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ABSTRACT 

Visceral Leishmaniasis (VL) is a chronic, life-threatening parasitic disease that mostly affects 

the impoverished populations of the world. Currently, there are no licensed antileishmanial 

vaccines for human use and existing therapies are quite toxic. Miltefosine is the only oral 

antileishmanial drug but its long half-life makes it vulnerable to the development of resistance. 

Combining an immunomodulatory agent with miltefosine could potentially help to alleviate 

this problem. For this study, we employed an immunomodulatory peptide called signal 

transducer and activator of transcription 6 inhibitory peptide (STAT6-IP). The STAT6 

signalling pathway is essential for the development of Th2-type immunity and STAT6-IP has 

been shown to have significant benefit in allergic and infectious conditions associated with 

aberrant Th2 responses. In these studies, we combined STAT6-IP with a sub-curative dose of 

miltefosine for treatment of L. donovani-infected BALB/c mice. Since this parasite induces a 

Th2 pattern response to ensure its survival, our hypothesis was that inhibition of the parasite-

driven Th2 response cytokines would permit a more effective (Th1-type) anti-parasitic 

response.  

Although infected animals treated with STAT6-IP alone had reduced parasite burden 

comparable to that observed in the group treated with sub-curative miltefosine, there was no 

synergistic effect in animals treated with both STAT6-IP and miltefosine. Anti-leishmanial 

antibody titres were similar in all groups but IgG2a concentrations were higher in the combined 

treatment group suggesting at least some degree of modulation towards a more balanced 

Th1/Th2 response. However, this difference was not statistically significant and did not 

translate into a reduction in parasite burden. Surprisingly, the groups that received either 

STAT6-IP or miltefosine alone had similar levels of IgG1 and IgG2a. These results suggest 

that the immunomodulatory effects of STAT6-IP are insufficient to influence the Th1/Th2 

balance in a clinically-significant way in the murine model of L. donovani infection. 
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RÉSUMÉ 

La leishmaniose viscérale (LV) est une maladie parasitaire chronique menaçant le pronostic 

vital, qui touche principalement les populations pauvres du monde. À l'heure actuelle, il n'existe 

aucun vaccin antileishmanien homologué à usage humain et les traitements existants sont assez 

toxiques. La miltéfosine est le seul médicament antileishmanien oral, mais sa longue demi-vie 

la rend vulnérable au développement de résistances. La combinaison d'un agent 

immunomodulateur avec de la miltéfosine pourrait potentiellement contribuer à atténuer ce 

problème. Pour cette étude, nous avons utilisé un peptide immunomodulateur appelé 

transducteur de signal et activateur du peptide inhibiteur de la transcription 6 (STAT6-IP). La 

voie de signalisation STAT6 est essentielle au développement de l’immunité de type Th2 et il 

a été démontré que STAT6-IP avait un effet bénéfique significatif sur les affections allergiques 

et infectieuses associées aux réponses Th2 aberrantes. Dans ces études, nous avons associé 

STAT6-IP à une dose sous-curative de miltéfosine pour le traitement des souris BALB / c 

infectées par L. donovani. Comme ce parasite induit une réponse de type Th2 pour assurer sa 

survie, notre hypothèse était que l'inhibition des cytokines à réponse Th2 induite par le parasite 

permettrait une réponse antiparasitaire plus efficace (de type Th1). 

Bien que les animaux infectés traités avec STAT6-IP seul aient une charge parasitaire réduite 

comparable à celle observée dans le groupe traité avec de la miltéfosine sous-curative, il n'y a 

pas eu d'effet synergique chez les animaux traités à la fois avec STAT6-IP et la miltefosine. 

Les titres en anticorps anti-leishmaniens étaient similaires dans tous les groupes, mais les 

concentrations en IgG2a étaient plus élevées dans le groupe sous traitement combiné, suggérant 

au moins un certain degré de modulation vers une réponse Th1 / Th2 plus équilibrée. 

Cependant, cette différence n'était pas statistiquement significative et ne s'est pas traduite par 

une réduction de la charge parasitaire. De manière surprenante, les groupes recevant soit 

STAT6-IP, soit la miltéfosine seule avaient des taux similaires d'IgG1 et d'IgG2a. Ces résultats 



4 
 

suggèrent que les effets immunomodulateurs de STAT6-IP ne suffisent pas pour influencer la 

balance Th1 / Th2 de manière cliniquement significative dans le modèle murin d'infection à L. 

donovani. 
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1 CHAPTER 1: INTRODUCTION 
 

Visceral Leishmaniasis (VL; commonly known as kala-azar) is a vector-borne chronic 

infectious disease caused principally by Leishmania donovani and L. infantum (synonym L. 

chagasi in South America)1. In natural vertebrate hosts (e.g. humans, dogs, some rodents), 

these Leishmania species spread systemically to propagate in macrophage reservoirs 

distributed in tissues of internal organs, primarily the liver, spleen, bone marrow and lymph 

nodes2. The clinical presentation of VL typically involves long-term, low-grade fever, enlarged 

spleen and liver, anaemia, weight loss, pancytopenia and hypergammaglobulinemia. 

Hypoalbuminemia seen in VL is associated with oedema and other features of malnutrition. 

Diarrhoea may also occur due to intestinal parasitization and ulceration. With time, untreated 

VL can cause severe cachexia and bleeding due to thrombocytopenia3. In the absence of 

treatment, more than 95% of  VL cases leads to death4.  

Control of VL relies almost exclusively on chemotherapy as no antileishmanial vaccines in 

clinical use5. Few treatment options are available (pentavalent antimonials, amphotericin B and 

its lipid formulations, oral miltefosine, pentamidine and paromomycin) but most of them have 

serious shortcomings, including toxic side effects, parenteral administration, hospitalization, 

length of treatment (weeks to months), high cost and susceptibility to the development of 

resistance6. As a result, attention has more recently turned towards the use of combination 

therapy for VL. Combination therapy has the potential to shorten treatment duration, reduce 

cost and preserve the therapeutic efficacy of the respective drugs as has been demonstrated for 

diseases like malaria, HIV and tuberculosis7. Although there are no reports of resistance to 

antileishmanial drug combinations in human studies, recent animal studies raise the possibility 

that even combination therapies can select for resistant L. donovani strains under experimental 

conditions8,9. In this regard, efforts are underway to develop novel antileishmanial therapies by 

combining immunomodulatory agents that boost host immune responses with leishmanicidal 
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drugs2. Employing immunotherapeutic agents may be particularly useful in VL because these 

patients often have depressed immune function and any agent that augments the immune 

responses may be of clinical importance.  

Leishmania parasites are able to survive in their mammalian hosts by manipulating key 

signalling pathways involved in the ability of macrophages to kill pathogens or to engage with 

the adaptive immune system10. One of such pathways is the Janus Kinase and Signal 

Transducer and Activator of Transcription (JAK-STAT). The JAK-STAT signalling pathways 

are major mediators of the effects of cytokines on immune cells and therefore play a large role 

in the orchestration of immune responses to infectious challenges. The STAT family is 

comprised of seven genes that code for STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b 

and STAT6, many of which have been shown to play a role in immunity to/or pathogenesis of 

various species of Leishmania11.   

Among the STAT molecules, STAT6 may play a particularly important role in Leishmania 

infection since STAT6 signalling mediates the biological activities of IL-4 and IL-13, Th2-

type cytokines that have been associated with disease progression in leishmaniasis12.  

Macrophages exposed to IL-4 and IL-13 fail to produce the microbicidal molecules required 

for parasite killing13. Elevated levels of IL-4 and IL-13 has been observed in the serum of VL 

patients14. Experimental studies in hamsters have also reported increased concentrations of IL-

4 and IL-13 in the serum of hamsters with active VL disease15. In the same study, miRNAi-

mediated knockdown of STAT6 in BHK cells controlled parasite replication, indicating a clear 

role for this signalling pathway in the pathogenesis of VL. In light of these observations, we 

considered that immunological interventions designed to inhibit STAT6 signalling pathway 

might be effective in VL.  
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STAT6-inhibitory peptide (STAT6-IP) is a chimeric peptide developed in the Fixman 

laboratory at McGill University that has been used to modulate both allergic and infectious 

conditions associated with aberrant Th2-type immune responses (eg: RSV challenge-

rechallenge, formalin-inactivated RSV vaccination, house dust mite-induced allergy)16,17.  This 

inhibitory peptide was designed to act as a dominant negative inhibitor of STAT6 by binding 

to its SH2 domain and preventing dimerization of STAT6, thereby reducing the production of 

Th2-type cytokines like IL-4 and IL-1318,19. Since IL-4 and IL-13 also play a role in the 

immunopathogenesis of human VL, we decided to investigate the therapeutic potential of 

STAT6-IP alone and in combination with an antileishmanial drug for treatment of L. donovani 

infection in susceptible BALB/c mice.  

As the only oral drug available for treatment of VL, miltefosine was the obvious choice for this 

study due to its ease of administration and minimal side effects20. To date, its long half-life and 

long treatment course, potential teratogenic effect in pregnant women and susceptibility to the 

development of resistance have limited the use of miltefosine as monotherapy21.  

