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m-Privacy for Collaborative Data Publishing
Slawomir Goryczka, Li Xiong, and Benjamin C. M. Fung

Abstract—In this paper, we consider the collaborative data publishing problem for anonymizing horizontally partitioned data at
multiple data providers. We consider a new type of “insider attack” by colluding data providers who may use their own data records (a
subset of the overall data) to infer the data records contributed by other data providers. The paper addresses this new threat, and
makes several contributions. First, we introduce the notion of m-privacy, which guarantees that the anonymized data satisfies a given
privacy constraint against any group of up to m colluding data providers. Second, we present heuristic algorithms exploiting the
monotonicity of privacy constraints for efficiently checking m-privacy given a group of records. Third, we present a data provider-aware
anonymization algorithm with adaptive m-privacy checking strategies to ensure high utility and m-privacy of anonymized data with
efficiency. Finally, we propose secure multi-party computation protocols for collaborative data publishing with m-privacy. All protocols
are extensively analyzed and their security and efficiency are formally proved. Experiments on real-life datasets suggest that our
approach achieves better or comparable utility and efficiency than existing and baseline algorithms while satisfying m-privacy.

Index Terms—Privacy, security, integrity, and protection, distributed databases

1 INTRODUCTION

THERE is an increasing need for sharing data that contain
personal information from distributed databases. For

example, in the healthcare domain, a national agenda is
to develop the Nationwide Health Information Network
(NHIN)1 to share information among hospitals and other
providers, and support appropriate use of health informa-
tion beyond direct patient care with privacy protection.

Privacy preserving data analysis, and data publish-
ing [2]–[4] have received considerable attention in recent
years as promising approaches for sharing data while pre-
serving individual privacy. In a non-interactive model, a
data provider (e.g., hospital) publishes a “sanitized” ver-
sion of the data, simultaneously providing utility for data
users (e.g., researchers), and privacy protection for the indi-
viduals represented in the data (e.g., patients). When data
are gathered from multiple data providers or data own-
ers, two main settings are used for anonymization [3], [5].
One approach is for each provider to anonymize the data
independently (anonymize-and-aggregate, Fig. 1(a)), which
results in potential loss of integrated data utility. A more
desirable approach is collaborative data publishing [3], [5]–
[7], which anonymizes data from all providers as if they
would come from one source (aggregate-and-anonymize,
Fig. 1(b)), using either a trusted third-party (TTP) or
Secure Multi-party Computation (SMC) protocols [8], [9].

1. http://healthit.hhs.gov/nhin/.
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Problem Settings. We consider the collaborative data
publishing setting (Fig. 1(b)) with horizontally distributed
data across multiple data providers, each contributing a
subset of records Ti. Each record has an owner, whose iden-
tity should be protected. Each record attribute is either an
identifier, which directly identifies the owner, or a quasi-
identifier (QID), which may identify the owner if joined
with a publicly known dataset, or a sensitive attribute,
which should be also protected. As a special case, a data
provider could be the data owner itself who is contribut-
ing its own records. A data recipient may have access to
some background knowledge (BK in Fig. 1), which rep-
resents any publicly available information about released
data, e.g., Census datasets.

Our goal is to publish an anonymized view of the inte-
grated data, T∗, which will be immune to attacks. Attacks
are run by attackers, i.e., a single or a group (a coalition) of
external or internal entities that wants to breach privacy
of data using background knowledge, as well as ano-
nymized data. Privacy is breached if one learns anything
about data.

Existing Solutions. Collaborative data publishing can
be considered as a multi-party computation problem, in
which multiple providers wish to compute an anonymi-
zed view of their data without disclosing any private and
sensitive information. We assume the data providers are
semi-honest [8], [9], commonly used in distributed com-
putation setting. A trusted third party (TTP) or Secure
Multi-Party Computation (SMC) protocols [6] can be used
to guarantee there is no disclosure of intermediate infor-
mation during the anonymization. However, neither TTP
nor SMC protects against inferring information using the
anonymized data.

The problem of inferring information from anonymized
data has been widely studied in a single data provider
settings [3]. A data recipient that is an attacker, e.g.,
P0, attempts to infer additional information about data
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(a) (b)

Fig. 1. Distributed data publishing settings for four providers.
(a) Anonymize-and-aggregate. (b) Aggregate-and-anonymize.

records using the published data, T∗, and background
knowledge, BK. For example, k-anonymity [10], [11] pro-
tects against identity disclosure attacks by requiring each
quasi-identifier equivalence group (QI group) to contain
at least k records. l-Diversity requires each QI group to
contain at least l “well-represented” sensitive values [12].
Differential privacy [2], [4] guarantees that the presence
of a record cannot be inferred from a statistical data
release with little assumptions on an attacker’s background
knowledge.

New Challenges. Collaborative data publishing intro-
duces a new attack that has not been studied so far. Each
data provider, such as P1 in Fig. 1, can use both, ano-
nymized data T∗, and its own data T1 to infer additional
information about other records. Compared to the attack
by the external recipient in the second scenario, each
provider has additional data knowledge of its own records,
which can help with the attack. This issue can be fur-
ther worsened when multiple data providers collude with
each other.

In the social network or recommendation setting, a user
may attempt to infer private information about other users
using the anonymized data or recommendations assisted by
some background knowledge and her own account infor-
mation. Malicious users may collude or even create artificial
accounts as in a shilling attack [13].

We illustrate the m-adversary threats with an example
shown in Table 1. Assume that hospitals P1, P2, P3, and P4
wish to collaboratively anonymize their respective patient
databases T1, T2, T3, and T4. In each database, Name is an
identifier, {Age, Zip} is a quasi-identifier (QI), and Disease
is a sensitive attribute. Note that one record, owned by
Olga, is contributed by two providers P2 and P4, and is
represented as a single record in anonymized dataset. T∗

a is
one possible anonymization that guarantees k-anonymity
and l-diversity (k = 2, l = 2), i.e., each QI group contains
records with at least l different sensitive values. However,
an attacker from the hospital P1 may remove all records
from P1. In the first QI group there will be only one remain-
ing record, which belongs to a patient between 20 and
30 years old. By joining this record with the background
knowledge BK (e.g., part of the Census database) using
quasi-identifier attributes, P1 can identify Sara as the owner
of the record (highlighted in the table) and her disease
Epilepsy. In practice, the attacker would use more attributes
as a QI and maximal BK to mount the linking attack [14].
In general, multiple providers may collude with each other,

TABLE 1
m-Adversary and m-Privacy Example

hence having access to the union of their data, or a user may
have access to multiple databases, e.g., a physician switch-
ing to another hospital, and using information about her
former patients.

Contributions. We define and address this new type of
“insider attack” by data providers in this paper. In gen-
eral, we define an m-adversary as a coalition of m colluding
data providers or data owners, and attempts to infer data
records contributed by other data providers. Note that 0-
adversary models the external data recipient, who has only
access to the external background knowledge. Since each
provider holds a subset of the overall data, this inher-
ent data knowledge has to be explicitly modeled, and
considered when the data are anonymized.

We address the new threat introduced by m-adversaries,
and make several important contributions. First, we intro-
duce the notion of m-privacy that explicitly models the
inherent data knowledge of an m-adversary, and pro-
tects anonymized data against such adversaries with
respect to a given privacy constraint. For example, in
Table 1 T∗

b is an anonymized table that satisfies m-privacy
(m = 1) with respect to k-anonymity and l-diversity
(k = 2, l = 2).

Second, for scenarios with a TTP, to address the chal-
lenges of checking a combinatorial number of potential
m-adversaries, we present heuristic algorithms for effi-
ciently verifying m-privacy given a set of records. Our
approach utilizes effective pruning strategies exploiting the
equivalence group monotonicity property of privacy con-
straints and adaptive ordering techniques based on a novel
notion of privacy fitness. We also present a data provider-
aware anonymization algorithm with adaptive strategies of

Authorized licensed use limited to: McGill Libraries. Downloaded on February 21,2025 at 21:54:36 UTC from IEEE Xplore.  Restrictions apply. 



