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ABSTRACT 

An analytical method of solution has been developed for elastic surface 

waveguides where the guiding structure consi"sts of an overlay of rectangular cross 

section superimposed on the surface of an infinite substrate. When the overlay is 

thin with respect to the wavelength various perturbation techniques can be used to 

determine the dispersion curves of suc~ guides. Here two kinds of generalization are 

implemented: one concerns geometry in that the thickness of the overlay as weil as 

the width can be arbitrary , th u s allowing an investigation of the effects of overlay 

thickness on the dispersion curves and on the displacement distributions in the overlay 

and in the substrate ; the other concerns materials in that the material combination of 

overlay and substrate can be free Iy chosen under the guiding requirement that the shear 

velocity of the overlay must be lower than or equal to that of the substrate. 

The polynomial variational approaches for plates and rectangular rods 

and the exponentially-crested surface waves are employed in the analysis together with 

a new procedure which treats the boundary conditions at the interface. The infinite 

series introduced into the displacement distribution can be truncated at different orders 

depending on the accuracy desired and on the tolerable computational complexity. Two 

different orders of truncation are discussed and numerical results for several modes are 

presented showing the dispersion and displàcement behaviour for several pairs of 

materials with a detailed discussion of the results for a gold overlay on a fused quartz 

substrate. Results are in very good agreement with the infinite layered geometry, the 

thin-film guide and the topographie ridge guide, ail of which can be considered as 

limiting cases of the analysis and ail of which have extensive experimental verification. 
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CHAPTER 1 

INTRODUCTION 

1 . General Background 

Interest in microwave acoustics (or simply microsonics) has increased 

markedly in recent years and the reason for this great surge is both physical and 

technological. Acoustic waves propa"gate with velocities typically of five orders of 

magnitude slower than e lectromagnetic waves so that acoustic components such as re­

sonators, filters and delay circuits using such waves can be 105 times smaller in size 

than the ir electromagnetic counterparts for the same frequency. For example, a 

centimeter length of crystal can provide a delay path at a frequency of 3 GHz of 

approximately 10
4 

wavelengths. For sorne time, devices employing the propagation 

of elastic bulk waves in solids have been constructed for the generation and delay of 

signais, and in the mid-1960's a number of signal-processing applications could be 

performed because of the discovery of new bulk-wave phenomena involving semicon-

ductors (White, 1962) and magnetic materials (Eshback, 1962) and acoustooptical 

interactions (Gordon, 1966). But it is c1early elastic surface waves which ha)/e 

aroused the greatest interest and provide the key to certain miniature signal processing 

systems. Such surface waves possess inherent advantages in that they are accessible 

to be tapped, guided or ampl ified on the s'urfa ce of the substrate and in that the fabri-

cation techniques can be a duplication of those used for integrated circuitry. A 

review article by White ( 1970) provides a general survey and a comprehensive biblio-

graphy of the whole field of elastic surface waves. In considering these signal-processing 
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devices, !:te indicated that it might be most advantageous to do a variety of signal-

processing steps in a single package once the signais were in elastic form and 

envisioned a receiver having the entire processing from RF input to IF output 

performed with surface waves on a single crystal plate with suitable overlays. 

Recently, progress has been reported in many aspects of surface -wave 

technology. For example, by the addition of internai surface -wave amplifiers to 

long-path delay circuit/the time delay available is extended into the 10 millisecond 

range with frequencies of 100 MHz and higher (Shaw, 1971). Monolithic 

surface -wave amplifiers (Goldren, 1971) have been constructed with measured elec-

tronic gains of 50 da/ cm up to 2 GHz and good agreement with the the ory . 

!~ C_ i t:' 
For the development of the microwave acoustic circuits envisaged by 

( 
{} 
;,-

f 
Stern (1969), elastic waveguides are of fundamental importance. Oliner (1971 a) 

f, 
ç: 
1.' 
;:.~ 

has also noted that the full potential of the elastic surface waves will be realized 
f.: 
" t/ 

~.:' 
only when the surface waveguides are thoroughly understood and exploited. This 

f' 
~' 

thesis deals with the propagation characteristics of elastic surface waveguides and an 
'1-, .: 

iY 
?i 

analytical method is developed to solve for these characteristics in the most fundamen-

r~, 
rf.: 
~' 

tal type of such waveguides. 
\Ç' 
r. .' d? 
ft; 
f 

Generally speaking, guided elastic waves are transmitted by bound 
., 
t;' 
i~ 
fJ 
t 
)s,' 

}g' 

media which contain free surfaces or interfaces forming reflecting walls, or a parti-

cular region where the velocity of the waves is slower than in the surroundings. The 

ve locity of such guided waves depends upon the frequency of excitation, the mode of 

,';', 
U transmission, the elastic constants of the materials and the size and geometry of the 

,-, 

{ 

t'O. 
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medium. From this broad view, the fundamental example of a guided elastic wave 

is the Rayleigh surfave wave in a half-space, a single-mode, non-dispersive and 

non-radiating'wave which is concentrated near the free surface because its velocity 

is lower than the velocities of the bulk waves in the medium. Rayle~gh gave the 

the ory for this mode of propagation in 1887. 

A second waveguide example is the infinite plate in which the waves are 

confined and guided by two parallei free surfaces. In this geometry there are many 

different modes and they can be c1assified as shear-horizontal (SH) and longitudinal 

and shear-vertical (L + SV). The dispersion relation of the (L + SV) family, 

commonly known as the Rayleigh-Lamb èquations (Rayleigh, 1889 j Lamb, 1917), are 

quite complex and have usually been evaluated by numerical methods. 

Another example of guided waves is provided by the layered geometry 

(Achenbach and Epstein, 1967; Farnell and Adler, 1972), Le., a half-space sub­

strate overlaid bya solid layer (infinite plate) of a different material. Depending 

upon the material combination and the layer thickness, Rayleigh modes, Love modes 

and Stoneley waves are possible. The last reference gives a review of the characteris­

tics of these modes of propagation in thin layers and some are considered below in 

numerical examples as limiting cases of the analysis here. 

ln ail the above cases, the waves propagate in a form somewhat like 

uniform sheets that extend to infinity, ideally, in the direction transverse to that of 

propagation and parallel to the boundary surface or surfaces. Mathematically, ail 

the above can be formulated by an exact approach though numerical techniques may 
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be required for the actual solutions. In a real guided wave, however 1 most of the 

energy of the waves must be confined to only a finite portion of the above sheet. 

Exact solutions are available for wave prop!lgation in circular rads (Meeker and 

Meitzler, 1964), and although no exact solutions seem possible for 'r>ctangular bars, 

several workable approximate theories have been developed in recent years (Frazer, 

1969 ; Medick, 1966 and 1968 ; Nigro, 1966 to 1969 ; Volterra, 1961). However, 

-
in the desirable frequency range for microsonic applications, say from 10 MHz to 

1 GHz, the cross-sectional dimensions of such bars would be of the order of microns 

and thus they would be too thin and too weak to be self-supporting. When substrates 

are added for support or as part of the propagation medium, the problem turns to the 

case we wish to consider in this analysis. 

2. Rectangular-Overlay Elastic Surface Waveguides 

The e lastic surface waveguides of concern here consist of a rectangular 

overlay of one isotropie solid in welded contact with a substrate of a different 

material .. This type of waveguide owes its guiding action to the presence of the over-

lay, which is chosen to have a shear velocity lower than that of the substrate. Thereby 

the region near the overlay has lower phase velocity than the surrounding free surface 

and thus waves are guided along the overlay. 

Various types of elastic surface waveguides have been studied, analyti-

cally or experimentally, by Tiersten (1969), Oliner (1969 and 1971 b), Ash et al. 
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(1969) and Waldron (1969 to 1972). Ali of these, implying some restrictive simpli-

fication either of geometry or of material, as will be seen below, can be considered 

as limiting càses of the type of waveguide considered here ; while the present 

analysis is approximate, it has fewer restraints than the earlier analyses. 

The thin-film waveguide was proposed by Seidel and White (1967) and 

analyzed by Tiersten (1969) under t~e assumption that the overlay was very thin 

relative to the wavelength so that the entire effect of this thin-film overlay could be 

treated as a nonzero homogeneous boundary condition at the surface of the substrate, 

and the variation of the particle displacements in the overlay could be ignored. A 

complementary analysis using a similar assumption has been given by Adkins and Hughes 

(1969) . No such restri cti on is used in the ana Iysis here, the th ickness of the overlay 

as weil as its width can be arbitrary. It will be shown that this generalization of 

geometry can be extended to include two extreme cases, the layered configuration 

which results when the width of the overlay approaches infinity at a finite thickness, 

and the end-plate problem when the thickness approaches infinity at a finite width. 

These limiting cases form useful checks for the the ory . Qliner (1971 b) has used an 

analytical. approach for elastic surface waveguides, called the microwave network 

method, but it appears to be valid only for an overlay of very high or very low thickness-

to-width ratio and therefore it still belon.9s to a Iimiting case of the present problem. 

Another generalization in the analysis here concerns materials. The 

material combination of overlay and substrate is Iimited only by the guiding requirement 

that the shear velocity of the overlay must be equal to or lowerthan that of the substrate, 
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and can be freely chosen w~thout imposing the restriction of a perfectly rigid substrate 

as introduced by Waldron (1971). However, solutions for the almost perfectly rigid 

substrates can be obtained from this more general analysis by using artificial substrates 

of increasing rigidity. Moreover, by using the same material for the overlay and the 

substrate as a special case of the material combination, the analysis includes the topo­

graphie ridge waveguides of Ash et al (1969). 

The derivation of the fundamental equations in this analysis is generalized 

so that they can be directly applied or easily converted for anisotropie materials. 

However, the detailed exposition and application of the the ory here is for materials that 

are homogeneous, isotropie and linearly elastic solids. Dispersion curves of the first 

Rayleigh-like mode, the first Love-like mode and sorne higher modes are obtained and 

displacement patterns are provided in order to show the mode characteristics, a thorough 

understanding and complete knowledge of which is obviously the first necessary step to­

ward the study" and deve lopment of this type of waveguides. 
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CHAPTER Il 

PREPARATION OF THE ANALYSIS 

1. Fundamental Consideration 

Physically there are only two regions of different materials in the wave-

guide problem under consideration, namely, a long overlay of rectangular cross-section 

and a half-space substrate. However,- the substrate is further divided for mathematical 

purposes into the regions l, Il, III (+) and 111 (-) shown in Figure 1. Before pro-

ceeding with the analysis of this problem as a whole, it is illustrative and helpful to 

consider these regions separately in order to grasp sorne of their basic characteristics as 

propagation media. 

Let us begin with the central Region 11. If isolated, Region 11 alone is 

a semi-infinite plate with boundaries formed by the two parallel'sides and the top edge, 

and within this Region we can use the two-c:limensional variation the ory of wave propa-

gation in plates developed by Mindlin and Medick (1959). The particle displacement 

fields are then chosen to be a product of a series of Legendre polynomials in the x
2 

-

coordinate and factors decaying exponentially with depth (- x
3

) . 

Since the overlay Region 1 is essentially a rectangular bar, we can use 

the one-c:limensional variation the ory of wa.ve propagation in bars of rectangular cross-

section, developed by Medick (1966 and 1968), which is really an extension of the 

two-c:limensional theory of plates. Modification is needed, however, due to the fact 

that here the bottom boundary is no longer tractîon-free but constrained because it is 

in contact with the substrate, a fact that complicates the analysis. The particle dis-
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placement fields for this region are chosen to be a doubly infinite series of Legendre 

polynomials of the thickness and width coordinates (x
2 

and x
3

) of the overlay. 

The side Regions III (+) and III (-) are somewhat more difficult to 

cope with analytically than the former two. Each region, if isolated, is a quarter-

space so that concentration of waves at the corner would be expected. However, 

mathematically this seems to be the simplest configuration which cannot be solved by 

an exact approach or even by the approximate methods that are workable for rectan-

gular bars. In order to treat these side regions, therefore, some simplified but 

reasonable procedure must be introduced. The main points of the treatment adopted 

here for these regions are the following : first, the same exponential decay factors 

for the depth coordinate (x
3

) as. employed in the central Region Il are used in 

Region III, a necessary step in order ta match the displacements exactly along the en-

tire interfaces between Regions " and III when considering ail regions together as a 

whole ; and second, to ensure that the distribution of the wave is confined laterally 

near the overlay, the amplitude is assumed to decay exponentially with x2 measured 

away from Region Il - Region III interfaces, and the form of the decay factor is 

adopted from a result of the so called "exponential-crested surface waves" given in 

Tierstenls analysis (1969). The particle displacement fields of these side -regions then 

consist of an infinite series of products of t~e two decay factors above. 

ln consideration of the propagation medium as a whole, the solutions in 

the four regions have the sa me propagation factor and are matched so that the displace-

ments are continuous at each point on the interfaces between the regions. The 
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traction-free conditions on, the free surfaces of Region III are approximated 

impl icitly through the use of the exponential-crested surface waves, but ail of the 

other boundary conditions of stress - the traction-free conditions on the top and the 

two sides of the overlay and the continuity of stresses across ail interfaces between 

regions - are introduced into the integral traction terms of two variational equations 

of motion, one for Region 1 and the other for Region Il. 

2. Description of Variational Theories 

The basic methods used in this analysis are variational theories which 

have been successfully developed for isolated plates and rectangular bars. Histori­

cal1y the two-climensional equations in a variational the ory for plates were deduced 

from the three-climensional equations of elasticity bya procedure,based on the series 

expansion method of Poisson (1829) and Cauchy (1828) and the integral theorem of 

Kirchhoff (1850). But the early authors were interested only in low frequencies and 

included just enough terms of order zero of the series for the purpose at hand. It was 

more than ~ne hundred years later that Mindlin (1955) worked out the detailed ex­

position of a power series method and its application to approximations of orders zero 

and one. Mindlin and Medick (1959) revised the theory by introducing Legendre 

polynomials to take advantage of orthogonality, and later, Medick (1966) extended 

the concept and developed the one-climensional equations for rectangular bars. 
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The main pro~edure of the two-dimensional theory for infinite plates 

consists of: (i) expanding the displacements in the plate in a series of Legendre 

polynomials of the thickness coordinate in a variational integral of motion that uses 

the ordinary differential equations of motion as the argument of the integral, (ii) 

changing the three-dimensional displacement fields to be varied into the two-dimen-

sional polynomial fields, (iii) integrating across the thickness of the plate and thus 

converting the ordinary three -dimensional differential equations of motion into an 

infinite series of two-dimensional ones and (iv) applying appropriate truncation to 

produce approximate equations for practical application. 

The same general procedure applies to the one-dimensional theory for 

~: 
t_: rectangular bars, however since the displacements are expanded in a doubly infinite 

" ~-

t,. series of Legendre polynomials of both the thickness and the width coordinates of the 
r r /: 
r.i 

bar, a doubly infinite series of one-dimensional equat;ons is obtained. 
,.. 
~. 
li 
t' ... 

! 

1 
J 

,. 

f 
'}. , 

" 

',: 

1 .' 

A general review of variational methods for the above theories is given 

in Chapter III in order to elucidate the procedures, and as will be seen, these pro-

cedures are used in almost the same form in this analysis until the boundary conditions 

at the interfaces are introduced. 

3. Major Procedures of'Analysis 

'U --
ln the complete mathematical analysis presented in the next chapter, 

L the algebra is rather lengthy and laborious. Thus, in order to provide a general out-
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t) 
line of the whole mathematical structure, the procedures can be grouped into the 

blocks given by the flow-diagram of Figure 2 which indicates the major steps for the 

dispersion calculation. The various algebraic symbols on the chart are defined in 

Chapter III and the reader may find it helpful to refer back to this chart as the analy-

sis is developed. 

Somewhat as in the case of the conventional exact methods used for 

elastic waves in the half-space, the plate, or the layered problem, there are three 

major steps in this waveguide solution. First, appropriate trial forms of the displace-

ment fields for ail the three regions (Blocks 1, 4 and 10 in Figure 2) are assumed. 

