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Abstract 

High Frequency Oscillations (HFOs; 80-500Hz) are spontaneous short-

duration small-amplitude EEG patterns that are emerging as a biomarker of tissue 

capable of generating epileptic seizures. In order to propel the clinical utilization 

and systematic study of HFOs, it is important to develop robust automatic 

detectors and to provide a framework to ensure stability in their identification; this 

is the first goal of this thesis. Although HFOs have mostly been studied with 

intracranial electrodes, they have also been recorded on the scalp. A fundamental 

question is to understand how is it possible to see these small events on the scalp 

given the powerful skull attenuation; this is the second goal of this thesis.  

The first goal is addressed by designing a procedure to systematize the study 

of HFOs and by developing an automatic detector. A procedure that allows to 

control for consistency among readers and to evaluate if a selected interval 

provides stable information, for automatic and visual identification of HFOs, is 

first presented. This procedure is now routinely used when identifying interictal 

HFOs. This study is the first to evaluate the minimum duration needed to obtain 

consistent information when marking the EEG and showed that analyzing 5min of 

interictal EEG provided the same information as longer intervals. The approach is 

applicable to any type of EEG event. 

An automatic detector of HFOs is then described, which takes an original 

approach in first detecting baseline segments free of oscillatory activity and then 

using a statistical threshold obtained from these local baselines to detect HFOs. 

The detector performs better than other detectors, in particular in active channels 

and in channels without clear baseline. A comparison of existing detectors on the 

same dataset is presented to analyze their performance, to show that optimizing on 

a particular type of data improves performance in any detector, and to emphasize 

the issues involved in validation.  
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The second goal of this thesis is the study of the spatial distribution of 

cortical activity at the time of scalp HFOs. As HFOs are produced by small brain 

regions, and since the EEG is greatly attenuated before reaching the scalp, HFOs 

are mostly recorded with intracranial electrodes. Surprisingly, HFOs have been 

recently observed also on the scalp EEG. Using simultaneous scalp and 

intracranial recordings, we showed that even though the generators of HFOs have 

small spatial extent, they can be observed on the scalp with small amplitude and 

focal extent. We showed that these small extent events are undersampled on the 

scalp with the density of standard electrode systems, and on cortical grids with the 

standard inter-electrode spacing of 1cm. A dense distribution of scalp electrodes 

seems necessary to fully spatially sample HFOs on the scalp. This opens the 

possibility of systematically studying HFOs non-invasively.  

By developing methods for the detection and analysis of HFOs, we expect to 

improve the systematic study of intracranial and scalp HFOs, moving towards 

their clinical application as a biomarker of epileptogenic tissue. 
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Résumé 

Les oscillations de haute fréquence (OHF; 80-500 Hz) constituent des 

évènements EEG spontanés de courte durée et de faible amplitude qui émergent 

en tant que biomarqueur du tissu pouvant générer les crises épileptiques. Afin de 

promouvoir l'utilisation clinique et l'étude systématique des OHF, il est important 

de développer des détecteurs automatiques fiables et de fournir un cadre visant à 

garantir la stabilité de leurs résultats. Il s’agit là du premier objectif de la présente 

thèse. Les OHF ont principalement été étudiées à partir d’électrodes 

intracrâniennes, mais elles ont également été enregistrées à l’aide d’électrodes 

placées sur le cuir chevelu. Il convient alors de comprendre comment l’on peut 

observer ces évènements de faible envergure du fait de l’atténuation importante 

du crâne, ce qui constitue le second objectif de cette thèse.  

Pour répondre au premier objectif, nous avons conçu une procédure visant à 

systématiser l’étude des OHF et avons élaboré un détecteur automatique. Ainsi, 

nous présentons d’abord une procédure permettant d’assurer l’uniformité entre les 

lecteurs et d'évaluer si un intervalle choisi offre des renseignements stables pour 

un repérage visuel et automatique des OHF. À l’heure actuelle, cette procédure est 

communément utilisée quand les OHF interictales sont repérées. Cette étude est la 

première à évaluer la durée minimale nécessaire à l’obtention de renseignements 

cohérents pour le marquage des EEG et elle a démontré que l’analyse de 5 

minutes d’EEG interictal offre la même information que des intervalles de plus 

longue durée. Cette approche est applicable à tout type d’évènements EEG. 

Nous avons ensuite décrit un détecteur automatique d’OHF, qui suit une 

approche originale en détectant d’abord des segments de base dénués d’activités 

oscillatoires avant d’utiliser un seuil statistique obtenu à partir de ces valeurs de 

base locales pour déterminer les OHF. Ce détecteur est plus efficace que d’autres 

détecteurs, notamment pour les canaux actifs et les canaux sans valeur de base 

claire. Une comparaison entre les détecteurs existants pour le même ensemble de 
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données est présentée afin d’analyser leur performance respective, de démontrer 

que l’optimisation d’un certain type de données améliore l'efficacité de tous les 

détecteurs et de mettre en évidence les problèmes en jeu dans la validation.  

Le second objectif de la présente thèse est d'étudier la distribution spatiale de 

l’activité corticale au moment des OHF enregistrées sur le cuir chevelu. Dans la 

mesure où les OHF sont produites par de petites régions cérébrales et que l’EEG 

est fortement atténué avant d’arriver au cuir chevelu, les OHF sont surtout 

enregistrées à l’aide d’électrodes intracrâniennes. Il est étonnant que 

dernièrement, des OHF aient également été observées sur des EEG enregistrés sur 

le cuir chevelu. En se basant sur les enregistrements simultanés sur le cuir chevelu 

et intracrâniens, nous avons démontré que, même si les régions génératrices 

d’OHF sont faiblement étendues sur le plan spatial, les OHF peuvent être 

observées à l’aide d’électrodes placées sur le cuir chevelu avec une faible 

amplitude et une étendue focale. Nous avons établi que ces évènements de faible 

étendue sont sous-échantillonnés sur le cuir chevelu avec la densité des systèmes 

standards d’électrodes et sur les grilles corticales avec l’espacement standard de 1 

cm entre les électrodes. Il semble nécessaire d'avoir une répartition dense des 

électrodes sur le cuir chevelu afin de représenter spatialement de façon exhaustive 

les OHF enregistrées sur le cuir chevelu. Cela ouvrirait la voie à une étude 

systématique non invasive des OHF.  

Avec l’élaboration de méthodes de détection et d’analyse des OHF, nous 

souhaitons améliorer l’étude systématique des OHF intracrâniennes et du cuir 

chevelu, dans l’optique d’une application clinique en tant que biomarqueur du 

tissu épileptogène. 
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Statement of originality 

To the best of our knowledge: 

• The procedure presented in chapter 5 was the first procedure developed to 

evaluate if a selected interval provides stable information for automatic and 

visual identification of HFOs. This study was the first to assess the duration of 

EEG that must be interpreted in order to obtain reliable estimates. The 

presented approach is original and applicable to any event marking in the 

EEG, and possibly to other fields. 

• The automatic detector presented in Chapter 6 provides an original approach 

in first detecting baseline segments without rhythmic activity and then 

incorporating this local information for the detection of HFOs using a 

statistical threshold obtained from the detected baseline. It is the first detector 

to explicitly consider channels with continuous HF activity background. This 

study was the first comparison among detectors of HFOs and was the first to 

show the importance of optimizing any detector for a particular type of data.  

• The study presented in Chapter 7 is the first one to study simultaneous scalp 

and intracranial EEG recordings in the high frequency range. This study is the 

first to describe the spatial patterns of subdural activity at the time of the peak 

of scalp HFOs. It is the first to show that even though small cortical regions 

seem to generate HFOs, they can be recorded on the scalp EEG with low 

amplitude and in a very focal region. It is the first study to show that there is 

probably undersampling of HFOs on the grids and on the scalp.  
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Chapter 1. Introduction 
Epilepsy is the second most common neurological disorder (after stroke), 

affecting about 1 in 200 Canadians (Tellez-Zenteno et al., 2004). Epileptic 

syndromes are characterized by recurrent seizures that could originate from a 

variety of underlying causes. EEG is the principal diagnostic tool of epilepsy. By 

measuring the electrical signal generated in the brain, the EEG is a direct measure 

of the neuronal activity with high temporal resolution. EEG plays a major role for 

the identification of the epileptic syndrome and in the localization of the epileptic 

focus. 

About 30% of patients with epilepsy do not respond to medication aimed at 

stopping seizures. Some of these patients, with a suspected circumscribed region 

causing the seizures, are candidates for surgery. When successful, removal of this 

region leads to a cessation of seizures. The definition of the region capable of 

generating seizures and the delineation of the resection area are based on the 

combined analysis of clinical seizure semiology, scalp video-EEG, neuroimaging, 

and neuropsychology. When the epileptogenic focus is not clear from these non-

invasive techniques, intracranial EEG recordings can be considered. The objective 

of intracranial EEG is to obtain a precise localization of the seizure onset zone to 

be able to tailor the surgical resection to include all the regions suspected to 

produce seizures, while sparing eloquent regions. 

The traditional EEG frequency bands considered clinically relevant (up to 40 

or 70 Hz) have been recently challenged by the discovery of High Frequency 

Oscillations (HFOs; 80-500Hz). HFOs are short-duration small-amplitude 

spontaneous events that are mostly recorded with intracranial electrodes. HFOs 

are emerging as a reliable biomarker of tissue capable of generating epileptic 

seizures. The HFO rate is higher within the area of the brain where seizures 

originate (Bragin et al., 1999b, Urrestarazu et al., 2007), regardless of the lesions 

(Jacobs et al., 2009a). HFOs are related with epileptogenesis, since they appear in 
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experimental animals that later develop spontaneous seizures (Bragin et al., 

2004). HFOs behave like seizure with respect to medication, increasing with 

withdrawal of medication (Zijlmans et al., 2009b). Post-surgical studies indicate 

that removal of regions with high rate of HFOs is associated with seizure 

freedom, while poor outcome is obtained if these regions are not removed (Jacobs 

et al., 2010b, Wu et al., 2010). 

The identification of these spontaneous events is challenging. Visual marking 

of HFOs can be performed but it is highly time consuming and subjective. 

Consistency and stability of the markings must be evaluated. Automatic detection 

would greatly facilitate the investigation of HFOs as biomarkers of epileptogenic 

tissue, and is likely necessary to propel future clinical applications. Fully 

automatic detection is desirable, but given the lack of a formal definition of HFOs 

high specificity and high sensitivity are difficult to achieve. A possible solution is 

semi-automatic detection in which HFOs are first automatically detected with 

high sensitivity but low specificity and then visually validated by expert 

reviewers.  

Since HFOs are thought to be generated by regions of about 1 cubic 

millimetre (Bragin et al., 2002), it should only be possible to record them with 

grids and strip placed over the surface of the brain or with depth electrodes 

inserted in the brain. Surprisingly, HFOs have been recently identified on the 

scalp (Andrade-Valença et al., 2011, Kobayashi et al., 2010b). The detection of 

HFOs non-invasively, on the scalp EEG, could be useful to evaluate the 

development of epilepsy in large patient populations, for predicting surgical 

outcome, and for planning electrode implantation. Understanding the cortical 

correlates of scalp HFOs is a paramount step towards their utilization clinically. 

The objective of this thesis is the development of methods to improve the 

systematic study of HFOs, with the goal of moving towards the clinical 

application of HFOs as a biomarker of epileptogenic tissue.  
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This thesis is organized in the following way. Chapters 2, 3, and 4 provide the 

necessary background. Chapter 2 presents fundamental aspects of EEG and 

chapter 3 of epilepsy. Chapter 4 introduces HFOs and their relation to epilepsy. 

Chapters 5, 6, and 7 present the manuscripts that are the core of this thesis. 

Chapter 5 describes a procedure to control for consistency between human readers 

of HFOs, to evaluate if a selected interval provides stable information for 

automatic and visual identification of HFOs, and to assess the duration of EEG 

that must be interpreted in order to obtain reliable estimates. Chapter 6 presents an 

automatic detector of HFOs, which first detects baseline segments without 

rhythmic activity and then incorporates this information to detect HFOs. A 

comparison with other detectors is also presented. Chapter 7 presents a study on 

the spatial distribution of underlying cortical activity at the time of scalp HFOs. It 

is shown that although the generators of HFOs are small, they can be recorded on 

the scalp with low amplitude and in a very focal region. Finally, the conclusions 

and possible future developments are presented in chapter 8. 
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Chapter 2. Electroencephalography 
Electroencephalography (EEG) records the electrical signals generated by the 

brain. EEG is the principal tool for the diagnostic of epilepsy. It is used for the 

identification of the epileptic syndrome and in the location of the epileptic focus. 

Its application extends beyond epilepsy to the assessment of the state of the brain 

in the intensive care unit; anaesthesia monitoring; the evaluation of neonates; and 

in cognitive neurosciences. The EEG is acquired from electrodes placed on the 

scalp or with intracranial electrodes over the dura, over the cortex, or deep in the 

brain. 

Electrophysiology was born at the end of the 18th century in Bologna. The 

famous experiment of Luigi Galvani, in which the contraction of a frog’s leg was 

generated, laid down the basic concept of electrical conductivity in living animals 

(what he called “animal electricity”; Galvani 1791). More than a century later, in 

the late 1920s, the first human EEG was recorded by Hans Berger. He was the 

first one to report on the alpha rhythm and described the EEG as a “window into 

the brain” (Berger 1929). He even conceived the EEG as a rhythmic sequence of 

activity of large groups of cortical neurons (Gloor 1969). 

In this chapter the underlying mechanisms of EEG generation are presented; 

scalp and intracranial recordings of EEG are described; the concept of volume 

conduction applied to the EEG is explained; the physical characteristics of the 

skull are presented; the forward and inverse problems to localize the focus of 

activity are introduced; normal EEG activity is illustrated; and artefacts that may 

affect the EEG are described. Pathological EEG activity will be dealt with in the 

next chapter on epilepsy. 
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2.1 Underlying mechanisms of EEG generation1 
The brain consists of about 1010 neurons that exchange information and about 

1010 glial cells that support the neurons’ function. Communication between 

neurons takes place at the synapse terminals. Synaptic terminals are located at the 

neuron’s highly branched dendrites and at the soma (Figure 2.1.A). Large neurons 

can have up to 105 synapses. The neuron integrates the information in the soma 

and if the amplitude is larger than a threshold, an action potential is produced. The 

action potential is propagated through the axon, endings in a presynaptic terminal, 

which in turn produces a new synapse closing the communication loop. Myelin 

surrounding the axon speeds up communication between distant neurons and 

effector cells. 

 
Figure 2.1. Schematic representation of a neuron and generation of postsynaptic potentials. 
A) A neuron is composed of dendrites, soma, and axon. Inset: synapsis. From: wikipedia.org. B) 
Postsynaptic potentials can be excitatory (EPSP) or inhibitory (IPSP). From (Speckmann and 
Elger 2005).  

This section lays down the basic principles of EEG generation. Details on 

non-synaptic mechanisms of EEG generation, such as gap junctions and ephaptic 

coupling, will be discussed in Chapter 4 – High Frequency Oscillations (HFOs), 

where the possible mechanisms of HFO’s generation are presented. 

                                                            
1 Parts of this section, in particular “electrical activity at the cellular level”, were originally written 
in my Master’s Thesis (Zelmann 2007). 
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2.1.1 Electrical activity at the cellular level 
The membrane potential depends upon the difference in membrane 

permeability to different ions and the intra- and extra-cellular concentration of the 

specific ions, mainly potassium (K+), sodium (Na+), calcium (Ca2+), and chloride 

(Cl-). During rest, the concentration gradient and the electrical gradient for each 

individual ion type are in equilibrium. Na+/ K+ pumps maintain the intracellular 

concentrations low for Na+ and high for K+. This results in the inside of the cell 

being negative with respect to the outside. The resting membrane potential is 

about -70mV, similar to the K+ equilibrium potential (Widmaier et al., 2006). 

When a neuron receives neural impulses at a synapse, this state of equilibrium is 

no longer maintained. If the synapse is excitatory, the neurotransmitters bind to 

specific ion channels and allow Na+ to enter the cell, stimulating in turn voltage-

gated Na+ channels and increasing the membrane potential, which becomes 

depolarized (more positive). Apart from the inward flow of Na+, Ca2+ spikes 

produce an inward current in the dendrites of large amplitude (20-50mV) 

(Buzsáki et al., 2003). Since the cell is depolarized, the generated synaptic 

potential is called an excitatory postsynaptic potential (EPSP). On the contrary, if 

the synapse is inhibitory, the resulting postsynaptic potential (IPSP) 

hyperpolarizes the cell, making the membrane potential more negative. If the 

temporal and spatial summation of hundreds of postsynaptic potentials produce a 

depolarization that reaches a critical threshold potential (around -50mV) at the 

triggering zone, an action potential (AP) is generated (Figure 2.1.B). Since the AP 

is produced by the opening of many voltage-gated Na+ channels in a positive 

feedback loop, the membrane potential increases, reaching about 30mV, which is 

close to the Na+ equilibrium potential. As the Na+ channels get quickly inactive 

and the potassium channels open, the AP ends rapidly and the resting equilibrium 

is restored after the refractory period. The AP is thus a brief, impulse-like 

electrical signal that propagates without attenuation along the axon towards its 

target cells. The axon terminals are in turn presynaptic terminals that release 

neurotransmitters with the arrival of the AP. The neurotransmitters diffuse across 

the synaptic cleft and bind to the receptors in the postsynaptic neuron (Figure 
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2.1.A; inset). In this way, information is propagated from one neuron to the 

following one by converting an electrical signal (the AP) into a chemical signal 

(the neurotransmitters) and back into an electrical signal (EPSP & IPSP) in the 

postsynaptic neuron. 

2.1.2 EEG generation 
EEG recorded on the scalp is mainly due to synchronously occurring 

postsynaptic potentials of cortical pyramidal cells in layers III, IV, and V 

(Ebersole and Pedley 2003). Pyramidal cells are arranged parallel to each other 

and perpendicular to the surface of the cortex with their apical dendrites near the 

cortical (pial) surface and their axonal poles facing towards the subcortical white 

matter (Figure 2.2). Moreover, thalamocortical afferents into the cortex have 

extensive ramifications reaching thousands of cortical neurons. Thus, an action 

potential originating from a single thalamic neuron could simultaneously induce 

EPSPs and IPSPs in a large number of pyramidal neurons. Given their structural 

organization, these synchronously excited neurons create virtually identical, 

similarly oriented electric fields of finite and macroscopic extent that can be 

represented as a dipolar layer (Gloor 1985). 

 
Figure 2.2. EEG on the scalp represents primarily the summation of postsynaptic potentials 
of a large number of synchronous pyramidal cells. From: (Bear et al., 2007).   
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Because EPSPs and IPSPs have a duration of 10-250ms, there is no need for 

perfect synchrony for these potentials to overlap, allowing the effective temporal-

spatial summation of their individual contributions. On the contrary, APs only last 

1-2ms and therefore tend not to coexist in time. In addition, the propagation of 

action potentials can be thought as equivalent to a quadrupole, which attenuates 

more rapidly with distance (Nunez and Srinivasan 2006). Hence, even though APs 

have a much larger amplitude than EPSPs and IPSPs, the latter long lasting 

potentials account for most of the cerebral activity recorded on the scalp.  

The same concept of spatio-temporal overlap could be used to understand 

why low frequency potentials are measured on the scalp with larger amplitudes 

than higher frequency signals. Lower frequency signals have a longer duration, 

allowing for a larger time span during which cortical potentials could overlap. 

This implies that a larger area of relatively simultaneously activated neurons 

could contribute to the recorded scalp EEG, even if the degree of synchrony is not 

so stringent (Gloor 1985). 

Intracranial electrodes can record small extent sources because they are close 

to the generators. When a microelectrode is located close to the cell body layer of 

cortical structures, the recording EEG potentials contain action potentials and 

postsynaptic potentials. Moreover, during epileptic activity, a large number of 

neighboring neurons fire within a short interval. Thus, not only microelectrodes 

but also clinical intracranial macroelectrodes are likely to record a combination of 

synaptic activity and AP during an epileptic discharge (Buzsáki et al., 2003). 

2.1.3 Volume conduction and EEG  
Even though the EPSPs have an amplitude in the order of millivolts, only 

microvolts are normally recorded on the scalp. On the one hand, the signal is 

attenuated with the square of the distance and due to the high resistivity of the 

skull (discussed in detail in section 2.3.2). On the other hand, since the cerebral 

cortex is a highly convoluted structure, the spatial location, size, and orientation 
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of the dipolar layers also determine whether a source would be visible on the 

scalp and its topography (Buzsáki et al., 2003).   

The relation between orientation and recorded activity is best understood by 

the concept of solid angle: “The potential generated by a dipole layer in a volume 

conductor measured at any point within (or at the surface of) this conductor is 

proportional to the solid angle subtended by the dipole layer at the point of 

measurement” (Gloor 1985). Thus, the potential measured is independent of the 

detailed structure of the dipolar layer, but depends only on the “apparent size” 

seen by the electrode. When a neuron is depolarized, it creates a potential 

proportional to a small solid angle observed by the electrode, corresponding to the 

cross-sectional area at the boundary of the active and the inactive parts of the 

neuron. When thousands of cortical pyramidal neurons are excited simultaneously 

as explained above, their individual solid angles sum up, producing a potential 

that is proportional to a large solid angle, and can therefore be measured by the 

EEG (Figure 2.3.A) (Gloor 1985). Thus, the potentials generated in a small region 

and measured on the scalp have a bell shape, with the maximum close to the 

generating region, falling slowly across the scalp (Figure 2.3.A). The closer the 

source is to the surface, the larger the angle, resulting in larger amplitude.  

Electrical current always flows following the path of lowest resistivity. In a 

homogenous medium, it is also the shortest path. However, in an inhomogeneous 

medium the path of lowest conductivity might not be the shortest (Nunez and 

Srinivasan 2006). Since the current is confined inside the head volume, current 

lines are compressed when they approach the surface, producing a larger potential 

than in an infinite homogeneous medium. Given the low conductivity of the skull, 

the potential falls off more rapidly in the skull than in the brain and the scalp, 

resulting in smaller maximum amplitude (Figure 2.3.B top). The bell shape of the 

potential distribution (explained above) on the scalp is further flattened since the 

potential falls more slowly as the angle increases (Figure 2.3.B bottom). Thus, the 

potential measured on the scalp is more smeared than if conductivities across 

layers were the same (Nunez and Srinivasan 2006). This effect is stronger the 
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closer the source is to the surface. Moreover, the skull anisotropy (see section 

2.3.2) enhances this smearing effect (Wolters et al., 2006). This is independent of 

temporal frequency, since the skull is purely resistive in the frequencies of 

interest. Thus, electrical signals from the brain can be instantaneously measured 

on the scalp, but the smearing effect must be considered. 

 
Figure 2.3. Volume conduction in inhomogeneous media. A) EEG recordings can be 
understood based on the solid angle concept, since the difference in potential between electrodes 
P1 and P2 depends on the difference between the solid angle seen by each electrode. From: (Gloor 
1985). B) Spatial smearing on the scalp. The potential ratio (Φ/Φ0) with respect to an infinite 
homogenous medium depends on the conductivity ratio and thickness of each layer. Top: The 
amplitude would gradually decrease with distance if all conductivities were the same (1-sphere 
model). Since the conductivities are different (3-sphere model), the electric field falls off more 
rapidly in the skull, resulting on reduced amplitude on the scalp. Source located at r=7cm. Bottom: 
The potential distribution on the scalp falls more slowly with angular distance for the 3-sphere 
than for the 1-sphere model, illustrating the smearing effect. Source located at r=5cm. In both 
plots, adding CSF (4 sphere model) produces a small decrease in scalp potential. From: (Nunez 
and Srinivasan 2006). 

During an epileptic spike, thousands of excitatory synapses can occur 

simultaneously in the apical dendrites (situated in the most superficial layer). The 

generated EPSPs produce the inflow of positive ions into the cells, resulting in 

extracellular currents flowing from the soma and the basal dendrites to the apical 

dendrites (Gloor 1985). These currents correspond to a negative potential 

recorded on the scalp. In clinical interpretation of EEG recordings the source is 
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sometimes assumed to be where there is a maximum negativity on the EEG 

(Ebersole 2009). However, this assumption that the source lies underneath the 

electrode, is valid only if the source has radial orientation; in other words if it is 

located in the cortical gyrus underlying the point of measurement on the scalp. 

Examples of radial sources that produce a large solid angle in the overlying 

electrode are illustrated by the schematic in Figure 2.3.A (position P1) and by the 

voltage map of dipole 2 in Figure 2.4. On the contrary, sources that are tangential 

to the surface of the brain produce a topography without a maximum on top of 

them, but rather with positive-negative in both sides of the brain, as illustrated by 

dipole 1 in Figure 2.4. Tangential sources originate from one side of a sulcus; the 

basal part of the brain, such as orbitofrontal and basal temporal regions; or the 

midline (Ebersole 2009). Sources in opposite sulci cancel each other, since they 

have opposite orientations, while sources at the bottom and crown of gyri sum up. 

The equivalent orientation of a source that comprises several gyri and sulci 

depends on the overall solid angle seen by the electrode (Figure 2.3.A). Since the 

EEG measures the potential between two electrodes the resulting amplitude 

depends on the difference of solid angles (Ω2eff) between electrodes (P1 & P2). 

 
Figure 2.4. Examples of voltage maps obtained on the scalp for different dipolar 
orientations. From: (Ebersole 2009). 
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2.2 Recording the EEG  
The EEG is a direct measure of the neuronal activity with high temporal 

resolution since the electric potential is conducted almost instantaneously from its 

point of generation to the point of measurement. In the following sections scalp 

and intracranial EEG recordings are presented. 

2.2.1 Scalp EEG recording 
Scalp EEG measures the potential difference between two electrodes located 

at the surface of the scalp. In clinical settings, the International 10–20 system for 

electrode placement (Jasper 1958) is used as the standard. The 10–20 system can 

be interpreted as a “coordinate system” where letters indicate general brain 

location and numbers represent the hemisphere (Figure 2.5).   

 
Figure 2.5. The International 10-20 system. The cerebral regions are represented by one or two 
letters: Fp– frontopolar; F– frontal; C– central; P– parietal; T– temporal; O– occipital. Odd 
numbers represent the left hemisphere, even numbers the right hemisphere, while the letter z is 
used to indicate the midline. From: (Jasper 1958). 

Anatomical landmarks determine the standard placement of the electrodes. 

Starting by measuring the distance between the nasion and the inion and between 

pre-auricular points, the 21 electrodes are spaced by 10% or 20% of the measured 

distances. This positioning method can be replicated consistently over time and 

across laboratories, since it is relative to the subject’s head size. Additional 

electrodes can be placed with predictable location, such as in the 10-10 system, in 

which 10% is used as the inter-electrode interval resulting in 64 electrodes. In 

addition, several centers use caps with 64, 128, or 256 electrodes uniformly 

distributed. When assessing the number of electrodes needed to obtain accurate 
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source localization, there was increased accuracy up to 64 electrodes, but little 

gain in using more (Lantz et al., 2003). At realistic noise levels, using 64 or more 

electrodes does not change spatial resolution (Ryynanen et al., 2004). Thus, more 

contacts are not necessarily better, at least for traditional EEG recordings. In low 

noise environments (as is the case of HF band), a large number of electrodes 

would allow the accurate reconstruction of more small sources (Ryynanen et al., 

2004). In chapter 7 we show that a large number of electrodes, with small inter-

electrode distance may be important to accurately record High Frequency 

Oscillations on the scalp. 

Since the scalp EEG measures the relative potential between two points, the 

selection of the reference recording electrode is important. Although ideally a far 

reference should be chosen, it has to be within the body since the scalp-air 

interface is a perfect insulator. A good practice is to place the recording reference 

in the midline. This reduces environmental noise since the recording is performed 

between two electrodes placed on the scalp (i.e. both contacts record similarly the 

environmental activity). In addition, this reference minimizes EMG artefacts since 

there is almost no muscle contraction in the center of the scalp. The visualization 

montage can then be chosen. In a referential montage, the potential in each 

electrode is compared to that of a single electrode, the common reference. In 

common averaged reference, all the potentials of all the electrodes are averaged 

and used as a reference. In the bipolar montage, the potential is obtained from the 

difference between adjacent electrode pairs. This allows for an easier localization 

of focal abnormalities, and is therefore commonly used for epileptic spike 

identification.  

2.2.2 Intracranial EEG recording 
During the pre-surgical evaluation of some patients with intractable epilepsy, 

intracranial EEG is recorded using surgically implanted electrodes. The main 

objective of intracranial EEG is to obtain a precise localization of the seizure 

onset zone and to tailor surgical resection to include all the regions suspected to 

produce seizures, while sparing eloquent regions. 
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 There are three types of invasive electrodes: epidural, subdural, and depth 

electrodes (Figure 2.6). Epidural electrodes are pegs in direct contact with the 

dura. Subdural electrodes are grids or strips placed under the dura, over the 

surface of the brain. There are sometimes referred as electrocorticography 

(ECoG), even though the term was originally coined to refer only to intraoperative 

cortical recordings. Intracerebral depth electrodes are needle like electrodes 

inserted inside the brain. Since the electrodes are implanted stereotactically into 

deep regions of the brain, StereoElectroEncephaloGraphy (SEEG) is a common 

term for depth recordings.  

 
Figure 2.6. Different types of intracranial electrodes. A) Implantation of subdural grid. B) 
Dimensions of subdural silastic grid. C) Depth macroelectrodes fabricated on site at the Montreal 
Neurological Hospital. D) Depth electrode with bundle of microelectrodes at the tip of a 
macroelectrode. E) Post-implantation MRI shows the trace of a depth electrode. Modified from 
(Worrell et al., 2012). 

A critical advantage of intracranial over non-invasive recordings is the 

possibility to reach deep regions (such as amygdala and hippocampus), which 

cannot be recorded on the scalp since the generators are small or are not arranged 

perpendicular to the surface (Wennberg et al., 2011). Invasive recordings have 

also several advantages in terms of quality of recording over scalp EEG. The 
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amplitude is larger than for scalp, because there is no attenuation due to the skull; 

there is no spatial smearing, since the signal is recorded within the closed head 

volume; and the spatial resolution is better than on scalp recordings. Invasive 

approaches are not as vulnerable as the scalp EEG to most of the physiological 

artefacts, such as ocular and muscular. However, blinking affects frontal subdural 

recordings (Ball et al., 2009) and muscular artefacts during seizures also appear in 

intracranial recordings (Otsubo et al., 2008). For more details on artefacts see 

section “2.5.Artefacts in the EEG”.  

Intracranial EEG has also limitations. As the amount of recording sites is 

limited, several brain regions remain unexplored. This restricted spatial sampling 

could result in missing the epileptic focus. In particular, depth electrodes only 

record from sources near the electrodes. Grids only cover parts of the cortex and 

could suffer from spatial aliasing (Nunez and Srinivasan 2006). When analyzing 

intracranial EEG recordings it is important to remember that one is only looking 

where the electrodes are, but there might be activity coming from other regions. 

Thus, appropriately planning the location of the electrodes is critical for the 

success of the investigation. 

Electrode size and implantation technique vary from centre to centre. Depth 

electrodes consist of metallic contacts distributed along a flexible or rigid wire. In 

commercial depth electrodes, the area of the contacts is 3-10mm2. At the Montreal 

Neurological Hospital (MNH) some of the electrodes used are fabricated on-site 

and consist of nine contacts 5mm apart from each other, with an effective surface 

area of 0.85mm2 for the tip and 0.8mm2 for the other contacts (Figure 2.6.C). The 

data presented in chapters 5 and 6 was recorded with MNH macroelectrodes. 

Clinical depth electrodes with a bundle of micro contacts (40μm) exiting the tip 

(Figure 2.6.D) are used by the UCLA group to record HFOs in the hippocampus 

(e.g. Bragin et al., 1999b, Staba et al., 2002). Clinical subdural grids and strips are 

composed by a silastic grid and disc shape electrodes of 4-5mm2 (Figure 2.6.B). 

Data in chapter 7 were recorded with grids and strips.  
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The implantation of grids requires a craniotomy, while strips and depth 

electrodes can be inserted through burr holes. Epidural pegs are minimally 

invasively placed. Complications related with the surgery, although rare, may 

occur during implantation and removal of the electrodes.  

The decision on placing one or another type of electrode depends on the 

question that the intracranial investigation is trying to answer and the expertise of 

each centre (Kahane and Dubeau in press). For instance, depth electrodes allow 

for good sampling of deep areas such the hippocampus, the amygdala, and the 

insula. Subdural electrodes have a larger coverage and are especially suitable 

when a focus in the cortical convexity is suspected or when a large area needs to 

be investigated. Different types of intracranial electrodes are sometimes 

combined. 

2.2.3 Intracranial correlates of scalp EEG recordings  
As explained above, not only attenuation but also location, orientation, 

relative synchrony, and cortical extent of the source determine whether 

intracranial activity is visible on the scalp. From simultaneous scalp and 

intracranial EEG recordings the intracranial correlates of scalp EEG can be 

studied. A cortical area of at least 6cm2 was originally suggested to be necessary 

for an epileptic spike to be seen on scalp (Cooper et al., 1965). Recently, this 

value was further increased to a cortical area of at least 10cm2 (Tao et al., 2007). 

Even though the most prominent scalp spikes were associated with about 20cm2 

of temporally overlapping cortical activation, cortical spikes of smaller extent can 

be recorded on the scalp (Tao et al., 2007). A computational model of EEG 

generation also suggests that a large cortical region must be active to observe 

activity on the scalp (Cosandier-Rimele et al., 2008). Moreover, only when at 

least 8-15 subdural electrodes (8-15cm2) are active in the lateral cortex, a seizure 

could be observed on the scalp (Hashiguchi et al., 2007). Not only the spatial 

extent, but also a good degree of phase synchronization was important.  
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This commonly accepted spatial extent of several square centimetres needed 

to observe an event non-invasively was obtained in all cases from unfiltered 

recordings. However, it has not been evaluated for higher frequency ranges in 

which the noise characteristics may be different. In chapter 7, we present a study 

on the cortical correlates of scalp HFOs.  

When performing simultaneous recordings, there is an additional risk of 

infection involved in having electrodes attached to the scalp at the same time as 

intracranial electrodes. Technical limitations of simultaneous recordings include 

the breach effect associated with the skull defect created after implantation (see 

also section “2.3.2.Conductivity of scalp, skull, and brain”) and the attenuation 

effect of the silastic membrane holding the electrodes when using subdural grids 

(Tao et al., 2007). The former, however, does not seem to avoid the propagation 

of spikes and is probably small compared to skull impedance. If attenuation takes 

place it should have a similar effect on the background, thus maintaining the 

signal to noise ratio. 

Only activity from the neocortex relatively close to the skull can be recorded 

on the scalp. Alarcon estimated the intensity of a source in deep hippocampal 

structures of about 2nA.m and showed that such a source could not be visible on 

subdural or scalp contacts given the distance and attenuation (Alarcon et al., 

1994). In line with this, it has been recently demonstrated that scalp visible spikes 

in mesial temporal lobe epilepsy arise from the lateral temporal neocortex without 

involvement or propagation from the hippocampus (Wennberg et al., 2011). In 

addition, when ictal activity was confined to deep structures, it was not visible on 

the scalp regardless of the signal amplitude (Hashiguchi et al., 2007). From a 

volume conduction perspective, given the geometry of the hippocampus, it can 

approximate a closed field, limiting the spread of potential outside its boundaries 

(Nunez and Srinivasan 2006).  

Projecting the location of scalp electrodes over the surface of the brain can 

help understanding from which areas we are recording or stimulating. This 
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analysis enables a better understanding of the underlying cortical generators and 

the variability in the recordings from different areas. Methods for the 10-20 

system (Okamoto et al., 2004, Towle et al., 1993) and 10-10 system exist 

(Koessler et al., 2009). This is important not only to better understand the 

correlates of scalp recordings, but also to better target non-invasive brain 

stimulation, such as transcranial magnetic stimulation. 

In addition to simultaneous scalp and intracranial recordings, recently 

subdermal electrodes (Ives 2005), which are placed under the skin, have been 

inserted during intracranial investigations. Due to the low invasiveness and low 

risk of infection, they can be safely placed at the end of the surgical implantation 

of intracranial electrodes. At the MNH implantation of subdermal electrodes in 

patients started in 2010. Subdermal electrodes provide an excellent sleep staging 

method during the full two weeks recording (Jacobs et al., 2010a). The most 

important advantage of subdermal over scalp simultaneous recordings is probably 

in terms of stability. Subdermal electrodes allow high quality recording for the 

extent of the implantation, while quality of simultaneously scalp recording 

deteriorates after the first day (since impedance highly depends on good contact, 

but re-gluing the scalp electrodes implies an extra risk of infection). Subdermal 

electrodes can provide an advantage in terms of artefacts, likely because the 

impedance is stable and similar in all contacts during all the recording period 

(Young et al., 2006).  

2.3  Finding the generator of scalp EEG activity 
Finding the underlying cortical sources that generate a scalp EEG pattern is 

an underdetermined problem (Helmholtz 1853). The EEG obtained at tenths or at 

most hundreds of sensors located on the scalp can originate from different 

combinations of amplitude, size, orientation, and location within the 3D volume 

of the brain. In order to provide realistic constrains to obtain a likely estimate of 

the source in this ill posed problem, it is important to understand the physical 
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characteristics of the brain, skull, and scalp. Moreover, it is important to 

understand the limitations and assumptions of the inverse solutions. 

2.3.1 The skull is purely resistive 
An important characteristic of the skull that for some reason is sometimes 

wrongly considered (e.g. Burgess 2003) is the fact that the skull is purely resistive 

at the frequencies of interest (Oostendorp et al., 2000, Tang et al., 2008). 

