1	Assessing a New Grading System for Virtual Reality
2	Pedicle Screw Placement-A
3	Case Series Study
4	
5	
6	Mohamed Alhantoobi
7	
8	Master Of Science (MSc.) Experimental Surgery (Thesis): Surgical Education
9	McGill University, Montreal
10	
11	April 2024
	MicGill UNIVERSITY
12	
13	
14	This thesis is submitted to McGill University in partial fulfillment of the requirements of the
15	degree of Master of Science in Experimental Surgery (thesis)
16	
17	Mohamed Alhantoobi 2024

18	Table of Contents	
19	Abstract	4
20	Résumé	7
21	المستخلص	10
22	Acknowledgments	12
23	Preface and Author Contributions	14
24	Abbreviations	15
25	Thesis Introduction	16
26	History of thoracolumbar spinal instrumentation	16
27	Risks associated with pedicle screw breach	17
28	Pedicle breach Classification systems	18
29	Evolution of Surgical Education to Competency-Based Training	20
30	Surgical Education through Simulation	22
31	Advancing Spine Surgery Training through Simulation	23
32	The TSYM Symgery Virtual Reality Surgical Simulator	25
33	Lumbar pedicle screw placement simulation	27
34	The rationale of The Thesis	29
35	Thesis Goal and Objectives	31
36	Manuscript	32
37	Abstract	33
38	Keywords	34
39	Short Title	35
40	Introduction	35
41	Methods	37

42	Results	41
43	Discussion	43
44	Limitations	46
45	Conclusion	48
46	Thesis Summary	49
47	Future directives	51
48	References	52
49	Appendix	66
50	Supplemental Digital Content 1.	66
51	Table 1:	68
52	Table 2:	70
53	Table 3.	88
54	Table 4:	89
55	Table 5:	90
56	Table 6 A:	91
57	Table 6 B:	92
58	Figure 1	93
59	Figure 2:	94
60	Figure 3:	98
61		
62		
63		

65	Abstract
66	
67	Introduction
68	
69	Thoracolumbar pedicle screw placement is an essential surgical skill for spine surgery trainees to
70	master. The TYSM Symgery simulator features a virtual reality platform for pedicle placement,
71	which serves several purposes such as skill training and assessment. The use of virtual reality in
72	spine surgery training and education has shown promising results, with the potential to improve
73	trainees' accuracy in pedicle screw placement. These technological advancements are
74	contributing to the ongoing evolution of surgical training and assessment, offering new
75	opportunities for skill development and patient safety.
76	
77	Objectives
78	
79	То
80	1) assess the accuracy of pedicle screw placement using the Gertzbein and Robbins pedicle
81	breach classification system in TYSM Symgery virtual reality simulator,
82	
83	2) establish a new and more granular 3D pedicle screw breach classification system in
84	Virtual Reality setting, and performance,
85	
86	3) Evaluate the ability of the new Virtual Reality 3D classification system to distinguish
87	"skilled" and "less skilled" performance during simulated pedicle screw insertion.

88	Hypothesis
----	------------

89	
90	1) TYSM Symgery simulator will be able to accurately classify pedicle screw placement
91	using the Gertzbein and Robbins pedicle breach classification.
92	
93	2) The new Virtual Reality 3D pedicle breach classification system will be able to
94	accurately classify pedicle screw placement in a more granular fashion.
95	
96	Methods
97	
98	In this case series study, 27 neurosurgical and orthopedic residents, fellows, and spine surgeons
99	were divided into skilled and less skilled groups to perform L4 and L5 pedicle screw placement
100	using the TSYM VR platform. The simulator reconstructed a final 3D model including inserted
101	screws and automatically classified pedicle screw breaches using the Gertzbein and Robbins
102	classification system. The objectives were to determine pedicle breach class utilizing the
103	Gertzbein and Robbins classification and to compare this result to a new 3D proposed virtual
104	reality classification system to assess skilled and less skilled performance.
105	
106	Results
107	
108	Using the Gertzbein and Robbins classification, 35 of 52 (67.3%) screws in the skilled group
109	were classified as class A, compared to 31 of 56 (55.4%) screws in the less skilled group, P =

110	.093. Sixteen of 47 (34%) screws in the skilled group were classified as class 1 based on the new
111	3D classification, compared to 13 of 51 (25.5%) screws in the less skilled group, $P = .045$.
112	
113	Conclusion
114	
115	A new 3D pedicle breach classification system has been developed to enhance the precision and
116	granularity of categorizing participants performing pedicle screw placement using a virtual
117	reality platform. This system aims to improve the accuracy of assessing pedicle breaches and the
118	overall performance of participants in this surgical procedure. The development of such a
119	classification system reflects the ongoing advancements in technology and its application in
120	surgical training and assessment.
121	
122	
123	
124	
125	
126	
127	
128	
129	
130	
131	

132 Résumé 133 134 Introduction 135 136 La mise en place de vis pédiculaires thoraco-lombaires est une compétence chirurgicale essentielle 137 que les stagiaires en chirurgie rachidienne doivent maîtriser. Le simulateur TYSM de Symgery 138 offre une plateforme de réalité virtuelle pour le placement de ces vis pédiculaires, facilitant ainsi 139 la formation et l'évaluation des compétences. L'emploi de la réalité virtuelle dans l'apprentissage 140 et la formation en chirurgie rachidienne s'est révélé prometteur, augmentant potentiellement la 141 précision du placement des vis chez les stagiaires. Ces progrès technologiques contribuent 142 continuellement à la formation et l'évaluation en chirurgie, offrant de nouvelles perspectives pour 143 le développement des compétences et la sécurité des patients. 144 **Objectif** 145 146 147 Pour 148 1) évaluer la précision du placement des vis pédiculaires en utilisant le système de classification 149 des brèches pédiculaires de Gertzbein et Robbins dans le simulateur de réalité virtuelle TYSM 150 Symgery, 151 152 2) établir un nouveau système de classification 3D des brèches dans les vis pédiculaires, plus 153 granulaire, dans le cadre de la réalité virtuelle, et évaluer les performances, 154

155	3) Évaluer la capacité du nouveau système de classification 3D en réalité virtuelle à distinguer
156	les performances « habiles » et « moins habiles » lors de la simulation de l'insertion d'une vis
157	pédiculaire.
158	
159	Hypothèse
160	
161	1. Le simulateur TYSM Symgery pourra classer avec précision les vis pédiculaires insérées
162	en utilisant le système de classification des violations pédiculaires de Gertzbein et Robbins.
163	2. Le nouveau système de classification des violations pédiculaires en 3D fournira une
164	évaluation plus précise et détaillée des vis pédiculaires en réalité virtuelle.
165	
166	Méthodes
167	
167 168	Dans une étude de cas, 27 résidents en neurochirurgie et orthopédie, ainsi que des fellows et
167 168 169	Dans une étude de cas, 27 résidents en neurochirurgie et orthopédie, ainsi que des fellows et chirurgiens rachidiens, ont été répartis en groupes selon leur compétence (compétents et moins
167 168 169 170	Dans une étude de cas, 27 résidents en neurochirurgie et orthopédie, ainsi que des fellows et chirurgiens rachidiens, ont été répartis en groupes selon leur compétence (compétents et moins compétents) pour effectuer le placement des vis pédiculaires L4 et L5 à l'aide du simulateur TYSM.
167 168 169 170 171	Dans une étude de cas, 27 résidents en neurochirurgie et orthopédie, ainsi que des fellows et chirurgiens rachidiens, ont été répartis en groupes selon leur compétence (compétents et moins compétents) pour effectuer le placement des vis pédiculaires L4 et L5 à l'aide du simulateur TYSM. Le simulateur a reconstitué un modèle tridimensionnel avec les vis implantées et a
167 168 169 170 171 172	Dans une étude de cas, 27 résidents en neurochirurgie et orthopédie, ainsi que des fellows et chirurgiens rachidiens, ont été répartis en groupes selon leur compétence (compétents et moins compétents) pour effectuer le placement des vis pédiculaires L4 et L5 à l'aide du simulateur TYSM. Le simulateur a reconstitué un modèle tridimensionnel avec les vis implantées et a automatiquement classé les violations pédiculaires selon Gertzbein et Robbins. Les objectifs
167 168 169 170 171 172 173	Dans une étude de cas, 27 résidents en neurochirurgie et orthopédie, ainsi que des fellows et chirurgiens rachidiens, ont été répartis en groupes selon leur compétence (compétents et moins compétents) pour effectuer le placement des vis pédiculaires L4 et L5 à l'aide du simulateur TYSM. Le simulateur a reconstitué un modèle tridimensionnel avec les vis implantées et a automatiquement classé les violations pédiculaires selon Gertzbein et Robbins. Les objectifs étaient de déterminer la classe de brèche pédiculaire en utilisant la classification de Gertzbein et
167 168 169 170 171 172 173 174	Dans une étude de cas, 27 résidents en neurochirurgie et orthopédie, ainsi que des fellows et chirurgiens rachidiens, ont été répartis en groupes selon leur compétence (compétents et moins compétents) pour effectuer le placement des vis pédiculaires L4 et L5 à l'aide du simulateur TYSM. Le simulateur a reconstitué un modèle tridimensionnel avec les vis implantées et a automatiquement classé les violations pédiculaires selon Gertzbein et Robbins. Les objectifs étaient de déterminer la classe de brèche pédiculaire en utilisant la classification de Gertzbein et Robbins et de comparer ce résultat à un nouveau système de classification en réalité virtuelle
167 168 169 170 171 172 173 174 175	Dans une étude de cas, 27 résidents en neurochirurgie et orthopédie, ainsi que des fellows et chirurgiens rachidiens, ont été répartis en groupes selon leur compétence (compétents et moins compétents) pour effectuer le placement des vis pédiculaires L4 et L5 à l'aide du simulateur TYSM. Le simulateur a reconstitué un modèle tridimensionnel avec les vis implantées et a automatiquement classé les violations pédiculaires selon Gertzbein et Robbins. Les objectifs étaient de déterminer la classe de brèche pédiculaire en utilisant la classification de Gertzbein et Robbins et de comparer ce résultat à un nouveau système de classification en réalité virtuelle proposé en 3D pour évaluer les performances des personnes qualifiées et moins qualifiées.
167 168 169 170 171 172 173 174 175 176	Dans une étude de cas, 27 résidents en neurochirurgie et orthopédie, ainsi que des fellows et chirurgiens rachidiens, ont été répartis en groupes selon leur compétence (compétents et moins compétents) pour effectuer le placement des vis pédiculaires L4 et L5 à l'aide du simulateur TYSM. Le simulateur a reconstitué un modèle tridimensionnel avec les vis implantées et a automatiquement classé les violations pédiculaires selon Gertzbein et Robbins. Les objectifs étaient de déterminer la classe de brèche pédiculaire en utilisant la classification de Gertzbein et Robbins et de comparer ce résultat à un nouveau système de classification en réalité virtuelle proposé en 3D pour évaluer les performances des personnes qualifiées et moins qualifiées.

178 Résultats

180	D'après la classification de Gertzbein et Robbins, 35 des 52 vis (67,3 %) du groupe compétent
181	ont été classées classe A, contre 31 des 56 vis (55,4 %) du groupe moins compétent, avec P =
182	.093. Selon la nouvelle classification en 3D, 16 des 47 vis (34%) du groupe compétent ont été
183	classées classe 1, contre 13 des 51 vis (25,5 %) du groupe moins compétent, avec $P = .045$.
184	Conclusion
185	
186	Un nouveau système de classification des violations pédiculaires en 3D a été développé pour
187	améliorer la précision et le détail de la classification des participants effectuant le placement des
188	vis pédiculaires en réalité virtuelle. Ce système a pour objectif d'affiner l'évaluation des violations
189	pédiculaires et d'optimiser la performance globale des participants à cette intervention chirurgicale.
190	Le développement de ce système illustre les progrès constants de la technologie et son application
191	dans la formation chirurgicale et l'évaluation des compétences.
192	
193	
194	
195	
196	
197	
198	
199	

200	المستخلص
201	
202	المقدمة
203	
204	غرز مسامير عنقيه في الفقرات الصدرية والقطنية مهارة مهمه يجب على المتدربين في جراحه العمود الفقري اتقانها. لقد
205	أظهر استخدام الواقع الافتراضي في تدريب وتعليم جراحات العمود الفقري نتائج واعدة، مع إمكانية تعزيز التدريب في المجال
206	الجراحي وتحسين دقة وضع مسامير الفقرات القطنية. يتميز محاكي (TYSM Symgery) بمحاكاة واقعية افتراضية لوضع
207	المسامير في الفقرات القطنية، مما يوفر فرصًا جديدة لتطوير المهارات الجراحيه وتعزيز سلامة
208	المرضى .
209	
210	الهدف
211	لا
212	1 . تقييم دقة وضع مسامير الفقرات القطنية باستخدام نظام (Gertzbein and Robbins) لتقييم الخرق العنقي للفقرات
213	القطنية في جهاز المحاكاة للواقع الافتر اضي (TYSM Symgery)،
214	
215	2 . إنشاء نظام تصنيف جديد وأكثر تفصيلًا مبني على المجسم ثلاثي الأبعاد في الواقع الافتراضي لتقييم الخرق العنقي
216	للفقرات القطنية في جهاز المحاكاة للواقع الافتراضي (TYSM Symgery)،
217 218	3. تقييم قدرة نظام تصنيف الواقع الافتراضي ثلاثي الأبعاد الجديد للواقع الافتراضي على التمييز بين الأداء" الماهر"
219	والأداء" الأقل مهارة" أثناء محاكاة إدخال المسمار اللولبي.
220 221	
222	
223	

في الدراسة هذه، تم تقسيم 27 طبيبًا مقيمًا في جراحة الأعصاب وجراحة العظام وزملاء وجراحي العمود الفقري إلى	226
مجموعات ماهرة وأخرى أقل مهارة. قام المشاركون بوضع مسامير الفقرات القطنية في L4 وL5 باستخدام منصة TSYM.	227
بقوم جهاز المحاكاة ببناء نموذج ثلاثي الأبعاد نهائي متضمننا المسامير المدرجة ويصنف تلقائيًا الخروقات العنقية. وتمثلت	228
الأهداف في تحديد فئة خرق العنق باستخدام تصنيف Gertzbein و Robins ومقارنة هذه النتيجة بنظام تصنيف الواقع	229
الافتراضي الجديد ثلاثي الأبعاد المقترح لتقييم أداء المشارك الماهر والأقل مهارة.	230
النتائج	231
	232
باستخدام تصنيف Gertzbein و Robins لتقييم الخرق العنقي للفقرات القطنية تم تصنيف 35 من 52 (67.3%) من مسامير	233
الفقرات القطنية في المجموعة الماهرة على أنها الفئة A، مقارنة بـ 31 من 56 (55.4%) من المسامير في المجموعة الأقل	234
مهارة، P = 0.093. وتم تصنيف ستة عشر من أصل 47 (34%) من مسامير الفقرات القطنية في المجموعة الماهرة على	235
أنها فئة 1 بناءً على التصنيف ثلاثي الأبعاد الجديد، مقارنة بـ 13 من أصل 51 (25.5%) من المسامير في المجموعة الأقل	236
.P=0.045 مهارة، P=0.045	237
	238
الختام	239
	240
يعمل نظام التصنيف ثلاثي الأبعاد الجديد لتقييم الخرق العنقي للفقرات القطنية على تحسين دقة تصنيف المتدربين على وضع	241
مسامير الفقرات القطنية باستخدام اجهزه المحاكاة للواقع الافتراضي.	242
	243
	244
	245

Acknowledgments

247

248 The successful completion of this thesis would not have been possible without the invaluable 249 support and contributions of numerous individuals. First, I would like to express my gratitude to 250 my supervisor Dr. Rolando Del Maestro for providing me with the opportunity to collaborate 251 with the exceptional team at the Neurosurgical Simulation and Artificial Intelligence Learning 252 Centre in Montreal. Since the beginning of my Master's journey, Dr. Del Maestro offered an 253 outstanding support that extended beyond what research entitles. I am particularly grateful for his 254 support that resulted in my successful passing of the written component of the Neurosurgery 255 Royal College Board exam. His guidance and encouragement have been immeasurable. 256 257 I would like to extend my deepest appreciation to my esteemed colleagues: Dr Abdulmajeed 258 Albeloushi, Trisha Tee, Puja Pachchigar, Dr Bilal Tarabay, Dr Recai Yilmaz, and Ali Fazlollahi. 259 Our weekly discussions have played an essential role in shaping the knowledge I acquired during 260 my research year. Their valuable insights and contributions have truly enriched my research 261 experience and deepened my understanding. I am immensely grateful for the intellectual 262 exchange and collaborative spirit that characterized our interactions. Their support and guidance 263 have been instrumental in the successful formulation of this work. Their dedicated efforts in data 264 collection and the development of the metrics for the spinal simulated scenario have been 265 indispensable to the completion of this project. Without their expertise and commitment, this 266 work could not have been accomplished. Thank you for your invaluable contributions and for 267 going above and beyond to ensure the success of this work.

