. and [2.0 c/o) by
2 (calibrated / uncalibrated monitor). with only the last factor being between subjects. The
ANOVA showed no significant overall effect of calibration. F (1.47) = 0.704, p = .406, and
no significant interaction effects of calibration with either of the other factors (all p > .40).
This supports the interpretations given above and shows that calibration did not seem to

have a significant effect under circumstances of greater overlap. This is compatible with the
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prediction that calibration would generally have larger effects in cases where the learn and

test images shared little or no spatial bandwidth.

Conclusions from Experiment 2

Taken together. Experiments 2a and 2b support the strong effect of overlap seen in
Experiment . suggesting that this factor has an important role to play in explaining the
human ability to match images in different display formats. Experiment 2 also replicates the
finding that center frequency combines with overlap to determine overall accuracy in this
task. Comparing Experiments | and 2 indicates that stimulus calibration has an significant
effect on performance only in low-overlap situations. This is likely due to the fact that in
this situation, only the correlation between images is available to drive the recognition
process. whereas with higher levels of overlap recognition may be driven by more direct
element-to-element matching. These results suggest caution when comparing older studies
using slides or uncalibrated computer presentations as stimuli to more recent studies that
typically use calibrated monitors, as the differences in calibration may produce significant
differences in performance under certain circumstances.

Experiments | and 2 provide us with interesting information on how accuracy
changes with spatial frequency overlap, but an alternative hypothesis for the results remains.
There is a possibility that the etfects observed arose in part or in whole from the change in
bandwidth which accompanied changes in overlap. Two means of testing for this possibility
are examined in subsequent experiments. In Experiment 3. conditions are tested wherein
subjects must recognize images which are filtered in the same way as they are in
Experiments 1 and 2, except that the recognition process is congruent. That is, subjects must
match two images which have been filtered in the same way. This has the effect of holding
overlap constant at 100% while changing the bandwidth of the images. If there is any effect

of the bandwidth of the images, it should be seen under such circumstances. In Experiment
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6. similar conditions to those in Experiments | and 2 are tested, except that the images are
band-pass filtered to eliminate the problem of changing bandwidth.

In addition to its role as a control, Experiment 3 also provides baseline data for the
previous experiments. By showing how recognition performance varies with the cut-off of
low-passed or high-passed images. a basis for comparing the different levels of the overlap

fuctor is derived.

Experiment 3

This experiment obtained baseline and control data for Experiments 1 and 2. Unlike
in those experiments. where testing images were passed through filters opposite those of the
learning images. in Experiment 3 learning and testing images are processed through the
same filter. This has the effect of holding overlap constant at 100% while varying the
bandwidth of the images. thus allowing the assessment of how much of the effects seen in
the previous experiments was attributable to differences in bandwidth and filter cutoff. This
in turn provides information on the utility of different regions of the spatial scale. The same
face stimuli were used as in Experiment 1.

One aspect of the methodology for this experiment bears detailing here. In order to
properly match the conditions in this experiment with those of Experiments | and 2, some
of the filter levels were shown more than once. For example. the low pass filter with cutoff
tfrequency 5.3 c/o was used three times in Experiments la and 2a: Once in the highest
overlap conditions (-2 and 1 octaves respectively) at center frequency 5.3 c/o, a second time
at the middle overlaps (-1 and 2 octaves respectively) at center frequency 8.0 c/o, and a third
time at the lowest overlaps (0 and 3 octaves respectively) at center frequency 12.0 c/o. For

this reason, this same filter was tested three times in the present experiment.
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Experiment 3a

This experiment was designed to gather control and baseline data for Experiments
la and 2a. It examined subjects’ ability to match two images which were filtered in the same
way. using as stimuli the same face images which were shown in those previous two
expenments.

Method

Participants. Twenty-four undergraduates trom McGill University (7 male, 17
fermale) with ages ranging from [9 to 40 years (median = 24), participated. All participants
had normal or corrected-to-normal vision.

Materials. The face images used were the same as in Experiments la and 2a. They
were presented on a non-calibrated monitor, matching conditions in Experiment 2.

Design and procedure. The experiment was a 2 (high-pass vs. low-pass filter) x 5
(filter ordinals 1 to 5) within-subject design. The relationship between this design and the 3
x 3 design of the Experiments | and 2 may be difficult to understand, but as the
introduction to this experiment mentions. not all levels were presented the same number of
times. Instead. images filtered with filter ordinal 3 were presented three times each, whereas
those of filter ordinal 2 and 4 were presented twice each and those at filter ordinals 1 and 5
were presented once each. Adding these up shows the relationship between the 2 x 5 and 3
x 3 designs (i.e.. 3+ 2+ 2+ | + 1 =9=3x 3). The experimental procedure was the same
as for experiments la and 2a, except that faces at test were passed through the same filter as
those at learning. That is. for every learned face, there was one target and one distractor in
the testing set that had been filtered in the same way. This was true for the short initial
practice session as well as the later experimental session.

Results and Discussion

As a first step in the analysis, subjects’ correct responses were averaged across

multiple presentations of given conditions (3 for ordinal 3 and 2 for ordinals 2 and 4).

Figure 6a shows the results thus derived. Values shown are mean accuracy with error bars
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representing one standard error. Values are given for two filter types (high-pass vs. low-
pass) at each of the five filter ordinals. Recollect that ordinals give an index as to the breadth
of the band passed by the filter. Ordinal | represents the image with the broadest band
whereas ordinal 5 represents the image with the narrowest spatial band. The associated cut-
off frequencies can be seen in Figure 2a. Two cut-offs. one high-pass and one low-pass, are
associated with each ordinal. The numbers at the tops of the bars in Figure 6a indicate the
cutoff frequency of the associated filter.

Results were analyzed by means of a 2 (low-pass vs. high-pass) x 5 (filter ordinals)
repeated measures ANOVA . This showed no significant difference between recognition of
low-passed and high-passed images. F(1. 23) =0.04, p = .84. Nor was there a significant
effect of filter ordinal, F(4, 92) = 1.22. p = .31. The interaction between these factors was
also non-significant. F(4.92) = 1.87. p = .12.

In order to create baseline values for comparison with those obtained in the test
conditions of Experiments la and 2a. nine derived values were obtained. This was done by
taking the average of the accuracy in for the two filters—one high-pass, one low-
pass—used in each condition of Experiments la and 2a. For exampie. a baseline value for
the -1 octaves of overlap condition at center frequency 5.3 c/o (see Figure la, top panel.
dashed lines) was obtained by taken the mean accuracy for low-pass images cut-off at 3.5
c/o and for high-pass images cut-off at 8.0 c/o. The resulting accuracies with associated
standard errors are shown in Figure 7a. By comparing Figure 4a (Experiment la) or Figure
5a (Experiment 2a) to Figure 7a one can see that performance here is much better overall,
with a mean overall accuracy of 83%. This supports the idea that the poor performance
seen in Experiments la and 2a is due predominantly to a lack of transfer between filtered
images and not to any difficulties associated with a given spatial band.

Figures 7a and 6a both present the data from this experiment, though in different
ways. Both suggest that there is very little effect of the actual spatial content of the images

on face recognition performance in congruent conditions. These figures contrast with those
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from Experiments la and 2a. which both show a tendency for performance to improve with

higher overlap and higher center frequency.

Experiment 3b

This experiment was designed to gather control and baseline data for Experiments
Ib and 2b. It examined subjects” ability to match two images which were filtered in the
same way. using as stimuli the same face images which were shown in those previous two

experiments.

Method

Participants. Twenty-three undergraduates from McGill University (6 male, 17
female) with ages ranging from 19 to 47 years (median = 23). participated. All participants
had normal or corrected-to-normal vision.

Materials. The face images used in this study were the same as those in Experiments
Ib and 2b. They were presented on a non-calibrated monitor, matching conditions in
Experiment 2.

Design and Procedure. The task and procedure were identical to Experiment 3a.

Results and discussion.

The data from this experiment were analyzed in the same manner as those from
Experiment 3a. Figures 6b and 7b show the results. Values given are mean accuracies and
associated standard errors. As with the previous experiment, the data are presented in two
formats. Figure 6b shows them in a 2 (high-pass vs. low-pass filters) by 5 (filter ordinals 6
to 10) format while Figure 7b gives baseline conditions in a 3 (center frequencies) by 3
(overlap levels 1 to 3).

The data were analyzed by means of a 2 x 5 within subjects ANOVA. This showed

no significant effect of filter type (low-pass vs. high-pass), F(1, 22) =2.07, p=.16, and
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only a marginal effect of filter ordinal, F(4. 88) = 2.18, p = .08. The interaction between
these two factors was also non-significant. F(4. 88) = 1.26. p = .29. These results are quite
similar to those of Experiment 3a, showing little effect of the actual spatial frequency range
per se on face recognition and supporting the contention that effects seen in Experiments 1b
and 2b are predominantly due to changes in overlap and not in changes of the actual filter
ranges.

As with Experiment 3a. the accuracy for low- and high-pass images in each filter
pair was averaged to create baselines for comparison between this experiment and the test
conditions examined in Experiments 1b and 2b. The resulting baselines are shown in Figure
7b. As with the comparison between Experiments 1a/2a and 3a, the difference here is
striking. Overall performance here was 89%. contrasting sharply with the overall accuracy
of 68% in Experiment 2b. Again, the flat performance seen here makes it clear that the
effects seen in Experiments | and 2 were due to difficulties with information transfer
between low-passed and high-passed images as opposed to difficulties with filtered images
in general. Figures 4b and 5b (Experiments Ib and 2b) show that when the floor effect in
Experiments la and 2a was eliminated. performance was clearly determined by the degree of
overlap between learned and test images and by the center frequencies.

Conclusions from Experiment 3

Overall. the results of Experiment 3 support the assertion that the effects seen in
Experiments | and 2 were indeed due to changes in overlap, and not to the expanding
bandwidth of the images as overlap increased. Both the basic control values and the derived
baselines showed fairly flat functions with only a small and non-significant effect of image
bandwidth.

In contrast to many previous studies, Experiment 3 suggests that no particular band
of spatial frequencies is more useful than any other for the task of face recognition. Indeed,
the conclusion to be drawn from Experiments | to 3 is that spatial content per se has little

effect on face recognition until images are severely degraded. There was no suggestion in
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these data of a critical band of frequencies used in face recognition. If there had been, we
would have expected to see a hump-shaped performance function. Together, Experiments |
to 3 suggest a strong effect of the similarity between spatially filtered images, with a lesser
effect of the actual range of spatial content. In this light, previous results suggesting a
critical band may be seen to be influenced by the degree of agreement in bandwidth between
images.

Experiments | to 3 examined the effects of spatial frequency overlap in face
recognition using a recognition paradigm. Sergent (1986) has argued that the type of
experimental paradigm used can strongly affect how spatial frequencies are used by the
visual system to perform recognition tasks. [t may be that overlap will have different effects
depending on whether subjects are attempting to recognize a new sensory input from the
memory of a previous one. or attempting to match two readily available sensory inputs. In
the following two experiments. the effects of spatial frequency overlap are examined in a
simultaneous matching paradigm. [n addition to examining whether task type will affect
recognition, it allows the study of how spatial frequency overlap affects face perception
when minimal memory load is imposed. This in turn should raise overall performance levels
and thus allow an examination of how changes in overlap at lower levels (i.e., negative

overlap levels) affect recognition.

Experiment 4
Although floor-level performance was observed at negative overlap levels in
Experiments la and 2a, it is clear that the same levels of overlap under different
circumstances could produce above-chance performance. For instance, if subjects are able to
see two images simultaneously, this should eliminate the need for a long-term memory trace
and subsequent decay or retrieval interference, thus enabling greater accuracy. If this is case,
one may be able to see a smooth progression of performance across these lower overlap

levels, as was seen for higher overlap levels in Experiments [b and 2b.
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This possibility was examined in this experiment. The same overlap and center
frequency conditions as were tested in Experiments la and 1b were tested here in
Experiments 4a and 4b, respectively. The goal of these experiments was to determine the
minimum level of overlap needed for above-chance recognition under these circumstances,
which presumably represent the easiest form of face identification task. Because it was
likely that accuracy levels would reach ceiling, both percentage of correct responses and
reaction time were measured.

The following experiment also replicates the baseline conditions of Experiment 3,
except that in this case the control conditions are tested within subjects. That is. in addition
to test trials in which subjects were exposed to two faces sharing limited bandwidth, subjects
were also exposed to control trials in which the two images on the screen were processed
with identical filters. This allowed us to examine the effects of simple congruent bandwidth

in a matching task.

Experiment 4a

This experiment examined simultaneous matching of faces under the same overlap
conditions as Experiments la, 2a and 3a.
Method

Participants. Nineteen undergraduates from McGill University (3 male. 16 female)
with ages ranging from 17 to 26 years (median = 20), participated. All participants had
normal or corrected-to-normal vision.

Materials. The face images used in this experiment were the same as in Experiments
la, 2a and 3a.