2522 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 10, OCTOBER 2014

checking m-privacy, to ensure high utility and m-privacy of
sanitized data with efficiency.

Compared to our preliminary version [1], our new con-
tributions extend above results. First, we adapt privacy
verification and anonymization mechanisms to work for
m-privacy w.r.t. to any privacy constraint, including non-
monotonic ones. We list all necessary privacy checks and
prove that no fewer checks is enough to confirm m-privacy.

Second, we propose SMC protocols for secure m-privacy
verification and anonymization. For all protocols we prove
their security, complexity and experimentally confirm their
efficiency.

2 m-PRIVACY DEFINITION

We first formally describe our problem setting. Then, we
present our m-privacy definition with respect to a pri-
vacy constraint to prevent inference attacks by m-adversary,
followed by properties of this new privacy notion.

Let T = {t1, t2, . . .} be a set of records with the
same attributes gathered from n data providers P =
{P1, P2, . . . , Pn}, such that Ti ⊆ T are records provided by
Pi. Let AS be a sensitive attribute with a domain DS.

If the records contain multiple sensitive attributes then,
we treat each of them as the sole sensitive attribute, while
remaining ones we include to the quasi-identifier [12].
However, for our scenarios we use an approach, which
preserves more utility without sacrificing privacy [15].

Our goal is to publish an anonymized table T∗ while
preventing any m-adversary from inferring AS for any sin-
gle record. An m-adversary is a coalition of data users
with m data providers cooperating to breach privacy of
anonymized records.

2.1 m-Privacy
To protect data from external recipients with certain back-
ground knowledge BK, we assume a given privacy require-
ment C is defined as a conjunction of privacy constraints:
C1 ∧ C2 ∧ . . . ∧ Cw. If a group of anonymized records T∗
satisfies C, we say C(T∗) = true. By definition C(∅) is true
and ∅ is private. Any of the existing privacy principles can
be used as a component constraint Ci.

We now formally define a notion of m-privacy with
respect to a privacy constraint C, to protect the anonymized
data against m-adversaries. The notion explicitly mod-
els the inherent data knowledge of an m-adversary, the
data records they jointly contribute, and requires that each
QI group, excluding any of those records owned by an
m-adversary, still satisfies C.

Definition 2.1 (m-privacy). Given n data providers, a set
of records T, and an anonymization mechanism A, an m-
adversary I (m � n − 1) is a coalition of m providers, which
jointly contribute a set of records TI. A(T) satisfies m-privacy
with respect to a privacy constraint C if and only if, any
anonymized superset of records A(T′) from non-m-adversary
providers satisfies C, i.e.,

∀I ⊂ P, |I| = m,∀T′:T \ TI ⊆ T′ ⊆ T, C(A(T′)) = true.

Corollary 2.1. For all m � n − 1, if A(T) is m-private, then it
is also (m − 1)-private. If A(T) is not m-private, then it is
also not (m + 1)-private.

Note that this observation describes monotonicity of
m-privacy with respect to the number of adversaries, and is
independent from the privacy constraint C and records. In
the next section we investigate monotonicity of m-privacy
with respect to records for a given value of m.

m-Privacy with Duplicate Records. m-Privacy can be
also guaranteed when there are duplicate records (such as
records from a patient transferred between hospitals). In
our initial example Olga has records in two hospitals P2
and P4 (Table 1). For such cases, the duplicates are treated
as a single record shared by a few providers. If any of the
providers is a member of an m-adversary, the record will
be considered as a part of its background knowledge.

m-Privacy and Syntactic Privacy Constraints. Let C be a
syntactic privacy constraint, i.e., a constraint that preserves
data truthfulness at the record level, e.g., k-anonymity, l-
diversity, and t-closeness [16]. T∗ satisfying C will only
guarantee 0-privacy w.r.t. C, i.e., C is not guaranteed to
hold for every QI group after excluding records belong-
ing to any single data provider. m-Privacy is defined w.r.t.
a privacy constraint C, and hence will inherit all strengths
and weaknesses of C. m-Privacy w.r.t. C protects against
privacy attacks issued by any m-adversary if and only if, C
protects against the same attacks by an external data recipi-
ent. m-Privacy notion is orthogonal to the privacy constraint
C being used, and enhances privacy it defines to settings,
where up to m data providers collude.

m-Privacy and the Differential Privacy. Differential pri-
vacy [2], [4], [17] guarantees privacy even if an attacker
knows all but one record. Thus, any differentially pri-
vate mechanism is (n − 1)-private w.r.t. differential privacy,
which is the maximum level of m-privacy, when any (n−1)

providers can collude, but cannot breach privacy of records.
However, differential privacy does not preserve data truth-
fulness at the record level, and hence cannot be used for
some scenarios, e.g., by a pharmaceutical company that
analyzes anonymized patient records to choose a small
group of individual patients for clinical trials.

Opposite to differential privacy, m-privacy w.r.t. a syntac-
tic privacy notion preserves data truthfulness at the record
level. In the remaining of the paper, we will focus on
checking and achieving m-privacy w.r.t. different syntactic
privacy constraints.

2.2 Monotonicity of Privacy Constraints
Monotonicity of privacy constraints is defined for a single
equivalence group of records, i.e., a group of records that
QI attributes share the same generalized values. Let A1 be
a mechanism that anonymizes a group of records T into a
single equivalence group, T∗ = A1(T).

Generalization based monotonicity of privacy con-
straints has been already defined in the literature
(Definition 2.2) [12], [16]. Its fulfillment is crucial for design-
ing efficient generalization algorithms [11], [12], [16], [18].
In this paper we will refer to it as generalization monotonicity.

Definition 2.2.•(Generalization Monotonicity of a Privacy
Constraint [12], [16]). A privacy constraint C is generaliza-
tion monotonic if and only if, for any two equivalence groups
A1(T) and A1(T′) that satisfy C, their union satisfies C as
well,
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C(A1(T)) = true
C(A1(T′)) = true

⇒ C(A1(T) ∪ A1(T′)) = true.

In the definition of generalization monotonicity there
is an assumption that original records have been already
anonymized into equivalence groups, which are used for
further generalizations. In this paper, we introduce more
general and record-based definition of monotonicity in
order to facilitate the analysis, and design efficient algo-
rithms for verifying m-privacy w.r.t. C.

Definition 2.3.•(Equivalence Group Monotonicity of a
Privacy Constraint, EG Monotonicity). A privacy con-
straint C is EG monotonic if and only if, for a group of records
T such that its equivalence group A1(T) satisfies C, and
any group of records ˜T, their anonymized union satisfies C,

C(A1(T)) = true ⇒ ∀˜T, C(A1(T ∪ ˜T)) = true.

EG monotonicity is more general than generalization
monotonicity. If a constraint is EG monotonic, it is also
generalization monotonic, but vice versa does not always
hold. k-Anonymity and l-diversity, which requires l distinct
values of sensitive attribute in a QI group, are examples
of EG and generalization monotonic constraints. Entropy
l-diversity [12] and t-closeness [16] are examples of gener-
alization monotonic, but not EG monotonic constraints at
the same time. For example, consider a subset of two ano-
nymized records with 2 different sensitive values satisfying
entropy l-diversity (l = 2), i.e., each record has different
sensitive value. Entropy l-diversity is not EG monotonic,
because it will not hold if we add records that change
the entropy of sensitive values significantly. However, it
is generalization monotonic because it will still hold if
two QI groups satisfying entropy l-diversity (l = 2) are
(generalized) into a new group.

