
Finite state approximation for a class of

POMDPs

and a comparison of reinforcement learning

algorithms

for energy storage management of

renewable generation
Mehnaz Mannan

Master of Engineering

Electrical and Computer Engineering

McGill University

Montreal,Quebec

2014-12-01

A thesis submitted to McGill University in partial fulfillment of the requirements of
the degree of Master of Engineering

Mehnaz Mannan, 2014



ACKNOWLEDGEMENTS

I would like to thank my supervisor Aditya Mahajan for his support and guid-

ance. He helped me immensely with the thesis by discussing the ideas, patiently

reading through the drafts and giving useful feedback. I would like to thank my lab

mates Jhelum, Tracy, Prokopis, Jalal, Ali P. and Shuang for their help, inspiration

and good company. I am grateful to Tingting and Jerina for helping me translate the

abstract to French. A special thanks to Ali and Nirantar for their constant support

and encouragement. Last but not least, I would like to thank my family for giving

me the opportunity to study in McGill and I am especially grateful to my brother,

Fahim, for helping me with all sorts of MATLAB, C, Java, LaTeX problems (and

beyond) that I have faced throughout undergraduate and graduate school.

ii



ABSTRACT

This thesis consists of two parts. In the first part, we investigate numerical

solution of Partially observable Markov decision processes (POMDPs). POMDP

is a modelling technique which is applicable in many real world scenarios. The

standard methods for solving this model have high computational complexity which

often makes finding the numerical solution infeasible. In this work, we show that

for a special class of POMDPs, we can simplify the solution method. This is done

by first identifying a reachable set of the belief space to convert uncountable state

POMDPs to countable state POMDPs and then by using finite state approximation

to convert the countable state POMDPs to finite state POMDPs. We show that

this special class of POMDPs may arise in settings such as decentralized stochastic

control and real time communication over a shared channel. We use our simplified

solution method to numerically solve both of these problems. In the second part

of this thesis, we deal with an energy storage problem for which the state evolution

dynamics is unknown. This problem can be represented as a Markov decision process

(MDP) and can be solved using reinforcement learning algorithms such asQ-learning,

Batch Q-learning, Empirical Value Iteration. We compare the convergence rate of

each of these algorithms for solving this model using synthetic data.
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ABRÉGÉ

Cette thèse est composée de deux parties. Dans la première partie, nous étudions

la solution numérique du processus de décision partiellement observables du modèle

Markov (POMDP). POMDP est une technique de modélisation qui est applicable

dans de nombreux scénarios dans monde réel. Les méthodes standard pour résoudre

ce modèle comportent une grande complexité en ce qui concerne le calcul qui rend

souvent trouver la solution numérique infaisable. Dans ce projet, nous montrons que

pour une classe spéciale de POMDPs, nous pouvons simplifier la méthode de solution.

Cela se fait d’abord par l’identification d’un ensemble atteignable de l’espace de

croyance pour convertir les états de POMDPs innombrables à des états de POMDPs

dénombrables et ensuite en utilisant l’approximation des états définit pour convertir

les états de POMDPs dénombrables à les états finis de POMDPs. Nous démontrons

que cette classe spéciale de POMDPs peut survenir dans les paramètres tels que le

contrôle stochastique décentralisée ainsi que dans la communication en temps réel sur

un canal partagé. Nous utilisons notre méthode de solution simplifiée pour résoudre

numériquement ces deux problmes. Dans la deuxième partie de cette thèse, nous

traitons un problème de stockage d’énergie pour lequel la dynamique d’évolution de

l’état est inconnu. Ce problème peut être représenté comme un processus de décision

de Markov (MDP) et peut tre résolu en utilisant des algorithmes d’apprentissage tels

que Q-learning, Batch Qlearning, Empirical Value Iteration. Nous comparons le taux

de convergence de chacun de ces algorithmes pour résoudre ce modèe à l’aide des

données synthétiques.
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CHAPTER 1
Technical Background

1.1 Introduction

Markov Decision Processes (MDPs) are a tool for modelling sequential decision

making problems in stochastic environments. In such problems, a decision maker

observes the state of a system at a certain point in time; it then chooses one of

the actions available at that state to probabilistically transition to one of the next

available states at the next point in time. Each state-action pair has some cost

associated with it. In a given state, the decision maker chooses the action which

will minimize not only the current cost but also the expected costs it will incur by

performing actions in future states. The states in these systems evolve in a Markovian

manner, meaning that the current state captures the information of all past states

and hence the current state and action are sufficient to determine the next state. The

MDP framework assumes that when a decision maker observes a state, it observes it

perfectly. When this assumption is not true, i.e. the decision maker makes a noisy

observation of the state and hence has to estimate what the actual state really is, the

problem is called a Partially Observable Markov Decision Process (POMDP). While

POMDPs provide a much more powerful model, the increase in model complexity

makes it harder to determine optimal decision strategies.

In this chapter, we provide an overview of MDPs and POMDPs. A grasp of

these ideas is required to understand the solution technique of a special class of
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POMDPs discussed in Chapters 3 and 4 and to understand the model-free learning

techniques discussed in Chapter 5. Next we discuss the objectives, organization and

contributions of this thesis. Finally we acknowledge two of the publications based

on which part of this thesis is written.

MDPs arise in different application domains, each of which tend to use a differ-

ent notation. We follow the notation of [10] which is consistent with the standard

notation used in Systems and Control. Other textbooks such as [2], [25], [36] use

notations consistent with that used in optimization, operations research and artificial

intelligence respectively.

1.2 MDP model formulation

A MDP model can be described as a tuple < X ,U , P, c, T >.

• X is a continuous or discrete set of states.

• U is a continuous or discrete set of actions.

• P is the transition probability matrix which gives the probability of ending up

in state x′ at next time point given that we are in state x at current time point.

Hence P (x, x′) = P(Xt+1 = x′|Xt = x)

• c(x, u) is the cost function which gives us the cost of choosing action u in state

x at current time point.

• T is the set of decision epochs (in other words, time points at which actions are

taken). T may be a discrete or continuous set. In discrete time problems, T

may be finite or infinite and so we write T = {1, 2, ..., N, }, N ≤ ∞ to include

both cases. When N is finite, the decision problem is called finite horizon

problem; otherwise it will be called an infinite horizon problem.

2



Functions which determine the action for each state at a particular time point are

called decision rules. The decision maker has perfect recall which means that it re-

members everything that it has observed and done in the past. In general we expect

the decision rule to be: gt(X1:t, U1:t−1) = ut. However a central result in MDPs,

called Blackwell’s principle of irrelevant information [3], shows that restricting at-

tention toMarkov decision rules, i.e. using only current state as opposed to historical

information to identify an action, is without loss of optimality. So decision rules in

MDP are of the form:

gt(xt) = ut

As mentioned before, the states in this model evolve in a Markovian fashion :

Xt+1 = ft(Xt, Ut,Wt)

where {ft}
N
t=1 are known dynamic functions andWt is the random noise in the system.

We guarantee the Markov property by making sure that for every control law

g,Wt is independent of the random variables Xm, Um where m ≤ t − 1 [10]. Note

that the distribution of the transition probability is the same as the distribution of

the random noise:

P(Xt+1 = x′|Xt = x) = P(Wt : ft(x, u,Wt) = x′)

The goal of sequential decision making problems is to make such decisions at each

time point so that the overall cost is minimized. The actions which allow us to meet

our goal are called optimal actions and the decision rules that prescribe such actions

are called optimal decision rules i.e. g∗t (xt) = u∗
t (the asterisk denotes optimality). A
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policy g is a sequence of decision functions: g = (g1, g2, ..., gN−1) for t = 1, 2, ..., N−1

where N ≤ ∞. An optimal policy is therefore a sequence of optimal decision rules:

g∗ = (g∗1, g
∗
2, ..., g

∗
N−1).

We evaluate how good a policy is (i.e. how much cost is generated by following a

given policy) by calculating the value function from the starting state. Informally, the

value of a state x at time t under a policy g , denoted V
g
t (x), is the expected return

when starting in x at time t and following g thereafter. For finite horizon MDPs, we

can define value function as V g
t (x) = E

g[
∑N−1

τ=1 c(Xτ , Uτ ) + c(XN)|Xt = x] while for

infinite horizon MDPs we define it as V g
t (x) = E

g[
∑∞

τ=1 β
τc(Xτ , Uτ )|Xt = x], where

0 ≤ β ≤ 1 is the discount factor. The discount factor allows the value function

to map an infinite sequence of costs to a single real number (representing cost).

Discounting values immediate cost over delayed cost. β close to 0 leads to myopic

evaluation while β close to 1 leads to far-sighted evaluation.

Evaluating the value function becomes simpler if we write it as the Bellman

Equation, which is a recursive equation formed by writing down the relationship

between the value function in one decision epoch and the value function in the next

decision epoch. The value function for a policy g written as the Bellman Equation

is : V g
t (x) = E

g[c(Xt, Ut) + V
g
t+1(Xt+1)|Xt = xt]. The Bellman Equation can be used

to find the optimal value function and optimal policy in a finite horizon problem in

the following manner:

VN(xN ) = c(xN)

V ∗
t (x) = min

ut∈U
EXt+1

[c(Xt, Ut) + V *
t+1(Xt+1)|Xt = xt, Ut = ut]

4



g∗t (x) = argmin
ut∈U

EXt+1
[c(Xt, Ut) + V *

t+1(Xt+1)|Xt = xt, Ut = ut]

g∗ = [g∗1, g
∗
2, ..., g

∗
N−1]

This backward induction method of finding the optimal value and policy works be-

cause of an idea called “Principle of Optimality”. The principle of optimality suggests

that an optimal policy can be constructed in a piecemeal fashion, first constructing an

optimal policy for the “tail subproblem” involving the last stage, then extending the

optimal policy to the “tail subproblem” involving the last two stages, and continuing

in this manner until an optimal policy for the entire problem is constructed[2].

Before writing the optimal value function and optimal policy for an infinite

horizon problem, it must be mentioned that for simplification purposes, we assume

time-invariant state space and time-homogeneous probability distributions for infinite

horizon problems. Under these assumptions, the optimal value function and optimal

policy for an infinite horizon problem are given the following fixed point equations

V ∗(x) = min
u∈U

EX+
[c(X,U) + βV ∗(X+)|X = x, U = u] (1.1)

g∗(x) = argmin
u∈U

EX+
[c(X,U) + βV ∗(X+)|X = x, U = u] (1.2)

g∗ = [g∗, g∗, ...] (1.3)

In the infinite-horizon discounted model, the decision maker always has infinite time

remaining, so time does not affect its action strategies for a state. We call a policy

stationary if gt = g for all t ∈ T . A stationary policy has the form g = [g, g, ...]; we

denote it by g∞. In infinite horizon problems, the choice of action depends only on

the state and is independent of the time step; hence a stationary policy is optimal in
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this case. Since there is no terminal cost in infinite horizon problems, they cannot

be solved using backward induction. Instead, infinite horizon problems are solved

using the Value Iteration algorithm.

1.3 Value Iteration

Value iteration proceeds by computing the sequence Vt of discounted infinite-

horizon optimal value functions. Vt(x) is the t-step value of starting at state x

and choosing the action u which will minimize the sum of current cost c(x, u) and

discounted expected future cost β
∑

x′∈X

P (x, x′)Vt−1(x
′). Note that we compute future

costs using the value function calculated at step t − 1. The algorithm terminates

when the maximum difference between two successive value functions, the Bellman

error magnitude, is less than ε(1−β)
2β

, where ε is a prespecified tolerance level. So if we

define the sup-norm between the value functions as ||V −W || = sup
x∈X

|V (x)−W (x)|

then the algorithm stops when ||Vt−Vt−1|| ≤
ε(1−β)

2β
which ensures that ||Vt−V ∗|| ≤ ε.

