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ABSTRACT

In modern robotics systems, processing input is often the most complex and
resource-intensive segment of computation. Today’s sensors, especically video cam-
eras, can produe very large data sets in very short periods of time, and it is often
necessary to store this information for later processing. Unfortunately, today’s
database solutions are very ill-suited for a high write throughput scenario. Addi-
tionally, most of them have a very limited support for time values, which is often
inadequate for precise scientific computations. This thesis attempts to formalize
the problem of a time-series value storage and presents the implementation details

to our proposed solution, the time-series database adb.
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ABREGE

Dans le cadre des systemes de robotique modernes, le traitement des données
entrantes est souvent la partie la plus complexe et la plus exigeante en terme de
ressources. Les capteurs actuels, en particulier les caméras vidéo, peuvent produire
de tres larges ensembles de données sur de tres courtes périodes, et il est souvent
nécessaire de stocker ces informations pour un traitement ultérieur. Les logiciels
de base de données contemporains ne sont malheureusement pas adaptés a des
conditions d’écriture a haut débit. De plus, la plupart d’entre eux ont un support
limité pour les valeurs temporelles, et sont souvent inadéquats dans un contexte
de calculs scientifiques de précision. Ce rapport présente une base théorique de la
gestion et du stockage de données chronologiques et la réalisation du logiciel de

base de données temporelles adb.
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CHAPTER 1
Introduction

Robotics systems have evolved tremendously in the past decade, thanks in
part to the emergence of new tools and techniques. Beyond pure technological
progress in hardware capability and software complexity, it is the collaboration in
the development of this technology that is mostly responsible for the great strides
the community has been able to accomplish.

Among the many feature-rich frameworks now available, the Robot Operating
System (ROS) is currently the most popular, and its networking effect only
precipitates its status as the de-facto standard in the industry. Its popularity
comes not only from the wealth of already available building components ! |
but also from the elegance of its architecture. In ROS’s case, it oddly meets the
development organization in principle: that of disjoint, independent computational
nodes that pass data to one another at different stages of the problem. For lack
of an already established name for this model, we will henceforth refer to it as the

Collaborative Computational Network (CCN).

1 The developers of ROS, the robotics research group Willow Garage, are also
the current maintainers of OpenCV, the most popular computer vision toolbox. Its
integration with ROS makes the latter a very attractive development framework



1.1 The Collaborative Computational Network Model

A computer vision system (or more generally, a robotics system), can be
modeled as a network of nodes exchanging data and applying transformations
to them. It is a generalization of a pipeline, since multiple data streams can be
available and combined in different ways. Instead of a sequence of nodes, we
instead have a graph with no single entry or exit point [35]. Figure 1-1 illustrates
a simple computational network.

We can identify three categories of nodes. The first contains all the sensors
and probes that acquire data directly from the physical world. They are the
multiple inputs of the system, and in software will most often be implemented
as drivers of a particular type of data collection hardware. The second category
includes all the intermediate steps, algorithms and decisional logic that form the
core of the robotics system. Their inputs are most often the outputs of nodes in
the previous category, but in more complex systems, they may also share data
amongst themselves. The final category is especially relevant to robotics systems,
but perhaps less so to our discussion: the output nodes, or nodes that consume
data from the system to then directly act on the physical world.

From a data dependency standpoint, the combination of nodes resembles
functional composition. However, in a live system, we need to introduce the
concept of triggering, i.e. that a computation is initiated when new data it
depends on are created. For instance, ROS’s publisher-subscriber model ensures
that when a node has finished producing some data, all nodes that depend on its

output, i.e. that have subscribed to the data channel, are notified and said data
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Figure 1-1: Collaborative Computational Network example

are made available to them. When this happens, the subscribers can execute their
internal logic and produce output data themselves, which other nodes may have
subscribed to. We can say that the first node triggers the second set of nodes,
which in turn triggers the third set.

In this form, the CCN deals only with live data: new values flow through
the graph with sporadic buffering in cases of asymmetrical computation time,
but old data are forgotten. In some cases though, computations require not only
knowledge of current values, but past values as well. This thesis presents the
theoretical foundation and concrete implementation of a data storage solution that
would expand the capabilities of the CCN to preserve and use historical data.
1.2 Historical Dimension in Dataflow Programming

The artificial intelligence research efforts of the early seventies faced a

conceptually similar issue: they had numerous algorithms that would operate on



different data and at different stages of completion, and needed a way to keep
track of intermediate results while certain components were busy. While they
weren’t strictly dealing with a large amount of historical values, the memory
restrictions at the time bore the same problem: not all data could be kept in live
memory, and there was a necessity to organize the data in permanent storage. A
popular solution was the Blackboard model [10]. The idea behind this strategy
was to emulate the real-life scenario of many researchers working on a problem:
each would read the information he needed from the blackboard, and write

back intermediate steps to arrive at the solution. Other researchers could pick

up from these intermediate solutions and move forward with new data, closer

to the ultimate problem solution. In software, the blackboard was therefore a
generic data storage system that could accommodate multiple stages of data,

and the correspondents of the researchers were individual processing units called
Knowledge Sources (KS) [22]. For example, in a computer vision scenario, one KS
may be a sensor module that produces an image input, a second KS may be doing
early vision processing like edge detection on the image, yet a third KS could do
image segmentation and finally a fourth KS could recognize patterns and write the
solution. Figure 1-2 illustrates this scenario.

The current CCN model is derives some ideas from the Blackboard model.
Both distribute work across individual units, are only concerned with inputs and
outputs for their particular task, and the data are centrally managed. In systems
like ROS, message subscription and publication is handled by a common server

responsible for rerouting data to the appropriate pipes. The major difference
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Figure 1-2: Blackboard model in image recognition system

is that in a CCN, data are passed around directly, without any retention. This

subscription model works best for live data, but for historical values, an on-

demand approach similar to the Blackboard has an advantage. The two methods

of acquiring data could very easily coexist, and the historical repository does not

need to be part of the existing delivery mechanism. In fact, a historical repository

could simply subscribe to live data and progressively store it, and retrieving said

data can be obtained through a connection to the storage engine. We are therefore

looking for a database solution suitable for the management of historical data.



CHAPTER 2
Data Persistence Solutions

2.1 Data Models and Current Database Systems
2.1.1 Relational and Object-based Database

Since its development in the early seventies [12], the relational model for
databases has been the de facto standard for almost all data storage applications.
Its success is largely due to its general-purpose nature and closeness to the object-
oriented model, which has itself become the standard in software development.
Most mainstream object-oriented development environments, including Microsoft’s
.NET, Oracle’s Java and Apple’s Cocoa Framework, incorporate a mechanism to
offer persistence support for objects to a relational database backend. This type
of mechanism is usually called object-relational mapping [5]. Additionally, many
web development frameworks, such as Ruby on Rails and Django, feature implicit
semantics for storing objects in relational databases.

There is however an intrinsic mismatch between the object model and the
relational model, and some corner cases prove to be more difficult to transition to
from the live programming environment to the storage. To solve these problems,
another class of database systems, known as object databases [25], attempted to
deal directly with object-oriented concepts, such as polymorphism and encapsu-

lation. One downside of these systems that has prevented them from displacing



relational databases is that their object model is tightly coupled with the pro-
gramming language they interface with, which limits interoperability. A hybrid
concept, the object-relational database, brings some object-oriented concepts to
the relational realm [31]. PostgreSQL is currently one of the most popular such
systems.

The data flow model we are faced with can be implemented using a relational
or object-relational database [20]; after all, both object-oriented programming
and relational databases are demonstratively general enough for almost any prob-
lem [28]. However, in our particular case, this approach comes with a significant
logical and organizational overhead. First, temporal values and manipulations
are supported to the second, rarely millisecond precision. Sub-millisecond is very
uncommon, but it may be possible to define a new type for this purpose, along
with an appropriate collation. On the other hand, the relational abilities and joins
are superfluous in the case of independent variables, so the relational model is both
too powerful in some areas, and not powerful enough in others. In other words, it
is not a suitable tool to solve this particular problem.

2.1.2 Relationship-centric Databases

Various other, lesser-known database models have been proposed over the
years, some to satisfy particular needs and fit very specific information structures
and relationships. Where relational database systems allow the expression of
a wide range of relations between entities, we may sometimes want to tighten
the constraints in cases where the type of relationship is more important than a

particular data schema.



Hierarchical databases for instance enforce a parent-child relationship between
entities. Most currently used file systems can actually be categorized as hierar-
chical databases, where the data are files, and the relationship is that of nesting.
This method of organization has not found much traction outside of this individual
example [9]. A more general model of relation is the Network Model, where entities
can have several parents, and therefore form a graph structure [4]. These concepts
were implemented in graph databases [18], which are especially well-suited for
knowledge bases. For example, in the field of robotics, graph databases can be
used to store object characteristics for recognition algorithms.

