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ABSTRACT 

Abstract 

Many complex systems are hybrid in the sense that: (i) the state set possesses contin­

uous and discrete components and (ii) system evolution may occur in both continuous 

and discrete time. One important class of hybrid systems is that characterized by a 

feedback configuration of a set of continuous controlled low level systems and a high 

level discrete controller; such systems appear frequently in engineering and are par­

ticularly evident when a system is required to operate in a number of distinct modes. 

Other classes of hybrid systems are found in such diverse areas as (i) air traffic man­

agement systems, (ii) chemical pro cess control, (iii) automotive engine-transmission 

systems, and (iv) intelligent vehicle-highway systems. 

In this thesis we first formulate a class ofhybrid optimal control problems (HOCPs) 

for systems with controlled and autonomous location transitions and then present 

necessary conditions for hybrid system trajectory optimality. These necessary con­

ditions constitute generalizations of the standard Minimum Principle (MP) and are 

presented for the cases of open bounded control value sets and compact control value 

sets. These conditions give information about the behaviour of the Hamiltonian and 

the adjoint pro cess at both autonomous and controlled switching times. 

Such proofs of the necessary conditions for hybrid systems optimality which can 

be found in the literature are sufficiently complex that they are difficult to verify 

and use; in contrast, the formulation of the HOCP given in Chapter 2 of this thesis, 

together with the use of (i) classical variational methods and more recent needle 

variation techniques, and (ii) a local controllability condition, called the small time 
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ABSTRACT 

tubular fountain (STTF) condition, make the proofs in that chapter comparatively 

accessible. We note that the STTF condition is used to establish the adjoint and 

Hamiltonian jump conditions in the autonomous switchings case. 

A hybrid Dynamic Programming Principle (HDPP) generalizing the standard 

dynamic programming principle to hybrid systems is also derived and this leads to 

hybrid Hamilton-Jacobi-Bellman (HJB) equation which is then used to establish a 

verification theorem within this framework. 

The necessary conditions for optimality expressed in the Hybrid Minimum Princi­

pIe (HMP) form the foundation for the general, effective hybrid system optimization 

algorithms caUed HMP algorithms. HMP algorithms appear to be more efficient 

than any of the recently proposed hybrid optimization algorithms and have been im­

plemented on complex non-linear systems. Using results from the the ory of penalty 

function methods and Ekeland's variational principle we show the convergence ofthese 

algorithms under reasonable assumptions. Furthermore, we show that the HMP algo­

rithm class can be extênded combinatoricaUy with discrete search algorithms which, 

by repeated runs of HMP, find locally optimal location sequence and their associated 

switching times. This combinatoric se arch is possible due to the efficacy of HMP 

algorithms but faces the intrinsic complexity of an exponential explosion of alternate 

possible cases. 

The problem of finding the optimal location switching sequence from among aU 

the permutations of distinct modes of operation gives rise to the notion of optimality 

zones. These zones are regions in the switching time-state space and are associated 

with switching sequences. They have a simple topological and geometric structure, 

and once they have been computed (or approximated) they may be employed in 

the algorithm HMP[Z] which is essentially a zone dependent version of the HMP 

algorithm. The algorithm HMP[Z] permits one to reach the global optimum in a 

single run of the (zone dependent version of) HMP algorithm. The complexity cost 

of the method is essentially that of the cost of (approximately) mapping the optimality 

zones in Rn+! , where n is the dimension of the state space, plus the cost of one run of 
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the standard HMP algorithm. The efficacy of the proposed algorithms is illustrated 

via computational examples. 
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RÉSUMÉ 

Résumé 

Beaucoup de systèmes complexes sont hybride dans le sens: (i) qu'ils possèdent des 

composants continus et discrets et (ii) que l'évolution du système peut se passer en 

temps continu et en temps discret. Une classe importante de systèmes hybrides est 

caractérisée par une configuration asservie d'une série de systèmes continus de bas 

niveau et d'un contrôleur discret de niveau supérieur. De tels systèmes apparais­

sent fréquemment en ingénierie et sont particulièrement évidents quand un système 

doit opérer en plusieurs modes distincts. Les autres classes de systèmes hybrides 

sont trouvées dans divers domaines tels que (i) les systèmes de gestion de trafic 

aérien, (ii) le contrôle de procédés chimiques, (iii) les systèmes de transmission-moteur 

d'automobiles, et (iv) les systèmes d'autoroutes intelligentes pour véhicules. 

Dans cette thèse nous formulons, dans un premier temps, la classe de problèmes 

associés aux commandes optimales hybrides (HOCP) pour les systèmes avec des 

transitions d'emplacement contrôlées et autonomes, puis nous présentons des con­

ditions nécessaires pour optimiser la trajectoire des systèmes hybrides. Ces con­

ditions nécessaires constituent des généralisations du Principe Minimum (MP) stan­

dard. Elles sont présentées pour le cas d'un ensemble borné ouvert de la commande et 

pour un ensemble compact de la commande. Ces conditions donnent de l'information 

sur le comportement de l'hamiltonien et du procédé adjoint pour deux cas possibles: 

lorsque les temps de commutation sont autonomes et lorsqu'ils sont contrôlés. 

De telles preuves des conditions nécessaires pour l'optimalité des systèmes hy­

brides qui peuvent être trouvées dans la littérature sont suffisamment complexes 
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RÉSUMÉ 

qu'elles sont difficiles à vérifier et à utiliser; par opposition, la formulation de HOCP 

donnée au Chapitre 2 de cette thèse, avec l'usage (i) des méthodes de variations 

classiques et plus récentes techniques de variation d'aiguille, et (ii) d'une condition 

de contrôlabilité locale, soit la condition "Small Time Tubular Fountain (STTF)" 

rendent nos preuves comparativement accessibles. 

Nous notons que la condition ST TF est utilisée pour établir les conditions ad­

jointes et les conditions hamiltoniennes de sauts dans les cas de commutations au­

tonomes. 

Un Principe de Programmation Dynamique Hybride (HDPP) généralisant le 

principe de programmation dynamique standard aux systèmes hybrides est aussi 

dérivé et ceci mène à l'équation Hamilton-Jacobi-Bellman (HJB) hybride qui est 

utilisée pour établir un théorème de vérification. 

Les conditions nécessaires d'optimisation exprimées comme le Principe Minimum 

Hybride (HMP) forment la fondation pour les algorithmes d'optimisation de systèmes 

hybrides appelés algorithmes HMP. Les algorithmes HMP semblent être plus efficaces 

que n'importe quel autre algorithme hybride d'optimisation récemment proposé. De 

plus, ils sont implémentés pour des systèmes complexes non-linéaires. Utilisant les 

résultats de la théorie pour la méthode de la fonction de pénalité et du principe de 

variation d'Ekeland, nous montrons la convergence de ces algorithmes sous des hy­

pothèses raisonnables. De plus, nous montrons que la classe d'algorithmes HMP peut 

être étendue de manière combinatoire avec des algorithmes discrets de recherche qui, 

par passes répétées du HMP, trouve la séquence d'emplacement localement optimale 

et les temps de commutation associés. Cette recherche combinatoire est possible grâce 

à l'efficacité des algorithmes HMPs mais elle fait face à la complexité intrinsèque d'une 

explosion exponentielle des cas possibles alternatifs. 

Le problème de trouver la séquence d'emplacement localement optimale parmi 

toutes les permutations de modes distincts d'opération engendre la notion de zones 

d'optimisation. Ces zones sont des régions dans l'espace de temps-état de commu­

tation et sont associées à des séquences de commutation. Elles ont une structure 
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topologique et géométrique bien simple, et une fois qu'elles ont été calculées (ou 

approximées), elles peuvent être employées dans l'algorithme HMP[Z] qui est es­

sentiellement une version zonée de l'algorithme HMP. L'algorithme HMP[Z] permet 

d'atteindre le maximum global en une seule passe de la version zonée de l'algorithme 

HMP. Le coût de complexité de la méthode est essentiellement celui d'associer (ap­

proximativement) la zone d'optimisation à JRn+l, où n est la dimension de l'espace 

d'état, plus le coût d'une seule éxécution de l'algorithme HMP standard. L'efficacité 

des algorithmes proposés est illustrée à l'aide d'exemples numériques. 
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CLAIMS OF ORIGINALITY 

Claims of Originality 

The following original results are reported in this thesis: 

• Rigorous formulation of the hybrid optimal control problem (HO CP). 

We formulate a general optimal control problem for hybrid systems with nonlin­

ear dynamics in each location (i.e. dis crete state value) and with (i) controlled 

switchings, and (ii) autonomous switchings occurring on switching manifolds. 

• Development of necessary conditions, or Minimum Principle, for hybrid op ti­

mality in the case of compact control value sets. 

We use the needle variation technique to establish the Minimum Principle in 

the case where the continuous control takes values in a compact set and there 

are no autonomous switchings. 

• Development of necessary conditions, or Minimum Principle, for hybrid opti­

mality in the case of open bounded control value sets. 

We give a proof using the classical smooth variations technique for the case of 

hybrid systems where both controlled switchings and autonomous switchings on 

time invariant switching manifolds are permitted. The proof of the result em­

ploys a controllability condition called the smalt time tubular fountain (STTF) 

condition. 
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CLAIMS OF ORIGINALITY 

• Derivation of the Hybrid Dynamic Programming Principle (HDPP) and the Hy­

brid Verification Theorem. 

Within the hybrid systems framework of this thesis, we develop a Dynamic Pro­

gramming Principle for hybrid systems. The HDPP leads to a hybrid Hamilton­

Jacobi-Bellman (HJB) equation which is used to establish a Hybrid Verification 

Theorem. 

• Development of efficient hybrid optimization algorithms along with their proofs 

of convergence. 

We propose and analyze a new class of so-called Hybrid Minimum Principle 

(HMP) algorithms for the solution of hybrid optimal control problems. We pro­

vide convergence results for the optimization algorithms in the case of hybrid 

systems with both autonomous switchings on switching manifolds and controlled 

switchings. 

• Introduction of optimality zones and development of associated algorithms. 

We define the notion of optimality zones and investigate sorne of their topological 

properties. Based on the optimality zones construction we develop optimization 

algorithms whose complexity is linear in the number of locations N at the co st 

of an initial computational investment. 

N.B. Almost all of the work above appears in articles which have been published or 

submitted for publication; see page x. In particular, Chapters 2 and 3, and 

Chapters 4 and 5, respectively, correspond to the submitted papers 81 and 82. 
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CHAPTER 1. INTRODUCTION 

CHAPTER 1 

Introduction 

Over the last few years, the notion of a hybrid control system with continuous and 

discrete states and dynamics has crystallized and classes of optimal control problems 

for such systems have been formalized (see for example [48, 47, 44, 45, 46, 43, 7, 6, 

5, 13, 14,24,25,27,28,33,32,36,37,30,29,53,55,40,58,59,60,20, 6~). 

In particular, Sussmann [55] and Riedinger et al. [40], among other authors, have 

given versions of the Hybrid Minimum Principle (HMP) with indications of proof 

methods. The Hybrid Minimum Principle constitutes a set of necessary conditions for 

optimality; these conditions give information about the behaviour of the Hamiltonian 

and the adjoint trajectories at the switching time and are referred to in the classical 

literature as "jump conditions" . 

J ump conditions have been studied at least since the time of Weierstrass and in 

the calculus of variations they are known as Weierstrass-Erdmann corner conditions 

[31], corners being the points of non-differentiability of extremals. In the context 

of optimal control theory, similar conditions arose in the study of problems with 

bounded state values. These problems were studied, for example, by Pontryagin 

et al. [38] and Berkovitz [10]. The necessary conditions given in [38, pp. 311] 

and [10] at the state and time instant where an optimal trajectory passes from the 

interior to the boundary of astate constraint set, are similar to those derived in this 

thesis in the case of autonomous switchings. In [38], Pontryagin et al. also give 
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CHAPTER 1. INTRODUCTION 

necessary conditions satisfied by the adjoint trajectory at an autonomous switching 

time. They use the terms "junction point" and "junction time" for switching state 

and switching time respectively. Witsenhausen [56] also gives the HMP necessary 

conditions and outlines a pro of of these conditions. He framework is close in spirit to 

the modern hybrid control systems literature and his pro of uses a system of needle 

variations and geometric arguments similar to those in employed in [38]. Bryson and 

Ho [16] obtain jump conditions using classical variational methods; they mention 

that a controllability condition is required for the derivation but do not specify the 

exact nature of the controllability. Recently, Xu and Antsaklis [57, 60] have derived 

the jump conditions using the standard calculus of variations techniques without the 

controllability hypothesis. 

Several authors have proposed modeling frameworks for hybrid control systems. 

In [13] Branicky et al. proposed a unified framework for modeling hybrid control 

systems with controlled and autonomous vector field switchings as well as controlled 

and auto no mous impulses, impulse being a discontinuity (jump) in the continuous 

state. Their model subsumes many of the previously proposed hybrid system models. 

In Chapter 2 we first present a general hybrid system model which is similar to but 

less general than the Branicky's model in the sense that we take the continuous state 

to be continuous at switching times. We then give the assumptions which allow 

us to establish the conditions for the existence and uniqueness of hybrid execution. 

A related results on the existence and uniqueness of hybrid execution for hybrid 

automata is given in [34]. 

We then formulate a class of optimal control problems for general hybrid sys­

tems with nonlinear dynamics in each location and with autonomous and controlled 

switchings and present a set of necessary conditions for hybrid system optimality 

in two cases: (i) where the optimal control takes values in a compact control value 

set, and (ii) where the control value set is an open bounded set. The proofs of the 

necessary conditions found in the literature are so complicated that they are difficult 

to verify and use. The accessible proofs in this thesis use recent needle variation 
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CHAPTER 1. INTRODUCTION 

techniques and classical variational methods. We give the precise controllability con­

dition, called the small time tubular fountain (STTF) property, that is required to 

establish the adjoint and Hamiltonian jump conditions in the autonomous switching 

case. We follow the approach of de la Barrière [22] and Zabczyk [61] who obtained 

the necessary conditions of the MP using a single needle variation rather than a com­

plicated system of variations and geometric arguments as in [38]. It is seen that the 

conditions involving controlled switchings can be obtained using mild assumptions 

whereas those involving autonomous switchings require st ronger assumptions. 

Since the Minimum Principle is a collection of necessary conditions for optimality, 

a control function obtained by using this principle is not necessarily optimal. In the 

standard optimal control theory one uses the Minimum Principle to obtain a candi­

date control function and then one tests (or verifies) the optimality of this candidate 

using verification theorem. In Chapter 3 we extend this approach of verification of 

candidate optimal controls to hybrid systems by presenting a hybrid Dynamic Pro­

gramming Principle (HDPP). HDPP is a generalization of the standard Dynamic 

Programming Principle for differentiable control systems [4, 61, 52] and leads to 

the hybrid Hamilton-Jacobi-Bellman (HJB) equation which is a generalization of the 

standard HJB equation. The hybrid HJB equation is then used to establish a verifica­

tion theorem for hybrid systems. In this context, Branicky et al. [13] have generalized 

the quasi-variational inequalities of impulse control framework [8] to the hybrid sys­

tems case. They also give a verification theorem for optimal control problems with 

discounted cost on semi-infinite intervals. Hedlund and Rantzer [29, 30] have applied 

the Dynamic Programming Principle to a class of hybrid systems to obtain a "hybrid 

Bellman inequality" which gives a lower bound on the value function. This inequality 

is then used, via discretization and convex optimization, to compute and approximate 

feedback controllaws. 
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CHAPTER 1. INTRODUCTION 

In Chapter 4 we employ the necessary conditions developed in Chapter 2 to 

propose and analyze a new class of so-called Hybrid Minimum Principle (HMP) al­

gorithms for the solution of optimal control problems. We provide convergence re­

sults for an optimization algorithm (denoted HMP[MAS]) with multiple autonomous 

switchings (MAS) on switching manifolds. Our convergence proofs are based on re­

sults from the theory of the penalty function methods [3] and Ekeland's variational 

principle [26]. We then present an algorithm for the case of multiple controlled 

switching (MCS) times (denoted HMP[MCS]) which invokes (i.e. calls) HMP[MAS] 

and computes optimal switching times for a given location sequence. The efficacy of 

these algorithms is illustrated via several computational examples. 

The HMP algorithms class is then embedded in the so-called HMP[Comb] (see 

[45, 46]) algorithms class; this extends the HMP class with combinatoric search al­

gorithms which find (combinatorially local) optimal location sequences and their as­

sociated locally optimal switching times and control inputs. HMP[Comb] algorithms 

generate a list of Hamming distance (::; k) sequences from an initial sequence, execute 

the multiple controlled switchings algorithm (HMP[MCS]; see [44, 45, 46]) on each 

one of them, and finds the best locally k-optimal sequence from among them. We 

note that other recently proposed hybrid optimization algorithms, for example those 

of [58, 60, 24, 25, 54], can be extended to perform combinatorially k-optimal se­

quence from among them. We note that other recently proposed hybrid optimization 

algorithms, for example those of [58, 60, 24, 25, 54], can be extended to perform 

combinatoric search, with an associated exponential increase in the computational 

cost. 

The computational examples of Chapter 2, in addition to illustrating the efficacy 

of Aigorithm HMP[Comb], also serve to show that a global optimization of loca­

tion sequences and the associated HOCPs will be overwhelmed by the combinatorial 

complexity engendered by even moderate problem sizes. In Chapter 5 we introduce 

a new notion of optimality zones, give their precise definition and present sorne of 

their topological properties. The properties of optimality zones le ad to a new class 
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CHAPTER 1. INTRODUCTION 

of algorithms (called HMP[Z] algorithms) whose comp1exity is 1inear in the number 

of locations N at the cost of an initial computational investment. In particular, we 

give examples for the case of linear dynamics with quadratic cost criteria where these 

zones have a geometrically simple form. The notion of optimality zones must be dis­

tinguished from the so-called "switching regions" presented in [27, 28, 7, 6, 5]. The 

switching regions partition the continuous state space of the hybrid system where as 

the optimality zones partition the switching time-state space. The optimal control 

prob1em considered in those papers have autonomous linear time-invariant dynam­

ics, quadratic 10ss function in each location and a fixed sequence of finite number of 

location. We consider non-linear dynamics and the general hybrid optimal control 

problem (HO CP) described in Chapter 2. 

Finally, suggestions for possible future research, re1ated to the topies treated in 

this thesis, are given in Chapter 6. 
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2.1 OPTIMAL CONTROL OF HYBRID SYSTEMS 

CHAPTER 2 

Necessary Conditions for Hybrid 

Optimality 

2.1. Optimal Control of Hybrid Systems 

2.1.1. Hybrid System. Within the standard overall framework (see e.g. 

[13], [15]) we define a hybrid control system as: 

DEFINITION 2.1. A hybrid control system lHI is a 5-tuple 

lHI II {H II Q x Rn,I II ~ x U,F,f,M}, (2.1) 

where the symbols in the expression above are defined below. D 

2.1.2. Standing Assumptions (AO-A3). 

AO Q = {1, 2, ... , IQI} is a finite set of dis crete states (called control locations); 

H is the (hybrid) state space of lHI; 

u c RU is the set of admissible input control values where U is an open (respectively 

compact) set in RU. The set of admissible input control functions is either UO II 
a 

U(U, Loo([O, T*)), (respectively ucpt II U(ucpt , Loo ([0, T*))), the set of all bounded 

measurable functions on sorne interval [0, T*), T* :s; 00, taking values in the open 
a 

set U (respectively the compact set ucpt ); 
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2.1 OPTIMAL CONTROL OF HYBRID SYSTEMS 

2: = 2:u lJ2:cÙ{ id} is a finite set of distinct autonomous (uncontrolled) and con­

trolled transition labels extended with the identity element {id}; 

l 6 2: X U is the set of system input values; 

F is an indexed collection of vector fields {h hEQ, such that fj : Rn X U -> Rn is a 

vector field assigned to each control location and fj E Ck(Rn X U; Rn), k 2:: 1, and 

such that a uniform Lipschitz condition holds, i.e. there exists L f < 00 such that 

Ilfj(Xl,U) - fj(X2,U)11 ::; Lfllxl - x211, Xl,X2 E Rn, U E U, j E Q; 

r : H X 2: -> Q is a time independent (partially defined) discrete transition map; 

M = {m~ : Œ E Q X Q, k E Z+} is a collection of switching manifold subcompo­

nents, also called guard subcomponents, such that, for the ordered pair Œ = (p, q), 

m~ is a smooth codimension 1 submanifold of Rn, possibly with boundary 8m~, 

described locally by m~ = {x : m~(x) = O}. It is assumed that m~ n mb = 0, for 

all Œ,{3 E Q x Q, Œ i- {3, k,l E Z+, except in those cases where, for all k,l, Œ is 

identified with its reverse ordered version (3 giving m~ = m~. 