Hence the returned value Vt is ε-optimal. Proof of this algorithm can be found in

[25].

function ValueIteration(X,U,P,c,β,ε)

for x ∈ X do

V0(x) := 0

end for

t := 1

bellmanError := ε+ 1

while bellmanError >
ε(1−β)

2β
do

for x ∈ X do

6



Vt(x) := min
u

c(x, u) + β
∑

x′∈X

P (x, x′)Vt−1(x
′)

gt(x) := argmin
u

c(x, u) + β
∑
x′∈X

P (x, x′)Vt−1(x
′)

end for

bellmanError := max
x

|Vt(x)− Vt−1(x)|

end while

return gt

end function

1.4 POMDP model formulation

A POMDP model can be described as a tuple < X ,U ,Y , P, c, T >

• X ,U , P, c, T are the same as in MDP formulation.

• Y is the set of observations that the decision maker receives corresponding to

the states in X .

• The observations Yt depend on the current state Xt and the observation noise

Nt i.e. Yt = ht(Xt, Nt)

Since Xt is not known, Ut must now be chosen using all information It available to

the decision maker at time t i.e. gt(It) = ut, where It = (y1, y2, ..., yt, u1, u2, ..., ut−1).

In general It increases with time, so storing it is expensive. This motivates us to

look for quantities known as information state which is of smaller size than It and

yet summarizes all the essential content of It as far as control is concerned.

Zt is called an information state if the following conditions are satisfied.

1. Zt is a function of the available information

• There exists a series of functions such that Zt = ft(It)

2. Zt absorbs the effect of available information on current costs

7



• P(c(Xt, Ut) ∈ C|It = i, Ut = u) = P(c(Zt, Ut) ∈ C|Zt = Ft(i), Ut = u)

3. Zt has controlled Markov property

• P(Zt+1 ∈ A|It = i, Ut = u) = P(Zt+1 ∈ A|Zt = Ft(i), Ut = u)

The information state absorbs the effect of available information on expected future

cost, i.e., for any choice of future strategy gt = (gt+1, gt+2)

E
gt [

∞∑
τ=t

βτc(Xτ , Uτ )|It = i, Ut = u] = E
gt [

∞∑
τ=t

βτc(Zτ , Uτ )|Zt = Ft(i), Ut = u]

Therefore, Zt is a sufficient statistic for performance evaluation and there is no loss of

optimality in restricting attention to control laws of the form gt(zt) = ut. Moreover,

the optimal control law of this form is given by the solution to the following dynamic

program.

Vt(zt) = min
ut∈gt(zt)

E[c(Zt, Ut) + βV
g
t+1(Zt+1)|Zt = zt, Ut = ut] (1.4)

It can be shown that one such information state is the belief state πt which we

define as the conditional probability distribution of the state Xt given all available

information It i.e. πt = P(Xt = x|It = i). The advantage of using the belief state as

an information state is that the belief state is time-invariant and hence it simplifies

the dynamic program. The disadvantage of using the belief state is that it belongs

to a continuous space (the space of all probability distributions on X ). For example,

if |X | = n, then the space of realizations of the belief state are {(p1, . . . , pn) ∈ R
n :

pi ≥ 0,
∑n

i=1 pi = 1} which makes standard dynamic programming intractable.

There are several POMDP solution techniques in existing literature. In [33], [32]

and [34] Sondik and Smallwood make the key observation that the value functions

8



involved in each step of the dynamic program are piecewise linear and concave, and

develop algorithms that utilize this property to determine optimal policies for finite

and infinite horizon POMDPs. Subsequent algorithms for solving POMDPs include

Monahan’s enumeration algorithm [19], the linear support algorithm [6], the witness

algorithm [13], [14], [5] and and the incremental pruning algorithm [43]. In general

the complexity of the POMDP algorithms increase rapidly as the number of states of

the underlying Markov process increases. As a result the convergence time of these

algorithms may become prohibitively large at the number of states increases.

1.5 Thesis objectives, outline and contributions

This thesis has two objectives. The first objective is to analyze a special class

of POMDPs and come up with an alternative formulation for it. This allows us to

solve it more efficiently compared to standard techniques. The second objective is to

look at an MDP with unknown model and compare the different model-free learning

algorithms used to solve it. Note that the first and second objectives are not directly

related. In the first case, we know the model completely but we do not observe the

state perfectly. In the second case, we do not know the model completely, however

we do observe the state perfectly.

The thesis is organized as follows. In Chapter 2, we show that for a certain class

of POMDPs, the uncountable belief state space of POMDPs can be represented by a

countably infinite state space. Next we show that by using finite state approximation,

the POMDP with countablly infinite state space can be constructed as a POMDP

with finite state space.
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In Chapter 3, we introduce the concept of decentralized stochastic control. We

discuss why these problems are difficult to solve and then explain the two commonly

used solution approaches to decentralized control: the person-by-person approach

and the common-information approach. Next we provide an example of a decentral-

ized problem which can be formulated as a POMDP; we show that this belongs to

the special class of POMDPs mentioned Chapter 2. Hence we are able to reformulate

it in a way that simplifies dynamic programming decomposition and can finally solve

it using Value Iteration.

In Chapter 4 we focus on a real time communication problem where several

independent Markov sources must be transmitted to a receiver at the same time using

a shared channel. The sources are sequentially encoded to a common quantization

symbol and then sent by the transmitter to the receiver. The receiver sequentially

observes the quantized symbols and generates an estimate of the source according to

some decoding rule. We explain the assumptions made to simplify this problem. Next

we consider a special case of the problem where the encoding and decoding strategies

are predetermined and the source alphabet matches the channel alphabet. This

results in a POMDP which falls under the special category of POMDPs mentioned

in Chapter 2. So, just as in the example of Chapter 3, we are able to reformulate

this problem to simplify the dynamic programming decomposition. Then we solve

the dynamic program using Value Iteration.

In Chapter 5, we introduce the problem of energy storage management of re-

newable generation when we do not know the energy demand, generation and price
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evolution models. We identify this as a model-free reinforcement learning prob-

lem. We then discuss reinforcement learning algorithms such as Q-learning, Batch

Q-learning and Empirical Value Iterations. Next we apply the aforementioned al-

gorithms to our problem and compare their performance. Finally in Chapter 6 we

conclude the thesis.

The example in Chapter 3 has been used as a benchmark problem for the nu-

merical algorithms for decentralized stochastic control problems. While the example

in Chapter 4 is a real world problem that arises in applications such as smart grids

and environmental monitoring. These problems have high computational complex-

ity; in general they are solved by algorithms which are heuristic and do not provide

any optimality guarantees, or can compute the optimal policy only for small horizon

(usually running out of memory at horizon four or five). In contrast, our approach

exploits the structural properties of the problems to arrive at a solution in a more

efficient manner. Hence this is one of the contributions of the thesis. The problem

considered in Chapter 5 has been previously solved assuming that the model is fully

known. This is not a realistic assumption; therefore by using model-free techniques,

we suggest a more practical solution for the problem. We consider this to be another

contribution of the thesis.

1.6 Publications related to this thesis

This thesis includes the text of the following publications:

1. A. Mahajan and M. Mannan, “Decentralized stochastic control,” Annals of

Operations Research, 2014 (in print) [15]
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2. M. Mannan and A. Mahajan, “Simultaneous real-time communication of mul-

tiple Markov sources over a shared channel,” Proceedings of the IEEE Interna-

tional Symposium on Information Theory (ISIT), pp. 2356−2360, Jun 29-July

4, 2014. [17]
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CHAPTER 2
Finite State Approximation for POMDPs

2.1 A special model

In some applications, the observations have a special structure that allows us to

characterize the reachable set of belief states. The simplest such structure is when

U ∈ {0, 1} and

Yt =

⎧⎪⎪⎨
⎪⎪⎩
E if Ut = 0

Xt if Ut = 1

(2.1)

where E denotes a blank observation. In such a system, the evolution of the belief

state is given by:

πt+1 =

⎧⎪⎪⎨
⎪⎪⎩
πtP if Ut = 0

δxt
P if Ut = 1

(2.2)

where δxt
denotes the Dirac distribution on Xt with unit mass on the realization xt

In this case, if no action is taken the belief state evolves based on the state

transition probability. However if an action is taken the belief state resets such that

we are certain about the underlying state x. Note that each time the belief state

resets, it traces exactly the same path of belief states until reset is performed again.

By choosing the length of time after which reset is performed, we can control the

set of values which constitute the realizations of the belief state. This set of values

is called the reachable set and once it is characterized, we do not have to solve the
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Bellman equation 1.1 for all points in the space of probability distribution of X ,

rather we can solve it for all points in the reachable set. A simpler version of this

approach was first proposed in [31].

As an example, let X = {x1, x2, x3}, U = {0, 1}. If at time t, Xt = x3 and

Ut = 1, then Yt = x3. This means πt(x
3) = 1 while πt(x

1) = 0 and πt(x
2) = 0. Hence

πt at the instance an observation is made can be written as δx3 . This is illustrated in

Figure 2–1. When we make an observation, we end up in a corner state δxi
such that

π(xi) = 1 and π(xj) = 0 for j �= i. The belief state evolves on the space of probability

distributions on X . The unfilled red and filled green circles represent belief states

at which it is optimal to not take and to take measurements, respectively (note that

this policy is for illustrative purpose only and is not necessarily a typical policy for

such problems).

Figure 2–1: Evolution of the belief state
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2.2 Reachable set of Belief state

To characterize the reachable set of πt, we define m := min{τ ≥ 0 : Yt−τ �= E}

which is the time since the channel state was last observed.

We rewrite πt(xt) as follows

πt(xt) := P(Xt = xt|I1:t)

= P(Xt = xt|Y1:t, U1:t)

= P(Xt = xt|Y1:t−m, m) (2.3)

= P(Xt = xt|Xt−m, m) (2.4)

= [δXt−m
Pm](xt) (2.5)

where (2.3) follows from the fact that observations after t − m are blank. Equa-

tion (2.4) follows from the facts that Yt−m completely determines Xt−m, and due to

the Markovian nature of {Xt}t=0,1,2,..., Xt is conditionally independent of observa-

tions before time t − m, given Xt−m. [δXt−m
Pm](xt) in equation (2.5) denotes the

component of the vector δXt−m
Pm corresponding to state xt.

Proposition 1: Let P(X ) denote the space of probability distributions on X .

The reachable set of {πt}
∞
t=1 is given by:

R = {δxP
m ∈ P(X ) : Xt−m = x ∈ X and m ∈ Z>0} (2.6)

Note that R is countable and isomorphic to X × Z>0 and any πt = δxP
m ∈ R

maybe denoted by (x,m) ∈ X × Z>0.

Proof: We prove the result using induction. In particular,
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1. The initial state π1 = δx0
P belongs to R

2. For any realization πt of P(X ) and any choice ut+1 of Ut+1, πt+1 is given by

(2.2). Thus, if πt ∈ R, then so does πt+1.

Note that once the belief state πt ∈ P(X ) is identified, the dynamic program for

this problem could be written as:

V ∗(π) = min
u∈{0,1}

{c̃(π, u)+βV ∗(πP ), c̃(π, u)+β
∑
x∈X

[πP ](x)V ∗(δx)}, ∀π ∈ P(X ) (2.7)

where c̃(π, u) = EX [c(X, u)|π, u]. The first alternative in the right hand side of (2.7)

corresponds to choosing Ut = 0 while the second corresponds to choosing Ut = 1 and

[πP ](x) denotes the component of the vector πP corresponding to the state x. Let

h∗(π) denote the arg min of the right hand side of (2.7). Then the time homogeneous

policy h∗ = {h∗, h∗, ...} is optimal for this problem.

