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Abstract

Hardwate alone 1s msufhicient to allow high-performance computer systems to be-
come successful; sophisticated compilers are also required. Compilers for systems of
this type will achieve their effectiveness, not from any single optimizing tiransforma-
tion, but {from advanced program analysis and selective application of many proven
code-improving transformations. One such analysis technique which holds promise,
especially for FORTRAN-90 applications, 1s a collective analysis technique developed
by Sarkar and Gao which uses graph ccloring to determine whether a duster of loops
can be processed m a pipelined manner [SG91]. The loop clusters we consider m this
case are those consistimg of loops which define arrays and successor loops which use
them. When array elements which are generated in one loop are able to be referenced
i the same order by successor loops, the loops are compatible for pipelined processing.
On a multiprocessor, pipelined processing 1s accomplished by running the «onstituent
loops on different processors; whereas on a uniprocessor, the loops are fused and in-
termediate anays eliminated through a process of collectve transformation, iself a
process which often creates additional opportunities for code improvement.

In this document we describe enhancements to Sarkar and Gao’s loop coloring
techmque which nmprove transformation effectiveness of optimizing compilers for
uniprocessors; we also describe a minimum-cost partitioning heuristic to achieve efhi-
cient transformation in the event a loop cluster contains non-compatible loops. Based
upon empirical evidence, we then show the benefit from loop transformation can be
substantial, i certain instances resulting in four-fold speedup for certain types of
codes. As part of our expernuents, we use sample codes for both compatible and
non-compatible loop clusters, run on each of three different types high-performance
uniprocessors a R1ISC workstation, a superscalar workstation, and a mainframe vec-
tor processor. Processor and cache simulations are then used to further substantiate
our results  Overall, these experiments llustrate the advantages of using collective
analvsis and transformation within optimizing compilers for each type of machme.




Résu. ié

De nos jours, un support materiel eflicace n’est pas suflisant pour assurer qu’un ordy

nateur haute-performance ait du succes; PMatilisation de compilateuns sophistiques est
aussi nécessaire. Les compilateurs pour ce type de machie démvent fear »thoaite,
non pas d'une scule technigue d'optimisation, mais bien de Tutilisation d'un ense

ble d’analyses et de transformations. Une approche prometteuse, particulicrement
pour les apphications ¢arites en FORTRAN-90, est Panalysc colls ctive développee pay
Sarkar et Gao, approche quiutilise une techimque de coloration de praphes dane e bat
de détermmer st un ensemble de boueles peut étre traité & Paide d'un pipelime [SG51]

Les ensembles de boudles que nous atlons étudier sont des boudles servant w defing des
tableaux de méme que celles utilisant les tableaus amsy détines Lorsgue les elements
d’un tableau produits par une boucle sont utilisés, par une autie boudle, dons le meme
ordre que celui ot tls ont ¢té produts, on dit alors que les deus boucles ont compat-
thles vis-a-vis un traitement par pipelme Dans une madnne o plasieurs processens,
un traitement par pipehne peut &tie 1éalisé en exéeutant les diverses houcles sur des
processeurs différents; par contre, sur une machime a un senl prosessenr les houcles
peuvent étre fusionnées et les tableaux mtermédianes peuvent ¢tie élummds prace o
un processus de tr.nsformation collective, lequel processus pent lur méme créer de

nouvelles possibilités d’optimisation du code.

Pans ce mémoire, nous décrivons certaines améliorations a la techumgque de col
oration de graphes proposée par Sarkar et Gao daus le hut daméhorer son eflic acité
pour des machines a un senl processeur, nous dénvons aussy une henroqgue de
décomposition a coit mimimum dans le cas ¢ un ensemble de boncles non compatibles
A Paide de résultats ermpiriques. nous montions ensutte que les avantages dune telle
transformation peuvent étie substanticls, condmsant, dans certams cas o des pro
grammes quatre fois plus efficaces Dans e cadie de nos expénences nons atil
isons des programmes contenant des boncles compatibles aimst que des bondles non

compatibles, chaque programme étant exéouté sur trors types de machimes o haute



performance: une station de travaill RISC, une station de travail super-scalane et un
processeur vectoriel  Des simulations de processeurs et de niémoires caches sont aussi
utilisées pour confirmer nos résultats  De facon géncrale, ces diverses expériences
hustrent les avantages dutihiser les techniques d’analyse et de tranformation collec-

tive,
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Chapter 1

Introduction

In spite of their great speed, supercomputers today are still not fast enough to solve
many of the problems users would like them to be able to solve. As a result, machines
of ever increasing computing power are needed, and although more advanced comput-
cers are constantly being developed, the introduction of a new machine usually comes
al a cost of increased complexity. The reason for this complexity is simple: either
machines be made to operate faster or they be made to do more work concurrently.
Although clock speeds have been increasing, the potential for further clock-speed in-
crease is himited because of a physical constraint on the rate at which VLSI, and more
recently ULSI, logic is able to operate. On the other hand, concurrent processing in-
volves vverheads, such as communication and synchronization, which quickly erode
the performance benefit which might otherwise accrue from concurrent hardware,
especially if the hardware is not effectively managed.

As a consequence, hardware alone is insufficient to allow high-performance com-
puter systems to achieve their full potential; some form of software support is essential,
and because of the complexity inherent in controlling program execution on parallel
hardware, this software support will necessarily take the the form of a highly sophisti-
cated optimizing compiler. Compilers of this type will achieve their effectiveness, not
from any single optimizing transformation, but from advanced program analysis and
selective application of many proven code-improving transformations, likely requiring
much closer programmer interaction than has been required of optimizing compilers

in the past.
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1.1 Scope of Research

The subject of this thesis 1s a new loop analysis and transformation techmque which
brings compiler technology closer to meeting the needs of newer hieh pertormance
computer architectures. In specific terms, the technique provides a way ol analyvzimg,
loop clusters in which the lead loops define artay elements and successor loops use
these elements to define yet other arrays. Airay computations of this type could
easily comprise a large portion of any scientific computation, especiallyv it the applh-
cation were written 1n a language such as FORTRAN 90 Counsequently, bemg, able
to process arrays of this type efliciently 15 of fundamental nnportance. When array
elements which are generated m one loop are able to be referenced i the same order
by successor loops, the lovps aie compatible for pipelined processimg On oo mualt
processor, pipelined processing is accomphished by runnmg the constituent loops on
different processors, whercas on a umiprocessot, the loops are tused and itermediate
arrays eliminated through a process of collective transformation, a process itsell which

often creates opportunities for additional code inprovement

By considering clusters as a collection, rather than individ-ally, a comptleris able
to identify opportunities for transformation which would not be apparent were the
loops considered individnally, as i traditional loop optimization  As we show i tins
document, the benefit from applying a global perspective to loop tran. fortmation can
be substantial, especially in compiling programs, such as FORTRAN-90 proprams,

which allow statements in vector notation.

The particular loop analysis methods we evaluate ate based upon tedhimiques de
veloped by Sarkar and Gao [SGI1]. Gao fitst rased the issue of collective loop anal-
ysis in the context of an wntra-block pipelining problem, his primary focus bemg the
development of compiler techniques for static dataflow architectures  Later, Sarkar
and Gao developed strategies for solving several common subclasses of the problem
[Gao86, Gao90, SGI1]. Most of these subclasses are reviewed thronghout this doon
ment. In general, the strategy hehind Sarkar and Gao’s technigues 1s to use graph
coloring to analyze the suitability of a collection of loops to underga collective tians-
formation. When a cluster of loops can be found which s compatible, the mdividial

loops can be fused, allowing several follow-on transformations to be performed

The loop transformations employed in identifying and analyzing loop «husters are
loop normalization, direction reversal, and loop mterchange.  Loop normalization

transforms the loop-control porticn of cach loop so that all loops i the cluster have
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uniform bounds, step, and direction.  Loop reversal, which is often necessary for
loop normalization, reverses the order of array element access within a loop body by
reversing the ideximg function of array references. This transformation 1s necessary
whenever the direction of a loop is changed. Loop interchange, on the other hand,
changes the order of array referencing by changing the order of nesting of perfectly

nested loops o later chapters, illustrations are given of cach of these transformations.

Once a compatible loop custer 1s identified, loop transformation is performed to
improve program performance  Among the follow-on loop transformations which are
used to accomphish this objective are loop fusion, array contraction, and software
pipelining.  Loop fusion is accomplished by merging statements from several loops,
cach having the same loop diuection, into a single loop body. The effect 15 to reduce
redundant loop control while increasing loop-body size. With a larger loop body,
the need for loop untolling and the effectiveness of instruction scheduling are also
effected  Without fusion, loop unrolling is often used to increase the number of in-
dependent instructions within a loop body, available for instruction scheduling  Loop
unrolling places statements from several loop iterations within a single iteration, in-
creasing the loop step commensurately. Array contraction transforms atray clement
references to equivalent scalar references. This transformation can only occur if an
array clement is both produced and consumed within the same loop body ! Contrac-
tion has the effect of elimmating array indexing instructions as well as the associated
long-latency loads and stores that accompany such references. At the same time,
climination of these array teferences reduces storage requirements by eliminating the
arrays themselves. The mnpact of artay contraction can be substantial, as we will
show. Software pipelining is an mstruction scheduling technique which through an
untolling process finds a pattern of independent instructions across iterations, all of
which can be simultancously executed if the host machine has sufficient parallelism.
Not only does this transformation increase the number of instructions which are con-
currently executable, it distances long-latency dependencies which otherwise might
stall the hardware execution pipeline. As with the preceding transformations, these
transformations too are illustiated i subsequent chapters.

In cases in which loop compatibility does not exiut, the constituent loops of a
cluster can usually be pattitioned into smaller compatible clusters, and follow-on
transformations, such as loop fusion, applied to each smaller cluster In doing so,

much of the original benefit fiom loop fusion can still be achieved. Loop partitioning

PWolfe uses the term “array contraction” to refer to the technique for reducmg the size of
campiler generated temporary array created as a result of scalar expansion [Wol89)
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for loop fusion 1s the subject of recent research by Gao, Olsen, Sarhat, and Thekhath,
and many of the ideas presented in the document derive trom then researcn, although
the specific algorithms we employ are slightly different in several instances [GOS 1'92]

1.2 Thesis

The proposition of this thesis is that it is both feasible and beneticial tor an optinnzing
compiler to perform collective loop analysis. To prove this proposition, we first show
how collective analysis can be efficiently petformed on compatible loop clusters Oui
primary focus m this tegard 1s the appheation of loop analy sis 1o programs wiitten i
traditional imperative programming languages, such as FORTRAN, i a uniprocessor
setting 1n which the compiler optimization strategy 15 to fuse loops withu cach «om

patible loop cluster. Although the loop analy«is technigne we descrnibe apphies only
to loops with certain restricted classes of array 1eferences, these dlasses imdude the
most common cases that occur in practice, for example, the cases of sigle dimension
and two-dimensional arrays. We also descnibe a mimimum cost partitionimg heunistic
to achieve efficient fusion in the not so unhkely event the compiler encounters a non

compatible loop cluster. Although a difficult problem to solve, many common cases
can be solved cfficiently with optunal results, as we will show

Through a series of timing tests on various types of actual uniprocessors, we also
show the extent of performance improvement possible from a transformed cluster
of compatible loops. We assess the effect of cfficient and naive partitioning on
non-compatible loop cluster. For these tests we use a scalar RISC workstation (A
SPARC Server 4/490), a superscalar workstation (An IBM RISC System 6000, Model
550), and a mainframe computer with an attached vector processing faality (An
IBM 3090/VFEF). For each type of machine, loop transforination 1s shown to be of
significant benefit. Moreover, this benefit 15 shown to he cqually tmportant m the
case of non-cornpatible clusters To further substantiate our 1esnlts. we replicated
our experiments on a scalar processor simulator and a cache sunulator These tests
reveal yet additional insights into the effects of the mdividual transtormations, while
allowing us to 1solate instruction-scheduling effects Overall our tests conlinm that
collective loop analysis and transformation can be of substantial benefit i optinmzing,
compilers for the three uniprocessor architectuies that were used  Morcover, we
produce evidence to suggest that the performance benehit from these transformations,

especially atray contraction, can he substantial, resulting in o four-fold speedup
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processor performance in certain instances,

1.3 OQverview

‘T here are four main parts to this document: The first part describes the process of
loop-cluster analysis, first 1 the case of compatible clusters and then in the case of
non-compatible clusters The second part describes related work on this subject, along
with a list of topics for further research  The third part of the document describes
essential transformations needed to perform collective loop analysis, along with sev-
eral corvnon follow-on transformations mtended to 1improve processor performance.
This patt also describes a number of important related transformations which are
used m the fourth part of ihe document as a basis for performance-test comparison.
And, the fourth and final part then describes the results of timing and simulation
experiments conducted to evaluate the performance of collective loop transformation.
As an addendum to this document, we also include several appendices, the first con-
taing sample code hstings used during loop-transformation performance evaluation,
and the rematmng appendices each provide a brief description of one of the computer

arcnitectures and compilers used during the evaluation

Our discussion of loop analysis begins in Chapter 2. In this chapter we first outline
the preconc.tions nnder which collective loop analysis can be performed. We then
describe a vanant of Sarkar and Gao’s graph-coloring technique which can be used
to determine whether the constituent loops within a loop cluster are compatible for
collective transformation. A description of the two principle graphical constructs used
durig this compatibility analysis is given, along with the basic intuition behind the
technique. The two prnciple constiucts we describe are 1) the Loop Communication
Graph (LCG) and 2) the loop compatibility Interference Graph (1G). Justification
for the loop analysis methodology is then provided along with a detailed description.
An example of the analysis of a cluster of non-nested loops is then provided, along
with a motivating description of several basic follow-on transformations that might
be performed to increase loop-cluster performance. The chapter then continues with
an example of another speaal case, one involving doubly-nested loops, and finally it
concludes with a brief description of the strategy for handling clusters of loops which

have an arbitrary, but uniform, level of nesting.

lu Chapter 3 we examine the not unlikely case in which compatibility does not
exist among the loops of a cluster. In this case, compatible subsets of loops must be
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identified through a process of cluster partitioning, 1o motivate our discussion, we
first investigate the nature of non-compatibility Based tpon out analysis of some sim
ple situations in which non-compatibility exists, we identify factors which ultimateh
deterinine the optimahity of cluster partittioning We then apply our obsetvations 1o
several brief examples which allow us to gamn vet a better understanding, ol the req
uisite conditions for optimal partitiomng  Based upon these examples we derinve an
efficient heuristic to partition a nou compatible duster of loops mto smaller compaty
Lle clusters, usiug the flow-augme ntang path algonthn fiom network flow theory We
then conclude this chapter with a complete descnption of our methodology and the
rational behind it

Chapter 4 desctibes related tesearchin the area of collective loop translormations
This work 15 especially important becanse much of the independent research teported
in the previous two chapters derives i one way ot another from the research teported
here. We begin the chapter with a desciiption of Sathar and Gao’s methodology for
collective analysis, describing both its advantages and disadvantages One impor
tant aspect of this particular tesearchs its apphcabihity to multiprocessor situations,
a situation we ourselves do not directly address Neoxt we descrthe an alternative
algorithin for cluster partitioning, called collective {oop fusion  As part of our de
scription we compare collective loop fuston with the partitiomng, technique described
in Chapter 3. We then follow this description with a boef suivey of related research
in the area of loop transformation, and finally we list a number of suggested topics
for further research.

Chapter 5 contains a discussion of related loop transformations which are essen
tial 1) duting the screening process to identify eligible loops, 2) durimg the analysis
process to achieve loop notmalization prior to analysis and pip-line compatibihty fol
lowing analysis, end 3) during performance testing, to provide a basis for determimmg,
loop transformation effectiveness  Among the transformations discussed i this fiist
category are in-line expansion, normahzation, scalar renaming, and node sphtting
Transformations which fall into the second category are direction reversal, loop inter
change, loop fusion, array contraction, and software pipehinmg  And, transformations

which fall into the third category are mstruction scheduling and loop untolling

The focus of Chapter 6 15 on petformance testing  The chapter itself 1o divided
into two parts, the first part discusses tuming tests, and the second part, simulation
results. For each part we evaluate transformation performance based fist upon a
comnpatible loop cluster and then upon a non-compatible cluster  In the first instance

we ate primanly interested m performance mmprovement from the respective loop
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transformations themselves, while i the second istance we are interested m the
mipact of alternative partitioning chowces  In the second part of the chapter, we use
processor and cache simnlations to evaluate several factors which could not be casily
isolated by timing tests alone, specifically, the impact of instruction scheduling and of
cache  We condlude our chapter on petformance tests by surnmarnizing key findings,

hased upon our overall test results.

The final dhapter, Chapter 7, 1s an attempt to tie everything together. In the first
patt of the chapter we summarize the most significant findings from our research,
and the the later part we hist additional topics we feel might lead to important new

tesilts i this area

As noted previously, we conclude this document with a number of appendices con-
taining matenal spedifically related to the performance testing described in Chapter
6. Appendix A contains sample histings of the code used for the actual timings, and
Appendices B to D describe the vanous architectures and compilers used during both

the timing tests and the processot/cache simulations.



Chapter 2

Analysis of Loop Clusters

Much of the computation involved in scientific programs occurs within loops which
produce or consume laige arrays. As a result, bemng able to handle loops efliaently
is of fundamental importance. Much work has been accomphshed within the past
several years with regard to loop optimization, and many effective technigues have
emerged [Ban88, KRP*81, PWS6, Wold9, WLA] 'These techmigues nsually focus on
reordering statements either to avoid data and contiol dependences which can stall
a hardware execution pipeline or to avoid long latency memory operations A hey
point, however, is that since these techniques usually pertam to o« single foop nest,
their effect is necessarily local.

In this chapter a global analysis technique 1s described to find a compatible set ol
loops across a cluster of loops. By compatible we mean there exists a umform sequence
of array references which allows a cluster of loops to be processed o software
pipelined manner. A compatible order might be found fiom ascending and/or de
scending loop directions or, in certain circumstances, from the mterchange of two
levels of loop nesting. We refer the the process of finding a compatible set of loops as
collectwe loop analysis. In general, collective analysis makes use of several common
loop transformations, among which are loop normalization, direction 1eversal, and
loop interchange. If loop analysis is successful, in other words, if a compatible set
of loops can be found, several other common transformations to miprove the loap
cluster become possible, as we will show with a series of brief examnples  the pr
mary transformations being loop fusion and array contraction Other code nmproving
transformations, stuch as software pipeliming, loop unrolling, and 1mstinction schedul

ing, might also be used 10 further enhance the quality of the overall code, but morder
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to focus on the analvas phase of loop processig, we leave description of these latter

transformations, along with complete descriptions of the former, until Chapter 5.

Overall, this particular chapter s organized as follows. In the fust section we
describe relevant conditions, or preprocessing, necessary for collective loop analysis.
We also descrbe the grapdine constructs used durning compatibility analysis. along
with related termmology We then explain the general rational Lohind compatibility
analysis and desaribe the technique we use to accomphsh this analy<is, a technique
which s similar, but not identical. to the one proposed by Sarkar and Gao [SG91] In
the section that follows, we give an example of the collective analysis of the common
case of non nested loops  We then cover analysis of doubly-nested loops, and finally, in
the Last section, we examine extensions of collective loop analysis that are appropriate

for other specral cases involving lngher-level nested loops

2.1 Preprocessing

Several conditions are necessary to qualify loops for analysis, and selection of loops
satisfying these conditions forms an integral part of the collective analysis process.

In selecting loops, the following restrictions apply:

1. T'he dimensionahity of the arrays must be the same for all arrays 1eferenced

withim the duster of loops being analyzed.

2 The index variable of all loops must increase or decrease by the same constant

amount Usually this amount, called the loop increment, or step, is £1.

3 The loops used to define the arrays must be perfectly nested, and the number
of loops withmm ecach nest must equal the dimensionality of the arrays being
treferenced  For example. a code block which performs matrix multiplication on
conformable square matrices is disallowed because the calculation of the inner
product requires an additional loop, one more than the dimensionality of the

patticipating arrays

4. Anmdex vanable can only appear in one subscript position of an array reference.
Therefote, 1eferences of the type A(I,I4J) (in which I and J are the respective
induction variables for a nest of two loops) are disallowed This condition, that
subseripts be uncoupled, also ensures that each reference has the same number

of subscripts as there are loops i the surrounding loop nest.
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5. Although not ewsential. another assumption we mahe s that cach artay ele
ment be defined (that 1s, stored) only once Phis condition, calied the songle-
assrgninent rude, s o common charactenstic of functional and apphoatinve Lan

guages, such as Hashell and SISAL, and 1t s imphat i anay statenients used

m FORTRAN 90

The above cnitena restrict the possible type of loops which nught be mndaded
a cluster to only those which can be feaaubly transformed  These testinctions and
other program charactenstics mahe code conditiomue essential The tollowie para
graphs describe some of the conditioming that should occue Post, tancton i Lo,
should be petformed on any function that makes reference to a plobally defined array
The purpose of m-limimg 1s to collect together as many potential loops ax posable
This 15 mmpoitant because structured programming resuits i code which uses jots of
functions In himng <hould be followed by data flow analhvsrs Tntraprocedural tow
analysis ensures that scalar varables that are teferenced withim the Toop bodies are
not redefined between then nse inone loop and then rense elecwhere v any follow on
loop. What itraprocedutal flow analysis smphes, i tlus case, s that any code fonnd
between eligible loops can be moved ont of the way withont aflecting, proviam correct
ness. The next step in collective analvsis should be loop normialization  The pinpose
of normahization 1s to provide a unmiforns basis for loop comparison Normalization
consists of 1) setting the loop contiol within cacli loop to a range which extends from
a lower bound of 1 to an upper bound of N, where N s the adpusted bound, and 2)
setting the step to 1 Of course, any changes made to loop parameters also necessitate

corresponding changes to index varnables used within the respective loop hodies !

Once normalization is completed, loop selection can be performed  Loop selection
involves 1) array veritication, 2} loop bounds checkimg, and ) nesting fevel chedhing
Array verification ensures that only those loops which actually produce or consume
a globally declared array are included 1n the duster Winle verification s occurnmg.
subscript coupling could also be checked (Item 3 above)  Bounds chiecking, on the
other hand, ensures that the loop upper bound for cachi toop contiol statement s
the same for all loops under consideration Lastly. a nesting level check ensiures that
all loops under consideration liave the same level of nesting - A< o final phase of
preprocessing, local flow analysis should be performed to sdentify data dependence
within locp bodies, dependencies which constram loop direction, this preventing

ditection reversal. Loops which posses data dependencies wonld then e tapped

'Loop normahzation s deseribed 1 Chapter 5, Section 3 2 1 (aee page 78)
2Direction reversal 15 deseribed in Chapter 5 Section 5 4 (sor page 82)
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as “constramed”  Once data flow analysis 15 completed. the resulting loop duster
selected would be ready for loop compatibility analysis Compatibility analysis, which

is the primany topic of this chapter s des ribed nest.

2.2 Graphical Constructs

To understand the compatibihity analysis process, one first must understand the tools,
ot coustructs, nsed dunmg the process, the two most important constructs employ
graphs  Graphs are often used to depict relationships among individual entities i a
way which mahes a global relationship clear A case i point s graph colormg The
classic example s the coloning of, say, political regions on o tetttonial map - Coloring
pioblenys such as map colonng are solved using an interfeicnce graph In the case of
a map, the regrons become nodes and adjacent regional boundaties become ates The
objective m this case 1s to color the map mterference graph so that no two adjacent
nodes are the same color  In general, deternmmmg a mumimum, ot chromatic number,
i~ difficult (an NP-complete problem [PS82])  However, in many situations, colonng

hennstics have proven qute practical, as i the case of register allocation [CACH81).

What Satkar and Gao discovered is that the analysis of loop clusters can also be
converted to a graph coloting problem since an anaiogous correspondence often exists
with tespect to the orders i which array elements are defined, or generated, within
some loops and the order i which they aire used, or consumed, 1n later loops. The
objective of colonng i this particular mstance 15 to find a set of compatible loops
which produce and consume array elements in a compatible order which allows array

values to flow through a cluster of loops in a manner similar vo software pipelining.

Collective Toop apalysis begins with the construction of a Loop Communication
Graph (LOG)Y An LOG 15 a directed multigraph depicting the flow of array values
between the code blocks that produce and consume arrays. The “fHow” in this case
tepresents flow dependence hetween assignments to array elements in one code block
and the cotresponding uses of these elements m tollow-on blocks within the loop
cluster - Formally, an LCG = [VA A C NxN], where n € N is a node and
I << |Vl A node nman LOG represents a code block comprised of perfectly
nested loops [Wol89] An are X, ., € A represents the transfer of array elements from
a producing code block to a consuming one. Graphically, this transfer is shown by
connecting, the ongin of are X, ,, to the output port of m corresponding to ariay X

aud the ternmmus of \,, ,, to the tespective mput port of - An example cluster of
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DOI=1,N

A(l) =1 Node 1 Noude
ENI) I)O A(le) Xt
DOI=1,N N .

B(I)=N.1 " Nete o0
END DO i
C(1:N:1) = A(1:N:1) + B(1:N:1) |
D(1:N:1) = C(1:N:1) + 99 Node 2 Nees 7
E(1:N:1) = C(N:1:-1) + B(N:1:-1) ) Fse
DOI=1,N 1 maw . L““’“m

F(14+1) = F(I) + D(N-I+1) + E(I) 2 - -
END DO

(a) A Collection of (b) Loop Communication Graph
FORTRAN-90 Loops (LCG)

Figure 2.1: Graphic Representation of a Collection of Loops

loops and corresponding loop communication graph is shown i Figure 2.1 Nodes
an LCG are further specified by a tuple of Artay Access Vedtors

Each Array Access Vector (AV)is itself a vector of tuples i which the fitst element
of the tuple indicates the correspondence between the subsciipts used to access an
array and the loops used to generate these subscripts; the second element mdicates
the direction of the corresponding loop. A direction element can be either positive
(increasing) or negative (decreasing). A positive element 15 indicated by a plus (1),
and a negative element, by a nunus (—). An AV contains one loop-direction tuple for
each subscript, in an atray. For example, A(24,1—,34) descubes an array A which s
referenced within a three-loop nest in wlach the outer loop canses the second subscript
to decrease, the middle loop causes the fitst subscript to mciease, and the mner loop
causes the third svhscript to increase. An AV n, = {(, {"+')-'})b |- < h}as
associated with each input and output port z incadent to node win the LOG, where
is 1s a loop ideutifier and & 1s the depth of loop nesting When the AV i, fot an array
X which is produced in code block m is paired with the AV n, {or an array of the
same name which 1s consumed in another code block 1 the pan form the speafication
of the arc X, in the LCG. (See Figure 2.1(b) )

For certain code blocks the loop direction cannot he reversed because of o data

dependence across iterations of the loop. Such a dependence is usually referred to as
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a loop-carricd dependenee In this case the corresponding node 1s called a constrained
node The node for the loop-carnied dependence created by the assignment statement
in the last code block i Figure 2.1 is an example. In an LCG, nodes which are
matked with an asterisk refer to constrained nodes, as indicated for Node 6 in Figure
(b).

Collective analysis applies to many different loop configurations, each represent-
ing a diflerent array-reference sequence; but the methodology we describe considers
only two mutually exclusive array-reference sequences at a time For loops involving
vectors (1 e, one-dimensional arrays), the sequence is either ascending or descending
loop directions, and for doubly-nested loops that are uniformly ascending, or descend-
ing, alternative sequences are determined by interchanging two nested loops within
the blodck, or equivalently, switching the sequence of indices within all access-order
vectors of the corresponding block. The way this works is described fully later in
the chapter For now, however, we merely emphasize that only two array-reference
orders, o1 sequences, are allowed at a time, for each block during each phase of loop
compatibility analysis, either 1) alternative loop directions or 2) an interchange of two
levels of loop nesting. The information about these alternatives is contained in the
Interfercnce (raph of the loop cluster used during the particular phase of analysis.

An Intetference Graph (IG) is an undirected multigraph having nodes grouped
according to blocks, each block being comprised of two nodes: a primary node, n*t,
corresponding to a node in the LCG, with input and output ports matching the
respective origins and terminuses of incident arcs to this node, and a compliment
node, n~, containing a copy of the primary node but with AV elements changed
to reflect the alternative array-reference sequence allowed. When loop direction is
used as the basis for analysis, the sign of the elements in the AVs are reversed;
otherwise, when nesting level 1s used, corresponding elements in the the AV tuple are
switched. For example, the first block, corresponding to Node 1 in the LCG, shown
in Figure 2.1(a), consists of two nodes; a primary node ny, labeled “Node 17 with
AV A(1+), and directly below it, a compliment node ny, labeled “Node —1” with
AV A(1-). Formally, an IG = [[N,N],E : E € NxN], where [N,N] is a block,
nt € N and n= € N are nodes within a block, for 1 < n < |N|. An undirected
edge X, = (m*,nt) € E, called an nterference edge, represents non-compatibility
between the order of generation (definition) of array values in one code block and the
order of their consumption (use) in another.

Obwviously a code block cannot simultaneously process array elements in more
than one order at a time. Therefore, to reflect the fact that alternative reference
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Figure 2.2: An Interference Graph (1G)

orders represented by the primary and compliment nodes within a block are not
simultaneously possible, we attach an interference edge between the two. Likewise,
we attach an edge between the output port of a node in one block and mnput port of a
node in another when the two ports reference the same airay and the conresponding
AVs in the two nodes differ. In this second situation, the edge indicates a situation
we would prefer to avoid, since unless the AVs are the same, the array elements which
pass between the two nodes, or code blocks, cannot be uniformly passed from one
block to the other, as we would like.

Note that not all interference edges need to be attached, since the edges extend-
ing from the primary nodes to the nodes in follow-on code blocks provide sufficient
interblock compatibility information, by themselves, to allow us to do our analysis.
Attaching the corresponding arcs from the complement nodes to follow on blocks
therefore becomes unnecessary. For example, notice that, in Iiguie 2.2, an edge has
been attached between Nodes 1 and -3 to indicate non-compatibility m the array-
reference orders for AVs A(1+) in Node 1 and A(1-) in Node —3, while no arc was
attached between Nodes —1 and 3, even though the non-compatibility of the comple-
ment AVs, A(-) and A(+), respectively, is equally valid. The absence of “redundant”
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edges from the complement nodes in each block not only reduces the number of link-
ages which must be made to the graph, but it also simplifics the ensuing analysis, as

will becomne evident

Algorithm I Construct an Interference Graph (IG).

wmpul: An LCG = [N, A] in the form of a linked list; each node in the list corre-
sponds to a code block. The nodes n are each specified by a set of input
and output ports, n, Each port refers to an AV for some array X refer-
enced within the block, along with list of connecting nodes 1 indicating

from which node array X was produced or to which m it is being sent.

outpul:  An1G = [[N, N], E] created from the LCG; each block in the LCG consists
of two nodes: a primary node nt containing the same input and output
ports as corresponding node n in the LCG and a complement node n~
containing the sanic input and output ports, but with AV's n,, Yz € n,
switched to indicate the alternative array-reference order (see Figure 2.2).

procedure:

Creale a complement field in each node.
FORALL n € N in the LCG
copy n to primary node n* and to complement node n~
FORALL n, € n~
switch the direction of AV elements
insert nodes nt and n~ into the graph
Add interference edges.
FORALL n* € N
FORALL output ports n,
IF m. for node m specifies the alternate vector

t creating Xp+m+

attach a link to m

ELSE

attach a link to m¥, creating X, +m%
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2.3 Justification and Methodology

Were we to consider all possible array-reference orders possible from a dluster of loaps,
there would be (k!- 25)" such possibilities, whete nas the total number of AVs used
within the code blocks of the loop cluster and &1s the level of nesting of these loops
Obviously, analysis of so many alternative: at a time would be intractable for all but
the simplest loop clusters. However, by restitcting analysis to just two orders at o
time, say, ascending and/or descending loop ditection, problem size s sipmificantly
reduced Moreover, by considering only two alternative orders at a time, we can castly
represent any of the 2" remaining possibilities with a just smgle 1G (agamn assunming,
n 1s the number of AVs). From construction of the 13, we know that neighbor nodes
always reflect a complemerntary array-reference order, and for an overall compatible
order to exist, 1t must consist of orders tahen from alternating nodes  Consequently,
the 1G must be a bipartite graph if a compatible set of loop ditections 15 to exist.
Although the number of possibilities can still be very large, we know that there can
now be at most two compatible orders for any cluster overall. This fact 15 what finally
makes the problem tractable, since to deternune whether a compatable loop ordenmg,
exists, we need only determine whether the particular 1G under analysig s, fact, a
bipartite graph.

To take advantage of this bipartite property, we look to a few simple notions froin
graph theory [BM76, Dec74, Har69], and we begin under the premise, based upon
our above observations, that an IG 1s bipartite of, and only 1f, an ovcrall compatible
sel of array-reference orders exists. Accepting this fact, 1t 15 now casy to show that
any bipartite graph is two-colorable (the proof by constiuction s tnivial): Color
elements of one partition one color and elements of the remaning nartition a second
color. Likewise, it follows immediately from the general definition of a spanning tice
that the spanning tree induced by an IG represents a numinal connection of nodes
within that IG. Therefore our next step to show that every nontrivial (spanning) tree
(induced from an IG) is two-colorable.

Theorem 2.1 FEvery nontrivial tree 1s two-colorable.
proof: (by induction)

basis: Assume 7T’ is a tree with two nodes. If one of the nodes is colored with one
color, the only remaining node can be colored with a second colot
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mductwe step. Assume T’ contains n nodes that have already been saccessfully colored
with two colors  If another node is added, regardless of its location, it can always be

colored an opposite color to the color of the node to which it 1s attached. ]

Once a spanning tree 1s formed within the [G, we ate assured of creating a simple
cyde for each of the remaining original arcs added to tree Fortunately determining
whether the cycles formed in this way are themselves two-colorable is quite easy; we
merely inspect the origin and terminus of each edge bemng added, and if the two have
different colors, edge msertion can be safely accomplished, preserving the colorability
of the graph  If edge insertion is successful for all remaining edges, we know the IG
overall 1s two-colorable, thus confirming the fact that the IG 15 a bipartite graph and
that a set of compatible loops exists Now to find this order we need only select a
set of nodes of the same color. This is because the way we coustructed the graph
assutes us of a direct correspondence between compatible loop configurations and
node coloring, that is, we know for a compatible cluster of loops, opposite nodes of

every intetference edge are both an opposite loop configuration and an opposite color.

The preceding analysis suggests how the determination of loop compatibility can
be accomplished. The approach we describe is based upon creating a two-colored
spanning tree during a breadth-first walk of the IG, commencing at the output block
of a loop cluster. Qur particular approach (which is slightly different from the one
proposed by Satkar and Gao) has a special property in that it identifies the least costly
non-compatible interference edges to remove whenever no overall set of compatible
array-reference orders exits, and it does so efficiently, as we will show in Chapter
3. The cost to which we refer is the cost of referencing elements of an array from
memoty, and the least-cost edges are those corresponding to arrays that are used by
muitiple blocks, not just one. The non-compatible edges, if any are found, ultimately
form part of a cut-set used to fird compatible clusters of the original cluster which
can ultimately be fused, allowing elimination of all arrays except the ones that cross
a cluster boundaty. We discuss cluster partitioning, in detail in the next chapter.

Again, the basic strategy behind compatibility analysis is to create a two-colored
spanning tree during traversal of the IG. We proceed by first identifying and coloring
the primary node of the output block of the IG. Then, starting with this node, we
traverse the remaining nodes in the gr- oh, in a breadth-first manner. At cach node
visited during our traversal we examine both the iuput ports and the port to the
complement node within the same block, in each case inspecting the terminus of the
intetference edge. If the terminus is uncolored, we color it the opposite color of the
curient node  If; on the other hand, it has already been coloted, but the color is
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.

the same as the color of the current node, we note the fact that the duster s non

compatible and store a reference to the non-compatible mterference edge to be used
during subsequent cluster-partitioning analysis. After all nodes have been reached,
the algorithm stops. Nodes that are of the same color represent a compatible et of
loops. Of course, this leaves a choice of the two colorings  One guidehine regarding,
which color nodes to choose 15 to select nodes that cortespoud to the color of most
of the “primary” nedes, since doing so mvolves the least follow on direction 1eversal
(the direction-reversal transformation itself will be explamed shoitly) Ou the other
hand, choosing a color might not be an optien at allaf the graph contains constramed
nodes, since the color of any constiained nodes will uniquely determumne the color set
which must be used, that 1s, of course, assuming all constramed nodes are of the
same color. Otherwise, if the constrained nodes are not all of the same color, the
cluster will not be compatible overall. Our procedure for testing loop compatibnhity
is summarized in the {ollowing recursive algorithm:

Algorithm II Determune a set of compatible array-vefercnee oiders for a cluster of

loops, or verify that a compatible sct of loops does not exist.

input: An IG = [[N, N}, E} in the form of a linked list; cach node m the list 1s
either a primary node n* or a compliment node n= (see Figuie 2 2),
A colorset = {color;,color,}, and a color_preference which detes

mines the color of the set to be chosen in the event the loop cluster contams
constrained nodes; initially color_preference is undefined,

A checkset which mnitially contains the primary node of the output hlock

of the cluster; we refer to this node as root, and root color -- colory,
A nextset = (), representing the next level of nodes to visit,

A set of noncompatibles = ), which contains any edges identified as
having a non-compatible array-reference order with that of its neighbor
node (later, we refer to these edges as X-edges), and

A Boolean return value, compatible, with an initial value of true

output:  An IG with compatible nodes mdicated by the primary color in the color
set; however, if any nodes are constrained, the compatible nodes will be

those with the same color as the color_preference.
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proce IIUT(‘.'

FUNCTION colorTree (checkset): compatible
FORALL n € checkset
FORALL input arcs X,,, and the arc to complement node
1F the terminus m is not colored
color m the opposite color of n
add m to nextset
ELSE IF m 15 the same color as n
add X,,, to noncompatibles
compatible == false
IF 1 is coustrained
IF color_preference has not been set
set color_preference to the color of m
ELSE IF the color of m # color_preference
add X,,, to noncompatibles
compatible = false
IF nextset # {}
compatible = colorTree(nextset)
RETURN compatible

The graph in Figure 2.3 shows the IG in Figure 2.2 atter it has been colored using
Algorithin I1. The dark edges define the spanning tree created during algorithm
execution, and the shaded nodes indicate the set of compatible loops. Note that the
constraint on Node 6 prevents the unshaded nodes from also forming a alternative
set. of compatible directions for the respective loops.

Algorithm 11 handles situations 1 which there is only a single output block in
the LCG, but situations in which there are multiple output blocks often occur which
require a slightly more complex solution, one involving the use of multiple color sets—
or rather a different color set for each of the output blocks within the original cluster.
In this case, a primary node from each output block is selected to begin the algorithm,
and each rooi node 1s colored, as in Algorithm Il—cach with a color from its own
respective color set Then, as before, a depth-first walk is performed beginning from
cach 1oot. If the LCG is connected (and we can assume that it is), there will come a

point whete a node is 1eached that has already been colored, but with a color from a
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Figure 2.3: An Interference Graph after Colonmg

different color set. When this occurs, the corresponding colors fiom cach of the two
sets are henceforth treated as though they were one. Then, should further traversal
lead to some later convergence of the two color sets, at the point of termmnus chedking
from some node, the decision whether to add the new edge, or not, will be hased upon
the initial color-set equivalence established when the color sets first converged. An
illustration of the coloring of a loop cluster with two output code blocks 1s shown in
Figure 2.4; the LCG is shown in Figure 2.4(a) and the corresponding 16 after coloring
is shown in Figure 2.4( b).

2.4 Follow-On Transformations

In the last section we described in general terms the collective analysis of Lthe example
cluster of loops given in Figure 2.1 (sce page 12). To put this analysis into perspective,
we now step through the basic actions taken once a compatible set of loop directions
have been found. We begin our follow-on description with the colonng shown in
Figure 2.2 (page 14). Notice that Node 6 is constramed bhecaise of a loop carried
dependence of array F. As a result, there is only one set, of compatible sequences from
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Iigure 2.4: Loop Collection having Multiple Output Blocks

which to choose, instead of two as would have been the case had the loop-carried
dependence of F not existed. This set is the one indicated by the shaded nodes in the
figure- the cluster consisting of Nodes -1, —2, -3, —4, 5, and 6.

Once the set of compatible nodes have been selected, we apply direction reversal
to the loops cortesponding to the negative nodes in the set, i.e., the nodes having
a negative node number. The basic notion behind direction reversal is merely to
substitute N- I+1 for each occurrence of I in the loop body. In this case, applying
direction reversal to the first four loops of the normalized code, shown in Figure 2.1,
results the transformed code shown at the top of the next page, on the left-hand side.
Since normalization ensures uniform loop control and since coloring analysis ensures
loop compatibility, we know too that the loops in our example cluster can now be
safely fused, as shown at the top of the next page, on the right-hand side.3

3Direction reversal is deserived i Chapter 5, Section 5 4 (nage 82), and loop fusion 1s described
m Section 5 7 (page 84)
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After Direction Reversal After Loop Fusion
DOI=1,N
ANI+1) = N -1+ 1 DOI1=1,N
END DO ,\(;\'-Hl) - N il
DOI=1,N B(NI41) = 1 1
B(N-I+1) = N - (N-1+1) C(N-1+1) = \(N LHD) + BN T+
END DO D(NT#1) = C(N-THD) + 99
C(1:N:-1) = A(1:N:-1) + B(1:N:-1) E(1) = « (N PEDY ¢ B(N L4 1)
D(1:N:-1) = C(1:N:-1) + 99 FO41) = (1) + D(N-14 1) , B(D)
E(1:N:1) = C(N:1:-1) + B{N:1:-1) END DO
DOI=1,N
F(1+1) = F(I) + D(N-1+1) + E(I)
END DO

The final transformation, for now anyways, is array contraction, and the following ¢ ode
is the result of applying contraction to the previously transformed code:?

