Bioprospecting of rhizobacteria from the root nodules of *Amphicarpaea bracteata* for enhanced plant growth and salinity stress tolerance of soybean

> Gayathri Ilangumaran Department of Plant Science McGill University, Montréal

> > December 2020

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of PhD in Plant Science

© Gayathri Ilangumaran 2020

# **TABLE OF CONTENTS**

| TABLE OF           | F CONTENTS                                                             |          |
|--------------------|------------------------------------------------------------------------|----------|
| List of Figu       | res                                                                    | 5        |
| List of Tab        | les                                                                    | 7        |
| ABSTRAC            | Τ                                                                      |          |
| RÉSUMÉ.            |                                                                        | 9        |
| Acknowled          | gements                                                                | 11       |
| Contributio        | on to Original Knowledge                                               | 13       |
| Contributio        | on of Authors                                                          | 14       |
| 1 Chante           | er 1 Introduction                                                      | 15       |
| 1 Chapte           | Plant growth promoting rhizobacteria                                   | 15       |
| 1.1                | Sovhean                                                                | 15       |
| 1.2                | Soj salinity                                                           |          |
| 1.4                | Objectives                                                             |          |
|                    |                                                                        | 10       |
| 2 Chapte           | A batwa at                                                             | 19       |
| 2.1                | ADStract                                                               | 19       |
| 2.2                | Introduction                                                           | 20       |
| 2.3                | Salinity                                                               | 21       |
| 2.4<br>2.5         | Salt tolerance in plants                                               | 23       |
| 2.5                | Salt tolerance mediated by Plant Growth Promoting Knizobacteria        | ····· 21 |
| 2.5.1              | Usmotic balance                                                        |          |
| 2.5.2              | Ion nomeostasis                                                        |          |
| 2.5.5              | Phytohormone signaling                                                 |          |
| 2.3.3.1            | Auxin                                                                  | 32       |
| 2.3.3.2            | Ethylene                                                               | 34       |
| 2.3.3.3            | Adscisic acia                                                          | 55       |
| 2.5.4              | Extracentular molecules                                                | 30       |
| 2.3.4.1            | Exopolysacchariaes                                                     | 50       |
| 2.3.4.2            | Lipo-chilooligosucchul lues                                            | 30       |
| 2.3.4.3            | Bucier locins                                                          |          |
| 2.3.4.4<br>2.5.4.5 | I olyamines                                                            | 30       |
| 2.5.4.5            | Conclusion                                                             | 30<br>30 |
| 2.0                | Conclusion                                                             |          |
| 2.7<br>Connecting  | Toyt                                                                   |          |
| Connecting         |                                                                        | עד       |
| 3 Chapte           | er 3 Rhizobacteria From Root Nodules of an Indigenous Legume Enhance S | Salinity |
| Stress Tole        | rance in Soybean                                                       | 50       |
| 3.1                | Abstract                                                               | 50       |
| 3.2                | Introduction                                                           |          |

| 3.3         | Materials and Methods                                                      | 54      |
|-------------|----------------------------------------------------------------------------|---------|
| 3.3.1       | Isolation of bacteria from root nodules                                    | 54      |
| 3.3.2       | Preparation of bacterial culture                                           | 54      |
| 3.3.3       | Identification of nodule bacteria                                          | 54      |
| 3.3.4       | Screening for salinity tolerance of the isolates                           | 55      |
| 3.3.5       | Screening of bacterial isolates for inducing salinity tolerance in soybean | 55      |
| 3.3.5.1     | Seed germination assay I                                                   | 55      |
| 3.3.5.2     | Greenhouse trial I                                                         | 56      |
| 3.3.5.3     | Seed germination assay II                                                  | 56      |
| 3.3.5.4     | Greenhouse trial II                                                        | 56      |
| 3.3.6       | Plant growth and development of soybean under salt stress                  | 56      |
| 3.3.7       | Statistical analysis                                                       | 57      |
| 3.4         | Results                                                                    | 58      |
| 3.4.1       | Nodule bacteria of Amphicarpaea bracteata                                  | 58      |
| 3.4.2       | Isolated bacteria induce salinity tolerance in soybean                     | 60      |
| 3.4.3       | Soybean growth under different salt concentrations                         | 61      |
| 3.4.4       | Co-inoculation of nodule isolates improves the growth and development of   | soybean |
|             | 69                                                                         |         |
| 3.4.4.1     | Nutrient composition analysis of plant tissues and seeds                   | 79      |
| 3.5         | Discussion                                                                 | 82      |
| 3.6         | Conclusions                                                                | 85      |
| 3.7         | References                                                                 |         |
| A note on s | tatistical interpretation                                                  | 90      |
| Connecting  | g Text                                                                     | 91      |
| 4 Chapt     | er 4 Sovbean Leaf Proteomic Profile Influenced by Rhizobacteria Under (    | Optimal |
| and Salt St | ress Conditions                                                            |         |
| 4.1         | Abstract                                                                   |         |
| 4.2         | Introduction                                                               |         |
| 4.3         | Materials and Methods                                                      |         |
| 4.3.1       | Bacteria culture propagation and inoculation                               |         |
| 4.3.2       | Soybean growth conditions and sample collection                            |         |
| 4.3.3       | Shotgun Proteomics                                                         |         |
| 4.3.3.1     | Protein extraction                                                         |         |
| 4.3.3.2     | Proteome profiling                                                         |         |
| 4.3.3.3     | Criteria for protein identification                                        | 97      |
| 4.3.4       | Statistical analysis                                                       |         |
| 4.4         | Results                                                                    |         |
| 4.4.1       | Plant growth and elemental analysis                                        |         |
| 4.4.2       | Proteomic analysis                                                         | 107     |
| 4.4.2.1     | Quantitative spectra of soybean leaf proteome                              | 107     |

| 4.4.2.2            | Functional classification of proteins based on GO categories                       | 119 |  |
|--------------------|------------------------------------------------------------------------------------|-----|--|
| 4.5                | Discussion                                                                         | 131 |  |
| 4.5.1              | Rhizobacteria upregulate proteins related to molecular functions, nutrient metabol | ism |  |
| and photosynthesis |                                                                                    |     |  |
| 4.5.2              | Proteins involved in phytohormone mediated responses were influenced               | by  |  |
| rhizobac           | teria                                                                              | 135 |  |
| 4.6                | Conclusion                                                                         | 136 |  |
| 4.7                | References                                                                         | 138 |  |
| Connecting         | Text                                                                               | 142 |  |
| 5 Chapte           | er 5 Complete Genome Sequences of <i>Rhizobium</i> sp. strain SL42                 | and |  |
| Hvdrogenor         | phaga sp. strain SL48. Microsymbionts of Amphicarpaea bracteata                    | 143 |  |
| <b>5.1</b>         | Abstract                                                                           | 143 |  |
| 5.2                | Introduction                                                                       | 143 |  |
| 5.3                | Materials and Methods                                                              | 146 |  |
| 5.3.1              | Growth conditions and Genomic DNA preparation                                      | 146 |  |
| 5.3.2              | Quality control and Sanger sequencing                                              | 146 |  |
| 5.3.3              | Library preparation for Illumina sequencing                                        | 146 |  |
| 5.3.3.1            | Illumina sequencing                                                                | 147 |  |
| 5.3.4              | Library preparation for Nanopore sequencing                                        | 147 |  |
| 5.3.4.1            | Nanopore sequencing                                                                | 148 |  |
| 5.3.5              | Genome assembly and annotation                                                     | 148 |  |
| 5.4                | Results                                                                            | 149 |  |
| 5.4.1              | Quality control and Sanger sequencing                                              | 149 |  |
| 5.4.2              | Library preparation and sequencing                                                 | 150 |  |
| 5.4.2.1            | Primary analysis                                                                   | 150 |  |
| 5.4.3              | Genome properties                                                                  | 150 |  |
| 5.4.3.1            | Gene prediction                                                                    | 151 |  |
| 5.4.4              | Insights from the genome sequence                                                  | 151 |  |
| 5.4.4.1            | Finding secondary metabolites using Anti-SMASH                                     | 157 |  |
| 5.5                | Discussion                                                                         | 159 |  |
| 5.6                | Data availability statement                                                        | 161 |  |
| 5.7                | References                                                                         | 161 |  |
| 6 Chapte           | er 6 General Discussion                                                            | 164 |  |
| 7 Chapte           | er 7 Final Conclusion and Future Directions                                        | 167 |  |
| Bibliograph        | וע                                                                                 | 169 |  |
| Appendix A         | ~<br>                                                                              | 171 |  |
| Appendix B         |                                                                                    |     |  |
| Appendix (         | 2                                                                                  | 253 |  |

# LIST OF FIGURES

| Figure 2.1. Illustration of salt tolerance mechanisms induced by plant growth promoting                             |
|---------------------------------------------------------------------------------------------------------------------|
| rhizobacteria (PGPR)                                                                                                |
| Figure 2.2. Plant growth promoting rhizobacteria interaction mediate cellular activity in plants to                 |
| ameliorate salinity stress                                                                                          |
| <b>Figure 3.1</b> . Phylogenetic relationships between 14 bacterial strains isolated from the nodules of <i>A</i> . |
| <i>bracteata</i> based on the 16S rRNA gene sequences                                                               |
| Figure 3.2. Seed germination rate of soybean at 24, 36, and 48 h under (A) optimal (water) and                      |
| (B) salt (100 mM NaCl) conditions                                                                                   |
| Figure 3.3. Growth variables of soybean, (A) Plant height, (B) Leaf area index, (C) Shoot dry                       |
| weight, (D) Root dry weight, (E) Root volume, and (F) Root length measured at 28 <sup>th</sup> DAP under            |
| optimal (water) and salt (100 mM NaCl) conditions                                                                   |
| Figure 3.4. Seed germination of soybean at 72 h under increasing salt concentrations (0, 100, 150,                  |
| and 200 mM NaCl). The seeds were treated with (A) 10 mM MgSO4 as control or bacterized with                         |
| strains (B) SL42 and (C) SL48                                                                                       |
| Figure 3.5. Growth variables of soybean, (A) Seedling emergence rate measured on 8 <sup>th</sup> DAP and            |
| growth variables of soybean (B) Leaf area, (C) Shoot dry weight, and (D) Root dry weight                            |
| measured at 28th DAP under increasing salt concentrations (0, 100, 125, 150, 175, and 200 mM                        |
| NaCl)                                                                                                               |
| Figure 3.6. Height of soybean plants measured at (A) mid-vegetative, (B) mid-flowering,                             |
| and (C) mid-pod-filling stages under optimal (water) and salt (150 mM NaCl) conditions 71                           |
| Figure 3.7. Leaf area of soybean plants measured at (A) mid-vegetative, (B) mid-flowering,                          |
| and (C) mid-pod-filling stages under optimal (water) and salt (150 mM NaCl) conditions 72                           |
| Figure 3.8. Shoot biomass of soybean plants measured at (A) mid-vegetative, (B) mid-                                |
| flowering, (C) mid-pod-filling, and (D) harvest stages under optimal (water) and salt (150 mM                       |
| NaCl) conditions                                                                                                    |
| Figure 3.9. Root dry weight of soybean plants measured at (A) mid-vegetative, (B) mid-                              |
| flowering, (C) mid-pod-filling, and (D) harvest stages under optimal (water) and salt (150 mM                       |
| NaCl) conditions                                                                                                    |
| Figure 3.10. Yield variables of soybean plants measured after harvest (A) seed weight, (B) seed                     |
| number, and (C) harvest index under optimal (water) and salt (150 mM NaCl) conditions 78                            |
| Figure 4.1. Soybean plants at 28th DAP grown in controlled environment under optimal and salt-                      |
| stressed conditions                                                                                                 |
| Figure 4.2. Height of soybean plants measured at 28 <sup>th</sup> DAP under optimal and salt stress                 |
| conditions                                                                                                          |
| Figure 4.3. Leaf area of soybean plants measured at 28 <sup>th</sup> DAP under optimal and salt stress              |
| conditions                                                                                                          |
| Figure 4.4. Shoot fresh weight of soybean plants measured at 28 <sup>th</sup> DAP under optimal and salt            |
| stress conditions                                                                                                   |
| Figure 4.5. Shoot dry weight of soybean plants measured at 28 <sup>th</sup> DAP under optimal and salt stress       |
| conditions                                                                                                          |
| Figure 4.6. Number of sequences involved in the enzyme classes of the soybean leaf proteome.                        |
|                                                                                                                     |
| Figure 4.7. Number of sequences involved in the major GO categories of the soybean leaf                             |
| proteome                                                                                                            |

| Figure 4.8. Number of sequences involved in the biological processes of the soybean leaf proteome.                               |
|----------------------------------------------------------------------------------------------------------------------------------|
| Figure 4.9. Number of sequences involved in the molecular functions of the soybean leaf proteome. 125                            |
| Figure 4.10. Number of sequences involved in the cellular components of the soybean leaf proteome                                |
| <b>Figure 4.11</b> . Schematic representation of the major metabolic pathways in a plant cell                                    |
| Figure 5.2. Gene Ontology distribution of annotated proteins in <i>Rhizobium</i> sp. SL42 genome. 152                            |
| Figure 5.3. Gene Ontology distribution of annotated proteins in <i>Hydrogenophaga</i> sp. SL48 genome                            |
| Figure 5.4. Phylogenetic trees of <i>Rhizobium</i> sp. SL42 and closely related strains using BLAST pairwise alignment           |
| Figure 5.5. Phylogenetic trees of <i>Hydrogenophaga</i> sp. SL48 and closely related strains using BLAST pairwise alignment. 156 |
| Figure 5.6. Coding regions of (A) homoserine lactone and (B) TfuA-related in <i>Rhizobium</i> sp. SL42 genome                    |
| Figure 5.7. Coding regions of (A) siderophore and (B) betalactone in <i>Hydrogenophaga</i> sp. SL48 genome                       |

# LIST OF TABLES

| Table 2.1. Summary of PGPR interaction effects in crop plants under salinity stress from re                           | cent         |
|-----------------------------------------------------------------------------------------------------------------------|--------------|
| studies using systems biology approaches.                                                                             | 40           |
| Table 3.1. PGPR characteristics of the isolated strains characterized using biochemical assays                        | s. 60        |
| Table 3.2. Total Nitrogen assimilation in shoot and root tissues of soybean through                                   | the          |
| developmental stages.                                                                                                 | 80           |
| Table 3.3. Distribution of K <sup>+</sup> /Na <sup>+</sup> in different plant tissues through the developmental stage | s of         |
| soybean.                                                                                                              | 81           |
| Table 4.1. Seedling emergence rate (%) of soybean at 7th DAP under optimal and salt st                                | ress         |
| conditions.                                                                                                           | 98           |
| Table 4.2. Elemental analysis of major nutrients of soybean shoot tissue at 28th DAP under opt                        | imal         |
| and salt stress conditions                                                                                            | 106          |
| Table 4.3. Fold change of selected proteins that were commonly upregulated by the treatm                              | ents         |
| SL42, SL48 and SL42+SL48 relative to control under optimal condition.                                                 | 108          |
| Table 4.4. Fold change of selected proteins that were commonly upregulated by the treatm                              | ents         |
| SL42, SL48 and SL42+SL48 relative to control under salt stress.                                                       | 109          |
| Table 4.5. Fold change of selected proteins that were commonly upregulated by the treatm                              | ents         |
| Bj+SL42, Bj+SL48 and Bj+SL42+SL48 relative to Bj (control) under optimal condition                                    | 110          |
| Table 4.6. Fold change of selected proteins that were commonly upregulated by the treatm                              | ents         |
| Bj+SL42, Bj+SL48 and Bj+SL42+SL48 relative to Bj (control) under salt stress                                          | 111          |
| Table 4.7. Proteins that were specifically upregulated by treatments SL42, SL48 and SL42+S                            | L48          |
| relative to control under optimal condition                                                                           | 113          |
| Table 4.8. Proteins that were specifically upregulated by treatments SL42, SL48 and SL42+S                            | L48          |
| relative to control under salt stress                                                                                 | 114          |
| Table 4.9. Proteins that were specifically upregulated by treatments Bj+SL42, Bj+SL48                                 | and          |
| Bj+SL42+SL48 relative to Bj (control) under optimal condition                                                         | 115          |
| Table 4.10. Proteins that were specifically upregulated by treatments Bj+SL42, Bj+SL48                                | and          |
| Bj+SL42+SL48 relative to Bj (control) under salt stress.                                                              | 116          |
| Table 4.11. Quantitative spectra of specific proteins under optimal and salt-stressed conditi                         | ons.         |
|                                                                                                                       | 117          |
| <b>Table 4.12</b> . Upregulated proteins involved in phytohormone-mediated responses.                                 | 137          |
| Table 5.1. Taxonomic classification and general features of <i>Rhizobium</i> sp. SL42                                 | and          |
| <i>Hydrogenophaga</i> sp. SL48.                                                                                       | 145          |
| Table 5.2. DNA concentration and purity of samples estimated using Nanodrop spectrophotom                             | leter        |
| and Qubit fluorometer.                                                                                                | 149          |
| Table 5.3. FastQC output on raw sequence data.                                                                        | 150          |
| Table 5.4. Sequencing coverage.                                                                                       | 151          |
| Table 5.5. Assembly statistics.                                                                                       | 151          |
| Table 5.6. Annotation summary of predicted proteins.                                                                  | 151          |
| <b>Table 5.7</b> . Genes related to key functions in the genome of <i>Rhizobium</i> sp. SL42.                         | 153          |
| Table 5.8. Genes related to major functions in the genome of Hydrogenophaga sp. SL48.                                 | 154          |
| Table 5.9. AntiSMASH results of secondary metabolite coding regions of <i>Rhizobium</i> sp. SI                        | _42.         |
|                                                                                                                       | 157          |
| Table 5.10. AntiSMASH results of secondary metabolite coding regions of Hydrogenophage                                | <i>i</i> sp. |
| SL48.                                                                                                                 | 157          |
| Table 5.11. Whole genome sequencing project information.                                                              | 161          |

### ABSTRACT

Soybean [*Glycine max* (L.) Merrill] is an important grain legume/oilseed crop grown worldwide. Salinity is a major abiotic stressor that affects plant growth and limits crop productivity. Soybean is a glycophyte and its yield potential can be reduced up to 50% by salinity. Plant growth promoting rhizobacteria (PGPR) are known to enhance plant growth and elicit tolerance to (a)biotic stresses. The goal of this project was to characterize such beneficial bacteria from root nodules of *Amphicarpaea bracteata*, a native relative of cultivated soybean.

In the first study, 15 isolated strains were screened for potential utilization as PGPR of soybean under optimal and salt-stressed conditions. Two of the most promising strains, *Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48 were co-inoculated with *Bradyrhizobium japonicum* 532C (*Bj*). The treatment of *Bj*+SL42 resulted in higher shoot biomass than the control, 18% at the vegetative stage, 16% at flowering, 7.5% at pod-filling, and 4.6% at harvest and seed weight was increased by 4.3% under salt stress (EC<sub>e</sub> = 7.4 ds/m). Grain yield was raised under optimal conditions by 7.4 and 8.1% with treatments *Bj*+SL48 and *Bj*+SL42+SL48, respectively. Nitrogen assimilation and shoot K<sup>+</sup>/Na<sup>+</sup> ratio were also higher in the co-inoculation treatments.

In the second study, proteomic profiling of soybean leaf tissue provided insights into growth and stress response mechanisms elicited by *Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48. Several key proteins involved in photosynthesis, respiration and photorespiration were upregulated. These include photosystem I psaK, Rubisco subunits, glyceraldehyde-3-phosphate dehydrogenase, succinate dehydrogenase and glycine decarboxylase. Similarly, stress response proteins such as catalase and glutathione S-transferase (antioxidants), proline-rich precursor protein (osmolyte), and NADP-dependent malic enzyme (linked to ABA signaling) were increased under salt stress.

In the final study, whole genome *de novo* sequencing of the rhizobacterial strains was performed using Illumina and Nanopore sequencers and assembled in MaSuRCA. The genome of *Rhizobium* sp. SL42 consists of one 4.06 Mbp circular chromosome and two plasmids with a GC content of 60%. The genome of *Hydrogenophaga* sp. SL48 consists of a 5.43 Mbp circular chromosome with a GC content of 65%. Genes encoding for various metabolic functions, secretion systems, quorum sensing, and biosynthetic gene clusters were present in their genomes.

Overall, this project determined that (1) *Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48 exerted greater beneficial effects on soybean, (2) they regulated the proteome expression of

soybean leaves through multiple signaling pathways, and (3) their genomic features contributed to their function in plant growth promoting activities. The benefits of this project include (1) application of these strains to alleviate stress and advance crop productivity of soybean, (2) molecular basis of the *modus operandi* of plant-microbe interactions at the proteomic level, and (3) understand the functional properties of bacterial genomes that aid plant growth stimulation. This project substantiated that bacteria from an indigenous legume could be applied as bioinoculants to support sustainability and expand the ecological adaptability of soybean.

# RÉSUMÉ

Le soya [*Glycine max* (L.) Merrill] est une espèce de plantes légumineuses à grains et oléagineuses cultivée à travers le monde. La salinité est un facteur de stress abiotique qui affecte la croissance des plantes et limite la productivité des cultures. Le soya est un glycophyte et la salinité peut réduire ses rendements jusqu'à 50%. Les rhizobactéries favorisant la croissance des plantes (RFCP) sont reconnues pour leur capacité à améliorer la croissance des plantes ainsi que leur tolérance aux stress (a)biotiques. Le but de ce projet était de caractériser ces bactéries bénéfiques des nodules racinaires de *Amphicarpaea bracteata*, une plante indigène parente au soya cultivé.

Dans la première étude, 15 souches de bactéries isolées ont été examinées pour leur potentiel d'utilisation comme PGPR pour le soya cultivé sous des conditions optimales et de stress salin. Deux des souches les plus prometteuses, *Rhizobium* sp. SL42 et *Hydrogenophaga* sp. SL48, ont été co-inoculées avec *Bradyrhizobium japonicum* 532C (*Bj*). Le traitement *Bj*+SL42 a entrainé l'accumulation de biomasse de tiges la plus élevée comparativement au témoin, par 18% au stade végétatif, 16% à la floraison, 7,5% au remplissage des gousses et 4,6% à la récolte, et a augmenté le poids des grains par 4,3% sous le stress salin (EC<sub>e</sub> = 7.4 ds/m). Les rendements en grains étaient supérieurs par 7,4 et 8,1% avec les traitements *Bj*+SL48 et *Bj*+SL42+SL48, respectivement, sous des conditions optimales. L'assimilation d'azote ainsi que le ratio K<sup>+</sup>/Na<sup>+</sup> des tiges étaient également supérieurs avec les traitements co-inoculés.

Dans la deuxième étude, le profilage protéomique du tissu foliaire du soya a fourni des aperçus sur les mécanismes de croissance et de réponse au stress suscités par *Rhizobium* sp. SL42 et *Hydrogenophaga* sp. SL48. Plusieurs protéines clés, impliquées dans la photosynthèse, respiration cellulaire et photorespiration, ont été surexprimées incluant photosystème I psaK, les

sous-unités de Rubisco, glycéraldéhyde-3-phosphate déshydrogénase, succinate déshydrogénase et glycine décarboxylase. De même, les protéines de réponse aux stress, telles que les catalases et glutathion S-transférases (antioxydants), précurseurs de protéines riches en proline (osmolyte) et enzymes maliques dépendantes de NADP (liées à la régulation de ABA), étaient plus élevées sous des conditions de stress salin.

Dans la dernière étude, le séquençage *de novo* de l'ensemble du génome des souches de rhizobactéries a été réalisé en utilisant les séquenceurs Illumina et Nanopore et assemblé dans MaSuRCA. Le génome de *Rhizobium* sp. SL42 est composé d'un chromosome circulaire de 4,06 Mbp et de deux plasmides circulaires avec une teneur en guanine-cytosine (GC) de 60%. Le génome de *Hydrogenophaga* sp. SL48 est composé d'un chromosome circulaire de 5,43 Mbp et de deux plasmides circulaires avec une teneur GC de 65%. Des gènes encodant pour différentes fonctions métaboliques, systèmes de sécrétion, détection du quorum et groupes de gènes biosynthétiques étaient présents dans leurs génomes.

En général, ce projet a déterminé que (1) *Rhizobium* sp. SL42 et *Hydrogenophaga* sp. SL48 ont exercé des effets bénéfiques supérieurs sur le soya, (2) ils ont régulé l'expression protéomique des feuilles de soya à travers de multiples voies de signalisation et (3) leurs caractéristiques génomiques ont contribué à leur rôle pour la favorisation de la croissance des plantes. Les bénéfices de ce projet incluent (1) l'application de ces souches pour alléger le stress et pour faire progresser la productivité du soya, (2) base moléculaire du *modus operandi* des interactions plantes-microbes au niveau protéomique et (3) comprendre les propriétés fonctionnelles des génomes de bactéries qui aider à stimuler la croissance des plantes. Ce projet prouve que les bactéries provenant de légumineuses indigènes peuvent être appliquées comme bio inoculant pour supporter la durabilité du soya et accroître son adaptabilité écologique.

#### ACKNOWLEDGEMENTS

• I express my sincere gratitude to my supervisor Prof. Donald Smith for providing me with an opportunity to conduct graduate research in his lab and encouraging feedback on my thesis.

• I'm grateful to my co-supervisor Prof. Jean-Benoit Charron and my supervisory committee members, Prof. Valérie Gravel and Prof. Sébastien Faucher for their advice, guidance and support throughout my graduate studies.

• I would like to thank the financial support given by the Biomass Canada Cluster. The Biomass Canada Cluster is managed by BioFuelNet Canada and was funded through the Canadian Agricultural Partnership's, Agriscience Program, Agriculture and Agri-Food, Canada.

• My heartfelt thanks to Dr. Sowmylakshmi Subramanian for her valuable inputs on various parts of my project and for teaching me proteomic techniques and data analysis. She has been an incredible colleague and friend, whom I always look up to.

• I sincerely appreciate Dr. Timothy Schwinghamer for helping with statistical analysis and teaching me how to interpret it.

• I'm thankful for the support and motivation given by Dr. Yoko Takishita, Dr. Selvakumari Arunachalam and Dr. Alfred Souleimanov, who always offered their help when in need.

• I would like to thank other members of Smith Lab, particularly Dr. Rachel Backer, Mr. Ateeq Shah and Mr. William Overbeek for their help and suggestions. The help given by Mrs. Saranya Paneerselvam and summer students was indispensable, they were a great assistance in setting up experiments and processing samples. My special thanks to Dr. Dana Praslickova for taking care and cheering me up.

• I sincerely appreciate the help and assistance provided by Mr. Guy Rimmer, Mr. Ian Ritchie, Mr. Drew Anthony, Ms. Melissa LaRiviere of the Department of Plant Science in setting up experiments in the greenhouse and growth chambers. I also thank Ms. Hélène Lalande of the soil chemistry lab, Department of Natural Resources for her assistance with elemental analysis.

• I greatly appreciate the help of Dr. Denis Faubert, Ms. Josée Champgne, Ms. Marguerite Boulos at the Proteomics Discovery Platform, Institut de Recherches Cliniques de Montréal (IRCM) for the proteomics analysis. I extend my thanks to Mr. Shasank, Dr. A. Gandhimathi and others at Genotypic Technology Pvt. Ltd. India for their help with whole genome sequencing and analysis. I would also like to thank Mr. Pierre Lepage, Mr. Sébastien Brunet and Ms. Sharen Roland at Genome Québec, Montréal for helping with Sanger sequencing.

• I'm thankful to Prof. Sébastien Faucher, Prof. Jacqueline Bede, Prof. Gary Dunphy, Prof. Olivia Wilkins, Prof. Mehran Dastmalchi for giving me an opportunity to work as a teaching assistant for their courses, which inspired and helped me by a lot of means. I would also like to extend my thanks to fellow graduate students and a special mention to Dr. David Meek, whom I worked with as a teaching assistant, for their help, support, and friendship.

• I appreciate the support given by the students and staff in the Department of Plant Science and across-the-board at MacDonald Campus and McGill University, who has touched my life in some way. I greatly cherish the friendships I made during this time

• Last but not least, words can't express how much I owe to my family and friends for their extraordinary affection at all times. Especially to my siblings for their constant adoration, to my mother for keeping me in her thoughts and prayers and to my husband for his unflinching care and unwavering love.

#### **CONTRIBUTION TO ORIGINAL KNOWLEDGE**

#### Chapter 3

This is the first study to report beneficial rhizobacteria isolated from *Amphicarpaea bracteata*, a native legume of Canada (and North America) and their interaction with soybean. Rhizobacteria were isolated from the root nodules and inoculated onto soybean under optimal and salt stress conditions, and promising isolates were identified in the screening experiments. Two isolates, *Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48 improved plant growth and salinity tolerance of soybean, along with *Bradyrhizobium japonicum*. This is one of the few studies that monitored the impact of salinity stress and the influence of rhizobacteria on soybean until maturity. The study suggested that these rhizobacterial strains can be effectively utilized as bioinoculants to enhance stress tolerance and promote the growth and yield of soybean.

#### Chapter 4

Analysis of the soybean leaf proteome revealed a vast network of signaling pathways related to plant growth and stress tolerance mechanisms modulated by the inoculation of SL42 and SL48. The study provided a comprehensive understanding of plant-microbe interactions between soybean, *B. japonicum*, rhizobacterial strains SL42 and SL48 under optimal and salt-stressed growth conditions. Indeed, this is the first time that systemic responses at the proteomic level elicited in the leaves of soybean plants at the vegetative stage due to salinity stress and the roles of rhizobacteria have been reported. This proteomic approach presented insights into the molecular basis of soybean growth and salinity tolerance mechanisms induced by *Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48 that could ultimately lead to crop improvement.

#### Chapter 5

The genome of strains *Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48 were sequenced using high-throughput next-generation sequencing technology. Therefore, this contributed to the permanent high-quality whole genome sequence of these two strains, which were submitted to the NCBI database. It also enabled analysis of their systemic function at the genomic level and specific features related to cellular metabolism and production of secondary metabolites that facilitate their ability as plant growth promoting rhizobacteria.

# **CONTRIBUTION OF AUTHORS**

**Chapter 1** – The chapter was written entirely by Gayathri Ilangumaran and reviewed by Dr. Smith. **Chapter 2** – Gayathri Ilangumaran gathered literature and prepared the manuscript. Dr. Smith provided feedback and oversaw progression of the manuscript. The chapter was written entirely by Gayathri Ilangumaran.

**Chapter 3** – Gayathri Ilangumaran conducted the research, collected data and interpreted results. Dr. Schwinghamer helped with the statistical analysis of the data. Dr. Smith helped Gayathri Ilangumaran in editing the manuscript and providing feedback. The chapter was written entirely by Gayathri Ilangumaran.

**Chapter 4** – Gayathri Ilangumaran conducted the research, collected data and interpreted results. Dr. Subramanian helped to analyze the raw LC-MS/MS files and helped with Scaffold and Omicsbox platforms to analyze proteomics data. Dr. Smith reviewed the manuscript and provided feedback. The chapter was written entirely by Gayathri Ilangumaran.

**Chapter 5** – Gayathri Ilangumaran conducted genomic data analysis and submitted the sequences to NCBI database. Dr. Subramanian helped with Anti-SMASH analysis. Dr. Smith reviewed the chapter and provided feedback. The chapter was written entirely by Gayathri Ilangumaran.

#### **1** Chapter 1 Introduction

Plants are the major primary producers of the biosphere and mankind has developed the practice of cultivating plants for food, clothing, shelter, livestock and utilities from ancient days and plants have also been continuously harnessed for products to be utilized as medicines and fuels. Nevertheless, the growth and development of a plant are influenced by its ability to withstand a myriad of environmental factors particularly facets of stress. The human population on earth is continuing to expand while the available arable land has been diminishing. Bringing marginal lands under cultivation is greatly needed to meet the demands of global food security.

### 1.1 Plant growth promoting rhizobacteria

The importance of the rhizosphere microbiome is now being increasingly recognized for its role in plant growth, nutrient uptake and alleviation of environmental stress (Smith et al., 2017). Thus, beneficial microorganisms can be harnessed for their potential in crop management practices, to attain a greater yield, which is usually limited by environmental factors and innate genetic potential. The environmentally safe approach could minimize the use of agricultural chemicals and encourage sustainable management practices.

Interactions between plants and the beneficial soil microbial community are important in crop production, nutrient cycling and environmental resilience (Loreau et al., 2001). Plant growth-promoting rhizobacteria (PGPR) were first defined by Kloepper and Schroth (1979) to describe non-pathogenic beneficial soil bacteria that colonize the roots of plants and that enhance plant growth, assist in nutrient uptake and/or prevent pathogen infection. The rhizosphere of a plant supports large microbial populations capable of engaging in symbiotic relationships. During colonization, PGPR assimilate substances released in root exudates and inturn produce bioactive compounds that promote plant growth or ameliorate stress (Xie et al., 2014). Signal compounds produced by the PGPR stimulate plant growth (Prithiviraj et al., 2003; Lee et al., 2009) and alleviate abiotic stress (Subramanian et al., 2016).

Understanding the characteristics and functions of plant-microbe interactions is imperative for developing technologies that utilize bioinoculants to increase crop productivity, against a challenging backdrop of climate change, increasing demand for food and use for biofuels (Ragauskas et al., 2006). Application of beneficial microbes, such as rhizobia, mycorrhiza and PGPR as biofertilizers and biocontrol agents in crop fields has been in practice and resulted in higher yields, but often with inconsistent results suggesting that there is much left to understand regarding the influence of environmental conditions on the function and efficacy of microbial inoculants.

### 1.2 Soybean

The nitrogen-fixing ability of legumes has contributed to their distribution over a range of edaphic conditions and to their diversity with 19,400 species (third largest family in the Angiosperms). A mutualistic relationship exists between the plants of the family Leguminosae and nitrogen-fixing rhizobia that dwell in the root nodules. Cultivated members of this family are incorporated in crop rotations to enrich the soils of fields and pastures with nitrogen. The Leguminosae is the second most important family in agriculture (next to the Graminae) and 41 species have been domesticated, the greatest number for any plant family.

Soybean [*Glycine max* (L.) Merrill] is an economically important grain legume cultivated worldwide; it originated in northeastern China and is mainly cultivated as a rain-fed crop under warm conditions of tropical, subtropical and temperate regions of the world. Soybean grows in a wide range of temperatures and soil types and is moderately tolerant to drought and salinity stresses. It is a glycophyte and salt-affected soils can decrease its yield potential up to 50%. Cultivation of soybean has been documented in North America since the mid-1800s, but it wasn't until after world war II that it gained significance in the Americas (Cloutier, 2017). It is the fourth largest field crop in Canada and production has expanded from coast to coast due to the introduction of early-maturing varieties for higher latitudes with short growing seasons (Dorff, 2007). Soybean exports have steadily increased in the past two decades with commodity soybean (grown for processing) making up the bulk, compared to its food-grade counterpart.

*Amphicarpaea bracteata* (L.) is native to Canada and the USA, usually found in the woody and shaded areas of wetlands and non-wetlands. It is an herbaceous perennial vine and reproduces annually (PLANTS, 2017). Reproduction occurs through obligate self-fertilization of cleistogamous flowers; populations of *A. bracteata* are highly inbred in their local habitat. The nitrogen-fixing symbiont(s) of this plant are known to be species and subspecies belonging to the genus *Bradyrhizobium*. The edible seeds and roots of the plant are used for food and medicinal purposes by the indigenous communities (Moerman, 1998). *Amphicarpaea bracteata* is the closest native relative to soybean in North America and both genera are classified in the subtribe Glycininae of the tribe Phaseoleae and the relationship between these two species has been confirmed by molecular studies (Zhu et al., 1995).

At present, the soybean fields in North America have natural populations of *Bradyrhizobium* that can nodulate and fix atmospheric nitrogen in conjunction with soybean, thanks to earlier inoculation programs. The symbiotic bacteria are not transferred through seed from parent to offspring, rather the seedlings have to acquire them from the soil at germination, which means the soil should harbour rhizobial communities. Transfer of genes (horizontal or vertical) between populations of soil bacteria facilitates continuous evolution and localized adaptation, at least to an extent. Micro-evolution has been observed in *Bradyrhizobium* populations from soybean fields in eastern Canada and the strains were associated with *Bradyrhizobium* associated with native legumes (Tang et al., 2012). However, the nodules also contain other plant growth promoting rhizobacteria (PGPR) that presumably exert beneficial effects on their host (Bai et al., 2002). These PGPR of *A. bracteata* might have the potential to improve soybean growth and stress tolerance under short-season and sub-optimal growing conditions prevailing in Canada.

#### 1.3 Soil salinity

Salinity is one of the most prevalent abiotic stresses in agriculture, limiting plant growth and yield. The effects are more prominent in arid and coastal areas where water deficit and influx of seawater make land uncultivable and only tolerant plants (halophytes and xerophytes) can grow (Zhu, 2007). However, other agricultural lands are prone to salinity due to their topography, physiochemical properties of soil, rainfall, irrigation water and groundwater table (Wiebe et al., 2007). Large swaths of land affected by soil salinity have been turned into marginal or non-arable lands and their productivity has decreased sharply. Excessive irrigation and inadequate drainage created salinity have been recognized as a serious problem around the world since salt concentration builds up in the topsoil. The increase in salt concentration at the soil surface is caused by leaching, migration and capillary rise of salts. Because salinity and water are inextricably linked, climate change drives toward extreme consequences in vulnerable regions (Pitman and Lauchli, 2002). Soil salinity has constricted yield on a significant proportion of cultivable lands under irrigation and dryland agriculture. The Canadian prairies are prone to soil salinization, which fluctuates temporally depending on the annual precipitation (Florinsky et al., 2009). It is also a persistent issue in many of the south-, mid-, and north-western states of the USA (NRCS, 2002). Salinization management has focused on improving irrigation water quality and soil drainage or increasing salt tolerance in plants. Growing salt-tolerant crops has been a prospective strategy for coping with salinity restricted crop production over the history of human civilization. With advances in plant breeding, developing salt-tolerant genotypes has not been very successful due to the complexity of this trait; salt tolerance mechanisms of a plant are complex both at the genetic and physiological levels (Flowers, 2004). Salt stress is largely caused by the uptake of NaCl, the dominant salt in nature; this disrupts both osmotic and ionic balance in plants. The symptoms of osmotic stress overlap symptoms caused by drought and cold stresses. Osmotic stress is caused by reduced water uptake whereas ionic stress is associated with toxicity of Na<sup>+</sup> and Cl<sup>-</sup> accumulation in tissues and deficiency of other essential nutrient ions such as K<sup>+</sup> and NO<sub>3</sub><sup>-</sup> (Hasegawa et al., 2000; Munns and Tester, 2008). Reactive oxygen species (ROS) are generated in response to stress and disrupt normal physiological functions by damaging cellular components and drives cell death (Van Breusegem and Dat, 2006). Salinity causes growth and yield reduction by decreasing the growth of assimilate-producing source tissues (flowers, fruits and root biomass).

### 1.4 Objectives

A comprehensive understanding of the salt stress tolerance in soybean mediated by PGPR is not available and this study attempts to address that gap. The main objectives of the study were:

- 1. To isolate and screen beneficial rhizobacteria from the nodules of *A. bracteata*, determining their ability to enhance soybean growth and salinity tolerance under greenhouse conditions and to characterize the capability of selected PGPR (*Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48) in improving growth and yield of soybean, co-inoculated with *Bradyrhizobium japonicum* 532C.
- To elucidate the plant growth and salt stress responses elicited by the inoculation of two strains, *Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48through proteomic analysis of soybean leaf tissue.
- To characterize the genome and identify potential genetic elements that enable the strains *Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48 to function effectively as PGPR through whole genome sequencing.

# 2 Chapter 2 Literature Review

# Plant Growth Promoting Rhizobacteria in Amelioration of Salinity Stress: A Systems Biology Perspective

Authors: Gayathri Ilangumaran<sup>1</sup> and Donald Lawrence Smith<sup>1</sup>

#### Affiliations:

<sup>1</sup> Department of Plant Science, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada.

This manuscript was originally published in Frontiers in Plant Science journal and shared in the thesis via the Creative Commons Attribution 4.0 International Public License.

Ilangumaran, G., and Smith, D.L. (2017). Plant Growth Promoting Rhizobacteria in Amelioration of Salinity Stress: A Systems Biology Perspective. *Front. Plant Sci.* 8, 1768. doi: 10.3389/fpls.2017.01768

# 2.1 Abstract

Salinity affects plant growth and is a major abiotic stress that limits crop productivity. It is well-understood that environmental adaptations and genetic traits regulate salinity tolerance in plants, but imparting the knowledge gained towards crop improvement remain arduous. Harnessing the potential of beneficial microorganisms present in the rhizosphere is an alternative strategy for improving plant stress tolerance. This review intends to elucidate the understanding of salinity tolerance mechanisms attributed by plant growth promoting rhizobacteria (PGPR). Recent advances in molecular studies have yielded insights into the signaling networks of plant-microbe interactions that contribute to salt tolerance. The beneficial effects of PGPR involve boosting key physiological processes, including water and nutrient uptake, photosynthesis, and source-sink relationships that promote growth and development. The regulation of osmotic balance and ion homeostasis by PGPR are conducted through modulation of phytohormone status, gene expression, protein function, and metabolite synthesis in plants. As a result, improved antioxidant activity, osmolyte accumulation, proton transport machinery, salt compartmentalization, and nutrient status reduce osmotic stress and ion toxicity. Furthermore, in addition to indole-3-acetic acid and 1-aminocyclopropane-1-carboxylic acid deaminase biosynthesis, other extracellular secretions of the rhizobacteria function as signaling molecules and elicit stress responsive

pathways. Application of PGPR inoculants is a promising measure to combat salinity in agricultural fields, thereby increasing global food production.

#### 2.2 Introduction

Climate change has exacerbated the severity of environmental stressors and affects crop production worldwide as part of the present Anthropocene Era. At the same time, there is a need to maintain food security for a growing global population through increases in crop production, while also forging agriculture more sustainable. Going forward, the quality of land and water will be critically pivotal for agriculture. Excess salt concentration in soil and water resources declines agricultural productivity, turns fertile fields to marginal lands, and leads to their abandonment. The Food and Agriculture Organization estimates that salinity has affected more than 6% of land area. Much of this land is not under cultivation but, a substantial proportion of the cultivated land, which constitutes 45 million ha of irrigated land (20% of total) and 32 million ha under dryland agriculture (about 2% of total) has been affected (Munns and Tester, 2008). The proportion of salinized land area might increase owing to climate change conditions conducive for salt accumulation (Othman et al., 2006).

Soluble salts deteriorate the fertility of soil by causing adverse effects on plant growth and development (Munns and Tester, 2008). Osmotic stress is the immediate impact of salinity (occurs within minutes) due to hypertonic conditions and ion toxicity (occurs over several hours to days and weeks) is the result of toxic ions (Na<sup>+</sup> and Cl<sup>-</sup>) accumulating in the cells. Perturbed water balance and ion homeostasis affect hormonal status, transpiration, photosynthesis, translocation of nutrients, and other metabolic processes (Munns, 2002a). Beneficial soil microbiota enhance soil-water-plant relations through intricate mechanisms and subtle signaling cues that are not yet well-understood. A widely-proven notion is that the ability of soil microbes to manipulate phytohormonal signaling and trigger several other mechanisms to work in an integrated fashion contribute to enhanced stress tolerance in plants (Dodd and Perez-Alfocea, 2012). Inoculation of crop plants with beneficial microbes is gaining agronomic importance since they facilitate cultivation under saline-prone conditions by improving salt tolerance and hence, restoring yield (Lugtenberg et al., 2013). Bacteria isolated from extreme environments such as deserts and oceans have been shown to induce salt tolerance in crop plants. For example, a *Pseudomonas fluorescens* strain isolated from date-palm rhizosphere in Saharan region promoted root growth in maize (*Zea* 

*mays*) seedlings under salt stress (Zerrouk et al., 2016). Wheat plants (*Triticum aestivum*) inoculated with *Serratia sp.* SI-12, a halophilic bacterium isolated from a salt lake showed improved salt tolerance and increased shoot biomass (Singh and Jha, 2016).

This review focuses on the evaluation of plant growth promoting rhizobacteria (PGPR) within the context of systems biology approaches for the alleviation of salinity stress with a brief overview of the causes for salinity and courses of plant tolerance. Recent advances in 'omics' technologies deliver a holistic understanding of the regulatory networks of stress responses modulated by the PGPR. Further, the reader may refer to comprehensive reviews on utilization of other beneficial microorganisms including arbuscular mycorrhizal fungi (AMF), endosymbionts, halotolerant, and phyllosphere bacteria to alleviate salinity stress (Yang et al., 2009; Dodd and Perez-Alfocea, 2012; Glick, 2012; Vorholt, 2012; Egamberdieva and Lugtenberg, 2014).

### 2.3 Salinity

Salinity is one of the major abiotic stressors that undermines plant growth and development (Pitman and Lauchli, 2002). Soil salinization is caused by natural or human activities that increase the concentration of dissolved salts, predominantly sodium chloride in the soil. Primary salinity is caused by natural processes, leading to significant salt accumulation in soil and groundwater over extended periods of time, which result in the formation of salt lakes, salt marshes, marine sediments, and salt scalds in the landscape. Sources of primary salinity may arise from weathering of rocks and minerals that releases soluble salts, precipitation that washes these salts downstream, wind-borne salts from oceans and sand dunes that are deposited inland, and influx of seawater followed by subsequent retreat (Pitman and Lauchli, 2002; Rengasamy, 2002).

Cultivation operations such as land clearing, excessive irrigation, and inadequate drainage are the reasons for secondary salinity. Native vegetation sustains the water table below the subsoil zone with deep roots in semi-arid and arid regions. Replacing perennial species with shallow rooted annual crops and long fallows increases water table leakage and groundwater recharge, which consecutively raises the water table level. Salt is deposited in the topsoil as the water evaporates, resulting in dryland salinity and may eventually form a salt scald. Salinity effects can be more detrimental when the groundwater table is high, as prominent in arid and coastal areas where only salt-tolerant plants (halophytes) grow (Doering and Sandoval, 1981; Rengasamy, 2002). Irrigated lands are more prone to salinity than drylands because irrigation water deposits

salt behind, year after year. Secondary salinization has degenerated vast tracts of irrigated lands to the point that they are no longer economical for cultivation. Plants are often supplied with more water than they can utilize during evapotranspiration. For example, irrigation coupled with instances of heavy rainfall accelerates infiltration and groundwater recharge rates that raise the water table faster than it can drain. As the water table rises, it mobilizes dissolved salts from underground rocks close to the root zone. When the water table is within two meters of the soil surface in clay soils (less than a meter in sandy soils), there is a high probability of salt accumulation in the topsoil and salt stress to plants. Salt is also discharged and redistributed by surface runoff or leached down into soil profile by rainfall and then move laterally to watercourses (Sharma and Prihar, 1973; Pitman and Lauchli, 2002).

Poorly drained soils also suffer from waterlogging in irrigated areas. Clay soil (finetextured) is less permeable than loam (medium-textured) and sandy soil (coarse-textured) and hence, it has high water holding capacity with low infiltration rate. Water can be stored and used by plants for a long time in clay soil but will not quickly transmit salt away from the root zone. The low porosity of clay soil acts as an impervious layer, causing inadequate drainage (Nassar and Horton, 1999). Inefficient irrigation and drainage systems lead to poor water distribution, resulting in over-irrigated waterlogged areas or under-irrigated water deficit areas, both causing salt accumulation. Waterlogging aggravates salinity stress by limiting aeration and nutrient supply to plants while proper grading and installation of drains to carry excess water and dissolved salts away from water stagnant areas may solve these problems. Groundwater mounds can develop in irrigated areas and force saline groundwater into waterways. Irrigation with salt-rich water increases salt being added to the soil and requires more water to leach out salts to prevent them from accumulating in the topsoil. Leaching reduces salinity levels when there is sufficient drainage and the groundwater table is deep. Conservation farming practices recommend appropriate methods to improve soil structure and irrigation efficiency (Shalhevet, 1994; Bauder and Brock, 2001).

The amount of salt stored in the soil also depends on soil type, with sandy soil having low and high capacity for clay loam minerals due to Na+ bound to negatively charged clay particles. Soil with ECe (electrical conductivity of saturated paste extract) of 4 dS m<sup>-1</sup> is defined as saline by the USDA salinity laboratory. Most crop species are affected by ECe of less than 4 dS m<sup>-1</sup> and thus, saline soil inhibits the yield of crops. Salinity caused by irrigation schemes has been recognized as a serious problem around the world since irrigated land is, on average, twice as productive as rain-fed land and produces about one-third of global food (Munns and Tester, 2008). Because salinity and water are inextricably linked, climate changes drive extreme consequences on agriculture when drought or flooding hit vulnerable regions. Salinization management has focused on improving irrigation water quality and soil drainage to strategically increase salt acclimation in crops (Pitman and Lauchli, 2002).

#### 2.4 Salt tolerance in plants

Salinity tolerance in plants is dependent on its physiological mechanisms, duration of exposure to saline conditions, concentration of salt around roots, local soil-water relations, and microclimate conditions (temperature, humidity, etc.). Salt tolerance is usually quantified over a given period as survival, vegetative growth, or harvestable biomass at different physiological stages of the plant in saline versus non-saline conditions (Munns, 2002b). Crop yield decreases when salt concentration is above the threshold salinity level due to salt affecting the development of reproductive structures or translocation of nutrient reserves. There is a great diversity in salt tolerance between species and each species has a specific threshold salinity. Environmental adaptations and inherent genetic traits regulate salinity tolerance mechanisms in glycophytes and halophytes (Munns, 2002b). The majority of the plants are glycophytes (sensitive to salt) and tend to exclude the salts from roots, delaying salinity stress (Zhu, 2007). Halophytes grow in saline conditions and therefore, possess enhanced tolerance to high salt levels. They accumulate salts, carry through the xylem stream and precipitate them on leaves. Some species have evolved specialized cells called salt glands in shoots to excrete salt on its surface, which is then removed by water or wind. Few attempts have been made to introduce halophyte genes in crop plants and cultivate halophytes for food, forage, or fuel (Flowers et al., 1986; Flowers and Colmer, 2015).

Salinity impairs plant growth by causing osmotic imbalance and ion toxicity. The first osmotic phase occurs immediately when salt concentration increases above a threshold level around the roots. The osmotic stress induces water deficit in roots and shoot growth is arrested within minutes of exposure, but then recovers over several hours to a slow steady rate of growth. The second phase develops with time and is driven by the toxicity of excess Na<sup>+</sup>/Cl<sup>-</sup> ions that accumulate in the cytoplasm. When the salt concentration exceeds the rate of exclusion by roots or cellular ability to compartmentalize salts in the vacuoles, it builds up in the cytosol and disrupts

cellular structures and functions (Munns, 2002b). Hence, all salinity tolerance in plants is directed towards maintaining osmotic balance and ion homeostasis. Even though the loss of cell turgor after the immediate osmotic shock is transient, reduction of cell elongation and cell division rates in root tips and young leaves over time lead to growth inhibition (Passioura and Munns, 2000). Osmotic stress affects shoot and reproductive development, for instance, younger leaves emerge slowly, lateral buds remain quiescent and flowering starts earlier. The growth regulating mechanisms are speculated to be long-distance signals of hormones and their precursors from roots to shoots. Phytohormone signaling is essential for regulation of cell division and differentiation, thereby controlling plant developmental morphogenesis (Santner and Estelle, 2009). The integrated signaling pathways are crucial in plant protection and adaptation mechanisms during abiotic and biotic stresses. In addition to five classical phytohormones, auxin, gibberellin, cytokinin, abscisic acid, and ethylene, other molecules including salicylic acid, jasmonic acid, nitric oxide, brassinosteroids, and strigolactones have been known to function as plant growth regulators. Phytohormone status is interdependent and both negative feedback and positive stimulation of synthesis have been reported. Many of the proteins including some transcription factors and protein kinases involved in plant hormone signaling have been elucidated. Phytohormone signaling cascades influence osmotic balance and other salt tolerance mechanisms (discussed below) and regulate plant acclimatization to salinity (reviewed in detail by Waśkiewicz et al., 2016). The plant roots encounter salinity first and root elongation rate recovers after initial exposure to salt but root architecture undergoes transition over time and high salt concentration represses formation of lateral roots. The aboveground symptoms of salinity induced osmotic stress overlap to that of drought stress, including leaf senescence and stunted growth (Munns, 2002a).

Osmotic stress affects stomatal conductance instantly due to perturbed water balance and abscisic acid (ABA) synthesis in guard cells, causing stomatal closure. Over the next several hours, transpiration rate is stabilized to a new reduced rate and ABA levels in situ are established (Fricke et al., 2006). Increased osmotic tolerance results in greater leaf expansion and stomatal conductance, which is beneficial only when there is sufficient soil water for transpiration losses (Munns and Tester, 2008). Photosynthesis rate decreases not only because of reduced leaf area and lesser gas exchange but also due to feedback inhibition of unused photosynthates, after exposure to salinity. The growth of sink tissues is constrained and carbohydrates accumulate in plant meristems and storage organs, which otherwise would be used in their proliferation and expansion.

Modulating carbohydrate production in source leaves, phloem transport, and sink utilization downregulate the feedback photoinhibition and boost plant energy metabolism (Paul and Foyer, 2001; Perez-Alfocea et al., 2010). Reactive oxygen species (ROS) are constantly generated by cell organelles as a metabolic by-product and function as signaling molecules but their production is spiked under stressed environments. ROS including hydrogen peroxide, superoxide, and free oxygen radical are profoundly reactive with cellular components and induces programmed cell death. ROS cause chlorophyll degradation and lipid peroxidation that affects photosynthesis and membrane permeability, respectively (Apel and Hirt, 2004).

Plants have developed antioxidant mechanisms involving enzymes (superoxide dismutase, glutathione reductase, catalase, and peroxidases) and molecules (carotenoids, flavonoids, and other phenolics) that prevent tissues from oxidative damages by quenching and detoxifying ROS (Gill and Tuteja, 2010). Upregulation of antioxidant enzyme activity and metabolite synthesis is coordinated by gene networks in response to initial low levels of ROS and other signaling events (Mittler et al., 2004). Antioxidant production and osmolyte accumulation are considered as sensitive physiological markers of salt and other abiotic stresses (Munns, 2002a). A common metabolic change in response to salinity is the synthesis of low molecular weight organic compounds including polyols (sorbitol, mannitol, inositol, or glycerol), amino acids (proline or glutamate), and betaines (glycine betaine) that function as osmolytes. They are compatible solutes and accumulate in the cytosol to maintain osmotic balance both inside and outside the cell. Osmolytes also function as osmoprotectants by preventing desiccation of membranes and stabilize dehydrated enzymes rather playing role in osmoregulation. They facilitate stabilization of subcellular structures and free radical scavenging and protect plants from osmotic stress induced dehydration (Rhodes et al., 2002). Synthesis of osmolytes is an energy-demanding process yet enables the plant to recover from adverse effects of salt stress (Raven, 1985).

Effects of ionic stress are determinant under prolonged exposure to high salinity levels and predominant in salt-sensitive species. Sodium ions are toxic to many plants, so are high concentrations of chlorine, specifically those that are poor excluders of Na<sup>+</sup> (ex: rice and beans) and sensitive to Cl<sup>-</sup> (ex: soybean and citrus). The influx of Na<sup>+</sup> from roots is deposited in the xylem, carried through the transpiration stream and accumulated in the leaf blade rather than roots. Excluding Na<sup>+</sup> is a daunting task because a relatively small proportion is recirculated through phloem and most of it remains in the shoot, causing toxicity (Munns, 2002a; Tester and Davenport,

2003). Hence, active efflux of Na<sup>+</sup> from cells and retrieval of Na<sup>+</sup> from xylem is required throughout the plant and achieved by regulatory networks of sodium/proton antiporters and high-affinity potassium transporters (Tester and Davenport, 2003; Davenport et al., 2005). A Na<sup>+</sup>/H<sup>+</sup> antiporter SOS1 (salt overly sensitive) localized on the plasma membrane is involved in the transport of Na<sup>+</sup> out of the cell and its activity is dependent on substrate (Na<sup>+</sup>) concentration (Qiu et al., 2002). Excess Na<sup>+</sup> ion concentration affects low-affinity potassium uptake system because of the similar chemical nature of Na<sup>+</sup> and K<sup>+</sup> ions thereby, inhibiting K<sup>+</sup> uptake by the roots. Plants activate high-affinity K<sup>+</sup> transporters (HKT) to increase the uptake of K<sup>+</sup> ions over Na<sup>+</sup> ions and K<sup>+</sup> concentration relative to Na<sup>+</sup> in cytoplasm increases salinity tolerance (Rodriguez-Navarro and Rubio, 2006). Salt accumulation in intracellular spaces restrain enzymes involved in photosynthesis and respiration and interfere with vesicular trafficking (Baral et al., 2015; Jacoby et al., 2016). Cytosolic activities are inhibited under a high Na<sup>+</sup>/K<sup>+</sup> ratio and cells need to effectively compartmentalize sodium into vacuoles, which further improves osmotic adjustments. Intracellular compartmentation of Na<sup>+</sup> is regulated by Na<sup>+</sup>/H<sup>+</sup> antiporters and Na<sup>+</sup>/H<sup>+</sup> exchangers (NHX) on the tonoplast, which are driven by a proton gradient (Halfter et al., 2000).

Plants with adequate calcium supply have demonstrated enhanced salt tolerance and supplemental Ca<sup>2+</sup> stimulates rapid leaf elongation rate (Cramer, 1992). Calcium mediated signaling is important in maintaining Na<sup>+</sup>/K<sup>+</sup> ratios by sustaining potassium transporters and suppressing non-selective cation channels and a rise in cytosolic Ca<sup>2+</sup> levels is the first detectable response to sodium stress (Epstein, 1998). Membrane depolarization activates Ca<sup>2+</sup> channels in cellular membranes that regulate Ca<sup>2+</sup> oscillations in the cytosol and generate Ca<sup>2+</sup> signals under salt stress. The calcium signal sensor, calcineurin B-like protein (CBL4, previously identified as SOS3) forms a complex with a CBL-interacting protein kinase (CIPK24, identified as SOS2) to phosphorylate SOS1, thus enabling its activation (Halfter et al., 2000; Zhu, 2002). Other sensor proteins are calcium dependent protein kinases (CDPKs), SOS3-like calcium binding proteins (SCaBPs), and calmodulins (CaMs) (Chinnusamy et al., 2006). Progressive accumulation of Cl<sup>-</sup> is to chloroplasts and mitochondria, and tolerance of high Cl<sup>-</sup> concentrations requires compartmentalization and exclusion. The active influx of Cl<sup>-</sup> is catalyzed by a Cl<sup>-</sup>/2H<sup>+</sup> symporter but passive uptake also occurs under saline conditions and efflux takes place through Cl<sup>-</sup> permeable channels (Yamashita et al., 1994). Transport of Cl<sup>-</sup> to shoots is limited by reduced xylem loading

of Cl<sup>-</sup> via anion channels (downregulated by ABA) and Cl<sup>-</sup> is actively retrieved from the xylem stream (Gilliham and Tester, 2005).

Biochemical analysis, gene expression and mutant studies conducted to investigate molecular functions of plants in response to salinity revealed that complex signal transduction pathways and gene regulatory networks exist to alleviate stress (Hasegawa et al., 2000). Breeding of salt-tolerant genotypes to improve crop production has been persevered by plant scientists but in spite of the advances, relatively few determinant genetic traits for salt tolerance in crop species have been identified to date (Munns and Tester, 2008). However, the acquired knowledge will lead to the development of tolerant cultivars and implementation of sustainable crop protection measures that are environmentally safe. Conventional breeding practices and genetic engineering techniques could be the most relevant but often time-consuming and cost-intensive strategies. Meanwhile, application of beneficial microbes to increase salt tolerance in plants is a feasible alternative to reclaim salinity prone lands under cultivation (Berg, 2009). A plant, together with its associated microbial community, the phytomicrobiome function as a holobiont. The physiology and metabolism of the host plant are influenced by the phytomicrobiome, facilitating its adaptation to the habitat. Members of the phytomicrobiome, which include PGPR, AMF and other facultative endosymbionts are inoculated as microbial consortia and this strategy has gained interest lately to enhance crop productivity in stressed environments (Smith et al., 2015b).

#### 2.5 Salt tolerance mediated by Plant Growth Promoting Rhizobacteria

During the past century, research has continuously demonstrated numerous beneficial associations between plants and microbes, beginning with the classic legume–rhizobia symbiosis. The plant rhizosphere is enriched with nutrient sources excreted from roots that support the higher abundance of microbial population than the surrounding bulk soil (Lugtenberg and Kamilova, 2009). Free-living beneficial bacteria dwelling in the rhizosphere that exert beneficial activities are known as plant growth promoting rhizobacteria (PGPR). Some of them are facultative endophytes that further invade intercellular spaces of host tissues and thrive as endophytes to establish a mutually beneficial association. PGPR living outside the plant cell are differently associated with plant roots and directly relate to the underlying mechanisms of plant–microbe interactions. The majority of the PGPR colonize the root surface and thrive in spaces between root hairs and rhizodermal layers whereas, some are not physically in contact with the roots (Gray and

Smith, 2005). Root exudates are an integral part of rhizosphere signaling events and regulate communication in beneficial plant-microbe interactions. Phenols, flavonoids, and organic acids secreted by roots have been known to act as chemical signals for bacterial chemotaxis, secretion of exopolysaccharides, quorum sensing and biofilm formation during rhizosphere colonization (Bauer and Mathesius, 2004; Badri et al., 2009; Narula et al., 2009). Isolated from rhizosphere soils, PGPR are screened *in vitro* for plant growth promoting characteristics and tested for beneficial effects in greenhouse and field trials prior to commercialization. PGPR promote plant growth and development through diverse mechanisms such as enhanced nutrient assimilation (biofertilizers) by biological nitrogen fixation, phosphorous solubilisation or iron acquisition (Rodriguez and Fraga, 1999; Steenhoudt and Vanderleyden, 2006; Sharma et al., 2013; Jin et al., 2014; Kuan et al., 2005; Beneduzi et al., 2012; Chowdhury et al., 2015), degrade organic pollutants and reduce metal toxicity of contaminated soils (bioremediation), and facilitate phytoremediation (Divya and Kumar, 2011; Nie et al., 2011; Janssen et al., 2015; Weyens et al., 2015).

Inoculation with PGPR has been known to modulate abiotic stress regulation via direct and indirect mechanisms that induce systemic tolerance (Yang et al., 2009). Many PGPR have been investigated for their role in improving plant-water relations, ion homeostasis and photosynthetic efficiency in plants under salt stress (Figure 2.1); their amelioration mechanisms are intricate and often not well-understood. These mechanisms are regulated by a complex network of signaling events occurring during the plant–microbe interaction and consequently ensuing stress alleviation (Smith et al., 2017). Accumulating evidence using high-throughput techniques implies that understanding the dynamic function of PGPR in relation to stomatal conductance, ion transport, water and nutrient uptake, phytohormonal status, signal transduction proteins, antioxidant enzymes, and carbohydrate metabolism in plants is important for determining the induced systemic tolerance (Figure 2.2).

#### 2.5.1 Osmotic balance

Plant growth promoting rhizobacteria regulate water potential and stomatal opening by affecting hydraulic conductivity and transpiration rate. Maize plants inoculated with *Bacillus megaterium* showed increased root hydraulic conductivity compared to uninoculated plants when exposed to salinity (2.59 dS m-1) and this was correlated with increased expression of two ZmPIP (plasma membrane aquaporin protein) isoforms (Marulanda et al., 2010). PGPR induce osmolyte

accumulation and phytohormone signaling that facilitate plants to overcome initial osmotic shock after salinization. Enhanced proline synthesis in transgenic *Arabidopsis thaliana* with proBA genes derived from *Bacillus subtilis* conferred salt tolerance to the plants (Chen et al., 2007). Inoculation of salt tolerant *Bacillus amyloliquefaciens* SN13 onto rice (*Oryza sativa*) plants exposed to salinity (200 mM NaCl) in hydroponic and soil conditions increased plant salt tolerance and affected expression of 14 genes, of which, four (*SOS1*, ethylene responsive element binding proteins *EREBP*, somatic embryogenesis receptor-like kinase *SERK1* and NADP-malic enzyme *NADP-Me2*) were upregulated and two [glucose insensitive growth *GIG* and (SNF1) serinethreonine protein kinase *SAPK4*] were downregulated under hydroponic conditions whereas, only *MAPK5* (Mitogen activated protein kinase 5) was upregulated under greenhouse conditions. Genes involved in osmotic and ionic stress response mechanisms were modulated by SN13 inoculation (Nautiyal et al., 2013).

Beneficial microorganisms can stimulate carbohydrate metabolism and transport, which directly implicate source-sink relations, photosynthesis, growth rate and biomass reallocation. Seed inoculated *B. aquimaris* strains increased total soluble sugars and reducing sugars in wheat under saline (ECe =  $5.2 \text{ dS m}^{-1}$ ) field conditions and resulted in higher shoot biomass, NPK accumulation, and Na reduction in leaves (Upadhyay and Singh, 2015). Higher plant dry matter accumulation after 36 days in pepper (Capsicum annuum) plants inoculated with Azospirillum brasilense and Pantoea dispersa under salinity was related to enhanced stomatal conductance and photosynthesis, but neither chlorophyll concentration nor photochemical efficiency of photosystem II was affected (del Amor and Cuadra-Crespo, 2012). Microbes exposed to osmolality fluctuations in their surrounding environment accumulate large quantities of osmoprotectants in their cytosol (Kempf and Bremer, 1998). Under such circumstances, biosynthesis of osmolytes including proline, trehalose, and glycine betaines by PGPR is most likely to be quicker than their associated host plants. The compatible solutes absorbed through plant roots aid in maintaining osmotic balance and preventing cellular oxidative damage under saline conditions. Co-inoculation of bean (Phaseolus vulgaris) with Rhizobium tropici and Paenibacillus polymyxa strain modified to overexpress trehalose 6-phosphate gene resulted in increased nodulation, N content and plant growth. A microarray analysis of nodules revealed upregulation of stress tolerance genes suggesting that extracellular trehalose, which functions as an osmoprotectant can induce salinity tolerance (Figueiredo et al., 2008).



Figure 2.1. Illustration of salt tolerance mechanisms induced by plant growth promoting rhizobacteria (PGPR).

Root surfaces are colonized by PGPR and extracellular polysaccharide matrix acts as a protective barrier against salt stress. Some extracellular molecules function as signaling cues that manipulate phytohormonal status in plants. Enhanced root-to-shoot communication improves water and nutritional balance, source-sink relations and stomatal conductance. Stimulating osmolyte accumulation, carbohydrate metabolism and antioxidant activity delay leaf senescence, which inturn contribute to photosynthesis. Regulation of physiological processes are indicated by black arrows and signaling pathways are indicated by purple arrows.



**Figure 2.2**. Plant growth promoting rhizobacteria interaction mediate cellular activity in plants to ameliorate salinity stress.

Osmotic imbalance and oxidative damage are reduced by enhanced biosynthesis of compatible solutes and antioxidants. Ion homeostasis is maintained by increase in activity of  $K^+$  transporters (HKT) and  $H^+$  exchangers (NHX) that facilitate salt compartmentalization/exclusion. PGPR also upregulate the expression of stress responsive genes (phytohormone signaling) and proteins (vegetative storage, photosynthesis, and antioxidant enzymes).

#### 2.5.2 Ion homeostasis

Bacteria limit plant salt uptake by trapping cations in the exopolysaccharide matrix, altering root structure with extensive rhizosheaths, and regulating expression of ion affinity transporters. PGPR have been known to increase the mineral nutrient exchange of both macro and micronutrients and alleviate nutrient imbalance caused by the high influx of Na<sup>+</sup> and Cl<sup>-</sup> ions. Microbial induced nutrient cycling (mineralization), rhizosphere pH changes (organic acids), and metal chelation (siderophores) increase plant nutrient availability (Dodd and Perez-Alfocea, 2012; Lugtenberg et al., 2013). PGPR help maintaining ion homeostasis and high K<sup>+</sup>/Na<sup>+</sup> ratios in shoots by reducing Na<sup>+</sup> and Cl<sup>-</sup> accumulation in leaves, increasing Na<sup>+</sup> exclusion via roots, and boosting the activity of high-affinity K<sup>+</sup> transporters. Inoculation of Azotobacter strains C5 (auxin producing) and C9 in maize plants under salt stress improved K<sup>+</sup> uptake and Na<sup>+</sup> exclusion. Chlorophyll, proline and polyphenol contents in leaves increased and PGPR inoculation enhanced plant stress responses (Rojas-Tapias et al., 2012). In a study conducted with Arabidopsis thaliana and Burkholderia phytofirmans PsJN to understand the spatiotemporal regulation of short and long-term salt stress, colonized plants exhibited higher tolerance to sustained salt stress. The expressional patterns of genes involved in ion homeostasis (KT1, HKT1, NHX2, and SOS1) were altered after stress and rapid molecular changes induced by PsJN may be linked to the observed salt tolerance (Pinedo et al., 2015). A halophyte grass, *Puccinellia tenuiflora* inoculated with B. subtilis GB03 showed less Na<sup>+</sup> accumulation and validated by upregulation of *PtHKT1* and PtSOS1 genes but PtHKT2 was downregulated in roots under high salt concentrations (200 mM NaCl) (Niu et al., 2016).

#### 2.5.3 Phytohormone signaling

Soil bacteria modulate plant hormone status by releasing exogenous hormones, metabolites, and enzymes that may contribute to increased salt tolerance. Besides, phytohormones and metabolites are synthesized *de novo* in the plants in response signaling events of plant–microbe interactions during stress (Dodd et al., 2010).

