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ABSTRACT

An analytical method of solution has been developed for elastic surface
waveguides where the guiding structure consists of an overlay of rectangular cross
section superimposed on the surface of an infinite substrate. When the overlay is
thin with respect to the wavelength various perturbation techniques can be used to
determine the dispersion curves of such guides. Here two kinds of generalization are
implemented : one concerns geometry in that the thickness of the overlay as well as
the width can be arbitrary , thus allowing an investigation of the effects of overlay
thickness on the dispersion curves and on the displacement distributions in the overlay
and in the substrate ; the other concern§ materials in that the material combination of
overlay and substrate can be freely chosen under the guiding requirement that the shear

velocity of the overlay must be lower than or equal to that of the substrate.

The polynomial variational approaches for plates and rectangular rods
and the exponentially —crested surface waves are employed in the analysis together with
a new procedure which treats the boundary conditions at the interface. The infinite
series introduced into the displacement distribution can be truncated at different orders
depending on the accuracy desired and on the tolerable computational complexity. Two
different orders of truncation are discussed and numerical results for several modes are
presented showing the dispersion and displacement behaviour for several pairs of
materials with a detailed discussion of the results for a gold overlay on a fused quartz

substrate. Results are in very good agreement with the infinite layered geometry, the

thin—Film guide and the topographic ridge guide, all of which can be considered as

limiting cases of the analysis and all of which have extensive experimental verification.
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n,m,p,q

N,M
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it
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= 1,2, .... 15 (for labels of homogeneous equations)
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Weighting factors
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Amplitudes of the polynomial (plaie) displacements u.
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Column=-vector notation for ;\i(n,m) , antisymmetric moc
Group notations, Equations (6.4) and (6.6)

Elastic tensors of the substrate and overlay respectively

Legendre polynomial constants of integration

Group notations (Appendix A)
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Group notations (Appendix A)

Abbreviations, Equations (2.1) and (2.5)

Partial matrices of the antisymmetric and symmetric
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Elements of the partial matrix FA or fs

Elements of the matrices fA and f_. respectively

S
Polynomial tractions for Region I

Polynomial tractions for the overlay

Partial matrices of the antisymmetric and symmetric

modes respectively

Elements of the partial matrix gp O 9

Elements of the matrices gp and 9g respectively
Polynomial stresses
Column=-vector notation for Gg;)

Semi-width and semi-thickness of the overlay

Width parameter k h2 and thickness parameter k h3

v =1
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Group notations, Equation (7.21)
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f f
Notation of Love-like mode

Eigenvectors of the (1,1) - approximation

Submatrices of the equations of motion of the

(1,1) =approximation
Legendre polynomial of the transverse coordinate, order n
Legendre polynomial of the vertical coordinate, order n

Notation of Rayleigh~like mode

Adjustment parameters

Prefix to mode designation for "symmetric"

Strain tensor

Polynomial (plate) strains

Polynomial (bar) strains
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Temporal coordinate
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INTRODUCTION

1.  General Background

Interest in microwave acoustics (or simply microsonics) has increased
markedly in recent years and the reason for this great surge is both physical and
technological . Acous.l'ic waves propagate with velocities typically of five orders of
magnitude slower than electromagnetic waves so that acoustic components such as re~
sonators, filters and delay circuits using such waves can be 105 times smaller in size
than their electromagnetic counterparts for the same frequency. For example, a
centimeter length of crystal can provide a delay path at a frequency of 3 GHz of
approximately 104 wavelengths. For some time, devices employing the propagation
of elastic bulk waves i~n solids have been constructed for the generation and delay of
signals, and in the mid~1960's a number of signal -processing applications could be
performed because of the discovery of new bulk-wave phenomena involving semicon~
ductors (White, 1962 ) and magnetic materials ( Eshback, 1962 ) and acoustooptical
interactions ( Gordon, 1966 ). But it is clearly elastic surface waves which have
aroused the greatest interest and provide the i<ey to certain miniature signal processing
systems. Such surface waves possess inherent advantages in that they are accessible
to be tapped, guided or amplified on the surface of the substrate and in that the fabri-
cation techniques can be a duplication of those used for integrated circuitry. A
review article by White ( 1970 ) provides a general survey and a comprehensive biblio-

graphy of the whole field of elastic surface waves. In considering these signal -processing
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devices, he indicated that it might be most advantageous to do a variety of signal -
processing steps in a single package once the signals were in elastic form and .
envisioned a receiver having the entire processing from RF input to IF output

performed with surface waves on a single crystal plate with suitable overlays.

Recently, progress has been reported in many aspects of surface -wave
technology. For example, by the addition of internal surface -wave amplifiers to
long-path delay circuit, the time delay available is extended into the 10 millisecond
range with frequencies of 100 MHz and higher ( Shaw , 1971). Monolithic

surface -wave amplifiers (Goldren, 1971) have been constructed with measured elec-

tronic gains of 50 dB/ cm up to 2 GHz and good agreement with the theory.

For the development of the microwave acoustic circuits envisaged by
Stern ( 1969), elastic waveguides are of fundamental importance. Oliner (1971 a)
has also noted that the full potential of the elastic surface waves will be realized
only when the surface waveguides are thoroughly understood and exploited. This
thesis deals with the propagation characteristics of elastic surface waveguides and an
analytical method is developed to solve for these charccferisfiés in the most fundamen-

tal type of such waveguides.

Generally speaking, guided elastic waves are transmitted by bound
media which contain free surfaces or interfaces forming reflecting walls, or a parti-
cular region where the velocity of the waves is slower than in the surroundings. The
velocity of such guided waves depends upon the frequency of excitation, the mode of

transmission, the elastic constants of the materials and the size and geometry of the



medium. From this broad view, the fundamental example of a guided elastic wave
is the Rayleigh surfave wave in a half-space, a single -mode, non-dispersive and
non-radiating' wave which is concentrated near the free surface because its velocity
is lower than the velocities of the bulk waves in the medium. Rayleigh gave the

theory for this mode of propagation in 1887.

A second waveguide example is the infinite plate in which the waves are
confined and guided by two parallei free surfaces. In this geometry there are many
different modes and they can be classified as shear-horizontal (SH) and longitudinal
and shear—vertical (L + SV). The dispersion relation of the (L +SV) family,
commonly known as the Rayleigh-Lamb équations (Rayleigh, 1889 ; Lamb, 1917), are

quite complex and have usually been evaluated by numerical methods.

Another example of guided waves is provided by the layered geometry
(Achenbach and Epstein, 1967 ; Farnell and Adler, 1972), i.e., a half-space sub-~
strate overlaid by a solid layer (infinite plate) of a different material. Depending
upon the material combination and the layer thickness, Rayleigh modes, Love modes
and Stoneley waves are possible.  The last reference gives a review of the characteris-
tics of these modes of propagation in thin layers and some are considered below in

numerical examples as limiting cases of the analysis here.

in all the above cases, the waves propagate in a form somewhat like
uniform sheets that extend to infinity, ideally, in the direction transverse to that of
propagation and parallel to the boundary surface or surfaces. Mathematically, all

the above can be formulated by an exact approach though numerical techniques may
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be required for the actual solutions. In a real guided wave, however, most of the
energy of the waves must l;e confined to only a finite portion of the akove sheet.
Exact solutions are available for wave propagation in circular rods (Meeker and
Meitzler, 1964), and although no exact solutions seem possible for roctangular bars,
several workable approximate theories have been developed in recent years (Frazer,
1969 ; Meaick, 1966 and 1968 ; Nigro, 1966 to 1969 ; Volterra, 1961) . However,
in the desirable frequency range for microsonic applications , say from 10 MHz to

1 GHz, the cross=sectional dimensions of such bars would be of the order of microns
and thus they would be too thin and too weak to be selfsupporting. When substrates
are added for support or as part of the propagation medium, the problem turns to the

case we wish to consider in this analysis.

2.  Rectangular-Overlay Elastic Surface Waveguides

The elastic surface waveguides of concern here consist of a rectangular
overlay of one‘isofropic solid in welded contact with a substrate of a different
material . - This type of waveguide owes its guiding action to the presence of the over-
lay, which is chosen to have a shear velocity lower than that of the substrate. Thereby
the region near the overlay has lower phase velocity than the surrounding free surface

and thus waves are guided along the overlay.

Various types of elastic surface waveguides have been studied, analyti-

. cally orexperimentally, by Tiersten (1969), Oliner (1969 and 1971b), Ashetal.
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(1969) and Waldron (1969 to 1972). All of these, implying some restrictive simpli-
fication either of geometry or of material, as will be seen below, can be considered
as limiting cases of the type of waveguide considered here ; while the present

analysis is approximate, it has fewer restraints than the earlier analyses.

The thin-film waveguide was proposed by Seidel and White (1967) and
analyzed by Tiersten (1969) under the assumption that the overlay was very thin
relative to the wavelength so that the entire effect of this thin—film overlay could be
treated as a nonzero homogeneous boundary condition at the surface of the substrate,
and the variation of the particle displacements in the overlay could be ignored. A
complementary analysis using a similar assumption has been given by Adkins and Hughes
(1969). No such restriction is used in the analysis here, the thickness of the overlay
as well as its width can be arbitrary. It will be shown that this generalization of
geometry can be extended to include two extreme cases, the Iéyered configuration
which results when the width of the overlay approaches infinity at a finite thickness,
and the end-plate problem when the thickness approaches infinity at a finite width.

These limiting cases form useful checks for the theory. Oliner (1971 b) has used an

analytical approach for elastic surface waveguides, called the microwave network

method, but it appears to be valid only for an overlay of very high or very low thickness-

B Y T R R B e X P e

to-width ratio and therefore it still belongs to a limiting case of the present problem.

Another generalization in the analysis here concerns materials. The

g material combination of overlay and substrate is limited only by the guiding requirement

oot

* that the shear velocity of the overlay must be equal to or lower than that of the substrate,

54




and can be freely chosen without imposing the restriction of a perfectly rigid substrate
as introduced by Waldron (1971). However, solutions for the almost perfectly rigid
substrates can be obtained from this more general analysis by using artificial substrates
of increasing rigidity. Moreover, by using the same material for the overlay and the
substrate as a special case of the material combination, the analysis includes the topo-

graphic ridge waveguides of Ash et al (1969) .

The derivation of the fundamental equations in this analysis is generalized
so that they can be directly applied or easily converted for anisotropic materials.
However, the detailed exposition and application of the theory here is for materials that
are homogeneous, isotropic and linearly elastic solids. Dispersion curves of the first
Rayleigh-like mode, the first Love-like mode and some higher modes are obtained and
displacement patterns are provided in order to show the mode characteristics, a thorough
understanding and complete knowledge of which is obviously the' first necessary step to-

ward the study and development of this type of waveguides.
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CHAPTER I

PREPARATION OF THE ANALYSIS

1. Fundamental Consideration

Physically there are only two regions of different materials in the wave-
guide problem under consideration, namely, a long overlay of rectangular cross-section
and a half-space substrate. However, the substrate is further divided for mathematical
purposes into the regions I, If, HI (+) and 111 (=) shown in Figure 1. Before pro-
ceeding with the analysis of this problem as a whole, it is illustrative and helpful to
consider these regions separately in order to grasp some of their basic characteristics as

propagation media.

Let us begin with the central Region 1. If isolated, Region Il alone is
a semi-infinite plate with boundaries formed by the two parallel sides and the top edge,
and within this Region we can use the two~-dimensional variation theory of wave propa-
gation in plates developed by Mindlin and Medick (1959). The particle displacement
fields are then chosen to be a product of a series of Legendre polynomials in the Xy =

coordinate and factors decaying exponentially with depth (- x3) .

Since the overlay Region | is essentially a rectangular bar, we can use
the one~dimensional variation theory of wave propagation in bars of rectangular cross-
section, developed by Medick (1966 and 1968), which is really an extension of the
two-dimensional theory of plates. Modification is needed, however, due to the fact
that here the bottom boundary is no longer traction—free but constrained because it is

in contact with the substrate, a fact that complicates the analysis. The particle dis-
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placement fields for this region are chosen to be a doubly infinite series of Legendre

polynomials of the thickness and width coordinates (x2 and x3) of the overlay.

The side Regions Il (+) and vlll (=) are somewhat more difficult to
cope with analytically than the former two. Each region, if isolated, is a quarter-
space so that concentration of waves at the corner would be expected. However,
mathematically this seems to be the simplest configuration which cannot be solved by
an exact approach or even by the approximate methods that are workable for rectan-
gular bars . In order to treat these side regions, therefore, some simplified but
reasonable procedure must be introduced. The main points of the treatment adopted
here for these regions are the following : first, the same exponential decay factors
for the depth coordinate (x3) as employed in fhg central Region |l are used in
Region I[l, a necessary step in order to match the displacements exactly along the en-
tire interfaces between Regions I and |ll when considering all regions together as a
whole ; and second, to ensure that the distribution of the wave is confined laterally
near the overlay, the amplitude is assumed to decay exponentially with x, measured
away from Region Il - Region Ill interfaces, and the form of the decay factor is
adopted from a result of the so called "exponential-crested surface waves" given in
Tiersten's analysis (1969). The particle displacement fields of these side-regions then

consist of an infinite series of products of the two decay factors above.

In consideration of the propagation medium as a whole, the solutions in
the four regions have the same propagation factor and are matched so that the displace-

ments are continuous at each point on the interfaces between the regions. The



10

traction-free conditions on the free surfaces of Region Il are approximated
implicitly through the use of the exponential —crested surface waves, but all of the
other boundary conditions of stress - the traction=free conditions on the top and the
two sides of the overlay and the continuity of stresses across all interfaces between
regions - are introduced into the integral traction terms of two variational equations

of motion, one for Region | and the other for Region II.

2.  Description of Variational Theories

The basic methods used in this analysis are variational theories which
have been successfully developed for isolated plates and rectangular bars. Histori-
cally the two-dimensional equations in a variational theory for plates were deduced
from the three -dimensional equations of elasticity by a procedure, based on the series
expansion method of Poisson (1829) and Cauchy (1828) and the integral theorem of
Kirchhoff (1850) . But the early authors were interested only in low frequencies and
included just enough terms of order zero of the series for the purpose at hand. It was
more than one hundred years later that Mindli‘n (1955) worked out the detailed ex~
position of a power series method and its application to approximations of orders zero
and one. Mindlin and Medick (1959) revised the theory by introducing Legendre
polynomials to take advantage of orthogonality, and later, Medick (1966) extended

the concept and developed the one -dimensional equations for rectangular bars.
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The main procedure of the two-dimensional theory for infinite plates
consists of : (i) expanding the displacements in the plate in a series of Legend.re
polynomials of the thickness coordinate in a variational integral of motion that uses
the ordinary differential equations of motion as the argument of the integral, (if)
changing the three~dimensional displacement fields to be varied into the two-dimen-
sional polynomial fiel;:ls, (iii) integrating across the thickness of the plate and thus
converting the ordinary three -dimensi;nal differential equations of motion into an
infinite series of two-dimensional ones and (iv) applying appropriate truncation to

produce approximate equations for practical application.

The same general procedure applies to the one -dimensional theory for
rectangular bars, however since the displacements are expanded in a doubly infinite
series of Legendre polynomials of both the thickness and the width coordinates of the

bar, a doubly infinite series of one-dimensional equations is obtained.

A general review of variational methods for the above theories is given
in Chapter |11 in order to elucidate the procedures, and as will be seen, these pro-
cedures are used in almost the same form in this analysis until the boundary conditions

at the interfaces are introduced.

3. Major Procedures of Analysis

In the complete mathematical analysis presented in the next chapter,

the algebra is rather lengthy and laborious. Thus, in order to provide a general out-
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line of the whole mathematical structure, the procedures can be grouped into the
blocks given by the flow -diagram of Figure 2 which indicates the major steps for the
dispersion calculation. The various algebraic symbols on the chart are defined in
Chapter Il and the reader may find it helpful to refer back to this chart as the analy-

sis is developed.

