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ABSTRACT 

A biological assay based on chromosome counts in human cancer cells was developed as an 

index of metabolic state. The assay is then used to describe the action of a variety of metabolic 

agents: oxygen, melatonin, vitamin C, the drugs oligomycin and imatinib, as well as extra-low 

frequency (ELF) magnetic fields (MFs). This led us to uncover a basic mechanism of interaction 

between ELF MFs and biological materials. The action of MFs is through an alteration in the 

structure of water, originally described by Russian physicists at Lomonosov University in 

Moscow, in the early 1980s.  

Our work started as an investigation of the effects of oxygen on cancer cells in culture, later 

expanded to other metabolic agents. Chromosome counts above 46 are observed in the majority 

of human tumours. But while real tumours grow in low oxygen and nutrient restricted 

environments, cultured cancer cells are provided with 21% oxygen and generous nutrition. We 

studied the chromosome counts of cancer cells as they were metabolically altered, observing that 

five metabolic restrictors induced chromosome losses in five hyperploid cancer cell lines. These 

karyotype contractions (KC) allow cancer cells to support fewer chromosomes, increase their 

proliferation rate and acquire the phenotype of a stable, growing tissue similar to stem cells. 

Hyperploid cancer cells can expand or contract their karyotypes through rapid mechanisms of 

endo-reduplication or chromosome loss. These fast meta-genetic mechanisms may explain the 

surprising adaptability of tumours to changing micro-environments and therapeutic interventions.  

Furthermore, KC may provide a basis for the previously observed carcinogenic action of some 

anti-oxidants, positioning metabolic restriction as a meta-genetic mechanism of tumour 

promotion. 
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Biological effects of ELF MFs have lacked a credible mechanism of interaction between fields 

and living material. The karyotype changes produced by 6-day exposures to ELF MFs between 

25 nT and 5 µT were evaluated in our five human cancer cell lines. Similar to the chemical 

metabolic restrictors, all cancer cells lines lost chromosomes from all MF exposures, with a 

mostly flat dose-response. Continued MF exposures for three weeks allow a rising return to the 

baseline, unperturbed karyotypes. From this point, small MF increases or decreases are again 

capable of inducing KCs.  

Our data suggests that the KCs are caused by MF interference with mitochondria’s ATP synthase 

(ATPS), compensated by the action of AMP-activated protein kinase (AMPK). The effects of 

MFs are similar to those of the ATPS inhibitor oligomycin. They are amplified by metformin, an 

AMPK stimulator, and attenuated by resistin, an AMPK inhibitor. Over environmental MFs, 

KCs of various cancer cell lines show exceptionally wide and flat dose-responses, except for 

those of erythro-leukemia cells, which display a progressive rise from 25 nT to 0.4 µT.  

These observations lead us to uncover a subtle mechanism of interaction between MFs and 

human metabolism. MFs cause an alteration in the structure of water that impairs the flux of 

protons in ATPS hydrophilic channels, with many downstream biological effects. Although the 

connection between MFs and ATPS inhibition through increased proton impedance is fairly clear, 

the consequences of typical human MF exposures on AMPK and metabolism should be more 

complex to unravel. This mechanism may be environmentally important, in view of the central 

role played in human physiology by ATPS and AMPK, particularly in their links to diabetes, 

cancer and longevity. Our work provides a defensible mechanism to explain the action of MFs 

on biological materials. 
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RÉSUMÉ 

Un test métabolique utilisant des cellules humaines cancéreuses a été développé pour décrire les 

effets d’une variété d’agents: oxygène, mélatonine, vitamine C, les drogues oligomycine et 

imatinib, ainsi que les champs magnétiques (CM) de basse fréquence (BF). 

Basé sur le comptage de chromosomes (CC) de cellules cancéreuses, il nous amené à découvrir 

un mécanisme d’interaction entre CM BF et le matériel biologique qui passe par une altération 

de la structure de l’eau décrite par des physiciens russes au début des années 1980.  

Nos recherches ont débuté par une investigation des effets de l’oxygène sur des cellules en 

culture, subséquemment étendue à d’autres agents. Des CC supérieurs à 46 sont observés dans la 

majorité des tumeurs humaines. Alors que les tumeurs réelles se développent dans un milieu 

pauvre en oxygène et nutriments, les cellules cancéreuses en culture sont entourées par un taux 

d’oxygène de 21% et une nutrition généreuse. Nous rapportons des réductions de CC suite à une 

activité métabolique restreinte chez cinq types de cellules cancéreuses hyperploïdes. Ces 

contractions  permettent aux cellules de supporter moins de chromosomes, d’augmenter leur 

prolifération et d’acquérir le phénotype d’un tissu stable en progression, semblable aux cellules 

souches. Les cellules hyperploïdes peuvent augmenter ou réduire leur karyotype par des 

mécanismes rapides d’endo-reduplication ou de pertes chromosomiques. Ces mécanismes méta-

génétiques rapides pourraient expliquer l’adaptation surprenante des tumeurs aux 

environnements variables et aux interventions thérapeutiques. La contraction des karyotypes 

pourrait fournir une base à l’action carcinogénique préalablement observée de certains 

antioxydants, présentant la restriction métabolique comme un mécanisme méta-génétique de 

promotion cancéreuse. 
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Les effets biologiques des CM BF n’avaient pas de mécanisme crédible d’interaction entre 

champ et matériel vivant jusqu’à maintenant. Cinq lignées de cellules cancéreuses exposées aux 

CM BF pendant 6 jours dans la plage de 25 nT à 5 µT ont montré des changements de karyotype, 

tout comme les restricteurs métaboliques, avec une dose-réponse essentiellement plate. Une 

continuation de l’exposition sur trois semaines permet un retour progressif au karyotype original 

de base. De ce point, de petites augmentations ou décroissances de CM sont à nouveau capables 

d’induire des contractions de karyotypes. 

Nos croyons que les contractions sont causées par une interférence des CM avec l’ATP synthase 

(ATPS) des mitochondries, compensée par l’action de la protéine kinase activée par l’AMP 

(AMPK). Les effets des CM sont similaires à ceux de l’olygomycine, un inhibiteur de l’ATPS. 

Ils sont amplifiés par la metformine, un stimulateur de l’AMPK, et atténués par la résistine, un 

inhibiteur de l’AMPK. Sur la plage des CM environnementaux, les contractions de karyotypes de 

diverses lignées cancéreuses montrent des doses-réponses plates, sauf pour celles des cellules 

erythro-leucémiques, qui montrent une augmentation progressive de 25 nT à 0.4 µT. 

Ces observations nous ont mené à découvrir un mécanisme subtil d’interaction entre CM et le 

métabolisme humain. Les CM causent une altération de la structure de l’eau qui réduit le flux de 

protons dans les canaux hydrophiles de l’ATPS. Bien que la connexion entre CM et l’inhibition 

de l’ATPS par l’augmentation de l’impédance aux protons soit raisonnablement claire, les 

conséquences des expositions magnétiques humaines typiques sur l’AMPK et le métabolisme 

sont plus complexes à dégager. Ce mécanisme d’interaction pourrait être important pour 

l’environnement, en vue du rôle central joué dans la physiologie humaine par l’ATPS et l’AMPK, 

particulièrement dans leurs liens avec le diabète, le cancer et la longévité. Nos travaux 

fournissent un mécanisme crédible pour expliquer l’action des CM sur le matériel biologique. 
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1.1 Chromosome Instability and Metabolic Restriction of         

Cancer Cells 
 

1.1.1 Chromosome Instability and Karyotype Contraction 

Cancer cell lines have disorganized phenotypes and karyotypes, and a pivotal question in 

oncology has been whether this disorganization is an essential or a peripheral characteristic of 

cancer (Lengauer et al., 1998). One prominent characteristic of a cancer cell is its chromosome 

count. Although increased chromosome counts are routinely observed in the majority of tumors, 

little physiological meaning has been associated with this variable. If human tumor cells are 

cultured ex vivo, chromosome counts may be increased even further, thus displaying a basic 

cancer cell characteristic labeled chromosome instability (CIN) (Yoon et al., 2002; Paulson et al., 

2009).  

In the clinic, unstable phenotypes and karyotypes are often observed in the progression of tumors 

through stages, and many cancer cell lines cultivated in vitro also change because of CIN, often 

into hyperploid karyotypes. CIN represents the ability of cancer cells to spontaneously alter 

genetically, either in chromosome structure or in chromosome counts. Therefore, in vivo as well 

as in vitro, the majority of cancer cells display hyperploid as well as unstable karyotypes. 

Beyond their state at a point in time, tumors are also thought to evolve relatively slowly, using 

mechanisms of clonal expansion based on the genetic instability arising from the initial cancer 

lesion (Nowell, 1976). 

Some perspective on the meaning of chromosome count increases can be gained by reviewing 

the four classes of genetic alterations classically recognized in neoplasms: gene amplification, 

sequence changes, translocations (such as BCR:ABL in K562), and chromosome count 
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alterations (Lengauer et al., 1998). These classes testify to a plurality of mechanisms in cancer, 

but all create hyperplasia, suggesting that these lesions find a common ground in metabolic 

stimulation (Jones and Thompson, 2009). The term Karyotype Contraction was introduced by us 

to describe the loss of chromosomes by a cancer cell, but with the understanding that the loss is 

reversible. Contraction does not affect the carcinogenicity of the cell line, and a cell lineage 

could go through repeated contractions and expansions as the environment of the cells changes. 

 

1.1.2   Anoxia and Metabolic Restriction 

The development of cancer cells is widely believed to be limited by oxygen and nutrients, 

occulting their truly critical property, the ability to thrive in diverse sites.  Because of their 

metabolic flexibility, cancer cells survive both in the highly hypoxic tumor cores and in the 

blood. However,  very little oncological research has been conducted using hypoxic and 

metabolically restricted models.  

Anoxia and Hypoxia in Normal Cells 

The percentage of oxygen in most mammalian tissues varies widely,  ranging from 1 % to 6 %, 

which is much lower than the 21 % oxygen conventionally found in the incubators used to 

culture cells. Even within a single tissue such as the blood, oxygen levels vary, depending on the 

location within the circulation (Ward, 2008). Oxygen pressure around the cells is lower than in 

the systemic capillaries, as oxygen is being consumed by the cells. Cellular levels range from  

0.66 % to 5.3 %, with an average measured in the tissues of lower animals of 3%. Consequently, 

cells cultured under 21% oxygen actually are exposed to a hyperoxic environment (Wright and 

Shay, 2006).   
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ROS are formed intracellularly in proportion to oxygen concentration (Freeman et al., 1982).  

Cells  maintained under hyperoxic conditions suffer from oxygen toxicity due to increased free 

radical generation (Halliwell, 1981). Although most of the oxygen consumed by cells is 

metabolized to water, a small portion is univalently reduced to free radical intermediates (Balin 

et al., 2002). Free radicals and particularly ROS are deeply influential on cell behavior. 

Oxidative stress is not only considered a cause of aging and cell death, but is also recognized as 

affecting molecules relevant to cell signaling pathways and cell development processes 

(Covarrubias et al., 2008). They underlie such pivotal phenomena as cancer, aging and the toxic 

effects of metals (Harman, 1956; Pourahmad et al., 2003;  Valko et al., 2007).  As the 

concentration of ROS increases, a temporary arrest of growth can occur through paralysis of 

gene expression, leading to cellular replicative senescence and apoptosis (Davies, 1999). High 

levels of ROS activate apoptosis, followed at higher levels by type 2 cell death, autophagy 

(Scherz-Shouval and Elazar, 2007). The highest ROS concentrations cause necrotic cell death 

(Bras et al., 2005). Because of damage to fatty acids, proteins and DNA, high and sustained 

production of ROS would prove quickly fatal to unprotected cells.   

A corollary of the previous argument on oxygen toxicity is that cells growing under anoxic 

conditions should provide a sensitive system to assess the impact of toxic agents. And stable in 

vitro cellular models with low ROS levels should allow more accurate determinations in research 

studies.  
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Anoxia and Hypoxia in Cancer cells 

The situation is even more extreme in the case of cancer cells. 82 % of oxygen readings taken in 

solid tumors are less than 0.33 % (Kizaka-Kondoh et al., 2003), and stem cells are hosted in 

niches that are very low in oxygen (Hill et al., 2009). Cancer cells within cancer patients are 

therefore exposed to a wide range of oxic conditions, from very hypoxic to richly oxygenated, as 

cells from cancer niches metastasize through blood vessels to the periphery. Many studies have 

demonstrated that hypoxia on a variety of cancer cell types alters cell behavior.  The work 

available in the literature on cancer cell hypoxia typically reaches down to 1 % oxygen, and there 

are scant studies on true anoxia. Cell survivals and proliferation rates reported by these deep 

hypoxia studies vary widely (Anderson et al., 1989; Cipolleschi et al., 1993; Cuvier et al., 1997; 

Papandreou et al., 2005; Papandreou et al., 2005). One interesting study on a wide range of bone 

marrow samples compared proliferation at 19, 3 and 1 % oxygen, showing that the large majority 

of samples generated more cells, and increased colony-forming units under deepening hypoxia 

(Thompson et al., 2007).  

The oxygen and nutrient gradients (Jezek et al., 2010; Matsumoto et al., 2008) between the core 

and cortex of a tumor influence both the phenotype and genotype of cancer cells.  Karyotypes of 

cancer cells react to reduced oxygen. It is of historical interest to note that in its early history, 

K562 sported 45-46 chromosomes (Lozzio and Lozzio, 1975). After 3.5 years in atmoxic culture 

(topped by natural atmospheric gas), it acquired the karyotype widely known today as “pseudo-

triploid” because its mode of 69 coincides with 3n, although individual chromosomes are 

variously present as doublets, triplets or quadruplets (Naumann et.al, 2001).  
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If the investigator is looking to monitor the behavior of cancer cells in the stages of the original 

process of carcinogenicity, anoxia appears a better simulation of the natural environment of 

tumors than the 21 % oxygen favored in routine cell culture.  

Metabolic Restriction and Restrictors 

The process of tumor evolution over time occurs in an environment limited in nutrients, which 

cancer cells overcome by using their ability to thrive in diverse sites, which may be their truly 

critical property. Because of their metabolic flexibility, cancer cells can survive both in the 

nutrients-limited tumor cores and in the blood. Cellular metabolism has two important segments, 

glycolysis and mitochondrial oxidation. ATP can be produced by three distinct cellular processes: 

(1) glycolysis in the cytosol, and, in mitochondria, (2) the citric acid cycle/oxidative 

phosphorylation and (3) beta-oxidation. Cancer cells have the redundancy to circumvent the 

absence of what is apparently an essential energy source, oxygen, and sustain their proliferation 

rate by relying on glycolysis.  

While assessing cell behavior in our assays, we were aware that attempts to influence 

metabolism could be defeated by metabolic pathway redundancy. We used in  our work five 

chemical methods, metabolic restrictors, to slow down or restrict metabolism by impairing 

oxidative phosphorylation, ATP synthesis or ATP use, challenging the cells to restore 

homeostasis. Two of the 5 metabolic restrictors we used act specifically on mitochondria 

(Schultz and Chan, 2001), while 3 act more generally within the cell, but all effectively induced 

KCs in our tests.  

The first is anoxia, well tolerated by tumors because of their use of glycolysis (Warburg, 1956), 

and the second is oligomycin, a specific ATPS inhibitor (Masini et al., 1984). The other three 

http://en.wikipedia.org/wiki/Glycolysis�
http://en.wikipedia.org/wiki/Citric_acid_cycle�
http://en.wikipedia.org/wiki/Oxidative_phosphorylation�
http://en.wikipedia.org/wiki/Oxidative_phosphorylation�
http://en.wikipedia.org/wiki/Beta-oxidation�
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agents, two anti-oxidants and an inhibitor, reduce oxygen consumption. The neuro-hormone 

melatonin is a direct scavenger of O2
- (Poeggeler et al., 1994), while vitamin C generally acts as 

an anti-oxidant. The last, imatinib, a cancer drug used to treat Chronic Myeloid Leukemia and 

other malignancies (Takimoto and Calvo, 2008), is a competitive inhibitor of the BCR-ABL 

enzyme’s ATP-binding site.  

The clearest mechanistic example of metabolic suppression, through quenching of oxidative 

phosphorylation, is oligomycin, which inhibits ATPS and triggers AMP-activated protein kinase 

(AMPK), a sensitive regulator of ATP levels. The activation of AMPK suppresses bio-synthesis 

and stimulates catabolism, which in cancer cells afflicted by CIN leads to chromosome losses in 

later cell divisions. 

The basic lesion that makes the cells cancerous, generally a lesion targeting metabolism, also 

makes the chromosome count of these cells unstable. Because of CIN, cancer cells are therefore 

ideal test objects to assay for changes in metabolism since these changes, through the action of 

AMPK, are reflected in chromosome counts in the next cell division. We have therefore used 

chromosome count as a reporter of cellular metabolic state. 
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1.2 Magnetic Fields 

Since the 1979 Wertheimer and Leeper (Wertheimer and Leeper, 1979) article relating MFs, or 

more accurately, wire codes, with childhood cancer, the link between cancer and power-

frequency MFs has been under investigation. There have been hundreds of epidemiological 

studies attempting to link MFs with cancer. Some of these studies were apparently successful. 

Milham (1982) reported an increase in deaths (proportional mortality ratio) due to leukemia in 

486,000 men whose occupations were associated with electric or MFs. 

Feychting of the Swedish Karolinska Institute reported (1992, 1993) a rate of leukemia close to 

four times the expected rate in a case-control study conducted in children exposed to higher MFs 

in their homes. Tynes and Andersen (1990) reported a significant 2.1 relative risk of breast 

cancer in Norwegian men potentially exposed to EMF. Thériault (1994) reported that workers 

with the highest cumulative exposure to MFs had an elevated risk (1.95) of brain cancer. 

Armstrong (1994) reported an association between exposure to pulsed EMFs and lung cancer  in 

electric utility workers in Quebec, Canada, and France, with odds ratios rising to 3.11  in the 

highest exposure group. The dossier shows that the majority of studies find a weak association 

between EM fields and cancer (Coleman, 1990).  

But epidemiological links between EMF and adult leukemia and brain cancer did not give 

completely clear or unanimous results (Kheifets, 1995). The exception is childhood leukemia 

(Albohm et al., 2000), leading the International Agency for Research on Cancer to attach the 

class 2B carcinogen designation to MFs in June 2001 (World Health Organization, 2002).  

There have also been reports of alterations in cell behavior under excitation by EMFs of various 

frequencies and non-thermal intensities (Goodman et al., 1995). Consistent evidence from a 
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number of different laboratories, that ELF fields interfere with breast cancer cells MCF-7 near 

1.2 µT, has been reported (Ishido et al., 2001). Many have also detected a diversity of effects 

above 2.5 µT, higher than common environmental exposures. These include lengthened mitotic 

cycle and depressed respiration (Goodman et al., 1979), increased soft agar colony formation 

(Phillips et al., 1986), inhibition of differentiation with increased cell proliferation (Chen et al., 

2000), as well as DNA breaks with apoptosis and necrosis (Lai and Singh, 2004).  

Although epidemiology and in vitro studies on the health effects of ELF MFs have proceeded for 

decades, the process of understanding the biological effects of MF has been difficult and 

controversial. It has been argued that environmental 60-Hz MFs, certainly within the class of 

non-ionizing radiation, and furthermore incapable of raising tissue temperatures, could not have 

significant impacts on cells, because of the absence of a mechanism. The activation energy 

available from MFs seemed inferior to the background thermal noise typical of biological 

systems. In this context, population, in vivo and in vitro studies failed to provide a link strong 

enough to convince many investigators. 

Since we had in our laboratory a highly stable and sensitive model capable of detecting 

alterations in the metabolism of  cancer cells based on their phenotype and karyotype, it seemed 

logical to use it to investigate this question. The unique quality of our model is determined by the 

use of anoxia which, beyond its representativity of the conditions in the core of tumors, has the 

virtue of stabilizing the chromosome range of hyperploid cultures (Li et al. 2012) to very 

restricted values, giving excellent sensitivity. Preliminary work showed that we could, with 

simple materials (structural steel), attenuate environmental ELF MFs to values lower than 4 nT, 

much lower than in a typical environment, adding the opportunity for clear exposure conditions.  
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1.3 Turning Points and Research Orientation 

Before proceeding further into the document, we want to highlight three elements that we 

consider pivotal in determining the path of the work presented. 

The first important decision was to perform cell assays in various levels of oxygen, and 

ultimately under anoxia, using boxes flushed with gas. 

Since anoxia is a better simulation of the environment of tumors than the 21 % oxygen favored 

in routine cell culture, we needed to determine how our main cellular model, K562, reacts to 

various levels of oxygen, and we experimented with the full range of oxygen concentrations (0 to 

21 %). From automated microscopy observations, we attempted to determine the oxygen 

concentration most favorable (normoxic condition) for K562, and essentially found that the 

lower, the better, as we shall see below. The sensitivity of  the K562 phenotype and karyotype to 

oxygen did not come as a surprise, as it has been known for a while that hematopoietic 

progenitor cells similar to K562 react favorably to reduced oxygen concentrations (Sandstrom et. 

al, 1994). But the ability of all of our cancer cell lines to thrive without any oxygen would 

surprise most biologists, because anoxia has been traditionally viewed at a lethal condition for 

living cells. 