A switching manifold (component) m;,q = Uki;l::;i::;n(k) m;;q is the union of subcom­

ponents m;;q, possibly with boundary, where, 

(i) m;;q is a manifold (i.e. guard) subcomponent (as defined above). 

(ii) xE m;,q is such that x E m;;qnm;~q, ki i- kj , if and only if xE 8m;:qn8m;;q, 
ki i- k j . 

(iii) If 8m;;q n 8m;~q i- 0 then 8m;;q n 8m;;q is a piecewise Cl codimension 2 sub­

manifold of Rn (possibly with boundary). 

Al The initial state (ho 6 x(to), qo) E H is such that m~Oqj (xo) i- 0, for all k E Z+, 

qj E Q. 

Remark: Switching manifolds will function as follows: whenever a trajectory 

governed by the controlled vector field fp (respectively fq) meets the guard mp,q 
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2.1 OPTIMAL CONTROL OF HYBRID SYSTEMS 

transversally there is an autonomous switching to the controlled vector field fq (re­

spectively fp) as described in Definition 2.4 below. We note that in our formula­

tion switching manifolds do not depend upon time since the pro of techniques we 

employ only permit the derivation of the Hamiltonian continuity property at time 

independent manifolds for (i) controlled switchings in Theorem 2.2, and (ii) con­

trolled and autonomous switchings in Theorem 2.3. In particular, the Hamilton­

ian discontinuity property for autonomous switchings at time dependent manifolds 

(H(t j+) = H(tj -) + Pj '\ltm j,j+1l t=tj) found in [16, 40] is not derived here; this 

property is assumed in Chapter 4 on hybrid system optimization algorithms. 

Remark: 

(i) We note that the autonomous and controlled discrete dynamics (2.3) and 

(2.4) with inputs Œij, 1 ::; i,j ::; IQI, consist of necessarily discontinuous 

(in time) transitions of the discrete state component q(t) E Q, t E [ta, T]; 

moreover, for controUed transitions, for any pair qi, qj, 1 ::; i, j ::; 1 QI, there 

exists Œij such that r( qi, Œij) = qj. 

(ii) We note that no transition of the continuous state component x(·) of the 

hybrid state h(·) = (x(·), q(.)) occurs at the instant of a discrete state 

transition; furthermore, the hybrid system axioms (AO-A3) imply that the 

trajectory x(·) of the continuous state component of a hybrid state execu­

tion (i.e. trajectory) is continuous in t for aU t E [ta, T]. 

DEFINITION 2.2. A hybrid (system) time trajectory is a strictly increasing (finite 

or infinite) sequence of times T = (ta, tl, t 2 , . •• ) or equivalently, a sequence of non­

empty half open intervals T = ([ta, tl), [tl, t 2 ), . .. ). 

A hybrid (system) switching (event) sequence is a (finite or infinite) sequence S ~ 

(T,Œ) = ((to,ŒO),(tl,Œl), ... ) of pairs oftimes and discrete input events where T is 

a hybrid time trajectory, ŒO = id, Œi E L:, i ~ 1, and where Œ is called a location 

schedule. 

A hybrid (system) input is a triple l ~ (T,Œ,U) defined on a hall open interval 

[ta, T), T ::; 00, (T, Œ) is a hybrid switching sequence and u EU. 0 
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FIGURE 2.2. A switching manifold. 

DEFINITION 2.3. A hybrid state trajectory is a triple (T, q, x) consisting of a 

hybrid time trajectory T = (ta, tl, t 2, ... ), an associated sequence of discrete states 

q = (qo, ql, q2,"')' and a sequence x(·) = (x qo (')' x q1 (.), x q2 (-),···) of absolutely con­

tinuous functions Xqj : [tj , tHI) -t ]Rn. 0 

DEFINITION 2.4. A hybrid system execution elHI = (T, Œ, U, q, x) for the hybrid 

system 1HI satisfying AO and Al is a hybrid input (T, Œ, u), together with a hybrid state 

trajectory (T,q,X) defined over [to,T), T ~ 00, su ch that (T,Œ,U,q,X) satisfies 

(i) (continuous dynamics) 

x is a continuous function satisfying 

CS: 

i.e. x is an absolutely continuous function satisfying the initial condition, x(to) = 

xqo(to) = xo, and such that each XqJ) satisfies 
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2.1 OPTIMAL CONTROL OF HYBRID SYSTEMS 

Xqj(t) = Xqj(t j ) + I t 

fqj(Xqj(S),u(s))ds, tE [tj,tH1 ), jE Z+, 
J 

(ii) (autonomous discrete dynamics) 

An autonomous discrete transition fram qj-l to qj occurs at the autonomous switch­

ing time t j , j E Zl, if x*(tj ) .6.limtitj Xqj_1 (t) and t j satisfy 

DSU: (2.3) 

where mqj_1,qj(x) = 0 defines a (qj-l,qj) switching manifold. Such a transition, 

denoted by ru, corresponds to an element O"j E Eu. 

(iii) (controlled discrete dynamics) 

A controlled discrete transition occurs at the controlled switching time t j , j E Zl, 

if t j is not an autonomous switching time and if there exists a dis crete control input 

O"j E Ee for which 

o 

We note that the hybrid time trajectory as defined in Definition 2.2 may de­

pend upon the continuous state since an autonomous switching time occurs wh en the 

continuous state satisfies a switching manifold constraint (2.3). 

THEOREM 2.1. (117], see also [34]) Given an initial hybrid state (qo, xo) a hybrid 

system 1HI satisfying Assumptions AD and Al possesses a unique hybrid execution, 

passing through (qo, xo), up to the least of: 

(i) T* ~ 00, where [to, T*) is the temporal domain of the definition of the hybrid 

system, 
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2.1 OPTIMAL CONTROL OF HYBRID SYSTEMS 

(ii) the instant of a tangential meeting of the continuo us trajectory x qi with a switch­

ing manifold subcomponent boundary am~iqj' 

(iii) a Zeno time, i. e. an accumulation point of autonomous or controlled switching 

times. 

PROOF. The pro of consists in the iterative construction of an execution along the 

hybrid input trajectory l = (T, 0', u) over [to, T*), T* 2:: 0, through the hybrid initial 

state. 

For simplicity we assume that T* = 00 and hence exclude a priori the alternative 

of solutions being undefined due to the absence of defined inputs. 

Initial tmjectory segment: initial condition 

Consider a trajectory starting at the admissible hybrid initial condition (qo, xo) 

at the instant to. 

By assumption Al, the initial state Xo lies in the complement of m = U m;,q. 

Since m is relatively closed in JRn+l there is a neighbourhood N(ta,xa) E JRn+l of 

(to, xo) such that m n N(ta,xa) = 0. 

Hence, by continuity, if a solution to the controlled ODE exits it must not intersect 

any switching manifold component over sorne non-empty time interval [to, t'). 

Initial tmjectory segment: existence and uniqueness 

We now utilize the standard results on existence of solutions in the sense of 

Carathéodory [21, pp. 43-49J and the on existence and uniqueness of solutions to 

ODEs with inputs [52, pp. 347-354]. 

Since fqa (x, u) is continuously differentiable (and hence continuous) in (x, u) and 

since u(·) EU is measurable with respect to t, fqa(x, u(t)) is measurable in t for fixed x. 

By Assumption AO, fqj (x, u), qj E Q is globally Lipschitz in x for fixed u EU. These 

two conditions guarantee the existence of a unique solution to the ODE x = fqa(x, u), 

through the given hybrid initial condition (qo, Xta) over the interval [to, T) [52, pp. 

347-354J. Furthermore, sin ce by the assumptions on vector fields (AO) the solution is 

11 



2.1 OPTIMAL CONTROL OF HYBRID SYSTEMS 

bounded on bounded sets in]R, either (a) T = T* = 00, or (b) T is the first controlled 

or autonomous discontinuous transition event time in (T, (J", u), i.e. T = ft. 

Continuation of execution through ft, et. seq. 

Case (a) above is conclusion (i) of the theorem and hence only case (b) is of 

interest. 

By the definition of controlled switching at t 1 we must have exactly one of either 

a controlled or an uncontrolled discontinuous transition. 

Consider the controlled jump alternative first; in this case the discontinuous tran­

sition 

is defined with qo =1= q1' 

In the second case of an uncontrolled hybrid state jump at tl, with X;j ~ 

limtitj Xqo(t) satisfying mqom (t l , x;J = 0 the same arguments show that the tra­

jectory may be continued from the new hybrid state over a positive half open time 

interval. The uncontrolled discrete state jump is well defined since by Assumption 

AO the switching manifolds are non-intersecting. 

Rence in either controlled or uncontrolled discrete state transition a hybrid state 

(q1, Xqj (td) results such that, together, the hybrid trajectory segment T = (to, t 1), an 

associated location sequence q = (qo, q1) and a sequence x = (x qo , X qj ) of piecewise 

Cl functions of time Xqj : [tj, tj+1) -+ ]Rn, j = 0,1, all existand satisfy the definition 

of a hybrid execution passing through the initial hybrid state. 

Evidently the argument on the first and second intervals of the hybrid switching 

sequence (T, (J") may be iterated a countable number of times with the only method of 

termination on the assumed finite intervals [tk, tk+l), 0 ~ k, being (i) or (iii) specified 

by the theorem. 

Zeno times 

If (i) or (ii) do not OCCUf, then there exists a finite upper limit T to the overall 

period of existence and uniqueness. This case corresponds to the existence of a finite 
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accumulation point of discrete autonomous switching times, in other words a Zeno 

time at the instant T. 

In addition, it may happen that a sequence of controlled jump times {tn} is such 

that for a Zeno time T: limn -+oo tn = T, limn -+oo x( tn) = x* (T) and m(T, x* (T» = 0, 

for sorne m(·, .). In any case, there exists a unique hybrid execution over the interval 

[ta, T). D 

2.1.3. The Hybrid Optimal Control Problem (HOCP). Let {ij}jEQ, 

ij E Ck(IRn x U; ]R+), k 2': l, be a family of ioss functions satisfying: 

A2 There exist KI < 00 and 1 ::; 1 < 00 such that Iij(x, u)1 ::; Kz(l + IIxll'Y), x E ]Rn, 

u EU, jE Q. 

Let 9 E Ck(]Rn; ]R+), k 2': 1 denote a terminal cost function satisfying the following 

assumption. 

A3 There exist Kg < 00 and 1 ::; 8 < 00 such that Ig(x)1 ::; Kg(l + IIx1l 6), x E ]Rn. 

Consider the initial time ta, final time t f < 00, initial hybrid state ho = (qo, xo), 

and L ::; 00. Let 

or equivalently 

be a hybrid switching sequence and let h(L) Ll (SL, u), u E U, where U = Ua 

or U = ucpt, L ::; 00, be a hybrid input trajectory which subject to AO and Al 

results in a (necessarily unique) hybrid execution and is such that L ::; L controlled 

and autonomous switchings occur on the time interval [ta, T(h)], where T(h) 2': t f' 

Further let the collection of such inputs be denoted {IL(L)}' We define the hybrid 

cost function as: 

J: (2.5) 
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where 

-

u(t) EUe Rn, where in case U = ucpt , 
o 

U=U, 

u(·) E Loo(U), 

L ~ L ~ 00. 

DEFINITION 2.5. (Hybrid Optimal Control Problem (HOCP)) Given the system 

lHI with continuous dynamics (CS) and discrete dynamics (DSU, DSC), loss functions 

{lq, q E Q}, initial and final times, to,tf, the initial hybrid state ho = (qo,xo), and 

an upper bound on the number of switchings L ~ 00, the hybrid optimal control 

problem (HOCP(to, tf, Xo, L,U)), where U = UO or U = ucpt, is to find the infimum 

jO(to, tf' ho, L,U) of the hybrid cost function j(to, tf' ho; h, L,U) over the family of 

input trajectories {IL(L)}. If a hybrid input trajectory hO(L) exists which realizes 

j°(to, tf, ho, L,U) it is called a hybrid optimal control for the HOCP(to, tf, Xo, L,U). 

D 

The ROOP can have the usual variations of fixed or free initial or terminal state, 

fixed or free initial or terminal location, free terminal time etc. We adopt the notation 

ROOP(X) to indicate a ROOP where X is the given data. 

DEFINITION 2.6. ({lB], Small Time Tubular Fountain (STTF) Condition) A con­

tinuous state x(t) E Rn, tE [to,tf), x(t) E <jJ(u<P) ~{x(s,xo,uto,sj);to ~ s ~ tf}, is 

said to be a positive small time tubular fountain with respect to the trajectory <jJ( u<P) 

of the system (CS) if for all sufficiently small, > 0, " > 0 and ," > 0 there exists 

t < t* < tf, such that for all t', t < t' < t*, there exist 0 < O"(t,t'",,',,") < , 

and 0 < E(t, t'", ,', ,") < ," such that: (i) for all TE (t' - E, t' + E), and (ii) for aU 

Z E Ba(x(t')), where x(t') = <jJ(t', x(t), ut,t1j)' there exists U[t,TjO .E U such that 
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(a) SUPSE[t,Tjllu(s) - u1>(s)11 < "l'; 

(b) 11<p(s,x(t),U[t,sj) - <p(s,x(t), ut,sj) Il < "l, sE [t,Tl; 

(c) <p(T, x(t), U[t,Tj) = Z E BCT(X(t')); and 

(d) (J' and E are continuous in their arguments t, t', "l, "l', and "1". 

Furthermore, a continuous state x(t) E lR.n , tE (to, tf], x(t) E <p(u1», 

<p(u1» .6 {x(s,xo,uto,sj);to ::; s ::; tf} is said to be a negative small time tubular 

fountain with respect to the trajectory <Px( u1» of the system (CS) if for all sufficiently 

small "1 > 0, "l' > 0 and "1" > 0 there exists to < t* < t such that for all t", t* < t" < t, 

there exist 0 < O'(t,t",ry,ry',ry") < "1 and 0 < E(t,t",ry,ry',ry") < "1" su ch that: (i) for 

all TE (t" -E, t" +E) C (to, tf), and (ii) for all Z E BCT(X(t")), x(t) = <p(t, x(t") , ut",tj)' 

there exists U[T,tj (.) E U su ch that 

(a') SUPSE[T,tjllu(s) - u1>(s) Il < "l'; 

(b') 11<p(s, X(T), U[T,Sj) - <p(s, X(T), ut,sj) Il < "l, sE [T, tl; 

(ri) <p(t, z, U[T,tj) = x(t); and 

(d') (J' and E are continuous in their arguments t, t", "l, "l'and "1". 

A continuous state x which is negative and positive small time tubular fountain with 

respect to a trajectory is called a small time tubular fountain (STTF) with respect to 

that trajectory; if all the states on a trajectory <p are STTFs with respect to <p we say 

that the STTF condition is satisfied on <p. o 

We observe that for the negative STTF condition one considers the set of points 

co accessible to the state x(t) as opposed to the positive STTF condition where the 

one is interested in the set of points accessible from x(t). We also observe that using 

the standard techniques (employed for instance in [18]) we may verify that the states 

on a trajectory <p which has a uniformly controllable linearization along any segment 

of <p satisfies the STTF condition there. 

2.2. Controls in Compact Value Sets 

In this section we establish Theorem 2.2, the first of the two HMP results of this 

chapter. In Chapter 4 we use these results to devise a set of conceptual algorithms 
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for computing the switching times, states and the associated control functions which 

satisfy (at least) these necessary conditions in a fixed location sequence. 

The proof technique follows an approach first used by de la Barrière in [22] (see 

also [61]) where it was shown that when the control values are allowed to lie in a 

compact set, the Hamiltonian maximization condition of the maximum principle can 

be obtained by using single needle variations. This methodology is more suit able for 

the HOCP in the Mayer formulation, i.e. with only a terminal cost. This involves no 

loss of generality since it is well known that under Assumptions AO, A2, A3 the Bolza 

problem is equivalent to the Mayer problem in the sense that (i) a problem in Bolza 

form can be transformed into the Mayer form and vice-versa, and (ii) if a solution 

of problem in one form exists then a solution of the transformed problem also exists 

[11]. Using the usual state augmentation technique this equivalence can be shown to 

exist between the hybrid Bolza and the hybrid Mayer problems as weIl. 

The statement and the pro of in the case of open control value sets is given in the 

second form in Theorem 2.3 below. A shortcoming of the open value set condition is 

that the optimal control is required to take values in the interior of the value set. This 

rules out, for example, "bang-bang" optimal controls taking values on the boundary 

of the value set. Furthermore, the small time tubular fountain condition of Theorem 

2.3 is not required for Theorem 2.2. However, the st ronger set of conditions permits 

us to obtain, in addition to the results of Theorem 2.2, the Hamiltonian continuity 

conditions at auto no mous switching times; beyond their intrinsic interest, these are 

crucial for the computational algorithms of Chapter 4. 

We say that a continuous state trajectory x(·) resulting from a continuous control 

u(·) meets a switching manifold subcomponent mp,q transversally at x* = x( t*) if (tak­

ing limit through Lebesgue points) limttt* fp(x(t), u(t)) is transversal to the tangent 

space Tmp,q and limtlt* fq(x(t), u(t)) is transversal to the tangent space Tmp,q. 

THEOREM 2.2. Consider a hybrid system]HI satisfying Assumptions AO, Ai, and 

the 
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HOCP(to, tf, XO, L,ucPt) satisfying A3, and define 

o 
x, À E JR.n, u EU, q E Q. 

1) Let jO(to, tf, ho,ucpt ) = inf{IL(L)} jO(to, tf, ho, h, L,ucPt ) be realized at a mini­

mizing control and trajectory Ifo(L) ' (XO, qO). 

2) Let Ifo(L) have Lc controlled switchings and La autonomous switchings, and let 

La + Le = LO(L). 

3) Let t l , t 2 , ... , tLo, den ote the switching times along the optimal trajectory 

(xO, qO). 

4) Assume that XO meets m = U m;,q transversally and does not meet om;:q n om;;q 

for any ki,kj,p,q. 

5) Assume that either (a) L < 00 and LO(L) = La + Le + 2 ::; L, or (b) L = 00 

and LO(L) < 00. 

Then 

(i) There exists a (continuous to the right), piecewise absolutely continuous adjoint 

process À ° satisfying 

,0 = _ oHq(j) (XO ,0 ua) () { O} 
A ox ,A, , a.e.tE tj,tj+l, JE O,l,2, ... ,L , (2.6) 

where tLO+l = tf and where the following boundary value conditions hold with À O(to) 

free: 

(b) If t j is a controlled switching time, then 

(2.7) 
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(c) Ift j is an autonomous switching time satisfying mj,j+l(x(tj )) = 0, then 

(ii) The H amiltonian minimization conditions are satisfied, i. e. 

(a) 

Hq(j)(xO(t), ),O(t) , UO(t)) ~ Hq(j) (XO(t), ),O(t), v), 

a.e. tE [tj, tj+l), "Iv E U, j E {a, 1,2, ... ,LO}. 

(bl) If L < 00 and LO(L) = L~ + L~ + 2 ~ L, then 

Hq(j) (xO(t), ),O(t), uO(t)) ~ Hk(xO(t), ),O(t), UO(t)), 

a.e. tE [tj, tj+1), j E {a, 1,2, ... ,LO}, Vk E Q. 

(b2) If L = 00 and LO(L) < 00, then 

Hq(j) (XO(t), ), O(t), UO(t)) ~ Hk(xO(t), ), O(t), UO(t)), 

a.e. tE [tj, t j+1) , j E {O, 1,2, ... ,LO}, Vk E Q. 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(iii) If tj is a controlled switching time then the following Hamiltonian continuity 

condition holds at t = t j 

H(tj-) == Hq(j-l) (t j - ) = Hq(j_l)(tj) = Hq(j)(tj) = Hq(j) (tj+ ) == H(t j+), 

j E {l, 2, ... ,LO}. 

o 

Remark: In order to prove the Hamiltonian minimization W.r.t. the discrete 

location we will need to perform "Q-needle variation" where the systems switches to 

location k E Q at time t - Ci and switches back to location j at the Lebesgue point t 
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such that [t - Ei, t] c (tj - l , tj)' This is possible in case (ii)(bl) since, byassumption, 

Lü + 2 :::; L, and it clearly holds in (ii)(b2) with L = 00. 

PROOF. The theorem will be proved in several steps. Let the optimal location 

sequence have m = Lü + 1 locations labeled 1,2, ... ,m and let the optimal switching 

times be t l , t 2,' .. ,tm-l = tLo. We first do a needle variation in the m-th location to 

derive the adjoint equation, adjoint boundary condition and Hamiltonian minimiza­

tion condition in that location. Next we will do a variation in the m - l-st location 

to derive an equation satisfied by Àm-l, to obtain the adjoint transversality condition 

at the switching time tm-l and to obtain the Hamiltonian minimization condition 

there. This derivation is then extended to the location j. In the next step we will do 

variations of the optimal switching times in either direction to obtain the Hamiltonian 

continuity condition in the controlled switchings case. Finally, the Hamiltonian min­

imization condition with respect to discrete locations will be established by inserting 

two controlled switchings in the time period of any existing location. 

