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Abstract 

This thesis examines the abc-conjecture, a conjectured diophantine inequality · 
which makes a connection between the operations of addition and multipli­
cation (specifically, prime factorization) in number fields. After examining 
the context and motivation of the conjecture, we go on to prove two very 
different implications of it - one algebraic and one analytic. 

Cette these examine la conjecture abc, une inegalite diophantine conjec­
ture qui fait un rapport entre les operations d'addition et de multiplica­
tion (specifiquement, decomposition en facteurs premiere) dans l'anneau des 
nombres entier et les corps de nombres. D'abord, nous examinons le contexte 
et motivation de la conjecture, et puis nous prouvons deux imlications tres 
differente d'elle- une algebraique et une analytique. 
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Chapter 1 

Introduction 

1.1 Motivation and Statement of Conjecture 

The abc-conjecture is one of the most interesting recent conjectures in num­
ber theory. The past decade or so has been marked by great progress in 
number theory, and concurrent statements of conjectures the resolution of 
which would seem to require further steps forward. The abc-conjecture sits 
among this group of statements in a web of equivalences and implications 
which give, if nothing else, at least heuristic evidence for their truth. The 
goal of this thesis is to highlight some of the many implications of this con­
jecture; in the process much interesting mathematics is discussed. We begin 
by stating the conjecture. Like many other famous conjectures in number 
theory, it appears innocuous. 

( abc-Conjecture) For every E > 0 there exists a constant M = 
M€ such that if a, b, and c are coprime positive integers satisfying 
a+ b = c, then 

c::::; M( II p)l+€. 
p!abc 
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For convenience, we will often denote the product on the right hand side of 
the inequality by G(a, b, c), and we will use the usual notation «: or «:€ to 
mean 'less than or equal to up to a constant depending onE'. 

This statement was first given in the above form in D.W. Masser's 1985 
paper [21]; Masser refined a question of Oesterle in analogy with a result of 
R.C. Mason, which in [20] is used to find constructive algorithms for finding 
solutions to polynomial equations such as f(x, y) = 1 over function fields. 
By way of motivation, we present here a simple version of this inequality, as 
well as its (elementary) proof. 

Theorem 1 (Mason) Let a(z), b(z), and c(z) be non-constant relatively 
prime polynomials in C[z]. If a+ b + c = 0 then 

max{ deg(a), deg(b), deg(c)} < r, 

where r is the number of distinct roots of abc. 

Proof: Let a, b c and r be as in the statement of the theorem, and assume 
without loss of generality that deg(c) 2: deg(a) and deg(c) 2: deg(b). We will 
denote the (formal) derivative of a polynomial f E C[z] by f'. Since a and b 
have no common factors and deg(a') < deg(a), deg(b') < deg(b), 

a a' 
b =I= b'' 

or in other words ab'-ba' =I= 0. If for some a E C, (z-a)ela, (z-a)e-ll(ab'­
ba') and therefore 

a(z) I (ab'- ba') IT (z- a). 
a(a)=O 

The same reasoning holds for b, and furthermore, since a + b + c = 0 

bl b I ( I ') ( ) I I I a - a = a -a - c - -a - c a = ea - ac 

so the same reasoning also holds for c and since a, b and c have no common 
factors we end up with 

a(z)b(z)c(z) I (ab'- ba') IT (z- a), 

2 

a(a)==O 
b(a)=O 
c(a)=O 
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so deg(a) + deg(b) + deg(c) :::; deg(a) + deg(b)- 1 + r. Subtracting deg(a) + 
deg(b) from both sides gives the result. 

Notice that this theorem provides a quick solution to Fermat's last theo­
rem in the function field case - that is, applying theorem 1 to the equation 
xn+yn = zn with x, y and z coprime non-constant polynomials in C[z] shows 
immediately that n < 3. This gives a hint as to the power of the above in­
equality, and indeed, Mason's book [20] consists largely of applications of the 
inequality to the study of diophantine equations over function fields. This in 
itself provides motivation for the proof of a similar inequality in the number 
field case. 

The abc-conjecture arises when one attempts to transplant theorem 1 
to number fields, or specifically to the rational integers. The analog of the 
factors (z - a) are the prime numbers, so we have the following 'literal' 
translation of theorem 1, in which we denote by v(n) the number of prime 
factors of n, counted with multiplicity: 

(A) If a, b, and c are relatively prime integers whose sum is zero, 
then max{v(a), v(b), v(c)} < r(abc), 

where r(n) is the number of primes dividing n. This statement is manifestly 
false in Z, however, as can be seen by the following 

Lemma 1 If x = y (mod p) then xPn yPn (mod pn+l). 

Proof: We proceed by induction on n, the case n = 0 being the hypothesis. 
If xPn-1 yPn-1 (mod pn) then since 

pn pn _ ( pn-1 pn-1)( (p-l)pn-1 (p-2)pn-1 pn-1 (p-l)pn-1) X -y -X -y X +x y +···+y 

and the sum on the right hand side has p terms, all congruent modulo p, the 
lemma is proved. 

This lemma provides counterexamples to (A) by examining the equation 
xPn = yPn + dpn+\ for simplicity put x = 5, y = 2, p = 3 (we could of course 
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use x = 4, y = 1 and p = 3, but since 1 is a unit in Z and the inequality 
proven by Mason disallows units in C[z], this may be regarded as 'cheating'). 
Then (A) implies that 3n < 3 + r(d), but d < 53n, so d must have at most 
o(3n) distinct prime divisors, since 

sn 
lim = 0, 

n-+oo 2 X 3 X · · · X Pn 

where Pn is the nth prime. Note that this example also shows that modifying 
(A) by multiplying the right hand side of the inequality by a constant is not 
sufficient. Since rational prime numbers have a natural 'height' (the height 
of p is log p) whereas prime elements of q z] (that is, polynomials of the form 
z- a for a E C) do not, it seems reasonable to modify (A) by incorporating 
the size of the primes into the inequality - this modification gives us 

(B) If a, b, and c are relatively prime integers whose sum is zero, 
then 

max{logjaj,logjbj,logjci} < L logp. 
plabc 

This attempt is also derailed by the equation 53
n = 23

n + d3n however, since 
when applied to this equation it predicts that 

3n log 5 < log 30 + log d < log 30 + 3n log 5 - n log 3 

which evidently fails for n > 3. However, this attempt is 'close' here, m 
the sense that multiplying the right hand side of the predicted inequality by 
any constant greater than one gives a correct prediction - at least for large 
n. Thus we introduce a multiplicative constant greater than one, and an 
additive constant to compensate for the cases where n is small, and obtain 

(C) For every E > 0 there exists a constant M~ such that if a, b, 
and c are relatively prime integers whose sum is zero, 

max{log iai, log lbl, log I cl} <M~+ (1 +E) L logp. 
plabc 

4 
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Of course, exponentiating both sides of this gives the abc-conjecture as stated 
above. Now, if one were to to begin this process with an inequality closer 
in generality to the one in Mason [20, Chapter 1, lemma 2] and attempt to 
translate it to the number field case, one would end up with a conjecture 
similar to the abc-conjecture but for number fields, whose statement is as 
follows: 

Here, 

( abc-Conjecture for number fields) For all number fields k 
and real numbers E > 0, there exists M = Mk,E > 0 such that if 
a, b, c E k, a+ b + c = 0, one has 

H(a, b, c) :S: MG(a, b, c)l+E. 

V 

is the height of {a, b, c} and 

G(a, b, c) = IT IIPIIP 
pES 

is their conductor. The product in H runs over all non-Archimedean primes 
v = p with 11 x lip= Nk;Q(P)-l/[k:QJ and over all Archimedean primes v = 
a : k -+ C with llxllu= la(x)il/[k;QJ, and S is the set of prime ideals p for 
which 11 a lip, 11 bliP, 11 cliP are not all equal. The uniform abc-conjecture for 
number fields is the slightly stronger statement that there exists some E > 0 
such that for every E > 0, the constant Mk,E can be taken to be A~:QJM€ 
with A[k:Q] = Disc(k/Q) 1/[k:QJ (the 'normalized discriminant' of k). In this 
thesis, unless otherwise stated abc-conjecture or simply abc will refer to the 
abc-conjecture for the integers. 

1.2 Plausibility and Optin1ality 

Given that statements (A) and (B) from the previous section were easily 
disposed of, is there any reason to believe that counterexamples to the abc­
conjecture do not also exist? Of course, the presence of the constants and the 
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E make it much more difficult to disprove, since one would need an infinite 
sequence of triples {x,y,z} such that gcd(x,y,z) = 1, x + y = z and x > 
G(a, b, c)l+€ for some E > 0. In their paper [29], Stewart and Tijdeman remark 
that although a proof of abc seems hopeless (by virtue of its implications -
see section 1.3), it may be possible to disprove it, and they show that the 
conjecture is close to being 'best possible'. Specifically, they show that for 
any 8 > 0, there exist infinitely many triples of coprime positive integers 
{ x, y, z} with x + y = z and 

(1.1) ( JIOgG) x > G exp ( 4 - 8) log log G 

where G = G(x, y, z). Of course, this does not disprove the conjecture, since 
for any E, 8 > 0 

exp ((4- 8) 1~) = o(G€) 

as G --+ oo. Still, it does provide the following 

Proposition 1 As E --+ 0, the constants ME in the statement of the abc­
conjecture tend to infinity. 

Proof: This follows easily from the result of Stewart and Tijdeman. Put 
G = G(x,y,z). Assume that some M works for every E and pick {x,y,z} 
satisfying (1.1) and large enough so that logG > (logM) 2 • Then pick E > 0 
to be less than 

_1_ (JIOiG -logM) 
logG loglogG ' 

and rearranging the inequality from the abc-conjecture shows that M fails 
for this value of E. 

Thus, the abc-conjecture is at least 'close' to being best possible. The 
question of plausibility, however, is more subjective. Of course, the fact that 
the statement has not been disproved for ten years provides some measure of 
reassurance, but not very much, the integers being infinite. However, abc has 
been proven equivalent to several other conjectures in number theory, and 
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progress toward its resolution has been made by Stewart and Tijdeman in 
[29] and by Stewart and Yu in [30] (in the latter it is proven that for all t > 0 
there exists an effectively computable constant Me such that for a, b, c E Z, 
a+ b = c and gcd(a, b, c)= 1 implies logc :S Me(G(a, b, c)) 213

). We now give 
two conjectures equivalent to abc, assuming that the reader is familiar with 
some notions about elliptic curves (see [27] for definitions). 

(Degree conjecture) If E IQ is a modular elliptic curve with 
modular parameterization rjJ : X 0 (N) ---+ E where N is the con­
ductor of E, then 

log (d:lr/J) = O(Ioggenus(X0 (N))). 

Here, X 0 (N) = {f0 (N) \ 1i)* is (the compactification of) the upper half 
plane modulo the left action of the congruence subgroup f 0 (N), and cE is 
a constant associated to the map rjJ (the pull back of the Ner6n differential 
by rjJ to X0(N) is cE times a normalized newform of weight two and level 
N). This was proven equivalent to abc assuming the Taniyama-Shimura 
conjecture that all elliptic curves over Q are modular, by L. Mai and R. 
Murty in [19] using a version of the Phragmen-Lindelof theorem and the 
following conjecture which was proven equivalent to abc by G. Frey in [7]. 

(Height Conjecture) If E IQ is an elliptic curve with conductor 
N then h(E) = O(IogN). 

Here, h(E) is the Faltings height of the curve E (for definition, see [7] or 
[19]). Very recently, R. Murty has shown that if a prime p divides the degree 
of the parameterization r/J, then p :::; N 2 . In [31], Vojta proves the equiva­
lences of the height conjecture with abc and with two other conjectures, one 
(Szpiro's conjecture) about the discriminant of elliptic curves, and the other 
(Hall-Lang-Waldschmidt-Szpiro conjecture) on solutions of the family of dio­
phantine equations of the form Axm + Byn = z =/:- 0 for rational integers A 
and B. Vojta also shows that these conjectures are all consequences of his 
'General Conjecture' which is itself a generalisation of various known results 
in algebraic geometry and diophantine approximation. 

7 
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1.3 Easy Consequences 

The abc-conjecture is very well suited to the study of solutions of binary 
diophantine equations in the integers, and in this section we present, as ex­
amples of the conjecture's versatility in this area, a few propositions which 
would be immediate were the truth of the conjecture known. The first orig­
inally appeared in Marius Overholt's paper [25]; we present here a slightly 
strengthened version. 

Proposition 1 (Overholt) If the abc-conjecture is true, then for any k > 
1, the equation n! + 1 = mk has only finitely many solutions in rational 
integers. 

Proof: The proof depends on the fact that 

(1.1) 

We present a simple proof of this fact due to Erdos. (1.1) is clearly true 
for n = 2, so proceeding by induction assume that it is true for all integers 
less than n. If n is even, there is nothing to prove, so assume n = 2m + 1 is 
odd. Now it is easily proven (by induction on m) that 

( 
2m + 1) < 4m. 

m - ' 

and this quantity is divisible by all primes between m+2 and 2m+1 inclusive. 
Thus 

IT p = IT p IT p ~ 4m+14m = 4n 
p~n p~m+l m+2~p~n 

which completes the proof. To prove the proposition, we apply the abc­
conjecture to the equation n! + 1 = mk, yielding 

(1.2) mk «(m IT p)l+E ~ (m4n)l+E 
p~n 

for every t > 0. Also, since for n 2: 3, n! 2: 4nne-n (this is easily proven 
, by induction, using the fact that for every n, (1 + ~)n <e), we have that 
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mk ;::: n! ;::: 4nne-n. Inserting this into (1.2) gives 4nne-nm-l-e ~ 4n(1+e}. 
Using the obvious bound n! < nn -1 so that m < nn/k, we have nn-(l+e}n/k ~ 
4n(1+e)en, and on taking logarithms of both sides this becomes 

( 
1 +f) n 1- -k- logn:::; nlog(4l+ee) + c0 

for some constant c0 . This provides a bound on n, and proves the proposition. 

We now show that the abc-conjecture implies that there exist only finitely 
many counterexamples to Fermat's last theorem. In fact, we have the fol­
lowing: 

Proposition 2 Given q, r and s positive integers satisfying 

(1.3) 1 1 1 - +- +- < 1, 
q r s 

The abc-conjecture implies that there exist only finitely many triples of inte­
gers (x, y, z) satisfying 

(1.4) 

Proof: Since * + ~ + ~ < 1, there exists an f > 0 such that qr s > 
(qs + rs + qr )(1 + t:). Applying the abc-conjecture with this f to the equation 
(1.4) yields 

zs ~ (IT p)l+E S (xyz)l+e S (zsfqzslrz)l+e, 
plxyz 

and isolating z shows that 

TS 1 z (qs+rs+pq)(l+<) ~ 1) 

so there exist only finitely many solutions for fixed q, r, and s. 

Corollary The abc-conjecture implies that there exist at most finitely many 
quadruples (x, y, z, n) where x, y, and z are positive integers and n;::: 4 is a 
positive integer and xn + yn = z 11

• 
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Proof: The proof of the proposition shows that in any solution xn + yn = 
zn, we must have z-I+n/(3+3£) « 1, and since in any solution we must have 
z ~ 2, there exists an N such that for n > N, xn + yn = zn has no solutions. 
For a fixed n abc implies that the equation can have only finitely many solu­
tions, so this proves the corollary. 

It has been conjectured both by Erdos [6] and Mollin and Walsh [22] that 
there exist only finitely many triples of consecutive powerful integers, where 
an integer n is said to be powerful if for every prime p, pjn implies p2 jn. It 
was shown by Granville [8] that the abc-conjecture implies the truth of this 
statement; we give a different proof of this implication here. 

Proposition 3 If the abc-conjectv,re is true, then there exist only finitely 
many triples of powerful integers. 

Proof: Assume that l - 1, l and l + 1 are all powerful. Then since no powerful 
integer can be congruent to two modulo four, l - 1, l and l + 1 must be 
congruent to 3, 0 and 1 respectively modulo 4, so that l = 4n for some 
integer n. We know that for any n, { 4n, 4n2 

- 1, 4n2 + 1} give a Pythagorean 
triple. Apply the abc-conjecture to the equation 

to give, for every E > 0, 

(4n2 + 1)2 «E G(4n2
, (4n2

- 1)2, (4n2 + 1)2)1+e 

G( 4n, 2n- 1, 2n + 1, 4n2 + 1)1+€ 

< ( j(2n)(4n2 - 1)(4n2 + 1))1+€ 

< (2n)l/2+E/2(4n2 + 1)3/2+3£/2 

Which, on rearranging, gives a bound on n when E is chosen small. 

We end this section with an application of the abc-conjecture to an appar­
ently obscure equation. In subsequent sections, the relevance of this equation 
will become clear. 

10 
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Proposition 4 The abc-conjecture implies that there exist only finitely many 
solutions to the equation y3 = x 2 + 1728 in rational integers. 

Proof: We apply the conjecture to the equation, and find that in any solution 
(x, y) we must have 

y3 ~ (IT p)l+e ~ (xy)l+e ~ y5(l+e)/2. 
pl6xy 

If E < 1/5, this gives a bound on y. 

In fact, this equation is known to have only finitely many integral solu­
tions unconditionally - results of Baker and of Stark give estimates for max­
imum absolute value of integral solutions to the equation y3 = x 2 + D for 
D E Z \ {0}. In particular a theorem of Stark (see [27, Chapter IX, Sec­
tion 7]) states that in any integral solution to the above equation we have 
logmax{lxl, IYI} ~ CeiDil+e for any E > 0, where Ce is an effectively com­
putable constant. However, the bound on solution size implied by the abc­
conjecture is considerably better than this bound - the proof of proposition 
3 shows that the abc-conjecture implies the bound yl-e ~ D2+e for all E > 0. 

11 
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Chapter 2 

Background Material 

2.1 Elliptic and Modular Functions 

2.1.1 Elliptic Functions 

Many proofs in this section are omitted; they can be found in [15]. We begin 
with a few definitions. A lattice in C is a set of the form A = [w1, w2] = { nw1 + 
mw2 : m, nE Z}, where w1 and w2 are linearly independent over R. A funda­
mental parallelogram for A is P = PA = { aw1 + bw2 :a, bE R, 0 ~a, b < 1}. 
A meromorphic function f : C ----+ C is said to be elliptic with respect to the 
lattice A if for every wE A, and z E C, we have f(z + w) = f(z). In the fol­
lowing, the phrase 'elliptic function' will mean 'elliptic function with respect 
to some fixed lattice A'. Sums, products and quotients of elliptic functions 
are elliptic, and hence the elliptic function with respect to some lattice form 
a field. The first example of an elliptic function is the following. 

