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Abstract

Space is a challenging environment, not only for humans but also for machines. Reli-
ably and efficiently detecting anomalies that appear on spacecraft is a key step towards
preventing the loss of onboard components, the mission, or even lives. Spacecraft health
monitoring practices today mainly rely on prior knowledge of complex systems, such as
checking if telemetry values fall outside pre-established limits. Deep learning techniques
offer a more data-driven solution, capable of processing enormous amounts of telemetry
and producing valuable insights. Several such methods have emerged which learn patterns
of nominal behaviour in a semi-supervised manner, without the need for anomaly labels. In
this thesis we explore semi-supervised deep learning-based methods for detecting space-
craft anomalies. Inspired by three recent works, we examine variations of recurrent neural
network architectures which adopt elements of generative adversarial networks and graph
attention networks to predict anomaly scores from input sequences of data. These models
are paired with techniques for calculating anomaly thresholds and then evaluated on a real
dataset of Near-Earth Object Surveillance Satellite (NEOSSat) telemetry and anomalies.
Our experiments show that models built with gated recurrent units achieve the best overall
performance when combined with Peaks-Over-Threshold for setting thresholds plus a sub-
sequent anomaly pruning step. In addition to detecting almost all of the same anomalies
as humans with a manageable false positive rate, such models can leverage graph attention
layers to produce attention scores as further tools for investigating anomalies.
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Abrégé

L’espace est un environnement exigeant, non seulement pour les humains mais aussi pour
les machines. La détection fiable et efficace des anomalies qui apparaissent sur les engins
spatiaux est une étape clé pour éviter la perte de composants à bord, de la mission, voire
de vies humaines. Aujourd’hui, les pratiques de surveillance de l’état de santé des engins
spatiaux reposent principalement sur la connaissance préalable de systèmes complexes,
par exemple en vérifiant si les valeurs de télémétrie sortent des limites préétablies. Les
techniques d’apprentissage profond offrent une solution plus axée sur les données, capa-
ble de traiter d’énormes quantités de télémétrie et de produire des informations précieuses.
Plusieurs méthodes de ce type ont vu le jour, qui apprennent à modéliser et à prédire le com-
portement attendu d’un système de manière semi-supervisée, sans avoir besoin d’étiquettes
d’anomalie. Dans cette thèse, nous explorons des méthodes semi-supervisées basées sur
l’apprentissage profond pour détecter les anomalies dans la télémétrie des engins spatiaux.
Inspirés par trois travaux récents, nous examinons des variantes d’architectures de réseaux
neuronaux récurrents qui adoptent des éléments des réseaux antagonistes génératifs et des
réseaux d’attention de graphes pour prédire les scores d’anomalie à partir de séquences
de données d’entrée. Ces modèles sont combinés à des techniques de calcul des seuils
d’anomalie, puis évalués sur un ensemble réel de données de télémétrie et d’anomalies
du Near-Earth Object Surveillance Satellite (NEOSSat). Nos expériences montrent que
les modèles construits avec des unités récurrentes à portes obtiennent les meilleures per-
formances globales lorsqu’ils sont combinés avec Peaks-Over-Threshold pour définir les
seuils et une étape ultérieure d’élagage des anomalies. En plus de détecter presque toutes
les mêmes anomalies que les humains avec un taux de faux positifs gérable, ces mod-
èles permettent d’exploiter les couches d’attention des graphes pour produire des scores
d’attention comme outils supplémentaires d’investigation des anomalies.
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1
Introduction

The amount of resources invested in large-scale space missions is astronomical. Endeav-
ours such as the International Space Station (ISS) and the more recent James Webb Space
Telescope (JWST) are multibillion-dollar projects representing decades of work by inter-
national collaborators. While excessive efforts are made to ensure the success of such
projects, space is a harsh and largely unknown environment; so many things could go
wrong, leading to interruptions, setbacks, or even the premature end of a mission. Humans
are currently in an era of renewed interest in space exploration, with government agen-
cies and private corporations turning their attention towards the Moon, Mars, and beyond
(Canada, 2019; NASA, 2019). As our species pushes the limits and ventures deeper into
unexplored territory, more surprises and more chances of failure can be expected along the
way.

Fault detection, isolation, and recovery (FDIR) systems have been developed and im-
plemented on spacecraft to improve the stability of missions and increase autonomy (Olive,
2012). The first step in these systems is detecting and investigating any anomalous be-
haviour that could indicate potential failures. Detecting and resolving these early could
prevent catastrophic outcomes such as loss of control, and ultimately the mission (Mor-
gan, 2005). Even temporary failures interrupt the collection of valuable science data. The
sooner anomalies are discovered, the sooner the spacecraft can return to its nominal mis-
sion. This is easier said than done as the space setting presents unique challenges compared
to detecting anomalies on Earth-based systems.

1



Introduction

Special environmental factors that pose hazards to spacecraft include extreme temper-
ature cycles, risk of space debris, and charged particle radiation (Fujimaki et al., 2005).
In addition to the harsh environment, the remoteness of spacecraft prevents them from
being directly inspected and repaired when needed. Instead, operations engineers moni-
tor the health of spacecraft by analyzing telemetry signals for off-nominal behaviour. This
is an intimidating task since individual spacecraft can have thousands of telemetry chan-
nels (Carlton et al., 2018)—including voltages, currents, temperatures, status indicators,
and other sensor readings—and more space assets are being launched into orbit now than
ever before, as shown in Figure 1.1. The enormous amount of data that must be monitored
necessitates an automated and reliable solution.

Figure 1.1: Number of objects launched into space between 1957 and 2021, compiled by
the United Nations Office for Outer Space Affairs (UNOOSA, 2022).

Traditionally, automated detection systems have incorporated some combination of
the following: cross-checking measurements between redundant pieces of hardware; es-
timating faulty states with a technique like the Kalman filter (Kalman, 1960); and raising
alarms when telemetry signals exceed or fall below predefined limits (Wander and Förstner,
2013). The latter, referred to as out-of-limits (OOL), is still an attractive practice today be-
cause of its low computational cost and simplicity (Hundman et al., 2018; Martínez-Heras,
2012). However, this method relies heavily on a priori knowledge of complex spacecraft
systems—knowledge that is acquired through theory and experimentation on the ground
but may not reflect the spacecraft behaviour once in orbit (Fujimaki et al., 2005). Further-
more, experience from previous or existing missions cannot be straightforwardly applied
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Introduction

as the variation in workmanship, operational environment, and configuration means that
no two spacecraft are identical (Carlton et al., 2018). Establishing and updating limits for
every channel is an expensive endeavour that also fails to account for anomalies that fall
within such limits (exemplified by Anomaly 2 in Figure 1.2). A better approach could be
to take advantage of the huge volume of telemetry through a data-driven solution.

Figure 1.2: Samples of true anomalies among two telemetry channels: wheel current (top)
and size of command buffer (bottom). The time steps shown are from two different time
periods. Anomaly 2 is an example where OOL is ineffective because those values cannot
be distinguished from nominal telemetry by setting upper and lower limits.

Deep learning algorithms have shown success in making intelligent predictions by
learning from large datasets. While conventional “shallow” methods require manual ex-
traction of features from raw data by domain experts, deep learning is able to capture mean-
ingful representations which are tailored specifically to the desired goal, such as anomaly
detection (LeCun et al., 2015; Pang et al., 2020).

For deep learning to be effective at classification tasks, a well-annotated dataset is of-
ten required (Rolnick et al., 2018). Anomaly labels are rare and incomplete in a space
mission, especially during its early phases. New anomalies can exhibit completely novel
characteristics which are absent from the anomalies identified in training data, limiting the

3



1.1 Contributions of this Work

usefulness of such data in supervised learning settings. The reliance on anomaly labels pre-
cludes supervised methods, but alternative semi-supervised techniques have emerged that
require only nominal samples in training data, which are more abundant and more obvious
to identify. These techniques reduce the chances and consequences of mislabeling data in
anomaly detection tasks (Chalapathy and Chawla, 2019).

1.1 Contributions of this Work

This thesis studies the potential of semi-supervised deep learning approaches in detecting
anomalies from spacecraft telemetry. Our aim is to determine if such methods achieve suffi-
cient performance to be considered for adoption into operational settings while pointing out
the benefits and barriers to doing so. The main contributions of this work are summarized
as follows:

‚ We explore different combinations of neural network architectures and thresholding
techniques, inspired by recent trends in deep learning-based anomaly detection for
time series data.

‚ We evaluate our chosen methods of interest on a real dataset of Near-Earth Object
Surveillance Satellite (NEOSSat) telemetry and anomalies gathered by operations
engineers over the course of one year.

‚ We identify the key components that drive strong anomaly detection performance in
our problem setting as well as the unique challenges we face.

1.2 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 introduces the task of
anomaly detection in space and reviews recent, related work on time series signals. Chapter
3 explains the common setup of our experiments, including details of the NEOSSat dataset
and evaluation metrics. Chapters 4, 5, and 6 cover the technical background and experi-
mental results of the three different anomaly detection methods we are evaluating. Chapter
7 compares the performance of each method and discusses our overall findings. We provide
a summary and avenues for future work to conclude our thesis in Chapter 8.

4



2
Background and Related Work

An investigation into anomaly detection methods first requires an understanding of the na-
ture of anomalies and existing detection systems used today by satellite operators. This
chapter defines common terminology used throughout the thesis. An extensive review of
relevant anomaly detection methods and related studies on spacecraft anomalies is pre-
sented as a survey of the current state of the art. Technical background for the methods
used in our experiments is not covered here, but rather provided in their respective chapters
dedicated to those methods.

2.1 Preliminaries

2.1.1 Spacecraft Anomalies

Anomalies are patterns in data that do not conform to a predefined notion of nominal be-
haviour (Chandola et al., 2009). Borrowing notation from Ruff et al. (2021), we can state
this more formally using probabilistic terms: given the data space X Ď RD of some task,
let the probability measure P` on X represent the concept of nominal behaviour of that
task. Then an anomaly is a data point that deviates from this notion of normality, and falls
in a low probability region of P`. Assuming that the probability density function p` corre-
sponding to P` exists, the set of anomalies can be defined as

A “ tx P X | p`
pxq ď τu, (2.1)

5



2.1 Preliminaries

where τ ě 0 is some threshold that represents the boundary of the region of nominal data.

Anomalies fall under the same umbrella as outliers and novelties, but the exact defi-
nitions and how they are handled in detection methods vary across application domains.
For example, outliers may be considered as “measurement errors” to be removed during
preprocessing while novelties might be new observations that must be added to training
data (Ruff et al., 2021). For our purposes, we do not need to make distinctions between
these terms, and instead focus on the concept of anomalies defined at the beginning of this
section. We identify three different ways in which these anomalies may appear in a dataset
(Chandola et al., 2009):

‚ As point anomalies—individual data points that are anomalous with respect to their
surrounding data. These are the types of anomalies typically caught by limit-checking
approaches.

‚ As contextual anomalies—data points that are anomalous conditional to a certain
context, but not anomalous in other contexts. Detection of this class of anomalies
requires appropriate contextual data to be available; for spacecraft this might mean
orbital parameters or space weather variables.

‚ As collective anomalies—groups of data points which are anomalous when consid-
ered together but may not be when considered as individual data points.

Chandola et al. (2009) give an example of a collective anomaly as an abnormal sequence
of values in a single time series signal, but the collection can be across multiple signals too.
As Boumghar et al. (2021) point out, spacecraft behaviour is not only defined by the values
of a sole telemetry signal, it is also defined from the collective status of all telemetry.

On spacecraft, anomalies can be traced to several possible factors. Firstly, the space
environment contains high-energy charged particles due to solar wind and cosmic rays
(Galvan et al., 2014). Near Earth, these charged particles are captured in zones known as
Van Allen radiation belts from their interactions with Earth’s magnetosphere. Satellites or-
biting through these zones are susceptible to complications like spacecraft charging, where
surface or internal build-up of electrons can discharge and damage onboard instruments
(Fennell et al., 2001). A region of particularly high radiation levels due to a weak local
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magnetic field is known as the South Atlantic Anomaly (SAA; Pavón-Carrasco and De
Santis, 2016). This region can be so hazardous to onboard electronics that measures are
taken to reduce science activities during SAA orbit intersections (Space Telescope Sci-
ence Institute, 2012). Another product of charged particle radiation is a Single Event Effect
(SEE), which occurs when an individual particle carries and deposits enough charge to dis-
rupt a sensitive component (Baker, 2000). Its effect can vary from “soft” errors such as a
change of state of an integrated circuit to permanent failures of electronics due to a latchup
or burnout (Fleetwood et al., 2000).

Space also offers challenging thermal conditions caused by exposure and lack thereof
to the Sun (Morgan, 2005). Onboard instruments only operate within a narrow range of
temperatures, and will cease to function if the temperatures become too extreme. The cy-
cling between hot and cold is an additional hazard to components through the stress from
uneven thermal expansion and contraction. Careful thermal regulation must be put in place
to prevent temporary or permanent faults.

Human decisions and operations are further sources of anomalies. Mistakes can be
made in all phases of a mission: in design choices, during assembly and integration of
the spacecraft, and post-launch when sending commands. These mistakes can manifest as
benign or severe anomalies at unpredictable times. Even human activities external to the
mission, whether intentional or not, can have considerable impacts. Orbital debris such as
defunct spacecraft, discarded rocket stages, and fragments of destroyed satellites poses an
ever-increasing threat to space missions. A more thorough discussion of different satellite
anomalies that can be caused due to the dynamic space environment or human activity is
found in (Galvan et al., 2014), citing examples from past missions.

While not all anomalies are problematic (Geiger et al., 2020), in the space context, the
risk of anomalies leading to irrecoverable failures means that any such behaviour must be
detected and investigated without significant delay.

2.1.2 Spacecraft Telemetry

Anomalies which occur on unmanned spacecraft must be detected from telemetry (or in
some cases, a lack thereof). This data consists of information related to the health and state
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of the spacecraft, called housekeeping telemetry, as well as data collected by the onboard
science instruments, like images (Zacchei et al., 2003). Science data is not utilized in any of
the anomaly detection methods we explore, since scientific objectives can vary greatly and
we want to find a solution that generalizes well across spacecraft. Therefore we primarily
refer to housekeeping data when we talk about telemetry. Table 2.1 shows the types of
housekeeping data we will use in our experiments.

Number of Channels

Packet ID Description Discrete Continuous Total

GPS1 GPS status and readings 46 15 61
GPS2 GPS status and readings 46 15 61
PCDU_ST Power distribution unit statuses 30 0 30
PCDU_I Power distribution unit currents 0 17 17
RX_MY Transponder voltages, statuses 7 9 16
RX_PY Transponder voltages, statuses 7 9 16
ST_TLM Attitude sensor telemetry 19 25 44
FSW_TT Time-tagged command statuses 21 0 21
BOT Back orbit telemetry statuses 39 0 39
DBG_SCI Readout electronics state variables 18 2 20
DBG_ST Readout electronics state variables 17 2 19

Total 250 94 344

Table 2.1: Types of telemetry packets used in our experiments and the number of channels
in each. A packet refers to a collection of related channels.

Spacecraft telemetry is made up of thousands of signals recorded by various sensors
and onboard components (Carlton et al., 2018). These time series signals, or channels1,
are heterogeneous, non-stationary, and noisy (Hundman et al., 2018). They can be cate-
gorized as discrete, such as status indicators or counters; or continuous, like temperature
or voltage readings (Yairi et al., 2017)—samples of both categories are displayed in Fig-
ure 1.2. Channels have different sampling frequencies and diverse ranges of values. Since
spacecraft often have multiple operational modes, the distribution of data is also multi-
modal in nature. Among the numerous channels, irrelevant signals need to be picked out

1Some works prefer to use the term parameter to describe a telemetry signal, which we refrain from doing
since that term is sufficiently overloaded with meanings in the machine learning field.
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and discarded since an abundance of irrelevant features may impede a model’s ability to
distinguish between nominal and abnormal data points (Zimek et al., 2012).

Telemetry is acquired when a spacecraft is in contact with a ground station, either di-
rectly or through relay satellites. This means that spacecraft engineers may not be imme-
diately aware of anomalous behaviour if it occurs between ground contacts or there is a
significant backlog of telemetry which cannot be downloaded in a single pass. Commu-
nication delays can also arise as a result of the spacecraft’s distance from Earth if travel-
ling far beyond Earth’s orbit. Complications in transmission can lead to noisy or missing
data samples that must be corrected through common signal preprocessing steps (Pilastre,
Boussouf, et al., 2020). All of these characteristics displayed by spacecraft data must be
considered when analyzing them in order to find anomalies. Fortunately, once an anomaly
is detected, it can usually be associated with unique indicators or signatures in telemetry
that help spacecraft operators identify reoccurring cases.

2.1.3 Anomaly Detection

We formally state the anomaly detection problem, continuing from the notation defined in
Equation 2.1 and (Ruff et al., 2021). If P is the true distribution that generates data points
x1, . . . ,xn P X , the objective is to develop a model that is able to classify whether a new
test data point x̃ P X is an anomaly, or in other words whether x̃ P A. Such a model
can be derived from human expertise (i.e., knowledge-based), or learned from x1, . . . ,xn

(i.e., data-driven). Apart from spacecraft anomalies, this area of research also addresses
computer network intrusion detection, fraud detection in bank transactions, medical diag-
noses, and finding anomalous patterns from Earth science data (Aggarwal, 2013). While
the overarching problem is the same across domains, a variety of methods can be applied
depending on the type of data used and availability of labels.