Somewhat as in the case of the conventional exact methods used for
elastic waves in the half-space, the plate, or the layered problem, there are three
major steps in this waveguide solution. First, appropriate trial forms of the displace~
ment fields for all the three regions (Blocks 1, 4 and 10 in Figure 2) are assumed.
Second, the relations between the phase velocity and the decay constants to be used
with the depth coordinate of the substrate (the eigenvalues in the analysis) are found
for a given width parameter from the two-dimensional equations of motion for the central
Region Il (Block 5), and then the corresponding eigenvectors (Block 6) are obtained
from which the displacement solutions are constructed with unknown weighting factors
introduced (Block 7). Note that a relation for the decay along the width coordinate
for Region 11l is also needed (Block 2) and the boundary conditions at the interfaces
between Regions [ and Il are introduced (Block 3). This whole second step
corresponds to the eigen-problem step in the exact approach. Finally, the thickness
parameters are solved from the one ~dimensional equations of motion for the overlay
Region | at each of the given sets of phase velocities and width parameters, which are
systematically chosen to complete the dispersion curves (Blocks 11 and 12) . Note

that in this final third step, which yields the dispersion and thus resembles the boundary -

condition step in the exact method, the main equations are the one-dimensional equations
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of motion forthe overlay Region | (Block 11). More specifically, the equations of
motion and the boundary conditions are woven together in the solving procedures in
the analysis as they are in the derivation of the one - and two-dimensional varia-

tional theories of rods and plates.

Now let us look at the flow-diagram in a different way. Blocks 4 to
7 are the procedures for Region |l considered as an isolated plate, and Blocks 10 to
12 plus 8 for Region | treated as an isolated bar, however as might be expected,
differences exist in the variational theories used here from those for isolated bars and
plates. For an isolated plate, the assumed displacements in Block 4 w;:uld have no
exponential dependence on the depth coordinate and all the traction boundaries in
Block 3 would be free. Similarly all the boundaries in Block 8 for an isolated bar
would be free. In other words, since the isolcfed cases are single-region problem with
all boundaries free, while this overlay waveguide problem is one of a multi-connected
region containing interfaces of discontinuity, it is obvious that the latter problem is
more difficult to solve. Consequently the particular procedures in Blocks 8 and 9
which handle the difficulty of interfaces are of key importance in the analysis. These
procedures constitute a novel step that may be applicable to other more general pro-
blem of multi-connected regions. As implied by Block 3, the same techniques are
applied to the interfaces between Regions . Il and IlI, but here they are much simpler
because the assumed displacements of Regions Il and Il are automatically matched

at these interfaces.
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To summarize, the important concepts that are central to the solution

of this overlay waveguide problem are :

@)

(i)

modified plate modes are carefully assumed for the
central region of the substrate and modified bar modes

for the overlay,

exponential -crested surface waves are introduced as a
simplified and reasonable assumption for the side-regions

of the substrate,

a special procedure is provided to overcome the difficulty
introduced by the various interfaces involved in the

problem.
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CHAPTER I

MATHEMATICAL ANALYSIS

In the previous chapter, the theories of plates, bars and exponentially
crested surface waves with necessary modifications for the analysis of overlay wave=-
guide were briefly described and the major procedures of the analysis were outlined
in Figure 2. This chapter develops successively the algebra for the assumed dis-
placements ( Blocks 1,' 4 and 10 in Figure 2), the equations of motion with the
boundary conditior;s of stress for Region Il (Blocks 5, 6 and 7) and for Region I
(Blocks 11 and 8),' the important "detailed matching” step for the continuity of
displacements at the bottom interface of the overlay (Block 9), and then the dispersion
(Block 12). After that, the algebra for the displacements themselves is rather straight-

forward and no block diagram has been shown.

The symbols used in the text are defined at their first occurrence and a
list of them is summarized in the preface. Since all of the equations appear only in
this chapter, their numbering is referred to the appropriate section, €.g., Equation (1.2)

or simply (1.2) indicates the second equation in Section 1, Chapter 111.

1.  Assumed Displacements

For clarity, the designation of the subscripts and the superscripts is

summarized as follows :
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i,i,k,1=1,2,3and a,b,c,d =1 and 3 only,
are used as subscripts for various components measured

along the coordinate axes.

n,m,p,q =0,1,2... are used as superscripts for the

order of a term in a series.

I, J,K,L =1,2,3,4, 5 label the eigenvalues in

Sections 3, 5, 6.

N, M=1,2,... .. .. 15 label the homogeneous equations of

Region | in Sections 4,5, 6 ..

The trial forms of displacement for Regions |, 1l and Il are assumed

as @
(e°) (o) )

) Gi = z Z Pn Qm G'i(nlm) , Gi (n,m) = Ai(nlm)x a
(e 0]

Ww ou o= ) P ui(“) , ui(“) - Ai(“) Z X a
n=0
[ o] .

— N n

I 5 ay= ) (EDY gi(“) @

n=0

where common notations for Region | are “hatted" with a circumflex (") and those

of Region Il with a bar (=) . Whenever a double sign (* or +) occurs ina
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formula or in subscripts, the upper sign refers to the right-side Region Il (+) and
the lower to the left 11l (=) . The function abbreviations and symbol notations in-

volved are defined as follows.

Ji (n,m) are the amplitudes of the product polynomial distributions of

displacement in the plane of the bar cross-section or simply the polynorﬁial (bar)
displacements of order ' (n, m), whic|_1' in turn have their own amplitudes '&i (n,m) .
Similarly, ui(n) are the amplitudes of the polynomial distributions of displacement
across the plate thickness or simply the polynomial (plate) displacements of order n
with their own amplitudes Ai(n) . For the isolated bar and plate, the distribution of
the displacement components can be expressed by the polynomials which are then used
as the bases in the iden;rificaﬁon of bar and plate modes ( Mindlin and Medick, 1959,

Figure 1 ; Medick, 1968, Table 1). However, the mode identification for this over—

lay waveguide is more complicated and will be discussed later.

Some fundamental functions have been abbreviated for simplicity,

X = exp[ik(x] -vt) ] (1.4a)
Y(2) =  exp[TBk(xyFhy)] (1.4b)
z = exp (akxg) (1.5q)
P = P (% /h'2) (1.5b)
Q = Q (x3/hg-T) (1.5¢)
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where
i = /-1,
k = real propagation constant,
v = propagating phase velocity,
h2,h3 = semi-width and semi~thickness of the overlay
(see Figure 1),
u,ﬁ = constants ;3f attenuation along x3 and x2
respectively,
and P.,Q. = Legendre polynomials of order n .

The extra symbol Qn for Legendre polynomials of the argument co-
ordinate X3 is introduced in addition to the conventional Pn » which is solely used
for Xy 1 in order to avoid confusion when their arguments are omitted for a clearer
and neater formulation in the sequel. The Cartesian tensor notation and summation
convention are adopted for all coordinate indices except those in parentheses. A
comma followed by a coordinate subscript indicates the spatial derivative and a dot on

top of a displacement symbol indicates the temporal derivative, i.e.,

u, . = Bu./axi and bi=aui/af.
i

The summation sign is retained for the indices other than those of the coordinates.

It is worth noting particularly that the form of the polynomial displace-~

" ments ui(n) for Regions Il and Il is the same in (1.2) and (1.3) . Under such
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an arrangement, since at the interfaces between Regions || and I, Xo = :l:vh2 R

P (%1) = (£1)" and Yy = 1o then

at  x, = * h2 (1.6)

Uizui(i-)

which means that the boundary conditions of the continuity of diszlecement along the
interfaces between Regions [I and {II have been automatically satisfied by the
assumed forms of the displacements. To ensure that the continuity of displacement is
satisfied at each point on the interface between Regions | and I, a rather strong
"detailed matching” condition will be assumed later such that the corresponding terms
for each order of Legendre polynomial P in the solutions for Regions | and I are

equal at the interface.

2.  Equations of Motion for Region || from a Variational Approach

In a conventional exact approach to solving an elastic propagation preblem
for a certain defined configuration with boundary conditions, it is common to start with

the differential equations of motion,

E=1T.. -p0. =0 @.1)

ij, i i
where E is an abbreviation symbol, Tii are the tensor stresses, p is the density of the

medium and the ui are the displacement fields. Equation (2.1) is just Newton's law
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L stating that the divergence of stress is equal to the rate of change of momentum at
each point within the defined region. This approach cannot be followed for the
waveguide geometry here because Region Il is part of a multi-connected region, a

problem which cannot be solved exactly. Instead, we start with the integral,

>

2
EISUidxzdx3dx]_= 0 (2.2)

Pl

X 2

3 —

Here the E which vanishes identically within the defined boundaries is used as the
argument of the integral. The integration is over the whole volume of Region Il as
shown from the limits of the triple integral. No definite limit is needed for X which

is the direction of prgpagaﬁon in the derivation but it is understood to be from - oo to o

as the medium is assumed to be very long in terms of the wavelength.

Now, substituting ui from (1.2) into (2.2), changing the three-
dimensional variation & Ui into a two-dimensional variation & ui(n) , infegrating the

term TZi 2 by parts with respect to x, and using the orthogonal relation (Churchill,

AN AT ST A

1963)

(Pn,Pm)=J PP dxy = C hy8. ., C =2/@2n+1) @3

where Snm is the Kronecker delta, (2.2) becomes

(o]
[] [e® 3 sui(“) dxgdx = 0 @.4)

{:} X.l -0
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With an arbitrary & ui () ,

e ® = M _ ) ) _ e (n) _
E = T Ty ARy pC 5 =0 @)
wherein I.'2
(n) _ :
T = [ medx 2.6
~hy
hy
) _ r
T = Ty P 9% 2.7)
y
= +h
O o p 12 2 2.8)
2 2 'n x, = —h
2 2

The differential of the Legendre polynomials in (2.7) can be expressed as

n

Pia = ) (2/Cp b)) Py 2.9)
p=1,3

where the summation index p indicated covers odd integers only from 1 to the upper limi

When the order of n becomes large, this term introduces complications, but fortunately

a good approximation can be obtained for n=0, 1, 2. Substituting 2.9) into (2.7)

and then into (2.5), gives the stress equations of motion for Region I,

n
Ta(ir:)a - Z (Z/Cn-p 2)T(n-p)+F2)-pC hZU();O
p=1,3 (2.10)
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R e i ]

N These are the equations in a variational approach which replace the differential

! equations (2.1) of the co.nven’rional wave approach. More specifically, a set of
three equations (2.1) of the actual displacements ui and stresses Tii are trans—
’ formed into the infinite sets of equations of order n (n = 0,1,2, ...), each
’ containing three equations of the polynomial (plate) displacements u 4 )

stresses T.i(n) . In the following, it is desirable to have every term of (2.10) ex-

()

pressed in terms of the polynomial dlsplccements v

Substituting u; of (1.2) into the ordinary equations of strain,

] |
STzt e @1
L, and defining
z P s(") 2.12)
n=0
we get the polynomial strains,
@ _ 1 (n) (n) Yoot (n+p)
x S = 3 [ B * e Sai ¥ (WGP Lo By By
p=1,3
2.13)
: Accordingly, the ordinary stresses can be expressed as
®
- s @)
T = Sk W T Z ikt Skl @.14)

where the ikl are the elastic constants in tensor form. Substituting (2.14) into
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2.6) and using (2.3), gives the polynomial stresses,
M s ()
T = G S Sl (2.15)

Up to this point, the derivation follows exactly that of Mindlin and
Medick (1959) except that we are doing differential and integral operations with
respect fo x, of x3‘ directly ins’reud_bf their x, /h2 or Xg /h3, because here
exponential functions are also used together with the Legendre polynomials, thus some

equations are slightly different in appearance from theirs.

[t is now assumed that the stresses on the interfaces between Regions i
and 11l represented by the traction ferms Foi () of (2.8) in (2.10) are given by

" the stresses in the side—region [lI, in other WOI‘dS‘ that the boundary conditions of stress

on the interfaces, T2i = TZ] at x, = + h2 , can be introduced into F2(in) ; then

from (2.8)

X
1
3
o
N

o _ 7,.p 3 , (2.16)

The stresses at Xy = ihz calculated from (1.3) in Region 1lI are,

Ty (£h) = Sopd Ui, 1 (%)

I

). (*1)n(°2ika”k(,r2:‘3k°2k2 |(<)) - @17
n=0

(-
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Substituting (2.17) into (2.16) the final tractions become

6)

0
AUEEDNRUEIC RS E 0 B -1+ (D" I ke b,

p=0 2.18)

The boundary conditions on the displacements at x, = * h2 are automatically
satisfied from the trial forms of the displacement (1.2) and (1.3), therefore both

boundary conditions on the displacement and on the stress are actually involved in the

derivation of (2.18).

By using (2.15), (2.13) and (2.18), equations (2.10) become the

displacement equations of motion (2.19) for Region Il in contact with Region 1lI,

[0 0]
() -« (n) (ntq)
Co P2 Ceqikh Yiba ~ P Yy ) T 2 %jk2 ) Yk,a
: g=1,3
n (e o]
- ‘ m-p) (n-p+q)
2 ) Cegis Yk,b * (¥Cop P2) “jk2 ). U ]
p=1,3 a=1,3
(e o]
+p @ n+p ®- _
5oy L0-(-D™P] Coika Y = L1 ED Ipkegp e 1 =0
p=0 ,
2.19)

3.  Truncated (2,2) - Approximation for the Substrate

With a series solution it is necessary to decide upon the number of terms to

be carried. It is convenient here to label the order of the approximation by the highest
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ey T i oy St e A

Legendre polynomial used for each direction of Region l. Thusa (1,1) - approxi-

s e AT s i,

mation allows linear variation of particle displacements in the Xo and Xa directions
within the overlay Region | and in the x direction within the central Region Il,

2

while the (2, 2) - approximation allows quadratic variation for all the above

directions.

AN T R D T T

It has been found that for reasonable estimates of the dispersion curves,

! the (1,1) - approximation is adequate and for this truncation most of the algebraic
steps can be carried out explicitly, thus allowing direct numerical evaluation of the
colutions. However, for investigation of the form of displacements, especially for the
higher modes, it is desirable to go to a higher approximation and then it is not possible

{ : to do very much of the algebra explicitly and numerical search techniques have to be

ot e e N ST R

introduced. A reasonable compromise between computation time and usefulness of
the solutions is provided by the (2,2) - approximation. Because of the symmetry of
the problem about the vertical, central plane of the guide for isotropic materials, the

equations may be divided into symmetric and antisymmetric modes which can then be
treated independently.
We will proceed first with the (2,2) - approximation. On expanding

2.19) insuch a way that n is 0, 1, 2 successively and keeping in mind that for

any value of n employed the n+q, n-ptq, nip and p are allowed only fo be O,

1 or 2, the following nine homogeneous equations are obtained

e
et

¢
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( ;
- ©) ©) . (0)
“Bkegua Y * M2 (Soikb Yk,ba TPV )+ (Sgik2 * ©2jka) Yk, o)
=Bkt od =0
h
_ | o M M ()
(Bk+ =) epua’ * 3 (Cajkb Yk,ba TP ) L

h
] O _ gyl @, . @) _
Bregia e - BK* T et T 5 (Caiid ) P =0

The elastic tensor for isotropic medium,

L g = Moy Bt H (B Byt 8y By

{ .
; where A\ and p are the Lamé constants, is substituted into (3.1) and the factor

H k2 is removed. [n the coordinate system used, the nine equations of (3.1) are

automatically separated into symmetric modes and antisymmetric modes according to

the rules :
odd for symmetric modes,

for the A.(n) ,i+n = L . .
i even for antisymmetric modes.

IR RS YRR SRV AN B 1 T IR SRR A

The final outcome is as follows :

o

(.




o

ey

a +601 ial
ial_: 8a2+e03
0 0
—590 0
0 —590

for the symmetric modes, and

q2+e02 iC/H2
0 q2+e”
0 ial

-56,86 0

for the antisymmetric modes, where

H2 = kh2 (and H
5 = 24+X/p, &
Gb =

iC/Hz
otl,'/H2

2,
@ T e

a C/H2

ial

8a2+e

3 = khs

= § -1

13

8a2+e

3iC/H2

3uC/H2

2,
x 622

for later use)

B/Hy, 8 = 3(1+[3H2)/H§

and 8, = 5(3+[3H2)/H§

2
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2)
A
@)
A
23] ] "3 |
(3.2)
A o
a
Al "o 0
Al
N
(3.3)
(3.4)
(3.5)
(3.6)
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€ = V -8 —G ’ € = V -l —89
nl n n2 n n
(3.7)
and e , =V =-1-6
3
The normalized velocity Vn is
:
; Vrl = r v/vf , n=0,1,2 (3.8)

where r, are adjustment factors of value near unity (to be explained later ) and v,

is the shear velocity of the substrate .