Second, the relations between the phase velocity and the decay constants to be used 

with the depth coordinate of the substrate (the eigenvalues in the analysis) are found 

for a given width parameter from the two-dimensional equations of motion for the central 

Region" (Block 5), and then the corresponding eigenvectors (Block 6) are obtained 

from which the displacement solutions are constructed with unknown weighting factors 

introduced (Block 7). Note that a relation for the decay along the width coordinate 

for Region III is also needed (Block 2) and the boundary conditions at the interfaces 

between Regions Il and "1 are introduced (Block 3). This whole second step 

corresponds to the eigen-problem step in the exact approach. Finally, the thickness 

parameters are solved from the one -dimensi.onal equations of motion for the overlay 

Region 1 at each of the given sets of phase velocities and width parameters, which are 

systematically chosen to complete the dispersion curves (Blocks 11 and 12). Note 

that in this final third step, which yields the dispersion and thus resembles the boundary-

condition step in the exact method, the main equations are the one-dimensional equations 
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of motion forthe overlay Re,gion 1 (Block 11). More specifically, the equations of 

motion and the boundary conditions are woven together in the solving procedures in 

the analysis as they are in the derivation of the one - and two-dimensional varia-

tional theories of rods and plates. 

Now let us look ot the flow-diagram in a different way. Blocks 4 to 

7 are the procedures for Region JI c0':lsidered as an isolated plate, and Blocks 10 to 

12 plus 8 for Region 1 treated as an isolated bar, however as might be expected, 

differences exist in the variational theories used here from those for isolated bars and 

plates. For an isolated plate, the assumed displacements in Block 4 would have no 

exponential dependence on the depth coordinate and ail the traction boundaries in 

Block 3 would be free. Similorly ail the boundaries in Block 8 for an isolated bar 

would be free. In other words, since the isolated cases are single-region problem with 

ail boundaries free, while this overlay waveguide problem is one of a multi -connected 

region containing interfaces of discontinuity, it is obvious that the latter problem is 

more difficult to solve. Consequently the particular procedures in Blocks 8 and 9 

which handle the difficulty of interfaces are of key importance in the analysis. These 

procedures ,constitute a nove 1 step that may be applicable to other more general pro-

blem of multi-connected regions. As implied by Block 3, the same techniques are 

applied to the interfaces between Regions, Il and IfI, but here they are much simpler 

because the assumed displacements of Regions fi and III are automatically matched 

at these interfaces. 
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\) 
To summarize, the important concepts that are central to the solution 

of this overlay waveguide problem are: 

(i) modified plate modes are carefully assumed for the 

central region of the substrate and modified bar modes 

for the overlay, 

(ii) exponential-crested surface waves are introduced as a 

simplified and reasonable assumption for the side-regions 

of the substrate, 

(i i i) a special procedure is provided to overcome the difficulty 

introduced by the various interfaces involved in the 

problem. 
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ln the previous chapter, the theories of plates, bars and exponentially 

crested surface waves with necessary modifications for the analysis of overlay wave­

guide were briefly described and the major procedures of the analysis were outlined 

in Figure 2. This chapter develops suècessively the algebra for the assumed dis­

placements (Blocks 1, 4 and 10 in Figure 2), the equations of motion with the 

boundary conditions of stress for Region" (Blocks 5, 6 and 7) and for Region 

(Blocks 11 and 8), the important IIdeta,i1ed matching ll step for the continuity of 

displacements at the bottom interface of the overlay (Block 9), and then the dispersion 

(Block 12). After that, the algebra for the displacements themselves is rather straight­

forward and no block diagram has been shown. 

The symbols used in the text are defined at their first occurrence and a 

Iist of them is summarized in the preface. Since a\l of the equations appear only in 

this chapter, their numbering is referred to the appropriate section, e.g., Equation (1.2) 

or simply (1.2) indicates the second equationin Section 1, Chapter III. 

1 • Assumed Displacements 

For c1arity, the designation of the subscripts and the supers cri pts is 

summarized as follows : 



~ 
! 
1 
t 
1 
1 
" i 
l 

i 
1 Cf (; 

1 
1 
~ 
! 
~ 
~ 

1 
~:; 
~ 

~'. li 
Iii. 
~, 

1 < ,~" 

i ,t· 
'" ~. 
f;' r !' 

~':' 

f~t 
....". 

, j~ 

as : 

(1) 

(II) 

(III) 
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i,j,k,1 = l,2!3 and a,b,c,d = land 30nly, 

are used as subscripts for various components measured 

alon9 the coordinate axes. 

n, m, p, q = 0, l, 2 . •• are used as superscripts for the 

order of a term in a series. 

l, J, K, L = l, 2, 3, 4, 5 - label the eigenvalues in 

Sections 3, 5, 6. 

N, M = l, 2, ... 15 label the homogeneous equationsof 

Region 1 in Sections 4, 5, 6 . 

The trial forms of displacement for Regions l, Il and III are assumed 

'" U. 
1 

= 

u. = 
1 

,u i (±) = 

ex) 

l 
n=O 

CD 

l 
n=O 

CD 

L 
n=O 

CD 

l p Qm 
" (n,m) u. , 

n 1 

m=O 

p u. (n) , 
n 1 

n 
( ± 1) Y (±) 

(n) 
u. 
,1 

" (n,m) 
u. = Â. (n,m) X 

1 

u. 
1 

(n) 

1 

= A.(n) Z X 
1 

(1 

(1 

(1 

where common notations for Region 1 are IIhatted ll with a circumflex (") and those 

of Region III with a bar (-). Whenever a double sign ( ± or '+) occurs in a 
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formula or in subscripts, the upper sign refers to the right-side Region III (+) and 

the lower to the left "' ( -). The function abbreviations and symbol notations in-

volved are defined as follows. 

û. (n,m) are the amplitudes of the product polynomial distributions of 
1 

displacement in the plane of the bar cross-section or simply the polynomial (bar) 

displacements of order (n, m), which in turn have their own amplitudes Â. (n,m) . 
- 1 

Similarly, u.(n) are the amplitudes of the polynomial distributions of displacement 
1 

across the plate thickness or simply the polynomial (plate) displacements of order n 

with their own amplitudes A.(n). For the isolated bar and plate, the distribution of 
1 

the displacement components can be exp'ressed by the polynomials which are then used 

as the bases in the identification of bar and plate modes ( Mindlin and Medick, 1959, 

Figure 1 ; Medick, 1968, Table 1). However, the mode identification for this over-

lay waveguide is more complicated and will be discussed later. 

Some fundamental functions have been abbreviated for simplicity, 

X = exp [ i k (xl - v t) J (1.40) 

y(±) = exp [+ ~ k (x
2 
+ h

2 
) J (l.4b) 

Z = exp (a k x
3

) (l.Sa) 

P = P n (x2 /h2 ) (1. Sb) 
n 

Q = Qn (x3 / h3 - l ) (1.5c) 
n 
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= J - 1 , 

'k = real propagation constant, 

v = propagating phase ve locity, 

h
2

,h
3 = semi-width and semi-thickness of the overlay 

(see Figure 1) " 

a,~ = constants of attenuation along x
3 

and x
2 

respectively, 

P ,Q. = Legendre polynomials of order n . 
n n 

The extra symbol Q for Legendre polynomials of the argument co­
n 

ordinate x
3 

is introduced in addition to the conventional P n ' which is solely used 

for x
2

, in order to avoid confusion when their arguments areomitted for a clearer 

and neater formulation in the sequel. The Cartesian tensor notation and summation 

convention are adopted for ail coordinate indices except those in parentheses. A 

comma followed bya coordinate subscript indicates the spatial derivative and a dot on 

top of a displacement symbol indicates the temporal derivative, i.e., 

u.. = 0 u. /0 x. and u. = 0 u. / 0 t 
I,J 1 1 1 1 

The summation sign is retained for the indices other than those of the coordinates. 

It is worth noting particularly that the form of the polynomial displace­

ments u.(n) for Regions " and "' is the same in (1 .2) and (1.3). Under such 
1 



c. 

an arrangement, since at th~ interfaces between Regions" and 1", x
2 

= ±h
2

, 

Pn (±1) = (±l)n and Y(±) = 1, then 

U - u at x
2 

= ± h
2 i - i(±) 
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(1.6) 

which means that the boundary conditions of the conti nuit y cl di~i:,!c..;ement along the 

interfaces between Regions " and 1" have been automatically satisfied by the 

assumed forms of the displacements. To ensure that the continuity of displacement is 

satisfied at each point on the interface between Regions 1 and Il, a rather strong 

IIdetailed matching" condition will be assumed later such that the corresponding terms 

for each order of Legendre polynomial P n in the solutions fOI Regions 1 and 1/ are 

equal at the interface. 

2. Equations of Motion for Region " from a Variational Approoch 

ln a conventional exact approach to solving an elastic propagation prcblem 

for a certain defined configuration with boundary conditions, it is common to start with 

the differential equations of motion, 

E = T ••• ' - p (2.1) 
q,1 

where E is an abbreviation symbol, T •• are the tensor stresses, p is the density of the 
Il 

medium and the u. are the displacement fields. Equation (2.1) is just Newton's law 
1 
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stating that the divergence of stress is equal to the rate of change of momentum at 

each point within the defined region. This approach cannot be followed for the 

waveguide geometry here because Region II is part of a multi -connected region, a 

problem which cannot be solved exactly. Instead, we start with the integral, 

= 0 (2.2 ) 

Here the E which vanishes identically within the defined boundaries is used as the 

argument of the integral. The integration is over the whole volume of Region \1 as 

shown from the Iimits of the triple integràl. No definite Iimit is needed for xl which 

is the direction of propagation in the derivation but it is understood to be from - Cl) to Cl) 

as the medium is assumed to be very long in terms of the wavelength. 

Now, substituting u. from (1.2) into (2.2), changing the three-
1 

dimensional variation 5 u. into a two-dimensional variation 5 u. (n) , integrating the 
1 1 

term T 2i,2 by parts with respect to x2 
and using the orthogonal relation (Churchill, 

1963) 
h

2 

(P , P ) = J P P d x 2 
= C h2 

5 , C = 2 / (2 n + 1) (2.3) 
n m n m n nm n 

-h
2 

where 5 is the Kronecker delta, (2.2) becomes 
nm 

0 

r J [ E (n) ] fi u. (n) d x3 d xl = 0 (2.4) 

" 1 
xl -cD 



(.' 

.(~ . . -.....: 

22 

With an arbitrary 5 u. (n) , 
1 . 

E (n) = T. (n) _ T' • (n) + F • (n) - pC h
2 

ü·. (n) = 0 (2.5) 
al,a 21 21 n, 

wherein 

T •• (n) 
'1 

T
I (n) 
2i 

F 
(n) 

2i 

= 

= 

= 

h2 

I 
-h2 
h2 
r' 

T •• P d x
2 '1 n 

~I T 2 i P n, 2 d x2 
-h2 

x = + h 
[T

2
. P j 2 2 
1 n x = -h 

2 2 

The differential of the Legendre polynomials in (2.7) can be expressed as 

P n,2 = 
n 

I 
p=1,3 

(2/ C h2 ) P n-p n-p 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

where the summation index p indicated covers odd integers only from 1 to the upper limi 

When the arder of n becomes large, this term introduces complications, but fortunately 

a good approximation can be obtained for n = 0, l, 2. Substituting (2.9) into (2.7) 

and then into (2.5), gives the ~ equétions of motion for Region Il, 

n 

(2 / Ch) T ~n-p) + F ~n) - pC h ü·.(n) = 0 
n-p 2 2, 2, n 2 1 

p=1,3 (2.10) 
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These are the equations in a variational approach which replace the differential 

equations (2.1) of the conventional wave approach. More specifically, a set of 

three equations (2. 1) of the actual displacements u. and stresses T.. are trans-
I Il 

formed into the infinite sets of equations of order n( n = 0, 1, 2, ... co), each 

containing three equations of the polynomial (plate) displacements u.(n) and 
1 

stresses T.~n). In the following, it is desirable to have every term of (2.10) ex­
'1 

pressed in terms of the polynomial displacements u~n) . 
1 

Substituting u. of (1 .2) into the ordinary equations of strain, 
1 

S. • 
1,1 

1 = 2- (u •• + u •• ) 
1,1 1,1 

and defining 
co 

s .. 
Il 

= L 
n=O 

we get the polynomial strains, 

!.2 [u. (n) 0 . + u. (n) O. + (2/C
n 

h
2

) 
l,a al l,a al 

Accordingly, the ordinary stresses can be expressed as 

CD 

Tij = cijkl Ski = l 
p=O 

where the c
ijkl 

are the e lastic constants in tensor form. 

(2.11) 

(2.12) 

CD 

\' (u.(n+p) O
2

, + u.(n+p) O
2
,) 

L. 1 1 1 1 

p=1,3 

(2.13) 

(2. 14) 

Substi tuti ng (2. 14) i nto 
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(2.6) and using (2.3), gives the polynomial stresses, 

(2.15) 

Up to this point, the derivation follows exactly that of Mindlin and 

Medick (1959) except that we are doing differential and integral operations with 

respect to x
2 

or x
3 

directly instead_of their x
2

/h2 
or x

3
/h3

, because here 

exponential functions are also used together with the Legendre polynomials, thus some 

equations are slightly different in appearance From theirs. 

It is now assumed that the stresses on the interfaces between Regions i i 

and III represented by the traction terms F2i) of (2.8) in (2.10) are given by 

the stresses in the side-region III, in other words· that the boundary conditions of stress 

on the interfaces, T2j 
= T2j 

at x
2 

= :1: h
2 

' can be introduced into F (n) • then 
2j 

, 

From (2.8) 

F (n) 

x
2 

= + h2 

= [ T
2j 

P J (2.16) 

2i n x =-h 
2 2 

The stresses at x
2 

= :1: h
2 

calculated From (l .3) in Regi~n III are, 

00 

= '\ n (n) - (n) 
L (:1: 1) (c2jka uk,a + f3 kC2jk2 uk ) (2.17) 

n=O 
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Substituting (2.17) into (2.16) the final tractions become 

co 

F (n) = 
2j l [[1 - (-1) n+p] c. u (P) - [1 + (-1) n+p ] ~ kc u (P) ) 

2Jka k,a 2jk2 k 
p=O 

The boundary conditions on the displacements at x
2 

= ± h
2 

are automatically 

satisfied from the trial forms of the displacement (1.2) and (1.3), therefore both 

(2.18) 

boundary conditions on the displacement and on the stress are actually involved in the 

derivation of (2.18). 

By using (2.15), (2.13) and (2.18), equations (2.10) become the 

displacement equations of motion (2.19) for Region Il in contact with Region III, 

co 

h ( (n) .. (n» 2 
Cn 2 cajkb uk,ba - P uj + cajk2 

I u (n-kl) 
k,a 

q=1,3 

n co 

2 \' [ (n-p) 2,/ h) \' u (n-p+q) ] - L c2jkb uk,b + ( Cn-p 2 c2jk2 L k 
p=1,3 q=1,3 

co 

+. l f [1 - (-1) n+p ] c
2jka 

uk,~) - [1 + (_1)n+p ] ~ k c
2jk2 

uk(P)} = 0 

p=O 

(2. 19) 

3. Truncated(2,2) - Approximation for the Substràte 

With a series solution it is necessary to decide upon the number of terms to 

be carried. It is convenient here to label the order of the approximation by the highest 
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Legendre polynomial used for each direction of Region 1. Thus a (1,1) - approxi-

mation allows Iinear variation of particle displacements in the x
2 

and x
3 

directions 

within the overlay Region 1 and in the x
2 

direction within the central Region Il, 

while the (2, 2) - approximation allows quadratic variation for ail the above 

directions. 