Once the reachable set is identified, (2.7) can be written as:

V̂ ∗(x,m) = min
u∈{0,1}

{ĉ(x,m, u) + βV̂ ∗(x,m+ 1), ĉ(x,m, u) + β
∑
x∈X

[δxP ](x)V̂ ∗(x, 1)}

(2.8)

where ĉ(x,m, u) = c̃(δxP
m, u). A consequence of the above result is the following.

Proposition 2: Let V̂ : (X ,Z>0) → R be the unique bounded fixed point of (2.8)

Let ĥ∗(x,m) denote the arg min of the right hand side of (2.8). For any x ∈ X and

π = δxP
m ∈ R, define

h∗(π) = ĥ∗(x,m) (2.9)

Then, the stationary strategy ĥ = (ĥ∗, ĥ∗, ...) is optimal for this problem.
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2.3 Finite state approximation of reachable set

We can approximate a POMDP with countably infinite belief state space by a

POMDP with finite belief state space of size N . Let ΔN be the sequence of POMDPs,

where the belief state space is the nonempty finite set ΠN ⊂ Π and the action set

for state ı ∈ ΠN is Ui Let ΠN be an increasing sequence of subsets of Π such that
⋃
N

ΠN = Π and lim
N→∞

PN(i, j) = P (i, j). Then ΔN is the approximating sequence

of the POMDP Δ. Suppose that in state i ∈ ΠN , action u ∈ Ui is chosen. For

j ∈ ΠN the probability of P (i, j) is unchanged. Suppose however that P (i, r) > 0

for some r �∈ ΠN meaning that there is a positive probability that the system makes

a transition outside of ΠN . This is said to be the excess probability associated

with (i, r, N) This excess probability must be distributed among the states of ΠN

according to some specified augmentation distribution qj(i, r, N) where

∑
j

qj(i, r, N) = 1 for each (i, r, N)

The quantity qj(i, r, N) specifies what portion of the excess probability P (i, r) is

redistributed to state j ∈ ΠN . The approximating sequence ΔN is an augmentation-

type approximating sequence (ATAS) if the approximating distributions are defined

as

PN(i, j) = P (i, j) +
∑
r �∈ΠN

P (i, j)qj(i, r, N)

In this case the original probabilities on ΠN may be augmented by addition of por-

tions of excess probability. In some problems, we may identify an absorbing state z

where all the excess probability is assigned i.e. for each (i, r, N), qz(i, r, N) = 1

Suppose V and V N are the optimal values corresponding to Δ and ΔN respectively.
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We are interested in knowing when is lim
N→∞

V N = V < +∞ and if ΠN is the optimal

policy for ΔN , when does πN converge to an optimal policy for Δ.According to [29]

if there exists a finite constant B such that C(i, u) ≤ B for every i ∈ Π and u ∈ Ui

(this condition is known as DC(β)) then lim
N→∞

V N = V < +∞. In this situation, if

ΠN is an optimal stationary policy for ΔN then any limit point of the sequence is

optimal for Δ.

The dynamic program in (2.8) has the countably infinite space X ×Z>0 and can

be solved using finite state approximation with an absorbing state discussed above.

In particular, let Zl denote the set {1, ..., l}. We define an approximation sequence

{V̂ l}∞l=1 of V̂ where V̂ l : (X ,Zt) → R, is the unique bounded fixed point of the

equation

V̂ l∗(x,m) = min
u∈{0,1}

{ĉ(x,m, u) + βV̂ l∗(x,min{m+ 1, l}),

ĉ(x,m, u) + β
∑
x∈X

[δxP ](x)V̂ l∗(x, 1)} (2.10)

Intuitively this means that the length of period of no observation is no more than a

finite bound l. Let ĥ∗
l denote the corresponding optimal strategy and h∗

l be defined

similar to (2.9).

Propostion 3: liml→∞ V̂ l → V̂ . Furthermore, any limit point of the sequence of

functions {h∗
m}

∞
m=1 is optimal for this problem.

Proof: The sequence of finite-state model described above is a augmentation

type approximation sequence. Therefore, the existence of a limit point of follows

from [[29],B.5]. Since c(x, u) is bounded for all x ∈ X and u ∈ U , the DC(β)
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condition [[29],4.7.1] holds. Hence any of the limit points of {ĥ∗
l }

∞
l=1 is optimal for

(2.7). The result follows from Proposition 2.

The approach proposed above is much simpler than the usual approaches of

using point-based methods [28], [30] or discretization of state space [45] to find a

solution of (2.7). For e.g. in grid based approach, if we want an accuracy of 0.1

along each dimension then we have to take 100 discretizing points. So for a state

space of size n, we would need a total of 100n − 1 points. This scales very quickly

and hence grid based techniques typically cannot handle more than 4 dimensions.

α vectors keep track of convex upper envelope of value function. If we solve for

horizon t using this technique, then in the worst case, the number of points required

would be |u|t−1 × |y|t . In point based techniques, we typically keep track of 1000 to

10000 points, on top of which we need to run sophisticated algorithms. In contrast,

our method requires fewer number of points and uses the relatively simple Value

Iteration algorithm.

We use the approach introduced here to solve the examples in Chapters 3 and

4.
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CHAPTER 3
Decentralized Stochastic Control

Centralized stochastic control refers to the multi-stage optimization of a dynam-

ical system by a single controller under uncertainty. The fundamental assumption of

centralized stochastic control is that the decisions at each stage are made by a single

controller that has perfect recall, that is, a controller that remembers its past ob-

servations and decisions. This fundamental assumption is violated in many modern

applications where decisions are made by multiple controllers. The multi-stage opti-

mization of such systems is called decentralized stochastic control. In decentralized

stochastic control, all decision makers have a common objective and they cooperate

to minimize their combined costs. This is in contrast to game theory where each

decision maker has an individual objective and it competes with other decision mak-

ers to minimize individual costs. The motivation of decentralized control is not that

it is more powerful than centralized control; rather it is necessary in systems where

centralized information is not available or is not practical.

3.1 Outline of the chapter

This chapter first provides an overview of the results in decentralized stochastic

control literature. The overview includes a description of the model formulation,

a discussion of the conceptual difficulties of dynamic programming for decentral-

ized stochastic control, explanation of commonly used solution approaches such as

person-by-person approach and common information approach. Next, this chapter

20



provides a stylized example of a decentralized control problem. The person-by-person

approach is used to simplify the example. Then the common information approach

is used to identify a POMDP formulation for the problem. This POMDP has un-

countable state space, so using the method identified in Chapter 2 we convert it to

a countable state POMDP. Finally using finite state approximation we are able to

write the dynamic program in a way that it can be solved using Value Iteration.

3.2 Decentralized system model

Consider a dynamical system with n controllers. Let {Xt}
∞
t=0, Xt ∈ X , denote

the state process of the system. Controller i, i ∈ 1, ..., n, causally observes the process

{Y i
t }

∞
t=0, Y

i
t ∈ Y i, and generates a control process {U i

t}
∞
t=0, U

i
t ∈ U i. The system yields

rewards {rt}
∞
t=0. These processes are related as follows.

1. Let Ut := {U1
t , ..., U

n
t } denote the control action of all controllers at time t.

Then, the cost at time t depends only on the current state Xt , the future

state Xt+1, and the current control actions Ut. Furthermore, the state process

{Xt}
∞
t=0 is a controlled Markov process given U∞

t=0, i.e., for any A ⊆ X and

B ⊆ R, and any realization x1:t of X1:t and u1:t of U1:t, we have that

P (Xt+1 ∈ A, rt ∈ B|X1:t = x1:t,U1:t = u1:t) = P (Xt+1 ∈ A, rt ∈ B|Xt = xt,Ut = ut)

(3.1)

2. The observations Yt := {Y 1
t , ..., Y

n
t } depend only on current state Xt and

previous control actions Ut−1, i.e., for any Ai ⊆ Y i and any realization x1:t of
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X1:t and u1:t−1 of U1:t−1, we have that

P (Yt ∈ Πn
i=1A

i|X1:t = x1:t,U1:t−1 = u1:t−1) = P (Yt ∈ Πn
i=1A

i|Xt = xt,Ut−1 = ut−1)

(3.2)

At time t, controller i, i ∈ {1, ..., n}, has access to information I it which is a

superset of the history {Y i
1:t, U

i
1:t−1} of the observations and control actions at con-

troller i and a subset of the history {Y1:t,U1:t−1} of the observations and control

actions at all controllers, i.e.,

{Y i
1:t, U

i
1:t−1} ⊆ I it ⊆ {Y1:t,U1:t−1}

The collection (I it , i ∈ {1, ..., n}, t = 0, 1, ...), which is called the information structure

of the system, captures who knows what about the system and when. A decentralized

system is characterized by its information structure. Some examples of information

structures are given below. For ease of exposition, we use J i
t to denote {Y i

1:t, U
i
1:t−1}

and refer to it as self information.

1. Complete information sharing information structure refers to a system in which

each controller has access to the self information of all other controllers, i.e.,

I it =

n⋃
j=1

J
j
t , ∀i ∈ {1, ..., n}

2. k-step delayed sharing information structure refers to a system in which each

controller has access to k-step delayed self information of all other controllers,

i.e.,

I it = J i
t ∪ (

n⋃
j=1
j �=i

J
j
t−k), ∀i ∈ {1, ..., n}
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3. k-step periodic sharing information structure refers to a system in which all

controllers periodically share their self information after every k steps, i.e.,

I it = J i
t ∪ (

n⋃
j=1
j �=i

J
j
�t/k	k), ∀i ∈ {1, ..., n}

4. No sharing information structure refers to a system in which the controllers do

not share their self information, i.e.,

I it = J i
t , ∀i ∈ {1, ..., n}

3.3 Conceptual difficulties in dynamic programming for decentralized
stochastic control

The perfect recall of centralized systems allow us to identify a time homogenous

information state. This means instead of solving a functional optimization problem

to find the optimal infinite sequence of control laws, we only need to solve a set of

parametric optimization problems to find the best control action for each realization

of information state. A solution to these set of equations determines a control law

g∗ : z → u such that the time-invariant strategy g∗ = [g∗, g∗, ...] is globally optimal.

So, we only need to implement one control law g∗ to implement an optimal control

strategy.

In decentralized systems, each decision maker may have perfect recall but non

classical information structure meaning that while each decision maker may remem-

ber its own past observations and decisions, it may not know the observations and
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decisions of other decision makers i.e. all decision makers do not have the same in-

formation. Hence identification of an information state in this case is not as straight-

forward as in the centralized problem.

Moreover even if an information state is identified, the question remains if it is

possible to identify a dynamic programming decomposition that determines optimal

control strategies for all controllers.

There are two approaches to find a dynamic programming decomposition. The

first method, known as the person-by-person approach, is to find a set of coupled

dynamic programs, where each dynamic program is associated with a controller and

determines the ”optimal” control strategy at that controller. The second technique,

known as the common-information approach is to find a dynamic program that

simultaneously determines the optimal control strategy at all controllers.

3.4 The person-by-person approach

The person-by-person approach is motivated by the computational approaches

for finding Nash equilibrium in game theory. It was proposed by [26], [18] in the

context of static systems with multiple controllers and has been subsequently used

in dynamic systems as well. This approach is used to identify structural results

as well as identify coupled dynamic programs to find person-by-person optimal (or

equilibrium) strategies. To find the coupled dynamics, proceed as follows. Pick

a controller that has perfect recall, say i; arbitrarily fix the control strategies g−i

of all controllers except controller i and consider the sub-problem of finding the

best response strategy gi at controller i. Since controller i has perfect recall, this

sub-problem is centralized. Suppose that we identify an information-state process
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{Ĩ it}
∞
t=0 for this sub-problem. Then, there is no loss of (best-response) optimality in

restricting attention to control laws of the form g̃it : Ĩ
i
t → U i

t at controller i.