Inputs to anomaly detection methods can be image-based, sequential, or graph-structured;
different techniques have proven effective for each. Pang et al. (2020) observe that current
anomaly detection methods detect from a single type of input, but more complex anoma-
lies might only be found through analyzing multiple data types together. For time series,
there is a further distinction between methods that analyze univariate signals versus those
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that can handle multivariate data (Blázquez-García et al., 2021). No matter the input type,
anomaly detection methods tend to output binary labels or anomaly scores that represent
the degree of anomalousness (Aggarwal, 2013). The latter is preferred as they can be used
to rank anomalies for subsequent investigation.

Anomaly detection methods can also be categorized by their level of supervision. Su-

pervised techniques leverage data that is labeled as nominal or anomalous in order to clas-
sify new data points. Semi-supervised approaches only use either labeled nominal data for
training, or partial labels of both nominal and anomalous data (Ruff et al., 2020). Pang et al.
(2020) point out that some works introduce the former case as unsupervised; however, we
consider a model as unsupervised when it does not make use of any labels at all. These
models depend heavily on assumptions on distributions of abnormalities to be effective.

Challenges

Even when sufficient labels are available to attempt supervised learning, a priori knowledge
of anomalies is always going to be incomplete. While we can look for certain anomalies that
we predict may happen or have occurred previously, the difficulty lies with the unexpected
and novel anomalies. Without knowing their signatures, learning to detect these anomalies
is not trivial (Geiger et al., 2020).

When we stated our definition of anomaly earlier, we assumed some boundary ex-
isted between nominal and anomalous behaviour. Over the lifetime of a space mission, this
boundary can evolve due to gradual or sudden degradation of hardware from the various
space hazards listed in Section 2.1.1. Spacecraft behaviour also changes during different
operational modes, and when transitioning through different phases of the mission. Ahn et
al. (2020) give an example of a lunar orbiter that experiences different disturbances on its
way to the moon and throughout the manoeuvres it takes to insert into its final orbit. These
factors mean that the notion of nominal behaviour must be recalibrated while a spacecraft
is in operations.

One of the goals of developing an anomaly detection system is to assist spacecraft
operators in monitoring the health of satellites. A barrier to adopting such a system comes
from trusting its results. Failing to detect anomalies or raising too many false alarms that
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must be investigated increases the burden on operators rather than reducing it. Once an
anomaly is predicted, another challenge to address is how to identify the possible root
causes. Deep learning methods in particular have reputations as black box models that
produce predictions with low interpretability (Castelvecchi, 2016).

2.2 Data-Driven Methods for Detecting Spacecraft
Anomalies

This section contains a review of data-driven methods specifically for detecting anomalies
from spacecraft telemetry. These are alternative solutions mainly proposed by researchers
working with their national space agencies.

Detecting Changes in Causal Associations Fujimaki et al. (2005) hypothesize that the
behaviour of spacecraft is characterized by the causal associations in the system, and unex-
pected changes in such associations indicate anomalies. To extract causal associations, they
first map telemetry containing n time series channels into a nonlinear space H consisting
of product features of degree d :

Φ : X “ Rn
Ñ H “ Rm.

The dimensionality of feature space H is given by (Schölkopf and Smola, 2003)

m “
pn ` d ´ 1q!

d!pn ´ 1q!
. (2.2)

In practice the polynomial kernel is used since the feature space computation is intractable
when n and d are large (see Equation 2.2). Kernel principal component analysis (PCA;
Schölkopf et al., 1998) is then applied to find the directions of principal axes in the high
dimensional space H. These directions are shown to alter drastically if non-trivial changes
occur in the causal relationships of the system in the original data space X ; therefore they
are representative of the causal associations. An anomaly score θ is calculated as the dif-
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ference between directional vectors of nominal data v1 and of test data v2:

θ “ arccos
ˇ

ˇ

〈
v1,v2

〉ˇ

ˇ ,

where ⟨¨, ¨⟩ is the dot product operator. To evaluate its effectiveness, this method is ap-
plied on simulated telemetry of an orbital transfer vehicle provided by Japan Aerospace
Exploration Agency (JAXA).

Novelty Detection Martínez-Heras (2012) propose a telemetry monitoring paradigm for
spacecraft using novelty detection. The term novelty in this case is preferred over anomaly
to include behaviour that is nominal but in a new way. Their approach uses Local Outlier
Probabilities (LoOP; Kriegel et al., 2009) to find novel data points based on the density
of its k-nearest neighbours. LoOP is derived from Local Outlier Factor (LOF; Breunig et
al., 2000) and offers advantages in being less sensitive to the choice of hyperparameter k
as well as outputting a score that translates to the probability that novel behaviour is de-
tected. Each data point consists of simple statistical features—average, standard deviation,
minimum, and maximum—over a fixed time period. A prototype of this novelty detection
was applied on the XMM-Newton mission and successfully reported novelties which were
confirmed by the flight control team at the European Space Agency (ESA). The idea was
later integrated into the XMM Early Warning System (XEWS; Kirsch, 2012) to assist in
detecting early degradation of spacecraft components, as well as in the MetOp satellites
operated by the European Organisation for the Exploitation of Meteorological Satellites
(EUMETSAT; Trollope et al., 2018).

NOSTRADAMUS The New Operational SofTwaRe for Automatic Detection of Anoma-
lies based on Machine-learning and Unsupervised feature Selection (NOSTRADAMUS)
is an anomaly detection solution jointly developed by le Centre national d’études spatiales
(CNES)—the French space agency—and a cooperative laboratory known as Télécommuni-
cations Spatiales et Aéronautiques (TéSA; Fuertes et al., 2016; Fuertes et al., 2018). Their
system consists of three steps. First, a variety of features such as mean, standard deviation,
skewness, kurtosis, and energy are computed from windows of housekeeping telemetry.
Then PCA is applied to reduce the dimensionality of data. The final step is to learn a de-
cision boundary separating nominal data points from anomalies using one-class support

12



2.2 Data-Driven Methods for Detecting Spacecraft Anomalies

vector machines (OC-SVM; Schölkopf et al., 1999). NOSTRADAMUS was deployed in
parallel with existing telemetry surveillance systems for a CNES-operated satellite. Initial
operational tests revealed that too many false alarms were raised and the detection results
were not human-interpretable without data post-processing.

ATHMoS The Automated Telemetry Health Monitoring System (ATHMoS), located at
the German Space Operations Center (GSOC), consists of modules of anomaly detection
algorithms that analyze and provide insight on spacecraft telemetry. One such module is
Project Sibyl (Verzola et al., 2016), which also employs LoOP to detect outliers in windows
of data. A difference between this system and the one described by Martínez-Heras (2012)
is an additional preprocessing step consisting in Density Based Spatial Clustering in Appli-
cations with Noise (DBSCAN; Ester et al., 1996) that automates the selection of a nominal
set of telemetry for input into the novelty detection component. When demonstrated on
telemetry from the Columbus Orbital Laboratory on the ISS, this unsupervised preprocess-
ing step achieved comparable results to hand-selection of nominal data by domain experts,
while reducing much of the manual effort needed.

Another module, contributed by O’Meara et al. (2018), combines the existing outlier
detection process in ATHMoS with deep learning. An autoencoder neural network ex-
tracts features from time intervals of telemetry, which are concatenated to a set of human-
engineered statistical features. The resulting feature vector is used as input in Outlier Prob-
ability Via Intrinsic Dimension (OPVID), a novel density-based algorithm sharing sim-
ilarities with LoOP. At the same time, the ability for the autoencoder to reconstruct its
input data is an indication of the anomalousness of that data. Both the output from OPVID
and reconstruction error are considered in detecting anomalies. The authors also describe
an effort to forecast spacecraft behaviour by training Long Short-Term Memory networks
(LSTMs; Hochreiter and Schmidhuber, 1997) on not only nominal data, but all available
data. The outputs of the LSTMs are future telemetry values that are then input into the
anomaly detection system to predict anomalies in the future.

Probabilistic Clustering and Dimensionality Reduction Yairi et al. (2017) decide to
model real-valued continuous data separately from discrete variables. They leverage the di-
mensionality reduction and clustering capability of mixture of probabilistic principal com-
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ponents analyzers (MPPCA; Tipping and Bishop, 1999) on continuous values, arguing that
a finite number of clusters are generally formed in a low-dimensional subspace as a result
of the different spacecraft operational modes. Meanwhile, discrete-valued data are handled
by mixtures of categorical distributions. The combined model of MPPCA with categorical
distributions is a joint probability distribution, the parameters of which are learned from
nominal past telemetry. Once trained, the model predicts the degree of anomalousness for
new data samples. The authors choose not to find a threshold separating anomalies from
nominal observations, and instead inspect the cases that yield the largest anomaly scores.
This system was tested on telemetry from the Small Demonstration Satellite 4 (SDS-4), a
microsatellite mission operated by JAXA.

Event Detection with Space Environment Correlation A study by Carlton et al. (2018)
uses statistical methods to detect potential faults and interesting events across multiple
geostationary Earth orbit (GEO) satellites from telemetry provided by commercial satel-
lite operators Intelsat and Inmarsat. They attempt to find transient events such as spikes in
data using the Tukey method (David and Tukey, 1977; Wang et al., 2011) on windows of
telemetry. At the same time, change point detection is performed using piecewise linear
approximations (PLAs; Shatkay and Zdonik, 1996). The events detected through these al-
gorithms are compared to space weather data and lists of known satellite anomalies near
GEO to find correlations with space environmental factors.

Sparse Decomposition and Dictionary Learning Another technique (Pilastre, Bous-
souf, et al., 2020) out of CNES and TéSA is based on sparse representation theory (Bruck-
stein et al., 2009), the goal of which is to approximate a signal y P RN as a linear com-
bination of a dictionary Φ P RNˆL and a sparse coefficient vector x P RL. The columns
of the dictionary, called atoms, are derived from nominal telemetry such that nominal sam-
ples are well approximated as y « Φx while maintaining the sparsity of x. In the anomaly
detection setting, y is a mixed signal consisting of discrete and continuous telemetry from
a window of time and is decomposed as y “ Φx ` e ` b, where Φx represents nominal
data, e is an additive error term, and b is noise. Thus the decomposition residuals e and
b provide an estimate of the anomalousness of the input signal. This Anomaly Detection
using DICTionary (ADDICT) method proved to be comparable in performance to those
introduced by Yairi et al. (2017) and Fuertes et al. (2016) in experiments on a reduced
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spacecraft dataset. Later iterations of ADDICT incorporating convolutional sparse repre-
sentations (Pilastre, Silva, et al., 2020) and weights for each telemetry channel (Pilastre
et al., 2021) showed noticeable improvements on the same reduced dataset.

LSTM Forecasting with Dynamic Thresholding Hundman et al. (2018) from NASA’s
Jet Propulsion Laboratory (JPL) also make use of LSTMs to forecast telemetry; past nom-
inal data is combined with commands executed on the spacecraft to output predictions of
future values of a single channel. Larger errors between predicted values and actual in-
coming telemetry signify more anomalous time steps. Their method, called Telemanom,
also dynamically finds thresholds for windows of error scores to separate nominal from
anomalous values. An anomaly pruning technique is applied afterwards to reduce the num-
ber of false positive results. This system was deployed for operations for the Soil Moisture
Active Passive (SMAP) mission in October of 2017 and was monitoring over 700 teleme-
try channels in near real-time at that time. We provide a more detailed description of the
Telemanom method later in Section 4.1.

A major contribution alongside Telemanom is the public release of a dataset of SMAP
and Mars Science Laboratory (MSL) telemetry and command information. This anonymized
dataset contains 105 anomaly sequences to be detected from almost 500,000 data points
across 82 channels. While this dataset is commonly cited in time series anomaly detection
works, it contains shortcomings that often are not addressed. In their official code reposi-
tory2, the authors acknowledge that for certain channels, the training and test data are not
scaled consistently, which means nominal test data no longer resembles the train set. Addi-
tionally, the dataset cannot be used to learn from multiple channels at once in multivariate
models since the channel values come from different, independent time windows.

Convolutional LSTM with MPPCA Building upon the works of Yairi et al. (2017) and
Hundman et al. (2018), Tariq et al. (2019) develop a method that combines Convolutional
LSTM (ConvLSTM) neural networks with MPPCA into multivariate models. These mod-
els handle the telemetry channels of entire subsystems of spacecraft at once, relying on
the success shown by ConvLSTMs in predicting multivariate outputs (Zhang et al., 2018).
Dynamic thresholding and error smoothing, borrowed from the Telemanom method, are ap-

2https://github.com/khundman/telemanom
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plied to produce intermediate anomaly scores. These are combined with anomaly probabil-
ities calculated via MPPCA to generate final anomaly scores. For each channel, the lower-
dimensional representations produced during MPPCA are reconstructed to their original
data samples and the error in reconstruction is used to reveal possible channels responsible
for the detected anomalies. The authors run their method on ten months of telemetry gath-
ered from the Korea Multi-Purpose Satellite 2 (KOMPSAT-2), a satellite operated by the
Korea Aerospace Research Institute (KARI).

Breakpoint Detection and Dependency Graph Analysis Boumghar et al. (2021) pro-
pose an anomaly detection approach that is supplemented by a diagnosis method for finding
the cause of an anomalous event. They split multivariate telemetry into segments of sim-
ilar behaviour based on the time series segmentation work of Lee et al. (2018). This is
done with an autoencoder neural network that capture key features of input data in a la-
tent space; the L2 norm of the latent representation of consecutive windows of telemetry
is calculated and local maximums of the distance measures are considered as breakpoints.
Not all breakpoints indicate anomalies. To further investigate these changes in behaviour,
dependency graphs characterizing the telemetry before and after the breakpoint are built
by applying eXtreme Gradient Boosting (XGBoost; Chen et al., 2015) and extracting the
importance scores of each feature. Changes in the structures of the graphs on either side
of the breakpoint can reveal clues in determining the abnormality of behaviour near that
point.

Deep Generative Models An investigation performed by Ahn et al. (2020) looks at two
deep generative models for anomaly detection: variational autoencoder (VAE; Kingma and
Welling, 2014; D. J. Rezende et al., 2014) and GANomaly (Akcay et al., 2018). To ap-
ply such models on time series spacecraft data, the usual 2-D convolution operations are
replaced with their 1-D variants. These semi-supervised anomaly detection methods are
additionally augmented through Bayesian Optimization with a Gaussian process (Snoek
et al., 2012) for improved hyperparameter selection. Anomalies are detected based on the
generation errors of incoming input data after training on nominal data. The authors eval-
uate their proposed techniques on simulated sensor data and faults from an attitude and
orbital control simulator developed by KARI to test their upcoming Korea Pathfinder Lu-
nar Orbiter (KPLO) mission (Jung et al., 2019).
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2.3 Deep Anomaly Detection for Time Series

In addition to the methods previously mentioned, we highlight a few different anomaly
detection techniques intended for general time series signals, since they can be applied to
spacecraft datasets.

Generative Adversarial Networks While generative adversarial networks (GANs; Good-
fellow et al., 2014) have been wildly popular in image processing tasks, much less focus has
been given to time series generation using such networks. However, their ability to gener-
ate realistic sequential data samples is leveraged by Li et al. (2019) in detecting anomalies.
Their method, Multivariate Anomaly Detection with GAN (MAD-GAN) involves train-
ing an LSTM-based generator and discriminator to model the complex correlations within
nominal multivariate time series data. The generator attempts to map samples from a latent
space to data that follows the nominal distribution. If latent space samples corresponding
to new test data are poorly reconstructed by the generator, this indicates that the test data
do not follow the nominal distribution. Meanwhile, the discriminator learns to distinguish
nominal samples from off-nominal ones. The reconstruction residual and discriminator
output, together, form an anomaly score. Geiger et al. (2020) build upon this idea with
their TadGAN framework, which incorporates techniques known to improve the stability
of GAN training. We explore TadGAN in more depth in Section 5.1.

Stochastic Recurrent Neural Networks First introduced by Bayer and Osendorfer (2015),
stochastic recurrent networks leverage variational inference techniques in recurrent neural
networks (RNNs) to model underlying distributions of sequential data. Park et al. (2017)
describe one such network, an LSTM-based variational autoencoder (LSTM-VAE), for
multimodal anomaly detection in time series data. LSTM-VAE outputs an anomaly score
based on the negative log-likelihood of a test sample with respect to its reconstructed distri-
bution. As with other reconstruction-based methods in semi-supervised settings, anomalous
data are indicated by higher reconstruction scores than their nominal counterparts. Follow-
ing (Park et al., 2016), a dynamically varying threshold is learned from the latent space
representation of nominal observations.

Su et al. (2019) propose another stochastic recurrent network which combines VAE
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with gated recurrent unit (GRU; Cho, van Merrienboer, Bahdanau, et al., 2014) layers into
a method called OmniAnomaly. In this method, not only are temporal dependencies cap-
tured in input space with the GRU, but also among latent space variables with a linear
Gaussian state space model (Kitagawa and Gersch, 1996). Furthermore, planar normaliz-
ing flows (D. Rezende and Mohamed, 2015) is applied to approximate the stochastic latent
space variable in order to learn a non-Gaussian posterior distribution. For determining a
threshold, OmniAnomaly borrows the Peaks-Over-Threshold (POT) technique introduced
in (Siffer et al., 2017), which we explain further in Section 6.1.5.