Gabriel and colleagues (2009) reviewed the literature and conducted a well-

controlled experiment in small pigs measuring the conductivity from 10Hz to 

1MHz. They showed that the skull conductivity is practically constant up to at 

least 10kHz (Gabriel et al., 2009). The skull is mainly composed of three layers: 

inner compact bone, diploe, and outer compact bone. Due mainly to variations in 

diploe, different skull locations result in different conductivities. In an impressive 

study, Tang and colleagues computed the conductivity of 388 skull samples 

obtained from 48 patients (Tang et al., 2008). Because skull flaps were obtained 

directly from surgery, they maintained their normal fluid filling. Temperature was 

controlled to approach an in vivo setting. The conductivity varied considerably for 

different skull structures, and remained constant for each from 1Hz to 10kHz 

(Figure 2.7). For higher frequencies, the resistivity increased dramatically. Using 

stimulation in humans, the skull was also found to be purely resistive, since the 

stimulated squared pulse maintained its shape between of 10Hz to at least 1kHz 

(Oostendorp et al., 2000). 
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Figure 2.7. Resistivity of the skull from 1Hz to 4MHz. Skull samples with different structures 
have different resistivities, but each one is stable from 1Hz to 10kHz. Skull samples are divided 
based on the percentage of diploe to compact bone. For instance, standard compact refers to pure 
compact bone without any diploe while standard trilayer corresponds to a large percentage of 
diploe thickness. Squamous and dentate sutures are samples of skull where bone joints are found 
(from: Tang et al., 2008). 

The conductivity of every type of tissue is modified when exposed to high 

frequencies (Gabriel et al., 2009). In the case of skull, conductivity starts to 

change at about 100kHz. This change also occurs for brain tissue and is even 

more dramatic for skin’s conductivity, which changes linearly above 100kHz 

(Gabriel et al., 2009). This is of concern for the exposure to RF frequency but not 

for the analysis of EEG activity since the skull is purely resistive at the 

frequencies of interest for clinical or cognitive research. 

2.3.2 Conductivity of scalp, skull, and brain 
Obtaining a reliable measure of the conductivity of the scalp, skull, and brain 

is fundamental to obtain an accurate forward model. A common and reasonable 

assumption is that the scalp and the brain are highly conductive, since they are 

soft tissue, and have similar conductivity values (about 0.3 S/m). Since the 

conductivity ratio between layers is sufficient to compute the forward model, the 

conductivity ratio between skull and brain is usually reported and will be the 

focus of this section.  
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The first study measured the conductivity of a human half-skull in an 

electrolytic tank (Rush and Driscoll 1968). They found a skull to brain 

conductivity ratio of 1/80. Importantly, they indicated that the variability in skull 

thickness affects the local conductivity and their results were independent of 

frequency in the range 50Hz-5kHz. Since then, the ratio of 1/80 has been widely 

adopted. Indeed, even though at this point it is known that this value is too high, 

1:1/80:1 is the default in most software packages that compute the EEG forward 

and inverse problems (e.g. OpenMEEG (Gramfort et al., 2010, Kybic et al., 

2005); NFT (Acar and Makeig 2010)). 

In an elegant study, Oostendorp and colleagues challenged this value. They 

measured the conductivity of a fresh skull placed in a saline bath. In addition, the 

potential distribution on the scalp on two subjects was measured after stimulating 

with a small current between two scalp contacts. Both the in vitro and the in vivo 

experiments revealed a skull conductivity of 0.015S/m. They estimated the 

conductivity ratio as 1:1/15:1 (resistivity ratio range in vivo for all measurements: 

13:21)(Oostendorp et al., 2000).  If considering 0.3S/m as the brain conductivity, 

the ratio is increased to 1/20. 

Following this experiment that challenged the traditional value, a number of 

studies continued to investigate this question using different techniques. For 

instance, Lai and colleagues (2005) stimulated subdural contacts and recorded on 

the scalp in five pediatric patients with epilepsy implanted during their pre-

surgical evaluation. They found that the resistivity ratio was 25 +/- 7 (range: 18-

34) (Lai et al., 2005). The adult’s skull has a harder consistency than the child’s 

skull, resulting in a lower conductivity (Peyman et al., 2007) and this relation 

varies linearly with age (Hoekema et al., 2003). In agreement with this, a ratio of 

20-50 in six adult subjects was reported using electric impedance tomography 

(Goncalves et al., 2003). Moreover, a simulation study showed that using a brain-

to-skull conductivity ratio of 15-25 produced better localization accuracy than a 

ratio of 80 (Wang et al., 2009).  Based on these studies, we decided to use a 

conductivity ratio of 1:1/25:1 in our simulations (Chapter 7). 
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Even though the different tissues are usually considered homogenous, 

different regions and directions have distinct conductivity. An important aspect to 

generate accurate models of the head is to consider the anisotropy of the skull and 

the brain. In the case of the brain, the average conductivity is about 0.3S/m 

(0.33S/m in (Goncalves et al., 2003); 0.29S/m for white matter and 0.26S/m for 

grey matter in (Latikka et al., 2001)). Grey matter can be considered 

homogeneous, but the anisotropy of white matter gives a conductivity difference 

of ~10 between the longitudinal and cross sectional directions (Nicholson 1965). 

In the case of the skull, the local conductivity is highly related to the bone’s local 

structure. The 3 layers of the skull have different properties, with the middle layer 

having much smaller conductivity than the external layers (Akhtari et al., 2002). 

The conductivity linearly decreases with bone thickness (Law 1993), and this in 

turn is related to the proportion of diploe component (Tang et al., 2008), which is 

the middle layer composed of spongy bone. The presence of suture lines results in 

an increase of local conductivity, since they are filled with cartilages and fluids 

(Law 1993, Tang et al., 2008). The cerebrospinal fluid (CSF), which has a 

conductivity of about 1.5 S/m (Gabriel et al., 2009), is stable across subjects and 

can also be included in the head model. 

Skull holes alter the electrical signal recorded on the scalp (Heasman et al., 

2002). Burr holes created during surgery produce a large localization error, 

particularly for radial dipoles below the hole and tangential dipoles at the edges of 

the hole (Bénar and Gotman 2002, Li et al., 2007). When filling the burr holes 

with methacrylate, which is commonly done after implantation, the localization 

error is reduced (Bénar and Gotman 2002).  

Given the variability across subjects and within an individual’s head, a non-

invasive method to obtain the conductivity ratios should be ideally used prior to 

the calculation of the forward model. Electric impedance tomography is an 

interesting possibility (Goncalves et al., 2003), but requires an independent 

session and equipment. Recently, Lew and colleagues (Lew et al., 2009) proposed 
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a method to estimate the scalp to skull conductivity ratio based on the MRI of the 

subject and evoked potential data with high signal to noise ratio.  

2.3.3 Forward model  
The goal of a forward model in the context of the localization of neuronal 

sources is to determine the potential field on the scalp that result from the primary 

current sources in the brain (Mosher et al., 1999). The quasi-static approximation 

of Maxwell equations holds in the frequencies of interest (Plonsey and Heppner 

1967) allowing to consider the electric field independent of the magnetic field and 

therefore to neglect all the time derivatives. The scalp-air interface acts as a 

perfect insulator, making the head a closed volume of electric propagation. Thus, 

using this boundary condition for the quasi-static electric field, results in a 

simplified expression that relates the potential to the primary current source, the 

conductivity of the tissue, and the distance to the electrodes.  

The forward model represents a linear relation between the sources and the 

recording electrodes. The forward problem is well posed, since for a given dipolar 

source of known intensity, location, and orientation, the resulting potential on the 

scalp is unique. There are three types of forward models depending on the 

complexity of the method chosen to represent the head. 

In geometrical models, the head is represented as spheres of different 

conductivities. In particular, 3-layer models represent the scalp, skull, and brain as 

concentric spheres each with constant conductivity (Figure 2.8.A; (Rush and 

Driscoll 1968). As the skull is purely resistive, the potential on the scalp depends 

solely on the amplitude and location of the sources and on the thickness and 

conductivity of the layers. Under these assumptions, analytical methods can be 

derived, making this approach computationally appealing. These simple models 

usually work well in the central and parietal regions, since they are well 

represented by spheres, but fail to represent occipital or temporal areas. 
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Boundary element methods (BEM) compute the surface potentials at the 

boundaries between isotropic regions. A head mesh is obtained by tessellating the 

scalp, the inner and outer layers of the skull, and the brain surfaces (Figure 2.8.B). 

When the surfaces are obtained based on the MRI of each subject, they can 

provide an accurate representation of each compartment’s shape. The accuracy 

depends on the size of the triangles used to generate the surfaces. The surfaces are 

considered as piecewise constant conductivity fields and the potential at the 

surface is obtained. A constraint is that each surface is considered homogenous 

and isotropic. Another constraint is that the sources are perpendicular to the 

surface. In particular, OpenMEEG (Gramfort et al., 2010, Kybic et al., 2005); 

used in the simulations in chapter 7) implements a symmetric BEM which has the 

advantage of reducing the error for sources close to the boundaries (Kybic et al., 

2005) and has better accuracy than other BEM solvers (Gramfort et al., 2010). 

Finite element methods (FEM; (Wolters et al., 2006) and finite difference 

methods (FDM; (Kauppinen et al., 1999) can represent the full complexity of the 

volume. Thus, a potential at any point of the volume can be obtained. The 

anisotropy of the skull and white matter can be therefore considered. For instance, 

diffusion tensor imaging could be used to incorporate white matter anisotropy into 

the model (Figure 2.8.C; (Wolters et al., 2006). However, FEM and FDM are 

computationally very expensive. Figure 2.8 presents an example of each type of 

model.  
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Figure 2.8. Head Models. A) 3-Layer concentric spherical model and fit of the model to the head 
(from: Rush and Driscoll 1968). B) Boundary element model (created using Brainstorm). C) Finite 
element model with white matter anisotropy. From: (Wolters et al., 2006). 

The intensity of a source in the cortex is estimated in the 2nA.m (Alarcon et 

al., 1994) to 10nA.m range (Baillet et al., 2001, Hämäläinen et al., 1993). Thus, 

5nA.m was chosen in our simulations as the intensity of the distributed sources 

(Chapter 7). The forward model is useful to create simulations to analyze potential 

profiles (as presented in Chapter 7) and is a necessary tool for the computation of 

the inverse problem. 
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2.3.4 Inverse problem 
The inverse problem can be summarized as follows: Given measurements on 

the scalp, localize the region that most likely generates these potentials and 

estimate its extent and the corresponding current intensities. The inverse problem 

does not have a unique solution since an infinite number of different generators in 

the volume conductor could give rise to the potential distribution observed on the 

scalp (Helmholtz 1853). 

Thus, to find a unique suitable solution in this underdetermined problem, 

constrains must be applied. A priori assumptions can be physical, physiological, 

functional, or mathematical. Algorithms to solve the inverse problem assume one 

or several of these constrains. They can be broadly divided in whether the sources 

are considered as few equivalent dipoles, or a large number of dipoles distributed 

on the cortical surface (Baillet et al., 2001). The concept of the sources 

represented as dipolar layers arise from the macrocolumns of pyramidal cells 

simultaneously active, as explained above. In dipolar models, the mathematical 

simplification is to consider a single point dipole representing the overall activity 

generated in a region. 

Since dipolar models assume that a small number of dipoles (fewer than the 

number of measurements) can represent the underlying brain activity, the problem 

becomes overdetermined. In general the idea is to place a few dipoles in the brain, 

apply the forward model to obtain the resulting scalp potential based on them, and 

compute the difference with the real scalp potential. Iterating this procedure 

provides the solution with minimum difference from reality, the best fitting 

dipolar configuration (usually in least square sense). Optimization techniques 

could result in incorrect local minima solutions (de Peralta Menendez and 

Gonzalez Andino 1994). This could be overcome by considering the dipolar 

sources as having fix location with varying time and estimating their locations 

from the whole interval (Scherg et al., 1999) or with scanning techniques. 

Beamforming approaches (Van Veen et al., 1997) act as a spatial filter to find 

regions of interest (i.e. where the signal might have originated). Thus, the sources 
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are found by evaluating the contribution of a particular brain location to the 

recordings, while ignoring all other brain regions. Multiple signal classification 

(MUSIC; Mosher et al., 1992) is based on scanning with a single dipole the whole 

head and projecting into a signal subspace (obtained from eigenvalue 

decomposition of the data). The locations with the best projections are selected 

(Mosher et al., 1992). Dipolar methods have been widely used, although careful 

interpretation of the results is needed since they may produce misleading 

localization, especially for spatially large extended sources (Kobayashi et al., 

2005). Interestingly, a software for dipole source localization recently obtained 

FDA approval (Elekta-Neuromag, Oy, Helsinki, Finland). 

Distributed algorithms assume a large number of sources situated along the 

cortical surface, which implies an anatomical constraint. These distributed sources 

are considered to represent activity from pyramidal neurons oriented parallel to 

each other and perpendicular to the surface (Dale and Sereno 1993). Within this 

group, the minimum norm (MN) method finds the source distribution with 

minimum energy (Hämäläinen and Ilmoniemi 1994) while low-resolution brain 

electromagnetic tomography (LORETA) obtains the smoothest sources 

distribution with a generalized minimum-norm estimate (Pascual-Marqui et al., 

1994). Bayesian approaches introduce anatomical and temporal smoothness 

constraints a priori to obtain the a posteriori estimate of the sources (Baillet and 

Garnero 1997). 

Hybrid combinations of dipolar and distributed algorithms have been 

proposed (Baillet et al., 2001). In addition, other functional constraints, such as 

defining the number of dipoles based on PET (Michel et al., 2004) or weighting 

the sources based on EEG/fMRI activations (Liu et al., 1998), can be 

incorporated. Moreover, comparing different sources localization models and 

allowing the data to decide which one is the most appropriate has been developed 

within a Bayesian framework (Daunizeau et al., 2006). This idea of model 

selection has also been applied to assess from the data the relevance of several 

forward models (Henson et al., 2009). Not only finding the central point of a 
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source is important, but also accurately estimating the extent of the source. In this 

regard, a comparison between different inverse models showed that distributed 

models could estimate extended sources (Grova et al., 2006). Moreover, the 

authors proposed that a combination of models could result in improved accuracy 

(Grova et al., 2006). 

The inverse problem in epilepsy has been traditionally performed on averaged 

spike activity to obtain a good SNR. However, independent spikes may arise from 

slightly different locations and orientations. Recently a method to apply the 

inverse problem to individual events has been proposed (Poolman et al., 2008). In 

addition, seizure initiation (when not heavily contaminated by muscle artefact) 

could be localized (Merlet and Gotman 2001). Recently a method has been 

developed to apply the inverse problem to oscillatory activity (Lina et al., 2012). 

This could be useful for the application of the inverse problem to scalp HFO 

recordings. 

Source localization can be clinically useful. For instance, it can help to focus 

the analysis of anatomical images leading to the identification of regions with 

subtle cortical abnormalities such as dysplasias (Ebersole 2009). A large 

prospective study (152 patients) showed the possible value of source localization 

as part of the pre-surgical evaluation for epilepsy surgery (Brodbeck et al., 2011). 

The sensitivity to locate the focus within the removed area was 84% with a 

specificity of 88% (Brodbeck et al., 2011).   

2.4 Normal physiological EEG patterns 
The normal EEG can be defined as simply the absence of identifiable 

abnormalities, since there is no single feature that characterizes the normal EEG 

(Chang et al., 2011). Importantly, normal EEG activity reacts to different 

situations and stimuli presenting characteristic patterns of oscillations or rhythms. 

The first rhythm to be identified in humans was the alpha rhythm (8-13Hz; 

Berger 1929). The alpha rhythm has maximum amplitude in the occipital lobe and 
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it is best seen during wakefulness with the eyes closed; eye opening suppresses 

the alpha rhythm (Figure 2.9.A).  

Central mu rhythm (8-12Hz) and beta activity (13-25Hz) over the 

sensorimotor area contralateral to the side of movement are reduced during 

movement execution (Jasper and Penfield 1949). Even though mu and alpha 

rhythms occur in the same frequency band, there are considered distinct rhythms 

since they react differently (Figure 2.9.B). After the movement finishes, there is a 

fast short lasting beta band increase over the side contra-lateral to the movement. 

A voluntary motor response elicits also a slow time-locked and phase-locked 

event-related response (MRP; <4Hz).  

Theta band activity (4-7Hz) is largely observed in the hippocampus. It has 

been linked to temporal encoding and retrieval; episodic and working memory; 

and long-term plasticity (Buzsáki 2002, Hasselmo 2005).  

Gamma activity (30-80Hz) seems related to information binding. Details on 

cognitive activity in gamma and ripple (80-200Hz) bands will be given in chapter 

4, section “4.2.Physiological HFOs”. 

Different sleep stages are characterized by particular EEG activity (Chang et 

al., 2011). The transition between stages varies with age. In adults, the onset of 

drowsiness (stage 1) is characterized by the replacement of alpha with low-

voltage slow activity. As drowsiness gets deeper vertex sharp waves appear over 

the midline. During stage 2, the background slows; sleep spindles and K-

complexes appear, with maximum over the vertex (Figure 2.9.C). K-complexes 

are evoked by external stimuli and are therefore considered as micro-arousal 

states. As sleep deepens, slow activity, particularly delta (1-3Hz), increases in 

amplitude and becomes more frontal. Indeed, increase in delta power is a common 

measure of slow wave sleep (stages 3 & 4), especially in the absence of EOG and 

EMG information. Finally, REM sleep consists of low voltage polyrhythmic 

activity with periods of alpha waves. During REM ocular artefacts are observed. 
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Figure 2.9. Examples of normal EEG recorded on the scalp. A) Alpha rhythm during eye 
opening and closing. Alpha rhythm is indicated by blue line; blue arrow indicates eyes opening; 
green arrow indicates eyes closing. B) Mu activity in central region (from: Stern and Engel 2004). 
C) Sleep spindles and K-complex. Spindles are indicated by blue lines; K-complexes are shown in 
red. A and C modified from (Attarian and Undevia 2012).  

The ability to record normal brain activity with intracranial electrodes is 

limited by the location of the electrodes. All normal brain rhythms observed on 

the scalp can be recorded with intracranial electrodes (Kahane and Dubeau in 

press). Compared to scalp rhythms, the amplitude of intracranial rhythms is 

larger; the morphology is usually sharper, in part because there is no smearing but 

also because it is modified depending on the proximity to the source. Figure 2.10 

illustrates an example of alpha activity recorded by depth electrodes located in the 

occipital lobe. Almost each patient implanted with intracranial EEG electrodes is 

a unique case. Thus, to robustly identify epileptiform discharges it is important to 

first get familiar with the normal background activity of the recordings.  
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Figure 2.10. Normal Alpha activity recorded with depth electrodes. Reactivity to eye opening 
and closing (indicated by black arrow) is evident in the occipital electrodes (RO). No changes in 
background activity are observed in the hippocampus at the same time (RH). From (Melani et al., 
in press). 

Even though intracranial electrodes are solely implanted to obtain clinical 

information, cognitive research can take advantage of the fact that patients remain 

in the hospital for days waiting for their seizures to occur. In recent years, a large 

body of knowledge on gamma activity has been obtained from intracranial 

recordings. This will be described in chapter 4, section “4.2.Physiological HFOs”. 

2.5 Artefacts in the EEG 
Since the signal of interest is the electrical activity of the brain, any other 

signal, regardless of whether it is physiological or environmental, is considered 

noise and as a consequence must be dealt with. Artefacts can therefore be of 

external origin or originate in the person’s body.  

Non-physiological noise can arise from the instrumentation or from the 

environment (Dworetzky et al., 2011). The electrodes, the amplifier, or the wires 

can produce instrumentation noise. For instance, movement of the head or body 

can induce artefacts due to the movement of the electrode wire; changes in the 
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contact between an electrode and the scalp, results in low impedance. 

Environmental noise includes 50/60Hz contamination; electromagnetic artefacts 

from hospital equipment; and glitches from electric stimulators, such as 

pacemakers (Dworetzky et al., 2011). 

Several types of physiological artefacts affect the scalp EEG (Figure 2.11), 

mainly cardiac, respiratory, muscular (EMG), and ocular (EOG). Cardiac artefacts 

produce rhythmic activity synchronized with heartbeat. Respiratory movements 

produce slow fluctuations. EMG activity has a wide frequency range, maximal at 

frequencies higher than 30Hz and usually larger amplitude than the EEG signal. 

Chewing, swallowing, and contracting the jaws produce muscular artefacts mostly 

on temporal contacts. Contraction of facial muscles induces activity that 

contaminates the temporal and frontal electrodes. Seizures that involve 

movements produce large EMG activity that obscures the concomitant EEG. 

Blinking is characterized by high–amplitude signals maximally recorded at 

frontopolar electrodes. Eye movements introduces low-frequency (<4Hz) high-

amplitude signal recorded mostly in frontopolar electrodes. Lateral eye movement 

is observed in the lateral frontal regions. Eye movements in particular are 

important in cognitive science, since they can be locked to the activity under 

investigation (Figure 2.11.D) and can be mistakenly considered as cognitive 

activity (Yuval-Greenberg et al., 2008).  In the frequency of interest for the 

detection of HFOs (above 80Hz), there is still contamination from EMG and EOG 

activity. Studies on scalp HFOs have been recorded during sleep to minimize the 

presence of these artefacts (as in Chapter 7, Zelmann et al., submitted). 
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Figure 2.11. Physiological artefacts on the scalp EEG. A) Environmental noise (indicated by 
red line). B) EMG activity. C) EOG activity mainly recorded in Fp channels. A, B and C are 
recordings from the same patient as in Figure 7.1. D) Gamma activity induced by microsaccades 
should not be confused with cognitive activity (from: Yuval-Greenberg et al., 2008). 

Intracranial EEG is affected to a lesser extent by these artefacts, but 

nevertheless the effects of artefacts must be considered. The same way that 

electrical activity from the brain travels outwards and reaches the scalp, EMG and 

EOG activity can travel inwards from the muscles and the eyes to the brain. EMG 

can therefore be recorded with intracranial EEG, particularly during seizures 

(Otsubo et al., 2008). Blinking as well can be recorded, prominently over the 

anterior part of the brain (Ball et al., 2009). Eye movement also produces activity 

on structures near the extraocular muscles that can be recorded with depth 
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electrodes (Jerbi et al., 2009) and with grids (Kovach et al., 2011). Even though 

they do not obscure the intracranial EEG signal, artefacts can be confused with 

brain activity.  
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Chapter 3. Epilepsy 
Epilepsy affects 5.2-5.6/1000 Canadians (Tellez-Zenteno et al., 2004), being 

the second most common neurological disease, after stroke. Epilepsy incidence is 

highest in children below 5 years old and in the elderly, but it can manifest itself 

at any point in life. Epilepsy is as old as humankind. There are reports of focal 

epilepsy from more than 3000 years ago. The high prevalence of epileptic 

conditions and the lifetime characteristic of the disorder make its economic 

burden very large. Moreover, intractable seizures, which accounts for 30% of the 

patients, are particularly costly compared to other chronic diseases (Theodore et 

al., 2006). 

In this chapter, possible underlying causes of epilepsy are presented; different 

types of epileptic seizures are described; EEG epileptic patterns are illustrated; the 

diagnosis and treatment options are depicted with emphasis on the pre-surgical 

evaluation of patients with intractable epilepsy. In addition, animal models of 

epilepsy are described. 

3.1 Epileptic syndromes and their classification 
A large number of brain disorders can cause epileptic seizures (Niedermeyer 

2005c). Brain damage during early life is one of the most important causes. 

Infections of the central nervous system may be the cause of epilepsy that starts 

only years after. Craniocerebral trauma can cause epilepsy as a sequel of the 

injury, but it is important to distinguish chronic epilepsy from cases in which 

convulsions occur in the acute stage of the trauma. Intracranial tumours and other 

space occupying lesions can manifest themselves as epileptic seizures. In most of 

these cases focal attacks occur. Cerebrovascular accidents could be the cause of 

seizures not only during the event, but also at the time preceding the stroke or 

after the stroke due to scar formation. Genetic predisposition could facilitate the 

appearance of seizures, particularly in primary generalized epilepsy. 
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The characteristics of a seizure depend on whether parts of the brain or the 

entire brain get involved during the event, on the underlying basic epileptic 

condition, and on the age of the patient (Niedermeyer 2005c). Epileptic seizures 

can be broadly classified as generalized or partial seizures. 

Generalized seizures include absence seizures, myoclonic seizures, atonic 

seizures, tonic seizures, clonic seizures, and tonic-clonic seizures (Niedermeyer 

2005c). Typical absence seizures (traditionally called “petit mal”) consist in loss 

or reduction of consciousness and maybe accompanied by mild clonic, tonic, or 

atonic components. The onset and cessation of absences is generally abrupt. 

Hyperventilation and photic stimulation can induce absence seizures and are 

useful diagnostic tools. Myoclonic seizures are characterized by a rapid 

involuntary muscle contraction (jerk). Atonic seizures are characterized by a 

sudden loss of tone and possible subsequent drop. Tonic-clonic seizures (also 

referred as “grand mal”) start with a massive generalized tonic spasm, with 

immediate loss of consciousness; this is followed (after 10-20 seconds) by the 

clonic phase; then, a succession of brief and violent flexor spasms of the entire 

body lasting about 1minute can be observed.  

Partial (focal) seizures comprise simple partial seizures, complex partial 

seizures, and partial seizures evolving to secondarily generalized seizures 

(Niedermeyer 2005c). Simple partial seizures, in which consciousness is 

preserved, can consist of motor, somatosensory, autonomic, or psychic signs. 

During complex partial seizures, consciousness is impaired and automatisms are 

usually present. Partial seizures can evolve into a secondary generalization.  

The location of the focus in partial epilepsy determines the associated clinical 

manifestations and its related electrographic signature. Mesial temporal epilepsy 

is typically characterized by complex partial seizures. They usually start with an 

epigastric aura, followed by automatisms, and loss of consciousness. The mesial 

temporal lobe is particularly susceptible to seizures, but seizures can originate 

from anywhere in the brain. The frontal lobe accounts for about 30% of the 
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seizures and is prone to epilepsy developed after brain injury (Van Gompel et al., 

2008). Seizures originated from the central regions are usually associated with 

involuntary movement of the extremities and focal twitching, sometimes 

involving orderly propagation to adjacent parts of the body. Seizures coming from 

somatosensory regions are associated with paresthesia in the contralateral side, 

such as tingling on the face. Seizures coming from the supplementary motor area 

are characterized by an asymmetric change of posture of the upper extremities 

(“fencing” posture). Frontal lobe hypermotor seizures are associated with 

complex usually agitated movements. In addition, seizures generated in the 

occipital lobe account for 5-10% of the patients and are usually associated with 

primary visual phenomena or with visual hallucinations. Seizures generated in the 

posterior temporal neocortex are associated with auditory hallucinations or with 

vertigo. Insular epilepsy sometimes starts with a sensation of strangulation, 

followed by paresthesia around the mouth, and a complex partial seizure (Isnard 

et al., 2004). Thalamic involvement is associated with lost of consciousness and is 

involved in absences. 

3.2 Epileptic EEG patterns 
In the EEG of an epileptic patient, abnormal electrical patterns can be 

distinguished from background. These patterns can be interictal or ictal, 

depending on whether clinical symptoms or signs accompany the EEG discharges. 

Their morphology, spatial distribution, frequency, and duration depend on the 

type of epilepsy, age of the patient, and level of awareness (Niedermeyer 2005a). 

Interictal epileptiform discharges (IEDs), detected with scalp or intracranial 

recordings, can be divided in spikes, sharp waves, spike and slow wave, and 

polyspikes. In particular, spikes are transient sharp events that can be clearly 

distinguished from background activity with pointed peak and duration of 20 to 

70ms. They are hypersynchronous events due to excessive simultaneous neuronal 

discharge (Niedermeyer 2005a). Some types of epilepsy have stereotypical IEDs 

and seizure patterns. However, similar etiology can result in different IEDs. For 
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instance, in patients with focal cortical dysplasia (FCD) spike and waves, runs of 

polyspikes, or sharp waves can be observed (Figure 3.1). Although great inter-

subject variability exists, the IEDs are usually consistent within each patient. 

 
Figure 3.1. Examples of scalp interictal epileptiform discharges in 3 FCD patients. 

Spikes recorded with intracerebral electrodes can have a similar morphology 

as in the scalp, but have usually a complex spatial distribution. There is 

considerable inter- and intra-subject variability in the morphology and amplitude 

of these discharges. When analyzing intracranial recordings, it is important to 

keep in mind that the absolute amplitude is not related with the severity of the 

underlying condition, but with the location and orientation of the generators. 

Figure 3.2 illustrates examples of interictal spikes recorded with depth electrodes. 

 

Figure 3.2. Examples of spikes recorded with intracranial depth electrodes. A) Patient with 
FCD displayed in bipolar montage. Note different scale than others, but same scale as Figure 3.3. 
B) Patient with Right Hippocampus malrotation and atrophy (referential montage). C) Patient with 
nodular heterotopia (referential montage). From: (Jacobs et al., 2008a, Jacobs et al., 2009a). 



41 

Ictal EEG patterns may be a prolongation of the habitual interictal pattern of a 

patient or a completely different pattern (Niedermeyer 2005a). For instance, 

absence epilepsy is characterized by a spike and slow wave complex at 3Hz. Short 

bursts are associated with interictal activity while prolong spike-wave bursts are 

considered an ictal event, usually accompanied by clinical manifestation such as 

staring. The difference between interictal and ictal events seems however 

arbitrary, since it may not be feasible to assess level of consciousness during 

events lasting a few seconds. In the case of partial seizures, the ictal pattern is 

most often different from the isolated interictal spikes. For instance, in mesial 

temporal epilepsy the interictal scalp discharges are usually anterior temporal 

spikes or sharp waves, but there might be a completely different ictal pattern. As 

explained in chapter 2, section “2.2.3.Intracranial correlates of scalp EEG 

recordings”, spikes and seizures observed in the scalp anterior temporal channels 

are probably due to activity propagated to the lateral neocortex rather than 

generated in the mesial temporal structures. Figure 3.3 illustrates a seizure 

recorded with depth electrodes in humans. 

 

Figure 3.3. Examples of a seizure recorded with intracranial depth electrodes. A) Example of 
a seizure in a patient with FCD (same as in Figure 3.2.A) recorded with intracranial electrodes and 
visualized in bipolar montage. The channels that correspond to the seizure onset are in red. Dark 
red line: the time of seizure onset. B) After 10sec the seizure spreads to other contacts (LCA1-
LCA2). From: (Jacobs et al., 2009a). 

It is important to distinguish between the seizure onset zone (SOZ), the 

irritative zone, the lesional zone, and the epileptogenic zone. The diagram in 

Figure 3.4 illustrates their possible differences and overlap. The SOZ is the region 
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of the brain where seizures initiate. The epileptogenic zone is a theoretical 

concept defined as the minimum amount of brain that must be resected to make 

the patient seizure free (Luders et al., 2006). The epileptogenic zone cannot be 

identified in practice. At most when surgery is successful it is possible to affirm 

that the resection included the epileptogenic zone. Not only the SOZ, but also 

regions of early propagation or a surrounding lesion may be part of the 

epileptogenic zone. The irritative zone is the area of the brain that produces spikes 

and usually contains the SOZ, but it can have a much larger extent and may 

include areas where no seizures are originated. A similar situation arises from the 

relation between epileptogenic zone and lesions. In some cases the lesion (e.g. a 

tumour) is the clear cause of the patient’s seizures, but not all lesions are 

epileptogenic and some inactive lesions could become epileptogenic (are potential 

foci). For instance in FCD only the tip of the lesion is visible on MRI, but the 

epileptogenic zone may be more extensive, while in nodular heterotopia only a 

few nodules (if any) are epileptogenic. Invasive recordings are usually performed 

to understand which of the nodules must be removed. Even though the SOZ does 

not always precisely localize the epileptogenic zone, which can be more 

extensive, localizing the SOZ is usually the goal of every investigation (Rosenow 

and Luders 2001). However, during the 7-15 days that a patient remains 

hospitalized, recording typical seizures is not always feasible, while if interictal 

abnormalities exist, they are more likely to be recorded (assuming correct location 

of electrodes).  
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Figure 3.4. Schematic illustrating the differences and overlap between the epileptogenic zone 
(in blue), the seizure onset zone (in red), the lesional zone (in grey), and the irritative zone (in 
orange). Modified from (Jacobs et al., 2012). 

Recently a new EEG biomarker of epileptogenicity has been discovered. As 

presented in the next chapter, pathological HFOs are spontaneous events that can 

be observed interictally and seem to be linked directly to the epileptogenic zone.  

3.3 Diagnosis and treatment of epilepsy 
The diagnosis of epilepsy is not trivial, since a seizure is only the final 

manifestation of a variety of underlying causes within this heterogeneous group of 

syndromes. There are three basic categories of diagnosis: etiologic, seizure, and 

syndrome diagnosis (Chadwick et al., 2008). Each of these levels must be 

identified for each patient. The etiologic diagnostic identifies the cause of 

epilepsy, which as explained above can be very different and in many cases 

unknown. Brain imaging is particularly useful to find an underlying lesion; 

genetic tests allow the identification of predisposition and familial variants; 

patient’s clinical and pre-natal history is important to find a possible cause. Proper 

seizure diagnostic is achieved with EEG and video monitoring. The patient’s and 

family description is not always accurate, particularly for nocturnal seizures. In 

addition, some patients have more than one type of seizures. Routine EEG and 

prolonged video EEG monitoring are necessary to obtain a complete idea of the 
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interictal and ictal activity. The syndrome is diagnosed based on seizure 

semiology, clinical history, EEG, and anatomical MRI. Diagnosing the syndrome 

allows categorization and therefore provides a framework for therapeutic options, 

prognosis, and duration of therapy.  

Based on a careful diagnosis a correct treatment can be followed. Treatment 

should be focused in the improvement of the health-related quality of life of the 

patient rather than only in stopping the seizures (Chadwick et al., 2008). Usually 

achieving seizure control, improves patient’s quality of life, but the ideal “no 

seizures, no side-effects” is not feasible to achieve. In some cases, side effects 

from antiepileptic drugs (AEDs) could result in a worse burden than the seizures 

and permanent cognitive damage after surgical resection could have seriously 

disabling effects. Thus, physical, mental, and social health, rather than only 

treating seizures should be considered. 

More than two thirds of the patients (~70%) with epileptic seizures can be 

successfully treated with medication. AEDs act on different mechanisms. AEDs 

could work on voltage-dependent ion channels, mainly Na+, but also Ca2+ 

channels or on the enhancement of synaptic inhibition through GABAergic 

systems. Some AEDs increase inhibition of excitatory synapses, particularly 

glutamate receptors, while others act on the modulation of neurotransmitter 

release (Macdonald and Rogawski 2008). Some AEDs act on several of these 

mechanisms. The AED of choice depends on the epileptic syndrome, but also on 

gender, age, and comorbidities. For instance, in absence epilepsy a common 

medication is valproic acid, which is believed to act on GABA systems, and is 

effective in about 75% of the patients. However, valproic acid has been associated 

with malformations in children of treated mothers, and it should be avoided 

during pregnancy. Moreover, useful drugs in adults may have important adverse 

effects in children. For example, drugs that can successfully treat focal epilepsy in 

adults (e.g. carbamazepine) can make seizures, such as myoclonus or spasms, 

worse in children (Pellock et al., 2008). 
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The relative efficacy is rapidly reduced with the addition of more AEDs. 

About half of the patients (47%) responded to the first AED, 13% more to the 

second AED, and only an additional 3% to three or more AEDs (Kwan and 

Brodie 2000). Thus, failure to two AEDs is a strong indicator of possible 

intractability. 

3.3.1 Intractable epilepsy  
Thirty percent of the epileptic patients are refractory to medication, meaning 

that these patients did not respond to two or three appropriately selected and 

administered AEDs. This number gives an overall estimate but the resistance to 

drugs is more common in certain types of epilepsy than in others.  

Mesial temporal epilepsy with hippocampal sclerosis (MTS) is the most 

frequent type of intractable epilepsy. The onset appears in adolescence or 

adulthood, but it is often associated with febrile seizures during childhood. Only 

11 to 25% of patients with MTS can obtain seizure freedom with AEDs (Blume 

2008). MTS patients are candidates for surgery with very good prognosis (see 

next section).  

Malformations of cortical development are other common causes of 

intractable epilepsy. This groups a variety of disorders that arise from disruption 

during the formation of the human cortex: during cell proliferation, neuronal 

migration, or cortex organization (Guerrini and Barba 2010). In particular, FCD 

originates from abnormal migration, maturation, and cell death during brain 

development. This results in abnormal laminar structure of the cortex, the 

appearance of balloon cells, and dysmorphic neurons (Guerrini and Barba 2010). 

Since the lesion is not usually completely visible with MRI, invasive EEG 

recordings are often necessary to delineate the SOZ. Seizure semiology depends 

on the location of the lesion. Since lesions are situated in the neocortex, FCD 

patients were selected to study the cortical correlates of scalp HFOs (Chapter 7). 

Periventricular nodular heterotopias are characterized by neurons that never 

migrated, remaining proximal to the lateral ventricles (Guerrini and Barba 2010). 
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Seizures can arise from only some of the nodules and/or from the surrounding 

cortex. Therefore, depth electrodes are usually implanted to define the SOZ. 

Polymicrogyria consists of an abnormally large number of small gyri, resulting in 

an irregular cortical surface (Guerrini and Barba 2010). Patients usually have 

intellectual disabilities and usually present a variety of clinical problems apart 

from seizures. Curative surgery is not usually an option for this group. FCD and 

nodular heterotopia patients with focal abnormalities, have usually normal 

cognitive capacities. Surgical prognosis in these patients is related with complete 

resection of the epileptogenic area and is discussed in the next section.  

Cavernous malformations are vascular malformations that result in clusters of 

mulberry-like appearance in the brain. Seizures are present in 26-50% of the 

patients and originate from the surrounding tissue (Batra et al., 2009). Surgical 

prognosis is good if enough surrounding tissue is resected (see also next section). 

Patients with multifocal epilepsy or diffuse abnormalities are usually 

refractory to medication, but limited options currently exist for this group of 

patients. 

3.4 Surgical treatment of epilepsy 
For some patients with pharmaco-resistant epilepsy and a suspected focal 

generator, the surgical resection of the affected area can be considered. When 

epilepsy surgery is successful, the patient becomes seizure-free.   