In the rest of the proof we let {Ei}~l be a monotonically decreasing sequence of 

real numbers such thatEI < 00, Ei > 0, for all i and limi--+oo Ei = O. 

Step 1: We first derive the Hamiltonian minimization condition in the last lo­

cation and show the existence of an adjoint process there by deriving a differential 

equation and boundary condition satisfied by it. 

For some v E U and (t - El, t) c (tm-l, tf] consider a needle variation of the 

optimal input in the interval [tm-l, tf], 

if t - Ei ::; ,., < t 

with the corresponding state response Xi (,.,) , ,., E [0, tf], The variation and the per­

turbed trajectories are shown in Figure 2.3. 
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v 

FIGURE 2.3. Variation in uO causes variation in xo. 

The difference 5Xi(T) ~ Xi(T) - XO(T) is caused by the following two types of 

perturbations: 

(i) Input perturbation: We note that 5U(T) ~ Ui(T) - UO(T) = 0, 

TE [0, t - Ei) u [t, tf], and 5Xi(T) = 0, T E [0, t - Ei]; while 

Xi(t - Ei) + l~Ei fm(Xi(T), v) dT 

-XO(t - Ei) -l~Ei fm(XO(T), UO(T)) dT 

l~Ei [Jm(Xi(T), v) - fm(XO(T), UO(T))] dT. (2.12) 

Equation (2.12) gives 5Xi(t) exactly. However, for small El, the following approxi­

mation to 5Xi(T), TE [t - Ei, t), holds, 

~5Xi(T) = a!m (XO(T), uO(T))5xi(T) 
dT uX 

+ of;; (XO(T), uO(T))5u(T) + O(Ei), TE [t - Ei, t), (2.13) 

5Xi(t - Ei) = O. 
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2.2 CONTROLS IN COMPACT VALUE SETS 

In the rest of the proof <Pj(T, TO) will denote the the state transition matrix corre­

sponding to the system 

%rZ(T) = q{;(XO(T), UO(T))Z(T), i.e. <Pj(T, Ta) satisfies 

d~ <Pj(T, TO) = i: (XO(T), UO(T))<Pj(T, Ta), <Pj(TO, Ta) = I. (2.14) 

Hence 

T E [t - Ei, t). (2.15) 

(ii) Initial condition perturbation: Since 8u( T) = 0, T E [t, t f), a linearization similar 

to the previous case yields 

(2.16) 

Now dividing (2.12) by Ei and adding and subtracting fm(xO(T), v) from the in-

tegrand we obtain 

The following lemma establishes that in the limit as i -+ 00 the second term on 

the right hand side vanishes. Then, since almost every point of a bounded measurable 

function is a Lebesgue point, see [41, pp. 158], we obtain: 

LEMMA 2.1. Under Assumption AD, 

i~~ :i l~Ei [fm(Xi(T), v) - fm(xO(T), v)] dT = 0, 

for t E (tm-l, tf) and all v E U. o 
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PROOF. According to Assumption AO, 

Renee we have 

Ill~€i [Jm(Xi(T),.V) - fm(XO(T), v)] dT11 < l~€i Ilfm(Xi(T), v) - fm(XO(T), v)]11 dT 

< l~€i Lfllxi(T) - xO(T)11 dT 

= l~€i Lf I1 5xi(T)11 dT. (2.17) 

Let 

Then (2.15) yields 

Renee (2.17) gives 

Ill~€i [fm(Xi(T), v) - fm(XO(T), v)] dT11 < l~€i LfKx(T - (t - éi) dT + O(éi) 

1 2 
= '2LfKxéi + o(éd· 

Dividing by éi and letting i -+ 00 the desired result follows from the properties 

o 

Now let Yi(t) = t5Xi(t) so that Xi(t) = XO(t) +éiYi(t) and limi---->CXl Yi(t) II y(t) = 

fm(xO(t), v) - fm(xO(t), UO(t)). 

By (2.16), 
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2.2 CONTROLS IN COMPACT VALUE SETS 

Dividing by Ei and letting i -t 00 we obtain 

. 1 
cI>m(tf, t) hm -8Xi(t) 

t-+OQ Ei 

cI>m(tf, t)y(t) 

cI>m(tf , t)[Jm(xO(t), v) - fm(xO(t), UO(t))]. 

Now since XO is an optimal trajectory g(Xi(t f)) ~ 9(x°(tf)) or equivalently g(XO(t f) + 
EiYi(tf )) - g(xO(tf)) ~ O. Dividing by Ei and passing to the limit we obtain 

(2.18) 

We use the following fact to simplify the above expression. Let {bJ~l be a sequence 

such that bi E ]Rn and bi -t b E ]Rn as i -t 00. Let a E ]Rn be a fixed vector. Then by 

the continuous differentiability of 9 we can define the directional derivative of 9 at a 

in the direction of b as 

Using this fact (2.18) turns into 

or 

(\7 xg(XO(tf)))T y(tf) 

= (\7xg(xO(tf )))T cI>m(tf,t)[Jm(xO(t),v) - fm(xO(t),uO(t))] ~ 0 (2.19) 

(\7 xg(XO( t f))) T cI>m(t f, t)fm(xO(t), v) ~ (\7 xg(XO(t f))) T cI>m(t f, t)fm(xO(t), UO( t)). 

(2.20) 
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Xi 

Switching 
v .. 

tj-l t - fi tj 

FIGURE 2.4. Autonomous switching case: variation in uO causes change in 
switching time and state. 

Àm(tf) \l xg(XO(tf )), 

.\m(t) - (81; (xO(t))) T ip~(tf,t)\lxg(xO(tf)) 

= _ (81; (xO(t))) T Àm(t). 

(2.21) 

(2.22) 

Noting that in this case the Hamiltonian Hm(x, À, u) = À;'!m(X, u), the inequality 

(2.20) is seen to be equivalent to the minimization of the Hamiltonian in location m. 

Step 2: The next step is to determine how the variation in location j is propa­

gated to the switching time tHl . The result obtained here will be used later to derive 

general expressions for propagation of perturbation in location j to the final time t f. 

As in Step 1 we define a "needle" perturbation in the optimal control in location 

j. This causes a change in the switching time as the perturbed trajectory does not 

necessarily intersect the switching manifold at time tj. Let the control values be held 

constant at an arbitrary value v E U over the interval [t - lOi, t) and at UO(tj) over the 
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UO(T) if tj-l ~ T < t - Ci 

V if t - Ci ~ T < t 

Ui(t) = UO(T) if t ~ T < t j - 0; 

UO(tj) if t· - Oi. < T < t· J J - J 

UO(T) if tj ~ T ~ tj+l' 

The new switching time is tm-l - O~_l where {O~-l}~i is a sequence of positive 

numbers (the case of O~_l ~ ° can be handled similarly). 

Since OXi(t - Ci) = 0, we have 

(2.23) 

We use the same procedure as in Step 1 to deduce that 

Notice that in this case OU(T) = 0, TE [tj-l, t - Ci) U [t, t j - 0;) U [tj, tj+l]' Then the 

following sequence of equations is clear 

OXi(tj - 0;) = <Pj(tj - o~, t)OXi(t) + O(Ci), 

i l ti 

° ° ° OXi(tj ) = OXi(tj - 0j) + tr
li
} [!j+l(Xi(T), U (t j )) - !j(x (T), U (T))] dT, 

oXi(tj+d = <Pj+I(tj+1' tj)<Pj(tj - 0;, t)OXi(t) 

+<I>j+1 (tH" tj) l;t~'l [fH1 (x,( T), UO(tj)) ~ J,(XO(T), UO(T ))1 dT + 0(',), 

where we recall that <Pk is the state transition matrix corresponding to the location 

k as defined in Equation (2.14). 

By the definition of the switching manifold, m(tj , XO(tj)) = ° and m(tj -0;, Xi(t j -

0;)) = 0, but m(tj , Xi(t j )) does not necessarily vanish unless the perturbed trajectory 

undergoes an autonomous switch again at time tj. In either case, there exists P} E IR 
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such that 

or 

Let limi-->oo P; = Pj E R (by picking a subsequence, if necessary). Dividing by fi and 

letting i -+ 00 we obtain 

The vectors y(tj-) and y(tj+l-) are computed next. 

. 1 
hm -axi(tj) 
~-->oo fi 

lim ~ <I> . ( t· - ai t) a x ( t ) 
i-->oo fi J J J ' ~ 

+ l~ ~ 1,':,YJ+l(Xi(T), UO(tj )) - /j(XO(T), UO(T))J dT 

<I> ·(t· t) lim ~ox.(t) J J'. ~ t-->oo fi 

+ ili.'! ~ 1,':') [Jj+l(x,( T), UO(tj )) - !;(XO( T), UO(T))J dT 

<I>j(tj, t)y(t) 

+ i~~ ~ ~t~J; [jj+l(Xi(r) , UO(tj)) - fj(xO(r), uO(r))] dr. 

(2.24) 

The second term on the RHS above is independent of t. The optimal control 

uOO is measurable by assumption. But UO(t), t E [tj-l, tj) can be replaced by ÛO(t), 

tE [tj-l, tj) such that ÛOO is left continuous and l1{t E [tj-l, tj) : UO(t) =1= ÛO(t)} = 0, 

where Il is Lebesgue measure. This leaves the optimal cost ft:i
_

1 
lj(xO(s), UO(s)) ds 

unchanged. Assuming that u°(-) has been replaced by û°(-), if we let t -+ t j , we see 

,li.'! :i 1,':,YHl(Xi(T), uO(tj)) - /j(XO(T), UO(T))J dT = O. (2.25) 
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Henee 

Similarly we compute y(tj+l -) as follows, 

lim ~r5Xi(tj+1) 
2-+00 fi 

lim ~<Pj+l (tj+l, tj)<p j (t j - r5~, t )r5Xi (t) 
2-+00 fi 

+<1>;+1 (1;+1,1;) ili.~ :i ~t~'i [f;+1 (Xi( T), UO( 1;)) - !; (XO( X), UO (T)) [ dT 

<Pj+1(tj+1, tj)<Pj(tj, t)y(t) 

(2.27) 

Before proceeding to the general case, we show how the equations describing À 

and the minimization of Hamiltonian in each location can be obtained in a single 

switching time two locations case. 

Set j = 1 and tj+l = t2 = tf in (2.26) and (2.27) above. Then 

and 

y(tf) = y(t2) = <P2(t2, h)<Pl(h, t)[h(xO(t), v) - h(xO(t), UO(t))J. 

Combining (2.19) and (2.24) yields 

where p = 0 if t1 is a controlled switching time. 

Substituting the values ofy(t1-) and y(tf ), inequality (2.28) becomes 

C\lxg(XO(tf)))T <P2(tf, tl)<Pl(tl , t)[h(xO(t), v) - h(xO(t), UO(t))] 

+p (\7 xm(h, xO(t1)))T <Pl(t1, t)[h(xO(t), v) - h(xO(t), UO(t))] ~ o. 
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(<I?f(tl,t) [<I{(tf,tl)\7xg(XO(tf)) +p\7xm(tl,xO(td)]{ fI(xO(t),V) 

2: (<I>f(tl,t) [<I>I(tf,tl)\7xg(XO(tf)) +p\7xm(t l ,xO(td)])T fI(xO(t),uO(t)). 

(2.29) 

we obtain 

<I>I(tf' t l )\7 xg(xO(tf)) + P \7 xm(t l , xO(td) 

À2(t l ) +p\7xm(t l ,XO(tl )), (2.30) 

~l(t) - (%; (XO(t))) T <I>f(t l , t) [<I>I(tf' tl)\7 xg(xO(tf)) + P \7 xm(tl, xO(td)] 

_ (%; (XO(t))) T Àl (t). (2.31) 

Noting that in this case Hl (x, À, u) = Àf fI (x, u) the inequality (2.29) is equivalent 

to the Hamiltonian minimization in location 1. 

2.2.1. Detailed Calculation of the Adjoint Variable Evolution. The 

derivation of the equations describing À and the minimization of Hamiltonian in each 

location is now generalized to more than two locations case. In order to derive the 

adjoint equation in a location j E {1, 2,'" ,m}, we perform a needle variation at a 

Lebesgue point t E (tj - l , tj), where tm = tf, and compute the the deviation of the 

perturbed trajectory from the optimal trajectory at the final time, i.e. c5Xi(tf) (see 

Figure 2.5). 
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For brevity we write f(i) for f(Xi(S),UO(s)) and f(O) for f(xO(s),uO(s)). Then 

In general, if j + k =1 m then 

cSXi(tj+k) = [n <I>j+k-l(tj+k-l - cS;+k-l' tj+k-l-l)] <I>j(tj - cS;, t)cSXi(t) 
1=0 

or 
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Xo 

i tj +1 

tj+1 - O}+1 

FIGURE 2.5. Autonomous switching case: variation in uo causes change in 
switching times and states and is carried forward to t f' 

In case j + k = m, the last integral above is zero and 

6Xi(tf) = 6Xi(tm) = [mîï1 

<I>m-l(tm- l - 6:n-l' tm-l-1)] <I>j(tj - 6;, t)6Xi(t) 
l=O 

+ ~ ( [mîïr <I>m-l(tm-l - 6:n-l' tm-l-d] 
r=l l=O 

As before, we now divide both sides by Ei and let i -+ 00. 

30 
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or 

y(tm) [mfC <l>m-t(tm-" tm-t-l)] <I>;(t;, t)y(t) 

+ ~ ( [mî1
r 

<I>m-l(tm-l - <5:n-l' tm-1-d] 
r=l 1=0 

. 1 l tHr
-

1 
(i) (0) ) x hm - (Jj+r - fj+r-l) ds. 

t-too é· ri 
t tj+r-l-Uj+r_l 

(2.33) 

As we saw in equation (2.25) ab ove , 

. 1 l tHr
-

1 
(i) (0) _ 

hm - (Jj+r - fj+r-l) ds - O. 
t-too é' t ri 

t j+r-l-Uj+r_l 

Hence we have 

y(tf) = y(tm) = [mî1 1 

<I>m-l(tm-l' tm- 1- 1)] <I>j(tj, t)y(t). (2.34) 
1=0 

m-j 
(V'xg(XO(tf))( y(tf) + LPm-r (V'xmm-r,m-r+l(tm-nxO(tm-r)))T y(tm-r-) 2: O. 

r=l 

(2.35) 
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Substituting (2.34) and a similar expression for y(tm-r-) into (2.35), we obtain 

If we set 

then the above inequality can be written compactly as 

Now setting ÀJ(t) = w(m, j)<I>j(tj, t), t E [tj , tj+l), and Hj(x, À, u) = ÀJ fj(x, u), 

t E [tj-l, tj), j = 1,2, ... ,m, yields the following relationships 

(i) 

or 

which shows the minimization of Hamiltonian in location j. 
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(ii) Differentiating Àj(t) = <I>J(tj, t)WT(m,j) yields 

~j{t) = - (':t (xO{t),uO{t))" <I>} {tj , t)wT{m,j) 

- - (':t (xO{t), uO{t))" Àj{t) 

- -! (À;(t)h(xO(t), uO(t)) 

- a~j (XO(t), À(t), UO(t), t E [tj, tj+1)' 

(iii) In the final location m, 

Àm(t) - <I>~(tf, t)\1 xg(XO(tf )), tE [tm-l,tf], 

~m(t) - _ (al; (XO(t))) T <I>~(tf' t)\1 xg(xO(tf)) 

- - (Of; (XO{t))) l' "m(t), tE [tm-l, tf], 

Àm(tf) - \1 xg(XO(tf )). 

(iv) In order to derive the À-transversality at the switching time tj, j = 1,2, ... ,m-

1, we compute the following expressions 
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'l!(m, j + 1)<I>j+1 (tj+l, tj) 

= (\7 xg(XO(tf)))T [mil2 

<I>m-t(tm-t, tm-t-I)] <I>j+1 (tj+l' tj) 
t=o 

+ m~ 
1 

(pm-c ('\7 x1nm- c,rrH+l (tm-co XO (im-c )) f 

X [m-ü-2 

1>m-c-l(tm-c- l, tm-,-I-,)] ) 1>;+1 (t;+1, t;) 

'l!(m, j + l)<I>j+1 (tj+1' tj) 

('\7 xg(X°(t f))) T nr 1>m-1 (im-I,tm-I-,)] 

+ m~ 
1 

Pm-, ( ('\7 x rnm-',m-, + 1 (tm-" XO (tm-, ) ) ) T 

X [m-ü-l1>m_,_I(tm_,_I, im-,-I-,)] ) 

+Pj (\7xmj,j+I(tj, x°(tj)))T - Pj (\7xmj,j+I(tj, xO(tj)))T, 
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t· J 

XO(tj+l) 
Xi(tj+l) 

FIGURE 2.6. Controlled switching case: variation in the switching time. 

or 

Hence 

+ ~ Pm-, ( ('\7 x mm-"m-,+ 1 (tm-" X 
0 
(tm-, ) ) ) T 

X [rn-ft -1 il> m-,-' (tm ,." tm-,-'-l ) 1 ) 
-Pj (\lxmj,j+l(tj ,XO(tj )))T 

w(m,j) - Pj (\lxmj,j+1(tj ,xO(tj )))T. 

w(m,j) - w(m,j) + Pj (\lxmj,j+1(tj,xO(tj)))T 

Pj (\lx mj,j+1(tj,xO(tj )))T. 

If t j is a controlled switching time then Pj = O. 

Step 3: In this step we show the continuity of Hamiltonian in the controlled 

switching case. Let the optimal switching time t j be shifted to t j - Ei (as shown in 
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Figure 2.6) and let the control input over the interval [0, t f] be given by 

UO(T) if O<T<t·-C - J ~ 

Ui(T) = UO(tj) if t·-f·<T<t· J ~ - J 

UO(T) if tj ~ T ~ tf. 

Then 

and 

Then 

1 I1tj 

fi c5Xi(tj) = fi tj-€i [!i(Xi(T), v) - !j-l(XO(T), UO(T))] dT. 

Adding and subtracting !j(XO(T), v) and then using Lemma 2.1 we obtain, as in Step 

1, 

Then c5Xi(tf) = ifJj(tj, tj)c5Xi(tj) and 

y(tf) = lim ~c5Xi(tf) = ifJj(tf' tj)[Jj(tj, XO(tj ), v) - !j-l(tj , xO(tj ), UO(tj))]. 
~--+oo fi 

Again sin ce XO is optimal g(xi(tf)) - g(xi(tf)) = g(XO(tf) + fiYi(tf)) - g(xi(tf)) ~ o. 
Dividing by fi and taking the limit as before we obtain 

(\7 x g(XO(tf)))T y(tf) 

= (\7 xg(xO(tf)))T ifJj(tf,tj)[Jj(tj,x°(tj),v) - !j-l(tj ,XO(tj ),u°(tj))] ~ o. 

Using the definition of ).,j from Step 1 and setting v = uO(tj) the above inequality can 

be written as 
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t tH 1 

tj+l - c5;+l 

FIGURE 2.7. Q-needle variation. 

Ifwe specialize the result ofStep 2 to the controlled switching case we get Àj-l(tj) = 

Àj (t j ). so that the above inequality can be written as 

A similar derivation with the switching time shifted to other side i.e. to tj + Ei 

gives the inequality in the opposite direction. Hence at a controlled switching time 

we must have 

Step 4: We now establish the minimization of the Hamiltonian w.r.t. the discrete 

locations. 

Consider a Lebesgue point tE (tj - l , tj) in location j. We introduee two controlled 

switchings so that the systems switches to location k E Q at time t - Ei and switches 

back to location j at time t such that [t - Ei, t] C (tj - l , tj). This is possible sinee 

LO + 2:::; L. 
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Let the control input be held constant during the interval [t - Ei, tl. Then 

Then 

and 

Then 

uO(r) if tj-l:S r < t - Ei 

Ui ( r) = u ° ( t ) if t - Ei :S r < t 

uO(r) if t:S r :S tj. 

1 lit Yi(t) ~ Ei OXi(t) = Ei t-~i [Jk(Xi(r), UO(t)) -1i(xO(r), uO(r))] dr. 

Adding and subtracting fk(xO(r), UO(t)) to the integrand above we obtain 

Yi(t) = :i l~~i (fk(Xi(r), uO(t)) -1i(xO(r), uO(r)) 

+ fk(xO(r), UO(t)) - fk(xO(r), UO(t))) dr 

:i l~~i (Jk(xO(r), uO(t)) -1i(xO(r), uO(r))) dr 

lit . + Ei t-~i (Jk(Xi(r), UO(t)) - fk(xO(r), UO(t))) dr. 