Design and procedure. The experimental design was similar to that of previous
experiments. except that the test conditions (3 overlap levels x 3 center frequencies) and

control conditions (2 filter types x 5 filter ordinals) were evaluated within subjects.
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The experiment began after subjects read the instructions on the monitor screen. At
each trial, two face images were presented simultaneously on the screen, one above the
other. The distance between the two images was 2 cm, or 9 cm center-to-center. The two
images were either processed by opposite filters from a high-pass / low-pass filter pair
(experimental conditions) or were processed by the same fiiters (control conditions).
Vertical placement of the images was randomly determined so that all conditions were
properly counterbalanced. The order of conditions was also randomized. Subjects pressed
the space bar to start each trial. They were instructed to judge whether the two images on the
screen were of the same face and to respond as quickly and accurately as possible.

Results and Discussion

Accuracy Data. The accuracy data for this experiment are shown in Figure 8a, which
shows test condition data. and Figure 9a, which shows data from baseline conditions that
were constructed in a similar manner to those in Experiment 3. The values given are mean
accuracies with error bars representing one standard error. Separate analyses were run on
the test and control data. A 3x3 completely within-subjects ANOVA for the test conditions
showed a significant etfect of both center frequency. F(2.36) = 5.63. p = .007. and spatial
frequency overlap, F(2,.36) = 17.43, p <.00001. The interaction was non-significant, F(4,72)
= .84, p=.50.

Post hoc testing with Tukey HSD (alpha = .05) showed that the effect of center
frequency was due to a significant difference between the 5.3 c/o conditions and the two
higher conditions (8.0 and 12.0 ¢/0). which did not differ from one another. This replicates
the previous findings of superior performance at higher center frequencies. Post-hoc testing
was also performed to examine the effect of spatial frequency overlap. This showed that all
three levels differed from one another, although the difterence between the -1 and O octaves

of overlap conditions was only marginally significant (p=.07).
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Baseline conditions were subjected to a 2 x 5 ANOVA. This showed no significant
eftect of type of filter (high-pass vs. low-pass), E(1,18) =.79. p = .39, but did reveal a
significant effect of filter ordinal, F(4, 72) =7.15, p < .0001. The interaction was non-
significant, F(4.72) = [.31. p = .27. Post-hoc testing with Tukey HSD (alpha = .05)
revealed that the effect of filter ordinal was primarily due to a difference between the
narrowest filters (Ordinal 1) and the broadest ones (Ordinals 3 to 5). The latter did not
differ amongst themselves. suggesting that very extreme filtering does have an effect on
performance. but that increases in bandwidth past this point do not have an effect.

Reaction Time Data. The reaction time data for this experiment are shown in Figure
10a, which shows test condition data. and Figure [ [a, which shows data from control
conditions that were constructed in a similar manner to those in Experiment 3. The values
given are mean accuracies with error bars representing one standard error. Separate analyses
were run on the test and control data. A 3x3 completely within-subjects ANOVA for the test
conditions showed a significant effect of spatial frequency overlap, F(2.36) = 3.66, p = .04.
The effect of center frequency was not significant, F(2. 36) = 1.55, p = .22, nor was the
interaction, F(4.72) = .68, p = .60. Post hoc analysis of the data show thai the effect of
spatial frequency overlap was due to superior performance in the 0 octaves condition as
compared to the other two overlap conditions, which did not differ from one another.

Baseline conditions were subjected to a 2 x 5 ANOVA. This showed no significant
eftect of filter type (high-pass vs. low-pass), E(1, 18) = .57, p = .46. or filter ordinal, F(4.,72)

= .91, p = .46. Nor was there a significant interaction, F(4,72) = 1.73.p = .15.
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Experiment 4b

This experiment examined simultaneous matching of faces under the same overlap
conditions as Experiments 1b, 2b and 3b. [t is similar in design and implementation to
Experiment 4a, except that higher levels of overlap (1. 2 and 3 octaves) are tested.
Method

Participants. Twenty undergraduates from McGill University (4 male. 16 female)
with ages ranging from 8 to 24 years (median = 20.5). participated. All participants had
normal or corrected-to-normal vision.

Materials. The face images used in this study were the same as Experiments 1b. 2b,

and 3b.

Design and procedure. These were the same as in Experiment 4a.

Results and Discussion

Accuracy data. The accuracy data for this experiment are shown in Figure 8b, which
shows test condition data. and Figure 9b. which shows data from control conditions that
were constructed in a similar manner to those in Experiment 3. The values given are mean
accuracies with error bars representing one standard error. Separate analyses were run on
the test and control data. A 3x3 completely within-subjects ANOVA for the test conditions
showed a significant interaction between center frequency and overlap. F(4.72) =3.84.p =
007. Post-hoc analysis with Tukey HSD (alpha = .05) revealed that this interaction was the
result of overlap having a significant effect at center frequency 5.3 c/o but not at the higher
center frequencies. An examination of Figure 8b shows that this is likely the result of
accuracy levels reaching ceiling at the higher center frequencies.

Baseline conditions were subjected toa 2 x 5 ANOVA. This showed no significant
effect of filter type. F(1.18) = .02, p = .88. but a marginally significant effect of filter level,
E(4.72) = 2.51. p =.05. As with the previous experiment this was due to a significant

difference between the narrowest filter level (Ordinal 1) and the broadest (Ordinal 5), again
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suggesting that only very extreme filtering had an effect on performance when overlap was
100%. The interaction was not significant, F(4.72) = .38, p = .82.

Reaction time data. The reaction time data for this experiment are shown in Figure
LOb, which shows test condition data, and Figure 1 Ib. which shows data from control
conditions that were constructed in a similar manner to those in Experiment 3. The values
given are mean accuracies with error bars representing one standard error. Separate analyses
were run on the test and control data. A 3x3 completely within-subjects ANOVA for the test
conditions showed a significant effect of both center frequency. F(2.40) =4.48. p = .02.
and spatial frequency overlap, F(2.40) = 3.77, p =.03. The interaction was not significant.
F(4.80) = 1.48.p=.22.

Baseline conditions were subjected to a 2 x 5 ANOVA. This showed no significant
effect of filter type. F(1.20) =.01. p =.99, or overlap, F(4.80) =.77. p = .55. The interaction
was also non-significant, F(4.80) = .59, p = .67.

Conclusions from Experiment 4

As with Experiments [ to 3, this experiment supports a strong effect of spatial
frequency overlap. However. here we see that the effect generalizes to a different paradigm,
confirming that such effects are not exclusive to matching images from memory. Results
from this matching experiment are very similar to those from the previous recognition
experiments (Experiments | to 3), indicating that there are not different effects based on

task type.

Experiment 5
As was done with previous experiments, Experiment 4 was replicated with a non-
calibrated monitor to determine what if any differences this would make to the effects

observed.
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Experiment 5a

This experiment was similar to Experiment 4a, except that stimuli were presented on
a non-calibrated monitor.
Method

Participants. Twenty-four undergraduates from McGill University (9 male, 15
female) with ages ranging from 19 to 39 years (median = 22.5), participated. All participants
had normal or corrected-to-normal vision.

Materials. The face images used in this experiment were the same as in Experiment
4a. except that they were presented on a non-calibrated monitor in this case.

Design and procedure. These were the same as for Experiment 4a.

Results and Discussion

Accuracy data. The accuracy data for this experiment are shown in Figure [2a,
which shows test condition data. and Figure [3a. which shows data from control conditions
that were constructed in a similar manner to those in Experiment 3. The values given are

mean accuracies with error bars representing one standard error. Separate analyses were run

conditions showed significant main effects of overlap and center frequency, Fs(2, 46) =
21.09 and 17.31. ps < .0001. respectively. The interaction was not significant, E(4, 92) =
0.39. p = .82. Post hoc testing with Tukey HSD (alpha = .05) tests revealed that the three
levels of overlap each differed from one another significantly. with performance improving
with increasing overlap. Similarly, the three levels of center frequency were each
significantly different from one another, with increased accuracy accompanying higher
center frequency.

Baseline conditions were subjected to a 2x5 ANOVA. This showed no effect of

filter type (Low-pass vs. High-pass). E(1. 23) = 0.51, p = .48. The main effect of filter
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ordinal was marginally significant, F(4. 92) = 2.32, p = .06, as was the interaction between
filter ordinal and filter type (high-pass vs. low-pass), E(4, 92) = 2.34, p = .06. Figure 13a
shows that this was due to a slight advantage of broad bandwidth images over narrower
bandwidth images in the low-passed image conditions.

As was done to compare Experiments | and 2, a three-way ANOVA was used to
compare the test data gathered using an uncalibrated monitor in this experiment to the data
collected with a calibrated monitor in Experiment 4a. This revealed only significant effects
of overlap. F(2.82) = 20.5. p < .00l and center frequency, F(2,82) =374, p <.001l. There
was no main effect of calibration, F(1.41) = .95, p =.336. nor were any interactions
significant.

A separate three-way ANOVA was applied to the control data in a similar fashion to
the test data. This revealed a significant interaction between filter type and filter level. E(4,
164) = 2.899, p = .02, similar to that found in the individual analyses of the calibrated and
uncalibrated data. The overall effect of calibration was non-significant, F(1,41) = 2.76, p>
.10 as were all interactions with it (all p > .10).

Reaction time data. The reaction time data for this experiment are shown in Figure
I4a. which shows test condition data, and Figure 15a. which shows data from control
conditions that were constructed in a similar manner to those in Experiment 3. The values
given are mean accuracies with error bars representing one standard error. Because the
overall results match those of accuracy. with lower reaction times accompanying greater
overlap and higher center frequency, the formal analysis of the data is not given here.
Details are available from the author upon request.

Overall. the baseline conditions produced much faster reaction times (mean = .55
s) than the test conditions (mean = 2.44 s). The best reaction time for a test condition was at
the highest center frequency and highest overlap, but this was still much slower than the

corresponding baseline condition. Mean reaction time ranged wide across the test
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conditions, from 1.86 s to 3.03 s. By comparison, the mean reaction times in control
conditions were quite similar across conditions, varying from 1.44 s to 1.82 s. Again, this
supports the contention that performance is much more affected by overlap than by the
actual content of the images.

As with the previous experiments, we were interested to determine how performance
would continue to improve as overlap increased above 0 octaves and at what point

performance would reach ceiling. We examined this question in the following experiment.

Experiment 5b

This experiment was similar to Experiment 4b, except that stimuli were presented on
a non-calibrated monitor.
Method

Participants. Twenty-four undergraduates from McGill University (5 male, 19
female) with ages ranging from 8 to 39 years (median = 20), participated. All participants
had normal or corrected-to-normal vision.

Materials. The face images used in this experiment were the same as in Experiment
4b. except that they were presented on a non-calibrated monitor in this case.

Design and procedure. These were the same as for Experiment 4b.

Results and Discussion

Accuracy data. The accuracy data for this experiment are shown in Figure 12b,
which shows test condition data, and Figure 13b, which shows data from control conditions
that were constructed in a similar manner to those in Experiment 3. The values given are
mean accuracies with error bars representing one standard error. Separate analyses were run
on the test and control data. A 3x3 completely within-subjects ANOVA for the test
conditions showed significant effects of overlap, F(2,46) = 8.76, p < .0005, and center
frequency, F(2.46) = 11.64, p <.0001. The interaction between these factors was significant,

F(4,92), p < .005.
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Post hoc testing with Tukey HSD (alpha = .05) showed that face images at 2 and 3
octaves of overlap were matched better than those at 1 octave of overlap at center frequency
5.3 c/o. Similar differences at 8.0 and 12.0 c/o were not significant. As with some of the
previous experiments, overlap is seen to have a different effect at different center
frequencies. [n this case, it seems a ceiling effect occurs at center frequencies 12.0 c/o.

In the control conditions. no difference in accuracy was found between the low-pass
and high-pass conditions, F(1. 23) = [.55, p =.23. or between filter levels, F(4. 92) = 1.66. p
= .17. No interaction was found between the two factors, F(4,92) = 0.55,p = .70.

As was done with previous experiments, the data gathered using an uncalibrated
monitor were compared with those gathered using a calibrated monitor by means of two
three-way ANOV A separately applied to control and test data. The ANOVA for the test data
revealed a significant interaction between center frequency and overlap, F(4. 168) = 6.675, p
< .001, similar to that seen in the individual data sets. The overall effect of calibration was
non-significant, F(1,42) = .107, p =.745. as were its interactions with center frequency and
overlap (all p > .10). These results suggest a strong agreement between the two data sets.

A similar analysis run on the control data showed a significant effect of filter level,
F(4. 168) =4.12, p = .003, similar to that seen in the individual data sets being compared.
The overall effect of calibration was not significant, F(1.42) = .25, p = .622. None of the
other effects were significant (all p <.24). This suggests a strong agreement between the
data from this experiment and those from Experiment 4b.

Reaction time data. The reaction time data for this experiment are shown in Figure
14b. which shows test condition data, and Figure 15b. which shows data from control
conditions that were constructed in a similar manner to those in Experiment 3. The values
given are mean reaction time with error bars representing one standard error. Separate
analyses were run on the test and controi data. A 3x3 completely within-subjects ANOVA
for the test conditions showed significant effects of overlap, F(2,46) = 19.81. p <.0001, and

center frequency, F(2,46) = 12.57, p <.0001. The pattern of the data here is the opposite to
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that for accuracy. That is, as accuracy increases, reaction time drops. The interaction was
non-significant, F(4.92) = 1.24, p = .30.

Post-hoc testing with Tukey HSD (alpha = .05) showed that subjects responded
faster when matching faces in the 2 and 3 octaves of overlap conditions than in the | octave
of overlap condition. There was no difference between the two higher overlap conditions.
Similar analyses showed that faces were matched faster at center frequency 2.0 c/o than at
the lower two center frequencies. which did not differ significantly from one another.