 

The second decision was to go beyond the investigation of cell phenotypes and into their 

genotypes, which was strengthened by the solidity of our computer vision-based data on cell 

phenotypes. The dependability and time-course of the phenotype changes caused by anoxia and 

metabolic restrictors lead us to suspect that corresponding karyotype changes must also occur.  

After the first cancer cell chromosome counts were confirmed to change with metabolism, we 

attempted to find a general connection between metabolic activity level and chromosome counts. 
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Later, we attempted to normalize chromosomes numbers in cancer cells using metabolic 

restrictors. The cancer cell lines used in this study were deliberately chosen because of their 

hyperploidy, which means that their chromosome counts are substantially increased beyond the 

human norm of 46.  

Since our cancers cells subjected to anoxia or metabolic restriction did not revert back to normal 

tissue, but could, rather, expand their karyotype back to their original numbers when the 

metabolic conditions were restored, we realized that karyotype expansion and instability is a 

peripheral effect of the metabolic enhancement caused by the initial cancer lesion. Our view is 

that the chromosome count alterations capable of initializing cancer may be fundamentally 

different from the later karyotype changes (CIN). Our follow-up experiments attempted to 

develop the concept of KC and its pathological significance.  

The conclusion of our mechanistic and metabolic work was that, somewhat paradoxically, 

metabolic restriction may act as a meta-genetic mechanism of tumor promotion. This conclusion 

allowed us to provide a hypothesis for previously unexplained observations in epidemiology, the 

carcinogenic action of some anti-oxidants, such as vitamin A, among cancer patients. 

 

A third turning point occurred when we confirmed that MFs could induce KCs. The similarity of 

action between MFs and oligomycin led us to uncover the mechanism linking MFs and ATPS, 

using the previous work of Russian physicists on water. In view of the widespread occurrence of 

MFs in the general  environment, we felt it was important to document effects in the range from 

25 nT to 5 µT on the chromosome counts of our five cancer cell lines. From our observations, 

chromosome losses could occur in cancer cells with only discrete, but still observable, 

phenotypical changes under the microscope. Therefore, investigators looking for MF effects in 
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vitro could have been deceived by the relatively normal appearance of the cell cultures, showing 

only small phenotype variations, while substantial genetic changes were occurring. The transient 

nature of these changes would compound the difficulty of detection. 

 

Our research therefore reached two specific objectives, one related to basic tumor biology, 

and the second related to the biological action of  MFs. In basic tumor biology, we studied the  

effects of metabolic restrictors on cancer cell KC, and related the phenomenon to the surprising 

adaptability of tumor cells. In our ELF-MF work, we documented the ability of MFs to suppress 

metabolism in cancer cells, and described and explored the biological mechanism linking MFs 

and increased cancer  rates.  
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When this project started, the InVitroPlus Laboratory at the Royal Victoria Hospital was 

specialized in computer-based, real-time monitoring of in vitro human cell cultures. Experiments 

on human cells were largely automated. Cells contained in T-25 flasks or 96-well plates were 

placed on a motorized stage so that they could be moved automatically. With computer control 

and the scrutiny of a microscope camera, multiple cell cultures could be observed for as much as 

a week at a time. The system harvested large numbers of images that were interpreted by 

computer vision software to provide, for example, growth curves over time. Experiments could 

be monitored remotely through the Internet (Héroux et al., 2004). Round suspension cells like 

K562 were particularly convenient for the purpose of automated computer-based object 

recognition, because their generally simple shapes were easy to identify. The automated assaying 

produced accurate results designed to simultaneously compare the evolution of multiple cell 

cultures. From sequential images gathered automatically, a number of variables were analyzed, 

such as proliferation rate, cell size, expression of macrophages (objects 3 to 5 times the average 

K562 size) and cytoadhesion. The laboratory strived to produce stable biological models with 

high sensitivity for assaying various agents. To support this goal, cells were grown in synthetic 

medium in order to avoid the irregularities associated with changes in the composition of serum. 

The work reported here benefited from these methods because they provided solid 

documentation of the effects of oxygen and metabolic restrictors on cell phenotypes. However, 

when the emphasis of the project turned to karyotyping and genetics, the implementation of the 

work went from computer-based to classical laboratory work, as karyotyping methods are 

essentially manual, with little hope of being automated. This meant that we had to invest 

considerable time and effort into the refinement and execution of classical methods of 
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karyotyping for various cell lines. This involved hundreds of hours of slide preparation as well as 

thousands of hours of microscope observation. 

Consequently, this work, at the methodological level, is a cross between new techniques of 

computer-based automated observations and traditional biological techniques. 
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2.1 Cancer Cell Lines 

Cancer cells are commonly used in in vitro work, not only because they are representations of 

disease, but also because they can propagate indefinitely without substantial changes. New 

immortal non-cancerous cellular models that have been transfected with human telomerase 

reverse-transcriptase (hTERT) are just becoming available. But in the end, the instability of our 

cancer cells, derived from human tumors, turned out to be a benefit in our investigations, because 

it allowed us to sensitively detect metabolic changes. 

To investigate the effects of the various agents studied in this thesis, we used five cancer cell 

types: K562 and HEL 92.1.7 (erythro-leukemias), NCI-H460 (lung cancer), COLO 320DM 

(colon cancer) and MCF7 (breast cancer). They represent the major types of cancers leading to 

high death rates, and were obtained from the ATCC (http://www.atcc.org/). The particular cell 

lines within each type were chosen because they are hyperploid, which means they have 

chromosome numbers higher than normal human cells, at 46 chromosomes. The spread in 

chromosomes numbers allowed us to obtain statistically significant data more easily. 

The cells are maintained at 5 % CO2, 90 to 100 % humidity and 0 %, 2 %, 5 % or 21 % oxygen 

as needed. When received, the cells were immediately grown in T-75s and aliquots frozen into 

vials for conservation in liquid nitrogen. Two generations of cells were frozen as 5 aliquots to 

insure that 25 cell renewals would be available in the course of the project. Cells adapted to 

synthetic RSF1 (see 2.2 below), a process which takes many months, were conserved in the same 

way. Adaptation of cells to 0 % oxygen and < 4 nT MF are rapid in terms of obtaining a 

surviving culture, although metabolic adjustment takes longer. 

 

http://www.atcc.org/�
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2.1.1 Erythroleukemia: K562 and HEL 92.1.7 

Erythroleukemia is characterized by the myeloproliferation of erythrocyte and leukocyte 

precursor stem cells.  

K562 was the first continuous human Chronic Myelogenous Leukemia (CML) cell line, 

established by the Lozzios from a female patient in terminal blast crisis (Lozzio and Lozzio, 

1975). It has a modal chromosome count of 69. K562 is a stem cell that can develop 

characteristics similar to early-stage erythrocytes, granulocytes and monocytes. It expresses the 

critical BCR:ABL protein (Philadelphia chromosome), detected in 95 % of CML cases. Many of 

the changes in CML cells are believed to be controlled by this oncoprotein. Its unregulated 

tyrosine kinase activity is thought to activate a number of cell cycle-controlling proteins and 

enzymes, inhibit DNA repair, cause genomic instability and maybe blast crisis. K562’s 

properties have been established in detail, it is easy to recognize through image analysis, and is 

sensitive to toxic attack. 

HEL 92.1.7 is a human erythroleukemia cell line from a male patient with Hodgkin’s disease 

who later developed erythroleukemia, obtained by Martin (Martin and Papayannopoulou, 1982). 

It spontaneously and inducibly expresses globins. It has a modal chromosome count of 66. We 

chose K562 and HEL 92.1.7 because they are well documented human leukemia cell lines.   

 

2.1.2 Lung cancer: NCI-H460  

NCI-H460 was established by Gazdar in 1982 from the pleural fluid of a patient with large cell 

cancer of the lung. It has a modal chromosome count of 57. The NCI-H460 lung cancer cell line 
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was chosen because it is one of the most fatal cancer types, and because there have been reports 

of an association between lung cancer and exposure to MFs. 

 

2.1.3 Colon cancer: COLO 320DM 

COLO 320DM is a human colon carcinoma cell line derived from a patient with colorectal 

adenocarcinoma, with a modal chromosome count of 54 (range 49 to 61). It was established by 

Quinn because of its unusual characteristics (Quinn et al., 1979).  It is morphologically different 

from most colon cell lines with unusual cell products, double minutes, and homogeneously 

staining regions. This unusual cell line is valuable for studies of apudomas of the colon. It was 

chosen because of the high fatality rate of this cancer. 

 

2.1.4 Breast cancer: MCF7 

MCF7 is an adenocarcinoma cell line derived from the pleural effusion of a human breast cancer 

metastatic site (Soule et al., 1973). The modal chromosome count with normal incubation is 82, 

ranging from 66 to 87. It retains the ability to process estradiol via cytoplasmic estrogen 

receptors and expresses the WNT7B oncogene. The stemline chromosome counts ranged from 

hyper-triploidy to hypo-tetraploidy, with the 2S component occurring at 1 %. Substantial in vitro 

work using MFs has been done with this cell line (Ishido et al., 2001). 
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2.2 Synthetic Cell Culture Media 

The choice of culture medium is critical in the assessment of toxicity, which is usually attenuated 

by peptide and protein plasma components such as albumin. Serum-based media might best 

represent physiological conditions for blood cells, but may not be best for the cancer cells resting 

within solid tumors cores. 

Synthetic media allow the exclusion or controlled dosing of purified protein, such as albumin, 

insulin and transferrin, that are critical to many cells. Use of synthetic media is however 

associated with a number of practical problems. The ingredient concentrations in most 

commercial synthetic media are kept secret, due to company business practices. Many of the 

secret and other ingredients are included to achieve cell proliferation rates comparable to those of 

serum-based media for specific cell types. 

To have full knowledge of medium composition, we decided to develop our own synthetic 

medium based on the classical RPMI 1640. The RSF medium was developed in our laboratory 

by Dr. Igor Kyrychenko. A revised version, RSF1, was later implemented with insulin levels 

divided by 10, closer to plasma values, and as shown in Table 1. 

Insulin is still provided at concentrations much higher than physiological levels in RSF1. High 

insulin decreases the activity of SKN-1/Nrf2 (Tullet et al., 2008;  Jasper, 2008), throttling down 

detoxification enzymes, and leaving cells less protected. Extra copies of the gene for SKN-1 

extend the life of C. elegans by 25 to 30 percent (Tullet et al., 2008). This means that the high 

insulin levels in RSF1 may provide a sensitive model for the effects of ROS, for example, and 

possibly a useful model to display accelerated chronic toxicity. 
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There is no iron salt in RPMI 1640, but iron is necessary to insure sustained survival of a cell 

line. The iron in RSF1 is provided as transferrin saturated with iron (see Table 1), and there may 

also be some small amount of iron bound to the added albumin.  

 

RPMI-1640 with l-glutamine 
(Sigma 61-030-RM) 

Sodium bicarbonate, 2 g / l 
(Sigma S-6014) 

Sodium selenite, 20 nM 
(Sigma S-5261) 

Bovine Serum Albumin, 4 g/ l 
(Sigma A3311). 

Bovine Transferrin (iron saturated), 25 mg/ l 
(Sigma T1408) 

Bovine Insulin, 1 mg/ l 
(Sigma I5500) 

 
Table 1: RSF1 medium composition.     

 

Transferrin appears indispensable for DNA synthesis of most growing cells, and is often referred 

to as a growth factor because proliferating cells express high numbers of transferrin receptors 

(CD71). Transferrin also acts as a cytokine, and has roles that may not be related to its iron-

carrying capacity. Transferrin is used at a low level of 25 mg/l in RSF1, partly because of cost. It 

is present in normal plasma at 2500 mg/l, 100 times more (about 3.4 % of total blood protein). In 

RSF1, transferrin concentration is 100 times below blood levels, but is 100 % rather than 30 % 

saturated. This translates to an iron concentration of 0.03 mg/l, initially bound to transferrin in 

RSF1. 

K562 can divide for a short period of time in unsupplemented RPMI 1640, probably from the 

action of residual protein. This represents a very artificial situation (extremely low protein 

concentrations), which could be used to enlighten specific mechanisms. As supplemented in 
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Table 1, RSF1 is competitive in terms of proliferation rate with serum-based RPMI-1640 for the 

erythroleukemia cells (K562 and HEL), since it was optimized for them, but the other cell lines 

divide more slowly without serum, and could not be sustained over very long periods. The same 

composition was used for all, in the interest of uniformity. 
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2.3 Culture Vessels and Incubation 

 

2.3.1 Culture Vessels   

Depending on the particular determination (proliferation, apoptosis, etc), the seeding density and 

the duration of the test, various formats are used for short-term and chronic experiments that are 

automatically monitored by computer vision over time. The formats are T-12, T-25 and 

microplate. Each format can be executed at different levels of oxygen. The T-12 format, as we 

implemented it, provides four aliquot and simultaneous results from four separate vessels, each 

with its separate exposure. A T-25 provides a single result at a single oxygen level, for example, 

but with a large sampling surface, appropriate for detection of rare events or cell types. The 

microplate provides 77 individual results at a single oxygen level. All the 96 wells of the 

microplate cannot be used, because of mechanical limitations of the motorized stage (Fig. 2.6). 

These formats can provide a maximum of 12, 25 and 0.32 cm2 of cell culture surface per 

determination, respectively, which, with seeding density, will determine the precisions of the 

determinations (see 2.9.3). The cells are routinely incubated in vented T-25 flasks, and 

transferred to either T-12s (Falcon 353018), T-25s (Sarstedt 83.1810.502) or various microplate 

models, as different vessels are used in various experiments.  

 

 

Fig. 2.1: Cell Culture Vessels: 
T-25, 96-well Microplate with 
cover, and T-12.  
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Although T-25s provide the most surface, T-12s are preferred in experiments involving MFs 

because their smaller area insures a more uniform MF density within the longitudinal profile of 

the magnetic shields (see Fig. 2.3).  

The small size of the T-12s is also indispensable for differential experiments where cells are 

simultaneous seeded into four T-12s to assess different agents applied to each T-12.  

For example, the effect of four different oxygen levels can be assessed accurately in the same 

time frame in this manner. The four T-12s are welded together in a square, using lines of epoxy 

glue along their edges. This insures identical mechanical history and stable confocality when the 

array is positioned on the motorized microscope stage for chronic computer-vision observations. 

The four different oxygen concentrations are implemented by connecting the vented cap of each 

T-12 with a long flexible latex tube to much larger vessels (1.6 liters) containing the required 

levels of oxygen and carbon dioxide. To compensate for CO2 diffusion through the tubes, the 

incubator itself maintains CO2 conditions during the test. 

The cell densities are adjusted initially from automated cell counting of microscope fields 

acquired using camera and custom vision software (ImageProPlus macros) in early tests, and 

later using an automated cell counter from Millipore, the Scepter. 

 

2.3.2 Incubation 

We use two Forma 3310 as well as one Baxter (WJ 501 S) incubator equipped with HEPA filters, 

stabilized for temperature, CO2 and humidity. The incubation conditions (CO2, temperature and 

humidity) are constantly monitored and logged at 1 min interval by our data acquisition system.  

The automated image acquisition hardware (see section 2.6), including camera, motorized stage 

and microscope is entirely contained within the incubator to maintain cell-friendly conditions. 
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Some modifications were made to the hardware to make them temperature and humidity tolerant. 

Low Oxygen Boxes 

Our laboratory has developed the capability of exploring multiple oxygen levels simultaneously 

by using multiple environmental boxes placed in a single incubator. Specific oxygen 

concentrations are secured by gas-tight containers (Star Frit Lock & Lock) large enough (1.6 

liters, polypropylene with silicone gasket) to stabilize oxygen levels over the time of the assays 

in the T-12s or T-25s that they contain (Wright and Shay, 2006). Many boxes can be fitted in a 

single incubator, but they are large enough to act as buffers, passively maintaining atmospheric 

conditions over the course of even 10-day tests.  

The containers are slowly filled from the bottom with 4 to 5 box volumes of the cold medical gas 

mixtures supplied through a 0.22 μm filter by specially ordered gas tanks (5 % CO2, 95 %  

nitrogen). Bubble tubing is used for connections. Pressure measurements and water immersion 

tests were made to insure that the 

configuration provides effective sealing. 

 

Fig. 2.2: Low oxygen boxes. The larger 
size at top can accommodate the two inner 
magnetic shields. The lower one is fitted 
with thin glass on the bottom to allow 
microscopy observations. Bubble tubing, 
hemostats and silicone gaskets provide 
sealing.  
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To minimize exposure to atmospheric gases during manipulations in the laminar flow hood, the 

culture vessel’s ventilation holes are plugged right after box opening, and the culture vessels are 

flushed with the gas mixture using sterile Pasteur pipettes.  

Some boxes were modified to be useable over the microscope. Particularly thin glass was glued 

to a cut-out in the bottom of the polypropylene containers to allow observations in the T-12s or 

T-25s on inverted microscopes. This allows multiple observations without the need to repeat the 

gas flushing procedure. 

Oxygen levels intermediate between 0 % and 21 % can be obtained by including in the box, 

together with the culture vessel, other vessels of various sizes equilibrated with air with a porous 

plug. Over a short period, the atmosphere within all containers averages out. 
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2.4  Metabolic Restrictor Concentrations 

The five metabolic restrictors used in our tests were chosen based on their metabolic effects on 

various aspects of cell metabolism, are described in section 1.1.2. Oligomycin and imatinib were 

used at sub-toxic levels: serial dilutions allowed the determination of concentrations suppressing 

proliferation to 50 % of normal (IC50), still adequate for karyotyping. Melatonin-Vitamin C were 

optimized for maximum chromosome drop through serial dilutions, and these levels were 

subsequently found to be physiological, as they matched those in bone marrow (Zhuang et al., 

1998) and plasma.  

Oligomycin (O4876), metformin (D150959)  and melatonin (M5250)  were obtained from Sigma 

and resistin from Prospec Protein Specialists, East Brunswick, New Jersey, USA. 
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2.5 Magnetic Field Hardware 

2.5.1 Magnetic Shielding 

Fig. 2.3: The three layers of magnetic shielding. 
The Narda EFA-300’s magnetic probe is in place of 
the culture vessel. Magnetic field coils are below, 
but not in contact with the two smaller shields, 
insulated from the outer shield by a layer of rigid 
foam or acrylic. 
 

Naïve cells must be kept in a low 60-Hz MF environment, as laboratory and incubator fields are 

too high. Inside a low-field (0.4 µT average) incubator, Forma 3310, shielding is provided by 

three cylindrical layers of 6.3 mm thick structural steel. The three shields have outside 

dimensions 15.2 x 25.4 x 36, 7.6 x 10.2 x 20, and 5.1 x 7.6 x 20 cm (Fig. 2.3). 

The shields reduce 60-Hz fields by a factor of 144, estimated from the attenuation of 8.8 µT to 

61 nT. Our measuring instrument, the Narda EFA-300 (see below), has a floor of 5 nT, above the 

naive level achieved by the three-layer shielding, estimated at 3 nT. The inner shielding layer 

may be removed for particular experiments, depending on the field magnitude and frequency. 

When keeping cells under no-field and anoxic conditions, the two inner shields with the culture 

are placed inside boxes which fit inside the third external shield. 

 

2.5.2 Magnetic Field Measuring Instruments  

Two triaxial data-logging MF meters were used (Fig. 2.4): a Field Star 1000 (Dexsil Corporation, 

Hamden, CT. USA) and a Narda EFA-300 (Narda Safety Test Solutions, Pfullingen, Germany). 

The Field Star is capable of recording MF density in the X, Y and Z axes, and their vectorially 

integrated RMS value each second, within a narrow bandwidth: 55 to 65 dB ±3 dB.  
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The Narda EFA-300 comes with an optional MF probe connected with a cable. It can measure 

MF spectra between 5 Hz and 32 kHz and field strengths from 100 nT to 32 mT within that 

bandwidth. The  bandwidth  on  the  Narda  is  selectable  (for  example,  5  Hz  to  2  kHz). In 

the narrow-band power-frequency mode, the measurement floor is 5 nT. 

Miniature coils were also developed to 

perform uniaxial MF measurements in the 

restricted space of a multiwell dish.   

 

Fig. 2.4: Magnetic Field Instruments, 
the Field Star 1000, and the Narda 
EFA-300 with MF probe. The probe is 
fixed to a jig allowing precise 
positioning within the magnetic shields. 
 

 

2.5.3 Applied Magnetic Fields  

MFs are applied by rectangular coils (19 x 25.6 cm) with 20 to 50 turns of #25 AWG varnished 

copper wire. The sources are either variable transformers (Variacs) connected to the 60-Hz 

network or various audio amplifiers fed by computer-based sinewave generating software for 

other frequencies. When applied MFs were particularly low (~25 nT), it was necessary to add 

some passive filtering (28 µF) in parallel with the coils (8 Ω) to reduce high-frequency parasites 

on the waveform, which was controlled using an oscilloscope. 