269 I sincerely thank the members of my research advisory committee, Dr. Nicoletta Eliopoulos 270 (Chair of the committee), Dr. Jeffrey Atkinson, and Dr. Oliver Lasry. The feedback and guidance 271 provided by their comments and advice were invaluable in finalizing this thesis. 272 273 I would like also to thank Dr Kesh Reddy for providing me with the opportunity to connect with 274 Dr Del Maestro and the Neurosurgical Simulation and Artificial Intelligence Learning Centre, 275 and Dr Khalid AlAli for reviewing the Arabic version of the abstract. In addition, I would like to 276 sincerely thank Dr Daipayan Guha and Dr Desmond Kwok for their continuous support and 277 assistance in producing both the manuscript and the thesis. 278 279 Finally, I would like to take this opportunity to express my genuine gratitude to my family, 280 especially my wife, for their solid support throughout my academic journey. Their love, 281 encouragement, and understanding have been invaluable to me, providing a strong foundation of 282 emotional support and motivation. Their belief in my abilities, even during times of self-doubt, 283 has given me the strength to overcome various challenges. I am truly grateful for their sacrifices, 284 patience, and belief in my aspirations. Their constant presence and support have made all the 285 difference, and I am forever grateful for the love and encouragement they have bestowed upon 286 me. Thank you to my family for being always there for me. 287 288 289 290

Preface and Author Contributions

-	
293	The structure of this thesis follows a manuscript-based format, and the authors of the
294	manuscripts have made substantial contributions to finalize this work. The author's contributions
295	are detailed herein using the CRediT (Contributor Roles Taxonomy) format ^{1,2} . The following
296	statements outline the specific contributions made by each individual to this research project.
297	
298	Mohamed Alhantoobi: Contributed to Conceptualization, methodology, data collection, formal
299	analysis, investigation, and writing.
300	
301	Abdulmajeed Albeloushi: Contributed to conceptualization and methodology, formal analysis, and
302	writing – review & editing.
303	
304	Trisha Tee: Contributed to participant recruitment, data collection, creating simulated scenarios,
305	writing – review & editing.
306	
307	Puja Pachchigar: Contributed to participant recruitment, data collection, creating simulated
308	scenarios, writing – review & editing.
309	
310	Bilal Tarabay: Contributed to participant recruitment, creating simulated scenarios, writing -
311	review & editing.
312	
313	Recai Yilmaz: Contributed to formal analysis, writing – review & editing.

314	Ali Fazlollahi: Contributed to formal analysis, writing – review & editing.
315	
316	Daipayan Guha: Contributed to conceptualization, methodology and writing - review & editing.
317	
318	Desmond Kwok: Contributed to conceptualization, methodology and writing - review & editing.
319	
320	Rolando Del Maestro: Contributed to project creation, conceptualization, methodology,
321	resources, and investigation, project funding, guidance, and supervision of this research,
322	interpreting results, writing - original draft and writing - review & editing.
323	
324	
325	
326	
327	
328	Abbreviations
329	
330	VR: Virtual Reality
331	AI: Artificial Intelligence
332	OR: Operating Room
333	PGY: Post-Graduate Year
334	3 D: Three Dimensional
335	

336 I nesis Introductio

338 History of Thoracolumbar Spinal Instrumentation

340	Internal fixation introduction revolutionized modern spine surgery, allowing surgeons to correct
341	spinal deformities and stabilize the spine. Paul Harrington introduced the Harrington rod in 1975
342	that was initially utilized for deformity correction and later utilized in the treatment of traumatic,
343	degenerative, and metastatic spinal conditions ^{3–6} . This system offered distraction and
344	compression rods as well as hooks.
345	
346	In the mid-1970s, Eduardo Luque made a substantial contribution by popularizing the use of
347	sublaminar wires to augment Harrington construct ⁷ . Subsequently, in the 1980s, more
348	sophisticated multiple hook-rod systems emerged, such as the Cotrel Dubousset (CD) system,
349	providing enhanced strength and flexibility to address deformities in both the sagittal and coronal
350	dimensions ⁸ .
351	
352	The utilization of the pedicle as a site for segmental fixation, a concept primarily attributed to
353	Roy-Camille, incredibly advanced spinal instrumentation ⁹ . Pedicle screws present numerous
354	advantages such as superior biomechanical fixation and their ability to be inserted in the sacrum
355	and even after a laminectomy, without affecting the spinal canal ^{10,11} . This innovation facilitated
356	the widespread implementation of spinal instrumentation in the management of numerous spinal
357	pathologies.

Magerl, in 1977, introduced a breakthrough spine fixation technique called "fixateur externe" which involve the use of pedicle screws that were fixed outside the body and were attached to a unique rod system ¹². Later, Walter Dick modified this idea at Basel, where he created a "fixateur interne" by shortening the screws and inserting the rods inside the body, next to the spine ¹². These advancements in pedicle screw fixation have made a substantial contribution to the field of spinal surgery.

364

365 Pedicle screws were popularized in the United States by Arthur Steffee around 1984, employing a contourable plate ¹³. Meanwhile, Yves Cotrel developed a screw-rod system that was integrated 366 into the "Universal" CD system in Europe ¹³. The controversy between proponents of screw-plate 367 368 and screw-rod constructs ultimately led to the preference for rods due to their greater flexibility, 369 reduced encroachment on adjacent facet joints, and increased surface area for fusion ¹⁴. The 370 combination of long dual-rod constructs with pedicle screws considerably enhanced surgeons' 371 ability to perform complex spine surgeries, which was further advanced by the use of polyaxial 372 pedicle screws ¹³.

373

374 Risks Associated with Pedicle Screw Breach

375

Since the widespread adoption of the pedicle screw fixation technique, spinal surgeons have
increasingly focused on the accuracy of screw placement ^{15,16}. Suboptimal screw positions and
cortical breaches in various regions of the vertebrae can compromise bone purchase and pose
risks to neural, vascular, and visceral structures ^{16–19}. While minor cortical violations are often
considered clinically silent, they can lead to instrumentation failure, instability, reduced fusion
rates, and accelerated adjacent-level degeneration ^{16,18–22}.

The extent of pedicle screw malposition in the literature varies between different case series due to different patient demographics, the nature of the surgical intervention as well as the ability to detect on postoperative imaging. However, based on two large literature review articles the incidence of pedicle screw malposition ranges between 4.2 – 7.8% ^{19,23}. According to Hicks et al., 53% of the malpositioned screws were breaching the lateral cortex, 24% breaching the medial cortex, 14% breaching the inferior cortex, 8% breaching the superior cortex and 1% breaching the anterior cortex of the vertebral body ²³.

389

390 Although clinically relevant complications from screw misplacement in non-deformity cases are 391 infrequent at the present time and account for less than 0.5%, they can result in devastating 392 consequences such as neurological deficits due to nerve root or spinal cord injury, cerebrospinal 393 fluid leak, spinal instability or pseudarthrosis, revision surgery, and can lead to malpractice claims ^{19,20,24,25}. Additionally, there are some rare complications associated with pedicle screw 394 395 placement that have been reported in the literature. These include intraoperative pedicle 396 fractures, screw loosening or pullout, and pulmonary effusion ²³. These rare complications 397 highlight the importance of careful surgical technique and close postoperative monitoring to 398 ensure the best possible outcomes for patients.

399

400 Pedicle Breach Classification Systems

401

402 Currently, there is no gold standard scale for grading pedicle breaches. There are various scales
403 in the literature including the Heary Classification and Gertzbein–Robbins Classification ^{25–27}.

The most widely accepted method for assessing pedicle screw placement is the Gertzbein– Robbins Classification which was introduced in 1990 ²⁷. This classification focuses on the position of screws in relation to the pedicle mainly in the medial direction and divides their position outside the pedicle by 2 mm increments ²⁷. While the ideal position for a screw is entirely within the vertebral body and pedicle, the authors hypothesized that a medial breach of up to 4 mm remains within the anatomical safety zone and can be considered a safely positioned screw²⁵.

However, a limitation of this scale is the lack of determination of the presence and direction in which the screw breaks through the pedicle beside medial breaches ^{18–20,25}. Screws breaching the inferior or superior border of the pedicle can cause neurological symptoms due to nerve root injury, dural laceration, or exacerbation of proximal junctional kyphosis ^{19,20}. Malpositioned screws in other directions hinder objective assessment of less skilled trainee performance since screw breaches in inferior, superior, or lateral borders are scored as no breach.

417

418 Heary et al. in 2004 introduced a new classification system for pedicle screw placement that 419 considers the clinical implications of cortical breaches, particularly in the thoracic spine where lateral breaches may be optimal for additional bony rib purchase ^{26,28}. This classification system 420 421 distinguishes between screws that require immediate removal due to proximity to critical 422 structures (Grade 5) and those that breach laterally but are still contained within the rib (Grade 423 2). It also grades anterior breaches (Grade 3) for the first time. However, this classification does not consider the metric extent of breach in any direction ²⁸. Table 1 provides a summary and 424 425 comparison of two of the widely accepted pedicle breach classifications.

426 Evolution of Surgical Education to Competency-Based Training

428	The landscape of surgical education has undergone a remarkable transformation over the
429	centuries, evolving from informal apprenticeships to structured competency-based training
430	models ^{29,30} . Initially, in the absence of formal education, individuals pursuing medicine were
431	largely self-taught or acquired knowledge through apprenticeships with experienced physicians.
432	This traditional apprenticeship system required students to shadow a mentor, observe medical
433	practices, and imitate their actions to acquire surgical skills ^{29,30} . However, the focus during this
434	period was more on practical experience rather than a structured curriculum.
435	Sir William Osler played a pivotal role in emphasizing the significance of early clinical exposure
436	for medical students ^{31,32} . His work at McGill University and Johns Hopkins Medical School laid
437	the foundation for more advanced surgical training models ³⁰ . William S. Halsted, influenced by
438	his European surgical experience in Germany, introduced a progressive surgical training model
439	at Johns Hopkins Hospital ³⁰ . This model emphasized supervised training, gradual autonomy
440	development, increased responsibilities, and independence for trainees ³⁰ .
441	
442	In the late 19th century, Abraham Flexner's report highlighted deficiencies in medical and
443	surgical education across various institutions in the United States and Canada ^{29,32} . This led to
444	the establishment of the American College of Surgeons in 1912 with a primary objective of
445	enhancing training standards for surgical trainees. Concurrently, efforts were made to
446	standardize medical education through initiatives like nationwide examinations for medical
447	school graduates ^{32–34} .

449 Challenges such as reduced teaching time, growing surgical complexity, patient safety concerns, 450 and the need for operational efficiency have driven a shift towards competency-based approaches in surgical education ^{35,36}. Competency-Based Medical Education (CBME) has emerged as a 451 452 solution to ensure that trainees acquire the necessary competencies at each stage of their training ³⁷. The CanMEDS Competency Framework developed by the Royal College of 453 454 Physicians and Surgeons of Canada in 1996, with subsequent updates in 2015, marked a significant milestone in this transition ^{38,39}. 455 456 457 In response to the global trend towards CBME, the Royal College of Physicians and Surgeons of

458 Canada launched the Competence by Design (CBD) program. This initiative aims to transform
459 all disciplines into competency-based education models by delineating specific competencies for
460 each stage of postgraduate training ^{38–41}. Entrustable Professional Activities (EPAs) are utilized
461 to assess competencies and guide progression between training stages ³⁸.

462

The adoption of competency-based training signifies a paradigm shift in surgical education
towards outcome-focused learning and assessment. By emphasizing mastery of specific
competencies rather than traditional time-based progression, this approach ensures that trainees
are adequately prepared for independent practice. The American Board of Surgery's (ABS) focus
on developing EPAs underscores a commitment to enhancing competency-based surgical
training across specialties ^{35,36,39-41}.

469

Surgical Education through Simulation

472

473 Surgical education witnessed a profound transformation with the integration of simulation-based 474 training methodologies. The acquisition of surgical skills was defined by Resnick and MacRae 475 into cognitive, integrative, and autonomous phases, which is parallel to pilot training programs 476 that emphasize skill development through pattern recognition and reflection ⁴². Simulation offers 477 immersive experiences that replicate real-world scenarios, allowing trainees to practice surgical 478 procedures in a controlled environment ⁴³.

479

Initially inspired by aviation industry, medical simulators emerged in the 1960s, followed by the 480 introduction of computerized virtual reality platforms by the late 1990s ⁴⁴. Surgical simulation 481 482 labs offer a conducive setting for trainees to practice their surgical skills without the pressure and challenges encountered in the operative room ⁴⁵. These simulated scenarios not only facilitate 483 484 practice but also enable objective evaluation of trainee performance using different tools such as Objective Structured Assessment of Technical Skills (OSATS) ^{46,47}. By allowing repeated 485 486 practice in a safe environment with performance feedback, simulation facilitates the smooth 487 transition of trainees to the operative theater where they can begin operating on real patients with more confidence and proficiency ⁴⁸. 488

489

Surgical simulators vary in complexity, ranging from basic bench-top models like suture tying
boxes to advanced virtual reality (VR) simulators ^{45,49}. In contrast to bench-top simulators which
offer basic surgical skills practice, advanced simulators like VR platforms provide sophisticated
anatomical details and realistic visual, auditory, and haptic feedback ⁴⁹. To illustrate, the

494 Da Vinci Surgical Skills Simulator is utilized to train surgeons in robotic surgery, enhancing
495 their hand-eye coordination and fine motor skills ^{44,45,49,50}.

496

The rapid evolution of VR technology has enhanced its integration into surgical education. VR
simulators are extensively used for teaching endoscopic and laparoscopic procedures, offering
high-fidelity simulations with realistic haptic feedback mechanisms ^{51,52}. For example, the
Minimally Invasive Surgery Trainer – Virtual Reality (MIST-VR) has demonstrated significant
improvements in operating room performance and error reduction during laparoscopic surgeries
^{44,53,54}.