Although accuracy data showed a significant interaction between center frequency
and overlap in test conditions, the reaction time data did not. This was as we anticipated. As
accuracy reaches ceiling, reaction time measures continue to capture the effects of overlap.
Whereas accuracy data showed differences based on overlap only at the 5.3 c/o center
frequency conditions, reaction time showed such effects at all center frequencies.

The baseline data was subjected to a 2 x 5 completely within-subjects ANOVA. This
revealed a minute but consistent advantage of 20 ms for high-pass faces over low-pass ones.
F(1.23) =4.45. p < .05. The main effect of filter level approached significance, F(4,92) =
2.23. p = .07. The interaction was significant as well. F(4.92) = 2.86. p < .03. These reaction
time data suggest that the lack of an seen in the accuracy data was due to a ceiling eftect.

Post hoc testing with Tukey HSD (alpha = .05) revealed that the subjects took
longer to match the most severely filtered low-pass faces (8.0 c/o) than to match other low-
pass faces. The exception to this were the low-pass faces filtered at 26.9 c/o. This was not
significantly different from those filtered at 8.0 c/o. No difference was found between
reaction times for the high-pass faces. Clearly, this ditferential effect of filter level on low
and high-pass faces was the cause of the significant interaction. The differences between
reaction time for different filter levels were consistently smaller than those for different
levels of overlap and center frequency in the test conditions.

A three-way ANOVA was used to compare the reaction time results of this

experiment with those of the uncalibrated version (Experiment 4b). This showed no overall
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effect of calibration. F(1,43) = 1.52, p = .225, nor were any of the interactions with it
significant (all p > .10). This suggests a good overall agreement between the data gathered
on calibrated and uncalibrated stimuli.
Conclusions from Experiment 5

The results from this experiment are in general agreement with those of Experiment
4. Contrary to a comparison between Experiments la and 2a, which supports the idea that
calibration has significant effects on performance, a comparison between Experiment 4 and

5 does not. The reasons for this are discussed in the General Discussion.

Stimuli for Experiments 6 and 7

The stimuli for these experiments were band-pass filtered images of faces and
chairs. The face images were obtained from a database of 3D laser-scanned head models.
The models were created using a Cyberware (tm) laser scanner that records both surface
shape and texture of 3D forms. By mapping the texture map onto the shape model. one can
create an image of the faces from any angle. The 3D face database was provided courtesy of
Nikolaus Troje. Further details may be obtained in Troje and Bulthoff (1996; 1998).

The object images were obtained by photographing a variety of chairs from several
different local areas. Chair images were chosen to remain consistent with Biederman and
Kalocsai (1997; Kalocsai & Biederman, 1998) and because they are a homogeneous object
category. All faces and chairs were imaged from the forward and 3/4 views. With faces, this
means simply that the 3D head model was placed at 0° and 45° to the virtual camera before
an image was captured. With chairs, the front comers of the seat were placed equidistant
from the camera for front shots and the right front and rear left corners (or vice versa) were
lined up relative to the camera for the 3/4 shot. There were 30 individual faces used and the
same number of chairs. From each of these sets, 10 items were selected for use in practice
sessions. All images were converted to 256 gray-level format before filtering and equated

for mean luminance and RMS contrast.
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The spatial filtering of the images was done with MatLab 5.2 software for
MaclIntosh. To create the filtered versions, the original full-bandwidth images were
convolved with a pair of smooth Butterworth filters (one high-pass and one low-pass). then
inversely transformed into the spatial domain. Butterworth filters were used to avoid the
ringing effects seen when images are filtered with abrupt spatial frequency cutoffs.
Nonetheless. the functions were steep enough to provide good spatial frequency

localization. The low-pass filters were defined by

1+(r/c)d

and the high-pass filters by

l+(c/1')5

where r is the component radius and ¢ the cutoff radius. To create bandpass images, each
original image was sequentially passed through a low-pass and then a high-pass filter. The
bands for each image were 2 octaves wide.

Filter cutoffs were selected so as to cover a wide range between the fundamental
frequency of the images (1 c/o) and their folding frequency (about 68 c/o). Three overlap
conditions were each defined at two center frequencies (7.1 and 14.2 c/o) by placing the
bands symmetrically about them. Figure 16 illustrates the gain profiles and cutoff values of
all the filters used in Experiments 6 and 7. Also shown, at the top of each filter function, is

the middle frequency of that filter. As overlap levels increase, the image bands approach
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each other in .67 octave steps. That is, at each increase in overlap the low-pass cut-off in
each filter pair moves up .33 octaves as the high-pass cut-off moves down .33 octaves. This
results in three overlap levels of 0.33. 1.00 and 1.66 octaves.

Figure 17 shows examples of both face and chair stimuli passed through the filters
shown in Figure 16. The rows represent center frequency and the columns overlap levels.
Each cell contains two images. with the lower frequency band on the right and the higher
frequency band on the left. The term "opposite filters” is used throughout the experimental
descriptions to refer to bandpass filters symmetrically positioned about a given center
frequency. For instance. at center frequency 7.1 c/o in the | octave of overlap condition
(Figure 16. upper panel. dashed lines) the lower band ranges from 5.0 to 20.1 c/o. while the
higher band ranges from 10.0 to 40.0 c/o. These are referred to as opposite filters to one
another.

All experiments were run using a Maclntosh (G3/233. Stimuli were presented on a
21" AppleVision Monitor that was properly calibrated to give a linear luminance profile.
Images were surrounded by a medium gray background that filled the screen. [nstructions

were given on the monitor.
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Experiment 6

This experiment was designed to determine if the spatial frequency overlap effects
seen in Experiments | to 5 would generalize to object images. According to Biederman and
Kalocsai (1997: Kalocsai & Biederman, 1998), objects are stored in a format that is spatial-
frequency free and more robust to variations in spatial frequency than the format in which
faces are stored. If this is the case. we should see overall better performance from object
stimuli than face stimuli. Aiso, there shouid be an interaction between the type of stimulus
and the spatial frequency overlap level. such that faces will show greater effects of overlap
than objects. This interaction is important, because it is difficult to attribute a simple overall
increase in performance to spatial frequency factors, as there might be other qualities of the
stimuli that produce such a difference.

There are several differences between the methodology of this experiment and the
previous ones. For instance, this experiment employs a sequential matching paradigm rather
than a recognition or simultaneous matching paradigm. Sequential matching was chosen
because this is more relevant to Biederman and Kalocsai's model of face and object storage.
The reason is that Biederman's RBC model (which he supports as the model for object
storage) is primarily put forward as the means by which "rapid and automatic” recognition
is achieved (Biederman, 1987). Therefore. an old/new learning paradigm might not be a fair
test of the model. Likewise. a simultaneous matching paradigm allows several comparisons
between the objects to be matched. which might tend to make features such as the aspect
ratio and lightness of stimuli more salient. These aspects are thought to be of secondary
importance to object recognition in the RBC model (Biederman, 1987).

A second difterence in this experiment is that the stimuli are rotated in depth by 45°
between learn and test. This is done to ensure that we are in fact examining object and face

recognition as opposed to more general image matching. Although image matching certainly
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seems to be an important part of face and object recognition. there is also an aspect of these
processes that deals with the ability to recognize things under varying viewing conditions.

A third methodological difference between the following experiments and the
previous ones is that control conditions are tested in the same experiment as the test
conditions, allowing both sets of data to be explored in the same statistical analysis and
therefore allowing more direct comparisons between them. Thus, Experiment 6 combines
what has been analyzed as two separate studies in the previous experiments.

A final difference between this experiment and Experiments | to 5 is the use of
bandpass filters to process stimuli. This was done to avoid a potential limitation of the
previous experiments. whereby one might suggest that the results were the due to the
expansion of the lower band rather than overlap per se.

Method

Participants. Sixty-four undergraduates from McGill University (16 male, 48
female) with ages ranging from 17 to 39 years (median = 20). participated. Al} participants
had normal or corrected-to-normal vision.

Materials. The stimuli were face and object images prepared as discussed in the
section entitled "Stimuli for Experiments 6 and 7". above. Example stimuli may be seen in
Figure 17.

Design and procedure. The design of the experiment was a 2 x 2 x 2 x 3 mixed

model. The factors were: 1) Stimulus type (face or chair). 2) Task type (test vs. control), 3)
Center frequency (7.1 or 14.2 ¢/o). and 4) Spatial frequency overlap (0.33. [.00. and 1.67
octaves). The first two factors were between subjects whereas the latter two wére within
subjects.

Subjects were tested using a Macintosh G3/233 computer with a 21" monitor. The
monitor was properly calibrated to correct for its gamma function. Images were surrounded
by a neutral gray background that filled the screen. Instructions were given in written form

on the monitor and encouraged subjects to give their answers as quickly as possible.
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The initial part of the experiment was a short practice session. On each trial of the
practice session, subjects were shown two sequentially-presented images separated by a
mask. The first image was presented for one second. This was followed by the mask, which
consisted of a scrambled version of the first stimulus created by dividing the image into an 8
x 8 grid and randomly shuffling the elements. The mask was also presented for one second.
This was followed by the testing image, which stayed on the screen until the subject's
answer was given. The image pair to be matched consisted of pictures that had been filtered
with opposite filters. For instance, if the first face was filtered to contain only frequencies
between 2.0 and 8.0 c/o. the second face would be filtered to contain only frequencies
between 6.3 and 25.1 c/o (see Figure 16, top panel. dotted lines). Twelve practice trials were
given. two each of the 6 possible center frequency by overlap conditions. Half the subjects
were tested with chair stimuli and half with face stimuli. Assignment to groups was random.

The experimental session immediately followed the practice session. The procedure
here was the same as in the practice. except that each condition was tested 40 times, for a
total of 240 trials. The breakdown of these trials is 3 (overlap levels) x 2 (center frequency)
x 2 (target vs. distractor trial) x 20 (different faces and chairs). The order of conditions was
randomized with the constraint that the same face could not appear in sequential trials. In
each condition. half the trials presented a 0° view of the stimulus first, followed by a 45°
view. whereas in the other half this order was reversed. Angle order was also randomized.

Following the presentation of each sequential image pair. subjects responded as to
whether the images were pictures of the same object or same face. This was done by means
of buttons marked "yes" and "no" on the computer keyboard. Subject accuracy and reaction
time were automatically recorded by the computer program.

Results and Discussion

Accuracy data. Accuracy data is shown in Figure 18. The values given are means
and standard errors. A four-way ANOVA was used to analyze the results. This showed a

significant three-way interaction between the factors of stimulus type (face vs. chair), trial



108

type (test vs. baseline) and overlap level (0.33, 1.00 and 1.67 octaves), F(2, 120) =3.2,p<
.03. Post-hoc analysis using Tukey HSD (alpha = .05) showed that this was due to a
significant effect of overlap on face recognition in the test trials, an effect that was not
evident in any of the other three conditions. Thus it appears that overlap has a strong effect
on face recognition but not on object recognition.

In the test condition with faces as stimuli. the three overlap levels each differed from
one another significantly at 67. 72 and 79% accuracy (for 0.33. 1.00 and 1.67 octaves of
overlap respectively). In the equivalent baseline conditions little difference was seen between
levels. with percentages of 77, 80 and 79% for the three levels in order. A similar analysis
for objects showed that overlap had little effect on recognition here, with differences that
were small and non-significant. Accuracy values in the test conditions were 67. 70 and 71%
for the three overlap levels in order. These were not significantly different from one another.
In the control conditions, a similarly flat function is seen, with associated values of 68. 71.
and 70%. This pattern of results is as predicted by Biederman and Kalocsai's (1997;
Kalocsai & Biederman. 1998) dual representation model of face and object recognition.

Center frequency had a significant main effect. F(1.60) = 11.62, p < .002, but did not
interact with other factors. Overall, the center frequency 14.15 c/o showed slightly greater
accuracy, at 74%. than center frequency 7.08 c/o. which yielded 71%. This is in agreement
with Experiments | to 3, which found better performance at higher center frequencies. In
those experiments, the possibility existed that these effects were due to the broadening of
the band of frequencies in the low-passed image. In this experiment, no such alternate
explanation is possible due to the fact that images were band-passed. One can therefore
safely attribute higher performance to the greater amount of information in a given band of

overlapping frequencies at higher points in the spectrum.



a) Test and Baseline data for center frequency 7.08 c/o b) Test and Baseline data f(or center frequency 14.15¢/o

1.0 10
Face  Chair ] Face  Chair
—0— —0— "fest —o0— —0O— Test
E 091] —e~ —a— Baseline E 091 —e— —a— Uascline
(=] o
O 08 G 081 *..-———-—"*
8 o
.e E
& 0.7 N g- 0.7 4
£
& [
0.6 1 0.6 ¢
0.5 v v v v v v v y 0.5 v T — Y v - v Y
(133 100 1.67 0.33 100 1.67
Overlap Level Overlap Level
c) Control Data for center frequency 7.08 ¢/o d) Control data for center frequency 14.15c/o
1.0 q 1.0 1
—o0— Chair —o— Chair
—o— Face ~—— Face
E 0.9 g "
; ;
0.8 0.8
8 { &
: : g
& 07 g o7 —
e ““—ﬁ: A I{
0.6 - ! 0.6
I
"'S k v ¥ - L T L) 8 ("5 v ¥ ¥ v AJ v A
40 50 63 79 100 126 80 101 126 159 200 252
Band Frequency Band Frequency

Figure 18. Mean accuracy data from Experiment 6. Test, baseline and control resulls are shown,
Errar bars represent one standard error.