Surgical resection early in the course of the disorder is desirable, because in 

some cases the disease can progress into status epilepticus and even cause sudden 

unexpected death, since some seizures are related to cardiac or respiratory 

anomalies that can cause a cardiac arrest, and simply because of the disability 

caused by the seizures. Early intervention is particularly important in children for 

whom epilepsy can be detrimental to mental development and plasticity can 

minimize permanent deficits (Engel and Shewmon 1993). 
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Between 60 and 70% of surgical candidates are mesial temporal patients. The 

first temporal resection was performed by Penfield and Cole in 1928 in a patient 

with post-traumatic epilepsy, in which the temporal lobe showed an atrophic 

lesion when exposed (Feindel 1993). Surgical patients with MTS are operated 

with a selective amygdalo-hippocampectomy or a resection of the anterior 

temporal lobe. About 66% of the patients are seizure-free at five years follow-up, 

regardless of the procedure (Tellez-Zenteno et al., 2005). On the one hand, 

memory decline is reported, as expected after hippocampal resection. On the other 

hand, a relative improvement in general intelligence has also been reported 

(Chabardes et al., 2011), probably due to cessation of the seizures. 

A precise delineation of the epileptogenic tissue, beyond the information 

obtained from MRI, is important to achieve good surgical outcome in patients 

with malformations of cortical development. While these patients are potential 

candidates for surgical treatment, only 60% of suspected lesional patients achieve 

seizure freedom after surgery. In particular, for nodular heterotopias a focal EEG 

generator predicts a good outcome, regardless of the lesions (Aghakhani et al., 

2005). Thus, defining the area to remove within or outside the lesion is important. 

In FCD the prognosis is associated with the completeness of the resection (Chern 

et al., 2010), but the complete lesion is not always visible with standard MR 

imaging. Moreover, for cavernous malformations the question is how much of the 

surroundings of the cavernoma to remove, since outcome improves with extensive 

resection (Kim et al., 2011). For these patients, it is important to ensure the 

resection of areas beyond the lesion visible on MRI without extending it outside 

the epileptogenic zone, to preserve eloquent areas.  

With the advent of new technology and knowledge in neuroscience many 

patients that would not have been considered candidates ten years ago, can now 

be considered for surgical intervention. Anatomical and functional imaging 

techniques can find subtle lesions and help target the implantation. Advances in 

neuronavigation allow the implantation in places such as the insula that were 
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rarely considered before. Increasing understanding of brain functions allows 

identifying possible sequel and avoiding eloquent areas.  

3.4.1 Pre­surgical evaluation of epilepsy 
Intracranial EEG recordings can be considered when the area to remove 

cannot be delineated from non-invasive recordings. In some cases, non-invasive 

techniques give only a rough estimate of the epileptogenic region but cannot 

ensure the precise location of the focus. In other cases, there is disagreement 

across modalities (e.g. EEG pointing to the right temporal lobe, but lesion on the 

left hippocampus). In others, there could be more than one possible epileptogenic 

region (e.g. either hippocampi or several lesions). 

Before undergoing surgery, these patients are recorded with implanted 

electrodes (described in Chapter 2), to obtain a more accurate location of the onset 

of seizures and to more precisely establish the boundaries of the resection. 

Although the use of implanted electrodes implies a certain risk for the patient, it is 

small compared to the benefits that could be gained (Ebersole and Pedley 2003). 

The sites of implantation are determined according to the clinical history, 

semiology of the seizures, neuroimaging, neuropsychology, and prolonged scalp 

EEG information. Other factors are the avoidance of critical areas and vicinity of 

major arteries (Niedermeyer 2005b). Patients remain in the hospital generally 

during 1 or 2 weeks and are constantly being monitored to detect seizures and 

interictal paroxysms with the goal of identifying the SOZ. An obvious successful 

result of an invasive investigation is the delineation of a unique focus. A less 

obvious but nevertheless extremely valuable conclusion is the suggestion of a 

poor prognosis, such as a focus in eloquent areas, a diffuse focus or more than one 

SOZ, for instance in bitemporal lobe seizures. Although these patients are not 

candidates for curative surgery, palliative surgery can be sometimes suggested. In 

addition, new therapeutic options such as deep brain stimulation can be 

considered. Even with depth EEG recordings, there are patients for whom the 

delineation of the epileptogenic region remains impossible. 
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Neuropsychological tests can help in the lateralization and localization of the 

epileptic focus and are routinely used during the evaluation. For instance, the 

dominant hippocampus is tested with verbal memory test, the non-dominant 

hippocampus with non-verbal tests, and frontal-lobe functions can be tested with 

sorting and word fluency tests. These tests are also useful to evaluate cognitive 

function before and after surgery. Language representation must be assessed 

before surgery in patients with suspected non-typical speech representation. 

During the etomidate speech and memory test (eSAM) one hemisphere is 

temporarily inactive and a series of memory and language tests are administered 

(Jones-Gotman et al., 2005). In this way, language can be lateralized and the 

ability of a patient to retain memory capabilities after a mesial temporal resection 

can be evaluated. 

During the invasive investigation, electrical stimulation is usually performed 

to reproduce the patient’s typical seizure or aura and to map eloquent areas 

(Kahane and Dubeau in press). An electrical current is applied between 

contiguous intracranial contacts. To evoke a clinical response or an after 

discharge, the intensity is progressively increased until a response is obtained or 

the safe maximum is reached. Intensity of the high frequency pulses (50/60Hz) 

varies from 0.2 to 3.6mA for the temporal lobe and up to 8mA for other regions. 

For functional mapping low frequency pulses (1Hz) are used to map the motor 

areas to avoid unpleasant involuntary movements, and high frequency for 

mapping visual, sensory, auditory, or language areas. Care is taking not to evoke 

unpleasant sensations or after discharge. By stimulating with a bipolar montage, 

focal currents are produced. The information obtained from the stimulation 

complements the analysis of spontaneous seizures during the pre-surgical 

evaluation (Kahane and Dubeau in press). Thus, a better delineation of the 

epileptogenic area is achieved. 
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3.5 Animal models of epilepsy 
Experimental models of epilepsy are important to understand the mechanism 

of the epileptic syndromes and study the effect of therapy. In vitro preparations 

are useful to understand the basic mechanism underlying seizures. In vivo models 

allows to study seizures and epileptic syndromes. In relation to new AEDs, animal 

models are useful to identify new compounds, study their specificity, compare 

new vs. established AEDs, analyze their chronic efficacy, and study the adverse 

effects of the drugs (Loscher 2011). In the same way that many epileptic 

syndromes exist, specific animal models have been developed to mimic a variety 

of them. In this section, animal models of epilepsy are described, with emphasis 

in those models studied to understand the mechanisms of HFOs (in Chapter 5). 

Brain slices allows studying basic mechanisms of epileptiform discharges and 

oscillations. Due to their mechanical stability, intracellular recording can be 

precisely obtained. Seizures are triggered by changing the milieu or by applying 

electric stimuli. In particular, hippocampus-entorhinal cortex slices have been 

extensively studied to understand mesial temporal epilepsy (Avoli et al., 2002). 

A topical convulsant (e.g. penicillin) can be applied to brain slices or animals’ 

cortex to acutely generate focal seizures. Electrical stimulation induces after 

discharges, which in turn could evolve into seizures. These models are useful to 

study propagation and mechanisms of partial seizures (Fisher 1989).  

Kainic acid is used to induce complex partial seizures during hours to days 

(Fisher 1989). After injection of kainic acid, rats present spontaneous periodic 

arrest of activity, autonomic behaviour (e.g. chewing), complex movements, and 

even secondary generalization. Spikes can be observed in the hippocampus. 

Tetanus toxin injected into the rat’s hippocampus results in a chronic model 

of complex partial seizures. Typical seizures consist of arrest of activity, followed 

by myoclonic jerks, and, sometimes, secondary generalization. About 100 

seizures a day occur spontaneously during a month after injection (Fisher 1989). 
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Kindling models are produced by repetitively electrically stimulating the 

limbic system, usually the amygdala. Afterwards, the animal is more susceptible 

to generate seizures, presumably because the brain became more excitable. 

Different type of seizures, from simple to generalize can be obtained by applying 

a small stimulus (that would not normally induce a seizure) in kindled animals 

(McNamara 1984). In particular, in the amygdala-kindled Wistar rat with 

exposure to AEDs during the kindling, the animals become drug resistant not only 

to exposed AED, but also to a large number of AEDs, mimicking intractable 

epilepsy (Loscher 2011).  

The pilocarpine model resembles all the stages of mesial temporal epilepsy 

(Curia et al., 2008). The rats first go into status epilepticus following systemic 

injection of pilocarpine, which resembles an initial precipitating injury, commonly 

found in MTS. After a latent period, the rats start to have spontaneous seizures, 

which are poorly controlled with AEDs, as is usually the case in MTS. 

Widespread lesions appear in the model, particularly in the hippocampal and 

parahippocampal regions, which could resemble the hippocampal atrophy of 

MTS. 

Genetic models have been developed to study generalized epilepsy. For 

instance, the genetic absence epilepsy rat from Strasbourg (GAERS), have 

spontaneous spike-wave discharges concomitant with behavioural arrest. With 

this model of absence seizures, thalamic involvement has been shown. In 

addition, GAERS animals respond to AEDs normally administered for absences 

(Marescaux et al., 1992). 

Models of malformation of cortical development also exist. When rats are 

exposed to an antimitotic agent in utero and later induced a seizure (e.g. with 

kainate), they do not respond to any of the established AEDs. This model is an 

example of a two-hit model of intractable epilepsy (Loscher 2011). 
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Thus, a variety of animal models exist with characteristics similar to diverse 

epileptic syndromes. Some of these models have been used to study the 

mechanism of HFOs, described in the next chapter. 
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Chapter 4. High Frequency Oscillations  
Traditionally only frequencies up to 40 or 70 Hz have been considered 

clinically relevant. Even though about 75 years ago the first mention of high 

frequency (HF) activity (up to 300Hz) was published (Adrian and Matthews 

1934) and the term gamma (>35Hz) was coined (Jasper and Andrews 1938), only 

in the last two decades the clinical and cognitive relevance of HF activity has 

been recognized. 

Pathological High Frequency Oscillations (HFOs) are spontaneous small-

amplitude short-duration EEG oscillatory patterns in the 80-500Hz range related 

to epileptogenesis. HFOs were first recorded with microelectrodes in animals and 

humans in mesial temporal structures (Bragin et al., 1999b). These EEG patterns 

occurring in the absence of specific stimuli have been recorded during interictal 

(Staba et al., 2002, Urrestarazu et al., 2007), pre-ictal (Jacobs et al., 2009b), and 

ictal (Jirsch et al., 2006) periods. Physiological HF evoked activity is ubiquitous 

in the human brain and seem related with most of the information processing 

functions with high task specificity (Lachaux et al., 2012). In cognitive studies the 

evoked response to particular stimulus can be averaged to increase SNR, instead 

of analyzing individual spontaneous events, as is the case of spontaneous 

pathological HFOs. 

In this chapter the possible underlying mechanisms of HFO generation will 

be addressed; then, physiological HF activity will be presented; this will be 

followed by a description of pathological HFOs and their relation to epileptic 

tissue; finally the state of the art of automatic detection and analysis of 

spontaneous HFOs will be discussed. 

   



54 

4.1 Mechanism of HFO generation 
Individual neurons can sustain narrowband oscillations at a wide range of 

frequencies, which could represent information coding (Buzsáki and Draguhn 

2004). For instance, thalamic reticular pacemaking neurons are accountable for 

the formation of sleep spindles (Steriade 2003). Neurons have to be coupled 

together to generate oscillations visible on the EEG.  Neurons can be linked by 

chemical synapses, electrical synapses (gap junctions), electric fields (ephaptic), 

or fluctuations in ions’ extracellular concentration (Jefferys et al., 2012). Slow 

oscillations recruit a large number of neurons over a large spatial extent, while 

HFOs are confined to a small spatial extent ((Buzsáki and Draguhn 2004); see 

also chapter 2, section “2.1.3.Volume conduction and EEG”). Slow oscillations 

are mediated mainly by chemical synapses (as presented in chapter 2, section 

“2.1.2.EEG generation”). Several mechanisms could generate HFOs and are 

discussed below. 

Physiological ripples (80-200Hz) occur in the mesial temporal lobe and in the 

neocortex and the underlying mechanisms are likely similar to each other (Staba 

and Bragin 2011). In the hippocampus, the local interaction between interneurons 

and pyramidal cells triggers a ripple oscillation of short duration (Ylinen et al., 

1995). Although gap junctions and ephaptic fields could contribute to the 

generation of hippocampal ripples, the main activity arises from inhibitory 

synapses and synchronous discharges of pyramidal cells. Hippocampal 

physiological ripples represent the most synchronous patterns in the mammalian 

brain (Buzsáki and Lopes da Silva 2012). Contrary to what is expected (see 

chapter 2, section “2.1.3.Volume conduction and EEG”), the amplitude is larger 

for ripples than for gamma oscillations. A possible explanation is that at higher 

frequencies there is not only temporal overlap of synaptic potentials but also of 

action potentials (Buzsáki and Lopes da Silva 2012). In line with this, task-evoked 

broadband power changes (up to 150Hz) were correlated with multi-unit activity 

in humans (Manning et al., 2009). In addition, pyramidal neurons and 

interneurons modified their firing rate during physiological ripples in humans 
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(recorded in the hippocampus contralateral to the SOZ), with interneurons starting 

to discharge earlier in the oscillation (Le Van Quyen et al., 2008).  

Slow cortical oscillations allow for the binding of other faster rhythms (beta, 

gamma, and ripples), through corticocortical and corticothalamic connections 

(Steriade 2006). For instance, physiological ripples in the hippocampus are 

associated with large amplitude sharp waves and the association is called SPW-R. 

SPW-Rs emerge as a property of the network, with 50-100 thousand neurons 

activated simultaneously during an event. SPW-Rs in the hippocampus are 

associated with spindles in the neocortex, which could be responsible for the 

transmission of memories to the neocortex during sleep ((Siapas and Wilson 

1998); see also next section). In the neocortex, spontaneous ripples occur during 

the depolarizing phase of slow-wave oscillations during sleep (Grenier et al., 

2001). In the occipital cortex, spontaneous physiological HFOs were phase-locked 

to slow-waves during sleep (Nagasawa et al., 2012). Beta, gamma, and probably 

ripple oscillations are voltage-dependant, since they are selectively sustained 

during the depolarization phase of slow-waves during sleep and during the steady 

depolarization of cortical neurons during waking state (Steriade 2006). 

Pathological HFOs have been observed in in vitro brain slices and in in vivo 

models of spontaneous seizures. Fast ripples (FR; 250-500Hz) were first 

described in the kainic acid model of chronic epilepsy (Bragin et al., 1999b). 

Since then, HFOs have been recorded in several other in vivo models. The same 

regions that generate spontaneous seizures also generate HFOs in the pilocarpine 

model (Levesque et al., 2011), in the intrahippocampal tetanus toxin model 

(Jiruska et al., 2010), and HF activity changes in a model of infantile spasms 

(Frost et al., 2011). Some differences between models exist. For instance, in the 

kainic acid model all rats that developed epilepsy had FR in the latent period 

(Bragin et al., 2004), but FRs were not observed in all animals with seizures in the 

pilocarpine model (Levesque et al., 2011). HFOs in these in vivo models have 

roughly similar morphology and comprise the same frequency range, but this does 

not mean that the underlying mechanisms are the same. In vitro studies showed 
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that HFOs appear when neuronal networks are hyperexcitable which can be 

obtained from a variety of underlying mechanisms, such as convulsant drugs, 

synchronization by gap junctions, or increase of extracellular K+ (Jefferys et al., 

2012). Thus, oscillations in the same frequency band are not necessarily the same 

phenomenon. 

It has been suggested that pathological HFOs might be related to neuronal 

loss, since FRs were originally observed only in regions with neuronal loss in an 

animal model of status epilepticus (Bragin et al., 1999c) and since the rate of FRs 

is correlated with hippocampus atrophy (Ogren et al., 2009). However, HFOs 

were also observed in non-lesional models (e.g. tetanus toxin; (Jiruska et al., 

2010)), in non-lesional patients (Andrade-Valença et al., 2012), and are higher in 

the SOZ regardless of the lesion (Jacobs et al., 2009a). Thus, HFOs seem related 

to the underlying epileptogenicity of the tissue rather than only to the pathology. 

While gamma and ripple oscillations could be explained mainly by synaptic 

(chemical) activity and neuronal firing, FRs encompass a higher frequency range 

than the maximal firing rate of individual neurons (Figure 4.1). Bursts of action 

potentials are aligned to individual FR cycles, but the frequency of individual 

cells is poorly correlated with the frequency of FRs (Ibarz et al., 2010). Thus, FRs 

are likely an emergent property of the network. An interesting hypothesis is the 

out-of-phase cluster (Foffani et al., 2007, Ibarz et al., 2010, Jiruska et al., 2010). 

The main idea is that independent groups of neurons fire simultaneously but 

slightly out-of-phase from each other, resulting in an oscillation of higher 

frequency than individual cells. Different underlying mechanisms, appearing from 

the combination of normal and pathological neurons, may be sufficient to 

generate this behaviour (Jefferys et al., 2012). Functional clustering could emerge 

from a simultaneously active region, since within a large number of neurons 

activated by a common afferent, the closer the neurons the smaller the phase 

differences (Ibarz et al., 2010). Electrical (GAP junctions or ephaptic) 

mechanisms could synchronize neurons, but introducing some jitter that can be 

recorded as FR oscillations in the EEG (Jiruska et al., 2010). Network 
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heterogeneities could appear in epileptogenic tissue (e.g. due to axonal sprouting). 

This could generate topological clusters with some neurons acting as hubs of 

activity and therefore introducing delays between groups of neurons (Ibarz et al., 

2010). Finally, neuronal loss could result in anatomical clusters loosely connected 

to each other that fire slightly out-of-phase (Jefferys et al., 2012). The frequency 

variability observed in HFOs within the same region (Blanco et al., 2010, Engel et 

al., 2009) argues in favour of this hypothesis. Thus, this concept of out-of-phase 

clustering provides a general framework to explain the emergence of FRs by 

diverse mechanisms in epileptogenic areas (Jefferys et al., 2012). Figure 4.1 

summarizes the mechanisms of generation of pathological HFOs. 

 
Figure 4.1. Underlying mechanisms of pathological HFOs. Gamma and lower frequency 
rhythms are obtained from the summation of postsynaptic potentials. Ripples are produced by a 
combination of postsynaptic potentials and action potentials. FR are faster than the firing rate of 
individual neurons, and are likely generated by out-of-phase firing. From (Jefferys et al., 2012). 
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4.2 Physiological HFOs 
HF activity has been suggested to represent a general electrophysiological 

index of cortical processing (Gotman and Crone 2011). HF activity seems capable 

of bonding not only local neurons firing together, but also distant cells. Given that 

there is large variability in what the literature refers to as gamma, and since there 

is not clear frequency cut to differentiate between gamma and higher bands, in 

this section we will refer to neuronal activity above 40Hz as HF activity. When 

referring to specific studies the reported frequency range will be indicated.  

When studies are based on the analysis of activity phase-locked to the 

stimulus, variability between trials is cancelled out by averaging. A narrowband 

average is obtained if the task-related evoked response consists of rhythmic 

coherent firing of neurons, resulting in sinusoidal oscillations. When averaging 

multiple trials in the frequency domain, not only phase-locked (evoked) but also 

non-phase-locked time-locked (induced) activity is considered and broadband HF 

activity is usually obtained. The broadband characteristic of the induced response 

may be due, in part, to a slight difference in neuronal population involved during 

each trial and the latency in response to each individual stimulus (Crone et al., 

2011). Since more variability is associated with larger time lags after stimulus, 

narrowband evoked activity tends to have shorter time lags than broadband 

induced activity. 

In scalp EEG recordings, narrowband evoked 40Hz oscillations have been 

first associated with self paced movements (Pfurtscheller et al., 1993) and visual 

perception (Tallon-Baudry et al., 1996). Time averaging thousands of trials allows 

recording very HF somatosensory evoked potentials on the scalp (600Hz -(Curio 

2000)). Not only evoked, but also induced responses can be recorded on the scalp, 

which seem related to information binding (Tallon-Baudry et al., 1996). 

With intracranial recordings, broadband physiological HF activity was 

identified during movement execution (60-200Hz - Crone et al., 2006, Leuthardt 

et al., 2004), language (~100Hz – Crone et al., 2001b), speech discrimination (80-
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150Hz – Crone et al., 2001a), visual processing (40-200Hz – Lachaux et al., 

2005), and attention (80-150Hz –Ray et al., 2008). Individual HFOs in the 

hippocampus were related to memory consolidation (~200Hz – (Draguhn et al., 

2000); 80-140Hz – (Axmacher et al., 2008)) and in the visual cortex to visual 

stimuli (80-300Hz – Nagasawa et al., 2012). Interestingly, physiological HFOs 

had similar characteristics to pathological HFOs recorded in other regions in the 

same patients (Nagasawa et al., 2012). 

Cross-coupling between HFOs and low frequency oscillations seems related 

to the transmission of information within and across regions. For instance, 

temporal correlations were found between hippocampal ripples and neocortical 

spindles (Siapas and Wilson 1998). Within the neocortex, theta oscillations 

modulate ripples’ power during behavioural tasks (Canolty et al., 2006). Within 

the hippocampus, gamma and ripple oscillations correlated with a different phase 

of theta oscillations and had differential coupling at different locations (Colgin 

and Moser 2009). These examples of cross-frequency coupling are suggestive of 

means of communication within a region and between mesial temporal and frontal 

areas. Cross-frequency coupling may be associated with the transfer from 

hippocampal short-term memory to long-term memory neocortical storage (Siapas 

and Wilson 1998) and with memory encoding (Colgin and Moser 2009). 

Given the high anatomical, functional, and temporal specificity of evoked HF 

activity (Lachaux et al., 2012), it could be useful for cortical mapping. In 

particular, at the beginning and at the end of a movement, HF activity changes are 

somatotopically more specific than the concomitant mu and beta band changes. 

HF activity occurred only during brief intervals and corresponded to the areas 

mapped with electrical stimulation (Miller et al., 2007a). Since HF activity is also 

specific to language processing (e.g. Crone et al., 2001b), it could be used also to 

map language cortex. However, the sensitivity of maps of language based on 

gamma responses was lower than with electrical stimulation, suggesting that it 

could be useful to construct a preliminary map, but without replacing cortical 

stimulation (Sinai et al., 2005).  
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4.3 Pathological HFOs 
Although no formal definition exist, pathological HFOs (80-500Hz) can be 

characterized by spontaneous oscillations of at least four cycles that can be 

distinguish from background activity, with a typical duration of 30-100ms and an 

inter-event interval of at least 25ms. 

In animal models of epilepsy, HFOs were associated with the SOZ (Bragin et 

al., 1999b); correlated with high seizure rate (Bragin et al., 2003); and were 

recorded shortly after induced status epilepticus in rats that subsequently 

developed spontaneous seizures, but were not seen in rats that did not (Bragin et 

al., 2004), suggesting a predictive value in the development of epilepsy. In 

humans, HFOs were first recorded with microelectrodes implanted in temporal 

regions (Bragin et al., 1999b), and more recently with clinical macroelectrodes in 

temporal and neocortical regions (Urrestarazu et al., 2007). Interictally, they can 

be identified more frequently during slow wave sleep than during wakefulness 

(Bagshaw et al., 2009, Staba et al., 2004). 

During ictal activity, increase in HF rhythmic activity was first observed in 

grids by Fisher (1992) and in depth electrodes by Allen (1992). HFOs during 

epileptic seizures were restricted to regions of seizure initiation and only 

infrequently observed in areas of propagation (Jirsch et al., 2006). HFOs were 

present in the SOZ during spasms (60-150Hz - Akiyama et al., 2005), but the 

clinical motor manifestation was related with HFOs in the rolandic region and not 

in the SOZ (Nariai et al., 2011). HFOs remained confined to the same region 

during interictal and ictal periods, while spikes presented a wider spread during 

seizures than interictally (Zijlmans et al., 2011). Very high frequency HFOs (up to 

800Hz) have been recently observed at the beginning of a seizure (Kobayashi et 

al., 2010a). In the analysis of ictal HFOs, care must be taken to differentiate 

HFOs from EMG artefacts provoked by movement during the seizure, particularly 

in the most superficial channels (Otsubo et al., 2008). 
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The occurrence of HFOs during the pre-ictal period is controversial. In 

animal models, HFOs do not seem to be the trigger of seizure generation (Bragin 

et al., 2005). The rate of spikes without HFOs in the enthorhinal cortex was 

related with susceptibility to seizure on subsequent days (Levesque et al., 2011). 

In humans, HFOs increased immediately before seizures in the temporal lobe 

(Khosravani et al., 2005) while no consistent findings within 15 min before 

seizures across different etiologies were found (Jacobs et al., 2009b). Pre-ictal 

periods (22-min before seizures) could be discriminated from interictal periods 

using wavelet entropy and energy measures in HF range (Gadhoumi et al., 2012). 

The relation between HFOs and the pre-ictal state is actively being investigated.  

During interictal periods, higher rates of HFOs were observed in the SOZ 

(Bragin et al., 1999b, Urrestarazu et al., 2007) than in other areas; HFO rates 

correlate with the SOZ better than spikes (Jacobs et al., 2008a), are particularly 

linked to epileptogenic lesions (Jacobs et al., 2009a) and the ratio between FRs 

and ripples was higher in atrophic than normal hippocampus (Staba et al., 2007). 

Even though a large proportion of HFOs co-occur with spikes, HFOs can occur 

also in non-spiking channels or independently from spikes in spiking channels 

(Jacobs et al., 2008a). HFO rates (unlike spike rates) increase after a reduction in 

medication and do not change after seizures, thus mimicking disease “activity” 

(Zijlmans et al., 2009b). The number of microcontacts that recorded interictal FRs 

was correlated with seizure frequency in an animal model (Bragin et al., 2003), 

but this was not confirmed in a human study with macroelectrodes (Zijlmans et 

al., 2009a). As described in Chapter 3, section “3.4.1.Pre-surgical evaluation of 

epilepsy”, electrical stimulation can be used to help delineating the epileptogenic 

zone. HFOs were recorded in the areas that responded to stimulation and the rates 

of HFOs were negatively correlated with the threshold required to elicit a 

stimulation response (Jacobs et al., 2010c). Using single pulse stimulation, it is 

possible to evoke pathological HFOs, about 100ms after stimulation. These 

evoked HFOs were more specific than evoked spikes to delineate the SOZ (van 't 

Klooster et al., 2011).  
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Pathological HFOs are characterized as oscillations that stand out from the 

background. In a recent study the characteristics of this background in mesial 

temporal structures has been analyzed (Mari et al., 2012). This study showed that 

the background is sometimes composed of continuous oscillatory activity in HF 

range, particularly in the hippocampus. When studying the presence of this 

continuous HF activity background in different brain regions, it was found not 

only in the hippocampus, but also in the occipital lobe (Melani et al., in press). 

Figure 4.2 shows examples of spontaneous interictal HFOs in relation to the 

surrounding background recorded at the MNH. 

 
Figure 4.2. Examples of interictal HFOs within different backgrounds recorded with depth 
macroelectrodes in humans. A) & B) Channels where clear baselines can be found. C) Even 
though almost no baselines were found in this channel, HFOs were marked. Magenta: visually 
marked HFOs; blue: visually marked baselines. 

An important validation of HFOs as biomarkers of epileptogenic tissue is the 

relation between removal of HFO-generating tissue and the post-surgical 

outcome. All post-surgical studies to date were retrospective. A correlation 

between good surgical outcome and removal of areas with ictal ripples in children 

was first shown (Ochi et al., 2007). Removal of regions with earliest ictal HFOs 

during infantile spasms also correlated with good surgical outcome (Nariai et al., 

2011). A clear correlation between surgical outcome and removal of tissue 

generating high interictal HFO rate was also found (Akiyama et al., 2011b, Jacobs 

et al., 2010b, Wu et al., 2010). In adult patients in whom the areas corresponding 

to channels containing high rates of HFOs were not removed, the outcome was 

poor; while in all patients with good surgical outcome, all channels with high rate 

of HFOs were removed (Jacobs et al., 2010b). The accuracy was better than for 

spikes or the SOZ (Jacobs et al., 2010b). A similar conclusion was obtained from 
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intraoperative subdural recordings in children considering only interictal FRs (Wu 

et al., 2010). Interestingly in cases where HFO regions remained and bad outcome 

was obtained, a second operation removing the remaining regions with HFOs 

resulted in seizure freedom (Wu et al., 2010). These retrospective studies suggest 

a close link between a high rate of HFOs and epileptogenicity. A prospective 

surgical study involving large number of patients in multiple centers is necessary 

to further relate the ability of HFOs to help delineating the epileptogenic zone. 

It is important to point out that the conclusions in relation to HFO rates are 

based on the relative number of HFOs within a patient. Moreover, mesial 

temporal structures have inherently more HFOs than neocortical regions. Thus, 

there is no absolute threshold to indicate whether a channel has high content of 

HFOs and should be considered as part of the epileptogenic zone (Jacobs et al., 

2012). Other ways to quantify HFOs might provide a better threshold than the 

rates (see below section “4.4.2.Uncertainties about the detection of HFOs”). 

HFOs recorded interictally seem to provide a robust measure of 

epileptogenicity and only some minutes of interictal EEG provide the same 

information as longer periods (as studied in Chapter 5, Zelmann et al., 2009b). If 

more studies confirm the clinical relevance of interictal HFOs it would be 

possible to obtain reliable conclusions from shorter implantation (without the 

need to wait days for seizures to happen) or with intraoperative recordings. 

In summary, pathological HFOs are emerging as a reliable biomarker of 

tissue capable of producing spontaneous seizures. HFOs can robustly indicate the 

SOZ, independently of the underlying pathology; HFOs are more specific 

interictal markers than spikes; HFOs mimic the disease with respect to response to 

medication; and HFOs are a good indicator of the epileptogenic zone and have 

even been suggested to be even better than seizures (Jacobs et al., 2010b).  

Figure 4.3 presents the same schematic of clinically relevant regions shown in 

Chapter 3, Figure 3.4. The relation of HFOs to the other clinically relevant zones 

has been added. In the pre-surgical decision, the HFO zone might soon replace the 
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irritative zone, especially in cases when the irritative zone is often widespread, as 

in frontal lobe epilepsy (Zijlmans et al., 2012). 

 
Figure 4.3. Schematic showing the relation between HFO zone, seizure onset zone, lesional 
zone, irritative zone, and epileptogenic zone. HFOs can identify the SOZ, seem related to the 
epileptogenic zone, and HFOs may be also a marker of physiological damage in the future. From 
(Jacobs et al., 2012). 

4.3.1 Is it possible to distinguish pathological from 

physiological HFOs? 

The distinction between pathological and physiological HFOs remains to be 

defined (Engel et al., 2009). It has been originally associated (in recordings with 

microelectrodes) with a difference in frequency, with ripples regarded as normal 

oscillations, while FRs were considered pathological. However, recent studies 

suggested that frequency distinction alone is not sufficient to discriminate 

between pathological and physiological HFOs, at least when recorded with 

macroelectrodes. The rates of ripples and FRs were higher in the SOZ than 

outside (Jacobs et al., 2008a, Urrestarazu et al., 2007, Worrell et al., 2008), 

ripples behaved similarly to FR with respect to surgical outcome (Jacobs et al., 

2010b) and medication withdrawal (Zijlmans et al., 2009b). In rats that developed 

epilepsy, ripples were observed in the dentate gyrus where normal ripple 

oscillations never occur (Bragin et al., 2004). Thus, ripples and FRs seem to be 
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associated with tissue that generates seizures. Moreover, when clustering HFOs 

there was no natural division between ripples and FRs according to frequency, but 

rather a continuum (Zelmann et al., 2009a) or there was an intermediate cluster 

that contained a mix of ripples and FR (Blanco et al., 2011). Thus, since the 

frequency division seems arbitrary at least for recordings with macroelectrodes, 

no distinction between ripples and FR is implemented during the automatic 

detection of HFOs (see Chapter 6; Zelmann et al., 2010, Zelmann et al., 2012). 

The only distinction to date may come from the underlying mechanisms 

studied in animal models. Pathological HFOs appear to represent abnormal bursts 

of action potentials, therefore reflecting the underlying epileptogenicity (Engel et 

al., 2009). However, when recorded with macroelectrodes in humans pathological 

and physiological HFOs looked the same (Nagasawa et al., 2012). New 

characteristics to distinguish between them should be investigated. 

4.3.2 Non Invasive identification of HFOs 
In cognitive neuroscience, HF activity can be seen on the scalp after 

averaging thousands of trials, since averaging time-locked to a stimulus during a 

controlled experiment considerably increases the SNR. For instance, averaged 

scalp activity of somatosensory evoked-potentials up to 600Hz has been identified 

(Curio 2000) and scalp and subdural recordings showed the same pattern of HF 

activity during movement (Ball et al., 2008). On the contrary, pathological HFOs 

are spontaneous events, and as such must be identified individually. Thus, HFOs 

have been mainly recorded with intracranial electrodes. 

Surprisingly, recent studies showed that spontaneous HFOs can be also 

recorded from the scalp. Ictal gamma activity (50-100Hz) was observed during 

infantile spasms (Kobayashi et al., 2004) and at the onset of tonic-clonic seizures 

(Kobayashi et al., 2009). Interictally, paroxysmal gamma activity (above 30Hz), 

although infrequent, co-localized with the SOZ (Wu et al., 2008). HFOs were first 

observed on the scalp during continuous spike-waves during slow-wave sleep 

(Kobayashi et al., 2010b). Furthermore, careful observation of scalp EEG allowed 
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the identification of interictal HFOs in some patients with focal epilepsy 

(Andrade-Valença et al., 2011). In all cases the rate of scalp HFOs was much 

smaller than the usual rate of intracranial HFOs. Figure 4.4 presents an example 

of HFOs visible on the scalp. 

 
Figure 4.4. Example of HFOs visualized on the scalp. From (Andrade-Valença et al., 2011). 

If HFOs could be robustly recorded on the scalp, they might be useful to 

evaluate AED efficacy, to plan electrodes implantation, and to predict the 

development of seizures after brain trauma. Since HFOs on the scalp could be 

recorded during routine EEG investigation, they could be useful to evaluate large 

patient populations in longitudinal studies. A better understanding of the spatial 

sampling needed to observe HF brain activity on the scalp is important for the 

clinical use of scalp HFOs as biomarkers of epilepsy as well as in cognitive 

research and it is addressed in Chapter 7 (Zelmann et al., submitted). 
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4.4 Automatic detection of HFOs2 
Automatic detection is crucial for the investigation of HFOs as biomarkers of 

epileptogenic tissue, and is likely necessary to propel future clinical applications. 

The automated detection and analysis of large-scale data sets and HFO detectors 

are areas of active research. 

The detection and labeling of interictal and ictal epileptiform activity in EEG 

records can be broadly categorized into: i) Expert Manual Review - considered the 

gold standard, but could be associated with poor inter-reviewer reliability and not 

feasible for large data sets. ii) Supervised Detection - usually implemented using a 

high sensitivity automated detection algorithm that may have poor specificity, but 

is combined with expert review. iii) Unsupervised Detection - achieves fully 

automated detection and data labeling, but requires high specificity and sensitivity 

detectors to be useful.  

As a running definition for the detection of HFOs, the following has been 

suggested: at least four oscillations of sinusoidal like morphology in the filtered 

EEG (above 80 Hz) with energy larger than the 95 percentile of the surrounding 

background (Worrell et al., 2012). In addition, constrains in the time-frequency 

plane have been empirically proposed by some authors. 

4.4.1 Detection of HFOs 
At the Montreal Neurological Institute the visual labeling of HFOs is usually 

performed by splitting the screen vertically in two and using an 80Hz high-pass 

filter on the left and a 250Hz high-pass filter on the right screen. A high order 

high-pass finite impulse response (FIR) filter is used to obtain a sharp cut-off 

while avoiding phase distortion. The time resolution is increased to 0.6 sec across 

the monitor and only up to 10 channels are visualized simultaneously. A ripple is 

                                                            
2 This section was modified from the originally published section “Automatic Detection of HFOs”, 
written by R. Zelmann, in review following the workshop “High Frequency Oscillations in 
Cognition and Epilepsy” (Montreal June 2‐4, 2011; Worrell et al., 2012). 
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marked if there is a clear oscillation on the left that is not visible or has a different 

morphology on the right. A FR is marked if it appears in the right screen.  

Visual labeling has provided a good understanding of the relation between 

HFOs and epilepsy (most clinical papers described in the section 

“4.3.Pathological HFOs” used visual labeling), but it is very time consuming and 

subjective. It can be estimated that takes around 10 hours to mark HFOs in a 10-

minute 10-channels recording. To achieve consistency across reviewers and to 

ensure stable labeling, a procedure described in Chapter 5 (Zelmann et al., 2009b) 

was developed. 

Given the massive amounts of EEG data that are collected from patients 

undergoing evaluation for epilepsy surgery it is likely untenable to only rely on 

visual review of HFOs. Objective, consistent, accurate labeling of epileptiform 

activity in large-scale recordings requires automated detectors. Since the objective 

is the detection of spontaneous HFO events that can be distinguished from 

ongoing background activity, a logical approach is to compare the energy of the 

signal with an energy threshold derived from the background. The first step is 

band-pass filtering the data, to restrict the range of frequencies under 

consideration. When the energy of the filtered EEG is statistically larger than the 

threshold during a certain interval, the segment is considered as a possible HFO 

(Figure 4.5) (Crepon et al., 2010, Gardner et al., 2007, Staba et al., 2002, 

Zelmann et al., 2010, Zelmann et al., 2012).  