503

Despite the cost and availability challenges associated with VR simulators, ongoing
technological advancements aim to address these limitations and enhance the operative realism
and feedback mechanisms for trainees ^{44,55}. Simulation-based training stands at the forefront of
modern surgical education, offering a dynamic platform for skill development and competency
assessment. As technology continues to advance, the integration of surgical simulations promises
to reshape surgical training paradigms, ensuring enhanced learning outcomes and competency
among future surgeons.

511

512 Advancing Spine Surgery Training through Simulation

513

514 The introduction and advancement of simulation technology into spine surgical training and

education has been slow compared to other specialties like laparoscopic or robotic surgery ⁵⁶.

516 Most of the commercially available spine simulators predominantly focus on minimally invasive

517 procedures such as vertebroplasty and pedicle screw placement; there is still limited access to 518 more sophisticated and intricate procedures like anterior cervical discectomy and fusion or 519 scoliosis surgery ⁵⁶. This can be attributed to various challenges such as the difficulty in 520 simulating anatomical structures, variations in force application between soft tissues and bone, 521 and cost-related constraints which impede the development of comprehensive and more complex 522 spine simulation platforms ⁵⁶.

523

Spine surgery demands a diverse skill set from trainees, necessitating accurate anatomical
replication and realistic tactile feedback for bone and soft tissues in any surgical simulator ^{57,58}.
Essential skills like bone drilling require precise tactile and audiovisual feedback to mirror real
operative experiences ⁵⁸. Technological advancements are key in overcoming these challenges,
enabling the creation of highly realistic virtual reality (VR) environments for spine simulation ⁵⁶.
Furthermore, the introduction of patient-specific VR tools holds promise for enhancing surgical
planning and perioperative practices ⁵⁶.

531

The development of VR spine simulators faces difficulties in simulating diverse anatomical structures with different tissue densities and force requirements. Simulating bone drilling poses a particular challenge due to force limitations of haptic devices and slow response rates of simulated tools ⁵⁸. Despite these obstacles, ongoing advancements aim to enhance haptic feedback modalities and provide users with immersive and high-fidelity educational experiences ⁵⁶. Platforms like NeuroVR exemplify this progress by incorporating 3D visual, auditory, and haptic feedback for simulating complex spinal surgeries like hemi-laminectomy ⁵⁹.

539

As technology continues to evolve, VR platforms tailored for more complex spine procedures are anticipated to emerge, potentially mitigating risks associated with errors during spine surgeries. The continuous refinement of spine simulators underscores a commitment to enhancing surgical training outcomes and ensuring patient safety. Table 2 summarizes the available interactive VR spine simulators in the literature that offer pedicle screw placement scenarios and a detailed comparison between them.

546

547 The TSYM Symgery Virtual Reality Surgical Simulator

548

The TSYM Symgery Virtual Reality Surgical Simulator (Figure 1 A), developed by Cedarome Canada Inc. dba Symgery in Montreal, Canada, is a state-of-the-art virtual reality (VR) simulator designed to provide a highly realistic and non-immersive training experience for spinal surgical procedures. It employs a voxel-based system to create a realistic three-dimensional (3D) representation of the intraoperative surgical environment, allowing participants to interact with and manipulate surgical instruments with a high degree of fidelity and haptic feedback (Figure 1 C) 60,61 .

556

557 TSYM Symgery simulator utilizes haptic feedback technology, which enables participants to 558 experience realistic tissue handling and tactile sensations during the simulated tasks. This non 559 immersive simulator creates a realistic training experience, that enhances the development of 560 essential surgical skills.

The simulator offers a wide variety of tool handles that accurately replicate the look and feel of various surgical instruments used in spinal surgery, in addition to its haptic feedback capabilities (Figure 1 B). Participants can perform a range of simulated procedures, including complex tasks such as laminectomy and pedicle screw placement, using these virtual instruments.

566

567 The TSYM Symgery simulator also provides comprehensive auditory and visual feedback to 568 participants as they interact with the virtual environment and perform simulated surgical 569 maneuvers. This includes sounds such as patient cardiac monitoring and instrument sounds, 570 further enhancing the realism and immersion of the training experience.

571

Furthermore, the simulator is equipped to record a variety of performance metrics at a high
frequency. This detailed performance data allows for the analysis of factors such as force,
instrument tracking, tissue removal rates, velocity, acceleration, and more, enabling assessment
and feedback on participants' performance. In addition, a three-dimensional vertebral body
structure is generated by the simulator at the completion of the task outlining the final position of
the pedicle screws inserted as a feedback educational tool.

578

The TSYM Symgery Virtual Reality Surgical Simulator represents a potentially important assessment and training tool for surgical learners, offering a highly realistic environment for the development and refinement of essential psychomotor technical skills. Its advanced features and capabilities make it a potentially valuable resource to increase the understanding of the composites of surgical expertise associated with pedicle screw insertion. The ability of the TSYM Symgery to assess and train surgical trainees may also be useful in the formative and

585 summative assessment of pedicle screw insertion performance. In formative assessments, the 586 simulator can provide real-time feedback to trainees as they perform the procedure, allowing 587 them to identify and correct any errors or deviations from the ideal pedicle screw placement. 588 This can help trainees to develop a deeper understanding of the technical and cognitive aspects 589 of pedicle screw insertion, and to refine their skills in a risk-free environment. For summative 590 assessments, the TSYM Symgery can be used to evaluate a trainee's competency in pedicle 591 screw placement, providing an objective and standardized measure of their performance. This 592 advantage can be integrated in the future into the formative and summative assessment of both 593 Neurosurgery and Orthopedic residency programs.

594

595 Lumbar Pedicle Screw Placement Simulation

596

597 Pedicle screw placement in the thoracolumbar spine is a crucial technique for spine surgeons in 598 order to stabilize and fuse the spine. The simulated L4-L5 pedicle screw placement task is a 599 complex training scenario that encompasses multiple interactive steps, providing participants 600 with a non- immersive yet realistic learning experience. The simulated L4-L5 pedicle screw 601 placement scenario involves a series of steps designed to replicate the process of pedicle screw 602 insertion in the L4 and L5 vertebrae.

603

The scenario starts with an animated component outlining the L4 & L5 vertebrae being
completely dissected from a posterior approach. The screen magnification is adjusted to a
standardized level and a specific order is established for screw placement. Participants start with
canulating the pedicle using both an awl and pedicle finder to carefully create and prepare a

608	channel in the pedicle for screw insertion. This step requires precision and an understanding of
609	the anatomical landmarks to ensure accurate screw placement. Following this step, using a ball
610	tip, participants are tasked with verifying the absence of pedicle breaches using a ball tip
611	instrument. This is a crucial aspect of ensuring the safety and efficacy of the screw placement.
612	Participants then use a tap to pre-thread the pedicle, preparing it for the insertion of the pedicle
613	screw. This step requires careful attention to detail and an understanding of the proper technique
614	for preparing the pedicle. Finally, the pedicle screw is inserted into the pre-threaded pedicle,
615	which requires participants to apply their knowledge of screw size, angle, and depth to achieve
616	accurate and stable fixation.
617	
618	Throughout these interactive steps, participants have access to live X-ray imaging to verify the
619	entry point and the angles of canulating the pedicle, and to confirm the accuracy of the inserted
620	screws. This real-time feedback allows participants to assess their performance and make
621	adjustments as needed to ensure accurate screw placement.
622	
623	The standardization of screw size (6.5 x 45 mm) in this simulation scenario enables participants
624	to focus on mastering the technical aspects of pedicle screw insertion without variability in screw
625	dimensions. Additionally, participants are guided through a specific sequence of screw
626	placement (left L5, left L4, right L5, and right L4), providing a structured approach to learning
627	and practicing this essential surgical skill.
628	

Overall, the simulated L4-L5 pedicle screw placement scenario offers a comprehensive training
experience, allowing participants to develop proficiency in this critical aspect of lumbar spinal
surgery while receiving real-time feedback and guidance.

632

633 The Rationale of the Thesis

634

The rationale for the development of a virtual reality (VR) pedicle breach classification system in the TSYM Symgery Virtual Reality Surgical Simulator is multifactorial and aims to enhance the training and assessment of lumbar pedicle screw placement. There are several key points to support the need for this advancement.

639

640 The absence of a gold standard pedicle breach classification system and especially one dedicated 641 and validated for VR settings hinders the comprehensive assessment and training of pedicle 642 screw placement using VR simulators. Therefore, the introduction of a new pedicle breach 643 classification system that captures breaches in all directions would significantly enhance the 644 assessment and training of pedicle screw placement, allowing for a more thorough and detailed 645 evaluation of participants' performance.

646

A new breach classification system that accounts for the percentage of screw diameter breaching the pedicle would enable more discrete measurement of breaches, providing valuable insights into the accuracy and precision of screw placement. Importantly, safety considerations must be contemplated when proposing a new pedicle breach classifications based on the safety threshold zone outlined in the spine literature; namely within 4 mm from the pedicle ⁶². The average

diameter of pedicle screws used in the lumbar spine typically ranges between 4.5-7.5 mm, emphasizing the need for a classification system that accounts for variations in screw size ⁶³. The concept that a 50% screw diameter breach is equivalent to less than a 4 mm breach related to the new breach classification emphasises that breaches scored 2 or less (less than 50% of screw diameter) are still within the safety zone.

657

Incorporating these considerations into the development of a VR pedicle breach classification system within the TSYM Symgery Virtual Reality Surgical simulator may contribute to the comprehensive and effective training of surgeons in lumbar pedicle screw placement, ultimately enhancing patient safety and surgical outcomes.

662

663 Furthermore, it is important to emphasize the significance of validating VR simulators, such as the TSYM Symgery platform, to ensure their effectiveness in surgical education. Validation 664 665 methods, including face and content validity, and construct validity are essential in establishing 666 the capability of simulators to accurately assess and train participants effectively. The ability of 667 TSYM Symgery VR simulators to capture large amounts of objective performance data 668 including 3D reconstruction of surgical outcomes, may provide valuable insights into surgical 669 performance. This can be utilized in the development of a more robust framework for assessing 670 surgical competency and enhancing surgical training and education.

671

672

673

676	The primary goal of this thesis is to develop and evaluate a standardized assessment
677	methodology for pedicle screw placement in spinal surgery, utilizing virtual reality simulation.
678	This project will leverage the resources available at the Neurosurgical Simulation and Artificial
679	Intelligence Learning Centre, including the TYSM Symgery virtual reality simulator.
680	The primary research hypotheses are:
681	1. The TYSM Symgery virtual reality simulator will accurately classify pedicle screw
682	placement using the Gertzbein and Robbins pedicle breach classification system.
683	2. The new VR 3D pedicle breach classification will provide a more precise and granular
684	classification of pedicle screw placement.
685	The research objectives are:
686	1. To evaluate the effectiveness of the TYSM Symgery virtual reality simulator in
687	accurately classifying pedicle screw placement using the Gertzbein and Robbins pedicle
688	breach classification system.
689	2. To develop a more precise and granular 3D pedicle screw breach classification system for
690	use in virtual reality spine simulation.
691	3. To assess the effectiveness of the new 3D classification platform during virtual reality
692	spine simulation.
693	
694	These objectives align with the broader goals of the thesis, which aim to improve the accuracy
695	and safety of pedicle screw placement in spinal surgery using virtual reality simulation and
696	artificial intelligence.

697	Manuscript
698	
699	Assessing a New Grading System for Virtual Reality Pedicle Screw Placement- A
700	Case Series Study
701	
702	Mohamed Alhantoobi MD ^{1,2,4*} , Abdulmajeed Albeloushi BSc, MD ^{1,3,5} , Trisha Tee, BSc ¹ , Puja
703	Pachchigar, MSc ¹ , Bilal Tarabay MD ¹ , Recai Yilmaz, MD, PhD ¹ , Ali Fazlollahi MSc ¹ ,
704	Daipayan Guha MD, PhD ² , Desmond Kwok MD ² , Rolando Del Maestro MD, PhD ^{1,3}
705	
706	¹ Neurosurgical Simulation and Artificial Intelligence Learning Centre, Department of Neurology
707	& Neurosurgery, Montreal Neurological Institute, McGill University, 300 Rue Léo Pariseau, Suite
708	2210, Montreal, Quebec, Canada, H2X 4B3.
709	² Department of Neurosurgery, Hamilton General Hospital, McMaster University Medical Centre,
710	237 Barton St E., Hamilton, ON L8L 2X2, Ontario, Canada.
711	³ Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital,
712	McGill University, 3801 Rue University, Montreal, Quebec, Canada, H3A 2B4.
713	⁴ Department of Neurosurgery, Zayed Military Hospital, Abu Dhabi, United Arab Emirates.
714	⁵ Department of Neurosurgery, Ibn Sina Hospital, Ministry of Health, Kuwait.
715	
716	The preceding work has been augmented with additional information and materials to reflect the
717	requirements for thesis submission for a Master of Science.
718	Manuscript submitted for review to the Global Spine Journal (April 2 nd , 2024).
719	

720	Abstract
721	
722	Background
723	
724	Thoracolumbar pedicle screw placement is a key spinal surgical skill for trainees to master. The
725	TYSM Symgery simulator offers a virtual reality pedicle insertion simulation that can be used to
726	assess technical skills, teach trainees, and improve patient safety.
727	
728	Objectives:
729	
730	To 1) evaluate the ability of the TYSM Symgery virtual reality simulator in classifying accuracy
731	of pedicle screw placement using the Gertzbein and Robbins pedicle breach classification
732	system, 2) develop a more granular 3D pedicle screw breach classification system, and 3)
733	evaluate the ability of the new Virtual Reality 3D classification system to distinguish "skilled"
734	and "less skilled" performance during simulated pedicle screw insertion.
735	
736	Methods
737	
738	Twenty-seven neurosurgical and orthopedic residents, fellows, and spine surgeons were
739	recruited in this case series study and divided into skilled and less skilled groups. Utilizing the
740	TSYM platform, participants performed L4 and L5 four pedicle screw placement. Final 3D
741	models including the inserted screws were reconstructed by the simulator, which were
742	automatically utilized by the software to classify pedicle breaches. This classification system has

743	not been validated but developed by the company with neurosurgical educator input. The
744	objectives were to assess pedicle breach class utilizing the Gertzbein and Robbins classification
745	and to compare this result to a new 3D proposed virtual reality classification system.
746	
747	Results
748	
749	Thirty-five of 52 (67.3%) screws in the skilled group were classified as class A, compared to 31
750	of 56 (55.4%) screws in the less skilled group based on Gertzbein and Robbins classification, P =
751	.093. In contrast, utilizing the new 3D VR classification, 16 of 47 (34%) screws in the skilled
752	group were classified as class 1 compared to 13 of 51 (25.5%) screws in the less skilled group,
753	P = .045.
754	
755	Conclusion
756	
757	This study proposed a new pedicle breach 3D classification system in the virtual reality setting
758	that improves the precision and granularity of classifying skilled vs non skilled participants
759	performing pedicle screw placement in a virtual reality platform.
760	
761	Keywords
762	
763	Artificial Intelligence, Pedicle Breach Classification, Pedicle Screw Placement, Surgical
764	Education, Surgical Spine Simulation, Virtual Reality, 3-Dimensional Vertebral Reconstruction
765	

766 Short Title
767
768 New Grading System for VR Pedicle Screw Placement
769
770 Introduction
771
772 Mastery of surgical techniques in spine surgery is essen
773 neurological elements. One of the most vital skills is period.