Recall that the choice of control strategies g−i was completely arbitrary. Suppose

the structure of g̃it does not depend on the choice of control strategies g−i of other

controllers, then there is no loss of (global) optimality in restricting attention to

control laws of the form g̃it at controller i.

Repeat this procedure at all controllers that have perfect recall. Let {Ĩ it}
∞
t=0 be

the information-state processes identified at controller i, i ∈ {1, ..., n}. Then there

is no loss of global optimality in restricting attention to the information structure

(Ĩ it , i ∈ {1, ..., n}, t = 0, 1, ...).

Note that to write the dynamic programming decomposition for the person-by-

person strategy, we need to ensure that the information state process {Ĩ it}
∞
t=0, takes

values in a time-invariant space. For the dynamic model from the point of view of

controller i to be time-homogeneous, we must further assume that each controller j,

j �= i, is using a time-invariant strategy g̃j .

Thus, a time-invariant person-by-person optimal strategy obtained by the cou-

pled dynamic programs need not be globally optimal for two reasons. First, there

might be other time-invariant person-by-person strategies that achieve a lower ex-

pected discounted cost. Second, there might be other time-varying strategies that

achieve lower expected discounted cost.

3.5 The common-information approach

The common-information approach was proposed by [23], [16], [21], [22] and

provides a dynamic programming decomposition (that determines optimal control
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strategies for all controllers) for a subclass of decentralized control systems. Vari-

ation of this approach had been used for specific information structures including

delayed state sharing[1], partially nested systems with common past [4], teams with

sequential partitions [41], periodic sharing information structure [24], and belief shar-

ing information structure [42]. This approach formalizes the intuition that to obtain

a dynamic program that determines optimal control strategies for all controllers, the

information-state process must be measurable at all controllers and, at each step of

the dynamic program, we must solve a functional optimization problem that deter-

mines instructions to map local information to control action for each realization

of the information state. To formally describe this intuition, split the information

available at each controller into two parts: the common information

Ct =
⋂
τ≥t

n⋂
i=1

I iτ

and the local information

Li
t = I it\Ct, ∀i ∈ {1, ..., n}

By construction, the common and local information determine the total information,

i.e., I it = Ct∪L
i
t and the common information is nested, i.e., Ct ⊆ Ct+1. The common

information approach applies to decentralized control systems that have a partial

history sharing information structure ([21], [22]).

Definition 1 An information structure is called partial history sharing when

the following conditions are satisfied:
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1. For any set of realizations A of Li
t+1 and any realization ct of Ct, l

i
t of L

i
t, u

i
t of

U i
t and yit+1 of Y i

t+1, we have

P(Li
t+1 ∈ A | Ct = ct, L

i
t = �it, U

i
t = ui

t, Y
i
t+1 = yit+1)

= P(Li
t+1 ∈ A | Li

t = �it, U
i
t = ui

t, Y
i
t+1 = yit+1)

2. The size of the local information is uniformly bounded, i.e., there exists a k

such that for all t and all i ∈ {1, ..., n}, |Li
t| ≤ k, where Li

t denotes the space

of realizations of Li
t.

To identify a dynamic program that determines optimal control strategies for all

controllers, the common-information approach exploits the fact that planning is cen-

tralized, i.e., the control strategies for all controllers are chosen before the system

starts running and, therefore, optimal strategies can be searched in a centralized

manner. The construction of an appropriate dynamic program relies on partial eval-

uation of a function defined below.

Definition 2 For any function f : (x, y) → z and a value x0 of x, the partial

evaluation of f and x = x0 is a function g : y → z such that for all values of y,

g(y) = f(x0, y)

For example, if f(x, y) = x2 + xy + y2, then the partial evaluation of f at x = 2

is g(y) = y2 + 2y + 4 The common-information approach proceeds as follows ([21],

[22]):
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1. Construct an equivalent centralized coordinated system. The first step of the

common-information approach is to construct an equivalent centralized stochas-

tic control system which we call the coordinated system. The controller of

this system, called the coordinator, observes the common information Ct and

chooses the partially evaluated control laws git, i ∈ {1, ..., n}, at Ct. Denote

the partial evaluations by Γi
t and call them prescriptions. These prescriptions

tell the controllers how to map their local information into control actions; in

particular U i
t = Γi

t(L
i
t). The decision rule ψt : Ct �→ (Γ1

t , . . . ,Γ
n
t ) that chooses

the prescriptions is called a coordination law and the choice of ψ = (ψ1, ψ2, . . . )

is called a coordination strategy.

Note that the prescription Γi
t is a partial evaluation of the control law git

at the common information Ct. Hence, for any coordination strategy ψ =

(ψ1, ψ2, . . . ), we can construct an equivalent control strategy gi,∗ = (gi,∗1 , g
i,∗
2 , . . . ),

i ∈ {1, . . . , n} by choosing

g
i,∗
t (ct, �

i) = ψ
i,∗
t (ct)(�

i),

where ψ
i,∗
t denotes the i-th component of ψ∗

t . The coordination strategy ψ is

equivalent to the control strategy g∗ in the following sense. For any realization

of the primitive random variables of the system, the reward process in the

original system under g∗ has the same realization as the reward process in

coordinated system under ψ. Therefore, the problem of finding the optimal

decentralized control strategy in the original system is equivalent to that of

finding the optimal coordination strategy in the coordinated system.
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The coordinated system has only one controller, the coordinator, which has

perfect recall; the controllers of the original system are passive agents that

simply use the prescriptions given by the coordinator. Hence, the coordi-

nated system is a centralized stochastic control system with the state pro-

cess {(Xt, L
1
t , . . . , L

n
t )}

∞
t=0, the observation process {Ct}

∞
t=0, the reward process

{rt}
∞
t=0,and the control process {(Γ1

t , . . . ,Γ
n
t )}

∞
t=0.

2. Identify an information state of the coordinated system

The coordinated system is a centralized system in which the control process is

a sequence of functions. Let {Zt}
∞
t=0, Zt ∈ Zt, be any information-state process

for the coordinated system. Then, there is no loss of optimality in restricting

attention to coordination laws of the form

ψt : Zt �→ (Γ1
t , . . . ,Γ

n
t ).

Suppose the probability distributions on the right hand side of (3.1) and (3.2)

are time-homogeneous, the evolution of Zt is time-homogeneous, and the state

space Zt of the realizations of Zt is time-invariant, i.e., Zt = Z.

Then, there exists a time-invariant coordination strategy ψ∗ = (ψ∗, ψ∗, . . . )

where ψ∗ is given by

ψ∗(z) = arg sup
(γ1,...,γn)

Q(z, (γ1, . . . , γn)), ∀z ∈ Z (3.3a)
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where Q is the unique fixed point of the following set of equations: ∀z ∈ Z and

∀γ = (γ1, . . . , γn)

Q(z,γ) = E[rt + βV (Zt+1)|Zt = z,Γ1
t = γ1, . . . ,Γn

t = γn], (3.3b)

V (z) = sup
γ

Q(z,γ). (3.3c)

As explained in the previous step, the optimal time-invariant control strategies

gi,∗ = (gi,∗, gi,∗, . . . ), i ∈ {1, . . . , n}, for the original decentralized system are

given by

gi,∗(z, �i) = ψi,∗(z)(�i)

where ψi,∗ denotes the i-th component of ψ∗.

Note that step (3.3c) of the above dynamic program is a functional optimization

problem.

Remark The coordinated system and the coordinator described above are fictitious

and used only as a tool to explain the approach. The computations carried out

at the coordinator are based on the information known to all controllers. Hence,

each controller can carry out the computations attributed to the coordinator. As

a consequence, it is possible to describe the above approach without considering a

coordinator, but in our opinion thinking in terms of a fictitious coordinator makes

it easier to understand the approach.

3.6 Multiaccess broadcast example

Let us consider a stylized example of a communication system in which two

devices transmit over a multiple access channel.
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• Packet arrival at the devices. Packets arrive at device i, i ∈ {1, 2}, according

to Bernoulli processes {W i
t }

∞
t=0 with success probability pi. Device i may store

N i
t ∈ {0, 1} packets in a buffer. If a packet arrives when the buffer is full, the

packet is dropped.

• Channel model. At time t, the channel-state St ∈ 0, 1 may be idle (St = 0)

or busy (St = 1). The channel-state process {St}
∞
t=0 is a Markov process with

known initial distribution and transition matrix P =

⎡
⎢⎣ α0 1− α0

1− α1 α1

⎤
⎥⎦. The

channel-state process is independent of the packet-arrival process at the device.

• System dynamics. At time t, device i, i ∈ {1, 2}, may transmit U i
t ∈ {0, 1}

packets, U i
t ≤ N i

t . If only one device transmits and the channel is idle,

the transmission is successful and the transmitted packet is removed from the

buffer. Otherwise the transmission is unsuccessful. The state of each buffer

evolves as

N i
t+1 = min{N i

t − U i
t (1− U

j
t )(1− St) + wi

t, 1}, ∀i ∈ {1, 2}, j = 3− i (3.4)

Each transmission costs κ and a successful transmission yields a reward r.

Thus, the total reward for both devices is

rt = −(U1
t + U2

t )κ+ (U1
t ⊕ U2

t )(1− St)r

where ⊕ denotes the XOR operation.

• Observation model. Controller i, i ∈ {1, 2}, perfectly observes the number

N i
t of packets in the buffer. In addition, both controllers observe the one-

step delayed control actions U1
t−1, U

2
t−1 of each other and the channel state if
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either of devices transmit. Let Ht denote this additional observation. Then

Ht = St−1 if U
1
t−1+U2

t−1 > 0, otherwise Ht = E (which denotes no channel-state

observation).

• Information structure and objective. The information I it available at device i,

i ∈ {0, 1}, is given by I it = {N i
1:t, H1:t, U

1
1:t−1, U

2
1:t−1}. Based on the information

available to it, device i chooses control action U i
t using a control law git : I

i
t →

U i
t . The collection of control laws (g1, g2), where gi := (gi0, g

i
1, ...), is called a

control strategy. The objective is to pick a control strategy (g1, g2) to maximize

the expected discounted reward

Λ(g1, g2) := E
(g1,g2)[

∞∑
t=0

βtrt]

We make the following assumption:

(A) The arrival process at the two controllers is independent.

We solve this by first identifying a simplified information structure using the

person-by-person approach. Arbitrarily fix the control strategy gj of controller j, j ∈

{1, 2}. The next step is to identify an information-state process for the centralized

sub-problem of finding the best response strategy gi of controller i, i = 3− j.

Assumption (A) implies that

P(N1
1:t, N

2
1:t | H1:t, U

1
1:t−1, U

2
1:t−1)

= P(N1
1:t | H1:t, U

1
1:t−1, U

2
1:t−1)P(N

2
1:t | H1:t, U

1
1:t−1, U

2
1:t−1) (3.5)
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Using the above conditional independence, we can show that for any choice of

control strategy gj, Ĩ it = {N i
t , H1:t, U

1
1:t−1, U

2
1:t−1} is an information state for con-

troller i. From this, we can see that the common information is given by:

Ct =
⋂
τ≥t

(Ĩ1τ ∩ Ĩ2τ ) = {H1:t, U
1
1:t−1, U

2
1:t−1}

and the local information is given by

Li
t = Ĩ it \ Ct = {N i

t}, ∀i ∈ {1, 2}.