 
Figure 4.5. Schematic of the automatic detection of HFOs based on energy. From (Worrell et 
al., 2012). 
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Under the assumption that HFOs are rare events, some detectors compute the 

energy threshold based on the entire EEG signal, including the HFO events 

(Crepon et al., 2010, Gardner et al., 2007, Staba et al., 2002). The main difference 

among them is the type of energy function that is computed on the filtered signal, 

either the root mean square amplitude (Staba et al., 2002), the short-time line 

length (Gardner et al., 2007), or the Hilbert envelope (Crepon et al., 2010). The 

assumption that HFOs are rare events seems correct in the majority of the EEG 

channels, but in very active channels or in channels with continuous rhythmic 

background (Mari et al., 2012) it does not hold. In those cases, performance can 

be improved by first detecting baseline sections (EEG segments without 

oscillatory components) and computing the energy threshold based on the energy 

in the detected baseline as described in Chapter 6 (Zelmann et al., 2010, Zelmann 

et al., 2012). All these detectors aim at the detection of intracranial HFOs. An 

automatic detector of scalp HFOs has also been developed based on filter banks 

and relative power features to separate HFOs from artefacts (von Ellenrieder et 

al., 2012). 

4.4.2 Uncertainties about the detection of HFOs 
Existing methods for automated intracranial HFO detection implicitly model 

the events as short-duration, high frequency transients added to background EEG, 

but there are different implicit specific goals on what to detect as an HFO. Indeed, 

the definition of HFO differs across research groups.  

The cross sectional area of an electrode determines the scale of spatial 

sampling (Worrell et al., 2012). Thus, small extent activity such as the one 

generating HFOs was originally recorded with microelectrodes (40μm diameter; 

0.001mm2). However, clinical macroelectrodes also allow for the recording of 

these small events, although with a lower rate (Worrell et al., 2008). However, 

since HFOs recording with macrocontacts are related to the epileptogenic region, 

it has been argued that somehow macroelectrodes might allow recording the most 

clinically relevant HFOs. When comparing contacts of different sizes within the 

same range (0.02-0.09mm2) no significant difference in the rate or characteristics 
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of the recorded HFOs was found (Châtillon et al., 2011). The range of HFO 

amplitude (10 to 1000 µV) and duration (30-100 ms) reported spans a wide range, 

depending on electrode type (macroelectrode vs. microelectrodes, penetrating vs. 

subdural), proximity to the HFO generators, and the tissue sampled.   

Since the analysis is focused in a particular frequency band, the filter 

characteristics must be taken into account to avoid the detection of false 

oscillations (Bénar et al., 2010), i.e. sharp transients with spectral content in HFO 

bands but without actual HFOs in the raw EEG. Such false oscillations are not 

artefacts (defined as activity originated outside the brain, see Chapter 2), since the 

sharp spikes originate in the brain. They rather originate from the Fourier 

transform of a transient that always exhibits a wide range of frequencies. The 

transient being the result of the additive superposition of all those harmonics, a 

narrowband filter will generate spurious oscillations in the vicinity of the transient 

(Gibb’s effect). In practice, these false oscillations could be separated from the 

HFOs of interest, since they have only a few oscillations when an appropriate 

filter is used. This can be validated by random selection of detected events to 

verify the presence of discrete HFOs in the unfiltered EEG. Moreover, the issue of 

whether there is a difference between sharp spikes that contain spectral energy in 

the HFO range versus spikes that do not has not been thoroughly addressed. This 

should be further studied, since spikes originating in the seizure onset zone have 

more high frequency activity than those outside (Jacobs et al., 2011b).  

A question that often arises is whether HFOs should be a band-limited event 

(as in Crepon et al., 2010) or it can be a broadband event (e.g. (Staba et al., 2002); 

Chapter 6, (Zelmann et al., 2012)). If band-limited, should there be specific 

spectral boundaries? In other words, should an HFO be defined as an isolated 

event in the time-frequency map, or could it contain a variety of frequencies 

within a range? A separate, but related question is whether only those HFOs that 

occur alone versus those occurring in association with epileptiform EEG spikes 

are relevant. To date, there is no clear answer to these questions. 
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To avoid false negatives, the most common approach is to implement the 

detectors with high sensitivity but low specificity. In this way, most of the HFOs 

should be detected, at the cost of producing a large number of false positives that 

then need to be discarded. Visual validation of these possible events is usually 

performed. Even though human reviewers are not the perfect solution, it is a 

reasonable approach given that they are the clinical users and that they are 

considered as the gold standard when identifying other electrophysiological 

signals, such as spikes, seizures, or the alpha rhythm. To overcome variability 

among reviewers, a possibility is to consider more than 1 reviewer (as in (Gardner 

et al., 2007); Chapter 6, (Zelmann et al., 2010)).  

The rate of HFOs in a channel seems a reliable marker of underlying 

epileptogenic tissue and it has been the most commonly used measure. However, 

other measures (such as: ranking of channel, durations, amplitudes, peak 

frequency, temporal distributions, and entropy) might turn out to be the most 

appropriate to characterize HFO activity.  
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Chapter 5. Manuscript #1: Improving 

the identification of High Frequency 

Oscillations 

5.1 Context 
Visual marking of HFOs provided a good understanding of the relation of 

HFOs with epilepsy and was the methodology used in most studies of 

pathological HFOs in humans (see Chapter 4). Since visual marking is highly time 

consuming and subjectivity is inevitable, a procedure was required to systematize 

the visual marking and to obtain a measure of stability in the markings. High rates 

of interictal HFOs seem related to epileptogenic tissue. Thus, it is important to 

assess the shortest duration that needs to be marked to obtain a reliable rate of 

HFOs, which would contain the same information as longer intervals. Since the 

measure of high rate of HFOs is relative to each patient, not only the rate of HFOs 

should be evaluated, but also the ranking of the channels (i.e. the relative order of 

channels with respect to HFO rates within each patient). Evaluating stability in the 

identification of HFOs is important not only for visual, but also for automatic 

marking of HFOs. 

The following manuscript presents a procedure developed to assess the 

duration of EEG that must be interpreted in order to obtain reliable estimates in 

terms of rate of HFOs and ranking of channels with respect to rates, to ensure 

stability of marked recordings (visual or automatic), and to assess concordance 

between reviewers. This manuscript was published as (Zelmann R, Zijlmans M, 

Jacobs J, Chatillon CE, Gotman J. 2009. Improving the identification of High 

Frequency Oscillations. Clin Neurophysiol 120:1457-64).   
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5.2 Abstract 
Objective. High Frequency Oscillations (HFOs), including Ripples (80-

250Hz) and Fast Ripples (250-500Hz), can be recorded from intracranial 

macroelectrodes in patients with intractable epilepsy. We implemented a 

procedure to establish the duration for which a stable measurement of rate of 

HFOs is achieved. Methods. To determine concordance, Kappa coefficient was 

computed. The information gained when increasing the duration was analyzed in 

terms of HFO rates and ranking of channels with respect to HFO and spike rates. 

Results. In a group of 30 patients, Kappa was 0.7 for ripples, 0.7 for fast ripples 

and 0.67 for spikes. Five minutes provided the same information as 10 min in 

terms of rates in 9/10 patients and with respect to ranking of channels in 8/10 

patients; 5/30 patients did not achieve stable measurements of HFOs or spikes and 

needed marking for 10 min. Conclusion. We propose that 5 min provides in most 

cases the same information as a longer interval when identifying HFOs and spikes 

in slow wave sleep, and present methods to identify when this is not the case. 

Significance. This procedure is useful to control for consistency between readers 

and to evaluate if the selected interval provides stable information, for automatic 

and visual identification of events. 

5.3 Introduction 
High Frequency Oscillations (HFOs), referred to as Ripples (80-250Hz) and 

Fast Ripples (250-500Hz), are EEG signals recorded from intracranial electrodes 

in patients with intractable epilepsy. It had been traditionally thought that only 

signals with frequency components up to the gamma band (40-80Hz) have a 

clinical meaning. However, recent findings in rodents and humans showed a 

possible relation of HFOs with epileptogenesis (Bragin et al., 1999a, Bragin et al., 

1999b, Jacobs et al., 2008a, Jirsch et al., 2006, Khalilov et al., 2005, Staba et al., 

2002, Urrestarazu et al., 2007).  

Even though no formal definition exists, HFOs recorded with 

macroelectrodes can be characterized by oscillations of at least four cycles, with a 
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typical duration of 80-100ms for ripples and 30-50ms for fast ripples, which can 

be clearly distinguished from the background activity (Jacobs et al., 2008a), and 

with an inter-event interval of around 25ms. These EEG patterns occur 

spontaneously and can be identified more frequently during slow wave sleep 

(SWS; (Bagshaw et al., 2009, Staba et al., 2004). 

Based on these features, HFOs are visually identified by experienced readers 

or automatically marked by ripple detectors (Khalilov et al., 2005, Staba et al., 

2002, Worrell et al., 2008) and sometimes visually validated (Worrell et al., 

2008). However, given the lack of a complete definition, subjectivity is inevitable, 

sometimes resulting in poor agreement among reviewers. Visual marking is also 

highly time consuming, taking around 10 hours to visually mark HFOs in a 10-

channel 10-min recording. The current practice of marking 10-min episodes 

(Bagshaw et al., 2009, Jacobs et al., 2008a, Staba et al., 2002, Urrestarazu et al., 

2007) is an appropriate duration in the sense that stable SWS sections of this 

duration can be found in most patients with implanted electrodes. When using 

automatic detection 10- to 30-min intervals are selected (Staba et al., 2007, Staba 

et al., 2002, Worrell et al., 2008). It is possible, however, that the same amount of 

information could be obtained with shorter intervals.  

The rates of HFOs are the most commonly used measure of HFO occurrence 

and are believed to be associated with the seizure onset zone (SOZ), not only 

during seizure generation but also interictally. Indeed, in interictal periods, higher 

rates of HFOs were observed in the SOZ (Bragin et al., 1999b, Urrestarazu et al., 

2007) than in other areas, in particularly linked to epileptogenic lesions (Jacobs et 

al., 2009a), and showed to be higher in atrophic hippocampus (Staba et al., 2007). 

The ranking of channels according to rate indicates the relative importance of a 

channel with respect to the others for each patient, providing an assessment 

independent of absolute rates. 

A procedure is proposed to minimize the EEG duration that needs marking in 

order to obtain reliable estimates in terms of rates of HFOs and ranking of 
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channels with respect to rates, and to assess concordance between readers. This 

procedure is useful for visually marked EEG as well as to ensure that a stable 

measurement is achieved with automatic detectors. 

5.4 Methods 

5.4.1 Patient selection and visual marking 
Forty patients with medically intractable epilepsy underwent depth electrode 

implantation at the Montreal Neurological Hospital between September 2004 and 

December 2007 because their epileptogenic region could not be localized with 

non-invasive means. The mean age was 41.7 years (range 20-59). Twenty five 

were lesional and 15 non-lesional patients. Eighteen patients had seizures 

originating from mesio-temporal lobe structures and 22 had seizures originated 

from extra temporal structures (11 neocortical temporal areas, 6 frontal, 3 

occipital and 2 centroparietal). All patients had complex partial seizures during 

the investigation, and 4 patients additionally had generalized tonic-clonic seizures 

during the investigation. The position of the electrodes was selected exclusively 

for clinical reasons. During some nights, the depth EEG (SEEG), recorded with 

the Harmonie system (Stellate, Montreal, Canada), was low-pass filtered at 500Hz 

and sampled at 2000Hz, allowing for the identification of HFOs. All patients gave 

informed consent in agreement with the Research Ethics Board of the Montreal 

Neurological Institute and Hospital. 

Two experienced readers visually identified and marked HFOs and spikes in 

all patients. The marking of ripples and fast ripples was performed by vertically 

splitting the screen in two, and using an 80Hz high-pass filter on the left half and 

a 250Hz high-pass filter on the right. A ripple was marked if an event was clearly 

visible on the side of the 80 Hz filter and did not occur or show the same shape on 

the side of the 250 Hz filter, as it is defined as a distinct event between 80 and 250 

Hz. An event was identified as a fast ripple if it was visible in the 250 Hz filter. 

Ripples and fast ripples were only regarded as such if their amplitude was clearly 
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higher than the baseline of the investigated channel and they consisted of at least 

four consecutive oscillations (Jacobs et al., 2008a). Spikes were marked 

independently of HFOs on a standard EEG display. All SEEG channels 

functioning properly were marked using a bipolar montage, resulting in 7-58 

channels per patient. The first 10 patients were selected for the development and 

evaluation of the methods. To this end, their SEEG was visually marked during 10 

min of SWS. For the remaining 30 patients, 5 min were marked. In the patients 

for whom the analysis showed that 5 min was not sufficient to reach a stable 

measurement, 10 min were marked and re-evaluated.  

5.4.2 Sufficient interval and concordance evaluation 
In order to improve the identification of HFOs and spikes in SEEG, we 

developed a procedure to ensure a minimum degree of concordance across 

reviewers and to determine whether the obtained information was representative 

of the EEG of each patient. We define a stable measurement as a measurement 

that does not change over time (i.e. the measured rate and ranking of channels 

remain the same for the different interval lengths). Thus, the marked EEG was 

considered to be stable at a particular interval if the amount of information 

obtained in that interval was equivalent to the information of the whole marked 

EEG in terms of rate of HFOs and spikes and also in terms of ranking of channels 

according to the rates of HFOs and spikes.  

The procedure can be divided in two steps (Figure 5.1), evaluating the 

agreement between reviewers, then assessing when a stable measurement of the 

rates and ranking of channels according to the rates is achieved for the marked 

interval. 
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Figure 5.1. Diagram of the complete process. First step: Assessing concordance between readers 
based on Kappa coefficient (1). Second step: Evaluating if an interval is representative of the 
whole marked EEG, in terms of rates (2.a) and ranking of channels (2.b). 

5.4.2.1 Inter­observer agreement 
To determine concordance, the first minute of each EEG was marked by two 

reviewers. Cohen’s Kappa coefficient (Cohen 1960) was computed for this first 

minute in each channel. This coefficient measures the degree of agreement 

between two reviewers, taking into account the agreements made by chance. 

Kappa <0 reflects that the agreement is due to chance and κ =1 indicates complete 

agreement. Kappa =0.5 reflects moderate agreement, and was chosen as the 

threshold of concordance (Landis and Koch 1977). Thus, channels with κ <0.5 

were reviewed and discussed jointly by the two reviewers to reach similar 

marking criteria. They were then remarked by the reviewer that also marked the 

remaining EEG.  

5.4.2.2 Stable measurement assessment 
An interval was considered representative of the whole EEG if marking this 

interval resulted in the same amount of information as marking the whole 

reference interval. This was assessed by two independent methods, Jensen–

Shannon (JS) Divergence and Ranking Distance (RKD). The JS Divergence 

measures the relative information gained when comparing the rate of identified 

events found in different intervals and in the complete interval (the “true 

distribution”). The RKD allowed us to identify the changes in the ranking of the 

identified events for the same intervals. 

 To determine at which interval length a stable measurement was achieved in 

most patients, different durations, ranging from 6 sec to 9.5 min, were compared 

against the 10 min “gold standard”. In addition, in order to ensure that there was 
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no bias towards the beginning or end of the 10-min interval, 10 random start 

points were used for each interval length. For the second group of patients 

(marked during 5 min) the different intervals ranged between 6 sec and 4.5 min 

and were compared against the 5-min interval. 

For this second group of patients, the marked 5-min interval was considered 

stable if an interval of half the length (2.5 min) provided the same information as 

the 5-min interval (i.e. if at 2.5min the RMSDJS and the RMSDRKD, as defined in 

section 5.4.2.3, were smaller than the threshold). Thus, if this condition was not 

met, we cannot determine if the 5-min interval is stable and therefore 10 min were 

marked for that patient. 

5.4.2.2.1 JS Divergence  

For evaluating the interval length providing stable measurement of rates, the 

information gained when increasing the interval duration was analyzed in terms of 

difference in the rate of events. If the rates are time invariant, the law of 

diminishing returns applies: increasing interval length results in decreasing gain in 

information. One well known way to measure the information gain is the 

Kullback–Leibler (KL) Divergence or relative entropy. The KL Divergence 

quantifies the difference in information gained when using a given distribution 

(Q) instead of the “true” distribution (P). In our case, P represents the percentage 

of epochs that contain a given event in the 10-min interval, while Q represents the 

percentage of epochs that contain a given event for the different time intervals (t). 

The epoch length was chosen as 50ms for all types of events. Thus, for each of the 

possible events ripple, fast ripple, spikes and no event: 

DKLሺP||Q୲ሻ୲ ൌ ∑ Pሺevሻlog Pሺୣ୴ሻ
Q౪ሺୣ୴ሻୣ୴             Equation 5.1 

where ev = ripple, fast ripple, spikes or no event   

  P ൌ ൦

Rଵ଴୫୧୬
FRଵ଴୫୧୬
Spଵ଴୫୧୬

noEvଵ଴୫୧୬

൪ Q୲ ൌ ൦

R୲୫୧୬
FR୲୫୧୬
Sp୲୫୧୬

noEv୲୫୧୬

൪  

where interval t= 0.1,0.5,1,1.5,….,9,9.5,10min 
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Because we are trying to obtain the distance in terms of information gain 

between the 10-min interval (our “gold standard”) and the different interval, a true 

metric or distance function was needed. A true metric has the following 

properties: it is non-negative (d(x,y)≥0); it is zero if and only if the two inputs are 

equal (d(x,y)=0 iif x=y); it is symmetric (d(x,y)=d(y,x)); and satisfies the triangle 

inequality (d(x,z)≤d(x,y)+d(y,z)). The KL divergence satisfies the first two 

properties but it is a non-symmetric measure and does not satisfy the triangle 

inequality (Cover and Thomas 1991). Moreover, it is possible that for certain 

epochs there would be no event of a particular type, which would make Qt equal 

zero, and the KL Divergence infinite. Thus, the JS Divergence was used instead 

(Lin 1991). The JS Divergence is a symmetric and smoothed version of the KL 

Divergence, defined as 

DJSሺtሻ ൌ భ
మDKLሺP||M୲ሻ ൅ భ

మDKLሺQ୲||M୲ሻ         Equation 5.2 

where M୲ ൌ ଵ
ଶ

ሺP ൅ Q୲ሻ. Another advantage of the JS Divergence is that its square 

root ሺNDJSሺtሻ ൌ ඥDJSሺtሻమ ) is bounded (not infinite) and satisfies the triangle 

inequality (Endres and Schindelin 2003). Therefore, we used this true metric for 

calculation. The NDJS was computed for each patient and each channel. 

5.4.2.2.2 Ranking Distance 

Not only are the rates per minute important, but so are the ranking of 

channels according to rates of HFOs (from highest to lowest HFO rate). To 

determine how the different durations affected the ranking of channels, we 

implemented an algorithm to measure the distance between two sequences, in our 

case rankings. The Ranking Distance (RKD) measures the difference between two 

rankings as the sum of the cost associated with each channel that is not in the 

“correct” position (with respect to the ranking of the whole interval, our “gold 

standard”).  
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RKDሺtሻ ൌ ∑ ∑ C୧୨୨ୀP୭ୱ౪
#C୦ୟ୬୬ୱ
୧ୀଵ            Equation 5.3 

where interval t= 0.1,0.5,1,1.5,….,9,9.5,10min  

where Post are the new position in the ranking, #Channs the number of 

channels for that patient. The matrix cost (C) measures the cost of being in a 

different position in the ranking, and was computed as the difference in rates of 

those channels in the “true” ranking. Thus, Cij is the cost associated with being in 

position j in the ranking instead of in position i. 

C ൌ

ۏ
ێ
ێ
ۍ 0 … Cଵ୨ CଵN

C୧ଵ 0 C୧୨ C୧N
ڭ

CNଵ

ڭ
…

ڰ
CN୨

ڭ
0 ے

ۑ
ۑ
ې
       Equation 5.4 

where i=1,2,…, #Channs and j=1,2,…, #Channs 

where C୧୨ ൌ ห#E୴౟ି#E୴ౠห
K

             

where #Evi is the rate of events in channel i for the whole EEG, K is a 

normalizing constant and Cij equals Cji. By using this cost function, the change in 

position is taken into consideration as well as the importance of the change as 

represented by the difference in rate between channels. The RKD score was 

normalized by dividing by a constant (K) such that a RKD score equals 0 only 

when the rankings are the same, while a RKD score of 1 represents total 

discrepancy. The RKD is computed for each type of event (ripple, fast ripple and 

spike) for each patient.  

5.4.2.3 Root Mean Square Difference 
In order to decide when a stable measurement is achieved for each patient, we 

needed a thresholding approach that was consistent for both methods. Given that 

the NDJS was calculated for each channel and that the RKD score was calculated 

for each type of event, we implemented for each of them the root mean square 

difference (RMSD), which provided a single value for each patient and for each 

interval. 
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As a reference distribution and to compute the threshold, we choose a 

uniform distribution of events with the same number of events as the real data. A 

uniform distribution of events is the ideal distribution in this case since it has the 

same rate at any interval length (i.e. we obtain a stable measurement of the rate) 

and, therefore, the difference in information gained and the difference in ranking 

would be minimal across the different intervals. For each channel, 10 uniform 

distributions were produced by distributing randomly but uniformly the same 

number of total events as the real data over a 10-min interval. On the other hand, a 

beta distribution of the events with parameters α=3 and β=1 was used to represent 

the case when most of the events occur at the end of the interval, and therefore the 

selected interval will not provide a stable measurement of the rates. In this way, 

one good and one bad possible distribution of events were taken into 

consideration. 

Thus, to assess when a stable measurement is obtained in terms of the 

information gained in each patient, the NDJS obtained from the data was compared 

with the NDJS obtained from a uniform distribution with the same rate of events in 

the 10-min interval (same R10min, FR10min, and Sp10min). The NDJS was computed 

for the real and corresponding uniform distributions, for each channel and for 

each starting point. The RMSD between NDJS of each channel and the mean NDJS 

of the 10 uniform distributions corresponding to the same channel and starting 

point (see above), was computed for each patient.  

RMSDJSሺtሻ ൌ ඨ∑
൬NDJSౙ,౩౪

౨౛౗ౢ ሺ౪ሻషNDJSౙ,౩౪
౫౤౟౜ ሺ౪ሻ൰

మ

NౙశN౩౪ୡ,ୱ୲

మ

        Equation 5.5 

for interval t= 0.1,0.5,1,…,9.5,10 min    

where c are all possible channels of a patient and st are all the possible 

starting points. Thus, the analysis of stability was done independently for each 

patient based on the comparison of the NDJS obtained for the patient and the NDJS 

that corresponds to a uniform distribution with the same total number of events. 
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For selecting the threshold, the RMSDJS between the NDJS of each uniform 

distribution and the mean NDJS of all the uniform distributions (across the patients 

marked for 10 min) was computed, resulting in only one reference RMSDJS(t) 

value for each interval. It represents the variability of uniform distributions among 

patients. Because around 40% of the channels had a rate smaller than 1/min 

considering the complete marked interval (93/240 channels with ripples, 49/100 

channels with fast ripples, and 122/304 channels with spikes for the first group of 

patients), and in order to have at least 1 event representative of the uniform 

distribution, we chose a 2-min interval as the interval in which to compute the 

threshold. The threshold (thRMSDJS) was then empirically chosen as two times 

the reference RMSDJS(t), for t= 2min. For example, if for a patient the 

RMSDJS(t≥3min) < thRMSDJS, intervals longer than 3 min were considered 

equivalent to the uniform distribution in terms of information gain, and therefore a 

3-min interval was representative of the whole segment of EEG, with no 

information gained by marking more than 3 min. 

An equivalent approach was followed to assess when a stable measurement 

was reached in terms of ranking of channels. For each patient, the RMSD of the 

obtained RKD score with respect to the mean RKD score obtained by 10 uniform 

distributions was performed, similar to the approach followed for the JS 

Divergence.  

RMSDRKDሺtሻ ൌ ට∑ ቀRKD౛౬,౩౪
౨౛౗ౢ ሺ౪ሻషRKD౛౬,౩౪

౫౤౟౜ ሺ౪ሻቁ
మ

N౛౬శN౩౪ୣ୴,ୱ୲
మ

          Equation 5.6 

for interval t= 0.1,0.5,1,…,9.5,10 min. 

where ev are all possible events (ripples, fast ripples and spikes) and st are all 

the possible starting points. A stable measurement was considered to be achieved 

for a patient at a certain interval, in terms of ranking of channels, when the 

RMSDRKD was smaller than the threshold. Following the same thresholding 

approach used for JS Divergence, the threshold (thRMSDRKD) was set as two 

times the reference RMSDRKD(t), for t= 2 min. As before, the reference 

RMSDRKD(t) was obtained from the RKD scores based on all the uniform 
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distributions for all patients with respect to the averaged RKD score of the 

uniforms.  

5.5 Results 

5.5.1 Inter­reviewer agreement 
This was assessed by two reviewers marking the first minute of each 

recording. In the first 10 patients, the average κ was 0.6 for ripples, 0.56 for fast 

ripples and 0.49 for spikes. In order to improve concordance across readers, all 

channels with κ < 0.5 were discussed and new criteria were developed. For 

instance, the gain selected to mark spikes was redefined, whether to consider 

polyspikes as individual spikes or as one group was decided, and agreement 

regarding spiky baselines was achieved. The new criteria were considered for the 

remarking of the channels with low kappa, by one of the readers, and for the 

second group of patients (30 patients). For the second group, κ was higher: 0.7 for 

ripples, 0.7 for fast ripples and 0.67 for spikes, showing a clear improvement 

particularly for spikes.  

When analyzing the common features of the jointly marked events, we 

observed that those HFOs that were identified by both reviewers were those that 

clearly stand out from the baseline. Moreover, when analyzing those channels 

with κ around 0.5, we found that the markings were consistent between reviewers 

and that the overall rates remained similar. In the case of channels with spiky (or 

bumpy) baselines, it was important to agree on the display gain to have good 

agreement. There was also sometimes disagreement in the duration of the marked 

HFOs. In the case of spikes, the use of a common gain to mark was the main 

factor of improvement. In addition, special attention was paid to avoid the 

erroneous marking of sleep spindles as events. 



85 

5.5.2 Sufficient Interval 

5.5.2.1 Initial assessment of the methods 
Once concordance was evaluated for the first minute, the same 10 patients 

were marked for the remaining 9 min by one reviewer, and the different intervals 

were compared against the 10-min interval to assess the interval length at which 

representative information of the whole EEG was reached. Because the JS 

Divergence and the RK Distance measure different aspect of the obtained 

information, they can be considered complementary; thus, patient’s markings had 

to provide a stable measurement in both methods at a particular interval length.  

In 9 of the 10 patients, an interval of less than 5 min provided the same 

information as an interval of 10 min, as measured by the JS Divergence (example 

in Figure 5.2.A). For patient P4 (Figure 5.2.B), for whom this was not the case, 

only at an interval of 7.5 min was the RMSDJS smaller than the threshold (Figure 

5.2.D). Furthermore, if we compare the averaged JS Divergence, across channels 

for each patient, with the averaged JS Divergence, across channels and across 

patients, for a uniform and a beta (α=3, β=1) distributions, it can be observed that 

for all subjects but P4 the mean JS Divergence is similar to the mean JS 

Divergence for the uniform distributions (Figure 5.2.C). On the contrary, the 

mean JS Divergence for P4 resembles more the mean JS Divergence for the beta 

distribution. 
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Figure 5.2. The JS Divergence establishes the information gained when increasing the 
interval length. Top: Example of ripple rate for different intervals in one channel and the obtained 
JS Divergence (which is obtained by pooling ripple, fast ripple and spike rates). A) Example of a 
stable channel. B) Example of a non stable channel. Bottom: C) Comparison of the mean JS 
Divergence across channels, for the real markings, for a uniform distribution and for a beta 
distribution (α=3, β=1). D) Root mean square difference (RMSDJS) between NDJS (root square of 
JS Divergence) obtained from the real marking of events and NDJS that would be obtained if a 
uniform distribution of the events was used instead. Patient with a dashed line and a symbol (o) 
have a RMSDJS(t≥5min) > thRMSDJS.  The thRMSDJS equals twice the RMSDJS for all uniform 
distributions at 2-min interval. A 10-min interval is considered as the “gold” standard. 

When assessing when a stable measure is obtained regarding the ranking of 

channels, 8 of 10 patients achieved a stable measurement before 5 min as 

measured by the RKD (examples in Figure 5.3.A and 5.3.B). The RMSDRKD 

measures the difference between the obtained RKD and the RKD of a uniform 

distribution and was smaller than threshold for intervals smaller than 2 min for 8 

of the 10 patients. One patient (P7) only obtained an RMSDRKD value smaller than 

threshold at 5-min intervals, while another (P1) only at 5.5 min (Figure 5.3.D). 

Furthermore, when analyzing the median value of the RKD (across different event 
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types and different starting points) all but patient P1 showed a distribution similar 

to the uniform distribution for intervals of 4 min or longer (Figure 5.3.C).  

 
Figure 5.3. The Ranking Distance (RKD) measures the difference in ranking for different 
intervals. Top: Example of difference in ranking and corresponding RKD scores, for 1min and 
4min intervals. A) Example of a stable ranking (patient P10 and fast ripples). B) Example of non 
stable ranking (patient P1 and ripples). Bottom: C) Median RKD (across starting points and type 
of event) for each patient when comparing with the ranking of channels for the 10-min interval. D) 
RMSDRKD of the RKD score when comparing the obtained score for each interval with the 
corresponding RKD score for a uniform distribution. Patients with a dashed line and a symbol (+ 
or x) have a RMSDRKD(t≥5min) > thRMSDRKD. The thRMSDRKD equals twice the RMSDRKD for 
all uniform distributions at 2-min interval. A 10-min interval is considered as the “gold” standard.  

Thus, a stable measurement of the rates and ranking of channels is achieved 

for intervals smaller than 5 min for most patients, showing that an interval smaller 

than 5 min would provide the same relevant information as a 10-min interval for 

most patients. In particular, in terms of the relative information gained (RMSDJS), 

a stable measurement is achieved for intervals smaller than 5 min for all patients 



88 

but one. Moreover, in three patients no information was gained if analyzing 

intervals longer than 2 min. On the other hand, the ranking of channels 

(RMSDRKD) remained stable for durations longer than 3 min in most patients. 

Thus, to ensure that the marked interval is representative of the whole EEG for 

most patients with respect to rates and ranking of channels, 5 min was selected as 

the interval length to be marked from now on.  

5.5.2.2 Evaluation of the same patients for a 5­min interval 
Since we showed that 5 min is a sufficient interval for most patients, we 

repeated the same analysis in this group of 10 patients considering the first 5 min 

as the “gold” standard, resulting in similar conclusions. This further validates the 

hypothesis that 5 min of marking was sufficient and shows consistency of the 

methods. Indeed, when these 10 patients were considered to be marked for 5 min 

and analyzed, the conclusion according to the JS Divergence was that for patient 

P1 and P4 the RMSDJS was smaller than the threshold only at 4-min intervals 

(Figure 5.4.A). Moreover, the RMSDRKD indicated that for 2 patients (P1 and P7), 

marking only 5 min was not enough (Figure 5.4.B). Thus, for the 3 patients for 

whom the previous analysis concluded that more than 5 min were necessary, the 

same conclusion was reached. Therefore, these methods seem appropriate to 

evaluate the length that is sufficient to mark to ensure that all relevant information 

is captured. 
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Figure 5.4. When using the procedure to assess if 5 min provide stable measurements for the 
first group of patients, three patients (P1, P4, and P7) do not present stable measurements as 
indicated by either A) RMSDJS or B) RMSDRKD (did not have a RMSD smaller than 
threshold at t ≤ 2.5min). These are the same three that only reached a stable measurement after 5-
min intervals comparing with 10 min. 

5.5.2.3 Evaluation of additional patients marked during 5 min 
The second group, consisting of 30 patients, was visually marked during 5 

min and their stability evaluated. For five of these patients, a 5-min interval was 

not sufficient to provide consistent information in terms of information gained or 

stability in the ranking of rates of HFOs and spikes (Figure 5.5). Because we are 

comparing with 5 min as the “gold standard” a stable measurement must be 

reached well before the 5-min interval for an interval to be considered 

representative of the whole EEG. Thus, if there is not stable measurement at 2.5-

min intervals, we cannot determine whether 5 min are stable or not. According to 

the RMSDRKD, four patients (P2, P5, P13 and P26) did not obtain an RMSDRKD 

smaller than threshold before 3-min intervals. In addition, for one patient (P29), 

the RMSDJS remained within the vicinity of the threshold at 2.5 min. As before, 

an interval was considered representative of the whole marked EEG (in this case 5 

min), only when this was indicated by the RMSDJS and the RMSDRKD. Therefore, 

these five patients were marked for 10 min. The analysis of the 10-min interval 

for these five patients indicates that three of them were actually only stable after 

5-min intervals. Indeed, in terms of information gain, the patient (P29) that did 

not clearly achieved stability before only achieved a RMSDJS smaller than 

threshold at 5.5-min interval when marked for 10 min. Moreover, the stability 
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with respect to the ranking of channels was achieved after 5 min by two of the 

remarked patients (P2 and P13) and at 2-min interval for the other three.  

 
Figure 5.5. Evaluation of the second group of patients (30 patients) marked for 5 min. A) 
RMSDJS. All patients reached stable measurements at 2.5 min according to the JS Divergence, but 
1 patient (P29) remained too close to the threshold, and was decided to be marked for 10 min. B) 
RMSDRKD. Four patients did not achieve stability in the ranking of channels and were thus marked 
for 10 min. 

5.6 Discussion 
We propose a new procedure to assess whether a stable measurement is 

achieved when identifying HFOs and spikes from intracranial recordings with 

macroelectrodes. The procedure is suitable to improve the visual identification of 

the events as well as to ensure stable measurements when using automatic 

detectors. The methods were first evaluated for 10 patients whose EEG was 

visually marked, considering a 10-min interval as the “gold standard”. It was 

possible to establish that intervals smaller than 5 min were representative of the 

whole EEG in most patients. From then on, this procedure is routinely used to 

evaluate the stability of the rates in all the patients when marked for 5 min. The 

incorporation of a measure of agreement among reviewers for the first minute 

improves consistency in the markings and allowed us to become less dependent of 

the reviewer that marks the complete file.  

Until now, our group (Bagshaw et al., 2009, Jacobs et al., 2008a, Urrestarazu 

et al., 2007) and others (Staba et al., 2002) have chosen 10 min as the interval to 
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select. Ten minutes seem a reasonable interval given that, from a practical 

perspective, a longer interval would not be feasible to mark and that SWS is not 

usually stable for longer periods in patients with implanted electrodes. When 

using automatic detectors, 20 to 30-min intervals are also selected (Staba et al., 

2007). However, no attempt had been made to assess if those intervals were 

necessary, or if shorter intervals might be sufficient. Moreover, no systematic 

approach was used to assess whether stable measurements are obtained during the 

selected intervals. We reported on a method to establish for how long it is 

reasonable to mark events, to ensure that the relevant information is obtained. 

A secondary aim of this study was to help in the formal characterization of 

HFOs. At present, a few automatic HFOs detectors exist (Khalilov et al., 2005, 

Staba et al., 2002), but given the lack of a formal definition of HFOs, assessing 

the performance of an automatic detector is difficult. Thus, by helping to provide 

a more complete definition of HFOs we hope to help in a better characterization 

of HFOs, which could lead to the future development of robust automatic 

detection of these events. For example, the new criteria agreed upon after 

reviewing the channels with low kappa and the subsequent improvement of the 

results suggests that the proposed procedure could help towards a standard 

definition of HFOs. For instance, the recognition of channels with spiky baselines 

(particularly the deepest hippocampus channels), will allow for the proper 

recognition and particular analysis of these channels. If not considered apart from 

the rest, these channels could influence the training of automatic detectors. In 

addition, in some cases with disagreement, we observed that different subjective 

thresholds were used by the two reviewers for marking each patient. This is a 

good indicator that the signal to noise ratio of the HFOs was not consistent across 

patients and that it has to be taken into account when designing an automatic 

detector. Furthermore, discrepancies with respect to the duration of the HFOs 

were observed in some cases, when one reviewer marked one event while the 

other marked two. It would be important to define not only a minimum duration, 

but also an end point of an HFO. Therefore, by incorporating a measure of 
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information stability together with a better characterization of HFOs, we aim to 

improve the reliability of automatic detectors.  

Given that different start points can be used for the analysis, the procedure 

could also tell us which interval/s within the complete marked interval are those 

that are not stable. This aspect was not explored in detail in this paper, but could 

be particularly useful to determine which intervals provide stable measurements 

when using automatic detectors. There are many reasons for an interval of any 

length not to be stable. For instance, a patient can change sleep stage, there could 

be a change in the baseline, and there could be even changes in rates or ranking of 

channels due to a change in the epileptic activity. In those cases, it would be 

possible to use these methods to analyze different intervals, to separate between 

intervals and utilize only the selected ones for the subsequent processing. 

Previous studies showed correlation with the SOZ, suggesting that the ranking of 

channels and HFO rates may be able to distinguish between SOZ and non-SOZ 

areas (Jacobs et al., 2008a). The RK Distance could also be used to assess a 

difference in ranking of channels in terms of rates between different types of 

events (e.g. ranking of ripples vs. ranking of spikes), or channel location. Further 

investigation in this direction could provide a better understanding of the 

characteristics of HFOs. 

A valid measurement of HFO events is essential for clinical use such as the 

identification of epileptic or potentially epileptic regions during intracranial 

investigations. This could help the delineation of the surgical extent and in the 

prediction of surgical outcome if post-surgical outcomes are evaluated. This 

would be possible, according to our results, after evaluating only 5 min of EEG. 

Finally, this study was limited to events marked during SWS using a bipolar 

montage. Given that the largest amount of HFOs occur during SWS (Bagshaw et 

al., 2009, Staba et al., 2004), we decided to develop and test our methods in 

events marked during this stage. Even though the procedure can be used for other 

stages and montages, the conclusions cannot be generalized without further 
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validation. Moreover, we assumed that 10 min provide a stable measurement and 

used only one 10-min interval per patient as the “gold standard”. The 

methodology we propose can be applied to any interval length and future studies 

using an automatic detector for different intervals could provide further 

validation. 