Definition: The Weierstrass p-function for the lattice A is defined as fol-
lows: 

p(z)=p(z,A)=~+ I: (( 1 ) 2 -~)· z wEA\{0} z- W W 

This series can be shown to converge absolutely and uniformly on compact 
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subsets of C \ A, and hence defines a meromorphic function with a pole of 
order two at every point of A. Clearly p is even. The uniform convergence 
allows us to differentiate term by term, and we find that 

-2 2 
p'(z) = -3 - 2::: ( p· 

z wEA\{0} z- W 

Clearly we have p' (z+w) = p' ( z) for all w E A, since the substitution amounts 
to rearranging the terms of an absolutely convergent series. Consequently 
p( z + w) = p( z) + c for some constant c = c( w); but since p is even, putting 
z = -w /2 shows that c = 0, and hence that p is elliptic. 

Theorem 2 The field of elliptic functions is equal to C(p, p'). 

Thus, not only is p the first example of an elliptic function, but it is in some 
sense the only example. Using the argument principle, one can show that if 
f is an elliptic function, f has the same number of zeroes as poles counted 
with multiplicities in the fundamental parallelogram P. Applying this to p' 
shows that p' must have exactly three roots in P. Also, if u E { T, ~, w1 ~w2 

} 

(the points of order two in C/ A), then u -u (mod A), and thus p'(u) = 0, 
since p' is odd and elliptic. Since these three elements are distinct modulo 
A, they must be the only three zeroes of p' in P. Now p is an elliptic 
function with two poles in P, and consequently p must take any complex 
value exactly twice in P, since p - c for c E C must have exactly two zeroes 
with multiplicity. Therefore for u as above, p takes the value p(u) only once 
in P, since these values are taken with multiplicity two. This shows that 

(p- p(";l ))(p- P(3))(p- p(Wl~W2)) 

is an elliptic function with no poles on P, which is therefore bounded on C 
and hence constant, by Liouville's theorem. A comparison of the z~ terms of 
the numerator and denominator show that this function is in fact identically 
4, so p' satisfies the differential equation 
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Since the three values p(T), p(~2 ), p(w1 !w2
) are distinct, this cubic equation 

has non-zero discriminant. By examining the Laurent series expansion for r.f 
and pat zero, it can be shown that this cubic is in fact f(x) = 4x3

- 92x- 93 , 

where 92 = 60s4, g4 = 140s6 , and s2k, k 2: 2, is defined by 

1 
S2k = S2k(A) = L ~· 

wEA\{0} W 

Thus z H (p, p') defines an analytic map from the Riemann surface C/ A to 
an elliptic curve E =EA defined by the equation y2 = f(x). It can be shown 
that this map is an isomorphism, not only of Riemann surfaces, but of abelian 
groups, and that furthermore for every elliptic curve over C, there exists a 
lattice A such that C/ A ~ E (see [27]). We define L\ = L\A = 9~ - 27 9~, so 
that L\ is 16 times the discriminant of f(x), and is consequently nonzero since 
f(x) has distinct roots. Note for later reference that the functions s2k satisfy 
s2k(cA) = c-2k s2k(A), and that consequently L\ satisfies L\(cA) = c-12L\(A). 

Proposition 1 If C/ A1 ~ E1 and C/ A2 ~ E2 , and cp : E1 -+ E2 is an 
algebraic homomorphism, then there exists a E C such that cp is induced by 
multiplication by a : C/ A1 ----t Cj A2 . Conversely any such multiplication gives 
rise to an algebraic homomorphism E1 -+ E2 . Furthermore, any analytic map 
C/ A1 -+ C/ A2 is in fact induced by multiplication by some a E C. 

Now suppose that A1 = cA2 for some c E C. Then multiplication by 
c induces an isomorphism E 1 ~ E2 , and conversely if E 1 and E2 are iso­
morphic, their corresponding lattices are multiples of one another, so that 
isomorphism classes of elliptic curves (over C) are exactly parameterized by 
lattices in C modulo nonzero scalar multiplication. This, combined with the 
above observation regarding the behaviour of the series s2k under scalar mul­
tiplication of lattices, provides motivation for the following 

Definition: For any lattice A in C, 

. 1728g~(A) g~ 
J(A) = (g~(A)- 27g§(A)) L\. 

14 
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The preceding paragraph shows that j is invariant under scalar multiplication 
of lattices, and consequently that if we define j as a function on elliptic curves 
by j(E) = j(A) if C/A rv E that j is invariant on C-isomorphism classes of 
elliptic curves. In the next section we will show that in fact j parameterizes 
C-isomorphism classes of elliptic curves, that is that two elliptic curves are 
isomorphic over C iff their j values are equal. 

2.1.2 Modular Functions 

If C denotes the set of lattices in CC , then the functions g2 , g4, ~' j defined 
above are all examples of homogeneous functions C ---+ C. Functions such as 
these are closely associated to functions on the upper half plane 1l = {z E 
C : c;s(z) > 0} satisfying a certain transformation property. First, since 

~ (az +b) _ ~(z) 
cz + d - lcz + dl 2

' 

the assignment z H ~=~~ gives an action of SL2 (Z) on 1l. We denote this by 
z H 1'( z) for ')' E r. Note that the matrix -I acts trivially on 1l . For this 
reason, we define r = S L2 ( Z) / { ± 1}. We will generally denote an arbitrary 
element of r by 

suppressing the fact that an element of r is in fact a two element equivalence 
class. 

Proposition 2 r is generated by the two matrices 

(0 -1) (1 1) S= 1 0 T= 0 1 ' 

and a fundamental region for the action of r on 1-l is given by 'R = { z E 1l : 
-:} ::; ~(z) ::; ~' lzl ~ 1}. 

(By fundamental region, we mean that points in the interior of 'R, are equiva­
lent to no other point of R, and points on the boundary of 'R, are equivalent 
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to (at most) one other point on the boundary of n.) 

Remark - If A = [w1, w2] is a lattice, we can assume that wdw2 E 1-£. This 
quotient is obviously invariant under scalar multiplication of A, and apply-
ing an element ( ~ ~) E r to wd w2 gives ( aw1 + b)/ ( cw2 + d) which also 
corresponds to A. Thus r \ 1-{ is in one to one correspondence with lattices 
modulo non-zero scalar multiplication, and hence by the above with elliptic 
curves over C. 

Given F : £, ---+ C homogeneous of degree -2k, we define f : 1-l ---+ C as 
follows: f(z) = F(Az), where Az is the lattice [z, 1). For any r E r, and 
any lattice A = [w1, w2], r(A) = [aw1 + bw2, cw1 + dw2] = A, and hence 
(cz + d)A-y(z) = Az· In terms off, this means that f(rz) = F (cz~dAz) = 
(cz + d) 2k f(z). This gives us an association between homogeneous lattice 
functions of degree - 2k and functions f on 1-l satisfying 

(2.1) f(rz) = (cz + d) 2
k f(z) for all r = (~ ~) Er. 

Definition: A meromorphic function satisfying (2.1) is called a modular 
function of weight 2k. 

Note that since the action ofT E r on 1-l is z 1---t z + 1, a modular function (of 
any weight) satisfies f(z + 1) = f(z), and hence if[))* = {z E C* : lzl < 1} 
and exp denotes the exponential function 1i---+ C defined by exp(z) = ez then 
f defines a meromorphic function f* on[))*, given by f*(exp(27riz)) = f(z). 
This function has a Laurent series expansion in q = exp(27riz) about q = 0, 
and if this series has no nonzero negative power coefficients (that is, if f* is 
analytic on [)) = [))* U{O}) and f is holomorphic on 1-l then f is said to be a 
modular form. Thus we are defining modular forms to be holomorphic func­
tions on the Riemann surface r \ 1-{, where the differentiable structure at oo 
is given via the map z 1---t exp(z). This statement, together with the remark 
after proposition 2 give a reason behind the importance of modular forms for 
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the study of elliptic curves. If a modular form satisfies the additional con­
dition f*(O) = 0 then it is said to be a cusp form. The q-expansion off* is 
said to be the expansion off at infinity, and if f is a modular form we define 
f(oo) = f*(O). Now beginning with the homogeneous lattice functions s2k 

(k ~ 2) introduced above, we define the corresponding modular functions, 

~I 1 
G2k = L..t ( + )2k' 

m,n Ez mz n 

where the prime on the sum means that the m = n = 0 term is left out 
of the sum; and as before we put 92 = 60G4, 93 = 140G6. Note that we 
are using g2 and g3 to denote both lattice functions and the corresponding 
modular functions. We will also denote by 6. and j respectively both the 
lattice functions defined above and the corresponding modular functions. 
Since the series defining G2k (k ~ 2) converge absolutely and uniformly on 
compact subsets of 1i, the functions G2k are holomorphic on 1i, and putting 
'z = oo' formally into the above series gives G2k(oo) = 2((2k), where ((z) is 
the Riemann zeta function. The q-expansion of G2k at infinity does indeed 
have constant term 2((2k) (see below for the q-expansions of g2 and g3 ), so 
this formal substitution is justified, and using the facts that ((4) = 1r4 /90 
and ((6) = 1r

6 /945, an easy calculation shows that 6.(oo) = 0, so that A is 
a cusp form of weight 12. Since 6.(z) =/= 0 for all z E 1i, we see that j is 
holomorphic on 1-l. (This explains the presence of the factors of 60 and 140 
in the definitions of g2 and 93 ; the 1728 in the definition of j is so that j has 
a q-expansion at oo with all integer coefficients; see section 2.1.3.) 

If f is meromorphic in a neighbourhood of the point a, we define the 
order off at a, va(f), to be the unique integer m such that (z- a)-m f 
is defined and non-zero at a (the existence and uniqueness of this integer 
follow from the fact that f has a Laurent series expansion about a with only 
finitely many non-zero negative power coefficients). With this notation, we 
have the following formula, proved by integrating the function f' / f around 
the boundary of a fundamental domain for r \ 1i. 
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Proposition 3 If f is a nonzero modular function of weight 2k, then 

(2.2) 

where the sum is over all p in a fundamental domain for r \ 1-l, and 
p = e"f is a primitive third root of unity. 

This formula allows us to prove the following three propositions: 

Proposition 4 The zero of 6. at oo is simple. 

Proof: This follows immediately from the above formula, since for ~' 
a cusp form of weight 12, the right hand side is 1 and the left hand side 
is equal to the multiplicity of the zero at oo, since ~ is holomorphic and 
non-vanishing on 1-l. 

Proposition 5 The map j : r \ 1l -+ C is a bijection. 

Proof: For any c E C, the function j - c is modular of weight zero, with 
a simple pole at infinity. Consequently (2.2) gives 

vp(f) + vi(!) + L vp(J) = 1. 
3 2 p::f-i,p 

Since j is analytic on 1l all the terms on the left hand side are positive, and 
since 2 and 3 are relatively prime, the equation can only be satisfied if exactly 
one term is nonzero. Thus the map is indeed a bijection. 

Remark- This shows that if A1 and A2 are C-lattices then j(A1) = j(A2) iff 
A1 = cA2 for some c E C, and consequently provides a proof of the earlier 
assertion that the j-function parameterizes C-isomorphism classes of elliptic 
curves. 

Note that j takes the values j(p) and j(i) with multiplicities 3 and two 
respectively. The reason for this will be seen in the proof of the next propo­
sition. 
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Proposition 6 Let Mk (resp. Sk) denote the C-vector space of modular 
forms (resp. cusp forms) of weight 2k. Then: 

(a) dim(M0) = 1 

(b) dim(M1) = 0 

(c) dim(Mk) = 1 if k = 2, 3,4 or 5 

(d) dim(Mk) = dim(Mk_6) + 1 if k ~ 6 

(e) dim(Sk) = dim(Mk) - 1 

Proof: If f E Mk, f has no poles, so all terms on the left hand side of 
(2.2) are nonnegative. If f E l'v10 , f i= 0, then f has no zeroes by (2.2). Now 
the constant functions are in M0 , and so for any z E 1-l, f- f(z) is in M0 , 

and has a zero. Hence f- f(z) 0, so f is constant, proving (a). For (b), 
note that if f is a nonzero element of M1 , the equation (2.2) cannot hold, 
since the left hand side is 0 or~ 1/3, and the right hand side is 1/6. Now (c) 
is true since M2 = Cg2, M3 = CC93, M4 = CC9~, Ms = 9293. We'll prove the 
first of these statements; the proofs of the others are identical. Let f E M2, 
then the left hand side of (2.2) is 1/3, so f must have a simple zero at p and 
no others. Take x E 1-l, x i= p, and consider the function g2(x)f- f(x)g2 • 

This function has zeroes at both p and x and hence must be zero everywhere. 
Thus f E C92, proving that 1112 = CCg2 . 

If k ~ 6, let f E Mk. then there exists acE C such that f- cG2k E Sk; 
therefore 

f- cG2k 
~ E Mk-6· 

Hence the map h t--+ h~ defines an isomorphism Sk rv Mk_6 , so 

proving (d) and (e). 

Note that 92 has a simple zero at p and no other zeroes; the proof that 
M3 = Cg3 shows that 93 has a simple zero at i and no other zeroes, and 
differentiating j using the quotient rule shows that zeroes of j' correspond to 
zeroes of 92, zeroes of 93 , or points where 3939~ - 2929~ = 0. So the zeroes 
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of g2 and g3 at p and i respectively explain the double and triple zeroes of 
j, and since the proof of the previous proposition showed that j could have 
non-simple zeroes exactly at p and 'i, we conclude that there can exist no 
points of 1i where 3g3g~- 2g29; = 0. 

Corollary Up to multiplication by elements of C, j is the only weight zero 
modular function holomorphic on 1i with a simple pole at oo. 

Proof: j has a simple pole at oo since .6:. has a simple zero there, and for 
any f satisfying the hypotheses, f .6:. E M6 \ S6 = CG12 and hence f .6:. is a 
C-multiple of j.6:., so f is a C-multiple of j. 

2.1.3 Some q-Expansions 

In this section we derive a few important q-expansions, largely in order to 
prove that j has a q-expansion with integral coefficients. 

Proposition 7 The functions G 1 , 92 , and 93 have the following q-expansions: 

00 00 1 00 

G1 = L L 1 

2 
= -7r - 87f2 L a1(n)qn 

n=-oo m=-oo (m + nz) 3 n=l 

g2 = 60 L I 

m,nEZ 

1 47f3 ( 
00 

) ( ) 4 = -
3 

1 + 24o 2:::: a3(k)qk 
m+ nz k=l 

1 87f6 ( 
00 

) ( ) 6 = -
27 

1- 504 L as(k)qk , 
m+ nz k=l 

g3 = 140 L I 

m,nEZ 

where O"n ( k) = L:dlk dn. N ate that G 1 is not an absolutely convergent series, 
and consequently the order of summation is important here. 

Proof: We prove the formula for 92 , the other derivations are similar. The 
definition of g2 gives immediately 

00 00 1 1 
g2(z) = 120((4) + 60~ m~oo (m+ nz)4 + (m- nz)4' 
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and on replacing -n by n we have 

(2.3) 
00 00 1 

g2(z) = 120(( 4) + 120 ~ m~oo (m+ nz)4. 

Now consider the factorization of the sine function given by the Weierstrass 
factorization theorem: 

sin(nz) = nz 11 ( 1- (~) 
2

). 

Differentiating this factorization logarithmically gives 

(2.4) 
1 00 1 1 1 00 2z 

1r cot( nz) = - + L '-- + = - + L 2 2 · z m==l z + m, z - m z m==l z - m 

Now for any z E 1i, lql = le21rizl < 1, so 

q+1 00 ( 00 ) ncot(nz) = ni-----=-1 == -ni(q + 1) L qk = -ni 1 + 2 L qk . 
q k==O k=l 

Comparing the right hand sides of the last two equations gives 

(2.5) 1 
00 

2z ( oo ) - + L 2 2 = -ni 1 + 2 L: qk , 
z m==l z - m k=l 

and differentiating three times yields the equation 

(2.6) ( f= 1 
4

) = (2ni)
4 (f= k3l) . 

m=-oo (z +m) 6 k=l 

Now inserting (2.6) into (2.3) with z replaced by nz yields 

Now for a given power l of q in this equation, the coefficient is a3 (l), since 
q1 appears in then sum exactly once for each dll, with coefficient (~) 3 . This 
proves the proposition. 
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Note that (2.4) and (2.5) above, when differentiated once, yield 

so for z, 7 E 1i, we have (putting r = e2niT) 

p(z; [7, 1]) = 

which gives us a (q, r)-expansion of p with integral coefficients (up to a 
multiple of 47r2). This will be important later. 

Proof: (This proof is due to Hurwitz, and appears in Chapter two of [26]) 
Put F(z) = q IT~=l (1- qn) 24

. Then F represents a holomorphic function 
on 1i, since z E 1i means that /q/ < 1, so the product for F converges 
uniformly and absolutely on compact subsets of 1i. Furthermore it is clear 
that F( oo) = 0, so since we know that .6.. E S6 which is a one-dimensional 
C-vector space, to prove F and .6.. are proportional, it suffices to show that F 
satisfies the transformation laws for a level12 modular form. F(z+1) = F(z) 
from the q-product given, and we now prove that F(~1 ) = z12 F(z). We define 
the following series: 
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H (z) = ~ ~ 1 

(m - 1 + n~) (m + nz) 

() 
~~I 1 

H1 z = LL )' n m (m - 1 + nz) (m + nz 
where the' in the G and G1 sums means to leave off the term (m, n) = (0, 0) 
and the ' in the H and H 1 sums means to leave off (m, n) = (0, 0) and 
(m, n) = (1, 0), that is' means to leave off any terms which would cause the 
series to be undefined. The Hand H 1 sums are essentially tools to allow us 
to evaluate the difference G1 -G. In the definition of H 1 , for any n =/= 0, the 
sum telescopes to zero: 

00 1 

m~oo (m- 1 + nz)(m + nz) 

00 

( 1 1 ) m~oo (m-1+nz)- m+nz =O. 

