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Abstract 

  

Rapid identification of microbial and viral pathogens in clinical, veterinary and food 

laboratory settings remain challenging despite the availability of molecular typing methods, given 

that substantial resources are required to employ these methods on a routine basis. Over the past 

decade, the potential utility of Fourier transform infrared (FTIR) spectroscopy as a cost-effective 

technique for identification of microbial pathogens following routine culture has gained attention, 

although the feasibility of its routine implementation has yet to be fully addressed. While this 

culture-based approach cannot be extended to viral pathogens, a very limited amount of research 

has been reported on the detection of specific viral infections by FTIR analysis of various types of 

specimens. This thesis addresses the demonstration of FTIR spectroscopy for the identification of 

bacteria of veterinary or food safety importance and fungi, as well as its potential use as a screening 

method for SARS-CoV-2 infection employing saliva specimens. For the identification of cow 

mastitis-related bacterial pathogens, four spectral databases were developed by acquiring the FTIR 

spectra of isolates (n=582) grown on two growth media {tryptic soy agar (TSA) and Columbia 

blood agar (CBA)} using two modes of spectral acquisition {attenuated total reflectance (ATR) 

and transflectance (TR)}. Applying the prediction models developed for each of the four databases 

to a test set (n=98) yielded a rate of correct identification ranging from 96.91 to 93.81% at species 

level. To assess the capacity of FTIR spectroscopy for the identification of microbial pathogens, 

two databases were developed from different growth media and combined with FTIR sampling 

methods to predict the test sets. The latter results yielded high identification accuracy percentages 

from 98.98 to 92.78% for the four test sets at species level. Database interchangeability constructed 

using two commercially FTIR instruments from two different vendors was also assessed. Using 

the same database (n=361), the Summit Pro (ThermoFisher Nicolet, WI) FTIR (n=138) and the 

Cary 630 (Agilent Technologies, CA) FTIR spectrometer (n=305) achieved 99.5% and 96.2% at 

genus level, and 95.8% and 79.9% at species level, respectively. With regards to the change of 

growth culture medium, FTIR identification results were not affected at the species level 

identification. Also, the use of different FTIR instrument did not influence the results of 

identification at genus level. The identification of fungi has been challenging for decades even 

using molecular methods. Hence, the identification accuracy of Aspergillus spp. by quantitative 

real time polymerase chain reaction (RT-qPCR) and Matrix-assisted laser desorption/ionization-

time of flight mass spectrometry (MALDI-TOF MS) were compared to FTIR spectroscopy-based 

approach using an in-house built FTIR database that was enlarged with additional fungal strains 

for further validation studies. Correct identification rates of 71.30%, 52%, and 92.31% were 

obtained for RT-qPCR, MALDI-TOF MS, and FTIR spectroscopy, respectively. RT-qPCR could 

be more suitable for the identification of Aspergillus nigri and Aspergillus terrei; and MALDI-

TOF MS could be a good choice for identifying Aspergillus fumigatus and Aspergillus flavus; 

while FTIR spectroscopy provided correct identification rate of 96.6% using the enlarged database. 

Finally, due to the ongoing pandemic of coronavirus SARS-CoV-2 disease (Covid-19), the 

diagnostic efficacy of FTIR spectroscopy as a screening method was evaluated using 940 heat-
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inactivated saliva samples (418 RT-qPCR positive for Covid-19 and 522 RT-qPCR negative). 

Multivariate analysis methods including random forest, k-nearest neighbor (KNN), artificial neural 

network (ANN), and support vector machine (SVM) were used to develop algorithms for COVID-

19 screening based solely on changes in the infrared spectral profiles of the saliva specimens. An 

independent test set yielded sensitivity rates from 82.9% to 85.4, specificity rates from 82.4% to 

86.3%, accuracy rates from 84.8% to 85.9%, and precision rates from 79.6 to 83.4% from the KNN, 

ANN and SVM algorithms. This research study promoted FTIR spectroscopy as an alternative to 

molecular methods in the routine identification of microbial pathogens in the clinical setting.  
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Résumé 

 

L’identification rapide des pathogènes microbiens et viraux dans les laboratoires cliniques, 

vétérinaires et alimentaires reste difficile malgré la disponibilité des méthodes de typage 

moléculaire, étant donné que des ressources importantes sont nécessaires pour utiliser ces 

méthodes sur une base régulière. Au cours de la dernière décennie, l’utilité potentielle de la 

spectroscopie infrarouge à transformée de Fourier (IRTF) en tant que technique rentable pour 

l’identification des pathogènes microbiens après une culture de routine a attiré l’attention. Bien 

que cette approche fondée sur la culture ne puisse pas être étendue aux agents pathogènes viraux, 

un nombre très limité de recherches ont été rapportées sur la détection d’infections virales 

spécifiques par l’analyse IRTF de divers types d’échantillons. Cette thèse porte sur la 

démonstration de la spectroscopie IRTF pour l’identification des bactéries d’importance 

vétérinaire ou de sécurité alimentaire et des champignons, ainsi que sur son utilisation potentielle 

comme méthode de dépistage de l’infection par le SARS-CoV-2 à l’aide d’échantillons de salive. 

Pour l’identification des pathogènes bactériens liés à la mammite des vaches, quatre bases de 

données spectrales ont été développées en acquérant les spectres IRTF d’isolats (n = 582) cultivés 

sur deux milieux de croissance {gélose tryptique de soja (TSA) et gélose au sang Columbia (CBA)} 

en utilisant deux modes d’acquisition spectrale {réflectance totale atténuée (ATR) et transflectance 

(TR)}. L’application des modèles de prédiction développés pour chacune des quatre bases de 

données à un ensemble de tests (n = 98) a donné un taux d’identification correcte allant de 96,9 à 

93,8% au niveau de l’espèce. Pour évaluer la capacité de la spectroscopie IRTF pour 

l’identification des pathogènes microbiens, deux bases de données ont été développées à partir de 

milieux de croissance différents et combinées avec des méthodes d’échantillonnage IRTF pour 

prédire les ensembles d’essais. Ces derniers résultats ont donné des pourcentages élevés de 

précision d’identification de 99,0 à 92,8% pour les quatre ensembles d’essais au niveau de l’espèce. 

L’interchangeabilité des bases de données construites à l’aide de deux instruments IRTF 

commerciaux de deux fournisseurs différents a également été évaluée. En utilisant la même base 

de données (n = 361), le spectromètre IRTF Summit Pro (ThermoFisher Nicolet, WI) (n = 138) et 

le spectromètre IRTF Cary 630 (Agilent Technologies, CA) (n = 305) ont atteint 99,5% et 96,2% 

au niveau du genre, et 95,8% et 79,9% au niveau de l’espèce, respectivement. En ce qui concerne 

le changement de milieu de culture de croissance, les résultats de l’identification FTIR n’ont pas 

été affectés à l’identification au niveau de l’espèce. En outre, l’utilisation de différents instruments 

IRTF n’a pas influencé les résultats de l’identification au niveau du genre. L’identification des 

champignons a été difficile pendant des décennies, même en utilisant des méthodes moléculaires. 

Par conséquent, la précision d’identification d’Aspergillus spp. par réaction en chaîne de 

polymérase quantitative en temps réel (RT-qPCR) et la spectrométrie de masse à temps de vol par 

désorption/ionisation laser assistée par matrice (MALDI-TOF MS) ont été comparées à l’approche 

basée sur la spectroscopie IRTF à l’aide d’une base de données construite en interne qui a été 

élargie avec des souches fongiques supplémentaires pour d’autres études de validation. Des taux 

d’identification corrects de 71,3%, 52,0% et 92,3% ont été obtenus pour la spectroscopie RT-
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qPCR, MALDI-TOF MS et IRTF, respectivement. La RT-qPCR pourrait être plus appropriée pour 

l’identification d’Aspergillus nigri et d’Aspergillus terrei; et MALDI-TOF MS pourrait être un 

bon choix pour identifier Aspergillus fumigatus et Aspergillus flavus; tandis que la spectroscopie 

IRTF a fourni un taux d’identification correct de 96,6% en utilisant la base de données élargie. 

Enfin, en raison de la pandémie actuelle de coronavirus SARS-CoV-2 (Covid-19), l’efficacité 

diagnostique de la spectroscopie IRTF en tant que méthode de dépistage a été évaluée à l’aide de 

940 échantillons de salive inactivés par la chaleur (418 RT-qPCR positifs pour Covid-19 et 522 

RT-qPCR négatifs). Des méthodes d’analyse multivariées, y compris la forêt aléatoire, le k-plus 

proche voisin (KNN), le réseau neuronal artificiel (ANN) et la machine à vecteurs de support 

(SVM) ont été utilisées pour développer des algorithmes de dépistage de la COVID-19 basés 

uniquement sur les changements dans les profils spectraux infrarouges des échantillons de salive. 

Un ensemble de tests indépendant a donné des taux de sensibilité de 82,9 à 85,4%, des taux de 

spécificité de 82,4 à 86,3%, des taux de précision de 84,8 à 85,9 % et des taux de précision de 79,6 

à 83,4 % des algorithmes KNN, ANN et SVM. Cette étude de recherche a fait la promotion de la 

spectroscopie IRTF comme alternative aux méthodes moléculaires dans l’identification 

systématique des pathogènes microbiens en milieu clinique.  
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Contributions to knowledge 

The general objective of the research presented in this thesis was to assess the feasibility 

of creating a robust FTIR spectroscopic methodology for routine identification of pathogenic 

microorganisms that would accommodate interlaboratory variations in culturing procedures and 

FTIR instrumentation, Identification of bacterial pathogens using FTIR spectroscopy has been 

widely reported in the literature since the 1990s. While various sample handling methods and 

modes of spectral acquisition have been employed therein, limited studies have been reported 

involving direct comparison of the results obtained with different sample handling methods. In 

addition, there is a knowledge gap regarding the interchangeability of infrared spectral databases 

developed for the same microbial pathogens but grown on different types of general-purpose 

growth media; filling this gap would provide an indication of the permissible latitude in the growth 

conditions employed in the methodology. In contrast to the numerous research papers related to 

bacterial identification, studies on fungal identification by FTIR spectroscopy are scarce, 

warranting a comprehensive investigation encompassing molds and yeasts from diverse sources.  

Viral pathogens are not amenable to FTIR spectroscopic study, except when a high-intensity 

source of infrared light can be employed, commonly necessitating access to an infrared beamline 

at a synchrotron facility. The possibility of detecting viral infection in a human host by FTIR 

spectroscopic analysis of appropriate biofluids had been investigated in a very limited number of 

studies prior to the Covid-19 pandemic. However, the pressing need for rapid whole-population 

screening methods to control the spread of Covid-19, the highly infectious disease caused by the 

novel coronavirus SARS-CoV-2, raised the question of whether viral infection could be detected 

by FTIR spectroscopic analysis of saliva specimens.   

The challenges summarized above were addressed in the research presented in this thesis. 

The primary contributions to knowledge resulting from this research are listed below: 

 

1. Development and validation of an FTIR spectral database for the identification of 

common Gram-positive bovine mastitis pathogen. 

Common bovine mastitis-related pathogens were collected, and their FTIR spectra 

recorded and placed in an infrared spectral database. The spectra were subdivided into a 

training and a test set. Discrimination between the different genera and species within each 

genus within the training set was undertaken by a multi-tier pairwise approach using a 
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PCA-LDA algorithm. The test set then was used to validate the discrimination model and 

assess its predictive performance.  

2. Comparison of ATR and TR spectral acquisition modes for the identification of microbial 

pathogens by FTIR spectroscopy.  

Sample preparation steps required for spectral acquisition in the transmission mode 

represent a bottleneck in the conventional experimental procedure for microbial 

identification by FTIR spectroscopy. Transflection (TR) and attenuated total reflectance 

(ATR) are alternative modes of spectral acquisition that facilitate (TR) or eliminate (ATR) 

sample preparation, with each having additional advantages as well as inherent limitations. 

In the present work, a direct comparison of ATR-FTIR and TR-FTIR spectroscopy for the 

identification of Staphylococcus spp. and Streptococcus spp. at the species level was made 

by employing identical training and test sets. 

3. Comparison of different growth medium for the identification of microbial pathogens.  

Many studies have reported that the identification accuracy of FTIR spectroscopy for 

microbial identification is highly dependent on the growth media. Bovine mastitis- 

associated pathogens were grown on two different agar culture media (CBA and TSA) 

prior to spectral acquisition, and the performance of the classification models developed 

with each set of cultures was compared. Database interchangeability was also examined by 

comparing the predictive accuracy attained when applying the resulting classification 

models to test sets of samples grown on each of the two media.  

4. Evaluation of ATR-FTIR spectroscopy for the discrimination of foodborne pathogens at 

the species level. 

Infrared spectral databases comprising ATR-FTIR spectra of Escherichia coli, Salmonella 

spp., Listeria spp., and Shigella spp. isolated from food samples were created, and 

discrimination models were generated by HCA and PCA-LDA. Classification to the genus 

and species level was achieved for all genera, and spectral features serving as biomarkers 

were suggested for microbial differentiation. 

5. Investigation of interchangeability of spectral databases constructed using FTIR 

spectrometers from different manufacturer. 

Two commercial models of FTIR spectrometers (Summit, Thermo Nicolet, WI and Cary 

630, Agilent Technologies, CA) were employed to generate independent spectral databases. 
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The identification accuracy of microbial pathogens at the genus and species levels was 

established for each database. Database interchangeability was assessed by using the 

training sets from the two different spectrometer models for predicting both training sets. 

Genus-level classification could be achieved independent of the spectral database training 

set.  

6. Comparison of RT-qPCR, MALDI-TOF MS and FTIR spectroscopy for the accurate 

identification of fungi species.  

Aspergillus spp. identification has been challenging for decades. RT-qPCR, MALDI-TOF 

MS and FTIR spectroscopy were evaluated and compared for the accurate identification of 

Aspergillus spp., with the latter method being the most performant. 

7. Development and validation of a fungal FTIR database with molds and yeasts from 

different source. 

Mold and yeast strains isolated from clinical, food, and cannabis sources were collected to 

build a fungal FTIR database. The database was further validated, demonstrating accurate 

identification of strains regardless of the source of origin. 

8. Feasibility study of FTIR spectroscopy for Covid-19 diagnosis and development of a 

Covid-19 FTIR database. 

FTIR spectroscopy was evaluated as a novel tool for Covid-19 diagnosis using heat-

inactivated saliva specimens. Despite the complexity of the spectra of saliva, specific 

biomarkers were selected and used for the discrimination between Covid-19 negative and 

Covid-19 positive samples of saliva. 

9. Comparison of KNN, ANN and SVM algorithms for Covid-19 diagnosis using FTIR 

spectroscopy by heat-inactivated saliva. 

Three machine learning algorithms (KNN, ANN and SVM) were applied and compared 

for the discrimination between Covid-19 negative and Covid-19 positive samples of saliva 

based on differences in their FTIR spectra. Although all three algorithms yielded 

comparable discrimination between Covid-19 negative and Covid-19 positive samples of 

saliva, KNN showed a minor advantage over ANN and SVM with greater identification 

accuracy and model performance.  
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Chapter 1. Introduction  

 

1.1. General Introduction 

Identification of microbial pathogens is of utmost concern for public health and infection 

prevention and control. They are inevitably employed in many research fields including 

biotechnology, medicine, genetic engineering, forensic, food science, disease diagnosis, and others. 

Current conventional and gold standard methods used in a routine microbial diagnostic laboratory 

setting for the identification of microbial pathogens are based on phenotypic and genotypic 

methods, where the latter especially dedicated for epidemiological and surveillance purposes due 

to their higher sensitivity and specificity compared to phenotypic methods. However, these 

methods have long turnaround time, and are generally labor intensive, costly, and requires specific 

reagents.  

Presently, biophysical techniques such as Fourier-transform infrared (FTIR) spectroscopy 

and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF 

MS) have gained more attention as they are low in cost, non-destructive, rapid, and easy to use for 

microbial identification. Nonetheless, MALDI-TOF MS may experience difficulties in sub-species 

level typing since it relies primarily on ribosomal protein sequences. FTIR spectroscopy, on the 

other hand, generates spectra based on the absorption of infrared light by the different chemical 

components (lipids, proteins, polysaccharides) of the whole microbial cell. As the entire spectral 

fingerprint is generated, closely related species could be differentiated using FTIR spectroscopy. 

Samples of different genera and species can be examined to find specific spectral biomarkers for 

rapid and accurate identification by FTIR spectroscopy. Although infrared spectroscopy is mainly 

used for analytical chemistry purposes, it has been evaluated for microbial pathogen identification 

for decades. Compared to conventional phenotypic and genotypic methods, FTIR spectroscopy is 

versatile, fast, non-invasive, and non-destructive, and it requires no reagents. Additionally, FTIR 

spectrometers are simple to operate and may have the potential to be automated (depending on the 

sample handling configuration) and implemented on-site. This latter advantage could facilitate 

routine inspection of pathogens in the food, animal feed, medicinal and bioengineering industries, 

and could also allow medical physicians to prescribe efficient treatment in a timely manner. 

Combined with appropriate multivariate statistical analysis tools, FTIR spectroscopy could be 
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comparable and even competitive to the gold standard methods for the identification of 

microorganisms. However, it is important to note that the use of different brands of FTIR 

instruments, modes of spectral acquisition, sample preparation and handling techniques, growth 

media compositions, and chemometric algorithms in research studies can affect the accuracy of 

microbial identification by FTIR spectroscopy.  

In this doctoral research project study, we aimed to investigate the capabilities of FTIR 

spectroscopy for the identification of bovine mastitis-, food- and clinical-related microorganisms 

at species and strain level. In addition, following the sudden emergence of Covid-19, we were 

among several research groups worldwide to undertake an evaluation of the potential use of FTIR 

spectroscopy as a screening tool for Covid-19 while being the only group to base this work on the 

use of heat-inactivated saliva as biospecimen. We also attempted to standardize an FTIR 

spectroscopy-based methodology to expand the applicability of FTIR spectroscopy in a clinical 

microbiology laboratory setting. 

1.2. Research Rationale and Objectives 

 The general objective of the research is to evaluate FTIR spectroscopy for routine 

identification of microbial pathogens (bacteria, molds, and yeasts) and for the detection of viral 

infection in biofluid specimens from human subjects, using the detection of SARS-CoV-2 

infection in saliva specimens as a case study. The research aims to assess the capacity of FTIR 

spectroscopic methods to replace conventional methods of microbial identification or to be 

deployed in a pre-screening step to minimize the number of samples warranting costly genotypic 

analysis.  

1.2.1. Specific Objectives 

i. To create the first infrared spectral database dedicated to bovine mastitis-related pathogens 

and demonstrate its potential practical utility in diagnostic veterinary microbiology. 

ii. To compare ATR-FTIR and TR-FTIR spectroscopy for the identification of bovine 

mastitis-related pathogens. 

iii. To assess the interchangeability of spectral databases consisting of FTIR spectral profiles 

of the same microbial pathogens grown on two general-purpose agar media, namely, TSA 

and CBA, for the accurate identification of microbial pathogens by FTIR spectroscopy. 
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iv. To build a comprehensive spectral database comprising FTIR spectra of reference and 

wild-type strains of E. coli, Salmonella spp., Listeria spp., Shigella spp. 

v. To evaluate the capabilities of FTIR spectroscopy for the identification of E. coli, 

Salmonella serogroups, Listeria spp., and Shigella spp. using an in-house developed 

database. 

vi. To evaluate inter-instrument spectral database compatibility using two models of FTIR 

spectrometers from different manufacturers for the identification of microbial pathogens. 

vii. To compare FTIR spectroscopy-based approach to RT-qPCR and MALD-TOF MS 

identification methods for the identification of Aspergillus spp.  

viii. To create an infrared spectral dedicated to fungi by acquiring FTIR spectra of molds and 

yeasts from different sources for the accurate identification of fungal pathogens by FTIR 

spectroscopy  

ix. To create an infrared spectral database consisting of FTIR spectra of heat-inactivated saliva 

specimens (found to be Covid-19 positive and Covid-19 negative by RT-qPCR) for the 

development of a discrimination between the two diagnostic states by FTIR spectroscopy. 

x. To compare KNN, ANN and SVM algorithms for the effective discrimination between 

Covid-19 positive and Covid-19 negative saliva specimens based on FTIR spectra of the 

heat-inactivated specimens.  
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Chapter 2. Literature Review 

 

2.1. Introduction 

 The identification of microorganisms is crucial for a magnitude of research purposes 

related to disease diagnosis, vaccine development, food safety, food processing, and 

pharmaceutical industry. Microorganisms such as bacteria, fungi viruses and phages could have 

beneficial or detrimental impact on health and safety. Pathogenic bacteria are etiological agents 

associated with 350 million cases of foodborne diseases. Among them, virus such as coronavirus 

(Covid-19) is currently the most discussed topic in many conversations throughout the world with 

this once-in-a-century pandemic [1]. The World Health Report 1996 - Fighting disease, fostering 

development, published by WHO, states that infectious diseases are the world's leading cause of 

premature death. Of about 52 million deaths from all causes in 1995, more than 17 million were 

due to infectious diseases, including about 9 million deaths in young children. Up to half the 

world's population of 5.72 billion are at risk of many endemic diseases [2]. In addition, millions 

of people are developing cancers as a direct result of preventable infections by bacteria and viruses; 

in Canada, infectious disease cause more than 200 thousand deaths annually [3]. The health effect 

and economic cost cannot be measured, but it is well acknowledged that the global impact with 

regards of health, trade, trust and development is enormous. There are about 1400 known 

species of microorganisms that are pathogenic to human, including bacteria, fungi, yeast and 

viruses, accounting for less than 1% of the total number of known existing microbial species 

on the planet [2]. Although many microbes cause public health concerns, some are very 

important and are essential to produce antibiotics, hormones, supplements, amino acids, 

therapeutics, and many food byproducts, such as yogurt, bread, and cheese. Moreover, 

microorganisms are also used for sewage treatment, waste composting and biodegradable 

plastic, which are essential for our ecological system. Additionally, the microbiome, which is 

essentially all colonizing microorganisms present in a human being play an important role in 

keeping us healthy by controlling digesting and boosting our immune system. Knowing all the 

pros and cons of microbes, identifying the microorganism is fundamental in order to prescribe 

corresponding treatment, further understand its physiology, and other scientific purposes.  



5 

 

 The isolation, identification and classification of microorganisms are usually the first 

steps in microbiological studies. Hence, identification methods are inevitably employed in 

many research fields including biotechnology, medicine, genetic engineering, forensic, food 

science, disease diagnosis, and others. Current protocols used in conventional laboratories are 

generally based on diverse phenotypic and genotypic methods, where genotypic methods are 

especially used for epidemiological and surveillance purposes due to their higher accuracy 

compared to phenotypic methods. However, the time needed to identify the microorganisms 

employing genotypic methods could take days, which would potentially delay diagnosis or 

establish the origin of a foodborne outbreak. In addition of lacking speed, conventional 

genotypic methods are generally labor intensive, costly, and requires specific reagents [4]. 

 Recent development in spectroscopic-based analytical methods has led to a new era in 

identification of microorganisms. Fourier transform infrared (FTIR) spectroscopy is an 

analytical tool that generates a unique fingerprint-like spectrum of each microbial species. This 

feature makes FTIR spectroscopy a promising tool for microbial identification and 

classification in microbiology diagnostic laboratories. FTIR spectrometer comprises an IR 

energy source emitting a broad band of distinct wavelengths that passes through an 

interferometer that is responsible for modulating the IR wavelengths. The modulated IR beam 

then passes through the sample where distinct wavelengths are partially absorbed, and the 

remaining intensity is measured by an infrared detector, which is subsequently converted into 

a transmittance IR spectrum. This IR spectrum is the ratio of the intensity recorded in the 

presence of the sample against the intensity reaching the detector in the absence of the sample. 

Compared to conventional phenotypic and genotypic methods, FTIR spectroscopy is versatile, 

fast, non-invasive, reagent-less, and non-destructive. This analytical technique is cost-effective 

and could generate detailed information on all biomolecules of microorganism, such as lipids, 

proteins, carbohydrates, and nucleic acids with a minimal amount of sample, allowing 

microbiologists to identify the microorganism in matter of minutes based on the spectral 

difference between different microbial isolates [5]. Combined with appropriate multivariate 

statistical algorithms, FTIR spectroscopy results could be comparable to standard phenotypic 

and genotypic methods. Additionally, this technique is overall easy to operate with the potential 

of being fully automated and implemented on-site. This would facilitate routine inspection of 

microbial pathogens in food, feed, medicinal and bioengineering industries, and would also 
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allow medical physicians to prescribe efficient treatment in a timely manner. The speed and 

easiness of microbial identification using FTIR spectroscopy may even allow testing for SARS-

CoV-2 in order to prevent epidemiological outbreaks. This research aims to evaluate the ability 

of FTIR spectroscopy to identify and classify food-related microorganism at species and strain 

level, as well as its potential as diagnostic tool for SARS-CoV-2 virus using saliva as biospecimen. 

We attempted to promote FTIR spectroscopy as a potential cost-effective alternative diagnostic 

tool to genotypic method for the detection of Covid-19.  

2.2. Common Foodborne Pathogens 

 According to WHO, almost 1 in 10 people (600 million of the world population) suffer 

from foodborne disease yearly, causing 420 000 deaths. Nearly half of the deceased are children 

under the age of 5 [6]. Food safety is generally recognized as a major health burden concern 

only in low- or middle-income countries; but the fact is, foodborne disease is an important issue 

worldwide, and it has been challenged due to globalization of the food supply. Canada, for 

example, is a well-developed country, and its food is considered amongst the safest in the world. 

Yet, according to the Public Health Agency of Canada, 1 in 8 people (4 million Canadians) get 

sick each year from contaminated food [7]. Causes of these foodborne illnesses can be bacteria, 

viruses, parasites, toxins, metals, or prions. While most people fully recover from mild 

symptoms or no symptom, some people may have more severe and possibly long-term or 

permanent side effects, especially for those having health issue history and elderly or 

immunocompromised individuals, as well as pregnant women and their unborn children. In 

extreme cases, foodborne illnesses can be fatal. Over 240 deaths and 11,500 hospitalizations 

occur each year in Canada, and keeping in mind that these numbers are an underestimation of 

people getting sick, as not everyone might go see a doctor and get tested when not feeling well 

[7]. The estimated economical cost to due to foodborne illnesses and related deaths is 

approximately $12-14 billion per year in Canada [8]. Estimates of the economic costs associated 

with foodborne disease are important to inform public health decision making. In 2008, 57 cases 

of listeriosis and 24 deaths in Canada were linked to contaminated delicatessen meat from one 

meat processing plant. Costs associated with the cases (including medical costs, nonmedical 

costs, and productivity losses) and those incurred by the implicated plant and federal agencies 
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responding to the outbreak were estimated to be nearly $242 million Canadian dollars , and these 

numbers are likely just a conservative estimate [9].   

 In Canada, the leading causes of foodborne illnesses are Listeria monocytogenes (L. 

monocytogenes), Salmonella spp., Escherichia coli (E. coli), Campylobacter jejuni, Clostridium, 

Cyclospora, Hepatitis A, Shigella and Vibrio, with Staphylococcus spp. emerging as a public 

health concern in recent years [10]. In general, bacteria can be classified as Gram-positive or 

Gram-negative. This classification is based on the reaction to the Gram stain test, where Gram-

positive bacteria are violet, and Gram-negative bacteria pink due to their difference in cell wall 

composition. Despite some Gram-variable bacteria may be difficult to classy due to their 

variations in cell wall or other structural characteristics, Gram test is a useful tool and is still 

used in most laboratories as the first identification step. Gram-positives have cell walls 

composed mostly of peptidoglycan, which is responsible for the violet staining, whereas Gram-

negatives have only a thin layer of peptidoglycan plus an outer lipopolysaccharide membrane. 

This outer membrane of Gram-negatives serves as a protective layer, allowing them to be more 

resistant to antibiotics than Gram-positives [11]. Though both groups of bacteria can cause 

disease, they require different treatments. While most foodborne pathogens are Gram-negatives, 

such as E. coli and Salmonella spp.; Listeria spp. and Staphylococcus spp. are Gram-positive 

food pathogens that cause severe damage to human body with higher mortality rate. Other than 

bacteria and viruses, the increasing number of fungal infections attracts consideration for an 

accurate diagnostic tool for routine identification of fungi during outbreaks. The research 

described in the present work will be focused on E. coli, Salmonella spp., L. monocytogenes, 

Staphylococcus spp., and several food-related fungi. 

2.2.1. E. coli 

 E. coli is a Gram-negative, facultative anaerobic, rod-shaped bacterium of the genus 

Escherichia [12]. This is a large diverse group of bacteria that is commonly found in the gut of 

humans and warm-blooded animals. Enterohemorrhagic E. coli (EHEC), particularly serotype 

O157:H7, is a highly pathogenic subset of Shiga toxin-producing E. coli (STEC) that causes 

gastrointestinal illnesses, such as stomach cramps, vomiting, fever, aqueous or bloody diarrhea, 

kidney failure, and death [13]. Incubation period can range from 3 to 8 days, and most patients 

recover within 10 days. But in a small proportion of patients, particularly children and elderly, 
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the infection may lead to hemolytic-uremic syndrome (HUS), which is a potentially life-

threatening complication with a case-fatality rate ranging from 3-5% [14]. Global morbidities 

and mortalities in E. coli foodborne illness are high. In 2010, 321,969,086 cases of E. coli 

foodborne illness contributing to 16.1% of global foodborne diseases was reported, along with 

196,617 deaths due to E. coli which is 0.02% of global mortalities [14]. In Canada, E. coli is 

also one of the leading foodborne pathogens causing 88,000 illnesses, 925 hospitalizations, and 

17 deaths per year [7].  

 Cattles are recognized as the main reservoir for E. coli O157:H7, although other 

mammals like sheep, goats, chickens, deer, pigs have also been known to carry it. Meat may be 

contaminated during slaughter and processing, when the infected animal’s intestines or feces 

are in contact with the carcass. Ground meat is usually riskier because E. coli may be mixed 

within the meat in the grinding process. Other potential food source includes unpasteurized 

cheese and milk, fruits and vegetables, water, person-to-person contact. All these transmission 

routes mentioned above can be prevented by maintaining hygienic handling measures at all 

stages of the food chain. The strain E. coli O157:H7 differs from other E. coli since it is unable 

to ferment sorbitol, lack β-glucuronidase enzyme, and does not grow at temperature above 44℃ 

[15]. Hence, sorbitol MacConkey agar is very useful in the detection of E. coli O157:H7. 

Confirmation of E. coli isolates can be done by biochemical, enzymatic, or molecular method 

in hospitals.  

 Until recent years, serotype O157:H7 has been the top causative serotype of STEC 

related to foodborne illnesses. Nowadays, sporadic cases and outbreaks caused by non-O157 

STEC strains have increased significantly, and these strains are now responsible for 

approximately 64% of STEC each year, namely O26, O45, O103, O111, O121 and O145 [16]. 

A characteristic that non-O157 STEC strains share with O157, is that they generally possess 

the adhesin intimin, eae gene, which is a pathogenic marker for all EHEC [17]. 

2.2.2. Salmonella 

 Salmonella are Gram-negative, non-sporulating, facultative anaerobic and 

predominantly motile. Salmonella enterica subsp. enterica is the only one to cause illness in 

humans. There are over 2000 serovars in this subspecies, while serovars Typhimurium and 

Enteritidis are the two most common strains associated with foodborne illness which are non-
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typhoidal [18]. Salmonella is 1 of 4 key global causes of diarrheal diseases and contributes to 

1 in 4 hospitalizations of all foodborne illnesses in Canada [7], and is the leading cause of food 

poisoning in the EU [19]. One recent massive Salmonellosis in Canada occurred in 2010 

associated with headcheese [20]. Symptoms generally appear 5 to 72 hours after infection and 

last for 3 to 7 days without treatment, and include diarrhea, abdominal cramps, fever and 

vomiting. Reactive arthritis can also occur in 2-15% of Salmonella patients. Typhoid fever may 

be due to serovars Typhimurium and Paratyphimurium, which can, although not that common, 

be transmitted by food, and causes serious illness that may result in death [21].  

 Salmonella has been isolated from fruits and vegetables, eggs, chicken, pork, and even 

processed foods such as chicken nuggets, frozen pot pies, and nut butters. Pets, including cats, 

dogs, birds,and reptiles may also carry Salmonella [22]. Person-to-person transmission can also 

occur through fecal-oral route. Preventive measures for Salmonella are similar to other 

foodborne pathogens, which are to maintain proper hygienic habit and having control measures 

at all stages of the food chain. For most the part, treatment of salmonellosis includes rehydration 

and electrolyte replacement. Antimicrobial therapy is not recommended to avoid antimicrobial 

resistance.  

 In the last 20 years, there has been a worldwide emergence of multidrug-resistant 

phenotype among Salmonella serovars, especially for Salmonella serovar Typhymurium [22], 

alerting a need for a fast and specific diagnostic tool for identification at serovar level and for 

antimicrobial resistance susceptibility profile of Salmonella. For isolation, Rappaport-

Vassiliadis broth followed by plating on xylose lysine desoxycholate agar can be used, and 

multiplex polymerase chain reaction (PCR) assay was also successfully employed in identifying 

serovars of Salmonella [23]. Although labor intensive and costly, whole genome sequencing 

has also been used and can accurately predict the serovar level [24]. 

2.2.3. L. monocytogenes 

 L. monocytogenes is a Gram-positive, facultative anaerobic, non-spore forming bacterium 

that is recognized as a human pathogen with 17% case-fatality rate [25]. It causes a disease known 

as listeriosis, which is uncommon but potentially fatal, usually caused by food contamination. L. 

monocytogenes has 13 serotypes, where 1/2a, 1/2b, and 4b are those associated with the majority 

of foodborne infections [26]. L. monocytogenes causes a serious public threat throughout the world. 
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In the United States, an estimated 1,600 people get listeriosis, and about 260 die each year [27]. In 

Canada, listeriosis is the leading cause of deaths related to foodborne illness, contributing 33 to 

35% of known causes of foodborne deaths [7]. Symptoms may appear after 3 to 70 days after 

infection, and usually include fever and muscle aches. For people with weakened immune system, 

like elderly or immunocompromised individuals, L. monocytogenes can invade the central nervous 

system and cause meningitis or brain infection. Infection during pregnancy may lead to 

miscarriage, stillborn or infection of the newborn [25].  

L. monocytogenes can be found in soil, water and animals, but most human infections are 

due to consumption of contaminated food. It can be found in a variety of raw foods, such as raw 

milk, meat and vegetable, as well as in foods that become contaminated after processing, such as 

soft cheese, hot dogs and deli meat, while rare but deadly cases include contaminated caramel 

apples and cantaloupe [28, 29]. Unlike many other bacteria, it can thrive and reproduce in 

contaminated food stored in the refrigerator. Furthermore, increasing evidence suggests that this 

bacterium is able to persist in food processing plants for years or even decades [30]. Therefore, the 

safest way to prevent listeriosis is to cook thoroughly raw food, avoid unpasteurized milk products 

and keep raw food separate from cooked ones.  

There are several isolation methods that have been proven efficient for Listeria, such as 

FDA BAM and ISO 11290 methods, which involve enriched broth containing selective agents 

(acriflavin, naladixic acid and antifungal agent) and then plating onto selective agar (Oxford, 

PALCAM, MOX or LPM), and USDA and Association of Analytical Chemists (AOAC/IDF) 

method 993.12 with similar procedure with the former but have specific procedure for different 

type of food products [31]. For identification, the Christie, Atkins, Munch-Petersen (CAMP) test, 

antibody-based test such as ELISA and molecular typing techniques showed a high discrimination 

power for Listeria at species level [32]. 

2.2.4. Staphylococcus aureus (S. aureus) 

 S. aureus is Gram-positive, facultative anaerobic, non-spore-forming catalase-positive 

cocci. It was estimated that S. aureus causes 241 000 illnesses per year in the US, and costing $695 

per case: this pathogen cost more than $160 million annually in the US. The ingestion of S. aureus 

enterotoxin causes symptoms including vomiting, nausea, cramps and diarrhea [33]. The illness 

can be self-limiting, recovering within one or two days, or life threatening for some population 
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groups, such as infants, elderly and immunocompromised people. Among the nine identified 

staphylococcal enterotoxins, type A and D are responsible for the majority of the outbreak 

associated illnesses [30].  

 Humans are considered the main reservoir of S. aureus. It can be found abundantly on the 

skin and nasal cavity of healthy individuals. Food can be contaminated during preparation if the 

food handler is infected with S. aureus. Furthermore, S. aureus has also been found in air, dust, 

sewage, and water, due to its ability to survive for long periods of time in dry state [26]. A variety 

of food has been associated with S. aureus, including ground beef, pork sausage, ground turkey, 

salmon steals, oysters, shrimp, cream pies, milk, and delicatessen salads. Since staphylococcal 

enterotoxins are highly heat stable, and generally requires heating above boiling point for at least 

one minute for them to lose serological activity [34].  

 The enterotoxin can be detected using bioassay methods, molecular biology, or 

immunological techniques, and several molecular typing methods can be used in combination. 

Pulsed-field gel electrophoresis (PFGE) and spa typing can be used to trace the origin of S. aureus 

contamination [35]. Multilocus sequence typing (MLST) is another molecular typing method that 

has helped in providing insights into the population structure of S. aureus [36]. 

 S. aureus infection is also a major health concern in milking cows. S. aureus is responsible 

for around 5% to 70% of cow mastitis worldwide, causing 45% decrease in milk production per 

quarter, which highly impact the dairy sector and results in huge economical loss [37]. Not to 

mention the worldwide concern of methicillin resistant S. aureus (MRSA). Coagulase-negative 

Staphylococci (CoNS) are as pathogenic as S. aureus due to the upward prevalence of CoNS in 

bovine mastitis in the whole world [37]. Staphylococcus spp. cause many infections and health 

complications due to its combination of toxin-related virulence, invasiveness, targeting hosts, and 

antibiotic resistance. In addition to Staphylococcus spp., Corynebacterium spp., Enterobacter spp., 

Klebsiella spp., Streptococcus spp. and Trueperalla pyogenes are also found in intramammary 

infections of cows [38]. The Mastitis Pathogen Culture Collection in Canada contains more than 

16,000 bacterial isolates including those mentioned above, and some of these bacteria genus will 

be investigated in this research.  
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2.2.5. Fungi 

Fungi are eukaryotes, and as such, have a complex cellular organization. A typical 

fungal cell contains a true nucleus, mitochondria, and a complex system of internal membranes, 

including the endoplasmic reticulum and Golgi apparatus. Fungi differ from bacteria by the 

presence of chitin in their cell wall which could be identified in microscopic method throughout 

the use of lactophenol cotton blue stain. In brief, phenol acts as a disinfectant by killing the 

living fungi, lactic acid preserves the cell structure, and the cotton blue give color to the chitin 

present in the fungal cell wall making it visible and easier to interpret under microscope [39]. 

Gram stain is sometime used for fungi, especially yeasts, yet study has shown that intact yeast 

cells and broken ones may give completely different Gram stain result [40]. Fungi are broadly 

categorized into yeast, mold and mushroom, and part of this research will be focused on the 

accurate identification of several molds and yeasts.  

Molds are multicellular fungi that reproduce by the formation of spores in either an 

asexual process or by sexual reproduction. Many of them can produce several types of spores, 

depending on the growth condition. Spores are formed in large numbers and are easily dispersed 

through the air. Food could be contaminated by spores, and these spores can grow and reproduce 

in adequate environmental conditions. Yeasts are unicellular fungi and oval or round shaped 

that are much larger than bacterial cells. They reproduce by an asexual process called binary 

fission or budding [41]. Molds and yeasts are both fungi that are useful in several industrial 

applications including food, medication, and beverage. Saccharomyces cerevisiae, for instance, 

also known as baker’s yeast, is probably the most recognized for bread and wine production. In 

addition, some well-known species of fungi such as Aspergillus nidulans, Aspergillus flavus, 

Aspergillus glaucus, Aspergillus oryzae, Aspergillus nomius, Penicillium griseofulvum, 

Bjerkandera adusta, Phanerochaete chrysosporium, Cladosporium cladosporioides, and some 

other saprotrophic fungi, such as Pleurotus abalones, Pleurotus ostreatus, Agaricus bisporus 

and Pleurotus eryngii help in the bio-degradation of plastics, and therefore play an important 

role in our ecological system of helping degrading plants and animals. On the other hand, they 

are also responsible for food spoilage which is very commonly seen in households like rotten 

tomatoes and moldy bread. While the low pH of fruits is not optimal for bacterial growth, yeasts 

and molds live happily in it and cause spoilage. Although most of the fungi could be digested 

with no health complication, intoxication or adverse chronic effect could arise from the 
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presence of alfa-toxins produced by some fungal species. Among 1.5 million fungal species, 

approximately 300 are able to cause illnesses ranging from allergic reactions to life-threatening 

disease [42]. Mycotoxins, the secondary metabolites synthesized by fungi, are well known to be 

harmful to human and animals targeting kidney, liver, immune system and some are carcinogenic 

[43]. Although health consequences of mycotoxins have been relatively well described, the 

insignificant number of hospitalizations related to fungi contaminated food consumption may 

be due to underestimation of number of people being ill directly or indirectly due to ingesting 

molds and yeasts. 

Many yeast species are naturally present in the environment and in human skin. Candida 

sp., for instance, are the most frequently isolated bloodstream pathogen in the United States, and 

the most common cause of fungal urinary tract infections [34]. However, even though yeast are 

opportunistic pathogens, some of them could be useful in food industry. Taking Debaryomyces 

hansenii as an example, this yeast is used for the fermentation of barrel-aged beers, but it is also 

known as Candida famata, which accounts to 2% of invasive candidiasis cases [44]. Yarrowia 

lipolytica or Candida lipolytica is capable of metabolize triglycerides and fatty acids as carbon 

source. This feature led it to be widely used in food industries for the production of citric acid and 

γ-decalactone [45]. Despite its expanding use in biotechnology, some yeast species have been 

recently found as an opportunistic pathogen that cause infections in premature newborns, 

immunocompromised and critically ill patients [46]. For example, among Trichosporon species, 

Trichosporon asahii has been recognized in causing candidiasis in clinical presentation and in 

histopathologic appearance [47]. Other fungal species such as Mucor racemosus havs also been 

recorded to cause disease in human. Despite causing opportunistic infection in diseased patients, 

Mucor species has been famous for its intense application in producing industrial enzymes. In the 

clinical field, yeast is also useful to study multidrug resistant and its anti-inflammatory activity of 

its secondary metabolites [48]. Geotrichum sp. consist over 100 species, in which most of them 

are desirable and are used for making cheese. Yet, Saprochaeta capitata and Saprochaeta clavata 

were all infection-causing species with high mortality previously classified under this genus [49]. 

Other environmental fungi such as Cladosporium species and Penicillium commune have not yet 

been reported to cause disease to human although they are often found as spoilage mold on cheese 

and vegetable [50]. One thing to note about Penicillium commune, is that this fungus produces 

both cyclopiazonic acid and regulovasine A and B as its main mycotoxins [51]. Even though no 
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case of infection has been reported to be caused by these fungi, long term exposure to large amount 

of any mold and mycotoxins may cause adverse health effects. Moreover, infections with 

microfungi resistant to antifungal drugs are an increasing concern. Accurate strain identification 

is therefore crucial to prescribe timely treatment and to perform further investigation. 

Just like bacteria, fungi can be isolated and identified using different phenotypic and 

genotypic method. Conventional fungal identification is based on morphological and physiological 

test. Since these methods are time consuming, numerous DNA-based methods have been 

developed and used in conjunction with conventional methods in the clinical laboratory [52].  

Despite being labor intensive and costly, PCR, 18S rRNA and 28S rRNA have shown to be 

promising genotypic methods for fungal identification. However, some of these commercially 

available methods may still provide limited result accuracy due to their limited database sequence 

[53].  

2.3. Saliva as Diagnosis Biospecimen for SARS-CoV-2 (Covid-19) 

Most laboratory diagnostic tests require collection of patients’ specimens from the upper 

respiratory tract (e.g. nasopharyngeal and oropharyngeal swab), as well as lower respiratory 

specimens (eg. sputum or endotracheal aspirate or bronchoalveolar lavage), in addition to blood, 

feces, and urine [54]. Nevertheless, these collecting techniques may cause sneezing or coughing 

of the patient, increasing the exposure risk of healthcare staff to the disease, especially for highly 

infectious viruses like SARS-CoV-2. Moreover, these invasive colleting techniques are considered 

uncomfortable for patients as it may cause occasional bleedings that lead to further complications. 

In fact, a three-day-old baby and a one-and-a-half-year-old child died after inserting nasal swab to 

take samples for Covid-19 testing [55, 56]. On the other hand, saliva specimens have been reported 

with significant advantages. They are stable for diagnostic purpose for 24 hours in room 

temperature and for a week at 4℃ without coagulation [57]. Furthermore, saliva samples can be 

stored at -80℃ and still remain useful for scientific investigation [58]. Saliva can be easily self-

collected by patients at home, without patient discomfort and minimizing the exposure of 

healthcare staff in the context of Covid-19. Saliva can be considered as the best specimen for 

diagnosis on humans from an ethical point of view. Since it is non-painful and non-stressful for 

patients, saliva collection can be used in large scale or epidemiological studies. Another thing 

worth mentioning is that saliva collection would waste less gloves and personal protection 
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equipment than collecting other body fluid specimens. In general, saliva collection technique is a 

stable and non-invasive method lower in cost, lower in risk of cross-contamination, possibility of 

being self-collected, easy to obtain, and needless of trained healthcare staff for collection.  

Saliva has an important fraction made up of proteins, lipids, carbohydrates, salts, and non-

protein nitrogen, although it is composed mainly of water. Saliva is excreted by major salivary 

glands, such as the parotid glands, submandibular glands, and sublingual glands. The salivary 

glands are surrounded by abundant capillaries, blood, and acini, and they have high permeability 

which allow them to exchange molecules. Therefore, some biomarkers in the blood can be 

ultimately secreted in saliva. It is well documented that saliva harbors a wide range of circulatory 

components, including minerals, electrolytes, buffers, enzymes and enzyme inhibitors, RNA and 

DNA, growth factors and cytokines, immunoglobulins, mucins and other glycoproteins [59]. The 

secretion and composition of saliva depend highly on the gland from which saliva is secreted, as 

well as the individual’s age, gender, and type of stimulating factor [60, 61]. Body condition could 

also be reflected from the saliva. Emerging technologies have disclosed an increasing variety of 

diseases to be able to diagnose using saliva. Nowadays, successful diagnosis of bacterial, viral or 

fungal origin infections, as well as cardiovascular diseases, cancers such as breast, lung and 

pancreas cancer, gastrointestinal diseases, autoimmunological diseases, and developmental and 

genetic diseases using saliva specimens have been well documented [62-64]. 

During the (SARS-CoV) pandemic in 2003, saliva was already the focus of research for its 

use in diagnostic field in respiratory infections. Wang et al. examined samples of saliva and throat 

wash of 17 SARS patients and found that SARS-CoV RNA at highest amounts in saliva for all 

patients. Moreover, the authors were able to detect the presence of the virus in saliva samples at 

early stages even before the appearance of lung lesions, suggesting transmission by oral droplets 

by asymptomatic patients [65]. In another study involving rhesus macaques, after intranasal 

inoculations with SARS-CoV, the virus was detected in oral swabs of all animals, a few in lungs, 

but none in blood. This experiment suggests that coronavirus might appear in saliva before the 

infection reaches the lungs due to direct salivary gland infection [66]. Despite the little sample 

size, both studies indicated saliva collection as an accurate technique for the screening of SARS-

CoV. In the identification of respiratory viruses, influenza, and respiratory syncytial virus, the 

diagnostic validity of saliva samples was reported to be comparable to nasopharyngeal swabs, 

demonstrating a 93% concordance to nasopharyngeal swabs with 90.8% sensitivity and 100% 
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specificity. In addition, coronavirus was detected only in saliva but not in nasopharyngeal aspirate 

for some patients. The authors of this study indicated that saliva can be used for the detection of 

respiratory viruses in sub-clinically infected patients. At the end, they assessed the average cost 

and time spent for the analysis of saliva samples and nasopharyngeal swabs and found that 

analyzing saliva samples was 2.26 times faster and 2.59 times cheaper, suggesting their use in bulk 

diagnosis and in research investigations [67].  

 The same scenario was observed with SARS-CoV-2. Several studies indicated that saliva 

samples have higher viral load or lower RT-PCR cycle threshold value compared to 

nasopharyngeal swab samples [68, 69]. In a study including 76 patients, Liu et al. showed that 

patients with severe symptoms tend to have higher viral load in saliva than patients with milder 

disease [70]. Asymptomatic patients also have detectable viral RNA in their oropharynx for at 

least five days, and more than 50% of asymptomatic patients had viral RNA detected in their saliva 

[71]. Key to the suitability of saliva as a specimen for Covid-19 screening is the presence of 

angiotensin-converting enzyme 2 (ACE2). 

ACE2 is a vital protein that is critical to regulate normal body mechanism, such as blood 

pressure, wound healing and inflammation [72]. However, ACE2 also serves as the key cell-

surface receptor in the human body for SARS-CoV-2. Similar to most other viruses, SARS-CoV-

2 invades the host cells by attaching to the surface by recognizing the host cell surface receptor. 

The spike protein on the surface of SARS-CoV-2 binds easily to the host-cell receptor ACE2, 

providing the entry point for the virus to invade the host cells. ACE2 is present in many tissues 

including lungs, esophagus, colon, heart, blood vessels, kidney, liver, and bladder [73]. Several 

studies have shown that ACE2 is also present in salivary glands and the tongue. Expression of 

ACE2 in oral buccal and gingival tissue was found from paracarcinoma normal tissue. The same 

paper pointed out that ACE2 was highly enriched in epithelial cells of the tongue and also in 

epithelial cells, T cells, B cells, and fibroblasts of oral mucosa [74]. In another animal study 

involving rhesus macaques, ACE2 was expressed in epithelial cells lining minor salivary gland 

ducts, where the epithelial cells could also be detected in the sinonasal cavity, oral cavity, pharynx, 

larynx, trachea, and lungs [66]. Noteworthy, it was shown that the minor salivary glands express 

higher levels of ACE2 than that in the lungs. This latter statement suggests that the oral cavity is 

very susceptible to infection and that the salivary glands could be a major source of the virus in 

saliva. Furthermore, the same research group discovered that ACE2 epithelial cells of minor 
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salivary gland ducts were the first target cells for SARS-CoV-2 and that they attached to host cells 

as early as 48 hours after infection [66]. When the SARS-CoV-2 virus binds to ACE2, it prevents 

ACE2 from performing its normal function to regulate angiotensin II (ANG II) signaling. In the 

absence of ACE2 acting as brake for ANG II signaling, more ANG II are available to injure tissues 

[75]. Although viral load tends to be lower before symptom onset, SARS-CoV-2 RNA can be 

detected in the saliva before lung lesions emerge [76]. Table 2.1 summarized several studies 

investigating saliva and nasopharyngeal swab samples, as well as their comparison based on 

sensitivity and specificity, where it shows that the positive rate of SARS-CoV-2 detection in saliva 

can be up to 100%. Therefore, the confirmation of ACE2 expression in the epithelial cells of the 

salivary glands makes saliva a promising human specimen for SARS-CoV-2 detection 

investigation. 

Saliva also contains important biomarkers that could serve as a basis for detection of 

SARS-CoV-2. Antibodies including immunoglobulin A (IgA), IgG and IgM are released in saliva 

and serve as important biomarkers for the physiological changes in saliva. Although IgG and IgM 

are lesser in quantity than IgA, oral mucosal transudate obtained by swabbing buccal mucosa and 

tongue provides a richer source of antibodies IgG and IgM, including those against bacterial and 

viral pathogens [77]. Furin is an enzyme that is highly expressed in lung tissue and detected by 

immunostaining in human tongue epithelia, possibly providing a gain-of-function to infectivity of 

SARS-CoV-2. In the human body, furin activates many proprotein substrates including pathogenic 

agents, growth factors, receptors, and extracellular matrix proteins [78]. It has been previously 

identified that furin is implicated in viral infections by cleaving viral envelope glycoproteins, 

enabling the virus to further invade the host cells. A furin-like cleavage site in the spike protein of 

SARS-CoV-2 has been identified, and several studies demonstrated the critical role of the furin 

cleavage site insertion in SARS-CoV-2 replication and pathogenesis [79, 80]. The aforementioned 

biomarkers are those that have been well studied during the course of the Covid-19 pandemic, 

other salivary biomarkers having the potential for SARS-CoV-2 diagnosis include alanine 

aminotransferase, C-reactive protein, neutrophil, lactate dehydrogenase, and serum urea [81]. 

The presence of all these biomarkers in saliva infected by SARS-CoV-2 has led to a 

stronger focus on saliva sample collection for the diagnosis of COVID-19. Several research studies 

evaluated the diagnostic efficiency of saliva compared with nasopharyngeal swabs and their results 

are summarized in Table 2.1. Most of the studies reported high concordance with nasopharyngeal 
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swab diagnostic results, and no statistically significant difference was observed between 

nasopharyngeal or sputum specimens regarding viral load. The low concordance rate in sensitivity 

is probably due to differences in the clinical background, such as difference in sampling method, 

sampling tools, and the different sampling time in each study. In fact, higher viral loads were 

detected in the early morning versus bedtime, and several studies reported reducing viral load in 

saliva with time [69, 71, 82-85]. Cough-out saliva from throat is mainly sputum from the lower 

respiratory tract, and hence may provide a more accurate specimen for virus detection instead of 

saliva fluid secreted from the opening of salivary gland canals [86]. All these studies suggested 

saliva could be a reliable non-invasive specimen for the diagnosis and viral load monitoring of 

SARS- CoV-2. In brief, the advantages of using saliva as specimen for virus detection include 

avoiding the discomfort of patients during sample acquisition, the potential of self-collection of 

specimens outside of hospital, decrease of the infection risk of healthcare workers, and the cost-

effectiveness compared to traditional nasopharyngeal swab. Furthermore, using saliva as 

diagnostic specimen enlarges the possibility of using strategies other than direct detection of the 

viral pathogen RNA. Alternatives would be the detection of important biomarkers such as 

antibodies, cytokines, chemokines, and other bio-analytes [87]. With the background of knowing 

the reformation of biomolecules in saliva that will develop once in contact with the SARS-CoV-

2, FTIR spectroscopy may demonstrate high effectiveness as a rapid diagnostic method by 

identifying the presence of SARS-CoV-2 based on the molecular concentration and composition 

change in saliva.  