By Lemma 2.1 the second integral vanishes as i -+ 0, as in Step l, yielding 

Next we notice that if we mimic the derivation in Step 2 we see that Equation (2.36) 

holds in this case as weIl, with the appropriate expression for y(t) substituted. Hence 

38 



2.3 CONTROLS IN OPEN VALUE SETS 

Or, as before, if we set À;(t) = w(m,j)CI>j(tj, t), t E [tj, tHl), and Hj(x, À, u) 

>..;fJ(x,u), tE [tj-l,tj), j = 1,2,'" ,m, then 

or 

2.3. Controls in Open Value Sets 

o 

THEOREM 2.3. Consider a hybrid system lB[ satisfying Assumptions AD-A3, and 

the HOCP(to,tf,xo,L,UO) and define 

o 
x, À E ]Rn, U EU, q E Q. 

1) Let ]O(to, tf, ho, Ua) = inf{IL(L)} ]O(to, tf, ho, h, L, Ua) be realized at a minimizing 

control Il and trajectory (xO, qO). 

2) Let I20(L) have Le controlled switchings and La autonomous switchings, and let 

La + Le = LO(L). 

3) Let t l , t 2 , ... , tLo denote the switching times along the optimal trajectory 

(XO,qO). 

4) Assume that XO meets m = U m;,q transversally and does not meet 8m;:q n 8m;~q 
for any ki,kj,p,q. 

5) Assume that either (a) L < 00 and LO(L) = La + Le + 2 ~ Lor, (b) L = 00 

and LO(L) < 00. 

Then the conclusions of Theorem 2.2 hold. 

If, in addition, 

6) almost every continuous state x on the optimal trajectory XO (.) is a small time 

tubular fountain with respect to XO (.) . 
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Then the following Hamiltonian continuity condition holds at a (controlled or au­

tonomous) switching time t = tj 

H(t j-) - Hq(j_l)(tj-) = Hq(j-i) (t j ) = Hq(j)(tj) = Hq(j) (t j+) = H(tj+), 

j E {l, 2, ... ,LO}. 

D 

Remark: The difference between Theorem 2.2 and Theorem 2.3 is that subject 

to the st ronger condition of U open and subject to the small time tubular fountain 

condition Theorem 2.3 gives the Hamiltonian continuity condition at autonomous 

switching times. 

Remark: When (i) the control value set U is compact but has nonempty interior 
o 0 

U, (ii) the continuous optimal control takes values in U, and (iii) the small time 

tubular fountain condition holds, then aIl the results of Theorem 2.2 hold together 

with the Hamiltonian continuity at an autonomous switching time. To obtain this 

necessary condition result it is sufficient to consider control input variations (around 

the hypothesized bounded measurable optimal control ua) which themselves fall in 

the more restricted class of piecewise continuous controls. 

PROOF. To simplify the notation consider the case of two locations, land 2, and 

a single autonomous switch at t s . In an obvious notation consider the optimal cost 

function JO 

Let the function ). (.) be defined to be any absolutely continuo us function which sat­

isfies 

\ ° = _ 8Hi 
( ° \ ° 0) /\ 8x x, /\ ,u , a.e. tE [to, tf], i E {l, 2}, 

).(tf ) = Vxg(XO(tf)), 

).O(ts-) == ).O(ts) = ).O(ts+) + P V xm l,2I t=ts ' 

(2.37) 

(2.38) 

(2.39) 
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2.3 CONTROLS IN OPEN VALUE SETS 

along the optimal trajectory. Aiso let À1(t) il À(t), t < t s and À2(t) il À(t), t 2:: t s . 

Since x satisfies the respective ODEs in the respective locations over the intervals 

(to, t s ) and (t s , tf) and since the switching constraint is satisfied at t = t s we have 

for p E 1R, where in the rest of the pro of m1,2 will be written simply as m. 

We now perturb the optimal input Uo E U to uo + buo E U such that 

ess sup[o,T]lbuol < b, where b williater be taken to be sufficiently small for the required 

estimates to hold. 

Denote the shifted switching time resulting from the new space-time intersection 

point with the manifold m by ts + Ms and the associated state values by XO + bxo. 

We note that by (i) the differentiability of m and (ii) the continuity of the solutions 

to the system equations with respect to the initial (respectively, terminal) conditions 

and with respect to perturbations in u (with respect to the Loo norm) , it follows that 

ots = 0(0) and bxo = 0(0). We obtain: 

t
sHts 

( ) + lto h(xO + oxo, UO + buG) + À?(h(xO + bxo, uO + buG) - iO - biO) dt 

+ [t f 
(l2(XO + oxo, uO + buG) + À2

T (h(xO + bxo, uO + buG) - iO - biO)) dt 
ts+6ts 

+g((XO + bxO)(tf)), 

where we note that the definition of À 1(-) on [ts, ts + Ms), the definition of À2 (') only 

on [ts + Ms, tf] is obtained by redefining À(') with the ODE (2.37) and the boundary 

conditions (2.38) and (2.39) given on the adjusted intervals. 

In the ab ove equation bio has the following precise definition: with x(·) generated 

by the ODE 

i = f(x, u), x(O) = Xo, (2.40) 
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2.3 CONTROLS IN OPEN VALUE SETS 

let x"(·) be generated by the ODE 

±" = f(x", u + 6u) = f(x + 6x, u + 6u), x"(O) = xg = Xo + 6x(0), 

where 6x(t) 6 x"(t) - x(t) and correspondingly 6±(t) 6 ±" (t) - ±(t). This yields 

d" d 
dt X (t) - dtx(t) 

±"(t) - ±(t) == 6±(t) 

f(x", u + 6u) - f(x, u), 

Henee with 6x(·) generated by (2.41) ab ove: 

6x(O) = xg - Xo. 

f((xO)", uO + 6uO) 

f(xO + 6xo, UO + 6uO). 

Ifwe linearize (2.41) about (x(·),u(·)) as in Equation (2.40) then we have 

(2.41) 

with the initial condition c5x(O) = xg - Xo. Clearly, in general, it is not the case that 

c5± ftc5x(t) = ~(x, u)c5x + ~(x, u)6u. 
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2.3 CONTROLS IN OPEN VALUE SETS 

By the assumption of the optimality of UO we have the following classical varia­

tional inequalities: 

J(UO + oua, ts + ots) - J(uO, ts) 

p m(ts + Ms, (XO + OXO)(ts + ots )) 

l
ts+8ts 

+ (h (xO + oxo, UO +OUO) 
to 

+Àf(!t(xO + oxo, UO + oua) - iO - OiO))dt 
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p (m(ts + Ms, (XO + bxO)(ts + bts)) - m(ts,x°(ts))) 

+ rs 

(h(xO + bxo, UO + buO) 
lta 

+X[ (ft (XO + bxO, UO + buO) - iO - biO) )dt 

- rs 

(h (xO, ua) + X[(ft (XO, ua) - iO) )dt 
lta 

l
ts+ots 

+ (h(xO + bxo, uO + buO) 
ts 

+Àf (ft (XO + bxo, UO + buO) - iO - biO) )dt 

Next we use the Taylor series expansion of m(ts +bts , (xO +bxO)(ts +bts )), li(XO + 

b'xo,uo+b'uO), fi(XO+b'xo,uo+buO) and g((xo+b'xO)(tf)) about m(xO(ts )), li(XO,UO), 

li(xO,uO), i = 1,2, and g(XO(tf)), respectively, to obtain 
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2.3 CONTROLS IN OPEN VALUE SETS 

Rearranging terms we obtain, 

Now recognizing that (5:i;0 = 1ft(c5xO),c5xO(to) = 0, integrating Jt~S ÀITc5i:~dt and 

ft:f+clts À2
T c5i:g dt by parts, rearranging terms and noting that the last integral is 0(c52

), 

we obtain 
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Setting Hi = li + )..?T li, i = 1,2, approximating the last two integrals and rear­

ranging terms we obtain 

l
t8 (8H1 . T) ° r! ·(8H2 . T) ° 

to 8xo +)..1 6xI dt + Jts+ot
s 

8xo +)..2 6x2 dt 

+ ()..2(tf.) - \7xg(x~(tf))f 6x~(tf) + lots (~~i) 6uOdt 

1
t
! (8H2) ° (T 0)1 (T 0)1 + 8uo 6U2 dt - )..1 6xI t=ts + )..2 6x2 t=ts+Ots ts+Ots 

+ P \7 xomlt=ts 6xo + (Hl - )..? xd It=ts Ms - (H2 - )..2
T 

X2) It=ts+ots 6ts 

+0(62
). 

Sinee )..i, i = 1, 2 is generated by the ODE )..i = - ~~~ and sinee )..2 (t f ) 

\7 xg (x~ (t f )), the first three terms in the above expression vanish. 
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2.3 CONTROLS IN OPEN VALUE SETS 

Perturbed trajectory 

(x~ + ox~, u~ + t5u~) 

Optimal trajectory Switching manifold 
(x~, u~) {m(x) = D} 

t. t. + ot. 

FIGURE 2.8. Autonomous switching case: variation in uOcauses change xO 

and t s . 

rtS(OHl) ° i t
! (OH2

) ° (1 1 ) Jto ouo 5ul dt + tsHt. ouo 5u2 dt + Hl t=ts - H2 t=tsHt. 5ts 

-Àf(ts) (5x~(ts) + i~(ts) Ms) 

+À2
T (ts + 5ts) (5xg(ts + 5ts) + ig(ts + Ms) 5ts) 

+ p\7 xmlt=ts 5xo + 0(52
). 

Since 5xo is the total spaee-time variation in x, and sinee 

x~(ts) = xg(ts), 

(x~ + 5x~)(ts + Ms) = (xg + 5xg)(ts + 5ts), 

5xo = (xg + 5xg)(ts + 5ts) - x~(ts), 

5x~(ts) = (x~ + 5x~)(ts) - x~(ts), 

5xg(ts + Ms) = (xg + 6xg)(ts + 6ts) - xg(ts + 6ts), 

we have the following relationships: (i) 5xo = 5x~(ts) + i~(ts) Ms + 0(52 ), and (ii) 

5xo = 5x~(ts + 5ts) + i~(ts + 5ts) Ms + 0(52
), as shown in Figure 2.8. 
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2.3 CONTROLS IN OPEN VALUE SETS 

Using these relations the expression for fj.Jo becomes 

Since Ols = 0(15) the second to last term in the ab ove expression is 0(152
) by the 

boundary conditions on À 1 and À2, and so the expression reduces to 

The variations c5uo and Ols are not in general independent since Ols depends upon 

c5uo via the equations describing the switching surface. We now invoke the smaU time 

tubular fountain (STTF) property (Definition 2.6) to generate a variation c5uo which 

shows that the coefficient of Ols in the above expression vanishes whenever UO and ts 

are optimal. To see this we split each of the two integrals over the intervals [to, t s ] 

and [t s , tf] as follows (see Figure 2.8): 

for any ta, te such that to :::;ta < ts < te :::; tf' 

Control Variations via the Small Time Tubular Fountain (STTF) Condition 

For economy of notation define y = XO + c5xo and v = UO + c5uo. Suppose the 

coefficient of Ols in (2.42) above is negative. We wish to show that there exists a 

control perturbation c5uo such that c5u°(t) = 0, t E [to, ta] u [to tf], where ta = ts - 15 

and te = ts + 15, and such that uO + c5uo E U steers the system trajectory so that it 

intersects the switching manifold m for the first time in [ta, te] at sorne ts + Ols where 

° < c5ts < 15, and then steers it back to the unperturbed trajectory at time te (see 

Figure 2.9). 

Identify r' in Definition 2.6 with 15 and henceforth take 15 sufficiently smaU that 

xOO intersects m only once in [ta, te]. This is possible by (i) the continuity of xOO, 
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2.3 CONTROLS IN OPEN VALUE SETS 

(ii) the smoothness of m(·, '), and (iii) the transversality hypothesis (Hypothesis 4). 

Consider the set T~ .6. Uta'ST<tlBp,(xO(T)) where fJ, and tl are such that T~ n {x : 

m(ts, x) = a} = 0. Let, = ~. By the positive STTF conditions (b), (c) and (d) 

there exist ta', E > a and vi (.) such that: 

(i) ta :::; ta' < tl < ts, 

(ii) 114>(8, XO(ta), v!ta"sj) - 4>(8, XO(ta), U[ta"sj) Il <" 8 E [ta, td, and 

(iii) 4>(tl - E, XO(ta), vlta,tl-Ej) = 4>(tl, XO(ta), u[ta,tzl)' 

Now consider the set T; .6. Utr<T9cBp,(xO(T)) where fJ, and tr are such that T;n{x : 

m(ts,x) = a} = 0. Let, = ~. By the negative STTF (b/), (c') and (d') there exist 

td, E > a and v r
(-) such that: 

(i) ts < tr < tc' :::; tc, 

(iii) 4>(tc, xO(tr - E), v[tr-E,tcj) = 4>(tc, x°(tr - E), U[tr-E,tcj)' 

Early arrival case 

The continuous dynamics in each location are time-invariant. Consequently, if 

the perturbed control input over the interval [tl - E, tr - E] C [ta" tc'] is chosen so that 

V(8) = UO(8 + E), tl - E :::; 8 :::; tr - E, then: (i) {Y(8) : tl - E :::; 8 :::; tr - E} = {xO(S) : 

t l :::; 8 :::; tr} and (ii) Y (.) takes the same ainount of time to traverse the optimal 

path from XO (tl) to XO (tr) as does XO (-). Furthermore, y(-) intersects the switching 

manifold only once in the interval [ta, tc] (see Figure 2.9). Set t l = tl - E, t2 = tr - E; 

then It2 - tll = Itr - tll < Ite' - ta' 1 :::; Itc - tal < 26". 

In (2.42), by the construction of 6"uo, the first and the fourth integrals are zero and 

the second and third integrals are 0(6"2) since Itc-tal = 0(6"). This causes the integral 

terms to be of second order (0(6"2)) but renders .6.Jo negative to first order (0(6")). 

Since this is impossible by the optimality of uO and ts, the term (Hllt=ts - H2It=t.+) 

must be zero. 

Late arrival case 
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FIGURE 2.9. Early and Iate arrivaI variations using STTF. 

Now suppose the coefficient of Ms in (2.42) is positive. It is clear from Definition 

2.6 that a similar construction can be done where v(·) and the resulting trajectory y(.) 

aresuch that: (i) v(s) = uO(s-€), t l +€::; s::; tr+€, (ii) {y(s): tl+€::; s::; tr+€} = 

{Xo(s) : tl ::; s ::; tr}, (iii) y(.) takes the same amount of time to traverse the optimal 

path from XO(tl) to xO(tr) as does XO(.), and (iv) y(.) intersects the switching manifold 

only once in the interval [ta, te] (see Figure 2.9). As in the negative coefficient case, 

this again leads to the conclusion that the term (Hllt=ts - H2It=ts+) must be zero. 

An appropriate variation {buO, to ::; t ::; t f} now shows that ~~J = 0 and ~~5 = 0 

on [to, ts) and [ts, tf] respectively. 

The pro of of Hamiltonian minimization with respect to the discrete locations is 

similar to that in Theorem 2.2. D 

2.4. Examples 

EXAMPLE 2.1. In this example we show how the Weierstrass-Erdmann corner 

conditions of calculus of variations [31] can be recovered from the hybrid maximum 
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principle. First we briefly recall these conditions. Consider the class E of all con­

tinuous functions, x : [a, b] -t IRn, with fixed end points, x(a) = x(b) = 0, pos­

sessing piecewise continuo us derivative x(t), t E [a, b] in a bounded open set. Let 

f : [a, b] x IRn x IRn -t IR be of class C 2
. Then the integral 

l(x) = lb f(x(s), x(s)) ds, 

is well defined for x E E. 

Suppose that for some XO E E, l(xO) ::; l(x), for all x E E. Then the following 

necessary conditions are satisfied: 

(i) XO satisfies the Euler-Lagrange equations: 

d (a f ° .O( )) af( O() .O()) dt ax (x (t), x t) = ex x t, x t . 

(ii) The Weierstrass E-function: 

E(x, X, w) ~ f(x(t), w) - f(x(t), x(t)) - (w - x(t))T~~ (x(t), x(t)), w E IRn, 

is positive along xo. 

(iii) The functions 

f(x(t), x(t)) - xT(t) ~~ (x(t), x(t)) and ~~ (x(t), x(t)), 

are continuo us along xO and hence at each corner point (point of non-differentiability) 

of xo. 

Conditions (i) and (ii) can be obtained as consequences of the Minimum Principle 

(see [11], for example). H ere we demonstrate how condition (iii) can be recovered from 

the Hybrid Minimum Principle. We transform the above problem into an optimal 

control problem as follows. Set x = u so that l(x) = J: f(x(s), u(s) ds. Let XO have 

one corner at t l E (a, b) (the generalization to a finite number of corners is similar). 
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y 

fh(t') 

o 
fh(t) 

-T- X 

M = {(x, y) E JR2 : y = O} 

FIGURE 2.10. Snell's Law. 

Then by the HMP the Hamiltonian and the adjoint process are continuous at t l , i.e. 

H(x, À, u) = ÀT 
U + f(x, u). 

Minimization of H with respect ta u implies 

of of. 
À(t) = - au (x(t), u(t)) = - ai (x(t), x(t)). 

Hence 

H(t) = H(x(t), À(t), u(t)) 
of 

f(x(t), u(t)) - uT(t) au (x(t), u(t)) 

f (x (t), i (t)) - i T (t) ~~ (x (t), i (t) ). 

And we get W-E corner conditions as a result of the continuity of H(t) and À(t) 

along x°(t). Notice that the positivity of the Weierstrass E-function is equivalent ta 

minimization of Hamiltonian. o 

EXAMPLE 2.2. Let a ray of light pass from a medium, in which its velocity is VI, 

ta another medium, in which its velocity is V2, in such a way as to minimize the time 

of travel (Fermat's Principle), as shown in Figure 2.10. The initial and final times 

are 0 and t f respectively and the time at which it enters medium 2 is 0 < t s < t f. The 
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boundary (switching manifold) between two media is M = {(x, y) E JR2 : m(t, x, y) = 

y = O}. In the rest of this example the subscripts 1 and 2 refer to media 1 and 2 

respectively. At each time along its trajectory let the ray form angles BI(t) and B2 (t) 

with the normal t0:Û:. Further, let -~ < BI(t) < ~, 0 :S t < t 1 , and -~ < B2 (t) < ~, 

t l :S t :S t f, Then the horizontal and vertical components of velocities V1 V2 can be 

written as: 

The objective is to minimize: 

The Hamiltonian in each medium is given by: 

i = 1,2, 

where Ài and /1i are variables adjoint to Xi and Yi, i = 1,2, respectively. Sinee B1 and 

B2 take values in an open set (- ~, ~) if Bf is optimal then 

and so tan BO = ~. 
t /li 

In the sequel we drop the superscript on Bi, z 1,2, as all Bi will be optimal. 

Along the optimal trajectory, 

and i = 1,2. 

which shows that Ài and /1i are constant and henee Bi, i = 1,2, are constant. So the 

the path of light ray in each medium is a straight line. 
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Next, applying the Hamiltonian and adjoint transversality conditions at the switch­

ing time t s we obtain: 

or 

(2.43) 

or 

and /11 = /12 + P \7 ym = /12 + p. 

In light of the above equations (2.43) can be written as 

But since Ài = /1i tan {Ji, we have 

and 

H ence if À2 =1=- 0 then 

o 
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CHAPTER 3 

Sufficient Conditions for Hybrid 

Optimality . 

3.1. Hybrid Dynamic Programming 

In this section we present a hybrid Dynamic Programming Principle (HDPP) 

which is a generalization of the standard Dynamic Programming Princip le for differ­

entiable control systems [4, 61, 52J. This results in a generalization of the standard 

Hamilton-Jacobi-Bellman (HJB) equation. This hybrid HJB equation is then used 

to establish a sufficient condition for the optimality of a candidate hybrid control. In 

contrast, Branicky et al. [13J generalize the quasi-variational inequalities (QVIs) of 

impulse control framework [8J to hybrid systems. They consider optimization of dis­

counted cost over semi-infinite intervals and use the QVIs to establish a verification 

theorem. 

Let {I} be the set of aIl possible hybrid input trajectories with fixed initial time 

and hybrid state (to, ho), having finite number of switchings and satisfying Assump­

tions AO and A1. Then the value function, at (to, ho), for HOCP(to, tf' ho,U), such 

that A2 and A3 hold, is defined to be: 
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where L is the number of switchings and L < L = 00. 

If l = (7, (J, u) = ((to, (Jo, u[to, tl))' (tl, (JI, U[tl' t 2 )), ... ), where u[ti , ti+d den otes 

the restriction of u(·) to the half open interval [ti, t i +l ), then the restriction of l to 

the interval [t', t") C [to, T), where tk ~ t' < tk+l, tl ~ t" < tl+1' k ~ l, is denoted 

I[t', t") and defined by: 

Let h(t; ho, h[to, tl) denote the hybrid state at time t in a hybrid execution el8l, re­

sulting from the hybrid input h[to, t], where h[to, t] is the restriction of h to the 

interval [to,t]. 