Corollary 2.2. If all constraints in a conjunction C = C1 ∧
C2 ∧ . . .∧ Cw are EG monotonic, then the constraint C is EG
monotonic.

Similar observation holds for generalization monotoni-
city. In our example, C is defined as a conjunction of
k-anonymity and l-diversity. Since both of them are EG
monotonic [12], C is EG monotonic as well.

Theorem 2.1. m-Privacy with respect to any constraint C is EG
monotonic if and only if, C is EG monotonic.

This theorem holds also when applied for generaliza-
tion monotonicity. Proofs of this theorem for both EG
and generalization monotonicities defined with respect to
records and not m can be found in the Appendix A, which
is available in the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/18.

Corollary 2.3. If a constraint C is EG monotonic, then the defi-
nition of m-privacy w.r.t. C (Definition 2.1) may be simplified
such that only T′ = T \ TI are checked, i.e.,

∀I ⊂ P, |I| = m, C(A(T \ TI)) = true.

Indeed, if A(T \ TI) satisfies C, then EG monotonicity of
C guarantees that any anonymized superset of T \ TI satis-
fies C as well. Thus, A(T) fulfills definition of m-privacy
w.r.t. C. In addition, if a coalition I cannot breach pri-
vacy, then any its sub-coalition with fewer records cannot

Fig. 2. m-Adversary space and pruning strategies upward (+), and
downward (-).

do so either (Definition 2.3). Unfortunately, generalization
monotonicity of C is not enough to guarantee this property.

3 VERIFICATION OF m-PRIVACY

Checking whether a set of records satisfies m-privacy
creates a potential computational challenge due to the
combinatorial number of m-adversaries. In this section,
we first analyze the problem by modeling the adversary
space. Then, we present heuristic algorithms with effec-
tive pruning strategies and adaptive ordering techniques
for efficiently checking m-privacy w.r.t. an EG monotonic
constraint C. Implementation of introduced algorithms can
be run by a trusted third party (TTP). For scenarios without
such party, we introduce secure multi-party (SMC) proto-
cols. Finally, in Appendix B.1, available online, we present
modifications of TTP heuristics and SMC protocols to verify
m-privacy w.r.t. non-EG monotonic privacy constraints.

3.1 Adversary Space Enumeration
Given a set of nG data providers, the entire space of m-
adversaries (m varying from 0 to nG −1) can be represented
using a lattice shown in Fig. 2. Each node at layer m
represents an m-adversary of a particular combination of
m providers. The number of all possible m-adversaries is
given by

(nG
m

)

. Each node has parents (children) represent-
ing their direct super- (sub-) coalitions. For simplicity the
space is depicted as a diamond, where a horizontal line at a
level m corresponds to all m-adversaries, the bottom node
to 0-adversary (external data recipient), and the top line to
(nG − 1)-adversaries.

In order to verify m-privacy w.r.t. a constraint C for a
set of records, we need to check fulfillment of C for all
records after excluding any possible subset of m-adversary
records. When C is EG monotonic, we only need to check C
for the records excluding all records from any m-adversary
(Observation 2.3), i.e., adversaries on the horizontal line.

Given an EG monotonic constraint, a direct algorithm
can sequentially generate all possible

(nG
m

)

m-adversaries,
and then check privacy of the corresponding remaining
records. In the worst-case scenario, when m = nG/2, the
number of checks is equal to the central binomial coeffi-
cient

( nG
nG/2

) = O(2nG n−1/2
G ). Thus, the direct algorithm is not

efficient enough.

3.2 Heuristic Algorithms for EG Monotonic
Constraints

In this section, we present heuristic algorithms for effi-
ciently checking m-privacy w.r.t. an EG monotonic con-
straint. Then, we modify them to check m-privacy w.r.t. a
non-EG monotonic constraint.
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(a) (b)

Fig. 3. Adaptive ordering for efficient pruning and an example run of
the binary algorithm. (a) Adaptive ordering. (b) First steps of the binary
algorithm with verified coalitions depicted as numbered red dots.

The key idea of our heuristics for EG monotonic privacy
constraints is to efficiently search through the adversary
space with effective pruning such that not all m-adversaries
need to be checked. This is achieved by two different prun-
ing strategies, an adversary ordering technique, and a set
of search strategies that enable fast pruning.

Pruning Strategies. The pruning is possible thanks to the
EG monotonicity of m-privacy (Observations 2.1, and 2.3).
If a coalition is not able to breach privacy, then all its sub-
coalitions will not be able to do so as well, and hence do
not need to be checked (downward pruning). On the other
hand, if a coalition is able to breach privacy, then all its
super-coalitions will be able to do so as well, and hence
do not need to be checked (upward pruning). In fact, if a
sub-coalition of an m-adversary is able to breach privacy,
then the upward pruning allows the algorithm to terminate
immediately as the m-adversary will be able to breach pri-
vacy (early stop). Fig. 2 illustrates the two pruning strategies
where + represents a case when a coalition does not breach
privacy and − otherwise.

Adaptive Ordering of Adversaries. In order to facili-
tate the above pruning in both directions, we adaptively
order the coalitions based on their attack powers (Fig. 3(a)).
This is motivated by following observations. For downward
pruning, super-coalitions of m-adversaries with limited
attack powers are preferred to be checked first as they
are less likely to breach privacy, and hence increase the
chance of downward pruning. In contrast, sub-coalitions of
m-adversaries with significant attack powers are preferred
to be checked first as they are more likely to breach privacy,
and hence increase the chance of the early stop.

To quantify privacy fulfillment by a set of records, which
is used to measure the attack power of a coalition and pri-
vacy of remaining records, we introduce a privacy fitness
score w.r.t. C. It also used to facilitate the anonymization,
which we will discuss in the following section.

Definition 3.1 (Privacy Fitness Score). Privacy fitness FC
for a set of anonymized records T∗ is a level of fulfillment
of the privacy constraint C. A privacy fitness score is a func-
tion f of privacy fitness with values greater or equal to 1 only
if C(T∗) = true,

scoreFC(T∗) = f
(

FC1(T
∗), FC2(T

∗), . . . , FCw(T∗)
)

.

In our setting, C is defined as a conjunction of k-
anonymity and l-diversity. The privacy fitness score is
defined as the minimum fitness score of privacy constraints.

In our example scoreFC is defined as follows:

scoreFC(T∗) = min
{ |T∗|

k
,
|{t[AS]:t ∈ T∗}|

l

}

. (1)

Notice that scoreFC(T∗) � 1, if and only if C(T∗) = true.
The privacy fitness score quantifies also the attack power

of attackers. The higher their privacy fitness scores are,
the more likely they are able to breach the privacy of the
remaining records. In order to maximize the benefit of both
pruning strategies, the super-coalitions of m-adversaries are
generated in the order of ascending fitness scores (ascend-
ing attack powers), and the sub-coalitions of m-adversaries
are generated in the order of descending fitness scores
(descending attack powers) (Fig. 3(a)).

Now we present several heuristic algorithms that use
different search strategies, and hence utilize different prun-
ing directions. All of them use the adaptive ordering of
adversaries to enable fast pruning.

The Top-Down Algorithm. The top-down algorithm
checks the coalitions in a top-down fashion using down-
ward pruning, starting from (nG −1)-adversaries, and mov-
ing down until a violation by an m-adversary is detected
or all m-adversaries are pruned or checked.

The Bottom-Up Algorithm. The bottom-up algorithm
is similar to the top-down algorithm. The main differ-
ence is in the sequence of coalition checks, which is
in a bottom up fashion starting from 0-adversary, and
moving up. The algorithm stops if a violation by any
adversary is detected (early stop) or all m-adversaries are
checked.