The attenuation B in (3.6) is adopted from a result for the exponentially

crested waves ( Tiersten, 1969), i.e.,
2 2.1
B = (1 -2/ 3.9

where VR is the Rayleigh velocity for a half-space of the substrate material. The re-
presentation of (3.9) for B, as mentioned in Section 1 of Chapter I, is a provision
that simplifies the involvement of the side-region 11l and thus makes this waveguide
problem somewhat more amenable to solution. In as much as the Rayleigh surface wave
velocity in isotropic solids is independent of direction in the plane of the surface, as

5 indicated by Tiersten (1969), equation (3.9) is the real expression for exponential or
hyperbolic crested waves in a half-space. In the waveguide problem under considera-
tion, the displacements along the plane Xo = h2 are not term-by-term those of a

free—surface Rayleigh wave, for example,in the isotropic case the Rayleigh wave has

two decay constants for depth whereas it will be seen that for the present approach to
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the waveguide problem the number of decay constants for depth depend: on the order
of the truncation. A rigorc;us condition for fh.e choice of a value or a set of values
for B in (3.1) has not been found. Several different forms for the dependence of

B on problem parameters have been tried for both isotropic and anisotrcpic configura-
tions and no justification has been found in terms of better satisfaction of boundary
conditions, of consistency with limiting cases, or of simplification of computation, for
using other than the single value of B “defined by (3.9). In the discussion of trunca-

tion and of numerical results which follow, B will be assumed to be given by (3.9).

Now (3.2) for the symmetric case will be discussed as the example of
normal manipulation. Since the mathematical proéedures for (3.3) of the anti-
symmetric case are entirely the same, only results of important steps are given for the

latter case.

In order to have a non-trivial solution of (3.2), the determinant of the
matrix must vanish. Setting this determinant equal to zero gives the secular equation.
Normally the v2 implicitly expressed in the €ni which appear in the diagonal terms
of the matrix is the eigenvalue, in this case however, it should be remarked that the
v2 is also implied in all Gn in virtue of B . Nevertheless, the relation between v
and a can be fixed from the secular equation when the semi-width h2 is given and
the substrate material is chosen. It happens to be more convenient to solve for a in
a bi—quintic equation of real coefficients for each given v . In the coordinate system
for this symmetric case, only the five positive roots, designated by a (J=1,2,3,4,5),

have meaning for the necessary decaying of the wave amplitudes down into the depth of
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the substrate. The next step is similar to the procedure of finding a set of eigen-
vectors for each a. As mentioned before, explicit expression for a and their
corresponding eigenvectors in this (2,2) - approximation is impossible and numeri-

cal computation has to be assumed. Changing notation for the individual eigenvectors,

the complete set of the calculated eigenvectors can be denoted by

Note that the above eigenvalue solutions are for the polynomial displace-
ments and they should be combined according to (1.2) to get the actual particle
displacements of Region Il . For this symmetric (2,2) - approximation, the displace-

ments are :

5
_ ©) @ _ Yy
v, = Py R = L (At Py Ay, Z,
=1
5
_ m _
b = Py = ) P AyeZ @3.11)
J=1
5
_ ©) 2y _
v, = Pouz *Puz’ = z(A2J+P2A5J)°JZJ
J=1

where the a, are the newly introduced weighting factors and ZJ = exp (aJ k x3)

~ are the Z functions of (1.5) with o specified. The X function of (1.4), de-
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noting propagation, is omitted in (3.11) and will be omitted in most of the following
equations. Similarly, according to (1.3) the particle displacements of Region 111

are :

5
= = @, @ _ v
U](:!:) = (uI + Uy )Y(:!:) = /. (A]J+A4J)OJZ-JY(i)
J=
‘ 5
o _ M _
Yo(x) T FY2 Y(a = ) A3j9yZyY x)
J=1
5
I, (%) = (u§°)+u§2))v(i)' = Z(A2J+A5J)GJZJY(:E)
-1

With the antisymmetric (2,2) - approximation we begin with (3.3) and
the secular equation is a bi—quartic equation in a . Denoting the roots by

a, (J =1,2, 3,4) and the eigenvectors by

©) M) "o @
(A" r AP A3y Ay ) Ay Ay Az Agy)

the particle displacements of Regions || and Il become :

@.1

@3.1¢
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4
= 1) =
v, = P]uf = P zAZJOJZJ
0 2 : 7
v, = P0U§)+P2U§) = L): (A]J+P2A4J)°JZJ (3.14)
J=1
| 4
o i
E - N = P ) Ay
J=1
4
5 o L,0 )
RN R RS = z] A2093 25 Y (1)
J=
4
m - 0, @ _
Sy (e = (2 Yy = ) (AyEANSZIY L G5
J=1
4
I = 1) _
“3(x) T T Y () B iZA3J°JZJY(:|:)
s '

Note that the same notations, A =, a, and Z are used in the symmetric and the

1 J J

antisymmetric approximation , but obviously they are numerically different in the two

cases.

A.  General Equations of Motion for the Overlay from a Variational Approach

A detailed formulation of the one~dimensional theory of wave propagation

in elastic bars of rectangular cross section has been given by Medick (1966 and 1968 ).
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In the theory an algorithm was employed to generate the one -dimensional equations of
motion, the strain-displacement relation, the stress=strain relation, and the associated
boundary conditions by subjecting all of the displacement fields, strains and stresses to
variation. However in this thesis, we proceed rather in a pattern analogous to that
used to develop the two-dimensional theory for plates as shown in Section 2 and con-

sider all other relcﬁon; and conditions as undisturbed constraints.

~

Starting with (2.1) but using the "hatted” variables Tii , P and

~

Ji ; substituting (1.1) and here performing the cross integration of T2. 2 and
14

~

T3i'3 with respect to %o and X3 respectively, we obtain
© m) _ * pom) _ Y > (,mp)
nm) _ np,m) _ \’ n,m-p
T L (20, k) Ty L (M) Ty
p=1,3 p=1,3
A(nlm) h(nlm) _ A :(n,m) -
+ ™+ Fy BC Cohyhy G =0 @.1)
where h2 2h3
A(n’m) _ FS
T = u.f ] T P Qp d g d %, @.2)
-h, 0
2h =
,\(n,m) 3 X x2 +h2
R B @.3)
0 2 2
h2 x,=2h
oM [ i 1 dx .4
3 = F M- o noT2’ o B
X,y = v
-h2 3
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and the following relations for the Qm have been used

(Q,.Q,) = C,hs8, @.5)
m
_ v
Q3 = ) (2/¢ hy) Qg @.6)
p=1,3

Equations (4.1), which replace (2.1) comprise doubly infinite sets of equations of
order (n,m) with n, m = 0,1, ... o, eachof which contains three equations of

( ,m)

the polynomial (bar) displacements UI( /) and stresses TI

Parallel to the derivation for Region 11, the polynomial strains and stresses

of Region | can be expressed in the form

(n m) _ ] ~(n,m) ~(n,m)
| -7 [Ul,] sli ¥ Ui,l 8“
®
~ (n4p ,m) (n+p,m)
+ (2/C_hy) Y §.. + U 6y
p=1,3

+(2/C_hy) Z 5orme) 5o+ A miP) 5,01 @.7)
p=1,3

Fom c C_hyh

< (n,m)
i 2Pz S o “.8)

ki

Since
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2j 2 2
A 4.9
3 = 0 at  xz = 2 h3
and
.T3i = T3i at X = 0, 4.10)
and supposing that T3i at x, = 0 can be determined later as the series;
o
= - @
Ta; (x3=0) = Z Pp GSi : : 4.11)
p=0
then (4.3) and (4.4) become,
c (n,m)
F2i = 0 4.12)
and
“om) _ _,_,\m )
F3i = =(=1) C, h2 G3i . | 4.13)

Equations (4.13) are obtained under the same assumptions used for 2.16) and will
drastically alter the equations of motion (4.1) of the overlay from those of Medick’s
isolated bar due to the mechanical contact of the bottom side of the overlay with the

substrate .

Substituting (4.7) into (4.8) and the resulf; together with (4.12) and

@4.13), into (4.1), the polynomial displacement equations of motion for the rectangu-

lar overlay are obtained,
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( 2 " ~(n,m) . - a « (n+q,m)
(678 =&pq)y " +(21/C Hy) ) ©1ik2 G

g=1,3

[e0]
. o ~ (n,m+q)
+(21/C Hy) ) 1ik3 Yk

g=1,3

(o0}
- (2/C_H,) i [ g Jlf“'P"“)+(2/cn_pH2) Y g, cberam

2jk2 'k
p=1,3 g=1,3
(o]
s ~ (h-p,m+q)
+(2/C HY ). 2ik3 Yk ]
g=1,3
m [0 0]
<
- \ . s alh,mep) T ~  (nig,m-p)
(2/c Hy ), [icgyq9 +(2/C H) /), 32 %
\,_ ! P=1 13 q=] '3
[s 0]
‘\—‘ P A(n,m"P'*'q)
+(2/Cm_p Hy) $3ik3 Sk ]
g=1,3
Pel - o (4.14)

m -
-(-1) (Cm HSk) 3

where H2 and H3 are defined in (3.4) .

As mentioned before, (4.14) corresponds to the boundary-condition step

of the conventional exact approach and contains two kinds of unknowns : the weighting

factors a, of Region Il in the terms of G3(in) and the polynomial amplitudes Ak(n,m)
of Region | in all of the other terms. In order to make (4.14) solvable, one has to
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transform ai into '&lin,m)' and for this purpose the "detailed matching” of dis-
placements on the interface between Regions | and [I, mentioned at the end c;'>f
Section 1 and represented by Block 9 on the flow~chart in Figure 2, can be intro-
duced at this stage. By such a manipulation all the boundary conditions at the
interface are taken into consideration on the one hand, and on the ofhér hand (4.14)
is transformed info a suitable set of homogeneous equations in which the number of
equations is equal to the number of un|.<nowns so that the vanishing of the coefficient
determinant leads directly to the solution of this waveguide problem. However to
avoid unnecessarily complicated expressions, the analysis here will first introduce the
(2,2) truncation within the overlay in the next section and then apply the detailed

matching in Section 6.

5. Truncated (2,2) - Approximation for the Overlay

On expanding (4.14) with n,m= 0, 1, 2, a total of 27 equations,
three (j=1, 2, 3) for every combination of n and m, is obtained for the
(2, 2) - approximation and is given in full in Appendix A.  After substituting
the Lqme' constants 1 and X for the eiikl of Region |, the 27 equations separate
into two independent sets, one for the symmetric modes with (i + n) odd in Ai(n,m)

and ngn) » and one for the antisymmetric modes, with (i+n) even according to the

same rules as stated in Section 3 .  Since the only mirror plane of symmetry is the

‘plane Xo = 0 in the configuration shown in Figure 1, the superscript n in /‘ii(n,m)



C
and ngn) associated with the Legendre polynomial P displays the symmetry
i _
above ; but since the symmetry plane of the overlay itself X = h3 is not a symmetry
plane of the complete problem, because of the presence of the substrate, the super-

. . al,m . e 1. .
' script m in Ai( sm) associated with the Legendre polynomials Q. is arbitrary in

both the symmetric and the antisymmetric modes.

It is convenient to relabel the coefficients Ai(n,m) into two column

vectors, one for the fifteen elements associated with symmetric modes

C < s ) = [A00) 20,0 ;0,1) ~0,1) ;0,2 0,2

: (S.l ¥ 4 52 LY S.Is) - [ A] r A3 f 4 A] ¥4 A3 14 A-l 14 A3 14

00 20 20,2 20,0 ;@0 e fe) le2 e

{ A2 ’ A2 P Ay, A] ’ A3 A ’ A3 , A] r Ag

5.1)

and one for the twelve elements of the antisymmetric modes

A A A = [ADD 2O 202 20,0 20,0

(Al ’ A2 o0 A.l2> - [A2 r A2 r A2 r A-I ¥ A3 r

; (LY S,y 21,2 13,2 L @2,0 T@, T@,2

i Al Ag P AP Ag P AT AT, A, ] (5.2
If the terms in G;T) can be expressed in terms of the elements SM for the symmetric

A

case in such a manner that INM is the corresponding part of the coefficient of SM

in the N th equation and if FNM represents the part of the coefficient of SM not

(n

associated with G3i) in this same equation,

-~

the INM and the fNM can be grouped

into matrices so that, after dividing the equations through by i, the set of equations :

=
et




A IO g e e

40

[(fs) NIV (gS)NMJ Sy =0 N,M =1,2,..15 (5.3

Zz v

can be written for the symmetric case ; and similarly for the antisymmetric case

:LA ) am * (9a) am 1A =0 NoM = 1,2, .12 (5.4)

Here subscripts "S" and "A" stand for "Symmetric” and "Antisymmetric” and the

individual elements of f. and fA are written out in Appendix B .

S
It will be recalled that the quantity Gé?) defined by (4.11) is the
coefficient of the Legendre polynomial of order n in the substrate stress 'T3i when
the latter is evaluated at X = 0 from the displacements in Region 1l. Substituting

from (3.11) into the ordinary expressions of stress,

Ty = Mlugq +u )
Typ = #(uz9 + Yy 3)
T33 = ()\+2p)u3,3+)\(ul'l + U2,2) ’

and then letting x, = 0, the form of (4.11) for the symmetric (2,2) - approximation

3

is obtained,

T3] = G] + P2 G4
T32 = P] G3 (5.5
T33 = G2 + P2 G5
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.
where the notation
= 0 0 ;0 -2 (2)
(5.6)
has been used. The components are given by
G, = ok ). G 9, ,J =1,2,34,5 (5.7)
L where
Ciy = Auyeytify
G,, = 8Ay o, + (Ag) /Hy+TA YN/
{
G3J = A3J<:(J+3A5J/H2 (5.8)
Cay = AgyoytiAg
65J = 8A5JaJ+|A4J VAT
Similarly, for the antisymmetric modes, introducing the notation
- (c® ~M O 5@
(G],Gz,G3,G4) (G32’G31 p G3 32) 5.9
“‘ gives the following expressions for the stresses at the interface under the. overlay from
3.14)
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Tai = K Gé})

Tao = G:(,:)Z) + P, 63@ ' (5.10)

f33 = B G:?s)
so that

6, .= sk ) G o, LJ=1,2,34 I
where

Giy = Ayt Ag/H

Gyy = Ayt Ay

(5.12)
Gs, = 8A3JaJ+(3A4J/H2+iA2J))\/p

Gy = Ay

Note that Gl of (5.11) are the terms for the elements of 9 in (5.4). Although

the same notation is used for GI ’ GIJ ray AIJ and a, in the symmetric and
antisymmetric case, the symbols represent different values and different numbers in

each case. .

6. "Detailed Matching” of Displacements and the Search for Solutions

In this section an important procedure, "detailed matching” of displace-

‘ments for the interface between Regions | and 1, that is the step of Block 9 in
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Figure 2, is introduced and the last part of the analysis is developed. If the condi-
tions of continuity of displacement across the interface between Regions | and Il

are now imposéd, considering the form of the substrate and overlay displacements from
(1.1) and (1.2) and recalling that the substrate displacements are a linear combina~
tion of the terms in (3.11), the general form of the statement of continuity of

displacement at x5 = 0 will be
0 - ™, 0m)
Yo Ya, Al = Y r ) (DT A ©.1)
n J n m

It is assumed here that there is "detailed matching” in the latter equation in that
coefficients of corresponding Legendre polynomials on opposite sides of the equation

are equal, i.e., for each combination of i and n,

el = T e A
J m

Note that in the above two equations, the factor ( -l)m comes from the Legendre

polynomial Q, at x3= 0 and the symmetry rules mentioned before are valid.

Again by taking the symméfric (2,2) - approximation as an illustration
of the analysis, from (3.11) and (1.1) for the five combinations of i and n, (6.2)

may be expressed in a compact form,

YA e b L=l 5 6.9)
)
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where B, stands for grouped representations of Ai(n,m) according to the right-hand

A

side of (6.2) as follows, in terms of the element of the column vector SM ,

by = 5 7 337% 35

S B R

As = A7 ) ;_8 ¥ S:9 - 64
s = S0 512t S

I;5 = S - g13 * g15

Solving for a, from (6.3) and substituting into (5.7); gives

ck TV 6 (A _
G, = nk LZGU(A ) i P ,LJ,K=1,2,..5
K J 6.5)

where (A_])JK is the reduced cofactor of AKJ . Now it isseen in (6.5) that the

G, , which originally contained the weighting factors a, as unknowns in (5.7), are

-~ ~

thus transformed into expressions with the polynomial amplitudes SM , via bK ; SO

in (5.3). But care must be taken in so doing, converting

S
of (6.5) back into Gé':) according to (5.6), dividing by i , multiplying by the

that gg can be added to f

G,

corresponding factors associated with Gg:) in (A.1) in Appendix A, changing bl of

(6.4) back into SM and then identifying the resultant terms as the (gS)NM .