Mastery of surgical techniques in spine surgery is essential due to the proximity of critical 773 neurological elements. One of the most vital skills is pedicle screw placement which aims to facilitate thoracolumbar spine fixation and fusion ^{16,19,23,64–66}. Various pathologies causing spinal 774 775 instability are treated utilizing this technique including spine infections, tumours, and 776 degeneration ^{19–21,23}. However, substantial risk of complications can be associated with pedicle 777 screw insertion which make the mastering this technical proficiency imperative ^{19–21}. Misplaced 778 pedicle screws can cause acute neurological injuries and revision surgery to replace the screws 779 ^{23,67}. Several studies reported a range from 15.7% to 41% misplaced pedicle screws, emphasizing 780 the importance of mastering these skills and ensuring surgical competency both for trainees and surgeons ^{23,68–70}. Gonzalvo and co-workers outlined in their retrospective study that in order to 781 782 achieve accuracy rates comparable to established spine surgeons, spine fellows require the insertion of 80 pedicle screws and the performance of 25 procedures independently⁶⁹. 783 784

Several classifications have been suggested in the spine literature to assess pedicle screw
 accuracy, however, there is still no gold standard classification to assess pedicle screw breaches
 ^{20,25}. One widely accepted classification system was proposed by Gertzbein and Robbins in 1990
 ²⁷. Several limitations are associated with this classification system since it takes into

789	consideration only medial pedicle breaches ^{19,20,27} . There are multiple challenges that trainees
790	may encounter in order to master highly demanding technical skills such as pedicle screw
791	placement. Those challenges range from work hour restrictions for residents, patient safety
792	concerns and surgical outcomes ⁷¹ . Therefore, leveraging new training methodologies and
793	quantitative assessment tools may complement intra-operative surgical education and exposure
794	for trainees involving these skill sets ⁷¹ . Surgical training utilizing virtual reality (VR) platforms
795	has been proposed across various surgical specialties, including spinal surgery to facilitate
796	surgical skill acquisition and competency achievement ⁷² . The ability of VR simulation to
797	enhance surgical skills has been demonstrated by numerous studies ^{73–75} .
798	VR simulation in spine surgery can provide quantitative assessment of trainee operative
799	performance and surgical skills in patient risk-free environments ⁷¹ .
800	
801	The TSYM Symgery VR platform is a non immersive VR simulator with a robotic arm and
802	different tool handles that utilizes advanced haptic feedback technology to provide a realistic
803	operative experience. One of the advantages of the TSYM Symgery VR simulator platform is
804	analyzing and replicating complex spine surgical tasks, such as lumbar spine pedicle screw
805	placement. It is able to record extensive datasets and provide 3D models of final procedural
806	outcomes, which allow comprehensive analysis of pedicle screw placement performance in real

807 time 3D fashion.

808

To date, there is no comprehensive 3D pedicle breach classification system developed for VR
simulation assessment and training. In this study we intend to 1) evaluate the ability of the
TYSM Symergy VR simulator to classify the accuracy of pedicle screw placement using the
812	Gertzbein and Robbins pedicle breach classification, 2) propose a new pedicle screw breach
813	classification system in the VR setting, and 3) assess the effectiveness of the new 3D pedicle
814	screw breach classification system for VR simulation in accurately classifying participants based
815	on their performance in pedicle screw placement. The coprimary outcomes to accomplish these
816	objectives involve a case series study to determine the utility of pedicle breach class utilizing the
817	Gertzbein and Robbins classification and the comparison of results to a new 3D virtual reality
818	classification system.
819	
820	Methods
821	
822	Participants
823	
824	In this case series study, 27 participants engaged in a virtual reality simulation of L4 and L5
825	pedicle screw placement with simulated X-ray guidance using the TSYM Symgery platform.
826	Exclusion criteria included prior experience with pedicle screw placement on this platform. The
827	participants were initially categorized into skilled and less skilled groups based on their expertise
828	levels. The skilled group comprised neurosurgery and orthopedic residents (PGY5 and PGY6),
829	spine fellows, and spine surgeons (n=13), while the less skilled group consisted of neurosurgery
830	and orthopedic residents (PGY1 to PGY4) (n=14) (table 3). All authors involved in the study
831	disclosed no conflicts of interest. Participants, along with any identifiable individuals, provided
832	consent for the publication of their images. They signed informed consent forms approved by the
833	Neurosciences-Psychiatry McGill University Health Center Research Ethics Board. All
834	participants signed consent forms approved by the Neurosciences-Psychiatry (NEUPSY) panel

835	of the McGill University Health Centre Research Ethics Board before trial participation.
836	Following consent, participants shared demographic details and estimates of their experience of
837	independently inserted pedicle screws.
838	
839	Before the task, participants received written and verbal instructions and underwent a Dry Lab
840	session and an initial simulated procedure to familiarize themselves with the functions of
841	simulated instruments (refer to supplementary information). Each step in the simulation required
842	participant confirmation before progression, with no time constraints imposed during the task.
843	This study adheres to the Strengthening the Reporting of Observational Studies in Epidemiology
844	(STROBE) reporting guidelines to ensure comprehensive reporting of observations and results ⁷⁶ .
845	
846	Virtual Reality Surgical Simulator
847	
848	The TSYM Symgery virtual reality simulator employed in this study (Figure 1 A) was developed
849	by Cedarome Canada Inc. dba Symgery. (Montreal, Canada). A variety of tool handles are
850	offered by the simulator (Figure 1 A). each simulates various surgical tools required to perform
851	the surgical procedure (Figure 1 B). This simulator depends on a voxel-based system to simulate
852	a 3D intraoperative spinal surgical procedure (Figure 1 C) ^{60,61} . Participants experience auditory
852 853	a 3D intraoperative spinal surgical procedure (Figure 1 C) ^{60,61} . Participants experience auditory and visual feedback when utilizing the instruments, whereas haptic feedback permits realistic
852 853 854	a 3D intraoperative spinal surgical procedure (Figure 1 C) ^{60,61} . Participants experience auditory and visual feedback when utilizing the instruments, whereas haptic feedback permits realistic tissue handling.
852 853 854 855	a 3D intraoperative spinal surgical procedure (Figure 1 C) ^{60,61} . Participants experience auditory and visual feedback when utilizing the instruments, whereas haptic feedback permits realistic tissue handling.

858 Simulated L4 and L5 Pedicle Screw Placement Scenario

859

- 860 The simulated task for L4-L5 pedicle screw insertion involves a total of 5 steps, with 1 step
- being animated (Figure 1B) and the other 4 steps being interactive. The interactive steps include:

862

- 1) Canulating the pedicle using both awl and pedicle finder.
- 864 2) Verifying breaches using a ball tip.
- 865 3) Pre-threading the pedicle with the tap.
- 866 4) Inserting the pedicle screw.

867

- 868 During the task, participants had access to live X-rays to aid in verifying the entry point,
- determining the angles for canulating the pedicle, and confirming the accuracy of the inserted
- 870 screw. The screw size used for the procedure was standardized to 6.5 x 45 mm.
- 871 Participants followed a specific sequence while performing the task. They started with the left L5
- screw, followed by the left L4 screw, then the right L5 screw, and finally the right L4 screw.

873

874 Three-Dimensional Vertebrae Structure

875

876 Upon the completion of the task, the TSYM simulator generates a three-dimensional vertebral

body structure that outlines the final position of the pedicle screws inserted and functions as a

878 feedback educational tool (Figure 2). Pedicle screw breaches were classified automatically by the

879 simulator based on predefined criteria according to Gertzbein and Robbins breach classification

system (Table 5). To classify participants' pedicle screw breaches based on the new breach

classification system, the final 3D models were utilized. A spine surgeon reviewed each pedicle
screw inserted and categorized them accordingly (Figure 3).

883

884 New Pedicle Screw Virtual Reality Classification System

885

886 Figure 3 outlines the new pedicle breach classification system that was intended to aid trainees in 887 VR pedicle screw insertion tasks. Details regarding the scoring criteria are illustrated in Table 6 888 A & 6 B. Pedicle breaches are categorized based on 1) the direction of the breach, taking into 889 consideration pedicle breaches can occur in 4 directions and 2) the percentage of screw diameter breaching the pedicle. The severity of the pedicle breach in the new classification ranges from 890 891 grade 1 to grade 4. This system also includes further subclassification groups A, B, C and D 892 based on the direction of the breach. In this study, the pedicle screw size was standardized to 6.5 893 x 45 mm. Therefore, a breach that is less than 50% of the screw diameter is considered 894 equivalent to a breach of less than 3.25 mm. 895 **Statistical Analysis** 896 897 We analyzed the data based on SPSS software version 29 (IBM SPSS Statistics). We treated each 898 899 screw inserted by an individual participant independently due to small sample size (n=27). This

900 decision is based on the rationale that each pedicle screw had a different orientation, entry point,

- and angle. To examine the relation between the individual expertise group and each pedicle
- 902 breach classification, the Kruskal-Wallis Test was utilized with P < .05 set as threshold for

903	statistical significance. The data set collected during the study is available on a reasonable
904	request from the corresponding author.
905	
906	Results
907	
908	Participants
909	
910	Table 3 provides demographic information about the 27 participants, as well as details regarding
911	their experience with pedicle screw insertion. The skilled group reported a median of 100 pedicle
912	screws independently inserted, with a range of 10 to 3000 screws (mean of 452). In contrast, the
913	less skilled group reported a median of 0 pedicle screws independently inserted, with a range of
914	0 to 5 screws (mean of 0.5). The difference is statistically significant, ($P < .001$).
915	
916	Classifying L4 & L5 Pedicle Breaches Based on Gertzbein and Robbins System
917	
918	Table 4 presents a summary of the data obtained from the Symgery simulator regarding pedicle
919	screw placement. Out of the 108 pedicle screws that were inserted, 35 out of 52 screws (67.3%)
920	in the skilled group were classified as class A according to the Gertzbein and Robbins
921	classification system. In comparison, 31 out of 56 screws (55.4%) in the less skilled group were
922	classified as class A. For class D classification, one out of 52 screws (1.9%) in the skilled group
923	and six out of 56 screws (10.7%) in the less skilled group were categorized as such. None of the
924	skilled or less skilled groups had class E breaches. There was no statistical significance (P =
925	.093) between the two groups (Table 4).

926 Classifying L4 & L5 Pedicle Breaches Based on the New Proposed System

927

928 Figure 3 visually represents the new pedicle breach classification system that was utilized in this 929 study. The statistical analysis of pedicle screw placement based on the final generated 3D models 930 is detailed in Table 4. Out of the total 108 pedicle screws, 98 (90.7%) were available in the final 931 3D reconstruction. However, there were missing data for 10 screws due to a systems error, with 5 932 missing in both the skilled and less skilled groups. In the skilled group, 16 out of 47 screws 933 (34%) were classified as class 1 using the new classification system, while in the less skilled 934 group, 13 out of 51 screws (25.5%) fell into the same category. In contrast, the skilled group had 935 6 out of 47 screws (12.8%) classified as class 4, while the less skilled group had 17 out of 51 936 screws (33.3%) in this category. All the complete pedicle breaches in the skilled group (6 out of 937 47 screws) were in the medial direction. In the less skilled group, there were 17 out of 51 screws 938 (33.3%) with complete pedicle breaches involving all directions: 13 out of 51 screws (25.5%) 939 breached medially, 1 out of 51 screws (2.0%) breached inferiorly, 1 out of 51 screws (2.0%) 940 breached superiorly, and 2 out of 51 screws (3.9%) breached laterally. In comparison to the 941 skilled group, there was a statistically significant relationship between the level of training and 942 the new pedicle breach classification, with a P-value of .045. The detailed new classification 943 further demonstrated a statistically significant association between the skilled and less skilled 944 groups and the category of pedicle breaches, with a P-value of .042. This finding reinforces the 945 idea that incorporating both the direction and magnitude of pedicle breaches can differentiate 946 participant skill levels effectively, offering a more thorough evaluation of participant proficiency. 947

948 Discussion

949

950 The goal of this case series study was to assess how well the TYSM Symgery VR simulator 951 classified pedicle screw placement using the Gertzbein and Robbins Pedicle Breach 952 Classification. To enhance and refine the process of categorizing trainees' performance in pedicle 953 screw placement in virtual reality environments, the authors also present a novel pedicle breach 954 classification system. Our data on pedicle screw breaches are in line with other research showing 955 that participants proficiency can be determined in large part by their expertise level with pedicle screw fixation ^{69,70,77–79}. We evaluated a new pedicle breach classification system using a virtual 956 957 reality simulation of pedicle screw insertion which revealed improvement in classifying skilled 958 and less skilled individuals with more precision and granularity ⁸⁰.

959

960 Studies employing VR surgical simulation have shown that skilled participants predominantly 961 focus on procedural safety. Therefore, educational curriculum systems, including the virtual 962 operating assistant, have instructed learners to first conduct procedures safely before focusing on efficiency ^{81–84}. This new 3D pedicle breach classification system was designed to help the 963 964 student focus first on the procedure's safety. The use of this new 3D pedicle breach classification 965 includes a comprehensive analysis that takes into consideration a variety of safety measures, 966 including the direction of the breach and its severity. By combining these measurements, each 967 aspect of the breach can be precisely quantified and classified, resulting in a more detailed 968 knowledge of the nature of the pedicle breach. The use of real-time feedback methods improves 969 the assessment process by providing quick 3D visual insights regarding the occurrence and types of pedicle breaches during the VR simulated task ⁸⁵. This real-time 3D feedback is specifically 970

971 valuable for less skilled trainees as they can enhance their surgical skills and accelerate their 972 surgical training. The new 3D pedicle breach classification based on personalized screw 973 position data, combined with real-time 3D feedback mechanisms, represents 974 an advanced approach to assessing pedicle breaches in VR simulated tasks. The Gertzbein and Robbins grading system has limitations, particularly that it only scores medial 975 976 breaches, disregarding pedicle breaches in other directions. This was especially noticeable when evaluating less skilled pedicle screw placement ¹⁹⁻²¹. The ability of the Gertzbein and Robbins 977 978 pedicle breach classification to objectively evaluate less skilled trainee's pedicle screw 979 placement skills is limited as pedicle screw breaches present in other directions (inferior, 980 superior, or lateral) are rated as no breach. There is a considerable risk associated with 981 malpositioned pedicle screws breaching the inferior or superior pedicle border as this can result 982 in neurological symptoms from dural laceration, nerve root damage, or worsening of proximal junctional kyphosis ^{19,86–88.} 983

984

985 TSYM Simulator as an Education Tool

986

987 A key surgical tactic that allows for robust three-column spine fixation is the placement of 988 pedicle screws; nevertheless, mastery of this procedure requires a steep learning curve ⁶⁹. This 989 study's findings indicate that the TSYM simulator could be an essential teaching aid, especially 990 when taking into consideration training and evaluating less skilled learners. With instant access 991 to both the performance grading and the 3D vertebral reconstructions of their screw placement 992 positioning, learners will be able to visually compare their surgical outcomes to the ideal screw 993 position and continuously appraise their progress. This enhances the precision and granularity of

994 the feedback provided to the learners. When compared to traditional learning methods, virtual 995 reality simulators with haptic feedback have been evaluated for pedicle screw placement training 996 and have been shown to improve screw placement accuracy compared to traditional learning schemes ^{16,23,73,89}. Hou and colleagues' work emphasised the advantages of VR simulation 997 training in accelerating pedicle screw placement skill acquisition ⁹⁰. The integration of virtual 998 999 reality simulation in spine surgery curricula could potentially facilitate the attainment of surgical 1000 competency among less skilled trainees in complex spine procedures that demand extensive training ⁷³. Further research is required to validate this newly proposed pedicle breach 1001 1002 classification system in various virtual reality contexts and clinical practice.