In fact, several authors have demonstrated FTIR spectroscopy as an effective tool for the 

detection of SARS-CoV-2 and suggested its use as a pre-screening method prior to genotypic 

method. Biofluids including saliva, nasopharyngeal swab, and blood were employed as samples 

for Covid-19 detection, with saliva as the most used specimen, possibly due to ease of collection. 

With regards to FTIR sampling preparation technique used for the detection of Covid-19, most of 

studies applied ATR accessory except one study used transflectance mode. Furthermore, several 

different chemometrics algorithms were combined to FTIR spectroscopy and compared to each 

other. As the use of spectroscopic technique in the diagnosis of Covid-19 is recent, it is no wonder 

researchers were trying multiple approaches to reach the best conclusion. Most of these studies 

were able to achieve high rate of correct identification, despite using different analytical methods 

and relatively low number of samples (n < 300 for most), with the exception of one study using 



19 

 

over 1000 samples [88]. Nevertheless, the dataset of the latter study included a number of 

unbalanced healthy and Covid-19 positive population [88]. Another issue is the inconsistency of 

the collection method. While Barauna et al. used saliva cotton swab for spectral acquisition, 

Martinez et al. used self-collected saliva in sterile tube of fasting patients eight hours prior to saliva 

collection [88, 89]. On the other hand, without giving prior instructions, Nascimento et al. and 

Wood et al. asked for self-collected saliva, with the former in sterile tube, and the latter in viral 

transport medium [90, 91]. The non-uniformity saliva collection technique limits the parallel 

comparison of results among these studies. Yet the fact they all reached a high prediction rate 

implies the effectiveness of FTIR spectroscopy in the diagnosis of Covid-19. Recent studies of 

Covid-19 detection using FTIR spectroscopy are summarized in Table 2.2. 
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Table 2.1. Recent clinical findings using saliva as biospecimen for COVID-19 detection compared to nasopharyngeal swab. 
Population Method Result reported Ref. 

 

Number 

(m/f) 

Mean age 

(range) 

25 (17/8) 61.5 (39-85) Drooling technique used 

for saliva collection 

SARS-CoV-2 was detected in all 25 patients’ salivary sample. 
 

[92] 

2 (2/0) 64 and 71 Pipetted saliva and 

drooling techniques, 

respectively 

They both had negative respiratory swab test, but positive salivary samples at the same 

time. 

[93] 

119 53.5 (33.7-

73.3) 

Drooling technique used 

for saliva collection.  

They recorded a high sensitivity (93%) and a specificity of 42% of the rapid test saliva. 

57% of the false positive cases had their saliva positive also when analyzed with rRT-PCR, 

which means that the virus was actually present and that the nasopharyngeal swab was less 

sensitive in these cases.  

[94] 

15 N/A Saliva 5/15 positive in saliva samples. Possibly a higher viral load in saliva. [95] 

70  N/A Self-collected saliva 80.0% tested positive with swabs and 68.6% with saliva. 

Thirty-four participants (48.6%) tested positive 

on both swab and saliva samples 

[96] 

27 29 (16-60) Saliva SARS-CoV-2 RNA was detected in 20/27 (74%) available saliva; 7/11 (64%) in the 

asymptomatic and 13/16 (81%) in the symptomatic group (P=0.56). 

[97] 

31 

(15/16) 

60.6 (18-86) Stimulated salivary 

collection by gentle 

massage of salivary 

gland.  

13 cases tested positive for viral nucleic acid extraction. Out of the 13 cases, 4 tested 

positive for nucleic acid extraction of saliva  

For critically ill patients, saliva has a higher potential for detection of SARS-CoV-2 (75%, 

3 out of 4). 

[98] 

58 

(28/30) 

38 (31-52) Posterior oropharyngeal 

saliva 

84.5% (49/58) tested positive in both nasopharyngeal swab and saliva, 10.3% (6/58) tested 

positive in nasopharyngeal swab only, and 5.2% (3/58) tested positive in saliva only.  

[68] 

1 N/A Self-collected saliva Viral load of 3.3 × 106 copies/mL (pooled nasopharyngeal and throat swabs) and 5.9 × 106 

copies/mL (saliva). 

[86] 

32 

(16/16) 

41 (34-54) Saliva 25/32 positive in saliva samples. 

Saliva in non-ICU and ICU patients took 13.33±5.27 and 16.50±6.19 days separately to 

converse to negative. 

[99] 

1 (0/1) 27-day-ol 

neonate 

Saliva The SARS-CoV-2 was detected in all of the neonate’s 

clinical specimens, including blood, urine, stool, and 

saliva along with the upper respiratory tract 

specimens.  

 

  

[82] 
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11 6.5 (27-day-

old-16-years-

ol) 

Saliva 8 (73%) tested positive. 

Positivity in saliva samples was 80% in week 1 but dropped sharply to 33% in week 2 and 

11% in week 3. 

[100] 

368 

(195/173) 

35 (18-75) Self-collected specimen, 

spitting in tubes 

Positive agreement between NPS and saliva was 93.8%. Negative agreement was 97.8% 

for NPS versus saliva 

[101] 

16 (6/10) 18-61 

(interquartile 

range 22.75-

53) 

Posterior oropharyngeal 

saliva 

Overall trend of lower Ct values from specimens collected in the early morning, with a 

gradual decrease of viral load towards nighttime, but reaching statistical significance only 

when compared with the specimens collected at bedtime. Eight out of 13 subjects had a 

higher viral load in the early morning than the rest. 

[84] 

10 69 (30-97) Self-collected specimen, 

spitting in tubes 

SARS-CoV-2 was detected in 8/10 patients in both nasopharyngeal and saliva samples, 

and in either sample only in 2/10 patients. The overall concordance rate of the virus 

detection was 97.4% (95%CI, 90.8-99.7). 

[85] 

53 

(32/21) 

63 (27-106) Self-collected specimen, 

spitting in tubes 

Sensitivity was 89% for nasopharyngeal swabs and 77% for saliva. 

Of 53 patients with paired specimens tested, 47 (89%) had at least one positive specimen. 

In 31 (66%) of these 47 patients, both nasopharyngeal swab and saliva were positive, in 11 

(23%) only the nasopharyngeal swab was positive, and in 5 (11%) only saliva was 

positive. 

[102] 

35 N/A Pure saliva 33/35 positive by NPS (sensitivity = 94.3 %) and 30/35 by pure saliva 

(sensitivity = 85.7 %), for an overall agreement of 117/124 (94.4 %). 

[103] 

95 

(26/69) 

42 (19-85) Posterior oropharyngeal 

saliva 

Overall agreement (95% CI) 78.9%. [104] 

45 N/A Throat saliva 40% (18/45) for all sample sensitivity; 53.8% (14/26) for high viral load samples [105] 

156 

(90/66) 

47.8 Saliva, not sputum 47/49 samples were positive in saliva compared with the nasopharyngeal swab, resulting in 

a positive percent agreement of 96% (95% CI, 86.02% to 99.5%). A total of 105/106 

samples had a negative saliva and NPS result, resulting in a negative percent agreement of 

99% (95% CI, 94.86% to 99.98%). 

[106] 

44 N/A Self-collected saliva 34 (77.3 %) had both samples positive, 3 (6.8 %) were only positive in saliva sample, and 

7 (15.9 %) with only positive NP swabs. Saliva samples detected 37/44 (82.2 %) patients, 

while the NP swabs detected 41/44 (93.2 %) patients  

[107] 

34  N/A Saliva Positive and negative agreement with third-party laboratory results were reported as 97.1% 

and 96.5-98.2%, respectively. Limit of detection was established at 5 copies/μL. Stability 

through simulated shipping conditions found 100% concordance up to 56 hours after 

collection. 

[108] 

103 

(66/37) 

46 (18-87) Self-collected specimen, 

spitting in tubes 

All patients with severe disease (16/16, 100%) tested positive for viral RNA in their saliva, 

while 58 of 72 (78.4%) patients with mild disease tested positive (P 0.064). 

[71] 

149 

(46/103) 

40 (33-48.5) Self-collected spitting, 

avoiding sputum 

The sensitivity and specificity of RT-PCR using saliva samples were 94.4% (95% CI 86.4–

97.8) and 97.62% (95% CI 91.7–99.3), respectively. There was an overall high agreement 

(96.1%) between the two tests. 

[109] 

200 

(69/231) 

36 (28-48) Saliva sample voiding 

coughs 

The sensitivity and specificity of the saliva sample RT-PCR were 84.2% (95% CI 60.4%–

96.6%), and 98.9% (95% CI 96.1%–99.9%), respectively. An analysis of the agreement 

[110] 
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between the two specimens demonstrated 97.5% observed agreement (κ coefficient 0.851, 

95% CI 0.723–0.979; p < 0.001) 

39 

(14/25) 

44 (18-82) An enhanced saliva 

specimen (strong sniff, 

elicited cough, and 

collection of 

saliva/secretions) 

Of the 216 patients, there was a 100% positive percent agreement (38/38 positive 

specimens) and 99.4% negative percent agreement (177/178 negative specimens). 

[111] 

160 

(160/0) 

27 (18-36) Self-collected deep throat 

saliva sample 

The detection rate for SARS-CoV-2 was higher in saliva compared to nasopharyngeal 

swab testing (93.1%, 149/160 vs 52.5%, 84/160, p<0.001). The concordance between the 

two tests was 45.6% (virus was detected in both saliva and NPS in 73/160), while 47.5% 

were discordant (87/160 tested positive for one while negative for the other). 

[112] 

18 N/A Self-collected specimen, 

spitting in tubes 

Saliva was positive for 15/18 patients, with a sensitivity and specificity of 83.3% and 

99.1% 

[113] 

84 

(45/39) 

44 (20-79) Rinse out saliva Clinical sensitivity of nasopharyngeal specimens were 85%, throat 80%, midturbinate 

62%, and saliva 38%-52%. 

[114] 

1 (1/0) 71 Sefl-collected specimen, 

spitting in tubes 

Early morning saliva specimens were more likely to show positive results than those 

obtained later in the day. 

[115] 

12 (7/5) 62.5 (37-75) Self-collection of 

coughed out saliva  

Specimens collected after 

median of 2 days of 

hospitalization. 

  

SARS-CoV-2 (2019-nCoV) detected in the initial saliva samples of 11 out of the 12 

patients (91.7%).  

Median viral load in first available specimens: 3.3 × 106
 copies/ mL. Viral load found to be 

highest in earliest available saliva specimens (83.3%).  

[116] 

23 

(13/10) 

62 (35-75) Saliva sample by cough-

ing and clearing the 

throat early morning 

before breakfast 

 

Salivary viral load was highest during the first week after 

symptom onset and subsequently declined with time 

[117] 

32 N/A Saliva 32 samples were found positive for both saliva and nasopharyngeal swab samples (N+S+), 

while 138 were negative for both (N−S−). 15 samples were positive for nasopharyngeal 

swab samples and negative for saliva samples (N+S−), and 11 samples were positive for 

saliva samples and negative for nasopharyngeal swab samples (N−S+). Overall, saliva and 

nasopharyngeal swab samples displayed 86.7% concordance with kappa coefficient as 

0.625.  

[118] 

39  

 

 

N/A Self-collected saliva The SARS-CoV-2 was detected in saliva specimens of 

33/39 patients (84.6%; 95% CI: 70.0–93.1%). 

The SARS-CoV-2 was detected in 1 saliva specimen 

among 50 PCR negative nasopharyngeal swabs. 

The viral load of nasopharyngeal swabs is higher than that 

of saliva. 

[69] 
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95 

(57/38) 

36 (4-92) Posterior oropharyngeal 

saliva 

The overall negative and positive percent agreement were 76.0% (95% CI 70.2–80.9%), 

65.4% (95% CI 55.5–74.2%), 85.2% (95% CI 77.4–90.8%). Better positive percent 

agreement was observed in POPS-NP specimen obtained within 7 days (96.6%, 95% CI 

87.3–99.4%) compared with after 7 days of symptom onset (75.0%, 95% CI 61.4–85.2%). 

[119] 

38 

(21/17) 

59 (23-91) Saliva SARS-CoV-2 was detected from the saliva but not in the nasopharyngeal swabs from eight 

matching samples (21%); while SARS-CoV-2 was detected only from nasopharyngeal 

swabs and not saliva from three matched samples. 

[120] 

1 (1/0) 44 Saliva The viral RNA was detected in multiple types of specimens with extremely high titers in 

the saliva. 

[121] 

1924 N/A Saliva the sensitivity of RT-PCR using nasopharyngeal and saliva specimens were 86% and 92%, 

respectively, with specificities greater than 99.9%. The true concordance probability 

between them is 0.998 

[122] 

2 (0/2) 46 and 65 Self-collected saliva The viral load was the highest in the nasopharynx (patient 1 = 8.41 log10 copies/mL; 

patient 2 = 7.49 log10 copies/mL), but it was also remarkably high in the saliva (patient 1 = 

6.63 log10 copies/mL; patient 2 = 7.10 log10 copies/mL) 

[123] 

15 N/A Oral swab Out of 15 COVID-19 patients, 8 had positive oral swab (53.5%). [83] 

65 

(40/25) 

54 (39.5-62) Patients produced saliva 

by coughing three to five 

times (wearing a mask) 

and spitting into a sterile 

container  

 

37 out of 42 (88.09%) salivary samples detected SARS-CoV-2 as compared with the 

detection rates of throat swabs (45.24%, 19/24), and nasal swabs (76.19%, 32/42). 

Significantly higher viral loads were detected in saliva samples as compared with throat 

swabs. 

[124] 
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Table 2.2. Recent studies using FTIR spectroscopy for the detection of Covid-19. 
Sample No. of samples FTIR 

technique 

Analysis method Result reported Ref. 

Saliva 61 negatives, 20 

positives 

ATR-FTIR GA-LDA 95% sensitivity and 89% specificity [89] 

Saliva 99 negatives, 138 

positives 

ATR-FTIR URF, GA-LDA, SPA-LDA, PLS-DA, PSO-PLS-

DA, consensus class 

85% accuracy, 93% sensitivity, and 

83% specificity 

[90] 

Saliva 1209 negatives, 255 

positives 

ATR-FTIR Mann–Whitney test, Kruskal–Wallis test, MLRM 99.6% accuracy, 99.2% sensitivity, 

and 100% specificity 

[88] 

Saliva 28 negatives, 29 

positives 

Transflection-

FTIR 

Monte Carlo Double Cross Validation 93 % sensitivity and 82% specificity [91] 

Blood serum 11 negatives, 26 

positives 

ATR-FTIR PLS, RF, SDT, DNN 96.30%–100% sensitivity and 

91.67%–100% specificity 

[125] 

Blood plasma 160 positives (69 

severe, 91 non-

severe) 

ATR-FTIR PLS-DA 94.1% sensitivity and 69.2% 

specificity (classification of 

severeness) 

[126] 

Blood serum 20 negatives, 76 

positives 

ATR-FTIR HCA, PCA, PLS-DA 87% sensitivity and 98% specificity [127] 

RNA extract of 

nasopharyngeal 

swab 

180 negatives, 100 

positives 

ATR-FTIR PCA, PLS, Logistic regression, SVM, Kernel 

SVM, DA 

97.8% accuracy, 97% sensitivity and 

98.3% specificity 

[128] 

Nasopharyngeal 

swab 

92 negatives, 151 

positives 

ATR-FTIR PLS, KNN 84% and 87% sensitivity, 66% and 

64% specificity, and 76.9% and 

78.4% accuracy 

[129] 

(ATR-FTIR: Attenuated Total Reflectance Fourier Transform Infrared; GA-LDA: Genetic Algorithm Linear Discriminant Analysis; URF: Unsupervised Random Forest; LDA: 

Linear Discriminant Analysis: SPA-LDA: Successive Projection Algorithm Linear Discriminant Analysis; PLS-DA: Partial Least Squares Discriminant Analysis; PSO-PLS-DA: 

Particle Swarm Optimization Partial Least Squares Discriminant Analysis; MLRM: Multiple Linear Regression Model; RF: Random Forest; SDT: Single Decision Tree; DNN: 

Deep Neural Networks; HCA: Hierarchical Cluster Analysis; PCA: Principal Component Analysis; SVM: Support Vector Machine; KNN: K-Nearest Neighbor
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2.4. Identification Methods 

In depth understanding of the major pathogens, their incidence and their major routes of 

infection, health officials will be able to implement preventive measure and provide thorough 

surveillance that could highly improve food safety. Identification of pathogens at the species 

level is essential to improve infection control during outbreaks. Therefore, a rapid, cost-

effective, and accurate identification method for microbial pathogens in clinical settings and 

food industry is essential. In general, bacteria identification methods can be grouped into three 

categories: (1) phenotypic method, (2) genotypic method, and (3) spectroscopic method. 

2.4.1. Phenotypic method 

 Phenotypic methods are the traditional method of microbial identification. Nowadays, 

although genotypic methods have been implemented in most laboratories, conventional 

phenotypic methods remain as the first identification method to proceed in diagnostic laboratory 

due to their low costs and little training of the personnel required. Phenotypic methods allow 

identification to the genus and species level, depending on the type of bacteria and the test used. 

In most cases, phenotypic identification uses a combination of more than one method. In broad, 

phenotypic methods can be classified into three categories, biotyping, serotyping, and phage typing. 

 In biotyping, bacterial cell’s physiological aspects, such as colony and cell morphology, 

Gram’s stain, cell wall and membrane composition, catalase test and a lot more are investigated. 

Morphological investigation can be performed by light and electron microscopy, providing 

information on membrane composition and flagella [130]. Environmental growth conditions can 

also be monitored, including different pHs, temperature, salt tolerance, oxygen requirement, 

antibiotic resistance, and bacteriocins susceptibility [131]. Among the tests mentioned above, 

fatty-acid composition of bacteria is stable and has been used to identify bacteria at the genus and 

species level. After bacteria growth, the fatty acids are extracted, and the methyl esters are 

determined by gas chromatography [132]. Another recent biochemical method, chromogenic 

substrates, utilizes specific enzymatic activities targeting different bacteria are increasingly used 

in clinical and food microbiology laboratories for the detection and identification of 

microorganisms. The incorporation of such substrates into a selective or non-selective growth 

medium does not need any further biochemical test, and can readily identify certain bacteria, such 

as Bacillus spp., E. coli., Staphylococcus spp., Streptococcus spp., and yeast [133-137].  
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 Serotyping is an immunoassay based on the agglutination of bacteria, namely antibody-

antigen reactions, that can be employed to detect unique cellular determinants of specific 

microorganisms. One of the standard serotyping methods is enzyme-linked immunosorbent assay 

(ELISA). It is extensively used for Salmonella spp., E. coli and Campylobacter spp., and also 

several Gram-positive bacteria, such as Listeria spp. [138-140]. Serotyping can also target toxins, 

showing ability to detect botulinum neurotoxins [141].  

 Phage typing is based on the ability of a given bacterial phage to lyse bacteria cells. It is 

usually used to discriminate between Salmonella strains of the same serovar. This method can be 

used in a single or a mixed culture, as host specificity allows both detection and identification. 

However, ambiguous lysis reaction is a major drawback, and the assay requires careful 

coordination between reference laboratories to ensure reproducibility. In addition, this method is 

limited to the number of available phages [142]. 

Identification is done by the determination of the biochemical profile of a microorganism. 

Numerous multi-test system equipment is available in the market making phenotypic identification 

method fast and reliable, although these techniques require pure bacterial culture. The inoculation 

method, incubation time, and test reading techniques may lead to identification errors if specific 

procedures were not followed. The active pharmaceutical ingredient (API) strip is an example of 

a commercialized phenotypic identification system. The API system consists of strips of micro-

tubes containing different kinds of dry substrates, and the reaction of the unknown with the 

substrates can be observed after incubation. This instrument was further refined with the use of 

Vitek automated system that miniaturized the process [143]. Biolog Inc. offers a second 

phenotypic identification system. The fundamental unit in this system is a 96-well plate that has 

different carbohydrate sources in each well, with a tetrazolium redox dye. If the microorganism is 

able to degrade the carbohydrate substrate, the well changes color [144]. Other commercially 

available kits include Crystal TM, and BD Phoenix TM. Most identification kits are simple to 

perform, but the interpretation of results could be subjective. Another limitation of phenotypic 

methods is that they are not always able to identify the bacteria down to the species and strain level. 

Mutating strains might show completely different physiological characteristics. In case of an 

outbreak, where the aim is to determine gene sequence, genotypic (molecular) methods could be 
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a better alternative to phenotypic methods in order to establish the identity of a microorganism and 

to perform epidemiological research. 

Another phenotypic method that is worth mentioning is Matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Since 2010, the 

identification of bacterial pathogens has been revolutionized by its introduction, and this is now 

the method of choice for bacterial identification in most advanced clinical laboratories. MALDI-

TOF MS uses the mass of proteins profile present in a microorganism as a signature for its 

identification, through the comparison of the mass spectrum from an unknown to a mass spectral 

reference database of well-defined microorganisms. MALDI-TOF-MS gained more attention as 

their ability to identify microorganisms at species level in a rapid and cost-effective manner. In 

MALDI-TOF MS, the sample is deposited within a matrix. After absorbing energy from ultraviolet 

light (nitrogen laser light, wavelength 337 nm), resulting a rapid heating, vaporization and 

ionization of a small part of the surface of matrix together with the sample. Since all ions are given 

the same kinetic energy, the time for ions to reach the detector defers based on their mass-to-charge 

ratio by the law of conservation of energy [145]. 

MALDI-TOF MS is based on ribosomal proteins detection, which generate a fingerprint 

spectrum, so called peptide mass fingerprint (PMF). For the identification purpose, PMF of the 

unknown is compared to a database, and assigned to the identity that the spectrum matches the 

most. In a comparison study, MALDI-TOF MS outperformed API and Automated Reading and 

Incubation System 2x System (ARIS) [146]. Another comparative study reported that MALDI-

TOF MS showed significantly better performance (93.2%) over BD Phoenix (BD Diagnostic 

Systems, France) (75.6%) and Vitek-2 (bioMerieux, Marcy l’Etoile, France) (75.2%) for the 

identification of 234 CoNS belonging to 20 different species [147]. Despite showing 90% accuracy 

for clinical bacteria and fungal identification at species level, the robustness and discriminatory 

power highly depend on a unified protocol, such as sample preparation and data analysis. Yet, 

inherent difference in peak intensity or location tend to persist on the mass spectrum, due to 

acquisition time, environmental factors, and differences in devices or laboratories. Moreover, 

MALDI-TOF-MS may experience difficulties in identifying species with a low rate of differences 

in their ribosomal protein sequences. The most problematic identifications encountered include 

the viridans Streptococci and Pneumococci, the pathogenic Shigella spp., the commensal E. coli, 
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and anaerobic bacteria. Viridans Streptococci and Pneumococci were misidentified mainly due to 

an incomplete database reference library [148]. However, it remains challenging for MALDI-TOF 

to differentiate closely related species of Streptococcus, such as S. pneumoniae, S. mitis, and S. 

parasanguinis, and bacteria having almost identical mass spectrum, such as E. coli and Shigella 

[149]. Interestingly, FTIR spectroscopy has shown to correctly discriminate Shigella sonnei and 

E. coli O157:H7, due to the fact that FTIR acquire spectra over a broader range of biomarker 

features than MALDI-TOF MS [150]. FTIR spectroscopy is more known in its use for routine 

quantitative analysis such as adulteration and authentication of food [151]. However, FTIR 

spectroscopy has shown to have advantage over MALDI-TOF MS for bacteria identification in 

food sample, despite the fact MALDI-TOF MS is more widely recognized for identification. 

Schabauer et al. obtained 100% correct species identification rate for FTIR spectroscopy, and 90.5% 

for MALDI-TOF in the identification of Streptococcus spp. [152]. Currently, MALDI-TOF MS 

has shed light for other spectroscopic method, like FTIR spectroscopy and Raman spectroscopy, 

to be recognized as a diagnostic tool. Raman spectroscopy is also used to for identification of 

microorganisms. This instrument depends on a change in polarizability of a molecule and measures 

the relative frequencies in which a sample scatters radiation. However, the high potential of FTIR 

spectroscopy may outperform or provide similar accuracy to MALDI-TOF MS and Raman, with 

a significantly lower cost. 

2.4.2. Genotypic method 

 Although phenotypic methods are preferred due to their low costs, the expression of 

microbial phenotype, including cell size and shape, cellular composition, antigen, biochemical 

activity and antimicrobial sensitivity is dependent on the media and growth medium used. In 

contrast, genotypic methods are used for the microbial genome study by exploring the genetic 

material in order to differentiate among closely related strains. Hence, the application of molecular 

biology techniques based on DNA or RNA analysis, are less subjective, less dependent on culture 

conditions, and more reliable [153]. Genotypic methods are considered nowadays as the ‘gold 

standard’ for identification due to their high level of accuracy.  

 Genotypic methods allow microbiologists to study gene expression of bacteria, typing 

species and subspecies that were previously thought to be indifferent from other species within the 

genus, for instance, the re-classification of Enterobacter sakazakii into a new genus, Citrobacter 
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sakazakii [154]. Overall, genotypic methods use either hybridization or sequencing techniques. In 

hybridization, microbiologists are able to explain how well two strands of DNA from different 

bacteria bind together, hence determining the relatedness of the two microorganisms. Sequencing 

of 16s rRNA is the target sequence of bacteria due to the high conservation by microbial species, 

and its vast amount of genetic information included [155]. The most common techniques are the 

DNA-DNA hybridization, PCR, PFGE, MLST, genetic fingerprinting (ribotyping), and 16s and 

23s rRNA gene sequencing [4]. The application of nucleic acid amplification methods in routine 

detection of microorganisms has been limited due to the laborious standardization and validation 

procedures. Moreover, these methods are labor intensive and more technically challenging for 

technicians, and require more expensive equipment and supplies [153]. For instance, in PCR, the 

quality of the DNA template, the equipment, personal practice, the reaction conditions and the 

reaction materials, and the environment [156].  

Whole genome sequencing (WGS) is the leading genotypic method by its ability to identify 

and characterize bacteria through very subtle differences between genome sequences. WGS allows 

for the identification of pathogens, the exact profiling of resistance genes, recognition of outbreak 

strains, non species-specific targeting without the requirement for continuous development of 

probes and primers, and the immediate design of PCR probes based on the generated genetic data 

in the event of an outbreak [148]. The entire genome sequence data offers a much higher resolution 

than other genotyping methods. Since the publication of the first-generation sequencing techniques 

in the late 1970s, a variety of rapid and cost-effective technologies have become available. Up to 

date, the first-generation shotgun sequencing, second generation massively parallel sequencing 

and third generation single-molecule sequencing are all in use by many laboratories. Due to its 

usefulness, WGS has been rapidly incorporated in PulseNet, a critical surveillance system 

targeting foodborne disease outbreaks, for foodborne pathogen subtyping in addition to PFGE, as 

many of the limitations encountered with PFGE could be easily overcome by WGS. In one 

circumstance, more than 50% of Salmonella enteritidis isolates show identical PFGE types, but 

WGS was able to discriminate these isolates and identified outbreaks that otherwise would not be 

detected by PFGE [157]. In another case, WGS successfully identified an L. monocytogenes isolate 

as part of a seasonal food product outbreak, whereas PFGE failed to associate it [158]. In general, 

WGS allows high discriminatory power and characterization of relatedness of isolates, which was 

not possible with PFGE. However, since WGS provides too detailed information on the entire 
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genome, abnormalities such as substitutions, insertions, deletions, duplications, and chromosome 

translocations are also included, which might lead to overfitting or data in excess for identification. 

Furthermore, although the time and costs of the method have significantly reduced over the last 

decade, it still may take up to 10 days to obtain a WGS report costing $1000 per sample [158]. 

Moreover, personnel training is also required to be able to interpret WGS data. Therefore, 

implementing WGS in routine surveillance require extremely high economic output and 

computational power to process and analyze the great amount of data.  

 Commercially available automated genotypic systems based on PCR include Riboprinter, 

which uses labeled ssDNA probe from the 16s rRNA codon, creating pattern for identification of 

the unknown [159]. MicroSeq 500 16S rDNA Bacterial Sequencing Kit offered by Applied 

Biosystems is another genotypic identification system. As its name implies, this latter provides the 

materials needed to sequence the first 500 base pair of the unknown microorganism’s 16s rRNA 

codon [158]. Another genotypic method being marketed is the Bacterial Barcodes system. This 

system uses a sequence homologous to a repetitive sequence in the unknown bacterial genome. 

Then, the amplified sequence is separated by gel electrophoresis and visualized by giving a 

‘barcode’ specific to that strain [160].  

Genotyping method and phenotyping method have never been either or, but rather working 

in combination for a thorough understanding of a particular microorganism, especially during an 

outbreak or for epidemiological investigation, where cell morphology and biochemical reaction, 

as well as gene expression are all important factors to consider through. Even though genotypic 

methods are considered as the gold standard for microbial identification, especially due to their 

high sensitivity and specificity, spectroscopic methods are gaining more attention nowadays 

despite lacking standardized protocols. 

2.4.3. Spectroscopic methods 

 Spectroscopic methods include a large number of techniques that use radiation to obtain 

information on the structure and properties of a sample. Basically, all spectroscopic identification 

methods share the same principle of emitting a beam of electromagnetic radiation onto a sample 

and observing how the sample would respond to such stimulus. Examples include UV-visible light, 

nuclear magnetic resonance (NMR), Raman and FTIR spectroscopy. UV-visible light 

spectroscopy is generally used for quantitative analysis or presence/absence analysis of 
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microorganisms [161]. NMR spectroscopy provide selectivity and specificity for identification as 

well as characterization. However, this method requires complex sample preparation and trained 

personnel to operate, it is also labor-intensive and costly. On the other hand, vibrational 

spectroscopic techniques are less expensive, and their fingerprinting capabilities provide accurate 

results along with several advantages including speed, non-destructive and easier to handle. 

Vibrational spectroscopy including FTIR and Raman spectroscopy are based on the 

transition between quantized vibrational energy states of molecules due to the interaction between 

the material and the radiation from a light source. However, they differ in some key fundamental 

ways. Raman spectroscopy depends on a change in polarizability of a molecule and measures 

relative frequencies at which a sample scatters radiation, whereas FTIR spectroscopy depends on 

a change in the dipole moment and measures absolute frequencies at which a sample absorbs 

radiation. In other words, FTIR spectroscopy is sensitive to hetero-nuclear functional group 

vibrations but is unable to detect homo-nuclear diatomic molecules such as Cl2, H2, and O2 [162]. 

Raman spectroscopy, on the other hand, is sensitive to homo-nuclear molecular bonds. Hence, 

FTIR and Raman spectroscopy are complementary to each other. Both requires little to no sample 

preparation, while Raman spectroscopy is relatively less affected by water content, which makes 

it advantageous more suitable for the analysis of complex heterogeneous materials. However, 

fluorescence may interfere with the ability of acquiring Raman spectra, which would not be an 

issue for FTIR spectroscopy. And since Raman technique requires highly stable laser sources and 

sensitive amplification equipment to detect weak signal, it is much more expensive compared with 

a FTIR spectrometer [163, 164]. Despite their differences, both techniques could be used for 

identification and characterization, and they are often used in a complementary way in research. 

2.5. FTIR Spectroscopy 

FTIR spectroscopy involves the interaction between electromagnetic radiation and matter. 

Covalent bonds absorb energy from electromagnetic radiation when the radiant energy matches 

the energy of that specific molecular vibration of the bond. The vibrational modes can be either 

stretching (change in bond length) or bending (change in bond angle); stretching can in turn be 

symmetrical (in-plane) or asymmetrical (out-of-plane), and the bending vibration is identified as 

rock (same direction) or deformation (opposite direction) [165].  As specific wavelengths are 

absorbed according to vibration by specific chemical bonds present in a sample, an infrared (IR) 
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spectrum is obtained by calculating the intensity of the IR radiation before and after it passes 

through a sample. The correlation between IR band positions and intensity vs. chemical structure 

of the sample provide qualitative information such as presenting functional groups, and 

quantitative information such as concentration of bacteria in a growth medium. For instance, when 

a bacteria sample is placed in the IR beam, selective wavelengths are absorbed yielding an IR 

spectrum that reflects the microorganism’s chemical composition. This information is exploited to 

delineate taxonomic differences between the microorganisms, as well as to detect chemical 

changes within the microorganisms resulting from its exposure to stressful environments. This IR 

spectral information would be stored in a database as reference for further analysis. These features 

of FTIR spectroscopy allow differentiation of the microorganism at the genus, species, strains and 

serotypes levels [166]. Using an efficient database combined with appropriate analysis algorithms, 

FTIR spectroscopy could provide accurate results in a matter of minutes. The identification of 

subspecies and strains depends heavily on the availability of sufficient spectral database that 

encompasses microbial diversity.  

The infrared portion of the electromagnetic spectrum can be broadly divided into three 

regions: (1) the near-infrared (NIR) (12820 – 4000 cm-1, to which is poor in specific absorptions, 

can excite overtone or harmonic vibrations, and could be very useful for quantitative analysis; (2) 

the mid-infrared (MIR) (4000 – 400 cm-1) provides structural information for most organic 

molecules, and may be used to study the fundamental vibrations and associated rotational-

vibrational structure; (3) the far-infrared (FIR) (400 – 33 cm-1) which is lying adjacent to the 

microwave region with lower energy may be used to study vibrations of molecules containing 

heavy atoms, molecular skeleton and crystal lattice [167]. With decreasing energy, the three 

infrared regions are useful for different applications. While NIR and MIR are often used separately 

or together to study microorganisms, FIR is more applied for medical use and rarely used for 

microorganism identification. This is because that in contrast to MIR region where most spectral 

features arise due to intramolecular vibrational modes, FIR spectral features can be due to a number 

of different types of transitions, such as torsional and ring-puckering modes, or intermolecular 

modes involving hydrogen bonds and charge-transfer species. Furthermore, water vapor shows 

strong FIR absorption, and the spectral features can be distorted by water vapor interference unless 

special precautions are taken during measurement [168]. Although FIR wavelength is too long to 

be perceived by the naked eyes, the body can experience its energy as a gentle radiant heat which 
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can penetrate up to 1.5 inches beneath the skin. The resulting epidermal temperature is higher 

when the skin is irradiated with FIR than thermal loads from shorter wavelengths like NIR and 

MIR. Even if the mechanism of the thermal effect and biological activities of FIR radiation are 

poorly understood, many instruments such as specialty lamps and saunas, which deliver pure FIR 

radiation, have become commercially available and widely used as a safe and effective treatment 

tool mainly for pain and stress relief [169]. FIR was also reported to be used for microbial 

decontamination in food products when combined with UV light [170]. 

    The main difference between MIR and NIR is that absorption in MIR region corresponds 

to fundamental bands of molecular vibrations, whereas absorption in NIR, correspond to overtones 

and combinations of these fundamental bands. This characteristic makes NIR not as sensitive as 

MIR. NIR bands are approximately 10-100 times less intense than MIR bands. Furthermore, the 

broad overtone and combination bands makes it difficult to identify and associate them with 

specific chemical group. Therefore, efficient calibration techniques are often required for NIR 

analysis [171]. Another point is that diffusion of light is much greater in the NIR than in the MIR 

range. Hence, NIR spectra will be much more easily affected by factors which affect the diffusion 

of light such as the physical structure (size of aggregates, porosity), and the presence of water 

which changes the refractive index and therefore the diffusion of light [172]. However, NIR can 

be very useful in direct analysis of highly absorbing bulk and porous samples with less sample 

preparation required than MIR, and is best fitted for in-field analysis, with lesser specificity 

requirements. On the other hand, the MIR spectra (4000 – 400 cm-1) is the most studied region for 

analysis for organic compounds as they possess characteristic absorbance frequencies, and primary 

molecular vibrations are all found in this range. Moreover, MIR generally shows a better 

specificity and reproducibility than FIR and NIR.  

Typically, an infrared spectrum of a biological material presents characteristic bands due 

to lipids (3050–2800 cm-1), amide region ascribed to proteins and peptides (1700–1500 cm-1), the 

mixed region designated to carboxylic groups of proteins, free amino acids and polysaccharides 

(1500–1250 cm-1), polysaccharides region (1200–900 cm-1). Other spectra regions of interest 

include 1250-1200 cm-1 where phospholipids, DNA and RNA are found, and the fingerprint region 

(900–600 cm-1) [173].  Notably, the fingerprint region represents bands composed of unique broad 

and complex contours which is specific to the molecular structure of the sample.  
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 illustrates a transflectance spectra with several important regions highlighted, and Table 

2.3 describes assignment of bands frequently found in microbial IR spectra.  

Table 2.3. FTIR spectra characteristics band absorption. 

Spectral Region Wavenumber (cm-1) Band Assignments 

Fatty acids 2956 

2920 

2870 

2850 

1745-1735 

CH3 asymmetric stretch 

CH2 asymmetric stretch 

CH3 asymmetric stretch 

CH2 asymmetric stretch 

C=O stretch (fatty acid esters) 

Amide 1705 

1652-1648 

1550-1548 

1460-1454 

C=O stretch (esters, carboxylic groups) 

Amide I (C=O) different conformations 

Amide II (N-H, C-N) 

CH2 bending 

Mixed  1400-1398 

1310-1240 

1240 

1222 

1114 

C-O bending (carboxylate ions) 

Amide III (C-N) 

P=O (phosphate) 

P=O 

C-O-P, P-O-P 

Polysaccharide 1085 

1052 

Sugar ring vibrations 

C-O, C-O-C (polysaccharide) 

Fingerprint 900-600 C-H bending 

 

 
 Figure 2.1. An example of a Transflectance spectra of a bacteria (Staphylococcus aureus) 

with lipid, protein, polysaccharides, and nucleic acid region highlighted. 
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The IR spectrum is generated based on the absorption proportion after the IR light passes 

through the sample. This extent of absorption is given by the Beer-Lambert Law, where T is the 

transmittance, IS the intensity of the transmitted radiation after passing through the sample, IR the 

intensity of incident radiation before reaching the sample.  

T = 
𝐼𝑆

𝐼𝑅
 

A more general form of the Beer-Lambert law can be expressed by the absorbance (A) as 

following, where 𝜀 is the molar absorptivity (m2mol-1 or M-1cm-1) or how strong a chemical species 

absorbs light at a given wavelength, L is the path length, which is the distance that the light travels 

through the chemical species, and c is molar concentration of chemical species. 

A = 𝜀Lc 

In most cases, the IR spectrum is plotted by the intensity of absorbance (A) or transmittance 

(T) as a function of wavenumber, as their intensity at a given wavelength is directly proportional 

to the concentration of a sample [174]. A normal process when running an FTIR instrument include: 

(1) a source where the IR energy is emitted; (2) an interferometer so that the IR energy beam 

encodes into an interferogram; (3) a sample where the beam is either transmitted through or 

reflected off the surface of sample, depending on the type of analysis, and specific frequencies of 

energy are absorbed; (4) a detector that receives the beam for final measurement; (5) and a 

computer that digitized the signal for further analysis [175].  

Figure 2.2 illustrates the principle of FTIR spectroscopy. 

  
Figure 2.2. Working principle of an FTIR spectrometer. 
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 Since the spectrum is obtained according to an absorbance percentage, a measurement 

with no sample as background spectrum is required as reference. Subtraction of the background 

spectra removes interferences of the instrument arising from noise and water vapor. Since each 

different material is a unique combination of atoms, no two compounds produce the exact same 

infrared spectrum. An infrared spectrum represents a fingerprint of a sample with absorption bands 

that correspond to the frequencies of vibrations between the bonds of the atoms that make up the 

material.  

Due to its simplicity, FTIR spectroscopy is often used for characterization, quantification, 

identification, differentiation and classification of microorganisms, and it is utilized in an 

expansive range of application fields, including pharmaceuticals, clinical, food, environmental, 

and forensic industries [176]. Up to date, considerable studies have demonstrated the competitive 

performance of FTIR compared to conventional methods [177-179]. In one research done by our 

team, we have successfully achieved 100% and 99.7% of correct classification at genus and species 

level respectively, using FTIR spectroscopy for clinical yeast [180]. The advantages are 

particularly its simplicity to operate, no reagents required, non-destructive, non-invasive, rapid, 

automation potential, and most importantly, more cost-effective than MALDI-TOF MS and 

genotypic methods. 

2.5.1. Spectral Acquisition Technique in FTIR 

In general, there are two different sampling technique in FTIR spectroscopy, depending on 

the interaction of the IR beam with the sample, namely transmission and reflection. While 

transmission mode is common and is based on the measurement of the transmitted IR radiation, 

this method suffers from opacity problem, and it strictly requires sample to be 1 to 20 microns 

thick [181]. On the other hand, reflectance mode of FTIR have gained more attention in recent 

years. In brief, reflectance method relies on the reflection of the IR beam that is reflected after 

contacting the surface of the sample depending on the reflection process, and the two focused 

handling technique in reflectance are transflectance (TR) and attenuated total reflectance (ATR). 

A figure representation of the three different types of sampling techniques can be found in  

Figure 2.3. 



37 

 

  
Figure 2.3. Common FTIR spectroscopy spectral acquisition modes, including Transmission, 

Transflectance, and Attenuated total reflectance. 

 

2.5.1.1. Transflectance (reflection-absorption) 

In transflectance (reflection-absorption), the sample is deposited on a highly reflective 

substrate and some of the IR beam passes through the surface layer, reflecting off the top layer of 

the substrate, and then passes through the sample a second time, doubling the pathlength and, 

hence increasing the sensitivity. Ag/SnO2 coated glass slides are commonly used as transflectance 

substrates, providing the advantage of being cheap and robust [182].  

2.5.1.2. Attenuated total reflectance (ATR) 

In ATR, the IR beam enters the ATR crystal which is made of an optically dense material 

at a particular angle of incidence, and the light can be reflected internally. By doing so, the IR 

beam is internally reflected for several times, and this internal reflectance will result in the 

production of an evanescent wave which can extend into the sample shown in   

Figure. When the sample absorbs this attenuated evanescent wave, a spectrum is obtained. 

Note that the pathlength (L) is dependent on the physical characteristics of the internal 

reflection element material and the angle of incidence (𝜃). Therefore, fixed-pathlength (L) is not 

applicable in ATR. Instead, the effective pathlength is controlled by the depth of penetration (𝑑𝑝) 

of the evanescent wave travel into the sample [183]. The depth of penetration (𝑑𝑝) is calculated as 

follow: 

𝑑𝑝 =
𝜆

2𝜋𝑛𝐴𝑇𝑅{(𝑠𝑖𝑛2𝜃) − (
𝑛𝑠𝑎𝑚𝑝𝑙𝑒

𝑛𝐴𝑇𝑅
)2}

1
2
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Where 𝜆 is the wavelength of the IR beam, 𝑛𝑠𝑎𝑚𝑝𝑙𝑒  is the refraction index of the sample, 

and 𝑛𝐴𝑇𝑅 is the refraction index of the ATR crystal. The wave penetrates into the sample with a 

depth of 0.5-2 µm [184]. The depth to which the wave penetrates depends on the angle of the 

incident IR beam and the refractive index of both the crystal material and the sample. Each time 

the sample absorbs the IR radiation, there is a change in the evanescent wave, and it is attenuated. 

The attenuated energy from each of the evanescent waves is then transferred back which exits the 

crystal and is measured by the detector to produce an IR spectrum. The result is an infrared 

spectrum that reflects the whole chemical composition of the sample. In order to attain a successful 

ATR spectrum, the sample must be in direct contact with the ATR crystal, which is also called an 

internal reflectance element (IRE), and the refractive index of the IRE must be significantly greater 

than that of the sample, otherwise internal reflectance will not occur [185]. Some common 

materials used for ATR crystals include diamond, ZnSe, and Ge. This spectral acquisition 

technique is widely used in the context of bacterial typing due to the associated versatility. Little 

or no sample preparation is required, thus bacterial cells can be placed directly on the ATR crystal 

surface. The main issue will be the lack of sensitivity due to the restricted depth of penetration. It 

is estimated that ATR can only detect molecules present in concentrations greater than 0.1% [186]. 

Furthermore, many ATR crystals absorb only in the MIR region, although most experiments only 

focus on the MIR region, it would be a problem if the research in question is based on a greater 

range of IR region. Despite its limitation, ATR is the premier type of sample preparation in use 

today for FTIR. 

  
Figure 2.4. Illustration of ATR acquisition mode.  
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2.5.2. Data Preprocessing Techniques 

The fact that functional groups representing different macromolecules could be quantified 

separately show that only few spectral signatures are sufficient for analysis and discrimination. 

However, background absorption and environmental factors such as water vapor humidity and the 

variability of sample composition may create outliers. The large amount of water within biological 

specimen also adds up unwanted interference to the sample spectra due to its strong O-H 

absorption caused by fundamental O-H stretching and H-O-H bending vibrations (Figure 2.5) 

[187].  

  
Figure 2.5. IR spectrum of liquid water on Attenuated total reflectance FTIR (ATR-FTIR). 

 

Moreover, the low concentration levels of some analytes could hamper the determination 

of certain parameters in body fluids. Undesirable external factors such as particle size effects, 

scattering of light, morphological differences like surface roughness and detector artifacts can also 

result in poor quality spectra [188]. For this reason, IR spectroscopy for bacterial typing requires 

normally a high level of standardization, regarding growth and medium culture. Fortunately, 

modern FTIR software programs contain powerful algorithms for processing spectra and 

eliminating these effects. Spectroscopic data are composed of enormous amount of information, 

and multivariate analysis serves as a cut-off-pick-up tool, reducing high-dimensional data and 

picking up and retaining only essential information and comparing them against a database. This 

enables researchers to analyze very complicated and large datasets, and at the same time reducing 
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the dimensionality and complexity of the data allowing for the most meaningful information to be 

extracted. With automated analysis potential, multivariate methods allow analysis of multiple 

spectra simultaneously and interdependently, which facilitates comparison between spectra and to 

identify trends these may contain. Hence, pre-processing is an important first step in any workflow 

of spectral analysis and it is applied on spectral data to promote the linear relationship between 

spectral data and concentration of sample constituent. In short, pre-processing techniques are used 

for: (1) improvement of robustness and accuracy for quantitative and qualitative analysis, (2) 

improved interpretability, (3) detection and removal of outliers, noise and trends, (4) removal of 

inappropriate and unnecessary information from the data and (5) reduction of the scale of data 

mining step. To do so, many pre-processing techniques have been developed for easier 

interpretation of IR spectra, such as quality test, scatter correction, baseline correction and 

smoothing, subtraction, derivatives, and interpolation [189]. 

2.5.2.1. Quality Test 

It is always recommended to closely examine the original spectra before deciding on what 

kind of process to be done, and it is always a good idea to retain the original data, so that if anything 

goes wrong, the original piece is still there to start over with. Quality test can be considered as 

outlier test, which involves defining a quality criterion, and based on this criterion, the program 

will automatically reject spectra that do not meet the set-up requirements. Some examples of 

criteria specification could be absorbance values in the amide I region, the signal-to-noise ratio, 

IR absorbance values of sharp water vapor features, and the presence or absence of optical fringes 

in the spectra of microorganisms [189].  

2.5.2.2. Scatter Correction  

Scatter correction is a statistical method that removes the scatter variation in the spectra 

that is caused by various particles in the sample. Multiplicative scatter correction (MSC), standard 

normal variate and de-trending are the most common scatter correction techniques nowadays, each 

having different roles including scatter correction, removal of multiplicative interferences, and 

removal of trend, respectively [188]. MSC is the most common pre-processing technique used for 

scatter correction. Briefly, MSC calculates the correction factor for the original spectra using 

reference spectra, which is usually the mean of spectrum acquired, and then corrects the original 

spectra using this correction factor by back transformation. It does not entirely eliminate the scatter 
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but decreases the inter-sample variance of the scatter by implementing an additive transformation 

of the individual spectrum into the mean spectrum. 

Normalization is a scatter correction technique applied to scale up the spectra within its 

similar range. It aims to minimize the effects of varying optical path lengths on the spectra and the 

difference in sample quality, and scales and offset the spectrum at the same time of normalization. 

This technique increases the accuracy and efficiency of the spectral distance measurement 

modelling. Popular methods for this technique include Min-Max normalization, 1-norm, 2-norm, 

and standard normal variate [189].  Most of the time, the average of the standard deviation is used 

as the correction parameters for normalization. But in cases where the spectra are noisy, the median 

or the mean of the inner quartile range and the standard deviation of the inner quartile is suggested 

as correction parameters. In the case of bacterial IR spectra, the amide I band is often used as the 

internal standard for normalization and showed great efficiency. 

2.5.2.3. Baseline Correction & Smoothing 

Ideally, an IR spectrum should have a flat baseline that falls at zero absorbance or 100% 

transmittance. In reality, reflectance or transmittance IR spectra often contain unwanted 

background features or noise, which is caused due to scattering, external factors, such as 

illumination or temperature, causing variations in data acquisition. To acquire proper information 

from the spectral data, it is important to remove this noise from the signal before spectral 

comparison. Baseline correction is a pre-processing technique that eliminates the dissimilarities 

between spectra due to shifts in baseline, thus making an easier illustratable signal. It also generates 

more accurately predictable spectral parameters like band positions and intensity values [190]. 

One of the most common baseline correction techniques is offset correction, which is conducted 

by subtracting a linear horizontal baseline from the original spectrum and draws the baseline back 

to zero [162]. 

2.5.2.4. Derivatives and Deconvolution 

IR spectra resolution can be well enhanced by spectral derivatives or deconvolution as it 

resolves and remove the overlapping bands. This pre-processing technique also reduce replicate 

variability, correct baseline shift, and amplify spectral variations [191]. Hence, it is very useful to 

obtain quantitative calibrations. The first derivatives are used on data to remove offset from 

standard spectra and to better resolve broad overlapping bands. The second derivatives also 
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remove offset, and additionally increase the spectra clarity by increasing the number of 

discriminative features and hence a net increase in spectral resolution. The most commonly used 

techniques for derivatives are Savitzky-Golay (SG) and Norris-Williams (NW) derivations. The 

SG technique provides an advantage over NW in that it can carry out smoothing, noise reduction 

and computing derivatives at the same time, which reduces certain noise level in the derivative, 

and thus, making spectra easier to interpret. The principle of NW technique, on the other hand, is 

to smoothen the spectral data based on a moving average over data points, and the gap between 

these data points is used to estimate the derivatives. Then, the finite difference is calculated based 

on this smoothing spectrum [188]. Yet, a problem with derivative spectra is that, as spectral 

variations are amplified, they contain more noise than the original spectra from which they are 

calculated. This suggests that a spectrum needs to have a good SNR to be able to apply derivatives 

[182]. The NW method is less prone to high-frequency noise compared to SG, as it uses both 

smoothing by moving average and gap size for derivative, and hence would be a better choice over 

the SG method. Whereas for deconvolution technique, the section having overlapping bands is 

Fourier transformed into a mathematical function called a spectrum. Then, the broad band 

spectrum is multiplied by an exponential function, depending on the optical retardation, to obtain 

a narrow band spectrum which resolves the overlapping bands and shows more peaks than in the 

original spectrum [182]. Derivation and deconvolution are very useful to analyze spectra of 

mixtures. 

2.5.2.5. Other techniques 

Other techniques include: spectral interference subtraction, which involves the removal or 

elimination of certain additive interferences from the input spectra; optimized scaling, which a 

theoretical-based method for the linear calibration of spectral data when it does not have a fixed 

intensity range; orthogonal signal correction, that is to remove the orthogonal variance to the 

component of interest from the dataset [188]. One can also select a specific spectral window 

subjectively according to the knowledge and experience of the investigator to reduce the data 

amount to be processed, which speed up the processing time. In general, this process involves 

mainly the focus of the fingerprint region, and the elimination of region between 1800 – 2750 cm-

1 or between 3400 – 4000 cm-1 [189]. 
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2.5.3. Statistical Analysis Techniques 

After screening and filtrating out low-quality data, chemometric methods are used to 

reduce high-dimensional data and retain only essential spectral information. Spectroscopic data 

are composed of enormous amount of meaningless information, and those methods are able to 

analyze very complicated and large datasets, and at the same time reducing the dimensionality and 

complexity of the data allowing meaningful information to be extracted. Especially for vibrational 

spectroscopic datasets, multivariate methods allow analysis of multiple spectra simultaneously and 

interdependently, which facilitates comparison between spectra and to identify trends these may 

contain. Multivariate statistical analysis of FTIR spectra can be divided into two types: supervised 

methods and unsupervised methods [192]. In brief, unsupervised methods aim to extrapolate the 

spectral data without a prior knowledge, whereas supervised methods require prior knowledge of 

sample identity. 

2.5.3.1. Unsupervised Methods 

Unsupervised machine learning techniques are used to explore the hidden structures in a 

spectral dataset where an a priori class assignment is not available or not desired [193]. In here, 

there is no correct answers and there is no teacher, hence the term unsupervised. The result is not 

known, and the unsupervised techniques deal with the un-labelled data trying to find an underlying 

structure, pattern or trend of that data. Unsupervised learning will only have the original input data 

to work on. Some well-known unsupervised machine learning algorithms include singular value 

decomposition (SVD), principal component analysis (PCA), independent component analysis 

(ICA), distribution models, hierarchical clustering analysis (HCA), neural networks/deep learning, 

k-means cluster analysis (KMCA), and fuzzy C-mean clustering (FCM). In general, these 

techniques can be classified into dimensionality reduction, or classification, and clustering. 

2.5.3.1.1. Dimensionality Reduction (Association) Technique 

The most classical examples of dimensionality reduction techniques for spectra analysis 

are PCA and ICA. Both are simple, nonparametric methods for extracting relevant information 

from datasets, identifying patterns in data, and expressing the data in such a way to highlight their 

similarities and differences. In short, PCA reduce the dimensionality of the data to describe the 

variation present in a dataset, where the first principal component is a description of the maximum 

variance present in the dataset, the second describes the second most variance, and so on. It is one 
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of the most widely used multivariate methods because of its wide applicability in the multivariate 

problems. The main goal of PCA is to obtain the most important characteristics from data, whereas 

the goal of ICA is to find new components that are mutually independent in complete statistical 

sense [194].They both showed promising results, although some may argue one is better than the 

other, it all depends on the situation and the type of spectra in hand [195, 196]. Recently several 

variants of PCA are introduced, such as independent PCA (iPCA), which combines the advantages 

of both PCA and ICA [192]. This kind of tool can be useful for providing a method to separate 

spectra into groups, for instance, diseased and non-diseased, and it has also been used to 

reconstruct images. 