Thus, 

H1(z) = ~ (-1
-- _!_) = 2, 

mt'0,2 m- 1 m 

since this sum is also telescopic and the only terms which survive are from 
m= 0, 2, which both give a contribution of 1. To evaluate H, we return to the 
expansion of the cotangent function used in the proof of the last proposition, 
and replace z by m/ z, to yield 

7r (7rm) ; cot ----;- = 1 
00 

( 1 1 ) m+~ m+nz+m-nz 

1 
00 

( 1 1 ) ( 1 1 ) 
mi;_ m+nz- nz + m-nz- (-n)z 

1 
00 

( 1 1) 
rn, + ~ 

1 

m + nz - nz ' 

since 
oo ( 1 1 ) 

00 
-m 

]; m+nz- nz =I;_ nz(nz+m) 

converges absolutely. Hence for any m i- 0, 1 the sum on n in H 1 is 

- - - cot - cot -

00 

( 1 1 ) 1r ( ( 1r (m - 1) ) ( 1rm)) n~oo (m - 1 + nz) (m + nz) - z z z ' 

23 



c 

While the m = 0 sum gives 

OO I ( 1 1 ) 7r (7r) - L ---- =1--cot- , 
n=-oo 1 + nz nz z z 

and the m = 1 sum gives the same contribution. Summing all terms except 
for m = 0, 1 yields 

7r M ( (1r(m-1)) (1rm)) lim - L cot - cot -
M-+oo z m=-M Z Z 

J~oo ~ (cot ( 1r( -~- 1
)) -cot ( 1r(~)) - 2 cot(~)) 

-27ri 27r (7r) ----cot - , 
z z z 

since limM-+oo cot C"~'ll") = i for any z EH. Thus adding all the terms shows 
that H(z) = 2- 27ri/z, so that H- HI= -21rijz. 

Now the series 

H-G-2:2:'( 1 - 1 ) 
- m n (m- 1 + nz)(m + nz) (m+ nz)2 

converges absolutely, and therefore is independent of the ordering of the 
summands. This tells us that H- G = HI - G1, and thus that G- G1 = 
H- HI = -21rijz. Furthermore, GI(-1/z) = z2G(z), so GI(-1/z) 
z2GI(z)- 27riz. Now taking the logarithmic derivative ofF we have 

F' ( oo ) F = 27ri 1 - 24 ~ CJI (k)qk dz, 

and combined with the q-expansion of GI given in the previous proposition 
we have 

F' 6i 
F = -;GI (z)dz. 

Now taking the logarithmic derivative ofF (~I) shows that 

d(F(-1/z)) = 6iG
1
(z)dz+ 12dz = d(z12F(z))' 

F(-1/z) 1r z zi2F(z) 
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so that F(-1/z) and z12 F(z) have the same logarithmic derivative. Hence 
there exists some c E C such that F(-1/z) = cz12F(z). For z = i, z = -1/z 
and z12 = 1 and F(z) =/= 0 (since F is non-vanishing on 1i) so c = 1. This 
shows that F is a constant multiple of .6.. Since the q term of the expansion 
of F is clearly one, the value of this constant will be the q-term of the q­
expansion of .6. = g~- 27g~, which by the above proposition is 

(
4
;')' (720)- 27 ( 82~')' (-1008) = (27r} 12 

We now justify the factor of 1728 in the definition of j. 

Theorem 3 
1 ()() 

j(z) =- + 744 + L Cnqn, 
q n=l 

with each Cn E Z. 

Proof: Using the above formulas we have 

641flL 
g~ = ---:;:;- (1 + 720q + ... ) ' 

.6.(z) 641f 12 

1728 = ---:;:;-q (l - 24q + ... ) 

where the · · · represent power series in q with integral coefficients. Now the 
series 1 - 24q + · · · has leading coefficient a unit of Z and is thus invertible 
in the power series ring Z[[q]], with inverse 1 + 24q + · · ·. Since the function 
.6. is holomorphic and nonvanishing on H., this inverse is holomorphic, and 
putting the above two equations into the definition of j we find that 

1728g3 1 1 00 

j(z) = .6. 2 
= -(1 + 720q + · · · )(1 + 24q + · · ·) =- + 744 + L Cnqn 

q q n=l 

with the Cn E Z, as required. 
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2.2 Modular Function Fields 

In many situations it is useful to consider functions which satisfy the modular 
functional equation 

j(rz) = (cz + d) 2
k f(z) 

for all 'Y in some specified subgroup of r. In particular, we define a family of 
normal subgroups of r as follows: 

r( N) = { ( ~ ~) E r : ( ~ ~) ( ~ n (mod N)} 

(f(N) is normal since it is the kernel of the reduction map r-+ SL2(Z/NZ)). 
A meromorphic function f satisfying the above equation for all 'YE f(N) is 
called a modular function of weight 2k and level N if it is also 'meromorphic 
at the cusps', that is iffor all 'YE r, j(rz) has a power series expansion at oo 
in powers of q11N with only finitely many non-zero negative power coefficients. 
Since the product and quotient of two nonzero weight zero modular functions 
of any level is another weight zero modular function of the same level, the 
set of all modular functions of weight zero and level N forms a field which 
we will denote by :F N. 

Examples of modular functions of weight zero and level N are given by 
the Fricke functions, which we define in the following manner. Let A be a 
lattice, and p(z) = p(z; A) the corresponding Weierstrass function. Assume 
that 92(A) i- 0 i- 93 (A). Define the Weber function fo by 

r ( A) = 92(A)g3(A) ( . A) 
JO z, n 6.(A) p z, n . 

Since p(cz;cA) = c-2 p(z;A), using the homogeneity properties of 92,93 and 
6., we see that the function fo is invariant under isomorphisms re; A -+ rej eA. 
Now we define the Fricke functions fa,b by 

az + b 
fa,b(z) = fo( N ; Az), 

where Az = [z, 1]. Note that if the normalizing factor 9293/!:l. is left off, the 
values of the functions fu,v(z) are the x-coordinates of theN-division points 
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of the elliptic curve corresponding to the lattice Az. The values fu,v(z), 
therefore, while not necessarily corresponding to the N-division points of 
an elliptic curve, can be thought of as corresponding to 'normalized' N­
division points of any elliptic curve isomorphic to C/ Az, invariant under 
automorphisms. These functions only depend on a and b up to congruence 
modulo N, since p is elliptic. This means that each fu,v is invariant under 
r(N): If 

(
1 + Na Nb ) 

'Y = N c 1 + N d E r ( N)' 

then for each Fricke function we have 

fu,v('Yz) 
u Ne 1+Nd z+v. 

( 

( 1 + Na Nb ) l 
fo N , A'Yz 

fi (u[(1 + Na)z + Nb] + v[Ncz + (1 + Nd)J. 1 A) 
0 

(N)(Ncz + (1 + Nd)) ' Ncz + (1 + Nd) z 

(
uz + b ) fo N ; Az , 

with the third equality coming because of the degree zero homogeneity (that 
is, isomorphism invariance) of fo and the mod N periodicity of the fu,v· Fur­
thermore, the q-expansions of the previous section imply that the functions 
fu,v have q11N -expansions with only finitely many non-zero negative power 
coefficients, and that furthermore all the coefficients of the q-expansion lie 
in Q((n) ((n being a primitive Nth root of unity). Hence each !u,v E :FN. In 
fact, 

Theorem 4 (a) :F1 = C(j). 

(b) Let K = C(j, {fa,b : (a, b) E #z} ). Then K = :FN, and Gal(:FN/C(j)) = 
rjr(N) = SL2(ZjNZ). 

Proof: For (a), take f E :F1 and let a1 , ... , an be the poles of j, counted 
with multiplicities. Then f (j - j ( a1)) ... (j - j (an)) is analytic on H and 
meromorphic at oo, and is hence in C[j], so f E C(j). 
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For (b), note that we have a homomorphism c/J: r-+ Gal(:FN/:Fi), since 
r acts as a group of automorphisms of :F N by f H f 0 'Y· The fixed field 
of this action is exactly :F1 so :FN is a finite Galois extension of :F1 (finite 
since Ker(cp) 2 f(N)), and the fundamental theorem ofGalois theory states 
that cp(f) = Gal(:FN/:F1). Now we consider K. r also acts as a group of 
automorphisms of K, since 

fu,v('Yz) + ( u, ( az + b) + v ( cz + d) . A ) 
JO N ' z 

fua+vc,ub+vd(z) = f(u,v)'Y(z), 

and thus K I :Fl is finite Galois and we have a homomorphism 'lj; : r -+ 
Gal(K/:F1); again the kernel contains r(N). We now show that the kernel 
of 'lj; is exactly equal to r(N). Since we know that K ~ :FN, This will prove 
that K = :FN, since it will show that 

Let a= (~ ;) Er, and assume that a acts trivially on K. Then JI,0 (az) = 
!I,o(z) for all z, so we have 

( 
z ) (pz + q ) P N; Az = P N ; Az ; 

but we know that p(z1 ) = p(z2 ) iff z1 - ±z2 (mod A). This means that 
p - ±1 and q = 0 modulo A. Applying the same argument to / 1,0 shows 
that r = 0 and s = ±1 modulo A. If N = 2, we are finished, and if N > 2, 
the fact that det(a) = 1 shows that the p and s must have the same parity 
modulo N, so that a I (mod N) (remember that r = SL2 (Z)/{±1}). 
This completes the proof. 

Let FN = Q(j, {fu,v}). We will call this the field of modular functions over 
Q. 

Theorem 5 FN is a Galois extension ofQ(j) with Galois group G = GL2(Z/NZ). 
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Proof: The previous theorem implies that the group Gin question contains 
SL2 (7l/N7l). This is a normal subgroup of GL2 (7l/N7l), and the elements of 
the factor set are represented by the values of the determinant possible for 
elements of GL2 (7l/N7l), of which there are cp(N) (Euler 4>-function). Thus, 
if we show that G contains an element of each possible determinant, we will 
know that G contains GL2(7l/N7l). The functions fu,v have q1/N_expansions 
with coefficients in Q((N ), and are hence elements of Q((q11N)), so the au­
tomorphisms (N H (jy of Q((N) (d E (7l/N7l)* ) act on the elements !u,v 
(action is given by action on Fourier coefficients), and these automorphisms 
fix Q(j), since j has Fourier coefficients in Z. A simple calculation shows 
that these automorphisms in fact send fu,v to !u,dv, so these automorphisms 

can be represented by the matrices ( ~ ~) . Thus the Galois group contains 

GL2 (7l/N7l). To show the other containment, we consider the polynomial 

fi (X - !u,v), 
u,v 

where the product is taken over all (u, v) E (7l/N7l)2. This polynomial has as 
X-power coefficients symmetric functions in the !u,v, and since the elements 
of r permute the !u,v, these coefficients are invariant under r. Since they 
are also holomorphic on 1l and have Fourier expansions with coefficients in 
Z((N), they are polynomials in .7 with coefficients in Q((N ). This shows 
that the functions !u,v are algebraic over Q(j), and since r permutes the fu,v 
transitively, the polynomial must be irreducible over C(j). This shows that 

[FN: Q(j)] < [FN: C(j)][Q((N) : Q] 

< jSL2(7l/ NZ) I cp(N) 

jGL2(Z/NZ)j, 

and hence that FN/Q(j) is a Galois extension with group GL2(7l/NZ). 
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2.3 Automorphisms 

When we defined the Weber and Fricke functions in the previous section 
we were assuming that the lattice A was such that 92 (A) and 93 (A) were 
both non-zero, that is that A was not a multiple of [z, 1] or [p, 1]. These 
two lattices correspond to special isomorphism classes of elliptic curves over 
C, those with non-trivial automorphisms, and for these lattices the Weber 
functions are defined differently. Specifically, if 92 (A) = 0, put 

) 93(A) ( ))3 fo(z; A = 6.(A) (SJ z , 

and if 93(A) = 0 put 
g~(A) 2 

fo(z; A)= 6.(A) (p(z)) . 

Since 92 is homogeneous of degree -4, 93 is homogeneous of degree -6 and 
.6. is homogeneous of degree -12, these functions are both homogeneous 
of degree zero - invariant under isomorphisms ~ --+ ~A. Furthermore, the 
Fourier expansions of the last section show that the Weber functions can be 
defined by (q, r)-series with coefficients in Q. The following theorem shows 
the importance of the Weber functions. 

Theorem 6 Let A be a lattice in <C 1 and let fo be the Weber function for A, 
as defined above. Then fo(zl) = fo(z2) iff there exists some automorphism 
C/ A -+ C/ A which takes z1 to z2 . 

The proof of this theorem is an application of the following lemma: 

Lemma 1 Let A = [a, 1] be a lattice of <C with a E C, and suppose there 
exists some c E 1l such that c :/::- ± 1 and eA = A. Then either c = ±i and A 
is a multiple of [i, 1] or c = ±p or c = ±p2 and A is a multiple of [p, 1]. 

Proof: First, we show that the existence of a c E C such that eA ~ A 
shows that a is imaginary quadratic. For such a c, we have ea= m1a + n1 

and c = m2a + n2 with m1, m 2 , n1, n2 all iutegers. Substituting the former 
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equation into the latter shows that a satisfies a quadratic equation with 
coefficients in Z, and thus that a: is imaginary quadratic, since a E 1-l. 
Denote by K the imaginary quadratic field containing a. Then c E K, 
since c = m2a + n2 . We now assume that eA = A. {a, 1} is a Q-basis 
of K, and so we have that 1 = [A : eA] = Nf{(e). Thus c is a unit in 
an imaginary quadratic field, not equal to ±1, and hence we must have 
c = ±i or c = ±p or e = ±p2

. There are now three cases to consider, ac­
cording as which of these numbers c is equal to. We will do only the case 
c = ±p2 , the others are treated identically. e = p2 = -p- 1 implies that 
K = Q( y' -3), and we must have a = ap + b for a, b E Q. We have that 
[a+ b(-p- 1), (-p- 1)] = [ap + b, 1], and calculation shows that this can 
happen only if (a,b) = (1,0), (1,1), (1,-1), or (1/3,-1/3). The first three 
cases all lead to the conclusion that [ ap + b, 1] = [p, 1], while the fourth leads 
to the conclusion that [ap + b, 1] = (y'=3)[p, l]. (In the case c = i, we find 
that A= [i, 1] or A= (1 + i)[i, 1].) 

Note that the in the proof of the above lemma it was shown that if eA ~ A for 
some lattice A, then c is imaginary quadratic. Using the equivalence of alge­
braic maps of elliptic curves with functions on lattices (see section 2.2.1), this 
shows that any endomorphism of an elliptic curve over C can be identified 
with an imaginary quadratic complex number. The set of all endomorphisms 
of the elliptic curve E/C form a ring called End(E); this ring is either Z or 
an order of an imaginary quadratic field (in the latter case, the curve E is 
said to have complex multiplication). 

We now prove the theorem. If A is neither a multiple of [p, 1] nor [i, 1], 
then the above lemma shows that the only automorphisms of A are multipli­
cation by ±1. Since we have already shown that p must take each value of C 
exactly twice with multiplicity and that p(z 1) = p(z2 ) iff z1 = ±z2 (mod A), 
the lemma implies the proposition immediately in this case, so we are left 
with the two special situations. 

First, assume A is a multiple of [ i, 1]. I3y the invariance of the Weber 
function under lattice isomorphisms A --t eA ( e E q, we can assume that 
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A = [i, 1]. Put p = p(·, A). By the above lemma, the automorphism group 
is cyclic of order four, generated by the map rJ : x H ix. We must prove that 
p2 (z1) = p2(z2) iff z1 - r7a(z2 ) (mod A) for some a. Now p2 (z1) = p2 (z2) iff 
p(z1) = ±p(z2). We have 

(2.1) p(iz) = p(iz,A) = p(iz,iA) = (i)-2 p(z,A) = -p(z), 

and the facts that p(z) = p( -z) and that p assumes every complex value 
exactly twice with multiplicity prove what we want except possibly at points 
where z2 - -z2 (since iz2 -iz2 ifi' z2 = -z2 ), that is at 2-division points. 
The non-zero 2-division points of this lattice are H, ~' lf}, and we have 
a(~)=~; (Je~i) = 1~i. (2.1) shows that the latter equation implies pe~i) = 
0, and since the values p(~) and p( ~) are both assumed with multiplicity two, 
the proof of this case is finished. 

Now we assume A = [p, 1]. Then the automorphism group is cyclic of 
order six, generated by rJ : x H -px. We must prove that p3 (z1) = p3(z2) 

iff z1 - r7a(z2 ) (modA) for some a. p3 (zl) = ri(z2 ) exactly when p(zi) = 
pep(z2 ) for t = 1 or 2, and the equality 

(2.2) p(lz) = p(lz; A)= p(lz; lA)= p- 2Ep(z; A)= lp(z; A) 

together with the 2-to-1-with-multiplicity property of p proves what we want 
except in cases where congruences modulo A exist amongst elements of the 
set {±z2 , ±pz2 , ±p2z2}. Again, calculation shows that this circumstance can 
only arise when Z2 is a 3-division point, that is if Z2 E n, ~' f, ¥, 1~P, 2~2P, 
1~2P, 2~P}, and that the automorphism group permutes the two sets {i, ~' ~' 
'k!. l+p 2+2P} and {1+2

P ill} transitively the element r72 fixing the elements 3'3'3 3'3 ,, 

of the latter set. (2.2) then tells us that p( Li2P) = p( 2~P) = 0, and in any 
case the proof is complete. 

We will usually think of the Weber functions f 0 (z, A) as being defined on 
the elliptic curve C/ A. If the function t :!-t (p, p') (p = p(z, A)) maps 
the lattice C/ A to the elliptic curve E given by the Weierstrass equation 
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y2 = 4x3 - 92x - 93 then we can define a Weber function on E by 

h((x, y)) = g~3 x, 

if 92 =/= 0 =/= 93 and the corresponding functions if 92 or 93 are zero, and the 
fact that the function fo agrees on two points exactly when they are related 
by an automorphism of A implies that h agrees on two points of E exactly 
when they are related by an automorphism of E. Furthermore, the function 
h is clearly defined over the same field that the curve E is defined over. 