Deep Autoencoding Gaussian Mixture Model The Deep Autoencoding Gaussian Mix-
ture Model (DAGMM; Zong et al., 2018) is an unsupervised method that consists of two
networks. The first is an autoencoder that compresses high-dimensional input data x to a
lower-dimensional space and then reconstructs it to resemble x. Both the latent space repre-
sentation and a set of features derived from the reconstruction error are fed into an estima-
tion network. This second network facilitates learning a Gaussian Mixture Model (GMM)
by predicting mixture membership of each sample, which are used to directly estimate the
parameters of the GMM. By avoiding the typical alternating Expectation-Maximization
(EM) algorithm for learning a GMM (Huber, 2011), joint optimization of dimensionality
reduction and density estimation can be performed in an end-to-end training framework.
Then the estimated likelihood of new test samples is used to predict anomalies based on a
preselected threshold.

Graph Attention Akoglu et al. (2014) argue that graphs can be more robust in detecting
anomalies by looking at the structure and relationships of data rather than just the raw
values. Although telemetry is not inherently structured as graphs, Deng and Hooi (2021)
manage to leverage graph techniques in a time series anomaly detection setting by modeling
associations between sensors as graphs. In this work, embedding vectors are generated for
each telemetry channel, which represent nodes in the graph. By computing the normalized
dot product of each pair of nodes as measures of similarity, edges between nodes are learned
and an adjacency matrix is formed. The learned structure is used to forecast the expected
behaviour of each sensor with the help of a graph attention mechanism. Then the forecasted
values are compared with actual observed data to yield anomaly scores at each time step.

18



2.3 Deep Anomaly Detection for Time Series

Another method that makes use of graph attention for detecting anomalies in time series
data is proposed by Zhao et al. (2020). They model not only the relationships between
features of a multivariate dataset, but also the dependencies across time steps, as graphs.
This work is expanded upon in Section 6.1.

Finally, a number of surveys and review papers have been published to help the in-
terested reader navigate the state of anomaly detection research, including on time series
data. Chandola et al. (2009) provide a structured and comprehensive overview of different
classical techniques in multiple application domains. They identify strengths and weak-
nesses of each technique, but do not cover deep learning methods of recent years. Pimentel
et al. (2014) mention more works in their review by considering a wider scope of meth-
ods related to anomaly detection, novelty detection, or outlier detection. Chalapathy and
Chawla (2019) focus on deep anomaly detection, citing methods for multivariate time se-
ries anomaly detection that employ variations of RNNs, autoencoders, and GANs. Pang
et al. (2020) extend this work by identifying main themes or challenges in anomaly detec-
tion and how deep learning techniques tackle them. Blázquez-García et al. (2021) present
a taxonomy of outlier detection techniques for time series data, distinguishing between
methods for univariate versus multivariate input data as well as for point versus collective
outliers. Ruff et al. (2021) thoroughly review traditional shallow and newer deep learning
approaches, plus provide an outlook on research opportunities that lie ahead. The reader is
encouraged to peruse the survey papers mentioned here for a more extensive list of appli-
cable methods.

Having provided an overview of anomaly detection methods relevant to spacecraft
telemetry, the next step is to apply some of these methods and evaluate their performance
on a real dataset. The upcoming chapter describes the setup of the experiments we will be
conducting.
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Experimental Setup

This chapter describes the framework of our experiments. Since they all follow the same
formula, we first cover the elements common to each experiment before diving into specific
anomaly detection methods in detail. We explore the real-world (or rather, real out-of-this-
world) dataset as well as the preprocessing techniques applied before data is fed to deep
learning models. We list the models and thresholding techniques we are interested in, plus
the metrics to consider when evaluating such methods for anomaly detection.

3.1 Dataset and Data Preparation

Our evaluation of deep anomaly detection methods is conducted on Near-Earth Object
Surveillance Satellite (NEOSSat) data provided by the Canadian Space Agency (CSA).
NEOSSat is a space telescope that searches for and tracks asteroids in the inner solar system
as well as objects orbiting Earth (Abbasi et al., 2019). Unlike ground-based telescopes, it is
not limited by the day-night cycle, geographic location, or atmospheric weather, allowing
stable imaging of multiple science targets on a daily basis. The dataset we are given is
currently not available to the public; we describe its characteristics which are required to
understand the experiments and discussions that follow, but leave out particularities which
might be deemed sensitive.
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3.1.1 NEOSSat Telemetry

NEOSSat telemetry has been collected and stored since its launch in 2013. The definition of
nominal state for this spacecraft has transformed during its lifetime, notably due to two sep-
arate hardware failures and the resulting recovery actions (Abbasi et al., 2019). We choose
to use recent data which is a closer representation of the present state of the spacecraft.
We also wish to obtain sufficient anomalous samples to test the methods, considering that
anomalies are relatively infrequent. Thus, approximately one year of housekeeping data
from April 2018 to March 2019 is selected as our total dataset. Since the month of May
happens to be free of reported anomalies, it is used as the train set. April is set aside as a
validation set, and the remaining ten months comprise the test sets used for evaluation.

Telemetry from NEOSSat is organized into groups called packets based on similar com-
ponents or types of channels. The number of channels in each packet ranges from approxi-
mately 16 to 61. Out of the 122 types of packets downlinked to the ground station, we use
a smaller subset of 11 packets (summarized in Table 2.1) which allows us to run multiple
experiments covering different anomaly detection methods. These packets are chosen be-
cause they each contain at least one channel that has been identified by satellite operators
as an anomaly signature among anomalies that occurred between April 2018 and March
2019. Selecting channels and packets in this manner allows us to evaluate whether anomaly
detection methods can identify anomalies from this time period when provided the same
telemetry signals used by spacecraft engineers to spot them. Another benefit is that entire
telemetry packets can easily be used as inputs for models that work with multivariate data,
since we already know that the channels in each packet are related. In total we analyze 344
telemetry channels.

Preprocessing

Before the data is fed into our models, we apply typical preprocessing methods to stan-
dardize the different channels. Since telemetry channels are sampled at different rates, we
aggregate each signal into one minute time steps by taking the average of each minute. We
then scale each channel between r´1, 1s based on the minimum and maximum values of the
train set. After scaling, values in the test set less than ´10 or greater than 10 are clipped to
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these limits respectively. Since we do not know if values with extraordinarily large magni-
tudes are due to anomalies or sensor noise, we clip these values instead of scrubbing them
so they can still be fed into anomaly detection methods. In a similar vein, missing data
could be associated with known anomalies, but can also arise due to mishaps in downlink-
ing or storing data during a satellite pass. We elect to perform simple imputation of missing
values with zeros. Realistically, since each data point is timestamped, missing telemetry is
trivially detected by machines without the use of sophisticated algorithms. Therefore, we
also discard any anomaly prediction overlapping a window of missing data unless it is a
known anomaly. This ensures that a method’s performance is based on its ability to detect
anomalies from available telemetry, rather than its ability to detect missing telemetry.

3.1.2 Commands

Included with this dataset are the commands executed onboard the spacecraft. Their format
follows the dataset introduced in Hundman et al. (2018)’s work: one-hot encoded com-
mands indicating if that command was executed at a particular time step. Our dataset con-
tains 25 commands, mainly consisting of pointing and imaging operations.

3.1.3 Labels

NEOSSat anomalies are identified and documented in anomaly reports by CSA satellite
operators. These reports contain the time range of the anomalies along with their signatures.
Since there are so many channels for operators to analyze, often only a handful of signatures
are captured. In some cases, the signatures are associated with spacecraft event logs which
appear solely during error states. We choose to discard anomaly labels such as these, whose
signature channels are not available at all during the training period. We are left with 56
anomalies between April 2018 and March 2019 in our dataset.

3.2 Methods of Interest

Our anomaly detection methods of interest all follow a similar formula: the first step in-
volves training a deep neural network to output anomaly scores for every time step of
input data. The model either forecasts future telemetry values or reconstructs them from
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a reduced latent space. Since it learns exclusively from nominal data, it fails to accurately
predict (i.e., forecast or reconstruct) telemetry when the input is off-nominal. Thus the
anomaly scores are constructed from the errors in predictions. Then a threshold is calcu-
lated such that scores which exceed said threshold are classified as anomalous time steps.
The predicted anomalies are compared with a set of ground truth labels to assess the per-
formance of each method.

From the various anomaly detection methods mentioned in Sections 2.2 and 2.3, we
select three to evaluate in-depth on our spacecraft dataset:

‚ Telemanom (Hundman et al., 2018) forecasts telemetry using LSTMs, and intro-
duces an original dynamic thresholding technique.

‚ TadGAN (Geiger et al., 2020) employs GANs and applies a simple fixed threshold.

‚ MTAD-GAT (Zhao et al., 2020) makes use of graph attention layers and leverages
Peaks-Over-Threshold (POT; Siffer et al., 2017) to determine thresholds.

These distinct methods, which are covered in Chapters 4, 5, and 6 respectively, have all
claimed successful results on a dataset of spacecraft telemetry. As a bonus, open source
official or community implementations of these methods are available publicly, which helps
resolve some uncertainties arising from missing details in their papers.

3.3 Evaluation Metrics

Our primary evaluation metrics are the commonly used precision, recall, and F1 score. We
compare sequences of predicted anomalies outputted by the anomaly detection methods
to sequences of known anomalies from the entire anomaly set and define the following
outcomes based on the methodology of (Geiger et al., 2020; Hundman et al., 2018):

‚ A true positive (TP) occurs when a known anomaly sequence overlaps any predicted
sequences.

‚ A false negative (FN) occurs when a known anomaly sequence does not overlap any
predicted sequences.
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‚ A false positive (FP) occurs when a predicted anomaly sequence does not overlap
any known sequences.

In our experiments, anomaly sequences are predicted separately for each channel. The
precision of a method is computed from the total number of TP and FP results across all
channels:

precision “
TP

TP ` FP
.

The way we calculate recall requires more elaboration. Since anomaly signatures are ex-
hibited by only a subset of channels, we do not wish to tally up FNs based on the predicted
anomaly sequences of each individual channel. Instead, we consider the sequences of all
channels so that a FN is counted when a known anomaly sequence does not overlap a
predicted sequence of any channel. If there is an overlap, a TP is counted in the recall
equation:

recall “
TP

TP ` FN
.

Achieving high recall scores is thus not a terribly demanding task given a large number of
channels to work with. The F1 score, also stylized as F1, shows us the balance between the
precision and recall metrics as a single score in the range of r0, 1s:

F1 “ 2
precision ˚ recall
precision ` recall

.

Some works calculate these metrics based on the outcome of each time step rather than
overlapping sequences. We choose not to proceed this way because then the recall calcula-
tion would involve checking if a time step is predicted as anomalous by any channel (similar
to a logical OR operation across all channels), which can evolve into all time steps being
predicted as anomalous when the number of channels is large. This scenario is avoided by
evaluating overlapping sequences instead, but sanity checks are needed to ensure that high
precision and recall are not achieved simply by predicting one very lengthy sequence as
anomalous. We do this by restricting the maximum length of a predicted anomaly to five
days, since the longest true anomaly in our dataset lasts four and a half days.

Besides the metrics mentioned above, there are a few desirable characteristics we are
looking for when we examine anomaly detection methods. It is just as important to be
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able to determine possible root causes of an anomaly as it is to detect one. Identifying
the channels responsible for a predicted anomalous sequence gives us hints to finding the
cause. These anomaly signatures can then be leveraged to detect reoccurring anomalies and
establish recovery procedures. Most of the methods we work with are interpretable in this
way, outputting anomaly scores for each channel individually. However, we want to make
sure the anomaly scores reflect meaningful statistics, such as the probability of being a true
anomaly or its severity. Having reliable anomaly scores also allows us to sort predicted
anomalies so that satellite operators can focus their investigation efforts on higher-scoring
ones.

Since the methods we experiment with involve calculating prediction errors, either
based on forecasts or reconstruction of telemetry, we are interested in whether correlations
can be found between these errors and performance scores. We look at the mean absolute
errors of predictions across channels in each test month, excluding anomalous time steps
and their surrounding values. This ensures that the average error score we come up with
represents the error in predicting only nominal time steps, which is what the models are,
for the most part, trained to do.

The computational cost of each algorithm is addressed briefly in Appendix A.1 through
a comparison of running times on the same hardware. Although we are analyzing spacecraft
data, our intended use case for an anomaly detection method is, for the time being, solely
on the ground segment. Future deployment directly onboard a spacecraft would require
extensive experiments with space-grade processors, which is out of the scope of our work.
As long as the running times for training and inference seem reasonable for real-world
applications, we make no further analysis concerning the complexity. A description of the
hardware and software resources we make use of is also provided in Appendix A.2.

3.4 Reproducibility

Due to the size of the dataset, the number of model variations we study, and the differ-
ent method parameters to be tuned, we elect to perform only a single run of each of our
experiments. Sources of stochasticity in our deep neural networks include random weight
initialization, shuffling of training data, and dropout layers (Zhuang et al., 2021). We ac-
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knowledge that multiple trials and cross-validation techniques can produce a more accurate
indication of a model’s performance, but the enormous running times encountered during
training and evaluation prevent us from taking these approaches. Still, in an effort to ad-
dress randomness in our results, we split our ten months of test data into ten separate test
sets rather than treating them as a single dataset. This way we can report average F1 scores
across multiple test sets for a better comparison of overall method performance.

With the common experimental setup out of the way, the next three chapters explore
our methods of interest in full detail and present the results of each experiment.
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4
Telemetry Forecasting with Long

Short-Term Memory Networks

The use of Long Short-Term Memory networks (LSTMs) to forecast data by learning from
nominal behaviour has been explored in previous anomaly detection works (Bontemps et
al., 2016; Chauhan and Vig, 2015; Malhotra et al., 2015). Hundman et al. (2018), affiliated
with NASA’s Jet Propulsion Laboratory (JPL), are the first to target spacecraft anomalies
from telemetry and commands. They additionally contribute a dynamic thresholding ap-
proach to classify anomalies from prediction residuals. We commence our experiments
with their proposed method.

4.1 Technical Background

4.1.1 Recurrent Neural Network

LSTMs belong to a family of neural networks called recurrent neural networks (RNNs;
Rumelhart et al., 1986b), which are used primarily for sequential data such as time series
signals, written language, and audio. The key feature that distinguishes RNNs from regular
feedforward networks is that the weighted connections between nodes in RNNs contain
cycles, allowing a variable’s historical values to influence future outputs (Graves, 2012).
This is akin to storing memory in a network’s internal state. RNNs also have the ability to
learn from sequences of variable length, in contrast to a feedforward network which learns
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parameters assigned to particular input features from fixed-size data.

Calculating gradients in an RNN can be done via algorithms like real time recurrent
learning (RTRL; Robinson and Fallside, 1987) or backpropagation through time (BPTT;
Werbos, 1990), both of which are extensions of the standard backpropagation algorithm
(Rumelhart et al., 1986b) to sequence models. In practice, RNNs are unable to learn long-
term dependencies and can only connect future predictions with information from the re-
cent past. This is because RNNs trained with BPTT on long sequential data are particularly
susceptible to vanishing gradients: as error signals are backpropagated across many time
steps, their gradients decay to zero (Bengio et al., 1994; Hochreiter, 1991). This limits
the learning as long-term dependencies are dominated by short-term dependencies in the
calculation of the gradient (Hochreiter et al., 2001). The related problem of exploding gra-
dients (Hochreiter, 1991) can also occur when the backpropagated error signals blow up
exponentially in the number of layers of the network; again, this renders RNNs ineffective
as it makes training highly unstable.

4.1.2 Long Short-Term Memory

LSTMs were introduced in 1997 (Hochreiter and Schmidhuber, 1997) in an attempt to
solve the problems relating to long-term dependencies in vanilla RNNs. Their architec-
ture includes different gates that control the flow of gradients through their memory units
which are called cells. When the gates are closed, gradients pass through a cell unchanged,
alleviating the vanishing gradients problem. Given the input xt at the current time step t,
the vector of previous hidden states ht´1, and the previous cell state ct´1, the series of
operations of each unit is described below:

ft “ σ pWf ¨ xt ` Uf ¨ ht´1q , (4.1a)

it “ σ pWi ¨ xt ` Ui ¨ ht´1q , (4.1b)

c̃t “ tanhpWc ¨ xt ` Uc ¨ ht´1q, (4.1c)

ct “ ft ˚ ct´1 ` it ˚ c̃t, (4.1d)

ot “ σ pWo ¨ xt ` Uo ¨ ht´1q , (4.1e)

ht “ ot ˚ tanh pctq, (4.1f)
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where Wl and Ul are, respectively, input and recurrent weights of the corresponding layer
l. Bias terms are omitted for brevity. The operations are also shown in Figure 4.1.

Figure 4.1: Operations involved in a single LSTM cell, given input data xt, the previous
hidden states ht´1, and the previous cell state ct´1.