2.5.3.1.2. Clustering Technique 

Cluster analysis helps identify similarities between the spectra using the distances between 

spectra and aggregation algorithms. The most commonly used clustering techniques for IRS are 

KMCA, FCM and HCA. KMCA attempts to split data into “k” cluster groups of equal variances, 

where “k” represents the number of groups defined, and data points are clustered based on feature 

similarity. It uses the centroid of the cluster as the criterion to assign the cluster for each sample 

and is achieved by minimizing the sum of squared errors [188]. In IRS, KMCA has seen a number 

of uses to separate spectra into clusters, and as imaging tool, KMCA separate each spectrum 

acquired in the image and assign it to a cluster. Similar to KMCA, FCMA also assigns spectra to 

centroids in the datasets. However, unlike KMCA, the method is a soft clustering method, whereby 

assigning the samples to different clusters simultaneously with varying degrees of membership. 

Each point or spectrum in the dataset is assigned to a value from 0 to 1, the value closest to 1 being 

representative of the cluster center [197]. Therefore, by analyzing the centroid spectrum it is 

possible to extract chemical information which describes each reconstructed image. HCA 

clustering generally build a hierarchy of clusters that is normally presented in the form of a binary 

tree diagram, commonly known as dendrogram. There are two types of HCA, agglomerative and 

divisive as shown in Figure 2.6. 
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Figure 2.6. Conceptual dendrogram for agglomerative vs. divisive hierarchical clustering. 

 

Briefly, this method starts out with each data point or spectrum in a separate group or 

cluster. The method then aims to group each data point together in an iterative process until there 

is only one cluster which contains all the data points, creating a dendrogram showing the linkage 

between each cluster [198]. There are two parameters to consider in hierarchical clustering: the 

linkage method and the distance metric. The linkage method determines the dissimilarity between 

two clusters of observations, and a number of different cluster linkage methods that have been 

developed. The most common types of methods are listed in Table 2.4 and Figure 2.7. Each linkage 

method uses different equation to calculate the inter-cluster distance. Several linkage methods 

could be used to compare the same dataset, and depending on the nature of the dataset, some 

methods may work better than the other.  
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Table 2.4. Linkage method description for agglomerative hierarchical clustering [199]. 

Linkage 

method 

Description Equation 

Single 

linkage 

The distance between two clusters 

is the minimum distance between 

an observation in one cluster, and 

an observation in the other cluster, 

i.e. the shortest distance between 

two points in each cluster. This 

method is especially useful when 

clusters are obviously separated. 

𝐷(𝑐1, 𝑐2) = min
𝑥1∈𝑐1,𝑥2∈𝑐2

𝐷(𝑥1, 𝑥2) 

Complete 

linkage 

The distance between two clusters 

is the maximum distance between 

an observation in one cluster and an 

observation in the other cluster, i.e. 

the farthest distance between two 

points in each cluster. This method 

can be sensitive to outliers. 

𝐷(𝑐1, 𝑐2) = max
𝑥1∈𝑐1,𝑥2∈𝑐2

𝐷(𝑥1, 𝑥2) 

Average 

linkage 

The distance between two clusters 

involves looking at the distances 

between all pairs and averages all 

of these distances, i.e. the average 

distance between points in each 

cluster 

𝐷(𝑐1, 𝑐2) =
1

|𝑐1||𝑐2|
∑ ∑ 𝐷(𝑥1, 𝑥2)

𝑥2∈𝑐2𝑥1∈𝑐1

 

Centroid 

method 

The distance between two clusters 

is the distance between the cluster 

centroids. This involves finding the 

mean vector location for each of the 

clusters and taking the distance 

between the two centroids. 

𝐷(𝑐1, 𝑐2)

= 𝐷 ((
1

|𝑐1|
∑ 𝑥

𝑥∈𝑐1

) , (
1

|𝑐2|
∑ 𝑥

𝑥∈𝑐2

)) 

Ward 

method 

The distance between two clusters 

is the sum of the squared deviations 

from points to centroids. This refers 

to the sum of the squared distance 

from each point to the mean of the 

merged clusters. It tries to find the 

distance that minimize the total 

within-cluster variance, and 

maximize the total between-cluster 

variance. The process resembles an 

ANOVA based approach It is an 

ANOVA based approach. 

𝑇𝐷𝑐1∪𝑐2
= ∑ 𝐷(𝑥, 𝜇𝑐1∪𝑐2

)
2

𝑥∈𝑐1∪𝑐2

 

D = distance; c = cluster; x = observation, TD = total distance 
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Figure 2.7. Representation of different cluster linkage methods in agglomerative hierarchical 

clustering. 
 

 The choice of clustering distance metric defines the closeness of the clusters. In other words, 

how similar two elements x and y are, and the different types of distance measures illustrated in 

Table 2.5 will influence the shape of the clusters.  

Table 2.5.  Definition of different distance measures for clustering analysis. 

Clustering distance metric Equation 

Euclidean distance 

𝑑𝑒𝑢𝑐(𝐴, 𝐵) = √∑(𝐴𝑖 − 𝐵𝑖)2

𝑛

𝑖=1

 

Manhattan distance 
𝑑𝑚𝑎𝑛(𝐴, 𝐵) = ∑|(𝐴𝑖 − 𝐵𝑖)|

𝑛

𝑖=1

 

Pearson correlation distance 
𝑑𝑝𝑒𝑎𝑟(𝐴, 𝐵) = 1 −

∑ (𝑛
𝑖=1 𝐴𝑖 − �̅�)(𝐵𝑖 − �̅�)

√∑ (𝐴𝑖 − �̅�)2 ∑ (𝐵𝑖 − 𝐵)2𝑛
𝑖=1

𝑛
𝑖=1

 

Cosine correlation distance 𝑑𝑐𝑜𝑠(𝐴, 𝐵) = 𝐶𝑜𝑠𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1 − 𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 

𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos−1
|∑ 𝐴𝑖𝐵𝑖

𝑛
𝑖=1 |

√∑ 𝐴𝑖
2 ∑ 𝐵𝑖

2𝑛
𝑖=1

𝑛
𝑖=1
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Spearman correlation distance 
𝑑𝑠𝑝𝑒𝑎𝑟(𝐴, 𝐵) = 1 −

∑ (𝑛
𝑖=1 𝐴𝑖

′ − 𝐴′̅)(𝐵𝑖
′ − 𝐵′̅̅ ̅)

√∑ (𝐴𝑖
′ − 𝐴′̅)2 ∑ (𝐵𝑖

′ − 𝐵′̅̅ ̅)2𝑛
𝑖=1

𝑛
𝑖=1

 

A and B = elements/vectors, n = length of vectors 

Classical methods for distance measures are Euclidean and Manhattan distances. Other 

distance measures are classified as correlation-based distances, such as Pearson correlation, 

Spearman correlation, and cosine distance, in which cosine correlation is the one we will be using 

for our research purposes. This is because cosine distance measures the distance without 

accounting the magnitude of the vectors, which is very useful to analyze qualitative data. A 

visualized difference between the distance measured using Euclidean and cosine method is 

illustrated in Figure 2.8. 

  
Figure 2.8. A figurative difference of Euclidean distance (d) and cosine similarity (θ) between 

two vectors A and B. 

 

Among the clustering techniques, HCA is more prominently used for spectral data analysis, 

especially in microbiology, even though HCA is not well suited for large datasets. 

2.5.3.2. Supervised Methods 

Most of the practical machine learning uses supervised learning. Unlike unsupervised 

learning, supervised learning is guided by human intelligence, observation, and known outcomes. 

Hence, there is a teacher supervising the learning process, where the algorithm is being taught the 
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difference between right and wrong and is asked to mimic those results when new information is 

thrown. Supervised learning is typically done in the context of classification, when the goal is to 

map input to output labels, or regression, when the goal is to map input to a continuous output 

[200]. In other words, this technique groups the unknown samples into the known predefined 

groups according to their measured features. The main issue with supervised learning algorithms 

is that the term “correct” output is entirely determined from the training spectral data, therefore, 

noisy or incorrect data labels will clearly reduce the effectiveness of the “standard reference” 

spectra. Hence, the bigger the dataset, where all anomalies and edge cases are included, the more 

accurately the algorithm will work in each unique situation. Common algorithms in supervised 

learning include support vector classifier (SVC), quadratic discriminant analysis (QDA), linear 

discriminant analysis (LDA), principal component regression (PCR), partial least squares 

regression (PLSR), logistic or linear regression, random forest, naïve Bayes, neural networks, 

regression trees, decision trees, and k-nearest neighbors. 

2.5.3.2.1. Discriminant Analysis (Classification) 

Discriminant analysis have two objectives: first, in a supervised way, it is used to describe 

and explain the differences among the groups, and second, similar to PCA, it is used to separate 

samples into different classes by maximizing the variance between classes and minimizing the 

variance within a class [30]. Two example techniques used for discriminant analysis are QDA and 

LDA. They are the most commonly used classification techniques of spectral imaging data from 

food and agricultural products [188]. QDA classifies the samples into the classes with quadratic-

shaped boundaries and assuming that multivariate normal distribution is common in each class, 

whereas LDA on top of the assumptions by QDA, also assumes that covariance matrices of the 

classes are equal. The main disadvantage of LDA is that it does not hold well with the condition 

where the number of samples is less than that of number of variables, as in this condition, the 

inversion of covariance matrices becomes difficult. In some comparison literature, QDA-based 

models showed higher classification rates and quality performance than LDA [201]. However, a 

powerful analysis tool has been developed by combining PCA and LDA, and this technique was 

particularly helpful when the number of variables is large. Nonetheless, applying more than one 

technique on the same dataset is often recommended, as each technique’s classification accuracy 

is mostly determined by the underlying structure of the data which can make one method more 

suitable than the other. 
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2.5.3.2.2. Regression Analysis 

Regression is a statistical procedure which determines the relation between dependent 

variable and independent variable. PCR and PLSR are the best-known regression techniques used 

for spectral data analysis. PCR can analyze data with high multicollinearity between their variables. 

In regression, multicollinearity is a statistical procedure where several independent variables 

participating in multiple regression modelling are highly correlated to one another [188]. PCR 

reduces the standard error by adding bias to the regression estimates and is hoped that more reliable 

estimates will be achieved due to this overall effect. However, PCR model developed using the 

independent and dependent variables sometimes gives a random error or noise rather than giving 

the anticipated relationship. This kind of error can be avoided by choosing the optimal number of 

principal components. Another way to face the multicollinearity problem is to use PLSR. PLSR is 

a well-known chemometric tool that is used to estimate the biological and chemical properties of 

the sample from their spectral spectrum, especially when spectral data is massive. The core idea 

of using this method is to investigate the spectral variability as a function of a systematic 

conditional change. PLSR can be employed to construct predictive models for spectral response 

as a function of the target variable [202]. And this algorithm has become one of the dominant 

practices of multivariate calibration due to its high quality of the calibration model. 

2.5.3.2.3. Artificial Neural Network (ANN) 

ANN is the most popular deep learning technique in recent years and is primarily used for 

pattern recognition purposes. ANNs are robust and can handle unsupervised and supervised 

problems and can work with both qualitative and quantitative analysis. They are considered 

“nonparametric nonlinear regression estimators” because of their ability to determine relationships 

between one or more input, and one or more output, regardless of the form of the function defining 

the relationship between the two sets of variables [203]. It is a self-training system and intelligently 

constructed to optimize the processing power of its own network. ANN works like the human 

nervous system, where each neuron receives a signal from neighboring neurons, later executes 

them and finally gives out the output signal. The number of neurons used may vary from ten to 

several thousands and are based on the training set. As more data are fed in, the machine gets 

smarter and more efficient at interpreting future inputs. One key aspect of ANN is that each neuron 

can be formulated to utilize a single algorithm that could be useful for certain datasets but poor to 

others. And as weights are adjusted for each neuron, ANN learn by itself where to best analyze the 
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data for having the highest confidence output and continues to adjust neuron weights for more 

optimization of the network (Figure 2.9).  

  
Figure 2.9 A general representation of an ANN analysis flowchart. The input layer represents 

the data that were fed into the algorithms; the hidden layer is where various types of 

mathematical computations are rigorously performed on the input data to recognize the 

pattern (there can be more than a single hidden layer); depending on the linkage and weigh 

of these linkages, the output layer tells the results of this analysis. 

 

ANN-based analysis is often used in conjunction with HCA in IRS for microorganism 

identification [204]. Other than microbiology application, ANN has been applied in many 

functions that changes and ameliorates our everyday life, such as handwritten character recognition, 

facial recognition, speech recognition, and signature classification. ANNs have proven to be the 

most accurate of all systems for large deep learning problems with the only downside being the 

time it takes for training. 

2.5.4. Application of FTIR in Microbiology  

FTIR has emerged to become an essential analytical tool available to scientists to study 

various materials in various fields. To name a few, application of FTIR include food and 

environmental analysis, forensic science, semiconductor analysis, pharmaceutical, physiological 

and biological analysis, geological samples, and for multilayer compounds. It is widely used in 

industries as well as in research, due to its simplicity and reliability in terms of measurement, 

quality control and dynamic measurement. Especially in the field of microbiology, where FTIR is 
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useful for the identification of functional group and structure, identification of substances, studying 

reaction progress, detection of impurities, and quantitative analysis. In brief, application of FTIR 

in microbiology can be classified into three categories: (1) characterization, (2) quantification, (3) 

identification, differentiation, classification, and (4) the use of FTIR Microspectroscopy (FTIRM) 

for species identification from micro-colonies. 

2.5.4.1. Microbial Characterization  

Cells represent the fundamental biological unit from which the life of all living organisms 

depends. Hence, knowledge of their morphology and their biochemical processes is extremely 

important in order to counteract the onset of cell anomalies or pathological conditions. Biological 

samples contain macromolecules, such as nucleic acids, proteins, lipids and carbohydrates that 

have characteristic and well-defined IR vibrational modes. These bands can be used as markers 

for the biochemical response of cells and tissues to different treatments and pathologies. In FTIR 

spectra, each cellular component is at a peculiar position. The capability to extract specific 

information from each band of each spectrum is important for drawing useful conclusions on the 

process of interest and to advance knowledge. As   

Table 2.3 has highlighted, most functional groups can be assigned according to their 

vibrational wavelength, and the macromolecule where the functional group is consisted of can be 

properly speculated. By observing changes in IR spectra, subtle changes caused by various 

biochemical processes, such as the occurrence of specific pathologies, benign and malignant ones, 

or by various cellular differentiation steps, can be detected. A more detailed analysis of these 

spectral features may reveal the presence of particular cell constituents. For instance, cell storage 

materials such as poly-β-hydroxy fatty acids can be determined on IR spectra in conditions of 

starvation. The release of CO2 and the formation of endospore in bacterial cells can also be 

observed with IR spectra [193]. However, in many cases, FTIR spectroscopy alone is not sufficient 

for the characterization of microbiological cell due to overlapping absorbance bands, and it is often 

recommended to perform other techniques such as genotypic or other phenotypic method on top 

of FTIR spectroscopy [173]. 

2.5.4.2. Quantification Analysis 

Since the intensities of the bands in MIR region are proportional to the concentration of 

their respective functional groups, quantitative analysis of FTIR is especially useful in the area of 
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food safety and quality. In terms of safety, pathogenic bacterial can be identified and quantified 

based on a spectral change or increase in certain peak intensity from a reference spectrum of an 

uncontaminated sample. The result can be verified by a thorough search in a spectral library for 

identification, and the concentration can be calculated based on Beer’s law. For quality purposes, 

adulteration of food can be examined easily with FTIR [151]. An important application for 

quantitative analysis of FTIR is antibiotic susceptibility testing. Although many other promising 

physical techniques exist for such measurement, such as radiometry, microcalorimetry, 

bioluminescence and electrical impedance, FTIR spectroscopy is also useful in this field, since 

quantification of cell mass as a function of antibiotic treatment, as well as the detection of 

antibiotic-induced structural changes in microbial cells, is well within reach of its sensitivity and 

specificity [189]. For instance, for a protein synthesis inhibitor antibiotic, analyzing the various 

amide bands of the IR spectra would be enough to analyze the drug-induced changes in bacterial 

cells as shown in Figure 2.10 [205].  

  
Figure 2.10. FTIR spectra of E. coli TOP10 without antibiotic (Con), and with different type 

of antibiotics added to the growing media (ampicillin, cefotaxin, tetracycline, ciprofloxacin). 
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Other fields that FTIR may be valuable could be assessing the mechanisms of microbial 

inactivation by food processing techniques, assessing the membrane properties in changing 

environments, and detecting and assessing stress-injured microorganisms [166].   

2.5.4.3. Identification, Differentiation, Classification  

Taxonomic level identification, differentiation and classification of microorganisms is 

important for epidemiological investigation, outbreak detection, source tracking and pathogen 

control. Identification involves describing an entity to a point where it uniquely stands out and 

could be picked out, whereas classification involves assigning the entity to a group according to a 

given criteria. Differentiation or discrimination is somewhat similar to classification; however, it 

focuses mainly on separating entities into groups depending on their properties that are focused 

on. These three terms often go hand-in-hand, as by identifying an entity, classification or 

differentiation conditions are often also met. FTIR spectroscopy had been successfully used for 

identification, differentiation and classification of a variety of microorganisms at genus, species, 

and sub-species levels since 1990s [206]. Differentiation by FTIR spectroscopy is based on the 

fact that the IR spectra are a reflection of the overall molecular composition. IR spectrum of intact 

microorganisms provides information on the structure and composition of the whole cell. Because 

microbial IR spectra are complex spectroscopic signals encoding the superposition of hundreds or 

even thousands of bands that cannot be resolved by any means, pattern recognition techniques 

have to be used which consider the spectra as fingerprints rather than a combination of discrete 

band intensities, frequencies and bandwidths [166]. Despite the fact, strains that differ in their 

molecular makeup will show relatively distinct IR band. The capacity of FTIR spectroscopy to 

identify and differentiate unknowns is strongly dependent on the quality and quantity of the 

reference library. After 20 years of research and as IR spectra have been continuously added to the 

spectrum library, the potential of FTIR spectroscopy for the identification, differentiation and 

classification of microorganisms is well documented, and the technique has been applied in many 

different fields like food microbiology, medical diagnostics and microbial ecology [207]. The 

spectrum library application ranges from the identification of clinical and food pathogens or food 

contaminants to starter and probiotic cultures in food as well as different kinds of environmental 

microorganisms. Different algorithms can be used to identify unknown microbial strains based on 

a reference database. It must be confirmed that these reference datasets contain representative 

numbers of spectra covering all relevant spectral types to be identified. Unknown microbial 
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samples will only be correctly identified with validated reference databases of microbial IR spectra. 

Identification is then achieved by comparing the IR spectrum of an unknown microorganism with 

all entries of the reference database. Some studies focused on the differentiation of only few 

species, others try to assemble large and comprehensive database for broad and general application 

in microbiology. In case of having small and specific databases, a differentiation rather than an 

identification of certain species is recommended, and additional methods can be applied for 

identification, such as matrix-assisted laser desorption/ionization time of flight mass spectrometry. 

And in these cases, HCA is used in conjunction for differentiation, which seems to work well for 

a limited number of strains and species. A thorough review of articles investigating in the 

identification, differentiation, and classification of pathogens by FTIR spectroscopy within the 

past decade can be found in Table 2.6. 

Table 2.6. Articles (2014 – 2023) concerning the identification, differentiation, and 

classification of pathogen by FTIR spectroscopy. 
Aim Microorganism No. of isolates FTIR 

technique 

Chemometric

s 

Results Ref

. 

Develop and 

validate a model 

for typing 

Acinetobacter 

baumannii 

clinical isolates 

Acinetobacter 

baumannii 

77 in database; 

148 in test set 

ATR-FTIR PLS-DA 100% at 

strain type 

level 

[208] 

Discriminate 

between Bacillus 

spp. and 

Alicyclobacillus 

spp. inoculated 

into apple juice, 

and the 

differentiation 

between their 

species 

Alicyclobacillus 

and Bacillus 

4 

Alicyclobacillus

; 4 Bacillus 

ATR-FTIR PCA, 

SIMCA 

Correct 

differentiatio

n to genus 

and species 

level 

achieved of 

these 2 

genera 

[209] 

Interpret, 

discriminate and 

classify 

Aspergillus spp. 

growing on 

peanut 

Aspergillus 

alliaceus, 

Aspergillus 

caelatus, 

Aspergillus 

flavus, 

Aspergillus 

parasiticus, and 

Aspergillus 

tamari 

N/A ATR-FTIR PLSR 98.5% 

correct, with 

only one 

misclassified 

sample 

[210] 

Assess FTIR 

spectroscopy and 

MALDI-TOF MS 

for routine 

microbial 

Campylobacter 

(C. jejuni, C. 

coli, C. lari, C. 

hyointestinalis 

subsp. 

174 in database; 

40 in test set 

Transmission

-FTIR 

HCA 88% 

(MALDI-

TOF) and 

75% (FTIR) 

[211] 
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identification of 

food-related 

microorganisms  

hyointestinalis, 

C. fetus, C. 

concisus) 

correctness at 

species level 

Employ MALDI-

TOF-MS, Raman, 

and FTIR 

spectroscopies 

combined with 

multivariate 

statistical analysis 

for differentiation 

of Campylobacter 

to subspecies 

level 

Escherichia coli 11 isolates Transmission

-FTIR 

PCA, PC-

DFA, HCA 

Correct 

classification 

achieved for 

all isolates 

[205] 

Demonstrate that 

FTIR 

spectroscopy can 

discriminate 

between 

uropathogenic E. 

coli (UPEC)  

Escherichia coli 

and Trueperella 

pyogene  

95 isolates 

(63.2% training, 

36.8% test) 

Transmission

-FTIR 

PC-DFA, 

PLS-DA 

Prediction 

accuracy: 

ST131 

(91.19%), 

ST95 

(86.58 %), 

ST127 

(69.38 %), 

ST73 

(39.15 %) 

and ST10 

(30.15 %) 

[212] 

Assess if a 

database built 

from bacteria 

obtained from the 

uterus of Austrian 

and German dairy 

cows could be 

used to identify 

uterine bacteria 

from Argentinean 

dairy cows 

Escherichia coli 

Salmonella 

enteritidis, 

Pseudomonas 

ludensis, and 

Listeria 

monocytogenes 

55 in database; 

25 in test set 

Transmission

-FTIR 

LR 21/25 correct 

identification 

(84%) 

[213] 

Identify spectral 

windows to 

classify bacteria 

specific to 

poultry meat 

suspended 

individually in 

sterile water  

Escherichia coli, 

Salmonella sp., 

Enterobacter 

cloacae, Hafnia 

alvei, K. 

pneumoniae, and 

Proteus mirabilis 

4 isolates ATR-FTIR PCA, PLS-

DA, SIMCA 

100% correct 

classification 

of samples 

contaminated 

with S. 

enteritidis 

and P. 

ludensis  

[214] 

Assess the ability 

to distinguish 

between mixed 

genus bacteria 

Enterecoccus sp. 

Lactococcus sp. 

and 

Lactobacillus sp. 

4 isolates Transmission

-FTIR 

PCA, LDA When the 

mixing range 

was 

comparable 

(0.5:0.5 and 

0.6:0.4 for 

Gram-

positive and 

Gram-

negative 

respectively), 

[215] 
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classification 

success rate 

was > 95% 

Compare 

biochemical 

identification 

methods with 

FTIR cluster 

method for 

identification of 

LAB isolated 

from Kaşar 

cheese 

Klebsiella (K. 

pneumoniae, K. 

variicola, and K. 

quasipneumoniae

) 

 

157 in database; 

83 in test set 

Transmission

-FTIR 

HCA >99% 

correlation to 

reference 

culture 

[216] 

Evaluate the 

discriminatory 

power of FTIR 

spectroscopy and 

MALDI-TOF MS 

for strain typing 

in comparison to 

WGS for 

potential 

integration into 

the routine 

diagnostic 

workflow 

Listeria 

monocytogenes 

and Salmonella 

spp. 

68 isolates Transmission

-FTIR 

UPGMA FTIR result 

was 

congruent 

with WGS 

92.6% of 

isolates 

[217] 

Assess MIR 

spectroscopy as 

an alternative 

method for 

confirmation of 

foodborne 

pathogens 

Listeria innocua, 

Staphylococcus 

epidermidis, 

Salmonella spp., 

Shigella 

dysenteriae and 

Vibrio spp 

14 isolates ATR-FTIR PCA Correct 

classification 

achieved for 

all isolates 

[218] 

Use SR-FTIR 

microspectroscop

y for the 

identification and 

classification of 

foodborne 

pathogenic 

bacteria at the 

genus, species, 

and subspecies 

level 

non-typhoid 

Salmonella 

serogroups and 

serotypes 

10 isolates SR-FTIR PCA Correct 

classification 

achieved for 

all isolates 

[219] 

Discriminate the 

most frequent and 

clinically relevant 

Salmonella 

serogroups and 

serotypes, 

correlating the 

discrimination 

obtained with the 

O-unit 

composition of 

somatic antigen  

Acinetobacter 

baumannii, 

Candida 

albicans, 

Enterobacter 

cloacae, 

Enterococcus 

faecalis, 

Enterococcus 

faecium, E. coli, 

Klebsiella 

pneumoniae, 

325 isolates ATR-FTIR PCA, 

PLSDA 

99.6% at 

serogroup 

level 

[220] 
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Psuedomonas 

aeruginosa, 

Serratia 

marcescens, S. 

aureus, CoNS 

Identify 

Staphylococcus 

aureus 

independently of 

the culture 

growth stage 

Methicillin-

resistant S. 

aureus 

141 isolates in 

database; 58 in 

test set 

FTIR PCA, LDA 100% 

sensitivity 

and 98% 

specificity 

[221] 

Develop a model 

for discrimination 

of heterogeneous 

vancomycin-

intermediate S. 

aureus and 

vancomycin-

intermediate S. 

aureus 

Candida krusei, 

Candida 

parapsilosis, 

Candida 

albicans, 

Candida 

glabrata 

59 isolates in 

database; 39 in 

test set 

ATR-FTIR PCA, PLS-

DA 

100% 

sensitivity 

and 

specificity 

[222] 

Ascertain the 

effect of sample 

preparation on 

the 

discriminatory 

capacity of ATR-

FTIR 

spectroscopy of 

Candida species 

Penicillium 

implicatum, 

Penicillium 

aurantiogriseum, 

Penicillium 

notatum, 

Penicillium 

purpurogenum 

and Penicillium 

citrinum 

4 isolates ATR-FTIR PCA, KMC Correct 

classification 

achieved for 

all isolates 

[223] 

Classify and 

discriminate five 

species from 

Penicillium, 

which were 

obtained from 

infected fruits 

Salmonella typhi 5 isolates FTIR-

microscopy, 

ATR-FTIR 

PCA Correct 

classification 

achieved for 

all isolates 

[224] 

Evaluate ATR-

FTIR 

spectroscopy to 

classify 

differentially 

expressed bio-

molecular 

markers in 

Salmonella typhi-

infected and 

healthy freeze-

dried sera 

samples 

Gram-positive 

and Gram-

negative bacteria 

25 isolates ATR-FTIR PCA, HCA 100% 

sensitivity 

and 96% 

specificity 

[225] 

Evaluate ATR-

FTIR for routine 

yeast isolates for 

on-site 

Candida spp., 

Cryptococcus 

spp., 

Rhodotorula 

mucilaginosa, 

205 isolates in 

database; 573 in 

test set 

ATR-FTIR N/A >98% correct 

identification 

[226] 
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identification to 

the species level 

Saccharomyces 

cerevisiae, 

Geotrichum 

clavatum, and 

Trichosporon 

spp. 

Differentiate four 

species of 

Shigella isolates 

from stool 

samples 

S. dysenteriae, S. 

flexneri, S. 

boydii, and S. 

sonnei 

91 isolates Transmission

-FTIR 

PCA, HCA 100% 

correctness, 

sensitivity, 

and 

specificity 

[227] 

Rapid and 

reliable 

identification of 

biochemically 

confirmed 

typhoid and 

paratyphoid 

fever-associated 

Salmonella 

isolates. 

S. Paratyphi A-C 359 isolates Transmission

-FTIR 

PCA-LDA, 

ANN 

Prediction 

accuracy: 

Salmonella 

Typhi 

(99.9%), 

Salmonella 

Paratyphi A 

(87.0%,), B 

(99.5%), and 

Salmonella 

Paratyphi C 

(99.0%) 

[228] 

Evaluate use of 

FTIR for the 

identification of 

Legionella 

pneumophila (Lp) 

at the serogroup 

level for 

diagnostic 

purposes and in 

outbreak events 

Legionella 

pneumophila 

serogroups 1-15 

133 isolates Transmission

-FTIR 

PCA-LDA, 

HCA, ANN 

95.49% 

correct 

identification 

[229] 

Evaluated FTIR 

for cluster 

analysis of 

Burkholderia 

cenocepacia 

epidemic strain 

ET12, isolated 

from adult cystic 

fibrosis patients. 

Burkholderia 

cenocepacia 

epidemic strain 

ET12 and non 

ET12 

12 isolates in 

database; 54 in 

test set 

Transmission

-FTIR 

PCA, LDA, 

ANN 

Up to 84.6% 

sensitivity, 

and up to 

91.3% 

specificity 

[230] 

Evaluate the 

performance of 

the spectroscopic 

approach in 

identifying 

enterococci 

infections. 

Enterococcus 

faecium and 

Enterococcus 

faecalis 

60 isolates ATR-FTIR SIMCA, 

PLS-DA and 

SVM 

Correct 

classification 

achieved for 

all isolates 

[231] 

(ATR-FTIR: Attenuated Total Reflectance Fourier Transform Infrared; PLS-DA: Partial Least Square-Discriminant Analysis; 

PCA: Principal Component Analysis; SIMCA: Soft Independent Modelling by Class Analogy; LR: LogiPLSR: Partial Least 

Square Regression; UV-Vis: Ultraviolet-Visible; NIR: Near Infrared; FPA-FTIR: Focal Plane Array Fourier Transform Infrared; 

ANN: Artificial Neural Network; HCA: Hierarchal Clustering Analysis; MALDI-TOF MS: Matrix Assisted Laser 

Desorption/Ionization Time Of Flight Mass Spectrometry; PC-DFA: Principal Component-Discriminant Function Analysis; 

SVM: Support Vector Machine; SFFS: Sequential Floating Forward Selection; MSA: Metabolomic Spectral Analysis; MLP: 

Multilayer Perceptron; LR: Logistic Regression; FO-FTIR: Fiber-optic Fourier Transform Infrared; CART: Classification And 
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Regression Trees; UPGMA: Unweighted Pair-Group Method with Arithmetic means; SR-FTIR: Synchroton Fourier Transform 

Infrared) 

 

2.5.4.4. FTIR microscopy (FTIRM) 

Since mid 1980s, the development of commercial visible IR microscopes let FTIRM 

become a valuable tool. The addition of a microscope as an accessory to conventional FTIR 

spectrometers has led to the possibility of analyzing intact tissue sections and even single cells at 

cellular resolution. While light microscopes provide information on shape, color, and contrast of 

a given sample, IRS may give information about structure and identity of complex samples at the 

molecular level. Thus, the combination of light microscopy with the sensitivity and specificity of 

IRS provides considerable additional information, in particular the possibility of visually obtaining 

structure information. This combination pushed the detection limit down to the sub-nano level and 

opened the field of spatial resolution to IRS. FTIRM is able to inspect limited areas on a surface 

such as an agar plate, and to obtain reflectance or transmittance spectra from samples constituted 

of few hundreds of cells, for example micro-colonies grown after only 6-10 h, which significantly 

reduces incubation time of cultures, thereby accelerating the identification process [232]. Although 

in general, FTIRM seems to be more difficult to apply under routine conditions as many 

researchers complained of have faced difficulties in standardizing the procedure, it has still gained 

increasing attention due to its ability to see both the spectral and the spatial information at the same 

time [233]. 

2.5.4.5. Disease Diagnosis 

As many studies have studied, FTIR spectroscopy can diagnose infectious disease. 

Traditionally, FTIR spectroscopy is considered as the gold standard for kidney stone analysis 

[234]. Nowadays, its application in medical field extends far beyond that. Considerable amount of 

research papers has demonstrated superior performance of FTIR spectroscopy in viral disease 

diagnosis in terms of speed and cost [235-245]. It has been evaluated to detect biochemical 

components in saliva, serum, plasma, whole blood and urine, for the diagnosis of various type of 

cancer, periodontal disease, diabetes, chronic kidney disease, and burning moth syndrome [246]. 

Identification of biomarkers from the human conditions in saliva has been studied by various 

research groups. A general literature search was carried out to find relevant papers since 2010 to 

present using FTIR spectroscopy for disease diagnosis in human saliva specimen. Most of them 

were using ATR-FTIR spectroscopy as sampling method for spectral acquisition. Different type 
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of multivariate analysis techniques was employed, including PCA, PLS, LDA, QDA, support 

vector machine (SVM), ANN, logistic regression (LR), analysis of variance (ANOVA), receiver 

operating characteristic (ROC) curves and HCA, where PCA was the most used and often 

combined with other techniques. While sensitivity achieved in these studies were all above 90%, 

some of them obtained 100% accuracy in predicting diseased individual with cancer and diabetes 

[235, 236, 240]. Specificity was generally high with percentages all above 80. The difference in 

sensitivity and specificity among studies may be due to their use of divergent sampling method 

and chemometric techniques. Details can be found in Table 2.7..  

Cancer has been investigated by several groups and has demonstrated that there are 

significant changes in secondary structure of proteins upon cancer development. Normal from 

cancer states were successfully distinguished from each other within the interval 900-1800 cm-1. 

In esophageal cancer, notable differences between healthy and diseased patients were observed in 

the regions 1000-1150 cm−1, 1350-1500 cm-1 and 1530-1600 cm-1, each region corresponding 

to DNA/RNA, amide II and amide I, respectively [235]. Region 1000-1150 cm-1 has appeared 

consistently in other studies for the research in cancer, especially 1072 and 1074 cm-1 [236, 247]. 

These bands are related to the asymmetric and symmetric PO2
− stretching from symmetric 

PO2
− stretching from inorganic phosphates and phosphate group of phospholipids. This spectral 

feature is associated with the role of phosphates in DNA during diseases [247]. Other important 

band intensity changes observed include 2924 and 2854 cm-1, corresponding to membranous lipid 

for oral cancer patients [236], 1460 and 1433-1302.9 cm-1, corresponding to proteins and lipids in 

colon and breast cancer patients [238, 247]. Band shifts were observed at 1640-1655 cm-1, 1547-

1549 cm-1, 1300-1310 cm-1 or 1300-1315 cm-1 for breast cancer [239]. These regions could all be 

assigned to amide. Lipid and fatty acid region (1735-1740 cm-1, 1393-1406 cm-1) band shifted 

were also observed in that study [239]. Prominent wavenumbers 964 cm-1, 1024 cm-1, 1411 cm-1, 

1577 cm-1 and 1656 cm-1 were remarked to separate lung cancer spectra from healthy spectra [248]. 

For head and neck cancer, shifts were observed at wavenumbers 1550 cm-1 and 1042 cm-1 [249]. 

Interestingly, FTIR spectroscopy have not only correctly diagnosed the diseased group out of 

saliva, but also identified the stage of cancer, and those who recovered from cancer in two different 

studies [235, 248]. 

In diabetic patients, 1640 cm-1 (amide I) and 1735 cm-1 (lipid ester) was more intense than 

normal group, tyrosine ring (1517 cm-1) and proteins (1452 cm-1) was altered, and amide II band 
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at 1550 cm-1 was less prominent in saliva of diabetic group [240]. Another research group noticed 

that 1545 cm-1 (amide II) and 1647 cm-1 (amide I) allowed to distinguish psoriatic and diabetic 

patients from the control group, and those bands were even useful to identify patients with different 

kinds of psoriasis [241]. Alteration and glycation of serum albumin and hemoglobin in patients 

with diabetes are well represented from the change of structure and activities in protein bands in 

their spectral signature [241]. Similar results were achieved by another group of researchers, 

concluding the diabetic characterizing spectra region were within wavenumbers 4000-2000 cm-1 

[250]. However, one study using rats as experimental samples got 100% to 93.33% sensitivity of 

classifying non-diabetic, diabetic and insulin-treated diabetic rats with bands 1452 cm-1 and 836 

cm-1 [251].  

Periodontal disease diagnosis using FTIR spectroscopy in saliva was investigated by three 

research groups. Spectral range between 1230-1180 cm-1, seems a promising tool for the diagnosis 

of periodontitis [243]. Aggressive and chronic periodontitis could be successfully differentiated 

from each other within 1800-950 cm-1 [244, 252]. The overall accuracy for the classification were 

73.9% for distinguishing aggressive periodontitis from control, and 67.7% for chronic 

periodontitis and control [252]. Noteworthy, the smoking effect was also evaluated by the same 

research group, and they found that 3,700-1,850 cm−1 and 2,170-1,900 cm-1 (thiocyanate band) 

revealed better discrimination [244].  

Thiocyanate (2052-2058 cm-1) and nucleic acid (868-924 cm-1) regions could be potentially 

used for the diagnosis of chronic kidney disease and burning mouth syndrome [245, 253]. The 

diagnosis accuracy of spectra could be hampered by excessive tobacco smoking, and thiocyanates 

might be important salivary maker in smokers that must be taken notes down if investigating other 

disease condition in the smoker patient [254]. 

Based on the research conducted, spectroscopy coupled with a multivariate analysis 

approach may represent a powerful tool for diagnosis by identifying salivary biomarkers through 

spectral bands. FTIR spectroscopy may provide novel insight to the current pandemic situation, 

with its advantages of being cost-effective, non-invasive, label-free and accurate in diagnosis, as 

demonstrated in Table 2.7. 
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Table 2.7.. Studies using FTIR spectroscopy for disease diagnosis using saliva (2010 – 

present). 
Aim Method Result Remarks Ref 

To identify early-stage 

oesophageal 

adenocarcinoma from 

healthy individuals 

ATR-

FTIR 

PCA-

QDA 

 

PCA-QDA model 

achived 100% accuracy 

for the inflammatory 

stage and high-quality 

metrics for other classes 

1000 cm-1 to 1150 cm-1, region 

associated with DNA/RNA seems 

effective for discrimination 

 

[235] 

To determine and 

differentiate the FTIR 

spectra of salivary 

exosomes from oral 

cancer patients and 

healthy individuals  

ATR-

FTIR 

PCA–

LDA 

 

Sensitivity of 100%, 

specificity of 89% and 

accuracy of 95%. The 

support vector machine 

(SVM) showed a training 

accuracy of 100% and a 

cross-validation accuracy 

of 89% 

IR spectra of oral cancer patients were 

consistently different from healthy 

individuals at 1072 cm-1 (nucleic 

acids), 2924 cm-1 and 2854 cm-1 

(membranous lipids), and 

1543 cm− 1 (transmembrane proteins). 

[236] 

To show how FTIR 

spectroscopy could be 

used to diagnose head 

and neck cancer at an 

earlier stage 

FTIR 

PLS 

Infrared wavenumbers 

1650 cm-1, 1550 cm-1, 

and 1042 cm-1 were 

determined to 

discriminate between 

normal and cancer 

sputum 

In cancer cases, the absorbance levels 

for 1550 cm-1 were increased relative 

to controls, whereas 1042 cm-1 

absorbance was decreased suggesting 

changes to protein and glycoprotein 

structure within sputa cells 

[249] 

To determine the role 

of saliva in the early 

diagnosis of salivary 

gland tumor 

ATR-

FTIR 

 

ATR-FTIR was able to 

track spectral variations 

between saliva samples 

from healthy volunteers 

and from salivary gland 

tumor patients 

Most evident alterations occur in the 

region between ~900 and 1300 cm-1 

[255] 

To apply ATR-FTIR 

onto saliva from 

patients with breast 

cancer, benign breast 

disease, and healthy 

matched controls to 

investigate its potential 

use in breast cancer 

diagnosis 

 

ATR-

FTIR 

90% sensitivity and 80% 

specificity for 

discriminating breast 

cancer patients from 

controls. 

80% sensitivity and 70% 

specificity to 

differentiate breast 

cancer patients from 

benign disease 

The absorbance levels at wavenumber 

1041 cm-1 were significantly higher in 

saliva of breast cancer patients 

compared with those of benign 

patients. 

1433–1302.9 cm-1 band area was 

significantly higher in saliva of breast 

cancer patients than in control and 

benign patients 

[247] 

To identify and 

separate cancer from 

colitis in endoscopic 

colon biopsies 

ATR-

FTIR 

PCA 

 

Sensitivity of FTIR 

detection for cancer 

achieved 97.6% 

The relative intensity of amide II band 

to ~1643 cm-1 decreased in spectra of 

malignant colon tissues. The intensity 

of ~1460 cm-1 was weaker than that of 

~1400 cm-1 peak in spectra of the 

cancerous samples. Peak at ~1460 cm-

1 was stronger than or equal to that of 

~1400 cm-1 in the spectra of colitis 

samples 

[238] 

To evaluate the 

performance of FTIR 

spectroscopy of the 

saliva for the diagnosis 

of cancer, namely, lung 

and breast cancer 

 

FTIR Statistically significant 

differences of lung 

cancer patients are 

observed at 1070–1240 

cm-1, while differences 

are observed for breast 

cancer patients in the 

The amide I band in the normal group 

was found near 1655 cm-1 but was 

shifted in cancer patients to 1640 cm-1. 

The amide II band in the normal group 

had a maximum at 1547 cm-1, while it 

was shifted to 1549 cm-1 for both 

major cancer patient groups. The 

[239] 
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entire spectral range 

studied 

 

amide III band found in the normal 

patient group at 1300 cm-1 is shifted to 

1310 cm-1 in lung cancer group, and 

1315 cm-1 in breast cancer group. 

Shifts from 1740 to 1735 cm-1, and 

1393 to 1406 cm-1 for cancer patients 

were observed. The band 1240 cm-1 is 

shifted to 1242 cm-1 for breast cancer 

patients, and to 1244 cm-1 for lung 

cancer patients, while the band at 1075 

cm-1 for the normal individuals is 

shifted to 1076–1078 cm-1 for both 

cancers. 

To evaluate FTIR 

spectroscopy as a 

method for identifying 

biochemical changes in 

sputum as biomarkers 

for detection of lung 

cancer 

FTIR 

PCA 

HCA 

Five prominent 

significant wavenumbers 

at 964 cm-1, 1024 cm-1, 

1411 cm-1, 1577 cm-1 and 

1656 cm-1 separated 

cancer spectra from 

normal spectra into two 

distinct groups using 

multivariate analysis 

PCA revealed that these wavenumbers 

were also able to distinguish lung 

cancer patients who had previously 

been diagnosed with breast cancer. No 

patterns of spectra groupings were 

associated with inflammation or other 

diseases of the airways 

[248] 

To predict diabetic 

status by analyzing the 

molecular and sub-

molecular spectral 

signatures of saliva 

collected from subjects 

with diabetes and 

healthy controls  

FTIR 

LDA 

The overall accuracy 

based on infrared 

spectroscopy was 100% 

on the training set and 

88.2% on the validation 

set. 

The altered α-helix (1640 cm-1) 

component is more obvious in the 

diabetic saliva spectra. The vibration 

of the tyrosine ring (1517 cm-1) is 

altered in the diabetic group. The 

amide II band at 1550 cm-1 was less 

prominent in diabetic saliva than those 

from normal saliva, while the lipid 

ester band at 1735 cm-1 was more 

intense. The band at 1452 cm-1 also 

changed in diabetic group. 

[240] 

To analyze saliva 

proteomic components 

in psoriatic patients 

against diabetic 

patients and a control 

group using FTIR 

ATR-

FTIR 

PCA 

Saliva spectra of the 

control group and 

palmoplantar psoriatic 

patients differ from 

plaque psoriasis and 

diabetic patient spectra 

due to the absence of the 

amide II band and the 

presence of different 

secondary protein-

structure conformations 

A prominent amide II band (1545 cm-

1) and amide I band (1647 cm-1) 

allowed to distinguish the infrared 

salivary signature of psoriatic and 

diabetic patients from the control 

group and even from patients with 

different kinds of psoriasis 

[241] 

To characterize 

controlled 

and uncontrolled 

diabetic patients; 

clustering patients in 

groups low, medium, 

and high glucose 

levels; and finally 

performing the point 

estimation of a glucose 

value 

ATR-

FTIR 

SVM, 

ANN, 

LR 

All the 540 spectra 

(100%) that make up the 

database were correctly 

characterized by studying 

the region 4000-2000 

cm-1 

The region from 4000 to 2000 cm-1 lies 

mainly hydrogen bonding, which is a 

region ignored in most of the works 

since it is generally considered as a 

spectral silent region (2800-1800 cm-1)  

 

[256] 
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To evaluate saliva of 

non-diabetic (ND), 

diabetic (D) and 

insulin- 

treated diabetic (D+I) 

rats to identify 

potential salivary 

biomarkers using 

ATR-FTIR 

ATR-

FTIR 

PCA-

LDA, 

HCA 

Classification of D rats 

was achieved with a 

sensitivity of 100%, and 

an average specificity of 

93.33% and 100% using 

bands 1452 cm-1 and 836 

cm-1, respectively. 

1452 cm-1 and 836 cm-1 spectral bands 

seems to be spectral biomarkers for 

diabetes, and highly correlated with 

glycemia. Both PCA-LDA and HCA 

classifications achieved an accuracy of 

95.2% for the groups  

[251] 

To evaluate the 

diagnostic potential of 

periodontal disease by 

FTIR technique for 

saliva samples 

FTIR The leave-one-out cross-

validation discrimination 

accuracy was 94.3% 

Periodontal samples showed a larger 

raw IR spectrum than the control 

samples. Shape of the second 

derivative spectrum was clearly 

different between the periodontal and 

control samples. 

[242] 

To detect differences 

in composition of 

saliva supernatant in 

non‐periodontitis 

individuals and 

patients with 

generalized aggressive 

periodontitis  

ATR-

FTIR 

PCA 

Ten samples show in the 

analysis of variance of 

the two data sets a true 

difference (99.8%) 

 

Spectral range between 1230 and 1180 

cm-1, or even of only two carefully 

selected wavelengths (1206 and 1196 

cm-1) is a promising tool for the 

analysis of saliva supernatant for the 

diagnosis of periodontitis 

 

[243] 

To determine the 

ability of FTIR 

spectroscopy to 

distinguish chronic 

periodontitis (CP) and 

aggressive 

periodontitis (AgP) 

patients by saliva 

samples and, to assess 

the potential 

confounding influence 

of smoking on 

discriminating disease-

specific spectral 

signatures 

FTIR 

HCA 

Nonsmoker CP and AgP 

patients were 

discriminated from each 

other with high 

sensitivity and 

specificity. Successful 

differentiation was also 

obtained for the smoker 

CP and AgP groups. 

Thiocyanate levels 

successfully 

differentiated smokers 

from nonsmokers, 

irrespective of 

periodontal status, with 

100% accuracy. 

All smoker AgP samples were 

successfully discriminated from 

nonsmoker ones with 100% sensitivity 

and specificity for both spectral 

regions (thiocyanate band (2170–1900 

cm−1) and 3700–1850 cm−1 spectral 

region) 

 

[244] 

To characterize and 

determine specific 

spectral signatures in 

saliva from healthy, 

chronic periodontitis, 

and aggressive 

periodontitis patients 

using IR spectroscopy 

FTIR 

LDA 

ANOVA 

The overall accuracy for 

identifying the saliva 

samples as control or 

aggressive periodontitis 

was 73.9 % for the 

training set and 67.1 % 

for the validation set. 

The overall accuracy for 

classifying saliva 

samples as control or 

chronic periodontitis for 

the training set and the 

validation set was 67.7 % 

and 56.7 % respectively 

Mean difference of IR spectra between 

control and periodontitis groups was 

significant for wavelengths 1087 cm-1, 

1240 cm-1 and 1652 cm-1 and 1740 cm-

1.  

[252] 

To compare salivary 

components between 

chronic kidney disease 

ATR-

FTIR 

ROC 

92.8% sensitivity and 

85.7% specificity for 

CKD detection 

Thiocyanate (SCN-, 2052 cm-1) and 

phospholipids/carbohydrates (924 cm-

1) could potentially be used as salivary 

[201] 
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(CKD) patients and 

matched control 

subjects 

biomarkers to differentiate CKD than 

control subjects 

To evaluate possible 

changes in saliva 

composition at the 

molecular level that 

can be associated with 

burning mouth 

syndrome (BMS) 

 

FTIR 

PCA 

Data obtained concludes 

the presence of 

alterations in saliva 

composition that may be 

directly related to BMS 

symptomatology 

All bands showed the same or high 

intensity for the control group, except 

for the bands at 868 cm-1 and 2058 cm-

1, which corresponded respectively to 

nucleic acid and thiocyanate, and 

showed great intensity for patients 

with BMS 

[245] 

 

Limitations of FTIR spectroscopy exist. Although the method is fast, non-destructive and 

reagent-free, band overlapping restrictions causing inconclusive results of untreated samples 

cannot be ignored. Additionally, the sensitivity might not be as satisfactory as nucleic acid 

amplification-based diagnostics. However, it is easy to overcome these limitations by performing 

adequate spectral treatment and analysis, using effective multivariate analysis tool, and enlarging 

the spectral database. 

In many FTIR spectroscopy studies, specific biomarkers were found in diseased patients 

according to their spectral bands and allowed successful discrimination between control and 

patients. As previously described, the binding of SARS-CoV-2 to ACE2 in salivary gland increase 

the amount of ANG II and may likely contributes to injury and inflammation in COVID-19 patients. 

This change in composition, as well as the presence of antibodies and other biomarkers triggered 

by the entry of the virus, could all be reflected on a spectral image. The proposed FTIR 

spectroscopic technique, combined with multivariate analytical tools, may not only allow the 

identification and classification of food-related microorganisms, but could also possibly monitor 

the chemical pathway to the progression of COVID-19 and identify any changes in the chemical 

structure of the virus that may occur. 
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2.6. Conclusion  

Identification and classification of microorganisms is unquestionably important. The 

invention of more rapid and specific microbial detection and instrument automation allows to 

advance our knowledge of microorganism diversity. Traditional methods for microorganism 

detection and identification are still in use but are generally labor intensive and time consuming. 

Although MALDI-TOF MS, WGS and RT-PCR may lead to significant savings and in terms of 

specificity and accuracy compared to the conventional methods, the cost is still of concern, 

especially for developing countries. With implementation of FTIR spectroscopic-based methods, 

conclusive results with high confidence can be readily available, allowing for faster prescription 

of medication or triggering food recall action in a timely manner. For bacteria or fungi, FTIR 

spectroscopy is undoubtedly a promising analytical tool for discrimination even at the strain level. 

The utility of FTIR spectroscopy for species differentiation, especially between STEC from 

generic E. coli, and among Salmonella serogroups and Staphylococcus spp. will provide huge 

advancement in the microorganism identification field. For viruses, FTIR spectroscopy has the 

potential given its capacity of high discriminatory power. It is worth more attention in the 

investigation and validation of its potential as a screening tool to the current pandemic situation, 

in order to achieve governmental mass screening goals aimed at limiting the spread of the disease.  

It is important to note that no single identification method will have 100% accuracy. Each 

method has its strengths and weaknesses, necessitating the use of multiple methods. Depending on 

the cost, available resources, the time that the microbiologist is prepared to wait, and the research 

question, choosing the appropriate techniques and understanding their limitations action is crucial 

to obtain the most precise result. FTIR spectroscopy requires in general lesser requirements in 

terms of finance and technician skills. As a result, an FTIR spectroscopic-based method, along 

with its advantages of rapid, non-destructive, label-free, and inexpensive, could be attractive for 

industries, hospitals, government surveillance microbiology laboratories for routine analysis. It 

can also be employed as a pre-screening step before undergoing tedious whole-genome sequencing 

methods, cutting down working load while attaining higher accuracy. The research into microbial 

quantification, identification and discrimination, as well as studies on microbial cellular 

modification in response to stress, by spectroscopic techniques and spectral imaging technologies 

will continuously be of interest in the future. The acceleration of developing portable spectroscopic 
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and imaging systems with simplicity and reliability, and the reduction of cost should facilitate 

adoption of these technologies in all research fields.  
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Chapter 3. Evaluation of ATR-FTIR spectroscopy and Transflection-FTIR 

spectroscopy as a tool for rapid identification of bovine mastitis related Gram-

positive cocci in different growing medium 

 

3.1. Abstract 

 Bovine mastitis is the inflammation of the mammary-gland caused by pathogenic infection, 

inducing abnormal and decreased milk production. It causes huge economic loss that can be 

detrimental to farmers worldwide. Staphylococcus spp. and Streptococcus spp. are Gram-positive 

cocci that are among the most prevalent pathogens causing mastitis. Traditional methods for 

identification of bovine mastitis pathogens provide ambiguous results. In this study, we aim to 

develop and evaluate the use of Fourier-transform infrared (FTIR) spectroscopy for bovine mastitis 

pathogens identification. Four databases of bovine mastitis-related pathogens including 440 strains 

as training, 142 strains as validation, and 98 strains as test set have been developed using different 

FTIR sampling method (attenuated total reflectance (ATR) and transflectance (TR)) and growth 

media namely tryptic soy agar (TSA) and Columbia blood agar (CBA) by principal component 

analysis and linear discriminant analysis (PCA-LDA). Outlier samples were investigated using 

hierarchical cluster analysis (HCA) and subjected to other identification methods for identity 

confirmation. A correct classification rate range of 94-97% was achieved for all databases at the 

species level. FTIR database compatibility was assessed using combined databases grown under 

different growth media resulting in a high identification rate of ~93% at species level. Therefore, 

FTIR spectroscopy has the potential applicability for routine identification of Staphylococcus spp. 

and Streptococcus spp. as causative agents in bovine mastitis. 
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3.2. Introduction 

Bovine mastitis is a major endemic disease in dairy farms. It causes a reduction in milk 

yield and may alter the milk quality, making it watery in appearance, showing flakes, clots, or pus. 

Also, bovine mastitis can lead to shedding bacteria and toxins in the milk [1]. Furthermore, it leads 

to a decline in nutrient content, such as potassium, lactoferrin and casein [2]. Bovine mastitis is a 

significant disease in dairy cattle that causes substantial economic loss that can be detrimental to 

farmers worldwide. Dairy farm associated costs include waste of milk due to antibiotic residues 

contamination, reduction in yield, veterinary costs, labor or personnel costs, and reduced longevity 

of the infected cows and occasional deaths [3]. In Canada, the total cost of bovine mastitis in an 

average herd is approximately CAD$ 662 per cow per year mostly associated with a low milk 

yield, followed by excessive expenses in control and medication with a total annual cost of 

CAD$ 400 million for Canadian dairy farmers [4]. 