More recently, the popularity of schema-free markup languages, such as XML
and JSON, and the growing importance of web applications motivated the creation
of document based databases, commonly referred to as NoSQL. This name was
coined to distinguish them from relational databases that almost all comply to and
use the SQL standard [26]. The advantage of NoSQL databases are most notable
in software development practice: with no rigid schema, changing data formats
and expanding the feature set is not as problematic as altering tables in relational
databases. This feature, however, is of limited use in the data flow model, and the
drawbacks [32] make NoSQL databases a poor candidate.

2.1.3 Domain-specific Databases

All the database models discussed so far are fairly generic in their range of
applications, and the type of data they deal with. In some cases, some features
of the world data allow for important optimizations and novel ways of organizing

data. One such example in robotics and computer vision is spatial data, either



2D or 3D. Spatial databases organize their entities to facilitate proximity searches
and spatial slicing, that is selection of elements in a specified region of space [17].
These ideas are somewhat similar to temporal databases and localization in
time, which we will discuss hereafter. This characteristic yielded an extension for
spatial databases that also includes time as a dimension, called spatiotemporal
databases [1].

Spatiotemporal databases are useful at a stage of processing when we already
have a higher understanding of scenic composition. At earlier stages, we may
only have access to raw sensor information. We would wish for example to store
video sequences indexed by time. This is the type of task accomplished by video
databases [29], which are perhaps the most specialized data storage system we
surveyed so far. Being constrained to only storing images may be too restrictive
for our purposes however we wish to retain the temporal indexing mechanism, and
look into databases which primarily deal with information with a time component.
2.1.4 Temporal Databases

While both SQL and NoSQL databases have some support for temporal
information, they generally are not concerned directly with the temporal dimension
of the data itself. They do not have direct support for recording when data is
created, updated and destroyed, or provide the ability to carry different values
depending on the point in time of interest. In the nineties, these ideas were
explored and regrouped under the name “Temporal Databases” [30].

Temporal databases for the most part only extended the properties of

relational or object-oriented databases, i.e. they were classical databases with



historical support. Because of their extensive feature set, they often are ill-suited
for real-time purposes.

Unfortunately, the academic interest for this category of database has faded
after a decade, and most of the software being developed is either proprietary or
incomplete [8].

2.1.5 Time-series Databases

The expanded importance of web computing has not only brought demand
for dynamic and schema-free data storage solutions, but it has also created a need
for ways to track server metrics. While still very niche, a few non-proprietary
applications that fit this purpose exist, and they can commonly be referred to
as time-series databases. Unfortunately, there has been very little formal and
academic study of this new breed of storage software, perhaps partly because of
their very restricted use and the novelty of the approach.

Instead of records and tables, time-series databases track the values of
particular metrics (or variables) that most commonly have no relationship with
one another. The values are stored with the timestamp of their first occurrence,
and the history of change is the primary concern of the database. Their semantics
are therefore very different from the CRUD ! -based operations of their SQL and
NoSQL cousins. The value history is usually immutable, insertions and updates

are coalesced into the same concept (the variable is updated, or new values of that

1 CRUD: Create, Read, Update Delete. They form the basis of all operations in
classical persistent storage applications.

10



variable are inserted), while queries are mostly aggregates of several values for the
purpose of statistical analysis.

The semantics of the time-series database seem to be a good fit for the data
flow programming model. We found, however, that the existing solutions lacked
some flexibility for our particular purposes. In the next section, we formalize the
requirements and desired features of the ideal solution.

2.2  Solution Definition
2.2.1 Functionality Requirements

When appraising existing solutions or developing a new one, some software
features are simply indispensable. Perhaps one of the foremost of them is the
requirement of an arbitrary data type. In robotic applications, numerous sensors
with sometimes unpredictable data formats may be used, and rapidly replaced by
newer or more capable hardware. It is therefore crucial that the data store be able
to handle any digital format representation and of any size. This point allows us
to eliminate a sizable portion of existing software, as most of them keep track of
scalar metrics, and can only store values that are formatted as a double-precision
floating point number.

The second aspect of the nature of the data is its frequency of update. A
standard camera, for instance, updates the value of the image 30 times a second.
Other sensors that measure acoustic data, motor rotation or lever pressure
may update at even faster rates. It is therefore necessary to not only store this
information at least as fast as it arrives, but represent a high degree of temporal

precision, preferably sub-millisecond. Here too, this requirement may readily
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disqualify a number of existing solutions, whose timestamps sometimes have a
resolution of one millisecond, but typically only go down to one second.

It is the unavailability of any open-source solution that fits these requirements
which prompted the development of our own piece of software, adb.

2.2.2 Other Design Goals

Beyond the functional requirements, there are particular features that are
of secondary importance, but should be kept in mind during the selection or
development of the solution. These goals are not strict but simply guidelines that
will affect design choices and effort allocation.

The first such goal is minimal software complexity. The use cases are simple
but rather broad, so it is in our interest to identify a small set of functionalities,
and leave out any support for specific scenarios but allow for their inclusion at
higher levels. This will also save implementation time, but might instead increase
the difficulty in planning of the architecture.

Natural results of restricted functionality and complexity are various software
size metrics: binary size, memory footprint, and especially number of software
dependencies. Since adb is meant to be used in robotics, it is desirable to make
it easily deployable on even the most rudimentary platform. In this specific case,
we expect the core implementation to require a basic file system, a *NIX kernel
(Linux or BSD), and a C runtime.

Finally, for the benefit of other researchers and to facilitate the extension
of this platform, all its components should be made available under a liberal,

open-source license.
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CHAPTER 3
Theoretical Discussions

Before we begin a deeper analysis of the different issues pertaining to this
specific database model, a few formalizations and definitions need to be set. As
time-series databases can be classified as a subset of temporal databases, we will
rely on vocabulary already agreed upon and defined in the consensus glossary
of temporal database concepts [23]. For instance, we will refer to an arbitrary
representation of time as a temporal element. Other concepts will be defined as
necessary when they first appear in the discussion.

We will also introduce concepts specific to time-series database, and clarify
the time-series model, which is comparatively more constrained, and therefore
simpler than the more widespread relational model.

3.1 The Time-series Database Model

A time-series database enables one to store values of one or more observed
processes as they evolve with time, in a sense capturing in a dynamic fashion the
temporal dimension of these processes. Mathematically, a process is modeled as a
variable, and we use this name to designate the collective information pertaining
to that process in the database. Since the processes in question may be of any
nature and produce any type of value, we wish to impose no constraints on their
interpretation by the database. Formally, the possible values are simply elements

of a set, with no other constraint imposed.

13



A time-series variable correlates process values with the time at which these
values occurred. This pairing between a temporal element and a value is called a
time relation, and in the specific case when the time models the world, it is called
a valid-time relation [23].

An alternative model to pairs of time and value is that of a mapping from the
time domain to the process’ value domain. We will call the time domain 7', the

value domain V', and this mapping p (Equation 3.1).

p:T =V (3.1)

In this fashion, to find the value of the variable at a particular point in time ¢,
one simply needs to apply the function p to it. This operation is the simplest form
of a query. In relational database systems, a query is understood as any operation
we can request from the system, sometimes only restricted to operations that do
not alter the data. In our time-series context, we define a query as an operation
that retrieves a variable’s values from the database.

In its general form, a query takes a set of temporal elements, and returns
a set of values. It is therefore another function, this time one that maps values
from the power set of T' to the power set of V. The power set of a set, denoted P,
is the set of all subsets of the given set. In other words, we are considering here
the domain of all possible arrangements of temporal elements, the domain of all
possible arrangements of values, and defining the query as a mapping between the

two. Equation 3.2 expresses the formal mathematical definition of such a mapping.
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p:P(T)—P(V) (3.2)

The database is not unique, so the query function must also have knowledge
of the relations and we should pass it as an argument to the function as well. As
Equation 3.3 indicates, the result of the query are all values satisfying the variable

time-to-value mapping for all given temporal elements.

q : (T—->V)xP(T) —PV)

qip, T") = {p(t):te€T'} where T'CT (3.3)

The other main operation on time series data is the introduction of new time
and value relations. Compared to relational databases, this operation is similar
to an insertion from the implementation’s point of view, but from a semantics
perspective, it resembles an update. To avoid confusion between these previous
concepts, we shall call it “augmentation”, but will refer to the derived action in the
database implementation as an insertion in later sections.