1003

The distinct features of the 3D reconstruction models generated by the TSYM simulator present a number of avenues for additional research. Final 3D models can yield new metrics for formative and summative evaluation of surgical performance. This comprises the angle of deviation from the ideal screw angle and the distance from the optimal entry point. In addition, various data can also be extracted from the simulated L4 -L 5 pedicle screw placement including number of Xrays taken by the participant which we anticipate would be lower in the skilled compared to the less skilled individuals.

1011

Artificial intelligence (AI) algorithms may improve the accuracy of classifying surgical expertise
using VR spine platforms by leveraging the massive data sets produced by VR 3D spine
models ⁸⁰. 3D spine models can be further clustered and analysed using deep learning
techniques ^{80,90,91}. Additionally, an AI-based software program for preoperative thoracolumbar
pedicle screw planning has been proposed in the literature and it automatically determines the

pedicle screw size and trajectory by utilizing patient specific computed tomography scans ^{91,92}. 1017 1018 Furthermore, intelligent tutoring systems can be developed by employing various AI techniques that rely on expert and novice participants' data ^{82–84,93}. These artificial intelligence methods 1019 1020 might be able to automatically evaluate the final 3D models that the simulator reconstructs and accurately assess the surgical learners' training year, surgical competency, and aids in 1021 formulating an objective assessment ⁴⁸. However, curricula utilizing AI technology must be 1022 1023 carefully developed with direct supervision and interaction of human educators, as AI-enhanced curricula maybe be associated with unintended outcomes linked to particular metrics ⁴⁸. Creating 1024 1025 and assessing AI-powered teaching systems in the setting of real operating rooms is a key goal of 1026 these virtual reality training methods. The goal of these studies is to create an "Intelligent 1027 Operating Room" that can minimize surgical errors by using AI technology to continuously evaluate and train learners while reducing surgical errors ⁹⁴. Research utilizing virtual reality 1028 1029 surgical simulation has revealed that skilled participants primarily concentrate on procedural 1030 safety, therefore, AI teaching curricula systems such as the virtual operative assistant, have 1031 taught students to complete surgical procedures safely before concentrating on efficiency ^{81–84}. 1032

1033 Limitations

1034

1035 The TSYM Symgery VR has various limitations such as its limited replication of the dynamic 1036 and constantly evolving intraoperative environment. Secondly, in 9% (10 screws) of the pedicle 1037 screw placed by participants among all trials, the system failed to store the data and reformat the 1038 information in a final 3D vertebral reconstruct. Although a more reliable approach is being 1039 developed, the authors believe that using 91% of the data was helpful in achieving the goals of

the study. The authors conducted statistical analysis, both including and excluding the 10 screws
that were classified following Gertzbein and Robbins system, in order to investigate the impact
of the missing screws in the final 3 D models. No statistically significant differences were found
between the two approaches. Thirdly, since the TSYM simulator is designed for right-handed
users, its utility for evaluating bimanual skills and participant performance of left-handed
participants is limited. VR studies show that the ergonomics of the left and right hands differ,
necessitating a separate evaluation of each hand's functionality ^{95–97}.

1047

1048 Despite the fact that this study cohort consisted of both orthopedic and neurosurgery residents, spine fellows, and spine surgeons, the sample size of both skilled and less skilled participant was 1049 1050 small. This restricts the generalizability of these findings. More participants from various 1051 international institutes should be included in future investigations, both in virtual reality and 1052 clinical settings, to validate the effectiveness of the newly proposed 3D pedicle breach 1053 classification. This would offer a more thorough understanding regarding this methodology's 1054 usefulness and its wider applicability in virtual reality environments as well as clinical practice 98-100. 1055

1056

1057 In addition, the author acknowledges that categorizing participants based on their training level 1058 may impact the statistical analysis as training years may not always accurately reflect surgical 1059 competency. Despite this, the decision to group participants based on years of training aligns 1060 with prior research from our group and was consistent with the reported pedicle screw placement 1061 experience within each group. To overcome this limitation in future studies, evaluating 1062 participant performance in preparatory tasks such as the DryLab and L2 laminectomy in this

1063 study, could be beneficial for categorizing individuals in their corresponding expertise cohort.

1064 This approach would offer a more nuanced and accurate assessment of surgical proficiency,

1065 potentially enhancing the validity and reliability of the study's findings.

1066

The new pedicle breach classification system was also developed to help the learner to initially 1067 1068 focus on the safety of the procedure. Nevertheless, instead of utilizing the distance in mm similar 1069 to Gertzbein and Robbins classification, this new classification approach has a drawback related 1070 to the potential use of different pedicle screw diameters in various VR or clinical scenarios. The 1071 new classification system is based on the percentage of the screw diameter that breaches the pedicle; a significant breach is one that exceeds 50%, while a minor breach is one that is less 1072 1073 than 50%. To account for possible variances in screw sizes, most lumbar pedicle screw diameters 1074 are in the range of 4.5-7.5 mm. A breach of less than 50% of the screw diameter corresponds to a 1075 breach of less than 4 mm, which is within the safe zone described by Gertzbein and Robbins $6^{2,6^3}$. 1076

1077 Conclusion

1078

1079 This case series study assessed the accuracy of lumbar pedicle screw placement based on two
1080 pedicle breach classifications in a VR setting. We developed a new pedicle breach classification
1081 which was able to distinguish the skill competency in lumbar pedicle screw placement in a VR
1082 simulated task by participants in a more granular and precise fashion.

1083

1085 Thesis Summary

1086

1087 Pedicle screw placement in the thoracolumbar spine is an essential surgical skill required for 1088 spine stabilization, however acquiring theses important psychomotor techniques has a steep learning curve ⁶⁹. In this case series study, our goal was to establish a new 3D pedicle breach 1089 1090 classification system that is more tailored toward the VR setting which would aid in the 1091 formative assessment and training of surgical trainees to ensure patient safety. We first evaluated 1092 the ability of the TYSM Symgery VR simulator to accurately classify pedicle screw position 1093 using the Gertzbein and Robbins pedicle breach classification. We then compared the results of 1094 pedicle breach classification scores between the two classification systems in both skilled and 1095 less skilled cohorts. 1096

TYSM Symgery VR simulator was able to accurately classify pedicle screw position using the
Gertzbein and Robbins pedicle breach classification. The classification system developed by
Gertzbein and Robbins did not demonstrate a statistically significant difference between skilled
and less skilled groups regarding their proficiency in accurately and safely inserting pedicle
screws without the risk of a potential pedicle breach.

1102

The newly introduced 3D pedicle breach classification system revealed a statistically significant difference between skilled and less skilled participants in terms of their ability in placing pedicle screws with respect to the risk of pedicle breaches. Given that the 3D classification assesses breaches in four directions, it indicated that the less skilled group exhibited a higher risk of

1107 complete pedicle breaches in all directions, whereas the skilled group primarily encountered1108 medial complete breaches.

1109

1110 The new proposed 3D pedicle breach classification system in virtual reality exhibits enhanced precision and granularity compared to the traditional Gertzbein and Robbins classification. In 1111 1112 this context, precision refers to the ability to determine the location of a pedicle screw breach, 1113 whether it be medial, lateral superior, or inferior, with greater accuracy and more nuanced 1114 details. The new system allows instructors to pinpoint the breach location more precisely, helping 1115 to distinguish skilled and less skilled group performance based on the specific nature of the breach. Granularity relates to how complicated or detailed the data or representation is. Since the 1116 1117 new classification system provides a more comprehensive 3D representation of the screw position, it enables a higher level of granularity by providing more detailed visual information in 1118 1119 three-dimensional space to the learners which may enhance their appreciation of the final 1120 surgical outcome. 1121 1122 This study suggests that the TSYM simulator has a potential value for educating and training 1123 learners especially less skilled trainees. The advantage of immediate access to 3D vertebral

1124 reconstructions and performance grading can help learners compare their results with the optimal

screw position and track their improvement over time.

1126

1127

1129 Future Directions

1131	Incorporating VR simulation into a spine surgery learning curriculum may benefit less skilled
1132	trainees in achieving surgical competency for complex spine procedures ⁷³ . Future studies should
1133	be designed to validate the newly proposed 3D pedicle breach scoring in other VR platforms and
1134	its utility in clinical practice. In addition, cooperating with other neurosurgical and orthopedic
1135	centers nationally and internationally can aid in obtaining external validity for this simulator and
1136	classification scheme.
1137	
1138	The unique 3D reconstruction models generated by the TSYM simulator offer several
1139	opportunities for further studies. New metrics, such as distance from the ideal entry point and
1140	angle deviation from the ideal screw angle, can be extracted from the final 3D models for
1141	formative and summative assessment of surgical performance. This may allow a more precise
1142	and granular evaluation of trainee performance in pedicle screw placement.
1143	
1144	Artificial intelligence and machine learning algorithms can be developed to successfully
1145	categorize participants according to their surgical performance ^{80,101} . The use of artificial
1146	intelligence can be employed to advance the development of AI-driven tutor systems which can
1147	provide access to real-time performance assessment and offer simultaneous personalized
1148	feedback to participants ⁸⁴ . Machine learning and AI algorithms are valuable for visual pattern
1149	recognition and analysis and can integrate 3D data into various AI-based algorithms especially
1150	Convolutional Neural Network (CNN) based AI algorithms ^{102,103} . This integration may also
1151	unveil new performance metrics that have not been explored previously.

1152	In su	mmary a new 3D pedicle breaches classification system has been developed to enhance the				
1153	precision and granularity of categorizing participants performing pedicle screw placement using					
1154	a virtual reality platform. This new classification system aims to improve the accuracy of					
1155	asses	sing pedicle breaches and the overall performance of learners in this surgical procedure.				
1156						
1157	Refe	rences				
1158						
1159	1.	Brand A, Allen L, Altman M, Hlava M, Scott J. Beyond authorship: attribution,				
1160		contribution, collaboration, and credit. Learned Publishing. 2015;28(2):151-155.				
1161	2.	Allen L, O'Connell A, Kiermer V. How can we ensure visibility and diversity in research				
1162		contributions? How the Contributor Role Taxonomy (CRediT) is helping the shift from				
1163		authorship to contributorship Learned Publishing. 2019;32(1):71-74.				
1164	3.	Anden U, Lake A, Nordwall A. The role of the anterior longitudinal ligament in				
1165		Harrington rod fixation of unstable thoracolumbar spinal fractures . Spine (Phila Pa				
1166		1976). 1980;5:23-25.				
1167	4.	Wang G.J., Whitehill R., Stamp W.G., et al. The treatment of fracture dislocations of the				
1168		thoracolumbar spine with halofemoral traction and Harrington rod instrumentation Clin				
1169		Orthop Relat Res. Published online 1979:168-175.				
1170	5.	Sundaresan N., Galicich J.H., Lane J.M. Harrington rod stabilization for pathological				
1171		fractures of the spine. J Neurosurg. 1984;60:282-286.				
1172	6.	Livingston K.E., Perrin R.G. The neurosurgical management of spinal metastases causing				
1173		cord and cauda equina compression. J Neurosurg. 1978;49:839-843.				

- 1174 7. Luque E.R. Segmental spinal instrumentation for correction of scoliosis. *Clin Orthop*1175 *Relat Res.* 1982;163:192-198.
- 1176 8. Cotrel Y., Dnbousset J. A new technique for segmental spinal osteosynthesis using the
 1177 posterior approach . *Rev Chir Orthop Reparatrice Appar Mot.* 1984;70:489-494.
- 1178 9. Roy-Camille R., Roy-Camille M., Demeulenaere C. Osteosynthesis of dorsal, lumbar, and
- 1179 lumbosacral spine with metallic plates screwed into vertebral pedicles and articular
 1180 apophyses]. *Presse Med*. 1970;78:1447-1448.
- 1181 10. Abumi K., Panjabi M.M., Duranceau J. Biomechanical evaluation of spinal fixation
- devices. Part III. Stability provided by six spinal fixation devices and interbody bone graft
- **1183**. Spine (Phila Pa 1976). 1989;14:1249-1255.
- 1184 11. Dickman C.A., Fessler R.G., MacMillan M., et al. Transpedicular screw-rod fixation of
 1185 the lumbar spine: operative technique and outcome in 104 cases. *J Neurosurg*.
- **1186 1992;77:860-870**.
- 1187 12. Dick W, Kluger P, Magerl F, Woersdörfer O, Zäch G. A new device for internal fixation of
- thoracolumbar and lumbar spine fractures: the 'fixateur interne.' *Spinal Cord*.
- 1189 1985;23(4):225-232. doi:10.1038/sc.1985.38
- 1190 13. Esses S.T., Bednar D.A. The spinal pedicle screw: techniques and systems. *Orthop Rev.*1191 1989;18:676-682.
- 1192 14. Bono C.M., Lee C.K. Critical analysis of trends in fusion for degenerative disc disease
- 1193 over the past 20 years: influence of technique on fusion rate and clinical outcome . *Spine*
- (*Phila Pa 1976*). 2004;29:455-463.

- 1195 15. Kobayashi K, Ando K, Nishida Y, Ishiguro N, Imagama S. Epidemiological trends in spine
- surgery over 10 years in a multicenter database. *European Spine Journal*.
- 1197 2018;27(8):1698-1703. doi:10.1007/s00586-018-5513-4
- 1198 16. de Kater EP, Sakes A, Edström E, Elmi-Terander A, Kraan G, Breedveld P. Beyond the
- pedicle screw–a patent review. *European Spine Journal*. 2022;31(6):1553-1565.
- 1200 doi:10.1007/s00586-022-07193-z
- 1201 17. Kim YJ, Lenke LG, Bridwell KH, Cho YS, Riew KD. Free Hand Pedicle Screw
- 1202 Placement in the Thoracic Spine: Is it Safe? *Spine (Phila Pa 1976)*. 2004;29(3):333-342.
- doi:10.1097/01.BRS.0000109983.12113.9B
- 1204 18. Sarwahi V, Wendolowski SF, Gecelter RC, et al. Are We Underestimating the Significance
- 1205 of Pedicle Screw Misplacement? *Spine (Phila Pa 1976)*. 2016;41(9):E548-E555.
- doi:10.1097/BRS.00000000001318
- 1207 19. Gautschi OP, Schatlo B, Schaller K, Tessitore E. Clinically relevant complications related
- to pedicle screw placement in thoracolumbar surgery and their management: A literature
- 1209 review of 35,630 pedicle screws. *Neurosurg Focus*. 2011;31(4).
- doi:10.3171/2011.7.FOCUS11168
- 1211 20. Aoude AA, Fortin M, Figueiredo R, Jarzem P, Ouellet J, Weber MH. Methods to
- determine pedicle screw placement accuracy in spine surgery: a systematic review.
- 1213 *European Spine Journal*. 2015;24(5):990-1004. doi:10.1007/s00586-015-3853-x
- 1214 21. Aoude A, Ghadakzadeh S, Alhamzah H, et al. Postoperative Assessment of Pedicle Screws
- and Management of Breaches: A Survey among Canadian Spine Surgeons and a New
- 1216 Scoring System. *Asian Spine J.* 2018;12:37-46.