Several bacteria can cause bovine mastitis [5]. Gram-positive cocci, including contagious 

pathogens such as Staphylococcus aureus (S. aureus) and Streptococcus dysgalactiae (S. 

dysgalactiae, and environmental pathogens like some coagulase-negative Staphylococci (CoNS) 

and Streptococcus uberis (S. uberis) are the major cause of bovine mastitis. S. aureus is responsible 

for around 5% to 70% of cow mastitis worldwide, and causes chronic mastitis infection, resulting 

in a 45% decrease in milk production per quarter [6]. Prevalence of CoNS is increasing in many 

countries. Some CoNS most found in bovine mastitis are S. chromogenes, S. simulans, S. 

haemolyticus, S. xylosus, S. hyicus and S. epidermidis [5, 7]. S. uberis is also gaining attention 

throughout the world as it causes both clinical and subclinical mastitis. Furthermore, major 

concerns have been raised on the overuse of antimicrobials and the development of antimicrobial 

resistance, reducing therefore the effectiveness of existing treatments of bovine mastitis. Rapid 

and cost-effective analysis methods are needed for pathogen identification at the species level in 

order to prescribe targeted treatment, optimize use of antibiotics, and develop effective control 

strategies. However, differentiation between bovine mastitis pathogen species is sometimes 

challenging [5]. 

In routine diagnostic laboratories, the identification of gram-positive, catalase-negative 

cocci is still mainly based on biochemical tests and serological grouping. However, these methods 

are rather time-consuming, labor-intensive and may give uncertain results due to a lack of mastitis-

associated species in the database or misinterpretation resulting in ambiguous identification results. 
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Furthermore, Lancefield-group antisera do not react with every streptococcal species [8]. 

Traditional phenotypic plates used for bovine mastitis such as Accumast, Minnesota Easy System, 

SSGN, and SSGNC Quad plates yield low rates of identification, with Accumast performing 

accuracy between 73.46% and 89.57% [9]. Moreover, isolates belonging to the same species may 

vary in expression on culture plate, and their interpretation is mainly subjective. All that said, 

methods currently used in routine diagnosis for bovine mastitis are prone to error and may give 

uncertain result,  

Identification of microorganisms at the species level can be achieved by genotypic-based 

methods, but the detection and simultaneous identification on-site is limited [9]. In many studies 

of bovine mastitis, there is no species-level identification investigated for Staphylococcus species 

(other than S. aureus), Streptococcus spp. and other Gram-positive cocci. Accurate identification 

at the species level is essential for epidemiological studies. The cost and the lack of accuracy of 

traditional methods are among the probable causes for the lack of speciation of these groups of 

microorganisms. In the light of the growing threat of antibiotic resistant bacteria, fast and proper 

identification systems are not only crucial for determination of the role of certain bacterial species 

in bovine mastitis, but also for choosing the right therapeutic treatment [9]. For targeted therapies, 

fast, easy-handling, and accurate identification methods, allowing the discrimination of bacteria at 

least at species level, are urgently needed. 

Presently, biophysical techniques such as Fourier-Transform Infrared (FTIR) spectroscopy 

and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF 

MS) have gained more attention due to its low cost, non-destructive and rapid and easy 

identification. MALDI-TOF MS is based on the molecular mass of small peptides and ribosomal 

proteins, whereas FTIR spectroscopy is based on the specific fingerprint like patterns of bacterial 

infrared of the chemical functional group signals from carbohydrates (Polysaccharides), proteins 

and peptides and lipids. The low cost per sample, simplicity, and time-efficiency of time of analysis 

of the experimental procedure make MALDI-TOF MS and FTIR spectroscopy attractive options 

for bacterial identification and typing [9]. Nonetheless, MALDI-TOF MS lacks robustness and the 

absence of a user-friendly software, which makes it difficult for routine use [10]. Furthermore, it 

can experience difficulties in identifying species having minor differences in their ribosomal 

protein sequences [11]. FTIR spectroscopy has been shown to have advantage over MALDI-TOF 
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MS for bacteria identification of bovine mastitis sample, in which 100% correct species 

identification was attained for FTIR spectroscopy, and 90.5% for MALDI-TOF MS [12]. However, 

MALDI-TOF MS only started being implemented in microbiology laboratories recently [13]. Due 

to its high throughput capacity and discriminatory power, FTIR spectroscopy might represent an 

interesting method for the identification of bovine mastitis pathogens. FTIR is a metabolome-based 

method, which is able to distinguish the broad diversity of microbiota down to the species and 

subspecies level [4]. In contrast to conventional methods, FTIR spectroscopy enables a high 

sample throughput, delivers high spectral quality data in short time and represents a rapid, 

inexpensive, and reliable identification method for microorganisms. It has been successfully 

employed for studying complex microbial communities in raw milk and dairy products [9]. 

Because of its high discriminatory capacity, FTIR spectroscopy can be employed for strain typing 

purposes [9].  

We therefore aimed to establish an accurate species-specific identification system for 

differential diagnosis of Gram-positive cocci (Streptococcus spp., S. aureus and common CoNS 

species) and other related species associated bovine mastitis using FTIR spectroscopy using two 

different spectral acquisition techniques; attenuated total reflectance (ATR) and transflection (TR), 

and evaluate the effect of different culture medium composition (Tryptic soy agar and Columbia 

blood agar) to on the accuracy of microbial identification by FTIR spectroscopy.   
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3.3. Materials and Methods 

3.3.1. Bacterial isolates 

A total of 680 bacterial strains representing 7 genera and 30 species were included in this study. 

The strains were isolated from bovine clinical mastitis, and kindly provided by ‘Oplait 

Regroupement pour un lair de qualité optimale’ (Oplait Saint-Hyacinthe, Canada). The 

identification of all strains was confirmed at Oplait by phenotypical and genotypical tests as 

previously described [14, 15] and stored in 10% glycerol at -80℃. For FTIR analysis, strains were 

subculured in tryptic soy broth (TSB) and cultured on tryptic soy agar (TSA; BD Difco, Le Pont 

de Claix, France) at 35℃ for 24 h. 582 isolates were used to develop the FTIR spectral database. 

The isolates were randomly assigned to a training (n = 440) or validation (n = 142) set. A total of 

98 isolates were used for prediction and are summarized in Table 3.1.. 

Table 3.1.. Species and number of strains used for the development of the FTIR spectral 

database and validation set. 

Species   Training Validation Test 

Total 

strains 

Enterobacter spp.  10 3  13 

Escherichia coli  173 55  228 

Klebsiella oxytoca  4 2  6 

Klebsiella pneumoniae 3 2  5 

Klebsiella spp.  21 10  31 

Corynebacterium spp. 24 8  32 

Staphylococcus aureus 44 10 22 76 

CoNS      

 S. arlettae 3 1  4 

 S. capitis 8 1 1 10 

 S. caprae 2 0  2 

 S. chromogenes 8 5 4 17 

 S. cohnii 9 4 2 15 

 S. devriesei 6 3 1 10 

 S. epidermidis 2 2 6 10 

 S. equorum 6 3 1 10 

 S. gallinarum 8 1 1 10 

 S. haemolyticus 4 1 4 9 

 S. hominis 5 2 1 8 

 S. hyicus 3 1 5 9 

 S. pasteuri 4 1  5 

 S. aprophyticus 8 4 2 15 



88 

 

 S. sciuri 12 2 1 14 

 S. simulans 10 2 5 17 

 S succinus 8 2  10 

 S vitulinus 5 1  6 

 S. warneri 5 4 1 10 

 S. xylosus 3 1 6 10 

Streptococcus dysgalactiae 17 4 18 39 

Streptococcus uberis 15 4 17 36 

Trueperella pyogenes 10 3   13 

Total   440 142 98 680 
 

3.3.2. FTIR spectroscopy spectral acquisition methods 

FTIR spectroscopy generates spectra based on the absorption of the infrared light by the 

different chemical composition (lipids, proteins, polysaccharides) of the whole bacterial cell. As 

the entire spectral fingerprint is generated by FTIR spectroscopy, many details could be revealed, 

and even closely related species could be differentiated through proper analysis techniques. 

Microbial samples with different Gram-level, genera and species can be examined to find specific 

biomarkers associated with specific spectral markers for building the identification/discrimination 

models. With a large database and adequate analysis methods, FTIR spectroscopy could identify 

a microorganism in a matter of minutes ( Figure 3.1. Schematic representation of (A) ATR-FTIR 

sampling technique and (B) Trans-FTIR sampling technique for the procedure of identification 

using FTIR spectroscopy). Due to its discriminatory power, FTIR spectroscopy is suitable to 

identify and discriminate closely related bacterial species from different genera [16]. The 

advantages are particularly its simplicity to operate, no reagents required, non-destructive, noon-

invasive, rapid, and most importantly cost-effective [17]. In general, transmission FTIR and ATR-

FTIR are the two sampling techniques in FTIR spectroscopy. While transmission FTIR is more 

common, it suffers from opacity problem and strictly requires sample to be 1 to 20 microns thick 

[18]. On the other hand, transflection reflectance technique has gained more attention in recent 

years in our laboratory. The latter spectral acquisition technique includes attenuated total 

reflectance (ATR) and transflection (TR) and are employed this work. In brief, ATR spectra of a 

sample are recorded by the attenuation of an evanescent waves that is produced when light is 

internally reflected with a crystal). In transflectance (transflection) mode, also called reflection-

absorption, the sample is deposited onto an infrared reflective substrate (e.g. polished metal or 

low-E glass), IR beam passes through the sample and reflects off the reflective surface layer, and 
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then it passes through the sample a second time, doubling the pathlength and hence increasing the 

sensitivity [18]. The ATR-FTIR spectra differ significantly from those acquired in TR-FTIR mode. 

A general schematic representation of the two sampling techniques can be found in Figure 3.1. A 

main issue of ATR-FTIR will be the lack of sensitivity due to the restricted depth of penetration. 

It is estimated that ATR-FTIR can only detect molecules present in concentrations greater than 

0.1% [19]. As for TR, the double absorption of incident light through the sample that takes place 

increases the intensity of the IR signal, hence resulting in higher absorbance compared to ATR. 

Nevertheless, while ATR-FTIR simply needs the bacteria in direct contact with the IRE surface 

followed by spectral measurement, TR-FTIR requires an additional step to deposit and dry the 

bacteria on low emissivity glass substrates initially followed by spectra acquisition. Furthermore, 

some microorganisms, such as yeasts, are not suitable for TR-FTIR as they tend to crack and fall-

off the reflective substrate when dried. 

 

 
Figure 3.1. Schematic representation of (A) ATR-FTIR sampling technique and (B) Trans-

FTIR sampling technique for the procedure of identification using FTIR spectroscopy. 

 

3.3.3. Microbial growth   

 All isolates were subcultured onto TSA and Columbia agar with 5% sheep blood (CBA; 

Oxoid Australia Pty. Ltd) for 24 to 48 h at 35℃ prior to FTIR measurements.  

 All FTIR spectra were recorded in the region between 700 cm-1 and 4000 cm-1 in 

absorbance mode with Happ-Genzel apodization using a NicoletTM Summit (Thermo Fisher 

Scientific Waltham, US) FTIR spectrometer. For each FTIR spectrum, 32 scans were co-added 

and averaged at a spectra resolution of 8 cm-1 and ratioed against a background spectrum collected 
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from a clean sampling surface. To ensure sample reproducibility, triplicate spectra was acquired 

from individual bacteria colonies on the same agar plate and averaged. 

For ATR-FTIR spectra acquisition, a loopful of bacteria was harvested with a 1-mm 

diameter sterile inoculating loop and deposited directly onto the ATR crystal of the Summit FTIR 

spectrometer to acquire an ATR-FTIR spectrum. ATR crystal was cleaned thoroughly with 70% 

ethanol and wiped dry. For TR-FTIR spectral acquisition, the ATR crystal was removed from the 

FTIR spectrometer and replaced by a holder with a window in the middle for the IR beam to pass. 

The bacterial samples were smeared as a thin uniform layer on a reflective glass slide (Low-e 

Microscope Slides, Kevley Technologies) and allowed to dry prior to TR-FTIR spectral acquisition. 

Four spectral databases were obtained, namely ATR-FTIR database from TSA (ATR-TSA-

FTIR), ATR-FTIR database from CBA (ATR-TSA-FTIR), TR-FTIR database from TSA (TR-

TSA-FTIR), and TR-FTIR database from CBA (TR-CBA-FTIR). 

For database compatibility, ATR-TSA-FTIR and ATR-CBA-FTIR databases were 

combined together forming a large ATR-FTIR database used to evaluate the prediction efficiency 

of all bacterial spectra acquired in ATR mode. The same protocol was followed for the TR-FTIR 

database as well as for the prediction. A total of 6 databases were obtained (ATR-TSA-FTIR, 

ATR-TSA-FTIR, Trans-TSA-FTIR, Trans-CBA-FTIR, ATR-TSA/CBA-FTIR, and Trans-

TSA/CBA-FTIR). 

3.3.4. Spectral data analysis 

Prior to statistical analysis, preprocessing was applied to all spectra using commercially 

available spectral analysis software OMNIC (Thermo Scientific™, USA). Only high-quality 

spectra were considered for the analysis. Low-quality spectra are those with a weak water 

absorbance band (broad region of 3600-3200 cm-1) of <0.15 for ATR-FTIR spectra, and 

absorbances of >1.2 in the spectral region between 1700 and 1600 cm-1 assigned to the amide I 

band of proteins for TR-FTIR spectra. Spectra with significant absorption from atmospheric water 

vapor were also excluded.  

The mean of the spectra was calculated from the remaining spectra based from the replicate 

measurements for each growth medium and spectral acquisition mode. Spectra were subjected to 

vector normalization and their first derivative calculated by an in-house-built software. All spectra 



91 

 

were also made compatible by interpolation so that they consist of the same number of 

wavenumbers datapoints per spectral file. The relevant wavenumber ranges were narrowed down 

to 700-1800 cm-1 and 2800-3000 cm-1 in order to perform a forward region selection algorithm to 

discriminate among the species based on specific spectral region [20]. The combination of selected 

wavenumber regions producing the best separation of classes was subsequently chosen for 

validation purposes.  

Spectra were also exported as an x-y CSV matrix using an in-house written software in 

MATLAB (The MathWorks Inc., Natick, MA, US) The CSV matrix was imported directly into 

JMP Statistical Discovery software, version 16 to perform data analysis. Unsupervised hierarchical 

cluster analysis (HCA) using the Ward’s algorithm with Euclidean distances, principal component 

analysis (PCA) and linear discriminant analysis (LDA) were selected for spectral analysis. PCA-

LDA is a supervised statistical analysis method that assigns each unknown spectrum to a 

predefined class (database IR spectra) that was created previously. The algorithm creates a class 

prediction to which the unknown spectrum can be assigned. 

3.3.5. IR spectra libraries 

 A multi-level approach was used to establish the four FTIR identification database by 

dividing the identification process into several consecutive steps allows optimal classification at 

each taxonomic level, hence improving the identification accuracy. For this purpose, HCA was 

employed to all database strains to determine the grouping based on their similarity. Depending 

on the clusters, all strains were divided into groups, and they were further separated into smaller 

groups in the following levels: (i) level-1, strains were grouped into 2 main classes, separating 

Gram-positive and Gram-negative strains; (ii) level-2, Staphylococcus spp. was clustered out from 

the other Gram-positive bacteria; (iii) level-3, further differentiation of coagulase positive 

Staphylococcus (S. aureus) and CoNS, as well as Corynebacterium spp., Streptococcus spp. and 

Trueperella pyogenes (T. pyogenes). CoNS species and Streptococcus spp. required an additional 

level to be split into single species. The structure of the FTIR spectral databases is shown in Figure 

3.2. Specific steps for CoNS species identification are shown in A.1 (Appendix 1). 

The misclassified isolates were re-grown and subjected to MALDI-TOF MS identification 

for confirmation at Health Canada laboratory. PCA was then used to derive 30 principal 

components ensuring 99% of the variability is considered by the analysis. Lower number of PC 
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scores were also used to study the impact each score on the classification accuracy of each model. 

Subsequently, linear discriminant analysis (LDA) was performed for the training and validation of 

the database.  

  
Figure 3.2. Structure of FTIR spectral databases for the identification of cow mastitis related 

Gram-positive cocci. 

 

3.3.6. Identification of cow mastitis related Gram-positive cocci bacteria 

 Ninety-eight cow mastitis bacterial strains (not included in the spectra databases) were used 

as an external validation set to evaluate the identification accuracy of all 6 FTIR databases. 

Database compatibility and spectra interchangeability were also evaluated by using the combined 

ATR-TSA/CBA-FTIR database to identify the validation strains from their perspective ATR-FTIR 

spectra. TR-TSA/CBA-FTIR database were similarly employed to identify the external validation 

sets from their perspective TR-FTIR spectra. At the end, two groups of ATR-acquired prediction 

spectra were attained, one group from bacteria grown of CBA (ATR-CBA-FTIR), and one group 

from bacteria cultured on TSA agar plates (ATR-TSA-FTIR); two groups of TR-acquired 

prediction spectral sets were also similarly obtained, one group from bacteria cultured on CBA 

agar plates (TR-CBA-FTIR), and one from bacteria cultured on TSA agar plates (TR-TSA-FTIR). 

The 98 isolates used were 22 S. aureus (10104354; 10113752; 10200018; 10200025; 10200070; 

10200094; 10200117; 10200186; 10200223; 10200230; 10200339; 10200346; 10200667; 

10200742; 10200797; 10201145; 10201152; 10201817; 10201824; 10201855; 10201947; 

10202456), 1 S. capitis (11304197), 4 S. chromogenes (10100134; 10100158; 10101834; 
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10103661), 2 S. cohnii (10605431; 11214199), 1 S. devriesei (11009283), 6 S. epidermidis 

(10203255; 10203613; 10205761; 10206539; 10214404; 10405260), 1 S. equorum (10101247), 1 

S. gallinarum (10501412), 4 S. haemolyticus (10102930; 10115831; 10116807; 10116982), 1 S. 

hominis (20213459), 5 S. hyicus (11004585; 11005971; 11510345; 11511038; 11513759), 2 S. 

saprophyticus (20608750; 20707316), 1 S. sciuri (10203361), 5 S. simulans (10300404; 10312964; 

10501252; 10509425; 10709382), 1 S. warneri (10204979), 6 S. xylosus (10104334; 10209974; 

10606438; 10607084; 10608371; 10608678), 18 S. dysgalactiae (10201107; 11301769; 11301776; 

11301783; 11303831; 11306610; 20103071; 20103637; 20104757; 20106140; 

21307447;21307997; 21310041; 21313783; 21902970; 22201898; 22204820; 22205476) and 17 

S. uberis (10112106; 10112434; 10115510; 10115534; 10202227; 10303474; 10311202; 

10311219; 10311233; 10311868; 11610038; 11800255; 11800590; 11806684; 11900474; 

11901327; 11910190).  

 Identification of each strain is achieved by pairwise identification as shown in Figure 3.2, 

by comparing test set spectra against each group within Gram, genus, and species level. The correct 

identification of S. aureus against other CoNS was also evaluated. Specific identification of 

commonly isolated CoNS species from bovine mastitis was also investigated, including S. 

chromogenes, S. epidermidis, S. haemolyticus, S. hyicus, S. simulans, and S. xylosus. All other 

CoNS species were grouped and considered as ‘Other CoNS’. The prediction results along with 

prediction probability was generated. Prediction probability >0.8 indicates a reliable identification 

(high confidence), values between 0.7999 and 0.6001 represent probable correct identification 

(medium confidence), whereas <0.6 is regarded as non-identifiable.  
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3.4. Results and Discussion 

3.4.1. FTIR spectra analysis 

 ATR-FTIR and TR-FTIR spectra were acquired in triplicate from 680 bacterial isolates (30 

species from 7 genera) grown on two different culture media plates (TSA and CBA). First 

derivative and vector normalization was carried out on the average of the triplicate spectra from 

the same strain. A total of 582 strains were used for database construction for each of the 4 spectral 

databases. Ninety-eight isolates were used as unknowns (not included in the databases). 

3.4.2. Development of the IR spectral database 

The different functional groups present in the biochemical structure of bacteria strains 

contribute to distinct absorbance patterns in the IR spectrum. For bacteria, different content of 

peptidoglycan layer, lipoproteins, phospholipids, proteins, and lipopolysaccharides could be 

responsible for the significant differences in the IR spectral patterns. These macromolecules 

generally have strong absorption in the infrared spectral region  between 900 and 1800 cm-1, 

commonly assumed to be dominated by chemical groups related to lipids, protein, carboxylic side 

chains of proteins, free amino acids, polysaccharides, RNA/DNA and phospholipid constituents 

[21, 22]. The 900–700 cm−1 region is referred to as the ‘fingerprint region’ which contains weak 

but specific absorbance characteristic of bacteria. The spectral region between 3000–2800 cm-1 is 

associated with C-H absorption from lipids, carbohydrates, and proteins. Therefore, the spectral 

regions 700-1800 cm-1 and 2800-3000 cm-1 were selected for interrogation by an in-house built 

software to identify narrow wavenumber ranges with the selected broad regions. The narrow 

spectral regions can enhance the performance of the classification models by eliminating spectral 

regions associated with noise or other extraneous spectral interference.   

Although there is a general similarity between spectra of different genera and species 

within, a unique pattern for each genus with different peaks can be observed, suggesting possible 

separation of genera at the level-2 (Figure 3.3). To ensure optimal identification accuracy of the 

spectral database and to prevent overfitting, a multitier process is employed for genus and species 

differentiation. At tier 1 or level-1, two main cluster groups were observed, separating Gram-

positive and Gram-negative strains. This grouping was observed in all four spectral databases over 

a wide wavenumber region of 1200-1500 cm-1, as illustrated in  Figure 3.4 for ATR-TSA-FTIR 

strains.  
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Figure 3.3.  (A) ATR-TSA-FTIR spectra and (B) TR-TSA- FTIR spectra in the region of 700-

2000 cm-1 of the averaged seven bacteria genera. 
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Figure 3.4. HCA of ATR-TSA-FTIR database training strains over a broad wavenumber 

region 1266-1518 cm-1 for the differentiation of Gram-positive and Gram-negative bacteria. 

 

3.4.2.1. Genus Level Differentiation 

Reducing spectra data to a group of PC scores is considered a more effective approach to 

class discrimination than empirical region selection. The PC scores are responsible for the 

variability among genera and species groups. They can be easily derived so that the analysis time 

can be dramatically decreased relative to the use of spectral wavenumber ranges. Figure 3.5 shows 

the use of the first 3 PC scores in the differentiation of multiple genera. The 3D score plot shows 

Escherichia coli (E. coli), Enterobacter spp. and Klebsiella spp. from Gram-negative cluster 

further separates from each other at the second level (Figure 3.5A). Gram-positive genera 

differentiation required additional steps. Staphylococcus spp. aggregated together and 

discriminated from the other Gram-positive genera in all four databases (Figure 3.5B), requiring 

two supplementary levels to be split into species. The other three Gram-positive genera 

differentiated at the third level (Figure 3.5C). Figure 3.6 illustrates the spectral analysis for 

database construction at the genus level for ATR-TSA-FTIR strains by HCA. Similar 

discrimination efficacy was also observed for TR-TSA-FTIR, ATR-CBA-FTIR and TR-CBA-

FTIR strains. 
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Figure 3.5. 3D score plot of PCA of (A) genera differentiation of between Escherichia coli (E. 

coli), Enterobacter spp. and Klebsiella spp. genera (B) Staphylococcus spp. against other 

Gram-positive bacteria and (C) Corynebacterium spp., Streptococcus spp. and Trueperella 

pyogenes genus differentiation by ATR-TSA-FTIR database strains. PC1, PC2 and PC3 

totally expressed of 81.6% (PC1 47.9% PC2 27.7%, PC3 6%), 60% (PC1 26.7%, PC2 22.8%, 

PC3 10.5%), and 67.8% (PC1 33.8%, PC2 20.2%, PC3 13.8%), the variation for (A) Gram-

negative bacteria strains, (B) Staphylococcus spp, against other Gram-positive bacteria, and 

(C) differentiation of the resting three Gram-positive genera, respectively. 

 

3.4.2.2. Staphylococcus Outlier Detection  

Differentiation of S. aureus and CoNS spectra were successfully achieved by employing 

the spectra data derived from using TSA and CBA growth media and using both spectral 

acquisition techniques (ATR-FTIR and TR-FTIR). The results obtained were due to the selection 

of specific regions within the broad wavenumber region 900-1500 cm-1. Only 3 S. aureus strains 

(11007852, 11511212, 10602379) clustered within CoNS in HCA dendrogram of spectral database 

sets, similar pattern was observed in the constellation plot as shown in Figure 3.6. The three S. 
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aureus misclassified as CoNS from the external validation set were re-grown and identified by 

MALDI-TOF-MS as a confirmation of the results. The identification results of both methods and 

MALDI-TOF MS are summarized in Table 3.2. The three S. aureus 11007852, 11511212, 

10602379 were predicted as S. hyicus, S. hominis, and S. aureus by the ATR-TSA-FTIR database, 

respectively. From the ATR-CBA-FTIR database, they were identified as S. hyicus, S. 

chromogenes, and S. hyicus, respectively. MALDI-TOF MS results were in compliance with the 

latter. Accordingly, the FTIR-based predictions were not a misclassification error, apart from one 

sample (S. aureus 10602379) misidentified using the ATR-TSA-FTIR database. However, it 

should be noted that the misidentified S. aureus 10602379, was identified by MALDI-TOF-MS as 

S. hyicus was found to be coagulase positive. The three non-S. aureus outliers (11007852, 

11511212, 10602379) were excluded from the four spectral databases. 

One remark is that Staphylococcus sp. 11511212 was predicted as S. hominis with 0.7309 

probability in ATR-TSA-FTIR database, whereas its second hit, which was S. chromogenes, 

consistent with both the ATR-CBA-FTIR results and MALDI-TOF MS results, though with 0.21 

probability. Although coagulase positive staphylococci generally entail S. aureus only, 

Staphylococcus intermedius, Staphylococcus pseudintermedius, Staphylococcus delphini, 

Staphylococcus schleiferi subsp. coagulans, and S. hyicus have also been described to be coagulase 

positive [23]. S. hyicus coagulase expression is strain dependent and could be coagulase positive. 

From the biochemical assay, the strain Staphylococcus sp. 10602379 showed coagulase positive 

activity, which lead to its prediction as S. aureus from the ATR-TSA-FTIR database. In another 

study, coagulase positive S. hyicus was also misidentified as S. aureus from a septic patient [24]. 

Nonetheless, the agreement of ATR-CBA-FTIR database with MALDI-TOF MS suggest the use 

of CBA as a growth medium may yield spectra with higher discriminatory power over TSA-grown 

spectra at species level. Identification accuracy deviated due to differences in growth medium was 

also observed by Wenning et al. for food pathogens [25] and Oust et al. for Lactobacillus spp [26].   
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Figure 3.6.  HCA of ATR-TSA-FTIR Staphylococcal spectra; (B) Constellation diagram of 

ATR-TSA-FTIR Staphylococcal spectra. Complete separation between S. aureus and CoNS 

species can be visualized in the HCA diagram (A) except for 3 S. aureus isolates (pointed out 

in red stars). A similar pattern is observed in the constellation diagram (B), where the 3 S. 

aureus isolates is clearly grouped with CoNS species. 

 

Table 3.2. Identity confirmation of the 3 S. aureus outliers by MALDI-TOF MS and ATR-

FTIR database. 

1For MALDI-TOF MS, a score value ≥2.000 indicates a reliable species identification, values between 1.999 and 1.700 represent 

probable correct identification, whereas <1.699 is regarded as non-reliable 
2S. hyicus coagulase expression is strain-dependent  
3Prediction probability ≥0.8 indicates a reliable identification (high confidence), values between 0.7999 and 0.6000 represent 

probable correct identification (medium confidence), whereas <0.6 is regarded as non-identifiable 

3.4.2.3. Staphylococcus aureus differentiation compared to Multilocus sequence typing (MLST) 

It was reported that sequence types (ST) 352 and ST151 of S. aureus were the two main 

clonal populations in bovine globally, and that they are associated with the majority of cases of 

bovine mastitis [27]. The differentiation of ST151 and ST352 were completed for 21 S. aureus 

Bacteria ID 11007852  11511212  10602379  

Health Canada 

MALDI-TOF 

MS1 

1st 

score 

Result S. hyicus S. chromogenes S. hyicus 

Score  1.763 1.996 2.359 

2nd 

score 

Result S. chromogenes NA S. chromogenes 

Score  1.684 NA 1.759 

Health Canada 

biochemical assay 

Oxidase Negative  Negative  Negative  

Catalase Positive  Positive  Positive  

Coagulase Negative  Negative  Positive2 

ATR-TSA-FTIR database 
S. hyicus 

(0.9996)3 

S. hominis 

(0.7309)3/S. 

chromogenes (0.21)3 

S. aureus 

(1.0000)3 

ATR-CBA-FTIR database S. hyicus 

(1.0000)3 

S. chromogenes 

(0.9997)3 

S. hyicus 

(1.0000)3 
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strains by ATR-FTIR spectroscopy grown one TSA and CBA separately, showing promising 

discriminatory power of FTIR spectroscopy at strain-specific level (Figure 3.7).  

  
Figure 3.7.  S. aureus sequence type differentiation (ST352 and ST151) based on spectral 

differences among the strains acquired by (A) ATR-TSA-FTIR spectra and (B) ATR-CBA-

FTIR spectra. 

 

3.4.2.4. Streptococcus species differentiation 

Distinct clusters are observed for the two species of Streptococcus, S. dysgalactiae and S. 

uberis grown on either TSA or CBA media, using either spectral acquisition method (Figure 3.8). 

However, the total variation expressed by PC1, PC2 and PC3 is 54.8% and 70.9% for TSA spectra 

and CBA spectra, respectively. This may again suggest that the use CBA as the growth medium 

can provide more spectral information for the discrimination among different taxonomical groups.  
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Figure 3.8. 3D score plot of PCA of differentiation between Streptococcus dysgalactiae and 

Streptococcus uberis in (A) ATR-TSA-FTIR database and (B) ATR-CBA-FTIR database. 

PC1, PC2 and PC3 totally expressed of 54.8% (PC1 24.9%, PC2 19.6%, PC3 10.3%) and 

70.9% (PC1 39.2%, PC2 21.8%, PC3 9.9%) the variation for (A) ATR-TSA-FTIR database 

and (B) ATR-CBA-FTIR database, respectively. 

 

3.4.3. Database accuracy dependence on variations in cultivation medium and sampling 

method. 

The final reference spectral databases for the identification comprised 582 spectra for each 

of the four databases (ATR-TSA-FTIR, ATR-CBA-FTIR, TR-TSA-FTIR, and TR-CBA-FTIR) 

belonging to 30 species from 7 genera. Using the collected data set of FTIR spectra, a PCA-LDA 

database model was employed for the identification of Staphylococcus spp. and Streptococcus spp. 

Ninety-eight bovine mastitis strains were used as unknown to evaluate the influence of cultivation 

medium and sampling technique of FTIR spectroscopy on the identification accuracies.  

Prediction of bovine mastitis pathogens resulted 100-99.5% accuracy at genus level, 100-

98.4% for identifying S. aureus against CoNS (S. aureus vs. CoNS), and 96.4-94.8% at the species 

level (Table 3.3). Summarizing FTIR spectroscopy data for the 98 strains, species-level prediction 

using the two TSA databases obtained a an overall accuracy of 95.9% and 93.8% for TR-FTIR 

and ATR-FTIR, respectively. For database and test set grown on CBA, the species level 

identification was 96.9% and 95.9% for TR-FTIR and ATR-FTIR, respectively. Overall, TR-FTIR 

prediction for species all yielded better results compared ATR-FTIR, regardless of the growth 

medium. However, ATR-FTIR performed better at both predicting genus (100%) and S. aureus vs. 

CoNS (100%) than TR-FTIR (100-99% and 98.4%, respectively), with one S. uberis (10112106) 
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strain that was misidentified as S. dysgalactiae with high confidence (0.9998) at the genus level 

for the TR-CBA-FTIR database. For S. aureus vs. CoNS, ATR-FTIR correctly identified all 

isolates for both media, except for one isolate from CBA, which was non-identifiable (0.5278). On 

the other hand, each of the two TR-FTIR (TR-TSA-FTIR and TR-CBA-FTIR) databases had one 

misidentified isolate for S. aureus vs. CoNS: one S. simulans (10312964) with low confidence 

level (0.7233), and one S. aureus (10200117), respectively. In terms of FTIR-based species 

identification, a total of 30 strains from 6 common CoNS (S. chromogenes, S. epidermidis, S. 

haemolyticus, S. hyicus, S. simulans, S. xylosus) were investigated. For TSA databases ATR-TSA-

FTIR and TR-TSA-FTIR, the identification accuracy was 89.6% (26/29) and 86.7% (26/30), 

respectively. Using the ATR-CBA-FTIR and TR-CBA-FTIR databases, correct identification was 

27/30 (90%) and 27/29 (93.1%), respectively. For all species-level misidentification of those 6 

common CoNS, they were misidentified.  All other CoNS in the external test set were correctly 

identified by the 4 databases with high confidence level. For Streptococcus species identification, 

TR-FTIR databases performed well with 100% correctness, whereas ATR-TSA-FTIR database 

was useful for the prediction of 91.4% (32/35) prediction for all strains, and ATR-CBA-FTIR 

database correctly identified 94.1% (32/34). 

In general, the identification rate from the 4 databases were comparable with correct 

prediction over 94% at the species level. TR-FTIR database had slightly higher identification 

accuracy with a single non-identifiable strain and 3 lower confidence identification. While with 

ATR-FTIR database resulted 3 non-identifiable and 2 low confidence identification. The slight 

discrepancy is due to the use of two different sampling methods of FTIR spectroscopy. In ATR-

FTIR, the spectra are obtained from the attenuated evanescent wave due to the absorbed energy by 

the sample. The penetration depth of the evanescent wave beyond the crystal surface and into the 

sample is typically of the order of a few microns (0.5-5 µm), and thus, the thickness of the sample 

does not affect the spectra [28]. Contrarily, in TR-FTIR, the incident light is transmitted through 

the sample and reflected back by the reflective substrate, consequently increasing the intensity of 

the reflection signal [29]. But at the same time, due to the double transmission feature of TR, the 

thickness of the sample will highly influence the spectra. As a result, TR spectra have generally 

higher absorbance and contain more information than ATR spectra. In our study, TR had more 

better identification results than ATR-FTIR. As TR-FTIR spectra encompass more spectral 

information, its wider spectral range has proven useful for bacterial strain typing [30] and the use 
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of spectral library searches using the whole spectral region [31]. Furthermore, the threshold 

established enables confidence level comparable to MALDI-TOF MS. Transmission-FTIR and 

ATR-FTIR techniques are also widely employed for microorganism identification, with reported 

accuracies ranging from  84.4% to 100%, 69.5% to 75.3% and 98.4% to 100% for bacteria [32-

34], molds [35], and yeasts [36] respectively.  

However, most of the reported studies focus on strain typing and identification of S. aureus 

[33, 37, 38] and Streptococcus pneumoniae [39]. The identification efficiency of CoNS species, S. 

dysgalactiae and S. uberis is rarely evaluated. In our study, species level identification was 

successfully achieved based on PCA-LDA calculation using either ATR-FTIR or TR-FTIR 

spectroscopy. 

As described above, spectral acquisition techniques and growth media can influence the  

infrared spectral profiles and spectral intensities and therefore can impact the prediction results of 

test sets. For strains grown on TSA and CBA, TR-FTIR database yielded higher correct 

classification results at the species level than ATR-FTIR but performed with lower rates compared 

to ATR at genus level and for the discrimination of S. aureus vs. CoNS. The fact that spectra 

contain more information in TR mode may make it more robust for species or subspecies level 

identification. Nevertheless, ATR mode is also very effective providing near comparable results 

for species level identification as the TR mode. Despite the automation potential and the possibility 

of keeping the used e-glass slide of TR-FTIR, ATR-FTIR is slightly faster as it does not require 

the smearing and drying step. The influence of the growth medium chosen (TSA and CBA) were 

evaluated, and both were robust enough by achieving over 94% accuracy, with CBA over 96%. 

Overall, strain identification was slightly higher using the CBA as a growth medium than TSA for 

both ATR-FTIR (95.9% vs. 93.8%) or TR-FTIR (96.9% vs. 95.9%). Furthermore, most of the 

misidentification from ATR-CBA-FTIR and TR-CBA-FTIR were either non-identifiable or had 

low confidence level. Wenning et al. [25] found that bacteria grown on TSA had considerably 

higher identification accuracy than CBA. Other studies have suggested that the variation in growth 

medium has minimal influence on the identification and discrimination of both genus, species, and 

strains for FTIR spectroscopy [40-43]. Larger variation in cultivation conditions may only impact 

the separation of strains, and quantitative data, while the qualitative properties remain unchanged 

[41, 43]. Unlike other comparable identification techniques, such as MALDI-TOF MS which 
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produce spectra focusing mainly on ribosomal proteins, FTIR spectroscopy records the whole-

organism spectra. In theory, FTIR spectra of an organism include signatures of all main building 

blocks of cells (e.g., proteins, lipids, polysaccharides). Even though qualitative information is 

identical for the same bacterial strain, depending on the incubation time, growth temperature and 

nutrient supplied by the cultivation medium, biochemical composition could vary depending on 

gene expression in closely related isolates. This IR fingerprinting feature may make FTIR 

spectroscopy less specific due to intraspecies biodiversity. Hence, the variability in identification 

accuracy is produced when the same strains are grown on different medium. Despite of that, 

identification can be improved using appropriate standardized sampling method, standardized 

cultivation medium as well as enlarging the database thereby increasing the coverage of each 

species biodiversity and filling the gaps in the database. In general, S. aureus, CoNS species and 

Streptococcus spp. isolates achieved high identification accuracy in the 4 databases, with TR-

CBA-FTIR being the most outstanding. Both spectral acquisition techniques have shown their 

identification efficiency for bovine mastitis pathogen identification using either TSA or CBA as 

growth media. This result illustrates that FTIR spectroscopy has a strong potential for identifying 

Gram-positive cocci, which is demonstrated by the results shown in Table 3.3 for all four databases, 

despite they were collected using two different sampling methods and two different cultivation 

media. 
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Table 3.3. Identification accuracy of 98 isolates from four different FTIR spectral databases, 

constructed from two different growing medium (TSA and CBA) and two different spectral 

acquisition method (ATR-FTIR and TR-FTIR). 

Species 
No of 

strains Identification accuracy (%) 

    
ATR-TSA-
FTIR Database 

ATR-CBA-
FTIR Database 

TR-TSA-FTIR 
Database 

TR-CBA-FTIR 
Database 

      TSA test set CBA test set TSA test set CBA test set 

Genus         

 

Staphylococcus 
spp. 63 63/63 63/63 63/63 63/63 

  
Streptococcus 
spp. 35 35/35 35/35 35/35 34/35 

Total 98 98/98 98/98 98/98 97/98 

 Identification accuracy  100%  100%  100%  98.98% 

Overall identification accuracy 100% 99.49% 

Coagulase 
Staphylococcus        

 

Staphylococcus 
aureus 22 22/22 22/22 22/22 21/22 

  CoNS 41 41/41 40/403 40/416 41/41 

Total 63 63/63 62/62 62/63 62/63 

 Identification accuracy  100%  100%  98.41%  98.41% 

Overall identification accuracy 100% 98.41% 

Species         

 S. aureus 22 22/22 22/22 22/22 21/22 

 S. chromogenes 4 4/4 4/4 2/4 4/4 

 
S. epidermidis 6 5/51 6/6 6/6 5/67 

 
S. haemolyticus 4 4/4 2/44 4/4 4/4 

 
S. hyicus 5 4/52 4/5 4/5 4/48 

 
S. simulans 5 5/5 5/5 5/5 4/59 

 
S. xylosus 6 4/6 6/6 5/6 6/6 

 
Other CoNS 11 11/11 11/11 11/11 11/11 

 

Streptococcus 
dysgalactiae 18 16/18 16/175 18/18 18/18 

  
Streptococcus 
uberis 17 16/17 17/17 17/17 17/17 

Total 98 91/97 93/97 94/98 94/97 
Identification accuracy  93.81%  95.88%  95.92%  96.91% 
Overall identification accuracy 94.85% 96.41% 

1One S. epidermidis (10203613) was non-identifiable (0.5885). 
2One S. hyicus (11513759) was misidentified with low confidence (0.7079). 
3One S. simulans (10300404) was non-identifiable (0.5278). 
4One S. haemolyticus (10116807) was misidentified with low confidence (0.6849). 
5One Streptococcus dysgalactiae (21307997) was non-identifiable (0.5042), and another (11301783) was misidentified with low 

confidence (0.6991). 
6One S. simulans (10312964) was misidentified with low confidence (0.7233). 
7One S. epidermidis (10203255) was misidentified with low confidence (0.6744). 
8One S. hyicus (11004585) was non-identifiable (0.5820). 
9One S. simulans (10509425) was misidentified with low confidence (0.7183). 
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3.4.4. Evaluation of database compatibility 

 Following successful identification of the 98 isolates by all four spectral databases, the 

database interchangeability was evaluated. To achieve this, the 582 strains from training and 

validation grown from both TSA and CBA were combined together according to their sampling 

method (ATR or TR), forming 2 large databases each with 1164 strains (ATR-TSA/CBA-FTIR 

and TR-TSA/CBA-FTIR). The four test sets were then used for prediction according to their 

spectral acquisition method. Overall, correct identification was achieved at 100% at genus level, 

100-95.2% for S. aureus vs. CoNS, and 99-92.8% at species level for all four test sets (Table 3.4). 

ATR-TSA/CBA-FTIR database was in general slightly less performant when it was used 

separately according to the growth medium for species (93.9% vs. 94.8%, respectively) and for S. 

aureus vs. CoNS identification (97.2% vs. 100%, respectively). On the other hand, compared to 

TR-TSA-FTIR and TR-CBA-FTIR, the TR-TSA/CBA-FTIR database had significantly improved 

performance for genus (100% vs. 99.5%), S. aureus vs. CoNS (100% vs. 98.1%), and at the species 

level (96.9% vs. 97.4%). All strains were correctly identified at genus level by both databases, 

same was for S. aureus vs. CoNS, except for 3 S. simulans (10312964, 10501252, 10300404) from 

the ATR-CBA test set that were misclassified as S. aureus. For the identification of the 6 common 

CoNS, the TR-CBA and TR-TSA test set achieved 100% (30/30) and 93.3% (28/30) of correct 

classification, whereas the ATR-CBA and ATR-TSA achieved 83.3% (25/30) and 86.2% (25/29) 

of correct classification using the two combine databases, respectively. Misidentified S. 

chromogenes, S. haemolyticus, S. hyicus, S. simulans, and S. xylosus strains were predicted as 

‘Other CoNS’ instead of their correct species, except for one S. chromogenes (10103661) from 

ATR-CBA test set that was predicted as S. hyicus. All other CoNS were correctly identified with 

high confidence level. For Streptococcus species identification, ATR-CBA test set achieved 

complete identification (35/35), followed by TR-CBA test set with 97.1% (34/35) correct 

identification, TR-TSA test set with 94.3% (33/35) correct identification, and ATR-TSA test set 

with 91.3% (32/35) correct identification. Nonetheless, the identification results for Streptococcus 

spp. were comparable by both FTIR spectral acquisition methods. Lower rate of non-identifiable 

and low confidence results was observed when predicting an isolate from the test set using the 

combined infrared spectral databases. 

Although the effect of growth media on the identification of strains by FTIR spectroscopy 

was reported, evaluation of the compatibility of ATR-FTIR and TR-FTIR database between 
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different growth media for bacteria is scarce. Based on our results, FTIR prediction results from 

the two different spectral acquisition methods showed to be robust enough for identification by 

creating a database built by two different cultivation media at the genus and species level for Gram-

positive cocci. Using a growth medium-constructed database different than the one that unknowns 

was grown may affected the accuracy of the identification. Impact of growth medium on strain 

discrimination was evaluated previously by many researchers [40-43]. In a nutshell, bacterial IR 

spectra are indeed influenced by the cultivation conditions. The spectral difference between CBA 

and TSA spectra of the same strains is illustrated in A.2. It has been confirmed previously by many 

researchers that different metabolites are produced when the same bacteria isolate is grown on 

different medium [44-46]. Ingredients in TSA and CBA media are very different (A.3), and since 

FTIR spectroscopy records all information present in the whole organism, variation in the 

composition of the microbial cells are detected. Apparent positional shifts of peaks are observed 

between the spectra, which may be due to fluctuation in relative contribution of biomolecules. The 

variation in peaks in turn affects the discriminating peaks that were selected during spectral 

analysis for the database construction. For an improvement of identification, including more 

species and strains from bovine sources would be optimal to contribute to the biodiversity and 

associated spectra variability in the database. Nevertheless, identification of 4 test sets using the 

two combined databases yielded a high rate of identification. This result indicates that CBA and 

TSA spectra, combined together, had sufficient spectral information, and that the feature selection 

wavenumber was broad enough to enable species level discrimination for bacteria spectra grown 

either of the medium used for building the database. 

It is very important to evaluate the identification accuracy of an unknown microorganism 

from a database with different cultivation conditions for FTIR spectroscopy. By showing the 

compatibility of FTIR database created using different media, one large database comprising 

microbial pathogens grown on popular media could be employed. This study demonstrated that 

with a large-enough database comprising bacterial strains grown on common cultivation media, 

identification of Staphylococcus spp. and Streptococcus spp. will be achieved with either choice 

of agar medium. The bacteria spectra were indeed affected for ATR-FTIR, but at a very minor 

level that would not impact the identification accuracy. In fact, identification by TR-FTIR had 

even improved by when combining the databases built using spectra of bacteria grown on the two  

media. This study demonstrates that both ATR-FTIR and TR-FTIR spectroscopy coupled with 
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PCA-LDA were able to successful identify the external set of microorganisms by extracting 

species specific spectral signatures out of the total amount of information and processing them 

effectively. Identifying the identity of an unknown microorganism against a combined database 

built based on bacteria grown on different medium did not affect the identification results. FTIR 

spectroscopy of for both spectral acquisition techniques demonstrated good applicability for 

routine microbial diagnostics for bovine mastitis. 
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Table 3.4. Evaluation of combined TSA- and CBA-FTIR database for the identification 

accuracy of prediction sets. 

Species 

No of 

strains Identification accuracy (%) 

    

ATR-TSA/CBA-FTIR 

Database 

TR-TSA/CBA-FTIR 

Database 

      TSA test set CBA test set TSA test set CBA test set 

Genus         

 Staphylococcus spp. 63 63/63 63/63 63/63 63/63 

  Streptococcus spp. 35 35/35 35/35 35/35 35/35 

Total 98 98/98 98/98 98/98 98/98 

Identification accuracy  100%  100%  100%  100% 

Overall identification accuracy 100%   100% 

Coagulase Staphylococcus      

 Staphylococcus aureus 22 22/22 22/22 22/22 22/22 

  CoNS 41 41/41 38/413 41/41 41/41 

Total 63 63/63 60/63 63/63 63/63 

Identification accuracy  100%  95.24%  100%  100% 

Overall identification accuracy 97.62%  100%  

Species         

 S. aureus 22 22/22 22/22 22/22 22/22 

 S. chromogenes 4 2/31 3/4 3/4 4/4 

 S. epidermidis 6 6/6 6/6 6/6 6/6 

 S. haemolyticus 4 4/4 2/4 4/4 4/4 

 S. hyicus 5 5/5 4/5 5/5 5/5 

 S. simulans 5 4/5 5/5 5/5 5/5 

 S. xylosus 6 4/62 5/64 5/6 6/6 

 Other CoNS 11 11/11 11/11 11/11 11/11 

 

Streptococcus 

dysgalactiae 18 15/18 18/18 17/18 17/18 

  Streptococcus uberis 17 17/17 17/17 16/17 17/17 

Total 98 90/97 93/98 94/98 97/98 

Identification accuracy  92.78% 94.90%  95.92%  98.98%  

Overall identification accuracy 93.85%  97.45%  
1One S. chromogenes (10100158) was non-identifiable (0.5298). 
2One S. xylosus (10607084) was misidentified with low confidence (0.7941). 
3One S. simulans (10300404) was misidentified with low confidence (0.6984). 
4One S. xylosus (10607084) was misidentified with low confidence (0.6837). 
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3.5. Conclusion 

 Current methods for mastitis-associated microbial pathogen identification is tedious, time 

consuming, expensive and reported to have low accuracy compared to genotypic-based methods. 

FTIR spectrum obtained from a single microbial colony corresponds to all the biomolecules 

present in the biomass at the time of spectral acquisition. The differences in the biochemical 

composition of each isolate at different taxonomic level yields a unique spectral profile for each 

isolate.  This in principle makes it possible to differentiate among genera, species, and strain types 

due to the differences in composition and quantity of each biomolecule in the biomass. Although 

extensive studies have showed FTIR spectroscopy’s potential for the bacteria identification, few 

studies were aimed at the identification of Streptococcus spp. and Staphylococcus spp. from bovine 

mastitis, and especially the identification of CoNS species. In this study, the spectral database were 

constructed by growing 680 isolates of bacteria associated with cow mastitis. The bacteria were 

grown on two different growth media and the spectra acquired using two different spectral 

acquisition methods. Discrimination and identification of Streptococcus spp. and Staphylococcus 

spp. to the species level was evaluated as a function of each variable. At genus level and coagulase 

type of Staphylococcus, ATR-FTIR outperformed TR-FTIR in general (100% vs. 98.41%). 

However, TR-FTIR spectra of bacteria grown on CBA provided a higher identification accuracy 

compared to ATR-FTIR of the same bacteria grown on TSA at the species level. Overall, either 

TSA and CBA using either ATR or TR mode for spectral acquisition yielded high identification 

accuracy (≥93.9%). For database compatibility, prediction of either of the 4 test sets by the 

combined databases yielded high rate of classification (≥92.8%). Cultivation conditions should be 

standardized when using FTIR spectroscopy for bacterial identification. Yet, flexible protocol is 

also possible by using a growing medium other than the database built if other growth parameters 

are standardized (e.g., growth time and incubation temperature). Combining all findings together, 

FTIR spectroscopy has shown its potential for routine identification of bovine mastitis Gram-

positive cocci identification. 
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Connecting Statement 

In the previous chapter, the influence of the growth medium and the mode of spectral 

acquisition on the capability of FTIR spectroscopy to discriminate among Gram-positive cocci 

associated with bovine mastitis was found to be minor. In addition, interchanging database for 

prediction of the identity of an unknown microorganism by FTIR spectroscopy showed promising 

results. In the next chapter, two commercially available FTIR instruments manufactured by 

different companies were evaluated for the identification of common food pathogens.  
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Chapter 4. Assessing the compatibility of two portable FTIR instruments for 

FTIR-based spectroscopic identification of foodborne pathogens  

 

4.1. Abstract 

Foodborne illnesses are caused by microbial hazards, posing major threat to public health 

and the economy. Rapid pathogen identification is important for food safety reasons by avoiding 

spread of foodborne illness and outbreak proliferation. Routine food microbiology laboratories 

rely on conventional methods that are costly and lengthy. Fourier-transform infrared (FTIR) 

spectroscopy is a biophysical method that is gaining attention due to its speed, accuracy, and cost 

for microbial identification. The current study analyzed the FTIR spectra of common food 

pathogen and suggested potential biomarkers for genus and species identification. Furthermore, 2 

commercially available FTIR instruments (from different instrument manufacturers) have been 

evaluated for spectral database interchangeability through a cross validation study. Spectral 

databases developed using the NicoletTM Summit FTIR spectrometer (Summit), Summit-FTIR 

(n=138) and Cary 630 (n=305) FTIR spectrometer (Cary-630). For each spectral database an 

external test set provided 99.5% and 96.2% at genus level, and 95.8% and 79.9% at species level, 

correct identification respectively. The use of different FTIR instrumentation did not appreciably 

influence the identification accuracy at the genus level. However, loss of sensitivity was significant 

at the species discrimination level when spectral database from one of the instruments models was 

employed to identify the test microorganisms from spectra acquired from the other spectrometer. 

This study shows that infrared databases of foodborne microbial pathogens must be constructed 

using a single instrument model if correct identification to species-level identification is required.     
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4.2. Introduction 

Over the past decades, there has been an increase in incidence of foodborne illnesses caused 

by bacterial pathogens. An estimated of 600 million people fall ill every year, resulting in 420 000 

deaths and US $110 billion loss [1]. Among all foodborne disease-causing bacteria, Listeria 

monocytogenes (L. monocytogenes), Escherichia coli (E. coli) O157, Salmonella enterica 

serogroups and Shigella spp. are among the most common and important pathogens causing public 

health problems annually worldwide. Outbreaks of sliced cold beef ham with L. monocytogenes 

[2], venison products with E. coli O157 [3], watermelon contaminated with Salmonella that caused 

a multi-country outbreak in Europe [4], and the shigellosis outbreak in a Mariscos San Juan 

restaurant [5] were reported in literature. Even though most foodborne illnesses are self-limiting, 

there is possibility of causing life threatening complications if left untreated for certain population 

groups (e.g., immunocompromised groups). It is important to know that not all bacteria belonging 

to the same genus would be pathogenic to human. For instance, in the genus Listeria, only L. 

monocytogenes is an opportunistic pathogen to human, with L. ivanovii and L. seeligeri 

occasionally reported to cause human infections [6]. Although all four species of Shigella cause 

illnesses, most E. coli and Salmonella species are not harmful for humans. Therefore, accurate and 

fast identification of foodborne pathogen at genus as well as species level is crucial for detection 

and early prevention of outbreaks. 

Conventional methods for food pathogen identification include phenotypic methods 

(biotyping, serotyping and phage typing) and genotypic method (pulsed-field gel electrophoresis 

(PFGE) and polymerase chain reaction (PCR)) [7-10]. Despite being very effective, these existing 

classification methods are labor-intensive, time consuming, expensive, and often require highly 

trained personnel and specialized laboratory to carry out the experiment. Moreover, many of the 

conventional detection methods require extensive sample preparation and long incubation time, 

which may take in total up to weeks to differentiate and identify microorganisms [11]. As a result, 

there is an urgent need to develop a rapid, reliable and cost-effective technique, for the detection 

of foodborne pathogenic microorganisms. 