An augmentation is the creation of a new relation between some temporal
elements to some value. Ordinarily, we want to enforce the conditions that the
temporal elements be not part of an existing relation, and that all of them be
strictly greater than all related temporal elements. In this fashion, we do not
change history, and no information is destroyed. While it is rather easy to see
how a query can be formalized as a function, an augmentation has side-effects

and modifies the set it is executed on. It can also be represented as a function,

15



but one that transforms one state of a database to an new state which features
the new relations. Since we expressed the relations themselves as a function p, an
augmentation can be thought of as a mapping from a relation set, a temporal set

and a value to a new relation set. Equation 3.4 illustrates this idea.

r: T—->V)xPT)xV = (T-—=YV)
T(p7 T/)U) - p, such that
v ifteT”

p(t) = (3.4)
p(t) otherwise

A noteworthy observation is that only a single element v from V' is associated
with many potential ¢ elements in the subset 7" of T'. We shall see in the next
section that while we must keep V' general, the specific characteristics of time and
temporal elements allow us to build an algebra around the set T" and give us useful
mechanisms for query expressions.

3.2 Temporal Algebra

In the previous section, we formalized the time-series database semantics,
leaving out the specifics of the time and value domains. In this section, we will
develop the mathematical framework which allows us to manipulate and reason
about time. A formalization of these concepts becomes necessary when building a

reliable and expressive query engine for a temporal database.
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3.2.1 Time Instants

Humans experience time as one continuous dimension: from “now”, we can
only go forward or backward, and there is an infinite number of “points in time”
between “now” and “then”. Time, in this frame of understanding, is much like the
other physical dimension in the sense that it can be mathematically expressed with
the help of real numbers, and many temporal concepts have equivalents in real
algebra.

The points in time referred to earlier will be called instants, as per the
definition in [23]. Instants are elements of a totally ordered set, i.e. that given
two distinct instants, one will be strictly greater than the other. We can therefore
define the comparison relation, “>" on set T

This ordering permits us to define time intervals, which are semantically
similar to real intervals. Thanks to this property, we can reuse much of the
concepts developed in the field of interval algebra [33] and have a direct way
of reasoning about the temporal intervals. Their formal definition is given by

Equation 3.5.

[tl,tg) Do t,tg € T, to > 11
[tl,tg) = {t te T,tl <t< tQ}

[t1,t2) C T (3.5)

To simplify our discussion, we shall only consider left-half-closed intervals, i.e.

those that only include the left bound but not the right bound, and denoted here
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by an opening square bracket and a closing round bracket. This is consistent with
our understanding of event occurrence: an event happening from time ¢; to time ¢y
is most likely understood to have finished, therefore not to be defined anymore at
time ¢5. Time intervals are subsets of T'.
3.2.2 Time Spans

Intervals are a natural way of expressing events that are not instantaneous
(do not happen at a single instant), as most events are not happening at a set
of disjoint instants but rather at continuous subdivisions of the set T. A useful
measure of an interval is its duration, which can be understood as the distance
between its bounds. Equation 3.6 defines the time difference operator, H and
Equation 3.7 gives the definition of the duration of an interval. In [23], the span is
defined as the directed duration of time. We shall reuse this definition here, and
keep the term duration to designate only non-directed durations, or the property of

an interval.

B : TxT—S (3.6)

duration([t1,t2)) = t2 Bt (3.7)

The duration of an interval is a span, an element of a set S, different from
T and with its own semantics. Intuitively, we reason that spans can be combined
through addition and subtraction, and if we think of span as a signed duration, it
possesses an additive inverse relation. S is closed under all these operations, but as

we see from Equation 3.6, its elements can also be synthesized from elements of 7.
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But we can also use elements of S to create new elements in 7" from other elements
in T. These operations, called time shifts, are represented by the operators @& and
6 and defined in Equations 3.8 and 3.9. As spans are directed, a negative shift by
a span is the same as a positive shift by the inverse of that span, as expressed in
Equation 3.10. Finally, Equation 3.11 expresses the dual relationship between the

time difference H and the time shift ©.

@ : TxS—T (3.8)

S) . T'xS—>T (3.9)

tes = td(—s9) (3.10)
thBHty=5 < t16s=1t, (3.11)

We observe that an interval can be defined with either its two bounds or
with a bound and a span (typically the lower bound and the interval’s duration).
Thanks to the two operators, we also can define instants relative to other instants,
a semantic particularly useful in queries.
3.2.3 Time Operations

The sets S and 1" and their related operators form the basis of our temporal
algebra, and we can use it to reason about time slices in query operations. Indeed,
we want to be able to express an arbitrary subset of times at which we are
interested in the value of a particular variable. The algebra will allow us to express

these slices, and potentially simplify them in the query engine. We can establish
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Figure 3—1: Vector representation of temporal concepts

four additional equalities that can be used for the algebraic manipulation of
temporal values.

As is the case for the difference operation on real numbers, the time difference
on instants is anti-commutative (Equation 3.12). The intuition behind this law is
that a time difference produces a span, which is directed, and can be thought of
as a one-dimensional vector in time. Swapping the operators reverses the direction
of this vector. In Figure 3-1, instants ¢; and ¢, are points on the one-dimensional
timeline, and the span t; — ¢y is a vector connecting them.

A few other laws have their correspondents in one dimensional vector alge-
bra. Equation 3.13 is similar to the rule for summing vectors, and we can again
intuitively compare spans to vectors and instants to points. Similarly, in Equa-
tion 3.14, we can think of vectors and imagine that displacing an instant by two
spans in sequence is the same as displacing it once by the sum of those two spans.

Finally, Equation 3.15 states a rearrangement law for instants and spans. It
embodies concepts of associativity and distributivity. We have two instants, ¢; and
to, each displaced by a span, and we are looking for the time difference between
the two. Once again, we can geometrically show that the result is the same as the

time difference of the two instants displaced by the difference of the two spans.
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(tDs1)Dsy = td(s1+ 82) (3.14)
(tl D 81> H (tg @D 52) = (tl H tg) ©® (51 — 82) (315)

These four rules demonstrate that there exists a correspondence between
the operators ©, H and —. Indeed, if we use a numerical representation for both
instants and spans, the algebra becomes trivial, but it is useful to separate these
concepts and keep thinking about elements of distinct domains.

To complete our understanding of this temporal algebra, we can state a few
rules regarding intervals as well.

Equation 3.16 states that an interval whose bounds are identical should be
treated as empty. This should make sense intuitively, since the interval’s duration
is clearly 0. We could have also decided this interval to be equal to a set with the
single instant ¢, but since we are dealing here with left-closed, right-open intervals
only, we want to preserve the constraint that the right bound is never part of the
interval.

We introduce two rules about interval composition through set unions. The
first, stated in Equation 3.17, shows that an instant will be “absorbed” by an
interval during a union if it is located between its bounds. The second concerns

partially overlapping intervals, and predicts that the union of two such intervals
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will be bounded by the earliest instant on the left and the latest instant on the

right.

1) — o (3.16)
[tl,tz) U {tg} = [tl,t2> <= t1 <3<ty (317)
[tl, tg) U [tg, t4) = [min(tl, t3)7 max(tg, t4)) = 1 < y,t3 < 1o (318)

3.2.4 Discrete Time

The previous theoretical analysis assumes continuous time and processes, but
recording the value of these processes digitally will inevitably produce a discrete
representation of time. This reality somewhat alters the interval algebra used in
previous sections, and new concepts need to be introduced.

Discrete time means we have a minimum distance between two distinct
temporal elements, and also a smallest time span we can express. As defined
in [23], the granularity is the measure of coarseness of a discrete representation,
and the chronon is the smallest unit representable. In other words, in a system
with a 5 milliseconds long chronon, we can achieve granularities down to 5
milliseconds.

Time spans are in this case composed of an integer number of instants, each
separated by at least one chronon. In general, a sequence of instants separated by
an arbitrary number of chronons is what we call a time-series. If the number is

constant between two instants we introduce the concept of a granular interval.
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Equation 3.19 gives its representation and mathematical definition, where g is

the granularity of the interval.

to — 1
[tl,tg)gz{t1+nxg:n€N,n< 2g 1} (319)

Granular intervals behave somewhat differently from regular intervals.
Equation 3.17 does not hold, and Equation 3.18 works only for intervals with the
same granularity.

The discrete time model also affects the query operator defined in Equa-
tion 3.3. We are dealing with a series of key-value pairs where the keys are discrete
time instants, and it is now possible that the precise requested instants are not
present in the series. The assumption we must make is that the values are valid
between these discrete times. More specifically, each recorded instant marks a
change in the value, and the process keeps the value recorded at that instant until

the next recording. Equation 3.20 gives the formalization of this principle.

r={(tr,v1), (t2,v2), ... (tn; va)}

pr(t) =v; VtE [t titr) (3.20)

Using both instants and spans, we can finally formulate the last definitions

regarding queries on discrete time:

¢-({t}) = {p-®)}, (3.21)
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@[t t2)y) = Ape(ty) 15 € [l 12) st = 15 > g} (3.22)

(TUT) = ¢(T)Uq(T). (3.23)

3.3 Time Representations

Time is, according to our modern understanding of physics, one of the
dimensions of space-time, and supposedly not that different from the other three
dimensions. Its particularity, that we experience it by linearly traversing it in one
direction, which in turn limits our ways of effectively measuring it, has compelled
us to treat, represent and reason about it in very different terms than almost every
other dimension we know of.