THEOREM 3.1. ([42] after [2]) (Hybrid Dynamic Programming Principle) Con­

sider the 

HOCP(to, tf, ho, L,U) with L = 00 and LO(L) < 00. Let ta ~ t' < t ~ tf and let tk 

and tl be switching times such that tk ~ t' < tk+l, tl ~ t < tl+ l and 0 ~ k ~ l where, 

{tdi=k' and k and l all depend upon I. Let {I[t', tf]} denote the input sequences in 

the class {I} restricted to the time interval [t', tf]. Then under Assumptions AO-A3, 

(l tk

+
1 ~ l ti

+
1 

v(t',h') = inf lqk(Xqk(S),u(s))ds+ ~ lqi(Xqi(S),u(s))ds 
IE{I[t',tf]} t

' 
. t t=k+l ' 

+ lt lql(Xq1(S),U(s))ds + V(t,h(t;h',I[t',t]))) , 

v(tj, h) = g(x), Vh = (q, x) E Q x ]Rn, 

If either of l or k equals L then in the intervals of definition of t' and t the right end 

point is taken to be t f . D 
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PROOF. We prove the theorem by showing the inequality in both directions. Fix 

h E {J}. Then as in equation (2.5) 

l
tk+1 L rti+1 

J(t', h'; ft) = t' lqk (xqk (s), u(s)) ds + i~l Jti lqi (x qi (s), u(s)) ds + g(xqL (t f)) 

or 

l"H 1" (x" (s), u(s)) ds + i~l l'«' IqJx" (s), u( s)) ds 

l t ltl+l + lql (xq1 (s), u(s)) ds + lql(Xq1(S), u(s)) ds 
~ t 

+ t Iti+llqi(xqi(s),u(s))ds+g(XqL(tf))' 
i=l+l ti 

J(t', h'; h) > l"H 1" (x" (8), u(s)) ds + i~l l"+' 1" (x" (8), u(s)) ds 

+ t lql(Xq1(S), u(s)) ds + v(t, h(t; hl, h[t', t])). 
Jtl 

Taking infimum over {J} on both sides we get the inequality "::::". 

In order to obtain the inequality in the other direction we fix IL' E {I[t', tn such 

that t is not a switching time, fix E > 0, and set h = h(t; h',IL')' By the definition 

of infimum there is J'[t, tf] E {I[t, tf]} such that v(t, h) + E :::: J(t, h, J'[t, tf]). Let 

h be the hybrid input sequence formed by the concatenation of the input sequences 

IL' [t', t) and J'[t, tf]. Then we have 

57 



3.1 HYBRID DYNAMIC PROGRAMMING 

v(t' , h') < J(t' , h'; h) 

+J(t, h, l') 

Rence 

v(t' , h') < 

rtk+1 1-1 l.ti+1 
Jt

l 

lqk(Xqk(S), u(s)) ds + i~1 ti lqi(Xqi(S), u(s)) ds 

+ r
t 
lqt(xqt(s),u(s))ds+ tt+llqt(Xqt(s),u(s))ds 

J~ Jt 

+ t l.t

i+l lqi(Xqi(S), u(s)) ds + g(xqL(tf)) 
i=I+1 t, 

rtk+1 1-1 I ti+1 
Jt

l 
lqk (Xqk (s), u(s)) ds + i~1 ti lqi(Xqi (s), u(s)) ds 

+ t lqt(xql(s),u(s))ds 
Jtl 

< l''+> 1" (x" (s), u(s)) ds + i~l1.'H' 1" (x" (s), u(s)) ds 

+ tlql(Xql(s),u(s))ds+v(t,h)+E. 
Jtl 

Since E > 0 is arbitrary we have the desired inequality. 

Finally, v(tf' h Ll (q, x)) = g(x) follows from the definition of v (Equation (3.1)). 

o 

Before presenting Theorem 3.2 we quote the following results on the continuity of 

executions of hybrid systems with respect to initial conditions and times. We assume 

that there exists Kf < 00 such that maxqEQ SUPUEU Ilfq(O, u)11 :::; Kf· 
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LEMMA 3.1. ([2J) (Dependence on Initial Conditions) For the ODE x(t) = f(x(t), u(t)), 

let xi .6. x(t; Xl, t l , u) and x~ .6. x(t; X2, t2, u) denote the states at time t with initial 

conditions Xl and X2 at times t l and t2 respectively and with input u. Then under 

Assumption AD 

PROOF. Assume, without 10ss of generality, that t l ::; t2 • 

Since x(t; xo, to, u) = Xo + ft: f(x(s; xo, to, u), u(s)) ds 

Ilx(t; Xl, t l , u) - x(t; X2, t2, u)11 

o 

IIXl - X2 + lIt f(x(s; Xl, t l , u), u(s)) ds -l2
t 

f(x(s; X2, t2, u), u(s)) dsll 

< Il Xl - X211 + IIll
t

2 f(x(s; Xl, t l , u), u(s)) dsll 

+ IIl2
t 

(j(x(s; Xl, t l , u), u(s)) - f(x(s; X2, t2, u), u(s))) dsll 

< Ilxl - x211 + It21If(x(s; Xl, t l , u), u(s))11 ds 
tl 

+ jt Ilf(x(s; Xl, t l , u), u(s)) - f(x(s; X2, t2, u), u(s))11 ds 
t2 

< Il Xl - X211 + jt
2 

KI ds 
tl 

+jt LI /lX(S;Xl,tl,U),u(s) - X(S;X2,t2,U),u(s)/I ds 
t2 

/lXl - x211 + Klltl - t21 

+LI ft IIx(s; Xl, t l , u), u(s) - x(s; X2, t2, u), u(s) Il ds. 
t2 

An application of the Bellman-Gronwall Lemma now yields the desired inequality. 0 
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3.1 HYBRID DYNAMIC PROGRAMMING 

Lemma 3.1 extends to hybrid executions using the results of Theorem 2.1. Assume 

that t l is not a switching time in a hybrid execution elHI and that (ql(t l ), XI(t l )) is 

the hybrid state at t l . Then as in the proof of Theorem 2.1, there exists t' > 0 such 

that no switching is defined over the interval [t l , t') in the execution elHI. In this case 

Lemma 3.1 generalizes as follows. 

LEMMA 3.2. (Dependence on Initial Conditions (Hybrid)) Suppose that the time 

t l along a hybrid execution elHI is not a switching time and that (ql (td, Xl (td) is 

the initial hybrid state at t l . Let (ql(t),xD be the hybrid state in the execution elHI, 

with input l, at time t > t l where t is not a switching time either. Then there 

exist a neighbourhood N(tl,Xl) of (t l , Xl) E IR x IRn such that if (t2, X2) E N(tl,xI) 

(assume without loss of generality t2 ~ t l ) then (q2(t), x;} = h(t; (t2, X2), 1) satisfies 

q2(t) = ql (t) E Q and 

o 

THEOREM 3.2. {[42] after [2]} 

(i) v(t, h) is bounded on [to, tf] x Q x IRn, 

(ii) if there exists Ll < 00 such that Ilj(XI'U) -lj(x2,u)1 :::; Ltllxl - x211, XI,X2 E 

IRn, u E U, j E Q and there exists Lg < 00 such that Ig(XI) - g(x2)1 :::; LglIXI -

x211, Xl, X2 E IRn, and if t is not a switching time, then v(t, h) is continuous at 

(t,h) E [to,tf] x Q x IRn. 

PROOF. (i) Boundedness 

Fix h E {I}, with L < 00. Then 

o 

J(t,h;I):::; Itk+1llqk(Xqk(s),u(s))lds+ t lti+lllq;(xq;(s),u(s))lds+ Ig(xqL(tf))I· 
t i=k+l t; 

(3.2) 
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3.1 HYBRID DYNAMIC PROGRAMMING 

Take, without loss of generality, ), and 5 in Assumptions A2 and A3 to be integers. 

Let Xo fi xqo(to), Kf fi max{Lf, maxqEQ SUPuEU fq(O, un. Then using Assumptions 

AO, A2 and A3 and employing Bellman-Gronwall Lemma we obtain following bounds 

on the terms in (3.2) 

(i) 

where PjO is a j-th order polynomial such that Pj(O) = (-l)j bK~!)j+l' Let us 

define 

Then 13(0) = o. 

(ii) 

l
ti

+

1 

Ilqi(Xqi(S), u(s))1 ds ~ Kl(ti+l - ti) + KI t (:) Kjllxoll'Y-j j3(ti+l - ti) 
ti j=o J 

(iii) 

Using the above bounds and taking the infimum over {I} in (3.2) we get an upper 

bound on v(t, h). 

(ii) Continuity 

Fix q E Q, lE {I}, E > 0 such that v(t2 , h2 ) ~ J(t 2 , h2 ,I) - E. Then 
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3.1 HYBRID DYNAMIC PROGRAMMING 

or 

l
tk+1 

v(t1 ,hl )-v(t2 ,h2 ) < lqk(x~k(s),u(s))ds 
tl 

+ t 1.tHllqi(X~i(S),U(S))dS+9(X~Jtf)) 
i=k+l ti 

Assume again without loss of generality that t l ~ t2. Then, dropping the subscripts 

on x for brevity, we obtain 

-lqk(x"(s),u(s))lds+ t ItHlllqi(x'(s),u(s)) 
i=k+l ti 

-lqi (x" ( s), u ( s ) ) 1 ds + 1 9 (x' ( t f )) - 9 (x" (t f ) ) 1 + E 

< K ,(t2 - t,) + K, t, G) K}lIxollH (J(t, - t,) 

l.
tk+1 

+Ll IIx'(s) - x"(s)11 ds 
t2 

+Ll t 1.
ti

+
1 

II(x'(s) - x"(s))11 ds + Lgllx'(tf) - x"(tf)11 + E. 

i=k+l ti 

Next, we use Lemma 3.1, define 
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3.1 HYBRID DYNAMIC PROGRAMMING 

and note that a(O) = O. This yields 

L {tHI 

+Ll L Jf.' (11xI - x211 + Kiltl - t21) éf(S-t
2

) ds 
i=k+l ti 

+L9 (11xI - x211 + Kjltl - t21) éf(tr
t2

) + E 

a(t2 - t l ) + (11xI - x211 + Kjltl - t21) 

x (~l (éf('''' -") - 1 + t (éf('H' -t,) - 1)) 
j t=k+l 

+L9 é f (tr t2 )) + E 

Ll 
a(t2 - td + - (11xI - x211 + Kjltl - t21) 

Lj 

x (t. (é f('+' -t,) - 1) + L,Lt é f('f-"») + t. 

o 

THEOREM 3.3. ~42] after [2]} Assume AO-A3 hold. Let v(t, x) be a value func­

tionfor the HOCP(to,tj,ho,L,U) with L = 00 and LO(L) < 00. lfv(t,x) is contin­

uously differentiable on [to, tj] x ]Rn for each fixed q E Q and if t is not a switching 

time then v satisfies the following HJB equation: 

éJv 
éJt (t, x) + inf ((~V(t,x))T fq(X,U)+lq(x,u)) =0, 

qEQ,UEU uX 

v(tj, x) g (x) , V x E ]Rn . 

o 
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3.1 HYBRID DYNAMIC PROGRAMMING 

PROOF. The boundary condition follows immediately from the Hybrid Dynamic 

Programming Principle. In order to derive the HJB equation we write the HDPP as 

o = ~n! (ltk+llqk(Xqk(s),u(s))ds+ f lti+llq;(Xqi(s),u(s))ds 
IEI[t ,tf] t i=k+l tj 

+ ltlq/(xq/(s),u(s))ds + v(t,h(t;hl,I[t',t])) -V(t',h')). 
~ . 

Since t is not a switching time, there exits a t* > t such that there is no switching 

time in the interval [t, t*). Let t' E (t, t*) so that t' - t > O. In this case the above 

equation becomes 

0= inf (l
t 
lq(x(s), u(s)) ds + v(t, x) - v(t' , Xl)) . 

qEQ,uEU t' 

Next, we divide both sides by t - t' and let t' approach t to obtain 

o = inf (Hm _1_1t 
lq(x(s), u(s)) ds + lim _1_ (v(t, x) - v(t' , Xl))) 

qEQ,uEU t'-H t - t' t' t'--+t t - t' 

inf (lq(X(t), u(t)) + dd
v 

(t, x)) qEQ,uEU t 

( ( )T) . av av dx 
mf. lq(x(t), u(t)) + -a (t, x) + -a (t, x) d q qEQ,uEU t x t 

( ( )
T ) 

. av av 
mf lq(x(t), u(t)) + -a (t, x) + -a (t, x) fq(xq(t), u(t) , qEQ,uEU t x 

or, since ~~ is independent of (u,q), 

( ( )
T ) av. av 

-a (t, x) + mf lq(x(t), u(t)) + -a (t, x) fq(xq(t), u(t) = 0, t qEQ,uEU X (3.3) 

which is the required HJB equation. o 

The HJB equation can be used to establish a sufficiency condition for a candidate 

control (we use the term control to mean continuous control function and switching 

sequence; control value at time t would be the pair (u(t), q(t))) to be optimal. It is a 
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3.1 HYBRID DYNAMIC PROGRAMMING 

generalization of weIl known result in optimal control theory and calculus of variations 

known as the verification theorem. 

THEOREM 3.4. (Hybrid Verification Theorem) 

(i) Let (û(x,w),q) be such that 

lq(x, û(x, w)) + wT fq(x, û(x, w)) = inf (lq(x, u) + wT fq(x, u)), Vw E }Rn. 
qEQ,uEU 

(ii) Suppose there is an admissible control (uo (.), qO (.)) resulting in the hybrid tra­

jectory h°(-) = (x°(-), qO(.)) such that hg(to) = (XOo(to), qO(to)) = (xo, qo). qo 

(iii) Assume that there is a solution v(t, x) of the HJB equation (3.3) such that 

(a) v(tj, x) = g(x), Vh E Q x }Rn and 

(b) UO(t) = û(xO(t), g~(t,XO(t))), uO(.) E UO or u°(-) E ucpt. 

Then v( t, x) is the value function for the HOCP and the control (UO, qO) is an optimal 

control. 

PROOF. By the hypotheses of the theorem we have 

Henee for a.e. tE [to,tfl 

We integrate the above equation to obtain 

or 
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3.1 HYBRID DYNAMIC PROGRAMMING 

Now since by boundary condition (iii) (a) v(tf,x(tf)) = g(x(tf)) 

which shows that v( t, x) is the cost of transferring (t, x) to (t f, x( t f)) along the trajec­

tory generated by (UO, qO). The following analysis will show that (UO, qO) achieves this 

transfer optimally, i.e. (UO, qO) is an optimal control and v(t, x) is the value function. 

Let (u(·), q(.)) be an arbitrary control resulting in the hybrid trajectory hO = 

(x(·), q(.)). Then, by assumption (i) of the theorem, if (t, x) E ]R x ]Rn is not a 

switching time-state 

lij(x(t), u(t)) + (~~ (t, x)) T Jq(x(t), u(t)) > lqo(xO(t), UO(t)) + 

(~~(t,x)) T fqo(xO(t),uO(t)) 

av 
- at (t, x), 

or 

lij(x(t), u(t)) + (~~ (t, X)) T fij(x(t) , u(t)) + ~~ (t, x) ~ O. (3.4) 

Notice that along the two trajectories generated by the controls (u(·), q(.)) and 

(Uo (.), qO (.)) we have respectively . 

i; = fij(x, u), x(t) = x, and . ° f (0 0) x = qO X ,u , 

Now inequality (3.4) can be written as 

lij(x(t), u(t)) + ~~ (t, x) ~ O. 

Integrating both sides from t to t J yields 

f t! ft! dv 
t lq(!i(s),ù(s))ds+ t ds(s,x)ds~O, 

or 

f
t! 

t lij(x(s), u(s)) ds + v(tJ, x(tJ)) - v(t, x) ~ 0, 
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3.1 HYBRID DYNAMIC PROGRAMMING 

or 

v(t, x) ~ lt! lij(x(s), u(s)) ds + g(x(tj )), 

which shows that (UO(.), qO(.)) is the optimal control and v(·,·) is the value function. 

o 
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CHAPTER 4 

Hybrid Optimality Aigorithms 

4.1. Introduction 

4.1.1. General Introduction. In Chapter 2 a class of hybrid optimal con-

trol problems is formulated for general hybrid systems with nonlinear dynamics in 

each location (i.e. discrete state) and with autonomous and controlled switchings. 

Employing these conditions, we propose and analyze a new class of so-called Hybrid 

Minimum Principle (HMP) algorithms for the solution of hybrid optimal control prob­

lems (HOCP). We provide convergence results for the optimization algorithm called 

HMP[MAS] which treats HOCPs where multiple autonomous switchings (MAS) oc­

cur, that is to say, where the location switches whenever the continuous state passes 

through specified switching manifolds. Our convergence proofs are based on results 

from the theory of penalty function methods [3] and Ekeland's variational principle 

[26]. The HMP[MAS] algorithm extends directly to multiple controlled switchings 

(MCSs) when the location sequence is fixed; for this case, we present an algorithm 

called HMP[MCS] which invokes (i.e. calls) HMP[MAS] and hence computes a se­

quence of optimal switching times and states for a given HOCP. The efficacy of these 

algorithms is illustrated via several computational examples. 

The class of HMP algorithms may be embedded in the so-called HMP[Comb] 

(see [45, 46]) algorithm class; this extends the HMP class with combinatoric search 
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algorithms which find (combinatorially local) optimal location sequences and their as­

sociated locally optimal switching times and control inputs. HMP[Comb] algorithms 

generate a list of Hamming distance (::; k) sequences from an initial sequence, and 

finds the optimal sequence by executing the HMP[MCS] on each one of them (see 

[44, 45, 46]). Other recently proposed hybrid optimization algorithms, for example 

those of [58, 60, 24, 25, 54], can be extended to perform combinatoric search, with 

an associated exponential increase in the computational cost. 

Next we present the notion of optimality zones and the associated HMP[Z] al­

gorithms; it is shown that knowledge of these zones permits one to reach the global 

optimum in a single run of the HMP[MCS] algorithm. In particular, we give examples 

for the case of linear dynamics with quadratic cost criteria where these zones have 

a geometrically simple form. The notion of optimality zones must be distinguished 

from the so-called "switching regions" presented in [27, 28, 7, 6, 5]; switching re­

gions partition the continuous state space of autonomous (steady state) hybrid sys­

tems whereas optimality zones partition the time-state space of finite horizon HOCPs. 

The optimal control problems considered in [27, 28, 7, 6, 5] have autonomous linear 

time-invariant dynamics, quadratic loss function in each location and a fixed finite 

sequence of locations. 

4.1.2. Theoretical Framework for the Optimization Aigorithms. The 

results of this chapter derive from the inter-relationship of the following: 

(i) The Hybrid Optimal Control Problem (HO CP). The HOCP is formulated in Chap­

ter 2 where necessary conditions are presented which are satisfied by locally (and 

hence also by globally) optimal solutions to HOCP. 

(ii) The Hybrid Optimization Algorithm HMP[MASj. An optimization algorithm for 

multiple autonomous switchings called HMP[MAS] is presented in Section 4.2.1. 

This algorithm uses an iteration based upon the necessary conditions and the 

associated boundary conditions presented in Chapter 2 to compute a sequence of 

control inputs and switching time-state pairs {uk , t~, X~hEZ+. 

68 



4.1 INTRODUCTION 

(iii) Penalty Function Convergence Analysis. Let us assume the global solution to 

HOCP is unique and no distinct local optimal solutions exist. We shaU denote the 

necessary conditions of Chapter 2 by the highly abbreviated equations 'T} = 0, À = 

-Hx , H = Hq(x, À, u), where 'T} = ° represents the necessary conditions satisfied 

by the Hamiltonian, the adjoint variable and the switching manifold constraint at 

the optimal switching time, À is the adjoint variable whose left and right limits 

at a switching time t s are denoted À;-I-, and H is the Hamiltonian of the system. 

The global solution (which must satisfy the necessary conditions, 'T} = 0, À = -Hx , 

and the associated boundary conditions of Chapter 2 is identical to the (t s , x s , u) 

projection of the (assumed unique) (t s , x s , u, À) solution to: 

By applying the penalty function methods of Section 4.2.2, any {(ts , XS)1'k} solution 

sequence to (4.2) below (where the differential constraints on x and À are not 

displayed) is shown to have a sub-sequential limit which is a solution (ts, xs)* to 

(4.1), where 

J; = lim (inf (infJ(x(u),u;ts,xs) +r'T}(ts,xs,À;-I-))) , (4.2) 1'-tOO t s ,Xs U 

for which moreover it is proven that J* = J;. 

(iv) Association of the Algorithm HMP[MASj with (4.2). Now let us assume that the 

constraints and iterations of Aigorithm HMP[MAS] correspond to the infimization 

of (4.2). This is in the sense that (see [A5] below) for any required level of accuracy 

f > ° and corresponding choices of parameters in the Aigorithm HMP[MAS], each 

of the limit (i.e. halting) points (t;<, x;<) of the Aigorithm and the generated 

values (AIg)K are within f of the limit point of a sub-sequence {(ts , XS)1'J and its 

associated values (J;)1'k respectively, where the latter are generated by (4.2) for aU 

sufficiently large rk where fk is a multiplier of the penalty term 'T}(ts, X s, À;-I-). 