Infrared spectroscopy has been used for the purpose of microorganism identification since 

1950s [12]. More recently numerous reports of the FTIR spectroscopy were cited, demonstrating 

the capability to identify variations in the biochemical composition of microorganisms through 

changes in spectral absorption bands associated with functional groups, such as lipids, proteins, 
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nucleic acids and polysaccharides [13]. With a comprehensive spectral database and adequate 

spectral analysis methods, FTIR spectroscopy can yield microbial identification results in a matter 

of minutes. This technique has been shown to possess high discriminatory power for some 

pathogens even at the subspecies levels [6, 14, 15]. Due to its simplicity, FTIR spectroscopy is 

often used for characterization, quantification, identification, differentiation and classification of 

microorganisms, and it is utilized in an expansive range of applications, including pharmaceuticals, 

clinical, food, environmental, and forensic industries [16]. Other advantages are its simplicity to 

operate, no reagents requirements, is non-destructive, non-invasive, rapid, and most importantly 

cost-effective [17]. Current technology advancements allowed commercially available portable 

FTIR instruments to be lighter and available for field-based usage, without compromising their 

functionality compared to their benchtop counterparts. Thermo ScientificTM NicoletTM Summit 

FTIR spectrometer (Summit) and Agilent Cary 630 FTIR spectrometer (Cary) are two differently 

manufacturers of FTIR spectrometers. These instruments all operate in the mid-infrared spectral 

region and are capable for both attenuated total reflectance (ATR) FTIR and transflectance (TR) 

FTIR spectra acquisition. 

The objective of this study is to compare the intra-instrument (Summit prediction set vs. 

Summit database) prediction correctness to that of inter-instrument (Cary prediction set vs Summit 

database) prediction, and to evaluate the compatibility of these two FTIR instruments in terms of 

general use for bacteria identification. In our previous work, we have demonstrated that TSA) and 

CBA are reliable cultivation media for bacterial strains for use in infrared spectral database 

construction, as change in agar medium did not significantly influence the identification accuracy. 

Therefore, we did not limit the use of a single growth medium for the prediction set. The aim of 

this study is to investigate the microbial identification compatibility of intra- and inter-FTIR 

instruments. 
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4.3. Materials and Methods 

4.3.1. Bacterial strains 

 The training and validation spectral data sets comprises ATR-FTIR spectra (in triplicate) 

of 361 isolates from 41 microbial species of Enterobacter spp. (n = 27), Enterococcus spp. (n = 

7), E. coli (n = 159), Klebsiella pneumoniae (n = 5), Listeria spp. (n = 77), Pseudomonas spp. (n 

= 11), Salmonella spp. (n = 42), Shigella spp. (n = 25), and Staphylococcus spp. (n = 8). An external 

spectral data set (test set) was created independently of the training and validation spectral sets and 

was used to test the predictive accuracy of the classification models.  The prediction set includes 

a total of 443 isolates belonging to four bacteria genera represented in the spectral database: 

including E. coli (n = 51), Listeria spp. (n = 207), Salmonella spp. (n = 132), and Shigella spp. (n 

= 53). All isolates were obtained from the strain collection of Health Canada (HC) microbiology 

lab (Longueuil, Quebec, Canada) and Canadian Food Inspection Agency (CFIA) (Ottawa, Ontario, 

Canada) (Table 4.1). Strains were stored in 25% glycerol broth vials and frozen at -80℃ using the 

microbank system (Microbanks, Pro-Lab Diagnostics, Richmond Hill, Canada). 

All isolates were previously identified and confirmed by MALDI-TOF Biotyper mass 

spectrometer (Bruker Daltonics, Germany) and reference biochemical methods at the Health 

Canada and CFIA microbiology laboratories. Serotyping of the Salmonella serogroups and 

Shigella serotypes were carried out at the HC laboratory.  

4.3.2. Sample preparation for FTIR analysis 

The prediction strains were divided into two sets: training and prediction sets. Bacterial 

isolates from the training set and one prediction set were incubated directly from the microbank 

cryotube on Tryptic soy agar (TSA; BD Difco; Le Pont de Claix, France) for 18-24 h at 35-37°C. 

The second prediction set were incubated on Brain heart infusion agar (BHI; BD Difco; Detroit, 

USA) for 18-24 h at 35-37°C. For purity purpose, all isolates were subcultured twice, and samples 

suspected being contaminated were rejected.  
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Table 4.1. List of bacterial strains employed in the construction of the ATR-FTIR spectral 

databases. Spectral were acquired on two separate ATR-FTIR spectrometers. 

Strains   Training set1  Validation set2 

   NicoletTM Summit FTIR3 Cary 630 FTIR4 

Enterobacter     

 sakazakii 5   

 cloacae 10   

 kobei 2   

 spp. 11   
Enterococcus spp.  7   
Escherichia coli   36 15 

 O157:H7 30   

 Other 129   
Klebsiella pneumoniae  5   
Listeria     

 grayi 7 2 4 

 innocua 8 1 13 

 ivanovii 9 1 5 

 monocytogenes 36 8 150 

 murrayi 1  1 

 seeligeri 8  5 

 welshimeri 8  7 

 spp.   10 

Pseudomonas spp.  10   
Salmonella     

 serogroup B 10 11 32 

 serogroup C1 2 33 3 

 serogroup C2C3 6 4 20 

 serogroup D 4 3 6 

 serogroup E 6 2 3 

 Other serogroups 14 2 13 

Shigella     

 boydii 5 8 3 

 dysenteriae 5 7 4 

 flexneri 7 10 7 

 sonnei 8 10 4 

Staphylococcus     

 aureus 3   

 capitis 1   

 epidermidis 1   

 saprophyticus 1   
  xylosus 2   
Total (spectra)   361 (1068) 138 (407) 305 (940) 

1Isolates from training set came from HC, and they were all grown on TSA and acquired by Summit. 
2Isolates from validation set came from CFIA. 
3Although the database was built based on bacterial spectra acquired on TSA, the validation set acquired by Summit were grown 

on BHI. 
4The Cary validation set were grown on the same cultivation medium as the database, that is, TSA.   
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4.3.3. Spectroscopic measurements 

FTIR spectrometers were acquired from two different manufacturers and used for spectral 

acquisition. Specification of each of the two instruments can be found in Table 4.2. A loopful of 

bacterial cells is transferred using a sterile disposable 1-L loop to the surface of the ATR-FTIR 

accessory. Spectra were acquired using OMNIC™ Paradigm Software for the Summit, and the 

Agilent Microlab software for Cary-630 spectrometer. Prior to the collection of each spectrum of 

a microorganism, a background spectrum of the clean surface of the ATR was obtained. The 

spectrum of the sample is ratioed against the spectrum of the clean ATR surface to obtain a 

transmittance spectrum which is then transformed to an absorbance spectrum prior to addition to 

the ATR-FTIR spectral database. For each sample of the Summit, three replicates spectra were 

collected from three separate colonies acquired from the same plate. For samples of the Cary, three 

to four replicates spectra were collected from separate colonies acquired from the same plate. A 

total of 32 scans were coadded at 8 cm-1 resolution, with zero order filling factor and Happ-Genzel 

apodization of the interferogram. The spectra were acquired over wavenumber range between 4000 

and 650 cm-1. The final spectral database comprised a total of 1068 spectra and was used for the 

defilement of classification models.    

Table 4.2. ATR-FTIR spectrometer specifications employed in this study1. 

Manufacturer Agilent Technologies Thermo Fisher Scientific 

Model name Cary 630 FTIR NicoletTM Summit FTIR 

Dimensions 22.9cm x 15.2cm 32cm x 53cm 

Beam diameter 7mm 6mm 

Weight 5kg 12.9kg 

Spectral collection software MicroLab Omnic Paradigm 
1ATR accessory (Everest, SPECAC, UK) was used with the NicoletTM Summit FTIR spectrometer. Both ATR 

accessories used a diamond ATR crystal. 

 

4.3.4. Statistical analysis  

Prior to statistical analysis, all spectra were transferred to first derivative, and vector 

normalized (between 1800 and 900 cm-1) to minimize baseline drift and variation in sample 

thickness respectively. Outlier detection stemming from spectral artifacts were identified by 

hierarchical cluster analysis (HCA) using Ward’s algorithm as the linkage type. The remaining 

spectra were subdivided randomly into training and test sets with equal fractioning at species level, 



121 

 

and the replicate of each strain were assigned to the same set. The training set were employed in 

the construction of the databases. Multitier classification models were built in a pairwise fashion. 

Briefly, spectra were classified into separate genera or species groups based on the spectral 

distances derived from the hierarchical cluster analysis (Figure 4.1 and  Figure 4.2). Forward 

region selection algorithm was used in conjunction with principal component analysis (PCA) by 

employing the in-house written software along with JMP Pro 16 (Statistics Discovery Software; 

SAS Institute, Cary, NC, USA) for the selection of spectral regions contributing to the 

discrimination among genus and species groups. The regions between 3100-2800 cm-1 and 1800-

900 cm-1 were employed as the starting point for the identification of narrower spectral regions 

that can be employed for effective discrimination between the different genera and species. The 

combination of narrower spectral regions producing the most efficient separation of classes was 

subsequently chosen to assess the performance of the identification using the independent spectral 

test set. Principal components (PCs) derived from PCA were used together with linear discriminant 

analysis (LDA) for development of additional classification models.  

The performance of the classification model was assessed using the independent test set. It 

is important to note that the spectra in the test set were not employed in the spectral region selection 

nor building of the PCA or HCA-models. Pairwise identification at genus and species level was 

achieved by a multitier approach (Figure 4.1), where each spectrum from the test set is assigned 

to one of the pairs at each tier each step identifying the group in which the “unknown” spectra 

belong, until identification at species level is attained. 
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Figure 4.1.. Identification of an unknown based on a multitier pair-wise approach at the 

Gram and genus level. 
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Figure 4.2. Identification of an unknown based on a multitier pair-wise approach at the species or serogroup level. 
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4.4. Results and Discussion 

The aim of this study was to evaluate the identification accuracy of foodborne pathogens 

at genus and species level by ATR-FTIR spectroscopy. ATR-FTIR spectroscopy was assessed as 

a technique for the identification of an unknown microorganism based on spectra acquired using 

different ATR-FTIR spectrometers (from different manufacturers). A total of 1068 spectra of 361 

isolates and 9 genera, grown on TSA were acquired by Summit ATR-FTIR spectrometer to 

generate a spectral database in the development of multivariate-based classification models. A 

total of 407 spectra of 138 strains were grown on BHI and spectra recorded by Summit ATR-FTIR 

spectrometer to evaluate impact of changing growth media on the predicative accuracy of the 

classification models. The second validation set included 940 spectra from 305 strains (used in the 

development of the classification models) and grown on TSA. The spectra were acquired using a 

different ATR-FTIR spectrometer (Cary-630) to test the impact of a change in spectrometer on the 

predicative accuracy.  

Spectral markers for discrimination between foodborne pathogens were identified using 

the region selection algorithms and exploited for the bacteria at the genus and species level. An 

infrared spectrum of a microorganism is comprised of infrared absorption bands of lipids (3050–

2800 cm-1), amide band absorption regions ascribed to proteins and peptides (1700–1500 cm-1), 

and region that reflects overlapping absorptions from side chain amino acid moieties, amide III 

and nucleic acids  (1500–1250 cm-1). Other spectral regions of interest include 1250-1200 cm-1, 

where phospholipids, DNA and RNA absorption take place. Polysaccharides absorption region is 

between 1200 and 900 cm-1). The fingerprint region (900–600 cm-1) is rarely used for 

microorganism analysis due to the absorption cut-off of the infrared substrate [18, 19]. 

4.4.1. Spectral analysis and Development of the IR spectral database specific to Foodborne 

pathogens 

4.4.1.1. Classification model development at the Gram and genus level 

Discrimination between Gram-positive and Gram-negative bacteria was achieved through 

principal component analysis of the whole training set using the combined wavenumber range 

between 900-1800 cm-1 and 2800-3000 cm-1 (Figure 4.3). Two well-defined clusters were formed, 

and there were no sample outliers nor overlap detected. The major differences between Gram-

positive and Gram-negative spectra were the absorbance level around 1050, 1200, 1400, 2850 and 
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2930 cm-1, as shown in the grey-shaded area in Figure 4.4. The distinct spectral bands of Gram-

positive bacteria at 1050, 1200, and 1400 cm-1 (Figure 4.4A) can be attributed to carbohydrates, 

phosphate and carboxylates, respectively [18]. These absorption bands stem from the thicker 

peptidoglycan and the presence of teichuronic acid in Gram-positive bacteria cell walls. Similarly,  

Gram-discrimination was also possible from the changes in the relative intensities within the same 

regions [20]. In the region between 2850 and 3000 cm-1 assigned to C-H stretching vibrations, a 

significant increase in band absorptions at 2850 and 2930 cm-1 (relative to the amide I intensity) 

is seen in Gram-negative (Figure 4.4B), reflecting the higher lipopolysaccharide content in the cell 

wall of Gram-negative bacteria. Rapid discrimination between Gram types using FTIR has been 

consistently investigated since the 1980s [20]. 

  
Figure 4.3. Plot of PC1 vs PC2 generated by PCA of first-derivative/vector normalized 

spectral data of Gram positive and Gram negative bacteria using a broad spectral range 

(900-1800 cm-1). 
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Figure 4.4. Superposition of averaged raw Gram-positive and Gram-negative spectra, in the 

region (A) 900-1800 cm-1, and (B) 2800-3000 cm-1. 

 

Representative ATR-FTIR spectra between 1800 and 900 cm-1 of Listeria spp., E. coli, 

Salmonella spp. and Shigella spp.  are shown in Figure 4.5. The infrared spectrum of Listeria spp. 

had a band at ~1440 cm-1 that is higher than those of the three other bacteria belonging to the 

family Enterobacteriaceae. As a matter of fact, Listeria spp. could be readily distinguished from 

the other three microbial genera from the colony morphology on agar plates. Listeria spp. colonies 

are significantly smaller and dryer, whereas the other three genera tend to have larger and moistier 

colonies. Although E. coli, Salmonella spp., and Shigella spp. are all from the family 
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Enterobacteriaceae, E. coli and Shigella spp. are more genetically similar than Salmonella spp. 

There are some gas-producing Shigella that resembles E. coli, and there are lactose-negative, non 

gas-producing and non-motile E. coli strains that are similar to Shigella [21]. The argument has 

been made that almost all Shigella strains could be regarded as metabolically inactive biogroups 

of E. coli [22]. On the other hand, although previous study revealed that E. coli has >800 genes 

absent from the Salmonella spp., and that >1100 Salmonella genes lack counterparts in E. coli, 23 

of the 46 Salmonella O antigens are identical or very similar to an E. coli O antigen [23]. 

Nonetheless, FTIR spectroscopy was able to correctly differentiate all genera studied. The level of 

similarity among genera could be observed in the polysaccharide absorption region between 900 

and 1200 cm-1 (Figure 4.5). 

  
Figure 4.5. Representative absorbance ATR-FTIR spectra of Listeria spp., E. coli, Salmonella 

spp. and Shigella spp.   

 

Figure 4.6 is an overview of species differentiation of the four genera. Each genus had 

identified to have different wavenumber range for the optimal separation of species, which is 

shaded in grey. The polysaccharide regions 900-1200 cm-1 (grey-shaded area in Figure 4.6A, C, 

D) contributed to most of species differentiation among Gram negative genera (E. coli, Salmonella 

spp., and Shigella spp.), as well as between L. monocytogenes and non-monocytogenes Listeria 

spp. (darker grey-shaded area in Figure 4.6B). The DNA and RNA regions (1200-1250 cm-1), and 

around absorbance peaks at wavenumber 1400 cm-1 (lighter grey-shaded area in Figure 4.6), which 



128 

 

could be attributed to -CH3 in proteins, lipids, polyesters, or COO- in amino acid side chains and 

carboxylated polysaccharides, further contributed to the separation of other Listeria spp. [24].  

  
Figure 4.6. Absorbance ATR-FTIR spectra of (A) E. coli, (B) Listeria spp., (C) Salmonella 

serogroups, and (D) Shigella spp., and their corresponding discrimination area shaded in 

grey. 

 

4.4.1.2. Classification of Listeria spp. 

A total of 231 ATR-FTIR spectra of Listeria spp. were used for the development of the 

database, with 108 isolates from L. monocytogenes and 123 Listeria strains of  L. grayi, L. innocua, 

L. ivanovii, L.murrayi, L. seeligeri, L. welshimeri. The spectral window between 1800 and 900 

cm-1 was selected for classifier development. Region selection of the preprocessed spectra allowed 

for identification of specific wavenumber regions that contributes the most for differentiation of 

Listeria species (Figure 4.6B). There are two groups within the Listeria genus, namely Listeria 

sensu stricto, which include L. monocytogenes, L. innocua, L. ivanovii, L. seeligeri, L. welshimeri, 

and Listeria sensu lato, including L. grayi, L.murrayi and 10 other species [25]. Due to the 

pathogenicity and health interest, separation of L. monocytogenes from the rest of the Listeria 

species was investigated first. Interestingly, although 1200-1500 cm-1 seems to play crucial role 
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through examining raw spectra as shown in Figure 6B, the region most effective for the 

discrimination of L. monocytogenes from the other species were found between 950-1000 cm-1. 

This region could be assigned to the carbohydrate absorption regions [26]. This latter results are 

in concordance with other studies reported in the literature [6, 27]. Hierarchical cluster analysis of 

the 231 Listeria spp. spectra using wavenumber regions 950-1000 cm-1 is shown in Figure 4.7. 

 
Figure 4.7. Hierarchical cluster analysis of the 231 Listeria spp. spectra using the 

wavenumber region between 950 and 1000 cm-1. 

 

 After separating out L. monocytogenes, the rest of the species discrimination process was 

based on a decision tree. At each step, one species or a group of species presenting similar spectral 

patterns was separated using a set of wavenumber ranges as shown in Figure 4.8 L. grayi and L. 

murrayi both belong to Listeria sensu lato groups, and hence they were differentiated from other 

species easily by FTIR spectroscopy using the 1180-1230 cm-1 region which could be attributed 

to phospholipids and nucleic acid varibaility. Note that the two species have high level of gene 

similarities, their separation was not investigated in this study. While L. grayi and L. murrayi 

belong to the same group, they can be distinguished from other sensu lato species as a result of 

positive Voges-Proskauer test and motility [28]. However, L. grayi and L. murrayi can also be 

differentiated from Listeria sensu strictu species by its ability to ferment D-mannitol [25]. These 
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properties have led many researchers to propose L. grayi and L. murrayi could belong to the genus, 

Murraya [29]. Of the remaining four species belonging of the sensu stricto group, L. ivanovii is 

more closely related to L. seeligeri, as they both cause hemolysis and are unable to produce α-

mannosidase, the opposite of what L. innocua and L. welshimeri can do [29]. Therefore, group L. 

ivanovii-L. seeligeri spectra were differentiated from group L. innocua-L. welshimeri (Figure 4.8B) 

using the combined region 1060-1070 cm-1 and 1180-1230 cm-1. Finally, two clear clusters of L. 

ivanovii and L. seeligeri in the 3D PCA plot were obtained using the region 1060-1070 cm-1. The 

same region was also used for the discimination between L. innocua and L. welshimeri in Figure 

4.8D. The discrimination by gene similarities among species has been successfully revealed by 

FTIR spectroscopy employing a multitier pairwise discrimination strategy. The wavenumber 

regions were employed to build the classification models and used for validation purposes. 

  
Figure 4.8. 3D score plot of PCA of non-monocytogenes Listeria spp. PC1, PC2 and PC3 

totally expressed of 63.7% (PC1 29%, PC2 21.2%, PC3 13.5%), 82.1% (PC1 42.3%, PC2 



131 

 

29.3%, PC3 10.5%), 78.6% (PC1 42%, PC2 23.2%, PC3 13.4%), and 63.8% (PC1 35.6%, 

PC2 16%, PC3 12.2%), the variation for (A) L. grayi and L. murrayi versus other non-

monocytogenes Listeria spp., (B) L. innocua and L. welshimeri, against L. ivanovii and L. 

seeligeri, (C) L. ivanovii and L. seeligeri, and (D) L. innocua and L. welshimeri. 

 

4.4.1.3. Classification of Salmonella enterica serogroups 

A total of 126 Salmonella spectra were included in the construction of the database, 

including Salmonella enterica serogroups B, C, D, E, G, K, and R, in which serogroups B, C1, C2, 

D and E cause approximately 99% of Salmonella infections in humans and warm-blooded animals 

[30]. Additionally, four out of five most common serotypes with antibiotic resistance, Enteritidis, 

Typhimurium, Newport and Heidelberg belonging to serogroups D, B, C2 and B, respectively. 

Thus, serogroups B, C, D and E are of main interest for classification. Serotype classification was 

not considered in this study due to the low spectral representation of each serovar. The ability of 

transmission-based FTIR spectroscopy for differentiation of Salmonella serovars has been 

reported in the literature [31, 32].   

The differentiation of Salmonella serogroups was achieved between 1800 and 900 cm-1. 

Classification of Salmonella serogroups was also performed in a pairwise manner resulting in   

multiple PCA and HCA separation plots shown in Figure 4.9. Serogroup B and D were first 

separated from the rest through the use of 1120-1130 cm-1 and 1185-1195 cm-1 regions (Figure 

4.9A); serogroup C was then differentiated from the other groups through using 1070-1080 cm-1, 

1225-1275 cm-1, 1350-1360 cm-1 regions (Figure 4.9B); after which, serogroup E was segregated 

from the rest by using combined spectral regions 1100-1130 cm-1, 1190-1220 cm-1, 1265-1280 cm-

1, 1320-1380 cm-1, 1420-1450 cm-1 (Figure 4.9C). Finally, serogroup B and D were differentiated 

through using the wavenumber regions 1130-1140 cm-1 and 1305-1315 cm-1 (Figure 4.9D) and 

serogroup C1 was further separated from C2 and C3 by using  the spectral regions 940-950 cm-1, 

1180-1225 cm-1, 1260-1360 cm-1, 1400-1450 cm-1 (Figure 4.9E). It is worth mentioning that 

comparing to Listeria spp., Salmonella serogroups required more spectral windows over a wider 

wavenumber region for discrimination, suggesting the need of higher discriminatory power for 

Salmonella enterica serogroups. From the wavenumber regions used for producing the 3D PCA 

plot, most of the discriminating spectral regions are found within the region 900-1200 cm-1, 

assigned to the polysaccharide region, and within 1200-1500 cm-1, assigned to phospholipids, 

DNA and RNA, and carbohydrates [26, 33]. 
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Figure 4.9. 3D score plot of PCA and HCA of Salmonella serogroups. PC1, PC2 and PC3 

totally expressed of 95.11% (PC1 46.7% PC2 42.7%, PC3 5.71%), 84.2% (PC1 51.5%, PC2 

22.6%, PC3 10.1%), 79.5% (PC1 32.9%, PC2 25.8%, PC3 20.8%), 97.3% (PC1 68%, PC2 

24.1%, PC3 5.2%), and 76.4% (PC1 41.3%, PC2 22.3%, PC3 12.8%), the variation for (A) 

Salmonella serogroups B and D versus serogroups C, E, G, K, R, (B) Salmonella serogroups 

C1, C2, C3 versus serogroups E, G, K, R, (C) Salmonella serogroups E against serogroups 

G, K, R, (D) Salmonella serogroups B versus serogroups D, and (E) Salmonella serogroups 

C1 versus serogroups C2, C3. 

 

 As mentioned previously, the 1500-900 cm-1 spectral region comprises overlapping bands 

attributed to carbohydrates, phospholipids, polysaccharides and nucleic acids, contributing the 

most to the separation of the Salmonella serogroups. These regions were also reported to be useful 

by others in differentiating among serovars for Salmonella [34, 35]. In fact, due to the diverse 

carbohydrate composition of O antigens among Salmonella enterica serogroups, and differences 

in surface cell composition a significant impact can be observed in the IR spectra resulting in 

sucessful differentiation between the serogroups by ATR-FTIR spectroscopy (Figure 4.10). 
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Serogroup B has abe gene as its dideoxyhexose, whereas serogroup D has a tyv side-branch sugar 

instead, accounting for the biochemcial difference.  Moreover, serogroup B could be distinguished 

from other serogroups by having an abequose side branch on the galactose residue of the 3-sugar 

main chain [33]. Despite the difference between serogroups B and D, their similarity as shown in 

grey blocks in Figure 4.10has made them group together from the rest of the Salmonella serogroups. 

While serogroup C was originally divided into C1, C2 and C3 on serological grounds, they are 

now treated as C1 and C2-C3, as C1 gene cluster (presence of O:6,7 epitopes) is quite different 

from C2 and C3 (presence of O:6,8 epitopes), which in turn, are identical [33, 36]. Compared to 

other serogroups, C2C3 has a completely different order of glycoxyltransferase genes, with a 

acetyltransferase gene in between. Almost all genes order in the central region of the O-antigen 

gene clusters are unique to serogroup C2-C3. For serogroup E, it lacks the entire CDP-sugar 

pathway genes that could be found in B, C and D [37]. The one thing in common of serogroups 

studied in this research is that they all have galactose as their first sugar in their O antigen. These 

differences in Salmonella O antigen gene clusters were successfully been employed for serogroup 

discrimination by ATR-FTIR spectroscopy. 

 
Figure 4.10. O antigen gene clusters of Salmonella serogroups (represented in the infrared 

spectral database) with regions of sequence similarity between gene clusters shaded in grey 

blocks. 
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 Overall, serogroups differentiation was difficult if only the 1200-900 cm-1 region was used. 

Wider regions search for spectral windows improved the discriminatory power for the 

classification of Salmonella enterica serogroup spectra. This finding is in agreement with many 

studies where wider spectral windows search proved more effective than using narrower bands for 

discrimination among the serogroups [31, 38, 39].  

4.4.1.4. Classification of E coli O157:H7 

Enteroinvasive E. coli (EIEC), enterotoxigenic E. coli (ETEC), enteropathogenic E. coli 

(EPEC), enteroaggregative E. coli (EAEC), and enterohemorrhagic E. coli (EHEC) are common 

pathotypes of E. coli, in which E. coli O157:H7 belongs to EHEC. Even though pathogenicity of 

EPEC resembles salmonellosis and those of EIEC resembles Shigella, E. coli was correctly 

separately from both Salmonella and Shigella [22]. Furthermore, within the 477 spectra of E. coli 

included in the spectral database, all 90 E.coli O157:H7 were correctly separated using 

unsupervised HCA over the wavenumber region of 1030-1040 cm-1, 1270-1280 cm-1, 1345-1360 

cm-1 as shown in Figure 4.11A. The differentiation region lies again within the mixed region of 

900-1200 cm-1, assigned to C-O-C stretch and deformation or C-O ring vibrations in 

polysaccharides. The region between 1270 and 1360 cm-1 is assigned to the amide III component 

of proteins [40]. 

Currently, molecular methods are the gold standard for serotyping of E. coli. These 

methods are based on their differences in their O, H, and K surface antigens, and requires tedious 

and expensive equipment to perform due to the limited sensitivity and specificity. For E. coli, more 

than 180 somatic (O), flagellar (H), and capsular (K) antigens have been proposed up to now [41]. 

It was reported that a rare kind of hexose sugar 4-acetamido-4,6-dideoxy-D-mannose is unique to 

E. coli O157, and may explain the difference of their spectral profile from other E. coli serogroups 

[42]. Furthermore, only a few polyprenol phosphate glycosyltransferases in E. coli have been 

identified until now, which includes wbdN in E. coli O157 [43]. It has also been observed that E. 

coli O157:H7 was missing 0.53 Mb of DNA compared to non-pathogenic E. coli [44]. O-antigen 

provides important pathotype information which is crucial in the detection and serotyping of E. 

coli by conventional methods. The same is observed for FTIR spectroscopy, where the 

carbohydrates region 900-1200 cm-1 discriminates serogroup O157 from other polysaccharide- O-

antigens as shown in the PCA plot of Figure 4.11B. Interestingly, spectral differences can also be 
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observed in region between 1250 and 1360 cm-1, which can be attributed to protein. This possibly 

reflects the difference of H-antigen among E. coli serotypes, thereby demonstrating the high 

discriminatory power of FTIR spectroscopy.  

  
Figure 4.11. (A) HCA and (B) PCA showing the discrimination between E. coli O157-H7 and 

other E. coli. PC1, PC2 and PC3 account for 77.5%variablity (PC1 32.1% PC2 28.4%, PC3 

17%). 

 

4.4.1.5. Classification of Shigella spp. 

Shigellosis is a common cause of diarrhea. In recent years, approximately 880 cases of 

shigellosis have been reported annually in Canada [45]. All four species of Shigella are included 

in our study. A total of 75 Shigella spectra has been collected for inclusion in the IR spectral 

database. Shigella spp. and E. coli share many common characteristics, such as similar aggregate 

biochemical reactions, and identical lipopolysaccharide O antigens of Shigella (except S. sonnei) 

to one or more of E. coli serotypes [46]. Many molecular methods such as 16S rRNA gene 

sequencing and MALDI-TOF MS are unable to differentiate Shigella spp. from E. coli [47] 

Despite being challenging to differentiate between these two genera and accurately classifying the 

four species of Shigella, FTIR spectroscopy accurately differentiated Shigella spp. from E. coli, 

and also attained species level discrimination using the similar stepwise classification method with 

corresponding wavenumber regions as used previously. 

Again, the classification of Shigella spp. was also done by a stepwise method, as shown in 

the 3D PCA plot of Figure 4.12. A canonical variate analysis has been processed and a canonical 

plot was generated (Figure 4.13) to visualize the differences in the spectral distances among 
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Shigella spp. The different structure of the lipopolysaccharide O antigen repeats, of Shigella spp. 

has been reflected by the spectral regions employed for species discrimination. S. sonnei was first 

to separate as it differs from the other three Shigella spp. in having a major deletion of O antigen 

gene cluster between galF and gnd [48]. As expected, S. sonnei was correctly separated using 

regions 1005-1015 cm-1,1150-1155 cm-1, and 1350-1360 cm-1 (Figure 4.12A), in which can be 

attributed to sugar–phosphate vibrations, C-O of polysaccharides, and COO- group in amino acid 

side chains and carboxylated polysaccharides, respectively [49]. S. boydii was later differentiated 

from S. dysenteriae and S. flexneri using spectral differences between 1060-1070 cm-1, 1140-1145 

cm-1, 1180-1190 cm-1, 1280-1305 cm-1 (Figure 4.12B). The 1060-1070 cm-1 region can be assigned 

to the P=O symmetric stretching in DNA, RNA and phospholipids, whereas 1140-1190 cm-1 

belongs to the broad polysaccharide region dominated by ring vibrations of C-O-C and C-O, the 

1280-1305 cm-1 falls in the amide III band absorption of proteins [24]. Lastly, S. dysenteriae and 

S. flexneri were separated using the 1065-1070 cm-1, 1135-1155 cm-1, 1185-1195 cm-1, and 1300-

1360 cm-1 spectral regions (Figure 4.12C). The first three regions again falls within the various 

polysaccharides absorption region [49]. In general, discrimination among the Shigella species are 

mainly associated with spectral changes between  900-1250 cm-1, which could be due to vibrations 

along the sugar-phosphate chain and sensitivity to the conformation of the nucleic acid backbone, 

and 1250-1500 cm-1, where glycosidic bond rotation and sugar puckering modes are observed [50].  
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Figure 4.12. 3D score plot of PCA of Shigella spp. PC1, PC2 and PC3 totally expressed of 

88.4% (PC1 44.1% PC2 33.4%, PC3 10.9%), 71.2% (PC1 32.1%, PC2 22.6%, PC3 16.5%), 

and 70.3% (PC1 39.2%, PC2 19.5%, PC3 11.6%), the variation for (A) S. sonnei versus other 

Shigella spp., (B) S. boydii against S. dysesnteriae and S. flexneri, and (C) S. dysesnteriae 

versus S. flexneri. 
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Figure 4.13. 3D Canonical plot of Shigella spp. 

 

Using the region of 980-1500 cm-1, the five serotypes of S. boydii were clearly separated 

from each other. As shown in the HCA dendrogram in Figure 4.14. S. boydii serotype 6 was first 

differentiated out, signifying a higher level of heterogeneity from the other 4 serotypes. Then, 

following the degree of similarity, serotype 14 branched out, lastly serotypes 5, 4 and 9. The 

increasing level of difference among S. boydii serotypes can be noticed within the O antigen gene 

clusters in Figure 4.15, with gene cluster similarity among serotypes shaded in grey blocks. ATR-

FTIR spectroscopy appears to have high discriminatory power and possibility in providing 

subtyping capacity for Shigella spp. 
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Figure 4.14.. HCA differentiation of Shigella boydii serotypes over broad wavenumber region 

980-1500 cm-1. 

 

  
Figure 4.15. O antigen gene clusters of Shigella boydii serotypes included in the database with 

regions of sequence similarity between gene clusters shaded in grey blocks. Gene key is listed 

in  Figure . 

 

4.4.2. Validation of the spectral reference database 

 As shown in our previous study, bacteria identification by ATR-FTIR spectroscopy is 

robust enough despite using different culture media when the database was built using tryptic soy 

agar (TSA) and spectra acquired on the Summit ATR-FTIR. As such, we used BHI, which is the 

general agar CFIA uses the most, as cultivation medium for the validation set. This also provided 

the means of examining spectral compatibility of another FTIR spectrometer instrument from 

another manufacturer. For optimum inter-instrument identification results, the bacteria strains 
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were also grown on the same agar (TSA) as the strains used to build the database when they were 

scanned by Cary-630. 

A total of 1068 spectra, comprising 361 bacterial strains were obtained by using Summit 

from HC for the spectral database construction. Two cross-validation sets were obtained from 

CFIA: (1) 407 spectra belonging to 138 strains were acquired using Summit, and (2) 940 spectra 

belonging to 305 strains, acquired on the Cary 630. All the spectra were first evaluated visually to 

remove significant outliers, and then preprocessed for data analysis. A pairwise comparison model 

based on PCA-LDA was applied for the identification of the two validation sets. Detailed results 

of genus and species level identification are listed in Table 4.3 and Table 4.4,  respectively. At the 

genus level, despite using a different growth medium (CBA) than the database (from TSA), the 

Summit had a correct identification rate 99.5% compared to 96.2% for Cary 630. The results of 

misidentification and no identification were 0.25% and 0.25% for Summit, respectively, with only 

1 spectrum of E. coli misidentified as Shigella. The Cary had relatively higher misidentification 

(2.8%) and no identification rate (1.1%), in which the E. coli was the most misidentified as Shigella 

spp.  

At the species level, the Summit validation set was able to achieve a high identification 

accuracy of 95.8%, although the validation set were grown on a different medium than the 

reference strains used to build the database. On the other hand, Cary achieved only 79.9% correct 

identification despite using the same medium as the database. The error rate was 2.5%, and 1.7% 

no identification for the Summit, with most of the error were associated with Salmonella serogroup 

B and C2C3. The Cary had 15.4% misidentification rate and 4.7% no identification, with 

incorrectness found in almost all species evaluated in this study, except for L. grayi and L. murrayi, 

Salmonella serogroup D and S. sonnei. 

Isolates from the validation sets provided by CFIA and cultured on BHI were used to 

evaluate the identification and robustness of a TSA-built database. Result down to species level 

were promising. Only 1 E. coli isolate was misidentified as Shigella; 2 Salmonella isolates were 

predicted as C1, and the other 3 as ‘other serogroups’, where in fact, they belonged to serogroup 

C2C3; all the 3 misidentified Salmonella serogroup B were predicted as serogroup D; and finally, 

a single isolate of S. flexneri was misidentified as S. dysenteriae. Despite the validation and 
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reference strains were grown on a different medium, these results demonstrate again the robustness 

of FTIR spectroscopy.  
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Table 4.3. Identification results of validation set on genus level by FTIR instruments. 

Species NicoletTM Summit1 Cary 6302   

  

No. of spectra 

(No. of strains) 

Correct 

identification 

(%)3 

Misidentification 

(%)4 

No 

identification 

(%)5 

No. of spectra 

(No. of strains) 

Correct 

identification 

(%) 

Misidentification 

(%) 

No 

identification 

(%) 

Escherichia coli 102 (36) 100 (98.04) 1 (0.98) 1 (0.98) 50 (15) 37 (74) 7 (14) 6 (12) 

Listeria spp. 36 (12) 36 (100) 0 (0) 0 (0) 585 (195) 572 (97.78) 11 (1.88) 2 (0.34) 

Salmonella spp. 164 (55) 164 (100) 0 (0) 0 (0) 252 (77) 245 (97.22) 5 (1.98) 2 (0.79) 

Shigella spp. 105 (35) 105 (100) 0 (0) 0 (0) 53 (18) 50 (94.34) 3 (5.66) 0 (0) 

Total 407 (138) 405 1 1 940 (305) 904 26 10 

Identification accuracy   99.50% 0.25% 0.25%   96.17% 2.77% 1.06% 
1Although the database was built based on bacterial spectra acquired on TSA, the validation set acquired by Summit were grown on BHI. 
2The Cary validation set were grown on the same cultivation medium as the database, that is, TSA. 
3Correct identification signify that the percentage of correct prediction must be ≥0.8000. 
4Misidentification signify that the percentage of incorrect prediction must be ≥0.8000. 
5No identification signify that the percentage of prediction result is <0.8000. 
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Table 4.4. Species level identification of the validation set on two FTIR instruments. 

Species NicoletTM Summit Cary 630 

    

No. of 

spectra (No. 

of strains) 

Correct 

identification 

(%) 

Misidentification 

(%) 

No 

identification 

(%) 

No. of 

spectra (No. 

of strains) 

Correct 

identification 

(%) 

Misidentification 

(%) 

No 

identification 

(%) 

Escherichia coli 102 (36) 100 (98.04) 1 (0.98) 1 (0.98) 50 (15) 37 (74) 7 (14) 6 (12) 

Listeria          

 grayi 6 (2) 6 (100) 0 (0) 0 (0) 12 (4) 11 (91.67) 0 (0) 1 (8.33) 

 innocua 3 (1) 3 (100) 0 (0) 0 (0) 39 (13) 26 (66.67) 10 (25.64) 3 (7.69) 

 ivanovii 3 (1) 3 (100) 0 (0) 0 (0) 14 (5) 5 (35.71) 9 (64.29) 0 (0) 

 monocytogenes 24 (8) 24 (100) 0 (0) 0 (0) 451 (150) 391 (86.70) 57 (12.64) 3 (0.67) 

 murrayi      3 (1) 3 (100) 0 (0) 0 (0) 

 seeligeri      15 (5) 5 (33.33) 10 (66.67) 0 (0) 

 welshimeri      21 (7) 13 (61.91) 5 (23.81) 3 (14.28) 

 spp.      30 (10) 30 (100) 0 (0) 0 (0) 

Salmonella          

 serogroup B 36 (11) 30 (83.33) 3 (8.33) 3 (8.33) 101 (32) 81 (80.2) 14 (13.86) 6 (5.94) 

 serogroup C1 92 (33) 92 (100) 0 (0) 0 (0) 9 (3) 3 (33.33) 6 (66.67) 0 (0) 

 serogroup C2C3 14 (4) 9 (64.29) 5 (35.71) 0 (0) 68 (20) 51 (75) 8 (11.76) 9 (13.24) 

 serogroup D 9 (3) 9 (100) 0 (0) 0 (0) 20 (6) 19 (95) 0 (0) 1 (5) 

 serogroup E 6 (2) 6 (100) 0 (0) 0 (0) 11 (3) 7 (63.64) 3 (27.27) 1 (9.09) 

 other serogroups 7 (2) 7 (100) 0 (0) 0 (0) 43 (13) 33 (76.74) 5 (11.63) 5 (11.63) 

Shigella          

 boydii 24 (8) 24 (100) 0 (0) 0 (0) 9 (3) 1 (11.11) 6 (66.67) 2 (22.22) 

 dysenteriae 21 (7) 21 (100) 0 (0) 0 (0) 11 (4) 6 (54.55) 4 (36.36) 1 (9.09) 

 flexneri 30 (10) 27 (90) 1 (3.33) 2 (6.67) 21 (7) 17 (80.95) 1 (4.76) 3 (14.29) 

  sonnei 30 (10) 30 (100) 0 (0) 0 (0) 12 (4) 12 (100) 0 (0) 0 (0) 

Total   407 (138) 390 10 7 940 (305) 751 145 44 

Identification accuracy   95.82% 2.46% 1.72%   79.89% 15.43% 4.68% 
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To the best of our knowledge, no study has ever evaluated the database compatibility for 

the identification of foodborne pathogen between two FTIR instruments from different 

manufacturers. In this study, Summit FTIR spectrometer was used as the standard instrument for 

bacteria identification, and hence, it was used for the acquisition of reference strains from HC for 

the database construction. For the validation sets, one was acquired using our standard Summit 

spectrometer, the other set was acquired using a Cary-630. Overall, genus level reached an 

acceptable identification correctness of 96.2% in a inter-instrument evaluation study. E. coli had 

the lowest identification accuracy at only 74%. The 7% misidentified isolates were all predicted 

as Shigella. Nonetheless, only 3 Shigella spectra were mistaken as E. coli. It is worth mentioning 

that misidentifying E. coli as Shigella, is far less dangerous than the other way around, as Shigella 

may produce more serious complications and cause a lot more deaths than E. coli throughout the 

world, especially in underdeveloped countries [51]. At the species level, S. sonnei had 

outstandingly 100% correctness. This is probably because that S. sonnei has an atypical O antigen 

compared to the other three species as discussed previously, lacking the entire dTDP-sugar 

pathway and GDP-sugar pathway gene cluster [48]. Identification of the Salmonella serogroups 

was not easy inter-instruments. For Salmonella serovar isolates belonging to serogroup B, C2C3 

and D, identification result was 80.2%, 75%, and 95%, respectively. Interestingly, identification 

of Salmonella serogroup C2C3 yielded higher correct classification rate for inter-instrument (75%) 

than intra-instruments (64.3%). Serovar level identification was also promising using FTIR 

spectroscopy in previous studies [34, 52, 53].  

Identification of L. monocytogenes is crucial compared to other Listeria spp. due to its 

clinical complications and mortality. Intra-instrument identification yielded 100% correctness, 

whereas inter-instrument was only 86.7%. No misidentification for L. grayi and L. murrayi in both 

validation sets was observed and may be attributed to the significant differences from the other 

Listeria spp. both phenotypically and genotypically. The intra-instrument high identification 

correctness and lower accuracy inter-instrument prediction signify that although using the same 

parameters for spectral acquisition, the optical design used by different companies may influence 

spectral output. As shown in Figure 4.16, there are visual peak differences between two spectra 

acquired by the two FTIR spectrometers, despite being acquired from the exact same L. 

monocytogenes isolate at the same time.  
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Figure 4.16. Raw FTIR spectra of the same L. monocytogenes isolate grown on TSA but 

acquired on different FTIR instruments from different manufacturers. 

 

It is important to investigate the effect of growth media interchangeability in terms of 

correct identification rate for bacteria, with the objective of having a media independent spectral 

database for identification of isolates grown on different media. In this and previous studies done 

by our group and others, significant differences in the FTIR spectra of the same isolate grown on 

different media are shown. Nonetheless, TSA would be a good choice as a general growth medium 

for the database construction, and that it is robust enough to be used for the prediction of CBA- 

and BHI-grown validation set. Additionally, evaluation of identification compatibility between 

different manufactured FTIR instrument is also valuable, as it will reduce the financial struggle of 

purchasing an additional instrument when the FTIR database is built based on another instrument. 

It is noteworthy that both Summit and Cary-630 have achieved excellent performance on bacteria 

identification when they were used individually [54, 55]. In here, we achieved high accuracy 

(96.2%) at genus level identification regardless of the instrument manufacturer. Lower accuracy 

(11.1% to 100%) was achieved at species level. On the other hand, intra-instrument identification 

achieved 99.5% at genus level and 64.3% to 100% at species level. The spectral regions found to 
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be the best for discrimination among genus and species for the ATR-FTIR Summit may not work 

efficiently for Cary spectra, and vice versa. 

Overall, FTIR spectroscopy is shown to be a useful technique for the identification of 

foodborne microbial pathogenic regardless of media and instruments used for genus-level 

discrimination and identification. At the species level, the cultivation medium seems not to have 

large influence on the identification correctness, but the change in instruments may make the 

species prediction doubtful.  
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4.5. Conclusion 

In the present study, we analyzed selected foodborne pathogens and created a spectral 

database, followed by comparing the identification accuracy when using two manufactured FTIR 

instrument from different manufacturers. In general, FTIR spectroscopy has shown to be useful 

tor the rapid identification in routine. FTIR spectroscopy is rapid, low cost, reagent-free, and 

requires no sample preparation after incubation. The effect of alteration in growth medium on the 

identification accuracy is minimal at species level, and the use of different FTIR instrument does 

not pose notable misidentification errors at the genus level. To our knowledge, no prior study has 

compared two commercial FTIR instrument from different manufacturers for database 

compatibility in terms of pathogen identification. The database created in this study can be used 

as a first-line tool and readily applied for routine identification of food pathogens along with 

traditional genotypic methods after receiving regulatory approval.  
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Connecting Statement 

 FTIR spectroscopy-based method for the identification of pathogenic bacteria was 

developed and shown to be effective at genus-level identification using a single spectral database 

acquired on one ATR-FTIR spectrometer and used in the identification of isolates from spectra 

acquired on a second ATR-FTIR spectrometer from a different manufacturer. The effect of 

changes in media on the predictive accuracy of a spectral database generated from isolates grown 

on a single growth medium type was also assessed. Good predictive accuracy was observed at the 

genus-level, but limited predictive performance was observed at the species-level identification. 

In the next chapter, the focus shifts from these aspects of bacterial identification to fungal 

identification by FTIR spectroscopy, which has been much less studied in the literature. 

Examination of the efficacy of ATR-FTIR spectroscopy in the identification of fungal strains, 

including molds and yeasts, was undertaken in the following study and compared to both multiplex 

RT-qPCR and MALDI-TOF MS. 
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Chapter 5. Comparison of PCR, MALDI-TOF MS and FTIR spectroscopy for 

the identification of Aspergillus spp., and evaluation of an in-house built FTIR 

database for mold and yeast prediction 

 

5.1. Abstract 

Fungi are complicate in structure. Current methods for fungal identification rely heavily 

on mycologist using subjective morphologic methods to examine fungal colonies and fungal 

structure characteristics, and sometimes phenotypic methods when necessary. This poses risk to 

erroneous identification. Nowadays, new methods are being employed in fungi identification and 

have shown high prediction accuracy. Here we compared the identification accuracy of Multiplex 

quantitative real time polymerase chain reaction (RT-qPCR), Matrix-assisted laser 

desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), and Fourier-transform 

infrared (FTIR) spectroscopy for Aspergillus spp. Identification. Furthermore, two different 

growth media and commercial libraries will be compared for MALDI-TOF MS-based 

identification. Finally, an in-house built FTIR spectral database of fungal strains from multiple 

genera was constructed and further validated. The three methods investigated yielded 71.3%, 52% 

and 92.3% correct identification for Multiplex RT-qPCR, MALDI-TOF MS and ATR-FTIR 

spectroscopy, respectively. PCR may be more suitable for identification of Aspergillus strains of 

A. nigri and A. terrei; MALDI-TOF MS was effective for identifying A. fumigatus and A. flavus; 

while FTIR spectroscopy correctly identified all the Aspergillus species investigated, and this 

method attained 96.6% correctness after enlarging the database with additional fungal strains. 

Therefore, FTIR spectroscopy can serve as a valuable technique for the identification of different 

fungal species. 
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5.2. Introduction 

Due to the wide distribution in the environment, the number of yeast and mold infection in 

humans and contamination in food products is increasing. Aspergillus is well recognized as one of 

the most economically important genera in fungi [1]. Some Aspergillus species have the ability to 

produce mycotoxins as second metabolites that may induce carcinogenic effects in animals and 

humans [2]. Furthermore, Aspergillus can also cause a wide range of infections including 

cutaneous manifestations, otomycosis, and invasive infections such as pulmonary aspergillosis [3]. 

In addition to their pathogenic importance in medical fields, Aspergillus also pose serious 

economical issues in food, pharmaceutical, and cosmetic industries. In agriculture and the food 

industry, they are responsible for the spoilage of raw materials and processed foods and may cause 

serious health issues from the mycotoxins. Fast and accurate identification of fungi isolates is 

therefore important to initiate appropriate antifungal regiment.  

Currently, the identification of fungi is based mainly on their macroscopic and microscopic 

features, in addition to phenotypic or biochemical tests when appropriate. However, these methods 

are often complicated by morphological divergence even among isolates of the same species. 

Additionally, they are time-consuming, laborious, and sometimes not accurate, and require a 

thorough knowledge and expertise in the morphological analysis of fungi. These drawbacks led to 

the exploration of new methods to obtain better and more reliable results. Polymerase chain 

reaction (PCR)-based techniques, Matrix-assisted laser desorption/ionization-time of flight mass 

spectrometry (MALDI-TOF MS), and Fourier-transform infrared (FTIR) spectroscopic assays are 

currently being utilized or under active investigation for fungal discrimination and identification. 

PCR has been used as an aid in the diagnosis of invasive aspergillosis and is currently the 

recommended method by WHO [4]. However, a lack of standardization has limited both its 

acceptance as a diagnostic tool and multicenter clinical evaluations, preventing its inclusion in 

disease-defining criteria. Furthermore, molecular identification of filamentous fungi at the species 

level can be difficult and misclassification may occur. In fact, it is possible that a strain may be 

misclassified at the species level, especially regarding closely-related species [5]. For MALDI-

TOF MS, although it has gained popularity in the clinical microbiology laboratory for the 

identification of bacteria and yeast species, its use for mold identification is limited to date. This 

is due to several factors including limited fungal entries in commercially available databases, the 

difficulty to obtain good quality mass spectra, and to the use of a non standardized pre-treatment 



156 

 

of the samples to break the fungal cell wall, which is thicker and more robust than that of bacteria 

[6]. In fact, the first commercial mold database consist only 89 entries corresponding to 18 

different species of the genus Aspergillus, considering that more than 300 species have already 

been described.  

FTIR spectroscopy could be a valuable alternative for characterization and identification 

of fungi. This technique is based on the measurement of fundamental molecular vibrational modes 

and can be used to determine the chemical composition of organic compounds. When an infrared 

radiation is absorbed by molecular bonds the energy absorbed by the sample results in bending, 

stretching, and twisting of the bonds leading to characteristic transmittance and reflectance patterns 

[7]. The result is presented in form of an IR spectrum, where each spectral band can be studied 

depending on its frequency and intensity. The overall spectral comparison showed the main 

functional groups from lipids, carbohydrates, nucleic acids, polysaccharides, proteins, simple 

sugars, phospholipids generate in part a “molecular fingerprint” of the microorganism [7]. Up to 

date, only few studies on the application of FTIR spectroscopy for identifying fungi are available 

even though promising results was reported [8]. Same as MALDI-TOF MS, the sample preparation 

step for FTIR spectroscopy is crucial for acquiring a reproducible infrared spectrum with 

acceptable quality. In fact, since fungi are not unicellular like bacteria and their spores can be 

easily spread in air, they need longer cultivation time and multistage sample preparation procedure 

to ensure safe handling, making the preparation protocol for fungi much more complex and 

sensitive than for bacteria and yeasts. The sample preparation used in this study for the three 

identification methods is after through literature search and optimization of existing protocols. 

RT-qPCR, MALDI-TOF MS and FTIR-based methods aforementioned could be reliable 

alternatives to morphological fungi characterization. Although these techniques have been 

previously investigated, no comparative study has been reported yet. In this present work, our aim 

is to compare Multiplex RT-qPCR, MALDI-TOF MS, and FTIR spectroscopy for the 

identification of fungi. Furthermore, two different growth media and commercial libraries will be 

compared for MALDI-TOF MS. An in-house built FTIR spectral database will be enlarged to 

include additional fungal strains and further validated. 

  



157 

 

5.3. Material Methods 

5.3.1. Fungi Preparation  

 Aspergillus isolates used in this study are listed in Table 5.1. All 93 Aspergillus isolates 

corresponding to 10 species (Aspergillus aculeatus (n = 5), Aspergillus flavus (n = 31), Aspergillus 

fumigatus (n = 5), Aspergillus japonicus (n = 3), Aspergillus niger (n = 20), Aspergillus niveus (n 

= 1), Aspergillus oryzae (n = 2), Aspergillus parasiticus (n = 14), Aspergillus terreus (n = 6), 

Aspergillus uvarum (n = 6)) came from the Canadian Collection of Fungal Cultures (DAOMC) 

directed by Agriculture and Agri-food Canada (AAFC) in lyophilized form. These strains were 

initially identified by morphology with conventional methods, including macro- and microscopic 

means. All fungal isolates were cultured on Sabouraud dextrose agar (SDA; BD Difco; Detroit, 

USA) in an incubator at 25°C for 5 days. 

Table 5.1.. Fungal isolates used in this study. 

Fungal species 

No. of 

isolates 

Used for ATR-

FTIR 

Used for RT-

qPCR 

Used for MALDI-TOF 

MS 

Aspergillus aculeatus 5 5 5 2 

Aspergillus flavus 31 31 31 7 

Aspergillus fumigatus 5 5 5 3 

Aspergillus japonicus 3 3 3 0 

Aspergillus niger 20 20 19 6 

Aspergillus niveus 1 1 1 0 

Aspergillus oryzae 2 2 2 1 

Aspergillus 

parasiticus 14 14 14 5 

Aspergillus terreus 6 6 6 0 

Aspergillus uvarum 6 6 6 1 

 Total 93 93 92  25 

 

5.3.2. Multiplex real-time qPCR 

 Fungal DNA extraction was done by methods previously described [9-11]. Mycelia were 

cut from the fungal colonies with a sterile pipette tip. Three mycelia plugs were put in a 1.5 mL 

Eppendorf tube and were prepared in triplicate for each sample. Four hundred microliter of YPG 

culture media (1.5% glucose, 1% peptone, 0.5% yeast extract; w/v) supplemented with 0.5% (w/v) 

pre-treated sand (Cat S5631; Sigma-Aldrich Canada, Oakville, ON) were added to each sample to 

maximize and facilitate the grinding and collection of the mycelia. The sand was pre-treated by 

soaking in 50× volumes of 100 mM Tris buffer (pH 7.5) for 4 h and rinsed with water. The reaction 

mixture tubes were then shaken at 150 rpm at 25°C for 48 h. Finally, mycelia were pelleted after 

by centrifugation at 14,000 rpm for 2 min. The supernatant was removed, and the collected mycelia 

were kept in a -20°C freezer for less than one week. 
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 Four hundred microliter of lysis buffer (100 mM Tris base, 50 mM EDTA, 1% SDS (w/v), 

1% N-lauroyl sarcosine sodium salt (w/v) and 10 µg mL−1 RNase A; pH 8.2) were added to each 

Eppendorf tube containing the mycelia collected previously. The mycelium pellet is then ground 

with a pellet pestle driven by a cordless motor at 1000 rpm for 5 s. The Eppendorf tubes were 

inverted several times, and then 100 µL of potassium acetate solution (3.0 M, pH 6.5) was added. 