It has been found that for reasonable estimates of the dispersion curves, 

the (1,1) - approximation is adequate and for this truncation most of the algebraic 

steps can be carried out explicitly, thus allowing direct numerical evaluation of the 

solutions. However, for investigation of the form of displacements, esp~cially for the 

higher modes, it is desirable to go to a higher approximation and then it is not possible 

to do very much of the algebra expl icitly and numerical search techniques have to be 

introduced. A reasonable compromise between computation time and usefulness of 

the solutions is provided by the (2,2) - approximation. Because of the symmetry of 

the problem about the vertical, central plane of the guide for isotropic materials, the 

equations may be divided into symmetric and antisymmetric modes which can then be 

treated independently. 

We will proceed first with the (2,2) - approximation. On expanding 

(2.19) in such a way that n is 0, l, 2 successively and keeping in mind that for 

any value of n employed the n+q, n-p+q, n+p and pare allowed only to be 0, 

1 or 2, the following nine homogeneous equations are obtained 
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k (0) h ( (0) •• (0» ( » 
- ~ c2 jk2 uk +.2 cajkb uk,ba - P uj + cajk2 + c2jka uk,a(l 

h 
(k 1) (1 ) 2 ( (1 ) ,. (1 » 

- ~ + h c2jk2 uk +"3 cajkb uk,ba - pu, 

2 

(0) , '3 (2) h2 (2) (2) 

- ~ kC2'k2 uk - (~ k + r) c2'k2 uk + T (ca',kb uk,ba - pû', ) = 0 

, 2 ' 

The elastic tensor for isotropic medium, 

where À and J.1 are the Lamé constants, is substituted into (3,1) and the factor 

J.1 k
2 

is removed. In the coordinate system used, the nine equations of (3,1) are 

automatically separated into symmetric modes and antisymmetric modes according to 

the rules : 

for the A,(n) , i + n 
1 

odd for symmetric modes, 

= [ even for antisymmetric modes, J 

The final outcome is as follows : 

(3,1) 



2 
a + EOl i q C i C/H2 

-9 0 
0 

2 
i a C 5 a +E03 a C/H2 

0 -9 
0 

0 0 
2 

3i C/H
2 

3a C/H
2 a + E

12 

-59 0 0 
2 

i a C 
0 a +E21 

0 -59 0 i a C 
2 

0 
5a +E

23 

for the symmetric modes, and 

2 
i C/H2 a ~/H2 -9 5 a + E02 0 

0 
2 

i a C 3 i C/H2 a + Ell 

0 i a C 
2 

5 a + E
13 

3 a CI H2 

-59 5 0 0 
2 

0 
a + E22 

for the antisymmetric modes, where 

= 

ô = 

= 

k h
2 

(and H3 = kh3 for later use) 

2 + À / ... , C = ô - 1 

2 
~ / H2' 91 = 3 ( 1 + ~ H2)/ H2 

2 
and 9

2 
= 5 ( 3 + ~ H2) / H2 

r 
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ï ï A (0) l 
1 1 
1 A (0) 
1 3 

1 A (1) 
i 2 

A (2) 
1 

A (2) 
3 

(3.2) 

A (0) 
2 

A (1) 
1 = 0 

A (1) 
3 

A (2) 
2 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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(1 

2 
V -5-9, 

n n = 

and e = 
n3 

The normalized velocity V is 
n 

2 
e =V -1-59 
n2 n n 

l- -1-9 
n n 

n=0,1,2 

29 

(3.7) 

(3.8) 

where rare adjustment factors of value near unit y (to be explained later) and v 
n t 

is the shear velocity of the substrate. 

The attenuation ~ in (3.6) is adopted from a result for the exponentially 

crested waves (Ti ersten, 1969), i. e . , 

~ = (3.9) 

where v
R 

is the Rayleigh velocity for a half-space of the substrate material. The re­

presentation of (3.9) for ~, as mentioned in Section 1 of Chapter Il, is a provision 

that simplifies the involvement of the side-region III and th us makes this waveguide 

problem sO":lewhat more amenable to solution. In as much as the Rayleigh surface wave 

velocity in isotropie solids is independent of direction in the plane of the surface, as 

indicated by Tiersten (1969), equation (3
7
9) is the realexpression for exponential or 

hyperbolic crested waves in a half-space. In the waveguide problem under considera-

tion, the displacements along the plane x
2 

= h
2 

are not term-by-term th ose of a 

.free-surface Rayleigh wave, for example,in the isotropie case the Rayleigh wave has 

two decay constants for depth whereas it will be seen that for the present approach to 
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the waveguide problem the number of decay constants for depth depelid:. on the order 

of the truncation. A rigorous condition for the choice of a value or a set of values 

for ~ in (3.1) has not been found. Several different forms for thE; dependence of 

~ on problem parameters have been tried for both isotropie and anisotropie configura-

tions and no justification has been found in terms of better satisfaction of boundary 

conditions, of consistency with limiting cases, or of simplification of computation, for 

using other than the single value of ~ -defined by (3.9). In the discussion of trunca-

tion and of numerical results which f6110w, ~ will be assumed to be given by (3.9). 

Now (3.2) for the symmetric case will be discussed as the example of 

normal manipulation. Since the mathematical procedures for (3.3) of the anti-

symmetric case are entirely the sa me , only results of important steps are given for the 

latter case. 

ln order to have a non-trivial solution of (3.2), the determinant of the 

matrix must vanish. Setting this determinant equal to zero gives the secular equation. 

Normally the v
2 

implicitly expressed in the E. which appear in the diagonal terms 
ni 

of the matrix is the eigenvalue, in this case however, it should be remarked that the 

v
2 

is also implied in ail 9- in virtue of ~. Nevertheless, the relation between v 
n 

and a can be fixed from the secular equation when the semi -width h2 is given and 

the substrate material is chosen. It happe fiS to be more convenient to solve for a in 

a bi-quintic equation of real coefficients for each given v. In the coordinate system 

fOi this symmetric case, only the five positive roots, designated by a J ( J = 1, 2, 3, 4, 5), 

have meaning for the necessary decaying of the wave amplitudes down into the depth of 
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the substrate. The next step is similar to the procedure of finding a set of eigen-

vectors for each a
J

. As mentioned before, explicit expression for a J and their 

corresponding eigenvectors in this (2,2) - approximation is impossible and numeri-

cal computation has to be assumed. Changing notation for the individual eigenvectors, 

( A (0) A (0) A (1 ) A (2) A (2) ) 
1 ' 3 ' 2 ' 1 ' _3 J 

(3.10) 

the complete set of the calculated eigenvectors can be denoted by 

AU ( l, J = 1, 2, 3, 4, 5) . 

Note that the above eigeiwalue solutions are for the polynomial displace-

ments and they should be combined according to (1 .2) to get the actual particle 

displacements of Region" For this symmetric (2,2) - approximation, the displace-

ments are: 

= P u (0) + P u (2) 
o l 2 1 

= P 
(1) 

1 u2 

= 
10) '2.) 

P u\ +p u' o 3 2 3 

= 

= 

= 

S 

L (A1J+P2A4J)aJZJ 

J=l 

5 

l Pl A3J a J ZJ 

J=l 

5 

l (A2J + P 2 ASJ) a J Z J 

J=l 

(3.11) 

where the a J are the newly introduced weighting factors and Z J = exp (a J k x3 ) 

are the Z functions of (1.5) with a specified. The X function of (1.4), de­
J 
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noting propagation, is omitted in (3.11) and will be omitted in most of the following 

equations. Similarly, according to (1.3) the particle displacements of Region "' 

are : 
5 

= (0) (2) 
(u1 +u1 )Y(:I:) = 

\'" 

L ( A1J + A4J ) a J Z J y ( :1: ) 

J=l 

5 

u 2 (:I:) = 
(1 ) 

:1: u2 y (:1:) = :1: I A3J a J Z J y ( :1: ) (3.1: 

J=l 

5 
\' 

( A2J + A5J ) a J Z J y ( :1: ) L = = 
J=1 

.{ . 
.... _.-

With the antisymmetric (2,2) - approximation we begin with (3.3) and 

the secular equation is a bi -quartic equation in a. Denoting the roots by 

a J (J = 1, 2, 3, 4) and the eigenvectors by 

( A (0) A (1) A (1) A (2) ) 
2' l' 3' 2 J = (3. 1 ~ 

the particle displacements of Regions" and "' become : 
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4 

( ; u
1 

= P (1) 
1 u1 

= Pl l A2J a J ZJ 

4 
J=l 

P u (0) + P u (2) " u
2 = = '> (A1J + P 2 A4J ) a J ZJ (3.14) o 2 2 2 L., 

J=l 

4 

u
3 = P (1) 

1 u3 = Pl l A3J a J Z J 

J=l 

4 

u
1 ( :1: ) = (1) 

:l: u
1 Y(:I:) = :1: I A2J a J ZJ y ( :1: ) 

J=l 

4 

u2 ( :1:) = 
(0) (2) 

(u2 + u2 ) y ( :1: )" = L ( AIJ + A4} a J Z J y ( ± ) (3.15) 

J=l 

, 4 
, -- (1 ) L u3 ( :1: ) = :1: u3 y (:1:) = :1: A3J a J Z J y ( :1: ) 

J=l 

1 r 
'i. Note that the same notations, AIJ ' a

J 
and Z J are used in the symmetric and the 

>. 
l 
i antisymmetric approximation, but obviously they are numerically different in the two ~ 
!" 
l'. 

r cases. F 

~ 

General Equations of Motion for the Overlay from a Variational Approach 

A detailed formulation of the one-dimensional theory of wave propagation 

in elastic bars of rectangular cross section has been given by Medick (1966 and 1968). 



34 

ln the the ory an algorithm was employed to generate the one-dimensional equations of 

motion, the strain-displacement relation, the stress-strain relation, and the associated 

boundary conditions by subiecting ail of the displacement fields, strains and stresses to 

variation. However in this thesis, we proceed rather in a pattern analogous to that 

used to develop the two-dimensional theory for plates as shown in Section 2 and con-

sider ail other relations and conditions as undisturbed constraints. 

Starting with (2.1) but using the "hatted" variables T •. , P and 
Il ,. 

û
i 

' substituting (1.1) and here performing the cross integration of T 2i,2 and 
,. 
T 3i, 3 with respect to x2 and x3 respectively, we obtain 

where 
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,., 

= [T3• Q ] Pn d x2 ' 1 m x = 0 
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(4.1 ) 

(4.2) 

(4.3) 

(4.4) 
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and the following relations for the Q have been used 
m 

(Q , Q ) = C h3 ô 
s m m sm 

m 

Q = \"' (2/ C h
3

) Q 
m,3 L. m-p m-p 

p=l,3 

Equations (4.1), which replace (2.1) comprise doubly infinite sets of equations of 
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(4.5) 

(4.6) 

order (n,m) with n, m = 0, l, ... 00, each of which contains three equations of 

the polynomial (bar) displacements û.(n,m) and stressesT.~n,m) . 

1 " " 

Parai lei to the derivation for Region Il, the polynomial strains and stresses 

of Region 1 can be expressed in the form 

Since 

" (n,m) 
T •• 

'1 

= 

= 

CD 

+ (2/Cn h2) I 
p=l,3 

p=l,3 

( "(n+p,m)~ "(n+p,m)~ 
ui 02j + u j °2i 

( ,,(n,m4p) ~ ,,(n,m+p) ~ )J 
ui 03j + u j °3i (4.7) 

(4.8) 
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( 
'" 
T2; = 0 at x

2 = ±h
2 

'" 
(4.9) 

T
3i 

= 0 at x
3 = 2 h3 

and 

'" 
oT 3i = T 3i at x

3 = 0 , (4.10) 

and supposing that T 3i at x
3 = 0 can be determined later as the series, 

co 

T 3i (x3 = 0 ~ = L p G~) (4.11) 
p 3, 

p=O 

then (4.3) and (4.4) become, 

; (n,m) = 0 (4.12) 
2i 

and 

; (n,m) m C h G (~) (4.13) = - (-1) 
3i n 2 3, 

Equations (4. 13) are obtained under the same assumptions used for (2.16) and wi Il 

drastically alter the equations of motion (4.1) of the overlay from those of Medick's 

isolated bar due to the mechanical contact of the bottom side of the overlay with the 

substrate. 

Substituting (4.7) into (4.8) and the result, together with (4.12) and 

(4.13), into (4.1), t~e polynomial displacement equations of motion for the rectangu-

lar overlay are obfoained, 
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'" '" (n,m+q) 
cl ik3 uk 

co 
J. \' [. '" ",(n,m-p) 

- (2/Cm H3) L.. 1 c
3ik1 

u
k 

+ (2/C
n 

H
2

) '\ '" '" (n+q,m-p) 
L. c3"k2 uk 

p=l,3 q=l,3 
1. 

co 
2 J. \,,.,. (n,m-P4q) ] 

+ ( /Cm-p H3 ) L c3ik3 uk 
q=l,3 

(4.14) 

where H
2 

èlnd H3 are defined in (3.4) . 

As mentioned before, ('4.14) corresponds to the boundary-condition step 

of the conventional exact approach and contains two kinds of unknowns : the weighting 

factors a J of Region Il in the terms of G
3
i) and the polynomial amplitudes Â~n,m) 

'of Region 1 in ail of the other terms. In order to make (4.14) solvable, one has to 
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transform ai into Â~n,m) and for this purpose the "detailed matching" of dis­

placements on the interface between Regions 1 and Il, mentioned at the end of 
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Section 1 and represented by Block 9 on the flow-chart in Figure 2, can be intro-

duced at this stage. By such a manipulation ail the boundary conditions at the 

interface are taken into consideration on the one hand, and on the other hand (4.14) 

is transformed into a suitable set of homogeneous equations in which the number of 

equations is equal to the number of unknowns so that the vanishing of the coefficient 

determinant leads directly to the solution of this waveguide problem. However to 

avoid unnecessarily complicated expressions, the analysis here will first introduce the 

(2,2) truncation within the overlay in the next section and then apply the detailed 

matching in Section 6. 

5. Truncated (2,2) - Approximation for the Overlay 

On expanding (4.14) with n,m = 0, l, 2, a total of 27 equations, 

three (i = l, 2, 3) for every combination of n and m, i s obtained for the 

(2, 2) - approximation and i s given in full in Appendix A. After substituting 

the Lame' constants ~ and ~ for the ;"kl of Region 1 , the 27 equations separate . Il 
into two independent sets, one for the symmetric modes with (i + n) odd in Â~n,m) . 1 

and G3~n) , and one for the antisymmetric modes, with (i + n) even according to the 

same rules as stated in Section 3. Since the only mirror plane of symmetry is the 

. plane x
2 

= 0 in the configuration shown in Figure 1, the superscript n in Âi",m) 
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and G3~n) associated wit~ the Legendre polynomial P displays the symmetry 
1 n. 

above ; but since the symmetry plane of the overlay itself x
3 

= h3 is not a symmetry 

plane of the complete problem, because of the presence of the substrate, the super-

• t • A .... (n,m) • d • h h L dl' 1 Q • b't . scnp min. assoclate Wlt t e egen re po ynomla s IS ar 1 rary ln 
1 m 

both the symmetri c and the antisymmetri c modes. 

It is convenient to relab~1 the coefficients Â~n,m) into two column 
1 

vectors, one for the fifteen elements associated with symmetric modes 

= [Â (0,0) A .... (0,0) A.... (0, 1) A .... (0, 1) A .... (0,2) A.... (0,2) 
1 '3' 1 '3' 1 '3 ' 

Â (1,0) Â (1,1) A .... (1,2) A .... (2,0) An (2,0) A .... (2,1) A .... (2,1) A .... (2,2) A .... (2,2) 
2 '2 '2' l' 3 '1 '3 '1' 3 

(5.1) 

and one for the twelve elements of the antisymmetric modes 

= [ A .... (0,0) A.... (0, 1) A .... (0,2) A ..... (1,0) A .... (1,0) 
2 '2 '2' 1 '3 ' 

A 
.... (1,1) A .... (1,1) A .... (1,2) A'" (1,2) . A .... (2,0) A .... (2,1) A .... (2,2) ] (5.2) 

1 '3' 1 '3 '2 '2 '2 

If theterms in G~~) can be expressed in ~erms of the elements ;M for the symm~tric 
case in such a manner that gNM is the corresponding part of the coefficient of SM 

in the N th equation and if FNM represents the part of the coefficient of SM not 

.associated with Gj~) in this same equation, the gNM and the f NM can be grouped 

into matrices so that, after dividing the equations through by ~, the set of equations : 
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N , M = l, 2, .. 15 (5. 3) 

M 

can be writtenfor the symmetric case and similarly for the antisymmetric case 

N,M = 1,2, • ."12 (5.4) 

Here subscripts "5" and "Ali stand for "Symmetric" and "Antisymmetric" and the 

individual elements of fS and fA are written out in Appendix B . 

