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ABSTRACT 

Neurorehabilitation has undergone a radical transformation, driven mainly by new technologies 

such as non-invasive brain stimulation (NIBS) and neuroimaging. As such, 

magnetoencephalography (MEG) and electroencephalography (EEG) are neuroimaging 

modalities that can provide rich information about brain function, allowing us to study how it is 

modulated under different conditions. Using these modalities, it has been shown that movement 

production leads to a decrease in the average power of the MEG/EEG signal within the beta range 

(15-29Hz). More recently, it was also revealed that beta oscillations typically occur in the form of 

transient bursts (beta bursts), which can be characterized in terms of occurrence, amplitude, and 

duration. There is compelling evidence suggesting that bursts are associated with important aspects 

of motor performance. However, their relationship with decreased motor performance observed 

during aging is not well understood currently. In this context, my project aimed to (1) quantify 

how beta bursts present during hand movement are modulated by aging, (2) investigate the 

association between burst characteristics and motor performance, and (3) compare the detection 

performance of two beta burst detection methods (e.g. traditional threshold-based approach & 

Gaussian Hidden Markov Models (GMM-HMM)). In line with prior literature, we found greater 

burst amplitude in older adults across all movement intervals. This was consistent across both 

threshold and HMM methods. Further, we found significant correlations between task accuracy 

and burst characteristics during movement and post-movement intervals in the younger and older 

groups. Collectively, our results provide new insights into the effect of aging on transient beta 

bursts and their relationship with motor performance. This will set the necessary foundation for 

developing a closed-loop neurofeedback system using a real-time burst detector to normalize brain 

oscillatory patterns for individuals with motor deficits. 
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RÉSUMÉ 

La neuroréhabilitation a subi une transformation radicale, portée principalement par les nouvelles 

technologies telles que la stimulation cérébrale non-invasive (NIBS) et la neuroimagerie. La 

magnétoencéphalographie (MEG) et l'électroencéphalographie (EEG) sont des modalités de 

neuroimagerie qui peuvent fournir des informations riches sur la fonction cérébrale, nous 

permettant d'étudier comment elle est modulée durant différentes conditions. En utilisant ces 

modalités, il a été montré que la production de mouvement entraîne une diminution de la puissance 

moyenne du signal MEG/EEG dans la bande bêta (15-29Hz). Plus récemment, il a été démontré 

que les oscillations bêta se produisent généralement sous la forme de salves transitoires (salves 

bêta) qui peuvent être caractérisées en termes d'occurrence, d'amplitude et de durée. Il existe des 

évidences qui démontrent que ces rafales sont associées à des aspects importants de la performance 

motrice. Cependant, leur relation avec la diminution des performances motrices observée au cours 

du vieillissement n'est actuellement pas bien comprise. Dans ce contexte, mon projet visait à (1) 

quantifier la façon dont les rafales bêta présentes lors du mouvement de la main sont modulées par 

le vieillissement, (2) étudier l'association entre les caractéristiques de ces rafales et les 

performances motrices, et (3) comparer la performance de détection de deux méthodes permettant 

de quantifier les rafales bêta (approche traditionnelle basée sur le seuil et modèles de Markov 

cachés gaussiens (GMM-HMM). Conformément à la littérature antérieure, nous avons trouvé une 

des rafales de plus grande amplitude chez les personnes âgées à travers tous les intervalles du 

mouvement. Ce résultat était cohérent pour les deux méthodes de seuil et HMM. De plus, nous 

avons trouvé des corrélations significatives entre la précision des tâches et les caractéristiques de 

rafale pendant le mouvement et les intervalles post-mouvement chez nos deux groupes. Nos 

résultats contribuent à une meilleure connaissance de l'effet du vieillissement sur les rafales bêta 

transitoires et leur relation avec les performances motrices. Cette connaissance est une étape 
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nécessaire au développement d'un système de neurofeedback en boucle fermée utilisant un 

détecteur de rafale en temps réel dans le but normaliser les schémas oscillatoires cérébraux chez 

les individus présentant des déficits moteurs. 
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Introduction & Statement of the Problem 

Neuroimaging techniques, such as magnetoencephalography (MEG) and electroencephalography 

(EEG), are widely used to study electrical activity from different brain areas and how this activity 

changes under different conditions such as motor performance, aging or disease state. Using these 

techniques, it has been shown that movement production leads to a decrease in the average power 

of the MEG/EEG signal within the beta range (15-29Hz). Recent studies have revealed that beta 

oscillations in the primary motor area (M1) typically exhibit epochs of higher amplitudes known 

as bursts, which can be characterized in terms of occurrence, amplitude, and duration. 

Abnormalities in bursts are also well documented in populations with motor and psychiatric 

disorders. However, their relationship with motor performance in the context of healthy aging is 

not well understood. In this context, my project aimed to (1) quantify how beta bursts present 

during hand movement are modulated by aging, (2) investigate the association between burst 

characteristics and motor performance, and (3) compare the detection performance of two beta 

burst detection methods (e.g. traditional threshold-based approach & Gaussian Hidden Markov 

Models (GMM-HMM). 
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PREFACE 

The content of this thesis will include the following chapters:  

Chapter 1: This chapter presents an overview of aging in the brain, common neuroimaging 

techniques and a theoretical understanding of transient bursts in the beta band. It explores a 

comprehensive review of the current literature on this topic. 

Chapter 2: In this chapter, we provide the rationale for the project, the resulting objectives and 

the hypotheses.  

Chapter 3: This chapter describes the methodology for the study. 

Chapter 4: Our research findings are presented in this chapter.  

Chapter 5: Comprehensive scholarly discussion of all the findings can be found in this chapter. 

Chapter 6: Here, we leave the reader with a summary and future applications of our findings.  

References: list of references.  

Appendices: list of appendices. 

 

 

 

 



16 
 

 

 

 

 

 

 

 

 

CHAPTER 1 - BACKGROUND INFORMATION



17 
 

1.1 Aging 

With the aging population's rapid growth and longer lifespan, which is expected to grow by 68% 

over the next 20 years, the number of people with motor and cognitive deficits is becoming a 

serious concern in the healthcare system [1 - 2]. The burden of the aging population on society and 

public health support is considerable due to increased costs in disability care, emphasizing the 

significance of finding strategies to help retain their motor and cognitive abilities. 

Previous studies reported difficulty coordinating motion, greater movement variability and 

decreased accuracy in the aging population [3 - 4]. However, this age-related motor deficit is 

mainly observed during fine movements and complex tasks. For instance, using a grip force 

modulation task (5–25% of the maximal voluntary contraction (MVC)), Voelcker-Rehage et al. 

showed that older adults performed with less 

accuracy and more force variability compared to 

younger subjects [5]. A study by Fling & Seidler et 

al. reported that older adults exhibited higher force 

variability during a bimanual independent grip task 

(dominant hand: constant force target level & non-

dominant hand: variable target matched; see Fig 1) 

[6]. Further, older adults showed poorer long-term 

retention of motor skills due to deficits in memory 

consolidation during an accuracy-tracking grip task [7]. Mild parkinsonian signs, such as rigidity, 

bradykinesia, and tremor, are also commonly observed in healthy older adults [8]. Thus, motor 

ability deterioration associated with aging processes affect daily activities and living quality of 

elderly individuals. 

Fig 1: Higher dominant hand force 
variability in older adults [Fling & 
Seidler. Cerebral Cortex, 2012]. 
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1.1.1 Age-related structural brain changes  

Age-related volume atrophy in different brain regions has been well documented [9 - 14]. 

However, the rate of volumetric change in different brain areas varies significantly, with certain 

brain structures showing greater atrophy than others. Initial MRI-based research that explored 

structural changes in the aging brain revealed that the prefrontal cortex has the greatest volumetric 

atrophy [9 - 10]. These findings further support the "last in, first out" theory, which claims that the 

last brain regions to develop are the first to experience age-related atrophy.  

More recent studies have confirmed that aging is not limited to the prefrontal region [11 - 14]. For 

instance, it was shown that aging also impacts the medial 

temporal lobe structures, areas that are critical for encoding 

visual information and episodic [12]. Furthermore, volume 

atrophy was also shown to be present in subcortical regions 

related to sensorimotor functions, such as the cerebellum and 

caudate nucleus [13 - 14]. A study by Taubert et al. reported a 

disproportionally steep age-related decline in brain volume and 

myelin, mainly in the pre-and post-central gyri (see Fig 2), areas 

playing a crucial role in movement production [11]. Taken 

together, these findings suggest that brain areas involved in the 

production of movement are more susceptible to aging than previously thought.  

 

 

 

Fig 2: Age-related differences 
in motor & sensorimotor areas 
[Taubert et al. 2020 Neurobio 
of Aging]. 
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1.1.2 Aging & decline in motor performance  

It is well established that neurodegenerative and neurochemical changes in the brain are associated 

with a decline in motor performance [6, 15]. For instance, Kennedy et al. (2005) reported that the 

loss of gray matter volume loss in the prefrontal cortex was associated with worst task accuracy 

during a mirror-tracing task performed with the dominant hand [15]. Furthermore, Fling & Seidler 

showed that reduced integrity of fiber tracts between motor regions was correlated with a decline 

in inter-hemispheric inhibition (IHI) and poorer motor performance in older individuals [6].  

It is worth mentioning that brain areas affected in healthy aging are also impacted early in 

neurodegenerative disorders such as Alzheimer's disease (AD) & Parkinson's disease (PD) [8]. 

Therefore, further research into the effect of structural brain changes on motor functions is 

necessary to better understand the early signs of neurological disorders (e.g., AD & PD). 

 

1.1.3 Effect of aging on movement production in the motor network 

During movement production, there is a neuronal activation or synchronization in different brain 

areas, including the primary motor cortex (M1), posterior parietal cortex (PPC), the premotor 

cortex (PC), supplementary motor area (SMA) and subcortical areas, such as the cerebellum and 

the basal ganglia [16]. It is well established that M1 regulates motor activity by producing 

movement-specific signals and transmitting them to the muscles via spinal cord circuits and 

motoneurons. Previous studies also demonstrated that M1 has the highest bilateral activation 

during movement execution compared to other movement-related brain regions [17 - 18]. M1, in 

particular, has been shown to have an important function in motor planning and execution [18].  
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Previous literature has reported the over-activation of brain areas in the aging population as a 

compensatory mechanism to overcome structural brain changes [19 - 21]. Ward et al. [19] found 

a wider motor network, including the ipsilateral areas to the moving hand, involved during a simple 

grip task. Over-activation of brain areas has been associated with longer reaction times in older 

individuals [20]. Further, it is revealed that higher coupling between central, temporal and frontal 

brain areas leads to a significant delay in movement initiation in older adults [20]. 