69 



4.2 HYBRID TRAJECTORY OPTIMIZATION ALGORITHMS 

(v) Resulting Convergence of the Algorithm. Henee, if we assume that the entire set of 

sub-sequential limits of solutions to (4.2) consists exactly of the solutions to (4.1), 

we may conclude that (for suitably chosen parameters) the halting points and 

value of the Aigorithm are within the arbitrary specified E of the global solution 

to HOCP. 

(In Section 4.2.3 below, the solutions to (4.2) for increasing {rd are simply iden­

tified with the values generated by the Aigorithm HMP[MAS] at successive itera­

tions. ) 

4.2. Hybrid Trajectory Optimization Algorithms 

Based on the neeessary conditions of Chapter 2 (and the assumed generaliza­

tion with respect to time varying switching manifolds) we formulate the following 

algorithm for optimizing the location switching times T and associated continuous 

controls u for a given loca.tion location sequence a. 

4.2.1. HMP[MAS] (Multiple Autonomous Switchings) Conceptual AI-

gorithm. For simplicity we present the single autonomous switching case (see 

Comment 2 below). 

O. Algorithm Initialization: Fix 0 < El « 1, 0 < E2 « 1, 0 < Ef « 
1 and 0 :::; J1 :::; 1. Let (ts, xs) be a nominal swi tching time-state pair 

such that to < t s < t f . Set the i terat ion counter k = O. Set t~ = t s 

and. x~ = xs. Compute the optimal control functions uî(t), 0:::; t < t s 

and u~(t), t s :::; t :::; tf. Compute the associated state and costate 

trajectories and Hamiltonians over the two intervals [0, t~] and [t~, tf], 

with the terminal state pairs (xo,x~) and (X~,Xf) respectively. 

Also compu~e the new total cost Jk(t~, x~). 
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2. Set 

2 

\1 m(tk- l xk-l) t s , s 

\1 m(tk- l xk-l) 
x s' s 

Set 

\1 m(tk- l xk-l) 
t s' s 

\1 m(tk- l Xk-l) 
x s' s 

and compute the unique minimizing argument pk E R of ryk given by 

3. Set 

4. Set 

El (H~(t~-l) - H;(t~-l) - \1tm(t~-I, X~-l )pk) 

'r7 (tk-l k-l) (tk-l k-l) El v tm s ,xs ms, Xs . 

5. Compute the optimal control functions u~(t), 0 :s: t < ts and u~(t), ts < 

t :s: t f . Compute the associated state and costate traj ectories and 

Harnil tonians over the two intervals [0, t~l and [t~, t f 1 wi th the terminal 

state pairs (xo,x~) and (x~,xf) respectively. Next, compute the new 

total cost Jk(t~,x~). 
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6. If /1(Jk-l(t~-\X~-l) - Jk(t~,X~)) + (1- /1)7]k < Ef then STOP; 

else go to Step 1. 

Comments on HMP[MASj. 

l. Since there is no switching cost, the function J(ts, xs) is continuous but not nec­

essarily differentiable at (t~Pt, x~Pt) (see Chapter 3). 

Concerning the relationship between the various necessary conditions, we note that 

(see [9]) 

7](t~Pt, x~pt) = 0 

~ (m(t~Pt,x~Pt) = 0) /\ (:~ (t~pt,x~Pt) = 0) /\ (~~ (t~Pt,x~Pt) = 0). 

The expressions 

and 

approximate a~~Pt (t~-l, X~-l) and a~~t (t~-\ X~-l), respectively, in the neighbour­

hood of (t~Pt, x~Pt) where m(t~Pt, x~Pt) = 0 (see [9]) Rence their use in Steps 3 

and 4 where we note that on {m( t, x) = O} their approximation of a~~t and a~~Pt 

guarantees that thè steps in 3, 4 are in the correct direction. 

2. Aigorithm 4.2.1 can be generalized to the multiple autonomous switchings case in 

a straightforward manner. This is possible because of assumption AO of Chapter 

2 that switching manifolds never intersect. The algorithm can also be specialized 

to the controlled switchings case by skipping Step 2 and setting pk = 0 in Steps 3 

and 4. 

3. We observe that, as for RMP[MAS], the recently proposed hybrid control algo­

rithms of [58, 59, 60] repeatedly compute the optimal control functions in each 

location. 
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4. Let c5z~ L1 
Hf(t~-l) - H~(t~-l) 

and rk L1 . As-

À~(t~-l) - À~(t~-l) 

sume that at iteration k (t~-l, x~-l) is in the switching manifold, i.e. m(t~-l, X~-l) = 

O. Then by use of a Taylor series expansion: 

\7tm(t~-I, X~-l )6t~ + (\7 xm(t~-l, X~-l)) T c5x~ + o(llc5z; Il) 

Q[c5z; + o(lIc5z;II). (4.3) 

We assume that Qk is nonzero. The update equations in Steps 2, 3, 4 (setting El = 

E2 = E) are c5zk = -E( rk _Qkpk). The analytic minimization of 'f/k with respect to pk 

yields pk = (QIQk)-IQIrk and this implies that QIc5z~ = -EQf(rk - Qkpk) = o. 

(This corresponds to the fact that the vector difference of rk and its orthogonal 

projection on the span Sp(Qk) of the columns of Qk, i.e; the normals to the 

switching manifold {m = O}, is orthogonal to Sp(Qk)') Henee Equation 4.3 implies: 

LEMMA 4.1. Let El = E2 = E. At any iteration k in the Algorithm HMP[MASj, if 

(t~-l,X~-l) is such that m(t~-\x~-l) = 0 then m(t~,x~) is of o(lIc5z:II), i.e. to first 

order, c5 z: lies in the tangent space Qf: to the switching manifold {m = O}. 0 

6. One of the objectives of Aigorithm HMP[MAS] is to drive the vector 'f/k in Step 2 

to zero so as to satisfy the conditions of the Hybrid Minimum Principle of Chapter 

2 This is not sufficient to ensure optimality but in the following we will give con­

ditions under which (at least a reasonable mathematical model of) the coneeptual 

algorithm generates values which converge to values satisfying sufficient conditions 

for optimality. 

We state the convergence properties of the. algorithm HMP[MAS] in Proposition 

4.1 below whose pro of mimics that of the convergence of the interior penalty method 

for equality constrained finite dimension al optimization problems [3]. 
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4.2.2. General Results for Penalty Function Methods. Penalty Func­

tion Methods can be used to convert an optimization problem involving a cost function 

and equality constraints into a sequence of unconstrained optimization problems. We 

note the following associations: 

(i) The cost function Jk, computed in Steps 0 and 5 of Aigorithm HMP[MAS], lS 

generally a function of the input trajectories U[O,ts) and U[ts,ttl over the two time 

intervals [0, ts) and [ts, tf] respectively and the switching time-state pair ZS' Since 

u[O,ts) and U[tshl are computed to be optimal in their respective locations 

Henee Jk is associated with the cost function of a finite-dimensional optimization 

problem. 

(ii) Similarly, fJk in Step 2 of Aigorithm is a function of Zs only and is associated to 

the equality constraints in a finite-dimensional optimization problem. 

Given a fixed initial state x(O) = Xo, assumption AO implies that Ilx(t) Il s 
(1lxoll + Kftf) é tt , 0 S t S tf' Henee iftf is finite then the set S L\ {(t,x) E [0, tf] x 
Rn: Ilxll s (1Ixoll+Kftf)étt} = [O,tf] x {x E Rn: Ilxll s (1Ixoll+Kftf)étt} is 

compact and convex. Let us set z L\ (t, x) and let S' L\ cl{z ES: m(z) = m(t, x) = 

O}. Notice that if (ts, xs) E S' then x(xo, ts) = XS ' Clearly aIl switching time-state 

pairs lie in S'; so assuming a switching time exists in the interval [0, t f], S' is a 

nonempty compact set and S' can be made a complete met rie spaee by endowing it 

with the metric d(ZI,Z2) L\ Ilzl- z211. 
Define a penalty function 

R(zs, r) L\ J(zs) + rfJ(zs) 

J(zs) + r(lb(zs) - Q(zs)p(zs)112 + Ilm(zs)112) 

J(zs) + r(lb(zs) - (QT(zs)Q(zs))-lQT(zs)ry(zs)112 + Ilm(zs)112), 

74 



4.2 HYBRID TRAJECTORY OPTIMIZATION ALGORITHMS 

where Zs ~ (t s , X s ), "( is defined above and J, "( and Q are computed at Zs as in Steps 

2 and 3 of the Aigorithm HMP[MAS]. 

To discuss general penalty function methods we consider the continuous functions 

J, T/ : IRn -+ IR and the compact set S. (J, T/, S in this section need not be identified 

with J,T/,S in Section 4.2.1.) 

Define a function 'ljJ(r) ~ infzEs { J(z) + rT/{z)}. Then in view of the compactness 

of S and the continuity of J(.), and T/(-) it is clear that for each r there exists Zr in S 

such that 'ljJ(r) = infzEs{J(z) + rT/(z)} = J(zr) + rT/(zr). 

LEMMA 4.2. ([3]) For the continuous functions J, T/ : IRn -+ IR defined over a 

compact set Sand 'ljJ(r) ~ infzEs{J(z) + rT/(z)} = J(zr) + rT/(zr): (i) infzES{J(z) : 

T/(z) = a} 2 sUPr;:::O 'ljJ(r); 

(ii) (a) 'T)(zr) is a decreasing function of r, (b) J(zr) is an increasing function of r, 

(c) 'ljJ(r) is an increasing function of r. D 

THEOREM 4.1. ([3]) For the continuo us functions J, T/ : IRn -+ lR defined over a 

compact set Sand 'ljJ(r) = infzES{ J(z) + rT/(z)}: 

inf{J(z) : T/(z) = O} = sup'ljJ(r) = lim 'ljJ(r). 
zES r;:::O r-+oo 

D 

4.2~3. Convergence Analysis of Algorithm HMP[MAS]. Theorem 4.1 

above is not immediately applicable to the convergence analysis of the Aigorithm 

HMP[MAS]. In order to make such an application, we first recall that 

then the missing link is provided by the following key assumptions, where we associate 

J(Zk) here with Jk(z:) in Step 5 of the algorithm. 

A4 There is a unique optimizing switching time-state pair z~ ~ (t~, x~) E S'. 
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A5' At the kth iteration, at Steps 3, 4 and 5, the Algorithm HMP[MAS] computes 

Zk = arg minZEs{ J(z) + rk1](Z)} , where the sequence {rdk=l isa strictly increasing 

sequence of positive numbers such that limk-too rk = 00. 

The assumptions A4 and A5' permit us to apply Theorem 4.1 to the Algorithm 

HMP[MAS] to obtain: 

PROPOSITION 4.1. Under the standing assumptions and assumptions A4, AS', 

the Algorithm HMP[MASj generates a sequence {Zk : k 2 1} which converges to z~. 

D 

It is seen that assumption A5' may be too restrictive for applications since it is 

unlikely that HMP[MAS] minimizes J(Zk) + rk1](zk) at iteration k. We replace A5' 

by the weaker assumption A5 as follows: 

A5 Zk, J(Zk) computed by Steps 3, 4 and 5 of Aigorithm HMP[MAS] at iteration k 

are such that: J(Zk) + rk1](zk) :=:; infzEs{ J(z) + rk1](z)} + ak, where {adkEZI" is a 

sequence of positive numbers such that limk-too ak = O. 

PROPOSITION 4.2. Under the standing assumptions and assumptions A4, AS, 

Algorithm HMP[MASj generates a sequence {Zk : k 2 1} which converges to z~ 

satisfying: 

J(Z~) = inf{J(z) : 1](z) = O} = inf J(z) = sup'lj;(r) = lim 'lj;(r). 
zES zES' r2:0 r-too 

D 

PROOF. The first equality follows by the continuity of J(.) and assumption A. 

By assumption A5 the point computed at iteration k, Zk in S, is such that 

Hence the hypotheses of Ekeland's theorem [26] are satisfied and so there is zZ in S 

such that at each iteration k, Ilzk - zic Il :=:; yIcik and zic minimizes G(Zk) = J(Zk) + 
rk1](zk) + yIcik IIzk - z;J. Hence as k goes to infinity, the sequences yIcik and IIzk - zic Il 
approach zero and by Theorem 4.1 the desired convergence result follows. D 

76 



4.2 HYBRID TRAJECTORY OPTIMIZATION ALGORITHMS 
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FIGURE 4.1. Convergence to the Optimal Trajectory in Example 4.1: A 
Single Autonomous Switching Case 

EXAMPLE 4.1. To illustrate the Algorithm HMP[MASj we consider a system 

which successively occupies the locations ql and q2 and which has one switching man­

ifold defined by m(x, t) = x - et = 0 (e = 2.7183 .. .). The dynamics in ql, q2 are given 

by: x = x + xu, X = -x + xu, ta = 0, tf = 2, x(O) = 1, x(2) = 1. The cost 

function to be minimized is: J(u) = ~ (2 u2(s) ds. 
2 Jo 

Starting with the initial guess t s = 0.5, Xs = 2, Figure 4.1 shows the convergence 

of {t~, x~J~lJ to the unique optimal switching time t s = 1 and state Xs = e. The 

unique optimal control in this case is ua _ 0 resulting in optimal cost JO = O. The 

computation was performed using Matlab 6.0 on a Pentium III 550MHz machine 

with 128MB of SDRAM running a Redhat Linux 6.2 operating system. It took 105.98 

seconds of CP U time. o 

EXAMPLE 4.2. In this example we apply Algorithm HMP[MAS] to the system 

of Example 3 in [60]. The system consists of two discrete modes ql and q2 and 

switches from ql to q2 when the state trajectory intersects the linear manifold defined 

by m(x) = Xl + X2 - 7 = O. The linear dynamics in each location are given by: 
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Control Trajectory 

-0.1 
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FIGURE 4.2. Example 4.2: Optimal Input trajectory 

x = [ 0.5 
0.866 

0.866] [ 1 ] x+ u, 
0.5 1 

to = 0, tf = 2, Xo = [1 IV. 
The cost function to be minimized is: 

Starting with the initial guess t s = 1.5, Xs = [4.5 2.5]T, the algorithm converges 

to the switching time t s = 1.1621 and state Xs = [4.5556 2.4444V yielding the 

optimal cost J = 0.1132. The corresponding figures obtained in [60] are: switching 

time t s = 1.1624, optimal cost J = 0.1130. The control and state trajectories are 

shown in Figures 4.2 and 4.3 respectively, and are essentially identical to those in 

[60]. 
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FIGURE 4.3. Example 4.2: Optimal State trajectory 

The computation was performed using Matlab 6.5.1 on a Pentium III 550MHz 

machine with 128MB of SDRAM running a Redhat Linux 6.2 operating system; it 

took 29.58 seconds of CPU time. The computation time in [60] was 34 minutes on a 

faster machine. o 

4.2.4. HMP[MCS] (Multiple Controlled Switchings, Fixed Schedule) 

Conceptual Algorithm. 

O. Aigori thm Ini tialization: Fix the H-tolerance 0 < h « 1, 

À-tolerance 0 < l « 1, minimum location residence time 0 < Tr « 1, 

o < El « 1, 0 < E2 «1. Set the i teration counter k to O. Let SNO 

be 

a given location sequence and uD a nominal control resulting in a 

nominal traj ectory XO. Set the total cost jO(SN
O

, XO) = 00. 

1. Increment k by 1. Compute the optimal controls u~J), the resulting 

state x~J), the resulting costate À~J) and the Hamiltonian functions 

H~(t) = À~Jt)fqJxk(t), uk(t)) + lqi(xk(t) , in each location for 

79 



4.2 HYBRID TRAJECTORY OPTIMIZATION ALGORITHMS 

i = 0,1, ... , ISNO l, where ISNO 1 denotes the cardinali ty of the set SNO. 

Also compute the cost in each location J;i' If Jk = I:l~~ol J~ 2: Jk-l 

then STOP. 

2. Compute the difference of Hamiltonians H;i(t~J - H;i+l(t~J at each 

switching time t~. 

3. If k > 1 then 

For i E {1, 2, ... , ISNO 
1 - 1} 

If IH;i(t~J - H;i+l (t~JI > h and 

(H;i(t~J - H;i+l (t~J)(H;i-l(t~i-l) - H;i~~(t~i-l)) > 0 then 

4. If k > 1 then 

For each i E {1, 2, ... , ISNOI_ 1} 

If P~i+l(t~J - À~i(t~JII > land 

( À~i+l (t~i) - À~i (t~i) ) T (À~i+l (t~i) - À~i (t~i)) > 0 then 

xk(tk ) = Xk-l(tk- 1) _ E (Àk (tk ) - Àk (tk )) . Si Si 2 qi+l Si qi Si ' 

5. If aU the switching time differences satisfy t~i+l - t~i > TT then 

accept the new switching times; else, if t~ is such that 

t~i+l - t~i ::; TT, then compute the costs J2i+1 lqi_l (xk(t), uk(t))dt 
• 

and J2 i +1 lqi+l (xk(t), uk(t) )dt, i E {l, 2, ... , ISNO 1- I}, in locations qi-l and , 
qi+! respecti vely and replace the location qi by whichever location on 
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either side gives lower cost and by either location whenever they 

give an equal cost. 

6. If the criteria in Steps 3, 4, 5 aIl fail then STOP; 

else go to Step 1. 

4.2.5. Convergence Analysis of Algorithm HMP[MCS]. An analysis 

very similar to the one for algorithm HMP[MAS] can be performed to show the 

convergence of algorithm HMP[MCS]. Assume a location sequence with N controlled 

switching times. Let the sequence of switching time-state pairs be denoted 

Then ZsN can be thought of as a vector in N x (n + 1) dimensional Euclidean space. 

If we identify the vector ZsN with the vector Zs in Section 4.2.1 and define a compact 

set SN E ]RN(n+l) similarly to the set S E ]Rn+! in Section 4.2.1 then we see that the 

analysis of Sections 4.2.1-4.2.3 carries over to the case of multiple controlled switchings 

without much difficulty. Hence under assumptions similar to Assumptions A4 and 

A5 of Sections 4.2.2-4.2.3 we have the following result 

PROPOSITION 4.3. Let the sequence of points generated by the Algorithm 

HMP[MGSj be denoted {z~}k=O L}. {(t~l' x~J, (t~2' X~2)'··· (t~N' X~N)}~O· Then {z~}~o 

o 

EXAMPLE 4.3. To illustra te the Algorithm HMP[MGSj we consider a system 

which successively occupies the locations ql, q2 and q3 and which has two controlled 

switchings. The dynamics in ql, q2, q3 are given by: 

j; = x + xu, j; = -x + xu, j; = x + u, to = 0, tf = 3, x(O) = 1, x(3) = e. The 

cost function to be minimized is: J(u) = ~ (3 u 2 (s) ds. 
2 Jo 

Starting with the initial guess t Sl = 0.8, x(tS!) = 2.5, t S2 = 2.2, x(ts2 ) = 0.8, 

Figure 4·4 shows the convergence of {Z:2}~1 = {(t~!,x~J, (t~2,X~J}k=1 to the unique 

optimal switching times t S! = 1, t S2 = 2 and states XS! = e and XS! = 1. The 
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State and Input Trajectories 
3.-----,------,------,-----~----_,----__, 

-0.5 0'----------:"0.5::-------'-------:1.L..5-------'2~-----:"2.5:---------'3 

t 

FIGURE 4.4. Convergence to the Optimal Thajectory in Example 4.3: Mul­
tiple Controlled Switchings Case 

unique optimal control in this case is U
O 0 resulting in optimal cost JO = O. The 

computation was performed using Matlab 6.0 on a Pentium III 550MHz machine 

with 128MB of SDRAM running a Redhat Linux 6.2 operating system. It took 152.43 

seconds of CP U time. 0 

EXAMPLE 4.4. In this example we apply Algorithm HMP[MCSj to the system of 

Example 2 in [60J. The system consists of two discrete modes ql and q2 with one 

controlled switching time t s E (0,2). The linear dynamics in each location are given 

by: 

to = 0, tf = 2, xo = [0 2JT. 
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Control Trajectory 
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FIGURE 4.5. Example 4.4: Optimal Input trajectory 

The cost function to be minimized is: 

Starting with the initial guess t s = 1, the algorithm converges to the switching time 

t s = 0.18876 and state Xs = [-1.5626 1.3231f yielding the optimal cost J = 9.7666. 

The corresponding figures obtained in [60] are: switching time ts = 0.1897, optimal 

cost J = 9.7667. The control and state trajectories are shown in Figures 4.5 and 4.6 

respectively, and are essentially identical to those in [60]. 