The immediate observation we can make is that, unlike dimensions like
length, mass or energy, time does not have one dominant, widely accepted and
used standard of measurement. While the SI has defined standard metrics,
useful in common life as well as in a scientific setting for most dimensions, time
has no less than seven standardizations, most of which are not universal for all
possible temporal representations, and none that has absolute advantages over all
others [15].

3.3.1 Universal Time, Coordinated

The predominant one is UTC, or Coordinated Universal Time. It forms the
basis of most of civil time keeping and is used in many operating systems, the
network time protocol, radio, television and cellphone time systems. It is based
on the usual way of defining a year as a complete rotation around the Sun, a day
as a complete self-revolution of the Earth, and the usual integral subdivision of

the day in hours, minutes and seconds. In fact, most time standards started from

24



these definitions, but the increase in precision of time keeping equipment revealed
these few simple rules to be contradictory. The ratio of the Earth’s revolution
around the Sun to its revolution on itself is not an integer, it is not even constant.
Neither are the revolution durations themselves. When two contradictory sets of
definitions conflict, one must be relaxed for a standard to be well-defined. In the
case of UTC, it is the number of days in a year, and the number of seconds in an
hour that had to be kept non-constant. Indeed, besides leap years compensating
for the fractional ratio of year to day, UTC introduces the concept of leap seconds
to further compensate for smaller variations. Leap seconds are seconds periodically
either added to or subtracted from an hour to insure a UTC year is still within

a second of being the exact time it takes for a complete solar revolution, and

that a day stays within a second of a complete Earth revolution. Unfortunately,
indeterminate processes and uncertainty dictate when these leap seconds are
necessary, and so they cannot be predicted in advance. Thus, it is a standards
body, the International Earth Rotation and Reference Systems Service, that
dictates, as time progresses, when these leap seconds should be introduced.

We require a representation that is primarily used in a scientific and compu-
tational context. Further, the particular requirement of the time-series model, i.e.
that all events have valid times increase monotonically should also affect our choice
of representation. UTC seems inadequate here. First, the presence of leap seconds,
and therefore of minutes that can be 59, 60 or 61 seconds long would force us to
use lookup tables to compute precisely the time difference between two values.

Since our desired granularity can go down to a microsecond, an uncertainty of a
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million times that unit is not acceptable. The use of lookup tables, while giving
the right answer, would needlessly slow down computations that will be very com-
mon in a temporal database. Second, leap seconds make some time representations
ambiguous (inside positive leap second) and others not corresponding to physical
time (inside a negative leap second). This violates monotonicity, and imposes the
establishment of corrective measures when one of these edge cases is encountered.
But the most problematic issue remains that of computing future times. Under
UTC, it is simply impossible for us to get the exact number of seconds that will
elapse from now to a date and time 10 years from today, since leap seconds are
yet to be announced for that period, and can’t be predicted. UTC may be an
adequate system for civilian time, and applications that don’t require precisions
exceeding a second, but for our real-time systems, it is simply unusable.
3.3.2 Terrestrial Time

In the context of very precise time keeping such as our time-series database,
it seems necessary to look into time standards that are used in the scientific
community. Terrestrial Time, often abbreviated TT, is the current standard
used by the International Astronomical Union for observations from the Earth’s
surface. Defined in 1976, and originally called Dynamic Terrestrial Time, TT is
very similar to UTC but, perhaps ironically for an astronomical time standard,
it is not based on the Earth’s rotation. Instead, it is based on the SI second,
which is derived from a specific frequency of the caesium atom. This definition
of the second was selected because of its closeness to the Ephemeris second, the

empirically calculated mean of the duration of the second as one 86400'" of the
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Earth’s revolution, and its measurement through the use of atomic clocks. The
International Atomic Time, or TAI, is a time standard that uses hundreds of such
clocks in coordination, and in practice, T'T is simply computed as an offset from
TAIL UTC is also computed from TAI, but the offset changes as leap seconds are
added. TT, to insure linearity, does not feature these leap seconds.

T'T does not suffer from the drawbacks we identified in UTC: it is strictly
monotonic, predictable, the non-contextual ! units from the Gregorian calendar
(minute, hour, day and week) are constant multiples of the base unit, which is
also constant. The exact difference between any two values expressed in T'T can
be easily obtained with an arithmetic operation. TT has only been defined from
1976 and TAI only been kept since 1958, but due to the deterministic nature of a
linear time scale, T'T' can be easily extended to prior dates. This hints at an easy
and natural encoding of TT-represented instants: an integer count of chronons
(we chose our chronon to be a microsecond), from an epoch, a specific instant in
History. The specifics of the implementation, the choice of the epoch and ways
to reconcile this system with the internal representation of time on commodity

hardware is discussed in the Appendix.

! The month and year in the Gregorian calendar are inherently “contextual”,
or variable, since their exact length depends on when in time they happen. A
month’s length depends on which month we refer to, and a year’s length depends
on whether it is a leap year or not. The span of a minute is always defined as 60
seconds. This variability is different from the leap seconds introduced in UTC: leap
seconds don’t belong to a specific minute, but are placed where convenient, and
their computation is non-deterministic.
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3.4 ACID Properties in the Time-series Model

A very important requirement of relational database systems is to satisfy
the ACID properties: Atomicity, Consistency, Isolation and Durability. These
aspects are mainly relevant in the context of transactions, i.e a composition of
several primitive operations. Taken together, these principles ensure that the
whole transaction is performed or not at all (atomicity) and that as a result,
the database cannot be in an inconsistent state (consistency). Furthermore, all
transactions are independent and should not affect one another (isolation), and
all these properties hold true even in the case of system failure such as power loss
(durability) [19]. In a time-series model, guaranteeing these properties is relatively
easy: since history is immutable, values can only be modified at the tail of a series,
so writers need to take their turn and are therefore isolated. Transactions can
only be multiple sequential writes, so atomicity can be satisfied by recording how
many writes are requested, and rolling back on failure. Consistency and durability
are likewise much easier, as checks need only be carried out at the tail of the
time-series, and one can assume that history can never be corrupted, since it is
immutable.
3.5 Data Opacity and Aggregate Operations
3.5.1 Arbitrary Type Storage

Most database systems provide a set of primitive data types to represent the
information they are storing, along with accompanying operations on these types.
More complex types are built as aggregates (collections or compositions) of these

primitives. In relational databases, a collection can be represented as a table,
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whereas a composition is a row with multiple fields. In NoSQL databases, most
often the specifications of the underlying XML document define the possible types.
Even in the time-series databases we have studied, there exists type information,
although it is limited to only one representable type: the key is obviously a
temporal type, while the value is always a double-precision floating point number.
Although generic enough to allow the user to exploit them to his or her own
needs, these types systems reflect their primary problem domains of intended use:
business applications, web applications and diagnostic systems.

One of our requirements is to allow arbitrary data to be stored. Most of
the systems mentioned before do allow for completely arbitrary data in the form
of a specific binary array type, often called “blob”. However, this is a case of
“making the uncommon case possible”, and the blob type does not have the same
facilities available as the other primitive data types. Our problem deals primarily
with numerical data, but also data of completely unknown structure. It is with a
concern for simplicity that we chose to simply not worry about type information at
all in the core implementation, and instead opt to offer the means to users of the
database to construct their own type systems.
3.5.2 Filter, Map and Reduce

Being aware of the type of the data stored allows a DBMS to perform
manipulation operations useful in queries. The choice to not have type information
would therefore appear to remove that facility and seriously restrict the richness
and potential of queries to only partitioning based on time. While this is sufficient

in the context of a low-level API, a self-contained query system would require

29



the ability to express every type of query. These queries would be constructed
in a query language capable of “asking” anything from the database, without
necessarily being Turing compete.

As time-series databases’ models are that of an ordered set of key-value
pairs, a universal query language would be computationally equivalent to a
list manipulation algebra. Fortunately, semantics of list manipulations are well
understood, and are often a core component of functional programming languages.
For the purposes of data queries, we are particularly interested in three basic list
manipulations: filtering, reduction and mapping [6].

Filtering is the process of selecting elements from a list based on a predicate,
the predicate being a function that maps an element of the list to either true or
false. A filtering operation transforms a list into a new list containing only the
elements of the first list that satisfy the predicate. It is a rough correspondent
of the selection operation in relational algebra, or the WHERE clause in SQL.
Equation 3.24 gives a formal mathematical definition of the filter operation,

represented by the symbol “<”.

pred< L ={l:1€ L,pred(l) = true} (3.24)

The second most useful operation for querying is the reduction. A reduction is
an operation that transforms a list to a single number, obtained by the successive
application of some binary operator, or binary function, to the elements of the
list. In practice, this is usually achieved by assuming the operator is associative,

and the evaluation is executed by feeding the result of the previous operation
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as an argument to the next. This argument is called the accumulator, since it
accumulates the partial result of the reduction.