At this stage the only unknown quantity in (5.3), for specified phase

velocity V = v /vf and semi-width H2 =k h2 , is relative semi-thickness
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Hy = k h3 and the determinant of this homogeneous set of equations must vanish

for non-trivial solutions.

lterative search techniques, such as the golden-section method can be
used to determine a numerical value of H3 which causes the determinant to vanish,
thus establishing one point on the dispersion curves for the symmetric modes. Families
of dispersion curves are produced by repeating the procedure for the same value of
Hy but successive assumed values of V . Once the value of H3 which causes the
coefficient determinant in (5.3) to vanish has been found, the relative values of the
components of gM , that is the appropriate A“i(m,n)’ can be determined by say
Gaussian reduction of (5.3). These components give the particle displacements in
the overlay by means of (1.1). The weighting chtors a, are found by inverting (6.3)
and these in turn determine the particle displacements in the substrate through (3.11)

and (3.12).

In summary, for the symmetric modes, the eigenvalues and eigenvectors for
the substrate solutions are determined from (3.2) thus establishing the form of the sub-
strate displcceménfs, (3.11), except for the weighting factors. Using this form of
substrate displacement, detailed matching of the displacements across the interface be~-
tween Regions | and [l allows these weighting factors fo be replaced in the traction
integral terms of the overlay equations by the overlay coefficients ;i(n,m) ; compare
(5.7) and (6.5). The latter interchange produces the homogeneous set, (5.3), which
has only one parameter, Hy o for assumed values of V and Hy s and a search is
made for a value of H3 which allows a non=trivial solution, and for this value of H3

the various displacements can be determined explicitly.
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As exactly parallel procedure is used for the antisymmetric modes, if

the following regrouping is used instead of 6.4),

b

>

>

o-

A]-A + A

(6-6)

Leiting I, J, K = 1,2,3,4 (not including 5), the formulation above is valid

for the antisymmetric modes with appropriate reduction in the number of equations.

The corresponding set of equations for the symmetric and antisymmetric modes are

summarized in the following table.

Symmetric

Quantities-Equation

AR
i

AIJ

3.2)
(3.10)
@3.11)
(3.12)
(5.1)

(5.3)

Antisymmetric

Equation - Quantities

(3.3)
(3.13)
(3.14)
(3.15)
(5.2)

(5.4)

Ai(")

AlJ

A’ 9A
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Symmef‘ric Aritisymmetric
Quantities - Equation Equation - Quantities
G, (5.5) (5.10) G,
G, (5.6) (5.9) G,
G, 5.7) 5.11) G,
G, 5.8) 5.12) Gy,
Gl (6.3) 6.3) Ql
Ql 6.4) 6.6) QI
G, (6.5) 6.5) G,
i+n = odd i+t n = even
,J = 1,2,8,4,5 ,J = 1,2,3,4
M = 1,2,...,15 M = 1,2, ...,12.

7.  Truncated (1,1) - Approximation

in this section the truncated (1,1) - approximation is presented in some
detail though the general procedure is the same as that given in Sections 1 fo 6 for
the (2,2) - approximation. Here the polynomial indices (n, m, etc) are 0 and 1
only, and if all the terms containing a polynomial index of 2 are omitted, the (1,1) =

approximation is obtained from the (2,2) equations without modifying the computing
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techniques. However in the light of the lower order involved in the (1,1) -
approximation the search technique is not needed, instead, an explicit formula-ﬁon
can be provided wherein not only is direct numerical evaluation possible but also the
structure of the theory is more clearly illustrated. Moreover, in order to display the
theory in more unison, here the symmetric and antisymmetric modes can be kept

together to the last moment at which the equations of the dispersion curves are obtained.

Taking the first two equations in (3.1) with the terms containing Ul(<2)
omitted and replacing the isotropic tensor by Lame’ consfanfs; six equations for the

(1,1) - approximation are obtained :

© ,0 e A
M. A + ML A = 0
ik k ik "k 7.1)
M 0

Here the 6 x 6 coefficient matrix can be decomposed into four 3 x 3 submatrices

denoted in (7.1) by Ml(lg) , M|(k]) ’ M'ik and a null one at the lower off-diagonal

corner. The forms of the three former submatrices are as follows :

) ]
[Mil(:‘)] = 02+en] ial

2
d@ * e , n=0,1 7.2)

ial u+en3

— .
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1
[M-ik] = T::-‘L' a @.3)
2 .

where all notations are the same as shown in (3.4) to (3.7). Note that the two

diagonal submatrices Mfl.i) and Miﬂ)

i+k = evenand the M'ik only at j+k = odd. This pattern ensures the separ-

have non-vanishing elements only at

ability of the symmetric modes from the antisymmetric. Obviously if now separated,
the same expressions are obtained as those in (3.2) and (3.3) with the terms of Ai(z)
omitted. Both the symmetric (1,1) = and the antisymmetric (1 ,1) - approximations
have three homogeneous equations for the secular equation. According to the same
rules of symmetry, [A%o) ’ A:(so) ’ Ag) ] belong to the symmetric modes while

[ Aéo) ' Agl) ’ Ag) ] belong to the antisymmetric. For the reasons mentioned above,

the possibility of separation is ignored here and (7.1) is treated as a whole in this

(1,1) - approximation.
The secular equation for (7.1) becomes

© , . () _
|Mik | lMik |l =0 7 .4)

Solving for six a's

a = [1+(9n-vf)/s]]/2

a0 = (]+89n _VnZ)l/Z’ n=20,1 .5)
_ 2,1

@ s = ('|+9n Vn)
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[t is very interesting to point out that when H2 (=k h2) approaches infinity, i.e.,
a case of very wide Region I, only the diagonal submatrices Milin) ,n=1,2,
survive. The elements of these submatrices reduce exactly to those of the layered
problem (Farnell and Adler 1972, Equation 15) and accordingly so do the a's of

7 .5) because Gn = 0 when Hy = . Actually this feature occurs also in the

(2,2) - approximation, but it cannot be seen so clearly because of the many implicit

expressions involved.

Now solving for the eigenvectors corresponding the a's and denoting

them by,
_
‘ P o3 72
o] o .
I - _iGOI ! : %2 712
l m T T T = oo T 0 -
l miiJ o1 Pa,
- l
1
|
I =i o 1
- J
7 .6)

where
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2
1 “n
T T 2 2
2 T-ag =8 = (9 = o) /&
“.7)
¥y = — ' 1
12
H, 2 2 2
2 T-a, =8y + (9, —GIZ)/C
then the polynomial displacements can be formed as follows
©) © _O 0
u, = . e Lo Fmlal’ Zo
i S A T 1) B e W W1
0 ), -
T Mm% A
where ai(o) and ui(]) are the added weighting factors and
Zn(i) = exp[anikx3], n=0,1Tand | =1,2,3 7.9

are the Z-functions of Equation (1.5) with the specified ani of Equation (7.5).

Here it should be mentioned once again that in this analysis as compared
with the exact approach, the decay constant a along the depth coordinate Xq has
been used as the eigenvalue and the eigenvectors obtained are for the polynomial dis-

placements and not for the actual displacements. The latter have to be compiled from

the former according to (1.2).



a-ﬁt\

52

Consequently the real displacements of the (1,1) - approximation are

v, o= Ui(O)+Plui(])

_ 0.0,

i 4 Zoq Tyt

OO |
TR IR N0 719

and

=%

) TR
() = (ui(o) + ui())Y(:h)

= [mi(iO) a(o)Z + (m',, d:m.(i]))ai(]) Z, lvy

) i @ (£) @.11)

Here both u, and u, are general, containing symmetric and antisymmetric com-

i (£)

ponents together.

For later use, the stresses T,. at the interface between Regions | and

3
Il can be expressed by substituting the general form of the displacements (7.10) into

the ordinary expression for the stress,

Ty = 03(?) + Py G:,f;) ,  at xg =0 7.12)
where
1
G3(?) = Pk(fi(l?) o + Pik %)
G?f;) = pk(0 + fiﬂ) o) 7.13)
"and
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- -~
2
2 a T+ a
(n) _ -
tik | = @0 , n = 0,1
§ (1 -a2) -2 2 14
‘ %l %3 .14
| _
2912 M2
3 =1 ey (% =) - 7.15)
ik 1171 H, H, ’
& -2 2
—_Hz‘ ‘}’]2[8(1 -q]2)-2]
- -
Heretofore in this section only Region Il has been considered.  Before turning to

Region 1 for its equations of motion, it is convenient to have the polynomial com-

3(?) and G3(Il ) ready to transform into expressions in the polynomial

amplitudes Ai(n,m). The same procedure used to obtain (6.5) in the (2,2) - approxi-

ponents of stress, G

mation is employed here except that an explicit expression with the symmetric and

antisymmetric modes combined together now results from the manipulation.

In this (1,1) - approximation, the "detailed matching” equation (6.2)

shows

m

OO, . O Ae0 _2eD
i i i i i | i 7.16
O
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L Solving for ai(o) and ui(]) and substituting into (7.13), gives
© _ : © ,,0,0) ;0,1 - L (1,0) 1 (1,1)
G3i = pkl Tik (A, AT T ik(Ak A )]
M _ M, 4 (1,0 _ (1,1
Gg; = pkl 0 T (A A 3]
7.17)
where the non-vanishing terms are, for n = 0 and 1,
n) — a2 - 1-
Y = % (1 o(n3)/wn' ®n l %1 %3
7.0 = [14a,(a -24q Y1/0
13 n3 ' n3 nl n
L o | '
T2 %2 7.18)
(n) _ _ .2 -
7-3] = & (1 “n]) /‘Pn 2
(n) - - o2
733 = 8 %3 (1 o(nl) /(‘Dn
= ~ag) (1 -aly) /
T2 = Ma2lep 9%y %3) /%o
T2 = My (o %) /o,
Tiz T N3Ty 1/,
T = 8Yp(ag map) Uagg mag) /og — o lr (8-1) /Hy
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Now the equations of motion for Region | in which every term is
explicitly expressed can bé obtained in the (1,1) - approximation by (i) taking
the first, second, fourth and fifth equations only from (A.1) ; (ii) omitting all
terms of the polynomial displacements in which either or both of n and m are equal
to 2 ; (iii) replacing the eiikl by the Lame constants )‘: and @ ; (iv) replac-
ing the stress terms by (7.17) and (7.18), and (v) dividingby I . The result is
12 homogeneous equations with variables (Alio’o), Ak(o']), Ak(]'o)) ,k=1,2,3
completely split into the symmetric and antisymmetric modes, six equations each

according to the same rules of symmetry mentioned before.

To illustrate better what is contained in each element, both the symmetric
and antisymmetric mode equations in the (1,1) - approximation are shown in full in
matrix form below.* In (7.19) and (7.20), all stress terms are expressed directly
through the notations

Ji(i“) = Tii(“)/z HHy and Ji'i = e /2p H, 7.21)

Equations (7.19) and (7.20) inthe (1,1) - approximation correspond to (5.3) and
(5.4) respectively in the (2,2) - approximation. Here it is easy tosee in (7.19)

and (7.20) the distribution of the f terms and the gm TErmse the latter ones

NM

are represented by Ji(in) and J;i and contribute the major effects in the mode structure

of the waveguide problem, since if they are omitted, the equations would become those

Equation (7.19) for the symmetric mode is given on page.56 and (7.20) for the
antisymmetric mode on page 57.



For the symmetric mod3s

. 0 ) © ) B - -
fn iy o flatidis 7t T
‘ |
., 0 _ 0 . ,0) ©) o .
-iJg fao =33 fag *1 3 33 I3 I32
|
0) | O L0 0 . i
3J” f32+3|J‘3 f33 3J” 3|J13 | 3|J12 f38 3|J12
. 0) ©0) ) .0 e
fyq #3100 35 3i Iy fh 305 o+ 30 31,
— ———— — p— — — —-— — — — - — __'v — — — — pr— —-— ——
|
: _ M m
1 0 0 f4 ' f77 = J22 29
m 2 M
l_° 0 fa3 0 | 3y fag =3 Jgo

where the fN M acquire the same expressions as in (B.1) and (B.2).

9s
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For the antisymmetric modes

_,0
f1 74

©)
34,

f

where the F

©)
29

22

—— —-
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62

NM

i -30

22

l

f., =1 J

14 21

3iJé]

_, M
fa =9

. (M
- i J3]

(1)
3444

| f +3iJm

74 31

-1
423

f25 + 3 J23

. (D
-i J]3

- M
i:.55 J33
« (1)
f65 + 3|J]3

210

acquire the same expressions in (B.3) and (B.4) .

Y
|J2]

e
f26 3iJ

1
I

. (D)
f56+| J3]

_a (M
feo =3 9N

-3i 5§

21

93

-3J23

o
fi+ 13

(1
J33

., (M
-3i J]3

-3
f =3 Jg

Ay 0,0) |

~A2 ©,1)

>

A] (1,0)
A3 (1,0)
A] an

A3 a,n

7 .20)
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of an isolated rectangular rqd. Here again the only parameter in each matrix is the
value of H3 for chosen V and H2 and thus the determinant of the matrix is f;'eafed
as a polynomial in 1/ Ha the real roots of which are determined by a root-solving
routine, instead of the time-consuming search technique in the (2,2) - approximation,
to give the appropriate values of Ha of the dispersion curves for all possible modes in

the (1,1) - approximation at once.
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CHAPTER IV

NUMERICAL CALCULATION AND MODE CLASSIFICATION

1.  General Description of Numerical Calculation

The derivation of the equations for the (1,1) - and (2,2) - approxima=-
tions has been presented in the previous chapter. For a reasonable estimate of the
dispersion curves, the (1,1) - approximc;fion is adequate especially for the fundamental
modes at low values of the parameter k h3 , and since the algebraic steps of this
approximation have been carried out explicitly, a direct numerical evaluation of the
solutions can be used. However, for the-inve-sﬁgafion of the quadratic variations of
displacements within Region [, it is necessary to go to the (2,2) - approximation.

For the latter it is not possible to do the algebra e*plicifly and some numerical search
techniques have to be introduced. The ranks of the matrices (i.e., the numbers of the
homogeneous equations) for the symmetric and antisymmetric modes in various approxi-
mations and the average computing times needed to obtain a set of dispersion curves

(50 points) by an [BM 360/75 central processor are tabulated with remarks as follows :
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Gives Rayleigh n
only for SYM, L

modes only for A

Dispersion reason
~ .
v, linear, algel

explicit, direct r

Dispersion more ¢

curate, U, quadr
1

algebra not expli

search computati

Approximation Number of  Number of  Computing Time Remarks
2-d. Egs. 1-d. Egs. IBM 360/75
SYM ANTI SYM ANTI
©,0) - 2 1 2 1 <5 secs
an - 3 3 6 6 20 secs
merical computat
used.
@,2) - 5 4 15 12 500 secs
needed.
@,3) - ) ) 24 24

Algebra has notb

done.

Note that even the simplest (0,0) - approximation gives interesting

solutions, whose symmetric equivalent equations for a plate were obtained by Poisson

(1829) and Cauchy (1828) and are commonly called the equations of the classical

theory of extensional vibrations of thin plates ( Love, 1959, p. 497) .

From the ranks of the matrices and the computing times listed above, it

can be seen that the extension to higher-order truncations more than the 2,2) would



N~

61

involve a tremendous increase in algebraic complexity and also of computing time
without much anticipated increase in absolute accuracy, therefore, the dispersibn
curves and displacement patterns reported below are normally taken from the (2,2) -
approximation. The numerical search technique developed by Lim and F;rnell (1968)
is used for the evaluation of the step corresponding to the procedure of Block 12 in
Figure 2, Chapter 1l, and it has been found that double precision arithmetic must be
used for the calculation of the polynorr;ial eigenvectors, Block 6 in Figure 2. In the
searching, a search range of the thickness parameter kt h3 is estimated at the given
values of the phase velocity v /vt and of the width parameter kt h2 , and the real
root of k’r h3 in the estimated range is located by finding the corresponding minimum
absolute value of the determinant of (5.3) for symmetric modes and of (5.4) for
antisymmetric modes.. Notfe that in the presentation of dispersion curves, the propa-
gating real phase constant k in the width and thickness parameters is replaced by

k’r = /vf =2x /)\f , the wave number with respect to the bulk shear velocity

Vi of the substrate. Search feasibility depends upon how well the range interval is

chosen at the start of the search, for example it is desirable that for each search there

be one and only one value of k'r h3 in the range. A dependable procedure has been

to use the results of the (1,1) - approximation as a guide for the choice of search range

bearing in mind that some modes may exist in the (2,2) - approximation which do not

appear in the (1,1) - approximation.
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2. Mode Classification vs Truncation

The dispersion curves determined in this analysis give the normalized
phase velocifyl v /v,r as a function of the width parameter kf h3 for fixed values of
the parameter k'f h2 . When kf h2 approaches infinity, the dispersion curves corres-
ponding to the layered problem are obtained and on this basis the modes are classified

as follows :

The nth Rayleigh-like (or Love-like) mode is a mode
that degenerates to the nth Rayleigh (or Love) mode

of the layered problem when |<f h2 - ©.