The first type of gate, known as the forget gate, determines how much of the previous
cell state is kept versus discarded (Equation 4.1a). The sigmoid function σ restricts the
output ft between 0, where the previous cell state is discarded completely, and 1, where all
the previous cell state is kept. The second type is the input gate. The output it of this gate
decides which information from the input xt to use to update the cell state (Equation 4.1b).
A hyperbolic tangent activation restricts the input values between ´1 and 1 to produce
candidate values c̃t with which to update the cell state (Equation 4.1c). Given the previous
cell state ct´1, the new cell state ct is calculated from the results of the forget and input
gates (Equation 4.1d). The final output gate determines how to produce the new hidden
state ht from the new cell state (Equations 4.1e-4.1f).

The addition of these gates to the recurrent network architecture has enabled LSTMs
to show success in sequence-to-sequence learning tasks in areas such as natural language
processing (NLP; Young et al., 2018; P. Zhou et al., 2016), speech recognition (Graves et
al., 2013; Sak et al., 2014), and time series forecasting on domain-specific datasets (Cao
et al., 2019; Chimmula and Zhang, 2020; Sagheer and Kotb, 2019).
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4.2 Method Details

4.2.1 LSTM-based Forecasting

The method proposed by Hundman et al. (2018), called Telemanom, uses LSTMs to fore-
cast telemetry data from past sequences of spacecraft telemetry and commands. The input
consists of a time series sequence X “ txt´ls`1,xt´ls`2, . . . ,xtu of length ls for some time
step t. Each xt “ rxt

m, c
ts contains the value xt

m of telemetry channel m concatenated to
command information ct P Rn which are one-hot encoded values indicating whether the n

commands were executed at time t. The output ŷt`1
m is a prediction of the value of m at the

next time step, and the loss function is simply the mean squared error (MSE) in forecasting,

L “
1

T

T
ÿ

t“1

pŷtm ´ xt
mq

2. (4.2)

Thus there is one model for each telemetry channel. Hundman et al. (2018) justify the
univariate predictions by arguing that LSTMS struggle to predict high-dimensional out-
puts and that this allows the source of detected anomalies to be easily traced to individual
channels.

4.2.2 Dynamic Thresholding and Mitigating False Positives

Hundman et al. (2018) propose a series of steps to find anomalous samples from the model
predictions of future telemetry values. First an error score is generated at each time step as
et “ |ŷtm´xt

m|. These error scores are split into sliding windows e “ ret´le`1, . . . , et´1, ets

of length we with step size ws, and then smoothed using an exponentially-weighted moving
average (EWMA; Hunter, 1986). As part of a spacecraft’s nominal behaviour, telemetry
values can change abruptly due to the sudden execution of time-tagged commands; such
changes can be difficult to predict using LSTM-based models (Shipmon et al., 2017). This
results in sharp spikes in error scores during nominal periods which need to be smoothed
out. A sample of the actual and forecasted telemetry values for channel
DBG_SCI_LAST_CCD_TEMP, along with the effect of smoothing the forecasting errors,
is seen in Figure 4.2.
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Figure 4.2: True and predicted telemetry (top), as well as error values (bottom) from chan-
nel DBG_SCI_LAST_CCD_TEMP.

Once the smoothed errors es are obtained, an anomaly threshold is dynamically found
for each window. Candidate thresholds are given by the set ϵ “ µpesq ` zσpesq where
z “ t2.5, 3, 3.5, . . . , 12u represents the number of standard deviations σpesq above the
mean µpesq. Then the threshold ε˚ is determined from the candidate thresholds as

ε˚
“ argmax

ε P ϵ

∆µpesq ` ∆σpesq

|ea| ` |Eseq|
2

where ∆µpesq and ∆σpesq are, respectively, the percent change in mean and standard de-
viation of esq when the values above ε are removed:

∆µpesq “
µpesq ´ µptes P es|es ă εuq

µpesq
,

∆σpesq “
σpesq ´ σptes P es|es ă εuq

σpesq
,

and ea “ tes P es|es ą εu. Finally, Eseq is the set of continuous sequences of ea P ea.
The goal is to find the threshold which produces the largest ∆µpesq and ∆σpesq while
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minimizing the quantity of detected anomalies ea and anomalous sequences Eseq to prevent
greedy behaviour. This method notably does not rely on labeled anomalous data, following
the semi-supervised nature of Telemanom.

After the threshold is found for each error window, a pruning procedure is applied to
reduce the number of false positive results by only retaining the most erroneous anomalies.
First, the maximum error value in each error sequence is collected and sorted in descending
order to form a new set emax “ sortptmaxpeseqq @ eseq P Esequq. Then emax is appended
with the maximum smoothed error not exceeding the threshold, maxptes P es|es R eauq.
For each eimax P emax, at index i, the percent decrease di between eimax and the next high-
est error ei`1

max is calculated. If any such decrease as well as all subsequent decreases are
less than a minimum percent p, the anomalies corresponding to those error sequences are
reclassified as nominal. This pruning approach limits the number of flagged anomalies that
must be verified by a human operator.

Finally, the remaining error sequences after pruning are assigned normalized anomaly
scores based on their distance from the chosen threshold:

s̃i “
maxpeiseqq ´ ε˚

µpesq ` σpesq
. (4.3)

4.3 Experiments

We perform experiments based on two variations of the Telemanom model:

‚ LSTM-Cmd—this is the same setup as the original Telemanom which includes
spacecraft commands as covariates to influence the forecasted telemetry values;

‚ LSTM-Solo—we exclude command information from the input to observe changes
in forecasting errors and ultimately in predicting anomalies.

Model Configuration

The model comprises two hidden LSTM layers, each with 80 units and dropout applied
after. The output layer is a fully connected layer that produces the forecasted telemetry of
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a single channel. Training occurs for 35 epochs or until the loss on the validation set no
longer decreases during ten consecutive training iterations. We employ the Adam optimizer
(Kingma and Ba, 2014) as a stochastic gradient descent method for minimizing our loss L
with a learning rate of 10´3.

Method Evaluation

Anomaly detection performance is evaluated across a range of values for the minimum per-
cent parameter used in pruning: p P t0.0, 0.1, . . . , 0.9u, where p “ 0.0 means no pruning.
For computing thresholds, we use sliding windows with window sizes we P tT

4
, T
3
, T
2

u and
step size ws “ 0.1we, where T is the size of the monthly test set. We compare dynamic
thresholding against a fixed threshold of 4 standard deviations away from the mean of the
current window of error scores, as used in (Geiger et al., 2020). A full description of the
implementation as well as training and evaluation configurations is presented in Appendix
A.3.

4.4 Results

The overall results of the two Telemanom experiments across all test months are presented
in Table 4.1. Dynamic thresholding clearly achieves higher F1 scores than a fixed threshold,
due to a significant improvement in recall.

Fixed Threshold Dynamic Threshold

Experiment Precision Recall F1 Precision Recall F1

LSTM-Cmd 0.56(0.30) 0.75(0.23) 0.56(0.29) 0.58(0.31) 0.89(0.17) 0.64(0.27)
LSTM-Solo 0.56(0.30) 0.71(0.20) 0.55(0.28) 0.55(0.28) 0.91(0.17) 0.63(0.31)

Table 4.1: Mean(standard deviation) of monthly results of Telemanom experiments with
fixed and dynamic thresholds.

These overall results are achieved after exploring a range of values for we as well as
p. Figure 4.3 shows the impact of pruning on both experiments after applying a dynamic
threshold. It can be seen that, up to a certain level of pruning, the precision improves sig-
nificantly while the recall is negatively effected only to a minor extent. Since the level at
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which the highest overall F1 score is found seemingly varies between methods, we choose
to report this highest score in our results here and going forward. This is discussed more in
Section 7.1.2.

Figure 4.3: Impact of the anomaly pruning parameter p after dynamic thresholding on mean
precision, recall, and F1 scores (top); and on the number of predicted anomalies across all
channels (bottom).

The mean absolute error (MAE) in forecasted values is slightly increased when com-
mands are included in input data (0.158) compared to no commands (0.136). This indicates
that past command information may not provide any benefit in predicting future telemetry
values in this setup. We would expect that a model which more accurately predicts nominal
values would better detect off-nominal samples; however, there is so far no clear correla-
tion between the error and F1 score, and a tiny increase in anomaly detection performance
is achieved overall with commands as covariates.
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4.5 Method Summary

LSTMs have been around for a long time, and using them for time series forecasting is
nothing new. While the dynamic thresholding and false positive reduction techniques pro-
posed by Hundman et al. (2018) are effective, we look to more recent technologies that can
be applied to generate anomaly scores.
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5
Time Series Anomaly Detection using

Generative Adversarial Networks

Since generative adversarial networks (GANs) entered the spotlight of the deep learning
stage in 2014 (Goodfellow et al., 2014), they have not left. Their success in image-related
tasks such as image generation, video prediction, and even anomaly detection in images
has led to works exploring the effectiveness of GANs on time series data. One product
of this effort is a method called TadGAN, proposed by Geiger et al. (2020), which claims
better anomaly detection performance over Telemanom on the SMAP and MSL datasets.
We highlight their approach in this chapter.

5.1 Technical Background

This section covers the basic formulation of GANs and three considerable improvements
developed since its inception.

5.1.1 Generative Adversarial Network

The vanilla GAN architecture involves two networks: a generator G and a discriminator D.
Given random noise vectors z, the generator aims to learn the distribution of some data x

to produce fake samples Gpzq that match this distribution. The discriminator has the goal of
differentiating between real and fake data, and outputs a probability that some input is a real
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sample. During training, D tries to maximize this output on real data x while minimizing
the output given fake data Gpzq. At the same time, G attempts to minimize the probability
1 ´ DpGpzqq that D recognizes the generated data as fake. Combining these objectives
gives us the overall GAN loss function, described as a minimax game with a value function
V pG,Dq:

min
G

max
D

V pG,Dq “ Ex„prrlogDpxqs ` Ez„pz rlogp1 ´ DpGpzqqqs (5.1)

“ Ex„prrlogDpxqs ` Ex̃„pg rlogp1 ´ Dpx̃qqs, (5.2)

where pr is the real data distribution over x and pz is a prior distribution of the noise z.
By implicitly defining the model distribution of the generated samples x̃ “ Gpzq as pg, we
obtain Equation 5.2.

In practice, training occurs by alternating multiple iterations of updates to D with up-
dates to G, to avoid overfitting on finite datasets. Goodfellow et al. (2014) show that for
a fixed G, the optimal D is found at D˚pxq “ prpxq{pprpxq ` pgpxqq, at which point the
value function can be reformulated as

V pG,D˚
q “ Ex„prrlogD˚

pxqs ` Ex̃„pg rlogp1 ´ D˚
px̃qqs

“ Ex„pr

„

log
prpxq

prpxq ` pgpxq

ȷ

` Ex̃„pg

„

log
pgpx̃q

prpx̃q ` pgpx̃q

ȷ

“ ´ logp4q ` Ex„pr

„

log
prpxq

pprpxq ` pgpxqq{2

ȷ

` Ex̃„pg

„

log
pgpx̃q

pprpx̃q ` pgpx̃qq{2

ȷ

“ ´ logp4q ` KL
´

pr

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pr ` pg
2

¯

` KL
´

pg

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pr ` pg
2

¯

“ ´ logp4q ` 2 ¨ JSppr||pgq,

(5.3)

where KL and JS are the Kullback-Leibler and Jensen-Shannon divergences, respectively.
Thus V pG,D˚q represents the similarity of pg and the data distribution pr through the JS di-
vergence (Equation 5.3). If the optimal discriminator is achieved at every round of updates
to D, then optimizing G leads pg to converge to pr.
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5.1.2 Wasserstein-GAN

One of the major disadvantages in working with GANs is that the training process is suscep-
tible to problems like instability, when the generator and discriminator oscillate rather than
converge; and mode collapse, when the generator fails to output samples with sufficient di-
versity to model pr. The convergence theory of GANs is an active area of research that has
seen significant progress over the years. One idea from Arjovsky et al. (2017) is to replace
the JS divergence with a loss based on the Wasserstein-1 distance, also known as Earth-
Mover’s (EM) distance. This distance is smooth and differentiable even for disjoint dis-
tributions, leading to improved stability in training. Through the Kantorovich-Rubinstein
duality (Villani, 2009), the Wasserstein-1 distance is expressed as

W ppr||pgq “ sup
||f ||Lď1

Ex„prrfpxqs ´ Ex̃„pg rfpx̃qs,

where the sup term represents the supremum over all 1-Lipschitz functions. If the function
f , parameterized by w, comes from a family of K-Lipschitz functions for some K, the
distance can be measured by

max
wPW

Ex„prrfwpxqs ´ Ez„pz rfwpGpzqqs. (5.4)

In this new form of GAN, called Wasserstein-GAN (WGAN), the discriminator is renamed
as critic and aims to learn an optimal fw to be able to measure the Wasserstein distance
between distributions pr and pg in the form of Equation 5.4. The generator then minimizes
this distance to produce samples as close to the real distribution as possible.

5.1.3 Wasserstein-GAN with Gradient Penalty

For the function fw to be K-Lipschitz continuous for some K, the critic weights w must lie
in a compact space W . Although the authors of WGAN suggest a simple trick of clipping
w to constants r´c, cs after each gradient update to enforce the Lipschitz constraint, they
acknowledge the opportunity for better methods to be proposed by the research community.
One such improvement, which does not rely on careful tuning of hyperparameter c, is
Wasserstein-GAN with gradient penalty (WGAN-GP), proposed by Gulrajani et al. (2017).

38



5.1 Technical Background

They prove that the ideal critic function has gradient norm of 1 almost everywhere under
distributions pr and pg. Based on this concept, weight clipping is replaced with a term that
penalizes the model as the gradient norm moves away from 1. Adding the gradient penalty
to the original critic loss from Equation 5.4 gives us the new critic loss

LC “ Ex̃„pg rCpx̃qs ´ Ex„prrCpxqs
loooooooooooooooomoooooooooooooooon

original critic loss

`λEx̄„px̄rp}∇x̄Cpx̄q}2 ´ 1q
2
s

looooooooooooooomooooooooooooooon

gradient penalty

, (5.5)

where C denotes the critic and λ is a coefficient to weight the new penalty term. Due to the
intractability of enforcing the unit gradient norm constraint everywhere, a soft version of
the constraint is applied instead to random samples x̄ „ px̄, where px̄ is implicitly defined
from uniformly sampling from straight lines between pairs of points in pr and pg.

5.1.4 Cycle Consistency Loss

In tasks where the goal is to generate data from a target domain Y that is different than that
of the input domain X , there can be a large space of mapping functions G : X Ñ Y to
search through. To reduce this search space, Zhu et al. (2017) introduce another mapping
function F : Y Ñ X and argue that the mapping functions should be able to bring samples
x P X and y P Y back to their original data in a cycle:

x Ñ Gpxq Ñ FpGpxqq « x,

y Ñ Fpyq Ñ GpFpyqq « y.

To learn this behaviour, a cycle consistency loss Lcyc (T. Zhou et al., 2016) is included in
the overall objective:

LcycpG,Fq “ Ex„prpxqr}FpGpxqq ´ x}1s
looooooooooooooomooooooooooooooon

forward cycle loss

`Ey„prpyqr}GpFpyqq ´ y}1s
looooooooooooooomooooooooooooooon

backward cycle loss

.

This method is referred to as CycleGAN.
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5.2 Method Details

5.2.1 Adversarial Learning for Time Series Reconstruction

Along with forecasting-based anomaly detection, reconstruction-based models are some of
the most common methods used in semi-supervised settings. The idea is to train a model,
such as an autoencoder (Rumelhart et al., 1986a), to encode input data in a low-dimensional
latent space and then map the latent data back into a reconstruction of the original input.
An error score is calculated as the difference between the input and its reconstruction. Only
nominal data is used during training so that when the model encounters off-nominal test
samples, it is not able to accurately reconstruct the input, resulting in higher error scores.

TadGAN combines a time series reconstruction model with adversarial learning. For
an input data domain X and a latent domain Z, the reconstruction model is made up of an
LSTM-based encoder E : X Ñ Z and an LSTM-based generator G : Z Ñ X . Given an
input sample x P X , its reconstruction x̂ is expressed as

x Ñ Epxq Ñ GpEpxqq “ x̂ « x.

Additionally, there are two critics involved; Cx learns to distinguish between real and re-
constructed data, while Cz differentiates between random latent samples z „ pz “ N p0, 1q

and encoded samples Epxq. Figure 5.1 depicts this model architecture.

The overall objective of TadGAN borrows key elements from Wasserstein-GAN (Ar-
jovsky et al., 2017), WGAN-GP (Gulrajani et al., 2017), and CycleGAN (Zhu et al., 2017):

min
tE,Gu

max
tCxPCx,CzPCzu

VXpCx,Gq ` VZpCz, Eq ` VL2pE ,Gq

with

VXpCx,Gq “ Ex„prrCxpxqs ´ Ez„pz rCxpGpzqqs ` λEx̄„px̄rp}∇x̄Cxpx̄q}2 ´ 1q
2
s,

VZpCz, Eq “ Ez„pz rCzpzqs ´ Ex„prrCzpEpxqqs ` λEz̄„pz̄rp}∇z̄Czpz̄q}2 ´ 1q
2
s,

VL2pE ,Gq “ γEx„prr}x ´ GpEpxqq}2s.
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Figure 5.1: TadGAN model architecture.