Array Contraction

DOT=1,N
a=N-1+1
b=1-1
c=a+b
d=c¢c+99
e=c+ b
F(I+t)=F) + d + ¢

END DO

Notice that array contraction replaced, by a scalar variable, all array references in
which an element reference was first produced then later used. For example, A(N-I+1)
is replaced by a, and so forth. Since all but the last array was produced then con-
sumed in an element-by-element manner, the need for intermediate arrays, as in the
original code, no longer exists. In later chapters we will show that yet additional
transformation is not only possible, but, beneficial

The effect of collective transformations, such as these, can be dramatic, loop over-
head and memory requirements can be reduced, and most array indexing operations
can be eliminated. Moreover, a single larger code block results which facihitates i
struction scheduling. In Chapter 5 we describe yet additional transformations which

4Array contraction is described 1n Chapter 5, Section 5 8, (page 5 8)
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might be performed or which can be affected by collective transformation. and in
Chapter 6 we provide expernmental evidence to show the extent of performance im-
provement attnibutable which s actually realizable on each of several different types

of nmiprocessor atchntecture

2.5 Analysis of Doubly-Nested Loops

So far we have only discussed the situation involving single-nested loops on one-
dimensional arrays since this situation is cleatly the most intuitive and easiest to
handle. The difficulty with multi-nested loops and multi-dimension arrays stems, of
coutse, from the enormous increase i complexity which anses from the many permu-
tations of the levels of loop nesting and loop direction Whereas in the non-nested case
AVs have only two possible otders, in doubly-nested cases there are 22.2!=8 possible
sequences.  In spite of thhs enormous increase in complexity, the basic methodol-
ogy described in the previous section still apphes—-that is, with a few appropriate
enhancements. Recall from the previous section, our strategy was to identify an al-
ternative, or complementary, set of reference orders for each AV in the loop cluster,
and then analyze cach of the enumerated possibilities using the graph coloring tech-
nique described in Algorithm 11 In this section we show how this same miethodology
can be applied to certain situations mvolving clusters of doubly-nested loops and
two-dimensional arrays.

In the case of doubly-nested loops, the compiler faces essentially three possible
possibilities: 1) the direction of all loops are the same across the entire cluster of
loops, but the order of the array subscripts in each reference varies, 2) the order of
the subscripts are the same across tlie entire cluster of loops, but the direction of the
corresponding loops in the cluster varies, and 3) a combination of these two situations
in which both the order of the subscripts and the direction of the loops vary across
the duster of loops.

CASE 1 The direction of the loops are the same across the cluster of loops, but the
order of the subscripts varics.

In this situation, AVs for the arrays referenced within the cluster are either of
the form array-name(1+,2+) or array.name(?+,1+) or they are of the form ar-
rayname(l—,2—) or array-name(2—,1-). In either situation, the direction of the
loops ate presumed to be compatible (so no ditection transformation is requited).
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On the other hand, the order of the artay subsceripts creates the bipattite condition
required for two-colong the 1G. In this mstance we nse Algonthm 11 as betote, bat
create the complementary nodes using AVS with a subscnpt order oppostte 1o the
subscript order of the AVs in the primary nodes  Also, mstead of usine loop teversal,
as we did previously, we use loop interchange to align array access orders consistent
with the 1esults of the colormg analysis (Loop mterchange v descnbed more fully an
Chapter 5. Section 5.5)

CASE 2 The order of the subseripts are the same across the cluster of loops, but

the direction of the loops varies

The AVs in this case are either of the form errayname(14.24 ) o1 the lotm ar-
ray_-name(2+,14). To analyze these loops, we treat the problem as though 1t were
two separate problems, analyzing the same AV clement from cach AV as though the
referenced arrays were one-dimensional  For example, we nnght hist analyze the
directions of the outer loops of the code blocks 1 the cluster, and af a compatible
direction is found, use the results of this analysis to analyze the ditections of the imne
loops (o1 visa versa). As in our original examples, the transformation technique used
to bring the unaligned loops into alignment is loop reversal

CASE 3 Both the order of the subscripts and the direction of the loops vary.

This last situation is a combination of Case 1 and Case 2. 'To analyze foop clusters
of this type, we first attempt to color the transformed LCG based upon subsciipt or
der, as described in Case 1, and if the coloring 1s successful, we continne by attempting,

to color the LCG based upon loup directions, as desciibed m Case 2

An example of the combined approach is shown in Figures 25 25 'The cluster
of doubly-nested loops used in this example are based upon the code segment shown
in Figure 2.5 The corresponding LCG for this code 1s shown in Figure 2 6(a) The
loop analyzer of the compiler uses this LCG during the first phase of 1ts analysis to
create the IG shown in Figure 2.6(b). Phase-1 analysis 1s merely the Case | analysis,
described above. Notice that since the compiler’s first attempt at transtormation
involves loop interchange, the complementary nodes in the Phase T 16 a1e composed
by copying the primary nodes, which were taken from the LCG, and reversing the of
order of their AV elements (as opposed to changing the direction of these elements as
was done in the case of non-nested loop clusters). The result of this analvsis, 4 two
coloring of the 1G. is also reflected in Figure 2.6(h). Although the colonng, produces
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DO1OI=1,N

DO10J=1,N

10 A(LJ)=1%)
DO20I=1,N

DO20J=1,N

20 B =N-1
DO3OI=1N

DO30J=1N

30 C(N-I+1,N-J+1) = A(L,J) + B(1,J)
NO401=1,N
DO40J =1, N
10 D(1LJ) = CJ,1) + 99

DOSOI=1,N
DOS50J =1,N
50 E(1J) = C(1,J) 4+ B(N-I+1,N-J+1)
DOGOI=1N
DO60J=1,N
60 F(LJ) = F(I-1,]) + D(N-I+1,J) + E(3,])

Figure 2 5: A Collection of Typical Two-Dimensional FORTRAN Loops

two sets of nodes: those consisting of shaded boxes and those without, only the first
is permissible because Node 6 1s constrained by the loop-carried dependence which
affects array F. Thus this set of shaded nodes forms the LCG used during the second
phase of analysis. The LCG which depicts the results of Phase-1 analysis is shown in
Iligure 2.7(a).

Since Phase-1 analysis uncovered a compatible arrangement of nestings among the
entire cluster, the compiler can proceed to the next phase of analysis. This second
phase and the one that follows together form the Case-2 situation described above.
During Phase-2 analysis, focus is on finding a compatible set of loop directions for each
of the outside loops of the code blocks represented by the nodes of the transformed
LCG. Thetefore, the complementary nodes of the IG in this case are a copy of the
primary nodes from Figure 2.7(a), with the direction of the first element of cach AV
reversed. The 1G reflecting this set of alternative sequences and the resulting two-
coloring 1s shown in Figure 2 7(b) Fortunately, Phase-2 analysis is successful too, so
the compiler is able to proceed on to the thind and final phase of analysis.

Phase 3 is just Phase 2 performed on the mnside loop of each node in the cluster
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Figure 2.8: Phase-3 Analysis of a Two-Dimensional Loop

tather than on the outside node. Using the output from the previous phase, i.e., the
LCG shown in Figure 2.8(a), the compiler creates the IG shown in Figure 2.8(b).
This time the complementary nodes are created by reversing the direction of the
last element of each AV of a corresponding primary node. Phase-3 analysis is also
successful, leaving the nodes in the shaded boxes in the IG in Figure 2.8(b) as the
final sct of nodes from the overall loop pipelining transformation. Again in this last
phase, as n the previous one, the transformation required to bring the cluster into
alignment is loop reversal.

Now that a compatible set of array reference orders is known, it is a straight-
forwaird process to fuse statements into a single code block and then eliminate the
“intermediate arrays by array contraction, as one done in the case of non-nested loops.
To demonstrate this, we continue with the example, using the doubly-nested loops
indicated by the shaded boxes in Figure 2.8(b). The retransformed code based upon
the preceding analysis is shown at the top of the next page.
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After Direction Reversal

DO10I=1,N
DO10J=1,N
10 AQJN-TED) = (N-141) * )
DO201=1,N
DO20J=1,N
20 B(JN-I+1) = N - (N-I41)
DO30I=1,N
DO30J=1,N
30 C(N-J+L,I) = A(J,N-141) + B(J,N-1+1)
DO40I=1,N
DO40J =1, N
40 D(N-I+1,J) = C(N-J+1,I) + 99
DO50I=1,N
DO50J=1,N
50 E(J,J) = C(N-J+1,I) + B(J,N-1+1)
DO60I=1,N
DOGOJ=1,N
60 F(LY) = F(I-1,J) + D(N-I4+1,3) 4+ E(J,1)
When loop fusion is applied, the original loop cluster is transformed into the single
doubly-nested loop shown below, to the left, and once this is done, all of the ar-
ray references except the last (the reference to the output array F) are 1eplaced by
corresponding scalar variables, as shown on the right.

After Loop Fusion After Array Contraction
DOI=1,N DOI=1,N
DOJ=1N DOJ=1,N
A(N-I+1) = (N-14+1) * J a= (N-I41) * J
BJN-I+1) = 1-1 h=1-1
C(N-J+1,1) = A(J,N-I+1) + B(J,N-I+1) c=a+b
D(N-I+1,J) = C(N-J+1,I) + 99 d=c+99
E(J,I) = C(N-J+1,I) + B(J,N-I+1) e=c+ b
F(1,J) = F(I-1,J) + D(N-1+1,J) + E(J,]) F(LI) = F(I-1,0) 1 d ¢ e
END DO END DO
END DO END DO

Note that in this case, the savings in storage and memory bandwidth is 5.0% where
n is the number of loops in the cluster. Again, in addition there are other advantages
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derived from increasing code-block size, advantages cited carlier for the non-nested

case (see Section 2.4).

2.6 Analysis of k-Nested Loops

When the notions of the previous section are extended to the multiple nestings, the
problem quickly becomes intractable because of the rapid growth of possibilities.
Nonetheless, one special case does warrant mentioning; this is the extension of Case 2
from the previous section to the general case in which nesting of loops among the
various code blocks comprising the cluster of loops are already compatible in the sense
of our Case-1 transformation above. In other words, loop interchange is unnecessary
to make the cluster compatible. In this instance, only the direction of the AVs in
the various code blocks are allowed to vary. In this special case, analysis proceeds
exactly as it did for Case 2 with a separate phase of analysis for each element of the
AVs within the cluster.



Chapter 3

Non-Compatible Loop Clusters

Not all loop clusters are able to be transformed into compatible clusters by the graph-
coloring technique described in the last chapter. Nevertheless, we can usually parti-
tion a cluster into a set of smaller clusters which are compatible. Moreover, by cluster
partitioning, much of the benefit from collective loop analysis can still be obtained.
This then is the problem we examine in this chapter: how to pattition a cluster of
non-compatible loops efficiently to achieve best performance

We begin with analysis of a few simnle loop clusters consisting of non-nested code
blocks for which there exists no overall compatibility. From these example elusters we
are able to see that the least expensive partitioning of non-compatible loops often oc-
curs at forks in the loop communication graph (LCG). Morcover, we observe that these
forks are always a part of odd-length cycles in the corresponding interference graph
(1G). Odd-length cycles, however, are not the only cause of loop non-compatibility; a
second cause is certain configurations of loops which are constrained by loop-carried
dependence. This type of non-compatibility arises in situations i which there are two
or more loops, each with a loop-carried dependence, connected by a non-compatible
chain of loops. A chain is non-compatible if its constrained end nodes within the
chain are separated by an odd-length distance from one another and the two nodes
are of opposite color.

Based upon our analysis of the above non-compatibility factors, we are able to
develop a heuristic algorithm to efficiently partition a cluster of non-compatible loops.
We then formally describe the algorithm, and through a series of small FORTRAN
examples, we illustrate its use. Finally we justify our approach and discuss its com-
putational complexity.

30
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T Node 2
Node 1 AC#)
B(1+)
p0I =1, N AL+ A1)
A(L) =1
END DO
poIrI=1, N
B(I) = A(I) + A(N-I+1) . A(l-;B“-)
END DO A(l-) A(l4)
Node -2
Node -1
(a) Non-Compatible Loop (b) An Interference Graph Which Is
Directions among Two Loops Not 2-Colorable

Figure 3.1: Two Non-Compatible Loops

3.1 Sources of Non-Compatibility

In this section we examine the implications of loop non-compatibility. As noted, com-
patibility does not always exist among the constituent loops of a cluster. Therefore,
as a first step, we would like to be able to identify the conditions which are at the
source of the compatibility problem. As we will show, this information is important
to being able to partition loops efficiently, both from the standpoint of the transfor-
mation itself, as well as from the standpoint of the perforinance of the resulting code.
We begin our examination of non-compatibility analysis by illustrating two of the
simnplest cases. The first is shown in Figure 3.1. In this example, array A is generated
in the firsi code block and referenced twice in the body of the second, each set of ref-
erences being made in a different sequence, due to a different loop direction—the first,
set of references, in ascending order, and the second, in descending order. Observe
that, in Figure 3.1(b), the IG is not two-colorable, thus providing graphic evidence
of the non-compatibility of the two loops. Also, observe that the non-compatibility
originates at the location of a fork in the LCG. For ease of expressibility, we refer to
such locations as forks in the IG, as well.

Next let us complicate the situation by adding a third code block to a cluster, as
shown in IYigure 3 2. Notice that in Figure 3.2(b) the genciation of array A in Block
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Node 2
DOI=1,N AIRION
A(l) =1
END DO ‘_J -
DOI=1,N Node 1 Node 3
B(I) = A(I) ol o
END DO A Node 2 i
DOI=1,N |
C(I) = A(I) + B(N'I+1) l Ri1+)
END DO A1) )
A(l)
Node -1 “Node -3

(a) Non-Compatible Directions  (b) An Interference Graph Which Is
among Multiple Loops Not 2-Colorable

Figure 3.2: A Cluster of Three Non-Compatible Loops

1 constrains the allowable reference sequences of A 1n Blocks 2 and 3. Consequently,
for the last two code blocks to become compatible with the first, array A must be
generated in both ascending and descending sequences simultancously, an impossi-
bility. Notice again, our previous observation once again applics non compatibility
originates at the location of a fork-—also notice that the granh 15 not two colorable.
The fact that neither this graph nor the previous one 1s two-colorable, hence, the fact
that we are unable to find a compatible set of loop directions, 1s 1eadily explained by
a fundamental theorem from graph theory [BM76, Deo74, Har69}:

Theorem 3.1 A graph wtth at least one edge is two-chromatic if and only of 1t has
no cycles of odd length.

proof:

if: Assume (G is two-chromatic; its node set V might then be partitioned into two
sets Vj and V; so that every edge of GG joins a point of V; and V, ‘Therefore; every
cycle vy, v9,v3,...,0,, vy in G necessarily has its nodes with odd subscripts in Vj and
nodes with even subscripts in V,. As a result, the length of every cycle 15 even

only f: Assume, without loss of generality, that & 1s connected (otherwise the com
ponents would be considered separately). Take any node vy € V and let V) consist of
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vy and all points at even distance from vy, while V; = V — V. Since all the cycles of
(i are even, every hne of (¢ joins a node of V) with a node of V,. Now suppose there
is a line uv that joins two nodes of V;. The union of shortest paths from v, to v and
from v; to u together with the line uv contains an odd cycle, a contradiction. O

Obviously the odd cycle in the 1G in Figures 3.1 and 3.2 must be eliminated
without altering the meaning of the original code, if transformation is to be possible.
Unfortunately, non-compatibilities which are inherent in the original code cannot be
eliminated by further direction transformations. Even so, their adverse performance
effects can be partially alleviated by breaking the original non-compatible cluster into
smaller clusters, each of which is compatible. The loops in each of these subclusters
can then be fused and transformations, such as array contraction, performed on the
resulting fused loops, as described in the previous chapter (see Section 2.4, page 20).

There is one additional source of compatibility we have yet to discuss, and that
is the non-compatibility which sometimes occurs among loops in a cluster as a re-
sult of conflicting reference-order constraints caused by loop-carried dependence. An
example of just such a situation is shown in Figure 3.3. Here the source of loop
non-compatibility is the conflicting array-reference orders imposed on the first and
third loops by the loop-carried dependence within each loop, cf. Figure 3.3{a). In
Figure 3.3(b) we show the cortesponding 1G as it would appear following compatibil-
ity analysis. Notice that in this graph the two non-compatible nodes, Nodes 1 and 3,
are separated by a non-compatible (odd-length) chain of nodes. From our previous
analysis we know this chain is non-compatible because the two end nodes in the IG
(Nodes 1 and 3) are of opposite color. All that would be needed to make this chain
compatible would be to remove the loop-carried dependence from either of the two
end nodes-—-but of course, there is no way of doing this. Consequently, there is no
remedy but to remove an edge from the chain, in effect, separating the constrained
nodes by putting them in different partitions, as in the previous situations. There are
usually several alternatives for accomplishing such a partitioning, and after we have
laid additional groundwork, we return to this problem to see how partitioning might

be accomplished.

3.1.1 Properties of Non-Compatible Clusters

In this section we continue our analysis of non-compatible loops. In the process
we isolate additional properties, besides those already mentioned, which affect par-
titioning eflectiveness. In the course of this investigation we establish a number of
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DOI=1,N
A(l) = A(l-1) + 10 Node 1* Node 2 Node 3*
glgDI ?01 N All+ A(1-) B{+) (1) O 14)
B(I) = A(N-1+1) l “Imu
END DO ==l
DOI1I=1N A1) ALHB() B ) (L)
Cl)=CI1)+B(N-I+1) } ¢t | L]
END DO Node -1 Node -2 Node -1

(a) Non-Compatible Loop-Carried (b) An Interference Graph Which lIs
Dependence Not 2-Colorable

Figure 3.3: A Non-Compatible Chain of Loops

guidelines which ultimately form the basis of the partitioning algorithim we later de-
scribe. Before we begin, however, a comment about the graphical constiuct we use
during partitioning analysis: the Spanning Graph (5G)

A spanning graph is the two-colored spanning tice mduced from the IG, with
compatible edges from the IG added as arcs and non-compatible edges marked as X-
edges. During analysis, the SG is decorated with other 1mformation used during the
partitioning process; details of this information are explained as we go along  Because
the SG starts out as an IG, we periodically refer to the two graphs mterchangeably,
choosing one name or the other depending upon the graph propetty we wish to
emphasize. As a means of distinction, however, we consistently refer to undirected
“edges” in the IG, as opposed to directed “arcs” in the SG.

There are two reasons for using the 1G for loop partitiomng: Fiist, since it will
already have been constructed during previous graph-coloring analysis, constinction
is free. And second, it contains the information needed to perform partitioning, orga-
nized in the way that can be efliciently accessed. Cf course, this second consideration
1s most 1mportant.

Without question, the primary objective of cluster partitioning 15 to aggregate

clusters of loops in such a way so as to achieve the best performance overall; and we



P

&y

CHAPTER 3. NON-COMPATIBLE LOOP CLUSTERS 35

now show that the best way to accomplish this objective is to find a minimum cost
edge-cut of the graph. To understand exactly what is implied by minimum cost, one
need only examine Figure 3.2. Notice, as was proven above, non-compatibility occurs
if there exists an odd-length cycle in the graph, cf., Figure 3.2(b). Consequently, to
make the nodes in the graph compatible we must break this cycle, and it must be
broken in at least two locations; otherwise, there would be no way to fuse the loops
within the individual clusters. Furthermore, were we to cut the graph at only one
location, there would be no valid corresponding program representation, as one might

readily confirm.?

For the odd-length cycle in Figure 3.2(b) there are ten combinations of edge-cuts
which will partition the cycle,

5!

10

however, not all of these combinations are valid, and others are more costly than the
rest. For example, a cut between Node 2 and Node —2 would not be valid since pu‘ting
these nodes in separate partitions has no meaning in the context of the actual loop
cluster. Likewise, a partition such as {(1,-2),(2,3)} would not be valid either, since
the corresponding loop organization is not programmable. Consequently 2!. 1! = 2
combinations remain: {(1,—2),(1,-3)} and {(2,3), (1,--3)}. Of these two alternatives,
the first is least costly since it affects the fewest number of arrays overall, in this case,
only array A; whereas the second edge-cut, {(2,3),(1,-3)}, affects two arrays, A and
B.Z Note that by cutting an edge we imply the need to pass corresponding array values
between code blocks. If we partition the cluster using the first edge-cut, the result
would be as shown in Figure 3.4. In Figure 3.4(a) we show the partitioned LCG, and
in Figure 3.4(b) we show the resulting code after fusion. Although a simple case, this
example introduces the intuition behind the partitioning strategy we describe next.

With this next example, we establish a general framework for solving the cluster
partitioning problem, which we will build upon in later examples. The FORTRAN
code for this problem, listed in Figure 3.5(a), is similar to the code in Chapter 2 used
to verify compatibility of non-nested loops (cf., Figure 2.1, page 12), except the loops
in this mstance are non-compatible. The non-compatibility of these loops would be

"Thus 1s not true in all cases, e g , certain types of multiprocessor programming, as we will explain
m Chapter 4 It does however apply mm all cases of uniprocessor programmung—which 1s the focus
of our rescarch

?One nught easily venify that the same observations apply with regard to the simplest example,
shown in Figure 3 1, page 31
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B DOI=1, N

A C ACL) = 1
END DO

R +Lq+ Rl e R I DOI=1,N

+ B(N-I+1) = A(N-I+1)
C(I) = A(I) + B(N-I+1)

subset A subsct B END DO

(a) The Loop Communication Graph (b) Code after Loop Fusion

Figure 3.4: A Partition of Three Non Compatible Loops

discovered during initial graph-coloring analysis. Recall that, dunimg this analysis, a

breadth-first spanning tree is constructed and colored, as shown by the hold edges

and shaded nodes in the IG, in Figure 3.5(b). As a part of the process, remaming |
edges, i.e., those that are not already part of the tree, are checked, and any that can

be added, without violating the two-coloring constraint, are added. 1t is at this point

the IG becomes a Spanning Graph, or SG. Arc (—4,3) is added to the SG because

the nodes incident to it are each of a different color. On the other hand, the nodes

incident to edge (2,—3) in the IG are of the same color and 5o an arc would not be

added. Note we indicate the non-compatibility of edge (2,~3) by an X

Now suppose we were to add the non-compatible edge (2,-3) to the tiee, know-
ing that this is not allowed. The result would be the creation of the odd-length
cycle {2,-3,3,5,—5,2}. Since this is the cycle preventing compatibility, 1, 1s the
one that must be partitioned. Here we consider only fundamental odd-length cy-
cles in our analysis, because unless all such cycles are broken, non-compatibihty
will remain. By fundamental cycles we mean chordless cyecles, therefore, the oy-
cle {2,-3,3,~4,4,—-6,6,5,—5,2} is not a fundamental cycle because of chord (3,5)
Before continuing, let us reemphasize the following points: 7) at least two edges of the
odd-length cycle must be cut to effectively partition the cycle, 2) the edge cut mnst
cut both chains extending between the fork and join of the cyde; and ) the least
costly edges to cut are those which correspond to a fork in the LOCGL since usually
only a single array is affected If we apply these notions to this particular problem
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A(D) =1
DO21=1,N

B(I)=N-1
DO3I=1,N

C(I) = A(1) + B(1)
DO40I=1,N

D(I) = C(1) + 99
DO5S0I=1,N

E(1) = C(N-1+1) + B(I)
DOG601=1,N

F(1) = D(I) + E(N-I+1)
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(a) A Non-Compatible Cluster (b) The Spanning Graph (SG) Induced
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DO10I=1,N
B(I)=N-1
CONTINUE
DO20I=1,N
a=1
c=a+ B(I)
d=c+99
e = ¢ + B(N-I+1)
FI)=d + e
CONTINUE

(d) Co

de after Loop Fusion and
Array Contraction

Figure 3.5: A More Complex Cluster of Non-Compatible Loops
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Figure 3.5, we once more find we are able to partition the giaph, just as eflectively as
before (see Figure 3.5(c)). Moreover, we aie able to obtain much the same benefit we
were able to obtain from transforming a fully compatible custer, os s evident from
the transformed code in Figure 3.5(d). Furthetmore, thus benefit s achieved with
only slightly additional analysis.

There is one additional assumption we make with respect to the presence of even-
length cycles in the SG, e.g., the cycle {3, -4, 1, —=6,6,5,3} n Figure 3 5(b). One
might rightly ask: How does the addition of these cycles atfect the overall analysis?
The answer to this question lies in the following theorem:

Theorem 3.2 The graph formed by inscrting an edge between any two nodes of a
two-colored graph will wself be two-colorcd of and only of the nodes mardent to the
additional edge are opposite wn color.

Proof of the theorem is immediate, by construction  Theotem 3.2 assures us that
the even-length cycles have no adverse effect, as far as our analysis 15 concerned  We
might add, however, not only is it safe to insert the compatible edges imto the graph,
is essential to do so to ensure completeness. Otherwise, without these edges we would
be unable to apply the global analysis needed to obtam mummum cost partitioning,
in more complex situations. The sigmficance of this last statement will become dlear
as our analysis continues.

So far we have only encountered simple cases in which thete was httle mteraction
between an odd-length cycle and the rest of the graph. Unfortunately, the situation s
often more complicated, and cutting just a single arc, as we did so far, 15 not encugh
to effect complete partitioning. This 1¢ case 1n our next example, shown m Figure 3 6
As in earlier examples, the original code 15 1 Figure 3.6(a), and the corresponding
SG is in Figure 3.6(b). Also as with previous examples, we show i Figure 3 6(h) the
breadth-first spanning tree and node coloring, constructed as previously descnbed
Notice, however, this time the odd-length cycle and the even-length cyde have been
switched. The odd-length cycle is now the cycle {3, —4,4,6,6,3}. As a consequence,
the previous strategy to partition the graph no longer works The teason s that there
is now an extra edge that must be dealt with that is outside of the odd length cydle,

edge (2, 5).

From our previous examples we know that edges (3,4) and (3,5) must he cut to

effect the most efficient edge-cut of the odd-length cycle It s also dlear from the
figure that edge (2,5) must be cut; otherwise, the loop chister will not bhe separated.
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DO10I=1,N
A(l) =
DO201 = 1, N
B(I) =N - 1
DO30T=1,N
() = A1) + B(D)
DO40I=1,N
D) = C(1) +

PDOSOI=1,N
E(]) = C(N-H—l) + B(N-1+1)
DO60I=1,N

F(1) = D(N-I+1) + E(N-1+1)

(a) A Non-Compatible Cluster

of Loops

(b) Flow Analysis of the Spanning
Graph

39
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Node 3
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W(1+)

Node 2

B(1+)

subset A subset B

c¢. The Partitioned LCG

DO10I=1,N
a=1]
C(I) =a+ B(l)
10 CONTINUE
DO20I=1,N
d = C(N-I+1) + 99
e = C(I) + B(I)
FI)=d +e
20 CONTINUE

Array Contraction

Figure 3.6: Another Case of Non-Compatible Loops

(d) Code after Loop Fusion and
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As a further condition, cach cluster created as a 1esult of the partition must itsell be
a fustonable partitton. By a fusionable partition we mean that the loops comprising,
the partition must be compatible in order that they be later combined o a smgle
loop, by loop fusion. Furthermore, we would like the edge-cut that accomphishes the
partitioning to be least cost 1 terms of the numiber of edges cut To achieve these
objectives, we expand our previous methodology to mcorporate « graph partitionmg,
technique based upon the well-known Mar-Flow Min-Cut theoreny {Law7o)

Theorem 3.3 (Max-Flow Min-Cut) The marimum value of an (s, 0) flow s cqual
to the minunum capacity (s,t)-cutset.

The s in the above theorem represents the source of flow, and the , the sink - ot the
moment, one might view the “flow”™ as the pipelined transter of array clements from
one code block to the next.® Accordingly, an (s,t) flow 15 just the flow between the
source and the sink, and an (s, t)-cutset is any pattition of the network that separates
the nodes into two sets, one set containing the source and the other, the sink

To find the max-flow and mm-cut through a network, a sertes ol flow-augmenting
paths are successively added together until the network becomes saturated At the
point of saturation, network flow becomes maximal, and as Theorem 33 wuppests,
the flow at this point is equal to the flow across the mmimum capacity cutset T'his
property is formally stated in the following related theorem

Theorem 3.4 A flow 1s maxzimal 1f and only 1f 1l admats no auginenting path from s
tot.

The above theorem assumes several basic network properties apply, based upon the
so-called conservation law. The couservation law states that the flow into a node
must equal the flow leaving it, or

D=0, (31)
7 J

In the above equation z,, is the flow through arc (z,)). When the preceding 1elation
ship is extended to the entirc network we have

—-V, 1=

ZJJJx_‘Z;[,J:: O,Z-’/:.S,l (~{2)
J 3

v, =1

3Later we will change this defimtion shightly to suit our speaific purpose
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where v is the value of tiie flow. Besides flow conservation, on each arc we also have

a capacity constrawmnt
0 S ‘Tl] S Cy; (33)

ey, is the flow capacity of the arc. Any flow satisfying condition 3.2 and condition
3.3 is called a feasible flow. Lastly, if P is an undirected path from s to ¢, an arc
(¢,7) € Pas a forward arc if it is directed from s to t; otherwise, it is a backward arc.
P is said to be a flow-augmenting path with respect to flow r,; if x,, < ¢,; for each
forward arc, and z,, > 0 for each backward arc. When we apply these notions, the
solution technique becomes straight forward: Saturate the network with angmenting
flows 1n order to find a minimum capacity cutset. This cutset, in turn, represents the
least-cost partition of the SG that we are seeking.

The initial phase in the partitioning process is to transform the SG in Figure
3.6(b) into the structure of a flow network, as specified in preceding flow-problem
formulation. To do this, we make the following correspondence between the two

problems:

1. We use the SG to represent the network, as shown in Figure 3.6(b).

2. We assume that flows go against the flow-dependence arcs in the 1G, i.e., instead
of the flow going from, say, Node 2 to Node 5, we assume it flows in the opposite
direction, from Node 5 to Node 2, as shown in the figure.

3. Because the flows are reversed, we reverse the network source and sink; for
example, we let Node 6 be our source, instead of a sink, and in situations in
which there are multiple sources and/or sinks, we extend the network by adding
an artificial source or sink, as shown. In the Figure 3.6(b) the artificial sink has
been added to the SG to connect the input nodes, 1 and 2. Extending the graph,
as we have done, is the usual way to handle multiple sources and sinks; however,
instead of assigning infinite capacity to these pseudo-arcs as customarily done,
we sometimes assign a lesser capacity, as described next.

1. We assign a zero capacity to each input arc of a join in the SG (or conversely,
to ecach fork in the IG) if the input arc of the SG is adjacent to an X-edge in
the 1G. For example 1G edge (3, —4) is marked with an X, so the adjacent SG
input arc (5,3) is given a capacity of zero.

5. Next we associate with cach node a temporary variable, called node_capacity,
and for each output node of the IG, we initialize the value of this variable to 1;



CHAPTER 3. NON-COMPATIBLE LOOP CLUSTERS 12

each remaining node capacity is imtialized to zeto Then at cach ternmimal node
cncountered during the breadth-first traversal of the 1G (used to create the SGY),
we add the capacity of the origin node to the carrent node’s capacity, provided
the corresponding edge is neither an X-edge o1 an adjacent zero-weighted ar

At each “compatible™ join encountered, 1 e, for cach jom node in the SGothat
does not have an X-edge or zero-weighted mput arc, we assign the arcs ongin
node capacity to the corresponding arc, if the cortesponding origin node 15 non

zero. In Figure 3.6(b) for example, Node 3 has zero capaaty, Node 2, a capaaity
of 1 (taken from Node 5); and the sink node, a capacity of 1 also (taken from

Node 2).

6. And lastly, we add infinite capacities to all remaining ares, to ensue that none
are cut.

Item 4 is done to ensure that every odd-length cycle s cut, although other higher
priority cuts can, and often do, occur closer to the 100ot(s) of the SG which supersede
these “later” cuts. As a result, these later cuts might not actually ever be effected
Ultimately it is the flow-augmenting path algorithm that determimes whether these
cuts are actually used to partition the graph

The motivation for Item 5 might be unclear at this pcint; however, we explam the
rational behind it after this next example. For the moment, the undetlying notion s
merely that the capacities must reflect the relative priotity with which cuts are to he
made.

Let us return to the problem shown in Figure 3 6 to see how the above strategy s
applied. Either during the graph-coloring process or immediately following it, pseudo
source nodes and/or pscudo sink nodes are added to the graph, if either are necessary.
In this instance, since the SG contains two leaf blocks, Blocks T and 2, a sink node 1s
created with arcs extending from the primary nodes of these blocks to this sink

The compiler next assigns arc capacities, as described in Step 5 Lo the purpose of
clarity, we describe how these capacities are derived rather than enumerating the steps
taken duting their derivation; the exact procedure 1s descrbed 1 the next section
Edge (3,~4) from the 1G mn Figure 3.6 1s an X-edge and therefore, it 15 not inecluded
in the SG; arc (5,3), the adjacent arc at the join m the TG at Node 3 s assaigned a
zero capacity. The second join at Node 2 is part of the even-length fundamental cydle
between Blocks 2, 3. and 5 The capacity of Node -3 15 zeto! hecause of the zero

capacity at Node 3, hence, 1t has no effect on the capacity of Node 2 On the other
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hand, Node 5 1eceives a umt capacity from Node 6, which increments the capacity
of Node 2, and accordingly, arc (5,2) 1ecerves a capacity of 1. Applymg the same
rational to the sink node, we derive a capacity on the arc (2,sink) of 1 also All
remaining arcs in the graph are then given an infinite capacity.

Once these capacities have been assigned, the SG is ready for network flow anal-
ysis, and the flow-augmenting path algorithm is applied. In this instance, only
one path is open, and it is saturated after only one flow-augmenting path is found,
{6,-6,5,2, sink}. At the point of network saturation the graph becomes effectively
partitioned, as shown. Although we are assured of the compatibility of nodes prior
to the cut, we cannot be assured of the compatibihty of nodes after it, since a sin-
gle cut 15 often msuflicient to break all odd-length cycles in the graph. Therefore,
graph-coloring is applied once more to the remaining (left-most) subgraph. In this
instance the subgraph remains unchanged by the ensuing analysis, so partitioning is
complete. The LCG, after partitioning, is shown in Figure 3.6(c). Since the compiler
now knows that each of the two partitions are compatible, the corresponding loops in
cach partition can be fused and array contraction applied, as shown in Figure 3.6(d).
As can be seen from the transformed code, the benefit of partitioning can be signif-
icant; m this case, it results in elimination of loop control overhead for three loops
and scalar-variable replacement of three of the original six arrays.

Before proceeding with the formal description of our loop partitioning algorithm,
let us return to the issue of the necessity for Item 5 of the network transformation
desctiption (on page 41). Item 5 gives criteria for assigning arc capacities based upon
cumulative earlier capacities. The reason for establishing capacities as prescribed
by this item is two-fold: 1) to ensure sufficient flow reaches all arcs in the graph,
especially those incident to distant joins, and 2) to ensure that arcs incident to joins
in the SG are given priority over cuts along the respective paths to these joins. The
first reason 1s based upon the fact that, in the absence of sufficient flow, lower-priority
arcs can be starved of capacity (and hence cut) preventing flow from reaching possible
distant cuts of lugher-priority. On the other hand, the arc capacities themselves serve
as a means of establishing priority, that is, a means of differentiating the relative
impottance of one cut as opposed to another.

The mmpact of capacity assignments is illustrated in the partitiomng problem
shown i Figure 37 Iigure 3.7(a) depicts the SG generated from the FORTRAN
soutce code shown in Figure 3.7(b). There are two situations present in this code

which differentiate 1t from our previous examples: 1) adjacent cycles, and 2) loosely
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DO 10 I=1, N
A(I) = 36
DO 20 1=1, N
B(I) = A(N-1+1) + 99
DO 30 I=1, N
C(I) = A(I) + B(I)
DO 40 I=1, N
D(N-I+1) = B(I) * 8 + 2
DO 50 I=1, N
E(I) = A(N-I+1) / 4
DO 60 I=1, N
F(I)= N
DO 70 I=1, N
G(I) = C(N-I+1) * D(I) + E(I) * (1)

DO 101=1, N
A(N-1+1) = 36
10 B(I) = A(N-I4 1) 1 99
DO 201=1, N

¢ = A(N-I41) + B(N-I141)
d=MBI)*% 12
e = A(N-141) / 4
f=N

20 Gl)=c*d4e*f

(b) Original FORTRAN Code

(c) Optimal Solution

Figure 3.7: Optimal Partitioming using Node Capacities
g ! g g !
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connected l]()d(‘S 4

The adjacent cycles are those depicted in the upper-left portion of the figure,
{1,2,-3}, {2,-3,3,7,4}, and {1,2,4,7,-7,5}. The primary characteristic of such
cycles is that the fork and join of one cycle is somehow interleaved with the fork
and join of another. In situations of this type, it is nccessary to ensure sufficient
flow reaches the farthest cycle so that should this cycle need to be cut, it will be cut
at its least-cost location—the location corresponding to a fork in the LCG. In this
instance, since cycle {2, -3,3,7,4} is odd-length, it must be cut, but doing so forces
the later cycles, {1,2, -3}, and {1,2,4,7,-7,5}, to also be cut, even though these
later cycles are both of even length. Notice how the node capacities ensure that all of
the cuts occur at the coriect location. Notice too that this property holds, regardless
of whether other subgraphs of intervening chains or even-length cycles are added to
these cycles, for example, imagine additional nodes being inserted along arc (-3, 1).

Loosely connected nodes are those which are not a part of some outer-level cycle,
such as Node 6. Again, as in the previous situation, node capacity is required to
ensure cuts are made al the correct location. Specifically, had node capacities not been
used, arc {—7,6} would have had the same capacity as arc {6, sink}, and as a result,
the flow-augmenting path algorithm would have incorrectly cut arc {—7,6}, isolating
Node 6, mstead of making the least-cost cut of the arc to the pseudo sink, as shown. In
both this instance and the previous one, adherence to the capacity-weighting scheme
described m Item 5, led to optimal partitioning of the graph; whereas, had capacities
heen assigned less discriminately, optimality would not have been achieved.

3.1.2 The Partitioning Method and Refinements

In the last section we provided an intuitive description of how loop-cluster parti-
tioning might be accomplished In this section we formalize the method and provide
additional examples illustrating the application of cluster partitioning to special cases
involving multiple partitions and then constrained loops. First, we begin with a for-
mal deseription of the algorithm:

Algorithm 1I1 Partition a cluster of non-compatible loops.

We are more precise with these terms in Section 3 2
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wmput:

output:

procedure:

An interference graph, 1G = {[N, N], £], constructed using Algotnthm 1
(see page 15).

A colorset, = {color, color,} for cach output node in the LOG,
A color_preference which determines the color of the set to be cho

sen in the event the loop cluster cont=ins constiained nodes, imtially
color_preference is undefined,

A checkset which contains the current nodes bemg visited dunng
breadth-first traversal, and a nextset which contams the next level of
nodes to visit,

A set of noncompatibles = ¥, wlich contains any edges identified as
having a non-compatible array-reference order with that of its neighbo

node; we refer to these edges as X-edges,

A global Boolean value constrained, mmtialized to false, indicating non

compatibility because of loop-cariied dependence constramts, and

A Boolean return value, compatible, with an mitial value of true.

The 1G partitioned into components, each component representing a com
patible loop cluster.

FUNCTION colorTree (checkset): compatible
FORALL n € checkset
FORALL input arcs X, and the arc to complement node i

IF the terminus m is not colored
color m the opposite color of n
set m.node_capacity = 0
IF m.colorset # n.colorset
;; establish a colorset correspondence
alias m.colorset and n.colorset
IF m s the opposite color of n
;; set node and arc capacities
increment m node_capacity by n.node capacity
IF 1n has multiple output ports
X,m.arc_capacity = n node_capacity
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ELSE
Xnm.arc_capacity = oo
add m to nextset
ELSE IF m is the same color as n
;5 cul the non-compatible edge
m.node_capacity = X,n,.arc_capacity =0
compatible = false
IF m is constrained ;; ve., it contains a loop-carried dependence
IF color_preference has not been set
set color_preference to the color of m
ELSE IF the color of m # color_preference
constrained = true
IF the nextset is not empty
compatible = colorTree(nextset)
RETURN compatible

FUNCTION partition (graph): compatible
;i assoctale a separate colorset with each output node
source.nodes = getSources(graph)
FORALL n € sourcenodes
n.colorset = colorset,
i1 color the graph
compatible = colorTree(source_nodes)
IF NOT compatible
;; ereate a pseudo-source and pseudo-sink, if necessary
IF numberOfSources(graph) = 1
source = source_nodes
ELSE
create source
FORALL n € source_nodes
attach an arc from source to n
sink nodes = getSinks(graph)
IF number0fSinks(graph) > |
create sink
FORALL n € sink_nodes

47
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attach an arc fiom n to sink
IF n.node_capacity >0
A sink-arc_capacity = n.node_capacity
;; partition the graph
subgraph = flowAugmentingPath(source)
RETURN partition(subgraph)

Notice that the colorTree function sets a global variable in the event of a loop
carried dependence constraint. To partition the graph when such situations ocon
requires a modification to the algorithm, which we deseribe thiough an illustration
later in this section. Notice too that as long as the tal-end subgraph of the SG s non
compatible, the algorithm pattitions the graph mto mereasigly smaller subgraphs
This 1s accomplished by recursive application of the partition fundction apphied to
the subgraph on the sink side the SG. As a result, an original cluster of loops might be
partitioned several times, each partition resulting i at least one additional fusionable
cluster of loops being found.