In the present study, we explored the potential combination of STAT6-IP and low-dose of 

miltefosine for treatment of visceral L. donovani infection.  
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2 CHAPTER 2: MATERIALS AND METHOD  
 

2.1 Animals 

Female BALB/c mice were obtained from Charles River Laboratories (Senneville, QC). The 

mice were bred and maintained at the Glen Animal Facility, Montreal according to the 

guidelines for animal research. Animal procedures were performed in accordance with 

institutional Animal Care and Use guidelines and were approved by the Animal Care and Use 

committee at McGill University. 

 

2.2 Parasites 

L. donovani 2134 parasites were obtained from the World Health Organization, Geneva, 

Switzerland. Parasites were cryopreserved at -800C and taken out when needed. Parasites were 

grown in non-vented T75 flasks containing 5 mL RPMI media supplemented with 20 % fetal 

bovine serum (Sigma Aldrich, Oakville, ON) non-essential amino acids (Wisent, St-Bruno, 

QC), MEM amino acids (Wisent), 1 mM sodium pyruvate, 2 mg/ml dextrose, 2 mM L-

glutamine, 100 u/ml penicillin/streptomycin, and 25 mM HEPES for 7 days at 27 0C. Parasites 

were cultured for seven days to obtain infective stage stationary-phase promastigotes required 

for infection.  

In preparing the parasites for infection, seven-day parasite cultures were centrifuged at 400 xg 

for 10 min at 25 0C to remove media and then washed twice with phosphate-buffered saline 

(PBS). A 1:50 dilution was made with formalin and parasites were counted with a 

haemocytometer under a light microscope at x40 magnification. Parasites were resuspended as 

5 x 107 L. donovani 2134 stationary-phase promastigotes in 100 µL PBS for infection per 

mouse. 
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2.3 Preparation of STAT6-IP and Miltefosine 

STAT6-IP was a kind gift from Dr. Fixman (McGill University, Canada) while miltefosine 

was purchased from Sigma-Aldrich, Saint Louis, USA. For in vivo treatment, STAT6-IP and 

miltefosine were dissolved in PBS at 10 mg/mL. 

 

2.4 Mice Challenge and Treatment 

For the first drug combination study, 20 BALB/c mice (5 mice/group) were infected through 

the tail vein with 5 x 107 L. donovani 2134 stationary-phase promastigotes. One week after 

infection, treatment was administered. Animals in the uninfected and the infected untreated 

group were given PBS alone and served as controls. Animals in the monotherapy groups 

received either 100 µg of STAT-IP intraperitoneally (IP) or a curative dose of miltefosine (20 

mg/kg, oral gavage) while animals in the combined therapy group received both STAT6-IP 

(100 µg) IP and miltefosine (20 mg/kg). All drugs were prepared in PBS and administered as 

a single dose daily for five days. All animals were sacrificed one week after treatment. 

In a second study, 20 BALB/c mice (4 mice/group) were infected through the tail vein with 5 

x 107 L. donovani 2134 stationary phase promastigotes. One week after infection, drugs were 

administered as in the first study. Animals in the uninfected and the infected untreated group 

received PBS alone while animals in the monotherapy groups received either 100 µg of STAT-

IP, IP or the sub-curative dose of miltefosine (5 mg/kg) by oral gavage. Animals in the 

combined therapy group received both STAT6-IP (100 µg) and miltefosine (5 mg/kg). Drugs 

were prepared and administered as in the first study and animals were sacrificed one week after 

treatment. In both studies, livers were collected to quantify parasite burden by qPCR. 
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2.5 Leishmania DNA extraction and qPCR for quantification of parasite burden 

Prior to DNA extraction, a 25 mg sample was cut from whole livers for quantification of 

parasite burden. The cut samples were crushed and proteinase K (QIAGEN, Hilden, Germany) 

was added to lyse the samples overnight at 700C. Leishmania kinetoplast DNA (kDNA) was 

extracted from the lysed samples using the QIAamp DNA Mini Kit (QIAGEN) according to 

the manufacturer’s instructions. Following centrifugation and washing steps, DNA was eluted 

from the spin columns in a 200 μL elution buffer and stored at -20 °C until use. Real-time PCR 

reactions were performed using the Light Cycler Fast Start DNA Master HybProbe kit (Roche, 

Mannheim, Germany). The PCR master mix comprised of 5 µL PCR-grade water, 0.2 µM of 

each primer, 0.04 µM Leish-P1 TaqMan probe and 4 µL DNA TaqMan Master. 5 µL template 

DNA (from each sample) was added to 15 µL of the master mix for amplification of the kDNA. 

Real-time PCR cycling was performed on the Light Cycler 1.5 (Roche) with amplification at 

95 °C for 10 min followed by 40 cycles of 95 °C for 5 s, 53 °C for 8 s, and 72 °C for 9 s, with 

single fluorescence acquisition at the end of each annealing step. An infected mouse DNA 

sample acted as a positive control while PCR-grade water and an uninfected mouse DNA 

sample acted as non-template and negative controls, respectively. All controls were included 

in each run. 

 

2.6 Preparation of soluble L.  donovani promastigote antigen (SLA) 

To prepare soluble L. donovani promastigote antigen (SLA), stationary-phase promastigotes 

were harvested from 7-day parasite cultures, centrifuged at 400 xg for 10 min at 25 °C to 

remove media and then resuspended in endotoxin-free PBS. Resuspended parasites were 

subjected to 5 cycles of rapid freeze-thawing (-80 °C and 37 °C) that lasted for 10 min each. 

Lysed promastigotes were centrifuged at 22 000 xg for 15 min at 4 °C. The protein content of 
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the supernatant containing soluble antigen was estimated by Bradford assay and stored at -

80 °C.  

 

2.7 Measurement of serum antibody levels by ELISA 

At sacrifice, blood was collected and serum was obtained from untreated and treated mice. 

Anti-Leishmania-specific antibody IgG1 and IgG2a titers were determined by enzyme-linked 

immunosorbent assay (ELISA). Serial dilutions of IgG1 and IgG2a standard antibodies 

(Sigma) were coated on 96-microtiter plates. The remaining wells of the 96-microtiter plates 

were coated with 500 ng/mL SLA and plates were incubated overnight at 4°C. The next day, 

coated plates were washed with washing buffer (0.05% Tween 20 (Sigma-Aldrich) in PBS at 

pH 7.4) and then incubated with blocking buffer (2% bovine serum albumin (Sigma-Aldrich) 

in washing buffer) for 1 hr at 37°C to block nonspecific binding sites. Serum samples were 

heat-inactivated by incubating at 56°C for 1 hr, diluted with blocking buffer at 1:50 and 

incubated at 37°C for 1 hr. Plates were washed four times and then incubated either with Anti-

mouse IgG1(Fc specific)- Peroxidase (Sigma) at 1:10000 or with Anti-mouse IgG2a (Fc 

specific)-Peroxidase (Sigma) at 1:20000 for 30 min at 37°C. After incubation, plates were 

washed and 3,3,’5,5’-tetramethylbenzidine (Millipore, Billerica, MA) was added before plates 

incubated again for 15 min at room temperature. Reaction was stopped with sulphuric acid 

Sigma-Aldrich) and plates were read (using the ELx800 microplate reader, software version 

2.04.11) at an absorbance of 450 nm. IgG1 and IgG2a are expressed as concentrations (ng/mL). 
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2.8 Statistical analysis 

Graphs and data comparisons were obtained using GraphPad Prism® Version 8.0 (GraphPad 

Inc. San Diego, CA) and a value of P < 0.05 was considered statistically significant. Results 

are represented as mean ± SEM (standard error of mean). 
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3 CHAPTER 3: RESULTS 
 

3.1 Efficacy of Curative Miltefosine combined with STAT6-IP On Parasite Burden 

 

3.1.1 Hypothesis 

Combining the curative dose of miltefosine with STAT6-IP will induce leishmanicidal activity 

and provide an effective treatment option against visceral leishmaniasis. 

3.1.2 Objectives 

a) Establish an appropriate infection model for visceral leishmaniasis using L. donovani 

b) Determine if the curative dose of miltefosine is effective in the treatment model 

c) Evaluate the combination of curative miltefosine and STAT6-IP for treatment of 

visceral leishmaniasis caused by L. donovani 

3.1.3 Results 

3.1.3.1 Combination of curative dose of miltefosine with STAT6-IP 

Mice infected with L. donovani parasites were placed into three treatment groups consisting of 

five mice receiving 100 µg of STAT-IP intraperitoneally, 20 mg/kg of miltefosine (orally) or 

a combination of STAT6-IP (100 µg) and miltefosine (20 mg/kg). The curative and sub-

curative doses of miltefosine were obtained from previous dose optimization studies carried 

out in mice22,23. Combining STAT6-IP with the curative dose of miltefosine was carried out as 

a proof-of-concept study to establish and confirm the treatment model. Parasite burden was 

quantified using q-PCR and the number of parasites per liver was extrapolated from a standard 

curve. Results are displayed in Figure 3.1. As expected, STAT6-IP alone had no effect and 

there was a 95% reduction in parasite burden in mice treated with curative miltefosine alone 

compared to untreated control. Having confirmed efficacy in treatment model, we proceeded 

to the main study to investigate the effect of combining STAT6-IP with a sub-curative 

miltefosine dose on parasite burden. 
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Figure 3.1. Combination therapy with curative miltefosine and STAT6-IP. BALB/c mice were infected 

with L. donovani promastigotes through the tail vein with 5 x 107 parasites/animal. One week after 

infection, mice were treated for 5 consecutive days. Mice were sacrificed one week after treatment was 

completed and livers were collected to determine parasite burden by qPCR. Percent parasite reduction 

was calculated by comparing the mean number of parasites in treatment groups to those in infected 

control animals. Results were analysed by one-way ANOVA. 