The suffix "-like" attached to the modes-names "Rayleigh" and "Love is used
because any mode in this overlay waveguide has f};ree components of displacement

(two sagittal and one transverse) at any point in the guided region except that the
sagittal -plane componenk of an antisymmetric mode or the transverse component of a
symmetric mode reduce to zero on the plane Xy = 0 due to symmetry. Strictly
speaking therefore, no mode in this overlay waveguide is a real Rayleigh mode or a real
Love mode although it approaches one or the other when ki- h2 -+ o ; and it is by this
asymptotic behaviour the name Rayleigh-like or Love=-like is used for the modes, though

the suffix may be omitted sometimes in the sequel.

It has been found that some additional modes emerge when working on the
truncated approximations with increasing orders from zero to two. Designating "R "

and "L " as the Rayleigh-like and Love-like modes with prefix "s" and "a" for
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"symmetric" and "antisymmetric" and a following subscript n for the order of the
mode, the mode classification for the (0,0) -, (1,1) = and (2,2) -approximalﬁons

can be listed as

Approximation Symmetric Modes Antisymmetric Modes
©,0) s Rn « al,
a,n sRn,sLn an,aRn
2,2) sRn,sLn,sR'n aLn,aRn,aL;‘

When kf h2 =~ o, modes s Ry s s R'] and a R degenerate into the first Rayleigh

mode ‘of the layered problem ; modes s Ry s s R'2 and a Ry into the second Rayleigh

mode ; and modes s L] , a L] and a L'] into the first Love mode. From the scheme
of increasing modes for higher order truncation in the above list, it is anticipated that

modes s L;‘ and a R'n would appear in the (3,3) - approximation because of the intro-

duction of cubic variation of displacements in Xo = direction.

3.  Adjustment Parameters

As noted in Sections 3 and 5, Chapter lll, adjustment parameters are -
introduced into truncated approximations in order to compensate for some of the errors due

to the omission of the polynomials of higher degrees. In principle, such parameters are



used to reconcile the results of the approximate theory with some reference data from
the three~dimensional theory ; for example, the data in the neighbourhood of cutoff
frequency in an exact infinite plate were used for such purpose in the approximate
two—dimensional theory of extensional vibrations of elastic plates ( Mindlin, 1955 ;
Mindlin and Medick, 1959). Unfortunately, such data are not always available for
other problems and then a limiting case of the problem is usually used for the purpose.
In the one~dimensional theory of wave ~propagaﬁon in elastic bars of rectangular cross
section ( Medick, 1966 and ll968 ) where the exact cutoff frequencies are not known,
the bar of degenerate cross section, namely the infinite plate,was used as a means of

finding the parameters.

For the configuration in this analysis, the layered problem, which has been
investigated so extensively ( Farnell and Adler, 1972), serves well as a limiting case for
reference to find the adjustment parameters. It is readily seen that the configuration
approaches a layered substrate when the width parameter k’r h2 becomes very large
due to the very wide relative width of the overlay. The minimum value of k, h, re-
quired to represent the layered problem satisfactorily is not very critical. 1t has been

found that when kt h2 is greater than 10, dispersion data obtained for the sR and aL

modes have reached the limiting case and there is effectively no deviation from curve to
curve for different higher values of kt h2. _The deviation between curves for values of |<1_h2

near 10 is relatively larger for the s L and a R modes. The value of kt h2 =320 (h2 =43 }\t)

is taken in this analysis to be sufficient to make the ratio of h2 /h3 large enough to

‘give the layered-problem dispersion curves for all modes and for the whole rungé of kf h3
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concerned, and the adjustment parameters are chosen to give the best fit of this

kf h2 = 320 dispersion curve to those of the corresponding layered~problem. |

The distribution and use of adjustment parameters is somewhat arbitrary ;
two methods have been suggested in the variational theory for plates (Mindlin, 1955),
using them to affect the correct either the strain or the kinetic energy densities. The
latter is simpler to apply and has been.found satisfactory for this problem. The adjust-
ment parameters, designated by ros are associated with the shear velocities in (3.7)

and (B.1) so that the simple velocity ratios in these equations are replaced by

0,. 1, 2 for Region I,

1]

V. = rnv/vf, . n

\

nm

0, 1,2 for Region I,

1

1 - .
(rn rm) /2v/ Vir n,m

where Vi and \?l_ are the bulk shear velocities of the subsirate and overlay respec~

tively.

The appropriate values of 0 and ry are obtained rather easily by a
computer-based trial and error method in the (1,1) - approximation realizing that
values close to unity must be anticipated if the truncation is valid. For example in the
guide consisting of a gold overlay on a fused—quartz substrate to be considered below, a
couple of trials with interpolation reached the following values of F which matched
the dispersion curves for kt h2 = 320 inthe (1,1) - approximation to the correspond-
ing Rayleigh and Love curves of the exact layered-problem : 0= 1.005, F = 1.010

“for symmetric modes and 1.015 for antisymmetric modes. It was found that in going to
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the (2,2) - approximation for the same problem, o and " need not be changed,
and the satisfactory value of r, was the unadjusted value of unity and that all of
these r, are not very sensitive to the material combinations as verified in calcula-
tions with the (1,1) - approximation for dural on dural, zinc oxide on silicon etc.
The same values of the parameters are used for a range of material combinations in the
next chapter though it is not difficult to re-evaluate them for different combinations.
Moreover, it has been found that 0 is more sensitive to the sR and a L modes while
ry to the sL and a R modes and the sensitivities of both depend somewhat upon the
phase velocities of the waves. As an illustration, let I0 be the increment of kt h3
fora 1% increase of ro ot constant r, and I.I that of ry at constant ry . The
values of b and l] for the first modes of a gold-on-fused-quartz guide at the nor-

malized velocities V = .8 and .6 for hZ/hé = 640 are as follows :

s R sL aR al

1 1 1 1

-.0025 -.0006 -.0003 -.0024

<
il

™

o
1l

-.0000 -,0017 -.0020 -.0000

-.0055 -.0020 -.0017  -.0048

<
Il
o
Il

1

-.0000 -.0027 -.0031 -.0000
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CHAPTER V
RESULTS

In this chapter examples of the dispersion curves and displacement
distributions as calculated with the methods of Chapter lll are presenfed. In order to
see the effects of guide thickness, attention is centered on the first Rayleigh-like and
Love-like modes from fHe (2,2) - approximation on a single pair of materials, a gold
overlay on a fused quartz substrate, and some of the second modes that are adjacent to
the first are considered (Tu and Famell, 1972b, 1971a and 1971b). The pair of materials
chosen was selected in order to facilatate comparison of the thin-film limiting results
with earlier calculations and with experi.menfcll measurements (Tiersten, 1969 ; Adkins
and Hughes, 1969). No complete verification exists for the thicker film results to be
shown except for consistency of successive approximations, degeneracy info known layer-
cn-half-space results when the guide width becomes large in terms of the wavelength,
and degeneracy info rod solutions when the substrate stiffness and density vanish. The
results obtained with the (2,2) - approximation in another Iimitjng case, that of the
topographic guide (Mason et al., 1971 s Tu and Farnell, 1972a), which obtains is
guiding action from a topographic deformation of the half-space substrate or in the
language here a relatively thick overlaid ridge of the same material as the substrate,
agree well with experimental measurements and provide én essential verificq'tion to the
analysis of this thesis. Chapter V1 is concerned specifically with topographic guides

and with brief remark on the rigid substrate guide (VVoldron, 1971 and 1972).

i
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/
The dispersion curves from the (1,1) - approximation for overlays of

platinum, polystyrene, nickel and an artificial gold on a common substrate of fused
quartz are presented in the latter part of this chapter in order to illustrate both the
application of the analysis to various material combinations and the general behaviour

of the overlay guides.

1. Dispersion from the (2,2) - Approximation

The dispersion curves as calculated with the (2,2) - approximation for
a gold overlay on a fused~-quariz substrate (for material constants see Section 4) are
shown in Fig. 3 to 8. The displacement distributions will be considered in the next
section. As noted previously, the natural form of a dispersion curve for calculations
using the methods above expresses the normalized velocity v/vaos a function of kth3
for a fixed value of kth2’ and these are the parameters used in Fig. 3 to 6. The more
common form in which the aspect ratio (h2/h3) of the overlay is the fixed parameter
on each curve can be interpolated from the former curves and is.used in Fig. 7 and 8.
In all of the figures, therefore, the abscissa on the curves is the layer thickness, 2h3,
expressed in terms of kths and the ordinate the mode phase velocity v relative to the
shear velocity Vi with parameters kfh2 in Fig. 3 to 6 and with parameters h2/h3 in
Fig. 7 and 8. Since the symmetric and antisymmetric modes can be separated as
shown in the analysis, the dispersion curves in the figures are divided according to

-modes of the symmetric Rayleigh-like (sR, sR'), the antisymmetric Rayleigh-like (aR),
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the symmetric Love-like (sL) and the antisymmetric Love-like (al, al') as will be

seen below.

It will be recalled that for an infinite isotropic layer on an isotropic
half-space substrate, there are two independent sets of solutions. The modes which
involve sagittal-plane displacements only are usually called the Ray‘eigh modes
(Famell and Adler, 1972) and the dispersion curves for the first two of these modes
for an infinite gold layer on a half-space of fused quartz are marked "first Rayleigh"
and "second Rayleigh" on Fig. 3 and 4. Simi larly, the modes of the other set, the
Love modes, for the infinitely wide layer have only the displacement corﬁponenf
which is normal to the sagittal plane, and the dispersion curve for the first of these
modes is marked "first Love" on Fig. 5 and 6. The cur;/e for the second Love mode

lies entirely above the range of kth3 plotted here.

The dispersion curves for the symmetric modes sR; and sR, are shown
for a wide range of kfh2 values in Fig. 3. The phase velocities of the sR] modes all
approach the Rayleigh velocity of a free quartz surface (vR / v = 0.9058) with zero
slope for decreasing values of layer thickness (Tiersten, 1969). On the other hand,
the curves for the sR, modes approach the substrate Ray leigh velocity VR with a finite
slope much as does the limiting second Rayleigh curve itself. However, for the waveguide
modes , if the phase velo;ity exceeds R then the waveguide mode will radiate a simple
Rayleigh wave onto the substrate free surface at an angle to the guide axis appropriate

for phase matching. Since in this analysis kth2 is given a positive real value to find
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a positive real kfh3 as a root for a valid solution, implying that |<f must be positive
real, it is impracticable to use this analysis to find a solution in the “leoky—wa\./e"
region of \elocities above v = vp:
Two unanticipated symmetrical sets of modes, SR, *and sR,', which also
evolve from the first and second Rayleigh layer modes are shown by the two groups of
broken curves on Fig. 3. i is seen by_fhe kfh2 values on the latter curves that the

dispersion of these modes is a much more sensitive function of guide width than for

the sR] set.

The other modes which evolve from the Rayleigh layer modes as the guide
width is decreased are the cmfisymmel‘ric.uRl and aR, shown by the solid and broken
curves respectively in Fig. 4. Here the dispersion curves for the cR] modes do not
come to a common point at kth - 0 as do the sR, modes but rather appear to have
a cut-off (Tiersten, 1969) in the sense that below a given value of |<fh3 the calculated
velocity would exceed the substrate Rayleigh velocity VR and the mode would radiate
a free-surface Rayleigh wave. For a given decrease in guide width, an aR] curve is

displaced much more to the right than the corresponding curve for an sR] mode.

If the sets of modes which evolve from the first Love mode of the infinitely
wide layer geometry are now considered, the dispersion curves develop as indicated in
Fig. 5 andé. It is seen that the symmefric.ql set sL of Fig. 5 enter the leaky wave
region v > vp of finite slopes. While these modes have only transverse displacement

components u,, for very large values of kth2' all three components are present for finite
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widths. Figure 6 shows the dispersion associated with the two antisymmetric modes
al; and al, ', The former set is different from all of the modes formerly noted in
that the velocity for large kthS of a finite width guide is less than the velocity for
an infinitely wide layer of the same thickness. It is this mode which, in the limit
where the properties of the overlay and of the substrate materials are identical, be-
comes the first flexural mode for topographic waveguides (Ash et al., 1969 :Mason
etal., 1971 ; Tu and Famell, 1972a). "Note that in the latter limit, Of Appmaches
vy and thus the dispersion curves of all of the modes considered other than oL] and
aL]' are forced into the leaky-wave reéime.

Figures 7 and 8 show the dispersion information of Fig. 3 and 6, res-
pectively, plotted in more conventional form where the aspect ratio h2/ h3 is the
constant parameter on each curve. The solid curves and the curves with short dashes
of Fig. 7 reproduce the corresponding sR] and sR]' data as inferpoloted from Fig. 3.

Also shown in Fig. 7 by long dashes are the dispersion curves calculated by Tiersten

(1969) for thin film overlays, and the agreement between the present results and those

for the thin approximation is seen to be good in the region where the latter approximation

applies. Figure 8 gives the dispersion curves for the first antisymmetric Love modes

al, and aL]' as interpolated from the data of Fig. 6. Again as the thickness of the

1

overlay becomes comparable fo its width, the phase velocity of the oL] mode falls

below that of the infinitely wide layer for values of frequency and thickness large

enough that kfh3 is beyond the cross-over region. For gold on fused quartz, the cross-

-over values are in the region of kfh3 =0.14.

8
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2. Displacements from the (2,2) - Approximation

As mentioned in the mode classification, Section 2, Chapter |V, each
component of displccemenf is present fo some degree at each general point of the guide
region, and thus the displacement patterns for the various modes tend to be complicated
in nature ;however, some of the salient features of the lower order modes will be illustrated
here. Due to the symmetry with respect to the mirror plane Xy = 0 for all modes, the
sagittal components of displacement (the longitudinal Yy and vertical u3) of a symmetric
mode and the transverse component (u2) of an antisymmetric méde must be an even func-
tion of Xy (PO and P2) ana thus are quadratic in Regions | and Il and expo'nenfiully decay-
ing in Region 11l in the (2,2) - approximation. On the contrary, the transverse component
of a symmetric mode and the sagittal comp;:nenis of an antisymmetric mode are only allowed
to be odd fun;:fion of Xq (P]) in the (2,2) - approximation and thus are linear in Regions
l and II, implying that they are zero at Xy = 0 and increase lineérly in magnitude to the
edges of overlay, and again decay exponentially in Region Ill. To permit convenient
comparisons, the displacements corresponding to several points on the dispersion curves
of the former section are shown here. There are in general two figures for each point:
one shows the distribution of displacement on the symmetry plane x, = 0 and expresses
the behaviour in the centre of the overlay and the exponential de cay down to the depth
of the substrate , while the other shows the distribution of displacement along the positive
half-surface Xq = 0 and expresses the symmetry characteristics of waves in the (2,2) -

approximation. In all of the figures shown below, the abscissa is either k*xsor kfxzas

‘required and the ordinate is the amplitude of the components of displacement normalized
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with respect to ug for R-modes and Uy for L-modes at the origin (0, 0), or at the right
corner of the overlay (h2, 0) when the magnitude of the component to be normalized

is zero at the origin.

Attention is focused first on a gold-on-fused -quartz guide of fixed over-
lay width kfh2 =1.5 (h2 =0.207 }\f =0.187 }\R). Figures %a and 9b show the relative
magnitude and phase of the different components for the sR, mode at three different
velocities which are indicated by solid dots on Fig. 3. Along the vertical centre line
Xy = 0 of any cross section the transverse component vanishes because of symmetry and
the two sagittal components are in phase quadrature giving the retrograde elliptical
particle motion on the free surface‘which. is characteristic of the first Rayleigh mode
for layer geometry. The decay with depth of these components is close to that associated
with the first Rayleigh mode at the corresponding layer thickness. As reference curves,
the lines marked "layer" on Fi‘g. a give the displacement components of the Rayleigh
mode for an infinite layer (Famell and Adler, 1972) of the same thickness as that used
for the v/vf =0.58 curve, that is for the point marked by a solid dot on the dispersion
curve for the first Rayleigh mode in Fig. 3. Of course for the (2,2) - approximation
to the waveguide situation, the displacements are the "best" compromise, in the sense
of Chapter lll, to the true displacements which is obtainable with quadratic variation
in the overlay cross-section, multiple exponential decay with depth into the substrate

and the simple exponential decay transverse to the guide direction within the substrate.