We examine these processes further in our next example, shown n Figure 3.8,
Besides multiple partitioning, this example illustrates a couple of other unque situa
tions which have not been addressed yet, specifically, the handling of multiple edges
between nodes, and the treatment of adjacent cycles when multiple cuts ate involved
The FORTRAN loop cluster used in this example is shown i Figure 38(a), pnion
to loop transformation, and the corresponding IG with its induccd 56 are shown
in Figure 3.8(b). Examination of the figure reveals that the original loops are non
compatible because there exists three odd-length cycles in the 1G, the first ivolving
Blocks 4-6; the second, Blocks 2, 4, and 5, and the third, Blocks 1 4

Notice in Figure 3.8(b), how we depict the situation 1n which multiple arrays are
passed between code blocks, for example, arrays F and G being passed between Blocks
5 and 6. Each array is represented individually since a separate cost is associated with
each. In this case, the capacity of Node 515 2, and the capaaty of cach connecting
input arc 1, as shown. Next, notice that the are adjacent to cach X edge has ats
capacity set to zero, but only for those edges corresponding to the same anray o
example, the capacity of arc (6,4) for artay E i1s zero, corresponding to X edge (4, 5)
for array E, and the capacity of one of the two adjacent ares (- 4,2) 15 vero (for array
B), but not the other (array C). Consequently, the capacity of Node 255 1 not 2

Next. notice the first cut in the SG is made without a single flow angmenting path
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DO 10 1=1, N
A(l) =1
DO 201=1, N
B(I)= A(l) * 2 + 3
C(1) = B(I) + 99
DO 30 I=1, N
D() = AN-I+1) + 6
DO 40 1=1, N
E(I) = B(I) + C(I) * D(J)
DO 501=1, N
F(l) = B(I) * 4 + 2
G(l)= E(I) * 8-3
DO 60 I=1, N
(1) = F(1) + G() * E(N-I+1)

(a) A Non-Compatible Cluster

of Loops
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(b) The Corresponding SG Showing
the Partitioning

AQte)

Node 2

K1+)
QU+IR(1 + [R1OF(Le) oq1,H(+)

D+ { B(14)0(1+

N Node3 )

K1+X
A1)
Node | Node4 K Node$ Node 6
¢ a9

subset A

N_ "

subset C

\A(\ ) X1

subset B

(c) The Partitioned LCG
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DO 10 I=1, N
A =1

DO 201=1, N
b=A{)*2+3
B(I) = b
c=b + 99
d=A(N-I+1) + 6
E(I) =b +c*d

DO301I=1,N
f=B(I)*4+2
g=EI)*8-3

H(I) = f + g * E(N-I+1)

(d) Code after Loop Fusion and

Array Contraction

Figure 3.8: Multiple-Cut Loop Partitioning
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ever being made. Also notice that foilowing the imtial partitioning, the capacity of all
adjacent arcs affected by the initial cut remams unchanged, since the cost of catting,
the arc remains valid In other words, the zero capacity on aie (- 1,2) for array
B is not reevaluated for the second iteration of the low-augmentmg path algorithm
on subgraph {1,2,3,4}; wherecas the remaming node and arc capacities are (In the
figure the revised node capacities i the middle pattition are denoted with a hash
mark.). The second algorithm application cuts the graph a second tune, as shown,
resulting in two cuts and thiee subgtaphs overall, f Figure 38(¢)  Although the
partitioning results consist of three fusionable partitions, mstead of two. the benehit
of transformation remains high In this case, five of the oniginal eight arravs were sl
able to be eliminated, along with the loop overhead from thiee loops

So far we have not discussed cluster pattitionmg for the case of non compatible
loop clusters caused by constrained loops that are separated an odd number of ares
from one another.® In situations of this type, a least-cost cut nust be found between
the two loops. However, since this type of non-compatibility can often be hroken
at the same time a cluster is being partitioned to remove the previous type of non
compatibilities, we do not attempt to remove any constramed loop non compatibihties
until all of the other type of non-compatitnhities have been removed (using Algonthm
[II). If after the other non-compatibilities have be removed, a partition or pattitions
remain non-compatible, we sum the number of unique artays referenced for nodes of
each color within each remaining non-compatible partition and then, remove from
each of these partitions the colored nodes corresponding to the fewest number of
references. The effect is to increase the number of arrays required by the mumber ares
into and out of these nodes.

In Figure 3.8, if Nodes 3 and —4 were each constramed, Node 3 would he remaoved
from the cluster since the fewest number of arrays in the imddle partition would he
affected, in this case, two arrays, as opposed to three arrays were Node -4 remaoved
Since Node 3 is a source node for this partition, however, 1t becomes immediately
eligible for clustering with Node 1 in the left-most partition. As a consequence, once
transformation 1s completed, the added cost to achieve loop compatibility, i ths

case, 1s the cost of just one array.

SRecall, a constramed loop 1s one 1n which there 15 a loop-carried dependence
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3.2 Analysis of Partitioning Effectiveness

In the previous section we described a method for partitioning a non-compatible
cluster of loops into separate fusionable clusters, and in the process we demonstrated
the application of this method with several examples illustrating alternative situations
which might be encountered. As a final step, we now justify the effectiveness of our

loop partitioning method and derive its complexity.

In general, loop partitioning is a difficult problem, and the conjecture is that
cluster pa.titioning too 1s NP-complete [GOST92]. Nevertheless, the heuristic we
desenibed i Algorithm I works well in many instances, as we have shown. Unfor-
tunately, we cannot guarantee this approach produces optimal results in all cases.
In the analysis that follows, we therefore present intuitive arguments for why our
algorithm frequently succeeds.

We know the flow-augmenting path algorithm for max-flow min-cut produces an
optimal partition of a network for a given set of fixed flow capacities. Therefore, if an
SG can be effectively transformed into a network with fixed flow capacities assigned in
such a way as to accurately reflect the relative cost of loop-cluster partitioning, we are
similarly assuted the resulting partitioning too is optimal. To establish optimality,
we would need to show 1) our priorities for cutting edges accurately reflect actual
partitioning tradceoffs, and 2) these priorities are respected during application of the
flow-augmenting path algorithm. Since we have no evidence to suggest otherwise, we
begin under the assumption that the algorithm might, in fact, be optimal. If it is
not, we would like to isolate situations in which the algorithm is likely to fail. It is
with this motivation that our analysis proceeds.

In the discussion that follows, a fork node in the IG is a node with multiple output
ports, and likewise a join node is a node with multiple input ports. Note that forks
in the IG coriespond to joins in the SG, and visa versa. We refer to a combination
of a fork node, a join node, and the two segments of the graph which connect these
nodes as a cycle.® Cycles in an IG are further classified according to whether or not
they are minimal; those consisting of a unique fork and the fewest number of nodes
are said to be fundamental. Lastly, when we refer to the segments of a cycle, it will
be to the vanous chans that connect a fork and a join  Note, as a mimimum, every

cyele contains at least two such segments  As further terminology, we distinguish

8This detimtion 1s shghtly different than common terminology in order to take advantage of both
the directed nature of the SG| as well as the characternistics of the underlying 1G



Ypram. i

CHAPTER 3 NON-COMPATIBLE LOOP CLUSTERS Y

undirected edges in the 1G from directed arcs i the induced SG

By construction, we guarantee that the SG has no cvdles of odd length, tor we
refuse to add arcs to the graph which would produce such cviles  Nonetheless, let
us assume for a moment we were to add ares which would mtroduce odd length
cycles Surely we would Lave to break all of these ¢ycles i order to mahe the SO
two-colorable. At the same time we might need to cut other arcs ot the graph to
partition it. Partitioning, as we have shown previously, 15 essential to torm fnsionable
loop clusters. Of course, arcs cannot be cut indisctinunately Consequentiy, we need
a means of establishing priorities with respect to the order in which ates of the SG

can be cut.

As a way of discovering these priotities, let us assumie that an 1[G consists of ust
a single isolated odd-length cycle. To break this cycle, we must partition it into two
sets of nodes. Moreover, we know by mspection that hoth segments must be hroken,
and this represents the least cost  Hete each segment consists of, at most, one cham
Obviously, the least-cost cut of ecach segment, 1 this case, wonld be an edge cut But,
for the case of an 1solated cycle, no edge costs less to cut than the edues extending,
from the fork. This is because usually only a single array 1s affectcd; whereas, any
other cut affects at least two arrays Again we emphasize that our ultinate objective
is to eliminate as many arrays as possible

In most instances, the array generated within a fork loop 1s used by multiple
adjacent loops; hence, by paititioning the cycle at the fork, two edges are cut at o
cost of one array. On the other hand, a partition anywhere else 1 the cvdle imphes
the generation of at least two arrays, within two loops, each array bhemg passed to
its respective consumer loop; hence, two arcs are cut at a ost of two atrays  Iiven
when the edges of a fork represent the transfer of different arrays, the fork-partition
cost can be no higher than any other combination of cuts Morcover, the preceding
least-cost relation holds regardless of how many times a particular array 15 referenced
within a subsequent loop, since the cost of multiple internal array references can
always be avoided by making the first use within the loop an assigrament to a scala
variable, and the scalar then used to satisfy the remaining references to the array
element. Based upon the preceding observations, we conclude that, in the absence of

any global criteria, the best location to partition a cycle s across the output edges of

a fork

Now let us take a somewhat broader parspective. First we observe that topolog

ically cycles can be viewed as combining 1in one of several ways senally i a nested
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manner, in an overlapped manner, or concurrently.” An example of cach of these ba-
sie structural combinations is illustrated in Figure 3.9. When cycles combine serally,
the fork node and jom node of the first cycle occurs topologically before the fork node
and join node of the second, as shown in Figure 3.9(a). In the figure, two odd-length
serial cydles appear, each with bold arcs. When cycles are overlapped, as shown in
Figure 3 9(b), the fork of the first 1s constrained to occur before the fork of the second,
and the join of the first 1s constrained to occur before the join of the second. In this
figure, as in the previous one, an odd-length cycle is indicated by bold arcs. When
cycles are nested, the fork node and join node of the first cycle are constrained by
data dependence to occmr between the fork and join of the second cycle, as shown in
Figure 3 9(c). Again, the odd length cycle 1s highlighted in the figure Lastly, when
cycles occur concurrently, there 1s a nested constraint on the sequence of forks and
joins between the two cycles, as shown in Figure 3.9(d), but the order of internal
nodes with 1espect to an outer cycle is not fixed. Broadly speaking, the cycles in the
last thiee figures all have one thing in common--at least one shared node that is not
simultancously a join in one cycle and a fork in another, and collectively we refer to

cycles of this type as adjacent cycles.

From examination of Figure 39, a few important relationships become clear:

1. Serial cycles require multiple partitions because there is no way to partition a
serial combination of odd-length cycles with a single break. Moreover, since
serial odd-length cycles involve multiple breaks, such breaks must be accomn-
plished sequentially, either from left to right or from right to left, to reduce the
scarch cost associated with finding other serial cycles, should any remain. As
a further consideration, a side effect of partitioning is usually the breaking of
additional cycles which otherwise would cause compatibility constraints on the
far side of the partition. These last two points will become clear when we later
justify the behawvior of the labeling portion of the overall algorithm. Because of
these reasons, serial cuts must be given highest priority, if both optimality and
eflicieney are to be achieved.

2. If there exists an outer-level odd-length concurrent cycle which has an inner odd-
length cycle within one of its segments, the inner cycle must be broken before
the outer cycle since the inner cycle must be cut regardless, cf. Figures 3.9(c)
and (d) Moreover, the breaking of an inner cycle always affects the least-cost

“These dassitications are merely 1llustrative, sice classifying cycles 1 a graph 1 like finding
niages m ink spots
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(b) Overlapped Cycles
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Figure 3.9: Examples of Ways Cycles Combine

partitioning of the outer cycle. Consequently, the cutting of mner-most cycles
warrant as much priority as the breaking serial cycles.

3. The cuts of least priority are those that are part of ovetlapped odd-length cydes,
the reason being that cutting such cycles affects fewer cydles in general than
other combinations of breaks, cf. Figure 3 9(b). Also, the least-cost break of
overlapped cycles is a cut across the arcs of their respective forks, just as it s m
the case of a single cycle (as described above). The least-cost cut 15 never one

:
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across a shared arc, as one might suppose. This 1s because cutting the shared
arc still leaves two remaining arcs to be cut Thus the total cost 15 a mimimum
of three arrays; whereas, a cut across forks of the respective cydles cuts foun
arcs—but only affects two arrays.

- 4. Lastly, in the absence of any of the above global criteria. the least expensive
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location to break an odd-length cycle s at its fork, as explained in the preceding
patagraph It must be emphasized, however, breaking a cycle at the fork is a
break of “last resort”. Even so, it must be accomplished 1n order to break the
odd length cydef no higher priority cut exists.

We are now ready to see how these partitioning priorities are manifest in the flow
capacities assigned to the ares of the SG. In effect, the priority of cuts in the SG is
a function of two factors: ) the flow capacity on the respective edges, and 2) the
topologic ol order i which odd length cycles are discovered by the flow-augmenting
path algonthm ‘To see how these factors affect the partitioning, let us reexamine the
way udd length cycles are identified and the way in which flow capacities are assigned.

The way the algonithm identifies odd-length cycles 1s by their respective forks.
The fact that the breadth-first traversal of the IG which is used to create the SG
always finds the root is not difficult to show: merely perform a breadth-first traversal
of any cyde m the graph, beginning from a join node and traversing the graph in
teverse direction from the direction of the arcs.® If a cycle exists, the separate paths
extending from the join node must come together; otherwise, the structure would
not be a «vdle, and the only possible place these segments can possibly join 1s at the
fork. By not connecting X-arcs to the SG at the fork and by assigning zero capacity
to the adjacent ares, we ensute all odd-length cycles in the graph are broken. This
step alone 1s enough to guarantee partitioning effectiveness, but 1t 1sn’t enough to
ensure optimality. Note, however, that X-cuts always occur at the farthest end of
cach segme.t, and the flow-augmenting path algorithm exploits this fact.

The way optimality is achieved, that is, if it is achieved, is by ensuring that a higher
priority cut along a segment of an odd-length cycle is always reached by the flow-
augmenting path algorithm prior to reaching the lower-priority X-cut at the farthest
end of the cvele. A< a consequence of this, lower-priority cuts which are “scheduled”
to occut later the the cycle, such as as the X-cuts at the fork, are prevented from

occurting, whenever a higher-priority cut exists along the same segment.

Flow capacities also have a lot to do with which arcs are cut /) they ensure arcs
at the most deeply nested/concurrent odd-length cycle are broken before any outer-
level odd length cycles, and 2) they break arcs at the forks if the cycle has not already
been previously broken To venfy this fact, one need only observe that the fork in

an outer avele s always farther away from the source node than any fork nodes of

fthe edge within cach block which connects a primary to a comphment node can be viewed as
bi-directional
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a corresponding innet cycle The two charactenstics above are exactly the pnonties

that are necessary for optimality, as we show nest

The reason the flow-augmenting path algonithm s able order the prionty of cuts
stems from the fact that the SG s an acvchc duected graph which unposes a ined
order upon the way the segments of the graph are trtaversed i search of aueiment
ing paths As a result, 1if a graph admits multiple nunmm capacity catsets, the
augmenting-path algonthm always saturates ares closest to the sonrce first s ths
characteristic of the flow-augmenting path algorithm that the partitionme aleonithm
exploits, and it is a dunect consequence of the way flow capacitios are assiened Cuts
which have no meaning m the context of the loops themselves are prevented from
occurring by assigning them mfinite capacities, such as the ares which connect the
primary node to its respective complement node moa bloch  Likewise cnts which
should never be made along a chan hecanse of other higher pnonty edees doser to

a the fork are also prevented in the same way

At the same time, the node-capacity labeling methodology ensures no cycle s
starved of cavacity, unless 1t 1s a candidate for cutting Speaically, it assures suf
ficient flow capacity reaches the most deeply nested/concurrent cvele, unless flow s
prematurely restricted by a priot odd-length cydle  For just a moment . neplect the
possibility of serial cydles, and consider only adjacent cycles The partitioning, alpo
rithm always breaks the most deeply nested odd-length ovele at its fork, the least cost
location. This break has the added effect of severing one of the two segments i an
outer-level cycle, and obviouslv. the same 15 true of the second segment of the onter
cycle, f an odd-length nested cycle s present along that segment Hotoo s cut prion to
the outer-level fork, thus ensuring the outer-level evole s cut at it feast cost location,
at the same time. Whether the outer-level cvdde has an X-arc and zero capacity are at
the fork or not, has no effect i this instance because of the existence of higher prorty
cuts prior to the fork

Now let us consider serial cycles  As previously emphasized, the flow augmenting
path algorithm cuts the graph m a greedy fashion when multiple flows sinultanconsty
teach capacity at several locations at once  Such cuts always occur withnm the odd
length cycle, o1 odd-length adjacent cycles dosest to the source node of the graph
As a consequence, only nodes on the far aide or sink side, of the partition need be
searched for additional serial cyvcles At the came tine, senial cuts honor the same
priorities described in the preceding paragraph with tegard 1o mternal eveles T here
fore, they too are accomphshed i an least cost manner As o hurther conequence of

serial partitioning, however, the flow-angmentiig path algonthn mns be run apan
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once for cach senal combmation of odd-length eycles remaining i the graph  Since
domng so is unavodable, and since each subsequent partitioning is guaranteed to be
accomplished in the same least cost manner, the partition algorithm is likely to always
{ind the best place to partition the graph duting each succeedimg recursion

As « final step, let us assume we have an arbitrary spanning graph which for
which we have established an optimal partitiomi.g, using Algorithm 111 If we were to
now connect any printary node within this graph to any other node in the graph, the
connedction would result in one or more new cycles. However, the creation of these new
cycles would 1 no way affect the underlying prionty relationships described above.
In other words, the above partitioning priorities would remain invariant' Inner most
nested/concurient cyces wonld always be cut first, and senal cycles would continue
to requite multiple partitions  Likewise, the capacity weighting scheme and network
saluration pattern of the flow-augmenting path algonithm would remam mvariant,
ensuring that the prionty relationslhups manifested in the new graph too would be
tespected by the cluster partitioning algorithmm. As a consequence, we have strong
evidence to suggest that Algonithm 111 s, in fact, an optimal algorithm. Nonetheless,
the relationships mvolved in graph partitioning are complex (as previously noted),
and additional analysis and testing are required to substantiate out conjecture that
Algorithmn 11 is optimal - work which might be undertaken as a follow-on to this

1esearch.

Lastly, let us examine the complexity of the algorithin. In effect there are two
principle parts. graph coloring and graph partitioning. The first, graph coloring, uses
a breadth-first traversal of the interference graph to determine loop compatibility,
requiring O(n 4+ a) steps, where n is the number of nodes in the LCG, or loops
in the original cluster, and a 1s the number of arcs in the LCG, or array transfers
between loops in the onginal cluster. The second part, graph partitioning uses the
flow-augmenting path algorithm which requires O(na) steps. Since a coloring and
pattitioning occur each time the graph is partitioned, the overall complexity of cluster
partitioning is O(n(na + a)).




Chaptier 4

Related Research

In this chapter we deseribe alternative methods for determnmg, loop compatibil
ity and for partitioning non-compatible loops 1mto compatible foop clusters 191t
we examine the collective loop analysis and transformation techngue proposed by
Sarkar and Gao [SGI1] Ty techmque provides the basis for the techmque we
described i Chapter 2. The second techmque we describe s the collective loop fu
ston method for non-compatible loop clusters descithed by Gao, Olsen, Sathar, and
Thekkath [GOSTY2]. This later technique addresses the partitiomng, problent exaim
med 1 Chaprer 3. Lastly, we provide a brief 1eview of other related research on the

general transformability of loops.

4.1 Loop Analysis and Transformation

The Sarkar-Gao method for collective loop analysis 15 more general than the method
described in Chapter 2 because the target computer architecture can be either o
uniprocessor or a multiprocessor. provided the multiprocessor has sufhicient process
ing elenients, inter-processor communication chanuels, and facihities for small com
munications buffers at the communication ports of cach processing element  In the
above context, “suflicient” 1mplies the architecture has adequate 1esonrces to take
advantage of the parallehism exposed by the transformations. therefore, to a compiler
the machime is viewed as having unbounded 1esources Althongh unrealistic) this as
sumption is usually not restrictive since the required parallelism s novnably within the

capability of modern multiprocessor architectures [Gao9i)

5
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For umiprocessors the transformation strategy 1s to create fusionable loop clus-
ters, as descnbed i Chapters 23, but the algonthms described in this chapter differ
shghtly, and the impact of these differences s examimmed  As desenbed o Chapter
1, however | software pipehnimg and other mstruction scheduling techmques are then
nsed to exploit the istruction-level parallelism For multiptocessors the strategy 1s
to situate producer and consumer fovps on separate processors with a physical com-
mmnications buller between processors to provide a maximal flow of array elements
to cach processor, without usiig main memory for mtermediate <torage  In this case,
loop transformation 1s petformed in two steps: 1) loop nests are transformed to max-
imnze loop compatibihity, thereby permitting the pipelimng of array elemests between
loops, and, 2) bulfer 1equrements are determmed which mamtam a maximum flow
of artay elements between producer and consumer loops  For the remainder of this

section we foons primanly on the multiprocessor case.

4.1.1 Loop Compatibility Analysis

Sarkar and Gao were the fitst to formulate the Joop compatibility problem as a two-
colot graph coloting problem, using an interference graph (IG) constructed from a loop
communication graph  They also proved that, if a solution exists to the two-coloring
problem 1t can be used to obtain an optimal loop configuration, and they described a
heuristic to find a two-colotning of the reduced graph obtained by selectively removing
1G edges The particular algonithm they proposed for determining loop compatibility

is given below

Algorithm IV Two-color a Loop Communicatron Graph (LCG) to mumnuze the

number of non-compatible output ports

tnput- An LOG.

output- A loop configuration vector, (sy,...,8x), where s, = “4+” if node n} in
the cortesponding interference graph (1G) was colored with color ¢; of two

colots, and s, = *=" if node n; m Gy was colored with ¢;.

procedure

constiuct an 1G from the LCG | see Algormthm I, page 15

FOR cach edge i the 1G
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IF edge ¢, is an {n¥,n7} edge . tf ¢, connects nodes withon a bloch?
weight ey, is 4oo
ELSE
w,, 1s number of static references within the node at the mput port
bestcost '= +¢
FOR cach node ¢ m the 1G
build a maximunm-weight spanning tree 7, rooted at node o
color T, with two colors, starting at a precolored node
curcost .= sum of the weights of all edges connecting the same colot nodes
IF curcost < bestcost
bestcost is curcost
store the colonmg i colormap

RETURN colormap to define the output loop configuration vedtaon

With the Sarkar-Gao heunstic, edge weights are used to guide the constiuction
of the tree, that 15, the edge with the largest weight as always the next edpe to
; be included in the tice  To avoid biases due to the chowe of 1oot, the spanmng,
tree algorithim 1s 1epeated for all nodes, giving the algonthm a worst case execution
time of O(|Ny| x (INs] + [k1]))  Compared with Algonthim L the breadth fust
spanning-tree algorithm described in Chapter 2 (page 18). the Sarkar Gao techimgue,
using Algorithm IV 15 quite costly, recall Algonthm 1T execntes in OV ) tine The
difference in cost is justified in the multiprocessor case, however | smee the follow on
transformations too are quite different In the umprocessor case, the objective s loop
fusion and eiray contraction; thercfore, the least-cost ares to remove in the case ol
non-compatibility ate always those which form the branches of the forks i the LOG
On the other hand, forks have no spedal agmificance with respect to the follow on
distribution of loops among processing elements i the multiprocessor case, and so the
number of alternatives for arc selection s much greater, and the added complesity s
useful. Algorithin IV also handles cycicinterference graphs, and hence it s sintable
for cyclic LCGs. However, the feedback edges must imtially be compatible, otherwise
the origimal progiam will deadlock  To avord deadlock, the 16 edpes conresponding,
to LCG feedback edges are cach assigned a cost of >

U'The defimtion of a bloch within an 1G s given i Chapter 2, Section 22 (page 1)
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Figure 4.1. Buffer Allocation for an LCG

4.1.2 Buffer Allocation

Bufler optinnzation s performed only on compatible loops. We illustrate buffering
with our otiginal example from Chapter 2, Figure 2.1, page 12. Recall array B is
generated by loop 2 and is consumed aloug two different paths. On the upper path,
B is processed first by loop 3, and the result, array C, 1s sent on to Loop 5. On the
lower path, B s 1outed directly to loop 5. Loop 2 could run to completion before
loops 3 and 5 begin, but this would cause the entire array to be stored. On the other
hand, the producer (loop 2) and the consumers (loops 3 and 5) are able to execute
concurrently {Gao0]  As the elements of B are generated by loop 2, they can be
immediately consumed by the follow-on loops. Again, this can only occur 1if the array
communication arcs are compatible. If the LCG is cyclic, buffers are used ouly on

the forward arcs and not on feedback arcs.

Since the two paths i Figure 2.1(b) have different execution times, temporary
storage 15 needed along the lower communication path to hold elements of B until
they ate required by loop 5 In Figure 4.1 we show the LCG after transformation. In
this case, a buffer of size w keeps the three loops operating in a maximally pipelined
mannet, where w is a function of the execution time of upper path

To solve the bufter-allocation problem, 1t 1s necessary to assign weights to arcs in
the LCG. Let (7 = (V. A, W) be a weighted LCG with each arc a = (2, ) € A being
werghted by a nonnegative integer w, € W When a value produced by node 1 arrives
at an mmput port of j, 1t 1s retained for some number of instruction executions hefore

reaclhing the output poit  this number s w,.
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The objective of buller allocation s to deternine requuements tor hutfers such
that the weight of any two distinct paths hetween any two nodes are equal - An LOG
which meets this condition s balanced. The algonthu to accomphish the balancing,
does two things. 1) 1t locates ares where butlers aie needed, and 2) 1t determimes the
size (o1 weight) of each requited buffer  In solving the problem we observe that the
heaviest path from node ¢ to j must not change, and that butters must be mserted
ounly up to the pomnt that all path weights between ¢ and ;o are the same  As parnt
of the procedure, the werght of the heaviest path from s to s deternuned for each
¢ € N If we let G be a balanced graph and () and w)() be tinctions which return
the heaviest paths for GCand 67 for any node o () wr (o) st hold Without
loss of generality, we can assume that (7 has « unique sowrce node s Phe hist
statement 1 the buffer-allocation algonthm (below) hds the heaviest path weight
from the source to all other nodes, nang a techmque sach as Dighstia’™ shortest path

algonthm [ Dy5Y].

Algorithm V deternune requirencents for erternal buffers

mput: A weighted LCG, (G = (N, A, W) having a unique soutce node s
oulput: A balanced graph G' = (N, A, W)

procedure:

compute the heaviest-path w,() for
FOR eacharca =(1,5) € A
insert a buffer of size wy(y) ~ w,(7) — w, along arc «
add this size to w, to obtain w! = w,(y) — wp(1), the new weight in W/

RETURN ¢

The overall complexity of the shortest-path algonthim s Q(]LV[A]), but since node
degiees are usually small, |A| ~ |N|. Therefore, for practical purposes the adgorithm
has a complexity of O(|N|?).
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4.2 Collective Loop Fusion

Collective loop fusion 15 a loop partitioning technique which attempts to find a set
of loop clusters which minunizes the number of inter-cluster arcs. It is an alterna-
tive technigue to the partitioning technique described in Chapter 3. Although the
technique 15 oriented toward uniprocessor applications, the same performance bene-
fits accrue for multiptocessor applications as well, especially if himited 1esources will
not permit complete distribution of the original loops among processors. The objec-
tive of collective loop fusion imphicitly assumes a cost savings from each compatible-
contractable arc For example, assume this savings is 1 unit, denoting the cost of an
array-clement load from memory ‘The storing cost 1s 1gnored because 1) whether it
can be ehmmated depends upon whether the element is used later in the program
and 2) data storage 15 buffered 1n most modern unmiprocessor arclitectures. It 1s also
possible for a store o1 a load to be contained within a conditional, in which case the
arc cost would be less than 1, based upon the branching probabilities of the respective
conditionals {Sar90h].

The program representation used in the following algorithm 1s a Loop Dependence
Graph (LDG). An LDG 1s essentially an LCG, with the following differences: The arcs
in an LDG correspond to flow, anti, or output data dependences [Wol89]. and only
flow arcs can be compatible In an LDG, nodes n,,...,n; are numb-~red according
to the topological execution ordering of the loop nests in the original loop collection.
Also, since the loop nests ny,...,ny, are assumed to be identically control dependent,
there can be no control branching among these loops.

As a means of illustration we will use the collection of FORTRAN loops shown in
Figure 4.2 The LDG for thus collection is shown in Figure 4.3(a). Non-compatible
arcs are marked in figure with an X. The non-compatible arc from n; to ns is
due to array A being produced in one order and consumed in the reverse order,
and similarly, the non-compatible arc from n4 to ng occurs due to array E being
produced and consumed 1n reverse orders. The non-contractable arc 1s marked with
an asterish. A non-contractable arc is one representing an array which cannot be
contracted even when loop fusion is possible. The non-contractable arc from n; to
n4 18 due to an anti dependence on array E. All other arcs in the LDG are both
compatible and contractable. Collective Joop analysis, as described ecarher in this
chapter ot as desceribed i Chapter 2, 1s used to determine arc compatibility, and data

dependence analysis, as deseribed by Wolfe, 15 used to reveal array contractability
[WolRY).
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DO 101=1, N
10 A(l) = E(1)
DO 20 I=1, N
By = A(D*2 4 3

20 (1) = B(l) + 99
DO 30 1=1, N

30 D) = A(N-T+1) + 6
DOA0I=1, N

40 E(D) = B() + C(1) * D()

DO 50 1=1, N
F(I) = B)* 4 ¢ 2

50 G = B * & - F(1)
DO 60 1=1, N
60 H(1) = F(I) 4 G() * B(N-1+1)

Figure 4.2- Sample Collection of Non-Compatible FORTR AN Loops

Collective loop fusion works on any acychc graph having an unrestnicted nombe
of non-compatible and/o1 noncontractable ares  Although the general collective foop
fusion prouiem is probably NP-complete, the algonthm we desciibe s optiunal for
bi-partitioning - a case for which the flow-augmenting path algonthim vields o cataet
of minimum size [GOST92] The objective of collective Toop fusion 1~ to hind the
minimum number of clusters in which all non-compatible ares are separated acrons
clusters. According to Gao. Olsen, Sarhar, and Thekkath, this will masimze the
number of contractable edges within each cluster [GOSTI2] "The overall stiategy
consists of two phases: [) determimng a set of dusters to which cach node could
feasibly belong, and 2) selecting nodes from these sets and assigning them to actual
clusters. This later phase 1s then repeated until all nodes have been assipned

The first phase of the algotithm s accomphished by scannimg nodes fust g for
ward topological sequence to determine the earhest duster to which each node conld
belong and then scanning the nodes 1n a reverse topological sequence to determme
the remaining clusters to which each could belong  The second phase of the alponthm
is also a two-step process: Fust, nodes which could only belong to o anple chiste
are removed from the sets of feasible clusters and assigned immediate by to an actial
cluster. This leaves the nodes which could bheloug to more than one cluster Lo

these nodes, a least-cost determmmnation s made as to whinch actual chuster cach node

E
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should be assigned. This later determination 1s made in a iterative manner using the
flow-augmenting path algorithm, which is based upon the max-flow min-cut theorem

{(described n Chapter 3).

4.2.1 Terminology and Methodology

Before formally presenting the algonthm for collective fusion, we need to explain some
additional terminology and give a general description of the overall methodology.?
‘The input to the algorithm is an LDG, say G = [N, A, in which all nodes n € N
have been assigned umque labels according to their topological order. As indicated
above, the fitst step 1s to determme the feasible clusters to which each node might
belong  This mformation forms a set F,, = {c| 1 < ¢ <k} for cach node, whete n
15 the topological number of the node, ¢ 1s the number of a cluster to which n could
belong, and & 1s the mimmum number of clusters that are necessary to partition
the non-compatible loop collection represented by ¢ To determine the members of
these feasibility sets, the algorithm first visits each node in topological sequence and
determines the lowest-numbered cluster to which each node can belong. For source
nodes in (7, Fy,. = {1}, indicating the earliest cluster to which each can be assigned
is luster 'y, If the mput arc of a node is a non-compatible arc (marked with an
N), the earhest cluster is one more than the cluster number at the origin of that arc.
Lakewise, if a node n 1s a terminus to multiple arcs. the highest cluster number of
any origitt incident an input arc of n determines F,,. If the maximum cluster number
assigned to any feasibility set is &, then k is the minimum number of clusters required
to pattition the graph. In the table in Figure 4.3(b) we show for Step 1 the feasibility
sets for ecach node following forward traversal of the LDG in Figure 4.3(a). In this
case, (¢ requites three clusters, Cy, Cp, and Cj.

As a follow-on step, the nodes of G are traversed in reverse topological sequence
to determime the last and any possible intervening clusters to which each node could
belong  These cluster numbers too are added to the feasibility sets of the respective
nodes. As a 1esult of this step, the feasibility set for any particular node can contain
sevetal possible clusters Multiple node feasibility sets can be seen, for example, in

Step 2 of the table i Figure 4.3(b); they are sets I, and F5

Feasibility sets are used to create a reduced graph " = [N’, A'], called a Cluster
Graph (CG), (" is constructed from GG by consolidating nodes and ares in G, In Figure

‘Our termology and methodology are somewhat different from that deseribed by Gao, Olsen,
Sarhar, and Thehhath [GOSTO2)
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Figure 4.3. An Example of Cluster Partitioning
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4.3(¢) we show the CG for the example i Figure 4.3(a). The nodes i a CG represent
two distinct sitnations 1) nodes that have already been been assigned to clusters and
2) nodes awaiting to be assigned  Fach of these categories 1s 1epresented in the CG
by a different type of node ‘The first type s imtially formed from singleton feasibility
sets. These sets contam only a single cluster indicating there was no alternative

cluster to which the node could be assigned; we indicate sets of this type by F =

{011 = 1}. The complementary set, of feasibility sets are those contammmg nodes
that could belong to more than one cluster; these sets are indicated by 2! = I — I}

whete 10 = {F, | 1 << n < |Nj}. All of the consolidated nodes n' € N m (7 are
created from either one or the other of these two types of sets. The fust type of node
i N’ actually tepresents a cluster of nodes fiom G, indicated by ¢, = {n | n € I}}.
For example, i Iigure 13(c), cluster node Cy = {nz,n4} was created from feasibihity
sets My and Fy, f, igme 4.3(b)  The second type of node in G’ 15 a node [,
formed from the corresponding feasibility set F2! for n. In Figure 4.3(c), for example,
feasibility node /)y corresponds to feasibility set £ in Figure 4.3(b), and likewise node
I cortesponds to set Fs. The set of arcs in G"1s A’ = {(m,n) € N'xN's.t, {m,n} €
(', and (mn,n) 1s contractable}  The arcs not included in N’ thetefore are 1) those
that are eliminated because they would be internal to one of the newly forimed cluster
nodes and 2) those that are eliminated because their edge-capacity 1s zero, such as

non fusible ares (marhed by an asterisk) ®

Ovetall; the construction of the clester graph achieves two purposes. 1)1t consol-
idates nodes m the LDG that must belong to the same cluster, and £2) it eliminates
superfluous ares that are not required in making future partitioning decisions. The
C'G s also the input for the Phase 2 transforination, which we describe next. Before
we describe Phase 2, however, we formally state Phase 1:

Algorithm VI (Phase 1) Create a Cluster Graph from a Loop Dependence Graph
(1.DG).

Input  An acyhe graph LDG G = [N, A].

Output: An acyclic cluster graph G* = [N', A'].

SRecall that non-fuaible arcs are also non-contractable



CHAPTER 4. RELATED RESEARCH 68

Procedure:

;¢ traverse the nodes of G wn topological order
FORALLne N
IF n has no incoming arcs
F, = {1}
ELSE
FORALL input arcs (m,n) incident to n
F. = MAX ({ {1+ 1}, C, € Fy, if (m,n) is non compatible )
Fo. otherwise
;; traverse the nodes of the graph i reverse topological order
FORALL m e N
IF 3(me,n) s.t. (m,n) 1s non-compatible
x,, = MAX(1 € I,)
FORALL output ares (m,n) incident to m
z, = MAX(y € I},)
IF z,, < MIN(x,)
FORALL j st r, <3 <u,
add j to I,
5 construct G', having N’ and A’ defined as follows:
FORALL F, € I
IFie r)
C. € N, where C, ={n |1 € I}
ELSIF i1
add F,, to N’
FORALL »n' € N’
IF {m,n} € n’ AND (mn,n) is contractable
add (m,n) to A’

The CG initially consists of a single component whichi s tteratively reduced as
compatible clusters are identified and 1emoved  Feasibility nodes m the graph are
also collapsed into adjacent cluster nodes; as part of the cluster identification pio
cess. To collapse a feasibility node, the node itself 1s removed and the node i the
LDG which it reptesents, 1.c., the node mdicated by the F-subscrpt, s added to

/ v the adjoining cluster to which 1t is being assigned  To ensiure cluster assignment 1.

T T
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accomphshed i a cost effective manner, Algonthm VI uses the flow-augmenting path
slgonthm to determme to which adjacent cluster node the LDG node referenced by
the feasibihity node should be assigned  The collective-loop-fuston problem 1s trans-
formed imto o network flow problem by assigning a capacity of 1 to each arc i the
CG O AMaltiple aros between adjacent nodes 1 the CG are also collapsed where possible
and arc capacity adpnsted  The flow augmenting path algonthm returns a mimmum
partition contamme, the fewest number of ares The flow-anugmenting path algonthm
is tepeatediy apphed on the poimary component until the CG s reduced to only a

single node

When the partition solates a feasibility node, as opposed to a cluster node, the
feasthihty node beconmes a new component o the the reduced CG which continues to
he considered cach time a new cluster node 1s removed, possibly 1emoving a cluster
teference from the isolated feasibihty node At the stage the feasibility node contains
onlv one remammg Caster reference, it s ehmnated, just as other feasibility nodes
withm the primany component, aud the corresponding node referenced i the LDG

i~ asstgned to the remaiming referenced duster, just as m the precedimg case.

Fach apphcation of the flow-augmenting path algotthm partitions the graph into
two components, cach smaller than the onigimal - Sometimes the ('G can be partitioned
stunultancoush mto more than two components by cutting the graph at every arc for
which the low capacity has been reached, not just the mimmum cutset Two cases
which the eraph cannot be cut i this way are: 1) when a cluster node 1s disconnected
from the other nodes, and 2) when removal of an are would not disconnect the graph.