# 2.5.3.1 Auxin

Auxin biosynthesis occurs via multiple pathways in rhizobacteria and one is the utilization of tryptophan present in root exudates and its conversion into indole-3-acetic acid (IAA), which is absorbed by the plant roots. Together with the plant's endogenous IAA pool, an auxin signaling

pathway is triggered and results in stimulation of cell growth and proliferation. IAA produced by PGPR is one of the most common and widely studied bacterial signaling molecules in plantmicrobe interactions. The function of exogenous IAA is dependent on the endogenous IAA levels in plants. At optimal IAA concentration, acquisition of bacterial IAA may result in neutral, promotion or inhibition of plant growth (Dodd et al., 2010; Spaepen and Vanderleyden, 2011).

Bacillus amyloliquefaciens SQR9 enhanced salt stress tolerance (100 mM NaCl) of maize seedlings in vitro and bacterial inoculation increased chlorophyll and total soluble sugar contents, improved peroxidase and catalase activity, enhanced glutathione content, and K<sup>+</sup>/Na<sup>+</sup> ratio. In addition, salinity induced ABA level was counteracted by SQR9 inoculation, which maintained it at the normal level. These physiological mechanisms to relieve salt stress were confirmed by the upregulation of genes *RBCS*, *RBCL* (encoding RuBisCo subunits), H(+)-*Ppase* (encoding H+ pumping pyrophosphatase), HKT1, NHX1, NHX2 and NHX3, and also the downregulation of NCED expression (encoding 9-cis-epoxycarotenoid dioxygenase) in inoculated seedlings (Chen et al., 2016). Enterobacter sp. EJ01 isolated from a halophyte plant, sea china pink (Dianthus japonicus thunb) improved plant growth and salt stress tolerance (200 mM) in Arabidopsis and tomato (Solanum lycopersicum) plants. Short-term treatment (6 h) with EJ01 increased expression of genes involved in salt stress response such as DRE-binding proteins DREB2b, Relative to Desiccation (RD29A, RD29B), late embryogenesis abundant (LEA) genes (RAB18), proline biosynthesis (P5CS1 and P5CS2), and stress-inducible priming processes (MPK3 and MPK6) in Arabidopsis seedlings. GFP-tagged EJ01 displayed colonization of the bacteria in the rhizosphere and endosphere of Arabidopsis roots. In addition, ROS scavenging activities including antioxidant enzyme, ascorbate peroxidase were enhanced in inoculated tomato plants under salt stress (Kim et al., 2014).

The role of bacterial cytokinins in salt stress tolerance is largely unknown yet with relatively fewer studies. *Pseudomonas* strains (*P. aurantiaca* TSAU22, *P. extremorientalis* TSAU6 and *P. extremorientalis* TSAU20) enhanced growth up to 52%, compared to control plants and alleviated salinity (100 mM NaCl) induced dormancy of wheat seeds (Egamberdieva, 2009). Cytokinin producing *B. subtilis* inoculated onto lettuce seedlings under water deficit conditions increased accumulation of shoot biomass and shortened roots with only small effect on root biomass. Despite increased shoot cytokinins, the possible role in root-to-shoot signaling was latent seemingly hindered by shoot ABA (Arkhipova et al., 2007).

#### 2.5.3.2 Ethylene

Synthesis of ethylene in response to stress may increase plant tolerance or expedite senescence (Morgan and Drew, 1997). Ethylene regulates plant adaptation to stress at the expense of growth and development. As ethylene levels increase under stress, transcription of auxin response factors is inhibited and it constraints plant growth. PGPR that secrete 1-aminocyclopropane-1-carboxylase (ACC) deaminase restrict ethylene biosynthesis in plants. The enzyme converts ACC, the precursor of ethylene to ammonia and  $\alpha$ -ketobutyrate. Many studies have shown enhanced stress tolerance and growth promotion in plants conferred by soil bacteria producing ACC deaminase (Glick et al., 2007). The following examples illustrate some of the salt tolerance mechanisms induced by PGPR producing ACC deaminase.

*Pseudomonas putida* UW4 inoculated tomato (*Solanum lycopersicum*) seedlings showed increased shoot growth after 6 weeks in saline conditions up to 90 mM NaCl. The expression of Toc GTPase, a gene of the chloroplast protein import apparatus was upregulated, which may facilitate import of proteins involved as a part of stress response (Yan et al., 2014). A nutrient flow study of pea (*Pisum sativum* cv. Alderman) inoculated with *Variovorax paradoxus* 5C-2 under salt stress of 70 and 130 mM NaCl showed increased root to shoot K<sup>+</sup> flow and Na<sup>+</sup> deposition in roots, thereby increasing K<sup>+</sup>/Na<sup>+</sup> ratio in shoots. Inoculation with PGPR also increased the photosynthesis rate and electron transport, while decreased stomatal resistance and xylem balancing pressure; overall improved the plant biomass (Wang et al., 2016). *Enterobacter sp.* UPMR18 inoculated okra (*Abelmoschus esculentus*) plants exhibited increase in antioxidant enzyme activities and transcription of ROS pathway genes when grown in 75 mM NaCl and showed enhanced salt tolerance (Habib et al., 2016). ACC deaminase producing strains of *Pseudomonas fluorescens* and *Enterobacter spp.* significantly improved maize yield in salt-affected fields. Higher K<sup>+</sup>/Na<sup>+</sup> ratios and NPK uptake were also recorded in inoculated plants under salt stress (Nadeem et al., 2009).

Plant growth promoting rhizobacteria that produce both IAA and ACC deaminase can effectively protect plants from a range of stresses. IAA accumulation induces transcription of ACC synthase genes, which increases ACC concentration, leading to the production of ethylene. PGPR containing ACC deaminase may break down some of the excess ACC and lower plant ethylene levels during an advent of environmental stress and simultaneously allow IAA to promote plant growth (Glick, 2012). Endophytic bacteria (*Arthrobacter sp.* and *Bacillus sp.*) producing ACC

deaminase and IAA increased proline content in sweet pepper (*Capsicum annuum*). The inoculated plants manifested downregulation of stress-inducible genes *CaACCO* (ACC oxidase) and *CaLTPI* (Lipid transfer protein) under mild osmotic stress (Sziderics et al., 2007). *Pantoea dispersa* PSB3 is a native bacterium in chickpea (*Cicer arietinum*) and produces IAA and ACC deaminase. Upon inoculation to chickpea cv. GPF2, it significantly improved plant biomass, pod number, pod weight, seed number, and seed weight in salt (150 mM NaCl) affected plants. The improved salt tolerance was associated with significant reduction of Na<sup>+</sup> uptake and electrolyte leakage and increase of relative leaf water content, chlorophyll content, and K<sup>+</sup> uptake (Panwar et al., 2016).

# 2.5.3.3 Abscisic acid

There are relatively few studies on determining the role of exogenous ABA in plantmicrobe interactions and whether bacterial ABA influences ABA status of plants under salt stress. However, PGPR modulate ABA biosynthesis and ABA-mediated signaling pathways that may contribute to the enhanced growth of salt-stressed plants. Halotolerant Dietzia natronolimnaea STR1 induced salinity (150 mM NaCl) tolerance mechanisms in wheat plants via modulation of an ABA-signaling cascade, validated by the upregulation of *TaABARE* (ABA-responsive gene) and TaOPR1 (12-oxophytodienoate reductase 1) leading to TaMYB and TaWRKY stimulation, followed by expression of stress response genes including upregulation of TaST (a salt stressinduced gene). Expression of SOS pathway related genes and tissue-specific responses of ion transporters were modulated. Gene expression of various antioxidant enzymes and proline content were increased, contributing to enhanced protection against salt stress in PGPR inoculated plants (Bharti et al., 2016). Cucumber (Cucumis sativus) plants inoculated with Burkholderia cepacia SE4, Promicromonospora sp. SE188 and Acinetobacter calcoaceticus SE370 had significantly higher biomass under salinity stress (120 mM NaCl). PGPR increased water potential and decreased electrolyte leakage. The inoculated plants showed down-regulation of ABA compared with control plants, while salicylic acid and gibberellin GA4 contents were increased (Kang et al., 2014a). Seed inoculation of cotton (Gossypium hirsutum) with Pseudomonas putida Rs-198 reduced ABA accumulation and increased plant biomass in salinized soil but the induced salt tolerance can also be attributed to regulated ionic balance and improved endogenous IAA content (Yao et al., 2010). Wheat plants inoculated with PGPR strains Arthrobacter protophormiae SA3 and B. subtilis LDR2 built up IAA while conflicted the increase of ABA and ACC content under salt stress conditions (100 mM NaCl). The amelioration effect was further validated by the

upregulation of *TaCTR1* (Serine/Threonine protein kinase – ethylene responsive) and *TaDRE2* (drought-responsive element) genes (Barnawal et al., 2017).

### 2.5.4 Extracellular molecules

The extracellular secretions of PGPR including proteins, hormones, volatiles, polyamines, and other compounds have been determined to manipulate signaling pathways and regulatory functions that positively impact plant defense and development by stimulating growth, inducing disease resistance and eliciting stress tolerance (Barnawal et al., 2013; Kang et al., 2014b; Bhattacharyya et al., 2015; Smith et al., 2015a; Zhou et al., 2016).

#### 2.5.4.1 Exopolysaccharides

Bacteria secrete exopolysaccharides (EPS) which are responsible for attachment, often along with other bacteria, to soil particles and root surfaces. EPS bind soil particles to aggregates, stabilizing soil structures, and increasing water holding capacity and cation exchange capacity (Upadhyay et al., 2011). EPS usually form an enclosed matrix of microcolonies, which confer protection against environmental fluctuations, water and nutrient retention, and epiphytic colonization (Balsanelli et al., 2014). They are also indispensable for mature biofilm formation and functional nodules in legume-rhizobia symbiosis (Stoodley et al., 2002; Skorupska et al., 2006). Inoculation of EPS producing *Pseudomonas mendocina* with an arbuscular mycorrhizal fungus, Glomus intraradices onto lettuce (Lactuca sativa) resulted in stabilization of soil aggregates under field conditions (Kohler et al., 2006). Inoculation with salt-tolerant Halomonas variabilis HT1 and Planococcus rifietoensis RT4 increased the growth of chickpea (Cicer arietinum var. CM-98) and soil aggregation with roots under high salt concentrations (up to 200 mM NaCl) (Qurashi and Sabri, 2012). Quinoa (Chenopodium quinoa) seeds inoculated with Enterobacter sp. MN17 and Bacillus sp. MN54 improved plant-water relations under saline irrigation conditions of 400 mM NaCl (Yang et al., 2016). EPS production and composition improve bacterial resistance to abiotic stress (Sandhya and Ali, 2015) but the role of EPS in plant salinity tolerance deserves further investigation.

## 2.5.4.2 Lipo-chitooligosaccharides

Legume–rhizobia symbiosis is affected by salt stress and high levels of salinity inhibit nodule formation and nitrogen fixation (Tu, 1981; Zahran, 1999). Lipo-chitooligosaccharides (LCOs) are secreted by rhizobia as Nod-factors (NFs) in response to flavonoids present in root
exudates and initiate nodule formation. LCOs are conserved at the core but diverge in the N-Acetyl chain length, degree of saturation, and substitutions (glycosylation or sulfation), which are crucial in host specificity (Oldroyd, 2013). Nod-factors also act as stress response signals in legumes and NF synthesis is modulated by other PGPR and abiotic stresses. High salinity (100–200 mM NaCl) inhibited root hair deformation responses to increase in NF concentrations in Soybean (Glycine max) – Bradyrhizobium japonicum symbiosis (Duzan et al., 2004). Inoculation of IAA producing Azospirillum brasilense Cd into the Rhizobium-Bean (Phaseolus vulgaris cv. Negro Jamapa) symbiosis increased root branching and flavonoid synthesis under 50 mM NaCl. The coinoculation also promoted Nod-genes expression in R. tropici CIAT899 and R. etli ISP42 grown in the presence of root exudates (Dardanelli et al., 2008). Free-living rhizobia are more resistant to salt stress than inside their legume hosts. R. tropici CIAT899 is highly tolerant to stress and high salt concentrations enhance Nod-gene expression, Nod-factor synthesis and diversity; 46 different NFs were identified compared to 29 NFs under control with only 15 NFs common to both (Estevez et al., 2009). Inoculation of B. japonicum 532C grown in genistein (a flavonoid) induced media significantly enhanced nodulation and growth of soybean under salinity levels (36 and 61 mM NaCl) and such positive effects become more evident with time (Miransari and Smith, 2009) and increased yield up to 21% under salinized field conditions in an earlier study.

# 2.5.4.3 Bacteriocins

Bacteriocins are small peptides secreted by rhizobacteria that are bactericidal or bacteriostatic against relative bacteria, thus providing a competitive advantage to the producer strain but might also promote microbial diversity in an ecologic niche (Kirkup and Riley, 2004). Application of thuricin 17, isolated from a soybean endosymbiont *Bacillus thuriengenesis* NEB 17 differentially altered the proteome of salt-stressed (250 mM NaCl) Arabidopsis plants. Expression of proteins involved in carbon and energy metabolism pathways were modulated by the bacterial signals. Proteins involved in photosynthesis including PEP carboxylase, RuBisCo-oxygenase large subunit, pyruvate kinase and proteins of photosystems I and II were upregulated along with other stress related proteins (Subramanian et al., 2016b). These bacterial signal compounds also induced similar changes in the proteome of soybean seeds at 48 h under 100 mM NaCl. In addition, isocitrate lyase and antioxidant glutathione-S-transferase were increased. These findings by shotgun proteomics suggested that thuricin 17 positively manipulate plant proteome profile and enhance physiological tolerance to salinity (Subramanian et al., 2016a).

# 2.5.4.4 Polyamines

Polyamines (PAs) are low molecular weight aliphatic amines with pronounced antioxidant activity that are ubiquitous in all living organisms and modulate ROS homeostasis by scavenging free radicals and stimulating antioxidant enzymes. The most abundant polyamines, spermidine, spermine, and putrescine are implicated in various developmental processes and stress responses in plants (Gupta et al., 2013). Application of exogenous polyamines increase abiotic stress tolerance but PGPR secretion of polyamines is largely unexplored. Spermidine from *Bacillus megaterium* BOFC15 increased cellular polyamine accumulation in Arabidopsis, thereby activating PA-mediated signaling pathways contributing to the osmotic stress tolerance of plants. The bacterial inoculation resulted in greater biomass, elevated photosynthetic capacity and higher antioxidant enzyme activity. Other tolerance mechanisms involved robust root system architecture and ABA dependent stress responses, which maintained water balance and stomatal conductance (Zhou et al., 2016).

# 2.5.4.5 Volatile compounds

Volatile organic compounds (VOC) released from PGPR are known to stimulate plant growth, resulting in increased shoot biomass, and modulated stress responses. Perception of volatiles by plants and subsequently induced mechanisms require further research (Bailly and Weisskopf, 2012). B. subtilis GB03 VOCs mediated tissue specific regulations of Na<sup>+</sup> homeostasis in salt-stressed plants. Arabidopsis under 100 mM NaCl treated with VOCs decreased Na<sup>+</sup> accumulation by concurrently downregulating expression of *HKT1* in roots but upregulating it in shoots. Presumably, the induction of HKT1 dependent shoot-to-root recirculation resulted in reduced Na<sup>+</sup> accumulation up to  $\sim$ 50% throughout the plant. Treatment with VOCs increased leaf surface area, root mass, and total K<sup>+</sup> content when compared with controls whereas, inoculated athkt1 mutants showed stunted growth. Exposure to VOCs reduced the total Na<sup>+</sup> level by 18% and enhanced shoot and root growth of sos3 mutants in 30 mM NaCl (Zhang et al., 2008). A putative VOCs blend released from Pseudomonas simiae AU induced salt-tolerance in soybean (Glycine max) under 100 mM NaCl by decreasing root Na<sup>+</sup> accumulation and increasing proline and chlorophyll content. Protein expression analysis confirmed upregulation of vegetative storage proteins (Na<sup>+</sup> homeostasis), RuBisCO large chain proteins (photosynthesis) in exposed soybean seedlings (Vaishnav et al., 2015).

*Paraburkholderia phytofirmans* PsJN VOCs stimulate plant growth and induce salinity tolerance that have been demonstrated both in vitro (150 mM NaCl/15 mM CaCl2) and in soil (200 mM NaCl/20 mM CaCl2). Growth parameters of Arabidopsis plants measured as rosette area, fresh weight, and primary root length were higher than the control plants and exposure to VOCs showed parallel growth promoting effects of direct bacterial inoculation. The emitted compounds were analyzed and the plants were exposed to a blend of 2-undecanone, 7-hexanol, 3-methylbutanol molecules, which mimicked the effect of VOCs (Ledger et al., 2016). Genome wide mapping association of Arabidopsis accession lines revealed 10 genetic loci associated with growth stimulation in response to the presence of *P. simiae* WCS417r *in vitro*, which is partly caused by VOC produced by the bacterium. Even though the study was conducted to select lines for breeding strategies, it is interesting to note that the genotype variation of host plants has different interactions with the associated root microbiome (Wintermans et al., 2016).

#### 2.6 Conclusion

Application of PGPR inoculants as biofertilizers and biocontrol agents is an integral component in organic farming practices (Babalola, 2010). With rising emphasis on sustainable agriculture, environmental protection, and food security, exploitation of beneficial soil microbiota is imperative. Abiotic stresses constraint yield and turn agriculture production systems fragile; in addition, persisting climate change intensify the frequency, degree, and resultant damage of stressful conditions. Plants have evolved complex mechanisms to tolerate abiotic stresses caused by various environmental factors, including salinity. Plant associated bacteria in soil mitigate the adverse effects of these stresses in a more time-sensitive and cost-effective manner, where the development of tolerant cultivars has been somewhat overwhelmed. Research directed towards the application of PGPR in salt-affected fields encourages commercialization of inoculants for salinity tolerance. The systems biology of plant-microbe interactions in response to environmental stimuli such as salinity, opens up new prospects of understanding the regulatory networks of plant salt tolerance modulated by rhizosphere bacteria (Table 2.1). While the induced salt tolerance may be contributed by the release of extracellular compounds that function as chemical signals to the plant, improved soil properties that reduce the impact of salinity is another important benefit yet to be explored. Stress adaptation of plants are induced by associated microbiota and cutting-edge research as discussed above may be successfully applied to improve crop yield in saline prone

regions. The potential application of PGPR to help plants deal with stress in agricultural fields seems vastly large, yet much is left to be utilized.

|    | PGPR                                                 | Crop species              | Beneficial effects                                                                                                                                                                                      | Reference                    |
|----|------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 1. | Bacillus<br>amyloliquefaciens<br>SN13                | Oryza sativa              | Upregulation of <i>SOS1</i> , <i>EREBP</i> , <i>SERK1</i> , <i>NADP-Me2</i>                                                                                                                             | Nautiyal et<br>al., 2013     |
| 2. | Bacillus<br>amyloliquefaciens<br>SQR9                | Zea mays                  | Upregulation of <i>RBCS</i> , <i>RBCL</i> , <i>HKT1</i> , <i>NHX1</i> , <i>NHX2</i> and <i>NHX3</i>                                                                                                     | Chen et al.,<br>2016         |
| 3. | Bacillus megaterium                                  | Zea mays                  | Improved expression of two<br>ZmPIP isoforms                                                                                                                                                            | Marulanda et<br>al., 2010    |
| 4. | Bacillus<br>thuriengenesis<br>NEB17                  | Glycine max               | Upregulation of PEP<br>carboxylase, Rubisco-<br>oxygenase large subunit,<br>pyruvate kinase, and proteins of<br>photosystems I and II, isocitrate<br>lyase and antioxidant<br>glutathione-S-transferase | Subramanian<br>et al., 2016a |
| 5. | Dietzia<br>natronolimnaea                            | Triticum<br>aestivum      | Modulation of ABA signaling<br>cascade, SOS pathway related<br>genes, tissue-specific responses<br>of ion transporters                                                                                  | Bharti et al.,<br>2016       |
| 6. | <i>Enterobacter sp.</i><br>UPMR18 (ACC<br>deaminase) | Abelmoschus<br>esculentus | Increase antioxidant enzyme<br>activities and upregulation of<br>ROS pathway genes                                                                                                                      | Habib et al.,<br>2016        |
| 7. | <i>Pseudomonas putida</i><br>UW4 (ACC<br>deaminase)  | Solanum<br>lycopersicum   | Increased shoot growth and expression of <i>Toc GTPase</i>                                                                                                                                              | Yan et al.,<br>2014          |
| 8. | Pseudomonas simiae<br>AU                             | Glycine max               | Upregulation of vegetative<br>storage proteins, RuBisCO large<br>chain proteins. Decrease in root<br>Na <sup>+</sup> accumulation and increase<br>in proline and chlorophyll<br>content                 | Vaishnav et<br>al., 2015     |

**Table 2.1**. Summary of PGPR interaction effects in crop plants under salinity stress from recent studies using systems biology approaches.

# 2.7 References

- 1. Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. *Annu. Rev. Plant Biol.* 55, 373–399. doi: 10.1146/annurev.arplant.55.031903.141701
- Arkhipova, T. N., Prinsen, E., Veselov, S. U., Martinenko, E. V., Melentiev, A. I., and Kudoyarova, G. R. (2007). Cytokinin producing bacteria enhance plant growth in drying soil. *Plant Soil* 292, 305–315. doi: 10.1007/s11104-007-9233-5
- 3. Babalola, O. O. (2010). Beneficial bacteria of agricultural importance. *Biotechnol. Lett.* 32, 1559–1570. doi: 10.1007/s10529-010-0347-0
- 4. Badri, D. V., Weir, T. L., van der Lelie, D., and Vivanco, J. M. (2009). Rhizosphere chemical dialogues: plant-microbe interactions. *Curr. Opin. Biotechnol.* 20, 642–650. doi: 10.1016/j.copbio.2009.09.014
- Bailly, A., and Weisskopf, L. (2012). The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. *Plant Signal. Behav.* 7, 79–85. doi: 10.4161/psb.7.1.18418
- 6. Balsanelli, E., de Baura, V. A., Pedrosa, F. D., de Souza, E. M., and Monteiro, R. A. (2014). Exopolysaccharide biosynthesis enables mature biofilm formation on abiotic surfaces by *Herbaspirillum seropedicae*. *PLOS ONE* 9:e110392. doi: 10.1371/journal.pone.0110392
- 7. Baral, A., Shruthi, K. S., and Mathew, M. K. (2015). Vesicular trafficking and salinity responses in plants. *IUBMB Life* 67, 677–686. doi: 10.1002/iub.1425
- 8. Barnawal, D., Bharti, N., Pandey, S. S., Pandey, A., Chanotiya, C. S., and Kalra, A. (2017). Plant growth promoting rhizobacteria enhances wheat salt and drought stress tolerance by altering endogenous phytohormone levels and *TaCTR1/TaDREB2* expression. *Physiol. Plant.* doi: 10.1111/ppl.12614.
- Barnawal, D., Maji, D., Bharti, N., Chanotiya, C. S., and Kalra, A. (2013). ACC deaminasecontaining *Bacillus subtilis* reduces stress ethylene-induced damage and improves mycorrhizal colonization and rhizobial nodulation in *Trigonella foenum-graecum* under drought stress. *J. Plant Growth Regul.* 32, 809–822. doi: 10.1007/s00344-013-9347-3
- Bauder, J. W., and Brock, T. A. (2001). Irrigation water quality, soil amendment, and crop effects on sodium leaching. *Arid Land Res. Manag.* 15, 101–113. doi: 10.1080/15324980151062724
- 11. Bauer, W. D., and Mathesius, U. (2004). Plant responses to bacterial quorum sensing signals. *Curr. Opin. Plant Biol.* 7, 429–433. doi: 10.1016/j.pbi.2004.05.008
- 12. Beneduzi, A., Ambrosini, A., and Passaglia, L. M. P. (2012). Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. *Genet. Mol. Biol.* 35, 1044–1051.
- 13. Berg, G. (2009). Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. *Appl. Microbiol. Biotechnol.* 84, 11–18. doi: 10.1007/s00253-009-2092-7
- 14. Bharti, N., Pandey, S. S., Barnawal, D., Patel, V. K., and Kalra, A. (2016). Plant growth promoting rhizobacteria *Dietzia natronolimnaea* modulates the expression of stress responsive genes providing protection of wheat from salinity stress. *Sci. Rep.* 6:34768. doi: 10.1038/srep34768
- 15. Bhattacharyya, D., Garladinne, M., and Lee, Y. H. (2015). Volatile indole produced by rhizobacterium *Proteus vulgaris* JBLS202 stimulates growth of *Arabidopsis thaliana* through

auxin, cytokinin, and brassinosteroid pathways. J. Plant Growth Regul. 34, 158–168. doi: 10.1007/s00344-014-9453-x

- Chen, L., Liu, Y., Wu, G., Veronican Njeri, K., Shen, Q., Zhang, N., et al. (2016). Induced maize salt tolerance by rhizosphere inoculation of *Bacillus amyloliquefaciens* SQR9. *Physiol. Plant.* 158, 34–44. doi: 10.1111/ppl.12441
- Chen, M., Wei, H., Cao, J., Liu, R., Wang, Y., and Zheng, C. (2007). Expression of *Bacillus subtilis* proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. *J. Biochem. Mol. Biol.* 40, 396–403.
- 18. Chinnusamy, V., Zhu, J., and Zhu, J. K. (2006). Salt stress signaling and mechanisms of plant salt tolerance. *Genet. Eng. (N Y)* 27, 141–177.
- Chowdhury, S. P., Hartmann, A., Gao, X. W., and Borriss, R. (2015). Biocontrol mechanism by root-associated *Bacillus amyloliquefaciens* FZB42-a review. *Front. Microbiol.* 6:780. doi: 10.3389/fmicb.2015.00780
- Compant, S., Duffy, B., Nowak, J., Clement, C., and Barka, E. A. (2005). Use of plant growthpromoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. *Appl. Environ. Microbiol.* 71, 4951–4959. doi: 10.1128/Aem.71.9.4951-4959.2005
- Cramer, G. R. (1992). Kinetics of maize leaf elongation.2. Responses of a Na-excluding cultivar and a Na-including cultivar to varying Na/Ca salinities. J. Exp. Bot. 43, 857–864. doi: 10.1093/jxb/43.6.857
- Dardanelli, M. S., Fernández de Córdoba, F. J., Espuny, M. R., Rodríguez Carvajal, M. A., Soria Díaz, M. E., Gil Serrano, A. M., et al. (2008). Effect of *Azospirillum* brasilense coinoculated with Rhizobium on *Phaseolus vulgaris* flavonoids and Nod factor production under salt stress. *Soil Biol. Biochem.* 40, 2713–2721.
- Davenport, R., James, R. A., Zakrisson-Plogander, A., Tester, M., and Munns, R. (2005). Control of sodium transport in durum wheat. *Plant Physiol.* 137, 807–818. doi: 10.1104/pp.104.057307
- del Amor, F. M., and Cuadra-Crespo, P. (2012). Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. *Funct. Plant Biol.* 39, 82–90. doi: 10.1071/Fp11173
- 25. Divya, B., and Kumar, M. D. (2011). Plant -microbe interaction with enhanced bioremediation. *Res. J. Biotechnol.* 6, 72–79.
- 26. Dodd, I. C., and Perez-Alfocea, F. (2012). Microbial amelioration of crop salinity stress. *J. Exp. Bot.* 63, 3415–3428. doi: 10.1093/jxb/ers033
- 27. Dodd, I. C., Zinovkina, N. Y., Safronova, V. I., and Belimov, A. A. (2010). Rhizobacterial mediation of plant hormone status. *Ann. Appl. Biol.* 157, 361–379. doi: 10.1111/j.1744-7348.2010.00439.x
- Doering, E. J., and Sandoval, F. M. (1981). Chemistry of seep drainage in southwestern northdakota. Soil Sci. 132, 142–149. doi: 10.1097/00010694-198108000-00003
- 29. Duzan, H. M., Zhou, X., Souleimanov, A., and Smith, D. L. (2004). Perception of *Bradyrhizobium japonicum* Nod factor by soybean [*Glycine max* (L.) Merr.] root hairs under abiotic stress conditions. *J. Exp. Bot.* 55, 2641–2646. doi: 10.1093/jxb/erh265
- Egamberdieva, D. (2009). Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. *Acta Physiol Plant* 31, 861–864. doi: 10.1007/s11738-009-0297-0

- 31. Egamberdieva, D., and Lugtenberg, B. (2014). "Use of plant growth-promoting rhizobacteria to alleviate salinity stress in plants," in *Use of Microbes for the Alleviation of Soil Stresses*, Vol. 1, ed. M. Miransari (New York, NY: Springer), 73–96.
- 32. Epstein, E. (1998). How calcium enhances plant salt tolerance. Science 280, 1906–1907.
- Estevez, J., Soria-Diaz, M. E., de Cordoba, F. F., Moron, B., Manyani, H., Gil, A., et al. (2009). Different and new Nod factors produced by *Rhizobium tropici* CIAT899 following Na+ stress. *FEMS Microbiol. Lett.* 293, 220–231. doi: 10.1111/j.1574-6968.2009.01540.x
- Figueiredo, M. V. B., Burity, H. A., Martinez, C. R., and Chanway, C. P. (2008). Alleviation of drought stress in the common bean (*Phaseolus vulgaris* L.) by co-inoculation with Paenibacillus polymyxa and *Rhizobium tropici*. *Appl. Soil Ecol.* 40, 182–188. doi: 10.1016/j.apsoil.2008.04.005
- 35. Flowers, T. J., and Colmer, T. D. (2015). Plant salt tolerance: adaptations in halophytes. *Ann. Bot.* 115, 327–331. doi: 10.1093/aob/mcu267
- 36. Flowers, T. J., Hajibagheri, M. A., and Clipson, N. J. W. (1986). Halophytes. *Q. Rev. Biol.* 61, 313–337. doi: 10.1086/415032
- Fricke, W., Akhiyarova, G., Wei, W. X., Alexandersson, E., Miller, A., Kjellbom, P. O., et al. (2006). The short-term growth response to salt of the developing barley leaf. *J. Exp. Bot.* 57, 1079–1095. doi: 10.1093/jxb/erj095
- Gill, S. S., and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. *Plant Physiol. Biochem.* 48, 909–930. doi: 10.1016/j.plaphy.2010.08.016
- 39. Gilliham, M., and Tester, M. (2005). The regulation of anion loading to the maize root xylem. *Plant Physiol.* 137, 819–828. doi: 10.1104/pp.104.054056
- 40. Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. *Scientifica (Cairo)* 2012, 963401. doi: 10.6064/2012/963401
- 41. Glick, B. R., Cheng, Z., Czarny, J., and Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria. *Eur. J. Plant Pathol.* 119, 329–339. doi: 10.1007/s10658-007-9162-4
- Gray, E. J., and Smith, D. L. (2005). Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. *Soil Biol. Biochem.* 37, 395–412. doi: 10.1016/j.soilbio.2004.08.030
- 43. Gupta, K., Dey, A., and Gupta, B. (2013). Plant polyamines in abiotic stress responses. *Acta Physiol. Plant.* 35, 2015–2036. doi: 10.1007/s11738-013-1239-4
- 44. Habib, S. H., Kausar, H., and Saud, H. M. (2016). Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. *Biomed. Res. Int.* 2016:6284547. doi: 10.1155/2016/6284547
- 45. Halfter, U., Ishitani, M., and Zhu, J. K. (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. *Proc. Natl. Acad. Sci. U.S.A.* 97, 3735–3740. doi: 10.1073/pnas.040577697
- 46. Hasegawa, P. M., Bressan, R. A., Zhu, J. K., and Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. *Annu. Rev. Plant Physiol. Plant Mol. Biol.* 51, 463–499. doi: 10.1146/annurev.arplant.51.1.463
- Jacoby, R. P., Che-Othman, M. H., Millar, A. H., and Taylor, N. L. (2016). Analysis of the sodium chloride-dependent respiratory kinetics of wheat mitochondria reveals differential effects on phosphorylating and non-phosphorylating electron transport pathways. *Plant Cell Environ.* 39, 823–833. doi: 10.1111/pce.12653

- Janssen, J., Weyens, N., Croes, S., Beckers, B., Meiresonne, L., Van Peteghem, P., et al. (2015). Phytoremediation of metal contaminated soil using willow: exploiting plant-associated bacteria to improve biomass production and metal uptake. *Int. J. Phytoremediation* 17, 1123–1136. doi: 10.1080/15226514.2015.1045129
- 49. Jin, C. W., Ye, Y. Q., and Zheng, S. J. (2014). An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes. *Ann. Bot.* 113, 7–18. doi: 10.1093/aob/mct249
- 50. Kang, S.-M., Khan, A. L., Waqas, M., You, Y.-H., Kim, J.-H., Kim, J.-G., et al. (2014a). Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in *Cucumis sativus*. J. Plant Interact. 9, 673–682. doi: 10.1080/17429145.2014.894587
- Kang, S. M., Radhakrishnan, R., Khan, A. L., Kim, M. J., Park, J. M., Kim, B. R., et al. (2014b). Gibberellin secreting rhizobacterium, *Pseudomonas putida* H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. *Plant Physiol. Biochem.* 84, 115–124. doi: 10.1016/j.plaphy.2014.09.001
- 52. Kempf, B., and Bremer, E. (1998). Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. *Arch. Microbiol.* 170, 319–330. doi: 10.1007/s002030050649
- 53. Kim, K., Jang, Y.-J., Lee, S.-M., Oh, B.-T., Chae, J.-C., and Lee, K.-J. (2014). Alleviation of salt stress by *Enterobacter* sp. *EJ*01 in tomato and Arabidopsis is accompanied by upregulation of conserved salinity responsive factors in plants. *Mol. Cells* 37, 109–117. doi: 10.14348/molcells.2014.2239
- 54. Kirkup, B. C., and Riley, M. A. (2004). Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. *Nature* 428, 412–414. doi: 10.1038/nature02429
- 55. Kohler, J., Caravaca, F., Carrasco, L., and Roldan, A. (2006). Contribution of *Pseudomonas* mendocina and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions. *Soil Use Manage*. 22, 298–304. doi: 10.1111/j.1475-2743.2006.00041.x
- 56. Kuan, K. B., Othman, R., Abdul Rahim, K., and Shamsuddin, Z. H. (2016). Plant growthpromoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. *PLOS ONE* 11:e0152478. doi: 10.1371/journal.pone.0152478
- 57. Ledger, T., Rojas, S., Timmermann, T., Pinedo, I., Poupin, M. J., Garrido, T., et al. (2016). Volatile-mediated effects predominate in *Paraburkholderia phytofirmans* growth promotion and salt stress tolerance of *Arabidopsis thaliana*. *Front. Microbiol.* 7:1838. doi: 10.3389/fmicb.2016.01838
- 58. Lugtenberg, B., and Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. *Annu. Rev. Microbiol.* 63, 541–556. doi: 10.1146/annurev.micro.62.081307.162918
- 59. Lugtenberg, B. J., Malfanova, N., Kamilova, F., and Berg, G. (2013). Plant growth promotion by microbes. *Mol. Microb. Ecol. Rhizosphere* 1-2, 559–573.
- Marulanda, A., Azcon, R., Chaumont, F., Ruiz-Lozano, J. M., and Aroca, R. (2010). Regulation of plasma membrane aquaporins by inoculation with a *Bacillus megaterium* strain in maize (*Zea mays* L.) plants under unstressed and salt-stressed conditions. *Planta* 232, 533– 543. doi: 10.1007/s00425-010-1196-8

- Miransari, M., and Smith, D. L. (2009). Alleviating salt stress on soybean (*Glycine max* (L.) Merr.) - *Bradyrhizobium japonicum* symbiosis, using signal molecule genistein. *Eur. J. Soil Biol.* 45, 146–152. doi: 10.1016/j.ejsobi.2008.11.002
- 62. Mittler, R., Vanderauwera, S., Gollery, M., and Van Breusegem, F. (2004). Reactive oxygen gene network of plants. *Trends Plant Sci.* 9, 490–498. doi: 10.1016/j.tplants.2004.08.009
- 63. Morgan, P. W., and Drew, M. C. (1997). Ethylene and plant responses to stress. *Physiol. Plant.* 100, 620–630. doi: 10.1034/j.1399-3054.1997.1000325.x
- 64. Munns, R. (2002a). Comparative physiology of salt and water stress. *Plant Cell Environ.* 25, 239–250. doi: 10.1046/j.0016-8025.2001.00808.x
- 65. Munns, R. (2002b). Salinity, Growth and Phytohormones. Berlin: Springer.
- 66. Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. *Annu. Rev. Plant Biol.* 59, 651–681. doi: 10.1146/annurev.arplant.59.032607.092911
- 67. Nadeem, S. M., Zahir, Z. A., Naveed, M., and Arshad, M. (2009). Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. *Can. J. Microbiol.* 55, 1302–1309. doi: 10.1139/W09-092
- 68. Narula, N., Kothe, E., and Behl, R. K. (2009). Role of root exudates in plant-microbe interactions. J. Appl. Bot. Food Qual. Angewandte Botanik 82, 122–130.
- 69. Nassar, I. N., and Horton, R. (1999). Salinity and compaction effects on soil water evaporation and water and solute distributions. *Soil Sci. Soc. Am. J.* 63, 752–758.
- Nautiyal, C. S., Srivastava, S., Chauhan, P. S., Seem, K., Mishra, A., and Sopory, S. K. (2013). Plant growth-promoting bacteria *Bacillus amyloliquefaciens* NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. *Plant Physiol. Biochem.* 66, 1–9. doi: 10.1016/j.plaphy.2013.01.020
- 71. Nie, M., Wang, Y. J., Yu, J. Y., Xiao, M., Jiang, L. F., Yang, J., et al. (2011). Understanding plant-microbe interactions for phytoremediation of petroleum-polluted soil. *PLOS ONE* 6:e17961. doi: 10.1371/journal.pone.0017961
- 72. Niu, S. Q., Li, H. R., Pare, P. W., Aziz, M., Wang, S. M., Shi, H. Z., et al. (2016). Induced growth promotion and higher salt tolerance in the halophyte grass *Puccinellia tenuiflora* by beneficial rhizobacteria. *Plant Soil* 407, 217–230. doi: 10.1007/s11104-015-2767-z
- 73. Oldroyd, G. E. (2013). Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. *Nat. Rev. Microbiol.* 11, 252–263. doi: 10.1038/nrmicro2990
- 74. Othman, Y., Al-Karaki, G., Al-Tawaha, A., and Al-Horani, A. (2006). Variation in germination and ion uptake in barley genotypes under salinity conditions. *World J. Agric. Sci.* 2, 11–15.
- 75. Panwar, M., Tewari, R., Gulati, A., and Nayyar, H. (2016). Indigenous salt-tolerant rhizobacterium Pantoea dispersa (PSB3) reduces sodium uptake and mitigates the effects of salt stress on growth and yield of chickpea. *Acta Physiol. Plant.* 38:278. doi: 10.1007/s11738-016-2284-6
- Passioura, J. B., and Munns, R. (2000). Rapid environmental changes that affect leaf water status induce transient surges or pauses in leaf expansion rate. *Aust. J. Plant Physiol.* 27, 941– 948.
- 77. Paul, M. J., and Foyer, C. H. (2001). Sink regulation of photosynthesis. *J. Exp. Bot.* 52, 1383–1400. doi: 10.1093/jexbot/52.360.1383
- 78. Perez-Alfocea, F., Albacete, A., Ghanem, M. E., and Dodd, I. C. (2010). Hormonal regulation of source-sink relations to maintain crop productivity under salinity: a case study of root-to-shoot signalling in tomato. *Funct. Plant Biol.* 37, 592–603. doi: 10.1071/Fp10012

- 79. Pinedo, I., Ledger, T., Greve, M., and Poupin, M. J. (2015). Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in *Arabidopsis thaliana* salt tolerance. *Front. Plant Sci.* 6:466. doi: 10.3389/fpls.2015.00466
- 80. Pitman, M. G., and Lauchli, A. (2002). "Global impact of salinity and Agricultural ecosystems," in *Salinity: Environment Plants Molecules*, eds A. Lauchli and U. Luttage (Amsterdam: Kluwer Academic Publishers), 3–20.
- 81. Qiu, Q. S., Guo, Y., Dietrich, M. A., Schumaker, K. S., and Zhu, J. K. (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in *Arabidopsis thaliana*, by SOS2 and SOS3. *Proc. Natl. Acad. Sci. U.S.A.* 99, 8436–8441. doi: 10.1073/pnas.122224699
- Qurashi, A. W., and Sabri, A. N. (2012). Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. *Braz. J. Microbiol.* 43, 1183– 1191. doi: 10.1590/S1517-838220120003000046
- Raven, J. A. (1985). Regulation of Ph and generation of osmolarity in vascular plants a costbenefit analysis in relation to efficiency of use of energy, nitrogen and water. *New Phytol.* 101, 25–77. doi: 10.1111/j.1469-8137.1985.tb02816.x
- 84. Rengasamy, P. (2002). Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. *Aust. J. Exp. Agric.* 42, 351–361.
- 85. Rhodes, D., Nadolska-Orczyk, A., and Rich, P. J. (2002). "Salinity, osmolytes and compatible solutes," in *Salinity: Environment Plants Molecules*, eds A. Läuchli and U. Lüttge (Dordrecht: Springer), 181–204.
- 86. Rodriguez, H., and Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. *Biotechnol. Adv.* 17, 319–339. doi: 10.1016/S0734-9750(99)00014-2
- 87. Rodriguez-Navarro, A., and Rubio, F. (2006). High-affinity potassium and sodium transport systems in plants. *J. Exp. Bot.* 57, 1149–1160. doi: 10.1093/jxb/erj068
- 88. Rojas-Tapias, D., Moreno-Galván, A., Pardo-Díaz, S., Obando, M., Rivera, D., and Bonilla, R. (2012). Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (*Zea mays*). *Appl. Soil Ecol.* 61, 264–272.
- 89. Sandhya, V., and Ali, S. Z. (2015). The production of exopolysaccharide by *Pseudomonas putida* GAP-P45 under various abiotic stress conditions and its role in soil aggregation. *Microbiology* 84, 512–519. doi: 10.1134/S0026261715040153
- 90. Santner, A., and Estelle, M. (2009). Recent advances and emerging trends in plant hormone signalling. *Nature* 459, 1071–1078. doi: 10.1038/nature08122
- 91. Shalhevet, J. (1994). Using water of marginal quality for crop production major issues. *Agric. Water Manage.* 25, 233–269. doi: 10.1016/0378-3774(94)90063-9
- 92. Sharma, D. R., and Prihar, S. S. (1973). Effect of depth and salinity of groundwater on evaporation and soil salinization. *Indian J. Agric. Sci.* 43, 582–586.
- 93. Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., and Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. *Springerplus* 2:587. doi: 10.1186/2193-1801-2-587
- 94. Singh, R. P., and Jha, P. N. (2016). Alleviation of salinity-induced damage on wheat plant by an ACC deaminase-producing halophilic bacterium Serratia sp SL-12 isolated from a salt lake. *Symbiosis* 69, 101–111. doi: 10.1007/s13199-016-0387-x
- 95. Skorupska, A., Janczarek, M., Marczak, M., Mazur, A., and Król, J. (2006). Rhizobial exopolysaccharides: genetic control and symbiotic functions. *Microb. Cell Fact.* 5:7. doi: 10.1186/1475-2859-5-7

- 96. Smith, D. L., Gravel, V., and Yergeau, E. (2017). Editorial: signaling in the phytomicrobiome. *Front. Plant Sci.* 8:611. doi: 10.3389/fpls.2017.00611
- 97. Smith, D. L., Praslickova, D., and Ilangumaran, G. (2015a). Inter-organismal signaling and management of the phytomicrobiome. *Front. Plant Sci.* 6:722. doi: 10.3389/fpls.2015.00722
- 98. Smith, D. L., Subramanian, S., Lamont, J. R., and Bywater-Ekegard, M. (2015b). Signaling in the phytomicrobiome: breadth and potential. *Front. Plant Sci.* 6:709. doi: 10.3389/fpls.2015.00709
- 99. Spaepen, S., and Vanderleyden, J. (2011). Auxin and plant-microbe interactions. *Cold Spring Harb. Perspect. Biol.* 3:a001438. doi: 10.1101/cshperspect.a001438
- 100.Steenhoudt, O., and Vanderleyden, J. (2006). Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. *FEMS Microbiol. Rev.* 24, 487–506. doi: 10.1111/j.1574-6976.2000.tb00552.x
- 101.Stoodley, P., Sauer, K., Davies, D. G., and Costerton, J. W. (2002). Biofilms as complex differentiated communities. *Annu. Rev. Microbiol.* 56, 187–209. doi: 10.1146/annurev.micro.56.012302.160705
- 102. Subramanian, S., Ricci, E., Souleimanov, A., and Smith, D. L. (2016a). A proteomic approach to lipo-chitooligosaccharide and thuricin 17 effects on soybean germinationunstressed and salt stress. *PLOS ONE* 11:e0160660. doi: 10.1371/journal.pone.0160660
- 103.Subramanian, S., Souleimanov, A., and Smith, D. L. (2016b). Proteomic studies on the effects of lipo-chitooligosaccharide and thuricin 17 under unstressed and salt stressed conditions in *Arabidopsis thaliana*. *Front. Plant Sci.* 7:1314. doi: 10.3389/fpls.2016.01314
- 104. Sziderics, A. H., Rasche, F., Trognitz, F., Sessitsch, A., and Wilhelm, E. (2007). Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (*Capsicum annuum* L.). *Can. J. Microbiol.* 53, 1195–1202. doi: 10.1139/W07-082
- 105.Tester, M., and Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. *Ann. Bot.* 91, 503–527. doi: 10.1093/aob/mcg058
- 106.Tu, J. C. (1981). Effect of salinity on rhizobium-root-hair interaction, nodulation and growth of soybean. *Can. J. Plant Sci.* 61, 231–239.
- 107.Upadhyay, S. K., and Singh, D. P. (2015). Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. *Plant Biol.* 17, 288–293. doi: 10.1111/plb.12173
- 108.Upadhyay, S. K., Singh, J. S., and Singh, D. P. (2011). Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. *Pedosphere* 21, 214–222. doi: 10.1016/S1002-0160(11)60120-3
- 109. Vaishnav, A., Kumari, S., Jain, S., Varma, A., and Choudhary, D. K. (2015). Putative bacterial volatile-mediated growth in soybean (*Glycine max* L. *Merrill*) and expression of induced proteins under salt stress. *J. Appl. Microbiol.* 119, 539–551. doi: 10.1111/jam.12866
- 110.Vorholt, J. A. (2012). Microbial life in the phyllosphere. *Nat. Rev. Microbiol.* 10, 828–840. doi: 10.1038/nrmicro2910
- 111.Wang, Q. Y., Dodd, I. C., Belimov, A. A., and Jiang, F. (2016). Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. *Funct. Plant Biol.* 43, 161–172. doi: 10.1071/Fp15200
- 112. Waśkiewicz, A., Gładysz, O., and Goliñski, P. (2016). "Participation of phytohormones in adaptation to salt stress," in *Plant Hormones Under Challenging Environmental Factors*, eds G. J. Ahammed and J.-Q. Yu (Dordrecht: Springer), 75–115.

- 113. Weyens, N., Beckers, B., Schellingen, K., Ceulemans, R., Van der Lelie, D., Newman, L., et al. (2015). The potential of the Ni-resistant TCE-degrading *Pseudomonas putida* W619-TCE to reduce phytotoxicity and improve phytoremediation efficiency of poplar cuttings on A Ni-TCE Co-contamination. *Int. J. Phytoremediation* 17, 40–48. doi: 10.1080/15226514.2013.828016
- 114. Wintermans, P. C., Bakker, P. A., and Pieterse, C. M. (2016). Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. *Plant Mol. Biol.* 90, 623–634. doi: 10.1007/s11103-016-0442-2
- 115. Yamashita, K., Kasai, M., Yamamoto, Y., and Matsumoto, H. (1994). Stimulation of plasmamembrane H+-transport activity in barley roots by salt stress - possible role of increase in chloride permeability. *Soil Sci. Plant Nutr.* 40, 555–563.
- 116.Yan, J. M., Smith, M. D., Glick, B. R., and Liang, Y. (2014). Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in tomato (*Solanum lycopersicum*) under salt stress. *Botany* 92, 775–781. doi: 10.1139/cjb-2014-0038
- 117.Yang, A. Z., Akhtar, S. S., Iqbal, S., Amjad, M., Naveed, M., Zahir, Z. A., et al. (2016). Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. *Funct. Plant Biol.* 43, 632–642. doi: 10.1071/Fp15265
- 118.Yang, J., Kloepper, J. W., and Ryu, C. M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. *Trends Plant Sci.* 14, 1–4. doi: 10.1016/j.tplants.2008.10.004
- 119.Yao, L. X., Wu, Z. S., Zheng, Y. Y., Kaleem, I., and Li, C. (2010). Growth promotion and protection against salt stress by *Pseudomonas putida* Rs-198 on cotton. *Eur. J. Soil Biol.* 46, 49–54. doi: 10.1016/j.ejsobi.2009.11.002
- 120.Zahran, H. H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. *Microbiol. Mol. Biol. Rev.* 63, 968–989.
- 121.Zerrouk, I. Z., Benchabane, M., Khelifi, L., Yokawa, K., Ludwig-Muller, J., and Baluska, F. (2016). A *Pseudomonas* strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress. *J. Plant Physiol.* 191, 111–119. doi: 10.1016/j.jplph.2015.12.009
- 122.Zhang, H., Kim, M. S., Sun, Y., Dowd, S. E., Shi, H., and Paré, P. W. (2008). Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. *Mol. Plant Microbe Interact.* 21, 737–744. doi: 10.1094/MPMI-21-6-0737
- 123.Zhou, C., Ma, Z., Zhu, L., Xiao, X., Xie, Y., Zhu, J., et al. (2016). Rhizobacterial strain *Bacillus megaterium* BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. *Int. J. Mol. Sci.* 17:976. doi: 10.3390/ijms17060976
- 124.Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53, 247–273. doi: 10.1146/annurev.arplant.53.091401.143329
- 125.Zhu, J.-K. (2007). Plant Salt Stress. Hoboken, NJ: John Wiley & Sons.

# **CONNECTING TEXT**

The previous section provided an overview of the current understanding around beneficial members of the phytomicrobiome associated with the rhizosphere. Plant growth promoting rhizobacteria (PGPR) hold the potential to improve plant growth and development in a sustainable way. PGPR has been known to modulate abiotic stress regulation via direct and indirect mechanisms that induce systemic tolerance in plants. Phytomicrobiome of the native relatives of cultivated plants could be harnessed to isolate and characterize beneficial PGPR strains that alleviate (a)biotic stress and boost crop productivity. *Amphicarpaea bracteata* is a native legume related to soybean and cross-inoculation of *Bradyrhizobium* symbiont has been studied previously but not the other PGPR associated with the root nodules of this plant. In the present study, we hypothesize that nodule dwelling PGPR strains of *A. bracteata* could be applied to enhance plant growth and stress tolerance of soybean. Based on the background information and literature review, the project described below addresses the following research questions:

- 1) Does *Amphicarpaea bracteata* harbour beneficial PGPR in its root nodules? Will plant growth and stress tolerance of soybean improve with such strains?
- 2) What are the mechanisms/pathways in soybean that are elicited by the strains and their role in inducing stress (salt) tolerance and plant growth promotion of soybean?
- 3) What are the genomic characteristics of the strains that might contribute to their function as PGPR?

# **3** Chapter 3 Rhizobacteria From Root Nodules of an Indigenous Legume Enhance Salinity Stress Tolerance in Soybean

Authors: Gayathri Ilangumaran<sup>1</sup>, Timothy Damian Schwinghamer<sup>2</sup> and Donald Lawrence Smith<sup>1</sup> Affiliations:

<sup>1</sup> Department of Plant Science, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada.

<sup>2</sup> Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.

This manuscript was originally published in Frontiers in Sustainable Food Systems journal and shared in the thesis via the Creative Commons Attribution 4.0 International Public License.

Ilangumaran, G., Schwinghamer, T. D., and Smith, D.L. (2021). Rhizobacteria From Root Nodules of an Indigenous Legume Enhance Salinity Stress Tolerance in Soybean. *Front. Sustain. Food Syst.* 4, 308. doi: 10.3389/fsufs.2020.617978

# 3.1 Abstract

Soybean is the most widely grown legume worldwide, but it is a glycophyte and salinity stress can decrease its yield potential up to 50%. Plant growth promoting rhizobacteria (PGPR) are known to enhance growth and induce tolerance to abiotic stresses including salinity. The aim of this study was to isolate such PGPR from the root nodules of *Amphicarpaea bracteata*, a North American relative of soybean. Isolated strains were identified, and 15 strains were screened for potential utilization as PGPR of soybean through a series of greenhouse trials. Four isolates that greatly improved shoot and root growth were further selected and screened under a range of salt concentrations. Two of the most promising strains, *Rhizobium sp.* SL42 and *Hydrogenophaga sp.* SL48 were ascertained to exert the greatest beneficial effects on soybean growth and salinity tolerance. They were co-inoculated with *Bradyrhizobium japonicum* 532C (*Bj*) and the plants were grown up to the harvest stage. The treatment of *Bj*+SL42 resulted in higher shoot biomass than the control, 18% at the vegetative stage, 16% at flowering, 7.5% at pod-filling, and 4.6% at harvest and seed weight was increased by 4.3% under salt stress ( $EC_e = 7.4 \text{ ds/m}$ ). Grain yield was raised under optimal conditions by 7.4 and 8.1% with treatments  $B_{j+}SL48$  and  $B_{j+}SL42+SL48$ , respectively. Nitrogen assimilation and shoot  $K^+/Na^+$  ratio were also higher in the co-inoculation treatments. This study suggested that inoculation with bacteria from an indigenous legume can

induce stress tolerance, improve growth and yield to support sustainability, and encourage ecological adaptability of soybean.

#### 3.2 Introduction

Salinity is a major threat to agricultural sustainability and undermining the crop productivity on arable lands worldwide of which more than 50% is predicted to be affected by 2050 (Ashraf, 1994). It is anticipated that climate changes may hasten the aridisation of the Great Plains of North America during this century, leading to deficits in groundwater level and increased salinization of soil and water resources (Florinsky et al., 2009). The Canadian Prairies are susceptible to salinity, due to their soil type, moisture loss, high evapotranspiration rates and mineral salts in groundwater (Wiebe et al., 2007). The temporal fluctuation of soil salinity in this region is controlled by groundwater depth, which in turn is related to annual precipitation (Florinsky et al., 2009). Excessive use of road salts during winter may risk contamination of water sources and groundwater table in regions above 40°N (EnvironmentCanada, 2001). Soil salinity is also a pressing problem in many states of the USA on both irrigated and rainfed agricultural lands (NRCS, 2002). Salinity stress is mainly caused by uptake of NaCl, the dominant salt in nature, which creates both osmotic and ionic imbalances in plants. These lead to physiological dysfunctions that inhibit plant growth and development, thereby declining crop yield (Munns and Tester, 2008). Soil salinization has caused an estimated annual loss of \$257 million CAD to Canadian farmers in 1998. Even though salinization risk has been lowered in the Prairies through better land-soil-water management practices, it persists to be a localized issue (AAFC, 2020).

Soybean [*Glycine max* (L.) Merrill] is an agriculturally important grain legume and oilseed crop worldwide. Due to the abundant protein (36%) and oil (19%) reserves in its seed, soybean has found uses as food for human consumption, animal feed, edible oil and industrial products (Thoenes, 2004). Soybean is capable of fixing atmospheric nitrogen through its symbiotic association with species of *Bradyrhizobium (B. japonicum, B. elkani, B. liaoningense, and B. yuanmingense)* in root nodules. Hence, it is an ideal rotation crop with corn, wheat, cotton and other arable crops, to increase soil nitrogen content and reduce production costs. Cultivation of soybean has gained significance in North America after world war II (Cloutier, 2017). Now, Canada and the USA are prominent global suppliers and consumers with the USA ranking first (60% of soybean trade). Soybean production has been steadily on the rise in Canada during recent

years (Supplementary Table 3.1) and cultivation has expanded in the southern regions, bolstered by the introduction of early-maturing varieties (Dorff, 2007).

However, sub-optimal growing conditions are met with environmental challenges other than just low temperatures. Soybean is basically a short-day plant (development is influenced by daylength), relatively resistant to temperature fluctuations (more extreme temperatures affect flowering and pod-setting), grown in a wide range of soils (except very sandy), sensitive to waterlogging and moderately tolerant to drought and salinity (FAO, 2002). According to the FAO crop database, "yield decrease due to soil salinity is: 0% at ECe 5 mmhos/cm, 10% at 5.5, 25% at 6.2, 50% at 7.5 and 100% at ECe 10 mmhos/cm." Salinity stress may cause physiological and biochemical disorders in soybean that inhibit seed germination and plant growth, aggravate leaf chlorosis and bleaching, decrease biomass accumulation, restrain nodulation and nitrogen fixation, and reduce yield and seed quality (Phang et al., 2008). Salinity has significantly reduced the germination percentage, plant height and shoot dry weight of 45 day-old plants of three soybean cultivars. There was also an increase in sodium and chloride levels in the leaf tissues (Essa, 2002). In soybean cv. Williams, seedling growth declined to 5% at 220 mmolal NaCl and no growth was recorded at 330 mmolal NaCl (Hosseini et al., 2002). Association mapping of soybean seed germination revealed 1,142 single nucleotide polymorphisms associated with salt tolerance. Salinity tolerance is influenced by numerous genetic and environmental factors and a complex trait, such that molecular breeding for salt-tolerant soybean cultivars has been challenging (Kan et al., 2015).

When commercial cultivation of soybean began in North America (early twentieth century), seeds were inoculated with the *Bradyrhizobium* strains capable of nodulating soybean to facilitate nitrogen fixation because they were not existing in the soil. Thus, populations of bradyrhizobia have become established in soils that had no prior soybean cropping history as a result of selective enrichment over the years by the host plant (Weaver et al., 1972). Subsequently, there has been research interest in exploring the symbiotic associations of native legumes and their relationships with soybean. *Amphicarpaea bracteata* (American hog peanut) is an annual plant of the family Leguminosae, native to eastern North America, found in a variety of partially shaded, wet habitats (Parker, 1994). *A. bracteata* is closely related to soybean, confirmed by molecular studies and both genera are classified in the subtribe Glycininae of the tribe Phaseoleae (Zhu et al., 1995). Symbiotic specificity and nodule formation with rhizobia strains are genetically controlled

by nodulation restriction alleles in the host legume (Devine et al., 1990; Wilkinson et al., 1996). The inoculation of soybean plants with 10 *Bradyrhizobium* strains from *A. bracteata* resulted in nodule formation but no nitrogen fixation (Marr et al., 1997). Micro-evolution was observed within *Bradyrhizobium* populations from the soils of soybean field sites in eastern Canada and the isolated strains were clustered with isolates from the native legumes (Tang et al., 2012). In a later study by Bromfield et al. (2017), inoculation of soybean with root-zone soils of native legumes including *A. bracteata* resulted in nodulation. Upon isolation, bacteria of the *Bradyrhizobium* genus and closely related taxa were inoculated onto soybean, and some of the bacteria containing *nodC* and *nifH* gene sequences effectively fixed nitrogen, while the others were ineffective.

Symbiotic association with rhizobia has been the primary focus of plant-microbe interaction research on legumes, and more particularly soybean, but there are also other beneficial plant growth promoting rhizobacteria (PGPR) associated with them. Endophytic bacteria were isolated from soybean nodules and co-inoculation of Bacillus subtilis NEB4, B. subtilis NEB5 and B. thuringiensis NEB17 with B. japonicum increased soybean growth and plant dry weight (Bai et al., 2002a). PGPR influence plant growth through direct and indirect mechanisms such as nitrogen fixation, nutrient assimilation, and secretion of exopolysaccharides and signaling molecules (Hynes et al., 2008; Adesemoye and Kloepper, 2009). Distinct genera of PGPR have been known to act as elicitors of induced systemic tolerance to abiotic stress (Yang et al., 2009). Many studies have reported on the beneficial role of PGPR co-inoculated with *Bradyrhizobium* on growth, yield and stress tolerance of soybean. Co-inoculation with Serratia proteamaculans 1-102 and S. liquefaciens 2-68 increased plant dry weight and nodule number in soybean under suboptimal root-zone temperatures in a soil-less media (Bai et al., 2002b). In a field study, seed coinoculation with Azospirillum brasilense increased soybean yield by 14.1% (Hungria et al., 2013). Co-inoculation with Pseudomonas putida TSAU1 improved plant growth, root architecture, nitrogen and phosphorous content of soybean under salt stress in a hydroponic experiment (Egamberdieva et al., 2017).

Diverse PGPR may be associated within the nodules of *A. bracteata* and they may confer better adaptation of soybean plants to the soil and environmental conditions prevailing in Canada and benefit co-inoculation with *B. japonicum* for nitrogen fixation. The current study had two objectives. First, bacteria isolated from the root nodules of *A. bracteata* were screened for their ability to enhance plant growth and salt stress tolerance of soybean by evaluating seed germination

and growth parameters in a greenhouse environment. Successive screening was then performed at a range of salt concentrations to determine the threshold salinity tolerance of soybean, inoculated with selected isolates. Second, two of the most promising bacteria were co-inoculated with *Bradyrhizobium japonicum* 532C, to validate their role as PGPR able to induce salinity tolerance, improve nutrient assimilation and increase growth and yield of soybean plants.

# 3.3 Materials and Methods

### 3.3.1 Isolation of bacteria from root nodules

Plants of *Amphicarpaea bracteata* were collected along the shore of Lac St. Louis on the Macdonald Campus of McGill University, located in Sainte-Anne-de-Bellevue, Quebec, Canada. The nodules present on the roots of *A. bracteata* were relatively smaller and fewer than those of cultivated soybean plants (Supplementary Figure 3.1). The nodules were separated from the roots, washed and surface sterilized using 70% (v/v) ethanol for two min. They were crushed using micro pestles and the suspension was serially diluted in sterile water. The dilutions (from  $10^{-2}$  to  $10^{-7}$ ) were plated on Kings B and yeast extract mannitol (YEM) agar plates. The plates were incubated at 25 °C for 24–96 h. Single colonies of bacteria (excluding mold or actinomycetes) that were morphologically different from one another were re-isolated on new agar plates to obtain pure colonies (Supplementary Figure 3.2). The individual colonies of 15 isolates were grown in liquid broth for culture maintenance and stored in glycerol stocks at  $-80^{\circ}$ C.

# 3.3.2 Preparation of bacterial culture

The bacteria were grown in Kings B or YEM broth for 48 h, incubated at 25°C and 150 rpm. The cultures were harvested by centrifugation at  $5,000 \times \text{g}$  for 10 min, room temperature (Awel<sup>TM</sup> MF 48-R, NuAire, USA) and the supernatant was discarded. The pellet was suspended in 10 mM MgSO<sub>4</sub> and the optical density was adjusted to 0.1 at A<sub>600nm</sub> (Ultraspec 4300 pro UV/Visible Spectrophotometer, Biochrom). The prepared suspension was used in downstream experiments.

#### 3.3.3 Identification of nodule bacteria

The identification of the isolated bacteria was done by Sanger di-deoxy nucleotide sequencing (Genome Quebec, Montreal, Canada) of the 16S rRNA gene. Briefly, the samples were diluted 1:10 with water and the PCR mix was prepared with Taq DNA polymerase (Roche

FastStart High Fidelity PCR system 2500 U), 27F (5'-AGAGTTTGATCMTGGCTCAG-3'), and 1492R (3'-TACGGYTACCTTGTTACGACTT-5') primers and run in the PCR cycler (Eppendorf Mastercycler<sup>®</sup> ProS) for 40 cycles. The amplified product was sequenced on Applied Biosystems<sup>™</sup> 3730XL DNA Analyzer platform. The assembled sequences (in FASTA format) were queried for similarity using the BLAST tool to find reference prokaryotic type strains (https://blast.ncbi.nlm.nih.gov/). Based on the score and percent identity, the isolated strains were classified into specific genus and species and the assembled sequences were then submitted to GenBank, NCBI (https://submit.ncbi.nlm.nih.gov/subs/genbank/). A phylogenetic analysis was performed with EMBL-EBI webservices API tools: multiple sequence alignment was generated using the interface for Clustal Omega program (https://www.ebi.ac.uk/Tools/msa/clustalo/). The output was used to generate a phylogenetic tree with the Simple Phylogeny tool (https://www.ebi.ac.uk/Tools/phylogeny/simple\_phylogeny/) using the ClustalW2 program. The phylogeny tree was constructed using iTOL (Interactive Tree of Life https://itol.embl.de/) interface (Letunic and Bork, 2019) with the Phylogenetic tree file.

# **3.3.4** Screening for salinity tolerance of the isolates

The isolates were tested for their tolerance capacity of salt stress at 100, 250, and 500 mM NaCl solution. The initial culture was adjusted to 0.01 OD and added to the growth media with added salt in a 96-well plate. The plate was incubated in Cytation5<sup>™</sup> reader (BioTek Instruments Inc.,) at 25 °C and the growth curve was measured at A<sub>600nm</sub> for up to 48 h. The isolates were also screened for PGP activities including biofilm formation, nitrogen fixation, phosphorous solubilization, production of 1-aminocyclopropane-1-carboxylate (ACC) deaminase, indole-3-acetic acid (IAA) and siderophores following standard protocols (Jensen et al., 1960; Schwyn and Neilands, 1987; Bric et al., 1991; Penrose and Glick, 2003; O'Toole, 2011; Goswami et al., 2014).

#### 3.3.5 Screening of bacterial isolates for inducing salinity tolerance in soybean

# 3.3.5.1 Seed germination assay I

Soybean seeds (Absolute RR) were soaked in the bacterial cell suspension (at a rate of 100  $\mu$ L per seed) or 10 mM MgSO<sub>4</sub> (control) for 30 min. The seeds were then placed on Petri dishes (10 seeds per plate) lined with P8 filter paper containing 5 mL of sterile water or 100 mM NaCl solution (EC = 9.8 ds m<sup>-1</sup>). The plates were sealed with parafilm, incubated at 25 °C in the dark inside a growth chamber and germination was counted at 24, 36, and 48 h periods.

## 3.3.5.2 Greenhouse trial I

Seeds were bacterized with the inoculum at a rate of 500  $\mu$ L per seed. Bacterized and control seeds (5 seeds per pot) were placed in 15.25 cm (diameter) pots filled with vermiculite (Perlite Canada Inc.) treated with 300 mL water or 100 mM NaCl solution (EC<sub>e</sub> = 5 ds m<sup>-1</sup>). The pots were placed in a greenhouse room maintained at 25 ± 2°C and 50% relative humidity (Supplementary Figure 3.3). Seedling emergence was counted on 7<sup>th</sup> and 8<sup>th</sup> DAP (days after planting) and the plants were thinned to one seedling per pot. The plants were irrigated with 50 mL water thrice a week and fertilized with 1212 strength Hoagland's solution once a week and sampled at 28<sup>th</sup> DAP. Plant growth variables including plant height, leaf area, shoot dry weight, and root dry weight were measured. Roots were scanned (EPSON Expression 11000XL) and analyzed using WinRHIZO<sup>TM</sup> (Regent Instruments Inc.) image analysis platform to measure root volume, length, and surface area.

# 3.3.5.3 Seed germination assay II

Based on the previous experiments, four bacterial isolates were selected and tested further for their ability to induce salt stress tolerance in soybean. A seed germination experiment as described above was conducted at different levels of salinity (0, 100, 125, 150, 175, and 200 mM NaCl solution) and at two cell densities  $(1 \times 10^8 \text{ and } 1 \times 10^{10} \text{ cfu mL}^{-1})$ .

# 3.3.5.4 Greenhouse trial II

A pot experiment with the different salinity levels and four bacterial isolates at  $1 \times 10^8$  cfu mL<sup>-1</sup> was set in a greenhouse to test the salinity tolerance threshold of soybean. A procedure similar to that described above was followed and the plants were sampled at 28<sup>th</sup> DAP. All experiments were repeated twice with six replications for each treatment.

# 3.3.6 Plant growth and development of soybean under salt stress

Two bacterial isolates were selected and co-inoculated with *Bradyrhizobium japonicum* 532C (all strains at  $1 \times 10^8$  cfu mL<sup>-1</sup>) on soybean seeds (seed bacterization). The seeds were then placed in 25.5 cm (diameter) pots filled with vermiculite and each pot received 1 L water or 150 mM NaCl solution (EC<sub>e</sub> = 7.4 ds m<sup>-1</sup>). The pots were placed in a greenhouse room maintained at  $25 \pm 2^{\circ}$ C and 50% relative humidity. Irrigation was set at 50 mL (+25 mL, if light intensity during the day was >1,000 lux) per pot per day during the vegetative stage and increased to 100 mL (+25 mL) during flowering and pod-filling stages and then reduced to 75 mL (+25 mL) during the

harvest stage. The plants were given 1 g of water-soluble fertilizer in 1 L water (6-11-31, Hydroponic, Plant Prod, Canada) and 2 g of triple superphosphate per pot, at 2 weeks after seeding and then regularly at every growth stage after sampling the previous growth stage. The plants were sampled at mid-vegetative (~30 DAP), mid-flowering (~60 DAP), mid-pod-filling (~90 DAP) and harvest (~110 DAP) stages, and growth variables were measured (Supplementary Figures 3.4 and 3.5). The experiment was repeated twice with 12 replications for each treatment. Dried tissue samples were ground for elemental analysis, measured as mg g<sup>-1</sup> dry weight of the plant tissue. N and P were measured on a flow injection analyzer (FIA) (Lachat QuickChem 8000, Hach<sup>®</sup> USA) and K, Ca and Na were measured after dilutions and appropriate modifier addition on an atomic absorption spectrophotometer (AAS) (Varian 220FS). Seed composition was analyzed at SGS Agrifood laboratories, SGS Canada Inc., Guelph, Canada. Nodules were collected from soybean plants after harvest; bacteria were grown on YEM agar plates similar to the isolation procedure described above and colonies were observed after 48 h of incubation.