The MF applied to cell cultures is not uniform, because it is generated by a coil located outside 

the two inner shields, but inside the outer shield. The coil’s field geometry is stretched, but not 

substantially disturbed in shape by the internal shields, and so is minimum at the coil center. 
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Fig. 2.5: Magnetic field density (µT) generated by an exposure coil vs longitudinal distance 
inside a magnetic shield pair. The two red lines show the extent of T-25 and T-12 culture 
vessels, and the yellow rectangle is the shield outline. 
 

The red lines in the figure represent the length of T-12 (3.35 cm) and T-25 (6.3 cm) culture 

flasks. These results indicate that a T-25 is accurate to better than 20 %, while a T-12 is accurate 

to better than 10 %. 

The coils generating MFs were wound around plastic forms, as shown in Fig.2.3. There is no 

contact between the coils and the magnetic shields. The electrical currents required to produce  

MF exposures in all out tests were small enough that the electrical wiring was not warm to the 

touch. 

After a clinical thermometer was carefully read inside the incubator, the same thermometer was 

used to read the temperature within cell culture medium after a 24 hour exposure at 5 µT, and the 

column did not shown any detectable difference from the incubator baseline. 
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The cells used in our experiments need to be occasionally withdrawn from the incubators for 

passaging, which means that they spend some short intervals of time outside of volumes within 

which MFs are well controlled. The effects we have monitored (KC) in our data occur over many 

generations of cells and many days, so we do no expect that a 20 min hiatus will have a 

detectable influence on the outcome of our 6-day tests. Therefore, we do not believe that these 

short transient exposures were a significant factor in our results. 
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2.6 Data Acquisition Hardware 

2.6.1 Microscope, Camera, Imaging Software 

Images used in our work were produced using Diavert (Leitz) or Laborlux D (Leica) 

microscopes, in brightfield illumination, at magnifications of 20 to 2.5x, with Infinity X (21 

Mpixels) or Infinity Lite (1.5 Mpixels) CMOS cameras (Lumenera). Basic object recognition 

functions were provided by Media Cybernetic’s ImagePro Plus. 

 

2.6.2 Stage  

In manual assays, T-25s were successively 

placed at time intervals on the motorized 

stage (Marzhauser MCL) mounted on the 

microscope (Diavert) installed inside the 

incubator.  

 

Fig. 2.6: The automated data acquisition 
system housed inside one of the two 
Forma 3310 incubators. 
  
1: CMOS camera.  
2: Illuminator.  
3: Z-movement motor.  
4: LED, end-of-line indicator.  
5: microplate.  
6: motor.  
7: turret and optics.  
8: leveling. 
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In automated assays, T-25s, microplates or sets of four T-12s were placed on the stage at the 

beginning of the test, and were scanned over the full duration of the test, while images were 

acquired automatically. In order not to disturb the cells during the tests, the stage acceleration 

was limited to 0.34 cm/s², which, as was observed, was barely enough to produce a vibration of 

settled cells in a T-12 filled with 3 mm of the medium.  

Automatic focusing software developed in our lab maintained image quality over time. This 

arrangement insured reproducible and identical conditions for all four T-12s investigated 

simultaneously. Automated operation provided the large number of images necessary to reduce 

sampling errors (section 2.9.3). Stage control, image acquisition process, analysis and first line 

data compilation procedures were realized by custom software developed in our laboratory 

(Héroux et al., 2004). 
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2.7 Cell Phenotype Variables 

Cell Proliferation, Footprint, Roundness and Hex-Distance were studied to monitor cell behavior. 

The implementation of these variables is discussed below. 

 

2.7.1  Proliferation 

Proliferation is often represented in the literature by growth curves quantifying relative cell 

numbers, population doubling times (hours) or growth constants. Cell proliferation rate is an 

important functional cellular variable. Basal proliferation levels vary according to the particular 

cell line, culture medium (a range of serum-based and synthetic media were tried) and incubation 

characteristics, among which, atmospheric oxygen.  

Fig. 2.7: Cell Proliferation counting procedure. The cells coalescing together in the culture 
are segmented by an algorithm written in Visual Basic, using ImageProPlus functions.  
 
 
The pictures of cells acquired either manually or automatically with a digital camera are 

analyzed using ImageProPlus software (Media Cybernetics), yielding cell counts. The purpose of 

the algorithm is to optimize image segmentation of cell clusters which form most of the image 

surface as cell numbers increase. Based on the different illumination level of the cell body, cell 
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edges and background, individual cells are separated by adaptive software within each image. 

Even under very unfavorable conditions, the algorithm works with a recognition accuracy of 81 % 

(Héroux et al., 2004).   

We quantified cell multiplication as a relative rise in cell numbers calculated from successive 

images typically 1 hr apart. The doubling time is frequently used, but the doubling frequency 

(the inverse of the doubling time) has the advantage of being proportional to proliferation speed.  

 

2.7.2  Footprint  

Although most authors refer to “cell size” when discussing the apparent area of objects settled on 

a culture surface, as seen through a digital camera and microscope, we  use the term Footprint 

(pixels or μm2) as distinct from actual cell size in tridimensional suspension. 

The cell Footprints may be measured using IPP-based software with a special focal plane 

sweeping procedure designed to reduce any possible bias in the footprint values obtained.  

Fig. 2.8: Computer perception of objects in culture, with their calculated Cell Footprints  
displayed. Cell Footprint is processed and measured with an algorithm written in Visual 
Basic, using ImageProPlus functions.   
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How flat a cell lays on the bottom of a dish is dependent on the integrity of its internal 

cytoskeleton. It has been documented that short-term hypoxia produces alterations in the spectrin 

cytoskeleton (Glantz and Morrow, 1996) in many studies of necrosis that sometimes involved 

reperfusion. Other studies point to alterations of the cytoskeleton, for example in cardiac 

myocytes (Ganote and Van der Heide, 1987). It is known that ROS affect cell shape through 

actin cytoskeleton toxicity in mussel haemocytes (Gomez-Mendikute and Cajaraville, 2003).  

And neuron cells have been observed as slightly smaller after being incubated in 1 % of oxygen 

compared to 20 % oxygen (Xie et al., 2005). But no detailed studies about cell size changes or 

karyotype changes under various levels of oxygen have been reported in the literature.  

 

2.7.3  Roundness        

Roundness can be accessed from images using algorithms similar to those developed for 

Footprint detection. Roundness provides information about cell state that is different from that 

provided by Footprint. 

Fig. 2.9: Computer perception of 
objects in culture, with their 
calculated Roundness displayed. 
The 1.91 and 3.76 objects are 
macrophages. The 2.09 and 3.34 
objects are dead cells. 
Roundness can be revealing of 
cell type and function. 
 
 

 

Roundness is the dimensionless ratio between the imaged cell perimeter, and a circle of identical 

area.  A circle has a Roundness of 1; all other shapes yield higher numbers. For suspension cells, 
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which are normally close to circular, Roundness quantifies taxis of the sub-population of 

macrophage-like cells within the culture. The variable is useful to quantify the expression of 

macrophages and their activity within a cell population. 

 

2.7.4  Apoptosis  

Software to detect apoptosis automatically has been developed in our laboratory, and is effective 

as long as images for a given site are acquired within a reasonable frequency (30 min or less) and 

also if cell density does not exceed a certain maximum. Apoptosis occurs rapidly and its 

detectable result, a group of apobodies, is rapidly reabsorbed by neighboring cells, possibly 

losing events if the frequency of image acquisition is too low. If the cell population is too high, 

the complexity and density of objects increases, making the detection of apoptosis, which is 

optimal for a relatively isolated group of apobodies, more difficult. 

Reactions to the presence of toxicants can span days (Héroux et al., 2004). It has been shown, for 

example, that excess iron in the body induces apoptosis in some cell types such as macrophages 

and HeLa cells (Pirdel et al., 2007; Cozzi et al., 2003).  

 

 2.7.5  Hex-Distance 

Hex-Distance is a variable developed in our laboratory, quantifying the stickiness of cells to one 

another. As cells multiply and move, they may form different patterns, depending on their level 

of self-adhesion.  

Hex-Distance is quantified as 360° divided by the sum of the angles shadowed on a cell’s 

surface by its 6 nearest neighbors. In ideal two-dimensional packing of identical spheres (Table 
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2), dimensionless Hex-Distance is equal to 1. It rates 5 to 7 for cells newly seeded at 9,000 to 

7,000/cm2.  

Hex-Distance =                    (1) 

                   

where Di are center-to-center distances between one cell and its 6 nearest neighbors of area Ai 

 

Table 2: Hex-Distance examples illustrated in ideal geometry, and in actual K562 cell 
culture micrographs. 
 

 

 

 

 

 

 



 

38 
 

2.8 Cell Genotype Variables  

The genetic structure of cells exposed to metabolic restrictors or MFs was generally determined 

using karyotyping, as chromosome counts and G-banding. It is difficult to identify and group 

uniformly stained chromosomes, but G-banding allows 'bands' to appear on chromosomes, which 

are the same on the homologous chromosomes, easing identification. 

More advanced techniques such as Spectral Karyotyping (SKY) and Fluorescence In-Situ  

Hybridization (FISH) were also used, but had to be contracted out, as the equipment to perform  

these procedures is only available at a single hospital in Quebec. 

 

2.8.1 Chromosome Counts and G-banding 

Metaphase preparation and cytogenetic analysis were performed according to standard 

cytogenetic procedures on the five cancer cell lines with a trypsin-Giemsa banding technique 

(Freshney, 1994). For simple chromosome counts, the non-adherent cell lines K562 and HEL 

92.1.7 were first exposed in culture flasks until they reached a certain cell density. At conclusion 

of exposure, colcemid was added for 2 hours, after which the cells were resuspended in 

hypotonic solution. 12 minutes after, the hypotonic solution is removed, and ice-cold acetic acid-

methanol is added. The preparation is dripped unto inclined slides which are placed in a 60°C 

incubator for 24 hours, after which they are stained with Giemsa. The procedures for the 

adherent cell lines, NCI-H460, COLO 320DM and MCF7, are more or less the same, except that 

they need to be trypsinized for cell separation.  

The slides are evaluated using a Laborlux D upright microscope with 100X magnification under 

oil immersion. Metaphase images are captured using a monochrome Infinity X digital 
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microscope camera with a low-noise 21 Mpixels CMOS sensor (pixel-shifting technique). 

Chromosomes are counted visually with the aid of ImageProPlus software. 

SKY (Applied Spectral Imaging, Sky Vision) and FISH protocols of anoxic K562 cells were 

performed on metaphase spreads at the Banque de Cellules Leucémiques du Québec (Centre de 

Recherche, Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada). 
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2.9 Precision of Determinations 

Accurate determination of cell culture properties depends on control of assay conditions, but also 

on sufficient sampling (cell numbers or culture area in the case of cell counts, or number of 

metaphases in the case of chromosome counts).  

The precision of individual determinations is related to the cells, the medium, test conditions, 

sampling and image interpretation. Our objective is to provide reproducible and precise in vitro 

determinations, so that fine effects as well as accurate thresholds can be determined. 

 

2.9.1 Culture State 

Assay errors may relate to the state of the cells at the beginning of a test. The cells may be 

brought to a certain state by changing the medium at a fixed time before the test, insuring a 

certain culture density and proliferation rate, avoiding contamination (mycoplasma) and 

checking for cell parameters (such as cell roundness) that signal the dynamism of cell division. A 

more troublesome aspect is the accommodation that occurs in a cell population when they are 

changed from one culture medium to another. For best reproducibility, cell medium variations 

should be avoided, which we have controlled using synthetic media. 

To provide identical starting points for tests on effects of oxygen or metabolic restriction, cell 

lines were kept under anoxia in RSF1. Later, the same conditions included alternating MFs lower 

than 4 nT as experiment series focussed on effects of MFs. 

 

2.9.2 Environmental Conditions 

Although incubator conditions (temperature, CO2 and relative humidity) are tightly controlled 

and recorded continuously to file (1 min intervals) by a computer, manipulations performed on 
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mechanically delicate cells are difficult to reproduce perfectly in time intervals and mechanical 

characteristics. Test manipulation conditions are inevitably variable, if conducted by a human. 

The availability of our automatic robotized system to perform data acquisition over as much as 

10 days without human intervention gives us a considerable advantage in precision. Therefore, if 

initial setup for a test is rigidly standardized, excellent control is achieved on the overall test 

procedure.  

 

2.9.3 Sampling Surface  

Since our system is robotized, the acquisition and quantification of large numbers of images, 

which would exhaust any human technician, is possible to reduce sampling errors. Our 

laboratory is equipped with large (backed-up) hard disks to acquire and keep permanently large 

number of images (we already have more than 1.5 million images in our archive).  

The need for acquisition over substantial surfaces to reach specific accuracies in the case of a 

measurement of cell proliferation is illustrated below. Our investigation determined that 34 

images from our setup (a total sample of 5.5 cm²) reduced the standard deviation on cell density 

estimates to less than 4 %. Our Monte Carlo type procedure for reaching that conclusion is 

illustrated in a graph (Fig. 2.10) generated by a Visual Basic program (Appendix A). Starting 

from a T-25 culture in expansion, where local cell density deviations are at their maximum, we 

use our automatic system to acquire 168 images. The software randomly picks 100 images from 

the 168, counts the cells within them, and compiles this data. The program simulates under-

sampling of the 100-strong data set (Monte Carlo method), and estimates the error that would be 

associated with counting the cells in fewer images to obtain a reading. Assuming that the 100-

image average is the true value, we then plot the standard deviation as a function of the number 
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of images sampled. From this graph, we can see that using 34 images (5.5 cm2) reduces the 

standard deviation on cell counts to less than 4 %. Superposed and underneath the graph are 

scattered pale blue points which represent the convergence of the arithmetic mean of a random 

mathematical function (random triangular of 10), offset by 55, with increased sample size. 

 

Fig. 2.10:  Accuracy of 
Cell Density estimate 
for K562 at 10,000 
cells/cm2, as a function 
of sampled surface. 
Up to 100 images 
from a set of 168 
images are randomly 
picked to simulate 
under-sampling. The 
standard deviation as 
a function of the 
number of images 
sampled is plotted. 34 
images (5.5 cm2) 
reduce the standard 
deviation on cell 
counts to less than 
4 %. 

 
 

To explain the choices made in sampling strategies for various variables, one can consider that 

seeding a plate at 10,000 cells / cm2 will yield a certain number of cell counts per cm2 (10,000) 

which can increase and be followed over time by successive manipulations or by an automated 

system. However, investigating spontaneous apoptosis in a population of unchallenged K562 

cells will yield far fewer events, each lasting for about 30 minutes, in the order of 20 per day per 

cm2.   
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Therefore, tests may be carried out at low surface (low cm2, i.e. microplate ) when gross toxicity 

is expected, but with larger sampling surface as well as more frequent readings when thresholds 

or more subtle variables are investigated. 

Within each experiment, more than one instance of a culture can usually be run. For example, in 

a microplate, more than one well can be used to represent a single exposure condition, providing 

multiple measurements within a single dish. When using T-25s, several T-25s with identical 

content can be run simultaneously. This, of course, is different from running experiments at 

different times. When experiments are run sequentially over time, as opposed to simultaneously, 

the main risk of variations is with the cells themselves. Simultaneous experiments would usually 

harvest cells from a single source and divide them as aliquots, while tests conducted in sequence 

must use cells that are not aliquots.  We believe that if cells are harvested from independent 

cultures, simultaneous tests are equivalent to sequential tests, as the main source of variance is 

the cells themselves and possibly the details in handling them, as opposed to variations in 

incubator conditions. Environmental controls in our incubators are very good, and all 

environmental data is kept on file by an automated data acquisition system. 

Data obtained from two tests are usually compared by means of Student’s t-test and comparisons 

among multiple groups are performed using an analysis of variance. A p-value of 0.05 is 

considered significant. 

 

2.9.4 Accuracy of Chromosome Counts 

The most critical variable of this thesis is the observations on chromosome counts. Therefore, 

the accuracy of this determination is of great importance. The factors that limit this accuracy are 

connected with the clarity of chromosome spreads. Given an unlimited amount of time, a patient 
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experimenter could work for long periods of time until absolutely clear and ideal chromosome 

spreads are obtained. This is not realistic in practice. The display of  chromosome karyotypes on 

images is not always ideal. An important factor in determining image clarity is the colcemid time. 

Colcemid arrests mitotic cultured cells in metaphase and causes the chromosome to condense. 

The longer the cells  are exposed to colcemid , the more cells are arrested, which is desirable, but 

the shorter the chromosomes become. Long-term exposure to colcemid can lead to very short 

chromosomes, and these very short chromosomes may become undetectable, leading to counting 

errors. Shorter chromosomes are harder to identify because no bands can be resolved, which 

leads to difficulties of counting and analyzing cell karyotypes. The metaphases are therefore the 

result of a technical compromise. 

Due to these technical reasons and the irregularities in the spread of chromosome pairs by the 

metaphase plate, there are almost inevitable overlaps between chromosomes that may affect the 

accuracy of chromosome counts. To increase the accuracy of chromosome counting, image 

screening and accuracy monitoring procedures are routinely used.  Screening chromosome 

images is a procedure widely used in  karyotyping, where only 20 % of the images are typically 

selected  among hundreds of images available. The selection criteria are that the chromosomes 

spread well and are of substantial length.   

To  monitor the accuracy of our own chromosome counting, we randomly selected 20 images for 

cell lines COLO 320DM and MCF7. COLO 320DM and MCF7 are both adherent cell lines and  

tend to grow in clumps, which leads to more difficult karyotyping.  

Each of the 20 images was counted 3 times, and the average chromosome count was used as the 

true chromosome count. The  chromosome counting error for each image was calculated based 
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on these 20 images. The  counting error for COLO 320DM (chromosome count 46-49) is 1.86 % 

with a standard error 0.58, and MCF7 (chromosome count 61-75) rates at 1.16 % ± 0.39. The 

accuracy for the other cell lines is expected to be higher, because of their more regular dispersion 

on the plates. This means that in practice, the chromosome counts presented in the following 

section should be accurate to better than ± 1.  
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3.1 Phenotype Changes under Various Levels of Oxygen 

As many important forms of chronic occupational toxicity are associated with metals, our initial 

research objective was to assess the toxicity of industrial metals in vitro. From our initial 

experiments and from the scientific literature, we quickly realized that  the toxicity of metals is 

intimately tied to the production of reactive oxygen species (ROS) through the Fenton reaction. 

Essentially, the Fenton reaction uses metals as catalysts to generate highly reactive hydroxyl 

radicals. To clarify the role of  oxygen tension in transition metal toxicity, we were led to 

conduct in vitro tests under various levels of oxygen. Under the microscope, we observed 

cellular changes in proliferation rate, cell size and roundness, macrophage action and cell 

adhesion. Hypoxic tests were followed by anoxic tests, and in our anoxic K562 model, we 

observed smaller, but rapidly proliferating cells. 

The hypoxic center of tumors is widely perceived as in need of more perfusion, because hypoxia 

in viewed as an inherently pathological state. Our measurements below present a different 

picture.  

 

3.1.1 Reducing Oxygen Increases Proliferation 

In four manual and four automatic assays in RSF1 medium, K562 cells were seeded at 7,000 

cells/cm², and counted over time. In the manual assays, T-25 flasks were filled with 7.5 ml of 

culture, and measurements taken at 8 hr intervals at 168 locations within each flask. Scanning 

was performed with a motorized stage, but the five T-25s corresponding to the different levels of 

oxygen had to be manually exchanged periodically. With human intervention, suspension cells 

reposition at each measurement, preventing exact monitoring of the same population of cells 
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over time. In these 4 assays, the 168 evenly distributed images gathered for each data point 

corresponded to sampling of 22.5 % of the T-25 surface. 

In the automated assays, four T-12 flasks were filled with 3.5 ml of culture, set on the stage, and 

slow scans automatically taken at 1 hr intervals. In these 4 assays, 84 images (evenly distributed) 

were gathered for each data point, 22.5 % of the T-12 surface being sampled. 

The same pattern of proliferation, over time and as a function of oxygen concentration, was 

observed using both techniques. Fig. 3.1 is a compilation of both manual and automated results. 

Fig. 3.1: Classical Cell counts on K562 under various levels of Oxygen. Bars represent ± 95 % 
CI. The result is a compilation of both manual and automated results.  
 
The average growth rate (% per hour) based on the curves in Fig. 3.1 are 4.2 % at 0 % oxygen, 4 % 

at 2 %, 3.71 % at 5 %, 3.61 % at 10 % and 3.48 % under 21% oxygen. K562 cells grow fastest 

under 0 % oxygen. Our confidence in these results is high because of the data gathering power of 
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joint image analysis and automation. Oxygen from anoxic to atmoxic concentrations is therefore 

confirmed as smoothly suppressing cell growth (see also Table 3). 

Oxygen Diffusion to Cell level 

The diffusion of oxygen in culture medium is limited, so the bottom of a culture flask becomes 

hypoxic if the cell density is high (Griffith and Swartz, 2006). Because the cell division rate is 

dependent on oxygen concentration (Fig. 3.1), the cell proliferation rate observed at a given 

moment depends on gaseous oxygen concentration, medium depth and cell density. Cell-level 

oxygen concentration in a culture flask can be estimated from a diffusion model based on Fick’s 

First Law, using as parameters oxygen consumption of K562 (J), diffusion (D) of oxygen in 

culture medium, 2 x 10–5 cm2/s, and the equation 

𝐽 = −𝐷
𝜕𝛷
𝜕𝑥

 

where Φ is oxygen concentration and x is depth within the culture medium. 