I he tollowime tormally desciibes Phase 2 of the algonithm

Algorithm VI (Phase 2) Partition a Cluster Graph (CG) mto compatible clusters

Input Phe reduced graph (7 = [V, A].
Output: A set of compatible clusters.
Procedure:

FORALL ' ¢ M/

o collapse and label ares i (¢
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IF multiple compatible arcs (m.n) are imedent to »
delete all but one of these ares
flow capacity ¢, = 1 + numbet of (m.n) removed
WHILE |N’| > 1 :: (/" s connected
Loremove Oy from G
execute the flow-augmenting path algorithm to detetmime o partition
temmove the partation from (7
IF the partation s {C, F,}
add n to €7,
ELSE
add n to ') where j € F),
add ', to the solution
FORALL F, ¢
remove ()

RETURN the solution

In Figures 4 3(d) (f) weshow the application of Phase 2 of Alpotthin Vo the €'
in Figure 4 3(c). The capaaty and flow following apphcation of the oy anementing,
path algorithn s shown for each are m Prgnre 4 3(d). tor cach are anacity s shown to
the left of the slash and flow 15 shown to the night Observe that the  oaren hetween
[ and Oy werereplaced by asingle arc having a capacitv of 2\ il teplacement
was made between nodes Fooand €5 The masimum How oatialls occumed b tween
Cyoand Iy allowing ny to be added 1o ') (sec Tionre | )y The are hetween
'y and Iy creates another are between € and Fyoand thas e 1 placed by oo single
arc of capacity 2 In Figure 13(e) we show the apphoation of the fow cugiuenting
path algorithm 10 the temaming graph This final step places o, mto duster €,
terminating the algorthm

Certain types of LDGs 1equire speaial treatment i order (o be handled by Algo
rithm VL For example, the LDG might contam o st of non fusible nodes, sich as
ny and 1y m Figure 43, which each must be put mto separate chusters These nodes
are used dutire the assignment of ¢luster numbers, but they are ot es cntial to the
application of the flow augmenting path algonthim Therelore node . of ths type are
deleted from all chuster nodes 1 the CGLas are the aios 1o and from these nodes
This isolates these nodes <o that the flow-augmenting path aleonthm can be correctly

apphed  Tor situations m which the LDG 15 disconnecred Aloonthi Vs apphied
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to cach component. and once all components are partitioned. the clusters having the
same ¢ huster mimber are merged  Another situation which requires special treatment
15 one 1 wihneh there are multiple soutces or multiple sinhs In these cases. a pscudo
source 1s aeated having mhite-capacity ares to all real sources Sumlatly, a pscudo

sk 15 created having mlimnte capacity ares from all real sinks to the pseudo sink

4.2.2  Algorithm Complexity

The best way to deternmne the complexsity of Algonithny VI s to examine the com-
plesity of ecach phase of the algonthm separatels Fust, et us assume that the mput
LDG has o onodes and o ates Phase 1as composed of thiee steps  The fust s the
forward pass of the nodes whnch also examines imconng ares Smce each node and
cach arc are visited once O 4 ad steps ate tequired 'The second step s the reverse
pass of the graph which visits cach node and the ares leading out of these nodes
the worst case all nodes are traversed and all ares are exannmed, requining Q{na)
steps  In the thad step the CG s bl requinng a visat to all nodes (1o bnld the
node set) and a visit to all ares (to buld the are set), requiring Qfn 4wy <teps The
total time s O +a) + Olrea) 4 Ot a) = Otea) 'To find the complesity of Phase
2, we assine that n the worst case each apphication of the flow-augmenting path
algonthm rolates only a ~single node, requnmg n-1 apphications I the algonthim
tahes Onalog n) [Tar83] the total timeas O(nfalogn) Therefore, the total tume for

the eutive Algonthm Vs Otna) 4+ Oodalogn) = O(ntalogn)

4.2.3 A Case of Non-Optimal Partitioning

As explamed at the begninmg of this sec on. determiming an optiunal pairtitiomng s
lihely to be yvet another NP-C'omplete pooblem. and although the heuristic algonithm
we have just desenibed produces an cptimal partitionming in many instances. there
ate mstances which ate equally ikely to ccur for which the algorithm produces non-
optunal tesults In ths section we give one such example The code {or this example 1«
shown i Frigure 11 Fhe example loop collechion i this case 15 comprises seven loops
and uses eight arrays The LDG for ths codeas <hown i Figure 4 5(a) Observe that
the collection has three non-compatible arcs, (1. 15), (ny.nq). and (94, 1), 1dentified
by cathier loop analvsis to be non compatible (as described i Chapter 2 o1 1 the

hust patt of ths chapter)
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DO 1OT-1.N :
A = 36
10 Bl — (b
DO 20 1.1, N
20 (D] ANTHLY 99
DO JOI-1.N
30 DD = NI+ 4 6
DO 10 1=1, N
H) E(N-T41) - iy / o
DOSOI=1. N
50 '(h By~ 2
DOOGOT 1N
60 (S T R SN
DO TO =1, N
70 Heh - DiINTEDY Y B v b b

Frgure 4.4 Another Collection of Non Compatible FORTRAN Losops

The torward and reverse traversals of the DG requined i Pl e 1 of the
gorithm. produces the feasibihty sets shown in Brigure 15y For thes particula
collection of loops, the algorithm dentifie: an overall requienient for thice Cinter s
However. this overstates the requurement since only two custars are actnally reqminad

for optimal partitionmng, as we will show later

The CG whichs formed from the feasibahty sets Gdentified 1 the tabled and from
the induced set of ares from the DG s shown i Figine 1a(c) T ths partcular CG
there are two feasibility nodes. Foand £y and three duster nodes € ' Created
from the fusaibility sets. and there are three mduw ed edges tahen from the LOG | he
arc capaaties requured to mahe the graph conformabie for network flow analysis are
also shown m Figure 15(c), e addition to the cutset sesulting, altcr application of
the flow-angmenting path algorith In thisinstance only one iteration of the flow
augmenting path algonthm s necded to partition the graph and networl saturation
is accomplished with only one path angmentation Feasability node £ mmmediately
collapsed <o that ny can be added to 5 <mce this s the only cister to which Iy
connected  Feasibihty node £, however could go o erther € o1 ¢, The desion
m this case 1s determuned by apphcation of the flow augmenting path algonthon.
which results i a cut between ) and 11y oV own Fapnre 130c) With thae
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Feasibility Sets

Step ~ K by F Fa b Fe s

roo{ny {n {np o {2) {2} {3) {3}
2 {1y A1y {vsp w3y {2) {31 {3}

(a) Interference Graph (b) Loop Dependence Graph

[
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@l e
©)

Dy OO0 Cul o= {(09.C)
ot Co={ng) Cy={ng.nz)

(d) Optimal and Non-Optimal
(¢) Cluster Graph Partitions

Figure 1.5 A Case of Non-Optimal Partitioning
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DO 10 I=1. N DO 101 1.N
a =430 a o
B(l) = a b a
10 C(N-I41) = a + 99 CNTEE) o
DO 20 [=1, N {0 P b*sgy
20 Fil) = B(1) * 8 4 2 DO20T 1. N |
DO 301=1, N doChy oo i
d=Cih)+6 e - OINTEDN |
o= C(NT+1) /1 g FNTi1) N |
g = P(N-1+1) N 20 Hil)  d*req Pty !
30 I d*e )ty E
|
(a) Non-Optimal Solution (b) Optimal Solution

Figure 16 Non Optimal and Optinal Partittionme, Solation:

Fy can be collapsed and ny added 1o ¢y The result, therelore s the partitomny,

Cr={mand. Co= {nsdoand Cy = {gangone s} as shown e Bienre 1 ogd)

Observe that the partitionmg produced i this mstance s non optimal A< shown
m Figuie §6(a). thiee loops were necded and four of the orminad seven arravs were
elimimated, whereas i the optimal solution, shown v Fivure 1 ichy oy tea loope,
are actually reqinred, and fve o the ongmad artavs conld actually be chnnmated
The reason for the non-optnnality of the collective loop fuaon aleontton s o aplamed
by the faci that the algonthm mnphatly assuimes that non compatibnhty ol o non
(()llll)dtl')l(‘ X (‘«1;.',1' s determned entiely by the l«‘]atlu:whlp between the end nodes
of the particnlar edge and 15 unatlected by other cuts made duning the partitiomng,
process, and therefore, fined prior to partitionmg, whereas i fact s s not actually

the case, as explamed m Chapter 3

4.3 Other Related Techniques

Most previons work m optimnzing the performance of loops has focnsed onndividinal
loops tather than on collections of loops [I\'l“” 8¥lOAKST, \Vu]?\")} Onlv recently has

Hnadentally, Algonithin HE deseribed i Chapter 3 (page 45) 15 able to find the aptinnl partinon
m this cas
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a combination of loop optinzation techmques been applied together and only i the
case of a single loop nest, specifically, ununodular transformations [Ban90, W1L90)

Loop disttibution and loop fusion are well known loop transformations to handle
multiple loop nests [WolR9) Loop distnbution s typically performed masimally (11-
block partitioning). and loop fosion is used as follow up to selectively merge the dis-
tributed loops back together  In general, loop fusion reduces loop overhead i unipro
cessor codes mcreasing the size of loop bodies  “This affects mstruction-scheduling
cffectiveness and reduces memory requirements, e turn, reducing memory -registel
data trathc  This fast benelit s espeaally important for vedtor machmes for which
vecetor loads and stotes are costlv I spite of these henehits, the abihty to effectively

petforn loop fasion hes remamed o difhicult problem [AHRY]

Wolfe used the term “ariay contraction” for a different optinnzation than the one
descubed here Hisuse of the term was to descnbe the function of reducing the size
of @ compiler genetated temporary array created by scalar expansion [WolS9]. Allen
also nivestigated the problem of mnmmizing temporary array storage m a single loop
nest,usig o techmgue called sectionmyg, however, the techmque was not extended for
optimization beyond a simgle loop nest JAIR3] Callahan et al Chave studied register
allocation of subscnpted vanables (atrays). but as with the other elated research,

then work too focused o sigle loop nests, as opposed to collections of loops [CCK90)

The opportumty for optinnzimne attay operations across a collection of loops tor
dataflow software pipclinimg was 1ecogmzed 1 Gao [(Gaol6, Gao90]. and loop paral-
lehization and loop chunkig across collections of loops has been described by Saikar
[Sar80, SO0, Sar90a] Inour work and in recent work by Gao, Olsen. Saikar. and
Thekhath, collestive loop optunization was considered both at the mdividual loop-
nest level (¢ g, loop teversal and loop mterchange) and at a global level, where loops

are partitioned into dusters for fusion [GOSTY2)
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Chapter 5

Relevant Code Transformations

In this chapter we desenibe the transformations requued {or analysis ol loop clusters,
along with code-improving transformations that nught be apphed once o cluster o
clusters, of transforrmable loops has been found  Athongh most of the techmgues we
describe are generally well known they are nevertheless mportant withaon the corrent
context, and our mimediate aim s to demonstrate then relevance ¥\ e the
chapter with descniption of the ttandormation aleonthms wed pror ta and durmp
cluster analysis  Of particular mnportance are loop notniadization Qe tion 1ever

sal, and loop mterchange < I addition to these transtormations, we disciss of he
transformations which nught also be neces s 1o mprove the eflectiveness of -« his

ter analyars, two such examples are scalar forward substitution and ~calar tenamung
Once the transformations required for uster analvers have been de cnhed, we con

tinue by swveymg several transfonmation aigonithims that are then possible to achiove
improved code performance The particalar transfornatons we discnss are loop tu

ston, artay contraction, and software prpehumg Lastly we conclnde with a disonssion
of a few 1ncidental transformations, such as loop unrolling and mstiuction heduling,
which could, in certam mstances, affect loop analy sis and/or the efleciiveness of any

consequent code-improving transformation that 15 apphied

'Detatled mformation regarding the more common transformations can be found im any on
of several sources [ASUSG, PWRO Polss Waolsh, ZC90], however, when appropriate  we ot the
principle references followmng the respective transformation descnption

“Transformations, such as these, which are of particular unportance to loop cluster analysis are
appropriately mdicated i the text

76
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CHAPTER 5 RELEVANT CODE TRANSFORMATIONS

5.1 In-Line Expansion

The first transformation we describe s sn-hne expansion  In-line expansion is impor-
tant for collecthive analyvsis becanse it exposes loops to analyvsis which otherwise might
not be considered  Expansion provides other henefits too, such as reducing program
execntion tune by chiminating procedure calls (and then associated parameter trans-
fer) and procedure returns Below we show two different situations i which in-hne

expansion mght be henefically apphed

Calls within a Loop A Series of Calls
DO 0T - 1N CALL ADD (ABC)
10 CALL ADD (A(DBIN T+ 1),0(1)) CALL ADD (C.AD)
END END
SUBROUTINE ADD(X.Y.Z) SUBROUTINE ADD(X,Y.Z)
REAL X, Y., 7 REAL X(N), Y(N), Z(N)
X=Y14+ 7 DO 1O =1,N
END 10 Z(1) = Xth + YI)
END
Followimg in-lime expansion, the respective code segments become
DO1WLI=1'N DOIOT =1, N
10 ) = A1) + B(N-I4 1) 10 Ly = Ay + B(I)
DO20T =1, N
20 D(l) = ¢{I) + A(1}

5.2 Normalization

We can sepatate notmahzation transformations into basically two categoties' loop
notmahzation and subscnpt normahization  Although 1t is the first of these categories
that we are prmatily concerned with during loop cluster analysis (and to which
we devote the most attention), the second category, sithscript normalization, is also
unpottant, since it too affects the ehgibility of loops to undergo further analysis in

certain imstances We begin with loop normalization

3In these examples and all subsequent examples we assume N s a globally defined loop upper
bound, unless otherw ise stated
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5.2.1 Loop Normalization

The purpose of loop notmalization 15 to transtorm o loop mto a torm m which the
loop lower bound and increment are cach I Novmalization s performed early i the
loop selection process sinee it faahitates subsequent Toop analvsis such as bonuds
checking  To add concreteness to the techmgue, but without foss of penerality, we
assume a typircal FORTRAN syntax for loop constructs Wath this assumption, the

algonithm, which esscentially performs idex substitution - shown below [70°90]

Transformation 5.1 (Loop Normahization) lan~form a loop o that the lowe
loop bound and loop mercment are both |

input A FORTRAN loop, within an chgible loop claster which has o dower loop
bound and/or a step other than T 'The loop s avumed 1o he of the form
DO lahel] LS T L
Lubel body
where Tis annteger and ) for 1) - 3 cach an expression oy 1 the
lower bound, ¢,, the upper bound, and . the Toop macment, o tep

Vanables. £, for 1 < 5 <30 ate temporanies of mteger type

output: A normahized loop of the form

ty =
1y = ¢,
ty = ¢

DO labcd " =1, (1, -ty 4 1)/t 1
label. bodyf
=+t + MAX{{t, =t + t)/1,00) " 1,
where bodyf is body with ¢ + (I' = 1) x £y substituted VI

Note that the prelude statements to the loop can be clhimmated when all o) are
integer variables or constants  In the case of constants the constant value 1s prop
agated. Likewise, when the sign of a normahzed upper boand s known i advance,
MAX can be replaced by the appropriate test, either the expression or zeto, whichever
is greater. Lastly, note that the final statement restores I oto its oniginal value, o

condition that often nught not be necessary When the statement s not needed it
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elimmated by dead-code ehimination [ASUS6]. The following is a typical example of

a loop requiring normalization.

N = 100
DO 101 =N-1,0, -1
10 A(l)y =1

T'he normahized version of this loop s shown next, both before and after simplification

In this example we assume the loop mdex vanable I s dead upon loop exit.

After Normalization After Simplification
N - 100
Th=N-1 DO10T=1.N, !
DO 1OT = 1, (6-T1-1)/-1,1 10 A(N-I) = N - 1
10 AP+ )y =T+ (- 1) *-1

I =7T1 4+ MAX({O-T1 1)/-1,0) * -1

5.2.2 Subscript Normalization

Subsernipt notmahization usually conssts of the following transformations. scalar for-
ward substitution, induction variable substitution, wrap-around variable substitution,
and standardization of subscript expressions  To understand their relevance to loop

cluster analysis, we now descnibe each transformation in order

Scalar Forward Substitution

ln 15 a natural tendeney for programmer to reduce the complexity of expiessions, as
well as redundant use of subexpressions by separating indexing expressions from the
subseript expression in which these expressions are used. For example, a programmer

might choose to write

DO I =1, 100
J=N-T+1
10 A(l) = B(J)
Unfortunately, statements of this type immtroduce a forward dependency within the
loop which prevents duection reversal. 'To cortect this situation, the compiler sub-
stitutes the expression into cach mdex expression within the current scope of the
mdesimg dehimition
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Induction Variable Substitution

For the same 1eason a programiier night separate lengthy indesing expressions rom
the array references i which these expressions are used, a programmer nught ko
use a sepatately computed induction vattable  I'wo patticular cases are 1) diection
reversal and 2) loop maementing A bhely case when o programmer nught o.e

direction 1eversal 15 one imvolving, say, a copy operation

J=N+1
DO T= 1, N
J=171-1
10 Al = BU)
As before, the solution to this problem is obtamed thiough substitution  Speah
cally, the compiler elimmates the statement that defines the mduction vanable and
replaces cach use of the varable with an expression of the form Cognrew 1 4 i
where Cogucnion 15 the mnduction constant. I s the loop mdes vartable, and T, 1~
the expression for the mduction vanable mntiahization When this translonmation s

applied, the transformed code beconies
DO L= 1, N
10 A = BN 1+1)
The second case, loop inctementing, might be used m hen of using, the loop contiol

statement to step through an array

J=0
DO 10T =1,N
b=J 42
10 Ay =10

Although less commion today, constiucts of this type were once typical due to older
FORTRAN language specifications  The solution to this particular problem s apain
the same, and the transformed code in this stance becomes

DOTOT 1N
10 A2*Ly = 10
Note that the consequence of having a separate induction variable computation i the
same as the case involving scalar forward substitution cluster analysis and transtor
mation is mhibited unless the the troublesome statement can be removed, chimmating

the origimal data dependencies
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Wrap-Around Variable Substitution

Another common type of sitnation which results in a restrictive data dependence 1s
the case of wrap-around variables within the loop. A wrap around variable is one that
15 defined near the end of a loop and 15 used duning the subsequent loop iteration, thus

aecating a loop cartied dependence The following loop provides such an example:

J=N
DO101l=1.N
A(l) = BQJ)

10 J=J-1

Neither scalar forward substitution not induction variable substitution alone solves
the problem i this instance. But, by rolling the loop back one iteration (adjusting
Jine and moving the induction statement to the head of the loop) and then perform-
ing induction vanable'substitution, the loop can be fixed (as shown below) so that

collective transformation can proceed unconstrained.

After Loop Rolling After Variable Substitution
J=N+1
DO10L=1,N DO101=1,N
J=J-1 10 A(1) = B(N-1+1)

10 Al = B(J)

5.3 Scalar Renaming

Scalar renaming is a technique for removing anti dependencies which otherwise pre-
vent certain loops fiom being considered for collective analysis. The benefit of scalar
renaming can be seen in this next example. First, let us assume we have the following

loop cluster,

a=1.0
A(l:N:1) = a
a=25.0

B(1:N:1) = A(N‘1:1) + a
Notice that redefinition of the scalar variable a, following the first loop, prevents the
two loops from being fused  When the affected vanable i the redefinition statement
is given a new name and this new name s used i subsequent statements which refer

this variable, v e to statements withm the scope of the redefinition, the transformed
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code becomes as shown to the left, below  On the nght s the transtormed code

following forward scalar substitution.

After Renaming After Substitution

a= 10

A(LN:) = a A(I'N.DY Lo

b = 5.0 B(I'N.DY - AN:T D) H O

B(1:N:1) = A(N.1.1) + b

5.4 Direction Reversal

Direction reversal changes the order in which array references ocom within o loop

body, without changing the loop increment For mmstance, ff an atray was beme pro
3 2

duced in an ascending order within a certain loop, duection teversal chanees that

order so that, in the transformed code, the array 15 produced o descendimg order

} control, on the other hand, remains unaffected  The ditection reversal transforma
H tion is accomplished m essentially the same manner as any other strapht forward

Note that transformation takes place only within the body of the loop atself) loop
| substitution transformation
|

Transformation 5.2 (Direction Reversal) Reverse the order of ariay ieforcnee
within « normabized loop.

input: A normalized FORTRAN loop, within an eligible loop cluster

output: A transformed loop m which references to array clements oconn i reverse
order Transformation is accomplished by substituting N 1 ¢ 1 for cach
occurrence of I within the loop body, where N s the loop upper bound
and T 1s the loop index variable

The following example illustrates how direction reversal 1s accomplished

Prior to Reversal After Reversal
poOl1oti- 1I,N DO 101 I N
Ay = 1-1 ANTIL) N

! 10 B(I) = C(N-141) 10 BN Tyl (0N
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5.5 Loop Interchange

Loop interchange has been most widely used to increase the vectonization m nested
loops in which a loop-cartied dependence exists at the mner most level  However,
m this instance we use it {or an entinely different purpose  Spediticallv, we use 1
as a means of providing a complementany reordermg of istiuctions m those Cases
in which array references vairv only according to foop nesting T this respect, one
might consider loop interchange to be to the analvsis of multiduneusional loops what
direction teversal 1s to the analysis of one dimensional loops, < £, Chapter 20 Sections

2.1 and 2.5). The transformation itself s straight-forward-

Transformation 5.3 (Loop Interchange) [ntcichange the loops within a perfoct

loop nesl.

mput: A perfectly nested FORTRAN loop. within an eligible loop cluster As o
matter of practicality and for the purpose of clanity, we restiict omrselves

to the case of two-dimensional loops, such that

DO labed b Voupper bound
DO label ) - 1 upper “bound
label body

where the upper_bound for cach loop mught be different. All airay 1efer
ences within the loop body are of the form Alerpy,erpy) ot ACeapy, e i),
where A is an arbitiary array, and « rp; and capy are hnear expressions im
I and J, respectively

output: A transformed loop m which the nesting order s 1eversed by changimg
the order of subscripts of all arrays referenced within the loop body o
example, ACexpy,erpy) becomes Alerpy,erpp) for all A in the loop body,
and visa versa.

5.6 Node Splitting

In this section we consider node sphtting, a technigue which can sometimes mcrease

the effectiveness of cluster analysis. Node sphtting has long been used m vedtorization
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Lo break data dependence cycles, but in cluster analysis it has an additional puipose,

as well. Consider, for example, the following loop cluster:

DO 10l =1.N
A() =990
10 B(I) =N -1

DO2WI=1,N
20 C(1) = A(l) + B(N-1+1)

Smce there is no dependency between the two statements in the first loop, the two
can be easily placed mto distinet foops, rather than within a single loop, as shown
Sphiting the two statements allows analvsis of the generation order of cach atray
individually, rather than having to consider them as collectively, as one When the
two statements constdesed together within a single loop, the loops are non-compatible
(bedanse two ares between then are non-compatible), however, when the two state
ments are sepatated, cach within its own loop, analysis can hnd a competible order
among the statements, as illustrated by the transformed loops shown next.

After Node Splitting After Cluster Analysis and
Direction Reversal
DO1OI=1,N DO10I=1,N
10 A1) = 99.0 10 A(T) = 99.0
DO15I=1,N DO151=1,N
15 B(l) = N -1 15 B(N-I4+1) = 1- 1
DO201=1,N DO20I=1,N
20 C(I) = A(l) + B(N-I+1) 20 C(I) = A(f) + B(N-I+1)

5.7 Loop Fusion

Loop fusion is the first transformation we describe that is applied as a code-improving
transformation, rather than as a transformation to facilitate collective analysis. The
objective of loop fusion is to to combine loops within a cluster into a single larger
loop. As previonsly noted. the advantages of fusion are many, and the performance
benelit substantial (as we will show in Chapter 6) The primary advantages are: 1) a
teduction w loop control overhead as a result of the ehimination of all but the first loop
contiol statement, 2) an opportumity in which to apply other code-imptoving trans-
formations, such as the substitution transformations previously described and array

confraction (descuibed m the next section), and 9} a simgle larger loop body, which
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increases the number of eligible instructions that can be conmdered tor mistinction
scheduling.

Transformation 5.4 (Loop Fusion} Fuse two loops that are within a loop eluster

mput: A topological sequence of two normalized FORTRAN loops, of the form
DO label 11 = 1, upper_bound, |
label 1 SE
DO label 21 = 1, upper_bound. |
label 2 SEQ,
output: A single loop having as its body the statements w the bodes of the Toops
from which the fused loop is derived, with statements appearing i the
same topological sequence as the onginal loops from which the fused loop
was derived, that is
DO labe 11 = 1, upper_boun, |
SEQ,
label 1 SEQ,

Notice that although fusion consolidates the statements among compatible clusters
of loops within a collection, the fusion process itself takes place on two loops at tnne
Of course, this in no way affects the performance of the algonthim Alwo notice that
although loop fusion applics to loops at any particular level of nesting collective loop
analysis is primaiily concerned with non-nested loops. the reason bemg, that analysis
generally becornes intractable for higher dimensional loops (except for certain special
cases, like those described m Chapter 2, Sections 25, see 26 (pages 23 29) 0 As o
simple example of loop fusion, we show next the final code segment from the last

section, after the fusion transformation:

DO 101=1,N
A(l) = 99.0
B(NI+1) =1-1
10 C() = A(I) + B(N-1+1)
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5.8 Array Contraction

The next code miproving transformation we describe is called array contraction. Ar-
ray contraction 1 the term used by Gao and Sarkar to describe the substitution of
scalar vanables for subseripted voriables within loops which produce and consume
atrays [SGIL] T The fused loop from the previous section 15 an example of a situation

in which such a transformation might be beneficial with the following result:

DO 10T =1,N

a= 99.0
hb=1-1

10 ChHh=a+b
Notice that all but the last array 1eference, in this case, was able to be replaced.
Notice too that contraction has also facilitated scalar forward substitution. Formally,

we state the anray contraction transformation as

Transformation 5.5 (Array Contraction) Replace unth scalar variables all cor-
responding common subseripted varwables which are used to produce/consunic array

demonts with a loop body.

mpul: A FORTRAN loop with statements containing subscripted variables which
arc used to produce and then consume array elements within the same loop

ietation, of the form:

DO label 1 = 1, upper_bound, 1
A(T)

.........

labek  OUT(l) = ..

whete artay A is dead upon exit from the loop, but 0UT is live.

*Wolfe origimally used the term array contraction in the context of removing compiler generated
vector temporaries  In a general sense, his purpose (Lo elimimate unnecessary array elements) and
the effect of lus transformation are the same as those of Gao and Sarkar [Wol89)
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outpul: A transformed loop in which scalar vatiables have replaced cortesponding,
subscripted variables for artays which onginally produced and consumed
clements within the same loop iteration
DO label 1 == 1, upper bound. |
A s

Co=
label our) -

5.9 Software Pipelining

In this section we describe a dlass of loop schedulmg tedimgues collectively known as
software pipeliming ® Software pipehinmg was ongmally developed fronea tedimgue
for scheduling hardware pipelines, but 1t has been used more recenth ain comypnlers
for numerous different parallel machmes [CGLIRG, DHBSO. Lam90, RGST. Toust]
Its original purpose was to teduce the effects of delavs between register Toads and
instruction execution, but perhaps 115 most mmportant purpose today s tomerease
instruction-level patallelism 1t accomplishes these purposes by veplacmg instinchons
within a loop body. with ¢« trespondmg mstouctions tahen fron some later iteration of
the loop. Suftware pipelnmg i vaguely smnlar to Toop unothng (see Section 5 10 1.
later in this chapter), however. it differs from umolling m an important respectand
that is, pipehning unrolls iterations for the purpose of fnding o pattenof mstruchons
across loop iterations, whereas, loop unrolling apgregates mstructions from several
iterations.  Once a pattenn s found as a result of the unrolling, the nistractions
within the pattern are combined to form the new loop body a body m which the
instructions from across iterations are all concurtently executable Instructions which
occur prior to the pattern then form a loop prolog. and mstructions which ocom

afterwards, an epilog.

As an example of software pipelimmg we use Atken and Nicolau’s Optimal Loop
Parallelization™ technique and the loop shown w Figure 5 1{a) [ANSS] Normally we

would expect to apply software pipeliming at instruction level; however, for puiposes

5Weiso and Snnth hist several possible approaches, and the one ve describe mthis section s yet
another [WS87)
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4=
h =
« =
d =
¢ =

t ==

DO 10 1=1, N

N+1-1
I-1
athb
c+ 9
c+b
d 4+ e

F(I41) = (1) + t
10 CONTINUE

(a) Prior to Pipelining
t Letters m Figure (b) correspond to the left-hand-side reference of the statements in Figure (a)
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a, b
c
d,efa,b
t C
F 1d,e]a/b
t c
F d,eja,b
t c
F |d,eja,b
L ly
F jd, e
L
F

(b) After Unrollingt

a=N+1-1
h=0
c=a+4b
d=dc+ 99
¢e=¢+b
t=d{e¢
I(2) = (1) +
a= N41.2
bh=1
«(=a+4+b
d=c¢c+ 99
e=c¢+b
=d 4+ ¢

F(3) = 1(2) +

L

t

DO 101=5, N

t=d+ e
F(l-1) = F(1-2) + t
c=a+4b
d=1c+ 99
e=c+Db
a=N+1-1
b=1-1

10 CONTINUE

t=d+ e

F(N+1-1) = F(N+1-2) + 1

c=a+b
d=c+ 99
e=c+b
t=d+ e

F(N+1) = F(N+1-1) + t

a=N+1-3
bh=2
c=a+b
d=c4 99
e=(+4+b
o N +“l - 1
b = 3
PROLOG BODY EPILOG

Figure 5.1: Software-Pipehning®
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of clarity we use a high-level representation, as shown i the e By unrothing,
iterations of the fused foop. (vle at a timesand ~chedule imstractions e subsequeent
terations as cay as possible, as shown o Frenre 5 H(b) o we soon discover the pattern,
mdicated withim the two horzontal hnes As s shown e thes fiewre o two avade
pattern appeared atter the soventh aveles hegimmme, with the thod iteration Watly
this mformation, we are able to then generate the transtormed {soltware pipelined)

code shown at the botton of the howre

Closer examination of the codem Figure 0 1 reveals that even more parallelism
might be exposed were we able toreduce the leagth of the pattern from two cveles to
one Before attempting to do this however et s examime the situation more closely
Pirst. observe that the ue lethving effect of software pipelimme was to chanee How
ependencies within the otrgmai loop to anti dependenaes i the transtormed foop
This was accomplished by separating dependent statements amone diferent Toop
iterations  Whereas tor example, ¢ was tlow dependent ona and b oo the one il
loop. (IMgure 5 1(a)). 1t 15 anti-dependent on these stataments me the tiantormed
loop  Likewise, t was flow dependent on d and e i the ongimal Toap but became

anti-dependent on these latter two sfatements tollowie transtormation

A second observation that can be made about the pipclimme process s that o
variable defimtion cannot be separated from its nses by more than a aneleateration
This condition 15 a ditect consequence of every vanable bempe redefimed apon every
iteration of the loop 1 we apply this fact to on anabyvsrs of the loop dependence vraph
shown m Fignre 5 2(a), the source of the problem becomes mmediately clear The
pattern obtemed from nnrolling the ongraal code was comprossed tacvndenced by
the two-cyele pattern) to permmt the valie of b to be wsed i statement e othenwise,
the value of b would have been overwntten e the itetation o whicho it was naed m
statement ¢ (see the bang m Freure 52{a)) To overcome the nalbiple ovcle problenn,
and yet adhere to the single cvdle constramt, requites onlyv that we asapn b to o
tempotary variable bb and use this value for the subsequent vompntation of e as
shown 1n Figure 5 2(h) When this s done, the result sva single ovde patten winel
now appears after just four cveles Hang this new pattern to dennve the body of om

loon. we are then able to produce the buffered software pipelined code Shown at the
) I I

8In Figure 5 1{a) we show the fused loop obtamed carlier i our cxample of collective analvas
with the last statesnent splic n order to simplify the exprosaon (See Chapter 20 Tigure 271 pag
12)

Since there exists a onc-to one correspondence between the high fovel statenents an our oy
ample and their corresponding wstrnction-level reprosentation, any difference shonld be of Ll
consequerice
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(a) Dependence Graph

a. b
c,bbl ab
d,e [ ¢,bb} a, b
t d,e | e,bb| a.b
F t d,e te,bb} a, b
I t d.e | <. bb
I t d, e
I t
I

used by e

(b) After Unrolling

90

t Buffer bb retains the value of b until the value s

a=Ni1 1 F(N+1-1) = F(N+1-5) + t
b=20 b=d 4o
c=a+b . ' .
F(N+1-3) = F(N+1-4) + t
bb=b
d=c+ 99 d=c+99
¢ =+ bb
=d + e e=c+ bb
DO 10 1=5, N-1 t=dte o
a=N+l-2 F(1-3) = F(I-4) + t F(N+1-2) = F(N+1-3) +
b= | t=d+e
c=a+b d=c+ 99 c=a+b
bb =1 e =+ bb bb = b
d=c+ 99 c=a+b d=c+99
e =c¢+ bb bb=» e=c+ bb
a= N+1-1 t1=d+0 o
a=N¢l-3 b=1-1 F(N+1-1) = F(N+1-2) + t
h=2 10 CONTINUE
¢ =a + b 4 = N+1 - N
o b=N-1
bbh=b
c=a+b
R bb=5»
d,—'N{”l"i d:(.+9()
b =3
e =c¢ + bb
t=d+e
F(N+1) = F(N+1-1) + ¢
PROLOG BODY EPILOG
Figure 5 2: Software-Pipelining w/ Buffering
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bottom of the figure

5.10 Incidental Transformations

In this section we descibe two additional transtonmations that are commonlhy nsed
i production compilers, that affect collective foop anals sisyalbertm an mdiect wany
The first transformation 1~ loop unrolhne, and the second v mstiaction scheduhne
Wendlude these transformations because they either form a basis for comparison o
theit presence can have a pronounced effect upon the guahity of our resalting code

We begin with a discussion of loop nnrelhne

5.10.1 Loop Unrolling

Loop unrolling. ot loop unwinding. os 1t s sometines called, has provenitsell to be
highly eflective transformation m nians enncumstances [ACTL DI NeSS]Calthough
its effectivenes= is not universal, simce it depends upon factors sechoas the size of the
loop being transformed and the arcintecture nporc which the resulting prosrann s to be
run For those situations i which it s epphcable howevar Cloop unrolhog has several
positive effects 1t reduces foop control overhead it faalitates othar transtormations
(such as wrap-around substitution. described i Section 522 and At mareases the
number of mstriuctions within the transtormed loop hbods ncreasie the avadalnlin
of mstructions for subsequent mstiuection schedahine  Nmone the aromnstances
which loop untolling 15 apt to be lews desirablde ae [ situwations e whele the loop
body 15 already large, 2) sitnations m which the number ot loop iterations s not
known at compile time, and J) certam sttuations mvolving vectonization From the
examples that follow, these effects will become dlear The simplest and most desipable
situation, of course, 1s the one in which the mumnber of loop terations s a multiple of

the unrolling factor, as shown below (with an untolhng lactor ol 2)

Before Unrolling After Unrolling
DO o1 1,120, 3
DO 101 =1, 100 Ay 990
10 A(l) = 99.0 ATy 990

) AMIE2) 990
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If the munber of loop aterations 1s not a multiple of the unrolhing factor, two prinaple
alternatives exist 1) hst the residue statements imdividually following the Toop hody
or 2)constinct a follow-on loop to execute the residne By residue we mean <tatements
with mdices N-MODON LK), where Nois the loop size, K is the untellimg factor. and MOD
is the modulus function Since e practice, umolling factors are generally small. the
first alternative, to hist the residue. v alimost alwavs least costhy at least i terms
of exvention tune Had atray A i the above code segment been 1220 for evample,

mstead of 120, the unrolled loop might have heen written as

DO 0T =1, 120, 3
A(l) = 990
A(LF1) = 99.0
10 A(142) = 99.0
A(I4+121) = 99.0
A(l4122) = 99.0
When the loop size is not known at compile tune, loop untolling becomes more
costly becanse ol the added control necessary to ensure correct loop termination. In
this case, an additional comparison operation 1s performed prior to the cortesponding
set of statements from cach iteration that s unolled
DO10I=1,N
A1) =990
IV (I+1) .GT N GOTO 20
A(T+1) = 990
IF(142) GT NGOTO 20
10 A(l+2) =990
20 CONTINUE
Another situation m which untolling can bhe costly is with respect to codes that
are being vectorized. In this case, unrolling can actually degrade performance, rather
than unproveit A principle design feature of vector architectures is that they provide
spectal vector mstructions to take advantage of long-leugth vectors, spreading instruc-
tion start-up oserhead across the entire length of a vector. The problem with loop
untolling is thatat tends to mhibit veetorization, causing code which might otherwise
be vectonzed to i m scalar mode [Don87]

Another atea i which loop untolling can be a problem is with respect to the
amount of code generated as a result of the transformation being apphed. Of course,
Ihops that ate umolled grow hnearly with the number of unrollings. Fortunately, this
disadvantage sometimes becomes an advantage, for it 1s due to this property that

loop untollmg finds one of its most important applications: mstiuction scheduling
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5.10.2 Instruction Scheduling

Many instruetion schednline algonthms existy bt most are related toa teshingue
called st ~cheduting [CofTo, k0l The basie notion beland ot schednhine oo
create an ordered hist of tashs, based upon a enven set of ponmne and then seledi
tashe from this hist, subject 1o task readiness o tesonree svadabnbiny T the case o
mstruction s hedulimg, the tashs are isttuctions pronties are pronards determmed

from inform.aion gleaned dnrmg o hachward scan ot a code block dependence vrapls

fhe use of a dependence graph for mstruction schedihme s nataral becanse the
dependence graph captures, i a concse and easihy accesable form adbob the data
How mtormation tequred for scheduhng Tnomathomatical term adependence praplh
corresponds to a Hasse diaerans i which elemental imsrenction e the nodesand
data dependenaes are tepresented by ares The dependence pvaphe Tibe o Has edy
agram, shows only the nnounum number of arcs necessany to e erve equivalence
with the ongmal representation bt unlbihe a Haseo diavranm the are ob the depen
dence graph ate weghted by anmstiucton-latenay tactor Nnother pea on tor s,
the dependence graph, besides the fuctat contams the bt mdormation v that
many stances the graph conld alveady have been created Iy the compiler, wee

dependence praphs have several other code optinnzation nses o woll AN A
] !-, H { i

For many hst scheduhing apphcations mchidimg the present one o prionity hst
need not actuallv be constructed  Phe reason s that the ordenme nplied by the
particular priotities s mamtamned incacshghthy different typeof st catled an ehebilin
hst. The eligibihty List contams only those mstructions winch are cnnrontly elipble
for scheduling, listed according to mstruction issae prionty . Vnonstriction becone
eligible and, hence, 1 mserted i the chgibihty hatoonlv when che mstructions winch
it is data dependent upon have alicady been scheduled and theretore, removed from

the candidate hList themselves

Before an iustruction s removed from the hst, diecks are made to avord scheduling,
an instruction so as to cause a resource conflict m the hardware pipelme Conthicte of
this type are usnally called stiucturad hazards and resalt i pipelime stalls When the
highest prionty mstruction i the candidate hst cannot be selccted hecanse of o has
ard, the next highest prionty instiction is chechedsand <o forth nntil o hazard free
issue can be found  As cach successivenstrucion s removed from the chgibahity bt
other mstiuctions which were dependent upon the scheduled mstnuction are added
The nstiuction insertion-and-selection process then continues until all metncton:

have been scheduled
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Algorithm VH (Shieh-Papachristou Instruction Scheduling) Secquence instruc-

tions from widha a basic block so as Lo mmamaze papelone hazards

tpul A dependence prapir, or directed acychic graph (DAG), created from a
hasic block of mstiuctions, with the instructions being the nodes and data
dependencics bemg the arcs - We refer to this dependence graph as D, a
tuple such that 1) = (I, A4), where o, ) € I aieinstructions, and A C [~ ]
are dependence ares ¢, € €, C s a childof ¢, and simularly, p, € P, C 1

1s 1ts parent

A candidate hst £7C [ which instructions that are eligible for scheduling
are held, mitially £ =0

A teady List 0 C [ in which instructions that have alicady heen scheduled
are held mtially R = ) also

A timer vanable £; = (0 indicating relative system timne.,

oulput Instructions i J¢ histed according to the fo!" swing priorities:

' MAX(Ihad,). Vi e I, where
load, = w, + MAX(load,)). Ve,
and w, 1s the execution time, or wewght, of instruction ¢,
2 MAX(w,, w,) of load, = load,,

w

!l
i

3. MAX(|C) 1D, 0wy

I
4 MIN(PLIP DG = |G and
S MIN(level deved ) ) of | P = |P)], where

leved, = 1 + MAX(levely,,), Vp,. Vi
procedure.
Lasign priorities lo instruction nodes
DO a bottom-up traversal of 1D
FOR cach node s that 1< visited

compute w,. load, ||, and | D]
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DO a top-down traversal of )
FOR cach node 1 that s visited
compute lewed,
;, mhalize the scheduler
insert the root nodes into the candidate hst F701m poonty sequence
set ¢, = 0,Ve, € K
move e; € E, or top-priority node i £, to /f
t++
DO Ve, € (',
insert ¢, into I, keeping I+ in priority sequence
assign time slots to the remaming mstructions

WHILE £ # 0 ;; sclect the haghest proovity chapble oestruction
selected = false

(K]

C, = €1
REPEAT
L, =i

FOR p, € I,
:; check for function-umit structural hazards
t, = MAX (t,+w,— FACTOR L)
where
¢, is the carliest issue tume for o,
t, is the issue time of p,
w, is the weight of p,, and
FACTOR s.
2, if a pipelined function nmt uses mternal forwardimg,
1, if a function unit does not use internal forwarding,
0, without [unction-unit pipelining
IF ¢, =1, ;; there is no structural hazard
move e, to I
DO V¢, € (,
insert ¢, in [v
selected = true
ELSE :; check the next highest priority mstiuction for hazards
¢ ++
UNTIL selected OR / >
L4+

1
I
V]
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e T ro—————-———-— W, e ]
feteh | cxecute | store fetch Jexcculc store
fetch [exccule | store ] fetch cxccutc] storce ]
e FACTOR ~—— ] Lt F4CTOR-
(a) Pipeline with Internal (b) Pipeline without Internal
Forwarding Forwarding

Figure 5.4 Determining Function-Unit Pipeline Latency

The particular seheduling algonthm we have desanbed, and the one we use for
the performance analysis described i subsequent chapters, 1s based upon the Shieh-
Papachiiston method [SP89]  This particular method was selected merely because
it has been implemented as part of the MeGill Compiler-Architecture Testbed and
found to be reasonably effective [Muk91j ®

One important aspect of the Shieh Papachiistou method is 1ts capability to schied-
ule floating point imstructions on machines which have multiple pipelined function
units, both with and without internal forwardimg. Internal forwarding allows the
result operand of an instruction to be used as an input operand to the follow-on
mstiuction, without the data first being transferred to an externally visible register
[(HP90]. The way the Shieh-Papachristou algorithm takes internal forwarding into
account 1s by using an instiuction latency backofl FACTOR, as indicated m the pre-
ceding algonthm descenption There are essentially three situations: 1) the case of
pipehmed-function umts which employ internal forwarding, 2) the case of pipelined-
function umts without 3t, and 3) the case of nonpipelined function units The first
two vases are fllnstrated in Figare 5.3. For the function units with internal forv ard-
ing, Figuie 5 3(a), mstruction latency can be reduced by the time 1equired to store
the cutrent instruction aud fetch the next one; therefore, FACTOR = 2. Without
intetnal forwarding only the fetch time for the follow-on instruction is saved, as shown
i Figure 5 3(b). se in this case FACT'OR = 1. Without pipelining the factor is of

COULSEe 7¢10

An example of Shich-Papachristou instruction scheduling 1s shown in Figure 5.4.