Besides increased recruitment of brain areas, aging also affects the efficiency of information 

transfer between different functional brain networks. A study by Park et al. [21] investigated the 

efficiency of information transfer in older adults while performing a simple grip task. The authors 

found a significant decrease in global efficiency, particularly while performing the task with their 

non-dominant hand. This suggests that the process of information transfer between ipsilateral and 

contralateral hemispheres is affected in the aging population, and this could negatively influence 

motor performance in older adults. 

 

1.2 Functional Neuroimaging Modalities 

Neuroimaging techniques, such as magnetoencephalography (MEG) and electroencephalography 

(EEG), are widely used to study electrical activity from different brain areas and how this activity 

changes under different conditions such as motor performance, aging or disease state. 

EEG measures differences in electric potentials on the scalp, while MEG measures brain’s 

magnetic activity. For both modalities, the main generator of electro-magnetic scalp activity is the 

pyramidal cells in the cortical regions. Although the same neurophysiological processes generate 

EEG and MEG signals, MEG has the advantage of carrying critical neural information without 
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being distorted by the resistance from the skull and scalp like EEG. Therefore, the MEG signal is 

less noisy and has a higher temporal resolution than EEG [22 - 23].  

Brain signals are categorized into five major frequency bands associated with specific 

physiological characteristics (see Table 1) [24].  

 

 

In this study, we directed our focus on the beta band because of its well-known connection with 

motor performance [27, 29]. 

Functional Role of Beta Oscillations. Beta band oscillations in M1 play a significant role in 

movement execution [25]. During the movement process, the beta power decreases in amplitude, 

commonly referred to as movement-related beta desynchronization (MRBD) [26]. A recent study 

by Xifra-Porxas et al. [27] showed that higher MRBD (i.e. less negative) results in worse motor 

performance. Another brain oscillatory pattern has also been characterized in the beta band. 

Following movements, beta rhythms increase in amplitude relative to the resting level, and this is 

Frequency band Frequency Brain states 

Delta (δ) 0.5 – 4 Hz Stage 3 & stage 4 of the sleep cycle 

Theta (θ) 4 – 8 Hz Deeply relaxed, drowsy, or sleeping 
states  

Alpha (α) 8 – 12 Hz Very relaxed or motor imagery 

Beta (β) 13 – 30 Hz Attentive, problem-solving, decision 
making, and focused mental activity 
especially related to motor or 
cognitive tasks 

Gamma (γ) 30 – 90 Hz Concentration, memory consolidation 
& motor learning 

Table 1: Physiological significance of different frequency bands in brain signal [24].  
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termed post-movement beta rebound (PMBR) [28]. Increased PMBR was shown to correlate with 

better accuracy during a simple finger-tapping task [29]. These findings suggest that brain 

oscillation patterns in the beta frequency band are related to various aspects of motor performance. 

 

1.3 Beta Oscillations & Aging 

Older adults exhibit higher absolute beta power at rest and 

during movement execution [27]. Further, it has recently 

been proposed that absolute beta power must reach a 

particular threshold level regardless of age to begin a 

muscle contraction [30]. Therefore, older adults require 

stronger desynchronization (i.e., larger MRBD) to 

perform a muscular contraction since they have higher 

beta power at rest. (see Fig 3) [33 - 35]. Abnormalities in 

MRBD patterns are also well documented in population 

with neurological disorders such as stroke [31] and PD 

[32]. It was also shown that a relative increase in beta 

power was present in older adults during sustained 

contractions compared to dynamic contractions [36]. Further, reduced PMBR in elderly 

individuals was correlated with poor motor performance during stimulus-induced motor tasks [37]. 

Collectively, these findings suggest that the age-related changes in beta activity significantly 

impact motor performance. 

 

(A)                              (B) 

Fig 3: Greater MRBD & absolute beta 
power present in older adults (shown 
in orange) during unimanual task. (A) 
left M1, (B) right M1. [Xifra-Porxas et 
al. Neuroimage 2019].  
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1.4 Beta Bursts 

More recent studies have revealed that beta oscillation consists 

of discrete high amplitude fluctuations or bursts, and these 

transient events are usually characterized by occurrence, 

amplitude, and duration (see Fig 4) [38]. The decrease in beta 

power during movement production (i.e., MRBD) has been 

associated with transient changes in the probability of 

occurrence of beta bursts rather than a continuous decrease in 

MRBD activity [38]. Further, it has been suggested that motor 

cortical burst activity originated from the alternating dipole 

current that rises from temporally aligned deep and superficial 

cortical layers [39]. Abnormalities in bursts are well documented in populations with motor and 

psychiatric disorders [40, 41]. For instance, a study by Tinkhauser et al. [40] reported a higher 

percentage of longer bursts in PD individuals while in the ‘OFF’ medication period compared to 

‘ON’ medication. This suggests that greater burst amplitude and longer bursts are associated with 

poorer motor performance.  

 

 

 

 

 

Fig 4: Bursts of beta activity in 
non-average EEG spectrogram 
[Shin et al. eLife 2017].  
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1.4.1 Characterization of Beta Bursts 

Bursts can be characterized using 

three primary parameters: rate (the 

number of bursts within a given 

period on any given trial), amplitude 

(maximum of the peak amplitude 

during the period above threshold), 

and duration (time over which the 

amplitude remained above threshold) (see Fig 5). The estimation of these transient events or bursts 

is typically performed by applying pre-defined thresholds on the amplitude spectrum of the band-

pass filtered signal [38 - 41]. There has been a recent trend in analyzing transient events from 

electrophysiological data using data-driven methods like Hidden Markov models (HMM). The 

HMM method can identify specific 

spectral patterns in the MEG time 

series data by classifying them into 

pre-defined hidden states (see Fig 

6). HMM has been previously used 

to characterize transient burst states 

during simple motor tasks to complex motor learning tasks [42, 43] and to estimate functional 

connectivity between different brain regions during movement execution [43].  

HMM can overcome key challenges to burst detection, such as distinguishing between bursts of 

different frequency bands and detecting bursts without pre-defined thresholds. A recent study by 

Seedat et al. reported that 90% of HMM-identified bursts were detected in comparison to when 

Fig 6: Schematic diagram of a simple HMM, yt - MEG time-
series data and xt - an underlying (hidden) state [Seedat et al. 
2020].  

Fig 5: Burst characteristics (event number, power & 
duration) in non-average EEG spectrogram [Shin et al. 
eLife 2017].  
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using the threshold method [43], suggesting that both methods are quite similar in terms of 

performance for burst identification. No study, however, has systematically compared burst 

characteristics of both methods in terms of their association with behavioural outcomes or motor 

performance. Future research on this topic will be critical in determining which method is better 

in detecting transient events that are more directly related to changes in brain circuitry. 

 

1.4.2 Beta Bursts & Motor Performance 

There is converging evidence for an 

association between cortical beta bursts 

with movement planning and task accuracy 

[44, 45]. Pre-movement bursts in M1 have 

been shown to be related to the degree of 

motor preparation i.e., increased rate of 

bursts before movements were linked to 

longer reaction time (see Fig 7). More bursts present during PMBR, in turn, have been associated 

with better task accuracy [44]. As shown in a recent study [45], visual neurofeedback training can 

improve response time in healthy participants by suppressing beta bursts before movement 

initiation. Further, modulation of beta burst characteristics (i.e. burst rate & duration) was shown 

to enhance motor performance using both conventional and adaptive deep brain stimulation (DBS) 

[46]. Together, these results indicate that beta bursts are a predominant feature in the motor system.  

 

 

Fig 7: Pre-movement bursts related to motor 
preparation [Simon et al. Plos Biol 2019]. 
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1.4.3 Beta Bursts & Aging 

A recent MEG study has shown that burst characteristics are affected by aging [47]. Using a 

unimanual finger-tapping task, prominent age-related changes in burst rate and amplitude during 

rest, pre-and post-movement intervals were identified (see Fig 8). During pre-movement intervals, 

there was an increase in both burst rate and amplitude associated with age. This was thought to be 

the main source of the increased average baseline spectral power observed in older subjects. 

However, no association was reported between age and other burst characteristics during the 

movement period. This was 

believed to be due to higher 

variance and reduced occurrence of 

bursts during movement compared 

to the other intervals. The 

association between age-related 

changes in burst characteristics and 

motor performance is still unknown. 

Further, burst characteristics during 

unimanual and bimanual grip tasks are yet to be investigated in the context of healthy aging.      

 

 

 

 

 

Fig 8: Age-related changes in burst characteristics [Brady et 
al. 2020]. 



27 
 

 

 

 

 

 

 

 

CHAPTER 2 - OBJECTIVES & HYPOTHESES 

 

 

 

 



28 
 

Objectives 

It is well established that beta oscillation patterns and burst characteristics are affected by aging 

during movement tasks. However, not much is known in terms of how age-related changes in burst 

characteristics can impact on brain-behavior interactions. In this context, the objectives of this 

study were to: 

1. estimate the age-related changes in beta burst characteristics (e.g. rate, amplitude & 

duration) during unimanual and bimanual grip tasks;   

2. quantify the relationship between burst characteristics and motor performance; and 

3. compare the performance of the two detection methods, e.g. traditional threshold-based 

approach and Gaussian HMM, in detecting age-related trends in burst characteristics.  

Hypotheses  

Objective 1. Based on previous findings, older adults exhibit higher absolute beta power at rest 

and during movement production. Since the occurrence of beta bursts is highly correlated with 

trial-averaged beta power, we hypothesized that a higher β-burst rate and amplitude will be more 

present in older subjects than in their younger counterparts.  

A relative increase in the beta power is known to be present during steady muscle contractions 

compared to dynamic ones. We hypothesized that sustained contractions will be associated with 

lower burst rates (i.e. movement intervals with constant target-force level) when compared to 

dynamic ones (i.e. movement intervals with varying target-force level) during the unimanual task. 
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Objective 2. Previous studies showed that greater MRBD (i.e. more negative) during a bimanual 

grip task is associated with poorer task performance [27]. Therefore, we hypothesized that lower 

burst amplitude during the bimanual task will be correlated with better task accuracy. 

 

Objective 3. Previous studies have reported a high degree of overlap between HMM and threshold 

method bursts [43]. Accordingly, we expected to find consistent age-related rends in burst 

characteristics across both methods. However, the studies that investigated the relationship 

between burst characteristics and motor performance only used the threshold approach. There is 

no prior evidence of a connection between HMM-identified bursts and motor performance. 

Furthermore, one of the fundamental assumptions of the HMM method is that hidden states are 

mutually exclusive, which implies that HMM method can not handle the co-occurrence of multiple 

brain states [42, 43]. Therefore, HMM may be incapable of capturing accurate physiological 

representations of brain activity related to complex tasks that engage several brain areas in both 

hemispheres (e.g. a bimanual or dynamic grip task). We further hypothesized that the threshold 

method bursts would outperform HMM in predicting motor performance.  
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3.1 Dataset 

The study used previously collected MEG data from younger and older adults acquired at rest and 

during handgrip paradigms, including unimanual and bimanual tasks [27]. 