The computation was performed using Matlab 6.5.1 on a Pentium III550MHz 

machine with 128MB of SDRAM running a Redhat Linux 6.2 operating system; it 

took 69.52 seconds of CPU time. The computation time in [60] was 30.75 seconds on 

a faster machine. o 

4.3. Combinatoric Search for Locally Optimal Schedules 

In the worst case, combinatoric search has exponential time complexity (see e.g. 

[35]); however, the efficiency of HMP[MCS] permits us to define local heuristic search 
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State Trajectory 
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FIGURE 4.6. Example 4.4: Optimal State trajectory 

methods which can find a (combinatorially local) hybrid optimal control law and its 

associated cost which are not achievable by other available methods. This is achieved 

by embedding the Aigorithm HMP[MCS] in the so-called HMP[Comb] class which 

extends the HMP class with a combinatorial search algorithm. 

Let Q = {l, 2, ... ,M} be a list of locations. Let So = (qo, ql, ... ,qN-t), where 

qo, ql, ... ,qN-l are not necessarily distinct, be an ordered list of locations from Q. 

Then a k-neighbourhood boundary of So, denoted Nk(so), for sorne k :s; N, is defined 

to be the set of alliists S ~ {(PO,pl,'" ,PN-l) : Pi E Q, i = 0,1, ... , N - 1} which 

differ from So in exactly k places, i.e. they have a Hamming distance k from So. 

Define a k-neighbourhood of So, N"5.k(SO) ~ U7=0 Ni(so). Then given an initial 

sequence So, a locally k-optimal solution is the one that is best among all N"5.k(SO) 

sequences. We note that the following results are evident facts, 

(N) . k (N) . (i) card(Nk(so)) = k (M - 1)\ card(N"5.k(SO)) = ~ i (M - 1)\ 

(ii) given a list So of length N, alliists of length N from alphabet of locations Q are 

N N (N) . 
given by hl Nk(so), and clearly, card(N"5.N(SO)) = ~ i (M - L)~ = MN. 
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The algorithm (HMP[Comb]) repeatedly calls the algorithm HMP[MCS] to find a 

locally optimal solution N'!,2(SO), where So is sorne initial sequence; it clearly extends 

to the case of N'!,k(SO) for k > 2. 

4.3.1. HMP[Comb] (HMP Combinatoric Search) Conceptual Algorithm. 

We first give a brief description of the algorithm: Given an initial location sequence 

sa and a size of the discrete neighbourhood N, we define a matrix S of appropriate 

dimension such that each row of S holds: (i) the sequence of locations Si E N'!,N(SO), 

(ii) initial switching times Ti, and (iii) the cost Ji associated with (Ti, Si) which is 

initially set to zero. The Aigorithm progresses by executing HMP[MCS] on each row 

and finally picking the row with the lowest Ji and the corresponding (Ti, Si). 

O. Algorithm Initialization: Let So = {(to, qo), (tl, qd,· .. , (tN-I, qN-d} be an 

initial switching sequence. Set iter to 1. Let S be a matrix of 

dimension 

(1 + N(M - 1) + N(N
2 

--1) (M - 1)2) X (2N + 1), 

each of whose rows has the form 

Initialize S to a matrix of zeros. 

1. Execute Algorithm HMP[MCS] on sa. Store sa and the cost returned 

by HMP[MCS] in the first row of the matrix S. 

2. For each i = 1,2, ... , N 

3. For each q in {Q} - {Qi} 

4. Increment iter by 1. Obtain a new list s( iter) by replacing qi 

by q in sa. Execute Algorithm HMP[MCS] on s(iter); store s(iter) 

and the cost returned by HMP[MCS] in row number iter of the 

matrix S. 
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5. For each j = i + 1, i + 2, ... , N 

6. For each q' in {Q} - {qi} 

7. For each q in {Q}-{qj} 

8. Increment iter by 1. Obtain a new list s( iter) by replacing 

qi by q' and qj by q in so. Execute Algorithm HMP [MCS] on 

s(iter); store s(iter) and the cost returned by HMP[MCS] in 

row number iter of the matrix S. 

9. Find the the row of matrix S with minimum cost. Return the cost 

and the corresponding switching sequence. 

4.3.2. Illustrative Application of HMP[Comb]. 

EXAMPLE 4.5. In an application of HMP[Combj to a combinatoric extension of 

Example 4.3 we consider the case of three locations, i.e. Q = {l, 2, 3}, and modify 

the cost function to include a terminal cost g (to illustrate the case À = grad(g) at 

the terminal time). 

J(u) = ~(x(5) - e)2 + ~ 15 

u2(s) ds. 
2 2 ° 

Now consider the following two cases: 

(i) Starting with 

S6 = {(to, qo), (tl' ql),"" (tN- l , qN-ln = {(O, 1), (1, 1), (2, 1), (3, 1), (4, ln 

the algorithm generates 2:7=0 G)2i = 51 sequences in N2(sÔ) and executes HMP[MCSj 

on each one of them. Figure 4.7 shows the execution of Algorithm HMP[MCSj on 

the locally optimal sequence. The initial state trajectory is the top one and the final 

state trajectory is the bottom one. 

(ii) In this case, starting with 

s5 = {(O, 1), (0.5, 1), (1, 1), (1.5, 1), (2, 1), (2.5, 1), (3, 1), (3.5, 1), (4, 1), (4.5, 1)} 

the algorithm generates 2:7=0 CiO)2i = 201 sequences in N2(s6) and executes 

HMP[MCSj on each one of them as shown in Figure 4.8. 
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FIGURE 4.7. Example 4.5: State and Input Trajectories for Locally 2-opt 
Sequence (2,1,1,2,1). 

For the purpose of illustration, each string in N2 (sb), i = 1,2, is converted to a 

unique corresponding ternary number as follows: if s = (qo, ql, ... , qN-d where qi E 

{l, 2, 3}, i = 0,1, ... N - 1, then its ternary representation is 'L/:=-r/(qj - 1)3(N-l-j). 

For this example these numbers have been normalized and are plotted against the 

corresponding costs as shown in Figures 4.9 and 4.10. 

We note the stability of the overall procedure in the sense that locally optimal 

10-time slot location sequence (Figure 4.7) consists simply of lengthened segments of 

the locally optimal 5-time slot sequence (Figure 4.8). 0 

In addition to illustrating the efficacy of Aigorithm HMP[Comb], the examples 

above also serve to show that a global optimization of location sequences and the 

associated HOCPs will be overwhelmed by the combinatorial complexity engendered 

by even moderate values of IQI and N. The next chapter introduces a method whose 

complexity is linear in N at the cost of an initial computation al investment. 
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State and Input Trajectorles 
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FIGURE 4.8. Example 4.5: State and Input 'Irajectories for Locally 2-opt 
Sequence (2,1,1,1,1,1,2,1,1,1). 

Cost vs Schedule . 
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FIGURE 4.9. Example 4.5: Costs in N 2 (1, 1, 1, 1, 1). 
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Cost vs Schedule 
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FIGURE 4.10. Example 4.5: Costs in N2(1, 1, 1, 1, 1, 1, 1, 1, 1, 1). 
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CHAPTER 5 

Optimality Zones 

5.1. Optimality Zones and Location Sequences 

Fundamental Implication of the Dynamic Programming Principle for 

Optimal Location Sequences. Along an optimal hybrid trajectory (If, XO) the 

Dynamic Programming Principle implies that the part of the continuous and discrete 

input If (and correspondingly the trajectory (qO, XO)) from the j-th switching time­

state pair to the j + l-st switching time-state pair, (t~, x~)j -+ (t~, X~)j+l, is optimal. 

t 

FIGURE 5.1. Relationship between inboundjoutbound zones and optimality zones. 
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Hence, in particular, qJ must be an optimal location for the trajectory from (t~, x~)j 

to (t~, X~)j+l' 

The implication of this for location sequence HOCP computation is that 

(U[tj ,tj+1] , qj) generates a candidate optimal HOCP trajectory segment between any 

candidate pair of switching time-states {( t~, x~)j, (t~, x~)j+1} only if (U[tj,tj+d' qj) is 

optimal between (t~, x~)j and (t~, X~)j+l' For each q = q((t~, x~)j, (t~, x~)j+d E Q this 

optimization is a standard (non-hybrid) optimal control problem; hence the set-up 

cost of a search over a set Q of such optimizations to find the optimal 

qO((t~, x~)j, (t~, x~)j+d is proportional to IQI and is not linked to an analogous opti­

mization over any other interval. 

Let the executions of HMP[MCS] be modified so that, after each iterative shift of 

the vector of switching time-state pairs (ts, xs)[k] to (ts, xs)[k+l] in RL (n+1) , the location 

q;k+l] on the interval [t;k+l] , t;k+il]) is optimal for trajectories from X~~:l] to X~~:ll] and 

is assumed to have been generated in the set-up computations. 

Then the modified HMP[MCS] algorithm (which shaIl be caIled the HMP[Z] al­

gorithm) reaches an equilibrium with respect to aIl possible iterative shifts of the 

RL(n+l) vector (ts, xs) and of the associated control inputs I(ts, xs) only if the neces­

sary conditions for HOCP optimality are satisfied. 

Let us adopt the assumptions that (i) the switching times may be restricted to 

a set of L intervals ... Ij, Ij+l ... and (ii) for any t < t'in adjacent intervals, the 

continuity property holds that space-time grids with IGI2 points in R 2(n+l) permit 

computation of the dependence of the optimal qO = qO((t, x), (t', x')) with respect to 

((t,x), (t', x')) varying over Ij x Rn X Ij+l X Rn. 

Then the set-up cost for the determination of the optimality zones (see below) in 

R2(n+1) specifying the optimal locations is O(IGI2 ·IQI· (L + 1)); hence the resulting 

HMP[Z] algorithm computes (i) the optimal continuous variables and controls, and 

(ii) the optimal dis crete location sequence for the HOCP with an overaIl complexity 

cost of O(IGI2 . IQI . (L + 1)) + const. This general methodology will be analyzed 
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in future work (following from this thesis), while in this chapter the optimality zones 

are precisely defined and the HMP[Z] is applied to certain specific cases. 

Definition of the Optimality Zones. Throughout this section the HOCPs 

under consideration do not have any autonomous switchings defined, in other words 

the collection of autonomous switching manifold sets is empty. 

According to Theorem 3.2, under the assumptions generating the class of hybrid 

systems lHI (and the associated HOCP (see Definition 2.5) the value function JO(t, x, q) 

of HOCP is bounded and continuous in (t, x) for each q E Q. Then it is possible to 

define regions Z:' q E Q, of points (t, x) in the space IR x IRn for which a specific 

location q E Q corresponds to the optimal hybrid system trajectory starting at (t, x) 

and terminating at (tl' xI), when no controlled switchings are permitted and when 

autonomous switchings are undefined for the HOCP in question. 

Similarly regions Z;; can be defined for analogous HOCP with initial condition 

(0, xo) and terminal condition (t, x) and, furthermore, regions Zqq' in (IR x IRn)2 for 

the corresponding HOCP with two free end points in (time ordered) (IR x IRn)2. 

The regions Z;;, Z: and Zqq' have a weIl defined geometrical structure and once 

they have been computed (or approximated) they permit the exponential O(IQI N
) 

complexity search for optimal location sequences (of length N) to be reduced to the 

complexity of a single run of the Aigorithm HMP[MCS]. The algorithm HMP[Z] which 

performs this optimization is essentially a minor modification of the HMP algorithm. 

We adopt the convention that if (t, x) is not accessible from (0, xo) and similarly if 

(t, x) is not co-accessible to (t l, xI)) then Jg( (0, xo), (t, x)) = 00 and Jg( (t, x), (tl' xI)) = 

00. 

DEFINITION 5.1. Consider the case of one switching time and state (t, x). The 

inbound optimality zone Z;;, corresponding to a location q E Q, is the subset of 

(0, t 1) x IRn given by 

Z;; ~ {(t,x) E (0, tl) x IRn : Jg((O,xo), (t,x)) :s; Jg,((O,xo), (t,x)), Vq' E Q}. 
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Similarly, the outbound optimality zone Z: is given by 

Further, we have subsets of Z;; and Z: given by 

I(Z;;) ~{(t,x) E (O,tf) x]Rn : Jg((O,xo), (t,x)) < Jg,((O,xo),(t,x)), 

'ï/q' E Q, q' "# q}, 

:Jq' E Q, q' "# q, 

Jg((O, xo), (t, x)) = Jg,((O, xo), (t, x))}. 

Similarly I(Z:) and B(Z:) can be defined with respect to ((t,x), (tf,xf)). 

(The subscript denotes location, whereas the superscripts, +, 

tively whether the final or initial point is fixed.) 

denote respec-

D 

Notice that the sets I(Z:) and B(Z:) (respectively I(Z;;) and B(Z;;)) are not 

the topological interior and topological boundary of Z: (respectively Z;;) unless 

addition al conditions are satisfied (see below). 

In the case of two switchings, the space of switching times and states is the 

product (0, t f) x ]Rn X (0, t f) x ]Rn and the middle location in the switching sequence 

has variable end points at both ends; this gives rise to the so-called internal zones 

defined as follows. 
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DEFINITION 5.2. The internaI zone z~nt and the subsets I(z~nt) and B(z~nt) are 

given by 

z~nt ~ {((tl,XI),(t2,X2)) E ((O,tf) x Rn)2: 

Jg((t l ,XI),(t2,X2)):::; Jg,((tI,Xl),(t2,X2)), t l < t2, Vq' E Q}, 

I(z~nt) ~ (((h,XI),(t2,X2)) E ((O,tf) x Rn)2: 

Jg((tl,XI), (t2,X2)) < Jg,((tl,xd, (t2,X2)), t l < t2, Vq' E Q, q' =f. q}, 

B(z~nt) ~ {((t l ,XI),(t2,X2)) E ((O,tf) x Rn)2: 

:3q' E Q, q' =f. q, Jg((t l , Xl), (t2, X2)) = Jg, ((t l , xd, (t2, X2)), t l < t2}. 

o 

Definitions 5.1 and 5.2 generalize to the case of M switchings where there are 

inbound and outbound zones corresponding to the two end locations and M - 1 

internaI zones corresponding to the intermediate locations. 

Consider a location sequences with M switchings where the sequence of (not nec­

essarily distinct) locations and the switching times and states are {q~} ~ (qo, ql, ... , qM) 

and z ~ {(t i ,Xi)}f!l' ° < t l < t2 < ... < tM < tf, respectively. Let II(q~) denote 

the (M + 1)! possible permutations of any {q~} E QM. 

DEFINITION 5.3. An optimality zone, Zqfj corresponding to the location sequence 

{q~} is a region in the space of M-fold product ((0, tf) x Rn)M 

Zqfj = ZqOql ... qM ~ {z E ((0, tf) x Rn)M : (tl,xd E Z~ 

Â((tl,xd, (t2,X2)) E z~~t Â ... Â((tM-l,XM-l), (tM,XM)) E Z~~_l 

Â(tM,XM) E Z:M' 0< t l < t2 < ... < tM < tf}· 

Or, equivalently, 

J~fj(z) ~ J~fj(z),pfY E II(q~), 

z = {(ti,Xi)}f!l,O < t l < t2 < ... < tM < tf}, 
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where JOM (z) denotes the optimal cost incurred with respect to all choices of control 
Po 

inputs subject to the constraint that the location sequence is fixed at the value pf1 and 

the switching time and state sequence is fixed at z = {(ti, xinf!l (i.e. JOM (z) is the 
Po 

optimal value for HOCP subject to the constraints {q~, z}). 0 

We note that the chaining condition of common initial and end point switching 

times and states for consecutive internaI zones z~nt in the definition of Zq{f above is 

necessarily satisfied for JO M (z). 
Po 

Figure 5.1 shows the relationship between inboundjoutbound zones, Z~, Z~, and 

the optimality zone ZqOq! at a fixed switching time t, ~here Q = {qo, ql}. Notice that 

for any q E Q, P[I)(Z:t) = Z: and P[2)(z~nt) = Z;;, where P[I] denotes projection of 

a set in ((0, t f) x ]Rn)2 on the first n + 1 coordinat es corresponding to (0, t f) x ]Rn, 

and analogously for P[2). 

In the case of two locations the optimality zones can be sim ply related to the 

level sets of the optimal value functions as follows. Let VI and L2 denote the c-Ievel 

sets of the optimal value functions Jf( (t, x), (tf' x f)) and Jg( (t, x), (tf' x f)), for sorne 

c E 114, respectively, i.e. 

L~ = {(t, x) : Jf((t, x), (tf' xf)) = en 
and 

Then 

U {L~ n Ln = {(t, x) : Jf((t, x), (tf' xf)) = J~((t, x), (tf' xf)n = zt n Zi. 
cElR+ 

The Topology of Optimality Zones. We now introduce the basic assumptions 

concerning the geometry of the zones associated with an HOCP. 

A6 Nonempty optimality zones corresponding to two distinct location sequences have 

disjoint topological interiors. 
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A7 An optimality zone corresponding to a location sequence {qO,ql' ... ,qM} is either 

empty or is a finite union of C k
, 1 :::; k :::; 00 or k = w, M (n + 1 )-dimensional 

manifolds with boundary. 

A8 Zonal topological boundaries are either (i) empty or (ii) piecewise C k , 1 :::; k :::; 00 

or k = w, M(n + 1) - 1-dimensional manifolds with boundary. 

Optimality zones satisfying assumptions A6, A 7 and A8 are called regular zones. 

LEMMA 5.1. If an optimality zone Zqft satisfies A6 and A 7, then 

(i) Zqft is a closed set, and 

(ii) Zqft = 1 (Zqft ) l:!:J B(Zqft) , 

where l:!:J denotes disjoint union, and 

B(Zqft) ~ {z E ((O,tf) x }Rn)M: :Jp~ E rr(q~) - {q~}, 

JOM(z) = JpOM(z), qo 0 

Z = {(ti,Xi)}~I'O < t l < t 2 < ... < t M < tf}. 

Furthermore, 

(iii) B(Zqft) = ôZqft' the topological boundary of Zqft' and 
o 

(iv) 1 (Zqft ) =Zqft' the topological interior of Zqft· 

In case M = 1, 

o 0-

ZqOql {z E (0, tf) x }Rn : (t l , Xl) EZqo 
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where 

aZqOq1 =. {(3p E Q: J::O = Jp-) /\(J~ < J:,Vq E Q,q i- qI)} 

U{(J~ < J;;, Vq E Q,q i- qd /\(3p E Q: J~ = J:)}, 

J;; = Jg((O, XO), (t, X)), J: = J~((t, X), (tj, Xj )), etc. 

Equivalently, aZqoq1 . (Z~ naZ~) U (aZ~ nZ~), where az~ (respectively aZ~) 

is the topological boundary of Z~ (respectively Z~). 0 

PROOF. First, Zqij is dosed by assumption A7. 

Second, by definition, l (Zqij ) c Zqij' B(Zqij) c Zqij' l (Zqij ) n B(Zqij) = 0 and 

l (Zqij ) U B(Zqij) = Zqij' Hence Zqij = l (Zqij ) I±J B(Zqij). 

Third, let z E l (ZqM) C ZqM. Then since hqMpM (z) Ô. JOM (z) - JO M (z) for 
o 0 0 0 qo Po 

any pr E rr(sQ) - q{f is continuous and Irr(sQ)1 < 00, z has an open neighbourhood 
o 

contained in l (Zqij ). Hence l (Zqij ) is open and l (Zqij ) CZqij' Now let z E B(Zqij) C 

ZqM be such that JOM(z) = JOM(z) for sorne p(f(z) E IT(q{f) , pr i- q{f. Then 
o % ~ 

z E Zqij n Zpij and by assumption A6 z can only be in the topological boundary 
o 

of Zqij' Hence B(Zqij) C aZqij' Now let z E azqij ; then z ~Zqij and, since Zqij 
o 

is dosed, z E Zqij' Since l (Zqij ) CZqij' z ~ l (Zqij ). Hence by the second daim, 

z E B(Zqij). This shows that aZqij C B(Zqij) and so aZqij = B(Zqij) , and further, 
_ 0 

l (Zqij ) = Zqij - B(Zqij) = Zqij - aZqij =Zqij' which are the third and fourth daims 

respectively. 

The M = 1 case follows from the Definitions 5.1 and 5.3. 

In the rest of this chapter aIl optimality zones will be assumed to be regular. 

5.2. Single Pass Schedule Optimization: The Algorithms 

HMP[Z] 

o 

We recaIl the fundamental implication of the Dynamic Programming Principle 

as given in the beginning to Section 5.1: Given that the zonal boundaries divide the 

(t, x)-space into a fini te number of pre-computed connected zones, one may run the 
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Aigorithm HMP[MCS] with the modification that location switchings occur as the 

values of (ts, xs) cross the boundaries aZpff; this is the key feature which makes the 

class of HMP[Z] algorithms linear in the number of locations. 