The segment of source code used for this example is a simple loop containing two

*This partroular implementation was developed jomntly by Chandrika Muker)i and Enik Altinan
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floating-point artays (see Figure 5 4(a)) In this example we assume the code produced
by our compiler back-end 15 mtendcd for a DLX computer [HIP9O]™ In Frgure & 1(h)
we show the dependence graph constructed from the cotresponding DEN assemibly
code, shown m IYiguie 5 {(c)

The dependence graph m Figure 5.4(b) mdicates the nnnmum tHow, anti, and
output dependency ares tequired to maintam the partial ordermg imphed by the code,
for correct execntion Flow and auti dependencies are deternmned by comparison ol
register operands  For example, a flow dependence exists betweenmstinctions 1and
5, with respect to register £0, and an anti dependence exists hetween mstructions
1 and 11, with respect to tegister £ On the other hand, the sequencime of Toads
and stores 15 kept the same as m the ongmal assembly code This v done, e the
absence of alias analysis, to ensute output dependenaes are honored. ¢ p | the oad
in instruction 8 follows the store in mstruction 6. just as 1t does i bigie 1)
Although not essential for correct execution, istructions are placed at then hiphest
level whenever possible, as in the case of mstiuction 1 which night also have heen
placed as low as level 81¢

In this example thete are three speatie hazards we would ke 1o overcome as o
result of scheduling: 1) to 1emove the load stall following mstruchion 8 2) to remove
the floating-point stall following instruction 9, and 2) to il the branch delay slot fol
lowing instruction 14 The following description explains how the Stach Papachinston
instruction scheduler proceeds: Assuming that the dependence graph has abready been
constructed, the first step 1s 1o assign a scheduling pnionty to cach imstrnction The
values of the parameters used i mahing this determation, along with the resulting,
priorities, are shown 1 Figure 5.4(¢). Note that the fnst {four paraeters descibed
in output section of Algorithm VI (w,, load, ||, and [F4]) were obtimed from a
bottom-up traversal of the DAG, whereas, the last parameter (level) was obtained
from a top-down traversal

Although the relative prionty of each mstruction 15 shown exphiatly in Figure
5.4(d), 1t 15 actually calculated at the time an mstruction is mserted into the candidate
list. The steps in the mstruction selection process are shown an Figme 55 The
process begins with the msertion of the root nodes (the highestdevel nodes) e the

9For a brief description of the DLX architecture sec Appendix b I subsequent chapters we us
a DLX sunulator for performance analvsis of collcctive loop transformations

1076 avoid a separate pass over the dependence graph, the carrent McGilliplomentation leaves
istructions at therr lowest levdd, rather than moving to ther lughest leveloas was done with
struction 11 m Iigure 5 4(b)
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(1 siur3sse ) (4 mov.zrpm,rs)

98

(c¢) Loop Body prior to

Scheduling

(d) Instruction Priority

(2.add rs,rso.rs aQl mmsj (5 cvu2f 4 m) 2
lddN,rJ.rS ( 3
wm{’w ~y e v - ~ ~ ~ ~r
7 add 1337 6 sf 0(rd),f4 4
for (i= 05 i<N; i++)
AG) =i 8 1 £5,0(r6) 5
B(i) = A(l) + 99 9_‘ddf[2'f4ﬁ 6
7
@i ;
2
13 slerl 5,3 ) 9
10
(a) A Si]nple Code Segn‘]ent (b) The Corresponding Dependencc
Graph
label w, load, |C,| |P| level priority
1: sHi r3,r5,#2 1 1 13 2 0 1 1
2:  add r3,r30,r3 2 1 12 2 1 2 )
3. add r4,r3,r8 3 1 11 9 1 3 5
:' mn'\:i‘zfp {0, rb 4 1 12 1 0 1 3
0! ('thlf H,fO 5 1 11 2 1 .2 4
6: sf O(rd),{4 6 1 10 9 9 4 6
7. add r3,r3,r7 7 1 6 1 9 4 9
8 1f £5,0(r6) 8 9 g ) | 5 7
9 addf f4,f4,15 .
10:  sf 0(r3),{4 9 2 7 1 3 6 8
11:  add r5,r5,#1 10 1 d 1 2 7 10
12:  addi r3,r0,#99 11 4 12 2 12
13: sle rl,r5,r3 12 1 4 1 1 8 11
I4: bner rLL5 13 1 3 1 2 9 13
14 2 2 1 1 10 11

=

Figuie 5

1+ Shich-Papachristou Instruction Scheduling
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cligibility list  selection e

—~—
bt
-
-
(-
—_—

. . 1 sthordad 42
{ 2, 4, } 2 2 add rdad0a3
{ ‘3’ ’5’ 1} 1 T movi2ip (0, th
{53,111} 9 5 v it Lo
{ 3, 11 } 3 boooadd o tadas
{6,7.11} 6 6. ~fo( L
{8,7,11} 8 8 500100
{9,7, 11 7! ToaddrdadaT
(9,11} 9 9 addt LIS
{10, 11} 10 10 st 0(3).0
{ 12, 11 } 11 I add ihad !
{12} 12 12 addi 13,600,499
{ 13 } 13 13 sledlaha3
{ 14 } 14 1Y boes LS
lavoid structural hazard
a) Instruction Selection b) Loop Body after Scheduling
I Yy g8

Figure 5.5: Shieh-apachristou Instruction Scheduhmg  Continued

DAG and proceeds m a step-by-step manner through the DAG, selecting at cach step
the candidate instiuction with the highest prionty that has no stiuctural hazard,

possible.

The scheduling process for the Simple Code Segment s ilustrated i Fignie 5 H(a)
To begin, instruction 1 has the highest priority, and so 1t as selected first and removed
from the eligibility hst (see Figure 5.4(d)) Scheduling instiuction T makesinstiuction
2 eligible for selection, and so it 15 msetted into the candidate st according to s
respective priority. Since its prionity 1s higher than mstruction 4, the only other
eligible instruction, mstruction 2 15 selected first, making mstiuction b ehgible for
selection, and so forth. Notice, however, that snstinction 9 1s not selected when it
enters at the top of the candidate hst. ‘The reason is a stiuctural hazard cansed by

the load instruction which immediately precedes it Smce mstruction 7 1s not allected

by the load, and it has second highest prionty. it becomes the nghest prnonty ehgible

mnstruction and 1s therefore selected m this case  The fingl schedule s shown

Figure 5.5(b). As a result of scheduling, two of the thice ongimal pipehine hazards
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that, would have occnrred usig the origmal schedule have now been alleviated; the

thiurd, the branch delay slot, remaimed unhilled

One final pomt needs to be made 1egarding instruction scheduhing, and that has
to do with the postioming of the scheduler withit the compiler itsell. Specifically,
the order in which code scheduling appears with respect to the register allocator can
have a signtficant impact upon the quahity of the resulting code, but whether the
o heduler should come before the 1egister allocator, o1 after, is not dear Because
of the dependence of one on the other, however, dose mteraction between the two
is leatly desirable When code scheduling precedes register allocation, the hife of
variables m registers 15 apt to be extended by the mstruction reot dering process; this
Lurn imceases tegister presstire, pethaps cansing register spilling, Also, spill code
which might be mt-odnced by the register allocator would not be availlable at the
time of scheduimg On the other hand af scheduling follows 1egister allocation, the
tegister allocator 1euses tegisters creating antt dependencies, which in turn places
additional constraints upon the extent of reordering the scheduler is able to perform,
pethaps causing the resulting code to tun less cfficiently. In the preceding example,

sttuction scheduling came last, merely to keep the illustration simple.




Chapter 6

Experiments with Collective
Transformation

As suggested in previous chapters, substantial code speedup can be expected as o
result of petforming collective loop transformations. In this chapter we teport tedt
results showing the extent of benefit possible when transtormed codes are ran on
various types of advanced umprocessor atchitectures, such as a scalar. a superscalar,
and a veetor architectute We also conduct a number of experiments using an scala
processor simulator and cache simulator  For ease of understanding, we separate
the results of our experiments mto two categoties  actual tinmgs and simulations,
For each of these categoties we examine the petformance of a sample collection of
compatible loops prior to and following varions stages of transformation - We also
examine the performance of a collection of non-compatible loops, both for the case of
sub-optimal loop pattitioning as well as for the case of opamal partitioning - Lastly,
we duplicate the preceding - eries of tests using processor and cache simulators From
these expeniments we are able to gam msights mto the effects of mstruction scheduhng,
and cache memory. tesults which were not directly observable from tinnngs alone o
both the timing tests and the simulation tests we mclude altemative transformation

strategics, when possible. as a further basis of comparison

6.1 Uniprocessor Experiments

First we examine the performance of various versions of a compatible loop collection

when the codes are tun on each of three hasic types of umprocessors a scalar RISC

101
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workstation, a superscalar workstation, and a mamframe with an attached vecton
processing faahty  These machines were tespectively a Sun SPARC Server 1/190.
an IBM RISC Systam/6000 (RS/6000). Model 530, and an 1BM 3090/\ 1° Model
18500 ' Followmg our tests with a compatible colleation of Toops. we examine « non-

compatible collection of toops. to determmne the effects of loop cluster partitioning

The test codes for both sets of experiments were wnttenan FORTRAN and com
pled nsing the native compiler on the host machine o the Sun t the compiler was
177, for the RS/6000, 1t was X, version 1O, and for the 3090, 1t was VS FORTR AN,
Release 1 {cataloged procedure VSFTCLG) On the Sun Server and R5/6000 cach
code was exconted five-hundred tmes within an outer toop because the test codes
were short and the onter loop was necessary to obtam sufliaent timing function tes-
olution, the tunmg loop was not necessarv, and not used. however, for tests on the
3090 For the {77 compiler we used the etime O function (with tesolution of one-tenth
of a second), for the sIf compiler, we nsed mtime () (with resolution ot one-hundiedth
ol a second), and for VS FORTRAN we used CPUTIME() {with resolution of one mi-
crosecond)  Extracts of the code histings for these experiments showing exactly how

the these tmungs w o te takhen are provided m Appendig A

6.1.1 Tests with Compatible Loop Clusters

In this section we teport the tesults of tests using a compatible set of loops  Ow
objectives with tespeet to these tests were to deternume 1) which loop transtormations
are most susceptible to the basic optimizations provided by the native compiler.
2) the 1elative effect from each loop transformation, when considered alone, ) the
extent of umprovement achievable when the vatious transformations are performed m
conjunction with one another, and ) the type of uniprocessor architecture (scalar.

supetsealat, o vector) which benefits most from collective transformation

Test Suite

Fot out test suite we used several versions of toop transformations taken from examples
i previous Chapters. For easc of teference, the onginal code and various transformed

codes ave tepeated in Figures 6.1 and 6.2, along with other test codes used i this first

Hn the appendices we describe the salient features of each of these architectures, along with the
<alient features of their respective compilers
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DO 10 I=1, N

A(l) =1
DO 20 1=1. N

B(I) = N -1
DO 30 I=1, N

i = Ay + B(Y
DO 49 I=1, N

DY) = C1) + 99
DO 50 I=1. N

E(L) = C(N+1-1) +
PO 60 [=1, N

Fl41) = (1) + D(N+1-T) + E(I)

10
20
30
A0
B(N+1-1)

6

S

EXPERIMENTS WITH COLLFCTIVE

(a) Original Loop Cluster

DO 10 I=1, N, 1

Ay =1
A(l+1) = 1+1
A(l+2) = 142
10 A(I43) = 1+3
DO 20 =1, '\I 4
B{l) = N -
B(I+1) = N - I-1I
B(I4+2) =N - 1-2
20 B(1+3) = N 1-3
DO 30 1=1, \ 1
o) = Ay + B
CI4+1) = A(1+1) + B(1+1)
D42) = A(I4+2) + B(1+2)
30 D(1+3) = A(|+¥) + B(I+3)
DO 40 1=1, N,
D(1) = ¢(I) + 99
D(I+1) = ((Hl) + 99
D(1+2) = C{I+2) + 99
40 D(I+3) = C(14+3) + 99
DO 50 I=1, N, 1
E(l) = C(N+1-1) + B(M+1-1)
E{I+1) = C(N-1) + B{N-1)
E(1+2) = C(N-1-1) + B(N-1-1)
50 E(14+3) = CIN-2-1) + B(N-2-1)
DO 6¢ I=1, N, 1
F(i+1) = l‘(l) + D(N+1-1) + E(I)
F(I+2) = F(I+1) + D(N-T) + l(l+l)
F{l+3) = F{I+2) + l)( 1D+ B2
60 F(I4+4) = F(1+3) 4 DB(N-2-1) +

TRANSFORVVTION (o

DO1OT=1N,
Al = 1
1o A4 1) - T
DO 201 I N2
Bty N1
20 B+ - N 11
PO 30T 1N 2
(O S Y SR 1 TR 8
30 ('(l+l) ALt Dy + B b
PO Wit-1,N 2
Db = ( (H 4+ 94
A0 D(l-+1) - (IH) t 99
DOOHOT-1. N,
F(l) - (\4 Dy BINELD
50 kgl4 1) (( ot BN D
I)()M)I N,
F(li 1) I(I) N o (D)
60 l(l1~) Phe )y« DONVE ¢ B(ED

(b) ()n;.,nml ( luster Umolled Onee

DO O I=1 N

AN-TH D) N

BN T4 D)= 1

CIN T4 = AN+ BN
DUN-L L)~ CINTHL) 90

By~ CONEL T+ BN

10 P+ - B DN 3 B

(d) ()xu.,nml C lustn Fused

DO 011, N

a=N+41 |
h=1 |
(=a-+h
d=1+¢ 409
e=¢+bh
t=d 4 ¢

10 P(I+1) - By ¢+t

B(1+3)

(¢) Cluster Unrolled Three Times

Figure 6.1:

(¢) Array-Contracted Fused Loop

Transformations of a Compatible Loop Clistey
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' PROLOG
a = lv +‘l - l
b=
«=a it b
d =4 94
e=cth ¢ BODY
_ , C EPILOG
t=d+ DO 10 1=5, N PO
F(z) = B v b=d+e F(N+1-1) = F(N+1-2) + 1
-I*:fl“ﬂ-l F(I-1) = F(I-2) + t b
V- c=a+b : ) ]
(= a+b d=c+ 9% d:::;‘)’"
d=c4 99 e=c+bh (;—d+(
cz=c+ b a=N+1-1 ‘: ’ L
t=d+ e 0 be=1i-1 F(N+1) = F(N+1-1) + ¢
F(3) = F(2) +1
a=N+I1-3
h =2
(=a+b
d=c¢4 99
e=c¢+b
a=N+1-4
h=3
B o (a) Software-Pipelined Version
C EPILOG
' PROLOG F(N+14) = F(N+1-5) + 1
a = N41I -1 t=d+e
h=0 F(N+1-3) = F(N+1-4) + t
c=a+b d=c¢+ 99
';" = "+ " ¢ BODY Lot :"’
d =279 = Y
) DO 10 1=5H, N-1 . oy T Ly
;_j cl + l:b F(I-3) = P(1-4) + ¢ E(-I—V+l+l}) = F(N+1-3) + t
= (N+l( 2 t=d+e lc)h—.-db )
e iscry A
): \ e =c¢ 4 bb ¢ _ “)
et c=a+h e dte
W =D =
d=c+ 99 bb'= b F(N+1-1) = F(N+1-2) + t
a= N+1.1 .
e =rc+4 bb 10 b=1-1 a=N+1-N
a=N+1-3 b=N-1
bh=2 c=a+b
cz=a+b bb=b
bb=b d=c¢+ 99
a=N+1-4 ¢ =c¢+ bb
b =3 t=d+e
F(N+1) = F(N+1-1) + t

(b) Software-Pipelined Version with Buffer

IMigure 6.2: Transformations of a Compatible Loop Cluster - Continued
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series of expermments  Among the codes shown are untolled versions of the primany
codes, mcluded as a basis for companison  Atogether our test smite consisted of
seven programs 1) the ongmal collection of siv loops shown e Frenre 6 1{a) (df
Chapter 2, Figute 21, page 12}, 2) the onginal collection with each loop unrolied
once, shown in Figure o 1(b). ¢} the otiginal collection unrolled three tunes, Frgne
6 1(c), 4) a single loop created by fnsing the onginal sixloops, Fignte b EHd) (see page
22), 5) the fused loop transformed by artay contraction, Frgnre 6 l{e) (page 22) 0!
the fused and artav-contracted loop after apphcation ol sottware pipchimng, Freme
6 2(a). descuibed in Chapter 5 (see Figure 3 1 page 880, and 77 a0 second sottware
pipelined loop which emplovs a buffer. Figure 6 2(h), (Finre 5 20 page 90) Because
we were looking for dommant relative effects from the imdividual transformations,
ot evaluation ohjectives were achievable nsimg just the one loop collection To this
respect, we mahe no claim regarding whether this cample could be part ol any actial

computation or whether it 1s representative of codes typically found i practice

Performance Metric

Ou tesulis ate 1cported using a metric for the rate at which ontput array elements
are produced by the vatious loop transformations, this metric s called outpul ariay
tlements gencrated per sceond. o1 eps ‘The eps number tepresents the rate at which
the collective colculation is able to proceed. or m this speafic instance, how quuckiv el

ements of the output array F ate produced {see Figmes 6 1 and 6 2) “The eps numben
is derived from the slope of the line generated by regressing data pomts over a range
of vector sizes between 60 elements and 3000 clements. at 60 element itervals Hhe
advantage of this metnc over a sunple average s that at tends to sinooth away svs

tem anomahies which otherwise might affect the tesult were the measimements hased
solely upon a simgle vedtor size Examming a tange ol vectors sizes canalso nncover
simultanecous eftects, should any be ocannmg, which could distort the indings, eflects
such as those which might be caused by cache and memorv {(we explore these issues

in a later section)

Sun SPARC Server 4/490 Results

The results of the first set of tests ate shown in Table 6.1, with the 1o lts for codes
run on the Sun Server in Table 6 1{a). The table includes transformation performance
of compiler-optimized and non-optimized versions for both iteger and floating pont
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(a) Performance of Collective Loop Transformations
on a Sun SPARC Server 4/490

Phase of mteger single precision doubl precision
Transformation 7 17 -0 R0 I 1 -0
onginal code 177 464 118 502 s 200
unrolled once 241 501 179 341 137 222
unrolled 3 times 264 518 197 206 138 198
fused original 207 568 181 316 134 213
array contracted 561 1792 219 731 183 618
software pipehined 570 1897 245 914 185 612
pipelined w/ buffer 621 1792 237 884 130 630

(b) Performance of Collective Loop Transformations
on an IBM RISC Systeimn /6000

Phase of integer smgle precision double precision

Transformation xif xIf O N xIf -0 xIT xIf -0
“original code 245 1665 241 1295 232 1380
unrolled once 364 1945 302 1404 282 1321
unrolled 3 times 373 2099 369 1369 312 1400
Tused onginal 371 201 355 1061 338 1023
atray contracted 707 6736 5952 1453 602 2678
software pipelimed 730 4604 646 2334 660 3765
pipelined w/ buffer 686 3762 656 2430 659 3747

(¢) Performance of Collective Loop Transformations
on an IBM 3090/VF. Model 180.]

" Phase of mnteger stngle precision double precision
Transfrm OPI(0)  OPI(3) VhC OPI(0) OPI(3) VLG OPT() OPT(3) VEC
ongmal code ™ 300 1330 2583 266 1187 1993 259 816 1698
unrolled once $7H 1595 2635 303 1421 198% 256 897 1555
unrolled 3y 101 1789 2006 320 1402 2159 306 97hH 1275
fused onginal RS Lol 2181 292 s 1743 278 R85 1409
array contr 91 $7H1 3919 721 1888 1316 711 1323 1447
soltw  pipeln 891 JO00 2356 726 1999 1229 713 1380 1203
prpeln w /bul a0y 2953 1922 720 1778 1097 702 1208 1079

t Results are i thousands of output eletients produced per second (eps), based upen regression of
vectors withim the range 60 3000

1 IBM 3090 codes were conmipiled using VS FORTRAN, Release 4

Fable 6 1. Performance for a Compatible Loop Cluster
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(a) Speedup due to Native-Cowmpiler Optimization

Phase of Sun, 77 -0 IBML A0 7 T AS FORTRAN, OPEA/VECY
Transfrm int sgl  dDl Tint gl dbLT Tt il dbl
original code 26 20 19 68 51 50 13 19 45 1T 32 2
unrolled once 2 l Py 16 61 16 17 (1 S SV T B R T
unrolled 3x 1o 15 14 56 37 1 | RCS ARURN B R S S S U I
fused otig, 2 7 17 16 55 30 30 tL o 53 11 %1 T
array ontr. 32 29 31 9h 2060 248 1t 10 26 o7 0w 1
softw. pipeln 33 37 35 63 36 36 1t 07 28 06 19 04
pipeln w/buf 29 37 33 55 37 37 b3 07 2t 06 b8 0N

i

T The left data-type colummn shows speedup for code compiled uatng “OPLED” over OP T, and
the night column, speedup asing “VECT over *OP1(3)

(b) Speedup due to Collective Loop Trausformation
for Compiler-Optimized Code

Phase of Sun /490 “'ﬂ;’\"l'ﬂﬁ«stﬂ'm C T [BM 3090/VF}
Transfrm mt sgl. dbIT Tint T sgl T db] Cint sl dhl
unrolled once 11 11 11 P2 b0 100 12700 12 10 11 0y
unrolled 3x 'L 10 09 13 11 10 I3 ox 12 14 12 on
fused orig 12 10 10 12 08 0 7 FLOOR 13 09 10 0N
array contt 39 24 30 10 1i Iy 27 15 e 07 17 OXN
softw. pipeln 41 30 31 28 18 2 7 29 10 17 06 17 07
pipeln w/buf 39 29 33 23 19 27 2% 07 tH 06 1no 0o

I The teft data-type column shows speedup of the transformed code over the onginal code conpiled
using "OPT(3)". and the right column, the corresponding speedups using VEC

Table 6.2, Speedup for a Compatible Loop Cluster

arrays. For ease of analysis, the speedups due 1o native-compaler optimization and due
to the individual source-level fransformations, extracted frome Tabie 6 1(a). are shown
separately in Table 6.2, along with the correspondimg performance tatios derved
from similar expernnents on the RS/6000 and the 3090 Speedups due to native
compilet optimization ate shown i Table 6 2{a), and speednups from the snccessive
loop transformations over the petformance of the compiler optimzed onginal code
are shown in Table 6 2(h)

The Sun petformance 1s mteresting for several reasons  Fusty notice m the thiee
left-most colummns of Table 6.2(a), for the Sun 4/1490, that native compiler optimza
tion (that is. “f77 -O7) resulted, on average, in a two-fold petformance nnprove

ment over non-optimized code, for the ongimal code, untolled code, and fused code,
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wheteas, 1t resulted i from three to four fold improvement for artay-contracted and
software pipehned codesndicating that array-contraction was more sise eptible to
native comptler optiumzation than either the ongimal code or the untolled codes Fhe
teason for this speedup was the chnmnation of unnecessany store mstictions for the
itertnediate sealar vartables which were used i hew of intermediate array refetences,
as a resnlt of rcester alocation Improvement m floatig-pomt code, however. was
less than the improsement i the cortesponding integer code for the ongial. nnrolled.
and Tised codes. since the store operations tepresented a smaller fraction of the the
mattictions within the loop bodies of the the floating pornt codes A small further
speedup due tomstinction scheduling occuned with respect to optimzation of the
soltware prpehned codes This was hecause the software prpelinmg was done at sonrce
level, catsing attay elements to be loaded to register and then used within the same
loop tetation s, of comse would not have occnred had the pipelimng been done

at assemibhy language mstinction level, as notnially would be the case

The improvemert due to 177 optinization. described above, was direc thv reflected
m the performance of the respective loop transformations, see the left-most three
columns of Fable 6 2(h)  the loop-unmolling codes and the loop hision code. which
Showed moderate benetit from native compiler optinmzation. tesulted in mimmal pet-
fotmance improsement. due to ehmmation ot loop-control overhead and mstruction
«Cheduting whereas, the atray contracted and software-pipelne Teodes wlach show ed
aubstantial speedup trom native-compiler optimization, achieved much higher petfor-
nance than the ongnal compiler optinnzed code Absor the combied elnmnation
of attay mdeing operations and chmmation of storage of mtermediate variables had
constderable mipact on the petlormance of the artay -contracted code The distanang
of long latenay load operations acioss loop iterations, combimed with native-compler
matiuction schedulmg, mceased the speedup om software pipelimg. and as a re-
ault, i absolute termes, soltwate pripehiming achieved the most speedup. F ool the st
column of Table 6 2(b), with the software-pipehned code for mteger arrays achieving

the lughest pettormance overall, 1897 eps. of the second column of Table 6 1{a)

IBM RISC System /6000 Results

In Table 6 1(h) ate the resulis of executing the test codes on the RS/6000, with the
cottesponding speedups tor the vanous transformations shown i the middle thiee
columns ol Tables 6 2(a) and (b)  \gain. Table 6 2(a) contains the speedups due to

natne compiler optunization, i this case “x1f =07, and Table 6 2(b) contams the
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speedups from successive loop transformations over the petformance of the onginal
code, for code compiled using “x1f -0"

Two observations ate immediately apparent from these expeniments 1) the wide
variance in the results froni rodes that use integer type arrays to the tesults from codes
that use floating-point atrays and 2) the wide difference 1 results on the RS/6000
compated with tesults on the Sun

First, notice that the spread in improvement due to optinnzation by the native
xIf compiler was relatively large, compared to the Sun 77 optimizations, (<. Table
6.2(a)), with a five- to six-fold improvement tesultimg from compiler optinnzation m
the case of codes having mteger artays, and three- to four-fold miprovement from
optimization of codes having floatmg-point arravs  Phe ngher effectiveness of i
optimization on the RS/6000 compared with {77 optinuzation on the Sun was due to
register allocation and the nsage of hardware assisted anto inarementing, loop control
within the loop bodies Tn the case of the atray contracted code formteger avravs, the
xIf compiler reduced the number of mstiuctions within the loop bods from 39 1o 10
with a cortespondimg 1eduction w the estimated number of cveles from 51 to jast 4
Because of the additional data-conversion mstructions required, less improvement oo
curred with the codes for floating-pomt., especially with respect to the single preasion
codes.

The improvement from loop transformation, althongh much higher i absolute
terms, was lower m relative terms than the corresponding Sun results, although
as before, array contraction resulted m the greatest improvement overallo of T
ble 6.2(b). The smaller speedups were hecause greater mstiuction level parallehsin
in the RS/6000 architecture Lenefited all loop transformations equally. mahimg the
improvement due to collective transtorination a smaller proportion of the overall gam
Loop untolling and loop tusion produced about the same speedup over the otgimal
code as they did on the Sun. but the speedup from artav contraction was fess on the
RS/6000. Stngle-preaision floatimg-pomnt results. m general, were especatt, Tow when
compated to the integer and double-preasion floating-point tesults faee the nnddle
colummn of Table 6 2(h))  This 1s because oatmg-pont calculations on the RS /6000
are done in double-precision, causing single-preaicion Hoating-point calculations to he
converted.

Notice that artay contraction failed to significantly improve codes on the RS /6000
for single-precision floating-point arrays. This was becanse the xIf compiler convarted,

stored, and reloaded intermediate variables, within the loop body, rather than using
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registers, as in the case of the cerresponding mteger codes. Ou the RS/6000, single-
preasion software-pipelmed codes too performed less well than the corresponding
mteger o double-preasion floating-pont codes And, for all three data types, the
effects of soltware pipehning were less consistent; in some instances improving perfor-
mance while m other mstances, decreasing it. This was due to the nuxof instructions
and the abihty of the mstinction scheduler to take advantage of the machme’s multiple
function umits  Overall, collective loop transformation resulted i ess improvement
on the RS/6000 than on the Sun, however, 1 absolute terms, the RS/6000 was thiee-
Lo six times faster with loop unrolling codes and two- to thiee-times laster than the

Sun for the remammg codes

IBM 3090/VF, Model 180J, Results

The 1esults of 1unning the preceding experiments on the 3090 are shown in Ta-
ble 6 1(<), and the corresponding speedups from using VS FORTRAN optimiza-
tion/vectonization and the speedups for each successive loop transformation over the
petformance of the optimized/vectorized otiginal code are <hown on the right-hand
atde of Tables 6 2(a) and (b) Notice that for each data type shown in the two tables
there are two columns this time, metead of one, In the left-hand column for each data
type heading i Table 6 2(a) are the speedups due Lo scalar optimization. i.e., from
using "OPT(3)", over the results obtamed from non-optimized code, using “0PT(0)".
and i the nght-hand cobimn for each data type heading ate the additional speedups
obtamed by vedtonization. o1 “VEC”, uver that obtained by using 0PT(3).% In Table
6.2(1) ate the tespectinve speedups due to the successive loop tiansforinations over
the petformance of the ongimal code {in the left-hand colummns) for optinnzed code.
ot using OPT(3). and (in the tight-hand columns) for vectonized code, or using VEC
The statistics 1 these tables illustiate several differences between the performance of

the 3090 and the other two machines tested

Fitst. exanmine the speedup of VS FORTRAN using OPT(3) (optimization with-
ol vedtotization). o1 the left-hand column under each data-type heading in Table
6.2(a). Notice that the speedup from native-compiler optimization was greater on
the 3090 than o was on the Sun, except for the double-precision Hoating-point array-
contracted code and two software-pipelined codes (shown in the lower hall of the
second to the last column)  Also notice thete exists an inverse relationship between

VS FORTRAN optimzation on the 3090 and {77 optimization on the Sun, shown

2Vectorization, or VEC, assumes optinuzation at the level of 0PT(3)
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in the left-most three columus of the Table (a4} Whereas on the Sun, the uniolled
code and fused code were improved less by natvve compiler optimization than the
contracted code and pipelmed codes, the contesponding codes on the 3090 were nn
proved more. These differences are due to the fact that the 3090 allows anithimeti
and logic instructions to have memory operands, and VS FORTRAN compiler takes
advantage of this capability during optimization, domg away with a number of load
instructions The SPARC, on the other hand, 15 a load/<tore architecture, and this
type of transformation does not apply At the same tune, nmprovement from VS
FORTRAN optimization on the 3090 was generally less than st optinnzation for the
RS/6000. because the 3090 lacks the sophisticated hardware support for mstiuction
level patallelism which exists on the RS/6000. which the At compiler was able to
use (specifically, the auto-mdexmg featuwre) Lastlvo unbike the 177 and AF compilers,
the VS FORTRAN compiler improved untolled code equally as much as at dud the
original code  Agamn, the prmary teason for this margimal unprovement over the
improvement achieved by native-compiler optimization on the other two madclimes,

was the use memory operands

With respect to the vectotized codes, a number of additional charactenstics stand
out. Fitst, vectonization had a pronounced effect upon the speedup of the original
code, increasing petformance by as much as 8 1 (for imteger arravs) This was the
highest speedup for any code, see Table 6.1(c). However, it was noi the hest pertor
mance, the array-contracted mteger code petformed hetter, achieving a vate of 3915

eps (compated to a rate of 2383 eps for the original code)

Table 6.1{c) indicates that, for single-precision arrays. the code that was unrolled
three times petformed best (2159 eps), but this was not actually the case, dosen

P Lihewise, ton

analysis of the data showed that the origimal code performed hetter
double-precision atrays, the otigmal code was best (1695 eps)  Tnospite of the de
viations, the statistics m the table dealy indicate that unrolling reduced the effect
of vectorization mote times than not. and loop tusion had o simlar effect e eithies
case, reducing performance by as mnch as twenty percent The follow on transforma
tions (array contiaction, and software prpelimng) also acleved fower performance,
especially for the soft wate-pipehined codes that employed the mstraction bhufler, since
array contraction virtually eliminated the vectorizable portion of these codes causimg
the respective codes to execute at approximately the same rate as the cortesponding
scalar code compiled with OPT(3), again, sce Table 6.1(c)

3The discrepancy in the numbers was due to rounding error i the regression caloulation
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In absolute terms, the 3090 out-performed the RS/6000 by a significant margim on
the original code, both for integer and floatu g-point arrays, cf. Tables 6.1(h) and (c¢]).
The 3090 was 1.6 times faster for integer arrays, 1.5 times faster {or single-preciston
floating pomt arrays, and 1.2 times faster for double-precision floating-point arrays.
However, transformed versions of the code run on the RS/6000 run better overall,
by an even wider margin For example, the buffered software-pipelined code on the
RS/6000 1an 2 0 times faster than vectorized code on the 3080 for integer arrays, 22
times faster for single precision code, and 35 times faster foo double-precision code
More mpressive s the fact that the xIt compiler produced the fastest code for each
data type tested, but only because of collective loop transformation 6736 eps {or
integer codes, compared with 3915 on the 3090, 2130 eps for single-precision floating-
pomnt codes, compated with 2159 eps; and 3765 eps for double-predision floating-point
codes, compared to 1698 eps. On the other hand, had collective loop tianstormations
not been used, the 3090 would have out-performed the RS/6000 in every instance,
cleatly showmg that collective loop transformations can make a crucial difference in

petformance

6.1.2 Tests with a Non-Compatible Cluster of Loops

in this section we descibe the results of loop-partitioning experiments using a col-
fection of non-compatible loops  Our objectives 1n this case were to 1} measure the
effect of efliaent (optimal) loop partitioning over naive (sub-optimal) partitioning,
2) isolate the effects of loop fusion and array contiaction when applied at various
stages of collective transformation. 1) determine the effect of native compiler opti-
mization upon vur source-level transformations, and 4) compare the effectiveness of
loop transformations on computers having architectures which support different de-
grees of mstiuction-level parallelisin Except for the first objective, these objectives

are essentially the same as those described for the experituents in the previous section.

Test Suite

To illustiate the impact of paititioning strategy upon the performance of a non-
compatible collection of loops, we used the loop collection described in Chapter 3,
Figure 3.8 (page 19). The patticular FORTRAN code for this collection is shown in

Figure 6 3, along with several transformed versions of the code.

The collection contains two sets of non-compatible loops, the first involving loops
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DO 10 1=1. N
10 Al =
DO 20 i=[, N
B(I) = A(I) * 2 + 3
20 () = B(I) + 99
DO 30 1=1, N
30 D(I) = A(N-14+1) + 6
DO 40 1=1, N
40 E(1) = B(I) + C(1) * D(I)

DO 50 i=1,
F(l)

50 }(1)
Doml
(1)

) *R8-3

II .'l. II ”

N
E(l)*4 + 2
k(1)
, N

60 F(1)

G(1) * E(N-1+1)

DO 10i=1, N
10 Al =1
DO 201=1, N\
bh = 1\( ) 2404

B(H = b
20 C)= b4 9o
DO 301=1, N
30 DA) = AN T4+ 6
DO 401 -1, N
40 E() = B() + () * b
DO 50 1-1, N
e = k()
Py = e * {2
50 Gy =c*8 3
DO GOI=1, N
60 HO = () ¢ G * BN D

(a) Original Loop Cluster

(b) An.\y-Cuntnu te (l ()ngnml Clustoer

DO 10 I1=1, N
Al) = 1
B()=A(I)*2+ 3

10 C(1) = B(I) + 99

DO 20 =1, N
B() = A(N-14+1) + 6
E(I) = B(1) + C(I) * D()
UU:Fm*4+2

20 (U:bU)*a-l

DO 30 I=1,

30 i = ¥ G(1) * E(N-14 1)

DO WI-I N

a =1
bh=a*2 +3
Al =
(I)rl
10 H=b+4 94
DO 20 1=, N
(I:A(N—Hl){(i
e= Bl + ) *d
E(l) = ¢
F()=e*4 2
20 Gy =e *8- 3
DO 30 1=1, N
30 H{l) = () )*l NHl)

(c) Fused Loops from Naive Partitioning

(d) Array-Contracte (I vac P utmnnuu.,

DO 10 1=1, N
10 Ay =1
DO 20 =1, N
mnzAm*2+3
() = B(1) + 99
D(I) = A(N-1+1) 4+ 6
20 E() = B(1) + C(1) * D()
DO 30 I=1, N
F(l) = (1) * 4 + 2
Gy = E(1) *8-3
30 H(1) = F(I) + G(I) * E(N-I+1)

MHUbLN
10 Al) =1
DO 20 [=1, N

h=A)*2 ¢ 3

e = b+ 99
d= A(N-T#1) 1 6
20) E(d) =b + c*d
DO 30 I=1, N
e = k()
f=e%4 +¢
g=e* 8-
30 H(1) ——f+;,'|(N|+l)

(e} Fused Loops from Efficient
Partitioning

(f) Array-Contracted Lﬂu ient,
Partitioning

Figure 6.3: Transformations of a Non-Compatible Locp (lister




.

CHAPTER 6 EXPERIMENTS WITH COLLECTIVE TRANSFORMATION 11

i through 4 (dentified by labels 10 through 40) and the second mvolving loops |
through 6 (labels 10 through 60)  Were this collection of loops part of some sonrce
input, an optunizing compiler mght perform any of the source-to-sonrce ttansforma-
tions shown m Figme 63 1) forgo collective transformation altogether. leaving the
source as shown m Figure 6.3(a), 2) perform array contraction on the origmal cluster
without petforming fusion, as shown in Figure 6 3(h) (contiaction actuallv ocas
i oonly two of the six loops m this figuie: loops 2 and 5), ) navely partition the
collection, possibly cuttig more ares than necessary and then petform loop fuston, as
m Figure 6.3(¢), 4) navely partition the loops and perform atray <contiaction within
cach pattition, Figure 6 3(d). o1 alternatively, 5) efficiently partition the graph and
stop, as wm Figure 6 3(e), o1 a0 we would hope, 6) ciiciently partition the graph and
petform artay contraction within the loop bodies ol the respective loops tormed by
the partitions, as shown in Figure 6 3(f). Notice that in some instauces the code was
rewritten to assist the compiler with array-element recogmtion The particulat mod-
ification 1s shown in the atray-contracted oniginal collection where scalar references

ate used for atray elements to avoid redundant array accesses. tefer to Figure 6.3(b).

Test Results

T'he resnlts of pattitioning based upon timings taken on the Sun 4/490, the R5/6000,
and the 3090 are shown in Tables 6.3(a), (b), and (c), respectively. For cach of these
tables, the format 1s the same as it was for the corresponding tables desciibed in
Section 611 As before, the tables show both optiumzed and non-optimized versions

for mnteger, single-precsion floating-point, and double-precision floating-point arrays

Also as hefore, the results ate teported in eps. In this particular instance, howeser.
the eps metric idicates the rate at which elements of the output array B weie pro-
duced. based upon a 1egression of execution times for vector lengths between 60 and
3000 elements, measuted at 60-clement in*~rvals. Fmally, 1o assist m evaluating the
tesults, we show m Table 6 1 the cortesponding speedups, first. due to native-compiler
optimization, viz. Table 6 1(a), and second, due the various loop transforinations viz
Table 6 4(b), tor cach airay data type tested  Lastly, since the test codes used in
these eaperiments also were short. each code was executed five-hundred times wit hin

an outer loop, to obtain sufficient timng-function resolution.

¢

The tesults in Table 6 3, and Table 6 1(b), show the importance of efficient parti-

tioning, with eflicient partitioning and transformation resulting in significantly better
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(a) Performance of Loop-Cluster Transformations

on a Sun SPARC Server /490

Phase of
Transformation

integer

Tir 70

siigle predision

original loop collection
array-contracted origimal
fused naive partition
array-contr. naive part,
fused efficient partition
array-contt. efficient part,

00
a7
103
124
113
119

165
108
171
191
173
225

17
17
137
136
137
151

Rl

202
207
210
242
215
329

o

double predision

T
b
N
Q6
i
a7

16

77 0
14h
136
133
(HY)
140
220

(b) Performance of Loop-Cluster Transformations

on an IBM RISC System /€000

Phase of integer single precision
Transformation N A0 N RO
original [oop collection 195 939 200 iIs2
array-contracted otiginal 191 933 197 112
fused naive partition 245 10849 253 [RON!
array-contr. naive part. 259 1109 247 1139
fused efficient partition 247 1198 21% 1306
array-conti. efficient part. 322 1H42 332 1363

(¢) Performance of Loop-Cluster

(I()llhll' precision

195
16
239
218
202
329

on an IBM 3090/VFE, Model 180

Phase of mnteger single preasion
Transfrm OPI{®) OPI(8) VRO OrI(M  Ori@m Vi
ong collection 228 665 2285 208 606 2036
contr original 238 681 2188 215 625 19406
fused naive 261 746 2523 231 630 AN
contr naive 302 876 2615 276 6581 2235
fused efficient 201 701 2504 232 627 2107
contr efficient 415 899 1268 316 733 VLR

X1

O
1202
1201
1230
1325
1316
2101

Transformations

double proasion

orl {0}
203
208
223
207
226

_3_35

OrIy) VI
520 1511
HAR 1500
520 1174
TR 171K
531 oK1
069 2913

f Results are 1 thousands of output elements produced per second (eps), based upon regression of

vectors withim the range 60 3000

1 IBM 3090 codes were compiled using VS FORTRAN, Release 4

Table 6.3: Performance for a Non-Compatible Loop Cluster
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(a) Speedup due to Native-Compiler Optinization

Phase of Sun, {77 -0 IBM, xif -O VS FORTRAN, OPT(3)/VECY
Transfrim Tint gl dBLDT Tnts sgll dbI nt. sgl dDhl.
original code 18 17 16 48 L7 62 26 31 20 41 26 29
contr orginal 17 I 17 49 H &R 62 29 392 20 492 26 27
fused naive 17 15 11 44 44 52 29 34 27 3t 2t 24
contr naive [ 1 X 16 43 46 53 29 349 25 33 22 20
fused efficient 16 16 14 49 53 53 JTO36 27 34 23 32
contt efficient 1o 22 14 18 41 76 21 38 21 39 20 14

t The feft data-type column shows speedup for code compiled using “*OP1(3) " over “OPF(0), and
the right colunmn, speedup using “VEC™ over *OPT(3)

(h) Speedup due to Loop-Cluster Transformation
for Compiler-Optimized Code

Phase of Sun 17190 IBMRS/6000 (BM 3090/VE}
Transfrin it sl dD] mt. sgl,  dbl int. ogl. dbl.
contr original 10 11T 10 10 10 10 10 10 10 1o 10 10
fused naive 1o 10 10 12 10 190 | A U U R U R O R
contr naive te2 12 11 12 10 11 13 11 13 11 13 11
fused efficent 11 11 to 13 10 it N
contr eflicient 1t 16 16 16 12 21 18 14 17 14 17 19

1 The feft data-type column shows speedup of the transformed code over the ongmal code, compiled
using “OPT(3)", and the right columu, the corresponding speedups, using “VE(™

Table 6 4 Speedup tor a Non-Compatible Loop ('luster

petformance i almost all mstances, In addition, a number of other important con-
clusions can be reached with 1egard to the transformations themselves  In most cases,

these conclusions remforee findimgs fiom the previous experiments repotted i Section

6.1 1.