Study Participants. In this study, a total of 12 younger and 12 older healthy individuals were 

recruited. Participants' demographic information included their age, handedness, and medical 

history were collected. The Nine Hole Peg Test (9HPT), Box and Blocks Test (BBT), Purdue 

Pegboard Test (PPT), and Hand Grip Strength (HGS) were used to assess motor abilities in both 

hands [49 - 52]. This was done to define a broad variety of upper limb motor capabilities, ranging 

from manual dexterity to strength. The Mini-Mental State Examination (MMSE, (Folstein et al., 

1975)) was also used to assess participants for cognitive state. The inclusion and exclusion criteria 

for participation were as follows: 

Inclusion criteria 

❏ Healthy male or female between the age of 18 and 30 years old were included in the 

younger group. 

❏ Healthy male or female between the age of 60 and 74 years old were included in the older 

group. 

❏ Right-hand dominance was assessed using The Edinburgh Handedness Inventory [48]. 

 

Exclusion Criteria 

❏ Subjects with psychiatric disease or cognitive impairment or self-reported history of major 

or unstable medical illness, significant neurological history (e.g. epilepsy, brain tumor, 

stroke). 
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❏ Subjects with history of head trauma with loss of consciousness for greater than 5 min, as 

well as individuals taking psychotropic medications. 

❏ Participants with metal artifacts i.e. presence of ferromagnetic material (e.g. dental braces, 

metal implants and/or crowns). 

 

Sample size and how it was determined 

Previous published studies investigating the effects of aging on beta oscillation have shown 

changes in brain networks and behavior using a similar sample size. Based on these studies, the 

same number of participants were recruited (Schmiedt-Fehr et al. 2016, Heinrichs-Graham and 

Wilson et al. 2016). 

 

Experiment paradigm  

Behavioral assessment tests  

At the beginning of the experimental session, participants completed four behavioral assessment 

tests for evaluating hand function. The scores of the BBT, 9HPT and PPT were further used to 

evaluate correlation with Rest burst characteristics.  

1) Box and Blocks Test (BBT) - The BBT [49] was used to assess manual dexterity by 

counting the number of blocks transported from one compartment of a box to another of 

equal size within 1 min. 

2) Nine Hole Peg Test (9HPT) - The 9HPT [50] was measured in seconds, showing how fast 

each participant placed and removed nine pegs into the holes. 
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3) Purdue Pegboard Test (PPT) - The PPT [51] was measured by the number of pins placed 

into holes within 30 s (using dominant, non-dominant and both hands) or the total number 

of pins, collars and washers assembled within 60 s (assembly test with both hands). 

4) Hand Grip Strength (HGS) - The HGS [52] was performed using both hands and it was 

measured in kilograms. 

 

Description of methodology 

A flowchart of the protocol can be found in Fig 9. Prior to the acquisition of each session, empty 

room noise data was collected to get an insight into the environmental noise conditions. The 

protocol consisted of a unimanual and a bimanual grip task, alternated by three resting-state 

periods. For the unimanual task, participants had to track a ramp target ranging from 15% to 30% 

of their MVC. Participants had to exert a constant force at 15% of their MVC using both hands for 

the bimanual task. The MVC of each participant was measured after the first resting-state period.  

 

 

                                     

 

 

Fig 9: Schematic overview of the protocol (Xifra-Porxas et al. Neuroimage 2019). 
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Measurements & study instruments  

Grip force measurement. A pair of non-magnetic, non-electronic hand grippers (Current Designs 

Inc, USA) was used to measure the grip force of the participants while conducting the motor tasks. 

 

Neuroimaging data acquisition. MEG data were recorded using a 275-channel CTF whole-head 

system at the McConnell Brain Imaging Centre (BIC) of the Montreal Neurological Institute 

(MNI).   

 

Other measurements. A Polhemus Fastrak device was used to compute the 3D digitization of the 

head shape using uniformly distributed ~ 100 head points. Individual T1-weighted MRI images 

were acquired on a 3T MRI scanner (Siemens Prisma). The position of the head localization coils 

(nasion, left and right pre-auricular) and the head-surface points were later used to obtain co-

registration between the MEG and MRI coordinate systems. 

 

Task accuracy. This was measured as the root mean squared error between the target force level 

and the subject’s applied force at a given time. For the unimanual task, task accuracy was computed 

separately for each of the three movement intervals (M1, M2 & M3, see section 3.2 below). For 

the bimanual task, it was measured during the 6 sec movement period of each trial. 

 

3.2 Data Preprocessing 

Noise removal. Raw MEG data were filtered (1 to 150 Hz bandpass) and power line artifacts 

around 60 Hz were removed using notch filters. Electrocardiogram (ECG) and electrooculography 

(EOG) signals were used to identify the cardiac and eye-movement artifacts and these artifacts 
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were corrected using signal-space projection (SSP). Further, independent component analysis 

(ICA) was applied to remove artifacts related to external magnetic fields. Noisy channels or epochs 

presented motion artifacts (i.e. segments where subjects moved more than 5 mm between head 

position measurements) were removed. Further, MEG data from the unimanual task were  

segmented into 16.5 s epochs extending from 2.5 s before and 14 s after the visual cue, and data 

from the bimanual task were epoched from 2.5 s before and 11 s after the visual cue and the 5-min 

resting-state recordings were segmented in epochs of 5 s. 

 

Task Intervals. The data were divided into 5 intervals for the unimanual task (see Fig 10 (A)): 

Movement preparation (Pre), Movement – 15% MVC (M1), Movement – 15 to 30% MVC (M2), 

Movement – 30% MVC (M3), and Post-movement (Post). The data were divided into 3 intervals 

for the bimanual task (see Fig 10 (B)): Movement preparation (Pre), Movement – 15% MVC 

(Mov), and Post-movement (Post). The 5-min recorded before the unimanual task while the 

subjects rested was used for the Rest interval.  

 

 

(A)                                                                                                       (B) 

M1 M2 M3 Post Pre Mov Post Pre 

Fig 10: Task intervals: A) Unimanual task. Pre, M1, M2, M3, Post (B) Bimanual task- Pre, Mov, Post.  
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3.3 Time Frequency map (Morlet wavelet) 

MEG β power & β bursts. In this study, we focused on 

M1, as it is well established that M1 plays an active role 

during movement execution and is also affected by aging 

processes. Therefore, signals from the targeted sensors 

located above M1 in the left (MLC 17) and right (MRC 

17) hemispheres (see Fig 11) were extracted for 

subsequent analyses. Single-trial MEG waveforms were 

extracted per subject and decomposed to the time-

frequency (TF) domain using Morlet wavelets (time resolution=3 s, central frequency=1 Hz) in 

the following frequency band: beta (15 – 29 Hz). The evoked response was removed from each 

trial before computing the TF decomposition [53].  

 

3.4 Beta burst detection 

Threshold method. We applied a threshold corresponding to the power of the signal followed by a 

second threshold reflecting 

the duration of the 

fluctuations or bursts. We 

used the 75th percentile value 

of the absolute beta power 

[38 - 41] and we set the 

minimum burst duration as 

Fig 12: Detection of beta ‘bursts’ in a single trial data using 
threshold & HMM method.  

Fig 11: MEG sensor locations (MLC 
17 & MRC 17). 
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100 ms to account for rapid fluctuations that may result in false bursts (see Fig 12) [40, 46]. 

Further, we used different thresholds for different intervals (i.e., Rest, Pre, Mov, M1, M2, M3 & 

Post) (see Fig 10).   

Beta burst characteristics were computed as follows: rate as the number of bursts within a given 

period (1 sec) on any given trial, amplitude as the maximum of the peak amplitude during the 

period above threshold, and duration as the time over which the amplitude remained above 

threshold. 

HMM method. We used HMM with a Gaussian observation model (see Fig 13) on the amplitude 

envelope beta time-courses [42]. In this 

method, two states were characterised: high 

amplitude fluctuations (‘Burst’ states) and 

low amplitude state. The occurrence of a 

burst event was defined by a specific 

occurrence of the burst state. For the HMM 

method, burst characteristics were defined as 

follows: rate as the number of visits to the burst state normalised by time (1 Sec), amplitude as 

the maximum value of the beta envelope during each occurrence of the burst state, duration as 

the time spent in the burst state. 

We decided to focus on the findings of the threshold method because most of prior literature used 

this technique to detect transient bursts from EEG/MEG signals [38 - 41] (see sections 4.1, 4.2, 

4.3). Further, we presented a comparative analysis of the results of the two methods (see section 

4.4). 

Fig 13: Schematic of HMM. At each time t, yt refers 
to MEG data and xt refers to corresponding hidden 
states [Zelekha A. et al. Neuroimage 2020]. 
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3.5 Statistical Analyses 

Linear mixed-effect models (LMMs) with experimental trial intervals (i.e. Rest, Pre, M1, M2, M3 

& Post for the unimanual & Rest, Pre, Mov & Post for the bimanual task) and age group as ‘fixed 

effect’ factors were used to compare burst characteristics between groups and intervals. For each 

of the burst characteristics, we performed LMM analysis using the following formulas: 

 

  

 

Here, burst characteristics (Rate, Bamp & Duration) are ‘response variables’, and the model terms 

to the right of the tilde character (“~”), denote ‘fixed effects’ and the interaction (‘*’) between 

fixed effects. We performed the above analyses separately for the unimanual and bimanual tasks. 

Post-hoc analyses were performed to get contrasts for within and between-subject comparisons, 

and p-values were obtained using the Satterthwaite approximation. Bonferroni correction was 

applied to adjust for multiple comparisons. The p-values less than 0.05 were considered 

significant. All statistical analysis was performed in the software R-Studio using the following 

packages: ‘lmer’, ‘lmerTest’ and ‘emmeans’.  

 

 3.6 Correlation between bursts & motor performance 

We performed linear regression analysis between the response variable (i.e. behavioural 

assessment score (behavioural scores of the PPT, NHPT & BBT & task accuracy) and the predictor 

variable (i.e. group of participants). If significant differences between age groups were found, we 

Rate ~ Group + Interval + Group * Interval  

Bamp ~ Group + Interval + Group * Interval  

Duration ~ Group + Interval + Group * Interval  
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performed the subsequent analyses separately for the two groups. When no difference was found 

between the groups, the data were combined for further analyses.  

A multiple linear regression model was then used to evaluate the relationship between the response 

variable (i.e. behavioural scores & task accuracy) and predictor variables (i.e. burst characteristics 

- rate, amplitude & duration).  

 

3.7 Burst overlap analysis between HMM & threshold method 

The percentage of overlap between HMM and threshold method bursts were computed using the 

following the formula: 

 

 

 

Finally, we averaged the percentage overlap across all intervals (Rest, Pre, Mov & Post) and groups 

(i.e. young & old) and motor paradigms (i.e. unimanual & bimanual). 