 

 

3.2 Efficacy of Sub-Curative Miltefosine combined with STAT6-IP On Parasite 

Burden 

 

3.2.1 Hypothesis 

The antileishmanial capacity of the sub-curative dose of miltefosine will improve when 

combined with STAT6-IP. 

3.2.2  Objectives 

a) Evaluate the effect of combining a sub-curative miltefosine dose with STAT6-IP on 

parasite burden compared to monotherapy with sub-curative miltefosine 
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b) Effect of the combination therapy in modulating Leishmania-specific antibody 

responses 

c) Determine the immunomodulatory effects of STAT6-IP in visceral leishmaniasis 

3.2.3 Results 

3.2.3.1 Antileishmanial effect of combination of a sub-curative dose of miltefosine with 

STAT6-IP 

Using the sub-curative dose of miltefosine at 5 mg/kg, this study had the same pattern as the 

pilot. Results are presented in Figure 3.2. A 53% decrease in parasite burden was observed in 

the miltefosine group compared to the infected control. The combination group maintained 

high parasite burden, indicating that combination with STAT6-IP failed to decrease the parasite 

load. Interestingly, the group treated with STAT6-IP alone showed a considerable decrease in 

parasite burden that was not observed in the first study.  
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Figure 3.2. Effect of combination of sub curative miltefosine with STAT6-IP on parasite burden. 

Percent parasite reduction was calculated by comparing the mean number of parasites in treatment 

groups to those in control animals. Results were analysed by one-way ANOVA. 
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3.2.3.2   Outcome of Combination Therapy on Leishmania-specific humoral immune response 

The progression of the immunomodulatory effects of the parasite in VL can be monitored by 

the production of Leishmania-specific antibodies. In mouse model, IgG1 and IgG2a isotypes 

act as useful surrogate markers for Th2 and Th1-type immune responses, respectively24. IFN-

γ production by Th1-type cells promotes IgG2a production while IL-4 from Th2-type cells 

promotes IgG1 production25. As expected in the untreated group, there was a higher 

concentration of IgG1 compared to IgG2a, indicating a Th2-shift that was reflected in the 

elevated parasite load observed in this group. In the combined therapy group, the IgG1:IgG2a 

ratio was completely reversed, suggesting that at least one aspect of the parasite-driven Th2-

shift was potentially reversible despite the failure to translate into reduced parasite burden. The 

STAT6-IP alone and miltefosine alone groups that had reduced parasite burden in this study 

had a lower or equal IgG1:IgG2 ratio, respectively, which is consistent with the literature 

supporting the idea that a mixed Th1/Th2 response rather than a dominant Th1 response may 

be required for protection against VL26–30. 
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Figure 3.3. Antibody responses to combination treatment. IgG2a and IgG1 levels in the serum were 

determined by ELISA. Results were analysed by two-way ANOVA. 
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4 CHAPTER 4: DISCUSSION 
 

Leishmaniasis: Worldwide incidence, Global estimates and Classification 

 

Leishmaniasis encompasses a spectrum of neglected tropical diseases caused by intracellular 

protozoan parasites in the genus Leishmania that are transmitted by infected female 

phlebotomine sand flies31. The digenetic lifecycle of the parasite includes flagellated procyclic 

promastigotes that differentiate into non-dividing, infective metacyclic forms upon entry into 

the sandfly gut. When the fly takes a bloodmeal, these metacyclic parasites are taken up by 

professional phagocytic cells where they transform into aflagellated, replicative amastigotes32 

(Figure 1). 

 Leishmaniasis is endemic in 98 countries, with over 12 million infected people worldwide and 

more than 350 million at risk33.  Ranking second only to malaria in parasite-related deaths, 

leishmaniasis is a public health issue with significant social stigma34. This disease is mostly 

associated with developing countries as it affects some of the most underprivileged and 

poverty-stricken people across the globe35. In the last two decades, there has been a worrisome 

increase in the incidence of leishmaniasis in some parts of the world. This has been attributed 

to multiple factors, including increased international travel, migration of people from rural to 

urban areas seeking work opportunities, migration as a consequence of war and civil unrest, 

disturbances in microenvironments due to climate change, deterioration of socioeconomic 

conditions and the presence of HIV/Leishmania coinfection32,36. 

Leishmaniasis has several clinical manifestations ranging from self-healing skin lesions to 

deadly systemic complications. The two main forms are cutaneous and visceral 

leishmaniases37. Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis and 

is characterized by the presence of skin ulcers. These ulcers usually heal spontaneously after 

several months but can leave disfiguring scars. Alternatively, non-healing ulcers can develop 
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and lead to long-term, chronic infections as seen in diffuse cutaneous leishmaniasis (DCL), 

mucocutaneous leishmaniasis (MCL), and leishmaniasis recidivans (also called chronic 

relapsing cutaneous leishmaniasis)37. Visceral leishmaniasis (VL) is the most severe form and 

has a high mortality rate if not treated. It is characterized by dissemination of parasites 

throughout the reticuloendothelial system, and presents with symptoms such as prolonged 

fever, anorexia, weakness, weight loss, pancytopenia, hepatosplenomegaly and 

hypergammaglobulinemia38.  

VL has an estimated global incidence of 0.5 million new cases with close to 60, 000 deaths 

every year39. Ninety percent of these cases occur in seven countries: India, Bangladesh, Nepal, 

Ethiopia, Sudan, South Sudan and Brazil40. The actual number of VL cases is likely 

underestimated due to underreporting and scarcity of epidemiological data in remote endemic 

locations33. VL may be zoonotic or anthroponotic depending on the presence of animal 

reservoir hosts in its transmission cycle41. Zoonotic VL is caused by L. infantum and is 

prevalent in the Americas, Central Asia, China, the Middle East and the Mediterranean while 

anthroponotic VL is restricted to the Indian subcontinent and East Africa and is caused by L. 

donovani42. Dogs are the main reservoirs for L. infantum and infection results in a 

multisystemic disease known as canine visceral leishmaniasis (CVL). CVL is present in 50 

countries with reports of emergence in new locations such as the United States, Canada and 

Europe43. 

 

Immunopathology of Leishmaniasis 

Clinical outcomes of Leishmania infection are largely dependent on the infecting species and 

host immune status. Interestingly, not all humans exposed to Leishmania develop overt 

disease44. Understanding the immunological events that underly resistance and susceptibility 
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to infection is paramount for designing more effective therapies which are needed in 

leishmaniasis45. Because using humans as experimental disease models is unethical, animal 

models remain the best choice for disease characterization45,46. The two most commonly used 

animal models are mice and hamsters and each model has specific features. It is noteworthy to 

mention that neither of these models can accurately reproduce what happens in humans, but 

they are very useful in giving insight into the pathogenesis of leishmaniasis and they provide a 

platform for testing novel therapeutics47.  

Mice (BALB/c, NMRI, DBA/1 and C57BL/6) are the preferred models of experimental VL 

due to their high availability, easy handling and initial susceptibility, although not all laboratory 

mice are susceptible to Leishmania infection46,48. In the mouse model, genetic background, 

inoculation route, parasite strain and dose of parasites injected all influence the outcome of 

infection. Outbred mice are generally resistant to L. donovani infection while inbred mice 

display variable susceptibility48. Susceptibility to infection has been associated with mutation 

of the Slc11a1 gene encoding a phagosomal component, solute carrier 11a1 (also known as 

Nramp1) which makes susceptible mice strains (BALB/c and C57BL/6) unable to control early 

parasite growth49. C57BL/6 mice are able to cure disease by developing a self-healing 

phenotype that prevents further growth of the parasite, whereas BALB/c strains are 

characterized by progressive, non-healing lesions in L. major cutaneous infection50. Disease 

progression in L. donovani- and L. infantum-infected BALB/c mice is organ specific as the 

responding tissues (liver and spleen) present varying patterns of immune response within the 

same animal51. While the liver is able to resolve VL infection and control parasite burden at a 

later stage, infection in the spleen remains throughout the entire course of disease. Because 

there is no progression to the chronic disease observed in humans, BALB/c mice can only serve 

as models of subclinical infection47. Hamsters (Syrian, Chinese and European) are considered 

more suitable models for chronic disease as they closely mimic the clinicopathologic features 
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of human VL, with gradual progression to fatal disease. Although efficient and highly relevant, 

hamsters are not frequently used because of the relative lack of reagents for immunological 

analyses46–48.  

Evidence from murine models shows marked differences in the immune responses generated 

between experimental VL and CL. While the immune mechanisms underlying susceptibility to 

VL remain poorly understood, extensive investigations in murine CL using L. major has helped 

in defining the role of CD4+ T cell subsets in determining the outcome of disease52. Protection 

against leishmaniasis is predominantly mediated by cell-mediated immunity in which T helper-

1 (Th1) CD4+ T cells producing interferon-gamma (IFN-γ) confers disease resistance. In 

contrast, Th2-type CD4+ T cell proliferation with production of interleukin-4 (IL-4), IL-10 and 

IL-13 is associated with susceptibility to and progression of disease52,53.  