The rate of oxygen consumption for K562 (J) varies according to different authors, but a single 

representative value measured under atmoxic conditions would be 28 ng of oxygen / min / 106 

cell (Denis-Gay et al., 1998; Carré et al., 1999;  De Oliveira et al., 2006). The oxygen 

consumption rate estimate used a cell density of 2 x 105 cells/cm2, oxygen saturation of 5 ppm at 

the top of the liquid interface, and culture medium depth of 3 mm. 

Since cell proliferation itself alters oxygen levels at the bottom of the culture dish, the cell 

variables influenced by oxygen will also be altered in the natural course of culture maturation. 

Early and Late Doubling Frequencies 

Table 3 goes further than Fig. 3.1 in distinguishing between Doubling Frequency measured 

“Early” (nominal oxygen condition) and “Late” in the assays (88 % of oxygen remaining). As 

expected, it shows a stable Doubling Frequency between Early (15.3) and Late (15.24) times 
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 under anoxic conditions, but all oxic assays (2 to 21 % oxygen) increase Doubling Frequency by 

an average of 4.95 % late in the assay, compared to the beginning. The effect is thought to be due 

to oxygen depletion at the bottom of the flasks, as modeled from the first to the blue columns of 

Table 3, and this acceleration happens despite the inevitable reduction in the medium’s nutrients. 

Table 3. Oxygen Concentration alters Doubling Frequency and Crest Doubling Frequency. 

1 Early: Cells are less than 12 % confluent (cells occupy less than 12 % of the image’s surface), maintaining oxygen 
levels within 4 % of gas/liquid interface level: from 0 to 50 hours for 0, 2, 5 % oxygen, from 0 to 60 hours for 10 
and 21 % oxygen. 
2 Late: 40 % surface coverage by the cells corresponds to 88 % of the oxygen at the gas interface available at the 
bottom of the flask: 70 hours for 0 % and 2 %, 80 hours for 5 %, 90 hours for 10 % and 95 hours for 21 %. 
 

This data suggests that the acceleration of cell division over time in K562 cultures can be 

explained by oxygen depletion. K562 oxygen consumption (J) is only known as a single, 

probably atmoxic value (depending on cell density and medium depth), and it is likely that a 

more precise definition of this variable as a function of oxygen concentration would improve the 

match between observations and computations. 

Crest Doubling Frequency 

The fastest Doubling Frequency within the evolution of a cell culture and for a particular oxygen 

concentration may carry the most physiological meaning. To obtain the Crest Doubling 

Frequency, a time range is chosen for each oxygen concentration, as shown in the last column of 
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Table 3. This time interval is early enough so that neither nutrients nor oxygen at cell  level are 

substantially depleted, but late enough to avoid the culture’s initial lag phase, if any (more on lag 

phase below). 

 
Fig. 3.2:  Crest Doubling 
Frequency reduces as 
Oxygen increases. Bars 
represent ± 95 % CI of 8 
tests. The data 
dispersion is largely 
attributable to the initial 
state of the cell cultures 
used in independent 
experiments. 
 

 

 

The simple relation between oxygen level and Crest Doubling Frequency is illustrated in Fig. 3.2.  

The data dispersion is largely attributable to the initial state of the cell cultures used in 

independent experiments. In individual tests, the shape of the Crest Doubling Frequency curve 

as a function of oxygen concentration (Fig. 3.2) is repeatable, as individual curves simply shift 

vertically as a whole. 

Fig. 3.3: Crest Doubling Frequency 
differences between adjacent 
Oxygen concentrations (0-2 %, 2-
5 %, 5-10 %, 10-21 %) in 
simultaneous tests, based on 8 tests. 
Bars represent ± 95 % CI of 8 tests. 
Differences in Crest Doubling 
Frequency between adjacent 
oxygen concentrations are always 
positive, confirming that the Crest 
Doubling Frequency varies with 
oxygen concentration as depicted in 
Fig. 3.2. 
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Fig. 3.3, which illustrates the differences in Crest Doubling Frequency between adjacent oxygen 

concentrations within a given test, confirms that the Crest Doubling Frequency always varies 

with oxygen concentration as depicted in Fig. 3.2 (individual curves follow the same shape). 

The Crest Doubling Frequency curves of Figs. 3.2 and 3.3 however integrate important 

phenomena that occur within the cell culture, and which become apparent if tighter 

measurements over time are performed. These measurements reveal: (1) a lag phase in cell 

proliferation on the occasion of any oxidation level change, (2) rapid variations in apparent 

proliferation rate due to periodic bursts of apoptosis, depending on ROS levels, and (3) among 

closely spaced groups of cells, cell division bursts that are more or less time-wise spaced apart, 

again according to ROS level. 

 

3.1.2 Reducing Oxygen Changes Cell Appearance and Macrophage Activity 

The mutipotential K562 cell line can express erythroid, macrophage and megakaryocyte lineages 

(Sutherland et al., 1986). Computer-based recognition allows the monitoring of large numbers of 

objects, and small components of cell populations can be monitored, as long as they can be 

effectively discriminated. In our tests, objects were assigned to two categories, based on size. 

Objects between 50 and 300 μm² are classified as “normal cells”. This is a reasonable range for a 

cell of variable karyotype, considering that normal cells usually display a range of 2 (Conlon and 

Raff, 2003). Objects between 300 and 600 μm² are recognized as macrophage-like. Objects 

larger than 600 μm² are clumped necrobodies or dead macrophages. 

Cell Roundness is commonly used as a subjective index of cell health by suspension cell culture 

technicians, a low value of Roundness (good sphericity) indicating rapidly growing cells, and so 

a healthy culture. Most cell biologists believe that cell membrane synthesis is at least partly 
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determined by intra-cellular pressure (Nierras and Warner, 1999), potentially linking a smooth 

membrane to rapid cell growth. Whatever the case, a benign and physiological environment is 

conducive to low Roundness. A second group of influences on Roundness relate to the sensory or 

exploratory functions of the cell in relation to its surroundings. For macrophages, this expresses 

as chemotaxis. It involves multiple focal filopodia contacts on the substrate, coordinated with 

cytoskeleton and F-actin formation (Kim et. al., 2007). Increased perimeter is related to 

invasiveness in normal and malignant cells (MacDougall and Kerbel, 1995). 

Reducing Oxygen reduces Cell  and Macrophages Footprints 

Table 4 compiles Roundness, Footprint and proportion of macrophages at a cell density of 

30,000 cells/cm², but also discriminates for object sub-populations. At each oxygen level, 8 

assays (4 manual assays and 4 automatic assays) measured 10,000 objects. The perturbation of 

re-seeding (5 minutes at 420 g, renewal of the supernatant, and seeding) as well as oxygen 

depletion in the aerobic cultures were avoided by sampling at 40 to 60 hours post-seeding, 

depending on cell density.  

 

Table 4. Average Roundness and Footprint at various levels of Oxygen. 
 

The “All Objects” columns of Table 4 show that reducing oxygen makes the detected objects 

rounder and the Footprint smaller. When discriminated according to size as “Cells” or 
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“Macrophages”, it can be seen that “Cells” Roundness or Footprint are fairly indifferent to 

oxygen, but that “Macrophages” have higher Roundness and smaller Footprint at low oxygen. 

“Macrophages” have an irregular shape (high Roundness, see Fig. 3.5) when they are actively 

chemotaxic. The higher Roundness of “Macrophages” under 0 %  oxygen can be interpreted as 

higher chemotaxic activity. The differences in adjacent Roundness and Footprint values as a 

function of oxygen concentration reported in Table 4 are often small, with overlapping CIs (for 

example, the “All Objects” Roundness series 1.52-1.54-1.61-1.73). The CIs reported in Table 4 

are computed for tests widely separated in time. In a specific test, 4 culture aliquots are exposed 

to 4 oxygen concentrations simultaneously in the same incubator and with the same equipment. 

We confirm that the tendencies reported in Table 4 for Roundness and in Footprint are 

reproduced in individual assays. The CIs of Table 4 reflect slight differences in the state of the 

root cultures used to make the 4 aliquots, and these differences affect all oxygen levels of a given 

assay, similar to the situation of Figs. 3.2 and 3.3. It is notable that the tendency for 

“Macrophage” Roundness as a function of oxygen concentration (- 14 %) is reversed compared 

to “Cells” Roundness (+ 4.3 %). 

In Table 4, the average anoxic Footprint for “All Objects” is 158 μm², compared to 186 μm² at 

21 % oxygen (+ 18 %, p < 0.05). “Cell” Footprints rise slightly between 0 % and 21 % oxygen 

(+ 5 %), and “Macrophage” Footprints increase from 415 μm² to 443 μm² (+ 7 %, p < 0.05).  
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Reducing Oxygen reduces Macrophage numbers  

As can be seen in Fig. 3.4, a histogram of cell Footprints under various levels of oxygen, higher 

oxygen levels stimulate the appearance of larger objects exhibiting macrophage-like size. The 

vertical log scale allows visualization of changes in the number of these larger objects as a 

function of oxygen level. The cells analyzed in Fig. 3.4 have been cultivated over 3 passages 

under their specific oxygen concentrations, and their histogram is assumed to be in steady state. 

The data is based on 3 separate assays, and compiles 4,300,000 objects. 

Fig. 3.4: Histogram of object Footprints as a function of Oxygen level (1,430,000 
cells/curve). Data averages 3 sets of experiments. Higher oxygen levels stimulate the 
appearance of larger objects exhibiting macrophage-like size. 50 to 300 μm² are “normal 
cells”, and 300 to 600 μm² are macrophage-like. 0 % oxygen curve has 5.71 % of 
macrophage-like counts, 2 % has 7.29 %, 5 % has 8.78 % and 21 % has 11.37 %. 
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Over approximately 1,430,000 objects for each histogram, there are 81,653 macrophage-like 

objects in 0 % oxygen and 162,591 in 21 % oxygen: macrophage-like objects are 99 % more 

numerous in 21 % oxygen than in 0 % oxygen. In the last column of Table 4, it can be seen that 

oxygen increases significantly the number of macrophages, an up-regulation of K562’s 

macrophage phenotype. 

Reducing Oxygen increases Macrophage Chemotaxis 

The most rapid effect of oxygen we could display is the initial stages of an inflammatory 

response. Because our techniques gather large number of images over time, it is relatively easy 

to verify from time-series visual observations on normal or oxic transition assays (assays where 

cells are taken from one oxygen level to another) that the macrophage sub-population has a more 

turbulent and short life than the normal cell population. Macrophage life is essentially without 

reproduction, presents frequent engulfment of particles or other cells, and finally apoptosis. Our 

data is also compatible with macrophage-like objects being mechanically more fragile (Baba et 

al., 1991) and likely to be destroyed in a re-seeding process, as larger cells usually are. 

We compiled changes in object Roundness with level of oxygen in K562 in Table 4. Roundness 

values, the ratio of the perimeter of a cell to that of a circle of identical surface, increase with 

oxygen concentration, from 1.52 (0 %) to 1.73 (21 %) for the mean and from 1.20 (0 %) to 1.60 

(21 %) for the median. The confidence intervals (CIs) for 8 assays are shown in Table 4.   

Particularly interesting data can be generated by monitoring the Roundness of K562 over time, as 

the percentage of oxygen overlying the culture is changed. The near edge of the graph in Fig. 3.5 

represents a stable anoxic culture. Near-circular cells (low Roundness, at left) are the most 

numerous, and the more irregular shapes (high Roundness, at right) become monotonously less 

frequent. At time zero of the figure, the anoxic gas of the culture is replaced by atmoxic gas. 
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Within as little as 4 hours, there is generation of a population of cells at Roundness equal to “2”, 

which solidifies in the 40 hours documented by the graph. 

About 30 hours are necessary for Roundness adaptations to a new oxygen level to take place. 

The R2 peak corresponds to a highly probable morphology of the macrophage population 

described in Fig. 3.5. The R2 peak is smallest in unstressed, healthily growing anoxic cells. It is 

expressed under higher oxygen levels, as shown in Fig.3.5, and in any oxic transitions. R2 may 

be an indicator of culture stress.  

Fig. 3.5: Rapid 
inflammatory response 
to oxygen in K562 is 
illustrated by time-
series histograms of cell 
shape quantified as 
Roundness. The anoxic 
gas phase of a 
continuously monitored 
cell culture is replaced 
by atmoxic gas at time 
zero, triggering the 
appearance of the 
“Roundness 2” peak in 
this 3D mesh plot. The 
total cell number 
climbed from 22,000 to 
46,000 from the near to 
the far edge of the 
graph. 

 

There is a known molecular mechanism to justify such a fast reaction. In many cells, including 

K562, there are specific amino acids in a latent complex, LTGF-β, that allows release of TGF-

β in response to ROS (Barcellos-Hoff and Dix, 1996). TGF-β action has been implicated in a 
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variety of reactive oxygen-mediated tissue processes, particularly inflammation, and in 

pathologies such as reperfusion injury, rheumatoid arthritis, and atherosclerosis. Macrophages 

and monocytes respond to low levels of TGF-β in a chemotactic manner (Letterio and Roberts, 

1998), explaining the rapid changes displayed in Fig. 3.5. 

The inflammatory reaction to ROS displayed in Fig. 3.5 is sustained indefinitely. As well, in 

cultures chronically maintained at 0, 2, 5, 10 and 21 % oxygen, the proportion of macrophage-

like cells (larger than 300 μm²) increases steadily, as shown in the 6th column of Table 4. ROS 

therefore trigger the appearance of irregular cell shapes (Roundness 2) as in Fig. 3.5, but also of 

a small population of larger, macrophage-like cells, both of which can be interpreted as early 

signs of inflammation. 

 

3.1.3 Reducing Oxygen Generates more Cell Debris  

Routinely, some cells undergo apoptosis or necrosis, introducing debris in the medium. The 

number of apobodies and necrobodies (the proceeds of apoptosis and necrosis) present in the 

medium results from a competition between cell turnover or decay, and phagocytosis. These 

smaller objects, measured in Fig. 3.6, are rarely documented in cell studies, but can conveniently 

be counted using image analysis. In our high resolution imaging of a single test, we categorized 

“cells” as objects above 51.3 μm, “apobodies” as objects between 33.4 and 51.3 μm, and 

“necrobodies” as objects between 12.8 and 33.4 μm. In this T-12 experiment, cells cultured at 0 % 

and 21 % oxygen concentration were centrifuged and the supernatant renewed. Re-seeding was 

at 10,000 cells/cm², in the same oxygen concentration. Over 90 hours, 22.5 % of the T-12’s 

surface (84 images) was sampled hourly, a range of 27,000 to 120,000 cells. 
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Fig. 3.6: Apobodies and 
Necrobodies per Cell (%) in 
K562 cultures under 0 % and 21 % 
Oxygen. 0 % oxygen (top curves) 
shows more apobodies and 
necrobodies than 21 % oxygen 
(bottom curves). 
 

 

 

 

The readings at the left of Fig. 3.6 start at low values because of the fresh (clean) seeding 

medium. But the 0 % oxygen condition creates more Apo- and Necrobodies than 21 %, so values 

start higher after the centrifugation procedure, and continue to diverge upwards from the 21 % 

debris ratios thereafter. The data of the two curves shows that debris is more common under 

anoxia than under 21 % oxygen. We have previously shown that anoxic conditions reduce 

macrophage numbers but increase macrophage activity (Table 4). With the data of Fig. 3.6, we 

have a picture under anoxia of fewer macrophages (x 0.43) that are more active (Roundness 

changes from 2.72 to 3.29) resulting ultimately in more debris in the medium. 

Future investigations may be able to confirm that anoxia provides higher cell turnover (more 

apobodies, Fig. 3.6) and more discriminating immunity that would be blunted by ROS under 

more oxic conditions. It may also be that anoxic cells concentrate their resources on heightened 

proliferation (Fig. 3.1), and reduce the number of phagocytes (Table 4) in what is perceived as a 

less threatening (oxidizing) environment (Nagai et al., 2004). 
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Apoptosis was also measured in image series (Fig 3.7) using visual detection (“manual”) or 

custom software (Héroux et al., 2004). The manual measurement shown below includes 

manipulation of the various culture vessels by the experimenter, as successive placements on the 

scanning system, and visual rather than software recognition of apoptoses. Automated 

measurements involve only movement by the motorized stage, but rely on software recognition 

of groups of apobodies.  Because software is more easily confused by complex images than the 

brain, the automated measurement can only reliably cover about 10 hours of the experiment, as 

compared to the 50 hours in the manual measurement, when the images also becomes too 

cluttered even for visual recognition.   

Apoptosis is a very delicate variable that is quite sensitive to initial culture state. In spite of this, 

a hierarchy is consistent between manual and automated measurements. Apoptosis is strongly 

inhibited by atmoxia, to typical levels of only 0.01 %/hour. The anoxic culture shows slightly 

higher rates. The transition tests show rates as high as 0.5 % per hour, seemingly increasing with 

the size of the oxic transition step. 

Rises in apoptosis rates coincide with induction of karyotype changes. Inhibition of apoptosis by 

oxygen in our results bring to mind the “Warburg hypothesis”, which posits that mitochondria, 

the initiating site of apoptosis,  in cancer cells are shut down, and would need to restart their 

apoptosis program for a tumor to regress (Bonnet et al., 2007). The sensing of ROS 

concentration by mitochondria is probably achieved by the voltage gated family of ROS-K+ 

channels (Michelakis et al., 2004). 
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Fig. 3.7: Manual Measurements of Apoptosis Rates in K562 cultures. 
 
 

3.1.4 Reducing Oxygen Increases Cell Adhesion 

Another cell behavior affected by oxygen is adhesion. Because cell adhesion is lowered late in 

CML, allowing metastatic release, this variable is particularly relevant to cancer progression. 

The oxygen gradients found in tumors should support the release of metastatic cells on their 

periphery, while stabilizing the implantation of metastatic cells in hypoxic environments.   

In atmoxic culture, K562 exhibits much less clumping than many other suspension cell lines, 

perhaps due to down regulation of surface adhesion molecules by the BCR:ABL protein (Shet et. 

al, 2002). Conversely, hypoxia is reported to suppress the BCR:ABL-dependent leukemogenic 

signals (Desplat et. al, 2002), allowing expression of adhesion molecules.  
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Centrifugation for 3 minutes at 250 g, renewal of the supernatant, and seeding of a suspension 

should produce a random distribution of single K562 cells on a T-12’s surface, but we detected 

early in our assays that growth patterns differed according to oxygen level. Our visual 

impression was confirmed by the Hex-Distance data below. 

 

Fig. 3.8: K562’s enhanced clustering under anoxia, a sign of reduced metastatic potential. 
Hex-distance histograms are compiled at 1, 4, 7, 10, 18, 29, 40, 51, 62, 73 hours. Each curve 
shows averages ± 1 σ of Hex-distance for 5,000 to 32,000 cells. Among the different oxic 
environments in the legend, cyto-adhesion is strongest for anoxic transition (blue) and 
anoxic (red) cells, while atmoxic cells are more easily shed. 
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Looking at the vertical axis at left of Fig. 3.8, one can see thumbnails corresponding to specific  

values of Hex-distance, which  is the average distance between a cell (red) and its 6 closest 

neighbors (gray), expressed in cell diameters. If every cell in a culture had a Hex-Distance of 1, 

this would corresponds to complete cell coverage of the culture surface. When seeded randomly, 

Hex-distance distributions show values compatible with their density (Hex-distance  of 5 to 7 

corresponds to 10,000 cells/cm2). 

Hex-Distance distributions and how Hex-distance values decay towards 1 (= confluence) as cell 

densities increase over time, quantify the tendency of cells to stick together (lower average Hex-

Distance) rather than disperse (higher average Hex-Distance). To allow a fair comparison of cell 

clustering between experiments, Hex-Distance distributions must be compared against a 

horizontal axis of cell density rather than time, as is done in Fig. 3.8.   

We investigated K562 adhesion in quadruple experiments where anoxic and atmoxic cultures 

were simultaneously passaged into identical or opposite oxygen environments. The four Hex-

Distance curves in Fig. 3.8 stop at the right of the graph at the same time (72.5 hours), but at 

different cell densities, because of different doubling frequencies at different oxygen levels. All 

curves converge to the lower right of the graph, as cultures become more confluent. The black 

and blue curves describe transition assays in that cells cultured in one oxygen concentration are 

transferred to a different one, rather than to the same concentration (red and green). 

All curves show a change in horizontal direction at the left of the graph. The direction changes 

correspond to “lags” in the proliferation of cells in the early parts of the curves.  

Both the black and blue oxygen transition assays exhibit a transient regression in cell numbers at 

17.5 hours following the oxygen change, and it takes some time for the new cytoadhesion to 

establish itself (black curve joining the green at 17.5 hrs, or blue joining the red at 61.5 hrs).  
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But even the red and green curves (no oxygen transition) experience small proliferation lags 

around 17.5 hours. The 21 % > 21 % assay (green) is actually a small hyperoxic jump, since the 

4-day-old 21 % culture serving to seed the second 21 % culture at 10,000 cells/cm2 is actually 

somewhat depleted in oxygen (and nutrients). As well, the 0 % > 0 % (red) curve is transiently 

enriched by the oxygen dissolved in the new medium, which was stored in equilibrium with air. 