Here, Cx and Cz are sets of 1-Lipschitz continuous functions. As before in Equation 5.5,
px̄ is obtained by uniformly sampling along straight lines between points in pr and pg.
Likewise, pz̄ comes from uniformly sampling between points in pz and pe, where pe is the
implicitly defined model distribution of the encoded samples z̃ “ Epxq. The forward con-
sistency loss is weighted by γ and calculated using the L2 norm instead of L1 to accentuate
anomalous points; meanwhile the backward consistency loss is left out of TadGAN because
it was not found to improve the performance of the method.

5.2.2 Combining GAN Outputs into Anomaly Scores

TadGAN leverages the scores produced by Cx in distinguishing between real and recon-
structed samples as well as the reconstruction error to output anomaly scores for each time
step. The authors experiment with three ways of computing this reconstruction error et. Let
xt “ txt´l`1, xt´l`2, . . . , xt`lu be the true time series input and x̂t “ tx̂t´l`1, x̂t´l`2, . . . , x̂t`lu

be the reconstructed sequence at time t, both of length Ls “ 2l. Then,

‚ Point-wise difference is the absolute difference at each time step: et “ |xt ´ x̂t|;

‚ Area difference is the average difference between the areas under two curves, and is
effective at identifying regions where small differences persist over a long period of
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time:

et “
1

Ls

ˇ

ˇ

ˇ

ˇ

ż t`l

t´l`1

xt
´ x̂tdx

ˇ

ˇ

ˇ

ˇ

;

‚ Dynamic time warping (DTW; Sakoe and Chiba, 1978; Vintsyuk, 1972) measures
the similarity between local regions of two time sequences which can be out of step
or of varying lengths (Berndt and Clifford, 1994). Given a matrix W P RLsˆLs where
each element wi,j is the Euclidean distance measure between xi and x̂j , warp paths
are defined as W “ tw1, w2, . . . , wKu containing K distance measures. The warp
paths are subject to constraints on continuity, such that t1, 2, . . . , Lsu is contained
in both the set of indices i and in the set of indices j that are being measured by
wk

i,j @ wk
i,j P W; and on monotonicity, where the indices i and j of measure wk

i,j must
be nondecreasing as k increases in r1, Ks. The goal is to use the minimum distance
between two time series as the reconstruction error, calculated as the minimum warp
path among the set of valid warp paths W :

et “ min
WPW

»

–

1

K

g

f

f

e

K
ÿ

k“1

wk

fi

fl .

To normalize and prepare the reconstruction error and critic scores to be combined,
their respective z-scores ZRE and ZCx are first calculated from their means and standard
deviations. The anomaly score st is then produced either by taking their sum, weighted by
α, as in Equation 5.6, or their product as in Equation 5.7:

st “ αZt
RE ` p1 ´ αqZt

Cx
, (5.6)

st “ Zt
RE ¨ Zt

Cx
. (5.7)

According to the ablation studies performed by Geiger et al. (2020), multiplication is the
better option. The resulting anomaly scores at each time step are split into windows and a
fixed threshold of 4 standard deviations away from the mean of the window is applied to
identify anomalous time steps. Sequences of predicted anomalies are pruned and assigned
a normalized anomaly score s̃t as is done in Telemanom.
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5.3 Experiments

The experiments we perform in this chapter are with the following models:

‚ GAN-Cmd—we follow the TadGAN model with inputs as proposed in Telemanom,
using a single telemetry channel and command information to make predictions on
the same channel;

‚ Recon-Cmd—we remove the adversarial network to observe the performance of a
reconstruction-only anomaly detection model and characterize the impact of adver-
sarial learning;

‚ GAN-Multi—we extend the TadGAN model to learn from all of the N ą 1 channels
in a packet together and output multivariate predictions of these channels.

Model Configuration

The encoder E contains one bidirectional LSTM layer (Schuster and Paliwal, 1997) and
a fully connected output layer. Generator G consists of a fully connected layer, a bidirec-
tional LSTM layer with dropout, an upsampling step, another bidirectional LSTM with
dropout, and finally a fully connected output layer with hyperbolic tangent activation. The
architecture of Critic Cx includes four layers of 1-dimensional convolution1 with leaky rec-
tified linear unit (LeakyReLU; Maas et al., 2013) activation and dropout, followed by a
fully connected output. The Critic Cz is made up of two fully connected layers, each with
LeakyReLU and dropout, plus a final fully connected layer.

We run 2000 training loops with 5 critic iterations per loop using the Adam optimizer
(Kingma and Ba, 2014). The input sequence is of length Ls “ 100 and the dimensional-
ity of the latent space is N*20, based on the number of channels N . We explore different
combinations of encoder and generator hidden units for the multi-channel models since
N varies for each packet, but stick to 100 and 64 units respectively for the single channel
models. Evidently, the critic configurations do not apply to our reconstruction-only exper-
iment. Full details of our TadGAN setup related to implementation and model parameters
are found in Appendix A.4.

1The 1-dimensional convolution operation is elaborated in Section 6.2.1.
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Method Evaluation

Following the experiments of Geiger et al. (2020), we evaluate different methods—point-
wise difference, area difference, and DTW—for calculating reconstruction errors and then
multiply them with the outputs of Critic Cx to produce anomaly scores. We also evaluate
the anomaly detection performance when the critic score is excluded from the anomaly
score, to observe its effect. Along with the fixed thresholding used in TadGAN, we also
apply dynamic thresholding introduced in Telemanom (Hundman et al., 2018) on sliding
windows across anomaly scores, prior to pruning.

5.4 Results

The overall results of the TadGAN experiments are presented in Table 5.1. Once again,
there is a noticeable improvement in recall and overall F1 score when using a dynamic
threshold over a fixed one. The difference in performance across the three experiments is
minor, with GAN-Multi slightly ahead of the others.

Fixed Threshold Dynamic Threshold

Experiment Precision Recall F1 Precision Recall F1

GAN-Cmd 0.55(0.37) 0.66(0.27) 0.53(0.34) 0.60(0.36) 0.98(0.05) 0.66(0.37)
Recon-Cmd 0.52(0.34) 0.69(0.20) 0.52(0.33) 0.59(0.36) 0.88(0.15) 0.64(0.34)
GAN-Multi 0.60(0.40) 0.58(0.34) 0.54(0.35) 0.58(0.34) 1.00(0.00) 0.67(0.33)

Table 5.1: Mean(standard deviation) of monthly results of TadGAN experiments with fixed
and dynamic thresholds.

According to the creators of TadGAN, the outputs of the critic networks are supposed to
be lower for more anomalous samples, but taking a closer look at channels PCDU_WHL_X_I

and PCDU_WHL_Y_I in Figure 5.2 reveals that this is not always the case. These channels
have similar training and test data but the critic scores for these two signals appear like
mirrored versions of each other. Fortunately, this method uses Z-scores instead of using
raw critic scores directly, so any scores that deviate significantly from the mean can be
interpreted as possible anomalous time steps. In spite of this workaround, it turns out the
best results are achieved when only the reconstruction error is used, as seen in Table 5.2.
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Figure 5.2: Critic outputs of two similar channels, PCDU_WHL_X_I and
PCDU_WHL_Y_I, along with their telemetry inputs.

Compared to the point-wise or area methods for computing reconstruction differences,
DTW is higher in both intuitive and computational complexity. Yet it offers no noticeable
improvements (Table 5.2). DTW can be more effective when comparing sequences of dif-
ferent lengths or shifted out of step, but in this case the original input and its reconstruction
are the same length and already aligned.

Variation GAN-Cmd Recon-Cmd GAN-Multi

Point ˆ Critic 0.60(0.37) - 0.52(0.33)
Area ˆ Critic 0.58(0.35) - 0.52(0.33)
DTW ˆ Critic 0.61(0.37) - 0.52(0.35)
Point 0.66(0.38) 0.64(0.36) 0.67(0.36)
Area 0.66(0.37) 0.63(0.37) 0.65(0.37)
DTW 0.65(0.37) 0.64(0.37) 0.65(0.37)

Table 5.2: F1 scores of variations of computing the reconstruction error (point-wise, area,
and DTW) and anomaly score formations (with and without the critic output). These scores
are based on dynamic thresholding with the same error window size we “ 0.33.

The errors in reconstructing time series data are generally greater with GAN-Cmd
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(0.279) and GAN-Multi (0.329) than with the reconstruction-only model (0.249); this is
expected since adversarial learning involves balancing opposing objectives rather than op-
timizing a sole objective. Despite the differences in reconstruction errors, the three experi-
ments yield similar performance scores, hinting once more that there is no clear correlation
between the errors and the model’s ability to detect anomalies. The difference in recon-
struction abilities can be observed in channels such as DBG_ST_CCD_LAST_TEMP in
Figure 5.3.

5.5 Method Summary

GANs have been extensively researched for many years and have shown promise in a range
of problems, including the anomaly detection experiments we are running. Yet they are still
difficult to train in certain settings, and may not show clear signs of converging. Addition-
ally, we have seen in Figure 5.2 that the behaviour exhibited by the critic networks can be
unpredictable, assigning very different scores to seemingly similar data. These uncertain-
ties can lead to resistance from satellite operators in adopting such methods.

In our experiments with TadGAN, learning from and predicting entire packets of re-
lated telemetry yields minimal improvements in anomaly detection over predicting indi-
vidual channels at a time (although it does improve the total training duration, as seen
in Appendix A.1). Either the associations among telemetry channels offer no clues when
detecting anomalies, or we are not using the appropriate model to leverage those associ-
ations. In the next chapter we look at a method that employs graph attention (Veličković
et al., 2018) to learn the connections between channels and improve its multivariate time
series predictions.
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Figure 5.3: Reconstructed telemetry values (top three plots) and reconstruction
errors (bottom) of GAN-Cmd, Recon-Cmd, and GAN-Multi experiments on the
DBG_ST_CCD_LAST_TEMP channel. Despite the differences in reconstruction errors, the
three experiments result in similar F1 scores.

47



6
Multivariate Time-Series Anomaly

Detection via Graph Attention Network

In the previous chapter, we reconstructed time series data as part of the anomaly detec-
tion process. We saw that the multivariate reconstructions yielded much higher reconstruc-
tion errors than the single channel outputs and did not resemble the original samples at
all (Figure 5.3). As pointed out by Hundman et al. (2018), LSTMs struggle to predict
high-dimensional outputs. What kind of model might be better suited to deal with multiple
telemetry channels at once?

Inspired by the success of convolutional neural networks (CNNs) on high-dimensional
image-based tasks, graph neural networks (GNNs; Gori et al., 2005; Scarselli et al., 2009)
and related methods have emerged to handle data that cannot be represented in a grid-
like structure but can be represented as graphs. Of particular interest is the graph attention
network (GAT; Veličković et al., 2018), which employs self-attention mechanisms previ-
ously shown to excel in language understanding (Cheng et al., 2016; Vaswani et al., 2017).
GAT layers can model the relationships among nodes in a graph, and Zhao et al. (2020)
utilize this idea to capture correlations between telemetry channels as well as across time
steps. Their method, called Multivariate Time series Anomaly Detection via Graph At-
tention Network (MTAD-GAT), combines forecasting- and reconstruction-based anomaly
detection and is the subject of our last set of experiments.
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6.1 Technical Background

MTAD-GAT combines graph neural network techniques, an RNN advancement known
as gated recurrent unit (GRU), and a thresholding technique called Peaks-Over-Threshold
(POT).

6.1.1 Graph Foundations

A graph consists of a set of nodes connected by edges which define some sort of relation-
ship between pairs of nodes. These nodes, which contain one or more features describing
them, may be represented as low-dimensional node embeddings that capture both struc-
tural plus node information to be as used as inputs in downstream machine learning tasks
(Hamilton et al., 2017). Another way to represent the structure of the graph is in the form
of an adjacency matrix where the pi, jq-th element indicates the presence or absence of an
edge between nodes i and j. A graph that contains an undirected edge between every pair
of nodes is called a complete graph.

6.1.2 Graph Convolution

Variations of graph convolution networks (GCN) have been proposed (Bruna et al., 2014;
Hamilton et al., 2017; Kipf and Welling, 2017) to aggregate and extract information, sim-
ilarly to CNNs but on arbitrarily structured graph data. Given a set of node features H “

th1,h2, . . . ,hNu,hi P RF , where N is the number of nodes in the graph and F is the
number of features in every node, a graph convolution layer first applies a linear transfor-
mation to obtain high-level representations of every node. This transformation gi “ Whi

is parameterized by a weight matrix W shared across nodes. Then a graph convolution
operation is performed which generally consists of an aggregation of features over some
neighbourhood Ni of node i to compute a new set of node features,

H1
“ σ

˜

ÿ

jPNi

αijgj

¸

, (6.1)

where σ is an activation function and αij represents the importance of node j to node i.
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6.1.3 Graph Attention Network

While αij can be explicitly defined based on the structure of the graph, Veličković et al.
(2018) propose a GAT which uses self-attention to learn αij . Stepping away briefly from
the graph domain, the concept of attention was first introduced by Bahdanau et al. (2014) to
overcome a critical limitation in neural translation models such as seq2seq (Sutskever et al.,
2014). This model uses an RNN encoder-decoder architecture to read an input sequence,
form a compressed context vector of fixed length, and then predict the next output of the
sequence given the context vector and its previously generated outputs. A problem with
this kind of model is that its predictive performance deteriorates when dealing with long
input sequences (Cho, van Merrienboer, Bahdanau, et al., 2014) because then the context
vector fails to adequately express key information pertaining to earlier parts of the input. An
attention mechanism aims to solve this by assigning weights which signify the importance
of inputs near each position j to outputs at position i. A new context vector is defined
based on these weights that expresses the most relevant parts of the input sequence in order
to make the next prediction.

A GAT leverages this solution in the graph convolution framework. The unnormalized
attention scores eij of each pair of nodes i and j are calculated using a single layer neural
network parameterized by a:

eij “ LeakyReLUpargi,gjsq,

where r¨, ¨s is the concatenation operation. Any choice of attention mechanism can be sub-
stituted to calculate eij . Then a softmax function normalizes scores across the neighbour-
hood of node i to produce the αij term from Equation 6.1 above:

αij “ softmaxjpeijq “
exppeijq

ř

kPNi
exppeikq

.

This offers an end-to-end learning approach for capturing meaningful information across
neighbours of nodes and producing new features H to be used in graph-based tasks. A
method for improving training stability in GAT, called multi-head attention (Vaswani et al.,
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2017), combines the results of multiple independent attention mechanisms for each node;
however, this technique is not used as part of MTAD-GAT.

6.1.4 Gated Recurrent Unit

Cho, van Merrienboer, Gulcehre, et al. (2014) aim to improve on LSTMs with their inven-
tion of a simpler RNN hidden unit called gated recurrent unit (GRU). Figure 6.1 depicts
the new process to update the hidden state. Given the input xt at time step t, the vector
of previous hidden states ht´1, and weights Wl and Ul corresponding to layer l, the unit
update equations are as follows:

rt “ σpWr ¨ xt ` Ur ¨ ht´1q, (6.2a)

h̃t “ tanhpWh ¨ xt ` Uh ¨ prt d ht´1qq, (6.2b)

zt “ σpWz ¨ xt ` Uz ¨ ht´1q, (6.2c)

ht “ p1 ´ ztqht´1 ` zth̃t. (6.2d)

Figure 6.1: Operations involved in a single GRU, given input data xt and the previous
hidden states ht´1.
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Two new types of gates are defined, with the first being a reset gate r P r0, 1s which
determines whether to forget the previously computed hidden state (Equation 6.2a). A value
of 0 effectively acts as if resetting the unit to read the beginning of an input sequence.
Equation 6.2b computes the candidate values h̃t with which to update the hidden state,
where d denotes element-wise multiplication. The update gate, which is the other type of
gate, outputs coefficients zt used in the convex combination of the previous and candidate
hidden states (Equations 6.2c-6.2d). In other words, zt controls how much the previous
hidden state is updated with candidate values to produce the new hidden state ht.

Like LSTM units, GRUs improve on the traditional RNN model through their ability to
retain important features of an input sequence from many time steps in the past. Their use of
gating units allows error signals to more easily be backpropagated without encountering the
problem of vanishing gradients (Bengio et al., 1994; Hochreiter, 1991). Based on empirical
evaluations done by Chung et al. (2014), there is no clear consensus on which type of
hidden unit performs better in sequence modeling tasks.

6.1.5 Peaks-Over-Threshold

MTAD-GAT uses a thresholding approach called Peaks-Over-Threshold (POT), originating
from Siffer et al. (2017). The basis of POT is in Extreme Value Theory (EVT; Beirlant et al.,
2004), in particular its second theorem, known as the Pickands-Balkema-de Haan theorem
(Balkema and de Haan, 1974). This states that the tail F̄upxq of a probability distribution
can be well approximated by a generalized Pareto distribution (GPD) without making any
assumptions on the underlying distribution as a whole. Given a sequence of data points x
and some level u, peaks are defined as y “ x´u, for x ą u . In other words, peaks are the
excess values above the level (we use this term instead of threshold for u to avoid confusion
with the anomaly score threshold). As u approaches the upper bound U of the underlying
distribution, the peaks follow a GPD parameterized by a shape γ and scale σ:

F̄upxq “ P px ´ u ą x | x ą uq Ñ

´

1 `
γx

σ

¯´1{γ

, as u Ñ U.