In experimental VL, the Th1/Th2 dichotomy is not as clearly defined. A mixed T-cell cytokine 

profile with expression of both Th1 (IFN- γ, IL-2) and Th2 (IL-4, IL-10) cytokines following 

L. donovani infection has been reported51,54. Infected mice can show initial susceptibility to VL 

infection that is eventually overshadowed by a healing response mediated by granuloma 

formation and development of acquired resistance54. The ability to mount a dominant Th1 

response with production of  IL-2, IFN-γ and IL-12 is essential for resolving VL disease55. IL-

12 is an important cytokine that promotes development of Th1 cells for production of IFN-γ 

that activates macrophages to produce nitric oxide (NO), the key effector molecule for parasite 

elimination56,57. Natural killer cells and cytotoxic CD8+ T cells are also important sources of 

IFN-γ, with the latter involved in direct killing of Leishmania via cytolytic activity58–61. 

Akin to murine visceral leishmaniasis, human VL does not closely follow the classical Th1-

Th2 paradigm of resistance and susceptibility. Instead, the outcome of infection is determined 

by the balance between the contrasting effects of protective (IL-2 and IFN-γ) and non-
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protective (IL-4 and IL-10) cytokines62–65. During active disease, VL patients display depressed 

cell-mediated immune response and lack reactivity to the Leishmanin skin test (LST; a measure 

of delayed type hypersensitivity). Their PBMCs also fail to proliferate or produce IFN-γ in 

response to Leishmania antigens3. Conversely, high levels of IFN-γ and TNF-α are detected in 

the blood, along with elevated expressions of IFN-γ mRNA in aspirates of the lymph node, 

spleen and bone marrow, indicating the presence of a theoretically protective Th1 response66–

68.   

The presence of  IL-4, IL-13 and IL-10 in these same patient sera suggests the possibility of 

compartmentalization of the immune response with Th2 immunomodulatory effects that 

prevent effective Th1-mediated control of parasite growth in some tissues14,69,70. Although IL-

4 and IL-13 are generated during disease, their role in VL pathogenesis is not clear.  While 

some reports implicate IL-4 and IL-13 in progressive infection, others do not71–73.  In contrast, 

the immunodeactivating cytokine, IL-10, appears to be the primary suppressive factor in 

visceral infection74. It has been shown that IL-10 has antagonistic effects on IFN-γ that prevent 

IFN-γ-mediated activation of macrophages for intracellular parasite destruction75. IL-10 has 

emerged as the major regulatory cytokine that can suppress T-cell activation in murine and 

human VL76,77,75. IL-10 has also been incriminated in the promotion of disease and persistence 

of parasites in cutaneous L. major infection78–80. IL-10 dampens the production of 

proinflammatory cytokines (IL-1, IL-6, IL-8, TNF-α) and downregulates major 

histocompatibility complex (MHC) class II expression, leading to reduced parasite clearance 

and suppressed Th1 activation81.  

The role of IL-10 in experimental and human VL  pathogenesis has also been well 

documented82–85. Humans with active disease have elevated plasma concentrations of IL-10, 

increased expression of IL-10 mRNA in lesional tissues and IL-10 production is readily 

detected from antigen-stimulated whole blood cells86. CD4+ FoxP3- cells are an important 
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source of IL-1082,102. Data from murine VL studies have shown that secretion of IL-10 by CD4+ 

FoxP3- correlates with disease severity68. IL-27 and IL-21 are also important factors that 

promotes disease progression via their promotion of IL-10 production in both human and 

experimental VL89–92.  

TGF-β may be another important cytokine involved in human VL pathology, although its 

precise function is still unknown. Enhanced TGF-β levels have been detected in plasma, splenic 

aspirates and antigen-stimulated PBMCs of VL patients during active disease65,68,69.  Like IL-

10, TGF-β is a potent inhibitor of macrophage leishmanicidal activity and its blockade limits 

parasite replication in these cells3. CD4+CD25+FoxP3+ Regulatory T (Tregs) cells are an 

important source of TGFβ (and IL-10) and as such, have been implicated in the pathogenesis 

of VL65,93–95. A positive correlation between the production IL-10 and TGFβ by Treg cells and 

parasite burden has been demonstrated, suggesting a pivotal role for Tregs in secretion of these 

cytokines87.  

 

Diagnosis of VL 

Definite diagnosis of VL is demonstration of parasites by light microscopic examination of 

tissue aspirates from spleen, bone marrow, or lymph nodes. The specificity of this technique is 

high, but its sensitivity varies depending on the tissue sampled. The challenges of this 

procedure is that sample collection is invasive and technical expertise is required for parasite 

detection under the microscope. Polymerase chain reaction (PCR) remains the most sensitive 

and reliable technique for VL diagnosis. This method utilizes different primer sequences that 

target several multicopy sequences like Leishmania kinetoplast DNA (kDNA) for detection of 

parasites. The principal drawbacks of PCR-based assays are that they are expensive, 

cumbersome to perform and unsuitable outside the laboratory. Serological analysis with FD-
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DAT (freeze-dried direct agglutination test), rK39 plasma strip tests and KAtex urine dipstick 

are non-invasive and more field-adaptable for VL diagnosis. These tests also have some 

significant drawbacks, one of which is the inability to distinguish between past and recent 

infections96–98. 

 

Treatment strategies in VL 

Chemotherapy 

Visceral Leishmaniasis is a chronic disease that poses an enormous burden on world health and 

the most affected are children, young adults and women99. No human vaccine is available 

against leishmaniasis and chemotherapy remains the primary tool for VL control100. 

Conventional drugs commonly used for treatment of VL are shown in Table 1. The pentavalent 

antimonial compounds, sodium stibogluconate (Pentostam®) and meglumine antimoniate 

(Glucantime®) are the recommended first-line drugs for treatment of all forms of leishmaniasis 

worldwide except in Bihar, India, where widespread treatment failure due to drug resistance 

has been reported101,102. Development of resistance in this region was linked to drug misuse 

due to unrestricted availability101,103. Antimony use is also associated with perilous side effects 

such as organ (liver, heart and kidney) toxicity and clinical pancreatitis104,105. Other 

antileishmanials such as amphotericin B (deoxycholate and its lipid formulations [liposomal 

amphotericin B also known as AmBisome®), miltefosine, paromomycin (an aminoglycoside) 

and pentamidine are not without limitations. Most of them are toxic and require long term 

treatment.  The less toxic drugs are expensive and there are fears of resistance development106.  

Clinical studies have shown that ineffective treatment with current antileishmanials can lead to 

the development of a dermatological condition known as post-kala-azar dermal leishmaniasis 

(PKDL). PKDL is characterized by heavily parasitized skin lesions which may present as 
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nodules, macules or papules107,108. Because skin lesions are parasite-rich, individuals with 

PKDL play a pivotal role in the transmission of VL. HIV-leishmania coinfected patients have 

also been implicated in the transmission of VL109. The presence of HIV in many countries and 

the overlap in transmission areas between Leishmania and HIV has resulted in an increasing 

global incidence of coinfection40. HIV coinfection with Leishmania augments the severity of 

VL, reduces the therapeutic response to treatment and increases the risk of relapse43. 

Monotherapy with current VL drugs has yielded consistently poor results in those with HIV 

coinfection.  Taken together, the current arsenal for treatment of VL is unsatisfactory. There is 

urgent need for alternative approaches to therapy.   

Preventive chemotherapy via mass drug administration (MDA) has been introduced in several 

disease control programs for elimination of neglected tropical diseases including 

schistosomiasis and lymphatic filariasis. Toxicity issues and parenteral administration of 

antileishmanials are some of the problems that preclude such programs in leishmaniasis110. 

Moreover, MDA has the potential to speed up development of drug resistance especially in the 

anthroponotic foci (Indian subcontinent and East Africa) where there are no animal reservoirs 

to dilute resistant genotypes110,111. Because human beings are the reservoir of infection in 

anthroponotic cycle, when resistance emerges, it can spread rapidly since drug-sensitive 

parasites are eliminated quickly whereas those that are resistant to drugs continue to circulate 

in the community112. This was presumably what led to the high incidence of antimonial 

resistance in Bihar, India. As a result of these events, the use of pentavalent antimonials was 

eventually suspended for use in India; however, they remain the first-line choice in other parts 

of the world including Latin America and East Arica where there is no evidence for resistance 

yet5. Pentamidine, a second-line drug that was initially used for antimony-resistant patients in 

Bihar, has also been abandoned because of serious toxicity and poor efficacy111. Paromomycin, 

(aminoglycoside antibiotic), an affordable drug of moderate toxicity has been shown to have 
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good efficacy in the treatment of Indian VL at a dose of 15 mg/kg/day113. The main drawback 

with this drug is that it needs to be injected over 21 days which can affect patients’ 

compliance114. Lately, there have been serious concerns with paromomycin monotherapy as 

recent studies have reported high susceptibility to resistance under laboratory conditions115.  

Miltefosine is the first and only oral agent available for the treatment of VL. Approved in 2002, 

the Indian-subcontinent initiative for kala-azar elimination adopted miltefosine as its first-line 

alternative to pentavalent antimonials116. Miltefosine is easy-to-administer and reasonably-

priced. It has only mild side-effects (except in pregnant women in whom it is potentially 

teratogenic). At a recommended dose of 2.5 mg/kg/day for 28 days, miltefosine has high 

efficacy against Indian visceral leishmaniasis117–119.  Unfortunately, there are now reports of 

treatment failure in the same region which is not surprising as miltefosine has a narrow 

therapeutic index and long half-life which makes it particularly vulnerable to the development 

of resistance120–123. Hence, further use of miltefosine monotherapy has been discontinued in 

this region and a single dose of liposomal amphotericin B is now  advocated as the drug of 

choice for VL115. Liposomal amphotericin B is similar to amphotericin B deoxycholate but 

with minimum toxicity7,124. Before lipid formulations of amphotericin B were developed, 

amphotericin B deoxycholate was used predominantly in areas of antimony resistance. 