The Binary Algorithm. The binary algorithm (Algo-
rithm 1), inspired by the binary search algorithm, checks
coalitions between (nG − 1)-adversaries and m-adversaries,
and takes advantage of both pruning strategies (Fig. 3(b)).
Thanks to EG monotonicity of the privacy constraint,
we do not consider coalitions of less than m adversaries
(Corollary 2.3).

The goal of each iteration in the algorithm is to search
for a pair of coalitions Isub and Isuper, such that Isub is a direct
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sub-coalition of Isuper, and Isuper breaches privacy, while Isub
does not. Then, Isub and all its sub-coalitions are pruned
(downward pruning), Isuper and all its super-coalitions are
pruned (upward pruning) as well.

The search works as follows. First, it starts with (nG −1)-
adversaries, finds the first coalition of attackers that violates
privacy, and assigns it to Isuper (lines from 4 to 7). Then, it
finds an Isub, i.e., a sub-coalition of Isuper, which does not
breach privacy (line 8). At each step, a new coalition I:Isub ⊂
I ⊂ Isuper (such that |I| = |Isuper|+|Isub|

2 ; line 12) is checked
(line 13). If I can breach privacy, then Isuper is updated to
I (line 14). Otherwise, Isub is updated to I (line 16). The
algorithm continues until the direct parent-child pairs Isuper
and Isub are found (line 11). Then pruning in both directions
is performed (lines 17 and 18), and the algorithm starts the
next iteration. The algorithm stops when m-privacy can be
determined (line 3).

Adaptive Selection of Algorithms. Each of the above
algorithms focuses on different search strategy, and hence
utilizes different pruning. Which algorithm to use is largely
dependent on the characteristics of a given group of pro-
viders. Intuitively, the privacy fitness score (Equation 1),
which quantifies also the level of privacy fulfillment of the
group, may be used to select the most suitable algorithm.
The higher the fitness score, the more likely m-privacy
will be satisfied, and hence the top-down algorithm with
downward pruning will significantly reduce the number
of adversary checks. We utilize such strategy in the ano-
nymization algorithm (discussed later), and experimentally
evaluate it.

3.3 Time Complexity
In this section, we derive the time complexity for the m-
privacy w.r.t. C verification algorithms in terms of the
number of privacy checks. Since all algorithms involve mul-
tiple checks of privacy for various records, we assume that
each check of C takes a constant time. Formally, it can be
modeled by an oracle, which performs a check for given
records in O(1) time. For a particular definition of C, time
complexity of a single privacy verification should be also
taken into account. Details of time complexity computations
can be found in the Appendix E, available online.

EG Monotonic m-Privacy. All the above verification
algorithms have the same worst-case scenario, in which
all super-coalitions of m-adversaries violate privacy, while
all sub-coalitions of m-adversaries do not. Hence, neither
adaptive ordering nor pruning strategies are useful. For
these settings, the direct algorithm will check exactly

(nG
m

)

possible m-adversaries before confirming m-privacy, where
nG is the number of data providers contributing to the
group. This is the minimal number of privacy verifications
for this scenario. The bottom-up algorithm will check 0-
adversary (external data recipient) up to all m-adversaries,
which requires

∑m
i=0

(nG
i

) = O
(

nm
G

)

checks. The top-down
algorithm will check all (nG − 1)-adversaries first, then
smaller coalitions up to all m-adversaries, which requires
∑m

i=nG−1
(nG

i

) = O
(

nnG−1−m
G

)

checks. The binary algorithm
will run

(nG
m

)

iterations and within each O(log (nG − m)) pri-
vacy checks. Thus, the total time complexity is equal to
O

(

nm
G log (nG − m)

)

.

The average time complexity analysis is more involved,
and its results depend on the parameter m. For each of them
the lower bound of the average time complexity is O(nG),
but the upper bound is different, i.e., O

(

(3/2)nG
)

for the
top-down, O

(

2nG n−1/2
G

)

for the bottom-up, O
(

2nG n−1
G

)

for the

direct, and O
(

2nG log2 nG
nG

)

for the binary. Thus, adapting ver-

ification strategy to different settings is crucial to achieve,
on average, a low runtime.

4 SECURE m-PRIVACY VERIFICATION
PROTOCOLS

All the above algorithms can be run by a trusted third-party
(TTP). For settings without such a party, data providers
need to run an SMC protocol. We assume that all provid-
ers are semi-honest, i.e., honest but curious. In this section
we present secure protocols to verify m-privacy w.r.t. EG
monotonic constraint C.

A secure m-privacy verification protocol for a non-
EG monotonic constraint is an extension of the bottom-up
approach. Due to space limit details of such protocol were
moved to Appendix D.2, available online.

Note that the TTP can recognize duplicated records, and
treats them in the appropriate way. For SMC protocols all
records are unique, and duplicates are not detected.

Preliminaries. Our SMC protocols are based on Shamir’s
secret sharing [19], encryption, and other secure schemas.
In a secret sharing scheme, the owner of a secret message
s prepares and distributes nG shares, such that each party
gets a few shares (usually one). We use [s] to denote the
vector of shares and [s]i to refer to an ith share sent to Pi.
An algorithm reconstructing s requires any r shares as its
input. To prevent any coalition of up to m providers to
reveal intermediate results, we set r = m + 1.

Note that receivers of shares do not have to be provid-
ers and trusted. They could be run as separate processes
in a distributed environment, e.g., cloud, and still com-
putations would stay information-theoretically secure [20].
In our implementation and complexity analyzes, we have
used SEPIA framework [21].

Secure Subprotocols. To compute sums we run a secure
sum protocol, which securely computes the sum of num-
bers held by providers. Implementation of such protocol
is based on Shamir’s secret sharing scheme, and has been
introduced in SEPIA framework [21]. Another protocol
that is provided by SEPIA is secure comparison, which
securely compares two numbers. Running this protocol
for a set of numbers, we find the minimum and maxi-
mum values in the set, and disclose information about their
order.

In our protocols we also use secure size of set union
subprotocol, which is a slight modification of the secure
size of set intersection protocol [22]. The modification is to
count all distinct encrypted items, and not only ones that
are contributed by every provider.

Correctness, security and complexity of these protocols
and their implementations have been proven in [21], [22].

Secure Leader Election Protocol. All protocols are initi-
ated by a leader P′, i.e., a chosen provider, which is found
by running secure leader election protocol (SLE). Our SLE
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protocol (Algorithm 9 in Appendix D.1, available online)
runs a secret sum protocol over randomly generated num-
bers in order to elect the leader. The implementation utilizes
Shamir’s secret sharing scheme, and does not disclose any
information about data and its providers. The leader is
considered as an untrusted party, therefore any honest but
curious party (also external) can be considered in the elec-
tion. Each data provider can simulate, monitor, and verify
the leader actions to detect any malicious behavior.

4.1 Secure EG Monotonic m-Privacy Verification
Assume that a group of data records is horizontally distrib-
uted among nG data providers. They would like to securely
verify, if anonymization of their records into one QI group,
is m-private w.r.t. C. Additionally, assume that verification
of privacy defined by C is given (described below), and all
providers have already elected a leader P′. Before verifying
m-privacy the leader securely sorts data providers.

Secure Sorting and Adaptive Ordering. The main
responsibility of the leader is to determine m-privacy fulfill-
ment with as little privacy checks as possible. Our heuristic
minimizes the number of privacy checks by utilizing EG
monotonicity of C and adaptive ordering of m-adversary
generation (Section 3.2). To define such order, P′ runs any
sorting algorithm, which sorts providers by fitness scores
of their local records, with all comparisons run securely.

Applying the adaptive ordering heuristic uncovers the
order of fitness scores of data providers. Without such
ordering more privacy checks need to be performed.