An immediate corollary of the above theorem, along with the fact that 
any elliptic curve is isomorphic to C/ A for some A is the result that the 
automorphism group of any elliptic curve over C is cyclic of order 2, 4, or 6. 
In fact, this is a special case of the following theorem. 

Theorem 7 If E is an elliptic curve over a field of characteristic =/= 2, 3 then 
the automorphism group of E is cyclic of degree dividing 6. 

Proof: Basically, an elliptic curve defined over a field of characteristic 
=/= 2, 3 can be assumed given by a vVeierstrass equation of the form 

and one then proves that only changes of variables of the form x t-t u2x', 
y t-t u3y' for u E K* both fix the point at infinity (that is are group homo­
morphisms) and preserve the given equation. Thus any automorphism </>of 
E must be of this form, and since the given map takes the given equation to 
u6 (y')2 = u6 (x') 3 +au2x' +b, <jJ being an automorphism implies that au-4 =a, 
bu-6 = b. Hence if a, b =/= 0 u = ±1, while if a = 0 (so b =/= 0) u must be a 
fourth root of unity, and if b = 0 (so a ::/= 0) u must be a sixth root of unity. 
Hence E is cyclic of order 2 4 or 6 depending as whether ab =/= 0, a = 0 or 
b = 0 For details involving the various changes of variables, see [27, Chapter 
Ill, Section 1]. 
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2.4 Special Functions 

There are two other specific examples of higher level modular functions which 

will be important to us, namely the cube root of j and the square root of 

j - 1728. We will prove that these functions are weight zero modular of levels 
three and two respectively. In order to do this, we introduce the Dedekind 

TJ-function, defined as follows: 

00 

rJ(z) = (27r)~qf4 IT (1- qn) = (,6.(z))f4 
n=l 

Proposition 1 ry(z + 1) = e 
2

1"~i ry(z), and ry( ~1 ) = v=iZry(z). 

Proof: The first relation follows immediately from the q-.expansion of ry. 
For the second, we know that 

,6.(~1 )=~((~ ~1)z) =z12 ~(z); 
and hence l'f/(~1 )1 = lv'zry(z)l. Since (the principle branch of) JZ is holo­
morphic and non-vanishing on H , as is 7], the function 

ry(=f) 
vzry(z) 

is holomorphic on H, and has constant modulus 1. Hence by the maximum 
modulus principle, it is constant, and since 1/i = -i, evaluating at z = 
i shows that the constant must be 1/0 = v=;,, which gives the second 
relation. 

Now 1728 = 2633 and j = 1728gV ~'so 

(2.1) Jj -1728 
2333g3 

ry12 

(2.2) 
1 223g2 f3 

7]8 

Put f = JJ- 1728. Then the above proposition along with the fact that g3 

is a modular function of weight 6 tells us that f satisfies f(z + 1) = - f(z), 
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!(~1 ) = - f(z), or to say the same thing that f(Tz) =- j(z) and f(Sz) = 
- f(z) where 8 and T are the generators of r given above. Consequently 

J(T2z) = f(z), since T 2(z) = z + 2; and if we put 82 = T8TTST = (~ ~), 
j(82z) = f(T8TT8Tz) = -f(T8TT8z) = -j(Tz) = j(z). 

Thus to show f is invariant under r(2), it is sufficient to show the following 

Proposition 2 82 and T 2 generate f(2). 

Proof: Since both 82 and T 2 are in f(2), the subgroup generated by them, 
<82, T 2> is contained in f(2). Given /o E f(2), pick 1 E<82 , T 2> such that 

(a 2b) 
I/o= 2c d 

has minimal lcl . If c = 0, then we must have a= d = ±1, so that 'Y'Yo and 
hence 'Yo is in <82 , T 2>. If c =f. 0, pick 1 so that not only is lcl minimal, but 
lal is minimal among products I/o with bottom left entry 3c. The fact that 

(1 ±2n) (a 2b) = (a + 4nc *) 
0 1 c 2d 2c * 

shows that a < 2c, by minimality of a and the fact that Z is a Euclidean 
domain. On the other hand, if a =f. 0, the fact that 

shows that 2c < a, by minimality of c. Hence a = 0, but this too is a con­
tradiction since it implies that ldet(rro) I ;::: 4. Thus the assumption that 
the minimal c I= 0 leads us to a contradiction, and we must conclude that 
<82, T 2>= f(2). 

We now turn to ji/3 . Denote this function by g. Then the above trans­
formation formula for 1J and the fact that g2 is a modular function of weight 
4 imply that g ( ~1 ) = g(z), and g(z + 1) = pg(z) where p is as before a 
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primitive third root of 1. Consequently g is invariant under all matrices in 
r which can be expressed as a word in S and T such the sum of all powers 
ofT appearing is divisible by 3. \Ve show that g is invariant under f(3) by 
showing that f(3) is generated by matrices of this type. 

Proposition 3 f(3) =<T3
, ST-3S, A, B>, where 

A= TST-
3
ST-

1 = (~ =~) B = T 2
ST

3
ST = ( =~ =~). 

Proof: Call the group generated by these elements G. Then G ~ f(3). 

Conversely, given 'YE f(3), pick ro E G such that ro'Y = ( ~ ~) has minimal 

c. If c = 0, a= d = 1 since "forE r(3), so ro'Y is a power ofT3
. If c -=I 0, then 

a -=I 0 (else 'Yo'Y can't have determinant 1). Since I = -I, we can assume 

that c > 0. Multiplying 'Yo'Y on the left by T 3 and ST3S (= G ~)) shows 

that lal ~ 3
2c and c ~ ~· If a > 0, Aror = ( * - 3

a*+ 
2c) shows that 

I ( -3a + 2c) I = -3a + 2c ~ c and hence that c ~ 3a, contradicting the above 
inequality. On the other hand, if a < 0, left multiplying fo'Y by B gives the 
same contradiction, so that in either case we must conclude that c = 0 and 
hence that "( E r(3). 

Now to show that f and g are m F2 and F3 respectively, it remains to 
be shown that they are meromorphic at infinity. Since both f and g have 
the form ~(I) where I is a power series in q with constant term 1 and all 
coefficients in Z, this will be an immediate consequence of the following 

Lemma 1 If F = 1 + :L~==l anq11 is such that an E Q for all n, then for any 
m there exists a unique series 1 + :L~==l b71 q11 with bn E Q whose mth power 
is F. 

Proof: We simply define the b~~. inductively, starting with mb1 = a1. At 
each n, the equation defining bn+ 

1 
will be a linear equation in the previous 

bi and an+l with coefficients in Z. 
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2.5 Ramification in Modular Function Fields 

The results of the previous section imply that FN is ramified over Q(j) at 
the ideals (j) and (j -1728) if Nj6. VVe now use this fact to gain information 
about the ramification of FN over Q(j) as follows. 

Theorem 8 Let 0 be the integral closure of Q[j] in FN, N > 1. Any ideal 
M above (j - 1728) is ramified with index 2. Let z be equivalent to i under 
r, and let M be the maximal ideal equal to the kernel of the map 0 --+ C 
given by f H f(z). Then a E Gal(FN/Q(j)) has afu,v(z) = fu,v(z) for all 
second Fricke functions of level N ifj" a E J, the inertia group of M. 

Proof: (M is above (j -1728) since j(z) = j(i) = 1728.) To begin, assume 
that N is even and greater than two. We also assume that z = i since 
z = Bi for some B E r, and since B permutes second Fricke functions of 
level N, we will have a fu,v(z) = fu,u(z) if and only if a fu,v(i) = fu,v(i). Since 
Gal(FN/Fr) "'GL2(71../N71..)/{±I}, the action of a can be represented by a 
matrix 

a = ( ~ ~) E G L2 ( 7l), 

that is we have fu,v H !(u,v)(J"· The condition a fu,v(z) = fu,v(z) has now been 
translated into !(u,v)(J"(i) = fu,v(i), and this in turn is equivalent to 

where p = p(·, [i, 1]). Now taking u = 1, v = 0 and u = 0, v = 1 shows that 
a= ±Id or 

(2.1) = ( 0 ±1) 
a =t=l 0 ' 

since we have already shown that g:i(zl) = p2(z2) iff z1 - ±z2 or z1 = ±iz2 • 

±1 d acts trivially on F N, and since we know that the inertia group is non­
trivial, since VJ -1728 E FN, we conclude that the inertia group must be 
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exactly the group of order two generated by the matrix (2.1) above. Now the 
same result holds if N is odd or N = 2, since in this case we have the conclu­
sion for F2N, and the restriction of a E I from F2N to F N is represented by 
the same matrix on FN as on F2f'·{, and must act non-trivially since it sends 
any Fricke function of the first kind to its negative. Hence the conclusion 
holds for any N. 

Now by applying the same technique to an ideal over (j) we obtain the 
following 

Theorem 9 Let 0 be the integral closure of Q[j] in FN, N > 1. Any ideal 
M above (j) is ramified with index 3. Let z be equivalent to p under r, 
and let M be the maximal ideal equal to the kernel of the map 0 --+ CC given 
by f 1--t f(z). Then a E Gal(FN/Q(j)) has afu,v(z) = fu,v(z) for all third 
Fricke functions of level N iff a E I. 

Furthermore, since the non-triviality of the inertia groups in the above 
'special' cases come directly from the use of the second and third Fricke 
functions which involve p2 and p3 respectively, we can also conclude by using 
the same technique that if z is not equivalent to i or p under r, afu,v(z) = 

fu,v(z) for all u, v iff a = Id - that is that the ideals M of 0 not above 
(j) or(j - 1728) are unramified in the extension FN jQ(j) (when Q[j] is the 
underlying domain). 

2.6 Results from Algebraic Number Theory 

2.6.1 ( and L Functions, and Density 

Throughout this section, the phrase 'prime ideal' means 'nonzero prime 
ideal'. 
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Definition: If K is a number field (finite extension of Q) and 0 its ring 
of integers, the Dedekind zeta function forK is defined for ~(z) > 1 by 

1 
(K(z) = L N( )z' 

a<10 a 

the sum ranging over all nonzero ideals a of 0, and with the norm N(a) the 
norm from K to Q of a, given by N(a) = IO/al. 

This function is analytic in R(z) > 1 and (z - 1)(K(z) can be extended 
to an entire function such that (K(z) has a simple pole at z = 1. Also, 

00 1 
log(k(z) = ~1 ~ mN(p)mz' 

with the inner sum running over all non-zero prime ideals of 0. The part 
of the sum corresponding to m ~ 2 is analytic in R(z) > 1/2, so only the 
m= 1 sum has significance for evaluating the behaviour oflog (k near z = 1. 
Thus, the fact that (k has a simple pole at 1 implies that 

log(k(z) rv 2:::-1- rv log (-
1
-) 

p N(p )z Z- 1 ' 

where f rv g means that f- g is analytic in a neighbourhood of 1. This leads 
us to the following 

Definition: Let S be a set of prime ideals of K. We define the {Dirich­
let) density of S, to be the limit 

lim lo -- ---( 1 ) -
1 

( 1 ) 
z-+1 gz-1 ~N(p)z 

if it exists. If R and S are two sets of primes of K, we define R -< S to mean 
that R \ S has density 0. 

Note that all finite sets of primes have density zero, and that if SK is the 
set of primes of Z which split completely in 0, that the density of the com­
plement of SK is zero, since any prime which is not above a completely split 
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prime has norm at least a square of a prime of .Z, and since there are at most 
[K : Q] primes of 0 over a given prime of .Z, the sum over all these primes 
converges near one. Thus, ifS is any set of primes of K, the density of S 
is equal to the density of s n s](' (in the sense that if one of these densities 
exists, so does the other and they are equal) since s \ s n SK has density 
zero. 

Now given an extension K/k of number fields, define SK/k to be the set 
of primes of k which split completely in K. 

Proposition 1 If K/k is Galois, the density of SK/k is equal to l/[K: k]. 

Proof: The density of SK/k is 

1 ) -
1 

( 1 ) lim lo -- ---
z-+1 ( g z- 1 Ls. (Np )z · 

PE l< 1 k 

By the above comments this is equal to the same expression with the sum 
extending over only the primes of k which are above primes of Z splitting 
completely in k and which split completely in K, that is over the primes of 
k which lie below primes of J( which split completely in K/Q. Since K/k 
is Galois, there are exactly [K : k] primes of J( above any prime of k which 
splits completely inK, so the density is equal to 

( 
1 ) -l ( 1 1 ) lim lo --

z-+1 g Z- 1 [K : k] PE~;Q (N~)z 
1 

[K: k]' 

as required. 

Corollary If k ~ K ~ L are Galois e.1;tensions of number fields and 

SK/k -< SL/k then L = K. 

Proof: Since K ~ L, SL/k ~ SKfk, so the two sets SK/k and SL/k differ by 
a set of density zero. Hence their densities are equal, and by the proposition 
this implies that [L: k] = [K : k]. 
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Proposition 2 If K and L are finite Calais extensions of the number field 
k then SK/k-< SL/k if and only if L ~ K. 

Proof: K/k and L/k both Galois implies that KL/k is Galois, since 
any injection K L Y C fixing k restricts to give injections K Y C and 
L Y C, which fix k and hence by normality of K/k and L/k are actually 
maps K-t K and L -t L, so KL -t KL. If L ~ K then SK/k ~ SLfk, so 
certainly SK/k -< SL/k· On the other hand, if SK/k -< SL/k , then the equality 

(2.1) 

shows that SK/k -< SKL/k, so that K L = K and thus L ~ K. To prove 
(2.1) let p be a prime of k that splits completely in K/k and L/k. Since this 
implies that p splits completely in K/KnL and L/KnL, it is enough to 
prove that p splits completely in K L under the assumption that K and L 
are linearly disjoint. Assuming this, we have a group isomorphism 

Gal(K/k) x Gal(L/k)~Gal(KL/k). 

If DK and DL are the decomposition groups of (fixed) primes over p in K 
and L respectively, then IDKI = IDLI = 1 since p splits completely in these 
fields. But the isomorphism sends DK x DL to the decomposition group of a 
prime of K L above p , sop splits completely inK L. The other containment of 
(2.1) follows from the ef g = n equality for Galois extensions of number fields. 

Corollary If K and L are finite Calais extensions of the field k and SK/k 
differs from SL/k by a set of density zero, then L = K. 

Proof: This is immediate, since the hypothesis implies both SK/k -< SL/k 
and SL/k -< SK/k· 

In the study of quadratic fields to follow we will make use of the Dirichlet 
£-function in addition to the Dedekind (-function defined above. If -d < 0 
is the discriminant of an imaginary quadratic field, then there exists a prim­
itive real character x : Z/ dZ-+ { ±1} (see [5]). For this character, we define 
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the Dirichlet L-function to be 

L(s) = L(s, x) = f x(n). 
n=l ns 

This series converges absolutely for ~(s) > 1, and in fact can be analytically 
continued to an entire function. Its value at s = 1 encodes information about 
the class number and other invariants of the field Q( J -d). 

2.6.2 Results from Class Field Theory 

Class field theory is the study of Abelian extensions of number fields - that 
is, Galois extensions of number fields whose Galois groups are Abelian. The 
main theorems in this subject provide a classification of the finite abelian 
extensions of a given number field in terms of subgroups of group of frac­
tional ideals of the (integer ring of) the number field. These theorems were 
developed and proved during the end of the nineteenth century and the early 
twentieth century by the combined efforts of many mathematicians, begin­
ning with Kronecker and Weber, and including Hilbert and E. Artin. We 
will provide here a cursory summary of the main theorems of the theory, and 
to avoid having to introduce many new notions and notations we will stick 
to the most basic form of the theory. Class field theory has its beginning in 
the Frobenius automorphism from algebraic number theory. If k is anum­
ber field with ring of integers o and K is a finite extension of k with ring 
of integers 0, then for any prime '13 <1 0 above p <1 o, there is an associated 
extension of residue fields ojp '---+ 0 j'.p. Since all ideals of an integer ring are 
finite indexed, this is an extension of finite fields, and consequently a Galois 
extension with cyclic Galois group, generated by the element a which takes 
x E K /~ to xP

1
, where pf = I o /pI· This element is called the Fro ben ius 

automorphism of K/~, and any element O" E Gal(K/k) which reduces to 
the automorphism a on K /'13 is called a Frobenius element for ~- These 
elements are characterized by the fact that they satisfy the equation 

f 
O"(x) = xP (mod '13) 
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for all x E K. If the prime p is unramified in the extension Klk, then (by 
the triviality of the inertia group E(q:J lP)) the element a is unique, and if 
.Q = T(q::l) ( T E Gal(K I k)) is another prime of 0 over p, the Frobenius 
element for .Oip is conjugate to the Frobenius element for ~lP, as is easily 
seen by examining the equation characterizing this element. Thus, if the 
extension Klk is Abelian, all Frobenius elements for primes over pare equal. 
Assume from now on that the extension K I k is Abelian. Let S denote the 
set of prime ideals of k which are ramified in the extension K I k, and let 
Is denote the group of fractional 0-ideals which are relatively prime to all 
primes inS. The above discussion shows that for any prime of 0 which is in 
Is, there exists a unique Frobenius element of Gal(Kik). This assignment 
can be extended multiplicatively to yield a homomorphism 

r/J: Is---+ Gal(Kik). 

This map is called the ATtin map. Notice that the kernel of the Artin map 
contains the subgroup of Is generated by the set of primes p which split 
completely in K I k, since a prime splits completely exactly when the residue 
extension kiP Y Klq:J is trivial for some (every) prime~ over p, and this 
will happen exactly when the Frobenius automorphism is trivial. Thus, to 
each finite abelian extension Klk unramified outside of S there corresponds a 
subgroup of Is, the kernel of the Artin map. We will call an Abelian extension 
unramified outside of San S-extcnsion. Proposition 2 of the previous section 
allows us to give a quick proof of 

Proposition 3 The map rjJ above is a sm:jection. 

Proof: Let L be the fixed field of r/J(Is). Since Klk is Galois, it is enough to 
show L = k. But for all primes p E Is, r/J(p) is trivial on L - that is, p splits 
completely in L. Thus, all but finitely many primes of k split completely in 
L, soL= k. 

One of the principal achievements of class field theory is to answer the ques­
tion of which subgroups of Is can occur as kernels of Artin maps (Artin 
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kernels) for Abelian extensions of k. 