- 1217 22. Amaral TD, Hasan S, Galina J, Sarwahi V. Screw Malposition: Are There Long-term
- 1218 Repercussions to Malposition of Pedicle Screws? *Journal of Pediatric Orthopaedics*.
- 1219 2021;41(Suppl 1):S80-S86. doi:10.1097/BPO.00000000001828
- 1220 23. Hicks JM, Singla A, Shen FH, Arlet V. Complications of Pedicle Screw Fixation in
- 1221 Scoliosis Surgery. *Spine (Phila Pa 1976)*. 2010;35(11):E465-E470.
- doi:10.1097/BRS.0b013e3181d1021a
- 1223 24. Sankey EW, Mehta VA, Wang TY, et al. The medicolegal impact of misplaced pedicle and
 1224 lateral mass screws on spine surgery in the United States. *Neurosurg Focus*.
- 1225 2020;49(5):E20. doi:10.3171/2020.8.FOCUS20600
- 1226 25. Adamski S, Stogowski P, Rocławski M, Pankowski R, Kloc W. Review of currently used
- 1227 classifications for pedicle screw position grading in cervical, thoracic and lumbar spine.
- 1228 Chir Narzadow Ruchu Ortop Pol. 2023;88(4):165-171. doi:10.31139/chnriop.2023.88.4.2
- 1229 26. Heary RF, Bono CM, Black M. Thoracic pedicle screws: postoperative computerized
- tomography scanning assessment. *J Neurosurg Spine*. 2004;100(4):325-331.
- doi:10.3171/spi.2004.100.4.0325
- 1232 27. Gertzbein S, Robbins S. Accuracy of pedicular screw placement in vivo. *Spine (Phila Pa*1233 1976). 1990;15.
- 1234 28. Puvanesarajah V. Techniques and accuracy of thoracolumbar pedicle screw placement.
 1235 World J Orthop. 2014;5(2):112. doi:10.5312/wjo.v5.i2.112
- 1236 29. Polavarapu HV, Kulaylat AN, Sun S, Hamed OH. 100 years of surgical education: the
- 1237 past, present, and future. *Bull Am Coll Surg* 2013;98(7): 22-27. 2013;98(7):22-27.
- 1238 30. Grillo HC. To impart this art: the development of graduate surgical education in the
- 1239 United States. *Surgery*. 1999;125(1):1-14.

- Mueller PS. AM last page: Sir William Osler's major contributions to medical education. .
 Academic Medicine. 2010;85(7):1260.
- 1242 32. Waugh D, Bailey PG. Medical Education. *The Canadian Encyclopedia*. Published online1243 2013.
- 1244 33. Ludmerer KM. Learning to heal: the development of American medical education.1245 Published online 1985.
- 1246 34. Cooke M, Irby DM, Sullivan W, Ludmerer KM. American medical education 100 years
 1247 after the Flexner report. *New England journal of medicine*. 2006;355(13):1339-1344.
- 1248 35. Patel EA, Aydin A, Cearns M, Dasgupta P, Ahmed K. A systematic review of simulation-
- based training in neurosurgery, part 2: spinal and pediatric surgery, neurointerventional

radiology, and nontechnical skills. *World Neurosurg*. 2020;133:874-892.

- 36. Sonnadara RR, Mui C, McQueen S, et al. Reflections on competency-based education and
 training for surgical residents. *J Surg Educ.* 2014;71(1):151-158.
- 1253 37. Iobst WF, Sherbino J, Cate OT, et al. Competency-based medical education in
- 1254 postgraduate medical education. *Medical teacher*. 2010;32(8):651-656.
- 1255 38. Harris KA, Nousiainen MT, Reznick R. Competency-based resident education—The
 1256 Canadian perspective. *Surgery*. 2020;167(4):681-684.
- 1257 39. Frank JR, Snell L JS. CanMEDS 2015 Physician Competency Framework. *Ottawa: Royal*1258 *College of Physicians and Surgeons of Canada*. Published online 2015.
- 40. Frank JR, Snell L, Englander R, Holmboe ES, Collaborators I. Implementing competencybased medical education: Moving forward. *Medical teacher* . 2017;39(6):568-573.
- 1261 41. Stockley D, Egan R, Van Wylick R, et al. A systems approach for institutional CBME
- adoption at Queen's University. . *Med Teach*. 2020;42(8):916-921.

- 1263 42. Reznick RK, MacRae H. Teaching surgical skills—changes in the wind. *New England*1264 *Journal of Medicine*. 2006;355(25):2664-2669.
- 1265 43. Agha RA, Fowler AJ. The role and validity of surgical simulation. Int Surg.
- **1266** 2015;100(2):350-357.
- 1267 44. Badash I, Burtt K, Solorzano CA, Carey JN. Innovations in surgery simulation: a review
 1268 of past, current and future techniques. *Ann Transl Med.* 2016;4(23).
- 1269 45. Lu J, Cuff RF, Mansour MA. Simulation in surgical education. *The American Journal of Surgery*. 2021;221(3):509-514.
- 1271 46. Martin J, Regehr G, Reznick R, et al. Objective structured assessment of technical skill
- 1272 (OSATS) for surgical residents. *Journal of British Surgery*. 1997;84(2):273-278.
- 1273 47. Hatala R, Cook DA, Brydges R, Hawkins R. Constructing a validity argument for the
- 1274 Objective Structured Assessment of Technical Skills (OSATS): a systematic review of
- 1275 validity evidence. *Advances in Health Sciences Education*. 2015;20(5):1149-1175.
- 1276 48. Yilmaz R, Winkler-Schwartz A, Mirchi N, et al. Continuous monitoring of surgical
- 1277 bimanual expertise using deep neural networks in virtual reality simulation. *NPJ Digit*
- 1278 Med. 2022;5(1):54. doi:10.1038/s41746-022-00596-8
- 1279 49. De Montbrun SL, MacRae H. Simulation in surgical education. *Clin Colon Rectal Surg.*1280 2012;25(3):156-165.
- 1281 50. Kelly DC, Margules AC, Kundavaram CR, et al. Face, content, and construct validation of
 1282 the da Vinci Skills Simulator. *Urology*. 2012;79(5):1068-1072.
- 1283 51. Chan S, Conti F, Salisbury K, Blevins NH. Virtual reality simulation in neurosurgery:
 1284 technologies and evolution. *Neurosurgery*. 2013;72((suppl 1)):A154-A164.

- 1285 52. Alaraj A, Luciano CJ, Bailey DP, et al. Virtual reality cerebral aneurysm clipping
 1286 simulation with real-time haptic feedback. *Operative Neurosurgery*. 2015;11(1):52-58.
- 1287 53. Wilson MS, Middlebrook A, Sutton C, Stone R, McCloy RF. MIST VR: a virtual reality
- 1288 trainer for laparoscopic surgery assesses performance. *Ann R Coll Surg Engl.*
- 1289 1997;79:403-404.
- 1290 54. Gallagher AG, Lederman AB, McGlade K, Satava RM, Smith CD. Discriminative validity
- 1291 of the Minimally Invasive Surgical Trainer in Virtual Reality (MIST-VR) using criteria
- 1292 levels based on expert performance. *Surg Endosc*. 2004;18(4):660-665.
- doi:10.1007/s00464-003-8176-z
- 1294 55. Palter VN, Grantcharov TP. Simulation in surgical education. *Cmaj.* 2010;182(11):11911196.
- 1296 56. Pfandler M, Lazarovici M, Stefan P, Wucherer P, Weigl MJTSJ. Virtual reality-based
- simulators for spine surgery: a systematic review. *Spine J* . 2017;17(9):1352-1363.
- 1298 57. Ray WZ, Ganju A, Harrop JS, Hoh DJ. Developing an anterior cervical diskectomy and
- 1299 fusion simulator for neurosurgical resident training. *Neurosurgery*.
- 1300 2013;73(suppl_1):S100-S106.
- 1301 58. Vaughan N, Dubey VN, Wainwright TW, Middleton RG. A review of virtual reality based
 1302 training simulators for orthopaedic surgery. *Med Eng Phys.* 2016;38(2):59-71.
- 1303 59. Delorme S, Laroche D, DiRaddo R, Del Maestro RF. NeuroTouch: a physics-based virtual
 1304 simulator for cranial microneurosurgery training. *Neurosurgery J.* 2012;71:32-42.
- 1305 60. Ledwos N, Mirchi N, Bissonnette V, Winkler-Schwartz A, Yilmaz R, Del Maestro RF.
- 1306 Virtual reality anterior cervical discectomy and fusion simulation on the novel sim-ortho

- 1307 platform: Validation studies. *Operative Neurosurgery*. 2021;20(1):74-82.
- 1308 doi:10.1093/ons/opaa269
- 1309 61. Bakhaidar M, Alsayegh A, Yilmaz R, et al. Performance in a Simulated Virtual Reality
- 1310 Anterior Cervical Discectomy and Fusion Task: Disc Residual, Rate of Removal, and
- 1311 Efficiency Analyses. *Operative Neurosurgery*. 2023;0:1-10.
- 1312 62. Bernard TNJr, Seibert CE. Pedicle Diameter Determined by Computed Tomography: Its
- 1313 Relevance to Pedicle Screw Fixation in the Lumbar Spine. *Spine* . 1992;17(6):160-163.
- 1314 63. Matsukawa K, Yato Y, Imabayashi H. Impact of Screw Diameter and Length on Pedicle
- 1315 Screw Fixation Strength in Osteoporotic Vertebrae: A Finite Element Analysis. *Asian*
- 1316 *Spine J.* 2021;15(5):566-574. doi:10.31616/asj.2020.0353
- 1317 64. Steffee A, Biscup R, Sitkowski D. Segmental spine plates with pedicle screw fixation. A
- 1318 new internal fixation device for disorders of the lumbar and thoracolumbar spine. *Clin Or-*
- 1319 *thop Relat Res* . 1986;203:45-53.
- 1320 65. Roy-Camille R, Saillant G, Mazel C. Internal fixation of the lumbar spine with pedicle
 1321 screw plating. *Clin Orthop Relat Res* . 1986;203:7-17.
- 1322 66. Louis R. Fusion of the lumbar and sacral spine by internal fixation with screw plates. .
- 1323 *Clin Orthop Relat Res* . 1986;203:16-33.
- 1324 67. Merloz P, Tonetti J, Pittet L, Coulomb M, Lavalleé S, Sautot P. Pedicle screw placement
 1325 using image guided techniques. . *Clin Orthop Relat Res* . 1998;354:39-48.
- 1326 68. Gelalis I, Paschos N, Pakos E, et al. Accuracy of pedicle screw placement: A systematic
- 1327 review of prospective in vivo studies comparing free hand, fluoroscopy guidance and
- 1328 navigation techniques. . *Eur Spine J* . 2012;21(247):247-255.

1329	69.	Gonzalvo A, Fitt G, Liew S, et al. The learning curve of pedicle screw placement: how
1330		many screws are enough? . Spine (Phila Pa 1976). 2009;34:761-765.
1331	70.	Baird E, McAnany S, Overley S, Skovrlj B, Guzman J, Qureshi S. Accuracy of
1332		percutaneous pedicle screw placement: does training level matter? . Clin Spine Surg .
1333		2017;30(6):7748-7753.
1334	71.	Nicolas C, Brian Z, Danielle G, Mauricio S, Rachel MT. The Utility of Virtual Reality in
1335		Orthopedic Surgical Training. J Surg Educ. Published online 2022.
1336	72.	Luca A, Giorgino R, Gesualdo L, et al. Innovative Educational Pathways in Spine
1337		Surgery: Advanced Virtual Reality-Based Training World Neurosurg .
1338		2020;317(140):674-680.
1339	73.	Wang Z, Shen J. Simulation Training in Spine Surgery. Journal of the American Academy
1340		of Orthopaedic Surgeons. 2022;30(9):400-408. doi:10.5435/JAAOS-D-21-00756
1341	74.	Gardeck A, Pu X, Yang Q, Polly D, Jones K. The effect of simulation training on resident
1342		proficiency in thoracolumbar pedicle screw placement using computer-assisted navigation.
1343		. J Neurosurg Spine. 2021;34:127-134.
1344	75.	Gasco J, Patel A, Ortega-Barnett J, et al. Virtual reality spine surgery simulation: An
1345		empirical study of its usefulness Neurol Res . 2014;36:968-973.
1346	76.	von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational
1347		Studies in Epidemiology (STROBE) statement: guidelines for reporting observational
1348		studies. J Clin Epidemiol. 2008;61(4):344-349. doi:10.1016/j.jclinepi.2007.11.008
1349	77.	Lonner B, Auerbach J, Estreicher M, Kean K. Thoracic pedicle screw instrumentation: the

- 1350 learning curve and evolution in technique in the treatment of adolescent idiopathic
- scoliosis. . Spine (Phila Pa 1976). 2009;34:2158-2164. 1351

- 1352 78. Lee C, Hyun S, Kim Y, Kim K, Jahng T, Kim H. Accuracy of free hand pedicle screw
- 1353 installation in the thoracic and lumbar spine by a young surgeon: an analysis of the first 1354 consecutive 306 screws using computed tomography. Asian Spine J. 2014;8:237-243.
- 79. Karapinar L, Erel N, Ozturk H, Kaya A. Pedicle screw placement with a free hand
- technique in thoracolumbar spine: is it safe? . J Spinal Disord Tech . 2008;21:63-67. 1356
- 1357 80. Winkler-Schwartz A, Yilmaz R, Mirchi N, et al. Machine Learning Identification of
- 1358 Surgical and Operative Factors Associated With Surgical Expertise in Virtual Reality
- 1359 Simulation. JAMA Netw Open. 2019;2(8):e198363.
- 1360 doi:10.1001/jamanetworkopen.2019.8363
- Sawaya R, Alsideiri G, Bugdadi A, et al. Development of a performance model for virtual 1361 81. reality tumor resections. J Neurosurg. 2019;131(1):192-200. 1362
- doi:10.3171/2018.2.JNS172327 1363

1355

- 1364 82. Fazlollahi AM, Yilmaz R, Winkler-Schwartz A, et al. AI in Surgical Curriculum Design
- 1365 and Unintended Outcomes for Technical Competencies in Simulation Training. JAMA

Netw Open. 2023;6(9):e2334658. doi:10.1001/jamanetworkopen.2023.34658 1366

- 83. Mirchi N, Ledwos N, Del Maestro RF. Intelligent Tutoring Systems: Re-Envisioning 1367
- 1368 Surgical Education in Response to COVID-19. Canadian Journal of Neurological
- Sciences / Journal Canadien des Sciences Neurologiques. 2021;48(2):198-200. 1369
- 1370 doi:10.1017/cjn.2020.202
- 1371 84. Mirchi N, Bissonnette V, Yilmaz R, Ledwos N, Winkler-Schwartz A, Del Maestro RF. The
- 1372 Virtual Operative Assistant: An explainable artificial intelligence tool for simulation-based
- 1373 training in surgery and medicine. PLoS One. 2020;15(2):e0229596.
- 1374 doi:10.1371/journal.pone.0229596