Therefore, all the proliferation lags observed can be associated with oxic transitions. 

Concentrating now in Fig. 3.8 to the right of the lag phase due to seeding (10,000 cells/cm2), we 

see that low oxygen curves (blue and red) have smaller Hex-Distances than high oxygen curves 

(black and green), indicating that the hypoxic cells are more cytoadhesive.  

It seems that a hypoxic transition (blue) is most cytoadhesive. This means that atmoxic cells, 

which are thought to represent a later (metastatic) stage in the evolution of K562, still retain the 

ability to express self-adhesion when oxygen is withdrawn.  

The overall observation is that K562 cells are more cytoadhesive in anoxic culture, and are 

delayed in proliferation (“lag phase”) by any oxic change. Consequently, cells harvested early in 

a culture, compared to cells harvested late, would not initially proliferate at the same apparent 

speed when seeded. Because of their habituation to specific oxygen levels, they would 

experience different lags. 

 

3.1.5 Phenotype Summary 

The phenotype measurements above converge to present a picture of anoxic K562 as a more 

dynamic (increased proliferation), stable (less inflammation) and cohesive (more self-adhesion) 

tissue compared to other levels of oxygen. Table 4 provides specific numerical values to support 

these assertions, and adds the following elements expressed under anoxia: smoother cell borders 



 

65 
 

(column 4), smaller cell footprints (column 5) and reduced macrophage numbers (column 6) of 

increased activity (column 7). These changes occur within tens of hours of any oxygen 

adjustment. Our data suggests a more ordered K562 anoxic phenotype compatible with tissue 

formation.  

Our interest in the anoxic cells is high because they have a different phenotype, represent an 

extreme case of inhibition of the mitochondrial oxidative metabolism associated with cancer, and 

also because very little work has been performed on this subject.  

Our tests performed at numerous oxygen levels confirmed that the reduction in cell size was a 

trait generally associated with oxygen removal. The reduced cell sizes caused by anoxia lead us 

to suspect that karyotype changes may also occur during oxygen withdrawal, as cell size is often 

connected with chromosome count, particularly in plants.  
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3.2 Karyotype Changes under Anoxia 

Does anoxia actually roll back K562, a cell harvested in a late phase of CML, to an earlier stage 

of the disease? Would a transition from anoxia to atmoxia parallel the transformation witnessed 

by Lozzio as K562 was stabilized in atmoxic culture? Perhaps more pointedly, are these changes 

effects of oxygen on BCR:ABL and tyrosine kinase, or an independent effect of ROS on K562 

expression? Furthermore, do all these changes apply to other cancer cells?  From our 

observations of the K562 cell phenotype under anoxia, we suspected that the phenotype 

alterations were shadowed by chromosome changes, and that the cells’ more stable phenotype 

may be mirrored in a karyotype of superior stability.  

 

3.2.1 K562 Chromosomes Change in Anoxic Transition 

Anoxic Karyotype 

In an attempt to answer these questions, we documented the anoxic and atmoxic karyotypes of  

 K562. Kayotypes are usually established from 50 metaphases or less, but in Fig. 3.9 we 

compiled 108 and 122 to solidify the clear separation observed between the two karyo-

histograms, a modal loss of 7 chromosomes from atmoxia to anoxia. Our anoxic karyo-histogram 

(blue) is uniquely narrow compared with that of any tumor cultured under atmoxic conditions 

(Spriggs et. al, 1962),  or even of normal human tissue, such as the brain (Yurov et. al, 2007), 

implying unusual stability. 
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Fig. 3.9: The anoxic histogram (blue) is averaged from our data and from 3 repeats by 
Plate-Forme de Cytogénétique of Maisonneuve-Rosemont hospital (108 metaphases). The 
atmoxic histogram (red) is averaged from our data.  Similar atmoxic data is published by 
ATCC and Dimery (1983). 

 

Since elimination of oxygen caused chromosome losses in Fig. 3.9, could pleomorphisms and 

spreads in K562 karyotypes reported by many observers (Dimery et. al, 1983) be explained by 

oxygen gradients? Oxygen diffuses poorly in culture media (Griffith and Swartz, 2006), so 

concentrations are lowered at the bottom of a dish (Table 3, column 3), depending on depth and 

cell density. Cell growth patterns should also influence karyo-histograms, since oxygen 

concentration at individual cells depends on a cell’s position within a cluster (Mathur et al., 

2010). Growth-pattern hypoxia is likely responsible for the relatively large lower-side tail at 64 

to 67 in the 21 % oxygen distribution of Fig. 3.9.  As would be expected, this lower-side tail is 

much reduced when oxygen is completely absent (blue in Fig. 3.9). This narrow spread, and the 

substantial anoxic-atmoxic gap, make K562 an ideal model to test for mechanisms of karyotype 

transitions induced by oxic changes (Fig. 3.11).  

In the case of K562, important karyotype modes across the range of oxygen concentrations are 

45-46, 55, 62 and 69. The reduced chromosome count under observed under anoxia is 

compatible with a lower doubling time, as it takes more time to copy more chromosomes.   



 

68 
 

SKY and FISH  Studies of  Anoxic K562 

To document the nature of the chromosome changes associated with anoxia in K562, Spectral 

Karyotyping and Fluorescence In-Situ Hybridization of 20 anoxic K562 cells was performed. 

We had questions about the survival of the BCR:ABL and tyrosine kinase lesion in the majority 

of the anoxic cells, and on the selection of the chromosomes eliminated by anoxia. We also 

wanted to determine whether the orderly phenotype and narrow karyo-histogram of anoxic K562 

had a correspondence in the details of its karyotype. 

The 62-chromosome anoxic clone was studied using Spectral Karyotyping and Fluorescence In-

Situ Hybridization (Fig. 3.10A). All human chromosomes are represented in the anoxic 

karyotype. Chromosome 14 shows a Robertsonian translocation, common in Acute Myeloid 

Leukemia and CML. The lost satellite of chromosome 14 is redundant with microsatellites of 13, 

15, 21 and 22. There is also a 20 % incidence of a normal chromosome 14 in the culture. A 

single normal chromosome 17, reported by Lozzio (Lozzio and Lozzio, 1975), is conserved in 

both atmoxic and anoxic cultures. 
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Fig. 3.10A: G-banding and SKY results from 20 anoxic K562 cells, detected in all but  
4 (absence of  i(14)(q10): normal chromosome 14). Chromosomal abnormalities are related  
to the 3n (69 chromosomes) level, according to ISCN 2009: -2, dup(2)(q?): duplicated long  
arm segment localized on p, -3, -4, +der(5)t(5;6)(q?;p?), dup(6)(p?), +der(6)t(6;20),  
+inv(7)(p?p?), -8, -9, del(9)(p12), dup(9)(q?): duplicated long arm segment localized on 9p,  
der(10)t(3;10), +der(10)t(3;10;17), -11, der(12)t(12;21), -13, der(13)t(9;13), -14,  
der(14)t(2;14), i(14)(q10), -15,der(17)t(9;17)x2, ?del(18)(q?), der(18)t(18;22),  
der(18)t(3;18), -20, -21, dup(22q?q?), -X, der(X)t(X;8), dup(X)(q?): duplicated long arm 
segment localized on Xp.   

 
 
 
FISH results. BCR (green)-ABL (orange)-ES translocation 
probe results. The fused green-orange (white spot) reveals 
the Philadelphia chromosome, detected in 95 % of CMLs. 
From Plate-Forme de Cytogénétique, Maisonneuve-
Rosemont Hospital.  
 
 
 
 
 

 

Fig. 3.10B:  Naumann et al.’s (2001)  M-FISH karyotype of a K562 67-karyotype, found in 
15 of 19 cells investigated. 



 

70 
 

 

The stability of the 62-karyotype (a high of 56 % in Fig. 3.9) created an opportunity for a 

chromosome-by-chromosome comparison with a documented K562 atmoxic 67-karyotype 

published by Naumann (Fig. 3.10B) (Naumann et al., 2001). Comparison shows (Fig. 3.10) that 

many markers are lost, and the 62-karyotype has generally moved closer to that of a normal cell. 

11 chromosomes move closer to normality, while 2 become more abnormal. Many markers of 

the 67-karyotype are eliminated in the 62-karyotype.  

Fluorescence In-Situ Hybridization (Fig. 3.10A, bottom) showed that the BCR: ABL fusion on 

chromosome 22, part of the standard atmoxic K562 line, is conserved in anoxia. These 

observations, together with a low rate of apoptosis in anoxic transitions (see below), suggest that 

anoxia contracts karyotypes by methods that are not degenerative or random, but selective. 

Although metabolism has a leading role in modulating phenotype and karyotype, the basic 

cancer lesion, the BCR:ABL gene fusion, is left untouched (Fig. 3.10A, bottom) in the diverse  

forms of K562.   

 

3.2.2 Oxic Karyotype Transitions and CIN 

Oxic transition assays were conducted on K562 to further examine the mechanisms of KC and 

expansion. In oxic transition assays, stable anoxic and atmoxic cultures are transferred to their 

opposite oxygen level (21 % > 0 % and 0 % > 21 %). By karyotyping at various time intervals 

following the transitions, we observed that chromosome losses after anoxia are instantaneous, 

while gains after atmoxia need many cell cycles to complete. The gap (62 to 69 in Fig. 3.9) 

between anoxic and atmoxic karyo-histograms creates an opportunity to watch the evolution of 
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karyotypes. Four days is an auspicious time to investigate the atmoxic transition (Fig. 3.11), as 

intermediate karyotypes (62 to 69) bridge the gap.  

 
 Fig. 3.11: Four days after Atmoxic transition (0 % > 21 %), intermediate karyotypes (63 to 
67) bridge the gap between the Anoxic mode of 62 and the Atmoxic mode of 69. 157 
metaphases from 3 different tests in our laboratory. 11 % of atmoxic transition karyotypes 
lie both below and above the graph, but such outliers are almost entirely absent from the 
anoxic transition. 
 

 Our data shows that the traditional mechanism of tumor adaptation, clonal expansion (Nowell, 

1976; Zhang et. al, 2001), strains to explain the rapid evolution of karyotypes observed. How can 

the 63 chromosome karyotype, undetectable under anoxia (blue in Fig. 3.9), appear in Fig. 3.11 

at 12 % only 4 days later (~ 4 cell divisions), and disappear afterwards from the long-term 

atmoxic signature (no red 63 in Fig. 3.9)? The results of Fig. 3.11 imply, rather, that CIN 

(Lengauer et al., 1998; Rajagopalan and Lengauer, 2004) allows chromosome additions to occur 

with high probability (~21 %, see below) at each cell division, likely under the mechanisms of 

CIN (Yoon et. al, 2002). 
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Also, only CIN can explain the rapid chromosomes losses observed in the anoxic transition 

(21 % > 0 %), where within 1-day, two thirds of metaphases are already within the long-term 

anoxic envelope. The speed at which the transitions occur far outpaces the conventionally 

favored mechanisms of genetic change, specifically clonal expansion following random mutation. 

 

In terms of molecular mechanisms, chromosome 

counts could increase in the atmoxic transition as a 

result of failed segregation, contributing 

symmetrically around a mode, or as endo-

reduplication (END) (Levan and Hauschka, 1953), a 

mechanism of unscheduled (extra-mitotic) 

chromosome duplication. Both mechanisms can be  

Fig. 3.12: Output example of karyotype evolution simulation program. EndoReDuplication 
and Asymmetric Segregation events are applied with specific probability levels (two 
dimensional scan) to the anoxic distribution of Fig. 3.9.  The simulation result are then 
compared with the actual 4-day atmoxic transition karyotype of Fig. 3.11. 
 

applied numerically using a karyotype evolution simulation program to an initial anoxic karyo-

histogram such as the one in Fig. 3.9 by assigning a share of chromosome changes to each 

mechanism for a certain number of cell divisions, and comparing the output to the karyo-

histogram of Fig. 3.11. Computer simulations suggest that the dominant CIN mechanism is END 

(21 % probability per division), rather than asymmetric segregation (1.5 % probability per 

division). Too much weight should not be placed on such simulations, because it is difficult to 

represent accurately uncertain biological mechanisms in software and because for any cell line, 

all chromosome structures are not equally probable, reflecting islands of stability. But the 
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simulations clarify that in this limited model, END dominates asymmetric segregation, if only 

because atmoxic transition needs a 7 chromosome mode increase, while asymmetric segregation 

contributes symmetrical skirts around a mode. Also, KC produces very few unusual karyotypes. 

Our observations show that tumors can contract and expand their karyotypes with surprising 

speed as oxygen levels are altered.  

Following these observations, further questions arose as to the generality of the phenomenon, 

specifically whether KC can be observed in other cancer cells, and as to whether KC is 

controlled exclusively by oxygen or is a more general manifestation of reduced metabolism. To 

elucidate these questions, four other hyperploid cancer cell lines and four different  metabolic 

restrictors were used to document the extent of the relationship between metabolic restriction and 

KC. 
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3.3 Anoxic Karyotypes and Karyotype Contraction                         

from Metabolic Restriction  
 

At that point, we extended our karyotype investigations to a variety of agents which we knew 

from our own experiments to be capable of producing size reductions similar to those we 

observed with oxygen withdrawal in K562. Those agents, melatonin, vitamin C, imatinib and 

oligomycin we designated collectively as metabolic restrictors. Vitamin C, for example, reduces 

the ROS levels as well as oxygen consumption in cells. Both anoxia and the metabolic restrictors 

in sufficient concentrations can strongly inhibit metabolism. This line of investigation proved 

very productive when metabolically restricted K562 revealed losses of many more than the 7 

chromosomes  lost by anoxia alone, leading almost to normalization of the number of 

chromosomes in K562. We also expanded our investigations to a number of hyperploid cell lines 

in an attempt to cover the major tumour types. 

KCs on five hyperploid cancer cell lines are presented in Table 5. The “Atmoxia Baseline” 

column lists the chromosome counts observed under standard culture conditions, 21 % oxygen 

and 5 % CO2. The other columns report the chromosome losses sustained by cell cultures under 

four strong metabolic restrictions. Anoxia is representative of the deep hypoxia of tumor cores. 

“Anoxia alone” (Table 5) results in partial KC, which means that 6 to 8 chromosomes are lost in 

the 5 cell lines, bringing their totals closer to 46. This contraction remains as long as anoxia 

persists, but is reversed over a few weeks, if atmoxia is restored. 

All cell lines in Table 5 have larger atmoxic than anoxic count ranges. In Fig. 3.9, the left tail of 

the histograms is larger for atmoxic (red, 64 to 67) than anoxic (blue, 58 to 60) distributions. 

These two observations can be explained if oxygen increases not only chromosome counts, but 
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also chromosome count spread. Growth patterns influence karyo-histograms under oxygen, as a 

cell’s position within a group impacts its oxygen exposure. This view is supported in Table 5 by 

the smaller atmoxic chromosome ranges for suspension cells (the two erythro-leukemia types), 

compared to the adherent lines.  

The metabolic restrictors oligomycin and imatinib were used at sub-toxic levels: concentrations 

(IC50) just low enough to allow cell division and karyotyping. Melatonin-vitamin C were 

optimized for maximum chromosome drop, and these levels were subsequently found to be 

physiological, as they matched those in bone marrow (Tan et al., 1999) and plasma.  

 
 

  Atmoxia Baseline Anoxia Alone Atmoxia 

 
Cell 

 
Type Mode 

(80 % Range) 
Mode 

(80 % Range) 

Oligomycin 
0.1 µM4 

 
Mode 

(80 % Range) 

Imatinib 
0.08 µM5 

 
Mode 

(80 % Range) 

Melatonin-Vit C 
0.3 µM, 150 µM6 

 
Mode 

(80 % Range) 

K5621 Erythro- 
Leukemia 

69 
(64-70) 

62 
(58-62) 

48 
(46-53) 

47 
(45-51) 

48 
(45-52) 

HEL2 

92.1.7 
Erythro- 

Leukemia 
66 

(62-67) 
59 

(57-60) 
47 

(46-51) 
48 

(47-53) 
49 

(46-52) 

NCI-
H460 

Large Cell 
Lung Cancer 

573 

(53-65) 
51 

(45-52) 
47 

(46-49) 
47 

(46-50) 
47 

(45-51) 

COLO 
320DM 

Colo-rectal 
Adeno- 

carcinoma 
543 

(49-61) 
48 

(46-49) 
46 

(46-48) 
46 

(45-48) 
47 

(45-49) 

MCF7 Breast Adeno- 
carcinoma 

823 

(66-87) 
74 

(61-75) 
64 

(59-66) 
65 

(61-68) 
63 

59-65 

 
Table 5. Karyotype Contractions in Cancer Cell Lines after 3-day Metabolic Restrictions. 
 
Number of metaphases for each determination: 122, 108, 30, 25, 25; 50, 50, 30, 25, 20; ATCC, 20, 20, 20, 20; ATCC, 50, 20, 20, 20; 
ATCC, 35, 20, 25, 30. 1 BRC-ABL positive. 2 BRC-ABL negative. 3 ATCC data. 4Proliferation IC50 of  0.0125 µM for 
K562 and HEL IC50 of 0.1 µM for other types. 5K562 sub-toxic level. 6The Melatonin-Vitamin C concentrations 
optimized for K562 chromosome count normalization.  
 

The metabolic restrictors of the last three columns of Table 5 contract karyotypes further than 

anoxia in all cell lines, whether starting from atmoxia or anoxia (not shown). NCI-H460 and 

COLO 320DM chromosome counts are almost normalized by anoxia alone, possibly indicating 
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their deeper dependence on oxygen metabolism. The apparent failure to reach peri-normal counts 

in MCF7 may be due to the induction of cell fusions by the metabolic restrictors (Yang et al., 

2009). 

K562 chromosome count ranges can be expanded beyond the numbers in Table 5. Higher 

melatonin levels contract them below 46, while hyperoxia (50 % and 95 % oxygen) expands the 

usually small “2S” (~138 chromosomes) population.  

Since anoxia alone reduces karyotypes by 6 to 8 chromosomes while other metabolic restrictors 

return chromosome counts close to normal, except for MCF7, it can be concluded that 

hyperploidy in cancer cells is not essential, but is circumstantially connected with enhanced 

metabolism.  
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3.4 Karyotype Contractions from Magnetic Fields  

Until now, our phenotype and karyotype results on 5 cancer cell lines has showed that metabolic 

restriction leads to KC, which has proven to be a rather sensitive assay variable. Anoxic K562, in 

particular, is not only an ideal model to assess the mechanisms of CIN, as revealed by 

chromosome count changes (Fig. 3.9), but can also detect metabolic disturbances.  Because of a 

number of experimental precautions, in particular the use of synthetic media and anoxia, our 

reference K562 cultures are karyotypically and otherwise exceptionally stable. 75 % of the cells 

have just two chromosome counts, 62 and 61, compared to a wider range under 21 % oxygen (Li 

et al. 2011). The stability of anoxic K562 chromosome counts has been monitored by periodic 

controls in our lab for 5 years. These cultures thus provide an extremely precise reference point, 

as shown in the narrow baselines. From this position, we applied MFs to 5 cancer cell lines to 

assess possible phenotype and karyotype changes.  

 

3.4.1 Induced Currents 

Whether biological effects of power-frequency MFs are related to the MF itself, or to the 

currents induced in tissues by the fields, has been a perennial question. A direct MF interaction 

supposes an unrecognized component within living tissues that is vulnerable to MFs. Many 

investigators favor the view that effects occur through potentials produced by magnetically 

induced currents on the thin membranes within or bordering living cells. Such currents and 

membrane potentials are familiar to conventional electrophysiology.  
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In the results illustrated in Fig. 3.13, one aliquot of K562 cell culture is placed in a vertical, and 

the second in a horizontal MF exposure system. At the same magnetic flux density, the  

Fig. 3.13:  K562 chromosome counts produced by 60-Hz, 1 µT MFs applied either 
horizontally or vertically in three 6-day assays. The baseline T-12 culture vessel contains 
anoxic cells at less than 4 nT (60-Hz), with an average of 61.5 chromosomes (horizontal 
line), and a very narrow distribution (at left). Box plots show median (solid), average 
(dotted), 25 and 75 % limits (box), 10 and 90 % limits (whiskers), and outside values (dots). 
56 (Assay 1), 50 (Assay 2) and 51 (Assay 3) metaphases karyotyped in each orientation. 
Inside the box plots are average chromosome losses, with standard deviation. The 
Student’s t-test results quantify the probability that the horizontal and vertical results are 
identical. 
 

horizontal coil induces currents 6 times larger within the medium. The maximum current density 

in a culture dish is related to the magnetic flux through its surface, an area 34 x 34 mm for the 

horizontal coil, compared to 5.8 x 34 mm for the vertical coil. As chromosome losses after 6-

days at 1 µT repeatedly came out similarly for both orientations (Fig. 3.13), we concluded that 
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the effect on the main variable of this article, chromosome counts, was dependent on the MF 

itself.  