Reductions are useful to obtain aggregate results, such as the sum of all
elements. In relational databases, aggregate functions perform reduction, but
they are usually restricted to a predefined set. A formal definition is given in
Equation 3.25, where “/” is the reduction operator, and @ is an arbitrary binary

operator used in the reduction.

®/[l1,lay . ln] =L@l ... DI, (3.25)

Finally, the map operation completes the basic set of list operations. It
transforms every element in a list to some new value according to a given mapping

function, as shown in Equation 3.26.

fnxL={fn(l):1€L} (3.26)

These three operations can be used to transform the relation set, but their
usefulness extends beyond this first level. Indeed, as we mentioned previously,
the only constraint on the value domain is for it to be representable in computer
memory, and we can treat it as a list of bytes, where the mapping, filtering and re-
duction are also defined. We therefore have two levels of list manipulations, unified
under one semantic basis. This model gives us simultaneously the expressiveness

that we require and the simplicity that we aimed for.
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CHAPTER 4
Implementation and Experiments

4.1 Software Architecture and Components

As per the software requirements established earlier, the adb system needs
to accommodate a wide variety of use cases and platforms. It needs to scale
from very constrained embedded environments with limited memory, restricted
operating system and a frugal set of libraries and tools to a network of commodity
personal computers with distributed computation requirements. Such constraints
would be unreasonable for a single piece of software, but may be achieved using a
layered model of increasingly complex components depending on one another. In
fact, the approach in building adb was to start with a simple component adequate
for use in an embedded environment with a minimal set of primitive operations
which could be reused in higher-level systems.

The core of adb, referred hereafter as adbCore, is the first layer of function-
ality. It is entirely written in the C programming language, and depends only on

the C Standard library and POSIX libraries. Since most processor manufacturers

MATLAB Python
Aadb wrapper wrapper

adbCore

Figure 4-1: Software architecture of adb
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ship their product with a standard but restricted C toolchain, porting adbCore to
new environments should be trivial. As a rule, if a functional version of the BSD
or Linux kernel can be ported to the new architecture, adb is guaranteed to work
as well.

Since adb’s primary purpose is to serve as a tool for researchers, an interme-
diate level API is provided on top of adbCore to integrate adb with numerical
computation frameworks, currently MATLAB and NumPy through the Python
programming language. This component should provide researchers who prototype
in these environments with a quick solution for the persistence of their time series
data.

Finally, at the highest level, Aadb provides a command-line and network
interface to the adb system through a data manipulation language. It offers
additional organization and maintenance tools, allows for complex queries and
data manipulations, and can be used to quickly analyze the data offline. Aadb is
written in the Haskell programming language.

4.2 Data Organization and Storage
4.2.1 Nested Variable Model

Variables stored in a time-series database are typically not related to one
another, and can be thought of as completely independent entities. However,
conceptually, it is often desirable to lump some variables under one category, and
some under another category. For instance, we may have visual and range data
under a ‘sensor’ category, and several motor rotation signals under a ‘control’ cate-

gory. It is also possible to monitor separate but similar systems that share signals.

33



Still within the context of robotics, it is possible to think of two identical robots,
each with its own sensors and control signals. The categories, or namespaces, can
be nested.

An organization such as this already exists within each hierarchical filesystem,
and in an effort to reduce software complexity, we can directly use a nested file
organization within our database. We chose to use this method for a higher level
of organization, within Aadb. For adbCore, we simply forgo the concept of a
database completely, and treat variables independently, designating them simply
by their filesystem path.

Data Blocks Partitioning

We can use the available filesystem to further subdivide a variable into
data blocks. Other database systems usually feature their own custom block
organization within one file of a filesystem, for increased efficiency. However,
to limit dependencies and reduce software complexity, it should be sufficient to
use a regular filesystem to manage data blocks, especially since historical data is
immutable, which limits writes to a single block.

At the low level, the user can specify if a new block should be created when
they open a variable for writing. This gives optimal control over data partitioning.
When choosing block sizes, the most space conservative strategy is to have blocks
correspond to an integer number of filesystem blocks, but such a scheme may not
be the most efficient when performing insertions or queries. In Aadb, the block size

is chosen automatically, but this choice can be changed in local settings.
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Table 4—-1: Execution complexity for the stamped storage mode

Operation Execution complexity
Insertion O(1)

Removal (undo last insertion) | O(1)

In-block search O(log N)

4.2.2 Storage Methods

Time-series databases by their very nature grow quickly over time until
some sort of data compacting is performed. This behaviour is very different
from other types of databases that support destructive updates: the size of the
database grows with the complexity and size of the model being stored. In this
second situation, the concerns for space and speed efficiency are a matter of scale,
while in the case of time-series data, they are more related to the lifetime of the
application. Fortunately, the nature of a flat, time-series database structure and
the physical variables it models allows for some constraints that simplify and
improve the efficiency of storage, but these constraints are not always applicable.
Consequently, we need more flexibility in choosing the storage modes for particular
variables. The adb system at its current stage supports three such modes, and lets
the user decide which is best for a particular application.

The Timestamped Storage Mode

The default storage mode used by adb is called “timestamped mode”, or
“stamped mode”. It associates exactly one 8 byte long timestamp value to each
data value, also of fixed size. Thanks to the constraint of monotonically increasing
keys (the timestamps), and fixed size of keys and values, a very simple, sequential

storage strategy similar to early systems like dBase II can be used.
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Table 4-1 lists the computational complexity, in Big-O notation, of the
primitive database operations. Insertion and removal always happen at the end of
the series, so they complete in constant time and this behavior is true for all forms
of storage. Within a block, a search is done using the keys, which are already
ordered, so the execution complexity is logarithmic.

The Time-slotted Storage Mode

When storing data produced by a sensor, it is often possible to assume a
constant production rate, and therefore a constant time separation between
successive values. Under such circumstances, it is no longer necessary to keep each
timestamp and we could thus save 8 bytes per entry in storage space. The “time-
slotted mode”, or simply “slotted mode” works in this fashion. Conceptually, the
timeline is divided in equally spaced slots, each of which holds a value. This model
allows not only size but also execution optimizations. It is particularly useful for
small data values (with respect to the size of the timestamp), and should be used
whenever the assumption of constant production rate holds, with possibilities of
data steam interruptions. Like the stamped mode, data size needs to be constant
in length. Table 4-2 shows the computational complexity for the slotted mode.
The only difference from the stamped mode is that searches are now constant,
since there is a mathematical relationship between the key and the offset of the
data within a block.

A Mode for Data of Variable Length

In the primary use cases of adb, the fixed size of the data is a valid assump-

tion. Most sensors measure variables that are typically either scalars or vectors of
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Table 4-2: Execution complexity for the slotted storage mode

Operation Execution complexity
Insertion O(1)
Removal (undo last insertion) | O(1)
In-block search O(1)

Table 4—3: Execution complexity for the text storage mode

Operation Execution complexity
Insertion O(1)

Removal (undo last insertion) | O(1)

In-block search O(log N)

values whose range is bounded. It is possible however that these assumptions do
not hold, especially if we generalize the purpose of adb. For example, a message
logging system can be thought of as a time-series of string values, yet there isn’t
any consistency in the length of the string, and while it is possible to impose large
enough upper-bounds and treat these strings as fixed-size values, it would be done
at the expense of space.

A third storage mode will be made available in adb: the string or text mode,
which allows for the storage of variable-size data. Since one of the main directions
of evolution in databases in the last decade has been towards a less constrained
data structure, often expressed in a data description language such as XML or
JSON;, the support for a text-based storage mode seems highly beneficial. Areas of
application include storage of data expressed in these formats, as well as textual
diagnostics and logging systems. Large sparse matrices may also be stored more

efficiently in this mode.
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4.3 Programming Language Support

As our target demographic is primarily confined to the domain of scientific
computation, the programming language and library support should reflect the
current tools used in this sector. For prototyping, the MATLAB environment is
the most widely used toolset. However, the Python programming language and its
numerical libraries, SciPy and NumPy, are gaining traction as well.

4.3.1 C API

The lowest level component of adb, adoCore, is implemented in C. The higher
layers must access its functionalities through some API. In some contexts, such
as that of embedded systems, or development where the main application is also
implemented in C or C++, the developer might also want to directly access these
low-level features. The API of adbCore reflects these two needs, and prioritizes
simplicity and small API count over control and expressiveness.

Currently, the C API of adbCore is composed of nine functions, five custom
types and about twenty macros, all declared in one header file. This simplicity
provides enough flexibility to accomplish the basic database tasks (insertion,
removal and query) while being straightforward to learn.