 In conclusion, the procedure presented in this study provides an approach to 

assess the duration of EEG that must be interpreted to obtain a representative 

measurement of HFO and spike rates from intracranial recordings with 

macroelectrodes in patients with epilepsy, and to optimize the time needed to 

mark these events. We propose that 5 min provides, in most cases, the same 

information as a longer interval, in terms of a stable measurement of rates and 

ranking of channels. We present a method to identify when this is not the case and 

thus more data needs to be marked. The following procedure is suggested for each 

patient: 1 min is marked by two readers (which could be human readers or an 

automatic approach) and concordance is evaluated. Once there is good agreement 

in the first minute, the remaining 4 min are marked by one of the reviewers and 

the 5-min interval is then evaluated for stability. When a stable measurement of 

the rates is not obtained within the 5-min interval, the following 5 min are also 

marked, and so on. These methods are useful to control for consistency between 

reviewers and to evaluate if the selected interval provides consistent information, 

or if a longer one is needed. Moreover, this procedure ensures a stable 

measurement in terms of rates and ranking of channels, when automatically 

detecting HFOs and spikes. 
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5.8 Significance 
This manuscript presented a procedure useful to control for consistency 

between readers and to evaluate if the selected interval provides stable 

information, for automatic and visual identification of events. It was shown that a 

5-min interval provided the same information, in terms of HFO rates and ranking 

of channels with respect to the rate, as longer periods. EEG studies of event rates 

usually select a fixed duration arbitrarily. This study was the first to define a 

minimum duration necessary to obtain consistent marking in terms of event rate. 

This original approach is applicable to any event marking in the EEG, and could 

be easily extended to other fields. Since published, this procedure has been used 

to ensure consistency and evaluate stability in the marking of HFOs in all patients 

implanted with macroelectrodes at the MNI (15-20 patients per year).  
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Chapter 6. Automatic detection of High 

Frequency Oscillations 

6.1 Context 
Visual analysis of HFOs is highly time-consuming and subjectivity is 

inevitable. Consistency in the markings can be achieved with the procedure 

developed in the manuscript presented in the previous chapter. For the systematic 

study of HFOs and to propel the clinical application of HFOs as biomarkers of 

epileptogenic tissue, automatic detection of HFOs is necessary.  

Since the idea is to create a clinical and research tool, the definition of HFOs 

originating from expert reviewers (“four-oscillations that clearly stand out from 

background”) should be followed as closely as possible. With this in mind, 

baseline segments (i.e. segments without HFOs) can be first detected, and then 

this information incorporated to detect HFOs. Only a handful of detectors were 

developed before and they were based on the comparison of the energy at a 

particular time point with the energy of the whole EEG segment (including the 

HFOs of interest), under the assumptions that HFOs are rare events. However, this 

assumption does not hold in all channels, and the incorporation of local baseline 

information could improve performance. Since each detector was developed with 

a different implicit definition of what to detect as HFOs, a comparison in the same 

dataset is important. In order to compare with a gold standard, visual marking 

obtained using the procedure described in the previous chapter can be used. 

This chapter is composed of two manuscripts. The first one presents the first 

version of the automatic detector of HFOs. This manuscript was published as 

(Zelmann R, Mari F, Jacobs J, Zijlmans M, Chander R, Gotman J. 2010. 

Automatic detector of high frequency oscillations for human recordings with 

macroelectrodes. Conf Proc IEEE Eng Med Biol Soc 2010:2329-33). The second 
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manuscript presents the complete version of the automatic detector and a 

comparison with other detectors. Emphasis is placed in the importance of training 

a detector for a particular dataset and not using a detector “out of the box”. Issues 

involved in validating the detections are highlighted. This manuscript was 

published as (Zelmann R, Mari F, Jacobs J, Zijlmans M, Dubeau F, Gotman J. 

2012. A comparison between detectors of high frequency oscillations. Clin 

Neurophysiol 123:106-16). 

 



97 

Manuscript #2: Automatic detector of 

High Frequency Oscillations for human 

recordings with macroelectrodes 

6.2 Abstract 
High Frequency Oscillations (HFOs) in the EEG are a promising biomarker 

of epileptogenic tissue. Given that the visual marking of HFOs is highly time-

consuming and subjective, automatic detectors are necessary. In this study, we 

present a novel automatic detector that detects HFOs by incorporating information 

of previously detected baselines. The detector was trained on 72 channels and 

tested on 278, achieving a mean sensitivity of 96.8% with a mean false positive 

rate of 4.86%. This low rate is reasonable since only visually marked baseline 

segments were considered as the true negatives. This detector could be useful for 

the systematic study of HFOs and for their eventual clinical application. 

6.3 Introduction 
Epileptic conditions affect approximately 0.5% of the population 

(Niedermeyer 2005c). About 20% of the patients are refractory to medication, so 

in some cases with presumed focal epilepsy the resection of the epileptic focus 

can be considered. When non-invasive techniques (scalp EEG and imaging) give 

only a rough estimate of the epileptogenic region but cannot ensure the precise 

location of the focus, invasive recording are sometimes required. 

Traditionally, only frequencies up to 70Hz were considered of clinical 

relevance. Recent findings in rodents and humans showed the presence of higher 

frequency activity (up to 500Hz) and a possible relation of High Frequency 

Oscillations (HFOs) with epileptogenesis (Bragin et al., 1999a, Bragin et al., 



98 

1999b, Jacobs et al., 2008a, Jirsch et al., 2006, Staba et al., 2002, Urrestarazu et 

al., 2007). 

HFOs are spontaneous EEG patterns in the range 80-500Hz, consisting of at 

least 4 oscillations that can be distinguished from background. The lack of a 

quantitative definition makes the detection of HFOs difficult and subjective. 

Visual marking of HFOs can be performed (e.g. (Jacobs et al., 2008a, Urrestarazu 

et al., 2007)), but it is highly time consuming (it takes about 10 hours to visually 

mark HFOs in a 10-channel 10-minute recording) and subjectivity is inevitable. 

Thus, the development of automatic HFO detectors is crucial for the systematic 

study of HFOs and for their eventual utilization in clinical settings.  

Only a handful automatic detectors based on different energy functions exist 

(Crepon et al., 2010, Gardner et al., 2007, Staba et al., 2002). In all these 

detectors the energy of the signal is compared with a threshold that is computed 

based on the segment of EEG under consideration (including the events), under 

the assumption that HFOs are rare events.  

In this study, we propose a different approach in which we first detect 

baseline segments and then compute the energy threshold with respect to those 

baselines. By considering the detected baselines locally, the characteristic of the 

background surrounding the events is considered for detection. This is particularly 

important in channels where the background is not perfectly flat and in channels 

where a large number of interictal epileptiform discharges (spikes) are present. 

6.4 Methods 

6.4.1 Patient information 
Between September 2004 and April 2008, 45 patients with medically 

intractable epilepsy underwent depth macro-electrode (surface area 0.8mm2) 

implantation at the Montreal Neurological Hospital. The depth EEG (SEEG), 

recorded with the Harmonie system (Stellate, Montreal, Canada), was low-pass 
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filtered at 500Hz and sampled at 2000Hz, allowing for the identification of HFOs. 

Twenty patients were randomly selected, but one had to be excluded due to 

continuous artefacts. All patients gave informed consent in agreement with the 

Research Ethics Board of the Montreal Neurological Institute and Hospital (MNI). 

6.4.2 Channels and events selection 
HFO events were identified independently by two experienced reviewers in 

all functioning channels during one minute of slow wave sleep with the method 

described in (Jacobs et al., 2008a). We considered as our gold standard those 

events jointly marked by the two reviewers. The duration of the gold standard 

(visual) HFO events was the intersection between their markings. In addition, 

baseline segments (where it was clear that no oscillation was present) were 

visually marked.  

Channels with nearly continuous high frequency activity or less than one 

visually identified HFO or baseline were excluded from this study. The database 

therefore consisted of 19 one-minute sections, each with 6 to 36 channels. Given 

that the variability within channels of a patient is as large as the variability across 

patients, all channels were considered independently. Twenty percent of the 

channels were randomly selected and used for training the detector, resulting in 

278 channels for testing the performance of the detector. Of these channels, 97 

were temporal and 181 were neocortical (NC); 73 were in the seizure onset zone 

SOZ of the patient. These channels included 5238 visually identified HFO events 

and 51076 visually identified baselines that were used as the gold standard events. 

The mean length of the baselines was 237ms (range: 70 to 398ms). 

6.4.3 Automatic detection of HFOs 
Given that HFO are short oscillatory events that “stand out” from background 

activity, a logical approach to identify these events is an energy based detector. 

Existing automatic HFO detectors are based on the comparison of the energy of 

the signal with the EEG epoch that includes the events. The main difference 

among published detectors is the type of energy function that is computed on the 
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filtered signal, either the root mean square (RMS) amplitude (Staba et al., 2002), 

the short-time line length (Gardner et al., 2007), or the Hilbert envelope (Crepon 

et al., 2010). In contrast, this detector tries to look at the problem from a 

perspective more similar to the way that human reviewers mark: by comparing the 

EEG with the surrounding previously identified baseline. 

6.4.4 The MNI detector 
The proposed detector (referred to as MNI detector) consists of a baseline 

detector block and an energy based event detector block (that incorporates the 

baseline information). The MNI detector aims to detect as many events as 

possible, even if a large number of false detections take place. 

The first step is the detection of baselines. We define as baselines, segments 

of EEG where there is no oscillatory activity of any kind. The baseline detector 

(Chander 2007) is based on the wavelet entropy (WE) which measures the degree 

of randomness (vs. oscillatory behaviour) in the signal (Rosso et al., 2001). To 

enhance the oscillatory characteristics of the signal, the WE was applied to the 

autocorrelation of the filtered (80-450Hz) signal (Chander 2007). Thus, the 

wavelet power is computed as 

W୬ሺa, bሻ ൌ  ቚ ଵ
√ୟ ׬ r୬ሺtሻψכ൫౪షౘ

౗ ൯ dtL
୲ୀ଴ ቚ

ଶ
     Equation 6.1  

where ψሺa, bሻ  is chosen as the complex Morlet wavelet and r୬ሺtሻ  is the 

autocorrelation of the nth EEG segment of length L=75ms. The normalized 

wavelet power is 

P୬ሺa, bሻ ൌ  W౤ሺୟ,ୠሻ
∑ W౤ሺୟ,ୠሻ౗

        Equation 6.2  

and the WEn is obtained as 

WE୬ሺbሻ ൌ  െ ∑ P୬ሺa, bሻୟ logଵ଴ሾP୬ሺa, bሻሿ     Equation 6.3  
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For a white noise signal, there will be similar contributions at all scales and 

the maximum WE is obtained as WE୫ୟ୶  ൌ  logଵ଴ሺ1 #a⁄ ሻ where #a is the number 

of possible scales. Thus, a segment is considered as baseline (ie: without 

oscillatory behaviour) when the minimum WEn for segment n is larger than the 

threshold obtained from training (0.56 WEmax). 

The next block detects possible HFOs based on the energy defined as the 

moving average of the root mean square amplitude of the filtered signal. Each 

channel is band-pass filtered (80-450Hz) and segments with energy above 

threshold during more than 15ms were considered HFOs. The energy threshold is 

obtained by computing the empirical cumulative distribution function (CDF) of 

each 2-sec baseline segment and returning the value at the 95 percentile as the 

threshold. Thus, as indicated in (Gardner et al., 2007), no assumption regarding 

the normality of the energy distribution is necessary. This block of the detector is 

similar to (Staba et al., 2002) in the energy function and to (Gardner et al., 2007) 

in the threshold computation, but unlike all the other detectors, the MNI detector 

considers the threshold with respect to the detected baselines. A band-pass FIR 

equirriple filter was used (fStop1=70Hz; fPass1= 80Hz; fPass2=450Hz; fStop2=460Hz; 

stopband attenuation = -60dB). The signal was filtered forward and backwards to 

obtain zero-phase. All processing was implemented based on MATLAB. All 

values were obtained from the optimization described below.  

Therefore, instead of considering the energy with respect to the complete 

EEG (as in Crepon et al., 2010, Gardner et al., 2007, Staba et al., 2002), the EEG 

is divided in segments where 2 seconds of baseline are found (e.g. if in the first 12 

seconds of data, there are 2 seconds of detected baselines, this 12 seconds are 

considered as an epoch and the energy threshold of the epoch is unique). In this 

way, the local characteristics of the baseline around the point of interest are 

considered in a similar way than it is considered when visually marking HFOs.  
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6.4.5 Performance metrics 
Receiver Operating Characteristic (ROC) curves measure the performance of 

the detector when varying the energy threshold, representing different levels of 

sensitivity/ specificity. The visually marked HFOs were considered as the true 

positive (P) events and the visually marked baselines as the true negative (N) 

events. Segments of EEG where nothing was visually marked by the reviewers 

were not taken into account, under the assumption that there might be HFOs in 

those segments, which were not visible to the human reviewer. The average ROC 

was computed by computing the ROC curve for each channel and averaging each 

threshold value across channels (Fawcett 2006). 

Thus, a TP was an HFO identified by the automatic detector that was visually 

marked; a FP was an automatically detected event that actually corresponded to a 

visually marked baseline; a FN was a visually marked HFO that was missed by 

the automatic detector; and a TN was a visually marked baseline where no HFOs 

were identified.  

In addition, Cohen’s Kappa coefficient (Cohen 1960) was computed to 

compare the automatic detector with the gold standard in each channel. This 

coefficient measures the degree of agreement between two reviewers (in this case 

one human and one automatic), taking into account the agreements made by 

chance. Kappa < 0 reflects an agreement due purely to chance and Kappa = 1 

indicates complete agreement. 

Not only are the percentages of detected HFOs important, but also whether 

the order of the channels with respect to the relative number of events is 

preserved, since channels with a high rate of HFOs have been associated with the 

SOZ (Jacobs et al., 2008a) and their removal with good surgical outcome (Jacobs 

et al., 2010b). The Ranking Distance (RKD; Zelmann et al., 2009b) measures the 

cost of obtaining a different order of channels (ordered from more to fewer 

events) when detecting events automatically compared to the order obtained when 

visually identified events. For instance, if channel A has 3 visually detected 
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events, channel B 25 and channel C 5, we expect the automatic detector to detect 

more events in channel B than in the other two. RKD score ranges from 0 to 1, 

with 0 representing exactly the same ranking, and 1 corresponding to a ranking 

completely upside down. An RKD score smaller than 0.2 is usually considered as 

a measure of good agreement. Thus, even though we accept a large number of 

false positives under the assumption that there might be events not seen by the 

reviewer, the relative number of false positives to true positives must be 

equivalent in all the channels. For this measure, the automatically detected events 

identified in the whole EEG are considered. 

6.4.6 Parameter optimization 
The parameters of the baseline detector were optimized on 36 channels with 

the following criteria: maximize the duration of detected baseline that overlaps 

with the reference, constrained by global (median across channels) FPR ≤ 0.05 

(FPR=1-Specificity). Each channel “voted” their best parameters (i.e. the 

parameters to obtain the largest baseline overlap), and the set of parameters with 

most votes was selected.  

For optimizing the parameters of the second block, the events detector, a 

similar approach was taken with another 36 channels. In this case, each channel 

“votes” with its best parameters to obtain maximum Kappa, constrained by: 

global FPR ≤ 0.1; FPR per channel ≤ 0.2; Sensitivity per channel ≥ 0.8. In both 

cases, each channel could vote for more than one parameter set (i.e. more than one 

set of parameters could yield the maximum sensitivity). 

6.5 Results 
The optimized parameters of the MNI detector were: duration of each 

baseline segment = 75ms; wavelet entropy threshold = 0.56 of WEmax; minimum 

duration of HFO event = 15ms; energy threshold = 95 percentile of CDF of 

baseline; short RMS window = 10ms; baseline length = 2s. Twenty of the 36 

channels voted for the selected baseline parameters, while 15 of the 36 channels 
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voted for the selected parameters of the HFOs detector block (and 11 channels 

voted for a very similar set). This set of parameters is used for the following 

results, unless specified. 

HFO events were detected when their energy was larger than a threshold 

computed from automatically detected baselines. To illustrate this concept, Figure 

6.1 shows an example of a correctly detected baseline and HFO. 

 
Figure 6.1. Example of detected HFO event surrounded by detected baselines. Top: unfiltered 
EEG segment; bottom: filtered (80-450Hz) EEG. The concordance between automatically detected 
(AUTO) HFOs and visually identified (reference) HFOs is excellent. 

The performance of the detector (with a threshold of 95%) was: Sensitivity 

96.8 +/- 11.41% (median: 100%) and FPR: 4.86 +/- 8.91% (median: 2.19%), 

averaged across channels (Figure 6.2). In the automatic baseline detector a mean 

baseline length of 29.6sec per channel (range: 1.5 to 55.8sec) was detected. 
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Figure 6.2. Boxplot of Sensitivity and FPR (equivalent to 1-Specificity) when automatically 
detecting HFOs in 278 channels. Black line: median of the distribution; boxes: 0.25 and 0.75 
quantiles; crosses: outliers. 

Figure 6.3 shows the average ROC curve (in black) across channels for 

different thresholds for the test dataset. Even though the operating point (0.95) 

was obtained from training data, in the test data it is situated in the right most 

corner. The area under the curve (AUC) was 0.99. 

The average Kappa was 0.63+/-0.28, which corresponds to a moderate 

agreement. The mean RKD per patient was 0.42 (range: 0.01 to 0.78). In some 

patients the RKD score was low, indicating good agreement with the reviewers 

ranking (4 patients with RKD<0.2). However, for most patients the RKD score 

was high, indicating poor correspondence with reference rankings. 
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Figure 6.3. ROC showing the average performance of the detector. Black points: analyzed 
thresholds (only some threshold values are shown); Gray lines: 5 and 95 quantiles of ROC of 
individual channels. 

To further ensure that the parameter selection was representative of all 

channels, in particular in the event detector block where less than half the 

channels voted for the selected parameters as their first choice, the distribution of 

parameters with respect to each channel’s vote (which parameter/s maximized the 

channel’s sensitivity) was analyzed. Figure 6.4 shows that the location of the 7 

parameters with more votes in parameter space is very similar for 6. For 90% of 

the channels these 6 parameters provided the best kappa. Thus, for almost all 

channels their best parameter was located within a dense cloud, suggesting that 

the detector could be tuned to a range of parameters, which is a desirable 

property. 
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Figure 6.4. Scatter plot of set of most voted parameters in parameter space. Size of the bubble 
corresponds to the number of channels that voted for this parameter. Most parameters are within a 
clustered cloud. Boxes show the corresponding set of parameters for the two parameters with most 
votes. One dimension of parameter space (baseline length) is not shown since all parameters had a 
value of 2sec. 

As a corollary to the above, when slightly changing the parameters (duration 

of HFO event=20ms; and short RMS window = 15ms), the performance remained 

almost the same (Sensitivity: 97.28 +/- 11.53%; FPR: 5.41 +/- 8.95%). Finally, 

when changing the energy function to the envelope computed with the Hilbert 

transform, the results are also very similar, achieving a sensitivity: 96.79 +/- 

12.25% (median: 100%) and FPR: 5.12 +/- 9.05% (median: 2.15%). Thus, the 

MNI detector is robust to variability in the parameters and even in the way the 

energy of the signal is computed. 

6.6 Discussion and future work 
In this study, a new approach for HFO detection was proposed. The MNI 

detector first detects baseline segments, where no oscillatory activity is present, 

and then compares the energy of the EEG signal with that of the detected 

baselines. In this way, the local characteristics of the background are taken into 

consideration. The addition of baseline information is particularly important in 
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those channels in which the background is not flat everywhere, such as channels 

where a large number of spikes are present. 

The detector is suitable for all brain locations, since it detected HFOs in all 

patients, in temporal and neocortical areas, and regardless of whether the channel 

was in the SOZ. Moreover, changes in parameters and energy function did not 

modify the performance. This is suggestive that it could generalize appropriately 

(with the corresponding training) to different situations, such as change in sleep 

stage, different contact sizes or distance to seizures. However, this remains to be 

tested. In agreement with other detectors, the MNI detector aims to detect as many 

events as possible. A second step should ensure the elimination of FP, particularly 

those corresponding to artefacts and non epileptogenic events. A GUI for human 

validation, a classification scheme or a combination of both could be incorporated 

to the detector. 

Furthermore, HFOs were detected independently of their characteristics. A 

formal classification step in which HFOs could be divided into different 

categories and separated from sharp spikes is desirable. An ultimate goal would 

be the identification of pathological HFOs distinctly from physiological HFOs. 

However, given that a formal definition of what is pathologic does not exist 

(Engel et al., 2009), this is a particularly challenging task. 

Only events that corresponded to visually detected HFOs or baselines were 

considered in this study. This strict definition of the true negative events can 

explain the extremely low FPR. Therefore, even though automatic detections 

occurred, a good proportion of the EEG data was only analyzed in relation to the 

RKD score, but not in relation to possible FP. Furthermore, there was a great 

variability in RKD across subjects probably due to FP detections in these 

segments of EEG. Analysis of events in these EEG segments could identify events 

not visible to the human reviewer or on the contrary indicate FP due to artefacts. 

Further investigation in this regard is required. 
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Given that visually marking of HFOs is highly time consuming, in order for 

this new biomarker of epilepsy to be clinically useful, HFOs need to be detected 

automatically. This study focused on the evaluation of the performance of the 

MNI detector with respect to clear reference events, but in order for the detector 

to be used as a clinical tool a (semi- or automatic) post-processing step is required 

to identify and remove FP detections. We hypothesize that most events detected in 

areas not marked by the experts would be rejected in this second step, but this 

remains to be tested. 

Channels containing continuous high frequency activity were excluded from 

this study because it was not possible to identify baseline segments. However, 

most of these channels contain high rates of HFOs and are related to epileptogenic 

regions. Thus, an analysis of different types of background is necessary to 

establish clearer definitions for automatic HFO detection in those channels. 

Finally, a systematic comparison of the performance of the MNI detector with 

other detectors (Crepon et al., 2010, Gardner et al., 2007, Staba et al., 2002) 

should be performed. Each detector was developed for a different purpose (such 

as detection of HFOs above 200Hz (Crepon et al., 2010)), location (only temporal 

(Staba et al., 2002)) or electrode size (micro-electrodes in (Staba et al., 2002), 

micro- and macroelectrodes in (Worrell et al., 2008)). Therefore, a systematic 

study comparing the detectors on the same dataset is required. 

6.7 Conclusion 
In conclusion, a new approach to HFO detection was presented in which HFO 

events were detected when their energy was larger than a threshold computed 

from automatically detected baselines. The high sensitivity of the detector and 

robustness to variability makes it a promising tool for the study of HFOs in 

humans. 
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Manuscript #3: A Comparison between 
detectors of High Frequency Oscillations  

6.8 Abstract 
Objective. High Frequency Oscillations (HFOs) are a biomarker of 

epileptogenicity. Visual marking of HFOs is highly time-consuming and 

inevitably subjective, making automatic detection necessary. We compare four 

existing detectors on the same dataset. Methods. HFOs and baselines were 

identified by experienced reviewers in intracerebral EEGs from 20 patients. A 

new feature of our detector to deal with channels where baseline cannot be found 

is presented. The original and an optimal configuration are implemented. Receiver 

operator curves, false discovery rate, and channel ranking are used to evaluate 

performance. Results. All detectors improve performance with the optimal 

configuration. Our detector had higher sensitivity, lower false positives than the 

others, and similar false detections. The main difference in performance was in 

very active channels. Conclusions. Each detector was developed for different 

recordings and with different aims. Our detector performed better in this dataset, 

but was developed on data similar to the test data. Moreover, optimizing on a 

particular data type improves performance in any detector. Significance. 

Automatic HFO detection is crucial to propel their clinical use as biomarkers of 

epileptogenic tissue. Comparing detectors on a single dataset is important to 

analyze their performance and to emphasize the issues involved in validation. 

6.9 Introduction 
High Frequency Oscillations (HFOs) are emerging as biomarkers of 

epileptogenic tissue that could help in the identification of epileptic or potentially 

epileptic regions during intracranial investigations. This could help the delineation 

of the surgical extent and in the prediction of surgical outcome (Jacobs et al., 

2010b). 
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HFOs are spontaneous EEG patterns in the range 80-500Hz, consisting of at 

least four oscillations that can be “clearly” distinguished from background. HFOs 

were first recorded with microelectrodes (20-40µm in diameter) implanted in 

temporal regions (Bragin et al., 1999b), and recently with clinical macro-

electrodes in temporal and neocortical regions (Jirsch et al., 2006, Urrestarazu et 

al., 2007, Worrell et al., 2008). When recorded with macro-electrodes, HFOs are 

characterized by a typical duration of 30-100ms, an inter-event interval of at least 

25ms, and an amplitude of 10-100µV. These EEG patterns occurring in the 

absence of specific stimuli, have been recorded during interictal (Staba et al., 

2002, Urrestarazu et al., 2007), pre-ictal (Jacobs et al., 2009b) and ictal (Jirsch et 

al., 2006) periods. Interictally, they can be identified more frequently during slow 

wave sleep than during wakefulness (Bagshaw et al., 2009, Staba et al., 2004).  

During interictal periods, higher rates of HFOs were observed in the seizure 

onset zone (SOZ) than in other areas (Bragin et al., 1999c, Urrestarazu et al., 

2007). Even though a large proportion of HFOs co-occur with spikes, HFOs can 

occur also in non-spiking channels or independently from spikes (Jacobs et al., 

2008a). The ranking of channels according to rate (Zelmann et al., 2009b) 

indicated that HFOs remained confined to the same region during interictal and 

ictal periods, while spikes presented a wider spread during seizures than 

interictally (Zijlmans et al., 2011). Moreover, a postsurgical study showed a 

correlation between surgical outcome and removal of channels with high HFO 

rates (Jacobs et al., 2010b). In summary, interictal HFOs seem to be a reliable 

biomarker of tissue capable of producing seizures. 

 Visual marking of HFOs provided a good understanding of the relation of 

HFOs with epilepsy (Jacobs et al., 2010b, Urrestarazu et al., 2007, Zijlmans et al., 

2009b).  However, visual marking is highly time consuming (it takes about 10 

hours to visually mark HFOs in a 10-channel 10-min recording) and subjectivity 

is inevitable. Thus, the development of automatic HFOs detectors is crucial for 

the systematic study of HFOs and for their eventual clinical application. The lack 

of a formal definition makes the detection of HFOs difficult and subjective. 
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Only a handful of automatic detectors based on different energy functions 

exist (Crepon et al., 2010, Gardner et al., 2007, Staba et al., 2002, Zelmann et al., 

2010). In the first three the energy threshold is computed based on the segment of 

EEG under consideration, under the assumption that HFOs are rare events. On the 

contrary, the detector developed at the Montreal Neurological Institute (MNI) first 

detects baseline segments and then uses this information to compute the local 

energy threshold (Zelmann et al., 2010). Each detector was developed for a 

different frequency band (above 200Hz, (Crepon et al., 2010), gamma band 

(Gardner et al., 2007)); a particular location (only temporal (Staba et al., 2002)); 

or electrode size (microelectrodes in (Staba et al., 2002), micro- and clinical 

macro-electrodes in (Worrell et al., 2008)), small clinical macro-electrodes 

(Zelmann et al., 2010). It is therefore important to test all the detectors on the 

same dataset.   

In this study, we present the complete version of the MNI detector and 

provide a comparison between these four detectors on the same data. The new 

MNI detector includes a feature to deal separately with channels with very 

frequent or constant HF rhythmic activity. We hypothesize that all the detectors 

will behave similarly in those channels where HFOs are rare events, but that the 

MNI detector will outperform the others in channels with very frequent HFOs. 

6.10 Methods 

6.10.1 Patient information 
Between September 2004 and April 2008, 45 patients with medically 

intractable epilepsy underwent depth macro-electrode (surface area 0.8mm2) 

implantation at the Montreal Neurological Hospital. The depth EEG (SEEG), 

recorded with the Harmonie system (Stellate, Montreal, Canada), was low-pass 

filtered at 500Hz and sampled at 2000Hz, allowing for the identification of HFOs. 

Twenty patients were randomly selected, but one had to be excluded due to 
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continuous artefacts. All patients gave informed consent in agreement with the 

Research Ethics Board of the Montreal Neurological Institute and Hospital (MNI).  

6.10.2 Channel and event selection 
HFO events were identified independently by two experienced reviewers in 

all functioning channels during one min of slow wave sleep. Sleep stages were 

assessed using EOG and EMG signals, in addition to the intracranial EEG. Slow 

wave sleep was defined by high delta activity on the EEG, low EMG and no EOG 

activity (Bagshaw et al., 2009). The visual marking of HFOs was performed by 

splitting the screen vertically and using an 80Hz high-pass filter on the left and a 

250Hz high-pass filter on the right. The time resolution was increased to 0.6 sec 

across the monitor and only up to 10 channels were visualized simultaneously. A 

ripple (80-250Hz) was marked if there was a clear oscillation on the left that was 

not visible or had a different morphology on the right. A fast ripple (FR; 250-

500Hz) was marked if it appears in the right screen (Jacobs et al., 2008a). Three 

quarters of the FRs occurred during a ripple (74%) and the distribution of the peak 

of energy spectra of FRs comprises a broad frequency band (the whole 80-450Hz; 

Figure 6.5). Indeed, for FRs without a visually-apparent co-occurring ripple, the 

distribution of peak frequencies is not limited to the 250-450Hz band, but includes 

the 80-250Hz band as well. Both ripples and FRs seem to be similarly associated 

with epileptogenic tissue (e.g. Jacobs et al., 2008a, Jacobs et al., 2010b, 

Urrestarazu et al., 2007, Worrell et al., 2008). Therefore, we decided to group 

ripples and FR and refer to them as HFO events. 
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Figure 6.5. Histogram of peak frequencies of FRs not occurring with ripples. Out of the 7994 
PosAnd HFOs, 554 corresponded to FR that did not co-occur with a visually marked ripple. The 
peak frequencies of these events included not only the 250-500Hz band but also the 80-250Hz 
band. All these events were visually marked as FR using a high-pass filter at 250Hz. Two 
examples are presented. Top: FR with a peak frequency at 150Hz; Bottom: FR with a peak at 
265Hz. The unfiltered EEG, the filtered EEG above 80Hz and the filtered EEG above 250Hz are 
shown. The oscillations become visible only when filtering above 250Hz. 

To evaluate the performance of the detectors, we conducted a strict validation 

and a more open validation. In the strict validation only events of which we were 

absolutely sure that they were true positives and true negatives were considered. 

Thus, the positive gold standard HFO events were the HFOs marked by the two 

reviewers (PosAnd HFO events, Figure 6.6.A). Baseline segments (segments 

without oscillatory activity, unambiguously free of HFOs, Figure 6.6.A) were 

visually marked and considered as the negative gold standard (NegBase). This is a 

definition of baseline in the context of HFOs. It is useful as a comparison with 

HFO (which are oscillatory events), but does not intend to be a general definition 

of baseline activity. NegBase segments longer than 400ms were split to obtain a 

mean length of 200ms. In the more open validation we considered events and 

non-events more inclusively. All the events visually marked by any reviewer were 

considered as the positive gold standard (PosAny HFO events, Figure 6.6.B). 

Thus, PosAny HFOs included the events jointly marked or marked by only one 

reviewer. We considered HFOs marked by one reviewer for the more open 

validation, under the assumption that there is a possibility that these segments are 
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HFOs, but with a lower probability than for segments jointly marked. In this case, 

the negative gold standard was any segment of EEG of 100ms long at least 25ms 

away from a visually marked HFO event. For the sensitivity and false positive 

rate (FPR = 1-specificity), we used the strict validation. To assess the false 

detection rate (FDR), the more open validation was used. 

 
Figure 6.6. Example of Reference events. A) Strict validation. The PosAnd HFO is the 
intersection of the markings. Orange: marked baseline (NegBase); red: PosAnd HFO (intersection 
of markings). B) More open validation. The 1st example presents an HFO only marked by reviewer 
1.The 2nd example was marked by both reviewers. The PosAny HFO is the union of both 
markings.  Magenta: PosAny HFO (event marked by at least one reviewer).purple: HFOs marked 
by reviewer 1; green: HFOs marked by reviewer 2. 

Channels outside the brain, with clear continuous artifacts, or with less than 

one PosAnd HFO or less than one baseline were excluded from this study. Given 

that the variability within channels of a patient is as large as the variability across 

patients, all channels were considered independently. The database therefore 

consisted of 19 one-min sections, each with 10-39 channels, for a total of 373 

channels. Out of the 373 channels, 20% (76) were randomly selected and used for 

training the MNI detector, resulting in 297 channels for comparing detector 

performance. Of these channels, 113 were mesio-temporal and 184 were 

neocortical; 89 were in the SOZ of the patient.  

These channels included 7994 PosAnd HFO events, 13552 PosAny HFO 

events and 51061 NegBase baselines. These events were used as the gold standard 

events. 
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6.10.3 Automatic detectors of HFOs 
Automatic HFO detectors are largely based on the comparison of the signal 

energy with the EEG epoch that includes the events. The main difference among 

these detectors is the type of energy function computed on the filtered signal and 

the post-processing used to prune false detections. Since the post-processing step 

involves human expert in some cases, it cannot be considered when comparing the 

performance of the detectors and will not be evaluated in this study. The detectors 

are presented in order of the year of original publication. 

Staba et al. (2002) developed a detector based on the energy defined as the 

moving average of the root mean square amplitude of a filtered signal. Each 

channel was filtered (100-500Hz) and segments with energy above five times the 

standard deviation (SD) of the mean energy of the whole EEG during more than 

6ms were considered HFOs. Events less than 10ms apart were considered as a 

single event. Events required at least six oscillations above three SD. Because this 

last condition could be considered as a post-processing step, and to improve the 

sensitivity of this detector, it was not implemented. This detector was developed 

for microelectrode recordings in humans and rats in temporal regions (Staba et al., 

2007, Staba et al., 2004). A sensitivity of 84% was reported (Staba et al., 2002). 

We will refer to this detector as the RMS detector. 

The detector of Gardner et al. (2007) is based on the short-time line length 

(Esteller et al., 2001). Each channel was passed through a spectral equalizer (first 

order differential filter), then band-pass filtered (30-100Hz in (Gardner et al., 

2007), and 80-1kHz in (Worrell et al., 2008)) and the energy threshold was 

computed as the 95 percentile of the empirical cumulative distribution function 

for the epoch (Worrell et al., 2008). Epochs lasted 3 minutes and included the 

possible events. For the post-processing, an interface for human verification was 

implemented. The sensitivity was 89.5% in a gamma band (30-100Hz) study 

(Gardner et al., 2007). The specificity was not reported, but it was stated that 

~85% of the candidate events were rejected as false positives (Worrell et al., 

2008). It was applied to microelectrodes and macroelectrodes, but with the latter 
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no FR were detected (Worrell et al., 2008). Parameters as reported in (Worrell et 

al., 2008) will be considered. We will refer to this detector as the LineLength 

detector. 

Finally, in the detector of Crepon et al. (2010) the envelope of the signal was 

computed with a Hilbert transform. Each channel was band-pass filtered (180-

400Hz) and events were detected with a threshold five times the SD of the 

envelope over the whole EEG. Post validation by a reviewer with a visual 

interface was also implemented. The sensitivity was 100% with a specificity of 

90.5%. However, only very clear events were detected and only in SOZ areas, 

emphasizing the lack of a common definition of HFOs across centers. Thus, care 

must be taken when comparing performances since not all detectors aim to 

identify the same “HFO event”. We will refer to this detector as the Hilbert 

detector. 

6.10.4 The MNI detector  
The MNI detector consists of a baseline detector; a detector of HFOs in 

channels with baseline (that incorporates the baseline information); and a detector 

of HFOs in channels with continuous High Frequency (HF) activity, for channels 

without sufficient baseline (Figure 6.7). As the other detectors, the MNI detector 

aims to detect as many events as possible, even if a large number of false 

detections take place. The first 2 blocks of the detector are described in detail in 

(Zelmann et al., 2010). 

Band-pass filter. The EEG was first band-pass filtered (80-450Hz) using a 

FIR equirriple filter (fStop1=70Hz; fPass1=80Hz; fPass2=450Hz; fStop2=460Hz; 

stopband attenuation = -60dB). The signal was filtered forward and backwards to 

obtain zero-phase. To minimize the effect of filtering in the detection, the impulse 

response of the filter was checked to oscillate less than the minimum number of 

oscillations (Bénar et al., 2010). In addition, we randomly selected HFOs 

identified using this filter from the training dataset and verified that they were 
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visible in the unfiltered EEG. Each detector was tested using this filter as well as 

their default filter.  

Baseline detection (Figure 6.7.A). We define as baselines, segments of EEG 

where there is no oscillatory activity of any kind. The baseline detector (Chander 

2007) is based on the wavelet entropy (WE) which measures the degree of 

randomness (vs. oscillatory behaviour) in the signal (Rosso et al., 2001). To 

enhance the oscillatory characteristics of the signal, the WE was applied to the 

autocorrelation of the filtered signal (Chander 2007). The EEG was divided into 

segments of 125ms with 50% overlap. The normalized wavelet power of the 

autocorrelation was computed for each segment. A complex Morlet wavelet was 

used. The maximum theoretical wavelet entropy (WEmax) is obtained for white 

noise, when contributions at all scales are similar. Thus, a segment was 

considered as baseline (i.e. no oscillation present) when the minimum WE was 

larger than the threshold obtained from training (0.67 WEmax). Consecutive or 

overlapping segments were joined. 