110

Reaction time data. Reaction time data are shown in Figure [9. A four-way ANOVA
was run to analyze this data. This showed no significant four-way interaction, nor were there
any significant three-way interactions. Thus. the reaction time data failed to follow the
accuracy data, assuaging concerns about a speed/accuracy trade-off. In general, the reaction
time data were very similar across conditions, with the largest difference between conditions
being about 60 ms. Despite this. a number of two-way interactions did prove statistically
significant.

The interaction between trial type (test vs. control) and overlap (0.33. 1.00, and 1.67
octaves) was significant, F(2. 120) = 12.48. p < .0001. Post-hoc testing with Tukey HSD
showed that this was due to a stronger effect of overlap in the test trials than in the control
trials. In the former. mean reaction times were 1.22, 1.16 and .13 seconds in increasing
order of overlap. These differences. on the order of 50 ms. are small but reliable and all
levels differ significantly from one another. Similar values in the control conditions were
virtually identical at 1.05. 1.03 and 1.02 seconds in the same order. As with the accuracy
results. this suggests a strong effect of spatial frequency overlap with a weaker effect of
actual spatial content of images.

The interaction between trial type and center frequency was also significant, F(1. 60)
= 7.59. p < .008. Post hoc analysis with Tukey HSD showed that this was due to an effect
of center frequency in test conditions -- where reaction time dropped from 1.19to 1.14
seconds between center frequencies 7.08 and 14.15 c/o -- but not in control conditions,
where the two conditions yielded virtually identical results at .04 and 1.06 seconds
respectively. This seems to suggest that in matching images with 100% overlap. the actual
content matters little, but when matching images with limited spatial frequency overlap, the

higher frequencies provide more information with which to make the match.
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A third significant two-way interaction was between stimulus type (chair vs. face)
and center frequency, F(1.60) =5.95. p <. 02. This is due to a difference between center
frequencies for chair stimuli--where reaction time dropped from 1.17 to 1.13 seconds--but
not for face stimuli--where reaction times in the two center frequency conditions were
virtuaily identical at 1.06 and 1.04 seconds respectively. This small but reliable difference
suggests that higher spatial frequencies have an advantage in object recognition that is not as
strong in face recognition.

A final two-way interaction was seen between center frequency and overlap factors.
F(2, 120) = 10.55. p < .000L. In this case, reaction time dropped as overlap increased. but
did so in different ways for the two center frequencies. At center frequency 7.08 c/o, overlap
levels 0.33 and 1.00 octaves are significantly different from one another. but levels 1.00 and
1.67 are not. At center frequency [4.15 c/o. a more steady decrease is seen. Here levels 0.33
and 1.67 are significantly different, with level 1.00 in the middle being not significantly
different from the other two. This result is likely due to the inclusion of faces with very low-
frequency bandwidth in the lower center-frequencies 0.33 octaves of overlap condition. As
Parker et al. (1996) have shown, low-band faces are recognized more slowly than middle or
high-band ones.

Conclusions from Experiment 6

The accuracy data in Experiment 6 are clearly compatible with Biederman and
Kalocsai's (1997) model of face and object recognition. Faces show a greater sensitivity to
spatial frequency overlap and to spatial frequency content than objects do. Reaction time
data was somewhat more difficult to interpret, and differences overall were quite small (on
the order of 60 ms at most) but it did show that there were no accuracy for time trade-offs.
Reaction time data also supported the effect of spatial frequency overlap being greater than

that of spatial content in general.
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Although the accuracy data can be seen as supporting a feature-based and spatial
frequency-free representation of objects, there is an alternate explanation for object
superiority in dealing with differences in spatial frequency content. That is, object images
may correlate more strongly across spatial scale than do face images. Indeed, this seems
likely. as object images typically contain more sharp edges, and edges tend to transcend
spatial scale. If this is the explanation for the results of this experiment. then we should see
a sinilar effect of spatial frequency overlap on the recognition of upside-down faces. These
necessarily contain the same spatial frequency elements as upright faces. but may be treated
more like objects by the visual system. If this is the case, we should see an effect of overlap
on them that is somewhere between upright faces and objects. This possibility is examined

in the following experiment.

Experiment 7

This experiment was designed to examine the alternative hypothesis that the effects
seen in Experiment 6 were due a greater degree of correlation across spatial scale in the
chair images than in the face images.

Method

Participants. Thirty-six undergraduates from McGill University (7 male. 29 female)
with ages ranging from 16 to 28 years (median = 20), participated. All participants had
normal or corrected-to-normal vision.

Materials. The stimuli were face and object images prepared as discussed in the
section entitled Stimuli for Experiments 6 and 7. These were identical to the face stimuli
used in Experiment 6, except that they were presented inverted. Example stimuli may be
seen in Figure 17.

Design and procedure. The design of the experiment was a 2 x 2 x 3 mixed model.

The tactors were: 1) Task type (test vs. control), 2) Center frequency (7.1 or 14.2 c/o).and
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3) Spatial frequency overlap (0.33, 1.00, and 1.67 octaves). The first factor was between
subjects whereas the latter two were within subjects.

The procedure was identical to that used in Experiment 6, except that only face
stimuli were presented. and these were presented inverted.

Results and Discussion

Accuracy data. Accuracy data is shown in Figure 20. The values given are means
and standard errors. A three-way ANOVA was used to analyze the results. This showed a
significant two-way interaction between trial type (test vs. baseline) and spatial frequency
overlap (0.33. 1.00. and 1.67 octaves), F(2, 68) = 7.74. p = .0009. Post hoc testing with
Tukey HSD (alpha = .05) showed that this was due to the overlap factor having a significant
effect in the test conditions. where all levels were different from one another. but not in the
control conditions, where none of the levels differed significantly. This result is similar to
that found with upright faces, supporting an interpretation of the previous results based on
differences in correlation across scale. None of the other interactions were significant, nor
was the overall effect of center frequency.

Reaction time data. Reaction time data are shown in Figure 21. A three-way
ANOVA was run to analyze this data. This showed a significant two-way interaction
between center frequency (7.08 and 14.15 c/o) and overlap (0.33. 1.00. 1.67 octaves), F(2.
68) = 4.19. p < .02. Post hoc testing with Tukey HSD showed that this was due to an effect
of overlap level at center frequency 7.08 c/o, but not at 14.15 c/o. This suggests that reaction
time decreases as higher spatial frequencies are included in the task. reaching a floor level
somewhere around the higher center frequency level. There was also an overall effect of trial
type. F(1,34) = 5.14, p < .03. which showed that control conditions were overall slower. This
is somewhat surprising, given that the test conditions would be expected to be more

o' e

difficult. A possible explanation is that subjects were being more
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cautious in the control conditions due to the fact that distractor stimuli would have a more

similar overall appearance to the target stimuli in these conditions.

Conclusions from Experiment 7

The results of this experiment are compatible with the hypothesis that the greater
resistance of object recognition to spatial frequency variations is due to a greater degree
correlation across scale for object images. This explanation may in fact have broad
applicability in explaining a number of findings which apparently support the RBC model
of recognition (Biederman, 1987). This will be discussed in more detail in the General

Discussion below.
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CHAPTER 3: GENERAL DISCUSSION

This thesis examined the effects of spatial frequency overlap on face and object
recognition, as well as a number of related questions. This was done in an attempt to provide
a better understanding of how spatial frequency affects complex image recognition. In the
following discussion, [ first provide a brief review of the questions being addressed. This is
followed by a detailed discussion of each question in turn. The discussion closes with some
tuture directions suggested by the research and the general conclusions which may be
drawn from this work.

The primary goal of this project was to assess whether spatial frequency overiap
would have a significant effect on the recognition of complex images. Of particular interest
was the relative magnitude of this effect as compared to the effects of simply varying the
spatial trequency content of the stimuli. All of the experiments performed to examine this
question found a significant effect of spatial frequency overlap and a relatively small effect
of the band of frequencies to which a filtered image had been limited. These findings
suggest that overlap between the spatial frequency domains of images is an important
contributing factor to face and object recognition.

An additional question concerned the role of spatial frequency overlap in explaining
higher-level phenomena such as difficulty with recognition across display format. The fact
that overlap produced strong effects suggests that it may contribute a large portion of the
effects seen in these cases. [t may also help explain other phenomena, such as the effects of
coarse-quantization.

Related to the magnitude of spatial frequency overlap effects is the question of
which (if any) bands of spatial frequencies are most important for visual recognition tasks.
The findings of the studies presented here suggest that the actual band of frequencies is of
little importance, that a broad range of frequencies is sufficient for recognition, and that it is

the similarity in spatial band between two images that is most important.
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A second area discussed in the introduction and rationale concerned the effects of
luminance calibration on recognition. If such effects are large, this would suggest that
results from older studies using non-calibrated presentation methods could not be directly
compared to modern studies that use calibrated stimuli. By executing experiments under
both calibrated and uncalibrated conditions, it was found that this factor generally had little
effect on recognition and matching tasks, although there was a significant improvement
under certain circumstances. This suggests that the results of older studies will not be too
different from those of modern studies. although some caution is warranted.

Another question examined in this thesis concerned the effects of task type. Of
particular interest was the interaction of task type with spatial frequency effects. Sergent
(1986) suggested that matching and recognition tasks might make preferential use of low
and high frequency bands respectively. She argued that this explained some of the
contradictory results in the literature. The studies reported here found similar effects of the
spatial frequency factors under consideration in three different types of paradigms, and thus
do not support Sergent’s (1986) argument.

The tinal question posed in the rationale asked whether faces and objects differed in
how variations in spatial frequency overlap affected them. This has implications regarding
the format of the representation of these two types of stimuli in memory and specifically
bears on Biederman and Kalocsai's (1997) model of face and object representation. The
findings reported here support the notion that object recognition is less affected by the
spatial frequency content of images. but do not support the notion that this is due to
differences in how faces and objects are represented.

[n the following discussion, each of the questions posed in the rationale will be
examined in a separate subsection. Each subsection reviews the relevant results of this

research and ties them in with past research.



What is the effect of varying spatial frequency overiap?

The main goal of this research was to determine the magnitude of the effects of
spatial frequency overlap on recognition performance. Some degree of rise in performance
with increasing overlap is to be expected based on the fact that the amount of information in
common between the two images increases as they come to have greater overlap. However.
the possibility exists that the effect of alterations in spatial frequency overlap would be small
and therefore of little relevance to other questions in visual recognition. One reason to
expect a small effect of overlap is that face and object recognition, being higher-level
processes. might rely more on higher-order information and be little affected by the basic
signal qualities of the input images. [n performing face recognition. for example. the visual
system may have access to a great deal of information about how faces “should be”. Ata
simple level. this includes a weak constraint for bilateral symmetry and a strong constraint
for the general organization of larger facial features. But it may also include such things as
“eyes have sharp edges” and “cheek bones are never sharp edges”. To the extent
that the visual system has this sort of information available, it may be able to use it to over-
come limitations in spatial-frequency overlap and various other sorts of band-width
limitations. For example, a low-passed face image may have blurred lines around the eyes
while a high-passed one may have a sharp line defining the cheek-bone. Innate knowledge
about typical face teatures will tacilitate recognition across these two representations by
compensating for these “incorrect” portrayals of facial features. If this ability is very
powerful, then one might expect very little effect of spatial frequency overlap. In this case.
only extreme filtering would hamper recognition, either by making the image
unrecognizable as face or by degrading the image so severely that insufficient information
for making accurate extrapolations was provided.

If it was the case that effects of spatial frequency overlap were small, then this factor
could be held to be of little relevance to other questions in visual recognition. But if effects

are large, this argues that spatial frequency overlap must be taken into account as a
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contributor to higher-level phenomena. For instance, concerning the difficulty subjects have
in recognizing line drawings of faces. a number of higher-level explanations have been
proposed, such as a lack of mass representation (Bruce et al., 1992) and reduction in
configural processing (Leder., 1996). While these likely contribute to the effect. it is difficult
to know to what degree without first analyzing lower-level differences such as those in
spatial frequency content. Similarly, the results of studies that examine the recognition of
filtered images from unfiltered ones may be at least partially explained by the overlap factor
if it is of sufficient magnitude.

Several paradigms were used to examine the effects of spatial frequency overlap on
both face and object recognition. In general the results all showed that this factor had a
strong effect on recognition, even when visual differences in stimuli were subjectively quite
subtle. The results arising from each paradigm are discussed below, followed by a
discussion of their implications.

In Experiments | to 3. a learn/test recognition paradigm was used with face images
as stimuli to examine the effects of spatial frequency overlap. Here subjects were shown a
series of learning faces in one session. and were tested to see if they could pick out these
learned faces from a group of distractors in a second session. Experiments | and 2
examined subjects’ ability to recognize images that shared a limited range of spatial
frequencies. whereas Experiment 3 studied their capacity to recognize images that shared
their whole range of spatial frequencies, but that varied in the portion of the spectrum they
occupied.