The γ and σ values are computed using maximum likelihood estimation (MLE), where
the goal is to maximize the log-likelihood Lpγ, σq of peaks y “ ty1, y2, . . . , yNuu given
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those parameters:

Lpγ, σq “ ´Nu log σ ´

ˆ

1 `
1

γ

˙ Nu
ÿ

i“1

log
´

1 `
γ

σ
yi

¯

. (6.3)

Optimizing Lpγ, σq involves searching for solutions to ∇Lpγ, σq “ 0. Davison (1984)
observes that the bivariate problem can be reduced to a single variable equation through a
reparameterization of pγ, σq to pθq, where θ “ γ{σ. Making the following substitutions,

σ “
γ

θ
, (6.4)

γ “ ´
1

Nu

Nu
ÿ

i“1

logp1 ´ θyiq, (6.5)

results in a log-likelihood parameterized only by θ:

Lpθq “ ´Nu ´

Nu
ÿ

i“1

logp1 ´ θyiq ´ Nu log

˜

´
1

Nu

Nu
ÿ

i“1

logp1 ´ θyiq

θ

¸

.

Grimshaw (1993) takes advantage of this reparameterization and formulates the optimiza-
tion problem as solving d

dθ
Lpθq “ 0. This is equivalent to finding the set of zeros, denoted

θ0, of

hpθq “

˜

1 `
1

Nu

Nu
ÿ

i“1

logp1 ´ θyiq

¸ ˜

1

Nu

Nu
ÿ

i“1

1

1 ´ θyi

¸

´ 1.

Grimshaw (1993) proves that certain properties of hpθq help constrain the search space
of zeros. Once found, converting each θ0 P θ0 back to GPD parameters (Equations 6.4-
6.5) creates a set of candidate parameters C for producing the maximum of the GPD log-
likelihood. An additional candidate consisting of boundary values at pγ “ 1, σ “ maxpyqq

is appended to C. Then identifying the optimal parameters γ̂ and σ̂ is a matter of evaluating
Equation 6.3 with each pγc, σcq P C.

After obtaining parameters γ̂ and σ̂ of the fitted GPD, the probability of extreme obser-
vations can be evaluated. By setting some probability q (also known as the risk), it is then
possible to calculate a threshold εq such that P px ą εqq ă q. This threshold is used as the
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anomaly score threshold and is expressed as

εq “ u `
σ̂

γ̂

˜

ˆ

qn

Nu

˙´γ̂

´ 1

¸

,

where n is the length of data points x and Nu is the number of peaks.

6.2 Method Details

6.2.1 Feature Extraction

The first step of the MTAD-GAT model involves a 1-dimensional CNN to extract high-level
features from windows of input data. Given an input X P RTˆN containing N telemetry
channels over a window of T time steps, the convolution layer produces H P RTˆF where
each column hf P H is expressed as

hf “

N
ÿ

n“1

wf,n ‹ xn.

Here, ‹ denotes the cross-correlation operator and wf,n is the vector of learnable weights,
or kernel, corresponding to output channel f and input channel n. The input is padded to
return sequences of length T , and the number of output channels F matches the number of
input channels N .

6.2.2 Graph Attention for Temporal and Feature-based Dependencies

MTAD-GAT makes use of two separate GAT layers, shown in Figure 6.2, to simultane-
ously learn temporal and feature-based dependencies. One layer—GATtime—operates on a
complete graph where each node ht P RF consists of the vector of telemetry values at time
t. This allows relationships between time steps to be learned and produces H1

time P RTˆF .
The other layer, GATfeat, identifies correlations between telemetry channels by operat-
ing on another complete graph where each node hf P RT contains the telemetry values of
channel f from the same window of time. The output of this second layer is H1

feat P RFˆT ,
where each row is a T -dimensional vector representing the output of each node. The GAT
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layer outputs are concatenated along with the output of the previous 1-dimensional convo-
lution, forming X̃ “ rH,H1⊺

feat,H
1
times P RTˆ3F .

Figure 6.2: MTAD-GAT model architecture.

From here, GRU-based layers (Cho, van Merrienboer, Bahdanau, et al., 2014) produce
a forecast ŷt`1 P RN of future time series values in addition to a reconstruction x̂t P RN

of the current window of telemetry in order to leverage both types of predictions in detect-
ing anomalous time steps. While the authors of MTAD-GAT propose using a Variational
Autoencoder (VAE; Kingma and Welling, 2014; D. J. Rezende et al., 2014) to yield a prob-
abilistic reconstruction score, we find that not enough details are provided to implement
this component and instead opt for a standard autoencoder. This idea is borrowed from the
creator of an unofficial implementation of MTAD-GAT1, who cites instability and difficulty
in training VAEs. The overall loss thus combines the forecasting-based and reconstruction-
based errors, calculated across all channels being predicted:

etforecast “ RMSEpxt, ŷt
q,

etreconstruct “ RMSEpxt, x̂t
q,

L “ etforecast ` etreconstruct,

where RMSE is the root mean square error. Lastly, the anomaly scores for each channel
n at each step t in the test set are described by a similar combination of forecast and

1https://github.com/ML4ITS/mtad-gat-pytorch
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reconstruction errors: stn “ etn,forecast ` etn,reconstruct.

6.2.3 Streaming Peaks-Over-Threshold with Drift

Instead of using the raw anomaly scores sn to calculate the POT threshold εq, we use
relative differences δtn “ stn ´ mt where mt is a moving average of the last d scores,

mt
“

1

d

d
ÿ

k“1

st´k
n .

This alternate form of POT takes into account any drift of non-stationary signals by mod-
eling changes from the average local behaviour represented as mt. Additionally, we apply
POT in a streaming fashion, allowing εq to be continuously updated with new information.
First, an initial value for εq is calculated with relative anomaly scores from nominal train-
ing data, as a calibration step. Then δtn of test data is evaluated sequentially in which one
of the following three cases can occur:

‚ If δtn exceeds εq, stn is added to the set of predicted anomalies A;

‚ If δtn exceeds the level u but not εq, it is added to the set of peaks y and εq is updated
based on new estimates of GPD parameters γ̂ and σ̂;

‚ If δtn does not exceed u nor εq, nothing changes.

Sequences of anomalies in A are pruned and given a normalized anomaly score, following
the same process as Telemanom and TadGAN. To illustrate the differences between POT,
dynamic, and fixed thresholds, Figure 6.3 shows an example of these thresholds when
calculated on smoothed error values of a continuous channel.

6.3 Experiments

We initially perform three variations of experiments in this chapter:

‚ GAT-Multi—following the original MTAD-GAT method, we attempt multivariate
forecasting and reconstruction of multiple channels at once by training one model
for each packet of telemetry channels;
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Figure 6.3: Fixed, dynamic, and POT thresholds calculated on smoothed errors for channel
PCDU_GPS_I. Predicted and true anomaly sequences are highlighted in the background.
Anomalies are predicted wherever the error exceeds the threshold.

‚ GAT-Single—we train models on packets of telemetry channels to produce predic-
tions for a single channel at a time, in response to the high prediction errors seen in
experiments with multivariate outputs;

‚ GRU-Single—we then remove the GAT layers from the model and perform fore-
casting and reconstruction of a single channel based on GRU layers only.

Model Configuration

The MTAD-GAT model begins with a 1-dimensional convolution with a kernel size of 3
and ReLU activation. This is followed by simultaneous GAT layers that produce H1

feat and
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H1
time as defined in Section 6.2.2. The next layer is a GRU RNN that is shared by both

the forecasting and reconstruction sides of the model. Forecasting is then achieved with
two hidden fully connected layers with ReLU and dropout, plus another fully connected
output layer. At the same time, the decoder half of the reconstruction network consists of
a GRU-based layer in addition to a fully connected output layer. We try different settings
for the number of units—80, 150, and 300—in the GRU layers as well as the hidden fully
connected layers for each packet type.

Each model is trained for up to 35 epochs with early stopping, as in the Telemanom
experiments. We employ the Adam optimizer using a learning rate of 10´3.

Method Evaluation

For evaluation with POT, we try different values of risk q P t10´3, 10´4, 10´5u and initial
level u P t0.97, 0.99, 0.999u, followed by pruning. We also evaluate model performance
with dynamic thresholds for comparison. Additional specifics on implementation as well
as training and evaluation configurations are found in Appendix A.5.

6.4 Results

The results of the initial experiments in this chapter are presented in Table 6.1. We observe
right away that the overall performance using POT thresholding is better than with dynamic
thresholding. We also note that the single channel output models achieve similar F1 scores
whether they incorporate GAT layers or not.

Dynamic Threshold POT Threshold

Experiment Precision Recall F1 Precision Recall F1

GAT-Multi 0.49(0.29) 0.92(0.20) 0.60(0.29) 0.63(0.30) 0.94(0.11) 0.70(0.27)
GAT-Single 0.57(0.36) 0.91(0.11) 0.59(0.36) 0.76(0.26) 0.97(0.10) 0.81(0.26)
GRU-Single 0.52(0.31) 0.81(0.21) 0.58(0.26) 0.83(0.26) 0.92(0.17) 0.82(0.25)

Table 6.1: Mean(standard deviation) of monthly results of MTAD-GAT experiments with
dynamic and POT thresholds.

Like in dynamic thresholding, pruning plays an important role in the performance of
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POT. As the amount of pruning increases, the precision score elevates at a sharp rate while
the recall is largely unaffected until p exceeds 0.5 (Figure 6.4).

Figure 6.4: Impact of the anomaly pruning parameter p after POT thresholding on mean
precision, recall, and F1 scores (top); and on the number of predicted anomalies across all
channels (bottom).

6.4.1 Ablation Study

The two latest model variations we analyze, GAT-Single and GRU-Single, achieve the high-
est overall F1 scores we have seen so far. To characterize the impact of the pieces that make
up the GRU-Single model, we conduct additional ablation experiments:

‚ GRU-Forecast—we decompose the GRU-Single experiment to perform only fore-
casting of a single channel based on GRU layers;

‚ GRU-Recon—this is similar to GRU-Forecast but we use reconstruction errors in
training and evaluating single channels, instead of forecasting errors;
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‚ GRU-Solo—this model takes as input a single channel with no other covariates to
perform forecasting and reconstruction of that same channel;

‚ GRU-NoConv—we remove the initial 1-dimensional convolution layer from the
GRU-Single experiment’s model.

The results of these four experiments are summarized in Table 6.2. The effect of with-
holding components of the GRU-Single model appears to be small when either dynamic
thresholds or POT thresholds are applied. In some cases the mean F1 score actually im-
proves compared to GRU-Single.

Dynamic Threshold POT Threshold

Experiment Precision Recall F1 Precision Recall F1

GRU-Forecast 0.49(0.32) 0.94(0.11) 0.56(0.35) 0.80(0.25) 0.91(0.13) 0.81(0.23)
GRU-Recon 0.58(0.30) 0.85(0.20) 0.62(0.31) 0.83(0.28) 0.83(0.31) 0.83(0.29)
GRU-Solo 0.59(0.32) 0.71(0.20) 0.59(0.22) 0.79(0.27) 0.81(0.30) 0.79(0.27)
GRU-NoConv 0.54(0.35) 0.83(0.19) 0.56(0.35) 0.80(0.28) 0.80(0.31) 0.79(0.27)

Table 6.2: Mean(standard deviation) of monthly results of MTAD-GAT ablation experi-
ments with dynamic and POT thresholds.

6.5 Method Summary

It turns out that while graph attention is a promising addition to the anomaly detection
model, it does not appear to be responsible for the high F1 scores achieved in our ex-
periments of this chapter. Despite this, the graph-based methods provide the advantage of
revealing how other channels are associated to the one being predicted, in the form of at-
tention scores. We will see in Section 7.3 that these scores could be helpful in diagnosing
predicted anomalies.

In this latest round of experiments, POT thresholding shows consistent improvements
over dynamic thresholding. This encourages us to revisit the methods we have previously
tested and evaluate their performance using POT thresholds. An overall comparison of our
anomaly detection methods using all types of thresholds is presented in our penultimate
chapter, along with analysis of the experimental results.
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7
Discussion

Having conducted various experiments with the anomaly detection methods of interest, it is
now time to analyze the results. We first focus on the overall F1 score to get a sense of how
the different prediction models and thresholding techniques contribute to each method’s
performance. Recognizing that this metric does not tell the whole anomaly detection story,
we likewise discuss the true positive and false positive predictions as well as the available
information for interpreting predicted anomalies.

7.1 Comparison of Methods

To compare the different combinations of models and thresholding techniques, the F1
scores of our main experiments are gathered in Table 7.1. Precision and recall scores are
omitted from this table for clarity and can be found in the extended table in Appendix B.1,
along with the ablation results.

7.1.1 Model Performance

Generally, we see a trend of increasing scores over the progression of our experiments; the
top GAT and GRU models perform better than the best GAN-based model which beats the
LSTM methods. The ablation study in Section 6.4.1 is an attempt to decompose the top
scoring model and identify a possible cause for its high performance. Surprisingly, there
is little change in average F1 scores among the models which employ GRU layers, except
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Threshold

Experiment Fixed Dynamic POT

LSTM-Cmd 0.56(0.29) 0.64(0.27) 0.57(0.29)
LSTM-Solo 0.55(0.28) 0.63(0.31) 0.60(0.35)

GAN-Cmd 0.53(0.34) 0.66(0.37) 0.76(0.25)
Recon-Cmd 0.52(0.33) 0.64(0.34) 0.69(0.25)
GAN-Multi 0.54(0.35) 0.67(0.33) 0.65(0.24)

GAT-Multi 0.48(0.28) 0.60(0.29) 0.70(0.27)
GAT-Single 0.54(0.27) 0.59(0.36) 0.81(0.26)
GRU-Single 0.55(0.28) 0.58(0.26) 0.82(0.25)

Table 7.1: Mean(standard deviation) F1 scores of all variations of anomaly detection mod-
els across all test months, evaluated with fixed, dynamic, and POT thresholds. See Table
8.1 for a recapitulation of experiments.

for GAT-Multi. This leads us to wonder if it is the GRUs driving the high F1 scores. Some
of our GRU-based experiments are similar in setup to the LSTM-based models, and we do
not expect to see this much of a difference in their results. Studies by Chung et al. (2014),
Jozefowicz et al. (2015) and Cahuantzi et al. (2021) conclude empirically that neither GRUs
nor LSTM units clearly outperform the other on a variety of sequence modeling tasks. From
the prediction errors listed in Table 7.2, however, we see that GAT-Single and GRU-Single
do in fact generate the lowest errors in our setting. Their superior anomaly detection scores
may be attributed to this increased accuracy in forecasting and reconstructing time series
values.
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Mean Error 0.158 0.136 0.279 0.249 0.329 0.160 0.120 0.123
Standard Dev. 0.030 0.029 0.016 0.019 0.018 0.026 0.019 0.019

Table 7.2: Prediction errors (forecasting- and reconstruction-based) of each model averaged
across all test months.
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We expect to notice such correlation between prediction error and anomaly detection
performance in other experiments too since the premise of our models is to accurately gen-
erate nominal spacecraft telemetry to detect large deviations from this predicted behaviour.
Despite our initial observations in Sections 4.4 and 5.4 claiming otherwise, these correla-
tions are now apparent when considering the POT threshold scores. Examples of this are
seen in the models that output multiple channels at once, GAN-Multi and GAT-Multi; they
have higher errors and lower F1 scores than their counterparts which produce univariate
predictions. Deep learning models are known to be able to handle input and output data
that are high-dimensional—we need only turn to image generation tasks to see evidence
of this. Multivariate time series prediction, while interesting from a research perspective,
is less relevant for satellite operators if the single channel models perform better. For our
task, developing models that further reduce the prediction errors may be an appropriate
challenge to focus on, but developing models to predict multiple features over many time
steps may be less so.

In the LSTM experiments, including one-hot encoded command information as covari-
ates adds little to the anomaly detection performance when applying a fixed or dynamic
threshold, and even lowers it with a POT threshold. As noted earlier, LSTMs have diffi-
culty predicting abrupt changes in telemetry. We leverage past commands and telemetry
as multivariate inputs to forecast future telemetry values, but we could also use future
command information to improve our predictions. This information is available because
spacecraft command sequences are nominally planned well in advance of their execution.
To incorporate future commands into our model input, the command covariates need to be
shifted in time by 1 step, so that at each time step our model takes the telemetry values up
to time t and the commands up to time t` 1 to forecast the telemetry at time t` 1 (Herzen
et al., 2021). This allows the model to learn the relationship between future commands
and future telemetry, rather than only the relationship between past commands and future
telemetry. Additionally, the creators of Telemanom suggest using more granular command
information to increase prediction performance. Including more details in the input data,
such as specific parameters (i.e., arguments) associated with each command, may improve
the prediction errors as well as the method’s ability to detect the contextual class of anoma-
lies.

63



7.1 Comparison of Methods

7.1.2 Thresholds and Pruning

Although the POT technique does not always perform better than a dynamic threshold, the
highest F1 scores we see from our experiments come from POT thresholding. We observe
in the extended results of Table B.1 that, for LSTM-Cmd and LSTM-Solo, the diminished
F1 scores with POT stem from low recall. Both dynamic and POT thresholding perform
significantly better than with a simple fixed threshold, except for the LSTM experiments
where the scores with POT are closer to the fixed threshold results. By looking at the vari-
ance in results achieved with different parameter settings, presented in Appendix B.2, we
cannot conclude that either dynamic or POT thresholding is less sensitive to its parameters
than the other. Overall, POT yields a smaller spread of F1 scores across the ten months of
test data.