It will be recalled that the quantity Gif) defined by (4.11) is the 

coefficient of the Legendre polynomial of order n in the substrate stress· T 3i when 

the latter is evaluated at x
3 

= 0 from the displacements in Region Il. Substituting 

from (3.11) into the ordinary expressions of stress, 

T
31 = ~ (ua, 1 + u1,3) 

T32 = ~ (u3,2 + u2.,3) 

T
33 = (À + 2 ~ ) u3,3 + À (u1, l + u2,2) , 

and then let.ting x
3 = 0, the form of (4. 11) for the symmetri c (2,2) - approximation 

is obtained, 

T31 = G 1 + P2 G4 

T
32 = Pl G 3 

(5.5) 

T33 = G2 + P2 G5 
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where the notation 

( Gr' G2 1 G3 1 G 4 1 G5 ) = (G3f), G3~)' G3~)' Gj~), G~) ) 
(5.6) 

has been used. The components are given by 

5" 

G, = I-Ik l GIJ a J " J 
= l, 2, 3,4, 5 (5.7) 

J=l 

where 

GU = A1J a J + i A2J 

G2J = 5 A2J a J + ( A3J / H2 + i AU) À /1-1 

G3J = A3J a J + 3 A5J / H
2 

(5.8) 

G4J = A4J a J + i A5J 

G5J = 5 A5J a J + i A4J X/fJ 

Similarly 1 for the antisymmetric modes, introducing the notation 

( G G G G) = (G (0) G (1) G (1) G (2) ) 
l' 2' 3 1 4 32 1 31' 33' 32 (5.9) 

gives the following expressions for the stresses at the interface under the. overlay from 

(3. 14) 
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P G (1) T31 = 
1 31 

T32 = (0) (2) 
G32 + P2 G32 (5.10) 

T33 = P G (1) 
1 33 

so that 

G1 = Ilk l GU a J 
1, J = 1, 2, 3, 4 (5: 11) 

where 

GU = A
1J 

a
J + A3J /H2 

G2J = A2J a J 
+ i A

3J 
(5.12) 

G3J = S A3J a J + ( 3 A4J / H2 + i A2J ) À / Il 

G4J 
:: A

4J 
a

J 

Note that G
I 

of (5.11) are the terms for the elements of gA in (5.4). Although 

the same notation is used for GI ' GU ' a J ' AU and a J in the symmetric and 

antisymmetric case, the symbols represent different values and different numbers in 

each case. 

6. "Detailed Matching" of Displacements and the Search for Solutions 

ln this section an important procedure, "detailed matching lt of displace-

ments for the interface between Regions 1 and Il, that is the step of Block 9 in 
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i 
! -

t 
Cl' 

f 
Figure 2, is introduced and,the last part of the analysis is developed. If the condi-

1 
~ 

1 
~ 

tions of continuity of displacement across the interface between Regions 1 ond Il 

are now imposed, considering the form of the substrate and overlay displacements from 

t, 
~ 
t 

(1.1) and (1.2) and recalling that the substrate displacements are a linear combina-

~ 
t 
t 
f' 
t 
F 
l"-

tion of the terms in (3.11), the general form of the statement of continuity of 

displacement at x3 = 0 will be 

l 

~ 
i, 

1 
LPn LaJAi~) = l Pn L ( -1) m Â.(n,m) 

1 
(6.1) 

1 

t 
n J n m 

t 
~ 

[ It is assumed here that there is "detailed matching" in the latter equation in that 

t C/ 
~ 

l 
f 

coefficients of corresponding Legendre polynomials on opposite sides of the equation 

are equa l, i. e ., for each combi nati on of i and n, 

\' (-1) m Â~n,m) L 1 
(6.2) 

J m 

m 
Note that in the above two equations, the factor (-1) comes from the Legendre 

polynomial Qm at x
3 

= 0 and the symmetry rules mentioned before are valid. 

Again by taking the symmetric (2,2) - approximation as an illustration 

of the analysis, from (3.11) and (1.1) for the five combinations of i and n, (6.2) 

may be expressed in a compact form, 

l, J = 1,2, •.• 5 (6.3) 

() 
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where b
l 

stands for grouped representations of ;~n/m) according to the right-hand 
. 1 

side of (6.2) as follows, in terms of the element of the column vector 5
M

, 

,.. ,.. ,.. ,.. 

b
1 

= 51 - 5 + 55 3 
,.. ,.. ,.. ,.. 
b

2 
= 52 54 + 56 

,.. A ,.. 
b

3 
= 57 ~8 + 59 (6.4) 

,.. ,.. ,.. ,.. 
b
4 

= 510 - 5
12 + 514 

,.. A ,.. A 

b
5 

= 511 - 513 + 5
15 

Solving for a J from (6.3) and substituting into (5.7) , gives 

llk 
\ L -1 . 

1, 2, .. 5 G
I 

= L GIJ (A ) JK bK ' 
1, J, K = 

K J (6.5) 

-1 
where (A ) JK is the reduced cofactor of A

KJ
. Now it is seen in (6.5) that the 

G
I

, which originally contained the weighting factors a J as unknowns in (5.7), are 
,.. ,.. 

thus transformed into expressions with the polynomial amplitudes SM' via b
K 

' so 

that g5 can be added to f S in (5.3). But care must be taken in so doing, converting 

G
I 

of (6.5) back into Gji) according to (5.6), dividing by t.î, multiplying by the 

corresponding factors associated with G~~) in (A .1) in Appendix A, changing b
l 

of 
,.. 1 . 

(6.4) back into SM and then identifying the resultant terms as the (g5) NM . 

At this stage the only unknown quantity in (5.3), for specified phase 

velocity V = v / v
t 

and semi-width H
2 

= k h
2

, is relative semi-thickness 
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H3 = k h3 and the determinant of this homogeneous set of equations must vanish 

for non-trivial solutions. 

Iterative search techniques, such as the golden-section method can be 

used to determine a numerical value of H3 which causes the determinant to vanish, 

th us establishing one point on the dispersion curves for the symmetric modes. Families 

of dispersion curves are produced by repeating the procedure for the sorne value of 

H2 but successive assumed values of V. Once the value of H3 which causes the 

coefficient determinant in (5.3) to vanish has been found, the relative values of the 

components of ;M' that is the appropriate Â[m,n), can be determined by soy 

Gaussian reduction of (5.3). These components give the particle displacements in 

the overlay by means of (1.1). The weighting factors a J are found by inverting (6.3) 

and these in turn determine the parti cie displacements in the substrate through (3.11) 

and (3.12). 

ln summary, for the symmetric modes, the eigenvalues and eigenvectors for 

the substrate solutions are determined from (3.2) thus establishing the form of the sub-

strate displacements, (3.11), except for the weighting factors. Using this form of 

substrate displacement, detai led matching of the displacements across the interface be-

tween Regions 1 and Il allows these weighting factors to be replaced in the traction 

integral terms of the overlay equations by the overlay coefficients Â.(n,m) ; 
1 

compare 

(5.7) and (6.5). The latter interchange produces the hornogeneous set, (5.3), which 

has only one parameter, H3' for assumed values of V and H2' and a search is 

·made for a value of H3 which allows a non-trivial solution, and for this value of H3 

the various displacements con be determined explicitly. 
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As exactly pa~alle 1 procedure is used for \"he ontisymmetric modes, if 

the following regrouping is used instead of (6.4) , 

,. ,. ,. ,. 

b
l 

= Al - A 2 + A3 

,. ,. ,. ,. 

b
2 

= A4 - A +Aa 6 (6.6) 
,. ,. ,. ,. 
b

3 
= A5 A, -+ A9 

,. ,. ,. ,. 

b
4 

= A10 - An + A12 

Letting l, J, K = 1, 2, 3, 4 (not including 5), the formulation above is valid 

for the antisymmetric modes with appropr'iate reduction in the number of equations. 

The corresponding set of equations for the symmetric and antisymmetric modes are 

summarized in the following table. 

Symmetric Antisymmetric 

l Quanti ties -Equati on Equation - Quantities 
! 

f 
i A~n) (3.2) (3.3) A~n} 
,; 
t 
; 1 

1 

1: 

l (3.10) (3.13) AU l, AU [ 
J" 

~ (3.11) (3.14) 

fi 
u. U. 

1 
1 

1 

u. (3.12) (3.15) u. 
1 

1 

,. ,. 

SM (5.1) (5.2) AM 

(J fS ' g5 (5.3) (5.4) fA' gA 
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( Symmetric Aritisymmetri c 

Quantities - Equation Equation - Quantities 

GI 
(5.5) (5.10) GI 

GI 
(5.6) (5.9) GI 

GI 
(5.7) (5.11) ,G

I 

GU (5.8) (5.12) GU 
,., A 

b
l 

(6.3) (6.3) b
l 

,., A 

b
l 

(6.4) (6.6) b
l 

GI 
(6.5) (6.5) GI 

( 
'-- i+n = odd i + n = even 

l, J = l, 2, 3, 4, 5 l, J = 1, 2, 3, 4 

M = 1, 2, .•. , 15 M = 1,2, ••• ,12. 

7. Truncated (1,1) - Approximation 

ln this section the truncated (l, 1) - approximation is presented in some 

detail though the general procedure is the same as that given in Sections 1 to 6 for 

the (2,2) -approximation. Here the polynomial indices (n, m, etc) are 0 and 1 

only, and if ail the terms containing a polynomial index of 2 are omitted, the (1,1)-

approximation is obtained from the (2,2) equations without modifying the computing 
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techniques. However in the light of the lower order involved in the (1, 1) -

approximation the se arch technique is not needed, instead, an explicit formulation 

can be provided wherein not only is direct numerical evaluation possible but also the 

structure of the theory is more clearly illustrated. Moreover, in order to display the 

the ory in more unison, here the symmetric and antisymmetric modes can be kept 

together to the last moment at which the equations of the dispersion curves are obtained. 

Taking the first two equations in (3.1) with the terms containing uf) 

omitted and replacing the isotropie tensor by Lamé constants, six equations for the 

(1,1) - approximation are obtained : 

M (0) A (0) 
jk k + MI A(l) 

jk k 
= o 

(7.1) 

M 
(1) A(l) 
jk k 

= 0 

Here the 6 x 6 coefficient matrix can be decomposed into four 3 x 3 submatrices 

denoted in (7.1) by Mj~) , Mj~) , M l

jk 
and a null one at the lower off-diagonal 

corner. The forms of the three former submatrices are as follows : 

2 
a i a C = 

, n=O, 1 (7.2) 

i a C 
2 

a + En3 
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= a (7.3) 

a 

where ail notations are the same as shown in (3.4) to (3.7). Note that the two 

diagonal submatrices M~) and Mj~) have non-vanishing elements only at 

i + k = even and the MI jk onlyat i + k = odd. This pattern ensures the separ­

ability of the symmetric modes from the antisymmetric. Obviously if now separated, 

the same expressions are obtained as those in (3.2) and (3.3) with the terms of A.(2) 
1 

omitted. Both the symmetric (1,1) - and the antisymmetric (1,1) - approximations 

have three homogeneous equations for the secular equation. According to the same 

rules of symmetry, [A~O), Af) , A~l) ] belong to the symmetric modes white 

[A~O) , AP) , A~l) ] belong to the antisymmetric. For the reasons mentioned above, 

the possibil ity of separation is ignored here and (7.1) is treated as a whole in this 

(1,1) - approximation. 

The secular equation for (7.1) becomes 

(7.4) 

Solving for' six ais 

= 

= n = 0, 1 (l.5) 

= 
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It is very interesting to poi~t out that when H
2 

(= k h
2

) approaches infinity, i.e., 

a case of very wide Region", only the diagonal submatrices Mi~n) , n = l, 2,' 

survive. The elements of these submatrices reduce exactly to those of the layered 

problem (Fornell and Adler 1972, Equation 15) and accordingly so do the' OlS of 

(7.5) becouse 9
n 

= 0 when H
2 

... Cl). Actually this feature occurs olso in the 

(2,2) - approximation, but it cannot be seen so cleorly becouse of the many implicit 

expressions involved. 

Now solving for the eigenvectors corresponding the OlS and denoting 

them by, 

r 
1 1 i 0

03 i "12 1 

1 m.~) 1 

1 
m!. i ')111 0 

Il " 1 
- i 0

01 
1 = 0 12 ')112 -- -T 

1 
-1 -- _. -- -. 

(1 ) 
m •• i 0

13 Il 

(7.6) 

where 

l 
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then the polynomial displacements can_ be formed as follows 

(0) 
u. = 

1 

(1 ) 
u. = 

1 

where 
(0) 

a. and 
(1 ) 

a. 
1 1 

(0) (0) 1 (1) Z 
m.. a. Zo (') + m .. a. 1 

Il 1 1 Il 1 (j) 

(1) (1) 
m.. a. Z1 n 

Il 1 1 

are the added weighting factors and 

exp [a . k x
3 

] , 
ni 

n = 0, land = l, 2, 3 

are the Z -functions of Equation (1 .5) with the specified a . of Equation (l.5). 
ni 

(7.8) 

(7.9) 

Here it should be mentioned once again that in this analysis as compared 

with the exact approach, the decay constant a along the depth coordinate x
3 

has 

been used as the eigenvalue and the eigenvectors obtained are for the polynomial dis-

placements and not for the actual displacements. The latter have to be compiled from 

the former according to (1 .2). 
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Consequently' the real displacements of the (1,1) - approximation are 

u. = u.(O) + Pl u~l) 
1 1 

(0) (0) 1 (1) (1 ) 
(1.10) = m.. a. Zo n + (m .. + Pl m.. ) a. Zl n 

Il 1 1 Il Il 1 1 

and 

Ü. (±) ( ù~) (1) -
= ± ui ) y ( ±) 

1 1 

(0) (0) (ml .. ±m.~l)) 0.(1) Z1 (j) ] Y(±) = [m.. o. Zo n + 
Il 1 1 Il Il 1 (1.11) 

Here both u
i 

and u
i 

(±) are general, containing symmetric and ontisymmetric com­

ponents together. 

For loter use, the stresses T 3j ot the interface between Regions 1 and 

Il con be expressed by substituting the general form of the displocements (7.10) into 

the ordinary expression for the stress, 

T3j 
= G~) (1 ) 

+ Pl G3j , at x
3 = 0 (1.12) 

where 

G:) 
(0) (0) + tljk 0~1)) = l.1 k (tjk ak 

G (1) 
3j = l.1 k (0 + t(l) 0(1)) 

jk k 
(1. 13) 

. and 
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r-
i 2 
1 2 a

n1 1 + a
n3 1 

t (n) 
1 

_1 a
n2 

n = 0,1 
jk -ls (1 

, 

2 
2 a

n3 
(7.14) - a ) - 2 

n1 

= (7.15) 

Heretofore in this section only Region " has been considered. Before turning to 

Region 1 for its ,equations of motion, it is convenient to have the polynomial com­

ponents of stress, GJ~) and GJ;) ready to transform into expressions in the polynomial 

amplitudes Â.(n,m). The same procedure used to obtain (6.5) in the (2,2) - approxi-
, 1 

mation is employed here except that an explicit expression with the symmetric and 

antisymme~ric modes combined together now results from the manipulation. 

ln this (1,1) - approximation, the "detailed matching rr equation (6.2) 

shows 

= 

(1) (1) 
m.. a. = 

Il 1 
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() Solving for 
(0) 

and 
(1 ) 

and substituting into (7.13), gives a. a. 
1 l ' 

G (0) = ~k[ (0) (Â (0 , 0) _ Â (0, 1) ) 
+ 1 (Â (1,0) _ Â (l, 1) J 

3i T ik k k T jk k k) 

G (1) 
3i = ~k[ 0 + T i~) ( Â

k
(l,O) - Â~l,1~J 

(7.17) 

where the non-vanishing terms are, for n = 0 and 1 , 

7 (n) 2 
1 - a = a 1 (1 - a 3) / (/J , CfJ = a

n3 11 n n n n nI 

'T (n) = [1 +a 3 (a 3 -2a l)J/(/J 13 n n n n 
. " 

" \._) (n) 
(7.18) 7

22 = an2 

f- T (n) 2 

r 
= 6 (1 -a 1)/CfJ -2 31 n n 

! 
T (n) 2 t = 6 an3 (1 - an1 ) ICfJ

n ~' 33 , 
" r 
~ 
1 
f 

2 f. 7 1

12 = ;'12 (a12 -,a01 ) (1 - a03 ) 1 (,00 .. : , 
t 

1 
',' 

7
21 = ;'11 (a11 - a02 ) 1 cp 1 

~ 

1 'T 23 = a13 7 21 + 1 / H2 

J 7
32 = 6;'12(a 01 -a12 ) [(a03 -a01 )/(,OO -a12 J+(1:-1)/H2 ~ 

,. 