Thus, in the coordinated system, the coordinator observes Ct and uses the coor-

dination law ψt : Ct �→ (γ1
t , γ

2
t ), where γi

t maps the local information N i
t to U i

t . Note

that γi
t is completely specified by Di

t = γi
t(1) because the constraint U

i
t ≤ N i

t implies

that γi
t(0) = 0. Therefore, we may assume that the coordinator uses a coordination

law ψt : Ct �→ (D1
t , D

2
t ), D

i
t ∈ {0, 1}, i ∈ {1, 2} and each device then chooses a control

action according to U i
t = N i

tD
i
t. The system dynamics and the reward process are

same as in the original decentralized system.

Since the coordinator has perfect recall, the problem of finding the best coor-

dination strategy is a centralized stochastic control problem. With respect to the

coordinator, we can identify the state Xt = (Nt, St), observation Yt = Ht, reward

rt and control U1
t , U

2
t . Since St and Nt are imperfectly observed, we identify the

following belief states.
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Let ζ it ∈ [0, 1] denote the posterior probability that device i, i ∈ {1, 2} has a

packet in its buffer given the channel feedback, i.e.,

ζ it = P(N i
t = 1 | H1:t, U

1
1:t−1, U

2
1:t−1), ∀i ∈ {1, 2}.

Moreover, let ξt ∈ [0, 1] denote the posterior probability that the channel is busy

given the channel feedback, i.e.,

ξt = P(St = 1 | H1:t, U
1
1:t−1, U

2
1:t−1) = P(St = 1 | H1:t).

One may verify that (ζ1t , ζ
2
t , ξt) is an information state, so there is no loss of

optimality in using coordination laws of the form γ : (ζ1t , ζ
2
t , ξt) �→ (D1

t , D
2
t ). This

information state takes values in the uncountable space [0, 1]3, therefore we need to

identify the reachable set of this information state.

We define T i =

⎡
⎢⎣1− pi pi

1− pi pi

⎤
⎥⎦ When N i

t = 0, the evolution of ζ it is as follows:

ζt+1 =

⎧⎪⎪⎨
⎪⎪⎩
ζtT

i if Ut = 0

δ0T
i if Ut = 1

(3.6)

and when N i
t = 1,the evolution of ζ it is:

ζt+1 =

⎧⎪⎪⎨
⎪⎪⎩
δ1 if Ut = 0

δ1T
i if Ut = 1

(3.7)
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It can be seen that δ1T
i is identical to δ0T

i. Since, (2.2) is identical to (3.6) we

can apply Proposition 1 to show that the reachable set of ζ it is given by

Z i := {zik|k ∈ Z>0} ∪ {1} (3.8a)

where

zik := P(N i
k = 1 | N i

0 = 0, Di
0:k−1 = (0, . . . , 0)), ∀s ∈ {0, 1}, k ∈ Z>0 (3.8b)

Note that the {1} in (3.8a) is due to the δ1 in (3.7) and we denote it by setting

z∞ = 1.

Now we can see that ξt evolves exactly as in (2.2). Hence the reachable set of

ξt is given by (2.6). Let qs,m = P(Sm = 1|S0 = s), ∀s ∈ {0, 1}, m ∈ Z>0. qs,m may

also be expressed in the following manner: qs,m = δs(P )m. Therefore another way of

writing (2.6) is

R := {q0,m|m ∈ Z>0} ∪ {q1,m|m ∈ Z>0}

Therefore, {(ζ1t , ζ
2
t , ξt)}

∞
t=0, (ζ

1
t , ζ

2
t , ξt) ∈ R1×R2×Z, is an alternative information-

state process. The dynamic program for this alternative characterization is given

below.

Let qs,m = 1− qs,m and zik = 1 − zik. Then for s ∈ {0, 1} and k, � ∈ Z>0 ∪ {∞}

and m ∈ Z>0, we have that

V (z1k, z
2
� , qs,m) = max

{
Q00(z

1
k, z

2
� , qs,m), Q10(z

1
k, z

2
� , qs,m),

Q01(z
1
k , z

2
� , qs,m), Q11(z

1
k, z

2
� , qs,m)

}
(3.9a)
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where Qd1d2(z
1
k, z

2
� , qs,m) corresponds to choosing the prescription (d1, d2) and is

given by

Q00(z
1
k, z

2
� , qs,m) = βV (z1k+1, z

2
�+1, qs,m+1); (3.9b)

Q10(z
1
k, z

2
� , qs,m) = z1k qs,m r− z1k κ+ β

[
z1kV (z11 , z

2
�+1, qs,m+1)

+ z1k qs,mV (z11 , z
2
�+1, q0,1) + z1k qs,mV (z1∞, z2�+1, q1,1)

]
; (3.9c)

Q01(z
1
k, z

2
� , qs,m) = z2� qs,m r− z2� κ+ β

[
z2�V (z1k+1, z

2
1 , qs,m+1)

+ z2� qs,mV (z1k+1, z
2
1 , q0,1) + z2� qs,mV (z1k+1, z

2
∞, q1,1)

]
; (3.9d)

Q11(z
1
k, z

2
� , qs,m) = [z1k z

2
� + z1k z

2
� ] qs,m r− [z1k + z2� ] κ+ β

[
z1k z

2
�V (z11 , z

2
1 , qs,m+1)

+ [z1k z
2
� + z1k z

2
� ] qs,mV (z11 , z

2
1, q0,1) + z1kz

2
� qs,mV (z1∞, z2∞, q0,1)

+ z1k z̄
2
� qs,mV (z1∞, z21 , q1,1) + z̄1kz

2
� qs,mV (z11 , z

2
∞, q1,1)

+ z1kz
2
kqs,mV (z1∞, z2∞, q1,1)

]
. (3.9e)

The above dynamic program has the countably infinite space Z>0 × Z>0 × Z>0

and can be solved using finite state approximation as in (2.10). We define an ap-

proximation sequence {VK,L,M}∞K=1,L=1,M=1 of V where VK,L,M : (ZK ,ZL,ZM) → R

is the unique bounded fixed point of the equation

VK,L,M(z1k , z
2
� , qs,m) = max

{
Q

K,L,M
00 (z1k, z

2
� , qs,m), Q

K,L,M
10 (z1k , z

2
� , qs,m),

Q
K,L,M
01 (z1k, z

2
� , qs,m), Q

K,L,M
11 (z1k, z

2
� , qs,m)

}
(3.10)

and QK,L,M
.. has a definition similar to Q.. in which k+1, �+1 and m+1 are replaced

by min{k+1, K}, min{�+1, L} and min{m+1,M} respectively. This modification
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is the same as in (2.10) and as long as we guarantee that r and κ are bounded, the

policy obtained through the approximate dynamic program is the optimal policy for

the original problem.

To describe the optimal strategy, define functions d and d̄ as follows:

d(z1k, z
2
� ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1, 0), if k > �

(0, 1), if k < �

(1, 0) or (0, 1), if k = �

and d(z1k, z
2
� ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(0, 1), if k > �

(1, 0), if k < �

(1, 0) or (0, 1), if k = �

In addition define the sets Sn, Ŝn ⊆ R1 ×R2 for n ∈ Z
+ ∪ {∞} as follows:

Sn = {(z1k, z
2
1) : z

1
k ∈ R1 and k ≤ n} ∪ {(z11 , z

2
� ) : z

2
� ∈ R2 and � ≤ n}.

Ŝn = {(z1k, z
2
� ) ∈ R1 ×R2 : max(k, �) ≤ n}.

Using these definitions, define the following functions for n ∈ Z
+ ∪ {∞}.

1. hn(z
1
k, z

2
� ) =

⎧⎪⎪⎨
⎪⎪⎩
(1, 1), if (z1k , z

2
� ) ∈ Sn

d(z1k, z
2
� ), otherwise.

2. ĥn(z
1
k, z

2
� ) =

⎧⎪⎪⎨
⎪⎪⎩
(0, 0), if (z1k , z

2
� ) ∈ Ŝn

d(z1k, z
2
� ), otherwise.

Note that (i) S0 = ∅, therefore, h0(z
1
k, z

2
� ) = d(z1k, z

2
� ) and h̄0(z

1
k, z

2
� ) = d̄(z1k, z

2
� );

(ii) S∞ = R1 ×R2, therefore, h∞(z1k, z
2
� ) = (0, 0).

The optimal strategies obtained by solving (3.9) for β = 0.9, α0 = α1 = 0.75,

r = 1, p1 = p2 = 0.3, and different values of κ are given below.
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1. When κ = 0.1 the optimal strategy is given by

g∗(z1k, z
2
� , qs,m) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h1(z
1
k, z

2
� ), if s = 0 and m = 1

h5(z
1
k, z

2
� ), if s = 1 and m = 1

h2(z
1
k, z

2
� ), otherwise.

2. When κ = 0.2 the optimal strategy is given by

g∗(z1k, z
2
� , qs,m) =

⎧⎪⎪⎨
⎪⎪⎩
d(z1k, z

2
� ), if s = 1 and m = 1

d(z1k, z
2
� ), otherwise.

3. When κ = 0.3, the optimal strategy is given by

g∗(z1k, z
2
� , qs,m) =

⎧⎪⎪⎨
⎪⎪⎩
(0, 0), if s = 1 and m = 1

d(z1k, z
2
� ), otherwise.

4. When κ = 0.4, the optimal strategy is given by

g∗(z1k, z
2
� , qs,m) =

⎧⎪⎪⎨
⎪⎪⎩
(0, 0), if s = 1 and m ≤ 2

d(z1k, z
2
� ), otherwise.

5. When κ = 0.5, the optimal strategy is given by
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g∗(z1k, z
2
� , qs,m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0), if s = 1 and m ≤ 3

ĥ1(z
1
k, z

2
� ), if s = 1, m = 4,

d(z1k, z
2
� ), if s = 1, m = 5,

d(z1k, z
2
� ), otherwise.

The common aspect of all the above cases is that, if the channel state has not

been observed for long enough (i.e. m increases past a certain value), then

we opt for policy d(z1k, z
2
� ). This policy basically dictates that we transmit

whichever source has not been transmitted for a longer time (if k > l, we

transmit source 1; if k < l, we transmit source two). If both sources have not

been transmitted for the same length of time, then we can choose to transmit

either of the two sources. While it may seem we could have intuitively arrived

at this policy, we still need to solve the dynamic program to determine the value

of m after which this policy is applicable. Moreover, the optimal policy before

this value of m is reached is not as intuitive and hence has to be numerically

calculated.
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CHAPTER 4
Simultaneous real-time communication of multiple Markov sources over

a shared channel

Figure 4–1: Illustration of a real-time communication system consisting of multiple
Markov sources over a shared channel

In many controlled informationally decentralized systems, information must be

transmitted within bounded delay. Examples of such systems include networks with

quality of service (QoS) requirements (e.g., bounded end-to-end delay), distributed

routing in wired and wireless networks, decentralized detection in sensor networks,

traffic flow control in transportation networks, resource allocation and consensus

in partially synchronous systems, and decentralized resource allocation problems

in economic systems. To understand how to design such systems it is necessary to

understand how to communicate information with a hard deadline on communication

delay, i.e., understand real-time communication of information.
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Real time communication has been studied extensively since the 1960’s. We

include a brief description of most of the results in Section 4.2. We refer the reader

to [37] for a detailed overview of existing work.

In this chapter, we consider a communication system in which a transmitter

observes n independent Markov sources and has to jointly quantize them in real-time

for a single receiver. Although the model is a special case of real-time quantization

of Markov sources, a direct application of the results of real-time quantization is

infeasible due to computational complexity. We restrict attention to a encoding-

decoding strategies having a specific structure, and identify a dynamic program to

find the best strategies with that structure. This dynamic program has uncountable

state space. For the special case when all source alphabets are equal to each other

and to the quantization alphabet, we reduce the dynamic program to one with a

countable state space. We then present a finite-state approximation of this dynamic

programming. The feasibility of the approach is shown by means of examples.