We now present the conceptual algorithms called HMP[Z]S and HMP[Z]V (S: 

scalar, V: vector). The particular case of this Aigorithm HMP[Z]S uses the fact that 

corresponding to each switching time-state pair there is an optimality zone as shown 

in Figure 5.1. Hence there is a sequence of zones {Zqi-lqjI'!l corresponding to a 

location sequence with M switchings. Aigorithm HMP[Z]V executes on the zones as 

given in Definition 5.3. 

We assume that HMP[MCS] returns the updated values (t~, x~) so that the AI­

gorithm may employ these values at each iteration. 

Zonal Algorithm HMP[Z]S. 

1. Initialization: Set k = 0, switch = O. Let S be an initial 

swi tching sequence, {(lsi' xsJ }i';;1 be initial swi tching time-state 

pairs and {Zqi_lqji';;l be the initial sequence of zones corresponding 

to S .. 

2. Increment k by 1. 

For each j E {1, 2, ... , M} 

Execute a single switch version of HMP[MCS] to adjust (t~,x~). 
J J 

If (t~j+l, X~:l) lies in a zone distinct from {Zqj_lqj} then 

set {Zqj-lqJ equal to the zone that (t~j+l, X~:l) belongs to and set 

S equal to the sequence corresponding to the zonal sequence 
- M . 

{Zqi-lqji=l and set sW2tch = 1. 

3. If switch = 1 then go to Step 2 

el se execute Algori thm HMP [MCS] wi th S, {(lsi' xsJ }i';;1 as initial data. 
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Optlmality Zones 

!!!!! t! ~!! 1'~'! t t!!!! ±! t:t!:t!!!!! g g g g g g g g g 
+++++++++++++++++++++++++++++0000000000 

1.5 ::::::!!:!!:!t!:!!::t:t:!!:!~gggggggggg 
+++++++++++++++++++++++++++000000000000 
+++++++++++++++++++++++++++000000000000 
++++++++++++++++++++++++++0000000000000 
++++++++++++++++++++++++++0000000000000 

100+++++++++++++++++++++++00000000000000 
0000+++++++++++++++++++++00000000000000 
00000+++++++++++++++++++000000000000000 
0000000++++++++++++++++0000000000000000 
000000000++++++++++++++0000000000000000 

Q~ ggggggggggg~:!!!!::!!!ggggggggggggggggg 
00000000000000+++++++000000000000000000 
0000000000000000+++++000000000000000000 

~ ~ gggggggggggggggggg66ggggggggggggggggggg 
0000000000000000000++000000000000000000 
000000000000000000+++++0000000000000000 
000000000000000000+++++++00000000000000 
00000000000000000++++++++++000000000000 

~~ gggggggggggggggg?!ttttt!:::t??ggggggggg 
0000000000000000++++++++++++++++0000000 
000000000000000+++++++++++++++++++00000 
00000000000000+++++++++++++++++++++0000 

~ 00000000000000+++++++++++++++++++++++00 
0000000000000++++++++++++++++++++++++++ 
0000000000000++++++++++++++++++++++++++ 
000000000000+++++++++++++++++++++++++++ 
000000000000+++++++++++++++++++++++++++ 

~~ gggggggggg?:t!:ttt!!t::::::!!:!!:::::!: 
0000000000+++++++++++++++++++++++++++++ 

gggg~gggg+tttttt+!+!ttttt!+ttttttt+t+tt 
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 x, 

FIGURE 5.2. Optimality Zones in Example 5.1: LQ Case with Free Terminal 
State. O:(q2, Ql), +:(Q2, Q2). 

Zonal Algorithm HMP[Z]V. 

1. Initialization: Set k = O. Let S be an initial switching sequence, 

{(lsi' xsJ }f!1 be initial swi tching time-state pairs. 

2. Increment k by 1. 

initial data. 

Execute Algori thm HMP [MCS] wi th S, {(lsi' xsJ }f!1 as 

3. If HMP[MCS] stops then STOP; else check whether {(t~tl,x~tl)} lies in 

a zone distinct from Zs. If yes, then set S equal to the location 

sequence corresponding to the zone to which {( t~tl, x~tl)} belongs. 

Set {(lsi,XsJ}f!l = {(t~tl,x~tl)}f!l and go to Step 2. 

A convergence analysis of the HMP[Z] algorithms can be performed by considering 

the fact that HMP[Z] (8 or V) executes HMP[MC8] a finite number of times in the 

inner loop. 

5.3. Linear Quadratic Regulator (LQR) Case 

5.3.1. Free Terminal State Case. Again for simplicity we consider the case 

oftwo locations, Q = {ql,qd, with a single controlled switch at (ts,xs), fixed initial 
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and final times, 0 and t f respectively, and fixed initial state Xo· The final state x f is 

free. Let the dynamics in each location be of the form: 

x = Ax + Biu, i E {l, 2}, 

and let the costs associated with the locations Q = {ql' qz} in the intervals [0, t s ], 

[ts, tfl be: 

and 

where Ai, Bi, Qi, R" i E {l, 2}, are constant matrices of appropriate dimensions and 

Ri, i E {l, 2}, are positive and Qi, i E {l, 2}, are nonnegative. 

The optimal location costs on the time interval [ts, tfl are given by 

where the matrices Pi(t) are solutions to the corresponding matrix Riccati differential 

equations with Pi (t f) = O. Hence, in this case, the optimality zones are separated by 

boundaries defined by: 

Assuming t fixed at an arbitrary t s these boundaries are given by: 

In particular, in the case of a 2-dimensional system where Pl (t s ) - P2 (t s ) can be di­

agonalized by a coordinate transformation to a matrix of the form [Àî 0 ], the 
o -À~ 

boundaries are two straight lines, ÀIXI = À2X2 and ÀIXI = -À2X2 intersecting at the 

origin. Example 5.1 illustrates this situation via numerical computation. Here, due 

to the nature of solutions to the Riccati equation, the optimal (outbound, inbound 
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and internaI) performance indices are quadratic functions of x and are smooth tran­

scendental functions of t; hence the zones are regular, that is to say conditions A6, 

A 7 and A8 hold, and the zonal boundaries are in principle computable. 

5.3.2. Terminal State Cost Case. The LQ case becomes more complicated 

when either there is a terminal cost term in the cost index or the terminal state is 

fixed. 

We first consider the case where the cost indices are modified to include a terminal 

cost term: 

1 T 
2(x(ts) - xs) Ni(x(ts) - xs) 

+~ i ts 

(XTQiX + UT RiU) dt, (5.1) 

and 

1 T 
2(x(tf) - xf) Ni(x(tf) - xf) 

+~ I t

! (XTQiX + uTRiU) dt, 
ts 

(5.2) 

where Ni is positive. 

For definiteness, we consider the second time interval [t s , t f 1 and drop' the sub­

script i from Ai, Bi, Qi, Ri, Ni, in the following derivation. 

Next, we introduce the augmented system: 

[ A(X-X/):AX/+BU 1 

[ : :][ x :/X/ 1 + [ ~ 1 U 

Correspondingly, we write the cost index (5.2) as: 
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Employing the well-known LQR state feedback solution [1] in this case yields: 

where - den otes the augmented matrices and ft satisfies the matrix Riccati differential 

equation: 

If we partition ft as ft = [Pl pi 1 we can write the optimal control and the value 
P2 P3 

function as: 

and 

Hence the zonal boundaries in this case are defined by expressions of the form: 

In general, the solutions to these equations for the zonal boundaries are not linear 

manifolds as they are in the case of a free terminal state. In fact, the case of fixed 

terminal states is obtained by letting the matrix N tend to infinity in the cost index 

(5.2). In the limit, the time dependent matrices determining the regular zones in this 
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case are given by: 

d . 
_p-l = P-lAT + AP-l + p-lQP-l _ BR-l B T 
dt 1 1 1 1 1 , 

while P2 and P3 are given by the following differential equations: 

and 

EXAMPLE 5.1. We consider a system with two locations ql and q2, linear dynam­

ics and quadratic cost criteria in each location. The system and weighting matrices 

are: 

[~ ~ l 
The initial and final times and states are: to = 0, t f = 2, ·<0 = [ ~ 1 ' x f free. 

For any given fixed t s the corresponding optimality zones in Figure 5.2 are, nat­

urally, infinite triangular regions whose vertices lie at the origin and hence they give 

rise to regular optimality zones. o 

EXAMPLE 5.2. We consider a system with two locations ql and q2, linear dynam­

ics and quadratic cost criteria in each location. The system and weighting matrices 

are: 

[ 
1 -1 1 [ 2 Al = 0 2 ,A2 = 0 
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3.5 Ê 

3 S 
25 ~ 

1.: 1 
1 ·x 

0.5 . 

o· 

-0.5 . 

-1 

-1.5 . 

-2 - - -
-2 -1.5 

Optimality Zones and Trajectory of Aigorithm HMP[Z]V 

+ 

-1 

FIGURE 5.3. Optimality Zones in Example 5.2: LQ Case with Fixed Ter­
minal State. X:(ql,qt}, *:(ql,q2), O:(q2,ql). 

The initial and final times and states are: to 2, Xo 

o 

Figure 5.3 shows an n~? (space) slice of the three dimensional space-time JR.2 x JR. 

which corresponds to the HOCP in Example 5.2 at the particular switching time 

t s = 1. It also displays a sequence of values {x~J generated by an execution of the 

Aigorithm HMP[Z]V (with ts fixed at the value 1). Figure 5.4 shows a set of JR.2 

(space) slices of JR.2 x JR. corresponding to these same example at the fixed switching 

times: t s = 0.9,1.0,1.1; each slice intersects the (qi' qj )-indexed regular optimality 

ZOnes in the indicated connected regions. 

EXAMPLE 5.3. Consider system with two locations ql and q2, linear dynamics 

and quadratic cost criteria zn each location. The system and weighting matrices are: 

1 -1 o 2 1 o 
o 2 o o -1 0 

o o 1 o o 1 
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5.3 LINEAR QUADRATIC REGULATOR (LQR) CASE 

Optlmallty Zones 

1.1 

" x, 

FIGURE 5.4. Optimality Zones in Example 5.2: LQ Case with Fixed Ter­
minal State. 2-D Slices of the Zones at the Set of Switching Times: 
t s = 0.9,1,1.1. X:(ql, qI), *:(ql, q2), O:(q2, ql). 

100 

BI = B 2 = QI = Q2 = RI = 0 1 0 

001 

R2 = 1.6R1 

The initial and final times and states are: 

2 1 

to = 0, t f = 2, Xo = 4 ,X f = 1 

2 1 

The corresponding regular optimality zones for fixed t s = 1 are display in Figure 

o 
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Optimality Zones 

o .• 

o .• 

0.2 

,r 0 

-0.2 

-0.4 -, 
-0,6 

-0.8 

-, 

x, 

FIGURE 5.5. Optimality Zones in Example 5.3: LQ Case with Fixed Ter­
minal State. +:(ql,qd, O:(ql,q2). 
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6.1 HYBRID MINIMUM PRINCIPLE 

CHAPTER 6 

Conclusion and Future Research 

The work reported in this thesis can be extended in several directions. Suggestions 

for research related to topics treated here are outlines below. 

6.1. Hybrid Minimum Principle 

• The Extension to time varying dynamics and time varying manifolds. 

In Chapter 2 we presented the necessary conditions for hybrid system optimality in 

two cases: (i) where the optimal control takes values in a compact control value set, 

and (ii) where the control vaiue set is an open bounded set. It was seen that the 

needle variations technique furnished the adjoint transversality conditions in case 

of controlled and autonomous switching, and Hamiltonian continuity condition 

in case of controlled switching. The switching manifold was taken to be time 

invariant. In this context, it is of immediate interest to extend the results to 

time varying switching manifolds. The Hamiltonian transversality property for 

autonomous switchings at time varying manifolds found in [16, 40] has the form: 

and its derivation may require a suit able local controllability condition. 

The ab ove remark about time varying manifolds applies in the case of smooth 

variations technique as well, and it is conjectured that the small time tubular 
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fountain (STTF) condition along with an assumption about a bound on II\7tmj,j+lll 

should furnish the proof. 

• Extension to jumps in continuo us state (impulses). 

Many hybrid systems modeling frameworks found in the literature (see, for ex am­

pIe [12, 13, 39]) provide for discrete jumps in the continuous state at switching 

times. This is generally achieved by defining a set of state reset functions nj E 

CkCll~n+1;lRn),k ~ 1, so that iftj is a switching time then x(tj+) = nj(tj,x(tj-)); 

necessary conditions in this case are given in [39] without pro of. Inspiration for 

further investigations in this direction can also be found in the extensive work on 

impulse control [8, 61]. 

6.2. Hybrid Dynamic Programming 

• Relationship between the Hybrid Minimum Principle and Hybrid Dynamic Pro­

grammzng. 

It is well known that under suit able differentiability conditions on the value func­

tion of a standard optimal control problem, the adjoint variable vector eX) of the 

Minimum Principle is the same as gradient of the value function (\7 xv) [9]. This 

can be extended to the case of hybrid optimal control problems by showing that: 

(i) \7 xV satisfies the same differential equation as À in each location, 

(ii) \7 xV satisfies the same boundary condition as À, and 

(iii) \7 xV satisfies the same transversality conditions as À at switching times. 

Dreyfus [23] gives a heuristic derivation of the transversality conditions \7 xV and 

they are similar to the À-transversality conditions derived in Chapter 2 of this 

thesis. 
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6.3. Numerical Algorithms 

• Extension to other gradient based search methods. 

Within the HMP Aigorithms of Chapter 4 we employed a simple gradient based 

search with fixed step size to find the optimal switching time-state pair. In fini te­

dimensional optimization problems the most commonly used steepest descent al­

gorithm solves a subproblem at each iteration step to determine the optimal step 

size. Further investigations need to be carried out to devise efficient methods for 

determining optimal step sizes for HMP Aigorithms. 

• Hybrid Hierarchically Accelerated Dynamic Programming (HHAD P). 

It is proposed to construct an algorithm called the Hybrid Hierarchically Accel­

erated Dynamic Programming (HHADP) Aigorithm which would constitute an 

effective procedure for finding suboptimal solutions, with estimates of suboptimal­

ity, for the standard optimal control problems appearing in the HMP Aigorithms 

of Chapter 4; this algorithm extends the Hierarchically Accelerated Dynamic Pro­

gramming (HADP) methodology of [50, 49, 51J to the continuous control systems 

case. A preliminary investigation of HHADP can be found in [19J. 

6.4. Optimality Zones 

• Topological and geometric properties of optimality zones. 

Sorne elementary topological properties of optimality zones were presented in 

Chapter 5, but in order to develop a more complete theory of optimality zones 

and their use in hybrid optimization algorithms further topological and geometric 

investigations need to be carried out. 

• Efficient computation (or estimation) of zones. 

A major component of the overall computational cost of Aigorithm HMP[ZJ of 

Chapter 5 is the computation of optimality zones. Hence it is of intrinsic interest 

to find efficient methods of computing (or estimating) the optimality zones for a 

given HOCP. These zones have a simple topological structure in the case of linear 
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quadratic (LQ) problems as was pointed out in Chapter 5; but more work needsto 

be carried out to characterize the optimality zones in the case of general ROCPs. 
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APPENDIX A. BELLMAN-GRONWALL LEMMA 

APPENDIX A 

Bellman-Gronwall Lemma 

LEMMA A.l. ([2]) Let r,k E C([a,b],Ji4). Let h E C 1([a,b],Ji4) with h(t) 2: 0, 

tE [a,b]. If 

r(t) :s; h(t) + lt k(s)r(s) ds, t E [a, b], (A.l) 

then 

r(t) :s; h(t)ef; k(s)ds tE [a, bl. (A.2) 

D 

PROOF. Let R(t) = h(t) + J: k(s)r(s) ds, t E [a, b]. Then R(a) = h(a) and 

R(t) = h(t) + k(t)r(t). By (A.l), 0 :s; r(t) :s; R(t). Hence R(t) :s; h(t) + k(t)R(t), 

or R(t) - k(t)R(t) :s; h(t). Multiplying both sides by the integrating factor 0 :s; 
e- f; k(s) ds :s; 1 we obtain 

or, since h(t) 2: 0 and O:S; e-f;k(s)ds :s; 1, 

or 
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Integrating both sicles from a to t we obtain 

R(t)e- J; k(s)ds - R(a) ::; h(t) - h(a), 

or 

r(t) ::; R(t) ::; h(t)eJ; k(s)ds tE [a, b]. 

o 
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APPENDIX B 

Standard Results from the Theory of 

Penalty Function Methods 

LEMMA B.l. ([3]) Let J, fJ : Rn -+ R he continuous functions defined over a 

compact set S and let 'ljJ(r) ~infzES{J(Z) + rfJ(z)} = J(zr) + rfJ(zr). Then 

(i) infzEs{J(z) : fJ(z) = O} ~ sUPr::::o'ljJ(r); 

(ii){a) fJ(zr) is a decreasing function of r, 

(h) J(zr) is an increasing function of r, 

(c) 'ljJ(r) is an increasing function of r. 

PROOF. Let w E S be such that P(w) = o. Then 

J ( w) = J ( w) + r P ( w) ~ inf { J (z) + r P (z)} = 'ljJ (r ), 
zES 

which implies (i). 

To prove (ii) let 0 :::; ri < r2. Then by definition of Zr! and Zr2 we have 

J(Zr2) + r1P(Zr2) > J(zr!) + r1P(zrJ 

J(zrJ + r2 P (ZrJ > J(Zr2) + r2P(zr2) 

(B.l) 

(B.2) 
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Adding inequalities (B.1) and (B.2), we get (r2 - rl)[P(Zrl) - P(zr2)] :2: 0, whieh 

implies P(Zrl) :2: P(Zr2)' Renee P(zr) is a deereasing funetion of r, i.e. (ii)(a) holds. 

In view of the inequality P(zrJ :2: P(Zr2)' inequality (B.1) yields 

Renee J is an inereasing funetion of rand so (ii) (b) holds. 

Next, ad ding and subtraeting r2P(zr2) on the left hand side of (B.1) we obtain 

or 

o 

THEOREM B.l. ~3]) Let J, TJ : IRn -t IR be continuous functions defined over a 

compact set S and let 'ljJ(r) L\ infzEs{J(Z) + rTJ(z)}. Then 

inf{J(z) : TJ(z) = O} = sup'ljJ(r) = lim 'ljJ(r). 
zES r>O r-too 

PROOF. Sinee 'ljJ(r) is an inereasing funetion ofr, sUPr2:o'ljJ(r) = limr-too'ljJ(r). 

We next show that limr--+ oo TJ(zr) = 0 by showing that for every E > 0 there is 

r E E !R su ch that, for aU r :2: rE) TJ(Zr) :::; E. Let Zo E S be a feasible point, i.e. 

TJ(zo) = 0 and let E > O. Further, for r = 1, let Zl = argminZES { J(z) + TJ(z)} (i.e. 

in this case r = 1). FinaUy take r to be such that r :2: ~!J(Zl) - J(zo)! + 2. Then, 

since r > 1, by Lemma B.1 (ii)(b), J(zr) :2: J(zd. In order to obtain a contradiction, 

assume that TJ(zr) > E. Then r'TJ(zr) > rE :2: !J(Zl) - J(zo)! + 2E. Then by Lemma 
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B.1, 

> J(zd + r77(zl') 

> J(zd + IJ(zd - J(zo)1 + 2t 

> J(Zl) + J(zo) - J(Zl) + 2t 

> J(zo) 

which is a contradiction. Rence 77( Zl') ~ t for such an r. Since t is arbitrary, this 

shows that liml'-+oo 77(zl') = O. 

Let {ri : l E ~l} be a sequence tending to 00, and let {Zl'k} be a convergent 

subsequence of the infinite sequence {Zl'J C S. Let {Zl'k} converge to 2 E S. Then 

which by continuity of J implies that sUPI'>O 'ljJ(r) 2': J(2). 

Similarly, continuity of 77 implies that liml'k-+OO 77(Zl'k) = f/(2) = O. This shows 

that 2 is feasible. Again from Lemma B.1 

Rowever, since infzES { J(z) : 77(Z) = O} ~ J(2) we must have equality throughout 

in the above expression and hence J(2) = sUPI'2:0 'ljJ(r) = liml'-+oo 'ljJ(r). Also sin ce 

o ~ rk77(zl'k) ~ sUPI'2:0 'ljJ(r) - J(Zl'k) and since liml'k-+oo(suPI'2:0 'ljJ(r) - J(Zl'k)) = J(2)-

D 
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APPENDIX C 

Ekeland's Variational Principle 

THEOREM C.l. ~26]} Let V be a complete metric space with metric d(·, .). Let 

F : V ~ IR. U { +oo} be a lower semicontinuous function which is lower bounded and 

not identically +00. If U E V is su ch that for E > 0: 

F(u) :::; inf F(x) + E 
xEV 

then there exists v E V su ch that 

d(u,v) :::; VE 

and v minimizes G(w) = F(w) + VE d(v, w). D 

PROOF. See [26]. D 
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