" f), 
, '-
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Now the equations of motion for Region 1 in which every term is 

explicitlyexpressed can be obtained in the (1,1) - approximation by (i) taking 

the first, second, fourth and fifth equations only from (A.l) ; (ii) omitting ail 

terms of the polynomial displacements in which either or both of n and mare equal 
,. 

to 2 ; (iii) replacing the ê
ijkl 

by the Lamé constants À and !Î ; (iv) replac-

ing the stress terms by (1.17) and (1.18), and (v) dividing by ~. The result is 

12 homogeneous equations with variables (A~O,O), A~O, 1), A~l ,0» , k = 1, 2, 3 

completely split into the-symmetric and antisymmetric modes, six equations each 

according to the same ru les of symmetry mentioned before. 

To illustrate better what is contained in each element, both the symmetric 

and antisymmetric mode equations in the (1,1) - approximation are shown in full in 

matrix form below.* ln (7.19) and (7.20), ail stress terms are èxpressed directly 

through the notations 

(n) ,. 
J.I T.. /2 J.I H3 

Il 
and 

A 

J:. = J.I T !. /2 J.I H3 
Il Il 

(1.21) 

Equations (1. 19) and (1.20) in the (1,1) - approximation correspond to (5.3) and 

(5.4) respectively in the (2,2) - approximation. Here it is easy to see in (1.19) 

and (1.20) the distribution of the f NM terms and the gNM terms, the latter ones 

are represented by J.~n) and J!. and contribute the major effects in the mode structure 
Il Il 

of the waveguide problem, since if they are omitted, the equations would become those 

* Equation (1.19) for the symmetric mode is given on page-56 and (7.20) for the 
antisymmetric mode on page 51. 
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For the symmetric mod~s 

(0) 
f
11 

- J
11 

• J (0) 
- 1 13 

• J (0) 
- 1 31 

f - J (O) 
22 33 

3 J (0) 
(0) 

f32 +3i 13 11 

f
41 

+3i J~) 3 J (0) 
33 

- - -

f
71 ° 
° ° 

J (0) 
11 

f . J (0) 
23 + 1 31 

(0) 
f33 - 3 J ll 

- 3 • J (0) 
1 31 

- -

° 
fS3 

r-, 
( 1 

f • J (0) 
14 + 1 13 

J (0) 
33 

-3. /0) 
1 13 

f - 3 J(O) 
44 33 ' 

- - -

f74 

0 

where ,the f
NM 

acquire the same expressions as in (B.1) and (B.2). 

f
17

-iJ
12 

i J
12 

- J32 
J32 

3 i J'12 f38 - 3 i J12 

f47 + 3J32 
- 3 JI 32 

- - - - -

f - J (1) 
77 22 

J (1) 
22 

3 J (1) (1 ) 
fSS - 3 J22 22 

,-., 
.~ .. 

_.- l 
1 Â1 (0,0) ! 

1 A3 (0,0) 

Al (0,1) 

,.. 

Al (0,1) 1 

- - -
,.. 
A

2 
(1,0) 

A 

A
2 

(1,1) 

(7.19) 

lJ1 
~ 

= ° 
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For the antisymmetric modes 

(0) J (0) f
11 

- J
22 22 

3 J (0) (0) 
f22 - 3 J22 22 

f
41 

0 

0 f
52 

0 f62 

0 0 

f14 -i Ji1 

3 i Jil 

f - J (1) 
44 11 

" J (1) 
- 1 31 

3 J (1) 
11 

f 3"J(1) 
74 + 1 31 

.-
1 

- J 23 

f
25 

+ 3 J23 

° J (1) 
- 1 13 

(1 ) 
f55 - J33 

f 3" /1) 
65 + 1 13 

3 J (1) 
33 

wherethe FNM acquire the sorne expressions in (B.3) and (B.4). 

.'r"-

"'-~ .. --

l 1 Â2 (0,0) 1 
i J 21 J

23 
1 
1 
1 

f
26 

- 3 i J
21 

- 3 JI 
23 

l' 1 A
2 

(0,1) 1 

- - -

J (1) 
11 

f " J (1) 
47 + 1 13 Al (1,0) i = 0 

f ° J (1) ll) 
,. 

56 + 1 31 33 A3 (1,0) 

(1 ) 
f66 - 3 J ll 

-3"J(1) 
1 13 Al (1,1) 

_3°J(l) f - 3 J (1) 
,. 

A3 (1,1) 1 31 77 33 
-1 

(1.20) 

~ 
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of an isolated rectangular rod. Here again the only parameter in each matrix is the 

value of H3 for chosen V and H
2 

and thus the determinant of the matrix is treated 

as a polynomial in 1 / H3' the real roots of,which are determined bya root-solving 

routine, instead of the time-consuming search technique in the (2,2) - approximation, 

to give the appropriate values of H3 of the dispersion curves for ail possible modes in 

the (1,1) - approximation at once. 



(. 

( 

59 

CHAPTER IV 

NUMERICAL CALCULATION AND MODE CLASSIFICATION 

1 • General Description of Numerical Calculation 

The derivation of the equations for the (1,1) - and (2,2) - approxima­

tions has been presented in the previous chapter. For a reasonable estimate of the 

dispersion curves, the (1,1) - approximation is adequate especially for the fundamental 

modes at low values of the parameter k h3 ' and since the algebraic steps of this 

approximation have been carried out explicitly, a direct numerical evaluation of the 

solutions can be used. However, for the. investigation of the quadratic variations of 

displacements within Region l, it is necessary to go to the (2,2) - approximation. 

For the latter it is not possible to do the algebra explicitly and sorne numerical search 

techniques have to be introduced. The ranks of the matrices (i ~e., the numbers of the 

homogeneous equations) for the symmetric and antisymmetric modes in various approxi­

mations and the average computing times needed to obtain a set of dispersion curves 

(50 points) byan IBM 360/75 central processor are tabulated with remarks as follows : 
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( ;' 

Approximation Number of Number of Computing Time Remarks 

2-d'. Eqs. l-(L Eqs. IBM 360;75 

SYM ANTI SYM ANTI 

(0,0) - 2 2 1 <5 secs Gives Rayleigh n 

only for SYM, L 

modes only for A 

(1,1) - 3 3 6 6 20 secs Dispersion reason 
.-

linear, alge1 u. 
1 

explicit, direct r 

. merical computat 

used. 

(2,2) - 5 4 15 12 500 secs Dispersion more c 

curate, û. quadrc 
1 

algebra not expli 

search computati4 

needed. 

(3,3) - 6 6 24 24 Aigebra has not b 

done. 

, Note that even the simplest (0,0) - approximation gives interesting 

solutions, whose symmetric equivalent equations for a plate were obtained by Poisson 

(1829) and Cauchy (1828) and are commonly called the equations of the classical 

theory of extensional vibrations of thin plates (Love, 1959, p. 497) • 

From the ranks of the matrices and the computing times listed above, it 

can be seen that the extension to higher-order truncations more than the (2,2) would 
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involve a tremendous increase in algebraic complexity and also of computing time 

without much anticipated increase in absolute accuracy, therefore, the dispersion 

curves and displacement patterns reported below are normally taken from the (2,2)-

approximation. The numerical search technique deve loped by Lim and Farne Il (1968) 

is used for the evaluation of the step corresponding to the procedure of Block 12 in 

Figure 2, Chapter Il, and it has been found that double precision arithmetic must be 

used for the calculation of the polynomial eigenvectors, Block 6 in Figure 2. In the 

searching, a search range of the thickness parameter kt h3 is estimated at the given 

values of the phase velocity v / v
t 

and of the width parameter kt h
2

, and the real 

root of kt h3 in the estimated range is located by finding the corresponding minimum 

absolute value of the determinant of (5.3) for symmetric modes and of (5.4) for 

antisymmetric modes. Note that in the presentation of dispersion curves, the propa-

gating real phase constant k in the width and thickness parameters is replaced by 

kt = lA) / v
t 

= 2 'Ir /Àt ' the wave number with respect to the bulk shear velocity 

v
t 

of the substrate. Search feasibility depends upon how weil the range interval is 

chosen at the start of the search, for example it is desirable that for each search there 

be one and .only one value of kt h3 in the range. A dependable procedure has been 

to use the results of the (1,1) - approximation as a guide for the choice of search range 

bearing in mind that sorne modes may exist in the (2,2) - approximation which do not 

appear in the (1,1) - approximation. 
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2. Mode Classification vs Truncation 

The dispersion curves determined in this analysis give the normalized 

phase velocity v / v
t 

as a function of thewidth parameter kt h3 for fixed values of 

the parameter kt h
2

· When kt h
2 

approaches infinity, the dispersion ,curves corres­

ponding to the layered problem are obtained and on this basis the modes are c1assified 

as follows : 

The nth Rayleigh-Iike (or Love-Iike) mode is a mode 

that degenerates to the nth Rayleigh (or Love) mode 

of the layered problem whe~ kt h
2 

.... Cl) • 

The suffix "-like" attached to the modes-names "Rayleigh" and "Love" is used 

because any mode in this overlay waveguide has three components of displacement 

(two sagittal and one transverse) at any point in the guided region except that the 

sagittal-plane component ofan antisymmetric mode or the transverse component of a 

symmetric mode reduce to zero on the plane x
2 

= 0 due to symmetry. Strictly 

speaking therefore, no mode in this overlay waveguide is a real Rayleigh mode or a real 

Love mode ~Ithough it approaches one or the other when kt h2 .... Cl) ; and it is by this 

asymptotic behaviour the name Rayleigh-Iike or Love-Iike is used for the modes, though 

the suffix may be omitted sometimes in the sequel. 

It has been found that sorne additional modes emerge when working on the 

truncated approximations with increasing orders from zero to two. Designating Il R " 

and Il L .. as the ~ayleigh-Iike and !:.ove-like modes with prefix "s" and lia" for 
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":ymmetric" and '~ntisymmetric" and a following subscript n for the order of the 

mode, the mode classification for the (0,0) -, (1,1) - and (2,2) - approximations 

can be Iisted as 

Approximation Synimetri é . Modes Antisymmetric Modes 

(0,0) s R a Ln n 

(1,1) s R 
n ' 

s L aL 
n ' 

aR 
n n 

(2,2) s R 
n ' 

s L 
n ' 

s R' a L 
n ' 

aR 
n ' 

a L' 
n n 

When kt h
2 

-. 00, modes s Rl ' s R; and a Rl degenerate into the first Rayleigh 

mode 'of the layered problem ; modes s R
2

, s R2 and a R
2 

into the second Rayleigh 

mode ; and modes s Ll ' a L
1 

and a L; into the first Love mode. From the scheme 

of increasing modes for higher order truncation in the above Iist, it is anticipated that 

modes s L' and a R' would appear in the (3,3) - approximation because of the intro-
n n 

duction of cubic variation of displacements in x
2 

- direction. 

3. Adjustment Parameters 

As noted in Sections 3 and 5, Chapter III, adjustment parameters are 

introduced into truncated approximations in order to compensate for some of the errors due 

to the omission of the polynomials of higher degrees. In principle, such parameters are 
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used to reconcile the results of the approximate the ory with some reference data from 

the three-dimensional theory ; for example 1 the data in the neighbourhood of ~utoff 

frequency in an exact infinite plate were used for such purpose in the approximate 

two-dimensional theory of extensional vibrations of elastic plates (Mindlin, 1955 ; 

Mindlin and Medick, 1959). Unfortunately, such data are not always available for 

other problems and then a 1 imiting case of the problem is usually used for' the purpose. 

ln the one-dimensional theory of wave propagation in elastic bars of rectangular cross 

section (Medick, 1966 and 1968) where the exact cutoff frequencies are not known, 

the bar of degenerate cross section, namely the infinite plate}was used as a means of 

finding the parameters. 

For the configuration in this analysis, the layered problem, which has been 

investigated so extensively (Farnell and Adler, 1972), serves weil as a limiting case for 

reference to find the adjustment parameters. It is readily seen that the configuration 

approaches a layered substrate when the width parameter kt h
2 

becomes very large 

due to the very wide relative width of the overlay. The minimum value of kt h2 re­

quired to represent the layered problem satisfactorily is not very critical. It has been 

found that when kt h
2 

is greater than 10, dispersion data obtained for the $ Rand (1 L 

modes have reached the limiting case and there is effectively no deviation from curve to 

curve for different higher values of kt h2
, 0 The deviation between curves for values of kt h

2 

near 10 is relatively larger for the s L and a R modes, The value of kth2 = 320 (h
2 

= 43 \) 

is taken in this analysis to be sufficient to make the ratio of h
2 

/ h3 large enough to 

Ogive the layered-problem dispersion curves for ail modes and for the whole range of kt h3 

-, 
rt:) 
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concerned, and the adjustment parameters are chosen to give the best fit of this 

kt h2 = 320 dispersion curve to those of the corresponding layered-problem. 

The distribution and use of adjustment parameters is somewhat arbitrary 

two methods have been suggested in the variational theory for plates (Mindlin, 1955), 

using them to affect the correct either the strain or the kinetic energy densities. The 

latter is simpler to apply and has been found satisfactory for this problem. The ad just-

ment parameters, designated by r , are associated with the shear velocities in (3.7) 
n 

and (B.l) so that the simple velocity ratios in these equations are replaced by 

V 
n = n = 0, 1, 2 for Region Il, 

1/2 /0,.. V = (r r) v v
t
' nm n m n,m = 0, 1, 2 for Region l, 

where v
t 

and v
t 

are the bulk shear velocities of the substrate and overlay respec­

tively. 

The appropriate values of rO and r 1 are obtained rather easily by a 

computer-based trial and error method in the (1,1) - approximation realizing that 

values close to unit y must be anticipated if the truncation is valid. For example in the 

guide consisting of a gold overlay on a fused-quartz substrate to be considered below, a 

couple of trials with interpolation reached the following values of r which matched 
n 

the dispersion curves for kt h
2 

= 320 in the (1,1) - approximation to the correspond­

ing Rayleigh and Love curves of the exact layered"roblem: rO = 1.005, r
1 

= 1.010 

° for symmetric modes and 1 .015 for antisymmetric modes. It was found that in going to 
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the (2,2) - approximation for the same problem, rO and r l need not be changed, 

and the satisfactory value of r
2 

was the unadjusted value of unity and that ail of 

these rare not very sensitive to the material combinations as verified in calcula-
n 

tions with the (1,1) - approximation for durai on durai, zinc oxide on silicon etc. 

The same values of the parameters are used for a range of material combinations in the 

next chapter though it is not difficult to re-evaluate them for different combinations. 