Our implementations of secure sorting protocol utilizes
the Shamir’s secret sharing scheme with r shares required
to reconstruct a secret. To ensure m-privacy we set r = m+1.
Thus, for nG data providers the protocol requires running a
sorting algorithm, which takes O(nG log nG) secure compar-
isons. Each secure comparison has the same complexity, i.e.,
requires a few secure multiplications, where each multipli-
cation takes O(m2) time [21]. Thus, the secure sorting time
complexity is equal to O(m2nG log nG). Each secure mul-
tiplication requires passing nG(nG − 1) messages in total,
although only (m+1)2 of them are needed to get the result.
Thus, the communication complexity is O(n3

G log nG).
Note that if we allow disclosing fitness score values

from all providers, then all complexities can be significantly
reduced to O(nG log nG) for time complexity, and O(nG) for
communication complexity.

Secure m-Privacy Verification Protocol. After finding
the order of data providers, the leader P′ starts verify-
ing privacy for different coalitions of attackers, which are
generated in specific order. A general scheme of secure m-
privacy verification is the same for all heuristic algorithms
(Algorithm 2). Common steps are as follows. In the main
loop P′ verifies privacy of records for m-adversaries until
m-privacy can be decided (line 3). Note that in order to
determine m-privacy w.r.t. EG monotonic C, it is enough
to check privacy for all scenarios with exactly m attack-
ers (Corollary 2.3). In the loop, P′ generates and broadcasts
a coalition of potential adversaries I, so each party can
recognize its status (attacker/non-attacker) for the current
privacy check. Then, the leader runs the secure privacy ver-
ification protocol for I (line 6). If privacy could be breached,
and I has no more than m data providers, then the protocol

stops and returns negative answer (line 7). Otherwise, the
information about privacy fulfillment is used to prune
(upwards or downwards) a few potential m-adversaries
(line 9). Finally, if m-privacy w.r.t. C can be decided, then
P′ returns the results of m-privacy verification (line 10).

For the binary algorithm, secure m-privacy verification
protocol is also run by P′, which executes all steps of the
Algorithm 1. The only difference is privacy verification,
which is implemented as an SMC protocol. Due to lack of
space details of this protocol are skipped.

Proposition 4.1. Assuming security of subprotocols, all m-
privacy protocols are secure except revealing results of poten-
tial attacks of generated m-adversaries.

Proof. Results of all privacy checks are publicly known,
and, by applying pruning, one can determine privacy
of records for a few potential m-adversaries. Thus, the
security disclosure depends on data, and the sequence of
generated m-adversaries I is very important to minimize
security disclosures. In this proof, we analyze security
for all heuristics that are presented above (Section 3.2).

All generated m-adversaries can be partitioned into
two groups by the result of privacy check: 1) the m-
adversary, and all its subsets, cannot breach privacy
of remaining records, 2) the m-adversary, and all its
supersets, can breach privacy of remaining records.

If the records are m-private w.r.t. C, then direct and
bottom-up algorithms make the verification protocol fully
secure. Fulfillment of m-privacy implies that all verified
coalitions are size up to m and are in group 1), i.e., there
is no security breach. On the contrary, both top-down
and binary algorithms consider coalitions of more than
m providers from both groups. Coalitions from group 1)
can have any size, but all coalitions from group 2) con-
tain more than m providers. Thus, these two algorithms
disclose both positive and negative results of possible
attacks from coalitions of different size.

If the records are not m-private w.r.t. C, i.e., there is
an m-adversary that can breach privacy, perfect security
of the protocol cannot be guaranteed. Due to pruning
property all heuristics reveal information about all coali-
tions from group 1), as well as about a single coalition
of size up to m from group 2). In addition, top-down
and binary algorithms reveal also results of privacy
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checks for coalitions from group 2) having more than
m providers.
Note that for a potential attacker, finding a coalition that

is able to breach privacy, is more important than finding a
coalition that cannot do so. Thus, both direct and bottom-
up algorithms are more secure than others. Among them
bottom-up have more chances to identify the smallest coali-
tion that is able to breach privacy. Thus, direct is our choice
for maximum privacy scenarios. For other settings, our ano-
nymization algorithm adaptively chooses the verification
algorithms.

Computation Complexity. Electing the leader is a sepa-
rate task, which can be run once for all privacy verifications.
Its time complexity is equal to O(mnG).

During a single loop iteration following operations are
executed: generating next coalition of attackers (O(log nG)),
broadcasting generated coalition (O(log nG)), verifying if m-
privacy can be determined (O(nG)), and pruning (O(nG)).
Among them privacy verification has the highest complex-
ity. Assuming that its time complexity is equal to V (com-
puted below), and complexity of a single verification loop
is equal to V = V + O(nG). The direct algorithm will check
privacy for at most

(nG
m

)

possible m-adversaries. Thus, the
complexity of m-privacy verification is equal to O

(

V · nm
G

)

.
The bottom-up algorithm will check 0-adversary (external
data recipient) up to all m-adversaries, which requires
∑m

i=0
(nG

i

) = O
(

nm
G

)

checks, therefore for this case complex-
ity is equal to O

(

V · nm
G

)

. The top-down algorithm will check
all (nG−1)-adversaries first, then smaller coalitions up to all
m-adversaries, which requires

∑m
i=nG−1

(nG
i

) = O
(

nnG−1−m
G

)

checks, and the overall complexity of the protocol is equal
to O

(

V · nnG−1−m
G

)

. The binary algorithm will run
(nG

m

)

iter-
ations with O(log (nG − m)) privacy checks in each of them.
Thus, when used the protocol time complexity is equal to
O

(

V · nm
G log (nG − m)

)

.
Communication Complexity. During each iteration of

the verification protocol the leader sends (nG −1) messages
to providers with information if they should act as attack-
ers or not. Assume that VC is a communication complexity
for a privacy verification protocol (computed below), and
VC = VC+nG−1 is the total communication for one iteration
of Algorithm 2 loop. Thus, the total communication com-
plexities depend on the number of privacy checks, which is
different for each algorithm, i.e., direct, O

(

VC · nm
G

)

; bottom-

up, O
(

VC · nm
G

)

; top-down, O
(

VC · nnG−1−m
G

)

; and binary,
O

(

VC · nm
G log (nG − m)

)

.

4.2 Secure Privacy Constraint Verification
To allow using any privacy constraint in our m-privacy veri-
fication protocol, secure privacy verification is implemented
as a separate protocol, and results of its runs are disclosed.
Presenting verification protocols for any privacy constraint
is out of the scope of this paper, but we present secure
protocols to verify k-anonymity and l-diversity. All imple-
mentations use Shamir’s secret sharing [19] as their main
scheme. For a few subprotocols we use encryption (commu-
tative, homomorphic, etc.), and other secure schemas for
efficiency. Assume that there are nG data providers, and
each data provider Pi provides Ti records.

Secure k-Anonymity Verification. To securely verify
k-anonymity, the leader counts all records s = |T| using
the secure sum protocol [22]–[24], and securely compares
s with k. Our implementation of the secure sum protocol
uses only Shamir’s secret sharing scheme (Algorithm 3).

First, all data providers run secure sum protocol in order
to compute total number of records s. To avoid disclosing s
its values is stored in distributed shares [s] (line 1). Finally,
all providers securely compare [s] with k [21]. As the result,
each provider gets a share of 1 if k-anonymity holds or a
share of 0 otherwise (line 2).

Theorem 4.1. Assuming security of subprotocols, the k-
anonymity verification protocol is secure against at most m
attackers.

Proof. Assuming secure communication channels, the
Shamir’s secret sharing scheme were proven correct and
information-theoretically secure [20]. Thus, knowing up
to m shares of any value does not disclose it. Correctness
and security of both secureSum and lessThan subproto-
cols were proven in [21]. The protocol does not reveal
anything, but the result of the comparison s � k.
Complexity Analysis. Computation complexity of the

protocol is equal to the sum of complexities for both sub-
protocols. In [21] complexities are given as functions of
secure multiplications. Each secure multiplication requires
additional shares generation and secret reconstruction,
which take O(mnG) time. Assuming that number of bits
used to represent a number in our protocols is constant,
secure comparison protocol requires constant number of
multiplications, i.e., its time complexity is O(mnG). Secure
sum protocol (including shares generation) has the same
complexity. Thus, the overall time complexity is O(mnG).