Dynamic and POT thresholding achieve high scores only in conjunction with the anomaly
pruning process. Before pruning, both types of thresholds attain recall scores close to 1 and
abysmal precision, resulting in overall terrible F1 scores. We see examples of this in Fig-
ures 4.3 and 6.4, where both types of thresholds at p “ 0.0 produce tens of thousands of
predicted sequences (over all the channels). Once pruning is introduced, the dramatic im-
provement to precision scores outweighs the minor reduction in recall scores up to a certain
level of p. Pruning is effective because it leaves behind only the predicted anomalies with
the highest anomaly scores for each channel, and for the purposes of calculating recall,
only one channel needs to successfully detect an anomaly for it to be considered a true
positive. However, pruning cannot be applied alone, as candidates for pruning must first be
found and associated with appropriate anomaly scores. This is why the choice of threshold
is important; it sets the groundwork for anomaly pruning to be successful.

In our experiments we identify the best scores achieved over a range of parameters
related to thresholding and pruning, by exploiting ground truth labels. This is done in order
to analyze the top possible results of each method and to investigate their potential for
detecting anomalies. We also find this to be the fairest manner for comparing methods;
after witnessing the F1 scores fluctuate considerably over different p levels, it seems that
comparing all of the results with the same fixed p may not have much meaning. In a real
setting, satellite operators may be able to get a sense of the appropriate value to set for the
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pruning parameter after sufficient anomaly labels are collected. This level can be readjusted
over time as new information comes in or based on alternative weightings of precision and
recall instead of a balanced F-measure. If p is unable to be set with certainty then thresholds
can still be established to produce candidate anomalies with corresponding anomaly scores.
We will see shortly in Section 7.3 whether anomaly detection can reasonably be done in
the absence of pruning.

7.1.3 Variance in Results

Much of our discussion is on the mean F1 scores of each method, but Table 7.1 also shows
the standard deviations over the ten months of test data. Aside from the LSTM models, the
POT scores show less variance than the other two threshold types. Overall, the standard
deviation values are relatively large, prompting a closer look at each test month.

Results by Month

In Figure 7.1, the dynamic threshold results show incredibly low scores in September,
January, and March for most methods. No model consistently comes out on top in every
month. Meanwhile, with the POT threshold all methods show poor results in March. The
LSTM models have the lowest scores in every month of the POT results while GAT-Single
and GRU-Single achieve close to the highest scores. Aside from the LSTM experiments,
there almost looks to be a downward trend in F1 scores over the test months for POT results,
even without considering March. If such a downward trend existed, it might be due to the
evolving state of the satellite over close to a year of operations.

The poor F1 scores in September, January, and March are not due to recall levels,
but rather stem from low precision. This is evident in the plots of precision and recall
of each method provided in Appendix B.5. In some cases, a method with relatively high
precision in a month can still produce more false positives than a low-precision method,
if it also is able to detect abundantly more true anomalies. An example of this occurs in
September when comparing the POT results for GAT-Single and LSTM-Cmd: 54 out of the
237 anomalies predicted by GAT-Single are false positives, resulting in a precision of 0.77;
LSTM-Cmd has a precision of 0.06 and while detecting only 16 false positives. The reason
this is possible is because we count true positives (and false positives) for each channel, so
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Figure 7.1: F1 scores of every method for each test month.

multiple true positive results detected by a method could all be the same anomaly. While
we think this is still a fair way to compare methods, it is worth bringing up because of
the burden placed on spacecraft operators when copious amounts of false positives are
raised. Section 7.3 offers an alternative perspective of true versus false predictions, where
overlapping anomalies predicted across multiple channels are counted together.

Results by Packet ID

Taking a glance at the results grouped by packet ID in Figure 7.2, we notice the precision
scores drop for packet ST_TLM compared to the rest. This packet contains a mix of discrete
and continuous channels for attitude determination, and it is unclear why it produces lower
scores. We show precision instead of F1 scores in this figure because each packet type only
detects a certain set of anomalies, so taking recall out of the equation allows for a fairer
assessment of each packet.

7.2 Predicted Anomalies

Figure 7.3 displays the true anomalies detected by each method using both dynamic and
POT thresholds. The anomaly with ID 29-41 is not detected at all with POT, even though
it is a reoccurrence of a previously detected case. The LSTM models with POT have the
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Figure 7.2: Precision scores of every method, grouped by Packet ID.

Figure 7.3: Detected and undetected anomalies by each method.

largest number of false negative results, many of which land in the month of November.
This helps explain the lower POT scores with LSTM compared to the other models. The
GRU-Single experiment with dynamic thresholds also contains many false negatives. We
note that this figure does not exactly convey which types of anomalies can be detected by
each method, since they are all detected when the pruning amount p is set to 0.0. Rather,
this figure shows the results based on the highest F1 score, to give us clues as to why
methods perform better than others and where to begin investigating the reasons behind
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these differences.

False Positive Analysis

One of the top performing models, GAT-Single, yields a much higher recall than preci-
sion. We investigate the predicted anomaly sequences of this method by selecting ten false
positive results with high anomaly scores to submit to the NEOSSat satellite operations
team for verification. We also provide the telemetry channels tied to these high scores to
help in the analysis, in the same manner that a predicted anomaly might be presented in
real-time operations. The operators are able to come up with explanations for six of the ten
cases. Two are due to actions taken to recover from prior anomalies; these types of false
alarms can easily be filtered out since the actions are planned procedures that cause the
spacecraft to exhibit different but known behaviour. Four false positive cases coincide with
GPS receivers resetting sporadically, which are not part of nominal operations but do not
significantly impact the spacecraft and thus are not reported as anomalies. This reveals that
anomaly scores may well indicate the presence of anomalous behaviour, since components
resetting by themselves is clearly anomalous, but the severity of the anomaly may be poorly
reflected by the scores. No causes are associated with the remaining four false positives.
While we do not unearth any new anomalies through this investigation, the results are still
encouraging now that we are able to back up some of our falsely predicted sequences with
reasonable explanations. The date range of each case and their verification outcomes are
summarized in Appendix B.3.

Detecting Collective Anomalies

In the evaluation phases of the anomaly detection methods, we set thresholds and predict
anomalies for individual channels at a time, which grants traceability of predicted anoma-
lies down to the channel level (Hundman et al., 2018). Doing it this way may hinder the
ability of these methods to detect collective anomalies which are only anomalous across
multiple channels and not when considered separately. However, Figure 7.3 shows that just
about every single true anomaly can be detected by our methods. It seems that the time
range of our dataset may not contain any actual instances of collective anomalies; it is also
imaginable that these cases went unnoticed and were not reported by satellite operators.
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These are exactly the sort of anomalies that are less obvious to detect by humans, where
machine learning models might prove their worth. Since we do not have the appropriate
dataset for evaluating purely collective anomalies, we do not investigate them further.

7.3 Interpretability

We rely on meaningful anomaly scores, of course, to calculate a threshold that sets apart
nominal and anomalous behaviours. These scores also provide some measure of anoma-
lousness for predicted anomalies, which adds colour to the otherwise black and white clas-
sification achieved by solely setting a threshold. This means operations engineers have an
alternative way to investigate anomalies, by prioritizing their efforts according to the top
scoring anomalies. One way for us to analyze the significance of anomaly scores is based
on this idea, by sorting predicted anomalies by their normalized score to determine if true
anomalies appear near the front.

We gather overlapping predicted anomaly sequences across all channels and retain the
maximum anomaly scores of those sequences to produce plots like in Figure 7.4, which
illustrates the distribution of true positive and false positive results among the top 100
sequences (plots for the rest of the methods are found in Appendix B.4). In LSTM-Cmd,
GAN-Cmd, and GRU-Single without pruning, the true positive cases are spread out among
the sorted anomaly scores with false positives interspersed between. In GRU-Single with
pruning, the truly detected anomalies are more clustered near the top scores. The effect of
pruning is also apparent when comparing the two GRU-Single plots. While the number of
detected anomalies based on the top anomaly scores is promising, the fact that many false
positives still exist among them may be a deterrent for spacecraft engineers. Additionally,
we observe greater variance (i.e., a more noticeable slope) in anomaly scores with POT
thresholding, indicating that the assigned scores are different enough to be sorted. This
is in contrast to the flatter scores from dynamic thresholding which appear so close in
value that assigning priority to predicted anomalies may not be straightforward. We note
that comparing scores across different channels like this still requires the calculation of a
threshold ε˚ since it is used in Equation 4.3.

Ultimately, the goal of interpretability in the methods we are examining is to provide
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Figure 7.4: Top 100 predicted anomaly sequences sorted by anomaly score with true posi-
tive and false positive labels, for selected experiments.

spacecraft operators with the information needed to investigate, confirm, and explain a
predicted anomaly. Although these methods point out the telemetry channels that are pro-
ducing large anomaly scores, this only gives a starting point for an investigation by the
operators. The anomalies, if they truly are anomalies, may be rooted in a different subsys-
tem and difficult to trace.

Inspired by Zhao et al. (2020), we investigate if graph attention scores can provide sup-
plementary information for diagnosing anomalies. The feature-based graph attention layers
used in the GAT-Multi and GAT-Single models identify other channels that are relevant to
the ones that are being predicted. We can observe the trend of attention scores at nominal
time steps and compare them with scores calculated during predicted anomalies. As an ex-
ample, Figure 7.5 displays attention scores αij for channel i “ 4 from packet DBG_SCI

calculated over one month, which includes three periods of true anomalies. The increase
or drop in scores during these periods indicates how the anomalies affect the correlation of
channels i and j; this can be observed in channels j “ 1, 6, 9, and 18, to name a few. This
kind of information may help in figuring out the root cause of an anomaly.

Furthermore, we notice that the three anomalous periods show distinct visual patterns in
the attention scores presented in Figure 7.5. Could these patterns be considered signatures
of their respective anomalies, used to detect and classify reoccurrences? We briefly explore
this idea by comparing Anomaly 06-16 with four of its reoccurrences, shown in Figure 7.6.
There is arguably some resemblance across all five instances of this same anomaly type.
In particular, Reoccurrences 1 and 2 exhibit very similar-looking patterns, as do Reoccur-
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Figure 7.5: Progression over time of attention scores αij for channel i “ 4,
DBG_SCI_LAST_CCD_TEMP, produced by the GAT-Single model. Each channel j is a
channel within packet DBG_SCI. Red and orange lines indicate the start and end of three
true anomalies.

rences 3 and 4. This is only one example of a reoccurring anomaly based on the attention
scores of a single channel, but such patterns may provide additional clues for the purposes
of identifying anomalies.
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Figure 7.6: Attention scores αij for Anomaly 06-16 and its next four reoccurrences. The
x-axis ticks are the start and end of each anomaly instance. This figure shares the same
colour bar as Figure 7.5.
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8
Conclusion and Future Work

In this work we have explored methods for detecting spacecraft anomalies from teleme-
try. Our focus has been on deep learning approaches, driven by the size and complexity
of the data. Additionally, due to the limited availability of anomaly labels in operational
settings, we favour semi-supervised rather than supervised techniques. We choose to ap-
ply anomaly score prediction models and thresholding techniques proposed by Hundman
et al. (2018), Geiger et al. (2020), Zhao et al. (2020), and Siffer et al. (2017). Our model
variations, listed in Table 8.1, cover different ways to construct the input data (e.g., in-
corporating command information and learning form multiple channels together), types of
outputs (e.g., univariate and multivariate predictions), and types of prediction models (e.g.,
forecasting- and reconstruction-based approaches). These models leverage trending con-
cepts in deep learning research like GANs, graph networks, and attention mechanisms; if
we follow this trend, there are plenty of opportunities for novel anomaly detection methods
as new, effective technologies emerge in related domains.

Through our experiments we have determined that models built with gated recurrent
units (GRUs; Cho, van Merrienboer, Bahdanau, et al., 2014) achieve the best overall F1
scores when combined with a thresholding technique known as Peaks-Over-Threshold
(POT; Siffer et al., 2017) and an anomaly pruning process developed by Hundman et al.
(2018). These models perform well when using multiple channels as inputs to make pre-
dictions for a single channel at a time. However, the type of training loss—forecasting
error, reconstruction error, or a combination of both—does not appear to be a major factor.
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Experiment Network Description Input Output

LSTM-Cmd LSTM forecasting 1 channel,commands 1 channel
LSTM-Solo LSTM forecasting 1 channel 1 channel

GAN-Cmd GAN,LSTM reconstruction 1 channel,commands 1 channel
Recon-Cmd LSTM reconstruction 1 channel,commands 1 channel
GAN-Multi GAN,LSTM reconstruction multi-channel multi-channel

GAT-Multi GAT,GRU forecast,reconstruct multi-channel multi-channel
GAT-Single GAT,GRU forecast,reconstruct multi-channel 1 channel
GRU-Single GRU forecast,reconstruct multi-channel 1 channel

GRU-Forecast GRU forecasting multi-channel 1 channel
GRU-Recon GRU reconstruction multi-channel 1 channel
GRU-Solo GRU forecast,reconstruct 1 channel 1 channel
GRU-NoConv No initial convolution layer multi-channel 1 channel

Table 8.1: Variations of deep learning models explored in our experiments.

While the addition of graph attention layers (Veličković et al., 2018) also did not noticeably
improve or diminish the model’s ability to detect anomalies, it did provide supplemental
information in the form of attention scores which could be useful in diagnosing suspected
anomalies. Ultimately, we recommend that this blend of GRU-based model with POT and
pruning be applied for detecting anomalies from spacecraft telemetry.

There can be reluctance in adopting new technologies or systems in established space
programs. To reduce risk and increase confidence in missions taking place in the unfor-
giving space environment, these programs rely on flight heritage and proven concepts of
operations. Deep learning tools in particular have not yet gained momentum on the space
segment, but more and more applications are being developed for ground processing of data
collected from space. The system we are recommending is a recurrent neural network that
learns to forecast or reconstruct nominal telemetry; such an idea is not terribly difficult to
grasp and accept. Furthermore, we propose integrating these anomaly detection methods,
not in a manner that disrupts the current flow of operations, but rather as a complemen-
tary tool to existing practices. The use of deep learning-based anomaly detection alongside
human operators allows trust to be gained in such systems while adding an extra set of au-
tonomous eyes to monitor spacecraft health. Our experiments show that such methods can
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detect many of the same anomalies identified by humans while maintaining a manageable
rate of false positive predictions. There is potential for these methods to reveal additional
insight towards diagnosing anomalous behaviour and as well as detect instances that are
overlooked by operators.

Looking at the future of space exploration, the trend is clear: humans are going to the
Moon, Mars, and beyond. With each new and distant endeavour comes a different set of
challenges; communication between Earth and spacecraft becomes severely limited, as do
evacuation options in emergency scenarios. The anomaly detection methods of today are
the foundations of the health monitoring systems which will one day be deployed onboard
spacecraft to provide real time detection and recovery measures in deep space missions.
These intelligent systems will be vital assets, relied upon to avoid catastrophic losses and
increase the chances of mission success. We hope our work shines some light on the possi-
bilities and potential of deep learning methods for deep space exploration.

8.1 Future Work

8.1.1 Method Improvements

There is no shortage of interest from the machine learning community in developing models
which output scores of anomalousness on different types of data, in a variety of domains.
In most cases there is still a need to set a threshold that classifies anomalous samples.
Compared to the amount of methods proposed for predicting anomly scores, few dynamic
and adaptive thresholding techniques currently exist (Blázquez-García et al., 2021). There
is an opportunity to improve anomaly detection performance through the development of
novel thresholding techniques. One early idea discussed by Martínez-Heras and Donati
(2018) is a network that learns upper and lower thresholds of telemetry values by balancing
two objectives: all values should fall within the predicted limits, and the limits should be
as narrow as possible. However, this solution has the same weakness as handcrafted limits
in that contextual and collective anomalies can still exist within these boundaries.

Another way to improve performance is by incorporating past, confirmed anomaly
labels into the thresholding process. Hundman et al. (2018) suggest a mechanism to re-
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classify predicted anomalies as nominal if a model produces too many false positives, by
making adjustments to threshold parameters. There are also active learning methods which
allow human experts to participate in model training by providing occasional feedback
based on its predictions. In doing so, the model could learn to disregard less severe anoma-
lous situations, such as the GPS resets mentioned in the false positive analysis (Section
7.2).

Although we do not look at ways to specifically detect collective anomalies, they are
some of the more difficult cases to be spotted by humans. Zhao et al. (2020) mention that
several channels can be considered together simply by taking the sum of their prediction
errors at each time step to produce a global anomaly score, before applying a threshold.
Since this does not prevent the scores of one channel from overshadowing another’s, we
suggest an alternative way that first normalizes the anomaly scores. By computing thresh-
olds and normalized anomaly scores as we have done for the experiments in this work, we
can then take a weighted sum across channels using the normalized scores as weights. At
this point, a time step during which several channels exhibit anomalous behaviour but to a
smaller degree results in a combined score that is significant enough to be predicted as a
collective anomaly.

8.1.2 Dataset Improvements

We split our dataset into months and chose to train our models on a single month during
which no anomalies are reported. This approach gives us plenty of training samples over a
consecutive time period, but we realize seasonal effects are not captured this way. A model
trained on nominal data outside of a satellite’s eclipse season may not represent nominal
behaviour that occurs during this eclipse season, when more time than usual is spent in
Earth’s shadow. One solution to this might be to split each month into train and test sets,
and feed training samples into the model from diverse time periods rather than all from the
same month.