Definition: If a is an ideal of 0 and :r: E o, we define x _ 1 (mod* a) 
to mean that 

• For all O" E Gal(k/Q) such that a-(k) c JR, O"(x) > 0 (x is totally 
positive), and 

Let S be the set of primes dividing a. Then the principal a-subgroup of the 
ideal group Is is 

Pa= {a E I: a= (a/(3) for some a, (3 E o,a _ (3 -1 (mod* S)} 

Using this definition, the result we require from class field theory states that 

Theorem 10 With notations as above, a subgroup H :S Is occurs as the 
Artin kernel for some S -ramified Abelian extension K / k if and only if Pa :S H 
for some ideal a <1 0 divisible only by primes in S. 

Thus, in particular, there exists an Abelian extension K whose Artin kernel 
is exactly Pa. This particular extension is called the ray class field of k to the 
modulus a. By the definition of the Artin kernel, the primes of k which split 
completely in this particular extension are exactly those which are principal, 
and can be generated by an element a = 1 ( rnod* a). 

Notice that in the case where k is an imaginary quadratic field, the 
totally positive condition in the definition of rnod* is vacuous, and hence 
x = 1 (mod*a) if and only if x - 1 (mod a). In this case, if we take S to be 
the empty set, the theorem shows that any Abelian unramified extension of 
k must have Artin kernel contained in the set of principal ideals- and, since 
the relation between fields and Artin kernels is (strictly) inclusion revers­
ing, we have that the maximal unramified Abelian extension of an imaginary 
quadratic field k is characterized by the fact that the primes which split in it 
are exactly the principal primes of k. The maximal everywhere unramified 
Abelian extension of a number field k is called the Hilbert class field of k. 
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We end this section by proving the famous Kronecker-Weber theorem, 
assuming theorem 10 above. 

Theorem 11 (Kronecker-Weber) If k is an Abelian extension of Q, then 
there exists some integer m such that k :S Q( (m), where (m is a primitive 
mth root of unity. 

Proof: Let o be the integer ring of k, and let S be the set of prime ideals of 
Z which ramify in o. By theorem 10 there exists some ideal (m)<lZ such that 
P(m) ::; H, where His the Artin kernel of k. Thus, all primes of Z which are 
congruent to one modulo m split completely in H. Since the primes which 
split in the extension Q( (m) /Q arc exactly those congruent to one modulo 
m, we conclude that SL;Q c;;;; Sk;Q, and since both extensions are Galois, the 
result follows by proposition 2 of this section. 
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Chapter 3 

abc Implies No 'Siegel Zeroes' 

The abc-conjecture, while quite obviously a powerful tool in the study of 
diophantine equations, is perhaps not so obviously suited for application 
to situations of a more analytic nature. For this reason, the recent re­
sult of Granville and Stark [10] that the uniform abc-conjecture implies the 
non-existence of so-called Siegel zeroes of Dirichlet £-functions 'attached' to 
quadratic fields is quite interesting. If -d < 0 is the discriminant of an imag­
inary quadratic field (so that -d is either square free and congruent to one 
modulo four, or d = 4d' with d' squarefree and congruent to two or three mod­
ulo four), then there exists a real primitive Dirichlet character to the modulus 
d, and furthermore this character encodes information about the splitting of 
primes of Z in the extension Z[.;=d]. Of course, there is a generalized Rie­
mann hypothesis for these functions which states that they have no zeroes 
on the 'critical strip' {z E C: 0 ~ R(z) ~ 1} except on the line ~(z) = 1/2; 
but this problem is so difficult that even the much weaker problem of showing 
that the functions have no zeroes in Ic,d = { :1; E lR : 1 - cf log( d) :S: x :S: 1} 
for some positive constant c is unsolved. It has been shown (see Davenport 
[5]) that for a given -d, there is at most one simple zero in this interval, 
and the existence of such a 'Siegel zero' would have ramifications for other 
problems in number theory, including asymptotic estimates for the size of 
least quadratic non-residues mod p and various sieve estimates. 
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Granville and Stark's result rests on a 1934 result of Mahler [18], who 
showed that the vanishing of the £-functions of imaginary quadratic fields 
on the interval mentioned above has implications for the class numbers of 
imaginary quadratic fields. Specifically, assuming a certain bound on the 
class numbers as -d grows, Mahler proved that there exists a contant c > 0 
so that no £-function L(x, x) has a zero on Ic,d· Granville and Stark's pa­
per proves that the requisite bound on the class numbers is implied by the 
uniform abc-conjecture by studying solutions of a certain diophantine equa­
tion which arises through the theory of modular functions. Having outlined 
general modular function theory in the previous chapter, we now are in a 
postion to give a complete exposition of the work which directly underlies 
Granville and Stark's result. 

3.1 The Modular Equation 

The purpose of this section is to show that the function j takes on algebraic 
integer values at imaginary quadratic arguments. Later, it will be shown that 
in fact the j-function evaluated at appropriate arguments generates various 
abelian extensions of imaginary quadratic fields. 

Definition: Hn = { ( ~ ~) E GL2 (Z) :ad- be= n, gcd(a, b, c, d)= 1}. 

If G = Zx EB Zy is a free abelian group of rank 2, then for any 

a=(~~) EHn, 

H =a( G)= Z(ax +by) EB Z(cx + dy) is a subgroup of G of index n, and the 
elementary divisor theorem says that there exists a basis { x', y'} of G such 
that H = Ze1x' + Ze2y', with e1le2 . e1 is then an integer which divides each 
of a, b, c, d and hence e1 = 1. Thus, there exists an element ry E r such that 

ryary-1 = (~ ~). Hence, the coset of (~ ~,) is sent to each coset ra of the 

47 



0 

left action of r on Hn by the right action of r, and hence r operates right 
transitively on the left cosets ra of r \ Hn. Furthermore, a calculation shows 
that 

{ (~ ~) : ad= n, a> 0, 0 ~ b < n} 
represent a complete set of distinct coset representatives of r \ Hn. We will 
denote the number of these matrices by '1/J(n), and the matrices themselves 
by {o:i}t~~)· 

Definition: The modular polynomial of level n is the polynomial 

1/J(n) 

<I>n(X, j) = IT (X- j o ai)· 
i=l 

The coefficients of <I>n (viewed as a polynomial in X) are elementary 
symmetric functions in the j o a;. They are holomorphic on 1-l since all the 
functions O:i = az;:-b are holomorphic maps 1-l -+ 1-l, and j is holomorphic on 
1-l. 

Proposition 1 The coefficients of <I>n are meromorphic at oo, and are poly­
nomials in j with integer coefficients, that is <I>n(X,j) E Z[X,j]. 

Proof: j o ai o !'(z) = j o /''az(z) = ja1(z) (where ao =an' with I'' Er), 
since the { o:i} are coset representatives of r \ Hn and by f-invariance of j. 
Thus r permutes the j o ai, so the coefficients of <I>n are invariant under r. 
Hence if f is any one of these coefficients, .f defines a holomorphic function 
on lDl \ {0}, and hence f has a Lament expansion (in q) at zero, so the 
meromorphicity of f at zero is equivalent to its being bounded in absolute 
value by some power of 1/q near zero. This clearly holds for j, since each 
of the j o ai are bounded by a power of 1/ q near zero. Thus each f is 
a polynomial in j with coefficients in Z ( ( 11 ) where (n is any primitive nth 

root of unity. (Since each function j o ai has q-series coefficients in Z((n)). 
Furthermore each j o o:i is in the field Q( (n) ( ( q1fn)), and is invariant under 
Q((q1fn))-automorphisms of that field, thus is in Z((q11n)). 
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Theorem 12 (a) <Pn(X,_j) is irreducible ovcr<C(_j). (b) <Pn(X,j) = <P11 (j,X). 
(c) If n is not a perfect square, <I)n(_j,j) is a polynomial in j of degree> 1 
with leading coefficient ± 1. 

Proof: (a) is true since r /r(n) = Gal(Fn/C(j)), and r permutes the 
elements j o ai, that is the roots of <Pn, transitively. 

For (b), note first that since the matrices 

(~ ~,) and (Z n 
are both among the ai, we have both <Pn (.j (z), j (nz)) = 0 and <Pn(j(z), j(z/n)) = 
0, and on making the substitution z H nz the second equation becomes 
<Pn(j(nz),j(z)) = 0. Hence <Pn(X,j) and <P 11 (j,X) have a common root, 

namely j 0 (Z n- Since <Pn(X,_j) is irreducible, this implies that <Pn(X,j) 

divides <P71 (j,X), that is <Pn(j,X) = <Pn(X,j)A(X,_j) for some A E Z[X,j]. 
But then we must have <Pn(X, j) = <Pn(j, X)A(j, X), and therefore that 
A(X,j)A(j,X) = 1. Inasmuch as the only units in Z[X,j] are ±1, we must 
have A( X, j) = ±1. A(X, _j) = -1 is impossible since this would imply that 
<Pn (X, j) = -<Pn (j, X), and hence that <Pn (.j, .J) = 0, that is that j is a root 
of <Pn(X,j), contradicting part (a). 

Now to prove (c), assume n is not a square. Then n =ad implies a=/; d, 

and so in the q-expansion of j o ( ~ ~) , the leading coefficient is 

1 1 

(
b a/d =J -, dq q 

so the leading coefficient of each j - j o ai is a root of unity. Hence the 
leading coefficient in the q-expansion of <P 71 (.j, j) is also a root of unity, but 
this element is in Z[j], since <P 71 (j, j) E Z[j], so that the leading coefficient 
must be ±1. 

This proposition shows that j o ai is integral over Z[j], since it is a root of 
<Pn(X,j) which is a polynomial in Z[X, j] with leading coefficient 1. There­
fore for any a E Aft ( Q), j o a is integral over Z [j], since it has the same 
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action on 1-l as some integral matrix, and hence the same action as some 
coset representative for r \ Hn for some n. 

Theorem 13 If z E 1-l is imaginary q'uadratic, then j(z) is an algebraic 
integer. 

Proof: Say Q(z) = Q(J-m), with m a squarefree positive integer. Let 
0 be the ring of integers of Q( J -m), say 0 = [1, Tj, so that T = Fin or 
T = 1+p, according as whether -m = 2, 3 (mod 4) or -m 1 (mod 4). 
If m= 1, take).= 1 + z, and if m> 1, take).=~- Then N(>.) =).~is 
squarefree, and by the definition of the norm, if AT = aT+ b, ). =er+ d then 

(
a. b) 

n: = c d 

has determinant N(>.). Furthermore ar =AT/A= T, so j(T) is a root of 
<I>N(>.)(X,X), and is consequently an algebraic integer. Now since z E Q(r), 
r = uz + v with u, v E Q, that is that T = (3z for some (3 E M:}(Z), the 
determinant of (3 being positive since u > 0, as z and T are both in 1-l. But 
by the above comment, j ((3T) is integral over Z [j ( T)], and since integrality is 
transitive, this implies that j ( z) is an algebraic integer. 

3.2 Generation of Class Fields 

3.2.1 Hilbert Class Field 

In this section we will show that when k is an imaginary quadratic field, the 
Hilbert class field of k is generated by numbers of the form j(z) for z E k. A 
few notions from algebraic geometry are needed. 

If C1 and C2 are nonsingular projective curves over some algebraically 
closed field K with function fields K(C1 ) and K(C2 ) then any algebraic map 
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cp: C1 -t C2 induces a map on function fields c/J*: K(C2 ) -t K(C1) given by 
cp*(g) =go cp. If cp is non constant, then the image cjJ(C1) is a dense subset 
of C2 and hence the map c/J* is non-zero and hence an injection. In this case, 
the degree of cp is defined to be the degree of the extension K(CI)fcp*(K(C2)) 

(which one can prove to be finite). If the extension is separable, the map cp is 
said to be separable, and this condition is equivalent to the induced map cp* on 
differentials being non-zero. Corresponding to the Frobenius automorphism 
in number theory, there is a Frobenius map. If F is a field of characteristic 
p > 0, and C is a (non-singular) curve over F defined by some equation 
f(x, y) = 0, so that the function field of C is P(C) = F(X, Y)/(J(X, Y)) 
(F denoting the algebraic closure of F) then since the map a t-+ aP is an 
automorphism ofF, if we define a curve C(P) by the equation f(xP, yP) = 0 the 
function field of C(P) is contained in that of C, and the extension of function 
fields F(C)/F(C(P)) is purely im;eparable of degree p. Since the curve C is 
defined over F, this means that the extension F( C)/ F( C(P)) is also (purely 
inseparable) of degree p. The map C ---t C(P) given by (x, y) t-+ (xP, yP) is 
called the Frobenius map. 

Theorem 14 Let k = Q( y' -d) {dE Z, d > 0 square free) be an imaginary 
quadratic field with integer ring 0 = Ok and a ~ 0 an ideal. Then the 
smallest Galois extension of k containing j (a) is the Hilbert class field to k, 
and if ai (i = 1, 2, · · · , h) are representatives of all ideal classes of k then 
{j(~)} represent a full set of conjugates ofj(a) over k. 

Proof: Let K be the smallest Galois extension of k containing j (b) for every 
integral 0-ideal b. Since j takes different values on different lattices (ideals) 
exactly when they are not scalar multiples of each other (in different ideal 
classes), this extension is of finite degree. By the results of 2.6.1 and 2.6.2, 
to prove that K is the Hilbert class field of k it is enough to prove that all 
but finitely many split primes of k split in K if and only if they are principal, 
since this will show that the set of primes of k which split completely in K 
differs from the set of primes k which split completely in the Hilbert class 
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field by a set of density zero. For each 'i, 1 :::; i :::; h, pick an elliptic curve Ei 
defined over K with j-invariant j ( ai) and discriminant ~i- Then C/Oi "'Ei 
(analytic isomorphism), and End(Ei) ~ 0. Pick a prime p E Z such that 
p = pp' is split in k, and p tj_ S where 

S = {Pi~i for some i, or Pi IT (~a- 6)} U {2, 3}, 
a<b 

with ~a all distinct values of oj(a;) forO" E Gal(K/k) and 1 :::; i::; h. For 
later reference, we will call this product D (of course, the theorem implies 
that D is just the discriminant of the element j (b) for any integral ideal b). 
Since p A~i there exists a prime s:p of K over p not dividing~- Without loss 
of generality we can assume that a= a; for some i; put A= Ei. Then A is 
given by a Weierstrass equation y2 = x 3 + a1: + b, with a, b E K. 

Pick a prime b of K such that N(b) is prime top= N(p) and pb =(a) 
is principal. Then (a)p-1a = ba, and we have the following commutative 
diagram 

c ----t c ------7 c ----t 
-!,. -!,. -!,. 

Cja ----t Cjp- 1 a---+ Cjba---+ Cja 
-!,. -!,. -!,. -!,. 

.A A ----t B -----t B __ J.L--+ A 

with .X and J.L some isogenies, and the maps C/ a -+ C/p-1 a and C/ba -+ 
C/a induced by the inclusions a Y p-1a and ba Y a respectively. The 
composite of the top row is the multiplication by a map, and the maps 
C/p-1 a-+ B and Cjba -+ B are possibly different, so that the target curve 
is B in both cases. Consequently, 

pN(b) = N(pb) = IKer (c -+-~-=+~-+c) I= [C(A) : (J.L o .X)*C(A)] a p- a ba a 
and the right hand side is equal to the degree of tL o A. Since the maps J.L and 
A are defined over K, as is A, this degree is also equal to the degree of the 
extension [K(A) : (p o .X)* I<(A)]. Similarly, fJ : BK-+ AK has degree N(b), 
and A : AK -+ BK has degree p. Now the map p reduces to give a map 
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where k = Kjs,p, and this map has degree N(b)- prime top. Thus the map [1, 
is separable. But the map (fJo ,\)*, being the pull back of a map corresponding 
to multiplication by a, acts as multiplication by a on differentials. Since 
q:Jia, this means that the map (fl o ~)* sends all differentials to zero, and 
hence is inseparable. Thus ~ is inseparable, but this map has degree (at 
most) p (being the reduction of a map of degree p). This means that ~ is 
purely inseparable of degree p. Consequently the function field of Ak is an 
inseparable extension of the function field of B k of degree p. But the function 
field of A k is k ( x, y), and this field is an inseparable extension of degree p 
of exactly one field - that is k(2:r, yP) (I{(:r, y) is a degree p inseparable 
extension of K(xP, yP), and any other field over which K(x, y) is a degree p 
inseparable extension must contain xP and yP, hence must equal K(xP, yP)). 
Thus 

and since nonsingular projective curves arc determined up to birational equiv­
alence by their function fields this implies that 

B rv 4]J 
k =., k' 

so the j-invariant of Bk must equal j(A~) = j(A)P. Since this equality is as 
elements of k = K js,p, we have that 

j(a)P = j(A)P j(B) = j(p-1a), 

with the congruence being moclulo s,p. Letting ap denote the Frobenius 
automorphism of K/k associated to i,f.l/p, for all z E K we have op(z) = 
zN(p) (mod q:J), and since N(p) = p we have ap(j(a)) - j(p-1a) (mod s,p), 
but this means that q:JI(ap(j(a))- .i(p- 1a)), so 

(3.1) 

since s,p )D. Since there exists a split prime in every ideal class, this proves 
that the elements j(ai) are all conjugate over k. Furthermore, (3.1) shows 
that p splits in K if and only if it is principal, since p splits completely in 
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K/k if and only if the Frobeuius CJP for any prime s,p over p is trivial, and 
by (3.1) this happens if and only if p is principal, since p is principal if and 
only if p-1 is principal and the j-function takes the same value on p-1a and 
a iff these two lattices are multiples of each other, that is if and only if p-1 is 
principal. Since this construction can be applied to any prime p of k outside 
a set of density zero, K must be the Hilbert class field of k, and hence {j(ai)} 
must be a full set of conjugates, since there are as many elements in this set 
as the class number of k, and this is equal to the degree of the extension Kjk. 

3.2.2 Ray Class Fields 

Now we prove that if FN is the field of modular functions over Q of level N, 
and k is an imaginary quadratic field, then k:FN(z), the field generated over 
k by values f ( z) for f E F N, z E k: is the ray class field of k to the modulus 
N. In the following, k will denote an imaginary quadratic field with integer 
ring 0, a will denote an ideal of 0, and J( will denote the Hilbert class field 
of k. 