Fust. notice that the speedups from native-compiler optimization, shown in Table
b.4(a). were as much as one-thind lower for this set of experiments than they were
for the last one, ef Table 6 2(a) (page 107). The lower performance was due to
the fact that the codes used 1 this case contamed larger expressions and a higher
propottion ol straight-hne integer operations than the codes used in the previous
expetiments, and as a 1esult, the portion of the code which was actually affected by
native-compiler optimizations tepresents a smaller proportion of the corresponding
non-optumzed code. Recall, the pumary cause of improvement due to opumization

was the chimmnation of unnecessary load and stores between each use of a variable,
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and these remained roughly the same: whereas the number of anthmetic operations
increased.  Consequently, the speedups due to native compiler optinization ol the
fused codes and array-contracted codes were about the same as they were for the
original code The lower speedup due to compiler optimizanon was hkewise mantlest
in lower performance of the respective loop transformations, especially tor the fused
codes: see Table 6 1(b)  Tn this latter case, the teason s that the chimmnated loop
control ovethead, o1 the primary source of speedup, was an even smaller proportion

of the onginal code than 1t was for the previous experinents, shiown e Fable 6 2(h)

Next notice, in Table 6.1(h). that the speedups from the vanous loop transtorma
tions occurred umformly across the thiee architectures The speedups tor codes that
used loop fusion alone, tor examples were dlose to the speedups of the tespective ong,
mal codes for cach machime  Likewise, the speedups of the contiacted codes nmproved
by roughly the same amount over the speedups of the respective onginal codes Fop
the few instances i which significant differences me pertormance did ocan, the dif
ferences apphed untordy acioss all transformations on the particular machime with
none of the transformations appearing to be more or less susceptible to any particnlan
architectural effect than any other. For the RS/6000, [or esample, the tesults with
floating-point artays and those for mteger arrays were closer together than they were
for the last cet of expermments, and for the 3090, vedtornzation naproved code pertor
mance more this tume than it did during the previons expenmments hese diferences
again reflect the fact that these particular codes contaned larger expressions and
higher proportion of straight-lme integer operations than belore As a consequence,
less opportunity existed for instruction level parallehism i the code that nsed integen
arrays, and mteger operations comprised a larger proportion of the codes that used
floating-pomt arrays

Next we examine the petformance effects from applving each of the imdividual loop
transformations shown in Table 6 4(b), 1efer to Figure 6 3(h) (1) Frst, notice that
little, if any, speedup occurted as a tesult of applying array contraction to the onginal
loop, as shown Figure 6 3(b), sce the fiust 1ow in Table 6.3(h) This was hecanuse no
arrays were actually elimmated by the contraction Instead, a few memory references
were replaced by register references, representing only a small proportion of the overall
computation. Nevertheless, the transfornmation provides a basis for companing test
transformations, giving an indication of the importance of ths particular effect vis

a-vis Figures 6.3(d) and (f).

When the loop cluster was naively partitioned to allow loop fusion, as shown in

Figure 6.3(c), the speedup was again small because all that was ehimminated in this case
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was loop-control overhead which too was small compared to the size of the overall
computation, «f. row twoen Table 6.4(b)  The effiaently partitioned loops, Figure
6t 3(e), also showed hittle improvement for the same reason, ¢f thurd row of Table 6 1.
In both of the preceding cases. the effect of transformation was merely to reduce the
number of Joops from six to three  Recall, a potential beneit from loop fusion 1s
to mcrease the size of the corresponding loop bodies, so as to mciease the pool of
istructions available for imstruction scheduling However i this particular istance,
the larger fused loops made hittle difference. In spite of the lack of improvement, loop

fusion provided an impottant advantage by faclitating array contraction

The speedups fiom botli loop fusion and atray contraction together wete fai
greater than the speedups from any of the other tests described with respect to
the non-compatible loops, see Figures 6 3(d) and (1), and Table 6 1(h) Pait of the
1eason was, of course, the mcremental improvement provided by the prior fusion, but
the main 1eason was the ehnnnation of an artay  Notice that in the second loop
nest i Fignie 6 3(d), the D array was ehimnated entirely and replaced by the scalar
variable d. The last test code, for an artay-comracted efficient parutioning, Figuie
6.3(f) showed much greater improvement  approaching a two-fold improvement on
the RS/6000 for double-precision fluating point arravs, ¢f Table 6 4(b) The 1eason
is obvious  live of the eight original arrays were ehimmated and 1eplaced by scalar
vatiables, and ol the three temaining arrays. one was the output array H and the other

two (A and E) cortespond to the mmmmum nuwnber of nonfusible atravs.

One additional pomnt remaimns collective loop transformations wete necessary to
achieve best petformance for all three machines (including the 3090). In absolute
terms, the 3090 outperformed the other two machines by a wide maigin For codes
that used integer arrays, the 3090 was fourteen times faster than the Sun, and eight-
to twelve-times faster for floating-pomt numbers At the same time, it was mote than
twice as last as the R5/6000 in several instances This s especially significant since
the RS/6000 outperformed the 3090 during the first set of experiments. From these
results 1t appears that there it also good reason to perform collective transformations

on codes for vedtor machines.

6.2 DLX Simulation

In this next section we examine the effects of collective loop transformations when test
codes were tun on a RISC processor simulator and a cache simulator. The processor
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simulator used m this case was an enhanced version of the DIN simulator trom Stan
ford. and the cache simulator was the dimero simulator from Berheley [HMOO HSS
Although DLX is a simulated architecture it provides all of the essential features one
might expect from a RISC processor, and it mddudes the msttamentation features
requited for our analysis  For simple wstruction sequences, that s for sequences
without special system calls, such as prantf (). the DLN smulator miterprets and
then executes each mstruction as though 1t were executed on a real mache o
doing so, however, 1t assumes the presence of an inbmte warm cache m winch all
instructions are present, 1 e., there are no cache misses, and all data and mistinctions
ate accessible 1 constant tume (see Appendix ) The speafic DLNX machime conhign
ration used for our expeniments consisted of the base architectnie with the tollowing
additional floating-pomnt hardware. an add/subtract nmt having a latency ol 2 aveles,
a multipliet unit having a latency of 5 cyeles, and a divider umt having o latency of
19 cycles. For out cachie sunulations, we assuwned an Sh-byte mstruction cache and a
G1k-byte data cache, both being 1-way selt associative with 28 byte lines and vsimg,
a least-recently-used (LRU) line-replacement pohey

The same soutce codes were used for the suanlation expernments descnibed
this section as were used m our eather experiments, however, for these particula
experiments the soutces were converted from FORTRAN mto C to perint compilation
by an upgraded version of the dlree compiler (version 2) - The db o conpiler generates
the DLX asseubly code which o then used as soutce input to tae simulator - Becanse
our test codes were simple, the patticular source language used e this instance had
little impact on the test results.® This was because, for the most part. there exasted
a one-to-one correspondence between statements within corresponding test codes for
each of the two languages.

One final factor differentiates the following sunulation expetiments lrom the timmg,
experiments described in the previous sections, and that is, several of the codes nused
in the following experiments were compiled twice, once with mstruction schednlimg,
and once without The particular mstiuction schedider used by the compiler was
based upon a “postpass” version of the Shieh-Papachiiston algorthin, Algonithm
VII, described in Chapter 5 (page 91).° The only structwral hazard considered hy

4This fact was venfied by comparing tuning results of FORTRAN and € vorsions of the tesl
codes used 1 the previous experiments

5 As mdicated m Chapter 5, Chandrika Mukeryr and Enk Altman jointly implemented the sched
uler used for these experiments
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ihe sehedaler. and the onlv hazard enforied by the DLX cimulator itselfo was a one-
cycle delay between the tune a value s loaded mto register and the timent is used.
The simulator also delays the effect branch mstructions by one cydle, as explamed
m Appendix o To account for this delay. the dlxec compiler metely mserts a NOP

mstruction lollowing eachi braneh mstruction ©

6.2.1 Tests with Compatible Loop Cluster

The objectives for out first series of experiments were again essentially the same as
for the compatible-collection timing expenments described m Section 6 1.1, specih-
Callv we wanted to determme: 1) the susceptibility of each transformation to native-
compiler optumization, 2) the relative improvement of cach transformation, when
considered alone, and 2} the combined effect of transformation In addition, we
wanted to deternune the mmpact of mstruction seheduhing. This later objective was
unpottant because our expenments were focused toward the effects of sowrce-level
(o1 source-to-source) transformations, and instruction scheduling was expected to be
v an nnpottant factor m the outcome of our tests Lastly. we wanted to measute the

effects of register and cache usage

Phe actual codes used for the first seties of sunulations were  versions ot the
codes shown m Figures 6 1 and 6 2 (pages 103 101), and the nnmbet of loop itera-
tions (hence, vector size). N7 used for these simulations was 100.7 Agam. the hasis
for these expeniments was the compatible collection of loops shown i Figure 6.1(a).
For each test code we measured performance under thice different optimizing configu-
rations. 1) without optinmzation, 2) without optimization but using register variables
for intermediate values. and .2) with full optimization. By full optimization we mean
“dlxcc -0" The following sections describe results, first for integer-defined arrays,
then for attays of simgle-precision floating-point numbers, and finally for atrays of
double-precision floating-point mimbers. As in our previous experiments, immediate

values were mtegers, tegardless of the data type of the array elements

oPhe effect of adding NOPs to fill the branch-delay slot 1s reported m the analysis that follows
TThe actual (' versions of these test codes are mcluded with the source histings provided m
Appendiv A
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Tests with Integer Arrays

For experuments using integer-type array elements, the test results are shown o Fa
ble 6 5. with the 1esults of non-optimized versions of the initial transtormations
Table 6.5(a) Also. as 1 the case of o previous expernnents, we have sunumarized
the speedups due to compiler optimization and the speedups due to the successive

transformations, i Table 6 6(a) and (b), tespectivels

The most siguificant point with respect to these statistics is the deamatic imcrease
in petformance due to atrav contraction. Table 6 6(b) shows a thiee fold speedup oy
the non-optimized arrav-contracted code over the ongial code, a five told speedup
for the corresponding codes i windh scalar vanables were defined as register van
ables, and a four-fold speedup for optimized codes ve | codes comptled with “dlxce
-0". ‘The reason for these speedups can be seen from Tables 6 5(a) () Notiee that
for nou-optimized code, shown n Tahle 6 H(a), the nwnber of loads dropped from
2601, for the fused code, to 1101, for the array-contiacted codes and the munber of
instructions diopped from 12107 to 1107, both as a result of teplacing array telerences
(which were stored n memory) by scalar references ana by chimnating the respective
load instructions and mdexing instiuctions For the arrav contracted codes mowhich
register variables were used (sce Table 6.5(h)) and for the fullv optinnzed code (‘Table
6.5(¢)), the impact was an eight-fold reduction in the number of loads and a o 1o
five-fold 1eduction in the number of instiuctions

The tables which comprise Table 6 5 expose another factor was not so appatent
from the timing experiments described eatlier in this chapter, and that s the impor
tance of keeping live data within the registers once this data s there In this case
merely defining scalar variables as register vanables reduced the number of loads hom
3606 to 800, and it reduced the number of load stalls from 1700 16 300 "The eflect
was to climmmate the stormg and reloading of intenmediate scalar values; o transtor
mation which was aceomphshed anyway as pat of register allocation durmg usuial
code optimization. Recognizing and eliminating common sub expressions which were
part of the array references elunimated an additional 300 loads and 200 stalls; as 1e
flected 1n the difference m number of loads and stalls between the ongimal code and
the fused code, f. Table 6 5(c) ® Aud lastly, applying artay contraction to the fused
code, chminated yet an additional 100 loads (hence, 100 mstiuctions)

Among the test 1esults included in Table 6.5(¢), for compiler optinmzed codes; are

8However, common sub-expression elimimation was incomplete, had it heen complete, array con
traction would not have been necessary
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(i) Performance of Collective Loop Transformations
using dlxcc without Optimization

T Phas of integer foad mett run Gme
Transformnettion Toads  stores  stalls NOPs  count (i oydles)
Tonginal code T 36060 1206 1700 1211 15917 17647
unrolled once 3006 906 18530 611 129497 14317
unrolled 3 times 2706 ™e 1975 RSB IR R h P 13497
fused onginal 2601 701 14900 201 1207 14307
array contiacted 1101 701 900 201 107 5307
software pipelined 1477 797 950 103 111 3491
pipelined w/ buller 1571 BYG  107H 191 1691 HT66

(b) Performance of Collective Loop Transformations
with Register Vanables, but without dlxce Optiization

Phase of imteger Load instr.  run time
Transformation Toads  stores  stalls NOPs  count  (1n cyeles)
original code T 600 500 1211 12535 13035
unrolled once 800 600 500 611 10485 10985
unrolied 3 times 200 600 H00 311 9160 9960
7 fused origimal R0 600 500 200 10505 11005
. array contracted 100 100 100 201 2505 2605
software pipehned 100 100 100 193 2441 2541
pipelined w/ bufler 100 100 100 191 2525 2625

(¢) Performance of Collective Loop Transformation
using alxcc -0

Phase of mteger load instr.  run time

Transformation Joads  stores stalls NOPs  count  {in cycles)
otigimal code 800 600 500 606 7949 8449
instr-scheduled ong 800 601 200 606 7950 8150
unrolled once 750 600 500 306 6159 6659
unrolled once, sched 750 601 200 306 6160 6360
unrolled 3 times 725 600 500 156 5733 6233
untolled $x. sched 725 601 150 156 5734 5884
fused origiual 500 600 300 101 3611 3911
fused orig, sched 500 GOl 100 101 3612 3712
artay contracted 100 160 100 101 1808 1908
contratted, sched 100 101 100 101 1309 1909
softwate pipelined 97 100 97 97 1849 1946
pipelined, shed 96 99 96 97 1850 1946
pipelined w/ buffer 96 100 96 96 1940 2036
mipln w/ buf, sched 96 100 a6 96 1942 2038

Table 6 5: DLX Performance for a Compatible Loop Cluster, for Integer Arrays
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(a) Speedup of Collective Loop Transformations
due to Register Variables and due to dlxce Optimizationy

Phase of tegister var, dlxee T ARNGO
Transformatior instr cnt cyeles instr cnt yedes
origimal code 13 't 20 21
instr-scheduled orig, 20 22
unrolled once 12 14 21 2
unrolled once, sched - 21 23
unrolled 3 tunes 12 14 20 22
unrolled 3x, sched 20 23
fused onigimal 12 13 31 37
fused ong, sched 34 30
array contiacted 18 20 24 28
contracted, sched 24 28
software pipehined 18 22 24 28
pipelined, sched 21 28
pipelined w/ buffer 1o 22 24 28
pipln w/ bul, sched - 24 2R

T The speedup for each mstructiou-scheduled code was computed with respect to the performance
of non-optimized code compiled from the same source code

(b) Speedup due to Collective Loop Transformation
over Ierformance of the Original Code

Phase of dixee register var, dlxee  dixec SO
Transformation instr ent cycles nstr cnt  cydles st ont’ cyelos
instr-scheduled orig I ) B Y
unrolled once 12 12 12 12 13 13
unrolled once, sched - - 13 13
unrolled 3 times 14 13 13 13 14 |
unrolled 3x, sched - - 14 14
fused original 13 12 12 12 22 22
fused orig. sched - - 22 23
array contracted 36 33 50 50 44 44
contracted, sched - 14 44
soitware pipelined 35 32 51 51 43 13
pipelined, sched - 13 43
pipelined w/ buffer 34 31 50 50 4 11
pipln w/ buf. sched - - 11 41

Table 6.6: Speedup for a Compatible Loop Cluster, using Integer Arrays




F 2

CHAPTER 6. EXPERIMENTS WITIHH COLLECTIVE TRANSFORMATION 124

results showing the effects of instruction scheduling upon the various transformations.
FFor mstance, mi the first 1ow of Table 6.5(c) we show the performance of the original
code when compilad with *dlxcec =07, without mstruction scheduling, and in the
second row we show the petformance of the same code again when compiled with
“dlxcc -0", but this time with the option to use Sheh-Papachristou mstruction
scheduler, i addition to the other native-compiler optimizations used in the first
imstance  Sinilar tests were run for cach of the remaining codes, as shown in the

‘,(ll)l('

The various tests with instruction scheduling, shown in 6.5(¢). show the relative
impact of this particular optinization  Clearly, scheduhng works hest upon codes in
which there are highet-levels of instruction-level parallelism. For this 1eason, nnrolled
codes and fused codes m which there were opportumities for concurrent addiess and
data caleulations unproved scheduling effectiveness, however, the improvement was
comparatively smali, ve L less than ten percent, and m no instance was scheduling
able to 1emove all stads By way of illustration, notice that suflicient stalls remained
after the onginal collection was unrolled once and scheduled, that further uniolling
(r.c , unrolling the ongimal collection thiee times) and scheduling yielded benefit over
untolling once  In spite of thus benefit, the fused and instiuction-scheduled loop
performed hetter, of a run time of 3712 cycles for “fused orig, sched™ as opposed
to K881 (yvedes for “mmrolled 3x. sched™ No nnprovement was made, however, in the
attav-conttacted code and the two software-pipelined codes since the loop hody in all
thiee codes was highly flow dependent, providing fuither indication of a performance

constramnt caused by exposing too little instruction-level parallelism.

The reason for the degradation i this software-pipelined code. shown itn Table
6 5(r), was that the compiler used an unnecessary addi instruction to reload a con-
stant dunng cach teration of the loop body. rather than retaining this valuc in
tegister from one iteration to the next And the reason the software-pipelined code
which mduded a buffer statement took even longer to execute was because the DLX
atcntectine was unable to take advantage of the added parallelisin provided by the
butfening, leaving imnstead an additional assignment statement (the buffer) to be exe-

cuted doting cachiteration of the loop.

The pettormance of all of the codes might have been improved by filling the branch
delay slot with a weful instinction, but this feature had not been implemented yet
in version of dlxee we used  All of the NOPs shown in the Table 6 5 were due to this
reason Had this transformation been implemented, the telative effect would have
been a speedup of less than ten pereent. Moreover, the reduction in cycles would
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likely have been less than the number of NOPs indicated simee mstruction schedubing,
likely would not have been able to fill the the full numbet of branch defay slots that
would have been exposed  Lastly, notice that the number of NOPs for both sets of the
non-optimized codes shown m Tables 6.5(a) and (b) were twice the number as i the
optimized set of codes shown in Table 6 5(c)  The teason the optumized codes had
fewer NOPs 1s because the optimized code replaced the loop control structure which
placed a comparison operation and conditional branch at the top and unconditional
jump at the bottom of cach loop with a stineture that petformed the conpanson and
conditional jump at the botton of cach leop, thereby elimmating the unconditional
jump and a NOP.

Tests with Floating-Point Arrays

For this next series of experiments we teran owr previons test codes with the arravs
in each code first defined as single-preasion floating-pomt, or float, rather than
integer as in the previous tests (see Table 6.7). and then as double preaision, o
double. C(onstants were not redefined, but remamed mteger type, therelore, the
principle new effect from these experiments, compared with the last, was not the
manner of array-clement computation necessanly, but rather the effects of register
operations, such as data-type conversion and register transters. upon overall code
perforinance (1efer to Figuies 61 and 6.2)

In certain instances, ¢ g., the non optimmzed artay-contracted code, the <ingle
precision codes run almost twenty-percent slower than the corresponding mteger
codes. The most notable 1eason for this deciease tn performance was the large mimber
of stalls, as can be seen in Table 6 7(a). Also, as suggested m the previons paragraph,
contributing to the higher cycle count were the additional mstructions requied to
move integer data values to floating-point registers and then convert these values to
floating-point format When scalar values were speaified as register tvpe, a thirty fo
seventy-five-percent improvement m petformance occutied, as shown Lable 6 7(h)
Notice in Table 6 7(b) that the improvement was reflected wm thiee ways 1) a redue
tion in the absolute number of loads and stores, 2) a commensnrate reduction e the
number of load stalls, and 3) a commensurate reduction m the number of st
tions. As in the case of the previons mteger tests, the use of register variables had
no effect on the resulting optiumzed code, shown i 6 7(¢), however the experiments
with register variables show, once again, the relative importance of effective register
allocation.
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(a) Performance of Collective Loop Transforinations
using dlxcc without Optimization

Phase of integer floating point  Joad  FP  Instr.  run time

Transformation [oads  stores Joads stores stalls  stalls  count (in cycles)
original code 2707 607 1000 600 1701 400 16551 18652
unrolled once 2157 308 a50 600 1851 400 13654 15905
unrolled 3 times 1882 158 925 600 1976 400 12204 14580
fused origial 1802 102 900 600 1901 400 13111 15412
array contracted 602 102 900 600 901 100 olll 6412
software pipelined 586 166 1000 692 989 500 5219 6708
pipelined w/ buffer 682 207 1000 690 1086 500 5396 6982

(h) Performance of Collective Loop Transformations
using Register Variables, but without dlxcc Optimization

Phase of integer fioating point  lToad  FP  instr. run time

Transformnation loads  stores Toads stores stalls stalls count (in cycles)
original code 1 1 900 600 501 400 13239 14140
unrolled once ] 1 900 600 501 100 11189 12090
untolled 3 times 1 1 900 600 501 400 10164 11065
fused original 1 1 900 600 501 400 11209 12110
artay contracted i 1 200 100 201 300 3209 3710
software pipelined ! 1 208 100 204 203 3145 3552
pipelined w/ buffer 1 1 210 100 205 299 3229 3733

(¢) Performance of Collective Loop Transformations
using dlxcc -0

Phase of nteger floating pont  load  FP  Instr. 1un time

Transformation loads  stores Toads stores  stalls stalls count (in cycles)
original code 1 ! 900 600 501 400 8455 9356
instr-sched otig 1 i 900 600 300 0 8455 8755
unrolled once 1 1 800 600 501 400 6515 7416
unrolled once, sehed 1 1 800 600 150 100 6515 6765
unrolled 3 tunes I 1 750 600 501 400 6162 7063
untolled 3x, sched 1 1 750 600 100 25 6162 6287
fused original 1 1 600 600 401 500 4315 5216
fused ong, sched 1 1 600 600 100 100 4315 4515
array contiadted 1 1 200 100 201 300 2611 3112
contracted, sched 1 1 200 100 100 100 2611 2811
software pipelined 1 1 202 100 199 208 2558 2965
pipelined, sched 1 1 202 100 1 112 2558 2671
pipelined w/ buffer 1 1 201 100 197 302 2641 3140
pipln w/ buf, sched 1 1 201 100 0 301 2641 2942

Table 6.7- DLX Petformance for a Compatible Loop Cluster, for Single-Precision
Floating-Point Arrays
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(a) Speedup of Collective Loop Transformations
due to Register Variables and due to dlxcc Optimization

Phase of register var, dlxce Tdinec -0
Transformation mstr cnt cycles st cnt  eydes
original code 13 13 0 0
instr-scheduled orig 20 2
unrolled once 12 13 21 21
unrolled once, sched 21 21
unrolled 3 times 12 13 20 21
unrolled 3x, sched - 20 PR
fused original 12 13 30 30
fused orig, sched 30 K
array contiacted 16 17 20 21
contracted, sched 20 23
software pipelined 17 19 20 2
pipelined, sched 20 25
pipelined w/ buffer 17 19 20 22
prpeln w/ buf, sched 20 24

t 'The speedup for each mstruction-scheduled code was computed with respect to the performance
of non-optunized code compiled {rom the same soures code

(b) Speedup due to Collective Loop Transformations
over Performance of the Original Code

Phase of dlxce register var, dixce T dlxGC O
Transformation mstr cnt cycles TInstr an€ cycdes”  Tinstrant T Tovdes
instr-scheduled orig 10 1
unrolled once 12 12 12 |2 I3 13
unrolled once, sched 13 1 4
unrolled 3 times 14 13 13 13 14 13
unrolled 3x, sched - I 15
fused original 13 12 12 12 20 I %
fused orig, sched 20 2|
array contracted 32 29 41 38 32 30
contracted, sched 3¢ 43
software pipelimed 32 28 42 40 Bt N
pipelined, sched 33 40
pipelined w/ buffer 31 27 41 38 32 30
pipln w/ buf, sched 32 32

Table 6.8: Specdup for a Compatible Loop Cluster using Single-Precision Floating,
Point Arrays
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A second factor which is evident from Table 6.7(b) is the umpact of array contrac-
tion. As in the previous integer tests, array contraction had the most impact of any
of the loop transformations employed (recognizing. however, that contraction would
not. have been possible unless loop fusion were first performed). In Table 6.7(b), for
example, thete was a teduction in the number of floating-pomt loads from 900, for
the “fused ongimal” code, to just 200, for the “array contracted” code. a reduction in
the number of stores from 600 to 100, a reduction in the total number of stalls fiom
901 to 501, and a reduction m the number of instructions from 11209 to 3209. The
overall effect waes a speedup of 3.3 for the array-contracted code vver the performance

of the code i whieh the loops were fused

The statistics 0 Table 6 7(b) also point out a shortcoming in common sub-
expression chmmation  Notice the laige difference between the numbers of loads
and stalls for the “fused onginal™ code compared with the numbers for the “array
contracted” code, This difference was due to the fact that the array references tend to
loose theit identity duning mtermediate-code generation, as part of processing by the
compiler back end. Specifically, during processing, each array reference is translated
o a series of addiessing instructions followed by a load or a stoie, thereby making
it difficult to assocrate a particular 1egister with a particular array element when the
array clement is lateriefetenced. As a consequence, each element referenced 1s stored
after 1ts data value s assigned and then naively reloaded from memory, cach time
the element is later teferenced  1ather than using the element’s live register vaiue, as
would be the case with scalar vatiables. On the other hand. array contiaction makes
the association of atray elements and register explicit by replacing complex reference
sequences with simpler scalar references. As a result, effect 15 essentially the same
as would he accomplished by common sub-expression elimination, were common sub-

expression ehimination actually able to handle such cases.

Another significant obsetvation regarding the statisties, this time i Table 6.7(c), is
with respect to the eflectiveness of the comhbination of mstruction scheduling and loop
fusion as compared with the effectiveness of the combination of instruction scheduling
and loop umolling, m patrticular, “umollied 3x, sched”  As shown 1 the table, just
as many load statls were ehmiinated in either case, and although the uniolled code
resulted m fewer stalls after instiuction scheduling than did the fused <ode, the fused
code requited 1817 lewer instiuctions, allowing it to execute in thirty-percent less

time.?

“Later m tihns section we provide evidence to suggest why this difference nught sometines be even
nore
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The results of the experiments with transformations in which artavs were defined
as double-precision floating-point, 1., as “double”, ate predictably sumlar to the
results in which arrays were defined as “float™ (see ‘Table 6 9)  The reason, ol course,
is the that the translated code was essentially the same, except {or the load, store,
and floating-point conversion mstructions, for which cortesponding double preasion
instiuctions weie used. Consequently, the optimized mstinction scheduled soltware
pipelined code, shown i Table 6 9(¢), aclieved the highest overall perlormance,as
in the case of both mtegei-defined artavs and single preasion floating, pomnt atrays,
requiring ouly 2813 cycles for a speedup of 3.4 over the petformance ol the optinized
code for the original loop collection

Lastly, one more mimor point with tegard to the floatmg-point test results Notice
that in Tables 6.7(b) and (<) (page 6.7). and also i Tables 6 9(b) and (). that 200 o
so floating-pomt loads occurred for the anay-contracted code and software pipehined
codes; whereas in the cottesponding mteger expernnent there were only 160 o1 o, «f
Table 6.5 (page 122). The additional hundied loads, i this case, were due to the fact
that the compiler converted the constant 99 from mteger to float and stored the valne
with other global constants, to avoid another tun-time data conversion, whereas, m
the case of the integer codes the constant 99 was metely an immediate operand of

the add mstruction used to compute the vahee of the scalar variable d (1efer to Table

6.5).

Cache Simulation Results

The simulations we have desciibed so far focused on only one aspect ol petformance
(albeit an imiportant one), and that was processor petfornance However,an equally
important aspect with tespect to the performance of collective Toop transformations
is memory petformance. To better understand the effects of memory 1elerences upon
collective loop transformation, we used the dinero cache simulator [HSS . along with
address traces generated fiom cach of the optinnzed codes shown m Table 6 5(c)
(page 122), Table 6 7(c) (page 126) and Table 6 9(c) (page 130) The results of these

simulations ate shown i Table 6 10

The data in Table 6 10 15 orgamized according to four major classifications /) total
number of instruction-cache teferences and total number of misses; .2) total number
of data-cache references and total number of misses, £) combined instruction-cache
and data-cache results, and 4) total number of memory fetches, which i this case

also corresponds to the number of 32-bit words fetched from memory - As noted at the
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(a) Performance of Collective Loop Transformations
using dlxcc without Optimization

Phase of miteger floating point  load — FP  instr.  run time

Transformation Toads  stores Joads stores stalls  stalls count (in cycles)
original cods 2708 608 1000 600 1700 400 16553 18653
unrolled once 2158 n08 950 600 18h0 400 13653 15903
unrolled 3 tunes 1883 158 925 600 1975 400 12203 14578
fused otiginal 18303 103 900 600 1900 400 13113 15413
array contracted 603 103 900 600 900 400 5113 6413
software pipelined 595 116 1000 692 980 500 5239 6719
pipelined w/ buffer 793 319 1000 690 975 500 5620 7095

(b) Performance of Collective Loop Transformations
using Register Variables, but without dlxcc Optimization

Phase of integer floating pomnt  Jload FP  instr.  1un time

Transtormation foads stores loads stores  stalls  stalls  count  (in cycles)
original code 2 2 900 600 500 400 13241 14141
unrolled once 2 2 900 600 500 400 11191 12091
unrolled 3 times 2 2 900 601 500 400 10167 11067
fused original 2 2 900 600 500 400 11211 12111
array contracted 2 2 200 100 200 300 320 3711
software pipelined 2 2 208 100 203 203 3147 3553
pipelined w/ buffer 2 2 210 100 204 299 3231 3734

(¢) Performance of Collective Loop Transforinations
using dlxcc -0

Phase of wmteger floating pont  load FP  instr. run time

Transforimation Toads stores loads stores stalls stalls count (in cycles)
original code 2 2 900 600 500 400 8457 9357
instr-scheduled orig 2 2 900 600 300 0 8457 8757
unrolled once 2 2 800 600 500 400 6317 417
unrolled once, sched 2 2 800 600 150 100 6517 6767
unrolled 3 times 2 2 750 600 500 400 6161 7064
unrolled 3%, sched 2 2 750 600 100 25 6164 6289
fused ongal 2 2 600 600 400 500 4317 5217
fused ong, sched 2 2 600 600 100 100 4317 4517
array contracted 2 2 200 100 200 300 2613 3113
contracted, sched 2 2 200 100 100 100 2613 2813
software pipelined 2 2 202 100 198 208 2560 2966
pipelined, sched 2 2 202 100 1 112 2560 2673
pipelined w/ buffer 2 2 201 100 196 302 2643 3141
pipeln w/ buf, sched 2 2 201 100 0 30! 2643 2944

Table 6.9: DLX Performance for a Compatible Loop Cluster, for Double-Precision
Floating-Point Arrays



CHAPTER 6. EXPERIMENTS WITH COLLECTIVE TRANSFORMATION 131

beginning of Section 6.2, we assumed an 8K-byte mstruction cache and a 61k byte
data cache, both bemg f-way set associative with 128.-byte imes and using a least
recently-used (LRU) he-replacement policy  These particulat conhgurations were
used because they ate representative of what s commeraally available, for cxample,

these they are used on the IBM RISC' Sy stem/6000.

There are thiee results from this particular set of simulations which are imteresting
The first is with respect to cache performance on the unrolied codes, as opposed to the
fused codes, the sccond 1s with 1espect to the teduction i data cache misses as a result
of array contraction, and the third is with respect to both instruction and data cache

misses for the array-contracted codes, compared with the soltware-prpelimed codes

Fitst, notice that in all three cases, shown i Tables 6.10(a) (<) (1 e o1 codes
for integer-defined arrays, for single-precision floating-pomt atravs and for double
precision floating-point artays), the unrolled codes had a higher number of nisses than
the corresponding fused codes, and the number of misses mareased as the amount ol
unrolling increased  This effect 1s teadily explamed by the fact that cach loop m the
code for the original loop collection, and cach loop of the nniolled codes, bronght
in new instructions, with each loop body that was executed  Sinnlailv. as the loop
bodies ncreased in size because of unolling, additional cache hnes were hhewise
needed, further increasing the number of mstiuction-cache nsses On the other
hand, by consolidating the loops through loop fusion, the fused loop body (although
larger perhaps than any of the separate loops) only mtroduced code once, thereby

achieving better cache-line utilization than the codes without loop fusion

The second effect that 1s observable from the cache-simulation results shown
Table 6.10 is with respect to the reduction o data-cache misses die to artay con
traction. Notice in each table that the number of data cache nisses was the same fo
test codes before artay contraction and the same for codes atterwards.although s,
ratios vary from one code to the next because of the decreasing nuniber of memony
references for each successive code The difference, however, i ratios s less than half
a percent. Nevertheless, a four- to five fold reduction m cache nisses occnrred as a
result of contraction, aud as with the finding in the preceding paragraph, the effea

across arrays of different data type was nniform.

Now. compare the impact of misses npon the overall performance of the respective
unrolled codes and fused codes, considering both processor petformance and cache
performance. If we assume that the fitst word referenced within a cache line not

currently m cache requires 8 cyeles to fetch, and each remamng word to complete
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(a) Performance of Loop Transformations, for Integer Arrays

Phase of instruction cache data cache total memory

Transformation reln.  misses refn.” misses refn. misses fetches
original code 7950 ) 1400 20 9350 25 800
instr-scheduled orig 7951 5 1401 20 9352 25 800
unrolled once 6160 7 1350 20 7510 27 861
unrolled once, sched 6161 7 1351 20 7512 27 864
unrolled 3 times 5731 10 1325 20 7059 30 960
unrolled 3x, sched 5735 10 1326 20 7061 30 960
fused original 3612 3 1100 20 4712 23 736
fused orig, sched 3613 3 1101 20 4714 2: 736
array contracted 1809 2 200 4 2009 6 192
contracted, sched 1810 2 201 4 2011 6 192
software pipelined 1850 3 197 4 2047 7 224
pipelined w/ buffer 1941 3 196 4 2127 7 224

(b) Performance, for Single-Precision Floating-Point Arrays

Phase of mstrucrion cache data cache total memory

Transformation refn.  misses refn. misses refn. misses fetches
original code 8456 6 1502 21 9958 27 864
instr-scheduled orig 8456 6 1502 21 9958 27 864
unrolled once 6516 7 1402 21 7918 28 896
unrolled once, sched 6518 7 1402 21 7918 28 896
unrolled 3 times 6163 11 1352 21 7515 32 1024
unrolled 3x, sched 6163 11 1352 21 7515 32 1024
fused original 4316 3 1202 21 5518 24 768
fused orig, sched 4316 3 1202 21 5518 24 768
ariay contracted 2616 2 302 5 2914 7 224
contracted, sched 2612 2 302 5 2914 7 224
software pipelined 2559 4 304 5 2863 9 288
pipelined w/ buffer 2642 4 303 5 2945 9 288

(¢) Performance, for Double-Precision Floating-Point Arrays

Phase of mstruction cache data cache total memaory

Transformation refn. misses  refn. misses refn.  misses  fetches
original code RA5R 6 3004 40 11462 46 1472
instr-scheduled orig 8458 6 3004 40 11462 46 1472
inrolled once 6518 7 2804 40 9322 47 1504
unrolled once, sched 6518 7 2804 40 9322 47 1504
unrolled 3 times 6165 11 2704 40 8869 51 1632
unrolled 3x. sched 6165 11 2704 40 8869 51 1632
fused original 1318 ] 2404 40 6722 43 1376
fused orig, sched 4318 3 2404 40 6722 43 1376
array contracted 2014 2 604 9 3218 11 352
contracted, sched 2614 2 604 9 3218 11 352
software pipelined 2561 1 608 15 3169 19 608
pipelined, sched 2561 4 608 15 3169 19 608
pipelined w/ buffer 2644 5 606 15 3250 20 640
pipeln w/ buf, sched 2644 5 606 15 3250 20 640

Table 6 10. Dinero Cache Performance for a Compatible Loop Cluster
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the line is loaded in one cycle (assuming references that occur immediately ocom
in increasing order), the incremental effect due to data-cache nisses alone would be
(8 —1)-20 = 140 cycles to execute the non-fused integer and single-precision floating
point codes, and a 280 cycles to execute the double-preaision codes ™ Considering,
both instruction-cache and data-cache misses for the double preasion codes, the
crease would be as much as 361 cycles, for “unrolled 3x, sched™, cortesponding to 52
cache misses altogether; sce Table 6.10(¢). And, compated with the overall pertor
mance of the double-precision instiuction-scheduled fused code  mdluding cache miss
penalties-—the “unrolled 3x, sched” code 1s about thitty percent slower

Although the above two findings clearly mdicate that the fused codemn the exper
iments will significantly out-petrform any of the untolled codes, the actual machme

timings, shown in Table 6.1 (page 106), support neither result

The last effect mentioncd above concerns the nmuber of mstraction and data
cache misses for the atray-contiacted codes, as oppuosed to the cottesponding nun
bers for the two software-pipelined codes  Notice that inall instances, the nombes
of instruction-cache misses and the number of data cachie misses for the software
pipelined codes wete at least as high, and i most mstances, lagher than they were
for the corresponding array-contiacted codes. This effect was cansed by the prolog,
and epilog of these codes bemng i ditferent cache Imes than the corresponding foop
bodies. Since the pi log and epilog of software-pipelined code represents arelatively
small number of instructions, however, the number of cache hines affected s simall, as
well as the overall effect on program petformance. Consequently, this eflect too 15 not
as apparent from the actual timings in Table 6.1, as 1t is from the cache simulation

results shown in Table 6.10.

6.2.2 Tests with a Non-Compatible Cluster of Loops

The same processor and cache confignrations were used to evaluate the performance
of various transformations mvolving both naive (sub-optimal) and efhiaent (optimal)
transformation of the non-compatible loops, shown in Figure 6 3, as were nsed for
the compatible-loop transformations described 1 the last section, Section 621 As
in the last section, owr objectives with tespect to these particular experniments were

essentially the same as they were for the corresponding timing expeniments with

10Eight cycles plus one cycle for each remaimng word 1 the cache hine s what as required on the

RS/6000
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partitioned clusters, described in Section 6.1.2, Specifically, we wanted to again 1)
measure the effect of optimnal loop partitioning over naive sub-optimal partitioning, 2
isolate the effects of loop fusion and array contraction when apphed at various stages
of collective transformation, ) determine the impact of instruction scheduling, and
{) compare the simulated performance of the various loop transformations with the

performance of the actual machines, described in Table 6.3

Processor Simulation Results

The results of the DLX processor simulations in which we used a non-compatible
loop <luster ate shown i Table 6.11. For each of these experiments the codes were
optimized, i ¢, compiled using *dlxcc -0". In Table 6.11(a) we show the results of
executing the codes m Figure 6 3 with arrays defined as 1nteger, in Table 6 11(b) the
tesults with antays defined as float. and Table 6 11(c) the results with the atrays
defined as double To make the performance impact easier to see. we show the
speedups of the respedtive transformations, over the performance of the optimized

original loop cluster, in Table 6.12.

As in the case of our expeniments with a compatible loop collection, the codes
with single-precision floating-point arrays performed identically to the codes with
double-preasion atrays, of. Tables 6.11(b) and (c). Agam, the reason the results
flom these two sets of codes were same was the one-to-one correspondence hetween
single-precision and double-precision instructions for loads, stores, and data conver-
stion  Differences 1 performance between the two sets of codes exist, however, these
differences relate to cache-memory effects, not processor performance. as we show in

the next section.