[n Experiments 1 and 2 it was found that variations in overlap could produce a fuil
range of accuracy resuits, from floor to ceiling, and that subjectively minor differences in
image appearance could produce significant differences in recognition rates. Experiments la
and 2a looked at very low levels of overlap, ranging from -2 to O octaves. Here it was found
that only images sharing some portion of the spatial spectrum couid be matched at above-

chance levels. That is, only in the 0 octaves overlap conditions was recognition significantly



better than chance. In both Experiments la and 2a, recognition at negative overlap levels
failed to be significantly better than chance at all center frequencies and under both
luminance-calibrated and non-calibrated conditions.

Experiments Lb and 2b examined recognition with higher levels of overlap. from |
to 3 octaves. In general, there was a steady rise in accuracy as level of overlap increased. It
was found that the eftect of overlap interacted with that of center frequency, such that higher
center frequencies produced better recognition for a given level of overlap. Recognition
reached ceiling levels around 2 octaves of overlap in most cases.

An interesting aspect of the findings of Experiments | and 2 is that subjectively
minor changes in image appearance can produce significant differences in accuracy scores.
Experiments la and 2a examined the recognition of pairs of images similar to those shown
in Figure 3a. while Experiments 1b and 2b did the same for images like those in Figure 3b.
[n examining these figures. one would not expect such large differences based on the
appearance of the various pairs of pictures. This suggests caution in attributing similarity to
images of similar format (for instance two types of line drawings) that appear subjectively
comparable. and once again argues that spatial frequency overlap may be a significant
contributing factor to the etfects seen in studies of display format.

Experiment 3 examined the ability of subjects to match two identically filtered face
images. This experiment was designed to determine if the effects seen in Experiments 1 and
2 were indeed due to differences in overlap, or if they were due to decreases in the
bandwidth retained by images as overlap decreased. That is, as overlap level dropped in the
previous two experiments. the cut-offs of the filters through which learned and tested
images were passed concomitantly became more extreme. Thus the images in lower overlap
conditions had narrower bandwidths. If the lowering of bandwidth alone produced
significant differences in recognition. this would suggest that effects attributed to overlap in
Experiments | and 2 were in fact due to reductions in information presented in the learned

and tested images. Note that because images filtered in the same way were using at learning



and testing in these conditions. overlap in spatial frequency was held constant at 100%.
Only the spatial frequency band of the images to be recognized was changed.

A second aim of Experiment 3 was to produce baseline data for the previous two
studies. Baseline data for each of the 9 test conditions (3 overlap by 3 center frequency) in
Experiments | and 2 was derived by averaging the accuracy scores from two conditions in
Experiment 3. In Experiments | and 2, learn and test images were put through opposite
filters, one high-pass and one low-pass. In Experiment 3, the baseline conditions were
derived by averaging the accuracy for matching the associated high-pass image to itself and
for matching the associated low-pass image to itself. The rationale for this procedure is that
in recognizing the high-pass image from the low-pass (or vice versa). the available
information is necessarily contained in the two images. By taking the average across the
conditions in which these images had to be matched to themselves, one obtains some
measure of the total information available to human observers trying to match them to one
another.

Note that due to the compressive nature of accuracy, it is normally invalid to add or
average such scores in this way. That is, generally speaking, it is more ditficult to go from a
score of 80 to 90% than it is to go from 60 to 70%. Because of this. accuracy cannot be
considered an interval / ratio measure of performance, and it is therefore generally inaccurate
to perform simple arithmetic on such scores in order to derive a measure of performance.
However. due to the similarity of the findings for all filtering conditions in Experiment 3.
only accuracies that were close in magnitude were averaged. This means that inaccuracies
due to different levels of compression should be quite minimal.

An alternative possibility for deriving baseline values would have been to take the
lowest of the two accuracy scores from Experiment 3 which corresponded to the previous
experiments. That is. for each of the 9 conditions in Experiments | and 2, one could take the
lowest associated accuracy score from Experiment 3 as the baseline. The rationale here is

that this image provides the minimum amount of information available for recognizing the



other image in the overlapping pair. This procedure would also avoid difficulties with
compression, as discussed above. The rationale here is weaker, however. and the power of
the design would be halved due to removal of data. Therefore. the baseline derivation
method, as described above, was used in this study. An informal investigation of the data
suggests that either method would arrive at qualitatively similar conclusions, however.

Overall, performance in Experiment 3 was quite good and fairly flat across spatial
frequency bands, with even the most extreme filtering producing accuracies of over 75%.
This suggests that the effects found in the previous experiments were indeed due to a lack
of transfer between the learned and tested images. not the limited spatial range of the images
themselves. That is, because the individual images could be matched to themselves with high
accuracy. it could not have been the lack of information in the images themselves that caused
difficulties in recognizing images with limited spatial frequency overlap.

Accuracy across conditions in Experiment 3 was also quite stable across conditions,
producing a flat distribution in the baseline scores derived from them. The magnitude of
effects of overlap seen in Experiments | and 2 can therefore be taken without modification
due to the actual bandwidth or band location of the images in each condition. That is, there
was little or no contribution of changes in the spatial bands of images per se to the effect of
overlap.

Experiments 4 and 5 examined simultaneous matching of face images under
filtering conditions similar to those in Experiments 1 to 3. Here subjects were shown two
images of faces on the screen at the same time and asked if they represented the same
individual. The only major difference between Experiments 1 to 3 and Experiments 4 to 5
(aside from the basic methodological change) was that both test and baseline conditions
were included within subjects. That is, each subject was run through trials in which he or
she was asked to match images with limited overlap as well as trials in which overlap was set

at 100%. As expected. performance was much higher overall in Experiments 4 to 5 than in
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Experiments 1 to 3 due to the lack of a memory load in the task and therefore the absence of
mnemonic trace degradation and/or retrieval interference between stored representations.

Experiments 4a and Sa examined lower levels of overlap (from -2 to 0 octaves) and
showed that only under the most extreme conditions (-2 octaves overlap at the 5.3 c/o center
frequency) did matching performance approach chance. In general, performance rose
smoothly as overlap increased. Experiments 4b and 5b examined higher levels of overlap,
finding a continued trend towards increased performance. which generally reached ceiling at
2 octaves of overlap. Where performance reached ceiling, however, differences between
conditions were still detectable in terms of reaction time and continued to show increased
performance (decreased reaction time) as overlap increased. Accuracy in control conditions
was at ceiling, which is to be expected from a simultaneous matching task of this nature, but
reaction time data supported the findings of the previous experiments, showing little
difference between conditions.

These findings suggest that overlap variations have approximately the same effects
whether a subject is comparing two readily available images or comparing a single image
with a stored representation. This indicates that the effects of overlap do not interact with
mnemonic factors. There is no evidence that overlap has more or less effect based on the
amount of time between the learning and testing stages. The fact that control conditions
continued to show a fairly flat function of accuracy with spatial frequency band leads to the
interesting suggestion that different bands of frequencies are retained in a similarly durable
fashion and that no particular band is retained in preference to the others, as one might
expect if a given band is innately more useful to the task of visual recognition.

Experiment 6 examined the effects of spatial frequency overlap on both face and
object recognition in a sequential matching paradigm. Here subjects were shown two
successive images of either a face or a chair, which were separated by a briefly-presented
mask. Both test and baseline conditions were run. As expected, overall performance was

between that of the previous two paradigms, with most accuracy levels around 70%. As with
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previous experiments. it was found that spatial frequency overlap had a strong effect on face
recognition, but it had a non-significant effect on object recognition under the same
circumstances. [ndeed, switching from control conditions to experimental conditions
changed performance in object recognition very little.

For both faces and objects, control conditions showed a small but steady increase in
performance across spatial scale, but this was much low in magnitude per unit of change
than the effect of overlap. This pattern of results is not surprising, considering that the
amount of objectively available information in a given bandwidth is greater at higher
trequencies than lower. Tendencies towards similar rises were seen in the previous
experiments. but in all cases these were smaller in magnitude than the effects of overlap
changes. These effects can therefore be assumed to have contributed little to the effects of
overlap observed in the test conditions.

The baseline values derived from the control conditions show a flat function. This
finding is not surprising, as the controls show a steady rise across spatial scale. Taking the
average of two values at the extremes of this slope will necessarily give about the same value
as taking the average of two values near the middle of it. Creating baselines in this way is
valid only if one assumes that the difficulty in matching the two images is an average of the
difficulty of matching each image to itself. Although this method of creating baselines
seems plausible, another possibility would be to take the lowest of the two scores associated
with a given overlap level. which. in this case is always that elicited by the lowest band.
Following this method. the control conditions would show a slight increase, suggesting that
spatial frequency overlap effects were not as large as indicated by the control conditions.
The rise across controls is small enough, however, that significant rises in overlap would
nonetheless be observed. In either case, the baseline data show that overlap effects are not
due to a simple increase in the amount of information in the images. as increasing overlap is
accompanied by both a rise and a drop in the spatial frequency range of the images to be

matched.
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Experiment 7 showed that results for upside-down faces were qualitatively similar to
those for upright faces, with a steady rise in performance as overlap increased. This
suggests that differences in how overlap affected faces and objects in Experiment 6 was not
due to the qualitative nature of what was being shown in the image, but rather by stimulus
characteristics that were unaffected by what the image represented. If faces were truly
different from objects in terms of how they were affected by spatial frequency overlap, one
would expect that upside-down faces would show a pattern different from that for upright
faces. The reason for this prediction is that upside-down faces typically elicit non-face-like
performance in other respects (Bartlett & Searcy. 1993: Farah, et al.. 1995: Hole, George, &
Dunsmore, 1999). and are thought to be treated more like objects by the visual system
(Haxby et al., 1999; Aguirre et al., 1999). While the shape of the data for upright and
inverted faces was similar, an overall drop in performance between Experiments 6 and 7 was
as expected. matching many previous findings of extreme difficulty in recognizing upside-
down faces (Bartlett & Searcy. 1993; Enns & Shore, 1997; Farah, et al.. 1995; Parr. et al..
1998; Phelps & Roberts, 1994; Pullan & Rhodes, 1996; Tomonaga, 1994; Vermeire &
Hamilton, 1998; Wright & Roberts. 1996; see Valentine, 1988 for a review of earlier work;
Yin [969. [970).

Overall. the results show that. for face recognition, spatial frequency overlap has a
strong effect. This is affected by position along the spatial scale. with higher frequencies
producing higher accuracy. This is most likely due to the fact that a given band of
overlapping frequencies at a higher point in the spectrum contains more information (Parish
& Sperling, 1991). Conversely, changes in band location on the spectrum (when matching
images with similar frequency ranges) had a weaker effect. In object recognition, on the
other hand, the pattern of results is different. Here, the effects of overlap and frequency
content were about the same. This argues that face recognition is somehow more vulnerable

to changes in spatial frequency changes than is object recognition.



128

Comparing these results with studies that have examined similar questions in the
past, one finds that there is good agreement between experiments. Millward and O'Toole
(1986) found an accuracy level of 63% in a recognition paradigm using uncalibrated filtered
face images in a condition where overlap was 0 octaves and the center frequency was 11 c/o.
This was very similar to the 60% value found under similar circumstances (0 octaves
overlap at 12 ¢/o0) in Experiment 2a. Experiment la showed higher accuracy under the same
circumstances. likely because the calibrated stimuli there did not contain aberrant frequency
content that interfered with recognition. Also compatible with the results of the experiments
presented here is Millward and O'Toole’s (1986) finding that matching two similarly-
filtered images to one another (i.e.. low-pass to low-pass or high-pass to high-pass) was
easier than matching either low-passed or high-passed images to a full-bandwidth image. As
well. the recognition rates for low-pass to low-pass or high-pass to high-pass recognition
were quite similar to one another. a result which is in line with our control conditions.

Biederman and Kalocsai (1997; Kalocsai & Biederman, 1998) found that face
images were more vulnerable to changes in spatial frequency content than were chair
images. In their equivalent of the control conditions tested here, the images at learn and test
had a spatial frequency overlap of 100%. Under these conditions, both stimulus types were
recognized very well. and elicited roughly equivalent performance relative to baseline
conditions.. On the other hand, in their test condition where overlap was limited, they found
that face recognition suffered greatly from lack of common spatial frequency content, with
error rates of 15% compared to 8% in the 100% overlap condition (note that because exact
figures were not provided by authors. estimates derived from figures are used in this
discussion). This finding is compatible with the results of Experiment 6. However, their
explanation for their findings is incompatible with the results of Experiment 7. which found
little change in the effects of overlap when faces were inverted. This suggests that the
difference between faces and objects was likely due to a greater degree of cross-scale

correlation in object images than in chair images.
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[n summary. the findings of these experiments show that spatial frequency overlap
has a large enough effect on recognition that it must explain a significant portion of the
effects seen in other visual recognition phenomena. These include recognition across
display format. coarse-quantization effects, and some differences between face and object
recognition. The contribution of the overlap factor to these effects is examined in
subsequent sections.