 

3.8 Overall presentation of the analyses 

A) LMM 

We used LMM for the following analyses. Analysis-I: Comparison between groups & between 

intervals for the unimanual task (Section – 4.1.1). Analysis-II: Comparison between groups & 

Percentage over lap = (Σ T1 .* T2 ) * 100/n; 
n = no of time points in a single trial, 

T1 = HMM burst time course 
T2 = threshold burst time course  
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between intervals for the bimanual task (left M1) (Section – 4.1.2). Analysis-III: Comparison 

between groups & between intervals for the unimanual task (right M1) (Section – 4.1.2). 

B) Regression analysis (Unimanual task)   

For the unimanual task, regression analyses were separately done for the following 5 intervals: 

Analysis-I: between task accuracy (intervals M1, M2 & M3) & burst characteristics ( something 

is missing here) (Section – 4.2.1). Analysis-II: between task accuracy (average of intervals M1, 

M2, M3) & burst characteristics (Post) (Section – 4.2.1). Analysis-III: between task accuracy 

(average of intervals M1, M2, M3) & burst characteristics (Pre) (Section – 4.2.1). 

 

C) Regression analysis (Bimanual task)   

For the bimanual task, regression analyses were separately done for the following 5 intervals: 

Analysis-I: between task accuracy (Mov) & burst characteristics (Mov) (Section – 4.2.2). 

Analysis-II: between task accuracy (Mov) & burst characteristics (Post) (Section – 4.2.2). 

Analysis-III: between task accuracy (Mov) & burst characteristics (Pre) (Section – 4.2.2). 

 

D) Regression analysis (Behavioural assessment)  

For behavioral assessment, regression analyses were separately done for the following 5 intervals: 

Analysis-I: between motor score (PPT) & burst characteristics (Rest) (Section – 4.2.3.1). Analysis-

II: between motor score (NHPT) & burst characteristics (Rest) (Section – 4.3.3.2). Analysis-III: 

between motor score (BBT) & burst characteristics (Rest) (Section – 4.3.3.3).  
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Due to the limited number of participants, all the above-mentioned statistical analyses were 

performed on single-trial MEG data, not trial-averaged values. Therefore, for each subject, we 

ended up having 50 samples (i.e. no of trials), and on a group level, we had 600 samples (50 * n, 

n = 12 subjects).  
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CHAPTER 4 - RESULT 
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4.1 Burst characteristics between groups & intervals using the threshold 

method 

4.1.1 Unimanual task    

4.1.1.1 Comparison between groups  

 

Burst rate. The LMM revealed a significant group effect (Bonferroni adjusted p < 0.003, F = 1.88) 

. Post-hoc tests did not show any significant difference between younger and older adults across 

any of the task intervals (see Fig 14).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 14: Burst rate (young vs. old) across 
different intervals (Rest, Pre, M1, M2, M3 & 
Post). Rate is expressed in terms of event/sec.  
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Burst amplitude (bamp). A significant difference was found between the younger and older groups 

(LMM Group effect: Bonferroni adjusted p < 0.001, F value = 243.54). Further, Post-hoc tests 

revealed that older adults had a significantly (Bonferroni adjusted p < 0.001) higher burst 

amplitude than younger subjects across all intervals (Rest, Pre, M1, M2, M3 & Post) (see Fig 15). 

 

 

 

 

Burst duration. LMM model revealed no significant group effect (Bonferroni adjusted p < 0.3, F 

value = 0.82). 

 

 

 

 

 

 

Fig 15: Burst amplitude (young vs. old) 
across different intervals (Rest, Pre, M1, M2, 
M3 & Post). Amplitude (bamp) is expressed 
in terms of peak beta amplitude over 
threshold (µV).  

Significant differences marked by (*). 
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4.1.1.2 Comparison between intervals  

Burst rate. Significant difference in burst rate between intervals (LMM Interval effect: Bonferroni 

adjusted p < 0.001, F value = 5.33) was found. However, no significant group-interval interaction 

was observed (LMM Group*Interval effect: Bonferroni adjusted p < 0.9). Further, post-hoc 

analysis of data from younger and older subjects lumped together revealed that burst rate at Rest 

was significantly lower compared to the movement (M1, M2 & M3) and Post intervals (see Fig 

16 & in Table 2 Appendix). 

 

 

 

 

 

 

 

 

 

 

 

Fig 16: Burst rate between different intervals (Rest, 
Pre, M1, M2, M3 & Post). Rate is expressed in terms 
of event/sec.  

Significant differences marked by (*). 
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Burst amplitude. Significant difference in burst amplitude was found between task intervals (LMM 

interval effect: Bonferroni adjusted p < 0.001, F value = 32.71). However, the LMM revealed no 

significant interaction between group and intervals (Group*Interval effect: Bonferroni adjusted p 

< 0.23) (see in Table 3 Appendix). Further, post-hoc tests on data of the two groups lumped 

together showed that burst amplitude during the Pre and movement intervals (M1, M2 & M3) were 

significantly less than the Post and Rest periods (see Fig 17). 

 

 

 

  

 

 

 

 

 

 

 

Fig 17: Burst amplitude between different 
intervals (Rest, Pre, M1, M2, M3 & Post). 
Amplitude (bamp) is expressed in terms of peak 
beta amplitude over threshold (µV).  

Significant differences marked by (*). 

 



47 
 

Burst duration. The LMM revealed significant effect in burst duration between intervals (LMM 

Interval effect: Bonferroni adjusted p < 0.001, F = 3.34). However, no group - interval interaction 

was found (Group*Interval effect: Bonferroni adjusted p < 0.9). Further post-hoc tests on data 

from all subjects lumped together (see Table 4 in Appendix) indicated that burst duration during 

Pre was significantly shorter than for the movement (M1, M2 & M3), Post and Rest intervals (see 

Fig 18) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 18: Burst duration between different 
intervals (Rest, Pre, M1, M2, M3 & Post). 
Duration is expressed in terms ms. 

Significant differences marked by (*). 
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4.1.2 Bimanual task    

Between-group (young vs. old) and between-interval (young & old) comparisons of burst 

characteristics (left & right M1) are presented below.  

 

4.1.2.1 Comparison between groups (young vs. old) 

4.1.2.1.1 Left M1  

Burst rate. 

The LMM revealed a significant group effect (Bonferroni adjusted p < 0.009, F value = 6.81). 

Post-hoc tests did not show any significant difference between younger and older adults across 

any of the task intervals (see Fig 19).  

 

  

Fig 19: Burst rate (young vs. old) across 
different intervals (Rest, Pre, Mov & Post). Rate 
are expressed in terms of event/sec.  
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Burst amplitude (bamp).  

Significant group effect (Bonferroni adjusted p < 0.001, F value = 153.44) in burst amplitude was 

found. Further post-hoc tests revealed that older adults have a significantly (Bonferroni adjusted 

p < 0.001) higher burst amplitude than younger subjects across all intervals (see Fig 20). 

 

 

 

Burst duration. LMM model revealed no significant group effect (Bonferroni adjusted p < 0.08, 

F value = 3.02). 

 

 

 

 

 

 

Fig 20: Burst amplitude (young vs. old) 
across different intervals (Rest, Pre, Mov, 
Post). Amplitude (bamp) is expressed in 
terms of peak beta amplitude over 
threshold (µV).  

Significant differences are marked by (*). 
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4.1.2.1.2 Right M1 

 

Burst rate. The LMM revealed no significant group effect (Bonferroni adjusted p < 0.9) in burst 

rate. 

 

Burst amplitude. Significant difference in burst amplitude between younger and older groups 

(LMM Group effect: Bonferroni adjusted p < 0.001, F value = 283.54) was found. Further, post-

hoc tests revealed that older adults had a significantly (Bonferroni adjusted p < 0.001) higher burst 

amplitude than younger subjects across all intervals (Mov, Post, Rest & Pre) (see Fig 21). 

 

 

 

Burst duration. LMM model revealed no significant group effect (Bonferroni adjusted p < 0.9, F 

= 0.82). 

 

 

 

 

 

Fig 21: Burst amplitude (young vs. old) 
across different intervals (Rest, Pre, Mov & 
Post). Amplitude (bamp) is expressed in 
terms of peak beta amplitude over threshold 
(µV).  

Significant differences are marked by (*). 
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4.1.2.2 Comparison between intervals  

4.1.2.2.1 Left M1 

Burst rate. Significant difference in burst rate between intervals (LMM Interval effect: Bonferroni 

adjusted p < 0.001, F = 1339.19) was found. However, LMM revealed no significant interaction 

between groups and intervals (LMM Group*Interval effect: Bonferroni adjusted p < 0.8) Further 

post-hoc tests of all data grouped together (see Table 5 in appendix) showed that burst rate during 

Rest were significantly higher than the Mov, Pre and Post intervals (see Fig 22). 

 

 

 

 

 

 

 

 

 

 

Fig 22: Burst rate between different intervals 
(Rest, Pre, Mov, Post). Rate is expressed in 
terms of event/sec.  

Significant differences  marked by (*). 
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Burst amplitude. Significant difference in burst amplitude between task intervals (LMM interval 

effect: Bonferroni adjusted p < 0.001, F = 79.33) was found. However, the LMM revealed no 

significant interaction between groups and intervals (Group*Interval effect: Bonferroni adjusted p 

< 0.23). Further, post-hoc tests of data from all subjects lumped together showed that burst 

amplitude in Post was significantly higher than the Rest, Pre and Mov intervals (see Fig 23, Table 

6 in appendix). 

 

 

 

 

 

 

 

 

 

 

Fig 23: Burst amplitude between 
different intervals (Rest, Pre, Mov & 
Post). Amplitude (bamp) is expressed in 
terms of peak beta amplitude over 
threshold (µV).  

Significant differences marked by (*).  
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Burst duration. Significant difference in burst duration between intervals (LMM Interval effect: 

Bonferroni adjusted p < 0.001, F = 511.41) was found. However, no group - interval interaction 

was found (Group*Interval effect: Bonferroni adjusted p < 0.9). Further post-hoc tests of all data 

grouped together (see Table 7) revealed that burst duration during Rest was significantly longer 

than all other intervals (see Fig 24). Further we found burst duration during Mov interval to be 

significantly longer than Post and Pre intervals (see Fig 24). 

 

 

 

 

 

 

 

 

 

 

Fig 24: Burst duration between different 
intervals (Rest, Pre, Mov & Post). Duration 
is expressed in terms ms. 

Significant differences marked by (*).  
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4.1.2.2.2 Right M1  

Burst rate. Significant difference in burst rate between task intervals (LMM interval effect: 

Bonferroni adjusted p < 0.001, F = 939.19) was found. However, the LMM revealed no significant 

interaction between groups and intervals (Group*Interval effect: Bonferroni adjusted p < 0.6). 

Further post-hoc tests of data from all subjects lumped together (see Table 8Table 8 in Appendix) 

shows that burst rate during Mov was significantly lower (Bonferroni adjusted p < 0.001) than Pre, 

Rest and Post intervals (see Fig 25). Further, we found that burst rate during Pre and Post intervals 

were significantly higher (Bonferroni adjusted p < 0.001) than Rest.  