More ove r , it has been found that rOis more sensitive to the s R and a L modes while 

r l to the s L and a R modes and the sensitivities of both depend somewhat upon the 

phase velocities of the waves. As an illustration, let 10 be the increment of kt h3 

for a l % increase of r 0 at constant r 1 and Il that of r l at constant r O. The 

values of '0 and '1 for the first modes of a gold-on-fused-quartz guide at the nor­

malized velocities V = .8 and .6 for h
2 

/ h3 = 640 are as follows : 

5 R
1 

5 L
1 

a R
1 

a L1 

V = .8 '0 = -.0025 -.0006 -.0003 -.0024 

'1 = .... 0000 -.0017 -.0020 -.0000 

V = .6 '0 = - ... 0055 -.0020 -.0017 -.0048 

'1 = -.0000 -.0027 -.0031 -.0000 
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CHAPTER V 

RESULTS 

ln this chapter examples of the dispersion curves and displacement 

distributions as calculated with the methods of Chapter III are presented. In order to 

see the effects of guide thickness, attention is centered on the first Rayleigh-like and 

Love-like modes from the (2,2) - approximation on a single pair of materials, a gold 

overlay on a fused quartz substrate, and some of the second modes that are adjacent to 

the first are considered (Tu and Farnell, 1972b, 1971a and 1971b). The pair of materials 

chosen was selected in order to facilatate comparison of the thin-film limiting results 

with earlier calculations and with experimental measurements (Tiersten, 1969.Adkins , 

and Hughes, 1969). No complete verification exists for the thicker film results to be 

shown except for consistency of successive approximations, degeneracy into known layer-

c'I-half-space results when the guide width becomes large in terms of the wavelength, 

and degeneracy into rod solutions when the substrate stiffness and density vanish. The 

results obtained with the (2,2) - approximation in another limiting case, that of the 

topographic guide (Mason et al., 1971 • Tu and Farnell, 1972a), which obtains its , 

guiding action from a topographic deformation of the half-space substrate or in the 

language here a relatively thick overlaid ridge of the same material as the substrate, 

agree weil with experimental measurements and provide an essential verification to the 

analysis of this thesis. Chapter VI is concerned specifically with topographic guides 

and with brief remark on the rigid substrate guide (Waldron, 1971 and 1972). 
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1 

The dispersion curves from the (1, 1) - approximation for overlays of 

platinum, polystyrene, nickel and an artificial gold on a common substrate of fused 

quartz are presented in the latter part of this chapter in order to illustrate both the 

application of the analysis to various material combinations and the general behaviour 

of the overlay guides. 

1. Dispersion from the (2,2) - Approximation 

The dispersion curves as calculated with the (2,2) - approximation for 

a gold overlay on a fused-quartz substrafe (for material constants see Section 4) are 

shown in Fig. 3 to 8. The displacement distributions will be considered in the next 

section. As noted previously, the natural form of a dispersion curve for calculations 

using the methods above expresses the normalized velocity v/v t as a function of kth3 

for a fixed value of kth2' and these are the parameters used in Fig. 3 to 6. The more 

common form in which the aspect ratio (ht'h3) of the overlay is the fixed parameter 

on each curve can be interpolated From the former curves and is used in Fig. 7 and 8. 

ln ail of the figures, therefore, the abscissa on the curves is the layer thickness, 2h
3

, 

expressed in terrns of kth3 and the ordinate the mode phase velocity v relative to the 

shear velocity v t with parameters kth2 in Fig. 3 to 6 and with parameters hfh3 in 

Fig. 7 and 8. Since the symmetric and antisymmetric modes can be separated as 

shown in the analysis, the dispersion curves in the figures are divided according to 

. modes of the symmetric Rayleigh-like (sR, sRI), the antisymmetric Rayleigh-like (aR), 

---'j .. :' -"f 
1 

1 

J) 
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the symmetric love-like (s9 and the antisymmetric love-like (al, al l
) as will be 

seen below. 

It will be recalled that for an infinite isotropic layer on an isotropic 

half-space substrate, there are two independent sets of solutions. The 'modes which 

involve sagittal-plane displacements only are usually ca lied the Rayleigh modes 

(Famell and Adler, 1972) and the disp~rsion curves for the first two of these modes 

for an infinite gold layer on a half-space of fused quartz are marked "first Rayleigh" 

and "second Rayleigh" on Fig. 3 and 4. Simi larly, the modes of the other set, the 

love modes, for the infinitely wide layer have only the displacement component 

which is normal to the sagittal plane, and the dispersion curve for the first of these 

modes is marked "first love" on Fig. 5 and 6. The curve for the second love mode 

lies entirely above the range of kth3 plotted here. 

The dispersion curves for the symmetric modes sR1 and sR2 are shown 

for a wide range of kth2 values in Fig. 3. The phase velocities of the sR1 modes ail 

approach the Rayleigh velocity of a free quartz surface (v
R 
1 v

t 
= 0.9058) with zero 

slope for decreasing values of layer thickness (Tiersten, 1969). On the other hand, 

the curves for the sR
2 

modes approach the sùbstrate Ray leigh velocity v
R 

with a finite 

slope much as does the limiting second Rayleigh curve itself. However, for the waveguide 

modes, if the phase velocity exceeds v
R 

tlien the waveguide mode will radiate a simple 

Rayleigh wave onto the substrate free surface at an angle to the guide axis appropriate 

for phase matching. Since in this analysis kth2 is given a positive real value to find 
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a positive real kth3 as a ro~t for a valid solution, implying that kt must be positive 

real, it is impracticable to use this analysis to find a solution in the IIleaky-wave" 

region of velocities above v = v
R

. 

Two unanticipated symmetrical sets of modes, sR]' and sR2', which also 

evolve from the first and second Rayleigh layer modes are shown by the two groups of 

broken curves on Fig. 3. It is seen by.the kth2 values on the latter curves that the 

dispersion of these modes is a much more sensitive function of guide width than for 

the sR] set. 

The other modes which evolve from the Rayleigh layer modes as the guide 

width is decreased are the antisymmetric aR] and aR
2 

shown by the solid and broken 

curves respectively in Fig. 4. Here the dispersion curves for the aR
1 

modes do not 

come to a common point at kth3 -+ 0 as do the sR] modes but rather appear to have 

a eut-off (Tiersten, ]969) in the sense that below a given value of kth3 the calculated 

velocity would exceed the substrate Rayleigh velocity v
R 

and the mode would radiate 

a free-surface Rayleigh wave. For a given decrease in guide width, an aR] curve is 

displaced much more to the right than the corresponding curve for an sR] mode. 

If the sets of modes which evolve from the first Love mode of the infinitely 

wide layer geometry are now considered, the dispersion curves develop as indicated in 

Fig. 5 and6. It is seen that the symmetrical set sL] of Fig. 5 enter the leaky wave 

region v > v
R 

at finite slopes. While these modes have only transverse displacement 

.components u
2 

for very large values of kth2' ail three components are present for finite 
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widths. Figure 6 shows the dispersion associated with the two antisymmetric modes 

al
1 

and al
1

'. The former set is different from ail of the modes formerly noted in 

that the velocity for large kth3 of a finite width guide is less than the velocity for 

an infinitely wide layer of the same thickness. If is this mode which, in the Iimit 

where the properties of the overlay and of the substrate materials are identical, be-

co mes the first flexural ,mode for topographic waveguides (Ash et al., 1969 ; Mason 

et al., 1971 ; Tu and Famell, 1972a). Note that in the latter Iimit, v
t 

approaches 

v
t 

and th us the dispersion curves of ail of the modes considered other than al
1 

and 

al
1

' are forced into the leaky-wave regime. 

Figures 7 and 8 ;;how the dispersion information of Fig. 3 and 6, res-

pectively, plotted in more conventional form where the aspect ratio h
2

/ h3 is the 

constant parameter on each curve. The solid curves and the curves with short dashes 

of Fig. 7 reproduce the corresponding sR
1 

and sR
1

' data as interpolated from Fig. 3. 

Aiso shown in Fig. 7 by long dashes are the dispersion curves calculated by Tiersten 

(1969) for thin fi lm overlays, and the agreement between the present results and those 

for the thin approximation is seen to be good in the region where the latter approximation 

applies. Fi,gure 8 gives the dispersion curves for the first antisymmetric love modes 

al
1 

and al
1

' as interpolated from the data of Fig. 6. Again as the thickness of the 

overlay becomes comparable to its width, ~he phase velocity of the al
1 

mode falls 

below that of the infinitely wide layer for values of frequency and thickness large 

enough that kth3 is beyond the cross-over region. For gold on fused quartz, the cross­

·over values are in the region of kth3 = 0.14. 
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2. Displacements from the (2,2) - Approximation 

As mentioned in the mode classification, Section 2, Chapter IV, each 

component of displacement is present to some degree at each general point of the guide 

region, and thus the displacement patterns for the various modes tend to be complicated 

in nature .however, sorne of the salient features of the lower order modes will be illustrated , 

here. Due to the symmetry with respec,t to the mirror plane x
2 

= 0 for ail modes, the 

sagittal components of displacement (the longitudinal u
1 

and vertical u
3

) of a symmetric 

mode and the transverse component (u
2
) of an antisymmetric mode must be an even func­

tion of x
2 

(PO and P 2) and thus are quadratic in Regions 1 and Il and exponentially decay­

ing in Region III in the (2,2) - approxi m~tion. On the contrary, the transverse component 

of a symmetric mode and the sagittal components of an antisymmetric mode are only allowed 

to be odd function of x
2 

(P 1) in the (2,2) - approximation and thus are linear in Regions 

1 and Il, implying that they are zero at x
2 

= 0 and increase linearly in magn itude to the 

edges of overlay, and again decay exponentially in Region III. To permit convenient 

comparisons, the displacements corresponding to several points on the dispersion curves 

of the former section are shown here. There are in general two figures for each point: 

one shows the distribution of displacement on the symmetry plane x
2 

= 0 and expresses 

the behaviour in the centre of the overlay and the exporiential de cay down to the depth 

of the substrate .while the other shows the ,distribution of displacement along the positive , 
half-surface x

3 
= 0 and expresses the symmetry characteristics of waves in the (2,2) -

approxi mation. In a" of the figures shown be low, the absc issa is e ither ~ x
3 

or ~ x
2 

as 

'required and the ordinate is the amplitude of the components of displacement normalized 
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with respect to u3 for R-mo~es and u
2 

for L-modes at the origin (O, 0), or at the right 

corner of the overlay (h
2

, 0) when the magnitude of the component to be normafized 

is zero at the origin. 

Attention is focused first on a gold-on-fused -quartz guide of fix~d over­

lay width kth2 = 1.5 (h2 = 0.207 \ = 0.187 À
R
). Figures 9a and 9b show the relative 

magnitude and phase of the different components for the sR
1 

mode at three different 

velocities which are indicated by solid dots on Fig. 3. Along the vertical centre line 

x
2 = 0 of any cross section the transverse component vanishes because of symmetry and 

the two sagittal components are in phase quadrature giving the retrograde elliptical 

particle motion on the free surfacewhich is characteris1ic of the first Rayleigh mode 

for layer geometry. The decay with depth of these components is close to that associated 

with the first Rayleigh mode at the corresponding layer thickness. As reference curves, 

the fines marked "layer" on Fig. 9a give the displacement components of the Rayleigh 

mode for an infinite layer (Farnell and Adler, 1972) of the same thickness as that used 

for the v/v
t 
= 0.58 curve, that is for the point marked bya sofid dot on the dispersion 

curve for the first Rayleigh mode in Fig. 3. Of course for the (2,2) - approximation . 

to the waveguide situation, the displacements are the "best" compromise, in the sense 

of Chapter III, to the true displacements which is obtainable with quadratic variation 

in the overlay cross-section, multiple exponential decay with depth into the substrate 

and the simple exponential decay transverse to the guide direction within the substrate. 

The relative displacements of Fig. 9b are shown as a function of distance 

along the x
2
-axis, for the same conditions and normalization as used in Fig. 9a. The 
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abscissa value kth2 = 1 .5 c~rresponds to the right bottom corner of the overlay region, 

and for larger values of k
t
x

2 
the decay of each component is exponential with the decay 

factor ~ depending on the velocity in the manner of (3.9). W1i1e the transverse component 

of displacement is zero on the central symmetry plane, this component which is in phase 

:1 2 t with the vertical component grows to appreciable amplitude at the edge of 

the overlay region when the overlay is thick. 

The representation of Fig. 10 shows the distortion of rectangular grids on 

successive planes spaced at intervals of À / 32 in the direction of propagation. The 

broken lines indicate the outline of the undistorted guide and the quarter-wavelength 

planes. Th is sketch corresponds to the sR
1 

mode at v/v t = 0.74 on Fig. 9a and it is seen 

again that the particle motion is dominantly the sagittal-plane elliptical motion associated 

with the first Rayleigh mode but here the amplitude decreases in both directions away from 

the central plane. 

The displacement distributions associated with the sL1 mode for kth2 = 1.5 

are shown as a function of ktX3 on the central plane in Fig. 11a and as a function of 

k
t
x

2 
a long the interface in Fig. 11 b. Aga in because of symmetry, there is no transverse 

component of displacement on the central plane but this component grows with x2 and 

reaches a maximum at the top free corner of the overlay. The displacements have been 

normalized here to the value of this compolient on the interface at the edge of the overlay. 

On the central plane the motion is Rayleigh-like but with the shape of the displacement 

curves reminiscent of the second or Sezawa mode rather than the first Rayleigh layer 

mode (Famell and Adler, 1972), for example the surface particle displacëment is progres-

sive rather then retrogressive. At the edges of the guide the displacement is predominantly 
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transverse so that the general motion could be described as transverse bulging accompanied 

by transverse buckling as illustrated by the grid displacements of Fig. 12. 

For the antisymmetric modes, the sagittal-plane displacements are zero on 

the central plane as illustrated in Fig. 13 and 15 where the curves are again drawn for 

kth2 = 1.5. For the aR
1 

mode of Fig. 130 and b it is seen that these sagittal -plane 

displacements grow with x
2 

on the inte!face and reach a maximum at the guide edge. At 

the guide edgethe relative phase and shape with depth of the u1 and u
3 

components are 

those associated with the first Rayleigh layer mode. Thus the dominant motion is Rayleigh 

motion of the region near the sides of the guide with opposite phase on opposite sides 

giving the tilting Rayleigh motion of Fig: 14 accompanied bya relatively small trans-

verse motion represented by the u
2 

component. 

The transverse component is the dominant one at each point for the al1 mode 

as shown by Fig. 15a and b. The central plane displacements are similar to those of the 

first love mode of the layer geometry. The solid curve of Fig. 15a gives the displacement 

as a function of depth for th is first pure love mode propagating in a layer of the same 

th ickness as that involved in the v/v t = 0.38 waveguide curve. In the steeper region of 

the waveguide dispersion curves, that is below the cross-over region of Fig. 6, the general 

motion is predominantly a side-to-side motion of the layer as a whole in the rnanner 

illustrated by Fig. 16. However above the cross-over region the displacements are more 

concentrated in the layer and the pattern approaches that of the first flexural mode of a 

long plate cantilevered from a rigid substrate. 
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The displacement curves shown in Figures 9to 16 above are for the modes 

that approach the first Rayleigh and love modes of layered problem and would appear if 

calculated with the (1,1) - approximation. Now the modes sR
1

' and al
1

', which approach 

the first modes of layered problem but would not appear in the (1,1) - approximation, and 

the modes sR
2 

and aR
2

, which would appear in the (1,1) - approximation but approach the 

second Rayleigh modes of layered problem will be considered. These modes have more 

structure in the displacement patterns and the sample points chosen are for points (kth2 = 

10 and v/v
t 
= 0.74) marked with solid dots on the dispersion curves for a gold-on-fused­

quartz guide in Section 1. The previous scheme is used again to show the displacement 

patterns for each sample point with two figures giving the central plane and interface 

components. Figure 17a shows the relative amplitudes of the sR
1 

• mode (solid lines) as 

a function of depth along the central plane x
2 

= 0 with the sR
1 

mode (dash lines) of the 

same phase-velocity and width parameter plotted for comparison, and it is seen that there 

is not much difference between them along this line. However, from Fig. 17b in which the 

relative amplitudes of the two modes as a function of x
2 

on the surface x
3 

= 0 are plotted, 

interesting differences between them appear in that first the sagittal components of sR
1 

mode 

have large qmplitudes at the centre of the overlay and decrease slightly toward the edge, 

while those of the sR
1 

• mode have large amplitudes at the edge of the overlay and decrease 

through zero and then grow negatively as the centre is approached so that there are planes 

at x
2 

Qo< ±h
2

/ 2 on which the vertical or the longitudinal displacement is zero. Moreover, 

the sR
1 

• mode has a rather unusual distribution of the transverse component, wh ich is zero 

at the centre of the overlay and builds up linearly to a very large value, making this 

Rayleigh-like mode have sorne of the characteristics of a love-like, compare Fig. 17b 
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and Fig. 11b. This special'distribution of transverse component is not a general behaviour 

of the sR1' mode, since the same sR1' mode at a different value of kth2 does not contain 

such a prominent transverse component ; such an appearance for the mode sR1' of kth2 = 10 

and v/v t = 0.74 is due to a result of mode coupling with the mode sl1 of the same parame­

ters as will be shown in Fig. 22 of the next section. 