We assumed direct MF, rather than induced current action on the basis that variations of current 

density by a factor of 6 did not affect the results. But it should be kept in mind that the same 

observations would result if induced currents had a very flat dose-response, already saturated at 

the lower current. Further, direct MF action on KC does not preclude that other effects of MFs 

may depend on induced currents. 

We are confident that the highest MFs applied to our cell cultures (5 µT) do not produce 

temperature rises larger than 0.1 K in the medium, and are in all likelihood actually much smaller. 

Temperatures elevations would be readily detectable in our assays, as K562 is a good thermal 

sentinel. Hyperthermia manifests by larger cell sizes starting at + 0.5 K, while + 1 K seriously 

impairs proliferation, and + 2 K over a few days is lethal.  

The larger cell sizes observed under mild hyperthermia (+ 0.5 K) suggest chromosome number 

increases, as the cells probably use such a strategy to meet thermal challenges. Cell size and 

chromosome numbers often increase together in a given cell type. As expected, our measurement 

of the K562 karyotype at 38°C (+ 1 K) yielded an increase in chromosome number from 61.5 to 

a mean of 68.8 (n = 20).  This means that any thermal effects from the application of MFs, if 

they were present, would tend to attenuate the KCs induced by MFs. This opposition of effects is 

not unexpected, as MFs are metabolic restrictors, whereas temperature rises stimulate 

metabolism. These measurements confirmed by biological means the athermal context of our MF 

results. 



 

80 
 

3.4.2 Static Magnetic Fields 

Certain theories on MF biological effects have invoked a relation between static (Earth) and 

power-frequency MFs (Liboff, 1985). Although logic would suggest that living organisms be 

resistant to static fields, since life evolved in them, an interaction between the two is not easy to 

discount.  

The naïve cells for our experiments are kept inside magnetic shields. Within our 10 sets of 

shields, we measured different static fields, comparable to Earth’s in magnitude, that varied over 

small distances (~ 3 cm), and with seemingly random orientations. As we assayed various levels 

of 60-Hz MFs for KC, different shield sets were used, but we detected no influence of static 

fields on our results.  

According to the research of Russian physicists (Semikhina and Kiselev, 1981), the effects of 

static MFs on the structure of water, and consequently on ATPS function (section 4.3.1),  are 

negligible unless the Earth’s MF (57.8 µT) is reduced below 34 nT. As will be discussed in more 

depth in section 4.3.1, the measurements of Russian physicists on water are entirely compatible 

with our experimental observations on cancer cells exposed to both static and alternating current 

magnetic fields. 
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3.4.3 Dose-Response 

Fig. 3.14 shows the chromosome losses experienced by naïve K562 cells after 6-day exposures 

in various magnetic flux densities. The graph covers time-averaged MFs representing different 

environments. 0 to 0.2 µT represents domestic, 0.07 to 0.5 µT commercial, while 0.1 to 1 µT is 

typical of occupational exposures. In the baseline at left, 75 % of the cells have either 62 or 61 

chromosomes. Under any MF exposure, the few karyotypes of the baseline expand to a variety of 

chromosome counts, and there are substantial KCs across all MFs.  

 
Fig. 3.14:  K562 chromosome counts as a function of 60-Hz Magnetic Flux Density applied 
for 6 days to naïve cells. In sequence, 65, 28, 50, 77, 46, 33, 65, 102, 56 and 50 metaphases. 
Approximate ranges for typical domestic, commercial and occupational exposures are 
indicated.  
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Three features are of importance. First, a no-effect-level lower than 25 nT. Second, a progression 

of chromosomes losses between 0 and 0.4 µT. Third, the relatively flat dose-response between 

0.1 and 1.5 µT.  

Other cancer cell lines show even flatter dose-responses than K562. Over two orders of 

magnitude of the MF, erythro-leukemia (HEL 92.1.7), breast (MCF7) and lung (NCI-H460) 

cancer cells lose between 8 and 13 chromosomes (Fig. 3.15). HEL, our second erythro-leukemia 

cell line, shows a rise at lower fields similar to that of K562.  

Classical toxicology and epidemiology, where smoothly climbing doses-responses are justified  

by binding chemistry and the central tendency theorem ,  do not expect the flat dose-responses 

over two orders of magnitude observed in Fig. 3.14 and Fig. 3.15. Also, the effects found for 

different cell types are strikingly similar, with parallel low-field deviations in the two erythro-

leukemia cells, suggesting common, basic mechanisms.      

 
 
Fig. 3.15:  Average Chromosome Losses in Erythro-Leukemia, Breast, Lung and Colon 
cancer cells as a function of 60-Hz Magnetic Flux Density applied for 6 days to naïve cells. 
The references (“0”) for naïve cells (< 4 nT) are: 66 (HEL), 74 (MCF7), 57 (NCI-H460) and 
54 (COLO 320DM) chromosomes. In sequence, 32, 22, 29, 32; 19, 22, 19, 21; 29, 22, 24; 22, 
34 and 46 metaphases. HEL, NCI-H460 and COL 320DM assays used 21 % oxygen, rather 
than anoxic conditions, as some anoxic karyotype modes are too close to 46. 
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3.4.4 Differential Action 

K562 cells with magnetically-lowered chromosome counts such as those displayed in Fig. 3.14 

progressively recover their original chromosome counts after 3 weeks, even as the MF is 

maintained at a constant level (Fig. 3.16). It is interesting to note that chromosome count is 

restored earlier than chromosome count dispersion.  

 

 

Fig. 3.16:  K562 chromosome counts return 
to baseline after 3 weeks of continuous 1 µT 
MF exposure. 65, 102, 50 and 37 metaphases. 
 

 

 

 

Thereafter, if the original field is altered by a small percentage of the original value, either 

positively or negatively, KCs are again observed, as shown in Fig. 3.17. 0.1 µT and 1 µT were 

chosen here because they cover one order of magnitude, and because they are enviromentally 

representative. Starting from low (0.1 µT) or high (1 µT) baselines, symmetrical chromosome 

losses are observed as the fields are slightly augmented or reduced. KC is also observed when 

fields are reduced from 50 nT to < 4 nT. This 3-week adaptation and bilateral sensitivity to 

changes is unforeseen by conventional toxicological analysis.  
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Fig. 3.17:  K562 Chromosome counts 
obtained after 6 days by altering 
baseline MFs of 0.1 µT and 1 µT.   
For 0.1 µT, 20, 31, 37 (baseline), 31, 35 
metaphases.  
For 1 µT, 28, 28, 37 (baseline), 28, and 
28 metaphases.  
Although the symmetry of the 
chromosome counts is strong, there is 
more cell decay in the cultures with 
increased than with reduced fields.  
 
 
 

The chromosome losses will be 

interpreted below as caused by 

magnetically-induced changes in intra-

cellular ATP levels. These results cast 

doubt on the stability of cancer cell 

models housed in incubators with MFs 

that are highly variable over space and 

time (Mild et al., 2009). 

In view of these interesting results, we performed a number of verifications to insure that the 

KCs observed were not specific to the synthetic medium, RSF1. First, we verified that the KC 

observed under the anoxic transition (only) for K562 also occurred under RPMI-1640 plus 10 % 

FBS.  Next, we verified that the KCs recorded at 0.05, 0.4 and 5 µT MF for anoxic MCF7 also 

occurred under RPMI-1640 plus 10 % FBS.  Finally, we verified that the KCs recorded at 0.05, 

0.4 and 5 µT MF for atmoxic NCI-H460 also occurred under RPMI-1640 plus 10 % FBS.  
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3.4.5 MF>ATPS>AMPK Assays 

Previous experiments had show a link in all our cancer cell lines between metabolic restriction 

and KC. Anoxia alone induced partial KC, 6 to 8 chromosomes lost, depending on the cell type. 

Deeper contractions, almost to normalization of the karyotypes to 46, were produced by IC50 

doses (allowing 50 % of the normal cell division rate) of the metabolic restrictors oligomycin 

and imatinib. Similar KCs were produced by physiological levels of melatonin and vitamin C 

together. We believed that comparing the characteristics of metabolically restricted cultures with 

MF-exposed cultures may provide clues on action mechanisms, as the different restrictors have 

different sites of action. 

A K562 culture subjected to a MF field of 0.4 µT, very effective for KC, was compared to those 

of various metabolic restrictors. Fig. 3.18 displays the close similarity between two of seven 

K562 assays, one exposed to 0.4 µT MF, and the second to a sub-toxic level (IC50) of 

oligomycin. Oligomycin and the 0.4 µT MF stand apart from all others in having smaller cell 

diameters and lower ratios of cells-to-objects below 11 µm, the decay particles and apobodies. 

For comparison, we supply the characteristics of a pristine “baseline” culture with very few 

particles, and those of other metabolic restrictors. The similarity between these two cell size 

histograms suggests that MFs and oligomycin share a common mode of action. 

In spite of the close similarity between the oligomycin and 0.4 µT assay results in Fig. 3.18, 

oligomycin is faster-acting than the 0.4 µT MF: the changes in cell size, revealing of KC, are 

visible at 1 day, earlier than for the MF. But more efficant MFs, such as 5 µT at 60-Hz or 1 µT at 

120-Hz, reveal similar effects earlier. 
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Fig. 3.18: Object Diameter histograms for 6-day anoxic exposures of K562 cultures to 0.4 
µT MF at 60-Hz and oligomycin at 2.5 ng/ml. The lower 4 curves are: imatinib (0.04 µg/ml) 
in blue, resistin (40 ng/ml) in violet, metformin (0.01 mg/ml) in light green and melatonin-
vitamin C (0.3 µg/ml, 26 µg/ml) in dark green. Exposed cultures are adjusted to a common 
small particle count maximum. 
 
 
The similarity between 0.4 µT and oligomycin suggests that the MF may be an inhibitor of 

ATPS, as oligomycin is a highly specific inhibitor of ATPS. If this were the case, inhibition of 

mitochondrial ATPS by MFs would activate AMPK, because healthy cells must maintain a high 

level of phosphorylation capacity (ATP:ADP ≈ 10) to function well (Hardie and Hawley, 2001). 

AMPK is a sensitive regulator that switches on catabolic pathways and off many ATP-

consuming processes, both acutely and chronically, through gene expression. AMPK’s 

regulation could explain the adaptation of cancer cells to fixed MF levels (Fig. 3.16), as well as 

the differential action of MFs on chromosome reduction (Fig. 3.17).  

The MF>ATPS>AMPK pathway was investigated using metformin and resistin. Metformin is a 

diabetes drug that activates peripheral AMPK, leading to reduced glucose production in the liver, 

and reduced insulin resistance in muscle. Metformin usually causes weight loss and reduced 

appetite, and is considered an attractive anti-aging drug. 

http://en.wikipedia.org/wiki/Liver�
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Resistin, a product of the RSTN gene, is a 9.9 kDa protein containing 93 amino acid residues 

which at 20 ng/ml or more inhibits AMPK, and interferes with phosphorylation of Akt 

(serine/threonin protein kinase), active in multiple cellular processes such as glucose 

metabolism, cell proliferation, apoptosis, transcription and cell migration. 

Agent Concentration/Intensity Chromosomes Lost 
Metformin (activator) 0.01 mg/l - 9 

Resistin (inhibitor) 40 ng/l - 10 
Metformin + MF 0.01 mg/l + 1 µT - 11 ± 0.34 

Resistin+ MF 1 µT - 4, ±0.46, 
MF 1 µT - 7.5 

 Table 6: K562 Karyotype Contractions under action of AMPK Modulators and MFs. 

Metformin (0.01 mg/l) and resistin (40 ng/l) alone induce average KCs of 9 and 10 chromosomes 

respectively, in K562. When a 1 µT MF is added to metformin, even larger KCs are observed (9 

becomes 11, with a standard deviation of  0.34). When a 1 µT MF is added to resistin, the 10 

chromosome KC of resistin falls to 4 chromosomes, with a standard deviation of 0.46, also less 

than the KC of 1 µT MF alone, at 7.5.  

The conclusion is that MFs enhance the action of metformin, but neutralize the effect of resistin, 

supporting the MF>ATPS>AMPK pathway. 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Apoptosis�
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3.4.6 NCI-H460 Proliferation 

Beyond effects on cancer cells karyotypes, MFs also impact proliferation rate, adhesion and cell 

shape, which are not reported in detail here. Some prominent effects may not be solely related to 

ATPS interference, since they are strongly dependant on MF intensity, and disappear with the 

addition of serum. For example, the cell counts of lung cancer cells (NCI-H460) after 4 days in 

our synthetic medium at 50 nT, 400 nT and 5 µT are 8, 9.2 and 14.8 times larger than those of 

naïve cells. Naïve NCI-H460 do not attach in our synthetic medium, but do so under any MF 

exposure.  

 

 
 
Fig. 3.19:  NCI-H460 cell 
number ratios between 
initial and 4-day counts 
under Baseline (<4 nT), 
0.05, 0.4 and 5 µT MFs. 
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4.1 Metabolism, EndoReDuplication and Evolution 

Researchers have been aware of the intimate relation between cancer and metabolism for a long 

time (Warburg, 1956). The identification of specific cancer mutations and the success of imatinib 

therapy have inspired on-going work both on the metabolic consequences of cancer lesions 

(King et al., 2006; Menon and Manning, 2009) and on cancer therapies based on metabolic 

control (Chen et al., 2007; Kim et al., 2011; Duivenvoorde et al., 2011). Studies have also been 

performed on the evolution over time of cancer metabolism (Hu et al, 2011;  Alfarouk et al., 

2011), and even on reversing cancer phenotypes and genetic instability using anti-oxidants and 

nitric oxide inhibitors (Martinez-Outschoorn et al., 2010). 

It is well accepted that cancer karyotypes can evolve over time, and be influenced by culture 

conditions (Polianskaia and Miu, 1988; Jin et al., 1993; Wenger et al., 2004). Even normal 

human embryonic stem cells, often incubated under low oxygen conditions, are vulnerable to 

karyotype instability, and it is recommended that chromosomal status be checked at intervals of 

5 passages to monitor possible translocations and aneuploidies (Moralli et al., 1990). But, to our 

knowledge, there has been no previous work on devolution of tumor karyotypes using metabolic 

restriction. 

 

4.1.1 Cancer Expression Depends on Metabolism 

The classical view of pleomorphism in CML is that many cell populations with different 

proliferation and adhesion properties are observed, but that the progression from chronic phase 

through acceleration and blast crisis seems to be driven by the acquisition of new chromosomal 

abnormalities. CML patients typically show normal or slowly climbing chromosome counts  

over time, even in the acute phase (average of 46.4 in 31 patients) (Haas et.al., 1984), as 
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acquisition of larger chromosome counts is a late characteristic of the disease. The exact 

influence of chromosome changes in CML and other cancers is an open question. 

In the data we reported, anoxic and atmoxic K562 cells both share the same BCR:ABL lesion, 

but exhibit clearly different phenotypes and genotypes. Phenotypically, the anoxic cells, even 

with increased proliferation rate, exhibit more stable characteristics, as previously described. 

Genotypically, the reduction in markers, an exceptionally narrow karyo-histogram and the speed 

with which chromosomes are lost in the anoxic transition all point to a reduction of CIN under 

anoxia. Whatever the mechanisms, a basic observation remains: the instability of K562 can be 

quenched and reversed both at the phenotype and genotype levels by suppressed metabolism, 

confirming karyotype variation, in particular, as a secondary rather than primary characteristic of 

cancer. 

Looking back in history, the K562 cells harvested by Lozzio at 45-46 chromosomes in 1971 may 

have increased their chromosome counts as a result of the standard atmoxic cell culture 

conditions. All evidence points to an influence of oxygen gradients over space and time on cell 

culture karyotype diversity and pleomorphism even under standard atmoxic cell culture 

conditions. When transported in vivo, the influences of oxygen and metabolism can explain the 

diverse phenotypes and karyotypes of tumors (Nowell, 1976; Lengauer et al., 1998). Further, the 

high level of CIN in tumors, although rooted in the initial cancer lesion, is likely controlled by 

the strong oxygen and metabolic gradients of tumor structure. 

BCR:ABL and CIN-END seem mechanistically separated. While BCR:ABL unbridles tyrosine 

kinase and multiple downstream effects in metabolism, CIN-END, which lump together both 

chromosome addition and loss (Yoon et al., 2002) are linked with extra-mitotic chromosome 

duplication (END) or to defects in mitotic operations. 
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Similar irregularities in mechanisms of chromosome duplication occur even in normal tissues. 

For example, chromosome addition by persistence of kinetochore-microtubule misattachment 

caused by a defective mitotic spindle checkpoint is a documented cause of aneuploidy in 0.1 to 

0.8 % of normal blood lymphocytes (Cimini and Degrassi, 2005). Chromosome loss has been 

reported for mitotically unstable cancer cells (Rajagopalan and Lengauer, 2004), and it is not 

uncommon for hybridomas (Kessler et al., 1993) to shed chromosomes in culture. 

A further argument can be found in the fact that the other erythro-leukemia cell which we 

investigated, HEL, displays the same sensitivity and chromosome loss to anoxia, but is BCR: 

ABL negative (Honma et al., 1995). 

In our opinion, rather than BCR:ABL or other specific lesion, the lead actor in the control of CIN 

and END is metabolic rate.  

It is interesting that the disparate genetic mechanisms of cancer somehow come together to 

create tumors with relatively similar characteristics. This suggests that these diverse lesions may 

come to a common ground by interfering with a physiologically large target, which we propose 

to be connected to oxygen, but also to general metabolism. In this view, it is heightened 

metabolism that is the immediate that cause of CIN-END, determining the ultimate karyo-

histogram of K562. We submit that metabolic rate supersedes the basic cancer lesion in 

controlling the expression of carcinogenicity. 

 

4.1.2 Status of EndoReDuplication 

Although clonal expansion may play some role in our oxic transition tests, the rapid changes in 

chromosome counts in our cells, and probably also in tumors, can be more adequately explained 

by the connection between oxygen changes and CIN-END. END has primarily been studied in 
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plants, and until now, only a modest role has been documented for it, related to a list of drugs, 

physical agents, and a mutant cell line defective in DNA repair (Cortés et. al, 2004). Our results 

suggests that END should have its role expanded beyond an “unusual finding” (Bottura and 

Ferrari, 1963), and should be described as a dormant hyperploidy reflex triggerable by hyperoxia 

or enhanced metabolism, with an important role in cancer, as suggested by Larizza and 

Schirrmacher (Larizza and Schirrmacher, 1984).  

The atmoxic transitions described here could be an adequate simulation  of a “karyotype 

variation front”, helping tumors, through CIN-END, to deal with chemotherapeutic drugs and the 

immune system (Walenta et al., 2001). Resistance to imatinib, for example, arises partly from 

amplifications and chromosome duplications in chromosomally unstable CML cells 

(Rajagopalan and Lengauer, 2004). Rapid adaptations of cancer cells to changes in their 

microenvironment, similar to the ones described here for oxygen, may be the cause of the 

amazingly rapid replacement of tumor cells with variants that are resistant to therapy and the 

immune system (Rajagopalan and Lengauer, 2004; Duesberg et al., 2007). 

It may be that the stem cells of primitive tumor cores are only fit for the anoxic niche, thus 

explaining their poor relation with oxygen. These cores would support hypoxic growth, while 

peripheral cells with expanded karyotypes and suppressed apoptosis would invade oxygen-rich 

areas, spurred by the richer blood supply. Perhaps these distinct populations are responsible for 

residual disease in CML. The rapid adaptation of cell karyotypes to oxygen levels described in 

this paper has implications for our understanding of cancer. Chromosome count is rapidly and 

drastically changed by oxygen, providing, as a minimum, a powerful environmental mechanism 

to accelerate genomic evolution beyond random mutations in tumors. 
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4.1.3 Tumors and Evolution 

Although tumor evolution is traditionally believed to occur by slow mechanisms of clonal 

expansion (Höckel and Vaupel, 2001), our data indicates that cells can use END to rapidly alter 

karyotypes and phenotypes in vitro when metabolic resources are variable.  

CIN-END is a powerful mechanism to accelerate genetic evolution beyond random mutations. 

Tumour evolution may be a model of Evolution itself. The manifestation of END as a tumor 

stress response implies that stuttering is not so onerous to biological systems. It appears that 

redundancies at the level of the gene and chromosome are affordable, creating opportunities for 

variation. Gains or losses in one chromosome steps are more likely to be compatible with cell 

viability than the larger chromosome count changes associated with mitotic apparatus defects 

(Rasnick et al., 1999). Darwin described natural selection driven by random mutations. But the 

deliberate genome expansion of END may be a conserved trait that increases competitiveness of 

the biota as a whole. The CIN-END mechanisms may have played the role of evolutionary 

autopilots, driving the expansion of threatened code.  
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4.2 Metabolic Restriction and Cancer  

 

4.2.1 Cancer and the Niche 

Stem cells divide through mitosis, and differentiate into diverse specialized cell types. K562 falls 

into the category of adult stem cells. Although it is not our intention to debate the various 

theories of cancer, one leading theory is that cancer is a disease of stem cells (Gupta et al., 2009). 

One of the characteristics of stem cells is that they reside for protection in hypoxic niches (Li and 

Neaves, 2006). 

Our data provides two strong arguments to support K562’s origin in a low-oxygen niche. 