While running the secureSum subprotocol nG(nG − 1)

messages are sent. Additionally, the lessThan subprotocol
requires constant number of multiplications, therefore total
number of messages is equal to nG(nG − 1). Thus, the total
communication complexity is equal to O(n2

G).
Secure l-Diversity Verification. The goal of this protocol

is to securely verify if the total number of sensitive values
from all records, is at least l (Algorithm 4). The protocol
has two phases. In the first phase, each data provider Pi
finds the set of sensitive values Si of its records. Then, it
randomly generates pi fake values, and adds them to Si
(line 1). Note that each provider generates fake values from
a different domain. In the last step of this phase, the leader
runs the secure size of set union subprotocol to compute
s̄, i.e., the size of the set of sensitive values of all records
with a few additional fake values (line 2). The subprotocol
is run in the same way as the secure size of set intersec-
tion [22], [25] with a few minor modifications. Note that
the use of commutative encryption scheme in the subpro-
tocols ensures that duplicated sensitive values are properly
handled.
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In the second phase, all providers securely compute the
number all fake values (line 3). Then, they securely check
if the number of sensitive values is not less than l, i.e, if
s̄ − ∑nG

i=1 [pi] � l. The results are stored by providers as
shares of 1 if l-diversity holds or a share of 0 otherwise
(line 4).

Theorem 4.2. Assuming security of subprotocols, the l-diversity
verification protocol is secure against up to m attackers except
an upper bound of the number of sensitive values.

Proof. Uses commutative encryption scheme in implemen-
tation of the secureSizeOfUnion subprotocol guarantees
its correctness and security. Adding distinct fake val-
ues ensures that the local number of sensitive values
will not be disclosed. Since each data provider gener-
ates different fake values, then sum of their counts is
equal to the count of their union. The only informa-
tion that is revealed, is s̄, i.e., the upper bound of the
number of sensitive values. However, allowing large
and random number of fake values guarantees the low
probability of guessing the real number of sensitive val-
ues. The second phase of the protocol uses Shamir’s
secret sharing scheme for secure sum and comparison
subprotocols, which are secure. Thus, the protocol is
secure.
Complexity Analysis. The first steps of the proto-

col requires 2nG rounds of communication, and encryp-
tions. Thus, if there are at most dS sensitive values, and
up to pS fake values, the time complexity is equal to
O(nG(dS + pS)). Time complexity of the secure sum pro-
tocol implemented using secret sharing scheme is equal to
O(mnG).

While running the protocol, in order to compute s̄ all
providers exchange 2nG messages. Both secureSum and
lessThan protocols generate 2nG(nG − 1) messages, and the
overall communication complexity is equal to O(n2

G).
Secure Privacy Verification. Above protocols return the

verification result as shares of [1] if privacy constraint is
fulfilled, and [0] otherwise. Each provider holds a single
share, but any r = m + 1 of them are able to check if C =
C1 ∧ . . .∧Cw holds, by securely multiplying their result and
comparing it to zero [21]. If the final reconstructed value is
equal to 1, then C holds, otherwise does not.

The fulfillment of each privacy constraint is kept
secret, and only the fulfillment of their conjunction is
disclosed. Given results of privacy checks for all con-
straints in the conjunction, the time complexity is equal
to O(rwnG), and communication complexity is equal to
O(n2

G).
Overall the time complexity for our running example

is equal to O((wm + m + pS)nG), while the communication
complexity is equal to O(n2

G).

5 ANONYMIZATION FOR m-PRIVACY

After defining the m-privacy verification algorithms and
protocols, we can use it to anonymize a horizontally dis-
tributed dataset while preserving m-privacy w.r.t. C. In this
section, we present a baseline algorithm, and then our
approach that utilizes a data provider-aware algorithm with
adaptive verification strategies to ensure high utility and
m-privacy for anonymized data. We also present an SMC
protocol that implements our approach in a distributed
environment, while preserving security.

For a privacy constraint C that is generalization mono-
tonic, m-privacy w.r.t. C is also generalization monotonic
(Theorem 2.1), and most existing generalization-based ano-
nymization algorithms can be easily modified to guarantee
m-privacy w.r.t. C. The adoption is straightforward, every
time a set of records is tested for privacy fulfillment, we
check m-privacy w.r.t. C instead. As a baseline algorithm
to achieve m-privacy, we adapted the multidimensional
Mondrian algorithm [18] designed for k-anonymity. The
main limitation of such adaptation is that groups of records
are formed oblivious of the data providers, which may result
in over-generalization in order to satisfy m-privacy w.r.t. C.

5.1 Anonymization Algorithm
We introduce a simple and general algorithm based on the
Binary Space Partitioning (BSP) (Algorithm 3). Similar to
the Mondrian algorithm, it recursively chooses an attribute
to split data points in the multidimensional domain space
until the data cannot be split any further without breaching
m-privacy w.r.t. C. However, the algorithm has three novel
features: 1) it takes into account the data provider as an
additional dimension for splitting; 2) it uses the privacy
fitness score as a general scoring metric for selecting the
split point; 3) it adapts its m-privacy checking strategy for
efficient verification. The pseudo code for our provider-aware
anonymization algorithm is presented in Algorithm 5.

Provider-Aware Partitioning. The algorithm first gener-
ates all possible splitting points, π , for QI attributes and
data providers (lines 1 to 2). In addition to the multidi-
mensional QI domain space, we consider the data provider
of each record as its additional attribute A0. For instance,
each record t contributed by data provider P1 will have
t[A0] = P1. Introducing this additional attribute adds also
a new dimension for partitioning. Using A0 to split data
points decreases number of providers in each partition, and
hence increases the chances that more sub-partitions will
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be m-private and feasible for further splits. This leads to a
more precise view of the data, and have a direct impact on
the anonymized data utility. To find the potential split point
along this dimension, we impose a total order on the pro-
viders, e.g., sorting the providers alphabetically or based
on the number of records they provide, and partition them
into two group with approximately the same size.

Adaptive Verification for EG-Monotonic m-Privacy. m-
Privacy is then verified for all possible splitting points, and
only those satisfying it are added to a candidate set π ′
(line 3). In order to minimize the time, our algorithm adap-
tively selects an m-privacy verification strategy using the
fitness score of the partitions. Intuitively, in the early stage
of the anonymization algorithm, the partitions are large
and likely m-private. The top-down algorithm, which takes
advantage of the downward pruning, may be used for fast
privacy verification. However, as the algorithm continues,
the partitions become smaller, the downward pruning is
less likely, and the top-down algorithm will be less efficient.
The binary algorithm may be used instead to take advantage
of upward pruning. We experimentally find the threshold
of privacy fitness score for selecting the best algorithm, and
confirm the benefit of this strategy.

Privacy Fitness Score Based Splitting Point Selection.
Given a non-empty candidate set π ′ (Algorithm 5), the pri-
vacy fitness score (Definition 3.1) is used to find the best
split (line 7). Intuitively, if the resulting partitions have
higher fitness scores, they are more likely to satisfy m-
privacy, and allow for further splitting. We note that the
fitness score does not have to be exactly the same function
used for adaptive ordering in m-privacy check. Then, the
partition is split, and the algorithm is run recursively on
each sub-partition (lines 8 and 9).

5.2 Secure Anonymization Protocol
Algorithm 5 can be executed in a distributed environment
by a TTP or by all providers running an SMC protocol. In
this section we present a secure protocol for semi-honest
providers. As an SMC schema we use Shamir’s secret
sharing, but, when needed, we employ also encryption.