Recognizing images across display format

An understanding of spatial frequency overlap effects may help explain findings in
the area of recognition across display format. Much previous research has found. for
instance, that line drawings are adequate for object recognition but not for face recognition.
Several explanations have been offered for this phenomenon. For instance. it has been
argued that line drawings do not provide a proper impression of the mass of a face (Bruce,
et al.. 1992). Another explanation holds that line drawings reduce the ability for holistic
configural processing to take place (Leder. 1996). Although these higher-level factors are
likely part of the explanation. the findings of the present study argue that a significant
portion of the effect is accounted for by the lower-level factor of spatial frequency overlap.
That is. line drawings may simply not have enough spatial bandwidth in common with the
internal representations of faces to which they are typically being compared. These internal
representations are generally extracted from full-bandwidth images and therefore will likely
contain elements from the full range of the spatial spectrum.

[n many face perception studies, performance with line-drawing stimuli is compared
to that with photographs. According to the results of the spatial frequency overlap studies in
this dissertation. it may be that frequencies in the photographs that are not in the line
drawings are interfering with recognition. That is, all other things being equal, a line drawing
will have only a certain range of high frequencies in common with the stored image. The
remaining lower-frequencies in the photographic image have no matches in the line drawing.

Indeed, while these lower-frequency elements are unlikely to mask higher elements in a low-
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level fashion, they may interfere with recognition by adding noise to the process of higher-
level feature matching. This is because of the high number of "misses” that will be scored in
attempting to find matches in the line drawing for elements from the photograph.

[t is important to note that the above explanation does not simply apply to direct
comparison of two images. It also applies to the comparison of an input image to an internal
representation. For instance, some studies comparing face recognition with line drawings
and photographs have asked subjects to recognize famous faces. Subjects are not asked to
learn the faces explicitly. as they are assumed to be familiar from popular media. As famous
faces are generally learned from photographs or on television. the stored representation of
the face shiould contain elements encoded from frequencies crossing the entire spatial
spectrum. This results in a similar situation to that in which subjects view previously
unknown faces in photographs and then attempt to recognize them in line drawings. That is.
the internal representation in both cases is full bandwidth while the line-drawing is not.
Similar limitations in overlap are found in both cases.

Other researchers have noted similar problems of comparability. For instance,
Rhodes. Brennan and Carey (1987) point out this sort of problem in research on caricature
recognition. noting that comparing performance on veridical photographic images to that
with exaggerated line-drawings is problematic. This is because it is difficult in this case to
know if effects seen are due to a switch from veridical to exaggerated images or to a switch
from photographs to line-drawings. A better comparison, the researchers suggest, is
between veridical and exaggerated line drawings.

Human observers' difficulties with forms of representation other than line drawings
may also be explained in terms of spatial frequency overlap and interference from non-
overlapping frequencies. For example. subjects typically have trouble recognizing bi-
quantized faces, though this difficulty is not as pronounced as with line drawings. Here the
internal representation is again (typically) full-bandwidth, but the image being presented

contains only low frequency elements from the original. The high-frequency elements it
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does contain are not found in the internal representation. As with the line-drawing example

given above, this means that there will be many misses when attempting match elements of

the stored representation of a celebrity's face to the input provided by the bi-quantized face.
This should explain at least part of the deficit seen when subjects attempt to recognize faces
from two-tone images.

Given that this is the case, why is it that object images are recognized relatively well
in these alternate forms of representation? Experiments 6 and 7 suggest that it may be due
to object images having a greater degree of cross-scale correlation. In Experiment 6, faces
showed vulnerability to spatial frequency variations while object recognition did not. In
Experiment 7. however. inverted faces showed the same degree of vulnerability as upright
ones. This suggests that the difference in performance between upright faces and objects is
due to stimulus characteristics and not some difference in the way the face stimuli are
treated. One likely difference between the two classes of stimuli is in terms of cross-scale
correlation. Object images tend to have more sharp edges, features which transcend spatial
scale. Thus. the identifying features of an object will typically be seen at a wide range of
scales, whereas those that identify faces (shading and smooth shape variation) will be
present across a smaller range. For this reason, if faces are presented in a mode that shares
little spatial frequency range with the internal representation, there will be great difficulty in
recognizing it. This is the situation that arises when trying to match a line drawing to a
photograph. for instance. Conversely. line drawings of objects will have many elements that
correlate strongly with the internal representation.

[t is interesting to note in this context that coarse-quantized images may be viewed
as simply another form of representation. Like bi-quantized images. they remove the high
spatial frequencies from the original while adding new high-frequency structure. Unlike the
bi-quantized image. however. there is little correlation between the newly added elements and
the original elements that have been removed. This means that not only does the new image

lack elements that overlap with those in the original, but also it has a set of features (the



square grid) that find no match in the original. This creates excessive difficulties in
recognition unless the grid pattern is either minimized in saliency or is somehow segregated
from the face pattern.

[n studying this sort of image. Harmon and Julesz (Harmon, 1971; Harmon &
Julesz, 1973) argued that the effect of coarse-quantization was due to added high-frequency
noise. [n contrast. Morrone and colleagues (Morrone et al., 1983; Morrone & Burr, 1994)
argue for a more high-level explanation involving the misplacement of features in the image.
The results of the present experiments suggest that a basic contributing factor to the
difficulty in recognizing coarse-quantized images is the reduced correlation between the
internal representation of an image and the input that results from this treatment of the
image. Not only are the original high frequencies taken out of the image, but new ones are
added in, causing the original image and the pixelated one to have very different energy
distributions.

While spatial frequency overlap effects may help explain difficulties in matching
across various display formats, this explanation is certainly not the whole answer. Different
forms of representation are most likely innately superior in the amount of information they
provide to the visual system. One may find, for instance, that although drawing-to-drawing
matches are better than photograph-to-drawing ones, matching one photograph to another is
still superior. In general it is not surprising that matching between two images in the same
display format will be easier than matching between images in different display formats. But
the important point here is that the degree of difficulty posed by cross-representation
recognition will largely determined by the degree to which the images overlap in spatial
frequency content. Matching a low-passed or coarse-quantized image to a line-drawing, for
instance, may prove extremely difficult, due to the fact that these two formats will not share
many informative elements. This effect is seen both when doing simultaneous matching and
recognition of a learned picture from a test picture, demonstrating that the effect is present

both with regards to image inputs as well as cognitive representations.
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A possible limitation of Experiments | to S is that the pose of the face did not
change between learning and testing. Because of this. one might argue that what was
examined was the ability of subjects to perform general image-based recognition tasks, as
opposed to face recognition per se. In their discussion of the difference between image-
recognition and item recognition. Bruce and Young (1986) suggest that the latter depends
on two codes: A pictorial code that is relatively concrete and image-based. and a structural
code that is more abstract and depth-based. The pictorial code includes situation-specific
elements arising from the eftects of lighting, pose, and so on, while the structural code
incorporates the invariant elements that identify the face under various viewing conditions.
Based on these descriptions, Experiments | to 5 could be said to have examined effects
within the domain of the pictorial code rather than the structural and therefore may not be
relevant to real-world face recognition. Although similar results were obtained in
Experiments 6 and 7--where faces were rotated 45 degrees between learning and testing--
assuage this concern to a large degree, a discussion of this potential limitation nonetheless
seems mandated.

In Experiments | to 3, the pictures at learning and test were identical except for the
way in which they were spatially filtered. Thus, the same lighting and pose factors were
present in both cases. This means that there was little need for the structural code to be
accessed in order for correct recognition or matching to occur. It also means that spurious
elements of lighting and so on could be used to aid identification. Because the structural
code is an invariant identifier of individual objects, it may be argued that this aspect of visual
object representations is more relevant to the question of how visual recognition takes place,
whereas the pictorial code may be thought of as containing information that is irrelevant to
the real-world execution of this problem. That is, because the pictorial code can contain
transient information that is not an intrinsic part of the object being represented, it may

incorporate a certain degree of “noise’”” for the task of invariant face or object recognition.
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Contrary to this line of argumentation, a number of studies have used methodologies
that emphasize the use of the pictorial code in recognition and have found face-specific or
object-specific effects. For instance. Biederman and Kalocsai (1997) used tasks similar to
those used in Experiments | to 5 of the present study. but found differences in the
behaviour of face and object stimuli. In their study, face recognition was more affected than
object recognition by the absence of overlapping frequencies between the learn and test
images. This shows that image-matching is involved in higher-level processes in visual
recognition and is affected by what the image represents.

Tarr. Kersten and Bulthoft (1998) suggest that lighting, a factor thought to be part
of the pictorial code, may in fact be encoded as part of an object’s invariant representation.
They find that lighting 3D objects from different sides affects recognition in a way that
suggests lighting effects are stored in visual memory and that this is done in order to
disambiguate the shape of objects. They further suggest that lighting-based features are not
only stored in terms of their etfects on the image being input. but actually in terms of the
object’s invariant 3D representation. If this is the case, it suggests that the pictorial code is
highly relevant even to recognition even under varying viewing conditions.

Although the above arguments support the importance of pictorial cues in real-world
recognition, one cannot deny that the structural code will often be more important to the
task. But the fact that pictorially-based tasks show differences based on the content of
images. and the fact that certain pictorial cues seem to be stored in object-memory, suggest
that any differences between the relevance of the two codes will be relative. Both will play a
part in most recognition tasks to varying degrees. Accepting this, the interesting question
then concerns under which circumstances one or the other plays a more vital part.

One factor that may determine the relative usefulness of pictorial vs. structural codes
is familiarity with the faces being recognized. A number of studies have found that for
unfamiliar faces, changes in elements of the pictorial code (such as lighting direction, pose

and so on) are detrimental, but with familiar faces, these have little effect (Kemp, Towell, &
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Pike. 1997; Bruce, et al.. in press; Burton, et al., 1999). Presumably this is because structural
codes have been obtained in the case of familiar faces and provide relative robustness to
variation. This suggests that recognition of unfamiliar faces is governed primarily by
pictorial codes. making an understanding of this form of recognition very important for
understanding recognition of faces not previously seen. Based on this, the data from
Experiments 1 to 5 of the current study can be seen as applying primarily to an
understanding of how one acquires representations of new faces. while Experiments 6 and 7
may have broader applicability.

Experiments 6 and 7 examined conditions under which structural codes might be
expected to be more important than pictorial ones. That is, these experiments examined
sequential matching under conditions where the images at learning and test were rotated 45
degrees relative to one another. Pictorial cues based on pose were therefore not useful for
recognition and the task depended more on invariant properties of the faces. Under these
conditions. the effects of overlap were quite similar to those seen when the images were in
the same pose at learning and test (i.e.. in Experiments 1 to 5). This lack of an interaction
between the overlap factor and the use of pictorial vs. structural codes assuages concerns
that the effects seen in the earlier experiments might have been due to transient factors
involving lighting and other image properties. It also suggests that similarity in spatial band
between learning and test is an important factor even when higher-order functions such as
rotation in depth are required to perform a perceptual task. Thus. knowing about how
differences tn signal input affect recognition is also important in cases where the structural
code is involved. One factor that determines such similarities is spatial frequency overlap.

In summary. it is clear that studies that examine how mode of representation affects
recognition can benefit from an account based on signal similarity between the learned and
tested image. One aspect of this similarity was examined in this dissertation: Range of
shared spatial frequencies, or spatial frequency overlap. The effect of this factor is strong

enough that it may account for a significant portion of the effects seen when going from one
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display format to another. This was the case with faces more than with objects. Face effects
were seen whether images were pairs of band-passed photos, or high-pass vs. low-pass
pairs. Effects also remained stable across a variety of methodological differences.

Which bands of spatial frequencies are most useful?

Early interest in the effects of spatial filtering on face and object perception focussed
on the question ot whether high or low frequencies were most important for recognition.
Ginsburg (1978. 1980) argued that low frequency elements were of primary import in
recognition. with higher frequencies being redundant. Later researchers, such as Fiorentini
et al. (1983) argued that higher trequencies were sufficient for recognition and were not
redundant to the process of recognition. Recent studies suggest that for face recognition in
particular, a middle band of frequencies between 8 and 16 c/o are of primary importance to
that perceptual task (Bachmann, 1991; Costen, et al., 1994. 1996; Gold, et al.. 1999;
Nasanen. 1999).

In contrast to these studies, the results of Experiments 3 to 7 do not support the
notion that any particular band of frequencies is most useful for face or object recognition.
The control conditions tested in these experiments are most relevant here, as subjects were
required to match images that had been similarly filtered to each other. These conditions all
showed a flat or slightly rising function of performance with changes in spatial frequency
content both within and outside the critical bands suggested by previous research. This was
the case for low-passed, high-passed and band-passed images. Also, the pattern of results
remained the same whether stimuli were objects or faces. whether they were rotated in depth
or not. and whether the paradigm used was simultaneous matching, sequential matching or
recognition. The slight rise in performance with increasing spatial frequency might be seen
as support for experiments that have found higher spatial frequencies to be of greater
importance for recognition (e.g.. Parker et al., 1996), but it is difficult to make this
conclusion, as the objectively available amount of information in a given spectral range rises

with spatial frequency.
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The control conditions of Experiments 3 to S used low-passed and high-passed
stimuli. Subjects were required to recognize or match pairs of images that had been filtered
at a series of different cut-off points. An interesting finding is that performance did not
show a rise and fall pattern as the spatial range of images expanded into and beyond the
critical band for face recognition. as would be expected based on the "critical band™
studies. Rather. performance was quite flat, with only a slight and inconsistent rise as the
bands expanded. Experiments 6 and 7 showed that when subjects matched images that were
filtered to contain the same limited band of frequencies, there was no particular advantage
for bands with center frequencies in the critical region. As with previous experiments, there
was only a moderate increase in performance as the frequency of the band rose.