The functions provided all operate on one variable. To create a variable, one
must first create a directory on the filesystem, then create an adb_var structure,
store appropriate values in its fields, and finally invoke adb_open. One of the fields
of adb_var is opmode, which specifies one of the three modes of operation: write
mode, read mode and clean mode. A new variable is created in the write mode,

which also allows for insertions of new records. Read mode is used to perform
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queries on the data, while clean mode is used for compacting. Each mode gives
access to different functions and treats the time-series as a specific data structure.
When all desired operations are completed, adb_close should be invoked on the
variable.

In write mode, only the adb_insert and adb_remove functions are available,
and the time-series behaves like a stack: adb_insert appends a new value at the
end of the series, adb_remove deletes the last inserted value. Before adb_close
is invoked, there is no guarantee the data is committed to disk. In addition, only
one write mode handle can be open at one time, so it is recommended to use burst
writes: new values should be added to a buffer, and a background thread should
open, insert and close the variable whenever the buffer becomes full.

In read mode, the available functions are adb_next, adb_prev, adb_key and
adb_value. The time-series behaves like a doubly linked-list: a starting timestamp,
or key is given to the open function through a field in adb_var, which places a
cursor at that key. The adb_next and adb_prev functions can then move the
cursor forward and backward in time, while adb_key and adb_value can be used to
retrieve the key and value at the cursor respectively.

In clean mode, the same functions are available as in read mode, except
for adb_prev, which is replaced by adb_remove. The data structure comparison
resembles a singly linked-list this time: the cursor cannot move back, but instead,
the remove function can be used to discard the entry at the cursor and moves the
cursor to the next entry. No changes are committed before a call to adb_close,

which can only proceed when all other handles have been closed.
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4.3.2 Matlab and Python API

MATLAB and Python are programming languages and environments that
differ considerably from C: they are both dynamically-typed, memory-managed,
have higher-level constructs and libraries for dealing with vector and matrices
and can be Just-In-Time compiled for a virtual machine or directly interpreted
for rapid prototyping. These properties make them more suited for academic
work, where researchers often have little experience in building software systems.
Given adb’s target demographic, it is almost essential these two platforms get full
programming support.

For adbCore, one of the requirements was the availability of the system on
embedded devices with limited memory, processing power and library support. In
the case of MATLAB and Python, we are reversing these assumptions: both have
large libraries and dependency requirements, have to run on powerful machines,
and for numerical computations, it is already assumed large amounts of memory
and processing power will be required. This reality, along with the expressiveness
of both languages, allow for a different approach to an API and for further

simplifications.
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>> A = [1 2 3;4 5 6];

>> A(2,1)
ans =
4
>> A(1,2:3)
ans =
2 3
>> A(2,1) = 10
A =
1 2 3
10 5 6

Listing 4.1: MATLAB array definition, indexing and slicing

>>> A = array([[1,2,3],[4,5,611)
>>> A[1,0]
4
>>> A[0,1:3]
array ([2, 3]1)
>>> A[1,0] = 10
>>> A
array ([[ 1, 2, 3],
[10, 5, 611)

Listing 4.2: NumPy array definition, indexing and slicing

Both MATLAB and NumPy arrays have in-language support for easy index-
ing and slicing. Slicing is the technique of providing an indexing range to extract
a sub-array from a given array. Indexing and slicing can be used to retrieve values

or assign them, thus modifying parts of the original array. Listings 4.1 and 4.2
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1 Arrays can have multiple dimensions,

show the syntax used for these operations.
so it becomes natural to think of a time-series of arrays as one array with an
additional temporal dimension. Indexing and slicing along that dimension become
the substitute of the normal query, and insertion of new records can be achieved

by setting values at new indexes. Listings 4.3 and 4.4 show a usage example, with

both insertion and query.

>> T = adb_open(’path/to/variable’);
>> T(’2012-09-04T17:00.000000°) = eye(1,3);
>> T(1346778001000000) = ones(1,3);
>> [keys,values] = T(:)
keys =
1346778000000000
1346778001000000

values =
1 0
1 1 1

Listing 4.3: MATLAB time-series manipulations

L MATLAB starts indexing at 1 while Python, and therefore NumPy start in-
dexing at 0. Furthermore, ranges are inclusive in MATLAB, but right-exclusive in
Python. For example, 1:3 corresponds to 1,2,3 in MATLAB but 1,2 in Python.
These semantics differences account for the index discrepancies in the examples
given.
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>>> T = adb.open(’path/to/variable’)

>>> T[’2012-09-04T17:00.000000’] = eye(1,3)

>>> T[1346778001000000] = ones (3)

>>> keys,values = T[:]

>>> keys

array ([[1346778000000000] ,

[1346778001000000]1])

>>> values

array ([[ 1., 0., 0.]
1.1

(1., 1., 1)

Listing 4.4: Python time-series manipulations

The selected approach has the advantage of reusing concepts and syntax
that users of these environments are familiar with. Its simplicity has one main
limitation: more refined queries, for example limiting results based on the values
of array elements, need to be expressed in the language after all values have been
retrieved, and thus, a larger amount of data than necessary may be read from
the database, only to be discarded later by filtering. We justify this drawback
by the assumption that systems written in MATLAB or NumPy, where large
datasets need to be processed, have an expectation of high memory usage, and
that familiarity and ease of use are of greater importance for researchers.

4.4 Universal Interface

The previous sections detail the most common way we believe adb’s users
will choose to interact with it. There are, however, a multitude of other scenarios
where languages other than C, C++, Matlab or Python are used, or simply which

require greater flexibility in the type of queries that need performing. In those
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cases, a universal, high-level textual interface seems to be the most appropriate.
Similar to relational databases and their Structured Query Language, adb also
provides a data definition and manipulation language. It is similar in spirit to SQL
but differs substantially in its semantics due to the specific nature of a time-series
database.

4.4.1 Temporal Description

We strive to offer the user a means of expressing time values for use in queries
and insertions in a natural way. Section 3.2 presented the foundation of our
temporal algebra; in this section, its actual syntax in the universal interface is
presented.

A very useful means of expressing time instants is to do so relative to the
current time. The keyword now is used to designate the current time, and relative
times are constructed by adding or subtracting spans to it, using the operators &
and ©. These are simply written as + and — respectively in the language. Spans
themselves are denoted as a composition of integers and time units. Since we are
using the Terrestrial Time standard, all the common time units have durations
that are integer multiple of others, from the microsecond to the week. Table 4—4
lists the value of units with respect to one another.

Spans are composed by juxtaposing the integers and time unit pairs, sepa-

rated by spaces. Listing 4.5 gives an example of spans and instants.

44



Table 4—4: Time units and their values

Unit Abbreviation | Value
millisecond ms 1000 ps
second s 1000 ms
minute m 60 s
hour h 60 m
day d 24 h
week w 7d

2w bd
now - 12h 45m
now + 1h 10s 50us

Listing 4.5: Spans and instants

We may also wish to use absolute instants. There are two ways to do so:
using the ISO 8601 format or by specifying the integer representation of the
Terrestrial Time encoding. Listing 4.6 shows the different formats understood by

adb and it’s values.

2012-09-01T14:28:42.123456
2012-09-01

T14:28:42

T14:28:42.123456
0x0000239834812635

Listing 4.6: Examples of instant literals
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Intervals are defined using two instants, with an additional granularity if
needed. We use an arrow operator (->) between two instants to specify an interval.
A modified ternary arrow operator, composed of a double dashes and an arrow (--
and ->), can be used when one wants to specify the granularity. In this form, the
operands are given in this order: lower bound, granularity, upper bound. Visually,
it looks like an elongated arrow with the granularity in the middle. Both the
binary and ternary form of the operator have lower precedence than addition and
subtraction, so parentheses are usually not needed, but can be added for clarity.

Listing 4.7 gives an example of a natural interval and a granular interval.

2012-09-01T14:28:42.123456 -> 2013-09-11T23:17:56.987654
now - 3h -- 10 ms -> now

Listing 4.7: Examples of intervals

For advanced temporal operations, it may be necessary to specify disjoint
intervals, a set of instants, or any combination thereof. Both instants and spans
are treated as time units, and can be combined with a comma operator. Mathe-
matically, this operation corresponds to set union, where individual instants are
implicitly wrapped around a set containing only them. The comma operator has

the lowest precedence. Listing 4.8 illustrates the use of the comma.
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now, now - 1s, now - 1m, now - 1h
2012-09-01T14:28:42 -> 2013-09-11T23:17:56, now
now - 24h -- 1h -> now - 1h, now -1h -- 1s -> now

Listing 4.8: Examples of combinations

With the help of these primitives, it is possible to easily describe the most
common time values that one would like to retrieve in a query.
4.4.2 Data Manipulation

As a primarily time-oriented database system, adb does not support advanced
data operations like other more traditional databases. Values stored are treated as
a string of bytes and a query therefore must contain knowledge about the specific
representation of the data. This low-level approach is simple and expressive, but it
may make complex queries rather verbose. Since most database systems interfacing
with data applications are known to have their queries generated by scripts, and
only rarely written by hand by humans, we found it to be an acceptable trade-off.