HFO detection in channels with baseline (Figure 6.7.B). The EEG with 

detected baselines is evaluated to assess whether “a sufficient amount” of baseline 

(i.e. at least 5s/min) was detected. For channels with sufficient baseline, the next 

block detects possible HFOs based on the energy defined as the moving average 

of the root mean square amplitude of the filtered signal. Segments with energy 

above threshold during more than 10ms were considered HFOs. Events less than 

10ms apart were considered as a single event. The energy threshold was obtained 

by computing the empirical cumulative distribution function of each 10s baseline 

segment (or the entire baseline if shorter than 10s), modeling the distribution with 

a gamma function, and returning the value at the 99.9999 percentile as the 

threshold. This block of the detector is similar to (Staba et al., 2002) in the energy 

function and to (Gardner et al., 2007) in the threshold computation, but unlike the 

other detectors, the MNI detector considers the threshold with respect to the 

detected baselines.  
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HFO detection in continuous HF channels (Figure 6.7.C). If less than 

5s/min of available baseline was found, the channel was considered as continuous 

HF channel (i.e. with continuous high frequency oscillatory activity). In these 

channels, the separation of HFOs from the oscillatory background cannot rely on 

the same methods as channels with random background. Thus, an iterative 

approach was implemented. At each iteration, the threshold was computed from 

the complete 1min band-passed EEG as the 95 percentile of the cumulative 

distribution function (modeled with a gamma function). Segments with energy 

above threshold during more than 10ms were considered HFOs. In this way, the 

events with the highest energy (mostly sharp spikes and HFOs riding on spikes) 

are first detected and removed for the following iterations. In subsequent 

iterations, these large events did not influence the calculation of the new 

threshold, allowing for the detection of HFOs that are larger than a threshold 

computed from the remaining background. This iterative process continues until 

no more HFOs are detected. In this way, a threshold is found for each 1-min 

recording for each channel. To avoid the effect of the successive removal of EEG 

segments in the length of detected HFOs, the detector was run again for that 

threshold. Thus, the detector is similar to the RMS detector if considering only the 

first iteration, but adapts the threshold to detect more events in successive 

iterations.  

Figure 6.7. Diagram of the MNI Detector. A) Baseline Detector. B) HFOs Detection in 
Channels with Baseline. C) HFOs Detection in Channels with Continuous high frequency activity. 
If more than 5sec/min of baselines are found, HFOs are detected with respect to the baseline 
segments (B). If less than 5sec/min of baseline were detected, HFOs are detected with respect to 
the entire EEG segment in an iterative way (C).WE: wavelet entropy; Rxx: autocorrelation; th: 
Threshold. 
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Parameter optimization. The parameters of the baseline block were 

optimized to maximize the duration of detected baseline that overlaps with the 

reference. Each channel “voted” their parameters to obtain the largest baseline 

overlap, and the set of parameters with most votes was selected (Zelmann et al., 

2010). The HFO detection blocks were optimized to maximize sensitivity with 

respect to PosAnd events, while strongly limiting the detection of events within 

visually marked baselines and loosely limiting detections outside PosAny events. 

Table 6.1 presents the parameters for each detector as reported in the original 

publications (Crepon et al., 2010, Gardner et al., 2007, Staba et al., 2002). All 

parameter values of the MNI detector were obtained from optimization.  

Parameters of the detectors as indicated in the original publications 

  
RMS Detector 
(Staba et al., 2002)

LineLength Detector 
(Worrell et al., 2008)

Hilbert Detector 
(Crepon et al., 2010) MNI Detector 

PreProcessing 

Spectral Equalization  ‐‐  1st order difference  ‐‐  ‐‐ 

BP filter band  100‐500Hz  80‐1kHz  180‐400Hz  80‐450Hz 

BP filter type  FIR  4th order Butterworth  FIR (win)  FIR (equirriple) 

Baseline Detection  WE(Rxx) 

Threshold  ‐‐  ‐‐  ‐‐  0.67 

Duration  ‐‐  ‐‐  ‐‐  125ms 

Min Duration Baseline  ‐‐  ‐‐  ‐‐  5sec 

HFOs Detection 

Energy measure  RMS amplitude  Line Length  Hilbert Envelope  RMS amplitude 

Window Size  3ms  85ms  ‐‐  10ms / 5ms 

Window Size Long  ‐‐  ‐‐  ‐‐  ‐‐  / 10ms 

Threshold Energy  5 STD  95 percentile  5 STD  99.9999 / 95 percentile 

Thres. measured from  all EEG  Epoch (3min )  all EEG  10sec Baseline /1min EEG 

Threshold Duration  6ms  80ms  ‐‐  10ms / 10ms  

Min Inter Event Interval  10ms  ‐‐  ‐‐  10ms 

Table 6.1. Parameters of the detectors as indicated in the original publications. Only the MNI 
detector incorporates the detection of baseline. For the MNI detector, the parameters of the two 
HFO detection blocks are given separated by / (HFOs detector in channels with baseline / HFOs 
detector in channels with continuous HF activity). FIR: finite impulse response filter; RMS: root 
mean square; WE: wavelet entropy; Rxx: autocorrelation; SD: standard deviation; --: not 
applicable / not specified. 
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6.10.5 Performance metrics 
Receiver operating characteristic (ROC) curves measure the performance of a 

detector when varying the energy threshold and were used for the comparison of 

detectors. PosAnd events were considered as the true positives and NegBase 

events as the true negatives. Segments of EEG where nothing was visually 

marked by both reviewers were not taken into account, under the assumption that 

there might be HFOs in those segments, which were not visible to the human 

reviewer and to account for variability across reviewers. Thus, a true positive (TP) 

was a visually marked HFO by the 2 reviewers that was identified by the 

automatic detector; a false positive (FP) was an automatically detected event that 

corresponded to a visually marked baseline; a false negative (FN) was an HFO 

visually marked by the 2 reviewers that was missed by the automatic detector; and 

a true negative (TN) was a visually marked baseline where no HFOs were 

identified. The ROC curve for each channel was computed and the average across 

channels obtained for each threshold value (Fawcett 2006). The area under the 

curve (AUC) ranges from 0 to 1, with 1 representing the perfect decision maker. 

Since the diagonal in the ROC plane represent a random decision, no detector can 

have an AUC smaller than 0.5. 

Cohen’s Kappa coefficient (Cohen 1960) was also computed to compare each 

detector with the gold standard (PosAnd and NegBase) in each channel. This 

coefficient measures the degree of agreement between two reviewers (in this case 

one human and one automatic), taking into account the agreements made by 

chance. Kappa ≤ 0 reflects an agreement due purely to chance and Kappa = 1 

indicates perfect agreement. 

Given the strict definition of the PosAnd and NegBase gold standards used to 

compute the ROC curves, the FPR does not represent the number of automatic 

detections that lie outside a true detection, but rather the number of automatic 

detections that are within clear baselines. Thus, to also analyze the total number of 

detections that do not correspond to any visually marked event, we define the 

FDR as the number of automatically detected events that are outside any visually 
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marked event (PosAny) divided by the total number of detected events. In this 

way, both the total number of false detections and those corresponding to baseline 

segments were studied. 

The ultimate goal of an automatic detector is to provide the same conclusions 

as when visually marking the recording. The Ranking Distance (RKD; Zelmann et 

al., 2009b) measures the cost of obtaining a different order of channels (ordered 

from more to fewer events) when detecting events automatically compared to the 

order obtained from visually identified PosAnd events. For instance, if channel A 

has 3 visually detected events, channel B 25 and channel C 5, we expect the 

automatic detector to detect more events in channel B than in the other two. RKD 

score ranges from 0 to 1, with 0 representing exactly the same ranking, and 1 

corresponding to a ranking completely upside down. Thus, even though we accept 

a large number of false positives under the assumption that there might be events 

not seen by the reviewer, the relative number of false positives to true positives 

should be equivalent in all the channels of each patient. For this measure, all 

detected events were considered (i.e. not only the true positives). 

Statistical comparisons of the performance metrics were performed using 

balanced one-way ANOVA; post hoc comparisons were done using Tukey’s 

honestly significant differences (HSD) test. The level of significance was set at 

p<0.05. All processing was implemented based on MATLAB.  

6.11 Results 

6.11.1 Original configurations 
We compared our detector with the others considering the parameters, filter 

and thresholds in the original publications (see Table 6.1). Figure 6.8 shows the 

ROC curves across channels. The MNI detector considers differently channels 

with more than 5 s/min of detected baselines (170 channels) and channels with 

less than 5 s/min of baseline (127 channels). Results are presented separately for 

the two groups. With the original configuration, the AUC for “Channels with 
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baseline” was: 0.994 for the RMS detector; 0.84 for the LineLength detector; 0.8 

for the Hilbert detector; and 0.996 for the MNI detector. For “Channels with 

continuous HF activity” the AUCs were, respectively 0.98, 0.81, 0.77 and 0.991. 

When considering the energy threshold as reported in each publication 

(indicated as an X in Figure 6.8), the FPR was below 1% for all detectors, but the 

sensitivity was low for all but the MNI detector, which was significantly higher 

than the others (Table 6.2). The difference is not surprising since the MNI 

detector was optimized for a similar dataset, while the others were developed for a 

different definition of HFO. For instance, the Hilbert detector only considers 

frequencies above 180Hz and therefore cannot detect HFOs in lower frequencies. 

The FPR for the RMS and Hilbert detectors were significantly lower than for the 

LineLength or MNI detectors. The difference between these last two was not 

significant. The FDR was similar for all the detectors but the RMS detector, 

significantly lower than the others.  

 
Figure 6.8.  Average ROC curves for original configuration. Comparison of average ROC 
curves across channels considering the original parameters and filter (see Table 6.1). Channels 
where baseline can or cannot be found are separately shown. X: original thresholds. 

The percentage of channels (out of 297) where all the PosAnd events were 

detected was: 17% (50) for the RMS detector; 6% (19) for the LineLength 

detector; 6% (18) for the Hilbert detector; and 68% (202) for the MNI detector. 

The Kappa coefficient for all but the MNI detector was low since the 

sensitivity was low (Table 6.2). The Kappa for the MNI detector was significantly 

higher than the others. As a comparison the Kappa for reviewer 1 compared to 
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PosAnd & NegBase was 0.99 ± 0.03 (median: 1) and for reviewer 2 was 0.97 ± 

0.15 (median: 1). The Kappa between the 2 reviewers (considering NegBase 

events as the true negatives) was 0.83 ± 0.22 (median: 0.93). 

   Default Filter & Threshold 

 
Sensitivity(%)     FPR(%)     FDR (%)     Kappa 

Mean ±Std  Median  Mean ±Std  Median  Mean±Std Median Mean ±Std  Median

RMS  38.1 ± 37a  28.6  0.0 ± 0  0.0 16.7 ± 25 a  0.0  0.43 ± 0.39 a  0.39 

LineLength  27.6 ± 30 a  18.8  0.8 ± 1  0.6 59.6 ± 33  64.3  0.26 ± 0.26  0.21 

Hilbert  21.1 ± 29 a  6.3  0.1 ± 0  0.0 50.2 ± 41  50.0  0.24 ± 0.30  0.05 

MNI  91.0 ± 20 a  100.0     0.9 ± 3  0.0    55.0 ± 28  55.6     0.85 ± 0.25 a  0.97 

Table 6.2. Statistics across channels for default configuration. Sensitivity, FPR and Kappa 
computed using PosAnd and NegBase as reference; FDR computed with respect to PosAny 
events. a indicates significant difference with all the others (p<0.05). Significance difference 
among only some of the detectors is not indicated in this table, but explained in the text. SD: 
standard deviation; per: percentile.  

6.11.2 Optimum configurations 
To better compare the four detectors and to improve their performance in this 

dataset, the same filter was implemented for all detectors. In addition, the spectral 

equalizer filter of the LineLength detector was removed, which further improved 

performance in this detector. By using a similar filter than the one used for the 

reference events, the performance improves (Figure 6.9). The AUCs for 

“Channels with Baseline” were: 0.994 for the RMS detector; 0.98 for the 

LineLength detector; 0.989 for the Hilbert detector; and 0.996 for the MNI 

detector. For “Channels with continuous HF activity” the AUCs were, 

respectively 0.981, 0.943, 0.972, and 0.991. 

In order to provide a comparable measure of performance across detectors, 

the “optimum” point in the ROC curves was selected. We define as the 

“optimum” energy threshold, the threshold closest to the left top corner in the 

ROC curves obtained with the same band-pass filter. For the MNI detector 

optimum thresholds were obtained separately for channels with or without 

baseline. For the other detectors, the optimum threshold was obtained from the 

ROC across all the 297 channels. The optimum thresholds are shown in the first 

column of Table 6.3 and are indicated as O in Figure 6.9.  
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Figure 6.9. Median and average ROC across channels for the same 80-450Hz FIR filter. 
Channels where baseline can or cannot be found are separately shown. Insight: zoom of the 
average ROC. X: original thresholds; O: optimum threshold (closest to left top corner). The 
performance of the detectors that originally used a different filter improves considerably. 

As shown in Table 6.3, the sensitivity of all detectors is good when choosing 

the optimum threshold and using a similar band-pass filter to the one used to mark 

the reference. The FPR is worse for all detectors than it was for the default 

threshold, but the Kappa coefficient is higher. The MNI detector had the highest 

sensitivity, the lowest FPR, and the highest Kappa coefficient. The sensitivity of 

the MNI detector was significantly higher than the others. The FPR was 

significantly lower than the FPR of the LineLength and Hilbert detectors but not 

different from the RMS detector. Kappa was significantly higher for the MNI 

detector and significantly lower for the LineLength detector compared to the 

others. The number of false detection was high. The median FDR was above 75% 

for all detectors, indicating that at least three quarters of the detections were false 

detections in most channels. The FDR of the Hilbert detector was significantly 

lower than that of the MNI or RMS detectors but not than that of the LineLength 

detector, and still high. These false detections must be removed in later steps for a 

detector to be used clinically. 
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   Same filter 80–450 Hz and optimum threshold (average ROC) 

Sensitivity (%)  FPR (%)  FDR (%)  Kappa 

Threshold  Mean ±Std  Median Mean ± Std  Median Mean ± Std Median  Mean ± Std  Median 

RMS  1STD  92.7 ± 16  100.0  5.4 ± 9  1.6  72.4 ± 32  89.6  0.58 ± 0.34  0.66 

LineLength  80per  87.6 ± 21  100.0  9.0 ± 7  6.6  70.9 ± 26  79.6  0.40 ± 0.28 a  0.34 

Hilbert  2.75STD  90.0 ± 20  100.0  7.0 ± 14  0.4  61.2 ± 36  75.8  0.60 ± 0.38  0.73 

MNI  99.9/90per  97.6 ± 10a  100.0     4.3 ± 8  1.2     75.7 ± 24  82.9     0.75 ± 0.26 a  0.84 

Table 6.3. Statistics across channels for optimum configuration. Threshold column indicates 
the optimum energy threshold (closest to left top corner in average ROC curves). Sensitivity, FPR 
and Kappa computed using PosAnd and NegBase as reference; FDR computed with respect to 
PosAny events. a indicates significant difference with all the others (p<0.05). Significance 
difference among only some of the detectors is not indicated in this table, but explained in the text. 
SD: standard deviation; per: percentile.  

With this optimum configuration, the percentage of channels (out of 297) 

where all PosAnd events were detected was: 72% (214) for the RMS detector; 

59% (176) for the LineLength detector; 70% (209) for the Hilbert detector; and 

85% (251) for the MNI detector. Furthermore, 166 channels (56%) had perfect 

detection by all the detectors, comparing to only 11 channels (4%) with original 

configurations. 

6.11.3 Pooling all events together 
The previous ROC curves were averaged across channels. By pooling all the 

events, the total number of detected HFOs can be studied. The difference among 

detectors becomes more evident (Figure 6.10) than when averaging across 

channels, since only the MNI detector can detect most of the events in very active 

channels (where the rate of HFOs is also high). For all the events pooled together 

and using the same filter for all the detectors, the AUCs for “Channels with 

Baseline” were: 0.945 for the RMS detector; 0.924 for the LineLength detector; 

0.921 for the Hilbert detector; and 0.951 for the MNI detector. For “Channels 

with continuous HF activity” the AUCs were, respectively 0.939, 0.855, 0.904, 

and 0.964. 
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Figure 6.10. ROC curves pooling events together for the same 80-450Hz FIR filter. When 
pooling all the events together the difference in performance among detectors become more 
striking than when averaging across channels. Channels where baseline can or cannot be found are 
separately shown. X: original thresholds; O: optimum threshold (closest to left top corner in ROC 
average across channels). Thresholds are the same as in Figure 6.9. 

Table 6.4 presents the sensitivity, FPR and FDR for the default and optimum 

configurations when pooling all events. All detectors increased the number of 

detected events when using the optimum threshold, but at the expense of a higher 

FPR and FDR. Only the MNI detector detected 90% of the events, with the lowest 

FPR.  

   All Events Pooled Together 

Default Filter & Threshold  80‐450Hz filter & optimum threshold 

Sensitivity (%)  FPR (%)  FDR (%)     Sensitivity (%)  FPR (%)  FDR (%) 

RMS  14.0  0.0  15.5  70.3  7.1  77.3 

LineLength  19.2  1.0  45.4  62.9  11.3  66.3 

Hilbert  17.2  0.1  20.7  61.1  9.9  71.4 

MNI  76.1  0.9  56.9     90.5  4.3  71.8 
Table 6.4. Performance for all events pooled together. Left part of the table: filter and threshold 
as published in original publication (see Table 6.1). Right part of the table: Same 80-450Hz filter 
was used in all detectors and the optimum threshold obtained as in Figure 6.9. Sensitivity and FPR 
computed using PosAnd and NegBase as reference; FDR computed with respect to PosAny 
events. 

Given that the very active channels contain a large rate of HFOs, by detecting 

more on those channels, the MNI detector detects a larger amount of total events 

compared to the other detectors. This type of analysis gives a better idea of the 
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overall performance of the detector regardless of the type of channel (Gotman and 

Wang 1992). 

6.11.4 Ranking distance 
The ranking distance (RKD) measures that the ranking of channels for each 

patient was similar to the one obtained from PosAnd reference.  The mean, 

standard deviation and median across patients is reported (Table 6.5). The RKD 

of the LineLength detector improved for the optimum threshold, while the RKD 

for the RMS and Hilbert detectors was worse. The RKD of the MNI detector was 

similar in both cases. There were no significant differences among detectors for 

the default configuration; for the optimum configuration the RKD for the 

LineLength and MNI detectors was significantly lower than the RKD for the 

RMS and Hilbert detectors. 

   RKD (across patients) 

Default Filter & Threshold  80‐450Hz filter & optimum threshold 

   Mean  ± Std  Median      Mean ± Std  Median  

RMS  0.54 ± 0.25  0.55  0.78 ± 0.14  0.79 

LineLength  0.43 ± 0.18  0.44  0.34 ± 0.17  0.39 

Hilbert  0.40 ± 0.25  0.40  0.91 ± 0.08  0.92 

MNI  0.38 ± 0.18  0.39     0.38 ± 0.17  0.39 
Table 6.5. RKD across patients. Left part of the table: Filter and Threshold as published in 
original publication (see Table 6.1). Right part of the table: Same 80-450Hz filter was used in all 
detectors and the optimum threshold obtained as in Figure 6.9. 

As a comparison the RKD for reviewer 1 compared to the PosAnd events was 

0.03 ± 0.05 (median: 0) and for reviewer 2 was 0.05 ± 0.18 (median: 0). When 

comparing reviewer 2 markings with reviewer 1 markings, the RKD was 0.07 ± 

0.17 (median: 0.025). The large difference between the RKD for human reviewers 

and for any detector indicates that post-processing is fundamental to prune false 

detections and to obtain conclusions similar to the visual markings. 
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6.11.5 Analysis of the detected events 
Half of the HFOs (50.5%) were detected by all the detectors when using the 

optimal configuration. This was particularly the case in channels were HFOs were 

rare, since this is an implicit assumption in all detectors except the MNI detector. 

In active channels however, low amplitude HFOs are only detected by the MNI 

detector. Figure 6.11 presents examples of events found by all detectors and some 

identified only by some detectors in the same channels.  

 
Figure 6.11. Examples of HFO detections. A) SOZ channel in the hippocampus, with continuous 
background activity and many spikes as the one depicted in the raw EEG. All the detectors found 
the 2nd event, but only the MNI detector found also the 1st one. Baselines were not found, and 
therefore the detector for continuous channels block was used. In addition, a false detection is 
shown. B) SOZ channel in the Amygdale. The 1st event was found by all detectors, the 2nd event 
only by the MNI detector. In this channel 10.6sec of baseline were found and HFOs were detected 
by the MNI detector based on that baseline. In addition, a false detection is shown. C) NonSOZ, 
neocortical very active channel. The epileptiform activity that is observed is repeated periodically 
in the recording. In this channel 16.4sec of baseline were found. Therefore HFOs were detected by 
the MNI detector based on that baseline. Black: PosAnd reference HFOs; yellow: NegBase 
reference baseline; cyan: RMS detections; blue: LineLength detections; green Hilbert detections; 
and red: MNI detections. 

A desirable property of any detector is to detect equivalently in all types of 

channels. Thus, by considering all events regardless of channel, we evaluated 
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whether there was a difference in detection in different anatomical locations 

(Figure 6.12).  

Detections in all areas increased when moving to the optimum configuration, 

but were worse in hippocampus and parahipocampus than in other regions for all 

detectors but the MNI detector. With the MNI detector more than 80% of the 

HFOs were detected regardless of region. 

 Figure 6.12. Detections per Anatomical Location. All detectors improve the sensitivity for all 
anatomical regions. HC: hippocampus, A: amygdale, PHC; parahippocampus, NC: neocortex. 

6.12 Discussion 
Visual markings of HFOs provided a good understanding of the relation of 

HFOs with epilepsy (Jacobs et al., 2008a, Jacobs et al., 2010b, Urrestarazu et al., 

2007, Zijlmans et al., 2009b). But this manual procedure is highly time 

consuming and subjective. For the systematic study of HFOs and for a future 

clinical application, robust automatic detection of HFOs is necessary. In this 

study, we presented a comparison of performance of HFO detectors based on 

energy on the same dataset.   

In channels with rare HFOs, considering the entire EEG segment or only the 

detected baselines for calculating the energy threshold does not make an 

important difference. In these channels, all detectors (using the appropriate filter 

and the optimum threshold) behaved similarly. The main difference appears in 

very active channels. For instance, channels with baseline segments, but very 

active (Figure 6.11.C) benefit from the detection with respect to clear baseline 
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segments (instead of the whole EEG) to detect not only the large amplitude events 

but also the ones with lower energy. Furthermore, some of these channels have 

continuous HF background activity without clear baseline sections (example in 

Figure 6.11.A). In these channels, only the clear, large amplitude HFOs are 

detected by all detectors since the threshold is computed based on the whole 

recording, including these large events. With an iterative approach, smaller HFOs 

can be detected. Since many hippocampal channels have continuous high 

frequency activity, it is not surprising that the difference in performance was 

clearest in hippocampal channels.  

It is important to optimize a detector for a particular type of data instead of 

using directly a standard configuration. By modifying filters and thresholds the 

sensitivity of all the detectors was improved. Each detector was designed with an 

implicit definition of what an HFO is, since there is no consensus. For instance, 

the RMS detector was developed for hippocampal microelectrode recordings 

(Staba et al., 2002) and considered as HFOs events with at least six oscillations 

above certain energy level; the LineLength detector developed for gamma 

activity, and later used for high frequency band (80-1000Hz) activity in 

microelectrodes and subdural electrodes; the Hilbert detector only considered 

events in the 180-400Hz band and was developed for a wake dataset (Crepon et 

al., 2010); the MNI detector was developed for a similar dataset than the one used 

here for testing. The improvement in performance of the detectors designed for a 

different type of signal is not surprising, but it should raise awareness of the 

danger of using a detector without validation. 

The optimum threshold was selected based on the distance to the best 

possible point in an ROC curve. This was a useful criterion to compare the 

detectors. However, when implementing a detector for research or clinical 

applications, this threshold selection may not be best. One may consider using a 

threshold optimized for a small training dataset, imposing a constrain in the 

number of false detections. The optimization function used for the definition of 
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parameters of the MNI detector is an example; imposing a maximum FPR in the 

ROC curves (as in Crepon et al., 2010) is another.  

Only events that corresponded to visually detected HFOs or baselines were 

considered for the calculation of sensitivity and FPR. This strict definition of the 

true negative events can explain the extremely low FPR, which must be 

interpreted with caution: a low FPR does not necessarily imply a low number of 

false detections, but rather a low number of detections within visually marked 

baselines. Furthermore, given the large number of visually marked baselines 

(~50,000) a 1% FPR represents 500 false detections. However, given that some 

segments of EEG cannot unequivocally be considered as baseline or as HFOs, we 

believe that considering the FPR with respect to the NegBase is appropriate. Thus, 

even though detections occurred, a good proportion of the EEG data was not 

considered for the ROC curves and for the comparison of FPR across detectors. 

Analysis of events in these EEG segments could identify events not visible to the 

human reviewer or on the contrary indicate FP due to artefacts.  

Although making false detections on 66-76% of the detections seems an 

enormous number, it is small compared to the reported values. For instance, 

Crepon and colleagues reported that only about 1% of automatically detected 

events were kept after post-processing (Crepon et al., 2010), while Worrell and 

colleagues kept 15% of detected events (Worrell et al., 2008). 

Automatic detectors consider each channel independently from each other. 

Therefore, the ideal gold standard should have been to review the channels in 

isolation. However, visual marking of HFOs is already highly time intensive. 

Reviewing channels in isolation would have taken too long to be feasible (since 

10 consecutive channels were marked simultaneously, the time would increase 

considerably). In addition, since we only considered depth electrodes for this 

study, and since HFOs are usually visible only in a few channels simultaneously 

(Crepon et al., 2010), we believe that visually marking HFOs in isolation would 

have provided similar gold standard HFOs. In any case, since the same gold 
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standard was used to measure the performance of all detectors, it does not affect 

their comparison. 

The goal of an automatic detector is to provide the same conclusions that 

could be obtained with visual marking. Thus, even if we accept a large number of 

false positives, the relative number of false positives to true positives must be 

equivalent in all channels. This was measured with the RKD. The great variability 

in RKD across subjects was probably due to false positive detections, but this 

remains to be validated. If this is the case, the RKD would improve after post-

processing. On the other hand, the variability across human reviewers was 

extremely low, as indicated by a high Kappa and low RKD, which was expected 

since visual markings were evaluated and corrected for consistency following the 

procedure of (Zelmann et al., 2009b).  

Most channels with continuous oscillatory HF activity, where baselines could 

not be identified, contained high rates of HFOs and were related to epileptogenic 

regions. Thus, an analysis of different types of background activity is under study 

to establish clearer definitions for automatic HFO detection in those channels 

(Mari et al., 2012). They were common in mesial temporal regions of patients 

with mesial temporal lobe epilepsy. When visually marking HFOs in these 

channels, only oscillatory events with one clear frequency component, at least 

four oscillations, and energy larger than the surrounding continuous oscillatory 

background are considered. The iterative approach in the MNI detector detected 

most HFOs in these channels.  

The distinction between pathological and physiological HFOs remains 

uncertain (Engel et al., 2009). In microelectrode recordings, it is associated with a 

difference in frequency, with ripples regarded as normal and FR pathological 

(Bragin et al., 1999b, Staba et al., 2002). However, studies with macroelectrodes 

suggested that this distinction might be arbitrary. The rates of ripples and FR were 

higher in SOZ than outside (Jacobs et al., 2008a, Urrestarazu et al., 2007, Worrell 

et al., 2008), ripples behaved similarly to FR with respect to surgical outcome 
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(Jacobs et al., 2010b) and medication withdrawal (Zijlmans et al., 2009b). Thus, 

ripples and FR seem to be associated with tissue that generates seizures. 

Moreover, physiological HFO emerging from the visual cortex had similar 

spectral characteristics to the HFOs emerging from epileptogenic tissue 

(Nagasawa et al., 2012). These results indicate that frequency alone is not 

sufficient to discriminate between pathological and physiological HFOs. A recent 

study showed that events clustered into ripples and FR, but also with a third class 

of mixed components (Blanco et al., 2010). Even though two frequency peaks 

(Staba et al., 2002) or separate classes (Blanco et al., 2010) were found, 

detections were made on a broad frequency band similar to the one we chose. If a 

distinction between ripples and FR is demonstrated, detectors should be tailored 

to each. 

For an automatic detector to be used clinically, false detections must be 

discarded. Different approaches can be considered for post-processing. A semi-

automatic detector in which visual validation is performed by experienced 

reviewers can be implemented (as in Crepon et al., 2010, Worrell et al., 2008). 

This approach allows for the removal of artefacts, the possible modification of the 

duration of the detected HFO, and could be used for all types of recordings. Even 

though expert intervention is required, the time needed is greatly reduced. 

Another possibility is the automatic classification of detections in events or 

artefact (Blanco et al., 2010). After post-processing, it is important to assess 

whether the detections provide meaningful information for localization of the 

epileptogenic area. A comparison of the conclusions drawn from (semi-) 

automatically detected HFOs with those obtained from visual markings provides 

the ultimate validation for a robust detector. 

In conclusion, the automatic detection of HFOs is crucial to propel the 

clinical use of HFOs as biomarkers of epileptogenic tissue. Automatic detectors 

were developed for different EEG recordings and with different aims. Given the 

lack of a formal definition of HFOs, comparing them in a single dataset is 

important to analyze their performance and to emphasize the issues involved in 
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validation. The MNI detector performed better than the others in this dataset 

(higher sensitivity, lower FPR and similar FDR), but was developed on channels 

similar to those used for testing. The choice of energy function does not seem to 

be the most relevant difference, but the approach by which the energy threshold is 

computed may matter. Optimizing on a particular type of data improves 

performance in any detector. 
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6.14 Significance 
The robust automatic detection of HFOs is crucial for the systematic study of 

HFOs and to propel the clinical use of HFOs as biomarkers of epileptogenic 

tissue. The presented automatic detector provides an original approach in first 

detecting baseline segments and then incorporating this local information for the 

detection of HFOs. This approach improves performance in very active channels, 

by considering the local characteristics of the baseline around the point of interest. 

This detector is the first to consider channels with continuous HF activity 

background. The presented detector performs better than other detectors, in 

particular in active channels and in channels with continuous HF activity 

background. These channels are clinically relevant, given their location or relation 

to epileptogenicity. This approach therefore provides key features for the clinical 

utilization of an automatic detector of HFOs. A comparison of existing detectors 

on the same dataset was important not only to analyze their performance, but also 

to show that optimizing on a particular type of data improves performance in any 

detector, and to emphasize the issues involved in validation.   
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Chapter 7. Manuscript #4: The scalp 
EEG can see very small cortical 
generators of epileptic activity  

7.1 Context 
As HFOs are produced by small brain regions, and since the EEG is greatly 

attenuated before reaching the scalp, HFOs are mostly recorded with intracranial 

electrodes. In line with this, the two previous chapters dealt with intracranial 

HFOs. Surprisingly, HFOs have been recently also recorded on the scalp. Scalp 

HFOs could become valuable to evaluate non-invasively large patient 

populations, to predict surgical outcome, and to plan electrode implantation. 

Finding HFOs on the scalp was unexpected since a large cortical region, of 

several centimeters, has been considered necessary to observe brain electrical 

activity on the scalp. How is it possible that these small events can be observed on 

the scalp? There are two possible hypotheses. The predominant hypothesis is that 

a large cortical region is most probably involved during the HFO events visible on 

the scalp. However, this hypothesis contradicts findings from intracranial 

recordings that showed that HFOs are generated by small brain regions. Taking 

this second perspective, could it be that small-spatial extent HFO events are 

visible on the scalp?  

The following manuscript studies which one of these two hypotheses is more 

likely to explain the presence of scalp HFOs. Since HFOs on the scalp are very 

rare, long segments of interictal EEG must be analyzed. Thus, the automatic 

detector presented in the previous chapter is a necessary tool for the detection of 

possible HFOs on the scalp. In order to study the cortical activity at the time of 

scalp HFOs, simultaneous scalp and intracranial recordings are required. This was 

possible in the context of collaboration with the University of Freiburg, where 
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such recordings are performed. This manuscript has been submitted for 

publication. 

7.2 Abstract  
High frequency oscillations are emerging as biomarkers of epileptogenicity. 

They have been shown to originate from small brain regions. Given the high 

resistivity of the skull and the assumption that a large cortical extent is needed to 

observe an event on the scalp, they have been mostly recorded with intracranial 

electrodes. Surprisingly, spontaneous high frequency oscillations can be recorded 

from the scalp. Their detection on the scalp could be useful to evaluate the 

development of epilepsy in large patient populations, for predicting surgical 

outcome, and for planning electrode implantation.  

To understand how is it possible to observe these small events non-

invasively, a paramount step is the analysis of the cortical correlates of scalp high 

frequency oscillations. Using simultaneous scalp and intracranial recordings of 11 

patients, we studied the spatial distribution of scalp events on the cortical surface. 

For interictal epileptiform discharges the subdural contacts were, as expected, 

spatially extended. On the contrary, for scalp high frequency oscillations the 

subdural maps were focal, consisting of one or a few dipolar configurations. 

These topographies suggest that small cortical areas generated the high frequency 

oscillations seen on the scalp.  

For interictal epileptiform discharges, similar scalp distributions 

corresponded to similar subdural distributions and averaging similar scalp 

topographies enhanced subdural activity. On the contrary, for high frequency 

oscillations, similar scalp distributions corresponded to distinct distributions on a 

standard 1cm subdural grid and averaging cancelled subdural activity. The 

assumption that a subdural grid “sees” everything that is seen by nearby scalp 

contacts is more valid for interictal epileptiform discharges than for high 

frequency oscillations.  
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These results suggest that the hypothesis that a large cortical region needs to 

be active for an event to be seen on the scalp is not valid for high frequency 

oscillations. Even though their generators are small, they can be observed on the 

scalp, with low amplitude and in a very focal region. These small extent events 

are undersampled on the scalp and on the grid. In agreement with this, when 

simulating 280 cortical sources of approximately 1cm2, we found that we are 

spatially undersampling such focal events on the scalp when using 30 to 60 

electrodes. 

High-density scalp electrodes seem necessary to fully sample high frequency 

oscillations on the scalp. A better understanding of the influence of spatial 

sampling on the observation of high frequency brain activity on the scalp is 

important for their clinical use as biomarkers of epilepsy.  

7.3 Introduction 
The question of how much of the electrical signals generated in the brain can 

be seen on the scalp has often been raised. Simultaneous recordings of intracranial 

and surface electroencephalography (EEG) originally suggested that a cortical 

area of at least 6cm2 is necessary for an epileptic spike to be seen on scalp 

(Cooper et al., 1965). This value was recently increased to 10cm2 (Tao et al., 

2007). In line with this, 8-15cm2 of lateral cortex has to be active during a seizure 

to be visible on the scalp (Hashiguchi et al., 2007). Computational models of EEG 

generation also support these findings (Cosandier-Rimele et al., 2008). Moreover, 

more than 4cm2 of lateral cortex need to be active for a spike to be observed on 

magnetoencephalography (Oishi et al., 2002). As a result of the above studies 

several square centimetres have become the commonly accepted spatial extent of 

an event to be observed on the scalp EEG.   

The traditional EEG frequency bands considered clinically relevant (up to 

70Hz) have been recently challenged by the discovery of High Frequency 

Oscillations (HFOs; 80-500Hz). Given the high resistivity of the skull and the 

assumption that a large extent of cortex is needed to observe an event on the 
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scalp, HFOs have been mostly recorded with intracranial depth electrodes and 

with grids/strips on the surface of the cortex. Intracranially, pathological HFOs 

are short spontaneous oscillatory patterns that are emerging as a reliable 

biomarker of epileptogenic tissue (reviewed in: Jacobs et al., 2012, Zijlmans et 

al., 2012). HFOs identify the seizure onset zone (Jacobs et al., 2008b, Urrestarazu 

et al., 2007, Worrell et al., 2008) and have good correlation with surgical outcome 

(Jacobs et al., 2010b, Wu et al., 2010). They can be recorded in mesial temporal 

(Bragin et al., 1999b, Staba et al., 2002) and neocortical structures (Jacobs et al., 

2009a).  

Small brain regions produce HFOs. Animal studies indicate that the 

generators of HFOs are on the order of the cubic millimetre. Pathological fast 

ripples (200-600Hz) in the epileptic rat hippocampus were generated by a region 

of about 1mm3 (Bragin et al., 2002), while physiological ripples (100-400Hz) in 

the rat’s hippocampus extended 4-5mm (Chrobak and Buzsaki 1996). In the cat 

neocortex, physiological ripples (80-200Hz) were correlated only within the same 

gyrus, extending at most 9mm (Grenier et al., 2001). According to the above 

discussion regarding the scalp recording of cortical events, it should not be 

possible to see HFOs on the scalp EEG.  

Surprisingly, recent studies showed that spontaneous HFOs can be also 

recorded from the scalp. Ictal gamma activity (50-100Hz) was observed during 

infantile spasms (Kobayashi et al., 2004) and paroxysmal gamma activity (above 

30Hz), although infrequent, co-localized with the seizure onset zone (SOZ; Wu et 

al., 2008). Interictal HFOs were first observed on scalp during continuous spike-

waves during slow-wave sleep (Kobayashi et al., 2010b). Careful observation of 

scalp EEG also allowed the identification of interictal HFOs in patients with focal 

epilepsy (Andrade-Valença et al., 2011). The rate of scalp HFOs, however, was 

much smaller than the usual rate of intracranial HFOs.  

HFOs recorded with intracranial EEG proved to be specific markers of 

epileptogenicity in patients with refractory epilepsy. The detection of HFOs non-
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invasively, on scalp EEG, could broaden the use of HFOs as biomarkers. Scalp 

HFOs could be assessed in large patient populations with different types of 

epilepsies, including non-refractory and generalized forms, and over long periods. 

Scalp HFOs might be useful to follow the effect of medication and to predict the 

development of epilepsy after a first insult. They could help to plan electrode 

implantation and in the prediction of postsurgical outcome, as the scalp EEG can 

overcome the spatial limitations of intracranial EEG. Understanding the cortical 

correlates of scalp HFOs is a paramount step towards their clinical utilization. 