Although effective, amphotericin B deoxycholate required prolonged hospitalization and 

infusion-related adverse effects were quite common. Lipid-based formulations have the double 

advantages of less toxicity and shorter treatment111.  

Liposomal amphotericin B (AmBisome, AmB; Gilead) is currently the safest and most 

effective antileishmanial drug. At a single dose of 5 mg/kg, high cure rates have been reported 

in India, with even better efficacy at 10 mg/kg124,125. Clinical resistance to AmB is rather 

unlikely due to its high therapeutic index and short half-life but with increasing use, the 

possibility cannot be ignored7,112. AmB is expensive however and as such, is more realistic as 
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the first treatment choice in developed countries. In most poor endemic countries, even short 

courses of AmB treatment are unaffordable and this makes selection of antileishmanial 

treatment a question of cost rather than of efficacy5.  

Unlike in Asia, very few treatment options are available for management of VL in Africa. A 

30-day course of 20 mg/kg antimonial SSG remains the standard monotherapy in most African 

countries. Although effective, SSG is very toxic and requires 4 weeks of hospitalization. 

Liposomal amphotericin B at the recommended dose of 20-30 mg/kg is mainly administered 

as second-line treatment due to high cost and reliance on cold chain storage (exposure to 

temperatures >250C or <00C enhances toxicity and reduces efficacy)114,124. Miltefosine and 

paromomycin monotherapy have had poor efficacy in clinical trials with African patients 

despite their success in India114,126. 

 

Combined chemotherapy 

Since current VL drugs are sub-par and threatened by emerging resistance, there is pressing 

need for new and better therapeutics. While research is underway to identify and evaluate novel 

drug candidates, a short term strategy that is safe, effective and inexpensive is urgently required 

for controlling VL in endemic regions126. Over the past decade, the use of combination therapy 

for VL has attracted much attention because of the substantial benefits it might offer. 

Combining drugs with different mechanisms of action could theoretically reduce both cost and 

treatment duration, resulting in fewer toxic side effects and higher patient compliance7,110.  It 

could also delay the emergence of resistance in VL drugs thereby increasing their therapeutic 

life span and preserving their efficacy7.  

Specific multidrug regimens have been suggested by the World Health Organisation (WHO) 

for treatment of VL and they differ from region to region due to geographical variability in 
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drug efficacy. In eastern African countries, co-administration of SSG with paromomycin for 

17 days is currently the recommended mainstay while on the Indian subcontinent, a 

combination of liposomal amphotericin B with either miltefosine or paromomycin is the 

recommended therapy127–130.  

Combination therapy is a valuable strategy that helps to avoid some of the problems associated 

with monotherapy, including the development of drug resistance. Although many clinical trials 

have highlighted the efficacy and safety of antileishmanial drug combinations, there are still 

concerns that in the long run, even combination therapy may select for drug resistant strains. 

In (rural) areas where intravenous infusion or cold-chain problems make AmB impossible, a 

multidrug regimen comprising of miltefosine and paromomycin has been proposed as an 

alternative treatment option129. Under experimental conditions however, L. donovani parasites 

were recently shown to become resistant to miltefosine and paromomycin combinations9,131.  

Metabolomic analysis of the combination-resistant lines has shown metabolic changes in 

multiple pathways which may have permitted these parasites to become more tolerant to ATP 

loss, resist depolarization of the mitochondrial membrane and sustain membrane integrity, 

among other advantages8,132. These reports and observations clearly indicate the possibility of 

resistance development to multi-drug combinations. Because of this danger, the exploration of 

immune-based therapy (either alone or combined with antiparasitic drugs) is becoming an 

attractive approach for the treatment of leishmaniasis. 

 

Immunotherapy and Immunochemotherapy 

It is general consensus that drug therapy works most efficiently with help from host immune 

system, and in particular, the cell-mediated immune response93. Hence, immunotherapeutic 

agents that stimulate host immunity have enormous potential for therapeutic success. In 
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addition, these agents, when combined with chemotherapeutic drugs (immunochemotherapy) 

can result in synergism of immune activation and direct action of drugs against the parasite43. 

In leishmaniasis, immunomodulatory molecules that have the ability to tilt the Th1-Th2 

imbalance in favour of Th1 are of immense clinical benefit133.  

Cytokines have been assessed both experimentally and clinically as immunomodulators for 

treatment of VL. Due to their involvement in protective immunity (through upregulation of 

Th1 immune responses), IL-12 and IFN-γ have been employed as therapeutic agents. 

Treatment with either recombinant IFN-γ (rIFN-γ) or rIL-12 halts hepatic parasite replication 

in L. donovani-infected BALB/c mice134,135. Both cytokines have also shown additive effects 

in combined therapy. In murine VL, rIL-12 given in combination with pentavalent antimony 

cures mice from L. donovani infection136. IFN-γ and its well-known ability to enhance 

macrophage antimicrobial activity motivated the evaluation of IFN-γ combination with 

Pentostam in L. donovani-infected mice. The addition of  rIFN-γ to Pentostam substantially 

augmented the antileishmanial effect of Pentostam, resulting in reduced parasite burden137,138.  

Combination of IFN-γ and antimony is clinically well-tolerated. In Kenya, Brazil and India, 

human rIFN-γ administered in combination with pentavalent antimony showed higher 

parasitological and clinical efficacy in VL patients compared to pentavalent antimony alone 

but results were not statistically significant139,140.  

Suppression of Th1-deactivating cytokines IL-10, IL-4 and IL-13 and TGF-β has been 

evaluated for VL therapy. It has been reported that monoclonal antibody blockade (mAb) of 

IL-10 restores T cell proliferation and IFN-γ production in the PBMCs of VL patients70,141. In 

mouse models of VL, neutralization of IL-10 or blockade of its receptor leads to IFN-γ 

secretion, granuloma formation, macrophage activation and parasite killing. These effects are 

even further enhanced when IL-10 inhibitors are combined with antimonials142. In contrast, 

blockade of other immunosuppressive cytokines IL-4, IL-13 and TGF-β via receptor fusion 
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antagonists has demonstrated only marginal parasite elimination in L. donovani-infected mice 

with no synergistic effect when combined with pentavalent antimonials142. 

Despite the promising effects of cytokines as immunotherapeutic agents, certain problems limit 

their full therapeutic potential. Administering high dose of cytokines can result in side effects 

characterized by malaise and influenza-like syndromes. Also, cytokines have a short half-life 

which means multiple doses are needed and this can further increase the side effects. Finally, 

the production of recombinant cytokines in quantities sufficient for therapy is very expensive: 

for cytokine therapy to be practical, it must be cost-effective compared to conventional 

treatments143. 

In view of the above challenges, examining other potential compounds with 

immunomodulatory activity against leishmaniasis should be focused on for developing better 

therapeutics in VL. The following section explores a few small molecules that have been used 

to target phagocytic cells that participate in host immunity against Leishmania parasites.  

Compounds that target intracellular signalling pathways involved in parasite survival in 

mammalian host are also examined. Identifying these immunomodulatory molecules could 

encourage future combinations with antileishmanial drugs and the outcomes may improve the 

efficacy of current treatment protocols. 

 

Targeting phagocytic cells 

Compounds that target host immune cells is being explored for treatment of leishmaniasis. 

Phagocytic cells such as PMNs (polymorphonuclear neutrophil granulocytes), macrophages 

and dendritic cells are safe havens for Leishmania and participate in innate immunity against 

these parasites, making them potential targets for therapy (Figure 2). Following entry of 

Leishmania into mammalian host, neutrophils are rapidly recruited to the site of infection 
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where they become activated to ingest and kill parasites via production of proteolytic enzymes, 

reactive oxygen species (ROS) and neutrophil extracellular traps (NETs)144–146. Neutrophils are 

inherently short-lived cells after which they undergo spontaneous apoptosis using a mitogen 

activated protein kinase (MAPK) signalling pathway147,148. Since Leishmania parasites are 

known to delay neutrophil apoptosis, compounds capable of increasing apoptotic activity and 

generating oxidative burst within Leishmania-infected neutrophils are effective for eliminating 

parasites. Berberine chloride has been reported to mediate antileishmanial activity via 

enhancement of apoptosis in infected neutrophils, subsequent to modulation of MAPK 

pathway149. 

Leishmania parasites can enter macrophages via uptake of infected, apoptotic PMNs through a 

process known as phagocytosis. This process requires special recognition molecules on both 

parasite and macrophage surfaces to facilitate macrophage entry. Following internalization, 

Leishmania evades the microbicidal consequences of phagocytosis by secreting acid 

phosphatase on its surface to inhibit the oxidative burst within the macrophage. Compounds 

like tamoxifen have been employed to reduce acidification in macrophage intracellular 

compartments while CPG-ODN (synthetic unmethylated Cytosine-Guanine 

oligodeoxynucleotides) has been used to increase the phagocytic activity of macrophages150,151. 