Lemma 1 Let A be an ellipbc curve having ,]-invariant iA = j(a) and given 
by a Weierstrass equation y 2 = x 3 + a:r: + b with a, b E k(jA) ~ K, and 
discriminant ~- Let cP : C/ a ----+ Ac be an analytic representation of A, and 
define 

S = {2, 3} U{P E Z prime: pia or plb or PI~}. 

Let p be a split prime of k: whose norm N (p) = p rJ. S, and let CJ = O"p be the 
associated Frobenius element. Then there e:rists an analytic representation 
'1/J : C/p-1a -+ Ac and an isogeny >. : Ac ----+ Ac (where Au is defined by 
y2 = x 3 + au x + bu) such that 
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commutes, and such that A, the reduction of A to the curve A defined over 
k = K/~ for some fixed P an ideal of OK over p is equal to the Frobenius 
homomorphism 1r : A ---t A (P l . 

Proof: We will denote reduction modulo ~ by a tilde. The proof of theorem 
14 gives the diagram shown in the statement of the lemma, and the fact that 
the reduction of A[{ modulo p , A_o·, is isomorphic to A(P). First assume that 
a =/= 0 =/= b, then p does not divide a or b, and since o-(z) = a (mod~), the 
curve Au is defined by a VVeierstrass equcttion with non-zero linear and con­
stant term, and consequently has as automorphisms only (x, y) f--.+ (x, ±y) 
(see section 2.2.3). On the other hand, Au also has these two maps as au­
tomorphisms, and the automorphisms of A" clearly reduce to give the cor­
responding automorphisms of AIT. Knowing this, the lemma follows, since 
there exists some automorphism f. of A" such that ..\ = f. o 1r. But f.= ±1 
is the reduction of the automorphism E = ±1 of A", and so we can simply 
replace A and '1/J in the diagram by A o C 1 and c 1 o '1/J respectively to obtain 
a diagram satisfying the conditions of the lemma. If a or b is zero, the same 
argument still applies, since in this case the automorphism groups of Au and 
Au will either be both order four cyclic or both order six cyclic, and since the 
residue fields are characteristic not two or three there will be no collapsing 
of automorphisms in this case either. 

Theorem 15 With notations as above, Let A be an elliptic curve with j­
invariant JA = j (a) defined over k(jA) whose ring of endomorphisms is iso­
morphic to 0 (so the lathc:e a ·is an ideal of 0 ). Let h be the Weber function 
on Cja, as defined in section 2.2 .. and let AN be the N-torsion subgroup of 
A. Thenk(jA,h(AN)) is the my classfield ofk to the conductorN. 

Proof: Let K be the smallest Galois extension of k containing iA and all 
elements of h(AN ). Take p ink a split prime whose norm pis not in the set 
S defined in lemma 1, and is prime to N. Let ~ be a prime of K over p . 
Again the tilde denotes reduction modulo Sfj. Let o-, qy, and '1/J be as in lemma 
1. The points of finite order of C/ a are exactly the points of k /a; denote the 
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points of order N of this group by (kja)N. the map A on the reduced curve 
A is equal to the Frobenius map 1r, and since (N, p) = 1 reducing modulo 
~induces an injection AN Y AN, so that when we restrict all maps to the 
N-torsion subgroups, !J = A, and the diagram of lemma 1 becomes 

(kja)N --t AN 
_J,. _j,.!J 

(kjp- 1a)N -------+ AN 
Since A has degree p which is prime toN, !J =A maps theN-torsion group of 
A onto theN-torsion group of Au, and the group (k/a)N onto (k/p-1a)N (this 
map is given, rather unenlighteningly, by [z] H [z]). To prove that K is the 
ray class field to conductor N of k, it suffices to prove that p splits completely 
in K if and only if p = (cv) for some a E k. o: = 1 (mod N). If p satisfies 
this condition, then p splits completely in the Hilbert class field k(JA), so 
op ik(iA) is the identity (since the restriction to k (j A) of the Frobenius of a 
prime ideal of K over p is the Frobenius of a prime ideal of k(jA) over p), so 
Au =A (A is defined over k(j,1)). Multiplication by a gives an isomorphism 
(k/p-1a) ~ (kja), and composing this map with the diagram above gives 
the following commutative diagram (where cp' is some analytic representation 
of Ac). 

(kja)N -t (kjp- 1a)N ~ (kja)N 
cp -!- '1/J -!- cp' -!-

u Id AN --t AN -------+ 

If a= 1 (mod N) then the composite map on the top is the identity, since 
elements of (k/a)N can be represented by elements of k with the form cjN 
with c E a, and o: 1 (modN) means that (cv-1) (c/N) E a so the map a-1 

is constantly zero on (kja)N· cp' differs from cp by some automorphism of A, 
so if a- 1 (modN) by the commutativity of the diagram any P = <jJ(t) E AN 
differs from CJ(P) by an automorphism of A, so the Weber functions on the 
points P and CJ(P) are equal, since the vVeber function gives the same value 
for two points iff they are in the same orbit under the automorphism group 
of the curve. But this means that any P E AN differs from cr(P) by an 
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automorphism of A, and therefore h(P) = h(CJP) = hu(CJP) = CJ(h(P)), so a 
acts trivially on all N-torsion points, and since CJ also acts as the identity on 
k(jA), a is the identity automorphism of K, that is p splits completely inK. 

Conversely, if p splits completely in K, then p splits completely in the 
Hilbert class field of k (since this is contaiued in K), and thus p = (a) 
for some a E 0. Thus we need to show that a - 1 (mod NO). Now 
(kja)N is a principal 0-module (This is true since (k/a)N is an 0-module 
with annihilator NO , and thus is a faithful 0 /NO-module- but 10 /NO I = 
l(k/a)NI = N 2

, so any element of (kja)N generates the group as a 0/NO­
module and hence as a 0-module). Let u be a 0-module generator of (k/a)N· 
Then we have 

h(<fJ(u)) = CJ(h(<fJ(u))) (since p splits completely, CJ =Id on k(jA)) 
= hu(<fJ(uV) 
= h(<fJ(u)u) (his defined over k(jA)) 
= h( 1/J' ( u)) 
= h(<fJ(au)) (by the commutative diagram) 

So <fJ(u) and </J(au) differ by an automorphism of A. The automorphism 
group of A is cyclic of order two, four or six, so we must have au = (u as 
elements of k/a for some second, fourth or sixth root of unity ( E k - so 
since u generates (k/a)N we have av - (v (mod a) for all v E (k/a)N, or 
((-

1a-1) E NO. Since ((- 1a) =(a)= p, this shows that pis principal and 
generated by an element of k congruent to one modulo NO as required. 

Corollary If FN is the .field of modular functions of weight zero and level 
N over Q, and a is an integral ideal of 0, given as a lattice by [z1 , z2], and 
z = zd z2 E 1-l, then the field kFN(z) generated over k by numbers f(z) for 
f E FN defined at z is the ray class field of k to the modulus N. 

Proof: Denote the ray class field by K. Since the value of the Weber 
function on the N-torsion subgroup of C/a are exactly the values of the 
Fricke functions 

(
az +b) fa,b(z) = h N 
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for a and b ranging through complete sets of residue classes modulo N, and 
since these Fricke functions generate the modular function field of level N, by 
theorem 15 we have K ~ kF N (z). On the other hand, If we denote by R the 
integral closure of Z [j] in F N an cl by M the maximal ideal of R consisting 
of those functions of R which vanish at z, then by the results of section 
2.5 on the ramification of ideals in R, we can conclude that any element of 
Gal(FN jQ.(j)) which fixes all values !a,b(z) is in the inertia group of the ideal 
M, and consequently fixes the entire residue field; and since Gal(FN/Q.(j)) 
maps onto Gal(FN(z)/Q.(j(z))), we conclude that 

Gal(kFN(z)/kj(z)) = Gal(Kfkj(z)). 

Both extensions are Galois, so this shows that kFN(z) = K. 

3.3 Quadratic Forms and Quadratic Fields 

We now elucidate the connection between quadratic field theory and quadratic 
form theory which is at the root of Mahler's work linking the behaviour of 
the Dirichlet L-functions associated to imaginary quadratic fields on the real 
line close to one with the class numbers of the corresponding fields. This is in 
fact an extension of the famous work of Dirichlet whose class number formula 
for imaginary quadratic fields gives a (precise) relationship between the value 
of the L-function at 1 and the class number of the field. By examining the 
behaviour of the function on an interval near one, Mahler is able to obtain a 
good bound for the class number as the field discriminant grows large, and 
conversely. 

In order to properly explain this work we must first outline the basic 
correspondence between quadratic forms and ideals. The idea is quite sim­
ple. Let k = Q( J -d) be an imaginary quadratic field ( -d < 0 a field 
discriminant) with ring of integers 0. Then given any lattice [a, ,8] of 0, 
N(ax + (3y) = (Na)x 2 + (aj3 + f3a)xy + N(f3)y2 (where-:-: k-+ k is com­
plex conjugation) is an integral binary quadratic form with discriminant -d 
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(where N = Nk/Q is the norm map). Since all ideals, being (in particular) 
finite indexed subgroups of 0, are lattices we can use this fact to get a corre­
spondence between the ideal classes of 0 and appropriately defined isomor­
phism classes of integral quadratic forms with discriminant -d. Throughout, 
k will denote a fixed imaginary quadratic field of discriminant -d, 0 its ring 
of integers, and we will assume that any lattice [a, ,8] ~ 0 is in fact an ideal 
ofO. 

The first problem is that the modules [a, ,8] and [a, /3] give rise to the 
same form. Since [a, ,8] [a, /j] is a principal ideal, assuming the isomorphism 
above existed we would be forced to conclude that any ideal class group had 
exponent two, but this is false (for example, Z( J=T4) has the cyclic group of 
order four as its ideal class group). Hence if we are to gain a correspondence 
between ideal classes and quadratic forms we must have a way to distinguish 
[a, ,8] from [a, /j]. This is done using the concept of order. 

Definition: A base {a, ,8} of the lattice [a, ,8] is said to be ordered if 
(a{J-a,B)/~ > 0. (This element is in Q since it is invariant under complex 
conjugation, and in fact it is in Z, since a/j- a,B = N([a, ,8])~.) 

Now exactly one of [a, ,8] and [a,$] is ordered, and this gives us a method 
for eliminating the problem arising above - restrict to ordered bases. The 
next step is to define an equivalence relation on the integral binary quadratic 
forms of discriminant -d which corresponds to equivalence of ideals. Since 
bases of a lattice are related by a matrix of G L2 (Z) with determinant ±1 
and multiplying by a matrix of determinant -1 takes an ordered basis to 
an nonordered basis, we conclude that ordered bases of a given lattice are 
related by a matrix of SL2 (Z). This explains the following 

Definition: Two integral binary quadratic forms F1 and F2 are said to 

be equivalent if for some matrix (~ ~) E SL2 (Z) we have F1 (x, y) = 

F2(Px + Qy, Rx + Sy). 
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Definition: An integral binary quadratic form ax2 + bxy + cy2 is said to 
be primitive if gcd(a, b, c) = 1, and an ideal [a, ,B] is said to be primitive if 
no integer divides a and ,Bin 0. 

Proposition 1 (a) If [a, ,8] is an ordered module basis of the 0 ideal a, the 
quadratic form N ( ax + ,By)/ N (a) is a prirnitive integral quadratic form of 
discriminant -d which we will denote by cp([a, ,8]). 

(b) Conversely, given a prim,itive form a.r2 + bxy + cy2 of discriminant 
-d, [a, b-p] is an ordered basis of a primitive integral 0-ideal a which we 
will denote by 'ljJ ( ax2 + bxy + cy2

). 

Proof: The coefficients of the form F(:r, y) = N(ax +,By) are N(o:), 
o:f3 + ,Ba and N(,B), all of which are integers divisible by Na since they are 
divisible by this element in 0 (Z is integrally dosed). Say N(o:x+,By)/N(a) = 
ax2 + bxy + cy2

. Since this form has discriminant 

b2 _ = ( a/3 + a,B)
2 

- 4N( a ,B) = (a/3- a ,B) 
2 

= -d 4ac (Na)2 Na ' 

which is a field discriminant, gcd(a, b, c) = 1 if -d - -1 (mod 4), and 
gcd(a, b, c) ::; 2 if -d/4 = 2 or 3 (mod 4). Assume the latter, and that 
gcd(a, b, c) = 2. Then -d/4 = 1' 2 ~4ac = (&) 2 

= 0 or 1 (mod 4), a contra­
diction. Thus in all cases gcd(a, b, c) = 1, so N(ax + ,By)/N(a) is primitive 
integral. 

(b) Let j = [a, b-fd]. b-fd E Ok if -d = 1 (mod 4), since in this 
case b must be odd. On the other hand, if -d - 0 (mod 4), b is even, so b-p E Ok. Hence in either case, the ideal j is integral. If an integer n 
divides both a and b-~, then n must divide b+~, and hence nib, and we 
also have n2

1 (-d), so n = 2 since -d is a fielcl discriminant. But now we have 
that 16j(b2

- 2bv'=d- d) = 2ll- 2bv'=d- 4ac and hence 8l(b2 -bv'=d-2ac), 
which implies that 4Y (b- ~)since 2lb and 8Y2ac by primitivity. This 
is a contradiction, so we conclude that j is primitive. A simple computation 
shows that the module j is indeed an ideal, and the given basis is ordered 

60 



c 

0 

since 
a(b- ~/2) - a(b- ~/2) 

~ =a>O. d 

Theorem 16 Let -d be a field discriminant. The maps 4; and 'lj; given in 
the above proposition induce a one to one mutually inverse correspondence 
between I/ P and the set of primitive integral quadratic forms of discriminant 
-d modulo proper equivalence, where I is the group of fractional 0-ideals and 
P is the subgroup of principal ideals. 

Proof: Calculation shows that 4; o ·ljJ(F) = F. On the other hand, if 
j = [a, .8] <l 0 is an ideal given by an ordered module basis, then 

. [N(a) (a;]+ jJa) ~] 
'lj; 0 c/J(J) = N(j) ' 2N(j) - -2- ' 

and therefore 

so 'lj; o cp(j) and j are equivalent. This shows that 'lj; o 4; =Id on I/ P. 
Now it must be proven that the maps respect the equivalence relations so 

that they induce well defined as maps on the quotients. We'll denote both 
of these equivalence relations by cv. Suppose that F1 (x, y) and F2 (X, Y) are 
equivalent under X H px + qy, Y H rx + sy with ps- qr = 1, p, q, r, sE Z. 
If fori= 1,2 we have L = 'lj;(Fi) = [ai,.B·i], then since cpo'lj; =Id, 

fori= 1, 2. Now there exist some A, B E CC such that a2A + {32B = 0; so by 
the equivalence of F1 and F2 we must have 

(3.1) -.81 a -.81 a 
- or 

0!1 b &1 b' 
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where (A B) = (~ ; ) (a b). We now show that the first of these options 

implies that h rv h while the second leads to a contradiction. If the first 
equality holds, 

-{32 A -f31P + et1q 
et2 B -{31r + n1s' 

so that 
et2 fJ2 A 

-{3(r + n,s -o;lq + fJ1P f.L 

for some A and f.L, so J.Lh = [pn2, J.LfJ2] = A[-f3Ir + a1s, fJ1P- et1q] = -Ah, so 

since det ( s -r) = 1, h rv h· -q p 
On the other hand, if the second equality of (3.1) above holds, following 

the same steps yields pj2 = A[ -;J1r + a1s, ;J1P - a1q] = A[ai, ;32]· Since 
[ab {31] is ordered, [a1, ;31] is not, but since ps- qr = 1, [Aa1, A;31] is ordered, 
which implies that N(A) < 0, which is a contradiction since all elements 
in imaginary quadratic fields have positive norm. Thus F1 rv F2 implies 
'!f;F1 rv 'I/JF2. 

Now assume that for i = 1, 2, ji = [ai, f3i] are ordered bases, and that 
-Ah = J.Lb for some elements A and p. Then Aet1 = ppa2 + qpf32 and 

.A/31 = rpa2+sJ.Lf32 for some matrix(~ ~) E SL2(Z), so N(Aa1x+.Aa2y) rv 

N(pa2x + p{32y) (as quadratic forms). I3ut the construction of the form <f>(j) 
involved dividing by the norm of j, so j and cj give rise to the same image 
under <f>. Thus ~(h) = N(c~]X + /31Y) rv N(a2:r; + f32Y) =~(h), so that h rv h 
implies ~(h) rv ~(h). Hence these two maps prove a bijection between the 
specified sets. 

Remark: It is of course possible to use the maps ~ and '1/J above to 'push' the 
multiplication on I/ P to the set of quadratic forms of discriminant -d mod­
ulo proper equivalence, and hence give this set the structure of an abelian 
group. It turns out that there is a 'natural' multiplication on this set which 
is the same as this transported multiplication, so that the maps ~ and '1/J 

in fact are group isomorphisms. The multiplication on the quotient set of 
quadratic forms is outlined in [3]. 
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We have only gone through the construction of the maps </J and 'lj; in the 
case where -d < 0. In the case of real quadratic fields, the situation is more 
complicated, since there can be elements with negative norm, so that the 
definition of equivalence of ideals must be tightened in order to match up 
exactly with the notion of proper equivalence of quadratic forms. 

The correspondence outlined above can also be expressed analytically in 
terms of equality of certain zeta functions. If -d < 0 is the discriminant of 
the imaginary quadratic field ](with integer ring 0, and C E I/ P an ideal 
class of OQ( V'=d), the zeta function of C is defined as 

1 
(c(z) = L (N )z' 

aEC a 

the sum over all integral ideals a in the ideal class. Then we clearly have 

(K = L (c. 
CEI I]> 

Now if we define the zeta function of a (primitive integral) quadratic form 
Q(x, y) = ax2 + bxy + cy2 to be 

( (s) = 1 L , 1 
Q U( -d) m,nEZ (am2 + bmn + cn2

) 8
' 

where U( -d) is the number of units in K (so that U( -d) 
U( -3) = 6 and U( -4) = 4) then we have the following 

2 if d > 4, 

Proposition 2 If the ideal class C corresponds under the above bijection to 

an equivalence class of quadratic forms containing the form Q, then (c = (Q· 

Proof: Let [a, ,B] = a be an ordered module basis for a E C. Then since 
properly equivalent quadratic forms take exactly the same set of values, we 
can take Q to be </J(a). Now there exists rn, n such that Q(m, n) = N(a). 
Indeed, since 

<P() = N(a:r+J'-Jy) 
a N(a) ' 
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it suffices to find an element a Ea such that .V( a)= N(a) 2

, and to show this 
is possible for any a, it suffices to show it for prime ideals p. Say p is above 
the prime p of Z. If p is split, then we can take p as our required element, 
and if p is inert or ramified we can take the element p2

. This shows that Q 
takes all integer values corresponding to norms of ideals of C. On the other 
hand, factoring the form Q in the field K shows that if d > 4, Q takes each 
value zero times or twice, and if d = -3 each value zero or six times and if 
d = -4 zero or four times. Thus the two zeta functions are indeed equal. 