4.1 Problem formulation

Consider the communication system as in Figure 4–1 in which a transmitter

causally observes n independent first-order Markov sources {St}
∞
t=0, i ∈ {1, ..., n}.

The sources are assumed to have a finite or countable alphabet, denoted by Si. It

then sequentially encodes the sources to a common quantization symbol Qt ∈ Q

according to some quantization rule f = {ft}t=1, i.e. Qt = ft(S1:t, Q1:t−1), t =

1, 2, . . . The receiver sequentially observes the quantized symbols and generates an

estimate Ŝt = (Ŝ1
t , ..., Ŝ

n
t ) of all sources according to a decoding rule g = {gt}

∞
t=1, i.e.
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Ŝt = gt(Q1:t), t = 1, 2, . . . The fidelity of the reconstruction is quantified by a per-

step distortion function d(St, Ŝt) =
∑n

i=1 d
i(Si

t , Ŝ
i
t). We are interested in choosing

the encoding-decoding strategy (f, g) to minimize the expected discounted distortion

over an infinite horizon J(f, g) = E
(f,g)[

∑
βt−1d(St, Ŝt)|S0 = s0]

4.2 Comparison with existing literature

Since each source is Markov, the joint source {St}
∞
t=1 is also Markov. Hence the

model described above is a special case of the real-time quantization of a Markov

source. Such a model was first considered by Witsenhausen [40] who showed that

in real-time quantization, there is no loss of optimality in restricting attention to

encoding strategies of the form Qt = ft(St, Q1:t−1).

According to Walrand and Varaiya [38], when the receiver has no restrictions

on its memory(as is the case in the above model), the structure of optimal encoders

and decoders may be refined as follows:

Let Δ(
∏n

i=1 S
i) denote the space of probability distributions on S. Define

Πt|t−1,Πt|t ∈ Δ(
∏n

i=1 S
i) as follows. For S ∈

∏n
i=1 S

i,

Πt|t−1(s) = P(St = s|Q1:t−1)

Πt|t(s) = P(St = s|Q1:t)

Then there is no loss of optimality in restricting attention to encoding and decoding

strategies of the form Qt = ft(St,Πt|t−1), Ŝt = gt(Πt|t)

Walrand and Varaiya also presented a dynamic programming decomposition of

the problem based on Πt. Linder and Yuksel [11] showed that Walrand-Varaiya-type
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structural results hold under quite general assumptions on the Markov source and

the distortion function.

These structural results are useful because they identify a time-homogeneous

sufficient statistic of the data available at the transmitter and the receiver which

simplifies implementation complexity. A time-homogeneous sufficient statistic also

enables us to identify a dynamic programming decomposition, and thereby search for

optimal encoding-decoding strategies in a systematic way. In spite of these advan-

tages, these results have been of limited use because of the inherent computational

complexity of solving the resultant dynamic programs.

4.3 Outline of approach

We plan to simplify the problem by imposing assumptions on the structure of

the encoding-decoding strategies.Under these assumptions, the problem reduces to

a partially observable scheduling problem. Next we convert the resultant POMDP

to a countable state MDP. Finally we find a sequence of approximating finite state

dynamic programs that converge to the solution of countable state MDP.

4.4 Simplifying assumptions

In the model presented above, the source is a collection of n-independent sources.

For such problems, the state space of dynamic programs increases linearly with the

number of sources and the action space increases exponentially with the number

of sources. Thus, the search for optimal real-time encoding-decoding strategies is

expected to be an order of magnitude more difficult than that of a single Markov

source. For that reason, we consider a simplified version of the problem by impos-

ing assumptions on the structure of the encoding-decoding strategies. Under these
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assumptions, the problem of optimal quantization of n sources decomposes into n

independent problems of optimal quantization of a single source and a scheduling

problem.

4.4.1 Assumption A1: Separation of quantization and scheduling

For each source, a Walrand-Varaiya type strategy (for transmitting over alpha-

bet ) is specified. That is, for every sit ∈ Si and πi
t|t−1 ∈ Δ(Si), the encoding strategy

f i prescribes the quantization symbol qit = f i
t (s

i
t, π

i
t|t−1) and for every πi

t|t ∈ Δ(Si),

the decoding strategy gi prescribes the source reconstruction ŝit = git(π
i
t|t)

Assuming that optimal encoding-decoding strategies have been determined for

each source then for the joint quantization of the n sources, we restrict attention to

scheduling strategies described below.

At each time, the encoder chooses an index Ut ∈ {1, ..., n} according to a schedul-

ing strategy {ht}
∞
t=1, i.e. Ut = ht(St,Πt|t−1) and transmits Qt = (Ut, f

Ut

t (SUt,ΠUt

t|t−1)).

The decoder updates Πt|t−1 to Πt|t and generates estimates Ŝt according to Ŝi
t =

git(Π
i
t|t), ∀i.

4.4.2 Assumption A2: Oblivious posterior update

Even with assumption (A1), finding the best scheduling strategy is not easy

because the evolution of the posterior distribution is coupled with the scheduling

strategy. In particular, suppose the posterior at the receiver is πt|t−1 and quantized

symbol (k, qt) is received. Then the receiver knows that the source output St belongs

to the set {
s̃t ∈

n∏
i=1

Si : ht(s̃t, πt|t−1) = k and fk
t (s

k
t , πt|t−1) = qt

}
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To update of the posterior Πt|t, the receiver needs to know the observed quantiza-

tion symbol (k, skt ) and the scheduling function ht. Thus, the dynamic program to

find the optimal scheduling strategy will be similar to the dynamic program to find

the optimal quantization strategy. In particular, the information state of this dy-

namic program will be Πt|t−1, the joint posterior on the n sources. To simplify the

optimization problem, we restrict attention to oblivious update rules of the poste-

rior distribution. More precisely, the transmitter and the receiver keep track of the

marginal distributions Πt|t−1 = (Π1
t|t−1, . . . ,Π

n
t|t−1) and Πt|t = (Π1

t|t, . . . ,Π
n
t|t). These

marginal distributions are updated as follows: for all i ∈ {1, . . . , n}

Πi
t|t =

⎧⎪⎪⎨
⎪⎪⎩
�it(Π

i
t|t, q

i
t), if Qt = (i, qit)

Πi
t|t−1, otherwise

(4.1)

and

Πi
t+1|t = Πi

t|tP
i (4.2)

where P i is the transition matrix of source {Si
t}

∞
t=1 and

�it(π
i
t|t−1, q

i
t)(s

i) =
πi
t|t−1(s

i)�{f i
t (s

i, πi
t|t−1) = qit}∑

s̃i∈Si

πi
t|t−1(s̃

i)�{f i
t (s̃

i, πi
t|t−1) = qit}

(4.3)

Thus, given the individual (Walrand-Varaiya-type) encoding-decoding schemes {(f i, gi)}ni=1

for each source and rules (4.1) and (4.2) for updating the receiver’s posterior on each

source, we are interested in finding an optimal scheduling strategy h to minimize the

expected discounted distortion
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Jβ(h) = E
h

[ ∞∑
t=1

βt−1d(St, Ŝt)

∣∣∣∣ S0 = s0

]
(4.4)

4.5 Dynamic programming decomposition

Let (f i, gi) be a time-homogeneous optimal strategy for source {Si
t}

∞
t=1, i ∈

{1, . . . , n}. Under assumptions (A1) and (A2), the choice of an optimal scheduling

strategy is a centralized stochastic control problem which can be solved using a

dynamic program. To simplify the notation of the dynamic program, define

Di(πi) =
∑
si∈Si

di(si, gi(πi))πi(si). (4.5)

as the expected distortion at source i when the posterior Πi
t|t is πi. Note that this

expected distortion and the posterior update rule �i(·) given by (4.3) do not depend

on time since the encoding-decoding strategy is time-homogeneous.

Theorem: Let V :
∏n

i=1(S
i × ΔSi) → R be the unique bounded fixed point of the

following equation: for all si ∈ Si, πi ∈ Δ(Si), i ∈ {1, . . . , n}

V (s,π) = min
u∈{1,...,n}

{ n∑
i=1

Di(πi
−) + β

∑
s+

π+(s+)V (s+,π+)

}
(4.6)

where π− = (π1
−, . . . , π

n
−), π+ = (π1

+, . . . , π
n
+) and

π+(s+) =
n∏

i=1

πi
+(s

i
+)

with

πi
− =

⎧⎪⎪⎨
⎪⎪⎩
�i(πi, f i(si, πi)), if i = u;

πi, otherwise
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and

πi
+ = πi

−P
i.

Moreover, let h∗(s,π) denote (any of the) arg min of the right hand side of (4.6).

Then, the time-homogeneous scheduling strategy h∗ = (h∗, h∗, . . . ) is optimal for

Problem (4.4).

Proof: {St} is a Markov process and {Πt|t−1} is a controlled Markov process

controlled by {Ut}
∞
t=1. This implies that {(St,Πt|t−1)} is a controlled Markov process

controlled by {Ut}
∞
t=1.

4.6 A special case

To get some insight into the nature of the solution, consider the following special

case:

Assumption(A3): The alphabet sizes of all the sources are equal to the quan-

tization alphabet, i.e., |Si| = |Q|

In this case, the optimal encoding strategy is to send the source uncoded, i.e.

f i
t (S

i
t ,Π

i
t|t−1) = Si

t the optimal decoding strategy is the solution to a filtering problem,

i.e. git(Π
i
t|t) = argmin

ŝ∈S

∑
s∈S

di(s, ŝ)Πi
t|t(s)

Note that both the encoding and decoding strategies are time-invariant. When

source i is transmitted, the update function of the posterior distribution Πi
t|t−1 sim-

plifies as follows: li(πi
t|t−1, qt) = δiqt where δiqt denotes the Dirac distribution on Si

with the unit mass qt

Under assumption (A3), the dynamic program simplifies as follows. When the

transmitter decides to transmit source u, then:
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1. πu
− = δusu , therefore Du(πu

−) = 0 and πu
+ = δusuP

u. Since the size of all the

sources is the same, we drop the superscript u in δusu and simply denote it as

δsu .

2. For i �= u, πi
− = πi, therefore Di(πi

−) = Di(πi) and πi
+ = πiP i

Thus, the dynamic program simplifies to

V (s,π) = min
u∈{1,...,n}

{
∑
i �=u

Di(πi) + β
∑
s+

π+(s+)V (s+,π+)} (4.7)

where π+(s+) is defined as before and

πi
+ =

⎧⎪⎪⎨
⎪⎪⎩
δsiP

i if u = i

πiP i otherwise

(4.8)

Even after all these simplifications, the above dynamic program is difficult to

solve because part of the state space, π, is a vector of probability distributions.

However since (4.8) is similar to (2.2) we can identify the reachable set of the belief

state.

4.6.1 Reachability analysis

For notational convenience, in this section we restrict attention to the case of

two sources (i.e., n = 2). The results extend naturally to multiple sources as well.

For two sources, the dynamic program of (4.7) may be written as

V (s1, s2, π1, π2) = min{W 1(s1, π2),W 2(s2, π1)}
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where W u corresponds to continuation cost for choosing action u and is given by

W 1(s1, π2) = D2(π2) + β
∑
s1
+
,s2

+

[δs1P
1]s1s1

+
[π2P 2]s2s2

+
V (s1+, s

2
+, P

1δ1s1 , P
2π2)

and W 2 defined in a symmetric manner.

To characterize the reachable set, we define the following for t ∈ {0, 1, ...}:

ki := min{τ ≥ 0 : Ut−τ = i} and zi = Si
t−k. ki represents the time since the most

recent transmission of source i (or time since reset of the belief state of source i

occurred) while zi is the most recent observation of source i.