As NO is the principal effector molecule critical for parasite elimination in macrophages, any 

NO-releasing agent may have great potential. An example of such an NO-inducing compound 

is diperoxovanadate. Along with sub-optimal doses of Sodium Antimony Gluconate (SAG), 

diperoxovanadate reduced parasite load in L. donovani-infected BALB/c mice by expanding 

the antileishmanial T-cell repertoire and increasing NO production152. Other compounds like 

trinitroglycerin, hydrolyzable tannins and 18 β-glycyrrhetinic acid can also upregulate NO 

production153–155. Many plant-based products also show similar NO-enhancing ability. This is 

no surprise as the use of natural plants for treatment of disease dates back many centuries and 
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indeed, many of them are known to be active against various forms of Leishmania parasites. 

Natural plant extracts with antileishmanial activity has recently been reviewed156. Despite their 

leishmanicidal potential, most natural plant products do not meet all of the requirements 

considered essential for their commercialization which include topical or oral administration, 

efficacy at moderate doses, and freedom from severe side effects157. 

Dendritic cells (DCs) are professional antigen presenting cells (APCs) specialized in antigen 

uptake, processing and presentation to T cells. They are involved in the initiation of immune 

response and secrete IL-12, which is critically important for the polarization of naïve T cells 

toward the Th1 phenotype. Infection of DCs with Leishmania results in functional IL-12p70 

production and the subsequent release of interferon-gamma (IFN-γ) from activated Th1 cells56. 

To avoid this, parasites block maturation of dendritic cells and prevent production of IL-12158. 

It is therefore not surprising that pyrazinamide’s anti-leishmanial effects are mediated by 

increasing the activation of infected DCs via enhanced secretion of proinflammatory cytokines 

and NO159.  

 

Targeting intracellular signalling pathways  

Leishmania parasites reside mainly inside macrophages and to survive within their host cell, 

they interfere with macrophage signalling pathways by activating inhibitory protein tyrosine 

phosphatases (PTPs) and degrading key signalling molecules such as kinases, transcription 

factors and translation regulators160. Thus, blocking important intracellular signalling pathways 

that are indispensable for Leishmania parasite growth and survival shows potential in VL 

therapy. Since PTPs are negative regulators of cell signalling, their modulation by Leishmania 

is of critical importance in their establishment of infection and immune evasion160. Treatment 
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with PTP inhibitors bpV-phen and bpV-pic greatly diminishes parasite proliferation and aids 

in resolution of infection through NO production161,162. 

An important costimulatory molecule that determines the outcome of macrophage-Leishmania 

interactions is CD40. Binding of CD40 on macrophages to CD40L on T cells upregulates IL-

12 expression via pathways, MAPK and nuclear factor-kappa B (NF-κB). Conversely, weaker 

interactions between these costimulatory molecules can downregulate IL-12 production and 

increase IL-10 production which occurs subsequent to enhanced phosphorylation of 

extracellular stress-related kinase-1/2 (ERK-1/2)163. It has been shown that Leishmania skews 

CD40 signalling towards ERK-1/2, inducing IL-10, which prevents activation of CD40-

induced p38 MAPK and expression of inducible NO synthase. ERK-1/2 inhibition restores 

CD40-induced p38 MAPK activation and parasite killing in macrophages and L. major-

infected mice164. Clearly, ERK and p38 MAPK are important regulators of macrophage 

effector molecules and can dictate the outcome of infection making them putative targets for 

treatment. 

Another attractive option is targeting NF-κB signalling which upon activation by MAPKs, 

increases its expression of Th1 cytokines and iNOS163. Transcription factor NF-kB is usually 

held inactive in the cytoplasm via binding to Inhibitors of NF-κB (Iκ-B). Phosphorylation of 

Iκ-B by upstream signalling pathways dissociates them from NF-kB and allows for NF-kB 

dimerization and translocation into the nucleus for gene expression160. Preventing degradation 

of Iκ-B and its downstream effects is a strategy employed by Leishmania and its abrogation by 

antileishmanial compounds such as 18 β-glycyrrhetinic acid corroborates its potential as a 

putative target155. Similarly, cystatin (a natural cysteine protease inhibitor) with IFN-γ 

decreases Iκ-B levels with concomitant activation of NF-κB and upregulation of NO for 

parasite killing165.  
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Protein Kinase C (PKC) is a family of serine-threonine kinases that play a key role in signalling 

related to many microbicidal functions including response to TNF-α and IFN-γ as well as NO 

and ROS production. Different Leishmania surface molecules such as lipophosphoglycan 

(LPG) and ceramide inhibit PKC160. While Leishmania surface sphingomyelinase activates the 

atypical PKC-ξ (calcium independent), LPG inhibits activation of classical PKC-β (calcium 

independent) resulting in disruption of the lipid rafts necessary for cytokine receptor assembly 

(especially that of IFN-γ); reversal of this phenomenon can be achieved with amphotericin 

B166. Similarly, the activation of phosphatidylinositol 3-kinase/Akt by Leishmania enables 

downregulation of IL-12 and blockade of this pathway with PI3K/Akt inhibitor wortmannin, 

reduced infection rates in L. infantum-infected bone marrow-derived dendritic cells 

(BMDDCs). Treatment with another PI3K/Akt inhibitor, AS-506240 significantly reduced 

entry of L. mexicana into neutrophils and macrophages resulting in reduced lesion growth and 

parasite load in infected C57BL/6 mice167,168. 

The Toll-like receptor (TLR) signalling pathway is one of the first defensive systems against 

invasive microorganisms. TLRs are transmembrane proteins that confer specificity to innate 

immune cells by recognition of pathogens that cause human disease. The TLR family consist 

of 11 members (TLR1 to TLR11) which are located on either the plasma membrane or the 

internal membrane of macrophages, DCs, NK cells as also T and B lymphocytes. Following 

recognition of a pathogen-associated molecular patterns, many TLRs trigger a series of 

cascades that eventually lead to nuclear translocation of NF-κB for synthesis of 

proinflammatory cytokines169. Upregulation of TLR signalling is required to overcome 

Leishmania infection as demonstrated by TLR agonists- imiquimod, resiquimod, CPG-ODN, 

Pam3Cys, monophosphoryl lipid A and arabinosylated lipoarabinomannan23,170–175. Imiquimod 

(imidazoquinoline) is a TLR 7 agonist and a potent inducer of cytokines such as IFN-α, a 

variety of interleukins and TNF176. It is widely used for treatment of genital warts caused by 
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human papilloma virus but shows leishmanicidal properties due to its ability to induce nitric 

oxide production in macrophages177. In L. major-infected BALB/c mice, treatment with 

imiquimod cream significantly reduced the severity of cutaneous leishmaniasis178.  Imiquimod 

is also synergistic with meglumine antimonate as this combination was highly effective in 

treatment of CL in Peru but less so in Iran179,180. Combination of imiquimod ointment and 

Lescutan (15% paromomycin sulphate and 12% methylbenzethonium chloride)  was not 

successful for treatment of CL in mice infected with L.major181. 

As mentioned earlier, cytokines play a critical role in determining the nature of host immune 

response to infection. They signal through a cascade of intracytoplasmic proteins known as 

JAK-STAT. The JAK-STAT pathway results in the transcription of many important 

inflammatory genes such as iNOS, IL-12 and major histocompatibility complex class II (MHC 

II), therefore its inhibition is of great importance for Leishmania. The STAT family is 

comprised of seven proteins: namely STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b and 

STAT6, many of which are important in the pathology and resolution for Leishmania infection 

as has been demonstrated12. As a result, targeting STAT signalling through the use of agonists, 

antagonists or inhibitors may have potential and could be useful in VL therapy. For our study, 

we decided to explore inhibition of STAT6 pathway. 

STAT6 is involved in host immune response to Leishmania as it mediates the biological 

activities of IL-4 and IL-13, Th2 cytokines associated with non-healing forms of 

leishmaniasis12. Binding of Th2 cytokines, IL-4 and IL-13 to their respective receptors and to 

a common γc receptor they share, activates STAT6 leading to both the autocrine and paracrine 

induction of these cytokines (i.e. a positive feedback loop). To the best of our knowledge, there 

are no studies on the role of STAT6 in the pathogenesis of VL. Because IL-4 and IL-13 are 

upregulated during active human VL but significantly reduced after therapy, we decided to 
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exploit immunological interventions designed to inhibit the STAT6 pathway for treatment of 

VL14.  

STAT6-inhibitory peptide (STAT6-IP) is a chimeric peptide that has been used to inhibit 

STAT6 activity in murine models of aberrant Th2-type immunity associated with RSV 

vaccination/infection and allergic airways disease16,17.  This inhibitory peptide comprises of a 

protein transduction domain (for penetrating into cells) coupled to eight amino acids that 

surround the phosphotyrosine (*Y) 641 of murine STAT6. The STAT6-IP was designed to act 

as a dominant negative inhibitor of STAT-6 by binding to its SH2 domain, preventing 

dimerization of STAT-6. STAT6-IP has previously been used to reduce airway inflammation 

in mice by inhibiting activation of Th2 cytokines including IL-4 and IL-13 which are 

implicated in pathogenesis of airway disease18. Because IL-4 and IL-13 are also implicated in 

VL, we decided to evaluate this peptide as part of a combination treatment. 