The most probable reason for the differences between the findings of the present
studies and those of past reports seems to be that here subjects were being asked to match
images that had been filtered in the same way, whereas past experiments asked participants
to match filtered images to full-bandwidth ones. The present findings suggest that the
critical bands of frequencies found by previous researchers are only of import in a context
that includes the rest of the frequencies in a full-bandwidth image. That is, there may be
something about these frequencies that allows them to be extracted from a full-bandwidth
image more easily. or they may somehow be interfered with less by other frequencies. As
was suggested earlier. one problem with recognizing a spatially-filtered image from a full-
bandwidth image is that the latter contains a wide range of frequency elements not found in
the former. It is possible that the middle frequencies are in some way less affected by this
sort of high-level interference.

Previous explanations have suggested that middle frequencies are most important
because of the structure of the face (Costen et al., 1994, 1996). But if this were the case we
would expect that matching pairs of faces band-passed to contain mostly frequencies within
the critical would be easier than matching those with only frequencies below or above. This

is not observed in these experiments.
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To this point, the relevance of these findings to recognition across display format
has been examined from a highly theoretical viewpoint. But it is perhaps more relevant to
look it the practical implications, particularly as this has been the focus of much of the
research in this area.

There are a number of practical consequences that arise from the results of this
study. For instancé. the present findings argue that if one wishes to have people recognize a
face image, it is important for the input and the representation to not only share spatial
bandwidth. but also to avoid having excessive spatial frequency information outside each
other’s ranges. As an example, researchers have shown that matching a full bandwidth
photograph to a low-quality video camera image is extremely difficult, even for forensically
trained police officers (Burton et al.. 1999). Based on the findings of the present study,
subjects should paradoxically be better able to recognize the video camera image from a
similarly degraded stock photo.

Of course. it would not be surprising or of practical interest if degradation merely
rendered a set of images more homogeneous in a higher-level sense. That is, such
degradation of images might simply render the set of images indistinguishable from one
another. If this were the case. one would expect to see a pattern of results wherein both hits
and false alarms vary in concert with the degree of degradation of the image set. But
according to the interpretation offered here, one should instead see an increase in overall
measures of accuracy. with a higher number of both hits and correct rejections as the images
come to have more of the spatial frequency spectrum in common. The reason for this is that
such a manipulation would increase the amount of common information available for
making a match. and decrease the amount of information in bands that the images did not
share.

The findings of the present studies also have a number of implications for
experiments that draw conclusions about spatial frequency content from tasks utilizing

recognition across representational form. For instance, Biederman (1987) has suggested
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that high-frequency information may be sufficient for object recognition, based on studies
of line drawings. But, in the current study. no evidence of a special role for these
tfrequencies was found. [n experiments with both face and object stimuli it was found that a
wide range of frequency bands were sufficient for recognition. and that any differences
based on spatial frequency changes were similar in character for both faces and objects (i.e.,
in terms of band of frequencies occupied. there were marked differences in terms of spatial
frequency overlap effects).

Some researchers have suggested that line drawings are adequate for object
recognition but not for face recognition (e.g.. compare Bruce, et al.. 1992 and Davies, et al.,
1978 to Biederman & Ju, 1988). They suggest that this is due to the importance of low
frequencies for recognition of the latter. But again, the data of the present experiments does
not support this. Rather, they support the notion that line drawings are adequate for object
recognition because of greater cross-scale correlation in the sorts of stimuli used in most
object-recognition experiments.

[t is clear from the above that knowing about which bands of frequencies are best
for allowing recognition of unfiltered images from filtered ones does not give us a complete
understanding of the visual recognition process. Humans are sometimes faced with
situations where two images are bandwidth limited. and yet they are capable of matching
between them. An interesting example of this can be seen by considering the Burton et al.
(1999) study. as described earlier, but imagining that the subjects involved were required to
match sketches of individuals to security camera photos. The former image will tend to
present relevant information at only high frequencies, whereas the latter will generally
contain relevant information at only low frequencies. Both images might contain frequencies
in the critical band. but they would still be extremely difficult to match with one another due
to the lack of frequencies they share.

In summary. it seems clear that an understanding of how similarity in spatial

frequency range affects recognition can be informative for understanding the effects of
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varying mode of representation. The effects of spatial frequency overlap on recognition and
matching performance are sufficient to account for a significant portion of the differences
arising from changes in display format. This factor. along with other signal quality
differences. must be taken into account in order for a complete understanding of
representation effect to be had. Spatial frequency overlap also has relevance for some
practical problems. such as those encountered in security situations where individuals must

match highly different representations of an individual.

How does luminance calibration of filtered stimuli affect performance?

Several authors have noted the importance of presenting spatially filtered stimuli on
a calibrated monitor (Metha, et al., 1993: Olds. Cowin & Jolicoeur, 1999; Peli. 1992a: Pelli
& Zhang, 1991; Tyler & McBride. 1997). The reason for this is that the majority of
monitors. in their native state, exhibit a relationship between luminance and voltage level that
is non-linear. Generally the lower voltage levels (or grey-scale levels) represent small
increases in luminance, whereas the higher ones represent large increases. When dealing
with spatial filtering, this non-linearity results in filtered images having additional energy
added to them. This is especially the case with high-passed images where a great deal of
energy can be added to the image at the low end of the spectrum. Surprisingly, although
there have been a number of articles on how to calibrate monitors and why it is
recommended. there have been no studies to date that have explored the actual differences
calibration might make in human performance when recognizing complex images.

In order to examine the effects of luminance calibration as they interact with spatial
frequency overlap. Experiments | and 4 were repeated with non-calibrated stimuli in
Experiments 2 and S, respectively. Generally the results were in good agreement, no
statistically significant interactions were seen between the calibration factor and others. The
exception to this was that Experiment la (calibrated) showed easier recognition in the 0

octaves of overlap condition as compared to Experiment 2a (uncalibrated). Here a clear
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effect is seen whereby all 0 octave of overlap conditions showed above-chance performance
in the calibrated version. but only the 0 octave of overlap condition at center frequency 12.0
c/o showed above-chance performance in the uncalibrated condition. The difference in
accuracy was as high as 9%. As all the studies show an increase in performance with
increasing center frequency. it can be reasoned that there was an overall suppressive effect
on recognition in the uncalibrated case. But why did this only occur for the recognition
conditions and why only with low levels of overlap? One possibility is that the difference
arose because of the different challenges posed by the tasks of matching across a gap in
spatial frequency as opposed to an overlap in frequency. In the former case. a matching
algorithm cannot look for similar elements in the two images because there are none. Even if
one postulates a simple template-matching algorithm with perfect correction for spatial
location. rotation. and so on. an algorithm that only looked for elements of similar spatial
frequency (i.e.. detected by the same early channel) in the two images would be left with no
hits and be completely unable to make matches. Instead. a system must be hypothesized that
takes advantage of the correlation of information across spatial scale and that allows for hits
be scored when image elements have the same relative spatial location and stmilar
orientation, regardless of moderate differences in spatial scale. Unfortunately, such an
algorithm would be vulnerable to the inclusion of noise, especially the kind of noise
introduced by non-calibration. The reason for this is that the algorithm would allow
incorrect matches between the aberrant spatial elements in the image and similar elements in
the representation, resulting in incorrect confirmations (false alarms).

Conversely, in the case of an overlap in spatial frequency, the algorithm can be much
more conservative in accepting elements as matching. This is because there are in fact
elements that are similar in spatial frequency between the two images. These can be used to
assess degree of match without the need for correlating elements across scale and therefore
without vulnerability to the noise elements introduced by non-calibration of stimuli. In short,

when there is a gap in spatial frequency content between two images, only correlative
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information is available and matching procedures must be fairly lax in making matches
between features, making them vulnerable to noise. On the other hand, when there is an
overlap in spatial frequency the matching procedure can be more conservative and thus is
protected against noise. Note that the simple template-matching algorithm presented here is
considered for the purposes of example only and is not necessarily a good model of
recognition. but similar basic principles should apply to any matching algorithm.

Many early studies have overlooked the issue of screen calibration. Most of the
studies discussed in the literature review do not mention the issue at all. leading one to
suspect that at least among early studies the stimuli were presented on monitors using only
the native grey scale values. Modern studies are typically assumed to use calibrated stimuli,
but again most authors do not make this explicit. This is especially the case with studies that
use complex images. Therefore, it is likely that the literature contains a mixture of studies
variously using calibrated and uncalibrated presentation methods. Especially problematic is
a possible division between those studying lower-level processes. who typically
acknowledge the necessity of calibration, and those studying higher-level processes, who
may consider calibration a minor technical issue with no effect on complex higher-level
tasks. [f such a divergence exists, it could create difficulties in using studies in one area to
explain results in the other. While the data in the present study suggest that effects will be
fairly minor under most circumstances. it is nonetheless important that low-level and high-
level studies be methodologically comparable if they are to gain insight from one another.

There exist to date no other studies that have investigated the question of the effects
of screen calibration on recognition of complex filtered images. For this reason, there can be
no comparison with previous results. The present set of experiments suggests that studies
that have used calibrated images and those that have not may be compared with moderate
confidence, although small reductions in accuracy may be expected for non-calibrated
stimuli. [t is important to note that these assertions regarding the effects of calibration on

recognition can only be made with regards to face perception, as that is what was tested
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here. The effects on object recognition were not tested, although one might predict that they
would be lesser for images having greater correlation across scale.

In summary. calibrating one’s stimuli seems to have little effect on complex image
recognition except under particular circumstances. This is likely due to redundancies in
natural images that the visual system is able to take advantage of in most tasks. Only where
the degree of redundancy is attenuated will calibration have an effect. Few studies have
investigated the effects of screen calibration on complex image recognition. and many
studies in this area fail to acknowledge the importance of using calibrated stimuli. The data
here suggest that this will cause only minor and limited discordance in results. but effects
are sufficiently large to mandate the use of calibration even in studies of higher level

processes.

How does task type affect recognition?

Early research examining whether high or low frequency information was of
greatest import to visual recognition is contradictory. Sergent (1986) attempted to reconcile
these findings by appealing to their different methodologies. She noted that while Ginsburg
(1978: 1980) found support for the importance of low frequencies using a recognition
paradigm, Fiorentini et al. (1983) found support for higher frequencies using a matching
paradigm. She suggested that the former task relied more on the overall shape of the face or
object being recognized. whereas the latter relied more on the interior features and finer
details of the face. Thus. Ginsburg’s (1978; 1980) methodology emphasized low-frequency
elements in the image while Fiorentini et al’s (1983) emphasized high-frequency ones.
Although this explanation is appealing, it does not bring order to the results in the literature.

In the present study, three paradigms were used: Recognition, simultaneous
matching and sequential matching. All of these paradigms showed roughly similar effects of
overlap, though overall performance dropped as latency between learn and test images

increased. This argues against the notion that task-type might affect which spatial
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frequencies are most useful in recognition. In these experiments we found only that higher
frequencies were more useful for recognition than low. Performance steadily increases as
the overlapping spatial frequencies in the images to be matched become higher. Also, with
both face and object matching there is a rise in performance as the band mutually occupied
by images for matching increases.

This pattern of results argues against the idea that face matching is subserved by the
external features of the face while face recognition relies on internal features. Rather, the
data presented here argue that in all forms of face perception, different spatial frequency
bands serve with roughly the same efficiency. How then can we explain the apparently
contradictory findings in the literature? It seems from the present findings. that a wide
variety of spatial frequency bands are sufficient for recognition and that no given band is
necessary for recognition. What is necessary for recognition is a sufficient degree of
overlap in spatial frequency range. For low-pass and high-pass images being matched to
full-bandwidth pictures, this amounts to saying that a sufficient bandwidth in the filtered
images is required. For band-passed images, it amounts to saying that the bands they
occupy must overlap to a sufficient degree.

This is the same whether one is attempting to match a stored image to an input one
or one is attempting to match two input images simultaneously. Note that in both of these
cases there is in fact a stored image which is being compared to the input image. it is only
the latency between storage and comparison that is being changed. The data from the
present study suggest that no matter what the latency might be, a fundamentally similar
process takes place. The comparison between the two images does not differ depending on
whether one image is in short term storage and the other in long term or both are in short-
term. A condition where both images are in long-term store was not tested, but it may be
predicted that similar results would be obtained.

The only pattern in the current data that points to a difference based on task type is a

possible interaction with calibration effects. [n recognition conditions (Experiments | and 2)
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calibration had an effect, with calibrated stimuli producing superior results to uncalibrated in
low overlap conditions. However, in simultaneous matching conditions (Experiments 4 and
5) there was no such difference. This may point to different processes underlying the two
forms of matching, but more likely this finding reflects the fact that the effects of
calibration are small and were likely too insignificant to come out in the easier matching
conditions.

[n summary, the data found in these experiments do not support the idea that task
type affects the spatial frequency range that is important to face recognition. In all cases, it
was found that a wide range of spatial frequency bands are sufficient for face recognition

and that none are necessary or particularly advantageous.

Do objects and faces differ in retention of spatial frequency information?