 

 

 

 

 

 

 

 

 

Fig 25: Burst rate between different intervals (Rest, 
Pre, Mov & Post). Rate is expressed in terms of 
event/sec.  

Significant differences marked by (*). 
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Burst amplitude (bamp). LMM revealed significant difference in burst amplitude between intervals 

(LMM Interval effect: Bonferroni adjusted p < 0.001, F value = 35.4). However, no group - 

interval interaction was found (LMM Group*Interval effect: Bonferroni adjusted p < 0.7). Further, 

post-hoc tests of data from all subjects grouped together (see Table 9 in Appendix) showed that 

burst amplitude during the Pre interval was significantly higher than the Mov, Post and Rest 

intervals. Also, burst amplitude during Post was significantly higher than the Mov and the Rest 

intervals (see Fig 26). 

 

 

 

 

 

 

 

 

 

 

Fig 26: Burst amplitude between different 
intervals (Rest, Pre, Mov & Post). 
Amplitude (bamp) is expressed in terms of 
peak beta amplitude over threshold (µV).  

Significant differences marked by (*). 
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Burst duration. Significant difference in burst duration between intervals (LMM Interval effect: 

Bonferroni adjusted p < 0.001) was found. However, the LMM revealed no significant interaction 

between groups and intervals (LMM Group*Interval effect: Bonferroni adjusted p < 0.9). Further, 

post-hoc tests of data from younger and older subjects lumped together (see Table 10 ) showed 

that burst duration in movement intervals were significantly (Bonferroni adjusted p < 0.001) 

longer than all other intervals including Rest, Post and Mov (see Fig 27). Further we found burst 

duration during Rest to be significantly (Bonferroni adjusted p < 0.01) shorter than Post and Mov 

intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 27: Burst duration between different 
intervals (Rest, Pre, Mov & Post). Duration 
is expressed in terms ms. 

Significant differences marked by (*). 

 

 

 



57 
 

4.2 Relationship between Burst Characteristics & Motor Performance using 

the Threshold Method 

 

4.2.1 Unimanual Task 

4.2.1.1 Movement Interval (M1). No significant (Bonferroni adjusted p < 0.9) group effect was 

found in task accuracy during M1 (see Fig 10). Data from younger and older subjects were 

combined for the subsequent regression analyses. We found a significant (Bonferroni adjusted p 

< 0.01) but weak correlation (Adjusted R-

squared: 0.01) between task accuracy and 

the aggregate of all burst characteristics 

(rate, amplitude & duration). Further, linear 

regression using individual burst 

characteristics revealed that only rate was 

significantly (Bonferroni adjusted p < 

0.009) correlated with the task accuracy, but 

the correlation (Adjusted R-squared: 

0.00804) was very weak compared to when all burst characteristics were combined (see Fig 28).  

 

4.2.1.2 Movement Interval (M2). Multiple regression analysis revealed a significant group effect 

in task accuracy (Bonferroni adjusted p < 0.001) during M2. Therefore, subsequent analyses were 

performed separately on younger and older subjects. No significant correlation between task 

accuracy and burst characteristics was found for either the younger (Bonferroni adjusted p < 0.9) 

or the older group (Bonferroni adjusted p < 0.8). 

P < 0.009 

R2 = 0.00804 

Fig 28: Positive correlation between burst rate and 
motor performance (i.e. higher burst rate related to 
better task accuracy). 

Score refers to task accuracy during M1 interval of 
individual trials & Rate refers to burst rate 
(events/sec) during M1 interval of individual trials. 
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4.2.1.3 Movement Interval (M3). No significant (Bonferroni adjusted p < 0.1) group effect was 

found in task accuracy during M3. Multiple 

linear regression analysis revealed no 

significant (Bonferroni adjusted p < 0.2) 

correlation between task accuracy and all 

burst characteristics. However, among 

individual burst characteristics, there was a 

significant (Bonferroni adjusted p < 0.03) 

but very week correlation (Adjusted R-

squared: 0.00234) between burst amplitude 

and task accuracy (see Fig 29). 

 

4.2.1.4 Preparation Interval (Pre). Multiple regression analysis revealed no significant 

(Bonferroni adjusted p < 0.7) correlation between the task accuracy (averaged across M1, M2 & 

M3 intervals) and burst characteristics of the Pre interval. 

 

4.2.1.5 Post-movement Interval (Post). No significant (Bonferroni adjusted p < 0.6) correlation 

between the task accuracy (averaged across M1, M2 & M3 intervals) and burst characteristics of 

Post interval was observed.  

 

 

Fig 29: Positive correlation between burst amplitude 
(bamp) and motor performance (i.e. higher burst 
amplitude related to better task accuracy) 

Score refers to task accuracy during M3 interval of 
individual trials & bamp refers to burst amplitude 
during M3 interval of individual trials. 

 

P < 0.03 

R2 = 0.0023 
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4.2.2 Bimanual Task 

Results are presented as follow: correlation between task accuracy of the right hand and burst 

characteristics of left motor area (section 4.3.2.1) and between task accuracy of the left hand and 

burst characteristics of the right motor area (section 4.3.2.2). 

4.3.2.1  Left Motor Area 

 

4.3.2.1.1 Movement Interval (Mov) 

Multiple regression analysis revealed a significant group effect on task accuracy (Bonferroni 

adjusted p < 0.001) during Mov interval. Therefore, subsequent analyses were performed 

separately on younger and older subjects.  

 

Younger Group.  

No significant (Bonferroni adjusted p < 

0.15) correlation between the task accuracy 

and all burst characteristics was found. 

However, among individual burst 

characteristics, regression analysis revealed 

a significant (Bonferroni adjusted p < 0.02) 

but very week correlation (Adjusted R-

squared: 0.007) between burst rate and task 

accuracy (see Fig 30). 

 

 

Fig 30: Negative correlation between burst rate 
and motor performance (i.e. higher burst rate 
related to worse task accuracy).  

Score refers to task accuracy during Mov interval 
& Rate refers to burst rate (events/sec) of Mov 
interval.  

 

 

 

P < 0.02 

R2 = 0.007 
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Older group  

No significant (Bonferroni adjusted p < 0.15) 

correlation between the task accuracy and all 

burst characteristics was found. However, 

regression analysis using individual burst 

characteristics revealed a significant 

(Bonferroni adjusted p < 0.02) but very week 

correlation (Adjusted R-squared: 0.007) 

between burst rate and task accuracy (see Fig 

31). 

 

 

4.2.2.1.2 Post-movement Interval (Post)  

No significant correlation between the task accuracy and burst characteristics was observed for 

either of the younger (Bonferroni adjusted p < 0.3) or the older group (Bonferroni adjusted p < 

0.9). 

 

4.2.2.1.3 Preparation Interval (Pre)  

Younger group. No significant correlation between the task accuracy and burst characteristics was 

observed for the younger (Bonferroni adjusted p < 0.8). 

 

Fig 31: Positive correlation between burst rate 
and motor performance (i.e. higher burst rate 
related to improved task accuracy).  

Score refers to task accuracy during Mov. interval 
& Rate refers to burst rate (events/sec of Mov 
interval.  

 

 

P < 0.02 

R2 = 0.007 
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Older group. Multiple regression analysis revealed a significant (Bonferroni adjusted p < 0.009) 

but weak correlation (Adjusted R-squared: 0.02) 

between the task accuracy and all burst 

characteristics. However, regression analysis 

using individual burst characteristics showed 

only burst amplitude was significantly 

(Bonferroni adjusted p < 0.002) correlated with 

the task accuracy (see Fig 32). 

 

 

 

4.2.2.2 Right Motor Area 

Multiple regression analysis revealed a significant group effect in task accuracy (Bonferroni 

adjusted p < 0.001) during Mov interval. Therefore, the subsequent analyses were performed 

separately on younger and older subjects. 

 

4.2.2.2.1 Movement Interval 

No significant (Bonferroni adjusted p < 0.7) correlation between the task accuracy and burst 

characteristics was observed for both groups. 

 

 

Fig 32: Negative correlation between burst 
amplitude and motor performance (i.e. higher 
burst amplitude related to worse task 
accuracy).  

Score refers to task accuracy during Mov 
interval & bamp refers to burst amplitude 
during the Pre interval 

 

P < 0.002 

R2 = 0.02 
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4.2.2.2.2 Post-movement Interval (Post) 

Younger group. Multiple regression analysis revealed no significant (Bonferroni adjusted p < 0.1) 

correlation between task accuracy and burst characteristics. 

 

Older group. We found a significant (Bonferroni adjusted p < 0.03) but weak correlation 

(Adjusted R-squared: 0.01) between task 

accuracy and all burst characteristics. Further, 

linear regression analysis using individual burst 

characteristics indicated that only amplitude was 

significantly (Bonferroni adjusted p < 0.01) 

correlated with the task accuracy (see Fig 33). 

 

 

 

 

4.2.2.2.3 Preparation Interval (Pre) 

Younger group. No significant (Bonferroni adjusted p < 0.4) correlation between the task accuracy 

and burst characteristics was observed for the younger group. 

 

Fig 33: Positive correlation between burst 
amplitude and motor performance (i.e. higher 
burst amplitude related to improved task 
accuracy).  

Score refers to task accuracy during Mov interval 
& bamp refers to burst amplitude of Post interval. 

 

P < 0.01 

R2 = 0.01 
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Older group. We found a significant (Bonferroni adjusted p < 0.03) but weak correlation 

(Adjusted R-squared: 0.01) between the 

task accuracy and combination of all the 

burst characteristics. Further, linear 

regression analysis was performed 

between the task accuracy and the three 

burst characteristics separately. Only the 

duration was significantly (Bonferroni 

adjusted p < 0.02) correlated with the task 

accuracy (see Fig 34). 

 

 

 

 

4.2.3 Resting state & Behavioural scores 

The results from the behavioural assessments have been reported in detail in a previous publication 

from our group [26]. Briefly, significant differences between older and younger adults were found 

for both hands on the behavioural assessment scores for the 9HPT, BBT and PPT, where older 

adults performed significantly worse (Bonferroni adjusted p < 0.01). Therefore, subsequent 

regression analyses between burst characteristics collected at Rest and behavioural scores were 

performed separately on younger and older subjects.  

Fig 34: Positive correlation between burst duration 
and motor performance (i.e. higher burst duration 
related to improved task accuracy).  

Score refers to task accuracy during Mov interval & 
duration refers to burst duration (ms) of Pre interval. 

 

P < 0.02 

R2 = 0.01 



64 
 

4.2.3.1 PPT (Right Hand & Left Motor Area) 

Younger group. We found no significant 

correlation (Bonferroni adjusted p < 0.2) 

between the motor score and a combination 

of all the burst characteristics. Further, linear 

regression on individual characteristics 

showed that burst rate was significantly 

(Bonferroni adjusted p < 0.04, Adjusted R-

squared: 0.3) correlated with the PPT score (see 

Fig 35). 