The key idea of the protocol is to use existing SMC pro-
tocols. The first step for all providers is to elect the leader
P′ by running a secure election protocol (Algorithm 9, [26]),
which then runs Algorithm 6.

The most important step of the protocol is to choose an
attribute used to split records based on fitness scores of
record subsets. Splitting is repeated until no more valid
splits can be found, i.e., any further split would return
records that violate the privacy.

Secure anonymization protocol runs as follows. First, the
median of each attribute Ai is found by running the secure
median protocol (line 4, [27]). All records with the Ai values
less than the median and some records with the Ai val-
ues equal to the median establish the distributed set Ts,i.
Remaining records define the distributed set Tg,i. Then, m-
privacy w.r.t. C is verified for Ts,i by running the secure
verification protocol, i.e., either Algorithm 2 or 10 (line 8).
If A1

(

Ts,i) is m-private w.r.t. C, then the same verification
protocol is run for Tg,i (line 11). If A1

(

Tg,i) is also m-private
w.r.t. C, then this split becomes a candidate split. For each

candidate split, minimum fitness score of Ts,i and Tg,i is
computed (secure fitness score protocol is described below).
Among candidate splits, the one with the maximal fitness
score is chosen, and the protocol is run recursively for its
subpartitions (lines 21 to 22). If no such attribute can be
found for any group of records, the protocol stops.

Secure m-privacy anonymization protocol calls three dif-
ferent SMC subprotocols: the secure median [27], [28], the
secure m-privacy verification (Section 4), and the secure fit-
ness score (Algorithm 7). The last protocol needs to be
defined for each privacy constraint C (described below).
For the sake of this analysis, we assume that all these pro-
tocols are perfectly secure, i.e., all intermediate results can
be inferred from the protocol outputs.

At each anonymization step following values are dis-
closed: medians si of all QID attributes, fulfillment of
m-privacy w.r.t. C for records split according to every
computed median, and, for m-private splits, the order of
privacy fitness scores of all verified subsets of records.
Medians of all QID attributes need to be revealed to
allow each provider defining its local subgroups of records.
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Announcing results of m-privacy verification for distributed
sets of records allow each provider to accept or to drop
candidate splits. The best splitting attribute is the one that
maximizes fitness scores of split record groups.

Theorem 5.1. The m-privacy anonymization protocol is secure
except median values for each attribute, m-privacy fulfillments
for records split by these medians, and the order of fitness score
values for m-private QI groups.

Proof. To prove formally that the m-privacy anonymization
protocol is secure, we assume that all subprotocols are
secure, and present a simulator that, using outputs
of the protocol and subprotocols, computes intermedi-
ate results. Each party splits its records based on the
received median values si. Obtained subsets are used
only by secure m-privacy verification and secure fitness
score protocols. Disclosing the order of fitness scores
for m-private subsets of records allows the simulator to
choose the splitting attribute, which has the maximal
fitness score value.

If none of possible splits is m-private, then the simula-
tor finishes splitting the current set of records. No other
intermediate and undisclosed results are computed dur-
ing the protocol computation. Finally, since the secure
median protocol, and the m-privacy verification protocol,
as well as the secure fitness score protocol are assumed
to be secure, and from the composition theorem [8] the
m-privacy anonymization protocol is secure as well.
Complexity Analysis. Before analyzing complexity of

the secure anonymization protocol, let us make a note about
complexity of the secure median protocol. A secure median
protocol for an attribute Ai uses the binary search to find
the median. To verify if the median is found, one needs to
make sure that there are n/2 records with Ai not greater and
not less than the value, i.e., if both sets split by the value are
n/2-anonymous (Algorithm 3). The time complexity of such
protocol is equal to O(n2 log(domain(Ai))). The communica-
tion complexity is also equal to O(n2 log(domain(Ai))).

Time complexity of the m-privacy anonymization proto-
col depends on complexities of the secure median protocol
MT, the m-privacy verification protocol VT, and the secure
fitness protocol FT. Assuming the worst-case scenario (max-
imal number of splits) for |T| records and q QID attributes,
the time complexity is equal to O(|T|(q + 1)(VT + 2 · VT + 2 ·
FT)). For our running example the overall time complexity
is equal to O(|T|(q + 1)(n2 + npS)).

Communication complexity heavily depends on used
subprotocols. MC, VC, and FC denote communication com-
plexities for the secure median, the m-privacy verification,
and the fitness score protocols, respectively. The com-
munication complexity for the m-privacy anonymization
protocol is equal to O(|T|(q + 1)(3 + MC + VC + FC)), which
for our running example is equal to O(|T|qn2).

Secure Fitness Score Protocol. Many privacy constraints
(including ones we have used in our running example)
base on threshold values T . In order to securely compare
fitness scores of constraints, they need to be scaled, e.g.,
using the least common multiple (lcm) of all threshold val-
ues. After that the secure fitness score can be computed by
running the following protocol (Algorithm 7). The elected

leader computes the least common multiple of all thresh-
olds from the privacy constraints (line 1). Then, values
measured and compared in each privacy constraints can
be securely computed (line 3), and scaled (line 4). Shares of
the minimal one are scaled back, and returned (line 5).

In our running example, we require fulfillment of k-
anonymity, and l-diversity. Thus, for Pi, γ1 = |T|, and γ2
is equal to the number of distinct sensitive values of local
records T. In order to compute γ1 and γ2, we run secure
k-anonymity, and l-diversity protocols (Algorithm 3 and
Algorithm 4 respectively). However, in both protocols we
skip comparison of computed values with their thresholds
(k and l respectively), and return shares of such values.

The Shamir’s secret sharing scheme, with secure commu-
nication channels, is information-theoretically secure [20].
Correctness and security of the multiplicate subprotocol has
been discussed in details in [21]. The above protocol reveals
the fitness score value. However, if this protocol is used as
a subprotocol, and revealing of the minimal fitness score
value is not necessary, then the protocol would return
shares of the minimal value, i.e., min([F1], . . . , [Fw]).

Complexity Analysis. Computation complexity of
shares generation, as well as multiplication for n provid-
ers, are equal to O(n2) each [21]. Secure minimum protocol
requires (log2 w) comparisons, which takes O(n2) time.
Thus, the overall time complexity is equal to O(n2 log2 w)+
∑w

i=1 time_complexity(γi). For our running example, the time
complexity is equal to O(n2 +npS), where pS is the maximal
number of fake values in the l-diversity protocol.

While running the above protocol, each data provider
exchanges w(n − 1) messages for all multiplications.
Secure minimum protocol is implemented using lessThan
comparison subprotocol, and therefore its communica-
tion complexity is equal to O(n log w) [21]. The over-
all communication complexity is equal to O(wn2) +
∑w

i=1 communication_complexity(γi), which for our running
example is equal to O(n2).

6 EXPERIMENTS

We run two sets of experiments for m-privacy w.r.t. C with
the following goals: 1) to compare and evaluate the different
m-privacy verification algorithms, and 2) to evaluate and
compare the proposed anonymization algorithm with the
baseline algorithm in terms of both utility and efficiency.
All experiments have been run for scenarios with a trusted
third party (TTP), and without it (SMC protocols). Due to
space restrictions all experiments for a TTP setting are in
the previous version of the paper [1] and in Appendix C,
available online.

6.1 Experiment Setup
We merged the training and testing sets of the Adult
dataset2. Records with missing values have been removed.
All remaining 45,222 records have been randomly distrib-
uted among n providers. As a sensitive attribute AS we
chose Occupation with 14 distinct values.