#### 3.3.7 Statistical analysis

Data were analyzed using a generalized linear mixed model that was performed using the GLIMMIX procedure in SAS (v 9.4, SAS Inc., Cary, NC). The SAS PROC GLIMMIX models were "mixed" due to the inclusion of fixed (treatment, salinity, and treatment × salinity) and random (RANDOM Rep) effects. The normal distribution was not assumed for the response (i.e., the observed variables) and therefore the models were "generalized." Distributions were specified using the "DIST =" option in the MODEL statement and selected from the exponential family of distributions based on model fit statistics, that is, the Bayesian Information Criterion (BIC) that is part of the PROC GLIMMIX output (IC = Q was specified in the PROC GLIMMIX statement). Variance homogeneity was not assumed, and the structure of variance heterogeneity was specified using a "RANDOM \_RESIDUAL\_/GROUP =" statement and selected based on the BIC. Multiple comparisons were adjusted according to Scheffe's method (i.e., the ADJUST = SCHEFFE option in the LSMEANS statement). Effect slice tables were produced using SLICE and SLICEDIFF in the LSMEANS statement. The data for soybean growth and yield were broken into subsets based on the observed stages of plant development, and data from the respective subsets were analyzed separately using PROC GLIMMIX.

# 3.4 Results

# 3.4.1 Nodule bacteria of Amphicarpaea bracteata

Bacterial colonies from *A. bracteata* nodules were obtained from  $10^{-3}$ ,  $10^{-4}$ , and  $10^{-5}$  dilutions. Since *Bradyrhizobium* takes nearly a week to grow on YEM plates, colonies that grew on the agar were selected after 24 to 96 h incubations. These non-*Bradyrhizobium* colonies of endophytic bacteria were re-isolated and 15 such pure cultures were grown and maintained on Kings B and YEM. One of the strains, SL45, was difficult to culture further and not used in downstream experiments. Of these putative PGPR isolates, there were at least 10 morphologically distinct colonies and they were arbitrarily labeled for identification purposes.

The bacteria identified using partial sequencing of the 16S rRNA gene showed the presence of diverse genera thriving in the nodules of *A. bracteata* (Supplementary Table 3.2) that could be isolated successfully. Five strains were belonging to *Pseudomonas*, two belonging to each of the genera *Hydrogenophaga* and *Variovorax*. The isolates SL36 and SL53 could not be identified using Sanger sequencing because of poor quality PCR product. One *Rhizobium* species was isolated, which is presumed to be one of the associated symbionts of *A. bracteata* for biological nitrogen fixation. A neighbor-joining phylogenetic tree file was constructed using the 16S rRNA gene sequences (Figure 3.1). The phylogenetic tree revealed that *Hydrogenophaga* and *Variovorax* genera are in the same cluster whereas the *Bacillus subtilis, Gemmobacter sp., Flavobacterium sp., Rhizobium sp.,* and *Devosia sp.,* are in the subsequent nodes of divergence, distant from one another.

The isolates differed from each other in their growth patterns when grown under salt conditions (Supplementary Figure 3.6). There was a gradual decrease in growth of strain SL31 with increasing salt concentrations, but it still reached ~1 OD in 500 mM NaCl at 48 h, which is the highest level of growth among all the isolates. Steady growth was observed in strain SL42 up to 250 mM NaCl, but growth was almost negligible at 500 mM NaCl. The salt concentration of 100 mM NaCl increased the growth of strains SL47 and SL48 when compared to 0 mM NaCl, but growth decreased at higher salt concentrations. Growth declined for strain SL52 but progressed for strain SL53 with increasing salt concentrations. Growth was either reduced or inhibited under salt for the other isolates and markedly lower than the isolates mentioned above. Many of the isolates exhibited PGPR characteristics of ACC deaminase and IAA production (Table 3.1 and Supplementary Figure 3.7). *Rhizobium sp.* SL42 and *Hydrogenophaga sp.* SL48 showed a strong

affinity for nitrogen fixation, ACC deaminase activity and biofilm formation. Moreover, *Hydrogenophaga sp.* SL48 also exhibited profuse IAA synthesis from L-tryptophan.



**Figure 3.1**. Phylogenetic relationships between 14 bacterial strains isolated from the nodules of *A. bracteata* based on the 16S rRNA gene sequences. Phylogram was generated using iTOL based on the tree file from CLUSTALW2. Values on the

lines indicate branch length from the node (tree: Newick/PHYLIP; kimura—false; tossgaps off; Clustering—Neighbor joining; percent identity matrix—false).

|     | Strain | N – fixation | P–<br>solubilization | IAA  | ACC<br>deaminase | Biofilm |
|-----|--------|--------------|----------------------|------|------------------|---------|
| 1.  | SL31   | -            | -                    | -    | ++               | -       |
| 2.  | SL33   | -            | -                    | +    | -                | ++      |
| 3.  | SL36   | ++           | -                    | -    | ++               | +++     |
| 4.  | SL42   | +++          | -                    | +    | ++               | ++++    |
| 5.  | SL43   | -            | -                    | -    | -                | -       |
| 6.  | SL44   | -            | -                    | -    | -                | -       |
| 7.  | SL47   | -            | -                    | +++  | +++              | ++++    |
| 8.  | SL48   | +++          | -                    | ++++ | ++               | +++     |
| 9.  | SL49   | -            | -                    | +++  | ++               | -       |
| 10. | SL50   | -            | -                    | ++   | +++              | -       |
| 11. | SL52   | -            | -                    | +    | +++              | -       |
| 12. | SL53   | +++          |                      | +    | ++               | ++      |
| 13. | SL54   | +++          | -                    | -    | ++               | +       |
| 14. | SL55   | -            | -                    | ++   | +++              | -       |
| 15. | SL56   | -            | -                    | ++   | +++              | -       |

Table 3.1. PGPR characteristics of the isolated strains characterized using biochemical assays.

Qualitative assessment: - indicates absence of the trait, + indicates presence of the trait, and additional + indicates the intensity of the trait exhibited by the isolates

# 3.4.2 Isolated bacteria induce salinity tolerance in soybean

Seed germination was counted when radicle emergence was observed (Supplementary Figure 3.8). There were significant differences between optimal and salt stress conditions at various time points and also among treatments (P = 0.002). Under optimal conditions, inoculation with strains SL43, SL47, SL48, and SL49 had significantly increased (P = 0.0001) germination rates at 36 and 48 h (~80 %) compared to the control treatment (60%). Under 100 mM NaCl, the germination rate was negligible at 24 h with 0% for control treatment and <5% for the isolates. Germination rate at 36 h was higher (P = 0.004) for the treatments SL42, SL47, SL48, SL49, and SL53 (~40%) than the control (30%). There was a greater increase (P = 0.0031) in germination rate at 48 h for treatments SL42 and SL48 (65%) than the control (40%) (Figure 3.2) and treatments with other isolates SL36, SL43, SL47, SL49, SL52, SL53, and SL55 were also higher (50–55%) (Supplementary Figure 3.9).

Seedling emergence under optimal conditions was not significantly higher for treatments when compared to the control (Supplementary Figure 3.10). However, under salt stress of 100 mM NaCl emergence rate was significantly increased (P = 0.0002) for all but SL31 of the bacterial treatments at 8<sup>th</sup> DAP. Growth variables of soybean plants were measured at 28<sup>th</sup> DAP (Supplementary Figure 3.11). Significant increases (P < 0.0001) were observed in plant height for treatments SL42, SL43, SL47, SL48, and SL49 compared to the control under optimal conditions. Treatments with SL47 and SL48 showed significant increases (P < 0.0001) under salt stress and slight increases in plant height were also observed for treatments SL42 and SL49. Leaf area was significantly higher (P < 0.0001) for treatments with SL42, SL47, SL48, and SL49 than the control under both optimal and salt stress conditions. A parallel outcome was observed in shoot biomass, with treatments SL42, SL43, SL47, SL49, and SL50 showing significant increases (P < 0.0001) under optimal conditions and treatments SL42, SL44, SL47, SL48, SL49, and SL55 showing significant increases (P < 0.0001) under salt stress. Root dry weight was significantly higher for treatments SL36 and SL43 under optimal conditions (P < 0.0001) and for the treatments SL33, SL36, SL43, SL50, SL55, and SL56 under salt stress (P = 0.0004). However, root volume was significantly increased (P = 0.0003) for treatments SL31, SL33, SL36, SL42, SL48, SL49, SL50, SL55, and SL56 compared to the control treatment under salt stress. Results of the most beneficial strains, SL42 and SL48 are shown in Figure 3.3. Yet only treatments SL42 and SL50 showed significant increases (P = 0.04) in root length, and SL31 and SL42 showed significant increases (P = 0.01) in root surface area under salt stress (Supplementary Figure 3.12).

#### 3.4.3 Soybean growth under different salt concentrations

Based on the results of the first screening, four isolates, *Rhizobium sp.* SL42, *Hydrogenophaga sp.* SL48, *Pseudomonas borealis* SL49, and *Variovorax sp.* SL55 were selected for the next trial. Seed germination of soybean was differentially affected under a range of salt concentrations (Figure 3.4). All bacterial treatments resulted in increases over the control treatment. The germination rate was 65% for SL42, 80% for SL48, 60% for SL49, and 70% for SL55 at 0 mM NaCl after 72 h compared to the 45% germination rate in control treatment. At 100 and 125 mM NaCl, the germination rate at  $1 \times 10^8$  cfu mL<sup>-1</sup> was 58% for SL42, 55% for SL48, 60% for SL49, and 43% for SL55 at 150 mM, while the control reached about 40%. The germination rate was considerably lower at higher salt concentrations of 175 and 200 mM NaCl.

For SL55, no significant increase in germination rate was observed except at 175 mM NaCl (Supplementary Figures 3.13 and 3.14). The germination rates for the two inoculums,  $1 \times 10^8$  and  $1 \times 10^{10}$  cfu mL<sup>-1</sup> were mostly parallel to each other but slight variations were present in a few cases and  $1 \times 10^8$  cfu mL<sup>-1</sup> was selected as the inoculum density for successive experiments.

Seedling emergence rate at 8<sup>th</sup> DAP was significantly higher for the treatment SL42 at all the salt concentrations from 100 (P = 0.0326) to 200 mM (P = 0.0153) NaCl than the control treatment. It was also increased by treatments SL48, SL49, and SL55 at different salt levels but the statistical significance varied. Growth variables of soybean treated with the four isolates, grown under a range of salt concentrations were measured at 28<sup>th</sup> DAP (Supplementary Figure 3.15) and plant growth was greatly reduced at 175 and 200 mM NaCl. Leaf area was significantly increased by the treatments with SL48 at 0, 125, and 150 mM NaCl (P = 0.01) and SL42 at 100 (P = 0.022) and 125 mM NaCl compared to control treatments. This corresponded to the increase in shoot biomass, which was significantly higher than the control for treatments SL42 at 125, 150 (P = 0.0016), 175, and 200 mM NaCl and SL48 at 150 (P < 0.0001) and 175 mM NaCl. Shoot dry weight was improved by SL48 and SL42 at other NaCl concentrations as well, albeit not significantly. Treatment with SL49 has significantly increased shoot biomass at 150 (P = 0.02) and 175 mM NaCl. Root dry weight was significantly higher at 0 mM NaCl for the treatments SL48 (P = 0.001) and SL49 and at 150 mM for the treatments SL42 (P = 0.0015), SL48 (P = 0.0011), and SL55 (P = 0.002). The root dry weight was also increased by the bacterial treatments at higher salt concentrations (175 and 200 mM NaCl). The results indicated that the strains SL42 and SL48 have greatly improved soybean growth under a range of salt stress conditions (Figure 3.5). Though salt stress of 100-150 mM NaCl had significant differences between the control and bacterial treatments, 150 mM NaCl provided a much clearer distinction related to salinity stress in the shoot (P = 0.0004) and root biomass (P = 0.0036).



**Figure 3.2**. Seed germination rate of soybean at 24, 36, and 48 h under (**A**) optimal (water) and (**B**) salt (100 mM NaCl) conditions.

The seeds were treated with 10 mM MgSO<sub>4</sub> as control or bacterized with strains SL42 and SL48. Values represent mean  $\pm$  SE (n = 6[10]). Significant differences (increase) between the bacterial treatments and the respective control treatments (optimal or salt) are indicated by asterisk above the data points,  $*p \le 0.05$  ( $\alpha = 0.05$ ).













**Figure 3.3**. Growth variables of soybean, (**A**) Plant height, (**B**) Leaf area index, (**C**) Shoot dry weight, (**D**) Root dry weight, (**E**) Root volume, and (**F**) Root length measured at 28<sup>th</sup> DAP under optimal (water) and salt (100 mM NaCl) conditions.

The seeds were treated with 10 mM MgSO<sub>4</sub> as control or bacterized with strains SL42 and SL48. Values represent mean  $\pm$  SE (n = 6). Significant differences (increase) between the bacterial treatments and the respective control treatments (optimal or salt) are indicated by asterisk above the data points,  $*p \le 0.05$ ,  $**p \le 0.001$ ,  $***p \le 0.0001$  ( $\alpha = 0.05$ ).



Figure 3.4. Seed germination of soybean at 72 h under increasing salt concentrations (0, 100, 150, and 200 mM NaCl). The seeds were treated with (A) 10 mM MgSO4 as control or bacterized with strains (B) SL42 and (C) SL48.





**Figure 3.5**. Growth variables of soybean, **(A)** Seedling emergence rate measured on 8<sup>th</sup> DAP and growth variables of soybean **(B)** Leaf area, **(C)** Shoot dry weight, and **(D)** Root dry weight measured at 28<sup>th</sup> DAP under increasing salt concentrations (0, 100, 125, 150, 175, and 200 mM NaCl).

The seeds were treated with 10 mM MgSO<sub>4</sub> as control or bacterized with strains SL42 and SL48. Values represent mean  $\pm$  SE (n = 6). Significant differences (increase) between the bacterial treatments and the respective control treatments of a particular salt concentration are indicated by asterisk above the data points, \* $p \le 0.05$ , \*\* $p \le 0.001$ , \*\*\* $p \le 0.0001$  ( $\alpha = 0.05$ ).

#### 3.4.4 Co-inoculation of nodule isolates improves the growth and development of soybean

Two of the bacterial isolates, *Rhizobium sp.* SL42 and *Hydrogenophaga sp.* SL48 were coinoculated with *Bradyrhizobium japonicum* 532C and the soybean plants were grown under optimal or 150 mM NaCl conditions. Inoculation with *B. japonicum* alone served as the control as it is the standard N<sub>2</sub>-fixing symbiont of soybean. Even though growth variables under optimal conditions were insignificantly different for plants inoculated with *B. japonicum* because of the uninhibited nitrogen fixation, co-inoculation with SL42 and SL48 enhanced plant growth in most cases. However, under salt stress, there were substantial differences between the co-inoculation treatments and the *B. japonicum* control and the co-inoculation treatments resulted in higher growth than the control in all respects.

During the vegetative and flowering stages, the growth variables were all significantly different (P < 0.0001) between the optimal and salt stress conditions. At the vegetative stage, plant height (P = 0.0001), shoot biomass (P = 0.2764), and root dry weight (P = 0.0935) were increased by the *B. japonicum*+SL42 treatment compared to the control, *B. japonicum* (*Bj*) under salt stress. Shoot biomass was also increased by the *B. japonicum*+SL42+SL48 treatment under both optimal and salt stress conditions. During the flowering stage, plant height (P = 0.1934), leaf area (P = 0.1562) (Figure 3.7), shoot biomass (P = 0.0872), and root dry weight (P = 0.1766) were all higher for the B. japonicum+SL42+SL48 treatment, and also for the other co-inoculation treatments than the *B. japonicum* control under salt stress. The treatment of *B. japonicum*+SL42+SL48 was also the highest under optimal conditions (except for plant height), although the difference was more notable under salt stress. At the pod-filling stage, shoot biomass was increased by the treatments of *B. japonicum*+SL42 (P = 0.1001) and *B. japonicum*+SL42+ SL48 (P = 0.3866), as was the case with other growth variables, compared to the B. *japonicum* control under salt stress. The treatment of *B. japonicum*+SL42 also improved plant growth under optimal conditions (except for leaf area index). Plant height (Figure 3.6) and leaf area (Figure 3.7) of soybean increased exponentially up to the pod-filling stage and vegetative growth was stationary as the plants reached maturity. During the harvest stage, the shoot biomass was considerably reduced due to the senescence of leaves and not much of a difference among the treatments were observed. Overall, the co-inoculation treatments have resulted in increased shoot dry weight by 1.6 and 18.3% at vegetative, 11.9 and 27% at flowering, 7.1 and 7.5% at pod-filling, 7.5 and 4.6% at harvest under optimal and salt stress conditions, respectively (Figure 3.8). The

root dry weight under salt stress was particularly increased by the treatment of *B*. *japonicum*+SL42, by 28% at vegetative, 16% at flowering, 9% at pod-filling, and 24.5% at harvest stages (Figure 3.9).





**Figure 3.6**. Height of soybean plants measured at **(A)** mid-vegetative, **(B)** mid-flowering, and **(C)** mid-pod-filling stages under optimal (water) and salt (150 mM NaCl) conditions. The seeds were bacterized with *Bradyrhizobium japonicum* (Bj), Bj+SL42, Bj+SL48 and Bj+SL42+SL48. Values represent mean  $\pm$  SE (n=12). Scheffe grouping for least square means was used for multiple means comparison and means with the same letter(s) are not significantly different ( $\alpha = 0.05$ ).





**Figure 3.7**. Leaf area of soybean plants measured at **(A)** mid-vegetative, **(B)** mid-flowering, and **(C)** mid-pod-filling stages under optimal (water) and salt (150 mM NaCl) conditions. The seeds were bacterized with *Bradyrhizobium japonicum* (Bj), Bj+SL42, Bj+SL48 and Bj+SL42+SL48. Values represent mean  $\pm$  SE (n = 12). Scheffe grouping for least square means was used for multiple means comparison and means with the same letter(s) are not significantly different ( $\alpha = 0.05$ ).




**Figure 3.8**. Shoot biomass of soybean plants measured at (A) mid-vegetative, (B) mid-flowering, (C) mid-pod-filling, and (D) harvest stages under optimal (water) and salt (150 mM NaCl) conditions.

The seeds were bacterized with *Bradyrhizobium japonicum* (Bj), Bj+SL42, Bj+SL48, and Bj+SL42+SL48. Values represent mean  $\pm$  SE (n = 12). Scheffe grouping for least square means was used for multiple means comparison and means with the same letter(s) are not significantly different ( $\alpha = 0.05$ ).





Figure 3.9. Root dry weight of soybean plants measured at (A) mid-vegetative, (B) mid-flowering, (C) mid-pod-filling, and (D) harvest stages under optimal (water) and salt (150 mM NaCl) conditions.

The seeds were bacterized with *Bradyrhizobium japonicum* (Bj), Bj+SL42, Bj+SL48, and Bj+SL42+SL48. Values represent mean  $\pm$  SE (n = 12). Scheffe grouping for least square means was used for multiple means comparison and means with the same letter(s) are not significantly different ( $\alpha = 0.05$ ).

The yield variables, seed weight and seed number were increased by all three coinoculation treatments compared to *B. japonicum* alone under both optimal and salt stress conditions (Figure 3.10). The treatment of *B. japonicum*+SL42 increased seed weight by 4.3% (P = 0.7207) and seed number by 10.5% (P = 0.2788) under salt stress. The other treatments, *B. japonicum*+SL48 and *B. japonicum*+SL42+SL48 increased seed weight by 7.4% (P = 0.449) and 8.1% (P = 0.3347), under optimal conditions and 3.6% (P = 0.7145) and 3.1% (P = 0.8686) under salt stress, respectively. Even though seed weight and seed number were less in salt stress than the optimal conditions, the difference between the corresponding treatments was small. The harvest index is the proportion of seed dry weight to the aboveground biomass and the treatments with *B. japonicum*+SL48 and *B. japonicum*+SL42+SL48 had higher harvest indices (P = 0.1621) than that of the treatments with *B. japonicum* and *B. japonicum*+SL42, under both optimal and salt stress conditions.





Figure 3.10. Yield variables of soybean plants measured after harvest (A) seed weight, (B) seed number, and (C) harvest index under optimal (water) and salt (150 mM NaCl) conditions.

The seeds were bacterized with *Bradyrhizobium japonicum* (Bj), Bj+SL42, Bj+SL48, and Bj+SL42+SL48. Values represent mean  $\pm$  SE (n = 12). Scheffe grouping for least square means was used for multiple means comparison and means with the same letter(s) are not significantly different ( $\alpha = 0.05$ ).

#### 3.4.4.1 Nutrient composition analysis of plant tissues and seeds

The nutrient analysis provided an interesting perspective on how the nutrients were translocated between various plant tissues throughout the developmental stages. Nitrogen concentration was largely unvarying in the vegetative and flowering stages, except that shoot N concentration was greater than that of roots. No significant difference was observed in nitrogen concentration between the treatments since all of them were inoculated with B. japonicum. At podfilling, N concentration under salt stress was lower than optimal in leaves, shoot, and roots but almost equal in the pods and at harvest, it was less in the shoot and pods but more or less equal in the roots (Supplementary Table 3.3). This is reflected in the seed quality where the protein concentration was lower under salt stress (34%) than optimal (37%) conditions. Nitrogen assimilation was calculated as a ratio of total N concentration in the tissues to the dry weight, and it was significantly reduced (P < 0.0001) with the salt stress at all the developmental stages. At the vegetative stage, N assimilation did not vary among treatments and was corresponding to the amount of fertilizer applied under optimal conditions (60 mg per plant) since the nodules will be still developing at this stage and not fully functional yet. As the plants developed, biological nitrogen fixation was actively occurring, evident by the high N assimilation. During the flowering stage, treatment of *B. japonicum*+SL42+SL48 had increased N assimilation under optimal and salt conditions. At the pod-filling stage, inoculation with B. japonicum+SL42 showed higher N assimilation under optimal conditions, yet the treatment of *B. japonicum*+SL42+SL48 resulted in the highest N assimilation under salt stress. At the harvest stage, N assimilation was relatively higher for the *B. japonicum*+SL42 treatment under both optimal and salt-stressed conditions (Table 3.2).

Phosphorous concentration was higher under salt stress than optimal conditions at the flowering and pod-filling stages, but more or less equal at the vegetative and harvest stages (Supplementary Table 3.4). The treatment of *B. japonicum*+SL42+SL48 had the lowest P concentration in the shoot and pods at the harvest stage but highest in the seeds under salt stress. Potassium concentration under salt stress was lower and sodium concentration was higher than optimal conditions at the vegetative stage (Supplementary Tables 3.5, 3.6). The plants at this stage had higher salt accumulation relative to their biomass and hence, the K<sup>+</sup>/Na<sup>+</sup> ratio (Table 3.3) was lower. The treatment of *B. japonicum*+SL42 had higher K concentration and lower Na concentration in the shoot than the *B. japonicum* control, and so, the shoot K<sup>+</sup>/Na<sup>+</sup> ratio was

significantly higher (P = 0.006) under salt stress. Potassium concentration under salt stress was higher in the leaves, shoot, and pods but lower in the roots at flowering, pod-filling, and harvest stages than optimal conditions. Sodium concentration was relatively higher under salt stress and much of the Na was accumulated in the roots, as compared to the shoot and leaves. This explains the low K<sup>+</sup>/Na<sup>+</sup> ratio in roots versus the high K<sup>+</sup>/Na<sup>+</sup> ratio in the shoot and leaves. The treatment of *B. japonicum*+SL48 had lower Na concentration in the leaves and significantly higher (P < 0.0001) K<sup>+</sup>/Na<sup>+</sup> ratio than the *B. japonicum* control under salt stress at the flowering stage. The K<sup>+</sup>/Na<sup>+</sup> ratio was significantly increased (P < 0.01) by the *B. japonicum*+SL42 treatment under salt stress in the leaves during the pod-filling stage. Treatment with *B. japonicum*+SL48 increased K concentration and decreased Na concentration in the shoot and pods, which resulted in higher K<sup>+</sup>/Na<sup>+</sup> ratios at the harvest stage. Calcium concentration in the shoot and roots were relatively higher under salt stress than optimal conditions at the flowering, pod-filling and harvest stages, indicating that the plants were also utilizing Ca<sup>2+</sup> to maintain ionic balance under salinity stress (Supplementary Table 3.7).

| Treatments                             | Optimal             | Salt                | Optimal            | Salt               |  |
|----------------------------------------|---------------------|---------------------|--------------------|--------------------|--|
|                                        | Vegetative stage    |                     | Flowering stage    |                    |  |
|                                        | P = 0.542           | <i>P</i> = 0.3922   | <i>P</i> = 0.3499  | <i>P</i> = 0.7125  |  |
| Bj                                     | $55.62 \pm 6.36$    | 35.31 ±5.26         | $572.77 \pm 24.96$ | $322.98 \pm 21.40$ |  |
| Bj+SL42                                | $60.52 \pm 1.04$    | $39.64 \pm 7.44$    | $561.20 \pm 48.26$ | $360.97 \pm 18.38$ |  |
| Bj+SL48                                | $60.80 \pm 5.50$    | $21.92 \pm 2.44$    | $613.69 \pm 63.51$ | $357.90 \pm 18.52$ |  |
| Bj+SL42+SL48                           | $58.58 \pm 6.51$    | 32.71 ±3.31         | $679.05 \pm 57.68$ | $360.59 \pm 45.72$ |  |
|                                        | Pod-filling stage   |                     | Harvest stage      |                    |  |
|                                        | P = 0.4104          | P = 0.3142          | <i>P</i> = 0.5496  | P = 0.622          |  |
| Bj                                     | $1795.54 \pm 73.41$ | $1407.42 \pm 60.49$ | $285.99 \pm 37.43$ | $213.10 \pm 12.95$ |  |
| Bj+SL42                                | 1849.71 ±91.22      | 1497.74 ±86.39      | $294.78 \pm 27.36$ | $225.96 \pm 20.87$ |  |
| Bj+SL48                                | $1728.23 \pm 41.03$ | $1455.76 \pm 57.62$ | $259.59 \pm 32.88$ | $196.21 \pm 5.92$  |  |
| Bj+SL42+SL48                           | $1778.99 \pm 96.30$ | $1551.74 \pm 70.02$ | $293.55 \pm 25.86$ | $202.31 \pm 12.76$ |  |
| Values represent mean $\pm$ SE (n=12). |                     |                     |                    |                    |  |

 Table 3.2. Total Nitrogen assimilation in shoot and root tissues of soybean through the developmental stages.

| Treatments                             | Optimal              | Salt                | Optimal              | Salt                |  |
|----------------------------------------|----------------------|---------------------|----------------------|---------------------|--|
|                                        | Vegetati             | ve: Shoot           | Flowering: Shoot     |                     |  |
|                                        | P = 0.5220           | P = 0.0065          | P = 0.4234           | P = 0.6128          |  |
| Bj                                     | $254.51 \pm 68.90$   | $47.66 \pm 9.70$    | $665.28 \pm 224.79$  | $142.83 \pm 25.72$  |  |
| Bj+SL42                                | 197.71 ±35.67        | $76.11 \pm 19.68$   | $783.88 \pm 215.66$  | $185.02 \pm 40.09$  |  |
| Bj+SL48                                | $159.00 \pm 30.97$   | $29.46 \pm 3.33$    | $872.86 \pm 171.62$  | $194.68 \pm 55.18$  |  |
| Bj+SL42+SL48                           | $219.71 \pm 56.53$   | $54.47 \pm 13.11$   | $1184.70 \pm 425.62$ | $231.78 \pm 62.76$  |  |
|                                        | Vegetati             | ve: Root            | Flowering: Root      |                     |  |
|                                        | <i>P</i> = 0.4619    | <i>P</i> = 0.8506   | P = 0.2347           | P = 0.8806          |  |
| Вј                                     | $3.30 \pm 0.40$      | $1.82 \pm 0.10$     | $4.75 \pm 0.34$      | $2.16 \pm 0.23$     |  |
| Bj+SL42                                | $3.19 \pm 0.10$      | $1.69 \pm 0.24$     | $4.56 \pm 0.35$      | $2.24 \pm 0.13$     |  |
| Bj+SL48                                | $2.86 \pm 0.18$      | $1.88 \pm 0.07$     | $5.23 \pm 0.34$      | $2.15 \pm 0.33$     |  |
| Bj+SL42+SL48                           | 3.11 ±0.15           | $1.97 \pm 0.42$     | $5.51 \pm 0.40$      | $2.27 \pm 0.35$     |  |
|                                        | Pod-fillin           | <b>g</b> : Leaves   | Flowerin             | g: Leaves           |  |
|                                        | P = 0.0072           | P = 0.0088          | P = 0.6510           | <i>P</i> <.0001     |  |
| Вј                                     | $215.98 \pm 62.23$   | $232.97 \pm 26.94$  | $425.80 \pm 27.13$   | 317.67 ±21.29       |  |
| Bj+SL42                                | $272.06 \pm 3.14$    | 599.77 ±176.51      | 365.97 ±43.21        | 357.96 ±91.51       |  |
| Bj+SL48                                | $431.80 \pm 99.21$   | 219.03 ±42.57       | $502.20 \pm 69.57$   | $515.35 \pm 142.80$ |  |
| Bj+SL42+SL48                           | $686.93 \pm 90.96$   | $331.00 \pm 102.04$ | $373.02 \pm 75.04$   | $445.21 \pm 194.94$ |  |
|                                        | Pod-filling: Shoot   |                     | Harvest: Shoot       |                     |  |
|                                        | P = 0.5937           | P = 0.1282          | <i>P</i> = 0.0906    | P = 0.404           |  |
| Bj                                     | $786.69 \pm 226.81$  | $92.10 \pm 36.67$   | $40.71 \pm 7.08$     | $1.83 \pm 0.57$     |  |
| Bj+SL42                                | 523.81 ±139.14       | $38.31 \pm 5.75$    | $77.01 \pm 20.80$    | $1.26 \pm 0.38$     |  |
| Bj+SL48                                | $499.56 \pm 113.14$  | $68.86 \pm 10.89$   | $60.02 \pm 12.82$    | 2.31 ±0.69          |  |
| Bj+SL42+SL48                           | 645.64 ±97.23        | $61.80 \pm 20.85$   | $67.53 \pm 12.35$    | $2.35 \pm 0.54$     |  |
|                                        | Pod-filli            | ng: Pods            | Harvest: Pods        |                     |  |
|                                        | P = 0.4089           | <i>P</i> = 0.1799   | P = 0.257            | P = 0.2863          |  |
| Bj                                     | $1029.94 \pm 130.26$ | $366.12 \pm 84.35$  | $393.44 \pm 113.12$  | $63.94 \pm 14.32$   |  |
| Bj+SL42                                | $821.22 \pm 137.93$  | $689.29 \pm 101.93$ | $609.17 \pm 191.17$  | $38.03 \pm 13.11$   |  |
| Bj+SL48                                | $1032.80 \pm 440.95$ | $436.10 \pm 48.10$  | $387.16 \pm 71.89$   | $86.54 \pm 20.10$   |  |
| Bj+SL42+SL48                           | $602.90 \pm 159.18$  | $664.29 \pm 176.20$ | $384.78 \pm 64.55$   | $58.60 \pm 12.43$   |  |
| Pod-filling: Root                      |                      | Harvest: Root       |                      |                     |  |
|                                        | P = 0.0184           | P = 0.2422          | <i>P</i> = 0.9461    | P = 0.088           |  |
| Bj                                     | $4.66 \pm 0.41$      | $1.24 \pm 0.10$     | $2.40 \pm 0.27$      | $0.59 \pm 0.05$     |  |
| Bj+SL42                                | $3.99 \pm 0.30$      | 1.43 ±0.15          | $2.48 \pm 0.11$      | $1.22 \pm 0.50$     |  |
| Bj+SL48                                | 5.41 ±0.45           | $1.44 \pm 0.10$     | $2.78 \pm 0.51$      | $0.52 \pm 0.08$     |  |
| Bj+SL42+SL48                           | $5.63 \pm 0.46$      | $1.19 \pm 0.09$     | $2.82 \pm 0.86$      | $0.44 \pm 0.03$     |  |
| Values represent mean $\pm$ SE (n=12). |                      |                     |                      |                     |  |

**Table 3.3**. Distribution of  $K^+/Na^+$  in different plant tissues through the developmental stages of soybean.

Seed nutritional composition analysis showed that the moisture, protein, and fiber concentrations decreased, and fat, ash, and potassium concentrations increased under salt stress conditions. Sodium concentration was also significantly higher under salt stress (P = 0.0079). The treatment of *B. japonicum*+SL42+SL48 had the highest protein, fiber, phosphorus, potassium, calcium, sodium, and magnesium concentrations and the lowest moisture, fat, and ash concentrations under salt stress (Supplementary Table 3.8). Diversity in the nodule bacteria of soybean was observed at  $10^{-4}$  and  $10^{-5}$  dilutions and the colonies were disparate between optimal and salt-stressed plants (Supplementary Figure 3.16). Colonies similar to the morphology of SL42 and SL48 were prominent in the co-inoculation treatments, specifically, the *B. japonicum*+SL42+SL48 treatment than the control, *B. japonicum*.

## 3.5 Discussion

Rhizobia and legumes have established their mutualistic association over 100 million years of coevolution and the association between different lineages of both the rhizobia and the legume has diverged to be species-specific and spatially-specific (Parker, 1999). This mutualistic specificity also holds true for the host relationship with other members of the phytomicrobiome, including other bacteria in the nodules. The nodules of *Amphicarpaea bracteata* have endophytic bacteria other than its *Bardyrhizobium* symbiont. The vastness in the diversity of these bacteria suggests that they might be effectively functioning as plant growth promoting rhizobacteria (PGPR) in their host. The tested isolates do not coexist with *B. japonicum* in nature (or at least not known yet) and in this study, they were introduced to a related host intended to exert beneficial effects. Co-inoculation of PGPR with rhizobia was reported in various legume plants and proposed to be used as inoculants (Bai et al., 2002a).

Seed germination is the initiation of plant growth and favorable conditions are necessary for successful germination and subsequent seedling emergence. The rate of germination and the time to seedling emergence are important in terms of crop establishment at the beginning of the growing season. Seedling emergence and younger seedlings are more prone to risk from salinity since root development occurs in the topsoil, which generally has higher accumulation of soluble salts (Almansouri et al., 2001). Salt was pre-applied to vermiculite before planting the soybean seeds in the greenhouse, so as to mimic the salinity stress under field conditions where salt is already present in the topsoil and the seeds have to undergo the process of germination and development in the presence of salt. The seedling stage of the soybean plant is considered to be more sensitive than seed germination (Hosseini et al., 2002) and that is why the effect of salinity stress was acute and precise in the screening experiments where the plants were grown up to the mid-vegetative stage. Salinity stress inhibited seed germination, affected seedling growth, reduced biomass accumulation and decreased seed weight of soybean (Essa, 2002). The plants exhibited symptoms of salinity stress, the seedling emergence was slower, and the growth was less compared to the optimal conditions. The mechanisms underlying the inhibition of soybean seed germination and growth by salinity stress are only partially understood (Zhang et al., 2014). Salt stress leads to the up-regulation of ABA and ethylene biosynthesis and down-regulation of GA during seed germination and auxin and cytokinin during plant growth (Shu et al., 2017). The PGPR are reported to modulate phytohormone signaling involved in salinity stress; a rhizobacterium Sphingomonas sp. LK11, known to secrete phytohormones (auxins and gibberellins) and trehalose had significantly increased plant growth under drought-induced osmotic stress in soybean (Asaf et al., 2017). Another rhizobacterium, Arthrobacter woluwensis AK1 was shown to ameliorate salinity stress by decreasing ABA content, regulating antioxidant activities and salt tolerance genes and reduced sodium uptake in soybean (Khan et al., 2019). Several isolates, including SL42, SL48, and SL49 have significantly improved seed germination and shoot biomass under salt stress and similar results were observed in the consecutive greenhouse trial as well. The isolates also produced IAA and ACC deaminase, which at least partly explains the observed plant growth promotion and stress tolerance.

Since the bacteria were isolated from the nodules of *A. bracteata* that has *Bradyrhizobium sp.* as the symbiont, they have co-existed in the nodules. Hence, the behavior of nodule bacteria was speculated to be potentially complementary when co-inoculated with a related symbiont in soybean. The plants were grown up to the harvest stage and samples were collected at every growth stage to discern the effect of the isolates on the salinity response of soybean. Soybean has varying water requirements throughout its growing season and rapid root and shoot growth are noted from mid-vegetative to mid-pod-filling stages when the water requirements are also the highest. Though the plant is moderately tolerant and able to withstand short periods of drought and salinity stress, they affect development and crop yield and the plant is most susceptible to the stressors during the vegetative and flowering stages (FAO, 2002). Shoot dry weight of soybean was more affected by

salt stress than root dry weight, as reported previously (Essa, 2002) and above-ground plant growth was significantly reduced (P < 0.0001) by salinity during the vegetative and flowering stages when the plant was suffering from chronic salt stress. At the later development stages (pod-filling and harvest) this difference was seldom noticed because the plants would have developed tolerance mechanisms and acclimatized to the stress with time (Munns and Tester, 2008). The degree of salt tolerance in soybean differs among developmental stages (Phang et al., 2008). The plant is sensitive to salinity at early growth stages, but this doesn't necessarily mean it will also be sensitive at later growth stages. The results would probably vary if the plants were exposed to another surge of salinity stress at the later growth stages. For soybean, both flowering and pod-filling stages are responsive to water availability and significant yield loss occurred when the plants were exposed to drought at these developmental stages (Westgate and Peterson, 1993). Soluble salts are usually localized in the sub-surface layers and the concentration of these salts reduces water availability and the roots may be exposed to salt-contaminated soil water table (Rengasamy, 2002). Nevertheless, it is interesting to note that the salt stress is contained in a closed system in the greenhouse and salt volume was applied proportionately to the field capacity of the pot volume. Under field conditions, the intensity of the stress fluctuates depending on other environmental factors such as precipitation or evapotranspiration.

The plants were supplied with a low N fertilizer and the nitrogen fixation was predominantly carried out by *Bradyrhizobium japonicum*. The decrease in nitrogen accumulation under salinity stress was due to the inhibition of root nodulation and biological nitrogen fixation. The number of root nodules and root hair curling were constrained by salt stress (Tu, 1981). The N content of the pods dramatically decreased from the pod-filling to harvest stages indicating the translocation of N to the pods and then to the seeds. The protein content of the seeds was reduced under salinity stress whereas, the oil content was increased. Despite the decline in photosynthesis, translocation of assimilates to the sink tissues were largely maintained in soybean under drought stress (Huber et al., 1984). Phytohormone signaling coordinates partitioning of the assimilates between source and sink, and thereby maintains growth, development and function (Perez-Alfocea et al., 2010). The co-inoculation treatments resulted in higher seed weight and seed number than the control under salt stress and allowed the plants to at least partially overcome the effects of stress on reproduction. The isolates might regulate signaling events in the plants during the initial osmotic phase but later shift towards balancing ionic stress under salinity. Potassium is a key

nutrient in maintaining ion homeostasis under salinity and the ratio of  $K^+$  to Na<sup>+</sup> is determined by the rate of K<sup>+</sup> assimilation. The high cytosolic K<sup>+</sup>/Na<sup>+</sup> ratio is critical for plant salinity tolerance and the function of K<sup>+</sup> transporters is regulated by osmolytes and calcium signaling. Ionic homeostasis is maintained by excluding Na<sup>+</sup> and Cl<sup>-</sup> and restricting their accumulation in plant tissues and compartmentalizing the toxic ions in vacuoles (Shabala and Cuin, 2008). The ability of the plants treated with isolates SL42 and SL48 to maintain a high K<sup>+</sup>/Na<sup>+</sup> ratio through various growth stages is indeed an indication of induced salinity tolerance. Follow-up studies are in progress to understand the mode of action of the isolates and the adaptive mechanisms elicited in the plants. The primary reason for using vermiculite as the sole potting medium is that it is inert, ruling out the possibility of interference by organic matter (including microflora) usually present in the soil or peat-based potting medium. This has proved to be an effective testing tool for salt stress mitigation by the bacterial inoculation and plant nutrient uptake from the added fertilizer. The observations of nodule bacterial colonies indicated that SL42 and SL48 predominantly inhabited the nodules of soybean and also supported the resident nodule phytomicrobiome population. Indigenous microbial communities influence the survival of inoculated bacteria and vice-versa (Trabelsi and Mhamdi, 2013). However, the tested strains are a part of the native habitat, so that the potential concern for altering the ecosystem function of soil microbial communities is diminished. They have a competitive advantage over the resident soil microbiota since they provide a synergistic plant-microbe interaction with soybean. Considering that many other factors are at play under a field condition, extensive field trials are needed to determine the beneficial effects of these microbes on soybean growth and yield in local agriculture production systems.

#### 3.6 Conclusions

Soybean cultivation has reached its northern hemisphere limit and expansion/extension of cultivation both spatially and temporally will be possible when the plants can further acclimatize to the native conditions. Co-inoculation with native nodule bacterial strains can help in the adaptation and expression of particular traits such as salt/drought tolerance or cold acclimatization induced by the bacteria can benefit the associated plant. Early plant response mechanisms to these stresses overlap each other, which means inoculation with these bacteria can be an asset to sustainable soybean production under the Canadian agricultural scenario. Moreover, such growth promoting technology as this might invigorate native soil properties (both abiotic and biotic),

create synergy with the native soil microflora, assist in the reduction of chemical inputs and advance crop productivity. However, multiple field trials are required to demonstrate the potential of these isolates to boost yield by growth promotion and stress alleviation. Even though adaptation to salinity stress depends on various factors including the plant's innate potential and the environmental conditions, implementing a cost-effective strategy of PGPR inoculation to enhance stress tolerance will be fruitful and helpful to meet the rising demands for global food production.

# 3.7 References

- 1. AAFC (2020). *Soil Salinization Indicator. Agriculture and Agri-Food Canada*. Available online at: <u>https://www.agr.gc.ca/eng/agriculture-and-climate/agricultural-practices/soil-and-land/soil-salinization-indicator/?id=1462912470880</u> (accessed April 12, 2020).
- Adesemoye, A. O., and Kloepper, J. W. (2009). Plant-microbes interactions in enhanced fertilizer-use efficiency. *Appl. Microbiol. Biotechnol.* 85, 1–12. doi: 10.1007/s00253-009-2196-0
- 3. Almansouri, M., Kinet, J. M., and Lutts, S. (2001). Effect of salt and osmotic stresses on germination in durum wheat (*Triticum durum* Desf.). *Plant Soil* 231, 243–254. doi: 10.1023/A:1010378409663
- Asaf, S., Khan, A. L., Khan, M. A., Imran, Q. M., Yun, B. W., and Lee, I. J. (2017). Osmoprotective functions conferred to soybean plants via inoculation with *Sphingomonas* sp LK11 and exogenous trehalose. *Microbiol. Res.* 205, 135–145. doi: 10.1016/j.micres.2017.08.009
- 5. Ashraf, M. (1994). Breeding for salinity tolerance in plants. *Crit. Rev. Plant Sci.* 13, 17–42. doi: 10.1080/07352689409701906
- Bai, Y. M., D'Aoust, F., Smith, D. L., and Driscoll, B. T. (2002a). Isolation of plant-growthpromoting *Bacillus* strains from soybean root nodules. *Can. J. Microbiol.* 48, 230–238. doi: 10.1139/w02-014
- Bai, Y. M., Pan, B., Charles, T. C., and Smith, D. L. (2002b). Co-inoculation dose and root zone temperature for plant growth promoting rhizobacteria on soybean [*Glycine max* (L.) Merr] grown in soil-less media. *Soil Biol. Biochem.* 34, 1953–1957. doi: 10.1016/S0038-0717(02)00173-6
- 8. Bric, J. M., Bostock, R. M., and Silverstone, S. E. (1991). Rapid *in situ* assay for indoleaceticacid production by bacteria immobilized on a nitrocellulose membrane. *Appl. Environ. Microbiol.* 57, 535–538. doi: 10.1128/AEM.57.2.535-538.1991
- 9. Bromfield, E. S. P., Cloutier, S., Tambong, J. T., and Thi, T. V. T. (2017). Soybeans inoculated with root zone soils of Canadian native legumes harbour diverse and novel *Bradyrhizobium* spp. that possess agricultural potential (vol 40, pg 440, 2017). *Syst. Appl. Microbiol.* 40:517. doi: 10.1016/j.syapm.2017.10.003
- 10. Cloutier, J. (2017). *Soy Story: A Short History of Glycine max in Canada. Statistics Canada.* Available online at: <u>https://www150.statcan.gc.ca/n1/pub/21-004-x/2017001/article/14779-eng.htm</u> (accessed April 12, 2020).
- 11. Devine, T. E., Kuykendall, L. D., and Oneill, J. J. (1990). The Rj4 allele in soybean represses nodulation by chlorosis-inducing bradyrhizobia classified as DNA homology group-ii by antibiotic-resistance profiles. *Theor. Appl. Genet.* 80, 33–37. doi: 10.1007/BF00224012

- 12. Dorff, E. (2007). *The Soybean, Agriculture's Jack-of-all-Trades, Is Gaining Ground Across Canada. Statistics Canada.* Available online at: <u>https://www150.statcan.gc.ca/n1/en/pub/96-325-x/2007000/article/10369-eng.pdf?st=6wd-Sqiq</u> (accessed April 12, 2020).
- 13. Egamberdieva, D., Wirth, S., Jabborova, D., Rasanen, L. A., and Liao, H. (2017). Coordination between *Bradyrhizobium* and *Pseudomonas* alleviates salt stress in soybean through altering root system architecture. *J. Plant Interact.* 12, 100–107. doi: 10.1080/17429145.2017.1294212
- 14. EnvironmentCanada (2001). Priority Substances List Assessment Report for Road Salts. EnvironmentCanada. Available online at: <u>https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/environmental-contaminants/canadian-environmental-protection-act-1999-priority-substances-list-assessment-report-road-salts.html#a342 (accessed April 12, 2020).</u>
- Essa, T. A. (2002). Effect of salinity stress on growth and nutrient composition of three soybean (*Glycine max* L. Merrill) cultivars. *J. Agron. Crop Sci.* 188, 86–93. doi: 10.1046/j.1439-037X.2002.00537.x
- 16. FAO (2002). Soybean. Food and Agriculture Organization of the United Nations. Available online at: <u>http://www.fao.org/land-water/databases-and-software/crop-information/soybean/en/</u> (accessed April 12, 2020).
- 17. Florinsky, I. V., Eilers, R. G., Wiebe, B. H., and Fitzgerald, M. M. (2009). Dynamics of soil salinity in the Canadian prairies: application of singular spectrum analysis. *Environ. Model Softw.* 24, 1182–1195. doi: 10.1016/j.envsoft.2009.03.011
- 18. Goswami, D., Dhandhukia, P., Patel, P., and Thakker, J. N. (2014). Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by *Bacillus licheniformis* A2. *Microbiol. Res.* 169, 66–75. doi: 10.1016/j.micres.2013.07.004
- Hosseini, M. K., Powell, A. A., and Bingham, I. J. (2002). Comparison of the seed germination and early seedling growth of soybean in saline conditions. *Seed Sci. Res.* 12, 165–172. doi: 10.1079/SSR2002108
- 20. Huber, S. C., Rogers, H. H., and Mowry, F. L. (1984). Effects of water-stress on photosynthesis and carbon partitioning in soybean (*Glycine-max* [L] Merr) plants grown in the field at different CO<sub>2</sub> levels. *Plant Physiol.* 76, 244–249. doi: 10.1104/pp.76.1.244
- Hungria, M., Nogueira, M. A., and Araujo, R. S. (2013). Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. *Biol. Fertil. Soils* 49, 791–801. doi: 10.1007/s00374-012-0771-5
- 22. Hynes, R. K., Leung, G. C., Hirkala, D. L., and Nelson, L. M. (2008). Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil, and chickpea grown in western Canada. *Can. J. Microbiol.* 54, 248–258. doi: 10.1139/W08-008
- Jensen, H. L., Petersen, E. J., De, P. K., and Bhattacharya, R. (1960). A new nitrogen-fixing bacterium *Derxia gummosa* nov-gen-nov-spec. *Arch. Mikrobiol.* 36, 182–195. doi: 10.1007/BF00412286
- 24. Kan, G. Z., Zhang, W., Yang, W. M., Ma, D. Y., Zhang, D., Hao, D. R., et al. (2015). Association mapping of soybean seed germination under salt stress. *Mol. Genet. Genomics* 290, 2147–2162. doi: 10.1007/s00438-015-1066-y
- 25. Khan, M. A., Asaf, S., Khan, A. L., Jan, R., Kang, S. M., Kim, K. M., et al. (2019). Rhizobacteria AK1 remediates the toxic effects of salinity stress via regulation of endogenous phytohormones and gene expression in soybean. *Biochem. J.* 476, 2393–2409. doi: 10.1042/BCJ20190435

- 26. Letunic, I., and Bork, P. (2019). Interactive Tree Of Life (iTOL) v4: recent updates and new developments. *Nucleic Acids Res.* 47, W256–W259. doi: 10.1093/nar/gkz239
- Marr, D. L., Devine, T. E., and Parker, M. A. (1997). Nodulation restrictive genotypes of *Glycine* and *Amphicarpaea*: a comparative analysis. *Plant Soil* 189, 181–188. doi: 10.1023/A:1004203018770
- 28. Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. *Annu. Rev. Plant Biol.* 59, 651–681. doi: 10.1146/annurev.arplant.59.032607.092911
- 29. NRCS (2002). Salinity in Agriculture. Natural Resources Conservation Service, United States Department of Agriculture. Available online at: https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/water/quality/tr/?cid=nrcs1 43\_010914 (accessed April 12, 2020).
- 30. O'Toole, G. A. (2011). Microtiter dish biofilm formation assay. J. Vis. Exp. 47:2437. doi: 10.3791/2437
- 31. Parker, M. A. (1994). Evolution in natural and experimental populations of *Amphicarpaeabracteata*. J. Evol. Biol. 7, 567–579. doi: 10.1046/j.1420-9101.1994.7050567.x
- 32. Parker, M. A. (1999). Mutualism in metapopulations of legumes and rhizobia. *Am. Nat.* 153, S48–S60. doi: 10.1086/303211
- Penrose, D. M., and Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. *Physiol. Plant* 118, 10–15. doi: 10.1034/j.1399-3054.2003.00086.x
- 34. Perez-Alfocea, F., Albacete, A., Ghanem, M. E., and Dodd, I. C. (2010). Hormonal regulation of source-sink relations to maintain crop productivity under salinity: a case study of root-to-shoot signalling in tomato. *Funct. Plant Biol.* 37, 592–603. doi: 10.1071/FP10012
- 35. Phang, T. H., Shao, G. H., and Lam, H. M. (2008). Salt tolerance in soybean. *J. Integr. Plant Biol.* 50, 1196–1212. doi: 10.1111/j.1744-7909.2008.00760.x
- 36. Rengasamy, P. (2002). Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. *Aust. J. Exp. Agric.* 42, 351–361. doi: 10.1071/EA01111
- 37. Schwyn, B., and Neilands, J. B. (1987). Universal chemical-assay for the detection and determination of siderophores. *Anal. Biochem.* 160, 47–56. doi: 10.1016/0003-2697(87)90612-9
- 38. Shabala, S., and Cuin, T. A. (2008). Potassium transport and plant salt tolerance. *Physiol. Plant* 133, 651–669. doi: 10.1111/j.1399-3054.2007.01008.x
- 39. Shu, K., Qi, Y., Chen, F., Meng, Y. J., Luo, X. F., Shuai, H. W., et al. (2017). Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis. *Front. Plant Sci.* 8:1372. doi: 10.3389/fpls.2017.01372
- 40. Tang, J., Bromfield, E. S. P., Rodrigue, N., Cloutier, S., and Tambong, J. T. (2012). Microevolution of symbiotic *Bradyrhizobium* populations associated with soybeans in east North America. *Ecol. Evol.* 2, 2943–2961. doi: 10.1002/ece3.404
- 41. Thoenes, P. (2004). "The role of soybean in fighting world hunger," in *VIIth World Soybean Research Conference* (Foz do Iguassu: Food and Agriculture Organization of the United Nations).
- 42. Trabelsi, D., and Mhamdi, R. (2013). Microbial inoculants and their impact on soil microbial communities: a review. *Biomed Res. Int.* 2013:863240. doi: 10.1155/2013/863240
- 43. Tu, J. C. (1981). Effect of salinity on rhizobium-root-hair interaction, nodulation and growth of soybean. *Can. J. Plant Sci.* 61, 231–239. doi: 10.4141/cjps81-035

- 44. Weaver, R. W., Dumenil, L. C., and Frederic, LR (1972). Effect of soybean cropping and soil properties on numbers of *Rhizobium-japonicum* in Iowa soils. *Soil Sci.* 114:137. doi: 10.1097/00010694-197208000-00009
- 45. Westgate, M. E., and Peterson, C. M. (1993). Flower and pod development in water-deficient soybeans (*Glycine-max* L Merr). J. Exp. Bot. 44, 109–117. doi: 10.1093/jxb/44.1.109
- 46. Wiebe, B. H., Eilers, R. G., Eilers, W. D., and Brierley, J. A. (2007). Application of a risk indicator for assessing trends in dryland salinization risk on the Canadian Prairies. *Can. J. Soil Sci.* 87, 213–224. doi: 10.4141/S06-068
- 47. Wilkinson, H. H., Spoerke, J. M., and Parker, M. A. (1996). Divergence in symbiotic compatibility in a legume-*Bradyrhizobium* mutualism. *Evolution* 50, 1470–1477. doi: 10.1111/j.1558-5646.1996.tb03920.x
- 48. Yang, J., Kloepper, J. W., and Ryu, C. M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. *Trends Plant Sci.* 14, 1–4. doi: 10.1016/j.tplants.2008.10.004
- 49. Zhang, W. J., Niu, Y., Bu, S. H., Li, M., Feng, J. Y., Zhang, J., et al. (2014). Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage. *PLoS ONE* 9:e84750. doi: 10.1371/journal.pone.0084750
- 50. Zhu, T., Shi, L., Doyle, J. J., and Keim, P. (1995). A single nuclear locus phylogeny of soybean based on DNA-sequence. *Theor. Appl. Genet.* 90, 991–999. doi: 10.1007/BF00222912

#### A NOTE ON STATISTICAL INTERPRETATION

In the "Results" section of Chapter 3, if the text indicates "significant difference" this means that the treatment has a significant effect on the variable measured, compared to the appropriate control, the difference being statistically significant at  $P \le 0.05$ . If it only indicates "increase" or "decrease", this means that the treatment has no significant effect on the variable measured, compared to the control, that is, the numerical difference was not statistically significant  $(P \ge 0.05)$ . But, the treatment did result in a numerical (percent) increase or decrease in the variable measured relative to the control treatment. The respective P-values of the treatment versus control comparisons are always mentioned in parentheses, whether significant or not. This clarity is necessary to interpret the results, particularly in experiments where plants were co-inoculated with the rhizobacterial strains and *Bradyrhizobium* under greenhouse conditions. The results were nonsignificant in the absence of salt stress yet, even under this condition, numerical increases with the treatments were observed, and they did occur consistently across a wide range of variables. Some of the results were non-significant in the presence of salt stress but, the numerical increases were much higher with the treatments and they can neither be ignored and nor considered to have no In any case, the differences between the PGPR inoculated treatments and the effect. Bradyrhizobium control under growth chamber conditions in Chapter 4 were almost always statistically significant in the presence of salt stress.

# **CONNECTING TEXT**

In Chapter 3, two strains isolated from root nodules of *Amphicarpaea bracteata*, *Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48, co-inoculated with *Bradyrhizobium japonicum* 532C were shown to increase plant growth and development under optimal and salt-stressed conditions in a greenhouse setting. However, the mode of action through which the strains enhance plant growth and salinity stress tolerance was uninvestigated; this was explored here, in order to understand the *modus operandi* of plant-microbe interactions. In Chapter 4, a proteomic approach was used to analyze growth and stress response mechanisms elicited in soybean leaf tissue by bacterial inoculation under both optimal and salt-stressed conditions. This was useful to determine the beneficial effects of SL42 and SL48 and how they assist the plant in adapting to the stress and sustaining growth under these adverse conditions.

# 4 Chapter 4 Soybean Leaf Proteomic Profile Influenced by Rhizobacteria Under Optimal and Salt Stress Conditions

Authors: Gayathri Ilangumaran<sup>1</sup>, Sowmyalakshmi Subramanian<sup>1</sup> and Donald Lawrence Smith<sup>1</sup> Affiliations:

<sup>1</sup> Department of Plant Science, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada.

This manuscript is in preparation for submission to Molecular Plant Microbe Interactions (MPMI).

# 4.1 Abstract

Soil salinity is a major abiotic stressor inhibiting plant growth and development by affecting a range of physiological processes. Plant growth promoting rhizobacteria (PGPR) are considered a sustainable option for alleviation of stress and enhancement of plant growth, yet their mode of action is complex and largely unexplored. In this study, an untargeted proteomic approach provided insights into growth and stress response mechanisms elicited in soybean plants by Rhizobium sp. SL42 and Hydrogenophaga sp. SL48. The plants were grown under optimal and salt-stressed conditions up to their mid-vegetative stage; shoot growth variables were increased in the bacteria-treated plants. Shotgun proteomics of soybean leaf tissue revealed that a number of proteins related to plant growth and stress tolerance were modulated in the bacterial inoculation treatments. Several key proteins involved in major metabolic pathways of photosynthesis, respiration and photorespiration were upregulated. These include photosystem I psaK, Rubisco subunits, glyceraldehyde-3-phosphate dehydrogenase, succinate dehydrogenase and glycine decarboxylase. Similarly, stress response proteins such as catalase and glutathione S-transferase (antioxidants), proline-rich precursor protein (osmolyte), and NADP-dependent malic enzyme (linked to ABA signaling) were increased under salt stress. The functions of proteins related to plant growth and stress adaptation led to an expanded understanding of plant-microbe interactions. These findings suggest that the PGPR strains regulated proteome expression in soybean leaves through multiple signaling pathways, thereby inducing salinity tolerance and improving plant growth in the presence of this abiotic stress challenge. They play a crucial role in the development of soybean plants under stressful conditions and therefore could potentially be utilized as biostimulants to mitigate stress effects and boost crop productivity.

## 4.2 Introduction

Salinity is one of the major abiotic stressors, causing detrimental effects on plant growth and development. Soil salinity declines crop productivity and eventually leads to the deterioration of cultivable land and desertification (Abrol et al., 1988; Zorb et al., 2019). Plant growth is affected when the salt concentration in its root zone is above the stress-induction threshold and it is caused by an initial osmotic phase (water imbalance) and a later ionic phase (ion toxicity). Although roots are the first point of contact in salinity stress, the onset of stress triggers root-to-shoot communication. The responses include stomatal closure, photosynthesis inhibition, oxidative damage and toxic ion accumulation in the tissues. As a result, leaf area and shoot growth are reduced, and leaf chlorosis and premature senescence are accelerated (Munns and Tester, 2008). Plant salinity tolerance is regulated by a plethora of mechanisms at the molecular, cellular and physiological levels, throughout the plant's developmental stages and is reflected in growth rate. These mechanisms have evolved diversely in the plant kingdom so that the degree of salinity tolerance in plants varies among species and genotypes (Chinnusamy et al., 2006).

Soybean [*Glycine max* (L.) Merrill] is an important legume-oilseed crop due to its high protein and oil contents. It is a major source of edible oil, protein and livestock feed and is cultivated globally. In 2019-20, Brazil (124 million tonnes) and the USA (96.8 million tonnes) were the leading producers, and Canada was the 7th largest producer (6 million tonnes) (SoyStats, 2020). The plant establishes a symbiotic association with *Bradyrhizobium* that dwell in the root nodules and fix atmospheric nitrogen. Soybean enriches soil nitrogen content in agricultural production systems and thus, is included in crop rotations with other arable crops (Zhang and Li, 2003). Expanding soybean cultivation and increasing soybean yield, particularly under stress, has been the major focus of soybean research over the years. Soybean is a glycophyte, and is moderately tolerant to salinity stress; seed germination is delayed when exposed to salt and growth traits including seedling emergence, plant height, leaf area, shoot dry weight, nodulation, number of pods, weight per 100 seeds and seed quality are affected by salinity stress (Phang et al., 2008).

Plant-microbe interactions have crucial functions in plant growth and ecosystem function. Beneficial plant growth promoting rhizobacteria (PGPR) are widely studied and have been shown to elicit tolerance mechanisms that mitigate abiotic stress effects. Inoculation with PGPR modulates plant signaling events involving phytohormones, stress-responses, photosynthesis rate, chlorophyll content, osmolyte accumulation, antioxidant activity, root system architecture, and shoot growth and developmental regulation (Gray and Smith, 2005; Kang et al., 2014). A number of studies have reported the influence of PGPR on growth promotion and stress alleviation in soybean with respect to these mechanisms. Soybean seedlings exposed to *Pseudomonas simiae* AU showed significant upregulation of the vegetative storage protein (VSP), gamma-glutamyl hydrolase (GGH) and RuBisCO large chain proteins under salt stress (100 mM NaCl). The plants also had higher proline and chlorophyll contents (Vaishnav et al., 2015). Inoculation with *Bacillus firmus* SW5 resulted in higher chlorophyll, proline, glycine betaine, phenolic and flavonoid contents and antioxidant enzyme activities in soybean plants under salt stress levels of 40 and 80 mM NaCl. Expression of antioxidant enzyme genes, *APX*, *CAT*, *POD*, and Fe-*SOD* (ascorbate peroxidase, catalase, peroxidase, superoxide dismutase) and salt-response genes, GmVSP, *GmPHD2* (plant-homeo-domain gene of DNA binding ability), *GmbZIP62* (transcription factor involved in ABA and stress signaling), *GmWRKY54* (salt and drought stress tolerance), GmOLPb (osmotin-like protein b isoform gene encoding a neutral PR-5 protein), and *CHS* (chalcone synthase involved in the flavonoid biosynthetic pathway) were upregulated in the salt-stressed plants (EI-Esawi et al., 2018).

Soybean plants inoculated with B. thuringiensis showed greater stomatal conductance and transpiration rates than the control plants under drought stress. Further, the plants, along with those inoculated with B. subtilis and B. cereus, showed differential expression of the stress-responsive genes *GmDREB1D* (dehydration-responsive element binding), *GmEREB* (ethylene-responsive element binding), GmP5CS ( $\Delta^1$ -pyrroline-5-carboxylase synthetase) and GmGOLS (galactinol synthase) (Martins et al., 2018). Halotolerant PGPR strains inoculated onto soybean resulted in higher antioxidant enzyme activity, K<sup>+</sup> uptake, chlorophyll content, and plant growth but decreased ABA level under 200 mM NaCl. The expression of *GmST1* (salt-tolerance 1) and *GmLAX3* (auxin resistant 3) were upregulated in the inoculated seedlings (Khan et al., 2019a). One of the PGPR, Arthrobacter woluwensis AK1 increased antioxidant activities and decreased Na<sup>+</sup> uptake in soybean plants grown under 100 and 200 mM NaCl. Further, the inoculated plants showed upregulation of GmLAX1 (auxin resistant 1), GmAKT2 (potassium channel), GmST1 and GmSALT3 (salt tolerance-associated gene on chromosome 3) and downregulation of GmNHX1 (Na<sup>+</sup>/H<sup>+</sup> antiporter) and *GmCLC1* (chloride channel) (Khan et al., 2019b). It is unsurprising that many of these studies used soybean leaf tissue to elucidate the mechanisms of plant salinity tolerance elicited by PGPR as leaves exhibit clear symptoms of stress and stress responses.

*Amphicarpaea bracteata* (hog peanut) is a legume, native to North America and the closest relative of soybean in eastern North America (Marr et al., 1997). In the earlier study (Chapter 3), bacteria were isolated from the root nodules of *A. bracteata* and inoculated onto soybean and screened based on their ability to improve plant growth and salinity tolerance. Two isolates, *Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48 were co-inoculated with *Bradyrhizobium japonicum* 532C were shown to increase plant growth and development under optimal and salt-stressed conditions in a greenhouse setting. The bacteria are currently evaluated for their capacity to enhance soybean growth under field conditions, to be potentially applied as inoculants in soybean crop production systems. However, it is imperative to understand the plant mechanisms regulated by the strains and the function of plant-microbe interactions causing enhanced growth and stress related responses elicited in the leaf tissue of soybean plants at their midvegetative stage, grown in a controlled environment under both optimal and salt-stressed conditions.

#### 4.3 Materials and Methods

## 4.3.1 Bacteria culture propagation and inoculation

The bacteria *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 and *B. japonicum* 532 C were grown in YEM broth for 48 h, incubated at 25 °C and 150 rpm. The cultures were harvested by centrifugation at 5,000 × g for 10 min, room temperature (Awel<sup>TM</sup> MF 48-R, NuAire, USA) and the supernatant was discarded. The pellet was suspended in 10 mM MgSO<sub>4</sub> and the optical density was adjusted to 0.1 at A<sub>600nm</sub> (Ultraspec 4300 pro UV/Visible Spectrophotometer, Biochrom). Soybean seeds (Absolute RR) were soaked in the bacterial cell suspension at a rate of 500 µL per seed or 10 mM MgSO<sub>4</sub> (control) for 30 min.

## 4.3.2 Soybean growth conditions and sample collection

Bacterized and control seeds (5 seeds per pot) were placed in 15.25 cm pots filled with vermiculite (Perlite Canada Inc.) treated with 300 mL water or 150 mM NaCl. The pots were placed in a growth chamber (Conviron<sup>®</sup>, Canada) and maintained at  $25 \pm 2$  °C and 50% relative humidity. Seedling emergence was counted on 7<sup>th</sup> DAP (days after planting) and the plants were thinned to one seedling per pot. The plants were irrigated with 300 mL water twice a week (every

3-4 days) and fertilized with ½ strength Hoagland's solution once a week and sampled at 28<sup>th</sup> DAP. Above ground plant growth variables including plant height, leaf area, shoot fresh weight and dry weight were measured. Dried tissue samples were ground for elemental analysis, N and P were measured on a flow injection analyzer (FIA) (Lachat QuickChem 8000, Hach® USA) and K, Ca and Na were measured after dilutions and appropriate modifier addition on an atomic absorption spectrophotometer (AAS) (Varian 220FS). The experiment was repeated four times with eight treatments and six replications for each treatment under optimal and salt-stressed conditions. Three replications were allocated for measuring growth variables and three replications were allocated for protein extraction, excluding the first repetition.

## 4.3.3 Shotgun Proteomics

For protein extraction, soybean leaves were harvested, flash-frozen in liquid nitrogen and stored at -80 °C. The samples collected were pooled to form a single biological replicate; each treatment comprised 3 independent biological replications. The protein was extracted using a plant total protein extraction kit (Sigma-Aldrich, St. Louis, MO, USA).

#### 4.3.3.1 Protein extraction

Briefly, samples were finely ground in liquid nitrogen and ~100 mg of sample was transferred to a sterile Eppendorf tube. It was incubated with 1 mL of 80% ice-cold methanolprotease inhibitor cocktail for 20 min in -20 °C and centrifuged at 12,000 rpm for 10 min at 4 °C. The supernatant was discarded, and the procedure was repeated thrice. The sample was then incubated in acetone and washed twice following a similar procedure to remove pigments and other secondary metabolites. The RW4 (Protein extraction Reagent Type 4) solution was added to the pellet, vortexed for 30s and incubated for 10 min at room temperature (22 °C). After centrifugation at room temperature, the supernatant was collected in a new tube. The protein content was quantified using the Lowry method and samples of 20  $\mu$ g of protein in 20  $\mu$ L of 1M urea. The samples were subjected to shotgun proteomic analysis at the Institut de recherches cliniques de Montréal (IRCM).

## 4.3.3.2 Proteome profiling

Total protein was tryptic digested prior to being subjected to LC-MS/MS using a Velos Orbitrap instrument (Thermo Fisher, MA, USA). Tandem mass spectra were extracted; charge state deconvolution and deisotoping were not performed. MS/MS samples were analyzed using Mascot (Matrix Science, London, UK; Mascot in Proteome Discoverer 2.4.0.305). Mascot was set up to search the Refseq database Glycine\_max (86,460 entries), assuming the digestion enzyme trypsin. Mascot was searched with a fragment ion mass tolerance of 0.020 Da and a parent ion tolerance of 10.0 PPM. Carbamidomethyl of cysteine (+57 on C) was specified in Mascot as a fixed modification. Oxidation of methionine (+16 on M) was specified in Mascot as a variable modification.

#### 4.3.3.3 Criteria for protein identification

Scaffold (version Scaffold\_4.11.1, Proteome Software Inc., Portland, OR) was used to validate MS/MS based peptide and protein identifications. Peptide identifications were accepted if they could be established at greater than 95.0% probability by the Peptide Prophet algorithm (Keller et al., 2002) with Scaffold delta-mass correction. Protein identifications were accepted if they could be established at greater than 99.0% probability and contained at least 2 identified peptides. Protein probabilities were assigned by the Protein Prophet algorithm (Nesvizhskii et al., 2003). Proteins that contained similar peptides and could not be differentiated based on MS/MS analysis alone were grouped to satisfy the principles of parsimony. Proteins sharing significant peptide sequence similarity were grouped into clusters.

## 4.3.4 Statistical analysis

The experiment was established following a completely randomized design. The data were analyzed using the SAS statistical package v.9.4 (SAS Institute Inc., Cary, NC, USA) with Proc Mixed model at a 95% confidence interval and multiple means comparison was by Tukey's HSD (honest significant difference) at  $\alpha = 0.05$ .

Proteomics data were analyzed using Scaffold v.4 (Proteome software, Inc.) for Fisher's exact test and fold change of identified/known proteins between two sample categories after normalization (embedded) of the quantitative spectral count. The FASTA files generated were analyzed using OmicsBOX (BioBam, Bioinformatics Solutions) and the integrated Blast2GO-Pro and InterProScan web services were used for functional annotation of the proteins and to classify the proteins based on functional domains, enzyme codes (EC), biological processes (BP), molecular functions (MF) and cellular components (CC). Scaffold was also used to generate FASTA, Peaklist, and mzldentML files. The LC-MSMS proteomics data is in the process of being

submitted to the to the ProteomeXchange Consortium via the PRIDE partner repository (http://proteomecentral.proteomexchange.org).