The tubes are inverted several times before centrifuging for 2 min at 14,000 rpm. Four hundred 

microliter aliquot of supernatant was transferred into a new 1.5 mL Eppendorf tube containing 500 

µL of isopropanol, which was then inverted several times again, and centrifuged for another 2 

minutes at 14,000 rpm to precipitate DNA. The supernatant was removed, and the DNA pellet was 

washed with 750 µL of 70% (v/v) ethanol. After centrifugation at 14,000 rpm for 1 min, the ethanol 

was removed, and the DNA pellet was air dried for 20 min. The DNA pellet was dissolved in 50 

µL Tris-EDTA buffer (pH 8.0). A QIAamp DNA Mini spin column kit (Qiagen, Hildren, Germany) 

was used to purify fungal DNA. In the case that further DNA purification was required, the DNeasy 

PowerClean Pro CleanUp Kit (Qiagen) was used according to the manufacturer’s protocol. The 

extracted DNA concentration was measured using Quant-iT™ PicoGreen™ dsDNA Reagent 

(Invitrogen) according to the manufacturer’s protocol to reach a DNA concentration of 10 ng/ µL 

using serial dilution. 

The set of primers for DNA template and hybridisation probes for Aspergillus spp. to run 

the PCR were as described previously [12] (Table 5.2), and were synthesised by Integrated DNA 

Technologies (Coralville, USA). Each PCR run included a negative control consisting of water 

without DNA template to monitor any contamination. The PCR master mix (Brilliant III Ultra-

Fast qPCR Master Mix, Agilent: 600880) contains the mutant Taq DNA polymerase, dNTPs, Mg2+ 

and a buffer specially formulated for fast cycling. Each PCR assay consisted of 10 µL of master 

mix, 15 μM of each primer, 15 μM probe, 0.3 µL Rox reference dye (Brilliant III Ultra-Fast qPCR 

Master Mix, Agilent: 600880), and 1 µL of sample DNA. Ultrapure sterile water was added to a 

final volume of 20 µL. PCR amplification and detection of amplification was performed on a 

QuantStudio 5 RT-qPCR instrument (ThermoFisher Scientific). The thermal cycling conditions 

were conducted as follows: 10 min of pre-denaturation at 95°C followed by 40 cycles of 

denaturation at 95°C for 25 s, annealing at 58°C for 30 s, and extension at 72°C for 35 s for 

fluorescence reading. Results were analyzed using the QuantStudio 5 Design & Analysis Software 

(Thermo Fisher Scientific), and considered positive if they had a Ct value <40 [13].   
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Table 5.2. Nucleic acid sequences of primers and probes set used for multiplex real-time PCR 

identification in this study [12]. 

PCR Target species 

Primer

s / 

probes 

Sequence 

(5′ → 3′) 

Targe

t loci 

Product 

name 

Produ

ct size 
Purification 

Yield 

guarante

e 

Multiplex real-

time PCR 

primer 

Aspergillus 

spp. 

benA 

F3 

TCG GTG 

TAG TGA 

CCC TTG G 
β-

tubuli

n 

(benA

) 

100 nmole 

DNA 

Oligo 

254 ~ 

272 bp 

Standard 

desalting 

35 

nmoles 
benA 

R2 

GCT GGA 

GCG YAT 

GAA CGT 

CT 

Hydrolysis 

probe 

Ascomycetes 
Asco 

1F9 

/5TET/AV 

ACG AAG 

T/ZEN/T 

GTC GGG 

RC/3IABkF

Q/ 

β-

tubuli

n 

(benA

) 

100 nm 

PrimeTime
® 5' 

TETTM 

/ZENTM/ 3' 

IB® FQ 

18 bp 

High-

performance 

liquid 

chromatograp

hy (HPLC) 

10 

nmoles 

Section Fumig

ati 

Fumi 

1R2 

/56-

FAM/CG 

GCA ACA 

T/ZEN/C 

TCA CGA 

TCT GAC 

TCG 

C/3IABkFQ 

100 nm 

PrimeTime
® 5' 6-

FAMTM 

/ZENTM/ 3' 

IB® FQ 

26 bp 
15 

nmoles 

Section Nigri 
Nig 

1R26 

/56-

FAM/AC 

TTC AGC 

A/ZEN/G 

GCT AGC 

GGT AAC 

AAG 

T/3IABkFQ 

26 bp 
15 

nmoles 

Section Flavi 
Flavi 

1F18 

/56-

FAM/CG 

GTC AGG 

A/ZEN/G 

TTG CAA 

AGC GTT 

TTC 

A/3IABkFQ 

26 bp 
15 

nmoles 

Section Terrei 
Terrei 

1R29 

/56-

FAM/AC 

CAT CCT 

G/ZEN/G 

GAC AGA 

TTC TYC 

ACG 

C/3IABkFQ 

26 bp 
15 

nmoles 

 

5.3.3. MALDI-TOF MS  

 Identification performance of a new Conidia ID-fungi plate (IDFP) for MALDI-TOF MS 

was first compared with the traditional SDA growing medium. To do so, 5 Aspergillus spp. were 

randomly selected and subcultured on SDA and IDFP in parallel at 25°C for 5 days until sufficient 
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mycelial growth is observed. Samples were prepared and analyzed following the method described 

[14]. In brief, the fungal material was resuspended in a 1.5 mL Eppendorf tube with 300 μl of pure 

water by scraping off approximately 1 cm in diameter of the fungi from the medium plate with a 

sterile disposable loop and homogenized to create a turbid suspension. Samples were then mixed 

with 900 μl absolute ethanol (Sigma-Aldrich; Merck KGaA) and centrifuged at 14,000 rpm for 2 

min. The supernatant was discarded without disturbing the pellet, and the Eppendorf tube was air 

dried for 5 min. Then, 50 μl of 70% formic acid was added to the pellet and vortexed. Fifty 

microliter of 100% acetonitrile was added after that. The suspension was subsequently centrifuged 

for 2 mins at 14,000 rpm. One microliter of the supernatant was spotted onto a 96-spot polished 

steel target plate (Bruker Daltonics) in triplicates and allowed to dry. Thereafter, 1 μl HCCA matrix 

(α-cyano-4-hydroxy-cinnamic acid solution in 50% acetonitrile and 2.5% trifluoroacetic acid) was 

pipetted onto the sample spot and dried at room temperature. 

The acquisition and analysis of mass spectra was performed by a Microflex LT mass 

spectrometer (Bruker Daltonik GmbH) using the MALDI Biotyper software package (version 3.0). 

The spectra were recorded with default parameter settings, that is a positive linear mode at a laser 

frequency of 60 Hz within a mass range of 2000 to 20,000 Da. The acceleration voltage, extraction 

voltage, lens voltage and delayed extraction time were set as 20 kV, 18.5 kV, 6.0 kV and 150 ns, 

respectively. For each spectrum, 240 laser shots in 40-shot steps from different positions of the 

sample spot were accumulated and analyzed (automatic mode, default settings of MBT_AutoX 

method). The Bruker bacterial test standard (BTS; Bruker Daltonik GmbH) was used for 

calibration according to the instructions of the manufacturer. 

MALDI-TOF MS spectra analysis was performed using two reference fungal libraries in a 

single run: (i) the Bruker Filamentous Fungi Library (Version 3.0) and (ii) the Charles River 

filamentous fungi MALDI library. A score between 0.00 and 3.00 was obtained, depending on the 

degree of similarity of a spectrum to the ones in the reference databases. The highest score of each 

triplicate was used. A score value ≥2 indicates a highly reliable identification at the species level, 

values between 1.999 and 1.7 represent probable correct identification. Culture scraping failure 

resulted in spectra without peaks and required reanalysis. 
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After comparing the identification performance of SDA and IDFP, another 20 randomly 

selected Aspergillus spp. were subcultured on IDFP and underwent the same procedure for 

MALDI-TOF MS analysis as described above. 

5.3.4. ATR-FTIR spectroscopy 

 Aspergillus spp. were grown on SDA at 25°C for 5 days. For each fungal strain, 3 

independent agar plates were prepared to obtain 3 independent replicates. Before FTIR 

measurements, mycelium of each sample was transferred to a 1.5 mL Eppendorf tube with 160 µL 

sterile water. For deactivation of the filamentous mold, 940 µL of absolute ethanol was added to 

the mixture, and put aside for 2.5 h. The suspension was then centrifuged twice at 13,000 rpm for 

2 min to discard the supernatant. The mycelial pellets were then spread thinly on an aluminum foil 

and allowed to dry overnight to form a film suitable for FTIR analysis. 

The mid-infrared spectra were recorded using OMNIC™ Paradigm Software from 

NicoletTM Summit (Thermo Fisher Scientific Waltham, US) FTIR spectrometer. Triplicate spectra 

were acquired from individual dried mycelium film by pressing the film against the ATR crystal 

of the FTIR spectrometer. All spectra were recorded in the region between 700 cm-1 and 4000 cm-

1 in absorbance mode and Happ-Genzel apodization. For each FTIR spectrum, a total of 32 scans 

at a spectra resolution of 8 cm-1 were co-added and ratioed against a background spectrum 

collected from a clean ATR sampling surface.  

FTIR spectra contain both biochemical information and information coming from physical 

effects due to light–matter interaction. The latter may introduce artifacts and large variabilities that 

can influence the classification model. Preprocessing of raw spectra is therefore an important step 

to extract important spectral information. All spectra were first visually examined to remove low 

quality spectra containing low water content (water absorbance <0.15). Spectra with artifacts 

caused by drifts in the baseline or atmospheric water vapor fluctuations were also removed. Mean 

spectra were calculated from the remaining spectra based on the triplicate measurements and the 

triplicate agar plate belonging to the same strain. Afterward, all spectra were pre-processed by to 

the first derivative, and vector normalized using either an in-house written software or 

commercially available spectral analysis software OMNIC (Thermo Scientific™, USA). 

Hierarchical cluster analysis (HCA) using Ward’s algorithm was used to classify genus or species 

groups according to their proximity representing their similarity in a dendrogram (Figure 5.1).  
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Spectra were separated into a training and a validation set, and were exported from 

MATLAB (The MathWorks Inc., Natick, MA, US) as csv files using an in-house written software, 

and then imported directly into JMP Statistical Discovery software (Cary, NC), version 16 to 

perform data analysis. The relevant wavenumber ranges were narrowed down to 700-1800 cm-1 

and 2800-3000 cm-1 in order to perform a forward region selection algorithm to discriminate 

among the species based on selected spectral features. The wavenumber combinations producing 

the most effective separation of classes were subsequently chosen.  

The reference database for Aspergillus spp. was built on a multitier pairwise structure. 

Principal components (PCs) derived from PCA were used together with linear discriminant 

analysis (LDA) for validation of the database. For the validation sets, the analysis procedure was 

the same, except that the validation strains were labeled as “unknown” and were not employed in 

forward region selection or in building the PCA models. Pairwise identification at genus and 

species level of prediction sets was achieved by same multitier spectral database structure, and at 

each step identify the group in which the “unknown” spectra belong, until identification at species 

level is attained. 

  
Figure 5.1. Schematic representation of sample preparation, sample analysis by FTIR 

spectroscopy, and spectral preprocessing. 
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5.3.5. Enlargement of the ATR-FTIR fungal reference database 

The Aspergillus reference database was included 402 isolates, belonging to 13 fungal 

genera and 18 species (Table 5.3). The validation set, which is independent from the reference 

database strains, had a total of 80 isolates, including 2 Aspergillus versicolor, 15 Cladosporium 

spp., 11 Geotrichum spp., 21 Penicillium spp., 8 Debaryomyces hansenii, 5 Issatchenkia orientalis, 

8 Rhodotorula mucilaginosa, 2 Trichosporon asahii, and 8 Yarrowia lipolytica. All isolates were 

obtained from the strain collection of Université de Laval (Québec, Canada) and Laboratoire de 

Santé Publique du Québec (LSPQ), and were stored in 10% glycerol at -80°C before being revived 

by growth on PDA. The identification of yeast and mold isolates was confirmed at LSPQ by 

MALDI-TOF MS and/or gene sequencing of the ribosomal DNA (rDNA) D1/D2 or internal 

transcribed spacer (ITS) regions (using NL1-NL4 or ITS1-ITS4 primers, respectively) and by 

comparing sequence similarity to that of reference sequences in GenBank, International Society 

of Human and Animal Mycology (ISHAM) ITS, and the Westerdjik Fungal Biodiversity Institute 

nucleotide databases. The identification of mold isolates was done by morphological analysis 

based on macroscopic and microscopic features. The identification was then confirmed by DNA 

sequencing. Briefly, genomic DNA was extracted using the ‘FastDNA SPIN Kit’ (MPBio, Illkirch, 

France) according to the manufacturer’s instructions from mycelia grown on potato dextrose broth 

after 2-4 days at 25°C on a rotary shaker at 120 rpm. Depending on the fungal genus (ITS region 

including the 5.8S rRNA gene for all genera except Fusarium spp., partial β-tubulin gene for 

Penicillium and Aspergillus spp., and partial mcm7 and partial tsr1 genes for Mucor spp.), DNA 

amplification of 5 different regions was performed as described previously [15, 16]. After 

sequencing of the amplicons, the DNA sequences were compared to the GenBank database using 

the Basic Local Alignment Search Tool (BLAST) to determine the taxonomic assignment of fungal 

isolates. 

Each sample was thawed and subcultured onto SDA. For non-filamentous mold or moist 

yeast culture, a loopful of fungal cells was isolated using a sterile disposable loop and simply 

deposited on the ATR diamond surface of the ATR accessory placed in the sample compartment 

of the FTIR spectrometer. Spectral preprocessing, statistical analysis and validation were 

performed as described in the previous section. 
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Table 5.3. List of the fungal isolates included the ATR-FTIR spectral database. 
Fungal species No. of isolates Source 

Aspergillus  versicolor 4 Food 

Cladosporium cladosporioides 5 Food 

 cucumerinum 3 Food 

 herbarum 2 Food 

 sp 4 Food 

 sphaerospermum 6 Food 

Geotrichum  candidum 12 Food 

 sp 3 Food 

Mucor racemosus 3 Food 

Penicillium camemberti 8 Food 

 commune 3 Food 

 roqueforti 7 Food 

 sp 19 Food 

Candida spp 282 Clinical 

Cryptococcus diffluens 1 Clinical 

Debaryomyces  hansenii 8 Food 

Issatchenkia orientalis 8 Food 

Rhodotorula  mucilaginosa 9 Food and clinical 

Saccharomyces  cerevisiae 2 Clinical 

Trichosporon  asahii 3 Food and clinical 

 cutaneum 1 Clinical 

 sp 1 Clinical 

Yarrowia lipolytica 8 Food 

Total 402 -  
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5.4. Results & Discussion 

5.4.1. Growth of Aspergillus spp. 

 After 5 days of incubation at 25°C , all Aspergillus isolates successfully grew on SDA and 

IDFP with different sizes, colors, shapes and textures, depending on the species. The phenotypic 

characteristics of mold varied among each other. For example, Aspergillus flavus (A. flavus) 

formed fluffy greyish-green colonies consisting predominantly of vegetative hyphae, while 

Aspergillus niger (A. niger) usually formed characteristic black colonies. Aspergillus fumigatus (A. 

fumigatus) was a rapid grower with typical velutinous, grey-blue-green colonies and uniseriate 

conidial heads. Aspergilli such as A. flavus, A. niger, and Aspergillus terreus (A. terreus) had 

similar growth rates to that of A. fumigatus. The rate of fungal growth was not significantly 

different between SDA and IDFP. In general, Aspergillus on IDFP grew faster, and harvesting of 

fungal material for the sample preparation was easier. However, the spectral quality of the 

inactivated thin film was not affected by the cultivation medium (Figure 5.2C). Once the 

filamentous mold was spread on the thin aluminum foil and dried, it can be stored safely for a long 

time. Figure 5.2 also shows the typical black powdery-like colony morphologies of an A.niger on 

(A) SDA and (B) IDFP plate. 

  
Figure 5.2. Aspergillus niger after 5-days of growth at 25℃ on (A) SDA and (B) IDFP, and 

(C) deactivated sample prepared for FTIR spectra acquisition. 

 

5.4.2. Identification of Aspergillus spp. by Multiplex RT-qPCR 

  Multiplex real time qPCR have been widely applied for the quantification and 

identification of Aspergillus [12, 17-23]. As previously described, the PCR identification method 

was developed based on the benA gene for the four major Aspergillus sections (Flavi, Fumigati, 

Nigri and Terrei), as it reduces the diagnosis time without compromising the amplification [12]. 
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The performance of multiplex real-time qPCR for 1167 fungal samples without monitoring the 

DNA concentration is reported in Table 5.4. The amplification efficiency of each probe was found 

to be 49.1% to 88.4%; The sensitivity and specificity were 46.5% to 100% and 41.7% to 83.3%, 

respectively. With a standardized DNA concentration of 10 ng/mL, the overall amplification 

results significantly improved, as shown in Table 5.5. The correct amplification percentage for 324 

controlled fungal DNA concentration samples was 66.2% to 91.1%, whereas the sensitivity and 

specificity were 55.8% to 100% and 86.9% to 93.3% for Flavi, Fumigati, Nigri and Terrei, 

respectively. Overall, the correct amplification rate for all DNA assay was 63.2% (738/1167), and 

71.3% (231/324) for standardized DNA samples. No contamination occurred in the negative 

control. 
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Table 5.4. Specific amplification of the designed PCR probes with DNA concentration not 

monitored (2.54-49.3 ng/µl) for the identification of all Aspergillus spp. 

 

Table 5.5. Specific amplification of the designed probes with DNA concentration 10 ng/µl for 

Aspergillus spp. 

  Aspergillus section 

Probe Fumigati Nigri Flavi Terrei 

Ascomycetes 15/15 (100%) 15/15 (100%) 30/69 (43.5%) 9/9 (100%) 

Fumi 1R2 15/15 (100%) 1/5 (20%) 2/23 (8.7%) 1/3 (33.3%) 

Nig 1R26 5/5 (100%) 12/15 (80%) 3/23 (13.0%) 0/3 (0%) 

Flavi 1F18 5/5 (100%) 0/5 (0%) 47/69 (68.12%) 0/3 (0%) 

Terrei 1R29 5/5 (100%) 0/5 (0%) 4/23 (17.4%) 6/9 (66.7%) 

Correct amplification 30/45 (66.7%) 41/45 (91.1%) 137/207 (66.2%) 23/27 (85.2%) 

Incorrect amplification 15/45 (33.3%) 4/45 (8.9%) 70/207 (33.8%) 4/27 (14.8%) 

Sensitivity 100% 90% 55.8% 83.3% 

Specificity N/A 93.3% 86.9% 88.9% 

 A very interesting factor which influenced sensitivity in our study is the DNA 

concentration. Standardization of fungal DNA concentration yielded an amplification result 

improvement of 0% to 17.06% in general, with Flavi sections providing the highest improvement 

and Fumigati sections the lowest. Except for section Flavi, where a slight improvement (9.34%) 

in assay sensitivity (when DNA concentration was standardized to 10 ng/mL), Nigri and Terrei 

sections analysis showed a 1.2% and 5% reduction in sensitivity, respectively. On the other hand, 

specificity improved by 10% to 47.22% for all sections excluding Fumigati, where the qPCR 

results remained identical. There was also and improvement of Ascomycetes amplification for all 

section isolates, in which yielding 100% correct amplification at the genus level Ascomycetes 

  Aspergillus section 

Probe Fumigati  Nigri Flavi Terrei 

Ascomycetes 15/15 (100%) 102/113 (90.26%) 90/226 (39.8%) 28/30 (93.3%) 

Fumi 1R2 15/15 (100%) 6/40 (15%) 36/76 (47.4%) 9/12 (75%) 

Nig 1R26 5/5 (100%) 104/113 (92.0%) 34/76 (44.7%) 7/12 (58.3%) 

Flavi 1F18 5/5 (100%) 7/40 (17.5%) 120/226 (53.1%) 5/12 (41.7%) 

Terrei 1R29 5/5 (100%) 7/40 (17.5%) 34/76 (44.74%) 25/30 (83.3%) 

Correct amplification 30/45 (66.67%) 306/346 (88.44%) 334/680 (49.1%) 68/96 (70.8%) 

Incorrect amplification 15/45 (33.33%) 40/346 (11.56%) 346/680 (50.9%) 28/96 (29.2%) 

Sensitivity 100% 91.15% 46.5% 88.3% 

Specificity N/A 83.33% 54.4% 41.7% 
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except for Flavi. For section Flavi, Ascomycetes consistently did not amplify well (<45%). 

Despite section Flavi showing the highest improvement in terms of correct amplification after the 

DNA adjustment, it still the lowest number of true positives compared to the other three sections. 

Amplification of isolates from section Fumigati happened for all section probes with low Ct 

numbers (<30), including Ascomycetes, regardless of DNA concentration. Although sensitivity 

was reduced, section Nigri and Terrei all had improved amplification percentage and specificity 

after DNA concentration standardization, especially for section Terrei. 

 Many publications on PCR-based identification for Aspergillus spp. were based on using 

different target DNA, such as 18S and 28S rRNA [17, 19], nuclear ribosomal internal transcribed 

spacer (ITS) regions [23], benA and rodA [12, 22]. Sequences in 18S or 28S rRNA regions are 

conserved across a wide range of fungi and have been used to detect fungal pathogens in clinical 

specimens [17], yet, it is difficult to design truly species-specific primers using these regions. The 

more variable ITS regions may be more useful for identification of fungal species as it is not only 

conserved, but is also present as multiple copies in the fungal genome, yielding sufficient 

taxonomic resolution for most fungi, and has the advantage that GenBank and other universal large 

genome database contain a large number of sequences from this locus, facilitating identification 

of the sequence from an unknown isolate. More recent studies suggest that probe-based RT-qPCR 

can be more sensitive, specific, and fast compared to molecular identification based on ITS 

sequencing [12]. Moreover, genetic analysis of benA is useful to distinguish cryptic species, which 

is not possible with ITS sequencing [18], hence the reason that benA gene was used to select a 

primer pair and probe specific to the major Aspergillus sections. In general, compared to the 

amplification results of this study, higher PCR identification performance for Aspergillus spp. has 

been reported using all the DNA regions aforementioned [12, 19-21, 23]. It is worth mentioning 

that the larger number of samples with false-negative or false-positive results in this study may be 

due to the large set of isolates used. It has been reported that more than 80% of fungal isolates can 

be isolated only once when tested at the molecular level [24], and that some cross-reactions exist 

when large number of samples are tested due to the greater diversity of fungi [25]. Some studies 

also encountered problems when using PCR for fungal identification, especially for species 

differentiation within section Nigri [26] and A. fumigatus [27] due to contamination. Another study 

has found that only 50-60% of the molecular identification results were concordant with 

phenotypic methods, and this lack of concordance could be attributed to the incompleteness of the 
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sequence database [5]. As a matter of fact, although independent meta-analysis showed 

comparable identification performance with regards to using different biomarkers and commercial 

assays, there is methodological diversity with respect to PCR identification of fungal isolates. In 

other words, there is currently no standard preparation method of Aspergillus spp. DNA isolates 

for multiplex RT-qPCR. Therefore, the comparability of PCR performance for Aspergillus spp. 

among studies remains questionable.  

 Design of primers and selection of probes are very important as they determine the 

specificity and sensitivity of PCR-based methods. A reliable method of DNA extraction is also 

crucial for PCR amplification, and several papers have reported the progress in improving the 

extraction step and the need to address inhibitors of PCR that could not be inactivated resulting in 

reduced performance of the PCR tests [23]. An optimal standard method for fungal PCR protocol 

may provide superior performance, as suggested in this work when fungal DNA concentration was 

standardized. Nevertheless, this study showed promising results for identifying section Nigri and 

Terrei using multiplex RT-qPCR. 

5.4.3. Identification of Aspergillus spp.  by MALDI-TOF MS 

 A total of 5 Aspergillus isolates, including 2 A. flavus, 2 A. niger and 1 A. parasiticus were 

grown on SDA and IDFP for the comparison of MALDI-TOF MS identification score (Table 5.6). 

Interpretation criteria for MALDI-TOF MS was applied with minor modification. Briefly, a score 

value > 1.400 was sufficient to consider as a probable correct identification, and score value ≤

1.400 signifies no identification (failed identification). Among the 5 samples inoculated in SDA, 

three (60%) of them could not be analyzed as no peak was found, and one (20%) was not identified 

due to unreliable score. At the end, only a single isolate (20%) could be correctly identified on 

SDA regardless of Bruker or Charles River database with comparable MALDI score. With regards 

to the isolates grown on IDFA, unlike SDA with 3 isolates (60%) failed to have peaks resolved, 

all isolates obtained a prediction result from the two databases. The Bruker database correctly 

identified 1 isolate (20%), with 1 misidentified (20%) and 3 non-identified (60%); whereas the 

Charles River database had 4 isolates (80%) correctly identified and only 1 (20%) misidentified. 

With the preliminary results for the comparison of the two growth media, we noticed that IDFP 

clearly enhanced the performance of Aspergillus identification compared to SDA for both Bruker 
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and Charles River database. Therefore, IDFP was selected as the growth medium for the rest of 

MALDI-TOF MS identification. 

 As shown in Table 5.7, out of the 25 Aspergillus isolates, the Bruker and Charles River 

have obtained a correct identification of 24% (6/25) and 52% (13/25), a misidentification rate of 

32% (8/25) and 24% (6/25), and a non-identification rate of 44% (11/25) and 24% (6/25), 

respectively. Species identification was able to achieve 42.89% (6/14) using Bruker and 68.42% 

(13/19) by Charles River database by excluding the non-identification rate. The number of non-

identification was remarkably higher for Bruker (44%) database compared to Charles River (24%), 

as well as the number of misidentification (32% Bruker and 24% Charles River. Based on both 

databases, A. fumigatus obtained the highest identification rate (100%), despite the score value for 

all 3 A. fumigatus was significantly higher in Charles River database (> 2.000) than Bruker (1.57-

1.88). For A. flavus (n = 7), the number of correct identifications were considerably larger for 

Charles River (85.71%) compared to Bruker (28.57%). Only a single A. flavus could not be 

identified (14.29%) in Charles River database, whereas there were three non-identified (42.86%) 

and two misidentified (28.57%) using the Bruker database. Correct identification rate of 16.67% 

was obtained for A. niger (n = 6) by both databases. However, a single isolate that could not be 

identified using the Bruker database, but correctly identified at genus level using the Charles River 

database. Unfortunately, it did not reach species identification by misidentifying A. niger as A. 

tubingensis. The one A. oryzae was misidentified by the Bruker database but was correctly 

identified by Charles River database with high score (1.724). For the case of A. parasiticus (n = 

5), all of them were either misidentified (60%) or non-identified (40%) by the Bruker database. 

Interestingly, with the same number of misidentifications (60%), the two A. parasiticus that were 

not identified by the Bruker database were correctly identified (40%) by Charles River database. 

For A. aculeatus (n = 2) and A. uvarum (n = 1), both databases yielded the same results with similar 

MALDI-TOF scores. Table 5.9 contains the MALDI-TOF MS identification scores and results of 

each isolate based on the two databases for a clear comparison. 

 In general, Charles River database generated a higher percentage of correct identification 

and lower misidentification rate compared to Bruker. This result is not surprising as relatively 

fewer species of Aspergillus are represented in the Bruker database compared to Charles River 

database [28]. Furthermore, according to the official method for fungi identification by Bruker, 
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the sample preparation method was slightly modified in the present study, with the main 

adjustment being the use of IDFP instead of SDA [29]. Still, comparing Aspergillus identification 

on SDA and IDFP, the latter showed higher identification rate using both databases. Indeed, IDFP 

is the commercial plate manufactured by Charles River for MALDI-TOF MS identification of 

filamentous fungi.   

 Despite the relatively higher identification rate by Charles River database (68.42%), this 

number is far less than satisfactory. Identification of Aspergillus is rarely performed as routine 

tests in most microbiology laboratories, and even less common at species level. This may explain 

the considerably lower number of reference spectra for fungi (247 species) in commercial MALDI-

TOF MS databases compared to bacteria (3893 species), which in turn reflect partially the low 

identification rate for Aspergillus spp. [30]. Additionally, although SDA is the suggested 

cultivation media by Centers for Disease Control and Prevention (CDC) for MALDI-TOF MS 

fungal identification, the Bruker filamentous fungi database library is created with mycelia from 

liquid broth culture. Noteworthy, Charles River database is built based on Bruker database but 

with additional to in-house reference spectra (Accugenix®). The relatively weak identification 

capacity of MALDI-TOF MS may be attributed to the different elements grown under the two 

culture methods, as short-term broth culture mainly yields mycelia while agar culture generates 

abundant conidia and hyphae. Since young colonies and mature colonies of the identical mold 

isolate could present some obvious differences in spectra, a shorter incubation time of about 2 days 

(instead of 5 days) and sampling of the front hyphea from the young colonies may be favorable 

for the identification of Aspergillus spp. grown on agar media by MALDI-TOF MS [31].  

 Results on identification of Aspergillus spp. by MALDI-TOF MS have large discrepancies 

in the literature. While some studies show promising identification capacity of 77.78% to 90.5% 

[32-34], many more have reported similar identification efficiency as the present study 54.2% to 

69% [35-38]. These latter studies established in-house databases by expanding the commercial 

database with additional reference spectra and improved the identification performance of 

MALDI-TOF MS remarkably up to 93%. Other than changing the culture medium and optimizing 

the comprehensive databases, protein extraction method could also be employed in MALDI-TOF 

MS identification of filamentous fungi. One study applied bead grinding procedure with the 

extraction solution adding formic acid and acetonitrile in one step, and have shown to increase the 
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identification rates [39]. Overall, the use of commercially available filamentous fungal spectral 

libraries provides a low percentage of correct identification for Aspergillus spp. Expansion of the 

MALDI-TOF MS reference database will be necessary to improve the identification performance 

of mold genera as a whole. 
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Table 5.6. Comparison of growing medium SDA and IDFP for identification performance 

by MALDI-TOF MS. 

1For MALDI-TOF MS, a score value ≥2.000 indicates a reliable species identification, values between 1.999 and 1.700 represent 

probable correct identification 
2Incorrect identification signifies that the MALDI-TOF MS results predicted wrongly, and the score was >1.400. 
3No identification signifies that MALDI-TOF MS results were ≤1.400. 

 

 

Table 5.7. MALDI-TOF MS Identification Results of Aspergillus spp. based on Charles River 

Database. 

   Bruker database Charles River database 

Aspergillus 

spp. 

Number of 

isolates 
 

Correctly 

identified 

Mis-

identified 

Non-

identified 

Correctly 

identified 

Mis-

identified 

Non-

identified 

aculeatus  2 0/2 (0%) 0/2 (0%) 
2/2 

(100%) 
0/2 (0%) 0/2 (0%) 

2/2 

(100%) 

flavus  7 2/7 (28.57%) 
2/7 

(28.57%) 

3/7 

(42.86%) 
6/7 (85.71%) 0/7 (0%) 

1/7 

(14.29%) 

fumigatus   3 3/3 (100%) 0/3 (0%) 0/3 (0%) 3/3 (100%) 0/3 (0%) 0/3 (0%) 

niger  6 1/6 (16.67%) 
1/6 

(16.67%) 

4/6 

(66.66%) 
1/6 (16.67%) 

2/6 

(33.33%) 
3/6 (50%) 

oryzae  1 0/1 (0%) 
1/1 

(100%) 
0/1 (0%) 1/1 (100%) 0/1 (0%) 0/1 (0%) 

parasiticus  5 0/5 (0%) 3/5 (60%) 2/5 (40%) 2/5 (40%) 3/5 (60%) 0/5 (0%) 

uvarum 1 0/1 (0%) 
1/1 

(100%) 
0/1 (0%) 0/1 (0%) 

1/1 

(100%) 
0/1 (0%) 

Total 25 6/25 (24%) 
8/25 

(32%) 

11/25 

(44%) 
13/25 (52%) 

6/25 

(24%) 

6/25 

(24%) 

Correct 

percentage1   6/14 (42.89%) 13/19 (68.42%) 
1The correct identification percentage calculated did not account the non-identified isolates. 

 

5.4.4. Identification if Aspergillus spp. by ATR-FTIR spectroscopy 

 ATR-FTIR spectral classification models for 54 Aspergillus spp. strains belonging to 10 

species were generated using PCA-DA. The IR spectra were acquired in triplicate and subjected 

Growth medium SDA IDFP 

MALDI-TOF MS 

database 
Bruker  Charles River  Bruker  Charles River 

Species ID  Result Score1  Result Score  Result Score  Result Score  

A. flavus (215373) 
No peaks 

found 
- 

No peaks 

found 
- 

Myroides 

odoratus 
1.36 A. flavus  1.886 

A. flavus (215370) A. flavus  1.76 A. flavus  1.756 A. flavus  1.79 A. flavus  1.793 

A. niger (226489) 
No peaks 

found 
- 

No peaks 

found 
- 

Lactobacillus 

paralimentari

us 

1.44 A. niger 1.783 

A. niger (211079) 

Lacto-

bacillus 

curvatus 

1.31 

Lacto-

bacillus 

curvatus 

1.306 
Staphylo-

coccus lutrae 
1.36 

Penicillium 

aurantioviolac

eum 

1.684 

A. parasiticus (239372) 
No peaks 

found 
- 

No peaks 

found 
- 

Cryptococcu

s neoformans 
1.33 A. parasiticus 1.592 

Correct identification 1/5 (20%) 1/5 (20%) 1/5 (20%) 4/5 (80%) 

Incorrect identification2 0 (0%) 0 (0%) 1/5 (20%) 1/5 (20%) 

No identification3 4/5 (80%) 4/5 (80%) 3/5 (60%) 0/5 (0%) 
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to second derivative transformation and vector normalization prior to spectral analysis. A total of 

54 averaged spectra were obtained after removing obvious outliers or low-quality spectra. Each of 

the averaged spectrum provide information of the similarities and differences in the biomolecular 

composition among isolates, and this can be visualized in peak shifts and relative intensity 

differences. Comparison of the 4 Aspergillus sections and their corresponding Aspergillus species 

are shown in Figure 5.3 and 5.4, respectively. Wavenumber regions 700-1800 cm−1 and 2800-3000 

cm−1 were selected for the classification model development as these regions are known to be 

characteristic to biomolecules. The spectral regions are tentatively been assigned by others as  the 

fingerprint region (700-900 cm−1), polysaccharides (1200-900 cm−1), proteins, lipids, and 

phosphate compounds (1500-1200 cm−1), amides (1700-1500 cm−1), and lipids (3000-2800 cm−1) 

[7]. It is clear that regardless of the overall similarities between spectra of Aspergillus spp., unique 

spectral differences exist between species and sections. Based on the classification results obtained 

through the use of spectral search algorithms and HCA, each Aspergillus section was assigned into 

distinct groups to enable pairwise discrimination down to the species level.  

 

  

Figure 5.3.  Superposition of averaged FTIR spectra of Aspergillus sections. 
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Figure 5.4. Superposition of averaged FTIR spectra of Aspergillus spp. in section (A) Nigri, 

(B) Flavi, and (C) Terrei. (Section Fumigati is not shown as it comprises only A. fumigatus in 

this study). 

 

The database validation was carried out using an ‘unknown’ validation set composed of 39 

Aspergillus strains belonging to 9 species, totalling 39 spectra after averaging the triplicates. To 

facilitate the comparison of identification performance with other methods involved in this study, 

the 39 validation strains included the 25 strains used for MALDI-TOF MS identification. Species 

of all these strains were represented in the database and were excluded when constructing the 

database. Identical spectral preprocessing procedure was used as for the reference spectra when 

building the database was performed, and pairwise identification down to species level was done 

for each of the validation spectra with a confidence percentage for each prediction result (Figure 

5.5). To be considered as a reliable identification, the prediction confidence must be ≥0.8000 (≥

80%); if the percentage of prediction confidence is <0.8000 (< 80%), the prediction is reported as 

misidentified or unidentifiable. The identification result is reproted in Table 5.8. 36 strains out of 

39 (92.3%) were correctly identified; only 2 strains (5.1%) were misidentified and a single strain 

(2.6%) as non-identified. Concerning the two misidentified strains (A. japonicus and A. flavus), A. 

japonicus was identified as A. aculeatus with 98% confidence, and A. flavus as A. parasiticus with 
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high confidence (97.5%). Both isolates were misidentified within their same Aspergillus section. 

Based on the DNA sequence, A. japonicus and A. aculeatus were shown to be more closely related 

to each other than to other species within the section Nigri from DNA sequence [40]. With regards 

of A. flavus and A. parasiticus, both are capable to produce aflatoxin, which is implicated as acute 

toxicants and hepta-carcinogens in human [41]. Hence, identifying either one or the other will 

bring out comparable anti-fungal treatment. For the non-identified A. parasiticus, although it was 

predicted correctly to species level, the low confidence percentage (60.51%) caused it to be 

considered as a failed identification. 

 

  

Figure 5.5. Identification flow chart of Aspergillus spp. 
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Table 5.8. ATR-FTIR-based identification results of Aspergillus spp. 
Aspergillus 

species 

In 

database 

For 

prediction 

Correct 

identification1 Misidentified2 Non-

Identified3 

aculeatus 3 2 2/2 (100%) 0/2 (0%) 0/2 (0%) 

flavus 20 11 10/11 (90.9) 1/11 (9.1%) 0/11 (0%) 

fumigatus 1 4 4/4 (100%) 0/4 (0%) 0/4 (0%) 

japonicus 2 1 0/1 (0%) 1/1 (100%) 0/1 (0%) 

niger 11 9 9/9 (100%) 0/9 (0%) 0/9 (0%) 

niveus 1 0 - - - 

oryzae 1 1 1/1 (100%) 0/1 (0%) 0/1 (0%) 

parasiticus 7 7 6/7 (85.7%) 0/7 (0%) 1/7 (14.3%) 

terreus 4 2 2/2 (100%) 0/2 (0%) 0/2 (0%) 

uvarum 4 2 2/2 (100%) 0/2 (0%) 0/2 (0%) 

Total 54 39 36/39 (92.3%) 2/39 (5.1%) 1/39 (2.6%) 

1Correct identification signify that the percentage of correct prediction confidence must be ≥0.8000. 
2Misidentification signify that the percentage of incorrect prediction confidence must be ≥0.8000. 
3No identification signify that the percentage of prediction confidence result is <0.8000. 

The correct classification of Aspergillus spp. at species level by ATR-FTIR spectroscopy 

is reported in this study. Classification models yielded a 92.3% identification down to the species 

level using an in-house built ATR-FTIR spectral database. Findings in this study were in 

agreement with transmission based FTIR spectroscopy studies for Aspergillus spp. identification. 

Lecellier et al. and Shapaval et al. developed their own filamentous fungi FTIR spectral database 

comprising Aspergillus spp., achieving a correct assignment of 94% to 99.17% and 92.3% to 98.77% 

at the genus and species level, respectively [42-44]. Another study has also revealed that FTIR 

spectroscopy was able to differentiate non-toxigenic and toxigenic A. flavus and A. parasiticus 

isolates with a correct classification rates of 75% and 100%, respectively [45]. Similar to the 

observation in this present study, Bhat R. analyzed Aspergillus FTIR spectra of Aspergillus species 

and found that a single and clearly distinguishable peak could be sufficient to differentiate between 

two different fungal species [8]. Overall, this study demonstrated good performance of ATR-FTIR 

spectroscopy for Aspergillus species identification using a spectral library of molds as compared 

to transmission-based FTIR methods. 

5.4.5. Identification performance comparison of the three methods 

 Comparison of Multiplex RT-qPCR, MALDI-TOF MS (using both databases) and ATR-

FTIR spectroscopy for Aspergillus spp. is summarized in Table 5.9. For ease of comparison, only 

the identification results of the 25 strains used for MALDI-TOF MS are shown for PCR and FTIR 

spectroscopy. In brief, PCR correctly amplified 68.7% (69/99), MADI-TOF MS attained 42. 9% 



178 

 

(6/14) by use of the Bruker database and 68.4% (13/19) by using the Charles River database, while 

FTIR spectroscopy yielded a 100% (24/24) correct identification when the non-identified strains 

are excluded. A. aculeatus (n = 2) could not be identified (score < 1.400) from both databases in 

MALDI-TOF MS, yet was amplified correctly in general by PCR. Same results were observed for 

A. niger (n = 6) and A. uvarum (n = 1), where MALDI-TOF MS only identified one A. niger isolate 

by Charles River database, whereas PCR correctly amplified all of them including replicate assays. 

Despite correct amplification of all 3 A. fumigatus isolates by PCR, MALDI-TOF MS may still 

provide as a reliable identification result as the PCR assays for all section probes (low specificity) 

as shown in Table 5.5. Similarly, MALDI-TOF MS also correctly identified A. oryzae (n = 1) and 

A. flavus (n = 7) with high score by Charles River compared to PCR. ATR-FTIR spectroscopy 

correctly identified all isolates aforementioned with high confidence. While PCR and MALDI-

TOF MS had trouble amplifying or identifying all 5 A. parasiticus isolates, only one A. parasiticus 

was non-identified by FTIR spectroscopy due to low confidence (60.5%). 

 When comparing the identification of the three methods by Aspergillus section as 

illustrated in Table 5.10 for the 25 isolates, MALDI-TOF MS yielded the lowest performance of 

52% (13/25), followed by Multiplex RT-qPCR of 68.7% (68/99), and the ATR-FTIR-based 

method attained the highest correct identification of 96% (24/25). MALDI-TOF MS could be 

reliable for identification of isolates belonging to section Fumigati (100%), and relatively poor for 

section Flavi (69.2%) and section Nigri (11.1%). The reason may be attributed to the need of 

improvement for the filamentous fungi infrared spectral library, or the method of cultivation as 

stated in previous section. In comparison, PCR performed better than MALDI-TOF MS for the 

identification of section Nigri with correct amplification of 96.6%; and for section Flavi (50.82%); 

and lower rate of identification for section Fumigati due to the low specificity despite 100% 

amplification of the Fumigati section probe. ATR-FTIR-based method performed the best for the 

identification of all Aspergillus spp. section compared to RT-qPCR, and MALDI TOF MS, with 

100% correctness in section Fumigati and Nigri, and 92.3% for section Flavi. 

 To the best of our knowledge, although many studies have achieved comparable results 

with the identification methods used in this study, no publication has done the identification 

performance comparison of Multiplex RT-qPCR, MALDI-TOF MS and FTIR spectroscopy for 

Aspergillus spp. In this study, ATR-FTIR spectroscopy coupled with PCA-DA has demonstrated 
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species-specific discrimination and identification of filamentous fungi with high rate of correct 

identification compared to RT-qPCR and MALDI-TOF MS. Current morphological analysis for 

filamentous fungi identification could be difficult because of the very high phenotypic biodiversity. 

Furthermore, as shown in this study, the use of molecular approaches and MALDI-TOF MS 

identification of Aspergillus spp. is limited due to the cost of instruments, time, reagents, and the 

identification accuracy. ATR-FTIR spectroscopy represents a rapid, accurate and cost-effective 

Aspergillus species identification technique when using an appropriate well-represented spectral 

database.  
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Table 5.9. Identification performance comparison of Multiplex RT-qPCR, MALDI-TOF MS and FTIR spectroscopy of 25 

Aspergillus isolates. 
Species ID Multiplex RT-

qPCR 

Bruker (MALDI-TOF MS) Charles River (MALDI-TOF 

MS) 

FTIR 

  Amplification 

result1 

Result Score  Result Score Result Prediction 

Probability 

A. aculeatus 

(188310) 5/6 (83.33%) 
Lactobacillus paracasei spp 

paracasei 

1.34 Lactobacillus paracasei 1.338 A. 

aculeatus 

93.92% 

A. aculeatus 

(190937) 3/3 (100%) 
Lactobacillus paracasei spp 

paracasei 

1.34 Lactobacillus paracasei 1.34 A. 

aculeatus 

95.07% 

A. flavus (147046) 4/6 (66.67%) A. flavus 1.66 A. flavus 1.846 A. flavus 100.00% 

A. flavus (164836) 
3/6 (50%) 

Staphylococcus cohnii ssp 

cohnii 

1.43 A. flavus 1.646 A. flavus 85.65% 

A. flavus (215370) 3/3 (100%) A. flavus  1.79 A. flavus  1.793 A. flavus  99.73% 

A. flavus (215373) 1/6 (16.67%) Myroides odoratus 1.36 A. flavus  1.886 A. flavus  99.31% 

A. flavus (225949) 
3/3 (100%) 

Lactobacillus plantarum 1.38 A. flavus 1.5 A. flavus 91.91% 

A. flavus (237618) 1/3 (33.33%) Clostridium novyi 1.39 Clostridium novyi 1.387 A. flavus 97.47% 

A. flavus (239379) 0/3 (0%) Kytococcus sedentarius 1.42 A. flavus  1.594 A. flavus  99.16% 

A. fumigatus  

(15734) 
3/3 (100%) 

A. fumigatus  1.57 A. fumigatus 2.004 A. 

fumigatus 

90.71% 

A. fumigatus  

(215394) 
3/3 (100%) 

A. fumigatus  1.84 A. fumigatus  2.06 A. 

fumigatus  

88.32% 

A. fumigatus 

(226481) 
3/3 (100%) 

A. fumigatus  1.88 A. fumigatus  2.067 A. 

fumigatus  

97.27% 

A. niger (144018) 3/3 (100%) A. niger  1.53 A. niger  1.528 A. niger  100.00% 

A. niger (160593) 
3/3 (100%) 

Rhizobium radiobacter 1.26 Agrobacterium 

radiobacter 

1.265 A. niger 100.00% 

A. niger (191282) 
3/3 (100%) 

Clodostridium beijerinckii 1.39 Clodostridium 

beijerinckii 

1.387 A. niger  100.00% 

A. niger (211079) 
3/3 (100%) 

Staphylococcus lutrae 1.36 Penicillium 

aurantioviolaceum 

1.684 A. niger 99.51% 

A. niger (221143) 
2/2 (100%) 

Lactobacillus oligofermentans 1.39 Lactobacillus 

oligofermentans 

1.386 A. niger 100.00% 

A. niger (226489) 
3/3 (100%) 

Lactobacillus paralimentarius 1.44 Aspergillus tubingensis  1.783 A. niger  97.70% 

A. oryzae (221144) 
1/3 (33.33%) 

Lactobacillus aviaries ssp 

aviarius 

1.41 A. oryzae 1.724 A. oryzae 93.70% 
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A. parasiticus 

(216343) 
5/7 (71.43%) 

Lactobacillus sakei 1.51 Lactobacillus sakei 1.508 A. 

parasiticus 

60.51% 

A. parasiticus 

(221063) 
0/3 (0%) 

Actinocorallia libanotica 1.6 Actinocorallia libanotica 1.595 A. 

parasiticus 

100.00% 

A. parasiticus 

(238957) 
3/6 (50%) 

Lactobacillus reuteri 1.37 A. parasiticus 1.476 A. 

parasiticus 

99.55% 

A. parasiticus 

(239372) 
3/6 (50%) 

Cryptococcus neoformans 1.33 A. parasiticus  1.592 A. 

parasiticus  

99.97% 

A. parasiticus 

(239391) 
4/6 (66.67%) 

Lactobacillus malefermentans 1.41 Aspergillus 

minisclerotigenes 

1.42 A. 

parasiticus 

99.63% 

A. uvarum 

(250032) 
3/3 (100%) 

Paeniclostridium sordellii 1.4 Paeniclostridium 

sordellii 

1.402 A. uvarum 90.23% 

Correct 

identification2 

68/99 (68.69%) 6/14 (42.89%) 13/19 (68.42%) 24/24 (100%) 

1This category only shows the amplification results for the section-specific probe. 
2The correct identification percentage calculated did not account the non-identified isolates. 
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Table 5.10. Identification performance comparison of 25 Aspergillus isolates by Multiplex 

RT-qPCR, MALDI-TOF MS and FTIR spectroscopy. 

Section 

Multiplex RT-

qPCR 

MALDI-TOF MS (Charles 

River) FTIR 

Flavi 31/61 (50.82%) 9/13 (69.23%) 

12/13 

(92.31%) 

Fumigati 9/9 (100%) 3/3 (100%) 3/3 (100%) 

Nigri 28/29 (96.55%) 1/9 (11.11%) 9/9 (100%) 

 Correct 

identification1 68/99 (68.69%) 13/25 (52%) 24/25 (96%) 
1The correct identification percentage calculated accounted the non-identified isolates. 

 

5.4.6. Expansion of the in-house built ATR-FTIR spectral database and its validation as a 

method for fungal identification 

 The Aspergillus ATR-FTIR spectral database was enlarged to include additional non-

Aspergillus mold and yeast strains in order to evaluate the robustness of ATR-FTIR spectroscopy 

as a generalized method for fungal identification. Including the 54 Aspergillus reference strains, a 

total of 456 fungal isolates were included in the new database, comprising 29 species from 13 

genera. The enlarged spectral database was used to generate by HCA and PCA-DA classification 

models. Discriminant spectral features were selected for each taxonomic rank (genus and species 

level) to allow stepwise classification of the strains to a specific genus to species. The performance 

of the classification models we assessed by using a validation set of 119 fungal strains from 23 

species and 13 genera. The final identification flow for the validation set is shown in Figure 5.6. 

The identification rate of fungi and yeast spp. by FTIR spectroscopy were 96.6% (115/119), 2.52% 

(3/119) and 0.84% (1/119) for correct identification, misidentification, and non-identification, 

respectively (Table 5.11).  

 The prediction errors were associated with the mold strains and all yeast isolates were 

correctly identified (100% correct identification). The non-identified was A. parasiticus and two 

of the three misidentified spectra were A. flavus and A. japonicus, the same strains that were 

problematic in the previous Aspergillus database. Although the newly built database was enlarged 

with more fungal strains, no Aspergillus spp. except Aspergillus versicolor was added. And since 

identification of unknown was based on the stepwise classification model, the unchanging 

reference spectral group of Aspergillus species will deliver identical identification result. Adding 

new reference spectra to the database to include maximal intra-species diversity for identification 
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of troublesome species would be helpful to improve the identification performance of ATR-FTIR 

spectroscopy. In a previous study performed by our team member, identification rate was increased 

from 95.6% to 99.7% for Candida spp. when the database was enlarged with reference strains 

belonging to the same species as the previously misidentified ones [46]. Other than Aspergillus, 

only one Cladosporium herbarum was misidentified as Geotrichum spp. 

Conventional identification methods for fungi in routine are carried out mostly by 

morphological methods, that are mainly time-consuming and require highly trained personnel. 

Based on this study, ATR-FTIR spectroscopy combined with multivariate analysis methods is a 

promising technique to identify filamentous fungi. FTIR spectroscopy is a high throughput 

technique and is less expensive than traditional morphological and molecular methods, providing 

a good alternative for routine analysis. Limitation of using ATR-FTIR-spectroscopy as 

identification method exists. For instance, signal-to-noise ratio of the spectra, spectral 

reproducibility, sampling methods, variability in growth media and incubation can have varying 

impact on the identification of an unknown isolate. Furthermore, the in-house ATR-FTIR spectral 

database built is far from being sufficient with respect to the diversity of fungal species 

encountered in the general routine laboratory analysis, and no ATR-FTIR spectral library exists 

for fungal strain identification to date. A standardized protocol for ATR-FTIR spectroscopy for 

fungal identification is needed in order to be considered as a valuable diagnostic tool in clinical, 

food and agricultural settings for fungi and yeast. 
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Figure 5.6. Identification flow chart of yeast and mold species. 
1CGM is the abbreviation of Cladosporium spp., Geotrichum candidum and Mucor racemosus. 
2TRC is the abbreviation of Trichosporon spp., Rhodotorula mucilaginosa and Cryptococcus diffluens. 
3DIYS is the abbreviation of Debaromyces hansenii, Issatchenkia orientalis, Yarrowia lipolytica and Saccaromyces cerevisiae. 
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Table 5.11. FTIR identification using the in-house build fungi and yeast database. 