Following the methodology of Hundman et al. (2018), we aggregate telemetry values
into one-minute windows so that channels which are sampled at different frequencies on
the spacecraft can be used together as inputs into our discrete-time models. This is done by

76



8.1 Future Work

taking the average every minute, which has the downside of masking anomalous behaviour
appearing as brief spikes within a window. An alternative approach is interpolating data so
that every channel contains a value at each time step of the highest frequency channel, sim-
ilar to how missing data might be handled. This also has a drawback in that interpolation
generates synthetic values or behaviour that may not truly reflect the status of the space-
craft at those times (Tariq et al., 2019). Fusing multiple asynchronous streams of data is a
problem often encountered by roboticists, who have over the years found ways to address
this such as through continuous time representations. Such solutions in the robotics field
could be borrowed to improve our own time series models in anomaly detection tasks.

Our experiments touch on only a small portion of the available data from NEOSSat,
in terms of the number of months as well as the number of channels. Since we wish to
study and compare multiple methods, training and evaluating on a much larger dataset is
not feasible. Now that an initial, broad investigation has been conducted, we could select a
single method to run on a complete dataset spanning many years and thousands of channels.
Such an experiment might reveal additional signatures linked to existing anomalies, or
even uncover anomalies not previously detected by humans. Significant effort would be
required from the satellite operations team to review and confirm the predicted anomalies.
In a similar vein, a model might benefit from manual selection of particular channels to
keep and discard in a dataset. We have thus far simply relied on the ability of deep neural
networks to learn for themselves which inputs are pertinent for their predictions.

8.1.3 Further Research

In our current spacecraft anomaly detection setting, present and past (also called back orbit)
telemetry is only processed during a ground pass. Therefore, anomalies can be flagged
in near real-time or at previous time steps. Predicting anomalies that may occur in the
future is a task that has not seen as much research attention but is in line with our goal
of detecting anomalous activity as early as possible. One way to do this is by leveraging
longer-term time series forecasting methods to predict future spacecraft behaviour, and then
performing our usual anomaly detection on those forecasts (O’Meara et al., 2018). Petkovic
et al. (2019) propose ensemble machine learning methods for predicting the evolution of
thermal power consumption on the Mars Express Orbiter, although numerous models have
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been developed in other fields to tackle this problem (Lim and Zohren, 2021; Sezer et al.,
2020). If we are to predict impending anomalies, we must first gain confidence in our ability
to detect them from actual data, which motivates the experiments we have conducted.
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A
Supplemental Material: Experiments

A.1 Running Time

The wall clock running times for training each model variation as well as calculating thresh-
olds are provided in Table A.1. The times shown are per channel; for the multivariate output
models GAN-Multi and GAT-Multi, their training times have been divided by the number
of channels predicted. Model training and thresholding are both performed on one month
of data, or approximately 44,000 time steps. The running times for setting fixed thresh-
olds and applying pruning are negligible, requiring no more than 1 second per channel.
The number of experiments, threshold parameters, and channels (344) is the main reason
we perform only a single run of each experiment. There is room for optimization in the
software implementations, which could enable more efficient experimentation.

If we consider these running times in an operational setting, we note that model training
may take a significant amount of time, but the models are trained or retrained infrequently.
To add to this, a single type of threshold and set of parameter values would be selected,
and the thresholding times are not significant enough to prevent near real-time anomaly
detection as telemetry becomes available on the ground.
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A.2 Hardware and Software Configuration

Time (s)

Experiment Mean SD

LSTM-Cmd 10 2
LSTM-Solo 8 2
GAN-Cmd 400 157
Recon-Cmd 42 32
GAN-Multi 77 26
GAT-Multi 26 8
GAT-Single 792 372
GRU-Single 433 246

Time (s)

Threshold Parameters Mean SD

Dynamic we “ T {4 23 3
Dynamic we “ T {3 21 3
Dynamic we “ T {2 13 2

POT q “ 10´3,u “ 0.97 57 96
POT q “ 10´3,u “ 0.99 29 80
POT q “ 10´3,u “ 0.999 1 1
POT q “ 10´4,u “ 0.97 70 111
POT q “ 10´4,u “ 0.99 39 89
POT q “ 10´4,u “ 0.999 6 11
POT q “ 10´5,u “ 0.97 79 118
POT q “ 10´5,u “ 0.99 47 94
POT q “ 10´5,u “ 0.999 8 133

Table A.1: Wall clock running times for training models on a single channel (left) and
calculating thresholds for a single channel over one month of test data (right).

A.2 Hardware and Software Configuration

A.2.1 Hardware

We train and evaluate the anomaly detection methods on compute resources provided by
the CSA. The hardware consists of an Intel Xeon Gold 6248 processor running at 2.50
GHz as well as an NVIDIA Grid RTX8000P-8Q with 7 gigabytes of dedicated graphics
memory.

A.2.2 Software

All methods and experiments are implemented with Python 3.7.6 using the following main
packages and versions:

‚ numba==0.54.0

‚ numpy==1.20.0

‚ pandas==1.2.5
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A.3 Telemanom Experiments

‚ scipy==1.7.1

‚ torch==1.9.0

A.3 Telemanom Experiments

A.3.1 Implementation Details

Our implementations of the Telemanom (Hundman et al., 2018) anomaly detection method
including the LSTM-based forecasting model and dynamic thresholding technique are
adapted from the official repository of Telemanom’s creators1. We convert their TensorFlow-
based implementation to PyTorch.

A.3.2 Method Parameters

In addition to the configurations described in Section 4.3, we adopt the hyperparameters
presented in Table A.2, which are the same as those used by Hundman et al. (2018) in their
experiments on SMAP and MSL data.

Model Parameters
Train batch size 64
Dropout 0.3
Input sequence length ls 250

Table A.2: Supplementary model parameters used in our Telemanom experiments.

The choice of thresholding window sizes we and step size ws follow the default values
of TadGAN. We use a smoothing window size of 0.02we rather than the default size of
0.05we from Telemanom. The best parameters found for each thresholding method are
described in Table A.3.

1https://github.com/khundman/telemanom
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A.4 TadGAN Experiments

Fixed Dynamic POT

Experiment p we p we p q u

LSTM-Cmd 0.2 0.5 0.7 0.25 0.3 10´4 0.97
LSTM-Solo 0.2 0.5 0.2 0.5 0.3 10´3 0.99

Table A.3: Thresholding parameters that achieved the best F1 scores for LSTM-Cmd and
LSTM-Solo.

A.4 TadGAN Experiments

A.4.1 Implementation Details

We adapt code from the official implementation2 as well as a community implementation3

to perform our TadGAN (Geiger et al., 2020) experiments.

Modifications for Multivariate Output

The TadGAN method supports reconstruction of N ě 1 channels, and although the official
and unofficial implementations support multivariate inputs, neither allow for multivariate
outputs. We make the following basic modifications to provide this capability:

‚ the last fully connected layer of the encoder outputs latent data of dimension N*20
which is then accepted by the CriticZ module;

‚ the first LSTM layer in the generator and the first Conv1D layer in the CriticX module
accept inputs of size N ;

‚ the last fully connected layer of the generator outputs N channels.

The CriticX module still outputs a single score for the entire sample, as a measure of
realness of all channels together rather than scores for each channel individually.

2https://github.com/sintel-dev/Orion
3https://github.com/arunppsg/TadGAN
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A.4 TadGAN Experiments

A.4.2 Method Parameters

Our model architectures and configurations are based on the original TadGAN implementa-
tion. Table A.4 presents experiment settings to supplement the details mentioned in Section
5.3.

Model Parameters

Train batch size 64
Input sequence length Ls 100
Latent space dimension N*20
Dropout 0.2
Gradient penalty loss weight λ 10
Forward consistency loss weight γ 10
Learning rate 5e-04

Table A.4: Supplementary model parameters used in our TadGAN experiments. N is the
number of channels handled by the model.

The same thresholding window sizes we, step size ws, and smoothing window as in
the Telemanom experiments are used. The setup that achieves the highest F1 scores for
GAN-Cmd, Recon-Cmd, and GAN-Multi are shown in Table A.5.

Fixed Dynamic POT

Experiment p we p we p q u

GAN-Cmd 0.2 0.33 0.3 0.33 0.6 10´3 0.99
Recon-Cmd 0.2 0.5 0.3 0.5 0.5 10´3 0.97
GAN-Multi 0.2 0.5 0.4 0.25 0.3 10´3 0.97

Table A.5: Thresholding parameters that achieved the best F1 scores for GAN-Cmd,
Recon-Cmd, and GAN-Multi.

Hyperparameter Search

The GAN-Cmd and Recon-Cmd models use default settings from TadGAN for the number
of hidden units in the encoder E and generator G: 100/64, respectively. In the GAN-Multi
model, we explore a few settings for each packet since they contain varying numbers and
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A.5 MTAD-GAT Experiments

types of channels: 100/64, 200/128, and 300/256. The settings that result in the lowest
reconstruction error on the validation set are used.

A.5 MTAD-GAT Experiments

A.5.1 Implementation Details

Our experiments with MTAD-GAT (Zhao et al., 2020) are based on an unofficial model
implementation4. We follow their lead in using a regular autoencoder with GRU layers in
place of a VAE for reconstruction, as the original work does not sufficiently describe how
the variational model is implemented. The POT thresholding algorithm (Siffer et al., 2017)
we use comes from the official implementation5.

A.5.2 Method Parameters

Table A.6 supplements the model configurations described in Section 6.3. In addition, the
moving average window size d to calculate relative differences for POT thresholding is set
to 1000, or roughly 2.5% of the size of the test data. This is the same proportion as used by
Siffer et al. (2017) on their experiments with satellite sensor measurements. The range of
values for q P t10´3, 10´4, 10´5u and u P t0.97, 0.99, 0.999u are inspired by the anomaly
detection experiments conducted by Siffer et al. (2017) and Su et al. (2019). The top F1
scores are achieved with the configurations described in Table A.7 for each threshold type
and experiment.

Model Parameters
Train batch size 64
Dropout 0.2
Input sequence length T 100

Table A.6: Supplementary model parameters used in our MTAD-GAT experiments.

4https://github.com/ML4ITS/mtad-gat-pytorch
5https://github.com/Amossys-team/SPOT
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A.5 MTAD-GAT Experiments

Fixed Dynamic POT

Experiment p we p we p q u

GAT-Multi 0.4 0.5 0.5 0.25 0.5 10´3 0.97
GAT-Single 0.1 0.5 0.2 0.5 0.7 10´3 0.999
GRU-Single 0.2 0.5 0.7 0.25 0.9 10´3 0.999

GRU-Forecast 0.1 0.5 0.1 0.5 0.7 10´3 0.999
GRU-Recon 0.5 0.5 0.3 0.5 0.9 10´3 0.97
GRU-Solo 0.2 0.5 0.8 0.25 0.6 10´3 0.999
GRU-NoConv 0.2 0.5 0.2 0.5 0.7 10´3 0.99

Table A.7: Thresholding parameters that achieved the best F1 scores for GAT and GRU
experiments.

Hyperparameter Search

Like in the GAN-Multi experiment, we explore additional values for the number of hidden
units in the forecast and reconstruction networks of GAT-Multi and GAT-Single: 80, 150,
and 300 units. For each packet type, the configuration that results in the smallest prediction
error on the validation set are kept. The remaining GRU experiments, including ablations,
follow the same setup as GAT-Single for these hidden units.
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B
Supplemental Material: Discussion

B.1 Full Results

The precision, recall, and F1 scores of all experiments with dynamic and POT thresholds
are shown in Table B.1.

Dynamic Threshold POT Threshold

Experiment Precision Recall F1 Precision Recall F1

LSTM-Cmd 0.58(0.31) 0.89(0.17) 0.64(0.27) 0.64(0.38) 0.61(0.28) 0.57(0.29)
LSTM-Solo 0.55(0.28) 0.91(0.17) 0.63(0.31) 0.62(0.39) 0.67(0.30) 0.60(0.35)

GAN-Cmd 0.60(0.36) 0.98(0.05) 0.66(0.37) 0.70(0.25) 0.94(0.11) 0.76(0.25)
Recon-Cmd 0.59(0.36) 0.88(0.15) 0.64(0.34) 0.58(0.23) 0.97(0.10) 0.69(0.25)
GAN-Multi 0.58(0.34) 1.00(0.00) 0.67(0.33) 0.55(0.23) 0.92(0.11) 0.65(0.24)

GAT-Multi 0.49(0.29) 0.92(0.20) 0.60(0.29) 0.63(0.30) 0.94(0.11) 0.70(0.27)
GAT-Single 0.57(0.36) 0.91(0.11) 0.59(0.36) 0.76(0.26) 0.97(0.10) 0.81(0.26)
GRU-Single 0.52(0.31) 0.81(0.21) 0.58(0.26) 0.83(0.26) 0.92(0.17) 0.82(0.25)

GRU-Forecast 0.49(0.32) 0.94(0.11) 0.56(0.35) 0.80(0.25) 0.91(0.13) 0.81(0.23)
GRU-Recon 0.58(0.30) 0.85(0.20) 0.62(0.31) 0.83(0.28) 0.83(0.31) 0.83(0.29)
GRU-Solo 0.59(0.32) 0.71(0.20) 0.59(0.22) 0.79(0.27) 0.81(0.30) 0.79(0.27)
GRU-NoConv 0.54(0.35) 0.83(0.19) 0.56(0.35) 0.80(0.28) 0.80(0.31) 0.79(0.27)

Table B.1: Mean(standard deviation) of scores from all experiments across all test datasets,
with dynamic and POT thresholds.
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B.2 Threshold Parameter Sensitivity

B.2 Threshold Parameter Sensitivity

We explore the variance in scores achieved with different parameter values for dynamic
and POT thresholding, in Figure B.1. In our experiments, only three options are selected
for each of the parameters we, q, and u. The variance is generally low for both threshold
types, and neither is consistently less sensitive to its parameters than the other.

Figure B.1: Sensitivity of thresholding parameters, shown as error bars representing
one standard deviation of F1 scores. For dynamic thresholding, we use window sizes
we P tT

4
, T
3
, T
2

u. For POT the choices of parameters are q P t10´3, 10´4, 10´5u and
u P t0.97, 0.99, 0.999u. The scores are obtained after anomaly pruning is applied.

B.3 False Positives Investigation

Ten cases of false positives are extracted from the results of the GAT-Single experiment
after applying POT thresholding. As this is one of the top-performing methods, we present
these cases to NEOSSat operators from CSA to confirm that they are actually false positives
and to offer clues in interpreting the cause of their prediction. The abridged feedback from
the satellite operations crew is listed in Table B.2. The cases labeled as FP5-FP10 occur in
March, a month that produces extraordinarily low precision scores for all methods.

B.4 Sorted Anomaly Scores

To assess whether the calculated anomaly scores represent some level of anomalousness
of predicted anomaly sequences, we sort sequences by their maximum anomaly score and
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B.5 Results by Month

ID Year, Days Comments

FP1 2018, 173-175 coincides with alarm triggered on ROE_SCI_PREAMP_TEMP;
attributed to noise in telemetry, so not reported as anomaly.

FP2 2018, 251-253 coincides with GPS2 reset;
does not explain non-GPS related indicators in telemetry.

FP3 2018, 284 due to recovery operations for earlier anomaly (SAF 60-01).
FP4 2018, 334 due to recovery operations for earlier anomaly (SAF 25-02).
FP5 2019, 065 cause is unclear.
FP6 2019, 070-071 cause is unclear.
FP7 2019, 073-074 GPS1 reset, not significant enough to be reported as anomaly.
FP8 2019, 078-079 GPS1 reset, not significant enough to be reported as anomaly.
FP9 2019, 084 cause is unclear.
FP10 2019, 086-088 GPS1 reset, not significant enough to be reported as anomaly.

Table B.2: Explanations and time periods for the ten false positive cases selected for further
investigation.

visualize the distribution of true positive and false positive results. We first combine the
results of each channel in order to look at overall predicted sequences instead of individual
channels’ results. To do this for true positives, we find the maximum normalized anomaly
score that overlaps a true anomaly sequence. There is no straightforward way to combine
the false positive predictions across channels so we again rely on overlapping sequences:
we look at all the time steps that are considered false predictions by any channel, and
take contiguous sequences of these false positive time steps as overall false positive se-
quences. The score associated with these sequences is the maximum normalized anomaly
score found in the time steps of the sequence. This is done for each model using dynamic
and POT thresholding after pruning (Figure B.2).

B.5 Results by Month

The precision, recall, and F1 scores of each model using dynamic and POT thresholding
after pruning are displayed in Figure B.3 for each month of test data. We mostly only
consider F1 score in our analysis of the results since it balances the other two types of
metrics, but it can be helpful to understand how each metric differs over the ten months.
Additionally, these plots allow us to observe trends such as particularly low scoring months.
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B.5 Results by Month

Figure B.2: Predicted anomaly sequences sorted by anomaly score with true positive and
false positive labels, for all models. The top 100 scores are shown.

Finally, the total number of predicted anomalies of each method is presented since high
precision methods can still have a large amount of false positives if there is an even greater
quantity of true positive results.
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B.5 Results by Month

Figure B.3: Precision, recall, and F1 scores for each model by month of test data. The total
number of predicted sequences is plotted in the background.
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