In general, the sub-optimal code, “contr naive, sched”, resulted in a thirty- to
forty-percent speedup in petformance over the original non-compatible loop clus-
tet, wheteas, the optimally partitioned code, “contr eff, sched”, achieved a seventy-
to ninety-percent speedup  Moreover, the speedups for the sub-optimal code were
flom twenty to thirty-percent higher on the simulator than they were on the actual
machines, «f Table 6.1 (page 116) and Table 6.12. The results for the optimally
partitioned code, although closer. were less consistent.  For example. the integer
and single-preasion floating-pomt codes achieved higher speedups on the simulator,
but double precision floating-point codes achieved higher speedups on the actual ma-
chines, meluding the vectorized double-precision codes which wete 1un on the 3090
This effect is partially explamed in the case of the RS/6000 by the way single-precision
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(a) Performance of Loop Transformations, for Integer Arravs

Phase of nteger load | LERTON

Transformation Joads  stores stalls  stalls  count
original code 1000 800 600 8O0 L0
instr-scheduled onig 1000 800 0 BO0 10050
contracted original 900 RO 100 800 9950
contr original, sched 900 800 0 ROO 9950
fused naive 800 800 600 ROG 8326
fused naive, sched 800 800 N RO RA26
fused onginal 500 700 300 800 TR2R
fused orig, sched 600 700 Y 800 T3
fused efficient 800 800 600 100 7220
fused eT, sched 800 800 { 100 7225
contr eflicient 400 300 200 0o 5721
contr eff, sched 100 300 0) 100 5721

tun time

{in cycles)

11150
1ORDO
IR0
H07H0
U726
0126
12K
K128
R225
He5
621
6121

(b) Performance, for Single-Precision Floating-Point Artays

Phasc of floating pomt  load  FP sty

Transformation [oads “stores  stalls  stalls  count
original code 1800 800 1200 800 11951
instr-scheduled orig 1800 800 700 700 11951
contracted original 1700 800 1200 ROO 11851
contr onginal, sched (700 800 400 1200 11851
fused naive 1700 800 1200 ROO 16025
fused naive, sched 1500 ROU 500 GO0 10025
fused onginal 1100 700 1200 600 9520
fused orig, sched 1400 700 200 900 9520
fused efficient 1600 RO 1100 700 9925
fused eff, sched 1600 800 300 K0 4h25
contr efficient 1200 300 900 700 B2
contr eff, sched 1200 300 () 800 8021

fun time

{in cydlos)

13951
13451
138O
13451
12020
FH120
11426
10626
11325
10620
9621
82

(¢) Performance, for Double-Precision Floating-Pomt Arrays

Phase of floating point  load TP
Transformation loads  stores  stalls  stalls

original code IROD 8OO 12000 w00
instr-scheduled orig 1800 800 700 700
contracted original 1700 800 1200 8010
contr original, sched 1700 800 400 1200
fused naive 1500 800 1200 860
fused naive, sched 1500 RO} 200 6H00)
contracted naive 1400 700 1200 600
contr naive, sched 1400 700 200 400
fused efficient 1600 800 1100 700
fused eff, sched 1600 800 300 801)
contr, eflicient 1200 300 4900 700
contr eff, sched 1200 300 ] 800

mstr
count

TS

11451
IRE Y
11851
10425
10029
4524
95260
G025
9H2H
8021
8021

Tuh ilill(‘

(in cycles)

13001
14351
13801
13451
12025
11125
11326
10626
11325
10625
0621
X821

Table 6.11: DLX Performance for a Nou-Compatibic Loop Cluster
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Table 6.12. Speedup due to Collective Loop Transformation
for a Non-Compatible Loop Cluster, using dlxcc -0

Phase of Integer Single-Precision Double-Precision

Transformation Tnustr ent cycles ‘instr ent cycles instr cut  cycles
instr-scheduled orig 10 11 10 10 10 10
contracted ongtual 10 16 10 10 10 10
contr otiginal, sched 10 1] 10 10 10 10
fused natve 12 12 12 12 12 12
fused naive, sched 12 13 12 13 12 13
contracted naive 14 14 13 12 13 12
contr naive, sched 14 14 13 13 13 13
fused efficient 14 14 1.3 12 13 12
fused eff, sched 14 15 13 13 13 13
contr efficient 18 18 15 15 15 15
contr eff, sched 18 19 17 16 15 16

floating-point codes are handled, i.e., by performing all floating-point calculations in
double precision; however, this explanation is insufficient, in general In the the next

section, where we describe simulated cache effects, we examine this anomaly further,

Cache Simulation Results

As pointed out previously, processor performance alone does not tell the whole story
with 1espect to the performance of naive versus efficient cluster partitioning. There-
fore, in this section we look at cache-memory effects, using test results from the dinero
cache simulator, as we did before. For these experiments, we used trace files genei-
ated during DLX simulation of the codes evaluated in the preceding section, and the
cache configuration used for experiments with a compatible loop cluster, described in
Section 6.2 1+ an 8K-byte mstiuction cache and a 64K-byte data cache, both bheing
l-way set associative with 128-byte lines. The 1esults of these experiments are shown
in Table 6.13

The results m Tables 6.13(a) (¢) ate what we would expect to see: No arrays
were actually elimmated by atray-contraction of the original code, cf. Figuies 6.3(a)
and (b) (page 113), so cache performance was the same for the respective two codes,
i.e., the “oniginal code™ and the “contracted original™. Loop fusion of the optimally
partitioned code resnlted in the same number of array references as loop fusion of

the sub-optimally partitioned code, ¢f. Figures 6.3(c) and (e); consequently, cache
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(a) Performance of Loop Transformations, for Integer Arrays

Phase of mstruction cache data cache tm al luon—mr\

Transformation refu. misses reln. misses  refn misses  fotches
original code’ 10051 O 1800 260 TssT A 1021
instr-scheduled ong 10051 b 1800 26 118H1 32 10214
contracted oniginal 9951 b 1700 26 11651 32 1021
contr origmal, sched 9951 & 1700 26 11651 a2 1024
fused naive 8327 1 1600 24 9027 30 960
fused naive, sched 8327 1 1600 26 9927 30 0G0
contracted naive 7329 4 1300 23 8629 27 N6t
contr naive, sched 7329 4 1300 23 RG24 27 861
fused efficient 7226 4 1600 26 BR20 30 960
fused eff, sched 7226 i 1600 26 BR26 30 a60
contr efficient 5722 3 700 10 6122 13 H6
contr efl, sched 5722 3 700 10 6122 B 1

(b) Performance, for Single-Precision Floating-Point Arrays

Phase of mstruction cache data cache i Im i nmemoty

Transformation refn misses  rein.  misses tefu misses  fetches
original code 11952 6 2600 27 TIRh2 050
instr-scheduled orig 11952 6 2600 27 14552 33 1056
contracted original 11852 6 2500 27 11352 33 HODG
contr original, sched 11852 6 2500 27 11352 33 1056
fused naive 10026 H 2300 27 12326 32 102
fused naive, sched 10026 ) 2300 27 12326 32 1024
contidacted naive 9527 5 2100 24 11627 20 928
contr naive, sched 9527 b 2100 24 11627 29 28
fused efficient 9526 5 2400 27 11926 32 1021
fused eff, sched 9526 5 2400 27 11926 32 1024
contr efficient 8022 1 1500 1 9522 15 180
contr eff, sched 8022 A 1500 11 9522 15 R0

(c) Performance, for Double-Precision Floating-Point Arrays

Phase of mstruction cache data cachr fotal —“memaory

Transformnation reln misses  reln. misses  refn omisses  fetches
original code 11952 7 50 57 17152 04 2048
instr-scheduled ong 11952 7 5200 57 17152 61 204K
contracted original 11852 7 2000 57 16852 {1 2045
contr original, sched 11852 7 5000 h7 16852 654 204K
fused naive 10026 H A600) 57 14626 62 1984
fused naive, sched 10026 5 4600 57 14626 2 1984
contracted naive 9527 5 4200 51 13727 H6 1792
contr naive, sched 9527 5 4200 51 13727 56 1792
fused efficient 9526 5 4800 57 14326 62 1984
fused eff, sched 9526 5 1800 57 14326 62 1984
contr efficient 8022 1 3000 25 11022 29 428
contr eff, sched 80022 4 3000 25 11022 29 Y28

Table 6.13: Dinero Cache Performance for a Non-Compatible Loop Cluster
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performance of these two codes, i e, “fused naive” and “fused efficient™, again was the
same. And, the number of arrays remaiming after array contraction of the optimally
partitioned code was much fewer than the number remaimng after contraction of
the sub-optimally partitioned code, ¢f ¢ 3(d) and (f), consequently. the number of
misses 11 this case was much lower, both for the instiuction cache (because of the
fewer nuinber of indesing istructions) and for the data cache (because of the fewer

number of loads and stores) (see “contt naive sched” and “contt efl. sched™).

What is sutpnisimg from these results is that they fail to explain the differences
in petformance noted i the previous section  First, since the processor petformance
of single-preasion and double-preasion floating-point computations were the saine,
cf Tables 6 1H{bY and (), and twice as many data-cache misses occumred with the
double-precision codes as with the single-precision codes, of. Table 6.13(h) and (¢),
one would expedt the timing results for double-predision fleating-poimnt codes to be
much less than the corresponding single-precision codes, but this was not the case,
as was pointed out m the previous section. Also, since the “fused naive” code and
the “lused efficient” code both required fewer processor cycles than the corresponding
“original code”™, f Table 6 11(a) (<), and both had a lower number of cache nusses,
one would expect the timing results for the fused codes to be commensurately less
than the results for the cortesponding original code; however, this too was not the
case, again as pomnted out. Unfortunately, for neither of these two anomalies are
we able to give a sahisfactory explanation, astde from perhaps timiug errors and/or

tounding errors i the tegression calculation used to compute eps.

6.3 Summary Observations

The expernments reported m thns chapter show that the benefit from collective trans-
formation can be substantial, sometimes resulting in more than a four-fold speedup in
petformance. The benefit detives not from any single transformation, per se, but from
a combination of transformations, with array contraction having the most pronounced
clfect Besides providing an indication of the overall benefit of collective tiansfor-
mation. our expeuments support several commonly held perceptions 1egarding the
effectiveness of the individual transformations employed, such as loop uurolling, loop
fusion, artay contractioin, and software pipelining. To tie these results together, we
now summatize oit findings, both with respect to the above transforinations and with

tespect to the related transformations used for comparison.
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For non-vectorized codes, loop unrolling decteased mstruction counts by reducimg
loop control overhead, such as compares, jumps, and delayed branch NOPS - Uniolhug,
also improved the effectiveness of mstruction scheduling by mcreasing loop hody size
On the other hand, it also increased mstiuction cache misses and, hence, memon
fetches, offsetting some of the previous pomitive etfects The overall eflect, howeser,
was a ten- to twenty-percent improvement in petformance for the test codes tun on
the Sun and slightly higher petformance improvement for codes tun on the RS/6000
This was because the superscalar RS/6000 was better able to take advantage of the
instruction-level parallelism provided by the transformation  For the 3090, however,
the effect was opposite, with a ten- to twenty-percent decrease i performance Thas
was because untolling combiues istructions within a loop hodyv 1 a way that nupedes
efficient vectorization inceasing the stitde and nnmber of vector mstiuctions in the

transformed code

As expected, instruction scheduhng mproved processor performance by redu
ing load stalls and floating-point stalls  Although these teductions were sigmificant,
scheduling did not chimmate stalls entiely in most stances The effectiveness ol
instruction scheduling was improved by both loop unrolhing and loop fusion, bhut the
effect of scheduling on array contracted-codes was more apt to be neutral e | some
times benetit was obtamed, but, not always  Thie latter observation s esplamed
by the fact that contracted code s strongly flow dependent. Teaving httle Tatitude
with respect to the order m which mstructions night appear Instraction scheduling
likewise had no mpact ou memory fetching  ‘This nught be a consrderation when

compared to software pipelimmng (as we explain below)

Loop fusion also improved code performance, by reducing loop contiol overhead
and by creating a larger toop body upon which additional translotmations: such as
array contraction and mstruction scheduling, could he petformed It also shghtly
reduced misses in the instruction cache, deceasing the mnmber of memaony fetches
The overall improvement from fusion was moderately low however often less than ten
percent. Morcover, i cetfain mstances, the performance of fused code m combimation
with other optinnzations was worse than without 1t An nstance o which lowes
performance occutred was the case of floating pomnt codes on the RS/6000 A second
instance was the case of vectorizable codes on the 3090 T spite of 1t Tintations

loop tusion setved an important purpose by lacihitating arvay contraction

Array contraction was the single most effective transformanion apphed  The hen

efit of this transformation was attnibnutable to a decrease o the awmnber of array
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indexing operations which accompany this vransformation and a corresponding de-
crease in memory references, primarily within the data cache The only instance in
which array contraction resulted m lower performance was in the case of vectoriza-
tion of loops for winch there were a high percentage of double-precision floating-point
attay references  In spate of its performance benefit over the other transtormations
tested, none of the commetcial compilers used in these experiments actually meluded

array contraction as patt of its standard repertoire of optimizing transformations.

In general, software pipelining, loop fusion, and loop unollimg were found to be
mappropriate for a vector architecture since cach of these transformations usually
impeded vectotization, For this reason. out following remarks pertam primarntly to
the scalar and superscalar architectutes used duning the experiments, vather than to

the vedtor architecture

As an mstincuon scheduling technique, softwate pipelinmg was less effective than
the mstraction schedulers provided by the native compilers. Although it didimprove
code performance m most instances, elimiating stalls by distancing long-latency
opetations, 1t seldom did the job as well as as the native mstiuction scheduler This
was becanse the transformation atself 1s insensitive to the patticular sequences of
mstiuetions which cause hatdw are stalls However. when software pipelining was nsed
m conjune tion with the native mstiuction scheduler, mmprovement was observed in
instances imolving a mix of integer and floating-point operations. for hoth scalar and
superscalar machines This suggests that the primary purpose for software pipelinng
should be to mcrease instruction-level parallelism in machines capable of ngher levels
of concutreney  Furthermore, in these sitnations. software pipeliing which used a
butieting mstiuchon generally degraded petformance over plam software pipelinmg,.
For this teason. we Lelieve buffermg without special hardware support should not be

mchuded as part ol the softwate-pipeliming transtormation

Our expermments suggest that loop fusion should be peformed prior to loop un-
olling This 18 because tusion 15 fess apt to mcur the instruction-cache miss penalty
that sometimes accompames untolling, vet the effect of either transformation upon
mstrnetion schedubling 1 the same  they both increase the number of available in-
stiuctions for scheduling by increasing loop-body size  In this respect. loop fusion
might best be petformed by a compiler preprocessor. Likewise. artay contraction
might also be performed by the preprocessor, since all of the information requited to
petform contraction 1s readily available at the time of preprocessing, and the mpact

upon later code-improving transformations, - all cases, 1s positive.
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Our experiments also suggest that loop untolling should not be dove automatically
by the compiler  Rather, 1t should used oniv to the extent necessary ot effectne
mstruction schedulmg With this observation m mnd, we envision thiee potentially
eflective approaches to unplementing this particular transformation 7 to unoll loops
at a ligh level (pethaps within the preprocessor), based upon the use ol compilen
directives, and use profile information to determine whether untolling s benehaal, 2)
to unroll loops at the level of the Abstract Syntax Tree (AS 1) based upon hed global
criteria, snch as nwabers and types of wstiuctions, or ) to volledt stall information
during an initial scheduling pass. then untoll and reschedule instructions an those
instances m which a speafied stall thieshold 1s exceeded

With regard to loop cluster partitioning, onr experiments show that it s ol greest
impottance to mimmze the number of mtennediate arravs referenced between code
blocks, since the difference between optimally partitioned code and sub optimally
partitioned code can be substantial, with optimally partitioned code ranning, almost
twice as fast in some mmstances The disparity e performance 1s due to the fact that
most of the benefit from loop transformation denves, not from tuston, but from a1
ray contraction Agam, the pumary effect of loop fusion s to marease the amonnt ol
contraction possible, whereas, contraction eliminates costly array mdexing operations
and memory operations, which constitute the largest share of mstinctions execnted
in situations of this type As a result, if partitionimg analysis lails to resultm a trans
formation which employs the munimum wumber of atravs. the petformance penalty

can be severe !t

U'We provide just such an example of how this can occur i Chapter 4




Chapter 7

Conclusions

In this final chapter we briefly summarize the most significant findings from out
rescarch and identify suitable topics for further mvestigation. The purpose of this
rescarch, once again, was to assess the feasbility of using collective loop analysis
in optimizing compilers for advanced uniprocessor architectures and to determne
the benefit detivable when appropriate transformations are apphed to compatible
loop clusters, as a result of collective analysis. It is within this context that ow

contiibntions belong

7.1 Achievements

The following are what we consider to be our major contributions with respect to the

study of collective analysis and transformation of loop clusters:

I Recognition of the fact that the Sarhat-Gao collective analysis method could not
be used to transform non-compatible loop cdusters for codes written for umpro-
cessors  Although the Gao-Satkar method identifies least-cost non-compatible
edges which can be apphed to tiansformation of multiprocessor codes, this in-
formation 1~ msuflicient to partition code into fusionable clusters. {(See Chapter

f, Section L1, page H8.)

2. Recogmtion of the fact that forks m the Loop Communication Graph (LCG)
frequently 1epresent the least-cost arcs to cut when partitioning a an LCG.
This observation s based upon the fact that the output edges at a fork often
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6.

represent the tianster of a single array, whereas any other cuts which would be
necessary 1o break an odd-length evele in the interference graph (1G) necessandy
affect a minimum of two artays  ‘Thetefore no cut of an isolated cvdle can be
less costly than a cut at the forh (See Chapter 3. Section, 3 1, 31)

Development of an eflicient colonmg technmqgue based upon a breadth fiust traves
sal of the of the 1G. starting fiom the nodes which cottespond to the outpat
code blocks of the loop cluster (Algotithm 11, page 18)

Development of an effective loop partitioning heuristic which buidds npon the
previous algorithm and which achieves optimal transformation, m nmany

stances (see Algonthm [, page 15)

Recogmition of the fact that the collective loop fusion algonthm, proposed by
Gao, Olsen, Sathar, and Thekkath, is non-optimal i situations having adjacent
odd-length cycles m the 1G The 1eason collective loop tusion fards 1o acieve
optimality 1 these wmstances 1s that the algottihm considers non compatible
arcs to be constant, whereas the compatibihity status of any particualar arc s
determined by the order m which odd-length ovcles i the 16 ae cut - (See
Chapter 1, Section 4 2 3, page 71)

Experimental tesults to show the extent of speedup achievable fron fugh level
collective loop transformations, such as loop fusion and array contraction, and
low-level transformations, such as software pipeliming, for several modernn hngh
performance computer architectines, such as a scalar RISC workstation, o sn
perscalar RISC wotkstation. and a maimtrame computer with attached vedto
processing faclity (See Chapter 6, Section 6 1, page 101)

Expetimental tesults to show the effects of collective transtormations, such as
those mentioned above, on codes tun on a RISC processor simutator and a cache
sitnulator  For these tests, companson was made with respect to the stages ol
successive transformation. as well as with respect to alternative transformations,

such as loop umolling (See Chapter 6, Section 6 2, page 1S )
] f I !

Lastly, expermmental to show the relative effect of vanons cluster partitionmug,
strategies, from sub-optimal naive partitiomng to optunal partitiong (See
Chapter 6, Section 6 1 2. page 112, and Section 6222, page 133 )
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7.2 Topics for Further Research

Based upon the preceding progress, we suggest the following topics for follow-on

1escarch:

1. Determiming an optimal algorithm to solve the collective ioop fusion problem for
non-compatible loops or establishing a proof that the problem s NP-Complete.

2. Implementing the algorithms for collective loop analysis in a 1eal compiler.

3 Bendimarhing transformation performance on multiprocessor systems and com-
parmg the results to those described for the vanous uniprocessotrs tested. and

ldhl Iy

1 Determining the inadence of ehgible loop clusters in codes taken fiom actual
practice and determining the extent of benefit realizable as a result of transfor-

mation in these instances

, The second item above would involve implementing the relevant transformations
required to solate eligible dusters of loops and to make the loops within these clus-
ters conformable for analysis (tiansformations described in Chapter 1), as well as
implementing the loop analysis and pattitioning algorithms descnibed i Chapters 2

and 3




Appendix A

Sample Code Listings

The following listings are extracts from the codes nsed to measure the petlormance ol
the various loop transformations discussed m Chapter 6 They are induded merely to
tlustrate how the actual timings were taken For tests tan on the Sun SPARC 1/190
and the IBM RISC' System/6000, four programs wete used altogether Phe st called
mksrc, is the shell seript used as the diver to tahe tinings of the vanons versions ol
compatible loops (see Figates 6 1 and 6 2)  The second, called comptst F, contaims
the source code itself, showing implementation of the timimg loop The third winch
is not shown, 1s a modified version of the fist. nsed as a4 dnver for the non compatible
loop tests, and the fourth, called partst F, shows the timing loop and test codes for
the non-compatible loop transformations {sce Figure 63)  For expeniments ran on
the IBM 3090/VE. each test code was ran sepatately. A sample of one of the codes,
called MOREFF, is shown after the partst.Flisting The final isting 15 an aggregation
of the preceding test codes translated into C for nse with the DEX processor simulator
and Dinero cache simulator. All codes used duning the experiments reported e ths
thesis were tested prior to the respective timng test, to venly loop transtormation

correctness.
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{ s1yen. & “e3% crnges L= "arc* ard place the asse~T.y-.arcj.age ..sii 3,
i -.n"7 w."" re test res..ts i- .src fi.e. R. Olse-,
4 . s~ I 127 24:;.8 EST 1992

ezmz =+ § ers.re the test source file is presert

< *"Sisrcy ~ot found”

~est Siopti = nopt

sn¢ “running uncptimized versions”
s

<ro

f.age="-0 -L"

£

fcv vype i int float double
~

~ase Sitype} in
int] tcdef="-DTYPE=INTEGER":;
ficar) tdef="-DTYPE=REAL®*4"“;;
druhle) tdef="-DTYPE=REAL*8";;
esac
for prog in orlg urrolll unrolll fused centr pipe plpebuf
do
case Siprog} in
orig) tst="-DORIG_TST";;
snrolll) tat="-DUNROLL1_ TST";
unroll3) tst="-DUNROLL3_TST";
fused) tst="-DFUSED_TST";;
contr) tst="-DCONTR_TST";;
pipe} tst="-DPIPE_TST";;
pipebuf) tst="-DPIPEBUF_TST";:
esac
£77 S{cflagst S{tst) S{tdef} S{ldefs] -o s{progl.${typel.S{opt} S{srcl]
£17 -5 S{cflags} S{tst} S{tdef} §{ldefs} -o test.s S{src}
1f test -f test.s
then
echo "cat test.,s > ${progi.S{type}.S{opt}.src”
cat test.s > Si{prog}.Sitypel.${opt}.src
if test -f ${prog).5{typej.Sl{opt}
then
echo "executing $S{prog}.Si{type}.Stop%}”
s{prog}.${typel.S{opt} >> ${prog).Si{typei.S{opt}.src

H
H

eise
echo "==> file \"S{prog}.$itype}.S{opt}\" not found"
£1
else
echo "==> file \"test.s\" not found"
£1
done

done
done

oy
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C tests on a collection of compatible loops
C R Clsen, Fri Jan 3 11:34:40 EST 1992

fcdefl.re FTIME etime

$if~0f CRIG_TST
TYPE A(3001), B(3003}, C(3001), D(3001),
. T13CC.y, F(3001)

te~a.!

3001, €(3001), Dy3C0L),
¢

C€(3001), D(3001),

F.SED_TST
~ysE A(3201), B(3001), C(3C001), D(3001),
. E(30C1), F(3031)
pemzif
$ifce CONTR TST

~YPE AT B, C, D, E, T, F(3J01)

TYPE A, B, ¢, D, E, T, F(3001)

~“Ca.
¢.f~ef PIPEBUF_TST
TvPE A, B, BB, C, D, E, T, F(3001)
INTEGER I, J, N

ASE, NVAX, INCR, ITER
REAL BEGIN{2), END(2), OVERHEAD, TIME

bl
g

- AASE = €60
N NMAYX = 3000
TNIR o= 63
z mFR = 82
I .=~ te ti-er cverread
‘.\__, l"':\‘ ﬂls:\l
N DOFTIVME(END
SLTR AT - FANDHIY e END(Z) - BEGIN(I) - BEGING?
J.TR ZAD = MCLTTIW,
T oroce v conck resc..ticm oo tre Sum 47490 ls 110 of a secco:

NMAX,  INCR
L TE, 7 ONMAXe 24,7 INOR:IY, IS

TOR LENIT- TIME (LSEX''S

ca.c..atic~ beg.ums tere

eyest,
a0

Page 1

Apr 151892 05 57 00

dendif
§ifdef UNROLL1 TST
D¢ 10 1=1, N, 27
A(IY = I

15 AtI+i} = 1+l
30 20 i=., N, 2
B(I} = N - I
2¢ B(I+1) = N - I-1
nC 3C I=1, N, 2
LI} = A(I) + B{(I)
30 C{I+1) = A(I+1) + B(I+1)
20 40 1=1, N, 2
D(I) = C(I) - 99
49 D(I+1) = C(I+1) + 89
20 50 I=l, N, 2
E{I} = C{N+l=I) + B(N+1-I)

(g

5C I C{N-I) + B(N-I)
De 60 1=1, N, 2
F(I+1) F(I}) + D{(N+1-I) + E{
60 F{I+2)} F{1+1) + D{N-I} + E(
fendif
#ifdef UNROLL3_TST
oo 10 I=1, N, 4
AfI) = I
B{z.1}
A{I+2)
10 A{I+3)
Do 20 I=i, N

™
4

+

-

nowon

+
B(I) = -
B(I+1) =N
B(I«2) = N
20 B(I+3} = N
oC 3% I=i, N,
ciIy = a(l
cri+l) = A{I
SHI+2) = A{I+2} + BII+2,
ac C{I+2) = RAfI+3, « (11}
jold =., N, 4
= C{I - 393
.} = CtIel - 63
Iy o= IrIez, ~ 92
42 o T Tt . 32
jafe) =., N, 4
= C(Ne,-I + 2
Yy o= T on=l-l, e
s. 3y = TaNn-2-1, -
jotes =1, %, 4
1yo= SUIY e TN
2} = Fi{Isi) ~ T
3y = Tl - T
3 4, = TaleZy & L
ge~clf
$§:5zef T_SE_TST
jotel 0%
sl = NeIel
stz 1=l
bom AiN=Ie. e 2 Nelel
Cs TON-Ie., ~ 33
Cine =, + BiNe_ =D
i = F I - D %e.-I - I
terz. %
t.fzef TIN
jodel ~
2
%9
2
fa--f i
Lfze” BII TIT

comptst.F

)
I+1)
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Seres
Tom T e 39
RN
. L.t
¢, = FLy 4 T
A o= Nel - 2
Tk
= T - 3%
Z =7 +8
= 2 « £
13y = F(2y + T
Ao Nel = 3
2 =2
~ = A + B
o= T - 99
£E=7+8
A= Nel - 4
a =
JECINA
36 106 I=5, N
T =D +E
F(1-1y = F(I-2) + T
C=A+8
0D =C + 99
E=0C+ B
A = Nel =1
- g =1I-1
T PlIING
T =0+ E
F{N+¢1-1] = F(N+1-2] +
C=A+8B
o= C + 99
E =C+ B
T =D+ E
F(N+1) = F(N+1-1) + T

fe~dlf

$.fcef PIPEBUF_TST

C PROLOG
A N+l - 1

0

A+ B

=B

c + 99

c « BB

D+ E

<]
oo

Houon

N+1 - 2
1

A+ B
=8B

c + 99
C + BB

nouo

F!Uggﬁ w > HmMmownw

N+l - 3

oo

2
A

W W
+
w

o>
[+
"

wZ
+ w

M

1

-~

3]

C BODY
DO 10 I=5, N-1

T

comptst.F
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Fi1-3 = FiI-4 - T
T =3¢
s+ 99
£ =C - 28
¢ =A-38
83 = B
A= Ne, - 1
i 3=1-:

FNel-4) = TNel-31 o T

F{N+1=3) = FN+1-¢] « 7T

D= C .+ 39

E = - BB

T =2+ &

F(Nel=2) = F(ve.-3) - 7T

C=A+ 38

BB = B

O =2+ 99

E=C + BB

T =D+ E

F(Nel=l} = Fh+l1=2' + 7

A o= Nel - A

B=N-1

C=A « B

3B = B

S = C « 99

£ =C + BB

T =D+ E

F(N+1) = F(N+1-1) + 7T
ferdif
13 CONTINIE

CALL ETIME(END)

comptst.F

TIME = END(1} + END(2) - BEGIN(I) - BEGINIZ)
80 WRITE(6,90) N, TIME * 1203000 / ITE

< ENDT = MCLOCK ()

c TIME = ENDT - BEGIN - OVFERHEAD
C write vector length and tire (in microseccnds)

C 80 WRITE(6,90) N, TIME *
%0 FORMAT(I1C,F17.1)
END

1C0CO 7 ITER

e
SV

W

“AZ
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testa on a collection of non-compatible lcops
R Clsen, Sun Dec 15 13.43:15 EST 1991

(o]

12ef.~e ETIVME etime

¢ {cet CRIG_TST

TYPE A(2000), B(30CC), €{3000), D{(3C00),

+  E(3CC0), F{3020), G(3000), H{3000}
fend!if
tifdef ORIGFIX _TST

TypE A(3000), B(2CCO), C(3000), D(3000),

.+ E{3000), F{3000), G(3000), K(3000), b, e
fe~dif
tifdef NAIVE TST

TYPE AT3CC0), B(3002), C(3000), D(3000),

+  E(3000), F(300C), G(3000), H(3000)
feraif
$1f3ef LSNAIVE TST
TYPE A(3TCO), B(3000), C(3000)
s E{3203), F(3200), G(300C83, H{3000), a, b, d, e
¥
. ° TST
ETA{3C00), B(3000), C(300C), D(3000),
FU3C00Y, FL3500), G(3000), H(3000
CREFF_TST
g A3ILC0), E{3000), B(308D), b, ¢, d, e, £, g
TESER I, J, N
\VAX, INCR, ITER
END{2), CVERMEAD, TIME

cvertead
S(BEGING
TLEND)
END(1) + END(2) - BEGIN(1) - BEGIN
- -« +=at clcck resolutton o~ the Sun 47490 is 1/

)

(2
i0 of a secord

INCR
NMAX ', 14,7 INCP:,I4)

TENGTH TIME (USECH?)

PN RS NIRRT )
. v

PN
.
'

[ ]
“
i
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10 A(T
PO 20 1=
b = A

B(I)

20 c(n
D0 30 I=

30 oI
DC 40 I=

40 E(I}
Do 50 I=
e = E

F(I)

S0 G{(I)
DC 60 I=

60 F{I}

tend’f

4ifdef NAIVE TS
-0 10 I=

A{D)

B(I}

c(I
oG 26 I=

o

E{D)

F{}

25 G(I}

[T I T TR e T T i

nonon e

ye
(&}

WoRea o oo

a =
b = a
A} =
B{I) =
e c{l) =
CO 20 I=.
d = A(
e = B{
EtD) =
F(ly =
2C Gil} =
oC 30 I=1
3 HiY) =
terdlf
$:fdef EFF_ TS
~n + T -
et AN .
it A(D
20 20 I=1
EfI) =
c() o=
oz =
- Tt o=

oy

T i Lt

partst.F

I

s N

Iy »2+3

b + 99

¢ N

A(N-I+1) + 6

s N

B(1) + C(I) * D(I)
» N

I

e * 4 +« 2

e * 8 -3

s N

F(I} + G(I) * E(N-T+3)
T

, N

A(I) * 2 - 3

B(I) 99

, N

A{N=I+1) + &

B(I) - T(I)y * 0D
E(Iy = &4 « 2

£E(I} * 8 -3

N

F{I) « G{I) ™ EUIN-I-0)

F{I) « GfI} * E(N-T+

v

[ x )
w
™

i)
et
«
ity
‘e

Ormn
L Y
Cer

»
-
aon

oo
[
TN

+
l
.

(]
[}
0

Page 2
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MOREFF: PARTITIONING TEST FOR NON-COMPATIBLE LOOPS

~
c

8]

w

INTEGER N, I

REAL*8 A(3000), E(23000), . (3000),

REAL*2 BEGIN, END, OVERHEAD,

INITIATI7E INPUTS

AASE - €0
AVAX = 1000
NCE = 60

JAL. CPUTIME(BEGIN,RTNCODE}
CALl CPUTIME(END, RINCODE)
CVER~EAD = END - BEGIN

wWRITE (b, 5)

moreff Page 1

TIME,

81, ¢, D, E1, F, G

MFLOPS

FORMAT (Y VECTOR LENGTH TIME (USEC)’

—IvI THE L3 ECTICN FOR VARIOUS VECTOR SIZES

20 70 v - 3ASE, “MAX, INCR
CALL CvJTIME(BEGIN,RTNCODE)

20 18 I=1, N
Ay = I
~o 2¢ 11, N
31 = A(I) * 2 + 3
C = Bl + 8%
T = A(N=TI+1) + 6
£(I}) = BL + C* D
oo 32 =1, N
El = E(I}
F=ElL*4+2
G =E1 *8 -3
F(I) = F + G * E(N-I+1)

CAL. CFUTIME (END, RTNCOCE)
TIME = END - BEGIN - OVERKEAD
WRITE(6,80) N, TIME

CONTINUVE

FORMATI9,F17.1)

JAN
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secsersrrrseverreererrrrets Lrin c5 oo lectlse vrteTesresseveras S.oNel , TIoNe , TN L, TEoN-.
T, B el , C1 Nel o, T2 Nel, T2 Nel,, T2 08wl
ThH L = T
For o tl=l, le=Np les) 43
: I
foe laip temnp Leel i
g4 o= iz z,
fo- ti=l; le=N; Llee) 3
T.04 = RIL; o+ Bl
for {i=l; le=w; Lee) for (i=1; LesN; L+=8)
Tz ¢ = CLIS) + 39; [ Cifl = A"t + 814
frr [if=_p fc=Np L44) Ciliisl = R L+l + R 1.,
T3 1 - SLIN+i~i, ¢+ B nel-ilg Ci{i+2 = ATi42 o+ 8 {.2
for (l=., le=Ng les) Cillie3 = ATie3 . B'L43];
=4 _ = C4.,i-1) « C27NelI-i + C30155
for {i=1; §<=N; le=4)
f3r (i=l; Lleo=N; L} ¢ L2740 = Tl o+ 33
pricvf(nsd . ~",CL°1 ), C2liel = Cl'iel’ « 39;
C214-2 = Cl,4i+2, « 89;
4= C,34; €2, L+3, = CL L«3. + 39;
/* ~al- */ ¥
for (i=.; L<=N; L1+=4)
{238, - Clfe -t 3I8Nel-4];
fesrresssssanssennann-sresns nrnlled onge tererEreesssesaet) c3li+1 = C1.n-L . BIN-11;
C24+2, = 71 n-l-i] + BIN=1-t,;
CIi{e3d = J1 N-0-10 4+ B AN-2-1
—aln 0 1
ity for (i=.; l<=N, f-24)
Sepm ATNnet . BINel], Cl{N#1), C2Inely, CI{Ns1], CAIN+i]; I CAlY = CA[L-1  » ZDone,-tY . C3ILG
C4li+1 = S84, s ZZ.N-t] e C3{1e1],
c4r5y = 7, CA{1+2' = Ca(l+l « C2IN-1-1] « C371s2,;
for (i=1; L<=N; 1+4=2} C4{1+3) = C4 142 « C2'N-2-4, + C31¢+3];
Al - i; }
Eli+1l] = Ls1;
) for (1=1; 1<=N; i+#)
far (L1=1; l<=N; 1+=2) rintf("¥d\n", C4 1)
to3[4Y = N~ §;
B,l+1) =~ -1 ~ 17 } /* ratin */
4
for (i=1; 1<=N; 1+=2)
] Cl\i) - Ali] + B[l]: FAAAARARRA LRSS RO AR AS AR AR A Al fLsed IOOpS frvecerpvecranenay
Clii+1) = Ali+1] + Bli+1l};
}
for (i=l; 1<=N; {4:2) main ()
foC2(i) = c1{1] + 9%; { int §;
c2{1+1) = Cl{i+1) + 99; TYFE A[N+1], B[N+1], Cl[N+1}], C2|N+1}, C3|N+1), C4{N+1];
for (i=1; i<=N; 1+=2) c4{0)} = 0;
C3,1) = C1[N+1=-t} + B{N+1=-i1; for (i=1; 1<=N; 1++}
C3[{i+1) = CLIN+2~1) + B[N+2-1]; { A[N=1+1] = N=1-1;

i B(N-1+1] = 1-1;
for (i=1; i<=N; 1+=2) Cl{N-§+1] = AIN-1+1] + B{N={41];
©oc4i1 = c4li-1] + C2(N+1-4) + C3[1]; C2[N-1+1) = Cl{N=i+1] + 93;
Caii+l; = CA[1) + C2[N~-1] + C3[i+1]); C3i{1] = Cl[N+1-1] + BIN+1-1);
} C4[1) = C4[4-1] + C2[N+1~-1] + C3[i]);
}
for (1=1; 1<=N; 1+4)
prircf(*sd\r",C4(411); for (1=1; i1<=N; 1s+4)
printf{"%d\n",C4{4));
} /* rain */
} /* main */

Jewsasnssanannvnnansensnrner yunrolled three times "weesaveavrennney
Jasnsesrranrcsssssnncvenrtr fused and contracted loops **vemscresssscen;

main ()
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~a =~ {} C4(N}] = C4(N~1] + &7
Irt o}
Ty P 5, © 2 3, C4iN+1); for (1=1; 1<=N; {44}
ar Beoclooc2, e3, CAIND) printf("%a\n",Cali]};
470y - ©;
for (i=1; f<=N; 1++) ; /% main */
( a = (Ns1) - iy
zlt—;ia—,lé. Jesersvencwavsansvse gofrware pipeliread locp with bLffay *otsanascsvennany
c2 = cl « 99;
c3 = cl + by
C4iL) = C4{1-1) + €2 + c3; mair ()

} f int 4i; o
TYPE a, b, bb, ci, =2, c3, d, C4'N+1 ;
=17 L<=N; 1e+) 1 /
Tf{*sd\~", C4i]); /* prclog *
ref \n", Cait]): PEos. L,

a = (Ns1} - 1;
fnesstsnavssasestssennrtars goftyare plpeli'\ed 10Cps trresetrrsancansy b o= O;
cl = a » b;
bb = b,
3.~ {} c2 = i + 39;
oL, €3 = €1 » &~}
LonLt - 4 = .
“veT o, b, oL, €7, €3, d, T4 N1 d c?2 + c3;
) a = (N+31) - 27
MR b= i
' cl = a + b
> ~ - kb = bj;
N ‘ c2 = cl « 99;
- N - c3 = ci + ob,
T P -
< - - a = (N1 - 33
- b = 2;
- <Y e - ci = a + b,
' ’ ' bb = b;
N - "
' ’ a = (N1} = 4;
‘, .- W o= 3;
R s * o -
~ e F . rody
- -3 for ii=3; fehg Lo
‘ K o4 14 = 04 =% .z,
v R a = 27 « ¢l
~t oz = S53.
1 N K »; = z. 53,
N cd = =. rr,
e b, < = a2 = -
N -, - 83, n _,:'
- - e ox, a N .
PP :
3 - N - 2
. . -
B I
. ..
. - N, Le- o .
’ CT - ce Neloo= TE - .
3 . = sl oz oL e e
zio= c. ,
. ue { :-
: = =l - zC
. N T 24 N2 = e -l .z
. .
a - =
B ‘o z
- - a W=l e -
IR

'
o
[




G abey

8ap02°0

.- . -
v 7o me BRL . -
el Nz - -
‘T -
‘Ee s T oo/
-

2696 8C ¢e6. &. -CY




Appendix B

SPARC Architecture

In this appendin we teview the basic featutes of Sun’s SPARC ardhitecture and 177
FORTRAN compiler as they pertam to the SPARC Server /190, the scalar RISC
worhstation used durmg the testing of collective foop transtormations descrthed m
(haptet 6 In subsequent appendices we provide similar ndormation revarding, the
remarng ardntectures and compilers used danmne our expermments I this revard
neither this appendin not the ones that follow are tended 1o he comprehensive
Rather. the purpose of these appendices s merely to mtroduce the sabent features
of each archtecture and compiler 1 suthaent detarl to pernnt anderstandime of the
results presented i Chapter 6 Wath thas objective momnd s we hegain with o b

description of the SPARC architecture

B.1 Base Architecture

SPARC, au actonyim for Scalable Processor Architectine, s an open ardhitecture
specification which has now beenmnplemented by severalmanutacturers The featune,
of this architecture ate stmdar o many ways to the DEX awrddntectire desanbed
Appendix E [HP90]  The architecture itself denrves many of ats desien featines rom
the cathier Berheley RISC I and SOAR ardintectiies register windows delaved
branches, delaved loads with hardware mtetlocks o foatimg pomt coprocessor and

a few spedial imstructions to support tagged data [NMuess)

The arctecture has thiee sets of registers globaliteger registers. plobal Hoating

point registers, and windowed integer registers The windowed registers are hirther

| 5Y)
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‘Table B.I* SPARC Register Names

prmary  glternate

wentifier identifier purpose
BRI 007 window ins
116 123 1017 window locals
13 115 o) oT window outs
10 17 gl g7 globals
Sp 0b stack pointer
fp i0 frame pointer
07 return address
gl /¢10 value

divided into three subsets s, outs, and locals The windowed 1egistets are used m
conjunction with procedutes (see able B 1), A save instraction. executed as pait
of a procedure prologue. chauges the madhune’s mterpretation of register numbers so
that the calhug procedure’s outs become the called procedure’™s s and a new set of
Jocals and onts become avalable Inaddition. the save allocates a new stack frame by
setting a new stach pomnter from the old one X conesponding restore imstruchon
the called proceduare’s epilog testores the caller’s register number mterpretation and
reduces the stach When all of the register sets aie filled and another one s tequied,
the system traps. and the oldest swindow s spilled Converselv the sustem traps when

' By convention global

an attempt s made to testore a previously stored window,
imteger and floatng pomt values are referenced using a register offset, register go0.

which s wited to zero, s used to achieve the effect of absolute addressing

Computational instiuctions obtam all of then data from registers or from 13-hit
sign extended mmmediate fields immsttuctions and put then results mregisters, with
one exception. seth1 Fhe sethymstinction constincts 32-bit constants and addresses
for access to plobal data It loads an immediate 22-bit constant ito the igh end
ol a tegister and puts veros i the otha ten bits For example to load the word at

addiess Toc to 12 the tollowing code sequence s used @

"Mudch imtformation exists regarding the use and benddit of register windows, but ths nratenal is
largely arreles ant to our particular vesearch [DS90, KWSR, HPY0, UBE* S]]

I SPARC assenbly Language soutce operands precede the result operand, and the tiest operand
ol a three operand mstruction s always a register name  Lach register reference s preceded by a
percent sign (%) the Yha () operator extracts the high-order 22 bits of i1« operand  and the %1o()
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seth1 “hi(loc). (1l
Id [Yal+CTHo(loO)] a2
Only load and store wstiuctions access memony - Phe load and store mstinctions
have two addiessing modes  one that adds the contents of two integer tegisters and

one that adds the contents of an imteger tegister and a 13 it sigued immediate

SPARC provides no iteger multiph divide, or temamder mstonctions, so these
operations ate constiucted from more clementary imstoctions Hedoes rave amualtiply
step instiuction mulsce, however, it s not used to multiphy varables by constants
Instead. 1t does multiphication by constants known at compile time, usimg sequences

ol shifts and adds  For example, a sontce-devel multiphcation by thiety s translated

o
s11 Yo2 1% 02 LI NN
Yo Lol U 1 (RN
sub Y03 %02 Y02 Py v

SPARC requires that data be aligned according to ats sizes and telerenang, data

that 15 not properly abgned will cause a trap

B.2 The SPARC 77 FORTRAN Compiler

Sun uses the same code generation and optinmzation technology tor all of s pro
duction compilers for SPARC. and m this section we describe the particular features
which affect the guality of code generated by these compiters  OF particudar nn
pottance wm this section are the native optunmizations applied by the 477 FORTRAN

compiler which affect the test resnlts reported i Chapter 6
The comptler has {our levels of optunization. besides the level of no optimization

I'hese levels of optinzation are

O1: peephole optinmzation,

02: peephole and global optinnzation, excuding expressions involving global van

ables and pomters.,

03: lower-levels of optimization along with optinnzation ol expressions anvolving
global variables but with worst-case assumptions bemg maderegarding pomters

and

operator extracts the low-order 13 bits Memory references are bracheted
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04: all optimizations with pointers being traced during pointer analy sis.