Biederman and Kalocsai (1997; Kalocsai & Biederman, 1998) propose a model of
tace and object representation in which faces retain spatial frequency information while
objects do not. This. they argue. is the reason for the relative robustness of object
recognition to variations and degradations in spatial frequency content. In their model. faces
are stored in terms of metric variations in a vector of low-level filter activation levels. To
illustrate Biederman and Kalocsai's model, consider a simple model of the visual system as
an array of wavelet detector “pyramids™. The lower levels of each pyramid contain many
detectors with small spatial extents whose purpose it is to detect high-frequency elements in
the retinal image. As one moves up the pyramid, each layer contains fewer detectors, but
with larger spatial extents, whose purpose it is to detect low-frequency elements. At each
point in a given level, a number of different orientations of detector are present.

When an array of such detectors is presented with a simple image of an edge
feature, only some of them at a given spatial location will activate. Activation will be limited
to those detectors whose receptive fields are collocated with the edge in the retinal image. It

will also be limited to those that are roughly of the same orientation as the feature. If the
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edge is sharp. the activated detectors will cross a wide range of spatial frequencies. If the
edge is blurred. only the low frequency detectors will be strongly activated.

A face image presented to such an array produces a complex pattern of activation,
which can be stored as a vector of relative values. Each value represents the activation level
of a certain feature detector. Given that factors such as pose and position in the scene are the
same, each individual face will create a roughly similar vector of values. with little in the way
of qualitative differences between them. For this reason, Biederman (1987; Biederman &
Kalocsai. 1997: Kalocsai & Biederman. 1998) holds that individual face representations
must consist of variations from a metric (i.e.. differences in vector values from the vector
values of a “standard face™). This sort of representation. because it stores data about the
activation level of every detector in the array, retains information about spatial frequency
content in the image.

In contrast'[o faces. Biederman (1987; Biederman & Kalocsai, 1997; Kalocsai &
Biederman. 1998) holds that the common objects that humans can quickly and easily
identify as distinct tend to have broad qualitative differences. That is. objects are held to
differ from one another in terms of arrangements of “non-accidental properties” or NAPs.
Examples of NAPs include pairs of parallel lines--which will tend to stay parallel across a
wide variety of viewing angles--and curves--whose convexity or concavity will likewise be
maintained over a range of perspectives. NAPs are the basis used to derive Geons, object
components consisting of volumetric primitives such as bricks. cones and cylinders. Object
representations consist of lists of such primitives with relational statements linking them.
For instance. a typical hand-held camera might be described by two Geons. a cylinder and
brick. with a single relational statement--""In front of ’--linking them (i.e., the cylinder is in
front of the brick). Most objects can be described by two or three geons. according to
Biederman (1987). An object representation is known as a Geon Structural Description, or

GSD.
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Because NAPs and GSDs draw their initial data from object edges primarily, it is
not as important for object representations to maintain spatial frequency information. In fact,
Biederman holds that in forming object representations the brain discards spatial frequency
information. Only the spatial location of a feature is retained. In the model of vision
presented above, only the fact that a given relative spatial location has had a detection is
retained. not which layer or layers of the pyramid did the detecting.

Based on the above description, faces should show vulnerability to reductions in
spatial frequency-overlap. whereas objects should not. The reason for this is that face
representations retain spatial frequency. If an input face image results in the activation of a
detector at the same spatial location as was recorded for a previous image, but not at the
same spatial frequency. no match should be recorded (or more likely a “weaker” match
would be recorded). For an object. however, the spatial frequency of the detector is not
recorded. so a feature detected at the same spatial location and orientation should produce a
match with a similarly located feature in the representation, regardless of the spatial
frequency of the input and representational features. Of course, some features are eliminated
in any filtering operation, but the edges that are supposed to be important to object
recognition will generally remain despite filtering. Sharp edges tend to transcend spatial
scale and are present in low-passed or high-passed images in nearly the same location as in
the unfiltered version. Based on this. one would expect that as two band-passed images
become more similar in the spatial range they occupy, faces should show a rapid rise in
recognition rates, while object recognition will remain relatively stable.

This suggestion is indeed supported by the results of Experiment 6 of the current
study. However, an alternate explanation for this pattern of results may be proposed.
Specifically. it is possible that some stimulus-based aspect of face images vs. object images
results in the differences. One likely possibility is that face images have a lower correlation
of visual information across spatial scale. That is, if one filters a face image to contain only a

given band of spatial frequencies and cross-correlates it with the same face image containing



148

only a different band of frequencies, the correlation may be quite weak. On the other hand, it
might be quite strong if a similar procedure were applied to object images. This seems likely
to be the case, because object images tend to have more sharp edges than do faces.

[f this is the explanation for the difference. then we should see equal vulnerability to
spatial frequency overlap for faces when they are tumed upside-down. If, on the other hand,
inverted faces are stored in a GSD. we should expect low but stable performance across
levels of spatial frequency overlap. The reason for this prediction is that upside-down faces,
if treated as objects. would be expected to be represented as GSDs. These GSDs would be
quite homogenous and therefore difficult to distinguish (thus low overall performance) but
would be as unaffected by spatial frequency overlap limitations as other objects (thus little
effect of this factor).

The results of Experiment 7 do not provide any support for this notion.. Instead.
inverted faces showed nearly the same magnitude of changes due to spatial frequency
overlap as did upright faces. Only an overall drop in performance was seen. This argues for
an explanation based on stimulus characteristic differences. The most likely candidate for
the relevant difference is degree of correlation across scale.

In summary. the results of Experiments 6 and 7 do not support Biederman and
Kalocsai's (1997) model of face and object representation. Instead. the results are more
compatible with an explanation in which both faces and objects are stored in a manner that
retains spatial frequency information. This has important implications for the question of
face “specialness’. as it suggests that faces are not stored in a different form than objects.
[t should be noted that this only applies to this particular aspect of face specialness and does
not address the question of whether faces are processed by a separate module in the brain.
A great deal of evidence still suggests that faces elicit qualitatively different recognition
behaviour from subjects, and these experiments do nothing to contradict this. The results

reported here only suggest that faces and objects are stored in similar ways in terms of
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spatial frequency content, and say little about the possibility of higher-level perceptual or

cognitive differences in how these classes of stimuli are treated.

Future Directions

A number of directions for future study are suggested by the findings of this study.
some theoretical in nature and others practical. On the practical side, it would be interesting
to determine if similarly degrading images would render them more recognizable from one
another. Ideally. such a study would be very naturalistic in nature, involving an analysis of
images from an actual security video camera as compared to a high-quality camera to
determine the exact nature of the degradation involved. Commercial security devices appear
to impose a number of limitations on image quality, including pixelization. defocus,
reduction of contrast. glare effects, and motion blur. so this may be technically challenging.
However. it should be possible to show that as one makes two images more similar in the
manner in which they are degraded they become more eastly matched from among a sample
of similarly degraded images. As stated before. it would be important to show that
degradation was not simply making images less distinguishable, but that it was genuinely
increasing performance. Also, it would be important to determine how such effects
interacted with those of changing the pose of the face between images. as security cameras
tend to take their pictures from unusual view-points. This line of research has the potential
to contribute to police and security work.

On a more theoretical level, the results of this experiment have suggested that there
is no particular band of frequencies that are more useful than others. But this was found in
the case of matching a filtered image to a similarly filtered image, as opposed to matching a
full-bandwidth image to a filtered one. It would be interesting to do a direct comparison of
these two sorts of conditions to determine the nature of the apparent higher efficiency of

certain bands. Such work would more directly test the assertion that the relative import of
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these bands was due to interactions with the rest of the spectrum included in a full-
bandwidth image.

To more exhaustively examine this question, one could also study the effects of
varying the range of extraneous spatial frequencies on image recognition. For instance, one
could have subjects match band-passed images to other band-passed images with the same
center-frequency but different band-widths and measure how recognition degrades as these
additional frequencies are added in. If the degree of degradation with frequency addition
was great enough. one could conclude that much of the effect seen in the critical band
studies were due to interference from extraneous frequencies in the full-bandwidth images.
This would give us a more complete understanding of how spatial frequency factors affect
recognition.

Although a further understanding of the sensory aspects of visual recognition is of
great interest. the findings here also point to a number of more cognitively-oriented
experiments that might give us a better understanding of visual memory. For instance, it has
been suggested by a number of researchers that certain bands of spatial frequencies are
most useful for certain tasks. such as recognizing faces or objects. If this is the case. we
might expect that these bands would be retained better by visual memory than other bands.
For instance. if the band of 8 to 16 cycles per face is best retained, then we might predict
that the information at this scale would not be allowed to degrade as easily as information at
other bands. The reason for this prediction is that. assuming there are limited storage
resources and that degradation of is a means of economizing these resources, it would be
most efficient for visual memory to discard less useful information. Of course, there are a
number of assumptions underlying this formulation, one of which is that different scales are
stored in such a way that they may degrade independently and that the visual cognitive
system has a way of choosing which bands are most informative.

The results of this study do not support the notion of a given band being superior to

another for face or object recognition, finding a flat function for recognition of band-passed
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images as the band occupied by the images shifts across spatial scale. This is the case
whether images are being simultaneously matched or recognized from learned images,
suggesting that no particular band is being retained better than others. But these findings do
not arise from a direct test of the hypothesis and therefore cannot constitute a direct rebuttal
of it. In order to execute such a test. one would have to have subjects learn a set of faces and
then test them at several intervals afterwards under similar circumstances. The expectation, if
certain bands are more efficient. would be that these bands would show a degradation curve
that was shallower than the others. In line with the previously suggested experiments, it
would be interesting to examine effects under two conditions: One where full-bandwidth
images are recognized from filtered version, and another where two similarly-filtered images
are recognized from one another.

Another possible way to expand on the present studies would be to gather data from
an ideal observer set up to do the tasks and compare this to human data, thus obtaining
efficiency scores for the various conditions rather than simple accuracy measures. This has
the advantage of accounting for all the information in the images themselves and thus
allowing firmer conclusions as to the source of effects (i.e., from the visual system or from
stimulus qualities). Control of stimulus quality effects is a difficult issue in complex image
recognition because the stimuli are, by definition, elaborate. Many studies simply ignore this
issue, creating results that are difficult to interpret. [n the present studies, extensive use of
control conditions was implemented on the assumption that differences between these and
the test conditions could be safely attributed to visual system effects due to the fact that the
stimulus characteristics were the same in both cases.

This approach has both advantages and disadvantages relative to using an ideal
observer as a baseline. With ideal observers. one gets a baseline which controls strongly for
any information inherent in the image itself and subject accuracy is compared to this to
obtain efticiency scores. Thus, any variations in efficiency must be due to factors within the

observer. However, with complex stimuli it is difficult to narrow down what aspects of the
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observer account for the effects. They could arise at a number of levels, including cognitive,
attention-based or low-level sensory ones. The difficulty arises from the fact that human
observers bring with them a great deal of information about what objects “should look
like.” In the case of faces, for instance, they know that the stimuli should be symmetrical
and that they shouid have a similar basic arrangement of features. They may also be able to
significantly extrapolate on the information presented to them in the images. A basic ideal
observer does not do this. and while it may be possible to build in such constraints and
abilities. it is difficult to do so without first understanding how human observers recognize
objects. Thus. the problem becomes circular. It is difficuit to construct an ideal observer that
is qualitatively similar enough to a human observer to help understand human observers
unless we first understand human observers.

Having said this. however. there are also disadvantages to using human observers as
baselines. These have to do with the fact that the task cannot be exactly the same in the
baseline and experimental conditions. Because both methods have advantages. it would be
most informative to have baselines from both. Ideal observer data would provide a stronger
control for the amount of data in the images. and would be especially useful in comparing
data across stimulus types (i.e.. faces vs. objects) as it would allow a factoring out of the
potentially large overall differences between these classes in terms of image qualities.

With regards to object recognition specifically, one direction that might be taken
from the present experiment is to examine intra- and inter-class object recognition and the
effects spatial frequency overlap has on these two sorts of visual discrimination tasks.
While the distinction between inter- and intra- class recognition is widely recognized as
important, there has been no work directly comparing how spatial frequency range affects
these. The results of this experiment showed little effect of spatial frequency variations with
object stimuli, but a great deal with face stimuli. If, as Gauthier (1999) has argued, face

specific effects are contributed to by the greater homogeneity of this stimulus class as
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compared to the objects that have been used as controls for it, then we might expect that

inter-class recognition would be even less affected by spatial frequency overlap.

Conclusions

This dissertation examined a novel aspect of spatial frequency effects on visual
recognition. specifically spatial frequency overlap. Its results dealt primarily with face
recognition, although object recognition was examined in two experiments. The major
conclusion that can be drawn from this research is that spatial frequency overlap has a
strong effect on recognition. and that this effect is greater than that of location on the spatial
scale. Related to this is the conclusion that overlap has stronger effects on face recognition
than on object recognition. most likely because the latter generally involves images with
greater correlation across scale. A second important conclusion that may be drawn from this
research is that the effects of luminance calibration on recognition accuracy will generally be
small, except in cases where images sharing no spatial range are to be recognized from one
another.

In conclusion, the data gathered here on the effects of spatial frequency overlap
serve to expand knowledge in general about how we recognize the things we see. More
specifically they enable us to understand more clearly how different forms of representation
affect visual recognition. The data help to both clarify previous theoretical findings and to

suggest directions for future practical research.
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APPENDIX

The following pages show examples of unfiltered stimuli used in Experiments 6 and

7. Both face and chair stimuli are shown.