#### 4.4 Results

#### 4.4.1 Plant growth and elemental analysis

Seedling emergence at 7<sup>th</sup> DAP was considerably lower under salt stress than optimal conditions (Table 4.1). It was significantly improved by bacterial inoculation and treatment with SL42 (P = 0.0308) and SL42+SL48 (P = 0.147) had higher emergence rates than the control under optimal conditions, while treatment with SL48 had the highest emergence rate (P = 0.226) under salt stress. On the other hand, *B. japonicum*+SL42 increased the emergence rate under both optimal and salt-stressed conditions.

Table 4.1. Seedling emergence rate (%) of soybean at  $7^{th}$  DAP under optimal and salt stress conditions.

| Treatments | Optimal                    | Salt                      | Treatments       | Optimal                   | Salt                      |  |
|------------|----------------------------|---------------------------|------------------|---------------------------|---------------------------|--|
| P = 0.0004 |                            |                           |                  | P = 0.0999                |                           |  |
| Ctrl       | 71.67 <sup>bc</sup> ±5.75  | 63.33 °±5.95              | Bj               | 76.67 <sup>ab</sup> ±6.44 | 70.00 <sup>ab</sup> ±3.89 |  |
| SL42       | 86.67 <sup>a</sup> ±2.84   | 65.00 °±5.00              | Bj+SL42          | 81.67 <sup>a</sup> ±4.58  | 75.00 <sup>ab</sup> ±3.59 |  |
| SL48       | 76.67 <sup>abc</sup> ±3.33 | 71.67 <sup>bc</sup> ±3.86 | Bj+SL48          | 71.67 <sup>ab</sup> ±5.75 | 73.33 <sup>ab</sup> ±6.20 |  |
| SL42+SL48  | 81.67 <sup>ab</sup> ±4.58  | 66.67 °±6.20              | Bj+SL42+SL<br>48 | 78.33 <sup>ab</sup> ±4.58 | 65.00 <sup>b</sup> ±6.57  |  |

Values represent mean  $\pm$  SE (n=12). Bj – *Bradyrhizobium japonicum* 532C, SL42 – *Rhizobium* sp. SL42, SL48 – *Hydrogenophaga* sp. SL48

The growth variables of soybean plants were measured at 28<sup>th</sup> DAP (Figure 4.1). Plant height was significantly increased by treatment with SL42 (P = 0.0446) under optimal conditions and for the plants inoculated with SL48 (P = 0.0316) and SL42+SL48 (P = 0.0098) under salt stress (Figure 4.2). Plants inoculated with *B. japonicum* were tallest under optimal conditions but under salt stress, all three co-inoculation treatments *B. japonicum*+SL42 (P = 0.0277), *B. japonicum*+SL48 (P = 0.0551) and *B. japonicum*+SL42+SL48 (P = 0.4846) resulted in greater plant height than *B. japonicum* alone. Leaf area was higher for bacterial treatments with SL42 and SL48 than the control under optimal conditions and treatments of SL48 and SL42+SL48 under salt-stressed conditions, albeit not significant (Figure 4.3). When co-inoculated, *B. japonicum* +SL42 (P = 0.3312) and *B. japonicum*+SL42+SL48 (P = 0.3471) resulted in higher leaf area than *B. japonicum* under optimal conditions. Similarly, *B. japonicum*+SL42 (P = 0.0464), *B. japonicum*  +SL48 (P = 0.2547) and *B. japonicum*+SL42+SL48 (P = 0.3157) had higher leaf area than the *B. japonicum* alone under salt stress.

Shoot fresh weight was significantly increased by treatment with SL42 (P = 0.0293) and SL48 (P = 0.0496) under optimal conditions and treatment with SL42+SL48 (P = 0.2091) under salt stress than the control (Figure 4.4). Co-inoculation treatment of *B. japonicum*+SL42+SL48 increased shoot fresh weight under optimal (P = 0.2356) and salt stress (P = 0.363) conditions. However, *B. japonicum*+SL42 had significantly higher (P = 0.0227) shoot fresh weight under salt stress than the *B. japonicum* alone. Shoot dry weight was greater for bacterial treatments with SL42 and SL48 than the control under optimal and salt-stressed conditions (Figure 4.5). Treatment with SL42+SL48 significantly increased (P = 0.0144) shoot dry weight compared to the control under salt stress. The co-inoculation treatments, *B. japonicum*+SL42 (P=0.1209) and *B. japonicum* +SL42+SL48 (P = 0.0631) resulted in higher shoot dry weight than *B. japonicum* under optimal conditions. The treatment of *B. japonicum*+SL48 had significantly increased (P = 0.039) shoot dry weight and other co-inoculation treatments, *B. japonicum*+SL42 (P=0.1128) and *B. japonicum* +SL42+SL48 (P = 0.1958), also increased shoot dry weight compared to the *B. japonicum* alone under salt stress.

Overall, under optimal conditions, SL42 and SL48 bacterial treatments improved plant growth, whereas under salt stress co-inoculation with SL42+SL48 significantly increased plant growth compared to the control treatment. Growth variables were higher in the *B. japonicum* inoculated treatments than those that had no *B. japonicum*, because of biological nitrogen fixation, which increased shoot N content and boosted vegetative growth. Plant growth was increased by the co-inoculation of *B. japonicum* with SL42 and SL48 compared to *B. japonicum* by itself. Although differences between the co-inoculation treatments were not statistically significant under optimal conditions, they were significant under salt stress.



**Figure 4.1**. Soybean plants at 28<sup>th</sup> DAP grown in controlled environment under optimal and salt-stressed conditions.

The treatments are (A) control (B) SL42 (C) SL48 (D) SL42+SL48 (E) Bj (F) Bj+SL42 (G) Bj+SL48 (H) Bj+SL42+SL48. The seeds were treated with 10 mM MgSO<sub>4</sub> or bacterized with the *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 or co-inoculated and (B) Seeds were bacterized with *Bradyrhizobium japonicum* (Bj) as control or the strains were co-inoculated with Bj.



**Figure 4.1**. (cont.) Soybean plants at 28<sup>th</sup> DAP grown in controlled environment under optimal and salt-stressed conditions. The treatments are (A) control (B) SL42 (C) SL48 (D) SL42+SL48 (E) Bj (F) Bj+SL42 (G) Bj+SL48 (H) Bj+SL42+SL48. The seeds were treated with 10 mM MgSO<sub>4</sub> or bacterized with the *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 or co-inoculated and (B) Seeds were bacterized with *Bradyrhizobium japonicum* (Bj) as control or the strains were co-inoculated with Bj.



Figure 4.2. Height of soybean plants measured at 28<sup>th</sup> DAP under optimal and salt stress conditions.



**Figure 4.3**. Leaf area of soybean plants measured at 28<sup>th</sup> DAP under optimal and salt stress conditions.



**Figure 4.4**. Shoot fresh weight of soybean plants measured at 28<sup>th</sup> DAP under optimal and salt stress conditions.



**Figure 4.5**. Shoot dry weight of soybean plants measured at 28<sup>th</sup> DAP under optimal and salt stress conditions.

Elemental analysis revealed the nutrient composition of the soybean leaf tissues (Table 4.2). Salt-stressed plants had slightly higher N concentrations and markedly higher concentrations of P, K and Na, but lower Ca concentration than the optimally grown plants. The difference between treatments in nutrient elemental concentrations under optimal or salt stress conditions was generally slight. Treatment with SL42 resulted in higher P concentration under optimal conditions. Calcium concentration was lesser in the treatments with *B. japonicum* and SL42 than in the other treatments under optimal conditions. Potassium concentration was increased with bacterial inoculation under optimal and salt stress conditions. Due to high Na<sup>+</sup> concentration, the K<sup>+</sup>/Na<sup>+</sup> ratio was lower under salt stress, even though K concentration was higher. Treatments of SL42 and *B. japonicum* +SL42 had lower Na<sup>+</sup> content under salt stress and a higher K<sup>+</sup>/Na<sup>+</sup> ratio.

| Treatments       | Nitrogen (mg. g <sup>-1</sup> )  |                  | Phosphorous (mg. g <sup>-1</sup> ) |                   | Calcium (mg. g <sup>-1</sup> ) |                   |
|------------------|----------------------------------|------------------|------------------------------------|-------------------|--------------------------------|-------------------|
|                  | Optimal                          | Salt             | Optimal                            | Salt              | Optimal                        | Salt              |
| Ctrl             | 15.43 ±2.44                      | 18.29 ±0.86      | 0.95 ±0.09                         | 1.48 ±0.17        | 7.23 ±0.24                     | 4.84 ±0.36        |
| SL42             | 17.33 ±2.32                      | $18.48 \pm 1.56$ | 1.21 ±0.23                         | 1.55 ±0.16        | 6.65 ±0.89                     | $4.94 \pm 0.37$   |
| SL48             | 15.62 ±2.62                      | $17.87 \pm 1.42$ | $0.99 \pm 0.07$                    | 1.56 ±0.15        | 7.68 ±0.59                     | $4.89\pm\!\!0.18$ |
| SL42+SL48        | 17.86 ±2.48                      | $17.56 \pm 1.35$ | $0.98\pm\!\!0.09$                  | $1.48\pm0.12$     | 7.11 ±0.15                     | 4.54 ±0.39        |
| Bj               | $20.06 \pm 1.02$                 | $20.42 \pm 0.80$ | 0.83 ±0.09                         | $1.40 \pm 0.12$   | 6.56 ±0.38                     | 4.76 ±0.21        |
| Bj+SL42          | 21.46 ±0.95                      | $21.99 \pm 1.58$ | $0.87 \pm 0.08$                    | 1.49 ±0.17        | $6.66 \pm 0.54$                | 4.57 ±0.23        |
| Bj+SL48          | 21.37 ±0.64                      | $22.07 \pm 1.16$ | 0.94 ±0.11                         | 1.51 ±0.20        | $6.55 \pm 0.40$                | $4.64 \pm 0.20$   |
| Bj+SL42+<br>SL48 | 21.22 ±0.83                      | 21.73 ±0.73      | 0.86 ±0.06                         | 1.40 ±0.15        | 6.88 ±0.32                     | 4.62 ±0.16        |
| Treatments       | Potassium (mg. g <sup>-1</sup> ) |                  | Sodium (mg. g <sup>-1</sup> )      |                   | K:Na                           |                   |
|                  | Optimal                          | Salt             | Optimal                            | Salt              | Optimal                        | Salt              |
| Ctrl             | 10.48 ±1.59                      | 21.31 ±1.63      | $0.05 \pm 0.03$                    | $0.31 \pm 0.04$   | 213.42                         | 68.89             |
| SL42             | 11.37 ±1.26                      | $23.22 \pm 2.40$ | $0.06 \pm 0.01$                    | $0.27 \pm 0.02$   | 203.52                         | 85.63             |
| SL48             | $11.31 \pm 1.03$                 | 23.51 ±1.69      | $0.06 \pm 0.02$                    | $0.29 \pm 0.02$   | 186.71                         | 81.62             |
| SL42+SL48        | $10.59 \pm 1.38$                 | $21.41 \pm 1.17$ | $0.04 \pm 0.02$                    | $0.26 \pm 0.07$   | 246.65                         | 82.20             |
| Bj               | 9.81 ±1.25                       | 22.51 ±2.81      | $0.08 \pm 0.05$                    | $0.39\pm\!\!0.05$ | 116.98                         | 57.96             |
| Bj+SL42          | $10.11 \pm 1.05$                 | $20.13 \pm 1.36$ | $0.07 \pm 0.02$                    | $0.32 \pm 0.06$   | 151.88                         | 63.27             |
| Bj+SL48          | $10.69 \pm 1.13$                 | 22.45 ±2.41      | $0.06 \pm 0.03$                    | $0.42 \pm 0.07$   | 187.87                         | 53.77             |
| Bj+SL42+<br>SL48 | 10.09 ±1.12                      | 20.93 ±1.61      | 0.05 ±0.03                         | 0.35 ±0.02        | 199.81                         | 59.83             |

**Table 4.2**. Elemental analysis of major nutrients of soybean shoot tissue at 28<sup>th</sup> DAP under optimal and salt stress conditions.

Values represent mean  $\pm$  SE (n=4). Bj – *Bradyrhizobium japonicum* 532C, SL42 – *Rhizobium* sp. SL42, SL48 – *Hydrogenophaga* sp. SL48

#### 4.4.2 Proteomic analysis

## 4.4.2.1 Quantitative spectra of soybean leaf proteome

To understand the role of the inoculated bacteria on the metabolism and physiology of optimal and salt-stressed soybean plants, a LC-MS/MS based proteome profiling of the total leaf protein extracted was performed. Based on the quantitative value of the identified spectra, the treatment contrasts were analyzed for fold-change after normalization ( $\geq 1.2$ ) and Fisher-exact test ( $P \leq 0.05$ ) to narrow down proteins that were relatively up- or down-regulated. Some of the key proteins might be missed from the analysis due to the very stringent criteria but this allowed for focusing on the proteins that were differentially expressed. Also, for ease of functional interpretation, proteins that were different between the control and the other treatments were analyzed instead of all possible contrasts. The number of identified proteins was higher under salt-stressed than under optimum plant growth conditions and they were classified into known, predicted, probable and uncharacterized proteins.

A number of proteins that play an important role in plant growth, development and stress tolerance were significantly upregulated by the bacterial treatments compared to the control (Tables 4.3-4.6). The commonly upregulated proteins related to cellular function and metabolism included ATP synthases, chlorophyll a-b binding proteins, glyceraldehyde-3-phosphate dehydrogenase A subunit, PSI subunit psaK, RubisCO small and large chains, thioredoxins in the chloroplast, glycine dehydrogenase, NADH dehydrogenases, succinate dehydrogenases in the mitochondria, chaperonins, cytoskeleton proteins (actin and tubulin), peroxisomal enzymes, ribosomal subunits and proteosome regulatory subunits. The upregulated proteins involved in phytohormone signaling and stress-responses comprised aconitate hydratase, aquaporins, catalases, glutathione S-transferases, heat shock proteins, lipoxygenases, multicystatin, superoxide dismutases and transketolases. Proteins that were participating in the biosynthesis of alkaloids, carotenes, flavonoids, isoflavonoids, soyasaponins and other secondary metabolites were also upregulated. Interestingly, when the strains were co-inoculated with *B. japonicum* under salt stress, specific proteins were upregulated commonly across the treatments relative to the B. japonicum control including PSII protein H, Calvin cycle CP12-2, cucumisin, gibberellin-regulated protein 6 precursor, heme binding 2 and topless-related proteins.

Proteins involved in amino acids, nucleic acids, sugars and starch biosynthesis, nutrient assimilation and mobilization and regulation of plant growth and developmental processes such as

ABC transporters, alpha-amylase inhibitor/lipid transfer/seed storage family protein precursor, arginosuccinate lyase, asparagine synthetase, carbamoyl-phosphate synthases, ferredoxins, ferritins, glucose-6-phosphate 1-dehydrogenase, glutamate synthetase, kunitz-type trypsin inhibitor KTI1-like, peroxisomal citrate synthase, polyadenylate-binding proteins, PEP carboxylase, phosphoglycerate kinase, pyruvate kinases and subtilisin-like proteases were upregulated (Tables 4.7-4.10). A comparison of quantitative spectra of major proteins (photosynthesis, antioxidants, and phytohormonal) among treatments under optimal and salt-stressed conditions is given in Table 4.11. Moreover, there were unique proteins that were only expressed in the bacterial treatments and not in the controls, such as carboxyl esterase 8, inactive PAP, linoleate 9S-lipoxygenase-2 and 5, lipid transfer protein EARLI 1-like, lysM domain-containing protein, starch synthase enolase, and stress-induced SAM22 (Appendix B, Supplementary Tables 4.1-4.12). The fold change of significantly downregulated proteins was  $\leq$  1.0 and so, these were not considered.

**Table 4.3**. Fold change of selected proteins that were commonly upregulated by the treatments SL42, SL48 and SL42+SL48 relative to control under optimal condition.

|    | Protein                                         | SL42 | SL48 | SL42+ |
|----|-------------------------------------------------|------|------|-------|
|    |                                                 |      |      | SL48  |
| 1  | Cluster of asparagine synthetase 2              | 4.5  | 13   | 9.5   |
| 2  | Cluster of glucose-6-phosphate dehydrogenase    | 3.3  |      | 3.3   |
| 2  | Cluster of PREDICTED: glutathione S-transferase | 1 /  | 1.4  | 1.4   |
| 3  | GST 9 isoform X1                                | 1.4  |      |       |
| 4  | Cluster of S-formylglutathione hydrolase        |      | 3.2  | 2.6   |
| 5  | NADH dehydrogenase subunit 7 (chloroplast)      | 1.5  |      | 1.5   |
| 6  | PREDICTED: thioredoxin H1                       | 1.3  | 1.3  |       |
| 7  | PREDICTED: UDP-glucose flavonoid 3-O-           |      | 17   | 1.0   |
|    | glucosyltransferase 7-like                      |      | 1./  | 1.7   |
| 8  | prolyl endopeptidase                            | 1.4  | 1.5  | 1.8   |
| 9  | ribulose bisphosphate carboxylase small chain 4 | 1.2  | 1.1  | 1.3   |
| 10 | soyasaponin III rhamnosyltransferase            |      | 1.3  | 1.5   |

Values represent fold change of quantitative spectra relative to control (P  $\leq$  0.05; n=3).

SL42 – Rhizobium sp. SL42, SL48 – Hydrogenophaga sp. SL48
|    | Protein                                                | SL42 | SL48 | SL42+<br>SL48 |
|----|--------------------------------------------------------|------|------|---------------|
| 1  | argininosuccinate lyase, chloroplastic isoform X1      | 2    |      | 2             |
| 2  | Cluster of alpha-amylase inhibitor/lipid transfer/seed |      | 53   | Δ             |
| 2  | storage family protein precursor                       |      | 5.5  | -             |
| 3  | Cluster of clathrin heavy chain                        | 1.3  |      | 1.3           |
| 4  | Cluster of coatomer subunit delta                      | 2.9  | 2.5  |               |
| 5  | Cluster of DEAD-box ATP-dependent RNA helicase         |      | 1.8  | 2             |
| 5  | 3, chloroplastic                                       |      | 1.0  | 2             |
|    | Cluster of dihydrolipoyllysine-residue                 |      |      |               |
| 6  | acetyltransferase component 4 of pyruvate              |      | 2.3  | 2.4           |
|    | dehydrogenase complex, chloroplastic isoform X2        |      |      |               |
| 7  | Cluster of glyceraldehyde-3-phosphate                  | 1.3  | 1.4  | 1.3           |
|    | dehydrogenase A subunit                                |      |      |               |
| 8  | Cluster of glycine dehydrogenase (decarboxylating),    |      | 1.2  | 1.3           |
| 0  | mitochondrial                                          | 1.4  | 1.4  | 1.0           |
| 9  | Cluster of HSP90 superfamily protein isoform X1        | 1.4  | 1.4  | 1.3           |
| 10 | Cluster of linoleate 13S-lipoxygenase 2-1,             |      | 1.8  | 1.8           |
|    | chloroplastic                                          |      |      |               |
| 11 | Cluster of NADH denydrogenase [ubiquinone] iron-       |      | 1.6  | 1.2           |
|    | Sulfur protein 1, mitochondrial                        |      |      |               |
| 12 | Cluster of peroxisomal fatty acid beta-oxidation       | 1.5  | 1.4  |               |
| 12 | Chater of proline rich protein proguraer               | 10   | 7    | 57            |
| 13 | Cluster of S. adapagylmethioning synthese              | 10   | /    | J./           |
| 14 |                                                        |      | 1.2  | 1.5           |
| 15 | Cluster of SKP1-like protein 1A isoform X1             | 1.4  | 2.2  | 1.9           |
| 16 | endoplasmin homolog isoform X1                         | 1.4  | 1.4  | 1.3           |
| 17 | photosystem I reaction center subunit psaK             | 2.3  | 2.7  | 3.2           |
| 18 | PREDICTED: auxin-binding protein ABP19a-like           | 2.3  | 2.1  | 1.9           |
| 19 | PREDICTED: peroxisomal citrate synthase isoform X1     | 4.2  | 4.5  |               |
| 20 | succinate dehydrogenase [ubiquinone] flavoprotein      |      | 16   | 17            |
| 20 | subunit 1, mitochondrial                               |      | 1.0  | 1./           |
| 21 | topless-related protein 1 isoform X1                   |      | 2.2  | 1.8           |
| 22 | tripeptidyl-peptidase 2 isoform X1                     |      | 2.2  | 2.4           |
| K  |                                                        |      |      |               |

**Table 4.4**. Fold change of selected proteins that were commonly upregulated by the treatments SL42, SL48 and SL42+SL48 relative to control under salt stress.

Values represent fold change of quantitative spectra relative to control ( $P \le 0.05$ ; n=3).

SL42 – *Rhizobium* sp. SL42, SL48 – *Hydrogenophaga* sp. SL48

|    | Protein                                                             | Bj+SL42 | Bj+SL48 | Bj+SL42<br>+SL48 |
|----|---------------------------------------------------------------------|---------|---------|------------------|
| 1  | ATPase ARSA1                                                        |         | 1.9     | 1.8              |
| 2  | Cluster of adenosylhomocysteinase-like                              |         | 1.3     | 1.3              |
| 3  | Cluster of bifunctional monothiol glutaredoxin-S16, chloroplastic   |         | 2       | 1.9              |
| 4  | Cluster of catalase                                                 |         | 1.2     | 1.3              |
| 5  | Cluster of chlorophyll a-b binding protein                          |         | 1.4     | 1.3              |
| 6  | Cluster of glyceraldehyde-3-phosphate<br>dehydrogenase A subunit    | 1.2     | 1.8     | 1.6              |
| 7  | Cluster of glycine dehydrogenase (decarboxylating), mitochondrial   | 1.2     | 1.3     | 1.2              |
| 8  | Cluster of isoflavone reductase homolog 2                           | 3.1     | 3.5     | 3.6              |
| 9  | Cluster of isopentenyl-diphosphate Delta-isomerase I                | 1.7     | 2       | 2.5              |
| 10 | Cluster of kunitz-type trypsin inhibitor KTI1-like                  | 1.6     | 1.8     |                  |
| 11 | Cluster of linoleate 9S-lipoxygenase-4                              |         | 1.2     | 1.2              |
| 12 | Cluster of peptide methionine sulfoxide reductase B5                | 6.5     | 6.5     | 6.2              |
| 13 | Cluster of PREDICTED: multicystatin                                 | 2.1     | 2.3     | 1.9              |
| 14 | Cluster of proline-rich protein precursor                           |         | 19      | 6.3              |
| 15 | Cluster of S-adenosylmethionine synthase                            | 1.2     | 1.4     | 1.3              |
| 16 | Cluster of soyasapogenol B glucuronide galactosyltransferase-like   | 1.4     | 1.7     | 1.4              |
| 17 | ferredoxin-A                                                        | 2.1     | 2.9     | 3.7              |
| 18 | glutamine synthetase precursor                                      |         | 1.2     | 1.2              |
| 19 | ketol-acid reductoisomerase, chloroplastic                          | 1.3     | 1.3     |                  |
| 20 | KS-type dehydrin SLTI629                                            |         | 4.1     | 6                |
| 21 | photosystem I reaction center subunit psaK                          | 1.7     | 2.8     | 2.9              |
| 22 | polyphenol oxidase A1, chloroplastic                                | 2.4     | 2.5     | 2.4              |
| 23 | PREDICTED: auxin-binding protein ABP19a-like                        | 1.6     | 2.3     | 1.8              |
| 24 | PREDICTED: UDP-glucose flavonoid 3-O-<br>glucosyltransferase 7-like | 1.7     | 1.9     | 1.6              |
| 25 | protoporphyrinogen oxidase 1, chloroplastic                         |         | 1.7     | 1.5              |
| 26 | ribulose bisphosphate carboxylase small chain 1                     | 1.3     | 1.4     | 1.3              |
| 27 | soyasaponin III rhamnosyltransferase                                | 1.4     | 1.5     |                  |
| 28 | subtilisin-like protease Glyma18g48580 isoform X1                   | 2.9     | 2.3     | 2.4              |

**Table 4.5**. Fold change of selected proteins that were commonly upregulated by the treatments Bj+SL42, Bj+SL48 and Bj+SL42+SL48 relative to Bj (control) under optimal condition.

|    | Protein                                                                    | Bj+SL42 | Bj+SL48 | Bj+SL42<br>+SL48 |
|----|----------------------------------------------------------------------------|---------|---------|------------------|
| 29 | succinate dehydrogenase [ubiquinone] flavoprotein subunit 1, mitochondrial |         | 1.8     | 1.8              |
| 30 | superoxide dismutase [Cu-Zn], chloroplastic                                | 2.5     | 2.3     | 2.4              |
|    |                                                                            |         |         |                  |

Values represent fold change of quantitative spectra relative to control ( $P \le 0.05$ ; n=3). Bj – *Bradyrhizobium japonicum* 532C, SL42 – *Rhizobium* sp. SL42, SL48 – *Hydrogenophaga* sp. SL48

| Table 4.6. I | Fold change of | f selected protei | ns that were  | commonly     | upregulated by    | the treatments |
|--------------|----------------|-------------------|---------------|--------------|-------------------|----------------|
| Bj+SL42, B   | j+SL48 and Bj  | +SL42+SL48 r      | elative to Bj | (control) ur | nder salt stress. |                |

|    | Protein                                                                         | Bj+SL42 | Bj+SL48 | Bj+SL42<br>+SL48 |
|----|---------------------------------------------------------------------------------|---------|---------|------------------|
| 1  | Cluster of 1-aminocyclopropane-1-carboxylate oxidase                            | 1.6     | 1.7     |                  |
| 2  | Cluster of 15-cis-phytoene desaturase,<br>chloroplastic/chromoplastic           | 1.6     | 2.2     | 1.6              |
| 3  | Cluster of 4-alpha-glucanotransferase DPE2                                      |         | 1.4     | 1.4              |
| 4  | Cluster of aconitate hydratase, cytoplasmic                                     | 1.3     | 1.4     |                  |
| 5  | Cluster of calvin cycle protein CP12-2                                          |         | 1.4     | 1.8              |
| 6  | Cluster of carbamoyl-phosphate synthase large chain, chloroplastic              | 1.6     | 1.6     |                  |
| 7  | Cluster of catalase                                                             | 1.3     | 1.3     | 1.2              |
| 8  | Cluster of DEAD-box ATP-dependent RNA helicase 56                               | 1.5     |         | 1.5              |
| 9  | Cluster of gibberellin-regulated protein 6 precursor                            |         | 1.6     | 1.2              |
| 10 | Cluster of glutamine synthetase precursor isoform X1                            |         | 1.3     | 1.3              |
| 11 | Cluster of glyceraldehyde-3-phosphate<br>dehydrogenase A subunit                | 1.3     | 1.1     |                  |
| 12 | Cluster of glycine dehydrogenase (decarboxylating),<br>mitochondrial            | 1.2     | 1.1     | 1.2              |
| 13 | Cluster of NADP-dependent malic enzyme                                          | 1.4     | 1.3     | 1.2              |
| 14 | Cluster of probable 3-hydroxyisobutyrate<br>dehydrogenase-like 1, mitochondrial | 2.5     | 2       |                  |
| 15 | Cluster of proline-rich protein precursor                                       | 3.3     | 2.6     | 1.8              |
| 16 | Cluster of ribulose bisphosphate<br>carboxylase/oxygenase activase              | 1.1     | 1.2     | 1.1              |
| 17 | cucumisin                                                                       | 1.6     | 1.8     | 1.9              |
| 18 | glucose-6-phosphate 1-dehydrogenase                                             |         | 1.7     | 1.5              |
| 19 | heme-binding protein 2                                                          |         | 1.3     | 1.6              |
| 20 | MFP1 attachment factor 1                                                        | 4.3     | 4.3     |                  |

|    | Protein                                                             | Bj+SL42 | Bj+SL48 | Bj+SL42<br>+SL48 |
|----|---------------------------------------------------------------------|---------|---------|------------------|
| 21 | NAD(P)H-quinone oxidoreductase subunit N                            | 6       | 6.5     | 5                |
| 22 | photosystem I reaction center subunit psaK                          | 1.6     | 1.4     | 1.5              |
| 23 | photosystem II protein H                                            |         | 1.3     | 1.9              |
| 24 | polygalacturonase inhibitor 1-like protein precursor                | 3.5     | 4.5     | 2.9              |
| 25 | PREDICTED: UDP-glucose flavonoid 3-O-<br>glucosyltransferase 7-like | 2.4     | 2.9     | 2.6              |
| 26 | probable UDP-arabinopyranose mutase 1                               |         | 1.5     | 1.4              |
| 27 | protein TOPLESS                                                     |         | 2.2     | 2.2              |
| 28 | protein transport protein Sec24-like At4g32640                      |         | 3.2     | 4.6              |
| 29 | ribulose bisphosphate carboxylase small chain 4                     | 1.4     | 1.5     | 1.2              |
| 30 | ribulose-1,5-bisphosphate carboxylase/oxygenase<br>large subunit    | 1.2     | 1.2     | 1.2              |
| 31 | topless-related protein 3                                           |         | 4.3     | 3.3              |
| 32 | topless-related protein 4 isoform X2                                |         | 3.8     | 3                |
| 33 | UDP-glycosyltransferase 84B2                                        | 3.4     | 3.2     | 3.2              |
| 34 | UDP-sulfoquinovose synthase, chloroplastic                          | 2       |         | 1.7              |

Values represent fold change of quantitative spectra relative to control ( $P \le 0.05$ ; n=3). Bj – *Bradyrhizobium japonicum* 532C, SL42 – *Rhizobium* sp. SL42, SL48 – *Hydrogenophaga* sp. SL48

| SL42                                                                                                                                                                                                            | SL42+SL48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Cluster of matrix<br/>metalloproteinase precursor</li> <li>isoflavone reductase-like<br/>protein</li> </ul> SL48                                                                                       | <ul> <li>Cluster of aconitate hydratase 1</li> <li>Cluster of adenosylhomocysteinase</li> <li>Cluster of catalase</li> <li>Cluster of chlorophyll a-b binding protein P4, chloroplastic</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>26S proteasome regulatory<br/>subunit 4 homolog A</li> <li>Cluster of clathrin heavy<br/>chain 2</li> <li>stress-induced protein<br/>SAM22</li> <li>UDP-glucuronic acid<br/>decarboxylase 2</li> </ul> | <ul> <li>Cluster of fumarate hydratase 1, mitochondrial</li> <li>Cluster of glyceraldehyde-3-phosphate dehydrogenase A subunit</li> <li>Cluster of glycine dehydrogenase (decarboxylating), mitochondrial</li> <li>Cluster of linoleate 9S-lipoxygenase-4</li> <li>Cluster of peroxisomal (S)-2-hydroxy-acid oxidase GLO1-like</li> <li>Cluster of phosphoenolpyruvate carboxylase</li> <li>indole-3-glycerol phosphate synthase, chloroplastic</li> <li>NAD(P)H-quinone oxidoreductase subunit N, chloroplastic</li> <li>photosystem I reaction center subunit psaK, chloroplastic</li> <li>protein PELPK1</li> <li>ribulose-1,5 bisphosphate carboxylase/oxygenase large subunit N-methyltransferase, chloroplastic</li> <li>soyasapogenol B glucuronide galactosyltransferase-like</li> </ul> |
| Fold change $\ge 1.2 (P \le 0.05; n=3)$ .                                                                                                                                                                       | SL42 – Rhizobium sp. SL42, SL48 – Hydrogenophaga sp. SL48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

**Table 4.7**. Proteins that were specifically upregulated by treatments SL42, SL48 and SL42+SL48 relative to control under optimal condition.

| SL                                         | .42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SL42+SL48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •<br>•<br>•<br>•<br>•                      | 12-oxophytodienoate reductase 3<br>Cluster of ABC transporter C family<br>member 4<br>Cluster of alpha-glucan water<br>dikinase, chloroplastic isoform X1<br>Cluster of calnexin homolog precursor<br>Cluster of chaperonin CPN60-2,<br>mitochondrial<br>Cluster of citrate synthase,<br>glyoxysomal<br>Cluster of IAA-amino acid hydrolase<br>ILR1-like 4<br>osmotin-like protein<br>PREDICTED: ferredoxin-A-like<br>protein ROOT HAIR DEFECTIVE 3                                                                                                           | <ul> <li>aquaporin PIP2-7</li> <li>Cluster of aconitate hydratase, cytoplasmic</li> <li>Cluster of carbamoyl-phosphate synthase large chain, chloroplastic</li> <li>Cluster of chlorophyll a/b-binding protein</li> <li>Cluster of diphosphomevalonate decarboxylase MVD2, peroxisomal</li> <li>Cluster of magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase, chloroplastic</li> <li>Cluster of plastidial pyruvate kinase 2</li> <li>Cluster of PREDICTED: zinc finger BED domain-containing protein DAYSLEEPER-like</li> <li>Cluster of protochlorophyllide reductase, abloroplastic</li> </ul>                                                                                                        |
| SI<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• | homolog 2<br><b>48</b><br>ATP synthase CF1 beta subunit<br>(chloroplast)<br>chlorophyll a-b binding protein 3,<br>chloroplastic<br>Cluster of cytosolic chaperonin<br>Cluster of gamma carbonic anhydrase<br>1, mitochondrial<br>Cluster of heat shock 70 kDa protein<br>14<br>Cluster of phosphoglucomutase,<br>chloroplastic<br>nifU-like protein 4, mitochondrial<br>pullulanase 1, chloroplastic<br>succinateCoA ligase [ADP-forming]<br>subunit alpha, mitochondrial<br>xanthoxin dehydrogenase<br>d change $\geq 1.2$ (P $\leq 0.05$ : n=3), SL42 - Rhi | <ul> <li>chloroplastic</li> <li>Cluster of subtilisin-like protease SBT1.6</li> <li>D-3-phosphoglycerate dehydrogenase 2,<br/>chloroplastic</li> <li>fatty acid hydroperoxide lyase, chloroplastic</li> <li>heat shock 70 kDa protein 14 isoform X1</li> <li>KS-type dehydrin SLTI629</li> <li>NADH dehydrogenase subunit 7 (chloroplast)</li> <li>pyruvate dehydrogenase E1 component subunit<br/>beta-3, chloroplastic</li> <li>pyruvate kinase 1, cytosolic isoform X1</li> <li>ribulose-1,5-bisphosphate<br/>carboxylase/oxygenase large subunit<br/>(chloroplast)</li> <li>soyasaponin III rhamnosyltransferase</li> <li>succinate dehydrogenase [ubiquinone] iron-<br/>sulfur subunit 2, mitochondrial</li> </ul> |

**Table 4.8**. Proteins that were specifically upregulated by treatments SL42, SL48 and SL42+SL48

 relative to control under salt stress.

| Bj+SL42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bj+ SL42+SL48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Bj+SL42</li> <li>Cluster of isoamylase 3, chloroplastic isoform X1</li> <li>Cluster of ribosomal protein L11 family protein</li> <li>Cluster of subtilisin-like protease Glyma18g48580</li> <li>kunitz family trypsin and protease inhibitor protein precursor</li> <li>peptide methionine sulfoxide reductase B5</li> <li>PREDICTED: peptidyl-prolyl cis-trans isomerase 1-like</li> <li>protein PELPK1</li> <li>succinate dehydrogenase [ubiquinone] iron-sulfur subunit 2, mitochondrial</li> <li>Bj+SL48</li> <li>15-cis-phytoene desaturase, chloroplastic/chromoplastic</li> <li>aquaporin PIP2-10</li> <li>Cluster of DEAD-box ATP-dependent RNA helicase 3, chloroplastic</li> <li>Cluster of linoleate 13S-lipoxygenase 2-1, chloroplastic</li> <li>Cluster of serine glyoxylate aminotransferase 3</li> </ul> | <ul> <li>Bj+ SL42+SL48</li> <li>carbonic anhydrase 2</li> <li>chaperonin CPN60-like 2,<br/>mitochondrial</li> <li>Cluster of carbamoyl-<br/>phosphate synthase large<br/>chain, chloroplastic</li> <li>Cluster of PREDICTED: zinc<br/>finger BED domain-containing<br/>protein DAYSLEEPER-like</li> <li>Cluster of pyrophosphate-<br/>energized vacuolar membrane<br/>proton pump</li> <li>Cluster of transketolase,<br/>chloroplastic</li> <li>glutathione S-transferase L3</li> <li>NAD(P)H-quinone<br/>oxidoreductase subunit N,<br/>chloroplastic</li> <li>peroxisomal 3-ketoacyl-CoA<br/>thiolase</li> <li>protochlorophyllide reductase,</li> </ul> |
| <ul> <li>isoform X1</li> <li>gamma-glutamyl hydrolase precursor</li> <li>indole-3-glycerol phosphate synthase, chloroplastic</li> <li>iron-superoxide dismutase</li> <li>malonyl-CoA:isoflavone 7-O-glucoside-6"-O-malonyltransferase</li> <li>probable carboxylesterase 2</li> <li>ribulose bisphosphate carboxylase/oxygenase activase</li> <li>UDP-glucosyl transferase 73B2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>chloroplastic</li> <li>putative plastocyanin</li> <li>ribulose-1,5-bisphosphate<br/>carboxylase/oxygenase large<br/>subunit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fold change $\geq 1.2$ (P $\leq 0.05$ ; n=3). Bj – Bradyrhizobium japonic SL48 – Hydrogenophaga sp. SL48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>cum</i> 532C, SL42 – <i>Rhizobium</i> sp. SL42,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

**Table 4.9**. Proteins that were specifically upregulated by treatments Bj+SL42, Bj+SL48 and Bj+SL42+SL48 relative to Bj (control) under optimal condition.

| Bj+SL42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bj +SL48                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>12-oxophytodienoate reductase 3</li> <li>abscisate beta-glucosyltransferase</li> <li>caffeic acid 3-O-methyltransferase-like</li> <li>Cluster of ferritin</li> <li>Cluster of iron-superoxide dismutase</li> <li>Cluster of pyrophosphatefructose 6-phosphate 1-phosphotransferase subunit alpha</li> <li>ferredoxin-A</li> <li>harpin binding protein 1</li> <li>putative glucose-6-phosphate 1-epimerase</li> <li>ruBisCO large subunit-binding protein subunit beta chloroplastic</li> </ul>                                | <ul> <li>alpha-amylase inhibitor/lipid<br/>transfer/seed storage family<br/>protein precursor</li> <li>amidase 1 isoform X1</li> <li>Cluster of adenylosuccinate<br/>synthetase 2, chloroplastic</li> <li>Cluster of peroxisomal glycolate<br/>oxidase isoform X1</li> <li>Cluster of pyruvate decarboxylase<br/>2</li> <li>glutamate decarboxylase</li> <li>lipoxygenase</li> </ul> |
| <ul> <li>stress-induced protein SAM22</li> <li>superoxide dismutase [Fe], chloroplastic precursor</li> <li>Bj+ SL42+SL48</li> <li>carbamoyl-phosphate synthase small chain, chloroplastic</li> </ul>                                                                                                                                                                                                                                                                                                                                    | <ul> <li>peroxisomal (S)-2-hydroxy-acid<br/>oxidase GLO1-like</li> <li>phi class glutathione S-transferase</li> <li>phosphoenolpyruvate carboxylase<br/>4</li> <li>PREDICTED: auxin-binding</li> </ul>                                                                                                                                                                               |
| <ul> <li>carbonic anhydrase 2</li> <li>Cluster of ATP synthase subunit b', chloroplastic</li> <li>Cluster of gamma-tocopherol methyltransferase</li> <li>Cluster of PREDICTED: phosphoglycerate kinase, cytosolic</li> <li>Cluster of stromal 70 kDa heat shock-related protein, chloroplastic</li> <li>granule bound starch synthase Ia</li> <li>NADH dehydrogenase subunit 7 (chloroplast)</li> <li>phosphoglycerate kinase, cytosolic</li> <li>photosystem I subunit VII (chloroplast)</li> <li>PREDICTED: thioredoxin H1</li> </ul> | <ul> <li>protein ABP19a-like</li> <li>probable glutathione S-<br/>transferase</li> <li>soyasapogenol B glucuronide<br/>galactosyltransferase</li> <li>soyasaponin III<br/>rhamnosyltransferase</li> <li>trifunctional UDP-glucose 4,6-<br/>dehydratase/UDP-4-keto-6-<br/>deoxy-D-glucose 3,5-<br/>epimerase/UDP-4-keto-L-<br/>rhamnose-reductase RHM1</li> </ul>                     |
| <ul> <li>phosphoglycerate kinase, cytosolic</li> <li>photosystem I subunit VII (chloroplast)</li> <li>PREDICTED: thioredoxin H1</li> <li>thioredoxin M1, chloroplastic</li> </ul>                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>deoxy-D-glucose 3,5-<br/>epimerase/UDP-4-ket<br/>rhamnose-reductase R</li> <li>seed linoleate 9S-lipo</li> </ul>                                                                                                                                                                                                                                                            |

**Table 4.10**. Proteins that were specifically upregulated by treatments Bj+SL42, Bj+SL48 and Bj+SL42+SL48 relative to Bj (control) under salt stress.

Fold change  $\geq 1.2$  (P  $\leq 0.05$ ; n=3). Bj – Bradyrhizobium japonicum 532C, SL42 – Rhizobium sp. SL42, SL48 – Hydrogenophaga sp. SL48

| Treatme<br>nts                             | Control      | SL42          | SL48          | SL42+<br>SL48 | Вј          | Bj+<br>SL42 | Bj+<br>SL48 | Bj+SL42<br>+SL48 |  |
|--------------------------------------------|--------------|---------------|---------------|---------------|-------------|-------------|-------------|------------------|--|
| 15-cis-phy                                 | toene desat  | urase, chloro | oplastic/chro | omoplastic    |             |             |             |                  |  |
| Optimal                                    | 21.8         | 23.0          | 40.4          | 38.8          | 27.0        | 33.2        | 42.9        | 38.2             |  |
| Salt                                       | 16.3         | 16.9          | 26.1          | 33.6          | 23.8        | 38.4        | 51.2        | 39.9             |  |
| photosystem I reaction center subunit psaK |              |               |               |               |             |             |             |                  |  |
| Optimal                                    | 53.5         | 51.7          | 47.4          | 80.7          | 40.4        | 65.0        | 106.3       | 84.4             |  |
| Salt                                       | 18.3         | 40.7          | 48.9          | 55.8          | 56.3        | 88.5        | 78.8        | 57.9             |  |
| ATP synth                                  | ase CF1 bet  | a subunit, c  | hloroplastic  |               |             |             |             |                  |  |
| Optimal                                    | 1434.1       | 1316.2        | 1353.1        | 1442.6        | 1440.6      | 1431.7      | 1543.8      | 1516.1           |  |
| Salt                                       | 1227.3       | 1299.0        | 1310.0        | 1271.5        | 1357.3      | 1420.6      | 1380.2      | 1368.0           |  |
| ribulose-1,                                | .5-bisphospl | nate carboxy  | /lase/oxyger  | nase large su | ıbunit      |             |             |                  |  |
| Optimal                                    | 8297.4       | 8447.6        | 8247.2        | 8125.0        | 8100.2      | 8245.4      | 8056.2      | 8320.7           |  |
| Salt                                       | 6077.1       | 4919.4        | 5781.0        | 6554.7        | 6368.6      | 7426.5      | 7382.3      | 7072.7           |  |
| ribulose bi                                | sphosphate   | carboxylase   | small chair   | n, chloroplas | stic        |             |             |                  |  |
| Optimal                                    | 1256.8       | 1513.0        | 1435.1        | 1588.9        | 1254.0      | 1520.3      | 1611.2      | 1521.7           |  |
| Salt                                       | 985.5        | 684.8         | 811.2         | 1005.9        | 989.5       | 1340.0      | 1463.2      | 1226.8           |  |
| glyceralde                                 | hyde-3-pho   | sphate dehy   | drogenase A   | subunit, ch   | loroplastic |             |             |                  |  |
| Optimal                                    | 812.2        | 787.9         | 817.9         | 1016.7        | 695.4       | 806.5       | 1182.5      | 1028.4           |  |
| Salt                                       | 552.4        | 710.8         | 773.1         | 675.3         | 748.1       | 955.6       | 842.1       | 730.4            |  |
| granule-bo                                 | ound starch  | synthase 1, o | chloroplastic | c/amyloplas   | tic         |             |             |                  |  |
| Optimal                                    | 538.4        | 562.0         | 537.1         | 544.6         | 651.9       | 638.0       | 661.9       | 654.2            |  |
| Salt                                       | 456.1        | 445.6         | 457.6         | 453.4         | 429.2       | 477.9       | 457.1       | 455.4            |  |
| glutamine                                  | synthetase p | precursor iso | oform X1, cl  | hloroplastic  |             |             |             |                  |  |
| Optimal                                    | 686.9        | 721.3         | 723.3         | 725.0         | 795.5       | 783.4       | 773.6       | 680.3            |  |
| Salt                                       | 663.8        | 573.7         | 533.6         | 557.7         | 534.4       | 568.5       | 704.5       | 692.8            |  |

Table 4.11. Quantitative spectra of specific proteins under optimal and salt-stressed conditions.

| Treatme<br>nts | Control                                                                                       | SL42          | SL48        | SL42+<br>SL48 | Вј     | Bj+<br>SL42 | Bj+<br>SL48 | Bj+SL42<br>+SL48 |  |
|----------------|-----------------------------------------------------------------------------------------------|---------------|-------------|---------------|--------|-------------|-------------|------------------|--|
| glutathion     | e S-transfera                                                                                 | ase GST 8     |             |               | •      |             |             |                  |  |
| Optimal        | 85.36                                                                                         | 101.01        | 100.74      | 104.94        | 92.51  | 104.53      | 101.31      | 105.93           |  |
| Salt           | 165.85                                                                                        | 171.82        | 151.82      | 136.73        | 150.35 | 159.28      | 158.62      | 150.00           |  |
| Catalase       |                                                                                               |               |             |               |        |             |             |                  |  |
| Optimal        | 398.12                                                                                        | 428.15        | 411.16      | 452.44        | 424.40 | 429.27      | 478.38      | 455.12           |  |
| Salt           | 423.50                                                                                        | 423.99        | 426.91      | 426.68        | 389.42 | 481.33      | 508.19      | 478.04           |  |
| Carbonic a     | anhydrase                                                                                     |               |             |               |        |             |             |                  |  |
| Optimal        | 516.58                                                                                        | 490.25        | 487.69      | 453.32        | 358.31 | 385.88      | 391.60      | 385.10           |  |
| Salt           | 426.01                                                                                        | 405.88        | 443.23      | 416.17        | 365.75 | 382.04      | 387.62      | 360.62           |  |
| proline-ric    | h protein pr                                                                                  | ecursor       |             |               |        |             |             |                  |  |
| Optimal        | 9.96                                                                                          | 7.94          | 17.12       | 65.87         | 6.16   | 11.95       | 111.38      | 37.23            |  |
| Salt           | 2.98                                                                                          | 30.81         | 20.95       | 16.72         | 13.59  | 45.39       | 36.46       | 25.24            |  |
| 1-aminocy      | clopropane                                                                                    | -1-carboxyla  | ate oxidase |               |        |             |             |                  |  |
| Optimal        | 4.97                                                                                          | 2.00          | 1.98        | 6.00          | 9.43   | 7.14        | 6.84        | 9.76             |  |
| Salt           | 12.14                                                                                         | 19.90         | 14.27       | 7.92          | 37.21  | 57.99       | 61.48       | 48.85            |  |
| NADP-dej       | pendent mal                                                                                   | lic enzyme    |             |               |        |             |             |                  |  |
| Optimal        | 146.88                                                                                        | 138.00        | 143.07      | 161.01        | 226.75 | 216.22      | 207.55      | 202.06           |  |
| Salt           | 130.66                                                                                        | 123.03        | 151.17      | 154.77        | 144.80 | 195.65      | 180.30      | 183.33           |  |
| gibberellir    | n-regulated j                                                                                 | protein 6 pre | ecursor     |               |        |             |             |                  |  |
| Optimal        | 33.70                                                                                         | 39.01         | 43.30       | 41.96         | 34.19  | 42.20       | 37.08       | 27.45            |  |
| Salt           | 69.37                                                                                         | 78.42         | 33.42       | 24.56         | 28.37  | 30.55       | 45.66       | 64.63            |  |
| soyasapon      | in III rhamr                                                                                  | losyltransfe  | rase        |               |        |             |             |                  |  |
| Optimal        | 98.23                                                                                         | 120.93        | 125.19      | 149.75        | 121.86 | 159.89      | 172.46      | 139.28           |  |
| Salt           | 53.20                                                                                         | 44.59         | 54.91       | 73.06         | 74.84  | 93.60       | 119.49      | 93.84            |  |
| Bj – Brady     | Bj – Bradyrhizobium japonicum 532C, SL42 – Rhizobium sp. SL42, SL48 – Hydrogenophaga sp. SL48 |               |             |               |        |             |             |                  |  |

## 4.4.2.2 Functional classification of proteins based on GO categories

Based on Blast2GO pro analysis, the enzymes classes distribution was studied (Figure 4.6). Some of the enzyme classes were increased under salt stress including oxidoreductases, transferases, hydrolases and translocases. Under optimal conditions, the difference between the treatments was not more or less than 10 protein sequences. Under salt stress, the oxidoreductases, transferases and hydrolases were higher in the bacterial treatments than in control. Lyases (17.4%) and ligases (23.3%) were increased, particularly with the treatment of SL42+SL48. When co-inoculated with *B. japonicum*, little difference was observed among treatments under optimal and salinity conditions. Although, treatment of *B. japonicum*+SL42 increased isomerases (14.5%) under optimal and ligases (21.5%) under salt stress compared to *B. japonicum*.

The GO categories distribution of proteins involved in biological processes, molecular functions and cellular components were analyzed and the number of proteins associated with almost all functions were increased under salt stress. The major functions (> 1000 protein sequences) related to cellular and metabolic processes, binding and catalytic activity, and cellular components including cytoplasm, organelles, membranes and intracellular structures were all highly upregulated by the bacterial treatments compared to control, but the differences were more prominent under salt stress (> 100 sequences) than under optimal conditions. The major GO function proteins were also predominantly upregulated in co-inoculation treatments with *B. japonicum* under optimal conditions (> 50 sequences). However, minimal differences (< 25 sequences) were observed between the co-inoculation treatments and *B. japonicum* under salt stress (Figure 4.7).

Similarly, other proteins (< 400 sequences) participating in the biological regulation, localization, response to stimulus, detoxification, development, signaling, multicellular organismal processes, interspecies interaction, and reproduction and molecular functions of cellular structures, transport, regulation, translation, and antioxidant activities, were increased by bacterial inoculation compared to the control treatment (Figures 4.8 & 4.9). The cellular components including cytosol, membrane-protein complex, catalytic complex, ribonucleoprotein, plastid (lumen, stroma and thylakoid) and mitochondrial proteins were higher in the bacterial treatments than the control (Figure 4.10).



**Figure 4.6**. Number of sequences involved in the enzyme classes of the soybean leaf proteome. (A) The seeds were treated with 10 mM MgSO<sub>4</sub> or bacterized with the strains *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 or co-inoculated under optimal and (**B**) under salt stress (**C**) seeds were bacterized with *Bradyrhizobium japonicum* (Bj) as control or the strains were co-inoculated with Bj under optimal and (**D**) under salt stress conditions. Values represent mean  $\pm$  SE (n=3).





Figure 4.7. Number of sequences involved in the major GO categories of the soybean leaf proteome.

(A) The seeds were treated with 10 mM MgSO<sub>4</sub> or bacterized with the strains *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 or co-inoculated under optimal and (B) under salt stress conditions. Values represent mean  $\pm$  SE (n=3).



**Figure 4.7**. (cont.) Number of sequences involved in the major GO categories the soybean leaf proteome. (C) seeds were bacterized with *Bradyrhizobium japonicum* (Bj) as control or the strains *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 were co-inoculated with Bj under optimal and (D) under salt stress conditions. Values represent mean  $\pm$  SE (n=3).

500

1000

■ Bj+SL48 ■ Bj+SL42+SL48

1500

CC-cytoplasm

∎Bj

0 □Bj+SL42

CC-intracellular anatomical structure

2000





Figure 4.8. Number of sequences involved in the biological processes of the soybean leaf proteome.

(A) The seeds were treated with 10 mM MgSO<sub>4</sub> or bacterized with the strains *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 or co-inoculated under optimal and (B) under salt stress conditions. Values represent mean  $\pm$  SE (n=3).





**Figure 4.8**. (cont.) Number of sequences involved in the biological processes of the soybean leaf proteome. (C) seeds were bacterized with *Bradyrhizobium japonicum* (Bj) as control or the strains *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 co-inoculated with Bj under optimal and (D) under salt stress conditions. Values represent mean  $\pm$  SE (n=3).





Figure 4.9. Number of sequences involved in the molecular functions of the soybean leaf proteome.

(A) The seeds were treated with 10 mM MgSO<sub>4</sub> or bacterized with the strains *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 or co-inoculated under optimal and (B) under salt stress conditions. Values represent mean  $\pm$  SE (n=3).





**Figure 4.9**. (cont.) Number of sequences involved in the molecular functions of the soybean leaf proteome. (C) seeds were bacterized with *Bradyrhizobium japonicum* (Bj) as control or the strains *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 were co-inoculated with Bj under optimal and (D) under salt stress conditions. Values represent mean  $\pm$  SE (n=3).



Figure 4.10. Number of sequences involved in the cellular components of the soybean leaf proteome.

(A) The seeds were treated with 10 mM MgSO<sub>4</sub> or bacterized with the strains *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 or co-inoculated under optimal conditions. Values represent mean  $\pm$  SE (n=3).



**Figure 4.10**. (cont.) Number of sequences involved in the cellular components of the soybean leaf proteome. **(B)** The seeds were treated with 10 mM MgSO<sub>4</sub> or bacterized with the strains *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 or co-inoculated under salt stress conditions. Values represent mean  $\pm$  SE (n=3).



**Figure 4.10**. (cont.) Number of sequences involved in the cellular components of the soybean leaf proteome. (C) seeds were bacterized with *Bradyrhizobium japonicum* (Bj) as control or the strains *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 were co-inoculated with Bj under optimal conditions. Values represent mean  $\pm$  SE (n=3).



**Figure 4.10**. (cont.) Number of sequences involved in the cellular components of the soybean leaf proteome. (**D**) seeds were bacterized with *Bradyrhizobium japonicum* (Bj) as control or the strains *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 were co-inoculated with Bj under salt stress conditions. Values represent mean  $\pm$  SE (n=3).

In the co-inoculation treatments with *B. japonicum*, most functions were upregulated compared to the *B. japonicum* control under optimal conditions. The proteins associated with biological regulation, localization, detoxification, molecular functions, endomembrane system, cell periphery and extracellular region were down-regulated while signaling, interspecies interaction, and reproduction and cellular components including cytosol, membrane-protein complex, catalytic complex, mitochondrion, respirasome, and supramolecular complex were upregulated in the co-inoculation treatments with *B. japonicum*, relative to *B. japonicum* alone under salt stress. The number of proteins related to other functions were more or less equal and the differences were seldom detectable among treatments. Moreover, when the number of protein sequences involved in a function was less than 20, the differences among treatments were marginal ( $\pm$  3 sequences) (Appendix B, Supplementary Figures 4.1-4.4).

### 4.5 Discussion

The seedling development stage of soybean is more sensitive to salinity than the seed germination stage (Hosseini et al., 2002). This is because the young tissues are affected by osmotic stress due to the high salt concentration in the root zone. In our experiment, seedling emergence was decreased under salt stress and the cotyledons exhibited symptoms such as oxidative browning and wilting on some seedlings. The symptoms of salinity-induced osmotic stress overlap those of drought and cold stress (Zhu, 2002). Shoot growth is limited due to the osmotic imbalance, which affects stomatal conductance, cell expansion in meristems and growth of young leaves (Munns and Tester, 2008). The net photosynthetic rate is reduced and photosynthetic assimilates are utilized for maintenance and survival, rather than biomass accumulation (Munns and Gilliham, 2015). Plant growth was largely reduced by salt stress compared to plants grown under optimal conditions.

Yellowing and senescence of the first two true leaves were observed in salt-stressed soybean plants; this was caused by ionic toxicity and in turn reduced the leaf area (Munns and Gilliham, 2015). The influx of Na<sup>+</sup> ions affects the concentration of other cations in plant tissues. Salt-tolerant lines of soybean had increased capacity to sustain adequate levels of other nutrient elements required to conduct metabolic functions (Ning et al., 2018). The concentration of N, P and K were higher under salinity implying that the plants assimilated major nutrients to cope with the negative impacts of salt stress. The plants might have assimilated more K<sup>+</sup> to maintain ionic

homeostasis because of the high Na<sup>+</sup> content and low Ca<sub>2</sub><sup>+</sup> content (cytosolic flux). The tolerance mechanisms include Na<sup>+</sup> exclusion from the leaf tissues in addition to Na<sup>+</sup> compartmentalization in vacuoles. Accumulation of compatible solutes (osmolytes) and scavenging of reactive oxygen species (ROS) contribute to enhanced salinity tolerance (Flowers and Colmer, 2015).

Proteins related to important metabolic processes such as photosynthesis, respiration, photorespiration and production of starch, amino acids and secondary metabolites were upregulated in the treatments with SL42 and SL48. This showed that the PGPR strains modulated major plant functions under optimal and salt-stressed conditions. A number of proteins involved in seedling development, plant growth and stress responses were upregulated due to bacterial inoculation. Some of them are linked to phytohormone mediated pathways, suggesting that the bacteria influenced the signaling networks and modulated plant responses. A few key examples found in this study are discussed below.

## 4.5.1 Rhizobacteria upregulate proteins related to molecular functions, nutrient metabolism and photosynthesis

One of the important enzymes upregulated by SL42, SL48 and SL42+SL48 under optimal conditions and linked to increased plant growth was asparagine synthetase 2 (ASN2). The enzyme is involved in asparagine synthesis and is essential for the regulation of nitrogen assimilation and reallocation within the plant via the phloem companion cells. It is predominantly expressed during darkness in vegetative leaves. It is important for primary metabolism, chlorophyll content and biomass accumulation (Gaufichon et al., 2013). Hsp90 superfamily protein isoform X1 was upregulated in the treatments of SL42, SL48 and SL42+SL48 under salt stress. Hsp90 is a molecular chaperone family essential for protein folding in the chloroplasts that are synthesized de novo or imported into the chloroplast mediated by the Toc/Tic complexes and cooperates with other chaperones. It is required for chloroplast development, specifically thylakoid formation within chloroplasts. Malfunction of Hsp90 has been shown to be lethal in transgenic Arabidopsis seeds, therefore it is essential for chloroplast biogenesis and embryogenesis (Oh et al., 2014). Another upregulated protein under salt stress was clathrin heavy chain (CHC), which are subunits of clathrin, a major structural protein involved in coated pits and vesicles mediating endo- and exocytosis. One of the important functions of CHC is associated with stomatal movement linked to the expansion of guard cells. This in turn affects transpiration rate, gaseous exchange and cell metabolism. Arabidopsis *chc* mutants showed defects in stomatal function and plant growth under



**Figure 4.11**. Schematic representation of the major metabolic pathways in a plant cell. Enzymes involved in photosynthesis, respiration, photorespiration, nutrient assimilation, and biosynthesis pathways that were upregulated in soybean leaf tissue by the bacterial inoculation treatments are indicated in purple text box.

PS – Photosystem, Cyt b<sub>6</sub>f – Cytochrome, Fd – Ferredoxin, PQ – Plastoquinone, UQ – Ubiquinone, RuBP – Ribulose bisphosphate, PGA – phosphoglycerate, GAP – Glyceraldehyde-3-phosphate, DHAP – Dihydroxyacetone phosphate, F6P – Fructose-6-phosphate, G6P – Glucose-6-phosphate, PEP – phospho*enol*pyruvate, OAA – Oxaloacetate, Met. H4 -folate – Methylene H4 -folate, Gly – Glycine, Glu – Glutamine, Ser – Serine. water deficit. Endocytosis is also crucial for the polarized localization of PIN proteins (auxin transporters) and provides directional gradients for auxin distribution within the plant (Larson et al., 2017).

Carbamoyl-phosphate synthase (CPS) is required for arginine biosynthesis, converting ornithine into citrulline. In higher plants, citrulline and arginine are essential for proper mesophyll development and reticulate venation in leaves. The enzyme is localized in the chloroplast and the large chain subunit was upregulated in the treatments SL42+SL48, Bj+SL42 and Bj+SL48 and small chain by Bj+SL42+SL48 under salt stress (Molla-Morales et al., 2011). Lipid transfer protein EARLI 1-like expressed only in the co-inoculation treatments of B. japonicum with SL42 and SL48. Upregulation of EARLI-1 improved seed germination, root elongation and reduced Na<sup>+</sup> accumulation in leaves under salt stress. It is induced in embryonic tissues and young seedlings suggesting that it has a positive role in seed germination and early seedling development under high salinity stress (Xu et al., 2011). Proline-rich proteins (PRP) are major constituents of cell wall structure organization. They were upregulated in all the bacterial treatments under salt stress and also in SL42+SL48, Bj+SL42+SL48 under optimal conditions. PRP accumulated in the cell wall soluble fraction of common bean (Phaseolus vulgaris) in response to water deficit. It also accumulated in developing seedlings, specifically in the phloem tissues. It plays a role in plant morphogenesis and cell wall modification induced by osmotic stress (Battaglia et al., 2007). In another study, the soybean *GmPRP* gene showed distinct expression patterns in different organs from 2-week-old seedlings and was upregulated in response to abiotic and biotic stresses (He et al., 2002).

Carbonic anhydrases (CA) are the second most abundant protein cluster next to Rubisco in C3 plant leaves and catalyzes reversible hydration of CO<sub>2</sub> to bicarbonate ion and proton. It is involved in CO<sub>2</sub> diffusion and is closely associated with Rubisco activity. Its function is important for photosynthesis in response to drought stress. It also modulates stomatal conductance to promote water use efficiency, thereby helping plants adapt to water-deficit (Wang et al., 2016). It was upregulated by treatment with Bj+SL42+SL48 under both conditions, supporting increased stress tolerance. Glutamine synthetase (GS) is a light-modulated enzyme targeted to leaf chloroplasts and mitochondria and upregulated by treatment with Bj+SL42+SL48. It is primarily responsible for the reassimilation of ammonia generated by photorespiration in

mitochondria, which is highly cytotoxic, and converts it to nontoxic glutamate in chloroplasts, and therefore, linked to plant growth (Taira et al., 2004).

Lipoxygenases (LOX) are widely distributed in plants and catalyze hyperoxidation of polyunsaturated fatty acids containing a cis, cis-1,4-pentadiene structure to produce oxylipins. They play important physiological roles in seed germination, plant growth, nodule development, ripening, cell death, senescence, synthesis of ABA and jasmonic acid and responses to abiotic and biotic stresses. Soybean contains at least 4 distinct LOX isozymes in dry seeds and two isozymes in the hypocotyl/radicle region of the seedling stem. LOX act as vegetative storage proteins (VSPs), mobilize lipids and eliminate harmful ROS during rapid mobilization of nutrient reserves in germinating soybean seeds. LOXs were found in developing cotyledons, leaves and nodules. They also play crucial roles in abiotic stress responses by decreasing H<sub>2</sub>O<sub>2</sub> accumulation and lipid peroxidation. Overexpression of *DkLOX3 (Diospyros kaki* L. 'Fupingjianshi') in Arabidopsis was related to increased germination rate and upregulation of other stress-responsive genes under high drought and salinity stress conditions (Viswanath et al., 2020). The two major subfamilies, linoleate 13S-lipoxygenase and linoleate 9S-lipoxygenases, including seed linoleate 9S lipoxygenases, were upregulated by SL48 inoculation treatments under optimal and salt stress conditions.

# 4.5.2 Proteins involved in phytohormone mediated responses were influenced by rhizobacteria

Phytohormones are signaling molecules that regulate vital physiological processes and also control plant responses to abiotic and biotic stresses including salinity stress (Waśkiewicz et al., 2016). Auxin is a key regulator of cell division, expansion and differentiation in shoot and root meristems and plays crucial roles in plant development. Auxin binding protein abp19a-like (ABP19A) is an extracellular auxin receptor and binds to auxin. It is required for auxin responses in embryogenesis, and post-embryonic root growth and shoot development (Tromas et al., 2009). It was upregulated in all bacterial treatments, indicating that the bacteria play closely associated roles in auxin signaling, thereby promoting growth.

The enzyme 1-aminocyclopropane-1-carboxylate oxidase (ACO) is involved in ethylene biosynthesis. Ethylene mediates the reversion of ABA-induced inhibition of seed germination via endosperm cap rupture. It also confers salinity tolerance by enhancement of Na/K homeostasis and accumulation of ascorbic acid through ethylene-mediated pathways (Linkies et al., 2009; Jiang et

al., 2013). It was upregulated in the treatments of Bj+SL42 and Bj+SL48 under salt stress. Gibberellin-regulated protein 6 precursor (GASA6) is a small cysteine-rich peptide responsive to gibberellic acid (GA). It functions as an integrator in the downstream of GA signaling and regulates seed germination by promoting cell elongation at the embryonic axis. It takes part in redox reactions and decreases the accumulation of ROS in response to stress. It was also upregulated under salt stress by Bj+SL48 and Bj+SL42+SL48 treatments (Zhong et al., 2015).

NADP dependent malic enzyme (NADP-ME) was upregulated in plants under salt stress with SL42 and SL48 inoculation and co-inoculation with *B. japonicum* treatments. It catalyzes the oxidative decarboxylation of malate to generate pyruvate, CO<sub>2</sub> and NADPH. It plays functional roles in abscisic acid (ABA)-mediated signaling pathways related to seed development and osmotic stress. Treatment with ABA, NaCl and mannitol increased the accumulation of NADP-ME in Arabidopsis. The knockout *nadp-mel* mutants showed decreased seed viability, stomatal opening and root growth. Hence, the enzyme participates during both seed germination and seedling growth stages. It is also essential to enhance tolerance of drought and saline conditions (Arias et al., 2018). Other proteins involved in the phytohormone-mediated responses that were upregulated by specific bacterial treatments are given in Table 4.12.