The relative displacements of Fig. 9b are shown as a function of distance

along the x,-axis, for the same conditions and normalization as used in Fig. 9a. The
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abscissa value kfh2 =1.5 corresponds fo the right bottom corner of the overlay region,

and for larger values of kfx2 the decay of each component is exponential with fhe decay
factor B depending on the velocity in the manner of (3.9). While the transverse component
of displacement is zero on the central symmetry plane, this component which is in phase
susszature with the vertical component grows to appreciable amplitude at the edge of

the overlay region when the overlay is thick.

The representation of Fig. 10 shows the distortion of rectangular grids on
successive planes spaced at intervals of \ /32 in the direction of propagation. The
broken lines indicate the outline of the undistorted guide and the quarter-wavelength
planes. This sketch corresponds to the sR] mode at v/vf =0.74 on Fig. 9a and it is seen
again that the particle motion is dominantly the sagittal~plane elliptical motion associated
with the first quleigh‘mode but here the amplitude decreases in both directions away from

the central plane.

The displacement distributions associated with the sL] mode for kfh2 =1.5
are shown as a function of ktx3 on the central plane in Fig. 1la and as a function of
ktx2 along the fnferfuce in Fig. 11b. Again because of symmetry, there is no transverse
component of displacement on the central plane but this component grows with X, and
reaches a maximum at the top free corner of the overlay. The displacements have been
normalized here to the value of this component on the interface at the edge of the overlay.
On the central plane the motion is Rayleigh-like but with the shape of the displacement
curves reminiscent of the second or Sezawa mode rather than the first Rayleigh layer
‘mode (Famell and Adler, 1972), for example the surface particle displacement is progres-

sive rather then retrogressive. At the edges of the guide the displacement is predominantly
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transverse so that the general motion could be described as transverse bulging accompanied

by transverse buckling as illustrated by the grid displacements of Fig. 12.

For the antisymmetric modes, the sagittal-plane displacements are zero on
the central plane as illustrated in Fig. 13 and 15 where the curves are again drawn for

kth2 =1.5. For the aR, mode of Fig. 13a and b it is seen that these sagittal ~plane

1
displacements grow with X, on the interface and reach a maximum at the guide edge. At
the guide edge the relative phase and shape with depth of the u; and u, components are
those associated with the first Rayleigh layer mode. Thus the dominant motion is Rayleigh
motion of the region near the sides of the guide with opposite phase on o;ﬁposife sides

giving the tilting Rayleigh motion of Fig. 14 accompanied by a relatively small trans-

verse motion represented by the ugy component.

The transverse component is the dominant one at egch point for the al, mode
as shown by Fig. 15a aﬁd b. The central plane displacements are similar to those of the
first Love mode of the layer geometry. The solid curve of Fig. 15a gives the displacement
as a function of depth for this first pure Love mode propagating in a layer of the same
thickness as that invoived in the v/vf = (0,38 waveguide curve. In the steeper region of
the waveguide dispersion curves, that is below the cross-over region of Fig. 6,the general
motion is predominantly a side-to-side motion of the layer as a whole in the manner
illustrated by Fig. 16. However above theé cross-over region the displacements are more
concentrated in the layer and the pattern approaches that of the first flexural mode of a

long plate cantilevered from a rigid substrate.
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The displacement curves shown in Figures 9 to 16 above are for the modes
that approach the first Rayleigh and Love modes of layered problem and would appear if
calculated with the (1,1) - approximation. Now the modes sR] ' and cL] ', which approach
the first modes of layered problem but would not appear in the (1,1) - approximation, and
the modes st and aR,, which would appear in the (1,1) - approximation but approach the
second Rayleigh modes of layered problem will be considered. These modes have more
structure in the displacement patterns and the sample points chosen are for points (kfh2
10 and v/vf = 0.74) marked with solid dots on the dispersion curves for a gold-on-fused-
quartz guide in Section 1. The previous scheme is used again to show the displacement
patterns for each sample point with two figures giving the central plane and interface
components. Fiéure 17a shows the relative amplitudes of the sR]' mode (solid lines) as
a function of depth along the central plane Xo = 0 with the sR; mode (dash lines) of the
same phase-velocity and width parameter plotted for comparison, and it is seen that there
is not much difference between them along this line. However, frqm Fig. 17b in which the
relative amplitudes of the two modes as a function of X, On the surface X3 = 0 are plotted,
interesting differences between them appear in that first the sagittal components of sR; mode
have large amplitudes at the centre of the overlay and decrease slightly toward the edge,
while those of the sR]' mode have large amplitudes at the edge of the overlay and decrease
through zero and then grow negatively as the centre is approached so that there are planes
at Xy = ihz / 2 on which the vertical or the longitudinal displacement is zero. Moreover,
the sR, " mode has a rather unusual distribution of the transverse component, which is zero
at the centre of the overlay and builds up linearly to a very large value, making this

Rayleigh-like mode have some of the characteristics of a Love-like, compare Fig. 17b
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and Fig. 11b. This special-distribution of transverse component is not a general behaviour
of the sR]' mode, since the same sR]' mode at a different value of k_fh2 does not contain

such a prominent transverse component ssuch an appearance for the mode sR, ' of kfh2 =10
and v/vt =0.74 is due to a result of mode coupling with the mode sL] of the same parame-

ters as will be shown in Fig. 22 of the next section.

The frans;/erse component of the aL]' mode in Fig. 18 assumes a pattern
similar to that of the vertical compounent of the sR; ' mode. Along the plane x, =0, not
much difference is found between the cL] ' and the aL] modes. Figure 18b shows the rela-
tive amplitudes of these modes along the surface Xq = 0 and here it is interesting to note
that the relation of the pattern of the transverse component for the aL] ' mode to that of
the sL] mode in Fig. 18b is almost identical to the relation of the vertical component of
the sR]' mode to that of the sR; mode seen previously in Fig. 17b. The displacements of
the aL]' and al, modes are essentially confined fo the horizontal plane and the guide-
wall motion is side-to-side with opposite sides moving in phase for both modes in Fig. 18b,
but for the al,' mode the central region moves transversely in antiphase to the side walls

and there are planes at Xy = h2 / 2 on which the transverse displacement is zero.

The displacements associated with the second modes sR, and aR, are shown
in Fig. 19 and 20 with the first modes sR; and aR, plotted with dotted lines for comparison.
It can be seen that in the overlay and the adjacent substrate regicn, the projection of the
total displacement onto the sagittal-plane is a progressive ellipse in the sR, and aR,, modes
in contract to the retrogressive motions of the sR; and aR; modes. In addition, the shape

of the uy curve for the second mode in both cases is similar to that of ug for the first mode

iy



AMPLITUCE

— T — x>0
. \\\ -iu SRI 2
- \\ 3
\\\
h \\\\‘
— \

U

~ _
0) I//(\ -1:0 kth
| T B T AR L1 1

0

N

OVERLAY

e -0'5 —— -1-5

1

- SUBSTRATE

Fig. 17a.

-1-0

Displacement components on vertical centre line (x2 = Q) for symmetric Rayleigh mode

(sR] ") for point marked on dispersion curves, Fig. 3. kthz =10 and V/Vt = 0.74 with the corresponding

sR

| mode plotted for comparison.

96



N

AMPLITUDE

INTERFACE FREE SURFACE

Fig. 17b. Displacement components on interface (x3 = 0) for symmetric Rayleigh mode (sR] ") for

L6

point marked on dispersion curves, Fig. 3. kth2 =10 and v/vf=0.74 with the corresponding sR] mode

plotted for comparison.

T,



I——-;—I alL.’
I
\\ ngo
w | ~ — ——al,
o \\ u
> I ~ 2
= ~ —
A . —
n. §~_~~
=
<
i

o
N
o
|
Q
o
L
o

‘OVERLAY SUBSTRATE

Fig. 18a. Displacement components on vertical centre line (x2 = 0) for antisymmetric Love mode

(aL,"') for point marked on dispersion curves, Fig. 6. k. h, =10 and v/v, = 0.74 with the corresponding
1 P 2 t
al

mode plotted for comparison.

1

86



2 =
w
(o] _
s
=
o B
Q. l T e—
b
<

-iu,
O $ ' S |
5 _/
=1y,

INTERFACE

10 15

FREE SURFACE

Fig. 18b. Displacement components on interface (x3 = () for antisymmetric Love mode (uL] ") for

point marked on dispersion curves, Fig. 6. kth2 =10 and v/v,r =0.74 with the corresponding aL] mode

plotted for comparison.

66

[



% |

AMPLITUDE

OVERLAY - SUBSTRATE

-4 -

Fig. 19a.  Displacement components on vertical centre line (x‘.2 = 0) for symmetric Rayléigh mode

(st) for point marked on dispersion curves, Fig. 3. kfhz =10 and v/vf = 0.74 with the corresponding
sR | mode plotted for comparison.

00l



SRZ 0
x -
a
o 3 .
5 = INTERFACE FREE SURFACE
Q. 2 = '
=
< -
| —— — ;iU3 .
T —
- . \
0 L l 1 — __\Sk‘: ] 1 1 }
i 5 'an IO/ ktxz |5
~lug =

Fig. 19b.  Displacement components on interface (x3 =0) for sy‘mmefric Rayleigh mode (sR2) for
point marked on dispersion curves, Fig. 3. kfh2 =10 and v/vf =0.74 with the corresponding sR] mode

plotted for comparison.

Lol



OVERLAY

wn

H

AMPLITUDE
o

© SUBSTRATE  ~——~~—- aR,

Fig. 20a. Displacement components on vertical centre line (x2 = 0) for antisymmetric Rayleigh mode
(oR2) for point marked on dispersion curves, Fig. 4. |<rh2 =10 and v/vt = 0.74 with the corresponding
aR

1

mode plotted for comparison.

¢ot



aR
2 X3=0
B aR,
sar
|_:_’ INTERFACE FREE SURFACE
-
a
=
]
0 15
L kiXx2

Fig. 20b. Displacement components on interface (x3 = () for antisymmetric Rayleigh mode (aRz)
for point marked on dispersion curves, Fig. 4, kh,=10and v/v4t = 0,74 with the corresponding

t 2
aR, mode plotted for comparison.

1

€ol

I



104

and the shape of ug for the second resembles u, of the first. This general behaviour is
characteristic of the first and second Rayleigh modes of layered problem (Farnell and

Adler, 1972).

3. Remarks on Stresses and on Mode Couplings

It will be recalled that the displacement continuity conditions are fulfilled
at each point on all of the interfaces in the mathematical analysis of Chapter 111, while
the traction-free conditions on the surface of Region 111 is approximated and all of the
other conditions of stress are introduced into the traction terms of the two dimension-
reduced equations of motion (2.10) and (4.1). Thus the values of stress which appear as a
result of this analysis can be expected fo deviate from the exact values. Since the stress
on a free surface and the difference of stress at an interface calculated from the regions
on each side should be zero in the physical situation, the residual magnitudes of the
stress on the free~surfaces and interfaces in this guide problem have been computed to
serve as an aid fo understanding the implicit approximations in the so-called 2,2) -

approximation.

It has been found that in ggneral the normal components of siress computed
from this analysis deviate far more from continuity at the free-surfaces and interfaces than
do the two associated shear components which should also be continuous. Taking an sR,
poinf (k*h2 =1.5and v/vt = 0.74) as a typical example, for which the displacement

curves have been shown in Fig. 9, Fig. 2l sketches the residual magnitudes of the normal
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stress components, T22 and ]'33 on all of the free surfoces»of‘ the guide compared with
that of T” in the direction of propagation at boundries around the overlay. Due to
the symmetry with respect to the mirror plane x, = 0, stresses are shown only on one
side in the figure for clarity. Normalized with respect to the value of T which is
almost constant along the centre line of the overlay Xo = 0, the maximum absolute

residues of stress, which should be zero exactly, are as follows: T.,., =0.385 and T

22 33
= 0.238 at the lower corners and T33=0.02 at the upper corners of the overlay, all less
than unity. The difference of stress calculated at the interfaces around Region I, which

also should be zero exactly, are all less than 0.03 and omitted in the figure.

As seen in the above sections, the (2,2) - approximation gives very good
dispersion relations and quite meaningful displacement patterns, while the (1,1) - appro-~
ximation provides reasonable dispersion but rather poor approximations to the displace -
ments in the overlay, for example, all of the curves within the region marked "INTER-
FACE" in Fig. 9b, 11b, 13b and 15b would become straight lines in a (1,1) - approxima-
tion because no quadratic polynomials are involved. Since the siress is calculated from
a differentiation of the displacements, the stress results are always much less accurate
in polynomial approximations than are the dispersion curves or the displacement distribu-
tions. The solutions from the (2,2) - approximation above still contain some residual
normal stresses but only on the free surface of the substrate and on the side surfaces of
the overlay and these residual stresses are appreciably smaller than the dominant ones.
However if the stress is calculated with the (1,1) - approximation, residual values of the

calculated stresses on the top surface of the overlay are about twice as large as in Fig. 2I
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and the residual stresses on all the interfaces around Region |1, which are approximately

zero in the (2,2) - approximation, acquire appreciable non-zero values.

There are isolated points on the dispersion curves at which on a gross scale
degeneracies appear to occur between two modes. If the region of one of these "degen-
eracies" is éxomined more closely,"coupled mode" behaviour is encountered. For example,
if for the gold on fused quartz combination, the symmetric mode curves of Fig. 3and 5
are overlaid it is seen that the curves for kth2 = 10 of the sR]' and the sL, modes appear
to intersect in the vicinity of k*h3 =0.08; similarly the kfh2 =10 curves for the aR, and
al; modes of Fig. 4 and é appear to intersect near kth =0.09. However when these
regions are examined in detail as shown in Fig. 22,1it is found that no solutions exist with
real propagation constant in the neighbourhood of the virtual crossings for either the (1,1)
or the (2,2) - approximations. The displacement distribution for either mode near the
crossover region is a mixture of the displacement pattern characteristic of the individual
modes when examined further from the crossover region. While this mixing is characteristic
of coupled mode propagation near a degeneracy, the shape of the dispersion curves is

unusual for a passive system. Whether the behaviour shown is a physical reality or an

artifact of some approximation in the analysis has not been determined.

[l
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The results so far shown in the above sections for a goJd-on-fused-

quartz guide have illustrated the effects of guide thickness and provided a general

overview of the application of the analysis. In this section attention is focussed on

the effects which different choices of material combinations have upon the dispersion

characteristics of overlay waveguides. For illustrative purposes various materials are

chosen for the overlay but on a common substrate, fused quartz, and since general

characteristics rather than detailed numerical values are of interest, the (1,1) -

approximation has been used. The material constants selected for the comparative

calculations and for the duraluminum used for the ridge waveguide in the next chapter

are as follows (Mason, 1958):

Material Lamé constants Shear velocity Rayleigh velocity Density
p (Kbar) A A ( m/sec) vp ( m/sec ) p(g/cmd)

Fused quartz 312 161 3764 3409 2.2
Gold 285 1500 1200 ”34 19.0
Gold-artificial* 71.25 375 1200 1134 4.75
Plul’inum 640 990 1730 1605 21.37
Nickel 800 1640 3000 2799 8.7
Polystyrene 12 34 1120 1050 1.056
Duraluninum 267 544 3130 2920 2.79

*Gold-artificial has the values of p, Aand p equal to one-fourth those of real gold.
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The choices of overldy material in this section fall into several different
categories relative to the gold considered in detail above. .Plc’finum has Lamé constants
and density comparable to those of gold but the dispersion in the case of an infinitely
wide layer ;af platinum on fused quartz is such that the first Rayleigh and first Love
modes do not cross as they do with gold. The artificial gold is chosen to have the
same Rayieigh velocity as gold and hence the same ratio of i’/l/vt but the artificial gold
has smaller Lamé constants and lower density than the physical gold of the previous
section. The polystyrene has much smaller Lamé constants than gold and with its very
low density even less than that of the fused quartz substrate material, it gives the
largest ratio of ¥, Vi of the material combinations considered. On the other hand,

nickel is selected to provide an example with a relatively small ratio of 0/vf but

with Lamé constants comparable to those of gold and platinum.

The dlsperS|on curves of guides, made of platinum, nickel, polystyrene or
gold-artificial for the overlay on a common substrate of fused quartz, are nllustru’red
in Figures 23 to 30 with each combination having one graph for the symmetric modes
and one for the antisymmetric modes. The choice of a common fused quartz substrate
permits all figures to have a common uniform ordinate with the same upper-bound velo-
cities, the shear and Rayleigh velocities of fused quartz, and the same width parameters
(kth2 =320, 10, 1.5, 0.5 and 0.2) are used in order to obtain a better comparison
between combinations. In each figure, the first Rayleigh-like (R]) modes are plotted
with solid lines, the first Love-like (L]) modes with short broken lines. The first Love
mode of the infinite layered substrate is also indicated with dots in the leaky region

above Rayleigh velocity of the substrate. The same values of the adjustment parameters
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0 and ry are used as shown in Section 3, Chapter |V, and the agreement between the
first Love~like mode (kth2 = 320) and the first Love mode of infinite layer is generally

good.