In Section 3.5.2, we mentioned that queries can be expressed with the help of
filtering, mapping and reduction operations. These operations take as arguments
the value of the relation and a function. The data manipulation language must
therefore be flexible enough to express a wide range of these functions. A filtering
function for instance must return a boolean value, whereas a reduction function
must be allowed to take two arguments: the current value, and the accumulated

value, which is the result of the previous computation of the reduction function.
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A detailed overview of the data manipulation semantics is outside the scope
of this thesis. It should however be sufficient to describe its main principles and
syntax. As list manipulations are its core mechanism, slicing and concatenation
are some of its primary tools. This is done using indexing and concatenation
operators. The following example takes two slices and concatenates them, which is

equivalent of taking the value as is:

val[0:4] ++ val[4:end]

Listing 4.9: Example of slicing and concatenation

Another key operation is type casting. By default, the value is treated as an
array of unsigned 8-bit integers (bytes), but it can be cast to other types to change
the results of arithmetic and comparison operators. In the following example, we
compare the first half of the value to the second half, where they were encoded as

integer and real:

(val[0:4] :: int32) > (val[4:end] :: float64)

Listing 4.10: Example of type casting

Finally, for vector data, list operations are also very useful and powerful.
Listing 4.11 shows how to keep all elements greater than 10, add 3 to all elements

and sum all elements, respectively.
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(>10) |> (val :: uint32)
(+3) *> (val :: float64)
(+) /> (val :: int64)

Listing 4.11: Example of filter, map and reduce

A list of types and operators is given in the Appendix.
4.5 Use Case Example

In this section, we will demonstrate how adb can be integrated in a ROS
stack in order to enhance it with a capacity to access historical data. ROS uses
a publisher subscriber model, with a centralized repository of all the channels
through which data flows. Our strategy is to tap to a particular channel and
store the values as they come, so they can be retrieved by some module at a later
time. To stay true to the topic of robotics and computer vision, our example
shall feature grayscale image at VGA resolution. In practice, since adb doesn’t
have knowledge of the type of data stored, and can store values of arbitrary size,
we could have just as well used scalar values, or high-definition color images.
Figure 4-2 shows a block diagram of the node layout of our system.

ROS nodes can be written in both C++ and Python. For this example, we
wish to demonstrate adbCore’s API, and will write the nodes in C++. For the
recording node, we modified a simple subscriber node provided in ROS’s tutorial
page. The implementation is straightforward, and consists of two steps. First,
we set up the database variable that will contain the image values: we create an

adb_var structure, and populate it with information about storage location and
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@ Processing Node

Recording Node Query Node

Figure 4-2: ROS stack with adb

variable type. Then in the callback, we open the variable, insert a record with a
timestamp corresponding to the time of retrieval, and finally close the variable.
The source code is available in Listing A-2.

The query node could be implemented in a number of ways: it could listen
on a channel for specific timestamps, or a span and in response, extract the
corresponding values from the database and publish them on another channel. It
could also be an automated node that publishes historical values according to some
rule. The code to achieve this behavior is similar to that of the recording node:
a variable setup, followed by the retrieval of values that consists of an open-read-
close. Together with the recording node, they can thus add a historical dimension

to the live dataflow of ROS messages.
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4.6 Benchmarks

We wished to compare adb to existing database solutions in terms of raw
performance for both writing and reading. As mentioned in the introduction, there
are, to the author’s knowledge, no freely available systems which directly satisfy
all our requirements, but we still needed a basis of comparison upon which to
judge the capabilities of adb in the context of numerical computing. We chose,
for this comparison, three other systems: SQLite, the ubiquitous embedded
general-purpose relational database system, the RRD tool, a simple round-robin
time-series storage solution, and TempoDB, a cloud-based time-series database.

All the systems tested are designed to store data directly on permanent
storage like a hard disk drive. Since reading and writing to such a device are very
slow operations, each system uses a caching mechanism to keep some of the records
in memory. SQLite and the RRD tool use their own caching methods, tailored
to their storage layout, and we can guess TempoDB’s servers are configure with
one as well. The caching systems we chose for adb is very simple: for writing, we
let the C standard library use its own flushing schedule, whereas for reading, we
map a block file to memory and let the operating system perform its own block
caching. The following benchmarks are therefore primarily a way to compare the
performance of these different caching strategies.

It should be noted that to increase reading and writing speeds, SQLite, the
RRD tool and adb can keep their data in memory, but would then lose their
permanent storage capabilities. It suffices to configure the file system to treat

a portion of memory as a virtual hard drive, usually called a RAM disk. This
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method is not optimal, as certain strategies will ultimately force the operating
system to perform copies between two memory locations, but in adb’s case, the
memory mapping of files should allow the OS to access the data faster. These in-
memory databases can be useful for very high-volume data, but are quickly limited
by the computer’s RAM capacity. For example, high-definition uncompressed
1080p color video takes up about 178 MB per second of footage, which means it
takes just over a minute and a half of such footage to fill up 16 GB of RAM.

We required a testing strategy that would adequately compare all four sys-
tems, and since each uses a very unique approach, this task proved to be somewhat
of a challenge. We could not compare in-RAM and disk-stored performance, since
that would have left out TempoDB, whose storage is inaccessible. We already
expect TempoDB to perform the worst, possible by several orders of magnitude,
since its data access is limited by the network latency and throughput. Further-
more, both the RRD tool and TempoDB can only store floating-point values, so
any comparison in storing vector values would be impossible. We therefore had to
restrict our testing set to double-precision IEEE 784 numbers to compare all four
database systems.

4.6.1 Insertion

For data stream captures, a particularly important point is the speed of
insertion. We performed a value insertion stress test comparing our four database
systems by measuring the execution time of a bulk insert command using different
numbers of items. The particular method varied slightly from system to system,

according to the available APIs, but we generally attempted to produce the values
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as fast as the interface would allow it. In all cases, the data values were randomly
generated.

In the case of adb, the function adb_insert, which performs a single update,
was called in a loop, without delay. We used the result from a call to adb_now for
the timestamp value. The TempoDB API allows bulk inserts directly, so for this
system, a set of key-value pairs was constructed and stored in a data structure in
memory, which was then passed to the insert command.

SQLite, being a general-purpose relational database with loose typing, does
not directly support working with timestamps. It features time manipulation
functions, but they operate on date-time values stored as strings. Since string
parsing is usually a costly operation compared to integer arithmetic, and we are
only interested in storing and retrieving values and not modifying them, we opted
to store timestamp values as integers, follow the same representation adb uses
internally. We also made them into an ascending primary key, to give SQLite the
best conditions for performance. Like for adb, the insert statements were executed
in a loop, without delay.

Finally, for the RRD tool, we constructed command strings with 10 key-value
pairs at once, and these strings were executed against the rrdtool binary, also
in a loop, without delay. In the particular case of the RRD tool, the timestamp
values did not represent the actual time of insertion: the RRD tool does not
support a resolution under one second, and updating the value of a variable sooner
results in an error from the system. This can be circumvented with an additional

software layer that interprets timestamps differently: they are, after all, integers,
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Figure 4-3: Insert performance comparison for scalar values

which granularity can be interpreted at a higher level. It is important to note this
additional step needed, and the fact that the RRD tool does not offer this support
directly.

The tests were performed on present commodity hardware, namely a desktop
computer with an Intel Core i7 860 quad-core processor clocked at 2.80GHz, 4GB
of DDR3 memory clocked at 1333MHz and a 500GB hard drive. We picked the
number of inserts to be approximately evenly spaced on a logarithmic scale. The
results of this benchmark are presented in Figure 4-3.

As predicted, we see that TempoDB is several orders of magnitude slower than
the other three contenders, though the difference shrinks as the volume grows.
Another unsurprising result is the mostly linear increase of the execution time. We
observe that adb and SQLite perform comparably for a few hundred inserts, but

adb becomes faster as the volume of inserts reaches the thousands. On the other
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hand, the RRD tool, although advantaged by its constant size storage, performed
worse than both SQLite and adb. We hypothesize this could be due to the nature
of the RRD tool’s interface: inserts need to be executed by individual function
calls, and the calls take in strings as arguments. The additional calling and string
parsing overhead would explain its relatively slow speed. It is also clear that the
RRD tool was not designed with handling large volumes of data.