  
Genus Species 

In 

database 

For pre-

diction 

Correct 

identification1 Misidentified2  
Non-

Identified3 

Mold 

Aspergillus versicolor 4 2 2/2 (100%) 0/2 (0%) 0/2 (0%) 

 aculeatus 3 2 2/2 (100%) 0/2 (0%) 0/2 (0%) 

 flavus 20 11 
10/11 

(90.91%) 
1/11 (9.09%) 0/11 (0%) 

 fumigatus 1 4 4/4 (100%) 0/4 (0%) 0/4 (0%) 

 japonicus 2 1 0/1 (0%) 1/1 (100%) 0/1 (0%) 

 niger 11 9 9/9 (100%) 0/9 (0%) 0/9 (0%) 

 niveus 1 0 - - - 

 oryzae 1 1 1/1 (100%) 0/1 (0%) 0/1 (0%) 

 parasiticus 7 7 6/7 (85.71%) 0/7 (0%) 
1/7 

(14.29%) 

 terreus 4 2 2/2 (100%) 0/2 (0%) 0/2 (0%) 

 uvarum 4 2 2/2 (100%) 0/2 (0%) 0/2 (0%) 

Cladosporium cladosporioides 5 3 3/3 (100%) 0/3 (0%) 0/3 (0%) 
 cucumerinum 3 2 2/2 (100%) 0/2 (0%) 0/2 (0%) 
 herbarum 2 1 0/1 (0%) 1/1 (100%) 0/1 (0%) 
 spp. 4 3 3/3 (100%) 0/3 (0%) 0/3 (0%) 
 sphaerospermum 6 6 6/6 (100%) 0/6 (0%) 0/6 (0%) 

Geotrichum candidum 12 8 8/8 (100%) 0/8 (0%) 0/8 (0%) 
 spp. 3 3 3/3 (100%) 0/3 (0%) 0/3 (0%) 

Mucor racemosus 3 0 - - - 

Penicillium camemberti 8 6 6/6 (100%) 0/6 (0%) 0/6 (0%) 
 commune 3 1 1/1 (100%) 0/1 (0%) 0/1 (0%) 
 roqueforti 7 4 4/4 (100%) 0/4 (0%) 0/4 (0%) 
 spp. 19 10 10/10 (100%) 0/10 (0%) 0/10 (0%) 

Yeast 

Candida spp. 282 0 - - - 

Cryptococcus diffluens 1 0 - - - 

Debaryomyces hansenii 8 8 8/8 (100%) 0/8 (0%) 0/8 (0%) 

Issatchenkia orientalis 8 5 5/5 (100%) 0/5 (0%) 0/5 (0%) 

Rhodotorula mucilaginosa 9 8 8/8 (100%) 0/8 (0%) 0/8 (0%) 

Saccaromyces cerevisiae 2 0 - - - 

Trichosporon asahii 3 2 2/2 (100%) 0/2 (0%) 0/2 (0%) 

 cutaneum 1 0 - - - 
 spp. 1 0 - - - 

Yarrowia lipolytica 8 8 8/8 (100%) 0/8 (0%) 0/8 (0%) 

  
Total   456 119 

115/119 

(96.64%) 
3/119 (2.52%) 

1/119 

(0.84%) 
1Correct identification signify that the percentage of correct prediction must be ≥0.8000. 
2Misidentification signify that the percentage of incorrect prediction must be ≥0.8000. 
3No identification signify that the percentage of prediction result is <0.8000. 
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5.5. Conclusion 

In this study, three different identification methods have been evaluated for the 

identification of Aspergillus strains. Multiplex RT-qPCR, MALDI-TOF MS and FTIR 

spectroscopy obtained 71.3%, 52% and 92.3% of correct identification, respectively. RT-qPCR 

may be more suitable for identification of Aspergillus strains in section Nigri and Terrei (A. niger, 

A. japonicus, A. uvarum, A. aculeatus, A. terreus, A. niveus); MALDI-TOF MS could be a good 

choice to use for identifying A. fumigatus and A. flavus; while FTIR spectroscopy provides the 

best means of identifying Aspergillus spp. The identification rate of 96.6% was obtained by FTIR 

spectroscopy following the enlargement of the database with additional fungal strains provides an 

effective means for the accurate identification of pathogenic fungal species for subsequent anti-

fungal treatment cannot be overstated. Currently, phenotypic methods for the identification of the 

most common fungi remain useful in microbiology laboratories. Only a limited number of samples 

can be subjected to the identification analysis as such in a timely manner. The number of samples 

subjected to the identification analysis could be significantly increased by using ATR-FTIR 

spectroscopy without compromising the identification performance providing the added advantage 

of low cost and no reagent (enzyme or chemical) requirements as in the case for Multiplex RT-

qPCR, MALDI-TOF MS analysis. On the basis of the results obtained in this study, ATR-FTIR 

spectroscopy can serve as a valuable technique in identifying different fungal species. 
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Connecting Statement 

 The studies presented in the previous three chapters entailed implementation of 

fundamental principles of FTIR-based microbial identification in three fields of application, 

namely, veterinary microbiology, identification of foodborne pathogenic bacteria, and mycology. 

These fundamental principles include the need for culturing prior to spectral acquisition to obtain 

sufficient biomass and isolate pure colonies, the use of spectral databases consisting of spectra of 

reference strains (cultured under standardized conditions) in sufficient numbers to adequately 

represent the phenotypic diversity of  the genera/species of interest, the application of multivariate 

classification or machine learning algorithms to discriminate among the genera/species 

represented in the database, and validation of the classification models to assess their predictive 

accuracy prior to implementing them in the identification of unknowns. 

In the case of viral pathogens, similar principles may be applied with several notable 

exceptions. Although viruses are often referred to as microorganisms, they can only replicate in 

host cells and hence can only be cultured if an appropriate cell culture system exists. Furthermore, 

culturing of viruses does not produce sufficient viral mass to allow for FTIR spectral acquisition 

with a standard laboratory instrument, obviating any possibility of routine identification of viral 

pathogens by FTIR spectroscopy in the manner outlined above. On the other hand, for a given viral 

pathogen, the FTIR spectra of specimens of an appropriate biofluid collected from infected and 

uninfected individuals may exhibit differences serving as a basis for detection of the viral infection. 

Given that such differences are unlikely to be visually discernible, discriminatory features can be 

explored in accordance with the principles employed in discriminating among microbial pathogens 

on the basis of FTIR spectral differences. The Covid-19 pandemic provided the opportunity to 

conduct the proof-of-concept study described in the next chapter, utilizing saliva specimens 

collected from individuals undergoing routine PCR-based screening at a local hospital to develop 

an FTIR-based method for detection of SARS-CoV-2 infection.  
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Chapter 6. Case study for the application Transflection-FTIR spectroscopy for 

SARS-CoV-2 detection in heat-inactivated saliva fluids 

 

6.1. Abstract 

In December 2019, a novel coronavirus was implicated in a viral outbreak reported in 

Wuhan China; this virus and the disease it causes were subsequently were subsequently named 

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Covid-19, respectively 

[1]. As of April 2023 a total of  764,474,387 confirmed cases of COVID-19, including 6,915,286 

deaths were reported by the World Health Organization (WHO) [2]. The most accurate test for the 

detection of the virus to date is the real time polymerase chain reaction (RT-qPCR) (from nasal 

swabs or saliva).  RT-qPCR tests are expensive, labor-intensive, and have long turnaround time 

when considering the number of daily tests required to screen large population segments. Over the 

course of the pandemic, alternative rapid and cost-effective tests for Covid-19 diagnosis based on 

immunoassay were developed. These tests also required the use of reagents, and the sensitivity of 

the immunoassay-based methods were lower than RT-qPCR. Herein, we aimed to evaluate 

application of transflection Fourier-transform infrared (TR-FTIR) spectroscopy as a rapid 

diagnostic tool for Covid-19 using heat-inactivated saliva. This technique is reagent free, non-

destructive, and rapid amenable to on-site testing. The results are obtained within minutes of 

acquiring a sample of saliva from the individual. In this feasibility study conducted in April 2021, 

a total of 940 raw saliva samples (418 tested positive for Covid-19 and 522 tested negatives for 

Covid-19 by RT-qPCR) were collected and heat inactivated at 85 ºC for 15 mins. Discrimination 

models were developed based on spectral differences between the two sample sets using k-nearest 

neighbor (KNN), artificial neural network (ANN), and support vector machine (SVM) algorithms, 

and yielded 82.9%-85.4% sensitivity, 82.4%-86.3% specificity, 84.8%-85.9% accuracy, and 79.6-

83.4% precision. A comparison between the mean TR-FTIR spectra of all PCR negative and PCR-

positive saliva specimens revealed a stronger band at 1017-1031 cm-1 corresponding to sugar 

moieties of glycosylated proteins. In addition to this band, spectral regions between 870 and 890 

cm-1, 1711 and 1732 cm-1, and 1761 and 1780 cm-1 were instrumental to the generation of effective 

discrimination models. In summary, TR-FTIR spectroscopy could serve as a rapid, reagent-free 

method capability of on-site screening of saliva samples for Covid-19.  
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6.2. Introduction 

Following its initial detection at the end of 2019, the novel coronavirus SARS-CoV-2 

spread rapidly across the globe, causing the Covid-19 pandemic declared on March 11th 2020 by 

the World Health Organization (WHO). Infection with this highly contagious virus produced 

symptoms ranging from mild disease to severe pneumonia and multi-organ failure, eventually 

leading to death, especially in older patients and immunocompromised individuals, This viral 

outbreak is undoubtedly viewed as a global catastrophic event, posing a tremendous threat to 

healthcare and the world economy and surpassing malaria as the world’s most devastating 

infectious disease [2].  

Among all the measures taken to prevent the spread of Covid-19, rapid detection and 

widespread testing were crucial, particularly prior to large-scale vaccine delivery. Reverse 

transcriptase quantitative polymerase chain reaction (RT-qPCR) is considered the gold standard 

for Covid-19 diagnosis. However, this method is time consuming (up to 72 hours) and costly and 

requires special laboratory equipment and highly trained personnel to operate. Due to the high 

expense of RT-PCR and shortage of test kits, some countries were only able to provide testing for 

a limited number of individuals, forcing them to exclude infected patients with mild or no 

symptoms (both of whom can spread the contagion). Antigen detection tests are another alternative 

and are widely used for Covid-19 self-testing. Yet the current tests suffer from suboptimal 

sensitivity to rule out the disease and need to implement a clear guidance on correct interpretation 

for Covid-19 detection [3]. Serology tests, such as enzyme-linked immunosorbent assays (ELISA), 

identify antibodies in blood or saliva. Nonetheless, the antibody test may not detect acute infection 

in the first two weeks, when viral shedding and transmission is at the highest [4]. All that said, a 

rapid, efficient and cost-effective tool for the detection of Covid-19 along with clinically validated 

sensitivity and specificity is lacking. A possible candidate is Fourier transform infrared (FTIR) 

spectroscopy, which serves is a non-invasive, low-cost, reagent-free and rapid technique for the 

analysis of bio-fluids. To date, many studies have examined the reliability of FTIR spectroscopy 

for use in disease diagnostics, including but not limited to cancer, neurological disorders, 

respiratory disorders, gastrointestinal disorders, kidney and urinary tract disorders, gynecological 

disorders, hematological disorders, and dermatological disorders [5].  



193 

 

Nowadays, laboratory tests for Covid-19 diagnosis are performed mainly with the upper 

respiratory tract (nasopharyngeal swab) or lower respiratory specimens (saliva) [6]. The former 

may cause the patient to sneeze or cough increasing the risk of exposure of healthcare staff to the 

virus. Moreover, nasopharyngeal swab collection is uncomfortable for the patient, and bleeding 

may occur occasionally leading to further complications. On the other hand, saliva specimens have 

been reported to have similar or higher Covid-19 virus yield than nasopharyngeal samples with 

significant advantages [7]. Saliva specimen is stable for diagnostic purpose for 24 hours at room 

temperature and for a week at 4℃ without coagulation [8]. Additionally, saliva samples can be 

stored at -80℃ for months and remain useful for scientific investigation [9]. Saliva can also be 

easily self-collected by patients at home, without patient discomfort and minimizes viral exposure 

to healthcare staff. It can be considered as the best specimen for diagnosis for humans from an 

ethical point of view. Since it is non-painful and non-stressful, saliva collection can be used in 

large scale or epidemiological studies, allowing widespread testing. Mardani et al. showed that 

salivary biomarkers having the potential for Covid-19 diagnosis include angiotensin converting 

enzyme 2 (ACE2), antibodies (immunoglobulin A (IgA), IgG and IgM), alanine aminotransferase, 

C-reactive protein, neutrophil, lactate dehydrogenase, and serum urea [10].  

Due to the consideration mentioned above, this study focuses on the use of transflection-

FTIR (TR-FTIR) spectroscopy for Covid-19 diagnosis using heat-inactivated saliva samples. In 

contrast to many studies reported in the literature using raw saliva samples, we heated all saliva 

samples to inactivate the virus (if present) for safety consideration and ease of sample handling. 

Furthermore, the demographic features of our patients were studied and compared for prediction 

relevancy. The wavenumber regions associated with spectral differences between healthy and 

Covid-19 infected specimens, reflective of biomarkers, were identified by multivariate analysis. 

As effective diagnosis of viral infection from a spectrum that encompasses contributions from all 

biocomponents of saliva may be challenging, this paper will use k-nearest neighbor (KNN), 

support vector machine (SVM) and artificial neural network (ANN) algorithms to develop 

classification models allowing for Covid-19 screening from a limited number of regions in the 

spectra of the saliva specimen.  
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6.3. Materials and Methods 

6.3.1. Participants and saliva collection 

Between April 2021 and June 2021, a total of 940 patients aged 2-91 years (452 males, 486 

females, and 2 unknowns) were randomly selected at Hôpital de la Cité-de-la-Santé located in 

Laval, QC, Canada. Saliva samples were self-collected by patients under supervision of healthcare 

provider in labelled sterile tubes. For convenience, saliva samples were stored at 4 ℃  after 

collection until TR-FTIR spectral acquisition (0-3 days) took place. Taxonomic composition of 

saliva was shown to be stable within 9 days by a previous study [11]. Nasopharyngeal cotton swabs 

were also collected at the same time for RT-qPCR analysis in the laboratory of Hôpital de la Cité-

de-la-Santé. The RT-qPCR results from nasopharyngeal swab were used for assigning saliva 

samples as Covid-19 positive (PP) or Covid-19 negative (PN). For all participants, demographic 

data (age and gender) were collected and summarized in A.4. This study was examined and 

approved by the Ethics Committees from Hôpital de la Cité-de-la-Santé. 

6.3.2. Sample preparation and TR-FTIR measurements 

Collected saliva samples (1-mL) were transferred into 1.5 mL Eppendorf tubes, vortexed 

and incubated at 85℃ for 15 min to inactivate the Covid-19 virus [12]. Aliquots of 15-20 µl heat-

inactivated saliva sample were deposited onto low e-glass slides and allowed to dry. Each e-glass 

slide was designed to have 10 spots for sample deposition, and each specimen was deposited onto 

2 spots. The IR spectrum was measured once per spot, yielding two independent spectra per sample. 

A descriptive flow chart from saliva collection to spectral analysis is depicted in Figure 6.1. TR-

FTIR spectra were acquired using a NicoletTM Summit (Thermo Fisher Scientific Waltham, US) 

FTIR spectrometer. All spectra were recorded in the region between 600 cm-1 and 4000 cm-1 in 

transflection mode. For each FTIR spectrum, 32 scans were co-added, averaged with a spectra 

resolution of 8 cm-1 and ratioed against a background spectrum collected from a clean e-glass slide 

surface. 
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Figure 6.1. Methodology flow chart of saliva specimen analysis by TR-FTIR. 

 

6.3.3. Data pre-processing and Spectral analysis  

 Duplicate spectra were averaged for each sample, followed by baseline correction and 

normalization using an in-house written software and commercially available spectral analysis 

software OMNIC (Thermo Scientific™, USA). TR-FTIR spectra were separated into 3 sets: 

training set (60%), validation set (15%) and testing set (25%), and were exported from MATLAB 

(The MathWorks Inc., Natick, MA, US) as csv files using an in-house written algorithm, and 

imported directly into JMP Statistical Discovery software, version 16 to perform data analysis. 

Random forest algorithm is a decision-tree based approach that can analyze complex interactions 

and identify non-linearities of predictor effects. Random forest was applied to narrow down 

relevant wavenumber ranges out of the 3527 variables in the biological fingerprint region between  

844 and 1780 cm-1 and 2800-3020 cm-1 with ascending order of contribution in terms of separation 

between Covid-19 negative and Covid-19 positive samples. The spectral combination contributing 

the most efficient separation of classes was subsequently chosen, and principal component analysis 

(PCA) was used to reduce dimensionality of the wavenumber and serve as inputs for the prediction 

models. 

 Developed database with analyzed classification models comprising all processed saliva 

spectra was then split into two databases for further analysis. Demographic information of each of 
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the three databases was evaluated and compared, a student’s t-test and χ2 test was performed to 

determine any significant difference among them. Fourier self-deconvolution was carried out in 

OMNIC (Thermo Scientific™, USA) using a bandwidth of 24 cm-1 and a resolution-enhancement 

factor of 2.0 for visual analysis of models’ averaged spectra. Wavenumber range that was 

differentiating the models were being analyzed, and the original spectra are re-filtered accordingly 

to bring up ultimately a final database. 

6.3.4. Prediction models 

Three different classification models based on k-nearest neighbor (KNN), support vector 

machine (SVM) and artificial neural network (ANN) were developed using discrete spectral 

regions from the TR-FTIR spectra of saliva specimens. The three multivariate methods employed 

in this study have been widely reported in the literature for infrared spectral analysis [13-15]. Here, 

the three models, each developed using one of the above multivariate techniques were compared 

in terms of sensitivity and specificity for the discrimination between Covid-19-positive and 

negative samples by TR-FTIR spectroscopy. 

 KNN is a supervised machine learning classifier that predicts the correct class of test data 

(query point) by taking into account the distance between the test data and all the training points. 

The ‘K’ number of points which is closest to the test data is then selected using Euclidean distance 

metrics. Finally, the algorithm calculates the probability of the test data belonging to the ‘K’ 

training data class. The class with the highest probability will be selected as the prediction result 

of the test data [15]. KNN has been widely used in classification tasks for disease prediction due 

to its easiness to implement and interpret.  

 ANN is a self-training system and intelligently constructed to optimize the processing 

power of its own network. It works like the human nervous system, where each neuron receives a 

signal from neighboring neurons, later executes them to give the output signal. The number of 

neurons used may vary from ten to several thousands and are based on the training set. As more 

data is fed in, the algorithm gets smarter and more efficient at interpreting future inputs. One key 

aspect of ANN is that each neuron can be formulated to utilize a single algorithm that could be 

useful for certain datasets but poor to others [14]. And as weights are adjusted for each neuron, 

ANN learns by itself where to best analyze the data for having the highest confidence output and 
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continues to adjust neuron weights for more optimization of the network. Many studies showed 

that ANN models can be very useful for clinical data in terms of diagnosis [14]. 

SVM is a classification algorithm that aims to find hyperplanes that splits the class labels 

in the multidimensional space [13]. The best hyperplane that will be employed is the one that 

maximizes the margin among data points of different classes, that is, the hyperplane whose 

distance to the nearest data of each class is the largest. Test data is classified based on which side 

of the hyperplane it lies on. SVM uses complex kernel function to converts non-separable problems 

into separable problems when the data are non-linear by mapping the training data into higher-

dimensional feature space [15]. The kernel function can be linear, polynomial or radial, and in our 

context, radial basis function is used for SVM. 

6.3.5. Model performance evaluation  

Model performance evaluation is an important step to construct effective machine learning 

model. Performance measure metrics are derived from confusion matrix, which includes true 

positive (TP), false positive (FP), true negative (TN), and false negative (FN). 

In this study, six performance metrics are adopted to assess the performance of the 

proposed models: accuracy, precision, sensitivity, specificity, F1 score values, and Mathews’ 

Correlation Coefficient (MCC). 

Accuracy is a widely used metric which measures the proportion of correctly predicted 

cases (TP and TN) over the whole dataset predictions. For unbalanced data, this metric can be 

misleading. It is measured by the equation given in as followed: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 Precision is the percentage of correctly predicted Covid-19 positive instances out of the 

total predicted positive instances. That is, to find out what percentage the model is positive when 

it says it is positive. The equation of precision is given below: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 Sensitivity is the percentage of positive instances that are correctly identified as positive 

out of the total actual positive instances. The following equation illustrates the sensitivity: 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 Specificity is the proportion of predicted negative instances that was truly negative out of 

the total observed negatives. Mathematically represented as followed: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 F1-score is a single-value metric by computing the harmonic mean of sensitivity and 

precision as shown in the following equation. F1-score is highly influenced by the positive class. 

In imbalanced data, F1-score may be unreliable if equal attention is needed for both positive and 

negative class. The range of F1-score is between 0 and 1, where 1 refers to a model that perfectly 

predicts each data to the correct class and 0 refers to a model that is unable to classify any data to 

the correct class.  

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 Similar to F1-score, MCC is a single-value metric that summarizes the confusion matrix. 

However, as MCC accounts all four values from the confusion matrix, it is a more balanced 

assessment of classifiers, regardless which class is positive. MCC ranges between -1 and 1, where 

1 refers to the best agreement between actuals and predictions and 0 refers to the predictions that 

are randomly assigned. The equation of MCC is represented as followed: 

𝑀𝐶𝐶 =  
𝑇𝑁 ∗ 𝑇𝑃 − 𝐹𝑁 ∗ 𝐹𝑃

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
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6.4. Results and Discussion 

6.4.1. Development of Database 1, Database 2, and Database 3 

The first TR-FTIR spectral database is comprised of a spectrum from a total of 940 

individuals, in which 452 males (48.09%) and 486 females (51.7%) with an average age of 29.4 

± 18.5 years old. In the male group, 247 (54.6%) are healthy (PN) and 205 (45.4%) are Covid 19-

positive (PP); in the female group, there were 275 (56.6%) PN and 211 (43.4%) PP. Through 

analysis by random forest and PCA, Database 1 was subsequently separated into 2 models to 

optimize prediction results: Database 2 and Database 3, each comprising 270 and 670 spectra, 

respectively of the original set. 

Database 2 was integrated with 124 males (45.9%) and 146 females (54.1%) and had 

averaged age of 30.2 ± 18.0. On the other hand, average age of Database 3 is 28.9 ± 18.7 and 

comprised 328 males (49.0%) and 340 females (50.8%). Detailed demographic information on the 

study population of the 3 models is presented in Table 6.1. 

Table 6.1. Patient characteristics. 

Group Gender 

Age (Mean) 

years 

Total patients 

by age groups PCR result 

Database 1 

(n=940) 

  

Age range 

(years) 

Positive 

(n=418) 

Negative 

(n=522) 

Female 

(n=486) 

30.51 ± 17.76 

0-30 (n=232) 84 148 

31-60 (n=230) 109 121 

61-99 (n=24) 18 6 

 Total 211 275 

Male (n=452) 

28.14 ± 19.2 

0-30 (n=247) 86 161 

31-60 (n=181) 102 79 

61-99 (n=24) 17 7 

  Total 205 247 

Database 2 

(n=270) 

    

Age range 

(years) 

Positive 

(n=125) 

Negative 

(n=145) 

Female 

(n=146) 

31.54 ± 17.25 

0-30 (n=68) 32 36 

31-60 (n=71) 33 38 

61-99 (n=7) 3 4 

 Total 68 78 

Male (n=124) 

28.67 ± 18.79 

0-30 (n=66) 35 31 

31-60 (n=53) 21 32 

61-99 (n=5) 1 4 

  Total 57 67 
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Database 3 

(n=670) 

    

Age range 

(years) 

Positive 

(n=293) 

Negative 

(n=377) 

Female 

(n=340) 

30.07 ± 17.98 

0-30 (n=164) 52 112 

31-60 (n=78) 76 83 

61-99 (n=15) 15 2 

 Total 143 197 

Male (n=328) 

27.94 ± 19.38 

0-30 (n=181) 51 130 

31-60 (n=128) 81 47 

61-99 (n=19) 16 3 

  Total 148 180 

 

 Gender and age group distributions of the 3 databases are graphically presented in Figure 

6.2, with PN represented as plain color, and PP with shaded color. 
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Figure 6.2. Gender and age groups statistics of patients. 

 

6.4.1.1. Prediction results and Evaluation of Database 1, Database 2, and Database 3 

Duplicate TR-FTIR spectra were averaged, baseline corrected, and area normalized as 

these pre-processing procedures delivers the best results for the classification models. Through 

random forest, wavenumbers with the highest contribution for the separation of PP and PN were 

selected for subsequent PCA, and the calculated principal components (PCs) were used  as input 

for the development of  classification models. Spectra were separated randomly into training (60%), 

validation (15%), and test (25%) set, stratified for PP and PN in each set. Similarly, training and 
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validation, test sets were used for optimisation and testing of the classification models respectively. 

A summary of the results is shown in Table 6.2. The classification model generated by SVM 

analysis of spectra from database 1 (comprising 940 averaged spectra from all the samples) had an 

average accuracy of 70%. Taking F1-score and MCC alone, their values are <0.7 and <0.5, 

respectively, suggesting that the algorithms are unreliable for COVID-19 screening.  Other studies 

have demonstrated the capacity of FTIR spectroscopy to achieve sensitivity and specificity above 

80% for Covid-19 diagnosis using saliva [16-18]. To improve on the performance of 

discrimination models, the original database (database 1) was split into two databases (database 2 

and database 3) according to prediction error. Identical spectral analysis protocols were carried out 

for two additional spectra in Database 2 and 3. Prediction results and performance metrics for all 

3 classification models were significantly improved (p=0.0001). All confusion matrices of 

Database 1, Database 2 and Database 3 can be found in the appendix section A.5. A summary of 

all the classification models of generated from the analysis of the spectra in the three spectral 

databases are disclosed in Table 6.2. 

 

Table 6.2.. Prediction scores of Database 1, Database 2, and Database 3. 

  Sample1 
 Quality parameters (%)2 

  Set Pos Neg Algorithm Acc Prec Sens Spec F1 MCC 

Database 1 

Training (n=630) 278 352 

KNN 59.84 55.41 46 70.7 0.5027 0.1729 

ANN 69.84 66.3 64.4 74.1 0.6533 0.3867 

SVM 70.48 69.91 56.8 80.7 0.6268 0.3884 

Validation (n=207) 94 113 

KNN 68.12 66.67 59.6 75.2 0.6294 0.3528 

ANN 68.6 67.06 60.6 75.2 0.6367 0.3629 

SVM 66.67 69.01 52.1 80.5 0.5938 0.3425 

Test (n=103) 46 57 

KNN 61.17 56.25 58.7 63.2 0.5745 0.2178 

ANN 73.79 72.09 67.4 78.9 0.6967 0.4671 

SVM 76.7 73.81 67.4 80.7 0.7046 0.4865 

Database 2 

Training (n=180) 83 97 

KNN 96.67 95.29 97.6 95.9 0.9643 0.9333 

ANN 100 100 100 100 1 1 

SVM 98.89 98.81 100 99 0.994 0.9889 

Validation (n=59) 27 32 

KNN 100 100 100 100 1 1 

ANN 100 100 100 100 1 1 

SVM 98.31 96.3 96.3 96.9 0.963 0.9317 

Test (n=31) 15 16 

KNN 93.55 93.33 93.3 93.8 0.9332 0.8708 

ANN 93.55 100 86.7 100 0.9288 0.8771 
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SVM 93.55 100 86.7 100 0.9288 0.8777 

Database 3 

Training (n=448) 197 251 

KNN 88.62 90.56 82.7 93.2 0.8645 0.7691 

ANN 95.09 93.97 94.9 95.2 0.9443 0.9005 

SVM 95.98 95.45 95.9 96.4 0.9568 0.923 

Validation (n=148) 64 84 

KNN 89.19 87.5 87.5 90.5 0.875 0.7798 

ANN 91.89 89.39 92.2 91.7 0.9078 0.8357 

SVM 89.19 84.06 90.6 86.9 0.8721 0.7699 

Test (n=74) 32 42 

KNN 87.84 81.08 93.8 83.3 0.8698 0.7638 

ANN 91.89 88.23 93.8 90.5 0.9093 0.8373 

SVM 89.19 85.29 90.6 88.1 0.8787 0.7826 
1Pos = Covid-19 positive; Neg = Covid-19 negative. 
2Acc = Accuracy; Prec = Precision; Sens = Sensitivity; Spec = Specificity; F1 = F1-score; MCC = Mathew’s 

Correlation Coefficient. 

6.4.1.2. Spectral Analysis of Database 2 and Database 3 

 Accuracy, precision, sensitivity and specificity were up to 100% and 96.4% for Database 

2 and 3, respectively. F1-score and MCC value also increased to >0.85 and >0.75, respectively. 

The high scores indicate information lies within the FTIR spectra that differentiates between PP 

and PN. However, an important factor is misleading in the classification models, causing high 

misidentification rate once Database 2 and 3 are combined together into Database 1. Furthermore, 

this unknown factor overrules the difference between PP and PN in the spectra. No statistical 

difference (student’s t-test, two-tailed equal variance, α<0.05) is observed between Database 2 and 

3 in terms of age (p = 0.3699). Through χ2 test (α<0.05), there were no sufficient statistical 

evidence to reject the null hypothesis, suggesting that gender (p = 0.4455) and PCR result (p = 

0.3781) distribution were not dissimilar between the two Databases either. To resolve overlapped 

bands and improve information content of FTIR spectra, Fourier self-deconvolution was thus 

performed (bandwidth of 24 cm-1, resolution-enhancement factor of 2.0) over the averaged raw PP 

and PN spectra of Database 2 and 3, as shown in Figure 6.3. 
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Figure 6.3. Mean PP and PN TR-FTIR spectra of Database 2 and Database 3. 

 

 An inverse band intensity of PP and PN at wavenumber region 1020-1070 cm-1 between 

the averaged spectra of Database 2 and Database 3 was observed (Figure 6.3). Briefly, averaged 

PP of Database 2 and averaged PN of Database 3 had an apparent peak at 1031 cm-1, whereas their 

counterpart does not. This spectral region is associated to carbohydrates, and can be assigned to 

sugar moieties of glycosylated proteins in saliva [19]. High band absorbance at this region could 

be attributed to higher mucin content (a glycogen that serves as the main component of mucus) in 

some saliva samples [20]. It is not surprising to have sticky or thick saliva with high mucus level 

in some of the collected saliva samples. As a matter of fact, the spectral region of 1019-1027 cm-

1 was used in the classification models to predict PP and PN in Database 1. And since some PP 

spectra and some PN spectra had inverted peaks over region 1020-1070 cm-1, it is likely to have 

resulted in the low performance of the classification models from Database 1, as shown in Table 

6.2. This could also explain the high prediction score when the spectra were split into two sets 

(Database 2 and Database 3).  
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6.4.2. Development of Database X 

Re-filtration of the spectra was conducted based on the peak 1031 cm-1. All averaged raw 

spectra were compiled into our in-house built software and baseline corrected. Peak height range 

of 1020-1070 cm-1 of all spectra is analyzed, and then ranked in ascending order. Spectra with the 

highest rank (peak absorbance abnormally high at 1020-1070 cm-1) are being removed. Spectra 

with absorbance above 0.4 at peak 1031 cm-1 were considered as outliers. A final Database X was 

obtained with 828 spectra, in which 112 outlier spectra were removed. 

 The final Database X was integrated with 400 males (48.31%) and 426 females (51.45%) 

and had averaged age of 29.92 ± 18.39. In the male group, there were 214 (53.5%) PN and 186 

(46.5%) PP, and 248 (58.2%) PN and 178 (41.8%) PP in the female group. Differently, the average 

age of outlier groups is 25.3 ± 18.8 and comprised 52 males (46.4%) and 60 females (53.6%). On 

the other hand, average age of Database 3 is 29.0 ± 18.7 and comprised 328 males (49.0%) and 

340 females (50.8%). Detailed demographic information on the study population of Database X 

and outliers are shown in Table 6.3. 

Table 6.3. Patient characteristics of Database X and Outliers. 

Group Gender 

Age (Mean) 

years 

Total patients by age 

groups PCR result 

Database X 

(n=828) 

  Age range (years) 

Positive 

(n=366) 

Negative 

(n=462) 

Female 

(n=426) 

31.00 ± 17.89 

0-30 (n=198) 68 130 

31-60 (n=206) 94 112 

61-99 (n=22) 16 6 

 Total 178 248 

Male 

(n=400) 

28.77 ± 18.87 

0-30 (n=211) 77 134 

31-60 (n=169) 94 75 

61-99 (n=20) 15 5 

  Total 186 214 

Outliers (n=112) 

    Age range (years) 

Positive 

(n=52) 

Negative 

(n=60) 

Female 

(n=60) 

27.03 ± 16.54 

0-30 (n=68) 16 18 

31-60 (n=71) 15 9 

61-99 (n=7) 2 0 

 Total 33 27 

Male (n=52) 

23.31 ± 21.15 

0-30 (n=66) 9 27 

31-60 (n=53) 8 4 

61-99 (n=5) 2 2 

  Total 18 33 
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Gender and age group distributions of the final Database X and outliers are graphically 

presented in Figure 6.4, with PN represented as plain color, and PP with shaded color. 

  
Figure 6.4. Gender and age groups statistics of Database X and Outliers. 

 

6.4.2.1. Spectral Analysis of Database X 

The application of χ2 test (α<0.05) showed that the gender (p = 0.6913) and PCR (p = 

0.6374) between Database X and outlier group were not significantly different from each other. 

However, according to student’s t-test, outlier group had significantly (p = 0.0131) younger age 

group distribution compared to Database X. As shown in previous studies, age-related changes in 

saliva composition are inevitable. For example, alpha-amylase was shown to have lower levels in 

the elderly [21]. However, other suggested no significant difference, or even decrease of this 

protein [22]. Different conclusion from literature could be due to different collection methods, as 

saliva is known to be simulated with stress. Within this context, higher α-amylase content may be 

observed in mostly younger population as no instruction was given prior saliva collection. Hence 

the youngster may have consumed confectionary increasing protein and carbohydrate content in 
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saliva. Mucin is another component worth mentioning. This protein decreases significantly with 

age, and this component may highly influence FTIR spectra [23, 24]. The higher content of 

proteins in outlier group, which comprises the younger group, can be visualized in TR-FTIR 

spectra in wavenumber region 1020-1130 cm-1 (Figure 6.5).  

Fourier self-deconvolution was performed on the mean PP and PN spectra of Database X 

and outliers to investigate the possible protein content differences. As shown in Figure 6.5, the 

inverted peak shift observed in Figure 6.3 over wavenumber region 1020-1070 cm-1 was now 

untangled. Both averaged PN spectra of Database X and outlier group had a higher absorption 

intensity compared the PP spectra at peak located at ~1031 cm-1. It is noteworthy that the outlier 

group had greater absorption at the entire 1020-1130 cm-1 region than Database X, regardless of 

PP and PN. This region encompasses carbohydrates, which include mucin, α-amylase, collagen 

and glycogen. The three dominant bands over region 1020-1130 cm-1 were 1031 cm-1 (sugar 

moieties of glycosylated proteins), 1075 cm-1 (DNA, RNA, phospholipids, and phosphorylated 

proteins), and 1130 cm-1 (carbohydrates, RNA, and phospholipids) [25, 26]. Furthermore, saliva 

samples were heated at 85℃ for 15 min before measurements for viral inactivation, and this 

procedure may contribute to spectral differences due to conformational changes of proteins. 

Nevertheless, the fact that PP and PN spectra in both Database X and outlier group can be visually 

discriminated indicates that FTIR spectroscopy is robust enough to overcome the minor saliva 

spectral differences induced by heat. 
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Figure 6.5. Mean PP and PN FTIR spectra of Database X and Outliers. 

 

6.4.2.2. Prediction results and Evaluation of Database X  

Classification models were developed and evaluated by dividing spectra into training 

(60%), validation (15%), and test set (25%). Same as previously done, the test set was not involved 

during model development. In brief, random forest was performed on averaged, baseline corrected, 

and area normalized spectra to detect wavenumbers that contributes the most for the separation of 

PP and PN in ascending order. PCA was then carried out to determine the corresponding PCs for 

model prediction evaluation. Similarly, the training and validation, test sets were used for all three 

classification models. Confusion matrices of Database X are shown In A.5. Prediction scores for 

Database X, comprising 828 spectra are shown in Table 6.4. 

 After removing outliers spectra with abnormal peaks within the wavenumber region 1020-

1070 cm-1, the test set accuracy was boosted to 84.8%, 84.8%, and 85.9% for KNN, ANN, and 

SVM respectively. Although SVM had the highest accuracy (85.9%), it had the lowest precision 

(79.6%), meaning that it had the lowest predicts of correct PP. In terms of ANN, it had comparable 

accuracy with KNN (84.8%), and had the highest precision (82.9%) and specificity (86.3%). 

However, its sensitivity (82.9%) is also the lowest compared to the other two algorithms. In the 
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Covid-19 context, higher chances of false-negative are more dangerous than high false-positives. 

Hence, FTIR spectra analysis by ANN may be more reliable in screening out PN rather than PP. 

On the other hand, KNN had comparable accuracy (84.8%) with ANN, moderate precision 

(81.4%), high sensitivity (85.4%) and moderate specificity (84.3%). Hence, KNN provides an 

overall better performance than the other two algorithms. Additionally, although all three models 

generated satisfactory F1-score (>0.8) and MCC value (>0.6), KNN also had the highest overall 

model performance parameters. Nonetheless, with larger dataset, ANN and SVM may outperform 

KNN due to their higher computational efficiency [27]. Still, it is always preferred to examine data 

with all three algorithms and to choose the one that has the most outstanding results. Most studies 

on Covid-19 diagnosis by saliva using FTIR spectroscopy were employed attenuated total 

reflectance (ATR) sampling method instead of transflection. Despite the fact that the sample size 

was limited (<240), they were all able to achieve high sensitivity (up to 95%) and high specificity 

(up to 89%) using discriminant analysis (linear discriminant analysis and partial least square 

discriminant analysis) [17, 18, 28]. It is worth mentioning that their methodologies are distinct 

from each other, especially the collection and treatment of saliva. Barauna et al. were using cotton 

swab of saliva and applying directly to the ATR crystal, while Nascimento et al. air-dried the raw 

saliva on aluminum foil and prior to spectral acquisition [17, 18]. Kazmer et al. inactivated the raw 

saliva as well with 70% ethanol [28]. One study used transflection-FTIR spectroscopy for Covid-

19 screening and was able to achieve sensitivity of 93% and specificity of 82% [16]. However, 

their sample size was relatively small (n = 57). 

Table 6.4. Prediction scores of Database X. 

  Sample1 
 Quality parameters (%)2 

  Set Pos Neg Algorithm Acc Prec Sens Spec F1 MCC 

Database X 

Training (n=553) 244 309 

KNN 80.83 77.82 79.1 82.2 0.785 0.612 

ANN 84.99 83.13 82.8 86.7 0.83 0.6955 

SVM 86.26 83.27 85.7 86.4 0.845 0.7187 

Validation (n=183) 81 102 

KNN 80.87 79.49 76.5 84.3 0.78 0.6112 

ANN 87.43 86.25 85.2 89.2 0.857 0.745 

SVM 81.97 81.82 77.8 86.3 0.798 0.6444 

Test (n=92) 41 51 

KNN 84.78 81.4 85.4 84.3 0.834 0.6941 

ANN 84.78 82.93 82.9 86.3 0.829 0.692 

SVM 85.87 79.55 85.4 82.4 0.824 0.6738 
1Pos = Covid-19 positive; Neg = Covid-19 negative. 



210 

 

2Acc = Accuracy; Prec = Precision; Sens = Sensitivity; Spec = Specificity; F1 = F1-score; MCC = Mathew’s 

Correlation Coefficient. 

6.4.3. Spectral analysis of Databases 

 PP and PN differentiating bands determined by random forest of all four Databases are 

illustrated in Figure 6.6, with wavenumbers with highest contribution marked with a red star. In 

short, there were 84 wavenumbers, 86 wavenumbers, 46 wavenumbers, and 113 wavenumbers 

selected for Database 1, Database 2, Database 3, and Database X, respectively. In general, the 

discriminative wavenumbers lie within the region 800-1100 cm-1, and 1500-1800 cm-1. The former 

region can be associated with symmetric vibrations of –PO2− in phospholipid (~1080 cm−1), 

nucleic acid for the vibrations of the sugar-phosphate backbone (780-1000 cm−1), and 

carbohydrates in glycosylated proteins with the stretching vibrations of the C-O/C-O-C groups 

(800-1200 cm−1) [29]. The amide I band at 1600-1700 cm−1, and amide II band at 1500-1600 cm−1, 

nucleic acid (1550-1780 cm−1) assigned to in-plane vibrations of double bonds of the bases, and 

lipids at 1725-1745 cm−1 symmetric stretching vibration of the ester carbonyl bond [29] also 

contribute to the development of the calibration models. Tentative band assignments of 

differentiating wavenumbers for all four Databases are listed in Table 6.5. Overall, PP and PN 

discriminating regions were mainly associated with the 844-890 cm−1, 1015-1031 cm−1, 1503-1570 

cm−1, 1620-1660 cm−1, 1711-1735 cm−1, 1752-1780 cm−1, 2030-2033 cm−1 spectral regions. Bands 

with highest contribution (red star in Figure 6.6) were ~860 cm−1 (nucleic acid), ~1030 cm−1 

(glycosylated proteins), ~1650 cm−1 (amide I), ~1725 cm−1 (lipids), and ~1775 cm−1 (lipids). 
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Figure 6.6. Figurative representation of wavenumbers contributing to PP and PN 

discrimination of all four Databases. 
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Table 6.5. Band assignment for Databases. 

Band 

Vibrational 

mode 

Suggested biomolecule of saliva 

assignment Reference 

Database 1 Database 2 Database 3 Database X       

844 - - - 
O-C-O 

bending, 

aromatics 

CO2 [30] 850-856* 850 850-852 850-853 

861 - 866-892* 865 

871-900 871 - 870-890* 

O-C-O 

bending, C-C, 

C-O, aromatics 

CO2, deoxyribose [31, 32] 

- 882-885 - - O-C-O bending CO2 [30] 

1019-1027 1021-1032* 1015-1037* 1017-1031* 

CH2OH groups, 

C-O stretching 

and C-OH 
groups 

bending; 

symmetric PO2- 

stretching 

Sugar moieties of glycosylated 

proteins (glycogen, alpha-amylase, 
collagen), nucleic acids (DNA & 

RNA), oligosaccharides, 

polysaccharides (glucose) 

[19, 31-34] 

1503 - - - C-H bending  Phenyl ring [35] 

1510 - - - CH2 bending Lipid, protein (Tyrosine) [35] 

1539-1561 1549 1547-1571 1553 N-H bending 
coupled to C-N 

stretching 

Amide II (beta sheet) [19, 35]  
- 1559-1585 - 1559-1570 

- - 1620 - C=O stretching, 

C-N stretching, 

N-H bending 

Amide I (parallel beta sheet) (peptide, 

protein) 
 [33, 35] 

1636 - - - 

1644-1660* 1646 1644-1652 1651-1653 

C=O stretching, 

C-N stretching, 

N-H bending 

Amide I (alpha-helices, anti-parallel 

beta sheets) (peptide, protein) 
[19, 35] 

1712-1731* 1712 - 1711-1732* 

C=O stretching 
Lipids (triacylglycerol, cholesterol 

esters, glycerophospholipids) 
[35] 

- 1723-1735* - - 

- 1752-1758 1756-1780* - 

1760 - - 1761-1780* 

1778-1779 - - - 

- - - 2030-2033 
Thiocyanate 

(SCN-) anions 

Product of detoxication of CN- 

acquired with food 
[33] 

*Bands with a star (*) are the highest-ranking wavenumbers that contributes to the differentiation between PP and PN. 

Changes in a diverse absorption bands reflecting changes in the biochemical composition 

of the saliva matrix associated with lipids, proteins, carbohydrates, and nucleic acids were 

identified through the use of region selection algorithm allowing for  the effective differentiation 

between PP and PN (Table 6.5). The wavenumber ranges are shown in the overlapped spectra of 

PP and PN in the spectral region between 2150 and 750 cm-1 (Figure 6.7). PN showed higher 

absorption at 1031 cm-1 peak compared to PP. This could be associated to the higher α-amylase 

level in saliva of PN than PP [36]. Other studies did not observe pronounced differences in the 

1031 cm-1 band between PP and PN samples [37]. The contradictory results may be due to different 

saliva collection procedures, for example,  Martinez-Cuazitl et al., asked patients to fast at least 8h 
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prior saliva collection [37]. Furthermore, the heating process of saliva may alter the protein 

structure and cause irreversible conformational changes. Other discriminating bands were 850-853 

cm-1, 865 cm-1, and 870-890 cm-1, which could be associated with the stretching vibration C–C of 

DNA backbone and the vibration of ribose ring increased in PP due to the presence of the virus. 

An increase in band intensity of PP in these regions, were also reported by Kazmer et al. [28]. 

Another absorbance differences between PP and PN occurs in the spectral region between 1711 

and 1732 cm-1 and 1761-1780 cm-1, corresponding to lipids components. Song et al. also showed 

increase in lysophospholipids and sphingolipids with Covid-19 [38]. The protein amide I (1651-

1653 cm-1) and amide II (1553 cm-1 and 1559-1570 cm-1) bands show minor differences (Figure 

6.7). These wavenumber ranges were reported to be useful for the differentiation between PP and 

PN in other studies [17, 28]. The narrow band at 2030-2033 cm-1 corresponds to thiocyanate (SCN–) 

anions [33] and is not usually present in biological samples other than saliva. Nevertheless, the 

minor variation in the band intensity in the 2030-2033 cm-1 region did not play a significant role 

in the PP/PN discrimination.   

The immunoglobulin (Ig) spectral regions were assessed as well. It is known that saliva 

contains IgA, IgG, and IgG, with IgA and IgG being the principal antibody classes present [39]. 

As shown in Figure 6.7, PP group had higher absorption in IgA region (1187-1200 cm-1 and 1237-

1285 cm-1) [40]. We noticed that the absorption increase in IgA region correlates well with Covid-

19 diagnosis, as reported in another study [37]. Nonetheless, the spectral changes in the region 

between 1464 and 1560 cm-1 attributed to IgG and the spectral region between 1028-1160 cm-1 

and 1289-1420 cm-1 attributed to IgM did not show a higher absorption in PP samples Figure 6.7. 
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Figure 6.7. Mean raw spectra of PP and PN of Database X.  

 

To the best of our knowledge, no previous study has investigated the use of heat-inactivated 

saliva for Covid-19 diagnosis by TR-FTIR spectroscopy. This study provided the possibility of 

using TR-FTIR spectroscopy as a fast and effective screening method for Covid-19 using different 

machine learning algorithms and showed both high sensitivity (85.4%) and specificity (86.3%). 

This technique also provided good accuracy (85.87%) and precision (82.93%). An important 

advantage of heat inactivation is related to the safety procedure of the technique. The overall F1-

score (0.834) and MCC (0.6941) values suggest that KNN, ANN and SVM could be reliable 

classification models for TR-FTIR spectra analysis for use in Covid-19 diagnosis. Although most 

studies used nasopharyngeal swabs and blood plasma samples for FTIR spectroscopic analysis of 

Covid-19, self-collected saliva is the least invasive biofluid collection. In this study, we 

demonstrated that saliva samples could achieve comparable prediction results with nasopharyngeal 

(87% sensitivity and 66% specificity [41]; 97% sensitivity and 98.3% specificity [42]) and plasma 

samples (83.1% sensitivity and 98% specificity [43]; 94.1% sensitivity and 69.2% specificity [44]). 

Furthermore, saliva collection precludes the use of viral transport medium (VTM), which has 

shown to have spectral bands at 1578 cm-1, 1408 cm-1 and 1078 cm-1 and may affect the spectral 
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quality [16]. The use of transflection instead of ATR-based FTIR spectral acquisition also provides 

several advantages. In transflectance, the sample is deposited on a reflective substrate and some of 

the IR beam passes through the surface layer, reflecting off the top layer of the substrate, and then 

passes through the sample a second time, doubling the pathlength. Therefore, transflection 

sampling mode results in greater absorbance and less noise compared to ATR. Another advantage 

is the ability to dry batch samples instead of depositing the sample one by one as in ATR. The use 

of e-glass slides with dried saliva spots can be stored for future re-analysis if needed. In addition, 

our team is developing an automated accessory for TR-FTIR spectrometers, that can acquire 

spectra automatically, allowing on-site testing and mass screening. This spectroscopic method for 

Covid-19 diagnosis could not replace the RT-qPCR, yet it could serve as a preliminary screening 

method to minimize the RT-qPCR reagents, which were in limited supply during the height of the 

pandemic. 

6.4.4. Limitation and Future perspective 

One limitation of our study is that saliva samples were all obtained from one hospital center, 

limiting the external validity of the prediction results. Another limitation is the unregulated saliva 

collection procedure. As no direction was previously given to patients, heterogenous content of 

saliva collected from different patients may greatly influence the spectra quality, hence the high 

number of outliers in this study. A further consideration would be to determine a specific cut-off 

absorbance at 1020-1070 cm-1 for outlier removal. Mucus may have played an important role. It 

has been shown that mucins, the major protein component of mucus, cause peaks at 1040 cm-1 due 

to C-O stretching [30]. A study simply skipped the peak associated with mucin for lung cancer 

diagnosis using FTIR spectroscopy [30]. Some saliva samples may contain more sputum than 

others, leading the heterogeneity in FTIR spectra relatable to mucus content in wavenumber range 

1020-1070 cm-1. Standardizing saliva collection procedure may dramatically decrease or eliminate 

the abnormal peak difference at this region. 

Notwithstanding the limitations mentioned above, TR-FTIR spectroscopy coupled with the 

use of KNN, ANN, and SVM algorithms can provide a rapid, low-cost reagent free approach for 

COVID-19 screening. Up to now, no standard saliva collection method has been established, 

making FTIR spectroscopy studies with a similar objective complicate to compare. A standard 

protocol for saliva collection would be optimal to find out the best FTIR sampling method along 
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with multiple machine learning algorithms for the diagnosis of Covid-19. Besides, the greater the 

sample size is always better for developing a spectral database to encompass as much diversity as 

possible. In our study, elderly group were significantly smaller than youngster group. In the future, 

we may consider collecting more saliva samples from the elderly to alleviate this difference. Future 

studies could also consider developing models using FTIR spectroscopy for Covid-19 severeness 

and fatality prediction using different saliva and sputum components to delineate their contribution 

to the FTIR spectra. 
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6.5. Conclusion 

 In this study, we demonstrated the high efficiency (85.9% accuracy, 82.9% precision, 85.4% 

sensitivity, and 86.3% specificity) of TR-FTIR spectroscopy for the prediction of Covid-19 by 

KNN, ANN and SVM algorithms using self-collected saliva samples. Biomarker bands were also 

determined and investigated on raw spectra despite that saliva protein profile was disturbed by 

heat inactivation. Furthermore, heat inactivation of saliva prior TR-FTIR spectroscopic analysis 

help avoids any infection of the healthcare personnel performing the diagnosis. The use of saliva 

for Covid-19 detection also makes the biofluid sample collection easier for health workers. The 

possibility of automation for TR-FTIR spectroscopy enables workers with only basic skills to 

conduct the test, which could carry out for rapid on-site screening in public venues or airports. 

This cost-effective method would be likewise extremely cost-effective to implement in developing 

countries, as it does not require any reagents or sample preparation. 
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Chapter 7. General Discussion and Conclusion 

 Rapid and accurate identification of microorganisms is an utmost concern in microbiology 

and clinical laboratories. Conventional microbial identification relies mainly on traditional 

biochemical and serological methods. These methods have been used for over a century and are 

well established; however, interpretation of the results can be time consuming, subjective and may 

not always allow for identification of the microorganism at the species and strain levels. In clinical 

microbiology laboratories dealing with large numbers of samples, MALDI-TOF MS has been 

widely adopted in the past decade owing to its ability to identify microorganisms at species level 

in a rapid manner. However, closely related bacterial species may be misidentified, and 

subspecies-level discriminatory capability is generally lacking. For strain-specific or 

epidemiological analysis, molecular methods based on DNA or RNA fingerprints such as PCR or 

WGS are usually the first choice. Due to their high accuracy, these methods are considered the 

‘gold standard’. Nonetheless, many small regional microbiology laboratories do not use 

genotypically-based identification techniques, as they cannot afford the high cost of analysis. 

Moreover, by comparison with traditional methods of microbial identification, these methods are 

more technically challenging to perform and require more expensive equipment and supplies. 

Genotypic methods are also the gold standard for the detection of viral pathogens and provide 

much greater sensitivity than rapid immunoassay tests, thereby substantially reducing instances of 

false-negative results. In this regard, RT-qPCR is the gold standard for detection of SARS-CoV-

2, the novel coronavirus causing Covid-19, and serves as the reference method against which all 

other methods are compared (or trained, as was the case in the development of the FTIR 

spectroscopic method in Chapter 6 of this thesis). 

 In the current context of available microbial identification methods, FTIR spectroscopy has 

been successfully applied for the identification and classification of microorganisms in numerous 

proof-of-concept studies by researchers worldwide. However, given the lack of public or 

commercial infrared spectral databases for this application of FTIR spectroscopy, its 

implementation requires that laboratories develop their own databases and is accordingly still 

largely restricted to research laboratories. This status is due, at least in part, to its perceived 

impracticality for routine use stem from the large number of methodological factors that would be 

subject to interlaboratory variability and could potentially affect the accuracy of the results. By 
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addressing this issue to a certain extent, the research work undertaken in this thesis aims to 

contribute toward eventual inclusion of FTIR spectroscopy among the currently accepted 

techniques, including sampling techniques, common cultivation medium used, and different 

manufacturers, briefly considered above. Also, with this aim in mind, this thesis focuses on ATR-

FTIR and TR-FTIR spectroscopy (rather than the transmission FTIR-based approach employed in 

a majority of the research publications in this field) because of their respective practical advantages 

of ease of sample preparation and amenability to automation. 

 The focus of the work reported in Chapter 3 was the evaluation of identification accuracy 

impact due to differences in sampling techniques and cultivation medium by constructing a 

dedicated spectral database of bovine mastitis-related Gram-positive cocci. Infrared spectral 

features (serving as biomarker equivalents) were identified using spectral search algorithms and 

used as input for developing robust classification models for discrimination among the bacterial 

genera and species represented in the spectral database by FTIR spectroscopy. Bacteria were 

grown on TSA and CBA and their ATR-FTIR and TR-FTIR spectra acquired. Preliminary results 

revealed three mislabelled S. aureus strains that were actually CoNS, showing the strong 

differentiating competency of FTIR spectroscopy. The prediction results demonstrated that both 

ATR-FTIR and TR-FTIR are promising candidates for identification at bovine mastitis pathogens 

at both the genus and the species level. Identification of important CoNS species and S. aureus by 

FTIR spectroscopy yielded high rates of correct identification. Overall, growth of bacteria on CBA 

coupled with TR-FTIR yielded the highest identification accuracy at species level but performed 

less well than the combination of growth on TSA and ATR-FTIR for identification at genus level. 

This may be due to the longer effective pathlength of TR-FTIR across the full spectral range, as 

opposed to the increasingly short effective pathlength with increasing wavenumber in ATR-FTIR 

spectral acquisition. As a consequence, TR-FTIR spectra tend to have a generally higher 

absorbance and contain more biochemical information than ATR-FTIR spectra, making them very 

useful for species level identification. However, the extensive biochemical information that TR 

spectra encompass appears to have detrimental effects on the stepwise identification process for 

genus and S. aureus vs CoNS identification. While the amenability of TR-FTIR to automation and 

the possibility of archiving samples on the low-e glass slides used to acquire TR-FTIR spectra are 

advantageous for high sample throughputs, ATR-FTIR is simpler and faster as it does not require 

sample deposition or drying. This chapter also combined databases built using different culture 
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media. Since the sample preparation method, including the growth medium employed, could 

greatly affect bacteria growth and FTIR spectral profile, the spectrum of a bacterial strain may 

differ when using different sample preparation methodologies and grown on different media, 

which may affect its identification by FTIR spectroscopy. However, with a large enough spectral 

database comprising spectra of microbial strains grown on common culture media, accurate 

identification of Staphylococcus spp. and Streptococcus spp. will be achieved with either choice 

of agar medium. In general terms, it is always recommended to use the same growth medium as 

employed in developing the database for accurate identification, but identifying unknowns at genus 

level against a database containing the spectra of bacteria grown on different media may be a 

possible option if the end users of the methodology for which the database is designed are likely 

to resist changing their standard protocols to comply with an arbitrary growth protocol in order to 

adopt FTIR spectroscopy for routine microbial identification. 