The first is our observations on the improved phenotype of anoxic K562, which are supported by 

observations of other authors, who underline the importance of low oxygen in preserving the 

properties of germinal lines and stem cells (Cipolleschi et al., 1993).  

The second is the deep KC caused by the anti-oxidants melatonin and ascorbic acid, used at 

physiological medullary levels, which roll K562 almost back to the original Lozzio karyotype.  

When carcinogenic lesions such as K562’s BCR-ABL translocation occur, stem cells expand 

beyond the niche because of (1) niche structure failure or (2) expansion out of the hypoxic niche. 

Stem K562 with an enhanced metabolism then finds itself in a hyperoxic environment and 

exploiting anaerobic metabolism, used in the niche, even in the presence of oxygen.  

This picture is fairly close to the classic illustrations of the “Warburg effect”, where leukemic 

and lung cancer cells process glucose anaerobically into lactate, even with oxygen present 

(Warburg, 1956), a mismatch between where the cell is, and where it metabolically “thinks” it is. 

Cancer lesions may be diverse, but they seem to share a vulnerability to oxygen which is 

expressed in the phenotype and karyotype alterations we documented. 

http://en.wikipedia.org/wiki/Cell_division�
http://en.wikipedia.org/wiki/Mitosis�
http://en.wikipedia.org/wiki/Cellular_differentiation�
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4.2.2 Metabolic Restriction Mechanics 

The basic cancer lesion enhances cell metabolism, allowing for faster growth. This growth drives 

down local oxygen concentrations because micro-vascular organization does not accommodate 

the heightened metabolism and cell numbers. But cancer cells can readily adapt to this reduction 

because of the unrestricted use of anaerobic metabolism. Their heightened glycolytic rate favors 

the evolution of a group of hypoxic cancer cells into a tumor core. Metabolic restriction further 

allows the cells to dispense with the detoxification mechanisms associated with oxygen exposure, 

such as glutathione-S-transferase and CYP3A4 expression (Nagai et al., 2004), and to 

concentrate on bio-synthesis (proliferation). Smaller karyotypes are maintained under metabolic 

restriction, contributing to tumor core expansion, as fewer chromosomes can be more rapidly 

duplicated.   

Our data shows that the removal of oxygen from cancer stem cells is supportive of the 

development of tumor core structure by enhancing proliferation and self-adhesion, and reducing 

inflammation. We have observed as well (Table 4) smoother cell borders, smaller cell footprints, 

and reduced macrophage numbers of increased activity in anoxic K562. The survival of the 

tumor core is thus enhanced by metabolic restriction. 

The tumor core must inevitably slow in its development towards anoxic stability, and as it does 

so, it is inevitably surrounded by a more oxygenated and perfused tumoral cortex. The more 

highly oxygenated and perfused cortex is less stable (Warburg, 1956; Li and Neaves, 2006; 

Walenta et al., 2001), but is ground for the expression of END. Increased chromosomes numbers 

in the tumor cortex provide a karyotype and phenotype variation front. The chromosomes added 

by END interface with normal tissues by diluting the initial cancer lesion, slowing down cell 

division because of the increased chromosome count, and increasing detoxification metabolism, 
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similar to hyperploid liver cells. The cortex will also shed metastatic cells to new sites, which 

will ultimately revert to hypoxic states as the metastatic sites expand. 

Our data supports the view that tumors stabilize their core under metabolic restriction, while 

their cortex diversifies karyotypes, and sets the stage for metastasis. Therefore, standard atmoxic 

cell cultures in vitro may be more relevant to metastasis, while anoxic, hypoxic and restricted 

metabolic states are more desirable for tumor eradication studies.  

 

4.2.3 Metabolic Restriction and Promotion 

It has been repeatedly confirmed that cancer cells become more malignant under hypoxia 

(Höckel et Vaupel, 2001; Hill et al., 2009; Lash et al., 2002; Jögi et. al., 2003) in vitro (Anderson 

et al., 1989; Cuvier et al., 1997) and in the clinic (Brizel et al., 1996,  Nordsmark et al., 1996), to 

the point where it has become a central issue in tumor physiology and treatment (Cuvier et al. 

1997; Höckel and Vaupel, 2001). Since our data ties the metabolic restriction of cells to KC, it is 

logical to conclude that KC caused by metabolic restriction is an indicator of meta-genetic cancer 

promotion. 

 

4.2.4 Anti-Oxidants as Cancer Promoters? 

Free radicals and reactive oxygen species can randomly destroy molecules. An apparent 

corollary is that anti-oxidants protect biological materials, attenuating the carcinogenic action of 

toxicants and of normal metabolism. Unfortunately, epidemiological evidence following 

administration of many anti-oxidants does not show the expected benefits, and may point more 

to cancer rate increases. Two large epidemiological studies found negative impacts of vitamin A 
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on lung cancer rates in smokers (Research Group, 1996; Omenn et al., 1996). The results could 

not be explained, as vitamin A at low doses has no known toxicity.  

We ran a brief series of experiments to investigate this problem. When we applied 25 µM 

vitamin A, as retinyl acetate, to lung cancer cells (NCI-H460), they lost 7 chromosomes (from 57) 

after 1 day; K562 (2.5 µM) lost 13 chromosomes (from 69) after 1 day.  

KC provides a possible explanation for these epidemiological observations. While anti-oxidants 

may reduce general cellular damage by controlling free radicals, their ability to contract the 

karyotypes of existing cancers may ultimately increase malignancy. This mechanism would be 

particularly relevant to the penetrating anti-oxidants able to reach tumor cores. At the metabolic 

level, anti-oxidants reduce oxygen use and enhance glycolysis, a change that cancer cells are 

well equipped to handle. 

 Since these initial epidemiological studies, a number of other investigators have confirmed the 

paradoxical result that anti-oxidants favor rather than suppress cancer. Our in vitro data supports 

the idea that certain anti-oxidants can increase cancer rates by inducing KC in pre-existing 

cancer cells. 
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4.3 Biological Effects of Magnetic Fields 

Robust KCs in 5 cancer cells lines suggest that MFs at all intensities are powerful inhibitors of 

ATP production. A critical difference between molecule-based metabolic restrictors and MFs is 

that, while all chemicals undergo some form of control before access to inner cellular 

compartments, MFs benefit from unchecked penetration, making MF action fundamentally 

different from that of any other agent. 

 

4.3.1 Site of Action of Magnetic Fields 

Oligomycin inhibits ATPS by binding to its Fo segment. The Fo δ subunit is also named 

oligomycin sensitivity conferral protein. The structure of ATPS is documented in detail (Boyer, 

2002) as a rotating motor-alternator structure activated by the trickle of high-density protons 

from the inter-membrane space into the mitochondrial matrix. Proton diffusion along the 15 nm 

thick inter-membrane space is not a rate-limiting step in proton translocation across the 

membrane (1-2 µs) (Procopio and Fornés, 1997). Protons enter the Fo of ATPS along an entry 

half-channel made of four hydrophilic α- helices, to reach a rotating helix. With rotation, protons 

flow out through a similar exit half-channel. The rotation is used by the F1 segment of ATPS to 

produce ATP (Sasada and Marcey, 2010). 

Power-frequency MFs influence the flow of protons through the half-channels of ATPS. These 

hydrophilic pockets (Fillingame et al. 2003) provide a high density of hydrogen bonds, while the 

mitochondrial inter-membrane space feeds a high-density of protons. The high-density protons 

(pH 1, (Procopio and Fornés, 1997)) are driven through the half-channels by a 180 kV/cm 

electric field (Zorov et al. 2009) across the inner membrane (Mitchell, 1966). 
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Semikhina at al. (1988) have documented by electrical dissipation factor (ωRC, also known in 

electrical engineering as tg δ) and optical measurements (the dimerization of dilute rhodamine 

6G solutions) that alternating MFs in the range 25 nT- 879 µT alter the arrangement of water 

molecules, particularly under high concentrations of hydrogen bonds and protons. It is notable 

that the effect’s reported threshold (25 nT) corresponds to the results in Fig. 3.14. 

The dose-responses of Figs. 3.14 and Fig. 3.15 are determined by rising proton impedance 

(decreased soliton tunneling) through ATPS half-channels. This tunneling of protons exploited 

by ATPS has also been observed as double wells in neutron Compton scattering studies 

performed on nanotubes (Reiter et al. 2011). 

Semikhina et al (1988) observed a progressive inception of MF effects on water over 5 hours, 

and dissipation over 2 hours after the field is turned off. The effects are absent above 40-50°C, as 

water structure changes (Semikhina and Kiselev, 1981). The maximum effect was detected at 

156.2-Hz and 15.45 µT for 7°C pure water. It was observed by Semikhina and Kiselev (1981) 

that a narrow resonance in water is easily broadened by the presence of even small levels of 

impurities. To investigate the presence of a ratio between frequency and field intensity as 

reported by Semikhina et al (1988), we measured in anoxic K562 (5 % carbon dioxide and 37°C) 

6-day tests at 1 µT the average KCs over frequency as follows: -3.6 ±0.79 at 50-Hz , -9.36 ±1.06 

at 60-Hz, -12.71 ±1.82 at 120-Hz and -9.8 ±1.31 at 155-Hz. A polynomial fit predicts maximum 

MF effect on ATPS at 113 Hz for 1 µT. The ATPS resonance at 1 µT we documented is indeed 

wider than that reported by Semikhina for pure water.  

For many cancer cell types, the dose-response of chromosome contraction vs MFs is remarkably 

flat (Fig. 3.15). The deviation from flatness in erythro-leukemia cells (Fig. 3.14 and Fig. 3.15) is 
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due, we suspect, to extra-mitochondrial ATP secretion in the cell membrane (Arakaki et al. 

2003), a probable feature of this cell type (Das et al. 1994).  

Static Magnetic Field 
 
The influence of the static MF on K562 was investigated using a small cylindrical shield 6.5 cm 

in inner diameter and 38 cm long comprising 10 layers of 0.4 mm Nickel-Iron-Molybdenum 

alloy (NIM) (ASTM A753 Type 4) spaced 2.7 mm apart by a neoprene membrane. Such a NIM 

shield would be highly effective against static as well as ELF MFs, as each layer is computed to 

have a static MF attenuation of 200, only two of them being theoretically required to attain a 1 

nT static MF floor. The NIM shield should reduce both static and ELF MFs to unmeasurable 

values, lower than the threshold of 34 nT below which the structure of water is assumed to have 

its optimal molecular arrangement (Semikhina and Kiselev, 1981). According to Russian 

physicists, proton tunneling through water is reduced by ELF fields higher than 25 nT, but 

improved by static fields lower than 34 nT. This would be expected to increase the efficiency of 

ATPS function. 

When K562 cells from our < 4 nT at 60-Hz structural steel shields were cultured in the NIM 

shield for 6 days, they showed signs of a transition by exhibiting loss of apoptotic activity, as 

revealed by Scepter measurements of cell size distribution, but most importantly, cell numbers 

increased by a factor of 2.05 ± 0.13 (standard deviation) after 4 days over cells kept in structural 

steel shields. This increase in proliferation rate is comparable to that observed between 21 % 

oxygen and anoxic cultures (Fig. 3.1).  Consequently, our observations on cellular metabolism 

fall in line with the predictions of Semikhina and Kiselev for proton tunneling both for static and 

ELF fields. 
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4.3.2 Karyotype Contraction and AMPK 

The connection between metabolic restrictors, including MFs, and KC can be explained by 

AMPK action. Perturbations of ATP concentrations trigger AMPK, which activates p53 and 

reduces both ATP consumption and DNA synthesis (Jones et al. 2005; Motoshima et al. 2006). 

The suppression of DNA synthesis, part of AMPK’s catabolic control,  leads to KCs through 

suppression of chromosome endo-reduplication, the mechanism probably responsible for rapid 

chromosome count increases in cancer cells (Li et al., 2011).  

Two unusual aspects of MF action, adaptation to a stable field over three weeks (Fig. 3.16), and 

shorter-term sensitivity to small MF changes (Fig. 3.17 and Fig. 3.18) are also explainable by 

AMPK physiology. AMPK controls long-term dynamic adaptation in muscle (Winder et al. 

2000), but is easily triggered by small changes in ATP levels (Hardie and Hawley, 2001).  

That small variations in MFs and both increases and decreases in MFs (Fig. 3.17 and Fig. 3.18) 

alter chromosome counts is unusual.  As far as we know, this is the first example of an agent 

presenting this kind of symmetry, making it possible to sustain KCs indefinitely by judicious 

selection of MF sequences. 

 

4.3.3 Magnetic Field and Diabetes 

The MF>ATPS>AMPK pathway is easily detectable in cancer cells because of chromosome 

instability, but there is no reason to think that the ATPS of normal cells is spared. A major 

regulator of metabolism (Liu et al. 2006), AMPK modulates insulin secretion by pancreatic beta-

cells (Winder and Hardie, 1999), and is investigated for the treatment of diabetes (Viollet et al. 

2009). Under continued stimulation, AMPK may facilitate an oxidative as opposed to a 

http://en.wikipedia.org/wiki/Oxidative�
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glycolytic energy metabolism (Winder and Hardie, 1999). The effects of interference with 

AMPK function may be wide. When the activity of brain AMPK was pharmacologically 

inhibited, mice ate less and lost weight. When AMPK activity was pharmacologically raised, 

mice ate more and gained weight (Kim et al. 2004), a possible link with metabolic syndrome. 

AMPK activation is also found to attenuate immune cell behaviour (Kanellis et al. 2006), a 

possible link with the hygiene hypothesis.  

 

4.3.4 Karyotype Contractions and Cancer 

Cancer cells depend on glycolysis and significantly upregulate it when respiration is inhibited. 

The Warburg effect manifests as increased glycolysis and reduced mitochondrial respiration (Wu 

et al. 2006; Jezek et al. 2010). These capabilities of cancer cells allow growth under metabolic 

restriction by concentration of their efforts on bio-synthesis through the elimination of 

detoxification mechanisms associated with oxygen exposure, as described in section 2.2.2. The 

smaller karyotypes maintained under metabolic restriction contribute to tumour core expansion, 

as fewer chromosomes can be more rapidly duplicated. The survival of tumors could thus be 

enhanced by chronic metabolic restrictions of hypoxia, oligomycin or MFs (section 4.2.3). 

 

4.3.5 Magnetic Fields and Cancer Epidemiology 

If KC is indeed a marker of increased malignancy, there is a possibility of carcinogenicity from 

MF exposures. In such a case, the phenomenon would not be easy to document through 

epidemiology. First, the threshold for the effect  (25 nT) is very low, which means that all the 

population is “exposed”. Second, the dose-response is unusually flat (Fig. 3.15), such that useful 

http://en.wikipedia.org/wiki/Glycolytic�
http://en.wikipedia.org/wiki/Energy�
http://en.wikipedia.org/wiki/Metabolism�
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low and high exposure groups with otherwise similar characteristics would be difficult to 

assemble. Third, the differential action of MFs may confuse conventional exposure analysis.  

Occupational studies are often at the forefront of epidemiological discovery because of their 

higher and better documented exposures. According to Fig. 3.14, occupational populations of 

low (0.1 µT) and high exposures (1 µT) have between them a KC difference of “1 chromosome”. 

Domestic MF epidemiology on leukemia may have been successful (Ahlbom et al. 2000; 

Svendsen et al. 2007) because it benefited from a KC of “10 chromosomes” between 0 and 0.4 

µT (Fig. 3.14).  

The increased proliferation rates reported above for lung cancer cultures may also be important. 

Lung cancer was pointed in at least four studies related to EMFs (Vågerö and Olin, 1983; 

Armstrong et al. 1994; Miller et al. 1996). 
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--------------------------------------------------------------------------------------------------------------------- 

5.0 CONCLUSIONS & FUTURE DIRECTIONS 

-------------------------------------------------------------------------------------------------------------------- 

Metabolic restriction and stimulation contract and expand the chromosome counts of hyperploid 

cancer cell lines. Metabolic restriction, even in cancer cells not displaying chromosome count 

changes, may signal increased malignancy. KC caused by metabolic restrictors is therefore an 

indicator of meta-genetic cancer promotion. According to our models, lipid-soluble anti-oxidants 

as a means of reducing cancer incidence, particularly in older individuals more likely to harbour 

tumours, should be viewed with caution. 

MFs induce KCs, and we propose that they do so through ATPS inhibition. The first argument is 

from physics: MFs in the presence of high concentrations of protons and hydrophilic bonds 

change the properties of water, and presumably ATPS’s proton flow. The second is from biology: 

changes in cell culture characteristics (Fig. 3.18) induced by MFs match closely those of a 

specific ATPS inhibitor, oligomycin. A third is the data set relating MFs with KCs across 5 

cancer cells and two orders of magnitude of the MF, a threshold predicted by Russian physicists, 

and characteristic of a disruption with little sensitivity to MF intensity or to the particularities of 

cell metabolism: the knockout of a biological enzyme by physics. The fourth is the finding of 

widened resonances at specific frequency-amplitude combinations, compatible with Semikhina’s 

observations on water structure. The fifth is in the enhanced metabolism of K562 under zero 

static field, which was predicted by Russian studies on water structure. 

What this article proposes is that environmental MFs, through ATPS, act on the core of human 

metabolism. Past evaluations of MF bio-effects were at a serious disadvantage because of 

traditional toxicological and epidemiological assumptions, that large responses correspond to 
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large exposures. The controls of in vitro scientists were already randomly exposed by the MFs of 

their incubators. The flatness of MFs’ dose-response impaired epidemiological work, as most 

studies, except for domestic leukemia, worked with tainted controls (Milham, 2010) .  

The interaction between living cells and power-frequency MFs may have lied undetected for a 

long time, because of these unexpected characteristics.  

Some diseases appear to have strengthened with no clear causation as more advanced 

technology, in great part based on electricity, has expanded. Chronic diseases that increased or 

decreased in the last century, and that are connected to ATP metabolism, should be examined for 

a link with MFs. Impacts of MFs on ATPS are predictable, as a direct physical effect of MFs on 

water structure, but our understanding of AMPK and metabolism is incomplete (Jones and 

Thompson, 2009), making a link between MFs and a specific disease such as diabetes uncertain. 