There are two possible hypotheses to explain why these small extent events 

are visible on the scalp. Following the idea that at least 10cm2 of activated cortex 

are necessary to observe a spike on the scalp, the predominant hypothesis is that a 

large cortical region is most probably involved during the HFO events visible on 

the scalp. However, this hypothesis seems to contradict the idea that HFOs are 

generated by small brain regions, as observed with intracranial recordings. Taking 

this second viewpoint, could it be that small-spatial extent events are visible on 

the scalp?  

In this study, we evaluate which of these two hypotheses is more likely to 

explain the presence of HFOs on the scalp. We assess these two hypotheses from 

different perspectives. Using simultaneous scalp and intracranial recordings, we 

analyze the cortical involvement when HFOs were visible on the scalp. We 

compare this spatial distribution to that of scalp spikes. We study whether similar 

scalp events correspond to similar subdural recordings by analyzing the averaged 

activity and pairwise similarity on the subdural contacts for similar scalp patterns. 

By applying a linear model under the assumption that the subdural contacts 

capture everything that is observed in overlying scalp contacts, we relate the 

observations on the subdural contacts to those on the scalp and study whether the 

subdural voltage distribution can estimate the scalp recordings. To analyze the 

possibility that the low rate of HFOs on the scalp is due to spatial undersampling, 

we simulate sources of small extent and measure their spatial distribution on the 

scalp. 
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7.4 Methods 

7.4.1 Patient selection and electrode placement 
Fifty-eight patients were recorded at the epilepsy center of University 

Medical Centre Freiburg between September 2004 and August 2009. Patients with 

focal cortical dysplasia and simultaneous scalp and subdural EEG recordings of 

good quality were selected. Eleven patients fulfilled these criteria. Patients 

remained in the hospital during 8 to 15 days. The clinical information of these 

patients is presented in Table 7.1. During some days of the investigation, the EEG 

was recorded at 32.768kHz, then filtered at 344Hz and down-sampled at 

1.024kHz (IT med-EEG-System, Natus Europe GmbH, Munich, Germany). One 

hour of EEG was selected, at least one hour away from a seizure, during the first 

available night with simultaneous scalp and subdural recordings. Focal cortical 

dysplasia patients were selected on the basis that their epileptogenic area is 

usually focal and located in the neocortex. Night recordings were analyzed to 

minimize the amount of muscular (EMG) and ocular (EOG) contamination and to 

increase the rate of HFOs (Bagshaw et al., 2009, Staba et al., 2004).  

Electrodes were placed exclusively for clinical reasons and included subdural 

grid, subdural strip, and/or depth macro-electrodes (AD-TECH Medical 

Instrument Corporation, Racine, WI, USA). Seven patients had subdural grids and 

ten had subdural strips. Eight patients had additional depth electrodes. Only 

subdural functioning contacts on the lateral neocortex that were parallel to the 

scalp were analyzed (i.e. basal strips or depth electrodes were not considered). 

Subdural contacts had a diameter of 4mm, an exposed surface diameter of 2.3mm, 

and an inter-electrode distance of 1cm. Scalp EEG electrodes were placed 

following the international 10-20 electrode placement system with additional low 

temporal electrodes. All functioning scalp contacts were analyzed. The local 

Ethics Committee approved this study and all patients gave informed consent. 
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Patient 
FCD 
type 

Age/ 
gender 

Type of 
seizure  MRI  Medication  Surgery  Outcome 

1 1a 47/M SPS, 
GTCS FCD R O OXC, LEV R O 

lesionectomy 1a 

2 2a 17/M SPS, CPS, 
GTCS FCD R T OXC, LEV R T resection 1a 

3 2a 33/M SPS FCD R T LEV, OXC R T pole, A 
resection 1a 

4 2b 38/Fe SPS, 
GTCS 

Transmantle 
dysplasia L PCS None L P lesionectomy 1b 

5 2a 17/M SPS, CPS, 
GTCS Atrophy L H OXC L-sAHC, ant. T 

resection 1a 

6 1b 52/M CPS, 
GTCS HS R OXC, LTG R T, A resection 1a 

7 2a 21/M SPS, CPS FCD R MTG CBZ, LEV, 
TPM R T resection 1b 

8 2a 40/M SPS, 
GTCS 

HS L; 
LEV L T resection 1a 

FCD L 

9 2b 18/M SPS, CPS, 
GTCS FCD L T OXC, LEV  L T 

lesionectomy 1a 

10 2a 42/M SPS, CPS, 
GTCS 

FCD R T; 
None R T 

lesionectomy 1a lenticulo-striatalal 
infarction  L 

11 1a 21/M SPS, CPS Normal LTG, PGB T lesionectomy 1a 
Table 7.1: Clinical information of the patients. The postsurgical outcome is classified according 
to Engel (1993). A = amygdala; ant. = anterior; CBZ = Carbamazepine; CPS = complex partial 
seizure; FCD = focal cortical dysplasia; F = female; GTCS = generalized tonic-clonic seizure; H = 
hippocampus; HS = hippocampal sclerosis;     L = left; LEV = Levetiracetam; LTG = Lamotrigine; 
M = masculin; MTG = middle temporal gyrus; OXC = Oxcarbazepine; P = parietal; PCS = 
postcentral sulcus; PGB = Pregabalin; R = right;  sAHC = selective amygdalo-hippocampectomy; 
SPS = simple partial seizure; T = temporal; TPM = Topiramate; O = occipital. 

7.4.2 Event identification 

7.4.2.1 Identification of scalp HFOs 
To study the correlates of scalp HFOs on the brain surface, it was important 

to ensure that the selected events were clear HFOs of cerebral origin. HFOs were 

defined as events with at least 4-oscillations of sinusoidal like morphology in the 

filtered EEG that stand out from the surrounding background (Worrell et al., 

2012). In order to obtain clear, even if few scalp HFOs, an automatic detector was 

first run on the scalp EEG, followed by two visual confirmations.  

In the first step, a detector originally developed for intracranial EEG 

(Zelmann et al., 2012) was implemented for the detection of possible scalp HFOs. 

The detector was optimized on 1-min intracranial EEG of 5 patients with focal 

cortical dysplasia, which were not included in this study as they had no 
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simultaneous scalp recordings. Intracranial recordings were used for this 

optimization, since we assumed that HFOs on scalp have similar characteristics as 

intracranial HFOs. The EEG was filtered between 80-300Hz (see description of 

filter below). Possible scalp HFOs were automatically detected on bipolar 

montage during one hour of scalp EEG. This first step led to the identification of 

possible events, many of which were artefacts that were later discarded. The main 

goal of this first step was to reduce the burden of marking 1h of EEG by allowing 

the reviewer to focus on possible events.  

The second step involved the visual confirmation of scalp HFOs by an 

experienced reviewer using the Harmonie system (Stellate, Natus Medical Inc., 

CA, USA). For this purpose the screen was vertically divided in two. The left side 

showed high-passed filtered (above 80Hz) EEG at an expanded scale 

(270.9mm/sec). The right side showed the unfiltered EEG with a more 

compressed scale (30mm/sec). Only events with at least four rhythmic oscillations 

with regular amplitude that stand out from background were visually confirmed 

(Andrade-Valença et al., 2011). To differentiate HFOs from EMG, the guidelines 

proposed by Andrade–Valença and colleagues (2011) were followed. Events co-

occurring with muscle or electrode artefacts in the unfiltered EEG were rejected. 

Events with large frequency variability, irregular morphology, or large amplitude 

variations were discarded. We designed our filter with impulse response shorter 

than the events of interest and checked that the impulse response did not resemble 

the events of interest (Figure 7.2). Thus, the filtering effect (“Gibbs” phenomena) 

of glitches and sharp spikes were identified since they had fewer than 4 

oscillations with similar amplitude and were therefore discarded.  

The last step involved the confirmation of events by an independent reviewer 

and further discarding artefacts related to EOG activity. EOG type of activity 

occurred mainly simultaneously in both Fp channels, consisting of ~6 oscillations. 

These artefacts showed a small “burst” in the unfiltered EEG and were associated 

with EOG changes. EOG activity, in particular saccades, has been shown to 
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correspond to activity in the gamma (30-100Hz) band (Yuval-Greenberg et al., 

2008). Any event that was thought to correspond to EOG activity was discarded. 

HFOs were marked with high specificity rather rejecting than keeping an 

HFO that may derive from any kind of artefact. As suggested by Bénar et al. we 

chose a filter with short impulse response (Figure 7.2), required HFOs to have at 

least 4 regular oscillations and validated the visibility of randomly selected HFOs 

on the unfiltered EEG (Figure 7.3), to ensure that they did not correspond to 

filtering sharp events (Bénar et al., 2010). Examples of scalp HFOs in contrast to 

glitch, EMG, and EOG artefacts are illustrated in Figure 7.1. 

By using this strict procedure, we are confident that the remaining events are 

HFOs of cortical origin. We are aware that some true events might not have been 

retained since we chose to have high specificity at the cost of low sensitivity. 

Detections occurring simultaneously in different scalp channels were considered 

together (referred as time-events). 
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Figure 7.1. Example of scalp HFO as opposed to artefacts in patient 5. A) External artefact. 
The filtered EEG shows a short duration irregular oscillation, corresponding to the filtering effect 
of a sharp signal; it corresponds to a glitch in the unfiltered EEG. B) EMG artefact. In the filtered 
EEG a large amplitude irregular event is observed; it corresponds to high amplitude activity 
observed in the unfiltered EMG contact. C) EOG artefact. In the filtered EEG many regular 
oscillations are observed, particularly in Fp channels; they correspond to EOG fluctuations. D) 
Scalp HFO. The HFO can be observed in F8-T4 and with smaller amplitude in FP2-F4; it can also 
be observed in the unfiltered expanded EEG. No concomitant EMG or EOG is observed. Left 
column displays the unfiltered EEG with normal time scale; central column displays the unfiltered 
EEG with expanded time scale; right column displays the filtered (80-300Hz) EEG. 
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7.4.2.2 Identification of scalp interictal epileptiform discharges 
In focal cortical dysplasia patients, interictal epileptiform discharges (IEDs) 

include isolated spikes or sharp waves, repetitive spikes, and paroxysmal fast 

patterns (Boonyapisit et al., 2003). Because discharges are usually patient specific 

but vary across patients (Gambardella et al., 1996), typical IEDs for each patient 

were first identified and then marked on the scalp EEG. Twenty-five IEDs per 

patient were marked using standard display configuration (0.5-70Hz band-pass 

filter; 10sec/page visualization; bipolar montage). In one patient for whom IEDs 

could not be found, we selected instead sharp transients that were characteristic of 

this patient and that might correspond to normal patterns (Patient 1 in Figure 7.4). 

Since these events are observed in the unfiltered EEG, a large cortical extent is 

expected to be necessary to observe them on the scalp, similarly to IEDs. For 

simplicity we will refer to all unfiltered activity as IEDs. 

7.4.3 Analysis of simultaneous scalp and subdural recordings 
For the analysis of HFOs, the EEG was filtered between 80-300Hz using a 

finite impulse response equirriple filter (fStop1= 70Hz; fPass1= 80Hz; fPass2= 

300Hz; fStop2= 310Hz; stop-band attenuation= -60dB; pass-band ripple= 0.1dB). 

The impulse response of this filter is shown in Figure 7.2. For the analysis of 

IEDs, the EEG was filtered between 0.5-70Hz using an IIR Butterworth filter 

(fStop1= 0.1Hz; fPass1= 0.5Hz; fPass2= 70Hz; fStop2= 80Hz; stop-band 

attenuation = -60dB; pass-band ripple= 1dB). The scalp EEG and the intracranial 

EEG were referenced to Fz. Analysis was based on MATLAB. 
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Figure 7.2. Impulse response of the FIR filters. Left: band pass FIR filter (80-300Hz) designed 
in Matlab and used for the automatic detection and analysis. Right: high pass FIR filter (>80Hz) 
used in Stellate to visualize events and discard artefacts. The impulse response of both filters is 
different than the four regular oscillations characteristic of HFOs and is shorter than the events of 
interest. Thus, when filtering sharp transients (Gibbs effect), the response of these filters was 
easily recognized and the artefacts rejected. 

Voltage maps on the scalp and on the brain surface were created for each 

subject and for each time-event, corresponding to the largest peak of the 

electrodes involved in a time-event. For instance, an event of patient 1 occurred in 

channels P4-O2 and T6-O2. The largest peak in the EEG was in O2 for this time-

event. The time of this peak was used for the scalp and subdural voltage maps 

(Figure 7.4.B).  

We used the cross-correlation coefficient between voltage maps of pairs of 

events to study similarity between voltage maps. Similar pairs of maps were those 

with a correlation coefficient significantly different from zero. The percentage of 

statistically similar map pairs was computed by pooling all pairwise correlations. 

This was implemented to assess whether similar scalp voltage maps corresponded 

to similar subdural voltage maps; to average voltage maps of events with similar 

scalp topography to each other, creating scalp and subdural averaged voltage 

maps; and to evaluate whether a linear model could predict scalp patterns based 
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on subdural patterns of activation (see section below). Significance level was set 

to p<0.01. 

To assess the focality vs. smoothness of the voltage maps we computed the 

power in the lower half of the spatial spectra. The 2D fast Fourier transform of the 

voltage maps was computed. The total power on the lowest half of the spatial 

spectra was obtained. A smooth voltage map corresponds to a smooth peak of low 

spatial frequency, which corresponds to high power in the lower part of the spatial 

spectra. On the contrary, a focal map with multiple dipolar patterns has high 

power at high spatial frequencies. Mann–Whitney–Wilcoxon test was used to test 

for differences in power between IED and HFO maps.  

7.4.4 Phase synchronization 
The relative phase was computed from the phase of the scalp EEG and the 

corresponding subdural EEG (Lachaux et al., 1999). The phase was obtained from 

the Hilbert transform of the signals, and the phase lock value (PLV) was 

computed as 
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where N=64ms (the median duration across events) and N/2 corresponded to 

the largest peak of each HFO. * denotes  complex signals, and xത is the conjugate 

of x. 

For each patient a threshold was obtained as the 99 percentile of a null 

distribution of PLVs, consisting of at least 5000 PLVs. To obtain this null 

distribution with a structure similar to that of the data, each of these PLVs was 

computed between the scalp EEG from one event and the subdural EEG from 

another. Random jitter of up to 50ms was added. In patients with less than 5 

events (3 patients) a global threshold was computed as the 99 percentile of a null 

distribution pooling all the PLVs together. In the two patients with bilateral 
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implantation, only the side of most HFOs (all in 1 patient, all but 1 HFO in the 

2nd patient) was studied. 

The channel of interest for each event was selected as the scalp channel with 

the largest peak. Control channels were selected as far away from the channel of 

interest as possible. For patients with electrodes in temporal or occipital regions, 

the control channel was frontal on the contralateral side. For the patient with a 

central grid, the control channel was parietal on the contralateral side. To compare 

the pooled PLVs of the channel of interest with the corresponding PLVs for the 

control channel and to compare the maximum PLV per event we used a paired t-

test. To compare the number of events with any PLV larger than threshold across 

patients a Wilcoxon test was used. As before, statistical level was set at p<0.01. 

7.4.5 Modeling 

7.4.5.1 Linear Model 
Assuming that an event on the scalp can be explained by the event seen in 

subdural contacts, we developed a forward model relating subdural events to scalp 

events. Details of the model are in appendix A. The basic principle of the model is 

that, given a set of similar scalp events and their subdural counterparts, the model 

should be able to predict a scalp event from its subdural counterpart.  

We implemented a leave one out procedure for each patient with more than 5 

scalp events (6 patients for HFOs, all 9 patients for IEDs). The forward model 

was therefore built from all events but one and tested in this remaining event. The 

scalp event was estimated from this model and a subdural event. The resulting 

voltage map was compared with the voltage map of the real event. As explained 

before, we used the cross-correlation between real and estimated voltage maps as 

similarity measure. The percentage of similar voltage map pairs out of all pairs is 

reported. 
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7.4.5.2 Simulation of source extent 
In order to estimate the spatial distribution on the scalp of a focal subdural 

source, we simulated distributed sources using Brainstorm (Tadel et al., 2011). 

The scalp distribution was computed with the symmetric boundary element 

forward model using OpenMEEG (Gramfort et al., 2010, Kybic et al., 2005). The 

standard MNI Colin27 brain (Holmes et al., 1998) was segmented into brain, 

inner-skull, outer-skull, and scalp. To represent a dense spatial sampling on the 

scalp, all vertices of the tessellated scalp and face (1082 vertices) were considered 

as scalp electrodes. The averaged distance between vertices on the scalp was 1.3 

+/- 0.2cm, which corresponds approximately to 512 scalp electrodes (Ryynanen et 

al., 2004). In addition, the 10-20 system, the 10-10 system, and 256 electrodes 

were considered. The percentage of events that could be recorded with a particular 

electrode placement system was compared against the number of visible events 

when recording on all scalp vertices. The conductivity ratios for the brain, skull, 

and scalp were set to 1:1/25:1 (Goncalves et al., 2003, Lai et al., 2005). The 

distribution on the subdural contacts was obtained by computing the forward 

model, using only 1 layer, at the inner-skull (642 vertices), with 1.23 +/- 0.16cm 

inter-electrode distance.  

To generate the distributed focal sources, the cortex was parceled into non-

overlapping patches of ~10 vertices located over gyri. This division resulted in 

280 patches each corresponding to a distributed source (i.e. a continuous area of 

cortex simultaneously active), of 1.21 +/- 0.25cm2. The intensity of the sources 

was set to 5nA.m (Alarcon et al., 1994, Kobayashi et al., 2005). Since the mean 

filtered scalp EEG background was 1.53 +/- 1.03µV, we considered 2µV as noise 

level for the scalp recordings. The number of sources that could be recorded, with 

RMS amplitude above a 4µV threshold (double the noise level), was obtained for 

different scalp electrode systems. Similarly, the number of observable distributed 

sources, with RMS amplitude above a 30µV threshold (Jirsch et al., 2006), on the 

subdural contacts was computed. 
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7.5 Results 
Scalp HFOs were found in 9 of 11 patients (82%). A total of 115 time-event 

HFOs were visually confirmed (total number of HFOs: 209). The mean rate was 

0.21 time-events HFOs/min (range 0.02-0.78). Figure 7.3 shows an example of a 

scalp HFO. Even though there are IEDs in several channels, HFOs are only 

present in two scalp channels. They were marginally visible on the unfiltered 

time-expanded EEG (Figure 7.3.B). The scalp (Figure 7.3.D) and subdural (Figure 

7.3.E) voltage maps correspond to the time point of the largest peak in the filtered 

scalp EEG (indicated by an orange arrow). 

 
Figure 7.3. Example of scalp HFO. A) Unfiltered Scalp EEG, normal settings (patient 7). B) 
Section of unfiltered scalp EEG expanded in time. C) Same section band-passed filtered 80-
300Hz, HFOs are visible in channels T4 and T6 (purple horizontal line). D) Voltage maps on the 
scalp at the time of a largest peak of a scalp HFO (indicated by arrow in C). E) Voltage map on the 
subdural contacts at the same time. The scalp HFOs are visible on the unfiltered EEG (Zoom 
insight; also indicated by purple horizontal line in B), particularly on T4 (B). Some scalp IEDs 
occurring at the same time do not have an associated HFO. This illustrates that the HFOs are not 
the effect of filtering a spike. The subdural map at a time of a scalp HFO is focal, with a few 
dipolar configurations. Thus, the underlying cortical generator has small spatial extent. Voltage 
maps represent the amplitude on scalp and subdural contacts at the time of maximum peak on the 
scalp (orange line). Amplitudes in scalp and grid are linearly interpolated. Strip contacts are 
depicted as circles with their amplitudes at this same time point. 
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7.5.1 Focal or large cortical extents at the time of a scalp 

event? 

In order to test which hypothesis is likely to explain the presence of HFOs on 

the scalp, we analyzed the spatial distribution of the voltage on the subdural 

contacts. As expected, a large cortical region with smooth boundaries was active 

at the time of scalp IEDs (Figure 7.4.A). This re-affirms the concept of a large 

brain area being active to see unfiltered EEG activity on the scalp. In contrast, the 

subdural voltage maps at the time of scalp HFOs were focal, consisting of one or 

a few activations with a dipolar pattern (Figure 7.3.E & Figure 7.4.B).  

To quantify this difference in topography, the power at the lowest half of the 

spatial spectra was computed. This measured how focal (vs. smooth) was the 

spatial distribution of the voltage maps on grids. The six patients with grids were 

included in this analysis and had a total of 100 HFOs and 152 IEDs. There was a 

significant difference between maps that corresponded to IEDs and those 

corresponding to HFOs (Figure 7.4.C). Maps corresponding to IEDs were 

smoother than those corresponding to HFOs, as measured by the percentage of 

power in the lowest half of the spatial spectra (IEDs median= 69.4%; HFOs 

median=35.3%; p<<0.001). 

Moreover, a careful observation of the voltage maps suggests that there could 

be several asynchronous independent HFOs on the subdural grid at the time of a 

scalp HFO (see for instance Figure 7.4.B, patient 2). 

The observed focal subdural configuration suggests that even though HFOs 

are generated by and synchronized over small regions, they can be observed on 

the scalp. This observation is in agreement with our second hypothesis. 
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Figure 7.4. Examples of voltage maps on the scalp and on the subdural contacts at the time 
of the largest peak of a scalp IED (A) and a scalp HFO (B) in patients 1 and 2. The subdural 
map at the time of IEDs (filtered between 0.5-70Hz) extends over a large cortical region, with a 
smooth configuration. The subdural map at the time of HFOs (filtered between 80-300Hz) is focal, 
with a few dipolar configurations. Scalp and grid contacts are linearly interpolated. Strip contacts 
are depicted as circles with their amplitudes. C) Focality in the voltage maps was measured by the 
percentage of power on the lowest half of the spatial power. Voltage maps of HFOs were 
significantly more focal than IEDs (median power LF_HFOs= 35.3%; median power LF_IEDs = 
69.4%; p<<0.001). Values for individual maps are indicated in the examples of A and B. Patient 1 
typical unfiltered EEG activity consisted on sharp transients, which might represent non epileptic 
normal variants; Patient 2 typical IEDs consisted on spike and wave. Power LF=percentage of 
power in lower half of spatial frequency. 
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7.5.2 Do similar scalp patterns correspond to similar cortical 

patterns? 

One would expect that for comparably looking scalp distributions, the 

underlying subdural patterns would also be similar. A pair of voltage maps was 

considered similar if their cross-correlation coefficient was significantly different 

than zero. 

Figure 7.5 illustrates examples of two IEDs and two HFOs with similar scalp 

voltage maps for patient 7. For the IEDs (Figure 7.5.A), the pair of scalp voltage 

maps was similar (rxyScalp=0.96, p<<0.01) as well as the underlying pair of 

subdural voltage maps (rxySubdural=0.88, p<<0.01). In the case of the HFOs 

(Figure 7.5.B), the pair of scalp voltage maps was similar (rxyScalp=0.86, 

p<<0.01), even though the corresponding subdural voltage maps were different 

(rxySubdural=-0.19, p=0.11). Thus, different subdural voltage maps can result in 

similar scalp maps for scalp HFOs. 

The percentage of similar voltage maps was computed by pooling all the 

pairwise comparisons together (cross-correlation between voltage maps 

statistically larger than zero, p<0.01, across all pairs of maps). It was equivalent 

for HFOs (58%) and for IEDs (56%). This means that for more than half of the 

pairs of events the scalp voltage maps were similar, regardless of whether they 

were IEDs or HFOs. However, the underlying subdural activity behaved 

differently for IEDs and HFOs. When computing this same similarity measure in 

the six patients with grids, 50.05% of the pairs of IEDs with similar scalp voltage 

maps had also similar subdural patterns (range across patients: 21.1-93.3%). On 

the contrary, only 14.6% of pairs of HFOs with similar scalp patterns had similar 

subdural patterns (range across patients: 0-25.8%). In other words, a particular 

scalp pattern may result from different cortical regions being active for scalp 

HFOs.  
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Figure 7.5. Similar pairs of HFO scalp patterns may correspond to distinct subdural 
patterns. The scalp distribution is similar for all events. On the subdural EEG, an extended region 
is activated for IEDs (A), while a focal region is activated for each HFO (B). Note that the spatial 
distribution is similar for individual IEDs, but differs for individual HFOs. Similarity between 
pairs of voltage maps is measured by the cross-correlation. rxy = cross-correlation;  * indicates rxy 
significantly different than zero (pVal<0.01); NS=not significant. 
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In summary, even though a comparable percentage of similar pairwise scalp 

patterns are found for IEDs and HFOs; half of all the pairs of scalp IED patterns 

that were similar corresponded to similar subdural IED patterns; while only 1 in 7 

of all the pairs of scalp HFO patterns that were similar corresponded to similar 

subdural patterns. These results are consistent with the idea that within a large 

epileptogenic area that could generate HFOs, these spontaneous events are 

actually generated by independent small regions. 

7.5.3 Averaged voltage maps 
Following the results of the previous sections, the validity of the first 

hypothesis that states that a large smooth cortical region must be active to observe 

events on the scalp is questionable. To further evaluate this, averaged maps of 

events with similar scalp topographies were studied. Under the first hypothesis, 

scalp voltage maps could be fully explained by subdural distributions and as a 

result, it would be expected that the underlying subdural maps would be enhanced 

when averaging voltage maps for events with similar scalp distributions.  

This was the case for IEDs, for which a large spatial extent and large 

amplitude averaged subdural voltage map was obtained (Figure 7.6.A). 

Conversely, when averaging similar scalp maps of HFOs, the subdural maps 

cancelled each other, producing small amplitude averaged subdural maps (Figure 

7.6.B). This is in line with the idea presented in the previous section that diverse 

underlying cortical focal activations could correspond to similar scalp HFOs. 
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Figure 7.6. Averaged voltage maps in patient 1. A) When averaging 10 similar scalp IEDs, the 
simultaneous averaged subdural map shows a large active region with large amplitude. Since 
activity comes from similar extended regions, the average enhanced the common activity. B) 
When averaging 10 HFOs with similar scalp maps, the underlying subdural maps fails to show 
activity above noise level. Since activity comes from independent small-extent sources, averaging 
“destroys” the subdural maps, even though they are recorded as similar on the scalp. Same scale is 
used for averaged scalp and subdural maps. 

7.5.4 Phase Synchronization 
The PLV was significantly higher for the channels of interest than for the 

control channels (0.25+/-0.14; 0.17+/-0.09; p<<0.001; paired t-test). The low 

mean value for the channels of interest is likely due to many subdural channels 

not contributing to each scalp HFO. This is in line with the idea that for each 

event only a few subdural contacts are active. Indeed, when only considering the 

maximum PLV per event the mean across events was: 0.53+/-0.13 for channels of 

interest and 0.36+/-0.09 for control channels (Figure 7.7.A; p<<0.001; paired t-

test). This maximum value represents the phase relation between the scalp 

channel and “the most related” subdural channel. 

In this regard, an informative measure can be defined as the number of events 

for which the PLV was larger than the threshold of each patient. The global 

threshold was 0.48 (range across patients: 0.38-0.54). There was at least one PLV 

larger than the threshold in 69% of all events pooled together for the channels of 

interest; for the control channels this was the case in only 15% of the events. A 
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Wilcoxon test across patients showed that this difference was significant (Figure 

7.7.B; p<0.01). 

 
Figure 7.7. Phase synchronization. Boxplots of the maximum PLV per event (A) and 
percentage of events with at least one PLV larger than threshold per patient (B). The mean 
+/- std across maximum PLV per event for channels of interest was 0.53+/-0.13, while for control 
channels was 0.36+/-0.09 (p<<0.001; paired t-test). Median percentage of at least one PLV above 
threshold across patients for channels of interest was 69%, while for control channels was 0% 
(p<0.01; Wilcoxon test). 

7.5.5 Relation between subdural and scalp contacts using a 

linear model 

When simultaneously recording scalp and intracranial EEG, an implicit 

assumption is that the subdural contacts can see all the activity seen by the scalp. 

This implies that it is possible to predict the scalp voltage distribution based on 

the subdural recordings. From the previous sections we concluded that the 

generators of scalp HFOs are small. If these sources are smaller than the grid’s 

inter-electrode distance, the previous assumption will not hold.  

The linear model described in the Methods section could explain most of the 

IED events (82.7%, using a leave one out procedure) as measured by the cross 

correlation between the real voltage map on the scalp and the one estimated from 

the model (Table 7.2, Figure 7.8). This is in line with a large synchronously 

activated region, given that the main assumption of the model is that the subdural 

voltage distribution can fully explain the scalp distribution. On the other hand, the 
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model can only explain less than half (38%) of the scalp HFOs from subdural 

distributions (Table 7.2).  

Patient  Type Contacts   #HFOs #IEDs

%Correlated Voltage Maps 

Leave1Out HFOs Leave1Out IEDs

P1  8x8 Grid+strips  16 25 44% 96%

P2  4x8 Grid  1 25 ‐‐‐a 56%

P3  Strips  3 25 ‐‐‐a 36%

P4  8x8 Grid  13 25 8% 84%

P5  4x8 Grid(L) + strips(R)  16 25 75% 88%

P6  Strips  9 25 11% 96%

P7  8x8 Grid + strips  47 25 43% 100%

P9  4x8 Grid(L)+ strips(R)  7 25 0% 92%

P11  Strips  3 25 ‐‐‐a 96%

Average across patients  12.8 25
30% +/‐ 

SEM=29%
83% +/‐ 

SEM=22%

Percentage Correlated voltage maps  38% 83%

Rxy voltage maps  0.88 +/‐ 0.07 0.91 +/‐ 0.08

Table 7.2. Percentage of correlated voltage maps on the scalp explained by a linear model. 
aOnly patients with more than 5 scalp HFOs were studied with the leave one out schema. Table is 
based on 25 scalp IEDs and all selected scalp HFOs per patient. Rxy=cross-correlation coefficient; 
L=Left; R=Right; SEM= standard error on the mean. p<0.01.  

In the examples of the real and estimated voltage maps on the scalp the 

resemblance between voltage maps is remarkable for the IED (rxy=0.98, 

p<<0.001; Figure 7.8.A) and for one of the HFOs (rxy=0.94, p<<0.001; Figure 

7.8.B). On the contrary for the second HFO, the model cannot estimate the real 

scalp HFO (rxy=-0.26, p=0.41; Figure 7.8.C). 
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Figure 7.8. Linear Model. Example of one predicted scalp IED (A), one properly predicted 
scalp HFO (B) and one scalp HFO that could not be predicted from the underlying subdural 
activity (C). Matrix G is the model obtained with a leave one out procedure. Similarity between 
estimated and real scalp voltage maps is measured by the cross-correlation. rxy = cross-
correlation;  * indicates rxy significantly different than zero (pVal<0.01); NS=not significant. 

Thus, the assumption that a subdural grid “sees” everything that is seen by the 

nearby scalp contacts is more valid for IEDs than for HFOs. The only explanation 

for the grid not seeing the same as the overlaying scalp contacts is that in some 

HFOs that are observed on the scalp, the underlying sources are too small and are 

not sampled correctly by subdural contacts separated by 1cm. In other words, we 

are spatially undersampling with the used subdural contacts. 
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7.5.6 Simulation of scalp extent 
If activity from small cortical areas corresponds to scalp events, the spatial 

extent on the scalp may be small. In addition, HFO rates on scalp were much 

lower than rates for subdural HFOs. Thus, we are possibly spatially 

undersampling on the scalp (~5cm separation using the 10-20 system). On the 

other hand, the model could predict less than half of the scalp HFOs and the 

subdural maps show sometimes activity in only one electrode and not the adjacent 

ones. We are therefore likely undersampling on the grid as well (1cm separation). 

To illustrate the spatial extent on the scalp of focal sources, we simulated 

distributed sources of about 1cm2 on the cortical gyri. 

Out of the 280 distributed sources of 1.21 +/- 0.19cm2 with intensity 5nA.m, 

85% were visible on the grid with RMS amplitude larger than 30µV. Of these, 

61% reached the scalp with RMS amplitude of at least 4µV, and could therefore 

be detected. However, given the small spatial extent of these events on the scalp, 

only 15% of the 145 sources visible on the scalp would be recorded with the 10-

20 system, 27% with the 10-10 system, and 50% with 256 electrodes. The mean 

RMS amplitude was 5.25µV for all the sources observed on the scalp, 4.8µV for 

those recorded with 256 electrodes, 4.7µV for those recorded with the 10-10 

system, and 5.1µV for those recorded with the 10-20 system.  

Figure 7.9 shows examples of 2 sources of 5nA.m. One source, of 1.12 cm2, 

is recorded with the 10-20 system, even though the spatial extent on the scalp is 

focal, since electrode O1 overlays this source. The second source of similar extent 

(1.55 cm2) and identical intensity is not recorded because there is no electrode 

where the scalp voltage is above noise level. A denser scalp array would be 

necessary to record this source. The results of this simulation are not limited to 

HFOs, but represent any type of focal neuronal activity. 
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Figure 7.9. Example of 2 simulated focal sources and corresponding scalp spatial 
distribution. Green arrow indicates a source that is visible when placing electrodes based on the 
10-20 system. Magenta arrow indicates a source that corresponds to a scalp activation of similar 
extent, but that will not be visible when using the 10-20 system for placement of scalp electrodes. 
Sources intensity=5nA.m. Noise level was considered as 2uV. 

7.6 Discussion 
In this study, we evaluated whether the traditional hypothesis that implies that 

a large cortical area being synchronously active is necessary to observe an HFO 

on the scalp or whether a focal event over a locally synchronized region is 

sufficient to observe an HFO on the scalp. We assessed these two hypotheses 

from different perspectives, using simultaneous scalp and intracranial recordings. 

We analyzed the spatial extent of the cortical sources by observing the spatial 

distribution of voltage maps on the surface of the brain at the time of scalp events 

(HFOs and IEDs). We studied whether similar scalp events corresponded to 

similar subdural patterns of activity. We related the observations on the subdural 

contacts to those on the scalp and studied whether the subdural voltage 
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distribution can estimate the scalp recordings. We simulated sources of small 

extent and measured their spatial distribution on the scalp. 

If the first hypothesis holds, a large cortical activation with smooth 

boundaries would be expected. Similar cortical activity would correspond to 

similar scalp distributions, thus the average would be stronger than individual 

events, since noise would cancel out and activity (from similar large synchronous 

regions) would be enhanced. In addition, a linear model that relates subdural and 

scalp recordings would predict activity on the scalp based on subdural voltage. All 

this was the case for IEDs, in agreement with previous studies where this first 

hypothesis was proposed (Tao et al., 2007). 

For HFOs none of these conditions was observed. On the contrary, the spatial 

distribution on the cortical surface at the time of scalp HFOs was focal, consisting 

of one or a few dipolar configurations. Different subdural patterns were observed 

for similar scalp HFO patterns. Indeed, when averaging subdural maps of similar 

scalp patterns at the time of scalp HFOs, the subdural patterns cancelled each 

other. The assumption that a subdural grid “sees” everything that is being seen by 

the nearby scalp contacts holds for spikes but does not appear to hold for HFOs, 

for which the linear model cannot predict scalp activity based on the subdural 

voltage. Moreover, the phase synchronization between scalp HFOs and the 

underlying cortical activity was significantly larger than for the control channels 

located at a distance from the channels recording HFOs. These results point 

towards the validity of the second hypothesis: even though the generators of 

HFOs are small they can be observed on the scalp.  

If activity from small cortical areas correlates with scalp events, the spatial 

extent on the scalp may also be smaller than expected. This and the much smaller 

rate of scalp HFOs compared to intracranial EEG, argues in favour of a possible 

spatial undersampling of scalp EEG. The fact that a linear model between the 

subdural contacts and the scalp could not explain the observations on the scalp 

together with the focality of the subdural maps for HFOs, seem to indicate that we 
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may be undersampling not only on the scalp, but also on the grid. The spatial 

undersampling was studied by simulating sources of small extent and by 

measuring their spatial distribution on the scalp. We found that with the 10-20 and 

10-10 systems, we are likely undersampling such focal events. 

7.6.1 Small cortical extent and solid angle 
We showed, using different approaches, that a small active cortical region is 

sufficient to produce an HFO that is visible on the scalp. Furthermore, given the 

small size of the generator of HFOs, the scalp EEG could record similar looking 

potentials for events for which the closely located subdural contacts would see 

different activity. 

This can be explained by the solid angle concept. As stated by Gloor: “The 

potential generated by a dipole layer in a volume conductor measured at any point 

within (or at the surface) of this conductor is proportional to the solid angle 

subtended by the dipole layer at the point of measurement” (Gloor 1985). Based 

on this concept, the difference in the percentage of similar pairs of voltage maps 

for subdural grids and the scalp for HFOs becomes clear; small cortical regions 

synchronously active can produce very different solid angles on the closely 

located grid but similar solid angles on the scalp. 