The transverse component of the al
1

' mode in Fig. 18 assumes a pattern 

similar to that of the vertical compunent of the sR
1

' mode. Along the plane x
2 

= 0, not 

much difference is found between the al
1

' and the al
1 

modes. Figure 18b shows the rela­

tive amplitudes of these modes along the surface x
3 

= 0 and here it is interesting to note 

that the relation of the pattern or the transverse component for the al1 ' mode to that of 

the sl1 mode in Fig. 18b is alrnost identical to the relation of the vertical component of 

the sR
1

' mode to that of the sR
1 

mode seen previously in Fig. 17b. The displacements of 

the al
1

' and al
1 

modes are essentially confined to the horizontal plane and the guide­

wall motion is side-to-side with opposite sides moving in phase for both modes in Fig. 18b. , 

but for the al
1

' mode the central region moves transversely in antiphase to the side walls 

and there are planes at x
2 

o.:± h
2 
/2 on which the transverse displacement is zero. 

The displacements associated with the second modes sR2 and aR2 are shown 

in Fig. 19 and 20 with the first modes sR.
1 

and aR
1 

plotted with dotted lines for comparison. 

It can be seen that in the overlay and the adjacent substrate region, the projection of the 

total displacement onto the sagittal-plane is a progressive ellipse in the sR
2 

and aR
2 

modes 

in contract to the retrogressive motions of the sR
1 

and aR
1 

modes. In addition, the shape 

of the u1 curve for the second mode in both cases is similar to that of u
3 

for the first mode 
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and the shape of u
3 

for the second resembles u
1 

of the first. This general behaviour is 

characteristic of the first and second Rayleigh modes of layered problem (Farnell and 

Adler, 1972). 

3. Remarks on Stresses and on Mode Couplings 

It will be recalled that the displacement continuity conditions are fulfilled 

at each point on ail of the interfaces in the mothematical analysis of Chapter III, while 

the traction-free conditions on the surface of Region III is approximated and ail of the 

other conditions of stress are introduced into the traction terms of the two dimension-

reduced equations of motion (2.10) and (4.1). Thus the values of stress which appear as a 

result of this analysis can be expected to deviate from the exact values. Since the stress 

on a free surface and the difference of stress at an interface calculated from the regions 

on each side should be zero in the physical situation, the residual magnitudes of the 

stress on the free-surfaces and interfaces in this guide problem have been computed to 

serve as an aid to understanding the implicit approximations in the so-called (2,2) -

approxi mation. 

It has been found that in general the normal components of stress computed 

from this analysis deviate far more from continuity at the free-surfaces and interfaces than 

do the two associated shear components which should also be continuous. Taking an sR
1 

point (kth2 = 1.5 and v/v
t 

= 0.74) as a typical example, for which the displacement 

curves have been shown in Fig. 9, Fig. 21 sketc:hes the residual magnitudes of the normal 

-, 

i :.;Y 
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stress components, T 22 and .T33 on ail of the free surfaces of the guide compared with 

that of T 11 in the di rection of propagation at boundries around the overlay. Due to 

the symmetry with respect to the mirror plane x
2 

= 0, stresses are shown only on one 

side in the figure for clarity. Normalized with respect to the value of T 11 which is 

almost constant along the centre fine of the overlay x
2 

= 0, the maximum absolute 

residues of stress, which should be zero exactly, are as follows: T
22 

= 0.385 and T
33 

= 0.238 at the lower corners and T 33 =0.02 at the upper corners of the overlay, a Il less 

than unit y . The difference of stress calculated at .the interfaces around Region Il, which 

also should be zero exactly, are ail less th an 0.03 and omitted in the figure. 

As seen in the above sections, the (2,2) -approximation gives very good 

dispersion relations and quite meaningful displacement patterns, while the (1,1) - appro­

ximation provides reasonable dispersion but rather poor approximations to the displace­

ments in the overlay, for example, ail of the curves within the region marked "INTER­

FACE" in Fig. 9b, llb, 13b and 15b would become straight fines in a (1,1) - approxima­

tion because no quadratic polynomials are involv~d. Since the stress is calculated from 

a differentiation of the displacements, the stress results are always much less accurate 

in polynomial approximations than are the dispersion curves or the displacement distribu­

tions. The solutions from the (2,2) - approximation above still contain some residual 

normal stresses but only on the free surface of the substrate and on the side surfaces of 

the overlay and these residual stresses are appreciably smaller than the dominant ones. 

However if the stress is calculated with the (1,1) - approximation, residual values of the 

calculated stresses on the top surface of the overlay are about twice as large as in Fig. 21 
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and the residual stresses on oall the interfaces around Region Il, which are approximately 

zero in the (2,2) - approximation, acquire appreciable non-zero values. 

There are isolated points on the dispersion curves at which on a gross scale 

degeneracies appear to occur between two modes. If the region of one of these "degen-

eracies" is examined more closely, "coupled mode" behaviour is encountered. For example, 

if for the gold on fusedOquartz combination, the symmetric mode curves of Fig. 3 and 5 

are overlaid it is seen that the curves for kth2 = 10 of the sR1
1 and the sL1 modes appear 

to intersect in the vicinity of kth3 = 0.08i similarly the kth2 = 10 curves for othe aR1 and 

aL1 modes of Fig. 4 and 6 appear to intersect near kth3 = 0.09. However when these 

regions are examined in detail as shown in Fig. 22, it is found that no solutions exist with 

real propagation constant in the neighbourhood of the virtual crossings for either the (1,1) 

or the (2,2) - approximations. The displacement distribution for either mode near the 

crossover region is a mixture of the displacement pattem characteristic of the individual 

modes when examined further from the crossover region. Wh ile this mixing is characteristic 

of coupled mode propagation near a degeneracy, the shape of the dispersion curves is 

unusual for a passive system. Whether the behaviour shown is a physical reality or an 

artifact of some approximation in the analysis has not been determined. 
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4. Dispersion of Different Material Combinations 

The results 50 far shown in the above sections for a goJd-on-fused-

quartz guide have iIIustrated the effects of guide thickness and provided a general 

overview of the application of the analysis. In this section attention is focuGsed on 

the effects which different choices of material combinations have upon the dispersion 

characteristics of overlay waveguides. For illustrative purposes various materials are 

chosen for the overlay but on a common substrate, fused quartz, and since general 

characteristics rather than detailed numerical values are of interest, the (1,1)-

approximation has been used. The material constants selected for the comparative 

calculations and for the duraluminum used for the ridge waveguide in the next chapter 

are as follows (Mason, 1958): 

Mate ria 1 lamé constants 

1.1 (Kbar) À 

Fused quartz 312 161 

Gold 285 1500 

Gold-artificial* 71. 25 375 

Platinum 640 990 

Nickel 800 1640 

Polystyrene 12 34 

Duraluninum 267 544 

Shear velocity 

v
t 

(rn/sec) 

3764 

1200 

1200 

1730 

3000 

1120 

3130 

Rayleigh velocity 

v
R 

(rn/sec) 

3409 

1134 

1134 

1605 

2799 

1050 

2920 

Densit~· 

r:f..g/cm ) 

2.2 

19.0 

4.75 

21.37 

8.7 

1.056 

2.79 

*Gold-artificial has the vt"Jlues of~, Àand p equal to·~ne-fourth those of real gold. 
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The choices of overlay material in this section fall into several different 

categories relative to the gold considered in detai! above. Platinum has lamé constants 

and density comparable to those of gold but the dispersion in the case of an infinitely 

wide layer of platinum on fused quartz is such that the first Rayleigh and first love 

modes do not cross as they do with gold. The artificial gold is chosen to have the 

same Rayleigh velocity as gold and hence the same ratio of v(vt but the artificial gold 

has smaller lamé constants and lower density than the physical gold of the previous 

section. The polystyrene has much smaller lame constants than gold and with its very 

low density even less than that of the fused quartz substrate material, it gives the 

largest ratio of v(v t of the materia 1 combinations considered. On the other hand, 

nickel is selected to provide an example with a relatively small ratio of v(v
t 

but 

with lamé constants comparable to those of gold and platinum. 

The dispersion curves of guides, made of platinum, nickel, polystyrene or 

gold-artificial for the overlay on a common substrate of fused quartz, are iIIustrated 

in Figures 23 to 30 with each combination having one graph for the symmetric modes 

and one for the antisymmetric modes. The choice of a common fused quartz substrate 

permits ail figures to have a common uniform ordinate with the same upper-bound velo­

cities, the shear and Rayleigh velocities of fused quartz, and the same width parameters 

(kth2 = 320, 10, 1.5, 0.5 and 0.2) are used in order to obtain a better comparison 

between combinations. In each figure, the first Rayleigh-Iike (R
1
) modes are plotted 

with solid Iines, the first Love-Iike (L
1
) modes with short broken Iines. The first Love 

mode of the infinite layered substrate is a Iso indicated with dots in the leaky region 

above Rayleigh velocity of the substrate. The same values of the adjustment parameters 
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ro and r1 are used as sho.wn in Section 3, Chapter IV, ana the agreement between the 

first Love-like mode (kth2 = 320) and the first Love mode of infinite layer is generally 

good. 

The dispersion curves of a platinum-on-fused-quartz guide are shown in 

Fig. 23 and 24, and it is se en that the general shape is similar to that of the gold-on­

fused-quartz guide shown in detail in the above sections. In Fig. 23 for the symmetric 

case, the phase velocities of the sR1 m
odes approach the substrate v

R 
of a free surface 

with zero slope for decreasing values of thickness parameter, and the curves for the sR
2 

modes approach with a finite slope, ail analogous to the gold-overlay guide. Similarly 

for the antisymmetric case in Fig. 24, the curves for the aR1 
modes do not come to a 

common point at kth3 ... 0 but rather appear to have a cut-off,and the aL1 modes have 

cut-off and a cross-over region about kth3 = O. 17. The zero slope of the sR1 mode 

and the cut-off of ail other modes is a general characteristic of the overlay waveguides 

se en in ail of the dispersion curves calculated. 

The general shape of dispersion curves of the polystyrene-overlay type in 

Fig. 25 and 26 are quite different from those of the platinum-overlay type in Fig. 23 

and 24, 'here the behaviour of the sR
1 

and aR
1 

modes becomes quite strange in appear­

ance and the cross-over region of the aL1 
mode has sh ifted upward into the leaky region 

above v R. Figures 27 and 28 show the dispersion curves for an artificial-gold-overlay 

guide and it is readily seen that this type resembles the polystyrene-overlay guide but 

has the cross-over region of the aL
1 

modes below v
R 

again. Artificial-gold is given 

the values of Il, À and P to be one-fourth those of gold, and by such an change of 
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material properties the di~persion structure of Fig. 23 and 24 is reshaped into that of 

Fig. 25 and 26 respectively. 

Another category of dispersion curves is represented by a nickel-on-fused-

quartz guide shown in Fig. 29 and 30 where the curves for the symmetric modes in 

Fig. 29 extend only over a relatively small velocity interval from 0.7 to 0.9 on the 

ordinate scale due to Othe small difference of the shear velocities of the two materials 

involved. Actually it can be seen that ail modes in Fig. 29 and 30, except the al1 

modes, are confined in this interval with an exact upper bound velocity v
R 

and with 

a lower bound velocity near the value v
R 

of the overlay. For guides of smaller Rayleigh 

velocity difference, the al
1 

modes spread over most of region from v
R 

to values far 

below v
R

' while ail of the other modes are squeezed into a narrow strip between the 

two Rayleigh velocities .and in the limiting case of the topographic ridge guide in , 
which the velocity difference between the overlay and the substrate becomes zero because 

the same material forms both overlay and substrate, ail of the modes except al
1 

disappear 

as will be discussed in the next chapter. 

The above categories of dispersion curves represented by gold, platin;"m, poly-

styrene and nickel on fused quartz are not necessarily complete in the shapes of dispersion 

curves which may be encountered with overlay wciveguides, but they represent a wide 

range of possible forms. From each type of dispersion curves the frequency range of 

single-mode operation, the group velocity and its frequency dependence, and the mode-

type for the next higher mode can be estimated before resorting to detailed calculations 

for a specific pair of materials. 
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CHAPTER VI 

ON THE TOPOGRAPHIC RIDGE WAVEGUIDES 

1. General Description 

As mentioned in the Inh'oduction of Chapter 1 and in the Results of Chapter 

V, both the topographie ridge waveguides (Ash et al., 1969. Burridge and Sabina, 1971 . 
. . ' , 

Lagasse, 1972. Lagasse and Mason, 1972. Mason et al., 1971 . Tu and Farne", 1972a) , , , 

and the rigid substrate waveguides (Waldron, 1971 and 1972) can be considered the 

limiting cases in the choiee of material eombination of this overlay-guide pl'oblem. 

When the material of both the overlay and the substrate is the same, the overlay guide 

beeo mes topographie ridge guide of the type suggested and first experimentally 

investigated by Ash et al (1969). When the substrate is assumed mu ch more rigid than 

the overlay and the aspect ratio of the overlay is kept less than 0.5, we have the rigid 

substrate guide analyzed by Waldron (1971 and 1972). 

It has been found that the theory of this analysis and as weil the computa-

tion programs are readily applicable to the prediction of the propagation eharaeteristies 

of the flexural mode of topographie ridge guide by using the (2,2) - approximation for 

antisymmetrie modes (Tu and Farnell, 1972a). The results for sueh guide using duralumium 

as the propagation medium have been eomputed and found to be in good agreement with 

experimental results of Mason et al (1971). 
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2. Antisymmetric Modes of the Topographic Ridge Waveguides 

Figure 31 shows the dispersion curves of antisymmetric modes of a 

rectangular ridge waveguide of height 2h3 and width 2h
2 

on duralumi num. For 

sufficiently low height, the curve for each width approaches the velocity of a simple 

Rayleigh wave on the undisturbed surface of the substrate half-space. In this region 

the decay of displacement amplitude in the transverse direction away from the guide 

is very slow in terms of the wavelength and the guiding action of the embossed strip 

is very weak. When the height becomes very large the velocity of propagation 

becomes independent of the height and approaches that of the first antisymmetric 

mode (Viktorov, 1967) of a plate of thickness 2h
2 

as marked by dashed lines on Fig. 31. 

The curves are essentially horizontal for hfh2 ratios greater than about 3 : 1 provided 

the width is not less than the minimum value shown of kth2 = 0.2. 