It follows from Proposition 1 that under any scheduling strategy, the reachable

set of {(Π1
t ,Π

2
t )}

∞
t=1 is given by R1 ×R2 where

Ri = {δzi(P
i)k

i

∈ Δ(Si) : zi ∈ Si and ki ∈ Z>0}

Note thatRi is countable and isomorphic to Si×Z>0 and any πi = δzi(P
i)k

i

∈ Ri

maybe denoted by (zi, ki) ∈ Si × Z>0.

Based on Propostion 2, an optimal scheduling strategy is given as follows. Let

V̂ : (S1,S2,S1,Z>0,S
2,Z>0) → R be the unique bounded fixed point of the following

equation. For any si, zi ∈ Si and ki ∈ Z>0

V̂ (s1, s2, z1, k1, z2, k2) = min{Ŵ 1(s1, z2, k2), Ŵ 2(s2, z1, k1)} (4.9)

where

Ŵ (s1, z2, k2) = D2(δz2(P
2)k

2

)+β
∑
s1+,s2+

[δs1P
1]s1

+
[δz2(P

2)k
2+1]s2

+
V (s1+, s

2
+, s

1, 1, z2, k2+1)
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and Ŵ 2 is defined in a symmetric manner. Let ĥ∗(s1, s2, z1, k1, z2, k2) denote (any of

the) arg min of the right hand side of (4.9). For any si ∈ Si and πi = δzi(P
i)k

i

∈ Ri,

define

h∗(s1, s2, π1, π2) = ĥ∗(s1, s2, z1, k1, z2, k2) (4.10)

Then, the stationary strategy h = (h∗, h∗, ...) is optimal for Problem 4.4 under

assumption(A3).

4.6.2 Finite state approximation

The dynamic program in (4.9) has the countably infinite space Si×Si×Si×Si×

Z>0 × Z>0 and can be solved using finite state approximation. Just as in (2.10), we

define an approximation sequence {V̂m}
∞
m=1 of V̂ where V̂m(S

1,S2,S1,Zm,S
2,Zm) →

R is the unique bounded fixed point of the equation

V̂m(s
1, s2, z1, k1, z2, k2) = min{Ŵ 1

m(s
1, z2, k2), Ŵ 2

m(s
2, z1, k1)}

and Ŵ i
m has a definition similar to Ŵ i in which ki+1 is replaced by min{ki+1, m}.

Intuitively this means that the length of period of no transmission of a particular

source is no more than a finite bound m. Let ĥ∗
m denote the corresponding optimal

strategy and h∗
m be defined similar to (4.10). In this problem, the underlying state

spaces Si are finite; hence the expected distortion Di(.) is finitely bounded. There-

fore, the DC(β) conditions holds. So according to Proposition 3, we can say that

any of the limit points of {ĥ∗
m}

∞
m=1 is optimal for (4.9).

We investigate the setup of simultaneously transmitting two binary sources with

the Hamming distortion and discount factor β = 0.9. We consider three cases, and
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Figure 4–2: The optimal strategy for Case 1. The strategy ĥ∗
30 and h∗

30 have the
shapes shown in (a) and (b)
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(a) h∗30 for z2 = 1
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(b) h∗30 for z2 = 2

Figure 4–3: The optimal strategy for Case 2. The strategy ĥ∗
30 has the shape shown

in Fig 4–2. The shape of h∗
30 is shown in (a) and (b)
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Figure 4–4: The optimal strategy for Case 3. The strategy ĥ∗
30 is not shown while

the shape of h∗
30 is shown in (a) and (b)

for each case simulations suggest that the strategy has converged when m = 30. We

describe the features of the strategy ĥ∗
30 and h∗

30.

The strategy ĥ∗
m is a mapping from (S1,S2,S1,Zm,S

2,Zm) to {1, 2}. We fix the

value of (s1, s2, z1, z2) and show ĥ∗
m(s

1, s2, z1, k1, z2, k2) as a function of (k1, k2) on a

two-dimensional scatter plot where the color of the dot indicates the optimal action:

red means u = 1, blue means u = 2, and black means that both actions are optimal.

We use a similar technique to show the strategy h∗
m(s

1, s2, δz1(P
1)k

1

, δz2(P
2)k

2

) as a

function of δz1(P
1)k

1

, δz2(P
2)k

2

. The cases that we consider are:

Case 1: Identical symmetric sources with P 1 = P 2 =

⎡
⎢⎣0.9 0.1

0.1 0.9

⎤
⎥⎦. The optimal

strategy is shown in Fig. 4–2. Under the optimal strategy, the reachable values of

the states (s1, s2, z1, k1, z2, k2) are of the form: (k1, k2) ∈ {(1, 2), (2, 1)} and other

variables take all possible values.
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Case 2: Complementary symmetric sources with P 1 =

⎡
⎢⎣0.9 0.1

0.1 0.9

⎤
⎥⎦ and P 2 =

⎡
⎢⎣0.1 0.9

0.9 0.1

⎤
⎥⎦. The optimal strategy is shown in Fig. 4–3. Under the optimal strategy,

the reachable values of the states (s1, s2, z1, k1, z2, k2) are the same as in Case 1.

The reachable values in term of (π1, π2) differ because the transition matrices are

different.

Case 3: One symmetric and one asymmetric source with P 1 =

⎡
⎢⎣0.9 0.1

0.1 0.9

⎤
⎥⎦ and

P 2 =

⎡
⎢⎣0.9 0.1

0.3 0.7

⎤
⎥⎦. The optimal strategy is shown in Fig. 4–4. Under the opti-

mal strategy, the reachable values of (s1, s2, z1, k1, z2, k2) are of the following form:

(k1, k2) ∈ {(1, 2), (2, 1)} or (z2, k1, k2) = (1, 3, 1) or (z2, k1) = (1, 1), k2 ∈ Zm where

the unspecified variables take all possible values.

In all three cases, for the states that are reachable under the optimal strategy,

the optimal strategy may be represented as a finite state machine. We do not know

if the optimal strategy always has such a structure.
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CHAPTER 5
Energy Storage Management for Renewable Generation

We consider the energy management system (EMS) of a sustainable house that

contains a renewable generation unit (e.g., personal wind turbine) and an energy

storage device (e.g., battery). The house is connected to the electricity grid; the

EMS can purchase electricity from the grid, but cannot supply electricity back to the

grid. The renewable generation, the energy demand in the house, and the electricity

price vary in a stochastic manner. At each decision epoch, the EMS must meet the

demand using the renewable generation, the electricity grid, and the storage device.

We investigate optimal decision strategies for the EMS that determine when and

how much energy is purchased from the grid and is stored in the storage device.

Due to the importance of storage of renewable generation, the above problem

has received considerable attention in recent years e.g. in [27], [35] and [8]. These

papers assume a particular stochastic model for the generation as well as the prices

and derive the structure of the optimal policy using dynamic program. To use these

results in practice, one would have to estimate the model from the historic data on

renewable generation and prices, and then construct the optimal policies based on

this data.

In this chapter, we propose an alternative, reinforcement-learning based, ap-

proach to identify the optimal policies. In this approach, we learn the optimal strat-

egy directly from the data, without necessarily learning the model. Note that such
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model-free learning techniques are favourable since they avoid the added complexity

of learning the model and then learning the strategy for the model; moreover such

techniques can be easily modified to an online version where the algorithm dynami-

cally adapts to changing environments. We follow the problem presented in [8] and

compare the performance of three Reinforcement Learning algorithms, namely Em-

pirical Value Iteration, Q-learning algorithm and Batch Q-learning. It is seen that

the latter two algorithms converge significantly faster compared to the Q-learning

algorithm.

5.1 Problem formulation

We consider an infinite-horizon discrete time model. At the beginning of each

time t slot, the following information becomes available:

1. The price pt ∈ P of each unit of grid electricity at time t, where P is a finite

set.

2. The demand dt ∈ D of electricity at time t, where D is a finite set.

3. The level of renewable generation wt ∈ W generated at time t, where W is a

finite set.

4. The level of useful energy xt ∈ [0, ηS] in storage at time t where S is the

maximum capacity of the storage device and η is the dissipation loss.

To simplify our model, we assume η = 1 i.e. there is no dissipation loss. More-

over, we assume ρ to be the round trip efficiency which accounts from the conversion

losses incurred when converting renewable energy to its stored form and the reverse.

If ρ = 1, the storage is known to have a perfect round trip efficiency. Finally,

we assume that renewable generation, price and demand are unknown exogenous
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stochastic processes which evolve in a Markovian manner. We allow for possible

correlation in these processes and in turn account for price-sensitive (i.e., elastic)

demand and dependence of prices on wind levels.

At each time point, we are only interested in the net difference between demand

and renewable generation Yt = Dt −Wt and refer to it as the net load with units in

energy. Negative Yt results from excess renewable generation; while positive Yt results

from excess demand. So given the state Xt, Yt, Pt, the decision ut ∈ [−Xt, S − Xt],

the amount of useful energy to store, is made. Positive ut means we are sending

energy to storage; negative ut means we are extracting energy from storage.

The state update equation ∀Xt ∈ [0, ηS] is as follows:

Xt+1 = η[Xt + ut]

The above equation increments the current storage level by the amount of useful

energy that is stored depending on the value of pt, Yt in period t and then discounts

it by the dissipation losses, η (assumed to be 1), to arrive at the storage level in the

next time period.

The state transition probabilities can be expressed as follows:

P (xt, yt, pt, ut, xt+1, yt+1, pt+1) = P(yt+1|yt, pt)P(pt+1|yt, pt)

In this case, the state transition probability is independent of ut.
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We now formulate the optimal storage management problem as a discrete-time

discounted infinite horizon stochastic dynamic program. We assume that the gran-

ularity of the discretizations (e.g., hourly) are relatively small compared to the life-

cycle of storage devices (e.g., a few years) and hence choose an infinite horizon metric.

Vt(xt, yt, pt) = min
ut

pt

[
yt +

ut

γut

]+
+ βEyt+1,pt+1

[
Vt+1(xt + ut,yt+1,pt+1)

]
(5.1)

where, γut
=

⎧⎪⎪⎨
⎪⎪⎩
ρ if ut ≥ 0

1 otherwise

(5.2)

At time t, the first step to satisfy demand dt is through renewable generation

wt. However if there is excess demand (i.e. yt is positive), we try to satisfy it by

extracting energy ut

γt
from storage (where γt accounts for conversion losses). But

in case we do not extract enough energy from storage to satisfy the excess demand

(|yt| > |ut

γt
|), we purchase electricity from the grid to do so; this purchase accounts for

the current cost. On the other hand, when there is excess generation (yt is negative),

we may still want to send more energy to storage than is available through excess

generation (|ut

γt
| > |yt|). So once again we buy electricity from the grid and thus incur

current costs. This latter argument also applies when net load is zero (i.e. yt = 0).

When we possess complete knowledge of the system, meaning that we know

the cost function and transition probability functions, we can use Value Iteration

to solve the above dynamic program. However in this case, we do not know the

transition probability functions, which is why we use model-free learning techniques

such as Empirical Value Iteration or Q-Learning. The latter algorithm has very slow
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convergence; hence we use a modified version of Q-Learning known as Batch Update

Q-Learning. The details of each of these algorithms are provided in the following

sections.

5.2 Empirical Value Iteration

This technique from [9] is similar to Value Iteration except that instead of cal-

culating the exact expectation

E[V (Xt+1, Yt+1, Pt+1)|yt, pt] =
∑

yt+1∈Yt+1

∑
pt+1∈Pt+1

P (xt, yt, pt, ut, xt+1, yt+1, pt+1)V (Xt+1, yt+1, pt+1)

we calculate its empirical estimation. This is done by obtaining n samples of the

next state yt+1, pt+1 for a given state yt, pt from a simulator and averaging over them.