## 4.6 Conclusion

The analysis of leaf proteomic profile provided a comprehensive insight into the growth and salinity tolerance mechanisms of soybean plants modulated by the influence of rhizobacteria. These mechanisms are regulated by the inter-organismal communication, an intricate network of signaling pathways (Smith et al., 2015). In conclusion, soybean plants inoculated with *Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48 enhanced vigour and salinity tolerance under growth chamber conditions. The bacteria triggered multiple signaling pathways that regulated growth and stress tolerance mechanisms, which in turn is a result of beneficial plant-microbe interaction. Nevertheless, plants co-inoculated with *Bradyrhizobium japonicum* 532C and the strains SL42 and SL48 exhibited higher growth-promoting and stress-alleviating mechanisms, suggesting compatible co-inoculation between the symbiont and the rhizobacteria. This could ultimately lead to the crop improvement and salinity tolerance of soybean.

| Protein               | Function                               | Treatment        | Reference      |
|-----------------------|----------------------------------------|------------------|----------------|
| Abscicate beta-       | Glycosylation of ABA and               | Bj+SL42 (S)      | Xu et al.      |
| glucosyltransferase   | upregulated by ABA or drought          |                  | (2002)         |
| Amidase 1 isoform     | Stress.                                | Bi+SI 48 (S)     | Sanchez-Parra  |
| X1                    | Converts indole-3-acetamide to         | $DJ^+ SL^+ O(S)$ | et al. (2014)  |
| <b>111</b>            | indole-3-acetate.                      |                  |                |
| anthranilate synthase | Part of a heterotetrameric complex     | SL42+SL48 (S)    | Stepanova et   |
| alpha subunit 1,      | that catalyzes the two-step            | ~ /              | al. (2005)     |
| chloroplastic         | biosynthesis of anthranilate, an       |                  |                |
|                       | intermediate in the biosynthesis of L- |                  |                |
|                       | tryptophan. Plays an important         |                  |                |
|                       | regulatory role in auxin production    |                  |                |
|                       | via the tryptophan-dependent           |                  |                |
|                       | biosynthetic pathway.                  |                  |                |
| Aquaporin PIP2-7      | Water channel required to facilitate   | SL42+SL48 (S)    | Pou et al.     |
|                       | the transport of water across cell     |                  | (2016)         |
|                       | membrane. Plays a predominant role     |                  |                |
|                       | in root water uptake process in        |                  |                |
|                       | conditions of reduced transpiration,   |                  |                |
|                       | and in osmotic fluid transport.        |                  |                |
| gamma-tocopherol      | Biosynthesis of tocopherol. Protect    | Bj +SL42         | Bergmuller et  |
| methyltransferase     | the photosynthetic apparatus against   | +SL48 (S)        | al. (2003)     |
|                       | oxidative stress.                      |                  |                |
| haem oxygenase        | Key enzyme in the synthesis of the     | Bj +SL42         | Gisk et al.    |
|                       | chromophore of the phytochrome         | +SL48 (S)        | (2010)         |
|                       | family of plant photoreceptors. Plays  |                  |                |
|                       | a role in salt acclimation signaling.  |                  |                |
|                       | May affect the plastid-to-nucleus      |                  |                |
|                       | signaling pathway by perturbing        |                  |                |
|                       | tetrapyrrole synthesis.                |                  |                |
| IAA-amino acid        | Regulates amide-IAA hydrolysis and     | SL42 (S)         | Carranza et    |
| hydrolase ILR1-like   | results in activation of auxin         |                  | al. (2016)     |
| 4                     | signaling.                             |                  | ~              |
| peroxisomal 3-        | Involved in long chain fatty-acid      | Bj+SL42+SL48     | Germain et al. |
| ketoacyl-CoA          | beta-oxidation prior to                |                  | (2001)         |
| thiolase              | gluconeogenesis during germination     |                  |                |
|                       | and subsequent seedling growth.        |                  |                |

 Table 4.12. Upregulated proteins involved in phytohormone-mediated responses.

| Protein                                                                 | Function                              | Treatment | Reference            |  |
|-------------------------------------------------------------------------|---------------------------------------|-----------|----------------------|--|
| protein PELPK1                                                          | Positive regulator of germination and | Bj+SL42,  | Rashid and           |  |
|                                                                         | plant growth.                         | SL42+SL48 | Deyholos             |  |
|                                                                         |                                       |           | (2011)               |  |
| serine glyoxylate                                                       | Photorespiratory enzyme that          | Bj +SL48  | Zhang et al.         |  |
| aminotransferase 3                                                      | catalyzes transamination reactions.   |           | (2013)               |  |
| isoform X1                                                              | Functions in asparagine metabolism.   |           |                      |  |
|                                                                         | Involved in root development during   |           |                      |  |
|                                                                         | seedling establishment after seed     |           |                      |  |
|                                                                         | germination.                          |           |                      |  |
| Xanthoxin                                                               | Generates abscisic aldehyde from      | SL48 (S)  | Gonzalez-            |  |
| dehydrogenase                                                           | xanthoxin, the last step of ABA       |           | Guzman et al. (2002) |  |
|                                                                         | biosynthetic pathway. Response to     |           |                      |  |
|                                                                         | osmotic stress.                       |           |                      |  |
| * Functional description of proteins was adapted from UniProt database. |                                       |           |                      |  |
| (S) indicates treatments with salt stress.                              |                                       |           |                      |  |

## 4.7 References

- 1. Abrol, I.P., Yadav, J.S.P., and Massoud, F.I. (1988). *Salt-Affected Soils and their Management* [Online]. Rome: Food and Agriculture Organization of the United Nations. Available online at: http://www.fao.org/3/x5871e/x5871e00.htm#Contents [accessed Apr 2017].
- Arias, C.L., Pavlovic, T., Torcolese, G., Badia, M.B., Gismondi, M., Maurino, V.G., et al. (2018). NADP-Dependent Malic Enzyme 1 Participates in the Abscisic Acid Response in *Arabidopsis thaliana. Front. Plant Sci.* 9, 1637. doi: 10.3389/fpls.2018.01637
- Battaglia, M., Solorzano, R.M., Hernandez, M., Cuellar-Ortiz, S., Garcia-Gomez, B., Marquez, J., et al. (2007). Proline-rich cell wall proteins accumulate in growing regions and phloem tissue in response to water deficit in common bean seedlings. *Planta* 225, 1121-1133. doi: 10.1007/s00425-006-0423-9
- 4. Bergmuller, E., Porfirova, S., and Dormann, P. (2003). Characterization of an Arabidopsis mutant deficient in gamma-tocopherol methyltransferase. *Plant Mol. Biol.* 52, 1181-1190. doi: 10.1023/b:plan.0000004307.62398.91
- 5. Carranza, A.P.S., Singh, A., Steinberger, K., Panigrahi, K., Palme, K., Dovzhenko, A., et al. (2016). Hydrolases of the ILR1-like family of Arabidopsis thaliana modulate auxin response by regulating auxin homeostasis in the endoplasmic reticulum. *Sci. Rep-Uk* 6, doi: 10.1038/srep24212
- 6. Chinnusamy, V., Zhu, J., and Zhu, J.K. (2006). Salt stress signaling and mechanisms of plant salt tolerance. *Genet. Eng.* (NY) 27, 141-177.
- El-Esawi, M.A., Alaraidh, I.A., Alsahli, A.A., Alamri, S.A., Ali, H.M., and Alayafi, A.A. (2018). *Bacillus firmus* (SW5) augments salt tolerance in soybean (*Glycine max* L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. *Plant Physiol. Biochem.* 132, 375-384. doi: 10.1016/j.plaphy.2018.09.026
- 8. Flowers, T.J., and Colmer, T.D. (2015). Plant salt tolerance: adaptations in halophytes. *Ann. Bot.* 115(3), 327-331. doi: 10.1093/aob/mcu267

- Gaufichon, L., Masclaux-Daubresse, C., Tcherkez, G., Reisdorf-Cren, M., Sakakibara, Y., Hase, T., et al. (2013). *Arabidopsis thaliana* ASN2 encoding asparagine synthetase is involved in the control of nitrogen assimilation and export during vegetative growth. *Plant Cell Environ.* 36, 328-342. doi: 10.1111/j.1365-3040.2012.02576.x
- Germain, V., Rylott, E.L., Larson, T.R., Sherson, S.M., Bechtold, N., Carde, J.P., et al. (2001). Requirement for 3-ketoacyl-CoA thiolase-2 in peroxisome development, fatty acid betaoxidation and breakdown of triacylglycerol in lipid bodies of Arabidopsis seedlings. *Plant J.* 28a, 1-12. doi: 10.1046/j.1365-313X.2001.01095.x
- 11. Gisk, B., Yasui, Y., Kohchi, T., and Frankenberg-Dinkel, N. (2010). Characterization of the haem oxygenase protein family in *Arabidopsis thaliana* reveals a diversity of functions. *Biochem. J.* 425, 425-434. doi: 10.1042/Bj20090775
- 12. Gonzalez-Guzman, M., Apostolova, N., Belles, J.M., Barrero, J.M., Piqueras, P., Ponce, M.R., et al. (2002). The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. *Plant Cell* 14, 1833-1846. doi: 10.1105/tpc.002477
- Gray, E.J., and Smith, D.L. (2005). Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. *Soil Biol. Biochem.* 37, 395-412. doi: 10.1016/j.soilbio.2004.08.030
- 14. He, C.Y., Zhang, J.S., and Chen, S.Y. (2002). A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. *Theor. Appl. Genet.* 104, 1125-1131. doi: 10.1007/s00122-001-0853-5
- Hosseini, M.K., Powell, A.A., and Bingham, I.J. (2002). Comparison of the seed germination and early seedling growth of soybean in saline conditions. *Seed Sci. Res.* 12, 165-172. doi: 10.1079/Ssr2002108
- 16. Jiang, C.F., Belfield, E.J., Cao, Y., Smith, J.A.C., and Harberd, N.P. (2013). An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. *Plant Cell* 25, 3535-3552. doi: 10.1105/tpc.113.115659
- 17. Kang, S.-M., Khan, A.L., Waqas, M., You, Y.-H., Kim, J.-H., Kim, J.-G., et al. (2014). Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in *Cucumis sativus*. J. Plant Interact. 9, 673-682. doi: 10.1080/17429145.2014.894587
- 18. Keller, A., Nesvizhskii, A.I., Kolker, E., and Aebersold, R. (2002). Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. *Anal. Chem.* 74, 5383-5392. doi: 10.1021/ac025747h
- 19. Khan, M.A., Asaf, S., Khan, A.L., Adhikari, A., Jan, R., Ali, S., et al. (2019a). Halotolerant rhizobacterial strains mitigate the adverse effects of NaCl stress in soybean seedlings. *Biomed. Res. Int.* 2019, doi: 10.1155/2019/9530963
- Khan, M.A., Asaf, S., Khan, A.L., Jan, R., Kang, S.M., Kim, K.M., et al. (2019b). Rhizobacteria AK1 remediates the toxic effects of salinity stress via regulation of endogenous phytohormones and gene expression in soybean. *Biochem. J.* 476, 2393-2409. doi: 10.1042/Bcj20190435
- 21. Larson, E.R., Van Zelm, E., Roux, C., Marion-Poll, A., and Blatta, M.R. (2017). Clathrin heavy chain subunits coordinate endo- and exocytic traffic and affect stomatal movement. *Plant Physiol.* 175, 708-720. doi: 10.1104/pp.17.00970
- 22. Linkies, A., Muller, K., Morris, K., Tureckova, V., Wenk, M., Cadman, C.S.C., et al. (2009). Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a

comparative approach using *Lepidium sativum* and *Arabidopsis thaliana*. *Plant Cell* 21, 3803-3822. doi: 10.1105/tpc.109.070201

- 23. Marr, D.L., Devine, T.E., and Parker, M.A. (1997). Nodulation restrictive genotypes of *Glycine* and *Amphicarpaea*: A comparative analysis. *Plant Soil* 189, 181-188. doi: 10.1023/A:1004203018770
- 24. Martins, S.J., Rocha, G.A., de Melo, H.C., Georg, R.D., Ulhoa, C.J., Dianese, E.D., et al. (2018). Plant-associated bacteria mitigate drought stress in soybean. *Environ. Sci. Pollut. R.* 25, 13676-13686. doi:10.1007/s11356-018-1610-5
- 25. Molla-Morales, A., Sarmiento-Manus, R., Robles, P., Quesada, V., Perez-Perez, J.M., Gonzalez-Bayon, R., et al. (2011). Analysis of ven3 and ven6 reticulate mutants reveals the importance of arginine biosynthesis in Arabidopsis leaf development. *Plant J.* 65, 335-345. doi: 10.1111/j.1365-313X.2010.04425.x
- 26. Munns, R., and Gilliham, M. (2015). Salinity tolerance of crops what is the cost? *New Phytol.* 208, 668-673. doi: 10.1111/nph.13519
- 27. Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. *Annu. Rev. Plant Biol.* 59, 651-681. doi: 10.1146/annurev.arplant.59.032607.092911
- Nesvizhskii, A.I., Keller, A., Kolker, E., and Aebersold, R. (2003). A statistical model for identifying proteins by tandem mass spectrometry. *Anal. Chem.* 75, 4646-4658. doi: 10.1021/ac0341261
- 29. Ning, L.H., Kan, G.Z., Shao, H.B., and Yu, D.Y. (2018). Physiological and transcriptional responses to salt stress in salt-tolerant and salt-sensitive soybean (*Glycine max* [L.] Merr.) seedlings. *Land Degrad. Dev.* 29, 2707-2719. doi: 10.1002/ldr.3005
- 30. Oh, S.E., Yeung, C., Babaei-Rad, R., and Zhao, R. (2014). Cosuppression of the chloroplast localized molecular chaperone HSP90.5 impairs plant development and chloroplast biogenesis in Arabidopsis. *BMC Res. Notes* 7, 643. doi: 10.1186/1756-0500-7-643
- 31. Phang, T.H., Shao, G.H., and Lam, H.M. (2008). Salt tolerance in soybean. J. Integr. Plant Biol. 50, 1196-1212. doi: 10.1111/j.1744-7909.2008.00760.x
- 32. Pou, A., Jeanguenin, L., Milhiet, T., Batoko, H., Chaumont, F., and Hachez, C. (2016). Salinity-mediated transcriptional and post-translational regulation of the Arabidopsis aquaporin PIP2;7. *Plant Mol. Biol.* 92, 731-744. doi: 10.1007/s11103-016-0542-z
- 33. Rashid, A., and Deyholos, M.K. (2011). PELPK1 (At5g09530) contains a unique pentapeptide repeat and is a positive regulator of germination in *Arabidopsis thaliana*. *Plant Cell Rep.* 30, 1735-1745. doi: 10.1007/s00299-011-1081-3
- Sanchez-Parra, B., Frerigmann, H., Alonso, M.M., Loba, V.C., Jost, R., Hentrich, M., et al. (2014). Characterization of four bifunctional plant iam/pam-amidohydrolases capable of contributing to auxin biosynthesis. *Plants* (Basel) 3, 324-347. doi: 10.3390/plants3030324
- 35. Smith, D., Praslickova, D., and Ilangumaran, G. (2015). Inter-organismal signaling and management of the phytomicrobiome. *Front. Plant Sci.* 6, 722. doi: 10.3389/fpls.2015.00722
- 36. SoyStats (2020). *International: World Soybean Production* [Online]. The American Soybean Association. Available online at: <u>http://soystats.com/international-world-soybean-production/</u> [accessed November 2020].
- 37. Stepanova, A.N., Hoyt, J.M., Hamilton, A.A., and Alonso, J.M. (2005). A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. *Plant Cell* 17, 2230-2242. doi: 10.1105/tpc.105.033365

- 38. Taira, M., Valtersson, U., Burkhardt, B., and Ludwig, R.A. (2004). *Arabidopsis thaliana* GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts. *Plant Cell* 16, 2048-2058. doi: 10.1105/tpc.104.022046
- 39. Tromas, A., Braun, N., Muller, P., Khodus, T., Paponov, I.A., Palme, K., et al. (2009). The AUXIN BINDING PROTEIN 1 is required for differential auxin responses mediating root growth. *Plos One* 4, doi: 10.1371/journal.pone.0006648
- 40. Vaishnav, A., Kumari, S., Jain, S., Varma, A., and Choudhary, D.K. (2015). Putative bacterial volatile-mediated growth in soybean (*Glycine max* L. Merrill) and expression of induced proteins under salt stress. *J. Appl. Microbiol.* 119, 539-551. doi: 10.1111/jam.12866
- 41. Viswanath, K.K., Varakumar, P., Pamuru, R.R., Basha, S.J., Mehta, S., and Rao, A.D. (2020). Plant lipoxygenases and their role in plant physiology. *J. Plant. Biol.* 63, 83-95. doi: 10.1007/s12374-020-09241-x
- 42. Wang, L., Jin, X., Li, Q., Wang, X., Li, Z., and Wu, X. (2016). Comparative proteomics reveals that phosphorylation of beta carbonic anhydrase 1 might be important for adaptation to drought stress in *Brassica napus*. *Sci. Rep.* 6, 39024. doi: 10.1038/srep39024
- 43. Waśkiewicz, A., Gładysz, O., and Goliński, P. (2016). "Participation of phytohormones in adaptation to salt stress," in *Plant hormones under challenging environmental factors*, eds. G.J. Ahammed & J.-Q. Yu. (Dordrecht: Springer Netherlands), 75-115.
- 44. Xu, D., Huang, X., Xu, Z.Q., and Schlappi, M. (2011). The *HyPRP* gene EARLI1 has an auxiliary role for germinability and early seedling development under low temperature and salt stress conditions in *Arabidopsis thaliana*. *Planta* 234, 565-577. doi: 10.1007/s00425-011-1425-9
- 45. Xu, Z.J., Nakajima, M., Suzuki, Y., and Yamaguchi, I. (2002). Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. *Plant Physiol.* 129, 1285-1295. doi: 10.1104/pp.001784
- 46. Zhang, F.S., and Li, L. (2003). Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. *Plant Soil* 248, 305-312. doi: 10.1023/A:1022352229863
- 47. Zhang, Q.Y., Lee, J., Pandurangan, S., Clarke, M., Pajak, A., and Marsolais, F. (2013). Characterization of Arabidopsis serine:glyoxylate aminotransferase, AGT1, as an asparagine aminotransferase. *Phytochem.* 85, 30-35. doi: 10.1016/j.phytochem.2012.09.017
- Zhong, C.M., Xu, H., Ye, S.T., Wang, S.Y., Li, L.F., Zhang, S.C., et al. (2015). Gibberellic acid-stimulated Arabidopsis6 serves as an integrator of gibberellin, abscisic acid, and glucose signaling during seed germination in Arabidopsis. *Plant Physiol.* 169, 2288-2303. doi: 10.1104/pp.15.00858
- 49. Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. *Annu. Rev. Plant Biol.* 53, 247-273. doi: 10.1146/annurev.arplant.53.091401.143329
- 50. Zorb, C., Geilfus, C.M., and Dietz, K.J. (2019). Salinity and crop yield. *Plant Biol.* 21, 31-38. doi: 10.1111/plb.12884

## **CONNECTING TEXT**

In Chapters 3 and 4, the results showed that the plant growth and salinity tolerance of soybean were improved with the inoculation of *Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48. Plant growth variables such as leaf area and shoot biomass were increased under optimal and salt-stressed conditions. They elicited mechanisms through regulating proteins related to growth and stress responses in the plant. These findings led to the understanding that these bacterial strains function as plant growth promoting rhizobacteria (PGPR). Many PGPR are known to secrete plant hormones and other compounds that serve as signaling molecules. This led to the research focused on determining the genomic characteristics of these bacteria, that contribute to their function and allow them to exert plant-beneficial activities. In Chapter 5, the genomes of *Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48 were sequenced and analyzed to determine their genetic characteristics that facilitate their functional activity as PGPR.

## 5 Chapter 5 Complete Genome Sequences of *Rhizobium* sp. strain SL42 and *Hydrogenophaga* sp. strain SL48, Microsymbionts of *Amphicarpaea bracteata*

Authors: Gayathri Ilangumaran<sup>1</sup>, Sowmyalakshmi Subramanian<sup>1</sup> and Donald Lawrence Smith<sup>1</sup> Affiliations:

<sup>1</sup> Department of Plant Science, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada.

This manuscript is in preparation for submission to Microbiological Resource Announcements.

## 5.1 Abstract

The genomes of rhizobacterial strains, *Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48 were sequenced to determine their genetic characteristics. These strains were isolated from root nodules of *Amphicarpaea bracteata*, a native and undomesticated legume related to soybean. They were selected for sequencing as part of the isolation and characterization of beneficial rhizobacteria from native relatives of cultivated plants. Whole genome *de novo* sequencing was performed using Illumina and Nanopore sequencers and assembled in MaSuRCA. The genome of *Rhizobium* sp. SL42 consists of a 4.06 Mbp circular chromosome and two circular plasmids with a GC content of 60 %. The genome of *Hydrogenophaga* sp. SL48 consists of one 5.43 Mbp circular chromosome with a GC content of 65 %. Genes encoding for various metabolic functions, secretion systems, and biosynthetic gene clusters were present in their genomes. Whole genomic sequencing of SL42 and SL48 revealed functional properties of the genome related to the plant growth promoting characteristics exhibited by the bacteria. The root nodule bacteria in this project were selected on the basis of their ecological and agricultural importance relevant to plant-microbe interactions, plant growth promotion and enhancement of plant stress tolerance.

## 5.2 Introduction

Plants of the family Leguminosae engage in symbiotic relationships with nitrogen-fixing bacteria, collectively known as rhizobia, that dwell in the root nodules. Legume nodules are also known to contain bacteria other than the nitrogen-fixing symbiont and they presumably function as plant growth promoting rhizobacteria (PGPR) (Bai et al., 2002). *Amphicarpaea bracteata* (L.) is a wild legume indigenous to North America, native to Canada and the lower 48 states of the USA. It is usually found in the woody, shaded areas of wetlands but also occurs in similar areas

of non-wetlands in some regions. It is an herbaceous perennial that grows into a vine and produces flowers, pods, and seeds annually (PLANTS, 2017). The seeds and roots are edible, and the plant has been used by indigenous communities for both food and medicinal purposes (Moerman, 1998). It is the closest North American native relative to the cultivated soybean (*Glycine max* (L.) Merill) and their mutual symbiont belongs to the *Bradyrhizobium* genus, albeit with different genotypes. In the earlier study (Chapter 3), culturable members of the *A. bracteata* nodule phytomicrobiome were isolated and screened for beneficial effects on the growth and development of soybean plants. Two of the most promising isolates, *Rhizobium* sp. strain SL42 and *Hydrogenophaga* sp. SL48 improved salt tolerance and promoted the growth and maturity of soybean under greenhouse conditions.

Although the genus was identified using BLAST search of *16S rRNA* gene sequence, the species of strain SL42 and SL48 remain undetermined. Members of the Genus *Rhizobium* form nodules and benefit their legume host by fixing atmospheric nitrogen. *Rhizobium* sp. SL42 was isolated from the nodules of *A. bracteata*, also formed small nodules with soybean plants. However, the dominant symbiont of *A. bracteata* is the *Bradyrhizobium* genus (Sterner and Parker, 1999) and this is the first report of a *Rhizobium* species in this plant. *Rhizobium* sp. strain SL42 is closely related to the taxon *R. ipomoeae* shin9-1T (TaxID: 1210932) and the type strain was isolated from a water convolvulus field (Sheu et al., 2016). The Genus *Hydrogenophaga* consists of bacteria that utilize hydrogen as an energy source and oxidize it by the enzyme hydrogenase (Contzen et al., 2000). This is the first report of a *Hydrogenophaga* species associated with plant roots. The most closely related species to strain SL48 is *H. taeniospiralis* CCUG 15921T (TaxID: 1281780). The classification and other characteristics of the two strains are given in Table 5.1.

However, molecular functions related to their roles in plant growth and protection have to be explored. The aim of this study is to sequence the genome of SL42 and SL48 using highthroughput next-generation sequencing technology and analyze the whole genome sequence with available platforms to characterize the features of the genome that is relevant to the plant growth promoting characteristics of the bacteria.
| Property               | SL42                                     | SL48                                     |
|------------------------|------------------------------------------|------------------------------------------|
| Classification: Domain | Bacteria                                 | Bacteria                                 |
| Phylum                 | Proteobacteria                           | Proteobacteria                           |
| Class                  | Alphaproteobacteria                      | Betaproteobacteria                       |
| Order                  | Rhizobiales                              | Burkholderiales                          |
| Family                 | Rhizobiaceae                             | Comamonadaceae                           |
| Genus                  | Rhizobium                                | Hydrogenophaga                           |
| Species                | unidentified                             | unidentified                             |
| Gram stain             | Negative                                 | Negative                                 |
| Cell shape             | Rod                                      | Rod                                      |
| Motility               | Motile                                   | Motile                                   |
| Temperature range      | Mesophile                                | Mesophile                                |
| Optimum temperature    | 25-30 °C (min. temp. 4 °C)               | 25-30 °C (min. temp. 4 °C)               |
| pH range; Optimum      | 7.0                                      | 7.0                                      |
| Carbon source          | Mannitol                                 | Mannitol                                 |
| Habitat                | Soil, root nodule on host                | Soil, root nodule on host                |
| Salinity               | Up to 250 mM NaCl                        | Up to 100 mM NaCl                        |
| Oxygen requirement     | Aerobic                                  | Aerobic                                  |
| Biotic relationship    | Free-living/symbiont                     | Free-living/symbiont                     |
| Pathogenicity          | Non-pathogenic                           | Non-pathogenic                           |
| Biosafety level        | 1                                        | 1                                        |
| Isolation              | Root nodule of<br>Amphicarpaea bracteata | Root nodule of<br>Amphicarpaea bracteata |
| Geographic location    | Sainte-Anne-de-Bellevue,<br>Canada       | Sainte-Anne-de-Bellevue,<br>Canada       |
| Latitude               | 45. 404 °N                               | 45. 404 °N                               |
| Longitude              | 73.934 °W                                | 73.934 °W                                |
| Altitude               | 50 m                                     | 50 m                                     |
| Sample collection      | July 2017                                | July 2017                                |

**Table 5.1**. Taxonomic classification and general features of *Rhizobium* sp. *SL42* and *Hydrogenophaga* sp. SL48.

#### 5.3 Materials and Methods

#### 5.3.1 Growth conditions and Genomic DNA preparation

*Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48 were streaked onto YEM agar plates and grown at 25 °C for 48 h to obtain well-developed colonies. A single colony was inoculated and sub-cultured in 25 mL YEM broth. The cultures were grown for 48 h in an orbital shaker (150 rpm) at 25 °C ( $OD_{600nm}$  of 1.0) and a pellet was obtained by centrifugation ( $5000 \times g$  for 10 min, 25 °C). They were concentrated by discarding the excess broth and resuspending the pellets in 5 mL broth. Genomic DNA was isolated from 2 mL of cells using DNeasy Ultraclean Microbial Kit (QIAGEN). From the total DNA isolated, a concentration of 15 µg in 25 µl Tris buffer was dried using a vacuum-free evaporator (Centrifan PE, KD Scientific) in DNA stable (Biomatrica®) and shipped for *de novo* whole genome sequencing at Genotypic technology Ltd., Bangalore, India.

#### 5.3.2 Quality control and Sanger sequencing

The concentration and purity of the genomic DNA were determined using the Nanodrop Spectrophotometer 2000 (Thermo Scientific) and Qubit dsDNA HS assay kit (Thermo Fisher Scientific). The integrity of the DNA was analyzed by agarose gel electrophoresis. PCR amplification was performed with 30-50 ng of the genomic DNA as the template using Takara ExTaq and 16S rRNA primers (27F' [AGAGTTTGATCCTGGCTCAG] and 1492R' [TACGGCTACCTTGTTACGACTT]) in a 25 µL reaction mixture. The PCR product was purified and used for Sanger sequencing.

#### 5.3.3 Library preparation for Illumina sequencing

Library construction was carried out using the Nextera® XT DNA Library Preparation protocol (Illumina) for samples of SL42 and SL48. Briefly, 1 ng of Qubit quantified genomic DNA was tagmented (fragmented and adaptor tagged) using Amplicon Tagment Mix provided in the Nextera XT Kit. The adapter tagged DNA was subjected to 12 cycles of Indexing-PCR (72°C for 3 min followed by denaturation at 95°C for 30 sec, cycling (95°C for 10 sec, 55°C for 30 sec, 72°C for 30 sec) and 72°C for 5mins) to enrich the adapter-tagged fragments. The PCR products were purified using JetSeq Magnetic Beads (Bioline). The Illumina-compatible sequencing libraries were quantified by Qubit fluorometer (Thermo Fisher Scientific, MA, and USA) and their fragment size distribution was analyzed on Agilent TapeStation.

# Adapter details:

# **Universal Adapter**

# 5'AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT CT

# Adapter, Index

# 5'GATCGGAAGAGCACACGTCTGAACTCCAGTCAC [INDEX] ATCTCGTATGCCGTCTTCTGCTTG

# 5.3.3.1 Illumina sequencing

The libraries were sequenced on Illumina HiSeq X Ten sequencer (Illumina, San Diego, USA) using 150 bp paired-end chemistry. The data obtained from the sequencing run was demultiplexed using Bcl2fastq software v2.20 and FastQ files were generated based on the unique dual barcode sequences (<u>https://github.com/rrwick/Fast5-to-Fastq</u>) The sequencing quality was assessed using FastQC v0.11.8 software. The adapter sequences were trimmed and bases above Q30 were considered, while low-quality bases were filtered off during read pre-processing and used for downstream analysis.

## 5.3.4 Library preparation for Nanopore sequencing

For nanopore sequencing, library preparation was performed as per instructions provided in the Native barcoding kit (EXP-NBD114) from Oxford Nanopore Technology (ONT). A total of 600 ng of purified genomic DNA from the samples was end-repaired (NEBnext ultra II end repair kit, New England Biolabs, MA, USA) and cleaned up with 1 x AmPure beads (Beckmann Coulter, USA). Native barcode ligation was performed with NEB blunt/ TA ligase (New England Biolabs, MA, USA) using EXP-NBD104 (ONT) and cleaned with 1 x AmPure beads.

Barcodes used for Nanopore sequencing:

| Sample ID | Barcode name | Sequences                |
|-----------|--------------|--------------------------|
| SL42_1    | NB05         | AAGGTTACACAAACCCTGGACAAG |
| SL48_1    | NB06         | GACTACTTTCTGCCTTTGCGAGAA |

Qubit quantified, barcode ligated DNA sample was Adapter ligated for 15 minutes using NEB next Quick Ligation module (New England Biolabs, MA, USA). The library was cleaned up using 0.6X Ampure beads (Beckmann Coulter, USA) and the sequencing library was eluted in 15

 $\mu$ L of elution buffer and used for sequencing. The concentration and yield of the Nanopore library were optimal for sequencing on GridionX5.

#### 5.3.4.1 Nanopore sequencing

Sequencing was performed on GridION X5 (Oxford Nanopore Technologies, Oxford, UK) using SpotON flow cell R9.4 (FLO-MIN106) in a 48 h sequencing protocol. Nanopore raw reads ('fast5' format) were base-called ('fastq5' format) and de-multiplexed using Guppy v2.3.4.

#### 5.3.5 Genome assembly and annotation

The quality control report, trimming and part of the analyses were performed using Commander, the NGS analysis tool made by Genotypic Technology, Bangalore, India. The Illumina raw reads were processed using a standard tool named Trimgalore (https://www.bioinformatics.babraham.ac.uk/projects/trim\_galore/) to remove bad quality reads and nanopore raw reads were processed using Porechop (https://github.com/rrwick/Porechop). The raw reads generated from both platforms were processed and good quality reads were retained. Raw reads from both Illumina and nanopore platforms were processed for quality and adaptor removal. Both Illumina paired-end and nanopore data were used for hybrid assembly using MaSuRCA v3.3.7 2 hybrid assembler (Zimin et al., 2013). The assembly resulted into 4 -5.5 Mbp genome for the 2 samples. The generated assembly was further used for gene prediction using PROKKA tool (Seemann, 2014). The predicted proteins were searched against the UniProt protein database using the DIAMOND BlastP program for the gene ontology and annotation (Buchfink et al., 2015). The predicted gene sequences were used for Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology (KO) database of molecular functions (Kanehisa et al., 2016). When the nucleotide/protein sequence is mapped, KO identifiers were assigned for each gene/protein and pathway maps are generated for the orthologs found in the sequence. The assembled genome was also used for SSR (Simple Sequence repeats) prediction. The SSR algorithm uses MISA (MIcro SAtellite identification tool) software (Beier et al., 2017). Microsatellites were segregated based on the number of repetitive nucleotides, from the input assembled sequence. The genome was also independently annotated by the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (Tatusova et al., 2016). The genome was analyzed using antiSMASH v. 5.0 to identify and annotate secondary metabolite biosynthesis gene clusters (Blin et al., 2019). Phylogenetic trees were constructed using BLAST pairwise alignment of the

sequences of *16S rRNA* and house-keeping genes *gyrB*, *recA* and *rpoD* retrieved from the whole genome sequence of SL42 and SL48.

# 5.4 Results

# 5.4.1 Quality control and Sanger sequencing

The samples passed quality assessment with optimal yield and concentration and were suitable for Illumina and Nanopore library preparation (Table 5.2 and Figure 5.1).

**Table 5.2**. DNA concentration and purity of samples estimated using Nanodrop spectrophotometer and Qubit fluorometer.

|       | Sample                       | SL42    | SL48    |
|-------|------------------------------|---------|---------|
|       | ng/µL                        | 456.4   | 910.7   |
| Q     | 260/280                      | 1.89    | 1.93    |
| droj  | 260/230                      | 1.67    | 1.97    |
| ano   | Volume (µL)                  | 25      | 25      |
| Z     | Yield (ng)                   | 11410   | 22767.5 |
|       | Volume loaded on gel (ng/µL) | 2 (1:4) | 2 (1:7) |
|       | Qubit conc. (ng/µL)          | 391.2   | 936.6   |
| SC    | Volume (µL)                  | 25      | 25      |
| oit ( | Yield (ng)                   | 9780    | 23415   |
| Qul   | QC purity                    | Optimal | Optimal |
|       | QC Integrity                 | Intact  | Intact  |



Figure 5.1. Agarose gel electrophoresis of DNA samples from SL42 and SL48.

Based on the BLAST similarity search of the 16S rRNA gene sequence, the strain SL42 was identified as *Rhizobium* sp. and the closely related species is *Rhizobium ipomoeae* strain NFB1 with 98% identity. The strain SL48 was identified as *Hydrogenophaga* sp. and the closely related species is *Hydrogenophaga taeniospiralis* CCUG 15921 strain NBRC 102512 with 99% identity. The ANI (Average Nucleotide Identity) was calculated with reference to the genomes of the type strains, and the values were 77.72% for SL42 and 83.39% for SL48, well below the threshold level of <95-96% (Yoon et al., 2017) for both the strains. Hence, they will be proposed as new species.

### 5.4.2 Library preparation and sequencing

The Illumina-compatible sequencing library for the samples showed an average fragment size of 580 bp as well as sufficient concentration for obtaining desired sequencing data.

#### 5.4.2.1 Primary analysis

The pre-processing of data retained more than 2 million paired-end reads for SL42 and SL48. The sequencing quality was assessed using FastQC (Table 5.3). The number of reads retained after pre-processing, read statistics for the Nanopore data, and quality score per base for the processed Illumina reads are shown in Appendix C, Supplementary Tables 5.1-5.6 and Supplementary Figure 5.1.

#### 5.4.3 Genome properties

The processed Illumina and nanopore reads were used for the hybrid assembly using MaSuRCA v3.3.7 2. The program uses both de Bruijn graph and Overlap-Layout-Consensus (OLC) approach to assemble short reads and long reads. The 2 bacterial samples were sequenced at ~170x coverage using Illumina HiSeq and ~120x coverage using nanopore sequencing (Table 5.4). The assemblies were 4 and 5.4 MB for SL42 and SL48 respectively (Table 5.5).

| Measure                           | SL42                    | SL48                    |
|-----------------------------------|-------------------------|-------------------------|
| File type                         | Conventional base calls | Conventional base calls |
| Encoding                          | Sanger/Illumina 1.9     | Sanger/Illumina 1.9     |
| Total sequences                   | 2782606                 | 3022451                 |
| Sequences flagged as poor quality | 0                       | 0                       |
| Sequence length (bp)              | 150                     | 150                     |
| % GC                              | 60                      | 65                      |

**Table 5.3**. FastQC output on raw sequence data.

|     |     |              | 0   | •       |           |
|-----|-----|--------------|-----|---------|-----------|
| Tat | )le | <b>5.4</b> . | Seq | uencing | coverage. |

| Sample   | SL42   | SL48   |
|----------|--------|--------|
| Illumina | 166.96 | 181.35 |
| Nanopore | 127.73 | 115.18 |

Table 5.5. Assembly statistics.

| Assembly statistics   | SL42     | SL48      |
|-----------------------|----------|-----------|
| Contigs Generated     | 3        | 1         |
| Maximum Contig Length | 4063937  | 5433040   |
| Minimum Contig Length | 351829   | 5433040   |
| Average Contig Length | 1722001  | 5433040   |
| Median Contig Length  | 750237.0 | 5433040.0 |
| Total Contigs Length  | 5166003  | 5433040   |
| Contigs >= 10 Kbp     | 3        | 1         |
| Contigs >= 1 Mbp      | 1        | 1         |
| N50 value             | 4063937  | 5433040   |

#### 5.4.3.1 Gene prediction

The gene prediction and annotation are shown in Table 5.6 and complete gene ontology summary and protein predictions for SL42 and SL48 are shown in Figures 5.2 and 5.3.

| Sample | Total proteins | Annotated proteins |
|--------|----------------|--------------------|
| SL42   | 4727           | 4642               |
| SL48   | 5077           | 4937               |

 Table 5.6. Annotation summary of predicted proteins.

#### 5.4.4 Insights from the genome sequence

The predicted genes included gene clusters related to flagella, chemotaxis, homoserine lactone and multidrug resistance, in addition to genes associated with regulatory and transport proteins. In *Rhizobium* sp. SL42, genes encoding Type I and Type IV secretion systems were present. In *Hydrogenophaga* sp. SL48, genes encoding Type II and Type IV secretion systems and hydrogenase were present. Also, genes for photosystem I, nodulation, nitrogen fixation, heat shock and cold shock proteins, hypoxic response, iron chelation and carotenoid synthesis were found (Tables 5.7-5.8). The KEGG pathway mapping associated predicted proteins with functions related to bacterial motility proteins, secretion system proteins, bacterial chemotaxis, flagellar assembly, peptidoglycan biosynthesis and quorum sensing. However, there were unique proteins found in both strains. In SL42, photosynthesis, carbon fixation, and carotenoid biosynthesis pathway proteins were found. In SL48, proteins related to the biosynthesis of vancomycin group antibiotics

were present (Appendix C, Supplementary Tables 5.7-5.8). The phylogenetic analyses of the *16S rRNA* gene and house-keeping genes *gyrB*, *recA* and *rpoD* (Figures 5.4 and 5.5) demonstrated that the strains *Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48 might represent novel species within their respective genera.







Figure 5.3. Gene Ontology distribution of annotated proteins in *Hydrogenophaga* sp. SL48 genome.

| Cana                                        | Function                                        | # Genes  |
|---------------------------------------------|-------------------------------------------------|----------|
| Gene                                        | Function                                        | encoding |
| bcr                                         | Bicyclomycin resistance                         | 3        |
| bdlA; bigR                                  | Biofilm                                         | 6        |
| cspA; cspE; cspG                            | cold shock protein, cold shock-like protein     | 7        |
| entS; fepC; fepD; fepG                      | Enterobactin                                    | 7        |
| hspQ                                        | heat shock protein                              | 1        |
| rhtB                                        | homoserine lactone efflux protein               | 7        |
| hrp1                                        | hypoxic response protein                        | 1        |
| yfeA; hemH                                  | Iron chelation                                  | 2        |
| lptA; lptB; lptG; lapA; lapB                | lipopolysaccharide assembly and export proteins | 8        |
| mdtA; mdtB; mdtC; mdtN;<br>mdtK; mdtE       | Multidrug resistance                            | 24       |
| mrpA; mrpB; mrpC; mrpD;<br>mrpE; mrpG; mrpF | Na(+)/H(+) antiporter subunit                   | 7        |
| fixK                                        | nitrogen fixation regulation                    | 4        |
| nodM, nolR                                  | Nodulation                                      | 1        |
| pleC                                        | Non-motile and phage-resistance protein         | 3        |
| envZ                                        | Osmolarity sensor protein                       | 1        |
| hemF                                        | Oxygen-dependent coproporphyrinogen-III oxidase | 1        |
| ycf3; regA                                  | Photosynthesis                                  | 2        |
| crtI; crtB; carA2                           | Phytoene                                        | 3        |
|                                             | Putative signaling                              | 22       |
| fpvA; fhuA; ftsY; chvE,<br>cheD; fhuE;      | Receptor                                        | 12       |
| aroK; aroA; aroE; quiA                      | Shikimate pathway                               | 5        |
| chaA                                        | Sodium-potassium/proton antiporter              | 1        |
| potA; potB; potD                            | Spermidine/putrescine                           | 25       |
| gerE                                        | Spore germination protein                       | 1        |
| soj                                         | Sporulation initiation inhibitor                | 2        |
| prsD; prsE;                                 | Type I secretion system                         | 15       |
| virB4; virB9; virb10, virB11                | Type IV secretion system                        | 4        |
| clcB                                        | Voltage-gated ClC-type chloride channel         | 1        |

Table 5.7. Genes related to key functions in the genome of *Rhizobium* sp. SL42.

| Cono                          | Function                                    | # Genes  |
|-------------------------------|---------------------------------------------|----------|
| Gene                          | Function                                    | encoding |
|                               | Acid shock protein                          | 1        |
| ArpC                          | Antibiotic efflux pump outer membrane       | 1        |
| Alpe                          | protein                                     | 1        |
| bcr                           | Bicyclomycin resistance                     | 2        |
| icaR                          | Biofilm operon regulator                    | 1        |
| ble                           | Bleomycin resistance                        | 1        |
| KfoC                          | Chondroitin synthase                        | 2        |
| cspA; cspG                    | cold shock protein, cold shock-like protein | 2        |
| face                          | Cytokinin riboside 5'-monophosphate         | 1        |
| 1850                          | phosphoribohydrolase                        | 1        |
| entS                          | Enterobactin                                | 1        |
| fbpC                          | Fe(3+) ions import ATP-binding protein      | 1        |
| hslR                          | heat shock protein                          | 1        |
| rhtB                          | homoserine lactone efflux protein           | 5        |
| hypF; hypB; hypD              | Hydrogenase maturation factor               | 3        |
| hrp1                          | hypoxic response protein                    | 1        |
| hemH; sirB                    | Iron chelation                              | 2        |
| lptA; lptB; lptC; lptG; lptF; | lipopolysaccharide assembly and export      | 16       |
| lapA; lapB                    | proteins                                    | 10       |
| mdtB; mdtN; mdtE mdtA;        |                                             |          |
| mdtC; mexR; mexA; mdtD;       | Multidrug resistance                        | 13       |
| mdtH; mdtG                    |                                             |          |
| gerN; mrpA; mrpD; mrpE;       | $N_{0}(\pm)/U(\pm)$ entirector subunit      | 7        |
| mrpG; mrpF; mnhC1             | Na(+)/H(+) antiporter subunit               | /        |
| hoxF; hoxU; hoxY; hoxH        | NAD-reducing hydrogenase HoxS subunit       | 4        |
| fixK                          | nitrogen fixation regulation                | 1        |
| nifH; nifD; nifK              | Nitrogenase iron protein                    | 5        |
| nifW                          | Nitrogenase-stabilizing/protective protein  | 1        |
| nodD                          | Nodulation protein                          | 4        |
| envZ                          | Osmolarity sensor protein                   | 2        |
| osmY                          | Osmotically-inducible protein Y             | 3        |
| homE                          | Oxygen-dependent coproporphyrinogen-III     | 1        |
| henr                          | oxidase                                     | 1        |
|                               | Periplasmic [NiFeSe] hydrogenase subunit    | 2        |
| kcsA                          | pH-gated potassium channel                  | 1        |
| regA                          | Photosynthesis                              | 1        |

Table 5.8. Genes related to major functions in the genome of *Hydrogenophaga* sp. SL48.

| Come                                              | Fun ation                                      | # Genes  |
|---------------------------------------------------|------------------------------------------------|----------|
| Gene                                              | Function                                       | encoding |
| crtB                                              | Phytoene                                       | 1        |
|                                                   | Putative signaling                             | 1        |
| cheD; cirA; aer; ftsY; fhuA;<br>chvE; fucA; fhuE; | Receptor                                       | 8        |
| cbbS1; cbbL; rlp2                                 | Ribulose bisphosphate carboxylase              | 3        |
| rubA; hrb                                         | Rubredoxin                                     | 2        |
| aroL; aroA; aroE; quiA; ydiB                      | Shikimate pathway                              | 6        |
| chaA                                              | Sodium-potassium/proton antiporter             | 1        |
| potA; potB; potD;                                 | Spermidine/putrescine                          | 12       |
| spsA                                              | Spore coat polysaccharide biosynthesis protein | 1        |
| srkA                                              | stress response kinase A                       | 1        |
| iaaM                                              | Tryptophan 2-monooxygenase                     | 1        |
| xpsD; gspE; gspF; epsE;                           | T II (' (                                      | 12       |
| epsF; hxcR; xcpQ; xcpV;                           | Type II secretion system                       | 13       |
| xcp1; puID;                                       |                                                |          |
| virB1; virB4; virB8; virb10,<br>virB1; ptlf       | Type IV secretion system                       | 7        |



# **Figure 5.4**. Phylogenetic trees of *Rhizobium* sp. SL42 and closely related strains using BLAST pairwise alignment.

Query gene sequences (A) 16S rRNA (B) gyrB (C) recA and (D) rpoD.



**Figure 5.5**. Phylogenetic trees of *Hydrogenophaga* sp. SL48 and closely related strains using BLAST pairwise alignment.

Query gene sequences (A) 16S rRNA (B) gyrB (C) recA and (D) rpoD.

# 5.4.4.1 Finding secondary metabolites using Anti-SMASH

The AntiSMASH results indicated the presence of biosynthetic gene clusters encoding secondary metabolites, and some of them were unique to the strains *Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48 (Tables 5.9 and 5.10; Figures 5.6 and 5.7).

| Region     | Туре         | From (bp) | To (bp)   | Most similar<br>known cluster | Similarity         |
|------------|--------------|-----------|-----------|-------------------------------|--------------------|
| Region 1.1 | TfuA-related | 850,531   | 872,449   |                               |                    |
| Region 1.2 | Terpene      | 2,383,268 | 2,404,122 |                               |                    |
| Region 1.3 | Hserlactone  | 2,965,914 | 2,986,555 | Nat                           | Nat                |
| Region 1.4 | Bacteriocin  | 3,703,712 | 3,714,620 | — -NOL<br>Identified          | -NOL<br>Applicable |
| Region 2.1 | NRPS, T1PKS  | 197,065   | 249,650   |                               | Аррисанс           |
| Region 2.2 | TfuA-related | 546,474   | 568,488   |                               |                    |
| Region 3.1 | Hserlactone  | 50,625    | 71,251    |                               |                    |

Table 5.9. AntiSMASH results of secondary metabolite coding regions of *Rhizobium* sp. SL42.

**Table 5.10**. AntiSMASH results of secondary metabolite coding regions of *Hydrogenophaga* sp. SL48.

| Region   | Туре                         | From<br>(bp) | To (bp)   | Most simila<br>cluster | r known             | Similarity |
|----------|------------------------------|--------------|-----------|------------------------|---------------------|------------|
| Region 1 | Arylpolyene                  | 1,139,130    | 1,192,715 | Xanthomo<br>nadin I    | Other               | 21%        |
| Region 2 | Terpene                      | 1,251,962    | 1,275,723 |                        |                     |            |
| Region 3 | T1PKS,<br>NRPS-like,<br>NRPS | 1,868,166    | 1,929,593 |                        |                     |            |
| Region 4 | Bacteriocin                  | 3,079,772    | 3,090,659 |                        |                     |            |
| Region 5 | Siderophore                  | 3,327,234    | 3,339,111 | Desferriox<br>amine E  | Other               | 50%        |
| Region 6 | Betalactone                  | 5,240,538    | 5,278,382 | Mycosubtil in          | NRP +<br>Polyketide | 20%        |

|                             |                                                                               |                        |                | bserlactore   |               |               | Section region  |             |
|-----------------------------|-------------------------------------------------------------------------------|------------------------|----------------|---------------|---------------|---------------|-----------------|-------------|
|                             |                                                                               |                        |                |               |               |               |                 |             |
| 5                           | 52,000 54,000                                                                 | 56,000 5               | 38,000         | 60,000 82,000 | 64,000        | 65,000        | 88,000          | 70,000      |
| nd:                         |                                                                               | additional bioxunt     | hatia aanaa    |               |               | Cother annual |                 |             |
|                             |                                                                               |                        |                |               |               |               |                 | 2000        |
| ia 2.6                      | Region 2 - TfuA-related                                                       |                        |                |               |               |               |                 |             |
| <b>ig_2 - F</b><br>on: 546, | Region 2 - TfuA-related<br>,474 - 568,488 nt. (total: 22,01                   | 5 nt) Show pHMM detect | ion rules used |               |               |               | Download region | GenBank fi  |
| <b>ig_2 - F</b><br>on: 546, | Region 2 - TfuA-related<br>,474 - 568,488 nt. (total: 22,01                   | 5 nt) Show pHMM detect | ion rules used | TfuA-related  |               |               | Download region | GenBank fil |
| ig_2 - R<br>on: 546,        | Region 2 - TfuA-related<br>474 - 568,488 nt. (total: 22,01                    | 5 nt) Show pHMM detect | ion rules used | TiuA related  |               |               | Download region | GenBank fil |
| <b>ig_2 - R</b><br>on: 546, | Region 2 - TfuA-related<br>474 - 568,488 nt. (total: 22,01                    | 5 nt) Show pHMM detect | ion rules used | TiuA-related  | seolooo seolo | 00 564,000    | Download region | GenBank fi  |
| ig_2 - F<br>on: 546,<br>    | Region 2 - TfuA-related<br>474 - 568,488 nt. (total: 22,01<br>448,000 550,000 | 5 nt) Show pHMM detect | ion rules used | TiuA-related  | 5e0,000 5e2,0 | 00 554,000    | Download region | GenBank fi  |

SL42 genome.



Figure 5.7. Coding regions of (A) siderophore and (B) betalactone in *Hydrogenophaga* sp. SL48 genome.

#### 5.5 Discussion

Plant growth promoting rhizobacteria (PGPR) produce bioactive substances that improve plant growth and alleviate stress. Understanding the behaviour of PGPR when inoculated onto plants is important for their application in agriculture. Some of these compounds are also essential for plant root colonization (Bloemberg and Lugtenberg, 2001). The whole genome sequencing analysis revealed the genes harboured in the genomes of Rhizobium sp. SL42 and Hydrogenophaga sp. SL48 that might play key roles in their as PGPR. PGPR are known to produce auxins, gibberellins, cytokinins and ethylene and manipulate phytohormone balance in plants. PGPR stimulate root proliferation by excretion of indole-3-acetic acid (IAA) into the rhizosphere, thus enhancing uptake of water and nutrients (Sukumar et al., 2013). Several PGPR also secrete cytokinins that have been detected in cellfree medium (Garcia de Salamone et al., 2001). Genes encoding IAA and cytokinin biosynthesis (*iaaM* and *fas6*) were present in *Hydrogenophaga* sp. SL48. Volatile organic compounds (VOCs) produced by bacteria help in plant development and stress responses (Bailly and Weisskopf, 2012). Polyamines play important physiological and protective roles in plants. Bacillus megaterium BOFC15 secretes spermidine, a polyamine leading to enhanced cellular polyamine levels in Arabidopsis. Inoculation with the bacterium resulted in an increase in biomass, changed root architecture and elevated photosynthetic capacity. The plants also exhibited higher drought tolerance and abscisic acid content under water deficit (osmotic stress) (Zhou et al., 2016a). Both strains possess multiples genes that encode for spermidine/putrescine compounds.

Genes encoding the production of secondary metabolites found using Anti-SMASH showed that the PGPR produces antibiotics such as thiopeptides, polyketides and bacteriocins that suppress pathogens. Bacterial surface factors like flagellins and o-antigen of lipopolysaccharides induce systemic resistance (ISR) whereas, analogs of salicylic acid, jasmonic acid and ethylene elicit systemic acquired resistance (SAR) in plants (Ping and Boland, 2004; Lugtenberg and Kamilova, 2009; Pieterse et al., 2014). A bacteriocin, thuricin 17, isolated from the soybean endosymbiont *Bacillus thuriengenesis* NEB 17, when applied as foliar spray or root drench stimulated the growth of soybean and corn (Subramanian et al., 2016). Siderophores are iron chelators produced by some microorganisms and enhance plant growth under iron-depleted conditions where they are used as the method for accessing scarce iron and also act as biocontrol agents by reducing the availability of iron for pathogens (Saha et al., 2016).

Genes involved in the pathways of cell motility, chemotaxis, lipopolysaccharide synthesis and biofilm formation suggested that they might play important roles in rhizosphere colonization of SL42 and SL48. Plant beneficial bacteria present in the rhizosphere are in proximity to roots and many are known to form biofilms, which aid in the successful colonization of root surfaces and adjacent soil particles and thwart pathogenic bacteria. Biofilms are structured communities of bacterial cells living adherent to a surface embedded in an extracellular polysaccharide matrix. Biofilms of beneficial bacteria play a crucial role in plant growth promoting effects (Ramey et al., 2004). Plant roots exude signal compounds that regulate plant-bacteria interactions and trigger chemotaxis in bacteria, towards the rhizosphere (Fan et al., 2012). For example, flavonoids secreted by roots determine the legume-rhizobia symbiotic associations while malate and citrate are found to interact with *Bacillus* and *Pseudomonas* strains (Badri and Vivanco, 2009). There are genes related to the metabolism of these compounds in SL42 and SL48, suggesting that they possibly take part in plant-microbe interactions.

During colonization, PGPR assimilate substances released by the roots and in turn, produce bioactive compounds that promote plant growth or ameliorate stress (Xie et al., 2014). Recent advances in high-throughput strategies have led to detailed investigations of plant-microbe interactions and the differential effects of root exudates on mechanisms of rhizobacteria that are crucial to the beneficial effects observed. The differentially expressed genes or proteins were mainly those involved in nutrient utilization and transport, chemotaxis, secretion, quorum sensing, extracellular matrix, synthesis of volatile compounds, and antibiotic production (Fan et al., 2012; Beauregard et al., 2013; Kierul et al., 2015; Mwita et al., 2016; Zhou et al., 2016b). The presence of genes related to these functions indicates that SL42 and SL48 could potentially function as beneficial rhizobacteria. Understanding the dynamic function of bacterial cells and regulatory networks related to enzyme metabolism, transport and utilization of nutrients, signal transduction proteins and root colonization pattern is important in determining their potential applications in agriculture (Kierul et al., 2015; Zhang et al., 2015; Mwita et al., 2016; Zhou et al., 2016b).

# 5.6 Data availability statement

The genome project is deposited in the Genome database, NCBI (<u>https://www.ncbi.nlm.nih.gov/genome/</u>) and a high-quality permanent whole genome sequence for isolates SL42 and SL48 were submitted (Table 5.11).

|                    | SL42                              | SL48                              |
|--------------------|-----------------------------------|-----------------------------------|
| Name               | Rhizobium sp. strain:SL42         | Hydrogenophaga sp. strain:SL48    |
|                    | Genome                            | Genome                            |
| Accession number   | CP063397; CP063398; CP063399      | CP063400                          |
| BioProject         | PRJNA669345                       | PRJNA669344                       |
| BioSample          | SAMN16451206                      | SAMN16451201                      |
| Locus Tag          | IM739                             | IM738                             |
| Tax ID             | 1210932                           | 1904254                           |
| Genome size        | 4.06 Mbp                          | 5.43 Mbp                          |
| Assembly method    | MaSuRCA 3.3.7                     | MaSuRCA 3.3.7                     |
| Assembly name      | MGM_Rhim_1                        | MGM _Hyga_1                       |
| Reference Title    | Genome sequence of Rhizobium      | Genome sequence of                |
|                    | sp. strain SL42                   | Hydrogenophaga sp. strain SL48    |
| Reference authors: | Ilangumaran, G., Subramanian, S., | Ilangumaran, G., Subramanian, S., |
|                    | and Smith, D.                     | and Smith, D.                     |

 Table 5.11. Whole genome sequencing project information.

# 5.7 References

- 1. Badri, D.V., and Vivanco, J.M. (2009). Regulation and function of root exudates. *Plant Cell Environ.* 32, 666-681. doi: 10.1111/j.1365-3040.2009.01926.x
- 2. Bai, Y.M., D'Aoust, F., Smith, D.L., and Driscoll, B.T. (2002). Isolation of plant-growth-promoting *Bacillus* strains from soybean root nodules. *Can. J. Microbiol.* 48, 230-238. doi: 10.1139/W02-014
- 3. Bailly, A., and Weisskopf, L. (2012). The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. *Plant Signal. Behav.* 7, 79-85. doi: 10.4161/psb.7.1.18418
- 4. Beauregard, P.B., Chai, Y.R., Vlamakis, H., Losick, R., and Kolter, R. (2013). *Bacillus subtilis* biofilm induction by plant polysaccharides. *P. Natl. Acad. Sci. USA* 110, E1621-E1630. doi: 10.1073/pnas.1218984110
- 5. Beier, S., Thiel, T., Munch, T., Scholz, U., and Mascher, M. (2017). MISA-web: a web server for microsatellite prediction. *Bioinformatics* 33, 2583-2585. doi: 10.1093/bioinformatics/btx198
- Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S.Y., et al. (2019). antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. *Nucleic Acids Res.* 47, W81-W87. doi: 10.1093/nar/gkz310

- Bloemberg, G.V., and Lugtenberg, B.J.J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. *Curr. Opin. Plant Biol.* 4, 343-350. doi: 10.1016/S1369-5266(00)00183-7
- 8. Buchfink, B., Xie, C., and Huson, D.H. (2015). Fast and sensitive protein alignment using DIAMOND. *Nat. Methods* 12, 59-60. doi: 10.1038/nmeth.3176
- Contzen, M., Moore, E.R.B., Blumel, S., Stolz, A., and Kampfer, P. (2000). *Hydrogenophaga intermedia* sp nov., a 4-aminobenzenesulfonate degrading organism. *Syst. Appl. Microbiol.* 23, 487-493. doi: 10.1016/S0723-2020(00)80022-3
- Fan, B., Carvalhais, L.C., Becker, A., Fedoseyenko, D., von Wiren, N., and Borriss, R. (2012). Transcriptomic profiling of *Bacillus amyloliquefaciens* FZB42 in response to maize root exudates. *BMC Microbiol.* 12, doi: Artn 11610.1186/1471-2180-12-116
- 11. Garcia de Salamone, I.E., Hynes, R.K., and Nelson, L.M. (2001). Cytokinin production by plant growth promoting rhizobacteria and selected mutants. *Can. J. Microbiol.* 47, 404-411.
- Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2016). KEGG as a reference resource for gene and protein annotation. *Nucleic Acids Res.* 44, D457-D462. doi: 10.1093/nar/gkv1070
- Kierul, K., Voigt, B., Albrecht, D., Chen, X.H., Carvalhais, L.C., and Borriss, R. (2015). Influence of root exudates on the extracellular proteome of the plant growth-promoting bacterium *Bacillus amyloliquefaciens* FZB42. *Microbiology* 161, 131-147. doi: 10.1099/mic.0.083576-0
- 14. Lugtenberg, B., and Kamilova, F. (2009). Plant-Growth-Promoting Rhizobacteria. *Annu. Rev. Microbiol.* 63, 541-556. doi: 10.1146/annurev.micro.62.081307.162918
- Moerman, D.E. (1998). Native American Ethnobotany Oregon: Timber Press. ISBN 0-88192-453-9
- Mwita, L., Chan, W.Y., Pretorius, T., Lyantagaye, S.L., Lapa, S.V., Avdeeva, L.V., et al. (2016). Gene expression regulation in the plant growth promoting *Bacillus atrophaeus* UCMB-5137 stimulated by maize root exudates. *Gene* 590, 18-28. doi: 10.1016/j.gene.2016.05.045
- 17. Pieterse, C.M.J., Zamioudis, C., Berendsen, R.L., Weller, D.M., Van Wees, S.C.M., and Bakker, P.A.H.M. (2014). Induced Systemic Resistance by Beneficial Microbes. *Ann. Rev. Phytopathol.* 52, 347-375. doi: 10.1146/annurev-phyto-082712-102340
- 18. Ping, L.Y., and Boland, W. (2004). Signals from the underground: bacterial volatiles promote growth in Arabidopsis. *Trends Plant Sci.* 9, 263-266. doi: 10.1016/j.tplants.2004.04.008
- 19. PLANTS, U. (2017). *Amphicarpaea bracteata* (L.) Fernald American hogpeanut [Online]. Available online at: <u>https://plants.usda.gov/core/profile?symbol=AMBR2</u> [accessed 12 Aug 2017].
- Ramey, B.E., Koutsoudis, M., von Bodman, S.B., and Fuqua, C. (2004). Biofilm formation in plant-microbe associations. *Curr. Opin. Microbiol.* 7, 602-609. doi: 10.1016/j.mib.2004.10.014
- 21. Saha, M., Sarkar, S., Sarkar, B., Sharma, B.K., Bhattacharjee, S., and Tribedi, P. (2016). Microbial siderophores and their potential applications: a review. *Environ. Sci. Pollut. Res. Int.* 23, 3984-3999. doi: 10.1007/s11356-015-4294-0
- 22. Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 30, 2068-2069. doi: 10.1093/bioinformatics/btu153

- 23. Sheu, S.Y., Chen, Z.H., Young, C.C., and Chen, W.M. (2016). *Rhizobium ipomoeae* sp nov., isolated from a water convolvulus field. *Int. J. Syst. Evol. Microbiol.* 66, 1633-1640. doi: 10.1099/ijsem.0.000875
- Sterner, J.P., and Parker, M.A. (1999). Diversity and relationships of *Bradyrhizohia* from *Amphicarpaea bracteata* based on partial nod and ribosomal sequences. *Syst. Appl. Microbiol.* 22, 387-392. doi: 10.1016/S0723-2020(99)80047-2
- 25. Subramanian, S., Souleimanov, A., and Smith, D.L. (2016). Proteomic studies on the effects of lipo-chitooligosaccharide and thuricin 17 under unstressed and salt stressed conditions in *Arabidopsis thaliana*. *Front. Plant Sci.* 7, 1314. doi: ARTN 131410.3389/fpls.2016.01314
- 26. Sukumar, P., Legue, V., Vayssieres, A., Martin, F., Tuskan, G.A., and Kalluri, U.C. (2013). Involvement of auxin pathways in modulating root architecture during beneficial plantmicroorganism interactions. *Plant Cell Environ*. 36, 909-919. doi: 10.1111/pce.12036
- Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E.P., Zaslavsky, L., et al. (2016). NCBI prokaryotic genome annotation pipeline. *Nucleic Acids Res.* 44, 6614-6624. doi: 10.1093/nar/gkw569
- Xie, S.S., Wu, H.J., Zang, H.Y., Wu, L.M., Zhu, Q.Q., and Gao, X.W. (2014). Plant Growth Promotion by Spermidine-Producing *Bacillus subtilis* OKB105. *Mol. Plant-Microbe Interact.* 27, 655-663. doi: 10.1094/Mpmi-01-14-0010-R
- 29. Yoon, S.H., Ha, S.M., Lim, J., Kwon, S., and Chun, J. (2017). A large-scale evaluation of algorithms to calculate average nucleotide identity. *Anton. Leeuw. Int. J. G.* 110, 1281-1286. doi: 10.1007/s10482-017-0844-4
- Zhang, N., Yang, D.Q., Wang, D.D., Miao, Y.Z., Shao, J.H., Zhou, X., et al. (2015). Whole transcriptomic analysis of the plant-beneficial rhizobacterium *Bacillus amyloliquefaciens* SQR9 during enhanced biofilm formation regulated by maize root exudates. *BMC Genomics* 16, doi: ARTN 68510.1186/s12864-015-1825-5
- Zhou, C., Ma, Z., Zhu, L., Xiao, X., Xie, Y., Zhu, J., et al. (2016a). Rhizobacterial Strain Bacillus megaterium BOFC15 Induces Cellular Polyamine Changes that Improve Plant Growth and Drought Resistance. Int. J. Mol. Sci. 17, doi: 10.3390/ijms17060976
- Zhou, D.M., Huang, X.F., Chaparro, J.M., Badri, D.V., Manter, D.K., Vivanco, J.M., et al. (2016b). Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects. *Plant Soil* 401, 259-272. doi: 10.1007/s11104-015-2743-7
- Zimin, A.V., Marcais, G., Puiu, D., Roberts, M., Salzberg, S.L., and Yorke, J.A. (2013). The MaSuRCA genome assembler. *Bioinformatics* 29, 2669-2677. doi: 10.1093/bioinformatics/btt476

#### 6 Chapter 6 General Discussion

As soybean productivity is steadily on the rise in North America, technologies to enhance the crop's growth and salinity tolerance will be required. *Amphicarpaea bracteata* is a North American relative of soybean. The beneficial effects of rhizobacteria associated with this plant other than its nitrogen-fixing symbiont *Bradyrhizobium*, are very poorly understood. Hence, this study was focused on the concept that rhizobacteria of *A. bracteata* might also exert beneficial effects on soybean, along with its symbiont, *Bradyrhizobium japonicum*.

The results obtained from this study show that the bacteria *Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48 isolated from root nodules of *Amphicarpaea bracteata* function as plant growth promoting rhizobacteria (PGPR) of soybean. The research conducted has facilitated the screening for potential PGPR strains under greenhouse conditions. Fifteen isolated strains were tested rigorously through a series of greenhouse trials, by measuring plant growth variables. In the screening experiments, soybean seeds were bacterized, and many isolates increased germination rate, seedling emergence, and shoot biomass, compared to the control, under optimal and salt stress conditions at 28 days after planting. Strains that significantly improved shoot and root growth variables were subjected to further screening. Four isolates were selected and inoculated onto soybean under a range of salt levels, from 0 to 200 mM NaCl. They increased shoot and root biomass relative to the control, but growth was constrained at higher salt concentrations. The experiment with salinity levels exhibited not only the tolerance threshold of soybean but also the influence of selected isolates on enhancing tolerance.

Variations were observed, in terms of the growth variables measured, between screening trials mainly because of the changes in the partially controlled greenhouse conditions, influenced by the external environment. The first trial was conducted during the summer when the temperatures were higher and the second trial in early autumn when the temperature and light levels were declining. In the final greenhouse trial, plant growth was substantially increased despite the application of low N fertilizer levels. This is most likely because of the biological nitrogen fixation performed by *B. japonicum* which added nitrogen content, which in turn boosted vegetative growth and biomass accumulation. Under salt stress, nitrogen accumulation was reduced, suggesting that root nodulation and biological nitrogen fixation were affected by salinity.

Soybean was grown to maturity and the impact of salinity stress has been assessed throughout its developmental stages by measuring growth and yield variables. Soybean growth was strongly inhibited by salt stress at both vegetative and flowering stages, compared to the later stages. When seedlings develop, their roots are exposed to high salt concentration and absorption of saltwater leads to both osmotic imbalance and ionic toxicity in young plant tissues. At later stages, plants develop adaptation mechanisms such as compartmentalizing ions in older leaves and stems, which improves stress tolerance. This might also be because salt stress was applied only at the beginning of the experiment and not at later stages. The intensity of the stress was diluted by the continuous supply of water but, increased Na<sup>+</sup> accumulation in plant tissues indicated that the plants were constantly exposed to at least some level of stress. The ratio of K<sup>+</sup>/Na<sup>+</sup> was higher with bacterial treatments, implying that the bacteria have assisted the plants to maintain ionic homeostasis by Na<sup>+</sup> compartmentalization or exclusion.

When co-inoculated with *B. japonicum*, the growth variables were not significantly different among the treatments under optimal and salt-stress conditions. However, growth variables were increased by the co-inoculation treatments of *B. japonicum*+SL42, *B. japonicum*+SL42 and *B. japonicum*+SL42+SL48, suggesting compatible co-inoculation and enhanced stress tolerance in soybean. An interesting observation was that the isolate SL42 also formed small (3-4 mm<sup>2</sup>) functional nodules in soybean roots (observed by the dark-red cross-section – an indication of leghemoglobin). This suggests that the bacteria could have also performed biological nitrogen fixation in soybean nodules.

Salinity stress had a profound adverse effect on the growth and development of soybean. Under stress, the plants try to direct maximum effort to seed production and the progeny that will form the next generation and the shoot biomass is reduced, which explains the increase in harvest index of salt-stressed plants where seed weight to biomass ratio is higher. Plant growth and yield largely depend on the genetic potential and stress adaptation mechanisms of the plant throughout its developmental stages. They are also influenced by environmental conditions that are different between greenhouse and field, and that vary both spatially and temporally. Considering that the impact of inoculated microbes depends on all these factors, the strains exert substantial beneficial effects on soybean. The study also demonstrated that the two strains have co-inoculation compatibility with *B. japonicum* as there was growth improvement, which was significant at some instances, but often non-significant neutral effects.

Strategies to enhance plant growth and ameliorate stress are crucial to boost crop productivity. Soybean growth and development were enhanced by inoculation with strains SL42

and SL48 and inoculation technologies such as this are imperative from an agricultural point of view, to improve productivity and sustainability. Seed weight has increased by 8 % as a result of co-inoculation of *B. japonicum*+SL42+SL48 under optimal conditions. Soybean production in Canada could potentially be increased by the application of these two native strains. The utilization of PGPR to increase crop yield has been explored and numerous bacteria are successfully applied, as biofertilizers and biocontrol agents, in sustainable agriculture systems. However, their capability has to be determined through a course of multiple field trials. The application of beneficial bacteria has shown promising results in laboratory studies, under controlled conditions, but the results are often variable in the fields due to the influence of diverse environmental factors. The variation could be due to the myriad of genetic and environmental factors influencing the function of living organisms and the interactions among them. With regard to rhizosphere colonization, rhizosphere competent microorganisms have an advantage over other soil microbiota due to selective enrichment by the host plant.

Plant growth promotion and stress amelioration by the bacteria colonizing its rhizosphere are manipulated through intricate signaling pathways within the plant-microbe interaction. The knowledge of plant responses influenced by the phytomicrobiome are constantly evolving. Plant salinity tolerance is a complex trait and the advances in "omics" technologies help to elucidate tolerance mechanisms at the molecular level. In this study, soybean leaf proteome profile was analyzed to interpret the function of SL42 and SL48 in enhancing plant growth and mitigating stress. The proteomic analysis has brought an in-depth understanding of plant mechanisms and the mode of action by which the bacteria elicit these mechanisms. A number of proteins related to growth and stress responses were upregulated in the inoculated plants and also in the co-inoculated plants with *B. japonicum*. It was common to find proteins involved in drought and cold stresses were expressed since the plant tolerance mechanisms to drought, cold and salinity overlap during the osmotic phase.

Photosynthesis is the most significant activity that is inhibited during salinity stress, which in turn affects plant growth. Upregulation of proteins involved in photosynthesis processes in addition to Rubisco, glyceraldehyde-3-phosphate dehydrogenase and chlorophyll-binding proteins, suggest that inoculation with bacteria assist in the photosynthesis process and enhance growth under salinity stress. Other proteins involved in stomatal function, phytohormone signaling, chloroplast development, antioxidant activity and nutrient metabolism were also upregulated in bacterial inoculated treatments. For example, proline function as an osmolyte is well established in plants exposed to environmental stresses. Accumulation of proline is positively correlated with increased osmotolerance. It is also synthesized in response to auxin signaling. The increase in proline-rich proteins suggests that the bacteria critically modulate plant salinity tolerance mechanisms.

The whole genome sequences of SL42 and SL48 revealed that the two strains carry genes related to abiotic stress tolerance and antibiotic resistance. Genes encoding plant hormones, nitrogen fixation, iron chelation, secondary metabolites, secretion systems and quorum sensing compounds were present, and are crucial to their beneficial roles as PGPR. Some of these compounds might also be essential for plant root colonization. However, detailed analysis of the genome sequences will further explain the functional properties of their genomes and bacterial regulatory networks related to plant growth promoting activities.

#### 7 Chapter 7 Final Conclusion and Future Directions

Native relatives of cultivated plants may harbour beneficial microorganisms that could be harnessed for increasing plant growth and stress tolerance. Rhizobacteria were isolated from the nodules of *Amphicarpaea bracteata*, the closest relative to soybean in eastern North America, and screened for beneficial effects on plant growth and salinity stress tolerance of soybean under greenhouse conditions. Two of the most promising isolates, *Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48 were co-inoculated with *Bradyrhizobium japonicum* 532C, the nitrogen-fixing symbiont of soybean under optimal and salt-stressed conditions. Plant growth was recorded at specific developmental stages of soybean until maturity. Co-inoculation with strains SL42 and SL48 resulted in improved plant growth in terms of biomass accumulation, nutrient assimilation and seed production of soybean.