 

Observations from our study 

In the present study, we investigated the immunomodulatory potential of STAT6-IP alone and 

in combination with sub-curative dose of miltefosine for treatment of VL. We began with a 

pilot study in which the curative dose of miltefosine was combined with STAT6-IP for 

treatment of L. donovani infection in susceptible BALB/c mice. This was carried out as a proof-

of-concept study to establish an infection and treatment model and to confirm the curative dose 

of miltefosine. Treatment with miltefosine at 20 mg/kg gave a 95% parasite clearance in 

infected mice which was well within the range of  the degree of parasite reduction observed in 

other treatment studies that had employed this dose22,23. There was a 98% parasite reduction in 

the STAT6-IP + miltefosine group when compared with infected controls which was not 

significantly different from the miltefosine alone group. The group treated with STAT6-IP had 
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no reduction in parasite burden. This was not unexpected as many immunomodulators that 

have been employed in the past for treatment of leishmaniasis in mice did not have any effect 

on parasite burden when used alone23,170,182. Having validated the infection and treatment 

model, we proceeded to the main study. 

In our next experiment, we combined the STAT6-IP with a sub-curative dose of miltefosine. 

The miltefosine group had a 53% reduction in parasite burden and we expected to be able to 

observe any additive activity of STAT6-IP. However, no synergistic effect was observed as the 

combination group still had high parasite load. Interestingly, STAT6-IP alone, which had no 

effect on parasite burden in the pilot study, seemed to reduce parasite load in the second study. 

Since the second study were carried out in a similar fashion to the pilot study and the same 

dose of STAT6-IP was used in both studies, we cannot conclude that STAT6-IP alone has an 

effect or not. This can only be resolved with further studies. However, the impact of STAT6-

IP on the serologic response on infection (below) strongly suggests that this immunomodulator 

did indeed have physiologic effects in the infected mice.  

Since VL progression is associated with high levels of Leishmania-specific antibody responses, 

we decided to measure the level of IgG isotypes-IgG1 and IgG2a in the sera of Leishmania-

infected mice. IgG1 and IgG2a are often used as surrogate markers of Th2 and Th1 responses 

respectively as IgG2a production is dependent on IFN-γ, whereas IgG1 production is correlated 

with IL-4. As expected in the infected group, IgG1 was elevated compared to IgG2a (i.e. a high 

IgG1:IgG2a ratio) which was associated with a high parasite burden. The combined STAT6-

IP + miltefosine group had increased IgG2a levels with a lower IgG1:IgG2a ratio suggesting 

some rebalancing of the parasite-skewed Th2 environment, but this did not translate into a 

reduction in parasite load. Monotherapy with either STAT6-IP or miltefosine reduced parasite 

burden in mice and also had impact on the balance of IgG1 and IgG2a production (reducing 
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the IgG1:IgG2a ratio) suggesting at least some enhancement in more effective Th1-type 

immunity.  

It appears to be, from our findings in the second study, that STAT6-IP as adjunct had no 

synergistic effect with miltefosine. However, there seems to be good evidence of physiological 

effect, based on the IgG1:IgG2a ratio, in all treated groups. In the STAT6-IP group, the IgG1 

levels appeared to be much lower compared to those in the infected and treated groups. This 

observation seemed to suggest that STAT6-IP may have been effective in reducing Th2 

cytokine activation (similar to observations in RSV and allergy studies were this peptide was 

previously employed) even though it did not induce the upregulation of Th1 cytokines (low 

IgG1:IgG2a ratio) as was anticipated. The lack of a vigorous IFN-γ response (low IgG2a levels 

in the STAT6-IP group)  in an environment with low IL-4 production should probably come 

as no surprise as early studies have reported that inhibiting IL-4 signalling does not necessarily 

equate to increased IFN-γ production183. There are speculations that IL-4 (and other Th2 

cytokines) do not promote Leishmania infection by downregulating IFN-γ response but by 

interfering with macrophage activation or by recruitment (to the site of infection) of 

mononuclear phagocytes that permit parasite growth183. Cytokine quantification and 

measurement of NO production may have helped to shed more light on the immunologic effects 

of inhibiting IL-4 (and IL-13) signalling in this study. 

Another important finding was the elevated concentrations of IgG2a antibodies in the 

miltefosine and combined treated groups. This elevation, known to be synonymous with 

upregulation of IFN-γ production, seems to back up previous hypothesis that miltefosine is 

capable of immunomodulation and Th1-cytokine induction184. Miltefosine belongs to a group 

of alkylphosphocholine compounds that are phosphocholine esters of aliphatic long chain 

alcohols. These alkylphosphocholine compounds are structurally related to 

alkyllysophospholipids which are synthetic analogues of the cell membrane lipid, 
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lysophosphatidylcholine20. Due to its similarity to lysophospholipids, miltefosine can interact 

with lipids in the parasite cell membrane thereby perturbing membrane integrity and interfering 

with signal transduction within the parasite185–187. Upon exposure to miltefosine, Leishmania 

parasites undergo nuclear condensation and DNA fragmentation that results in programmed 

cell death188,189. 

Apart from direct killing of Leishmania, the proposed mechanisms of miltefosine may also 

involve several immunomodulatory effects such as inhibition of the P13K/Akt pathway (which 

is initially activated by the parasite for survival), macrophage activation for NO production and 

enhancement of IFN-γ receptor responsiveness (which can in turn lower the production of Th2 

cytokines)184,190,191. A few studies have argued that miltefosine-mediated immunomodulatory 

effects are more advanced when miltefosine is combined with compounds that stimulate Th1 

polarized cytokines22,150,184. Since the proposed mechanism of STAT6-IP involves inhibition 

of Th2 cytokines (and not enhancement of Th1 activation), this could be a reason as to why our 

peptide showed no additive activity with miltefosine. Another reason could also be the possible 

interference of STAT6-IP activity by combination with miltefosine. STAT6 pathway is 

activated by kinases and miltefosine has been reported to function through kinase 

inhibition20,116. For future studies, STAT6-IP should be tested for compatibility with other 

antileishmanial drugs.  

In general, approaches applied in VL therapy have aimed at overcoming the overwhelming 

immunosuppressive environment via use of Th1 cytokine “upregulators” but there exists an 

underlying fear of generating an overdrive proinflammatory scenario163. In this context, 

compounds like STAT6-IP can be of advantage in terms of inhibiting Th2 cytokine production 

(that are responsible for immunosuppression) without creating a proinflammatory 

environment. Since STAT6-IP inhibits STAT6 signalling, it could be potentially used in 

identifying the role of IL-4, IL-13 and STAT6 in the pathogenesis of VL disease (which still 
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remains unclear). To the best of our knowledge, this is the first time that an inhibitory peptide 

is used for treatment in leishmaniasis. This peptide may also find therapeutic applications in 

other diseases that are associated with aberrant Th2 responses.  

We do not dispute that further studies is required to determine how this inhibitory peptide 

induces antileishmanial activity since our observations and assumptions were mostly reliant on 

antibody characterization. Immunological analysis such as quantification of cytokines involved 

in VL progression and cure (IFN-γ, IL-12 and IL-4, IL-13, IL-10, TGF-β), measurement of 

iNOS levels/ NO production as well as determining if impaired T-lymphocyte proliferation is 

restored after treatment will be useful in making a more concrete report.  

This study is the first time that STAT6-IP is employed systemically (IP administration). 

Intranasal injection in allergy studies and foot pad injections in our lab have shown that 

STAT6-IP can “safely” be delivered to the lungs and draining LNs respectively. Further 

analysis, through close observation of the liver and spleen, will be required to understand how 

this peptide elicits a systemic immune response.  

Despite the contrasting reports on the effects of STAT6-IP on parasite burden in our two 

studies, it is still possible that STAT6-IP has antileishmanial properties that were not enhanced 

with miltefosine combination. In a study where Tucaresol (an orally bioavailable 

immunopotentiatory drug that enhances Th1 activity through increased production of IL-2 and 

IFN-γ) was used for treatment of murine L. donovani infection, results showed significant 

reduction of liver amastigotes with the immunomodulator when used alone but no synergistic 

effect when combination with Pentostam192. Also, in another study where the therapeutic 

efficacy of anti-IL-10 mAb and anti-GITR (glucocorticoid-induced TNF receptor-related 

protein) was tested in L. donovani-infected C57BL/6 mice, anti-IL-10 mAb reduced parasite 

burden but its combination with anti-GITR showed no antileishmanial effect despite significant 
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increase in IFN-γ and TNF-α production193. As with STAT6-IP, these observations seem to 

suggest that immunomodulators can have potential antileishmanial properties that are not 

enhanced when combined with specific compounds. The latter study (and ours as well) is also 

in agreement with previous reports that have shown that high levels of IFN-γ (which can drive 

IgG2a production) does not necessarily equate to protection against Leishmania infection193–

196. In a study where SLA was used to treat L. donovani infection in mice, SLA favoured a 

mixed Th1/Th2 response (similar levels of IgG1 and IgG2a) and was still protective in mice197. 

A similar observation has also been reported with hydrophilic acylated surface protein B1 

(HASPB1), thus supporting our preliminary observation that the coexistence of Th1/Th2 

responses may be important for protection in VL198. 

 

Conclusion 

The development of immunomodulatory strategies, whether as single or combined with 

antileishmanial drugs, appears to have real potential to improve VL therapy. The challenge 

now is identifying the best targets to achieve therapeutic success. In order to make optimal use 

of these new agents, a proper understanding of disease immunopathogenesis is paramount. 