The finest possible granularity of both adb, and the representation we used
for SQLite, is of one microsecond, or 107¢ seconds. We can see from Figure 4-3
that, given a high enough volume of inserts, both SQLite and adb are able to
write records at this minimal granularity. The performance of adb is even more
impressive, with an insert time between 6 and 0.3 microseconds per value, which
translates to an insertion rate to up to 3 MHz. This speed should satisfy even the
fastest capturing scenarios.
4.6.2 Query

Query time is of secondary importance in our particular problem domain, but
in most other areas of application, it is actually the main metric the software is
optimized for. In these cases however, the data one queries for is usually scattered
around the storage data structures, and it is through clever organization and
retrieval algorithms that high performance is achieved. We are mainly interested
in queries that involve time slices, so the access to data that is already organized
sequentially in time should only be limited by IO operations. Thanks to its

simplicity, we expect adb to perform equally well.
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For this test, we measured the execution of an aggregate function (sum) over
n entries. This approach insures that the values are consumed without having to
print them individually, where printing time would have introduced a significant
bias in the results.

The tests were performed on the same setup: Intel Core i7 860 quad-core
processor clocked at 2.80GHz, 4GB of DDR3 memory clocked at 1333MHz and a
500GB hard drive. Again, we picked the number of queries to be approximately
evenly spaced on a logarithmic scale. The results of this benchmark are presented
in figure 4-4.

We omitted the RRD tool from these tests because of the nature of this
time-series database: the aggregate functions are to be defined at the start, and

computed as the data is added. The results for this test would not be a measure of
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a query execution, but only of the access to a precomputed value. Moreover, the
time taken for such an access is significantly below our measurement resolution.

In this test, SQLite performs significantly better than adb. SQLite is indeed
a database optimized for read access, and it is possible some optimizations allow
it to compute aggregate function such as the sum faster. This is therefore an area
where adb has ample room for improvement. We also see that TempoDB is still
largely slowed down by the network latency and throughput, but its distance from
adb’s performance is reduced.

We conclude from these two tests that each of the databases has its strengths
and weaknesses. Whereas SQLite and the RRD tool fare better in queries, adb

retains an edge for large write volume scenarios.
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CHAPTER 5
Conclusions and Discussions

5.1 Performance and Usability

We have seen that in terms of raw speed, adb performs admirably in com-
parison to other time-series databases, and even very widely used general purpose
databases such as SQLite. In absolute terms, adb is well suited for the storage of
very high-frequency data. Its high throughput and the separability of variables
makes it a very good historical persistence solution for a CCN system.

The very few dependencies of the core part of adb, and its very small ex-
ecutable and memory footprint make adb a good choice for embedded systems
that need a time-series recording component. In more feature-complete systems,
the user has a choice of programming languages to interface with adb: C/C++,
Python, Matlab and Haskell.

As a tool designed specifically to assist in numerical computing tasks, adb
offers flexibility in data type, storage method and compacting strategies. To
the best of the author’s knowledge, there is no freely available tool with similar
characteristics. While our results show that SQLite can show only slightly poorer
performance, all time manipulation and knowledge must be opaquely implemented
on top of the database system. Additionally, compacting of the database can be

costly and halt all other operations while it is carried out.
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5.2 Future Work

Whereas the core of adb is ready for use, further work is necessary on the
Python and Matlab wrappers, as well as the higher-level interface and its data
manipulation language. As more extensive use is made of adb and the need
for even better performance arises, we can also look into refining the storage
and caching model. While the mechanisms native to the operating systems and
file systems used seem adequate, and it is unclear whether it can be optimized
further, the particular nature of time-series data may offer a chance for better
data management. Finally, users of adb may find specific features that they wish
implemented, and depending on their generality, we may decide to introduce them.
5.3 Closing Remarks

We have created a simple yet powerful tool for storing arbitrary time-series
data for numerical computing. It can be used as a natural historical persistence
layer within the CCN, but can also be used as a standalone component in mon-
itoring systems, embedded robotics applications or simply as a quick and easy
persistence solution for researchers. Its features are unique amongst open-source
time-series databases, and its performance rivals that of competitors. We hope
that it will find adoption outside of the laboratory and project that it was origi-

nally designed for, and that it can make its mark in the field of robotics.
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Appendix A

A.1 Internal Time Representation

The best method for representing instant time values, or timestamps, in
digital form has been the subject of some studies, and different solutions are used
in different circumstances. As it is usually the case with design decisions, the best
solution depends on the area of applications, as different trade-offs need to be
made. In the case of timestamp representations, issues such as range, precision and
which operations are most frequent will dictate the optimal format.

Dyreson and Snodgrass [15] proposed a model to represent the entirety of
time, with different representations and different precisions. Their work was
intended for use in a general-purpose temporal database, and is consequently
more complex than what is needed for a time-series database, where we can make
the assumption that time values will be close to “now”, and not extend too far
into the future or the past. Nevertheless, their analysis of the different existing
representations is very relevant to our pursuit.

They identified four types of operations the database system may need to
perform on the timestamps. In order of frequency, and therefore importance,
they are comparisons, arithmetic operations and conversion, and separated as
“input” and “output” in their work. In our time-series database, their order stays
unchanged. Comparisons are used frequently in almost all operations: finding
elements, checking query boundaries, ensuring monotonicity on inserts to name

a few. Arithmetic operations are particularly relevant in the time-slotted storage

60



scheme, since timestamps are implicit and their values need to be computed from
offsets. Finally, conversions happen at only higher levels of abstractions, and only
the most basic conversion utility is provided in the C API.

True to Dyreson and Snodgrass’ analysis, but bearing in mind that we do
not need to represent all of time, we opted for a format that extends the UNIX
time representation from 32 to 64 bits, and resizes the chronon from the second to
the microsecond. We could have picked any epoch, but for simplicity’s sake and a

slight ease of conversion, we kept it to January 15, 1970.
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A.2 C code listings

typedef int64_t adb_time;
typedef int64_t adb_store;

typedef enum {
ADB_WRMODE, ADB_RDMODE, ADB_CLMODE
} adb_mode;

typedef struct {

adb_store storage;

size_t size;

char info [25];
} adb_type;

typedef struct {
const char *path;

adb_mode opmode ;
adb_time start;
adb_type type;

} adb_var;

adb_time adb_now(void);

int adb_open(adb_var *var);
int adb_close(adb_var *var);

adb_time adb_key(adb_var *var);
const void * adb_value(adb_var *xvar);

int adb_insert(adb_var *var, adb_time key,
const void x*value);
int adb_remove (adb_var *var);

int adb_prev(adb_var *xvar);
int adb_next (adb_var *var);

Listing A—1: Header file for adb
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#include <adb.h>
#include "ros/ros.h"
#include "std_msgs/Int8MultiArray.h"

static adb_var image_var;

void chatterCallback(
const std_msgs::Int8MultiArray::ConstPtr& arr)
{
adb_open (&image_var);
adb_insert (&image_var, adb_now(), &arr.data);
adb_close (&image_var);

}
int main(int argc, char *xargv)
{
// adb variable setup
image_var.path = "./db/image";

image_var.type.storage = ADB_STAMPED;
image_var.type.size = 640 * 480 * sizeof (int8);
image_var.start = ADB_NEWBLOCK;

// ROS setup

ros::init (argc, argv, "listener");
ros::NodeHandle n;
ros::Subscriber sub = n.subscribe("adb_example",

10, chatterCallback);
ros::spin();
return O;

Listing A—2: Simple ROS recording node
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Domain Width 8 bits | 16 bits | 32 bits | 64 bits
signed integer int8 intl6 | int32 int64

unsigned integer uint8 | uintl6 | uint32 | uint64
floating point number | N/A | N/A | float32 | float64
Table A—1: Primitive types and their attributes

A.3 Data Manipulation Language

At the time of writing of this document, the data manipulation language is
still in its infancy. Its main points and format are somewhat established, but the
specific features may change with different patterns of use.

Table A—1 gives current type literals that can be used when casting values
from one type to another. Table A—2 shows a categorically sorted list of operators
featured in the language.

A.4 Getting and Installing adb

The source code for adbis available in the author’s public repository on

Github. The following tools are needed to get, build and install the software:
e GCC or another compatible C compiler
e CMake
o Git

To install, open a terminal window in a temporary location and run:

$ git clone git://github.com/zykos/adb.git
mkdir build

cd build

cmake

make

sudo make install

€ P fH H P
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Table A-2

: List of available operators

Category Operation Symbol
Arithmetic | addition +
subtraction -
multiplication *
division /
remainder %
Bit shift left shift <<
right shift >>
Comparison | equal ==
not equal I=
greater than >
greater or equal | >=
less than <
less or equal <=
Bitwise and &
nand “&
or |
nor 7|
XOor -
Xnor .
Logic and &&
nand &
or |
nor '
Xor ~T
XNor 1=
Other concatenation ++
type cast D
filter | >
map *>
reduce />
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