The molecular basis of plant responses elicited by the inoculation of these two strains was elucidated using a proteomic approach. The analysis of leaf proteome showed that the bacteria modulate plant growth and development mechanisms through intricate signaling pathways within the plant-microbe interaction. Indeed, the interaction resulted in enhanced plant growth and salt stress tolerance, supported by the upregulation of proteins related to plant metabolism and function. Changes in the proteomic profile of soybean leaves under salt stress influenced by rhizobacteria provided key insights into the plant growth and stress response mechanisms that eventually lead to crop improvement and salinity tolerance of soybean. Genomes of *Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48 were sequenced and deposited in NCBI database. Whole genome sequencing provides an in-depth resolution of the genomic characteristics. Features of the genome related to metabolic functions such as secretion systems and production of secondary metabolites were identified. These elements contribute to their ecological, agricultural and biotechnological values, such as rhizosphere colonization and potentially novel biologically active metabolites that could aid in plant growth.

In this study, two strains isolated from a relative plant species of soybean showed potential for agricultural application to increase the growth and development of soybean. The mechanisms by which they influence plant growth and stress responses were determined using systems biology approaches. Overall, the study contributed to a comprehensive understanding of plant-microbe interactions between soybean, and its phytomicrobiome constituents including *Rhizobium* sp. SL42 and *Hydrogenophaga* sp. SL48 along with *Bradyrhizobium japonicum*. It seems that the microbes have profound effects upon plant growth and salt stress tolerance throughout the development of soybean. The active biomolecules released by the strains have elicited PGPR-mediated signaling pathways in soybean plants. These strains have significant potential application in sustainable crop production systems.

Soybean cultivation is expanding in North America, particularly in Canada. Reliable technologies must be developed not only to increase productivity but also to mitigate the detrimental effects of environmental stressors. The future directions of this project are to validate the beneficial effects of these strains under field conditions and to know if the strains can improve the growth and development of soybean and alleviate stress under the influence of various environmental factors. Their efficacy to improve growth and yield have to be determined by conducting multiple field trials. Introducing any organism will have an impact on the ecosystem, fortunately, these PGPR are native so they can be presumed safe. The strains have to be developed as an inoculum and seed treatment to be applied to soybean. Success at all these steps will ultimately lead to the commercialization of the strains. Further, they could be developed as bioinoculants to support soybean cultivation and adaptation relevant to Canadian agricultural scenarios.

## **Bibliography**

- 1. Bai, Y.M., D'Aoust, F., Smith, D.L., and Driscoll, B.T. (2002). Isolation of plant-growthpromoting *Bacillus* strains from soybean root nodules. *Can. J. Microbiol.* 48, 230-238. doi: 10.1139/W02-014
- Cloutier, J. (2017). Soy Story: A Short History of Glycine max in Canada [Online]. Statistics Canada: Statistics Canada. Available online at: <u>https://www150.statcan.gc.ca/n1/pub/21-004-x/2017001/article/14779-eng.htm</u> [accessed April 12 2020].
- Dorff, E. (2007). The soybean, agriculture's jack-of-all-trades, is gaining ground across Canada [Online]. Statistics Canada. Available online at: <u>https://www150.statcan.gc.ca/n1/en/pub/96-325-x/2007000/article/10369-eng.pdf?st=6wd-Sqiq</u> [accessed April 12 2020].
- 4. Florinsky, I.V., Eilers, R.G., Wiebe, B.H., and Fitzgerald, M.M. (2009). Dynamics of soil salinity in the Canadian prairies: Application of singular spectrum analysis. *Environ. Model. Software* 24, 1182-1195. doi: 10.1016/j.envsoft.2009.03.011
- 5. Flowers, T.J. (2004). Improving crop salt tolerance. J. Exp. Bot. 55, 307-319. doi: 10.1093/jxb/erh003
- 6. Hasegawa, P.M., Bressan, R.A., Zhu, J.K., and Bohnert, H.J. (2000). Plant Cellular and Molecular Responses to High Salinity. *Annu. Rev. Plant Physiol. Plant Mol. Biol.* 51, 463-499. doi: 10.1146/annurev.arplant.51.1.463
- 7. Kloepper, J.W., and Schroth, M.N. (1979). Plant-growth promoting rhizobacteria evidence that the mode of action involves root microflora interactions. *Phytopathol.* 69(9), 1034-1034.
- Lee, K.D., Gray, E.J., Mabood, F., Jung, W.J., Charles, T., Clark, S.R.D., et al. (2009). The class IId bacteriocin thuricin-17 increases plant growth. *Planta* 229, 747-755. doi: 10.1007/s00425-008-0870-6
- 9. Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J.P., Hector, A., et al. (2001). Ecology - Biodiversity and ecosystem functioning: Current knowledge and future challenges. *Science* 294, 804-808. doi: 10.1126/science.1064088
- Moerman, D.E. (1998). Native American Ethnobotany Oregon: Timber Press. ISBN 0-88192-453-9
- 11. Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. *Annu. Rev. Plant Biol.* 59, 651-681. doi:10.1146/annurev.arplant.59.032607.092911
- 12. NRCS (2002). *Salinity in Agriculture* [Online]. Natural Resources Conservation Service, United States Department of Agriculture. Available online at: <u>https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/water/quality/tr/?cid=nrcs143\_010914</u> [accessed April 12 2020].
- 13. Pitman, M.G., and Lauchli, A. (2002). "Global impact of salinity and Agricultural ecosystems," in Salinity: *Environment Plants Molecules*, eds. A. Lauchli & U. Luttage. (Netherlands: Kluwer Academic Publishers), 3-20.
- PLANTS, U. (2017). *Amphicarpaea bracteata* (L.) Fernald American hogpeanut [Online]. Available online at: <u>https://plants.usda.gov/core/profile?symbol=AMBR2</u> [accessed 12 Aug 2017].
- 15. Prithiviraj, B., Zhou, X., Souleimanov, A., Khan, W.M., and Smith, D.L. (2003). A host-specific bacteria-to-plant signal molecule (Nod factor) enhances germination and early growth of diverse crop plants. *Planta* 216, 890-890. doi: 10.1007/s00425-003-0990-y

- Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., et al. (2006). The path forward for biofuels and biomaterials. *Science* 311, 484-489. doi: 10.1126/science.1114736
- 17. Smith, D.L., Gravel, V., and Yergeau, E. (2017). Signaling in the Phytomicrobiome. *Front. Plant Sci.* 8, 611. doi: 10.3389/fpls.2017.00611
- 18. Subramanian, S., Ricci, E., Souleimanov, A., and Smith, D.L. (2016). A proteomic approach to lipo-chitooligosaccharide and thuricin 17 effects on soybean germination unstressed and salt stress. *Plos One* 11, e0160660. doi: 10.1371/journal.pone.0160660
- 19. Tang, J., Bromfield, E.S.P., Rodrigue, N., Cloutier, S., and Tambong, J.T. (2012). Microevolution of symbiotic *Bradyrhizobium* populations associated with soybeans in east North America. *Ecol. Evol.* 2, 2943-2961. doi: 10.1002/ece3.404
- 20. Van Breusegem, F., and Dat, J.F. (2006). Reactive oxygen species in plant cell death. *Plant Physiol.* 141, 384-390. doi: 10.1104/pp.106.078295
- 21. Wiebe, B.H., Eilers, R.G., Eilers, W.D., and Brierley, J.A. (2007). Application of a risk indicator for assessing trends in dryland salinization risk on the Canadian Prairies. *Can. J. Soil Sci.* 87, 213-224.
- Xie, S.S., Wu, H.J., Zang, H.Y., Wu, L.M., Zhu, Q.Q., and Gao, X.W. (2014). Plant Growth Promotion by Spermidine-Producing *Bacillus subtilis* OKB105. *Mol. Plant-Microbe Interact*. 27, 655-663. doi: 10.1094/Mpmi-01-14-0010-R
- 23. Zhu, J.-K. (2007). Plant Salt Stress. doi:10.1002/9780470015902.a0001300.pub2
- 24. Zhu, T., Shi, L., Doyle, J.J., and Keim, P. (1995). A single nuclear locus phylogeny of soybean based on DNA-sequence. *Theor. Appl. Genet.* 90, 991-999. doi: 10.1007/Bf00222912

# APPENDIX A

| Reference<br>period | Seeded area (acres) | Harvested area (acres) | Average yield (kg<br>per hectare) | Production<br>(metric tonnes) |
|---------------------|---------------------|------------------------|-----------------------------------|-------------------------------|
| 2016                | 5,607,397           | 5,514,700              | 3,000                             | 6,596,500                     |
| 2017                | 7,282,000           | 7,252,000              | 2,600                             | 7,716,600                     |
| 2018                | 6,320,100           | 6,275,500              | 2,900                             | 7,416,600                     |
| 2019                | 5,714,300           | 5,610,400              | 2,662                             | 6,045,100                     |
| 2020                | 5,070,300           | 4,910,700              | 3,088                             | 6,137,100                     |

Supplementary Figures and Tables – Chapter 3

Supplementary Table 3.1. Estimated area, yield and production of soybean in Canada.



**Supplementary Figure 3.1**. (A) *Amphicarpaea bracteata* plant found on the shores of Lac St. Louis, Sainte-Anne-de-Bellevue, Canada. (B) The root system and the root nodules of *A. bracteata*.



**Supplementary Figure 3.2**. Methodological procedure for the isolation of bacteria from the nodules of *Amphicarpea bracteata*.



**Supplementary Figure 3.3**. Screening experiement setup in greenhouse (A) Soybean plants emerging at 5<sup>th</sup> DAP (B) Plants after thinned out on 8<sup>th</sup> DAP (C) Plants growing in the greenhouse at early vegetative stage and treatments were distributed randomly (D) Plants in the mid-vegetative stage and sampling of plants at 28<sup>th</sup> DAP.



**Supplementary Figure 3.4**. Growth and development of soybean (A) Soybean plants at the vegetative stage (14<sup>th</sup> DAP) (B) flowering stage (40<sup>th</sup> DAP) (C) pod-filling stage (80<sup>th</sup> DAP) (D) harvest stage (100<sup>th</sup> DAP).



**Supplementary Figure 3.5**. (A) Soybean seedlings at 8<sup>th</sup> DAP (B) Soybean flowers (C) Soybean at early-pod-filling stage (D) mature pods at harvest.

|     | GenBank<br>Accession | Strain | Organism                   | BLAST – related strains                                                        | Identity |
|-----|----------------------|--------|----------------------------|--------------------------------------------------------------------------------|----------|
| 1.  | MT952563             | SL31   | Pseudomonas<br>mandelii    | <i>Pseudomonas mandelii</i><br>strain AB16                                     | 100%     |
| 2.  | MT952564             | SL33   | Hydrogenophaga<br>sp.      | <i>Hydrogenophaga sp.</i><br>M4_20                                             | 99.78%   |
| 3.  | MT952565             | SL42   | Rhizobium sp.              | <i>Rhizobium sp.</i> strain py1134                                             | 99.56%   |
| 4.  | MT952566             | SL43   | Devosia sp.                | Devosia sp. strain 90                                                          | 95.61%   |
| 5.  | MT952567             | SL44   | Flavobacterium<br>sp.      | <i>Flavobacterium sp.</i> WB1.2-3                                              | 99.35%   |
| 6.  | MT952568             | SL45   | Gemmobacter sp.            | <i>Gemmobacter tilapiae</i> strain Ruye-53                                     | 98.80%   |
| 7.  | MT952569             | SL47   | Variovorax sp.             | Variovorax sp. Bca18                                                           | 99.93%   |
| 8.  | MT952570             | SL48   | Hydrogenophaga<br>sp.      | <i>Hydrogenophaga</i><br><i>taeniospiralis</i> CCUG 15921<br>strain NBRC102512 | 99.50%   |
| 9.  | MT952571             | SL49   | Pseudomonas<br>borealis    | Pseudomonas borealis                                                           | 99.43%   |
| 10. | MT952572             | SL50   | Pseudomonas<br>fluorescens | <i>Pseudomonas fluorescens</i><br>strain S2                                    | 99.85%   |
| 11. | MT952573             | SL52   | Pseudomonas<br>baetica     | <i>Pseudomonas baetica</i> strain S42_BP2TU                                    | 100%     |
| 12. | MT952574             | SL54   | Bacillus subtilis          | <i>Bacillus subtilis</i> strain soilG2B                                        | 100%     |
| 13. | MT952575             | SL55   | Variovorax sp.             | Variovorax sp. Bca18                                                           | 99.71%   |
| 14. | MT952576             | SL56   | Pseudomonas<br>fluorescens | Pseudomonas fluorescens<br>strain S2                                           | 99.57%   |

**Supplementary Table 0.2**. Organism identification and BLAST reference sequence similarity search results for the 16s rRNA gene query of the isolated strains of nodule bacteria.



**Supplementary Figure 3.6**. Salt tolerance capacity of the nodule isolates. (A) SL31, (B) SL42, (C) SL47, (D) SL48, (E) SL52, and (F) SL53. The bacteria were grown under 0, 100, 250 and 500 mM NaCl and growth was measured by increase in optical density at A<sub>600nm</sub> with respect to blank, plotted every 12 h up to 48 h. Values represent mean ± SE (n=8).



**Supplementary Figure 3.7**. PGPR characteristics of the isolated strains (A) Production IAA detected by adding Salkowski's reagent (B) Detection of ACC deaminase by using ACC as the sole carbon source (C) Biofilm stained with 0.1% (v/v) crystal violet.



**Supplementary Figure 3.8**. Seeds germinating at 48 h under optimal conditions and salt stress. Ctrl is water, SL42, SL47 and SL48 are bacterial treatments that showed higher germination rate.





**Supplementary Figure 3.9**. Seed germination rate of soybean at 24, 36, and 48 h under **(A)** optimal (water) and **(B)** salt (100 mM NaCl) conditions. The seeds were treated with 10 mM MgSO<sub>4</sub> as control or bacterized with isolated strains. Values represent mean  $\pm$  SE (n=6[10]). Significant differences (increase) between the bacterial treatments and the respective control treatments (optimal or salt) are indicated by an asterisk above the data points, \* - p  $\leq$  0.05 ( $\alpha$  = 0.05).


under optimal or salt stress (100 mM NaCl) conditions. The seeds were treated with 10 mM MgSO<sub>4</sub> as control or bacterized with the isolated strains. Values represent mean  $\pm$  SE (n=6[5]).



**Supplementary Figure 3.11**. Soybean plants at vegetative stage under optimal condition from treatments, control, and bacterial isolates, SL42, SL48 and SL49. Bacteria- treated plants show half-emerged third trifoliate leaves.



**Supplementary Figure 3.11**. (cont.) Soybean plants at vegetative stage under salt stress from treatments, control, and bacterial isolates, SL42, SL48 and SL49. Bacteria- treated plants show fully emerged second trifoliate leaves.



**Supplementary Figure 3.11**. (cont.) Soybean roots at vegetative stage under optimal condition from treatments, control, and bacterial isolates, SL42, SL48 and SL49.



**Supplementary Figure 3.11**. (cont.) Soybean roots at vegetative stage under salt stress from treatments, control, and bacterial isolates, SL42, SL48 and SL49.



Supplementary Figure 3.12. Growth variables of soybean, (A) Plant height and (B) Leaf area measured at 28<sup>th</sup> DAP under optimal (water) and salt (100 mM NaCl) conditions. The seeds were treated with 10 mM MgSO<sub>4</sub> as control or bacterized with the isolated strains. Values represent mean  $\pm$  SE (n=6). Significant differences (increase) between the bacterial treatments and the respective control treatments (optimal or salt) is indicated by an asterisk above the data points, \* - p  $\leq 0.05$ , \*\* - p  $\leq 0.001$ , \*\*\* - p  $\leq 0.0001$  ( $\alpha = 0.05$ ).



Supplementary Figure 3.12. (cont.) Growth variables of soybean, (C) Shoot dry weight and (D) Root dry weight measured at 28<sup>th</sup> DAP under optimal (water) and salt (100 mM NaCl) conditions. The seeds were treated with 10 mM MgSO<sub>4</sub> as control or bacterized with the isolated strains. Values represent mean  $\pm$  SE (n=6). Significant differences (increase) between the bacterial treatments and the respective control treatments (optimal or salt) is indicated by an asterisk above the data points, \* - p  $\leq 0.05$ , \*\* - p  $\leq 0.001$  ( $\alpha = 0.05$ ).



Supplementary Figure 3.12. (cont.) Growth variables of soybean, (E) Root volume and (F) Root length measured at 28<sup>th</sup> DAP under optimal (water) and salt (100 mM NaCl) conditions. The seeds were treated with 10 mM MgSO<sub>4</sub> as control or bacterized with the isolated strains. Values represent mean  $\pm$  SE (n=6). Significant differences (increase) between the bacterial treatments and the respective control treatments (optimal or salt) is indicated by an asterisk above the data points, \* - p  $\leq 0.05$ , \*\* - p  $\leq 0.001$  ( $\alpha = 0.05$ ).



Supplementary Figure 3.12. (cont.) Growth variables of soybean, (G) Root surface area and (F) Root diametre measured at 28<sup>th</sup> DAP under optimal (water) and salt (100 mM NaCl) conditions. The seeds were treated with 10 mM MgSO<sub>4</sub> as control or bacterized with the isolated strains. Values represent mean  $\pm$  SE (n=6). Significant differences (increase) between the bacterial treatments and the respective control treatments (optimal or salt) is indicated by an asterisk above the data points, \* - p  $\leq 0.05$  ( $\alpha = 0.05$ ).



**Supplementary Figure 3.13**. Soybean seeds at 72 h under optimal conditions -0 mM NaCl and treated with bacterial strains, SL42, SL48, SL49, and SL55 ( $1 \times 10^8$  cfu mL<sup>-1</sup>).



**Supplementary Figure 3.13**. (cont.) Soybean seeds at 72 h under optimal conditions -100 mM NaCl and treated with bacterial strains, SL42, SL48, SL49, and SL55 ( $1 \times 10^8$  cfu mL<sup>-1</sup>).



**Supplementary Figure 3.13**. (cont.) Soybean seeds at 72 h under optimal conditions -150 mM NaCl and treated with bacterial strains, SL42, SL48, SL49, and SL55 ( $1 \times 10^8$  cfu mL<sup>-1</sup>).



**Supplementary Figure 3.13**. (cont.) Soybean seeds at 72 h under optimal conditions – 200 mM NaCl and treated with bacterial strains, SL42, SL48, SL49, and SL55  $(1 \times 10^8 \text{ cfu mL}^{-1})$ .



**Supplementary Figure 3.14**. Seed germination rate of soybean at 24, 36, 48, 60, and 72 h under increasing salt concentrations (0, 100, 125, 150, 175, and 200 mM NaCl) conditions. The seeds were treated with 10 mM MgSO<sub>4</sub> as control or bacterized with the strain (A) SL42 and (B) SL48 at  $1 \times 10^8$  and  $1 \times 10^{10}$  cfu mL<sup>-1</sup>. Values represent mean ± SE (n=6[10]).



**Supplementary Figure 3.14**. Seed germination rate of soybean at 24, 36, 48, 60, and 72 h under increasing salt concentrations (0, 100, 125, 150, 175, and 200 mM NaCl) conditions. The seeds were treated with 10 mM MgSO4 as control or bacterized with the strain (C) SL49 and (D) SL55 at  $1 \times 10^{8}$  and  $1 \times 10^{10}$  cfu mL<sup>-1</sup>. Values represent mean ± SE (n=6[10]).



Supplementary Figure 3.15. Growth variables of soybean, (A) Seed emergence rate measured at 8<sup>th</sup> DAP and (B) Leaf area of soybean plants measured at 28<sup>th</sup> DAP under increasing salt concentrations (0, 100, 125, 150, 175, and 200 mM NaCl). The seeds were treated with 10 mM MgSO<sub>4</sub> as control or bacterized with strains SL42 and SL48. Values represent mean  $\pm$  SE (n=6). Significant differences (increase) between the bacterial treatments and the respective control treatments of a particular salt concentration are indicated by an asterisk above the data points, \* - p  $\leq 0.05$ , \*\* - p  $\leq 0.001$  ( $\alpha = 0.05$ ).



Supplementary Figure 3.15. (cont.) Growth variables of soybean, (C) Shoot dry weight and (D) Root dry weight of soybean plants measured at 28<sup>th</sup> DAP under increasing salt concentrations (0, 100, 125, 150, 175, and 200 mM NaCl). The seeds were treated with 10 mM MgSO<sub>4</sub> as control or bacterized with strains SL42 and SL48. Values represent mean  $\pm$  SE (n=6). Significant differences (increase) between the bacterial treatments and the respective control treatments of a particular salt concentration are indicated by an asterisk above the data points, \* - p  $\leq 0.05$ , \*\* - p  $\leq 0.001$  ( $\alpha = 0.05$ ).

|            |              | Optima | ıl   | Salt  |      |
|------------|--------------|--------|------|-------|------|
| Stages     | Treatments   | Mean   | ±SE  | Mean  | ±SE  |
| Vegetativ  | /e           |        |      |       |      |
|            | Bj           | 33.43  | 1.18 | 35.11 | 3.21 |
| Ch 4       | Bj+SL42      | 38.31  | 0.35 | 31.79 | 5.63 |
| Shoot      | Bj+SL48      | 38.88  | 0.84 | 32.25 | 1.32 |
|            | Bj+SL42+SL48 | 35.50  | 1.54 | 29.64 | 1.58 |
| Vegetativ  | /e           |        |      |       |      |
|            | Bj           | 19.18  | 0.85 | 21.32 | 0.77 |
| Deet       | Bj+SL42      | 20.02  | 0.17 | 20.27 | 0.64 |
| ROOL       | Bj+SL48      | 19.21  | 0.76 | 19.86 | 1.23 |
|            | Bj+SL42+SL48 | 19.42  | 1.16 | 20.09 | 1.04 |
| Flowerin   | g            |        |      |       |      |
|            | Bj           | 41.01  | 1.99 | 41.19 | 1.30 |
| Loovor     | Bj+SL42      | 42.77  | 0.64 | 38.43 | 1.25 |
| Leaves     | Bj+SL48      | 42.22  | 1.53 | 39.26 | 3.34 |
|            | Bj+SL42+SL48 | 41.30  | 3.09 | 34.53 | 3.53 |
| Flowerin   | g            |        |      |       |      |
|            | Bj           | 19.31  | 0.95 | 25.19 | 2.26 |
| Shoot      | Bj+SL42      | 22.26  | 0.85 | 24.22 | 2.61 |
| 511001     | Bj+SL48      | 20.68  | 0.38 | 22.24 | 2.37 |
|            | Bj+SL42+SL48 | 20.74  | 0.61 | 22.76 | 0.73 |
| Flowerin   | g            |        |      |       |      |
|            | Bj           | 18.46  | 0.59 | 17.73 | 0.62 |
| Poot       | Bj+SL42      | 17.99  | 0.46 | 17.51 | 1.15 |
| ποοι       | Bj+SL48      | 17.48  | 0.64 | 16.87 | 1.52 |
|            | Bj+SL42+SL48 | 17.40  | 0.34 | 15.65 | 1.37 |
| Pod-fillin | g            |        |      |       |      |
|            | Bj           | 33.43  | 1.26 | 29.77 | 2.39 |
| Loovos     | Bj+SL42      | 30.57  | 1.67 | 27.37 | 2.15 |
| Leaves     | Bj+SL48      | 34.91  | 1.01 | 30.50 | 1.99 |
|            | Bj+SL42+SL48 | 33.25  | 0.88 | 28.59 | 1.12 |

**Supplementary Table 3.4**. Distribution of N in different plant tissues through the developmental stages

|            |              | Optima | ıl   | Salt  |      |
|------------|--------------|--------|------|-------|------|
| Stages     | Treatments   | Mean   | ±SE  | Mean  | ±SE  |
| Pod-fillin | g            |        |      |       |      |
| Shoot      | Bj           | 18.38  | 2.29 | 15.71 | 1.27 |
|            | Bj+SL42      | 19.05  | 2.21 | 11.96 | 0.67 |
|            | Bj+SL48      | 18.21  | 0.62 | 14.39 | 1.43 |
|            | Bj+SL42+SL48 | 17.81  | 2.10 | 18.56 | 2.76 |
| Pod-fillin | g            |        |      |       |      |
|            | Bj           | 34.75  | 1.07 | 34.43 | 1.36 |
| D. J.      | Bj+SL42      | 35.52  | 1.34 | 34.34 | 2.78 |
| Pods       | Bj+SL48      | 34.74  | 1.74 | 33.22 | 1.18 |
|            | Bj+SL42+SL48 | 35.42  | 0.65 | 32.96 | 3.29 |
| Pod-fillin | g            |        |      |       |      |
|            | Bj           | 18.31  | 0.78 | 14.43 | 0.62 |
| Deet       | Bj+SL42      | 16.35  | 0.79 | 15.73 | 1.36 |
| KOOL       | Bj+SL48      | 16.95  | 0.72 | 15.44 | 0.67 |
|            | Bj+SL42+SL48 | 16.65  | 0.38 | 15.22 | 2.04 |
| Harvest    |              |        |      |       |      |
|            | Bj           | 14.60  | 2.98 | 11.47 | 1.88 |
| Sheet      | Bj+SL42      | 14.48  | 1.89 | 11.14 | 1.60 |
| 511001     | Bj+SL48      | 13.14  | 2.55 | 10.10 | 0.28 |
|            | Bj+SL42+SL48 | 16.30  | 1.67 | 11.18 | 1.91 |
| Harvest    |              |        |      |       |      |
|            | Bj           | 7.63   | 0.52 | 5.10  | 0.20 |
| Dode       | Bj+SL42      | 6.47   | 0.48 | 4.41  | 0.16 |
| rous       | Bj+SL48      | 6.12   | 0.19 | 4.43  | 0.32 |
|            | Bj+SL42+SL48 | 5.95   | 0.22 | 4.52  | 0.37 |
| Harvest    |              |        |      |       |      |
|            | Bj           | 16.02  | 1.05 | 16.85 | 1.38 |
| Poot       | Bj+SL42      | 17.61  | 0.59 | 16.52 | 0.45 |
| NUUL       | Bj+SL48      | 15.20  | 0.19 | 16.44 | 1.79 |
|            | Bj+SL42+SL48 | 16.69  | 0.36 | 15.58 | 1.25 |

Supplementary Table 3.4. (cont.) Distribution of N in different plant tissues through the developmental stages

|             |              | Optima | al   | Salt |      |
|-------------|--------------|--------|------|------|------|
| Stages      | Treatments   | Mean   | ±SE  | Mean | ±SE  |
| Vegetativ   | e            |        |      |      |      |
| Shoot       | Bj           | 4.84   | 0.37 | 4.84 | 1.08 |
|             | Bj+SL42      | 5.80   | 0.38 | 4.49 | 0.58 |
|             | Bj+SL48      | 4.98   | 0.36 | 3.89 | 1.39 |
|             | Bj+SL42+SL48 | 4.66   | 0.78 | 5.22 | 0.17 |
| Vegetativ   | e            |        |      |      |      |
|             | Bj           | 4.66   | 0.43 | 5.27 | 1.20 |
| Deet        | Bj+SL42      | 4.62   | 0.90 | 4.45 | 0.23 |
| KOOL        | Bj+SL48      | 4.00   | 0.44 | 4.63 | 0.36 |
|             | Bj+SL42+SL48 | 4.29   | 0.92 | 5.08 | 0.24 |
| Flowering   | S            |        |      |      |      |
|             | Bj           | 7.35   | 0.21 | 8.62 | 0.53 |
| Laarraa     | Bj+SL42      | 6.66   | 0.52 | 9.04 | 0.83 |
| Leaves      | Bj+SL48      | 7.04   | 0.47 | 8.35 | 0.74 |
|             | Bj+SL42+SL48 | 7.02   | 0.37 | 8.06 | 0.88 |
| Flowering   | Ş            |        |      |      |      |
|             | Bj           | 4.82   | 0.07 | 5.96 | 0.40 |
| Shoot       | Bj+SL42      | 4.71   | 0.32 | 6.02 | 0.32 |
| 511001      | Bj+SL48      | 4.97   | 0.35 | 5.74 | 0.50 |
|             | Bj+SL42+SL48 | 5.37   | 0.31 | 5.53 | 0.51 |
| Flowering   | 5            |        |      |      |      |
|             | Bj           | 6.21   | 0.44 | 7.61 | 0.74 |
| Doot        | Bj+SL42      | 6.52   | 0.99 | 7.96 | 0.25 |
| κοοι        | Bj+SL48      | 5.86   | 0.68 | 8.11 | 0.43 |
|             | Bj+SL42+SL48 | 6.88   | 0.62 | 6.81 | 0.78 |
| Pod-filling | g            |        |      |      |      |
|             | Bj           | 6.00   | 0.38 | 7.22 | 1.01 |
| Loover      | Bj+SL42      | 5.59   | 0.66 | 5.90 | 0.99 |
| Leaves      | Bj+SL48      | 6.30   | 0.50 | 7.24 | 1.29 |
|             | Bj+SL42+SL48 | 5.32   | 0.27 | 6.14 | 0.28 |

**Supplementary Table 3.5**. Distribution of P in different plant tissues through the developmental stages

|            |              | Optima | al   | Salt |      |
|------------|--------------|--------|------|------|------|
| Stages     | Treatments   | Mean   | ±SE  | Mean | ±SE  |
| Pod-fillin | ıg           |        |      |      |      |
| Shoot      | Bj           | 4.53   | 0.19 | 6.28 | 0.61 |
|            | Bj+SL42      | 4.89   | 0.24 | 4.87 | 0.47 |
|            | Bj+SL48      | 4.79   | 0.34 | 5.23 | 0.57 |
|            | Bj+SL42+SL48 | 4.85   | 0.27 | 5.08 | 0.16 |
| Pod-fillin | Ig           |        |      |      |      |
|            | Bj           | 3.74   | 0.16 | 4.07 | 0.18 |
| D. J.      | Bj+SL42      | 3.87   | 0.21 | 3.78 | 0.28 |
| Poas       | Bj+SL48      | 3.84   | 0.15 | 3.74 | 0.18 |
|            | Bj+SL42+SL48 | 3.90   | 0.11 | 3.75 | 0.18 |
| Pod-fillin | Ig           |        |      |      |      |
| -          | Bj           | 6.18   | 0.30 | 7.54 | 0.46 |
| Deet       | Bj+SL42      | 6.66   | 0.31 | 7.46 | 0.70 |
| KOOL       | Bj+SL48      | 6.36   | 0.68 | 7.74 | 0.98 |
|            | Bj+SL42+SL48 | 7.51   | 0.63 | 6.32 | 0.69 |
| Harvest    |              |        |      |      |      |
|            | Bj           | 5.64   | 0.06 | 6.21 | 0.99 |
| Sheet      | Bj+SL42      | 5.55   | 0.40 | 7.48 | 0.69 |
| 511001     | Bj+SL48      | 6.31   | 0.28 | 7.75 | 1.58 |
|            | Bj+SL42+SL48 | 6.59   | 0.27 | 6.03 | 0.29 |
| Harvest    |              |        |      |      |      |
|            | Bj           | 0.88   | 0.04 | 0.69 | 0.10 |
| Doda       | Bj+SL42      | 0.64   | 0.05 | 0.76 | 0.12 |
| rous       | Bj+SL48      | 0.69   | 0.04 | 0.66 | 0.15 |
|            | Bj+SL42+SL48 | 0.61   | 0.05 | 0.60 | 0.09 |
| Harvest    |              |        |      |      |      |
|            | Bj           | 5.05   | 0.71 | 4.53 | 0.62 |
| Doot       | Bj+SL42      | 4.88   | 0.14 | 3.88 | 0.42 |
| NUUL       | Bj+SL48      | 4.55   | 0.47 | 5.36 | 0.79 |
|            | Bj+SL42+SL48 | 5.17   | 0.36 | 5.12 | 0.32 |

Supplementary Table 3.5. (cont.) Distribution of P in different plant tissues through the developmental stages

|             |              | Optima | ıl   | Salt  |      |
|-------------|--------------|--------|------|-------|------|
| Stages      | Treatments   | Mean   | ±SE  | Mean  | ±SE  |
| Vegetative  |              |        |      |       |      |
|             | Bj           | 26.55  | 1.77 | 22.88 | 1.77 |
| Sheet       | Bj+SL42      | 30.82  | 2.98 | 25.43 | 1.73 |
| Snoot       | Bj+SL48      | 26.99  | 1.57 | 25.12 | 3.30 |
|             | Bj+SL42+SL48 | 24.51  | 4.18 | 24.31 | 1.38 |
| Vegetative  |              |        |      |       |      |
|             | Bj           | 17.24  | 0.76 | 16.76 | 1.70 |
| Deet        | Bj+SL42      | 17.18  | 0.86 | 16.42 | 1.68 |
| ROOL        | Bj+SL48      | 17.55  | 0.26 | 18.99 | 0.62 |
|             | Bj+SL42+SL48 | 17.36  | 0.47 | 19.67 | 2.27 |
| Flowering   |              |        |      |       |      |
|             | Bj           | 21.49  | 1.00 | 24.34 | 0.58 |
| Loovos      | Bj+SL42      | 21.91  | 0.75 | 22.85 | 0.92 |
| Leaves      | Bj+SL48      | 22.37  | 1.11 | 22.33 | 2.36 |
|             | Bj+SL42+SL48 | 21.53  | 0.98 | 22.52 | 2.03 |
| Flowering   |              |        |      |       |      |
|             | Bj           | 35.64  | 5.16 | 36.92 | 2.28 |
| Shoot       | Bj+SL42      | 34.69  | 3.69 | 38.40 | 1.90 |
| SHOOL       | Bj+SL48      | 35.44  | 3.65 | 37.57 | 4.30 |
|             | Bj+SL42+SL48 | 32.99  | 1.26 | 38.77 | 2.82 |
| Flowering   |              |        |      |       |      |
|             | Bj           | 17.74  | 0.62 | 15.54 | 0.17 |
| Poot        | Bj+SL42      | 19.07  | 1.20 | 17.07 | 1.08 |
| NUUL        | Bj+SL48      | 16.69  | 0.89 | 15.89 | 0.55 |
|             | Bj+SL42+SL48 | 16.87  | 0.93 | 17.33 | 1.21 |
| Pod-filling |              |        |      |       |      |
|             | Bj           | 15.27  | 0.85 | 14.40 | 1.19 |
| Logvos      | Bj+SL42      | 15.95  | 1.18 | 14.06 | 1.52 |
| Leaves      | Bj+SL48      | 16.85  | 0.52 | 14.67 | 1.30 |
|             | Bj+SL42+SL48 | 16.18  | 0.70 | 13.86 | 0.26 |

**Supplementary Table 3.6**. Distribution of K in different plant tissues through the developmental stages

|            |              | Optima | al   | Salt  |      |
|------------|--------------|--------|------|-------|------|
| Stages     | Treatments   | Mean   | ±SE  | Mean  | ±SE  |
| Pod-fillin | g            |        |      |       |      |
|            | Bj           | 16.72  | 1.09 | 22.30 | 1.15 |
| Shoot      | Bj+SL42      | 16.97  | 1.51 | 17.36 | 0.84 |
|            | Bj+SL48      | 17.60  | 1.16 | 16.79 | 0.32 |
|            | Bj+SL42+SL48 | 15.08  | 1.90 | 17.51 | 1.44 |
| Pod-fillin | g            |        |      |       |      |
|            | Bj           | 17.35  | 0.79 | 19.23 | 0.64 |
| D. J.      | Bj+SL42      | 16.82  | 0.73 | 18.47 | 0.54 |
| Pods       | Bj+SL48      | 16.04  | 0.63 | 18.29 | 0.43 |
|            | Bj+SL42+SL48 | 17.29  | 0.68 | 17.77 | 0.33 |
| Pod-fillin | g            |        |      |       |      |
|            | Bj           | 14.11  | 0.40 | 12.35 | 0.83 |
| Dee4       | Bj+SL42      | 12.78  | 0.43 | 12.41 | 0.45 |
| Root       | Bj+SL48      | 14.14  | 0.20 | 13.11 | 0.62 |
|            | Bj+SL42+SL48 | 16.63  | 1.37 | 10.85 | 0.15 |
| Harvest    |              |        |      |       |      |
|            | Bj           | 17.19  | 1.16 | 14.75 | 0.73 |
| Sheet      | Bj+SL42      | 17.56  | 0.61 | 13.87 | 1.87 |
| 511001     | Bj+SL48      | 19.14  | 1.89 | 16.42 | 1.37 |
|            | Bj+SL42+SL48 | 20.49  | 1.02 | 17.05 | 1.75 |
| Harvest    |              |        |      |       |      |
|            | Bj           | 18.22  | 1.19 | 19.93 | 0.59 |
| Doda       | Bj+SL42      | 18.11  | 0.79 | 20.51 | 0.98 |
| rous       | Bj+SL48      | 20.16  | 0.52 | 21.51 | 0.87 |
|            | Bj+SL42+SL48 | 18.31  | 0.31 | 20.04 | 0.97 |
| Harvest    |              |        |      |       |      |
|            | Bj           | 7.74   | 0.62 | 3.33  | 0.47 |
| Doot       | Bj+SL42      | 6.06   | 0.49 | 5.02  | 1.09 |
| NUUt       | Bj+SL48      | 6.76   | 0.88 | 2.83  | 0.47 |
|            | Bj+SL42+SL48 | 6.99   | 1.09 | 3.41  | 0.59 |

Supplementary Table 3.6. (cont.) Distribution of K in different plant tissues through the developmental stages

|             |              | Optima | al   | Salt  |      |
|-------------|--------------|--------|------|-------|------|
| Stages      | Treatments   | Mean   | ±SE  | Mean  | ±SE  |
| Vegetativ   | e            |        |      |       |      |
| Shoot       | Bj           | 8.58   | 0.70 | 7.55  | 0.43 |
|             | Bj+SL42      | 8.28   | 0.40 | 7.33  | 0.14 |
|             | Bj+SL48      | 8.25   | 0.29 | 5.54  | 1.81 |
|             | Bj+SL42+SL48 | 7.62   | 0.39 | 5.92  | 0.24 |
| Vegetative  | e            |        |      |       |      |
|             | Вј           | 12.01  | 1.42 | 8.08  | 0.49 |
| Deet        | Bj+SL42      | 9.22   | 1.52 | 9.59  | 1.76 |
| KOOL        | Bj+SL48      | 9.43   | 1.30 | 8.74  | 0.86 |
|             | Bj+SL42+SL48 | 10.43  | 2.68 | 8.88  | 1.48 |
| Flowering   | ī,           |        |      |       |      |
|             | Вј           | 7.97   | 0.16 | 7.85  | 0.19 |
| Laavaa      | Bj+SL42      | 7.82   | 0.26 | 7.58  | 0.21 |
| Leaves      | Bj+SL48      | 8.73   | 0.76 | 7.88  | 0.30 |
|             | Bj+SL42+SL48 | 7.51   | 0.13 | 7.10  | 0.55 |
| Flowering   | ī,           |        |      |       |      |
|             | Bj           | 5.31   | 0.41 | 5.89  | 0.79 |
| Shoot       | Bj+SL42      | 4.91   | 0.17 | 5.59  | 0.30 |
| Shoot       | Bj+SL48      | 5.20   | 0.22 | 5.85  | 0.41 |
|             | Bj+SL42+SL48 | 5.72   | 0.55 | 5.84  | 0.50 |
| Flowering   | ī,           |        |      |       |      |
|             | Bj           | 7.55   | 1.08 | 10.62 | 2.32 |
| Doot        | Bj+SL42      | 9.51   | 1.74 | 10.54 | 0.28 |
| ROOL        | Bj+SL48      | 7.87   | 1.03 | 10.74 | 2.35 |
|             | Bj+SL42+SL48 | 7.77   | 1.14 | 10.69 | 2.06 |
| Pod-filling | 5            |        |      |       |      |
|             | Bj           | 9.80   | 0.57 | 10.74 | 0.84 |
| Loover      | Bj+SL42      | 10.40  | 0.40 | 11.67 | 1.07 |
| Leaves      | Bj+SL48      | 10.73  | 0.58 | 11.55 | 0.32 |
|             | Bj+SL42+SL48 | 9.71   | 0.13 | 11.22 | 0.49 |

**Supplementary Table 3.7**. Distribution of Ca in different plant tissues through the developmental stages

|            |              | Optima | al   | Salt |      |
|------------|--------------|--------|------|------|------|
| Stages     | Treatments   | Mean   | ±SE  | Mean | ±SE  |
| Pod-fillin | g            |        |      |      |      |
| Shoot      | Bj           | 3.42   | 0.40 | 4.67 | 0.90 |
|            | Bj+SL42      | 3.58   | 0.15 | 4.86 | 1.01 |
|            | Bj+SL48      | 3.66   | 0.05 | 4.44 | 0.45 |
|            | Bj+SL42+SL48 | 3.21   | 0.63 | 4.80 | 0.29 |
| Pod-fillin | g            |        |      |      |      |
|            | Bj           | 3.07   | 0.20 | 3.30 | 0.12 |
| Dada       | Bj+SL42      | 3.05   | 0.09 | 3.09 | 0.16 |
| Pous       | Bj+SL48      | 3.00   | 0.12 | 3.09 | 0.06 |
|            | Bj+SL42+SL48 | 3.04   | 0.24 | 2.93 | 0.15 |
| Pod-fillin | g            |        |      |      |      |
|            | Bj           | 7.41   | 1.29 | 9.07 | 1.79 |
| Deet       | Bj+SL42      | 7.40   | 0.80 | 9.13 | 1.03 |
| KOOL       | Bj+SL48      | 6.63   | 1.26 | 7.88 | 0.73 |
|            | Bj+SL42+SL48 | 7.14   | 0.67 | 7.72 | 0.97 |
| Harvest    |              |        |      |      |      |
|            | Bj           | 3.86   | 0.09 | 3.91 | 0.29 |
| Shoot      | Bj+SL42      | 3.61   | 0.36 | 4.83 | 0.36 |
| 511001     | Bj+SL48      | 4.07   | 0.29 | 4.40 | 0.38 |
|            | Bj+SL42+SL48 | 4.56   | 0.22 | 4.24 | 0.23 |
| Harvest    |              |        |      |      |      |
|            | Bj           | 4.80   | 0.30 | 6.24 | 0.34 |
| Dada       | Bj+SL42      | 4.87   | 0.53 | 5.24 | 0.26 |
| rous       | Bj+SL48      | 5.11   | 0.26 | 5.84 | 0.14 |
|            | Bj+SL42+SL48 | 4.73   | 0.23 | 5.54 | 0.28 |
| Harvest    |              |        |      |      |      |
|            | Bj           | 7.65   | 0.87 | 7.47 | 0.57 |
| Doot       | Bj+SL42      | 7.15   | 0.49 | 7.61 | 0.59 |
| ROOL       | Bj+SL48      | 6.64   | 0.37 | 8.66 | 1.26 |
|            | Bj+SL42+SL48 | 7.77   | 0.58 | 7.80 | 0.74 |

Supplementary Table 3.7. (cont.) Distribution of Ca in different plant tissues through the developmental stages

|             |              | Optima | ıl   | Salt  |      |  |
|-------------|--------------|--------|------|-------|------|--|
| Stages      | Treatments   | Mean   | ±SE  | Mean  | ±SE  |  |
| Vegetativ   | e            |        |      |       |      |  |
| Shoot       | Bj           | 0.12   | 0.03 | 0.53  | 0.09 |  |
|             | Bj+SL42      | 0.19   | 0.06 | 0.43  | 0.13 |  |
|             | Bj+SL48      | 0.19   | 0.03 | 0.67  | 0.21 |  |
|             | Bj+SL42+SL48 | 0.10   | 0.04 | 0.56  | 0.16 |  |
| Vegetativ   | e            |        |      |       |      |  |
|             | Bj           | 5.40   | 0.52 | 9.25  | 0.87 |  |
| Doot        | Bj+SL42      | 5.38   | 0.15 | 9.91  | 0.43 |  |
| κοοι        | Bj+SL48      | 6.21   | 0.39 | 10.10 | 0.32 |  |
|             | Bj+SL42+SL48 | 5.61   | 0.27 | 10.73 | 1.19 |  |
| Flowering   | 5            |        |      |       |      |  |
|             | Bj           | 0.04   | 0.01 | 0.07  | 0.01 |  |
| Laarraa     | Bj+SL42      | 0.05   | 0.02 | 0.08  | 0.02 |  |
| Leaves      | Bj+SL48      | 0.04   | 0.01 | 0.02  | 0.01 |  |
|             | Bj+SL42+SL48 | 0.03   | 0.02 | 0.09  | 0.03 |  |
| Flowering   | Ş            |        |      |       |      |  |
|             | Bj           | 0.08   | 0.03 | 0.28  | 0.03 |  |
| Shoot       | Bj+SL42      | 0.05   | 0.01 | 0.24  | 0.05 |  |
| 511001      | Bj+SL48      | 0.04   | 0.01 | 0.23  | 0.05 |  |
|             | Bj+SL42+SL48 | 0.03   | 0.02 | 0.21  | 0.06 |  |
| Flowering   | 5            |        |      |       |      |  |
|             | Bj           | 3.79   | 0.29 | 7.44  | 0.78 |  |
| Doot        | Bj+SL42      | 4.20   | 0.11 | 7.68  | 0.63 |  |
| κοοι        | Bj+SL48      | 3.25   | 0.33 | 7.90  | 1.15 |  |
|             | Bj+SL42+SL48 | 3.11   | 0.30 | 8.10  | 1.21 |  |
| Pod-filling | g            |        |      |       |      |  |
|             | Bj           | 0.06   | 0.03 | 0.06  | 0.01 |  |
| Looves      | Bj+SL42      | 0.05   | 0.01 | 0.03  | 0.01 |  |
| Leaves      | Bj+SL48      | 0.05   | 0.01 | 0.05  | 0.03 |  |
|             | Bj+SL42+SL48 | 0.01   | 0.01 | 0.05  | 0.03 |  |

**Supplementary Table 3.8**. Distribution of Na in different plant tissues through the developmental stages

|            |              | Optima | Optimal |       |      |
|------------|--------------|--------|---------|-------|------|
| Stages     | Treatments   | Mean   | ±SE     | Mean  | ±SE  |
| Pod-fillin | g            |        |         |       |      |
| Shoot      | Bj           | 0.01   | 0.01    | 0.34  | 0.09 |
|            | Bj+SL42      | 0.02   | 0.03    | 0.48  | 0.07 |
|            | Bj+SL48      | 0.04   | 0.02    | 0.26  | 0.04 |
|            | Bj+SL42+SL48 | 0.00   | 0.01    | 0.41  | 0.15 |
| Pod-fillin | g            |        |         |       |      |
|            | Bj           | 0.00   | 0.01    | 0.06  | 0.02 |
| Dada       | Bj+SL42      | 0.01   | 0.01    | 0.03  | 0.01 |
| Pous       | Bj+SL48      | 0.04   | 0.02    | 0.02  | 0.01 |
|            | Bj+SL42+SL48 | 0.03   | 0.01    | 0.03  | 0.01 |
| Pod-fillin | g            |        |         |       |      |
| -          | Bj           | 3.09   | 0.23    | 10.04 | 0.44 |
| Deet       | Bj+SL42      | 3.27   | 0.30    | 8.86  | 0.61 |
| ROOL       | Bj+SL48      | 2.66   | 0.20    | 9.21  | 0.69 |
|            | Bj+SL42+SL48 | 3.00   | 0.31    | 9.32  | 0.75 |
| Harvest    |              |        |         |       |      |
|            | Bj           | 0.43   | 0.19    | 11.00 | 3.23 |
| Shoot      | Bj+SL42      | 0.30   | 0.09    | 13.28 | 2.48 |
| Shoot      | Bj+SL48      | 0.37   | 0.08    | 8.91  | 2.08 |
|            | Bj+SL42+SL48 | 0.34   | 0.07    | 8.03  | 1.19 |
| Harvest    |              |        |         |       |      |
|            | Bj           | 0.09   | 0.04    | 0.36  | 0.06 |
| Doda       | Bj+SL42      | 0.04   | 0.02    | 0.81  | 0.25 |
| rous       | Bj+SL48      | 0.06   | 0.01    | 0.28  | 0.05 |
|            | Bj+SL42+SL48 | 0.05   | 0.01    | 0.37  | 0.08 |
| Harvest    |              |        |         |       |      |
|            | Bj           | 3.00   | 0.16    | 6.35  | 1.11 |
| Poot       | Bj+SL42      | 2.39   | 0.18    | 4.81  | 0.81 |
| ROOL       | Bj+SL48      | 2.61   | 0.28    | 5.70  | 0.62 |
|            | Bj+SL42+SL48 | 2.82   | 0.41    | 6.94  | 0.92 |

Supplementary Table 3.8. (cont.) Distribution of Na in different plant tissues through the developmental stages

|              | Opt          |          | ıl   | Salt       |      |
|--------------|--------------|----------|------|------------|------|
| Constituents | Treatments   | Mean     | ±SE  | Mean       | ±SE  |
|              |              |          |      |            |      |
|              | Bj           | 6.78     | 0.05 | 6.66       | 0.11 |
| Maiatura     | Bj+SL42      | 6.87     | 0.04 | 6.60       | 0.09 |
| woisture     | Bj+SL48      | 6.82     | 0.06 | 6.50       | 0.07 |
|              | Bj+SL42+SL48 | 6.91     | 0.10 | 6.50       | 0.04 |
|              |              | P = 0.54 | 444  | P = 0.64   | 412  |
|              | Bj           | 37.69    | 0.24 | 34.78      | 0.84 |
| Drotoin      | Bj+SL42      | 36.73    | 0.94 | 35.33      | 0.77 |
| rrotein      | Bj+SL48      | 36.77    | 0.42 | 34.69      | 0.50 |
|              | Bj+SL42+SL48 | 37.34    | 0.43 | 35.51      | 0.57 |
|              |              | P = 0.92 | 2    | P = 0.1822 |      |
|              | Bj           | 18.48    | 0.09 | 20.49      | 0.33 |
| Fat          | Bj+SL42      | 18.52    | 0.40 | 20.03      | 0.40 |
| rat          | Bj+SL48      | 18.71    | 0.18 | 20.27      | 0.44 |
|              | Bj+SL42+SL48 | 18.68    | 0.09 | 19.66      | 0.38 |
|              |              | P = 0.64 | 497  | P = 0.7405 |      |
|              | Bj           | 12.72    | 1.02 | 11.07      | 0.24 |
| Fibro        | Bj+SL42      | 12.00    | 0.22 | 10.86      | 0.29 |
| ribre        | Bj+SL48      | 12.69    | 0.31 | 11.32      | 0.18 |
|              | Bj+SL42+SL48 | 12.51    | 0.54 | 11.45      | 0.46 |
|              |              |          |      |            |      |
|              | Bj           | 4.58     | 0.07 | 4.85       | 0.10 |
| Ash          | Bj+SL42      | 4.26     | 0.26 | 4.63       | 0.16 |
| A211         | Bj+SL48      | 4.56     | 0.07 | 4.69       | 0.02 |
|              | Bj+SL42+SL48 | 4.22     | 0.25 | 4.50       | 0.07 |

Supplementary Table 3.9. Seed nutrient composition (%) analysis

|              | Optimal      |            | Salt |            |      |
|--------------|--------------|------------|------|------------|------|
| Constituents | Treatments   | Mean       | ±SE  | Mean       | ±SE  |
|              |              | P = 0.07   | 748  | P = 0.1533 |      |
|              | Bj           | 1.87       | 0.03 | 2.02       | 0.02 |
| Dotossium    | Bj+SL42      | 1.78       | 0.05 | 1.96       | 0.01 |
| Potassium    | Bj+SL48      | 1.81       | 0.01 | 1.94       | 0.03 |
|              | Bj+SL42+SL48 | 1.85       | 0.02 | 2.00       | 0.02 |
|              |              | P = 0.27   | 788  | P = 0.42   | 79   |
|              | Bj           | 0.63       | 0.01 | 0.61       | 0.01 |
| Dhasnharaus  | Bj+SL42      | 0.60       | 0.01 | 0.61       | 0.01 |
| 1 nosphorous | Bj+SL48      | 0.62       | 0.01 | 0.61       | 0.01 |
|              | Bj+SL42+SL48 | 0.61       | 0.01 | 0.63       | 0.01 |
|              |              | P = 0.7621 |      | P = 0.8584 |      |
|              | Bj           | 0.28       | 0.01 | 0.26       | 0.01 |
| Magnasium    | Bj+SL42      | 0.27       | 0.01 | 0.26       | 0.01 |
| wiagnesium   | Bj+SL48      | 0.27       | 0.01 | 0.27       | 0.00 |
|              | Bj+SL42+SL48 | 0.28       | 0.02 | 0.27       | 0.01 |
|              |              | P = 0.46   | 548  | P = 0.2025 |      |
|              | Bj           | 0.16       | 0.00 | 0.14       | 0.01 |
| Calaium      | Bj+SL42      | 0.14       | 0.01 | 0.13       | 0.01 |
|              | Bj+SL48      | 0.16       | 0.01 | 0.15       | 0.01 |
|              | Bj+SL42+SL48 | 0.15       | 0.02 | 0.15       | 0.01 |
|              |              | P = 0.80   | 004  | P = 0.00   | 79   |
|              | Bj           | 0.03       | 0.00 | 0.03       | 0.00 |
| Sodium       | Bj+SL42      | 0.03       | 0.00 | 0.04       | 0.00 |
| Souluill     | Bj+SL48      | 0.03       | 0.01 | 0.04       | 0.01 |
|              | Bj+SL42+SL48 | 0.03       | 0.00 | 0.05       | 0.00 |

Supplementary Table 3.9. (cont.) Seed nutrient composition (%) analysis



**Supplementary Figure 3.15**. Bacteria colonies isolated from soybean nodules at harvest stage from the treatments of (**A**) *Bradyrhizobium* (Bj), (**B**) Bj +SL42, (**C**) Bj +SL48 (**D**) Bj +SL42 +SL48 and under salt stress (**E**) Bj, (**F**) Bj +SL42, (**G**) Bj +SL48, and (**H**) Bj +SL42 +SL48 on YEM agr plates at 10<sup>-5</sup> dilution after 48 h of incubation.

## APPENDIX **B**

Supplementary Figures and Tables - Chapter 4

## Quantitative spectra of Soybean leaf proteome profile

Fold change after normalization (> 1.0) and Fisher-exact test (P < 0.05) of proteins expressed in bacterial treatments relative to the control (n=3).

| Supplementary       | Table 4.1.  | Fold  | change   | of proteins | that | were | upregulated | by | treatment | SL42, |
|---------------------|-------------|-------|----------|-------------|------|------|-------------|----|-----------|-------|
| relative to the con | ntrol under | optim | al condi | itions.     |      |      |             |    |           |       |

| #    | Identified Proteins (3076/3093)                                        | Molecul | Fisher's  | Fold   | Control | SL42  |
|------|------------------------------------------------------------------------|---------|-----------|--------|---------|-------|
|      |                                                                        | Weight  | Test      | Change |         |       |
| 2    | ribulose bisphosphate carboxylase<br>small chain 4, chloroplastic      | 20 kDa  | < 0.00010 | 1.2    | 1,266   | 1,513 |
| 160  | prolyl endopeptidase                                                   | 86 kDa  | 0.0045    | 1.4    | 97      | 137   |
| 189  | Cluster of PREDICTED:<br>glutathione S-transferase GST 9<br>isoform X1 | ?       | 0.021     | 1.4    | 67      | 93    |
| 232  | PREDICTED: thioredoxin H1                                              | ?       | 0.04      | 1.3    | 87      | 112   |
| 372  | isoflavone reductase-like protein                                      | 34 kDa  | 0.039     | 1.4    | 51      | 71    |
| 412  | 31 kDa ribonucleoprotein, chloroplastic-like                           | 32 kDa  | 0.0021    | 1.7    | 45      | 77    |
| 474  | DNA-damage-repair/toleration protein DRT100-like precursor             | 40 kDa  | 0.03      | 1.6    | 25      | 41    |
| 845  | aspartyl protease AED3                                                 | 47 kDa  | 0.043     | 1.9    | 12      | 23    |
| 873  | 50S ribosomal protein L6, chloroplastic                                | 25 kDa  | 0.031     | 1.8    | 18      | 32    |
| 895  | Cluster of matrix metalloproteinase precursor                          | ?       | 0.0087    | 2.1    | 15      | 32    |
| 1127 | Cluster of asparagine synthetase 2                                     | ?       | 0.032     | 4.5    | 2       | 9     |
| 1307 | long chain acyl-CoA synthetase 9,<br>chloroplastic isoform X1          | 76 kDa  | 0.037     | 3      | 4       | 12    |
| 1366 | Cluster of glucose-6-phosphate dehydrogenase                           | 59 kDa  | 0.045     | 3.3    | 3       | 10    |
| 1482 | UDP-glycosyltransferase 74G1                                           | 54 kDa  | 0.031     | INF    | 0       | 5     |
| 1647 | PREDICTED: patatin-like protein 3                                      | ?       | 0.019     | 5      | 2       | 10    |
| 1845 | prolyl endopeptidase                                                   | 82 kDa  | 0.0076    | INF    | 0       | 7     |
| 2053 | probable inactive purple acid<br>phosphatase 1 isoform X1              | 69 kDa  | 0.031     | INF    | 0       | 5     |
| 2055 | Cluster of probable fructokinase-7<br>isoform X1                       | 37 kDa  | 0.0076    | INF    | 0       | 7     |

| #    | Identified Proteins (3076/3093)                                            | Molecular<br>Weight | Fisher's<br>Exact<br>Test | Fold<br>Change | Control | SL48  |
|------|----------------------------------------------------------------------------|---------------------|---------------------------|----------------|---------|-------|
| 2    | ribulose bisphosphate carboxylase small chain 4, chloroplastic             | 20 kDa              | 0.00029                   | 1.1            | 1,266   | 1,425 |
| 160  | prolyl endopeptidase                                                       | 86 kDa              | 0.00068                   | 1.5            | 97      | 146   |
| 167  | soyasaponin III<br>rhamnosyltransferase                                    | 54 kDa              | 0.043                     | 1.3            | 99      | 124   |
| 189  | Cluster of PREDICTED:<br>glutathione S-transferase GST 9<br>isoform X1     | ?                   | 0.013                     | 1.4            | 67      | 95    |
| 194  | Cluster of clathrin heavy chain 2                                          | 193 kDa             | 0.0097                    | 1.4            | 69      | 99    |
| 232  | PREDICTED: thioredoxin H1                                                  | ?                   | 0.022                     | 1.3            | 87      | 115   |
| 333  | NADH dehydrogenase subunit 7<br>(chloroplast)                              | 46 kDa              | 0.016                     | 1.5            | 51      | 75    |
| 467  | PREDICTED: UDP-glucose<br>flavonoid 3-O-glucosyltransferase<br>7-like      | ?                   | 0.01                      | 1.7            | 33      | 55    |
| 639  | 15-cis-phytoene desaturase,<br>chloroplastic/chromoplastic                 | 63 kDa              | 0.013                     | 1.8            | 22      | 40    |
| 652  | Cluster of PREDICTED:<br>multicystatin                                     | ?                   | 0.00042                   | 2.7            | 15      | 40    |
| 799  | 26S proteasome regulatory subunit<br>4 homolog A                           | 50 kDa              | 0.043                     | 1.8            | 16      | 28    |
| 911  | Cluster of S-formylglutathione<br>hydrolase                                | 32 kDa              | 0.012                     | 3.2            | 5       | 16    |
| 1127 | Cluster of asparagine synthetase 2                                         | ?                   | < 0.00010                 | 13             | 2       | 25    |
| 1307 | long chain acyl-CoA synthetase 9,<br>chloroplastic isoform X1              | 76 kDa              | 0.023                     | 3.2            | 4       | 13    |
| 1330 | 40S ribosomal protein S9-2-like                                            | 23 kDa              | 0.01                      | 9              | 1       | 9     |
| 1417 | S-adenosyl-L-methionine:delta24-<br>sterol-C-methyltransferase             | ?                   | 0.03                      | INF            | 0       | 5     |
| 1482 | UDP-glycosyltransferase 74G1                                               | 54 kDa              | 0.00022                   | INF            | 0       | 12    |
| 1516 | probable splicing factor 3A subunit<br>1                                   | 89 kDa              | 0.01                      | 5.5            | 2       | 11    |
| 1668 | heterogeneous nuclear<br>ribonucleoprotein 1                               | 48 kDa              | 0.034                     | 7              | 1       | 7     |
| 1739 | stress-induced protein SAM22                                               | 17 kDa              | 0.00084                   | 13             | 1       | 13    |
| 1783 | Cluster of ubiquitin fusion<br>degradation protein 1 homolog<br>isoform X1 | 35 kDa              | 0.019                     | 8              | 1       | 8     |
| 1845 | prolyl endopeptidase                                                       | 82 kDa              | 0.0074                    | INF            | 0       | 7     |
| 1912 | probable inactive shikimate kinase<br>like 2, chloroplastic                | 40 kDa              | 0.03                      | INF            | 0       | 5     |

**Supplementary Table 4.2**. Fold change of proteins that were upregulated by treatment SL48, relative to the control under optimal conditions.

| 1944 | cinnamoyl-CoA reductase 1<br>isoform X1                   | 35 kDa | 0.0026  | 3.5 | 6 | 21 |
|------|-----------------------------------------------------------|--------|---------|-----|---|----|
| 2038 | UDP-glucuronic acid<br>decarboxylase 2                    | 44 kDa | 0.05    | 2.1 | 8 | 17 |
| 2052 | chlorophyll a-b binding protein,<br>chloroplastic-like    | 29 kDa | 0.015   | INF | 0 | 6  |
| 2053 | probable inactive purple acid<br>phosphatase 1 isoform X1 | 69 kDa | 0.00022 | INF | 0 | 12 |

**Supplementary Table 4.3**. Fold change of proteins that were upregulated by treatment SL42+SL48, relative to the control under optimal conditions.

| #   | Identified Proteins (3076/3093)                                        | Molecular<br>Weight | Fisher's<br>Exact<br>Test | Fold<br>Change | Control | SL42+<br>SL48 |
|-----|------------------------------------------------------------------------|---------------------|---------------------------|----------------|---------|---------------|
| 2   | ribulose bisphosphate carboxylase<br>small chain 4, chloroplastic      | 20 kDa              | < 0.00010                 | 1.3            | 1,266   | 1,591         |
| 5   | Cluster of linoleate 9S-<br>lipoxygenase-4                             | ?                   | 0.02                      | 1.1            | 1,083   | 1,174         |
| 6   | Cluster of glycine dehydrogenase<br>(decarboxylating), mitochondrial   | 115 kDa             | 0.0058                    | 1.1            | 910     | 1,015         |
| 9   | Cluster of glyceraldehyde-3-<br>phosphate dehydrogenase A subunit      | ?                   | < 0.00010                 | 1.2            | 818     | 1,019         |
| 17  | Cluster of peroxisomal (S)-2-<br>hydroxy-acid oxidase GLO1-like        | 41 kDa              | 0.037                     | 1.1            | 531     | 588           |
| 24  | Cluster of catalase                                                    | 57 kDa              | 0.033                     | 1.1            | 401     | 453           |
| 38  | Cluster of chlorophyll a-b binding<br>protein P4, chloroplastic        | 28 kDa              | 0.033                     | 1.1            | 371     | 421           |
| 85  | Cluster of adenosylhomocysteinase                                      | 53 kDa              | 0.043                     | 1.2            | 220     | 257           |
| 103 | Cluster of phosphoenolpyruvate carboxylase                             | ?                   | 0.0033                    | 1.3            | 159     | 211           |
| 160 | prolyl endopeptidase                                                   | 86 kDa              | < 0.00010                 | 1.8            | 97      | 173           |
| 167 | soyasaponin III<br>rhamnosyltransferase                                | 54 kDa              | 0.00062                   | 1.5            | 99      | 150           |
| 189 | Cluster of PREDICTED:<br>glutathione S-transferase GST 9<br>isoform X1 | ?                   | 0.031                     | 1.4            | 67      | 91            |
| 195 | Cluster of aconitate hydratase,<br>cytoplasmic                         | 107 kDa             | 0.029                     | 1.2            | 144     | 178           |
| 214 | carotenoid 9,10(9',10')-cleavage<br>dioxygenase 1                      | 61 kDa              | 0.017                     | 1.3            | 89      | 120           |
| 274 | soyasapogenol B glucuronide<br>galactosyltransferase-like              | 56 kDa              | 0.018                     | 1.4            | 72      | 100           |
| 323 | Cluster of aconitate hydratase 1                                       | 99 kDa              | 0.017                     | 1.3            | 111     | 145           |
| 333 | NADH dehydrogenase subunit 7<br>(chloroplast)                          | 46 kDa              | 0.018                     | 1.5            | 51      | 75            |
| 383 | photosystem I reaction center<br>subunit psaK, chloroplastic           | 13 kDa              | 0.011                     | 1.5            | 54      | 81            |

| 412   | 31 kDa ribonucleoprotein.           | 32 kDa  | 0.047     | 1.4 | 45  | 63 |
|-------|-------------------------------------|---------|-----------|-----|-----|----|
|       | chloroplastic-like                  |         |           |     |     |    |
| 467   | PREDICTED: UDP-glucose              | ?       | 0.0017    | 1.9 | 33  | 62 |
|       | flavonoid 3-O-glucosyltransferase   |         |           |     |     |    |
|       | 7-like                              |         |           |     |     |    |
| 474   | DNA-damage-repair/toleration        | 40 kDa  | 0.0013    | 2.1 | 25  | 52 |
| (20)  | protein DR1100-like precursor       | (0.1 D  | 0.010     | 1.0 |     | 20 |
| 639   | 15-cis-phytoene desaturase,         | 63 kDa  | 0.019     | 1.8 | 22  | 39 |
| 616   | NAD(D)H guinona avidaraduataga      | 26 kDa  | 0.0050    | 2.1 | 17  | 26 |
| 040   | subunit N chloroplastic             | 20 KDa  | 0.0039    | 2.1 | 1 / | 50 |
| 652   | Cluster of PREDICTED <sup>•</sup>   | ?       | 0.017     | 2   | 15  | 30 |
| 002   | multicystatin                       |         | 0.017     | -   | 10  | 20 |
| 668   | PREDICTED: 30S Ribosomal            | ?       | 0.025     | 1.8 | 19  | 34 |
|       | protein S1 isoform X1               |         |           |     |     |    |
| 812   | Cluster of proline-rich protein     | 13 kDa  | < 0.00010 | 6.6 | 10  | 66 |
|       | precursor                           |         |           |     |     |    |
| 845   | aspartyl protease AED3              | 47 kDa  | 0.022     | 2.1 | 12  | 25 |
| 911   | Cluster of S-formylglutathione      | 32 kDa  | 0.047     | 2.6 | 5   | 13 |
|       | hydrolase                           |         |           |     |     |    |
| 1033  | Cluster of fumarate hydratase 1,    | 53 kDa  | 0.042     | 2.1 | 9   | 19 |
| 1107  | mitochondrial                       | 0       | 0.0001    | 0.5 | 2   | 10 |
| 1127  | Cluster of asparagine synthetase 2  | ?       | 0.0001    | 9.5 | 2   | 19 |
| 1215  | indole-3-glycerol phosphate         | 43 kDa  | 0.01      | 4.3 | 3   | 13 |
| 1272  | synthase, chloroplastic             | 0       | 0.0091    | 2.4 | 5   | 17 |
| 1272  | like                                | 1       | 0.0081    | 3.4 | 3   | 1/ |
| 1317  | eukaryotic translation initiation   | 46 kDa  | 0.038     | 2.5 | 6   | 15 |
| 1517  | factor 3 subunit M                  | 10 HDu  | 0.020     | 2.0 | Ũ   | 10 |
| 1330  | 40S ribosomal protein S9-2-like     | 23 kDa  | 0.00088   | 13  | 1   | 13 |
| 1334  | 4-diphosphocytidyl-2-C-methyl-D-    | 44 kDa  | 0.015     | 3.5 | 4   | 14 |
|       | erythritol kinase,                  |         |           |     |     |    |
|       | chloroplastic/chromoplastic         |         |           |     |     |    |
| 1366  | Cluster of glucose-6-phosphate      | 59 kDa  | 0.045     | 3.3 | 3   | 10 |
|       | dehydrogenase                       |         |           |     |     |    |
| 1379  | protein PELPK1                      | 39 kDa  | 0.047     | 2.6 | 5   | 13 |
| 1403  | Cluster of ADP, ATP carrier protein | 68 kDa  | 0.032     | 4.5 | 2   | 9  |
|       | 1, chloroplastic                    |         |           |     |     |    |
| 1406  | aspartyl protease AED3              | 49 kDa  | 0.028     | 2.1 | 11  | 23 |
| 1459  | allene oxide synthase,              | 55 kDa  | 0.0063    | 6   | 2   | 12 |
| 1.400 | chloroplastic-like                  |         | 0.0076    | DIE | 0   | -  |
| 1482  | UDP-glycosyltransterase 74G1        | 54 kDa  | 0.0076    | INF | 0   | /  |
| 1608  | ribulose-1,5 bisphosphate           | 55 kDa  | 0.019     | 5   | 2   | 10 |
|       | carboxylase/oxygenase large         |         |           |     |     |    |
|       | subunit N-metnyitransferase,        |         |           |     |     |    |
| 1717  | acyl_coenzyme A oxidase 3           | 76 kDa  | 0.03/     | 7   | 1   | 7  |
| 1/1/  | peroxisomal                         | / U KDa | 0.05      | '   | 1   | '  |

| 1718 | anthocyanidin 3-O-<br>glucosyltransferase 7                                              | 50 kDa  | 0.01    | 9   | 1 | 9  |
|------|------------------------------------------------------------------------------------------|---------|---------|-----|---|----|
| 1772 | phenylalaninetRNA ligase alpha<br>subunit, cytoplasmic                                   | 56 kDa  | 0.015   | INF | 0 | 6  |
| 1842 | aminopeptidase M1 isoform X1                                                             | 102 kDa | 0.0076  | INF | 0 | 7  |
| 1845 | prolyl endopeptidase                                                                     | 82 kDa  | 0.00023 | INF | 0 | 12 |
| 1867 | zinc transporter 4, chloroplastic isoform X1                                             | 51 kDa  | 0.031   | INF | 0 | 5  |
| 1882 | dynamin-related protein 1E                                                               | 69 kDa  | 0.031   | INF | 0 | 5  |
| 1944 | cinnamoyl-CoA reductase 1<br>isoform X1                                                  | 35 kDa  | 0.007   | 3.2 | 6 | 19 |
| 2003 | putative leucine-rich repeat<br>receptor-like protein kinase<br>At2g19210-like precursor | 101 kDa | 0.031   | INF | 0 | 5  |
| 2052 | chlorophyll a-b binding protein,<br>chloroplastic-like                                   | 29 kDa  | 0.0076  | INF | 0 | 7  |
| 2053 | probable inactive purple acid<br>phosphatase 1 isoform X1                                | 69 kDa  | 0.015   | INF | 0 | 6  |