 

Older group. We found a significant 

(Bonferroni adjusted p < 0.02) and strong 

correlation (Adjusted R-squared: 0.7) 

between the PPT score and burst 

characteristics. Further, linear regression on 

individual characteristics showed that only 

rate was significantly (Bonferroni adjusted p 

< 0.007, Adjusted R-squared: 0.6) correlated 

with the PPT score (see Fig 36). 

 

 

Fig 35: Negative correlation between burst rate 
and PPT score (i.e. higher burst rate related to 
worse motor score).  

PPT score expressed as the number of pins 
placed into the board in 30 secs (right hand). 

Rate refers to burst rate (events/sec) of resting 
state. 

 

 

P < 0.04 

R2 = 0.3 

Fig 36: Positive correlation between burst rate and 
PPT score (i.e. higher burst rate related to better 
motor score).  

PPT score expressed as the number of pins placed 
into the board in 30 secs (right hand). 

Rate refers to burst rate (events/sec) of Rest. 
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P < 0.007 

R2 = 0.6 
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4.2.3.2 NHPT (Right Hand & Left Motor Area) 

Younger group. We found no significant 

(Bonferroni adjusted p < 0.09) correlation 

between the motor score and all burst 

characteristics. Further, linear regression on 

individual characteristics showed that burst 

rate was significantly (Bonferroni adjusted p < 

0.01, Adjusted R-squared: 0.4) correlated with 

the NHPT score (see Fig 37). 

      

Older group. We found no significant (Bonferroni adjusted p < 0.4) correlation between the NHPT 

score and burst characteristics for the older group. 

 

4.2.3.3 BBT (Right Hand & Left Motor Area) 

Younger group. No significant (Bonferroni adjusted p < 0.6) correlation between the BBT score 

and burst characteristics was found in the younger group. 

Older group. We found no significant (Bonferroni adjusted p < 0.07) correlation between the BBT 

score and burst characteristics for the older group. 

 

 

P < 0.01 

R2 = 0.4 

Fig 37: Negative correlation between burst rate 
and NHPT score.   

NHPT score expressed as time (in secs) required 
to place and remove nine pegs from the board. 

Rate refers to burst rate (events/sec) of resting 
state. 
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4.3 Summary of the results obtained with the Threshold Method 

A) Unimanual task 

Comparison between groups (young vs. old). Among 3 burst characteristics, amplitude was only 

significantly different between the younger and older groups (see Table 11).  

 

 

 

 

 

 

 

 

 

Burst 
Characteristics M1 M2 M3 Post Rest Pre 

Rate NS NS NS NS NS NS 

Amplitude Old > 
Young 

Old > 
Young 

Old > 
Young 

Old > 
Young 

Old > 
Young 

Old > 
Young 

Duration NS NS NS NS NS NS 

Table 11. Summary of burst characteristics comparison between groups. ‘NS’ 
=no significant difference between groups. Rate was similar in both the groups 
(top row), Amplitude was greater in older subjects (middle row) & duration was 
also similar in the two groups (bottom row). 
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Comparison between intervals (young & old). Significantly different intervals are presented in the 

table below (Table 12).  

 

 

 

 

 

 

 

 

 

 

Burst 
Characteristics Move vs. Rest Mov vs. Post Between Movement 

(M1 vs. M2 vs. M3) 

Rate NS 
M1 < Post 
M2 < Post 
M3 < Post 

NS 

Amplitude 
M1 < Rest 
M2 < Rest 
M3 < Rest 

M1 < Post 
M2 < Post 
M3 < Post 

M2 < M1 
M2 < M3 

Duration 
M1 – Rest (NS) 

M2 < Rest 
M3 – Rest (NS) 

NS NS 

Table 12. Summary of between-interval burst characteristics comparison. Burst rate (upper row), 
burst amplitude (middle row) & burst duration (bottom row). ‘NS’ = no significant difference between 
groups. 
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B) Bimanual task (left M1) 

Comparison between group (young vs. old). Burst amplitude was only found significantly different 

between the younger and older groups (see Table 13).  

 

 

Comparison between intervals (young & old). Significantly different intervals are presented in the 

following table/ data from both groups. 

 

Burst 
Characteristics Mov Post Rest Pre 

Rate NS NS NS NS 

Amplitude Old > Young Old > Young Old > Young Old > Young 

Duration NS NS NS NS 

Burst 
Characteristics Mov vs. Rest Mov vs. Post Move vs. Prep 

Rate Mov < Rest NS Mov < Pre 

Amplitude NS Mov < Post NS 

Duration Mov < Rest Mov > Post Mov > Pre 

Table 13. Summary of burst characteristics comparison between groups during the 
bimanual task. ‘NS’ refers to no significant difference between groups. Rate was similar in 
both the groups (top row), Amplitude was greater in older subjects (middle row) & duration 
was also similar in the two groups (bottom row). 

Table 14. Summary of between-interval burst characteristics comparison. Burst rate (upper row), 
burst amplitude (middle row) & burst duration (bottom row). ‘NS’ refers to no significant difference 
between groups. 
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C) Bimanual task (right M1) 

Comparison between groups (young vs. old). Burst amplitude only was significantly different 

between the younger and older groups (see Table 15).  

 

 

 

Comparison between interval (young & old). Significantly different intervals are presented in the 

Table 16. 

 

 

 

Burst 
Characteristics Mov Post Rest Pre 

Rate NS NS NS NS 

Amplitude Old > Young Old > Young Old > Young Old > Young 

Duration NS NS NS NS 

Burst 
Characteristics Mov vs. Rest Mov vs. Post Move vs. Pre 

Rate Mov < Rest Mov< Post Mov < Pre  

Amplitude Mov < Rest Mov < Post Mov < Pre 

Duration Mov > Rest Mov > Post Mov > Pre 

Table 15. Summary of burst characteristics comparison between groups during 
bimanual task. ‘NS’ refers to no significant difference between groups. Rate was similar 
in both the groups (top row), Amplitude was greater in older subjects (middle row) & 
duration was also similar in the two groups (bottom row). 

Table 16. Summary of between-interval burst characteristics comparison. Burst rate (upper row), 
burst amplitude (middle row) & burst duration (bottom row). ‘NS’ refers to no significant difference 
between groups. 
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4.4 Comparison between Threshold Method & HMM Results 

A) Unimanual task  

Burst amplitude was significantly higher in older adults across all intervals for both HMM and 

threshold bursts. Summary of the comparison results in Table 17.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Burst 
Characteristics M1 M2 M3 Post Rest Pre 

Rate NS NS NS NS NS NS 

Amplitude 

Old 
> 

Young 
(**) 

Old 
> 

Young 
(**) 

Old 
> 

Young 
(**) 

Old 
> 

Young 
(**) 

Old 
> 

Young 
(**) 

Old 
> 

Young 
(**) 

Duration NS NS NS NS NS NS 

Table 17. Summary of burst characteristics comparison between groups during 
the unimanual task. Significant between-group (young vs. old) comparisons 
obtained by both Threshold and HMM bursts are marked with ‘**’, Non-
significant between-group (young vs. old) comparisons are marked with ‘NS’. 
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B) Bimanual task (left M1) 

Older adults exhibited higher burst amplitude across all intervals for both HMM and threshold 

bursts. The summary of the results is presented in Table 18.   

 

C) Bimanual task (right M1) 

Burst amplitude was significantly higher in older adults across all intervals for both HMM and 

threshold bursts. Summary of the comparison results in Table 19.  

 

Burst 
Characteristics Mov Post Rest Pre 

Rate NS NS NS NS 

Amplitude Old > Young 
(**) 

Old > Young 
(**) 

Old > Young 
(**) 

Old > Young 
(**) 

Duration NS NS NS NS 

Burst 
Characteristics Mov Post Rest Pre 

Rate NS NS NS NS 

Amplitude Old > Young 
(**) 

Old > Young 
(**) 

Old > Young 
(**) 

Old > Young 
(**) 

Duration NS NS NS NS 

Table 18. Summary of burst characteristics comparison between groups during bimanual task.  
Significant between-group (young vs. old) comparisons obtained by both Threshold and HMM 
bursts are marked with ‘**’, Non-significant between-group (young vs. old) comparisons are 
marked with ‘NS’. 

Table 19. Summary of burst characteristics comparison between groups during bimanual task.  
Significant between-group (young vs. old) comparisons obtained by both Threshold and HMM 
bursts are marked with ‘**’, Non-significant between-group (young vs. old) comparisons are 
marked with ‘NS’. 
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CHAPTER 5 - DISCUSSION   
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We examined the influence of healthy aging on beta bursts during two motor paradigms, 

unimanual and bimanual handgrips. Consistent with prior literature, we found greater burst 

amplitude in older adults across all movement intervals for both tasks. Age-related trends in burst 

characteristics were found to be consistent across both threshold and HMM methods. Further, we 

found that greater burst amplitude was associated with better motor performance during sustained 

muscle contractions. Our findings also showed that better behavioural assessment scores (e.g., 

NHPT, PPT, BBT) were related to reduced burst characteristics (rate & amplitude) at Rest.  

 

5.1 Age-related changes in burst characteristics 

 

Resting state. In line with our hypothesis, older adults exhibited significantly higher burst 

amplitude compared to their younger counterparts during resting-state. This agrees well with the 

increased resting-state beta power observed in bilateral M1 in older adults obtained from a 

previous MEG study [27]. The precise meaning of this increased burst amplitude in terms of the 

physiological role remains unknown as no previous studies to our knowledge have looked at the 

relationship between resting-state burst characteristics and motor outcomes. However, recent 

computational modeling studies have showed that bursts are generated due to the synchronous 

activation of a large population of pyramidal neurons by strong excitatory synaptic inputs from 

subcortical structures like the thalamus [39]. Therefore, the increased amplitude of beta bursts 

could be indicative of the higher degree of local neural synchronization in older adults. Further, 

resting-state burst characteristics have been extensively studied in the PD population, where it was 

shown that longer duration and higher amplitude bursts were predominantly present in these 

individuals during the ‘OFF’ medication period compared to the ‘ON’ medication period [40]. 
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However, this elevated burst activity was mainly reported in the basal ganglia–thalamocortical 

(BGTC) motor network but not M1 [41]. Since we used non-invasive MEG recording for the study, 

it was beyond our scope to look at burst characteristics in subcortical structures of the BGTC motor 

network. Further studies on this topic are necessary to confirm if age-related changes in burst 

amplitude could be an early sign of PD.  