Levels 03 and 04 almost always produce the same code, except for situations such as

m which C programs tahe the addresses of local variables and then deteference them

Global optinization 1efers to optimizations which operate on whole procedures
as opposed 1o basic blocks, the compiler does not do interptocedural analyvsis (airca
1988) Lhe optimizations the compiler performs are loop-invanant code motion,
mdicton vartable strength teduction, common subexpression elinimation (log al and
plobal). copv propag. tion (local and global), tegister allocation using modified graph
colotmg. dead code Cammation, toop untolhng, and tail-recursion clhimmation .\ sep-
atate pass handles code w-hnmg The peephole optinzerelmimates unnecessary
imps, elnmnates redundant loads and stores, deletes unreac hable code. does Toop
iversion, ntthzes nmachine iioms, performs register coalesang. performs mstiuction
wheduling, does leat-routine optinnzation. petforms cross jumping, and handles con-
stant propagation [ ASTS6]

In addition to the above optumzations. the comprler implements  tail-recursion
ehmnation. m e expansion. and loop unrolling. Tatl-tecuision elinmnation s im-
pottant hecanse it helps to prevent costly tegister window overflows  Likewise m-line
expanston also chimmates procedure overhead, but inaddition i Geates an-opportu-
miy for tnrther optinuzation by such means as peephole aptimization Loop umolling
iy applied 1o loops which satisty the followimg four conditions [) they contam only
a single basic block, that s, they contam ondy straight-hine code. 2) they penerate at
most forty tuples of Sun mtetmediate-representation code. 1) they contain Hoating-
pomnt opetations, and /) they have simiple loop control. Loops which satisfy these

conditions are untolted once, a compiler option allows lgher Tevels of unrolling

Branch execntion takes effect atter a one mstiuction delave with the option to not
evecnte the delay slot mstruction  Load mstructions can ovetlap other mstnictions
provided the subsequent mstiuction does not use the valie bemg Joaded  Likewise,
SPARC speaiiication allows concutrent execution of anteger and floating-pomnt m
snctions, the exact amount of concurrency being rmplementation dependent The
mstraction scheduler for a Sun- 1 mplementation atlows one additive and one mul-
Ophcative floating-point operation to occur concutently FPheretores the mstruction
schedulet s designed (o handle as many as four ty pes of opetations at once 1) a
branch ot load, 2) an mteger mstiuction other than a branch ot load. 5) an additive
floating point operation, and ) a multiplicative floating-point opetation The actual

mstrudction scheduler used by the SPARC compiler 1s the one developed by Gibbons
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and Muchnick (see Chapter 3) [GMI6, Mucss].

Multiplication of variables by variables and all divisions and remainders other
than by powers of two are computed by calling special leaf routines  As an exanmple,

the SPARC performance for integer multiphcation s shown below

length (in bits)  evdles

[ 1 I8
58 25
9 12 33
13 16 1
17 32 60

The preceding cycle counts are for nonnegative multiplicrs; negative maltiphers e
quire one more cycle for opetands up to sixteen bits and up to four more ey cles o

onger operands.
I 1 !
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Appendix C

IBM RISC System/6000

This appendix summarizes several hey features of the IBM RISC System/6000 and
its native xIf FORTRAN compiler, used to evaluate the effectiveness of collective loop
transformations descubed m Chapter 6. The RS/6000, as 1t 15 known, comes i a
wide range of models, fiom a low end Model 320, to a high end, Model 930. The
particilar model used in out expenments was a Model 550 Although mimor architec-
tural differences exist between these models, the matenal presented i ths appendin
generally applies to all models, unless otherwise noted  The mformation which fol-
lows was extracted prmarily from IBM manuals on RISC System /6000 technology
and performance tumng {Mis90, Bel90] - As m the previous appendix. we begin with

an architecture desaription and follow 1t with a brief compiler deseription

C.1 Base Architecture

The IBM RISC' System/6000 employs a superscalar processor which is distuibuted
actoss several semm custom chips [BW90, GOY0]: an Instruction cache Umt (1CU),
a Fixed-Pomt Unit (FXU), a Floating-Point Unit (FPU), four Data Cache Units
(DCUS), a Storage Control Umt (SCU)L an Input/Output Interface unit. and a cloc k
chip. The basic orgamzation of the RS/6000 is shown i Figure € 1.

The 1CU contains a branch control unit, condition code registers, mstiuction
cache. and wstruction translation lookastde butfer (‘'TLB). along with the cential con-
trol hardware for mterrupts. Fived- and floating-point mstructions go to instiuction

butfers m the FXU and FPU where the mstructions can be concuriently executed.

160
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Branch Processor Instruchon Cac he
Fixed-Pont Floaung Point
Unut Unit
3
Data Cache ]
l\jlﬁuvlngMemo;y -

Figure .1 The TBM RISC System /6000 Nichntecture

The mstruction buffers themselves can cach contam up to twelve entries Besydes the
fixed-point anthmetic unit, the FXU contains the fixed pomt registers, segment ieg,
isters. and data TLB The FXU decodes and execates all fixed pomnt mstiuctions and
floating- pornt load and store instiuctions Incaddition the FNTU perforins pave table
updates for the two TEBs and page-table updates  The FPU also contamns, of conse,
the machimes floatmg-pomt registers, as well as siv rename registers and two dinvde
tegisters  In addition, a five entiy pending store quene and o fom entiy store data
quene 1 the FPU enable the XU to execute floating pomt store operations helore
the FPU produces the data The cydle time of the processor vaties depending upon
the model. but for the Model 330, which was used for the tests the clock rate TEM
Hertz. At this tate the processor 1s able to exeaute Hoating pomt operations at o
peah rate anvwhere from 10 60 MEFLOPS

Among the umque features of the RS/6000 areIntecture are 1) mudtiple sets of
condition codes that ate managed by the compler mnch hke general prrpose registers
m a load/store archutecture, 2) update forms of Toad and store mstinctions update
the contents of an addiess register with the results of a displacement computation
for the address of the uext operand, and 7} compound operations which combine
two atithmetic operations and execute theny as a single operation ‘Theoretically the

processor can execute four imstructions per cydle o branch o Jogical compare. o
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fixed-point mstruction, and a floating-pomnt instruction. Moreover, the floating-point
mstiuction can be a compound multiply/add instruction (FMA), for a a total of
five insttuctions per cycle ' The condition code sets allow severdal condition registe
altening operations to be underway concunently and mcieasing parallelisin between
fixed-point and floating-pomt umts This allows branc hes to often be fully overlapped

with computation, giving the effect ol a zero-cycle branch delas

A multiply instiiction takes three to five cycles, floating-point divides can take
nmeteen to twenty (veles, and a ternnnating branch whichois not a BOT/E can take
about six (viles  Compound mstructions use the same functional units as sigle
opetation mstiuctions, but the target of a componnd mstiuction s not available
as the mput to another multiply/add mstiuction for two cyveles, therelote. a seties
of compound mstructions would 1ssue every other cyde. rather than everv cvdde as

not mally would be the case

The processor has 32 fixed pomnt registers and 32 floating-point registers, and all
atithmetic 1s done to and from these registers. A floating-point load mstruction is
done by the fixed-pomt umit and therefore can be done concutrenthy with a tloating-
pont mstiuction. provided the floating-point instruction does not depend on the value
being loaded  Stotes are also done by the fixed-point unit, but since 1t does interact
with the floating-pomt unit it cannot be executed concurrently. delaving the floating-
puint unit by one cvdle Al fluating- pomt anthmetic i an RS/6000 15 done i double
precision, and therefore, single-precision anthmetic s actually slower than double
preaision because of the extra instructions needed to convert the double-precision
testlts back to single precision The advantage of using single-precision numbers, on
the other hand. 1s that «ache and TLB misses should occur on average hall as often

and twice as many numbers can be held i each cache hne and memaory page

The svatem has a fonr word memoty bus, a four-word mstiuction-fetch bus from
the mstruction cache, a one word data bus between the fixed-point umt and data
cache and 4 two woid data bus between the floating-point umt and data cache. The
st ton cache umt, located on the ICU 18 a two way set-associative 8h-byte cache
with a line size of 61 bytes, and the instiuction TLB 1s a 32-entry. two-way set-

associatine cache

The data cache employs a four-way associative, 61K-byte data cache having 128-

byte hnes. Bach of the four 128-hme sets of 16K bytes corresponds to a 16K-byte

I'Phere are actually four compound mstructions  multiply/add, multiply /subtract, negative mul-
tiply /add, and negative maltiply /subtract
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memory page. Therefore, any particular hine from memorny can go mto any one ol
only four lines in the cache. Cache hnes are tetneved from memony hne at a tune, bt
the particular word referenced withim the requested hne s ttanstered (o repister st

Both the loading of cache hnes and the copy back of Tines to memaony are buflered 1o
minimize cache-line replacement tune Fhe cache uses a Teast Recenthy Used (T RU Y
line-replacement policy and o copyback pnnaple sach that onlv maoditied hines e
wiitten back to memory at the time the respective ines are expelled from the cache
Loads from carhe to register take one ovele, but i the requested word 1= not present
in the cache there is a delay of eight cyveles, from then on subseqguent requests fo
words within the requested hine are satishied 1 one avdde, as m the previous case o
support this high transfer rate, the svstem ases either a b bt or 128 i mterface 1o

the machime's four-way mterleaved memon

The Transtation Lookaside Buffer (TEB) s a 125 entiv, 12K byvte, two way st
assoctative cache that retams mappig mformation between vittual and real addiesses
for the most recenthy requested pages I the vittnal address of a T page s hebd
the TLB, thete s no delay in accessimg the tegquested page, b s not thare there iy a
delay of 32 cydles while the mappiug mtormation s tetched from the tespective page
map table, For sequentially accessed data, the cache nnss overhead s much hreher
than the TLB overhiead  For example, tor double preasion data (Geht byvtes per
number) a cache miss caustnig an eight oy cle delay wonld oconr evers sisteen (128/8)
data 1tems, whereas, a TLB miss caustng a thuty two ovele delav wondd aconr only
every H12atems (1h/8) However, were the stude th bvtes a cache nnss and o TEB
miss would occur for cach iten requested. and therelorer TER overhead i this case

would dommate

C.2 The xIf FORTRAN Compiler

Although the XL Compilers are a new Ime of compilers, then ongms are with the
PL 8 compiler developed for IBM's 801 numcomputer [AHS2. OHM P90, Rads2] T he
particular FORTRAN version we descnibe here is an catly version, ver 101 which

has since been upgraded [ITBMY)]

The xIf compiler has two levels of optinization NOOPT. o1 no optimization and
OPT. The optinuzations petformed by xIf are. usimg IBM ternmnology value v
bering. straightening. cominon subexpression elimination, code motion reassociation

and strength reduction, constant propagation. store motion, dead store elimmation
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dead code ehmmation, i lining, global register allocation and instruction scheduling
Value numher s IBMs term for local constant propagation, local subexpression elim-
mation, and mstruction foldimg  1BM uses the term “straightenimg™ to tefer to the
reattangement of program code to minnnize branchimg logic and to «ombine physically
sepatate blocks of code The tenn “code motion™ 1 used to teler to loop-invariant
code removal from within o loop  Reassociation 1s the reartanging of a sequence
of calculations 1 a subscipt expression <o as to produce additional candidates for
common subespression elmunation. Store motion tefers to the movement ot store

mstructions oatside loops

Thete are of conrse several ways the programmer can improve the effectiveness
of comptler optimzation: a few of the less common ways which apply to xIf are, for
example, 1) nsig imphed DO in imput foutput statements, such as WRITE(3) (A(I),
I=1,100). 1ather than an explicit DO loop, 2) using REAL*8 1ather than REAL*4, 1)
defintng censtant operands as local variables tather than global varialyles (the compiler
tecopnizes only Tocal variables as having a constant value since opetands 1n COMMON
ot m an argiiment hist can change), 4) identifying common subexpressions by either

putting them at the left of an expression or within parenthesis. e.g.,
A=B¥X*Y*7)
C=20Y*2*D
5) umolling small loops (untolling 15 an option in later versions of the compiler),

6) avording mteger to tloating-pomnt conversions, and 7) using temporaries to add

negative constants tather than subtracting positive constants within an expression.




Appendix D

IBM 3090/ VF

The purpose of this appendix is to desceribe the charactenstics of a vector processo
which differentiates it from the architectures described in the previous appendices,
In particular, we desctibe the special features of the IBM 3090/VIE and i< VS FOR
TRAN compiler.

D.1 Base Architecture

The 3090 is a high-performance mainframe computer with vector processing capa
bility. Although the machime is targeted towards saentists and engineers, its per
formance 1s less than that of most supercomputers [Don®3]  he computer atsell
comes in several models spanning a tange of nmprocessors to multiprocessors, the
model 180, to which we had access, 15 a vaiprocessor version, but there are several
multiptocessor models as well: model 200, 100, and 600, having two, fowr, and sy
processors, tespectively, From a programmet’s point of view, the 3090 1 hke any
other System /370, except that it has additional registers and mstiucthions to support

the Vector Faality

The standard register configuration consists of sixteen 32 bit general puipose teg,
isters which can be paied to form eight 64-Int 1egisters and four 64 bit floating pomnt
1registers The standard configuration also consists of sixteen 32 it contiol registers,
registets for a CPU timer and time-of-day dlock, and a Program Status Word (PSW)
containing the mstruction counter and status flags ' ‘The 3090, Model 180 operates

I"The 3090 unplements IBM's System/370-XA archite cture, or crtended archadocture an upgrads

165




APPENDIX D IBM 3090/VEF 166

with a cycle tine of 11.5 nanoseconds, permitting a scalar peak petformance rate of

69 MIFLOPS

The sisteen vector tegisters, each comprised of 256 four-byte clements, provides
Lol bytes of fast memory to the machine  Each of these registers s capabie o sns-
faming two tead accesses and one write access per o le [PAISBSS Tueso] At the
next Jevel of the memory erarchy s a 236K byte cache  On the 3090 \Model 1
data tiansters between cache and memory nsing 128-by te lines hegimunme at memory
addiesses divisthle by 125 The cache s 1 way assoctative and s divided e 128
wets, data from addiesses which are separated by multiples of 16 hlobvies compete
for space e the same et of four cache hnes [LS87] The cache uses a Teast-Recenth
Uoed (LRUY e teplacement policy and copy-hack mernony npdate policy Tt supphies
data o the vector faality at a rate of eight bytes per cveleswith neghgible overhead
The masinum prpehned transter rate hetween memoty and cache s 16 hytes eveny
two (vides, with a T avde overhead [LSST] Wheteas vector register teuse reditces
vedtor load and store mstiuctions. which take approsimately as long to exeaite as
Coctor anthmetic mstinctions, cache reuse reduces the time lost e cache-memony
data transfer. which s 16 o1 mote vdes per access Mamn memony s a vivtual mem-
oy syatem which s accessed throngh two-level page map tables One mam-memory
accens can be sustamed per e {either readimg o wnitig) - Like vitual men-
orv. expanded memory (or expanded storage. in IBM termimologs ) is a feature of
Svatem/370 N\ architecture that was not a part of the otigiisal System/370 architec-
ture With expanded memory. block transfers ocan svuchronoushy m ih-byvte pages
while the processor waits These transfers occur directhy between ey panded memaon

and marm memors at a tate of ene quad word every four cvddes [Tucso)

The Vector Facthty can be viewed as an additional mstnuction execation com-
ponent ol the base machme (see Pigne 1 1) For example the vedor istructions
ate decoded along with the scalat mstructions, but once they are decoded. they are
passed 1o the Nector Facihity for execntion Asandicated i the higure, all mstructions
are fetched from cache In the case of vector mstiuctions, operands come either from
one of the Vector Facilits s tegasters trom one of the 3090° scalar tegy terscor from
cachie The Vedtor Paclity bas 16 vector registers, 1 floatmg-pomt registors, and 16
calar teeisters Each element of a vector is 32-bits wide A siele vector tegister
can hold erther @ 42 bit rnteger ot short real, and a pair of even-odd registers can
hold etther a 611t vector product of two binary mteger vectors o a long 1eal (see

Frgure 1 1) The ecctor-mask regester contains mash bits that can he nsed to select

which mereases the uradnne’s virtnal address space to two gigaby tes, among other nnprovements
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which elements of the vector tegister are to he processed and for checking for elements

that are zero before a divide eperation

Ihe pector-status rogestor holds contirol trelds
/

such as a mashk-mode bit, a connt to contiol the number of elements witlan cach

vector register that are to he processed, anintertaption mdes. and other operating
system and application prograny status ‘The eeclor-actiedy count heeps track of the
time spent execntimg vector mstinetions and s maemented eveny mmaosecond winke

a vector instiaction s bemg exeonted

In genetal, vector mstinctions are avalable mone of fow forats

11 V5T

operand m storage, the other i anvoin a vector tegiater, 2) VW all operands i vecton

registers. 4) QST one operand in storage, the other ma scalar register and [ QV-one

operand in scalar tegister: the other, if anvom a vedtor register Addition, subtiaction

multiphcation, and compati-on operations are available in twelve versions one for

2Vector register capaaty and vector mask register size are piodel dopendent for the 3096 Mode]
1801, the capacity and register size are 128 eloments and 128 bits, as shown

e
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cach data format binary mteger and short and long floating-point formats, division
Is avatlable i eight formats  Altogether the vedtor imstruction set consists ol 171
mstrctions, as a hist order approximation, the time u‘qnnwl to exeonte a veotor

st tion s 25 oyeles (overhead) plns 1 ovde per element thereatter [GRWSO]

Vector mstinctions operate on opcrands either o registars ot an memoty the
Leanliont vector elenents alwavs go 1o a vector tegmter, except when the result of
A vector compatison s sent to the vector mask register Vector mstnctions ise the
IBM 3707 extended (32 ity vintual addiessing [IBMRT] Memony s accessed i thiee
wavs 1) sequential addiessine . when vector data elements are o ated i contigions
loe ations of vintual storaee or 1 locations with a hised or constant stide ) under
contiol of @ bt mash for accessmy, elements e erther a vector register and manm
memors and Smndiect addressing, nsing a set of addresses Trom a vector tegister 1o

access data elenents that are located vandomiy e memory

The addios of avertor i <torage 1 the address of the st element to be processed:
this addiese s stored e one of the 16 genetal-putpose registers and as a vector s
betg, processed  the address mthe general-prinpose register s maremented.  he
nmber of clement positions e stotaee needed to advance fron one vecton element to
the nest 1s called the strade For an < matns ~tored i columi-miajor order {the
FORTRAN convention) colamne ate stored contiguonsly with a leneth of i and a
dnde of one. and tows we noncontigions with a length of noand o stiide of e o

a1ton processed anreverse order the stnde s s

Comerting a tegister addies to a storage address mvolves multiphving, the vector
stirde by the tegister size Siwercgister sizes ate a power of two (24 for 32-bitregisters
and 2o 61 bt repisters) the macment betsween successive sector clement addresses
i automatically computed by the macnne by shifting the respective mnmber of bits,
For example, i the stude tor a floating, pomt vector mthe long format s 10 (or 1010

m binany ). the cortespondimg addiess maement 15 80 bytes (o 1010000

When a vector s loaded mto « 1oeister. its elements occupy conseautive register
posttions. and the number of clements loaded s placed n the vector count The count
can he ay mteget from seto aptosection size The ecclormtervaption mdecmdicates
the element i the vector teaister o1 register~ cuttenth bhemg processed  Duning
s e tron execution the vector mterruption mdex normally starts at sero advances
until it reaches the vector count, and then resets to zeto [ a vector mstraction s
mtertupted tor amy reason. the vector mtertuption wdes marks the pomt that was

teached, andd execntion tesimes from that point when the mstiction s 1essued
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Vectors which are longer than the number ol elements a register can hold e
processed 1m sections, section length vares from model to model, but 250 elementsas
a common stze Sectioning 1efers 1o a technique for processing vectors of aimy length
in sections. where a section s either the number of elements that can be held i a
vector tegister o, tor the last section some mnnber of elements greater than cero but
Jess than the <ection size of the machime Sectionme v sometunes called stop e,
tefertmg to the way o which vector sections are strpped away lrom the onginal
vector, for processing i secthion size wcrements - Ao example of oop sectionme, 1+
shown below Lo the lelt s a loop which petforms a siple vector addition, and
to the tight v an equivalent Toop. witten i FORTR AN as ot uneht Togically he

petformed

DO 0T = 1.N DO 1O oNL s
10 C(h) = \(K) + B(K) DO TOK 000§ ANINCN T2
() C. N VWY 1 Bk

The way a loop is actually segmented s indicated by the assemblv langnaee tate
ments next

1, GON
1A Gl
LA (2.8
LA G0

LOOP VIVCU GO

VLD ViG]

VAD VO V0GR

VSTD VO.G3S

BC 2100P
Fitst. the general register GOas given the vector lengthe and GE G ancgiven the hase
addiesses of the thiee relevant vectors The mstinction VEVCU (T aad Vector Count
and Update) loads the vector connt with the lesser of the vector leneth (-peahed i
general tegister zeto) and the section size (agam, for the Model ] sccnon size s 256
it reduces the contents of the gencral tegister by the nuwmber st Toaded mto the
vector count, and finallv it <ets the condition code of the machme to mdicate whethen
the new general-tegister contents are ze1ro Lhe next thice mstinctions are vector
floatig-pomnt mstructions VED loads a section of vector A fronn storage VAT adds
to that section a section of vector B lrom storage and returns the resnlt to vecto
tegister zeto VSTD stores the resnlt mto a section of € And asthy, BC (Branch

on Condition) tests the condition code set by VENCU b ot s 20 peneral registe
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seto s greater than zeto stll, and the mstinction branches hack Fach of the vector
mstinctions advances the vector addiess i the genetal register to the fist element
of the nest section <o that processing can continne directlv from one section to the

nest

The 3090 has several builtm accamudation operations The MANIMUN and
MINIMUA operations produce o result which s the masmmum or mmuen of an
entite vector, tegardiess of section size NCCUNULATE produces the sum of all
clements i o vector, whercas, MULTIPEY AND ACCUMULATE produces the sum
ol the product clements obtamed by multiplone a pair of vectors (the tiner o dot
product)  The order of aeammulation can atfect the rounding erior when and where
miderflon or overflow oconr The tesade of the fiust phase of an accunmmlation 1s o
nuwmber of pattiad sunms ot poelements, where pos the length of the pipeline (e.g .
P Hlor the 30900 and pattial sumis are acammudated usimg the mstiuction SUM
PARTIAT SUMS Although the resultant accammlation might be different than that
ol a sticthy sequential accumulation, the vector accumulation s duplicatable and can

be rephaated by imeans ol a corresponding scalar loop

Athough nianmy vector operations perform the same anthmetic operation on all

clemients of a vector, some applications tequne that an operation be performed on
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selected elements, Two wavs of handhng these situations are usie conditional anith
metic and petfounimeg element extraction For condittonal anthmetic, the operation
is petformed on all elements of a vector, and results are only returned for the e
selected  For element extiaction, the elements required tor an operation are selected
and compressed pnot 1o the opetation, followmg the operation, the results are ex
panded and returned to ther respective mitial locations (sec Fregnre D 2) 0 The 3090

petforms conditional operations both wavs usig the vector ok tegistes

D.2 VS FORTRAN Compiler

In this section we describe the major progran anabyvsis capabilities of VS FORTRAN
VS FORTRAN 15 the optimizing and vectorizang compiler for 1B System /370 an
chitecture and. i party alar, the company™s 3090,V senies of compnters with then
attached Vector Faclitien Nnnmportant capability of this compiler vsoats capabihity
to vectonize genetal purpose engimeetine and saentific apphaation- wnttenn L OR
TRAN 77T Lhe compiler pettotms tins tunction by adentdvne, DO loopowathnn thee
applications that can and should be vectonzed froma perdoroance standpomt and
genetating siitable vector nmachme code for execution by tie Vector Faaliny haid
wate Vectonzation analysis and code generation are padormed by the compnler ondy
when the VECTOR patameter s passed as an optional argument to a so called »eat
aloged™ compilation procedine suchas VSE2CLG A MCGSS BN AL GRT] Besides
the VEC"TOR patatieter these ¢ (ltdl(»L’)(‘fl proce Juges take othe patanietor toconl 10l
func trons such as the level ot optinnzation, whether compiler directives are apphed

the types of output teports prepared conseqrent to complation and alike

During the compilation process the NS FORTRAN compnler proceeds thivonglh
four stages of sontce code andvsis 1) ehgibihty analvas 2 rccunence detection )

suppottability anahvars and [ vector cxecution selection [T 3

Duting the fitst stage of analvsis the compler looks for situations which nmght
make loops welgible for vectorization  Several types of situations mahe a doop
eligible, for example branches ont of a loop around annner Toop o1 hackwards
within a loop. loops other than DO loeops loops witli a loop medes or iteration con
trol expression other than INTFGER T Joops with indnction vatables mentioned i
FQUIVALENCE statements 1/O statements computed or assagned GO 1O wrate
ments, subtoutine calls, external, non mtuimsic funchion references and reference 1o

CHARACTER data I any of these «ituations exist. the loop s not vectonzed and
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the remark “UNANY, o1 unanalyzable, 1s annotated aside the corresponding lines m

the compiler’s vector analysis report A

The second phase of vectonzation analysis 1s recurtence analysis A recurtence
s a group of one or more statements forming a dependence cvde N dependency s
satd to he carreed by a loopf the dependencies mvolved i the recurtence are cansed
cither by the loop ot by some loop at a deeper level of nesting Duning recurnence
atalysis the compiler retwects for vectorization any DO loop for winch at least one of the
following conditions exists [) The Toop contains an unbreakaldle reciurence Mamy
types of recurtences ate breakable, however, as will be desciibed i the nest section
2) The loop uses an imduction vanable which modifies mner DO-loop parameters An
mduction vartable s an INTEGER® T vanable whichhis mmaremented {or decremented)
by o fixed amount cach time a loop terates 3) There ate dependences i outer
loops which prevent an imner loop with dependenaes from bemg anterchanged  Loop
mterchange s also descrtbed i the nest section When a loop cannot be vectonized
because of a recartence, the conresponding lines on the vedtor analysis 1eport are
mathed “RECRT

Durmg the thid phase of analysis the compiler chiecks for operations which are
suppottable by either the compiler or the vector hardware. 'Thie types of operations
ot constiucts which are rejected for vector processing ate certam tvpes of LOGHCAL
fetches o stores, REALT16 or COMPLIEN"32 operations, cettain ty pes of nommndue-
tive subscrpts, cettamn mtrmsicmn-hoe functions: relational expressions that need t)
he stored (fot example, L=A GE B). and musaligned data Lines on the vector anal-
vsis teport which cotrespond to unsupported operations o1 constiucts are mathed
SUNSEPT

The final phase of vectotization analysis is called the vectonzation selection stage.
Duting this phase of comnpilation the compiler selects toops for vectonization based
apon cost considerations (i terms of CPU cvdes). It the scalar version of a loop
takes less tune than the vedtonized version a loop will be executed in scalar mode,
te s, withont using the Vector Faahity hardware. and the cotresponding hues on the
veator analvsis teport will be matked "SCAL™ 1 a loop s ehigible and cost eflective
lor vectatization but some other ehigible loop e the loop nest will vield vet Taghes
petformance, the loop will stidl he executed i scalar mode, but the contesponding,
hnes on the vector analvsis teport will be marked “"ELIG™ Otherwise, if the loop 1s

selected tor vectonization, the corresponding hines on the vedtor analvsis eport will

e vector analysis report s generated by the compiler when the follow g paranieter is passed
to the cataloged compilation procedure VEC(REP(XLIST)
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he marked “VECT™.

D.2.1 Automatic Vectorization

Whenever VS FORTRAN finds vloop which cannot be vectotized hecause ol a tecm

rewce telationship, it automatically tries to hreak the recurience usimg, one ol several
common vectorizing transformations  In addition, the compiler pedforims other ge
lated optimizations to achieve best performance from the Nector Faahity hardware
The types of transtormations and optimizations performed by the compiler are loop
selection, staterment reotdenng, loop distuibution, scalar expansion. T conversion,
use of compound instructions, use ob reduction operations, and mtomsie hoction

tecognition

Loop Selection. If the et foop 15 not vectotizable, the compiler will ook for an

outer foop that 15 The following loop 15 an example of such a situation

DO 0T = 1,100
DO 1 = 149
10 201 1y - ALy XL
Statement Reordering. To hicak hachwaid dependencies, the compler will often
teotder instructions For example the compler will switch the twe s tatements witlin
the foop shown below morder to redirect the flow dependency wlich exists between

clements of array B

DO 101 -2, 100
A - BEDY Y30
10 Bl - ¢y *40
Loop Distribution. Statements within loops which are not homnd by w dependency
telationship are placed in a separate foop <o that these statements can be vecton
ized, The two statements within the loop shown next, for examples will be placed

separate loops by the compiler so that the fust statement can be vectorized

DO TOT 199
AL =~ A1) + 20
Ly Bely by - ey + 20
Scalar Expansion. The next exanple shows a code segment whichois made vectony
able by using scalar expansion. As a result of this transformation. the scalar variable

T is expanded mto a temporary atray so that the loop can then he vectonzed
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DO 101 =1,100
T = B()
B(1) = A()
10 A =T
IF Conversion. If there exists a control dependence m the code segment as shown
to the left. below. the compiler will conceptually convert it to a data dependence, as
Jhown to the nght, a form which can be vectonized. In this instance the compiler takes
advantage of the Vector Fachity'’s vector mask register setting 1, with the predicate
statement, and then usmg it to sclect the affected elements, with the subsequent

staten ent {see Section D)

Before Conversion After Conversion
DO IOK = I, N DOI0OK =1, N
IF (A(K) GT 00)GOTO 10 LOGIC(K) = NOT (\K).GT 00)
10 A(K) = B(k)+ 10 10 1F (LOGIC{R) ARy = B(K) + 10

Use of Compound Instructions. Some instiuctior .. such as MULTIPLY AND
i ADD, are performed concunently in hardware, and loops such as the matnx mal-
tiplication, shown below, can tahe advantage of these instructions to execute at an
opetation tate approaching the machme’s peak performance rate  In thns particu-
lar tnstance, the McGill 3090 executed the matns multiply loop at a rate of H0.8
MELOPS. compated to the machine’s theoretical peak scalar petformance rate of 69

MEFLOPS.

hO 101 = 1,100
DO 10J = 1,100
Cld) = 0.0
DO 10K =1, 100
10 C(LJ) = C(LJ) + ALK) * B(K.I)

Use of Reduction Operations. The compiler 1ecogmzes when certam types ol
reduction opetations ate petformed, such as 1) sum ol vector elements, 2) sum of
squates o vector elements, and 3] scalar (mner) produet of two vectors T these
stuations. madhme mstructions are generated to take advantage of the special vector
hatdwate designed to petform these operations The types of statements for which

reduction operations ate petformed are

SUM = SUM + A(I)
SUMSQ = SUMSQ + A(I) * A(I)
SUMPRD = SUMPRD + A(I) * B(I)
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Since the order of the computation m a vectonzed redudction operation s dilferent
than 1t 15 for a scalar reduction, the tesults of a vector reduction naght also be

th

different  Vector summation, for example, 1s done by addimg every o™ clement and

then adding partial sums: wheteas, scalar swmimation s done sequentially

Intrinsic Function Recognition. The VS FOREFR AN compiler also tecogmizes
standard intisic elementary transcendental functions and compiles them to calls to
the compiler’s standard hibrary Smee the compiler knows these voutimes it can salely
vectonize the loop m which these statements appear, that s it there are no other loop

dependencies to otherwise prevent vectorization

D.2.2 Additional Factors Affecting Vector Performance

Much of the work 1equited to vectorize an apphcation prograim i~ performed auto
matically by the VS FORTRAN compiler. however, there are prosramming practices
which help the compler to do a better job ol vectotization T I many cases vectan
ditectives can be used to provide the compiler with mtormation that s es ontial o
efficient vectorization 'Three such ditectives are ASSUME COUNT IGNOKE and PREFER
ASSUME COUNT specibies a valie that s to be used for vector cost analy s when w
DO loop itetation count cannot be determned at compile tune TGNORE st the
ompiler to ignore specified dependenaes i a DO loop, and PREFER ~peaihies that
DO 1oop be processed o vector mode b ehgible o scalar mode vegandless of dea
stons Mmade as a tesult of vector cost analvsis 27 Direct snbscnpt expiessions should
be used rather than indiect expressions accessed throngh terporanes For example,

[ B

V(I+1) - N i~ preferable to 1) \

Wheteas loop untolling 15 an effective optimization to reduce loop ovethead in scalan
code. it hias an adverse mpact upon vectonzed code (see Cliapter 5 Section 5 10 1)
If possible. the programmer should avord loops with iteration connts that cannot he
determued at compile time I the iteration count s not speahied. the compiler has
no information upon which to base its cost analvsis of elipible nested oops Niray
clements should be accessed using the mmman stode \ Targe stnde mbulnts cache
utthzation by causing cache hmes to be tetched that Tikely will not bhe vwsed And fasthy

5) vector stotage teferences should be avorded withm imner loops

50n the 3090, ns the fength of the machine’s integer function prpeline




Appendix E

DLX Architecture

In this final appendix we describe the main features of the DLX arcintecture and

dlxce compilet used duting the simulation tests desctibed in Chapter 6.

E.1 Base Architecture

DLX is a sunple scalar architecture intended to allustrate the most common fea-
fures of a reduced mstiuction set computer, o RISC [HPY0] DLX has thitv-two
32-bit general-puipose tegisters (GPRs) RO R31, and thirty -two floating-pomt reg-
mtets, FOF3T Bach floating pont register can be used mdividually to hold a simigle-
preasion (32 i) floating pornt mimber o used meeven-odd pan to Tiold a double-
precision (62 1it) number A set of special tegisters s avalable for accessing status
mlormation, one i patticular the FP status register. s used for both cempares aned
exceptions M movements to/from a status register must be thiongh o GPR - In
addition, there s a branch mstiuction that tests the compatison bit m the FPstatos

registet

AMEmemory references ate thiough loads or stores between memoty and cither the
GPRs o the FPRs  Accesses involving the GPRs can be to a byteo a hallword. o
a word  The FPRs can be loaded and stored witl smgle- o1 double-precision words
Memory s byte addiessable e “ig-endian™ mode with a 32-nt addiess And. all

MEeMory accesses st he dllgll(‘(l

[ ke mstinction operations compon to most RISC architectures, DLX operations

can be divided ito fonr casses 1) loads and stores, 2) ALU operations. .3} branches

176
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and jumps. and /) floating-point operations
i 8 I

Any GPR o1 FPR can be loaded o1 stored, but loading RO has no eflect since
this register s made to alwavs hold 0 DLX has only a simgle addressine mede hase
register plus 1o bit signed offset - Hallword and by te loads Bl the fowar portion ot
register while the upper portion s hitled with either the sign-extension ol the loaded
value o1 zetos, depending upan the opcode v Toad High Imediate imstruction
loads the top half of a regrster whide setting the fower halt to zera thns allowime, the

formation of a full 32-bit constant, with two mstructions

I'he DX ardntecture has a completeset of AL mstractions imcludimg logeal op
erations and shift operations Allof these mstiuctions are either tegister to register on
mmmediate  Inaddition, there are move wstinctions to copy data bhetween GP RS and
FPRs and data-conversion imstructions to convert lata between sinele and donble
precision Compatson mstinctions pettorin a logical comparison o the valnes e two
tegister and place the result mto a thud reerster Tl tine and Ot false - Because
(()mprnixnn mstiinchions “set’ a registel thes are cadled set t'qlm] wt devs than and

o forth  Thete are also mmmediate farms of these imstoactions

Faeontion control s achieved with fonn pmnp mstonctions and several branches
based upon the nsual lopical conditions cqial, less than et Iwo of the pmp
imstiucions determme then destination addiess usine o 26 bt oflset added to the
program connter, the third i a plam pompoand the fourth s aquip and ik which s
used for procedure calls to place o teturn address e K3E For branches the condition
15 specthed by testing a register souree 1o test for zeto or nonzero a vabue that
often the result of a previons compare branch tareet addiesos ae speahied ng o

Lo-bit signed offset that s added to the program connter

Floatmg, pomt nstuictions manpuiate loatme point registers and indicate the
type of precision  Smgle procsion operations can use any ol the reisters while
double-precision operations use onhy anceven odd pan dedgnated by the mmber ol
the even register Floating, pomnt load and store mstons ons move data hetween the
floating pomnt tegisters and memors both me smele and donble precsion whereas
move opetations copy floating point registers to other tepisters ol the same type
There ate operations to move data between a single Hoating pomnt epister and an
integer tegister, but moving a double precision value to twomteger registers requies
two instructions  Integer multiply and dividc operations work on 32 bt pegister
as do conveistons between mteger and Hoating pormt Floating poimnt compares set a

bit in the special Hoating point status register and this bitas tested by the bronh
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operations  Branch Floating Pomt ‘True and Branch Floating Pomt False

E.2 The dlxcc C Compiler

Assernbly langiage code for the DLX simulator 1s created using a special version
of GNU Compiler (version 1.37). called dixcc ontfitted with a back end for DLX
(Sta90]  The particular version of divec that was nsed 15 one that s nnder con-
fining development as part of the McGill Compiler/Architectinre Testbed (McCat)
[HGMSO] To addinion to bemne readily avalables the GNU O compiler was selected
for MoCut becanse of 1t veratle intermediate torm, Register Transter Language
(R11) In general RIT s amenable for most common optinnzing, transtormations
anch as those descnbed v Vho, Sethi, and Ullman. and extensible to other more

tecent optinzations [ ASE X6

Ihe ~tructnre of disce consists of two compenents 1) the front end, winch gen-
crates RUL from program soutce code, and 2] the back end. which produces a cor-
tesponding assembly program T the descoption that follows we mention only the
bastc features of cach, along with a few recent transtormation extensions that have

heen applied as a part of the McCat project

RE1 code. which s almost toone to one cottespondence with the assembly code,
ot well suted to high levelanalysis, such as arras doop. and alias analysisc because
much data structre mformation s lost by the tune the code reaches the REL Tevel In
the oniginal GCC comptler, parsing s mvoked once to parse the entive source program.
and R code tor cach funcnion s senetated as the function s bemg parsed. statement
al o tie I the process, a sepatate svutay tee is aeated for cach statement. the
tree, cometted to REL and the storage. reclamed Since the compiler processes a

fundction ot a Gine nonter procedural optinnzation s performed

Fo cottect the above shortfall the ront end was modilied to create a complete
\batract Svtan Lree (AS T Tnthe ongimal GNU compiler. tree nodes ot expressions
were allocated moa temporary stack and freed as each statement was parsed In the
modihied compiler, the stack toutines were modified to retam the space used by these
nodes Phe parser was also modibied to butld the AS T {or the complete program. and
lasth new nodes to construct different huds of loop structures, namely. WHTLE-
loop. IFOR Toop, and DO loop statements were added  In the modibied compiler,

optinuzing transtormations are then performed on these stuuctures before the RTL
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code is generated. Among the more advanced features that have been recenthy added

are loop untolling and an inter-procedural alias analyzer.

The back end of the the dlxcc compiler contams most of the common optinnza
tions one might e (pect to see i a modetn compiler, with a tew exceptions \imong,
the optitizations performed by the compiler ate jump optinnzation, commaon subes
pression elimination, constant propagation. <trength reduction, loop myvariant code
removal, and use of machine idioms The compiler also does mdnction vanable elim
ination, and n also does both local and global tegister allocation  However ot does
not do delayed-branch scheduling. Among the 1ecent extenstons to the GNU backend
are several alternative istruction schedulers Shieh Papahinston, Machmch Gabbons,
and Berneein's "level™ scheduler [SP89, GMS6, Ber89] As noted previousiy, a Shich
Papahuistou scheduler deseribed i Chapter 5, was nsed for the expernents descnbed

in Chapter 6 (see Section 5 10.2, page 93)
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