The dispersion curves of a plﬁfinum-on—fused-quarfz guide are shown in

Fig. 23 and 24, and it is seen that the general shape is similar to that of the gold-on-
fused-quartz guide shown in detail in the above sections. In Fig. 23 for the symmetric
case, the phase velocities of the sR; modes approach the substrate v of a free surface
with zero slope for decreasing values of thickness parameter, and the curves for the R,
modes approach with a finite slope, all analogous to the gold-overlay guide. Similarly
for the antisymmetric case in Fig. 24, the curves for the aR, modes do not come to a
common point at kfh3 -0 but rather appear to have a cut-off,and the oL, modes have
cut-off and a cross—over region about kth3 =0.17. The zero slope of the sR; mode
and the cut-off of all other modes is a general characteristic of the overlay waveguides

seen in all of the dispersion curves calculated.

The general shape of dispersion curves of the polystyrene-overlay type in
Fig. 25 and 26 are quite different from those of the platinum-overlay type in Fig. 23
and 24, here the behaviour of the sR, and cR] modes becomes quite strange in appear-
ance and the cross-over region of the al, mode has shifted upward into the leaky region
above VR Figures 27 and 28 show t‘he dispersion curves for an artificial-gold-overlay
guide and it is readily seen that this type resembles the polystyrene-overlay guide but
has the cross-over region of the aL] modes below VR again. Artificial-gold is given

the values of p, Aand P to be one-fourth those of gold, and by such an change of
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material properties the dispersion structure of Fig. 23 and 24 is reshaped into that of

Fig. 25 and 26 respectively.

Another category of dispersion curves is represented by a nickel~on-fused-
quartz guide shown in Fig. 29 and 30 where the curves for the symmetric modes in
Fig. 29 extend only over a relatively small velocity interval from 0.7 to 0.9 on the
ordinate scale due to the small difference of the shear velocities of the two materials
involved. Actually it can be seen that all modes in Fig. 29 and 30, except the aL]
modes, are confined in this interval with an exact upper bound velocity R and with
a lower bound velocity near the value OR of the overlay. For guides of smaller Rayleigh
velocity difference, the aL] modes spread over most of region from vpto values far
below OR’ while all of the other modes are squeezed into a narrow strip between the
two Rayleigh velocities sand in the limiting case of the topographic ridge guide in
which the velocity difference between the overlay and the substrate becomes zero because
the same material forms both overlay and substrate, all of the modes except aL] disappear

as will be discussed in the next chapter.

The above categories of dispersion curves represented by gold, platinum, poly-
styrene and nickel on fused quartz are not necessarily complete in the shapes of dispersion
curves which may be encountered with overlay wdveguides, but they represent a wide
range of possible forms. From each type of dispersion curves the frequency range of
single-mode operation, the group velocity and its frequency dependence, and the mode-
type for the next higher mode can be estimated before resorting to detailed calculations

for a specific pair of materials.



113

. FIRST LOVE

ke ha

Fig. 23. Dispersion curves for symmetric modes for platinum on fused quartz

from the (1,1) - approximation.



114
-0~
o FIRST. LOVE

~
‘\
-~

09 K oo 05

~—~a
-
~
-~

320 TO 10
08

0-7
v
Vt
0-6
L ~
- 320 TO 10
05 S5
— Vs
—GR \ ~ — 05
04 \\
_ aR, N
— — - L ~—_ 02
0-3 - T
L TTTT aRz Pt ON SiO.
T 1 l ] | 1 { 1
0 Ol 0-2 0-3
| kehs
Fig. 24. Dispersion curves for antisymmetric modes for platinum on fused

quartz from the (1,1) - approximation.



15
o - - .
* _FIRST LOVE

v - .5 0 .
0-9 =R 115 05 02

0-8

k¢ho=

- 320 TO 10| | ~. 320 TO I0
> \E
07 \
v \
Ve i \
0-6 \
\ -2
g)
0-5
sR,
- = SLl
0-4
—-—=— sRq -
L S~
) =~ ~~ -
G —_—
03— o POLYSTYRENE ON SiO2
T’ 1 | I ] [ | ]
o) 0-2 0-4 0-6
ke ha
Fig. 25. Dispersion curves for symmetric modes for polystyrene on fused

quartz from the (1,1) - approximation.

“p



Vf

116

. _FIRST LOVE

0-9 |
aR,
—_— 0L|
oslF  PIINN O\ IO oR,
. POLYSTYRENE
i \ “._ON SiOz
| \ Sso
-7 } ~ 320
- kthz"g'_z__ \\
el \

05
A\ 15
' VS
04 - \ \\ N
N
- \ \ ~~
~— ~—
A N -
0-3 — Vit \ ~ -~
— Ur \ — 05
e \ -—
1 ! l 1 l 1 i
0 0-2 0-4 0-6 |
: kihs
Fig. 26. Dispersion curves for antisymmetric modes for polystyrene

on fused quartz from the (1,1) - approximation.



I-0

1i7
". _FIRST LOVE

Va L 320 TO |c3/ |
NN T

L ARTIFICIAL GOLD ON SiO2

1 | 1 | \ | 1 | 1

0 0-l 0-2 0-3 0-4
kihs

Fig. 27. Dispersion curves for symmetric modes for artificial gold on

fused quartz from the (1,1) - approximation.



118

\
\
\
\
\
\
\

"I . _FIRST LovE

| \
05 \
2

X 0 -5 320 TO 10
|02 1N\
4 |- \ NN
0-4 \ S~
aR, |\ N
- NG
G ——— o, \ ~—
03 =4 ______ oR, \\
‘ S
A ARTIFICIAL GOLD ON SiO»
/L I i 1 l ] ] 1 | 1
o Ol 0-2 0-3 0-4
kehs
Fig. 28. Dispersion curves for antisymmetric modes for artificial

gold on fused quartz from the (1,1) - approximation.

320TO10 I'5

i



119

-0 =

_ FIRST LOVE

ktha=320 TO 10

y
Vi B
0.6_.
= SRJ
05 sL Ni ON SiO,
0.4 -
| | I | ] | | 1
o) 02 04 06 08 IO 12 114 1I6
ke ha

Fig. 29. Dispersion curves for symmetric modes for nickel on

fused quartz from the (1,1) - approximation.



120

-0 ‘
- JFIRST LOVE

~ 0-2
0-4 |- T —

aR,
—— — aL, Ni ON SiO;

3
W\

; | 1 I 1 | | | !
0 02 04 06 08 IO -2 1'4 |6
kehg

Fig. 30. Dispersion curves for antisymmetric modes for nickel on

fused quartz from the (1,1) - approximation.



121

CHAPTER VI

ON THE TOPOGRAPHIC RIDGE WAVEGUIDES

1.  General Description

As mentioned in the Introduction of Chapter | and in the Results of Chapter
V, both the topggrcphic ridge waveguides (Ash et al., 1969 . Burridge and Sabina, 1971 .
Lagasse, 1972 : Lagasse and Mason, 1972;Mason etal., 1971 ;Tu and Farnell, 1972q)
and the rigid substrate waveguides (Waldron, 1971 and 1972) can be considered the
limiting cases in the choice of material combination of this overlay-guide problem.
When the material of both the overlay and the substrate is the same, the overlay guide
becomes topographic ridge guide of the type suggesfea and first experimentally
investigated by Ash et al (1969). When the substrate is assumed much more rigid than
the overlay and the aspect ratio of the overlay is kept less than 0.5, we Have the rigid

substrate guide analyzed by Waldron (1971 and 1972).

It has been found that the theory of this analysis and as well the computa-
tion programs are readily applicable to the prediction of the propagation characteristics

of the flexural mode of topographic ridge guide by using the (2,2) - approximation for

antisymmetric modes (Tu and Farnell, 1972a). The results for such guide using duralumium

as the propagation medium have been computed and found to be in good agreement with

experimental results of Mason et al (1971).

by
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2. Antisymmetric Modes of the Topographic Ridge Waveguides

Figure 3l shows the dispersion curves of antisymmetric modes of a
rectangular ridge waveguide of height 2h3 and width 2h2 on duraluminum. For
sufficiently low height, the curve for each width approaches the velocity of a simple
Rayleigh wave on the undisturbed surface of the substrate half-space. In this region
the decay of displacement amplitude in the transverse direction away from the guide
is very slow in terms of the wavelength and the guiding action of the embossed strip
is very weak. When the height becames very large the velocity of propagation
becomes independent of the height and approaches that of the first antisymmetric
mode (Viktorov, 1967) of a plate of thickness 2h2 as marked by dashed lines on Fig. 31.
The curves are essentially horizontal for h3/h2 ratios greater than about 3 : | provided

the width is not less than the minimum value shown of kfh2 =0.2.

The dispersion curves of Fig. 31 are plotted in the natural parameters of
the computation and it is inconvenient fo compare them directly with the corresponding
experimental graphs (Mason et al., 1971), wherein the curves are plotted for fixed
h3/|'12 ratios. However comparisons without interpolation can be made for specific
points and a collection of such comparisons is shown in Table 1. Here the velocity
and width are read from the experimental curves and the normalized height shown in
the fourth column is then given by the a'ppropricn‘e h3/h2 ratio. For the same velocity
and width, the guide height as calculated is given by the last column. The points
selected in this table are all in the regions of Fig. 31 where there is a strong dependence

of velocity on guide height and in this region the experimental and calculated values
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TABLE |.

COMPARISON OF SOME MEASURED AND CALCULATED RESULTS

k ha
v /vR v /vt kt h2 measured ¥ | calculated
0.9 0.842 0.087 0.26 0.27
0.9 0.842 0.191 0.38 0.37
0.9. 0.842 0.27 0.41 0.42
0.9 0.842 0.51 0.51 0.55
0.8 0.748 0.091 0.27 0.28
0.8 0.748 0.20 0.40 0.39
0.8 0.748 0.28 0.43 - 0.45
0.7 0.655 0.098 0.29 0.29
0.7 0.655 0.21 0.42 0.42
0.6 0.561 0.103 0.31 0.31

Minima on Figure 3 of Mason et al. (1971)

0.84 0.78 0.73 0.73 0.75
0.71 0.76 0.40 0.60 0.54
0.61 0.65 0.26 0.52 0.48

0.49 0.52 0.134 0.40 0.37

' *Mason et al. (1971)
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are seen to agree within ten percerﬂ. For the regions of Fig. 31 where the curves are
quite horizontal,such a comparison is not meaningful because slight changes in the
selected values of velocity produce large changes in the calculated height. In these
regions,a more valid comparison can be made by noting the normalized height and width
at specific points on the calculated curves and comparing the velocity at this point with
the corresponding measured values. Such results are shown for a few pairs of points on

Fig. 31 and it is seen that the agreement is again good in this flat region of the curves.

3. Disglocemenfs

Some of the details of the displacements associated with this first anti-
symmetric Love-like mode are given by the remaining illustrations in the chapter. The
calculated displacement components are shown as a function of depth, in Fig. 32 and
33, for the éoinfs marked with dot on the dispersion curves of Fig. 31, by the solid
curves for the displacement on the central sagittal plane and by the broken curves for
the vertical plane containing the side of the waveguide with abscissa X3 in units of h3
in order to make the thickness of overlay a constant value of 2 for different cases. As
mentioned in Section 2, Uy is the displacement component transverse to the guide, and
since the mode is antisymmetric with resvpecf to the central plane, this is the only com-
ponent which exists on the central plane. On the upper corners of the guide, the sagittal
components (u] and u3) are appreciable so that there is a pronounced tilt to the top

surface of the guide. The vertical and transverse components are in phase with each
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other with the sense as indicated by the relative signs of the components plotted, while
the longitudinal component is in phase quadrature with the other two. In the upper parts
of the guide sagittal-plane projections of the particle displacement are then progressive
ellipses. Figures 32 and 33 correspond to aspect ratios (h3/h2 =1.34 and 4.9 respectively)
for the guide cross section. Since this mode corresponds to the oL] mode above the cross-
over region of dispersion in Section 2, it can be seen again that in both cases most of the
elastic energy is carried in the embossed region, though there is some displacement of

the substrate material and that the penetration of the displacement pattern into the sub-
strate of the latter case is reduced than the former. The dependence of the displacement

amplitudes on the transverse dimension Xo is generally the same as the curves shown in

Fig. 15b for v/vf =0.74.

While it was noted that for large kfh3 values in Fig. 31, each of the curves
approached the velocity of the first antisymmetric mode (Mason et al., 1969) of an infinite
free plate of thickness 2h2, nevertheless the displacements do not correspond to those of
such a free plate. For example, for a plate of thickness kfh2 =0.2, the pure plate mode
would have no variation of displacement in the x4 direction, ug would be zero every
where and the ratio of amplitudes u]/u2 would be 0.455. Rather, this mode becomes
asymptotic to the corresponding mode of a duraluminum overlay on a semi-rigid substrate
(Waldron, 1971). For example,if the ox;erloy has the original duraluminum elastic pro-
perties,but the stiffness constants of the substrate are increased by a factor of 100 and
the substrate density increased also by the same factor to maintain all the significant
material velocities the same, the curves of Fig. 31 retain approximately the same shape

but are translated to the right by an increment in kfh3 of the order of 0.1. In particular,
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the point marked on the kth'2 =0.5 at v/vf = 0.74 is translated from |<fh3 =0.671 to

kth3 = 0.805, and point on the curve 0.2 at v/vf =0.44, from 0.978 to 1 .070; and
the corresponding changes in the displacement patterns of the flexural mode for the ridge
guide are similar to those of the semi-rigid substrate for the geometry, and the relative

amplitudes of the components are essentially equal on the top surface.

4. Remarks

If the (2,2) - approximation for symmetric modes is used for the ridge
geometry, no solution is found with velocity less than the substrate Rayleigh velocity.
The reason for’ this, as stated in Section 1, Chapter V, is that since the same velocity
constants apply to the overlay and the substrate, only the antisymmetric Love-like modes
aL] and aL] ' have propagation velocities less than the common Rayleigh velocity and
thus produce guided non-radiating waves. These modes become the "flexural modes"
of the topographic ridge guides. Ash et al. (1969) reported some brief experimental
results on a mode of propagation, symmetric in nature, with a velocity greater than the
Rayleigh velocity and showingba leaky-wave behaviour in the side-region Il of the
sample. If in an analytic attempt to consider such mode we replace the transverse
exponential decay of the displacements in Region 1! by sinusoidal functions, a solution
has been found with a velocity and displacement distribution reasonable agreement with
their experimental results. Since this mode radiates a Rayleigh wave and the analysis
does not allow complex wave numbers, no detailed investigation of this mode of ridge

propagation has been made.
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In the rigid spbsfrafe waveguide suggested and analyzed by Waldron, an
approximation technique originally found by Morse (1 956) in an attempt at solving the
rectangular bar problem, is used at the overlay surfaces x,, = ._i:h?_ where only the normal
compressional stress is retained to satisfy the free-traction condition while the two shear
stresses are ignored , this approximation limits application to the cases having an ha/h2
ratio less than 0.5. In his approach, the problem was treated first by assuming the whole
substrate to be perfectly rigid and then the part of substrate corresponding to Region Il
here was perturbed to be the almost-perfectly-rigid compared with the material of over-
lay. Three kinds of waves were found: shear, longitudinal and dilatational, all reveal-
ing a low~frequency cutoff. No direct comparison wii'hA his results has been made because
there seems to be little interest in such extreme ratios of substrate-to-layer stiffness,and
moreover it seems that in his approach, as pointed out by Oliner (1971b), some funda-
mental modes such as that corresponding to the first symmetric Rayleigh-like mode are

missing.
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CHAPTER VIl

CONCLUSION

In this thesis an analytical method is devel&ped to solve the wave propaga-
tion problem of an important type of elastic surface waveguides, namely, a rectangular
overlay superimposed on a half-space substrate. Compared with other current analyses,
such as that for fhin-—filrr; waveguides (Tiersten, 1969 ;Adkins and Hughes, 1969), the
transmission-network approach (Oliner, 1969), the topographic ridge waveguide (Ash et
al., 1969;Mason etal., 1971 . Lagasse, 1972) and the rigid subs’rrgl'e waveguide (Waldron,
1971), two kinds of generalization are implemented in the type of waveguide analyzed
in the thesis. One is geometrical in that the thickness of the overlay as well as the
width can be arbitrary and thus we can study the effects of the overlay thickness on the
behaviour of such woveguides. The thin-film waveguide is contained as a limiting case.
The other generalization concerns materials. The material combination of overlay and
substrate is limited only by the guiding requirement that the shear velocity of overlay
must be lower than or equal to that of substrate and can be freely chosen. The propaga-
tion characteristic and displacement pattemn of the flexural mode for the topographic ridge
guide are also contained in the analysis through the simple expedient of using the
same material parameters for the overlay'cnd substrate, and a rigid-substrate guide is

approached by introducing an artificial substrate of increasing rigidity.