Motor paradigms. As expected, we found significantly higher burst amplitude in older adults 

during the Mov and Post intervals, for both the unimanual and bimanual tasks. This is in line with 

a previous finding indicating older subjects exhibit higher absolute beta power throughout a 

movement task [27]. However, a recent study that investigated age-related changes in burst 

characteristics across all age groups (18–88 years), found a ‘u-shape’ relationship (see Fig 10) for 

burst amplitude across all task intervals [47]. The authors showed that burst amplitude showed 

higher values in middle age compared to younger and older subjects. Since our study focused only 

on younger (19–28 years) and older (60-74 years) subjects, it was beyond our scope to investigate 

age-related trends in burst characterises across all age groups.  

Further, we found no age-related differences in burst rate during task intervals (Pre, Mov & Post). 

This contradicts a previous study where it was shown that burst rate increases with age in pre-

movement and decreases with age in post-movement intervals during a finger-tapping task [47]. 

This implies that age-related trends in burst rate could be specific to the type of motor task used.  

Taken together, these findings show that, of the three burst characteristics studied, only burst 

amplitude displays consistent age-related patterns across all intervals of both the unimanual and 

bimanual tasks. Furthermore, neurofeedback and brain-computer interface technologies have 

recently been used to modulate brain signals [45, 46]. In this context, our findings imply that 
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utilizing these systems to modulate burst amplitude could be the optimal way of improving motor 

function in older adults. 

 

5.2 Modulation of burst characteristics between intervals  

We compared burst characteristics between different task intervals of both motor paradigms, and 

the results were consistent across younger and older participants. This suggests that the 

deterioration in motor function reported in healthy ageing is not the result of an impairment in the 

capacity to modulate beta oscillations. 

Rest vs. movement intervals. In accordance with our hypothesis, we found a significant decrease 

in some burst characteristics during movement intervals compared to the rest. However, the 

observed trend was not consistent across all burst characteristics. For instance, our results 

regarding the unimanual task show that burst amplitude during movement intervals was 

significantly less compared to the rest, but no difference in rate and duration between the two 

intervals was found. However, for the bimanual task, we found a decrease only in burst rate and 

duration during movement intervals. Distinct between-interval modulations in each burst 

characteristic suggest that various underlying brain networks generate different burst 

characteristics.  

Post- vs. movement intervals. As expected, we found an increase in burst characteristics (rate & 

amplitude) during Post compared to Mov intervals. This is in line with previous studies reporting 

increased beta power during movement [27]. However, no prior evidence exists for higher burst 

characteristics to be the primary factor behind the increase in average beta power during PMBR. 

For instance, some studies have reported that biochemical factors, including GABAergic 
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modulations in the motor network, can significantly affect beta power [55]. Therefore, future 

research on this topic is necessary to better understand the relationship between enhanced burst 

characteristics and elevated beta power. 

Between movement intervals (M1 vs. M2 vs. M3). We found higher burst amplitude in sustained 

grip intervals (M1 & M3) compared to the unimanual task's dynamic intervals (M2). This is 

consistent with prior research that reported higher beta power associated with steady muscle 

contractions [27, 36]. Further, higher burst amplitude indicates that synchronous activation of a 

larger population of pyramidal neurons is required during steady contractions as opposed to 

dynamic contractions [36]. However, the functional significance of this higher burst amplitude is 

unclear, as few studies have examined the effect of elevated beta power on motor performance. 

Therefore, more research is needed to determine whether larger burst amplitude during sustained 

contractions affects motor function. 

 

5.3 Relationship between burst characteristics & motor performance 

5.3.1 Left M1 

Movement interval. As expected, we found greater burst characteristics in terms of rate and 

amplitude that were related to better task accuracy during the sustained muscle contraction 

intervals of the unimanual task (i.e. movement intervals M1 & M3). Interestingly, we did not find 

such association during dynamic contraction (i.e. movement interval – M2). This suggests that 

burst characteristics during dynamic contraction have a more complex relationship with motor 

performance .  
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For the bimanual task, we found a similar trend, i.e. higher burst rate related to better task accuracy, 

but this was only present in the older group. Overall, our findings are consistent with earlier studies 

in which increased beta power was associated with better motor performance during visually-cued 

finger tasks [27].  

Preparation interval. Contrary to our hypotheses, there was a relationship between reduced burst 

amplitude in the Pre interval and better task accuracy in older adults. A recent study by Simon et 

al., reported that pre-movement burst characteristics (rate & amplitude) were related to response 

time but not task accuracy during a visually cued movement selection task [44]. However, this 

study only involved healthy younger participants (28 ± 8 years). This result implies that the 

relationship between pre-movement burst characteristics and motor performance is only present in 

older individuals. Another possibility is that impact of pre-movement burst characteristics on 

motor performance is task specific.  

Collectively, our results suggest that lowering burst amplitude in the contralateral M1 during the 

movement preparation period could be preferred strategy to improve motor performance in the 

aging population. 

 

5.3.2 Right M1 

We further investigated the association between task accuracy and burst characteristics in the non-

dominant motor area (i.e. right M1 for right-handed subjects) and found no association with any 

of the motor assessments. This suggests that bursts in the right M1 have limited on the performance 

on the ipsilateral hand during movement. 
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5.4 Resting-state burst characteristics & behavioural assessments 

Older adults did not perform as well in the behavioral assessments (e.g. NHPT, BBT, PPT) 

compared to younger subjects, which is in line with a decline in motor function in older adults [1 

- 4]. Further, we found that a lower Rest burst rate in the older group was associated with better 

PPT scores. However, no previous studies looked at the association between Rest burst 

characteristics and motor function in the context of healthy aging. Our results suggest Rest burst 

characteristics could be a reliable indicator of motor performance in the aging population.  

It is worth mentioning that increased spontaneous or resting beta power is a signature of movement 

disorders (e.g. stroke & PD) [54]. This implies that a similar association between enhanced Rest 

burst characteristics and poorer motor performance is present in individuals with motor disorders. 

Future research is needed to better understand the relationship between burst characteristics and 

motor performance decline in neurological disorders. 

 

5.5 Comparison between the threshold & HMM method results 

As expected, we found a higher degree of overlap (around 83.5 %) between bursts identified by 

the two methods, which was further demonstrated by similar age-related trends observed in both 

methods, such as larger burst amplitude in older adults. Further, in line with our hypotheses, we 

found a less significant correlation between HMM-identified bursts and task accuracy (see Table 

20 – 24 in Appendix IV) during both the unimanual and bimanual tasks. Collectively, our results 

confirm that both the threshold and HMM methods were equivalently able to identify bursts from 

the beta band. However, the threshold method outperforms HMM in identifying bursts with more 

accurate physiological representations of brain activity related to the motor tasks. Although there 



79 
 

is prior evidence of overlap between HMM and threshold bursts [42, 43], no study, to our 

knowledge, has compared the two methods in terms of their association with behavioural outcomes 

or motor performance.  

 

The HMM method seemed to be fine-tuned more to improve its accuracy in extracting bursts. For 

instance, adding more hidden states or using different observation models (e.g. multinomial 

(discrete) emissions, Gaussian mixture emissions, or Time-delay embedded HMM [40, 41]) could 

improve this method. However, this would make HMM-based burst detection more complex and 

computationally demanding than the threshold method. Thus, our result suggests that in order to 

implement a real-time burst detector to modulate these bursts in aging or patient populations, the 

threshold method would be more advantageous than the HMM method.  

 

LIMITATIONS 

This is the first study that looked at the modulation of burst characteristics during hand movement 

in bilateral M1s in the context of healthy aging. There are several limitations to this study. 

Previous studies suggested that resting beta power and MRBD are affected by the circadian rhythm 

(Toth et al., 2007; Wilson et al., 2014). However, in the MEG dataset, participants were scanned 

at different times of the day, including morning sessions (8 younger/6 older) and afternoon sessions 

(4 younger/6 older). Therefore, we cannot exclude circadian effects on the results due to 

differences in the scanning time. 
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It has been shown that pre-movement burst characteristics are associated with reaction time [44]. 

However, this was not investigated in our study because participants received no imperative 

instructions with respect to reaction time during motor tasks. Furthermore, our results showed a 

significant but weak correlation between burst characteristics and motor performance for both 

groups. For future studies, a more difficult task should be used to better discriminate the groups in 

terms of motor performance, as well as to reach a better understanding of its association with 

bursts. 

Another noted limitation in the present study was a relatively smaller sample size (n = 24; 12 

subjects in each group), which prevented us from analysing high-order (i.e. quadratic) age-related 

trends in MEG data. Thus, future neuroimaging studies with a larger number of participants would 

be necessary to model higher-order age-related trends and advance efforts towards a better 

understanding of the healthy aging human brain. 

The inter-trial interval is a crucial factor to consider while developing protocols to study motor-

related beta oscillations. Previous studies have reported that PMBR levels may interfere with the 

inter-trial baseline, leading to a possibly biased result [28]. Therefore, in this work, we used the 

resting-state beta power levels as the baseline to consider this issue. 

 

 

 

 

 



81 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6 - CONCLUSION 
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Older adults exhibited significantly greater burst amplitude at rest as well as during movement and 

post-movement intervals. However, there were no age-related differences for other burst 

characteristics (rate & duration). We found an increase in burst amplitude during sustained muscle 

contractions compared to dynamic ones. Further, greater burst amplitude at Rest was associated 

with impaired motor performance in older adults, which further suggests that age-related trends in 

burst characteristics could be early indication of neurological disorders (e.g. PD). 

Collectively, our results provide new insights into the effect of aging on transient beta bursts and 

their relationship with motor performance. This study is the first step toward developing a closed-

loop neurofeedback system using a real-time burst detector to normalize brain oscillatory patterns 

for patients with motor deficits. 
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Appendix I: Comparison of bursts characteristics between interval during unimanual task 

Table 2 - Posthoc results for burst rate (Unimanual): 

 

 

 

 

 

 

 

 

 

 

 

 

Intervals estimate SE df t.ratio p.value 

M1 - M2 -0.0003766 0.013273 4565 -0.0283746 < 1 

M1 - M3 -0.0002601 0.0133614 4565 -0.0194674 < 1 

M1 - Post -0.0454586 0.0130386 4565 -3.4864527 <0.007 

M1 - Pre -0.1015347 0.0132141 4565 -7.683835 < 0.001 

M1 - Rest 0.0167358 0.0114282 4565 1.4644306 < 1 

M2 - M3 0.0001165 0.013653 4565 0.0085332 < 1 

M2 - Post -0.045082 0.0133372 4565 -3.3801551 < 0.01 

M2 - Pre -0.1011581 0.0135088 4565 -7.4883094 < 0.001 

M2 - Rest 0.0171124 0.0117677 4565 1.4541796 < 1 

M3 - Post -0.0451985 0.0134253 4565 -3.3666761 < 0.01 

M3 - Pre -0.1012746 0.0135957 4565 -7.4490194 < 0.001 

M3 - Rest 0.0169959 0.0118674 4565 1.432152 < 1 

Post - Pre -0.0560761 0.0132786 4565 -4.2230465 <0.001 

Post - Rest 0.0621943 0.0115027 4565 5.4069196 < 0.001 

Pre - Rest 0.1182705 0.0117012 4565 10.107537 < 0.001 

Table 2. Post hoc results for burst rate comparison between intervals 

 (Significant comparisons are marked with ‘bold’) 
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Table 3 - Posthoc results for burst amplitude (Unimanual): 