We end this section with a proposition which is used to show the existence 
of certain 'canonical' integral quadratic forms within each equivalence class. 

Proposition 3 Given a positive definite form ax2 +bxy+cy2 of discriminant 
-d = b2 - 4ac, there exists a properly equivalent form with 0 < a :::; ..j"f. 

Proof: It suffices to find an equivalent form Ax2 + Bxy + Cy2 with C > 
A > IBI, since in this case we have d = 4AC- B 2 2: 3A2 as required. We 

can assume without loss of generality that c < a, since the matrix (~ ~) 
sends Ax2 + Bxy + Cy2 to (A+ EN+ CN2 ):r2 + (B + 2NC)xy + Cy2

• Now 

the matix (~ ~) E SL2 (Z) sends ax2 + bxy + cy2 to ax2 + xy(2aN +b)+ 

y2 (aN2 + bN +c). Pick N > 0 such that 

(3.2) 

(3.3) 

aN2 + bN + c > a 

a(N- 1) 2 + b(N- 1) + c < a, 

then manipulating (2) and (3) gives 2aN +b > 0, and aN2 +bN +c < 2aN +b, 
so we have a form Ax2 + Bxy + Cy2 with 0 < C < B, C >A, Pick X> 0 

such that IB- 2XCI <:; C (X> 0 since C <B). Since ( ~l i) E SL2 (Z) 

takes Ax2 + Bxy + Cy2 to Cx2 + (B- 2XC)xy +(A+ XB + X 2C)y2 , and 
A+ XB + X 2C > C (X> 0, A, B 2: 0) we have the desired equivalent form. 

In section 2.1.2 we proved that the j-function takes the same value on 
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two (lattices representing) ideals of 0 exactly when the ideals are in the 
same ideal class, and since the ideal corresponding to a quadratic form 
ax2+bxy+cy2 with discriminant -d is a= [a, b-fll], j(a) = j (b-p), so by 
the above propositions we can take the h( -d) distinct values of j on OQ(V-d)­
ideals to be {j (bi-;~)} (i = 1, 2, · · · , h( -d)) where each ai ~ IHI· 

3.4 £-functions and Class nurnbers 

We now show the link between the zeroes of the function Ld = L(s, x) (where 
x is the real primitive character to the modulus d) and the class number of 
the field Q( v'=(i) for -d < 0 a field discriminant. The technique basically 
involves bounding the size of the zeta functions of imaginary quadratic num­
ber fields uniformly for varying s and d, and for this we use the zeta function 
(Q of a binary integral quadratic form Q introduced in the last section. In 
this section we are following [23] and [18]. vVc begin with a lemma about the 
r-function. 

Lemma 1 Put B(u, v) = 1i~:~)). Then 

fr
•OCJ tu-ldt 1r·OO X2u-1 

Buv= =2 dx ( ' ) 0 (1 + t)u+v 0 (1 + x 2 )u+v . 

Proof: The substitution t = x 2 shows that the two integrals above are 
equal, and the substitution t = i!:y shows that the left hand integral above 
is equal to 
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On the other hand, 

r(u)r(v) laoo laoo e-(x+y)xu-lyv-ldxdy 

roo roo 
2 lo lo e-rru+v- 1(cose?u,-l(sinB) 211

- 1drde 

2r( '1L +V) la% (COS 8) 2n-l (sin 8) 211-l dB 

r(v, +V) lal (1- t) 11-ltv-ldt 

On making the SUbstitutions :r = r COS2 8, y = T sin2 8, followed by t = sin2 
(}, 

This proves the lemma. 

Now let K be an imaginary quadratic field with discriminant -d. We study 
the zeta function of K by studying the zeta functions of integral quadratic 
forms of discriminant -d, Let Q(x, y) = a:c2 + bxy + cy2 be such a form. 
From the last section, 

(3.1) U( -d)(Q(s) = L' 
m,nEZ (am2 + bmn + cn2)s. 

1 

The terms in the sum with n = 0 give 2a- 8 ((2s) (where ( is the usual 
Riemann zeta function). Applying the Poisson summation formula (see [14]) 

(3.2) f f(m) = f /oo f(x)e2nimxdx 
m=-oo m=-oo -oo 

(with f(m) = am2 + bmn + cn2 for each value of n) to the terms with n =/= 0 
gives 

00 00 roo e27rimxdx 
(3.3) U(-d)(Q(s) = 2a-8 ((2s) + 2 L L ' J_ 

n=l m=-oo , -oo (ax2 + bxn + cn2
)

8 

The m= 0 term in (3.3) is 
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on making the substitution .1.' = nu followed by completing the square in the 
denominator and making the substitution u = '{! ( x -

2:) . Now we apply 
the lemma with u = ~' v = s and have that the m= 0 part of (3.3) is 

a2s-ld~-s2-2sr(s- ~)ft 

r(s) 

Now the m =f. 0 part of (3.3) is 

Call the term corresponding to (m, n) in this sum, T mn. Then a computation 
similar to the above shows that 

where 

l
oo e27riaz dz 

J(o:) = 
. -oo (z2 + l)s' 

mnv'd 
c~ = ---

2a 

Thus in order to understand the behaviour of (Q ( s) we must understand the 
behaviour of the integral I (a). Since we proved in the previous section that 
every binary integral quadratic form was SL2 (Z) equivalent to a reduced 
form with v'd ~ a.J3, we can assume that our form Q has this property, and 
hence that a ~ v:}. In this case we have the following 

Lemma 2 If a ~ '(}, I(a) = O(e-1rn) uniformly ins, fors in compact 
subsets of {z: ~(z) ~ n. 
Proof: Let a-= ~(s). We will use a branch of (z2 + 1) 8 analytic in C \ ({z: 
~z = O,~z:::; -l}U{z: ~z ~ O,~z = n). Let (~~:~;s =F. Then J(o:) is 
equal to any sum of the form !1 + !2,8 + 13 ,8 + h8, where 

h = lim ;· Fdz, 
r-+oo rl,r 

h,8 = { Fdz, 
.! 13,5 

h,6 = j Fdz, 
/2,8 

ho = { Fdz, 
.! /4,5 
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with 'Yl,r the upper half of a circle of radius T centred at the origin, traversed 
clockwise, ')'2 the circle of radius ~ centred at i and traversed counterclock­
wise, ')'2,8 is ')'2 \ { z : 1 - 6 S CS(z) S 1 + 6}, 13,8 is that part of the line of 
constant imaginary part 1 - 6 to the right of the circle 12 , traversed from 
left to right, and 14,8 is that part of the line of constant imaginary part 1 + 8 
to the right of the circle 12 and traversed from right to left. This is since by 
choice of branch, F is analytic in the interior of the region traced by these 
four curves and the real axis (which is the path of integration of I(a)). We 
evaluate each of these integrals separately. 

! 1 = 0 since putting z = re·iO into Fdz shows that the denominator of the 
integrand is approximately ru for large r, while the integral of the absolute 
value of the numerator is 

since 1r sin 0 2: 20 on [0, ~]. The integral on the right hand side is :::; 1/2a :::; 
1/V3. 

12 = 0( e-na) since putting z = i + e;e into Fdz and taking absolute value 
gives 

e- 27r0<-7rQ sin(} 
------ 0( -'}fQ) 
2-ueiltulz+ilu- e ' 

and the path of integration has finite length. 
To show Is,8 is O(e-1ra) for r5 > 0 sufficiently small, we first change the 

branch of (z2 + 1) 8 to one which is analytic on the line 13 = { z: CSz = 1, Rz 2: 
1} and also on 13,8 6 sufficiently small (for example, there are branches of 
this function analytic on C \ [ -i, i]). This is justified since any two branches 
of this function differ by a constant of absolute value one on their common 
domain of definition. For this new branch of F, the absolute value of the 
integral on 13 can be made arbitrarily close to that of the integral on ')'3,8 by 
taking 6 sufficiently small (since the integrand is now an analytic function 
on regions bounded by below and above by 13 and 13,8 , on the left by ')'2 

and on the right by lines of the form { z : ~z = M}, and the integrand can 
be made arbitrarily small on either of these boundaries by taking 8 small 
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enough. Now it is enough to show that the integral 

is 0( e-?Hl<). Put z = i + p, and the integral in question is 

(integration by parts). The integral on the right hand side is 

( r)() dp ) 
0 } ~ f.L2u+ 1 

which is 0(1) since CJ::::: ~- This completes the proof of the lemma. 

We now apply this lemma to the bounding of the m"# 0 part of (3.3). 

00 00 

L L' Tmn < L L 1 
ITmnl 

n=l mEZ n=lmEZ 

and the sum is 0(1) for CJ ::::: ~' independent of d. Combining this with the 
m = 0 and n = 0 pieces of (3.3) gives 

(3.4) 

U( -d)(Q(s) = 2a-s((2s) + 2d~-sas-l (((2s- 1)r(s- ~)JJr + 0(1)) 
r(s) 

with the constant 0(1) independent of d, uniformly fors in compact subsets 
of {z : ~(z) ::::: n. Now we fix -d < 0 a field discriminant, and add (3.4) 
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over a full set of reduced forms of discriminant -d to obtain 

where gd( s) is a positive real function of s, uniformly bounded for all field 
discriminants d and s E [ ~, 1], and 

the sum being over a full set of reduced integral binary quadratic forms 
ax2 + bxy + cy2 of discriminant -d. 

Lemma 3 There exists o-0 E (~, 1) and positive constants c1 , c2 , c3 , c4 such 
that for all field discriminants -d < 0 there e1;ist functions Ad(s) and Bd(s) 
satisfying c1 :::; Ad( s) :::; c2 and c3 :::; Bd(s) :::; c4 and 

(3.6) ((s)Ld(s) = Ad(s)jd(s)- Bd(s)d~-s ]d(1 - s) 
1- s 

for all sE (o-0 , 1). 

Proof: Define 

((s) 
Ad(s) = U( -d) ( ) _ (s- 1) (((2s- 1)r(s- ~)J7f ( )) 

Bd s - U(-d) r(s) +gd s . 

Lemma 1 and easy bounding of 0(1 + t) on [0, l] and [1, oo) show that 
ifs E (1/2, l], 

r(s- l )J7f J.·oo dt fnoo dt 1fn1 1 /,oo dt 3 ---'----"2"----- = - > >- dt +- - > -. r(s) o vt(1 + t) 8 
- o 0(1 + t) - 2 o 2 1 t 312 - 2 

Choose M > 0 so that for all field discriminants -d < 0 and all sE [1/2, 1], 
igd(s)i <M. Since ((2s- 1) has a pole at one there exists some o-0 E (~, 1) 
so that ifs 2:: o-0 , ((2s- 1) > 2M/3 so on [a-0 , 1], Ad(s) and Bd(s) are both 
continuous and nonvanishing. Thus the constants exist, and clearly the func­
tions Ad and Bd defined in this way satisfy (3.6). 
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Now the class number h = h( -d) is equal to fd(O). Put 

with the sum as usual over a full set of reduced forms of discriminant -d. 
Fors E [a0 , 1], we have 

hd±(l-s) S !J(1 - S) S h 

The integral representations of r(s) and ((s) valid in 0 < R(s) < 1, 

((s) = rXJ (-1
-- ~) t 8

-
1dt 

lo et- 1 t 

show that ((s) is real and strictly negative fors E (0, 1). The main theorem 
is now essentially a corollary of the above lemmas. 

Theorem 17 (Mahler) Suppose that a constant A > 0 exists such that for 
all field discriminants -d < 0, 

..fJ 
h( -d) 2: A7,7-

1 
-l, 

ogr. 

where 7] is as above. Then another constant B = B(A) exists such that no 
£-function Ld ( s) (for -d a .field discriminant) has a zero in 

B 
1---<s<l. logd - -

Proof: Rearranging the above inequalities shows that 

Therefore on (a0 , 1), since ((s) is negative, vve have that 
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The bracketed on the right hand side of this inequality is 

( 
h c2 ) AJd c2 -- -(1- s) ~ - + -(s- 1), 1Jy'd c3 log d c3 

which will be positive if 

where B = c3A/c2. 

s 2: max (a-0 , 1- B y'd ) 
log d 

3.5 abc Implies No 'Siegel Zeroes' 

In this section we present the proof that the uniform abc-conjecture for num­
ber fields implies the non-existence of 'Siegd zeroes' for L-functions asso­
ciated to imaginary quadratic number fields. The proof uses the functions 
JJ- 1728 and p13 which were introduced in section 2.4 and which we will 
call 13 and 12 respectively. By their definition, for every z E 1-l, these func­
tions give a solution (x, y) = (r3 (z), r 2 (z)) of the Diophantine equation 

(3.1) 

Weber proved in [32] that if the class number h of the imaginary quadratic 
field k = Q( Vd) is one then 13 ( T) / Vd, and /'2 ( T) are rational integers. Since 
it was proven in 1.3 that the abc-conjecture implies (3.1) has only finitely 
many solutions in Z, this shows that the abc-conjecture implies that there 
exist only finitely many imaginary quadratic fields of class number one. Of 
course this is of little use since it is already known to be true, but it points 
in a certain direction. Since 13 and 12 are both in F6 , the field of modular 
functions of level six, whenever z E 1-l n k we must have that 12(z) and 'Y3(z) 
are both in L, the field generated over k by all values f(z) for f E F6 defined 
at z, which was shown in section 3.2.2 to be the rav class field of k to the 
modulus six. Furthermore, since j(z) is an algebraic integer for z E 1-lnk, 
12(z) and 13 (z) must be algebraic integers as well. 
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To apply the uniform abc-conjecture to (:3.1) in the ray class field L we 
must first bound the size of the normalized discriminant D.L/Q (see section 
1.1 for definition). 

Proof: We calculate this discriminant using the Different D = Diff(L/Q.) 
<1 OL (see [16] for definition and properties). Let N denote the norm from 
L to IQ, and the symbol 11 mean 'divides exactly' - that is pb 11 a means Pbla 
and pb+1 Aa. If S,JJ <l OL is a prime of OL above p where p A6d then since p 
is unramified in L/Q, it follows that S,JJ JD. If pl6 then only a power r of s:}J 
less than or equal to the ramification index e(Sf)jp) divides D. Say there are 
g primes of OL above p and that the residue degree is f. Then the p-power 
part of the discriminant is given by 

I IT N(S,JJ1') I = pr-fg S pefr; = p[L:QJ. 
Pip 

If pld, p /16 then (putting p a prime of Or. above p and below s:}J ) p is 
unramified in L/k and p =I 2, p 11 Diff(k/Q) (since if P2 IDiff(k/Q.) then 
p2 ld). Since the different is multiplicative this implies that the p part of the 
different D is p (considered as an ideal of 0 L) so the p part of the discriminant 
is 

N(p) = NQ}V£J(p) = N:(p[L:k]) = p[L:k] = p[L:Ql/2. 

Thus the discriminant IDisc(L/Q) I S (6Vd)[L:QJ, and since the normalized 
discriminant is the [L : Q]th root of this quantity, this proves the lemma. 

Theorem 18 (Granville/Stark) The uniform abc-conjecture for number 
fields implies that there exists some constant C > 0 such that for -d a field 
discrimimant, 

h( -d) > 7rJd (L ~ + _£) 
- (3A +E) logd a logd ' 
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where h( -d) is the class number of the imaqinary quadratic field Q( ~) 
and the sum is over a full set of redv,ced binary integral quadratic forms 
ax2 + bxy + cy2

. 

Proof: We apply the uniform abc-conjecture to solutions ('Y3(r), ')'2(r)) of 
(3.1) in L (rE k). Applying the conjecture and using lemma 1 to bound the 
discriminant gives 

From the definition of the conductor we also have 

G(12(r), r3(r), 6) 

« G ( /:z ( T) ' /3 ( T)' 1) 

< G ( /:2 ( T) ' 1) N (r3 ( T)' 1)' 

and for any a E OL the product formula (see [16]) 

1 IT llallv = IT llallu IT jjajj~(n) 
v cr:V--+C P 

Nq(a) IT jjajj~p(n) 
p 

(the product is over maximal ideals p <1 OL, with vp(a) the p-adic valuation) 
shows that 

H(a, 1) 2: Nq(n) =IT jjpjjp-vp(n) 2: IT IIPII-1 2: G(a, 1), 
p p 

so since ')'2 (r) and r 3 (r) are in OL, 

G('Y2(r)3, r3(r)2, 1728) « H('Y2(r), 1)H(r:>(r), 1) = H('Y2(r) 3
, 1)~H('Y3(r) 2 , 1)~ 

« H('Y2 ( r )3
, 13 ( r )2

, 1728) i H( 12 ( r)3, ')'3 ( r) 2, 1728)~ 
= H(12(r) 3,{:3(r) 2

, 1728)~. 

Putting this into (3.2) and solving for H(r2 (r) 1,r3 (r) 2
, 1728) we have 

(3.3) 
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for small E (the last inequality is achieved by replacing E by t:/30A). Notice 
that the uniform abc-conjecture is really being used here. Now 

1 CXl 

/'2(7) 3 
= j(T) =- + 744 + L Cnqn 

q n=l 

1 1 
max{1, /.J(T)/} = lqf max{/q/, /1 + 7-±4q + · · ·/} » jqf' 

since when /q/ is very small, /1 + 744q + · · ·/ is bounded away from zero 
because j(z) has a pole at infinity. /1/q/ = e11 Jd;a so we have 

(with the product over a full set of non-equivalent reduced forms of discrimi­
nant -d and 7* is the element -b~~ corresponding to the form ax2 +bxy+ 
cy2) and taking logarithms gives (for some C = CE) 

1 1rVdL-:::; (3A + E)hlog(d) + C, 
a 

which gives the lower bound on the class number h. 