2. The Adult dataset has been prepared using the Census database
from 1994, http://archive.ics.uci.edu/ml/datasets/Adult
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TABLE 2
Experiment Settings and Default Values of SMC Protocols

To implement SMC protocols, we have enhanced the
SEPIA framework [21], which utilizes Shamir’s secret shar-
ing scheme [19]. Security of communication is guaranteed
by the SSL using 128-bit AES encryption scheme. For
the secure l-diversity protocol we have used commutative
Pohlig-Hellman encryption scheme with a 64-bit key [29].

Privacy Constraints. The EG monotonic privacy con-
straint is defined as a conjunction of k-anonymity [11]
and l-diversity [12]. Privacy fitness score is defined by
Equation 1. All algorithm parameters, and their default
values are listed in the Table 2.

All experiments have been performed on the local net-
work of 64 HP Z210 with 2 quad-core CPUs, 8 GB of RAM,
and running Ubuntu 2.6 each. The efficiency of protocols is
measured by their computation time.

6.2 Secure m-Privacy Verification
The objective of the first set of experiments is to evaluate
the efficiency of different heuristics in generating attacker
coalitions for privacy verification. Note that computation
times are presented in seconds, not milliseconds.

Attack Power. In this experiment, we compare m-privacy
verification heuristics against different attack powers, and
different number of data providers. Fig. 4(a) shows compu-
tation time with varying m and nG for all heuristics.

Similar to the TTP implementation, the secure protocols
for the top-down and binary algorithms demonstrate the best
performance. The difference between these two approaches
is negligible for most values of m. The direct approach is not
that efficient as the above algorithms except small and large
values of m. The bottom-up approach is useful only for very
small values of m.

Numbers of messages that are generated, while running
protocols (not shown), are between 104 and 106 for different
m, and lead to the same conclusions.

Number of Contributing Data Providers. In this exper-
iment we analyze the impact of increasing number of data

(a) (b)

Fig. 4. Experimental results for verification algorithms. (a) Computation
time (logarithmic scale) versus power of m-privacy. (b) Computation time
(logarithmic scale) versus number of data providers.

Fig. 5. Experimental results for anonymization algorithms.
(a) Computation time versus power of m-privacy. (b) Computation
time versus number of providers.

providers, nG, on different algorithms. Fig. 4(b) shows the
runtime of different heuristics with varying nG.

As expected, the computation time increases exponen-
tially with the number of data providers. Differences among
approaches are not significant, and as above top-down and
binary algorithms are more efficient than other approaches.
The bottom-up heuristic is the slowest among others.

6.3 Secure m-Privacy Anonymization
This set of experiments compares estimates of our provider-
aware and the baseline approaches, and evaluates the over-
head of our solution. Due to high runtime of protocols,
we estimated their computation times using runs of TTP
algorithms and computation times of subprotocols.

As a comparison, we implemented an independent
approach in which each provider anonymizes its data on
its own. We observe that its runtime is independent of m
and n, and equals to 1.2 seconds (not shown). However, the
query error or the utility of the anonymized data is signifi-
cantly worse than the collaborative setting (Appendix C.3,
available online).

Attack Power. We first evaluate both anonymization
heuristics with varying attack power m. Fig. 5(a) shows
the estimated computation time with varying m for both
approaches. As expected for EG monotonic constraints,
increasing m results in stopping anonymization process
significantly earlier. In addition, both approaches have
comparable computation times with negligible differences.

Number of Data Providers. In this experiment we esti-
mated computation times for different number of data
providers n, but with the same average number of records
per provider (|T|/n = 100). Fig. 5(b) shows the expected
time with varying the number of providers for both algo-
rithms. As expected, the computation time is similar for
both approaches, and increases exponentially with n.

7 RELATED WORK

Privacy preserving data analysis and publishing has
received considerable attention in recent years [2]–[4]. Most
work has focused on a single data provider setting and
considered the data recipient as an attacker. A large body
of literature [3] assumes limited background knowledge
of the attacker, and defines privacy using relaxed adver-
sarial notion [12] by considering specific types of attacks.
Representative principles include k-anonymity [10], [11],
l-diversity [12], and t-closeness [16]. A few recent works
have modeled the instance level background knowledge
as corruption, and studied perturbation techniques under
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these syntactic privacy notions [30]. In the distributed
setting that we study, since each data holder knows its
own records, the corruption of records is an inherent ele-
ment in our attack model, and is further complicated by
the collusive power of the data providers. On the other
hand, differential privacy [2], [4] is an unconditional pri-
vacy guarantee but only for statistical data release or data
computations.

There are some works focused on anonymization of
distributed data. [6], [31], [32] studied distributed anonymi-
zation for vertically partitioned data using k-anonymity.
Zhong et al. [33] studied classification on data collected
from individual data owners (each record is contributed by
one data owner), while maintaining k-anonymity. Jurczyk
et al. [34] proposed a notion called l′-site-diversity to
ensure anonymity for data providers in addition to pri-
vacy of the data subjects. Mironov et al. [35] studied SMC
techniques to achieve differential privacy. Mohammed et
al. [5] proposed SMC techniques for anonymizing distrib-
uted data using the notion of LKC-privacy to address high
dimensional data. Gal et al. [15] proposed a new way
of anonymization of multiple sensitive attributes, which
could be used to implement m-privacy w.r.t. l-diversity
with providers as one of sensitive attributes. However,
this approach uses the same privacy requirements for
all sensitive attributes, while m-privacy has no such
limitation.

Nergiz et al. [36] proposed a look ahead approach in
horizontally distributed anonymization. In their approach
providers disclose some information about data in order to
decide if collaborative anonymization will gain more infor-
mation than individual one. We leave for the future research
applying the look ahead approach to colluding scenarios
considered with m-privacy.

Our work is the first that considers data provid-
ers as potential attackers in the collaborative data pub-
lishing setting, and explicitly models their inherent
instance knowledge as well as potential collusion between
them.

The m-privacy verification problem in the combinato-
rial m-adversary search space is reminiscent of the frequent
itemset mining problem in which the search space is the
combination of all items. An example of EG monotonic
constraints is support, which is used in mining itemsets.
Each item corresponds to a single data provider, and
a frequent itemset represent a group of private records.
Due to the apriori property of frequent itemsets or EG
monotonicity of the frequency count, both upward and
downward pruning are possible. Taking advantage of the
dual-pruning is an essential point of the algorithm pre-
sented in [37]. The main difference with our approach is
the goal of constraint verifications. To find frequent item-
sets, all itemsets need to be decided either by checking
or pruning. Checking m-privacy of a group of records
for EG monotonic privacy requires finding out if all m-
coalitions are not able to compromise privacy of remaining
records (Corollary 2.3). After simple modifications (e.g., not
using early stop) our algorithm can be used to find fre-
quent itemsets and the dual-pruning algorithm can be used
to verify m-privacy, but in both cases they will not be
efficient.

8 CONCLUSION

In this paper we considered a new type of potential
attackers in collaborative data publishing – a coalition of
data providers, called m-adversary. Privacy threats intro-
duced by m-adversaries are modeled by a new privacy
notion, m-privacy, defined with respect to a constraint C.

We presented heuristics to verify m-privacy w.r.t. C. A
few of them check m-privacy for EG monotonic C, and use
adaptive ordering techniques for higher efficiency. We also
presented a provider-aware anonymization algorithm with
an adaptive verification strategy to ensure high utility and
m-privacy of anonymized data. Experimental results con-
firmed that our heuristics perform better or comparable
with existing algorithms in terms of efficiency and utility.

All algorithms have been implemented in distributed
settings with a TTP and as SMC protocols. All proto-
cols have been presented in details and their security and
complexity has been carefully analyzed. Implementations
of algorithms for the TTP setting is available on-line for
further development and deployments3.

There are many potential research directions. For exam-
ple, it remains a question to model and address the data
knowledge of data providers when data are distributed in
a vertical or ad-hoc fashion. It would be also interesting
to investigate if our methods can be generalized to other
kinds of data such as set-valued data.
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