 

Intervals estimate SE df t.ratio p.value 

M1 - M2 1.44E-14 2.85E-15 4565 5.0435554 < 0.001 

M1 - M3 5.63E-15 2.87E-15 4565 1.9591217 < 0.7 

M1 - Post -1.13E-14 2.80E-15 4565 -4.0126964 < 0.001 

M1 - Pre 8.26E-16 2.84E-15 4565 0.2908187 < 1 

M1 - Rest -1.47E-14 2.46E-15 4565 -5.9683706 < 0.001 

M2 - M3 -8.77E-15 2.94E-15 4565 -2.985901 < 0.04 

M2 - Post -2.56E-14 2.87E-15 4565 -8.9421152 < 0.001 

M2 - Pre -1.36E-14 2.91E-15 4565 -4.6710443 < 0.001 

M2 - Rest -2.91E-14 2.53E-15 4565 -11.48486 < 0.001 

M3 - Post -1.69E-14 2.89E-15 4565 -5.8469484 < 0.001 

M3 - Pre -4.80E-15 2.92E-15 4565 -1.6427084 < 1 

M3 - Rest -2.03E-14 2.55E-15 4565 -7.9532544 < 0.001 

Post - Pre 1.21E-14 2.86E-15 4565 4.2295862 < 0.001 

Post - Rest -3.42E-15 2.47E-15 4565 -1.3811966 < 1 

Pre - Rest -1.55E-14 2.52E-15 4565 -6.1575223 < 0.001 

 

 

 

Table 3. Post hoc results for burst amplitude comparison between intervals 

(Significant comparisons are marked with ‘bold’) 
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Table 4 - Posthoc results for burst duration (Unimanual): 

 

  

Interval estimate SE df t.ratio p.valu
e 

M1 - M2 3.6429429 1.949242 4565 1.8689021 < 0.926 

M1 - M3 2.011966 1.962228 4565 1.0253476 < 1 

M1 - Post 0.9995693 1.914824 4565 0.5220164 < 1 

M1 - Pre 8.5137306 1.940587 4565 4.3871926 < 
0.001 

M1 - Rest -0.3206515 1.678316 4565 -0.1910555 < 1 

M2 - M3 -1.630977 2.005045 4565 -0.8134364 < 1 

M2 - Post -2.6433737 1.958677 4565 -1.3495709 < 1 

M2 - Pre 4.8707876 1.983872 4565 2.455193 < 0.02 

M2 - Res
t 

-3.9635944 1.728182 4565 -2.2935057 < 0.03 

M3 - Post -1.0123967 1.971601 4565 -0.5134897 < 1 

M3 - Pre 6.5017646 1.996632 4565 3.2563653 < 0.01 

M3 - Rest -2.3326174 1.742816 4565 -1.3384189 < 1 

Post - Pr
e 

7.5141613 1.950064 4565 3.8532893 < 0.01 

Table 4. Post hoc results for burst duration comparison between intervals 

(Significant comparisons are marked with ‘bold’) 
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Appendix II: Comparison of bursts characteristics during unimanual task (left M1) 

Table 5 - Posthoc results for burst rate (Bimanual – left M1): 

Interval estimate SE df t.ratio p.value 

Mov - Post -0.0810339 0.0147115 3786 -5.508221 < 0.001 

Mov - Pre -0.1693761 0.0157229 3786 -10.772605 < 0.001 

Mov - Rest -0.7096462 0.0133176 3786 -53.286313 < 0.001 

Post - Pre -0.0883422 0.0162292 3786 -5.443397 < 0.001 

Post - Rest -0.6286123 0.0139118 3786 -45.185503 < 0.001 

Pre - Rest -0.5402702 0.0149773 3786 -36.072572 < 0.001 

 

  Table 5. Post hoc results for burst rate comparison between intervals 

(Significant comparisons are marked with ‘bold’) 
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Table 6 - Posthoc results for burst amplitude (Bimanual – left M1): 

 

Table 7 - Posthoc results for burst duration (Bimanual – left M1): 

 

Interval estimate SE df t.ratio p.value 

Mov - Post -1.98E-14 2.33E-15 3786 -8.4920347 < 0.001 

Mov - Pre -4.51E-15 2.49E-15 3786 -1.8086632 < 0.001 

Mov - Rest -6.09E-16 2.11E-15 3786 -0.2885613 < 0.001 

Post - Pre 1.53E-14 2.57E-15 3786 5.9456175 < 0.001 

Post - Rest 1.92E-14 2.21E-15 3786 8.7039114 < 0.001 

Pre - Rest 3.90E-15 2.38E-15 3786 1.6421102 < 0.001 

Interval estimate SE df t.ratio p.value 

Mov - Post -0.381353 1.769123 3786 -0.2155605 < 0.99 

Mov - Pre 6.711186 1.890749 3786 3.5494857 < 0.001 

Mov - Rest -34.901836 1.601507 3786 -21.793126 < 0.001 

Post - Pre 7.092539 1.951643 3786 3.6341366 < 0.001 

Post - Rest -34.520483 1.672963 3786 -20.63434 < 0.001 

Pre - Rest -41.613021 1.801094 3786 -23.104302 < 0.001 

Table 6. Post hoc results for burst amplitude comparison between intervals 

(Significant comparisons are marked with ‘bold’) 
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Appendix III: Comparison of bursts characteristics during unimanual task (right M1) 

 

Table 8 - Posthoc results for burst rate (Bimanual – right M1): 

 

 

 

 

 

 

 

 

 

Interval estimate SE df t.ratio p.value 

Mov - Post -0.0810339 0.0147115 3786 -5.508221 < 0.001 

Mov - Pre -0.1693761 0.0157229 3786 -10.772605 < 0.001 

Mov - Rest -0.7096462 0.0133176 3786 -53.286313 < 0.001 

Post - Pre -0.0883422 0.0162292 3786 -5.443397 < 0.001 

Post - Rest -0.6286123 0.0139118 3786 -45.185503 < 0.001 

Pre - Rest -0.5402702 0.0149773 3786 -36.072572 < 0.001 

Table 7. Post hoc results for burst duration comparison between intervals 

(Significant comparisons are marked with ‘bold’) 

Table 8. Post hoc results for burst rate comparison between intervals 

(Significant comparisons are marked with ‘bold’) 
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Table 9 - Posthoc results for burst amplitude (Bimanual – right M1): 

 

Interval estimate SE df t.ratio p.value 

Mov - Post -1.98E-14 2.33E-15 3786 -8.4920347 < 0.001 

Mov - Pre -4.51E-15 2.49E-15 3786 -1.8086632 < 0.2 

Mov - Rest -6.09E-16 2.11E-15 3786 -0.2885613 < 0.9 

Post - Pre 1.53E-14 2.57E-15 3786 5.9456175 < 0.001 

Post - Rest 1.92E-14 2.21E-15 3786 8.7039114 < 0.001 

Pre - Rest 3.90E-15 2.38E-15 3786 1.6421102 < 0.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9. Post hoc results for burst amplitude comparison between intervals 

(Significant comparisons are marked with ‘bold’) 



100 
 

Table 10 - Posthoc results for burst duration (Bimanual – right M1): 

 

 

 

 

 

 

 

 

 

 

Interval estimate SE df t.ratio p.value 

Mov - Post -0.381353 1.769123 3786 -0.2155605 < 0.9 

Mov - Pre 6.711186 1.890749 3786 3.5494857 < 0.02 

Mov - Rest -34.901836 1.601507 3786 -21.793126 < 0.001 

Post - Pre 7.092539 1.951643 3786 3.6341366 < 0.01 

Post - Rest -34.520483 1.672963 3786 -20.63434 < 0.001 

Pre - Rest -41.613021 1.801094 3786 -23.104302 < 0.001 

Table 10. Post hoc results for burst duration comparison between intervals 

(Significant comparisons are marked with ‘bold’) 
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Appendix IV: Correlation between burst (HMM) characteristics & motor performance 

Unimanual task (Young & Old) -  

Interval Analysis p value 

Pre Multiple regression between task accuracy 
&  

burst characteristics (Rate + bamp + duration) at Pre 

0.54 

M1 Multiple regression between task accuracy  
&  

burst characteristics (Rate + bamp + duration) at M1 

0.75 

M3 Multiple regression between task accuracy  
&  

burst characteristics (Rate + bamp + duration) at M3 

0.06 

Post Multiple regression between task accuracy  
&  

burst characteristics (Rate + bamp + duration) at Post 

0.31 

 

 

 

 

 

 

 

 

Table 20. No significant correlation between HMM burst characteristics & task accuracy during 

unimanual paradigm 
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Bimanual task (Left M1 - Young) –  

Interval Analysis p value 

Pre Multiple regression between task accuracy  
&  

burst characteristics (Rate + bamp + duration) at Pre 

0.42 

Mov Multiple regression between task accuracy  
&  

burst characteristics (Rate + bamp + duration) at Mov 

0.29 

Post Multiple regression between task accuracy  
&  

burst characteristics (Rate + bamp + duration) at Post 

0.07 

 

 

Bimanual task (Left M1 - Old) –  

Interval Analysis p value 

Pre Multiple regression between task accuracy  
&  

burst characteristics (Rate + bamp + duration) at Pre 

0.06 

Mov Multiple regression between task accuracy  
&  

burst characteristics (Rate + bamp + duration) at Mov 

0.82 

Post Multiple regression between task accuracy  
&  

burst characteristics (Rate + bamp + duration) at Post 

0.35 

 

 

Table 21. No significant correlation between HMM burst characteristics & task accuracy during 

bimanual paradigm 

 

Table 22. No significant correlation between HMM burst characteristics & task accuracy during 

bimanual paradigm 
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Resting state (Left M1 - Young) - 

Task Analysis p value 

PPT Multiple regression between motor score 
&  

burst characteristics (Rate + bamp + duration) at Rest 

0.62 

NHPT Multiple regression between motor score 
&  

burst characteristics (Rate + bamp + duration) at Rest 

0.89 

BBT Multiple regression between motor score 
&  

burst characteristics (Rate + bamp + duration) at Rest 

0.53 

 

 

Resting state (Left M1 - Old) – 

Task Analysis p value 

PPT Multiple regression between motor score 
&  

burst characteristics (Rate + bamp + duration) at Rest 

0.97 

NHPT Multiple regression between motor score 
&  

burst characteristics (Rate + bamp + duration) at Rest 

0.71 

BBT Multiple regression between motor score 
&  

burst characteristics (Rate + bamp + duration) at Rest 

0.56 

 

 

Table 23. No significant correlation between Rest HMM burst characteristics & motor score 

 

Table 24. No significant correlation between Rest HMM burst characteristics & motor score 

 