- 1375 85. Chung KJ, Kim HN. Correction to: Use of a life-size three-dimensional-printed spine
- 1376 model for pedicle screw instrumentation training. *J Orthop Surg Res*. 2021;16(1):303.
- 1377 doi:10.1186/s13018-021-02429-y
- 1378 86. Lonstein J, Denis F, Perra J, Pinto M, Smith M, Winter R. Complications associated with
 1379 pedicle screws. *J Bone Joint Surg Am.* 1999;81:1519-1528.
- 1380 87. Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: a meta-analysis. . *Spine*1381 (*Phila Pa 1976*) . 2007;32:111-120.
- 1382 88. Kotil K, Bilge T. Accuracy of pedicle and mass screw placement in the spine without
 1383 using fluoroscopy: a prospective clinical study. . *Spine J* . 2008;8:591-596.
- 1384 89. Shi J, Hou Y, Lin Y, Chen H, Yuan W. Role of Visuohaptic Surgical Training Simulator in
- 1385 Resident Education of Orthopedic Surgery. *World Neurosurg*. 2018;111:e98-e104.
- doi:10.1016/j.wneu.2017.12.015
- 1387 90. Hou Y, Lin Y, Shi J, Chen H, Yuan W. Effectiveness of the thoracic pedicle screw
- placement using the virtual surgical training system: A cadaver study. . *Oper Neurosurg (Hagerstown)* . 2018;15:677-685.
- 1390 91. Ma C, Zou D, Qi H, et al. A novel surgical planning system using an AI model to optimize
- planning of pedicle screw trajectories with highest bone mineral density and strongest
- 1392 pull-out force. *Neurosurg Focus*. 2022;52(4):E10. doi:10.3171/2022.1.FOCUS21721
- 1393 92. Jia S, Weng Y, Wang K, et al. Performance evaluation of an AI-based preoperative
- 1394 planning software application for automatic selection of pedicle screws based on
- 1395 computed tomography images. *Front Surg.* 2023;10. doi:10.3389/fsurg.2023.1247527

- 1396 93. Fazlollahi AM, Bakhaidar M, Alsayegh A, et al. Effect of Artificial Intelligence Tutoring
- 1397 vs Expert Instruction on Learning Simulated Surgical Skills Among Medical Students.
- 1398 *JAMA Netw Open.* 2022;5(2):e2149008. doi:10.1001/jamanetworkopen.2021.49008
- 1399 94. Almansouri A, Abou Hamdan N, Yilmaz R, et al. Continuous Instrument Tracking in a
- 1400 Cerebral Corticectomy Ex Vivo Calf Brain Simulation Model: Face and Content
- 1401 Validation. *Operative Neurosurgery*. Published online January 8, 2024.
- 1402 doi:10.1227/ons.00000000001044
- Sawaya R, Bugdadi A, Azarnoush H, et al. Virtual Reality Tumor Resection: The Force
 Pyramid Approach. . *Oper Neurosurg (Hagerstown)* . 2018;14:686-696.
- 1405 96. Yilmaz R, Ledwos N, Sawaya R, et al. Nondominant Hand Skills Spatial and
- 1406Psychomotor Analysis During a Complex Virtual Reality Neurosurgical Task—A Case
- 1407 Series Study. *Operative Neurosurgery*. 2022;23(1):22-30.
- 1408 doi:10.1227/ons.00000000000232
- 1409 97. Azarnoush H, Siar S, Sawaya R, et al. The force pyramid: a spatial analysis of force
- application during virtual reality brain tumor resection. *J Neurosurg*. 2017;127(1):171-
- 1411 181. doi:10.3171/2016.7.JNS16322
- 1412 98. AlOtaibi FE, Bajunaid K, Winkler-Schwartz A, et al. Assessing Neurosurgical
- 1413 Psychomotor Performance- Role of Virtual Reality Simulators, Current and Future
- 1414 Potential. . SOJ Neurol . 2015;2:1-7.
- 1415 99. Evgeniou E, Loizou P. Simulation-based surgical education. ANZ J Surg. 2013;83:6191416 623.
- 1417 100. Downey A. VR surgical simulator first to receive Royal College accreditation, in Digital
 1418 Health. In: *Digital Health Intelligence Limited*. ; 2019.

- 1419 101. Mirchi N, Bissonnette V, Ledwos N, et al. Artificial Neural Networks to Assess Virtual
- 1420 Reality Anterior Cervical Discectomy Performance. *Operative Neurosurgery*.
- 1421 2020;19(1):65-75. doi:10.1093/ons/opz359
- 1422 102. Hoang L, Lee SH, Kwon KR. A 3D Shape Recognition Method Using Hybrid Deep
- 1423 Learning Network CNN–SVM. *Electronics (Basel)*. 2020;9(4):649.
- 1424 doi:10.3390/electronics9040649
- 1425 103. Ogiela MR, Tadeusiewicz R. Artificial intelligence structural imaging techniques in visual
- pattern analysis and medical data understanding. *Pattern Recognit*. 2003;36(10):2441-
- **1427 2452**.
- 1428 104. Bakhaidar M. Surgical Performance Analysis in a Simulated Virtual Reality Anterior
- 1429 *Cervical Discectomy and Fusion Task.* Master of Science (M.Sc.) (Thesis). McGill
 1430 University; 2021.
- 1431 105. McCloskey K, Turlip R, Ahmad HS, Ghenbot YG, Chauhan D, Yoon JW. Virtual and
- 1432 Augmented Reality in Spine Surgery: A Systematic Review. *World Neurosurg*.
- 1433 2023;173:96-107. doi:10.1016/j.wneu.2023.02.068
- 1434 106. Luciano C, Banerjee P, Florea L, Dawe G. Design of the immersivetouch: a high-
- 1435 performance haptic augmented virtual reality system. 11th International conference on
- human-computer interaction. In: *Las Vegas, NV*.; 2005.
- 1437 107. Luciano CJ, Banerjee PP, Bellotte B, et al. Learning retention of thoracic pedicle screw
- 1438 placement using a high-resolution augmented reality simulator with haptic feedback.
- 1439 *Operative Neurosurgery*. 2011;69(suppl 1):ons14-ons19.
- 1440 108. Luciano CJ, Banerjee PP, Sorenson JM, et al. Percutaneous spinal fixation simulation with
- 1441 virtual reality and haptics. *Neurosurgery*. 2013;72(Suppl 1):89-96.

- 1442 109. Alaraj A, Charbel FT, Birk D, et al. Role of cranial and spinal virtual and augmented
- reality simulation using immersive touch modules in neurosurgical training.
- 1444 *Neurosurgery*. 2013;72(suppl_1):A115-A123.
- 1445 110. Roitberg B, Banerjee P, Luciano C, et al. Sensory and motor skill testing in neurosurgery
- applicants: a pilot study using a virtual reality haptic neurosurgical simulator.
- 1447 *Neurosurgery*. 2013;73(suppl_1):S116-S121.
- 1448 111. Shi J, Hou Y, Lin Y, et al. Role of visuohaptic surgical training simulator in resident
 1449 education of orthopedic surgery. *World Neurosurg*. 2018;111:e98-e104.
- 1450 112. Hou Y, Shi J, Lin Y, et al. Virtual surgery simulation versus traditional approaches in
- training of residents in cervical pedicle screw placement. *Arch Orthop Trauma Surg.*2018;138:777-782.
- 1453 113. Hou Y, Lin Y, Shi J, et al. Effectiveness of the thoracic pedicle screw placement using the
 1454 virtual surgical training system: a cadaver study. *Oper Neurosurg (Hagerstown)*.
- 14552018;15:677-685.
- 1456 114. Xin B, Chen G, Wang Y, et al. The efficacy of immersive virtual reality surgical simulator
- training for pedicle screw placement: a randomized double-blind controlled trial. *World Neurosurg.* 2019;124:e324-e330.
- 1459 115. Xin B, Huang X, Wan W, et al. The efficacy of immersive virtual reality surgical simulator
 1460 training for pedicle screw placement: a randomized double-blind controlled trial.
- 1461International orthopaedics. Published online 2020:1-8.
- 1462 116. Reich A, Mirchi N, Yilmaz R, et al. Artificial Neural Network Approach to Competency-
- 1463 Based Training Using a Virtual Reality Neurosurgical Simulation. *Operative*
- 1464 *Neurosurgery*. 2022;23(1):31-39. doi:10.1227/ons.00000000000173

1465	117. Chen T, Zhang Y, Ding C, et al. Virtual reality as a learning tool in spinal anatomy and
1466	surgical techniques. North American Spine Society Journal (NASSJ). 2021;6:100063.
1467	doi:10.1016/j.xnsj.2021.100063
1468	
1469	Appendix
1470	
1471	Supplemental Digital Content 1. Methods. Simulated L4 & L5 pedicle screw placement
1472	scenario
1473	
1474	The TSYM Symgery platform, a virtual reality (VR) simulator, features a single haptic arm with
1475	interchangeable handles like the straight and Kerrison handles. Prior to performing pedicle screw
1476	placment, participants underwent two preparing tasks. Firstly, they completed a Dry Lab session
1477	followed by a simulated L2 laminectomy to acquaint themselves with the TSYM VR simulator.
1478	
1479	The Dry Lab session entailed an interactive demonstration of instrument handling using the
1480	haptic handle. Participants utilized the straight handle to execute tasks such as creating holes
1481	with an awl, removing spherical objects with a burr, and creating trajectories using the pedicle
1482	finder. Subsequently, participants transitioned to the Kerrison handle to simulate taking three
1483	bony bites.
1484	
1485	Upon successful completion of the Dry Lab, participants received verbal instructions for the L2
1486	laminectomy procedure they were required to perform, along with written guidelines. This
1487	simulation comprised one animated and four interactive steps aimed at enhancing surgical

realism. The animated scenario commenced with a pre-exposed surgical cavity where the
spinous process and interspinous ligaments were removed from the simulated patient's spine. The
interactive steps involved using a 4mm burr to thin the L2 lamina, detaching the ligamentum
flavum with an angled curette, utilizing a 4mm Kerrison to remove remaining lamina and resect
detached yellow ligament, and verifying complete removal of the ligamentum flavum laterally
on both sides using a Woodson.

1494

1495 Following the Dry Lab and L2 laminectomy tasks, participants received verbal and written 1496 instructions on performing pedicle screw insertions. Further instructions were provided for the main task: bilateral pedicle screw placement at L4 & L5 vertebrae. The simulation initiated with 1497 1498 an animated demonstration of dissected L4 & L5 vertebrae from a posterior approach. 1499 Participants adhered to a specific order for screw placement starting from left L5, progressing to 1500 left L4, right L5, and concluding at right L4. Each step was accompanied by a designated list of 1501 simulated instruments that participants had to verify before proceeding. Live fluoroscopy was 1502 available during the procedure to confirm entry points, insertion angulation, and screw placement 1503 accuracy. Tasks included creating an entry point at left L5 using an awl, channeling the pedicle 1504 with a pedicle finder, checking for breaches with a 2 mm ball tip probe, tapping the screw 1505 channel with a 5.5 mm tap, and inserting standardized 6.5 mm x 45 mm pedicle screws. At the 1506 conclusion of this scenario, the simulator generated a final 3D model illustrating all placed 1507 screws along with written feedback on participant performance.

1508

1509

 Table 1: Comparison between Gertzbein & Robbins classification and Heary classification of pedicle

 breaches ^{25,28}

	Gertzbein & Robbins ²⁷	Heary ²⁶			
	(G & R)				
Grades	A: no cortical breach in	Grade I: Screw fully contained within pedicle.			
	medial direction				
		Grade II: Lateral breach contained within the rib.			
	B: Breach <2 mm				
	_	Grade III: Anterior breach into vertebral body.			
	C: Breach 2-4 mm				
		Grade IV: Medial breach into spinal canal.			
	D: Breach >4 mm				
		Grade V: Breach requiring immediate screw			
	E: Breach >6 mm	removal due to proximity to critical structures.			
Limitations	Mainly consider	Lacks reliability assessment.			
	medial pedicle				
	breaches.	• While it takes direction into consideration, it			
		fails to categorize severity of pedicle			
	• Does not capture	breaches in each direction.			
	screws breaching the				
	vertebral body.				
Similarities	Both systems provide	a standardized way to assess pedicle screw			
	placement accuracy.				
	• Both classification systems are widely used in the literature to evaluate				
	pedicle screw placeme	nt.			

	Differences	• G & R focuses on the extent of breach in the medial direction measured
		in mm increments, while Heary considers the location and clinical
		significance.
		• G & R classification includes a specific threshold for unsatisfactory
		results (Grades C-E), while the Heary classification does not have a
		clear delineation.
		• G & R "safe zone" of >4 mm may not always apply, as Heary suggests
		some lateral breaches can be acceptable.
		• $G \& \mathbf{P}$ has different reliability in the racio vs. Lymbar spine, due to the
		relative differences in pedicle and screw sizes (I.e. a 2mm breach with a
		4.5mm screw in a small thoracic pedicle, is potentially more significant
		(almost 50% breach) than a 2mm breach for a 7.5mm screw in a large
		lumbar pedicle).
		• The Heary classification was developed specifically, and validated for,
		the thoracic spine, and has not been validated in the lumbar spine.
1510		
1511		
1512		
1513		
1514		
1515		
1516		
1010		
1517		

 Table 2: Summary of VR simulators used to train pedicle screw placement ^{104,105}

No	VR device	Simulator	Key publications	Advantages &	
		description		disadvantages of the	
				simulator	
1	ImmersiveTouch®	ImmersiveTouch®	Luciano et al	A dvantages:	
1	minicisive rouen®	minicisive rouene	Euclano et al	Advantages.	
		provide a high-	(2005,2011,2013)	1. Immersive	
		resolution	106–108	Experience: The	
		stereoscopic		simulator provides an	
		display and haptic	Alaraj (2013) ¹⁰⁹	immersive experience	
		feedback.		by offering both visual	
		Utilizing head and	Roitberg et al	and haptic feedback,	
		hand tracking	(2013) 110	allowing users to	
		through robotic		engage with the virtual	
		arms, the system	Gasco et al	environment in a more	
		computes the	(2014) ⁷⁵	realistic and intuitive	
		user's perspective		manner.	
		and movements		2. Performance Data	
		within the virtual		Recording : The	
		environment,		simulator can record	
		creating a highly		performance data,	
		immersive and		enabling skill level	

	realistic training		assessments and
	experience.		validation studies to be
	It simulates a wide		conducted.
	range of spinal	3.	Patient-Specific
	surgery scenarios,		Imaging Integration:
	such as pedicle		The simulator is
	screw placement,		capable of importing
	vertebroplasty,		patient-specific
	and lumbar		imaging studies into
	puncture.		the simulation training,
			enhancing the realism
			and relevance of the
			training scenarios.
		4.	Versatility in Spinal
			Procedures : The
			simulator can simulate
			multiple spinal
			procedures, including
			pedicle screw
			placement,
			vertebroplasty, and
			lumbar puncture,
			providing a

			comprehensive training	
			••••••••••••••••••••••••	
			platform.	
		5.	Widespread	
			Availability and	
			Study: The	
			ImmersiveTouch®	
			simulator is one of the	
			most widely studied	
			spine simulators,	
			making it a well-	
			established and	
			accessible tool for	
			spinal surgery training.	
		Di	sadvantages:	
		1.	Lack of Audio	
			Feedback: The	
			simulator does not	
			provide audio	
			feedback, which could	
			be a valuable addition	
			to enhance the overall	
			immersive experience.	
				2. Limited Validation
---	------------------	---------------------	---------------------------	--------------------------
				Studies: While the
				simulator is widely
				studied, there is a lack
				of validation studies
				specifically focused on
				the accuracy and
				effectiveness of the
				simulated spinal
				procedures.
2	Virtual Surgical	The Virtual	Shi (2018) ¹¹¹	Advantages:
	Training System	Surgical Training		1. Realistic Spine
	(VSTS)	System (VSTS) is	Hou&Shi (2018)	Model: The spine
		a virtual reality	112	model used in the
		(VR) simulator		simulated VR
		designed to	Hou&Lin (2018)	scenario of the VSTS
		provide training	113	is obtained from a
		for specific spinal		normal human spine,
		surgery		providing a realistic
		procedures,		anatomical
		including cervical		representation for
		spine drilling and		training purposes.