Corollary The uniform abc-conjecture for umnber fields implies that there 
exists some constant B > 0 .such that for any primitive real Dirichlet char­
acter to the modulus -d ( -d a field discriminant) the Dirichlet L-function 
L(s) = L(s, x) has no zer-oes on the strzp 

B 
1---<s<l. logd- -

Proof: This is immediate from the above theorem and the result of Mahler 
from the previous section. 
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Chapter 4 

abc and the Wieferich Criterion 

4.1 abc and the Wieferich Criterion 

In 1909, A. Wieferich [34] proved that if a prime p satisfies 

(4.1) 

then the first case of Fermat's last theorem holds for p. This result has been 
generalized by various authors, most recently Granville [9] who proved that 
the first case of Fermat's last theorem holds for any prime p which satisfies 
qP-1 ~ 1 (mod p2

) for some prime q.::; 89. Despite the fact that the only two 
primes known to satisfy 2v-l = 1 (mod p2

) arc 1093 and 3511, it is not known 
whether or not there exist infinitely many primes p satisfying (4.1). In 1986, 
Joseph Silverman [28] proved that the abc-conjecture implies that for any 
a E Q*, a# ±1, the number of primes p.::; X satisfying aP-

1 ~ 1 (mod p2 ) 

is~ log X. In this section we show that Silverman's methods can be modified 
to show that the uniform abc-conjecture for number fields implies a similar 
result for certain elements of real abelian extensions of Q. 

We begin by fixing some notation. Let k lw a real abelian extension of Q 
whose integer ring 0 is a unique factorizatiou domain. Let M be an integer 
such that k ~ Q( (M) where (~>er is a primitive ~lfth root of unity. Let D be the 
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discriminant of the field Q( (M), so all primes of Z congruent to one modulo 
D split completely in 0. We will denote by G = Gal(k/Q) the Galois group, 
and by N the norm from k to Q. For a E 0, define the powerful pari of a 
to be 

rr pordp(a), 

p2ja 

where ordp(/3) is the exact power of p dividing f3. We denote by <I>n the 
nth cyclotomic polynomial. Now let a E 0 be any element such that one 
conjugate of a is larger than one in absolute value, and all other conjugates 
are smaller than one in absolute value. Put n:"' - 1 = Un Vn, <I>n(a) = UnVn 
where Vn and Vn are the powerful parts of a11 

- 1 and <I> n (a) respectively. If 
p is a rational prime, define rnp to be the order of a modulo p, that is the 
least integer n such that an = 1(p). Finally, for X > 0, define the set of 
Wieferich primes up to X for a to be 

W(X) = {p E 0 split prime with p = Np :::_: X and aP-
1 :f= 1 (mod p2

)}. 

We will use the symbol alb to mean a divides bin the ring 0, and p will always 
be a prime (element) of the ring 0. We wish to prove that lW (X) I >> log X. 
Since aNP- 1 E p2 implies craNap- 1 - 1 E crp:2 for any cr E G, we can assume 
that lal 2: 1 2: lcr(a)l for all cr E G. Also, since the norm of any split prime 
p of 0 is a rational prime which can be assumed odd (with the possible 
exclusion from TV(X) of primes of 0 above two), JV(p)- 1 can be assumed 
even, and thus we can replace a by -a if necessary to assume that a > 0. 
Finally, the fact that for any positive integer k. o:k(Np- 1) :f= 1 (mod p2) implies 
that aNP-1 :f= 1 (mod p2 ), we can replace a b.'· any positive power of a. This 
allows us to assume that a > 2, that all coujugates of a are positive, and 
that a- 1 is not a unit, that is that IN(a- 1)1 2: 2, since for any a E 0 
with exactly one conjugate bigger than one in absolute value, IN(ak- 1)1 
tends to infinity as k does. Note also that the condition a > 1, cr(a) < 1 for 
all a E G, a# Id implies that N(ak -1) :::_: (ak -1). We will assume these 
conditions on a without further comment. 
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Lemma 1 Let n be a positive integer. Assv:nw the prime p is unramijied in 
0 . If piUn and p Jn, then n = mp, and aN(p)~l et 1 (mod p2) if and only if 
p is a prime of degree one. 

Proof: Let p be a prime dividing Un, p )n. Since piUn, an 1 (modp). Now 
the polynomial xn- 1 has distinct roots moclulo p (since xn- 1 and nxn-1 

are relatively prime modulo p ), and thus the fact that <Pn(a) - 0 (mod p) 
implies that <Pd(a) et 0 (mod p) for any dip, so mp = n. Since ordpl!n = 1, 
an et 1 (mod p2), so an = 1 +,Bp for some ,8 a p-unit. Since a4>(Np) = 
1 (mod p), ni</>(Np). Thus we can raise an to the power </>(Np)jn; this yields 

a4>(Np) = (an)<f!(Np)/n = 1 + ,Bp<j>(Np) (mod p2). 
n 

Thus an et 1(p2
) if and only if p J<P(Np). If pis degree one, Np = p for some 

rational prime p, sop J<P(Np) = p- 1, and if pis not degree one, Np =pi 
for some f > 1 so PI<P(Np) = pf~ 1 (p- 1). 

With the hypotheses as in Lemma 1, we not<' that if p is a prime with norm 
pi for f > 1 and a rational prime p, the fact that ni<P(Np) = pl-1(p- 1) 
implies ni(P- 1) since n Jp, sop= 1 (mod n). Thus, if n 0 (mod D), p 
splits in k, so p is of degree one, a contradiction. This gives the following 

Lemma 2 Ifn = 0 (mod D), all pTimes dividing Un are of degTee one. 

Lemma 3 IW(X)I 2: l{n ::;loga(X) : N(Un) > Dn and n 0 (mod D)}l 

Proof: Let n 0 (mod D) be such that N(Un) > Dn. By lemma 
2, N(Un) is square free, and thus we can choose p/Un prime to nD. Let 
Pn be a prime of 0 above p. Applying lemma 1 gives that mpn = n and 
aP-1 et 1 (mod p;). Since n:::; loga(X), an :::; X, and 

The fact that mPn = n means that different values of n give different primes, 
so the lemma is proved. 
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In order to apply lemma 3 to prove the infinitude of Wieferich primes for 
a, we must show that there exist an infinitude of natural numbers n satis­
fying the conditions implicit in lemma 3, that is n 0 (mod D) for which 
N(Un) >D. To do this, we first show that N<Dn(a) grows 'quickly' with n, 
and then that the uniform abc-conjecture for the field k implies that N(Vn) 
grows 'slowly' with n. This is accomplished in the following two lemmas. 

Lemma 4 There exists a constant c > 0 such that IN<I>n(a)i > ect/J(n) for all 
n. 

Proof: For any CJ E G, CJ(a) is real and positive, hence for any root of unity 
(, ICJ(a -1)1 :S jCJ(a- ()I so we have 

IN<Dn(a)l = IT I<Dn(CJa)i 2 lliCJa- 1j<P(n). 

Since a> 2, (a- 1)<P(n) > ec'<P(n) for some c' > 0, and the other terms in the 
product on the right hand side are in absolute value greater than or equal to 

IT jCJa - 11 = c" > 0 
CJEG 
!J#ld 

so that the entire product is greater than or equal to c" ec' <P(n) 2 ect/J(n) for a 
third constant c > 0. 

Lemma 5 The abc-conjecture for the field k implies that N(Vn) « am for 
any € > 0 (with the implied constant dependin,r; on a, k and c). 

Proof: Because UnVn = <Dn(o:)l(an -1) = 'U71 1'n., Vnlvn, so N(Vn)IN(vn), so it 
suffices to prove the estimate for N(vn)· Applying the abc-conjecture for k 
to the equation an - Un Vn - 1 = 0 yields 

with the constant depending on k and c The definitions of the height and 
the conductor show that 

H(an, UnVn, 1) = IT rnax{jCJ(an)j, la(unvn)l, 1} 1
/d 2 an/d 

CJEG 
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G(an,UnVn,1) « IT N(q)lfrl ~ N('un)lfrlJV(vn)l/2d, 

qlnnVn 

since q[vn implies that q2 fvn. The implied constant in the second inequality 
depends only on a. We also know that N('u11 '1: 11 ) = N(an -1) ~an -1 <an, 
so N( un) < an/ N( vn). Therefore the abc-conjecture for k implies that 

njd ( anfd ) l+E 

a « N( Vn) lj2d 

Isolating N(vn) and replacing E by c/(2- c) gives the result. 

Now these lemmas, taken together, suggest that we should look for values of 
n congruent to zero modulo D with large values of rjJ(n) relative ton (that is, 
with values of rjJ(n)/n as large as possible); the following lemma shows that 
there are 'many' such n. 

Lemma 6 Ln<X c/J(n) = 6
2 X + 0(1). - n 7r 

Proof: We will show that both sides of the equation are equal to 

Theorem 3.11 of Apostol [2] states that for any arithmetical function/, 

[
X' l l: f(n) ~ J = l: l: f(d). 

n5,X n n5,X iljn 

Applying this with f(n) = J1(n)jn and using the fact that r/>(n) = Ldln J.t(d)~ 
gtves 

L J1(n) [X] = L cP(n). 
n5,X n n n5,X n 

On the other hand, the fact that for R(z) > 1, 

1 _ f p(n) 
( ( Z) - n=l --;;;:---

shows that 
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since ((2) = n 2 /6. Therefore we have 

~- 0(1) =X L p(~) = L p(n) [X] + L p(n) (X - [X])' 
((2) n<;x n n"5cX n n n"5cX n n n 

and 
L p(n) (X _ [X]) ::; L p(n) 
<" n n n . <" n n_../\_ n_J\. 

with the latter sum in absolute value less than or equal to one, by Theorem 
3.13 of Apostol [2]. Thus, the lemma is proved. 

Lemma 7 For any positive integer A and any 6 E (0, ; 2 <~>:,:)), 

X ( 6 A ) l{n::; X: cp(n) ~ 6n and n = 0 (mod A) }I ~ A 7r2 - 6 cp(A) + 0(1). 

Proof: If A = 1, for 6 E (0, 6/n2
), we simply divide the sum from the 

lemma 6 into two parts: 

L cp(n) ::; j{n::; X: c/J(n) ~ 6n}j 
n"5cX, <P(n)?_6n n 

L cp~~) < ()X. 

n"5cX, <P(n)<on 

Rearranging and applying lemma 6 gives the result for A = 1. For other 
values of A, we know that cjJ(nA) 2: cp(n)cp(A), so if cp(n) ~ 4>~1) n, cp(An) ~ 
8An, and we have the result for arbitrary A. 

Theorem 19 Let k be a real abelian e.Ttension of Q whose integer ring 0 
is a unique factorization domain, and let D be defined as above. Let a E 0 
have all but one conjugate less than one in absolute value. Defining W(X) = 
Wa(X) as above, the uniform abc-conjecture for k implies that IW(X)I >> 
log( X). 
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Proof: By lemma 3, it is enough to prove that 

l{n ~ loga(X) : N(Un) > Dn and n = 0 (mod D)}l » logX. 

N(Un Vn) = N<I>n(a), so by lemma 4 and lemma 5 there exist constants c and 
d = < such that 

ec</J(n) 

N(Un) 2': c'am, 

so we see that any n congruent to zero moclulo D for which ccp(n) ~ c2 + 
log n + En log a ( c2 = log De') will provide a Wieferich prime for a. Pick o 
small enough for lemma 7 to apply, and put E = 5cj2loga. Then cp(n) ~on 
implies that 

5cn ccp(n)- c2 - mloga -logn > 5cn- c2 -- -logn 
2 

which will be greater than zero if n is sufficicmtly large, say if n ~ n0 . Thus 

IW(X)I > I{ no:::; n:::; loga(X): n- 0 (mod D) and cp(n) ~on} 
loga(X) ( 6 D5 ) > D JT2- cp(D) + 0(1)- no, 

which proves the theorem. 

4.2 Connection with the Euclidean Algorithm 
The original motivation in studying this generalization of Silverman's work 
was an attempt to prove that the uniform abc-conjecture implies that the 
rings of certain number fields which are unique factorization domains, are 
also Euclidean domains. This problem was first suggested by Hasse [12]. 
Weinberger [33] proved under the assumption of the generalized Riemann 
hypothesis for certain Dedekind (-functions that the integer ring of a number 
field which is not imaginary quadratic is a Eucliclean domain if and only 
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if it is a unique factorization domain. In [4]. Clark and R. Murty prove 
unconditionally that if R is the integer ring of a totally real Galois extension 
of Q of degree n, then R is a Eucliclean domain if there exist m = In- 41 + 1 
split prime ideals of R, tJI, · · · , Pm such that for every (k1, · · · , km) E N"", 
the natural projection map 

( 
R )* u -+ -k,...-----

p;l ... p~m 

is a surjection, where U is the unit group of R and (A)* denotes the unit 
group of the ring A. They also prove that for this condition to hold for every 
m-tuple (k1, · · · , km) E Nm, it is sufficient that it hold for (2, 2, · · · , 2). The 
simplest examples of real fields whose integer rings are unique factorization 
domains but which aren't known to be Euclicll:an domains are integer rings of 
real quadratic fields. For example, Z[y'I4] is a unique factorizaton domain, 
but the norm function does not provide an Euclidean algorithm in this ring; it 
is not known whether or not the ring is in fact a Euclidean domain. However, 
the theorem of Clark and Murty cannot be applied when R is the integer ring 
of a real quadratic field, since in this case it is necessary to find three primes 
lh, P2, P3 such that 

u-* --( R )* 
PiP~P~ 

and U = {±l}x < u >,where < u > is the (infinite cyclic) group generated 
by the fundamental unit u. Inasmuch as the order of each group (R/pn* is 
even, 

( R )" (R)* (R)* (R)* PiP~P~ ~ Pl X PL X P3 
cannot contain a cyclic group of index less than four, and thus the image of 
{±l}x < u > must be of index at least two. However, the theorem should 
be applicable to totally real Galois extensions of degree at least three over Q, 
since for these fields the number m defined above will be less than or equal 
the number of multiplicatively independent elements of U. Let R be any 
ring whose field of fractions k is a totally real Galois extension of Q of degree 
n ~ 3. If pis any split prime of Rand u E U \ {±1} then±< u >- Rjp2 
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if and only if the following two conditions ar<' met: 

(4.1) 

(4.2) 

Np-1 d 1 ( d 2) u 'F mo p 

R ± < lL >----» -
p 

The following lemma says that there are many elements of the unit group 
U = R* to which the result of section one can be applied. 

Lemma 1 If R is as above then joT any a E G = Gal(k/Q) theTe exist n -1 
multiplicatively independent ·units v.1 , · · · , 'Un-l of R with the pmperly that 
lo-(ui)l > 1 and IT(ui)l :'S 1 joT all T E G, T fa. 

Proof: Say G = {a 1 , · · · , an}, a 1 = I d. It is dearly sufficient to prove the 
lemma for a-= Id. The Dirichlet unit theorem (see [16]) states that the map 
l/J: U -+ JR.n-l given by 

sends U onto a full lattice of ~n-l (where JRn-J is identified with the hyper­
plane of IR.n given by the equation x 1 + · · · + :1:n = 0). The condition that 
lul > 1, o-i(u) < 1 fori f 1 is equivalent to having rj;(u) lie in the '2n-1-tant' 
(quadrant, octant, ... ) W consisting of points with first coordinate positive 
and all other coordinates negative. This region contains n - 1 linearly in­
dependent vectors of r/;(U) since otherwise vF n rj;(U) would be contained in 
a hyperplane IT of IRn-l, but there exists an element x E rj;(U) \ IT, and 
by adding X to a suitable element of cp(U) n TY we can find an element of 
l/;(U) n W not contained in IT. 

Thus, the result of section one applies to u 1 , · · · nn, and shows that the abc­
conjecture fork implies that there exist infinitelv many split primes such that 
u = ui satisfies ( 4.1) for i = 1, · · · n- 1. Furthermore, we can choose these 
elements not to be perfect squares - if (say) u1 = vr- for some even integer r, 

84 



c 

0 

and v is not a perfect power in R, then since u 1 has exactly one conjugate 
greater than one in absolute value, so does v and hence we can replace u 1 by 
v. It has been conjectured by E. Artin that auy integer not equal to ±1 or 
a perfect square is a primitive root modulo a positive density of primes (see 
[1, introduction] for details) and analogs of this conjecture in the number 
field case have been proven by H.W. Lenstra Jr. ([17]), modulo generalized 
Riemann hypotheses for certain Dedekind (-functions. R. Gupta and M.R. 
Murty, in [11] prove that all but at most twelve rational primes are primitive 
roots modulo infinitely many primes, and W. l\arkiewicz uses similar meth­
ods and an improvement of Heath-Brown ([13]) in [24] to prove a similar 
result for certain Abelian extensions of Q. Specifically, Narkiewicz proves 
that in any Abelian extension of Q satisfying a certain technical condition, 
there are at most two (non-square) multiplicatiYcly independent elements for 
which Artin's conjecture fails. Thus, in a real Abelian extension k of degree 
greater than or equal to four, there are (at least) as many multiplicatively 
independent units which are primitive roots modulo infinitely many prime 
ideals as the number Tn of primes required for the application of Clark and 
Murty's result, so assuming abc there are infinitely many primes satisfying 
(4.1) and infinitely many primes satisfying (4.2). Unfortunately, however, we 
require primes satisfying both of these conditions simultaneously, and this 
appears to be difficult-Narkiewicz' work shows primitivity modulo primes p 
such that p - 1 has the form 2q1 q2 or 2q1 for r}l, q2 prime; and there is no 
(obvious) way to centre out primes of this form using Silverman's method. 
However, it seems reasonable that there should exist only finitely many non­
Weiferich primes for a given field element given the paucity of primes p such 
that 2P-I -- 1 (mod p) (although the method used in the previous section is 
inadequate for proving that auc implies this result), and this, together with 
Narkiewicz' and Clark and Murty's results \\·oulcl imply that for 0 the in­
teger ring of a number field k which is not quadratic, 0 is Euclidean if and 
only if 0 is a p.i.d. 
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