**Supplementary Table 4.4**. Fold change of proteins that were upregulated by treatment SL42, relative to the control under salt-stressed conditions.

| #     | Identified Proteins (3518/3553)                                             | Molecular<br>Weight | Fisher's<br>Exact<br>Test | Fold<br>Change | Control | SL42 |
|-------|-----------------------------------------------------------------------------|---------------------|---------------------------|----------------|---------|------|
| 9     | Cluster of glyceraldehyde-3-<br>phosphate dehydrogenase A subunit           | ?                   | < 0.00010                 | 1.3            | 540     | 716  |
| 9.2   | PREDICTED: glyceraldehyde-3-<br>phosphate dehydrogenase A,<br>chloroplastic | ?                   | < 0.00010                 | 1.4            | 482     | 660  |
| 31.2  | elongation factor Tu, chloroplastic-<br>like                                | 52 kDa              | 0.044                     | 1.2            | 325     | 382  |
| 31.3  | PREDICTED: elongation factor Tu, chloroplastic                              | ?                   | 0.026                     | 1.2            | 311     | 373  |
| 36.1  | actin-7                                                                     | 42 kDa              | 0.042                     | 1.2            | 225     | 272  |
| 36.4  | actin                                                                       | 42 kDa              | 0.046                     | 1.2            | 217     | 262  |
| 36.5  | actin                                                                       | 42 kDa              | 0.028                     | 1.2            | 206     | 255  |
| 36.6  | actin                                                                       | 42 kDa              | 0.048                     | 1.2            | 178     | 218  |
| 44    | Cluster of leghemoglobin reductase-like                                     | 53 kDa              | 0.012                     | 1.2            | 280     | 347  |
| 44.2  | ferric leghemoglobin reductase-2 precursor                                  | 53 kDa              | 0.026                     | 1.2            | 218     | 269  |
| 87    | Cluster of cell division cycle<br>protein 48 homolog                        | 90 kDa              | 0.018                     | 1.3            | 162     | 209  |
| 96    | Cluster of clathrin heavy chain                                             | 193 kDa             | 0.026                     | 1.3            | 130     | 169  |
| 152   | Cluster of HSP90 superfamily protein isoform X1                             | 93 kDa              | 0.0029                    | 1.4            | 127     | 181  |
| 152.2 | endoplasmin homolog isoform X1                                              | 94 kDa              | 0.0034                    | 1.4            | 118     | 169  |

| 198   | Cluster of 60S ribosomal protein<br>L7a-1                                           | 29 kDa  | 0.017     | 1.4 | 89 | 124 |
|-------|-------------------------------------------------------------------------------------|---------|-----------|-----|----|-----|
| 209.2 | PREDICTED: auxin-binding<br>protein ABP19a-like                                     | ?       | < 0.00010 | 2.3 | 57 | 132 |
| 232.1 | PREDICTED: ras-related protein<br>RABA5d-like                                       | ?       | 0.0087    | INF | 0  | 7   |
| 243   | Cluster of chaperonin CPN60-2,<br>mitochondrial                                     | 61 kDa  | 0.012     | 1.5 | 74 | 108 |
| 248   | Cluster of 40S ribosomal protein S8 isoform X1                                      | 25 kDa  | 0.0041    | 1.5 | 74 | 114 |
| 253   | Cluster of 60S ribosomal protein<br>L8-3                                            | 28 kDa  | 0.01      | 1.5 | 69 | 103 |
| 273   | Cluster of ribosomal protein L2<br>(chloroplast)                                    | 30 kDa  | 0.046     | 1.3 | 75 | 101 |
| 293   | Cluster of importin subunit alpha-2                                                 | 59 kDa  | 0.037     | 1.4 | 57 | 81  |
| 314   | Cluster of peroxisomal fatty acid<br>beta-oxidation multifunctional<br>protein AIM1 | 78 kDa  | 0.017     | 1.5 | 60 | 89  |
| 320   | Cluster of histone H1                                                               | 20 kDa  | 0.00051   | 1.8 | 50 | 92  |
| 324.2 | 12-oxophytodienoate reductase 2                                                     | 41 kDa  | 0.0044    | INF | 0  | 8   |
| 334   | Cluster of alpha-glucan water<br>dikinase, chloroplastic isoform X1                 | 164 kDa | 0.029     | 1.5 | 50 | 74  |
| 335   | Cluster of patellin-3 isoform X1                                                    | 70 kDa  | 0.026     | 1.4 | 93 | 126 |
| 339   | Cluster of V-type proton ATPase subunit C                                           | 43 kDa  | 0.018     | 1.6 | 41 | 65  |
| 472   | osmotin-like protein                                                                | 26 kDa  | 0.012     | 1.7 | 38 | 63  |
| 478   | patellin-3 isoform X1                                                               | 65 kDa  | 0.026     | 1.4 | 76 | 106 |
| 483.2 | beta-hexosaminidase 1                                                               | 63 kDa  | 0.034     | 1.6 | 29 | 47  |
| 485   | PREDICTED: ferredoxin-A-like                                                        | ?       | 0.025     | 1.5 | 51 | 76  |
| 487.2 | coatomer subunit gamma-2                                                            | 99 kDa  | 0.034     | 1.8 | 19 | 34  |
| 522.1 | PREDICTED: 12-<br>oxophytodienoate reductase 3                                      | ?       | 0.042     | 1.5 | 37 | 56  |
| 522.2 | 12-oxophytodienoate reductase 3                                                     | 44 kDa  | 0.04      | 1.6 | 28 | 45  |
| 524   | Cluster of calnexin homolog precursor                                               | 62 kDa  | 0.044     | 1.4 | 47 | 68  |
| 567   | photosystem I reaction center<br>subunit psaK, chloroplastic                        | 13 kDa  | 0.0027    | 2.3 | 18 | 41  |
| 596.2 | GTP-binding protein SAR1A                                                           | 22 kDa  | 0.0022    | INF | 0  | 9   |
| 624   | Cluster of citrate synthase, glyoxysomal                                            | 56 kDa  | 0.036     | 1.6 | 30 | 48  |
| 624.2 | PREDICTED: peroxisomal citrate synthase isoform X1                                  | ?       | 0.0044    | 4.2 | 4  | 17  |
| 718   | aspartyl protease family protein<br>At5g10770                                       | 52 kDa  | 0.024     | 1.5 | 59 | 86  |
| 725   | Cluster of 26S proteasome non-<br>ATPase regulatory subunit 13-like                 | 44 kDa  | 0.021     | 1.9 | 17 | 33  |

| 772    | Cluster of IAA-amino acid<br>hydrolase ILR1-like 4                   | 49 kDa  | 0.019     | 2   | 16 | 32 |
|--------|----------------------------------------------------------------------|---------|-----------|-----|----|----|
| 867    | Cluster of coatomer subunit delta                                    | 58 kDa  | 0.0023    | 2.9 | 10 | 29 |
| 1057   | Cluster of proline-rich protein precursor                            | 13 kDa  | < 0.00010 | 10  | 3  | 31 |
| 1061   | argininosuccinate lyase,<br>chloroplastic isoform X1                 | 57 kDa  | 0.048     | 2   | 11 | 22 |
| 1164.3 | asparagine synthetase                                                | ?       | 0.039     | 7   | 1  | 7  |
| 1199   | GDP-mannose 4,6 dehydratase 1                                        | 41 kDa  | 0.021     | 2.8 | 6  | 17 |
| 1208.2 | NADPHcytochrome P450<br>reductase                                    | 77 kDa  | 0.017     | INF | 0  | 6  |
| 1279   | Cluster of ABC transporter C family member 4                         | 168 kDa | 0.038     | 2.4 | 7  | 17 |
| 1298   | Cluster of calreticulin-3                                            | 50 kDa  | 0.0044    | 6.5 | 2  | 13 |
| 1338   | PREDICTED: cystathionine<br>gamma-synthase 1, chloroplastic          | ?       | 0.0087    | INF | 0  | 7  |
| 1361.2 | ubiquitin fusion degradation protein<br>1 homolog                    | 35 kDa  | 0.034     | INF | 0  | 5  |
| 1522   | eukaryotic translation initiation factor 3 subunit G                 | 32 kDa  | 0.002     | 12  | 1  | 12 |
| 1545   | probable glucan 1,3-alpha-<br>glucosidase                            | 104 kDa | 0.013     | 5.5 | 2  | 11 |
| 1613   | titin isoform X3                                                     | 101 kDa | 0.013     | 5.5 | 2  | 11 |
| 1682   | Cluster of proteasome activator subunit 4                            | 204 kDa | 0.017     | INF | 0  | 6  |
| 1734   | protein BOBBER 1                                                     | 34 kDa  | 0.039     | 7   | 1  | 7  |
| 1749   | probable acyl-activating enzyme<br>16, chloroplastic isoform X1      | 80 kDa  | 0.037     | 4.5 | 2  | 9  |
| 1751   | protein ROOT HAIR DEFECTIVE<br>3 homolog 2                           | 93 kDa  | 0.037     | 4.5 | 2  | 9  |
| 1829   | probable histone H2A.5                                               | 15 kDa  | 0.037     | 4.5 | 2  | 9  |
| 1859   | beta-ketoacyl-acyl carrier protein synthase III                      | 42 kDa  | 0.0044    | INF | 0  | 8  |
| 1880   | chaperone protein dnaJ A6,<br>chloroplastic isoform X1               | 47 kDa  | 0.045     | 1.9 | 13 | 25 |
| 1945   | linamarin synthase 1                                                 | 55 kDa  | 0.022     | 8   | 1  | 8  |
| 2075   | Cluster of probable inactive purple<br>acid phosphatase 1 isoform X1 | 69 kDa  | 0.00029   | INF | 0  | 12 |
| 2087   | protein HLB1                                                         | 59 kDa  | 0.017     | INF | 0  | 6  |
| 2088   | GDSL esterase/lipase EXL3                                            | 41 kDa  | 0.034     | INF | 0  | 5  |
| 2197   | PREDICTED: probable S-<br>sulfocysteine synthase,<br>chloroplastic   | ?       | 0.0087    | INF | 0  | 7  |
| 2273   | 7-deoxyloganetin<br>glucosyltransferase                              | 54 kDa  | 0.017     | INF | 0  | 6  |

| #     | Identified Proteins (3518/3553)                                                         | Molecular<br>Weight | Fisher's<br>Exact<br>Test | Fold<br>Change | Control | SL48  |
|-------|-----------------------------------------------------------------------------------------|---------------------|---------------------------|----------------|---------|-------|
| 4     | ATP synthase CF1 beta subunit (chloroplast)                                             | 54 kDa              | 0.046                     | 1.1            | 1,197   | 1,308 |
| 8     | Cluster of glycine dehydrogenase (decarboxylating), mitochondrial                       | 115 kDa             | 0.00015                   | 1.2            | 606     | 754   |
| 9     | Cluster of glyceraldehyde-3-<br>phosphate dehydrogenase A subunit                       | ?                   | < 0.00010                 | 1.4            | 540     | 773   |
| 9.2   | PREDICTED: glyceraldehyde-3-<br>phosphate dehydrogenase A,<br>chloroplastic             | ?                   | < 0.00010                 | 1.5            | 482     | 719   |
| 11.1  | chlorophyll a/b-binding protein                                                         | ?                   | 0.037                     | 1.1            | 444     | 510   |
| 11.3  | chlorophyll a-b binding protein 3,<br>chloroplastic                                     | 28 kDa              | 0.032                     | 1.1            | 477     | 548   |
| 44    | Cluster of leghemoglobin reductase-like                                                 | 53 kDa              | 0.042                     | 1.2            | 280     | 330   |
| 44.2  | ferric leghemoglobin reductase-2 precursor                                              | 53 kDa              | 0.049                     | 1.2            | 218     | 260   |
| 54    | Cluster of S-adenosylmethionine synthase                                                | 43 kDa              | 0.016                     | 1.2            | 241     | 297   |
| 75.4  | enolase 1, chloroplastic                                                                | 52 kDa              | 0.033                     | INF            | 0       | 5     |
| 93.2  | ATP-dependent zinc<br>metalloprotease FTSH,<br>chloroplastic                            | 74 kDa              | 0.047                     | 1.2            | 157     | 193   |
| 96.5  | clathrin heavy chain 1 isoform X1                                                       | 193 kDa             | < 0.00010                 | INF            | 0       | 20    |
| 118   | Cluster of phosphoglucomutase, chloroplastic                                            | 68 kDa              | 0.028                     | 1.3            | 159     | 200   |
| 144.3 | NADP-dependent malic enzyme                                                             | 71 kDa              | 0.0011                    | INF            | 0       | 10    |
| 152   | Cluster of HSP90 superfamily protein isoform X1                                         | 93 kDa              | 0.0026                    | 1.4            | 127     | 180   |
| 152.2 | endoplasmin homolog isoform X1                                                          | 94 kDa              | 0.0032                    | 1.4            | 118     | 168   |
| 157   | Cluster of<br>methylenetetrahydrofolate<br>reductase 2                                  | 67 kDa              | 0.027                     | 1.3            | 96      | 128   |
| 209.2 | PREDICTED: auxin-binding protein ABP19a-like                                            | ?                   | < 0.00010                 | 2.1            | 57      | 119   |
| 217   | Cluster of heat shock 70 kDa protein 14                                                 | 95 kDa              | 0.018                     | 1.4            | 74      | 105   |
| 220.3 | alpha-1,4 glucan phosphorylase L-2<br>isozyme, chloroplastic/amyloplastic<br>isoform X1 | 112 kDa             | 0.017                     | INF            | 0       | 6     |
| 226   | Cluster of 2-oxoglutarate dehydrogenase, mitochondrial                                  | 116 kDa             | 0.019                     | 1.4            | 72      | 102   |
| 266.5 | 14-3-3 protein SGF14p                                                                   | 30 kDa              | 0.0042                    | 3              | 8       | 24    |
| 266.6 | 14-3-3 protein SGF14n                                                                   | 30 kDa              | 0.012                     | 2.6            | 9       | 23    |

**Supplementary Table 4.5**. Fold change of proteins that were upregulated by treatment SL48, relative to the control under salt-stressed conditions.
| 284   | 50S ribosomal protein L1,<br>chloroplastic                                            | 38 kDa  | 0.0069  | 1.7 | 35 | 61 |
|-------|---------------------------------------------------------------------------------------|---------|---------|-----|----|----|
| 299   | Cluster of guanosine nucleotide<br>diphosphate dissociation inhibitor 2               | 50 kDa  | 0.029   | 1.5 | 49 | 72 |
| 299.2 | rab GDP dissociation inhibitor<br>alpha-like                                          | 50 kDa  | 0.039   | 1.4 | 47 | 68 |
| 314   | Cluster of peroxisomal fatty acid<br>beta-oxidation multifunctional<br>protein AIM1   | 78 kDa  | 0.036   | 1.4 | 60 | 84 |
| 336   | Cluster of DEAD-box ATP-<br>dependent RNA helicase 56                                 | 48 kDa  | 0.03    | 1.4 | 54 | 78 |
| 415.2 | 60S ribosomal protein L13a-4                                                          | 24 kDa  | 0.049   | 1.6 | 25 | 40 |
| 428   | PREDICTED: alcohol<br>dehydrogenase class-3                                           | ?       | 0.0025  | 1.8 | 38 | 69 |
| 442   | Cluster of linoleate 13S-<br>lipoxygenase 2-1, chloroplastic                          | 104 kDa | 0.0049  | 1.8 | 31 | 57 |
| 487.2 | coatomer subunit gamma-2                                                              | 99 kDa  | 0.041   | 1.7 | 19 | 33 |
| 487.3 | coatomer subunit gamma-2                                                              | 99 kDa  | 0.015   | 2.1 | 15 | 31 |
| 503   | succinate dehydrogenase<br>[ubiquinone] flavoprotein subunit<br>1, mitochondrial      | 69 kDa  | 0.039   | 1.6 | 29 | 46 |
| 529   | Cluster of peroxisomal fatty acid<br>beta-oxidation multifunctional<br>protein MFP2   | 79 kDa  | 0.0054  | 1.8 | 32 | 58 |
| 533   | Cluster of T-complex protein 1<br>subunit alpha                                       | 59 kDa  | 0.029   | 1.6 | 28 | 46 |
| 558   | Cluster of eukaryotic translation<br>initiation factor 3 subunit E                    | 51 kDa  | 0.0073  | 1.9 | 24 | 46 |
| 558.1 | eukaryotic translation initiation<br>factor 3 subunit E                               | 51 kDa  | 0.0097  | 1.9 | 24 | 45 |
| 558.2 | eukaryotic translation initiation<br>factor 3 subunit E                               | 51 kDa  | 0.013   | 1.9 | 21 | 40 |
| 567   | photosystem I reaction center subunit psaK, chloroplastic                             | 13 kDa  | 0.00013 | 2.7 | 18 | 49 |
| 570   | Cluster of PREDICTED: aspartate-<br>semialdehyde dehydrogenase                        | ?       | 0.035   | 1.8 | 17 | 31 |
| 571   | Cluster of NADH dehydrogenase<br>[ubiquinone] iron-sulfur protein 1,<br>mitochondrial | 81 kDa  | 0.046   | 1.6 | 24 | 39 |
| 596.2 | GTP-binding protein SAR1A                                                             | 22 kDa  | 0.0084  | INF | 0  | 7  |
| 624.2 | PREDICTED: peroxisomal citrate synthase isoform X1                                    | ?       | 0.0025  | 4.5 | 4  | 18 |
| 633   | Cluster of cytosolic chaperonin                                                       | ?       | 0.024   | 1.8 | 22 | 39 |
| 633.1 | cytosolic chaperonin                                                                  | ?       | 0.026   | 1.8 | 20 | 36 |
| 638   | 3-isopropylmalate dehydratase<br>large subunit, chloroplastic                         | 55 kDa  | 0.015   | 1.8 | 23 | 42 |

| 653    | Cluster of DEAD-box ATP-<br>dependent RNA helicase 3,                                                                                         | 84 kDa  | 0.024   | 1.8 | 22 | 39 |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-----|----|----|
| 683    | Cluster of SKP1-like protein 1A<br>isoform X1                                                                                                 | 17 kDa  | 0.0033  | 2.2 | 20 | 43 |
| 690.1  | topless-related protein 1 isoform<br>X1                                                                                                       | 125 kDa | 0.035   | 2.2 | 9  | 20 |
| 721    | Cluster of probable aldo-keto reductase 1                                                                                                     | ?       | 0.015   | 1.8 | 23 | 42 |
| 748.2  | epimerase family protein SDR39U1<br>homolog, chloroplastic isoform X1                                                                         | 38 kDa  | 0.023   | 3   | 5  | 15 |
| 759.3  | carbonic anhydrase 2                                                                                                                          | 28 kDa  | 0.035   | 1.8 | 20 | 35 |
| 770    | Cluster of gamma carbonic<br>anhydrase 1, mitochondrial                                                                                       | 30 kDa  | 0.032   | 1.8 | 19 | 34 |
| 798.3  | protein EXPORTIN 1A isoform X2                                                                                                                | 123 kDa | 0.017   | INF | 0  | 6  |
| 803    | Cluster of 60S ribosomal protein<br>L37-3                                                                                                     | 11 kDa  | 0.0027  | 2.7 | 11 | 30 |
| 816    | protein disulfide isomerase-like 1-4                                                                                                          | 65 kDa  | 0.037   | 1.7 | 21 | 36 |
| 853    | Cluster of translocase of chloroplast 159, chloroplastic-like                                                                                 | 133 kDa | 0.029   | 1.9 | 15 | 29 |
| 867    | Cluster of coatomer subunit delta                                                                                                             | 58 kDa  | 0.0098  | 2.5 | 10 | 25 |
| 881.2  | succinateCoA ligase [ADP-<br>forming] subunit alpha,<br>mitochondrial                                                                         | 34 kDa  | 0.026   | 1.9 | 17 | 32 |
| 948    | tripeptidyl-peptidase 2 isoform X1                                                                                                            | 146 kDa | 0.029   | 2.2 | 10 | 22 |
| 1013.2 | cyclase-like protein 2                                                                                                                        | 31 kDa  | 0.0021  | INF | 0  | 9  |
| 1029   | Cluster of protein translocase<br>subunit SecA, chloroplastic isoform<br>X1                                                                   | 115 kDa | 0.02    | 2.3 | 10 | 23 |
| 1057   | Cluster of proline-rich protein precursor                                                                                                     | 13 kDa  | 0.00017 | 7   | 3  | 21 |
| 1105   | Cluster of dihydrolipoyllysine-<br>residue acetyltransferase<br>component 4 of pyruvate<br>dehydrogenase complex,<br>chloroplastic isoform X2 | 49 kDa  | 0.0099  | 2.3 | 12 | 28 |
| 1141   | PREDICTED: UBP1-associated protein 2B                                                                                                         | ?       | 0.012   | 4.3 | 3  | 13 |
| 1164.2 | PREDICTED: asparagine<br>synthetase, root [glutamine-<br>hydrolyzing]                                                                         | ?       | 0.02    | 2.8 | 6  | 17 |
| 1170   | probable methioninetRNA ligase isoform X2                                                                                                     | 90 kDa  | 0.0084  | 3.2 | 6  | 19 |
| 1176   | Cluster of THO complex subunit<br>4A                                                                                                          | 26 kDa  | 0.024   | 2.3 | 9  | 21 |
| 1179   | histidinetRNA ligase,<br>chloroplastic/mitochondrial isoform<br>X1                                                                            | 56 kDa  | 0.013   | 3   | 6  | 18 |

| 1199   | GDP-mannose 4,6 dehydratase 1                                                                 | 41 kDa  | 0.0035  | 3.5 | 6 | 21 |
|--------|-----------------------------------------------------------------------------------------------|---------|---------|-----|---|----|
| 1208.2 | NADPHcytochrome P450<br>reductase                                                             | 77 kDa  | 0.033   | INF | 0 | 5  |
| 1234.2 | ubiquitin-conjugating enzyme E2<br>variant 1D                                                 | 17 kDa  | 0.012   | 5.5 | 2 | 11 |
| 1234.3 | ubiquitin-conjugating enzyme E2<br>variant 1D                                                 | 17 kDa  | 0.0035  | 11  | 1 | 11 |
| 1267   | cysteine desulfurase, mitochondrial                                                           | 50 kDa  | 0.029   | 2.7 | 6 | 16 |
| 1286   | probable endo-1,3(4)-beta-<br>glucanase ARB_01444                                             | 73 kDa  | 0.035   | 2.8 | 5 | 14 |
| 1319   | Cluster of alpha-amylase<br>inhibitor/lipid transfer/seed storage<br>family protein precursor | 13 kDa  | 0.0025  | 5.3 | 3 | 16 |
| 1333   | Cluster of vesicle-fusing ATPase                                                              | 82 kDa  | 0.011   | 3.8 | 4 | 15 |
| 1338   | PREDICTED: cystathionine<br>gamma-synthase 1, chloroplastic                                   | ?       | 0.00055 | INF | 0 | 11 |
| 1361   | Cluster of ubiquitin fusion<br>degradation protein 1 homolog<br>isoform X1                    | 35 kDa  | 0.017   | 3.5 | 4 | 14 |
| 1503.2 | gamma carbonic anhydrase 1, mitochondrial                                                     | 29 kDa  | 0.0072  | 6   | 2 | 12 |
| 1508   | pullulanase 1, chloroplastic                                                                  | 106 kDa | 0.031   | 3.7 | 3 | 11 |
| 1514.2 | malonateCoA ligase                                                                            | 66 kDa  | 0.00055 | INF | 0 | 11 |
| 1522   | eukaryotic translation initiation<br>factor 3 subunit G                                       | 32 kDa  | 0.037   | 7   | 1 | 7  |
| 1561   | Cluster of serine/threonine-protein<br>phosphatase PP2A catalytic subunit<br>isoform X2       | 36 kDa  | 0.031   | 3.7 | 3 | 11 |
| 1562.2 | putative 50S ribosomal protein L21, chloroplastic                                             | 23 kDa  | 0.033   | INF | 0 | 5  |
| 1602   | xanthoxin dehydrogenase                                                                       | 29 kDa  | 0.031   | 3.7 | 3 | 11 |
| 1603   | nifU-like protein 4, mitochondrial                                                            | 29 kDa  | 0.035   | 4.5 | 2 | 9  |
| 1613   | titin isoform X3                                                                              | 101 kDa | 0.012   | 5.5 | 2 | 11 |
| 1639.2 | protein SGT1 homolog                                                                          | 40 kDa  | 0.033   | INF | 0 | 5  |
| 1682   | Cluster of proteasome activator subunit 4                                                     | 204 kDa | 0.017   | INF | 0 | 6  |
| 1695   | ribosomal protein S12 (chloroplast)                                                           | 14 kDa  | 0.021   | 8   | 1 | 8  |
| 1748   | actin-related protein 4                                                                       | 49 kDa  | 0.035   | 4.5 | 2 | 9  |
| 1772   | glutamyl-tRNA(Gln)<br>amidotransferase subunit A,<br>chloroplastic/mitochondrial              | 58 kDa  | 0.0084  | INF | 0 | 7  |
| 1812   | Cluster of PREDICTED: probable pectate lyase 8                                                | ?       | 0.033   | INF | 0 | 5  |
| 1824   | 4-diphosphocytidyl-2-C-methyl-D-<br>erythritol kinase,<br>chloroplastic/chromoplastic         | 44 kDa  | 0.037   | 7   | 1 | 7  |

| 1890   | probable linoleate 9S-lipoxygenase 5                                 | 98 kDa  | 0.033     | INF | 0 | 5  |
|--------|----------------------------------------------------------------------|---------|-----------|-----|---|----|
| 1898   | Cluster of phospholipase A-2-<br>activating protein                  | 84 kDa  | 0.021     | 5   | 2 | 10 |
| 1940   | geraniol 8-hydroxylase                                               | 58 kDa  | 0.037     | 7   | 1 | 7  |
| 1985   | integrin-linked protein kinase 1                                     | 48 kDa  | 0.033     | INF | 0 | 5  |
| 2055   | calcium-dependent protein kinase 2                                   | 60 kDa  | 0.037     | 7   | 1 | 7  |
| 2075   | Cluster of probable inactive purple<br>acid phosphatase 1 isoform X1 | 69 kDa  | < 0.00010 | INF | 0 | 16 |
| 2105.1 | geranylgeranyl pyrophosphate synthase, chloroplastic                 | 40 kDa  | 0.033     | INF | 0 | 5  |
| 2123   | RNA recognition motif-containing protein                             | 20 kDa  | 0.033     | INF | 0 | 5  |
| 2129   | lysM domain-containing GPI-<br>anchored protein 1                    | 43 kDa  | 0.0011    | INF | 0 | 10 |
| 2134   | protein TSS                                                          | 203 kDa | 0.017     | INF | 0 | 6  |
| 2182   | probable carotenoid cleavage<br>dioxygenase 4, chloroplastic         | 65 kDa  | 0.033     | INF | 0 | 5  |
| 2197   | PREDICTED: probable S-<br>sulfocysteine synthase,<br>chloroplastic   | ?       | 0.0042    | INF | 0 | 8  |
| 2214   | scopoletin glucosyltransferase                                       | 54 kDa  | 0.033     | INF | 0 | 5  |

**Supplementary Table 4.6**. Fold change of proteins that were upregulated by treatment SL42+SL48, relative to the control under salt-stressed conditions.

| #    | Identified Proteins (3518/3553)                                                   | Molecular<br>Weight | Fisher's<br>Exact<br>Test | Fold<br>Change | Control | SL42+<br>SL48 |
|------|-----------------------------------------------------------------------------------|---------------------|---------------------------|----------------|---------|---------------|
| 1    | ribulose-1,5-bisphosphate<br>carboxylase/oxygenase large<br>subunit (chloroplast) | 53 kDa              | < 0.00010                 | 1.1            | 5,949   | 6,659         |
| 8    | Cluster of glycine dehydrogenase (decarboxylating), mitochondrial                 | 115 kDa             | 0.00026                   | 1.3            | 606     | 762           |
| 9    | Cluster of glyceraldehyde-3-<br>phosphate dehydrogenase A subunit                 | ?                   | 0.00022                   | 1.3            | 540     | 688           |
| 9.2  | PREDICTED: glyceraldehyde-3-<br>phosphate dehydrogenase A,<br>chloroplastic       | ?                   | < 0.00010                 | 1.3            | 482     | 642           |
| 11   | Cluster of chlorophyll a/b-binding protein                                        | ?                   | 0.0063                    | 1.2            | 650     | 773           |
| 15   | Cluster of transketolase,<br>chloroplastic                                        | 80 kDa              | 0.0096                    | 1.2            | 549     | 655           |
| 29.3 | ruBisCO large subunit-binding protein subunit beta, chloroplastic                 | 66 kDa              | 0.018                     | INF            | 0       | 6             |
| 31.3 | PREDICTED: elongation factor Tu, chloroplastic                                    | ?                   | 0.047                     | 1.2            | 311     | 369           |
| 54   | Cluster of S-adenosylmethionine synthase                                          | 43 kDa              | 0.0047                    | 1.3            | 241     | 314           |

| 60    | Cluster of tubulin alpha-3 chain                                                                                                      | 50 kDa  | 0.026     | 1.2 | 234 | 290 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-----|-----|-----|
| 87    | Cluster of cell division cycle<br>protein 48 homolog                                                                                  | 90 kDa  | 0.016     | 1.3 | 162 | 212 |
| 96    | Cluster of clathrin heavy chain                                                                                                       | 193 kDa | 0.017     | 1.3 | 130 | 174 |
| 110   | Cluster of 26S proteasome regulatory subunit 6A homolog                                                                               | 47 kDa  | 0.022     | 1.3 | 148 | 193 |
| 113   | glycinetRNA ligase,<br>mitochondrial 1                                                                                                | 81 kDa  | 0.016     | 1.3 | 128 | 172 |
| 115   | chlorophyll a-b binding protein 6A, chloroplastic                                                                                     | 27 kDa  | 0.033     | 1.3 | 145 | 186 |
| 136.2 | lectin DB58                                                                                                                           | 30 kDa  | 0.00031   | INF | 0   | 12  |
| 137   | Cluster of PREDICTED: LOW<br>QUALITY PROTEIN: UDP-D-<br>apiose/UDP-D-xylose synthase 2                                                | ?       | 0.02      | 1.4 | 109 | 148 |
| 137.3 | UDP-D-apiose/UDP-D-xylose<br>synthase 2                                                                                               | 43 kDa  | 0.028     | 1.4 | 69  | 98  |
| 144.3 | NADP-dependent malic enzyme                                                                                                           | 71 kDa  | 0.0012    | INF | 0   | 10  |
| 150   | adenosylhomocysteinase-like                                                                                                           | 53 kDa  | 0.039     | 1.2 | 215 | 264 |
| 152   | Cluster of HSP90 superfamily protein isoform X1                                                                                       | 93 kDa  | 0.02      | 1.3 | 127 | 169 |
| 152.2 | endoplasmin homolog isoform X1                                                                                                        | 94 kDa  | 0.019     | 1.3 | 118 | 159 |
| 199.4 | trifunctional UDP-glucose 4,6-<br>dehydratase/UDP-4-keto-6-deoxy-<br>D-glucose 3,5-epimerase/UDP-4-<br>keto-L-rhamnose-reductase RHM1 | 74 kDa  | 0.018     | INF | 0   | 6   |
| 209.2 | PREDICTED: auxin-binding<br>protein ABP19a-like                                                                                       | ?       | < 0.00010 | 1.9 | 57  | 110 |
| 217.4 | heat shock 70 kDa protein 14<br>isoform X1                                                                                            | 94 kDa  | 0.04      | 1.7 | 23  | 39  |
| 226   | Cluster of 2-oxoglutarate dehydrogenase, mitochondrial                                                                                | 116 kDa | 0.042     | 1.4 | 72  | 99  |
| 235   | Cluster of aconitate hydratase, cytoplasmic                                                                                           | 107 kDa | 0.035     | 1.3 | 117 | 153 |
| 255   | Cluster of trigger factor-like protein<br>TIG, Chloroplastic                                                                          | 61 kDa  | 0.011     | 1.5 | 64  | 97  |
| 256.2 | aquaporin PIP2-7                                                                                                                      | 31 kDa  | 0.038     | 1.6 | 33  | 52  |
| 266.5 | 14-3-3 protein SGF14p                                                                                                                 | 30 kDa  | 0.033     | 2.4 | 8   | 19  |
| 272   | Cluster of polyadenylate-binding<br>protein RBP45 isoform X1                                                                          | 45 kDa  | 0.011     | 1.5 | 59  | 91  |
| 284   | 50S ribosomal protein L1, chloroplastic                                                                                               | 38 kDa  | < 0.00010 | 2.4 | 35  | 84  |
| 289   | KS-type dehydrin SLTI629                                                                                                              | ?       | 0.0073    | 1.7 | 45  | 75  |
| 327   | protoporphyrinogen oxidase 1,<br>chloroplastic                                                                                        | 59 kDa  | 0.041     | 1.4 | 61  | 86  |
| 335.3 | patellin-3                                                                                                                            | 63 kDa  | 0.033     | 2.4 | 8   | 19  |
| 335.4 | patellin-3                                                                                                                            | 62 kDa  | 0.019     | 2.7 | 7   | 19  |

| 353.2 | UDP-glucose 6-dehydrogenase 4-<br>like                                                               | ?       | 0.016     | 2.2 | 12 | 27 |
|-------|------------------------------------------------------------------------------------------------------|---------|-----------|-----|----|----|
| 370   | Cluster of carbamoyl-phosphate<br>synthase large chain, chloroplastic                                | 127 kDa | 0.044     | 1.8 | 18 | 32 |
| 379   | soyasaponin III<br>rhamnosyltransferase                                                              | 54 kDa  | 0.049     | 1.4 | 52 | 74 |
| 394   | Cluster of glutamate decarboxylase                                                                   | 56 kDa  | 0.018     | 1.5 | 62 | 92 |
| 415.2 | 60S ribosomal protein L13a-4                                                                         | 24 kDa  | 0.0044    | 2   | 25 | 50 |
| 431   | Cluster of magnesium-<br>protoporphyrin IX monomethyl<br>ester [oxidative] cyclase,<br>chloroplastic | 49 kDa  | 0.038     | 1.5 | 37 | 57 |
| 442   | Cluster of linoleate 13S-<br>lipoxygenase 2-1, chloroplastic                                         | 104 kDa | 0.0063    | 1.8 | 31 | 57 |
| 462   | Cluster of protochlorophyllide<br>reductase, chloroplastic                                           | 43 kDa  | 0.045     | 1.5 | 45 | 66 |
| 463   | DNA-damage-repair/toleration<br>protein DRT100-like precursor                                        | 40 kDa  | 0.04      | 1.6 | 34 | 53 |
| 487   | Cluster of coatomer subunit gamma                                                                    | 99 kDa  | 0.011     | 1.8 | 26 | 48 |
| 503   | succinate dehydrogenase<br>[ubiquinone] flavoprotein subunit<br>1, mitochondrial                     | 69 kDa  | 0.024     | 1.7 | 29 | 49 |
| 539   | NADH dehydrogenase subunit 7<br>(chloroplast)                                                        | 46 kDa  | 0.0013    | 2.1 | 27 | 57 |
| 567   | photosystem I reaction center subunit psaK, chloroplastic                                            | 13 kDa  | < 0.00010 | 3.2 | 18 | 57 |
| 570   | Cluster of PREDICTED: aspartate-<br>semialdehyde dehydrogenase                                       | ?       | 0.005     | 2.2 | 17 | 38 |
| 571   | Cluster of NADH dehydrogenase<br>[ubiquinone] iron-sulfur protein 1,<br>mitochondrial                | 81 kDa  | 0.0016    | 2.2 | 24 | 52 |
| 596.2 | GTP-binding protein SAR1A                                                                            | 22 kDa  | 0.009     | INF | 0  | 7  |
| 638   | 3-isopropylmalate dehydratase<br>large subunit, chloroplastic                                        | 55 kDa  | 0.014     | 1.9 | 23 | 43 |
| 653   | Cluster of DEAD-box ATP-<br>dependent RNA helicase 3,<br>chloroplastic                               | 84 kDa  | 0.0097    | 2   | 22 | 43 |
| 656   | fatty acid hydroperoxide lyase,<br>chloroplastic                                                     | 53 kDa  | 0.022     | 1.8 | 22 | 40 |
| 683   | Cluster of SKP1-like protein 1A<br>isoform X1                                                        | 17 kDa  | 0.018     | 1.9 | 20 | 38 |
| 690   | Cluster of topless-related protein 1<br>isoform X1                                                   | 125 kDa | 0.048     | 1.8 | 16 | 29 |
| 803   | Cluster of 60S ribosomal protein<br>L37-3                                                            | 11 kDa  | 0.0047    | 2.6 | 11 | 29 |
| 825.2 | importin subunit beta-1                                                                              | 96 kDa  | 0.037     | 1.7 | 22 | 38 |
| 853   | Cluster of translocase of chloroplast 159, chloroplastic-like                                        | 133 kDa | 0.018     | 2.1 | 15 | 31 |

| 859    | 15-cis-phytoene desaturase,<br>chloroplastic/chromoplastic                                                                                    | 63 kDa  | 0.011  | 2.1 | 16 | 34  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-----|----|-----|
| 864    | probable bifunctional<br>methylthioribulose-1-phosphate<br>dehydratase/enolase-phosphatase<br>E1                                              | 57 kDa  | 0.031  | 2.1 | 12 | 25  |
| 877    | pyruvate dehydrogenase E1<br>component subunit beta-3,<br>chloroplastic                                                                       | 44 kDa  | 0.044  | 1.8 | 18 | 32  |
| 926    | Cluster of plastidial pyruvate kinase 2                                                                                                       | 64 kDa  | 0.029  | 2   | 14 | 28  |
| 937.2  | 40S ribosomal protein S17                                                                                                                     | 16 kDa  | 0.0016 | 3.8 | 6  | 23  |
| 948    | tripeptidyl-peptidase 2 isoform X1                                                                                                            | 146 kDa | 0.016  | 2.4 | 10 | 24  |
| 970    | Cluster of subtilisin-like protease SBT1.6                                                                                                    | 82 kDa  | 0.0063 | 2.8 | 9  | 25  |
| 979    | Cluster of UDP-glucuronic acid decarboxylase 2                                                                                                | 48 kDa  | 0.031  | 1.9 | 17 | 32  |
| 1018   | D-3-phosphoglycerate<br>dehydrogenase 2, chloroplastic                                                                                        | 66 kDa  | 0.034  | 1.8 | 18 | 33  |
| 1032.2 | anthranilate synthase alpha subunit<br>1, chloroplastic                                                                                       | 65 kDa  | 0.0046 | INF | 0  | 8   |
| 1047   | NAD-dependent malic enzyme 59<br>kDa isoform, mitochondrial                                                                                   | 67 kDa  | 0.04   | 2.4 | 7  | 17  |
| 1057   | Cluster of proline-rich protein precursor                                                                                                     | 13 kDa  | 0.0017 | 5.7 | 3  | 17  |
| 1061   | argininosuccinate lyase,<br>chloroplastic isoform X1                                                                                          | 57 kDa  | 0.027  | 2.2 | 11 | 24  |
| 1063   | Cluster of PREDICTED: zinc<br>finger BED domain-containing<br>protein DAYSLEEPER-like                                                         | ?       | 0.028  | 2.3 | 9  | 21  |
| 1091.2 | calcium-transporting ATPase 4, plasma membrane-type                                                                                           | 114 kDa | 0.046  | 3   | 4  | 12  |
| 1105   | Cluster of dihydrolipoyllysine-<br>residue acetyltransferase<br>component 4 of pyruvate<br>dehydrogenase complex,<br>chloroplastic isoform X2 | 49 kDa  | 0.0082 | 2.4 | 12 | 29  |
| 1111   | adenosylhomocysteinase                                                                                                                        | 53 kDa  | 0.041  | 1.3 | 94 | 125 |
| 1141   | PREDICTED: UBP1-associated protein 2B                                                                                                         | ?       | 0.021  | 4   | 3  | 12  |
| 1170   | probable methioninetRNA ligase isoform X2                                                                                                     | 90 kDa  | 0.048  | 2.5 | 6  | 15  |
| 1176   | Cluster of THO complex subunit 4A                                                                                                             | 26 kDa  | 0.039  | 2.2 | 9  | 20  |
| 1179   | histidinetRNA ligase,<br>chloroplastic/mitochondrial isoform<br>X1                                                                            | 56 kDa  | 0.015  | 3   | 6  | 18  |
| 1208.2 | NADPHcytochrome P450 reductase                                                                                                                | 77 kDa  | 0.0023 | INF | 0  | 9   |

| 1226   | photosystem I chlorophyll a/b-<br>binding protein 5 chloroplastic                                                                  | 31 kDa  | 0.022     | 2.8 | 6 | 17 |
|--------|------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-----|---|----|
| 1243   | succinate dehydrogenase<br>[ubiquinone] iron-sulfur subunit 2,<br>mitochondrial                                                    | 31 kDa  | 0.04      | 2.4 | 7 | 17 |
| 1319   | Cluster of alpha-amylase<br>inhibitor/lipid transfer/seed storage<br>family protein precursor                                      | 13 kDa  | 0.021     | 4   | 3 | 12 |
| 1338   | PREDICTED: cystathionine<br>gamma-synthase 1, chloroplastic                                                                        | ?       | < 0.00010 | INF | 0 | 15 |
| 1361   | Cluster of ubiquitin fusion<br>degradation protein 1 homolog<br>isoform X1                                                         | 35 kDa  | 0.012     | 3.8 | 4 | 15 |
| 1373   | Cluster of diphosphomevalonate decarboxylase MVD2, peroxisomal                                                                     | 46 kDa  | 0.011     | 3.4 | 5 | 17 |
| 1387   | omega-3 fatty acid desaturase                                                                                                      | 51 kDa  | 0.012     | 3.8 | 4 | 15 |
| 1430   | protein KINESIN LIGHT CHAIN-<br>RELATED 1                                                                                          | 63 kDa  | 0.021     | 4   | 3 | 12 |
| 1477   | dihydrolipoyllysine-residue<br>acetyltransferase component 1 of<br>pyruvate dehydrogenase complex,<br>mitochondrial                | 68 kDa  | 0.038     | 2.8 | 5 | 14 |
| 1527   | Cluster of protein transport protein<br>Sec24-like At4g32640                                                                       | 118 kDa | 0.021     | 4   | 3 | 12 |
| 1561.1 | serine/threonine-protein<br>phosphatase PP2A catalytic subunit<br>isoform X2                                                       | 36 kDa  | 0.038     | 4.5 | 2 | 9  |
| 1616   | KH domain-containing protein<br>HEN4                                                                                               | 58 kDa  | 0.03      | 3.2 | 4 | 13 |
| 1640   | Cluster of aminoacyl tRNA<br>synthase complex-interacting<br>multifunctional protein 1                                             | 42 kDa  | 0.023     | 8   | 1 | 8  |
| 1640.1 | aminoacyl tRNA synthase<br>complex-interacting multifunctional<br>protein 1                                                        | 42 kDa  | 0.04      | 7   | 1 | 7  |
| 1682   | Cluster of proteasome activator subunit 4                                                                                          | 204 kDa | 0.034     | INF | 0 | 5  |
| 1720   | Cluster of dihydrolipoyllysine-<br>residue acetyltransferase<br>component 5 of pyruvate<br>dehydrogenase complex,<br>chloroplastic | 48 kDa  | 0.048     | 2.5 | 6 | 15 |
| 1761   | costars family protein                                                                                                             | 10 kDa  | 0.023     | 8   | 1 | 8  |
| 1777   | mitochondrial Rho GTPase 1                                                                                                         | 72 kDa  | 0.007     | 10  | 1 | 10 |
| 1812   | Cluster of PREDICTED: probable pectate lyase 8                                                                                     | ?       | 0.034     | INF | 0 | 5  |
| 1824   | 4-diphosphocytidyl-2-C-methyl-D-<br>erythritol kinase,<br>chloroplastic/chromoplastic                                              | 44 kDa  | 0.04      | 7   | 1 | 7  |

| 1841   | Cluster of magnesium chelatase subunit                                                                   | ?      | 0.023   | 8   | 1  | 8  |
|--------|----------------------------------------------------------------------------------------------------------|--------|---------|-----|----|----|
| 1859   | beta-ketoacyl-acyl carrier protein<br>synthase III                                                       | 42 kDa | 0.034   | INF | 0  | 5  |
| 1890   | probable linoleate 9S-lipoxygenase 5                                                                     | 98 kDa | 0.034   | INF | 0  | 5  |
| 1900   | Cluster of transcription initiation<br>factor TFIID subunit 15b isoform<br>X2                            | 50 kDa | 0.04    | 7   | 1  | 7  |
| 1917.2 | phosphatidylinositol 3,4,5-<br>trisphosphate 3-phosphatase and<br>protein-tyrosine-phosphatase<br>PTEN2A | 69 kDa | 0.034   | INF | 0  | 5  |
| 1934   | pyruvate kinase 1, cytosolic isoform X1                                                                  | 58 kDa | 0.047   | 1.9 | 13 | 25 |
| 2075   | Cluster of probable inactive purple acid phosphatase 1 isoform X1                                        | 69 kDa | 0.00016 | INF | 0  | 13 |
| 2120   | multiprotein-bridging factor 1a                                                                          | 16 kDa | 0.018   | INF | 0  | 6  |
| 2129   | lysM domain-containing GPI-<br>anchored protein 1                                                        | 43 kDa | 0.0012  | INF | 0  | 10 |
| 2197   | PREDICTED: probable S-<br>sulfocysteine synthase,<br>chloroplastic                                       | ?      | 0.0046  | INF | 0  | 8  |
| 2256   | chaperone protein dnaJ A6,<br>chloroplastic                                                              | 41 kDa | 0.034   | INF | 0  | 5  |

**Supplementary Table 4.7**. Fold change of proteins that were upregulated by treatment Bj+SL42, relative to Bj (control) under optimal conditions.

| #    | Identified Proteins (3060/3077)                                             | Molecular<br>Weight | Fisher's<br>Exact<br>Test | Fold<br>Change | Bj    | Bj+<br>SL42 |
|------|-----------------------------------------------------------------------------|---------------------|---------------------------|----------------|-------|-------------|
| 2    | ribulose bisphosphate carboxylase small chain 1, chloroplastic              | 20 kDa              | < 0.00010                 | 1.3            | 1,203 | 1,512       |
| 7    | Cluster of glycine dehydrogenase (decarboxylating), mitochondrial           | 115 kDa             | 0.013                     | 1.2            | 728   | 845         |
| 9    | Cluster of glyceraldehyde-3-<br>phosphate dehydrogenase A subunit           | ?                   | 0.0023                    | 1.2            | 668   | 803         |
| 9.2  | PREDICTED: glyceraldehyde-3-<br>phosphate dehydrogenase A,<br>chloroplastic | ?                   | 0.00081                   | 1.2            | 596   | 735         |
| 36   | Cluster of PREDICTED:<br>triosephosphate isomerase,<br>cytosolic            | ?                   | 0.042                     | 1.2            | 351   | 413         |
| 58   | Cluster of S-adenosylmethionine synthase                                    | 43 kDa              | 0.026                     | 1.2            | 213   | 265         |
| 83   | Cluster of elongation factor 1-alpha                                        | ?                   | 0.00019                   | 1.5            | 145   | 220         |
| 97.2 | ketol-acid reductoisomerase,<br>chloroplastic                               | 63 kDa              | 0.041                     | 1.3            | 130   | 166         |

| 97.3  | ketol-acid reductoisomerase,<br>chloroplastic-like                          | ?      | 0.034     | 1.3 | 126 | 163 |
|-------|-----------------------------------------------------------------------------|--------|-----------|-----|-----|-----|
| 117   | Cluster of soyasapogenol B<br>glucuronide galactosyltransferase-<br>like    | 56 kDa | 0.011     | 1.4 | 118 | 162 |
| 146   | soyasaponin III<br>rhamnosyltransferase                                     | 54 kDa | 0.015     | 1.4 | 117 | 159 |
| 181   | Cluster of isoflavone reductase<br>homolog 2                                | 34 kDa | < 0.00010 | 3.1 | 49  | 154 |
| 213.2 | PREDICTED: auxin-binding protein ABP19a-like                                | ?      | 0.0046    | 1.6 | 63  | 100 |
| 289   | photosystem I reaction center subunit psaK, chloroplastic                   | 13 kDa | 0.011     | 1.7 | 39  | 65  |
| 291   | 50S ribosomal protein L1, chloroplastic                                     | 38 kDa | < 0.00010 | 3.3 | 15  | 49  |
| 339   | PREDICTED: peptidyl-prolyl cis-<br>trans isomerase 1-like                   | ?      | 0.046     | 1.3 | 90  | 119 |
| 340   | kunitz family trypsin and protease inhibitor protein precursor              | 24 kDa | 0.013     | 1.6 | 49  | 77  |
| 357   | Cluster of PREDICTED:<br>multicystatin                                      | ?      | 0.0006    | 2.1 | 33  | 68  |
| 380   | polyphenol oxidase A1,<br>chloroplastic                                     | 70 kDa | 0.00011   | 2.4 | 28  | 66  |
| 387   | ferredoxin-A                                                                | 15 kDa | 0.002     | 2.1 | 24  | 51  |
| 389   | 40S ribosomal protein S3                                                    | 26 kDa | 0.04      | 1.6 | 31  | 49  |
| 390   | PREDICTED: UDP-glucose<br>flavonoid 3-O-glucosyltransferase<br>7-like       | ?      | 0.0065    | 1.7 | 38  | 66  |
| 408   | Cluster of isopentenyl-diphosphate<br>Delta-isomerase I                     | 34 kDa | 0.031     | 1.7 | 27  | 45  |
| 415   | subtilisin-like protease<br>Glyma18g48580 isoform X1                        | 84 kDa | < 0.00010 | 2.9 | 18  | 53  |
| 423   | Cluster of subtilisin-like protease<br>Glyma18g48580                        | 86 kDa | 0.042     | 1.5 | 40  | 60  |
| 431   | isoflavone reductase-like protein                                           | 34 kDa | 0.027     | 1.6 | 39  | 61  |
| 449.2 | PREDICTED:<br>fumarylacetoacetase-like                                      | ?      | 0.023     | 1.9 | 20  | 37  |
| 516   | Cluster of kunitz-type trypsin inhibitor KTI1-like                          | 23 kDa | 0.042     | 1.6 | 28  | 45  |
| 527   | superoxide dismutase [Cu-Zn], chloroplastic                                 | 21 kDa | < 0.00010 | 2.5 | 28  | 70  |
| 693   | Cluster of ribosomal protein L11<br>family protein                          | 18 kDa | 0.039     | 1.8 | 20  | 35  |
| 698.2 | ectonucleotide<br>pyrophosphatase/phosphodiesterase<br>family member 3-like | ?      | 0.017     | INF | 0   | 6   |
| 728   | PREDICTED: acid phosphatase 1                                               | ?      | 0.0043    | 3.8 | 5   | 19  |
| 743   | Cluster of 50S ribosomal protein<br>L5, chloroplastic-like                  | 29 kDa | 0.026     | 2.2 | 11  | 24  |

| 808   | Cluster of isoamylase 3,<br>chloroplastic isoform X1                            | 87 kDa | 0.047     | 1.8 | 16 | 29 |
|-------|---------------------------------------------------------------------------------|--------|-----------|-----|----|----|
| 858   | 26S proteasome regulatory subunit                                               | 50 kDa | 0.046     | 2.2 | 8  | 18 |
| 915   | Cluster of peptide methionine                                                   | 22 kDa | < 0.00010 | 6.5 | 4  | 26 |
| 915.1 | peptide methionine sulfoxide                                                    | 22 kDa | 0.00037   | 5.5 | 4  | 22 |
| 975.2 | PREDICTED: lipid transfer protein                                               | ?      | 0.034     | INF | 0  | 5  |
| 990   | succinate dehydrogenase<br>[ubiquinone] iron-sulfur subunit 2,<br>mitochondrial | 31 kDa | 0.046     | 2.2 | 8  | 18 |
| 1024  | Cluster of 50S ribosomal protein<br>L18, chloroplastic                          | 18 kDa | 0.00061   | 14  | 1  | 14 |
| 1075  | PLAT domain-containing protein 3                                                | 21 kDa | 0.012     | 2.9 | 7  | 20 |
| 1083  | 40S ribosomal protein S17                                                       | 16 kDa | 0.012     | 3.8 | 4  | 15 |
| 1125  | Cluster of 50S ribosomal protein<br>L4, chloroplastic                           | 34 kDa | 0.0011    | 13  | 1  | 13 |
| 1203  | UDP-glycosyltransferase 79A6                                                    | 52 kDa | 0.0045    | INF | 0  | 8  |
| 1261  | uridine 5'-monophosphate synthase-<br>like                                      | ?      | 0.00047   | 8.5 | 2  | 17 |
| 1273  | omega-amidase, chloroplastic                                                    | 39 kDa | 0.00015   | INF | 0  | 13 |
| 1350  | stress-induced protein H4                                                       | 17 kDa | 0.0012    | INF | 0  | 10 |
| 1426  | stress-induced protein SAM22                                                    | 17 kDa | 0.0088    | INF | 0  | 7  |
| 1442  | Cluster of cationic peroxidase 1                                                | 34 kDa | 0.00061   | 14  | 1  | 14 |
| 1475  | PREDICTED: stellacyanin-like                                                    | ?      | 0.022     | 8   | 1  | 8  |
| 1500  | Cluster of 40S ribosomal protein S7                                             | 22 kDa | 0.037     | 4.5 | 2  | 9  |
| 1503  | UDP-glycosyltransferase 74G1                                                    | 54 kDa | 0.022     | 5   | 2  | 10 |
| 1579  | protein PELPK1                                                                  | 39 kDa | 0.033     | 3.7 | 3  | 11 |
| 1612  | heparanase-like protein 3                                                       | 59 kDa | 0.022     | 8   | 1  | 8  |
| 1626  | chaperone protein dnaJ A6,<br>chloroplastic isoform X1                          | 47 kDa | 0.031     | 2.2 | 10 | 22 |
| 1656  | calreticulin-3                                                                  | 50 kDa | 0.034     | INF | 0  | 5  |
| 1702  | phospholipase A1-Igamma2,<br>chloroplastic isoform X1                           | 56 kDa | 0.034     | INF | 0  | 5  |
| 1743  | chaperone protein dnaJ A6, chloroplastic                                        | 47 kDa | 0.00019   | 7   | 3  | 21 |
| 1754  | protein CHLORORESPIRATORY<br>REDUCTION 7, chloroplastic                         | 17 kDa | 0.034     | INF | 0  | 5  |
| 1755  | mitochondrial import inner<br>membrane translocase subunit<br>TIM10             | 10 kDa | 0.034     | INF | 0  | 5  |
| 1827  | probable splicing factor 3A subunit 1                                           | 89 kDa | 0.0045    | INF | 0  | 8  |

| 2026 | BSP domain-containing protien | 25 kDa | 0.017 | INF | 0 | 6 |
|------|-------------------------------|--------|-------|-----|---|---|
|      | precursor                     |        |       |     |   |   |

**Supplementary Table 4.8**. Fold change of proteins that were upregulated by treatment Bj+SL48, relative to Bj (control) under optimal conditions.

| #    | Identified Proteins (3060/3077)                                                | Molecular<br>Weight | Fisher's<br>Exact<br>Test | Fold<br>Change | Bj    | Bj+<br>SL48 |
|------|--------------------------------------------------------------------------------|---------------------|---------------------------|----------------|-------|-------------|
| 2    | ribulose bisphosphate carboxylase<br>small chain 1, chloroplastic              | 20 kDa              | < 0.00010                 | 1.4            | 1,203 | 1,654       |
| 3    | Cluster of linoleate 9S-<br>lipoxygenase-4                                     | ?                   | < 0.00010                 | 1.2            | 1,298 | 1,616       |
| 4.1  | ribulose bisphosphate<br>carboxylase/oxygenase activase,<br>chloroplastic-like | 49 kDa              | 0.028                     | 1.2            | 952   | 1,109       |
| 7    | Cluster of glycine dehydrogenase (decarboxylating), mitochondrial              | 115 kDa             | < 0.00010                 | 1.3            | 728   | 943         |
| 9    | Cluster of glyceraldehyde-3-<br>phosphate dehydrogenase A subunit              | ?                   | < 0.00010                 | 1.8            | 668   | 1,214       |
| 9.2  | PREDICTED: glyceraldehyde-3-<br>phosphate dehydrogenase A,<br>chloroplastic    | ?                   | < 0.00010                 | 1.9            | 596   | 1,156       |
| 10.2 | glutamine synthetase precursor                                                 | ?                   | 0.035                     | 1.2            | 397   | 481         |
| 23   | Cluster of catalase                                                            | 57 kDa              | 0.039                     | 1.2            | 407   | 491         |
| 26   | Cluster of PREDICTED: gamma-<br>glutamyl hydrolase isoform X1                  | ?                   | 0.026                     | 1.2            | 373   | 458         |
| 26.2 | gamma-glutamyl hydrolase<br>precursor                                          | ?                   | 0.0053                    | 1.3            | 287   | 376         |
| 36   | Cluster of PREDICTED:<br>triosephosphate isomerase,<br>cytosolic               | ?                   | 0.0078                    | 1.3            | 351   | 447         |
| 36.2 | triosephosphate isomerase isoform X1                                           | 27 kDa              | 0.048                     | 1.2            | 284   | 348         |
| 37   | Cluster of serine glyoxylate<br>aminotransferase 3 isoform X1                  | 44 kDa              | 0.032                     | 1.2            | 284   | 353         |
| 58   | Cluster of S-adenosylmethionine synthase                                       | 43 kDa              | 0.001                     | 1.4            | 213   | 301         |
| 61.1 | 3'-hydroxy-N-methyl-(S)-<br>coclaurine 4'-O-methyltransferase-<br>like         | 42 kDa              | 0.035                     | 1.3            | 183   | 235         |
| 75   | Cluster of<br>adenosylhomocysteinase-like                                      | 53 kDa              | 0.017                     | 1.3            | 210   | 274         |
| 83   | Cluster of elongation factor 1-alpha                                           | ?                   | < 0.00010                 | 1.7            | 145   | 251         |
| 97.3 | ketol-acid reductoisomerase,<br>chloroplastic-like                             | ?                   | 0.049                     | 1.3            | 126   | 165         |
| 116  | Cluster of chlorophyll a-b binding protein, chloroplastic                      | 29 kDa              | 0.011                     | 1.4            | 149   | 205         |

| 117   | Cluster of soyasapogenol B                                            | 56 kDa  | < 0.00010 | 1.7 | 118 | 196 |
|-------|-----------------------------------------------------------------------|---------|-----------|-----|-----|-----|
|       | glucuronide galactosyltransferase-                                    |         |           |     |     |     |
| 124   | lipoxygenase-9                                                        | ?       | 0.027     | 1.3 | 239 | 303 |
| 146   | soyasaponin III                                                       | 54 kDa  | 0.002     | 1.5 | 117 | 177 |
|       | rhamnosyltransferase                                                  |         |           |     |     |     |
| 181   | Cluster of isoflavone reductase<br>homolog 2                          | 34 kDa  | < 0.00010 | 3.5 | 49  | 172 |
| 213.2 | PREDICTED: auxin-binding<br>protein ABP19a-like                       | ?       | < 0.00010 | 2.3 | 63  | 148 |
| 282   | protoporphyrinogen oxidase 1,<br>chloroplastic                        | 59 kDa  | 0.0058    | 1.7 | 54  | 90  |
| 283   | Cluster of polyadenylate-binding<br>protein RBP45 isoform X1          | 45 kDa  | 0.023     | 1.6 | 44  | 70  |
| 289   | photosystem I reaction center<br>subunit psaK, chloroplastic          | 13 kDa  | < 0.00010 | 2.8 | 39  | 109 |
| 291   | 50S ribosomal protein L1,<br>chloroplastic                            | 38 kDa  | < 0.00010 | 4.4 | 15  | 66  |
| 337   | Cluster of linoleate 13S-<br>lipoxygenase 2-1, chloroplastic          | 104 kDa | 0.012     | 1.7 | 46  | 76  |
| 348.2 | linoleate 9S-lipoxygenase                                             | 97 kDa  | 0.0013    | 1.9 | 47  | 87  |
| 357   | Cluster of PREDICTED:<br>multicystatin                                | ?       | 0.00013   | 2.3 | 33  | 75  |
| 367   | ribosomal protein S3 (chloroplast)                                    | 25 kDa  | 0.021     | 1.7 | 33  | 56  |
| 380   | polyphenol oxidase A1,<br>chloroplastic                               | 70 kDa  | < 0.00010 | 2.5 | 28  | 71  |
| 387   | ferredoxin-A                                                          | 15 kDa  | < 0.00010 | 2.9 | 24  | 70  |
| 389   | 40S ribosomal protein S3                                              | 26 kDa  | 0.0014    | 2.1 | 31  | 64  |
| 390   | PREDICTED: UDP-glucose<br>flavonoid 3-O-glucosyltransferase<br>7-like | ?       | 0.0024    | 1.9 | 38  | 72  |
| 408   | Cluster of isopentenyl-diphosphate<br>Delta-isomerase I               | 34 kDa  | 0.0045    | 2   | 27  | 54  |
| 415   | subtilisin-like protease<br>Glyma18g48580 isoform X1                  | 84 kDa  | 0.003     | 2.3 | 18  | 42  |
| 419   | KS-type dehydrin SLTI629                                              | ?       | < 0.00010 | 4.1 | 9   | 37  |
| 449.2 | PREDICTED:<br>fumarylacetoacetase-like                                | ?       | 0.05      | 1.8 | 20  | 35  |
| 482.2 | iron-superoxide dismutase                                             | ?       | 0.034     | 1.9 | 16  | 31  |
| 486   | probable carboxylesterase 2                                           | 43 kDa  | 0.049     | 1.7 | 26  | 43  |
| 506   | hydroxyphenylpyruvate reductase-<br>like                              | ?       | 0.012     | 1.9 | 26  | 49  |
| 508   | Cluster of proline-rich protein precursor                             | 13 kDa  | < 0.00010 | 19  | 6   | 114 |
| 516   | Cluster of kunitz-type trypsin<br>inhibitor KTI1-like                 | 23 kDa  | 0.023     | 1.8 | 28  | 49  |
| 527   | superoxide dismutase [Cu-Zn],<br>chloroplastic                        | 21 kDa  | 0.00027   | 2.3 | 28  | 65  |

| 536    | Cluster of D-3-phosphoglycerate                                                  | 66 kDa | 0.038     | 1.6 | 32 | 52 |
|--------|----------------------------------------------------------------------------------|--------|-----------|-----|----|----|
| 558    | 15-cis-phytoene desaturase,<br>chloroplastic/chromoplastic                       | 63 kDa | 0.039     | 1.7 | 26 | 44 |
| 599    | Cluster of bifunctional monothiol                                                | 32 kDa | 0.03      | 2   | 15 | 30 |
| 605    | succinate dehydrogenase<br>[ubiquinone] flavoprotein subunit<br>1, mitochondrial | 69 kDa | 0.033     | 1.8 | 21 | 38 |
| 697    | ATPase ARSA1                                                                     | 44 kDa | 0.027     | 1.9 | 19 | 36 |
| 698.2  | ectonucleotide<br>pyrophosphatase/phosphodiesterase<br>family member 3-like      | ?      | 0.0099    | INF | 0  | 7  |
| 728    | PREDICTED: acid phosphatase 1                                                    | ?      | 0.0034    | 4   | 5  | 20 |
| 743    | Cluster of 50S ribosomal protein<br>L5, chloroplastic-like                       | 29 kDa | 0.00018   | 3.5 | 11 | 38 |
| 768    | Cluster of DEAD-box ATP-<br>dependent RNA helicase 3,<br>chloroplastic           | 84 kDa | 0.042     | 2   | 13 | 26 |
| 806    | UDP-glucosyl transferase 73B2                                                    | 53 kDa | 0.036     | 2   | 14 | 28 |
| 839    | PREDICTED: 30S Ribosomal<br>protein S1 isoform X1                                | ?      | 0.028     | 2.3 | 10 | 23 |
| 858    | 26S proteasome regulatory subunit<br>4 homolog A                                 | 50 kDa | 0.0012    | 3.5 | 8  | 28 |
| 877.3  | probable aldo-keto reductase 1                                                   | ?      | 0.0051    | INF | 0  | 8  |
| 897    | linoleate 9S-lipoxygenase 1                                                      | 98 kDa | 0.0049    | 1.9 | 30 | 58 |
| 915    | Cluster of peptide methionine<br>sulfoxide reductase B5                          | 22 kDa | < 0.00010 | 6.5 | 4  | 26 |
| 917    | malonyl-CoA:isoflavone 7-O-<br>glucoside-6"-O-malonyltransferase                 | 52 kDa | 0.038     | 2.2 | 10 | 22 |
| 975.2  | PREDICTED: lipid transfer protein<br>EARLI 1-like                                | ?      | < 0.00010 | INF | 0  | 29 |
| 1024   | Cluster of 50S ribosomal protein<br>L18, chloroplastic                           | 18 kDa | < 0.00010 | 19  | 1  | 19 |
| 1038   | multiple organellar RNA editing factor 9-like                                    | 25 kDa | 0.039     | 2.4 | 8  | 19 |
| 1069   | indole-3-glycerol phosphate<br>synthase, chloroplastic                           | 43 kDa | 0.0083    | 3.6 | 5  | 18 |
| 1075   | PLAT domain-containing protein 3                                                 | 21 kDa | 0.022     | 2.7 | 7  | 19 |
| 1080.2 | membrane steroid-binding protein 1                                               | 24 kDa | 0.034     | 3.2 | 4  | 13 |
| 1083   | 40S ribosomal protein S17                                                        | 16 kDa | 0.0022    | 4.8 | 4  | 19 |
| 1100   | Cluster of PREDICTED: glucan<br>endo-1,3-beta-glucosidase                        | ?      | 0.037     | 2.7 | 6  | 16 |
| 1100.2 | glucan endo-1,3-beta-glucosidase-<br>like                                        | 37 kDa | 0.037     | INF | 0  | 5  |
| 1125   | Cluster of 50S ribosomal protein<br>L4, chloroplastic                            | 34 kDa | 0.00012   | 17  | 1  | 17 |

| 1162   | Cluster of PREDICTED: 1,2-                                                       | ?       | 0.0057    | 5   | 3 | 15 |
|--------|----------------------------------------------------------------------------------|---------|-----------|-----|---|----|
|        | dihydroxy-3-keto-5-                                                              |         |           |     |   |    |
|        | methylthiopentene dioxygenase 2                                                  |         |           |     |   |    |
| 1203   | UDP-glycosyltransferase 79A6                                                     | 52 kDa  | 0.00036   | INF | 0 | 12 |
| 1261   | uridine 5'-monophosphate synthase-<br>like                                       | ?       | 0.0054    | 6.5 | 2 | 13 |
| 1273   | omega-amidase, chloroplastic                                                     | 39 kDa  | < 0.00010 | INF | 0 | 15 |
| 1314   | glutathione hydrolase 1                                                          | 67 kDa  | 0.0093    | 4.7 | 3 | 14 |
| 1337   | probable carotenoid cleavage<br>dioxygenase 4, chloroplastic                     | 65 kDa  | 0.029     | 3   | 5 | 15 |
| 1350   | stress-induced protein H4                                                        | 17 kDa  | < 0.00010 | INF | 0 | 19 |
| 1425.3 | polyphenol oxidase A1,<br>chloroplastic                                          | 70 kDa  | 0.0099    | INF | 0 | 7  |
| 1426   | stress-induced protein SAM22                                                     | 17 kDa  | < 0.00010 | INF | 0 | 21 |
| 1428   | probable endo-1,3(4)-beta-<br>glucanase ARB 01444                                | 73 kDa  | 0.034     | 3.2 | 4 | 13 |
| 1442   | Cluster of cationic peroxidase 1                                                 | 34 kDa  | 0.0044    | 11  | 1 | 11 |
| 1445   | beta-amyrin 24-hydroxylase                                                       | ?       | 0.0091    | 6   | 2 | 12 |
| 1475   | PREDICTED: stellacyanin-like                                                     | ?       | 0.0079    | 10  | 1 | 10 |
| 1500   | Cluster of 40S ribosomal protein S7                                              | 22 kDa  | 0.025     | 5   | 2 | 10 |
| 1503   | UDP-glycosyltransferase 74G1                                                     | 54 kDa  | 0.042     | 4.5 | 2 | 9  |
| 1517   | Cluster of ATP-dependent Clp<br>protease proteolytic subunit 3,<br>chloroplastic | 35 kDa  | 0.043     | 7   | 1 | 7  |
| 1517.2 | ATP-dependent Clp protease<br>proteolytic subunit 3, chloroplastic               | 35 kDa  | 0.0099    | INF | 0 | 7  |
| 1551   | glutathione S-transferase GST 23                                                 | ?       | 0.043     | 7   | 1 | 7  |
| 1624   | probable aldehyde dehydrogenase<br>isoform X1                                    | 61 kDa  | 0.0014    | INF | 0 | 10 |
| 1629   | PREDICTED: syntaxin-112-like isoform X2                                          | ?       | 0.037     | INF | 0 | 5  |
| 1647   | Cluster of ABC transporter F<br>family member 1                                  | 66 kDa  | 0.025     | 8   | 1 | 8  |
| 1656   | calreticulin-3                                                                   | 50 kDa  | 0.0051    | INF | 0 | 8  |
| 1674   | probable glucan 1,3-alpha-<br>glucosidase                                        | 104 kDa | 0.043     | 7   | 1 | 7  |
| 1702   | phospholipase A1-Igamma2,<br>chloroplastic isoform X1                            | 56 kDa  | 0.0099    | INF | 0 | 7  |
| 1725   | chloroplastic import inner<br>membrane translocase subunit<br>TIM22-2            | 25 kDa  | 0.0099    | INF | 0 | 7  |
| 1740   | 50S ribosomal protein L22, chloroplastic                                         | ?       | 0.0051    | INF | 0 | 8  |
| 1743   | chaperone protein dnaJ A6,<br>chloroplastic                                      | 47 kDa  | 0.0021    | 5.7 | 3 | 17 |

| 1783   | rhodanese-like domain-containing | 32 kDa | 0.019  | INF | 0 | 6  |
|--------|----------------------------------|--------|--------|-----|---|----|
|        | protein 11, chloroplastic        |        |        |     |   |    |
| 1825   | Cluster of 50S ribosomal protein | 25 kDa | 0.0099 | INF | 0 | 7  |
|        | L6, chloroplastic                |        |        |     |   |    |
| 1846   | Cluster of glutaminetRNA ligase  | 90 kDa | 0.0051 | INF | 0 | 8  |
| 1846.2 | LOW QUALITY PROTEIN:             | 90 kDa | 0.0051 | INF | 0 | 8  |
|        | glutaminetRNA ligase             |        |        |     |   |    |
| 1977   | aquaporin PIP2-10                | 30 kDa | 0.033  | 2.3 | 9 | 21 |
| 2026   | BSP domain-containing protien    | 25 kDa | 0.0026 | INF | 0 | 9  |
|        | precursor                        |        |        |     |   |    |