 Many commercial FTIR instruments are available on the market, manufactured by different 

companies. Due to the availability and price, not all laboratories may have purchased the same 

brand. This raises the question of how well FTIR spectroscopy will perform on bacteria 

identification if unknowns were recorded by one instrument, while the database was created on 

another. For this reason, Chapter 4 evaluated two common FTIR instruments for the identification 

of common foodborne pathogens. Spectral features for identification of foodborne pathogens were 

selected to create a database on a specific FTIR instrument. HCA of FTIR spectra reflected the 

heterogeneity of species, which was concordant with the genomics. Then, two test sets were 

obtained, one test set from the same FTIR instrument as used for database creation, and one test 

set from a different instrument. Overall, FTIR spectroscopy maintained its efficacy in the 

identification of pathogenic foodborne bacteria at the genus level no matter the instrument used. 

Yet the change in FTIR instruments may make the species prediction results doubtful. Based on 

these preliminary findings with two instruments from different manufacturers, laboratories using 

different FTIR instruments would be able to share a common database if only genus level 

identification is needed, for instance, when FTIR spectroscopy is employed as an alternative to 

biochemical tests or potentially as a preliminary screening technique prior to the use of a more 

costly genotypic method for microbial identification. 
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 Bacteria identification using FTIR spectroscopy has been evaluated previously by many 

researchers but the promising results that were obtained have not translated into practical 

applications in routine microbiology laboratories. The previous chapters contributed to the 

demonstration of the robustness of FTIR spectral databases, aiming at expansion of the 

applicability of FTIR spectroscopy in microbiology laboratories. In Chapter 5, the focus was on 

filamentous fungi. Traditional identification of filamentous fungi is based on macroscopic and 

microscopic methods. Genotypic methods, although considered as the gold standard for 

identification, are employed mainly for the characterization of fungi due to the tedious preparation 

procedure. FTIR spectroscopy was compared against multiplex RT-qPCR and MALDI-TOF MS 

for the identification of Aspergillus species. While promising results for identifying section Nigri 

and Terrei of Aspergillus spp. using multiplex RT-qPCR was demonstrated, the other sections 

investigated did not show optimal results. Identification using MALDI-TOF MS was also 

problematic, despite using a specially formulated agar plate for enhancing the identification 

capacity of filamentous fungi. Although gaining more attention, identification of molds such as 

Aspergillus spp. is rarely performed routinely in most microbiology laboratories, and even less 

often at species level. Hence, RT-qPCR sequence and MALDI-TOF MS databases are 

considerably less well developed for molds as compared to bacteria and yeasts, and this may 

explain the low identification rates obtained with these methods. On the other hand, with a 

relatively small database, FTIR spectroscopy was still capable to yield high identification accuracy 

at species level. The second part of this chapter enlarged the fungal database with more filamentous 

fungi and yeasts. In the test set, yeast isolates were correctly identified with 100% correct 

identification, with only several mold strains misidentified. The number of samples subjected to 

fungi identification analysis could be significantly improved by using FTIR spectroscopy without 

compromising the identification performance and being a cheaper method compared to genotypic 

methods. 

In the past decade, increasing studies of disease diagnosis using FTIR spectroscopy have 

been reported. With the sudden emergence of Covid-19, Chapter 6 used this opportunity to 

evaluate the diagnosis of this novel disease by FTIR spectroscopy using saliva samples. As this 

virus is brand new, every step of the protocol was developed and constantly edited and improved 

as the research progressed. For safety purpose and for evaluating the robustness of FTIR 

spectroscopy, saliva samples were heat inactivated prior to spectral acquisition. The drawback of 
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the heating procedure is that it may inevitably alter protein composition of saliva. Nevertheless, 

FTIR spectroscopy coupled with efficient machine learning algorithms allowed high diagnostic 

accuracy, sensitivity, and specificity for Covid-19. Spectral regions discriminating Covid-19 

negative from Covid-19 positive saliva were also found although they were divergent from those 

identified in other similar studies. Differences in terms of prediction rate is also observed from 

other papers. These discrepancies may be mainly due to the diverse methodologies employed. No 

standardized protocol exists yet for this novel virus. Additionally, other studies used either raw or 

ethanol-inactivated saliva, which causes great difference in saliva composition that are reflected 

in the spectra. All that said, FTIR spectroscopy has demonstrated its possibility to be employed as 

a diagnostic or screening tool for Covid-19. 

This research demonstrated the applicability of FTIR spectroscopy for routine 

identification of bovine mastitis pathogens in veterinary microbiology and bacterial pathogens of 

relevance to food safety as well as the diagnosis of foodborne illnesses in clinical microbiology. 

FTIR spectra are rich in information, and hence providing all the necessary bands for correct 

identification to species and even strain level. However, this feature also makes using and 

interpreting their spectra challenging. Currently, pure microbial colony must be isolated in order 

to obtain a promising prediction result. Mixtures of different compounds cause absorption peaks 

to overlap, hence complicating the identification process. As seen in Chapter 6, the prediction of 

raw biospecimen (saliva) collected was complicated due to unanticipated peak, disturbing and 

mixing the PP and PN spectra. The identification value at the end was therefore less appealing than 

those from the previous chapters, where only pure colonies were used for spectra acquisition. The 

few algorithms investigated in Chapter 6 boosted the identification of saliva mixture up to an 

acceptable value. Other algorithms may possibly provide insights in the identification of specific 

features within a mixture using FTIR spectroscopy. Implementing algorithms within the database 

to generate identification results automatically would also be a huge advancement for FTIR 

spectroscopy in the application of microbial identification, and will eventually contribute in its 

wilder applicability. Another limitation of FTIR spectroscopy is its high detection limit. It requires 

a certain amount of biomass or thickness to be able to generate a high quality spectra. Water, for 

example, will absorb infrared light and may interfere with the analysis of wet samples. In the case 

of Chapter 3 and 4, some watery bacterial colony would be highly difficult to identify, as the peak 

absorbance were lower than our pre-set acceptance criteria. They will be considered as outliers 
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and rejected. Identification by TR-FTIR is less biased by water disturbance as the water is already 

dried out on the e-glass, leaving only the biomass. Identification of bacteria was simple using either 

ATR or TR sampling technique. Yet, due to the spore-forming characteristic of mold, 

identification of filamentous mold required few additional steps to ensure lab personnel safety 

during handling. And since FTIR spectrum records all biochemical constitution, the sample 

preparation steps may influenced the spectrum. There are different sampling techniques in the 

existing literature, ranging from incubation condition (time, medium, and temperature) to 

preparation of the mold pellet (distilled water and ethanol). Different sample preparation 

techniques for mold may have altered its identification results in MALDI-TOF MS and FTIR 

spectroscopy. The comparison results obtained in Chapter 5 may support the fact that FTIR 

spectroscopy is outperforming MALDI-TOF MS and multiplex RT-PCR for identification of 

Aspergillus species using the presented sample preparation method. Yet, other sampling 

techniques for mold are also worth experimenting for identification. Simplification of the 

methodology for mold identification using FTIR spectroscopy could be another possible future 

research direction, as it was quite more tedious in preparation for mold compared to bacteria. While 

Chapter 5 focused on Aspergillus spp., the identification of different mold species has gained 

attention. Other common mold genus, such as Penicillium spp., Mucor spp., and Fusarium spp. 

may also raise interest in evaluating the identification efficiency comparison of PCR, MALDI-

TOF MS and FTIR spectroscopy. In the research for saliva, sample preparation was again a 

limitation that could be mitigated in future projects. As no prior instruction, collected saliva 

specimen were heterogenous in all manners. It was not easy to analyze data without a traceable 

pattern, and to figure out the noise peaks and the useful ones. But because that no instruction were 

given, we had the opportunity to study a real-world scenario of differentiating saliva mixture and 

evaluate the robustness of FTIR spectroscopy to distinguish PP and PN within complex 

biochemical mixture. Despite FTIR spectroscopy takes up all information from a spectrum, it was 

still able to find apparent biomarkers to predict infected and uninfected saliva. The heating process 

for saliva minimizes cross-infection risk for laboratory personnel. Yet, heating may cause 

conformational change of proteins in the saliva. Subsequent research can focus on the direct use 

of raw saliva onto reflective substrate for TR-FTIR spectral acquisition. Last but not least, 

enlarging the spectral database would ultimately increase the robustness of identification by FTIR 

spectroscopy. A database created using two common cultivation media and different 
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manufacturers could be possible to accommodate with demands of different laboratories. However, 

to ensure species level identification, the medium and FTIR instrument same as the database 

should be used. Since it works already perfectly with a small database and it is easy to create, FTIR 

spectroscopy is employed in many research laboratory. Nonetheless, as seen as Bruker’s database 

and Charles River’s database for MALDI-TOF MS, different databases can be created depending 

on the needs of different laboratories. Currently, no commercialized database exists for FTIR 

spectroscopy, therefore limiting its use as routine identification methods in many clinical and 

industrial laboratories. A standardized database for FTIR spectroscopy should be developed, 

validated, and officialized. 

The results of experiments in this research performed to evaluate methodological variations 

in terms of culture medium, sampling method, and type of FTIR instrument showed that the FTIR 

methodology may be sufficiently robust to accommodate a certain amount of latitude, as would be 

required for interlaboratory use of a single database for microbial identification. FTIR 

spectroscopy was also compared with RT-qPCR and MALDI-TOF MS for the identification of 

filamentous fungi and yeasts and proved to have noticeable advantages over the other two methods. 

Lastly, FTIR spectroscopy showed promising sensitivity and specificity for Covid-19 diagnosis 

with the use of saliva samples, as would be suitable for on-site rapid screening in public venues or 

airports. Unlike most molecular methods, portable FTIR instruments can be easily accommodated 

in most laboratories due to their cost-effectiveness, ease of use, and compact design. This microbial 

identification technology would be likewise amenable to implementation in third-world countries, 

as it does not require costly reagents. However, as no universal FTIR spectral library exists for 

microorganisms, a commercial spectral database encompassing the diversity of species 

encountered in the general routine laboratory, together with a standard protocol for microbial 

identification with the use of the database, needs to be developed for this method to be widely 

applicable. Regular updates of the database to encompass spectral diversity resulting from 

mutations of the strains represented as well as to incorporate additional species would be 

straightforward if a stepwise identification process conducted in a pairwise manner, as 

demonstrated in this thesis, were adopted. All that said, this high-throughput and cost-effective 

technique for microbial identification has the potential to provide a good alternative to molecular 

methods for routine analysis. 
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Appendix 

A. 1. Structure of FTIR spectral databases for the identification of the six prevelant CoNS 

species. 
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A. 2. Comparison of CBA- (red) and TSA-grown (blue) spectra of same S. aureus (A, D), S. 

saprophyticus (B, E), and S. dysgalactiae (C, F) isolates. Spectra variability of identical 

isolate due to difference in growth medium over the broad wavenumber region 900-1500 cm-

1 can be visualized in both ATR-FTIR spectra (A, B, C) and Trans-FTIR spectra (D, E, F). 
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A. 3. Ingredient list of TSA and CBA. 

Growth medium Ingredient Amoung (g/L) 

BD Difco Tryptic Soy agar 

Pancreatic Digest of Casein 15 

Papaic Digest of Soybean 

Meal 5 

Sodium Chloride 5 

Agar 15 

Oxoid Columbia Agar with 5% Sheep 

Blood 

Pancreatic Digest of Casein 12 

Peptic Digest of Animal 

Tissue 5 

Yeast Extract 3 

Beef Extract 3 

Corn Starch 1 

Sodium Chloride 5 

Agar 13.5 

Sheep Blood, Defibrinated 5% 
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A. 4. List of patients and their corresponding characteristics and PCR results. 

Database X 

PCR positive (PP) or Healthy (PN) 

Patient characterisitcs PCR results Genetic analysis Notes 

Gender Age Gene E Gene N Gene RDRP Internal Control N51Y H69/V7 E484K   

PN M 8     24.8       

PN M 58     20.84       

PN M 11     24.99       

PN M 8     24.28       

PN M 50     24.91       

PN M 8     25.2       

PN M 57     22.17       

PN M 12     24.27       

PN M 11     22.45       

PN M 9     23.26       

PN M 15     23.56       

PN M 4     22.85       

PN M 13     24.13       

PN M 8     24.9       

PN M 10     25.77       

PN M 12     23.16       

PN M 26     20.68       

PN M 41     22.4       

PN M 10     19.37       

PN M 32     24.17       

PN M 35     23.6       

PN M 9     24.63       

PN M 6     22.41       

PN M 38     24.28       

PN M 30     22.54       
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PN M 35     21.76       

PN M 12     25.55       

PN M 6     26.9       

PN M 57     23.15       

PN M 40     21.93       

PN M 41     23.14       

PN M 62     22.9       

PN M 91     25.2       

PN M 23     23.93       

PN M 29     22.26       

PN M 39     19.71       

PN M 10     24.2       

PN M 27     21.7       

PN M 31     22.83       

PN M 4     23.48       

PN M 9     22.95       

PN M 7     22.54       

PN M 39     24.22       

PN M 6     25.16       

PN M 43     18.35       

PN M 10     23.4       

PN M 58     23.4       

PN M 25     23.79       

PN M 20     22.21       

PN M 8     22.14       

PN M 53     22.64       

PN M 9     23.57       

PN M 6     17.58       

PN M 38     19.97       
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PN M 12     20.87       

PN M 37     21.39       

PN M 8     22.13       

PN M 21     24.93       

PN M 33     22.59       

PN M 8     24.26       

PN M 36     20.75       

PN M 57     19.53       

PN M 40     22.68       

PN M 11     22.41       

PN M 28     22.85       

PN M 32     22.1       

PN M 47     20.85       

PN M 9     20.77       

PN M 42     26.87       

PN M 9     24.76       

PN M 5     21.11       

PN M 7     22.54       

PN M 11     23.1       

PN M 7     24.53       

PN M 45     22.2       

PN M 6     28.5       

PN M 56     25.67       

PN M 44     22.78       

PN M 58     23.17       

PN M 8     26.7       

PN M 6     21.74       

PN M 35     24.36       

PN M 63     23.78       
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PN M 14     23.96       

PN M 47     24.57       

PN M 35     23.11       

PN M 41     21.33       

PN M 45     26.37       

PN M 31     24.25       

PN M 52     23.55       

PN M 8     25.4       

PN M 45     23.5       

PN M 40     23.89       

PN M 27     22.8       

PN M 34     21.29       

PN M 11     24.47       

PN M 10     19.19       

PN M 8     27.3       

PN M 10     23.91       

PN M 7     25       

PN M 20     23.18       

PN M 52     24.63       

PN M 11     24.13       

PN M 5     24.3       

PN M 33     25.46       

PN M 15     22.93       

PN M 39     22.5       

PN M 34     25.2       

PN M 10     24.7       

PN M 3     24.46       

PN M 34     21.74       

PN M 3     23.22       



235 

 

PN M 31     24.83       

PN M 38     21.8       

PN M 14     25.1       

PN M 46     24.71       

PN M 2     24.42       

PN M 41     21.16       

PN M 13     24.83       

PN M 7     20.9       

PN M 7     20.9       

PN M 54     22.18       

PN M 46     25.83       

PN M 35     24.74       

PN M 38     26.91       

PN M 4     31.26       

PN M 36     23.2       

PN M 48     25.67       

PN M 24     22.18       

PN M 22     23.11       

PN M 43     23.45       

PN M 36     23.46       

PN M 22     21.73       

PN M 21     25.18       

PN M 11     25.25       

PN M 56     21.92       

PN M 9     25.88       

PN M 4     23.35       

PN M 21     23.49       

PN M 11     28.7       

PN M 51     22.45       
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PN M 13     25.71       

PN M 9     23.54       

PN M 15     24.59       

PN M 6     23.73       

PN M 8     25.6       

PN M 8     23.93       

PN M 18     27.99       

PN M 12     26.36       

PN M 11     26.6       

PN M 37     25.5       

PN M 5     25.47       

PN M 3     28.11       

PN M 11     27.32       

PN M 10     27.59       

PN M 13     26.33       

PN M 7     25.58       

PN M 18     25.26       

PN M 13     26.8       

PN M 55     26.63       

PN M 39     26       

PN M 8     26.3       

PN M 8     26.56       

PN M 6     29.77       

PN M 33     24.27       

PN M 10     21.33       

PN M 12     27.53       

PN M 7     24.81       

PN M 45     25.48       

PN M 41     24.92       
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PN M 12     25.84       

PN M 43     21.85       

PN M 33     26.63       

PN M 30     25.87       

PN M 8     24.58       

PN M 5     23.24       

PN M 6     26.23       

PN M 38     26.9       

PN M 6     26.76       

PN M 49     27.4       

PN M 4     25.76       

PN M 3     24.85       

PN M 33     24.39       

PN M 39     22.78       

PN M 4     25.44       

PN M 7     22.99       

PN M 9     23.35       

PN M 50     26.3       

PN M 27     23.95       

PN M 11     24.65       

PN M 6     24.36       

PN M 4     26.2       

PN M 7     24.61       

PN M 61     22.42       

PN M 8     22.96       

PN M 3     26.67       

PN M 11     24.3       

PN M 6     21.78       

PN M 5     25.88       
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PN M 7     26.18       

PN M 11     24.2       

PN M 9     24.8       

PN M 55     24.68       

PN M 7     23.6       

PN M 11     32.75       

PN M 24     26.73       

PN M 6     27.26       

PN M 12     23.73       

PN M 10     25.23       

PN M 60     28.2       

PN M 80     25.3       

PN M 7     24.85       

PN M 6     25.8       

PN M 43     31.6       

PP M 10 31.76 33.55 34.24 22.44 ND     

PP M 22 23.7 25.55 26.69 21.59 ND     

PP M 22 23.7 25.55 26.69 21.59 ND     

PP M 37 16.41 19.5 19.44 21.48 D     

PP M 10 31.74 33.35 33.17 24.27 ND     

PP M 54 14.75 17.23 17.52 25.12 ND     

PP M 34 11.33 13 15.18 25.65 D D ND  

PP M 31 12.27 14.5 16.47 21.55 D D ND B.1.1.7 

PP M 44 12.36 14.6 17.2 23.62 D D ND B.1.1.7 

PP M 32 13.18 15.29 16.38 25.5 D D ND B.1.1.7 

PP M 31 13.74 16 18.91 20.91 D D ND  

PP M 36 14.24 15.55 17.23 22.94 D D ND  

PP M 16 18.77 21.2 22.17 21.11 ND    B.1.1.7 

PP M 72 16.82 16.97 29.5 26.2 D D   B.1.1.7 
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PP M 34 15.6 16.57 19.8 21.4 D D ND B.1.1.7 

PP M 58 15.9 17.4 21.38 20.64 D D ND  

PP M 7 14.92 17.13 17.98 20.1 D D ND  

PP M 20 13.92 16.53 17.32 23.32 D D ND  

PP M 42 14.89 18.1 19.69 20.52 ND ND    

PP M 18 17.15 17.99 20.39 23.88 D D ND B.1.1.7 

PP M 26 16.75 18.29 18.88 19.99 ND ND ND B.1.1.7 

PP M 46 17.58 19.3 27.26 27.41 D D ND  

PP M 58 18.31 18.51 29.93 20.48 D D ND  

PP M 63 18.2 20.14 25.21 22.8 ND ND    

PP M 69 18.63 20.11 25.3 20.77 ND ND ND B.1.1.7 

PP M 58 18.9 20.13 23.39 26.16 ND ND ND B.1.1.7 

PP M 54 18.42 20.3 2.97 22.39 D D ND  

PP M 26 17.94 20.7 22.21 24.4 D D ND  

PP M 49 18.11 19.93 21.39 22.15 D D ND  

PP M 34 18.44 20.32 22.9 25.19 D D ND B.1.1.7 

PP M 23 18.95 20.42 22.23 23.95 D D ND B.1.1.7 

PP M 49 18.41 20.9 21.7 25.49 D D ND  

PP M 11 22.43 24.48 25.54 24.55 ND     

PP M 47 19.2 21.34 22.35 24.72 ND ND    

PP M 11 19.42 20.6 23.4 22.39 ND  D B.1.1.7 

PP M 45 19.17 20.53 23.37 22.9 D D ND B.1.1.7 

PP M 5 19.45 21.4 21.64 22.77 ND ND ND  

PP M 38 18.7 20.83 22.13 20.76 ND ND ND  

PP M 24 19.35 20.53  22.99       

PP M 38 20.18 21.34 23.3 23.95 D D ND  

PP M 37 19.6 21.33 21.41 23.73 D ND D  

PP M 43 21.63 21.26 34.98 23.25 D D ND B.1.1.7 

PP M 7 24.15 26.18 26.64 21.88 D     
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PP M 65 20.71 22.9 25.88 21.73 D D    

PP M 50 20.41 21.69 24.19 25.7 D D    

PP M 56 19.54 21.94 24.58 21.39 D D    

PP M 30 19.71 21.64 23.74 23.9 ND ND ND  

PP M 63 22.6 22.47 26.25 24.68 ND ND ND  

PP M 44 19.8 21.87 23.26 23.8 D D ND  

PP M 65 20.99 22.29 23.87 22.49 D D ND  

PP M 17 19.66 21.65 22.86 24.4 ND ND ND B.1.1.7 

PP M 13 20.85 22.44 23.6 24.67 ND ND ND  

PP M 59 20.46 21.71 23.87 24.73 D D ND  

PP M 65 21.1 23.23 25.35 22.82 ND ND   B.1.1.7 

PP M 46 21.71 23.33 25.29 21.23 D D    

PP M 24 21.18 22.71 24.4 24.23 D D   B.1.1.7 

PP M 14 20.67 22.83 23.6 24.44 ND ND ND B.1.1.7 

PP M 35 20.85 22.84 23.39 24.88 D ND D B.1.1.7 

PP M 40 21.67 22.94 27.38 19.45 D D ND B.1.1.7 

PP M 30 21.61 23.34 26.73 21.58 D D ND  

PP M 38 19.94 23.24 22.73 23.43 D D ND  

PP M 38 21.34 22.58 23.81 25.9 D D ND  

PP M 43 20.52 23.14 22.59 24.32 D ND D  

PP M 39 24.31 26.67 27.39 25.38 ND     

PP M 40 22.2 24.33 26.19 22.76 D D    

PP M 16 21.14 23.82 24.8 21.62 D D    

PP M 53 20.77 23.97 24.44 23.18 D ND D  

PP M 60 21.47 23.8 25.5 21.91 D D    

PP M 66 22.37 23.77 28.89 23.41 D D ND  

PP M 57 22.4 24.45 26.54 22.75 D D ND B.1.1.7 

PP M 28 22.49 24.41 26.11 22.44 D D ND  

PP M 46 22.17 23.94 25.92 21.31 D D ND B.1.1.7 
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PP M 20 22.48 25.7 25.82 24.15 D D    

PP M 35 24.55 25.39 29.62 21.3 ND ND ND B.1.1.7 

PP M 34 23.71 25.42 26.69 22.88 D ND D  

PP M 38 22.79 25.9 26.6 22.9 D ND D B.1.1.7 

PP M 30 22.78 24.82 26.81 24.23 D D ND B.1.1.7 

PP M 47 23.28 24.76 28.12 23.67 ND ND ND B.1.1.7 

PP M 27 22.86 24.73 26.2 23.59 D D ND B.1.1.7 

PP M 37 22.53 24.74 26.4 25.32 D D ND  

PP M 16 22.98 24.79 26.53 23.92 D D ND  

PP M 51 24.6 25.33 27.75 24.7 D D ND  

PP M 50 23.97 25.49 27.19 22.59 D D ND B.1.1.7 

PP M 24 21.74 24.56 27.92 24.78 D D ND  

PP M 55 22.19 24.62 26.26 25.84 D D ND  

PP M 61 23.88 25.81 27.81 22.41 ND ND ND  

PP M 64 28.5 25.53  24.1 D D    

PP M 10 24.1 25.92 27.29 21.96 ND ND ND B.1.1.7 

PP M 50 24.63 26.3 31.69 19.75 ND ND ND  

PP M 18 23.88 26.26 26.45 24.26 ND ND ND  

PP M 44 23.79 26.3 27.72 24.44 D ND D B.1.1.7 

PP M 13 24.51 26.34 28.91 25.52 D D ND  

PP M 38 24.63 26.31 29.8 20.88 D D ND  

PP M 68 23.35 25.51 26.17 24.55 D D ND  

PP M 38 24.93 26.17 27.72 22.41 ND ND ND  

PP M 8 24.1 26.24 27.46 22.93 D D ND  

PP M 22 24.5 25.94 26.99 26.5 D D ND B.1.1.7 

PP M 11 24.55 26.44 28.2 26.2 D D ND  

PP M 25 24.38 26.39 27.71 24.6 ND ND ND  

PP M 23 24.36 25.64 27.22 21.74 D D ND  

PP M 31 24.92 25.52 29.61 25.47 D D ND  
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PP M 39 20.28 22.4 24.7 25.2 D D    

PP M 49 25.4 27.39 28.71 23.35 ND ND   B.1.1.7 

PP M 13 25.5 26.83 30.8 22.54 D D    

PP M 52 25.11 27.3 28.38 21.64 ND ND ND B.1.1.7 

PP M 16 25.66 27.93 31.38 22.12 D D    

PP M 8 24.92 26.71 27.35 25.47 ND ND ND  

PP M 41 24.55 26.55 26.61 25.59 ND ND ND B.1.1.7 

PP M 47 25.5 26.54 29.39 23.63 D D ND B.1.1.7 

PP M 55 25.68 26.82 30.17 25.15 D D ND  

PP M 30 24.69 27.8 27.82 23.8 D D ND  

PP M 10 24.61 26.54 28.97 26.93 D D ND  

PP M 5 25.89 27.38 27.94 24.83 D D ND  

PP M 31 24.7 26.94 26.72 27.82 D D ND  

PP M 52 25.44 26.96 30.15 24.46 D D ND  

PP M 60 24.25 26.77 27.72 25.64 D D ND  

PP M 45 25 26.85 29.9 25.86 D D ND B.1.1.7 

PP M 20 25.76 27.59 28.36 25.99 D D ND  

PP M 15 26.49 27.97 29.85 23.84 ND ND ND  

PP M 36 25.36 27.77 29.44 25.5 D D ND  

PP M 51 26.86 28.45 30.85 24.94 D D ND  

PP M 13 25.82 27.75 28.59 26.6 D D ND  

PP M 20 25.76 28.3 27.85 25.9 ND ND ND  

PP M 23 26.33 27.85 28.79 24.9 D D ND B.1.1.7 

PP M 45 25.95 27.95 29.9 2.61 D D ND  

PP M 30 27.79 29.15 31.2 24.31 D D    

PP M 64 27.13 28.66 33.12 28.15 D D ND  

PP M 41 27.9 29.9 30.81 24.44 D D ND B.1.1.7 

PP M 9 27.7 29.37 30.79 23.91 ND ND ND  

PP M 57 26.97  30.77 20.3 ND ND ND B.1.1.7 
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PP M 57 27.41 28.8 29.93 26.4 ND ND ND  

PP M 23 27.39 29.11 31.95 26.41 D D ND B.1.1.7 

PP M 33 26.41 28.64 30.68 24.11 D D ND  

PP M 44 27.65 29.12 30.45 21.3 ND ND ND  

PP M 23 27.3 28.87 29.41 25.76 D D ND  

PP M 61 29.51 29.27  21.2 D D ND  

PP M 5 32.61 34.46 36.41 21.12 ND     

PP M 19 28.23 30.32 31.52 27.63 D D ND  

PP M 11 27.91 30.22 31.6 23.38 D D ND  

PP M 42 27.69 30.18 3.83 25.52 D D ND  

PP M 58 27.53 29.9  23.5 D D ND B.1.1.7 

PP M 8 27.63 30.3 33.28 26.81 D ND ND  

PP M 16 29.17 30.9 35.96 21.66 D D ND  

PP M 31 30.1 31.43  25.47       

PP M 43 27.22 30.68 30.95 24.8 D D    

PP M 11 30.86 31.13 39.1 17.33      B.1.1.7 

PP M 33 28.58 30.61 31.3 22.12 D D ND  

PP M 21 28.84 31.38 32.36 24.37 D D ND  

PP M 54 30.2 31.23 35.93 25.43 D D ND  

PP M 35 21.33 23.6 25.48 25.56 ND     

PP M 56 29.25 31.65 33.33 23.94       

PP M 6 32.18 32.39 35.98 24.25       

PP M 33 30.9 31.7 32.93 23.65 D ND ND  

PP M 60 31.8 31.73  23.84 ND ND ND  

PP M 34 30.17 32.37 33.39 24.6 ND ND ND  

PP M 22 29.34 32.25 32.76 23.89       

PP M 57 29.69 31.75 32.9 22.4       

PP M 29 30.39 31.81 34.11 23.65 ND ND ND  

PP M 18 30.72 32.47  28.3 ND ND ND  
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PP M 50 30.75 33.2  19.7       

PP M 27 29.28 32.55 34.1 21.11       

PP M 23 29.86 32.76 35.18 23.85 D ND ND  

PP M 19 31.49 33.31 36.41 24.74       

PP M 63 30.88 32.54 35.33 24.85       

PP M 35 30.92 32.55 33.15 25.97 ND ND ND  

PP M 31 31.76 33.85 34.82 27.16       

PP M 30 32.2 33.55 34.85 27.86 D    B.1.1.7 

PP M 37   24.47  30.12       

PP M 30 32.33 34.66 36.51 24.58       

PP M 46 34.61 35.26 37.51 21.53       

PP M 20 33.69 35.38  22.81      B.1.1.7 

PP M 66 34.9 34.86 38.43 22.83      B.1.1.7 

PP M 8 33.61 34.84 36.79 25.38       

PP M 59 34.24 34.91  26.26       

PP M 14 34.4 35.83 36.69 25.81       

PP M 37 34.45 36.1  21.81       

PP M 27   36.6  18.5       

PP M 5   36.44  27.39      B.1.1.7 

PP M 11             

PP M 58   36.64  20.28       

PP M 44 37.1 37.4 37.91 22.8       

PP M 21 36.4 37.13 38.51 22.77       

PP M 36 37.72 37.76  22.36       

PP M 42 36.53 37.51 35.81 25.6      B.1.1.7 

PP M 6   38.5  23.65       

PP M 11 27.91 30.22 31.6 23.38 D D ND  

PN F 33     25.18       

PN F 8     18.32       
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PN F 31     21.62       

PN F 55     22.53       

PN F 43     24.61       

PN F 48     23.31       

PN F 38     24.39       

PN F 43     21.9       

PN F 9     21.7       

PN F 15     23.43       

PN F 36     23.5       

PN F 31     22.72       

PN F 17             

PN F 14     24.16       

PN F 14     21.97       

PN F 15     22.92       

PN F 15     22.74       

PN F 33     25.21       

PN F 33     19.94       

PN F 16     26.72       

PN F 22     23.4       

PN F 23     23.44       

PN F 6     25.13       

PN F 44     24.2       

PN F 52     26.52       

PN F 49     20.68       

PN F 29     25.12       

PN F 52     22.2       

PN F 31     21.5       

PN F 5     23.17       

PN F 10     25.17       
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PN F 89     24.61       

PN F 32     24.16       

PN F 46     22.73       

PN F 7     24.3       

PN F 38     21.11       

PN F 7     22.8       

PN F 42     21.8       

PN F 37     21.79       

PN F 7     23.82       

PN F 31     22.61       

PN F 43     24.32       

PN F 5     22.47       

PN F 11     22.39       

PN F 6     23.19       

PN F 36     24.14       

PN F 34     21.19       

PN F 6     24.73       

PN F 10     21.29       

PN F 37     22.61       

PN F 14     21.68       

PN F 42     21.56       

PN F 11     23.6       

PN F 8     22.52       

PN F 60     23.27       

PN F 9     26.29       

PN F 55     23.42       

PN F 25     21.68       

PN F 44     20.75       

PN F 8     21.24       
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PN F 36     18.27       

PN F 50     21.85       

PN F 10     21.53       

PN F 7     22.65       

PN F 31     24.54       

PN F 10     23.3       

PN F 57     21.2       

PN F 7     23.45       

PN F 4     22.65       

PN F 50     23.9       

PN F 8     23.83       

PN F 30             

PN F 38     24.35       

PN F 89     25.9       

PN F 7     24.89       

PN F 5     17.87       

PN F 41     25.95       

PN F 17     26.16       

PN F 39     20.91       

PN F 13     23.11       

PN F 54     22.71       

PN F 41     20.64       

PN F 14     24.51       

PN F 30     24.4       

PN F 14     23.24       

PN F 26     22.44       

PN F 57     23.92       

PN F 7     25.13       

PN F 31     23.69       
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PN F 39     23.8       

PN F 37     24.57       

PN F 45     24.67       

PN F 11     24.42       

PN F 7     27.28       

PN F 12     26.42       

PN F 44     23.99       

PN F 53     22.94       

PN F 24     24.62       

PN F 33     24.81       

PN F 18     21.68       

PN F 26     22.71       

PN F 34     23.6       

PN F 32     22.86       

PN F 23     24.66       

PN F 25     21.19       

PN F 39     26.11       

PN F 26     25.66       

PN F 7     22.54       

PN F 27     19.28       

PN F 25     22.43       

PN F 33     20.43       

PN F 31     23.5       

PN F 29     24.82       

PN F 41     24.12       

PN F 6     21.2       

PN F 7     23.43       

PN F 42     20.82       

PN F 8     24.39       
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PN F 34     24.28       

PN F 4     24.52       

PN F 40     20.45       

PN F 14     26.21       

PN F 36     24.29       

PN F 37     23.83       

PN F 33     21.62       

PN F 8     24.2       

PN F 15     24.9       

PN F 8     27.3       

PN F 8     24.78       

PN F 7     24.91       

PN F 42     25.1       

PN F 44     25.9       

PN F 14     25.32       

PN F 13     23.83       

PN F 39     23.26       

PN F 37     24.2       

PN F 40     27.86       

PN F 57     22.4       

PN F 53     26.63       

PN F 9     26.71       

PN F 36     22.61       

PN F 45     25.4       

PN F 5     24.75       

PN F 42     21.61       

PN F 40     22.64       

PN F 18     22.59       

PN F 5     25.12       
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PN F 30     25.62       

PN F 13     27.32       

PN F 38     23.9       

PN F 38     22.47       

PN F 30     21.59       

PN F 29     27.91       

PN F 9     27.65       

PN F 8     23.23       

PN F 2     26.66       

PN F 24     25.83       

PN F 14     21.84       

PN F 7     22.91       

PN F 9     24.5       

PN F 9     24.6       

PN F 42     24.5       

PN F 51     23.23       

PN F 6     25.37       

PN F 38     24.67       

PN F 49     24.42       

PN F 33     23.32       

PN F 45     22.66       

PN F 4     23.88       

PN F 59             

PN F 10     27.17       

PN F 10     26.38       

PN F 40     25.48       

PN F 49     28.19       

PN F 39     24.61       

PN F 36     27.11       
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PN F 5     27.84       

PN F 31     22.72       

PN F 52     24.19       

PN F 32     28.2       

PN F 7     26.79       

PN F 28     25.67       

PN F 7     24.7       

PN F 7     28.8       

PN F 10     27.88       

PN F 16     24.42       

PN F 42     24.77       

PN F 30     25.55       

PN F 15     22.42       

PN F 10     25.22       

PN F 40     25.13       

PN F 11     26.36       

PN F 32     25.42       

PN F 62     23.65       

PN F 5     26.85       

PN F 36     22.58       

PN F 23     23.38       

PN F 45     25.6       

PN F 61     24.95       

PN F 59     26.56       

PN F 62     22.45       

PN F 28     24.98       

PN F 6     23.44       

PN F 13     22.37       

PN F 13     24.43       
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PN F 14     26.21       

PN F 18     24.28       

PN F 4     21.17       

PN F 19     24.38       

PN F 43     23.47       

PN F 7     26.62       

PN F 38     24.11       

PN F 6     25.4       

PN F 30     24.33       

PN F 20     25.4       

PN F 47     23.14       

PN F 30     24.81       

PN F 12     24.42       

PN F 5     23.8       

PN F 37     24.24       

PN F 5     24.6       

PN F 53     23.78       

PN F 41     25.76       

PN F 14     24.76       

PN F 27     24.64       

PN F 5     24.25       

PN F 6     22.15       

PN F 45     22.58       

PN F 46     22.83       

PN F 34     26.93       

PN F 39     23.56       

PN F 65     27.19       

PN F 35     24.48       

PN F 5     24.62       
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PN F 22     22.73       

PN F 36     23.58       

PN F 32     26.9       

PN F 57     24.84       

PN F 54     26.48       

PN F 9     25.6       

PN F 41     25.77       

PN F 8     23.8       

PN F 36     25.12       

PN F 40     24.28       

PN F 13     22.93       

PN F 44     26.28       

PN F 6     24.76       

PN F 3     25.32       

PP F 7 26.6 28.9 28.95 22.5 D    B.1.525 

PP F 7 26.6 28.9 28.95 22.5 D    B.1.525 

PP F 43 27.21 29.46 30.95 20.58 ND    B.1.1.7 

PP F 43 27.21 29.46 30.95 20.58 ND    B.1.1.7 

PP F 32 22.99 25.8 25.91 25.32 D     

PP F 47 23.14 24.71 25.47 22.99 D    B.1.1.7 

PP F 41 18.21 20.81 20.86 22.4 ND     

PP F 37 14.22 16.53 18.11 20.66 D D ND B.1.1.7 

PP F 33 16.83 18.46 20.98 33.48 D D ND  

PP F 76 16.11 18.85 21.56 21.18 D D    

PP F 52 32.87 35.76  18.82      B.1.1.7 

PP F 39 18.18 19.47 22.96 18.5 ND ND ND B.1.1.7 

PP F 75 17.66 18.68 35.24 24.24 D D ND  

PP F 17 16.73 19.32 21.21 23.99 D D ND  

PP F 34 17.9 19.9 20.48 21.58 ND ND ND  
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PP F 35 18.11 19.61 19.98 21.6 D D ND B.1.1.7 

PP F 26 19.23 20.98 22.28 22.98 ND ND ND  

PP F 44 19.37 21.32 22.42 22.78 D D ND B.1.1.7 

PP F 51 18.89 20.92 21.72 23.27 ND ND ND B.1.1.7 

PP F 38 19.64 21.39 22.47 24.1 D D ND  

PP F 64 18.56 20.51 22.22 21.39 ND ND ND  

PP F 30 18.29 20.63 21.2 23.57 D D ND  

PP F 32 18.57 20.57 22.29 21.8 D D ND B.1.1.7 

PP F 42 19.69 21.79 23.9 21.83 ND ND    

PP F 13 20.65 22.2 25.5 20.59 ND ND ND B.1.1.7 

PP F 43 20.23 21.65 24.69 21.15 D D    

PP F 29 19.22 21.63 21.89 21.64 ND ND ND  

PP F 51 19.77 22.6 22.78 23.98 D D ND  

PP F 25 20.38 21.7 25.51 21.99 D D ND B.1.1.7 

PP F 45 20.99 22.41 23.68 24.65 D D ND  

PP F 12 19.97 22.23 23.2 24.38 D D ND  

PP F 22 22.3 23.78 25.27 21.88 ND    B.1.1.7 

PP F 25 21.34 23.36 25.49 24.9 D D   B.1.1.7 

PP F 17 21.33 22.65 25.98 20.34 D D   B.1.1.7 

PP F 28 20.56 23 23.35 19.8 D D ND B.1.1.7 

PP F 47 20.75 22.98 24.1 20.81 ND ND ND B.1.1.7 

PP F 69 21.49 22.74 24.99 21.52 D D ND B.1.1.7 

PP F 15 20.89 23.11 25.18 22.88 D D ND B.1.1.7 

PP F 53 21.3 22.53 25.98 21.17 D D ND B.1.1.7 

PP F 69 20.93 23.14 24.51 25.69 D D ND B.1.1.7 

PP F 25 26.62 27.96 36.12 24.45 D D ND B.1.1.7 

PP F 63 21.7 22.96 25.48 21.66 D D ND B.1.1.7 

PP F 35 21 23.1 24.78 24.21 D D ND  

PP F 35 21.28 22.83 24.45 23.7 D D ND  
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PP F 44 19.85 22.65 22.15 23.75 ND ND ND  

PP F 30 25.5 28.35 28.68 22.25 ND     

PP F 38 28.49 30.97 33.93 21.9 ND    B.1.1.7 

PP F 11 30.57 33.75 33.47 23.64 D     

PP F 52 23.23 25.55 26.28 22.98 D     

PP F 64 23.84 25.23 30.1 19.66 D D    

PP F 33 22.61 24.37 25.71 23.53 D D ND  

PP F 28 23.31 24.19 25.17 24.39 ND ND ND B.1.1.7 

PP F 46 22.25 23.9 25.42 25.39 D D ND B.1.1.7 

PP F 38 22.35 24.35 26.2 2.16 D ND D  

PP F 14 21.69 24.35 24.96 22.58 D ND D  

PP F 24 22.65 23.72 25.57 23.2 D D ND  

PP F 62 22.87 25.46 32.8 21.71 ND ND   B.1.1.7 

PP F 48 23.5 25.41 27.2 24.3 ND ND D B.1.1.7 

PP F 20 23.12 25.24 28.53 19.56 D D    

PP F 68 23.59 25.35 28.36 23.54 D D ND B.1.1.7 

PP F 31 23.53 24.97 27.43 22.34 D D ND B.1.1.7 

PP F 17 22.83 24.92 25.79 24.39 ND ND ND  

PP F 50 23.1 24.98 26.23 23.45 D D ND B.1.1.7 

PP F 62 22.6 24.61 25.62 21.3 ND ND ND B.1.1.7 

PP F 38 23.66 25.38 28.75 22.16 D D ND  

PP F 30 26.63 24.74  25.56 D D ND  

PP F 45 23.18 25.1  24.3 D D ND B.1.1.7 

PP F 28 23.15 25.17 27.8 25.38 D D ND B.1.1.7 

PP F 23 22.95 25.6 25.76 24.37 ND ND ND  

PP F 14 22.71 25.1 25.49 23.15 D D ND B.1.1.7 

PP F 43 23.46 24.97 26.45 24.16 D D ND  

PP F 38 23.58 25.1 25.81 23.83 D D ND  

PP F 11 22.87 24.87 25.37 24.75 D D ND B.1.1.7 
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PP F 60 21.97 23.92 25.94 19.87 ND    B.1.1.7 

PP F 16 23.5  26.13 24.54       

PP F 58 24.67 25.95 28.35 19.9 D D ND  

PP F 42 24.9 25.77 27.2 23.21 D D ND B.1.1.7 

PP F 44 23.66 25.63 26.14 23.81 ND ND D  

PP F 12 26.18 26.47 33.37 31.8 D D ND  

PP F 31 24.21 25.78 28.15 23.45 ND ND ND B.1.1.7 

PP F 44 24.43 25.95 26.94 24.83 D D ND B.1.1.7 

PP F 27 24.53 26.2 28.85 25.35 D D ND  

PP F 19 24.3 25.95 26.23 24.79 D D ND  

PP F 77 23.12 25.6 25.85 25.51 D D ND  

PP F 25 24.34 26.51 28.79 24.91 D D    

PP F 19 24.84 26.84 30.5 20.81 ND ND D B.1.1.7 

PP F 22 25.51 27.35 28.31 24.21 ND ND ND  

PP F 44 25.93 26.86 35.6 23.41 ND ND ND B.1.1.7 

PP F 11 24.82 26.91 27.78 25.64 ND ND ND  

PP F 39 25.47 26.96 30.46 24.14 D D ND  

PP F 27 23.91 26.78 26.44 24.36 ND D D  

PP F 57 25.5 26.74 29.38 23.52 ND ND ND  

PP F 58 25.98 27.43 28.38 26.45 D D ND  

PP F 42 24.4 26.93 27.96 24.88 D D ND  

PP F 46 25.57 27.4 28.13 25.95 D D ND  

PP F 58 25.92 27.36 31.18 22.76 D D ND  

PP F 53 25.41 27.27 29.85 19.91 D D ND  

PP F 55 26.16 27.67 31.12 20.6 D D    

PP F 42 26.81 28.22 29.91 24.13 D D ND  

PP F 51 26.83 28.23 30.55 24.8 D D ND B.1.1.7 

PP F 47 26.73 28.38 31.6 23.7 ND ND D  

PP F 48 26.2 27.67 30.79 23.27 ND ND ND  
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PP F 43 25.41 27.58 28.1 25.7 ND ND ND  

PP F 13 26.53 28.6 29.67 23.25 D D ND B.1.1.7 

PP F 25 25.33  28.19 24.9 D D ND B.1.1.7 

PP F 31 25.72 28 30.8 21.3 D D ND B.1.1.7 

PP F 32 25.13 27.73 31.88 19.95 D ND ND  

PP F 65 25.73 28.24 31.15 24.48 D D ND B.1.1.7 

PP F 29 26.19 28.34 28.83 24.29 ND ND ND  

PP F 38 25.5 28.43 27.83 25.12 ND ND ND  

PP F 17 26.64 28.68 29.62 24.87 D D ND  

PP F 36 27.49 29.27 31.46 22.4 ND ND ND  

PP F 23 27.36 29.3 29.81 27.36 ND ND ND  

PP F 47 27.41 28.9 29.92 25.55 ND ND ND B.1.1.7 

PP F 57 28.74 29.22  21.2 ND ND ND  

PP F 31 26.91 29.53 31.24 24.19 ND ND    

PP F 48 28.56 29.89 34.58 20.79 D D    

PP F 17 27.72 30.2 32.99 21.11      B.1.1.7 

PP F 47 27.99 29.95 31.92 23.92 D D    

PP F 37 28.36 30.13 33.58 21.83       

PP F 16 27.73 30.36 30.33 25.41 ND ND ND  

PP F 24 28.94 30.31 31.54 25.71 ND ND ND B.1.1.7 

PP F 7 26.32 29.53 31.42 21.21 D D ND  

PP F 36 29.48 30.21 32.58 24.8       

PP F 34 28.79 30.4 33.27 24.98 ND ND ND  

PP F 52 27.82 29.59 34.2 26.69      B.1.1.7 

PP F 40 26.54 29.71 30.53 23.8 D D    

PP F 13 27.93 30.1  26.54 D D ND  

PP F 12 32.37 34.68 35.64 23.25 ND     

PP F 25 29 31.21 32.86 20.99 D D    

PP F 35 28.55 30.53 33.69 21.3 D D    
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PP F 31 28.34 30.84 33.7 21.1 D D    

PP F 75 29.91 31.34  24.23 ND ND ND B.1.1.7 

PP F 18 29.63 31.31 34.53 24.31       

PP F 23 28.74 31.43 33.54 26.13 D D ND  

PP F 12 28.89 31.37 32.78 23.63       

PP F 23 28.84 30.53 31.8 25.85 ND ND ND B.1.1.7 

PP F 10 30.18 32.2 34.35 25.92 D D   B.1.1.7 

PP F 34 30.22 32.16 36.34 23.76 D D    

PP F 21 30.31  32.35 34.95       

PP F 45 31.95 32.18 34.7 21.12       

PP F 48 29.9 31.72 33.66 19.2 D D    

PP F 30 30.24 32.4 39.13 19.47       

PP F 15 29.13 32.16  24.67 D D ND  

PP F 44 29.69 31.71 36.4 23.59      B.1.1.7 

PP F 47 30.77 33.76 34.24 21.56 ND     

PP F 9 30.95 32.57 34.29 25.29 D ND ND B.1.1.7 

PP F 11 32.49 33.35 35.88 23.7      B.1.1.7 

PP F 63 30.96 32.82 35.59 21.46 D ND ND  

PP F 10 30.95 32.58 33.12 23.41       

PP F 51 32.96 33.33 36.9 22.49       

PP F 12 32.6 33.81 36.47 24.72 D D    

PP F 41 32.83 34.48 38.17 23.22       

PP F 55 34.75 34.34  23.33       

PP F 39 38.89 33.54  30.66 D D ND  

PP F 22 32.17 34.16 37.95 22.79       

PP F 54 30.85 33.56 38.76 23.37   D    

PP F 46 30.87 33.82  17.76 ND ND ND  

PP F 43 33.48 34.34  25.28       

PP F 67 34.42 35.2 39.95 24.81      B.1.1.7 
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PP F 58 31.91 34.13 36.5 21.67 D D    

PP F 5 33.13 34.6 35.19 24.43       

PP F 25 33.42 35.3 37 21.82       

PP F 6 33.15  35.81 26.9       

PP F 59   36.44  34.21       

PP F 32   36.19  20.6       

PP F 63 35.76 36.89  22.93       

PP F 40 33.8 36.68 38.66 19.97       

PP F 17   36.88  23.65      B.1.1.7 

PP F 54 33.2 37.15 38.6 24.89       

PP F 44   38.17 39.42 22.39       

PP F 36 35.42 37.89 38.97 23.2      B.1.1.7 

PP F 55 27.44 29.44 34.45 21.2 D    B.1.1.7 

PP F 49 35.42 38.87  28.96      B.1.1.7 

PP F 12   38.81  23.35       

PP F 36   38.81  24.51       

PP F 20 38.4 38.95  24.53       

PP F 8 28.84 31.88 31.28 22.99 ND     

PP - -             

PP - -                 

Outliers 

PCR positive (PP) or Healthy (PN) 

Patient characterisitcs PCR results Genetic analysis Notes 

Gender Age Gene E Gene N Gene RDRP Internal Control N51Y H69/V7 E484K   

PN M 3    24.2      

PN M 3    23.62      

PN M 4    22.89      

PN M 4    29.42      

PN M 4    30.51      

PN M 5    23.1      
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PN M 5    23.84      

PN M 5    22.21      

PN M 5    25.73      

PN M 5    26.8      

PN M 6    25.55      

PN M 7    24.03      

PN M 7    22.74      

PN M 7    28.17      

PN M 8    21.65      

PN M 8    24.79      

PN M 9    24.16      

PN M 10    22.49      

PN M 10    24.98      

PN M 11    25.42      

PN M 11    24.88      

PN M 11    23      

PN M 14    23.49      

PN M 16    25.57      

PN M 17    22.8      

PN M 19    24.33      

PN M 24    20.14      

PN M 37    22.69      

PN M 41    21.16      

PN M 46    25.89      

PN M 52    25.75      

PN M 70    27.05      

PN M 74    24.36      

PP M 8 32.07 34.73 34.68 25.89     B.1.1.7 

PP M 10 25.15 27.28 27.71 27.1      
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PP M 12 28.8 31.11 31.56 24.86 ND     

PP M 14 25.58 27.26 28.83 27.04 D D ND B.1.1.7 

PP M 15 23.03 24.98 25.93 25.09 D D ND B.1.1.7 

PP M 17 28.32 29.34 32.3 21.43 D D ND  

PP M 21 26.27 27.3 28.97 23.63 D     

PP M 26 32.2 34.33 37.02 23.17 ND ND ND  

PP M 26 24.09  26.66 24.29 D D ND  

PP M 35 12.43 15.18 18.54 21.78 ND ND ND B.1.1.7 

PP M 38 28.03 29.01 32.1 22.97 D D ND  

PP M 40 15.17 17.65 18.11 26.2 ND ND ND  

PP M 41 17.39 19.01 20.19 21.89 D D ND  

PP M 47 22.35 24.28 25.79 26.4 D D ND  

PP M 48 24.69 26.64 29.51 23.27 ND ND ND  

PP M 54 13.57 16.35 18.95 21.15 ND     

PP M 56 17.3 18.91 20.6 22.85 D D ND  

PP M 72 16.82 16.97 29.5 26.2 D D   B.1.1.7 

PP M 74    24.36      

PN F 5    26.34      

PN F 5    24.5      

PN F 5    25.41      

PN F 6    24.38      

PN F 6    28.45      

PN F 6    25.62      

PN F 6    23.61      

PN F 7    24.25      

PN F 8    24.91      

PN F 8    26.46      

PN F 8    23.29      

PN F 10    25.99      
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PN F 16    21.78      

PN F 17    26.23      

PN F 21    22.92      

PN F 25    22.87      

PN F 26    24.7      

PN F 27    22.47      

PN F 31    22.75      

PN F 34    25.04      

PN F 35    22.1      

PN F 36    22.11      

PN F 40    21.53      

PN F 46    24.21      

PN F 47    22.4      

PN F 49    26.41      

PN F 51    24.68      

PP F 4 28.86 30.44 31.15 26.92 D D ND B.1.1.7 

PP F 5 35.38 37.28  27.08      

PP F 11 23.7 25.19 26.8 23.91 D D ND  

PP F 13 23.82 25.6 27.51 23.55 D D   B.1.1.7 

PP F 14 30.05 32.13 33.69 23.82 D D ND B.1.1.7 

PP F 15 29.86 32.25 32.86 22.12 D ND ND B.1.1.7 

PP F 15 16.06 17.16  20.61 D D ND B.1.1.7 

PP F 15 27.23 29.01 29.95 24.83 ND ND ND  

PP F 19 31.3 31.71 34.48 23.62 ND ND ND  

PP F 20 28.47 29.96 32.24 22.83 D D   B.1.1.7 

PP F 25 17.36 20.19 20.54 23.42 ND ND ND  

PP F 25 29.58 31.35 32.23 25.04      

PP F 26 24.56 26.2 27.18 25.06 D D ND  

PP F 26 24.48 26.56 28.32 23.45 D D ND  
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PP F 27 22.66 24.73 25.51 21.9 D D ND  

PP F 28 16.97 18.07 20.76 21.2 D D ND  

PP F 33 29.31 31.08  27.05 D D ND  

PP F 34 28.81 30.63 31.66 27.27 ND ND ND  

PP F 35 27.84 29.8 31.8 20.29 ND     

PP F 37 27.59 24.93 27.13 21.17 ND ND ND  

PP F 37 27.64 29.55 32.31 22.6  D    

PP F 39 19.93 21.63 23.12 21.65 D D ND  

PP F 39 18.09 20.62 22.27 19.18 ND ND ND B.1.1.7 

PP F 41 19.52 22.9 22.43 22.62 ND     

PP F 41 23.44 25.51 25.96 23 D D ND  

PP F 43 18.62 20.81 20.45 21.85 ND ND ND  

PP F 44 23.62 26.24 25.61 25.2 D D ND  

PP F 45 21.31 23.95 24.39 23.13 D D ND B.1.1.7 

PP F 51 26.57 26.35 34.5 22.46 D D ND  

PP F 53 28.4 30.55  23.98 D D ND  

PP F 57 22.5 23.49  35.12 D D ND B.1.1.7 

PP F 61 24.7 26.88 28.13 22.6 D D ND  

PP F 63 21.62 22.82 24.09 22.13 D D ND   
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A. 5. Confusion matrices of Database 1, Database 2, Database 3, and Database X. 
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