Note that the samples are regenerated at each iteration.

function EmpiricalValueIteration(X,Y,P,U,β,maxIterations)

V0(x0, y0, p0) := 0∀x0 ∈ X, y0 ∈ Y, p0 ∈ P

t := 1

for t < maxIterations do

Pick random xt ∈ X, yt ∈ Y, pt ∈ P

for n ≤ N do

{yt+1,n, pt+1,n} = SIMULATOR(yt, pt)

end for

Vt(xt, yt, pt) := min
ut∈U

pt

[
yt +

ut

γut

]+
+ β

N

N∑
n=1

Vt−1(xt + ut, yt+1,n, pt+1,n)

gt(xt, yt, pt) := argmin
ut∈U

pt

[
yt +

ut

γut

]+
+ β

N

N∑
n=1

Vt−1(xt + ut, yt+1,n, pt+1,n)

end for

return gt
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end function

5.3 Q-learning

Q-learning [39] can be viewed as a sampled, asynchronous method for estimating

the optimal state-action values, or Q function, for an unknown MDP. The most

basic version of Q-learning keeps a table of values, Q(x, y, p, u), with an entry for

each state/action pair. The entry Q(x, y, p, u) is an estimate for the corresponding

component of the optimal Q function, defined by:

Q∗
t (xt, yt, pt, ut) =

[
yt +

ut

γut

]+
+ βEyt+1,pt+1

[
V ∗
t−1(xt + ut,yt+1,pt+1)

]

where V is the optimal value function:

V ∗(x, y, p) = min
u∈U

Q∗(x, y, p, u)

The decision maker has access to a simulator which provides it information on the

current cost and next state given the current state and action. Thus the decision

maker gathers experience; which it uses to improve its estimate, blending new infor-

mation into its prior experience according to a learning rate 0 < α < 1.

Q∗
t (xt, yt, pt, ut) = (1−α)Q∗

t−1(xt, yt, pt, ut)+α(

[
yt+

ut

γut

]+
+βmin

ut

Q∗
t−1(xt+ut, yt+1, pt+1)

The learning rate blends our present estimate with our previous estimates to produce

a best guess at Q(x, y, p, u); it needs to be decreased slowly for the Q values to

converge to Q∗.

function Q-learning(X,U,β,α,maxIterations)

Q0(x0, y0, p0, u0) := abitrary value ∀x0 ∈ X, y0 ∈ Y, p0 ∈ P, u0 ∈ U
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t := 1

for t < maxIterations do

Pick random xt ∈ X, yt ∈ Y, pt ∈ P, ut ∈ U

{yt+1,n, pt+1,n} = SIMULATOR(yt, pt)

Q∗
t (xt, yt, pt, ut) = (1−α)Q∗

t−1(xt, yt, pt, ut)+α(

[
yt+

ut

γut

]+
+βmin

ut

Q∗
t−1(xt+

ut, yt+1, pt+1)

α updated heuristically

end for

return gt(xt) := argmin
ut∈U

Qt(xt, ut) ∀xt ∈ X

end function

5.4 Batch Q-learning

Figure 5–1: Illustration of the post-decision state

An intermediate state called the post-decision state is introduced to capture the

known part of the system dynamics in each time slot and speed-up the learning

process. As the name suggests and as can be seen in Figure 5–1, the post-decision

state represents the state of the system in each time slot after the storage decision
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ut is made but before the next price pt+1 and net load yt+1 are realized. The post-

decision state (x̃t, ỹt, p̃t) can be expressed as follows: x̃t = xt + ut, ỹt = yt, p̃t = pt.

The post-decision value function is defined as:

Ut(x̃t, ỹt, p̃t) = Eyt+1,pt+1

[
Vt+1(xt + ut,yt+1,pt+1)

]
(5.3)

By plugging (5.3) into (5.1) the relationship between the normal value function

and the post-state value function is seen to be:

Vt(xt, yt, pt) = min
ut

pt[yt +
ut

βut

]+ + βUt−1(x̃t, ỹt, p̃t)

Since the probability distributions are unknown a priori and needs to be learned

dynamically over time, the post-decision value function is updated in the following

manner:

Ut(x̃t, ỹt, p̃t) = (1− α)Ut−1(x̃t, ỹt, p̃t) + αVt(x̃t,yt+1,pt+1) ∀x̃t

Note that the expectation is separated from the maximization when the post-decision

state is introduced. In this problem, the net load transition and the price transition

are independent of the level of energy in storage. In other words, the net load yt+1

and price pt+1 can be realized at any possible energy level xt. So instead of updating

the post-decision state-value function only at the state xt, we can update at all

x ∈ X. This results in the following ”batch update” algorithm [7], [44]

function BatchQLearning(X,U,β,α,maxIterations)

V0(x0, y0, p0) := 0 ∀x0 ∈ X, y0 ∈ Y, p0 ∈ P

t := 1
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for t < maxIterations do

Pick random xt ∈ X, yt ∈ Y, pt ∈ P

Vt(xt, yt, pt) = min
ut

pt[yt +
ut

βut

]+ + βUt−1(x̃t, ỹt, p̃t)

gt(xt, yt, pt) = argmin
ut

pt[yt +
ut

βut

]+ + βUt−1(x̃t, ỹt, p̃t)

x̃t = xt + ut, ỹt = yt, p̃t = pt

{yt+1, pt+1} = SIMULATOR(ỹt, p̃t)

Ut(x, ỹt, p̃t) = (1− α)Ut−1(x, ỹt, p̃t) + αVt(x, yt+1, pt+1) ∀x ∈ X

α updated heuristically

end for

return gt

end function

5.5 Numerical Results

We consider an example where x = [0, 1, 2, 3], y = [−1, 0, 1], p = [3, 15], β = 0.9,

ρ = 1. Let there be two cases: a) y and p evolve in an independent and identically

distributed manner, b) y and p evolve in a Markovian manner. For each case, we first

specify the evolution dynamics and solve the problem using Value Iteration. Next,

we pretend that we do not know the model, and so obtain the next state information

by polling a Simulator. Now, we use the aforementioned model-free algorithms to

solve the problem. We calculate the maximum absolute difference between the value

function of each model-free algorithm and the value function of Value Iteration. We

then compare the number of iterations it took in each algorithm for this difference

to become zero.
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To get an idea of the type of policies we are dealing with, the following tables

show the optimal policy g∗ for different values of x, y, p for the i.i.d evolution case.

Table 5–1: The optimal policy g∗ for i.i.d evolution of y and p

(a) g∗ when p = 3

�
�
�
�
�
�

x
y -1 0 1

0 1 1 1
1 1 0 0
2 1 0 -1
3 0 0 -1

(b) g∗ when p = 15

�
�
�
�
�
�

x
y -1 0 1

0 1 0 0
1 1 0 -1
2 1 0 -1
3 0 0 -1

When there is excess demand (y is positive), it is optimal to either extract from

the storage, or to buy from the grid and keep in storage, or to do nothing. When

y = 1, x = 0, p = 3, we buy and store some energy on top of buying energy to satisfy

the excess demand. This is because it makes sense to buy energy at a lower price,

so that the stored energy can be used to satisfy excess demand when price is high in

future.

When there is excess generation, it is optimal to store all the excess and if

necessary buy and from the grid and store as well.

As can be seen from Figures 5–2 and 5–3, the Batch Q learning algorithm

converges in about 1.3× 108 iterations, while the regular Q learning algorithm does

not converge even after 2.6× 108 iterations. Hence the Batch Q learning algorithm

is more effective for finding the optimal policy.

From the above plots we can see that EVI reaches a low error level much faster

than even Batch Q-learning. However, there remains some fluctuation in the error

level after the first instance a low error level is reached.
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Figure 5–2: Convergence of Q learning and Batch Q learning value functions to DP
value function for i.i.d state evolution
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Figure 5–3: Convergence of Q learning and Batch Q learning value functions to DP
value function for Markovian state evolution
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Figure 5–4: Convergence of EVI value function to DP value function for i.i.d state
evolution
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Figure 5–5: Convergence of EVI value function to DP value function for Markov
state evolution
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CHAPTER 6
Conclusion

In this thesis, we first introduced what an MDP is. We mentioned that finite

horizon MDPs are solved using backward induction while infinite horizon MDPs are

solved using Value Iteration. When the state of an MDP is not perfectly observed,

the problem changes to a POMDP. We discussed that to solve a POMDP, we need

to identify an information state such as the belief state. But since the belief state

belongs to the continuous space it makes standard dynamic programming intractable.

We showed that for a certain class of POMDPs we can get around this issue by

characterizing the reachable state of the POMDP to convert its state space from

uncountable to countably infinite. Then using finite state approximation we can

convert the countably infinite state space to finite state space. Once a finite state

space, infinite horizon POMDP is identified, we can solve it using Value Iteration.

We then provide an overview of decentralized stochastic control and discuss the

person-by-person and common information solution approaches. In practice, both

solution techniques need to be used in tandem to solve a decentralized stochastic con-

trol problem. The solution methodology for decentralized stochastic control problem

which can be formulated as the special class of POMDP (as explained in Chapter 2

) is as follows:

1. Use the person-by-person approach to simplify the information structure of the

system.
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2. Use the common-information approach on the simplified information structure

to identify an information-state process for the system.

3. If a belief state is used as the information state, identify the reachable set of

the belief state

4. Obtain a dynamic program corresponding to the reachable set of the belief

state.

5. Rewrite the dynamic program by applying finite state approximation on it.

6. Solve the dynamic program using Value Iteration.

The above methodology applies only to systems with partial-history sharing and

to systems that reduce to partial-history sharing by a person-by-person approach.

Identifying solution techniques for other subclasses of decentralized stochastic control

remains an active area of research.

Next we consider the problem of simultaneously transmitting multiple Markov

sources over a common channel. We derive a dynamic programming decomposition

under assumptions (A1) and (A2). We believe that for certain types of symmetric

sources where the decoding problem decouples from the encoding strategy [12], [20],

these assumptions are without any loss of optimality. For other cases, it is important

to characterize the sub-optimality introduced by (A1) and (A2). For the special case

when all sources alphabets are equal (assumption (A3)), we show that the above

dynamic program is equivalent to a countable state MDP. We then provide a sequence

of finite-state approximations of the dynamic program that converges to the solution

of the countable state MDP. Assumption (A3) limits the applicability of the model;
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as such it is worthwhile to investigate other setups where the dynamic program has

tractable solutions.

Note that while identifying the reachable state and applying finite state approx-

imation allows us to greatly simplify the solution method for a class of POMDPs,

there are still some limitations to this approach. While we know that the value

function obtained through this technique will eventually converge, we cannot guar-

antee the convergence for a stopping condition. In our examples, the algorithm was

terminated based on heuristics. Moreover, we need to determine bounds on how big

m (for Zm) can be to converge to the optimal solution i.e. can we get a bound on

||V̂ m − V̂ || ≤ f(m)? Finally it was seen in the solution of the examples of both

Chapters 3 and 4 that the optimal policy has a finite reachable set. However it is

not yet been proved and it is unclear how we may approach this proof.

In Chapter 5, we demonstrated the application of Q-learning, Batch Q-learning

and Empirical Value Iteration for energy storage management of renewable genera-

tion. While Empirical Value Iteration was seen to have the fastest convergence, its

error has high variance. We need to investigate techniques to smooth this error fluc-

tuation. Perhaps one technique might be to do a few iterations of Empirical Value

Iteration and then switch to using Batch Q-learning.

On a separate note, it may be possible to make the convergence rate of Empirical

Value Iteration even faster by implementing a batch version of the algorithm.
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