thoracic pedicle	2.	Attempted
screw placement.		Validation Studies:
The key features		While limited, the
of the VSTS		VSTS has had some
include the use of		validation studies
a screen to display		attempted, indicating
the virtual		efforts to ensure the
environment and a		accuracy and
robotic arm to		effectiveness of the
provide haptic		training platform.
feedback,		
allowing users to	Disa	dvantages:
experience the	1.	Lack of
tactile sensations		Comprehensive
associated with		Validation: Despite
the simulated		the attempted
procedures.		validation studies, the
		VSTS has not
		undergone
		comprehensive face,
		content, or construct
		validity assessments,
		which are crucial for

	-		
			ensuring the
			reliability and
			credibility of the
			training system.
		2.	Two-Dimensional
			Display with 3D
			Representation: The
			VSTS utilizes a two-
			dimensional screen to
			display a three-
			dimensional
			representation of the
			tissues, which may
			not provide the same
			level of immersion
			and depth perception
			as a true stereoscopic
			display.
		3.	Absence of Audio
			Feedback: The VSTS
			does not offer any
			audio feedback,
			which could be a

				valuable addition to
				enhance the overall
				training experience.
				4. Unclear
				Performance Data
				Recording : There is
				no available
				information regarding
				whether the VSTS
				records performance
				data, which could be a
				valuable feature for
				assessing trainee
				progress and
				providing feedback.
3	The immersive	The IVRSS-PSP	Xin (2019,2020)	Advantages:
	virtual reality	(Immersive	114,115	1. Immersive
	surgical simulator	Virtual Reality		Experience: The
	for pedicle screws	Surgical Simulator		IVRSS-PSP simulator
	placement.	for Pedicle Screw		integrates a heads-up
	(IVRSS-PSP)	Placement) is a		display (HUD) and
		virtual reality		haptic feedback to

	(VR) platform		provide an immersive
	designed		experience by
	specifically to		simulating the surgical
	simulate pedicle		procedure and the
	screw placement		surrounding operative
	procedure. The		environment.
	system utilizes a	2.	Realistic Spine Model:
	heads-on display		The spine model used
	(HUD) unit to		in the simulated VR
	allow the user to		scenario is obtained
	visualize the		from a normal human
	simulated surgical		spine, providing a
	procedure and the		realistic anatomical
	operative		representation for
	environment. To		training purposes.
	provide a more	3.	Realistic Surgical
	realistic and		Instrument: The
	immersive		simulated handle used
	experience, the		in the simulator was 3D
	IVRSS-PSP		printed according to the
	incorporates a		real surgical
	robotic arm that		instrument, enhancing
	delivers haptic		

	feedback, enabling		the fidelity of the
	the user to feel the		training experience.
	tactile sensations	4.	Attempted Validation
	associated with		Studies: While limited,
	the simulated		the IVRSS-PSP has
	procedure.		had some validation
			studies attempted,
			indicating efforts to
			ensure the accuracy
			and effectiveness of the
			training platform.
		Dis	sadvantages:
		Dis 1.	sadvantages: Lack of
		Dis 1.	sadvantages: Lack of Comprehensive
		Dis 1.	sadvantages: Lack of Comprehensive Validation: Despite the
		Dis 1.	sadvantages: Lack of Comprehensive Validation: Despite the attempted validation
		Di:	sadvantages: Lack of Comprehensive Validation: Despite the attempted validation studies, the IVRSS-
		Dis 1.	sadvantages: Lack of Comprehensive Validation: Despite the attempted validation studies, the IVRSS- PSP has not undergone
		Dis 1.	sadvantages: Lack of Comprehensive Validation: Despite the attempted validation studies, the IVRSS- PSP has not undergone comprehensive face,
		Dis 1.	sadvantages: Lack of Comprehensive Validation: Despite the attempted validation studies, the IVRSS- PSP has not undergone comprehensive face, content, or construct
		Dis 1.	sadvantages: Lack of Comprehensive Validation: Despite the attempted validation studies, the IVRSS- PSP has not undergone comprehensive face, content, or construct
		Dis 1.	sadvantages: Lack of Comprehensive Validation: Despite the attempted validation studies, the IVRSS- PSP has not undergone comprehensive face, content, or construct validity assessments, which are crucial for

			oncuring the reliability
			ensuring the reliability
			and credibility of the
			training system.
		2.	Unclear Data
			Recording
			Capabilities: There is
			no available
			information about what
			data could be recorded
			by the simulator, which
			could be a valuable
			feature for assessing
			trainee performance
			and providing
			feedback.
		3.	Limited Simulation
			Scope: The simulation
			is limited to pedicle
			screw placement, with
			no clear description of
			the simulated steps or
			available tools,
			potentially limiting the

					breadth of training
					opportunities.
4	Sim-Ortho ®	Sim-Ortho is a	Ledwos et al	Ac	lvantages:
		comprehensive	(2021) 60	1.	Comprehensive Data
		virtual reality			Recording: The Sim-
		(VR) simulator	Mirchi et al		Ortho simulator can
		designed for	(2020) 101		record a large amount
		orthopedic			of data, including 3D
		surgical training.	Alkadri et al		data of each user's
		Utilizing a voxel-	(2021)58		performance, providing
		based approach,			valuable insights for
		the simulator	Reich et al (in-		assessment and
		provides an	press) ¹¹⁶		feedback.
		immersive and		2.	Multifaceted
		realistic training	Bakhaidar et al		Procedure
		experience	(2023) 61		Simulation: The
		through the use of			simulator can simulate
		stereoscopic 3D			complex procedures,
		glasses, haptic			such as anterior
		feedback, and			cervical discectomy
		auditory feedback.			and fusion (ACDF),
		It offers a wide			allowing for

	range of simulated		comprehensive training
	scenarios,		in advanced spinal
	including anterior		surgery techniques.
	cervical	3.	Versatility in Spinal
	discectomy and		Procedures: The Sim-
	fusion (ACDF),		Ortho simulator can
	lumbar		simulate a wide range
	discectomy,		of spinal procedures,
	lumbar		including ACDF,
	laminectomy,		lumbar discectomy,
	lumbar and		lumbar laminectomy,
	thoracic pedicle		lumbar and thoracic
	screw insertion,		pedicle screw insertion,
	and cervical		and cervical lateral
	lateral mass screw		mass screw insertion.
	insertion.		
		Dis	sadvantages:
		1.	Single Robotic Arm:
			The simulator is
			limited to a single
			robotic arm, which may
			not provide the same
			level of dexterity and

			control as multiple
			robotic arms or a more
			advanced haptic
			interface.
		2.	Right-Handed
			Optimization : The
			Sim-Ortho simulator
			appears to be optimized
			for right-handed users,
			which may not be
			suitable for left-handed
			medical professionals
			or those who prefer to
			use their non-dominant
			hand for certain
			surgical tasks.
		3.	Lack of Validation for
			Other Procedures:
			While the ACDF
			scenario has been
			validated, the other
			spinal procedures
			simulated by the Sim-

				Ortho system have not yet undergone similar comprehensive validation studies, which could impact the overall reliability and
				effectiveness of the
				training prationin.
5	Custom VR	This VR simulator	Chen (2021) ¹¹⁷	Advantages:
	simulator	consists of a HUD		1. Realistic Spine Model:
		headset (that		The spine model used
		provides audio-		in the simulated VR
		visual simulation)		scenario is obtained
		and two		from patient specific
		controllers to		model, providing a
		interact with the		realistic anatomical
		simulated		representation for
		structures. The		training purposes.
		simulator is		
		designed to		Disadvantages:
		simulate pedicle		1. Lack of
		screws placement.		Comprehensive

	The user can use		Validation: This
	different tools to		custom VR simulator
	interact with soft		has not undergone any
	tissue and bone.		face, content, or
			construct validity
			studies, which are
			crucial for ensuring the
			reliability and
			credibility of the
			training system.
		2.	Limited Data
			Representation: The
			simulator does not
			provide a 3D data
			representation or any
			audio feedback, which
			could enhance the
			overall immersive and
			informative experience
			for the user.
		3.	Narrow Scope of
			Simulation: The
			custom VR simulator is

				limited to simulating
				only drilling and
				pedicle screw
				placement procedures.
				4. Unclear Data
				Recording
				Capabilities: There is
				no information
				available about whether
				the simulator records
				any performance data,
				which could be a
				valuable feature for
				assessing trainee
				progress and providing
				feedback.
6	TSYM Symgery	The TSYM	pending	Unfortunately, no available
	Virtual Reality	Symgery VR		literature to comment on
	Surgical Simulator	platform is a non-		the advantages or
		immersive virtual		disadvantages of the
		reality (VR)		simulator.
		simulator designed		
1				

for spinal surgery		
training. the		
system utilizes		
advanced haptic		
feedback		
technology and a		
robotic arm to		
deliver a realistic		
operative		
experience for		
users and records		
extensive datasets,		
including		
providing 3D		
models of the final		
procedural		
outcomes. TSYM		
Symgery VR		
platform has the		
capability to		
analyze and		
replicate complex		
spinal procedures		
	1	

such as	
laminectomies,	
pedicle screw	
placement and	
inter body fusion	
such as TLIF.	

Table 3. Demographics Inform	ation for 2 Groups of Participants	Performing the Virtual
Reality Surgical Task		-
	Skilled	Less Skilled
Age (years)		
Mean, SD	38.4 ± 8.1	29 ± 1.7
Sex		
Male	13(100%)	12(86%)
Female	0(0%)	2(14%)
Number	13	14
Level of training (n)		
Neurosurgery residents		
PGY 1		5
PGY 2		1
PGY 3		3
PGY 4		1
PGY 5	2	
PGY 6	3	
Orthopedic residents		
PGY 1		0
PGY 2		1
PGY 3		2
PGY 4		1
PGY 5	0	
Spine fellows		
Neurosurgical	2	
Orthopedic	1	
Spine surgeons		
Neurosurgeons	1	
Orthopedic surgeons	4	
Number of reported pedicle sc	rews inserted	
Average, SD	452±883.6	$0.5{\pm}1.4$
Median.	100 (10-3000)	0 (0-5)

1520 * PGY: Post Graduate Year

																P valu (Kruska Wallis test)
		А		В		С			D			Е			Total	,
Gertzbein and	Skilled n=13	35 (67.3%) 12 (23.		(23.1%)	4 (7.7%)			1 (1.9%)			0 (0.0%)		52	.093		
Robbins		А		В		С			D			Е			Total	-
	Less Skilled n=14	31 (55.4%)		11	(19.6%)	8 (14.3%	6)		6 (1	10.7%)		0 (0.0%)			56	
		1				2			3			4			Total	
	Skilled n=13	16 (34%)				15 (31.9%) 10 (21.3%)			6 (12.8%)			47	.045			
New 3D		1				2			3			4			Total	-
Classification	Less Skilled n=14	Less Skilled n=14 13 (25.5%)			11 (21.6%)			10 (19.6%)		17 (33.3%)			51			
	al 111 - 1	1	2A	2B	2C	2D	3A	3B	3C	3D	4A	4B	4C	4D	Total	
	skilled n=13	16 (34.0%)	13 (27.7%)	1 (2.1%)	1 (2.1%)	0 (0.0%)	6 (12.8%)	0 (0.0%)	4 (8.5%)	0 (0.0%)	6 (12.8%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	47	.042
New 3D Classification	Less	1	2A	2B	2C	2D	3A	3B	3C	3D	4A	4B	4C	4D	Total	
Detailed	Skilled n=14	13 (25.5%)	7 (13.7%)	4 (7.8%)	0 (0.0%)	0 (0.0%)	5 (9.8%)	2 (3.9%)	0 (0.0%)	2 (3.9%)	13 (25.5%)	1 (2.0%)	1 (2.0%)	2 (3.9%)	51	

Table 5: Gertzbein-Robbins Pedicle Breach Classification System

Breach class	Pedicle Breach in Medial Direction (mm)
Class A	No pedicle Breach
Class B	0 -2 mm Breach
Class C	2.1- 4 mm Breach
Class D	4.1- 6 mm Breach
Class E	>6 mm Breach
1525 1526	

Table 6 A: The New Pedicle Breach Classification in VR Setting (Simplified)

Breach class	% of pedicle screw diameter breaching the pedicle in any direction (medial, inferior, superior, or lateral)
Class 1	No pedicle Breach
Class 2	< 50 % Breach
Class 3	50 – 99% Breach
Class 4	Complete pedicle breach

Table 6 B: The New Pedicle Breach Classification in VR Setting (Detailed)

Breach class	% of pedicle	% of pedicle	% of pedicle	% of pedicle	Final
	screw	screw	screw	screw	classification
	diameter	diameter	diameter	diameter	
	breaching	breaching	breaching	breaching	
	Medial	Inferior	Superior	Lateral	
	Boarder	Boarder	Boarder	Boarder	
	(subtype A)	(subtype B)	(subtype C)	(subtype D)	
Class 1	No pedicle	No pedicle	No pedicle	No pedicle	1
	Breach	Breach	Breach	Breach	
Class 2	< 50 Breach	< 50 Breach	< 50 Breach	< 50 Breach	2 A, 2 B, 2
					C, 2 D
Class 3	50-99%	50-99%	50-99%	50-99%	3 A, 3 B, 3
	Breach	Breach	Breach	Breach	C, 3 D
Class 4	Complete	Complete	Complete	Complete	4 A, 4 B, 4
	pedicle	pedicle	pedicle	pedicle	C, 4 D
	breach	breach	breach	breach	

Figure 1: A TYSM Symgery virtual reality simulator showing the (1) robotic arm that utilizes advanced haptic feedback technology to provide tactile feedback to the user, (2) different tool handles utilized in the simulated scenario, (3) 3D monitor, (4) pedals for activating fluoroscopy, and (5) secondary monitor. B, the surgical view before starting the simulated L4-5 pedicle screw insertion procedure showing the virtual reality surgical field along with the fluoroscopy lateral and Anterior-Posterior X-ray images. C, the simulated task with a participant inserting left L5 pedicle screw. 3D, 3-dimensional.

- 1571 Figure 3: 3D illustrations of the new Proposed Pedicle Breach Classification System for Virtual
- 1572 Reality Simulation. Superior 3D views (left), inferior 3D views (middle) and lateral 3D views
- 1573 (right) of the 3D reconstructed vertebra including the screw positions for each of the 4 classes are
- 1574 shown.
- 1575