The analysis is basically a series expansion method and two different

truncations, the (1,1) - and (2,2) - approximations, have been carried out in detail.
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The algebra for the (1,1) - approximation can be done explicitly and reasonably
accurate dispersion curves can be obtained for a small computation cost, while the
(2,2) - approximation is quite complicated and requires iterative search techniques

to determine points on the dispersion curves, however both the dispersion and displace-

ment results are more accurate.

The fundamental derivations in the analysis are generalized so that they
can be directly applied or easily converted for anisotropic materials, however the
detailed exposition and application given here is for isotropic materials. The results
reveal that each mode in the overlay waveguides has three components of displacement
at any general point in the guided region . in other words, no mode in this waveguide
is a real Rayleigh or Love mode though it approaches one or the other when the widih
parameter becomes infinity due to very large width relative o the wavelength. The
more dispersive modes (sR] ', sR2' and aL] ") in addition to the ordinary modes (sR] ' sR2,
sL], cR] ; ch and aL]) as described by the (2,2) -~ approximation ‘hclve been discussed

in some detail.

It has been found that for sufficient large values of the thickness parameter,
the aL] mode acquires velocities much less than that of the infinitely wide layer case
and this mode is identified, in the limit where the properties of ihe overlay and sub-
strate materials are identical , as the fi‘rsf flexural mode for topographic ridge guide.
The numerical results using the analysis here agree well with the accurate phase velocity

measurements available for this type of guide. A further check on the analysis is provided



133

by the agreement between the dispersion results of thin-film calculations here and the

analytic and experimental results previously available for thin-film guides.

The analysis contained in this thesis allows a more complete study of the
dispersion curves and displacement patterns for rectangular overlay waveguides than
was previously possible. Such studies are important in determining the dispersion
associated with a given‘ mode, the material combinations suitable for a given applica-
tion, the frequency range over which single-mode operation is possible, the optimum
means of single-mode excitation and the geometries suitable for the elimination of

undesired modes.

Mathematically, variational theories for p'lq'res and rectangular bars and
the exponential-crested surface waves have been employed in the analysis together
with a new procedure that treats the boundary conditions at the interfaces between
regions and suggests a technique that may be applicable to other multi-connected
regions. For future work, the application of the method to anisotropic materials by
generalizing the part of the formulation here that applies only to isotropic materials

and the extension of the analysis to piezoelectric materials may be considered.
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APPENDIX A

On expanding (4. 14) of Chapter 111 withn,m=0,1,2, a total of 27

equations, three equations (j=1,2,3) for every combination of n and m, are obtained

for the (2,2) - approximation with the circumflex ( ~) omitted for ..\ |/ 0, " Mand p:
forn =0, dikuk(o'o)fioozc]ikzuk“ 0, iDO3c]ik3uk(o’])— DOSGSI(O)/2k =0
dik”k(o’])+ Do ik2”k(] s iDI3clik3Uk(0,2)+ By 3631(0)/ 2%
- Dls(‘°3ik1”k(o'o)+ Dozcsiké”k(]'o)+ D03°31k3”k(0'])) =0
dik”k(o' A iDgyey ik2uk(] 2. 023631(0)/ 2
- Dza““sim"k(o'])* D02°3il<2”k(] Dy D13°3ik3”|<(0'2)) =0
forn =1, dik”k(IIO)H Dlzclikz“k(2'0)+ iD03°1ik3Uk(]'])' DoaCq; /2
- Dlz(i"zim”k(o'o)* D02°21k2"'k(] Oy D03°21k3“k(0'])) =0
dikuk(] DriD, ey ik2uk(2'])+ iDlSCIijUk(] 2y Dlsesi(l /2
- Dl2(i°21k1”k(o'])+ Do2°2jk2"k R Dlsczika”k(o'z))

o 1,0, 2,0 (a0, _
Dyglicgayi  * P1ofakk D03°3ika’k ) =0
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L2, 2.,

(1)
ikYk 12°1jk2k Gy, /2

d 23

_ . 0,2) (1,2)
DyglicquaU  * Pogojka’k )

- D23(i°31kluk(] s Dl2°3il<2”k(2'1)+ D13°3ik3“k(] ) =0
forn=2, dikuk(210)+. iD03c1ik3Uk(2’])- D03G3i(2)/2k
- D22(i°21kluk(] O "12"2ik2"|<(2'0)+ D03°2ik3ul<(] =0
dik“k(2'1)+ i')13"uk3”k(2'2)+ D13(331(2)/ 2k
- D22(i°2ikluk(]’])+ D12°2ik2"k(2’])+ D13°2ik3“k(]'2))
- D13(‘°3ik1”k(2'0)+ Dos°3ik3“k(2'])) =0
dikuk(z'z) - D2363i(2)/2k
- D22(i°23k1“k(] s Dlz°2ik2”k(2'2))
- D23(i°3ik1°k(2’1)+ D13°3i|<3°k(2'2)) =0 (A.1)
Here 4 = pvzéik - c i Dpg=¥/Cylhy and D3 =2/C by (A2

serving only to simplify the expression.
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The overlay partial matrices fs and FA to be used in (5.3) and (5.4) have

the non-zero elements given by the following relations. For the symmetric modes

the diagonal elements are :

2 ‘ 2 | 2 . a2
fli = Yoo ° f2 = Voo ™! 33 = Vor "8 3My
|

2 4. 2 | 2 L 2 U2 4 2
fuu = Vi 1 3S/H3 ,lf55 = Vpp =8 15/H3 :Féé = Vi 1 155/1—13

2 a2 2 a2 2 a2 2
f77 = Vio 1 36/H2 : f88 = Vi 1 38/H2 3/H3lf99 = Vip 1 36/H2 15/HG

N N | 2 e s2 | 2 s 2 an2
flo,16 Voo 8719/M5 111 = Vo T 1My :f12,12_ Vg ~8-15/H; ~3/H;
f e VA 1-15/HeB8 M ‘If v 55 R M = VA 1-15/Ha-158/E
13,15 V21 2 14,14 = Yoz 2 3!I 15,15 Va2 2 '

l
(8.1)

where § = (R+20) /1, Hy = k h2 ’ H3= k h3 and the normalized velocity with the
truncation correction factors included is represented by vr?m =r T (v /\71_)2 . While

the non-zero off-diagonal elements for the symmetric modes are :
4= - /3= fag/= fey/5=F10,137 ~F13,10° fl2,15/3= F15,12/5 7 1 1/ Mg

fpg= F3p/3=14s/3= 55 =F11 127 Frp, 173" fa14/3= Fra195= 1/ M3

Fi7= -t /3= fgg = fga/3=F50= Hog5/3=1 K/ Hy

f

47=f74=3f68/5=f86/3=-3X/p H'2H

f7,1o= 80 ,/5=%,127 " 315.8/5=F 147 -3f14 o/5=31/Hy

f /5= 9F9]3/15 9f]3 9/15— 9/H2H3

8,11 H 8
(8.2)
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For the antisymmetric modes, the diagonal elements are :

_ V2 - |
= Voo ! | T2
2 2 '
fag = Vio 57/, | fss
2 o |
b, = VA3 35/H3: fog
2
f10,16 V20 -1-155/M, ETRY
!

using the same parameters as in (8.1) 3

2 2 2 2
= - - y I = -] -
Vor 1 -37My g = Vo 1-15/Hy
2 2 | 2 2 42
= V10 I--3/H2 ‘Iféé = V” -6 -'3/H2 3/H3

2 2 2
Vo 1-8/H5=158/H

il
1l

2 2 2
-§-3/H=- |
Vio 8-3/H, 15/H3|f99

=V2

2 2
o] 15/H 3/H3‘ 117 Vg T1-188/H 15/,

I (B.3)

and the non-zero off <diagonal elements are :

Fla = ~fa/3=f= e/ o -fgy/3 =1/,

fas = fap=3fy/5=1,5/8= -3y My

by = ~h A=/ fe/5=i R/,

fsg = ~fes/3=fpg/3= ~fgy/5=1/My

100 "3f0,45  fe,m = =36, f5=fg 197 "3y g5= 3T R/ 1M,
. 9“f10’7/5=3f91”/5=3f”19/5=-9X/ﬁH2H3.

(B.4)



138

REFERENCES

Achenbach, J.D. and Epstein, H.l., (1967), "Dynamic interaction of a layer and a
half-space," Proc. ASCE, EM 5, pp. 27-42.

Adkins, L.R. and Hughes, A.J., (1969), "Elastic surface waves guided by thin films :
gold on fused quartz," IEEE Trans. on Microwave Theory and Techniques,
MTT-17, pp. 904-911.

Ash, E.A., De La Rue, R.M. and Humphreys, R.F., (1969), "Microsound surface
waveguides," IEEE Trans. on Microwave Theory and Techniques, MTT-17,
pp. 882 -892.

Burridge, R. and Sabina, F.J., (1 971), "Theoretical computations on ridge acoustic
surface waves using the finite -element method, " Electronics Lett., 7, pp-

720-722.

Cauchy, A.L.; (1828), "Sur I'Equilibre et le Mouvement d'une Plaque Solid,*
Exercices de Mathematique, 3, pp. 328-355.

Churchill, R. V., (1963), Fourier Series and Boundary Value Problems, McGraw-Hill
Book Co., 2nd ed., pp. 200-211.

Eshbach, J.R., (1962), “Spin wave propagation and the magnetoelastic interaction

in yttrium iron granet,” Phys. Rev. Lett., 8, pp. 357 -359.

Farnell, G.W. and Adler, E.L., (1972), "Elastic wave propagation in thin layers,”
to appear Physical Acoustics, edited by Mason, W.P. and Thurston, R.N.,
Vol. 9, Academic Press.

Frazer, W.B., (1969), "Stress wave propagation in rectangular bars, " Int. J. Solids

Structures, 5, pp. 379-397.



139

Goldren, L.A., (1971), "Monolithic acoustic amplifiers,” IEEE Ultrasonics Sym-
posium, Miami Beach, U.S.A., paper F-2.

Gordon, E£.1., (1966), "A review of acoustooptical deflection and modulation devices,

Proc. |EEE, 54, pp. 1391-1401.

Kirchhoff, G., (1850), "Uber das Gleichgewicht und die Bewegung einer Elastichen
Scheibe, " Crelles Journal, 40, pp. 51-88.

Lagasse, P.E., (1972), "A higher order finite element analysis of topographic guides

supporting elastic surface waves," to appear J. Acous. Soc. Am.

Lagasse, P.E. and Mason,“ .M., (1972) "Analysis of propagation in ridge guides for

acoustic surface waves;" Electronics Lett., 8, pp. 82-84.
Lamb, H., (1917), "On waves in an elastic plate,” Proc. Roy. Soc., A93, pp.114-128.

Lim, T.C. and Farnell, G.W., (1968), nSearch for forbidden directions of elastic
surface -wave propagation in anisotropic crystals,® J. App. Phys., 39,
op .4319-4325.

Mason, |.M., De La Rue, R.M., Schmidt, R.V., Ash, E. S. and Lagasse, P.E.,
(1971), *"Ridge guides for acoustic surface waves,* Electronics Lett., 7,

pp. 395-397.

Mason, W.P., (1958), Physical Acoustics and the Properties of Solids, Van Nostrand,
New York, p.17.

Medick, M.A., (1966), "One-dimensional theory of wave propagation and vibrations
in elastic bars of rectangular cross section," J. App. Mech., 33, No. 3,
pp. 489-496.

- (1968), "Extensional waves in elastic bars of rectangular cross section,” J.

Acous. Soc. Am., 43, No. 1, pp. 152-161.



140

Meeker, T.R. and Meitzler, A.H., (1964), "Guided wave propagation in elongated
cylinders and plates,” in Physical Acoustics, edited by Mason, W.P., 1A,
Academic Press, pp. 130-141.

Mindlin, R.D., (1955), "An Introduction to the Matherha'rical Theory of Vibrations
of Elastic Plates,” Monograph for U.S. Army Corps Engineering Laboratories,
Fort Monmouth, N.J., Signal Corps Coniract DA-36-039 SC-56772.

Mindlin, R.D: and Mea-ick, M.A., (1959), “Extensional vibrations of elastic plates, "
J. App!. Mech., 26, pp. 561-569.

Morse, R.W., (1950), "The velocity of compressional waves in rods of rectangular

cross—section,” J.Acous. Soc. Am., 22, pp- 219-223.

Nigro, N.J., (1966), "Steady-state wave propagation in infinite bars of noncircular

cross~section,” J. Acous. Soc. Am., 40, pp. 1501-1508.

- (1968), "Wave propagation in anisotropic bars of rectangular cross section.

I. Longitudinal wave propagation, "J. Acous. Soc. Am., 43, pp 958-965.

- (1969), "II. Flexural wave propagation," J. Acous. Soc. Am., 46, part 2,
pp. 639-642.

Oliner, A.A., (196%9), "Microwave network methods for guided elastic waves,” |EEE
Trans. on Microwave Theory and Techniques, MTT-17, pp. 812-826.

- (1971a), "Surface waveguides and waveguide components, " 1EEE Ulrasonics

Symposium, Miami Beach, U.S.A., paper D-1 .
- (1971b), private communication.

Poisson , S.D., (1829), "Memoire sur I*Equilibre et le Mouvement des Corps Elastiques, "
Memoires de |"Academie des Sciences, series 2,8, pp. 357-570.



141

Rayleigh, Lord, (1887), "On waves propagated along the plane surface of an elastic
solid," Proc. London Math. Soc., 17, pp.4-11.

- (1889), "On the free vibrations of an infinite plate of homogeneous isotropic

elastic matter,” Proc. London Math. Sec., 20, pp. 225-234,

Shaw, H.J., (1971), "Long time delays with surface waves," |EEE Ultrasonics Sym-
posium, Miami Beach, U.S.A., paper K-1 .

Stern, E., (1969), "Microsound components, circuits, and applications,” [EEE Trans.

on Microwave Theory and Techniques, MTT-17, pp.835-844.

Tiersten, H.F., (1969), "Elastic surface waves guided by thin films," J. Appl. Phys.,
40, pp. 770-789.

Tu, C.C. and Farnell, G.W., (1971a), “Thick overlay elastic waveguides, " European

Microwave Conference, Stockholm, Sweden, paper C7.

- (1971b), "Thickness effects in overlay elastic waveguides," IEEE Ultrasonics

Symposium, Miami Beach, U.S.A., paper D-3.

- (1972a), *Flexural mode of ridge guides for elastic surface waves," Electronics

Lett., 8, pp. 68-70.

- (1972b), "Thickness effects in overlay guides for elastic surface wave," to

appear [EEE Trans. on Sonics and Ultrasonics.

Viktorov, 1.A., (1967), Rayleigh and Lamb Waves, Plenum Press, New York, Chapter II.

Volterra, E., (1961), "Second approximcuﬁor‘; of method of internal constraints and its

applications,” Int. J. Mech. Sci., 3, pp. 47-67.

Love, A.E.H., (1959), A Treatise on the Mathematical Theory of Elasticity, Cambridge
University Press and Macmillan Co., 4th ed.



142

Waldron, R.A., (1969), "Sonic problems in the theory of guided microsonic waves, "

IEEE Trans. on Microwave Theory and Techniques, MTT-17, pp. 893-904.

- (1971), *Mode spectrum of a microsound waveguide consisting of an.isotropic
rectangular overlay on a perfectly rigid substrate, " |EEE Trans. on Sonics and

Ultrasonics, SU-18, pp.8-20.
- (1972), “Microsound waveguides and waveguide components,® to be published.

White, D.L., (1962), "Amplification . of ultrasonic waves in piezoelectric semi-
conductors,™ J. Appl. Phys., 33, pp. 2547-2554.

- 1967) “Sonic circuits : A waveguide system for ultrasonic surface waves, "
g Y

Symposium on Sonics and Ultrasonics, Vancouver; Canada, paper N1.

White, R.M., (1970), "Surface elastic \./vcves;" Proc. |EEE, 58, No. 8, pp. 1238~1276.