The dispersion curves of Fig. 31 are plotted in the natural parameters of 

the computation and it is inconvenient to compare them directly with the corresponding 

experimental graphs (Mason et al., 1971), wherein the curves are platted for fixed 

hlh2 ratios. However comparisons without interpolation can be made for specific 

points and Cl collection of such comparisons is shown in Table 1. Here the velocity 

and width are read from the experimental curves and the normalized height shown in 

the fourth column is then given by the appropriate hlh2 ratio. For the same ve loc ity 

and width, the guide height as calculated is given by the last column. The points 

selected in this table are ail in the regions of Fig. 31 where there is a strong dependence 

of velocity on guide height and in this region the experimental and calculated values 
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TABLE 1 • 

COMPARISON OF SOME MEASURED AND CALCULATED RESULTS 

kt h3 

v /vR 
v /vt kt h2 measured * calculated 

0.9 0.842 0.087 0.26 0.27 

0.9 0.842 0.191 0.38 0.37 

0.9· 0.842 0.27 0.41 0.42 

0.9 0.842 0.51 0.51 0.55 

0.8 0.748 0.091 0.27 0.28 

0.8 0.748 0.20 0.40 0.39 

0.8 0.748 0.28 0.43 - 0.45 

0.7 0.655 0.098 0.29 0.29 

0.7 0.655 0.21 0.42 0.42 

0.6 0.561 0.103 0.31 0.31 

Minima on Figure 3 of Mason et al. (1971) 

0.84 0.78 0.73 0.73 0.75 

0.71 0.76 0.40 0.60 0.54 

0.61 0.65 0.26 0.52 0.48 

0.49 0.52 0.134 0.40 0.37 

* Mason et al. (1971) 
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are seen to agree within te~ percent. For the regions of Fig. 31 where the curves are 

quite horizontal,such a comparison is not meaningful because slight changes in the 

selected values of velocity produce large changes in the calculated height. In these 

regions,a more valid comparison can be made by noting the normalized height and width 

at specific points on the calculated curves and comparing the velocity ot this point with 

the corresponding measured values. Such results are shown for a few pairs of points on 

Fig. 31 and it is seen that the agreement is again good in this fiat region of the curves. 

3. Displacements 

Some of the details of the displacements associated with this first anti­

.symmetric Love-like mode are given by the remaining illustrations in the chapter. The 

calculated displacement components are shown as a function of depth, in Fig. 32 and 

33, for the points marked with dot on the dispersion curves of Fig. 31, by the solid 

curves for the displacement on the central sagittal plane and by the broken curves for 

the vertical plane containing the side of the waveguide with abscissa x
3 

in units of h3 

in order to make the thickness of overlay a constant value of 2 for different cases. As 

mentioned in Section 2, u
2 

is the displacement component transverse to the guide, and 

since the mode is antisymmetric with respect to the central plane, this is the only com­

ponent which exists on the central plane. On the upper corners of the guide, the sagittal 

components (u l and u
3

) are appreciable 50 that there is a pronounced tilt to the top 

surface of the guide. The vertical and transverse components are in phase with each 
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other with the sense as indic::ated by the relative signs of the components plo+ted, while 

~he longitudinal component is in phase quadrature with the other two. In the upper parts 

of the guide sagittal-plane projections of the particle displacement are th en progressive 

ellipsSi. Figures 32 and 33 correspond to aspect ratios (h:fh2 = 1.34 and 4.9 respectively) 

for the guide cross section. Since this mode corresponds to the al
1 

mode above the cross­

over region of dispersion in Section 2, it can be seen again that in both cases most of the 

elastic energy is carried in the embossed region, though there is sorne displacement of 

the substrate material and that the penetration of the displacement pattern into the sub-

strate of the latter case is reduced than the former. The dependence of the d isplacement 

amplitudes on the transverse dimension x
2 

is generally the same as the curves shown in 

Fig. 15b for v/v t = 0.74. 

While it was noted that for large kth3 values in Fig. 31,each of the curves 

approached the velocity of the first antisymmetric mode (Mason et al., 1969) of an infinite 

free plate of thickness 2h
2

, nevertheless the displacements do not correspond to those of 

such a free plate. For example, for a plate of thickness kth2 = 0.2, the pure plate mode 

would have no variation of displacement in the x
3 

direction, u
3 

would be zero every 

where and the ratio of amplitudes u
1
/u

2 
would be 0.455. Rather, this mode becomes 

asymptotic to the corresponding mode of a duraluminum overlay on a semi-rigid substrate 

(Waldron, 1971). For example, if the overlay has the original duraluminum elastic pro-

perties,but the stiffness constants of the substrate are increased by a factor of 100 and 

the substrate density irlcreased also by the same factor to maintain ail the significant 

material velocities the same, the curves of Fig. 31 retain approximately the same shape 

but are translated to the right by an increment in kth3 of the order of O. 1. In particular, 

-, 
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the point marked on the kt~2 = 0.5 at v/vt = 0.74 is translated from kth3 = 0.671 to 

kth3 = 0.805, and point on the curve 0.2 at v/vt = 0.44, from 0.978 to 1.070; and 

the corresponding changes in the displacement patterns of the flexural mode for the ridge 

guide are similar to those of the semi-rigid substrate for the geometry, and the relative 

amplitudes of the components are essentially equal on the top surface. 

4. Remarks 

If the (2,2) - approxi mation for symmetric modes is used fo r the ridge 

geometry, no solution is found with velocity less than the substrate Rayleigh velocity. 

The reason for this, as stated in Section l, Chapter V, is that since the same velocity 

constants apply to the overlay and the substrate, only the antisymmetric love-like modes 

al1 and al
1

' have propagation velocities less than the common Rayleigh velocity and 

thus produce guided non-radiating waves. These modes become the "flexural modes" 

of the topographie ridge guides. Ash et al. (1969) reported some brief experimental 

results on a mode of propagation, symmetric in nature, with a velocity greater than the 

Rayleigh velocity and showing a leaky-wave behaviour in the side-region III of the 

sample. If in an analytic attempt to consider such mode we replace the transverse 

exponential decay of the displacements in Region III by sinusoidal functions, a solution 

has been found with a velocity and displacement distribution reasonable agreement with 

their experimental results. Since this mode radiates a Rayleigh wave and the analysis 

does not allow complex wave numbers, no detailed investigation of this mode of ridge 

propagation has been made. 
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ln the rigid substrate waveguide suggested and analyzed by Waldron, an 

approximation technique originally found by Morse (1950) in an attempt at solving the 

rectangular bar problem, is used at the overlay surfacesx
2 

= ±h
2 

where only the normal 

compressional stress is retained to satisfy the free-traction condition while the two shear 

stresses are ignored ; this approximation limits application to the cases having an hfh2 

ratio less than 0.5. In, his approach, the problem was treated first by assuming the whole 

substrate to be perfectly rigid and then the part of substrate corresponding to Region Il 

here was perturbed to be the almost-perfectly-rigid. compared with the material of over­

lay. Three kinds of waves were found: shear, longitudinal and dilatational, ail reveal-

ing a low-frequency cutoff. No direct comparison with his results has been made because 

there seems to be Iittle interest in such extreme ratios of substrate-to-Iayer stiffness"and 

moreover it seems that in his approach, as pointed out by Oliner (1971b), some funda-

mental modes such as that corresponding to the first symmetric Rayleigh-like mode are 

missing. 

j \ 

J-: 
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CHAPTER VII 

CONCLUSION 

ln this thesis an analytical method is developed to solve the wave propaga-

tion problem of an important type of elastic surface waveguides, namely, a rectangular 

overlay superimposed on a half-space substrate. Compared with other current analyses, 

such as that for thin-film waveguides (Tiersten, 1969 .Adkins and Hughes, 1969), the , 

transmission-n'etwork approach (0 liner, 1969), the topograph ic ridge waveguide (Ash et 

al., 1969. Mason et al., 1971 • Lagasse, 1972) and the rigid substrate waveguide (Waldron, 
" . 

1971), two kinds of generalization are implemented in the type of waveguide analyzed 

in the thesis. 9ne is geometrical in that the thickness of the overlay as weil as the 

width can be arbitrary and thus we con study the effects of the overlay thickness on the 

behaviour of su ch waveguides. The thin-film waveguide is contained as a limiting case. 

The other generalization concerns materials. The material combination of overlay and 

substrate is Iimited only by the guiding requirement that the shear velocity of overlay 

must be lower than or equal to that of substrate and can be freely chosen. The propaga-

tion characteristic and displacement pattern of the flexural mode for the topographie ridge 

guide are also contained in the analysis through the simple expedient of using the 

same material parameters for the overlay and substrate, and a rigid-substrate guide is 

approached by introducing an artificial substrate of increasing rigidity. 

The analysis is basically a series expansion method and two different 

truncations, the (1,1) - and (2,2) - approximations, have been carried out in detail. 



132 

The algebra for the (1, 1) - approximation can be done explicitly and reasonably 

accurate dispersion curves can be obtained for a small computation cost, while the 

(2,2) - approximation is quite complicated and requires iterative search techniques 

to determine points on the dispersion curves, however both the dispersion and displace-

ment results are more accurate. 

The fundamental derivations in the analysis are generalized 50 that they 

can be directly applied or easily converted for anisotropie materials, however the 

detailed exposition and application given here is for isotropie materials. The results 

reveal that each mode in the overlay waveguides has three components of displacement 

at any general point in the guided region • in other words, no mode in this waveguide , 

is a real Rayleigh or Love mode though it approaches one or the other when the width 

parameter becomes infinity due to very large width relative to the wavelength. The 

more dispersive modes (sR
1 ' , sR

2
1 and aL

1 ') in addition to the ordinary modes (sR
1

, sR
2

, 

sL
1

, aR
1

, aR
2 

and aL
1
) as described by the (2,2) - approximation have been discussed 

in sorne detai 1. 

It has been found that for sufficient large values of the thickness parameter, 

the aL
1 

mode acquires velocities much less than that of the infinitely wide layer case 

and this mode is identified, in the limit where the properties of ihe overlay and sub-

strate materials are identi c al, as the first flexural mode for topographie ridge guide. 

The numerical results using the analysis here agree weil with the accurate phase velocity 

measurements available for th is type of guide. A further check on the analysis is provided 
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by the agreement between the dispersion results of thin-film calculations here and the 

analytic and experimental results previously available for thin-film guides. 

The analysis contained in this thesis allows a more complete study of the 

dispersion curves and displacement patterns for rectangular overlay waveguides than 

was previously possible. Such studies are important in determining the dispersion 

associated with a given mode, the material combinations suitable for a given applica-

tion, the frequency range over which single-mode operation is possible, the optimum 

means of single-mode excitation and the geometries suitable for the elimination of 

undesired modes. 

Mathematically, variational theories for plates and rectangular bars and 

the exponential-crested surface waves have been employed in the analysis together 

with a new procedure that treats the boundary conditions at the interfaces between 

regions and suggests a technique that may be applicable to other multi-connected 

regions. For future work, the application of the method to anisotropic materials by 

generalizing the part of the formulation here that applies only to isotropic materials 

and the extension of the analysis to piezoelectric materials may be considered. 

h 
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APPENDIX A 

On expanding (4, 14) of Chapter III with n,m = 0,1,2, a total of 27 

equations, three equations (j = 1,2,3) for every combination of n and m, are obtained 

for the (2,2) - approximation with the circumflex ( ",) omitted for c
ijkl

' uk (n,m)and p: 

~ ° d (0,0) 'D (1,0) 'D (0,1) D G (0)/2k-O 
Tor n = 'jkUk + 1 02c l jk2Uk + 1 03c l jk3Uk - 03 3j -



d (1 ,2) 0 D' (2,2) D G (1 )/2k 
jkUk + 1 12C 1jk2Uk -- 23 3j . 

c 2 d (2,0) °D (2,1) D G (2)/2k 
lor n =, jkUk ~ 1 03c1 jk3Uk - 03 3j 

d (2,1) °D (2,2) D G (2)/2k 
jkUk + 1 13C 1jk3Uk + 13 3j 

D (OIC (2,0)+D C (2,1)) =0 
- 13 3ik1uk 03 3ik3uk 

d (2,2) - D G (2)/2k 
ikuk 23 3i 

Here 

serving on Iy to simplify the expression_ 

,':,;, 
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(Ao 1) 

(Ao 2) 
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APPENDIX B 

The overlay partial matrices fS and fA to be used in (5.3) and (5.4) have 

the non-zero elements given by the following relations. For the symmetric modes 

the diagonal elements are: 

2 
: f22 

2 1 2 2 
f
ll 

= V
OO 

-5 = VOO - 1 : f33 = VOl - 5 - 3/H3 

2 2 1 2 2 1 2 2 

f44 = VOl - 1 - 35/H3 , f55 = V02 - 5 - 15/H3 1 f66 = V02 - 1 - 15 5/H 3 
1 1 

2 2 
1 faa 

2 / 2 ) 2\ 2 2 2 

f77 = VlO - 1 - 35/H2 
= V11 -1-35 H2-3 H31 f99 = V12 -1-35/H 2 -15/H: 

1 
1 

2 2 1 2 2 2 2 2 

f10,Hf V20 -5-15/H2 ,fll,ll = V20 -1 -15/H 2 1 f12 12= V21 -5-15/H2 -3/H 3 
1 ' 

2 2 2 1 2 2\ 2 2 

f 13,1 f V21 -1 -15/H2 -35/H3 : f14 ,14 = V2Z-5-15/H2-15/H3! f15,15 V22 -1-15/H 2-155/1-: 

, 1 
(B. 1 ) 

where 5 = ('À + 2 0 I~, H2 = k h
2 

' H3 = k h3 and the normalized velocity with the 

truncation correction factors included is represented by V
2 = r r (v / v)2. While 
nlJl n m t 

the non-zero off-diagonal elements for the symmetric modes are: 

f 14 = - f 41/3 = f 36/3 == - f 63/5 = f 10, 1 3 = - f 13, 1 0/3 = f 12, 15/3 = -f 15, 12/5 = i A / jÎ H 3 

f 23 = -f 32/3 = f 45/3 = -f 54/5 = f 11, 1 2 = -f 12, 11 /3 = f 13, 14/3 = -f 14, 1 3/5 = i 1 H 3 

f 17 = -f
71

!3 = f3S = -fS3/3 = f59 = -f95/3 = i A / jÎ H2 

f47= f74 = 3f6S/5 = fa 6/3 = -3 Â/fÎ H2 H3 

f7 ,10 = -3 f l0 ,7/5 = fS,12 = - 3 f12,S/5 = f9,14 = - 3 f14,!5 = 3 i / H2 

fa ,l1 == 9fll ,s/5= 9f9,13/15 = 9f13,!15= -9 /H2 H3 

(B.2) 
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For the antisymmetric modes, the diagonal elements are: 

f
ll 

2 2 2 
: f33 

2 2 
== V

OO 
- 1 f

22 
= VOl -1 - 3/H3 

== V
02 

-1 -15/H
3 

2 2 2 2 1 2 2 2 

f44 = V
10 

-5-3/H
2 1 f55 = V

10 
-1 -3/H

2 1 f66 = V
11 

-5 -3/H 2 
-3/H

3 

2 2 2 1 
1 

2 ;12 ;121 2 2 2 

f77 = V
ll

-1-3/H2 
-35/H 3 

1 f88 = V12 -5-3 H2-15 H3 f99 = V
12

-1-3/H2
-155/H

3 

1 
1 

2 2 ! 
2 2 21 22' 

f lO,10 V
20 

-1-155/H2 f ll ,ll 
= V21 -1-15/H2 

-3/H31 f 12 12= V. -1-155/H -15/H' 

1 l ' 
22 2, 

1 1 (B.3) 

using the same parameters as in (B.l) j and the non-zero off-diagonal elements are: 

f 14 == 

f
25 

== 

f47 = 

f56 == 

f4 ,10== 

f7 ,10 == 

- f41/3 == f26 == - f62/3 == f38 == - f83/3 = i/H2 

f52 == 3 f37/5 == f73/3 == -3/H2 H3 

- f 7 4/3 == f6/ 3 == - f 96/5 == i A / ~ H 3 

- f 65/3 == f78/3 == - f87/5 == i /H 3 

- 3 f 10,4/5 = f 6, 11 == - 3 f 11 ,6/5 = f 8, 1 2 == - 3 f 12,8/5 == 3 i A / ~ H 2 

9f 10 ,7/5 == 3 f 9,11 /5 == 3 f 11,15 == - 9 A / ~ H2 H3 . 

(B .4) 
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