BALB/c mice infected with L. donovani, because they differ from humans in many respects, 

may be reasonable experimental models for early parasite replication and the study of early 

immune responses47. Hamster models may be more suitable as they can mimic the clinical 

situation of human VL199. In times past, the lack of immunological reagents have limited usage 

of hamsters but with the availability of real time RT-PCR assays, quantification of cytokine 

replication in hamsters is now possible200. This development can facilitate better investigations 

into the mechanisms of visceral disease in hamsters and in the long run, results extrapolated 
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from studies in these models may guide advance in the use of these new approaches for VL 

control. 
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5 CHAPTER 5: SUMMARY 
 

Extensive data from both experimental and clinical studies have shown the advantages of 

immune-based therapy for treatment of VL.  Despite this observation, only few 

immunotherapeutic agents have been clinically tested and none has been introduced into 

routine use. This could be attributed to variations in the readouts obtained from different studies 

during evaluation of immunotherapeutic benefits. To resolve this problem, standardized 

protocols should be developed to determine what optimal conditions are required for the 

development of potent antileishmanial immunotherapeutics201.  

Another important question that needs to be addressed is why immunomodulatory compounds 

that induce Th1 response and protect mice from leishmaniasis have generally failed to induce 

significant protection in humans. There are several factors that could be responsible for this 

such as differences in mouse and human immune system, very low and/or non-stringent 

standards for what is considered protective in murine studies and the unrealistic treatment 

protocols employed in some murine studies. Treatment schedules are sometimes designed to 

maximize desirable results in mice that are completely unrealistic in clinical settings202. In this 

context, studies aimed at assessing the efficacy of immunotherapeutics should be accelerated 

in both mice and dogs before clinical trial evaluations. 

Finally, efforts to eliminate VL cannot rely on treatment alone. Other interventions such as 

reducing human-vector contact via the use of treated bed nets and indoor residual spraying of 

insecticides will help to limit the spread of disease especially in endemic areas99. 
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FIGURES 

  
 

 

FIGURE 1. Lifecycle of Leishmania parasite. Leishmania is transmitted by the bite of infected female 

phlebotomine sand fly. Sand flies become infected by ingesting amastigotes while feeding from an 

infected host. The amastigotes are released into the sand fly gut where they transform into procyclic 

amastigotes and then to infective metacyclic promastigotes by binary fission. Infective metacyclic 

promastigotes migrate to pharyngeal valve of the sand fly where they are transferred to an uninfected 

host. In the new host, they invade macrophages and other phagocytic cells where they transform into 

amastigotes and multiply. Cells containing amastigotes eventually rupture and proceed to infect other 

cells, establishing infection.  

Source: Harhay, M. O., Olliaro, P. L., Costa, D. L. & Costa, C. H. N. Urban parasitology: visceral 

leishmaniasis in Brazil. Trends Parasitol. 27, 403–409 (2011). 
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FIGURE 2. Interplay of Innate and Adaptive Immune System in Response to Leishmaniasis. 

Following infection of host, Leishmania metacyclic promastigotes are deposited into the skin by an 

infected sand fly. Majority of the parasites undergo killing by complement-mediated lysis while those 

that survive lysis are engulfed by macrophages, neutrophils (NTs) and dendritic cells (DCs). NTs 

carrying parasites become activated and release ROS and NETs to degrade parasites. They are also 

taken up by macrophages causing indirect macrophage infection. Infected DCs induce IL-12 production 

which activates NK and primes CD4+ T cells to protective Th1 cells. Activated NK cells, CD4+ Th1 

and cytotoxic CD8+ T cells release IFN- γ for upregulation of ROS and NO required for parasite killing 

and resistance. The mechanisms for susceptibility but an environment with low IL-12 can induce Th2 

cells to release IL-4, IL-10 and IL-13 which enhances parasite survival. In addition, production of IL-

10 and TGF-β by T reg cells contribute to the survival of parasites. The signals that promote 

differentiation to T regulatory (T reg) cells are still unknown. B cells are also activated during infection 

to produce anti-Leishmania antibodies. Depending on the predominant cytokine, IFN- γ and IL-4 can 

each stimulate B cells to undergo isotype switching to IgG2a and IgG1 respectively. NETs: neutrophil 

extracellular traps; ROS: reactive oxygen species; NO: nitric oxide; IFN- γ: interferon-gamma, TGF-

β: tumor growth factor. 
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FIGURE 3. Combination of STAT6-IP and Miltefosine for treatment of L. donovani infection in 

BALB/c mice. 
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TABLES 

 

TABLE 1. Currently available drugs for treatment of Visceral Leishmaniasis 

Drugs Sodium 

Stibogluconate 

Pentamidine Amphotericin 

B 

deoxycholate 

Liposomal 

amphotericin 

B 

(Ambisome) 

Miltefosine Paromomycin 

Mechanism of 

Action 

Acts by 

inhibiting 

glycolytic 

enzymes and 

fatty acid 

oxidation in 

Leishmania 

amastigotes; 

inhibits the net 

formation of 

ATP and GTP 

in a dose-

dependent 

manner 

Acts on 

parasite 

genome by 

hampering 

replication and 

transcription at 

the 

mitochondrial 

level 

Acts by 

inhibiting 

membrane 

lipid 

biosynthesis 

forming 

microspores, 

leading to 

increased 

membrane 

permeability 

and ultimate 

killing of 

leishmania 

Same as 

conventional 

amphotericin 

but 

distribution of 

drug in the 

body is 

different 

Acts by 

interfering with 

membrane 

synthesis and 

cell signalling 

pathways 

Acts by 

interfering 

with initiation 

of protein 

synthesis by 

fixing the 30S-

50S ribosomal 

complex at the 

start codon of 

mRNA, 

leading to 

accumulation 

of abnormal   

initiation 

complex 

Regimen 20 mg/kg daily 

for 30 days 

4 mg/kg thrice 

a week for 3-4 

weeks (10-12 

injections) 

1 mg/kg on 

alternate days 

x 15 doses in 

30 days 

Total dose of 

20 mg/kg split 

over several 

doses 

2.5 mg/kg for 

28 days (India 

only) 

15 mg/kg for 

21 days (India 

only) 

Administration intravenous or 

intramuscular 

intravenous or 

intramuscular 

intravenous  intravenous  oral intramuscular 

Toxicity Arrhythmias, 

reversible 

pancreatitis, 

nephrotoxicity, 

hepatotoxicity, 

death 

Myalgias, pain 

at the injection 

site, nausea, 

headache, 

metallic taste, 

burning 

sensation, 

numbness, 

hypotension, 

hypoglycaemia 

Nephrotoxicity 

(in-patient 

care needed), 

infusion-

related fever 

Minor/no 

nephrotoxicity, 

mild infusion-

related fever 

Mild 

Gastrointestinal 

disturbances, 

nephrotoxicity 

hepatotoxicity 

possible 

teratogenicity 

minor/no 

nephrotoxicity, 

reversible 

ototoxicity, 

hepatotoxicity 

(all relatively 

rare) 

 

Source: Singh, P. & Kumar, M. Current treatment of visceral leishmaniasis (Kala-azar): an 

overview. Int. J. Res. Med. Sci. 2, 810–817 (2014) 
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TABLE 2. Some immunomodulators that have been employed in VL therapy 

IMMUNOMODULATOR HOST MODE OF ACTION REFERENCES 

Free and Liposomal 

Tuftsin 

BALB/c 

mice  

Augments the phagocytic activity 

of macrophages;  

activate macrophages to produce 

NO 

 

203 

Leptin (adipocyte-derived 

hormone) 

BALB/c 

mice 

Stimulates macrophages and NK 

cells for the production of 

proinflammatory cytokines with 

resultant reduction of Th2 

cytokines 

 

204 

Picroliv (a purified iridoid 

glycoside from the roots of 

Picrorhiza kurrooa  

Hamsters Hepatoprotective, anti-

inflammatory and antioxidant 

properties 

 

 

182,205 

Pam3Cys (synthetic 

bacterial peptide; TLR-2 

agonist 

BALB/c 

mice 

Triggers Th1 effector functions 23,206 

rHuGM-CSF Human 

(HIV-VL 

coinfected 

patients) 

Macrophage activator; mobilizes 

blood monocytes 

207 

Positively-charged 

liposomes containing SLA 

 

BALB/c 

mice 

Enhances uptake by APCs for 

efficient presentation by MHC 

class I and class II 

 

197 

Alum/ALM + BCG Human 

(PKDL 

patients, 

healthy 

adults, 

children) 

Extensive antigenic cross-

reactivity between Leishmania 

species 

208–210 

Liposomal MDP analog 

Muramyl dipeptide 

 

Hamsters 

and mice 

Increases both cell-mediated and 

humoral immune responses 

211 

Quassin (an extract from 

the bark of the Bitter tree, 

Quassia amara) 

Balb/c mice 

 

Induces iNOS expression and Th1 

cytokine production; suppresses 

Th2 cytokines 

212 

Polyinosinic-polycytidylic 

acid 

 

Hamsters Induces IFN- γ and NO 213 

CP-46,665-1 (synthetic 

lipoidal amine) 

 

C57BL/6 

mice 

Not fully evident, possibly through 

cytolytic activity 

214 

OX40L-Fc (chimeric 

fusion protein) and 

CTLA-4 inhibitor 

 

Mice Enhances granuloma maturation 215 
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