And the fact that MF is a physiological agonist of metformin suggests that MF exposure may 

have had a role in the increased lifespan observed in developed countries in the last century. 
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APPENDIX A:                                                                          
VB Program Code used to Generate Fig. 2.10 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.10 Accuracy of Cell Density estimate for K562 at 10,000 cells/cm2, as a function of 
sampled surface. Up to 100 images from a set of 168 images are randomly picked to 
simulate under-sampling. The standard deviation as a function of the number of images 
sampled is plotted. 34 images (5.5 cm2) reduces the standard deviation on cell counts to less 
than 4 %. 
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Open "Ying Growth00.txt" For Input As #1 
j = 1 
Do While Not EOF(1) 
Line Input #1, Invalue 
Rank = InStr(Invalue, vbTab) 
CelConts(0, j) = Val(Left(Invalue, Rank - 1)) 
CelConts(1, j) = Right(Invalue, Len(Invalue) - Rank) 
Debug.Print CelConts(0, j) 
Debug.Print CelConts(1, j) 
j = j + 1 
Loop 
NumofReadings = j - 1 
Debug.Print NumofReadings 
End Sub 
 
Private Sub cmdAssArray_Click() 
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Dim A(9) As Long 
Dim N As Integer 
N = CInt(CmbstpFactor.Text) 
If N = 1 Then 
  CelConts(2, 1) = CelConts(1, 1) 
  CelConts(3, 1) = 200 * Log(CelConts(1, 1)) 
  CelConts(4, 1) = 200 * Log(CelConts(2, 1)) 
  For j = 2 To 200 
    CelConts(2, j) = (CelConts(1, j - 1) + CelConts(1, j) + CelConts(1, j + 1)) / 3 
    CelConts(3, j) = 200 * Log(CelConts(1, j)) 
    CelConts(4, j) = 200 * Log(CelConts(2, j)) 
  Next j 
  CelConts(2, 201) = CelConts(1, 201) 
  CelConts(3, 201) = 200 * Log(CelConts(1, 201)) 
  CelConts(4, 201) = 200 * Log(CelConts(2, 201)) 
End If 
If N = 2 Then 
  CelConts(2, 1) = CelConts(1, 1) 
  CelConts(3, 1) = 200 * Log(CelConts(1, 1)) 
  CelConts(4, 1) = 200 * Log(CelConts(2, 1)) 
  CelConts(2, 2) = (CelConts(1, 1) + CelConts(1, 2) + CelConts(1, 3)) / 3 
  CelConts(3, 2) = 200 * Log(CelConts(1, 1)) 
  CelConts(4, 2) = 200 * Log(CelConts(2, 1)) 
  For j = 3 To 199 
    CelConts(2, j) = (CelConts(1, j - 2) + CelConts(1, j - 1) + CelConts(1, j) + CelConts(1, j + 1) + 
CelConts(1, j + 2)) / 5 
    CelConts(3, j) = 200 * Log(CelConts(1, j)) 
    CelConts(4, j) = 200 * Log(CelConts(2, j)) 
  Next j 
  CelConts(2, 200) = (CelConts(1, 199) + CelConts(1, 200) + CelConts(1, 201)) / 3 
  CelConts(3, 200) = 200 * Log(CelConts(1, 200)) 
  CelConts(4, 200) = 200 * Log(CelConts(2, 200)) 
  CelConts(2, 201) = CelConts(1, 201) 
  CelConts(3, 201) = 200 * Log(CelConts(1, 201)) 
  CelConts(4, 201) = 200 * Log(CelConts(2, 201)) 
End If 
If N = 3 Then 
  CelConts(2, 1) = CelConts(1, 1) 
  CelConts(3, 1) = 200 * Log(CelConts(1, 1)) 
  CelConts(4, 1) = 200 * Log(CelConts(2, 1)) 
  CelConts(2, 2) = (CelConts(1, 1) + CelConts(1, 2) + CelConts(1, 3)) / 3 
  CelConts(3, 2) = 200 * Log(CelConts(1, 2)) 
  CelConts(4, 2) = 200 * Log(CelConts(2, 2)) 
  CelConts(2, 3) = (CelConts(1, 1) + CelConts(1, 2) + CelConts(1, 3) + CelConts(1, 4) + 
CelConts(1, 5)) / 5 
  CelConts(3, 3) = 200 * Log(CelConts(1, 3)) 
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  CelConts(4, 3) = 200 * Log(CelConts(2, 3)) 
  For j = 4 To 198 
    CelConts(2, j) = (CelConts(1, j - 3) + CelConts(1, j - 2) + CelConts(1, j - 1) + CelConts(1, j) + 
CelConts(1, j + 1) + CelConts(1, j + 2) + CelConts(1, j + 3)) / 7 
    CelConts(3, j) = 200 * Log(CelConts(1, j)) 
    CelConts(4, j) = 200 * Log(CelConts(2, j)) 
    Debug.Print j, CelConts(2, j) 
  Next j 
  CelConts(2, 199) = (CelConts(1, 197) + CelConts(1, 198) + CelConts(1, 199) + CelConts(1, 
200) + CelConts(1, 201)) / 5 
  CelConts(3, 199) = 200 * Log(CelConts(1, 199)) 
  CelConts(4, 199) = 200 * Log(CelConts(2, 199)) 
  CelConts(2, 200) = (CelConts(1, 199) + CelConts(1, 200) + CelConts(1, 201)) / 3 
  CelConts(3, 200) = 200 * Log(CelConts(1, 200)) 
  CelConts(4, 200) = 200 * Log(CelConts(2, 200)) 
  CelConts(2, 201) = CelConts(1, 201) 
  CelConts(3, 201) = 200 * Log(CelConts(1, 201)) 
  CelConts(4, 201) = 200 * Log(CelConts(2, 201)) 
End If 
If N = 4 Then 
  CelConts(2, 1) = CelConts(1, 1) 
  CelConts(3, 1) = 200 * Log(CelConts(1, 1)) 
  CelConts(4, 1) = 200 * Log(CelConts(2, 1)) 
  CelConts(2, 2) = (CelConts(1, 1) + CelConts(1, 2) + CelConts(1, 3)) / 3 
  CelConts(3, 2) = 200 * Log(CelConts(1, 2)) 
  CelConts(4, 2) = 200 * Log(CelConts(2, 2)) 
  CelConts(2, 3) = (CelConts(1, 1) + CelConts(1, 2) + CelConts(1, 3) + CelConts(1, 4) + 
CelConts(1, 5)) / 5 
  CelConts(3, 3) = 200 * Log(CelConts(1, 3)) 
  CelConts(4, 3) = 200 * Log(CelConts(2, 3)) 
  CelConts(2, 4) = (CelConts(1, 1) + CelConts(1, 2) + CelConts(1, 3) + CelConts(1, 4) + 
CelConts(1, 5) + CelConts(1, 6) + CelConts(1, 7)) / 7 
  CelConts(3, 4) = 200 * Log(CelConts(1, 4)) 
  CelConts(4, 4) = 200 * Log(CelConts(2, 4)) 
  For j = 5 To 197 
    CelConts(2, j) = (CelConts(1, j - 4) + CelConts(1, j - 3) + CelConts(1, j - 2) + CelConts(1, j - 1) 
+ CelConts(1, j) + CelConts(1, j + 1) + CelConts(1, j + 2) + CelConts(1, j + 3) + CelConts(1, j + 
4)) / 9 
    CelConts(3, j) = 200 * Log(CelConts(1, j)) 
    CelConts(4, j) = 200 * Log(CelConts(2, j)) 
  Next j 
  CelConts(2, 198) = (CelConts(1, 195) + CelConts(1, 196) + CelConts(1, 197) + CelConts(1, 
198) + CelConts(1, 199) + CelConts(1, 200) + CelConts(1, 201)) / 7 
  CelConts(3, 198) = 200 * Log(CelConts(1, 198)) 
  CelConts(4, 198) = 200 * Log(CelConts(2, 198)) 
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  CelConts(2, 199) = (CelConts(1, 197) + CelConts(1, 198) + CelConts(1, 199) + CelConts(1, 
200) + CelConts(1, 201)) / 5 
  CelConts(3, 199) = 200 * Log(CelConts(1, 199)) 
  CelConts(4, 199) = 200 * Log(CelConts(2, 199)) 
  CelConts(2, 200) = (CelConts(1, 199) + CelConts(1, 200) + CelConts(1, 201)) / 3 
  CelConts(3, 200) = 200 * Log(CelConts(1, 200)) 
  CelConts(4, 200) = 200 * Log(CelConts(2, 200)) 
  CelConts(2, 201) = CelConts(1, 201) 
  CelConts(3, 201) = 200 * Log(CelConts(1, 201)) 
  CelConts(4, 201) = 200 * Log(CelConts(2, 201)) 
End If 
 Debug.Print j, CelConts(2, j) 
  For N = 1 To 199 
  CelConts(5, N) = 1000 * (CelConts(1, N + 1) - CelConts(1, N)) / CelConts(1, N) 
  Debug.Print CelConts(5, N) 
  Next N 
 CelConts(6, 1) = CelConts(5, 1) 
  For M = 2 To 196 
CelConts(6, M) = (CelConts(5, M - 1) + CelConts(5, M) + CelConts(5, M + 1)) / 3 
  Next M 
CelConts(7, 1) = CelConts(6, 1) 
CelConts(7, 2) = CelConts(6, 2) 
CelConts(7, 3) = (CelConts(5, 1) + CelConts(5, 2) + CelConts(5, 3) + CelConts(5, 4) + 
CelConts(5, 5)) / 5 
CelConts(7, 4) = (CelConts(5, 1) + CelConts(5, 2) + CelConts(5, 3) + CelConts(5, 4) + 
CelConts(5, 5) + CelConts(5, 6) + CelConts(5, 7)) / 7 
  For M = 5 To 196 
   CelConts(7, M) = (CelConts(5, M - 4) + CelConts(5, M - 3) + CelConts(5, M - 2) + 
CelConts(5, M - 1) + CelConts(5, M) + CelConts(5, M + 1) + CelConts(5, M + 2) + CelConts(5, 
M + 3) + CelConts(5, M + 4)) / 9 
   CelConts(8, M) = (CelConts(5, M - 5) + CelConts(5, M - 4) + CelConts(5, M - 3) + 
CelConts(5, M - 2) + CelConts(5, M - 1) + CelConts(5, M) + CelConts(5, M + 1) + CelConts(5, 
M + 2) + CelConts(5, M + 3) + CelConts(5, M + 4) + CelConts(5, M + 5)) / 11 
   Next M 
   bobo = 1 
   For X = 1 To 196 
   If CelConts(6, X) > bobo Then 
   bobo = CelConts(6, X) 
   End If 
   Next X 
   Text1.Text = CStr(bobo) 
End Sub 
 
Private Sub CmdOrgn_Click() 
With Form1.MSChart1 
MSChart1.chartType = VtChChartType2dLine 
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        .ColumnCount = 8 
        .RowCount = 201 
        For j = 1 To 8 
            For I = 1 To 201 
                .Column = j 
                .Row = I 
                .Data = CelConts(1, I) 
            Next I 
        Next j 
End With 
End Sub 
 
Private Sub CmdAverage_Click() 
With Form1.MSChart1        
MSChart1.chartType = VtChChartType2dLine 
        .ColumnCount = 8 
        .RowCount = 201 
        For j = 1 To 8 
            For I = 1 To 201 
                .Column = j 
                .Row = I 
                .Data = CelConts(2, I) 
            Next I 
        Next j 
End With 
End Sub 
 
Private Sub CmdLogOrig_Click() 
With Form1.MSChart1       
MSChart1.chartType = VtChChartType2dLine 
        .ColumnCount = 8 
        .RowCount = 201 
        For j = 1 To 8 
            For I = 1 To 201 
                .Column = j 
                .Row = I 
                .Data = CelConts(3, I) 
            Next I 
        Next j 
End With 
End Sub 
 
Private Sub CmdLogAver_Click() 
With Form1.MSChart1         
MSChart1.chartType = VtChChartType2dLine 
        .ColumnCount = 8 
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        .RowCount = 201 
        For j = 1 To 8 
            For I = 1 To 201 
                .Column = j 
                .Row = I 
                .Data = CelConts(4, I) 
            Next I 
        Next j      
End With 
End Sub 
 
Private Sub CmdAll_Click() 
With Form1.MSChart1 
      .ColumnCount = 4 
  .RowCount = 201 
MSChart1.chartType = VtChChartType2dLine 
       
        For j = 1 To 4 
            For I = 1 To 201 
                .Column = j 
                .Row = I 
                .Data = CelConts(j, I) 
            Next I 
        Next j 
End With 
End Sub 
 
Private Sub CmdDxdt_Click() 
With Form1.MSChart1 
MSChart1.chartType = VtChChartType2dLine 
        .ColumnCount = 3 
        .RowCount = 201 
      For j = 1 To 3 
            For I = 1 To 201 
                .Column = j 
                .Row = I 
                .Data = CelConts(j + 4, I) 
            Next I 
            Next j 
End With 
End Sub 
 
Private Sub cmdStaCurve_Click() 
ChDrive "C" 
ChDir "C:\Ying\vb practise" 
Open "08m09i16.txt" For Input As #1 
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j = 1 
Do While Not EOF(1) 
Line Input #1, Invalue 
Rank = InStr(Invalue, vbTab) 
Dim CellStat(2, 168) As Long 
CellStat(0, j) = Val(Left(Invalue, Rank - 1)) 
CellStat(1, j) = Right(Invalue, Len(Invalue) - Rank) 
j = j + 1 
Loop 
NumofReadings = j - 1 
Dim RNDArray(100) As Long 
With Form1.MSChart1 
MSChart1.chartType = VtChChartType2dLine 
        .ColumnCount = 30 
        .RowCount = 100  
For X = 1 To 30 
    Dim Sum 
    Dim Average 
    Average = 0 
    Sum = 0 
       For N = 1 To 100 
         Dim MyValue 
        
         MyValue = Int((168 * Rnd) + 1) 
         RNDArray(N) = CellStat(1, MyValue) 
         Sum = Sum + RNDArray(N) 
       Next N 
       Average = Sum / 100 
         'Debug.Print Average 
  For I = 1 To 100   
     If I = 1 Then 
     StaArray(X, 1) = RNDArray(1) 
     Else 
   StaArray(X, I) = (StaArray(X, I - 1) * (I - 1) + RNDArray(I)) / I 
    End If 
     StaArray1(X, I) = StaArray(X, I) / Average 
    'Debug.Print StaArray(X, I) / Average 
                .Column = X 
                .Row = I 
                .Data = StaArray(X, I) 
        Next I 
Next X 
End With 
End Sub 
 
Private Sub Cndsigma_Click() 
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ChDrive "C" 
ChDir "C:\Ying\vb practise" 
Open "08m09i16.txt" For Input As #1 
j = 1 
Do While Not EOF(1) 
Line Input #1, Invalue 
Rank = InStr(Invalue, vbTab) 
Dim CellStat(2, 168) As Long 
CellStat(0, j) = Val(Left(Invalue, Rank - 1)) 
CellStat(1, j) = Right(Invalue, Len(Invalue) - Rank) 
j = j + 1 
Loop 
NumofReadings = j - 1 
Dim RNDArray(100) As Long 
For X = 1 To 40 
    Dim Sum 
    Dim Average 
    Average = 0 
    Sum = 0 
       For N = 1 To 100 
         Dim MyValue 
         MyValue = Int((168 * Rnd) + 1) 
         RNDArray(N) = CellStat(1, MyValue) 
         Sum = Sum + RNDArray(N) 
       Next N 
       Average = Sum / 100 
         'Debug.Print Average 
  For I = 1 To 100 
     If I = 1 Then 
     StaArray(X, 1) = RNDArray(1) 
     Else 
   StaArray(X, I) = (StaArray(X, I - 1) * (I - 1) + RNDArray(I)) / I 
    End If 
     StaArray1(X, I) = StaArray(X, I) / Average 
        Next I 
Next X 
Dim s(100) As Single 
With Form1.MSChart1 
MSChart1.chartType = VtChChartType2dLine 
        .ColumnCount = 8 
        .RowCount = 100 
For j = 1 To 8 
For I = 1 To 100 
      Sum = 0 
      Average = 0 
      Sum1 = 0 
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    For X = 1 To 40 
        Sum = Sum + StaArray1(X, I) 
    Next X 
      Average = Sum / 40 
    Debug.Print Average 
    For X = 1 To 40 
     Sum1 = Sum1 + (StaArray1(X, I) - Average) ^ 2 
    Next X 
    s(I) = (Sum1 / 40) ^ 0.5 
               .Column = j 
                .Row = I 
                .Data = s(I) 
    Next I 
Next j 
End With 
End Sub 
 
Private Sub MSChart1_Click() 
End Sub 
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APPENDIX B:                                                                              
VB Program Code used to Automatically Assess                      

Cell Cultures 
 
 
Public CNumber As Integer 
Public Allnumber As Integer 
Public Anumber  As Integer 
Dim Roundness(2000) As Single 
         
Private Sub CmdCalculate_Click(Index As Integer) 
Dim ExpDen As Integer 
Dim CelNum As Single 
ExpDen = CInt(ExpDenTxt.Text) 
Call cellnumber_assessment 
TxTClCnt.Text = CStr(CNumber) 
CelNum = CNumber / 0.0025 
Text6.Text = CStr(CelNum) 
TXTPlCnt.Text = CStr(Allnumber - CNumber) 
If Form1.CombContainer.Text = "T12" Then 
Text3.Text = CStr(3.75 * ExpDen / CelNum) 
Text7.Text = CStr(3.75) 
End If 
If Form1.CombContainer.Text = "T25" Then 
Text3.Text = CStr(7.5 * ExpDen / CelNum) 
Text7.Text = CStr(7.5) 
End If 
 
If Form1.CombContainer.Text = "96-well Quartz Plate" Then 
Text3.Text = CStr(7.5 * ExpDen * 96 * 0.317 / (25 * CelNum)) 
Text7.Text = CStr(0.44 * 96) 
End If 
End Sub 
 
 
Private Sub cmdCntRound_Click(Index As Integer) 
Call cell_roundness 
'ReDim Roundness(Anumber - 1) As Single 
x = 0 
For I = 1 To Anumber - 1 
x = x + Roundness(I) 
Next I 
y = x / I 
TxtRndness.Text = CStr(y) 
End Sub 
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Private Sub Command1_Click() 
End 
End Sub 
 
Public Sub cellnumber_assessment() 
    ret = IpWsLoad("R:\cellnumbers.jpg", "jpg") 
    ret = IpWsConvertImage(IMC_GRAY12, CONV_SCALE, 0, 0, 0, 0) 
    ret = IpSegSetRange(0, 0, 1000) 
    ret = IpSegPreview(ALL_W_B) 
    ret = IpSegShow(1) 
    ret = IpSegSetAttr(SETCURSEL, 0) 
    ret = IpSegSetAttr(Channel, 0) 
    ret = IpSegPreview(ALL_W_B) 
    ret = IpSegCreateMask(5, 0, 1) 
    ipICal(0) = 0 
    ipICal(1) = 4095 
    ret = IpBlbMultiRanges(ipICal(0), 1) 
    ret = IpSegShow(0) 
    ret = IpBlbShow(1) 
    ret = IpBlbEnableMeas(BLBM_AREA, 1) 
    ret = IpBlbEnableMeas(BLBM_ROUNDNESS, 1) 
    ret = IpBlbSetAttr(BLOB_BRIGHTOBJ, 0) 
    ret = IpBlbSetAttr(BLOB_MINAREA, 1) 
     ret = IpBlbEnableMeas(BLBM_AREA, 1) 
     ret = IpBlbEnableMeas(BLBM_ROUNDNESS, 1)     
    ret = IpBlbSetFilterRange(BLBM_AREA, 90, 1000) 
    ret = IpBlbLoadSetting("C:\Ying\vb practise\cell assessment\Cells.ENV") 
    Cnum = IpBlbCount() 
    CNumber = Int(Cnum) 
    ret = IpBlbSetFilterRange(BLBM_AREA, 5, 1000) 
    ret = IpBlbSaveSetting("C:\Ying\vb practise\cell assessment\All.ENV")   
    'Perform Count AND analysis of all objects [particles AND cells] 
    Allnum = IpBlbCount() 
    Allnumber = Int(Allnum) 
         
         
      If ChkNumbers.Value = 1 Then 
    ret = IpBlbSetAttr(BLOB_LABELMODE, 1) 'With numbers 
    Else 
    ret = IpBlbSetAttr(BLOB_LABELMODE, 0) 'No numbers 
    End If 
End Sub 
 
Private Sub Form_Load() 
Form1.Top = 0 



 

138 
 

Form1.Left = 0 
ret = Shell("C:\IPWin4\ipwin32.EXE", 1) ' Run Image-pro Plus 
ret = IpAppMaximize() 
ret = IpAppSize(678, 645) 
ret = IpAppMove(353, 0) 
End Sub 
 
Public Sub cell_roundness() 
    ret = IpWsLoad("R:\cellroundness.jpg", "jpg") 
    ret = IpWsConvertImage(IMC_GRAY, CONV_SCALE, 0, 0, 0, 0) 
    ret = IpBlbSetAttr(BLOB_MEASUREOBJECTS, 1) 
    ret = IpBlbSetAttr(BLOB_OUTLINEMODE, 3) 
    ret = IpBlbSetAttr(BLOB_FILLHOLES, 1) 
    ret = IpBlbSetFilterRange(BLBM_AREA, 90#, 10000000#) 
    ret = IpBlbEnableMeas(BLBM_ROUNDNESS, 1) 
    ret = IpBlbLoadSetting("C:\Ying\vb practise\cell assessment\Cells.ENV") 
    Anumber1 = IpBlbCount() 
    Anumber = Int(Anumber1) 
    ret = IpBlbUpdate(0) 
ReDim Roundness(Anumber - 1) As Single 
'Get the data from images 
ret = IpBlbData(BLBM_ROUNDNESS, 0, Anumber - 1, Roundness(0)) 
End Sub 
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APPENDIX C:                                                                                   
Li Y, Héroux P,  Kyrychenko I.                                

Cytotoxicity Testing with Anoxic K-562.                                  
XII International Congress of Toxicology, 2010, P201-009:     

In Vitro Testing Methods. 
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CYTOTOXICITY TESTING WITH ANOXIC K-562 

An in vitro cellular model is developed to investigate the cytotoxicity of industrial metals. Based 

on the erythroleukemia cell K-562 in a synthetic medium, the model is supported by automated 

data acquisition and computer vision. Since Reactive Oxygen Species (ROS) are central to metal 

toxicities, we investigated the effect of free radicals by growing the cells in various levels of 

oxygen. From culturing K-562 in 0, 2, 5 and 21 % oxygen, we found that oxygen levels 

influence proliferation rate, footprint, roundness and self-adhesion. Somewhat surprisingly, K-

562 proliferated 1.45 times faster under anoxia than under oxic (21 % oxygen) conditions. 

Phenotype measurements also showed a more normal behavior and uniform cell anatomy under 

anoxia. We find that the K-562 chromosome count  reduces under anoxia, from the  pseudo-

triploid (69) K-562 oxic karyotype. The anoxic karyotype is closer to the ones found in clinical 

chronic myeloid leukemia studies, and may result either from stem cells occurring below usual 

detection levels or from chromosome count instability. Because anoxic K-562 grows faster and 

has a most regular shape, we propose that K-562 originates from a very anoxic medullary niche 

in the body, and culturing it under anoxic conditions is most representative of the original cancer 

lesion. Anoxia also displays a higher apoptosis rate than oxic culture, which is compatible with 

previous reports of oxygen as an inhibitor of apoptosis. We conclude that anoxia produces a most 

sensitive K-562 model for metals cytotoxicity to stem cells because it (1) is physiological, (2) 

has a larger sensitivity to apoptosis, allowing detection of stem cell chronic depletion, (3) has a 

low baseline ROS and therefore sensitivity to metals-generated ROS, and (4) has a lower 

chromosome number. 
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APPENDIX D:                                                                                 
Li Y, Héroux P,  Kyrychenko I.                                           

Metabolic restriction of cancer cells in vitro causes 
karyotype contraction — an indicator of cancer promotion? 

Tumor Biology 33(1), pp. 195-205, 2012. 
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