**Supplementary Table 4.9**. Fold change of proteins that were upregulated by treatment Bj+SL42+SL48, relative to Bj (control) under optimal conditions.

| #    | Identified Proteins (3060/3077)                                                   | Molecular<br>Weight | Fisher's<br>Exact<br>Test | Fold<br>Change | Вј    | Bj+<br>SL42+<br>SL48 |
|------|-----------------------------------------------------------------------------------|---------------------|---------------------------|----------------|-------|----------------------|
| 1    | ribulose-1,5-bisphosphate<br>carboxylase/oxygenase large<br>subunit (chloroplast) | 53 kDa              | 0.037                     | 1.1            | 7,771 | 8,484                |
| 2    | ribulose bisphosphate carboxylase<br>small chain 1, chloroplastic                 | 20 kDa              | < 0.00010                 | 1.3            | 1,203 | 1,552                |
| 3    | Cluster of linoleate 9S-<br>lipoxygenase-4                                        | ?                   | 0.003                     | 1.2            | 1,298 | 1,530                |
| 7    | Cluster of glycine dehydrogenase (decarboxylating), mitochondrial                 | 115 kDa             | 0.011                     | 1.2            | 728   | 868                  |
| 9    | Cluster of glyceraldehyde-3-<br>phosphate dehydrogenase A subunit                 | ?                   | < 0.00010                 | 1.6            | 668   | 1,049                |
| 9.2  | PREDICTED: glyceraldehyde-3-<br>phosphate dehydrogenase A,<br>chloroplastic       | ?                   | < 0.00010                 | 1.7            | 596   | 999                  |
| 10.2 | glutamine synthetase precursor                                                    | ?                   | 0.03                      | 1.2            | 397   | 480                  |
| 12   | Cluster of transketolase,<br>chloroplastic                                        | 80 kDa              | 0.031                     | 1.2            | 679   | 796                  |
| 23.4 | catalase-3                                                                        | 57 kDa              | 0.039                     | 1.3            | 186   | 236                  |
| 30.7 | probable mediator of RNA<br>polymerase II transcription subunit<br>37c isoform X2 | 69 kDa              | 0.00068                   | INF            | 0     | 11                   |
| 36   | Cluster of PREDICTED:<br>triosephosphate isomerase,<br>cytosolic                  | ?                   | 0.035                     | 1.2            | 351   | 426                  |
| 58   | Cluster of S-adenosylmethionine synthase                                          | 43 kDa              | 0.036                     | 1.3            | 213   | 268                  |
| 61.1 | 3'-hydroxy-N-methyl-(S)-<br>coclaurine 4'-O-methyltransferase-<br>like            | 42 kDa              | 0.027                     | 1.3            | 183   | 236                  |
| 75   | Cluster of adenosylhomocysteinase-like                                            | 53 kDa              | 0.038                     | 1.3            | 210   | 264                  |
| 83   | Cluster of elongation factor 1-alpha                                              | ?                   | 0.0014                    | 1.5            | 145   | 213                  |

| 116   | Cluster of chlorophyll a-b binding protein, chloroplastic                | 29 kDa  | 0.048     | 1.3 | 149 | 191 |
|-------|--------------------------------------------------------------------------|---------|-----------|-----|-----|-----|
| 117   | Cluster of soyasapogenol B<br>glucuronide galactosyltransferase-<br>like | 56 kDa  | 0.015     | 1.4 | 118 | 164 |
| 181   | Cluster of isoflavone reductase homolog 2                                | 34 kDa  | < 0.00010 | 3.6 | 49  | 174 |
| 181.1 | isoflavone reductase homolog 2                                           | 34 kDa  | < 0.00010 | 3.6 | 49  | 174 |
| 187   | Cluster of pyrophosphate-energized vacuolar membrane proton pump         | 80 kDa  | 0.04      | 1.4 | 85  | 117 |
| 209   | cysteine proteinase 15A                                                  | 40 kDa  | 0.021     | 1.5 | 51  | 79  |
| 213.2 | PREDICTED: auxin-binding<br>protein ABP19a-like                          | ?       | 0.00057   | 1.8 | 63  | 112 |
| 271.2 | protochlorophyllide reductase,<br>chloroplastic                          | 43 kDa  | 0.0019    | 3.8 | 6   | 23  |
| 282   | protoporphyrinogen oxidase 1, chloroplastic                              | 59 kDa  | 0.041     | 1.5 | 54  | 79  |
| 283   | Cluster of polyadenylate-binding protein RBP45 isoform X1                | 45 kDa  | 0.0048    | 1.8 | 44  | 77  |
| 289   | photosystem I reaction center subunit psaK, chloroplastic                | 13 kDa  | < 0.00010 | 2.2 | 39  | 86  |
| 291   | 50S ribosomal protein L1, chloroplastic                                  | 38 kDa  | < 0.00010 | 4.9 | 15  | 73  |
| 321   | Cluster of carbamoyl-phosphate synthase large chain, chloroplastic       | 127 kDa | 0.037     | 1.7 | 23  | 40  |
| 321.1 | carbamoyl-phosphate synthase<br>large chain, chloroplastic               | 127 kDa | 0.027     | 1.8 | 22  | 40  |
| 348.2 | linoleate 9S-lipoxygenase                                                | 97 kDa  | 0.003     | 1.8 | 47  | 83  |
| 357   | Cluster of PREDICTED:<br>multicystatin                                   | ?       | 0.0036    | 1.9 | 33  | 63  |
| 373   | putative plastocyanin                                                    | 17 kDa  | 0.029     | 1.4 | 98  | 135 |
| 380   | polyphenol oxidase A1,<br>chloroplastic                                  | 70 kDa  | 0.00013   | 2.4 | 28  | 67  |
| 387   | ferredoxin-A                                                             | 15 kDa  | < 0.00010 | 3.7 | 24  | 89  |
| 389   | 40S ribosomal protein S3                                                 | 26 kDa  | 0.00039   | 2.2 | 31  | 68  |
| 390   | PREDICTED: UDP-glucose<br>flavonoid 3-O-glucosyltransferase<br>7-like    | ?       | 0.041     | 1.6 | 38  | 59  |
| 408   | Cluster of isopentenyl-diphosphate<br>Delta-isomerase I                  | 34 kDa  | < 0.00010 | 2.5 | 27  | 68  |
| 408.1 | isopentenyl-diphosphate Delta-<br>isomerase I                            | 34 kDa  | < 0.00010 | 2.5 | 27  | 68  |
| 415   | subtilisin-like protease<br>Glyma18g48580 isoform X1                     | 84 kDa  | 0.002     | 2.4 | 18  | 43  |
| 419   | KS-type dehydrin SLTI629                                                 | ?       | < 0.00010 | 6   | 9   | 54  |
| 480.3 | PREDICTED: probable S-<br>sulfocysteine synthase,<br>chloroplastic       | ?       | < 0.00010 | INF | 0   | 14  |

| 506   | hydroxyphenylpyruvate reductase-<br>like                                             | ?      | 0.018     | 1.8 | 26 | 47 |
|-------|--------------------------------------------------------------------------------------|--------|-----------|-----|----|----|
| 508   | Cluster of proline-rich protein precursor                                            | 13 kDa | < 0.00010 | 6.3 | 6  | 38 |
| 527   | superoxide dismutase [Cu-Zn],<br>chloroplastic                                       | 21 kDa | 0.00018   | 2.4 | 28 | 66 |
| 536.1 | D-3-phosphoglycerate<br>dehydrogenase 2, chloroplastic                               | 66 kDa | 0.039     | 1.6 | 30 | 49 |
| 599   | Cluster of bifunctional monothiol glutaredoxin-S16, chloroplastic                    | 32 kDa | 0.038     | 1.9 | 15 | 29 |
| 599.2 | PREDICTED: bifunctional<br>monothiol glutaredoxin-S16,<br>chloroplastic-like         | ?      | 0.031     | 2.2 | 11 | 24 |
| 601   | ribonuclease 2                                                                       | 30 kDa | 0.043     | 2.1 | 11 | 23 |
| 605   | succinate dehydrogenase<br>[ubiquinone] flavoprotein subunit<br>1, mitochondrial     | 69 kDa | 0.031     | 1.8 | 21 | 38 |
| 607   | PREDICTED: aspartate-<br>semialdehyde dehydrogenase                                  | ?      | 0.011     | 2   | 21 | 42 |
| 697   | ATPase ARSA1                                                                         | 44 kDa | 0.034     | 1.8 | 19 | 35 |
| 722   | glutathione S-transferase L3                                                         | 27 kDa | 0.047     | 1.8 | 20 | 35 |
| 728   | PREDICTED: acid phosphatase 1                                                        | ?      | 0.002     | 4.2 | 5  | 21 |
| 743   | Cluster of 50S ribosomal protein<br>L5, chloroplastic-like                           | 29 kDa | 0.0027    | 2.8 | 11 | 31 |
| 760   | NAD(P)H-quinone oxidoreductase<br>subunit N, chloroplastic                           | 26 kDa | 0.03      | 2.1 | 13 | 27 |
| 784   | 20 kDa chaperonin, chloroplastic                                                     | 26 kDa | 0.046     | 1.7 | 26 | 43 |
| 798   | peroxisomal 3-ketoacyl-CoA<br>thiolase                                               | 49 kDa | 0.032     | 1.9 | 16 | 31 |
| 880   | ATPase subunit 8 (mitochondrion)                                                     | 18 kDa | 0.042     | 2.8 | 5  | 14 |
| 915   | Cluster of peptide methionine<br>sulfoxide reductase B5                              | 22 kDa | < 0.00010 | 6.2 | 4  | 25 |
| 948.3 | carbonic anhydrase 2                                                                 | 28 kDa | 0.029     | 2   | 15 | 30 |
| 975.2 | PREDICTED: lipid transfer protein<br>EARLI 1-like                                    | ?      | 0.00018   | INF | 0  | 13 |
| 985   | Cluster of eukaryotic translation initiation factor                                  | 86 kDa | 0.016     | 2.6 | 9  | 23 |
| 1024  | Cluster of 50S ribosomal protein<br>L18, chloroplastic                               | 18 kDa | 0.00072   | 14  | 1  | 14 |
| 1083  | 40S ribosomal protein S17                                                            | 16 kDa | 0.0033    | 4.5 | 4  | 18 |
| 1100  | Cluster of PREDICTED: glucan<br>endo-1,3-beta-glucosidase                            | ?      | 0.025     | 2.8 | 6  | 17 |
| 1125  | Cluster of 50S ribosomal protein<br>L4, chloroplastic                                | 34 kDa | 0.0013    | 13  | 1  | 13 |
| 1162  | Cluster of PREDICTED: 1,2-<br>dihydroxy-3-keto-5-<br>methylthiopentene dioxygenase 2 | ?      | 0.037     | 3.7 | 3  | 11 |

| 1203   | UDP-glycosyltransferase 79A6                                                          | 52 kDa  | 0.0096    | INF | 0  | 7  |
|--------|---------------------------------------------------------------------------------------|---------|-----------|-----|----|----|
| 1231   | protein disulfide isomerase-like 1-4                                                  | 65 kDa  | 0.043     | 1.9 | 16 | 30 |
| 1248.2 | peroxisomal and mitochondrial division factor 2                                       | 35 kDa  | 0.042     | 7   | 1  | 7  |
| 1261   | uridine 5'-monophosphate synthase-<br>like                                            | ?       | 0.025     | 5   | 2  | 10 |
| 1273   | omega-amidase, chloroplastic                                                          | 39 kDa  | 0.00018   | INF | 0  | 13 |
| 1309   | Cluster of PREDICTED: zinc<br>finger BED domain-containing<br>protein DAYSLEEPER-like | ?       | 0.042     | 2.8 | 5  | 14 |
| 1350   | stress-induced protein H4                                                             | 17 kDa  | < 0.00010 | INF | 0  | 21 |
| 1355   | methionine S-methyltransferase isoform X2                                             | 121 kDa | 0.037     | 3.7 | 3  | 11 |
| 1369   | anthocyanidin reductase                                                               | 38 kDa  | 0.037     | 3.7 | 3  | 11 |
| 1425.3 | polyphenol oxidase A1, chloroplastic                                                  | 70 kDa  | 0.0096    | INF | 0  | 7  |
| 1426   | stress-induced protein SAM22                                                          | 17 kDa  | < 0.00010 | INF | 0  | 18 |
| 1442   | Cluster of cationic peroxidase 1                                                      | 34 kDa  | 0.014     | 9   | 1  | 9  |
| 1461.1 | heterogeneous nuclear<br>ribonucleoprotein A3                                         | 39 kDa  | 0.042     | 2.8 | 5  | 14 |
| 1475   | PREDICTED: stellacyanin-like                                                          | ?       | 0.00072   | 14  | 1  | 14 |
| 1500   | Cluster of 40S ribosomal protein S7                                                   | 22 kDa  | 0.041     | 4.5 | 2  | 9  |
| 1551   | glutathione S-transferase GST 23                                                      | ?       | 0.042     | 7   | 1  | 7  |
| 1626   | chaperone protein dnaJ A6,<br>chloroplastic isoform X1                                | 47 kDa  | 0.027     | 2.3 | 10 | 23 |
| 1655   | chaperonin CPN60-like 2,<br>mitochondrial                                             | 61 kDa  | 0.036     | 2.7 | 6  | 16 |
| 1702   | phospholipase A1-Igamma2,<br>chloroplastic isoform X1                                 | 56 kDa  | 0.0096    | INF | 0  | 7  |
| 1725   | chloroplastic import inner<br>membrane translocase subunit<br>TIM22-2                 | 25 kDa  | 0.019     | INF | 0  | 6  |
| 1740   | 50S ribosomal protein L22, chloroplastic                                              | ?       | 0.019     | INF | 0  | 6  |
| 1743   | chaperone protein dnaJ A6, chloroplastic                                              | 47 kDa  | < 0.00010 | 7.7 | 3  | 23 |
| 1749   | subtilisin-like protease SBT1.6                                                       | 82 kDa  | 0.0096    | INF | 0  | 7  |
| 1761   | galactinolsucrose<br>galactosyltransferase                                            | 84 kDa  | 0.036     | INF | 0  | 5  |
| 1794   | costars family protein                                                                | 10 kDa  | 0.019     | INF | 0  | 6  |
| 1805   | REF/SRPP-like protein At1g67360<br>isoform X2                                         | 26 kDa  | 0.0096    | INF | 0  | 7  |
| 1857   | protein transport protein SEC23                                                       | 84 kDa  | 0.042     | 7   | 1  | 7  |
| 1900   | PREDICTED: beta-amyrin<br>synthase isoform X1                                         | ?       | 0.036     | INF | 0  | 5  |
| 1963   | SAL1 phosphatase                                                                      | 43 kDa  | 0.036     | INF | 0  | 5  |

| 1966   | 24 kDa seed coat protein precursor     | 25 kDa | 0.036 | INF | 0 | 5 |
|--------|----------------------------------------|--------|-------|-----|---|---|
| 2035.2 | UDP-glucuronic acid<br>decarboxylase 1 | 48 kDa | 0.036 | INF | 0 | 5 |

**Supplementary Table 4.10**. Fold change of proteins that were upregulated by treatment Bj+SL42, relative to Bj (control) under salt-stressed conditions.

| #     | Identified Proteins (3583/3610)                                                           | Molecular<br>Weight | Fisher's<br>Exact<br>Test | Fold<br>Change | Вј    | Bj+<br>SL42 |
|-------|-------------------------------------------------------------------------------------------|---------------------|---------------------------|----------------|-------|-------------|
| 1     | ribulose-1,5-bisphosphate<br>carboxylase/oxygenase large<br>subunit (chloroplast)         | 53 kDa              | < 0.00010                 | 1.2            | 6,327 | 7,552       |
| 3     | ribulose bisphosphate carboxylase small chain 4, chloroplastic                            | 20 kDa              | < 0.00010                 | 1.4            | 985   | 1,361       |
| 5     | Cluster of ribulose bisphosphate<br>carboxylase/oxygenase activase,<br>chloroplastic-like | 49 kDa              | 0.0087                    | 1.1            | 1,153 | 1,300       |
| 8     | Cluster of glycine dehydrogenase (decarboxylating), mitochondrial                         | 115 kDa             | 0.00013                   | 1.2            | 653   | 810         |
| 9     | Cluster of glyceraldehyde-3-<br>phosphate dehydrogenase A subunit                         | ?                   | < 0.00010                 | 1.3            | 747   | 972         |
| 9.2   | PREDICTED: glyceraldehyde-3-<br>phosphate dehydrogenase A,<br>chloroplastic               | ?                   | < 0.00010                 | 1.3            | 701   | 922         |
| 17    | Cluster of catalase                                                                       | 57 kDa              | 0.00094                   | 1.3            | 386   | 489         |
| 30.3  | ruBisCO large subunit-binding<br>protein subunit beta, chloroplastic                      | 66 kDa              | 0.032                     | 3.7            | 3     | 11          |
| 54.1  | PREDICTED: triosephosphate isomerase, cytosolic                                           | ?                   | 0.043                     | 1.2            | 306   | 359         |
| 57    | Cluster of tubulin alpha-3 chain                                                          | 50 kDa              | 0.02                      | 1.2            | 243   | 298         |
| 105   | Cluster of NADP-dependent malic enzyme                                                    | 65 kDa              | 0.0034                    | 1.4            | 144   | 199         |
| 184   | Cluster of aconitate hydratase, cytoplasmic                                               | 107 kDa             | 0.026                     | 1.3            | 152   | 193         |
| 198   | Cluster of iron-superoxide dismutase                                                      | ?                   | 0.002                     | 1.6            | 71    | 113         |
| 198.1 | iron-superoxide dismutase                                                                 | ?                   | 0.005                     | 1.6            | 61    | 96          |
| 198.2 | superoxide dismutase [Fe],<br>chloroplastic precursor                                     | 28 kDa              | 0.0028                    | 1.8            | 39    | 70          |
| 238   | harpin binding protein 1                                                                  | 28 kDa              | 0.048                     | 1.3            | 87    | 114         |
| 299.2 | caffeic acid 3-O-methyltransferase-<br>like                                               | 40 kDa              | 0.023                     | 1.5            | 51    | 76          |
| 322   | photosystem I reaction center subunit psaK, chloroplastic                                 | 13 kDa              | 0.0061                    | 1.6            | 57    | 90          |
| 332   | Cluster of carbamoyl-phosphate synthase large chain, chloroplastic                        | 127 kDa             | 0.042                     | 1.6            | 26    | 42          |
| 350   | Cluster of DEAD-box ATP-<br>dependent RNA helicase 56                                     | 48 kDa              | 0.036                     | 1.5            | 44    | 65          |

| 438    | Cluster of 1-aminocyclopropane-1-<br>carboxylate oxidase                              | 36 kDa | 0.021     | 1.6 | 37 | 59 |
|--------|---------------------------------------------------------------------------------------|--------|-----------|-----|----|----|
| 470    | Cluster of T-complex protein 1<br>subunit eta                                         | 60 kDa | 0.046     | 1.5 | 36 | 54 |
| 532    | Cluster of PREDICTED: 12-<br>oxophytodienoate reductase 3                             | ?      | 0.046     | 1.5 | 36 | 54 |
| 532.2  | 12-oxophytodienoate reductase 3                                                       | 44 kDa | 0.047     | 1.5 | 32 | 49 |
| 532.3  | 12-oxophytodienoate reductase 3                                                       | 43 kDa | 0.027     | 3.2 | 4  | 13 |
| 553    | PREDICTED: UDP-glucose<br>flavonoid 3-O-glucosyltransferase<br>7-like                 | ?      | 0.00076   | 2.4 | 19 | 46 |
| 579    | Cluster of 15-cis-phytoene<br>desaturase,<br>chloroplastic/chromoplastic              | 63 kDa | 0.047     | 1.6 | 24 | 39 |
| 591    | ferredoxin-A                                                                          | 15 kDa | < 0.00010 | 3.1 | 24 | 74 |
| 632    | abscisate beta-glucosyltransferase                                                    | 53 kDa | 0.0064    | 2   | 20 | 41 |
| 641    | Cluster of ferritin                                                                   | ?      | 0.018     | 1.5 | 63 | 92 |
| 680    | Cluster of ferritin-4, chloroplastic                                                  | 28 kDa | 0.011     | 1.6 | 44 | 71 |
| 709    | Cluster of pyrophosphatefructose<br>6-phosphate 1-phosphotransferase<br>subunit alpha | 68 kDa | 0.035     | 1.8 | 20 | 35 |
| 739    | polygalacturonase inhibitor 1-like protein precursor                                  | 38 kDa | 0.00017   | 3.5 | 10 | 35 |
| 756    | Cluster of proline-rich protein precursor                                             | 13 kDa | < 0.00010 | 3.3 | 14 | 46 |
| 758    | UDP-sulfoquinovose synthase, chloroplastic                                            | 53 kDa | 0.012     | 2   | 18 | 36 |
| 770    | Cluster of probable 3-<br>hydroxyisobutyrate dehydrogenase-<br>like 1, mitochondrial  | 35 kDa | 0.0049    | 2.5 | 12 | 30 |
| 784    | dihydropyrimidinase                                                                   | 57 kDa | 0.042     | 1.7 | 19 | 33 |
| 803.2  | PREDICTED: lipid transfer protein<br>EARLI 1-like                                     | ?      | 0.00014   | INF | 0  | 13 |
| 824    | PREDICTED: ferritin-2, chloroplastic                                                  | ?      | 0.0012    | 1.8 | 50 | 88 |
| 906    | UDP-glycosyltransferase 84B2                                                          | 59 kDa | 0.0098    | 3.4 | 5  | 17 |
| 979.2  | putative glucose-6-phosphate 1-<br>epimerase                                          | 36 kDa | 0.0015    | 4.2 | 5  | 21 |
| 991    | cucumisin                                                                             | 77 kDa | 0.047     | 1.6 | 24 | 39 |
| 1091.2 | MFP1 attachment factor 1                                                              | 16 kDa | 0.012     | 4.3 | 3  | 13 |
| 1168   | glucose-6-phosphate 1-<br>dehydrogenase, cytoplasmic<br>isoform                       | 59 kDa | 0.023     | 2.1 | 13 | 27 |
| 1219   | ectonucleotide<br>pyrophosphatase/phosphodiesterase<br>family member 3                | 51 kDa | 0.039     | 1.8 | 18 | 32 |

| 1241   | NAD(P)H-quinone oxidoreductase subunit N, chloroplastic          | 26 kDa  | 0.0073    | 6   | 2  | 12 |
|--------|------------------------------------------------------------------|---------|-----------|-----|----|----|
| 1273   | probable aldo-keto reductase 1                                   | ?       | < 0.00010 | 2.8 | 18 | 50 |
| 1307   | anthocyanidin 3-O-<br>glucosyltransferase 7                      | 50 kDa  | 0.0073    | 6   | 2  | 12 |
| 1428   | malonyl-CoA:isoflavone 7-O-<br>glucoside-6"-O-malonyltransferase | 52 kDa  | 0.0024    | 7   | 2  | 14 |
| 1471.2 | starch synthase IIa-1                                            | 85 kDa  | 0.0043    | INF | 0  | 8  |
| 1555   | 15-cis-phytoene desaturase,<br>chloroplastic/chromoplastic       | 52 kDa  | 0.013     | 5.5 | 2  | 11 |
| 1631   | probable aldehyde dehydrogenase isoform X1                       | 61 kDa  | 0.021     | 8   | 1  | 8  |
| 1749   | probable aldo-keto reductase 1                                   | 37 kDa  | < 0.00010 | 7   | 4  | 28 |
| 2002   | probable carboxylesterase 8                                      | 36 kDa  | 0.033     | INF | 0  | 5  |
| 2032   | probable carotenoid cleavage dioxygenase 4, chloroplastic        | 65 kDa  | 0.0043    | INF | 0  | 8  |
| 2053.2 | glutamate synthase [NADH],<br>amyloplastic isoform X1            | 240 kDa | 0.017     | INF | 0  | 6  |
| 2101   | stress-induced protein SAM22                                     | 17 kDa  | 0.05      | 3.3 | 3  | 10 |
| 2335   | BURP domain protein GmRD22<br>isoform X1                         | 34 kDa  | 0.033     | INF | 0  | 5  |

**Supplementary Table 4.11**. Fold change of proteins that were upregulated by treatment Bj+SL48, relative to Bj (control) under salt-stressed conditions.

| #   | Identified Proteins (3583/3610)                                                           | Molecular<br>Weight | Fisher's<br>Exact<br>Test | Fold<br>Change | Bj    | Bj+<br>SL48 |
|-----|-------------------------------------------------------------------------------------------|---------------------|---------------------------|----------------|-------|-------------|
| 1   | ribulose-1,5-bisphosphate<br>carboxylase/oxygenase large<br>subunit (chloroplast)         | 53 kDa              | < 0.00010                 | 1.2            | 6,327 | 7,461       |
| 3   | ribulose bisphosphate carboxylase<br>small chain 4, chloroplastic                         | 20 kDa              | < 0.00010                 | 1.5            | 985   | 1,482       |
| 5   | Cluster of ribulose bisphosphate<br>carboxylase/oxygenase activase,<br>chloroplastic-like | 49 kDa              | 0.00016                   | 1.2            | 1,153 | 1,354       |
| 8   | Cluster of glycine dehydrogenase<br>(decarboxylating), mitochondrial                      | 115 kDa             | 0.016                     | 1.1            | 653   | 746         |
| 9   | Cluster of glyceraldehyde-3-<br>phosphate dehydrogenase A subunit                         | ?                   | 0.011                     | 1.1            | 747   | 853         |
| 9.2 | PREDICTED: glyceraldehyde-3-<br>phosphate dehydrogenase A,<br>chloroplastic               | ?                   | 0.015                     | 1.1            | 701   | 798         |
| 11  | Cluster of glutamine synthetase precursor isoform X1                                      | 48 kDa              | < 0.00010                 | 1.3            | 529   | 712         |
| 17  | Cluster of catalase                                                                       | 57 kDa              | < 0.00010                 | 1.3            | 386   | 514         |
| 18  | Cluster of peroxisomal glycolate<br>oxidase isoform X1                                    | 41 kDa              | 0.02                      | 1.1            | 573   | 656         |

| 18.2  | peroxisomal (S)-2-hydroxy-acid<br>oxidase GLO1-like                                                                                   | 41 kDa  | 0.038     | 1.1 | 464 | 529 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-----|-----|-----|
| 18.3  | peroxisomal (S)-2-hydroxy-acid<br>oxidase GLO1-like isoform X2                                                                        | 41 kDa  | 0.047     | 1.1 | 453 | 514 |
| 22    | lipoxygenase                                                                                                                          | 96 kDa  | 0.012     | 1.1 | 643 | 739 |
| 33    | Cluster of tubulin beta chain                                                                                                         | 50 kDa  | 0.034     | 1.2 | 405 | 467 |
| 57    | Cluster of tubulin alpha-3 chain                                                                                                      | 50 kDa  | 0.0088    | 1.3 | 243 | 304 |
| 86.1  | glutamate decarboxylase                                                                                                               | 56 kDa  | 0.035     | 1.3 | 91  | 120 |
| 87.9  | plasma membrane ATPase                                                                                                                | 104 kDa | < 0.00010 | INF | 0   | 26  |
| 105   | Cluster of NADP-dependent malic enzyme                                                                                                | 65 kDa  | 0.029     | 1.3 | 144 | 182 |
| 123.2 | phosphoenolpyruvate carboxylase 4                                                                                                     | 118 kDa | 0.027     | 1.7 | 24  | 41  |
| 143   | Cluster of alpha-xylosidase 1                                                                                                         | 103 kDa | 0.046     | 1.3 | 113 | 143 |
| 145.2 | protein disulfide-isomerase                                                                                                           | 56 kDa  | 0.039     | 1.3 | 96  | 125 |
| 146.2 | heme-binding protein 2                                                                                                                | 26 kDa  | 0.028     | 1.3 | 94  | 125 |
| 157   | seed linoleate 9S-lipoxygenase                                                                                                        | 97 kDa  | 0.012     | 1.2 | 278 | 340 |
| 161   | PREDICTED: aldehyde<br>dehydrogenase family 2 member<br>B4, mitochondrial                                                             | ?       | 0.022     | 1.3 | 115 | 151 |
| 171.2 | PREDICTED: auxin-binding<br>protein ABP19a-like                                                                                       | ?       | 0.025     | 1.3 | 108 | 142 |
| 184.2 | aconitate hydratase, cytoplasmic                                                                                                      | 107 kDa | 0.03      | 1.4 | 78  | 106 |
| 204   | photosystem II protein H<br>(chloroplast)                                                                                             | 8 kDa   | 0.031     | 1.3 | 92  | 122 |
| 209.4 | trifunctional UDP-glucose 4,6-<br>dehydratase/UDP-4-keto-6-deoxy-<br>D-glucose 3,5-epimerase/UDP-4-<br>keto-L-rhamnose-reductase RHM1 | 74 kDa  | 0.023     | 2.2 | 11  | 24  |
| 218.4 | polyadenylate-binding protein<br>RBP47                                                                                                | 47 kDa  | 0.033     | INF | 0   | 5   |
| 222   | soyasaponin III<br>rhamnosyltransferase                                                                                               | 54 kDa  | 0.00093   | 1.6 | 75  | 121 |
| 243   | Cluster of 4-alpha-<br>glucanotransferase DPE2                                                                                        | 111 kDa | 0.016     | 1.4 | 69  | 99  |
| 259.4 | protein THYLAKOID<br>FORMATION1, chloroplastic<br>isoform X1                                                                          | 33 kDa  | 0.0021    | INF | 0   | 9   |
| 291   | glucose-6-phosphate 1-<br>dehydrogenase, chloroplastic                                                                                | 67 kDa  | 0.002     | 1.7 | 52  | 88  |
| 302.2 | probable UDP-arabinopyranose<br>mutase 1                                                                                              | 42 kDa  | 0.011     | 1.5 | 55  | 84  |
| 322   | photosystem I reaction center subunit psaK, chloroplastic                                                                             | 13 kDa  | 0.037     | 1.4 | 57  | 80  |
| 330   | Cluster of calvin cycle protein<br>CP12-2, chloroplastic                                                                              | 14 kDa  | 0.013     | 1.4 | 72  | 104 |
| 332   | Cluster of carbamoyl-phosphate<br>synthase large chain, chloroplastic                                                                 | 127 kDa | 0.05      | 1.6 | 26  | 41  |

| 338.2  | phi class glutathione S-transferase                                                  | 25 kDa  | 0.037     | 1.5 | 33 | 51 |
|--------|--------------------------------------------------------------------------------------|---------|-----------|-----|----|----|
| 339    | 9-divinyl ether synthase-like                                                        | 54 kDa  | 0.047     | 1.4 | 48 | 68 |
| 435.1  | probable glutathione S-transferase                                                   | 26 kDa  | 0.047     | 1.4 | 48 | 68 |
| 438    | Cluster of 1-aminocyclopropane-1-<br>carboxylate oxidase                             | 36 kDa  | 0.0096    | 1.7 | 37 | 62 |
| 537    | Cluster of gibberellin-regulated protein 6 precursor                                 | 13 kDa  | 0.028     | 1.6 | 28 | 46 |
| 553    | PREDICTED: UDP-glucose<br>flavonoid 3-O-glucosyltransferase<br>7-like                | ?       | < 0.00010 | 2.9 | 19 | 56 |
| 555    | Cluster of adenylosuccinate synthetase 2, chloroplastic                              | 53 kDa  | 0.05      | 1.6 | 26 | 41 |
| 579    | Cluster of 15-cis-phytoene<br>desaturase,<br>chloroplastic/chromoplastic             | 63 kDa  | 0.0011    | 2.2 | 24 | 52 |
| 600    | Cluster of ubiquitin-activating enzyme E1 1                                          | 124 kDa | 0.034     | 1.8 | 17 | 31 |
| 638    | Cluster of PREDICTED: topless-<br>related protein 3-like isoform X1                  | ?       | 0.0013    | 2.5 | 15 | 38 |
| 638.2  | protein TOPLESS                                                                      | 125 kDa | 0.041     | 2.2 | 8  | 18 |
| 638.3  | topless-related protein 4 isoform X2                                                 | 125 kDa | 0.011     | 3.8 | 4  | 15 |
| 638.4  | topless-related protein 3                                                            | 124 kDa | 0.012     | 4.3 | 3  | 13 |
| 716    | membrane primary amine oxidase                                                       | 28 kDa  | 0.023     | 1.6 | 32 | 52 |
| 739    | polygalacturonase inhibitor 1-like<br>protein precursor                              | 38 kDa  | < 0.00010 | 4.5 | 10 | 45 |
| 756    | Cluster of proline-rich protein precursor                                            | 13 kDa  | 0.0011    | 2.6 | 14 | 37 |
| 770    | Cluster of probable 3-<br>hydroxyisobutyrate dehydrogenase-<br>like 1, mitochondrial | 35 kDa  | 0.036     | 2   | 12 | 24 |
| 803.2  | PREDICTED: lipid transfer protein EARLI 1-like                                       | ?       | < 0.00010 | INF | 0  | 22 |
| 803.3  | alpha-amylase inhibitor/lipid<br>transfer/seed storage family protein<br>precursor   | 13 kDa  | 0.0011    | 3.4 | 8  | 27 |
| 836    | soyasapogenol B glucuronide galactosyltransferase                                    | ?       | 0.024     | 1.6 | 37 | 58 |
| 906    | UDP-glycosyltransferase 84B2                                                         | 59 kDa  | 0.015     | 3.2 | 5  | 16 |
| 908.3  | PREDICTED: ras-related protein<br>RABA5d-like                                        | ?       | 0.0083    | INF | 0  | 7  |
| 918    | amidase 1 isoform X1                                                                 | 46 kDa  | 0.045     | 1.9 | 14 | 26 |
| 991    | cucumisin                                                                            | 77 kDa  | 0.016     | 1.8 | 24 | 43 |
| 1091.2 | MFP1 attachment factor 1                                                             | 16 kDa  | 0.012     | 4.3 | 3  | 13 |
| 1203   | protein transport protein Sec24-like<br>At4g32640                                    | 118 kDa | 0.015     | 3.2 | 5  | 16 |
| 1234   | UDP-glycosyltransferase 79A6                                                         | 52 kDa  | 0.00053   | 5.2 | 4  | 21 |

| 1241   | NAD(P)H-quinone oxidoreductase subunit N, chloroplastic                          | 26 kDa | 0.0041    | 6.5 | 2 | 13 |
|--------|----------------------------------------------------------------------------------|--------|-----------|-----|---|----|
| 1272   | Cluster of pyruvate decarboxylase 2                                              | 65 kDa | 0.02      | 2.5 | 8 | 20 |
| 1304   | Cluster of mannose-1-phosphate guanyltransferase alpha isoform X2                | 46 kDa | 0.023     | 3   | 5 | 15 |
| 1307   | anthocyanidin 3-O-<br>glucosyltransferase 7                                      | 50 kDa | < 0.00010 | 10  | 2 | 20 |
| 1323   | outer envelope pore protein 37, chloroplastic                                    | 36 kDa | 0.035     | 2.4 | 7 | 17 |
| 1428   | malonyl-CoA:isoflavone 7-O-<br>glucoside-6"-O-malonyltransferase                 | 52 kDa | 0.007     | 6   | 2 | 12 |
| 1471.2 | starch synthase IIa-1                                                            | 85 kDa | 0.016     | INF | 0 | 6  |
| 1519   | glutamyl-tRNA(Gln)<br>amidotransferase subunit A,<br>chloroplastic/mitochondrial | 58 kDa | 0.049     | 3.3 | 3 | 10 |
| 1555   | 15-cis-phytoene desaturase,<br>chloroplastic/chromoplastic                       | 52 kDa | 0.035     | 4.5 | 2 | 9  |
| 1631   | probable aldehyde dehydrogenase<br>isoform X1                                    | 61 kDa | 0.037     | 7   | 1 | 7  |
| 1663   | Cluster of tryptophantRNA ligase, cytoplasmic                                    | 46 kDa | 0.007     | 6   | 2 | 12 |
| 1666   | uridine 5'-monophosphate synthase-<br>like                                       | ?      | 0.049     | 3.3 | 3 | 10 |
| 1691   | Cluster of probable splicing factor 3A subunit 1                                 | 89 kDa | 0.0021    | INF | 0 | 9  |
| 1691.2 | PREDICTED: probable splicing factor 3A subunit 1                                 | ?      | 0.0021    | INF | 0 | 9  |
| 1965.2 | nudix hydrolase 20, chloroplastic isoform X1                                     | 41 kDa | 0.016     | INF | 0 | 6  |
| 1970   | 50S ribosomal protein L6, chloroplastic                                          | 25 kDa | 0.035     | 4.5 | 2 | 9  |
| 2002   | probable carboxylesterase 8                                                      | 36 kDa | 0.033     | INF | 0 | 5  |
| 2020   | PREDICTED: UDP-<br>glycosyltransferase 73C6-like                                 | ?      | 0.033     | INF | 0 | 5  |
| 2247   | protein RETICULATA-RELATED<br>4, chloroplastic isoform X1                        | 47 kDa | 0.0021    | INF | 0 | 9  |

| #     | Identified Proteins (3583/3610)      | Molecular | Fisher's  | Fold   | Bi    | Ri+    |
|-------|--------------------------------------|-----------|-----------|--------|-------|--------|
| 11    |                                      | Weight    | Exact     | Change | Dj    | SI 42+ |
|       |                                      | ,, eight  | Test      | chunge |       | SL48   |
| 1     | ribulose-1,5-bisphosphate            | 53 kDa    | < 0.00010 | 1.1    | 6,327 | 6,923  |
|       | carboxylase/oxygenase large          |           |           |        | ,     | ,      |
|       | subunit (chloroplast)                |           |           |        |       |        |
| 3     | ribulose bisphosphate carboxylase    | 20 kDa    | < 0.00010 | 1.2    | 985   | 1,201  |
|       | small chain 4, chloroplastic         |           |           |        |       |        |
| 5     | Cluster of ribulose bisphosphate     | 49 kDa    | 0.0046    | 1.1    | 1,153 | 1,264  |
|       | carboxylase/oxygenase activase,      |           |           |        |       |        |
| 0.2   | chloroplastic-like                   | 1111-D-   | 0.027     | 1.2    | 200   | 225    |
| 8.3   | (decarboxylating) mitochondrial      | ПП кДа    | 0.037     | 1.2    | 200   | 235    |
| 11    | Cluster of glutamine synthetase      | 18 kDa    | < 0.00010 | 13     | 520   | 678    |
| 11    | precursor isoform X1                 | 40 KDa    | < 0.00010 | 1.5    | 529   | 078    |
| 13    | Cluster of PREDICTED:                | ?         | 0.0064    | 1.1    | 719   | 806    |
| _     | phosphoglycerate kinase, cytosolic   |           |           | -      |       |        |
| 13.2  | phosphoglycerate kinase, cytosolic   | 50 kDa    | 0.0039    | 1.1    | 618   | 706    |
| 17    | Cluster of catalase                  | 57 kDa    | 0.0014    | 1.2    | 386   | 468    |
| 21.3  | granule bound starch synthase Ia     | 67 kDa    | 0.01      | 3      | 6     | 18     |
| 31    | Cluster of stromal 70 kDa heat       | 74 kDa    | 0.036     | 1.1    | 353   | 398    |
|       | shock-related protein, chloroplastic |           |           |        |       |        |
| 57    | Cluster of tubulin alpha-3 chain     | 50 kDa    | 0.049     | 1.1    | 243   | 278    |
| 60    | photosystem I subunit VII            | 9 kDa     | < 0.00010 | 1.5    | 249   | 382    |
|       | (chloroplast)                        |           |           |        |       |        |
| 72.2  | seed linoleate 9S-lipoxygenase-2     | ?         | < 0.00010 | INF    | 0     | 28     |
| 79    | Cluster of ATP synthase subunit b',  | 23 kDa    | 0.016     | 1.3    | 150   | 188    |
| 70.0  | chloroplastic                        | 041D      | 0.022     | 1.2    | 100   | 1.5.4  |
| /9.2  | putative ATP synthase subunit b      | 24 kDa    | 0.023     | 1.3    | 122   | 154    |
| 105   | Cluster of NADP-dependent malic      | 65 kDa    | 0.019     | 1.2    | 144   | 180    |
| 121   | enzyme                               | 201D      | 0.00042   | 1.4    | 140   | 207    |
| 131   | L 12 ablaraplastia                   | 20 KDa    | 0.00042   | 1.4    | 146   | 207    |
| 138.4 | glutathione S-transferase GST 6      | ?         | 0.00022   | INF    | 0     | 12     |
| 146.2 | heme-binding protein 2               | 26 kDa    | 0.035     | 1.3    | 94    | 120    |
| 161   | PREDICTED: aldehvde                  | ?         | 0.047     | 12     | 115   | 141    |
| 101   | dehydrogenase family 2 member        | -         | 0.017     | 1.2    | 110   | 111    |
|       | B4, mitochondrial                    |           |           |        |       |        |
| 204   | photosystem II protein H             | 8 kDa     | < 0.00010 | 1.9    | 92    | 174    |
|       | (chloroplast)                        |           |           |        |       |        |
| 218.3 | polyadenylate-binding protein        | 45 kDa    | 0.014     | 2.1    | 14    | 29     |
|       | RBP45                                |           |           |        |       |        |
| 227.2 | thioredoxin M1, chloroplastic        | 26 kDa    | 0.049     | 1.3    | 64    | 84     |
| 231   | PREDICTED: thioredoxin H1            | ?         | 0.011     | 1.3    | 98    | 132    |

**Supplementary Table 4.12**. Fold change of proteins that were upregulated by treatment Bj+SL42+SL48, relative to Bj (control) under salt-stressed conditions.

| 243    | Cluster of 4-alpha-                                                      | 111 kDa | 0.02      | 1.4 | 69 | 95  |
|--------|--------------------------------------------------------------------------|---------|-----------|-----|----|-----|
|        | glucanotransferase DPE2                                                  |         |           |     |    |     |
| 291    | glucose-6-phosphate 1-                                                   | 67 kDa  | 0.017     | 1.5 | 52 | 76  |
|        | dehydrogenase, chloroplastic                                             |         |           |     |    |     |
| 302.2  | probable UDP-arabinopyranose<br>mutase 1                                 | 42 kDa  | 0.04      | 1.4 | 55 | 75  |
| 330    | Cluster of calvin cycle protein<br>CP12-2, chloroplastic                 | 14 kDa  | < 0.00010 | 1.8 | 72 | 126 |
| 344    | NADH dehydrogenase subunit 7<br>(chloroplast)                            | 46 kDa  | 0.05      | 1.4 | 50 | 68  |
| 350.2  | DEAD-box ATP-dependent RNA<br>helicase 56                                | 48 kDa  | 0.048     | 1.5 | 31 | 46  |
| 537    | Cluster of gibberellin-regulated<br>protein 6 precursor                  | 13 kDa  | 0.00012   | 2.2 | 28 | 63  |
| 553    | PREDICTED: UDP-glucose<br>flavonoid 3-O-glucosyltransferase<br>7-like    | ?       | < 0.00010 | 2.6 | 19 | 50  |
| 566    | Cluster of gamma-tocopherol methyltransferase                            | 39 kDa  | 0.013     | 2   | 16 | 32  |
| 579    | Cluster of 15-cis-phytoene<br>desaturase,<br>chloroplastic/chromoplastic | 63 kDa  | 0.034     | 1.6 | 24 | 39  |
| 638    | Cluster of PREDICTED: topless-<br>related protein 3-like isoform X1      | ?       | 0.022     | 1.9 | 15 | 29  |
| 638.2  | protein TOPLESS                                                          | 125 kDa | 0.035     | 2.2 | 8  | 18  |
| 638.3  | topless-related protein 4 isoform X2                                     | 125 kDa | 0.036     | 3   | 4  | 12  |
| 638.4  | topless-related protein 3                                                | 124 kDa | 0.044     | 3.3 | 3  | 10  |
| 739    | polygalacturonase inhibitor 1-like<br>protein precursor                  | 38 kDa  | 0.0015    | 2.9 | 10 | 29  |
| 756    | Cluster of proline-rich protein precursor                                | 13 kDa  | 0.049     | 1.8 | 14 | 25  |
| 758    | UDP-sulfoquinovose synthase,<br>chloroplastic                            | 53 kDa  | 0.05      | 1.7 | 18 | 30  |
| 801    | Cluster of polyadenylate-binding protein 2                               | 71 kDa  | 0.037     | 1.4 | 46 | 65  |
| 803.2  | PREDICTED: lipid transfer protein<br>EARLI 1-like                        | ?       | 0.0074    | INF | 0  | 7   |
| 906    | UDP-glycosyltransferase 84B2                                             | 59 kDa  | 0.012     | 3.2 | 5  | 16  |
| 985.2  | heme oxygenase 3                                                         | ?       | 0.03      | INF | 0  | 5   |
| 991    | cucumisin                                                                | 77 kDa  | 0.0065    | 1.9 | 24 | 45  |
| 1001.3 | carbonic anhydrase 2                                                     | 28 kDa  | 0.03      | 1.9 | 15 | 28  |
| 1141   | Cluster of polyadenylate-binding protein 2                               | 72 kDa  | 0.0049    | 1.7 | 37 | 63  |
| 1203   | protein transport protein Sec24-like<br>At4g32640                        | 118 kDa | 0.0004    | 4.6 | 5  | 23  |
| 1241   | NAD(P)H-quinone oxidoreductase subunit N, chloroplastic                  | 26 kDa  | 0.018     | 5   | 2  | 10  |

| 1333   | multiple organellar RNA editing factor 9-like                | 25 kDa  | 0.043     | 2.3 | 7 | 16 |
|--------|--------------------------------------------------------------|---------|-----------|-----|---|----|
| 1484   | 7-hydroxymethyl chlorophyll a reductase, chloroplastic       | 50 kDa  | 0.036     | 3   | 4 | 12 |
| 1488   | protein transport protein Sec24-like<br>At3g07100 isoform X2 | 113 kDa | 0.01      | 5.5 | 2 | 11 |
| 1533.2 | carbamoyl-phosphate synthase small chain, chloroplastic      | 48 kDa  | 0.027     | 3.7 | 3 | 11 |
| 1691   | Cluster of probable splicing factor<br>3A subunit 1          | 89 kDa  | < 0.00010 | INF | 0 | 16 |
| 1691.2 | PREDICTED: probable splicing factor 3A subunit 1             | ?       | < 0.00010 | INF | 0 | 14 |
| 1749   | probable aldo-keto reductase 1                               | 37 kDa  | 0.036     | 3   | 4 | 12 |
| 1765   | U1 small nuclear ribonucleoprotein<br>C                      | 22 kDa  | 0.044     | 3.3 | 3 | 10 |
| 1841   | splicing factor 3B subunit 4                                 | 40 kDa  | 0.0055    | 10  | 1 | 10 |
| 2247   | protein RETICULATA-RELATED<br>4, chloroplastic isoform X1    | 47 kDa  | 0.0018    | INF | 0 | 9  |



## Functional classification of proteins based on GO categories

**Supplementary Figure 4.1**. Number of sequences involved in the cellular and metabolic processes of the soybean leaf proteome. (A) The seeds were treated with 10 mM MgSO<sub>4</sub> or bacterized with the strains *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 or co-inoculated under optimal conditions. Values represent mean  $\pm$  SE (n=3).



**Supplementary Figure 4.1**. (cont.) Number of sequences involved in the cellular and metabolic processes of the soybean leaf proteome. (B) The seeds were treated with 10 mM MgSO<sub>4</sub> or bacterized with the strains *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 or co-inoculated under salt stress. Values represent mean  $\pm$  SE (n=3).

246



**Supplementary Figure 4.1**. (cont.) Number of sequences involved in the cellular and metabolic processes of the soybean leaf proteome. (C) The seeds were bacterized with *Bradyrhizobium japonicum* (Bj) as control or the strains *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 were co-inoculated with Bj under optimal conditions. Values represent mean  $\pm$  SE (n=3).



**Supplementary Figure 4.1**. (cont.) Number of sequences involved in the cellular and metabolic processes of the soybean leaf proteome. (D) The seeds were bacterized with *Bradyrhizobium japonicum* (Bj) as control or the strains *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 were co-inoculated with Bj under salt stress. Values represent mean  $\pm$  SE (n=3).

248





**Supplementary Figure 4.2**. Number of sequences involved in the molecular function - binding of the soybean leaf proteome. (A) The seeds were treated with 10 mM MgSO<sub>4</sub> or bacterized with the strains *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 or co-inoculated under optimal and (B) under salt stress or (C) the seeds were bacterized with *Bradyrhizobium japonicum* (Bj) as control or the strains were co-inoculated with Bj under optimal and (D) under salt stress conditions. Values represent mean  $\pm$  SE (n=3).



**Supplementary Figure 4.3.** Number of sequences involved in the cellular components – membranes and organelles of the soybean leaf proteome. (A) The seeds were treated with 10 mM MgSO<sub>4</sub> or bacterized with the strains *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 or co-inoculated under optimal and (B) under salt stress or (C) the seeds were bacterized with *Bradyrhizobium japonicum* (Bj) as control or the strains were co-inoculated with Bj under optimal and (D) under salt stress conditions. Values represent mean  $\pm$  SE (n=3).



**Supplementary Figure 4.4**. Number of sequences (< 10) involved in the GO functions of the soybean leaf proteome. (A) The seeds were treated with 10 mM MgSO<sub>4</sub> or bacterized with the strains *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 or co-inoculated under optimal and (B) under salt stress conditions.



**Supplementary Figure 4.4**. (cont.) Number of sequences (< 10) involved in the GO functions of the soybean leaf proteome. (C) The seeds were bacterized with *Bradyrhizobium japonicum* (Bj) as control or the strains *Rhizobium* sp. SL42, *Hydrogenophaga* sp. SL48 were co-inoculated with Bj under optimal and (D) under salt stress conditions. Values represent mean  $\pm$  SE (n=3).
#### APPENDIX C

# Supplementary Figures and Tables – Chapter 5

# Supplementary Table 5.1. Description of Illumina libraries.

| Sample ID            | SL42     | SL48     |
|----------------------|----------|----------|
| Qubit Conc. (ng/µl)) | 25.2     | 37       |
| Volume (µl)          | 10       | 10       |
| Yield (ng)           | 252      | 370      |
| Index 1              | N704     | N705     |
| Index 1 Sequence     | TCCTGAGC | GGACTCCT |
| Index 2              | S502     | S502     |
| Index 2 Sequence     | CTCTCTAT | CTCTCTAT |

# Supplementary Table 5.2. Tapestation Profile of the libraries.

|                        | SL42 | SL48 |  |
|------------------------|------|------|--|
| From (bp)              | 226  | 220  |  |
| To (bp)                | 1192 | 1051 |  |
| Average (bp)           | 574  | 591  |  |
| Conc. ng/ml            | 28.9 | 31.1 |  |
| Region Molarity nmol/l | 86.7 | 91.9 |  |

## Supplementary Table 5.3. Nanopore read statistics.

| Statistics          | SL42      | SL48      |
|---------------------|-----------|-----------|
| Reads Generated     | 60262     | 44739     |
| Maximum Read Length | 71443     | 91232     |
| Minimum Read Length | 19        | 38        |
| Average Read Length | 6311.1    | 7323.4    |
| Median Read Length  | 271.5     | 3762      |
| Total Reads Length  | 380317539 | 327639793 |
| Reads $\geq 100$ bp | 60213     | 44712     |
| Reads >= 200 bp     | 58663     | 43957     |
| Reads $\geq 500$ bp | 49279     | 40114     |
| Reads >= 1 Kbp      | 44337     | 36607     |
| Reads >= 10 Kbp     | 13605     | 11252     |
| N50 value           | 11838     | 13578     |



Supplementary Figure 5.1. TapeStation Profiles of SL42 and SL48 DNA libraries.

# Supplementary Table 5.4. Illumina read statistics.

| Sample | Raw Read | Processed Reads | % Reads Retained |
|--------|----------|-----------------|------------------|
| SL42   | 2782606  | 2533621         | 91.05            |
| SL48   | 3022451  | 2780700         | 92.00            |

# Supplementary Table 5.5. Read statistics combined.

|                          | SL42_barcod | e05       | SL48_barcod | e06       |
|--------------------------|-------------|-----------|-------------|-----------|
| Nanopore combined        | Raw         | Processed | Raw         | Processed |
| Contigs Generated        | 110664      | 60262     | 82669       | 44739     |
| Maximum Contig Length    | 71508       | 71443     | 91305       | 91232     |
| Minimum Contig Length    | 117         | 19        | 121         | 38        |
| Average Contig Length    | 5771.1      | 6311.1    | 6966.1      | 7323.4    |
| Median Contig Length     | 672.5       | 271.5     | 3972        | 3762      |
| Total Contigs Length     | 638654847   | 380317539 | 575884066   | 327639793 |
| Total Number of Non-ATGC | 0           | 0         | 0           | 0         |
| % of Non-ATGC Characters | 0           | 0         | 0           | 0         |
| Contigs >= 100 bp        | 110664      | 60213     | 82669       | 44712     |
| Contigs $\geq 200$ bp    | 110218      | 58663     | 82354       | 43957     |
| Contigs $\geq 500$ bp    | 88956       | 49279     | 74407       | 40114     |
| Contigs >= 1 Kbp         | 75713       | 44337     | 66310       | 36607     |
| Contigs >= 10 Kbp        | 22414       | 13605     | 19423       | 11252     |
| N50 value                | 11575       | 11838     | 13208       | 13578     |

Supplementary Table 5.6. Cut-offs and range of SSR in the genome assembly.

| Statistics                                | SL42    | SL48    |
|-------------------------------------------|---------|---------|
| Total number of sequences examined        | 3       | 1       |
| Total size of examined sequences (bp)     | 5166003 | 5433040 |
| Total number of identified SSRs           | 116     | 153     |
| Number of SSR containing sequences        | 3       | 1       |
| Number of compound SSRs                   | 1       | 1       |
| Mono nucleotide repeats $p1 \ge 10$ bases | 1       | 8       |
| Di nucleotide repeats $p_2 \ge 6$ Pairs   | 4       | 26      |
| Tri nucleotide repeats $p3 \ge 5$ Sets    | 10      | 17      |
| Tetra nucleotide repeats $p4 \ge 3$ Sets  | 100     | 99      |
| Penta nucleotide repeats $p5 \ge 5$ Sets  | 1       | 1       |
| Hexa nucleotide repeats $p6 \ge 5$ Sets   | 3       | 2       |

| Function                             | Pathway                                                               |
|--------------------------------------|-----------------------------------------------------------------------|
| BRITE hierarchy                      |                                                                       |
| Genetic information                  | Transcription factors, Translation factors, Transcription machinery,  |
|                                      | tRNA biogenesis, mRNA biogenesis                                      |
|                                      | Mitochondrial biogenesis, Ribosome biogenesis, Ribosome proteins      |
| processing                           | DNA replication proteins, DNA repair and recombination proteins       |
|                                      | Chromosome and associated proteins, Chaperones and folding            |
|                                      | catalysts, Membrane trafficking                                       |
|                                      | Photosynthesis proteins                                               |
|                                      | Amino acid related enzymes, Protein kinases, Protein phosphatases and |
| Matabalism                           | associated proteins, Peptidases and inhibitors                        |
| Wietabolisili                        | Peptidoglycan biosynthesis and degradation proteins,                  |
|                                      | Lipopolysaccharide biosynthesis, Lipid biosynthesis proteins          |
|                                      | Glycosyltransferases, Prenyltransferases                              |
| Signaling and                        | Antimicrobial resistance genes, Prokaryotic defense system, Exosome   |
| cellular processes                   | Transporters, Two-component system, Cytoskeleton proteins             |
| centular processes                   | Bacterial motility proteins, Bacterial toxins, Secretion system       |
| Cellular processes                   |                                                                       |
| Cell motility                        | Bacterial chemotaxis, Flagellar assembly                              |
| Cellular community                   | Quorum sensing                                                        |
| Environmental information processing |                                                                       |
|                                      | ABC transporters                                                      |
| Membrane transport                   | Phosphotransferase system (PTS)                                       |
|                                      | Bacterial secretion system                                            |
| Signal transduction                  | Two-component system                                                  |
| Genetic Information P                | rocessing                                                             |
| Folding conting and                  | RNA degradation                                                       |
| degradation                          | Protein export                                                        |
| uegrauation                          | Sulfur relay system                                                   |
| Replication and                      | DNA replication, Homologous recombination                             |
| repair                               | Base excision repair, Nucleotide excision repair, Mismatch repair     |
| Transcription                        | RNA polymerase                                                        |
| Translation                          | Aminoacyl-tRNA biosynthesis                                           |
|                                      | Ribosome proteins                                                     |
| Human diseases                       |                                                                       |
| Anti microbial drug                  | Beta-lactam resistance                                                |
| registance                           | Vancomycin resistance                                                 |
| resistance                           | Cationic antimicrobial peptide (CAMP) resistance                      |

Supplementary Table 5.7. KEGG pathway analysis of predicted proteins in SL42 genome.

| Metabolism          |                                                                      |
|---------------------|----------------------------------------------------------------------|
|                     | Arginine biosynthesis                                                |
|                     | Alanine, aspartate and glutamate metabolism                          |
|                     | Glycine, serine and threonine metabolism                             |
|                     | Cysteine and methionine metabolism                                   |
|                     | Valine, leucine and isoleucine degradation                           |
| Amino acid          | Valine, leucine and isoleucine biosynthesis                          |
|                     | Lysine biosynthesis, Lysine degradation                              |
|                     | Arginine and proline metabolism                                      |
|                     | Histidine metabolism, Tyrosine metabolism                            |
|                     | Phenylalanine metabolism, Tyrosine metabolism                        |
|                     | Tryptophan biosynthesis                                              |
|                     | Monobactam biosynthesis, Carbapenem biosynthesis                     |
| Secondary           | Penicillin and cephalosporin biosynthesis, Prodigiosin biosynthesis  |
| metabolites         | Novobiocin biosynthesis, Streptomycin biosynthesis                   |
|                     | Neomycin, kanamycin and gentamicin biosynthesis                      |
|                     | Glycolysis / Gluconeogenesis, TCA cycle                              |
|                     | Pentose phosphate pathway, Pentose and glucuronate interconversions  |
|                     | Fructose and mannose metabolism, Galactose metabolism                |
|                     | Ascorbate and aldarate metabolism                                    |
| Carbohydrate        | Starch and sucrose metabolism                                        |
| metabolism          | Amino sugar and nucleotide sugar metabolism                          |
|                     | Inositol phosphate metabolism, Pyruvate metabolism                   |
|                     | Glyoxylate and dicarboxylate metabolism                              |
|                     | Propanoate metabolism, Butanoate metabolism, C5-Branched dibasic     |
|                     | acid metabolism                                                      |
|                     | Oxidative phosphorylation, Methane metabolism                        |
| Energy metabolism   | Carbon fixation in photosynthetic organisms                          |
|                     | Nitrogen metabolism, Sulfur metabolism                               |
| Glycan biosynthesis | Lipopolysaccharide biosynthesis                                      |
| and metabolism      | Peptidoglycan biosynthesis, Other glycan degradation                 |
|                     | Fatty acid biosynthesis, Fatty acid degradation, Biosynthesis of     |
| Lipid metabolism    | unsaturated fatty acids Glycerolipid metabolism, Glycerophospholipid |
|                     | metabolism                                                           |
|                     | Synthesis and degradation of ketone bodies                           |
|                     | Ubiquinone and other terpenoid-quinone biosynthesis                  |
| Metabolism of       | One carbon pool by folate metabolism, Folate biosynthesis            |
| cofactors and       | Thiamine metabolism, Riboflavin metabolism, Vitamin B6 metabolism    |
| vitamins            | Nicotinate and nicotinamide metabolism, Biotin metabolism            |
|                     | Pantothenate and CoA biosynthesis, Lipoic acid metabolism            |

|                     | Porphyrin and chlorophyll metabolism                            |
|---------------------|-----------------------------------------------------------------|
|                     | beta-Alanine metabolism, D-Alanine metabolism                   |
| Matabalism of other | Taurine and hypotaurine metabolism, Phosphonate and phosphinate |
| amino agida         | metabolism                                                      |
|                     | Selenocompound metabolism, Cyanoamino acid metabolism           |
|                     | D-Glutamine and D-glutamate metabolism, Glutathione metabolism  |
| Matabalism of       | Geraniol degradation, Limonene and pinene degradation           |
| ternonoids and      | Terpenoid backbone biosynthesis                                 |
| nolykatidas         | Carotenoid biosynthesis                                         |
| polykendes          | Biosynthesis of type II polyketide products                     |
| Nucleotide          | Purine metabolism                                               |
| metabolism          | Pyramidine metabolism                                           |
|                     | Chlorocyclohexane and chlorobenzene degradation                 |
|                     | Benzoate degradation, Fluorobenzoate degradation, Aminobenzoate |
| Xenobiotics         | degradation, Dioxin degradation, Xylene degradation             |
| biodegradation and  | Toluene degradation, Nitrotoluene degradation, Naphthalene      |
| metabolism          | degradation, Chloroalkane and chloroalkene degradation          |
|                     | Polycyclic aromatic hydrocarbon degradation, Styrene, Atrazine, |
|                     | Caprolactam degradation                                         |

Supplementary Table 5.8. KEGG pathway analysis of predicted proteins in SL48 genome.

| Function                         | Pathway                                                               |
|----------------------------------|-----------------------------------------------------------------------|
| BRITE hierarchy                  |                                                                       |
|                                  | Transcription factors, Translation factors, Transcription machinery,  |
| Genetic information              | Mitochondrial biogenesis, Ribosome biogenesis, Ribosome proteins      |
| processing                       | DNA replication proteins, DNA repair and recombination proteins       |
|                                  | Chromosome and associated proteins, Chaperones and folding            |
|                                  | catalysts, Membrane trafficking                                       |
| Matchaliana                      | Photosynthesis proteins                                               |
|                                  | Amino acid related enzymes, Protein kinases, Protein phosphatases and |
|                                  | associated proteins, Peptidases and inhibitors                        |
| Wietabolisili                    | Peptidoglycan biosynthesis and degradation proteins,                  |
|                                  | Lipopolysaccharide biosynthesis, Lipid biosynthesis                   |
|                                  | Glycosyltransferases, Prenyltransferases                              |
| Signaling and cellular processes | Antimicrobial resistance genes, Prokaryotic defense system, Exosome   |
|                                  | Transporters, Two-component system, Cytoskeleton proteins             |
|                                  | Bacterial motility proteins, Bacterial toxins, Secretion system       |

| Cellular processes       |                                                                   |  |
|--------------------------|-------------------------------------------------------------------|--|
| Cell motility            | Bacterial chemotaxis, Flagellar assembly                          |  |
| Cellular community       | Quorum sensing                                                    |  |
| Environmental inform     | ation processing                                                  |  |
| Mombrono trongnort       | ABC transporters                                                  |  |
|                          | Bacterial secretion system                                        |  |
| Signal transduction      | Two-component system                                              |  |
| Genetic Information P    | rocessing                                                         |  |
| Folding sorting and      | RNA degradation                                                   |  |
| degradation              | Protein export                                                    |  |
| degradation              | Sulfur relay system                                               |  |
| Replication and          | DNA replication, Homologous recombination                         |  |
| repair                   | Base excision repair, Nucleotide excision repair, Mismatch repair |  |
| Transcription            | RNA polymerase                                                    |  |
| Translation              | Aminoacyl-tRNA biosynthesis                                       |  |
| Translation              | Ribosome proteins                                                 |  |
| Human diseases           |                                                                   |  |
| Anti microbial drug      | Beta-lactam resistance                                            |  |
| Anti-Iniciobiai di ug    | Vancomycin                                                        |  |
| resistance               | Cationic antimicrobial peptide (CAMP) resistance                  |  |
| Metabolism               |                                                                   |  |
|                          | Arginine biosynthesis                                             |  |
|                          | Alanine, aspartate and glutamate metabolism                       |  |
|                          | Glycine, serine and threonine metabolism                          |  |
|                          | Cysteine and methionine metabolism                                |  |
| Amino said               | Valine, leucine and isoleucine degradation                        |  |
| Ammo aciu                | Valine, leucine and isoleucine biosynthesis                       |  |
|                          | Lysine biosynthesis, Lysine degradation                           |  |
|                          | Arginine and proline metabolism                                   |  |
|                          | Histidine metabolism, Tyrosine metabolism                         |  |
|                          | Phenylalanine, tyrosine and tryptophan biosynthesis               |  |
|                          | Monobactam biosynthesis, Carbapenem biosynthesis                  |  |
| Secondary<br>metabolites | Novobiocin biosynthesis, Phenazine biosynthesis                   |  |
|                          | Streptomycin biosynthesis                                         |  |
|                          | Neomycin, kanamycin and gentamicin biosynthesis                   |  |
|                          | Acarbose and validamycin biosynthesis                             |  |

|                     | Glycolysis / Gluconeogenesis, TCA cycle                             |
|---------------------|---------------------------------------------------------------------|
|                     | Pentose phosphate pathway, Pentose and glucuronate interconversions |
|                     | Fructose and mannose metabolism, Galactose metabolism               |
|                     | Ascorbate and aldarate metabolism                                   |
| Carbohydrate        | Starch and sucrose metabolism                                       |
| metabolism          | Amino sugar and nucleotide sugar metabolism                         |
|                     | Inositol phosphate metabolism, Pyruvate metabolism                  |
|                     | Glyoxylate and dicarboxylate metabolism                             |
|                     | Propanoate metabolism, Butanoate metabolism, C5-Branched dibasic    |
|                     | acid metabolism                                                     |
| Energy metabolism   | Oxidative phosphorylation, Methane metabolism, Nitrogen             |
| Energy metabolism   | metabolism, Sulfur metabolism                                       |
| Glycan biosynthesis | Lipopolysaccharide biosynthesis                                     |
| and metabolism      | Peptidoglycan biosynthesis                                          |
| Lipid metabolism    | Fatty acid biosynthesis, Glycerolipid metabolism                    |
|                     | Ubiquinone and other terpenoid-quinone biosynthesis                 |
| Matabalism of       | One carbon pool by folate metabolism, Folate biosynthesis           |
| cofactors and       | Thiamine metabolism, Riboflavin metabolism, Vitamin B6 metabolism   |
| vitaming            | Nicotinate and nicotinamide metabolism, Biotin metabolism           |
| vitainins           | Pantothenate and CoA biosynthesis, Lipoic acid metabolism           |
|                     | Porphyrin and chlorophyll metabolism                                |
| Metabolism of other | beta-Alanine metabolism, D-Alanine metabolism                       |
| amino acide         | Selenocompound metabolism, Cyanoamino acid metabolism               |
|                     | D-Glutamine and D-glutamate metabolism, Glutathione metabolism      |
| Metabolism of       | Polyketide sugar unit biosynthesis                                  |
| ternenoids and      | Terpenoid backbone biosynthesis                                     |
| nolyketides         | Biosynthesis of ansamycins                                          |
| polykelides         | Biosynthesis of vancomycin group antibiotics                        |
| Nucleotide          | Purine metabolism                                                   |
| metabolism          | Pyramidine metabolism                                               |
| Xenobiotics         | Chlorocyclohexane and chlorobenzene degradation                     |
| biodegradation and  | Fluorobenzoate degradation, Aminobenzoate degradation               |
| metabolism          | Toluene degradation, Nitrotoluene degradation, Naphthalene          |
| metabolism          | degradation, Chloroalkane and chloroalkene degradation              |