The schematic in Figure 7.10 illustrates this concept. The amplitude recorded 

by each electrode depends on the amplitude of the source (which in the figure is 

the same for all sources) times the solid angle seen by the electrode (Figure 

7.10.C & F). In the upper part of the figure, all grid electrodes see similarly the 

large source, while the small source is mainly recorded by the central grid 

electrode. This is depicted by the smooth spatial distribution for the large source 

and the focal spatial distribution for the small source in Figure 7.10.A as well as 

by the similar amplitude in all grid electrodes for the large source and the 

different amplitude at each electrode for the small source (Figure 7.10.C). On the 

scalp, the small source has a more focal spatial distribution than the large source 

(Figure 7.10.B), although this difference is not as large as for the grid. The lower 
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part of the figure illustrates the spatial distribution corresponding to two small 

sources. Since the size of the small sources is similar to the grid interelectrode 

spacing (~1cm), their location (given equivalent orientation and amplitude) 

defines which electrode (if any) has a large enough solid angle with the source 

(Figure 7.10.D & E). Source 1 (in red) forms a large angle from electrode 1, while 

source 2 (in orange) has a large angle from electrode 3 (Figure 7.10.D & F). The 

solid angle seen from each electrode is different for each source, because the grid 

is close to the sources. Both sources have similar angles from the scalp electrode 

(Figure 7.10.E & F). Thus, small-extent events may look different on the grid, but 

similar on the scalp. Moreover, given that the size of the source and the spacing 

between grid contacts is similar, an event could be recorded by a scalp electrode, 

but not by the underlying grid contact. In conclusion, the spatial sampling is 

adequate for large sources on the grid and on the scalp, but small events are 

undersampled on the scalp and on the grid. 
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Figure 7.10. Schematic of similar scalp pattern but different subdural patterns explained by 
the solid angle. Top: A large active region that could correspond to an IED (green) is recorded by 
all subdural electrodes (purple; A) and by the scalp electrode (blue; B). All subdural contacts see a 
similar solid angle, resulting in similar amplitudes (C). The small source (red), that could represent 
an HFO, is recorded mainly by one subdural electrode (A) and by the scalp electrode (B). Bottom: 
Two small sources representing HFOs are similarly seen by the scalp electrode (E), but observed 
mainly by one subdural electrode each (D). Thus, these two sources would have comparably 
looking scalp topographies, but different subdural topographies. This figure was created in Matlab. 
The spatial distribution on the grid and on the scalp was computed by multiplying the source 
amplitude by the solid angles at locations separated by 5 degrees (indicated by lines at the 
surfaces). Sources amplitude= 100uV; skull to brain conductivity ratio 1/25; smearing effect was 
not considered; large source extent = 6cm; small sources extent = 1cm. Electrodes are depicted as 
half their real diameter to emphasize the point like assumption in the calculation of the solid 
angles. 
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7.6.2 Noise Characteristics 
The conclusion that a large cortical extent is necessary to observe an event on 

the scalp was attained from unfiltered recordings (Hashiguchi et al., 2007, Tao et 

al., 2007), but there is no estimate for the spatial extent needed for high frequency 

(HF) bands. The noise characteristics at HF may be different from the noise 

characteristics of the unfiltered EEG. 

It is important to properly define “noise” for each particular event of interest. 

For instance, when detecting spikes the noise is the EEG activity surrounding the 

spike, which could be composed of artefacts from outside of the head and 

physiological activity of brain origin. Thus, the signal to noise ratio would be the 

ratio between the amplitude of the spike (the signal) and the surrounding noise 

(i.e. activity that is not the one of interest). Considering this definition, a reason 

why it is possible to record small extent events at HF but not at low frequencies is 

that the noise level at HF is small. Since the EEG background is considered to 

decrease as one over the frequency (Buzsáki and Draguhn 2004), and because 

most spontaneous physiological activity occurs mainly at low frequencies, the 

noise level could be close to the amplifier noise floor at HF. In line with this, 

when measured in the arm during rest, the noise level reaches the amplifier level 

at about 30Hz (range across subjects: 10-100Hz; Huigen et al., 2002). Our data 

was in agreement with low noise level at HF. In 1h filtered scalp EEG (80-

300Hz), the RMS amplitude outside artefacts was 1.53 +/- 1.03µV. Given the low 

rate of HFOs this represents background noise. Comparably, the amplifier’s noise 

floor was less than 1µV (as indicated by the manufacturer; IT med-EEG-System). 

It is important to emphasize, that despite what it is sometimes explained in 

textbooks the conductivity of the skull is the same from 1Hz to 10kHz 

(Oostendorp et al., 2000, Tang et al., 2008). Therefore, IEDs and HFOs are 

equally attenuated before reaching the scalp. 

Thus, since the noise level at HF is smaller than at low frequencies and since 

activity is equally attenuated at all frequencies of interest, the signal to noise ratio 
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at HF is large enough for small events to be detectable on the scalp. Indeed, a 

smaller noise level was found at HF resulting in comparable signal to noise ratio 

for IEDs, gamma, and ripple events at their respective frequency bands (von 

Ellenrieder et al., 2012). Therefore, events generated by small regions, which 

have low amplitude on the scalp, may be below noise level in the EEG at low 

frequencies, but are visible when looking at HF.  

7.6.3 Undersampling on the scalp  
When assessing the number of electrodes needed to obtain accurate source 

localization of IEDs in the unfiltered EEG, there is increased accuracy up to 64 

electrodes, but little is gained in using more (Lantz et al., 2003), in particular at 

realistic (unfiltered) noise levels (Ryynanen et al., 2004). However, in low noise 

environments, of about 1µV, a large number of electrodes would allow the 

accurate reconstruction of more sources (Ryynanen et al., 2004). Our results are 

in agreement with this statement. Our simulations showed that focal sources of the 

estimated size of HFO generators (approximately 1cm2) corresponded to focal 

scalp patterns and that the number of sources recovered increased with an 

increased number of electrodes at 2µV noise level. Thus, the low rate of scalp 

HFOs observed in visual studies (Andrade-Valença et al., 2011) is likely due, at 

least in part, to spatial undersampling of these focal events.  

Interelectrode distance is about 6cm for the 10-20 system (21 electrodes), 

3.3cm for the 10-10 system (64 electrodes), 1.6cm for 256 electrodes, and about 

1.1cm for 512 electrodes (Ryynanen et al., 2004). When recording simulated 

activity with 1.3 +/- 0.2cm interelectrode distance, 61% of the sources recorded 

by the grid were recorded at the scalp with amplitude at least double the noise 

level.  

In cognitive neuroscience, thousands of trials can be averaged to observe HF 

activity non-invasively (Curio 2000). Even after averaging HF activity was not 

observed in all patients (e.g.: Ball et al., 2008), while in a similar task HF activity 

was observed in all patients when recorded with intracranial electrodes (Miller et 
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al., 2007b). This inter-subject variability could be due to poor spatial sampling on 

the scalp, which improved with averaging in some but not all subjects. Since 

pathological HFOs are spontaneous events, they cannot be averaged and have to 

be identified individually. Given the small extent of the HFO sources and the need 

to detect individual HFOs, a large number of scalp contacts may therefore be 

necessary to systematically observe HFOs on the scalp. The need for high-density 

scalp electrodes might not be limited to the study of HFOs. A study on the 

usefulness of EEG source imaging for focus localization during pre surgical 

planning showed that it had a sensitivity of 84% with a specificity of 88% if a 

large number of electrodes (128-256) was used for the reconstruction (Brodbeck 

et al., 2011). 

7.6.4 Undersampling on the subdural contacts 
We are likely undersampling not only on the scalp but also on the grid. For 

HFOs the subdural maps showed some activations that occurred only at 1 contact 

and the model could not predict scalp activity based on subdural activity. Thus, 

the grid might be sampling poorly events that are in the order of the 1cm of 

separation between contacts. These results are in agreement with the size of about 

1mm3 observed for the generators of HFOs (Bragin et al., 2002). Moreover, the 

optimal inter-electrode spacing to avoid undersampling and aliasing has been 

suggested to be 1.25mm (Freeman et al., 2000).  

Intracranial HFOs were sometimes recorded simultaneously at several 

electrodes, covering several square centimetres. It has been suggested that they 

correspond to simultaneously activated regions (Crepon et al., 2010). In our data, 

oscillatory activity was observed on subdural contacts at the time of scalp HFOs. 

The different morphology of these subdural EEG activities (e.g. Figure 2.E; 

patient 2 in Figure 3.B) is likely explained by independent small regions 

generating independent HFOs within the same window of time. However, we did 

not study this systematically.  
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7.6.5 Methodological considerations 
Skull holes alter the electrical signal recorded on the scalp (Heasman et al., 

2002). Burr holes produced during surgery produce a large localization error, 

particularly for radial dipoles below the hole and tangential dipoles in the edges of 

the hole (Bénar and Gotman 2002, Heasman et al., 2002). When filling the burr 

holes with methacrylate, which is commonly done after depth electrode 

implantation, the localization error is reduced (Bénar and Gotman 2002). We 

believe that the influence of burr hole in our signal was minimal. In particular 

since in some subjects, scalp HFOs and IEDs were observed in more than a single 

scalp electrode and different events had different scalp distributions. Furthermore, 

scalp electrodes were placed following the 10-20 system as closely as possible, 

but avoiding being near holes or sutures. The electric field on top of the holes is 

the one mostly distorted, and this distortion rapidly falls with distance (Heasman 

et al., 2002). Even if there was an effect of the holes, the effect should be similar 

for IEDs and HFOs and therefore all the comparisons made throughout this paper 

hold.  

The subdural contacts were placed exclusively for clinical reasons. This 

implies that we can only infer from the area covered by the grid and strips, but 

there might be contribution from other not covered areas. Even though the 

coverage was limited, the comparison between IEDs and HFOs remains valid. 

The analysed hour of EEG was selected during night to minimize the effect of 

artefacts and maximize the number of HFOs. Part of this hour was slow wave 

sleep, but the sleep stage was not consistent during the whole hour. This could 

have reduced the number of identified events (Bagshaw et al., 2009). The strict 

procedure to discard possible artefacts probably additionally restricted the number 

of identified HFOs on the scalp. Indeed, the mean rate of scalp HFOs in this study 

was 0.21/min, which is smaller than a previous study (0.49/min in Andrade-

Valença et al., 2011). 
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In some of the examples, oscillatory activity could be observed in the 

subdural contacts extending beyond the seizure onset zone (e.g. Patient 1 in 

Figure 7.4.B). Even though HFO rates are higher in the seizure onset zone, HFOs 

are observed also in other regions (Jacobs et al., 2009a, Urrestarazu et al., 2007). 

The attenuation effect of the silastic membrane holding the electrodes when 

using subdural grids does not seem to avoid the propagation of spikes (Tao et al., 

2007) and is probably small compared to skull impedance. Although the 

frequency characteristics of the silastic membrane are not known, if attenuation 

takes place it should have a similar effect on the background, thus maintaining the 

signal to noise ratio. 

7.6.6 Clinical implications 
The present study not only confirms that HFOs are visible on the scalp EEG 

but also provides insight into the characteristics of intracranial patterns that 

correspond to an HFO visible on the scalp. Our analyses point towards the need of 

higher spatial sampling in intracranial and scalp recordings to obtain consistent 

information on HFO distributions. This observation has been the subject of 

debate, but it is important for epileptologists, who would like to use HFOs as 

biomarkers. Recent technical developments allow the use of high-density arrays 

of electrodes on the scalp (Lantz et al., 2003). Newly developed intracranial 

electrodes consist of an increasing number of recording sites, hybrid electrodes, 

and microarrays for single cell recording (Worrell et al., 2012). A future challenge 

of clinical research would be to evaluate which combination of intracranial and 

scalp electrode density will be ideal to analyse HFOs in the clinical context. 

Our results showed an application of combined scalp and intracranial EEG 

recordings. Scalp HFOs may be seen in this simultaneous approach and may help 

to overcome the spatial restriction of intracranial EEG. It was suggested that 

HFOs occurring outside the intracranially recording area might be the reason why 

some patients continued to have seizures after the majority of HFO generating 

brain areas were removed (Jacobs et al., 2010b, Wu et al., 2010). Thus, with the 
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methods described in this paper, it would be interesting to evaluate if scalp HFOs 

in regions other than the ones covered by intracranial electrodes may serve as a 

negative predictor for postsurgical seizure freedom. 

Understanding that the possibility of recording HFOs non-invasively is 

mainly an issue of spatial sampling is important because it provides a direct link 

between HFOs recorded with intracranial electrodes and on the scalp. This opens 

the opportunity to use scalp HFOs as biomarkers for the localization of epileptic 

tissue as well as for measuring disease activity. Scalp HFOs could become a 

valuable tool in large patient populations. They might be useful to follow the 

direct and long-term effects of medication, to predict the development of epilepsy 

after an insult, and to help targeting intracranial implantation. 

7.7 Conclusion 
We found that the traditional hypothesis regarding the extent of cortex 

necessary for events to be visible on the scalp does not hold for HFOs. The spatial 

distribution on the cortical surface at the time of scalp HFOs was focal, consisting 

of one or a few activations with a dipolar pattern. Scalp HFOs with similar 

pairwise scalp distribution may correspond to distinct patterns of activation on a 

standard 1cm subdural grid. Finally, a linear model could predict less than half of 

the scalp HFOs from the subdural grid pattern. We conclude that these results are 

caused by undersampling these focal events on the scalp and on the grid. This 

study is the first step towards a better understanding of the spatial characteristics 

of the cortical HF signals and their repercussion on the necessary spatial sampling 

of subdural and scalp signals. We suggest that a dense array of scalp electrodes 

may be necessary to study scalp HFOs systematically. HFOs could become 

powerful biomarker of epileptogenicity even on the scalp EEG. 
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7.9 Appendix A 

7.9.1 Linear model 
There is a linear relation between subdural contacts and scalp, since tissue in 

between (skull, scalp, dura) is purely resistive at the frequencies of interest. Thus, 

it is possible to create a linear model of the form 

ெ௫ே݌݈ܽܿܵ݉ ൌ   ሻݎ݋ݎݎ௄௫ே ሺ൅݁ܩܧܧܫ݉ ݔ ெ௫௄ܩ        Equation 7.2 

or in matrix form (ignoring the error term) 

 ቎
஼௛ଵ݌݈ܽܿܵݏ

ுிைଵ … ஼௛ଵ݌݈ܽܿܵݏ
ுிைே

… ڰ ڭ
஼௛ெ݌݈ܽܿܵݏ

ுிைଵ … ஼௛ெ݌݈ܽܿܵݏ
ுிைே

቏  ൌ ெ௫௄ܩ   ቎
஼௛ଵܩܧܧܫݏ

ுிைଵ … ஼௛ଵܩܧܧܫݏ
ுிைே

… ڰ ڭ
஼௛௄ܩܧܧܫݏ

ுிைଵ … ஼௛௄ܩܧܧܫݏ
ுிைே

቏ 

where mScalp is an MxN matrix containing the concatenated scalp EEG 

signal ( ஼௛௜݌݈ܽܿܵݏ
ுிை௜ሻ ; mIEEG is a KxN matrix containing the concatenated 

intracranial EEG signal at the time of the scalp events (ܩܧܧܫݏ஼௛ெ
ுிைଵሻ; and GMxK is 

the forward model to estimate. M is the number of scalp channels; K is the 

number of subdural channels; and N is the number of scalp events. 

Assuming that the noise is Gaussian the matrix GMxK can be obtained from 

the training set by 

ெ௫௄ ൌܩ  ሺ݉ܩܧܧܫ௧௥௔௜௡
′ ௧௥௔௜௡ܩܧܧܫ݉ ݔ ௧௥௔௜௡ሻାܩܧܧܫ݉ ݔ 

′ ௧௥௔௜௡݌݈ܽܿܵ݉ ݔ    Equation 7.3 

where train are the training events; ’ is the transpose operator; + is the inverse 

of the matrix (pseudo inverse since these are non-square matrices). GMxK is 

estimated for all but one event at each run. We estimated the matrix GMxK using 
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the backslash operator in Matlab which provides the least square solution. At each 

run the estimated mScalptest event was obtained as 

࢚࢙ࢋ࢚࢖࢒ࢇࢉࡿ࢓  ൌ  ࢚࢙ࢋ࢚ࡳࡱࡱࡵ࢓ ࢞ ࡷ࢞ࡹࡳ          Equation 7.4 

This procedure was repeated for all events in the leave one out schema. 

 

7.10 Significance 
This manuscript showed that even though the generators of HFOs cover a 

small cortical surface, they can be observed on the scalp, with low amplitude and 

in a very focal region. This is a first step towards a better understanding of the 

spatial characteristics of these cortical high frequency signals and the repercussion 

of these characteristics on the spatial sampling of subdural and scalp signals 

necessary to record HFOs. A dense distribution of scalp electrodes may be 

necessary to study scalp HFOs systematically and for the future clinical use of 

scalp HFOs as biomarkers of epilepsy. 
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Chapter 8. Conclusions and future 
directions 

8.1 Summary of findings 
The objective of this thesis was the detection and analysis of HFOs to 

improve their systematic study and to advance towards their clinical application as 

a biomarker of epileptogenic tissue. In this regards, an essential methodological 

challenge was the automatic detection of these sporadic events. It was also 

important to ensure stable detections and to assess the minimum duration of 

interictal EEG needed to obtain reliable information. In the case of non-invasively 

recorded HFOs, a fundamental question was to understand how is it possible to 

see these small events on the scalp. These challenges had to be addressed to make 

progress towards the clinical application of HFOs and they were the focus of this 

thesis. 

Visual marking provided a good understanding of the relation of HFOs with 

epilepsy (reviewed in Jacobs et al., 2012, Zijlmans et al., 2012) and is considered 

the gold standard. But it is highly time consuming and subjectivity is inevitable. A 

procedure to systematize the detection of HFOs was developed and presented in 

Chapter 5 (Zelmann et al., 2009b). This procedure is routinely being used when 

identifying interictal HFOs, to ensure consistency among reviewers and to 

evaluate stability in the detections. This study was the first to evaluate the 

minimum duration needed to obtain consistent information when marking the 

EEG. We showed that analyzing 5min of interictal EEG provided the same 

information as longer intervals.  

For the systematic study of HFOs and to promote their clinical application, 

automatic detection is necessary. An automatic detector of intracranial HFOs was 

presented in Chapter 6 (Zelmann et al., 2010, Zelmann et al., 2012). This detector 

consists of a baseline detector (i.e. segments without oscillatory components); a 
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detector of HFOs in channels where there are baseline sections free of oscillatory 

activity; and a detector of HFOs in channels where the baseline is not clear (e.g. 

very active channels). The MNI detector provides an original approach in 

detecting HFOs using a statistical threshold obtained from the detected baseline, 

thus incorporating local information. It is the first detector to explicitly consider 

channels with continuous HF oscillatory activity, first described in Mari et al. 

(2012). These features improved performance for the intracranial detection of 

HFOs.  

Existing detectors have been developed with different implicit definitions of 

what to detect as an HFO. They were developed for different frequency bands 

(above 200Hz, (Crepon et al., 2010),gamma band (Gardner et al., 2007)), 

different brain regions (e.g. only mesial temporal (Staba et al., 2002)), and diverse 

electrode sizes (microelectrodes in (Staba et al., 2002), micro and clinical macro-

electrodes in (Worrell et al., 2008)), small clinical macroelectrodes (Zelmann et 

al., 2010, Zelmann et al., 2012). When optimized for a particular type of data 

(EEG recorded with small clinical macroelectrodes, band passed filtered between 

80-450Hz) all detectors performed similarly for channels in which HFOs are rare 

events. In very active channels or in channels with continuous HF oscillatory 

activity, the MNI detector outperformed the others. Comparing the detectors in a 

single dataset was important not only to analyze their performance, but also to 

raise awareness of the danger of using a detector “out of the box” and to stress the 

issues involved in validation (Zelmann et al., 2012). In Chapter 7 (Zelmann et al., 

submitted), the MNI detector was used to detect possible scalp HFOs that were 

then validated by an expert reviewer. We used a semi-automatic approach to 

obtain good accuracy with reduced human intervention.  

The discovery of HFOs on the scalp was unexpected. Studies on spikes and 

seizures showed that a large cortical area is needed to observe them on the scalp 

(Hashiguchi et al., 2007, Tao et al., 2007). Based on this observation, given the 

small size of the generators of HFOs as assessed intracranially, and considering 

the high resistivity of the skull, most research on HFOs has been done with 
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invasive recordings. In order to move towards the systematic study of HFOs on 

the scalp a fundamental step was the study of the underlying cortical activity at 

the time of scalp HFOs. In other words, it was important to understand how is it 

possible that these small events are visible on the scalp. Analyzing simultaneous 

recordings of scalp and intracranial EEG at the time of scalp HFOs, we showed 

that the underlying activity was focal, sometimes less than one square centimetre 

(Chapter 7; Zelmann et al., submitted). Within a large region that could produce 

HFOs, a small region seems to generate each event. Even though the generators 

are small they can be observed on the scalp, with low amplitude and in a very 

focal region. We showed that the traditional 10-20 or 10-10 electrode systems 

cannot consistently spatially sample HFOs on the scalp. Grids, which usually have 

an inter-electrode distance of about 1cm, also do not seem appropriate to sample 

HFOs on the surface of the brain. The much lower rate of HFOs on the scalp 

(Andrade-Valença et al., 2011) than intracranially can be explained in part by 

spatial undersampling. A dense distribution of scalp electrodes with at least 256 

electrodes seems therefore necessary to fully spatially sample HFOs on the scalp. 

8.2 Limitations 

8.2.1 General limitations when studying HFOs 
Some limitations apply to all studies on HFOs, such as the limited spatial 

sampling.  Since intracranial recordings are limited to the location where the 

electrodes are, it is only possible to infer the importance of a region (e.g. in terms 

of epileptogenicity) if it is in the area covered by grids and strips or around depth 

contacts. In other words, it is impossible to know if there is relevant activity 

originating from other not covered areas.  

Another general limitation involves the large amount of recorded data. 

Acquiring a large number of channels at high temporal sampling rates during 

several days results in large datasets. The technology to allow large data transfer 

and storage is available and should not be a limiting a factor any longer. 
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Analyzing, summarizing, and properly displaying large amount of information are 

challenging aspects and should be addressed. Methods to visualize and summarize 

results are being developed. For instance, visualizing HF power in subdural grids 

during seizures (Akiyama et al., 2011a) and cognitive paradigms (Lachaux et al., 

2007) have been proposed. For depth electrodes, a method to map the SOZ to 

anatomical images has been described (David et al., 2011). 

Analysis of large datasets requires automatic detectors as the one presented in 

Chapter 6. HFOs are spontaneous small amplitude events that in most channels 

occur only rarely. Thus, HFOs must be individually detected. The EEG is non-

stationary, fluctuating with brain state (e.g. sleep stage), and only during short 

intervals it can be considered quasi-stationary. Low signal to noise ratio and 

variability in background activity make the detection of HFOs challenging during 

long intervals. Incorporating local baseline information (as presented in Chapter 

6) improves performance in very active channels and may be a good strategy to 

use over long periods. Evaluating stability in long intervals, with the procedure 

presented in Chapter 5, could also be important. This remains to be studied. 

HFOs were first recorded with microelectrodes in mesial temporal regions 

(Bragin et al., 1999a, Bragin et al., 1999b). The possibility of a clinical use 

became real when HFOs were also recorded with clinical macroelectrodes in 

mesial temporal and neocortical regions (Jirsch et al., 2006). Although HFOs 

recorded with micro and macroelectrode seem related to epileptogenic tissue, the 

same events are not necessarily being recorded. Diverse mechanisms could 

generate HFOs (Jefferys et al., 2012), and the underlying mechanisms of HFOs 

recorded with such different sizes could be different. When simultaneously 

recording HFOs with micro and macroelectrodes, the frequency distribution was 

different (Worrell et al., 2008). Within similar sizes no difference in rate or peak 

frequency was observed (Châtillon et al., 2011). Further studies on the 

characteristics of HFOs recorded simultaneously with different electrode 

dimensions might provide insight into whether the same or different events are 
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recorded by different types of electrodes and which contact size is the best to 

record pathological HFOs. 

As highlighted in Chapter 6, there is no consensus across groups on what to 

detect as an HFO. As a result, published detectors were optimized using diverse 

filter settings, HFO duration, and statistical relation to background. Details 

regarding each detector as well as a comparison in the same dataset were provided 

in Chapter 6 (Zelmann et al., 2012). When comparing results from different 

centers, it is important to take into account not only the difference in the 

optimization of the detectors, but also the electrode size, the number and 

distribution of the contacts, the sampling rate and filters, and the quality of the 

data. This situation is not unique to HFOs but applies to any study based on EEG. 

Until a unique general definition is established for HFOs, it is important not to use 

a detector “out of the box” because what is valid in one center would probably not 

be valid for another place. The detector of choice should be trained and validated 

for a dataset with characteristics similar to the dataset of interest in order to obtain 

good performance (Chapter 6, Zelmann et al., 2012).  

8.2.2 Specific limitations of the presented studies 
As a running definition for the detection of HFOs the following has been 

proposed: at least four oscillations of sinusoidal like morphology in the filtered 

EEG (above 80 Hz) with energy larger than the 95 percentile of the surrounding 

background (Worrell et al., 2012). This is a first step towards standardization, but 

this definition is only marginally helpful, since it is fuzzy and therefore subject to 

broad interpretation on what should be detected as an HFO. The studies presented 

in this thesis were limited by this definition. The visual labeling studied in 

Chapter 5, the MNI detector presented in Chapter 6, and the scalp HFOs identified 

in Chapter 7 were based on it. This definition is likely to evolve as better 

characterization of HFOs and differentiation between physiological and 

pathological HFOs is achieved. As the definition of HFO is refined, detectors 

should be adapted accordingly. Standardization is fundamental for the 
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development of robust automatic detectors and comparison of studies across 

centers, and should be pursued. 

HFO rates are higher when recorded in mesial temporal than in neocortical 

structures. In line with this, the hippocampus is particularly prone to develop 

seizures. Physiological HFOs might be inherently different in different regions. 

Channels with continuous HF activity are more common in mesial temporal and 

occipital regions than in other regions (Melani et al., in press). However, the 

detector presented in Chapter 6, detects HFOs in all brain regions using the same 

threshold. Although training uses channels uniformly distributed from all 

locations, a unique threshold is obtained. Further research might show whether 

different regions should be considered separately. 

Given the lack of a formal definition of HFO, the validation of automatic 

detectors is not trivial. In order to validate the detections a “gold standard” is 

needed. As in the validation of other electrophysiological signals, human expert’s 

detections can be considered as the gold standard. But variability among 

reviewers has to be considered. In this regard, a possibility is to consider more 

than 1 reviewer (as in (Gardner et al., 2007); (Chapter 6, Zelmann et al., 2010)), 

although agreement between reviewers can be poor (Gardner et al., 2007). To 

obtain a reliable gold standard, it is important to control for inter-reviewer 

reliability and for consistency in the markings (as presented in Chapter 5; 

Zelmann et al., 2009b). Ensuring small inter-reviewer variability has the 

advantage of obtaining uniform labeling of events. For instance, before 

implementing this procedure an event could be identified as a single long HFO by 

one reviewer while labeled as two short events by others. However, the flip side 

of the coin is that it might be fruitful to explore different definitions before a firm 

definition is accepted. 

In any case, the ultimate validation will be given by the usefulness of the 

detections in terms of relation to the epileptogenic regions or cognitive function 

location. To date, the goal (as presented in Chapter 6) is to obtain the same 
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conclusions by the automatic methods as by the human experts. This selection of 

gold standard is logical and it is commonly utilized in studies based on EEG. 

However, this choice limits what is considered as “good” HFOs to those events 

that can be observed by the human reviewer, restricting the usefulness of 

automatic detectors to what is already known. Automatic detectors might identify 

events not clear to the human eye (e.g. buried in noise) and could therefore 

provide interesting results independently of human interpretation. 

All presented studies were limited by the selection of recordings performed 

during slow wave sleep. Given that the rate of HFOs is the highest during this 

sleep stage (Bagshaw et al., 2009, Staba et al., 2004) we chose this stage for the 

visual and automatic identification of events. However, the performance of the 

automatic detector was not evaluated at other stages nor was the assessment of a 

minimum duration of EEG that must interpreted to obtain reliable results. Thus, 

the obtained results cannot be directly generalized. The parameters of the 

automatic detector are likely to be different at different stages and longer intervals 

might be needed to provide stable information during wakefulness. The automatic 

detector presented in Chapter 6 was also limited to recordings with small clinical 

macroelectrodes. Its performance might be different if optimized and 

implemented in recordings with microelectrodes.  

The study presented in Chapter 7 was limited by signal quality. When 

recording simultaneous scalp and intracranial EEG, scalp electrodes are placed 

and glued at the end of the surgical intervention. Since they are not re-glued 

afterwards, the EEG signal recorded on the scalp degrades over time. To 

minimize this limitation, we selected the first available night with scalp electrodes 

(Zelmann et al., submitted). But even with this criterion, this scalp EEG was more 

noisy than normal scalp EEG recordings. Subdermal electrodes remain stable 

during the days of the recordings (Jacobs et al., 2010a). Simultaneous intracranial 

and subdermal recordings have not been studied, but they are likely to provide 

interesting conclusions. 
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8.3 Future directions 
The projects presented in this thesis advanced several methodological aspects 

for the systematic study of HFOs, opening also new venues for research. In this 

section new directions of research are proposed. 

8.3.1 Improving the identification of HFOs 
We showed that analyzing HFO rates during 5min provided the same 

information as longer intervals, and provided a procedure to evaluate it (Chapter 

5; Zelmann et al., 2009b). Given the relation of interictal HFOs with epileptic 

tissue, this suggests that shorter implantation periods might be sufficient to 

delineate the epileptogenic zone.  

Intraoperative EEG recordings are sometimes performed (Wu et al., 2010), 

but time is always a limitation in the operating room. Since short intervals seem 

sufficient to obtain relevant information, HFOs might provide the necessary 

specificity to increase accuracy in the delineation of the area to resect during 

surgery. Adapting the procedure presented in Chapter 5 could ensure stability in 

the intraoperative identification of HFOs. 

The rate of HFOs in a channel seems a reliable marker of underlying 

epileptogenic tissue and it has been the most commonly used measure. Apart from 

considering the raw rate of HFOs, extensions to this measure or other measures 

might result the most appropriate to characterize HFOs. For instance, in Chapter 5 

we presented an extension to the raw measure of rates, the ranking of the channels 

with respect to the rates. This measure was used also in the comparison of 

automatic detections with the gold standard, since the relative number of detected 

HFOs in each channel of a patient is more important than the total number of 

detections. This measure was also adapted to compare the ranking of channels 

during interictal, pre-ictal, and ictal periods. It was shown that HFOs remain more 

confined than spikes when comparing interictal and ictal periods (Zijlmans et al., 

2011). This measure could also be adapted, for instance, to compare the ranking 

of channels when recording simultaneously with micro and macroelectrode. As 
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examples of other measures, a combination of entropy and power in HF band 

could differentiate between pre-ictal and interictal periods (Gadhoumi et al., 

2012). Their variability at different times (e.g. interictal vs. pre-ictal vs. ictal) 

could be related to the intrinsic epileptogenicity of the tissue. The ranking of 

channels was developed for rates (Zelmann et al., 2009b), but any feature could 

be used in the cost matrix. 

HFOs can occur at the same time or independently of spikes (Urrestarazu et 

al., 2007). Separating between sharp spikes, HFOs riding on spikes, and HFOs 

alone could be important. Interesting features to differentiate among them might 

be related to patterns in the time-frequency plane. For instance, a pattern 

consisting of lines of spectra would correspond to spikes, while islands would 

correspond to HFOs. Apart from the morphology of the patterns, features, such as 

the power in an island around the main peak, the time-frequency location of a 

peak, and the power at that peak could be extracted. In particular, creating these 

maps with discrete wavelets could help in the quantification of the differences and 

the development of classifiers. 

Physiological and pathological HFOs cannot be distinguished at this point. 

Since HFOs seem a good marker of epileptogenic tissue, a reasonable assumption 

is that epileptic tissue produces such high rates of HFOs that even if some 

physiological HFOs occur they are minimal comparing with the number of 

pathological HFOs. In line with this, a study relating memory performance with 

HFOs showed that the majority of HFOs recorded with macroelectrodes seemed 

pathological and not linked to memory function (Jacobs et al., 2011a). 

Nevertheless, the systematic differentiation between physiological and 

pathological HFOs is important from research and clinical application 

perspectives. Frequency is not sufficient to distinguish between them (Engel et 

al., 2009). Other measures, such as power, entropy, temporal distribution, and 

cross-frequency coupling could become useful features to discriminate between 

physiological and pathological HFOs. For instance, physiological HFOs in the 

occipital lobe and pathological HFOs in epileptogenic regions of the same patient 
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had similar morphology, but differ in the coupling with delta oscillations 

(Nagasawa et al., 2012). This could be a factor to differentiate between 

physiological and pathological HFOs or it might reflect an intrinsic characteristic 

of certain brain location. Further studies are needed to determine which measure 

is the most informative of the relation of HFOs with the epileptogenic region. 

8.3.2 Automatic detection of HFOs 
Automatic detectors of HFOs are usually designed to detect as many events 

as possible at the cost of a large number of false detections. For an automatic 

detector to be used clinically, these false positives must be discarded. To 

differentiate HFOs from artefacts, a possible post-processing step is to 

automatically classify the detections (Blanco et al., 2010, von Ellenrieder et al., 

2012). Another common approach, employed in Chapter 7 and by others (e.g. 

Crepon et al., 2010), is to implement a semi-automatic detector in which 

experienced reviewers performed visual validation. Even though expert 

intervention is required, their time is greatly reduced compared to a full visual 

analysis. Fully automatic detectors are ideal and could achieve labeling of 

massive datasets, but high sensitivity and high specificity is required. Moving in 

this direction, an interesting approach would be an adaptive system. A supervised 

approach could be used to first optimize the parameters on a particular type of 

data. Then, the detector could be run for a particular dataset. After detecting 

possible events with a high sensitivity low specificity detector, clustering could be 

implemented to remove artefacts, and the remaining events validated by an expert 

reviewer. An adaptive approach could allow learning from preceding detections, 

to gradually reduce the need of expert validation. In this way, excellent 

performance while significantly reducing human intervention can be achieved.  

Another approach within a supervised framework is a pattern-matching 

detector. In this schema, a few HFOs and baselines per channel are used for 

training (e.g. the first minute or the first N events) and the automatic detector is 

run thereafter. This could result in a more specific detector, but probably with 

lower sensitivity to small or less common events. 
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Most automatic detectors have been developed for intracranial electrodes. 

The principles are similar for the non-invasive detection of HFOs, and existing 

detectors could be used (as in Chapter 7). However, to obtain robust detections, 

automatic detectors must be tailored to the identification of events on the scalp. 

Only one detector has been developed specifically for scalp HFOs (von 

Ellenrieder et al., 2012). Incorporating local baseline information improved 

performance in intracranial data (Zelmann et al., 2012) and could be helpful on 

the scalp.  

HFOs could help delineating the area to resect during a surgical procedure 

(Wu et al., 2010). For an automatic detector to be useful in the operating room 

data should be processed in almost real-time and new ways of visualizing the data 

and summarizing the analysis should be developed. For instance, methods 

developed for 3D visualization of intracranial contacts overlaying on MRI images 

(e.g. LaViolette et al., 2011) could be adapted to display HFO rates.   

Automatic detectors have been developed at different centers with different 

recording equipment, electrode size, noise characteristics, and implicit definitions. 

Evaluating diverse detectors in the same dataset highlighted the danger of using 

standard configurations without validation (Zelmann et al., 2012). For the clinical 

acceptance of automatic detectors of HFOs, multicentre studies in which data 

from various centers is used to evaluate a detector are necessary. In addition, 

integrating automatic detection and appropriately summarizing the analysis (e.g. 

indicating the ranking of channels with respect to rates) into clinical software 

could be valuable. 

8.3.3 Non­invasive HFOs 
HFOs can be recorded non-invasively with a traditional electrode placement 

but with low rates (Andrade-Valença et al., 2011). We explained how, even 

though HFOs are events of small spatial extent, they could be recorded non-

invasively, and that to consistently record HFOs dense electrode arrays seem 

necessary. This opens the possibility to systematically study HFOs on the scalp. 
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We studied the cortical correlates at the time of the peak of scalp HFOs. An 

interesting next step is the analysis of scalp activity at the time of intracranial 

HFOs. A source localization method for oscillations has recently been developed 

(Lina et al., 2012). Its application to scalp HFOs could provide interesting 

information. 

Understanding that the possibility of recording HFOs non-invasively is in 

part an issue of spatial sampling is important because it provides a direct link 

between HFOs recorded intracranially and on the scalp. In other words, there is no 

special characteristic of the HFOs observed on the scalp; they are not 

exceptionally spatially extended. Amplitude, location, and orientation determine 

whether an HFO is visible on the scalp or not. Understanding this spatial sampling 

limitation may allow a different perspective in cognitive and clinical studies. This 

opens the possibility to further study the clinical relevance of HFOs on the scalp. 

Scalp HFOs could be a valuable tool in large patient population. Scalp HFOs 

were more specific to the SOZ than spikes (Andrade-Valença et al., 2011). Since 

intracranial HFOs vary with medication similarly to seizures (Zijlmans et al., 

2009b), scalp HFOs might be useful to follow the effect of medication. In animal 

models, HFOs appeared in rats that later developed epilepsy (Bragin et al., 2004). 

If the same happens in humans, scalp HFOs could predict the development of 

epilepsy after a first insult. Not removing regions that generate high rate of 

intracranial HFOs was associated with poor surgical outcome (Jacobs et al., 

2010b); therefore recording of widespread scalp HFOs could be related to bad 

surgical prognosis. HFOs were evoked by single pulse stimulations (van 't 

Klooster et al., 2011); reactivity of scalp HFOs to photic stimulation, 

hyperventilation, or transcranial magnetic stimulation could be investigated. 

Intracranial HFOs have been observed in lesional (Jacobs et al., 2009a, Staba et 

al., 2007) and non-lesional (Andrade-Valença et al., 2012) patients and have been 

recorded in temporal (Bragin et al., 1999b) and neocortical regions (Urrestarazu et 

al., 2007). Since scalp HFOs could be analyzed as part of a routine EEG 

investigation a large variety of focal and generalized epileptic syndromes could be 
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studied. Scalp HFOs could also help targeting intracranial implantation. 

Subsequent to the understanding that even though the generators of HFOs are 

small they can be recorded on the scalp (Chapter 7; Zelmann et al., submitted), 

these directions are likely going to be thoroughly investigated in the near future. 

8.4 Conclusions 
The work presented in this thesis addressed challenges that needed to be 

solved for the systematic study of HFOs and to propel the clinical utilization of 

HFOs as biomarkers of tissue capable of producing seizures. A procedure to 

assess stability in the detections allows to systematize the study of HFOs. The 

developed automatic detector would likely help advancing towards the clinical 

application of HFOs. The analysis of scalp HFOs showed that with better spatial 

sampling HFOs could be thoroughly studied non-invasively. These scientific and 

methodological advances are important steps towards the incorporation of HFOs 

as a clinical biomarker of epileptogenic tissue. Hopefully, in the near future, it 

will become regular clinical practice to evaluate the presence of HFOs during the 

pre-surgical intracranial evaluation and during routine scalp EEG investigation. 
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